
Program Product

SH20-9161-3
File No. 5370-73

-~- ------ ----- ---. --- ----- -- ----------- _.-

Program Product

SH20-9161-3
File No. S370-73

Document Composition
Facility: Users Guide

Program Number 5748-XX9

Release 2

--..- ------ ~---= =~~~ - - - --------
-~-.-

This publication was produced using the IBM Document
Composition Facility (program number 5748-XX9) and

the master was printed on the IBM 3800 Printing Subsystem.

Fourth Edition (September 1982)

This is a major revison of SH20-9161-2, which is now obsolete. Changes or addi
tions to the text and illustrations are indicated by a vertical line to the left of
the change.

This edition applies to Release 2 of the Document Composition Facility program
product, 5748-XX9, and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

Changes are periodically made to the information herein; before using this publi
cation in connection with the operation of IBM systems, consult the latest IBM
SYstem/370 and 4300 Processors Bibliography, GC20-0001, for editions that are
applicable and current.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not avail
able in your country. Such references or information must not 'be construed to mean
that IBM intends to announce such products in your country.

Publications are not stocked at the address given below; requests for IBM publica
tions should be made to your IBM representative or to the IBM branch office serv
ing your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation, General Pro
ducts Division, Department61C, Tucson, Arizona, U.S.A 85744. IBM may use or dis
tribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

(c) Copyright International Business Machines Corporation 1978, 1980, 1981, 1982

PREFACE

This manual contains a description of the IBM Document Composi
tion Facility (SCRIPT/VS) program product and the information
necessary to use it. No prior operating system knowledge is
required for general use of SCRIPT/VS.

The information in this publication applies equally to OS/VSl,
OS/VS2 MVS, DOS/VSE, VM/370, and ATMS-III unless specifically
stated otherwise.

Use of SCRIPT/VS in an ATMS-III, CMS, or TSO environment requires
the Foreground Environment Feature; use in a background environ
ment requires the Document library Facility program product (pro
gram number 5748-XXE).

The chapters of this publication contain:

• "Chapter 1. An Introduction to SCRIPT/VS" on page 1: A general
description of SCRIPT/VS. This chapter includes a discussion
of what SCRIPT/VS is and what it does.

• "Chapter 2. Using the SCRIPT Command" on page 13: A
description of the SCRIPT command and each of its options.

• "Chapter 3. Basic Text Processing" on page 33: A description
of how to speci fy basic text formatting functions, such as
indention, tabs, blank space, forcing a new page, and format
ting modes. This chapter also describes some guidelines for
entering input lines in a SCRIPT/VS file.

• "Chapter 4. Defining a Page layout" on page 55: A description
of how to define the parameters of a page, such as page
length, column width, line length, and page numbering. This
chapter also describes how to have text repeated at the top
and bottom of each page: running titles, headings, and
footings.

• "Chapter 5. Multicolumn Page layout" on page 67: A
description of how to establish a multicolumn format for the
body of a page.

• "Chapter 6. Head levels and Table of Contents" on page 73: A
description of how to specify and modify SCRIPT/VS head lev
els (that is, chapter and topic headings), and how SCRIPT/VS
creates a table of contents from the head levels.

• "Chapter 7. Indexing" on page 79: A description of how to cre
ate an index by placing index entry information in the text of
a document.

• "Chapter 8. Additional Formatting Features of SCRIPT/VS" on
page 87: A description of additional formatting features of
SCRIPT/VS, including character translation, keeping text
together, marking revised material, and drawing boxes. This
chapter also describes footnotes, and conditional column and
pa ge ej ects .

• "Chapter 9. The SCRIPT/VS Formatting Environment" on page
109: A description of the SCRIPT/VS formatting environment.

• "Chapter 10. Conditional Processing" on page 111: A
description of how to alter the order in which input lines are
processed. The techniques discussed include conditional con
trol words, branching, and conditional sections.

• "Chapter 11. Combining SCRIPT/VS Files" on page 119: A
description of how to combine SCRIPT/VS input files, merge
input from several files, and use SCRIPT/VS to interactively
create an output document.

Preface iii

• "Chapter 12. Symbols in Your Document" on page 129: A
description of the SCRIPT /VS symbol processing capabili ty:
how to name symbols, store them in a symbol library, use sys
tem symbols, and use symbol arrays. This chapter describes
many useful applications for symbols.

• "Chapter 13. Writing SCRIPT/VS Macro Instructions" on page
147: A description of the SCRIPT/VS macro processing capabil
ity: how to build a macro, use symbols within a macro, condi
tionally process parts of the macro, and store macros in a
macro library.

• "Chapter 14. GML Support in SCRIPT/VS" on page 159: A
description of how to name a GML tag, build an application
processing function (APF) associated wi th the tag, and map
the tag to the APF. This section should be read in conjunction
wi th the Document Composi tion Faci1i ty Generalized Markup
Language: Starter Set Reference.

• "Chapter 15. Using SCRIPT /VS wi th Other Programs" on page
167: A description of how to use SCRIPT/VS with other text
processing programs, either as a postprocessor used to format
the output of another program, or as a preprocessor used to
prepare SCRIPT/VS files for input to another text processing
program.

• "Chapter 16. Automatic Hyphenation and Spelling Verification"
on page 171: A description of the SCRIPT/VS dictionary and how
SCRIPT/VS uses it for automatic hyphenation and spelling ver
ification. This chapter also describes how to build an
addenda dictionary, used to supplement the SCRIPT/VS diction
ary.

• "Chapter 17. Produci ng I nput for STAI RS/VS" on page 179: A
description of how to use SCRIPT /VS to prepare input for
STAIRS/VS.

• "Chapter 18. Diagnostic Aids" on page 181: A description of
how to identify errors in your input file and correct them.
This chapter includes a description of the SCRIPT /VS input
substitution trace facility, which enables you to observe the
resul ts of SCRIPT /VS processing at various points as your
input file is being processed.

• "Chapter 19. EasySCRIPT" on page 189: A description of
EasySCRIPT functions and usage.

• "Chapter 20. Compatibility with Earlier Releases of SCRIPT"
on page 195: A description of the similarities and differ
ences between SCRIPT/VS Release 2, SCRIPT/VS Release 1, and
SCRIPT/370.

• "Chapter 21. ATMS Conversion" on page 211: A description of
the ATMS Conversion program provided with SCRIPT/VS for use
with the Document Library Facility.

• "Chapter 22. Compati bi 1 i ty wi th TSO/ FORMAT" on page 217: A
description of the similarities and differences between
SCRIPT/VS and TSO/FORMAT.

• "Chapter 23. SCRIPT /VS Control Word Descriptions" on page
219: A detailed description of each SCRIPT/VS control word:
its format, parameters, usage notes, and examples of use.

• "Appendix A. SCRIPT /VS Summary" on page 341: A summary of
SCRIPT /VS: fi Ie names, SCRIPT command parameters, control
words, system symbols, special characters, character sets,
and 3800 Printer fonts.

• "Appendix B. Device and Font Table Maintenance" on page 367: A
description of how to define a new logical output device or a
new font to SCRIPT/VS.

iv Document Composition Facility: User's Guide

• "Appendix C. stem Processing" on page 373: A list of the word
prefixes and suffixes recognized in each language for spell
ing verification.

• "Appendix D. Fonts Supplied with SCRIPT/VS" on page 377: An
illustrated list of the fonts provided with SCRIPT/VS for use
with the IBM 3800 Printing Subsystem.

• "Appendix E. Formatting Considerations for the 3800 Printer"
on page 385: A description of the use of SCRIPT/VS with the
IBM 3800 Printing Subsystem.

• "Appendix F. Maintaining User Dictionaries" on page 391: A
description of the dictionary maintenance program, which is
used to create and modi fy user dictionaries for spelling
checking and hyphenation.

• "Appendix G. Performance Considerations" on page 395: A dis
cussion of performance considerations.

RELATED PUBLICATIONS

• Document Composition Facility and Document library Facility
General Information Manual, GH20-9158. This manual describes
the SCRI PT /VS and libra ry program products and summa ri zes
their functions and capabilities. It also summarizes the
operating environment requirements for these products.

• Document Composition Facility Introduction to the Generalized
Markup language: Using the Starter Set, SH20-9l86. This manu
al provides an introduction to GMl and a primer on document
markup with the GMl starter set provided with SCRIPT/VS.

• Document Composition Facility Generalized Markup language:
Starter Set Reference, SH20-9187. This manual describes the
GMl starter set provided with SCRIPT/VS.

• Document Composition Facility Generalized Markup language:
Concepts and Design Guide, SH20-9188. This manual discusses
GMl concepts and provides guidelines for designing your own
GMl.

• Document library Facility Guide, SH20-9165. This manual
explains how to set up, use, and maintain the library. It also
explains how to call SCRIPT/VS as a subroutine, and how to
convert ATMS documents into SCRIPT/VS input files.

• Document Composi tion Facili ty: Diagnosis, l Y20-8067. This
manual is licensed; that is, it remains the property of IBM
and is provided under the terms of the licensing agreement for
the Document Composition Facility. It is for IBM service per
sonnel and customers who diagnose programming errors.

• Document Composition Facility: User's Quick Reference,
SX26-3723. This reference card summarizes the SCRIPT command,
the SCRIPT/VS language, and other facilities of SCRIPT/VS.

• Document Com osition Facilit: GMl Reference,
SX26-3719. This reference card summarizes the GM starter set
and how to use SCRIPT/VS in each interactive environment.

• Virtual Machine Facility/370: Introduction, GC20-1800. This
manual contains an introduction to CMS (the Conversational
Monitor System), which is one of the interactive systems in
which SCRIPT/VS operates. Other manuals that include detailed
information about CMS are:

VM/370: CP Command Reference for General Users, GC20-1820

VM/370: CMS User's Guide, GC20-1819

VM/370: CMS Command and Macro Reference, GC20-18l8

Preface v

VM/370: Terminal User's Guide, GC20-1810

• OS/VS2 TSO Terminal User's Guide, GC28-0645. This manual
gives detailed user information about OS/VS2 TSO (Time Shar
ing Option), which is one of the interactive systems in which
SCRIPT /VS operates. It describes the TSO EDIT command and
related facili ties for text entry and edi ting and for text
data set management. Other manuals that include detailed
information about TSO are:

OS/VS2 TSO Command Language Reference, GC28-0646

OS/VS2 TSO Command Language Reference Summary, GX28-0647

• Advanced Text Management SYstem-III (ATMS-III): General
Information Manual, GH20-2404. This manual contains an intro
duction to ATMS (the Advanced Text Management System), which
is one of the interactive systems in which SCRIPT/VS
operates. Other manuals that include detailed information
about ATMS are:

ATMS-III: Program Reference Manual, SH20-2424

ATMS-III: Terminal Operator's Guide, SH20-2425

ATMS-III: Terminal Operator's Exercise/Reference Guide,
SH20-2426

ATMS-III: Operations Guide, SH20-2427

• Introducing the IBM 3800 Printing Subsystem and Its Program
ming, GC26-3829. This manual provides general information
about the 3800 Printer. It describes what the 3800 Printer is
and provides information about the standard and optional fea
tures available for the 3800 Printer. The IBM 3800 Printing
Subsystem Programmer's Guide, GC26-3846 (for OS/VSl and
OS/VS2 MVS) and GC26-3900 (for DOS/VSE), includes detailed
information about programming for the 3800 Printer.

vi Document Composition Facility: User's Guide

RELEASE 2

SUMMARY OF AMENDMENTS

This reVl.Sl.on documents the functional changes that have been
made to the Document Composition Facility for Release 2. The major
changes and addi tions are:

• Descriptions of the new CTF, INDEX, TlIB, and ~user-option
command options have been added to "Chapter 2. Using the
SCRIPT Command" on page 13.

• Chapters describing the new indexing, GMl, and STAIRS/VS sup
port have been added.

• Descriptions of SCRIPT/VS's formatting capabilities have been
added or changed to reflect the new and changed SCRIPT /VS con
trol words.

• Descriptions of the syntax of the following new control words
have been added to "Chapter 23. SCRIPT /VS Control Word
Descriptions" on page 219:

.AA [Associate APF]

.AN [And]

.CT [Continued Text]

.DF [Define Font]

.Dl [Dictionary list]

.El [Else]

.Fl [Float]

.GS [GMl Services]

.IE [Index Entry]

.IX [Index]

.ME [Macro Exit]

.OR [Or]

.PI [Put Index]

.PM [Page Margins]

.RN [Reference Numbers]

.50 [STAIRS/VS Output]

.TH [Then]

.TS [Translate String]

.TU [Translate Upperca~e]

.UW [Unverified Word]

.WZ [Widow Zone]

• A summary of the formatting differences between Release I and
Release 2 control words has been added to "Chapter 20. Compat
ibility with Earlier Releases of SCRIPT" on page 195.

• Clarifications have been made to:

Using the SCRIPT Command

GMl Support in SCRIPT/VS

Automatic Hyphenation and Spelling Verification

Diagnostic Aids

SCRIPT/VS Control Word Descriptions

All of these additions and changes have been marked with revision
bars in the left margin.

Summary of Amendments vii

TABLE OF CONTENTS

Chapter 1. An Introduction to SCRIPT/VS
Generalized Markup Language

SCRIPT/VS Release 2 Highlights
How SCRIPT/VS Works

Control Words and Their Parameters
Defaults and Initial Settings

SCRIPT/VS Input File Characteristics
Logical and Physical Output Devices
Vertical and Horizontal Space Units
Fonts
Calling the SCRIPT/VS Processor

Interactive Environments
Batch Environments
Using SCRIPT/VS as a Subroutine
Using SCRIPT/VS as a Preprocessor
Using SCRIPT/VS to Process Input for STAIRS/VS

Formatting Considerations
Selecting Control Words

SCRIPT/VS Functions
Formatting Functions

Page Layout
Head Levels
Table of Contents
Indexing
Highlighted Phrases
Footnotes
Revision Codes
Hyphenation and Spelling Verification
Printing Part of the Output Document
Tabs
Boxes
Keeping Text Together
Placing Text at the Top or Bottom of a Page or Column

General Document Handling Functions
Documents Marked up for Earlier Releases of SCRIPT
Processing Generalized Markup Language (GML) Tags
Saving Input Lines for Subsequent Processing
Imbedding Separate Files
Processing Symbols and Macros
Processing Input Conditionally
Specifying the Destination of Output
Processing Interactively During Formatting
Converting ATMS Documents
Debugging by Tracing Processing Actions

Chapter 2. Using the SCRIPT Command
Naming the Input File

CMS Naming Conventions
TSO Naming Conventions
ATMS-III Naming Conventions

SCRIPT Command Options
Defaults
Mutually Exclusive Options .. .
Logical and Physical Output Devices

Examples
BIND: Shift the Page Image to the Right
CHARS: Specify Fonts
CONTINUE: Continue Processing After a Nonsevere Error

Occurs
CTF: Prepare Output in STAIRS/VS Condensed Text Format
DEST: Name a Remote Output Station or Queue
DEVICE: Specify a Logical Output Device
DUMP: Enable the .ZZ Control Word
FILE: Name a Disk File for Output
INDEX: Enable Back of Book Index
LIB: Specify Symbol and Macro Libraries
MESSAGE: Control Message Printing
NOPROF: Suppress the Profile
NOSPIE: Prevent Entering SPIE Exit Routines
NOWAIT: Prevent Prompting for Paper Adjustment

Table of Contents

1
3
3
4
4
4
4
5
6
7
7
7
7
7
8
8
8
8
8
9
9
9
9

10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
12
12
12
12
12

13
13
14
14
14
15
17
17
18
18
18
19

20
20
20
21
22
22
24
24
25
25
26
26

ix

NUMBER: Print the File Name and Line Number
OPTIONS: Name a File That Contains Options
PAGE: Selectively Print Pages
PRINT: Produce Printer Output
PROFILE: Specify a Profile
QUIET: Suppress the Formatter's Identifier Message
SEARCH: Specify a Library
SPELLCHK: Enable the .SV Control Word
STOP: Print Separate Pages at the Terminal
SYSVAR: Set System Variable Symbols
TERM: Display the Output at the User's Terminal
TLIB: Specify Spelling Checking and Hyphenation Libraries
TWOPASS: Prepare the Document With Two Formatting Passes
UNFORMAT: Print All Input Lines Without Formatting
UPCASE: Print Lowercase Letters as Uppercase
auser-option: User-defined Options

Chapter 3. Basic Text Processing
GML Markup and Control Words
SCRIPT/VS Text Formatting

Format Mode
Concatenation and Justification
Ragged Right

SCRIPT/VS Implicit Formatting Conventions
Using Tabs In SCRIPT/VS

Setting Tabs
Some Uses for Tabs
Tab· Fill Characters

Breaks
Changing the Margins

Simple Indention
Temporary and Permanent Indention
Using Indention with Tabs

Vertical Space
Line Spacing

Positioning Lines on the Page
Underlining and Capi talizing
Using Fonts with the IBM 3800 Printing Subsystem
Forcing a New Page

Starting an Odd or Even Page
Specifying Page Eject Mode.

Guidelines for Entering Text and Control Words In SCRIPT/VS
Start All Input Lines In Column One
Avoid a Text Period In Column One .
Remember Which Control Words Cause Breaks

The Control Word Separator
Redefining the Control Word Separator

Comments in SCRIPT/VS Documents

Chapter 4. Defining a Page Layout
Basic Page Dimensions

Changing the Page Margin
Changing the Page Length
Changing the Line Length

Running Headings and Footings
Top and Bottom Running Titles

Allocating Space for Running Titles
Where To Define Headings, Footings, and Running Titles
Page Numbers

Roman Numeral Page Numbers
Decimal Page Numbers
Alphabetic Page Numbers
Prefixes for Page Numbers

Chapter 5. Multicolumn Page Layout
Defining Multicolumri Layout

Page Sections and Section Breaks
Column Positions
Column Width
Starting a New Column

Suspending and Resuming Multicolumn Processing

Chapter 6. Head Levels and Table of Contents
Characteristics of Head Levels

x Document Composition Facility: User's Guide

26
26
26
27
28
29
29
29
29
30
30
30
31
31
32
32

33
33
33
33
34
35
35
36
36
38
38
38
39
40
41
42
43
44
44
47
48
49
.50
50
50
50
51
51
52
52
53

55
55
57
57
58
58
61
63
63
64
64
64
65
65

67
67
68
69
70
71
72

73
73

Spacing and Page Ejects
Defining Head Levels

The Table of Contents
Adding Lines to the Table of Contents

Like This One
Printing the Table of Contents
TWOPASS Considerations

Chapter 7. Indexing ••••••
Positioning the Index in a Document
Creating Index Entries

Page References
Multilevel Entries
Explicitly Specified Page Numbers
Cross-References

Sorting Index Entries
Handling Special Characters
Explicitly Specifying Sort Keys

Creating the Index

Chapter 8. Additional Formatting Features of SCRIPT/VS
Character Manipulation

Output Character Translation
Input Character Translation
Uppercase Translation
String Translation

Defining Special Characters That Affect SCRIPT/VS Processing
The Continuation Character

Ensuring That Blocks of Text Stay Together
Keeps
Inline Keeps
Widows
Floats

Footnotes
Normal Footnote Placement
Unusual Footnote Placement Conditions
Other Footnote Considerations

Starting a New Page or Column
Conditional Column and Page Ejects

Marking Updated Material
Drawing Boxes

Stacking one box on another
Drawing a box within a box
Drawing the middle portion of a box within another
(larger) box

Drawing boxes in a horizontal row
Drawing the top line (only) of a box .
Drawing the middle portion of a box (without top or

bottom lines)
Drawing the bottom line (only) of a box

Drawing boxes with the 3800 Printer
Defining Internal Fonts
Line Reference Numbers

Chapter 9. The SCRIPT/VS Formatting Environment
Parameters That Define the Formatting Environment

The Keep and Float Environments
The Footnote Environment

Saving and Restoring the Current Formatting Environment

Chapter 10. Conditional Processing
The .IF Control Word Family

Alternative Processing
Bypassing Part of an Input File
The SYSPAGE and SYSOUT Comparands
Special Techniques for Conditional Processing

Conditional Sections
Conditional Processing With Symbols

Chapter 11. Combining SCRIPT/VS Files
Imbedding and Appending Files

Naming the File To Be Imbedded or Appended
Master Files

Writing to an Output File

Table of Contents

74
75
75
76
76
76
77

79
79
79
79
80
81
81
82
82
83
84

87
87
87
89
90
90
91
92
92
93
94
95
95
96
96
97
98
98
99
99

101
103
104

105
105
106

106
106
106
107
108

109
109
109
110
110

111
111
112
113
113
113
114
116

119
119
120
121
122

xi

Several .WF Files
Delaying the Imbedding of Input Text

Terminating the Formatting of a File
Merging Documents From Several Sources
Interactive SCRIPT/VS Processing

Communicating With VM/370
Communicating With TSO

Chapter 12. Symbols in Your Document •••••
How SCRIPT/VS Substitutes Values For Symbol Names

Compound Symbols
Unresolved Symbols
Inhibiting Substitution
Canceling a Symbol
Attributes of a Symbol's Value

Symbol and Macro libraries
SCRIPT /VS System Symbols

Symbols for the System Date and Time
Elaborating the System Date

Symbols for SCRIPT/VS Control Values
The &$RET Special Symbol
The &$lC Special Symbol

Passing Parameters To Input Files
Setting Symbols with the SCRIPT Command
Symbols Set When a File Is Imbedded or Appended
Symbols Set When a Macro Is Processed

Setting the Current Page Number
Symbols for Arrays of Values .

Controlling the Array Elements
Accessing the Index Counter
Setting the Index Counter

Extended Symbol Processing

Chapter 13. Writing SCRIPT/VS Macro Instructions
When Should You Use Macros!
How To Define a Macro

Conditional Macro Processing
Macro Naming Conventions
local Symbols for Macros
Terminating a Macro
Redefining SCRIPT/VS Control Words

Avoiding an Endless loop
How Values Are Substituted For Symbols Within a Macro
Defini tion

Using Symbols and Macros as Associative Memory
Redefining SCRIPT/VS Formatting Conventions

Processing Input lines That Are Empty
Processing Input lines That Begin With a Blank or a Tab

Specifying a Macro library
Creating SCRIPT/VS Macro libraries

In a CMS Environment
In a TSO Environment
In an AlMS-III Environment
In a Batch Environment

Chapter 14. GML Support in SCRIPT/VS
GMl Markup S¥ntax

Changing the GMl delimiters
SCRIPT/VS Processing of GMl

GMl lag-to-APF Mapping
Explicit Mapping
Class Mapping
Direct Mapping

Attribute Scanning Rules
Automatic GMl Processing

Attribute Processing .. .
Value Attribute Processing
Residual Text Processing

User-Defined Command Options
GMl lags as Symbols

Chapter 15. Using SCRIPT/VS with other Programs
Using SCRIPT/VS as a Postprocessor
Using SCRIPT/VS as a Preprocessor

Xl' Document Composition Facility: User's Guide

123
124
124
125
126
128
128

129
131
131
132
132
133
133
136
137
138
138
139
140
140
141
141
141
142
142
143
143
144
144
145

147
147
147
148
149
149
150
151
152

152
152
154
154
154
155
156
156
156
157
157

159
159
161
162
162
162
163
163
163
164
164
164
164
165
165

167
167
167

Developing Preprocessor APFs and Profiles
Redefining Symbols
Handling Directly Entered Control Words

Managing a Source Document
Preparing for Processing

Chapter 16. Automatic Hyphenation and Spelling
Hyphenation

Searching a SCRIPT/VS Dictionary
Using an Algorithmic Hyphenator
Hyphenating Single Words .
Changing the Frequency of Hyphenation

Spelling Verification
Fallibility

The SCRIPT/VS Dictionaries
Building a User Dictionary .
Building an Addenda Dictionary
Stem Processing
Hyphenation Points

Chapter 17. Producing Input for STAIRS/VS
Specifying STAIRS/VS Output
Restrictions Imposed on Formatted Output
STAIRS/VS Paragraph Numbering

Chapter 18. Diagnostic Aids •••••••

Verification

Debugging With the SCRIPT Command
CONTINUE: Continue Processing After an Error Occurs
DUMP: Enable the .ZZ [Diagnostic] Control Word
MESSAGE: Control Information in Error Messages
NOSPIE: Prevent Entering SPIE Exit Routines
NUMBER: Print the File Name and Line Number
PAGE: Selectively Print Pages
SPEllCHK: Verify Spelling
TWOPASS: Provide Two Formatting Passes .. .
UNFORMAT: Print All Input lines Without Formatting

Control Words to Assist Debugging
Spelling Verification
Tracing SCRIPT/VS Processing

The Output line Generated by Input Tracing
Capabilities of the .IT Control Word
Stepping through an Input Trace
Using Terminal Entry to Test a Control Word Sequence

Putting Messages In Macros

Chapter 19. EasySCRIPT
EasySCRIPT Tags

EasySCRIPT Formats
Headings

Setting the Heading Counter
EasySCRIPT Heading Defaults

Cross-References to EasySCRIPT Headings
Examples of EasySCRIPT Formatting
Paragraphs
Automatic Item Numbering
Unnumbered lists
Bullets
Tables of Contents

167
168
168
169
169

171
171
171
172
172
172
173
174
174
175
176
177
177

179
179
179
179

181
181
181
181
181
182
182
182
182
182
183
183
183
183
183
185
186
187
188

189
189
190
190
191
191
191
191
192
192
192
193
193

Chapter 20. Compatibility with Earlier Releases of SCRIPT 195
Changes to the SCRIPT Command 195
Changes to the SCRIPT Command Language 195

Changes from SCRIPT/VS Release 1 195
Changes from SCRIPT/370 Version 3 197

The SCRIPT/370 Dictionary 199
Summary of Changes 199

Chapter 21. ATMS Conversion • • • •
Converting ATMS-II and ATMS-III Documents To

Format
Conversion Technique

Hyphenating Words
Conversion Program Operation

Non-Format Command Conversion

.
SCRIPT/VS

211

211
211
211
212
212

Table of Contents xiii

End of Embedded Control
ATMS GML Identifier
Subdocument Identifier.

Formatting Control Conversion
Explicit Paragraphing Specification
Implicit Paragraphing Specification
Floating Skip
Width/Depth Control
Text Alignment Controls
Floating Keeps
Text Block Indention
Page Number Control
Stop Code
Split Text
Revision Markers
Counters
Triplets and Backspaces

ATMS Control - SCRIPT/VS Symbol Relationship

Chapter 22. Compatibility with TSO/FORMAT •
Creating a TSO/FORMAT-Compatible Environment
The SCRIPT Command in TSO

Chapter 23. SCRIPT/VS Control Word Descriptions
Control Word Syntax

The Control Word Separator
Macros
The Control Word Modifier
Type 1 Control Words
Space Units

Notational Conventions
[Set Label]

.AA [Associate APF]

.AN [And]

.AP [Append]

.BC [Balance Columns]

.BF [Begin Font]

.BM [Bottom Margin]

.BR [Break]

.BX [Box]

.CB [Column Begin]

.CC [Conditional Column Beginl

.CD [Column Definition]

.CE [Center]

.CL [Column Width]

.CM [Comment]

.CO [Concatenate Mode] ..

.CP [Conditional Page Eject]

.CS [Conditional Section]

.CT [Continued Text]

.CW [Control Word Separator]

.DC [Define Character]

.DD [Define Data File-id]

.DF [Define Font]

.DH [Define Head Levell

.D! [Delay Imbedl

.Dl [Dictionary list]

.DM [Define Macro]

.DS [Double Space Mode]

.DU [Dictionary Update]

.EC [Execute Control]

.EF [End of File]

. El [EIsel

.EM [Execute Macrol

. EZ [EasySCRIPT]

.Fl [Float]

.FM [Footing Margin]

.FN [Footnote]

.FO [Format Model

.FS [Footing Space]

.GO [Goto]

.GS [GMl Services]

.HM [Heading Margin]

.HS [Heading Space]

xiv Document Composition Facility: User's Guide

212
212
212
213
213
213
213
213
213
213
214
214
214
214
214
214
215
215

217
217
217

219
219
219
219
219
220
220
221
222
223
224
22'5
226
227
228
229
229
232
232
233
234
235
236
236
237
237
238
239
241
244
246
247
249
250
250
253
253
254
255
256
257
257
259
260
261
262
263
264
265
269
269

.HW

.HY

.HO
· IE
· IF
.IL
.IM
· IN
.IR
· IT
· IX
· JU
.KP
.LB
.LI
.LL
• L T
• LY
.MC
.ME
.MG
.MS
.NL
.OC
.OF
.OR
.PA
.PF
.PI
.PL
.PM
.PN
.PP
.PS
.PT
.QQ
.QU
.RC
.RD
.RE
.RF
.RH
.RI
.RN
.RT
.RV
.SA
.SC
.SE
.SK
.SL
.SO
.SP
.SS
.SU
.SV
.SX
.SY
.TB
.TC
.TE
.TH
.TI
.TM
.TR
.TS
.TU
.TY
.UC
.UD
.UN
.UP
.US
.UW

[Hyphenate Word]
[Hyphenate]
- .H6 [Head Level 0 - 6]
[Index Entry]
[If]
[Indent Line]
[Imbed]
[Indent]
[Indent Right]
[Input Trace]
[Index]
[Justify Mode]
[Keep]
[Leading Blank]
[Literal]
[Line Length]
[Leading Tab]
[Library]
[Multicolumn Mode]
[Macro Exit]
[Message]
[Macro Substitution]
[Null Line]
[Output Comment]
[Offset]
[Or]
[Page Eject]
[Previous Font]
[Put Index]
[Page Length]
[Page Margins]
[Page Numbering Mode]
[Paragraph Start]
[Page Number Symbol]
[Put Table of Contents]
[Quick Quit]
[Quit]
[Revision Code]
[Read Terminal]
[Restore Status]
[Running Footing]
[Running Heading]
[Right Adjust]
[Reference Numbers]
[Running Title]
[Read Variable]
[Save Status]
[Single Column Mode]
[Set Symbol]
[Skip]
[Set Line Space]
[STAIRS/VS Output]
[Space]
[Single Space Mode]
[Substitute Symbol]
[Spelling Verification]
[Split Text]
[System Command]
[Tab Setting]
[Table of Contents]
[Terminal Input]
[Then]
[Translate Input]
[Top Margin]
[Translate Character]
[Translate String] .
[Translate Uppercase]
[Type on Terminal]
[Underscore and Capitalize]
[Underscore Definition]
[Undent]
[Uppercase]
[Underscore]
[Unverified Word]

270
271
272
273
273
275
276
277
279
280
282
283
283
285
285
286
287
287
288
288
289
290
290
291
292
293
294
295
296
297
298
298
300
301
302
303
303
303
305
306
306
307
308
309
310
311
312
312
313
316
317
318
319
320
320
321
322
323
324
325
326
327
328
328
329
330
331
332
333
334
334
335
336
336

Table of Contents xv

.WF [Write To File]

.WZ [Widow Zone]

. ZZ [Diagnostic]

Appendix A. SCRIPT/VS Summary

Appendix B. Device and Font Table Maintenance
Logical Device Table Maintenance

Updating a Logical Device Table (LDT)
LDT Field Descriptions
Default Values for Logical Output Devices

.' . . .

Font Table Maintenance
Updating the Font Table (FIB)
FIB Field Descriptions
Fonts Provided With SCRIPT/VS
3800 Printer Fonts Supported By SCRIPT/VS

Appendix C. Stem Processing
English Prefixes and Suffixes
French Prefixes and Suffixes
Dutch Prefixes and Suffixes
Italian Prefixes and Suffixes

Appendix D. Fonts Supplied with SCRIPT/VS

Appendix E. Formatting Considerations for the 3800 Printer
Font Management
Tab, Backspace, and Underscore Resolution
Interword Space
Revision Code Characters
Inline Space Management
Box Processing
Formatter Escape Character

Appendix F. Maintaining User Dictionaries

Appendix G. Performance Considerations
SCRIPT Command Options

The TWOPASS Option
The SPELLCHK Option
The INDEX Option

SCRIPT/VS in the CICS Environment
Tuning ATMS-III for SCRIPT/VS

Glossary

Index

xvi Document Composition Facility: User's Guide

337
338
339

341

367
367
367
367
369
369
370
370
371
371

373
373
373
374
374

377

385
385
386
386
386
387
388
389

391

395
395
395
395
395
396
396

397

403

LIST OF ILLUSTRATIONS

Figure 1. Space Units Notation 6
Figure 2. Minimum Abbreviations of SCRIPT Options 15
Figure 3. Summary of SCRIPT Options 15
Figure 4. logical Output Device vs. Output Destination 19
Figure 5. SCRIPT/VS Logical Device Characteristics 21
Figure 6. How the Current Margins Are Established 40
Figure 7. Permanent and Temporary Indention 42
Figure 8. SCRIPT/VS Terms for Parts of the Page. 56
Figure 9. Summary of Default Head Level Characteristics 74
Figure 10. Imbedding and Appending SCRIPT/VS Files 120
Figure 11. Master File Structure . 122
Figure 12. Codepoint Assignments for Accented Characters 175
Figure 13. STAIRS/VS Condensed Text Format (CTF) Records 180
Figure 14. Obsolete Control Words 199
Figure 15. Changes to SCRIPT Command Options 200
Figure 16. Changes to SCRIPT/VS Control Words 202
Figure 17. Character Codes Recognized by ATMS-III

Conversion 215
Figure 18. ATMS-III Controls to SCRIPT/VS Conversion 216
Figure 19. Unsupported TSO/FORMAT Control Words 217
Figure 20. Index to SCRIPT/VS Summary 341
Figure 21. SCRIPT/VS Terms for Parts of the Page 342
Figure 22. File-id's of SCRIPT/VS Utility files 343
Figure 23. Summary of SCRIPT Options 343
Figure 24. SCRIPT/VS Control Word Summary 345
Figure 25. Control Words That Cause a Break 354
Figure 26. Control Words That Take Effect On the Next Page 354
Figure 27. Control Words That End a Keep, Float, Running

Heading or Footing, or Footnote, 355
Figure 28. Control Words Within a Running Heading or

Footing 355
Figure 29. Control Words That Start the Page 356
Figure 30. Obsolete Control Words 356
Figure 31. Control Word Values Based On the logical Device 357
Figure 32. SCRIPT/VS logical Device Characteristics 358
Figure 33. Summary of Head Level Characteristics 359
Figure 34. The SCRIPT/VS Formatting Environment 360
Figure 35. SCRIPT/VS System Symbol Names 361
Figure 36. Attributes of a Symbol's Value 363
Figure 37. Characters that Delimit Words for Spelling

Verification 363
Figure 38. TN Translate Table For the 1403 Printer 364
Figure 39. Complete 3800 Fonts Provided With SCRIPT/VS 364
Figure 40. Fonts Supplied With the 3800 Printer 365
Figure 41. Example of a Font Width Table 370
Figure 42. Complete 3800 Fonts Provided With SCRIPT/VS 377
Figure 43. SCRIPT/VS Fonts: Gothic Text 378
Figure 44. SCRIPT/VS Fonts: Serif Text 379
Figure 45. SCRIPT/VS Fonts: Gothic Highlight 380
Figure 46. SCRIPT/VS Fonts: Serif Highlight 381
Figure 47. SCRIPT/VS Fonts: Gothic Special Purpose 382
Figure 48. SCRIPT/VS Fonts: Serif Special Purpose 383
Figure 49. Justification Alignment Error for 3800 Printer

Output 388
Figure 50. Dictionary Maintenance Process Control Card

Format 391
Figure 51. Format of an Update Transaction Record 392

list of Illustrations xvii

CHAPTER 1. AN INTRODUCTION TO SCRIPT/VS

SCRIPT/VS is a text processing program that executes in:

• An interactive environment under:

The Conversational Monitor System (CMS), of the IBM Vir
tual Machine Facility/370 (VM/370)

The Time Sharing Option (TSO) of OS/VS2 MVS

The Advanced Text Management System-III (ATMS-III) in a
Customer Information Control System/Virtual Storage
(CICS/VS) environment

Use of SCRIPT/VS in the interactive environments requires the
Foreground Environment Feature of the Document Composition
Facility.

• A batch processing environment under:

OS/VS2 MVS

OS/VSI

DOS/VSE

Use of SCRIPT/VS in the background batch environments
requires the Document Library Facility.

SCRIPT/VS formats text for printing on terminals, impact
printers, or nonimpact printers. SCRIPT/VS provides flexible com
position for printing on a computer printer as an alternative to
independent typesetting machines or sending typesetting jobs to
an outside vendor.

SCRIPT/VS can also be used to prepare documents for processing by
other programs, such as formatters that support photocomposers,
and to prepare data for use as input to the Storage and Informa
tion Retrieval System/Virtual Storage (STAIRS/VS) program
product.

When you use SCRIPT/VS with CMS, you need to be able to do the
following:

• Log on and enter CMS commands

• Create and edit files using a CMS editor

• Manage CMS disk storage

For more information about VM/370, seel

VM/370: Terminal User's Guide

VM/370: CMS User's Guide

When you use SCRIPT/VS with TSO, you need to be able to do the
following:

• Log on and enter TSO commands

• Create and edit files using a TSO editor

• Manage TSO disk storage

For more information about TSO, see:

OS/VS2 TSO Terminal User's Guide

OS/VS2 TSO Command Language Reference

Chapter 1. An Introduction to SCRIPT/VS 1

When you use SCRIPT/VS with ATMS-III, you need to be able to do
the following:

• Log on and enter ATMS-III commands

• Create and edit files using the ATMS-III editor

• Manage ATMS-III disk storage

For more information about ATMS-III, see:

ATMS-III Terminal Operator's Guide

ATMS-III Terminal Operator's Exercise/Reference Guide

ATMS-III Program Reference Manual

When using SCRIPT/VS in a batch environment, input can come from:

• Files created by the ATMS-III, CMS, TSO, or VSPC editors

• A word processing system attached to the host system via a
telecommunications network

• A user-written program that calls SCRIPT/VS as a subroutine

SCRIPT/VS reads input data containing text and control informa
tion, formats the data into pages, and produces formatted output
on a system printer or other suitable output device. Information
that may appear in the SCRIPT/VS input file includes:

• "text," which is the content of the document.

• "symbols," which are character strings starting wi th an
ampersand (&) that are resolved to a di fferent character
string when the line is processed. The new string may be text,
another symbol, or control information. For example, in this
document the symbol "&3800" resolves to "3800 Printer."

• "control words," which are two-letter codes that are recog
nized when the first character in the input line is a period
(.). For example, to cause a page eject ".PA" is specified in
column one of an input line.

• "macros," which are groups of control words and symbol sub
stitutions. (Macros are often used to accomplish functions
not provided by a single control word or to change how a con
trol word is processed.) A macro is defined using the .DM [De
fine Macro] control word. For example, you can define a ".TOP"
macro such that it contains a ".PA" control word followed by a
".CE" control word. Then, anytime the ".TOP" macro is
encountered, the ".PA" control word is executed to begin a new
page, and the ".CE" control word is executed to center the
next line of text.

• "GML markup,l" which uses "tags" to identify the associated
text as a particular part of a document, such as paragraph or
heading. GML (Generalized Markup Language) provides a syntax
and usage rules for marking up a document, and allows you to
develop a vocabulary of tags for describing your documents. A
tag is identified by the GML delimiter, which is by default
the colon (:), anywhere in an input line. For example, in the
GML starter set provided with SCRIPT/VS, the tag :p identi
fies a paragraph.

Normally, a SCRIPT/VS input file is a sequential file on direct
access storage that can be modi fied using an edi ting program.
SCRIPT/VS can process the file and produce formatted output that
reflects changes to the text or markup.

1 To "mark up" a source document is to add information to it
that tells SCRIPT/VS how to process it.

2 Document Composition Facility: User's Guide

SCRIPT/VS knows the width and depth of the output page. It fills
up a page with text, then begins printing a new page
automatically. It continues processing until it reaches the end
of the input data.

Many text processi ng programs can do these thi ngs. SCRI PT /VS
offers additional flexibility in the following forms:

• SCRIPT/VS data files are independently maintained. Any editor
that can produce files in a format acceptable to SCRIPT/VS may
be used to create or modi fy 'these fi les.

• SCRIPT/VS can combine many input files to produce a single,
integrated output document. The imbedded files can be
arranged in any sequence. While they are being processed,
SCRIPT/VS treats each input file as though it were part of a
single continuous input file.

• SCRIPT/VS has high-level macro and symbol capabilities. With
SCRIPT/VS you can define your own control words or GML tags,
conditionally process text, perform variable symbol substi
tutions, and do integer arithmetic.

• New SCRIPT/VS users can become productive quickly, because
the control words and GML tags are easy to use.

Generalized Markup Language

Generalized Markup Language (GML) provides the syntax and usage
rules for developing your own vocabulary of "tags" for describing
the parts, or "elements," of a document without respect to partic
ular processing. With GML tags you can describe the type of ele
ment; you can also enter "attributesn to describe other
characteristics of an element.

The following example of GML markup describes a figure "element,n
whose type is FIG (figure), that causes the figure element to be
enclosed on all four sides.

:fig frame='box'.

Since GML markup does not specify processing, it must be inter
preted before any processing can occur. In GML, "interpreting"
markup means performing the correct application processing func
tion (APF) on the element the markup describes. In SCRIPT/VS, APFs
are implemented as sets of control words in the form of macro
definitions. The association, or "mapping,n between the GML mark
up and the APFs is usually made in a document called a "profile,"
which is processed by SCRIPT/VS before the file marked up in GML
is processed.

Information on GML markup is contained in the Document Composi
tion Facility Generalized Markup Language: Starter Set Reference.
This manual explains the control words which invoke the actual
processing, and the symbol and macro facilities that enable you to
create APFs and profiles.

SCRIPT/VS RELEASE 2 HIGHLIGHTS

The Document Composition Facility Release 2 enhancements enable
you to:

• Operate SCRIPT/VS under ATMS-III in a CICS/VS environment.

• Perform hyphenation and spelling veri fication in American
English, Uni ted Kingdom English, Canadian English, French,
Canadian French, German, Italian, Dutch, and Spanish.

• Generate an index from index entries speci fied wi thin the
text at points of reference. (The page numbers for these index
entries are automatically generated.)

Chapter 1. An Introduction to SCRIPT/VS 3

• Format data in Condensed Text Format (CTF) so it can be used
as input for the STAIRS/VS program product.

Release 2 also extends the Generalized Markup Language (GML)
capabilities to allow multiline markup and attribute
manipulation, and enables you to create tags and APFs more easily.

HOW SCRIPT/VS WORKS

Control Words and Their Parameters

A SCRIPT/VS control word is identified by a period in column one
of the input line, except when the .LI (Literal) control word
specifies that a period in column one should be regarded as text.
A ".*" at the start of an input line identifies a comment line.
Comment lines do not appear in the output.

Each input line is scanned from left to right for a control word
separator, usually a semicolon (;). If a control word separator is
found, the character string to its left is processed; the charac
ter string to its right is saved. (The character string can con
tain control words and text.) This process is repeated until the
entire input line is completely scanned. For example,

.sk .33ii.in .5i for 3;This is a line ...

will cause approximately one-third of an inch of vertical space to
be skipped before the next input lines are printed (.sk .33i). It
will also cause the next three output lines to be indented
one-hal finch (. in .5i for 3).

Control words may have numeric or keyword parameters that further
qualify the action to be performed. For example, the .CE [Center]
control word accepts the keywords "ON" and "OFF" and is specified
as follows:

.ce on

The .SP [Space] control word accepts numeric parameters and is
specified as follows:

.sp 2i

Some control words that accept keyword parameters also accept
numeric parameters. The .CE [Center] control word also allows you
to specify a number of input lines to center. For example,

.ce 10

Each control word description lists the parameters that it
accepts. See "Chapter 23. SCRIPT/VS Control Word Descriptions" on
page 219 for a detailed description of each SCRIPT/VS control
word.

Defaults and Initial Settings

SCRIPT/VS can format an input file without any control words or
GML tags specified. In this case, the initial settings for page
dimensions and formatting controls are used. The initial settings
are associated with the logical output device specified with the
DEVICE option of the SCRIPT command.

Each control word description includes initial setting and
default values.

SCRIPT/VS INPUT FILE CHARACTERISTICS

SCRIPT/VS input files have the following default characteristics:

4 Document Composition Facility: User's Guide

• In a CMS environment, input files usually

have a filetype of SCRIPT.

are composed of up to 65,535 fixed- or variable-length
records, with a maximum of 132 bytes.

include uppercase and lowercase letters, numbers, and
special characters.

do not contain line numbers. If the lines are numbered in
positions 1 to 8 of each record, these numbers will be
ignored.

Normally, any CMS editor will create files of appropriate
format for filetype SCRIPT.

• In a TSO environment, input files usually

have a data set organization of PO or PS.

are composed of fixed- or variable-length records,
blocked or unblocked, with a maximum of 132 bytes.

include uppercase and lowercase letters, numbers, and
special characters.

contain records with or without line numbers. If the
input lines are numberedl

A variable-length record has the line number in posi
tions 1 to 8 of each record.

A fixed-length record has the line number in the last
eight positions.

Normally, any TSO edi tor will create files of appropriate
format.

• In an ATMS-III environment, input files

are located in ATMS-III working or permanent storage

are composed of variable-length records, with a maximum
of 230 text characters

include uppercase and lowercase letters, numbers, and
special characters

include ATMS-III page and unit numbers

• In a background environment, the input file is stored as a
document in the Document Library Facility library. For more
information, see the Document Library Facility Guide.

LOGICAL AND PHYSICAL OUTPUT DEVICES

When SCRIPT/VS formats a document it takes into consideration the
characteristics of the intended physical output device, called
the "logical output device," which may be a terminal, a line
printer, or a nonimpact page printer. The actual destination of
the formatted output may be any of the devices supported by
SCRIPT/VS.

If you specify, via the DEVICE option, a specific logical device,
SCRI PT /VS wi 11 assume an appropriate output desti nati on. Con
versely, if you specify a specific output destination, SCRIPT/VS
will assume an appropriate logical device.

You may specify any combination of output destination and logical
device. For example, when formatting documents that are to be
saved for printing at a later date, specify the destination "FILE"
and the logical output device of your choice.

Chapter 1. An Introduction to SCRIPT/VS 5

VERTICAL AND HORIZONTAL SPACE UNITS

Unit Name

Centimeter

Cicero

Em

Inch

Millimeter

Pica

Where:

Many SCRIPT/VS control words accept parameters that specify ver
tical or horizontal dimensions or distances. As Figure 1 illus
trates, these dimensions may be expressed in any of several
different space units:

Centimeter The hundredth part of a meter. There are 2.54 centi
meters in one inch.

Cicero A standard measurement in the Didot Point System,
used in most countries except Great Britain and the
United States. The Cicero is 0.1776 inches, and there
are twelve Didot points in one Cicero.

Em The width of the "m" space in the font you are using.

Inch

This width may be

1/10 inch (2.54 millimeters)
1/12 inch (2.117 millimeters)
1/15 inch (1.693 millimeters)

One-twel th of a foot. There are 39.37 inches in a
meter.

Millimeter One-thousandth of a meter. There are 25.4 millimeters
in an inch.

Pica A standard printer's measurement in Great Britain and
the United States. A pica is 0.1663 inches. There are
approximately twelve points in a pica.

Numbers without space unit identifiers are assumed to be in char
acter spaces horizontally and line spaces vertically.

Specified As Examples

aCM 1.27cm,·25cm

nCp c12 = 12 Didot points
2c3 = 2 ciceros and 3 points

nM 6m,. 11m

aI 3.5i,. .75i

aMM 12.7mm,. 100mm

nPp p6 = 6 points
3p2 = 3 picas and 2 points

a is a number of inches, millimeters, or centimeters. The number may
be fractional,. with up to two decimal positions.

n is a number of whole ems,. ciceros,. or picas.

P is a number of points. (There are twelve points in a cicero or
pica, and approximately 72 points in an inch.)

Figure 1. Space Uni ts Notation: All vertical and horizontal dimensions
specified with SCRIPT/VS control words and options may be given in
any of the forms shown here.

6 Document Composition Facility: User's Guide

Note: It is not always possible to satisfy space requests exactly
on all devices. In this case, the nearest avai lable amount is
used.

In SCRIPT/VS, a "font" is a set of characters having the same size
and type style.

When formatting for the 3800 Printer, text can be printed, in
several di fferent character sets, as speci fied in the CHARS
option of the SCRIPT command. (The CHARS option is discussed in
"Chapter 2. Using the SCRIPT Command" on page 13.)

3800 character sets may be either "monopitch" fonts, wherein all
characters have the same width, or "proportional" fonts, wherein
characters have different widths. 2

The "pitch" of a font is the number of "characters per inch" in a
line of printed text. The 3800 Printer has three pitch values:

10-Pitch (10 characters per inch)
12-Pitch (12 characters per inch)
IS-Pitch (15 characters per inch)

SCRIPT/VS extends the concept of fonts to output devices other
than the 3800 Printer. Capi talization and underscoring can be
treated as different fonts on all devices.. and overstriking
allows you to print boldface text on impact printers and typewrit
er terminals. (See "Defining Internal Fonts" on page 107.)

CALLING THE SCRIPT/VS PROCESSOR

Interactive Environments

You call the SCRIPT/VS processor by issuing the SCRIPT command and
specifying the name of the file SCRIPT/VS is to process. To issue
this command in one of the three interactive environments that
support SCRIPT/VS, use one of the following formats:

• In CMS: SCRIPT filename (options

• In TSO: SCRIPT dsname options

• In ATMS-III: script docname (options

The SCRIPT command format and options are described in "Chapter 2.
Using the SCRIPT Command" on page 13.

Batch Environments

For details about calling SCRIPT/VS in a batch environment .. see
Document Library Facility Guide.

Using SCRIPT/VS as a Subroutine

In a batch environment, with the Document Library Facility pro
gram product, an application program can call SCRIPT/VS as a sub
routine. For details, see Document Library Facility Guide.

2 For example.. the character "I" may be narrower than the char
acter "H," and the "M" and the "w" may be wider than the liN. II

Chapter 1. An Introduction to SCRIPT/VS 7

Using SCRIPT/VS as a Preprocessor

SCRIPT/VS can be used to prepare an input file for use as input to
another text processing program.

Using SCRIPT/VS to Process Input for STAIRS/VS

You can cause SCRIPT/VS to format text in a Condensed Text Format
which is acceptable as input to the STAIRS/VS program product. For
details, see "Chapter 17. Producing Input for STAIRS/VS" on page
179.

FORMATTING CONSIDERATIONS

When you create an input file, or when you create application
processing functions (APFs) for GMl processing, you should con
sider:

• How is the text formatted! Do you want to add spaces between
lines or paragraphs! Indent lines! Create numbered or
bulleted lists!

• What size paper are you using for output! How many lines of
text should be on the page! How wide is it! Do you want spe
cial titles on the top or bottom of each page! Where, and in
what format, do you want the page number to appear!

• Are you going to use a mul tiple column page layout!

• Do you want to generate a table of contents listing major
headings, and the page numbers on which they occur!

• Do you want tQ generate an index!

• How long is the final document going to be! Can you organize
it into several input files and let SCRIPT/VS combine them!

• Are you going to have illustrations! Are you going to create
tables and boxes using SCRIPT/VS! Do you need to leave blank
pages or blank space so that artwork can be included later!
How are you going to number the illustrations!

• Are you using variable information! Can you use symbolic
names throughout a document to represent information that
changes frequently!

• Do you want the SCRIPT/VS processing to be interactive! Are
there types of information you may want to enter during
SCRIPT/VS processing!

• Are you using the same sequences of control words frequently!
Can you define a macro so you don't have to rekey all the con
trol words in sequence each time!

Selecting Control Words

This book describes many formatting techniques and shows many
examples. No single example or technique is necessarily the best;
there are usually several ways to do the same thing. As you become
more experienced in using SCRIPT /VS, standard ways of doing
things will evolve and may be accepted as installation standards
where you work.

SCRIPT/VS FUNCTIONS

User-controlled SCRIPT/VS processing includes two general catego
ries of functions: formatting functions, and general document
handling.

8 Document Composition Facility: User's Guide

Formatting Functions

Page Layout

Head Levels

You can control page dimensions, the number of columns per page,
running headings and footings, and line spacing.

Page layout includes:

• Line Formatting. You can control concatenation,
justification, centering, and left or right alignment. For
details, see "SCRIPT/VS Text Formatting" on page 33.

• Line Spacing. You can control the amount of space left between
output lines, including the reservation of space for drop-in
art. For details, see "Vertical Space" on page 43.

• Paragraphing. You can control the style of paragraphing,
spacing between paragraphs, and indention. For details, see
"Breaks" on page 38.

• Fonts. You can control which font is used for di fferent
portions of text, both in the body and in running headings and
footings. For details, see "Using Fonts with the IBM 3800
Printing Subsystem" on page 48.

• Columns. You can define the number of columns as well as the
size of each and its placement on a page. For details, see
"Chapter 5. Mul ticolumn Page Layout" on page 67.

• Margins. You can control the size of the top and bottom mar
gins as well as the left and right margins. Title lines can be
defined that will be put into the top or bottom margins. For
details, see "Basic Page Dimensions" on page 55.

• Indention. You can control indention in a number of ways. For
example, you can create hanging indents and left or right mar
gin indention, and can control the vertical duration and
extent of all indention. For details, see "Changing the Mar
gins" on page 39.

• Headings and Footings. You can create running headings and
footings with page numbers for all pages or different ones for
odd and even pages. For detai Is, see "Running Headings and
Footings" on page 58.

• Reference Numbers. You can have line reference numbers placed
on any page of a document. If reference numbers are requested,
all nonblank lines in the body of the page will be serially
numbered. For details, see "Chapter 8. Additional Formatting
Features of SCRIPT/VS" on page 87.

You can specify up to seven head levels for distinctive formatting
of headings for different levels of topics. Distinctive format
ting includes before and after spacing, font selection, over
striking, capitalization, underscoring, and right or left
alignment. For details, see "Chapter 6. Head Levels and Table of
Contents" on page 73.

Table of contents

You can control whether or not a table of contents is automat
ically generated and where it is placed. SCRIPT/VS collects
entries for a table of contents from the text of head levels and
supplies the page number. You can also specify phrases other than
the text of head levels to appear in the table of contents. For
details, see "Chapter 6. Head Levels and Table of Contents" on
page 73.

Chapter 1. An Introduction to SCRIPT/VS 9

Indexing

You can include index entries in the body of your document at
their points of reference. SCRIPT/VS will use these index entries
to generate an index for your document that includes appropriate
page numbers for all of the entries. For details, see "Chapter 7.
Indexing" on page 79.

Highlighted Phrases

Footnotes

Revision Codes

You can highlight phrases for emphasis. Font selection, over
striking, capitalization, and underscoring can be used to empha
size important phrases. For devices that support multiple fonts,
you can change font for emphasis. For details, see "Chapter 8.
Additional Formatting Features of SCRIPT/VS" on page 87.

SCRIPT/VS saves text indicated as a footnote and places it at the
bottom of the page. 3 Subsequent footnotes are placed below it.
For details, see "Footnotes" on page 96.

You can control the placement of up to nine distinct reV1S10n
codes in the left margin to flag a line of particular interest,
such as text that has been revised since a previous version of the
document. For details, see "Marking Updated Material" on page 99.

Hyphenation and Spelling Verification

You can control whether words are hyphenated at the end of output
lines and whether they are checked for correct spelling.
SCRIPT/VS provides dictionaries of many common root words in nine
languages. Algorithms for prefix and suffix variations, provided
with each language, extend the basic root words. SCRIPT/VS deter
mines hyphenation points and spelling validity based on these
algorithms, and the basic root words. You can add words to addenda
or user-created dictionaries as required for a particular docu
ment or use an algorithmic hyphenator 4 to further extend
SCRIPT/VS's hyphenation and spelling verification capabilities.
For details, see "Chapter 16. Automatic Hyphenation and Spelling
Verification" on page 171.

Printing Part of the output Document

Tabs

You can control whether every page of formatted text is put in the
output document or only the range or ranges of pages specified.
For details, see the PAGE option in "PAGE: Selectively Print
Pages" on page 26.

You can specify the values of tabs. When formatting output lines,
SCRIPT/VS tabs to the right to the prescribed tab stoP. For
details, see "Using Tabs In SCRIPT/VS" on page 36.

3 Like this.

4 An algori thmic hyphenator for American English is provided
with SCRIPT/VS.

10 Document Composition Facility: User's Guide

Boxes

You can construct boxes around formatted text. You can also draw
boxes within boxes, vertical lines to separate columns of text,
and horizontal lines to separate rows. For details, see "Drawing
Boxes" on page 101.

Keeping Text Together

SCRIPT/VS processing includes functions that keep text together
to improve the appearance of output. For example, SCRIPT /VS
always keeps the text of a head level together with the first few
lines of text after the heading, so that they appear in the same
column. SCRIPT/VS can also ensure that single lines at the begin
ning or end of a paragraph (widows) are not placed by themselves
at the bottom or top of a column or page. For details, see "Ensur
ing That Blocks of Text Stay Together" on page 92.

Placing Text at the Top or Bottom of a Page or Column

You can indicate that blocks of text, called floats, are to be
kept together and placed at the top or bottom of a column or page.
For details, see "Ensuring That Blocks of Text Stay Together" on
page 92.

General Document Handling Functions

Documents Marked up for Earlier Releases of SCRIPT

If you have documents prepared for SCRIPT/VS Release I or
SCRIPT/370 Version 3, you can use SCRIPT/VS Release 2 to format
them, with very few changes, if any, required. For details, see
"Chapter 20. Compatibility with Earlier Releases of SCRIPT" on
page 195.

Processing Generalized Markup Language (GMLl Tags

SCRIPT/VS recognizes Generalized Markup language (GMl) tags as a
form of text markup, and provides extensive facilities for map
ping GMl tags to APFs, attribute manipulation, and symbol proc
essing. For details, see "Chapter 14. GMl Support in SCRIPT/VS" on
page 159.

Saving Input Lines for Subsequent Processing

You can control whether certain input lines will be written to a
data set or a file. For details, see "Chapter 11. Combining
SCRIPT/VS Files" on page 119.

Imbedding Separate Files

You can control how separate source files are brought together for
processing as a single document. Any number of source files can be
imbedded in the primary source file. A source file that has been
imbedded can itself imbed another source file. For details, see
"Imbedding and Appending Files" on page 119.

Processing Symbols and Macros

You can define symbols and macros for substitution during proc
essing. Symbols have many uses: for example, in tests for condi
tional processing, for cross-references to pages or figure
numbers, for entering characters unavailable on the entry key
board, and as abbreviations for repeti tive phrases. You can
define what a particular macro will do. For example, you might

Chapter 1. An Introduction to SCRIPT/VS 11

redefine a particular head level to alter the SCRIPT/VS format
ting style. Symbol and macro instruction facilities are used to
support the Generalized Markup language. For details, see "Chap
ter 12. Symbols in Your Document" on page 129 and "Chapter 13.
Writing SCRIPT/VS Macro Instructions" on page 147.

Processing Input Conditionally

You can cause SCRIPT/VS to alter input processing. For example, by
setting symbol values, and comparing those values, you can con
trol whether a block of input text is included in the output docu
ment. SCRIPT /VS uses condi tion testing as part of its normal
processing. It checks the amount of space left in a column before
processing certain blocks of text. Conditional processing can be
controlled by defining macro instructions to supplement SCRIPT/VS
control words. For details, see "Chapter 10. Conditional Process
ing" on page 111.

specifying the Destination of Output

You can control the output destination of the formatted document.
It can be stored as a file for later use, or printed on a variety
of devices, including impact and nonimpact printers, and display
and typewriter terminals. For details, see "Chapter 2. Using the
SCRIPT Command" on page 13.

Processing Interactively During Formatting

In an interactive environment (CMS or TSO), you can affect
SCRIPT/VS as it processes by entering text or markup from a termi
nal. In effect, the terminal can be treated as an input file. For
example, you can interactively specify the values of symbolic
variables speci fied in the document or enter those portions of
text that vary from one processing time to the next. If you are
using a typewriter terminal, you can also stop SCRIPT/VS output
processing at any point on a line to change typing elements or
enter text. For details, see "Interactive SCRIPT/VS Processing"
on page 126.

Converting ATMS Documents

If the IBM Document library Facility program product is installed
with SCRIPT/VS, you can convert most ATMS-II and ATMS-III markup
to similar or equivalent SCRIPT/VS markup. For details, see Docu
ment library Facility Guide and "Chapter 21. ATMS Conversion" on
page 211.

Debugging by Tracing Processing Actions

You can trace all control words and each step of symbol and macro
substi tution in input lines. In cases where unexpected resul ts
are observed, trace information can be an invaluable aid in pin
pointing the problem area. For details, see "Chapter 18. Diagnos
tic Aids" on page 181.
Introduction

12 Document Composition Facility: User's Guide

CHAPTER 2. USING THE SCRIPT COMMAND

Issue the SCRIPT command to process and format an input file.
SCRIPT/VS formats the input file based on GML tags, macros, con
trol words, and text that are included in the file, as well as the
SCRIPT command options you specify.

SCRIPT can be issued as a CMS command, a TSO command, or an
ATMS-III command. For details about using the SCRIPT command in a
batch environment, see the Document Library Facility Guide. The
format of the SCRIPT command is the same for each system, except
that in TSO options must not be placed in parentheses:

In CMS,

SCRIPT

I [
file-id [(options ...]]
!

In TSO,

SCRIPT

I [
file-id [options...]]
!

In ATMS-III,

script

I [
file-id [[(] options ...]
!

where:

? causes SCRIPT/VS to display a list of all the valid com
mand opti ons.

~ile-id is the name of the input file. When the input file con
tains imbedded or appended files, file-id names the pri
mary or master file; the imbedded and appended files are
named with control words in the master file. The format
of the file-id depends on the environment from which
SCRIPT/VS is called.

options specify how SCRIPT/VS is to process and format the input
file and where the resulting output file is to go. You
can specify as many options as you think appropriate. A
detailed description of each option follows. The left
parenthesis n(" before the option list is requi red in
the CMS environment, is optional in the ATMS-III envi
ronment, and is not permitted in the TSO environment.

NAMING THE INPUT FILE

The format of the name you specify for file-id depends on the
environment from which you call SCRIPT/VS. Except for TSO, the
naming rules and conventions apply equally to the primary input
file, the profile, and any imbedded or appended files.

Chapter 2. Using the SCRIPT Command 13

CMS Naming Conventions

The fi1e-id of a CMS file to be processed is given in the form:

filename [fi1etype [fi1emodel 1

If filetype is omitted, a fi1etype of "SCRIPT" is assumed. If
fi1emode is omitted, the CMS search sequence is used to locate the
file on an accessed CMS disk. If you want to specify the filemode,
you must also give the filetype, since these parameters are posi
tional.

TSO Naming Conventions

In TSO, you can use a fully or partially qualified data set name
to refer to the primary input file or profile in the SCRIPT com
mand. If the fi1e-id given is not fully qualified (enclosed in
single quotation marks), the userid is prefixed to the fi1e-id as
the leftmost qualifier, and "TEXT" is added (unless it already
appears) as the right-most qualifier. For example,

Specified DSNAME

A
A.TEXT
DOC(CHAPl)
'DPJK1.X.Y'
(CHAP2)

Actual DSNAME

userid.A.TEXT
userid.A.TEXT
userid.DOC.TEXT(CHAP1)
DPJK1.X.Y
userid.TEXT(CHAP2)

Imbedded and appended files are qualified as follows:

• If the name of a partitioned data set is specified with the
SEARCH option,

'userid.searchname.TEXT'

the library will be searched for a member of the given name.

• If a TEXTlIB has been allocated for the TSO session, the allo
cated libraries are searched for a member of the given name.

• If the SEARCH option is not specified, no TEXTlIB exists, and
the primary input file is a partitioned data set, that library
is searched for a member of the given name.

• If the SEARCH option is not specified, no TEXTlIB exists, and
the primary input fi Ie is not a parti tioned data set, the
library 'userid.TEXT' is searched for a member of the given
name.

ATMS-III Naming Conventions

Documents in an operator's working storage may be formatted with
the command

script *
Documents that are to be formatted from permanent storage or
imbedded or appended may be specified in a fully qualified way,
such as:

'docname:opnumigetw'

This will result in a search for the document named "docnamen with
a getword of "getw" belonging to the user whose operator number is
"opnumn • A qualified name will always result in an explicit search
without subdocument index search. A name can be qualified by the
use of only the colon character (:) without any "opnum". This form
of qualification signifies that the document is to be explicitly
located and read from the operator's permanent storage.

14 Document Composition Facility: User's Guide

Option non-TSO Environments TSO Environment

BIND B B
CHARS C CH
CONTINUE CO CO
CTF CT CT
DEST DE DES
DEVICE D DEV
DUMP DU DU
FILE F F
INDEX I I
LIB L L
MESSAGE M M
NOPROF N NOP
NOSPIE NOS NOS
NOWAIT NOW NOW
NUMBER NU NU
OPTIONS 0 0
PAGE P PA
PRINT PR PRI
PROFILE PRO PRO
QUIET Q Q
SEARCH S SE
SPELLCHK SP SP
STOP ST ST
SYSVAR SY SY
TERM T TE
TLIB TL TL
TWOPASS TW TW
UN FORMAT U UN
UPCASE UP UP

Figure 2. Minimum Abbreviations of SCRIPT Options: See Figure 3 on page 16
for those options that are valid for your environment.

If a getword is specified, it must match the document getword even
though the document belongs to the requesting user. If a getword
is not speci fied for a document that does not belong to the
requestor it must have a getword of "any".

Documents in an operator's pe~manent storage may also be format
ted by transmitting a request to an appropriate SCRIPT/VS periph
eral queue:

XFOjqnamejdocname:opnumjgetwjoptions

where "qname" is the name of a SCRIPT /VS output queue and
"options" are any valid SCRIPT/VS command options.

Note: ATMS-III will always add either PRINT or CTF to the user's
options.

SCRIPT COMMAND OPTIONS

SCRIPT command options control how SCRIPT/VS processes and for
mats your input file. Some of the options have parametersj each
option's parameters are enclosed in parentheses. You do not have
to enter a right parenthesis unless another option follows.
Options and parameters are separated from each other by blanks. In
TSO, a comma may also be used as a separator.

The options you can specify with the SCRIPT command are shown in
Figure 3.

The name of each option can be shortened to its m1n1mum unambig
uous length. In TSO, ambiguous truncations are not accepted: you
will be prompted to reenter the option. In other systems, ambig
uous truncations are accepted and interpreted as shown in
Figure 2.

Chapter 2. Using the SCRIPT Command IS

Option Parameters Description

BIND (bind) Shift the page image to the right.
(obind ebind)

CHARS (fontl ... font4) Specify up to four fonts.

CONTINUE Continue processing after a nonsevere error
occurs.

CTF Prepare output in STAIRS/VS Condensed Text
Format.

DEST (station-id) Specify a remote output station. (Valid
only in TSO.)

DEVICE (devtype) Specify a logical output device.

DUMP Enables the . ZZ [Diagnostic] control word .

FILE [(fi lei d)] Specify a disk file for output. (Not valid
in ATMS-III.)

INDEX Enable the .PI [Put Index] control word.

LIB (libname ...) Specify symbol and macro libraries. (Only
(opnum ...) one in TSO; up to eight in CMS and

ATMS-III.)

MESSAGE ([DELAY] Control message printing.
[ID]
[TRACE])

NOPROF Suppress the profile.

NOSPIE Prevent entering SPIE exit routines. (Valid
only in CMS and TSO.)

NOWAIT Prevent prompting for paper adjustment.
(Valid only for typewriter terminals in CMS
and TSO.)

NUMBER Print file name and line number.

OPTIONS [(fi lei d)] Specify a file that contains SCRIPT
options. (Valid only in CMS and ATMS-III.)

PAGE [([PROMPT] Selectively print pages. (PROMPT is valid
[[FROM] p [TO] q] only in CMS and TSO.)
[[FROM] p FOR n]
[[FROM] p ONLY])]

PRINT [(copies,class, Produce printer output. (Suboptions are
fcb,ucs)] valid only in TSO.)

PROFILE [(fileid)] Specify a profile. (A file to be imbedded
before the primary input file is
processed.)

QUIET Suppress formatter identifier message.

SEARCH (libname) Specify a library. (Not valid in CMS.)
(opnum ...)

SPELLCHK Enable the .SV [Spelling Verification] con-
trol word.

STOP Print separate pages at the terminal. (Val-
id only for typewriter terminals in CMS and
TSO.)

Figure 3. Summary of SCRIPT Options (Part 1 of 2)

16 Document Composition Facility: User's Guide

Option Parameters Description

SYSVAR (n value ...) Set symbol values for &SYSVARn.

TERM Display the output at a user's terminal.

TLIB (libname ...) Specify spelling checking and hyphenation
libraries. (Valid only in CMS.)

TWOPASS Prepare with two formatting passes, and
produce output on the second pass.

UNFORMAT Print all input lines without formatting.

UPCASE Fold lowercase letters to uppercase before
printing.

Ci)user- [(sub-options ...)] User-defined options, which must begin with
option the character "0)". (Valid only in CMS.)

Figure 3. Summary of SCRIPT Options (Part 2 of 2)

Defaults

When you specify the SCRIPT command with a file-id and no options,
the defaults are:

For CMS,

TERM BIND (2) PROFILE (PROFILE) LIB (GML2)

For TSO,

TERM BIND (2) PROFILE (PROFILE)

For ATMS-III,

TERM BIND (2) PROFILE (PROFILE) MESSAGE (DELAY)

For batch,

PRINT BIND (2) PROFILE (PROFILE) MESSAGE (DELAY)

All other options must be explicitly specified when desired.

When you speci fy the PAGE option wi thout parameters, SCRIPT /VS
assumes you mean PAGE (PROMPT). All other suboptions must be
explicitly specified.

Mutually Exclusive Options

Some of the SCRIPT command options are mutually exclusive from a
logical standpoint. However, when two such command options are
specified, no error results; but one option can cancel the effect
of another previously specified option. Within the groups of
options listed below, the last one processed by SCRIPT/VS takes
effect, except in TSO. Because of the way TSO parses parameters
before passing them to SCRIPT/VS, options are processed in alpha
betical order regardless of the order of entry. In other systems,
they are processed in the order in which they are specified.

• PROFILE and NOPROF. These options specify a file that is to be
imbedded before the primary input file is processed, or that
no profile is needed.

Chapter 2. Using the SCRIPT Command 17

• CTF, FILE, PRINT, and TERM. These options specify the actual
destination of the formatted output. If a logical output
device is not also specified, SCRIPT/VS selects one, based on
the destination. Figure 4 on page 19 lists the default log
ical device for each destination.

Logical and Physical output Devices

Examples

When SCRIPT/VS formats a document it takes into consideration the
characteristics of the intended physical output device (called
the "logical device"). The actual destination of the formatted
output may be one of these devices or a file on disk. If you spec
ify, with the DEVICE option, an explicit logical device,
SCRIPT /VS wi 11 assume an appropriate output destination. Con
versely, if you specify an explicit output destination, SCRIPT/VS
will assume an appropriate logical device. However, you may spec
ify explicitly any combination of output destination and logical
device. For example,

SCRIPT Al (FILE DEVICE(3800N8)

will format a document for the IBM 3800 Printer but save the out
put in a disk file for later demand printing on a physical
printer.

Note: There is an exception to the general rule that output for
matted for any logical device ~ay be directed to any destination:
The CTF destination is valid only for the STAIRS logical device;
the CTF option will be ignored if any other logical device is
specified.

Figure 4 on page 19 shows the logical output device and output
destination for a document when various combinations of options
are speci fi ed .

• In eMS, format and print the document named TEST for an IBM
1403 printer. Print the last part of the document, starting
with page 10, and allow for a binding margin on the left side
of each page of one inch:

SCRIPT TEST (PRINT PAGE (10) BIND (Ii)

• In lSO, format and display at the terminal the document named
• useri d. RESUME. TEXT'. Do not prompt for paper adj ustment;
begin typing immediately. Do not type the formatter identifi
cation message:

SCRIPT RESUME NOWAIT QUIET

• In ATMS-III, format the document currently in working storage
to check for possible spelling errors:

SCRIPT * (SPELL

BIND: Shift the Page Image to the Right

The BIND option causes SCRIP1/VS to shift the formatted output of
each page to the right on the paper. The BIND option is specified
as:

BIND (obind ebind)
or

BIND (bind)

You can specify a binding for odd-numbered pages (obind) and a
different binding for even-numbered pages (ebind). If ebind is
not speci fied, the value of bind applies to both odd- and
even-numbered pages. The actual (or potential) page number of the
output page can be controlled by the . PA [Page Eject] and . PN

18 Document Composition Facility: User's Guide

!

2

Options Logical Physical Output
Specified Device Device Destination

none [CMS, TSO] TERM 2741 or 3270 Terminal
none [Background] 1403W6 1403 Printer!

CTF STAIRS 1403 (2)
FILE 1403W6 1403 file
PRINT 1403W6 1403 Printer l

TERM TERM 2741 or 3270 Terminal

DEVICECdevtype) devtype device device
DEVICECSTAIRS) STAIRS 1403 (2)

CTF DEVICECdevtype) devtype device device
FILE DEVICECdevtype) devtype device file
PRINT DEVICECdevtype) devtype device Printer!
TERM DEVICECdevtype) devtype device Terminal

CTF DEVICECSTAIRS) STAIRS 1403 (2)
FILE DEVICECSTAIRS) STAIRS 1403 file
PRINT DEVICECSTAIRS) STAIRS 1403 Printer l

TERM DEVICECSTAIRS) STAIRS 1403 Terminal

In the background environment, printed output is written to the des
tination identified by DSMLIST.

The destination of CTF output is a file named DSMUTCTF, except in
DOS/VSE and ATMS-III, where the destination is a file named DSMUCTF
and a CICS/VS partitioned data set, respectively.

Figure 4. Logical Output Device vs. Output Destination: It is the user's
responsibility to ensure that the characteristics of the physical
device to which the output is directed match the characteristics of
the specified or implied logical device. Your installation's con
ventions for output class, FCB, and forms must be included in these
considerations. Note that if the CTF and DEVICE options are both
specified, and the DEVICE option does not specify STAIRS, the CTF
option will be ignored.

[Page Numbering Model control words, which are used to specify
even and odd page numbers. Consequently, you can have two or more
even-numbered Cor odd-numbered) pages in a row.

Bindings can be specified in numbers of character spaces or in
space uni ts.

If the BIND option is not specified, it defaults to two character
spaces. This allows room for potential revision codes for the
first column, but decreases the potential maximum line length.
Revision codes for subsequent columns are placed in the gutter
between columns. If sufficient room is not provided for revision
codes, they are discarded.

CHARS: Specify Fonts

The CHARS option identifies the fonts to be used.

The CHARS option is specified as:

CHARS Cfont1 [... font4 1)

When you specify the CHARS option, you must specify at least one
font.

Chapter 2. Using the SCRIPT Command 19

All of the fonts specified with the .DF [Define Font] control word
must be identified with the CHARS option. If you do not specify
the CHARS option, the defaul t font speci fied for the logical
devi ce is used. In ei ther case, the fi rst font speci fi ed or
implied becomes the initial font.

When formatting for the IBM 3800 Printer, you can specify up to
four uppercase-only fonts, or two upper- and lowercase fonts. 5
The document must then be printed on a system that supports the
IBM 3800 Printer. The CHARS JCL parameter must specify the corre
sponding character arrangement tables in the same sequence as the
fonts specified in the CHARS option of the SCRIPT command.

Refer to "PRINT: Produce Printer Output" on page 27 for details on
printing documents formatted for the 3800.

CONTINUE: Continue Processing After a Nonsevere Error Occurs

The CONTINUE option allows processing to continue after SCRIPT/VS
detects an error condition and flags it with an error message.
When SCRIPT/VS encounters an error that is too severe for process
ingto continue, it terminates processing even when CONTINUE is
specified. "Severe" and "terminal" errors cause SCRIPT/VS to ter
minate processing.

For a description of error types and SCRIPT/VS error messages, see
the Document Composition Facility: Messages manual distributed
wi th SCRIPT /VS.

CTF: Prepare Output in STAIRS/VS Condensed Text Format

The CTF option specifies that the document be prepared as input
for the STAIRS/VS program product. SCRIPT/VS output is placed in
CTF blocks6 and written to an appropriate destination:

• In eMS, a file named DSMUTCTF SCRIPT A

• In TSO, a file named DSMUTCTF.TEXT

• In ATMS-III, a CICS extra partitioned data set

• In a background environment, the file identified by the
DSMUTCTF DD statement (i n OS/VS2 MVS and OS/VSI) or the
DSMUCTF DLBL statement (in DOS/VSE)

If the device option is not specified, the STAIRS logical device
is assumed; if any other logical device is speci fied, the CTF
option is ignored.

DEST: Name a Remote Output Station or Queue

The DEST option, available only in TSO, is used to specify a
remote output station at which the output document is to be
printed.

The DEST option is specified as:

DEST (destination)

where destination is a one- to eight-character station-id.

The DEST option is ignored if the output destination is not a
printer (as shown in Figure 4 on page 19).

5 Fonts provided with SCRIPT/VS are illustrated in "Appendix D.
Fonts Supplied with SCRIPT/VS" on page 377.

ft The format of STAIRS/VS Condensed Text Format blocks is
described in Figure 13 on page 180.

20 Document Composition Facility: User's Guide

1

2

3

Logical
Device
Type

TERM
2741
3270

1403N6
1403N8
1403W6
1403W8
1403W6S
1403W8S
1403SW 4

STAIRS

3800N6
3800N8
3800N12
3800W6
3800W8
3800W12
3800N6S
3800N8S
3800N12S
3800W6S
3800W8S
3800W12S

Real
Device
Type

(3)

2741
3270

1403
1403
1403
1403
1403
1403
1403
1403

3800
3800
3800
3800
3800
3800
3800
3800
3800
3800
3800
3800

Lines
per

Inch

6
6
6

6
8
6
8
6
8
6
6

6
8

12
6
8

12
6
8

12
6
8

12

Page Size
(inches)

Width

8-1/2
8-1/2
8-1/2

8-1/2
8-1/2

13-1/2
13-1/2
13-1/2
13-1/2
8-1/2

13-1/2

8-1/2
8-1/2
8-1/2

13-1/2
13-1/2
13-1/2
11
11
11
13-1/2
13-1/2
13-1/2

Depth

11
11
11

11
11
11
11
8-1/2
8-1/2

11
11

11
11
11
11
11
11

8-1/2
8-1/2
8-1/2
8-1/2
8-1/2
8-1/2

Line
Lengthl

(bytes)

60/132
60/132
60/132

60/85
60/85
60/132
60/132
60/132
60/132
72/90
60/132

60/85
60/85
60/85
60/136
60/136
60/136
60/110
60/110
60/110
60/136
60/136
60/136

Page
LengthZ

(lines)

66/144
66/144
66/144

66/144
88/192
66/144
88/192
51/144
68/192
66/102
66/144

60
80

120
60
80

120
45
60
90
45
60
90

Line lengths are given as "default/maximum" in 10-pitch characters.
For the IBM 3800 Printer, l2-pitch and 15-pitch fonts have values
20Y. and 50Y. greater, respectively. The potential maximum line length
includes binding. The text fonts (as shown in Figure 39 on page 364)
contain 10, 12, and 15 pitch blank characters. If these fonts are
used, you should allow for an output record length, in bytes, that
is 15 times the length (in inches) of your longest print line (in
cluding the binding).

Default and maximum page lengths are identical for 3800 devices.

The physical device type corresponding to the TERM logical device
may be either 2741 or 3270, depending upon the actual terminal type.

This is a l2-pitch device, as opposed to the normal 10-pitch 1403.

Figure 5. SCRIPT/VS Logical Device Characteristics

DEVICE: Specify a Logical Output Device

The DEVICE option allows you to identify the type of output device
for which you want your document formatted. The logical device
description includes the default page layout, font to be used, and
characteristics of the physical output device.

The DEVICE option is speci fied as:

DEVICE (devtype)

devtype is the name of a logical output device that takes into
account the physical characteristics of the device as well as the
characteristics that can be changed by the operator or by program
control: font, lines per inch, form size, and page image size.
SCRIPT/VS logical device support allows a single physical device
type to be defined as many different logical device types, each

Chapter 2. Using the SCRIPT Command 21

having different characteristics. The logical devices defined in
SCRIPT/VS are summarized in Figure 5.

You can add a new logical device to the SCRIPT/VS logical device
table. For details about this procedure, see "Appendix B. Device
and Font Table Maintenance" on page 367.

When you issue the SCRIPT command to format and display your docu
ment at the terminal, DEVICE (TERM) is assumed. When you invoke
SCRIPT/VS in a batch environment or use the PRINT option in a
foreground environment and do not specify a device type,
SCRIPT/VS assumes DEVICE (1403W6).

The formatted output for all 3800 logical devices contains table
reference characters (TRCs). Consequently, the parameter
DCB=OPTCD=J must be included in the output JCL. For DOS/VSE, a
//SETPRT control card must also be included.

Refer to "PRINT: Produce Printer Output" on page 27 for details on
printing documents formatted for the 3800.

If you specify DEVICE(STAIRS) or CTF, the document will be format
ted as it would for device 1403W6, but instead of preparing the
output for a line printer, SCRIPT/VS will convert the output to
STAIRS/VS Condensed Text Format (CTF)6 records and write them to
an appropriate file, as described under the CTF option.

If you specify DEVICE(STAIRS) and PRINT, FILE, or TERM, the docu
ment will be formatted as it would for CTF output, but the lines
and paragraph codes will be written to the specified destination
for proofreading.

In ATMS-III peripheral queue operations, you can not override the
DEVICE type defined by ATMS-III.

DUMP: Enable the .ZZ Control Word

The DUMP option allows SCRIPT/VS to perform a specific diagnostic
action when it encounters a .ll [Diagnostic] control word in an
input file. Parameters of the .ll control word specify the type of
diagnostic action to be taken. The DUMP option is intended for use
by the system programmer maintaining SCRIPT/VS.

If the DUMP option is not specified, SCRIPT/VS ignores the .ll
control word.

For details about the output produced when the .ll [Diagnostic]
control word is processed, see ".ll [Diagnostic]" on page 339.

FILE: Name a Disk File for Output

The FILE option directs the formatted output document to a
direct-access file. If the DEVICE option is not also specified,
the 1403W6 logical device will be assumed.

The FILE option is specified as:

FILE [(file-id) 1

file-id names the direct-access file. If you do not specify a
file-id, SCRIPT/VS sends the output document to a default file-id
based on the environment.

• In CMS, the file-id is of the form:

filename [filetype [filemodel]

The default filename is "$filename", where "filename" is the
first seven characters of the input filename, preceded by a
dollar sign ($). The default filetype is "SCRIPT", and the
default filemode is "AI".

22 Document Composition Facility: User's Guide

If a file with the name specified or implied already exists,
SCRIPT/VS issues a message to allow you to let th~ replacement
of the old file occur or to cancel the output.

The file can contain a maximum of 65,533 records.

• In a TSO environment, file-id is a fully or partially quali
fied data set name. The full name will be determined by the
following rules:

1. If a fully qualified dsname (placed within quotation
marks) is given, the name is used as specified.

2. If a partially qualified name is provided, it is fully
qualified by prefixing it with "userid." (or other prefix
given with the TSO PREFIX command), and suffixing it with
".LIST" (unless ".LIST" is already the right-most qual
ifier) or replacing a right-most qualifier of ".TEXT"
wi t h n. LIST" .

3. If a file-id is not given, the name of the input file is
examined. If the right-most qualifier of that data set is
". TEXT", a name is generated by replacing ". TEXT" wi th
".LIST". If the right-most qualifier is not ".TEXT", an
error results. In this case, a file-id must be specified.

For example,

File
Specification

FILE('DOC.OUT')
FILE(DOC.OUT)
FILE(DOC.LIST)
FILE(DOC.TEXT)
FILE((CHAP2»
FILE
FILE

Input
DSNAME

N/A
N/A
N/A
N/A
N/A

'DOC. TEXT'
'DOC.OTHER'

Generated
Output DSNAME

DOC.OUT
userid.DOC.OUT.LIST
userid.DOC.LIST
userid.DOC.LIST
userid.LISTCCHAP2)
DOC.LIST
*** error ***

If an output data set of the generated name does not exist,
SCRIPT/VS creates an output data set with the following char
acteristics:

Organization: PS or PO
Record format: VB or VBM
Record length: 250
Block size: 3156

When a new member is created in an existing partitioned data
set, the existing record format and length are used.

If the output data set already exists, a check is made to
ensure that the characteristics of that data set are compat
ible with the data to be produced. Specifically, if a
printer-formatted document is directed to a data set which
does not have the machine carriage control record format, or
if a terminal-formatted document is directed to a data set
which does, the command will be terminated with an error mes
sage.

• The FILE option is not supported in the ATMS-III environment.

I f a document is formatted for a pri nter and is sent to a
direct-access file, the output document has printer controls
imbedded in it appropriate for the specified or implied logical
output device type. The first record of this file indicates the
logical device for which it was formatted and the fonts used. This
initial record, which has a hexadecimal 03 (Control No Operation)
carriage control character, has the following format:

SCRIPT/VS R2.0: DEVICE device CHARS font 1 [... font41

Chapter 2. Using the SCRIPT Command 23

Thi s i nformati on may be used to ensure that the document is
printed on the same device for which it was formatted. The initial
record is ignored when the document is printed.

In CMS, for example, you can use the CMS PRINT command to print
the file. You should use the CC parameter, so that the carriage
controls are correctly interpreted. For details on the PRINT com
mand, see IBM VM/370: CMS Command and Macro Reference.

INDEX: Enable Back of Book Index

The INDEX option enables the .PI [Put Index] control word. "Chap
ter 7. Indexing" on page 79 describes how the .PI [Put Index] con
trol word can be used to create an index.

LIB: SpecifY SYmbol and Macro Libraries

The LIB option is valid in the CMS, TSO, and ATMS-III
environments, and specifies that SCRIPT/VS is allowed to search
the specified libraries for a definition of the symbols and macros
not defined within the input file. In a batch environment, the
SEARCH option provides a similar facility.

In CMS, the LIB option is specified as:

LIB (libnamel [... libname8])

where libname is the filename of a CMS macro library. The filetype
is MACLIB. The CMS search sequence is used to locate the library
on any accessed disk.

In TSO, the LIB option is specified as:

LIB (libname)

If the libname given is not fully qualified (placed within quota
tion marks), the userid is prefixed to the libname as the leftmost
qualifier, and "MACLIB" is added (unless it already appears) as
the right-most qualifier.

In ATMS-III, the LIB option is specified as:

LIB (opnuml [.•• opnum8])

where opnum is an operator number. It must include the user's own
number if the user's own permanent storage is to be searched.

The library is searched when a symbol or macro is not already
known and S'CRIPT /VS has encountered a .L Y ON, a .L Y SYM (for sym
bols only), or a .L Y MAC (for macros only) control word. The
library is also searched (without regard to the setting of the .LY
control word) when a symbol or macro is defi ned wi th the LIB
parameter. For example,

.se symbolname LIB

.dm macroname LIB

You can specify up to eight library names in CMS, one name in TSO
(although multiple libraries may be concatenated by preallocating
a ddname of SCRPTLIB), or eight operator numbers in AlMS-III. If
the symbol name or macro name is not found in the symbol table
(and the symbol or macro is defi ned as bei ng ina library),
SCRIPT/VS scans each library named in the LIB option (in the order
given) until the symbol or macro is found. SCRIPT/VS then moves
the symbol or macro definition into its symbol table, so that a
second occurrence doesn't require a library search. If no library
option is specified, the symbolname or macro is searched for in
the default library (if it exists).

24 Document Composition Facility: User's Guida

• In CMS, a symbol and macro library is a standard MACLIB file.
Its file type is MACLIB, and the default library is GML2
MACLIB.

• In TSO, a symbol and macro library is a partitioned data set.
The default library, unless changed by your installation, is
SCRIPT.MACLIB, and is concatenated to the library you
specify.

If the LIB option is not specified, but instead a user allo
cates a partitioned data set with the DDname of SCRPTLIB,
SCRIPT /VS uses whatever data sets are allocated to this
DDname to resolve symbols and macros. Any number of data sets
may be concatenated in this manner, and SCRIPT.MACLIB is not
included in the concatenation.

If the LIB option is not specified and a DDname of SCRPTLIB is
not allocated, SCRIPT.MACLIB is used.

• In ATMS-III, the LIB search is used only if the requested
source can not be located through the use of ATMS subdocument
index build/connect facilities. Futhermore, the search is
performed only against the permanent storage of the users
whose operator numbers are specified in the LIB list. Also, if
the LIB search is used and the located source does not belong
to the requesting user, the document must have a getword of
nANY".

If a LIB option is not specified, ATMS-III will use only its
subdocument facilities to search for unresolved symbols and
macros.

MESSAGE: Control Message Printing

The MESSAGE option controls the amount and timing of the informa
tion SCRIPT /VS provides wi th error messages. If the MESSAGE
option is not specified, SCRIPT/VS provides a short message that
includes the message text and, when appropriate, the line number
and text of the input last read when the error was detected.

The MESSAGE opti on is speci fi ed as:

MESSAGE ([DELAY] [ID] [TRACE])

You must specify at least one parameter with the MESSAGE option;
you may specify two or all three parameters, separated by blanks.
Each of the options may be abbreviated as a single letter.

DELAY requests that SCRIPT/VS not display messages while a docu
ment is being displayed or printed. SCRIPT/VS accumulates mes
sages in a utility file and appends them to the end of the
formatted output. DELAY is always used in ATMS-III.

In causes SCRIPT/VS to include the error message identifier along
with the error message.

TRACE causes SCRIPT/VS to list, whenever appropriate, the
sequence of imbedded files, from the file that includes the error
input line backward to the primary input file. This is useful when
a file is imbedded in many other files.

Note: CMS will truncate messages which exceed 130 characters in
length.

NOPROF: Suppress the Profile

The NOPROF option requests that SCRIPT/VS not imbed a Profile doc
ument. For details about the Profile, see the PROFILE option's
description below.

Chapter 2. Using the SCRIPT Command 2S

NOSPIE: Prevent Entering SPIE Exit Routines

The NOSPIE option requests that SCRIPT/VS not establish a program
interrupt exit. The NOSPIE option is intended for use by the sys
tem programmer who is maintaining SCRIPT/VS.

The NOSPIE option is valid only in CMS and TSO.

NOWAIT: Prevent Prompting for Paper Adjustment

The NOWAIT option causes SCRIPT/VS to send output to your terminal
without first prompting you to adjust the paper. NOWAIT option is
the normal mode for output to other than a typewriter terminal.

The NOWAIT option is valid only in CMS and TSO.

NUMBER: Print the File Name and Line Number

The NUMBER option causes SCRIPT/VS to print the file-id and line
number of the last line read when a formatted output line is
printed. The file-id and line number are printed to the right of
the formatted output line, and each is a maximum of eight charac
ters in length.

OPTIONS: Name a File That Contains Options

The OPTIONS option allows you to specify a file that contains, in
essence, an extension to the SCRIPT command options list. The
options in the file are in addition to options you specify with
the SCRIPT command and with other "options" files.

The OPTIONS option is specified as

OPTIONS [(file-id) 1

In CMS, if the file-id is not specified, the default file-id is
SCRIPT OPTIONS; if only a filename is given, the default filetype
is OPTIONS.

In ATMS-III, the user may specify OPTIONS('docname:opnum;getw').
If "opnum" and/or "getw" is not specified, ATMS-III will first
attempt to locate the source name via its subdocument index
build/connect facilities. If it cannot be located as a subdocu
ment, ATMS-III will attempt to locate it as an explicit document
in the permanent storage of the requesting user. If a qualified
source name is used, ATMS-III will only use an explicit search for
the document.

Each record in the options file can contain one or more options,
in the same format as they would appear on the SCRIPT command
line. They must, however, be in uppercase. An option need not be
completed on a single line (suboptions may appear on following
lines), but each word must be completed in a single record. A left
parenthesis must not precede the options in the file.

The options in the file are processed as though they replace the
OPTIONS option. Consequently, the OPTIONS option in one option
file can refer to another option file. Options files can be
chained together in this manner. Alternatively, the OPTIONS
option in the SCRIPT command line might refer to a file that con
tains a list of OPTIONS options, each of which points to a
different options file.

The OPTIONS option is valid only in CMS and ATMS-III.

PAGE: Selectively Print Pages

The PAGE option allows you to print pages of formatted output
selectively. The page number need not be an integer; you can use
the .PN [Page Numbering Model control word to establish decimal,

26 Document Composition Facility: User's Guide

alphabetic, or Roman numeral page numbers, and attach a prefix to
each page number. The first eight characters of the page number
you specify with the PAGE option is the character string SCRIPT/VS
compares to the current page number symbol.

The PAGE option has several formats, and any number of page range
specifications may be included in the PAGE option. Note, however,
that prompting mode replaces the remainder of the suboptions.
Valid forms of page range specifications are:

PAGE [(PROMPT)]

PAGE [([FROM] frompage [TO] topage)]

PAGE [([FROM] frompage FOR n)]

PAGE [([FROM] page ONLY)]

If no parameter is given with the PAGE option, PAGE (PROMPT) is
assumed (except under ATMS-III, where it is ignored).

The following are examples of valid explicit page range specifi
cations:

PAGE (FROM 10 TO 15)

PAGE (7 FOR 2)

PAGE (viii ONLY 93 TO *)

PAGE (FROM 95.1 FOR 3 99 ONLY)

An asterisk (*) specified as frompaqe is interpreted as the cur
rent page; an asterisk specified as topaqe means the last page in
the document.

If you use the ONLY option, the page number you specify before
ONLY will be the single page that is printed.

If you specify or imply the PROMPT option, SCRIPT/VS will ask you
to enter page range speci fications from your terminal. You may
respond with any of the forms described above, and SCRIPT/VS will
continue to ask for new page range specifications until the end of
the document is reached or you indicate an end to prompting mode
by entering a null line.

If there is a syntax error in your page range speci fication,
SCRIPT/VS issues an error message and begins prompting.

The page numbers must be entered in the same order as they appear
in the output document. For example, you can specify

PAGE (6 1)

but it will be meaningful only if there is, at some point follow
ing page 6, a .PN 1 or .PA 1 control word that resets the page
counter to 1.

If there is no page with the number given or if SCRIPT/VS has
passed the specified page, SCRIPT/VS will reach the end of the
document without changing from not printing to printing, or vice
versa.

PRINT: Produce Printer Output

The PRINT option causes SCRIPT/VS to send the output document to a
printer. If the DEVICE option is not specified, SCRIPT/VS assumes
the logical device 1403W6. If PRINT is specified for a device oth
er than the 3800, the output will contain 1403 carriage control
characters. Specifying the DEVICE option will cause a previously
specified PRINT option to be ignored.

Chapter 2. Using the SCRIPT Command 27

In CMS, the number of copies and the output class are controlled
by the CP SPOOL command and the CP CHANGE command.

In TSO, you can control the disposition of the printed output by
speci fying the following posi tional parameters wi th the print
option:

PRINT (copies,class,fcb,ucs)

copies is the number of copies desired, and defaults to one. class
is the SYSOUT class. Unless changed by your installation, class
defaults to nA" when the UPCASE option is specified and "T" when
it is not. fcb is the forms control buffer name. ucs is the uni
versal character set name. Your installation determines the
appropriate values for class, fcb, and ~.

Note that under JES2, if the default LINECT value is not zero,
JES2 may insert extra page ejects into your document when it is
printed. You may circumvent this by directing your formatted out
put to a file and then submitting a job to print the contents of
the file specifying LINECT=O. If SYSOUT parameters such as CHARS,
FLASH, FORMS, OPTCD, etc., are desired, you should also direct
your formatted output to a file and submit a job to print the con
tents of the file specifying the desired parameters.

For more information on fcb, Y£§, and LINECT, see the OS/VS2 MVS
JCL manual.

In ATMS-III, the number of copies and output class are controlled
by the peripheral queue. When an ATMS-III peripheral queue is
defined for SCRIPT/VS, a CICS/VS destination ID must be specified
that is consistent with the queue device type.

SCRIPT/VS does not control the 3800 Printer in any environment.
You are required to use the proper facili ties and procedures
established at your installation in order to properly route and
obtain correct output results.

PROFILE: Specify a Profile

A profile is a SCRIPT input file that is imbedded before process
ing begins on the primary input file.

The PROFILE option names the file that SCRIPT/VS is to use as the
profile for the document being formatted. A profile can contain
frequently used symbol and macro defini tions, GML application
processing functions, and text appropriate for many documents
(for example, top and bottom titles).

For details about creating a profile, see "Chapter 14. GML Support
in SCRIPT/VS" on page 159.

The PROFILE option is specified as:

PROFILE [(file-id)]

file-id names the profile. You can select different profiles to
use when formatting the document for different applications.

If the PROFILE option is not specified or if file-id is not speci
fied, SCRIPT/VS searches your files for a file named PROFILE.

In CMS, the default is:

PROFILE SCRIPT

In TSO, the default is:

'userid.PROFILE.TEXT'

In ATMS-III, the default is:

PROFILE

28 Document Composition Facility: User's Guide

The PROFILE option also provides an "epifile" facility through
the use of the .EF [End of File] control word. If "End of File" is
indicated with the .EF control word within the PROFILE file,
SCRIPT/VS will proceed immediately to the primary input file; the
remainder of the PROFILE file will be processed ~ the primary
input file is completed.

The .EF control word is described in ".EF [End of File]" on page
255.

QUIET: Suppress the Formatter's Identifier Message

The QUIET option causes SCRIPT/VS to suppress the version iden
ti fication message that is otherwise typed or displayed as a
response to the SCRIPT command.

SEARCH: Specify a Library

The SEARCH option, in a TSO, ATMS-III, or batch environment,
causes SCRIPT/VS to search the specified library or partitioned
data set for imbedded files. In a batch environment, SCRIPT/VS
also uses the library to locate symbols and macros not defined
within the input file. For more details on libraries, see the LIB
option.

In TSO, the SEARCH option is specified as:

SEARCH (libname)

The specified library name is used as described in "TSO Naming
Conventions" on page 14.

In ATMS-III, the SEARCH option may be specified as:

SEARCH (opnuml [... opnum8])

Up to eight ATMS-III user operator numbers may be specified as an
alternative source for imbedded documents.

If an imbedded document wi th an unquali fied na'me can not be
located as a subdocument or as an explicit document in the perma
nent storage of the requesting user, ATMS-III will search, in the
specified order, the permanent storage of the operators
specified. If the located documents, are not in the operator's per
manent storage, they must have a getword of "ANY".

The SEARCH option is invalid in a CMS environment.

SPELLCHK: Enable the .SV Control Word

The SPELLCHK option causes SCRIPT/VS to verify spelling. Each
word is verified using the spelling and hyphenation dictionaries
specified with the .DL [Dictionary List] control word, unless
spelling verification has been turned off with the .SV [Spelling
Verification] control word. Spelling errors are listed, using the
.UW [Unverified Word] control word, with other errors found dur
ing formatting.

STOP: Print Separate Pages at the Terminal

The STOP opti on causes SCRI PT /VS to wai t for you to press the
return key before starting to type each page. Use this option when
printing your output document on separate sheets of paper at a
typewriter terminal.

When SCRIPT/VS stops after the first page, no message is issued.
SCRIPT/VS unlocks your keyboard, and is ready to type the first
line of the new page. Position the typewriter at the top edge of
the paper, and press RETURN. SCRIPT/VS will resume typing with the
next page.

Chapter 2. Using the SCRIPT Command 29

The STOP option is valid only for typewriter-like terminals in CMS
and TSO.

SYSVAR: set System Variable Symbols

The SYSVAR option allows you to pass information to SCRIPT/VS as
defined symbols when you issue the SCRIPT command.

The SYSVAR option is speci fied as:

SYSVAR (x value ... x value)

Each x value pair causes the symbol &SYSVARx to be set to value. x
is any alphameric character identifying the token. Value is any
alphameric string of up to eight characters, and cannot contain
imbedded blanks or parentheses. Because both x and value are part
of the SCRIPT statement, any lowercase characters you speci fy
will be converted to uppercase.

The maximum number of x value pairs is limited only by the length
of the SCRIPT command line.

For example, your input file might include the lines

. in &SYSVARA

.11 &SYSVARL

When you issue the SCRIPT command to format your document, you can
specify values for indention and line width as:

SCRIPT ... SYSVAR (A 10 L 72)

The symbols on the input line are substituted with the values set
by the SYSVAR option. The input lines shown above are processed by
SCRIPT/VS as though they had been:

.in 10

.11 72

Note: The symbols created by the SYSVAR option are always upper
case.

TERM: Display the Output at the User's Terminal

The TERM option causes SCRIPT/VS to send the output document to
your terminal. If the DEVICE option is not specified, SCRIPT/VS
assumes the logical device TERM and displays the document on your
terminal.

TERM is the default destination in CMS and TSO; ATMS-III forces
TERM when SCRIPT/VS is called from a terminal.

TLIB: Specify Spelling Checking and Hyphenation Libraries

The TLIB option speci fies text libraries that contain
IBM-supplied root word dictionaries, user-created root word dic
tionaries, and stem processing routines for use in spelling
checking and hyphenation.

The TLIB option is specified as:

TLIB (libnamel [... libname8])

where libname is the name of a CMS text library. The filetype is
TXTLIB. The CMS search sequence is used to locate the library on
any accessed disk.

• The speci fied libraries are searched when a dictionary is
named in the .DL [Dictionary List] control word which is not
included as part of the SCRIPT/VS load module., Both the dic-

30 Document Composition Facility: User's Guide

tionary and stem processing routines are loaded from the
libraries.

• If the TLIB option is not specified, the library searched is
SVTEXT TXTLIB.

• If the dictionary or dictionaries used are included as part of
the SCRIPT/VS load module when it is created; no library is
needed.

The TLIB option is valid only in CMS.

TWOPASS: Prepare the Document With Two Formatting Passes

The TWOPASS option causes SCRIPT/VS to process the input file in
two passes. Both passes process all control words, but output
occurs only on the second pass. Unless you speci fy TWOPASS,
SCRIPT/VS formats and outputs everything in one pass.

Two formatting passes are required when a symbolic value is needed
earlier in the document than when it is set; for example, a page
number in a table of contents or list of figures. The first for
matting pass allows SCRIPT/VS to collect head-levels and corre
sponding page numbers. The second formatting pass, which produces
output, includes accurate page numbers in the table of contents.

You can produce an accurate table of contents with a single for
matting pass by having SCRIPT/VS prepare the table of contents at
the end of the output document. Later, you can move the table of
contents pages to the front of the document. If you do this, be
sure to reset the page number before the table of contents.

You can also use the TWOPASS option to detect errors in an input
file. If you process a document with TWOPASS and without CONTINUE,
the second pass will not begin unless the first pass is completed.

If TWOPASS is used while processing a file that uses .TE [Terminal
Input], text entered as a result of .TE on the first pass will be
excluded from the formatted output. Text entered during the sec
ond pass, however, will be formatted. You can use the TWOPASS sym
bol, &$TWO (which is equal to 1 if TWOPASS was specified), and .IF
[If] to skip the .TE on the first pass. See the discussion of the
.IF [If] family of control words in "Chapter 10. Conditional Proc
essing" on page Ill.

Note: The SCRIPT/VS symbol and conditional processing functions
might cause the input file to look entirely different on the sec
ond pass than it did on the first pass. As a result, page numbers
might not be accurate in the table of contents or in other
cross-references. If the table of contents is placed at the front
of the document, it will reflect the page numbers on the first
pass. If it is placed at the end of the document, it will reflect
the page numbers on the last pass.

UNFORMAT: Print All Input Lines Without Formatting

The UN FORMAT option causes SCRIPT/VS to print all input lines as
they appear in the input file. The lines that are produced in an
unformatted listing represent all (and only those) lines that
will be processed by SCRIPT/VS: For example, Input lines that are
not processed as a result of a .GO [Goto] control word or are
ignored because of a .CS [Conditional Section] control word are
not shown in the unformatted listing.

Some lines not in the primary input file might be printed. When
SCRIPT /VS encounters the .IM [Imbed] or . AP [Append], control
word, the contents of the imbedded or appended file are included
following the control word. In the unformatted listing, SCRIPT/VS
puts the line

.*===> IMBED/APPEND FILE: file-id

Chapter 2. Using the SCRIPT Command 31

at the beginning of each imbedded or appended file. The file-id is
always listed. SCRIPT/VS puts the following line after the last
line of an imbedded or appended file:

.*<=== END OF FILE: file-id

If the NUMBER option is used with UNFORMAT, the file-id and line
number are printed on the left instead of the right.

UPCASE: Print Lowercase Letters as Uppercase

The UPCASE option causes SCRIPT/VS to convert, for the formatted
output document only, all lowercase letters to uppercase. This
option should be specified when the output is directed to a print
er that cannot print lowercase letters.

auser-option: User-defined Options

In CMS, additional options can be defined as needed by prefixing
the new option with the character "a". For example,

aduplex

User-options may also have suboptions. For example,

acolumns (2)

User options are saved with their suboptions, if any, but without
the "a" delimiter or the parentheses surrounding the suboptions,
and can be executed at any time with the .GS [GML Services] con
trol word. See "Chapter 14. GML Support in SCRIPT/VS" on page 159
for details.

32 Document Composition Facility: User's Guide

CHAPTER 3. BASIC TEXT PROCESSING

GML MARKUP AND CONTROL WORDS

When you prepare a document for SCRIPT/VS to format, the document
(called the input file) can contain two kinds of data:

• Text, the actual content of the document which SCRIPT/VS
places on your output page, and

• Markup, which consists of

SCRIPT/VS control words that control processing of your
document and the placement of the text on the output page.

GML markup that describes the characteristics of the doc
ument, but does not specify processing. When GML markup
is used, the application processing functions (APFs) con
tain the control words that specify the processing.

A SCRIPT/VS input file might contain text data only. In this case,
SCRIPT/VS formats the file using a set of defaults appropriate for
the logical output device. Typical defaul t values speci fy the
output page as 8-1/2 by 11 inches, single-column format, with con
catenation and justification.

Insert control words into the input file when you want to change
any of the default assumptions and when you want to use the more
advanced functions of SCRIPT/VS, such as footnotes, automatically
generated table of contents, and interactive text input.

The Document Composition Facility Generalized Markup Language:
Starter Set Reference describes how to mark up a document with GML
tags. This manual also discusses SCRIPT/VS control words.

SCRIPT/VS TEXT FORMATTING

Format Mode

SCRIPT/VS can format input text to build output lines. The output
text appears in columns of uniform width. This formatting con
sists of two processes which SCRIPT/VS performs as it builds out
put lines:

• Concatenation: moving words from one line to another to put as
many words as possible on each output line, and

• Justification: distributing space between words to align the
right edges of output lines (right-justified).

Most writing that you do requires some kind of formatting. With
format mode on, lines that are entered in a SCRIPT/VS file as: 7

The quick brown
fox
came over to greet the lazy poodle.
The lazy poodle was
as indifferent
as the fox was quick.

result in the output lines:

7 Many of the examples of SCRIPT/VS formatting in this book are
shown, for convenience, with short lines.

Chapter 3. Basic Text Processing 33

The quick brown fox came over to
greet the lazy poodle. The lazy
poodle was as indi fferen"t: as the
fox was quick.

When SCRIPT/VS reads input, it "saves" words until it accumulates
enough of them to fill an entire line. When the next word in the
input would make the line too long, SCRIPT/VS justifies and prints
the line, then begins formatting the next line. When two input
lines are joined (that is, concatenated), SCRIPT/VS inserts blank
space between the last word of one line and the first word of the
next.

If you enter text in a SCRIPT/VS file with no markup, the defaults
established by SCRIPT/VS cause the text to be formatted (concat
enated and justified) as in the above example.

There may be occasions when you do not want SCRIPT/VS to concat
enate and justify the input lines. You may want to present a sim
ple list, such as:

Boston
Chicago
New York
Providence

If these lines are processed when SCRIPT /VS formatting is in
effect, the four names are concatenated as follows:

Boston Chicago New York Providence

To prevent this, you can use the .BR [Breakl control word between
each entry to force a "break",8 or you can use the :FO [Format
Model control word to suspend SCRIPT/VS justification and concat
enation:

.fo off
Boston
Chicago
New York
Providence

To restore normal formatting, use the control wor~:

.fo on

Since ON is the default, you can also specify:

.fo

If you use the .FO OFF control word when you create tables or
charts, remember to turn formatting back on when you resume enter
ing text.

concatenation and Justification

You can suspend concatenation and justification by specifying the
.FO [Format Model OFF control word:

.fo off

Wi th concatenation suspended, each input line resul ts in a new
output line. It is not joined to the previous input line. If the
input line is shorter than the output line width, it will not be
padded with blank spaces. 9 If the input line is longer than the

8 The .BR [Breakl control word is discussed later in this chap
ter under "Breaks" on page 38.

34 Document Composition Facility: User's Guide

Ragged Right

output column width, the placement of excess words depends on the
other parameters of the .FO [Format Model control word:

• EXTEND: the excess words are printed on the same output line;
the line is allowed to extend beyond the column width.

• FOLD: the excess characters are printed on the next output
line.

• TRUNC: the excess characters are truncated at column width
and are not printed.

With .FO FOLD or .FO TRUNC, a word is divided at the last charac
ter to fit in the column.

To restore both concatenation and justification, specify

.fo on -or- .fo

The .FO [Format Model OFF control word suspends both concat
enation and justification. When you want to produce SCRIPT/VS
output that resembles typewriter output (that is, "ragged right"
output), you want each line to contain as many words as can fit
on the line, but you do not want extra space inserted between
the words to pad the line to a specific length. To achieve this,
use the .FO [Format Model LEFT control word:

.fo left

When the .FO [Format Mode] LEFT control word is in effect, out
put is formatted as in the above paragraph. To resume justifica
tion of output lines, use the ON parameter of the .FO control
word:

.fo on

SCRIPT/VS IMPLICIT FORMATTING CONVENTIONS

Unless you speci fy otherwise, SCRIPT /VS formats your document
based on default settings appropriate for the logical device you
have speci fied.

When input lines are concatenated, SCRIPT/VS inserts a blank at
the end of the output line before joining it to the next input
line. This blank is the interword space between two input lines on
the same output line.

If you follow the typing convention that requires sentences to be
separated by two blanks, you must enter both blanks if you enter a
full stop in the middle of an input line. SCRIPT/VS will automat
ically insert two blanks after a full stop if it occurs at the end
of an input line.

A "full stop" is a period (.), a question mark (1), or an exclama
tion point (!). A line is also considered to end in a full stop if
it ends with a double quotation mark (") or a right parenthesis
(», and the next-to-last character is a "full stop" character.
You can use the .DC [Define Character] STOP control word to change
the characters that are treated as "full stop" characters (see
"Chapter 8. Additional Formatting Features of SCRIPT/VS" on page
87 for detai Is) .

Input lines that start with a leading blank or leading tab cause
"breaks." SCRIPT/VS generates a control word and executes it when
it detects one of these situations. For leading blanks, the .LB
[Leading Blank] control word is generated, and for leading tabs,

9 Unless the .JU [Justify Model ON control word is also speci
fied.

Chapter 3. Basic Text Processing 35

the .IT [leading Tab] control word is generated. These control
words do the same thing as the .BR [Break] control word.

SCRIPT/VS implements these implicit breaks as control words to
allow you to alter the processing for these situations. You can
define a . lB or . l T macro to provide whatever processing you
require. 10

USING TABS IN SCRIPT/VS

Setting Tabs

To generate the tab character (hexadecimal 05) in your input
lines, you can use one of the following techniques:

• Choose a character that you would not normally use in your
text and assign it hexadecimal 05 using the .TI [Translate
Input] control word. For example, to set the "~" character to
a tab character, specify

.ti ~ 05

This causes every "not sign" character to be translated to a
tab in the input line, before formatting occurs. Using this
technique, you can see your "tab" characters when you edit the
input file.

• Use the SCRIPT/VS system symbol "&$TAB" anywhere in a text
line to create the hexadecimal 05 character. Using this tech
nique, you can see your "tab" characters when you edit the
input file. Always delimit the symbol with a period (.).

• Using an editor, build the text lines with hexadecimal 05
characters as required. This technique has the disadvantage
of making the tab characters "invisible" when edi ting the
file in normal character display mode.

• Build the input file using an input device that can generate a
hexadecimal 05 in response to pressing a key (for example,
pressing the TAB key on an IBM 2741 Communications Terminal).
This technique has the disadvantage of making the tab charac
ters "invisible" when edi ting the file in normal character
display mode.

When SCRIPT/VS processes an input line and encounters a tab char
acter, it formats the line using the current tab settings, which
are established using the .TB [Tab Setting] control word.

The default tab settings (the ones SCRIPT/VS uses if you don't
specify any with the .TB control word) are at every fifth charac
ter position to position 80. The numbers correspond to unquali
fied horizontal space uni ts that represent the end of a tab
expansion (tab stop) through which SCRIPT/VS prints blanks on the
output line.

For example, if you use the default SCRIPT/VS tab settings and
enter a tab character in front of each input text line, then char
acter positions I through 5 of each output line will contain
blanks; the text begins in character position 6. If you enter two
tabs, character positions I through 10 are filled with blanks, and
so on.

To change the defaul t tab setting values, speci fy the tab settings
you want using the .TB [Tab Setting] control word. For example,
specifying

10 Note that input lines processed in literal mode, under the .lI
[literal] control word, do not invoke the .lB or .IT
functions. ---

36 Document Composition Facility: User's Guide

.ti ... 05

.tb 8m 18m 30m
... This line starts with a tab.

results in the following format:

.... v v v v v v
This line starts with a tab.

If you enter a word or number (for example, a list item), followed
by a tab , SCRIPT/VS fills the remaining character positions
(through the next tab setting position) with blanks, then contin
ues formatting text. 11 For example, specifying the following tab
setting

.ti ... 05

.tb 14m
This ... line has been
formatted with a tab.

results in:

.... v v v v v v
This line has been
formatted with a tab.

SCRI PT /VS has inserted blanks through cha racter posi ti on 14,
which is the current tab setting for the first tab.

Nei ther the physical tab settings nor the appearance of input
lines on the terminal has any effect on the SCRIPT/VS tab posi
tions. Once a .TB control word has been processed, the tab set
tings remain in effect until explicitly reset by another . TB
control word.

You can add one or more tab settings to the ones that already
exist by including the ADD parameter when specifying the .TB [Tab
Setting] control word. For example, if your current tab settings
are at positions 15m, 30m, and 45m, to put an additional tab set
ting at position 25m, specify

.tb add 25m

This gives you tab settings at positions 15m, 25m, 30m, and 45m.

You can remove one or more of your tab settings without respecify
ing the ones you want to keep. Specify the .TB [Tab Setting] with
the DEL parameter and the tab settings that you want removed. For
example, if your current tab settings are at 15m, 25m, 30m, and
45m, specifying

.tb del 15m 25m

leaves you with tab settings at positions 30m and 45m.

If you want to respecify all of your tab setting positions, you
can specify .TB SET followed-by the new tab settings that you want
to have in effect. For example, specifying

.tb set 10m 25m 30m 45m

leaves you with tab settings at positions 10m, 25m, 30m, and 45m
regardless of the previous tab settings.

To restore the SCRIPT/VS default values, you can specify the .TB
control word without any parameters:

II Space units here are specified in "ems." For details about
other ways to specify an amount of space, see "Vertical and
Horizontal Space Units" on page 6.

Chapter 3. Basic Text Processing 37

.tb

You can specify up to 99 tab positions using the .TB control word.

Some Uses for Tabs

Tab characters at the beginning of an input line (called leading
tabs) ordinarily cause it not to be concatenated with the previous
line (that is, they cause a "break" in concatenation). Therefore,
you can use tab characters to create simple lists. For example,
the input lines:

.ti 05

.tb Sm
We are planting:
.... Marigolds
.... Peonies
.... Cucumbers

are formatted as:

.... v v v v v v
We are planting:

Marigolds
Peonies
Cucumbers

Tab Fill Characters

BREAKS

Ordinarily, SCRIPT/VS uses blank space to pad a line to a tab
position. Instead of blank space, you can specify a "fill" charac
ter to be used to pad the line. You issue a .TB control word with
the tab setting parameters preceded by the fill-character parame
ter. The two pa rameters are sepa rated by a slash (/).

When you enter a line that includes a tab, the character positions
norma 11 y padded wi th blanks are padded wi th the fi 11 character
(periods, in the following example) instead:

.ti 05

.tb ./Sm
.... This line begins with a tab.

is formatted as:

..... This line begins with a tab.

You can specify a different fill character for each tab setting
position you specify with the .TB control word. For example,

.ti 05

.tb ./Sm */IOm -/ISm
A B C D
E F

results in:

A B****C----D
E *****F

When you want an input line to begin a new line of output, you
must cause a break. The break causes SCRIPT/VS to "promote" the
partial output line that is being built before it processes the
next input line.

If you begin a line with a blank or a tab, the formatting process
is interrupted, the text that has accumulated for the current out
put line is "promoted,n and the next input line begins a new out
put line.

38 Document Composition Facility: User's Guide

To create paragraphs in text, one method you can use is to enter
spaces before each line that begins a new paragraph. For example,

The quick brown
fox
came over to greet the lazy poodle.
Notice that the above sentence
contains each letter of the
alphabet, except the letters J and S.
That's why the quick brown fox usually jumps.

But the poodle was frightened
and ran away.

results in:

The quick brown fox came over to
greet the lazy poodle. Notice
that the above sentence
contains each letter of the
alphabet, except the letters J
and S. That's why the quick
brown fox usua 11 y jumps.
But the poodl e was fri ghtened

and ran away.

You can specify a break using the .BR [Break] control word.

The quick brown
.br
fox came over to greet ... but you know the rest.

results in:

The quick brown
fox came over to greet ... but
you know the rest.

Without the .BR [Break] control word between the two input lines,
the above input lines format as:

The quick brown fox came over
to greet ... but you know the
rest.

Some SCRIPT/VS control words cause a break in addition to their
explicit function. For a complete list of the control words that
cause a break, see Figure 25 on page 354.

CHANGING THE MARGINS

SCRIPT/VS formats text into the defined column or columns on the
page.

The "left margin" is the leftmost print position in the column.
This is always character position one.

The "right margin" is the right edge of the rightmost print posi
tion in the column. The right margin is determined by the column
width. For example, if the column were 38M wide, the "right
margin" would be at character posi tion 39.

When the left or right margin is modi fied, the new margin is
called the "current" left or right margin respectively.

To improve readability or emphasize a block of text, it may be
desirable to alter the left or right margin. Two SCRIPT/VS control
words are provided for this purpose:

• .IN [Indent] - change the left margin for subsequent output
lines.

• .IR [Indent Right] - change the right margin for subsequent
output lines.

Chapter 3. Basic Text Processing 39

Current margins:
1<-- -->1
The current left margin is either character position 1, or the character
position established by the combined effect of the .IN [Indent], .OF
[Offset], .UN [Undent] and .IL [Indent Line] control words. The current
right margin is determined by the combined effect of the .CL [Column Width]
and .IR [Indent Right] control words .

. IL [Indent Line]:
-->1

The first line following the indent line control word is moved to the
right of the current left margin. All subsequent lines start at the current
left margin. (Changes affect the current left margin for one line.)

.IN [Indent]:
>1 .
All lines following the indent control word are moved to the right
of the current left margin. (Changes affect the current left margin
for all subsequent lines until respecified.)

.OF [Offset]:
1->1
The first line'following the offset control word is not indented

from the current left margin; all subsequent lines are
indented. The offset remains in effect until changed by anoth
er offset or indent control word. (Changes affect the current
left margin after one output line.)

.UN [Undent]:
1<-1
The line following the undent control word is shifted to the left of the

current left margin; all subsequent lines start at the current left
margin. (Changes affect the current left margin for one line.)

.IR [Indent Right]:
1<-

All lines following an indent right control word are justified to the
column width minus the right indention. (Changes affect the current
right margin for all subsequent lines until respecified.)

Figure 6. How the Current Margins Are Established

Simple Indention

All margin-modifying control words normally cause a break. The
NOBREAK parameter of .IN and .IR inhibits this function.

The most basic form of indention is simple modification of the
left or right margin. When the "indent" is zero, all text output
lines originate in the leftmost print position of the column. By
increasing the indent, the left margin can be moved to the right.
For example, by specifying

.in 6m

-6m->
the left margin is set 6M to the right of column or1g1n. The
left margin may also be changed by specifying an incre
mental value to be applied to the current left margin. This
is called "relative" indenting. For example, by specifying

. in +5m

--llm-->
the value 5M is added to the current left margin. In
this example, 6M + 5M is 11M, so the current left mar
gin is now 11M to the right of the column origin. You
can move the current left margin to the left by speci
fying a negative value. For example, by specifying

40 Document Composition Facility: User's Guide

. in -3m

--8m->
the value 3M is subtracted from the current left margin.
In this example, 11M - 3M is 8M, so the current left mar
gin is now 8M to the right of its origin.

You can return the left margin to the column origin by specifying

.in 0 -or- .in

The right margin can be easily changed with the .IR [Indent Right]
control word. With justification on, the last character in each
line is flush wi th the right margin. By changing the "right
indent" the right margin may be moved to the left.

For example, by specifying

.ir 8m

<-8m-
the right margin is moved 8M to the left. As with .IN [In-
dent] you can modify the current right margin using rela-
tive values. For example, by specifying

· ir +3m

<--11m--
the value 3M is added to the current right indent. In
this example 8M + 3M is 11M, so the current right mar-
gin is now 11M to the left of its origin.

You can return to the original right margin by specifying

· ir 0 -or- .ir

In practice it is more convenient to use relative indention rather
than absolute indention. The advantage of relative indention is
that you need not be sensitive to the actual value of the margin
that you are changing. Relative indents will work "in context"
with the surrounding text so that the document may be imbedded
into another whi Ie maintaining the same relative appearance.

Temporary and Permanent Indention

Ordinarily, indention set with the .IN [Indent] and .IR [Indent
Right] control words is permanent until changed by a similar con
trol word. However, if a vertical extent is specified with the FOR
parameter, the change is temporary; the indention rever:ts to the
permanent value when the specified amount of vertical 'space has
been formatted.

For example, to indent just the first line of a paragraph,
specify:

.in .5i for 1

The indention of one-half inch is temporary, and lasts for
only one line. The second line reverts to the left margin.

To create a hanging indent, a negative temporary indention may be
applied to a permanent indention. For example,

· in Scm
.in -3cm for 1

Subsequent text will be indented five centimeters,
except for the first line, which will be
indented only two centimeters.

The .Il [Indent line] and .UN [Undentl control words provide func
tions similar to the FOR parameter of .IN [Indentl. Figure 7 on

Chapter 3. Basic Text Processing 41

The FOR and AFTER parameters of the .IN [Indent] and .IR [Indent Right] con
trol words determine the duration and extent of temporary indention. For
example,

.in +li for Ii after .5i

.ir +li for Ii after Ii

The FOR parameter indicates that the margin change is temporary and will
only be in effect for the duration specified. The current margin for any
line is a combination of the permanent and temporary indention values that
have been specified. If you specify the temporary indention as a negative

value (-), the current margin will be decreased; if you specify
it as a positive value (+), the current margin will be
increased. After the duration of a temporary indention has been
reached, the current margin reverts to the permanent indention
that was in affect prior to the temporary indention.
If another temporary indention is encountered prior
to the completion of an existing one, the existing
one is immediately terminated and the new margin is

the sum of the permanent indention margin and the new temporary
indention. A temporary margin change can either start immediate
ly (if the AFTER parameter is not specified) or after the verti
cal distance specified with the AFTER parameter. Once the values
specified with the FOR and AFTER parameters have been satisfied, the margin
reverts to the permanent indention that was in effect before the temporary
margin went into effect.

Figure 7. Permanent and Temporary Indention

page 42 illustrates a more general use of temporary indention with
both .IN and .IR.

By default, the .IN and .IR control words cause a break, and take
effect on the next output line. The NOBREAK parameter may be used
to suppress the break function, and the AFTER parameter may be
used to delay the indention until a specific amount of vertical
space has been formatted.

For example, a hanging indent list may also be created by delaying
indention for one line:

.in Ii after 1

Subsequent text will be indented one inch, except for the first
line, which will have the indention of the preceding
text.

Using Indention with Tabs

A definition list contains definition terms of varying length
followed by the text which defines these terms. To ensure that all
the text lines originate at the same point on the output line, it
is necessary to make each definition term appear to have the same
length. This is done by following each term with a tab which is
set equal to the current indention. For example, if you specify

.in 12m

.tb 12m

.ti - 05

.in -12m for 1

.uc term-definition

.sk 1

.in -12m for 1
BEE-any of a number of related four-winged, hairy
insects which feed on the nectar of flowers .
. sk 1
.in -12m for 1
BEEKEEPER-person who keeps bees for producing
honey; apiarist.

42 Document Composition Facility: User's Guide

VERTICAL SPACE

.sk 1

.in -12m for I
BEESWAX~a tallow-like substance secreted by
honeybees and used by them in making their
honeycomb.

With justification on, the result will be

TERM

BEE

DEFINITION

any of a number of related four-winged, hairy insects
which feed on the nectar of flowers.

BEEKEEPER

BEESWAX

person who keeps bees for producing honey; apiarist.

a tallow-like substance secreted by honeybees and
used by them in making their honeycomb.

The tab ensures that the text portion of each initial line starts
at the same point on the output line as the text that follows it.
If you did not use the tab, you would have to manually space the
number of blanks necessary to position the first word of the text
to the appropriate point. There are some disadvantages to manual
ly entering the blank space:

• The number of keystrokes and attendant potential for error is
greater.

• The blank space may be increased in width if justification is
on. This problem can be avoided by using required blanks.

• The space can not always be accurately filled with manually
entered blanks if you are formatting the document for the 3800
Printer.

For details on the margin-modifying control words, see "Chapter
23. SCRIPT/VS Control Word Descriptions" on page 219.

Three of the ways you can separate lines of text with vertical
space are:

• Enter a blank line.

• Use the .SK [Skip] control word.

• Use the .SP [Space] control word.

For example,

The quick brown fox came over to
greet the lazy poodle .
. sp
But the poodle was frightened
and ran away .
. sk
The poodle ran over to her
friend the Saint Bernard.

are formatted as:

The quick brown fox came over to
greet the lazy poodle.

But the poodl e was fri ghtened
and ran away.

The poodle ran over to her
friend the Saint Bernard.

If the space generated by the .SK [Skip] control word occurs at
the top of a column (or page), no blank lines are printed.

Chapter 3. Basic Text Processing 43

Line Spacing

However, if the space generated by the .SP [Space] control word
occurs at the top of a column (or page), the blank lines are
printed. For this reason, you may prefer to use the .SK [Skip]
control word instead of the .SP [Space] control word whenever you
need blank output lines.

The .SP [Space] and .SK [Skip] control words allow you to specify
an amount of vertical space. They also accept a parameter indicat
ing how much space you want to create in the text output. For
example,

.sp 2i

indicates that you want to create two inches of space in the out
put.

You can use blank space to cause a heading or a title to stand
out. For example, the lines:

A Love Story
.sk 3
The quick brown fox
was eager
to meet the pretty poodle.

results in:

A Love Story

The quick brown fox was eager to
meet the pretty poodle.

SCRIPT ordinarily places formatted text on successive output
lines. You can obtain additional space between output lines using
the .SL [Set Line Spacel control word, which specifies the verti
cal depth of each output line. For example,

.sl .Si

specifies that each output line occupies half an inch of space. If
you are formatting for a 6-lines-per-inch logical device, two
blank lines will be inserted between each line of text. If you are
formatting for an 8-lines-per-inch logical device, three blank
lines will be inserted.

The line-spacing value is applied to all vertical space dimen
sions that are given in terms of lines. For example,

.sl 3

.sp 2

resul ts in six lines of space, since two lines of space are
request~d, and each line is "triple-spaced." On the other hand,

.sp .7Si

causes SCRIPT/VS to space vertically as close to three-fourths of
an inch as the resolution of the logical device allows, regardless
of what has been previously specified using the .SL control word.
The .DS [Double Space Model and .SS [Single Space Model control
words are special cases of .SL.

POSITIONING LINES ON THE PAGE

Most line positioning is based on a displacement from the left
margin -- a cumbersome way to format when you want text centered
between the margins or aligned with the right margin (leaving a
"ragged left edge"). SCRIPT/VS allows you to center text using the

44 Document Composition Facility: User's Guide

.CE [Center] control word, and to align text with the right margin
using the .RI [Right Adjust] control word.

When using the .CE [Center] and .RI [Right Adjust] control words,
remember that the text lines affected by these control words are
not concatenated or justified.

The .CE [Center] control word adjusts an output li~e to provide an
equal amount of space on either side of the line. The line

.ce Chapter 1

results in:

Chapter 1

The .RI [Right Adjust] control word adjusts an output line to
align it with the right margin. For example,

.ri Chapter 1

results in:

Chapter 1

Both the .CE [Center] and .RI [Right Adjust] control words allow
you to specify a numeric parameter, indicating how many input
lines should be centered or aligned with the right margin. For
example,

.ce 4
After this control word is processed,
the next four lines from the input file
are centered within the current
margins.
However, subsequent input lines are
processed without centering,
to produce formatted (that is,
concatenated and justified)
output lines.

results in:

After this control word is processed,
the next four lines from the input file

are centered within the current
margins.

However, subsequent input lines are processed without
centering, to produce formatted (that is, concatenated
and justified) output lines.

You can also use the ON and OFF parameters with the .CE [Center]
and .RI [Right Adjust] control words. For example,

.ri on
These lines must
be flush with the
right margin .
. ri off

results in:

These lines must
be flush with the

right margin.

All the output lines between the .RI [Right Adjust] ON and .RI
[Right Adjust] OFF control words are aligned wi th the right
margin. No concatenation or justification takes place.

The following paragraph is formatted using the .FO CENTER control
word:

Chapter 3. Basic Text Processing 45

Do not confuse the .CE [Center] control word with the
.FO [Format Mode] CENTER control word. The .FO CENTER

control word allows you to format the input lines with
concatenation, producing unjustified output lines that

are centered between the column's margins (that is,
with ragged left and ragged right edges).

The following paragraph is formatted using the .FO RIGHT control
word.

Also, do not confuse the .RI [Right Adjust] control word
with the .FO RIGHT control word. The .FO RIGHT control word

allows you to format input lines with concatenation,
producing unjustified output lines that are aligned with

the right margin (that is, ragged left edge).

Perhaps you want to align part of an output line with the left
marg1n, and the other part with the right margin, all on the same
line. You can do this by using the .SX [Split Text] control word,
whose format is:

.sx Ileft-edge text/fRight-edge text/

which results in:

left-edge text Right-edge text

The slash (/) is used in the eXAmple above as a delimi ter to sepa
rate the control word's fields. SCRIPT /VS recognizes the fi rst
character after the blank (in this case, the slash) as the delim
iter character for the control word. If you want to use a slash as
part of the text, use some other character as a delimiter. For
example,

.sx ¢SCRIPT/VS User's Guide¢¢Control Words¢

is formatted as:

SCRIPT/VS User's Guide Control Words

The space between the parts of split text can be left blank. How
ever, you can specify a fill string or leader that can either be
centered or repeated as often as necessary to fill the space
between the two parts of the split text. 12 For example,

.sx Ileft si~e/*-/Right side/

results in:

left side

while specifying

.sx c /left side/middle/Right side/

results in:

left side middle Right side

If the left-side text of the output line does not fit on a single
line with the right-side text, SCRIPT/VS will, by default, trun
cate the portion of the left-side text that does not fit. To pre
vent this, specify the F parameter. This parameter causes
SCRIPT/VS to fold the portion of the left-side text that does not
fit on the current line onto the next line, along with the fill
character and the right-side text. This parameter can be partic-

12 A fill string or leader that is to be repeated can be up to
eight characters in length. If it is to be centered and not
repeated, it may be as long as the space remaining between the
left-side text and the right-side text.

46 Document Composition Facility: User's Guide

ularly useful when producing such things as a Table of Contents
for documents containing long headings.

UNDERLINING AND CAPITALIZING

Because underlining requires backspacing and overstriking charac
ters, the procedure can be particularly frustrating when you need
to create a line that contains an underlined word or words.
Instead of manually keying in the character/backspace/underline
sequence, you can use the .US [Underscore] control word to tell
SCRIPT/VS to underscore a word or phrase when it is printed.

For example,

.us Do not destroy this letter.

prints as: 13

Do not destroy this letter.

Because the .US [Underscore] control word does not cause a break,
you underscore a single word as:

This sentence contains a very
.us important
word for contemplation.

which results in:

This sentence contains a very
important word for
contemplation.

The .UP [Uppercase] and .UC [Underscore and Capitalize] control
words work in a similar manner. Instead of entering text to be
capitalized all in uppercase letters, you can tell SCRIPT/VS to
capitalize text for you. For example,

.up Chapter 10

results in:

CHAPTER 10

Use the .UC [Underscore and Capitalize] control word when you want
a line both underscored and capitalized. The line:

.uc preface

results in:

PREFACE

You can also affect a number of input lines with the .US [Under
score], .UP [Uppercase], and ~UC [Underscore and Capitalize] con
trol words. For example, to unde~score three input lines:

.us 3
Do not
destroy this letter
until
its expiration date,
which is 12 September 1982.

results in:

13 By defaul t, SCRIPT /VS draws an uninterrupted rule beneath
underscored text. The . un [Underscore Defini tion] control
word allows you to specify that blanks are not to be under
scored.

Chapter 3. Basic Text Processing 47

Do not destroy this letter until
its expiration date, which is 12
'September 1982.

You can use the ON and OFF parameters of these control words to
affect a group of text lines in a similar manner. Using the ON and
OFF parameters might require less updating than using a numeric
parameter when you add or delete lines to a group of underscored
lines. For example,

This is capitalized for
.up on
emphasis
.up off
and
.uc on
emotional
.uc off
impact.

results in:

This is capitalized for
EMPHASIS and EMOTIONAL impact.

USING FONTS WITH THE IBM 3800 PRINTING SUBSYSTEM

When formatting a document for the IBM 3800 Printing Subsystem,
you can take advantage of that printer's dynamic font storage and
use several different fonts in your document. Use the CHARS option
of the SCRIPT command to specify the fonts to use when formatting
the document.

SCRIPT/VS supports the fonts distributed by IBM with the IBM 3800
Printing Subsystem. However, most of the fonts distributed with
the IBM 3800 are uppercase only and therefore inappropriate for
text applications. (For more information about the IBM 3800
fonts, see the IBM 3800 Printing Subsystem Programmer's Guide.)

In addition to the IBM 3800 fonts, SCRIPT/VS provides sixteen com
plete upper- and lowercase fonts, which are listed and illus
trated in "Appendix D. Fonts Supplied with SCRIPT/VS" on page 377.
You can also create your own fonts to use with SCRIPT/VS as long
as the font's characteristics are listed in a font table. (See
"Appendix B. Device and Font Table Maintenance" on page 367 for
detai Is on how to add a new font's cha racteristi cs to a font
table.)

The IBM 3800 can contain up to four uppercase-only fonts, or two
complete upper- and lowercase fonts. To ensure proper output line
justification, you should not specify IBM 3800 fonts of different
pitches on a single line. However, each SCRIPT/VS font contains
special blanks that allow the SCRIPT/VS fonts to be freely inter
mixed without regard to pitch.

When SCRIPT/VS begins formatting a document for the IBM 3800, the
first font specified with the CHARS option of the SCRIPT command
becomes the current font. If CHARS is not specified, the default
font of the logical output device becomes the current font. Use
the .BF [Begin Font] control word at any time to change the cur
rent font to any of those specified with the CHARS option. For
example, in this manual

This is a
.bf GBl2
bold
.pf
word.

would produce the line:

This isa bold word.

48 Docu~ent Composition Facility: User's Guide

The .BF [Begin Font] control word saves the current font before
beginning a new font; the .PF [Previous Font] control word
restores the last font saved. Up to sixteen fonts can be saved.

To eliminate dependence in the file on specific font names, you
can use the SCRIPT/VS symbols &$CHARCn) instead of actual font
names. The previous example could be revised as:

This is a
.bf &$CHAR(2)
bold
.pf
word printed in the &$CHAR(2) font.

which prints as:

This is a bold word printed in the GBl2 font.

For more information on the &$CHAR system symbol, see ".BF [Begin
Font]" on page 227.

All SCRIPT/VS fonts contain three special blanks that are used for
justification: hexadecimal 11, 12, and 13 identify 10-, 12-, and
IS-pitch blanks, respectively. These special blanks allow
SCRIPT/VS to justify output lines and align columns regardless of
font and pi tch changes. Therefore, you should not use these
hexadecimal codes with the .TI [Translate Input] and .TR [Trans
late Character] control words. 14

SCRIPT/VS font capabilities include underscoring, capitalization,
and, on impact printers, overstriki ng. "Chapter 8. Addi tional
Formatting Features of SCRIPT /VS" on page 87 describes how to
define new fonts for these purposes.

FORCING A NEW PAGE

As SCRIPT/VS formats text, it keeps track of how many lines it has
filled on a page. When it reaches the bottom of the output page,
SCRIPT/VS performs a "page eject" and continues on a new output
page. SCRIPT/VS keeps track of the current page number as it is
processing.

You can force SCRIPT/VS to begin a new output page by using the
.PA [Page Eject] or the .CP [Conditional Page Eject] control word:

.pa

The .PA [Page Eject] control word causes a break. SCRIPT/VS prints
the output line being constructed, then leaves the remainder of
the current page blank. The .CP [Conditional Page Eject] control
word is described in "Chapter 8. Additional Formatting Features
of SCRIPT/VS" on page 87.

The .PA [Page Eject] control word also allows you to specify a
numeric parameter, to assign a page number to the new page. When
you specify a page number with the .PA [Page Eject] control word,
the page number counter is reset to the new number and continues
sequentially from that number.

For example, if you are creating a SCRIPT/VS file with a title
page and you want the second output page to be numbered "I". you
can enter:

Ti tIe page ...
. pa 1
This is page one

14 Hexadecimal 27 also is used internally by SCRIPT/VS and
therefore should not be translated with .TI or .TR.

Chapter 3. Basic Text Processing 49

to cause a page eject after the title page and number the follow
ing pages, beginning with 1.

For a method of suppressing the numbering of introductory pages,
see the discussion of the .PN [Page Numbering Mode] control word
in "Chapter 4. Defining a Page Layoutn on page 55.

starting an Odd Dr Even Page

You can force a new odd-numbered or even-numbered page when you
specify the ODn or EVEN parameter of the .PA [Page Eject] control
word. For example, if SCRIPT/VS is currently processing output
page 3 and the next control word it encounters is

.pa odd

it ejects the current page, prints any titles, heading, and foot
ing that might be in effect on the next page (page 4), ejects, and
prints the next output text on page 5.

This is convenient when some of your document's pages must begin
on even- or odd-numbered pages, such as the first page of a chap
ter, or the text that describes a figure on the facing page.

specifying Page Eject Mode

When you want your document to be printed only on even-numbered
pages (leaving the intervening odd-numbered pages blank) you can
specify

.pa even on

This process is called "page eject mode." To specify page eject
mode, you use the ON and OFF parameters of the .PA [Page Eject]
control word, along with its EVEN or ODD parameters. You can simi
larly specify odd-numbered page eject mode with

.pa odd on

You can end page eject mode by issuing:

• Another page eject mode control word. For example, if the
odd-page eject mode is in effect, you can change to even-page
ej ect mode wi th

. pa even on

• The OFF parameter. To turn off the odd-page eject mode, issue

.pa odd off

• Page renumbering. You can also cancel page eject mode by spec
ifying a page eject that resets the page number:

.pa 12

GUIDELINES FOR ENTERING TEXT AND CONTROL WORDS IN SCRIPT/VS

You may find the following tips useful when entering input for
SCRIPT/VS files.

Start All Input Lines In Column One

When you enter input into a SCRIPT/VS file, you should enter all
the input lines (text lines as well as control words) beginning in
column one. Occasionally, you may want to enter lines that begin
with blank characters or tabs. Remember that blanks and tabs at
the beginning of a line may cause breaks. When you want to manipu
late the margins for output lines, use control words instead of
blanks or tabs.

50 Document Composition Facility: User's Guide

Avoid a Text Period In Column One

~hen SCRIPT/VS processes an input line, data that follows a period
1n column 1 is treated as a control word. If what follows the
period is not a valid control word or macro, SCRIPT/VS issues an
error message. If a valid control word follows the period in col
umn I (even though you intended it to be text), SCRIPT/VS proc
esses it as a control word. In this case, the results might be
undesirable.

The .ll [literal] control word tells SCRIPT/VS that you want the
line interpreted as a text input line, even though it begins with
a period, leading blank, or leading tab. For example,

.ti ... 05

.li ... and so it goes .

. li 2
leading blank lines

... and leading tab lines
do not cause an implicit break
when preceded by the .ll
control word.

prints as:

... and so it goes. leading
blank lines and leading tab
lines do not cause an implicit
break when preceded by the .ll
control word.

You can specify parameters with the .ll [literal] control word. If
there are many lines that begin with a period, for example, you
can issue:

Study the following control words:
.li on
.DS,
.l I,
.PA, and
.IM .
. li off
This assignment is due on Monday.

which results in:

Study the following control
words: .DS, .ll, .PA, and .IM.
This assignment is due on
Monday.

Note: When literal mode is in effect, the ~ SCRIPT/VS control
word that is processed is .ll OFF. Other forms of the .ll control
word, as well as other SCRIPT/VS control words, are treated as
text.

Remember Which Control Words Cause Breaks

When you finish a block of text or a paragraph, you might want
SCRIPT/VS to print the text that has accumulated, so that the next
input line begins a new output line. You can use the .BR [Break]
control word to do this. However, many other control words cause
breaks as part of their normal function. In the sequence

text text text
.br
.in 5m

the . BR [Break] control word is unnecessary, since the . IN
[Indent] control word causes a break.

Many control words that provi de format functions do not cause
breaks. (A list of those that cause a break is provided in

Chapter 3. Basic Text Processing 51

Figure 25 on page 354.) The underscoring and capitalizing control
words are good examples:

This
.up sentence
.us has several control
.uc words in
.up it,
and its text is concatenated.

results in:

This SENTENCE has several
control WORDS IN IT, and its
text is concatenated.

THE CONTROL WORD SEPARATOR

You can enter more than one control word on a single input line.
You can also enter control words and text on the same input line.
To separate the control words, or the control words and text, use
a semicolon (i). The semicolon is called the control word separa
tor. Its effect is to allow SCRIPT/VS to separate an input line
into two or more processable input lines. For example,

.ski.ce on

is the same as the two lines:

.sk

.ce on

Grouping control words on a line is useful because you can quickly
see the sequence and context of one control word within the group~

Redefining the Control Word Separator

Each time a control word line is processed, SCRIPT/VS divides it
into two pieces: the part before the first control word separator,
and the remainder (which is saved for later processing). For exam
ple, the input line:

.dc cw !i.ce ;Centered;!.dc cw

is processed as follows:

Step

I)
2)
3)

Active Part

.dc cw !

.ce iCenteredi

.dc cw ;

Remainder

.ce iCenteredi!.dc cw

.dc cw ;

In the first step, the .DC [Define Character] CW control word is
separated from the remainder of the input line by the first semi
colon, which is the current control word separator. The first .DC
CW control word changes the control word separator to a question
mark (!). When the next line is divided into the active piece and
the remainder, the line is divided at the question mark. The
semicolon is now an ordinary character with no special meaning.

In the second step, the .CE [Center] control word is processed,
and the text niCentered;n is centered on the output page.

In the third step, the control word separator is restored to its
usual value. Semicolons that are part of a control word line now
have the intended effect.

You must be careful when you use semicolons on text lines that are
processed as control word lines. For example, the line

.us Be careful; semicolons end control word lines.

52 Document Composition Facility: User's Guide

results, on output, in:

Be careful
semicolons end control word lines.

Notice that the second line caused a break because it begins with
a leading blank.

To avoid this problem, use the control word modifier to suppress
control word separator scanning for a single input line. For exam
ple, specifying

.'us Be careful; semicolons end control word lines

results in:

Be careful; semicolons end control word lines ...

In this case, the semicolon after "careful" is not a control word
separator. The single quotation mark between the period and the
two letter control word name causes all control word separator
scanning to be suppressed for the rest of the input line.

Another way to avoid this problem is to use the . DC [Define Char
acter] CW control word to indicate a character other than a semi
colon as the separator for separating control words. When you
specify .DC CW OFF, SCRIPT/VS does not recognize any character as
a control word separator character. For example, you can enter the
line above as follows:

.dc cw off

.us Be careful; semicolons end control word lines .

. dc cw

The ".DC CW" line restores the initial control word separator.

The .DC [Define Character] CW control word is also useful when you
define symbols. For details on symbol definition, see "Chapter
12. Symbols in Your Document" on page 129. The example above shows
how to use it to solve a text input problem.

COMMENTS IN SCRIPT/VS DOCUMENTS

In addition to text and control words, SCRIPT/VS files can contain
comments. Comments are useful for:

• Accounting notes: You can include comments that give your
name and location, the date and reason you created a fi Ie, and
a date when the file can be erased.

• Documenting formats: If you use a special format in a
SCRIPT/VS file that may be accessed by other people, you can
leave notes within the file explaining how to access it.

• Placeholders: If a file is only partially complete, you may
want to insert comments at places where information should be
added later.

To place comments in a SCRIPT/VS file, use the .CM [Comment] con
trol word. SCRIPT/VS treats the .CM control word the same as any
other control word. However, when it scans the input line that
contains this control word, it will ignore the text of the
comment. This means that any other control words that exist on the
same input line as the .CM control word but are separated from the
comment text by a control word separator will still be processed.
The comments themselves will not be included in the final format
ted output. For example, if you speci fied

.cm Created:

.cm Updated:
11/3/78
6/25/79 ; .im doc3

These two comments will only appear in your input file; they will
not appear in the final output. SCRIPT/VS will recognize the con-

Chapter 3. Basic Text Processing 53

trol word separator (j) and will process the .IM control word that
imbeds file DOC3.

If you do not want SCRIPT/VS to scan your comment lines for con
trol word separators, enter them using .* instead of the .CM con
trol word. The .* function, even though it begins with a period,
is not considered a control word. Therefore, SCRIPT/VS ignores
any input line that begins with .* including any other control
words or control word separators that exist on that line. For
example, specifying

.* SCRIPT/VS ignores this line j.im doc3

causes SCRIPT/VS to ignore this entire input line. Therefore,
file DOC3 will never be imbedded.

54 Document Composition Facility: User's Guide

CHAPTER 4. DEFINING A PAGE LAYOUT

The previous chapter showed you how to format your text to provide
paragraphs, indention, formatting, and page ejects.

This chapter describes the SCRIPT/VS control words you can use to
establish the page layout within which the text resides. It
covers:

• Page Dimensions: The length and width, and the amount of space
reserved for top and bottom margins.

• Running Top Titles: Descriptive information that is printed
within the top margin, above the heading.

• Running Headings: Descriptive information that precedes the
body of text on each page, printed below the top title.

• Running Footings: Descriptive information that follows the
body of text on each page, printed after footnotes, if any,
and above the bottom ti tIe.

• Running Bottom Titles: Descriptive information that is
printed within the bottom margin, below the footing.

• Page numbering: SCRIPT/VS can automatically insert the cur
rent page number and its prefix, if any, on each page as it is
formatted for printing.

Figure 8 on page 56 shows the layout of a SCRIPT/VS output page.
Control words used to specify the size or contents of each area
are shown in parentheses.

BASIC PAGE DIMENSIONS

The output pages that SCRIPT/VS formats are designed to fit the
form size of the logical output device (for details, refer to "DE
VICE: Specify a logical Output Device" on page 21). The default
logical devices are defined for a form size of 8-1/2 by 11 inches.
When SCRIPT/VS formats output for logical devices that specify a
form size of 8-1/2 by 11 inches, each SCRIPT/VS page has the
default dimensions of:

• 11 inches long (66 lines at 6 lines per inch, 88 lines at 8
lines per inch, or 132 lines at 12 lines per inch). For
3800-type logical devices, the values are 60, 80, and 120
respectively, because one inch of the form is reserved by the
3800 Printer.

• 6 inches wide (60 characters at 10 pitch, 72 characters at 12
pi tch, and 90 characters at 15 pi tch) .

Although the initial page length and line length values are based
on the logical output device, you can change these values within
your document by using the .Pl [Page Length] and .ll [Line Length]
control words.

In addition (if not otherwise specified), SCRIPT/VS provides
space for top and bottom margins which is included in the page
length. The amount of space is based on the logical output device
type. Based on the logical output device, the maximum number of
text lines on a page is the number of lines per page less the num
ber of lines for top and bottom margins. The .TM [Top Margin] and
.BM [Bottom Margin] control words are used to respecify the top
and bottom margin size.

Chapter 4. Defining a Page layout 55

0
>

0
Top
Margin 0
(. TM)

0

0

0

0

0

0

0
P
a 0
g
e 0 B

Body I
l of 0 N
e the D
n Page 0 I
g N
t 0 G
h

0

0

0

0

0

0

0
Bottom
Margin 0
(.BM)

0
>

0

<----------line length (.ll)------------> o

o

Heading Space (. HS/. RT) o

Heading Margin (.HM) o

o
Running Heading (. RH)

o

o
Top Page Float (.Fl)

o

o

· o
< Column Width (.Cl) >

o

· <--Indent 0
· . Right-· -. >
....... (.IR) 0

<-Indent->
(. IN)

Bottom Column
Float (.Fl)

G
U
T
T
E
R

Footnotes

<--Column Width-->
. (. Cl)

(. FN)

Running Footing (. RF)

Footing Margin (. FM)

Footing Space (.FS/.RT)

o

o

o

o

o

o

o

o

o

o

o

o

Figure 8. SCRIPT/VS Terms for Parts of the Page: Note that Top Margin and
Bottom Margin include all the space on the paper that is accessible
to SCRIPT/VS. For terminals and 1403-type printers, this includes
the entire page. For 3800-type devices, Top and Bottom Margin do
not include 1/2 inch on each side of the interpage perforation.
This space is reserved by the 3800 Printer for accelerating and
decelerating the paper when it is necessary to halt the paper.

By changing the values of these control words, you can adjust the
dimensions of an output page. Three immediate considerations are:

• The physical size of the paper on which you are printing
SCRIPT/VS output.

• The number of lines printed or typed per page on the output
device.

• The 3800 Printer reserves one-half inch at the top and bottom
of the page that is not included as part of the page length.

56 Document Composition Facility: User's Guide

Page length includes all of the page that is accessible to
SCRIPT/VS. For non-3800 devices, this is the entire form (the ver
tical distance between perforations for continuous forms). The
3800 Printer reserves 1/2 inch above and below the perforation,
and makes it inaccessible for printing. Consequently, for 3800
logical devices, page length does not include 1/2 inch at the top
and bottom of the page.

Changing the Page Margin

The .PM [Page Margins] control word causes SCRIPT/VS to shift the
formatted output of each page to the right. You can use this con
trol word to change the margins that were established using the
BIND option of the SCRIPT command. 15 For example, specifying

.pm 6

sets the page margin to six character spaces, whereas specifying

.pm .5i

sets the page margin to one-half inch.

The current page margin can be increased or decreased by preceding
the amount with a plus or a minus sign. For example, specifying

.pm +9mm

increases the page margin by 9 millimeters.

If only one value is specified with the .PM [Page Margins] control
word, it will be used for both odd- and even-numbered pages. You
can set di fferent margins for odd- and even-numbered pages by
specifying two values; the first value will be used for
odd-numbered pages and the second one will be used for
even-numbered pages. For example, specifying

.pm 6p 9p

causes the formatted output to be shifted 6 picas to the right for
odd-numbered pages and 9 picas to the right for even-numbered
pages.

If you specify the .PM [Page Margins] control word with no parame
ters, the value that was speci fied in the BIND option on the
SCRIPT command will be used.

Changing the Page Length

Page length can be changed using the .Pl [Page length] control
word. If you change the page length, the top and bottom margins do
not change automatically.

Usually, you do not set the page length and line length for a doc
ument unless deviating from the values set for the logical device.
Once set, the page length and line length values remain in effect
until you explicitly reset them. You can put page layout control
words into the profile. Whenever you format the document using
that profile, the page layout appropriate for that document is
used.

You may need to adjust a page dimension to handle a special situ
ation in your document. Instead of recalculating the margin val
ues, you can increase or decrease the amount of space reserved for
margins. For example, if you want to reduce the number of text
lines per page from 68 to 65, you can increase the amount of space
for the top margin by specifying

15 If the BIND option is not specified, the margin default is two
character spaces.

Chapter 4. Defining a Page layout 57

.tm +3

To restore the original margin, use the control word

.tm -3

If you specify the .TM [Top Margin] control word with no
parameter, the top margin is set to the default established for
the logical output device.

Changing the Line Length

When you are changing the default dimensions of SCRIPT/VS output,
you should consider the width of pages as well as the length. The
SCRIPT/VS default is based on the logical output device, speci
fied with the DEVICE option of the SCRIPT command. You can use the
.ll [line length] control word to set the page width. The page
width controls the right-hand margin of your output. For example,
if you want a width of 8 inches, speci fy

.11 8i

The .ll [line length] control word controls the width of the top
and bottom titles, running headings and footings, and footnotes.
Column width, controlled by the .Cl [Column Width] control word,
defaults to the .ll value, and controls the width of each output
text column. The starting position of the rightmost column plus
the column width is the effective width of the page body. This can
exceed the .ll value.

As with the .Pl [Page length], .BM [Bottom Margin], and .TM [Top
Margin] control words, you can increase and decrease the value of
the line length. For example, specifying

.11 -2i

decreases the line length by 2 inches.

If you specify the .ll [line length] control word with no parame
ter, the line length is set to the default established for the
logical output device.

When SCRIPT/VS is concatenating text, the column width (not the
line length) limits the number of characters that can fit on an
output line in that column.

If SCRIPT/VS is not concatenating text (.FO [Format Mode] OFF),
lines that are longer than the column width print as they appear
in the input file. They can extend into the right margin unless
the FOLD or TRUNC parameters of the .FO [Format Mode] control word
are specified. (The EXTEND parameter of the .FO [Format Model con
trol word is the defaul t.)

RUNNING HEADINGS AND FOOTINGS

The .RH [Running Heading] and .RF [Running Footing] control words
provide a flexible mechanism for placing information at the top
and bottom of each page. Running headings and footings appear
inside of, and flush with, the body of the page. Running headings
and footings can contain both text and control words, enabling you
to format the information to fit your needs. For example, to cen
ter text at the top of each page, you can speci fy

.rh on

.ce Internal Use Only

.sp 2

.rh off

You can also emphasize the security classification of your docu
ment by specifying: 16

58 Document Composition Facility: User's Guide

.rh on

.bf GB12

.ce Confidential

.sp 2

.rh off

which places the running heading in a bold font.

Separate running headings and footings can be defined for odd- and
even-numbered pages. For example, specifying

.rf even

.sp 2

.sx c /Page &/Introduction//

.rf off

.rf odd

.sp 2

.sx c //Introduction/Page &/

.rf off

centers the title "Introduction" at the bottom of each page and
places the page number in the lower left corner on even-numbered
pages and in the lower right corner on odd-numbered pages. The
page number symbol, by default the ampersand (&), is replaced by
the current page number whenever it appears in a running heading
or footing definition. The .DC [Define Character] PS control word
may be used to change the page number symbol.

Because running heading and footing definitions can contain both
text and control words, sophisticated headings and footings can
be created to fill special requirements. For example, 17

.rh on

.bx 1 &$ll

.fo center

.bf GB12
Expiration Date:
.pf
.us 12 September 1982
.bx off
.sp 2
.rh off

will result in the following running heading being placed at the
top of each page:

Expiration Date: 12 September 1982

Running headings and footings appear in the body of a page flush
with the text. Ordinarily, some space is included at the end of a
running heading and at the beginning of a running footing to sepa
rate the heading or footing from the body text. There may be
times, however, when you want to merge a running heading or foot
ing with the body text. For example, the heading of a mu1tipage
table might be defined as

16 It is not necessary to restore the previous font after the .RH
[Running Heading] defini tion because the active formatting
environment is automatically saved when a running heading or
footing definition is formatted and restored afterward. See
"Chapter 9. The SCRIPT/VS Formatting Environment" on page 109
for details.

17 The .BX [Box] control word is described (n detail under "Draw
ing Boxes" on page 101.

Chapter 4. Defining a Page layout 59

·rh on
.bx 1 &$ll
.ce Parts list
.tb 3 26 53
.bx 1 14 50 &$ll
&$TAB.Part No. &$TAB.Description &$TAB.Quantity
.bx
.sp
.bx can
.rh off

which would produce this heading:

Parts list

Part No. Description Quantity

The vertical rules of this heading can be made to line up and
merge with the vertical rules in the body text on each page.

Running heading and footing defini tions must be redefined in
their entirety when changed. If a running heading or running foot
ing is no longer needed, it can be completely removed by specify
ing

.rf cancel

If there is an occasion where you do not want to remove a running
heading or footing, but you do not want it to be placed on a par
ticular page or series of pages, you can temporarily suppress it
by specifying

.rh sup

Then, when you are ready to restore it, all you have to specify is

.rh res

This automatically restores the running heading without having to
redefine it.

Running headings and footings are processed in two distinct and
separate phases:

• Definition phase, where the running heading or running foot
ing definition is processed, symbol substitution (except page
number symbol substitution) is performed, and some control
words are executed. ls All control words that are not executed
and all text lines are saved in input form until SCRIPT/VS
performs the formatting phase.

• Formatting phase, where the data saved during the definition
phase is reprocessed: all remaining control words are exe
cuted, page number symbol substitution is performed, and all
of the text lines are formatted. SCRIPT/VS saves the active
environment before this processing begins and then restores
it when this processing has been completed.

For example, if your document contains the running footing defi
nition:

.rf on

.sp 2

.of 3

.sx f /&title.//Page &/

.rf off

18 The control words that are executed during the defini tion
phase are listed in Figure 28 on page 355.

60 Document Composition Facility: User's Guide

the value of the symbol &title will be substituted during the
definition phase;19 the saved .SX [Split Text] control word will
contain no symbols other than the page number symbol and the run
ning footing will be the same on all pages. However, if the symbol
&title is changed periodically throughout your document, such as
on chapter boundaries, you may want to define the running footing
as:

.su off

.rf on

.sp 2

.of 3

.ec .su .sx f /&title.//Page &/

.rf off

.su on

In this definition, the .SU [Substitute Symbol] OFF control word
is immediately executed during the definition phase, causing the
symbol &title to be saved as part of the data to be processed dur
ing the formatting phase. 20 You may change the value of the symbol
&title, and thus the running footing, without having to constant
ly redefine the running footing.

Since the formatting phase is normally performed with substi'"
tution off, you must include the .SU control word as part of the
definition to explicitly perform symbol substitution during the
formatting phase. To prevent this control word from being exe
cuted during the definition phase, you must "execute" it with the
.EC [Execute Control] control word, which delays the execution of
this control word until the formatting phase is performed.

TOP AND BOTTOM RUNNING TITLES

In addition to running headings and footings, you can use the .RT
[Running Title] control word to specify running titles. 21 Run
ning titles can include such things as page numbers, chapter or
section headings, document titles, or form numbers.

Running top titles appear in the heading space (part of the top
margin); running bottom titles appear in the footing space (part
of the bottom margin). Each title consists of three parts, sepa
rated by arbitrary delimiters: 22

•
•
•

19

20

21

22

.rt top /left part/center part/right part/

The left part is flush left (aligned with the left margin).

The center part is centered between margins.

The right part is flush right (aligned with the right margin
of the page).

The page number symbol will not, however, be substituted.
Page number substitution is performed during the formatting
phase.

Substi tution must be explici tly turned on again after the
running footing definition; the active formatting environment
is saved and restored around the formatting phase, not the
definition phase.

Unless you speci fy otherwise, SCRIPT /VS provides a defaul t
top title that prints the page number in the upper right cor
ner of the output page.

The delimi ter can be any character that does not appear in the
title. SCRIPT/VS assumes that the first nonblank, nonnumeric
character that follows "bottom", "top", "even", or "odd" is
the delimiter.

Chapter 4. Defining a Page layout 61

For example, to center the words "First Draft" at the top of each
page, speci fy

.rt top //First Draft//

SCRIPT/VS replaces the page number symbol, which by default is an
ampersand (&), wi th the current page number whenever it appears in
a running title. To include the page number in the upper righthand
corner of each page, speci fy

.rt top //First Draft/Page &/

When the character ampersand (&) appears as part of the ti tIe, the
.DC [Define Character] control word can be used to designate
another character as the page number symbol. For example, if

.dc ps ¢

.rt bottom /Reference & User's Guide//Page ¢/

is specified, SCRIPT/VS will automatically place the page number
where the "¢" appears in the title.

You can specify different titles on odd- and even-numbered pages
by using the ODD and EVEN parameters of the .RT [Running Title]
control word. For example, specifying

.rt odd bottom //-&-/First Draft/

.rt even bottom /Window Operator's Manual/-&-//

results in the words "First Draft" appearing on the lower right of
each odd-numbered output page and the words "Window Operator IS

Manual" appearing on the lower left of each even-numbered output
page.

You can specify up to twelve running title lines at one time; six
lines of titles for even-numbered pages and six lines of titles
for odd-numbered pages.

The .RT [Running Title] control word allows you to specify the
order in which you want the lines printed. For top titles, you can
number the lines 1 through 6 as you want them to appear at the top
of the page. For example, specifying

.rt top 1 //Top title line 1//

.rt top 2 //Top title line 2//

.rt top 6 //Top title line 6//

results in top titles being saved for the top margin as follows:

Top title line 1
Top title line 2

Top title line 6

For bottom titles, you number the lines 1 through 6 starting with
the last line of the title. Thus specifying

.rt bottom 1 //Bottom title line 1//

.rt bottom 2 //Bottom title line 2//

.rt bottom 6 //Bottom title line 6//

results in the following bottom titles being saved:

Bottom title line 6

Bottom title line 2
Bottom title line 1

Note: All running titles are printed in the initial font.

62 Document Composition Facility: User's Guide

Allocating Space for Running Titles

The default top and bottom margins, listed in Figure 31 on page
357, are defined to allow one line each for running top and bottom
titles (heading and footing space), and two blank lines between
the running titles and the body of the page (heading and footing
margin). Therefore, when you want to use multiline titles, you
must be sure to allocate enough space for them.

Use the the .HS [Heading Space] and .FS [Footing Space] control
words to speci fy how much addi tional space you want for the
titles. However, when specifying space for multiline titles, yo~
should note that:

• The heading margin plus the heading space cannot exceed the
amount of vertical space speci fied for the top margin.

• The footing margin plus the footing space cannot exceed the
amount of vertical space specified for the bottom margin.

• You can specify from 1 to 6 lines for both the footing space
and the heading space, but you can have no more than 6 unique
title lines.

For example, if you speci fy the following top and heading margins,

.tm 8

.hm 4

your heading space can not be greater than 4. If you specify

.hs 3

you have allocated three lines for your top title. The extra line
in the top margin will be left blank and will appear above the
first line of the title.

Note: If you specify six top title lines, and you specify heading
and footing spaces of six, all six title lines will be printed at
the top and the bottom of the page.

WHERE TO DEFINE HEADINGS, FOOTINGS, AND RUNNING TITLES

SCRIPT/VS formats running headings, running footings, and running
titles for each page before processing the body text for that
page. Therefore, when you redefine a running heading, footing, or
title, you should make sure that it is redefined before a control
word that causes a new page is encountered, since it will not take
effect until the next output page is processed. If it is necessary
for SCRIPT/VS to finish processing the current page before a run
ning heading, footing, or title is redefined, you can specify

. pa nostart

which prevents the next page from starting. You can then redefine
the running heading, footing, or title for the next page. The next
page will automatically be started when text for the body of that
page is formatted.

Ordinarily, running headings, footings, and titles do not appear
on the first page of a document. If you want them to, you must
issue their definitions before any text for the body of the first
page is formatted.

Chapter 4. Defining a Page layout 63

PAGE NUMBERS

The page number symbol is, by default, the ampersand (&), but can
be changed using the .DC [Define Characterl PS control word. The
page number symbol is replaced, wherever it appears in a running
heading, footing, or title, with the current page number of the
document being processed. SCRIPT/VS uses an internal page counter
to keep track of what the current page number should be. You can
use the .PA [Page Ejectl control word to reset this counter if you
need to. For example, specifying

.pa 17

sets the internal page counter to 17 regardless of how many pages
have been formatted. Subsequent pages will be incremented by one.

If you do not want page number substitution to occur, but you want
SCRIPT/VS to continue counting the pages internally, you can
specify

.pn off

If you do not want page number substi tution or internal page
counting to occur, you can specify

.pn offno

The OFF and OFFNO parameters of the . PN [Page Numbering Model con
trol word can then be reset by specifying

.pn on

The .PN control word further allows you to specify the form that
the current page number takes when it appears in a table of con
tents, index, or running heading, footing, or title. The numbers
can be arabic (which is the default), roman numerals, decimals, or
alphabetics.

Roman Numeral Page Numbers

When you want page numbers to be printed in lowercase roman numer
als, you can specify

.pn roman

The ROMAN operand is useful for printing prefaces, forewords,
front matter, and similar pages that might be numbered with roman
numerals. To restore arabic numbering, you can specify

. pn arabic

Decimal Page Numbers

You can speci fy that you want decimal-point page numbering to
begin after the next even-numbered page:

.pn frac

If this control word is encountered while SCRIPT/VS is processing
page 46, then subsequent pages are numbered 46.1, 46.2, 46.3, and
so on.

You can end decimal-point page numbering and resume normal page
numbering when you specify

.pn norm

SCRIPT/VS ejects the page and numbers the next page 47.

64 Document Composition Facility: User's Guide

Alphabetic page Numbers

When you want page numbers to be printed as lowercase alphabetic
characters, such as page a, page b, page CI and so onl you can
specify

.pn alpha

To restore arabic page numbering, you speci fy

. pn arabic

Prefixes for Page Numbers

large documents often use a compound page numbering scheme to
facili tate the frequent replacement or addi tion of chapters or
sections. You can use the PREF parameter of the .PN [Page Number
ing Model control word to obtain this effect. For examplel if you
specify

.pn 1

.pn pref 1-

for the first chapter of a document, then its pages will be num
bered 1-1 1 1-2 1 1-3 1 ••• If you then specify

.pn 1

.pn pref 2-

for the second chapterl its pages will be numbered 2-1 1 2-2, 2-3,
and so on.

Chapter 4. Defining a Page layout 65

CHAPTER S. MULTICOLUMN PAGE LAYOUT

With SCRIPT/VS, you can produce single-column or multiple-column
output pages, or a mixture of both.

DEFINING MULTICOLUMN LAYOUT

o
I

SCRIPT/VS can format your output page with up to nine columns of
text. To define a multicolumn layout, you should decide how many
columns you want, the width of each column, and the desired hori
zontal position on the page for the left margin of each column.

The space between columns (the gutter) is determined by the
relationship of the column width to the column positions. Usually
the column width will be a value that is less than the difference
between the left margin positions of adjacent columns, ensuring
that some space will be present between columns.

Once you have decided the dimensions and posi tions of your
columns, the column definition can be specified using the follow
ing SCRIPT/VS control words:

• .CD [Column Definition], which provides for

Specifying the number ~f columns

Specifying the left margin position for each column

• .Cl [Column Width] which provides for

Specifying the column width for all columns

To define a multicolumn layout for three columns that have widths
of 18M, and have left margins at the page's left margin, at 24M,
and at 52M respectively, the following control words would be
used:

.cl 18m

.cd 3 0 24m 52m

and would produce this effect:

18m
I

24m
I

42m
I

52m
I

70m
I

v v v v v v
As you can see,
the column defi
nition has changed
and we are now
formatting with
three columns. The
first column's
left margin is at
the left margin of
the page (position
0). The second
column's left mar
gin is at position
24M. Column one's
ri ght ma rgi n (po
si tion + column

<-6m->

width) is 18M. The
space between col
umn one and column
two is 6M (24M -
18M). Column two's
right margin is
42M (24M + 18M).
The third column's
left margin is at
position 52M. The
space between col
umn two and column
three is 10M (52M

42M). As can be
seen, the space
between columns

<-10m-->

two and three is
greater than that
between columns
one and two. All
columns have the
same width. It is
not necessarily
desirable to vary
the gutter space
but this does
illustrate the
flexibility of the
.CD [Column Defi
nition] and .Cl
[Column Width]
control words.

The preceding example shows one mul ticolumn layout. There are
many possible variations.

Chapter 5. Multicolumn Page layout 67

The .ll [line length] control word is used to specify the line
length for running headings and footings, top and bottom titles,
page floats, and footnotes. Normally this value is set equal to
the right margin of the rightmost column to align all the compo
nents of the page. In the preceding example you would specify:

.11 70m

The following control words specify text that is formatted using
line length (.ll) instead of the column width (.Cl):

• .RH [Running Heading]

• .RF [Running Footing]

• .RT [Running Title]

• .Fl [Float] PAGE

• .FN [Footnote]

Notes:

• The .CD [Column Definition] and .Cl [Column Width] control
words take effect immediately on the next output line.

• "Appendix E. Formatting Considerations for the 3800 Printer"
on page 385 contains additional considerations regarding the
definition of multicolumn layout for the 3800 Printer.

• Columns may be specified in any order, and the gutter space
(the space between columns) may vary, but if text from any
column extends into the next column, the text in all subse
quent columns will be displaced to the right.

Page Sections and Section Breaks

A page is divided into "sections" that may be thought of as inde
pendent components. These sections are:

Top Title

Running Heading

Top Page Float

Body Text

Bottom Page Float

Footnotes

Running Footing

Bottom Title

Once a page section is completely formatted and its columns bal
anced, it cannot be changed. This is called a "section break."
When all page sections are complete, the page is written to the
output destination.

See Figure 8 on page 56 for a pictorial representation of the
page and its component parts.

The "column depth" for each column on the page is equal to the
page length minus the space reserved for the top and bottom mar
gins, running headings and footings, and footnotes, if any. See
"Chapter 4. Defining a Page layout" on page 55 for details on
these component space values.

68 Document Composition Facility: User's Guide

Column Positions

When formatting a page, completed output lines are placed in the
current column until it is full. The lines formatted for the cur
rent column are saved and a new column is begun. This is called a
"column eject."

If all columns on the page are full, a new page is begun. This is
called a "page eject."

A section break occurs when:

• All columns on the page are full

• A page eject is requested by:

.PA [Page Eject]

.CP [Conditional Page Eject]

.CB [Column Begin] in the last column

.CC [Conditional Column Begin] in the last column

• The column definition is changed by:

.CD [Column Definition]

• The column mode is changed by:

.MC [Multicolumn Model

.SC [Single Column Mode]

• A full page skip or space is requested by:

.SK [Skip] with the "P" parameter

.SP [Space] with the UP" parameter

When a section break occurs, the lines that have been formatted
for this section are redistributed as equally as possible among
the defined columns. This is called "column balancing." This
process is not performed if there is only one column, or if column
balancing has been disabled by the .Be [Balance Columns] control
word.

If the column definition is changed in the middle of the page, all
lines formatted to that point are processed and sent to the output
destination. A new output section is started using the new column
definition. The depth of the new columns is equal to the space
remaining on the page above the running footing and bottom margin.

Column positions remain in effect until explicitly changed by a
.CD [Column Definition] control word. F~r example, you can define
a multicolumn layout and then format using one or more columns
without changing the column positions.

Chapte S.MulticolumnPage Layout 69

This first section
was produced by
specifyin~

.cd 1 0 22m 44m

.cl 18m

to format using
only the first
column. Notice
that the second
and third columns
are empty, even
though their posi
tions have been
defined.

'This second sec
ti on was produced
by speci fying

.cd 2

to format usi ng
the first two col
umns. The original

This third section
was produced by
specifying

.ed 3

to format using
all three columns.
As ca n be seen

Column Width

column width is
used for all col
umns. Notice that
the formatted
lines are distrib
uted between
columns one and
two.

from this example,
the number of col
umns may be varied
without changing
the column posi
tion values.
Notice that the
formatted lines

are distributed
among all three
columns. If the
lines cannot be
equally divided,
some columns may
be longer than
others.

Column width remains in effect until explicitly changed by a .Cl
[Column Width] control word. The formatter attempts to build each
output line to fill the column width by concatenating short input
lines or folding long input lines. A partially full output line is
padded to full width by justification. line concatenation and
justification are controlled by the .FO [Format Mode], .CE [Cen
ter], and .RI [Right Adjust] control words. For details, see
"Chapter 23. SCRIPT/VS Control Word Descriptions" on page 219.

If an input line contains a word that is longer than column width,
the portion of the word that overflows the column is processed
according to the TRUNC, FOLD, or EXTEND option of the .FO [Format
Model control word. likewise, if concatenation is off, and the
input line is longer than column width, the excess portion of the
line is processed based on that specification.

If there is more than one column, and the document is being for
matted for the 3800 Printer, excess characters in column one will
cause dislocations in all subsequent columns on an extended line.
For this reason, the EXTEND option is not recommended when format
ting multicolumn output for the 3800 Printer.

Column width is normally changed along with column positions to
maximize use of the space on the page when the number of columns

70 Document Composition Facility: User's Guide

changes. Normally the column width value would be set to line
length minus all gutter space, divided by the number of columns.

With a line length of 68M, and a
gutter of 4m, two columns would
be defined as:

max1m1ze the use of the space on
the page. As can be seen, there
is little wasted. This example is
meant to show typical usage. Nor
mally columns will be laid out to
be as dense as possible for eco
nomic page use. Readabi Ii ty is
also a factor in column defi
nition.

.cd 2 0 36m

.cl 32m

This two-column data is format
ted with a column width of 32M to

Wi th the same line
length and gutter
size, three columns
would be defined as:

wi th a col umn wi dth
of 20M to maximize
the use of the space
on the page. As can
be seen, there is
little wasted. This
example is meant to
show typical usage.
Normally columns
will be laid out to

be as dense as pos
sible for economic
page use. Readabil
ity is also a factor
in column
defini tion. In this
three-column example
the columns are a
1 itt 1 e na r r ow .

.cd 3 0 24m 48m

.cl 20m

This
data

three-column
is formatted

starting a New Column

The following SCRIPT/VS control words may be used to end a column
before it is full:

• .CB [Column Begin] ends the column unconditionally.

• .CC [Conditional Column Begin] ends the column based on the
space remaining in the column.

• .CP [Conditional Page Eject] ends the column and causes a page
eject based on the space remaining in the column.

Use the .BC [Balance Columns] control word to enable or disable
column balancing. If column balancing is OFF, no columns are bal
anced. If column balancing is ON, each set of columns is balanced
whenever a section break occurs.

Blocks of text, such as figures or tables, can be kept together
and balanced as a unit. Text lines in a block will not be split
across columns. See "Chapter 8. Additional Formatting Fe~tures of
SCRIPT/VS" on page 87 for details on use of the .KP [Keep] control
word.

If the current column is forced to end before it is full, the new
column is ineligible for column balancing.

Chapter 5. Multicolumn Page Layout 71

SUSPENDING AND RESUMING MULTICOLUMN PROCESSING

The .SC [Single Column Mode] control word

• Saves the current column definition

Column width

Number of columns

Column positions

• Defines a single column with a column width equal to line
length.

The .MC [Multicolumn Mode] control word

• Restores the last-saved column definition

The .SC [Single Column Model and .MC [Multicolumn Model control
words are always paired; you must specify the .SC control word
before you specify the .MC control word.

72 Document Composition Facility: User's Guide

CHAPTER 6. HEAD LEVELS AND TABLE OF CONTENTS

SCRIPT/VS provides an automatic table of contents facility which
is based on the concept of "head levels." When you create a
SCRIPT /VS fi Ie,. you can enter topic headings Z3 to designate
changes in content" or to create titles.

The format of a topic heading indicates its relationship to the
other topic headings in the document. In SCRIPT /VS" di fferent
levels of headings can be entered with the control words .HO" .HI,.
.H2" .H3,. .H4" .HS and .H6 z4 . When SCRIPT/VS processes a .HO - .H6
[Head Level 0 - 61 control word:

• The text portion of the heading is formatted according to
characteristics associated with the head level. The format
ting may include such things as spacing above and below the
heading" capitalization" underscoring" and font.

• I f the headi ng requi res a tabl e of contents entry" the
heading's text and current page number are saved in a tempo
rary file called DSMUTTOC.

For example" if you enter a topic heading as

.h3 Symptoms

SCRIPT/VS uses the characteristics for a level-three heading to
format the heading's text on the page. SCRIPT/VS also creates an
entry in the table of contents file for the topic "Symptoms" and
the page number on which it appears. All the headings entered with
the .H3 control word are formatted in the same way.

If you use SCRIPT/VS head-level control words exclusively" you
need not create a table of contents manually. When you revise or
reorganize your document, the table of contents is automatically
updated.

CHARACTERISTICS OF HEAD LEVELS

Head levels are commonly associated with the following sections
of a document:

.HO Table of Contents entry only

.HI Chapter

.H2 Major section

.H3 Minor section

.H4 Topic

.H5 Inline heading

.H6 Inline heading

The .DH [Define Head Levell control word allows you to redefine
the cha racteristi cs of any head I evel to sui t your needs. The
characteristics are:

•

•
•

Z3

Z4

Whether the heading in the text should begin on a new page or
cause a break.

Whether the heading should be placed in a separate section.

Whether the heading should be numbered with a decimal number
associated with the head level.

The word "heading" is used in this section to mean a topic
heading that is printed as part of the text.

GML and EasySCRIPT provide tags with si~ilar names and func
tions. This discussion is concerned only with the SCRIPT/VS
control words.

Chapter 6. Head Levels and Table of Contents 73

1

·HO .Hl .H2 .H3 .H4 .H5

Page eject before heading yes

Section breaks around heading yes

Heading out-justified 1 yes

line skips before heading 0 0 3 3 3 I

line spaces after heading 0 5 2 2 2 0

Heading underscored yes yes yes yes

Heading capitalized yes yes yes yes

Heading will cause a break yes yes yes yes

Table of Contents entry yes yes yes yes

Table of Contents entry only yes

Skip before T.O.C. entry yes

Table of Contents indention 0 0 0 2 4 6

The heading will be right-justified on the page if the page number is
odd.

.H6

I

0

yes

8

Figure 9. Summary of Default Head level Characteristics: This table lists
the defaul1: characteristics of the .Hn [Head level nl control
words. The .DH [Define Head levell control word allows you to rede
fine any of these characteristics to suit your needs. Note that, by
default, all headings and table of contents entries are printed in
the current font.

• Whether the heading should be right-aligned if it occurs on an
odd page.

• Whether the heading should be capitalized or underscored, and
the font it is to be printed in.

• The amount of vertical space which precedes and follows the
heading.

• Whether or not a table of contents entry is to be created. If
so, other characteristics for the table of contents entry
which can be speci fied are:

The indention of the entry in the table of contents

The font to be used for the entry in the table of contents

Whether the entry is to be preceded by a skip in the table
of contents

Whether to right-align the page number associated with
the entry, separated from the text by a "dot-leader"

Whether only a table of contents entry should be created,
placing no heading at all in the text

Figure 9 lists the default characteristics of the .HO - .H6 [Head
level 0 - 61 control words.

Spacing and Page Ejects

Headings are printed in the current column when there is enough
room for the heading and at least two lines of text that follow it

74 Document Composition Facility: User's Guide

in the body of the document. If there is not enough room, the
heading is placed at the top of the next column.

The line spaces that follow topic headings are conditional. If the
heading is followed by more vertical space (whether caused by the
.SP [Space] or .SK [Skip] control words, or another head level),
only the larger of the two spaces is used, not the sum. If the
heading causes a section break, then both spaces will be used.

Head levels that are defined to begin new pages cause page ejects
only if SCRIPT/VS is not already at the top of a page. This can be
useful:

• To assign a page number to the output page with a .PA [Page
Eject] control word.

• To eject to a new even- or odd-numbered page with the .PA EVEN
or .PA ODD control words.

Defining Head Levels

The .DH [Define Head Level] control word allows you to redefine
the characteristics of any head level. The . DH control word
accepts parameters that describe head level characteristics, such
as SPAF (SPace AFter) to set the amount of vertical space to fol
low the heading, and TC to indicate that a table of contents entry
is to be generated. For example,

.dh 3 skbf 1 us

will redefine the .H3 head level to provide only one line of space
before the heading, and to underscore the heading. The .DH control
word is described in ".DH [Define Head Level]" on page 247.

You can also redefine a .HO - .H6 [Head Level 0 - 6] control word
using macros to provide an entirely di fferent function for an
existing head level. 25 Use the .DM [Define Macro] control word to
define a macro with the name of the head level control word.

THE TABLE OF CONTENTS

When SCRIPT/VS processes a head-level control word that requires
a table of contents entry, it wri tes an entry in the DSMUTTOC
file. ~he entry contains the following information:

• A fixed-length field containing information about the font,
indention, current revision code, and so forth, to be used for
formatting this table of contents entry.

• The text of the heading.

• The page number of the page on whi ch the heading appears.

All entries in the table of contents file are inserted into
DSMUTTOC by .PT [Put Table of Conte~ts] control words.

The automatic underscoring and capitalization provided for topic
headings do not apply to the associated table of contents entry.

25 SCRIPT/VS Release 2 does not use macros to process the .HO -
.H6 [Head Level 0 - 6] control words. SCRIPT/VS Release 1 cre
ated macros named DSMSTDHO through DSMSTDH6 to process the
. HO through . H6 control words, and macros named DSMEZSHO
through DSMEZSH6 to process the EasySCRI PT head 1 evels. If
you require these macros, you can write a .DH macro that will
produce macros for all the head-level control words in the
same way that they were implemented in Release 1 of SCRIPT/VS.
The file DSMSTDH, which is provided with SCRIPT/VS, shows an
example of how this can be done.

Chapter 6. Head Levels and Table of Contents 75

Therefore, enter the text of a topic heading as it should appear
in the table of contents.

Adding Lines to the Table of contents

You can place lines directly into the table of contents with the
.PT [Put Table of Contents] control word.

The .PT [Put Table of Contents] control word causes the text line
to be written into the file DSMUTTOC along with the current page
number as a .SX [Split Text] control word. For example, the input
line:

.pt Sail and Rudder

will cause the following control word to be written into DSMUTTOC:

.'SX /Sail and Rudder/ ./76/

When the DSMUTTOC file's input lines are processed, the line
appears in the table of contents as:

Sail and Rudder 76

You can insert any SCRIPT/VS control word into the table of con
tents with the .PT control word. If the "text line" part of the
.PT control word begins with a period (with only one blank between
.PT and the text line), SCRIPT/VS inserts it directly into the
DSMUTTOC as a control word, rather than as the text of a . SX
[Split Text] control word. For example,

.pt .h3

inserts a .H3 control word into the table of contents.

If the line of text you want to enter into the table of contents
begins with a period, begin the line with a leading blank so that
SCRIPT/VS will not interpret the line as a control word, but will
include the page number with the line in the table of contents.
For example,

.pt .h3

inserts the control word

.'SX F /.h3/ ./76/

into the table of contents.

Printing the Table of Contents

Use the .TC [Table of Contents] control word to imbed the DSMUTTOC
file. When .TC is encountered, SCRIPT/VS:

• Ejects to a new page, if it is not already at the top of a
page.

• Prints the word "CONTENTS", unless otherwise specified with
the .TC control word.

If you want a different title for the table of contents page,
you can speci fy it as

.tc Table of Contents

If you don't want a ti tIe at all, specify

.tc /

• Formats the DSMUTTOC file according to the SCRIPT/VS environ
ment in effect when the .TC control word is processed, as mod
ified by formatting controls inserted in the DSMUTTOC file.

76 Document Composition Facility: User's Guide

The table of contents will contain all the entries made prior
to the .TC control word during the current or previous pass.

The DSMUTTOC file is not deleted until the next time a new table
of contents is started.

TWOPASS Considerations

If you place the . TC [Table of Contents] control word at the
beginning of your input file, you must use the TWOPASS option of
the SCRIPT command to produce a complete table of contents. Other
wise, the DSMUTTOC file will be empty when the .TC control word i~
encountered. For details, refer to "TWOPASS: Prepare the Document
With Two Formatting Passes" on page 31.

In order to have correct page numbers in the table of contents,
pages must be numbered the same way on both passes. On the first
pass, the table of contents is empty. On the second pass, it can
contain several pages of information. Because SCRIPT/VS doesn't
know how many pages will be required for the table of contents, it
numbers the pages following the table of contents the same way on
both passes.

You can tell SCRIPT/VS the number of page numbers to reserve for
the table of contents. For example, you can reserve six pages if
the table of contents is to occupy pages 3 through 8. The page
number range you reserve has nothing to do with how many actual
pages the table of contents will occupy: it only establishes the
page number of the page that follows the table of contents page.

For example, if the table of contents will require three pages,
you can reserve the current page number and the next two page num
bers by specifying:

.tc 3 Table of Contents

If the document is formatted with the TWOPASS option, SCRIPT/VS
will allow page numbering to continue sequentially following the
table of contents if the page number is explicitly reset with a
.PA [Page Eject] or .PN [Page Numbering Mode] control word before
any head level or . PT [Put Table of Contents] control word is
encountered that requires knowledge of the page number.

You can precede the .TC [Table of Contents] control word with oth
er SCRIPT/VS control words:

• To number table of contents pages with roman numerals, use the
.PN [Page Numbering Mode] control word:

.pn roman

• To put bottom titles on each tdble of contents page, use the
.RT [Running Title] control word:

.rt bottom even /Contents &///

.rt bottom odd ///Contents &/

• To ensure that the first page of the table of contents starts
on an odd-numbered page, use the . PA [Page Ej ect] control
word:

.pa odd

Note: Since the . TC [Table of Contents] control word has a
level-one heading built into it, you should never (whether you
speci fy one or two formatting passes) put a . DH [Define Head
Level] level one heading before a .TC [Table of Contents] entry.

Chapter 6. Head Levels and Table of Contents 77

CHAPTER 7. INDEXING

SCRIPT/VS enables you to automatically produce an index, such as
the one contained in this publication. Include the INDEX option
when you issue the SCRIPT command to indicate to SCRIPT/VS that an
index is to be generated from the information provided by the .PI
[Put Index] control words. The .PI [Put Index] control words are
used to speci fy the index entries and are placed throughout a doc
ument wherever the index entry topics are described.

This automatically generated index can contain multilevel entries
and cross references. SCRIPT/VS will automatically generate the
page numbers for the index entries based on the location of .PI
control words within the document. For example, specifying

.pi /weasels/

indicates that the term "weasels" should be placed in the index
along with a reference to the current page number.

POSITIONING THE INDEX IN A DOCUMENT

Use the .IX [Index] control word to indicate where you want the
index to be placed in the document. When SCRIPT/VS encounters this
control word, it starts a new page, if it is not already at the
top of a page, and prints the word "INDEX" as a heading. If you
want a different title, you can include one when you specify the
.IX c~ntrol word. For example, you might specify

.ix Subject Index

which indicates that "Subject Index" is to be used for the title
instead of "INDEX."

If you do not want any title at all, specify a single slash (/).
For example, specifying

.ix /

causes SCRIPT/VS to generate the index without a title.

CREATING INDEX ENTRIES

Page References

The first nonblank character that follows the .PI control word
delimits the beginning of an index term; the second occurrence of
that character delimits the end of that term. Any nonblank charac
ter that does not appear in the index term can be used as a delim
iter. The trailing delimiter does not have to be specified if no
other text follows the index term on the input line. For example,
specifying

.pi !SCRIPT/VS

will place the term "SCRIPT/VS" in the index along with a refer
ence to the current page number.

Regardless of the order in which they are spec~ fied wi thin a I docu
ment, all index entries are placed in alphabetical order--before
the index is formatted. For example, if you specify

.pi /martens

.pi /marsupials

"marsupials" will appear in the index before "martens."

If the same index term is specified several times within a docu
ment, that term will only be included in the index once. The page

Chapter 7. Indexing 79

numbers for each occurrence of that term will be listed after it,
separated by commas. For example, several occurrences of the term
"melodrama" wi 11 be formatted in the index as

melodrama 9, 14, 37

If one particular instance of an index term is more important than
the others, you can use the ORDER parameter of the .PI [Put Index]
control word to indicate that that page reference is to be listed
first, regardless of where in the document other references
occur. For example, if the second reference to "melodrama" refers
to the principal discussion of the subject, and the others are
just passing references, the second instance can be specified as

.pi order /melodrama

The entry wi 11 be formatted as

melodrama 14, 9, 37

If the discussion of- a topic is lengthy, you can indicate the
range of pages the discussion spans. The START and END parameters
of the .PI control word can be used to mark the beginning and end
of the topic. For example, the principal discussion of
"melodrama" can be preceded by

.pi start /melodrama

and succeeded by

.pi end /melodrama

The entry wi 11 be formatted as

melodrama 9, 14-16, 37

Multilevel Entries

When there are many references to a particular index term, you may
want to further qualify the term with another level of indexing.
Up to three levels of terms can be specified for an index entry
using the .PI control word. SCRIPT/VS collects all index entries
with the same first-level term and sorts the second-level terms
alphabetically. These second-level terms are then placed in the
index immediately following the first-level term to which they
apply. Similarly, all index entries with the same first- and sec
ond-level terms are collected together and formatted
alphabetically. These third-level terms are then placed in the
index immediately following the second level-term to which they
apply. For example, a description of weasels may contain the fol
lowing:

.pi /weasels/training

.pi /weasels/care and feeding

.pi /weasels/breeding

The index entry for "weasel" would look like thisl

weasels
breeding 22
care and feeding 15
training 14

Simi larly, the section concerned wi th the care and feeding of
weasels might contain these entries:

.pi /weasels/care and feeding/exercise

.pi /weasels/care and feeding/nutrition

.pi /weasels/care and feeding/dental hygiene

80 Document Composition Facility: User's Guide

The index entry will then appear as

weasels
breeding 22
care and feeding 15

dental hygiene 19
exercise 15
nutrition 16

training 14

Explicitly Specified Page Numbers

Cross-References

When four index terms are specified with a .PI [Put Indexl control
word, the fourth term is not interpreted as a fourth-level term;
it is used in place of the current page number in formatting the
index entry. For example, to indicate that a Japanese Black Pine
is illustrated in the fourth folio that is being attached, you can
specify

.pi /Pines/Japanese Black//Folio 4

The text "Folio 4" will be formatted in the index along with the
page numbers of the other occurrences of these terms. This index
entry will be formatted as

Pines
Japanese Black 19, 22, Folio 4

When a document discusses a great variety of topics, you may want
to include cross-references to related topics. The REF parameter
of the .PI [Put Index] control word can be used for this purpose.
This parameter indicates that the last term speci fied is a
cross-reference to another index entry.26 Rather than suffixing
the term with the current page number, SCRIPT/VS will prefix it
wi th "See" or "See also" depending on whether or not there are any
non-reference terms of the same level. For example, if the docu
ment describing weasels also contained a general discussion of
burrowing mammals, you might want to specify

.pi ref /weasels/martens

which would make the index entry appear as

weasels
See also martens
breeding 22
care and feeding 15

dental hygiene 19
exercise 15
nutrition 16

training 14

Index cross references can also be used to direct readers from
variations on a term to the principal index entry for that term.
For example, specifying

.pi ref /circular definition/definition, circular

will create the following index entry:

circular definition
See definition, circular

Since there are no nonreference terms under the entry "circular
definition," the cross reference is prefixed only with "See".

26 The REF parameter is valid only if at least two terms are
specified.

Chapter 7. Indexing 81

SORTING INDEX ENTRIES

SCRIPT/VS collects index entries as they are specified throughout
the document and sorts them alphabetically. Included for each
index term are the text of that term, and a sort key. The sort key
is used to determine where each entry is placed in the index, and
to group multiple occurrences of the same entry.

The sort key for an index term is created by folding the text of
the index term to uppercase. Therefore, many di fferent index
terms can result in the same sort key. SCRIPT/VS considers index
terms with the same sort key to be multiple occurrences of the
same term, and formats them as one term with multiple page refer
ences. Thus the index terms

.pi /Walrus

.pi /walrus

.pi /WALRUS

all have the same sort key, WALRUS, and will be recognized as
three occurrences of the same index term.

The text of the term printed in the index is that of the first
occurrence specified with the .PI [Put Index] control word. Sub
sequent occurrences contribute only additional page references.
Therefore, the index entry for the preceding three terms will be
formatted as

Walrus 4, 7, 22

The .PI control word also enables you to specify the text of an
index term independently of how it appears in the document. When
the page number for an index term is explicitly specified, but
null, the term becomes part of the index without any page number
associated with it. Subsequent occurrences of that term contrib
ute page number references, but the text of the term is that of
the first occurrence. For example, if the profile for the document
containing the preceding terms contains

.pi /walrus////

The index entry will appear as

walrus 4, 7, 22

The text of the index entry is taken from the first occurrence of
the term and the page numbers of the three subsequent occurrences
of that term.

Handling Special Characters

Index terms often contain special characters which, even though
they are part of the term, should not be considered when the term
is being alphabetized. For example,

.pi /nThe Walrus & the Carpentern

will, by default, be placed at the beginning of the index since
the double quotation mark (n) appears near the beginning of the
alphabetizing sequence. You can use the IXI parameter of the .DC
[Define Character] control word to indicate to SCRIPT /VS that
certain characters are to be ignored when they appear in an index
term. For example, if you specify

.dc ixi n

the preceding index term will be placed in the nTn section of the
index, rather than at the beginning, since the double quotation
marks will be ignored when the index terms are sorted. Similarly,
the terms

82 Document Composition Facility: User's Guide

·pi /Olduvai Gorge
. pi /0' Leary/

will, by default, be formatted in the index as

O'Leary 39
Olduvai Gorge 22

However, if you specify

.dc ixi '

before specifying these terms, the apostrophe in "O'Leary" will
be ignored during sorting and the index entries will be formatted
as

Olduvai Gorge 22
0' Leary 39

It is even possible to have SCRIPT/VS ignore blanks in index terms
when sorting them. For example, the terms

.pi /Waterford

.pi /water wheel

will, by default, be formatted as

water wheel 12
Waterford 7

since the blank preceeds "f" in the alphabetizing sequence.

If you speci fy

.dc ixi 40

blanks will be ignored during sorting and the entries will be for
matted as

Waterford 7
water wheel 12

There may also be occasions when you want SCRIPT/VS to treat some
special characters as though they were blanks when they appear in
an index term. You can use the IXB parameter of the .DC [Define
Character] control word to do this. For example, the terms

.pi /second-class mail

.pi /second division

will, by default, be formatted as

second division 32
second-class mail 29

since the blank character precedes the hyphen in the alphabetiz
ing sequence. However, if you specify

.dc ixb -

before specifying the preceding index terms, the hyphens will be
treated as blanks during the sorting process, and the entries will
be formatted as

second-class mail 29
second division 32

Explicitlv Specifying Sort Kevs

Occasionally, you may want to place an index entry in some section
of the index independent of the entry's normal sort key. You can
use the KEY parameter of the . PI [Put Index] control word to

Chapter 7. Indexing 83

explicitly specify the sort key that is to be used for an index
term. The KEY parameter is specified as

.pi key /keyl/keY2/key3/ /terml/term2/term3

where keyl, key2, and key3 are the new sort keys that are to be
used and terml, term2, and term3 are the index terms that they
apply to. The keys are separated by a delimiter which can be any
nonblank character that does not appear in any of the keys. All
four delimiters must be specified even if only one key is being
specified and the other keys are null. For example, to place the
term "IBM 3800" at the end of the index in the "3" section, speci
fy

.pi key /3800/// /IBM 3800

For a multilevel index entry, explicitly specified keys can be
specified separately for each level. When the specified key is
null, the sort key is developed according to normal SCRIPT/VS sort
key processing, as described earlier in this section. For
example, if you specify

.pi key /HUNGARY/// /Austria-Hungary/Domestic Policy

SCRIPT/VS will place the term "Austria-Hungary" in the "H" sec
tion of the index, using "HUNGARY" as the sort key. The key for
the second-level term, "Domestic Policy", is developed using
normal SCRIPT /VS key processing, since the explici t sort key
specified is null. .

Using the KEY parameter of the .PI control word, you can make the
text of an index term completely unrelated to the actual term. For
example, if you specified

.pi key /WALRUS/// /"The Walrus and The Carpenter"

all entries specified for walrus would be formatted in the "W"
section as

"The Walrus and The Carpenter" 4, 7, 22

instead of as

walrus 4, 7, 22

provided that the entry wi th the KEY parameter was the first
entry.

CREATING THE INDEX

When you specify the .IX [Index] control word, SCRIPT/VS formats
the index by creating and executing . IE [Index Entry] control
words for each index entry. The first parameter of the .IE control
word indicates the index entry level. For example, the control
words

.pi /Pines/Lodgepole

.pi /Pines/Japanese Black

will generate the first-level term, "Pines",
second-level terms, "Japanese Black" and "Lodgepole".

with two

When you specify .IX, SCRIPT/VS will format these terms by creat
ing and executing the following control words: z7

Z7 The blank between the control word name and the first parame
ter does not have to be specified, as described in "Chapter
23. SCRIPT/VS Control Word Descriptions" on page 219. It is
omitted in the .IE [Index Entry] control words generated by
.IX [Index].

84 Document Composition Facility: User's Guide

.IEI Pines

.IE2 Japanese Black 9

.IE2 lodge pole 5

The . IE [Index Entry] control word causes a break and sets an
indention based on the first parameter. This makes the formatted
entry appear as

Pines
Japanese Black 9
lodge pole 5

The .IX [Index] control word precedes each section of the index
with an .IE Header control word. For example7 the "PH header that
precedes the section containing terms beginning with UP" is gen
erated using

.IEH P

This header control word causes SCRIPT/VS to skip two lines, print
the specified section letter7 and then skip another line before
formatting the first index entry for that section. 28 The .IX con
trol word generates and executes a header for each section of the
index for which there are entries.

28 Since SCRIPT/VS omits the optional blank between the control
word name and the first parameter7 you can write macros to
provide more elaborate formatting for some index entries
without interfering with other terms. For example7 the fol
lowing macro will draw a box around each index header:

.dm ieh / .sk 2 / .bx I 5 / &*/ .bx off / .sk

The formatting of first- 7 second- 7 and third-level entries
is not affected by this macro.

Chapter 7. Indexing 85

CHAPTER 8. ADDITIONAL FORMATTING FEATURES OF SCRIPT/VS

In addition to formatting your document as described in previous
chapters, SCRIPT/VS allows you to:

• Define character mappings, or translations, to be performed
at various times during the processing of input and output
lines

• Establish characters with special meaning for SCRIPT/VS

• Keep blocks of text together so that, on output, the
kept-together material appears entirely in one column

• Define footnotes to be placed at the bottom of the page

• Mark all updated material in a review draft, so readers can
identify the modified material

• Draw rectangular boxes with horizontal and vertical interior
lines

• Treat underscoring and capi talization as fonts, and over
strike text (on impact printers) to produce bold and
strikeout text

CHARACTER MANIPULATION

SCRIPT/VS performs several character translations on input and
output lines as part of its normal processing. You can define the
specific character mappings each of these translations peforms
for such purposes as:

e Printing characters that are available on your output device
but not on your terminal

• Simulating control characters not available on your terminal

• Pairing the upper- and lowercase letters of various national
languages, such as German

e Expanding individual input characters into character strings

Output Character Translation

If you are using a terminal with a standard keyboard, you may not
have an immediate way to enter special characters in a SCRIPT/VS
file. You may not, for example, be able to directly enter a bullet
(.) from the keyboard. When you print SCRIPT/VS output, you may
want to use a bullet and other special characters as well.

One way to enter special characters into a file is to use appro
priate commands while editing.

SCRIPT /VS provides another method for printing special
characters. You can specify that one of your keyboard characters
be translated to the special character, using the .TR [Translate
Character) control word. z9 For example,

.tr * af

Each occurrence of an asterisk in your file is translated, on out
put, to the bullet character ee) which has the hexadecimal code
AF. For example, the input line

Z9 Hexadecimal 27 is reserved for internal use by SCRIPT/VS, and
should not be used with the .TR [Transla~e Character) control
word.

Chapter 8. Additional Formatting Features of SCRIPT/VS 87

* Pay attention to this point.

results in:

• Pay attention to this point.

"Appendix D. Fonts Supplied wi th SCRIPT /VS" on page 377 and
Figure 38 on page 364 illustrate the various character sets
available and their hexadecimal codes. You can use these charts
when you want to translate characte~s such as:

• Brackets: []

• Braces: { }

• Algebraic and logical symbols: < S; #. = ~ > ... ±

• Superscript numerals: 0 1 2 .3 4 5 6 7 8 9

• Bullets:··

• Box characters: r , L .J T .L + ~ i
You can specify as many translation pairs with on~ .TR [Translate
Character] control word as your input line allows. For example,

.tr a AC b BC c BB d AB - BF FA

specifies the corners, vertical bar, and dash.3O used for drawing
a box. Each special character is specified as its character code:
hexadecimal AC is the code for" r", hexadecimal BC is the code for
",", and so on. When the characters "a", "b", "c", "d", "I", and
"_n appear in a subsequent output line, they are replaced wi th the
special characters' hexadecimal codes. For example, the input
lines

a----------b
I I
I I
I I
d----------c

result in

D
To cancel translation of all previously specified character map
pings, use the . TR [Translate Character] control word with no
parameters:

.tr

When you have many character mappings specified, you can reassign
or cancel some of them without affecting the others. For example,

.tr ((

cancels translation of the left parenthesis to any character
established for it. Actually, this is equivalent to setting up a
new mapping for "(": the character is to be translated to itself .

.30 When you use hyphens to draw boxes, you can translate them to
the extended dash (hexadecimal BF), which aligns with the
corner symbols and extends further than a hyphen to create an
uninterrupted line. Similarly, the character code FA provides
a vertical bar that is longer than the one available on most
keyboards which abutts with the corner characters.

88 Document Composition Facility: User's Guide

Note: While an output character mapping is in effect, every
occurrence of the affected character is translated to the desig
nated output character. You should therefore take care to trans
late only characters that will not be needed during that time.

Output translation is performed during formatting just before the
characters' widths are measured for justification.

If you have used the .TR [Translate Character] control word and
direct the SCRIPT/VS output to your terminal, some of the special
characters may not be displayed in the output. The posi tions occu
pied by the translated characters may appear as blanks, because
there are no equivalent characters on the terminal. You can use
the .IF [If] control word to make character translations condi
tional based on the output device:

.if SYSOUT eq PRINT .tr * af

This control ·word line results in output translation of asterisks
(*) only if output is going to the printer. The .IF [If] control
word is discussed in detail in "Chapter 10. Conditional Process
ing" on page Ill.

Input Character Translation

SCRIPT/VS also performs character translation on input lines. The
.TI [Translate Input] control word allows you to make characters
that are unavailable on your terminal effectively part of your
input file. 31 For example, the IBM 3270 terminal does not have a
tab key. However, an available character, such as the not-sign
(" .. "), can be translated to hexadecimal 05, the tab character
code:

.ti .. 05

While the translation is in effect, any not-sign (~) on an input
line is processed as though it were a tab. Because the translation
occurs first, before any other processing, you should take care
when using the .TI control word:

• Use hexadecimal codes for the special character rather than
the character itself. For example,

31

.ti Y. $

translates all occurrences of Y. to $. However, you cannot
restore the percent-sign character by subsequently issuing

.ti Y. Y.

because that input line is translated to ". ti $ $" before
being processed. However, you can restore Y. to itself with

.ti 6C 6C

Be careful, though. Remember that each character on the input
line is translated (if a translation for it exists) before
processing the input line. If you translate 0 (hexadecimal
FO) to a (hexadecimal 7C), for example, with

. ti FO 7C

you cannot restore the 0 to its original definition by issuing

.ti FO FO

because each "FO" in the above control word would be trans
lated to "Fa" before the control word is processed.

Hexadecimal 27 is reserved for use by SCRIPT/VS, and should
not be used with the .TI [Translate Input] control word.

Chapter 8. Additional Formatting Features of SCRIPT/VS 89

• Be careful when you translate a symbol that has special mean
ing for SCRIPT/VS, specifically the period (. or hexadecimal
4B) and the blank (hexadecimal 40). For example,

. ti . X

translates the period (.) to the percent sign (X). All subse
quent SCRIPT/VS control words are ignored because the input
characters are translated first, before the line is
processed. Control words and macros would be regarded as text
because they begin with a percent sign instead of a period.

• To restore all characters to normal, use the .TI [Translate
Inputl control word with no parameters:

.ti

Uppercase Translation

SCRIPT/VS provides several means of capitalizing text. They are:

• The UPCASE option of the SCRIPT command, described in
"UPCASE: Print Lowercase Letters as Uppercase" on page 32

• The .UP [Uppercase] and .UC [Underscore and Capitalize] con
trol words, described in "Chapter 23. SCRIPT/VS Control Word
Descriptions" on page 219

• The .HO - .H6 [Head Level 0 - 61 control words, if capitaliza
tion is specified with the .DH [Define Head Levell control
word

• The. DF [Define Font] and . BF [Begin Font] control words,
described later in this chapter

• The &U' symbol attribute, described in "Chapter 12. Symbols
in Your Document" on page 129

By default, SCRIPT/VS capitalizes text by translating the letters
a through z to A through Z. This translation can be extended for
languages other than English with the .TU [Translate Uppercase]
control word. For example,

.tu 8a ca 9a da aa ea

would add capi talization pairs appropriate for German.

Uppercase translation may be reset to its default by entering

.tu

without any parameters. Note, however, that unlike .TR and .TI,
the default for .TU is the mapping of a through z to A through Z.

string Translation

All of the forms of translation discussed above provide
"one-to-one" character pairings: Each character is mapped by the
translation into another single character. Occasionally, it may
be convenient to translate a single character into a string of
characters. For example, single asterisks may be expanded into
arrows:

.ts * /===> /
With this translation in effect, the input line

3EPay Attention

will be formatted as

===> Pay Attention

90 Document Composition Facility: User's Guide

The character string that replaces a character may contain both
text and control words. For example,

.dc cw off

.ts < /j .bf GBl2j"/

.ts > /!";.pfj/

.dc cw ;

will cause the input line

<What, four> bellowed the Mathemagician.

to be formatted as

"What, four?" bellowed the Mathemagician.

String translation is actually a form of symbol substitution, and
therefore:

• Is only performed when symbol substi tution is on. (You can
inhibit string translation with the .SU [Substitute Symbol]
OFF control word.)

• Is performed at the same time as symbol substi tution, just
after input translation, but before any other processing.

• Is not subject to further symbol substitution.

String translations are reset somewhat di fferently from other
forms of translation, and special care must be taken to prevent
string translation when resetting a character. The first example
above may be safely reset by specifying

or

.ts 5c off

.su off

.ts * off

.su on

Remember when using . TS that, like . TI, string translations
affect all occurrences of the character, and are performed before
any other processing of the line.

DEFINING SPECIAL CHARACTERS THAT AFFECT SCRIPT/VS PROCESSING

You can define characters with special meaning to SCRIPT/VS using
the .DC [Define Character] control word. The special characters
are:

The array element separators, which are placed between ele
ments of a symbol array. See "Chapter 12. Symbols in Your Doc
ument" on page 129 for details.

The continuation character, which allows single words to span
input lines. The continuation character is described below.

The control word separator, which allows several SCRIPT/VS
control words to be "stacked" on a single input line. See
"Chapter 3. Basic Text Processing" on page 33 for details.

The GML delimiter and markup content separator, which are
used to delimit GML tags and attributes. See "Chapter 14. GML
Support in SCRIPT/VS" on page 159 for details.

Indexing characters, which are to be ignored or treated as
blanks when preparing index entries. See "Chapter 7.
Indexing" on page 79 for details.

The page number symbol, which is replaced with the current
page number wherever it appears in, running titles, running

Chapter 8. Additional Formatting Features of SCRIPT/VS 91

headings, and running footings. See RChapter 4. Defining a
Page LayoutR on page 55 for details.

Punctuation characters, which are recognized during spelling
veri fication. See "Chapter 16. Automatic Hyphenation and
Spelling Verification" on page 171 for details.

The required blank, which is not recognized as an interword
space during justification, but is translated to an ordinary
blank on output.

Full stop characters, which indicate the end of a sentence.
See "Chapter 3. Basic Text Processing" on page 33 for details.

Word delimiters, which delimit words for purposes of spelling
veri fication. See "Chapter 16. Automatic Hyphenation and
Spelling VerificationR on page 171 for details.

The parameters of the .DC control word are described in detail in
R.DC [Define Character]R on page 241.

The Continuation Character

SCRIPT/VS ordinarily appends an interword space to the last word
on a text input line. However, if the last character on a text
input line is the continuation character, it is removed and the
interword space is not appended. The continuation character is
defined with the .DC [Define Character] control word:

.dc cont +

This allows a single word to span text input lines and control
words. For example, the input lines

A few high+
.bf GB12
light+
.pf
ed characters.

will produce this output:

A few highlighted characters.

If the formatter control or text which follows the continued word
causes a break, continuation is cancelled for that line. The con
trol ~ords that cause breaks are listed in Figure 25 on page 354.

There is no default continuation character; it must be explicitly
set before it can be used.

ENSURING THAT BLOCKS OF TEXT STAY TOGETHER

SCRIPT/VS provides several means of keeping lines of text togeth
er for such purposes as:

• Ensuring that an example or list of items is not spli t across
a column or page

• Keeping a heading and the first few lines of text below it
together

• Preventing widows (single lines at the beginning or end of a
paragraph that appear by themselves at the bottom or top of a
column or page)

• Placing a figure or diagram at the top or bottom of a column
or page

92 Document Composition Facility: User's Guide

When you wish to keep a specific group of lines, such as a figure
or example, together, consider using:

• Regular keeps, started with .KP ON, place the kept text in the
current column if it will fit. Otherwise, a column eject is
performed and the text is placed in the next column.

• Floating keeps, started with .KP FLOAT, save the kept text for
the next column if it does not fit in the current column, for
mats the text that follows the keep in the input file, and
places it in the current column.

• Delayed keeps, started with .KP DELAY, are always placed in
the next col umn, whether or not they fi tin the current
column. As with floating keeps, text following the keep in the
input file may be moved ahead of it in the output to fill the
current column.

Each of these keeps must be explicitly ended with .KP OFF, and
each saves the current formatting environment, including any par
tially processed output line. The formatting environment is
restored when the keep ends. See Figure 34 on page 360 for a list
of the formatting parameters saved and restored around keeps.

For example,

.kp on

.fo center
These lines will be kept together in the
column, regardless of page ejects and column balancing,
and
the formatted lines will be centered .
. kp off
These lines will not, however, necessarily appear in the
same column
as the lines above, nor will they be centered,
since the formatting mode was restored when the
keep was ended.

will be formatted as

These lines will be kept together in the column,
regardless of page ejects and column balancing, and the

formatted lines will be centered.
These lines will not, however, necessarily appear in the
same column as the lines above, nor will they be centered,
since the formatting mode was restored when the keep was
ended.

If you place a large figure in a regular keep, and it does not fit
in the current column, it will be placed in the next column. This
may leave a large blank space at the bottom of the current column.
If the figure does not have a specific relationship to the text
around it, you can avoid the blank space by placing the figure in
a floating keep. For example,

This paragraph contains a reference
to the figure that follows it.
This text will appear above the figure,
.br
.kp float

(drop in figure here)

.kp off
but this text may appear above or
below the figure, depending upon whether
the figure is moved to the next column.

There is an order of precedence among keeps, with regular, float
ing, and delayed keeps taking precedence over inline keeps. If an
inline keep is encountered within a floating keep, it is ignored.

Chapter 8. Additional Formatting Features of SCRIPT/VS 93

Inline Keeps

But if a regular keep is encountered within an inline keep, the
inline keep is ended and the regular keep begun. Keeps of the same
level of precedence end each other. For example,

.kp on
These lines will be
kept together in
one column .
. kp on
So will these lines,
but not necessarily in
the same column with the
previous few lines .
. kp off

Note: Some control words are not allowed within keeps, and will
force termination of the keep before being processed. This is true
regardless of whether the control word is found in the input file,
in a tag, or wi thin a macro. In general, these control words al ter
the page or column definitions; they are listed in Figure 27 on
page 355.

When you wish to ensure that a certain amount of text is kept
together wi thout otherwise disturbing the formatting of that
text, use an inline keep. Inline keeps are started with:

• .kp inline

• .kp v

• .kp v + v

where "v n is an amount of vertical space. For example, to ensu~e
that the heading of a table is kept together with the first few
items in the table, specify

.fo off

.kp Ii

.ce AMERICAN INVENTORS

.sp
Name
.sp
Armstrong, Edwin
Bell, Alexander
Bell, Herbert
Carlson, Chester
De Forrest, Lee

Born

1891
1847
1890
1906
1874

Died

1954
1922
1970
1968
1961

In1ine keeps that speci fy an amount of vertical space are automat
ically ended when that amount of text has been formatted. They may
also be ended prematurely with .KP OFF. In either case, no break
is performed; the formatting of lines is not affected by the
in1ine keep.

In1ine keeps are preferable to condi tiona1 column ejects, dis
cussed below, especially when your page layout contains more than
one column, because columns that are explicitly started with .CB
[Column Begin] or .CC [Conditional Column Begin] are ineligible
for balancing. Inline keeps ensure that text is moved to the next
column if necessary to keep the text together, Yet allow preceding
text to be moved into the next column as needed to balance the
columns if the page is not filled. See "Chapter 5. Multico1umn
Page Layoutn on page 67 for more information on column balancing.

94 Document Composition Facility: User's Guide

Widows

Floats

When SCRIPT/VS is concatenating input text,32 you can request
that single output lines at the beginning or end of a paragraph
not be left alone at the bottom or top of a column or page. If you
specify

.wz on

subsequent paragraphs will be subject to widow control; if the
paragraph spans columns, at least two lines of the paragraph will
appear in each column. 33 Widow control can be turned off by speci
fying

.wz off

Note: For purposes of widow control, SCRIPT/VS considers para
graphs to be delimited by breaks. The control words which cause
breaks are listed in Figure 25 on page 354.

Figures and tables often do not bear any specific relationship to
the text immediately surrounding them. SCRIPT/VS provides a way
of setting such text apart from the body of the page by placing it
at the top or bottom of a column or page, independent of the body
text.

Use the .FL [Float] control word to delimit the lines to be set
apart, and to indicate where they should be placed. For example,
the input 1 i nes

. fl on page

.im spunits

.sx //-//

.fl off

will place the contents of the file SPUNITS at the top of a subse
quent page, separated from the text in the page by a row of
dashes. (Figure I on page 6 illustrates such a float.)

Floats may be specifically designated for odd- or even-numbered
pages. For example,

.fl on page even

.im tblleft

.sp 2

.fl on page odd

.im tblright

.sp 2

.fl off

will place the contents of the file TBLLEFT and TBLRIGHT at the
tops of two subsequent pages.

The intent of the previous example is to produce a
double-page-width table on facing pages of a duplexed document.
However, if the next page is odd, the right-hand float will be
placed first, on the front of a sheet, and the left-hand float
will be placed later, on the back of the sheet. When floats bear
such a relationship to each other, the ORDER option should be
included in the .FL [Float] control word. Ordered floats will be
placed in the same order in which they are defined. (Figure 35 on
page 361 illustrates such a pair of floats.)

32 Concatenation is controlled by the .FO [Format Model control
word, as described in "Chapter 3. Basic Text Processing" on
page 33.

33 When widow control is in effect, paragraphs of fewer than four
lines will not be split between columns.

Chapter 8. Additional Formatting Features of SCRIPT/VS 95

FOOTNOTES'

When a single chapter of a document does not contain enough pages
of text to accommodate all the floats defined within the chapter,
some of those floats may appear on the first pages of the next
chapter. This can be prevented by specifying

.fl dump

before begi nni ng the new chapter. As many extra pages wi 11 be
added as needed to place all the queued floats within the current
chapter.

Note: The same control words that are disallowed wi thin a keep are
also disallowed within a float. In general, these control words
alter the page or column definitions; they are listed in Figure 27
on page 355.

The .FN [Footnote] control word provides an automatic way to for
mat text so it appears at the bottom of a page as a footnote.
SCRIPT/VS determines how many lines currently remain on the page
and reserves the space needed for the footnote. The .FN [Footnote]
control word is specified as:

.fn on ** This line is going to
appear as a footnote
on this page .
. fn off

SCRIPT/VS prints a l6-dash line, called a "leader," to separate
the body of the page from the footnote. To change the footnote
leader, redefine it before the page on which the footnote appears
is started:

.fn leader

.sp

.tr - BF

.us ----------------

.sk

.fn off

Normal Footnote Placement

Since there is no maximum depth for a footnote, once a footnote is
started, all text until the next .FN (Footnote) OFF command is
included in the footnote unless the footnote is prematurely ended
by a disallowed control word.

To keep the footnote and its callout on the same page, you should
enter the .FN (Footnote) control word and the footnote input lines
immediately after the word or phrase that refers to the footnote
(known as the "footnote callout"). If the footnO'te does not imme
diately follow a text line (without an intervening break), it-will
be placed as soon as possible without any attempt being made to
keep it associated with a callout line or widow.

A line or widow containing a footnote callout(s) will be placed on
the page providing that there is sufficient room for:

• the line or widow, and

• the footnote leader, and

• at least two lines, counting skips and spaces, of the last
footnote. If the footnote is only three lines or less in
depth, then the entire footnote must fit.

** This 1 i ne is goi ng to appea r as a footnote on this page.

96 Document Composition Facility: User's Guide

If there is insufficient room on the page for the line or widow,
then it and its associated footnote(s) will be moved to the next
page. However, if the line or widow is already at the top of a
page it will not be moved. In such a case, the line or widow will
be placed on the page with as much of the footnote(s) as will fit.
The remainder of the footnote(s) will be placed on a subsequent
output page(s).

In placing footnotes, SCRIPT/VS will, if necessary, attempt to
split footnotes that are four or more lines (including skips and
spaces) in depth. If a footnote is split, SCRIPT/VS will keep at
least the first two lines of the footnote on one page, and it will
keep at least the last two lines of the footnote on another page.
For the purposes of splitting, a double spaced footnote line and
vertical space generated by a single control word (for example,
.SP 3) are considered to be single lines.

When a footnote is split, or can't be placed on a page (for exam
ple, the first footnote of two called out by a line is greater
than a page), the remainder will be allowed to nfloatn to the next
available page(s).

Whenever a new page is started, footnotes that were allowed to
float from previous pages are placed on the new page. Again, any
unplaced footnote(s) will be allowed to "floatn. The .Fl (Float)
DUMP control word causes SCRIPT/VS to place all floats, including
footnotes, before resuming input text processing.

In placing footnotes that were "floated" from previous pages,
SCRIPT/VS will attempt to reserve room on the page for any pending
output line or widow that has not yet been placed. If that pending
line or widow also contains footnote callouts, the line or widow
may be further deferred, as necessary, in order to keep footnotes
and their callouts on the same page.

Unusual Footnote Placement Conditions

There are certain conditions under which SCRIPT/VS will be unable
to satisfy the general guideline of keeping footnote callouts and
at least two lines of the last footnote on the same page. Some of
these conditions could result if:

• the page depth was very small,

• the footnote leader was very large, or

• one or more footnotes are very large.

The conditions and the actions that will be taken are as follows:

• If the footnote leader is as large or larger than the body
depth plus the first line of the first footnote, the footnote
will be placed on the page but not the footnote leader.

• If the callout line or widow is at the top of the page and all
of the footnotes will not fit, then SCRIPT/VS will cause as
many of the footnotes as necessary to "float" to subsequent
output pages.

• If the callout line or widow is at the top of the page, then
SCRIPT/VS will, if necessary, place only one line of the first
footnote on the page.

• If the callout line or widow is at the top of the page, then
SCRIPT/VS will, if necessary, split the first footnote even
if it is a two or three line footnote (this will cause the
first line and/or the last line to be placed by itself on an
output page.)

Note: The splitting of small footnotes or the placement of only
one line of a footnote will not occur unless the footnote is the
first one to be placed on the page. If at least one complete foot
note is placed on the page, then SCRIPT/VS will only attempt to

Chapter 8. Additional Formatting Features of SCRIPT/VS 97

split the other footnotes if they are four or more lines deep and
the first two lines and the last two lines will be kept together.

other Footnote Considerations

You can mark up the footnote with GML tags, control words, macros,
and text just as you can the material within a keep. For example,
to provide special formatting within a footnote you could enter:

.fn on

.tr 2 B2

.in 2 after 1
2 This is the next footnote
in this section .
. fn off

Since footnotes do not cause breaks, you can interrupt a sentence
to place the footnote on the line above the word it refers to,
even if the word is in the middle of a sentence.

Because the environment is saved during a footnote definition and
restored after it, any formatting changes wi thin the footnote
(such as indention, font changes, revision codes, and so on) are
automatically restored to their previous values when the footnote
is ended. In the example above, therefore, it was not necessary to
reset the indention. See "Chapter 9. The SCRIPT/VS Formatting
Environment" on page 109 for details about saving and restoring
the formatting environment.

Note: The control words that are disallowed within a keep are also
disallowed within a footnote.

STARTING A NEW PAGE OR COLUMN

When you want to place text on a new page, you can:

• Precede it wi th a . Hl [Head Levell] control word .

• Precede it wi th a .PA [Page Eject] control word to force a new
page.

• Precede it with a .CP [Conditional Page Eject] control word to
force a new page if not enough space remains on the current
page.

• Use the .DI [Delay Imbed] control word to save the input text
until the next page eject occurs, then to process it. (The .DI
[Delay Imbed] control word is described in "Chapter 11. Com
bining SCRIPT/VS Files" on page 119.)

When you want to place text in a new column:

• Precede it with a .CB [Column Begin] control word to force a
new column.

• Precede it with a .CC [Conditional Column Begin] control word
to force a new column if not enough space remains in the cur
rent column.

• Use a .KP [Keep] DELAY control word to keep a block of text
together and print it in the next column.

• Use a .KP [Keep] control word to keep a block of text together
and print it in the next column if it won't fit in the current
column.

2 This is the next footnote in this section.

98 Document Composition Facility: User's Guide

Many of these control words are discussed in other parts of the
book. The following section describes the .CP [Conditional Page
Eject] and .CC [Conditional Column Begin] words.

Conditional Column and Page Ejects

The .CP [Conditional Page Eject] and the .CC [Conditional Column
Begin] control words allow you to specify how much space must
remain in the column for SCRIPT/VS to continue formatting lines in
that column. If there is not enough space remaining, SCRIPT/VS
performs the page (or column) eject. For example:

This list includes
.sk
.cp 3
GML Tags
Symbols
Macros

When the .CP [Conditional Page Eject] control word is
encountered, SCRIPT/VS determines the number of lines left in the
column. For the example above, if there are at least three lines,
processing continues and the lines are printed on the current
page. If there are fewer than three lines, however, SCRIPT/VS per
forms a page eject; the lines following the .CP control word are
printed on the next page.

When you use the . CP [Condi tional Page Eject] control word,
SCRIPT/VS always ejects to the next page when less than the
required amount of space remains in the column.

The .CC [Conditional Column Begin] control word works in an analo
gous manner. A column eject (which might result in a page eject if
it occurs when the page's last column is processed) is performed
when there are fewer than the required number of lines left in the
column.

MARKING UPDATED MATERIAL

If you process documents that are frequently revised, you can
identify revised text with a "change bar" (or other symbol) in the
left margin. 34 Use the .RC [Revision Code] control word to iden
ti fy changed material. You can establish up to nine di fferent
revision code characters, which are printed to the left of your
text output.

For example, the lines

.rc 1 3(

.rc 2 !

define two different reV1S10n codes. Within the body of your docu
ment, you can bracket revised material with pairs of .RC [Revision
Code] control words. The control word

.rc I on

indicates the beginning of a revised piece of text. (If a piece of
text is flagged as revised, and the revision code has not been
defined, the default code is blank, or no revision code at all.)
The control word

.rc I off

indicates the end of the revised piece of text.

34 See "Appendix E. Formatting Considerations for the 3800
Printer" on page 385 for special considerations regarding the
use of .RC within documents that are printed on the IBM 3800
Printing Subsystem.

Chapter 8. Additional Formatting Features of SCRIPT/VS 99

!
!

$

Differently marked pieces of revised text may overlap, and their
revision codes may be nested. For example, if you have specified

.rc I on

and then, while revision code 1 is on, specify

.rc 2 on

revision code 1 is suspended, and revision code 2 is turned on.
When you turn revision code 2 off,

.rc 2 off

revision code I is restored to its former "on" status.

When you have changed only a single line, you can indicate that
that line be flagged with a revision code by specifying

.rc lon/off

rather than bracketing the line with ".rc Ion" and ".rc 1 off".

You may also flag a single line by specifying

.rc 3E $

when you have not defined an appropriate revision code.

The revision code is placed to the left of the column of text to
which it applies. For the leftmost column, the revision code is
placed in the binding area provided with the BIND option of the
SCRIPT command. For other columns, it is placed in the intercolumn
gutter. If the space for the revision code is insufficient, the
revision code is omitted.

When you do not want a revision code character to be printed, you
can respeci fy the character to a blank character wi th the . RC con
trol word. For example,

.rc 1

Revision code 1 now prints as a blank.

Ordinarily, revision codes are placed in the gutter two spaces to
the left of the column, so that a single blank separates the
revision code from the column text. You can change this separation
with the ADJUST parameter of the .RC [Revision Code] control word.
For example,

.rc adjust 1

.rc 1 on

3Especifies that the revision code be placed immediately adjacent
3Eto the column text, and

.rc adjust Ii

speci fies that the reV1S10n code is to be placed one inch from the
edge of the column. If a value is speci fied which exceeds the
available gutter space,

.rc adjust 30cm

the revision code is not printed.

100 Document Composition FacilitY2 User's Guide

DRAWING BOXES

SCRIPT/VS can draw boxes around illustrations or text, and can
format charts with horizontal and vertical lines. 35 The control
word that draws boxes and lines within boxes is the .BX [Box] con
trol word. You use the .BX control word in three different ways to
create a box:

1. Define the left- and right-hand edges of the box, and the
character positions you want to contain vertical lines. For
example, to create a box 30 spaces wide, starting in character
position I, with vertical lines at character positions 10 and
20, specify

.bx 1m 10m 20m 30m

This formats and prints a box top, wi th upper corners and
descenders:

2. Each time you want a horizontal line within the box, specify
the .BX [Box] control word with no other parameters:

.bx

results in

The lines are drawn with intersections at the vertical rule
character positions.

3. When you want to complete the box, use the OFF parameter of
the .BX [Box] control word. For example,

.bx off

This terminates the box defini tion and draws a bottom line
with lower corners and ascenders.

After a box is started, SCRIPT/VS processes and formats output
lines as usual. When each line is formatted and ready to print,
SCRIPT/VS inserts box vertical rule characters wherever appropri
ate to continue the box's vertical lines36 on the output line.

You can use the .BX [Box] control word to build a three-column
table, and use tabs to align text within the rules:

35 See "Appendix E. Formatting Considerations for the 3800
Printer" on page 385 for special considerations regarding the
use of the .BX [Box] control word within documents that are
printed on the IBM 3800 Printing Subsystem.

36 The box may be considered to be overlaid on the formatted
text; vertical rules will "cover up" text characters which
fall "beneath" them.

Chapter 8. Additional Formatting Features of SCRIPT/VS 101

.ti - 05

.tb 11m 21m

.* .bx 1m 10m 20m SSm

.cl 53m

.in 21m

.un 19m
Item 1 -Part 1 -The first part
of item 1 is described here .
. sk
.un 10m
Part 2 -The second part of item 1 is
described here. It is a rather long description .
. bx
.un 19m
Item 2 -Part 1 -The second and
subsequent items are entered in a similar fashion .
. bx .

. bx off

The above example results in

Item 1 Part 1 The first part of item 1 is
described here.

Part 2 The second part of item 1 is
described here. It is a rather
long description.

Item 2 Part 1 The second and subsequent items
are entered in a similar
fashion.

Note: The character positions defined with the .BX control word
are the positions at which the vertical lines are drawn. Contrast
this with the displacement setting of the .TB [Tab Setting] con
trol word (.TB 12m results in spaces through character position
12; the text begins in character position 13). Therefore, you can
use the same numbers for the .BX control word and for the .TB con
trol word, and use the tab to position to the character position
immediately after the vertical bar.

SCRIPT/VS constructs the corners and rules of boxes from the most
appropriate characters available, based on the logical output
device and current font. For example, the input lines

.bx 1m 5m 25m 29m

.cl 30m

.ce on
These lines
are centered within
this
lovely box .
. ce off
.bx off

when formatted for a terminal appear as:

+---+-------------------+---+
I I These lines I I
I lare centered withinl I
I I this I I
I I lovely box. I I' +---+-------------------+---+

However, when the same input lines are formatted for the IBM 3800
and one of the fonts provided with SCRIPT/VS, they appear as:

102 Document Composition Facility: User's Guide

These lines
are centered within

this
lovely box.

SCRIPT/VS chooses the appropriate box character set for the log
ical output device. However, you can force SCRIPT/VS to use any of
the box character sets. (See "Defining Internal Fonts" on page
107.) The ability to force SCRIPT/VS to use a specific box charac
ter set is important, because some box character sets, such as
3270 text and APL, are never automatically selected.

You can use SCRIPT /VS to produce many di fferent box configura
tions, horizontal lines, and graphic structures. Some of the ways
you can use the .BX [Box] control word are described below.

stacking one box on another

You can define a box and then define a larger or smaller box,
without first ending the first box's definition. The top of the
second box is printed on the same line as the bottom of the first
box. For example, the lines:

.bx 10m 20m

.sp

.bx 5m 25m

.sp

.bx 10m 20m

.sp

.bx 5m 25m

.sp

.bx 10m 20m

.sp

.bx off

resul t in:

By using this form of the .BX [Box] control word, you can create a
complex structure of boxes. For example, the lines

.bx 10m 20m

.sp

.bx 15m 30m

.sp

.bx 10m 20m

.sp

.bx 1m 15m

.sp

.bx 10m 20m

.sp

.bx 1m 30m

.sp

.bx off

result in

Chapter 8. Additional Formatting Features of SCRIPT/VS 103

When the upper box bottom line does not touch the lower box top
line, SCRIPT/VS joins the two lines together. For example, the
input lines:

.bx 10m 20m

.sp

.bx 30m 40m

.sp

.bx 10m 20m

.sp

.bx off

resul t in

Drawing a box within a box

You can draw a box within a box, using the NEW parameter of the
.BX [Box] control word.

Each box is ended with a .BX CAN or .BX OFF control word. Note the
different results of each type of ending. For example,

.cl 30m

.bx 1m 30m

.sp

.bx new 5m 25m

.sp

.bx new 10m 20m

.sp

.ce Elephants

.bx off

.bx can

.bx off

results in

\ Elephants \

When nesting boxes, the new box does not have to be completely
within the previous box. For example,

104 Document Composition Facility: User's-Guide

.bx 1m 30m

.sp

.bx new 5m 40m

.sp

.bx new 3m 45m

.sp

.bx off

.sp

.bx off

.sp

.bx off

results in

Drawing the middle portion of a box within another (larger) box

You can draw a box that is open at the top and bottom by using
slashes (/) between the character posi tion displacements (as
shown previously). You can also nest that type of box within a
larger box. For example

.bx 1m 40m

.sp

.bx new 5m / 10m / 15m / 20m / 25m / 30m / 35m

.sp 2

.bx off

.sp

.bx off

results in

Drawing boxes in a horizontal row

You can draw a row of boxes by specifying a box definition with
slashes. For example,

.bx 1m 10m / 20m 30m / 40m 50m

.sp 2

.bx off

The slash indicates a discontinui ty wi th no horizontal
connection. These lines result in:

Chapter 8. Additional Formatting Features of SCRIPT/VS 105

Drawing the top line (only) of a box

When you want SCRIPT/VS to draw the top portion of a box, but not
the bottom line, you use the CAN parameter of the .BX [Box] con
trol word to cancel the box definition. For example,

.bx 1m 10m 20m 50m

.sp

.bx 1m 50m
Last line of text in the box
.bx can

results in

I last line of text in the box

Drawing the middle portion of a box (without top or bottom lines)

When you want SCRIPT/VS to draw a box without horizontal top and
bottom lines, use the SET parameter of .BX to specify the posi
tions of the vertical rules. Subsequent text will be formatted and
overlaid with vertical rules, but no box top will be drawn. For
example,

.in 22m

.cl 38m

.bx set 1m 10m 20m 40m
First item in the box
.bx
Second item in the box
.bx
Third and subsequent items
in the box
.bx can

results in

First item
the box

Second item
the box

Third and
subsequent

in

in

items
in the box

Drawing the bottom line (only) of a box

When you want SCRIPT/VS to draw the bottom line of a box, you use
the .BX [Box] control word as you would to define the start of a
box and you include the OFF parameter. For example,

.bx off 1m 10m 20m 40m

results in

Drawing boxes with the 3800 Printer

Special considerations apply to boxes when the output is being
formatted for a 3800 Printer. Because SCRIPT/VS does not provide
three widths of each box character in each font, SCRIPT/VS per
forms monospace justification inside a box. The following
restrictions apply within a box:

106 Document Composition Facility: User's Guide

• All nested boxes are in the font of the outermost box, regard
less of the font changes within the box.

• All fonts used within the box must be of the same pitch as the
box itself (that is, the pitch of the current font when the
outermost box was begun).

• Proportional fonts (for example, GPI2) cannot be used within
a box.

You can produce boxes of different line thicknesses containing
text in several fonts. For example,

.bx 1m 20m
The
.bf GB12
first
.pf
box
.bx off
.sp 2
.bf GB12
.bx 1m 20m
The
.bf GT12
second
.pf
box
.bx off

results in:

The first box

The second box

DEFINING INTERNAL FONTS

SCRIPT/VS extends the concept of font to include underscoring
and capitalization on all devices, overstriking on impact print
ers, and stopping to change typing elements on typewriter termi
nals.

Use the .DF [Define Font] control word to define internal fonts.
For example, The "up" parameter of the .DF control word includes
capitalization as part of the font:

.df caps up

You now capitalize text by entering

.bf caps

AND RESET CAPITALIZATION BY ENTERING

.pf

When formatting for the 3800 Printer, formatting attributes such
as underscoring and capitalization can be combined with "real"
"fonts and managed simultaneously. For example,

.df gbl2 us font gb12

redefines the font GB12 to include underscoring as well as the
12-pitch gothic bold font~ Now the input line

.bf &$CHAR(2)

Chapter 8. Additional Formatting Features of SCRIPT/VS 107

will underscore text formatted in the font GB12.

When formatting for an impact printer, you can create boldface
headings and emphasize important phrases by overstriking. For
example, the "os" parameter of .DF includes overstriking as part
of the font:

.df boldface os rpt 4

defines a font that is formed by overstriking the text with itself
four times. You can emphasize phrases by changing to the new font
with

.bf boldface

Overstriking is ignored for devices other than the 1403 and 2741,
unless overstriking with the underscore character is specified.
For example,

.df under os char

defines a font that underscores text, just as

.df under us

does, except that blanks are never overstruck. 37

When formatting for a typewriter terminal with changeable typing
elements, you can define those elements as fonts with the STOP
attribute. Whenever you format text in that font, SCRIPT/VS will
stop typing to allow you to change elements. See "Interactive
SCRIPT/VS Processing" on page 126 for a discussion of the use of
the STOP parameter of the .DF [Define Font] control word.

LINE REFERENCE NUMBERS

You can specify that all nonblank lines in the body of a page be
serially numbered by entering

.rn on

The line reference numbers will be placed to the right of the
rightmost column.

37 Underscoring of blanks is controlled by the .UD [Underscore
Definition] control word; overstriking, even with the under
score character, affects only nonblank characters.

108 Document Composition Facility: User's Guide

CHAPTER 9. THE SCRIPT/VS FORMATTING ENVIRONMENT

The formatting environment is a set of values and parameters that
specify exactly how SCRIPT/VS is to format each line on an output
page. The formatting environment consists of three parts:

• The active environment, which contains parameters for format
ting text

• The page control area, which contains parameters that define
the entire page

• The translate tables associated wi th the . TI [Translate
Input] and .TR [Translate Character] control words

PARAMETERS THAT DEFINE THE FORMATTING ENVIRONMENT

The parameters that make up the active environment area and the
page control area are listed in Figure 34 on page 360. Each param
eter, its corresponding control word, its initialized value, 'and
its special SCRIPT/VS symbol (if any) is listed.

When SCRIPT/VS ejects to a new page (or begins the first page), it
prepares the output page in the following manner:

1. It saves the active ~nvironment values for body text and ini
tializes the active environment for formatting:

• Top ti tIes

• Running heading

• Running footing

• Bottom titles

The active environment is reinitialized before each of these
is formatted.

2. Top and bottom page floats are selected from the float queue.
If any exist and will fit, they are placed on the page.

The output page's running headings and footings, running
titles, and page floats are now in place on the output page.
All "page control" dimensions are fixed for this page, and any
changes to these values will take effect on the next page.

3. SCRIPT/VS restores the active environment for body text that
it had saved.

Input lines are processed to produce output lines, which are
inserted into the body of the page. When the page is full, or
when a page eject occurs, the formatted page is sent to its
destination.

The Keep and Float Environments

When floats and keeps (other than inline keeps) are started,
SCRIPT/VS saves a copy of the active environment and then modifies
the active environment by clearing the values of the .OF [Offset]
and .UN [Undent] control words, and restoring the indention to the
basic .IN [Indent] value currently in effect. In addition, for
page floats, the column width is set equal to the line length val
ue.

When the keep or float ends, the saved copy of the active environ
ment is restored.

Chapter 9. The SCRIPT/VS Formatting Environment 109

The Footnote Environment

When a footnote is started, SCRIPT/VS saves a copy of the active
environment and then modifies it:

• The values of the .OF [Offset] and .UN [Undent] control words
are cleared, and indention is restored to the basic .IN [In
dent] value currently in effect.

• Column width is set to line length. The footnote text goes
across the page in single-column format.

When the footnote ends, the saved copy of the active environment
is restored.

SAVING AND RESTORING THE CURRENT FORMATTING ENVIRONMENT

The .SA [Save Status] and .RE [Restore Status] control words are
used to save and restore the current formatting environment. All
three parts of the environment are saved and restored by .SA and
.RE:

• The active environment

• The page control area

• The .TI and .TR translate tables

For example, part of an input file that contains a distribution
list requires indention and tab settings to format properly. How
ever, the main document indention and tab settings are different.
To avoid having to restore the main document's values, use the .SA
[Save Status] and .RE [Restore Status] control words:

.sa

.in
Distribution list for special publications:
.sk
.in 3m
.ti - OS
.tb 2i 2.Si
.us Name -Dept -Address

.* End of distribution list

.re

110 Document Composition Facility: User's Guide

CHAPTER 10. CONDITIONAL PROCESSING

SCRIPT/VS provides several methods for processing input condi
tionally. You can write input files and macros that are capable of
making simple decisions, and taking action based on the result.
With conditional processing techniques, you can:

• Select the alternative, input lines to be processed in a par
ticular run.

• Construct loops that process the same material several times
to provide several copies of the formatted output. (Each copy
can, of course, contain different specific information, as in
the form letter example in "Chapter 11. Combining SCRIPT/VS
Files" on page 119.)

• Wri te macros which cause di fferent formatting based on the
logical output device or other variables.

• Provide processing based on the content of an input line.

These capabili ties use the basic condi tional processing tech
niques in conjunction with other techniques that are not dis
cussed here. "Chapter 13. Writing SCRIPT/VS Macro Instructions"
on page 147 contains information about the mechanics of writing
macros, and "Chapter 12. Symbols in Your Document" on page 129
discusses symbol substitution. Individual control words are
described in "Chapter 23. SCRIPT/VS Control Word Descriptions" on
page 219.

There are three basic conditional processing techniques:

• The .IF control word family

• Conditional sections

• Conditional processing with symbols

THE .IF CONTROL WORD FAMILY

SCRIPT/VS allows you to test a symbol's value to determine whether
to process an input line or ignore it. To do this, you can use the
.IF [If] control word by itself or in conjunction with the .AN
[And], . OR [Or], . TH [Then], ~nd . El [Else] control words. Using
the .IF [If] control word by itself is the simplest way of speci
fying a conditional statement. This control word is specified in
the form:

.if comparandl test comparand2 target-line

Each comparand can be up to 255 characters in length,38 and the
shorter comparand will be padded with blanks to match the length
of the longer comparand.

The conditions you can test for and the codes you can use are:

38 The entire input line, after substitution, cannot be longer
than 255 characters. When comparing symbols that may poten
tially have long values, or contain blanks, it is recommended
that the .IF control word be performed with substitution off,
as described in "Special Techniques for Conditional Process
ing" on page 113.

Chapter 10. Conditional Processing 111

Code Meaning

= or eq equal to
.. = or ne not equal to
> or gt greater than
< or It less than
>= or ge greater than or equal to
<= or Ie less than or equal to

The target-line part of the .IF [If] control word can be any valid
SCRIPT/VS input line: a control word, a symbol, a macro, or text.
The first nonblank character after "comparand2" is treated as the
first character of the input line. If the condition is true, the
input line is processed by SCRIPT/VS. Otherwise, it is ignored.

Alternative Processing

There may be times when, depending on the results of a comparison,
alternative processing may occur. You can use multiple .IF [If]
control words to handle this si tuation or you can use the . TH
[Then] or .El [Else] control words in conjunction with an .IF con
trol word. For example, specifying

.if &street eq Broadway .se branch = Commercial

.if &street ne Broadway .se branch = Warehouse

causes the same results as specifying

.if &street eq Broadway

.th .se branch = Commercial

.el .se branch = Warehouse

Both of these examples result in the symbol &branch being set to
the value "Commercial" if the comparison is equal, and to the val
ue "Warehouse" if it is not.

The .TH [Then] and the .El [Else] control words cause their tar
gets to be executed or ignored based on the results of the most
recently executed comparison in the current file or macro. There
fore, a series of conditionally executed lines can follow a single
comparison. For example, specifying

.if &job eq chimney-sweep

.th .sp 2

.th .notes height of roof

.el .us salary

.el .in 5

.el .im salary &job

.th .sp 2

.el .sp 4

causes all of the .TH and .El control words that follow the .IF
control word to be executed or ignored based on the result of its
comparison. Other .IF control words that may be contained in the
".notes" macro or the "salary" file do not affect this series of
control words since the result of the most recent comparison is
preserved across macro calls and imbedded files.

There may also be times when you want to test for multiple condi
tions. This can be accomplished by using the .AN [And] and .OR
[Or] control words in conjunction with the .IF control word. For
example, you might have a situation where two conditions have to
be true before a certain type of processing can occur. In this
situation, specify

.if &city = Rochester .an &state = Minnesota .se zip = 55901

which causes the symbol &zip to be set to 55901 if both conditions
are true.

Similarly, you may have a situation where only one of multiple
conditions has to be true for one type of processing to be done.
In this case, you might specify

112 Document Composition Facility: User's Guide

.if &city eq Cupertino .or &city eq Gilroy

.th .carpool &city

.el .se city =
The macro .carpool'will be invoked if the value of the variable
&city is either "Cupertino" or "Gilroy"; if it is neither, the
variable &city will be reset to null.

Bypassing Part of an Input File

When you want to bypass a part of your input file, you can use the
.GO [Goto] and ... [Set label] control words. For example:

.if &type = 1 .go bypass

... bypass

In the above example, if the symbol "&type" has a value of 1, all
the control words and text between the . I F and the ... [Set label]
control words (which sets the label "bypass") are skipped.

Conditional processing with the .IF [If] control word can be espe
cially convenient when one file is imbedded in several different
masterfiles. You can provide for slight differences among the
files by setting the same symbol to a di fferent value in each
masterfile, and using that symbol to determine how processing is
to be done in the imbedded file.

The SVSPAGE and SVSOUT Comparands

There are two special comparands you can use with the .IF [If]
control word family. They are keywords, not symbols. Therefore,
they should not be prefaced wi th an &.

• The keyword SYSPAGE tests whether the page currently being
formatted is EVEN or ODD. You can use SYSPAGE to place text
on an output page, based on whether the output page is
even-numbered or odd-numbered:

.if SYSPAGE = EVEN .sx /Evenpage Top line///

.if SYSPAGE = ODD .sx ///Oddpage Top line/

• The keyword SYSOUT tests whether the destination of the out
put is the printer (PRINT) or the terminal (TERM). This
keyword is provided for compatibility with SCRIPT/370. The
SCRIPT/VS system symbols &$lDEV and &$PDEV provide a better
way to test which of the many logical and physical output
devices possible with SCRIPT/VS is currently in use.

Special Techniques for Conditional Processing

There are several techniques you should be aware of when using the
.IF [If] family of control words.

• Comparing Null-Value Symbols

When you speci fy the name of a symbol value that might be
null, you should precede the symbol name wi th a
character-prefix to avoid a possible error. For example, the
input line

.se a = II

.if &a = ON .go next

results in a SCRIPT/VS error because the symbol &a was set to
a null value. The conditional statement resolves to:

.if = ON .go next

Chapter 10. Conditional Processing 113

The "=" character is treated as the first comparand, and "ON"
is not a valid comparison. However, the input line

.if /&a = /ON .go next

resolves to

.if / = /ON .go next

When the symbol &a has the value "ON," it resolves to

.if /ON = /ON .go next

That is, the prefix "/" is concatenated with the value of &a
to result in "/ON", which satisfies the test. When the symbol
&a hasn't been set to ON, "/&a" results in "/" and the test
fails, but no error results.

• Comparing Symbols Containing Special Characters

The .IF [If] control word family, like the .SE [Set Symbol]
control word, is capable of resolving symbols in its
comparands even if symbol substitution is off. This is essen
tial when comparing symbols whose values might contain spe
cial characters, such as blanks and control word separators,
or whose values might be very long. For example, with symbol
substitution on, the input line

.if &needle eq &haystack .th .im lost

might resul t in

.if Rachel's MG eq Parking Lot .th .im lost

after symbol substitution has occurred. This would result in
an error since "Rachel's" would be interpreted as the first
comparand and "MG" would be interpreted as an invalid
comparator. With substitution off, the symbols &needle and
&haystack will be recognized as the comparands, and symbol
substi tution wi 11 be performed on the two comparands sepa
rately before they are compared.

• Comparing Potentially Long Comparands

CONDITIONAL SECTIONS

After substitution, an input line cannot be longer than 255
characters. If your input line might exceed 255 characters
after substitution has been performed, the .IF control word
should be processed with substitution off.

When your document is likely to be read by several different audi
ences, you may want to build it so that you can customize it for
each. For example, your company might build three very similar
devices:

• Class A Widget, which is a very basic machine

• Class B Widget, which is really an improved Class A Widget

• Class C Widget, which includes some, but not all, of the fea
tures of Class A and B Widgets, and includes some improvements
of its own

Because the devices are very similar, you can write a section of
material that applies to all three. You can follow each general
information paragraph or section with more specific information
applicable to one or two, but not all three, of the device types.

In this way, you can keep all information about Widgets in one
input file. When you format the input file for printing, however,
SCRIPT/VS can customize it so that all information (general as
well as specific) about one of the classes of Widgets is printed.

114 Document Composition Facility: User's Guide

To do this, you identify those sections of the input file that are
to be processed conditionally.

SCRIPT/VS processes a conditional section, or ignores it, based
on the setting of a .CS [Conditional Section] control word. Each
conditional section number, from 1 to 9, can be used many times in
a document. You can associate each type of information to be proc
essed conditionally with its own conditional section number. For
example,

Conditional
Section
Number

1
2
3
4
5
6

Conditional Section Applies To

Only Class A Widgets
Only Class B Widgets
Only Class C Widgets
Class B or Class C Widgets (Not Class A)
Class A or Class C Widgets (Not Class B)
Class A or Class B Widgets (Not Class C)

At the beginning of your document, specify that SCRIPT/VS is to
bypass all conditional sections with the IGNORE parameter of the
.CS [Conditional Section] control word. The SCRIPT/VS default is
to process all conditional sections not specifically bypassed .

. cs 1 ignore

.cs 2 ignore

.cs 6 ignore

Before you issue the SCRIPT command to process your document,
change some of the .CS [Conditional Section] IGNORE control words
to .CS [Conditional Section] INCLUDE control words, to Process
each desired conditional section. For example, to print all mate
rial appropriate for readers interested in Class B Widgets, spec
ify

.cs 2 include

.cs 4 include

.cs 6 include

In the body of your input file, you identify each conditional sec
tion by preceding it and following it with the .CS [Conditional
Section] control words, using the ON and OFF parameters. For exam
ple,

.cs 2 on
This material applies only
to Class B ·Widgets.
It does not apply to either
of the other types .
. cs 2 off

Because you can only specify one conditional section number with
the .CS [Conditional Section] control word, you must use a sepa
rate number to identify sections that apply to either one of two
(but not the third) type of device.

When you "nest" the .CS [Conditional Section] control words, you
identify a section that applies only when two (or more) conditions
are met. For example,

Chapter 10. Conditional Processing 115

.cs 1 on

.cs 2 on
This material is applicable to
people who use the Class A Widget
with the Class B Widget.
It is not to be printed for
readers interested only in Class A
Widgets or only in Class B Widgets .
. cs 2 off
.cs 1 off

Because the .CS [Conditional Section] control word doesn't cause
a break, you can process small units of text conditionally. For
example, the input lines

.cs 1 ignore

.cs 2 ignore

.cs 3 include
This book is written specifically
for the operator of a
.cs I on
Class A
.cs 1 off
.cs 2 on
Class B
.cs 2 off
.cs 3 on
Class C
.cs 3 off
Widget.

are printed as:

This book is written specifically for the
operator of a Class C Widget.

The input lines (GML tags, control words, and text) between the
.CS ON and the .CS OFF control words are included unless explicit
ly bypassed as a result of a preceding .CS IGNORE control word.
Such a bypass is not a total one: macros and GML tags are
resolved.

When ignoring a conditional section n, SCRIPT/VS recognizes one
control word only:

.cs n off

which ends the ignored conditional section. All other input lines
(control words as well as text lines) are ignored without further
processing. This means that an ignored conditional section that
is started in one file cannot be ended in another file that is
imbedded by the first, because the .IM [Imbed] control word will
not be processed in the ignored section. However, if a condi tional
section is started in an imbedded file, it can be ended in the
outer file, because SCRIPT/VS returns to the outer file automat
ically when it reaches the end of the imbedded file. No control
word is needed to switch back from the end of an imbedded file to
the file that imbedded it.

CONDITIONAL PROCESSING WITH SYMBOLS

With set symbols, you can do conditional processing in several
ways. The simplest of these is to have a symbol that resolves into
one control word or another depending on the conditions. For exam
ple, the symbol "xim" could be set to either ".CM" or ".IM" to
cause the input line

&xim filename

to be treated as an .IM [Imbed] control word or a .CM [Comment]
control word. If your file has several places at which another
file should be imbedded conditionally, the symbol "xim" could be

116 Document Composition Facility: User's Guide

defined once to control all occurrences of the symbolic control
word.

Another technique uses the existence attribute C&E') of a symbol
to generate a macro name according to whether a symbol exists or
not. See "Chapter 12. Symbols in Your Document" on page 129 for
details on symbol attributes. The existence attribute causes a
string to be substituted with 0 if a symbol does not exist, and
with 1 if it does. You could write a macro called "XO" to provide
the appropriate processing when a given symbol does not exist, and
another called "Xl" for when it does exist. Now, the expression:

.X&E'&name

will resolve to ".XO" if the symbol "&name" does not exist, and
".Xl" if it does.

You can also use the symbol length attribute C&L') to perform con
ditional processing. The length attribute and the following
string or symbol are replaced with the length of the string or
symbol during substitution. See "Chapter 12. Symbols in Your Doc
ument" on page 129 for details. If a symbol called "&num" contains
a number that is from one to five digits long, you can develop a
5-digit number by adding the correct number of leading zeros to
&num. First, you need to define symbols that contain the number of
zeros needed for each possible length the number might be:

.se 5z =

.se 4z = 0

.se 3z = 00

.se 2z = 000

.se lz = 0000

If the number is five digits long, you need to add no zeros. If it
is four digits long, you need one zero, and so forth. Now, the
expression

&&L'&num.z.&num

concatenates the correct number of zeros to the number to form a
5-digit number. One part of the expression, "&L'&num", is
resolved to the number 1, 2, 3, 4, or 5, whatever the length of
the number in the symbol &num happens to be. If it is 3, the
expression becomes "&3z.&num". The symbol "&3z" is now replaced
with 2 zeros, the proper number of zeros for a 3-digit number, and
concatenated with the number itself when "&num" is substituted.

Chapter 10. Conditional Processing 117

CHAPTER 11. COMBINING SCRIPT/VS FILES

SCRIPT/VS provides the ability to combine many SCRIPT/VS input
files for processing as a single document. The control words that
allow you to do this are:

• .IM [Imbed], which causes SCRIPT/VS to process another file
immediately, then return to the imbedding file

• .AP [Append], which causes SCRIPT/VS to process another file
immediately and not return to the appending file

IMBEDDING AND APPENDING FILES

An input file can "call" other input files with the .IM [Imbed]
and .AP [Append] control words:

• When a file is imbedded into an outer file, the contents of
the imbedded file are read and processed as though they were
inserted into the outer file immediately following the .IM
[Imbed] control word. When the imbedded fi Ie completes,
SCRIPT/VS resumes processing at the outer file's input line
that follows the .IM [Imbed] control word.

• When a file is appended to another file, the contents of the
appended file are processed immediately. The appended file
replaces the appending file as the current input file. Conse
quently, when the appended file completes, SCRIPT/VS does not
resume processing input lines in the appending file.

You must specify the filename of the file you want to imbed or
append. If the SCRIPT/VS file named OUTER processes the input line

.im tester

SCRIPT/VS stops reading input lines from the OUTER file and begins
reading and processing lines from a file named TESTER. Whatever
formatting controls are in effect when the file is imbedded remain
in effect until respecified by control words in TESTER. When
SCRIPT/VS reaches the end of the TESTER file, it continues proc
essing in OUTER with the input line following the .IM [Imbed]
control word.

The fi Ie TESTER can also cont'ain .IM [Imbed] control words to
imbed additional files. The process is the same as when TESTER was
imbedded. The imbedded file is read and processed, then SCRIPT/VS
returns to the line in the imbedding file that follows the .IM
[Imbed] control word.

For example, consider the following four files:

MASTER: FILEA: FILEB: FILEC:

. im filea The quick brown fox over

.im filec .im fileb the lazy
dog. jumps

When you issue the SCRIPT command to format the MASTER input file,
the resul t is:

The quick brown fox
jumps over the lazy
dog.

The .AP [Append] control word is similar to the .IM [Imbed] con
trol word, except that when SCRIPT/VS finishes processing the
input lines from a file specified in a .AP control word, it does
not return to the calling file. For example, when SCRIPT/VS proc
esses the input line

.ap names

Chapter 11. Combining SCRIPT/VS Files 119

it closes the current input file and begins processing the NAMES
file. All the lines from the NAMES file are treated as though they
were in the original file. When the end of the NAMES file is
reached, SCRIPT/VS does not return to the file that appended it:

• If the file that appended NAMES was the file named in the
SCRIPT command, SCRIPT/VS completes processing.

• Otherwise, if the file that appended NAMES was itself imbed
ded, SCRIPT/VS returns to the next input line in the fil~ that
originally imbedded the file that appended NAMES, as shown in
Figure 10.

OUTER
INNER

.im inner >1 NAMES

I . .ap names >
Next line <------~ I bJ

~---------------------------- Last line.

Figure 10. Imbedding and Appending SCRIPT/VS Files

You can pass values to the imbedded or appended file, so the file
can be customized each time it is called. See "Chapter 12. Symbols
in Your Document" on page 129 for details.

Naming the File To Be Imbedded or Appended

The name of the file to be imbedded or appended is given as a 1- to
a-character name with the .IM or ,AP control word:

. im file-id

.ap file-id

"file-id" is an internal SCRIPT/VS name for the file to be read.
The external name of the file'can be established in one of three
ways:

• You can use the . DD [Define Data File-idl control word to
associate the "file-id" with any real file or data set name
available in the system under which SCRIPT/VS is executing,
as described in "Naming the Input File" on page 13.

• If you enclose the "file-id" in parentheses, SCRIPT/VS uses
the "file-id" as the real file or data set name.

• If no . DD control word has been processed for "file-id",
SCRIPT/VS uses "file-id" to derive the real name of the file
or data set to be read, based on rules appropriate for the
system under which it is executing.

In CMS, "file-id" is used as the name of a CMS file whose
filetype is SCRIPT.

In TSO, SCRIPT/VS builds a fully qualified name as
described in "TSO Naming Conventions" on page 14. using
"file-id" as the second qualifier.

In ATMS-III, SCRIPT/VS assumes that the document is in
the invoking operator's permanent storage.

When the .DD control word defines the file-id, SCRIPT/VS makes
assumpti ons about the fi I e name based on the envi ronment, as
explained in ".DD [Define Data File-idl" on page 244.

In CMS, you should use the .DD [Define Data File-idJ control word
when:

120 Document Composition Facility: User's Guide

MASTER FILES

• The imbedded filename is different from the actual CMS
filename

• The filetype is other than SCRIPT

• A specific filemode that is not the first in the CMS search
sequence is to be used

In TSQ, you should use the .DD [Define Data File-idl control word
when the imbedded or appended file is not a member of the parti
tioned data set (PDS) named in the SCRIPT command, or when the
member name is different from the file-ide

In ATMS-III, you should use the .DD [Define Data File-id] control
word when the imbedded or appended file is not in an operator's
permanent storage.

In the batch processing environment, use the . DD [Define Data
File-id] control word when:

• The library document name is di fferent from the imbedded
filename

• A password is required to access the file

• The file is stored on a library other than the ones listed
with SCRIPT command options

The format and usage of the .DD control word when defining a file
are described in ".DD [Define Data File-idl" on page 244.

There are several advantages to using imbeds in SCRIPT/VS files:

• For convenience in updating and tracking SCRIPT/VS files, you
can use one file as the master file for a SCRIPT/VS document.
The master file can contain the formatting controls (for page
size, depth, column definitions, and so on) that are to be in
effect for the entire document. The remainder of the master
file might contain only the .IM control words that imbed the
remaining files.

• You can easily reorganize a large document that is composed of
many small files that are imbedded in a single master file.
When you want to move or remove information, you need only to
change the position of the .IM [Imbed] control word in the
master file, or to delete it.

• Small files can be shared by several master files. Each master
file can imbed the small file where appropriate. Therefore,
you do not need to keep duplicate copies of the same informa
tion.

• While there may be a limit to the number of records that can
be contained in a single disk file, there is no restriction on
the number of files that SCRIPT/VS can process. Also, many
di fferent people can work on pieces of the same document
simultaneously.

• Some CMS and TSQ editors have a limit on the number of records
in a file. With the .IM [Imbed] control word, you can struc
ture a document by combining many small files, each of which
can be edited. The document as a whole can be formatted and
printed using the SCRIPT command.

Figure lIon page 122 illustrates a typical master file
structure.

When you are proofreading SCRIPT/VS output files that contain
many imbed files, you can use the NUMBER option of the SCRIPT com
mand. As a result, SCRIPT/VS prints (next to each output line)

Chapter 11. Combining SCRIPT/VS Files 121

UNFORMATTED

xmaster xintro
xfigs

.rt t //SAMPLE// > text text text

. dc ps + text text text '>.Ej

.rt even b /Page +/// .fl on !

.rt odd b ///Page +/ .im xfigs

.im xintro .fl off <----------~U
< --------text text text

.im xdescrip -------- L Figure 1. <----------------- .ef

.im xconfig Xdescr~.p > ~ .im xlist r----------

.im xfunctn > text text text

.im xsample text text text

.im xappena .fl on

.im xappenb .im xfigs

.im xappenc .fl off <-----------------Figure 2 .

. im xindex L-----text text text

.im xtoc

SAMPLE

xintro text
xintro text
xintro text
xintro text
xintro text
xintro text
xintro text
xintro text
xintro text
xintro text

Page 1

FORMATTED

SAMPLE

Figure 1.
xintro text
xdescrip text
xdescrip text
xdescrip text

Page 2

SAMPLE

Figure 2.
xdescrip text
xconfig text
xconfig text

Page 3

SAMPLE

xconfig text
xconfig text
xconfig text
xconfig text
xlist text
xlist text
xlist text
xlist text
xlist text
xfunctn text

Page 4

Figure 11. Master File Structure

• The current input source of the file being processed

• The number of the last input line SCRIPT/VS had read when the
output line was formatted

The line number and file name are useful when you update and cor
rect the SCRIPT/VS files.

The UNFORMAT opti on of the SCRI PT command causes SCRI PT /VS to
print input lines instead of output lines. SCRIPT/VS produces an
unformatted document that contains all the input lines from all
imbedded and appended fi les.

writing to an Output File

The .WF [Write To File] control word allows you to put input lines
into a file dynamically. For example, you can collect figure cap
tions for a figure list in one file and index entries in another.

You can have several .WF files, one for each of several lists you
want to build as your document is processed. However, only one .WF
file can be open at a time. I

When SCRIPT/VS processes the .WF [Write To File] control word, one
or more input lines are written to a SCRIPT/VS file named
DSMUTWTF.

122 Document Composition Facility: User's Guide

• You can insert one line into the file with:

.wf contents of the input line

.wf .ce Text to be centered.

• You can insert a number of lines into the file with&

.wf 5

.in 3m

.ce 3
These are the
lines to go
into DSMUTWTF.

• You can also insert a number of lines into the file with&

.wf on

Many input lines

.wf off

Note: The .WF [Write To File] OFF control word must be on an
input line by itself.

You can later process the contents of the DSMUTWTF file with the
IMBED parameter of the .WF [Write To File] control word&

.wf imbed

After imbedding the DSMUTWTF file, you can add to the end of it
with more .WF control words. You can imbed the DSMUTWTF file into
another file many times.

When the contents of DSMUTWTF are no longer useful to you, you can
erase the file "with the ERASE parameter of the .WF [Write To File]
control word:

.wf erase

The DSMUTWTF file can be erased and reused many times.

Several .WF Files

By using the .DD [Define Data File-id] control word, you can
define the file-id DSMUTWTF so that you can use the .WF [Write To
File] control word to write lines to several different files. For
example, to add lines to the end of the CMS file PART6 SCRIPT AI:

.dd dsmutwtf lib part6

.wf on
Input lines
to be added
to PART6 .
. wf off

Note: If the file (PART6 in the above example) is currently being
imbedded or appended, you cannot add lines to it. That is, you
cannot write into a file that is currently being read.

To restore the file-id DSMUTWTF to the default real file, specify

.dd dsmutwtf lib dsmutwtf

Chapter 11. Combining SCRIPT/VS Files 123

Note: In ATMS-III, the .WF control word can only be used to write
to a document in CICS/VS auxiliary storage. It can not be used to
write to a document in either working or permanent storage.

Delaying the Imbedding of Input Text

The .DI [Delay Imbed] control word is used to store input lines in
a SCRIPT/VS file named DSMUTDIM. When you are finished storing
lines into it with the .DI control word, SCRIPT/VS continues proc
essing your file's input lines. When a page eject occurs (either
because of a full page or because of a control word that causes a
page eject), SCRIPT/VS processes any pending keeps and floats and
then imbeds the DSMUTDIM file.

When SCRIPT/VS encounters a .DI [Delay Imbed] ON control word, it
puts the following input lines into the DSMUTDIM file. The lines
are put in DSMUTDIM as they are; SCRIPT/VS does no other process
ing except to check each line for the .DI [Delay Imbed] OFF con
trol word which must begin in column 1. When the .DI OFF control
word is found, SCRIPT/VS continues to format the input lines in
the file.

For example, to delay the inclusion of a few input lines until the
next page eject occurs, you can specify:

.di on

.ce on
******************** * READ CAREFULLY *

.ce off
.di off

The input lines from .CE ON to .CE OFF are written into the
DSMUTDIM fi Ie. When one of the lines is a .IM [Imbed] control
word, the DSMUTDIM file does not receive the imbedded file's con
tents. Instead, when the DSMUTDIM file is imbedded at the top of
the next page, the file it imbeds is read in and processed.

Rather than begin an open-ended delay imbed with .DI ON, you can
specify the number of input lines to be delayed. For example,

.di 3

causes the next three input lines to be delayed. You don't have to
terminate the .DI 3 with .DI OFF. However, .DI OFF ends a delay
imbed, whether it was started with .DI ON or with .DI n before n
lines have been imbedded.

TERMINATING THE FORMATTING OF A FILE

There are three control words that cause SCRIPT/VS to terminate
processing: .EF [End of File], .QU [Quit], and .QQ [Quick Quit].

The .EF [End of File] control word is useful with imbedded files.
If a .EF control word occurs in an imbedded file, SCRIPT/VS does
not continue imbedding the file but returns to process the outer
file. If another .IM [Imbed] control word is encountered that
imbeds the same file again, SCRIPT/VS resumes reading and proc
essing with the input line following the .EF control word that was
last processed.

You can respeci fy the start of the file again wi th the CLOSE
parameter of the .EF [End of File] control word:

.ef close

The next time the file is imbedded, SCRIPT/VS begins reading input
lines at the first line.

If the imbedded file is a profile, the contents of the file pre
ceding the .EF [End of File] control word will be processed before

124 Document Composition Facility: User's Guide

the main document; the remainder will automatically be processed
after the main document.

The other two control words, . QU [Qui t] and . QQ [Qui ck Qui t] ,
cause SCRIPT/VS to terminate processing entirely, regardless of
whether the current file is an imbed file or not. When you use the
.QU [Quit] control word, processing terminates after SCRIPT/VS
prints the remainder of the current page (and any bottom titles
and running footings in effect) and after SCRIPT/VS closes all
open files. In contrast, the .QQ [Quick Quit] control word causes
immediate termination of processing wi th no final page ej ect.
Therefore, all of the text on the last page will be lost.

The .QQ [Quick Quit] control word can be useful when checking your
file for errors. You can specify the TWOPASS option when format
ting the file and terminate processing after the first pass com
pletes.

For example, a very long input file named MASTERIO can have the
last input line

.qq

When you format it at the terminal using the SCRIPT command

script masterlO (term twopass

the file is completely formatted during the first formatting
pass. Errors detected by SCRIPT/VS are displayed at your terminal
for you to note and correct later. However, processing terminates
before the second pass occurs, when the formatted document would
usually be displayed.

MERGING DOCUMENTS FROM SEVERAL SOURCES

You can create a customized document from many di fferent input
files by using the .IM [Imbed] and .EF [End of File] control
words. An imbedded file can include .EF [End of File] control
words to cause a different group of input lines to be processed
each time the file is imbedded. This can result in customized doc
uments because each group of lines from the imbedded file can
contain the specific information for a particular copy of the bas
ic document.

You can use this technique to create a table whose format and con
tent can be separately updated or al tered. To create such a table,
you would set up one file containing the table format and the sym
bolic names for the table entries and another file containing the
.SE [Set Symbol] control words that define the actual values for
the table entries. For example, consider the following two
SCRIPT/VS files:

File: TABLE File: TABLSVM

.tb 3 21 .se state 'STATE

.cs 2 on .se capi tal 'CAPITAL

.cs 1 ignore .ef

.sp 2 .se state 'Alabama

.fo off .se capi tal 'Montgomery

.bx 1 19 36 .ef

.se bxoff= .se state 'Alaska

.cs 2 ignore .se capital 'Juneau

.cs 2 off .ef

. im tablsym .se state 'Arizona
&$TAB.&state.&$TAB.&capital .se capital 'Phoenix
.bx &bxoff .ef
.cs 1 on .se state 'Arkansas
.fo on .se capital 'little Rock
.cs 2 include .ef
.sp 2 .se state 'California
.ef .se capi tal 'Sacramento
.cs 1 off .se bxoff = off
.ap table .cs 1 include

Chapter 11. Combining SCRIPT/VS Files 125

When the command "SCRIPT TABLEn is issued, the table of state cap
itals will be generated. Each time the file TABLSYM is imbedded,
it is read starting with the input line following the .EF control
word that ended the last imbed. Each group sets new values for
the symbols "state" and "capi tal". The last time TABLSYM is imbed
ded, the control word .CS I INCLUDE is encountered. This allows
the .EF control word in the parent file to be recognized, termi
nating the table generation. The symbol "bxoff" is set to the word
"OFFn, so that the last .BX control word will end the box. (The
symbol "bxoff" was originally set to null, so that all the .BX
control words encountered before the last one merely repeat the
same box definition. The actual table looks like this:

STATE CAPITAL

Alabama Montgomery

Alaska Juneau

Arizona Phoenix

Arkansas little Rock

California Sacramento

INTERACTIVE SCRIPT/VS PROCESSING

For TSO and CMS, when you use SCRIPT/VS, you do not have to have
all of your input text in final form when you issue the SCRIPT
command. There are several control words that allow you to inter
act with SCRIPT/VS as your document is being formatted:

• The .TE [Terminal Input] control word accepts input lines of
text or control words as though they were part of an imbedded
input file, and processes each line as it is entered.

• The .RV [Read Variable] control word allows you to assign a
value to a symbol during SCRIPT/VS processing by entering it
at the terminal. When assigning symbol values during
SCRIPT/VS processing, the syntax rules for the .SE [Set Sym
bol] control word must be observed. (See". SE [Set Symbol]" on
page 313 for a description of these syntax rules.)

• The .RD [Read Terminal] control word allows you to type text
at a typewriter terminal during SCRIPT/VS output. This con
trol word is useful if you are creating form letters and want
to enter names, addresses, or other kinds of variable infor
mation directly at the terminal. The text you type is not
inserted into the input file and is not processed by
SCRIPT/VS.

• The .DF [Define Font] STOP control word allows you to change
typing elements at a typewriter terminal.

The .TE [Terminal Input] and .RV [Read Variable] control words are
enhanced by using the . TY [Type on Terminal] control word to
produce a prompting message, which is displayed at the terminal
during SCRIPT/VS processing. The prompting message is not format
ted as pa rt of the output.

The .TE [Terminal Input] control word accepts several operands.
If you specify (in the input file)

.te on

SCRIPT/VS reads input lines from the terminal until you type in

.te off

Then, SCRIPT/VS processing continues with the next line in the
file. You can enter SCRIPT/VS control words or text.

126 Document Composition Facility: User's Guide

You can specify a numeric parameter with the .TE control word. For
example, specifying

.te 4

causes SCRIPT/VS to read four lines from the terminal.

You can also terminate terminal input with the .EF control word,
which indicates the end of the current file. The .TE [Terminal
Input] control word is essentially an imbed, where the "file"
imbedded is the terminal.

The following example uses these control words to process and for
mat the same file an indefinite number of times.

· .. start
· im heading
.ty Enter NAME (1 line)
.rd I
.ty Enter ADDRESS (2 lines)
.rd 2
.im letter
.ty Any more! (YES or NO)
.rv answer = ,
.if /&U'&answer eq /YES .go start

The .RV [Read Variable] control word allows one line to be entered
at the terminal. It assigns that line the symbol &answer. In the
following .IF [If] control word, the uppercase attribute (&U') of
the symbol &answer is concatenated to an arbi trary delimi ter
(/)39 and is compared to the string "/YES."

Since your response is folded to uppercase, you can enter either
"yes" or "YES" and the comparands will be found equal, causing the
loop to continue.

If you are planning to format your document for a typewriter ter
minal that has changeable typing elements, you can tell SCRIPT/VS
which parts of the document are to be typed with different ele
ments. You can also instruct SCRIPT/VS when to stop so that the
typing elements can be changed. For example, if your document will
contain APL characters, you can define your APL typing element as
a font by specifying

.df apl stop

In your text, you would then use the .BF [Begin Font] and .PF
[Previous Font] control words wherever you want SCRIPT/VS to stop
typing and allow you to change the typing elements. For example,
suppose your document contains

First, enter the
· bf apl
) load analyze
.pf
command.

When the document is formatted to a typewriter terminal,
SCRIPT/VS will stop after typing "the" to allow you to change the
typing element. When you have changed the typing element, you hit
the "ATTN"40 key and SCRIPT/VS will continue typing the formatted

39 If you do not enter any text in response to the .RV control
word, the value assigned to the symbol &answer is null. When a
symbol that can have a null value is used as a comparand with
an .IF [If], .AN [And], or .OR [Or] control word, an arbitrary
preceding delimiter should be used, as discussed in "Chapter
12. Symbols in Your Document" on page 129.

40 In CMS, issue the CP command TERM ATTN OFF to suppress the
normal CP attention acknowledgment (!) when you hi t the
"ATTN" key.

Chapter 11. Combining SCRIPT/VS Files 127

document. When SCRIPT/VS stops after "analyze," you can change
the typing element again. As before, after you have changed the
typing element you hit the "ATTN" key and SCRIPT/VS will continue
printing, producing the following results:

First, enter the)LOAD ANALYZE command.

Communicating With VM/370

Another useful feature of SCRIPT/VS is the ability to execute CMS
or CP commands from CMS SUBSET during SCRIPT/VS processing. To
execute a command (or an EXEC procedure or user program), use the
.SY [System Command] control word. For example,

.sy cp spool printer class s

The .SY [System Command] control word is convenient if you ordi
nari ly need to issue several commands before you process a
SCRIPT/VS file (you may need certain disks, a particular printer
class, as in the above example, and so on). With the .SY [System
Command] control word you can put the commands directly in the
input file.

If a SCRIPT/VS file imbeds several files from another user's disk,
you can include the commands to link to and access the required
disks. For example,

.sy cp link user2 191 291 rr rpass

.sy access 291 b

. im filea

. im fileb

.sy release 291 (detach

When you execute a command during SCRIPT/VS processing, you might
not want SCRIPT/VS to continue processing if the command fails. To
test the return code from the CMS or CP command, you can check the
value of the SCRIPT/VSsystem symbol, &$RET:

.sy exec mysetup

.if &$RET ne 0 .qu

If the EXEC procedure MYSETUP completes wi th a nonzero return
code, SCRIPT /VS terminates processing. If the return code is
zero, execution continues with the next input line following the
.IF control line.

Note: The CMS commands PCP" and "EXEC" are explicitly shown here
for clarity. The implied CP (IMPCP) and implied EXEC (IMPEX) func
tions are not turned off when SCRIPT /VS executes, as they are
within an EXEC file.

communicating With T50

The .SY [System Command] control word can be used to specify TSO
commands and procedures to be executed after SCRIPT/VS completes
processing an input file. The commands speci fied wi th . SY are
passed to TSO for execution in the order they are encountered,
provided SCRIPT/VS was not invoked from a TSO ClIST.

For example, the .SY [System Command] control word might be used
to display the output file after it has been formatted. To request
that the document be sent to an output file, you can specify

script infile file('outfile') ...

within the file. This causes the output file to be displayed:

.sy edit 'outfile' old

128 Doc~ment Composition Facility: User's Guide

CHAPTER 12. SYMBOLS IN YOUR DOCUMENT

By using symbols, you can refer to page numbers, variable values,
character strings, and control words in your input file. A symbol
has a name and a value. When SCRIPT/VS encounters a symbol name,
it replaces it with the symbol's current value. After all symbol
names in an input line have been replaced with their current val
ues, SCRIPT/VS processes the line.

Define a symbol with the .SE [Set Symbol] control word. For exam
ple, to define the symbol &printer, you can issue

.se printer = 'IBM 1403 Printer'

later, you can refer to the symbol "printern in an input line as
"&printer". Each SCRIPT/VS symbol is identified with its prefix,
an ampersand (&). The symbol is terminated with either a period
C.) or a blank. For example, the input line

Our publisher uses the &printer for output.

is processed by SCRIPT/VS and printed as:

Our publisher uses the IBM 1403 Printer for output.

but,

Our publisher uses the &printer ..

is processed as:

Our publisher uses the IBM 1403 Printer.

Your document might contain the symbol "&printern many times, in
different places. In the future, when you want the document to
describe a different printing device, you can reset the symbol
with

.se printer = '3800 Printing Subsystem'

At that time, SCRIPT/VS will process your document and substitute
the new value for the same symbol:

Our publisher uses the 3800 Printing Subsystem for output.

The symbol's name can be up to ten characters long, and may con
tain upper and lowercase characters, numbers, and the characters
a, I, and $.

The symbol's value can be a character string, a numeric value,
another symbol, or an arithmetic expression. It can contain com
pound data items with imbedded blanks and control words. If the
symbol's value contains blanks or special characters, enclose the
entire value in single quotation marks Cas shown in the example
above).

Some examples of valid symbol definitions are:

.se corp = 'Scriptographicology, Inc. ,

.se add = 1

.se incr = &add + 1

.se mult = &add * 10

.se test = testa

.se TEST = testb

You can set a symbol to:

• A numeric value:

.se number = 25

• A char~cter string:

Chapter 12. Symbols in Your Document 129

.se textl = 'IBM 1403 Printer'

• A character string that includes a quoted phrase:

.se type 'prepared on a 'word processing' machine

• A SCRIPT/VS control word:

.se break = '.br'

-. The value of another symbol:

.se printer = '&textl'

You can perform integer a ri thmeti c wi th

• To increment it:

.se next = &number + 1

• To decrement it:

.se prev = &number - 1

• To divide it:

.se half = &number / 2

• To multiply it:

.se cost = &number * 20

• To negate a value:

.se negvalue = -&number

symbols:

Symbols can also be set using the . RV (Read Variable] control'
word. The .RV control word allows you to enter symbol values from
a terminal during SCRIPT/VS processing in interactive environ
ments. For details, see ".RV [Read Variable]" on page 311.

Symbols can be set to a part of the value of another symbol by
using the SUBSTR (substring) parameter of the .SE [Set Symbol]
control word. The substring is one or more characters of the char
acter string (the symbol's value). For example,

.su off

.se corp = 'Scriptographicology, Inc.'

.se name = substr &corp 1 6

.su on

sets the symbol &name to the substring of the value of the symbol
"&corp" beginning with character 1 and continuing for 6 charac
ters. Because "&corp" has been previousl y set to
"Scriptographicology, Inc.", this substring results in the symbol
&name having the value of the 6-character substring "Script".

In the same manner, the SUBSTR (substring) function can be used to
extract characters from a character string that is not another
symbol's value. For example,

.se name = substr Jonathan 5 4

sets the symbol &name to that 4-character substring of "Jonathan"
beginning with character 5: the symbol &name will have the value
"than". The substring must follow the rules for character string
values of a symbol. If the string contains any imbedded blanks or
special characters, including arithmetic operators, it must be
enclosed in single quotation marks.

You can use the INDEX function of the .SE [Set Symbol] control
word to find the location of a string of characters within a sym
bol value or a string of characters. For example,

130 Document Composition Facility: User's Guide

.se name = 'Nicola'

.se location = index &name cola

defines the symbol &location to have the value 3, because the
string 'cola' starts with the third character of the value of
&name (Nicola).

HOW SCRIPT/VS SUBSTITUTES VALUES FOR SYMBOL NAMES

When SCRIPT/VS processes an input line, it first scans for any
symbols in the line that require substitution. SCRIPT/VS checks
any character string that begins with an ampersand (&) to see if
it is a symbol name. When SCRIPT /VS finds a valid symbol, it
replaces the symbol's name with its value. A symbol name is termi
nated either with a blank, a period (.), or the end of the input
line. If the symbol name is terminated with a blank, the blank is
treated as a normal input character and is left in the input line.
If the symbol name is terminated with a period, the symbol value,
after substitution, is concatenated with the next input character
and the period is removed. Therefore, if a symbol has punctuation
immediately after it, you must concatenate the punctuation char
acter to the symbol with a symbol-end period. For example,

This list ends with an &iteml ..

results in an end-of-sentence period concatenated with the value
of the symbol named &iteml. Otherwise, SCRIPT/VS considers a sin
gle period as the end-of-symbol indicator and concatenates the
symbol with the next character.

You should use this technique when the symbol precedes other punc
tuation marks or text. For example,

compound Symbols

The name of our product is &prodname., which is planned
for shipment on &shipmo &shipday., 19&shipyr ..

In this example, values for the symbols are substituted with the
adjacent text and punctuation wi th no intervening blanks. The
printed sentence appears as:

The name of our product is Whizbanger, which is planned
for shipment on 12 September 1982.

If you do not place a concatenating period between &prodname and
its punctuation (,), SCRIPT/VS regards "&prodname," simply as a
character string, and performs no substitution.

You can redefine a symbol as often as necessary in your input
file. Each time you redefine the symbol with the .SE [Set Symbol]
control word, the new value replaces the old value.

Symbol substitution is performed before the line is evaluated.
The resul t of symbol substi tution may cause· the original input
line to be split into more than one line whether a control word
modifier is used or not.

When SCRIPT/VS substitutes values for symbol names, it performs
as many substi tutions as necessary to resolve the symbol name.
Because of this, you can use a compound symbol, composed of two or
more separately defined symbols. For example, when you define the
symbols

.se x = 1

.se typel = first

.se type2 = second

the input line

This is the &type&x try.

Chapter 12. Symbols in Your Docum~nt 131

results in:

This is the 8typel try. (intermediate result)
This is the first try.

Another example of compound symbols is in "Elaborating the System
Date" on page 138.

Unresolved Symbols

Sometimes SCRIPT/VS encounters a symbol name that has not yet been
defined. In this case, the symbol is unresolved and remains in the
input line as a character string that happens to begin with an
ampersand. The unresolved symbol is printed on the output page as
it appears in the input line.

When you use symbols that are set later in the document than they
are referred to (such as a symbol that refers to a page number or
a figure number), the symbol will be unresolved when first
encountered. When you specify the TWOPASS option with the SCRIPT
command, SCRIPT/VS processes the input file twice. As a result,
properly defined symbols not resolved during the first formatting
pass will be resolved during the second pass.

Inhibiting Substitution

Usually, ampersands that occur in an input file as ordinary text
characters are treated as text characters and not as symbol delim
iters. The context in which it appears usually prevents the text
ampersand from being mistaken for a symbol name. Where a text
ampersand precedes a character string that forms a defined symbol
name that you want treated as a text character string, there are
several ways to inhibit symbol substitution:

• Turn off substitution with the .SU [Substitute Symbol] con
trol word. With the .SU OFF control word, all substitution is
turned off. You can turn symbol substitution on again with .SU
ON.

• Contrive to make the symbol name unrecognizable by adding
punctuation without a delimiting period. For example,

I have defined the symbols &AAA, 8BBB, 8CCC, and others
for this file.

The symbol for the day of the month (8SYSDAYOFM) is
maintained by SCRIPT/VS.

Use the symbol "8xyz" for this purpose.

• Translate an unused punctuation mark or special character on
your keyboard to the ampersand, and enter the special charac
ter in your input whenever you need a text ampersand:

.tr ¢ &

Because the translation happens after symbol substi tution,
the text ampersand cannot be mistaken for a symbol-starting
ampersand.

• Define a symbol to have the value of an unused hexadecimal
code and translate that code to an ampersand. Enter the symbol
name in your input whenever you need a text ampersand. The 8X'
attribute can be used to assign the unused hexadecimal code to
a symbol. For example,

.se ·amp = 8x'07

.tr 07 8

defines a symbol named "8amp" whose value is the single
hexadecimal code 07, and establishes an output translation
which maps that hexadecimal code to the character 8.

132 Document Composition Facility: User's Guide

You can use the symbol & whenever you want an ampersand to
appear. 41

There are many times when text ampersands are perfectly safe and
there is no need to worry about an unexpected substitution. Any
time the character string immediately following the ampersand is
not a symbol name, no substitution occurs. A character string can
not be a symbol name if:

• It has not been defined as such with a previous .SE [Set Sym
bol] control word

• It contains a character that would not be allowed in a symbol
name (before the first blank or period that ends a symbol
name)

• It contains more than ten characters before a blank or period

Canceling a Symbol

When you no longer want to use one of the symbols you've previous
ly defined, you can cancel the symbol:

.se oldsymbol off

The symbol &oldsymbol will be regarded by SCRIPT/VS as an unde
fined symbol. It is as though it had never been defined; it is not
regarded as a null-value symbol. When you specify

.se oldsymbol =
-or-

.se oldsymbol = "
you redefine the symbol with a "null" value. It exists as a symbol
but it has as its value the null string. Note that a null symbol
is quite different from an undefined symbol. The null symbol is
substituted with a value: the zero-length null string.

Attributes of a Symbol's Value

SCRIPT/VS provides you with the ability to determine some of the
characteristics of a symbol in your input file, such as:

• Its existence (&E')

• Its length (&l')

• Its type (&T')

• Its current value (&V')

In addi tion, you can convert

• A numeric symbol value to a base-26 "number" (that is, a char
acter string: 1 = A, 2 = B, ... 26 = Z, 27 = AA, 28 = AB, ...
and so on). (&A' or &a')

• A numeric symbol value to its roman numeral character string
equivalent (&R' or &r')

• A lowercase character string to uppercase (&U')

• A character representation of a hexadecimal string to that
string (&X')

41 This technique has been used in marking up this book whenever
a text ampersand is required.

Chapter 12. Symbols in Your Document 133

lA' converts a number to a character string. The number is con
verted to a character string that might be thought of as a base-26
number composed of alphabetic letters.

• &A'2 will cause the string B to be substituted.

• &A'26 will cause the string Z to be substituted.

• &A'27 will cause the string AA to be substituted.

• &A'28 will cause the string AB to be substituted.

• &A'705 will cause the string AAC to be substituted.

• &a' 28 wi 11 cause the stri ng ab to be substi tuted.

The largest number that can be converted is 65535. Numbers higher
than this return a zero.

For both &R' and &A', if the character string to be converted is
not a decimal integer number, the re"sult is zero (for example,
&R'zorch=O).

IE' verifies the existence of a symbol. When you use the &E' sym
bol attribute, the value is substituted with either a 1 or a 0,
depending on whether or not the character string following &E' is
a defined symbol. For example,

.se test = on
The result is &E'&test ..

results in:

The result is 1.

If the symbol named &test had not been set, the value of &E'&test
would be o. Any character string that is not a defined symbol
name, as in

&E'czechoslovakia

results in o.
IL' determines the length of a symbol's value (or the length of
any character string, for that matter). For example, after the
lines:

.se test = 'This is a test.'

.se length = &L'&test

the value of &length is 15. If the symbol named &test had not been
set, then &length would have a value of 5 (that is, the length of
the character string "&test").

IR' converts a decimal number to a roman numeral. The decimal
integer number is converted to a character string that represents
the number's roman numeral equivalent:

• &R'87 will cause the string LXXXVII to be substituted.

• &R'19&SYSYEAR will cause the string MCMLXXXII to be substi
tuted (in 1982).

• &r'87 will cause the string lxxxvii to be substituted.

The largest number correctly translated to a roman numeral is
3999. For numbers between 4000 and 9999, the character "T" is used
to represent the number "5000" or "10000" (for example, &R'6020 =
TMXX and &R'9020 = M?XX). Numbers larger than 9999 are not trans
lated to roman numerals (zero is returned).

IT' analyzes the symbol's type and replaces the character string
with:

134 Document Composition Facility: User's Guide

• N, if the value can be converted to a numeric value that can
be used in an arithmetic expression, or

• C, if the value contains nonnumeric data (Characters).

The "N" or "c" that SCRIPT /VS sets is always in uppercase. For
example,

&T'1978

is replaced with "N", but

&T'DAD

is replaced with "C".

IU' converts lowercase characters to uppercase. For example,

&U'hello

results in:

HEllO

IV' returns the current value of the symbol (as it was last set),
without any further substitution. An undefined symbol or a char
acter string has no value attribute, (that is, a value attribute
of nothing). For example,

.se a = '&b.linda'

.se b = 'Be'

An occurrence of &a will be substituted with "Belinda" and its
length is 7 (however, &l'&a = 8). An occurrence of &V'&a will be
substituted with "&b.linda".

Attribute symbol prefixes can be combined. For example, &l'&V'&a
is the length of the value of the symbol &a, which is 8.

Note that &V' returns a character string that represents the cur
rent value of the symbol as previously set. In other words, a
defined symbol has a value; character strings and undefined sym
bols do not have a value (that is, a character string's "value" is
null). For example,

.se a = '&c.linda'

• &V'&a yields the character string "&c.linda". The ampersand
and the period in "&c." are merely text characters, not symbol
delimiters, for this value substitution.

• &V'&c.linda yields the character string "linda". In this
case, the ampersand and the period in "&c." act as symbol
delimiters. The value of the symbol "&c" is concatenated to
the character string "linda". Since "&c" is not a defined sym
bol, it has no "value."

• &V'&V'&a yields either of two results, depending upon whether
or not substitution tracing is in effect from the .IT [Input
Trace] control word. let's see why:

If substitution tracing is off, &V'&V'&a yields the null
string. &V'&a yields the character string "&c.linda", as
shown above, as an intermediate result. The value of this
character string is the null string.

If substitution tracing is on, &V'&V'&a yields the char
acter string "linda". &V'&a yields the intermediate
result "&c.linda", but in this case substitution stops at
this point so that the intermediate result can be traced.
After tracing, the string "&V'&c.linda" is evaluated as a
separate operation. The ampersand and the period in "&c."
now act as symbol delimiters, causing the value of the

Chapter 12. Symbols in Your Document 135

symbol "&c", which is null, to be concatenated to the
string "linda".

Attributes apply only to the symbol (or character string) imme
diately following them, up to the next delimiter (period or
blank). For example,

.se a = '&J'

.se b = 'K'

.se JK = 'TIMOTHY'

The string &a.&b resolves to "TIMOTHY", since &a.&b resolves to
"&J&b", then to "&JK", and finally to "TIMOTHY". However, the
string &L' &a. &b resul ts in "2K", because "&L' &a" is evaluated
first. SCRIPT/VS provides a length of 2 (for the symbol's value:
"&J"), and concatenates the "2" with the character "K". &L'&a&b
results in "3", because "&b" is evaluated first and the length
SCRIPT/VS provides is the length of the character string "&aK"
(because a symbol with that name hasn't been defined in the exam
ple).

The symbol attribute names &E', &l', &T', and &V' can be
specified, to produce the same result, in either uppercase or low
ercase. That is, &l' and &1' will both return the length of a sym
bol.

However, the symbol attribute &R', which converts a numeric value
to roman numerals, and &A', which converts a numeric value to an
alphabetic character string, have different meanings when speci
fied in uppercase and lowercase.

&X' converts a character representation of a hexadecimal string
into that string. Hexadecimal codes that do not have common key
board assignments can be entered with the &X' attribute. For exam
ple, the bullet character (hexadecimal AF) can be entered by
specifying

&x'af Step one:

This results in the formatted line

• Step one:

The &X' attribute converts the hexadecimal code "af" to a bullet.
The hexadecimal code must contain an even number of hexadecimal
digits (0 to 9 and A to F). For example,

DATA&x'afad.TRANSFORM&x'b2bdbe.0

resul ts in

DATA·[TRANSFORMZ]~O

If an even number of hexadecimal digits is not specified, or an
invalid hexadecimal digi t is encountered, the value of the 0
attribute is zero.

SYMBOL AND MACRO LIBRARIES

If a symbol cannot be resolved from a definition that has been set
with the .SE [Set Symbol] control word, SCRIPT/VS can look for a
definition in a library.

A symbol and macro library is a partitioned data set. In CMS, a
library is a file whose filetype is MAClIB, which is a CMS simu
lated partitioned data set. Each symbol definition in the library
is a one-line member whose member name is the symbol name. (Macro
definitions can reside in the same library, and may occupy as many
lines as required.) In ATMS-III, a "library member" is a document
or a subdocument.

No trailing delimiter is required of symbols in a library.
However, for compatibility with Release 1, the last nonblank

136 Document Composition Facility: User's Guide

character of a symbol value found in a library will be recognized
as a delimiter and deleted if, and only if, it is a colon (:). If
you want a colon to be the last character of such a symbol value,
add another colon as a delimi ter.

Before searching a library for a symbol, SCRIPT/VS translates the
symbol name to uppercase characters. Even though SCRIPT/VS recog
nizes the symbols "&libsym" and "&LIBSYM" as separate and unique
symbols, the library doesn't. Member names in the library are
always in uppercase. Therefore, the symbol names "libsym" and
"LIBSYM", even though they are different, will be set from the
same library member. You can use the library in two ways:

• To explicitly set a symbol name by declaring that its defi
nition is in a library:

.se para lib

SCRIPT/VS searches the library specified by the LIB option of
the SCRIPT command for the definition of ¶ (member PARA)
and sets it in the SCRIPT/VS symbol table.

• To set an unresolved symbol. During substitution, the library
can be searched for a definition of an unknown symbol with the
same name as the symbol (when converted to uppercase) only
when .LY ON or .LY SYM is specified. If found in the library,
the symbol is defined in the SCRIPT/VS symbol table.

When you are sure that none of your symbols are defined in a sym
bol library, you can issue the .LY [Library] control word to pre
vent library searches for unresolved symbols. (The initial
setting is OFF. You have to specify .LY ON or .LY SYM to search a
library for undefined symbols.)

The .LY OFF control word prevents all library searches, for unre
solved macros as well as for symbols. The .LY MAC control word
allows library searches for unresolved macros.

Note: When you specify that a symbol's definition is in the symbol
library wi th

.se libsym lib

the current .LY [Library] control word specification is ignored.
In the above example, the library is searched to find a defini tion
for &libsym. Remember, the symbol name is translated to uppercase
before searching the library.

SCRIPT/VS SYSTEM SYMBOLS

There are several 'groups of system symbol names that are initial
ized and recognized by SCRIPT/VS:

• Symbols you can use to obtain the current date and time.

• Symbols you can use to obtain current values of SCRIPT/VS for
matting parameters: the current line length, left margin
indention, and page length, to name a few.

• The symbol set as a return code from the latest CMS command
executed using the .SY [System Command] control word.

A complete list of system symbols is given in Figure 35 on page
361.

Some of the system symbols begin with "&$". These symbols cannot
be changed with a .SE [Set Symbol] control word, because they are
reserved and contain SCRIPT /VS formatting parameters and
controls. Most of the special symbols reflect values under your
control. You can change them with the appropriate control word or
command option, but not with the .SE [Set Symbol] control word.
All symbols that begin with a $ may be entered in either upper- or
lowercase, including any non-system symbols that you define.

Chapter 12. Symbols in Your Document 137

All other system symbols (those that do not begin with "&$") can
be manipulated and modi fied by . SE [Set Symbol] control words
within the input file.

Symbols for the System Date and Time

The symbol names for date and time values that are maintained by
~he system are:

Symbol Name

&SYSYEAR
&SYSMONTH
&SYSDAYOFM
&SYSDAYOFW
&SYSDAYOFY
&SYSHOUR
&SYSMINUTE
&SYSSECOND

Description

Year
Month
Day of the month
Day of the week
Day of the year
Hour of the day
Minute of the hour
Second of the minute

Value Range

00-99
01-12
01-31
1-7 (1 = Sunday)
001-366
00-23
00-59
00-59

The date and time values are set once and stay in effect through
out the processing of the file. You can use these symbol names to
set symbol values for the date and time yoursel f.

No punctuation is provided by SCRIPT/VS for combining these val
ues. You must supply it yourself when combining them. For example,
to obtain the current date and time for printing on your output
pages, you might enter:

DATE: &SYSMONTH./&SYSDAYOFM./&SYSYEAR
TIME: &SYSHOUR.:&SYSMINUTE.:&SYSSECOND

Notes:

• The date and time symbol names must be speci fied wi th all
uppercase characters.

• Leading zeros are provided wi th the symbol value whenever
appropriate. For example, on the eighth day of the month the
value of &SYSDAYOFM is set to "08", rather than to "8". To
suppress leading zeros, you can reset the symbol with the fol
lowing arithmetic expression before you refer to it:

.se SYSDAYOFM = &SYSDAYOFM + 0

The symbol &SYSDAYOFM will be redefined, for your input file
only, without leading zeros. SCRIPT/VS removes leading zeros
from the result of arithmetic expressions on the right-hand
side of the equal sign in .SE control words.

Elaborating the System Date

If you want to print the date with the names of the months and
days, your output page can include the date in the form

Tuesday, August 31, 1982.

This requires a group of .SE [Set Symbol] control words using the
reserved symbols in compound expressions, as follows:

138 Document Composition Facility: User's Guide

.se dl = Sunday

.se d2 = Monday

.se d3 = Tuesday

.se d7 = Saturday

.se mOl = January

.se m02 = February

.se m12 = December

To eliminate the leading zero of &SYSDAYOFM, include

.se SYSDAYOFM = &SYSDAYOFM + 0

leading zeros that occur with the other symbols do not present a
problem in this example.

The symbolic input line might be:

&d&SYSDAYOFW .. , &m&SYSMONTH .. &SYSDAYOFM., 19&5YSYEAR ..

which results in:

Tuesday, August 31, 1982.

Notice the ending delimiters for the
&d&SYSDAYOFW and 19&5YSYEAR in the above:

compound symbols

• "&d&SYSDAYOFW .. ," ends wi th two peri ods to p'revent the symbol
name from being concatenated with the comma and to allow its
value to be concatenated with the comma. This compound symbol
requires two stages of substi tution to be resolved.
&SYSDAYOFW ends with the first period. When resolved, the
symbol &d3 ends with the second period. In this way, the comma
needed for punctuation is concatenated with the name of the
weekday.

• 19&5YSYEAR is not a compound symbol. It is resolved with only
one ~tage of substitution. The character string "19" is con
catenated with the symbol "&SYSYEAR". The first period ends
the symbol &SYSYEAR. The second period is needed (in this
example) for punctuation, and is concatenated with the value
of the year.

Symbols for SCRIPT/VS Control Values

SCRIPT/VS allows you to examine the formatting parameter values
it uses when processing your input file. Some of the values change
dynamically. You can obtain the parameter's current value by
using the system symbols.

The symbols that represent SCRIPT/VS internal formatting parame
ters cannot be set by .SE control words in your input file. The
name of each of the following reserved symbols begins with "&$"
and can be specified using either lowercase or uppercase charac
ters. The system symbols are listed and described in Figure 35 on
page 361.

You can use this technique to ens,,'re proper resul ts even though
some formatting parameters can change dynamically. For example,
the following sequence produces a box the width of the output
page:

Chapter 12. Symbols in Your Document 139

.se indent = &$IN

.if &indent eq 0 .se indent = 1

.bx &indent &$CL

. in +2m

. ir +2m
The .BX control word begins
a box structure
.bx off

which results in

The .BX control word begins a box structure using the
current margins. The .IN [Indent] and .IR [Indent Right]
control words shift the margins to position the text within
the box. After the text is processed, the original values
are restored.

As another example, you might want to leave a blank page with only
a figure caption at the bottom of a single column page. Perhaps
the file is to be printed within different master files, each of
which requires a different page length. You might code the follow
ing sequence:

.pa

.se lines = &$LC - I

.sp &lines
Figure x. Sample Output

You will find that these special symbols can be especially useful
when writing SCRIPT/VS macros, or for testing the current envi
ronment using the .IF control word family.

The 'tRET Special Symbol

In CMS, the &$RET special symbol contains the return code from the
eMS or CP command that was most recently executed as a result of a
.SY [System Command] control word. You can examine the return code
and take conditional action based on its value. For example, the
following sequence will imbed a file named OPTDATA only after
ensuring that the file exists:

.sy state optdata script *

.if &$RET eq 0 .im optdata

In TSO, &$RET is set to "0" by the . SY [System Command] control
word to indicate that the command was stacked for execution after
SCRIPT/VS terminates.

In ATMS-III, &$RET is always set to 0, indicating that the .SY
[System Command] control word is ignored by ATMS-III.

In batch, &$RET is set to "-3" to indicate that the .SY [System
Command] control word is not supported.

The 'tLC Special Symbol

The &$LC special symbol contains the number of lines left in the
column at the time of symbol substitution. This value does not
include running ti tIes, headings, or footings which have been
placed on the page, nor does it include keeps, widows, or partial
ly filled output lines which have not been placed in the column at
the time of symbol substitution.

The value of &$LC at the time of symbol substi tution may not accu
rately reflect the final position of surrounding text on the page
if that text is in a keep, float, or widow, if there is a partial
ly filled output line, or if column balancing is in effect. The
value of &$LC at the time of symbol substitution will accurately
reflect the final position on the page of text only at the begin
ning of a new page, section, or column.

140 Document Composition Facility: User's Guide

PASSING PARAMETERS TO INPUT FILES

SCRIPT/VS has three sets of symbols that are set automatically by
parameters passed to a file or macro. These are:

• SCRIPT/VS system symbols, which can be set when the SCRIPT
command is issued

• Parameters passed to imbedded files with the .IM [Imbed] and
.AP [Append] control words

• Pa rameters passed to a macro

Setting Symbols with the SCRIPT Command

Use the SYSVAR option of the SCRIPT command when you want to pass
values to the input file from the SCRIPT command line.

The symbols that you can set with the SYSVAR option have names
starting with "&SYSVAR" appended to one alphameric character: 0
through 9, uppercase A through Z, and a, I, and $. For example,

script outline (sysvar (a atype 2 nogo

This command line sets the symbols &SYSVARA to ATYPE and &SYSVAR2
to NOGO. Lowercase letters assigned to an &SYSVAR symbol are
translated to uppercase letters. Consequently, when you include
the symbols in an input line, always use the uppercase symbol name
and character-string values.

For example, &SYSVARA may be used to bypass parts of the document
and &SYSVAR2 may be used to terminate processing before com
pletion:

.if &SYSVARA eq ATYPE .go aproc

.if &SYSVAR2 eq NOGO .qu

... aproc

When you use &SYSVAR symbols, it is good practice to put comments
at the beginning of your input file so that other users who proc
ess the file are aware of each &SYSVAR symbol and the meanings of
its values.

For details about the SYSVAR option of the SCRIPT command, see
"Chapter 2. Using the SCRIPT Command" on page 13.

Symbols Set When a File Is Imbedded or Appended

You can pass parameters to an imbedded or appended file with the
.IM [Imbed] and .AP [Append] control words. The symbols &0 through
&14 are set to the parameters following the name of the imbedded
file. For example,

.im finance George 125 $21.50 '18-7'

When the file named FINANCE is imbedded, the symbols &0 through &4
are automatically set by SCRIPT/VS:

Symbol
Name

&0
&1
&2
&3
&4

Value Set by SCRIPT/VS

4
George
125
$21.50
18-7

Symbol &0 contains the number of parameters passed. Up to 14
parameters can be passed when a file is imbedded or appended.
These parameters are called "tokens." Each token can be up to
ei ght cha racters long, del imi ted wi th blanks. The rul es that
apply to setting the value of a symbol also apply to specifying a

Chapter 12. Symbols in Your Document 141

token. See "Chapter 11. Combining SCRIPT/VS Files" on page 119 for
details about imbedding and appending files.

Symbols Set When a Macro Is Processed

You can pass parameters to a macro when your input file calls the
macro. The parameters become macro-local symbols (that is, sym
bols that are set for the called macro only; not for other macro
calls that occur within the called macro). The format of the macro
call might be:

.burger fries+shake nosauce 'on a great big poppy-seed bun'

When the macro BURGER is processed, local symbols within it are
automatically set by SCRIPT/VS:

Symbol
Name

&*
&*0
&*1
&*2
&*3
&*4
&*5

Value set by SCRIPT/VS

fries+shake nosauce 'on a great big poppy-seed bun'
5
fries
+
shake
nosauce
on a great big poppy-seed bun

Symbol &* contains the entire untokenized input line. It contains
all leading blanks after the blank that delimits the macro name.
Symbol &*0 contains the number of symbol values passed. The sym
bols &*1 through &*n contain the individual tokens passed to the
macro. Notice that blanks, arithmetic operators, and parentheses
normally delimit tokens, but that a single token can contain these
and other special characters if it is enclosed in single quotation
marks. Also, macro tokens are not subject to the 8-character limit
applied to .IM [Imbed] and .AP [Append] tokens. See "Chapter 13.
Writing SCRIPT/VS Macro Instructions" on page 147 for details
about specifying symbols within macro instructions.

Note: Symbols whose names begin with an asterisk (*) are treated
differently from other symbols. Other symbols are globally avail
able to all files and macros, but symbols whose names begin with
an asterisk (*) are local to a particular macro at a particular
level of nesting. The symbols ~&*~ ~nd "&*0" through "&*n" that
are used to pass tokens to a maCro are "macro-local symbols." Each
time a macro is called, a new set of macro-local symbols is estab
lished for it. The set lasts until th~ macro completes.

Unlike other symbols, macro-Ioc~l symbols, when undefined, are
replaced during symbol substitution w~th the null string.

SETTING THE CURRENT PAGE NUMBER

You can set a symbol to be equal to the value of the current page
number when the .SE [Set Symbol] control word is encountered. For
example,

.se pagenum = &

A single ampersand on the right-hand side of the equal sign of a
.SE control word is replaced with the character string of the cur
rent page number, including its prefix, if any. Elsewhere in your
document, you can refer to the page number with its symbol name.
To continue the example,

For details, see page &pagenum ..

Whenever the &pagenum symbol occurs in your document, SCRIPT/VS
replaces it with whatever the page number was when the .SE [Set
Symbol] control word was processed. If the symbol is set before
the page is started, the page number will be the same as that of

142 Document Composition Facility: User's Guide

the previous page and not that of the next page. At the start of
the document, the page number is O.

SYMBOLS FOR ARRAYS OF VALUES

An array symbol is a special type of symbol that allows you to
assign many values to the same symbol name. Each individual ele
ment of the array has, in addition to the name, an element number
in parentheses. The element number is also called the index or
subscript of the element. When you format your document for
output, the entire array of values can be referred to by a single
symbol name. An array symbol is defined with the .SE [Set Symbol]
control word. For example,

.se name() = value

The parentheses indicate that this is an element of an array and
"value" is an~ expression that can legally appear on a .SE [Set
Symbol] control word line. The notation () is a shorthand way to
specify the "next" element of the array.

When SCRIPT/VS encounters the array symbol value in the forml

&nameOO

it replaces "&nameOO" with the values of all the currently
defined array elements, in the order in which they are indexed. A
comma and a blank separate the individual elements. You can speci
fy di fferent array separator characters using the . DC [Define
Character] ASEP control word (for details, see ".DC [Define Char
acter]" on page 241).

When the output line is too long because of the expansion of an
array symbol, the line's first part is used as one output line and
the remainder is printed on the next output line.

You can also cancel an array symbol by using the OFF parameter of
the .SE [Set Symbol] control word. If the symbol is an array sym
bol and no subscript is provided, the entire array is cancelled.

controlling the Array Elements

Each element in an array has a value associated with it. You can
refer to any element of the array wi th the array's symbol name and
the element's index number in the form

&nameCn)

where "n" is the positive integer that identifies the position of
the element wi thin the array.

An array symbol reference can be used anywhere that a nonarray
symbol can be used. If the element "nO exists in the array, its
value is substituted just as a normal symbol's value would be. If
the symbol exists but has n~ element Un", a null value is substi
tuted. If the symbol is not defined at all, the symbol is treated
as an undefined symbol.

You can specify which array element you wish to set by including a
number Cidenti fying its location wi thin the array) wi thin the
parentheses. For example, the input line

.se listCl) = &

sets element number 1 of the array with the current page number.
When you list all the elements of the array, this entry will be
listed first, even if it is not the first one set. Here's another
example:

Chapter 12. Symbols in Your Document 143

.se name(l) = I

.se name(47) = 2

.se name(25) = 3

.se name(2) = 4

.se name(3) = 5

The expression

&nameOO

results in "&nameOO" being substituted as follows:

I, 4, 5, 3, 2

In other words, SCRIPT /VS places the array element values in
ascending element index order, not in the order in which they were
defined. In this example, there are many available but undefined
element numbers in between those that are defined. Any undefined
elements in an array are ignored when the array's values are sub
stituted.

The array element number can be another symbol. For example,

.se elem = I

.se array(&elem) = &

No blanks may appear between the symbol name and index. When array
symbols are used on the right-hand side of a .SE [Set Symbol] con
trol word expression and symbol substitution is off, symbols used
as array subscripts must be simple, not compound, symbols.

Accessing the Index Counter

Every array has an element zero, represented by the symbol name

&name(O)

Element zero is an index counter that indicates the last element
used. It tells SCRIPT/VS which element to set next if you didn't
speci fy one.

Note: When the TWOPASS option of the SCRIPT command is specified,
all array index counters are reset to zero for the second pass.

Setting the Index Counter

The expression "name()" is treated as an index counter as well as
a symbolic expression. Each time SCRIPT/VS encounters the
expression, it assumes that the next element of the array is to be
filled. If you never specify a number within the parentheses of an
array symbol, SCRIPT/VS begins numbering with element I.

It is possible to set the ini tial value of the array index
counter, as follows:

.se name(O) = n

where n is any nonnegative integer. Then, the first occurrence of
".se name()", with no element specified, would be equivalent to
".se name(n+I)" and the counter would be increm~nted from there.

In this way, you can start the automatic indexing of an array at
element 5, for example, and reserve elements I through 4 for
explicitly specified definitions.

If you do not set the index counter explicitly, it will be incre
mented from the index value of the element last set. For example,

.se name() = first

.se name(3) = second

.se name() = third

144 Document Composition Facility: User's Guide

The first element of the array is set to the value "first", ele
ment 2 has a null value, element 3 has the value "second", and
element 4 has the value "third".

For substitution of arrays, you can make SCRIPT/VS substitute all
elements of the array (except element zero), or you can make it
substitute just a single element.

The notation &name(5) causes only element 5 to be substituted. The
notation &name(*) causes all elements of the array to be substi
tuted, as previously described.

Any symbol is potentially an array symbol. The symbol &XYZ, for
example, is actually element zero of a possible array. &XYZ(O)
refers to the same symbolic value as &XYZ. If, after using a sym
bol like &XYZ, you set another element with:

.se XYZ(5) = 'last letters'

be careful about the value previously set in element zero (that
is, in symbol &XYZ). If the value is not a number, you will get an
error message if you ever use the shorthand notation where element
zero is supposed to contain the current index.

EXTENDED SYMBOL PROCESSING

A control word can be placed anywhere in an input line as long as
it is preceded by the control word separator and a period. You can
also invoke a control word or a macro at any point in the input
line by setting it as the value of a symbol. This symbol value
must also be preceded by a control word separator. When a symbol
value begins with the control word separator (;), the rest of the
value is treated as though it began a new line. Therefore, a con
trol word that is set as the value of a symbol is processed by
SCRIPT/VS as though it were a control word that started in the
first character position, even when it occurs in the middle of a
text input line. For example, the . BR [Break] control word,
defined as the symbol &BR

. 'se BR = 'i. br i'

causes SCRIPT/VS to interpret the symbol "&BR" as though you had a
new input line starting with ".br i". (Because the value of the
symbol contains a control word separator, the .Sf [Set Symbol]
control word is entered with the control word modifier (') to
inhibit control ~ord separator scanning for that input line. The
control word modifier is described in "Chapter 23. SCRIPT/VS Con
trol Word Descriptions" on page 219.) Thus, the input line

This is line one.&BR.This is line two.&BR.

is formatted as though it were the following four input lines:

This is line one .
. br
This is line two .
. br

Note: The control word modifier was used here to set up the symbol
'BR' that contained control word separators. The extended symbol
processing rule described here takes effect during substitution
and not during control word processing.

Substitution occurs before SCRIPT/VS has classified the line as a
control word line or a text line, thus a control word modifier can
not prevent the symbol sUbstl.tution processor from recognizing a
control word separator.

The input line

.ce Note this; The symbol &BR starts with a semicolon.

is formatted as the following four lines:

Chapter 12. Symbols in Your Document 145

.ce Note this
The symbol

.br
starts with a semicolon.

The extended symbol substitution rule only divided the line into
three parts. The first part was a control word line (.CE ...) that
was later split into two lines by the control word separator rule.

The input line

.'ce Note this; The symbol &BR starts with a semicolon.

is formatted as the following three lines:

.'ce Note this; The symbol

.br
starts with a semicolon.

The control word modifier only suppressed the control word sepa
rator rule for the first line after symbol substitution was com
pleted.

146 Document Composition Facility: User's Guide

CHAPTER 13. WRITING SCRIPT/VS MACRO INSTRUCTIONS

SCRIPT/VS allows you to define your own processing controls,
called macro instructions. The contents of a macro instruction
can consist of SCRIPT/VS control words, GMl markup, symbols, text
lines, and other macros.

You can define macros for GMl processing, to provide additional
formatting controls, or to modify the action taken by a SCRIPT/VS
control word.

To process macros, you must explicitly specify .MS [Macro Substi
tution] ON in your document before SCRIPT/VS encounters any of the
macros. If SCRIPT/VS encounters a macro when macro substitution
is off, the macro will be treated as an invalid control word.

WHEN SHOULD YOU USE MACROS?

Many macro-like functions can be performed by symbols that are
defined as control word strings. Sometimes, though, you may need
to define a macro to perform a function that symbol processing
alone cannot provide. For example, the control word sequence

.se x = &x + l;.se y = &x

is intended to increment the symbols x and y. But because
SCRIPT/VS performs symbol substitution before control word exe
cution, &y is set equal to the current value of &x and only &x is
incremented.

You can perform this sequence properly by defining a macro. For
example,

.dm increment /.se x = &x + 1 /.se y = &x

After SCRIPT/VS processes the macro

. increment

&x and &y have equal values, since the two .SE [Set Symbol] con
trol words are processed sequentially.

Macros also allow you to redefine the meaning of SCRIPT/VS control
words. For example, you can use the macro facility to define new
head levels or redefine the existing ones. Although seven head
levels are provided with SCRIPT/VS, you might want to define addi
tional head levels.

HOW TO DEFINE A MACRO

Use the .DM [Define Macro] control word to define macros. Since
SCRIPT/VS processes macros as control words, an undefined
SCRIPT/VS macro is treated as an invalid control word.

When you define a SCRIPT/VS macro, you must name the macro and
specify the input lines to be processed whenever the macro is
called. For example, you can write the following macro to redefine
the .PP [Paragraph Start] control word:

.dm pp /.sk /.in 3 for 2 /8*

The macro definition elements (usually control words) are sepa
rated by delimiters. The delimiter is the first nonblank charac
ter that follows the blank after the macro name. It can be any
character that does not appear in the line i tsel f.

The symbol &* represents the entire macro argument (that is, the
line passed to the macro for processing). For example, when the
input line

Chapter 13. Writing SCRIPT/VS Macro Instructions 147

.pp On second thought,

is processed, &* has a value of "On second thought, n.

The form of the .DM [Define Macro] control word shown above is
restricted to one input line. The input line is broken at delimit
er characters into separate macro lines, and each component
becomes a separate line of the macro.

The subscripted form of the .DM [Define Macro] control word allows
you to define macro lines on separate input lines. 42 For example,
you could redefine the .PP [Paragraph start] control word as fol
lows:

.dm pp(S) /.sk

.dm pp(lO) /.in 3 for 2

.dm pp(IS) /&*

The macro line number in parentheses is also called the subscript.
If the number is omi tted from the parentheses, SCRIPT/VS will
automatically use an increment of 10, starting at 10. Macro line
numbers, if included, do not have to be defined in any particular
order, nor do they have to be sequential numbers. However, when
the macro is used, it is executed in subscript sequence, which is
not necessarily the sequence in which the macro lines were
entered. The subscripted form of the .DM control word can be used
to modify individual lines of a macro without having to respecify
the entire macro definition. For example, to increase the
indention caused by the previously defined . PP macro, you can
issue:

.dm pp(IO) /.in 5 for 1

or you can cause the . PP macro to start an inline keep by speci fy
ing

.dm pp(12) /.kp 6

Do not mix the two forms of the .DM control word. If you use the
subscripted form you must specify only one macro line with the
control word.

Conditional Macro Processing

Macros can be defined to conditionally format a document using the
.IF [If] control word family. For example, you may have a series
of input files that contain information for several people, none
of whom require all of the information. You can define a macro
which will execute certain control words only if the document is
being formatted for specific individuals:

.dm maybee) /.if &who eq Franz .or &who eq Geoff

.dm maybee) /.th &*

When you specify

.maybe .im sg$sym

the file SG$SYM will be imbedded only if the document is being
formatted for either Franz or Geoff.

You can also use conditional processing to highlight lines of text
differently depending upon the device for which the document is
being formatted. For example, the following macro will underscore
a line of text, unless the document is being formatted for a 3270
terminal:

42 Each macro line can, of course, contain several control
words, separated by control word separators.

148 Document Composition Facility: User's Guide

.dm hilite() /.sk

.dm hilite() /.if &$PDEV eq 3270

.dm hilite() /.th .up &*

.dm hilite() /.el .us &*

.dm hilite() /.sk

You can use the .GO [Goto] control word to instruct SCRIPT/VS to
branch to another portion of your macro on certain conditions. For
example, to process each token specified with a macro invocation
separately in an inner macro, you might define the outer macro as:

.dm macro() /.se *i = I

.dm macro() / ... loop

.dm macro() /.process &*&*i

.dm macro() /.se *i = &*i + 1

.dm macro() /.if &*i Ie &*0 .go loop

Macro Naming Conventions

A macro name can be up to 10 characters long, without imbedded
blanks or special characters, and is not case sensitive. The name
can be the same as the two-letter name of a control word, in which
case its definition supercedes the function of the control word.
When you enter a macro name as part of your input file (after
you've defined it), enter it as though it were a control word,
wi th a period in column 1.

Local Symbols ~or Macros

In SCRIPT/VS, most of the input to be processed is text. The text
can contain any character string, including strings that look
like control words or symbols. Macros, control words, and symbols
are merely character strings that have special meaning based on
the context in which they occur. Therefore, an undefined symbol is
regarded by SCRIPT/VS as an ordinary character string.

Within macros, symbols can be defined with an asterisk (*) as the
first character of the symbol name. Such symbols are "local" to
the macro in which they are defined: They are recognized only
within that macro and, unlike ordinary symbols, if they are unde
fined, they have a null value. You can use a different set of
local symbols for each macro, and for each occurrence of a macro
call.

For symbol substi tution wi thin a macro, the following rules
apply:

• All global symbols are considered text character strings if
undefined as symbols.

• All local symbols are considered null if not defined.

When SCRIPT/VS processes a macro, it assigns values to certain
designated local symbols based on the macro's input text line. The
local symbols are named &*0, &*1, &*2, and so on. Values are
assigned to a new set of local symbols each time a macro is
called.

The symbol &* contains the entire character string on the macro's
input line (except for the macro name). The symbol &*0 represents
the number of words that make up the character string. The symbol
&*1 contains the first word, the symbol &*2 contains the second
word, and so on. For example, when SCRIPT/VS encounters the fol
lowing input line

.process fileb 10 filea no

it sets the following values for the macro's local symbol values
(&*, and &*1 through &*n are called "tokens"):

Chapter 13. Writing SCRIPT/VS Macro Instructions 149

S~mbol Value
&* fileb 10 filea no
&*0 4
&*1 fileb
&*2 10
&*3 filea
&*4 no
&*5-&*n Cnull value)

When a macro symbol beginning with &* is not set by the input
line, it has a null value. When you want to assign a null value to
a macro symbol without also assigning null values to all subse
quent tokens on the input line, use the percent sign CX) to repre
sent the null-value token. For example, the macro input line

.insert filea 10 X fileb 15

results in the symbols being set as:

S~mbol Value
&* filea 10 X fileb 15
&*0 4
&*1 filea
&*2 10
&*3 Cnull value)
&*4 fileb
&*5 15
&*6-&*n Cnull value)

You can set any symbol with a name that begins with the character
"*". A symbol so named is considered a local symbol for the macro
whose definition includes it. Such symbols are known only to the
macro that defines them. The symbol values are saved when the mac
ro calls another macro, and are restored when the called macro
returns to the calling macro. A different set of local symbols is
set each time a macro is called, plus another set for when no mac
ro is the current source.

Note: Undefined local symbols are replaced with null values only
when the current input source is a macro.

Terminating a Macro

Ordinarily, execution of a macro ends after the last line of the
macro has been executed; control returns to the file or macro
which invoked the macro.

The . ME [Macro Exi tl control word may be used to end execution of
a macro prematurely:

.dm scoreC) /.sk 1

.dm scoreC) /.if &place eq inline .me

.dm scoreC) /.sx I I-I I

.dm scoreC) /.sk 1

If the value of the symbol &place is "inline", the .ME control
word causes control to return immediately to the macro's caller,
without executing the remainder of the macro.

If the remainder of an input line containing a .ME [Macro Exit]
control word is not null, it is saved until after the macro is
closed and executed as if it had been part of the macro or file
which invoked the macro. This allows a macro to set its caller's
local symbols. For example,

.dm macroC) / ...

. dm macroC) /.me .se *rc = 4

Here the .ME control. word's function of prematurely ending the
macro is superfluous, since it is the last line of the macro. The
remainder of the line, however, is saved and executed as if it had
been part of the macro's caller, and results in the setting of a
macro local symbol.

150 Document Composition Facility: User's Guide

The . ME [Macro Exi tl control word also allows you to create a
"computed GOTO" facility:

.dm case() /.se *i = &*1 + 1

.dm case() /.if &*i gt &*0 .mg I ICASE index error. I

.dm case() /.el .me .go &*&*i

The CASE macro may be invoked with an index, and a list of labels:

.case &function open read write close

The CASE macro will use the index to select one of the labels and
return a .GO [Gotol control word for that label to its caller.

Redefining SCRIPT/VS Control Words

You can define a macro with the same name as a control word to
effectively redefine it, to revise it, or to supplement its func
tion. The definition you code with the .DM [Define Macrol control
word is used instead of the SCRIPT/VS-defined function. If.you
redefine a control word as a macro, the new definition is effec
tive whenever the control word is encountered as long as macro
substitution is on (.MS ON), or whenever the macro is called using
the .EM [Execute Macrol control word.

When macro substi tution is on, you can sti 11 speci fy that a
SCRIPT/VS control word function is to be executed, even when a
macro of the same name is defined, by using the .EC [Execute Con
troll control word or the control word modifier. For example, the
input line

.dm sk /.sp &* /.il 5 /

redefines the .SK [Skipl control word, to space lines and indent
the first output line after the line space.

When you want the .SK [Skipl control word to be executed but do
not want to turn off macro substitution, issue

.ec .sk 4 -or- . 'sk 4

to skip four lines without indenting the next output line.

When macro substitution is off (.MS OFF) and you want to execute a
macro (whether or not the macro's name is the same as a SCRIPT/VS
control word), use the .EM [Execute Macrol control word. For exam
ple,

.em .sk 3

results in three line spaces, with the next output line indented
five spaces.

Note: When you redefine a SCRIPT/VS control word with a macro of
the same name:

• Be sure to define all the functions, implicit as well as
explicit, that you want. The macro definition does not modify
the control word function; it is used, as a macro, instead of
the control word function.

• To make the macro definition effective:

Turn macro substitution on (.MS ON), or

Use the .EM [Execute Macrol control word to execute the
macro definition.

• When the macro definition includes the SCRIPT/VS control word
of the same name, use the .EC [Execute Control] control word
to specify the control word. An example of this technique is
in the following section, "Avoiding an Endless Loop."

Chapter 13. Writing SCRIPT/VS Macro Instructions 151

Avoiding an Endless Loop

When you define a macro to replace the function of a SCRIPT/VS
control word, you might have to turn macro substitution off to
avoid an endless loop. For example, you want to redefine the .PP
[Paragraph Start] control word to put two line spaces between par
agraphs instead of one:

.dm pp() /.sk

.dm pp() /.ms off

.dm pp() /.pp &*

.dm pp() /.ms on

By turning macro substitution off with the .MS OFF control word,
statement 3 invokes the .PP control word, rather than reinvoking
the . PP macro.

Sometimes turning off macro substitution is not an adequate sol
ution to the problem of an endless loop. For example, you can take
over the .IM [Imbed] control word and cause the name of the imbed
ded file to be typed whenever it is imbedded by defining a .IM
macro:

.dm im() /.ty Imbedding &*

.dm im() /.ms off

.dm im() /.im &*

.dm im() /.ms on

Macro substitution is turned off to prevent an endless loop from
occurring. However, when macro substitution is turned off, sub
stitution is prevented for any macro that might be part of the
imbedded file (as well as files it might imbed).

Instead, use the . EC [Execute Control] control word to tell
SCRIPT/VS that the input line is to be treated as a control word
even though a macro of the same name might be defined. For
example, the following lines

.dm imC) /.ty Imbedding &* .

. dm im() /.ec .im &*

redefine the .IM [Imbed] control word, preventing an endless loop
while still allowing for macro substitution in the imbedded file.

HOW VALUES ARE SUBSTITUTED FOR SYMBOLS WITHIN A MACRO DEFINITION

When symbol substitution is on, the .DM [Define Macro] control
word line is scanned for symbol names. If you define a macro that
contains a symbol, you usually want the symbol's value substi
tuted for the symbol name when the macro is encountered as an
input line, rather than when the macro is defined. Therefore, turn
off symbol substitution (using the .SU OFF control word) before
you define the macro, to allow the symbol (rather than its value
when the macro is defined) to be part of the macro definition. For
example,

.su off

.dm of /.sk/.in &off after 1/

.su on

In this example, &off is a symbol that might have a value when
SCRIPT/VS processes the .DM [Define Macro] control word. If sub
sti tution is ON, the symbol's value becomes part of the macro
definition instead of the symbol &off. The macro .OF would then
result in a hanging indention of that amount, rather than of the
value of &off when SCRIPT/VS encounters the macro .OF.

USING SYMBOLS AND MACROS AS ASSOCIATIVE MEMORY

When your document contains a large number of figures, updating
the document with a new figure might mean that you have to renum-

152 Document Composition Facility: User's Guide

ber all subsequent figures. When you have to do this task
manually, it is time-consuming and prone to error.

With symbols, SCRIPT/VS can automatically keep track of the num
bering you need, and provide more convenient figure referencing
as well. You can also build a list of figures, including figure
numbers and page numbers, automatically. Most important, you can
rearrange the figures as often as you please without having the
monumental task of renumbering the figures and their references
each time.

To number figures, use a "counter": a unique symbol name that
refers to (and contains the value of) the current figure number.
The figure number symbol is set at the beginning of the input
file, or in a separate file that is imbedded at the beginning of
the input file. To manage the counter, define macros for figures
and figure references in the profile of your document:

.se figctr = 0

.* .su off

.dm fignum() /.se figctr = &figctr + 1

.dm fignum() /.se fig~&*l = &figctr

.dm fignum() /.se figl&*l = &

.dm fignum() /Figure &figa&*l ..

. su on

.* .dm figref /Figure &figa&*l on page &fig'&*l

Whenever you enter a figure in your document, invoke the FIGNUM
macro with a unique "identifier" just before the figure captionz

.fl on
(body of figure)
.fignum fred
Example of Aardvark's Table Manners
.fl off

The FIGNUM macro assigns the figure the unique identifier "fred"
and:

• Increments the figure counter

• Saves the number of the figure "fred" in the symbol &figafred

• Saves the page number of the figure "fred" in the symbol
&figlfred

• Inserts the word "Figure" and the figure number in front of
the figure caption

Whenever you wish to refer to the figure you've called "fred" in
the text of your document, use the FIGREF macro:

... as shown in

.figref fred

The FIGREF macro inserts a string containing the appropriate fig
ure number and page number into your document:

... as shown in Figure 4 on page 123 ...

To automatically build a list of illustrations, the following
lines may be added to the FIGNUM macro:

.dm fignum(IS) /.se *sx '1Figure &fig~&*I .. 1 .1&figl&*I .. 1

.dm fignum(16) /.dm figlist() I .sx &*sx

At the end of the first pass, the FIGlIST macro will contain one
line for each figure in the document, and each line will consist
of a .SX [Split Text] control word which will format a figure num
ber and page number.

Chapter 13. Writing SCRIPT/VS Macro Instructions IS3

Note: The lines of the FIGNUM macro which build the FIGLIST macro
appear before the lines of the FIGNUM macro which set the symbols
referenced in the FIGLIST macro. This is deliberate: Figures are
usually enclosed in floats or keeps, and the page on which they
will be placed is not known when the figure is formatted. For this
reason, SCRIPT/VS executes .SE [Set Symbol] control words that
reference the page number symbol twice: once when first encount
ered, and again when the page on which surrounding text will be
formatted is known. To ensure that the page numbers in the list of
illustrations are correct, substitution of these symbols is
delayed until the FIGLIST macro is executed, when all figures have
been placed.

REDEFINING SCRIPT/VS FORMATTING CONVENTIONS

A control word, in SCRIPT/VS, is used to request a specific
SCRIPT/VS function. You can use a macro to redefine the function
of a SCRIPT/VS control word.

SCRIPT /VS has implici t formatting functions, too. Input lines
that are null reset line continuation, and those that begin with a
blank or tab character cause a break. You can use a macro to rede
fine these functions.

Processing Input Lines That Are Empty

When SCRIPT/VS encounters a null input line (a line that contains
no characters or blanks), it generates and executes a .NL [Null
Line] control word, which resets line continuation.

To redefine the SCRIPT/VS implicit formatting convention for null
lines, define a .NL [Null Line] macro that will be executed when
ever a null line is encountered. For example,

.dm nl /.sk 2

Now, when SCRIPT/VS encounters a null line, the result is two line
spaces on your output page.

You can also define the null line to be completely ignored by
SCRIPT/VS:

.dm nl /.*

Processing Input Lines That Begin With a Blank or a Tab

When an input line begins with a blank (called a leading blank) or
a tab (called a leading tab), SCRIPT/VS does not concatenate the
line with the previous input line. That is, a break occurs.

Breaks are provided by executing the .LB [Leading Blank] control
word when a leading blank is encountered, and by executing the .LT
[Leading Tab] control word when a leading tab is encountered. Both
of these control words function exactly the same as the . BR
[Break] control word. However, after the break occurs, the lead
ing blank or tab remains on the input line and is processed as
part of the line.

As with null lines, you can control the actions to be taken for
leading blanks and tabs by defining a . LB and . L T macro.

When you want the leading blank and leading tab to be processed by
SCRIPT/VS as just a blank (or just a tab) that happens to occur as
the first character (that is, not processed differently than oth
er blanks or tabs), redefine the control words with:

.dm lb /.*

.dm It /.*

154 Document Composition Facility: User's Guide

The tab or blank at the beginning of the input line will be con
catenated with the previous input line. It will not necessarily
appear at the beginning of an output line.

Note: The .NL [Null Line], .LB [Leading Blank], and .LT [Leading
Tab] functions are not performed for a line that would otherwise
call for them when the line is processed in literal mode (that is,
preceded by the .LI [Literal] control word). Null text lines still
reset line continuation if the previous line ended with a contin
uation character, but the . NL control word or macro is not
executed.

SPECIFYING A MACRO LIBRARY

When a macro name cannot be resolved (because there was no previ
ous definition set with a .DM [Define Macro] control word),
SCRIPT/VS may look for its definition in a macro library.

The member name of each macro defined in the macro library is the
macro name without the leading period. It is restricted to eight
characters. Symbol definitions and macro definitions may be mem
bers of the same library.43

Note: No trailing delimiter is required of the lines in a macro
definition. However, for compatibility with Release 1, the last
nonblank character on each line will be considered a delimiter and
deleted if, and only if, it is a colon (:). If you want a colon to
be the last character of a macro line, add a second colon as a
delimiter.

You can use the macro library in two ways:

• To explicitly set a macro name. Use the .DM [Define Macro]
control word to instruct SCRIPT/VS to retrieve its definition
from a library:

. dm para lib

SCRIPT/VS searches the library specified by the LIB option of
the SCRIPT command for the definition of .PARA and retrieves
the definition. The retrieved definition replaces any exist
ing definition.

• To define an unresolved macro. When SCRIPT /VS encounters a
macro that has not been defined, the library is searched for a
member wi th the same name as the macro.

When your input file contains macros that are defined in a macro
library, specify either .LY [Library] ON or .lY [Library] MAC to
instruct SCRIPT/VS to search the macro library for any unresolved
macro it encounters:

.ly on -or- .ly mac

The ON parameter speci fies that the macro library is to be
searched for unresolved macros and symbols. The MAC parameter
specifies that the macro library is to be searched only for unre
solved macros. You can use the OFF or SYM parameters of the .LY
control word to turn off library searching for unresolved macros.

Since searching macro libraries for unresolved symbols is expen
sive in terms of processing time, it is recommended that .LY MAC
be used except for short periods when you expect symbol defi
nitions to be returned; then .LY SYM or .LY ON should be used.

43 Only the first line of a macro library member is read for a
symbol definition; for a macro definition, all lines of the
member are read and treated as individual lines of the macro
definition.

Chapter 13. Writing SCRIPT/VS Macro Instructions 155

In ATMS-III" the search technique is the same for both symbols and
macros. Therefore" it does not matter whether .LY MAC" .LY SYM" or
. LYON is used.

See "Using the SCRIPT Command" for details about the LIB option
and macro libraries.

CREATING SCRIPT/VS MACRO LIBRARIES

Macros that are going to be used for multiple documents can be
stored in a macro library. How you create your macro libraries is
determined by the environment in which you are operating
SCRIPT/VS.

In a CMS Environment

In a CMS environment" a SCRIPT/VS macro library must have a
filetype of MACLIB. Members can be edited directly using SPF/CMS
but not with the CMS editor or the Display Editing System.

A macro can be created or changed by editing a file with a
filename that is the same as the macro name and a filetype of
COPY. The record format of the file must be fixed" and the record
length must be 80 bytes.

The CMS MACL IB command is used to add or replace macros in a macro
library. To modify an existing macro" you must have the text of
the macro punched to your virtual card reader" and then read into
a COPY file. This makes the macro accessible to the CMS editor.
(This procedure is described in detail in Virtual Machine Facili
ty/370: CMS User's Guide.)

You can use the LIB option of the SCRIPT command to specify up to
eight macro library names. The filetype for all of these libraries
must be MACLIB. If no library name is specified via the LIB
option" a default name of GML2 MACLIB is used.

In a TSO Environment

In a TSO environment" your macro library has to be a partitioned
data set. TSO does not have standard characteristics for a macro
library. Therefore" for SCRIPT/VS, you must set up the data set so
that it is in variable-record format. The maximum length of a
record is 132 bytes. The block size should be chosen based on the
physical device on which your library is going to reside. 44

The standard data set type for a SCRIPT /VS macro library is
MACLIB. This data set type is assumed if one is not specified with
the data set name.

The standard name of the SCRIPT /VS macro library is
SCRIPT.MACLIB. You can concatenate a private library to this mac
ro library using the LIB option of the SCRIPT command. However"
when you do this, you must concatenate the private library to the
front of the standard library so that SCRIPT/VS will search it
first when looking for a macro definition.

Since only one private macro library can be concatenated using the
LIB option, if you want to use multiple private libraries" you
must allocate and concatenate them prior to invoking SCRIPT. When
doing this, you must use the file name (ddname) of SCRPTLIB. If
you want SCRIPT.MACLIB to be searched for macro definitions" you
must include it in the concatenation when defining SCRPTLIB. Oth-

44 It is recommended that a standard block size be used for all
SCRIPT/VS macro libraries within an installation. Errors will
occur if a macro library is concatenated to another one wi th a
smaller block size.

156 Document Composition Facility: User's Guide

erwise, it will not be searched. (For more information on
concatenating libraries, see OS/VS2 TSO Terminal User's Guide.)

Members of a macro library can be added or changed directly using
either the T50 system editor or the Structured Programming Facil
ity-II (SPF-II) editor. The SPF-II utility function can be used to
delete members or list member names. Since changing or deleting
members leaves free space within a macro library that cannot be
reused, you should occasionally reorganize your macro libraries.

In an AlMS-tIl Environment

In an ATMS-III environment, macros can be created as individual
documents. However, they can be accessed as either documents or
subdocuments. Macros that are accessed as individual documents
must have uppercase names and must reside in permanent storage.
Macros that are accessed as subdocuments must also reside in per
manent storage but do not have to have uppercase names.

If other operators are going to be using your macros, you must
store them wi th a getword of "any". Another operator can then
access them by specifying the LIB option and your operator's num
ber. If you are going to use macros that are stored in your perma
nent storage, as well as macros that are stored in another
operator's permanent storage, you must specify both your number
and the other operator's number when specifying the LIB option. 45

For macros that you are going to access as subdocuments, you might
want to give them names with a common prefix. This enables you to
build and connect them based on the common prefix. For example, if
you created these macros

testPARA
testKEEP
prodPARA
prodKEEP

issuing these ATMS-III commands

buildim;test
connect;xitest

results in the macros .PARA and .KEEP being retrieved from the
documents testPARA and testKEEP.

In a Batch Environment

In a batch environment, the Document Library Facility must be used
to invoked SCRIPT/VS. Therefore, any macro libraries that are
required for processing a document must be created as sequential
data sets and IMPORTed (brought) into the Document Library Facil
ity's Document Library before they can be accessed by SCRIPT/VS.
For more information on how to IMPORT documents into the Document
Library using the Document Library Facility, and how to access
documents stored in the Document Library, see Document Library
Facility Guide.

45 If all of your macros, symbols, and GML tags are going to be
accessed as subdocuments and they are all stored in your per
manent storage area, you do not have to speci fy the LIB
option~ See the ATMS-III Terminal Operator's Guide for more
information on creating and using subdocuments.

Chapter 13. Writing SCRIPT/VS Macro Instructions 157

CHAPTER 14. GML SUPPORT IN SCRIPT/VS

Generalized Markup language (GMl) is a language that can be used
to describe the structure and elements of your document without
regard to the particular processing that may be required. like
other languages, GMl has a syntax and usage rules, but GMl has no
fixed vocabulary. You can develop your own vocabulary of tags to
descri be your documents. SCRI PT /VS actua 11 y provi des two lan
guages: the SCRIPT/VS formatting language, and GMl descriptive
language. One way of characterizing the di fference between the
two languages is this: the formatting language is made up, bas
ically, of verbs that indicate what processing to perform, while
GMl is made up, basically, of adjectives that describe the struc
ture and elements of a document.

SCRIPT/VS also provides a GMl starter set, consisting of a profile
and a macro library to support a set of tags for general
documents. You can use the sta rter set as an exampl e of one way to
support GMl. Or, you can use the starter set of tags, where appro
priate, and add your own tags to tailor the GMl vocabulary to
describe your documents.

The GMl functions of SCRIPT/VS are enabled with the .GS [GMl Ser
vices] control word:

.gs tag on

The profile provided with the GMl starter set executes this con
trol word.

GML MARKUP SYNTAX

GMl tags can appear anywhere in an input document, and are identi
fied by the GMl delimiter, which, by default, is a colon (:). A
control word should never precede a tag in the same input line. If
doing so is absolutely necessary, then use the control word sepa
rator symbol (&$CW) instead of the control word separator charac
ter. A GMl tag name can be up to 8 characters long, and can
consist of letters, numbers, and the characters ~, ., and $ (ex
cept that the first character cannot be numeric). The tag name may
be entered in either upper- or lowercase. For example, in the GMl
starter set provided with SCRIPT/VS, the following tag identifies
a place where a list of illustrations should be generated:

:figlist

This same ta g can a Iso be entered as:

:FIGlIST

GMl tags indicate where specific document elements begin. Some
elements also require an explicit ftend-tagft to indicate the end of
the element. GMl end-tags are identi fied by the GMl
end-delimiter, by default a double colon (::), and have the same
naming rules as GMl tags. For example, an ordered list might be
indicated as:

:01

: : 01

Some GMl tags recognize ftattributes,ft which further describe the
document element identified by the tag. Attributes follow the tag
name, separated by one or more blanks, and have the same naming
rules as GMl tags. Attributes also have values, which follow the
attribute name, separated by an equals sign:

:fig frame=box

Chapter 14. GMl Support in SCRIPT/VS 159

When an attribute value contains blanks or special characters, it
must be enclosed in single quotation marks ('>:

:gdoc sec='Company Confidential'

If the value itself contains quotation marks, they should be dou
bled.

Some tags recognize attributes that consist of a single word.
These are called "value attributes," and have the same naming
rules as GML tags. They are entered just as other attributes, but
without any equals sign:

:01 compact

Whenever text follows markup, the text should be delimited by a
"markup/content separator" (MCS), which is by default a period
(.). For example,

:p.While there's no cause for alarm,
there's no room for complacency.

The line of text following the markup/content separator (or the
last attribute, if no MCS character is entered) is the "residual
text" for the GML tag. In the example above, the residual text for
the "p" tag is "While there's no cause for alarm,".

The residual text may be null, if no text appears between the end
of markup and the next tag. For example,

:01
: Ii.
A solitary list item.
: : 01

The residual text for the "01" tag is null, while the residual
text for the "Ii" tag is "A solitary list item.".

The markup/content separator need not be entered if

• The markup is immediately followed by another tag

• Whatever follows the markup cannot be misconstrued as an
attribute

The markup/content separator can appear anywhere on an input
line; however, if the MCS character is the period (.), SCRIPT/VS
will interpret it as a controlword delimiter if it appears in the
first character position of an input line. You should, therefore,
avoid starting a line with a markup/content separator.

GML markup can span as many lines in the input document as neces
sary, and blanks between attributes are ignored. For example, a
tag, its attributes, and the residual text may all be entered on a
single line:

:hl id=gml.GML Support in SCRIPT/VS

Or, a tag, each of its attributes, and the residual text may all
be entered on separate lines:

:hl
id = gml

stitle= 'GML Support'
Generalized Markup Language Support in SCRIPT/VS

Each input line can have one or more attributes on it, separated
by one or more blanks, but each attribute must be entirely con
tained on a single line. The markup can end on any line, with the
residual text line following all on that same line, or all on the
next line. When the scanning for GML markup is complete, the APF
is then executed.

160 Document Composition Facility: User's Guide

Residual text is treated as literal text; that is, special proc
essing, such as execution of another control word, is not per
formed if the line begins with a leading blank, tab, or control
word separator. Normally, residual text is formatted along with
any text following the markup; however, in format off mode, a tag
in the middle of an input line may cause two or more output lines
if that tag contains control words that cause a break.

The GML scanning mechanism was designed to enable the creation of
APFs and tags that can be used to describe the structure and ele
ments of your documents. It was not designed as a means of intro~
ducing text, such as "boilerplate phrases." If such text is deemed
necessary, you should avoid, if possible, having the text at the
end of the APF. If this is not possible, then use a continuation
character at the end of the phrase. For example,

.gs tag on

.dm text /phrase
:text.,
xxx :text.,

will result in

phrase , xxx phrase, (notice the blank before the first comma)

whereas

.dc cont+

.gs tag on

.dm text /phrase+
:text.,
xxx :text,

will result in

phrase, xxx phrase,

GML scanning may be ended by another tag, by a control word at the
start of an input line, or if an end-of-input file condition is
encountered.

Changing the GML delimiters

The GML tag and end-tag delimiters, and the markup/content sepa
rator can be changed with the .DC [Define Character] control word.

The GML tag delimiter can be set to any character that is not val
id in a tag name, except ampersand (&). For example,

.dc gml !

With this delimiter, the list of illus~rations would be identi
fied as:

!figlist

The GML end-tag delimiter may be one or two characters. If it is a
single character, it may be any character that is not valid in a
tag name, except ampersand (&) and the GML tag delimiter. For
example,

.dc gml $ ¢

With these delimiters, an ordered list would be identified as

$01

¢ol

Chapter 14. GML Support in SCRIPT/VS 161

If the GMl end-tag delimiter is two characters, the first must be
the same as the GMl tag delimiter. For example, in the GMl starter
set the delimi ters are set as:

. dc gml : : e

With these delimiters, an ordered list would be identified as

:01

:eol

The markup/content separator may be set to any character that is
not valid in a tag name, except ampersand (8). For example,

.dc gml <

.dc mcs >

With these delimiters, tags may be entered as:

<hI id=gml>GMl Support in SCRIPT/VS

SCRIPT/VS PROCESSING OF GML

When SCRIPT/VS processes a document, an "application processing
function" (APF) is invoked for each tag and attribute to perform
whatever SCRIPT/VS processing is required. The APFs are written
in the SCRIPT/VS formatting language, and are usually macros.
This section describes the functions available in SCRIPT/VS to
recognize GMl markup, and 'associate the tags and attributes with
APFs.

GML Tag-to-APF Mapping

GMl scanning is enabled with the .GS [GMl Services] control word:

.gs tag on

When a valid GMl tag is found, SCRIPT /VS attempts to locate an APF
for the tag. The APF, which may be a macro or a control word, may
be found by

• Explicit mapping (established with the .AA [Associate APF]
control word)

• Class mapping (established with the .GS [GMl Services] PREFIX
control word)

• Direct APF mapping (a macro or control word wi th the same name
as the tag)

If no APF is found, a warning message is issued, and the tag is
treated as text. If you do not want to be warned about invalid
tags, speci fy

Explicit Mapping

.gs tag onno

The . AA [Associate APF] control word allows you to explici tly
specify the APFs for particular GMl tags and end-tags. For
example, to define tag-to-APF mappings for the "fig" tag and
end-tag, specify

.aa fig figure figurex

The APF for the "fig" tag will be the FIGURE macro, and the APF
for the "fig" end-tag will be the FIGUREX macro.

162 Document Composition Facility: User's Guide

Class Mapping

Direct Mapping

The .AA control word also allows you to specify the attribute
scanning rules for each tag, as described under ftAttribute Scan
ning Rulesft on page 163.

The .AA control word is described in more detail in ft.AA [Associ
ate APF]ft on page 223.

A single character may be specified with the .GS [GML Services]
PREFIX control word which will be added to the front of a tag name
to produce an APF name. For example,

.gs prefix a

With this class mapping in effect, the APF for the ftfiglist ft tag
will be the afIGLIST macro.

If no other tag-to-APF mapping is provided for a tag, a macro or
control word whose name matches the tag name is used as the APF.
This is the default.

Attribute scanning Rules

The .GS [GML Services] RULES control word may be used to specify

• Whether attributes are allowed for tags

• Whether value attributes are allowed

• What to do if an invalid attribute is found:

Stop the scan and treat the invalid attribute as text, or

Step over the invalid attribute and keep scanning

• Whether to issue a message if an invalid attribute is found,
or quietly take the appropriate action

Attribute scanning rules may be specified separately for GML tags
and end-tags. For example, in the GML starter set provided with
SCRIPT/VS:

.gs rules (att novat stop nomsg) (noatt)

specifies that GML tags can have attributes but not value attri
butes, and that attribute scanning should stop without a warning
message when an invalid attribute is found j 46 GML end-tags will
not recognize attributes at all.

The attribute scanning rules for tags given with .GS RULES may be
overridden for specific tags with the .AA [Associate APF] control
word. For example, in the GML starter set,

.aa 01 olist (vat) elist

indicates that the APF for the ftolft tag will be the OLIST macro,
and that value attributes will be allowed for this tag. The APF
for the ftolft end-tag will be the ELIST tag, and since no attribute
scanning rules are specified, they are those given with .GS RULES
for end-tags (that is, no attributes will be recognized).

The attribute scanning rules for .AA and .GS RULES are described
under ft.GS [GML Services]ft on page 265.

46 Invalid attributes are most commonly text, encountered when
an optional markup/content separator has been omitted.

Chapter 14. GML Support in SCRIPT/VS 163

Note: GML markup can not span input files.

Automatic GML Processing

When a GML tag is encountered, SCRIPT/VS automatically

• Purges any attributes not processed by the previous tag,

• Finds the APF for the tag, via ei ther an explici t mapping
(.AA), a class mapping (.GS PREFIX), or a direct mapping

• Scans the input for attributes and value attributes, if
recognized by the tag, and saves them for processing with .GS
EXATT,

• Identifies and saves the residual text line

Attribute Processing

Within the APF for the tag, the .GS [GML Servicesl EXATT control
word can be used to selectively invoke the APFs for attributes.
For example, if a nfign tag is encountered:

:fig id=fred place=inline frame=box

the APF which processes thenfign tag can specify

.gs exatt frame id as aidf

The "frame" attribute will be processed by the FRAME macro; the
value of the attribute, "boxn , will be provided to the FRAME macro
as the parameter &*1. The nidn attribute will be processed by the
aHDF macro; the value "fred" will be provided as &*1.

The APF for the nfig" tag may also speci fy

.gs exatt width

but since the "width" attribute was not speci fied wi th the tag, no
macro will be executed.

Attribute execution is described in further detail under n. GS
[GML Servicesl n on page 265.

Value Attribute Processing

Value attributes are presented to the APF for the tag as the
parameters &*1, &*2, The number of value attributes is pro
vided in &*0.

Residual Text Processing

For many elements, the APF operates by setting up the correct for
matting environment, and then allowing the following text to be
formatted under the control of this environment. In these cases,
the APF does not need to process the residual text line directly;
SCRIPT/VS automatically retrieves the residual line and processes
it after the APF has completed its function. SCRIPT/VS automat
ically provides continuation, if necessary, so that if the GML
markup ocurred in the middle of a word, the processing (such as
starting a new font, for example) will not break the word.

If the APF needs to process the residual line directly, the APF
can retrieve the residual line with the .GS [GML Servicesl SCAN
control word:

.gs scan line

The residual text, which may be null, is placed in the symbol
&line. When an APF explicitly retrieves the residual text, it is

164 Document Composition Facility: User's Guide

the APF's responsibility to provide continuation or other special
treatment that may be required, such as turning on literal mode
for thelresidual piece.

USER-DEFINED COMMAND OPTIONS

Another function available with SCRIPT/VS is "User-defined com
mand option" processing. These are command options that begin
with the commercial AT sign (a). (See Hauser-option: User-defined
Options" on page 32.) All such options, along with their associ
ated sUboptions, are saved when SCRIPT /VS is invoked . You can
write APFs to process the user-options, and then execute them with
the .GS [GMl Services] EXOPT control word. The EXOPT function is
analogous to the EXATT function.

GML TAGS AS SYMBOLS

In Release 1 of SCRIPT/VS, GMl tags were processed as specialized
symbols, rather than as tags. GMl recognition and attribute scan
ning were performed by symbols and macros provided with the start
er set. This was accomplished by interpreting the GMl delimiter,
by default a colon (:), as an alternate symbol delimiter.

This mechanism can be used in Release 2 by setting:

.gs tag symbol

This is the default. If you do not specifically enable the GMl
scanning as described earlier in this chapter, tags will be inter
preted as symbols.

When symbol-type GMl scanning is in use, the GMl delimiter acts
like the symbol delimiter (&), with two important differences:

• The symbol name is folded to uppercase

• Compound symbol substitution is not performed

For example, suppose a symbol is defined as

.se NOTE = '.anote '

The input line

:note.By the way, ...

contains a symbol ":note." and the value of the symbol &NOTE is
substituted:

.anote By the way, ...

When the input line is processed, the aNOTE macro is invoked.

Chapter 14. GMl Support in SCRIPT/VS 165

CHAPTER 15. USING SCRIPT/VS WITH OTHER PROGRAMS

You can use SCRIPT/VS to format an input stream prepared by anoth
er program. You can also use SCRIPT/VS as a preprocessor, to pre
pare an input file for processing by another text processing
system or by an application program.

USING SCRIPT/VS AS A POSTPROCESSOR

You can use SCRIPT/VS to format reports using data from data proc
essing files. An application program could access these files,
perform the necessary computations, and create an output file.
The output file could contain GMl markup just as if it had been
created with normal text entry procedures. You will then be able
to process it wi th the same flexibili ty as any of your other docu
ments.

Alternatively, the application program can call SCRIPT/VS as a
subroutine. This can be done when the Document library Facility is
installed with SCRIPT/VS. For details on using SCRIPT/VS via the
Document library Facility, see the Document library Facility
Guide.

You can also use SCRIPT/VS to prepare input for itself, except in
an ATMS-III environment. For example, you can use the .WF [W~ite
To File] control word to create input files dynamically. These
files can later be resubmitted to SCRIPT/VS for further process
ing.

You can also write formatted output to a file and use it as input
for a subsequent invocation of SCRIPT/VS.

USING SCRIPT/VS AS A PREPROCESSOR

When you use SCRIPT/VS as a preprocessor, you want SCRIPT/VS to
produce an output file that can be processed by some other text
formatter or application program. To use SCRIPT /VS as a pre
processor, you must first thoroughly understand the text format
ter that is to receive the output file prepared by SCRIPT/VS.

Your SCRIPT/VS input file can contain any markup appropriate for
SCRIPT/VS (that is, GMl tags, control words, macros, and symbols)
as well as text and implicit formatting conventions (such as lead
ing blanks, leading tabs, null lines, and full stops). You must
build a profile and APFs that interpret the SCRIPT/VS markup and
generate appropriate formatter controls.47

In most cases, you will find it preferable to use GMl markup when
using SCRIPT/VS as a preprocessor. The following discussion,
therefore, will assume that your document's markup observes con
ventions like those described in the Document Composition Facili
ty Generalized Markup language: Starter Set Reference.

Developing Preprocessor APFs and Profiles

SCRIPT/VS has a great variety of general document-handling func
tions which can be used independently of formatting. You can use
these functions to create APFs that will translate a SCRIPT/VS
document into suitable input for another program, such as a for
matter that can support photocomposers.

47 See "Chapter 14. GMl Support in SCRIPT/VS" on page 159 for
details about profiles, APFs, and mapping tags to APFs. See
"Chapter 12. Symbols in Your Document" on page 129 for details
about symbols, and "Chapter 13. Wri ting SCRIPT /VS Macro
Instructions" on page 147 for details about macros.

Chapter 15. Using SCRIPT/VS with Other Programs 167

For exampl~, the GML starter set APFs for ordered lists and list
items automatically generate numbers (or letters) for the items
on an ordered list. This is convenient,. since it permits the list
to be revised without renumbering all the items.

You can create a modified version of the APFs which retain the
general processing functions, but eliminate the SCRIPT/VS control
words that result in formatting. For example, instead of execut
ing the . SK [Skip] and . IN [Indent] control words, you would
insert the appropriate formatting controls of the postprocessor
into the output stream. The SCRIPT/VS symbol substitution capa
~ility can still be used to calculate parameters for the
postprocessor's formatting controls.

Some of the logical sequence of formatting controls might have to
be changed, however. The graphic effect of having the first line
of a list item printed to the left of the indention for the rest
of the list item is achieved, in SCRIPT/VS, with the .IN [Indent]
control word. The receiving processor might require a different
sequence of formatting controls to achieve the same graphic
effect.

When modi fying an AP"F in this way, you can structure its logic and
function to produce formatting di fferent from that produced by
the original APF. You can change the symbol definition for symbols
used to achieve different formatting values.

In addition to creating APFs, you would also create a profile
which would map to the new APFs. The profile would also issue con
trol words that would turn off justifi~ation and page numbering,
and the like, so the output would look like a source file .

. pm 0

.tm 0

.bm 0

.wz off

.fo off

You might also need to translate special characters which might be
unacceptable to the postprocessor.

By having two sets of APFs and two profiles, you could continue to
print draft copies of the document on a line printer while getting
final output on a photocomposer via the postprocessor.

Rede~in1ng Symbols

Many symbols used in source document markup will not require
redefinition. For example, those used:

• As abbreviations for lengthy character strings

• As references to generated information which is not
format-dependent (such as a figure or section number but
not a page number)

• To enter unkeyable characters which are represented by the
same codes in both SCRIPT/VS and the postprocessor

Handling Directly Entered Control Nards

Observing a GML convention for direct entry of control words, like
that described in the Document Composition Facility Generalized
Markup Language: Starter Set Reference, makes it easy to prepare
your document for another processor. The following discussion
refers to the specific conventions recommended in that book, but
the information is applicable to conventions that may be adopted
by your own installation.

168 Document Composition Facility: User'sGuide

Managing a Source Document

The .CM [Comment], .IM [Imbed], and .SE [Set Symbol] control words
are executed by SCRIPT/VS before the document is available to the
postprocessor. You need take no special action with respect to
them.

However, the .RC [Revision Code] and .OC [Output Comment] control
words are different; they have a formatting effect. (The .RC con
trol word inserts a revision code character to the left of an out
put line; the .OC control word places unformatted output comments
at the same position in the output as they were encountered in the
input.) If the postprocessor has comparable functions, you can
define macros, called .RC and .OC, to generate the corresponding
postprocessor controls. (This technique can be used for all con
trol words if a one-to-one conversion approach is taken.)

If the "revision code" and/or "output comment" functions are hot
available, you can deactivate them by specifying

.dm rc /.cm

and/or

.dm oc /.cm

which defines the .RC and/or .OC macros to be comments.

Preparing for Processing

When you are ready to have SCRIPT/VS prepare your input file for
the receiving text processor 1 take the usual steps needed for
SCRIPT/VS execution, as discussed in "Chapter 2. Using the SCRIPT
Command" on page 13.

While the file produced by SCRIPT/VS will contain the correct text
and markup for your postprocessor, it will not necessarily have
the correct physical characteristics. Some postprocessors may
require record lengths and formats, or other characteristics,
that differ from those produced by SCRIPT/VS. You might have to
use a utility program, or code your own, to handle such interface
requirements.

Chapter 15. Using SCRIPT/VS with Other Programs 169

HYPHENATION

CHAPTER 16. AUTOMATIC HYPHENATION AND SPELLING VERIFICATION

SCRIPT/VS can automatically hyphenate and verify the spelling of
words. When these functions are activated, words that occur at the
end of an output line will automatically be hyphenated if needed,
and each word in your document will be checked for correct spell
ing. The SCRIPT/VS dictionaries, described later in this chapter,
are used for both hyphenating words and for spelling
verification.

During formatting, if hyphenation is enabled and the next word
does not fit in the current line, SCRIPT/VS tries to hyphenate the
word using the method you have specified with the .HY [Hyphenate]
control. You can instruct SCRIPT/VS to:

• Search a SCRIPT/VS dictionary to see if there is an entry for
the word to be hyphenated

and/or

• Use an algorithmic hyphenator to hyphenate the word.

Unless otherwise specified, SCRIPT/VS will first search for the
word in the main and addenda dictionaries that make up the
SCRIPT /VS dictionary being used. If the word cannot be found
there, it will use an algorithmic hyphenator to perform the
hyphenation. If you do not want the addenda dictionary searched,
you specify

.hy noadd

If you do not want any of the dictionaries to be searched, you
specify

.hy nodict

If you do not want the avai lable algori thmic hyphenator to be
used, you specify

.hy noalg

You can also use the .HW [Hyphenate Word] control word to provide
SCRIPT/VS with the hyphenation points for a specific word.
Hyphenation specified using the .HW [Hyphenate Word] control word
takes precedence over any other hyphenation method that is in
effect, but affects only that specific instance of the word.

Searching a SCRIPT/VS Dictionary

When using a SCRIPT/VS dictionary for hyphenation, any time
SCRIPT /VS encounters a word that needs to be hyphenated, it
searches the SCRIPT/VS dictionary being used for the word as it
appears in the input line. The associ~ted addenda dictionaries
are searched first and then, if the word is not found there, the
SCRIPT/VS main dictionary with which the addenda dictionaries are
associated is searched.

If no match is found in any of these dictionaries, and the word,
as it appears, is all in uppercase characters, all of the letters
except the first are translated to lowercase and SCRIPT/VS again
searches for the word in the addenda and main· dictionaries. If no
match is found, SCRIPT/VS translates all of the letters to lower
case and repeats the search. (If the word is not all uppercase and
any letter but the first is capitalized, the word will not be
hyphenated.)

If no match is found this time, SCRIPT/VS removes the prefix and
the suffix if any, to yield the word's "root." This form of the

Chapter 16. Automatic Hyphenation and Spelling Verification 171

word is then searched for in the dictionaries. If no match is
found, the word will be hyphenated using an algorithmic
hyphenator unless .HY NOAlG was specified.

Using an Algorithmic Hyphenator

Unless you use the NOAlG parameter of the .HY [Hyphenate] control
word to instruct SCRIPT/VS to do otherwise, it will attempt to use
an algorithmic hyphenation routine to hyphenate:

• Words that fail to veri fy using the supplied language dic
tionaries

• All words if the NODICT parameter of the .HY control word was
specified

An algorithmic hyphenation routine for English is provided with
SCRIPT/VS. Your installation may provide other algorithmic
hyphenators for English or any of the other languages. Any instal
lation provided algori thmic hyphenators must be linkedi ted to
SCRIPT/VS before they can be used during hyphenation processing.
For information on how to linkedit such a routine, see the Docu
ment Composition Facility Program Directory.

Hyphenating Single Words

Regardless of whether SCRIPT/VS is using automatic hyphenation or
not, there may be occasions when you would like a word to be
hyphenated if it occurs at the end of a line. The .HH [Hyphenate
Hord] control word allows you to speci fy how a word should be
hyphenated if hyphenation is necessary.

This may be convenient for long words that are normally
hyphenated, or for words that occasionally need hyphenation. For
example,

Guinevere's
.hw lighter--than--air
laughter was heard
.hw through-out
the kingdom.

When this line is processed, SCRIPT/VS uses the hyphens supplied
as hyphenation points and suppresses the hyphens it does not need:

Guinevere's lighter-than-air
laughter was heard throughout
the kingdom.

Note that since "throughout" did not require hyphenation when the
line was formatted, the hyphen was suppressed. For the hyphenated
expression "lighter-than-air," two hyphens are used with the .HH
[Hyphenate Hord] control word so SCRIPT/VS prints the necessary
hyphens. Note that the hyphenation rules for a .HH word apply only
in this instance, and nowhere else in the input file where they
appear.

Changing the Frequency of Hyphenation

You can increase or decrease the frequency of hyphenation in a
document using the MINPT parameter of the .HY [Hyphenate] control
word. MINPT controls the minimum hyphenation point (the smallest
number of characters acceptable as a hyphenation point for the
word) .

The default value for MINPT is 4. To change it, you could specify

.hy set minpt .3

.hy on

172 Document Composition Facility: User's Guide

SPELLING VERIFICATION

The spelling of words in your input file will be checked by the
SCRIPT/VS spelling verification function when you include the
SPELLCHK option in the SCRIPT command.

Spelling verification is accomplished by attempting to find each
word in the input line in the SCRIPT/VS dictionary (described lat
er in this chapter).

For purposes of spelling verification, a "word" is a string of 2
to 55 characters delimited by "word delimiters." The default word
delimiters are listed in Figure 37 on page 363. You may change the
word delimiters for spelling verification with the .DC [Define
Character] WORD control word.

Punctuation characters are considered part of the word if they
appear within it, but are removed before spelling verification is
performed if they appear at the end of the word. The defaul t punc
tuation characters are the hyphen (-) and apostrophe ('). You can
change the punctuation characters with the .DC [Define Character]
PUNC control word.

When words are verified for correct spelling, the original word,
using the case (upper, lower, or mixed) as it occurs in the input
line after symbol substitution, is checked against both the main
and addenda dictionaries that make up the SCRIPT/VS dictionary
being used. If no match is found and the word is in uppercase, all
of the letters except the first are translated to lowercase and
the word is again checked against both dictionaries. If still no
match is found, the first letter is translated to lowercase and
the word is again checked against both dictionaries. (If the word
is not all uppercase and any character other than the first is
capitalized, the word is considered unverified.) If no match is
found this time, SCRIPT/VS removes the prefix and suffix, if any,
to yield the word's "root." This form of the word is then checked
against both dictionaries. If again no match is found, the word is
considered unverified. SCRIPT/VS issues a message listing all of
the unveri fied (and potentially misspelled) words in an input
line by invoking the .UW [Unverified Word] control word.

Note: Since stem processing is performed only after each word is
translated to lowercase, all words placed in the addenda diction
ary should be in lowercase if stem processing is desired. No match
will be found for a lowercase occurrence of a word if that word
was added to the addenda dictionary in uppercase.

Spelling veri fication is normally performed using the main and
addenda dictionaries wi th stem processing. ~Jords that contain
numbers are not checked unless requested with the NUM parameter of
.SV [Spelling Verification] control word.

You can specify that:

• The addenda dictionary is not to be used:

.sv noadd

• Full word processing rather than stem processing is to be per
formed:

.sv nostem

• Words that contain numbers are to be checked:

.sv num

Spelling verification can also be used to verify that proper names
start with an initial capital letter. For example, if an entry is
made in the addenda dictionary as follows,

. du add Teri

Chapter 16. Automatic Hyphenation and Spelling Verification 173

Fallibility

then "Teri" and "TERI" will both be correctly spelled. However,
Oteri" will be regarded as misspelled.

SCRIPT/VS spelling verification is not infallible. A misspelled
word wi th a suffix or prefix could possibly yield a correctly
spelled word after stem processing. For example, "disbooked"
(with the stem "book"), and "missteak" (with the stem "steak") are
both "correctly" spelled.

Also l the stem processing algorithms do not handle all exceptions
to general spelling rules used in the English Language. For exam
ple, the plural of "mouse" must be explicitly added to an addenda
dictionary.

THE SCRIPT/VS DICTIONARIES

There are three types of SCRIPT/VS dictionaries that are used for
hyphenation and spelling verification:

• Read-only dictionaries of root words provided by IBM with
SCRIPT/VS. Each contains about 10 , 000 words. Since suffixes
and prefixes are removed before a word is searched for in this
dictionarYI the effective dictionary size is significantly
larger.

• User dictionaries created by your installation using the Dic
tionary Maintenance program. These dictionaries contain words
that are not in the main dictionaries but are used in most of
the documents produced at your installation. These words
often reflect the nature of a particular business and usually
include technical terms and company acronyms. Once created,
these dictionaries are also read-only.

• Addenda dictionaries you create for a speci fic document or
group of documents using the .DU [Dictionary Update] ADD con
trol word. Addenda dictionaries contain words that are not in
the main or user-created dictionaries but are frequently used
in a specific document or a group of documents. This type of
dictionary often includes acronyms that apply to a particular
product, jargon, and the names of people and places. It is the
most temporary of the three types of dictionaries since it is
rebuilt in storage every time SCRIPT/VS processes a document
that requires it. Addenda dictionaries can be updated as
required.

IBM provides root word dictionaries in nine languages:

• American English
• United Kingdom English
• Canadian English
• Canadian French
• French
• German
• Italian
• Dutch
• Spanish

The unique stem processing routine that IBM provides with each of
these languages is used by all three types of SCRIPT/VS diction
aries in performing hyphenation and spelling verification in a
gi ven language.

Use the .DL [Dictionary List] control word to specify which lan
guage you want to use for hyphenation and spelling verification.
This control word automaticallY activates the corresponding stem
processing routine for that language, as well as any user diction
aries that are associated wi th that root word dictionary.

174 Document Composition Facility: User's Guide

D
U
T
C
H

UC/lc

/45
/44
/42

63/43

/48

/51
/54
/52

73/53

77/57

/CE
/CD
/CB

EC/CC

FC/DC

The hexadecimal codepoints for
SCRIPT/VS spelling checking and
listed in Figure 12.

C
A I S
N F F G T P
A R R E A A
D E E R L N
I N N M I I
A C C A A S
N H H N N H

UC/lc UC/lc UC/lc UC/lc UC/lc

/45
64/44 /44 /44
62/42 /42

63/43

68/48 /48

71/51 /51 /51 /51
74/54 /54 /54
72/52 /52
73/53 /53

/55
/58

76/56 /56
77/57 /57

69/49

/CE
/CD

EB/CB /CB
EC/CC

EE/DF EE/DF

/DE
FD/DD /DD /DD
FB/DB /DB
FC/DC /DC FC/DC /DC

59

accented characters in the
hyphenation dictionaries are

Character

Name

"A" Acute
"A" Grave
"A" Circumflex
"A" Diaeresis (Umlaut)

"C" Cedilla

"E" Acute
"E" Grave
"E" Circumflex
"E" Diaeresis (Umlaut)

"I" Acute
"I" Grave
"In Circumflex
"I" Diaeresis (Umlaut)

"N" Tilde

"0" Acute
"0" Grave
"0" Circumflex
"0" Diaeresis (Umlaut)
"DE" Digraph

"U" Acute
"U" Grave
"U" Circumflex
"U" Diaeresis (Umlaut)

Ess zet

Figure 12. Codepoint Assignments for Accented Characters: Accented charac
ters in the SCRIPT/VS Spelling Checking and Hyphenation diction
aries are represented using the hexadecimal codepoints shown
under each language for upp~rcase (UC) and lowercase (lc) charac
ters.

Building a User Dictionary

A user dictionary is created and updated using the dictionary
maintenance procedures that are described in "Appendix F. Main
taining User Dictionaries" On page 391. The words that are to be
placed into the user dictionary are submi tted, wi th the appropri
ate JCl, to run as a batch job in a background environment.

The input record for each job is 80 bytes in length and includes

• The appropriate hyphenation for the word

• An indication as to whether or not the word can be automat
ically deleted from the dictionary if it is not referred to in
a specified period of time

Chapter 16. Automatic Hyphenation and Spelling Verification 175

• The date on which the word was placed in the dictionary

Once the user dictionary has been built, it must be concatenated
to the main dictionary to be accessible to SCRIPT/VS.

Since it is concatenated to the main dictionary, SCRIPT/VS treats
it as part of the main dictionary. Therefore, whenever you specify
that the main dictionary is to be used for hyphenation and spell
ing verification, you are automaticallY specifying that the user
dictionary is also to be used.

Whenever you update the user dictionary, it must be reconcat
enated to the main dictionary for the updates to go into effect.

Building an Addenda Dictionary

You use the . DU [Dictionary Update] control word to create an
addenda dictionary. Each word specified with this control word is
delimited with blanks. The word can contain lowercase and upper
case alphabetic characters, the integers 0 through 9, and punctu
ation characters, as defined with the .DC [Define Character] PUNC
control word.

If you are building an addenda dictionary for use with multiple
documents, you can create a separate file to contain the .DU [Dic
tionary Update] control words being used to build it and then
imbed this file at the beginning of any input file that requires
it.

When you include single hyphens in a word that you are adding to
an addenda dictionary, SCRIPT/VS assumes they are potential
hyphenation points. Therefore, words that normally contain
hyphens (for example, upside-down) should be specified with a
double-hyphen for the normally appearing hyphen. For example,

.du add up-side--down

speci fies two potential hyphenation points: between "up" and
"side," and between "side" and "down." It also specifies one
normal hyphen that is to always appear: between "side" and "down. n

Before creating an addenda dictionary, you should use the . Dl
[Dictionary list] control word to'specify the language you are
using. This will associate the addenda dictionary with the main
dictionary for that language. For example, specifying

. dl eam

.du add Paul Ri-ver-front ec-cle-si-asti-cal

causes SCRIPT/VS to use the American English root word
dictionary, and associate the addenda dictionary with that main
dictionary. The new addenda dictionary will contain the words
"Paul," "Riverfront," and "ecclesiastical," which are not in the
main American English dictionary. Since the entries to this
addenda dictionary show the hyphenation points for these words,
the addenda dictionary can be used for both hyphenation and spell
ing verification.

The .DU [Dictionary Update] control word can later be used to add
more words to the addenda dictionary, or to delete words previous
ly added. For example, specifying

.du add Com-pos-i-tion photo-com-po-ser

.du del Paul Ri-ver-front

adds the words "Composition" and "photocomposer" to the addenda
dictionary, and removes the words "Paul" and "Riverfront" from
it.

If you specify a new language prior to specifying the .DU ADD and
.DU DEL control words, the new words will be placed in the addenda
dictionary associated with the new language. For example, speci
fying

176 Document Composition Facility: User's Guide

stem Processing

.dl germ

.du add Aus-wahl-list-en Ent-wick-lung

causes the German main dictionary to be used instead of the Ameri
can English one, and the words "Auswahllisten" and "Entwicklung"
to be added to the addenda dictionary associated with this main
dictionary.

Note: Multiple languages can be used in processing a document.
However, only one language can be active at a time.

The stem processing function attempts to generate one or more pos
sible root words from which the input word might be derived. Suf
fix and prefix processing are both performed on the input word.
The stem processing function does not generate a root word, or
stem, less than three characters long.

When a word's prefix is removed, the resulting stem is not
changed. However, when a word's suffix is removed, the stem proc
essing function derives the word's stem based on the spelling
rules for the language being used. For example, in English the
word- "churches" yields the stem "church", and the word "flames"
yields the stem "flame."

Words may have to be processed repeatedly to remove multiple suf
fixes before yielding a stem. For example, the word "conceptions"
would lose the two suffixes Us" and "ion" before yielding the stem
"concept."

For a summary of the prefixes and suffixes SCRIPT/VS checks for
during stem processing, see "Appendix C. Stem Processing" on page
373.

Hyphenation Points

The SCRIPT/VS dictionaries do not contain all possible hyphen
ation points for all words. Each word placed in an addenda, user,
or root word dictionary is divided into four three-character
groups following the first vowel. Only one hyphenation point is
recorded for each of the four groups.

Chapter 16. Automatic Hyphenation and Spelling Verification 177

CHAPTER 17. PRODUCING INPUT FOR STAIRS/VS

The Storage and Information Retrieval System/Virtual Storage
(STAIRS/VS) is an IBM program product that provides content-based
retrieval of documents using a comprehensive indexing structure.
Documents to be stored in the STAIRS/VS data base must be prepared
in a Condensed Text Format (CTF). SCRIPT/VS can provide input for
STAIRS/VS in this format, as shown in Figure 13 on page 180.

SPECIFYING STAIRS/VS OUTPUT

Use the DEVICE option of the SCRIPT command to specify STAIRS/VS
output. (For details, refer to "DEVICE: Specify a Logical Output
Device" on page 21.)

When you specify DEVICECSTAIRS) or CTF, SCRIPT/VS formats the
input document as it would for device 1403W6. The formatted lines
are then converted to STAIRS/VS CTF blocks.

If you specify DEVICECSTAIRS) and PRINT, FILE, or TERM, the docu
ment is formatted as it would be for CTF output, but instead is
written to the specified destination for proofreading.

RESTRICTIONS IMPOSED ON FORMATTED OUTPUT

The STAIRS/VS program indexes only the text in the body of a docu
ment. Consequently, running titles, headings and footings, foot
notes, and floats are ignored when preparing STAIRS/VS output.
Multiple-column sections are treated as one single column. Under
scoring, overstriking, skip, and space are also ignored.

In addition, STAIRS/VS requires that its input not exceed 69 char
acters per line, or 449 lines per paragraph. In documents prepared
for STAIRS/VS, lines exceeding these limitations will be flagged
when output is being prepared in "proof" format, and will be trun
cated when output is being prepared in CTF records. The following
error flags are placed in columns 72 through 80 of proof output:

C - more than 69 characters
L - more than 449 lines
P - paragraph id "stepdown"

The STAIRS/VS indexing scheme includes the sentence number within
a paragraph. STAIRS/VS considers sentences to be delimi ted by
"full stops": a full stop character followed by two blanks. As
described in "Chapter 3. Basic Text Processing" on page 33,
SCRIPT/VS will automatically insert an extra blank between sen
tences when an input line ends in a full stop character, to
satisfy this requirement.

STAIRS/VS PARAGRAPH NUMBERING

STAIRS/VS requires that a 3-character "number" be associated with
each paragraph of a document placed in its data base.

STAIRS/VS paragraph numbers are composed of a single decimal dig
it (0 through 9), followed by one or two alphameric characters in
ascending order (blank, A through Z, and 0 through 9). SCRIPT/VS,
by default, numbers the first paragraph of a document "0", and
increments the paragraph number by one with each break when con
catenation is on, or by one with each input line when
concatenation is off.

Thus, the first and subsequent paragraphs will be numbered:

Chapter 17. Producing Input for STAIRS/VS 179

. Offset
Dec. Hex. Length contents

0 0 12 SCRIPT/VS Document Name
12 C 3 Paragraph number of first line
15 F 1 Continued Block Count
16 10 2 Operator Number
18 12 2 CTF Record Length
20 14 5 Read Password
25 19 5 Delete Password
30 IE 45 (Reserved)
75 4B 69 First line of text

144 90 864 Twelve more lines:
144 90 3 Paragraph number of second line
147 93 69 Second line of text
216 D8 3 Paragraph number of third line
219 DB 69 Third line of text
936 3A8 3 Paragraph number of thirteenth line
939 3AB 69 Thirteenth line of text

Figure 13. STAIRS/VS Condensed Text Format (CTF) Records: Each record has a
fixed length of 1008 bytes, and contains up to 13 lines of text.

o
OA
OAA
OAB
OAC
OAD

OAE
OAF

OAZ
OAO
OAI

OA2
OA3

OA9
OB
OBA

OBB
OBC

You can reset the STAIRS/VS paragraph numbering counter at any
time with the .SO [STAIRS/VS Output] control word. For example,
specifying

.so pid 20b

will cause subsequent paragraphs to be numbered

20B 20Z 208
20C 200 209
20D 201 21

21A
20X 206 21B
20Y 207

When the STAIRS/VS paragraph numbering counter is reset to a value
which is equal to or less than the last value used, a new logical
document is created, regardless of whether a new document name has
been specified with the .SO DOC control word.

When output is prepared in Condensed Text Format, the STAIRS/VS
paragraph number is included as part of the CTF record with each
line. When output is prepared in "proofn format, the STAIRS/VS
paragraph number is printed to the left of the first line of each
paragraph.

Information for the Document Name, Operator Number, and Read and
Delete Password fields of the CTF block may also be provided with
the .SO [STAIRS/VS Output] control word.

180 Document Composition Facility: User's Guide

CHAPTER 18. pIAGNOSTIC AIDS

The diagnostic aids presented in this chapter are tools to help
you find and correct problems caused by incorrectly specified or
missing control words. Diagnostic aids in this chapter might also
be useful to the Programming Service Representative (PSR). Howev
er, this chapter is directed toward the person who needs to find
out why the sequence of specified GML tags and control words is
not resulting in the desired output.

To use SCRIPT/VS effectively, you need to know the function of
each GML tag and control word you use. Many formatting problems
can result from tags and control words used incorrectly. Other
chapters in this book provide detailed descriptions of each
SCRIPT/VS control word. The IBM-supplied APFs that define the GML
tags are documented with comments in the APFs themselves.

SCRIPT/VS diagnostic aids are provided as options of the SCRIPT
command and as SCRIPT/VS control words.

DEBUGGING WITH THE SCRIPT COMMAND

Some of the SCRIPT command options are useful (for diagnostic pur
poses) when specified to format an input file that might contain
errors.

CONTINUE: Continue Processing ATter an Error Occurs

The CONTINUE option prevents SCRIPT/VS from terminating the for
matting of your file unless a "severe" or "terminal" error occurs.

DUMP: Enable the .ZZ [Diagnostic] Control Word

The DUMP option is useful when the .ll control word is included in
the input file. The .ll [Diagnostic] control word specifies con
trol blocks and data areas to be displayed (or printed) only when
the DUMP option is specified.

DUMP has no effect unless your file contains .ll control words.

The DUMP option and the .ll [Diagnostic] control word are useful
only for debugging the SCRIPT/VS program product. See the .ll con
trol word description for details about data areas being dumped.

MESSAGE: Control InTormation in Error Messages

The MESSAGE option allows you to specify when messages are
printed, whether or not the message number is to be included, and
how the line causing the error was imbedded. The MESSAGE option
parameters are:

• DELAY, which accumulates all error messages in the file named
DSMUTMSG. SCRIPT/VS prints the message file at the end of the
formatted document or includes a message output file with the
document's output file if the FILE option of the SCRIPT com
mand is specified.

DELAY is useful, especially when the input file is printed,
because messages are normally sent to your terminal (that is,
not printed).

• ID, which identifies each message with its message number.
The message number can be used to refer to a more detailed
description of the error.

The message number is also needed by the PSR (Programming Ser
vice Representative) if you should need help via an APAR or
the RETAIN SEARCH facility.

Chapter 18. Diagnostic Aids 181

• TRACE, which enables the trace-back function for those mes
sages that require it. If an error occurred within a file that
is imbedded by many other files, the TRACE parameter identi
fies the previously imbedding files.

NOSPIE: Prevent Entering SPIE Exit Routines

SCRIPT/VS ordinarily establishes a SPIE (Specified Program Inter
rupt Exit) before formatting begins. Subsequently, if a program
check occurs, the system. control program passes control to the
SPIE routine, allowing SCRIPT/VS to terminate itself. The NOSPIE
option inhibits this function, and allows dynamic debugging tools
to handle program check processing.

NUMBER: Print the File Name and Line Number

The NUMBER option tells SCRIPT/VS to print the file name and line
number of the last-read input line next to each output line. If an
error occurs, you can easily locate the area where the error was
detected.

PAGE: Selectively Print Pages

The PAGE option allows you to print (or display) part of your for
matted document, rather than requiring you to print the entire
document.

SPELLCHK: Verify Spelling

The SPELLCHK option enables the .SV [Spelling Verification] con
trol word. Any word not found in the current main, user, or
addenda dictionaries is listed with an error message, along with
the input line that contained the word.

Because the list of unverified words may be long, you may want to
delay message printing when you specify the SPELLCHK options

SPELLCHK MESSAGE (DELAY)

Alternatively, since SCRIPT/VS issues the message listing unveri
fied words by executing the .UW [Unverified Word] control word,
you may wish to write a .UW macro. When macro substitution is in
effect, your macro will be given control instead of the .UW [Un
verified Word] control word.

A .UW macro can be used to:

• Eliminate redundant "errors" on unverified words which appear
often in a document, by adding such words to the addenda dic
tionary with the .DU [Dictionary Update] control word.

• Create a permanent file containing all unverified words, by
using the .WF [Write To File] control word to record such
words.

The SPElLCHK option should be used infrequently, to identify
spelling errors and to identi fy words that should be in the
addenda di cti ona ry. You mi ght want to pri nt, edi t, and revise
several draft copies before formatting the final draft wi th
spelling verification.

TWOPASS: Provide Two Formatting Passes

The TWOPASS option allows you, in an interactive environment, to
see all error messages before the formatted document is
displayed. (The MESSAGE (DELAY) option displays the messages
after the document is displayed.)

182 Document Composition Facility: User's Guide

When you are working with a very long input file, you can format
it in an interactive environment just to detect and correct any
errors. With the TWOPASS option, SCRIPT/VS formats but does not
display the file on the first formatting pass. All detected errors
are displayed, however, before the second formatting pass starts.
By inserting the .QQ [Quick Quit] control word at the end of your
input file and using the TWOPASS option, you can display all
detected errors and not begin the second formatting pass.

If you do not use the CONTINUE option, formatting will stop with
the first error. The second pass (and actual output) will not
occur unless the file is error-free.

UNFORMAT: Print All Input Lines Without Formatting

The UN FORMAT option allows you to print an input file without for
matting it. All input lines (control words, GMl tags, macros, sym
bols, and text input lines) are printed as entered. In addition,
other input lines are included as a result of processing the .IM
[Imbed] and .AP [Append] control words.

CONTROL WORDS TO ASSIST DEBUGGING

Some of the SCRIPT/VS control words that are useful when diagnos
ing problems in an input file are described below.

Spelling Verification

The .SV [Spelling Verification] control word is used to check the
spelling of words in an input file. The .SV control word is ena
bled by the SPEllCHK option of the SCRIPT command. See "Chapter
16. Automatic Hyphenation and Spelling Verification" on page 171
for details about verifying spelling.

TracingscRIPT/VS Processing

One of the most powerful SCRIPT/VS control words is the .IT [Input
Trace] control word. This allows you to see the steps taken by
SCRIPT/VS when it substitutes a value for a symbol name. You can
also see the step-by-step processing of the control words that
make up a macro or GMl tag's APF. The .IT control word has many
other capabilities that allow you to trace specific events during
SCRIPT/VS processing.

The Output Line Generated by Input Tracing

When input tracing is activated, SCRIPT/VS generates one or more
output lines that describe the sequence of processing required
for the input line about to be executed. These lines are displayed
as though they were messages: they are written to the same output
destination as messages. Each generated output line is in the
form:

3E¢3E [name] [nn] x <source line>

where:

¢ is a code that identifies why the "current source line" is
being traced:

C: Control word trace
G: GMl substitution trace
M: Macro substitution trace
S: Symbol substitution trace
3E: Symbol table snap

name identifies the name of the "current source line." This is
usually the name of the file or macro currently being proc
essed. If the name is in parentheses, the current source line

Chapter 18. Diagnostic Aids 183

does not come from the file or macro currently being proc
essed:

(ATT) The current source line displays an attribute of
the GML tag being scanned.

(BT n) The current source line comes from a previously
saved running bottom title definition.

(FNLDR) The current source line comes from a previously
saved footnote leader definition.

(RHEAD) The current source line comes from a previously
saved running heading definition.

(RFOOT) The current source line comes from a previously
saved running footing definition.

(RULES) The current source line displays the rules which
will be used in scanning the current GML tag.

(SCAN) The current source line displays the text which
will be scanned for GML attributes.

(TT n) The current source line comes from a previously
saved running top title definition.

(VATT) The current source line displays the value attri
butes of the current GML tag.

nn is the line number of the "current source line," either with
in a file or wi thin a macro.

x is the length (number of characters and blanks) of the "cur
rent source line."

current source line is the line being traced by SCRIPT /VS. The
following description assumes that all traceable events are
being traced: control word tracing, symbol substi tution
tracing, and macro substitution tracing (as specified with
· IT AL L) :

• When the current source line contains only text, it is
not displayed as part of the input trace.

• When the current source line contains a control word
(*C*), SCRIPT/VS displays the current source line and
then performs the control word function. However, if the
STEP parameter of . IT is speci fied, you can change a
"control word" current source line before it is
executed. SCRIPT/VS then executes the modified current
source line (as described in "Stepping through an Input
Trace" later in this chapter).

• When the current source line contains a GML tag (*G*),
SCRIPT/VS displays the name of the GML tag and the APF
which is called to process it. If the GML tag has attri
butes, subsequent lines display the line scanned and the
attribute rules used in scanning it.

• When the current source line contains one or more sym
bols (*S*), SCRIPT/VS:

Displays the line as it is (*S*) before any symbols
are substituted.

Displays the line repeatedly, each time showing the
next stage of substitution, until each defined and
null-valued symbol has been replaced with its value
(*s*). Undefined symbol names are regarded as text.

At this point, the line is processed as a line of
text, or is traced as a control word current source
line (*C*) (as described above).

184 Document Composition Facility: User's Guide

• When the current source line is from a macro expansion
(*M*), SCRIPT/VS:

Displays the line as it exists in the macro (*M*).

If the line contains one or more symbols, SCRIPT/VS
traces the line as described above for symbol sub
stitution tracing.

At this point, the line is processed as a line of
text, or is traced as a control word (*C30 as
described above.

Capabilities of the .IT Control Word

The above description made assumptions that allowed a simplified
presentation of input substitution tracing. However, the .IT [In
put Trace] control word allows you to trace events much more
selectively, and to only trace events that interest you.

• When you want to display all traceable events processed by
SCRIPT/VS, specify:

· it all

• When you want to trace only symbol substitution (and no other
traceable events) specify:

· it sub

• When you want to trace only macro expansions (and no other
traceable events) specify:

· it mac

Symbols that are part of the macro expansion are traced. How
ever, symbols that are not part of a macro expansion will not
be traced.

• When you want to trace occurrences of control words that
interest you, specify:

.it ctl .xx .yy .zz

For example, to trace each occurrence of the .IN [Indent], .Il
[Indent line], and .OF [Offset] control words, specify:

.it ctl .in .il .of

The .IN, .Il, and .OF control words are added to the list of
control words currently being traced, called the "control
word table. n

When you want to stop tracing for control words, but want to
continue the input trace for other kinds of input items previ
ously specified, issue

.it ctl

The CTl parameter of the .IT control word clears the list of
control words being traced.

• When you want to stop tracing control words, but leave the
control word table intact for tracing later, issue

.it off

• When you want to turn off all input tracing, specify:

.it off

Chapter 18. Diagnostic Aids 185

As noted above, the OFF parameter stops tracing, but does not
clear the control word table. When you want to resume tracing
the control words currently in the table, issue:

.it on

To add control words to the control word table, issue:

.it ctl .xx .yy

• When you want to display the current value of a macro or sym
bol, specify the SNAP parameter of the .IT control word. For
example, if you want to find out the current definition of the
~LIST macro specify:

.it snap ~LIST

The current definition of any symbol, as well as any macro by
that name, is displayed only once, not continuously. The SNAP
parameter does not affect other parameters of the .IT control
word, and can be specified even when input tracing is turned
off.

stepping through an Input Trace

The discussion so far assumed that morely displaying the sequence
of SCRIPT/VS operations is sufficient for diagnostic purposes.
However, SCRIPT/VS allows you to "step through" the lines being
traced in an interactive fashion. Each line of the trace is dis
played. When the "current source line" contains a control word
(*C*), it is not executed immediataly after display. SCRIPT/VS
displays the line and waits for your response from the terminal.
You specify the "step through" function with:

.it step

Other input trace functions remain in effect. When a traceable
event displays a control-word current source line, SCRIPT/VS dis
plays the line and waits for your response. Therefore, the STEP
function cannot occur when you format the file with the MESSAGE
(DELAY) option specified. The traced lines are displayed as
though they were messages, and you cannot respond to a "delayed"
message.

The procedure performed for step-by-step control word tracing is:

1. Display the control-word current source line OEC*) at the
message destination (that is, your terminal).

2. Wait for your response.

3. Process the response, which-might result in:

a. Executing the traced control-word current source line, or

b. Displayi ng a new current source line to be processed
before, after, or instead of the traced control-word cur
rent source line.

c. Identi fying the function currently reading input from the
terminal.

The responses that you can provide interactively are:

• Null (press the ENTER or RETURN key): the traced control-word
current source line is executed and SCRIPT/VS continues proc
essing until it encounters the next traceable control-word
line.

• STK input-line: means "stack this input line. II The traced
control word line is executed. The stacked input line is put
on a stack and becomes the next control word to be executed
(or, if it is traceable, traced before it is executed) after

186 Document Composition Facility: User's Guide

the currently traced control word line completes its exe
cution.

For most control words, the traced control word executes and
then the stacked input-line control word executes. However,
if the traced control word is .IM [Imbed], traceable control
word lines from the imbedded file are traced and executed
before the stacked input line executes. The control words .TE
[Terminal Input] and .AP [Append] prevent the immediate
sequence of the input line in a simi lar way.

• PRE input-line: executes the input line before the traced
line. The traced current source line is put on a stack. The
PRE input line becomes the current source line. If the PRE
input line is not a traceable control word, SCRIPT/VS exe
cutes it and continues processing until it encounters the
next traceable control word line.

When the PRE input line is a traceable control word line, it
is displayed and SCRI PT /VS wai ts for your response. Your
response can be any response allowed for a traced line.

• REP input-line: replaces the traced line with the input line.
The traced input line is not executed nor is it put on a
stack. Instead, the REP input line becomes the current source
line. If the REP input line is not a traceable control word
line, SCRIPT/VS executes it and continues processing until it
encounters the next traceable control word line.

If the REP input line is a traceable control word line, it is
traced before execution (like any other traceable control
word line). You can now enter any response allowed for a
traced line.

• Data line: "PRE input-line" is assumed. SCRIPT/VS processes
the data line as described above for PRE ..

• 1: does not affect the input trace line. SCRIPT/VS identifies
the "reader" of terminal input: either "TERMINAL INPUT" when
the .TE [Terminal Input] function is expecting your input, or
"CONTROL TRACE" when the .IT STEP function is expecting your
input.

Note: To get out of step-by-step input tracing, enter a STK, PRE,
or REP-...wi th one of the following as a data line:

".it off", to turn off all input substitution tracing,

or

".it run", to resume normal input substitution tracing (that
is, to stop the STEP function),

or

".qq", to terminate the SCRIPT/VS formatting job immediately.

Using Terminal Entry to Test a Control Word Sequence

A useful tool for testing SCRIPT/VS control word sequences is the
two-line input file (user-created) called TEST:

.ty Enter SCRIPT input:

.te on

When you process the file with the SCRIPT command in an interac
tive environment,

SCRIPT TEST (CONTINUE NOPROFILE)

you get the message

Enter SCRIPT input:

Chapter 18. Diagnostic Aids 187

which resulted from the .TY control word. You can enter control
words, macros, symbols, GML tags, and text. Each terminal-entered
input line is processed immediately by SCRIPT/VS and is used to
build a page. When the page is full (or when a page eject occurs),
SCRIPT/VS displays the completely formatted page before accepting
additional input lines from the terminal.

To end processing and exit to your interactive environment (CMS or
TSO), you can enter:

.QQ [Quick Quit] to end all formatting immediately .

. EF [End of File] to end formatting and close the terminal
input file .

. TE [Terminal Input] OFF, to turn off the previous .TE ON and
(within the context of the TEST file) end formatting .

. QU [Quit] to display the current output page and then end
formatting.

The .QQ [Quick Quit] control word ends processing immediately
without the final output page being displayed; you will not see
the data that has been formatted for the final output section but
not yet displayed.

For testing and diagnosing macros and control word sequences, the
first input line you enter might be:

.it all

All subsequent traceable input lines are traced.

When the page eject occurs (you can force a page eject with the
.PA [Page Eject] control word), SCRIPT/VS displays the formatted
output accumulated so far. You can then resume terminal input.

Be sure to write down whatever you want to save for future use.
The "input file" during terminal input is your terminal keyboard.
What you enter is not saved in a disk file. You can create a disk
file with input line sequences you want to repeat, and then imbed
the file from the terminal whenever you want it, by typing

.im filename

Putting Messages In Macros

When you build a macro (or an APF), you can use the .IF control
word to detect errors in input or syntax. The .MG control word
allows you to notify the user that an error occurred. Your error
message should include a message number and a brief,
clearly-written description.

188 Document Composition Facility: User's Guide

EASVSCRIPT TAGS

CHAPTER 19. EASVSCRIPT

EasySCRIPT is an early implementation of GML that existed in
SCRIPT/370. Before deciding to use EasySCRIPT, you should review
the current SCRIPT/VS GML, which is described in the Document Com
position Facility Generalized Markup Language: starter Set Refer
~.

EasySCRIPT functions are built into the formatter. You don't use
any profile or symbol and macro library with EasySCRIPT."
EasySCRIPT is designed to be easy to use, but not flexible. Since
the EasySCRIPT functions are built in, you can't tailor them to
your own installation's requirements, as you can with SCRIPT/VS
GML.

EasySCRIPT provides formatting shortcuts that take advantage of
SCRIPT/VS to offer a simple way to format many documents.
EasySCRIPT tags can be freely intermixed with standard SCRIPT/VS
control words. Using these shortcuts, you can:

1. Produce numbered, unnumbered, or bulleted lists
automatically.

2. Automatically format headings and a table of contents. And,
if you want, you can have EasySCRIPT number your headings
using a decimal numbering system. Then, when you add or delete
information, the numbering is changed for you.

3. Format text in paragraphs aligned with the current indention
level of a list or heading section.

The built-in EasySCRIPT functions can be invoked in either of two
ways:

1. As parameters of the .EZ control word. For example, to get the
"B" EasySCRIPT function, which formats a bulleted item, yOU
could enter

.ez B text of the bulleted item.

2. As EasySCRIPT "tags." One of the functions of EasySCRIPT is to
define a series of symbols that act as tags to substitute the
appropriate .EZ control word. These are not true GML tags in
the sense that they are delimited with the symbol delimiter
(&), not the GML delimiter (:). The reason for this is that
EasySCRIPT tags have different meanings if entered in upper
case than if entered in lowercase. GML tags are not sensitive
to the case in which they are entered. The control word

.ez on

enables the EasySCRIPT tags. Each EasySCRIPT tag has the same
name as the equivalent parameter of the .EZ control word. The
EasySCRIPT tags are included in SCRIPT/VS to allow documents
already marked up with them to be processed by SCRIPT/VS.

You can use the EasySCRIPT functions in your own symbols and
macros.

There are five EasySCRIPT tags. Each tag provides two different
sets of functions, depending upon whether it is capitalized or
not. The rule is that the capitalized version provides more func
tion.

The five basic tags are:

1. &Hx -- Inserts a decimal numbered heading of level x where x
is 1, 2, 3, 4, 5, or 6.

Chapter 19. EasySCRIPT 189

To create documents without the decimal heading numbers, type
the "h" in the heading tag in lowercase.

2. &P -- starts a new major paragraph. A major paragraph resets
the indention to zero and produces the necessary spacing.

To maintain the current indention for a minor paragraph (that
is, within a list), type the paragraph tag with a lowercase
Up".

3. &Nx -- Inserts a numbered item of level x where x is 1, 2, 3,
or 4.

If you do not want items numbered, enter the tag with a lower
case Un". A list is itemized at the level of indention associ
ated with the number in the tag (levell, 2, 3, or 4).

4. &B -- Inserts abulleted item (one that begins with a e) under
the current paragraph or numbered item.

Sub-bullets (items that are introduced with hyphens) may be
entered under bulleted items by typing the bullet tag with a
lowercase "b".

5. &toc -- Generates a table of contents.

As you can see, all five EasySCRIPT tags begin with an ampersand
(&). A ta 9 may be connected to the 1 i ne that follows wi th a peri-
0d or wi th one or more blanks:

&TAG.line

is the same as:

&TAG line

EasySCRIPT Formats

HEADINGS

The EasySCRIPT tags for numbered headings, lists, and paragraphs
keep track of the current number of an item and the level of.
indention. It is good practice, if you are using EasySCRIPT, to
use it consistently throughout a document. If you duplicate the
function of EasySCRIPT, for example, by manually numbering an
item, you will lose the benefit of having the other items numbered
automatically.

There is no problem, of course, using any SCRIPT/VS control words
that do not duplicate the functions of EasySCRIPT.

Within the text, headings are automatically numbered (when
requested) and formatted by EasySCRIPT, regardless of whether you
enter them wi th uppercase or lowercase cha racters. However,
headings placed in the table of contents by EasySCRIPT appear with
the number (i f requested) and in the same case as they were
entered in the input file.

The numbering scheme used by EasySCRIPT when you invoke the upper
case heading tags is a decimal system: headings may be numbered
1 .0, 1. 1, 1.1.1, 1.2, 1.2.1, 1.2.2, 1.2.3, and so on.

For documents not requiring decimal numbering, enter the heading
tag in lowercase (&hl through &h6). Decimal-numbered headings and
nondecimal-numbered headings may be mixed.

When headings are processed, all indentions (from numbered items
and bullets, for instance) are reinitialized and all numbered
item counters are reset.

190 Document Composition Facility: User's Guide

A variation of the &Hn tag is &An, which may be used to automat
ically number appendixes with letter prefixes such as A.O, B.l.l,
C.2.1.3, and so on.

Setting the Heading Counter

If you need to manually control the number of a particular heading
(for example, if you turn EasySCRIPT off and then want to turn it
back on again), you can specify the number of the last heading on
the .EZ control word:

.ez on &xref

The symbol &xref is the counter used by EasySCRIPT to keep track
of the heading numbers it is using. This symbol is undefined until
all headings have been issued or until it is explicitly set as
described below.

To set a number explicitly for EasySCRIPT to use as the last head
ing number, you can enter:

.ez on 3.0

After this control word is processed, the next level two heading
(&H2) will be numbered 3.1, the next level one heading will be
numbered 4.0, and so on. If you do not specify a number or &xref,
then the last heading is considered to have been 1.0.

EasySCRIPT Heading Defaults

The default characteristics for headings associated with
EasySCRIPT vary from those used by the .HO - .H6 [Head level 0 -
6] control words. If you enter the .EZ ON control word, these val
ues are in effect for .Hl through .H6. When you enter .EZ OFF, the
normal values are restored.

Figure 33 on page 359 gives the default characteristics of
headings used in EasySCRIPT. Remember that if the heading tag is
entered in uppercase, the heading is assigned a number; if entered
in lowercase, it is not numbered. Otherwise, the characteristics
are the same.

You can change the default characteristics of EasySCRIPT heading
tags with the .DH [Define Head levell control word. The change
affects only the EasySCRIPT head level, or only the
non-EasySCRIPT head level, whichever is currently in effect.

CROSS-REFERENCES TO EASVSCRIPT HEADINGS

EasySCRIPT has a cross-reference feature you can use to refer to
the heading numbers that are generated by EasySCRIPT. The symbol
"&xref" is the counter used by EasySCRIPT to keep track of the
heading level. If you set another symbol using this symbol, for
example,

.se intro = &xref

Then you can refer to the symbol &intro in your text:

Introductory material is in section &intro ..

When SCRIPT/VS substitutes this line, the result may be something
like:

Introductory material is in section 3.1.

EXAMPLES OF EASVSCRIPT FORMATTING

The following shows how you might enter EasySCRIPT tags to control
the formatting of a document.

Chapter 19. EasySCRIPT 191

PARAGRAPHS

A paragraph is designated when the first three characters of a
line are either "&P." or "&p.". There should be either a period or
at least one blank before the first character of the paragraph
text. The EasySCRIPT paragraph tags insert a blank line between
paragraphs.

The paragraph above is entered as follows:

&P A paragraph is designated ...
There should be no space between ...
The EasySCRIPT paragraph tags ...

If the paragraph tag is capitalized ("&P"), a major paragraph is
indicatedi this resets enumeration counts and returns the
indention to zero. Major paragraphs are used to break out of a
series of numbered items.

If the paragraph tag is not capi talized ("&plf), a minor paragraph
is indicated. You should use minor paragraph tags within numbered
items because a minor paragraph tag does not reset the indention
or list item counter.

AUTOMATIC ITEM NUMBERING

Up to four levels of items can be numbered or lettered. The num
bering range is from 1 to 99 and the lettering range is from a to
z. The use of any level of numbered items reini tializes item
counts of deeper levels.

An item at the first level of indention is formed when a line
begins with If&Nlif. Each successive use of If&Nlif results in a blank
line to separate items, the next higher item number, and it·s
indented text.

The second level of numbered items results from using "&N2" in a
similar way to "&Nl". In like manner, the remaining levels are
obtained by using "&N3" and "&N4". Following is an example of the
numbered and indented, and bulleted items: '

• Here is a bulleted item at level one. (A bulleted item is for
matted at the current indention.)

1. This is item one of a first-level numbered list.

2. This is item two of a first-level numbered list.

a. This is item one of a second-level numbered list.

b. This is another item of a second-level numbered list.

UNNUMBERED LISTS

This is a minor paragraph placed underneath a level-two
numbered item to illustrate how the indention is main
tained.

• We can put bulleted items under any level of
indention.

Sub-bullets, too.

Unnumbered lists can be formatted using the &nl through &n4 tags.
Following are some examples of unnumbered lists:

This is item one of a level one unnumbered list.

This is item two of a level one unnumbered list.

This is item one of a level two list.

192 Document Composition Facility: User's Guide

BULLETS

Bullets and sub-bullets can be used instead of numbers and letters
for indented items. The format of the EasySCRIPT bulleting tags
is:

&B.Text of bulleted item.
&b.Text of sub-bulleted item.

Bullets and sub-bullets may be used beneath any level of indention
(see examples above).

TABLES OF CONTENTS

A table of contents is automatically generated (with any calcu
lated decimal numbering) and inserted at the location of the
"&toc" tag (similar to the .TC [Table of Contents] control word).
All you need to enter is

&toc

and SCRIPT/VS formats and prints the table of contents.

Chapter 19. EasySCRIPT 193

CHAPTER 20. COMPATIBILITY WITH EARLIER RELEASES OF SCRIPT

This chapter describes the differences between SCRIPT/VS Release
2 and earlier versions of SCRIPT:

• SCRIPT/VS Release 1 (Program Number 5748-XX9)

• SCRIPT/370 Version 3 (Program Number 5796-PHL)

• SCRIPT/370 Version 1 (Program Number 5796-PAF)

Figure 15 on page 200 shows the changes to the SCRIPT command
options, and Figure 16 on page 202 shows the changes to SCRIPT
control words. (SCRIPT/370 control words that are obsolete are
listed separately, in Figure 14 on page 199, along with the equiv
alent SCRIPT/VS control word.)

The listed changes are cumulative: SCRIPT/VS Release 2 incorpo
rates and includes changes introduced in SCRIPT/VS Release 1,
SCRIPT/370 Version 3, and earlier versions of SCRIPT/370. For
detai Is on the functi ons of i ndi vi dua 1 SCRI PT /VS control words
and SCRIPT command options, see the appropriate chapters in this
book.

These codes are used in tables in this chapter:

New The control word or option was introduced in the indi
cated product.

Changed ThQ control word or option was changed in the indicated
product

V/3 The control word or option was introduced or changed in
SCRIPT/370 Version 3.

R.l The control word or option was introduced or changed in
SCRIPT/VS Release 1.

R.2 The control word or option was introduced or changed in
SCRIPT/VS Release 2.

Invalid The option is no longer valid. Its function is performed
by a new option in SCRIPT/VS. SCRIPT/VS does not accept
or process the old option.

CHANGES TO THE SCRIPT COMMAND

Figure 15 on page 200 shows the changes to SCRIPT command options.

For Release 2, the PRINT, FILE, TERM, and CTF options have been
changed to specify mutually exclusive output destinations, and
the positioning of the paper with the STOP option has been simpli
fied.

CHANGES TO THE SCRIPT COMMAND LANGUAGE

Figure 16 on page 202 shows the changes made to individual control
words. Other differences are discussed below.

Changes from SCRIPT/VS Release 1

• With Release 2, font management is extended to all devices.
The .BF [Begin Font] and .PF [Previous Font] control words,
and the FONT parameter of the .DH [Define Head Level] control
word are always processed. The .DF [Define Font] control word
allows you to define fonts when formatting for non-3800
devices, and extends the concept of font manangement for all
devices.

Chapter 20. Compatibility with Earlier Releases of SCRIPT 195

The .SF [Save Font] control word performs no function in
Release 2; its function has been subsumed by .BF, and the font
save stack is now included in the active environment. If you
always saved the current font before beginning a new one, and
then restored the original font with .PF [Previous Font], you
may simply remove the .SF control word, since it no longer
serves any purpose. If you have not followed this convention,
these statements may be included in your profile to simulate
Release 1 font management:

.if &$PDEV eq 3800 .'bf

.th .dm bf /.'pf /.'bf &*/

. th . dm sf /.' bf

.el .dm bf /.cm

.el .dm pf /.cm

.el .dm sf /.cm

• The .HO - .H6 [Head level 0 - 6] control words are no longer
impl emented wi th macros. The macros DSMSTDHO-6 and
DSMElSHO-6, which were built and maintained by the .DH [De
fine Head level] control word in Release 1, are not supported.
If you use only the .DH control word to specify head-level
processing, you will be unaware of this change. The Release 2
.DH control word provides all the Release 1 functions, plus
several new ones.

If you explici tly modi fied the DSMSTDHO-6 or DSMElSHO-6
macros after they were built by .DH, you can write a .DH macro
which simulates the Release 1 control word by building S1m1-
lar macros. The file DSMSTDH, provided with SCRIPT/VS, gives
an example of such a macro.

• Columns to the left of a forced column are no longer ineligi
ble for balancing. Each set of nonforced columns within a sec
tion will be balanced separately, and skips at the top and
bottom of each set of balanceable columns will be discarded
before balancing.

• The effects of widow zones may cause results which differ from
Release 1. The default for widow handling is nonn.

• .SP [Space] and .SK [Skip] requests for more than column depth
will be reduced to column depth, and will not be split between
columns. With Release 2, when line spacing is set to more than
one by the .DS [Double Space Mode], .lS [line Spacing], or .Sl
[Set line Space] control words, the extra vertical whi te
space precedes the text line, rather than follows it, and is
discarded when the line falls at the top of a column.

• The maximum depth of a footnote has been increased to one
quarter of the page depth. When a footnote exceeds this depth,
it is automatically ended and a new footnote started. Foot
note leaders always take effect on the next page.

• Whi te space generated because of the . SP [Space] and . SK
[Skip] control words will be flagged with the current
revision code character if it is the same as that assigned to
the preceding text line.

• Substitution is performed on the comparands of the .IF [If],
.AN [And], and .OR [Or] control words even if symbol substi
tution is off. The comparands are no longer limit~d to eight
characters in length, and must be compared with substitution
off if either comparand contains blanks or parentheses.

• A trailing delimiter is no longer required of lines read from
a SCRIPT/VS macro library. The GMl starter set macro library
provided with Release 1 of SCRIPT/VS used the colon e:) as the
macro line delimiter; for compatibility, trailing colons will
automatically be removed from lines read from a macro
library.

• Automatic underscoring provided by the .US [Underscore], .UC
[Underscore and Capitalize], .DH [Define Head level], and .DF

196 Document Composition Facility: User's Guide

[Define Font] control words underscores all nonblank charac
ters. By default, blanks are also underscored. The .UD
[Underscore Definition] control word may be used to indicate
only whether or not blanks are to be underscored.

When automatic head-level numbering and underscoring are
requested with .DH, the heading will be underscored, but the
section number will not. If a font is specified with .DH that
was defined to include underscoring, both the section number
and the heading will be underscored.

• Wi th ReI ease 1, output comments were wri tten to the output
destination before the section in which surrounding text
appeared, and were prefixed by a hexadecimal 09 carriage con
trol character unless the device type was TERM. With Release
2, output comments of the line form are written to the output
destination before the page on which surrounding text
appears, and you may supply any carriage control character.

The Release 1 output comment function may be simulated with
this macro:

.su off

.dm oc() /.sc

.dm oc() /.pm 0

.dm oc() /.'if SYSOUT eq TERM .'oc '&*

.dm oc() /.'el .'oc '&X'09.&*

.dm oc() /.pm

.dm oc() /.mc

.su on

• The blank separating a control word name from its first param
eter is optional. If the blank is omitted, SCRIPT/VS will
insert it, unless the control word name and first parameter
together constitute the name of a defined macro.

Changes ~rom SCRIPT/370 Version 3

• SCRIPT/VS accepts only the 2-character form of control words.
SCRIPT/370 allowed you to specify either the two-character
name or the control word's long descriptive name.

• SCRIPT/VS sets the symbols &0 through &9 only when the .IM
[Imbed] and .AP [Append] control words are processed.
SCRIPT/370 also set the same symbols when a macro was invoked.

Note: In SCRIPT/VS, the number of tokens available with .IM
[Imbed] and .AP [Append] is 14.

• SCRIPT/VS sets the symbols &*0 through &*n when a macro is
invoked. You should convert all your SCRIPT/370 macros to' the·
SCRIPT/VS form, since the SCRIPT/VS macro processor is much
more powerful than the SCRIPT/370 macro processor. In the
meantime, you can cause SCRIPT /VS to transfer the macro
parameters in &*0 through &*9 to the symbols &0 through &9 to
allow unmodified SCRIPT/370 macros to operate correctly. To
do this, you must provide a .DM macro that will process all
SCRIPT/370 .DM [Define Macro] control words. This macro can
be included in your PROFILE file:

.su off

. 'dm dm () /.' sa

.'dm dm() /.'su off

.'dm dm() /.'se *a=index &V'&* &V'&*2

.'dm dm() /.'se *b=substr &V'&* &*a

.'dm dm() /.'se *s=substr &V'&*2 1 1

.'dm dm() /.'su on

.'dm dm() /.'dm &*1 &*s .. se 0 '&*O&*s .. gs vars 1 2 3 4 5 .••
... 6789&V'&*b

. 'dm dm() /.' re

.su on

Chapter 20. Compatibility with Earlier Releases of SCRIPT 197

• For .SE [Set Symbol] control words that set a symbol to the
current page number, the form ".se name = &", SCRIPT/VS sets
the symbol to the current page number, including its prefix,
if any, in its character string form. You should be careful
not to use the page number in arithmetic expressions when a
non-numeric prefix would cause an error.

• SCRIPT /VS accepts space uni ts when you speci fy a control
word's parameter that defines a horizontal or vertical space
or displacement. With SCRIPT/370, the amount of space could
be speci fied only as a number of characters or lines. See
"Vertical and Horizontal Space Units" on page 6 for details
about space units.

Exceptions to this are the .HS [Heading Space] and .FS [Foot
ing Space] control words, which specify the number of lines
available for top and bottom titles.

• SCRIPT/VS maintains a page's layout parameters until it com
pletes formatting the page. Control words that affect a
page's layout always take effect on the next page.

With SCRIPT/370, a control word that affected the page layout
(for example, the .PL [Page Length] control word, which
changed the number of lines on a page) would take effect on
the current page if possible. Otherwise, it would take effect
on the next page. The resulting output was sometimes diffi
cult to predict and plan for.

With SCRIPT/VS, you can establish the next page's layout and
then eject to that page. The current page is not affected by
the new page layout parameters. Control words that always
take effect on the next page are listed in Figure 26 on page
354.

When SCRIPT/VS begins to process your input file, the first
page has not yet been started. Formatting for the first output
page begins when there is text for it, or when a control word
(for example, .SP [Space]) that requires the page to be
started is processed.

You can specify all of the dimensions for page one when you
put their control words before formatting begins for page
one, while page one is still the "next page" to be started.

A new chapter commonly begins with a .PA [Page Eject] control
word. In SCRIPT/370, some page layout control words were usu
ally placed before the .PA, and others after it. Assuming the
page layout (including new top- and bottom-titles) is to take
effect for the new chapter, the proper sequence in SCRIPT/VS
is to place all of these control words before the .PA control
word. You can include the following .PA macro definition in
your PROFILE file to allow this sequence of control words to
operate properly:

.su off

.dm paC) /.if &E'&*l = 1 .an &T'&*l = N .'pn &*1

.dm paC) /.if &E'&*l = 0 .~pa nostart

.su on

• The control words .UC [Underscore and Capitalize], .UP [Up
percase], and .US [Underscore] have been changed in SCRIPT/VS
to accept the parameters ON, OFF, or a number. In SCRIPT/370,
these control words accepted only a single line of text. In
SCRIPT/370, the control word ".US 80" would underscore the
line consisting of the characters "80", but in SCRIPT/VS the
same control word will underscore the next 80 lines. The fol
lowing macros can be included in your PROFILE file to make
these three control words operate as the SCRIPT/370 equiv
alents:

198 Document Composition Facility: User's Guide

·su off
.dm up /. 'uc off /. 'us off /. 'up 1 / . 'Ii 1 /&*
.dm us /.' up off /. 'uc off /. 'us 1 /. 'Ii 1 /&*
.dm uc /. 'up off /. 'us off /. 'uc 1 /. 'Ii 1 /&*
.su on

• Certain page layout parameters, whose values were constant in
SCRIPT/370, are based on the logical device type in
SCRIPT/VS. These parameters and the control words that affect
them are listed in Figure 31 on page 357.

THE SCRIPT/370 DICTIONARY

SCRIPT/370 supported a hyphenation-exception dictionary called
SCRIPT XDICT. The XDICT dictionary was used to determine how to
hyphenate words that were not correctly hyphenated by the hyphen
ation algorithm. The user could create and modify his own hyphen
ation exception dictionaries using the HYPEDIT command.

SCRIPT/VS does not support either the HYPEDIT command or excep
tion dictionaries. Instead, SCRIPT/VS provides dictionaries that
support both spelling verification and automatic hyphenation in
nine languages.

You can also create and update a temporary dictionary for use when
your document is being formatted, called the addenda dictionary,
using the .DU [Dictionary Update] control word.

SUMMARY OF CHANGES

Figure 14 and Figure 16 on page 202 summarize the changes to indi
vidual SCRIPT control words. Figure 15 on page 200 summarizes
changes to the SCRIPT command.

Obsolete
Control Word SCRIPT/VS Equivalent Control Word

.BT .RT [Running Title] BOTTOM

.CO .FO [Format Mode]

.CW .DC [Define Character] CW

.EB .RT [Running Title] BOTTOM EVEN

.EP .PA [Page Eject] EVEN

.ET .RT [Running Title] TOP EVEN

.FI .FO [Format Model ON

.FT .RT [Running Title] BOTTOM

.HE .RT [Running Title] TOP EVEN

.HN .RH [Running Heading]

.JU .FO [Format Model

.lS .Sl [Set line Space]

.NB .BC [Balance Columns] OFF

.NC .CO [Concatenate Mode] OFF

.NF .FO [Format Model OFF

.NJ .JU [Justify Mode] OFF

.OB .RT [Running Title] BOTTOM ODD

.OP .PA [Page Eject] ODD

.OT .RT [Running Title] TOP ODD

.PS .DC [Define Character] PS

.SF .BF [Begin Font]

.TT .RT [Running Title] TOP

Figure 14. Obsolete Control Words: SCRIPT /VS continues to recognize and
support these control words, but their functions have been
subsumed by more general control words as indicated.

Chapter 20. Compatibility with Earlier Releases of SCRIPT 199

Option Code Changes

2PASS Invalid Specify TWOPASS instead.

ADJUST Invalid Specify BIND instead.

ADJUSTnn Invalid Specify BIND instead.

BIND New R.I Shift the page image to the right.

CENTER Invalid Specify BIND instead.

CENTERnn Invalid Specify BIND instead.

CHARS New R.I Specify up to four fonts (Valid for the 3800
Printer only.)

CTF New R.2 Prepare output in STAIRS/VS Condensed Text Format.
Mutually exclusive with PRINT, FILE, and TERM.

DEBUG Invalid Specify NOSPIE instead.

DEST New R.l Specify a remote output station.

DEVICE New R.I Specify a logical output device.

Changed R.2 STAIRS logical device added.

DUMP New R.I Enable the .ZZ [Diagnostic] control word to snap
SCRIPT/VS control blocks.

FILE Changed R.I Specify the name of the output file.

Changed R.2 Mutually exclusive with TERM, PRINT, and CTF.
Default logical device is 1403W6.

LIB New R.I Specify up to eight library names.

MARK Invalid

MESSAGE New R.l Control the timing and destination of messages.

NOPROF New V/3 Suppress the PROFILE option.

NUMBERnn Invalid Specify NUMBER instead.

OFFLINE Invalid Specify PRINT instead.

OPTIONS New R.I Specify a file that contains additional SCRIPT
Command options.

PAGE New R.l Specify one or more ranges of pages to print, or
request SCRIPT/VS to prompt you to enter page num-
ber ranges.

PAGEnnn Invalid Specify PAGE(nnn) to print from page nnn.

PRINT Changed R.2 Mutually exclusive with TERM, FILE, and CTF.

PROFILE Changed R .1 You can specify the name of a profile.

Changed R.2 Part of the profile may be executed after the pri-
mary input file is finished, providing an epifile
facility.

SEARCH New R.l Specify a library to be searched for imbedded
files. (Not valid in CMS.)

SINGLE Invalid Specify PAGE (nn ONLY) to print a single page, nne

Figure 15. Changes to SCRIPT Command Options (Part I of 2)

200 Document Composition Facility: User's Guide

Option Code Changes

SPELLCHK New R.l Enable the .SV [Spelling Verification] control
word to perform spelling verification.

STOP Changed R.2 Sheet alignment has been simplified.

SYSVAR New V/3 Set Symbol values from the command options.

TERM New R.l Display formatted output at the terminal.

Changed R.2 Mutually exclusive with PRINT, FILE, and CTF.

TLIB New R.2 Specify libraries containing spelling checking and
hyphenation dictionaries. (Valid in CMS only.)

TRANSLATE Invalid Specify UPCASE to have lowercase translated to
uppercase.

TWOPASS New R.l Prepare with two formatting passes, and produce
output on the second pass.

UNFORMAT New V/3 Processes the .IM [Imbed], .AP [Append] , and .EF
[End of File] control words, and reads lines from
imbedded files to include in the unformatted list-
ing. Symbol substitution is performed, but the
input line is printed as entered.

UPCASE New R.l Folds all lowercase letters to uppercase letters
before printing. I

Figure 15. Changes to SCRIPT Command Options (Part 2 of 2)

Chapter 20. Compatibility with Earlier Releases of SCRIPT 201

Control
Word Code Description

.. . Changed R.l labels are allowed in SCRIPT/VS macros .

.AA New R.2 .AA [Associate APF] defines the mapping between GMl
tags and APFs, and specifies the rules for scanning
the tag.

.AN New R.2 .AN [And] works in conjunction with . IF and .OR to
conditionally process text and control words.

.AP Changed R.l Up to 14 tokens can be passed to the appended file.
The tokens are not reset when a macro is called. &0
contains the number of tokens passed.

Changed R.2 An external file name may be specified in parenthe-
ses.

.BC Changed V/3 Operands ON and OFF restore and cancel column bal-
ancing.

.BF New R.l .BF [Begin Font] specifies the font in which subse-
quent text is to be formatted.

Changed R.2 Saves the current font before beginning a new font.

.BM Changed V/3 The bottom margin can be specified as an increment
to or a decrement from the current value.

Changed R.l Default based on logical device. Always takes effect
on the next page.

.BX New V/3 . BX [Box] draws automatic boxes .

Changed R.l New options for drawing a box within a box, for
drawing fragments of boxes, and for drawing parallel
boxes.

Changed R.2 New option for drawing untopped boxes. Vertical
rules always overlay text.

.CC Changed R.l Ejects to a new column only when not already at the
top of a column.

.CD Changed V/3 You can define up to nine displacements for columns,
even if you initially specify only one column. The
remaining displacements are used when you later
increase the number of columns.

.CE Changed V/3 Accepts input text as a parameter.

.Cl Changed V/3 The column width can be specified as an increment to
or a decrement from the current value.

.CO Changed V/3 Operands ON and OFF restore and cancel
concatenation.

.CP Changed R.l Ejects to a new page only when not already at the
top of a page .

.CT New R.2 . CT [Continued Text] concatenates a line to the pre-
vious input line with no intervening wordspace.

.DC : New R.l .DC [Define Character] specifies characters with
special meaning to SCRIPT/VS.

, Changed R.2 New parameters indicate how to treat special charac-
ters in the index.

Figure 16. Changes to SCRIPT/VS Control Words (Part 1 of 8)

202 Document Composition Facility: User's Guide

Control
Word

.DD

.DF

.DH

.DL

.DM

.DU

.EC

. EF

. EL

.EM

.EZ

.Fl

.FM

Code

New R.l

Changed R.2

-New R.2

New V/3

Changed R.l

Changed R.2

New R.2

New V/3

Changed R.l

New R.l

Changed R.2

New R.l

Changed V/3

Changed R.2

New R.2

New R.l

New R.l

New R.2

Changed V/3

Changed R.l

Description

.DD [Define Data File-id] maps external file names
to SCRIPT/VS file-ids.

External file names may contain blanks and other
special charcacters .

. DF [Define Font] defines internal fonts, which may
be composed of underscoring, overstriking, capital
ization, font changes (3800 only), and pauses for
typing element changes (typewriter output only) .

. DH [Define Head Levell specifies formatting parame
ters for seven levels of automatic headings.

You can specify a font for each head level.

New parameters allow you to specify the font of the
table of contents entry, automatic heading
numbering, etc .

. DL [Dictionary list] specifies the language to be
used for spelling checking and hyphenation .

. DM [Define Macrol allows user-written functions to
extend or replace SCRIPT control words.

You can specify a macro with more than one input
line, and store macros in a library. When a macro is
invoked, SCRIPT/VS sets local symbols &*0 through
&*n (n being the number of tokens passed to the mac
rOj &*0 contains the value n). The macro can set
local symbols that begin with &* .

. DU [Dictionary Update] temporarily adds words to
the spelling checking and hyphenation dictionary.

Specifies which dictionaries will be searched, and
in what order .

. EC [Execute Controll executes a control word, even
if there is a macro of the same name.

CLOSE operand allows you to suspend an input file .

When .EF CLOSE is used in the profile, the remainder
of the profile is processed as an epifile after the
primary imput file is finished .

. EL [Else] is executed only if the most recently
executed .IF, .AN, or .OR was false .

. EM [Execute Macro] executes a macro, even if macro
substitution is off .

. EZ [EasySCRIPT] allows EasySCRIPT
words to be more freely mixed .

. FL [Float] specifies that blocks
kept together and placed at the
subsequent columns or pages.

tags and control

of text are to be
top or bottom of

The footing margin can be specified as an increment
to or a decrement from the current value.

Default is based on the logical device. Always takes
effect on the next page.

Figure 16. Changes to SCRIPT/VS Control Words (Part 2 of 8)

Chapter 20. Compatibility with Earlier Releases of SCRIPT 203

Control
Word

.FN

.FO

.FS

.GO

.GS

.Hn

.HM

.HS

.HY

.IE

.IF

Code

New V/3

Changed R.I

Changed R.2

New V/3

Changed R.I

Changed V/3

Changed R.I

New V/3

Changed R.l

New R.2

New V/3

Changed V/3

Changed R.I

Changed V/3

Changed R.l

New V/3

Changed R.I

Changed R.2

New R.2

New V/3

Changed R.2

Description

.FN [Footnote] specifies text to be placed at the
bottom of the current page.

New parameter: LEADER allows you to define leading
text lines to precede the first footnote of each
page. Column balancing occurs on pages with foot
notes. Footnotes are formatted to the line length
instead of to the column width.

Footnotes may be of arbitrary size, and will be
divided into pieces of at most one quarter page
depth. Footnote LEADER always takes effect on the
next page.

Operands ON and OFF allow you to restore and cancel
formatting (concatenation and justification).

New parameters: LEFT, RIGHT, CENTER, EXTEND, FOLD,
and TRUNC.

The footing space can now be specified as an incre
ment to or a decrement from the current value.

Always takes effect on the next page .

. GO [Goto] branches to a labelled line.

Allowed in SCRIPT/VS macros .

. GS [GML Services] provides a variety of facilities
of use in writing GML APFs.

Head-level control words for head levels 0 through
6. The default characteristics of each head level
are changed when you specify the .EZ ON (Enable
EASYSCRIPT) control word, and are restored when you
disable EASYSCRIPT (with the .EZ OFF control word).

The heading margin can be specified as an increment
to or a decrement from the current value.

Default is based on the logical device. The control
word always takes effect on the next page.

The heading space can be specified as an increment
to or decrement from the current value.

The control word always takes effect on the next
page .

. HY [Hyphenate] enables hyphenation.

Hyphenation is performed using a dictionary.

An algorithmic hyphenator may be used in place of or
in conjunction with multiple dictionaries.

.IE [Index Entry] is used in formatting automatic
indexes .

. IF [If] conditionally processes text and control
words.

The comparands are no longer limited to ei9ht char
acters, and will be evaluated even if symbol substi
tution is off.

Figure 16. Changes to SCRIPT/VS Control Words (Part 3 of 8)

204 Document Composition Facility: User's Guide

Control
Word Code Description

.IM Changed R.l Up to 14 tokens can be passed to the imbedded file.
The tokens are not reset when a macro i~ called. &0
contains the number of tokens passed.

Changed R.2 An external file name may be specified in parenthe-
ses.

.IN Changed V/3 An indent can be specified as an increment to or a
decrement from the current value.

Changed R.2 The duration and extent of the indention may be
specified, with or without causing a break.

.IR New R.l .IR [Indent Right] specifies indention from the
right-hand edge of the column.

Changed R.2 The duration and extent of the indention may be
specified, with or without causing a break.

.IT New R.l .IT [Input Trace] enables tracing of symbol substi-
tution, macro substitution, and control word exe-
cution.

Changed R.2 New parameter enables tracing of GMl substitution.

. IX New R.2 . IX [Index] causes the index built from .PI control
words to be formatted.

.JU Changed V/3 Operands ON and OFF restore and suspend justifica-
tion.

.KP New V/3 .KP [Keep] specifies text that is to be kept togeth-
er and treated as a single block during column bal-
ancing.

Changed R.I New parameter: INlINE allows you to keep text with
preceding and following text. You can specify .KP n,
to keep the following n lines together as an INlINE
keep . Formatting environment saved around keep.

.lB New R.I . lB [leading Blank] is executed whenever a line
beginning with a blank is processed.

.lI Changed V/3 Accepts a data line as a parameter. Operands ON and
OFF establish and suspend Ii teral interpretation.

.ll Changed V/3 The line length can be specified as an increment to
or a decrement from the current value.

Changed R.l Not allowed within a keep.

Changed R.2 Defaul t is based on the logical device. The control
word always takes effect on the next page. When the
column width is [implicitly] changed by .ll, the
change is reflected in the current page's layout.

.IT New R.I .IT [leading Tab] is executed whenever a line begin-
ning with a tab is processed.

.lY New R.l .lY [library] enables searching of external
libraries for symbol and macro definitions.

.ME New R.2 .ME [Macro Exit] ends a macro and returns to the
macro's caller. If text or a control word is speci-
fied, it is processed as though it were part of the
calling file or macro.

Figure 16. Changes to SCRIPT/VS Control Words (Part 4 of 8)

Chapter 20. Compatibility with Earlier Releases of SCRIPT 205

Control
Word Code Description

.MG New R.I .MG [Message] issues user-defined messages.

.NL New R.I .NL [Null Line] is executed whenever a null input
line is processed .

.OC New R.I . OC [Output Comment] permits user-defined lines to
be inserted into formatted output.

Changed R.2 User-defined strings may be inserted into formatted
lines.

.OF Changed V/3 An offset can be specified as an increment to or a
decrement from the current value. Any new .OF [Off-
set] control word resets the previous offset value.

.OR New R.2 .OR [Or] is used in conjuntion with . IF and .AN to
conditionally process text and control words .

. PA Changed R.I New parameters: NOSTART ends the current page with-
out starting the new page. You may then modify the
page layout, headings, footings, etc. The next page
is not started until SCRIPT/VS encounters either a
control word that requires it or input text. ODD,
EVEN, ON, and OFF, allow you to page eject to an
odd- or even-numbered page.

.PF New R.I .PF [Previous Font] restores the most recently saved
font.

.PI New R.2 .PI [Put Index] is used to build an index. The .IX
control word is used to format the index.

.PL Changed V/3 The page length can be specified as an increment to
or a decrement from the current value.

Changed R.2 Default is based on logical device. The control word
always takes effect on the next page.

.PM New R.2 .PM [Page Margins] specifies the binding margin, and
overrides the BIND option of the SCRIPT command.

.PN Changed V/3 New parameters: FRAC initiates fractional page num-
bering (decimal point pages). NORM restores normal
(ascending integer) page numbering and causes a page
eject. PREF specifies a character string prefix for
all page numbers. ALPH allows you to specify alpha-
betic page numbering. n allows you to reset the page
number. The control word always takes effect on the
next page .

.PT New V/3 . PT [Put Table of Contents] creates table of con-
tents entries.

Changed R.I Both control words and text may be written to the
table of contents utility file.

.RC Changed R.2 The position of the revision code in the intercolumn
gutter can be changed. Revision codes are now
applied to skip and space, but not to running
headings or footings.

.RD Changed R.2 The STOP parameter allows strings to be typed in the
middle of formatted column lines.

Figure 16. Changes to SCRIPT/VS Control Words (Part 5 of 8)

206 Document Composition Facility: User's Guide

Control
Ward Code Description

.RF New R.I .RF [Running Footing] specifies text and control
words to be formatted and placed at the bottom of
every page.

Changed R.2 Running footings may be surpressed and restored
without being redefined.

.RH New R.I .RH [Running Heading] specifies text and control
words to be formatted and placed at the top of every
page.

Changed R.2 Running headings may be surpressed and restored
without being redefined.

.RI Changed V/3 Accepts a text line as a parameter.

.RN New R.2 .RN [Reference Numbers] causes line reference num-
bers to be printed to the right of the page.

.RT New R.I .RT [Running Title] combines the obsolete .BT, .EB,
. ET, . OB, .OT, and .TT control words .

.RV New V/3 .RV [Read Variable] sets a symbol to a value read
from the termillal.

Changed R.I A user can type in characters without having to
enclose them in quotation marks. You can specify a
file as the terminal input file by using the .DD
[Define Data File-id] control word.

.SE Changed V/3 The OFF operand cancels a symbol value.

Changed R.I New parameters allow you to locate one character
string within another or extract a substring. The
value of a symbol may be taken from an external
library.

Changed R.2 A symbol may be assigned a quoted string which is
not examined for inner quotation marks.

.SF New R.I .SF [Save Font] saves the current font.

Changed R.2 Performs no function; the current font is saved
automatically by .BF.

.SK New V/3 .SK [Skip] specifies vertical white space to be dis-
carded if it falls at the top of a column.

Changed R.I New pa rameter: p, specifies page-width skips. Ifa
conditional skip is followed by another .SK or .SP,
the longer of the two is used, not the second. .SL
governs the size of skip requests expressed in
lines, even if A is specified. .SK requests
expressed in other space units are not affected by
the setting of .SL.

.SL New R.I .SL [Set Line Space] specifies the vertical depth of
each column line.

.SO New R.2 .SO [STAIRS/VS Q~tput] sets the STAIRS/VS paragraph
id, document name, and user number.

Figure 16. Changes to SCRIPT/VS Control Words (Part 6 of 8)

Chapter 20. Compatibility with Earlier Releases of SCRIPT 207

Control
Word

.SP

. SU

.SV

.sx

.TB

.TC

.TI

.TH

.TM

.TS

.TU

.UC

Code

Changed V/3

Changed R.l

Changed V/3

Changed R.2

New R.l

Changed R.2

New R.l

Changed R.2

Changed R.2

New V/3

Changed R.l

New R.l

New R.2

Changed V/3

Changed R.l

New R.2

New R.2

New V/3

Changed R.l

Description

New parameters: A specifies absolute spacing. C
specifies conditional spacing.

New parameter: P specifies page-width space. If a
conditional space is followed by another .SP or .SK,
the longer of the two is used, not the second .. Sl
governs the size of space requests expressed in
lines, even if A is specified. .SP requests
expressed in other space units are not affected by
the setting of .Sl.

Initial value is ON .

The line form of .SU no longer turns off subsequent
substitution .

. SV [Spelling Verification] enables spelling verifi
cation in conjunction with the SPEllCHK option of
the SCRIPT command.

Initial value is ON .

. sx [Split Text] specifies a line composed of a
left-justified string, a right-justified string, and
a string to fill the space between.

New parameter allows a centered string between the
left and right strings.

Up to 99 tab positions may be specified, and indi
vidual tab positions may be set or cleared .

. TC [Table of Contents] causes the table of contents
to be formatted.

Rules for n and input line parameters have been
changed .

. TI [Translate Input] specifies character trans
lations that are to be performed before any other
processing .

. TH [Then] is executed only if the most recently
executed .IF, .AN, or .OR control word was true.

The top margin can be specified as an increment to
or decrement from the current value.

Default is based on the logical device. The control
word always takes effect on the next page .

. TS [Translate String] translates single characters
to strings .

. TU [Translate Uppercase] specifies the translation
to be performed when capitalizing text .

. UC [Underscore and Capitalize] underscores and cap
italizes text.

New parameters: ON and OFF, allow you to capitalize
and underscore large blocks of text.

Figure 16. Changes to SCRIPT/VS Control Words (Part 7 of 8)

208 Document Composition Facility: User's Guide

Control
Word Code Description

.UD Changed R.l The "required blankn is normally not underscored.
The required blank defaults to hexadecimal 41.

Changed R.2 Indicates only whether or not the blank is to be
underscored. By default, blanks are underscored.

.UN Changed V/3 An undent can be specified as an increment to or
decrement from the current value.

. UP New V/3 .UP [Uppercase] capi talizes text .

Changed R.l New parameters: ON and OFF allow you to capitalize
large blocks of text.

. US New V/3 .US [Underscore] underscores text .

Changed R.l New parameters: ON and OFF allow you to underscore
large blocks of text.

.UW New R.2 .UW [Unverified Word] is executed when unverified
words are found during spelling checking.

.WF New R.l .WF [Write To File] specifies lines to be written to
an external file.

Figure 16. Changes to SCRIPT/VS Control Words (Part 8 of 8)

Chapter 20. Compatibility with Earlier Releases of SCRIPT 209

CHAPTER 21. ATMS CONVERSION

CONVERTING ATMS-II AND ATMS-III DOCUMENTS TO SCRIPT/VS FORMAT

The ATMS-to-SCRIPT/VS conversion routine is composed of three
separate elements:

• The conversion program, which runs as a processor under the
control of the Document Library Faci Ii ty. This processor
scans ATMS documents for ATMS-II or ATMS-III formatting con
trols and substitutes SCRIPT/VS symbols that invoke similar
or equivalent formatting functions.

• The ATMS conversion profile, ATMSPRF2, which is used when
invoking SCRIPT/VS to format documents that were converted
from ATMS. The profile defines to the formatter the substi
tutions required for the symbols generated by the conversion
program.

• The library of SCRIPT/VS macros that are used to emulate the
original ATMS functions.

The conversion routine is designed to convert most ATMS controls,
GMl tags, and implicit keying conventions to similar or equiv
alent SCRIPT/VS symbols. The output of the conversion routine can
then be formatted using ATMSPRF2 and the library of SCRIPT/VS
macros supplied to emulate the original ATMS functions.

There are some functions in ATMS that are not directly
convertible. Editing of the document may be necessary to achieve
the desired formatting results.

ATMS to SCRIPT/VS conversion limitations includes

• Floating skips

• Hyphenation

• Text block indention

• line controls within split text

• GMl

• Office System/6 OCl and special character codes

In many of these areas the most noticeable difference is that the
SCRIPT/VS equivalent of the ATMS function may cause a line break.

Conversion Technique

ATMS documents to be converted can be in ATMS FTOO output format
or any other sequential format. If the conversion routine is being
used for a document in ATMS FTOO format, SCRIPT/VS takes the
information contained in the document header records (page width,
page depth, and tab settings) and inserts it into the output as
SCRIPT/VS symbols. If the conversion routine is being used for a
document that is in a format other than ATMS FTOO and the ATMS
Application Control Definition (ACD) character is not the default
(!), the real ACD character must be passed to the attribute
processor using the PARM parameter. See Document library Facility
Guide for details.

Hyphenating Words

In ATMS, hyphens in a word at the end of an input line indicate
potential hyphenation points should that word fall at the end of

Chapter 21. ATMS Conversion 211

an output line. If the word does not fall at the end of an output
line, the hyphens are removed.

The input processor combines the word parts together and builds a
.HW [Hyphenate Word] SCRIPT/VS control word to obtain the same
effect.

Conversion Program Operation

The ATMS file(s) in FTOO format may be imported into the Document
library Facility or used directly as input to the formatter in
batch mode.

Conversion of the ATMS controls and ATMS GMl into SCRIPT/VS sym
bols can be accomplished during an IMPORT or READ operation, or
the SCRIPT/VS formatting process. After each access method log
ical record has been read from the source document, an input proc
essing program that has been associated with the content
attribute of ATMS is given control by the Document library Facili
ty. This input processing program converts the ATMS controls and
ATMS GMl as described above. When the record conversion is com
plete, the formatter, or the IMPORT or READ routine, gains control
in order to continue with the task.

Non-Format Command Conversion

The following describes the conversion of each ATMS nonformatting
control.

End of Embedded Control

The !x is deleted.

ATMS GML Identifier

The ! mname is converted to : name (where the is the defaul t
SCRIPT/VS GMl delimiter). Whenever the name has had special char
acters translated to ~ (at sign) or truncated to ten characters if
necessary, a message is issued indicating the original name and
its resul tant name. It does not matter whether the name is in
upper or lowercase letters.

Subdocument Identifier

The subdocument identifier !i is converted to a .SE [Set Symbol]
and some .DM [Define Macro] control words with all of the units
that follow the !i being converted to elements of the macro.

The macros thus defined must be known to SCRIPT/VS when formatting
documents that reference the macros through the ATMS !m syntax. To
accomplish this, the subdocuments containing the macros may be
specified on the SCRIPT command statement through the use of the
SYSVAR option. For example, to use SCRIPT/VS to format an ATMS
document (ATMSDOC) that contains !m's that are defined by another
subdocument (SUBDOC), the following command is required:

SCRIPT ATMSDOC (PROFIlE(ATMSPRF2) SYSVAR(A SUBDOC»

The IBM-supplied ATMS profile document (ATMSPRF2) examines
SYSVARs A through J to determine if they have been set. If so,
their values are taken as the names of documents to be imbedded
prior to the start of formatting of the primary document. This
limit of 10 names can be changed by the user by altering ATMSPRF2
at the user's own installation.

212 Document Composition Facility: User's Guide

Formatting Control Conversion

ATMS formatting controls are identified by the occurrence of an
Application Control Definition (ACD) (usually!) and an Applica
tion Type Definition (ATD) (t,l,m,f,i,x), and are converted to
SCRIPT/VS symbols by the SCRIPT/VS ATMS attribute processor.

It must be understood that in the following descriptions, the ATMS
controls are converted to SCRIPT /VS symbols by the attribute
processor. The SCRIPT/VS symbols are resolved at format time to
control word separators and macros that do not exist in the attri
bute processor output.

The definitions of the SCRIPT/VS symbols created by the attribute
processor are contained in ATMSPRF2.

The conversion macros are defined in ATMS2 MACLIB.

Explicit Paragraphing Specification

The !tf control inter-paragraph space is placed before the para
graph rather than after the paragraph as in ATMS.

!tf; causes text to be formatted corresponding to the parameters
set in the previous !tfnl;n2;n3;n4. Note that the control without
the following ; resets the format settings to the values set by
the first explicit paragraphing !tf in the file (or the default
values) .

The !tfe ends the explicit paragraphing mode so that paragraphing
is controlled again by entry conventions.

Implicit Paragraphing Specification

Floating Skip

ATMS recognizes the end of paragraphs by the following con
ventions:

• A double CR at the end of a paragraph. The use of the double
CR does not affect the paragraph spacing in explicit para
graphing.

• Indention of the first line of a paragraph by at least one tab
(with certain restrictions).

• Issuing most text format (!t) controls.

The input processor will recognize these conditions in !tf (for
matted mode) and insert the appropriate symbols.

The ATMS floating skip control !t+nn;a is forced to the top of the
page.

Width/Depth Control

The ATMS width/depth control !tw when converted causes a line
break unlike ATMS.

Text Alignment Controls

Floating Keeps

!tal, !tar, !tac, and !taj when converted, cause a line break
unlike ATMS.

The !tif control causes all pending floats to be placed on the
page.

Chapter 21. ATMS Conversion 213

Text Block Indention

The ATMS indent block control (!tib) can only be partially sup
ported in SCRIPT/VS. The second parameterl the number of blocks to
be indented l is only supported for formatted paragraph blocks. In
!tu mode it is not supported. The first parameterl the amount of
indent for blocks l sets the indention value of all text of the
same mode (!tu or !tf).

Page Number Control

stop Code

Split Text

Revision Markers

Counters

The ATMS page number symbol !lpn resolves to the default SCRIPT/VS
page number symbol &.

The ATMS typewriter input capability specified by !lsc resolves
to a generated bullet character 1 the same as is done for ATMS
operations on the peripheral queues. This is consistent 1 because
the input processor is preparing data 1 stored in the Document
Library Facility, for formatting by SCRIPT/VS. The optional
spaces entered by the ATMS user will be removed by the input
processor.

The ATMS split text control !lst may not be used on a line with
other line controls (results are unpredictable).

The inclusion of markers in the output is controlled in ATMS by
the print command option (m). SimilarlYI when revision markers
are to be printed by SCRIPT/VS in documents converted by the ATMS
conversion processor, a SYSVAR with the name "M" with any value
must be specified; otherwise, the revision marker will not be
printed.

The ATMS counters are handled by two controls, !tset and !lcn of
the form:

!tset;identifier;value;style

where identifier is

pn-page number
eN-all counters
en-specific counter 0 thru 9

value is

o to 65535
or

+0 to +65535

style is

a or la for upper and lowercase alphabetic
r or lr for upper and lowercase roman
n for arabic

These controls are simulated using SCRIPT/VS control words and
symbols.

Note: Counters may not be used in spli t text lines.

214 Document Composition Facility: User's Guide

Hexadecimal Hexadecimal
Code Character Code Character

4A ¢ BO 0

4C < Bl 1

4F I B2 2

5F B3 3

6E > B4 4

8B { B5 5

8C ~ B6 6

8F t B7 7

9B B8 8

9F • B9 9

AB L BB .J

AC r BC ,
AE ~ BE -:/:.
AF • BF

Figure 17. Character Codes Recognized by ATMS-III Conversion: The triplet
(character-backspace-character) conventions for special charac
ters defined in ATMS-III Terminal Operations Guide are recognized
and translated into a single hexadecimal character.

Triplets and Backspaces

In ATMS there is an entry convention involving backspaces for
characters which do not occur on the keyboards but which can be
represented on the output printers by graphics. These entry con
ventions are defined in ATMS-II Terminal Operations Guide and the
ATMS-III Terminal Operations Guide.

The input processor will convert defined triplets
character-backspace-character to a single hexadecimal character
that represents the triplet. All other instances of backspaces
are left unchanged.

The special characters and their hexadecimal codes are listed in
Figure 17.

ATMS CONTROL - SCRIPT/VS SYMBOL RELATIONSHIP

Figure 18 on page 216 identi fies the ATMS controls and the
SCRIPT/VS symbols to which they are converted.

The substi tution for the SCRIPT /VS symbols is contained in
ATMSPRF2 and should be looked at in conjunction with this list.

The contents of each macro which is eventually invoked by the sub
stitution is contained in ATMS2 MAClIB.

Chapter 21. ATMS Conversion 215

ATMS Input

!fname
!iname

!lcn;+
! lda;x
!lde;x
!lpn
!loe
!los;x
! Ire
! I rs; x
!lsc
textl!lst;xtext2
!lue
!lus
!mname
!t(
!t)
!t)(
!t+nn;x
!tac;n
!taj;n
!tal;n
! tar; n
!tcm
!tds
!tfnl;n2;n3;n4
!tfe
!thh
!thm;n
!tib;nl;n2
!tif
!til;nl;n2;n3
!tir;nl;n2;n3
!tj
!tle
!tls
!tm;nl;n2
!tnj
!tnp
!tpd;nl;n2
!tps;nxx
!trs;n
!tset;id;val;style
!tss
!ttab;nl; ... ;nm
!ttab-;nl; ... ;nm
!ttab+;nl; ... ;nm
!tts
!tu
!tuc
!tufnn
!tufcnn
!tuhnn
!tuhcnn
!tw;nl;n2
!twz;n
!x

Conversion output

&CilF name
.SU OFF
.SE name = '&GlCONT.&aCW .. Cilname'
.DM name OFF
&GllC N +
&GllDA X
&GllDE X
&GllPN.
&GllOE.
&GllOS X
&GllRE.
&GllRS X
&GllSC.
&GllST CiltextlCilxQltext2
&GllUE~
&GllUS.
zname
&GlTBKP
&QlTEKP
&GlTEBK
&GlSKIP nn X
&GlTAC N
&GlTAJ N
&QlTAl N
&GlTAR N
&GlTCM
&GlTDS
&GlTF nl n2 n3 n4
&GlTFE
&GlTHH
&GlTHM n
&GlTIB nl n2
&GlTIF
&GlTIl nl n2 n3
&QlTIR nl n2 n3
&OlTJ
&GlTlE
&GlTlS
&GlTM nl n2
&GlTNJ
&QlTNP
&GlTPD nl n2
&GlTPS Nxx
&GlTRS n
&GlTSET ID val STYLE
&GlTSS
&GlTTAB nl ... nm
&GlTTABM nl nm
&GlTTABP nl ... nm
&GlTTS
&GlTU
&GlTUC
&OlTUFnn
&GlTUFCnn
&GlTUHnn
&GlTUHCnn
&GlTW nl n2
&GlTWZ n
null

Figure 18. ATMS-III Controls to SCRIPT/VS Conversion

216 Document Composition Facility: User's Guide

CHAPTER 22. COMPATIBILITY WITH lSO/FORMAl

The TSO Data utility program product provides users of the Time
Sharing Option eTSO) of OS/VS2 with a FORMAT function. TSO/FORMAT
allows TSO users to enter formatting controls into TSO text data
sets that indicate the type of formatting required.

SCRIPT /VS provides TSO/FORMAT users wi th an easy migration to
more powerful formatting. SCRIPT/VS control word syntax is iden
tical for many TSO/FORMAT control words, and SCRIPT/VS control
words which are new to TSO/FORMAT users provide many new or
enhanced functions.

Creating a lSO/FORMAT-Compatible Environment

SCRIPT/VS provides a symbol and macro facility which allows you to
process TSO/FORMAT documents wi thout modi fying the documents
themselves. Figure 19 lists the TSO/FORMAT control words that are
not directly supported by SCRIPT/VS. You can define a SCRIPT/VS
macro with the name of the TSO/FORMAT control word that executes
the equivelent SCRIPT/VS control word. See "Chapter 13. Writing
SCRIPT/VS Macro Instructions" on page 147 for details.

You can place your macro definitions in a Profile to ensure that
they are always available when you process TSO/FORMAT documents.
For details, refer to npROFILE: Specify a Profile" on page 28.

The SCRIPT Command in TSO

The SCRIPT command is used to call SCRIPT/VS to format an input
file, and is similar to the FORMAT command. See "Chapter 2. Using
the SCRIPT Command" on page 13 for details about the SCRIPT com
mand, its options, and its TSO naming conventions.

TSO/FORMAT Control Word SCRIPT/VS Equivalent Control Word

.AD [Adjust] .RI [Right Adjust]

.BL [Blank] .TR [Translate Character]

.EN [End] .CE [Center] OFF

.FI [Fill] .FO [Format Mode] ON

.HI [Hanging Indent] .UN [Undent], .OF [Offset]

.NF [No Fill] .FO [Format Model OFF

.NJ [No Justify] .FO [Format Mode] LEFT

.PI [Paragraph Indent] .PP [Paragraph Start]

.RP [Reprint]

.ST [stop] .QU [Quit]

Figure 19. Unsupported TSO/FORMAT Control Words: A SCRIPT/VS control word
which provides an equivalent function is listed for each
TSO/FORMAT control word, except .RP [Reprint]. SCRIPT/VS provides
no equivalent of the Reprint function.

Chapter 22. Compatibility with TSO/FORMAT 217

CHAPTER 23. SCRIPT/VS CONTROL WORD DESCRIPTIONS

This section describes each control
word in the SCRIPT/VS language. All
parameters are shown with descriptions
of their effect on processing. Usage
notes and examples are included.

CONTROL WORD SYNTAX

All control words have two-character
names. A control word is identified by
a period C.) in the first character
position of an input line, followed by
the two-character name. If the control
word accepts parameters, they follow
the control word name and are separated
from each other by blanks:

. du add raccoon giraffe llama

The blank separating the control word
name from the first parameter is
optional; if you omi tit, SCRIPT /VS
will insert it. Thus,

.cecenter this line

will be processed as

.ce center this line

Note: If you omit the first blank, and
the control word name and first parame
ter together form a valid macro name,
the macro will be processed, rather
than the control word, if macro substi
tution is on.

The Control Word Separator

The control word separator character
may be used to enter several control
words on a single line:

.sk .5i;.fo on;.in 10m

SCRIPT/VS scans every control word line
for the control word separator charac
ter. If one is found, the line is
divided at that point, and the part of
the line before the control word sepa
rator is processed as a complete
control word line. The remainder, to
the right of the control word
separator, becomes the next input line.
The period in ".fo on" in this example
appears in the first character
position, allowing ".fo" to be recog
nized as a control word.

The control
may also be
word within
example,

word separator character
used to place a control
a line of text. For

an under;.us on;score;.us off;d word.

resul ts in:

an underscored word.

SCRIPT/VS also scans every text line
for the control word separator charac
ter. If one is found, and is immediate
ly followed by a period and a
two-character control word name, the
line is divided at that point. The part
of the line preceding the control word
separator is processed as a line of
text with continuation, and the remain
der of the line, to the right of the
control word separator, becomes the
next input line. If a control word sep
arator character is found in a text
line, but is not followed by a control
word, it is treated as text .

Note: Macros are not recognized in text
lines. The .EM [Execute Macro] control
word must be used to process macros in
text lines.

The character to be used as the control
word separator may be changed with the
.DC CW [Define Character] control word.

Macros

SCRIPT /VS macros are invoked in the
same way as control words with a period
in the first character position of an
input line. Macro names, however, may
be up to ten characters long. Parame
ters may be specified on a macro line
in the same way as on a control word
line. If a macro called "brachiate"
were defined with the .DM [Define
Macro] control word, it would be
invoked as a control word:

.brachiate parmI parm2

If a macro is defined wi th the same
name as a control word, the macro will
be processed instead of the control
word when macro substi tution is on.
This allows you to redefine the func
tion of a control word.

The Control Word Modifier

The SCRIPT /VS control word processor
recognizes a single quotation mark CI)
after the period as a control word mod
ifier. Any control word can be entered
with the modifier:

.Ice Center this line.

Chapter 23. SCRIPT/VS Control Word Descriptions 219

The control word modifier changes the
usual operation of the control word
processor in two important ways:

1. No macro search is done. Even if a
macro of the given name exists l the
control word is invoked, not the
macro.

2. No control word separator scan is
done. Any control word separators
in the line are left there as or-di
nary text characters. Thus, a con
trol word entered with the control
word modifier must be the last con
trol word on that line.

Since no control word separator scan is
done, a control word that accepts a
line of text may be entered with the
control word modi fier to protect any
separator characters that appear in the
line as part of the text:

.'ce centered line; one line.

.'h3 Using the; in text

However, if the line contains a symbol
that, when resolved, contains a control
word separator character in the first
position of the new input line, it will
not be ignored. You must either specify
a . DC CW OFF immediately before the
line or you must use the control word
separator symbol (&$CW).

Type 1 Control Words

There are several control words that
all have the same syntax and accept the
same parameters, called Type 1 control
words. All the Type 1 control words are
analyzed by a common preprocessor
before the individual control word
processors get control, and they there
fore have certain things in common.
(There are other control word types as
well, and their syntax is explained in
the individual control word
descriptions.)

The fictitious control word .tl is used
in this discussion to represent any
Type 1 control word:

.tl

where:

n

[
1 1 n
ON
OFF
line

is a positive integer that indi
cates the number of input lines
to be processed by the Type 1
control word. The default is 1,

ON

OFF

meaning that the next input line
after the control word is to be
processed by this control word.

starts an open-ended range of
input lines to be processed by
the Typ·e 1 control word, unti I
terminated wi th the OFF parame
ter.

stops the effect of the Type 1
control word l whether it was
started with the ON parameter, or
wi th a number in "n" that has not
yet been exhausted.

line is a single line that is to be
processed by the Type 1 control
word. The single input line

. tl this is a line

is equivalent to the two lines

. tl 1
this is a line

The line given on a Type 1 control word
is assumed to start with the first non
blank character. Thus, the following
two forms operate identically:

.tl this is a line

. tl this is a line

The keywords ON and OFF and numbers
given in "n" are recognized only if
they are the only parameters on a con
trol word line. If there are other
parameters, it is assumed to be a
"line" to be processed. Thus, Type 1
control words in the form:

.tl On old Olympus' towering top

.tl 555 Bailey Avenue

are taken as control words that have a
line of text, not as requests to proc
ess la rge numbers of input lines.

Space Units

All control word parameters that speci
fy horizontal or vertical dimensions
may be specified in any recognized
space units, unless otherwise noted in
the control word description. The
recognized space uni ts are:

Centimeters - aaCM
Character spaces - aa
Ciceros/Didot points - aaCbb
Em-spaces - aaM
Inches - aaI
Line spaces - aa
Millimeters - aaMM
Picas/points - aaPbb

where aa is any valid number. Space
amounts in inches, centimeters, and

220 Document Composition Facility: User's Guide

millimeters may have up to two decimal
positions.

NOTATIONAL CONVENTIONS

The format· of each control word is
described as shown above in a format
box. The notation conventions used are:

1 . Keywords that must be entered as
shown are in UPPERCASE. If the
keyword can be abbreviated, the
abbreviation is shown in uppercase
letters, and the rest of the word
in lowercase, as in ROman. (You may
enter the control word and the
keyword in uppercase or
lowercase.)

2. Parameters for which you must sup
ply the value are shown in lower
case letters.

3. If there is a defaul t value for a
parameter, it is underscored. In
some cases, one parameter can have
a default but other parameters must
be speci fi ed.

4. The initial setting and default of
a control word are not always the
same. For example, for the .MS
[Macro Substitution] control word,
the initial setting is OFF, but the
defaul t is ON.

5. A single optional parameter is
shown in [small bracketsl. This
parameter may be speci fied or omi t
ted.

6. A parameter that allows you to
choose one of several possibil
ities, or none, is shown as a list
enclosed in large brackets, as in
the Type 1 example above.

7. A list enclosed in {braces} indi
cates that one of the choices must
be specified. For example, the
notation

{: ON J
{: OFF J
{: INCLUDE J
{: IGNORE J

signifies that this parameter must
be specified as ON, OFF, INCLUDE,
or IGNORE.

8. A single required parameter is
shown without any brackets' or
braces.

9. If the format box has internal hor
izontal lines, as in the .DM [De
fine Macro] control word
description, each segment of the
box depicts an alternative form of
the control word.

10. An ellipsis (...) indicates that a
parameter can be repeated. The form
"dl ... d9" indicates that you may
specify up to nine "dO values, sep
arated by blanks. The form "c ... "
indicates that you may specify as
many values of c as will fit on
that input line.

Chapter 23. SCRIPT/VS Control Word Descriptions 221

[SET LABELl

The ... [Set label] control word marks a line of your SCRIPT/VS file or macro so
that that line may be referred to in a .GO [Goto] control word.

label [linel

where:

label is a name of up to eight charac
ters that can be used to refer
to this line of your 'SCRIPT file
or macro.

line is the active part of this input
line. The first nonblank char
acter after the label is treated
as if it were the beginning of
the line; it may therefore be a
control word, but a text line
associated with a label may not
begin with blanks. If the input
line has a label only and no
active line, then the next line
to be processed is the one fol
lowing the labeled line.

Default: None

Notes:

1. When the control word is
encountered, SCRIPT /VS saves the
information necessary to enable it
to find this line again if a .GO
[Goto] control word is
encountered. Any valid SCRIPT /VS
input line may follow the label, or
the label alone may occupy the
line.

2. Use of labels and the .GO control
word is restricted to one input
file or macro. That is, when a new
file is imbedded or appended, a new
set of labels is in effect while
that file is being processed.
SCRIPT/VS can only branch to a
label wi thin the same input file or
macro.

3.

4.

222

Every label in a particular file
must be unique. If two identical
labels are found in the same file,
an error message is issued.

Multiple labels with the same name
are tolerated in macros, but when
searching for labels in a macro,
only the first occurrence of a
label will be found.

The .GO function can be relatively
inefficient in fi les. You should
use it sparingly in situations

Document Composition Facility:

where it is the best way to achieve
the required results. When going
to a label that is later in the
input file, it is most efficient
when the label is not far from the
.GO; when going to a label that is
earlier in the file, it is most
efficient when the label is near
the beginning. label processing in
macros is a much more efficient
operation than in fil es. However,
it is more efficient to branch to a
label that is earlier in a macro as
labels in macros are always
searched for from the top of the
macro.

5. A space is not required after the
control word itself. To set a label
called "HERE", either " ... HERE" or
" ... HERE" may be used.

6. The ... for a label must begin in
column 1. That is, it must be the
fi rst control word on the input
line.

Example:

Suppose you had a file called REPORTI
that contained a summary of activi ty
for January, another file, REPORT2, for
February, REPORT3 for March, and so
forth. Now, if you wanted to create a
year-to-date report by imbedding all
the report fi I es up to last month' s
report, you could use this sequence of
SCRIPT/VS control words:

.se ctr = 1

... loop .im report&ctr

.se ctr = &ctr + 1

.if &ctr It &SYSMONTH .go loop

The first time the .IM [Imbed] is proc
essed, the value of the symbol "&ctr"
is 1, so the filename "report&ctr"
becomes "reportl". The next control
word adds one to the value of the sym
bol; it is now 2. If the month is later
than March (month 03), then the value
of the counter is less than the month
number, and the loop is processed
again. This time the filename
"report&ctr" becomes "report2". The
1 oop conti nues unti 1 the counter is
equal to the current month number.

User's Guide

.AA [ASSOCIATE APFl

The .AA [Associate APFl control word may be used to associate a GML tag with the
Application Processing Functions (APFs) that are to be invoked to perform the
tag's processing functions and specify the rules for scanning the attributes for
the tag. Two APFs may be associated with the tag -- one for the processing when the
tag is preceded by the GMl tag delimiter, and one for the processing when the tag
is preceded by the GMl end-tag delimiter. (See the description of the .DC [Define
Characterl GMl and .GS [GMl Servicesl PREFIX control words.) An APF is a SCRIPT/VS
executable macro or control word.

The .AA [Associate APFl control word is discussed in "Chapter 14. GMl Support in
SCRIPT/VS" on page 159.

.AA tag [(rulkeysl1

[

OFF

1

[(rulkeys 1 1

where:

tag

OFF

NULL

specifies the GMl tag to be
associated wi th an APF.

indicates that this
explicit tag-to-APF asso
ciati on is to be del eted.
In this case, an APF can
still be determined for a
tag by class mapping. You
can u~e . AA to set up an
explicit association for a
sta rt-tag onl y, or an
end-tag only, and let the
other'APF be determined by
class mapping.

indicates that this GML
tag (or end-tag) is to
result in no processing.

also indicates that this
GMl tag (or end-tag) is to
result in no processing.

= indicates that the APF
association for this tag
(or end-tag) is to remain
unchanged.

[.lapfname indicates that the speci
fied macro is to be exe
cuted when the GMl tag (or
end-tag) is encountered.

rulkeys are scan rule keywords
that set the rules for
attribute scanning for
this tag to APF associ
ation. The recognized rule
keywords are ATT, NOATT,
VAT, NOVAT, STOP, NOSTOP,
MSG, and NOMSG. See". GS

Notes:

:ULL

[.lapfname

[GMl Servicesl" on page
265 for more information
about the meaning of these
keywords and the scanning
rules they define.

1. The first set of parameters apply
to the tag. The second set of
parameters apply to the end-tag.

2. If no scanning rules are given for
this .AA, then the current rules,
as most recently set by .GS RULES,
are used. Once a .AA association is
set up, it has scanning rules with
it that remain unchanged, even if
new rules are defined with .GS
RULES.

3. You can change the APF association
wi th another . AA wi thout changing
the scanning rules, or you can
change the rules wi thout changing
the APF association. If you speci fy
"=" for the APF name, and give a
new list of rules, the association
remains the same, but the rules are
changed. If you specify a new APF
name, and don't give a list of
rules, the APF association is
changed, but the rules remain the
same.

4. An empty list of rules, that is,
left and right parentheses with
nothing in between, causes the cur
rent rules to be used. (The current
rules are also used if this is the
fi rst . AA for this tag, and you
gave no rules.)

Chapter 23. SCRIPT/VS Control Word Descriptions 223

.AN [AND]

Use .AN [And] control word in conjunction with the .IF [If] control word to proc
ess SCRIPT/VS input lines conditionally. The result of the test performed is log
ically ANDed to the result of the most recently performed .IF [If], .AN [And], or
.OR [Or] control word to determine whether the target is to be processed.

The .AN [And] control word is discussed in "The .IF Control Word Family" on page
Ill.

.AN comparandl test comparand2 target

SYSPAGE test (EVEN)
(ODD)

SYSOUT test (PRINT)
(TERM)

where:

comparandl is any string to be used as
the first comparand. This
comparand may be the value
of a set symbol.

comparand2 is any string to be used as
the second comparand. It
too may be the value of a
set symbol.

test

target

SYSPAGE

is a 1- or 2-character code
that tells SCRIPT /VS what
kind of comparison to make
between the two
comparands. The following
codes are recognized by
SCRIPT/VS:

Codes Meaning
eq = equal
ne ... = not equal
gt > greater than
It < less than
ge >= greater than or

equal
Ie <= less than or equal

is any valid SCRIPT/VS
input line. It may be a
control word or text. If
this condition and the
most recently performed
.IF [If], .OR [Or], or .AN
[And] are both true, the
target line is processed
next, with the first non
blank character after . AN
treated as the first posi
ti on of the subj ect 1 i ne.
Otherwise, the target line
is ignored, and processing
continues wi th the input
line that follows the . IF
control line.

is a special . AN keyword
that tests whether the
page that SCRIPT/VS is
currently processing is an
even- or odd-numbered
page.

target

target

SYSOUT

Notes:

See the . IF [If] control
word for a description of
SYSPAGE, ODD, and EVEN.

is a special . AN keyword
that tests whether
SCRI PT /VS output is bei ng
directed to the offline
printer or to the
terminal.

See the .IF [If] control
word for a description of
SYSOUT, TERM, and PRINT.

1. For readability.. an optional "D"
may be added wi thout intervening
blank to the .AN control word. This
allows the control word to be writ
ten as ".AN" or ".AND".

2. The .AN [And] and .OR [Or] control
words.. in conjunction with .IF
[If], .TH [Then], and .El [Else],
allow you to construct complex log
ic statements.

3. The . AN control word i tsel f does
not cause a break; the target con
trol word might, if it is
processed.

4. Each of the comparands may be up to
255 characters in length.. and the
shorter comparand will be extended
to the length of the longer wi th
trailing blanks.

5. If substitution is off when the .AN
control word is encountered, all
valid symbols in the comparands
will be resolved before the compar
ison is made. (Symbols containing
imbedded blanks, parentheses, or
control word separators must be
compared wi th substi tution off so
that the test to be performed and
the target of the .AN can be iden
ti fied.)

224 Document Composition Facility: User's Guide

Examples:

• The following input lines are all
equivalent:

.AP [APPEND]

.if &a./&c eq &b./&d .ty Yes.

.if &a eq &b .if &c eq &d .ty Yes .

. if &a eq &b .and &c eq &d .ty Yes.

Use the .AP [Append] control word to insert an additional SCRIPT/VS file at the
end of the file just processed.

The .AP [Append] control word is discussed in "Imbedding and Appending Files" on
page 119 .

• AP [file-id) [tokenl ••• token14]
[(filename))
[('docname'))

where:

file-id is an 8-character SCRIPT /VS
name for the file to be
appended.

An 8-character name can be
associated wi th an external
file or data set with the .DD
[Define Data Fi1e-id] control
word. If no .DD has been exe
cuted for the file-id, an
external file or data set name
is built by SCRIPT/VS from the
file-id, using the rules for
the current environment, as
described in "Naming the
Input File" on page 13. If a
.DD [Define Data File-id]
control word has been issued
for the file or data set iden
tified in the .AP control
word, the 8-character name is
used internally, regardless
of whether the 8-character
name or the parenthesized
file or data set name was
specified in the .AP control
word.

filename is the real name of the file
or data set to be appended,
enclosed in parentheses. If
no .DD has been executed for
the file or data set,
SCRIPT/VS will assign an
8-character name to be hence
forth associated with that
file or data set.

docname is the name of a document to
be appended. If the document
name contains lowercase or
special characters, it must
be enclosed in single quota
tion marks (') and
parentheses.

tokens are posi tional values wi th a
maximum length of 8 charac
ters to be passed to the file
to be appended. The first

Notes:

token (word) becomes the val
ue of the symbol &1, the
second token becomes the val
ue of the symbol &2, and so
forth. The symbol &0 contains
the number of tokens that were
passed; up to 14 may be speci
fied.

1. When the .AP control word is
encountered, the current file is
closed, and the speci fied SCRIPT
file is processed as a continuation
of the SCRI PT /VS input from the
previous file. Text or control
words following the .AP control
word in the current file are not
processed.

2. The .AP control word is especially
useful for iterative processing of
a file. See the example given
under the description of the . EF
[End of File] control word.

3. The .AP control word closes the
current file and starts reading
input lines from the appended file.
In this sense, the .AP control word
marks the end of the file; since it
is closed, SCRIPT/VS will not
return to it when the appended file
is finished. If the . AP control
word is not actually at the end of
the fi Ie, the lines after it are
not read.

4. The symbols &1 through &14 are
reset whenever a .IM or . AP control
word is processed, and the token &0
is reset to the number of non-null
tokens. If you want to leave token
&1 unset but set token &2, you may
use a percent sign (Yo) in place of
token1 (or any other token you want
left unset).

5. Error messages, trace output, and
identifiers provided by the NUMBER
option of the SCRIPT command, all

Chapter 23. SCRIPT/VS Control Word Descriptions 225

use the internal 8-byte file-id to
describe a file.

Example:

.ap abc 10

The input file is closed. The contents
of the SCRIPT/VS file ABC are processed
immediately following the line of the

.BC [BALANCE COLUMNS]

current file which precedes the . AP
request. The token 10 is passed to the
appended file, so if the file ABC con
tains a control word of the form:

.in &1

the resul t is:

. in 10

Use the .BC [Balance Columns] control word to cancel and restore column balancing
for multiple column formatting.

The .BC [Balance Columns] control word is discussed in "Page Sections and Section
Breaks" on page 68.

.BC

where:

ON
OFF]

ON indicates that you want SCRIPT/VS
to balance columns. ON is the ini
tial setting as well as the
default.

OFF indicates that you do not want
SCRIPT/VS to balance columns when
a page eject or column definition
is encountered.

Initial Setting: ON

Defaul t: ON

Notes:

1. When column balancing is in effect,
the number of lines in each column
is made as equal as possible before
the material on that page is
printed.

2. If a blank line that was generated
by the .SK [Skip] control word ends
up at the top of a col umn after
balancing, it is discarded.

3. When column balancing is off, the
number of lines in each column is
determined by explicit .CB [Column
Begin] control words or by filling
all columns, but no attempt is made
to equalize the number of lines in
all columns.

4. If a column is started explicitly
by a .CB [Column Begin] control
word, or by a .CC [Conditional Col
umn Begin] or .HO - .H6 [Head Level
o - 6] control word that causes an
eject to a new column, the new col
umn is ineligible for balancing:
text from preceding columns will
not be moved into it during column
balancing.

5. If a page eject occurs while proc
essing multiple columns, this does
not mark any column ineligible for
balancing. A column eject that
changes the current column from the
last column of a page to the first
column of the next page is the same
as a page eject.

226 Document Composition Facility: User's Guide

.BF [BEGIN FONT]

Use the .BF [Begin Font] control word to save the current font and begin a new font
(a set of characters of one size and style) .

The .BF [Begin Font] control word is discussed in "Using Fonts with the IBM 3800
Printing Subsystem" on page 48 and "Defining Internal Fonts" on page 107 .

• BF [font-id]

where:

font-id is the name of the font to be
started. The name may be
either one of those specified
with the CHARS option of the
SCRIPT command, or a
SCRIPT /VS font created wi th
the .DF [Define Font] control
word. If no font name is spec
ified, the current font will
be used.

Defaults The current font.

Notes:

1. When the .BF control word is
encountered by the formatter, all
subsequent text characters are
formatted using the speci fied
font. The specified font remains
in effect until another .BF or .PF
[Previous Font] control word is
encountered with a different font.

2. The system symbol array &$CHAR con
tains the names of the fonts speci
fied with the CHARS option of the
SCRIPT command. &$CHAR(O) contains
the number of fonts specified,
&$CHAR(1) contai ns the fi rst font
specified (or the default for the
logical device, if the CHARS option
was omitted), &$CHAR(2) contains
the second font, and so on. In
addition, the .DF [Define Font]
control word allows you to create
SCRIPT /VS fonts to provide such
formatting functions as underscor
ing and overstriking.

3. The .BF control word saves the cur
rent font before beginning the new
font; the .PF control word restores
the previous font. Up to 16 fonts
can be saved.

4. Refer to "PRINT: Produce Printer
Output" on page 27 for details on
printing documents formatted for
the 3800 under TSO.

Examples:

•

•

•

This line is in the normal font for
this document.

. BF GBl2

has this effect.

You can speci fy the font to be
started symbolically:

.bf &$CHAR(2)

starts formatting in whatever font
was the second one named on the
CHARS option of the SCRIPT command.

If you have previously defined a
SCRIPT/VS font, such as

.df hilite us up font GB12

then

.bf hilite

HAS THIS EFFECT.

Chapter 23. SCRIPT/VS Control Word Descriptions 227

.BM [BOTTOM MARGIN]

Use the .BM [Bottom Margin] control word to specify the amount of space to be
reserved at the bottom of output pages, overriding the initial value established
for the device.

The .BM [Bottom Margin] control word is discussed in "Changing the Page Length" on
page 57. Figure 8 on page 56 shows the relationship of the .BM [Bottom Margin] to
the layout of a SCRIPT/VS output page.

where:

y
+y
-y]

Y specifies the amount of space to be
reserved at the bottom of output
pages. v must be large enough to
accommodate the footing margin
(.FM) and the footing space (.FS),
both of which are allocated from the
bottom margin area. If +v or -v is
specified, the current value of the
bottom margin is incremented or dec
remented. If no value is specified
for v, the initial setting is
restored. The maximum value for the
bottom margin is the page length
(.PL) less the top margin (.TM) less
space for one line.

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

Notes:

1. The value set by the . BM control
word applies on the page after the
one on which the .BM control word
is encountered, and all subsequent
pages until another .BM is encount
ered.

2. The value given may not be so large
that the top margin plus the bottom
margin fill the entire page. An
error message is issued if you try
to set the bottom margin to equal
to, or more than, the page length
minus the top margin. If you intend
to increase the bottom margin so
~hat you can increase the footing
margin or the footing space beyond
what the old bottom margin would
allow, be sure to do it in that
order. The rule is, increase the
bottom margin before the footing
margin or footing space, but
decrease the footing margin or
footing space before the bottom
margin.

3. If you specify .BM 0, the footing
margin and the footing space are
also made zero automatically.

4. The .BM control word is not allowed
in a keep.

5. The size of the bottom margin is
not affected by line spacing.

228 Document Composition Facility: User's Guide

.BR [BREAK]

Use the .BR [Break] control word to ensure that the next input line is not concat
enated with the previous line or lines.

The .BR [Break] control word is discussed in "Breaks" on page 38 .

• BR

Notes:

1. The .BR control word is necessary
only when SCRIPT/VS is concatenat
ing input lines. It causes the
preceding line to be formatted as
a short line, if it is shorter
than the current column length.

2. Many other control words have the
effect of a break. No .BR control
word is necessary when one of
these is present. See Figure 25 on
page 354 for a list of these con
trol words.

3. A leading blank or tab on an input
line has the effect of a break.

4. The .BR control word can ensure
that some other control words are
not effective too early or too
late, for example:

.br;.tr $ 40

• BX [BOX]

may be used to prevent the trans
lation from being effective on the
preceding text line, and

.tr$$;.br

may be used to make sure the
translation does not affect the
next line.

Example:

Heading:
.br
New paragraph ...

On SCRIPT/VS
appear as:

Heading:

output, these

New paragraph ...

lines

If the .BR control word were not
included, the lines would print as:

Heading: New paragraph ...

The .BX [Box] control word defines and initializes a horizontal rule for
SCRIPT/VS output and defines vertical rules for subsequent output lines. With
this control word, you can format tables, charts, or text within neatly format
ted boxes. The .BX control word is designed to work only in nonmixed pitch situ
ations.

The .BX [Box] control word is discussed in "Drawing Boxes" on page 101.

.BX [NEW] [dl [/] ••• dn]
SET
OFF

[CAN] CHAR cname

where:

dl ••• dn are the distances from the
left margin at which you want
vertical rules placed in out
put text. This format of the
control word ini tializes the
box and draws a horizontal
line, with vertical

descenders at the columns
indicated. A slash (/) indi
cates a discontinuity between
columns, wi th no horizontal
rule connecting these
columns. Subsequently, enter
ing the .BX control word with
no operands causes SCRIPT /VS
to print a horizontal line

Chapter 23. SCRIPT/VS Control Word D~scriptions 229

NEW

SET

OFF

CAN

CHAR

cname

across only the positions not
slashed out, as in the ini tial
.BX [Box] specification. This
allows two or more separate
boxes to be drawn side by
side. dl-dn may be specified
in space units but the desig
nated values will be
converted to M spaces, since
the .BX control word is sup
ported for monospaced fonts
only.

if no columns are given, or if
no box is now going, the NEW
function is ignored; other
wise, a new box is started,
and the previous box is
stacked. This capability
allows boxes to be drawn
i nsi de boxes.

causes SCRIPT/VS to stack the
current box, and prepare for a
new box. Unlike a "NEW" box,
however, the box is not
started until the next line of
text is processed; conse
quently, the box will have no
initial horizontal rule.

causes SCRIPT/VS to finish
drawing the box, by printing a
horizontal line with vertical
ascenders at the columns in
effect. I f this box was
started as a "NEW" box, the
previous box is reinstated
when this one is ended. If
columns are specified with
OFF, and no box is currently
in effect, then a box bottom
will be drawn according to the
column specifications given.

causes the box to be cancelled
without a box bottom. If the
box being cancelled is a
nested box, the next higher
box is reinstated.

Allows you to override the
assumed box character set
that SCRIPT /VS uses to draw
boxes. When you specify CHAR,
you must also speci fy the name
of the box character set to be
used.

is the name of the box charac
ter set SCRIPT /VS is to use
for drawing all subsequent
boxes. The va 1 i d names are:

TRM terminal character set

32T 3270 text characters

TNC 1403 TN or 3211 TIl char
acter set

38C SCRIPT/VS 3800 character
set

GPC box characters for 3800
GPl2 font

32A 3270 APL characters

APL APL box characters

Default: Repeat previous box defi
nition.

Notes:

1. The .BX control word describes an
overlay structure for subsequent
text that is processed by
SCRIPT/VS. After the .BX dl d2 ...
line is processed, SCRIPT /VS con
tinues formatting output lines as
usual. However, after a line is
completely formatted and before it
is printed, SCRIPT /VS places ver
tical lines in the columns
indicated by dl, d2, and so on.

If a data character occupies the
same position as a vertical line,
the vertical line takes precedence
over data characters in the same
column.

2. The .BX control word causes a
break.

3. The characters used to draw the box
depend on the logical device for
which formatting is taking place.
SCRIPT/VS assumes an appropriate
box character set for each logical
device, but you can override this
by using the CHAR parameter to
force any of SCRIPT/VS's box char
acter sets to be used instead.

4. A .BX control word with different
columns specified may be used while
a box is being drawn. When this
happens, vertical ascenders are
put in for all the old columns and
vertical descenders are used for
all the new columns, a horizontal
rule is drawn, and the vertical
rules are then placed in all subse
quent output lines in the new
columns designated.

.5. The column speci fication for the
.BX control word uses a different
rule than is used elsewhere in
SCRIPT /VS. In control words like
.IN, .TB, .CD, the numbers in the
control word represent not columns
but displacements. The SCRIPT/VS
control word .TB 5 means that a tab
character should be expanded to
enough blanks to fi 11 up through
column 5; the next word starts in
column 6. In the .BX control word,
.BX 5 means to put vertical rules
in column 5. Thus, you can use the
same numbers for a .TB control word
as for a .BX control word, and the
vertical bar will be placed in the
column just before the beginning of
the word following a tab. Further,

230 Document Composition Facility: User's Guide

you can define a box that is to be
the full column width symbolically
with the following control word:

· bx 1 &$CL

because the number represents the
actual column where the vertical
rules should be placed.

6. Problems of vertical alignment
wi 11 occur if the . BX control is
used to draw boxes in mixed pitch
situations. This will occur if the
font being used has characters of
different widths, or if monospaced
fonts are used which have different
widths.

7. The characters to be used for box
drawing must be i~all fonts which
are used within a box.

8. If you ·define boxes which extend.
beyond the edge of the column, text
in subsequent columns may be dis
placed.

Examples:

• There is a SCRIPT file called
MARYHADA that looks like this:

Mary had a little lamb,
Whose fleece was white as snow,
And everywhere that Mary went,
The lamb was sure to go.

The following input sequence could
be used to center this material in
a box that is the same wi dth as the
current column length:

· bx 1 &$CL
.ce on
· im maryhada
· ce off
· bx off

•

•

The result:

Mary had a little lamb,
Whose fleece was white as snow,

And everywhere that Mary went,
The lamb was sure to go.

An example of a nested box:

A nested box was created using the
following control word sequence:

.bx 10m 20m 30m

.sp
· bx new 15m 25m
.sp
· bx off
.sp
.bx off

The following shows the effect of
the slash (/) between column spec
ifications:

.bx 5m 15m / 25m 35m

.sp
· bx new 15m 25m
· bx can
.sp
· bx off

Chapter 23. SCRIPT/VS Control Word Descriptions 231

·CB [COLUMN BEGIN]

The .CB [Column Begin] control word causes subsequent text to start a new column
of output.

The .CB [Column Begin] control word is discussed in "Page Sections and Section
Breaks" on page 68 .

• CB

Notes:

1. Use the .CB control word when you
want to make the following text
appear at the top of a new column.
If the current column at the time a
.CB i~ encountered is the last col
umn on the page, the column eject
is the same as a page eject, since
the next column is the first column
of the next page. If the current
column is not the last column on
the page, the new column is made
ineligible for column balancing so
that the material following the .CB
will be at the top of the new col
umn.

2. If a floating or delayed keep is
wai ting for the start of a new col-

• CC [CONDITIONAL COLUMN BEGIN]

umn, then the text that follows the
. CB appears after the keep.

3. A column eject may be performed by
certain other control words if the
conditions warrant it. If this
happens, the function is the same
as the unconditional column eject
that is caused by the COLUMN-BEGIN
control word. The other control
words that can cause a column eject
are:

.CC [Conditional Column Begin]

.HO - .H6 [Head Level 0 - 6]

.KP [Keep]

.FN [Footnote]

4. This control word acts as a break.
It is not allowed in a keep .

The .CC [Conditional Column Begin] control word causes a column eject if less than
a specified amount of space remains in the current column.

The .CC [Conditional Column Begin] control word is discussed in "Page Sections and
Section Breaks" on page 68 .

• CC [v]

where:

v is the amount of vertical space that
must remain in the current column
for processing to continue without a
column eject. If v is omitted, and
there is text in the current column,
a column eject is performed to the
top of the next column. This is
equivalent to the effect of .CB
[Column Begin]. However, if the cur
rent column is empty, then nQ column
eject is done. If the previous col
umn is exactly full, and the current
column is empty, the .CC control
word with no "v" specified does not
cause an eject, and the previous
column is subject to column balanc
ing, if this is in effect.

Notes:

1. When the .CC control word is
encountered, SCRIPT /VS checks to

see if there is enough space left
in the column. If not, a break fol
lowed by a column eject is per
formed. If the current column is
not the last column on the page,
the new column is made ineligible
for column balancing so that the
material following the .CC will be
at the top of the new column.

However, if the specified amount of
space or more remains in this col
umn, and no column eject is done,
subsequent column balancing may
divide the text within the speci
fied vertical space. To ensure that
text is kept together, use the .KP
[Keep] control word.

2. This control word is not allowed in
a keep.

232 Document Composition Facility: User's Guide

.CD [COLUMN DEFINITION]

Use the .CD [Column Definition] control word to define how many columns of output
are to be formatted on each page and where each column is to start.

The .CD [Column Definition] control word is discussed in "Chapter 5. Multicolumn
Page layout" on page 67 .

.CD n [pl ••• p9J

where:

n is the number of columns of
output to be formatted onto
each subsequent output page.
It may be any number from 1 to
9.

pl ••• p9 are positions where the col
umns are to be placed on the
output page, relative to the
left edge of the paper (column
1). A position parameter of 0
indicates that a column
should be flush with the left
edge of the page text area, as
defined wi th the BIND option
of the SCRI PT comma nd . Posi -
tions may be specified in
space units, and may be given
in any order.

Initial Setting: 1 O.

Defaultl None.

Notes:

1. The . CD [Column Defini tion] con
trol word causes a section break
when it is processed. This means
that all the text up to that point
is processed and positioned on the
page using the old definition
before the new defi ni ti on becomes
active, even if the new definition
is the same as the old.

2. The gutter between columns is
obtained by defining the column
width to a value less than the dis
tance between column starting
positions.

3. The positions of the columns do not
control how wide the columns are to
be; you must set the column width,
using the .Cl [Column Width] con-

trol word, to control this. If the
current column width is greater
than the distance betwee~ columns,
the text from a column may extend
into the next column. In ~his case,
no gutter is created; t~e text of
the next column is abutt~d against
the text of the previous column.
The practice is not recommended as
the results may be unpredictable -
especially when formatting with
mul tiple fonts. You should take
care to define compatible column
width and starting positions.

4. If you specify fewer positions than
the number of columns, and had pre
viously specified positions on
another .CD control word, those
values remain in effect for any
columns not respecified. Whenever
a .CD control word is used, there
must be positions for each column
available, either on this control
word line, or previously given on
another .CD. If you specify .CD n
wi thout speci fying any posi tions,
and no previous column defini tion
has been speci fied, the arbi trary
val u es 0, 46, 92 , 0 , 0 , 0 , 0 , 0 , 0
are used.

5. If you use several different column
formats in a document you can cre
ate symbolic names (wi th the . Sf
[Set Symbol] control word) or
macros (with the .DM [Define Macro]
control word) to establish column
definitions, column widths, and so
on. If you use a single one-column
format and a single
multiple-column format, you can
switch back and forth using the .SC
[Single Column Model and .MC
[Multicolumn Mode] control words.

6. This control word is not allowed in
a keep.

Chapter 23. SCRIPT/VS Control Word Descriptions 233

.CE [CENTER]

Use the .CE [Center] control word to center output lines between the margins.

The .CE [Center] control word is discussed in "Positioning Lines on the Page" on
page 44 .

• CE

where:

n speci fi es the number of input
lines to be centered. If omitted,
1 is assumed. If .CE n is speci
fied when .CE ON is in effect,
centering is turned off when n
lines have been centered, or when
.CE OFF is encountered.

ON speci fies that subsequent text
lines are to be centered.

OFF terminates centering mode if it
was ON, or if n has been speci
fied and has not been exhausted.

line is a line of text to be centered.
The line is considered to start
wi th the first nonblank charac
ter after the . CE control word.

Defaul t: 1

Notes:

1. The keyword ON or OFF, or the num
ber of input lines to be centered
(n), must be the only parameter on
the control word line. A string of
words that happens to start wi th
one of these is interpreted as a
single line to be centered. For
example, the control word lines:

2.

234

. ce on top of old smokey

.ce 555 Bailey Ave.

are taken to be of the ".CE line"
form, not requests for large num
bers of lines to be centered.

The line(s) are centered between
the current left margin, including
any indent and offset values in
effect, and the right margin. When
centering is in effect, no format
ting is done on the line. That is,
the line is centered as it stands,
and it is not filled from other
input lines or justified. If a tab
character appears in the line to be

Document Composition Facility:

centered, the tab is resolved
before the line is centered.

3. This control word acts as a break.

4. If the line to be centered is long
er than the current column length,
the excess words are centered on a
separate output line.

5. The .RI [Right Adjust] control word
is a variant of .CE. If either of
these control words is processed,
the other is cancelled.

6. Contrast the .CE control word with
. FO CENTER. The latter allows lines
to be formatted by concatenating
words until the line is nearly
full, but then the filled line is
centered instead of being justi
fied, as would be the case with .FO
ON.

Examples:

•

•

To center one line:

. ce OFF THE RECORD

When this line of the file is dis
played, the characters "OFF THE
RECORD" are centered between the
margins:

OFF THE RECORD

To center several lines:

.ce on
IBM Santa Teresa Laboratory
Bailey Avenue, San Jose
95150
. ce off

Each of the 3 lines between ON and
OFF is separately centered:

IBM Santa Teresa Laboratory
Bailey Avenue, San Jose

95150

User's Guide

.CL [COLUMN WIDTH]

The .CL [Column Width] control word sets the width of each column of SCRIPT/VS
output.

Figure 8 on page 56 shows the relationship of the .CL [Column Width] to the layout
of a SCRIPT /VS output page .

• CL

where:

h is the width of each column of for
matted output. It may not be larger
than the logical device width. It
may be expressed in horizontal
space uni ts.

+h increases the current column width
by the speci fi ed amount.

-h decreases the column width by the
specified amount.

Initial Setting: Same as Line Length.

Defaul t: Restore same width as Line
Length.

Notes:

1. The .CL control word should be used
in conjunction with the .CD [Column
Definition] control word to define
the width of each column from the
displacements given. If the column
width is greater than the space
left between columns, the columns
may overlay each other. An inter
column gutter is allocated by

making the column width about three
em-spaces shorter than the dis
tance between columns.

2. The left and right margins of top
titles and bottom titles (running
ti ties), and running headings and
footings, are governed by the line
length, not the column width.
(The line length can be changed
with the .LL [Line Length] control
word.)

3. If the column width has never been
set explicitly, it has the same
value as the line length. If you
set the column width to zero (.CL
0), this makes it the same as
though you had never explicitly set
the column width. Note that chang
ing the column width by means of
the .LL control word means that the
column width change will take
effect immediately, even though
the line length change will not
take effect until the following
page.

4. This control word causes a break.

Chapter 23. SCRIPT/VS Control Word Descriptions 235

·CM [COMMENT]

Use the .CM [Commentl control word to place comments within a SCRIPT file .

• CM [comments]

where:

comments may be anything; this input
line is not used in format
ting the output. However,
since this is a control word,
the input line is scanned for
control word separators.

Notes:

1. The .CM control word allows com
ments to be stored in the SCRIPT
fi lefor future reference. These
comments can be seen when you edit
the file, or when you print it
using the UN FORMAT option of the
SCRIPT command.

The comments may a Iso be used to
store unique identi fications that
can be useful when attempting to
locate a speci fic region of the
file during editing .

• CO [CONCATENATE MODE]

2. If you want an entire line to be
ignored, and not scanned for con
trol word separators, you can use
another form of comment. Any line
that begins with ".*" is ignored.
".*" is not considered to be a con
trol word, but .CM is.

3. The .CM control word can be used in
conjunction wi th the . IF control
word to enable or disable strings
of control words. For an example of
how to do this, see the discussion
of the .IF control word.

Example:

.cm Remember to change the date.

The line above is seen when examining
an unformatted listing of the SCRIPT
file, and it reminds you to update the
date used in the text.

Use the .CO [Concatenate Model control word to cancel or restore concatenation of
input lines and truncation at the current column length.

This control word is provided for compatibility with earlier releases of SCRIPT.
The same function is provided by the .FO [Format Model control word.

.co

where:

ON
OFF]

ON restores concatenation of input
lines. ON is the initial setting,
as well as the default value.

OFF cancels concatenation of input
lines. If justification is still
in effect, ~CO OFF results in each
line being padded with blanks to
the column length.

Initial Setting: ON

Default: ON

Notes:

1. When SCRIPT/VS is concatenating
text, output lines are formed by
shifting words to or from the next
input line. The resulting line is

as close to the speci fied column
wi dth as possi bl e wi thout exceed
ing it or splitting a word; if jus
tification is OFF, output
resembles normal typist output.
Concatenation is the normal mode of
operation for the SCRIPT command.

When SCRIPT/VS is not concatenat
i ng text, there is a one-to-one
correspondence between the words
on the input and output lines. If
SCRIPT/VS is still justifying
text, each line that is less than
the col umn length is padded wi th
blank space to fill the column.

2. Concatenation is one component of
format mode, as controlled by the
.FO [Format Model control word. The
. CO control word is provided for
those occasi ons when you must be

236 Document Composition Facility: User's Guide

able to control concatenation sep
arately, but all ordinary
formatting combinations are con
trolled by the . FO control word,

.CP [CONDITIONAL PAGE EJECT]

and you should use it instead of
.CO whenever possible.

3. This control word causes a break.

The .CP [Conditional Page Eject] control word causes a page eject to occur if less
than the specified amount of space remains in the current column .

• CP [v]

where:

v is the amount of vertical space that
must remain in the current column
for additional lines to be processed
without a page eject. If "v" is
omi tted, a break and a page eject
will be done if necessary to get to
the top of a page. A break and a
page eject will not be done if the
current page is empty.

Defaul t: Causes a page ej ect unless
there is no data on the current
page.

Notes:

1. The .CP control word can be used to
guarantee that enough space (up to

.CS [CONDITIONAL SECTION]

the maximum column depth) will
exist in one column to accommodate
blank space left by .SP [Space] for
a figure to be inserted later.

2. To keep formatted text together,
use the .KP [Keep] control word.

3. This control word is not allowed in
a keep.

Example:

.cp 2i

If less than two inches of space remain
on the current column~ a page eject is
issued before processing continues. If
two inches or more remain, processing
continues on the current column.

The .CS [Conditional Section] control word allows you to designate sections of the
input file that are to be processed conditionally, or ignored.

The .CS [Conditional Section] control word is discussed in "Conditional Sections"
on page 114.

.CS

where:

n

ON

n { ON]
{ OFF]
{INCLUDE]
{IGNORE]

specifies the conditional
section code number from 1 to
9.

marks the beginning of condi
tional section n.

OFF marks the end of condi tional
section n.

INCLUDE tells SCRIPT/VS to process
all the input lines between
the ON and the OFF control
words for conditional section
n.

IGNORE tells SCRIPT/VS to bypass
every line for conditional
section n that falls between
.CS n ON and .CS n OFF.

Initial Setting: All sections are
included.

Notes:

1. The .CS [Conditional Section] con
trol word allows you to designate
speci fic sections of your input
file that may be ignored or
included conditionally. You may
have up to 9 separate section
codes, and speci fy which section
numbers are to be included and

Chapter 23. SCRIPT/VS Control Word Descriptions 237

which are to be ignored. Each sec
tion code may be used for many
sections. The .CS control word is
used to designate conditional
sections, and also to specify
whether they are to be included or
ignored. The ON and OFF operands
identi fy the beginning and end of a
conditional section; the INCLUDE
and IGNORE operands indicate
whether or not SCRIPT/VS should
process the input lines within the
conditional sections.

2. You can use condi tional section
codes to separate sections of a
document that apply to di fferent
versions, and speci fy which ver
sion is to be formatted. You may
also use this technique to identify
confidential sections of a manual
that you may sometimes wish to
exclude.

3. Since the .CS control word does not
cause an automatic break, you may
turn condi tional sections on and
off wi thin a paragraph or even
within a sentence without disrupt
ing normal output formatting.

4. By default, all conditional sec
tion codes are assumed to be set to
INCLUDE unless explici tl y set to
IGNORE.

5. A conditional section may contain
SCRIPT/VS control words as well as
text. If the section is ignored,
all control words contained in that
section will be ignored, except the
control word

.cs n off

which marks the end of the section .

• CT [CONTINUED TEXT]

6. Condi tional section defini tions
may be nested to a depth of 9 (that
is, a conditional section may con
tain another conditional section).
A nested section is included only
if all outer nestings specify
INCLUDE. Otherwise, the inner
nesting is never noticed, since it
is part of an outer section that
has been ignored. If a conditional
section is nested wi thin another
one, the entire section should be
enclosed by the outer section.

7. The .CS control word may be used in
conjunction with the .RC [Revision
Code] control word to mark the con
ditional sections. The .TE [Termi
nal Input] control word may be used
in interactive environments to
speci fy whi ch secti ons a re to be
included while the input file is
being processed.

Example:

· cs 1 ignore
.cs 2 include

In this version of the system there
can be only
· cs 1 on
256
· cs 1 off
· cs 2 on
1000
.cs 2 off
entries in a MACLIB file.

Since only conditional section code 2
is to be included, the generated output
line is "In this version of the system
there can only be 1000 entries in a
MACLIB file."

The .CT [Continued Text] control word causes the line given to be treated as a con
tinuation of the previous text line. If no line is giVen, the control word means
"continue nothing," which cancels continuation that may be in effect from a con
tinuation character on the previous text line .

• CT [line]

where:

line

238

is the line to be considered a
continuation of the previous
text input line, even if the
previous line did not end with
a continuation character. The
formatter normally considers
that no word may span input
lines. A text word may span
input lines if the first line

Document Composition Facility:

ends with a continuation char
acter defined with the CONT
pa rameter of the . DC [Defi ne
Character] control word or if
the second line is the parame
ter of the .CT control word. A
more complete discussion of
continuation may be found
under the CO NT opti on of the
.DC [Define Character] control
word.

User's Guide

Notes:

1. If line is omitted, continuation is
ended even if the previous text
line ended with a continuation
character .

• CW [CONTROL WORD SEPARATOR]

2. If concatenation is not being per
formed and a .CT [Continued Text]
control word immediately follows a
.RE [Restore Status] control word,
the .CT [Continued Text] is
ignored.

The .CW [Control Word Separator] control word allows you to change the symbol used
to separate multiple control words on a single line. The initial value for the
control word separator symbol is the semicolon (j) character.

This control word is provided for compatibility with earlier releases of SCRIPT.
The same function is provided by the .DC [Define Character] CW control word .

• CW [c]

where:

c specifies the character to be used
as the "control word separator"
character. Any character may be
used. If the character DC" is omit
ted, no character is assigned as the
control word separator, and there
fore you cannot have more than one
control word on a line.

Initial Setting: Semicolon (j).

Default: Nothing. (No separator char
acter.)

Notes:

1. All control word lines are scanned
for control word separators before
they are processed, unless they are
speci fi ed wi th the control word
modifier. The control word modifi
er allows the line that accompanies
a control word to be treated as
text, which may therefore contain
control word separators as ordi
nary text characters.

The control word modifier is a sin
gle quotation mark immediately
after the period. The control word

.ce onej two

is scanned before being processed
into the two lines ".CE one" and
"two". But the line

• I ce one; two

uses the control word modifier to
allow the entire string "one; two"
to be centered.

The • CW [Control Ward Separator]
control word should always be spec
ified with the control word modifi
er.A .CW control word line, like
all unmodified control word lines,

is scanned for control word separa
tors before being processed. If you
were trying to make sure that the
control word separator was set to
semicolon by issuing ".cw ;", just
the opposi te would happen if the
semicolon happened to be the cur
rent separator; the line would be
separated before being processed
into the line ".CW", followed by no
more on that line. The control
word, when processed, would unde
fine the semicolon as the
separator.

If you always use the control word
modi fier wi th . CW, no separator
scan will be done, and the charac
ter will be preserved as the param
eter on the control word:

• ICW ;

will correctly ensure that the sep
arator is set to ;.

2. The control word separator is
treated as a text character when it
appears in a text line, except when
immediately followed by a period
and a two-character control word
ide Thus,

Do j.us onjnot j.us off; stop!

will be formatted as

Do not stop!

On the other hand,

Centering is off; .ce turns it on

will be formatted as text, since
the control word separator is not
immediately followed by a period.

3. When the .CW control word is proc
essed, the ini tial value for the
control word separator (j) is

Chapter 23. SCRIPT/VS Control Word Descriptions 239

reset. It may be necessary to
change the control word separator
character if it is inconvenient to
type the ini tial-value chara,cter,
or if the ini tial-value character
is used as part of a control word
operand, such as part of a symbol
specification.

4. If a symbol value begins with the
control word separator, the rest of
the symbol value is treated as
though it occupied the first posi
tion of the line.

5. Control word separators are recog
nized on a .CM [Comment] line, but
not on a ".*" line.

6. The following control words must
begin in column I and may not be
placed after a control word separa
tor:

. cs n off

. di off

.wf off

.li off

... label

When.SCRIPT/VS is ignoring a condi
tional section, preparing a delay
imbed, writing to a file, reading
literal lines, or searching for a
label, no control word processing
is done. Each input record is
checked in column I for the pres
ence of the control word that ends
the special processing mode.

7. Control words that accept text data
(for example, . US or . eE), should
not contain the current control
word separator as text, unless the
control word modi fier is used to
prevent scanning for the
separator.

Examples:

• Simple change:

•

· 'cw ,
.sp 2,.of 5,This section ...

The above line is equivalent to the
lines:

.sp 2

.of 5
This section ...

Temporary cancellation to get the
separator character into a symbol
value:

· 'cw
.se 2col = ';.cd 2 0 46;.cl 43;'
.se lcol = ';.cd l;.cl 89;'
· 'cw ;

In the sequence above, the control
word separator is temporarily can
celed so that the regular separator
(;) can be used as part of the .SE
[Set Symbol] control word line .
Since the symbols &2col and &lcol
contain the appropriate control
words, they can now be used instead
of the actual control words
involved. Since the control words
are in a symbol that begins wi th
the control word separator, they
can be recognized as control words
even if the symbol is encountered
in the middle of a line. Since the
symbols end with control word sepa
rators, the effective next line can
be concatenated to the symbol name.
Wi th the symbols &2col and &lcol
set as shown, the line:

This is a line.&2col.Start 2 cols.

Has the same effect as the
sequence:

This is a line.
.cd 2 0 46
.cl 43
Start 2 cols.

240 Document Composition Facility: User's Guide

.DC [DEFINE CHARACTER]

Use the .DC [Define Character] control word to define various special characters
that the formatter will recognize as having a special significance .

.DC

where:

c

hh

OFF

.
(ASEP) c •••
(CONT) hh •••
(CW) OFF
(PS)
(STOP)
(RB)
(GML)
(MCS) .

(PUNC)

[
c •••

1
(WORD) hh •••
(IXI)
I: IXB)

specifies the character (or
characters> to be recognized.
The character may be any single
character.

specifies the
characters> to
expressed as
hexadecimal code.

character (or
be recognized,

a 2-digit

If a parameter is given with no
following character or
hexadecimal code, then the char
acter is restored to its initial
setting. For the ASEP, PUNC,
WORD, lXI, and IXB parameters,
more than one character or
hexadecimal code may be speci
fied, separated by blanks. In
this case, single characters and
2-digit hexadecimal codes may be
intermixed on the same control
word line.

causes the character to be unde
fined. If for example, .DC CW OFF
is speci fied, then there is no
control word separator.

ASEP allows the definition of up to
four characters which are to be
used to separate array elements
when an array is substi tuted in a
document usi ng the &nameOO
form. All characters to be used
to separate array elements must
be specified, including blank
characters (as 40>. The ini tial
and default values for the ASEP
characters are the comma (,) and
blank (40).

CONT defines a continuation character
for text lines. The formatter
normally considers that no word
may span input lines. Use of the

continuation character defined
wi th the CO NT parameter allows
words to span input lines. When
the last character of an input
text line is a continuation char
acter, the normal interword
space is not added when this line
is concatenated to the next, but
existing blank characters pre
ceding the line continuation
character are retained.

If the formatter control or text
which follows the line continua
tion character causes a break,
continuation is cancelled for
that line. A null line also can
cels continuation for the
previous line.

The line continuation character
is recogni zed at the end of a
line, whether the line contains
text or control words, or a mix
ture of both. The continuation
character may not be used to
extend a control word line, but
it may extend the text data that
is associated wi th that control
word. There is no defaul t line
continuation character.

CN specifies the character to be
used to separate control words on
a single line. The initital value
for the control word separator
character is the semicolon (; > .
If the speci fied control word
separator character is
hexadecimal 00, the control word
separator will be undefined. The
effect is the same as if .DC CW
OFF were specified.

STOP speci fies the characters to be
recognized 'as end of sentence
characters. If any of the STOP
characters occurs at the end of

Chapter 23. SCRIPT/VS Control Word Descriptions 241

an input line, or precedes a n or
) at the end of a line, and the
line is not the last before a
break, and justification is off,
SCRIPT/VS will insert an extra
blank before concatenating wi th
the following input line. If the
same character is defined as a
continuation character and a
stop character, it wi 11 be inter
preted as a continuation
character if it occurs at the end
of the line.

PUNC speci fies the characters in the
current language that are to be
recognized as punctuation for
spelling checking. Punctuation
characters are defined as those
characters which, when occurring
in a word, will be retained when
the word is checked against the
dictionary, but when they occur
at the end of a word, they will
be removed before checking takes
place. The defaul t punctuation
characters are the hyphen
(hexadecimal 60), and the apos
trophe (hexadecimal 7D).
Punctuation characters given
with this option will add to the
currently defined defaul t char
acters.

PS speci fies the character to be
used as the page number symbol.
It may be any character other
than blank. The default page num
ber symbol is ampersand (&).
Every page number symbol in run
ning titles (.RT), running
headings (. RH), and running
footings (. RF) is replaced wi th
the current page number every
time the running title, heading,
or footing is formatted to be
placed on a new pa ge.

WORD

RB

242

speci fies the delimi ters in the
current language that are to be
used in the recognition of words
for spelling veri fication. The
default word delimiters are
shown in Figure 37 on page 363.

The characters given wi th this
option will add to the currently
defined word delimi ter charac
ters. The end of a line will
always be recognized as a word
delimi ter unless the line con
tinuation character is used.

defines the character to be used
as a required blank. Required
blanks are not recognized as
~nterword spaces for formatting,
but they are translated to ordi
nary blanks after formatting is
complete. The initial and
defaul t required blank is
hexadecimal 41. The current
required blank character is

Document Composition Facility:

GML

IXI

always available in the system
symbol '&$RB'.

defines delimi ters for GML tags
and end-tags. (GML tags and
end-tags may be separately
defined by the .AA [Associate
APFl and .GS [GML Services] PRE
FIX control words. See "Chapter
14. GML Support in SCRIPT/VS" on
page 159 for a discussion of GML
tag mapping.)

If only one character is speci
fied, it is taken to be the GML
tag delimi ter and GML end-tags
wi 11 not be recogni zed. I f two
characters are specified, the
second is taken to be the GML
end-tag delimiter. If three
characters are specified, the
second and third characters are
taken to be the GML end-tag
delimiter.

The GML delimi ters may be any
characters that are not allowed
in a symbol name, except blank,
period, or ampersand. That is,
the GML delimiter may not be set
to the characters blank, period,
ampersand, a-z, A-Z, 0-9, or the
characters I, a, and $. A .DC GML
control word that attempts to set
one of these characters as the
GML delimiter causes an error
message, except .DC GML 40, which
is equivalent to .DC GML OFF. The
default GML tag and end-tag
delimiters are colon (:) and dou
ble colon (::), respectively.

(Index Ignore) defines charac
ters that are to be ignored when
sorting index entries. Charac
ters to be ignored are completely
removed from index entries for
purposes of sorting.

IXB (Index Blank) defines characters
that are to be treated as blanks
when sorting index entries.
Characters designated wi th . DC
IXB in effect do not participate
in the sort, but they still occu
py a character position. This is
true even if the blank itself is
designated as an IXI (ignore)
character.

MCS (Markup Contents Separator)
defines the character to be
recognized inaddi tion to blank
(hexadecimal 40) as the delimit
er between the GML tag attributes
and the text which follows them.

Default: Restores the initial setting
for specified character.

Notes:

1. The settings for initial values are
shown in Figure 24 on page 345.

User's Guide

2. The . DC CW control word has the
same effect as the . CW [Control
Word Separator] control word,
except that wi th . DC, you do not
have to use the actual character
specified on the control word line;
you can speci fy it as a 2-digi t
hexadecimal code. This capability
is useful to prevent misinterpre
tation of the control word
separator character in cases where
it is already set to the value
specified on the control word. See
the discussion of the .CW [Control
Word Separator] control word for
additional information.

3. The . DC PS control word has the
same effect as the .PS [Page Number
Symbol] control word. See the dis
cussi on of the . PS [Page Number
Symbol] control word for addi
tional information.

Examples:

• Continuation Character

In the following examples, the plus
sign is used as the continuation
character. The continuation char
acter may not occur in the middle
of a control word 1 ine. For
example,

this is
. up part+
ia 11 y uppercase

results in:

this is PARTially uppercase

The continuation character wi 11,
however, allow the user to create
one "logical" line from a number of
input lines. For example:

.ce 1
this is a sin+
. up gle line

•

•

will result in the line:

this is a sinGLE LINE

PUNC and WORD

Note that there is only one delim
iter table to hold both punctuation
and word delimiter characters. The
latest specification for a charac
ter wi 11 be that in effect. For
example:

· dc word +

will cause the + character to be
recognized as a word delimiter
character.

· dc punc +

will cause + to be recognized now
as a punctuation character.

IXI

By default, "William Steinburg"
will be placed before
"Williamsburg" in an index. If you
specify

· dc ixi 40

then the former entry will be
sorted as if the entry were
"Williamsteinburg", and will be
placed after "Williamsburg" .

• IXB

By default, "Mother Superior" will
be placed before "mother-in-law"
in an index. If you speci fy

.dc ixb -

the latter entry will be sorted as
if the entry were "mother in law",
and placed before "Mother
Superior".

Chapter 23. SCRIPT/VS Control Word Descriptions 243

.DD [DEFINE DATA FILE-ID]

The .AP [Append] and .IM [Imbed] control words require a file-id for the file to be
imbedded or appended. This file-id is an internal SCRIPT/VS name for a file or
data set in the host environment in which SCRIPT/VS is executing. The .DD [Define
Data File-id] control word allows you to associate a 1- to 8-character internal
SCRIPT/VS file-id with a real file or data set identifier. If no .DD has been
issued for a file-id, a valid identifier is constructed from the file-id, based on
assumptions and rules esiablished for each operating environment.

.DD

where:

file-id

LIB

DD

file-id filename
(filename)
('docname')

1 [
CATALOG
DATA(datatypel
VERSION(numberl
PROC(processorl
PARM('parameters'l 1

is an 8-character SCRIPT/VS
name for the file being
defined. An error will
result if the name corre
sponds to a file or data set
which is already in use as an
imbedded file. If the
file-id corresponds to a
file or data set that was
previously read and termi
nated by a .EF [End of File]
control word, that original
file is closed before the
redefinition is made.

is the default, and indi
cates that the file to be
referred to exists in the
library of the environment
in which SCRIPT /VS is oper
ating.

In CMS, the filename given is
a normal CMS filename, fol
lowed optionally by a
filetype and a filemode.

In TSO, the LIB option indi
cates that the dsname refers
to a PDS member whose data
set name is specified by the
SEARCH option of the SCRIPT
command.

In the batch environment,
LIB indicates that the
filename is a Document
Library Facility file, whose
filename may be followed
optionally by a library num
ber and password.

speci fies that filename
refers to a DD name. This
option is applicable only in
the TSO and batch envi ron
ments. Use of the DD option
implies that the user has
supplied a JCL DD card with a
ddname of "fi 1 ename", or
preallocated the data set by

use of the TSO ALLOCATE com
mand.

DSN speci fies that filename
refers to a fully or partial
ly quali fied data set name.
This option is applicable
only in the TSO and VS2 envi
ronments.

TERM specifies that, for file-ids
DSMTERMI and DSM1ERMO only,
the input or output is to be
restored to the terminal.
This option is useful when
the ierminal input or output
has been changed with a pre
vious . DD control word for
either of these file-ids.

~ilename specifies the actual name of
the file to be given the
specified file-ida If the
filename contains blanks or
special characters it must
be enclosed in parenthesis.

docname is the name of the document
to be given the specified
file-ida If the document
name contains lowercase
characters, it must be
enclosed in quotation marks
(') and parentheses.

CATALOG speci fies that the data set
to which the file-id refers
is to be cataloged when it is
is closed. This option is
valid only for SCRIPT/VS
utili ty files (see Usage
Notes) when used with the DSN
option in TSO to create a new
data set. In all other cases
it is ignored. CATALOG is
especially useful when cre
ating output files wi th the
.WF control word. It is pos-
sible to create many
different .WF files by spec
i fying a di fferent data set
name with .DD. Normally,

244 Document Composition Facility: User's Guide

DATA

these data sets would be
deleted when closed.

(batch only) speci fies the
file's datatype. Refer to
the Document Library Facili
tv Guide for details.

VERSION (batch only) speci fies the
file's version number. Refer
to the Document Library
Facility Guide for details.

PROC

PARM

(batch only) specifies a
processor for the file.
Refer to the Document
Library Facility Guide for
details.

(batch only) specifies
parameters for the processor
named by the PROC option.
Refer to the Document
Library Facili ty Guide for
details.

Defaultl LIB

Notes:

1. If the . DD control word is used
with a parameter that is not
allowed in the formatter's operat
ing environment, a message will be
issued and the control word will be
ignored.

2. The file-id PROFILE is used for the
profile specified with the PROFILE
option of the SCRIPT command.

3. SCRIPT/VS has a number of file-ids
that are used by the system. Some
of these may be the subject of the
.DD control word. These file-ids
are:

DSMTERMI - terminal input
DSMTERMO - terminal output
DSMUTCTF - STAIRS/VS CTF output
DSMUTDIM - .DI file
DSMUTMSG - message file
DSMUTTOC - Table of contents file
DSMUTWTF - .WF file

For example, if the file-id
DSMTERMI is associated with a disk
file, then whenever a .RV or .RD is
processed the data wi 11 be read
from the specified file. This capa
bility is of particular use in the
batch environment.

Whenever any of these file-ids is
the subject of a .DD control word,
the host system file name associ
ated wi th the existing defini tion
of that file-id is closed, and, in
TSO, it is also deallocated.

Examples:

• To give a file-id of "filel" to a
Document Library Facility file
named "title", with a password of
"p2301" which exists in library
"13425", the . DD control word
statement would bel

•

•

.dd filel lib 13425 title/p2301

In this example, the option LIB
could have been omitted, as it is
the defaul t .

To give a file-id of "alpha" to
member "mem3" of a partitioned data
set named "userid. doc. text", the
. DD control word statement would
be:

.dd alpha dsn doc(mem3)

In CMS, if there are two SCRIPT
files called "names", one on your
A-disk, and the other on your
C-disk, the control word .IM NAMES
would ordinarily imbed the one on
the A-disk, following CMS search
order. The file on the C-disk would
be imbedded if the following .DD
were in effect:

.dd names names script c

Note that in this example the
keyword LIB was omitted because it
is the defaul t.

Chapter 23. SCRIPT/VS Control Word Descriptions 245

.DF [DEFINE FONT]

Use the .DF [Define Font] control word to define the identifier of a font which is
to be invoked using the .BF [Begin Font] control word. This allows such internal
formatting functions as underscoring and capitalizing to be managed with the .BF
[Begin Font] and .PF [Previous Font] control words, and provides the ability to
selectively overstrike text (on impact printers) and temporarily stop typing (on
typewriter terminals) to change elements. It also allows you to alter the names
and characteristics of the fonts named in the CHARS option of the SCRIPT command.

The .DF [Define Font] control word is discussed in "Defining Internal Fonts" on
page 107.

.DF font-id { US J
{ UP J
{ UC J
{ STOP J
{ OS RPT n J
{ OS CHAR c J
{ BOX cname J
{ FONT [name] J

where:

font-1d specifies the identifier of the
font being defined by the . DF
control. After the definition~
this identifier may be used on a
.BF [Begin Font] control word.

US speci fies that this font causes
underscoring.

UP speci fies that this' font causes
text to be folded to uppercase.

UC speci fi es that this font causes
both folding to uppercase and
underscoring.

STOP specifies that when this font
begins, the interactive type
writer terminal will stop and
wait for the user to signal
ATTENTION. The STOP parameter is
used for changing fonts at a
typewri ter terminal where each
"font" is actua 11 y a di fferent
typing element. When the type
writer stops, you can change the
element. The STOP parameter has
meaning only in the CMS environ
ment; it is ignored in other
environments, or when the output
destination is not a typewri ter
terminal.

OS specifies that this font is to be
formed by overstriking. The OS
option is ignored for logical
devices other than 2741 and 1403,
unless overstriking with the
underscore character is speci
fied.

RPT speci fies that text lines
are to be overstruck such
that each character is
overstruck wi th i tsel f n
times. A maximum of five
overstrikes are allowed.

n specifies the number of
times that each character
is to be overstruck wi th
itself.

CHAR specifies that overstrik
ing is to take place using
the character specified.
If neither the RPT nor the
CHAR opti on is given, the
underscore character will
be used.

c speci fies the character
that is to be used as the
overstriking character.

BOX specifies a box character set to
be used in constructing box cor
ners and intersections wi th the
.BX [Box] control word.

cname specifies the name of the
box character set to be
used. See the CHAR param
eter of the .BX [Box] con
trol word for a list of
valid box character set
names.

FONT specifies the external font to be
used. If FONT is not specified,
the external characteristics of
the current font a re used.

Notes:

name speci fi es the name of an
external font. The name
must be one of those given
wi th the CHARS opti on of
the SCRIPT command. If not
specified, the current
font is used.

1 . As many parameters as necesssary
may be specified with .DF [Define

246 Document Composition Facility: User's Guide

Fontl.

2. If the font being defined already
exists, either because of a previ
ous .DF [Define Fontl control word,
or because it was speci fi ed wi th
the CHARS option of the SCRIPT com
mand, the previous defini tion is
completely replaced wi th the new
one.

3. When using the STOP parameter under
CMS, issue the command

cp term attn off

.DH [DEFINE HEAD LEVELl

to suppress CP's attention
acknowledgment.

Examples:

• To define a new font for 1403 out
put which causes capitalization
and overstriking, specify

•
.df bold up os rpt 3

To define a new font for 3800 out
put which causes underscoring in a
bold font, specify

.df hilite us font GB12

Use the .DH [Define Head Levell control word to override the default character
istics of the head levels that are generated with the .HO - .H6 [Head Level 0 - 61
control words.

The .DH [Define Head Levell control word is discussed in "Chapter 6. Head Levels
and Table of Contents" on page 73.

.DH n [options]

where:

n is the number of the head lev
el to be defined. It may be a
number from 0 to 6.

options are keywords that indicate
how to change the defini tion
of head level n. If no
options are given, the
default characteristics of
the head level are restored.
The options recognized are:

BR

NBR

DOT

NODOT

do a break after the head.

no break.

specifies that in the table of
contents, the text of the
heading will be separated
from the page number by a
"dot-leader," and the page
number will be right-aligned.
(This is the default for all
head levels that have a table
of contents entry.)

speci fies that the table of
contents entries for this
head level will not have a
"dot-leader" separating the
text of the heading from the
page number. In this case,
the page number is not
right-aligned, but it is sep
a rated from the text by two
character spaces.

FONT fontname specifies the name of the
font to be used for the head-

NUM

NONUM

ing, or the word "OFF". If OFF
is specified, the previous
specification of FONT will be
set off . If the fontname and
OFF are omitted and the FONT
option is the last one speci
fied, no syntax error will
resul t. This is useful when
using the &$CHAR system sym
bols as the font names, since
these symbols have null val
ues when there is no
corresponding font.

speci fies that this heading
is to be numbered wi th a deci
mal number that reflects the
level of the heading. The
first level one heading is
numbered 1.0, the first level
two heading is numbered 1.1,
the first level three heading
is numbered 1.1.1, and so on.
You can set the counters used
for head numberi ng wi th the
HCTR option of the . GS [GML
Servicesl control word, but
this is not necessary if you
want the numbering to start
with 1.0 and increase sequen
tially from there.

You can not number level 0
headings.

speci fies that this heading
is not to be numbered. (This
is the defaul t for all head
levels.)

Chapter 23. SCRIPT/VS Control Word Descriptions 247

OJ

NOJ

PA

NPA

SECT

NOSECT

SKBF V

SPAF V

TC

outjusti fies the head level
(this means right adjust it if
it falls on an odd-numbered
page) .

do not outjusti fy the head
level.

do a page eject before the
head level if necessary (if
not al ready at the top of a
page) .

no page ej ect .

cause a section break before
and after the head level. The
SECT option means that the
head level itself will be for
matted in a single column, the
full width of the page,
regardless of the current
column definition.

no section break is required.

v is the amount of space to be
skipped before the head
level.

v is the amount of space to be
skipped after the head level.
This space is conditional.

table of
wanted.

contents entry

NTC No table of contents entry.

TCIN h h is the amount the table of
contents entry associated
with the head level is to be
indented.

TFONT fontname specifies the name of
the font to be used in the
table of contents for this
head level entry, or the word
"OFF". It works similarly to
the FONT option.

TO table of contents entry only;
the heading will not be
printed in the text and nei
ther will functions such as
skip, space, and so on.

NTO no "TO"; the heading will be
printed in the text.

TS space before table of con
tents entry.

NTS no "TS"; the tab! e of contents
entry will not be preceded by
a space.

UP

NUP

US

put the head level in upper
case.

don't put it in uppercase.

underscore the head level.

NUS don't underscore it.

Default: If no options are specified,
the ini tial setting for the
head level is restored.

Notes:

1. The .DH [Define Head levell control
word allows a maximum of 14 options
on the line. If you wish to change
more head level variables than can
be done with 14 options, you must
do it with more than one .DH con
trol word. Each time .DH is proc
essed, only those variables
specified are changed. All other
variables remain the same.

2. If a head level control word is
processed that causes an entry in
the table of contents, the table of
contents entry is saved wi th the
speci fications that are in effect
at the time that head level is
processed. If you change the defi
ni tion of that head level later,
the new definition only affects
later occurrences of that head lev
el control word.

3. For a list of the default charac
teristics associated with the
heading levels 0 through 6, see the
discussion of .HO .H6, and
Figure 9 on page 74.

4. The use of .EZ ON will cause a new
set of heading defini tions to be
used. Therefore, each time .EZ ON
is used, you must respeci fy the
head definitions that you want to
use.

s. If you want to add a function to a
head level control word that is
beyond the scope of . DH [Defi ne
Head levell, you can either write
an entire macro to replace the
head-level control word in ques
tion, or you can provide a . DH
macro to create head-level macros
like those in Release I, and then
add to those macros using the .DM
[Define Macro] control word. The
sample file DSMSTDH contains an
exampl e of how such a . DH macro
could be written.

248 Document Composition Facility: User's Guide

.DI [DELAY IMBED]

Use the .DI [Delay Imbed] control word to defer the inclusion of a portion of a
SCRIPT file until the next page eject occurs.

.DI

where:

[
! 1 n
ON
OFF
line

n specifies the number of'lines to
be delayed. If omitted, I is
assumed.

ON starts an open-ended delayed
imbed. Subsequent lines, until a
.DI OFF is encountered, are
included in the delay imbed file.

OFF ends a delayed imbed, whether it
was started with .DI ON or with a
speci fied n that has not been
exhausted.

line is an input line that is to be
delayed.

Defaul t: 1

Notes:

1. The specified lines of the current
file are saved in a temporary file
called DSMUTDIM. When the top of
the next output page is reached,
this temporary file is imbedded and
processed by SCRIPT/VS. After the
inclusion of the saved lines,
normal processing resumes.

However, any text that was format
ted prior to the page eject (such
as a widow zone) will not be refor
matted. It should be noted that DCF
may have to format up to three
lines before it can determine that
a page eject must be performed.

2. This control word does not cause a
break. However, a control word that
causes a break may be included as
the last line of the delayed imbed
to ensure that the text of the
delayed imbed is not formatted wi th
the text that follows the imbed.
The resul ts are not readily pre
dictable if a control word that
causes a break is not included.

3. An automatic page eject is not per
formed at the end of the inclusion.
If you want SCRIPT/VS to resume
normal processing on a new page,
you should end the delayed section
with a .PA control word.

4. The .DI OFF control word must begin
in column I, not after a control
word separator. When SCRIPT /VS is
processing a delay imbed it is not
processing input lines except to
look for . DI OFF on a line by
itself.

5. No .DI control word is put into the
delay imbed fi Ie.

Examples:

• To delay the inclusion of one line:

.di .pa

•

The single line ". pall is wri tten
into the delay imbed file. At the
end of the current page, a blank
page, except for top and bottom
titles, is generated. Output
resumes on the page after the blank
page.

To include a figure at the top of
the next page:

.di 3

.sp .5i

. im figure5

.sp 5

The current page is processed as if
the . DI and the three following
lines had not existed. At the top
of the next page, the three lines
are processed. This results in
spacing a half-inch, imbedding the
file named FIGURE5, followed by
spacing five lines.

Chapter 23. SCRIPT/VS Control Word Descriptions 249

.DL [DICTIONARY LIST]

Use the .Dl [Dictionary List] control word to specify the dictionaries to be used
for hyphenation and spelling verification. The dictionaries specified must be all
of the same language.

The .DL [Dictionary List] control word is discussed in "Chapter 16. Automatic
Hyphenation and Spelling Verification" on page 171 .

• DL name ••• name

where:

name is the name of a dictionary. Dic
tionary names may be up to four
characters in length. The dic
tionaries listed may be either one
of the IBM-supplied base diction
aries or any user-created dic
tionaries.

Notes:

1. The addenda dictionary used will be
that of the first dictionary named.
The base dictionary for the current
language will follow the addenda
dictionary in the search sequence,
followed by any user-created dic
ti ona ri es. The names of the
IBM-supplied dictionaries are

DUTH - Dutch
EAM - English (American)
EUK - English (United Kingdom)
ECAN - English (Canadian)
FNAT - French

.DM [DEFINE MACRO]

FCAN - French (Canadian)
GERM - German
ITAl Italian
SPAN - Spanish

2. If the .DL [Dictionary list] con
trol word is not used, the default
language specified by your instal
lation will be used for spelling
checking and hyphenation.

3. If the first dictionary named is
one of the IBM-supplied base dic
tionaries, any user-created dic
tionaries currently in use will no
longer be used, and the stem proc
essing routines for the new
language will be loaded.

4. For a description of the function
and use of the formatter's spelling
checking and hyphenation capabili
ties, see the discussion in "Chap
ter 16. Automatic Hyphenation and
Spelling Veri fication" on page
171.

Use the . DM [Define Macro] control word to establish macro definitions for
sequences of SCRIPT/VS control words or text lines. SCRIPT/VS macros are invoked
by preceding them with periods, as SCRIPT/VS control words. No macro substitution
is performed unless the .MS [Macro Substitution] control word has been processed
to turn macro substitution ON.

The .DM [Define Macro] control word is discussed in "Chapter 13. Writing SCRIPT/VS
Macro Instructions" on page 147.

.DM name

[
/linel/ ••• /linen[/]

1
x
LIB
OFF

name (En]) [/line[/]] x
OFF

where: to assign to the macro, so
that you can invoke it wi th

name is the symbolic name you want the control line:

250 Document Composition Facility: User's Guide

·name

It may contain a maximum of 10
nonblank characters which may
be upper- and lowercase
alphabetic, numeric, and the
characters Ci), I, and $.

name(n) indicates that the line that
follows is to be stored as
part of the macro defini tion
in line n. By this means, mul
tiple line macros may be
defined. The values for n need
not be sequential when the
macro is defined, but if the
same value for n is given on
two uses of the . DM control
word, only the latest value
for the line will be stored.
They are executed in numer
ical sequence. When a line
number is given with the name,
only one line of the macro may
be given. Each line of the
macro is defined with a sepa- .
rate .DM control word. (n)
must follow the macro name
without intervening blanks,
and must be a positive integer
or zero. If n is omitted, that
is, "name()" is specified,
macro elements are assigned
wi th line number increments
of 10. Macro element zero has
the same signi ficance as
array element zero and can be
assigned a number (using the
. DM control word) which will

line

x

control the start of automat
ic line number assignment. If
you set macro element zero to
other than a valid number, the
value that you set will be
lost. It will never be exe
cuted wi th the rest of the
macro.

is any character used to
delimi t the individual lines
in the macro. The final delim
iter may be omitted.

is any SCRIPT/VS control word
line or line of data that you
want to include in the macro
definition. It may contain
symbolic names, or any of the
special macro variables &*,
or &*1 through &*n (see
Notes) . If line is omitted,
the macro (or macro line if n
is given) is stored as a null
macro or macro line.

indicates that you want the
current value of a macro or
macro line assigned to the
symbol &x. x may be any single
alphameric character. (If you
give two or more characters,
SCRIPT/VS treats the first as
a delimiter and the others as

a line to be inserted in the
macro definition.)

LIB causes the macro to be defined
by retrieving its value from a
library. The name of this
library may be defined using
the LIB option of the SCRIPT
command. If LIB is used to
define a macro, the defi
ni tion retrieved from the
library completely replaces
the current definition (if
one exists). If LIB is speci
fied, but no defini tion wi th
the macro name given exists on
the library, the macro will be
undefined. Since macro names
are in uppercase only, names
are folded to uppercase
before the library is
accessed. The LIB parameter
sets up an entirely new macro
definition; no line number
may be given wi th the macro
name. The LIB option may be
used independently of the .LY
[Library] control word.

OFF deletes a macro definition or
a line from a definition.

Notes:

1. The following symbols have-special
meanings within macros:

&*: is the line passed to the macro
when it is invoked. Thus, if the
macro defined with:

.dm typit() /.ty ***

.dm typit() /.ty &*

.dm typit() /.ty ***

is invoked with the line

.typit Hello!

then the symbol &* has the value
"Hello!". The processing of this
macro results in the lines:

Hello!

being displayed at your terminal.

&*0: Contains the number of tokens
passed when the macro is called.
Using the above example, the value
of &*0 is 1.

&*1 - &*n: Are the tokens passed to
the macro when it is called. You
can pass as many tokens to a macro
as will fit on the input line. If
the .typit macro is invoked

.typit Processing section 5 ...

then &*1 has a value of
"Processing", &*2 has a value of

Chapter 23. SCRIPT/VS Control Word Descriptions 251

"section", and 8*3 has a value of
"5 ... ". The value of 8*0 is 3.

2. Macro calls are treated as invalid
control words if you do not use the
.MS [Macro Substitution] control
word:

.ms on

3. Symbol names that are used in a
macro defini tion are substi tuted
at the time the .DM control line is
processed, if substitution is on.
If you want to use variable symbols
in a macro to be substi tuted at
execution time, you must use the
control word

.su off

before defining the macro with the
.DM control word.

4. Values for the symbols 8*1 through
8*n are established whenever a mac
ro is invoked. These values are
local to the current level of macro
invocation.

5. A macro name may be the same as the
two-letter name of a control word.
Such a macro effectively redefines
the control word by getting control
whenever the control word is
encountered.

6. Macros may be invoked recursively.

7.

8.

In order to avoid looping si tu
ations for recursive invocation
SCRIPT /VS keeps invocation counts
for macros. Any given macro may not
be opened more than 99 times, and
no more than 255 macros of any name
may be open at the same time. If
either of these situations occurs,
a severe error message is issued
and processing is terminated.

If macros are defined wi th mul tiple
macro lines on a single line of
input, the macro will be stored as
if it had been entered on separate
lines with an increment of 10, and
the new definition will completelY
replace any existing definition
with the same name. However ,subse
quent macro lines defined using
sequence numbers will behave as if
all lines had been added in this
way.

Macros defined using sequence num
bers may be defined using sequence

numbers in any order. However, the
macro wi 11 be executed as if the
lines had been entered in sequence.
Macro lines may be redefined at any
time wi thin a document, or lines
added or inserted into an already
existing macro definition. This
addi tion or redefini tion of lines
will take place based on the
sequence number specified.

9. If an entire macro is assigned to a
symbol "x" it will be stored in the
form:

10.

'linel'line2'line311inenl

where I represents a separator
character of hexadecimal FF. If
only a single line of a macro is
assigned to a symbol "x", it will
be stored in the form Iline'. If
you want to print this symbol, the
· TR control word must be used to
convert this character to one that
is available on the printer being
used, if this is required. When
using the symbol assignment 'capa
bility, remember that the maximum
length for a symbol is 252 charac
ters.

The symbol assignment capabili ty
can be used to test the existence
of a macro or a macro line, as fol
lows:

•

•

if the macro (or macro line)
does not exist, the symbol "8x"
is assi gned a null va 1 ue
(8L'8x=0).

if the macro (or macro line)
does exist, but has a null val
ue, the symbol "8x" is assigned
a value of hexadecimal FFFF,
which is two consecutive sepa
rator characters (8L'8x=2).

• else, the symbol "8x" will have
the value of the complete defi
nition of the macro (or macro
line) as described before
(8L'8x>2).

Use of the LIB option of the .DM
control word allows a macro defi
nition to be explicitly retrieved
from the library. Use of the . L Y
control word allows macro defi
ni tions to be retrieved from the
library when a macro is used in a
document where a definition for it
does not currently exist.

252 Document Composition Facility: User's Guide

.DS [DOUBLE SPACE MODE]

Use the . DS [Double Space Mode] control word when you want your output to be
double-spaced .

• DS

Notes:

1. This control word does not cause a
break.

2. The .DS control word doubles the
line spacing set by the .Sl con
trol word. When double-spacing is
in effect, each space or skip
caused by a .SP or .SK control
word is doubled (thus, .SP 2
yields four spaces). However, if
the .SP or .SK control word indi
cates "absolute" spaces, the space
count is not doubled.

3. Additional space is placed above
each output line, and is discarded

.DU [DICTIONARY UPDATE]

if the line falls at the top of a
column. This may result in columns
being set short by the amount of
discarded space.

Example:

.DS

Blank lines are inserted between out-

put lines below this point in the

file, as shown in these few lines.

Use the .DU [Dictionary Update] control word to add or delete words from an
addenda dictionary. The changes to the dictionary that are specified using this
control word are in effect only during the formatting of the current document.

The .DU [Dictionary Update] control word is discussed in "Chapter 16. Automatic
Hyphenation and Spelling Verification" on page 171.

(ADD) [NAME name]
{DEL 1

word ••• word

where:

ADD specifies that the word or words
given wi th the control word are to
be added to the addenda dictio
nary.

DEL specifies that the words given
wi th the control word are to be
deleted from the addenda diction
ary.

NAME specifies the name of the diction
ary wi th which the addenda dic
tionary is asociated. If NAME is
omitted, the addenda dictionary
will be associated with the first
dictionary in the current
sequence.

word is a string of blank delimi ted
words.

Notes:

1. A .DU control word which requests
that a word be added to, or deleted

from, the addenda dictionary where
that word is already in the addenda
dictionary (for ADD), or not in the
addenda dictionary (for DEL), will
not cause an error message. The
first ADD for a word will put the
word in the dictionary, and all
subsequent ADDs will be ignored.
The first DEL for a word will
delete the word from the
dictionary, and all subsequent
DEls will be ignored. You should be
careful to avoid multiple ADD or
DEL situations where a word may get
added and perhaps also deleted in
an imbedded file.

2. For a description of the function
and use of the formatter's spelling
checking and hyphenation capabili
ties, see the discussion in "Chap
ter 1. An Introduction to
SCRIPT/VS" on page 1.

3. Words added to the dictionary using
the . DU control word may include
hyphens. In this case, the hyphens
indicate potential hyphenation

Chapter 23. SCRIPT/VS Control Word Descriptions 253

points for the word. Whenever
hyphenation is in effect Cspeci
fied by the .HY control word) these
hyphenation points will be used
unless the . HW control word has
been used for the specific occur
rence of the word, or use of the
addenda dictionary has been sup
pressed wi th the NOADD opti on of
the .HY control word.

4. Words that contain hyphens, such as
1 i ghter-than-ai r, shaul d be sup
plied to the .DU control word with
double hyphens at these hyphen
points, as described for the . HW
control word.

5. Words that contain word delimiters
will be added to the addenda dic
tionary with the delimiters
intact. You can redefine these
delimiters with the .DC control
word.

6. Stem processi ng is used for veri fi
cation against both the main and
the addenda dictionaries when
requested using the .SV control
word .

• EC [EXECUTE CONTROLl

7. Words may be added to the addenda
dictionary even when spelling ver
ification is off, or is in effect
against the main dictionary only.

8. Only 804 entries may be made to the
addenda dictionary.

9. For encoding hyphenation points
specified with .DU ADD, the follow
ing rules are observed:

•

•

•

The word is divided into a max
imum of four groups of three
letters starting with the
fi rst vowel encountered after
the fi rst letter of the word
(including the letter y).

Each group can contain only one
hyphenation point. If more
than one point is speci fied,
the first one specified will be
used.

The result is that a word can
contain a maximum of four
hyphenation points.

The .EC [Execute Control] control word is used to cause SCRIPT/VS to execute the
given line as a control word line, even if there is a macro defined with the same
name, and macro substitution is ON .

• EC control word line

where:

control word line is a SCRIPT /VS con
trol word line.

Notes:

1. Use the .EC control word whenever
you want to cause SCRIPT/VS to exe
cute a control word even when a
macro is defined with the same
name. The .EC control word is use
ful wi thin macros that have the
same name as control words. Often,
a macro that "redefines" a control
word uses the control word function
in addition to whatever other func
tion it performs. In these cases,
if the .EC function were not used,
the same macro would be repeatedly
invoked in a loop until SCRIPT/VS
terminated it with a severe error
message. Of course, macro substi
tution could be turned OFF, but
that would prevent any other macro
from being invoked until macro sub
sti tution was turned ON again.

2. The control word modifier provides
an implied . EC function. It also

prevents the control word separa
tor scan on that control word line.
The control word modi fier may be
used with any control word; it con
sists of a single quotation mark
C') between the period and the name
of the control word. C.'ce center
this line).

Examples:

• To define a macro called .IM to
replace the .IM control word with
out using the .EC control word
would require the following macro
definition:

.su off

.dm imCl) /.ty &*/

.dm im(2) /.ms off/

.dm im(3) /.im &*/

.dm im(4) /.ms on(

.su on

In this example, macro substi
tuti on needs to be turned off to
avoid an infini te macro substi
tution loop. Unfortunately, this
has the effect of turning off macro

254 Document Composition Facility: User's Guide

substi tution for the imbedded
file, and all files that it imbeds.
In this situation, the .EC control
word should be used:

.dm im(l) /.ty &*/

.*.pa

.*.*.*:tnlsync.

.dm im(2) /.ec .im &*/

The control word modi fier may be
used in the same way:

.dm im(l) /.ty &*/

.dm im(2) /.'im &*/

The difference between the .EC form
and the control word modifier form
is that the .EC line is scanned for
control word separators, while the
control word modifier line is not.
In this example, there is no dif
ference between the two; the

.EF [END OF FILE]

•

•

original .IM macro line will
already have been scanned for sepa
rators.

The .EC control word will issue an
error message if the subject con
trol word line is not a valid con
trol word line. To be a valid
control word, it must start with a
period, followed by two characters
and a blank. (A line without a
period in column 1 is usually
treated as text, but, as the sub
ject of .EC, it is treated as an
invalid control word.)

The .EC control word will issue an
error message if the control word
line given is "valid", but refers
to a nonexistent control word, even
if a macro exists with the control
word name given.

The .EF [End of File] control word simulates the end of the current file. When used
in a profile file, the contents of the profile preceding the .EF [End of File] con
trol word will be processed before the main document, and the remainder of the
profile will be processed after the main document.

The .EF [End of File] control word is discussed in "Terminating the Formatting of
a File" on page 124 .

• EF [CLOSE]

where:

CLOSE tells SCRIPT/VS not to hold your
place in the current file, but
to close it, so that the next
time the file is imbedded,
SCRIPT/VS begins processing at
the top of the file, not at the
line following the .EF control
word.

Notes:

1. The .EF [End of File] control word
causes an end of file condition to
be simulated on the current input
file. If the current input file is
not an imbedded file (see the dis-

cussion of the .IM [Imbed] control
word), all processing is termi
nated. If the current input file
has been imbedded, the .EF control
word causes input processing to
continue in the outer file. In this
latter case, SCRIPT/VS remembers
the posi tion of the . EF control
word; if the file is imbedded
again, then SCRIPT/VS begins read
ing at the line following the .EF
control word instead of the begin
ning of the file, unless the CLOSE
operand is used. In the case of the
profile file, this will happen when
all other files have been
processed.

Chapter 23. SCRIPT/VS Control Word Descriptions 255

• El [ELSE]

The .EL [Else] control word can be used in conjunction with the .IF [If] control
word to process SCRIPT/VS input lines conditionally. The target line is processed
only if the most recently performed .IF [If]1 .AN [And]1 or .OR [Or] control word
resul ted in a false condition.

The .EL [Else] control word is discussed in "The .IF Control Word Family" on page
111 .

• El target

where:

target is any valid SCRIPT /VS input
line. It may be a control word
or text. If the most recently
performed .IF [If] was falsel
the target line is processed
next, wi th the fi rst nonblank
character after the .EL
treated as the first posi tion
of the line. If the condition
was true, the target line is
ignored, and processing con
tinues with the input line that
follows the . EL control word
line.

Notes:

1. For readability, an optional USE"
may be added to the . EL control
word without intervening blank.
This allows the control word to be
written as ".EL" or ".ELSE".

2. The .TH [Then] and .EL [Else] con
trol words, in conjunction with .IF
[If], .AN [And], and .OR [Or],
allow you to construct complex log
ic statements.

3. The .TH and .EL control words them
sel ves do not cause a break or
change the true/false condition; a
target control word might, if it is
processed. For example, the input
lines

.if &a eq &b

.else .if &c eq &d

.then .ty Yes.

are equivalent to the line

.if &a eq &b .or &c eq &d .ty Yes.

4. Multiple .TH [Then] and .EL [Else]
control words may follow an . IF
[If] control word; only the . TH
[Then] control words will be exe~
cuted if the .IF [If] resulted in a
true comparison, and only the .EL
[Else] control words will be exe
cuted if the .IF [If] resulted in a
false comparison.

5. If there is no most recently per
formed comparison, the target line
will not be processed.

Examples:

• The following input lines

.if &a ne &b .ty Yes,

. if &a ne &b . ty still.

are equivalent to the following
lines:

.if &a eq &b

.else .ty Yes,

. el . ty still.

256 Document Composition Facility: User's Guide

·EM [EXECUTE MACRO]

The .EM [Execute Macrol control word is used'to cause SCRIPT/VS to execute the
given line as a macro line even if there is a control word with the name given, and
macro substitution is OFF .

• EM macro line

where:

macro line is an input line that
invokes a SCRIPT/VS macro.

Notes:

1. Use the .EM control word whenever
you want to cause SCRIPT/VS to exe
cute a macro when macro substi
tution is OFF. The .EM control word
is useful when a control word must
be replaced wi th a macro of the
same name and macro substi tution
cannot be turned on.

2. If the .EM control word specifies a
macro for which no valid macro
definition exists, it is treated as
an invalid control word, even if
there is a control word of that
name .

• EZ [EASVSCRIPTl

3. The control word modifier provides
an implied . EC [Execute Control 1
function, and also prevents a con
trol word line from being scanned
for control word separators. If you
want to prevent a ~ line from
being scanned for separators, you
can use the control word modifier
for the .EM control word:

. 'EM . myma c A; B

The control word that is modified
here is .EM, and this usage allows
the macro 'mymac' to be executed,
while preventing the data for the
macro (A; B) from being misinter
preted as containing a control word
separator.

EasySCRIPT is an early implementation of GMl that existed in SCRIPT/370. The .EZ
[EasySCRIPTl control word provides automatic formatting functions used by
EasySCRIPT. These functions are available through a set of EasySCRIPT "tags" or
through the .EZ control word directly. The EasySCRIPT tags are symbols that sub
stitute to the appropriate .EZ control word. They are not true GMl tags; they are
delimited with the ampersand (&), not the GMl delimiter (:). EasySCRIPT tags are
included in SCRIPT/VS to allow documents already marked up with them to be proc
essed by SCRIPT/VS .

• EZ [ON [headnum] J
[OFF J
[function line J

where:

ON initializes the EasySCRIPT
tags that provide the
EasySCRIPT numbering, para
graphing, and heading func
tions. The names of the tags
are the same as the parame
ters of the .EZ control word
that provide the associated
function. ON also swi tches
the head level defini tions
from the standard ones to
another set used only while
EasySCRIPT is in effect. The
.DH [Define Head Levell con
trol word operates on
whichever set of head levels
(standard or EasySCRIPT) is
currently in effect.

headnum

OFF

is the decimal number of the
last heading that would have
been used. EasySCRIPT uses
this number to set the count
er it uses for numbered
headi ngs. I f not speci fi ed,
0.0.0.0 is assumed. If you
speci fy &xref, EasySCRIPT
resumes numberi ng where it
left off when . EZ OFF was
last processed. (&xref is
the symbol EasySCRIPT uses
to keep track of the current
heading number.)

cancels the EasySCRIPT tags,
so that they are not recog
nized by SCRIPT/VS. OFF also

Chapter 23. SCRIPT/VS Control Word Descriptions 257

swi tches the head-level
definitions back to the
standard set.

function is the name of the EasySCRIPT
function to be invoked. The
line of text data that fol
lows the function name is
processed by the built-in
function requested. The
functions are summarized
below. The names of the func
tions are case sensitive.
For exampl e, there are two
di fferent bulleted list
functions: the "B" function,
in uppercase, starts a regu
lar bulleted item, and the
"b" function, in lowercase,
starts a sub-bulleted item.

line is an input line of data. It
must be separated from the
function name by at least one
blank.

Notes:

1. EasySCRIPT functions provide a
fast, convenient way of formatting
text and documents, particularly
those that require decimal number
ing. EasySCRIPT provides automatic
numbering for heading levels and
lists, if requested.

2. The names of the EasySCRIPT func
tions are the same as the names of
the tags set up by ". ez on". For
example, the "N3" function identi
fies a numbered list item at level
3. This function can be invoked
with the control word

. ez N3 text of the numbered item

or wi th the tag

&N3.text of the numbered item

but the latter is enabled only
after .EZ ON has been processed.

3. The symbol "&xref" contains the
entire number of the current head
ing level, when EasySCRIPT's auto
matic numbering scheme is used. The
symbols "&xrefl", "&xref2",
"&xref3", and "&xref4" contain the
components of this number. For
example, if "&xref" has the value
"1.0", then "&xrefl" will have the
value "1", and "&xref2" will have
the value "0".

4. The EasySCRIPT functions are sum
marized below. Note the differ
ences in the uppercase and
lowercase versions of a function
name:

Hx

hx

P

p

Nx

nx

B

EasySCRIPT Functions

Begins a decimal numbered
heading of level x (1
through 4).

Begins an unnumbered heading
of level x.

Begins a major paragraph by
resetting the current
indention.

Begins a minor paragraph at
the current indention.

Begins a numbered item of
level x (1 through 4).

Begins an unnumbered item of
level x (1 through 4).

Begins a bulleted item.

b Begins a sub-bulleted item .

toc Generates a table of con
tents.

258 Document Compositipn Facility: User's Guide

.FL [FLOAT]

Use the .FL [Float] control word to designate a block of text to be formatted and
placed at the top or bottom of a subsequent output page or column. Such a block of
text is called a "float".

The .FL [Float] control word is discussed in "Floats" on page 95. Figure 8 on page
56 shows the relationship of the .FL [Float] to the layout of a SCRIPT/VS output
page.

.FL

where:

[
ON
OFF
DUMP] [TOP

BOTTOM] [COL
PAGE

ON designates the beginning of a
float.

OFF designates the end of a float.

DUMP causes SCRIPT/VS to place all
unplaced floats in columns or
on pages. As many extra columns
or pages as needed will be
added to place all pending
floats. An automatic dump is
generated at the end of the
file.

TOP designates the start of a float
that will be placed at the top
of a page or column.

BOTTOM designates the start of a float
that will be placed at the bot
tom of a page or column.

ODD

EVEN

COL

PAGE

ORDER

If nei ther TOP nor BOTTOM is
specified, the float will be
placed at the top of a page or
column.

designates the start of a page
float that will be placed on an
odd-numbered page. If nei ther
ODD nor EVEN is specified, the
float may be placed on any
page.

designates the start of a page
float that will be placed on an
even-numbered page. If neither
ODD nor EVEN is specified, the
float may be placed on any
page.

speci fies that the float that
is starting is to be formatted
with the width of a single col
umn of output.

speci fies that the float that
is starting is to be formatted
wi th the wi dth of the enti re
page.

speci fies that after all pre
viously ordered floats have

] [ODD
EVEN] [ORDER]

been placed, the float is to be
placed in the nex~ avai lable
top or bottom float space in
the column. If not speci fied,
floats may be placed in columns
or on pages in a different
order than that in which they
were defined, depending upon
the space available on the
page.

Default: ON, TOP, COL

Notes:

1. If a float is already in progress
when the .FL control word is
encountered, it is ended, as though
.FL OFF had been processed, before
the new .FL control word is proc
essed. All .FL control words except
.FL OFF and .FL DUMP cause a new
float to be started.

2. If .FL OFF is encountered when no
float is in progress, nothing hap
pens.

3. If several floats are waiting to be
placed, only one can be placed at
the top or bottom of a column or
page (except when a dump is being
processed.) The remaining floats
are placed, one at a time, on the
tops and bottoms of subsequent
pages and col umns.

4. If there are several columns
defined, each column may have a
float at the top and at the bottom
of it.

5. When the DUMP pa rameter is proc
essed, TOP, BOTTOM, ODD, and EVEN
are ignored, but ORDER, COL, and
PAGE are not ignored.

6. Each column in a page has space
available for one top and one bot
tom float. At the time the page is
started, each pending ordered
float is placed in the first
location on the page that is avail
able and has room for it. This
process will continue until the

Chapter 23. SCRIPT/VS Control Word Descriptions 259

first ordered float that will not
fit on the page is encountered .

• FM [FOOTING MARGIN]

Use the . FM [Footing Margin] control word to specify how much space to skip
between the last line of text, on a full page, and the bottom titles, overriding
the initial setting established for the device.

The .FM [Footing Margin] control word is discussed in "Allocating Space for Run
ning Titles" on page 63. Figure 8 on page 56 shows the relationship of the .FM
[Footing Margin] to the layout of a SCRIPT/VS output page.

where:

v
+v
-v]

v speci fies the amount of space to be
skipped between the last line of
text and the footings (bottom
titles). If +v or -v is specified,
the current value of the footing
margin is incremented or decre
mented. If no .FM control word is
used in the file, or if the . FM
control word is used with no oper
and, the initial value is used. The
minimum value that may be specified
for the footing margin is O. If a
negative resul t is calculated for
the footing margin, the value will
be set to zero, and a message will
be issued. The maximum value that
can be used for the footing margin
is equal to the bottom margin (.BM)
minus the footing space (.FS).

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

Notes:

1. The bottom titles are placed a
specified amount of space below the
last line of text. The location of
the last line of text is explicitly
defined by the .BM [Bottom Margin]
control word, whether that line is
actually filled or not.

2. This control word does not cause a
break.

3. The .FM control word will take
effect on the page after it is
encountered.

Example:

fm .5i

A hal f inch of space is left between
the last line of text and the running
bottom ti tIes, if any have been
defined.

260 Document Composition Facility: User's Guide

.FN [FOOTNOTE]

Use the .FN [Footnote] control word to set aside lines of formatted output text to
be positioned at the bottom of the current page, if possible, or at the bottom of
subsequent pages.

The .FN [Footnote] control word is discussed in "Footnotesn on page 96. Figure 8
on page 56 shows the relationship of a .FN [Footnote] to the layout of a SCRIPT/VS
output page .

• FN { ON]
{LEADER]
{ OFF]

where:

ON marks the beginning of the
material in the footnote.

LEADER allows the specification of a
leader to be placed at the top
of the footnotes on the page to
separate the footnotes from
the text of the page. The ini
tial leader is a space of one
line and a horizontal rule 16m
in length.

OFF marks the end of the footnote
material.

Notes:

I . . FN ON sta rts a footnote. All
lines until the subsequent .FN OFF
control are put in the footnote. If
.FN OFF is encountered when no
footnote is in process, it is
ignored.

2. There is no maximum size for a
footnote. All text until a .FN OFF
command is given is included in the
footnote unless the footnote is
prematurely ended by a disallowed
control word.

3. The fi rst footnote on a page is
automatically started with a lead
er which may be redefined with .FN
LEADER and .FN OFF. If the leader
is larger than the page body plus
the first line of the first foot
note on the page, it will be
ignored.

4. The .FN control word does not act
as a break.

5. Footnotes will run across the page
in a single column. The line length
may be changed in the footnote.

6. When the footnote is started, off
sets are cleared, and indention is
set to the current . IN (i ndent)
value and the column width is set
to the line length. You must
include an .OF control word if you
want the footnote offset.

When the footnote ends, any changes
within the footnote to the
indention, font, or certain other
values in the formatting environ
ment, are automatically restored
to the values in effect before the
footnote started. See Figure 33 on
page 356 for a list of all the val
ues that are automaticallY saved
and restored after a footnote.

7. Widow zones are ignored in foot
notes.

8. Deferred control words (such as .PI
(Put Index) and .PT (Put Table of
Contents)) are acted upon when the
first line of the footnote is
placed on a page -- regardless of
where they were encountered within
the footnote. The result is as
though all such deferred control
words were entered immediately
after the .FN control word.

9. Refer to nFootnotes" on page 96 for
further details on the placement of
footnote callouts, footnotes, and
footnote leaders; the splitting of
footnotes; and the nfloating" of
unplaced footnotes.

Chapter 23. SCRIPT/VS Control Word Descriptions 261

.FO [FORMAT MODEl

Use the .FO [Format Mode] control word to cancel or restore concatenation of input
lines and justification of output lines. The .FO control word also controls wheth
er lines may be allowed to extend beyond the column boundary.

The .FO [Format Model control word is discussed in "Chapter 3. Basic Text·Process
ing" on page 33.

.FO

where:

[
ON 1 OFF
LEFT
RIGHT
CENTER

10

EXTEND
FOLD
TRUNC

1

ON restores default SCRIPT/VS
formatting, including both
justification and concat
enation of lines. If the .FO
control word is used wi th no
operands, ON is assumed.

OFF

LEFT

RIGHT

cancels concatenation of input
lines and justification of
output lines. Subsequent text
is printed "as is." If an input
line is longer than the defined
line length, the line may be
allowed to extend beyond the
right margin, and no message
wi 11 be issued.

specifies that input lines are
to be concatenated but not jus
ti fied. The resul ting output
lines are left-aligned in the
column. This format is some
times called "ragged-right."

specifies that input lines are
to be concatenated but not jus
ti fied. The resul ting output
lines are right-aligned in the
column with a "ragged-left"
margin.

CENTER specifies that input lines are
to be concatenated but not jus
ti fied. The resul ting output
lines are centered in the col
umn.

FOLD speci fies that if an input line
will not fit in the output col
umn (in .FO OFF mode), it is to
be broken and the remainder
placed on the next output
line(s). The line is broken at
the last character that will
fit on the column.

TRUNC specifies that in .FO OFF mode,
the line is to be truncated at
the last character that will
fit in the column.

EXTEND specifies that in .FO OFF mode,
if a line will not fit in the
column, it is allowed to extend
beyond the col umn wi dth. This
is the initial setting.

Initial Setting: ON EXTEND

Default: ON

Notes:

1. The .FO control word is a shorthand
way to specify the two control
words . CO [Concatenate Model and
.JU [Justify Mode]. The effect is
the same as if these two control
words were specified, except that
the .FO control word will end cen
tering or right adjust mode,
whereas the . CO and . JU control
words will not. When format mode is
in effect (.FO ON), lines are
formed by shifting words to or from
the next litle (concatenation) and
padding with extra space to produce
an aligned right margin (justi
fication).

2. This control word acts as a break.

3. Even when format mode is in effect,
a line may exceed the current col
umn width. This can happen if there
is only one word on the line and
this word is longer than the column
width, and also if a word follows a
tab and spans the right column
boundary. The setting of the TRUNC,
FOLD, or EXTEND option controls how
these situations are handled.

4. Note that the TRUNC, FOLD, and
EXTEND options may be specified as
the only options of the .FO control
word. In this case, the current
formatting mode will be unchanged
although a break will be done. For
example, if. FO CENTER TRUNC is
specified, and this is later fol
lowed by . FO EXTEND, the output
will continue to be centered.

262 Document Composition Facility: User's Guide

5. Options may be specified in any
sequen~e. If contradictory options
are specified, only the latest one
will be used.

Examples:

• . fo off

Justification and concatenation·
are
completed for
the preceding line or lines,
but following
lines are
typed exactly as they appear
in the file.

• .fo

Justification and formatting are
resumed with the next input line.
Output from th i s po i nt on in the
file is justified to produce
aligned left and right margins on
the output page.

• . fo trunc

.FS [FOOTING SPACE]

•

If the current formatting mode is
OFF, any lines that are longer than
the current column width are trun
cated at the. column boundary. If
the current formatting mode is
RIGHT or CENTER, any words that
would extend past the right coJumn
boundary are truncated. If the cur
rent fo rmatt i ng mode i s ON, the
TRUNC option becomes meaningful
only if the first word on a line or
the fi rst word after a tab would
extend beyond the column width.

. fa center fold

Lines are concatenated and
centered, and any lines that
are longer than the column

width are folded onto the next
line. Note that the FOLD mode
of operation will continue in

effect until explicitly
changed. For example, another

.FO control word with only the
OFF option will leave FOLD in

effect.

The .FS [Footing Space] control word allocates space from the bottom margin area
for running bottom titles.

The .FS [Footing Space] control word is discussed in "Allocating Space for Running
Titles" on page 63. Figure 8 on page 56 shows the relationship of the .FS [Footing
Space] to the layout of a SCRIPT/VS output page.

where:

n
+n
-n]

n is the number of bottom title lines
you want to appear on this and all
subsequent output pages. This num
ber may be from 0 to 6. If no num
ber is given, 1 line is assumed. n
must be an integer from 0 to 6.
This control word does not accept
space uni ts. Thi s number must be
less than the bottom margin (.BM)
minus the footing margin (.FM). If
you specify +n or -n, the current
value of the footing space is
incremented or decremented
accordingly. If the net result is a
negat i ve number, zero is assumed
and a message is issued.

Initial Setting: 1

Default: 1

Notes:

1. The .FS [Footing Space] control
word allocates space from the bot
tom margin for bottom titles. You
only need to use this control word
if you want more than one bottom
title in your document. If the
bottom margin is not big enough to
accommodate the footing space plus
the footing margin, an error mes
sage is generated.

2. This control word does not cause a
break, and takes effect on the page
after it is encountered.

3. The running bottom title control
words merely cause a title line to
be saved ina storage area for
future use. Only the first bottom
title (bottom title 1) is used at
the bottom of output pages by
default. To get more than one
title at the bottom of your format-

Chapter 23. SCRIPT/VS Control Word Descriptions 263

ted output pages you must do two
things: define the titles using the
.RT [Running Title] control word,
and then allocate space for the
titles by using the .FS control.

4. If you do not want any bottom
titles at all, the best way to
accompl ish thi sis to defi ne the
footing space as 0 (.FS 0). This
is more efficient than setting the
bottom titles to null (.RT B ////),
because SCRIPT/VS does not have to
process any titles to determine
that none are wanted.

Example:

If you want three running bottom titles

.GO [GOTO]

in your document, you could use the
following sequence:

.rt b 3 /Chapter 4//&/
• rt b 2 ////
.rt b 1 $$&SYSMONTH./&SYSYEAR.$$

At this point, only bottom title 1, the
one nearest the bottom of the page, is
used on formatted output pages because
the default footing space of 1 is still
in effect. Now that the three ti tIe
lines have been saved, the followi ng
control word causes SCRIPT/VS to print
all three:

· fs 3

The .GO [Goto] control word causes SCRIPT/VS to branch to another part of the cur
rent SCRIPT/VS input file or macro.

.GO [TO] label

where:

TO is an optional keyword which is
ignored if present; its only
purpose is to allow the alterna
tive forms ".GOTO" and ".GO
TO".

label is the name of a line set else
where in the current fi Ie or
macro using the ... [Set Labell
control word.

Notes:

1.

2.

264

Use the .GO control word to branch
to another place in your SCRIPT
file or macro. If the label desig
nated on the . GO control word is
not defined elsewhere in the cur
rent file or macro, an error me~
sage is issued, and processing
terminates.

This control word does not cause an
automat i c break. The input 1 i ne
preceding the .GO control and the
line at the label designated in the
.GO control word are processed as
though they were two sequential
lines from the SCRIPT file.

Document Composition Facility:

3. Every .GO control word must refer
to a label defi ned wi th the •..
[Set Labell control word; but you
may have more than one .GO refer
ring to the same label.

4. .GO is particularly useful when
performed condi ti onally as the
subj ect of an I F statement. See
the discussion of the .IF control
word.

Example:

Suppose you had a SCRIPT file that was
designed to recognize the variable
SYSVAR5. In thi s example, if SYSVAR5
is set to SMALL, you want SCRIPT/VS to
format the output at 36 lines per page
and 4.2 inches per 1 i nee Otherwi se,
the defaul t values are to be used.
This could be done with the following
control words:

.if &SYSVAR5 ne SMALL .go default

.pl 36

.11 4.2i
· .. defaul t
(etc.)

User's Guide

·GS [GML SERVICES]

Use the .GS [GML Services] control word to perform various services that may be
required when writing GML APFs.

The .GS [GML Services] control word is discussed in "Chapter 14. GML Support in
SCRIPT/VS" on page 159.

.GS SCAN symname [string]

(EXATT J [name [AS name]] [[NOT] name ••• name]
(EXOPT J

(PURGE J [[NOT] name ••• name]
(PURGEMSG 1

HCTR En]

QATT symname [name ••• name]

RULES
[~rUlkeYl ••• rulkey4J

SNAP [tag ••• tag]

ARGS [string]

VARS [symnamel ... symnamen]

TAG

[
ON

1
ONNO
SYMBOL
OFF

PREFIX [OFF] [OFF

~[C] =
c[c]

where:

SCAN speci fi es that the gi ven stri ng
is to be scanned for GML attri
butes and residual text. The scan
is performed accordi ng to the
current rules for start tags. See
the discussion of the various
scanning rules below.

symname The resi dual line of text is
set into the symbol "symname",
and consists of everything to the
right of the markup/content sep
arator. If the NOATT or STOP rule
for scann i ng is in effect, the
residual line can be found with
out any markup/content
separator. See the discussion of
the scanning rules below. If no
line is given with the .GS SCAN
control word, the symbol
"symname" is set to the value of
the residual line remaining from
prior automatic GML scanning, or
if none exists, to the null
string. A complete description

]

] [=] (rulkeyl ••• rulkey41

of GML attribute scanning is con
ta i ned insect i on "Chapter 14.
GML Support in SCRIPT/VS" on page
159.

string specifies that the string given
is to be scanned for attributes,
starting at the beginning of the
stri ng. Any attri butes found
will be added to the attribute
stack.

EXATT specifies that any attributes
which have been found and placed
in the attribute stack are to be
executed. If a list of names is
given, then only the attributes
listed are executed. If the list
of names is preceded by the
keyword NOT, then all attributes
except those listed will be exe
cuted. When an att r i bute i s
executed, it is no longer in the
attribute stack.

EXOPT speci fi es that any user-defi ned
options specified on the SCRIPT

Chapter 23. SCRIPT/VS Control Word Descriptions 265

AS

NOT

command are to be executed. (See
"Ch~pter 2. Using the SCRIPT Com
mand" on page 13.) If a list of
names is gi ven, then only the
opt; ons 1; sted are executed. If
the list of names is preceded by
the keyword NOT, then all options
except those listed will be exe
cuted. After an option has been
executed, it is no longer avail
able.

specifies explicitly the APF to
be executed for a gi ven
attribute.

specifies that the list of names
that follows is not to be acted
upon.

name speci fi es a list of attri bute
names.

PURGE specifies that any attributes
which have been found and placed
in the attribute stack are to be
purged. If ali st of names is
given, then only the attributes
listed are purged. If the list of
names is preceded by the keyword
NOT, then all attributes except
those listed are purged.

PURGEMSG i s the same a sPURGE, except
that a message is issued to noti
fy you what attributes were
purged from the stack. Thi sis
useful if you want to be informed
of unused attributes for a par
ticular tag.

HeTR speci fi es that the dec; mal num
beri ng contai ned in the symbol
&~xref is to be either set with
the value specified, or is to be
incremented. If n i s om i tted, the
symbol &~xref wi 11 be set to a
null value, and numbering is
reinitialized.

n specifies if the head counter is
to be incremented at the level
gi ven, or is to be set wi th the
value given. n may also be used
to indicate whether numbering is
to be in arabic or alphabetic
form. If n is a decimal number,
the counter at that level will be
incremented, and the symbol
&~xref will conta in the counter .',
value for that level. If n is of
the form nl.n2.n3 ... (up to 32
levels of numbering are sup
ported) , the headi ng counter
will be reset with the value giv
en. If less than 32 numbers are
given, those given are assumed to
relate to the leftmost
posi ti ons. For example, if the
value 1.3.2 is suppl i ed, &O)xref
will be set to '1.3.2'. If n has
the value A. 0.0. b, the counters
will be reset with alpha counters

QATT

in the fi rst and fourth
positions.

Note: You can not use 0, 0.1, and
so on as an initial value. The
leading zero will reinitialize
the counter to zero.

specifies that the attribute
stack i s to be checked for the
presence of specific attributes.

symname Any attributes that are checked
and found to be absent from the
attribute stack will be set in
this symbol as array elements.

name speci fi es a list of attri bute
names to be checked.

RULES is used to specify the rules to
be used for GML attribute scan
ning. You may specify two lists
of rule keywords, each enclosed
in parentheses. The fi rst 1 i st
sets the rules for scanning start
tags, and the second list sets
the rules for scanning end tags.
The start-tag rules are used for
scanning via .GS SCAN. The rules
set by . GS RULES are used for
scann i ng any tag that does not
have its own rules set via .AA
[Associate APF].

An equal sign in place of a rules
list means to leave that set of
rules unchanged. An empty list,
that is, left and right parenthe
ses with nothing in between,
means to restore the default
rules.

The recogni zed rule keywords
are:

ATT Attributes are allowed. A
regular attri bute is in
the form "name=value",
where the name is a maxi
mum of 8 characters long,
and the fi rst character
i s not a number. The other
characters can be alpha
beti c, numeri c, and the
characters ~, I, and $.
The value can be in either
of two forms: a single
word consisting entirely
of the same restricted
character set that is
allowed for names, with
no embedded blanks, or a
string delimited with
single quotation marks.
Any character is allowed
within single quotation
marks, except that a sin
gl e quotat i on mark that
is part of the string must
be expressed as two si n-
gle quotat; on marks.
Lead; ng and trai 1 i ng
spaces wi thi n the quota-

266 Document Composition Facility: User's Guide

tion marks are discarded.
If you want these spac@s~
then you must use
required blanks.

An item in the line being
scanned that does not
conform to this
description of a valid
attribute will be dealt
with according to the
VAT, STOP, and MSG rules
that are currently in
effect.

All regular attributes
found during the scan are
placed in the attri bute
stack, and they are
ava i lable to the APF v i a
.GS EXATT and .GS QATT.

NOATT No attributes are allowed
on this tag. If NOATT is
in effect, the other
rules are i mmateri ale No
scan is done for a tag
that has the NOATT rule in
effect, but what follows
the tag in the input i s
treated as text (unless
it is another tag, of
course) .

VAT specifies that "value
attributes" are allowed
for this tag. A value
attri bute is a si ngle
word composed of the same
restricted character set
that is allowed for
attri bute names, wi th no
"name=" before it. Quoted
strings are not allowed
as value attributes. All
value attri butes found
during the scan are
placed on the APF invoca
tion line, and are
avai lable to the APF in
the macro local symbol
&*.

NOVAT speci fi es that no value
attributes are allowed
for this tag. In this
case, a word that would,
with the VAT rule in
effect, be recognized as
a value attri bute, is
considered an invalid
attribute.

STOP specifies that when an
invalid attribute is
found during the scan,
the scan is stopped at
that point, and the
i nval i d attri bute, and
everything to the right
of it, are treated as
text.

NOSTOP specifies that an invalid
attri bute does' not stop
the scan. The i nval i d
attri bute is sk i pped and
the scan continues.

MSG specifies that when an
invalid attribute is
found, a message is to be
issued. If the STOP rule
is in effect, then the
message shows the begi n
ni ng of the stri ng that
was not an attribute, and
is treated as text. If the
NOSTOP rule is in effect,
the message shows the
entire invalid attribute.

NOMSG prevents a message from
bei ng issued when an
invalid attribute is
found. The scan stops or
continues, according to
the STOP/NOSTOP rule,
wi th no message.

The default rules for start tags
are (ATT NOVAT STOP NOMSG). The
default for end tags is (NOATT).

SNAP di splays the current rules for
start and end tag scanning. If a
list of tag names is given, .GS
SNAP also displays the .AA [Asso
ciate APF] association in effect
for each tag in the list, along
with the scanning rules for the
tag.

ARGS resets the macro local symbol s
usi ng the stri ng that follows the
ARGS keyword. For example, if a
macro issued the control word
".GS ARGS one two three" then the
symbol &* would contain the value
"one two three". The symbol &*0
would contain the value "3", &*1
would contai n "one", &*2 would
contain "two", and &*3 would con
tai n "three". The control word
".GS ARGS", with no string,
resets &*0 to 0, and all the oth
ers to null.

VARS assi gns the values of the current
macro parameters, &*1, &*amp.2,

, to the specified symbols.
Array symbols are not allowed.

TAG specifies the GMl tag parsing
technique to be used.

ON enables Release 2 type
GMl scanning

ONNO enables Release 2 type
GMl scanning, suppress
warning messages concern
ing unresolved tags.

SYMBOL enables Release 1 type
GMl scanning

Chapter 23. SCRIPT/VS Control Word Descriptions 267

OFF disables GML scanning

PREFIX used to specify a class mapping
of GML tags to APFs. The mapping
may be speci fi ed separately for
tags (parameter 1) and end tags
(parameter 2).

OFF

=

'c[c]'

disables automatic
mapping of tag name to
APF.

APF mappi ng opti on is
unchanged.

speci fi es one or two
characters that are to
be used as a prefix to
the tag name to create
the mapping APF name.

Notes:

1. When GML markup is scanned
(parsed), as many lines as neces
sary are read to obtain attributes,
values and residual text (the text
following the tag). After scanning
is complete, the APF is executed.
Scanning may be ended before all
possible markup elements have been
obtained by one of the following
conditions:

• Another tag is encountered

•

•

A control word is encountered
at the beg inn i n9 of an input
line

End of input (EOF) is encount
ered

2. Residual text is treated as literal
text; that is, special processing
for leading blanks, tabs, and so on
is not performed.

Examples:

• Suppose a GML tag with the follow
ing attributes is entered:

:critter type=sloth toes=3
name='Warren Jr.' food=leaves
family=Bradypodidae food=fruit.

Within the APF which processes the
:CRITTER tag, the .GS EXATT func
t i on may be used to selecti vely
process the attr i butes. For exam
ple,

.gs exatt type

resul ts in the execut i on of the
TYPE macro. The value of the attri
bute i s prov i ded to the macro as
its parameters.

The name of the macro to be exe
cuted may be given explicitly when
it is not the same as the attri bute
name. For example,

•

•

•

.g5 exatt food as diet

resul ts in the execut i on of the
DIET macro twi ce; once wi th the
parameter "leaves", and again with
the parameter "fruit".

Once an attribute is processed, it
is no longer available. For
example, if the two preceding .GS
control words are followed by

.gs exatt

the following macros will be exe
cuted:

.TOES 3

.NAME Warren Jr.

.FAMILY Bradypodidae

The head-level counter is initial
ly set to "1.0.0.0.0 ". The .GS
HCTR control word may be used to
change the head-level counter at
any time. For example,

.gs hctr 4.7.7.4

sets the head-level counter to
"4.7.7.4.0.0 ..•. ". If the next
head-level control word is .H4, it
will be numbered "4.7.7.4"; if it
is .H5, it will be numbered
"4.7.7.4.1"; if it is .H3, it will
be numbered "4.7.8".

When only a single number is given
wi th . GS HeTR, the coorespondi ng
head-counter level is incremented,
and all subl evel s a re reset. For
example,

.gs hctr 2

will set the head-level counter to
"4.8.0.0 ".

The .GS ARGS and .GS VARS control
words provide a convenient means of
setting a number of symbols
simultaneously when the current
macro parameters are not needed.
For example,

.gs args 1 7 7 6

.gs vars x y z t

is equivalent to

.se x = 1

.se y = 7

.se z = 7

.se t = 6

Value attri butes are presented to
the APF whi ch processes a tag in
the same manner that attribute val
ues are pre~ented to the macro
which processes an attribute.
For example, if a tag is entered
as: .

268 Document Composition Facility: User's Guide

the macro local symbol &* of the
macro which processes the :FIGURE
tag will be set to "big". If the
tag i s entered as:

.HM [HEADING MARGIN]

the macro local symbol &* of the
macro which processes the SIZE
attribute will be set to "big".

The .HM [Heading Margin] control word specifies the amount of space to be skipped
between the running top titles and the first line of the text area, overriding the
initial value established for the device.

The .HM [Heading Margin] control word is discussed in "Allocating Space for Run
ning Titles" on page 63. Figure 8 on page 56 shows the relationship of the .HM
[Heading Margin] to the layout of a SCRIPT/VS output page.

I
.HM I [~~] I

L..---J-. ___ ----'

where:

v specifies the amount of space to be
skipped after the top title lines.
If +v or -v is specified, the cur
rent value of the heading margin is
incremented or decremented. If the
calculated value of the heading
margin is found to be negative, the
value is set to zero and a message
is issued. The maximum value that
may be set for the heading margin
is equal to the top margi n (. TM)
minus the heading space (.HS). If v
is not specified, the default value
for the logical device is restored.

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

Notes:

1. The last running top title line is
placed a specified amount of space

above the first line of text. If
no .HM [Heading Margin] control
word is included in the file, the
default value is used, as deter
mi ned for the logi cal output
device.

2. This control word does not cause a
break, and will take effect on the
page after it is encountered.

Example:

.hm 3

Three lines are left between the run
ning title lines and the first line of
text. If a top margin of 6 lines is in
effect, the last top title is printed
two 1 i nes from the top of the page,
followed by three more blank lines (the
heading margin), and then the text.

Chapter 23. SCRIPT/VS Control Word Descriptions 269

·HS [HEADING SPACE]

The .HS [Heading Space] control word allocates space from the top margin area for
running top titles. The .HS [Heading Space] control word is discussed in "Allocat
ing Space for Running Titles" on page 63. Figure 8 on page 56 shows the relation
ship of the .HS [Heading Space] to the layout of a SCRIPT/VS output page.

where:

n
+n
-n]

n i s the number of top title lines
you want on each subsequent output
page. This number may be from 0 to
6. If no number is given, 1 is
assumed. The number must be an
integer from 0 to 6. This control
word does not accept space units.
The si ze of the top margi n (. TM)
minus the heading margin (.HM) must
be large enough to accommodate the
heading space specified. If +n or
-n is specified, the current value
for the headi ng space is i ncre
mented or decremented. If the net
result is less than zero, the head
ing space is set to zero, and an
error message is issued.

Initial Setting: 1

Default: 1

Notes:

1. The .HS [Heading Space] control
word allocates space from the top
margin for running top titles. You
need to use this control word only'
if the defaul t value of one top
title is not adequate for your doc
ument. If the top margi n is not
big enough to accommodate the head
ing space plus the heading margin,
an error message is generated.

2. This control word does not cause a
break, and takes effect on the page
after it is encountered.

3. The .RT [Running Title] control
word merely causes a title line to

be saved ina storage area for
future use. Only the fi rst top
title (top title 1) is used at the
top of output pages by default. To
get more than one title at the top
of your formatted output pages you
must do two things: define the
titles using .RT, and then allocate
space for the titles by using the
.HS control word.

4. If you do not want any top titles
at all, the best way to accomplish
this is to define the heading space
as 0 (.HS 0). This is more effi
cient than setting the top titles
to null (.RT T ////), because
SCRIPT/VS does not have to process
any titles to determine that none
are wanted.

Example:

If you want three running top titles in
your document, you could use the fol
lowing sequence:

.rt t 1 $$&SYSMONTH./&SYSYEAR.$$

.rt t 2 ////

.rt t 3 /CHAPTER 4//&/

At this point, only top title 1 will be
used on formatted output pages, because
the default heading space of 1 is still
in effect ~ Now that the three tit I e
lines have been saved, the followi ng
causes SCRIPT/VS to print all three:

.tm 8

. hs 3

270 Document Composition Facility: User's Guide

.HW [HYPHENATE WORD]

Use the .HW [Hyphenate Word] control word to specify how a single occurrence of a
word should be hyphenated if needed .

• HW text-word

where:

text-word is the word that you want to
hyphenate. It should be
entered wi th hyphens show
i ng where you want it
broken.

Notes:

1. The .HW control word is a separate
function from the hyphenation
faci 1 i ty; it works regardless of
whether hyphenat ion is ON or OFF
(via the .HY [Hyphenate] control
word) .

2. The .HW control word does not
define how a word should be hyphen
ated every time it is encountered.
It speci fi es how to handle that

• HY [HYPHENATE]

word for this particular instance
only. If you want a word hyphenated
every time it occurs (;f hyphen
ati on is in use), then you must
define hyphenation points for the
word in the dictionary using the
.DU control word.

3. If, whi Ie SCRIPT/VS is formatti ng
the 1 i ne, it is not necessary to
break the word, the hyphens are
compressed out, and they do not
appear in the output. If you want
to i ndi cate a hyphen that should
rema in ina "compound-wo rd," use
two hyphens:

This is a
.hw com-pound--word
that may be broken in
either of two places .

Use the .HY [Hyphenate] control word to control automatic hyphenation.

The .HY [Hyphenate] control word is discussed in "Chapter 16. Automatic Hyphen
ation and Spelling Verification" on page 171.

.HY

where:

ON

C ON) [...]
C OFF)
C SUP }
C ADD)
C NOADD)
C DICT }
C NODICT }
(ALG)
C NOALG }

[SET] MINPT n

begins automatic hyphenation
of SCRIPT/VS output lines.
Addenda dictionaries created
with .DU [Dictionary Update]
will be searched when a word is
to be hyphenated. If the word
is not found, the dictionaries
specified with the .Dl [Dic
tionary List] control word
will be searched. If the word
is sti 11 not found, the algo
ri thmi c hyphenator for the
current language will be used,
; f one; s avai lable.

OFF

SUP

ADD

causes hyphenation
turned off.

to be

cau ses hyphenat i on to be sup
pressed temporari ly. If
hyphenati on is OFF, then SUP
does nothing, but if it is ON,
then SUP turns it off until the
next time a line space is gen
erated. This allows you to
suppress hyphenation at the
end of a paragraph without hav
ing to turn it off and then on
explicitly.

specifies that addenda dic
tionaries created with the .DU

Chapter 23. SCRIPT/VS Control Word Descriptions 271

NOADD

DICT

control word are to be searched
for words to be hyphenated.

specifies that addenda dic
tionaries are not to be
searched.

specifies that the diction
aries specified with the .DL
[Dictionary List] control word
are to be searched for words to
be hyphenated.

NODICT specifies that the diction
aries specified with .DL are
not to be searched.

ALG speci fi es that an algori thmi c
hyphenat i on rout i ne i s to be
used, if one is avai lable for
the current language. An algo
rithmic hyphenator for English
is supplied with SCRIPT/VS.

NOALG specifies that the hyphenation
algorithm is not to be used.

SET is an opt i onal parameter that
indicates you are going to
override the default hyphen
ation value, MINPT .

• HO - .H6 [HEAD LEVEL 0 - 6]

MINPT n is a positive number indicat
lng the minimum hyphenation
you want to allow. The initial
value of MINPT is 4, which
means that the fi rst hyphen
ation point in a word must be
at least four characters
beyond the beginning of the
word.

Initial Setting: OFF

Notes:

1. When SCRIPT/VS is formatting text,
and the next word does not fit on
the 1 i ne, it ordi nari ly moves the
word onto the next output line.
When hyphenation is in effect,
SCRIPT/VS attempts to break the
word into two pieces: the longest
piece that can fit on the line, and
the remainder.

2. As many options as necessary may be
specified; if contradictory
options are given, the last is
used.

The control words .HO through .H6 automatically format topic headings in SCRIPT/VS
output. The definition of a particular head level may also result in an entry in
the table of contents for that heading. The definition of a head level may be
changed with the .DH [Define Head Level] control word, or a macro may be defined to
perform whatever function you wish for .HO through .H6, using the .DM [Define Mac
ro] control word.

The .HO - .H6 [Head Level 0 - 6] control word is discussed in "Chapter 6. Head Lev
els and Table of Contents" on page 73 .

• Hn text

where:

n is the number of the head level
from 0 to 6.

text is the data to be formatted as a
subject head and optionally
placed in the table of contents.

Notes:

1. The . Hn control words provi de
several automated functions for
you. They can provide a topic head
ing that is underscored or capital
i zed wi th a speci fi ed number of
sk ips before it and 1 i ne spaces
after it. They can cause the unfor
matted topic head to be saved,
along with the current page number
and revision code character, in the
table of contents utility file for

automatic table of contents gener
ation. They can also cause the
heading to be numbered with a deci
mal number that reflects the level
of the heading. These functions may
be redefined using the .DH [Define
Head Level] control word.

Whether you use the default values
or redefi ne them, the topi c head
that is generated gi ves you the
function of a keep for the size of
the space after the heading plus 3
1 i nes. Thi s keep is of the form
".KP v + v". See the .discussion of
the .KP [Keep] control word for
i nformati on about whi ch forms of
keep may cancel or supersede this
form.

2. These control words all cause
breaks.

272 Document Composition Facility: User's Guide

3. If a head level control word calls
for an entry in the table of con
tents, the text goes into the table
of contents as entered. You control
how the table of contents entry is
capi tal i zed by how you enter the
as~ociated head level control word
text.

4. See Figure 33 on page 359 for
i nformat i on about the defaul t and
EasySCRIPT default head-level
definitions.

5. If you wanted to define a head lev
el, such as .H3, to include func
t i on not wi thi n the scope of the
.DH [Define Head Levell control
word, there are two different meth
ods you could use:

a. You could defi ne a . H3 macro
that would provide all the
funct i on you wanted for • H3 .

• IE [INDEX ENTRY]

Your macro would then operate
whenever . H3 wa s encountered
in the input file, assuming
macro substitution was ON.

b. You can prov i de a .DH macro
that wi 11 create and ma i nta in
head-level macros as in
Release 1, and then augment the
funct i on of that ex i st i ng . H3
by adding or deleting lines
from the macro that prov ides
the function for .H3. The file
DSMSTDH, provided with
SCRIPT/VS, contains an example
of such a .DH macro.

In either case, see the discussion
of the .DM [Define Macro] control
word for i nformat i on about defi n
i ng macros.

6. The head level text is limited to
243 characters.

The .IE [Index Entry] control word formats a single index entry. The .IE control
word is normally used only by the .IX [Index] control word to format individual
index entries constructed from .PI [Put Index] control words .

• IE C H J string
C 1 J
C 2 J
C 3 J

where:

H indicates that an index heading is
to be generated.

1 2 3 defi nes the level of the index
entry as a primary, secondary, or
tert i ary entry. Appropri ate for
matting for spacing, indention,
and so forth is provided for each
level of index entry.

string is the text of the index entry.

Notes:

1. This control word causes a break.

2. The .IX [Index] control word cre
ates . I E control words to format
the index. The t~xt of index
entri es generated by . IX [Index]
consists of the index term and the
page numbers on which the term
appears, separated by two required

blanks. The .IX [Index] control
word also generates a .IE control
word when the first character of an
index entry differs from the previ
ous index entry.

3. Since a .IE control word is exe
cuted for each index en~ry by the
.IX [Index] control word, you may
replace it with a macro of the same
name to change the formatting pro
vi ded for index entri es. However,
note that the .IX [Index] control
word calls for the .IE control word
in the form ".IEl", ".IE2", and so
forth. Thi s means, for example,
that to replace the default index
headi ngs wi th your own, more
sophi sti cated head; ngs, you need
supply only a ". IEH" macro; your
macro wi 11 process all index
headings, but level 1, 2, and 3
index entries will be processed by
the .IE control word.

Chapter 23. SCRIPT/VS Control Word Descriptions 273

.IF [IF]

The .IF [If] control word allows a SCRIPT/VS input line to be processed condi
tionally.

The .IF [If] control word is discussed in "The .IF Control Word Family" on page
111.

.IF comparandl test comparand2 target

SVSPAGE test (; EVEN)
(; ODD)

SVSOUT test (; PRINT)
(; TERM)

where:

comparandl is any string to be used as
the first comparand. This
comparand may be the value
of a set symbol.

comparand2 is any string to be used as
the second comparand. It
too may be the value of a
set symbol.

test

target

SVSPAGE

is a 1- or 2-character code
that tell s SCRIPT /VS how
to determ i ne whether the
comparison between the two
comparands ; s true. The
following codes are recog
nized by SCRIPT/VS:

Codes Meaning
eq = equal
ne --- not equal
gt > greater than
It < less than
ge >= greater than or

equal
Ie <= less than or equal

is any val i d SCRIPT /VS
input line. It may be a
control word or text. If
the condition is true,
then the target line is
processed next, wi th the
first nonblank character
after the second comparand
treated as the first posi
t i on of the subj ect line.
If the condi t ion is not
true, the target line is
ignored, and processi ng
cont i nues w; th the input
line that follows the . IF
control line.

tests whether the page
that SCRIPT/VS is current
ly processi ng is an even
or odd-numbered page.

SYSPAGE may have only one
of the two values, EVEN or
ODD.

target

target

SVSOUT

Notes:

tests whether SCRIPT /VS
output i s be i ng d; rected
to the offline printer (if
the PRINT opt ion ha s been
specified), or to the ter
minal (if the TERM option,
the default, ;s in
effect) .

SYSOUT may have only one of
the two values, PRINT or
TERM.

The SYSOUT keyword is pro
vi ded for compat i bi 1 i ty
with SCRIPT/370 Version 3.
In SCRIPT/VS, there is
more vari ety poss; ble in
output formatting than can
be determined with this
keyword. The SCRIPT/VS
system symbols '&$LDEV'
and '&$PDEV' may be used to
determi ne the actual log
i cal and physi cal devi ces
for which formatting is
being done.

1. The .IF [If] control word, in con
junct; on wi th . TH [Then], . EL
[Else], .AN [And], and .OR [Or],
allows you to construct complex
logic statements.

2. The .IF control word itself does
not cause a break; the target con
trol word might, if it is
processed.

3. Two special sets of comparands are
recognized by the IF processing
routi nee These are SYSPAGE
EVEN/ODD and SYSOUT PRINT/TERM.
You may use SYSPAGE to determi ne
whether the current page is even
or odd-numbered. The SYSOUT
keyword is provided for compat
ibility with SCRIPT/370 Version 3,
as noted above. When you use these
two speci al comparands, you must
capitalize the keywords; "SYSPAGE"
is recognized, but "syspage" is

274 Document Composition Facility: User's Guide

not. You may use any of the test
codes with SYSPAGE and SYSOUT:

.if SYSPAGE eq EVEN (do this)

is the same as

. if SYSPAGE ne ODD (do thi s)

4. Each of the comparands may be up to
255 characters in length, and the
shorter comparand will be extended
to the length of the longer wi th
tra iIi ng blanks.

5. If subst i tut ion is off when the . IF
control word is processed, all val
id symbols in the comparands will
be resolved before the compari son
is made. (Symbols containing
imbedded blanks must be compared
with substitution off so that the
test to be performed and the target
of the .IF can be identified.)

Examples:

•

•

The target of an IF may be another
IF. Suppose you wanted to imbed a
file called ABC if it is monday
afternoon. You could use the fol
lowing:

.se H = &SYSHOUR

.se D = &SYSDAYOFW

. if &H ge 12 . if &D eq 2 . i m ABC

Thi 5 is the same as sayi ng, "IF the
hour is 12 or more, AND IF today is
Monday, THEN imbed the file; OTHER
WISE, go on to the next line."

If you want the target line to con
tain more than one control word,
you should use a special method.
Since .IF is a control word, any
control word separators on the line
are detected before the .IF is
processed. Thus, a control word in
the form:

•

· if &sval gt 32 .sk 5;. 1m fig7

will process only the .sk 5 condi
tionally. The .IM control word is
treated as a second control line.
The following method can be used to
get more than one control word to
be conditionally processed:

· i f & s val g t 32 . cw ?;
.cm ?sk 5?im fig7?cw

As in the previ ous example, only
the part before the; is processed
conditionally. The remainder of
the line is a .CM [Comment] line.
If the condition is not true, the
.CW control word is not processed,
and the remaining line is treated
as a comment. If the condition is
true, the .CW is processed, and the
new control word separator is
recognized to allow the remaining
1 i ne to be broken up into four
active control words.

If there is a possibility that one
of the comparands may be a null
symbol, another technique could be
used:

· if X&answer eq Xyes (do thi s)

Now, if the symbol "answer" is
null, the line will become:

.if X eq Xyes (do this)

Otherwise, if you had not included
the Xs, a null symbol could shift
the fields over like this:

· if eq yes (do th is)

and "yes" is not a recognized con
dition. Note that the symbol is
null only if so set by the .SE or
.RV control words.

Chapter 23. SCRIPT/VS Control Word Descriptions 275

.Il [INDENT lINE]

Use the .Il [Indent linel control word to indent the next output line .

• Il

where:

h specifies the amount of horizontal
space to shift the next output line
from the current margin. +h speci
f1 es that text is shi fted to the
ri ght, and -h shi fts text to the
left.

Initial Setting: 0

Defaul t: 0

Notes:

1. The .Il control word provides a way
to indent only the next output
line. The 1 i ne is shi fted to the
ri ght or the left of the current
margin (which includes any indent
or offset values in effect).

2. Thi s control word acts as a break.

3. The .Il control word and the . UN
[Undentl control word are oppo
sites; thus, the control words .UN
5 and .Il -5 are equivalent.

4. The .Il control word may be useful
for beginning new paragraphs .

• 111 [II1BED]

5. When successive .Il and .UN control
words are encountered wi thout
intervening text, or when positive
or negative increments are speci
fied for .IL control words entered
without i nterven i ng text, the
indent amount is newly set for the
next output 1 i ne, and any unused
.Il or .UN is cancelled. Thus the
lines

. i 1 4

. i 1 6m

result in the next line being
indented 6 em-spaces.

6. The .IL control word is triggered
by the next text, sk i p, or space
line.

Example:

. i 1 3m

This line is preceded by the control
word .il 3m, and it has enough text to
show how the fi rst line i s indented
differently from subsequent lines.

Use the .IM [Imbedl control word to process the contents of a specified file at
this point in the current file. Processing continues as though the material in the
imbedded file were part of the current file.

The .IM [Imbed] control word is discussed in "Imbedding and Appending Files" on
page 119 •

• 111 (file-id) [token! ••• token14]
((filename))
{('docname'l)

where:

file-id is an 8-character SCRIPT/VS
name for the file to be imbed
ded. An 8-character name can
be associ ated wi th an
external file or data set with
the .DD [Define Data File-idl
control word. If no . DD has
been executed for the name, an

276 Document Composition Facility: User's Gui de

external file or data set name
is built by SCRIPT/VS from the
gi ven name, usi ng the rules
for the current env ironment,
as descrt bed in "Nam; ng the
Input Fi Ie" on page 13. If a
. DD [Defi ne Data Fi le-; dl
control word has been issued
for the file or data set iden
tified in the .IM control

word, the 8-character name is
used internally, regardless
of whether the 8-character
name or the parenthesized
file or data set name was
speci fi ed in the .1M control
word.

filename is the real name of the file
or data set to be imbedded,
and must be enclosed in paren
theses. 1 f no . DD ha 5 been
executed for the file or data
set, SCRIPT/VS will assign an
8-character name to be hence
forth associated with that
file or data set.

docname is the name of a document to
be imbedded. If the document
name contains lowercase or
special characters, it must
be enclosed in si ngle quota
ti on marks (') and
parentheses.

tokens are posi ti onal values wi th a
maxi mum length of 8 charac
ters to be passed to the file
to be imbedded. The first
token (word) becomes the val
ue of the symbol &1, the
second token becomes the val
ue of the symbol &2, and so
forth. The symbol &0 contains
the number of tokens that were
passed; up to 14 may be speci
fied.

Notes:

1. Error messages, trace output, and
identifiers provided by the NUMBER
option of the SCRIPT command, all
use the internal 8-byte name to
describe a file. If MESSAGE(DElAY)
is specified, a cross-reference
list is provided at the end of the
SCRIPT/VS output to show the asso
ciations of internal names to
external file names that were used
in that document.

2. Any SCRIPT/VS control word or text
may be in an imbedded file. Files
may be imbedded to a maximum nest
ing level of sixteen, but no more

than 16 files may be active at one
time. If you have many files that
are open because of the .EF [End of
Fi Ie] control word, the nesti ng
limit may be reduced. After .EF is
processed, that file is left open,
but it is not in the list of cur
rently imbedded files.

3. The .IM and .AP control words per
form similar functions, but .IM
allows the contents of a second
file to be inserted into the proc
essing of an existing file, rather
than appended to the end of it.
Imbeddi ng may be used to insert
standard sets of control words at
desired spots in a file, as well as
for many other purposes.

4. The symbols &0 through &14 are
reset whenever an .IM or .AP con
trol word is processed. Whatever
tokens are not given on a .1M line
are reset. If you want to leave
token & 1 unset but set token &2,
you may use a percent si gn (:t.) in
place of the token.

Example:

· i m common chap4

The contents of the SCRIPT file whose
file-id is COMMON are inserted into the
processing sequence of the current
SCRIPT file; when the end of the COMMON
file is reached, processing of the cur
rent file resumes. The token "CHAP4" is
set as the value of the symbol "&1."
The file COMMON might have in it anoth
er imbed in the form:

· i m &1

and thi s would be substi tuted as:

· im chap4

A different file could contain the con
trol word

.im common CHAPS

so that &1 in COMMON is substi tuted
with CHAPS instead.

Chapter 23. SCRIPT/VS Control Word Descriptions 277

·IN [INDENT]

Use the .IN [Indent] control word to change the left margin displacement of
SCRIPT/VS output.

The .IN [Indent] control word is discussed in "Changing the Margins" on page 39.
Figure 8 on page 56 shows the relationship of .IN [Indent] to the layout of a
SCRIPT/VS output page.

.IN

where:

h

FOR

vl

AFTER

278

[[FOR] vl] [[AFTER] v2] [NOBREAK]

specifies the amount of space
to be indented. If omitted, 0
i s assumed, and indent ion
reverts to the left margin. If
you use +h or -h, the current
left margin is incremented or
decremented accordingly.

i s an opt i ona I keywo rd that
signifies that the following
parameter on the 1 i ne speci
fies the vertical duration of
the indention. If FOR is omit
ted, the number after 'h' on
the line is taken as "vI".

speci fi es the verti cal dura
tion of the indention. The
indention changes temporarily
for the vertical distance
specified in vI, and then
reverts to the original
indention. If vi is specified
as 0, the new i ndenti on
remains in effect until
changed by another . IN con
trol word. In this case, the
new indention is "temporary,"
but its duration is continued
until changed with another
. IN control word. If vI is
s~ecified as "*", the new
i ndenti on is "permanent"
until changed with another
.IN control word. See the
notes below for a di scussi on
of the di fference between a
temporary and a permanent
change to the indention. If vI
is not specified at all, "*"
i s assumed, and the new
indention is permanent.

is an opti onal keyword that
signifies that the following
parameter on the 1 i ne speci
fies the vertical distance
unti I the new i ndenti on wi 11
take effect. If AFTER is omit
ted, the number after 'vI' on
the line is taken as "v2".

Document Composition Facility:

v2 specifies the vertical dis
tance until the new indention
takes effect. The previous
indention remains in effect
unt i 1 the vert i ca I di stance
given has been formatted, and
then the new indent i on takes
effect. If v2 is specified as
0, the new indention takes
effect i mmedi ately. If v2 is
not specified at all, 0 is
assumed, and the new
indent i on takes effect i mme
diately.

NOBREAK specifies that a break is not
to be performed when the .IN
control word is encountered.

Initial Setting: 0

Default: 0

Notes:

1. The . IN control word resets the
current left margi n. The new
indention can be permanent or tem
porary, depending upon whether a
duration was given in vI. The cur
rent indention for any line is com
pri sed of the permanent indent ion
plus the temporary indention. If
you specify the horizontal dis
tance to be indented wi th a plus
(+) or minus (-) sign, the new
indention is calculated by adding
or subtracting your specified
increment to the permanent
indent ion. That i s I befo re a new
indention is calculated, any tem
porary indent ion is removed from
the total, leaving only the perma
nent indent i on as the current
value. (This is the only difference
between a permanent change to the
indention and one that is temporary
until changed.) Any new .IN control
word can change the current
indention value. This indention
remains in effect for all following
lines (including new paragraphs
and pages), until another .IN con
trol word is encountered, or until
the vertical duration has been ful-

User's Gu ide

filled. ".IN 0" cancels the
indention, and output continues at
the original left margin setting.

2. The value of h represents the
amount of blank space left before
text. Thus, ". in. 5 i" sets a left
margin of one half-inch, and the
text begins after this blank margin
area. The .TB [Tab Setting] and .OF
[Offset] control words work in a
simi lar manner.

3. This control word causes a break,
unless the Nobreak keyword is used.

4. If a vertical distance is given in
"v2", any blank skip or space lines
inserted before text is formatted
are not counted. Count i ng begi ns
with the first nonblank text line,
and thereafter includes any subse
quent blank lines.

5. The value of the system symbol &$IN
reflects the composite net
indention for the next output line,
i ncludi ng permanent and temporary
components.

6. An attempt to set the indention to
the left of the real left margin or
to the ri ght of the ri ght margi n
resul ts in an error message, and
all indention is reset to zero.

7. If' FOR' is not speci fi ed, the next
number after his taken as vI,
unless preceded by 'AFTER'.

If no vl is gi ven, * (permanent
indention) is assumed.

8. If 'AFTER' is not specified, the
next number after vl is taken as
v2, unless preceded by 'FOR'.

If no v2 is given, 0 (immediate new
indention) is assumed.

9. If v2 is specified as 0 or defaults
to 0 (immediate new indention), and
NOBREAK was specified, the new
indention takes effect on the next
line to be started. If no line is
now started, then the new indention
takes effect immediately.

Examples:

• . in lO

•

•

• in 0

All lines processed
after thi s request are
indented lO character
spaces from the left.
This indention continues
until another .IN con
trol word is encoun
tered.

The effect of any current .IN and
.OF control words is cancelled, and
output is formatted flush left.

The .OF [Offset] control word

. of . 7 i

is simi lar to the control word

.in .7i 0 1
(or .in .7i for 0 after 1)

The difference is that if + or - is
specified, the .IN control word
calculates the new indention based
on the permanent component of the
total indention, while .OF uses the
temporary component. Thus, . OF -n
cannot reduce the current
i ndenti on more than the temporary
component, but .IN -n can.

Chapter 23. SCRIPT/VS Control Word Descriptions 279

.IR [INDENT RIGHT]

Use the .IR [Indent Right] control word to change the right margin displacement of
SCRIPT/VS output.

The .IR [Indent Right] control word is discussed in "Changing the Margins" on page
39. Figure 8 on page 56 shows the relationship of,.IR [Indent Right] to the layout
of a SCRIPT/VS output page.

.IR

where:

h

FOR

vl

AFTER

280

[[FOR] vl] [[AFTER] v2] [NOBREAK]

specifies the amount of space
to be indented. If omitted, 0
is assumed, and i ndenti on
reverts to the ri ght column
boundary. If you use +h or -h,
the current ri ght margi n is
incremented or decremented
accordingly.

is an opti onal keyword that
signifies that the following
parameter on the line speci
fies the vertical duration of
the indention. If FOR is omit
ted, the number after 'h' on
the line is taken as "vl".

speci fi es the verti cal dura
tion of the indention. The
indention changes temporarily
for the vertical distance
specified in vl, and then
reverts to the original
indention. If vl is specified
as 0, the new indent ion
remains in effect until
changed by another .IR con
trol word. In this case, the
new indention is "temporary,"
but its duration is until
changed with another .IR con
trol word. If vl is specified
as "*", the new indention is
~permanent" until changed
with another .IR control
word. See the notes below for
a di scussi on of the di ffer
ence between a temporary and a
permanent change to the
indention. If vl is not speci
fied at all, "*" is assumed,
and the new indention is per
manent.

is an opti onal keyword that
signifies that the following
parameter on the line speci
fies the vertical distance
until the new indention will
take effect. If AFTER is omit
ted, the number after 'vl' on
the line is taken as "v2".

Document Composition Facility:

v2

NOBREAK

specifies the vertical dis
tance until the new indention
takes effect. The previous
indention remains in effect
until the vertical distance
given has been formatted, and
then the new indent i on takes
effect. If v2 is specified as
0, the new indent i on takes
effect immediately. If v2 is
not specified at all, 0 is
assumed, and the new
indent i on takes effect i mme
diately.

specifies th~t a break is not
to be performed when the .IR
control word is encountered.

Initial Setting: 0

Default: 0

Notes:

l. The .IR control word resets the
current right margin. The new
indention can be permanent or tem
porary, dependi ng upon whether a
duration was given in vl. The cur
rent indention for any line is com
pri sed of the permanent indent ion
plus the temporary indention. If
you specify the horizontal dis
tance to be indented wi th a plus
(+) or minus (-) sign, the new
indention is calculated by adding
or subtracting your specified
increment to the permanent
indent ion. That is, before a new
indention is calculated, any tem
porary indent ion is removed from
the total, leaving only the perma
nent indent i on as the current
value. (This is the only difference
between a permanent change to the
indention and one that is temporary
until changed.) Any new .IR control
word can change the current
indention value. This indention
remains in effect for all following
lines (including new paragraphs
and pages), until another .IR con
trol word is encountered, or until
the vertical duration has been ful-

User's Guide

filled. ".IR 0" cancels the
indention, and output continues at
the original right margin setting.

2. The value of h represents the
amount of blank space just before
the right margin.

3. If a vertical distance is given ;n
"v2" descri bi ng when the new
indent ion i s to take effect, any
blank skip or space lines inserted
before text is formatted are not
counted. Counting begins with the
first nonblank text line, and
thereafter includes any subsequent
blank lines.

4. Thi s control word causes a break
unless the Nobreak keyword is used.

5. If' FOR' is not speci fi ed, the next
number after his taken as vI,
unless preceded by 'AFTER'.

If no vI is gi ven, * (permanent
indention> is assumed.

6. If 'AFTER' is not specified, the
next number after vl is taken as
v2, unless preceded by 'FOR' .

• IT [INPUT TRACE]

If no v2 is given, 0 (immediate new
indention> is assumed.

7. If v2 is speci fi ed as 0 or defaults
to 0 (immediate new indention>, and
HOBREAK was specified, the new
indention takes effect on the next
line to be started. If no line is
now started, then the new indention
takes effect immediately.

Examples:

• .ir .5;

All lines processed after
this request are indented
one half-inch from the right
hand side of the column. This
indent i on cont i nues unt i 1
another .IR control word is
encountered.

• . i r 0

The effect of any .IR control word
is cancelled, and subsequent lines
are formatted to the right-hand
margin.

The .IT [Input Trace] control word allows trace information about input lines to
be displayed at your terminal or written to the same file as error messages.

The .IT [Input Trace] control word is discussed in "Tracing SCRIPT/VS Processing"
on page 183.

I"

.IT

where:

OFF
ON
MAC
SUB
GtiL
ALL
CTL [ew ew ••• l
STEP
RUN
SNAP [name name ••• l

OFF terminates tracing.

.

.

ON traces macro and symbol subst i
tution, and any control word that
has been speci fi ed previ ously
with CTL.

MAC causes each line coming out of a
macro to be traced.

SUB causes each stage of symbol sub
stitution to be traced for lines
that contain symbols or GML tags.

GML causes various stages of GML proc
essing to be traced. The number of
different stages a GML tag goes
through depends upon the attri
bute scann i ng rules that are in
effect for the tag. GML tracing
can show:

•

•

•

The tag and the APF that will
be executed

Each line that will be scanned
for attri butes

Each regular attri bute that
was found in the scan

Chapter 23. SCRIPT/VS Control Word Descriptions 281

All

eTl

STEP

RUN

• All value attri butes that
were found in the scan

• The resi dual text 1 i ne' that
was found in the scan

causes macro and symbol substi
tut ion, GMl process i ng, and all
control word lines to be traced.

causes the control words speci
fied to be traced before they are
executed. If no control words are
given with .IT CTl, then the list
of control words to be traced is
cleared. If some control words are
gi ven, they are added to the 1 i st.
Nonexi stent control words may be
added to the list without causing
an error, but they will never be
traced because they wi 11 be
detected as invalid control words
before tracing would be done. The
list remains intact when .IT OFF
is executed, and is resumed if .IT
ON is subsequently executed.

causes SCRIPT/VS to "single step"
through all control words that are
being traced. If .IT All is in
effect, all control words are
traced. Otherwi se, just those
control words specified with .IT
CTl are traced.

When .IT STEP is in effect,
SCRIPT/VS displays the control
word line, and then pauses to read
ali ne from the termi nal before
executing it. The line you enter
at this point can simply allow the
control word execution to
proceed, or you can enter another
input line to be processed before,
after, or instead of, the traced
control word.

cancel s . IT STEP mode, whi Ie
allowing all tracing to continue.
(. IT OFF stops STEP mode, and also
stops traci ng.)

SNAP di splays the current defi ni ti ons
for any symbol and macro that
exist by the name or names given.
If no names are given, the entire
symbol and macro table is di s
played. The SNAP is done without
changi ng any other traci ng that
may be in effect.

Initial Setting: OFF

Default: OFF

Notes:

1. All trace information is written
out as messages. If the MESSAGE
(DELAY) option of the SCRIPT com
mand is in effect, the trace infor
mation is written to the same
SCRIPT/VS utility file as error
messages.

2. .IT STEP mode can only take effect
if messages (and trace
information) are actually being
displayed at your interactive ter
minal. Thus, STEP mode is not
available in the batch environment
or when the MESSAGE (DELAY) option
of the SCRIPT command is in effect.
When SCRIPT /VS reads ali ne from
the terminal after tracing a con
trol word line in STEP mode, it may
have any of the following formats:

null 1 i ne - conti nue process
ing

? veri fi es who is read; ng
from the terminal. If you are
stepping through control words
and you are also using .TE
[Terminal Input], it's easy to
lose si ght of whi ch kind of
read is bei ng done from the
termi nal. Whi Ie in. IT STEP
mode, the single character? is
recognized by the control
trace module and by the termi
nal input module, and the
message "TERMINAL INPUT:" or
"CONTROL TRACE:" is displayed,
and another read is done. If
the read comes from some other
source, such as .RV [Read Vari
able] or .RD [Read Terminal],
the ? is taken as ordinary
data, just as it would be from
terminal input when not in .IT
STEP mode.

STK 'data line' - the data line
entered i s stacked and proc
essed after the traced control
word has been processed

PRE 'data line' - the data line
entered is processed before
the traced control word (the
tracing is done before the con
trol word is actually proc
essed) •

REP 'data line' - the data line
entered replaces the traced
control word line, and is proc
ess~d instead of it.

'da~a line' - the data line is
treCited 1 i ke a data 1 i ne
entered with the 'PRE'
keyword.

If the new 1 i ne to be entered is
also a control word line that is
being traced, it will be traced
before being processed, glvlng
another opportunity to enter a
line. If the line entered causes
the original line to be reprocessed
later, it may be traced again.

3. The trace function is initially
OFF.

282 Document Composition Facility: User's Guide

4. The SNAP parameter provides a
selective printout of all current
ly defi ned set symbol sand thei r
values. It does not affect the
current ON/OFF status of the trace
control.

5. On all trace lines, the first three
characters indicate which type of
trace it is, as follows:

S symbol substitution trace
M macro substitution trace
G GML trace
C control word trace
*** symbol or macro SNAP line

.IX [INDEX]

If .IT ALL is in effect, control
word lines may be traced several
times. Each may be traced to show
the various stages of symbol sub
stitution, then traced again as a
control word line after it has been
completely substituted. You can
tell which type of tracing a line
represents by the first three char
acters of the line.

The .IX [Index] control word causes an index created from entries specified with
.PI [Put Index] to be formatted.

The .IX [Index] control word is discussed in "Chapter 7. Indexing" on page 79.

where:

n

name

name
control
/]

speci fi es the number of page
numbers that may be reserved
for the index. SCRIPT/VS must
ensure that page numbers are
the same on the second pass as
they were on the first, when
the index may have been empty.
If the page number is explic
itly set with .PA n or .PN n
before any page number refer
ence is made with .PT or .PI,
then n is ignored. Page num
bers may then increment
sequent i all y after the index
because the expl i ci t . PA or
.PN will cause the numbering
to be the same on both passes.
Typically, the index is at the
back of a book, and no n need
be specified.

is an optional line to be used
as the title of the index. If
no name i s gi ven, the word
INDEX is used. A head-level 1
(.Hl) is generated at the top
of the index usi ng the name
given or the word INDEX.

control is a control word or macro to
be processed at the top of the
index in lieu of the .HI. If
this parameter begins with a
period, it is assumed to be a
control word, and not a name.

/

Notes:

signals SCRIPT/VS not to gen
erate any head level 1 for the
index. Use this when you want
no name on the index, you have
no control word to be
executed, and you don't want
the default name INDEX to be
generated.

1. When the .IX [Index] control word
is encountered, a head level 1 is
processed. All entri es that have
been saved with previous .PI [Put
Index] control words are then for
matted and printed.

2. The index is formatted according to
the 1 i ne and page di mensi ons in
effect at the time the .IX control
word is encountered, not those in
effect when the . PI [Put Index]
control words were processed. Each
line in the table has the page num
bers that were in effect when the
.PI [Put Index] control words were
processed. Before the document
begins, the page number is o.

3. When the index is completely for
matted, subsequent . PI control
words will start a new index.

4. This control word acts as a break.
It is not allowed in a keep.

5. When usi ng . IX wi th the TWOPASS
opt i on of the SCRI PT command, be

Chapter 23. SCRIPT/VS Control Word Descriptions 283

sure that the expansion of the
index during the second pass does
not cause the document to expand in

.JU [JUSTIFY MODE]

such a way that the page numbers
establ i shed duri ng the fi rst pass
become invalid.

The .JU [Justify Model control word turns justification of output lines on or off.

The .JU [Justify Model control word is provided for compatability with earlier
releases of SCRIPT. The same function is provided by the .FO [Format Model control
word.

.JU

where:

ON
OFF]

ON restores right justification of
output 1 i nes. If nei ther ON nor
OFF is specified, ON is assumed.

OFF cancels justification of output
lines. If concatenat ion i s st i 11
in effect, .JU OFF results in rag
ged right output.

Initial Setting: ON

Default: ON

Notes:

1. Concatenati on and justi fi cati on
are controlled by the .FO [Format

.KP [KEEP]

Mode] control word. Ragged ri ght
output results from concatenation
ON and justification OFF. The con
trol word .FO LEFT provides this
combination. Full formatting, with
concatenati on and justi fi cati on
both ON, is provided by .FO ON. "As
is" output, with concatenation and
justification both OFF is provided
by .FO OFF. The only combination
not covered by the .FO control word
is concatenat i on OFF and just i
fication ON, and if you need this
combination, you can use the .JU
control word to control it sepa
rately.

The .KP [Keep] control word allows you to designate blocks of text that must be
kept together in the same column. There are several different ways of designating
keeps, and each form has different functions and powers. When .KP is encountered
inside another keep, it may end the first keep before starting the new one. If the
new keep is of a form that can't end the current keep, it is ignored, and the text
is kept together by virtue of being part of the larger keep.

The .KP [Keep] control word is discussed in "Keeps" on page 93.

.KP

where:

ON

284

[ON)
[FLOAT)
[DELAY)
(INLINE)
[OFF)
[V + V)
[V)

starts a regular keep. The text
within a regular keep is sepa
rate from the text outside of
it, and no output line can be
built from text part of which
came from inside and part from

Document Composition Facility: User's Gui de

outside the keep. A regular
keep is put in this column if
it will fit, and otherwise an
immediate column eject is
done. The regular keep appears
in the output in the same rela
tive location as it was in the
input. A regular keep ends any

FLOAT

DELAY

other keep before starting.
The ON parameter causes a
break.

starts a floating keep. A
floating keep is put in this
column if it wi 11 fi ti other
wise it goes in the next
column. The current column is
filled using the text follow
ing the floating keep. .KP
FLOAT ends any other keep
before starting.

starts a delayed keep. A
delayed keep is always printed
in the next column, even if
there is room for it in thi s
column, and the current column
is filled using the text fol
lowing the delayed keep. A
delayed keep, i neffect, acts
like a floating keep that did
not fit in the current column .
. KP DELAY ends any other keep
before starting.

INLINE sta rt s an in 1 i ne keep. An
inline keep flows with the pre
ceding and following text. No
separation of material inside
and outside the keep is done,
but formatting continues as
though no keep were
desi gnated. All 1 i nes that
conta in text from wi thi n the
keep are then kept together,
and if column balancing is
done, the entire keep is moved
as a block from one column to
another. . KP INLINE ends an
inline keep or a keep in the
form ".KP v + v" or ".KP v"
before the inline keep is
started, but if a regular,
floating, or delayed keep is in
process, .KP INLINE is
ignored.

OFF marks the end of a regular,
floati ng, delayed, or i nl i ne
keep .. KP OFF also ends a keep
of a designated depth, but is
not required.

v + V starts a keep of a desi gnated
vert i cal depth. The depth of
the keep is determined by add
i ng up all the separate v's
given. For example, .KP 3 + 2
would start a keep for 5 lines,
and .KP 2i + 3 would start one
for 2 inches plus 3 lines.
(This is the only control word
that allows you to add up dif
ferent space un its to get a
single result.> This form of
keep is used by the head level
control words .HO - .H6 [Head
Level 0 - 6]. A keep for a des-

ignated depth need not be
explicitly ended with .KP OFF.
It will be ended automatically
when its depth has been filled.
A keep of the form .KP v + v
may end another keep of the
same form or a keep of the form
.KP v. If an inline or higher
keep is in process when .KP v +
v is encountered, the .KP v + v
is ignored. Any head level con
trol word also ends a keep of
the "v-+ v" form.

v starts a keep of a designated
depth specified by v. When the
designated depth has been
filled, a keep of the "v" form
is automatically ended. A keep
of the "v" form may end another
keep of the same form before
starting, but if any other form
of keep is in process, .KP v is
ignored.

Notes:

1. Keeps started with .KP ON, .KP
FLOAT, and • KPDELAY all operate
wi th a separate env ironment from
ordinary text. No output line may
be formed by concatenating text
from inside the keep to text from
outsi de of it. When the keep is
started, the current indention and
certain other values are saved.
Offsets and undents are cleared so
that the indention at the beginning
of the keep is set to the basi c
indention currently in effect, and
the maximum column width is set to
the wi dth of the current column.
When the keep is ended, the ori - .
ginal text values are restored
automatically. This means that if
you change the indent ion, format
ti ng mode, hyphenati on, double
spaci ng, or certai n other thi ngs,
you need not restore them when the
keep is ended. See Fi gure 34 on
page 360 for a list of the active
envi ronment values that are saved
and restored for these keeps.

2. Keeps started with .KP INLINE, .KP
v + v, or .KP v are not separated
from the surroundi ng text. Output
lines may be formed by concatenat
i ng text from i nsi de the keep to
text from outside of it. No envi
ronment values are saved or
changed, and the text wi thi n the
keep flows wi th nei ghbori n9 text.
Formatting continues for these
keeps as though no keep had been
sta rted, but a 11 output 1 i nes
encompassed by the keep are kept
together in the same column of out
put.

Chapter 23. SCRIPT/VS Control Word Descriptions 285

3. Certain control words are not
allowed within a keep. If one of
the disallowed control words 1S
encountered, the keep is imme
di ately ended, as though . KP OFF
had been processed, and then the
disallowed control word is exe
cuted. A warning message is issued,

• LB [LEADING BLANK]

telling you what control word ended
the keep. See Figure 27 on page 355
for a list of the disallowed con
trol words.

4. If a keep is too large to be placed
on the page, an error message is
issued .

The .lB [leading Blank] control word is generated by SCRIPT/VS and executed when
ever an input line that starts with a blank is processed .

• LB

Notes:

1. This book states in several places
that a leading blank on an input
line causes a break. This is actu
ally done by generating and exe
cuting a .lB control word whenever
a line with a leading blank is
processed, and the function of the
.LB control word is identical to
that of the .BR control word.

If you wish to have leading blanks
perform some other function, you
can define a .LB macro with .DM
[Define Macro], and, assuming mac-

.LI [LITERAL]

ro substitution is ON, your .LB
macro will be executed whenever a
leading blank is processed. Note,
however, that after the .LB con
trol word or macro is processed,
the leading blank is still on the
line, and it is processed as part
of that text input line. In other
words, you cannot use the .LB mac
ro to remove leading blanks from a
line.

2. No .lB function is performed for
lines processed in literal mode
(.LI [literal]).

The .LI [literal] control word allows all input lines, including those that
begin with periods, to be processed as text.

The .lI [literal] control word is discussed in "Guidelines for Entering Text and
Control Words In SCRIPT/VS" on page 50.

.LI

where:

[
! 1 n
ON
OFF
line

n specifies the number of lines to

ON

286

be treated literally. If
omitted, 1 is assumed.

starts an open-ended literal
mode, 1n which every line read is
treated as literal text. After
thi s control word is processed,
SCRIPT /VS reads input lines
looking only for ".lI OFF" begin
ning in column 1 on a line by
itself.

Document Composition Facility:

OFF terminates literal mode if it was
ON, or if n was gi ven and has not
been exhausted.

1 ine is the line to be treated as
literal text.

Default: 1

Notes:

1. Ordinarily, any SCRIPT/VS input
line that begins with a period is
interpreted as a SCRIPT/VS control
word. The LITERAL control word

User's Guide

causes the following n lines to be
processed as normal input lines
even if the first character of one
of the lines is a period. If .LI ON
is encountered, all subsequent
lines except .LI OFF (which must be
recognized to cancel literal mode)
are treated as 1 i teral s.

2. When 1 i teral mode is in effect,
null lines, lines with leading
blanks, and lines with leading tabs
do not cause a break. Null lines,
however, do cancel continuation if
the previous line ended with a con
tinuation character.

Example:

If a text line must begin with a
period:

Study the following control words:
.fo off

.LL [LINE LENGTH]

.1 i on

.LB [Leading Blank]

.LT [Leading Tab]

.NL [Null Line]

.LI [Literal]

.1 i off

These lines are formatted as:

Study the following control words:
.LB [Leading Blank]
.LT [Leading Tab]
.NL [Null Line]
.LI [Literal]

If formatting mode had not been turned
OFF with .fo off, the same lines would
be processed as:

Study the following control words: .LB
[Leading Bl'ank] .LT [Leading Tab] .NL
[Null Line] .LI [Literal]

The .LL [Line Length] control word specifies the width of running titles, running
headings, and running footings. It also changes the column width, which governs
the width of text lines, if the latter has never been set explicitly with .CL [Col
umn Line Length].

The .LL [Line Length] control word is discussed in "Chapter 4. Defining a Page
Layout" on page 55. Figure 8 on page 56 shows the relationship of the .LL [Line
Length] to the layout of a SCRIPT/VS output page.

where:

h
+h
-h]

h specifies an output line length not
greater than the output device
capability. If no value is speci
fied for h, the default value
establ i shed fo r the dev ice be i ng
used will be taken.

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

Notes:

1. The .LL control word sets the line
length for runn i ng headi ngs and

footings, footnotes, ~nd running
titles. The .CL [Column Line
Length] control word sets the line
length for text in the body of the
page, but if the column width has
never been explicitly set, it has
the same value as the line length.

2. This control word takes effect on
the page after it ;s encountered.
If it also performs a .CL function,
however, the new column width takes
effect immediately.

3. This control word causes a break.

Chapter 23. SCRIPT/VS Control Word Descriptions 287

.LT [LEADING TAB]

The .IT [leading Tab] control word is generated by SCRIPT/VS and executed whenever
an input line that starts with a tab is processed •

• LT

Notes:

1. This book states in several places
that a leading tab on an input
line causes a break. This is actu
ally done by generating and exe
cuting a .IT control word whenever
a line with a leading tab is proc
essed, and the function of the .IT
control word is identical to that
of the .BR control word.

If you wish to have leading tabs
perform some other function, you
can define a .IT macro with .DM
[Define Macro], and, assuming mac-

.LY [LIBRARY]

ro substitution is ON, your .IT
macro will be executed whenever a
leading tab is processed. Note,
however, that after the .IT con
trol word or macro is processed,
the leading tab is still on the
line, and it is processed as part
of that text input line. In other
words, you cannot use the .IT mac
ro to remove leading tabs from a
line.

2. No .IT function is performed for
lines processed in literal mode
(.lI [literal]).

Use the .lY [library] control word to cause symbol and macro definitions to be
retrieved from a library defined with the lIB option on the SCRIPT command.

.lY

[
~~M 1 MAC
OFF

where:

ON specifies that both symbol and
macro definitions may be
retrieved from a library. This is
the default.

SYM causes unresolved symbol values
to be retrieved from the library.
If SYM is specified, the library
will not be used to resolve unde
fined macros from the library (un
less MAC or ON is also speci fi ed).

MAC causes unresolved macro defi
nitions to be resolved from the
libr~ry. If MAC is specified, no
undefi ned symbol values wi 11 be
resolved from the library (unless
SYM ~r ON is also specified).

OFF indicates that use of the library
for symbol values and macro defi
nitions is to stoP. This is the
initial setting.

Initial Setting: OFF

Default: ON

Notes:

1. Use of the library to resolve sym
bol values and macro definition is
expensive in processing time. This
is especially true for forward ref
erenci ng of symbol values where
there are normally many potential
ly unresolved symbols. For thi s
reason, the .lY control word is
prov i ded to cont ro 1 I i bra ry
lookup. The .lY control word allows
you to tell SCRIPT/VS that, if
unresolved symbols or macros are
used in a document, to attempt to
resolve these from a library.

2. Symbol values or macro definitions
may be explicitly set from the
library, regardless of the setting
of the .lY control word, using the
lIB option of the .SE and .DM con
trol words.

288 Document Composition Facility: User's Guide

·MC [MULTICOLUMN MODE]

The .MC [Multicolumn Mode] control word restores multiple column processing after
it has been temporarily suspended by .SC [Single Column Model •

• HC

Notes:

1. The .MC control word cancels a
temporary single-column mode that
was put into effect by the .SC
[Single Column Model control word.
If there was no .SC control word
preceding this control word, it
has no effect, other than to cause
a break.

2. This control word is not allowed
in a keep.

3. The .SC control word ~ the cur
rent column definition, and starts
a temporary single-column process
ing mode. The column definition
that was in effect when .SC saved
it might actually have been a mul
tiple-column definition, or it
mi ght have been a si ngle column
definition. The .MC control word
is, perhaps, misnamed. What .MC

.ME [MACRO EXIT]

actually does is to restore the
column definition that was saved by
.SC, however many columns that
definition called for. The column
definition saved by .SC and
restored by .MC includes the number
of columns and their positions and
the column width. If two .SCs are
processed without an intervening
. MC, then it takes two . MCs to
restore the ori gi nal column defi
nition that existed before the
first .SC. The first .MC restores
the single column definition that
existed, by virtue of the first
.SC, when the second .SC was proc
essed.

4. The .CD [Column Definitionl con
trol word starts an enti rely new
column definition, and cancels any
.SCs and .MCs that may be in
effect.

Use the .ME [Macro Exit] control word to cause SCRIPT/VS to terminate processing
of a macro.

where:

line is any valid SCRIPT/VS input
line. If present, it will be
saved unt i 1 after the macro i s
closed, and executed in the macro
caller's environment.

Notes:

1. The .ME control word has meaning
only when the current input source
is a macro. If the current input
source is not a macro when .ME is
encountered, nothing happens.

2. The .EF [End of File] control word,
when encountered in a macro, causes
that macro and all macros that
called it to be closed, up to the
parent file that first invoked the
top macro in the cha in. In other
words, .EF ends nested sources
until it has ended the current
file. .ME, by contrast, ends only

the current macro, and no other
nested input source.

Example:

The .ME control word may be used to set
a macro caller's local symbol. For
example, suppose macro OUTER calls mac
ro INNER, which contains:

.me .se *local = &*symbol

The .ME will end macro INNER ~nd return
control to macro OUTER, and ~ill cause
the .SE control word to be executed as
if it were part of macro OUTER. The
value of &*symbol is taken from macro
INNER's local symbol, since symbol sub
stitution is performed before control
word execution. But the symbol to which
it is assigned is macro OUTER's local
symbol &*local, since that is where the
control word is executed.

Chapter 23. SCRIPT/VS Control Word Descriptions 289

.MG [MESSAGE]

The .MG [Message] control word is used to write out a message. It may be used to
provide diagnostic messages from macros •

• MG /[mid]/[message text]/

where:

/

mid

is any delimiter character.
The fi rst non blank character
wi 11 be taken as the del i mi ter
character.

is the message i d. Thi s
string must not be longer than
16 characters and the last
character must be R, I, W, E,
S, or T. This final letter is
used to establish the severi
ty of the message, and the
same meanings apply as for
regular SCRIPT/VS messages.
If a null message id is speci
fied, the message is
considered to be of type I, an
information message. If the
message is type R (Response),
you must provide the terminal
read usi ng . RV or . TE; the
Message control word will not
do this for you. The message
id is not printed unless the
MESSAGE (ID) command option
i sin effect.

message text is the text of the
message. It may be any stri ng
of characters.

Notes:

1. Messages generated by .MG may cause

2. The delimiter character between
the strings may be any unique char
acter which does not occur within
the strings themselves.

3. When a message is displayed, a pre
fix of "+++" appears before the id
or text to indicate the message was
generated by .MG. If the net mes
sage is null, the prefix only is
displayed. This can happen if you
do not speci fy any message i d or
text, or if you specify a message
i d and no text, but the MESSAGE
(ID) option is not in effect.

4. If the .MG line has no data at all,
it i s i gno red.

5. If the message header is longer
than 16 characters or if it does
not end with one of the valid
type-codes, it is considered an
invalid control word parameter,
and an error message is issued.

Example:

The control word:

.mg /msg001e/This is a message/

is di splayed as:

+++MSGO 0 1 E Th i sis a message

SCRIPT/VS processing to terminate. if MESSAGE(ID) is in effect, or:
Type S (severe) or type T (termi-
nating) messages always terminate +++ This is a message
processing, and type E (error) mes-
sages termi nate processi ng if the if MESSAGE(ID) is not in effect.
CONTINUE option of the SCRIPT com-
mand is not in effect.

290 Document Composition Facility: User's Guide

.MS [MACRO SUBSTITUTION]

Use the .MS [Macro Substitution] control word to initiate or cancel automatic mac
ro calls during SCRIPT/VS processing.

.MS

where:

ON
OFF]

ON causes SCRIPT/VS to begin search
ing for macro names when it
encounters unrecognized control
words.

OFF causes SCRIPT /VS to stop search
ing for macro names during proc
essing.

Initial Setting: OFF

Default: ON

Notes:

1. SCRIPT/VS macros can be defined
with the .DM control word. However,

.NL [NULL LINE]

SCRIPT/VS does not ordinarily rec
ogni ze and process macros unless
the .MS control word has been used.
When macro substitution is OFF (the
in it i al sett i ng for SCRIPT /VS
processing), macros that have been
defined via the .DM [Define Macro]
control word are treated as invalid
control words.

2. Even when macro substitution is
OFF, a macro can be explicitly
invoked via the .EM [Execute Macro]
control word.

The .NL [Null Line] control word is generated by SCRIPT/VS and executed whenever a
null line is processed .

• NL

Notes:

1. Whenever SCRIPT/VS encounters a
null input line, that is, a line
whose length is zero, it generates
and executes a .NL control word.
The .NL control word does nothing,
except to reset line continuation,
in case the previous line ended
with a continuation character.

If you wish to have null lines
perform some other function, you
can define a .NL macro with .DM
[Define Macro], and, assuming mac
ro substitution is ON, your .NL
macro will be executed whenever a
null line is processed.

2. No .NL function is performed for
lines processed in literal mode
(.LI [Literal]). A null text line,
however, does reset continuation

if the previous text line ended
with a continuation character.

3. A null line may originate from a
number of sources. Because of
this, you should define a .NL mac
ro only when a specific use in a
certain part of a document
requires it. Null lines may origi
nate from:

•

•
•

•

A source input file (not all
systems in which SCRIPT/VS
operates allow this).

From terminal input (.TE).

A non-null line that becomes
null as a result of substi
tution.

A macro line that is null.

Chapter 23. SCRIPT/VS Control Word Descriptions 291

.oc [OUTPUT COMMENT]

Use the .OC [Output Comment] control word to place comments and carriage control
characters in the output data stream. Such comments are not examined by the for
matter. This control word is designed for the systems programming user of
SCRIPT/VS and must be used with caution .

• oc Cline l
C 'string['] l

where:

line may be anything, since it is not
used in formatting the output.
However, since this is a control
word, the input line is scanned
for control word separators.
The line given will not be pre
ceded by a carriage control
character when output is bei ng
directed to a printer. The first
character in the given line will
be taken as a carriage control
character, and you must ensure
that a val i d carri age control
character for the output device
i s prov i ded.

Output comments of the line form
are not synchron i zed wi th the
formatted text; they are wri t
ten to the output dest i nat ion
i mmedi ately before the page on
which the text surrounding them
appears.

string may be anything delimited by
single quotation marks.
However, since this is a control
word, the input line is scanned
for control word separators.
The string will be placed in the
output exactly as given, in the
same place relative to the input
text that it was speci fi ed in

the input. For this reason you
should be extremely careful to
control the contents of the
string.

The width of output comments is
considered to be zero. The depth
of output comments is the same
as the depth of normal line
spacing on the device.

Notes:

1. The .OC control word allows com
ments to be placed in the output
data stream. They are not examined
by the formatter and thus, unless
they are correctly interpreted by
the output device, the output will
be disrupted.

2.

The .OC may be used, for example,
to control a printer in a certain
way, such as to transmit codes
recognized by certain printers.

In order for a string to be treated
as a string, the single quotation
mark must be separated from the .OC
[Output Comment] control word with
one and only one blank.

Trailing blanks in a string will be
discarded if 'string' is the last
entry on the input line.

292 Document Composition Facility: User's Guide

.OF [OFFSET]

Use the .OF [Offset] control word to indent all but the first line of a block of
text .

• OF

where:

h speci fi es the hori zontal si ze of
the offset. If you spec; fy +h or
-h, the old offset value is incre
mented or decremented the speci
fi ed amount to establ ish the new
offset size. If "h" is omitted, the
new offset size is O.

The next output line to be format
ted after the .OF control word has
been processed is formatted at the
left margin established by the .IN
[Indent] control word, with no
added offset. For all subsequent
lines, the left margi n is estab
lished by adding the offset (.OF)
to the size of the indent (.IN).

Initial Setting: 0

Default: 0

Notes:

1. A . OF control word does not take
effect until after the next line is
formatted. The offset rema ins in
effect until a .IN [Indent] control
word or another .OF control word is
encountered.

The .OF control may be used within
a secti on whi ch is also indented
wi th the . IN control. Note that
. IN setti ngs take precedence over
. OF, however, and any .IN request
clears all offsets.

If you want to start a new section
with the same offset as the previ
ous section, you need only repeat
the .OF h request.

2. Thi s control word acts as a break.

3. The .Il [Indent line] and the .UN
[Undent] control words can be used
to shift only the next line to the
left or right of the current
margin.

4. Tabs should be used whenever possi
ble to format numbered or bulleted
1 i sts, to ensure that the fi rst
text word on the line is even with
subsequent offset lines. The items
in this "Notes" section are created
usi ng offsets and tabs.

5. The .OF control word is triggered
by the next text, skip, or space
line.

Examples:

1. Starting an offset:

• of 7
The line immediately following the

.OF control word is printed
at the current left margin.
All lines thereafter (until
the next indent or offset
request) are indented seven
character spaces from the
current margin setting.
These two examples were
processed wi th . OF control
words in the positions
shown .

2. Ending an offset:

.of
The effect of any previous .OF
request is cancelled, and all out
put after the next line continues
at the current left margin setting.

Chapter 23. SCRIPT/VS Control Word Descriptions 293

.OR [OR]

The .OR [Or] control word can be used in conjunction with the .IF [If] control word
to process SCRIPT/VS input lines conditionally. The result of the test performed
is logically ORed to the result of the most recently performed .IF [If], .AN
[And], or . OR [Or] control word to determi ne whether the target is to be
processed.

The .OR [Or] control word is discussed in "The .IF Control Word Family" on page
111.

.OR comparandl test comparand2 target

SYSPAGE test C EVEN J
C ODD J

SYSOUT test C PRINT J
C TERM J

where:

comparandl is any stri ng to be used as
the first comparand. This
comparand may be the value
of a set symbol.

comparand2 is any string to be used as
the second comparand. It
too may be the value of a
set symbol.

test is a 1- or 2-character code
that tells SCRIPT/VS what
comparison to make between
the comparands. The fol
lowing codes are recog
nized by SCRIPT/VS:

target

Codes Meaning
eq = equal
ne ... - not equal
gt > grea.ter than
It < less than
ge >= greater than or

equal
Ie <= less than or equal

is any valid SCRIPT/VS
input line. It may be a
control word or text. If
thi s conditi on or the
result of the most recent
ly performed .IF [If], .AN
[And], or .OR [Or] is true,
then the target line is
processed next, wi th the
first nonblank character
after the second comparand
treated as the first posi
tion of the line.
Otherwise, the target line
is ignored, and processing
cont i nues wi th the input
1 i ne that follows the . OR
control line.

SYSPAGE is a speci al . OR keyword

target

target

SYSOUT

Notes:

even
page.

or odd-numbered

See the .IF [If] control
word for a descri pti on of
SYSPAGE, EVEN, and ODD.

is a speci al • OR keyword
that tests whether
SCRIPT /VS output is bei ng
directed to a printer or to
the termi nal.

See the .IF [If] control
word for a descri pti on of
SYSOUT, PRINT, and TERM.

1. The .AN [And] and .OR [Or] control
words, in conjunction with .IF
[If], .TH [Then], and .El [Else],
allow you to construct complex log
i c statements.

2. The . OR control word i tsel f does
not cause a break; the target con
trol word might, if it is
processed.

3. Each of the comparands may be up to
255 characters in length, and the
shorter comparand will be extended
to the length of the longer wi th
tra iIi ng blanks.

4. If substitution is off when the .OR
control word is encountered, all
valid symbols in the comparands
will be resolved before the compar
i son is made. (Symbol s conta in i ng
imbedded blanks must be compared
with substitution off so that the
test to be performed and the target
of the .OR can be identified.)

Example:

that tests whether the The following input line
page that SCRIPT /VS is
currently processing is an .if &a eq &b .or &c eq &d .ty Yes.

294 Document Composition Facility: User's Guide

is equivalent to the input lines

• PA [PAGE EJECT]

. if &a eq &b

.else .if &c eq &d

.then .ty Yes .

Use the .PA [Page Eject] control word to force subsequent text onto a new page of
output, even if the current page has not been filled.

.PA

where:

n

+n

-n

[
n

1
+n
-n
NOSTART

[(ODD } [ON]] (EVEN } OFF

speci fi es the page number of
the next page. If n is not
specified, sequential page
numbering is assumed, and the
next page number is one great
er than the current page num
ber. n must be an arabic
number with no decimal point.

speci fi es that the next page
should have a number that is
equal to the normal next
sequential page number plus
n. n must be a non-deci mal
arabic integer.

speci fi es that the next page
should have a page number that
is equal to the next sequen
tial page number minus n. If
subtract i ng n from the next
page number yields a negative
number, an error message is
issued, and the control word
is ignored.

The maximum allowed page num
ber is 9999.

NOSTART causes the current page to be
ended, but the next page will
not be started until some data
causes it to be started or a
control word that requires
the page to be started ;s
processed. After .PA NOSTART,
the page defi nit ion (i nclud
i ng runn i ng headi ngs and
foot i ngs), may be changed
until the page is started.

ODD causes one or two page ejects,
such that the new page is odd
numbered.

EVEN

ON

causes one or two page ejects,
such that the new page is even
numbered.

defi nes the start of odd or
even page eject mode. This
mode i s ended by spec i fy i ng
OFF or the start of another
.PA even or odd mode, or n. In
odd or even page eject mode,
output is formatted on odd
pages only, or even pages
only, whichever the case may
be, and the other pages are
left blank, except for run
ni ng ti tIes and headi ngs and
footings.

OFF defines the end of odd or even
page eject mode.

Notes:

1. The minimum page number is 1, and
the maximum is 9999. If a .PA con
trol word attempts to set the page
number outside this range, a mes
sage i s issued, and the cont ro I
word is ignored.

2. Whenever a .PA control word is
encountered, the rest of the cur
rent page is skipped after printing
any text 1 i nes accumulated thus
far. The next page is started,
unless .PA NOSTART was specified.
Starting a page includes format
t i ng runn i ng head i ngs, runn i ng
footi ngs, and runni ng ti tIes for
the page, and establishing the page
dimensions for the page. These
things are then fixed for the dura
tion of the page, and may not
change until the next page is
started.

3. If you use the STOP option of the
SCRIPT command, SCRIPT/VS waits

Chapter 23. SCRIPT/VS Control Word Descriptions 295

for you to enter a null line (with
the Return or Enter key) before
starting the new page.

4. This control word acts as a break.
It is not allowed in a keep.

5. If you want to change any page
dimensions or d~fine new running
titles or runnlng headings and
footings for a new page, the appro
priate control words must be proc
essed before the .PA control word
(except when NOSTART is
specified). These control words
are listed in Fi gure 26 on page
354. Note that at the beginning of
SCRIPT/VS processing, the first
page has not yet been started.

6. If .PA n (or +n or -n) is specified
after . PN FRAC is speci fi ed, the
page eject will occur, but the page
number will not be reset. This is
because the page number change to
fractional pagination is pending.

• PF [PREVIOUS FONT]

7. Fi gure 29 on page 356 1 i sts the
control words that require a page
to be started; they will cause one
to start if one is not a 1 ready
started.

Examples:

•

•

To start the next sequential page:

.pa

The rest of the current page is
skipped. The top titles and page
number are put in the top margin of
the next page, and output resumes.

To repeat a page number:

. pa -1

The new page wi 11 have the same
page number as the preceding page.
The calculation is done after
establ i shi ng the next sequent i al
page number .

Use the .~F [Previous Font] control word to resume the use of the font whose id was
last saved using the .BF [Begin Font] control word.

The .PF [Previous Font] control word is discussed in "Using Fonts with the IBM
3800 Printing Subsystem" on page 48 .

• PF

Notes:

1. If the .PF control word is used
when there is no previously saved
font, the default font for the
output device will remain effec
tive.

2. The font save stack is 16 entries
deep, and the stack is saved and
restored by .SA [Save Environment]
and .RE [Restore Environment],
respectively.

296 Document Composition Facility: User's Guide

·PI [PUT INDEX]

The .PI [Put Index] control word saves the specified lines for use in building
an index. The .IX [Index] control word causes this index to be inserted in the
document. The .PI [Put Index] control word is ignored unless enabled by the
INDEX option of the SCRIPT command.

The .PI [Put Index] control word is discussed in "Chapter 7. Indexing" on page
79.

• PI

[
REF 1 [KEY /keyl/key2/key3/]
ORDER
START
END

/terml[/term2[/term3[/term4[/]]]]

where:

REF specifies that this control
word refers to an index refer
ence. An index reference di f
fers from an index term in that
the words 'See' or 'See also'
will be prefixed to the index
entry supplied and no page num
ber will be printed in the
index. 'See' will be prefixed
if thi sis the only entry at
this level under the preceding
higher level entry, 'See also'
will be prefixed if there are
other entr i es.

ORDER

START

END

KEY

specifies that the page number
of the entry in the index is to
be placed in front of all pre
vious page numbers for the term
given.

specifies that the index entry
being defined is the start of a
reference to a range of pages.
The START keyword will be
ignored when the REF keyword is
specified.

specifies that the index entry
being defined is the end of a
reference to a range of pages.
The END keyword will be ignored
when the ORDER or REF keywords
are specified.

i ndi cates that the sort keys
for the index entries will be
given explicitly. If KEY is
omitted, the sort keys are
developed from the index
terms.

keyl-key3 specifies the sort keys to be
used for the index terms. if
any key is null, that key will
be developed from the index
term.

terml

term2

term3

term4

/

Notes:

is the level 1, or primary,
index term.

is the level 2, or ~econdary,
index term.

is the level 3, or tertiary,
index term.

is the text to be used in the
index in place of the current
page number. If a null term4 is
specified, no page number will
be printed in the index. If no
term4 is speci fi ed, the cur
rent page number wi 11 be
printed in the index.

is any del i mi ter character
that does not appear in any
term or key.

1. Index entri es are sorted on keys
developed from the index terms,
except when explicitly given with
the KEY parameter. The key is
developed by foldi ng the term to
uppercase, removing any characters
to be ignored (as specified by the
IXI parameter of the .DC [Define
Character] control word), and
translat i ng any characters to be
considered blanks (as specified by
the IXB parameter of the .DC [De
fine Character] control word).

Chapter 23. SCRIPT/VS Control Word Descriptions 297

.PL [PAGE LENGTH]

The .PL [Page Length] control word specifies the vertical length (depth) of output
pages. The value specified overrides the standard page length which is estab
lished for each logical device.

Figure 8 on page 56 shows the relationship of the .PL [Page Length] to the layout
of a SCRIPT/VS output page.

where:

v specifies the vertical length, or
depth, of output pages. If no value
is specified for v, the default
value for the device will be used.
This number should be the same as
the physical size of the paper
being used. However, when format
ting for a printer logical device,
it may be different, as explained
below. The minimum value for the
page length is the sum of the top
margin (.TM) and the bottom margin
(.BM)~ plus one line. The maximum
value that may be specified for the
page length is as established for
each logical device. If +v or -v is
specified, the current page length
is incremented or decremented
accordingly.

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores the initial setting.

Notes:

1. The .PL control word allows varying
paper sizes to be used for output.
(The logi cal devi ce speci fi ed in
the DEV option of the SCRIPT com
mand implies a default page length,
but thi s can be overri dden wi th
. PL.) Page length may be changed
anywhere in a file, with the change
effect i ve on the page after the
control word is encountered.

2. This control word does not cause a
break. It is not allowed in a keep.

3.

298

If the output is in printer format,
the page length value need not be
the same as the actual number of
print lines on the real paper,
because SCRIPT/VS wi 11 cause the
printer paper to be ejected to the
top of the next real page whenever
a new SCRI PT /VS page i s sta rted.

Document Composition Facility:

Thus, a SCRIPT/VS page may occupy
less than a real page or more than
one real page, and the output will
be newly aligned to the paper each
time a SCRIPT/VS page is started.

4. The previous rule notwithstanding,
if you defi ne a top margi n (. TM)
and a heading space (.HS) and head
ing margin (.HM) such that
SCRIPT/VS needs to print data with
in the first three lines on a page,
no printer page ejects can be done.
Instead, SCRIPT/VS uses the page
length value to find the top of the
next page. It is, therefore, good
practice to keep the .PL value
accurate, so that it reflects the
true depth of the page under
SCRIPT/VS control.

5. The maximum value of the page
length that may be set is governed
by the value establ i shed as the
maximum for the logical device for
which formatting is being per
formed.

6. If the runn i ng headi ngs and
footi ngs that are defi ned for a
page fi 11 up the page so that no
room is left for text, SCRIPT/VS
termi nates wi th an error message.
The depth of running headings and
footings cannot be predicted at the
time they are defined, because they
are formatted to the current line
length (. LL) when a page is
started. The same runni ng headi ng
can occupy di fferi ng amounts of
vert i cal space on di fferent pages
if the line length changes.

Example:

. pI 84

Page length is set to 84 1 i nes. Thi s
is the correct size for 14 inch printer
paper when pri nt i ng at si xli nes per
inch.

User's Guide

.PM [PAGE MARGINS]

The .PM [Page Margins] control word causes SCRIPT/VS to shift the formatted output
of each page to the right and is used in conjunction with the BIND option of the
SCRIPT/VS command.

The .PM [Page Margins] control word is discussed in "Changing the Page Margin" on
page 57.

where:

(h
(+h
(-h

J
1
J

h spec; fi es the amount of hori zon
tal space (binding) to shift
odd-numbered output pages. Thi s
overrides the binding value spec
ified with the BIND option of the
SCRIPT command. +h specifies that
the pages are to be shifted to the
right, and -h to the left, of the
current bi ndi ng (as establ i shed
by the BIND option or a previous
.PM control word.) If h is
omitted, a default value of that
specified with the BIND option on
the SCRIPT command is used.

h2 specifies a binding for
even-numbered pages. If h2 is
omitted, h applies to all pages.

Notes:

1. The actual (or potential) page num
ber of the output page i s con-

.PN [PAGE NUMBERING MODEl

trolled by the .PA [Page Eject] and
.PN [Page Numbering Model control
words, whi ch are used to speci fy
even and odd page numbers. Conse
quently, you can have two or more
even-numbered (0 r odd-numbered)
pages ina row.

2. Bindings can be specified in num
bers of character spaces or in
space units.

3. If the BIND option: is not
specified, it defaults to two char
acter spaces. This allows room for
potenti al revi si on codes for the
first column. (Revision codes for
subsequent columns are placed in
the gutter between columns.) If
sufficent room is not provided for
revi si on codes, they are
discarded.

4. The .PM [Page Margins] control word
takes effect on the next page.

The .PN [Page Numbering Mode] control word allows you to control various aspects
of page numbering, including the format of the page number, and whether it is to be
shown in running titles or running headings and footings that call for it.

The .PN [Page Numbering Mode] control word is discussed in "Page Numbers" on page
64.

.PN

where:

OFF

(OFF 1
(OFFNO)
(ON)
(ARABIC)
(ROMAN J
(ALPH)
(FRAC)
(NORM)
(PREF string J
(n J

suppresses the display of
-page numbers in running
titles and running headings

and footings, although pages
are sti 11 sequentiallY num
bered internally. Symbols
set with .SE [Set Symbol] to
the current page number will

Chapter 23. SCRIPT/VS Control Word Descriptions 299

OFFNO

ON

ARABIC

ROMAN

ALPH

FRAC

NORM

PREF

conta i n the correct number
of the page on wh i ch they
were processed.

suppresses both page number
display and internal page
numberi ng. The current page
number set wi th . SE rema ins
the same for all pages until
.PN OFFNO is ended with .PN
ON.

cancels .PN OFF or .PN OFFNO,
so that internal numbering
of pages is resumed, and the
current page number can be
di splayed in runn i ng titles
and running headings and
footings.

causes the following page
numbers to be represented as
standard arabi c numerals.
The ARABIC keyword may be
abbreviated as AR.

causes page numbers to be
represented as lowercase
roman numerals. Page numbers
greater than 3999 are not
supported with the ROMAN
option. The ROMAN keyword
may be abbreviated as RO.

causes al phabet i c page num
bering to be started. In this
mode, the number 1 i s con
verted to a, 2 to b, 26 to z,
and 27 to aa. The number 1978
is represented as bxb. The
AlPH keyword may be abbrevi
ated as Al.

causes fractional pagination
to begin. The next time a
page eject occurs that would
normally increment from an
even to an odd number, the
even number (for example,
20) i s saved, and number i ng
starts wi th a fract i onal
sequence, in thi s case,
20.1, 20.2, 20.3, and so
forth.

causes an immediate page
ej ect to occur, and normal
pagination to be resumed. In
the previous example, the
new page would be numbered
21. If . PN FRAC ; s not in
effect, . PN NORM is; gnored,
and does nothing.

string specifies a 1- to
8-character stri ng to be
used as a prefix in front of
all page numbers pr i nted in
ti tIes, in tables of con
tents, or in front of set
symbols set with the value of
the current page number (&).
The stri ng may not contai n
embedded blanks. To cause

n

the prefix to be omitted from
the page number, speci fy
". PN pref", wi th no stri ng.
Thi s clears the previ ously
defined prefix string.

spec; fi es the number of the
next page. When the next page
eject occurs, either
naturally because of the
page becoming full, or as a
result of .PA, the new page
w; 11 have the page number
specified in n, as though
this page eject had been
caused by .PA n. If the next
page really is started with
. PA n, the number gi ven on
the . PA control word super
sedes the number previ ously
specified with .PN n~

Initial Setting: ON, ARABIC

Notes:

1. The .PN control word can be used to
control SCRIPT/VS's page
numberi ng. If the OFF operand is
specified, page numbering is dis
cont i nued on output, al though the
page numbers continue to be incre
mented internally. The OFFNO oper
and discontinues page numbering on
output and stops the internal
incrementing of page numbers. When
the ON operand is specified, page
numberi ng resumes 'from the last
internal page number.

The actual page numbers may appear
in either arabic numerals, which is
the default, or roman numerals,
dependi ng upon whether . PN ARABIC
or .PN ROMAN was most recent.
Changes in the page numbering will
take effect on the page after the
.PN control was encountered.

2. The .PN OFF and .PN OFFNO control
words suppress the default running
top title "PAGE &." If you use the
.RT [Running Title] control word
and include an &, only the page
number and not the text is sup
pressed.

3. If FRAC is specified while the page
numbers are represented in ROMAN or
ALPHA numerals, the page number
that is pri nted is in lowercase
roman or alpha numerals, but the
fractional part is in arabic.

4. Table of contents entri es gener
ated by .HO - .H6 [Head level 0 -
6] or the .PT [Put Table of Con
tents] control words show the page
numbers in the same format they
appear on the page, that is, if a
prefix is used, it is shown in the
table of contents; if roman numbers
are in effect, the contents entry
has a roman numeral, and so on.

300 Document Composition Facility: User's Guide

5. Whenever the page number symbol is
substituted, its prefix will also
be included. Care must be taken
therefore when using the page num
ber symbol as a part of an ari thme
tic operat i on on the ri ght hand
side of a .SE statement.

6. The .PN control word will take
effect on the page after it i s
encountered.

Examples:

•

•

. pn off

The internal page count continues
to be incremented for each page
printed.

.pn offno

No page numbers appear on SCRIPT/VS
output, and the internal page count

.PP [PARAGRAPH START]

•

remains at its current setting
without further incrementing.

. pn on

Page numbering on SCRIPT/VS output
resumes using the current internal
page count; th i s count i s i ncre
mented for each page printed.

• • pn roman

The page number in the title at the
bottom of the page after this one
appears as a roman numeral.

The control word

. pn arabi c

restores arabi c numberi ng on the
next page.

Use the .PP [Paragraph Start] control word to start a new paragraph .

• PP [line]

where:

line is the text that begi ns a new
paragraph. If line is omi tted,
the text from the next input line
after the .PP control word begins
the new paragraph.

Notes:

1. When the .PP control word is
encountered, a break occurs, a skip
is generated, and the next line of
text i s indented three character
spaces to the right of the current
margi n. The . PP control word is
equivalent to the control words:

.sk

. i 1 +3

If these values are not satisfac
tory for your paragraph
formatti ng, you can redefi ne the
. PP control word as a SCRIPT /VS
macro.

Example:

The input lines:

.pp This line begins with
a .PP control word.
Here is some more text to show
the formatt i ng.

Are formatted as:

This line begins with a .PP control
word. Here i 5 some mo re text to show
the formatt i ng.

Chapter 23. SCRIPT/VS Control Word Descriptions 301

·PS [PAGE NUMBER SYMBOL]

The .PS [Page Number Symbol] control word allows you to change the page number
symbol used in running top and bottom titles and running headings and footings.
The default page number symbol is the ampersand (&) character.

This control word is provided for compatibility with earlier releases of SCRIPT.
The same function is provided by the .DC [Define Character] PS control word .

• PS [c]

where:

C specifies the character to be used
as the page number symbol. It may be
any character other than a blank. If
it is omitted, no character is
assigned as the page number symbol.

Initial Setting: Ampersand (&)

Default: Nothing. (No page number sym
bol.)

Notes:

1. Every occurrence of the page number
symbol is replaced with the current
page number in running titles, run
ning headings, and running
footings, unless .PH OFF or .PH
OFFHO is in effect.

2. The .PS control word allows you to
change the page number symbol cur
rently in effect. The initial page
number symbol is the ampersand C&)
character. It may be necessary to
change the page number symbo I if
the & character ; s not a val i d
character on your terminal key
board or the & character ;s needed
as a regular character in your
title text.

3. This control word affects all run
ning top and bottom titles and all

running headings and footings,
including those that have been pre
viously defined. Thus, if a title
has been set by the control word:

.rt t ///Page &/

and later the control word:

. ps ?

is encountered, the top-title must
be reset to:

.rt t ///Page ?/

Otherwise, the current page number
will not be subst i tuted into the
title.

4. Do not confuse the page number sym
bol with the ampersand used on the
right-hand side of a .SE [Set Sym
bol] control word. A single amper
sand in a .SE control word always
means that the symbol is to be set
to the current page number.

.se currpage = &

sets the symbol 'currpage' to the
current page number, regardless of
what character, if any, is defined
as the page number symbol.

302 Document Composition Facility: User's Guide

.PT [PUT TABLE OF CONTENTS]

Use the .PT [Put Table of Contents] control word to add li~es or control words to
the file which is used to generate the automatic table of contents.

The .PT [Put Table of Contents] control word is discussed in "Chapter 6. Head lev
els and Table of Contents" on page 73 .

• PT {line 1
{ line 1

where:

line is any text line or control word
line that you want in the table
of contents. Thi s 1 i ne may be
preceded with one or more extra
leadi ng blanks (other than the
blank that del i mit s the cont ro 1
word name), and these extra
blanks will be removed before the
line is written into the table of
contents fi Ie.

Notes:

If 'line' is text, it is written
to the file DSMUTTOC as part of a
.SX [Split Text] control word,
which causes it to be formatted
as a table of contents line when
DSMUTTOC is processed. (See the
discussion of the .SX control
word.)

If 'line' is a control word, it
is written into the DSMUTTOC file
directly, and it is executed when
the DSMUTTOC file is processed.

If 'line' is specified with extra
leading blanks, it is taken as a
line of text, even if the first
nonblank character is a peri od.
The extra leading blanks are
removed, and a .SX control word
is built for the DSMUTTOC file,
using the first nonblank charac
ter as the begi nn i ng of the data.

1. For text 1 i nes, the . PT control
word generates a .SX control word
to be wr i tten into the table of
contents utility file in the form:

.SX F /text line/ ./33/

where the page number used is the
actual page number when the .PT is
processed, and the del i mi ter used
is actually hexadecimal 00. The .PT
control word does not accept lines
that begin with hexadecimal 00 as
valid lines; such lines result in
an error message.

2. Thi s control word is especially
useful for defining heading levels
with the .DM [Define Macro] control
word. The internal macros that
process the head level control

words .HO - .H6 [Head Level 0 - 6]
use .PT to write the required
information into the table of con
tents fi Ie.

3. The .PT control word is ignored
while a table of contents is actu
ally being formatted.

Examples:

• . pt . pa

•

•

Thi s 1 i ne places the . PA control
word in the table of contents so
that when the table of contents
fi Ie is bei ng processed, a page
eject occu~s at this point. You may
do this if you want separate con
tent sections to appear on
different pages.

.pt .pa

Since the line given has extra
leading blanks, it is a text line,
not a control word. The leading
blanks are removed, and a .SX con
trol word is built, using the char
acters ". pa" as the data:

.sx f /.pa/ ./33/

(The head level control word macros
insert a leading blank in front of
a line to be written to the table
of contents wi th . PT when it is
known to be text.)

.pt .h3 this is a head level 3

In this case, the control word .h3
is written into the table of con
tents file because the period
appears in the first available
position with no extra leading
blanks. Any head level that is
written into the table of contents
file in this way is processed as a
heading when the table of contents
is actually formatted. A normal
head level 3 is generated at that
point in the table of contents, but
no attempt is made to wri te any
more information into the table of
contents utility file. In other
words, the .PT function of the mac
ro for .H3 is ignored while the
table of contents is actually being
formatted.

Chapter 23. SCRIPT/VS Control Word Descriptions 303

.QQ [QUICK QUIT]

The .QQ [Quick Quit] control word causes SCRIPT/VS processing to terminate imme
diately, without the usual final page eject •

• QQ

Notes:

1. Since SCRIPT/VS does not perform a
final page eject after encounter
ing the .QQ control word, some
output that has been formatted may
never be displayed .

• QU [QUIT]

2. The .QQ control word is useful
when you are using the .TE [Termi
nal Input] control word to enter
lines from the terminal, and you
want to terminate processing
quickly.

The .QU [Quit] control word causes processing to terminate with a final page
eject .

• QU

Notes:

1. The .QU control word causes a
final page eject so that the last
partial page of formatted text may
be printed.

• RC [REVISION CODE]

2. The .QU control word will cause
termination no matter where or
when it is encountered, including
within imbedded files (see the .IM
control word). All open SCRIPT
files are closed before processing
terminates .

The .RC [Revision Code] control word allows you to designate a revision code
marker to be printed to the left of the column.

The .RC [Revision Code] control word is discussed in "Marking Updated Material"
on page 99.

.RC n

[
c

1
ON
OFF
ON/OFF

~ c

Adjust ~Ih

where:

n specifies the reV1S10n code
number from 1 to 9.

c specifies the reV1Slon code
character to be pri nted along
the left margin. It may be any
s i ngl e character, i ncl ud i ng
the blank. If not specified, a
blank character is assumed.

ON signifies the beginning of
text to be marked with the code
character associ ated wi th RC
n.

OFF si gn i fi es the end of text to be
marked wi th the code associ
ated with RC n.

ON/OFF signifies that the next output
line should be marked with the
RC n code on output.

304 Document Composition Facility: User's Guide

marks the next output line with
the specified revision code
(1 ike the ON/OFF opt ion) .
Unlike the ON/OFF option, the *
opt i on allows you to speci fy
any character for this one
occasion without associating
it with a revision code number.

Adjust speci fi es the amount of hori
zontal space to be used to con-
tain the revision code
character and the space
between it and the left column
boundary.

his the amount of hori zontal
space. If omitted, 2 is
assumed. If a value of 0 is
speci fi ed, or if the amount
specified is greater than the
space ava i labl e, no rev i si on
codes will be printed.

Notes:

1. The .RC control word has three
functions:

2.

3.

a. To define a revision code sym
bol,

b. To act i vate 0 r deact i vate the
revision code, and

c. To set
adjust.

the rev i s i on code

You may have up to 9 revision codes
defined at any time, and each
revision code may be assigned a
di fferent character. The operands
ON and OFF activate and deactivate
the actua 1 rev i s i on code ma rk i ng.
The operand ON/OFF has the effect
of turning ON revision code n for
one line only; the line that is
next printed after the .RC nON/OFF
i s processed.

By assigning different symbols to
di fferent revi si on code numbers,
including the blank, it is possible
to selectively print specific
revision code markers or differen
ti ate between vari ous levels of
revision.

Since the .RC control word does not
cause an automatic break, revision
code markings may be .turned on and
off wi thi n a paragraph or even a
sentence without disrupting normal
SCRIPT/VS formatting.

4. The reV1Slon code for the leftmost
column is placed in the bi ndi ng
that is speci fi ed wi th the BIND
command opt ion. The rev is i on code
for other columns is placed in the
intercolumn gutter. If there is not
at least two character spaces of
binding or gutter, the revision
code is omitted.

5. Revision codes may be nested to a
depth of 9. This is useful in cir
cumstances where revi si ons are
made to sections that have already
been revised. If a revision code is
turned ON while another is ON, the
fi rst is stacked. It is nei ther ON
nor OFF. When the inner RC is
turned OFF, the stacked RC is
turned ON again. Only one RC is ON
at a time.

6. If you attempt to redefine a
revision code character while that
revision code is ON, an error mes
sage i s issued.

7. The revision code status is subject
to the .SA [Save Environment] and
.RE [Restore Envi ronment] control
words. If you have .RC 3 ON, then
.SA, then .RC 3 OFF, then .RE, the
status is restored as it was before
the .SA (that is, the revision code
is turned back on).

8. Revision codes are not applied to
running titles, running headings,
or runni ng footi ngs, but are
applied to skip and space.

Example:

.rc 1 1

.rc 2 *
(input)
.rc 1 on
"This writeup applies to version 5 and
version 6."
.rc 1 off

The marker for revision code 1 is
defined to be a number one (1) and the
marker for revision code 2 is defined
to be an asterisk (*). All other
revision code markers are defined to be
blank by default. The line or lines of
printout that contain the sentence

1 "This writeup applies to version 5 and
1 version 6." will be noted by a number 1

printed along the left margin.

Chapter 23. SCRIPT/VS Control Word Descriptions 305

.RD [READ TERMINAL]

The .RD [Read Terminal] control word allows you to type text at the terminal dur
ing SCRIPT/VS output. SCRIPT/VS does not process this text in any way.

I .RD I [~TOP]
where:

n specifies the number of lines to
be read at the termi nal. If omi t
ted, 1 is assumed.

STOP causes the terminal to stop typ
ing anywhere in a line to allow
you to type some additional text.
SCRIPT/VS will resume typing
after you signal ATTENTION.

Default: 1

Notes:

1. The .RD control word ;s meaningful
only when the formatted output is
actually being typed at your termi
nal in interact i ve env i ronments.
The 1 i ne or 1 i nes typed are not
processed by SCRIPT /VS, but they
appear in the output exactly as
they are typed.

2. When the STOP parameter is not
specified:

•

•

The .RD control word causes a
break and a section break. All
lines read by .RD are read
while SCRIPT/VS is in a single
column mode. After the .RD is
fi ni shed, the previ ous column
definition is resumed.

If the output is not being
typed at a termi nal, the . RD
control word causes a break and
a sect i on break, and then
spaces down as many 1; nas as
the "n" value specifi~d, but in
a single column mode. In this
case, . RD acts very much 1 i ke
" . SP n P".

• As SCRIPT /VS reads 1 i nes from
the termi nal, it accounts for
the space they occupy on the
page. If the end of a page is
reached before the number of
lines to be read is exhausted,
SCRIPT /VS takes control, per
forms a page eject to start a
new page, and then cont i nues
reading the remaining lines.

3. When the STOP parameter is speci
fied, no break occurs. The .RD STOP
control word causes cont i nuati on
of text lines before and after it,
if any. SCRIPT/VS considers the .RD
STOP to have zero width, and con
t i nues fo rmatt i ng 1 i nes a s though
the stop indicator were not there.
All text entered when the typewrit
er terminal stops is unknown to the
formatter, and it causes any for
matted text to the ri ght of the
stop on the same line to be shifted
to the right by the width of what
ever you enter.

4.

5.

6.

If the output is not being typed at
a terminal, SCRIPT/VS does not stop
in the middle of an output line to
accept more text. In this case, the
only effect of the .RD STOP control
wo rd i s to cau se cont i nuat i on of
the text surrounding it.

When using the STOP parameter under
CMS, specify

cp term attn off

to suppress CP's attention
acknowledgment.

The .RD [Read Terminal] control
word is ignored in the ATMS-III
environment.

306 Document Composition Facility: User's Guide

·RE [RESTORE ENVIRONMENT]

The .RE [Restore Environment] control word restores the status of the SCRIPT/VS
variables that were previously saved by the .SA [Save Environment] control word .

• RE

Notes:

1. The .RE control word restores the
status of certain SCRIPT/VS vari
ables from the last-in-first-out
stack created by the .SA control
word. The .RE control word
restores the SCRIPT/VS variables
to values that were in effect at
the time of the corresponding .SA
control word. See the description
of the .SA control word for addi
tional information.

• RF [RUNNING FOOTING]

2. If there is no currently active
.SA control word, the .RE control
word restores the initial values.
Each .RE control word effectively
cancels a corresponding preceding
.SA control word.

3. If the formatting mode and/or the
text alignment will change as a
result of the .RE [Restore Envi
ronment] control word, any current
line being built will be promoted
to the output before the restore
is performed .

Use the .RF [Running Footing] control word to specify that the following lines
of text are to be saved as a running footing for subsequent pages.

The .RF [Running Footing] control word is discussed in "Running Headings and
Footings" on page 58. Figure 8 on page 56 shows the relationship of the .RF
[Running Footing] to the layout of a SCRIPT/VS output page.

.RF

where:

ON

OFF

ODD

EVEN

[ON] OFF
CANCEL

[ODD] [CANCEL] EVEN SUP
RES

identifies the following lines
as a running footing to be
saved and placed on every sub
sequent page. ON is the
default.

i ndi cates that the defi ni ti on
of the runn i ng foot i ng is
ended.

specifies that the following
lines are to be saved as the
running footing for
odd-numbered pages only.

specifies that the following
lines are to be saved as the
running footing for
even-numbered pages only.

CANCEL may be used wi th the ODD or
EVEN parameter, or by itself to
cancel running footings
defined with the ODD, EVEN, or
ON parameters.

SUP may be used wi th the ODD or
EVEN parameter, or by itself to
suppress a runn i ng foot i ng
definition. A suppressed defi
nition still exists, but it is
not printed on any page until
restored. A suppressed footing
definition is deleted if a new
one is defi ned wi th . RF ODD,
EVEN, or ON. A new footing is
not suppressed by a prev i ous
. RF SUP. To suppress the new
definition, you must issue
another .RF SUP after the defi
nition is complete.

Chapter 23. SCRIPT/VS Control Word Descriptions 307

RES restores a runni ng footi ng
that was previously suppressed
with the SUP parameter.

Default: ON

Notes:

1. The running footing will be placed
on the page immediately above the
space which is defined by the .BM
[Bottom Margin] control word. It is
formatted using the initial for
matt i ng env ironment, and a 11 page
number symbols are replaced by the
current page number.

2. The runn i ng foot i ng defi ned wi th
the .RF control word will take
effect on the page after the . RF
control word is encountered.

3. If you start another running head
ing or footing definition within a

.RH [RUNNING HEADING]

foot i ng, or use any control word
which is not allowed in a running
footi ng, the defi ni ti on is termi
nated. The disallowed control
words are the same as those that
are not allowed in a keep, and are
described in Figure 27 on page 355.

4. Some control words are processed
once when the runn i ng foot i ng i s
encountered, and others are proc
essed every page as'the footing is
bei ng formatted to be put on the
page. A list of the control words
that are processed i mmedi atelY is
given in Figure 28 on page 355.

5. The .RF control word parameters
CANCEL, SUp, and RES do nothing if
there is no running footing defi
nition to cancel, suppress, or
restore.

Use the .RH [Running Heading] control word to specify that the following lines of
text are to be saved as a running heading for subsequent pages.

The . RH [Runni ng Headi ng] control word is di scussed in "Runni ng Headi ngs and
Footings" on page 58. Figure 8 on page 56 shows the relationship of the .RH [Run
ning Heading] to the layout of a SCRIPT/VS output page.

.RH

where:

ON

OFF

ODD

EVEN

[ON] OFF
CANCEL

[ODD] [CANCEL] EVEN SUP
RES

identifies the following lines
as a running heading to be
saved and placed on every sub
sequent page. ON is the
default.

i ndi cates that the defi ni ti on
of the running heading is
ended.

specifies that the following
1 i nes are to be saved as the
running heading for
odd-numbered pages only.

specifies that the following
1 i nes are to be saved as the
running heading for
even-numbered pages only.

CANCEL may be used with the ODD or
EVEN parameter, or by itself to
cancel running headings
defined with the ODD, EVEN, or
ON options.

SUP may be used wi th the ODD or
EVEN parameter, or by itself to
suppress a running heading
definition. A suppressed defi
nition still exists, but it is
not printed on any page until
restored. A suppressed heading
definition is deleted if a new
one is defi ned wi th . RH ODD,
EVEN, or ON. A new heading is
not suppressed by a prev i ous
. RH SUP. To suppress the new
defi nit ion, you must issue
another .RH SUP after the defi
nition is complete.

308 Document Composition Facility: User's Guide

RES restores a runn i ng headi ng
that was previously suppressed
with the SUP parameter.

Default: ON

Notes:

1. The running heading will be placed
on the page immediately below the
space which is defined by the .TM
[Top Margi n] control word. It is
formatted usi ng the ; ni ti al for
matt i ng env ironment, and all page
number symbols are replaced by the
current page number.

2. The runn i ng head i ng· defi ned wi th
the .RH control word will take
effect on the page after the • RH
control word is encountered.

3. If you start another running head
ing or footing definition within a
headi ng, or use any control word
which is not allowed in a running
headi ng, the defi ni ti on is termi-

.RI [RIGHT ADJUST]

nated. The disallowed control
words are the same as those that
are not allowed in a keep, and are
described in Figure 27 on page 355.

4. Some control words are processed
once when the runn i ng headi ng is
encountered, and others are proc
essed every page as the heading is
bei ng formatted to be put on the
page. A list of the control words
that are processed i mmedi ately is
given in Figure 28 on page 355.

5. The .RH control word parameters
CANCEL, SUp, and RES do nothing if
there is no running heading defi
nition to cancel, suppress, or
restore.

6. The function of the SCRIPT/370 Ver
sion 3 control word .HN [Headnote]
is provided by the .RH control
word. Thus, you cannot have a
SCRIPT/370 headnote and a
SCRIPT /VS runn i ng headi ng at the
same time.

Use the .RI [Right Adjust] control word to position an output line flush with the
right margin.

The .RI [Right Adjust] control word is discussed in "Positioning lines on the
Page" on page 44.

.RI

where:

n

ON

OFF

[~~F 1 line

specifies the number of input
lines to be right adjusted. If
omi tted, 1 is assumed. If . RI n
is specified when .RI ON is in
effect, ri ght adjust i ng is
turned off when n lines have been
right adjusted, or when .RI GFF
is encountered.

specifies that subsequent text
lines are to be right adjusted.

termi nates ri ght adjust mode if
it was ON, or if n has been spec-
ified and has not been exhausted.

line is a line of text to be right
adjusted. The line is considered
to start with the first nonblank
character after the • RI control
word.

Notes:

1. The keyword ON or OFF, or the num
ber of input lines to be ri ght
adjusted (n), must be the only
parameter on the control word line.
A string of words that happens to
start with one of these is inter
preted as a single line to be right
adjusted. For example, the control
word lines:

.ri on top of old smokey

.ri 555 Bailey Ave.

are taken to be of the ".RI line"
form, not requests for large num
bers of lines to be right adjusted.

2. When right adjusting is in effect,
no formatting is done on the line.
That is, the line is right adjusted
as it stands, and it is not filled
from other input lines or
justi fi ed. If a tab character

Chapter 23. SCRIPT/VS Control Word Descriptions 309

appears in the 1 i ne to be ri ght
adjusted, the tab is resolved
before the line is right adjusted.

3. Thi s control word acts as a break.

4. If the line to be right adjusted is
longer than the current column
length, the excess words are right
adjusted on a separate output line.

5. The .CE [Center] control word is a
vari ant of . RI. If ei ther of these'
control words is processed, the
other is cancelled.

• RN [REFERENCE NUMBERS]

6. Contrast this control word with .FO
RIGHT. The latter allows lines to
be formatted by concatenating
words until the line is nearly
full, but then the filled line is
right adjusted instead of being
justi fi ed, as would be the case
with .FO ON. .

Example:

. ri 3

These three lines are
right-adjusted,
as you can see .

Use the .RN [Reference Numbers] control word to control output line reference num
bering.

.RN

where:

ON
OFF]

ON starts reference numbering.

OFF stops reference numbering.

Initial Setting: OFF

Default: ON

Notes:

1. This control word takes effect on
the current page.

2. Lines wi 11 be numbered in i ncre
ments of 1 starting at 1. Numbers
will be placed about half an inch
to the right of the rightmost col
umn.

3. Only nonblank lines on the body of
the page will be numbered. Lines in
the running heading and footings,
runni ng ti tIes, and footnotes are
not numbered.

310 Document Composition Facility: User's Guide

.RT [RUNNING TITLE]

The .RT [Running Title] control word saves a specified title line in a storage
buffer for possible future use. This title may be used at the top or bottom of the
next page and each subsequent output page.

The .RT [Running Title] control word is discussed in "Top and Bottom Running
Titles" on page 61. Figure 8 on page 56 shows the relationship of the .RT [Running
Title] to the layout of a SCRIPT/VS output page.

.RT
[

Top
Bottom

where:

] [ALL
Odd
Even

ToP specifies that this control
word refers to top titles. The
TOP keyword may be abbreviated
as T. This is the default.

Bottom specifies that this control
word refers to bottom titles.
The BOTTOM keyword may be
abbrev i ated as B.

Odd

Even

ALL

n

partl

specifies that the title being
defined is to be printed on odd
numbered pages only. The ODD
keyword may be abbreviated as
O.

specifies that the title which
is being defined is to be
printed on even-numbered pages
only. If neither ODD nor EVEN
is specified, the title being
defined will be printed on both
even- and odd-numbered pages.
The EVEN keyword may be abbre
viated as E.

specifies that the title is to
be pr i nted on both odd- and
even-numbered pages. All is
the defau 1 t .

is the number of the title line
to be set. The number may be
from 1 to 6, and if it is omit
ted,. 1 is assumed. The six
possible title lines are the
same for top titles and bottom
titles. Bottom titles are num
bered from bottom to top; top
titles are numbered from top to
bottom. Therefore, "top title
1" sets the same storage buffer
as "bottom title 6." See the
discussion of the .HS [Heading
Space] and .FS [Footing Space]
control words for information
on how to allocate space on
your output page for top and
bottom titles.

is the portion of the title to
be left justified.

/partl/part2/part3/

part2

part3

/

is the portion of the title to
be centered between the left
and right margins.

is the portion of the title to
be right justified.

is any del i mi ter character
that does not appear in part1"
part2, or part3.

Initial Setting: TOP All 1 ///PAGE &

Notes:

1. Every occurrence of the page number
symbol in partl, part2, and part3
is replaced with the current page
number on each page where a title
appears, unless .PN OFF or .PN
OFFNO is in effect. The character
designated as the page number sym
bol may be changed wi th the . PS
[Page Number Symbol] control word
or the . DC PS [Defi ne Character]
control word.

2. Symbol substitution and character
translations set up by the .TR
[Translate Character] control word
are done on part!, part2, and part3
when the .RT control word is proc
essed, not on every page.

3. The three parts of the title are
used to form the actual title that
is to be saved for future use, and
no part may be more than 120 char
acters in length. This title may be
pri nted at the top or bottom of
each subsequent output page, if
space has been allocated for it
using the .HS or .FS control words.

4. The spec i fi c locat i on of the top
titles on the page is controlled by
the .TM [Top Margin] and .HM [Head
ing Margin] control words; the num
ber of top ti tIes to be used on
each page is controlled by the .HS
[Heading Space] control word.

5. The specific location of the bottom
titles on the page is controlled by
the .BM [Bottom Margin] and .FM

Chapter 23. SCRIPT/VS Control Word Descriptions 311

[Footing Margin] control words;
the number of bottom titles to be
used on each page is controlled by
the .FS [Fobting Space] control
word.

6. Any title may be changed by includ
ing another .RT control word later
in the file.

7. The default top title, printed on
each page of output after page one,
is

PAGE &

which is right-justified at the top
of the page. This title may be sup
pressed wi th the . PN OFF control
word.

8. This control word will take effect
on the page after it is
encountered .

• RV [READ VARIABLE]

9. The length of the title will be
that of the line length as set by
the .LL control word.

10. The parameters may be specified in
any order, and if contrad; ctory
options are specified, only the
latest one will be used. The first
character that is not recognized as
an option will be taken as a delim
iter.

Example:

.rt t 'heading"PAGE &'

The heading and the current page number
will be printed at the top of all sub
sequent pages, unless the heading space
has been set to zero.

The .RV [Read Variable] control word is similar to the .SE [Set Symbol] control
word, except that the value of the symbol is read from the terminal .

• RV symname [[=] ']

where:

symname is the name of the symbol to
be set. It may be any name
that would be allowable on the
left side of the equal sign in
a .SE [Set Symbol] control
word.

[=] , i ndi cates that the value set
into the named symbol is to be
treated as a quoted string. If
you do not specify the single
quotation mark, SCRIPT/VS
provides the equal sign auto
mati cally, and processes
whatever string is entered
according to the rules for the
value on the ri ght-hand S1 de
of the equal sign in .SE [Set
Symbol] control words. In
this case, any value that
requires single quotation
marks must have the quotation
marks expl i ci tly suppl i ed as
part of the value entered from
the termi ~al.

Notes:

1.

312

When the .RV control word is
encountered, ali ne is read from
your terminal. This line is used as
the ri ght-hand si de of the equal
S1 gn to set the value of the symbol
named in the .RV control word. Any
expression that would be allowable

Document Composition Facility:

as the value in a .SE control word
is allowable here. If no name is
given on the .RV control word, it
is ignored, and no' line is read
from the terminal.

2. The .RV control word does not cause
an automatic break.

3. No message is displayed before the
terminal is unlocked to accept the
input line. You may use the . TY
[Type on Terminal] control word to
issue a prompt i ng message before
the . RV control word issues its
terminal read.

4. The .RV [Read Variable] control
word is not supported in the
CICS/ATMS-III environment, and
will result in a null value. In
batch environments, .RV will be
ignored unless the fi Ie DSMTERMI
can be read.

Example:

A symbol called "name" could be set
with the following control word:

.se name = 'John Doe'

The same symbol could also be set this
way:

• rv name = ,

User's Gui de

At this point, SCRIPT/VS issues a read
to your terminal, and you may enter the
materi al to be used as the value of the
symbol. In thi s example, you would
enter:

• SA [SAVE ENVIRONMENT]

John Doe

You must use single quotation marks in
the same circumstances where they would
be requi red ina . SE control word,
unless the .rv name =' form is used .

The .SA [Save Environment] control word saves the SCRIPT/VS formatting
environment, which consists of the values and dimensions of certain control words.
If any of these control words is processed, the environment is changed
accordingly. The .RE [Restore Environment] control word restores all the environ
ment values to the settings that were in effect before the .SA control word was
issued .

• SA

Notes:

1. The .SA control word saves envi
ronments in a stack. The .RE [Re
store Environment] control word
restores the SCRIPT/VS environment
to the values that were in effect
at the time of the most recent .SA
control word.

2. The .SA control word only ~ a
copy of the values of these
SCRIPT /VS vari ables, it does not
change any of these variables. ---

3. Since . SA does not change any of
the SCRIPT/VS variable settings,
all variables should be explicitly
set to the values appropriate
unless the current settings are
known. For example, you can explic
itly set indention to 0, and then

.SC [SINGLE COLUMN MODE]

restore it to whatever it was pre
viously.

4. The control word values in the
saved environment are listed in
Figure 34 on page 360.

5. The env ironment saved by . SA is
divided into three parts, the "ac~
tive environment," "page control,"
and translate tables. The act i ve
environment is automatically saved
and restored for some keeps (see
the di scussi on of the . KP [Keepl
control word) and for footnotes. It
is not necessary to use .SA and .RE
wi thi n keeps and footnotes unless
you want to save and restore values
that are not in the active environ
ment, such as . TR [Translate
Character] specifications.

The .SC [Single Column Model control word saves the current column definition and
starts a temporary single column format. The .MC [Multi column Model control word
restores the column defihition that was saved by .SC .

• SC

Notes:

1. The .SC [Single Column Model con
trol word temporarily starts for
matting in a single column that is
the same width as the current .LL
[Line Length] specification. The
.MC [Multi column Model control
word restores the column defi
nition that was in effect before
the .SC was processed.

2. More than one .SC control word may
be processed without an interven
ing .MC. Each .MC clears one .SC,

and, until the first .SC in the
list is cleared, the column defi
nition restored by each .MC is a
single column definition that was
set up by an earl i er '. SC.

3. The .CD [Column Definitionl con
trol word starts an entirely new
column definition, and clears all
.SC's and .MC's that may be in
effect.

4. This control word is not allowed
in a keep.

Chapter 23. SCRIPT/VS Control Word Descriptions 313

5. The .SC control word starts a new
section. Therefore, skips inserted
by the .SK [Skip] control word are

.SE [SET SYMBOL]

discarded, since they would appear
at the top of a column.

The .SE [Set Symbol] control word allows you to define and assign values to sym
bols or arrays of symbols. Using the .SE control word, you can glve a symbolic
name to a page number, a word, or even a string of SCRIPT/VS control words. The
.SE control word itself, or any of its parameters, can be a symbol.

The .SE [Set Symbol] control word is discussed in "Chapter 12. Symbols in Your
Document" on page !29.

.SE symname [ern])] 'qstring[']

symname [ern])] = symvalue
& [SUBSTR string [start [length]] 1 INDEX stringl [string2]

symname [ern])] OFF

symname LIB

where:

symname is the name to whi ch you want
to assign a symbolic value to
be substituted during
SCRIPT/VS processing. It may
contain a maximum of 10 non
blank characters whi ch may
be upper- and lowercase
alphabetic, numeric, and the
characters G), I, and $.

n You may specify a line number
in parentheses for array
symbols, except when you use
the LIB parameter. An array
line number is al so called an
element number or a sub
script.

qstring may be any string preceded by
a single quotation mark. If
the stri ng has trai ling
blanks, the string may be
terminated by a quotation
rna r k . The s t r i n g rna y its elf
contain quotation marks,
which need not be doubled as
in the 'symvalue' form
below.

symvalue assigns a value to the symbol
name; it may be a character
string or an arithmetic
expression.

& assi gns the symbol name a
value equal to the current
page number string.

SUBSTR obtai ns the speci fi ed char
acters (substring) from a

string

start

length

INDEX

stringl

314 Document Composition Facility: User's Guide

gi ven stri ng and assi gns
them to the symbol provided.

is the string from which the
substring is to be
extracted.

is a posi ti ve integer that
defines the position of the
beginning character in the
string which is to be
assi gned to the symbol. If
both start and length values
are omitted, the symbol will
be assigned the entire value
of the stri ng.

speci fi es the number of
characters to be extracted
from the string, in other
words, the length of the sub
string. If length is
omitted, the remainder of
the stri ng, from the speci
fied start to the end, will
be assigned to the symbol.

searches the string
"string!" to see if it con
tains the string "string2".
If it does, the symbol value
is set to the position of the
starting character of
"string2" within "string!".
If it does not, the symbol
value is set to "0".

is a stri ng that is to be
searched to see if it con
tains the string "string2".

string2

OFF

LIB

is a stri ng that is to be
searched for in the string
"string1". If string2 is
omitted, or has a null value,
the symbol will be set to O.

unsets the named symbol so
that, to SCRIPT/VS, it was
never set. An ent ire array
symbol will be set off if no
subscript is provided. How
ever, only the speci fi ed
element will be set off if a
subscript is provided.

causes the symbol to be set
by retrieving its value from
a library. The name of this
library may be defined using
the LIB option on the SCRIPT
command. If the LIB option is
used to set a symbol, the
value retri eved from the
1 i bra ry will replace the
current value. If no entry
wi th the symbol name gi ven
exists in the library, the
symbol will be undefined.
Since symbol names in the
library are in uppercase
only, the same member of the
library will be used to
define all symbols of the
same name that differ only in
the case of the characters
used. Subscripted symbol
names may not be used wi th
the LIB option. The LIB
option may be used
reqardless of the most
recent speci fi cati on of the
.LY control word.

Symbol Names:

The character '*' has a special meaning
as the first character of a symbol name
because it denotes that the symbol is a
local symbol. Thi s means that it wi 11
only have the value that is set at the
current level of macro nesti ng, and
every macro that is called has its own
set of local symbols for the duration
of that macro's execution.

Duri ng SCRIPT /VS processi ng, a symbol
name is recognized when it is preceded
by an ampersand (&) and followed by a
blank or a period:

&symname

If the symbol name appears in any of
the following forms:

symname()
symname(n)
symname(&symbol)

it is an array symbol.

SCRIPT/VS also recognizes symbol names
that are preceded by the GML delimiter,
i nit i all y and by de fa u 1 t , t he co I on

(:). The name of a symbol defined with
.SE as a GML tag must be all in upper
case characters, and it cannot be an
array symbol. The GML delimiter causes
SCRIPT/VS to search for a symbol name
that is all uppercase, regardless of
the case of the name in the input line.

Symbol Values:

If a symbol value is set to a character
string that contains any embedded
blanks or any spec; al characters, it
must be enclosed in si ngle quotati on
marks. For example,

. se dog = cat

.se end = '.qu'

. se sentence = 'Thi sis a sentence.'

are all valid character strings. If you
want a character stri ng to conta ina
si ngle quotati on mark ('), you must
enter two of them, for example

.se title = 'Mrs. O"Grady"s Cat'

unless you use the form:

.se title 'Mrs. O'Grady's Cat'

If you want to use the INDEX or SUBSTR
parameter of .SE to operate on a por
tion of the string "Mrs. O'Grady's
Cat," which is the value of the symbol
&title, you should turn substitution
OFF wi th the . SU [Subst i tute Symbol]
control word before issuing the .SE
control word. If substi tuti on is ON,
the control word line

.se syma = index &title Cat

does not work properly, because substi
tution is performed on the line before
the .SE control word processes it. The
substituted line already has the string
"Mrs. O'Grady's Cat" on the right side
of the equal sign, and the .SE control
word misinterprets the internal blanks
as del i mi ters between parameters. If
substi tuti on is OFF, the . SE control
word receives the line in its unsubsti
tuted form, and the parameter on the
right side of the equal sign is the
character string "&title". Even though
substi tuti on is OFF, the . SE control
word can retrieve symbol values when it
recogn i zes symbol names on the right
side of the equal sign. In this case,
the . SE control word knows that the
entire value of the symbol &title con
st i tutes the "st r i ng1" pa rameter fo r
this .SE control word.

If the symbol value is an ari thmeti c
expression, it must be in the form:

[opll n [op2 n op2 n op2 n ••• l

where:

opl isaunary+or-sign.

Chapter 23. SCRIPT/VS Control Word Descriptions 315

op2 is an arithmetic operator:

+ addition
subtraction

* multiplication
/ dlvision

n is a valid integer of length less
than 9 digits. lengths greater
than thi s may produce unpredi ct
able results. The integers may
have been assi gned thei r values as
a result of a symbol substitution
(including the page number
symbol) •

For example,

.se next page = & + 1

.se current = -100

.se addit = ¤t + 25

.se answer = 15 - 42

are all valid arithmetic expressions.

Notes:

1. In symbol names, uppercase and low
ercase letters are considered to be
different, thus the symbols
symbol1, Symbol1, and SYMBOl1 are
three distinct symbols. Symbols
whose names start with the dollar
sign ($) are system symbols, and
they exi st only in an uppercase
form. The reserved system symbol s
which may not be set by the user,
such as &$RET, are in thi s
category. Al though you can set a
symbol whose name starts with $ if
that name is not in use as a
read-only system symbol, thi sis
di scouragedi confusi on can occur
due to the name foldi ng. Symbol s
preceded by the GMl delimiter can
be recognized only if a symbol (GMl
tag) has been defined with the
spec; fi ed name all in uppercase.
During substitution, a symbol name
that begi ns wi th $ or a symbol pre
ceded by the GMl delimiter is
folded to uppercase before bei ng
resolved.

2. An i terat i ve subst i tut ion, as
descri bed in the . SU [Subst i tute
Symbol] contro I word di scussi on,
is automaticallY performed on all
character string symbol values.

3. If the symbol value is omitted, the
symbol's value is set to a null
character string (length zero).

4. The symbol for the current page
number, &, remains the same even if
the page number symbol that is used
in running titles and running
headi ngs and foot i ngs is changed
with the .PS [Page Number Symbol]
or .DC PS [Define Character] con
trol word.

5. If you set a symbol name equal to
the current page number (.SE refer
= &) wi thi n a keep or float, the
symbol is actually set twice. The
page where the keep will finally be
located is not known until the keep
is ended and measured. When a .SE
control word sets a symbol to the
current page number, the symbol ;s
set immediately, and then it is set
again when the page number of the
keep is known. If you refer to this
symbol before the second setting,
the number may be inaccurate.

6. Arithmetic expressions in set
statements are evaluated stri ctly
from left to right, and no operator
takes precedence'over another. For
example, the expression:

.se x = 1 + 2 * 4 + 6

will set the symbol x to the value
18.

7. See the discussion of the .SU [Sub
stitute Symbol] control word for
more information about symbol sub
stitution.

8. The lIB option of the .SE control
word allows a symbol to be explic
i tly retri eved from the library.
The .lY [library] control word
allows a symbol value to be
retrieved from the library when it
is used ina document and when a
valuefor it does not currently
exist. When a symbol value is once
retrieved from the library, it is
stored in the symbol table for
future use.

9. You should be careful when usi ng
local symbols and page number sy~
boIs in arithmetic set statements
with the multiplication operand
(*). The expression .se a = &*3+1
will be taken a s a request to add 1
to the value of the local symbol
&*3, not as a request to multiply
the page number by 3 and then add
1. To achi eve the latter effect,
the page number symbol must be
delimited (.se a = &.*3+1).

10. When symbol substitution is ON, a
.SE control word line is completely
substituted before it is
processed. When substitution is
OFF, the .SE control word can still
perform individual substitutions
on symbolic values in the control
word. See the next two notes for
examples.

11. Be careful of the effects of sub
stitution on arithmetic set state
ments when symbols that contain
negative numbers are used. For
example,

• se a = -3

316 Document Composition Facility: User's Guide

. se b = 5+&a

will result in an invalid
expression if substitution is on,
as the line will be substituted as:

. se b = 5+-3

which is invalid. However, if sub
stitution is OFF, the .SE control
word processor can see that you
want to add 5 to -3, and can do it
correctly.

·12. The string assignment form of the
.SE control word:

se a 'string'

is not substituted when substi
tution is turned off.

• SK [SKIP]

13. Substitution also has an effect on
the .SE control word if strings are
to be set which are longer than 16
characters. SCRIPT/VS will treat a
single character string without
special characters or blanks as a
character string even if it is not
enclosed in quotation marks, if it
is not more than 16 characters
long. If the string is longer than
this, an error will result. For
example:

.se a = '12345678901234567890'

.se b = index &a 1

will result in an error if substi
tution is on because the symbol &a
is not enclosed in quotation marks.
The error will not happen if sub
stitution is off •

Use the .SK [Skip] control word to generate blank vertical space before the next
text output line, except at the top of a column or page.

The .SK [Skip] control word is discussed in "Vertical Space" on page 43.

.SK [C] [A] [P]

where:

v is the amount of space to be
inserted in the output. If no number
is given, 1 line is assumed. If the
size in "v" is not qualified as any
of the other space uni ts (i nches,
picas, ciceros, or millimeters), it
is a request to sk i p a number of
lines. In this case, unless A is
specified, the size of the request
is multiplied by the appropriate
factor if double spacing or multiple
spacing is in effect.

C i ndi cates condi t i onal sk ips. These
skips depend upon what follows them
in the output column. If conditional
skips are followed by a line of
text, they appear in the column as
requested. If they are followed by
another skip or space request, the
two skip or space requests are com
pared, and only the larger of the
two remains in the column.

A indicates absolute skips. If the
vertical size of the skip given in
"v" is expressed in inches, picas,
ciceros, or millimeters, it is
already an absolute number, and the
actual requested depth wi 11 be
skipped, to the closest approxi
mation possible on the current

logical device. In this case, A need
not be specified.

P i ndi cates page sk ips. These sk ips
will generate skip space across the
full wi dth of the page, even when
formatting in multiple columns.
Since thi s type of sk i p causes a
section break, it is not allowed in
a keep.

Default: 1

Notes:

1. No blank space is generated if it
would be the first to be printed at
the top of a column of output. The
top of a column may be at the top
of the page or after a sect ion
break. This may result in columns
bei ng set short by the amount of
discarded blank space.

If the blank space would not fall
at the top of a column, the . SK
control word is identical to the
.SP [Space] control word.

If the column is partially filled,
and a .SK control word is encount
ered requesting more space than
remains in the column, only enough
space to fill the column is gener-

Chapter 23. SCRIPT/VS Control Word Descriptions 317

ated, and then all the rest (at the
top of the next column) is ignored.

2. Page skips (the P parameter) are
ignored if they fall at the top of
a page, but not if they fall else
where on the page.

3. If double spacing is in effect, the
number of skips generated is multi
plied by the line spacing amount,
unless absolute spacl ng is speci
fied .

• SL [SET LINE SPACE]

4. Thi s control word acts as a break.

5. If the skip request is in lines
(unqual i fi ed space un its) , the
size of each line is as defined
with the .Sl [Set line Space] con
trol word.

6. Conditional skip processing is not
performed across the boundaries of
keeps, floats, footnotes, runni ng
headings and running footings.

This control defines the vertical distance from the baseline of the current line
to the baseline of the following line .

• SL [vsizel

where:

vsize is the the vertical size of all
follow; ng formatted output
lines until redefined with
another • Sl.

Initial Setting: One logical device
print line.

Default: One print line.

Notes:

1. The vertical size of formatted out
put lines is set by .Sl to the
nearest approximation of the
requested size that is possible on
the current logical device.

2. The .Sl value is used for formatted
lines and for requests in lines for
the following control words:

.CC [Conditional Column Begin]

.CP [Conditional Page Eject]

.SK [Skip]

. SP [Space]

In all other control words that can
have a vertical dimension
expressed in lines, such as . Pl
[Page length] and .TM [Top Margin],
the size of the request is based on
the size of a print line on the
current logical device. For exam
ple, if the logical device were an
8 line per inch printer, the con
trol word .TM 4 would set the top
margin to 4 lines, or one-half
inch, regardless of the .Sl value.

3. Addi ti onal space is placed above
each line, and is discarded if the
line falls at the top of a column.

4. The "A" parameter of the .SP
[Space] and .SK [Skip] control
words does not affect spacing set
with .Sl.

318 Document Composition Facility: User's Guide

·SO [STAIRS/VS OUTPUTl

Use the .50 [STAIRS/VS Output] control word to set the STAIRS paragraph code. The
.50 control word will only take effect when output is being produced for STAIRS.

The .50 [STAIRS/VS Output] control word is discussed in "Chapter 17. Producing
Input for STAIRS/VS" on page 179 .

• SO (DOC name J

where:

(PID nxx J
(OPR number J
(RPW password J
(DPW password J

DOC spec; fi es a document name to be
placed in the STAIRS/VS CTF
blocks. The name may be up to 12
characters.

PID specifies the identification to
be given to the next pa ragraph.
Blocks are numbered in increments
of 1 starting with the low order
position. The first position must
be numeric (0-9). The second and
third positions are alphameric in
the ascend; ng order: blank
(X'40'), A-Z, 0-9. Lowercase
alphabetic characters will be
folded to uppercase. A blank may
be used in the second pos it ion
only if the third position is
blank.

OPR spec i fi es an operator number to be
placed in the STAIRS/VS CTF
blocks. The number may be any num
ber up to 32,767.

RPW speci fi es a read password to be
placed 1n the STAIRS/VS CTF
blocks. The password may be up to
fi ve characters, and the default
; s blanks.

DPW specifies a delete password to be
placed in the STAIRS/VS CTF
blocks. The password may be up to
five cha racter s, and the defau 1 t
is the read password.

Notes:

1. If the .50 [STAIRS/VS Output] con
trol is omi tted, blocks wi 11 be
numbered starting with 0 followed
by two blanks.

2. When concatenation is off, each
line will have a separate identifi
cation code.

3. The .50 control word causes a
break, and the DOC parameter starts
a new page.

Examples:

• Some val i d uses of the . SO
[STAIRS/VS Output] control word
are:

•

.so 34c

.so Ob

.so 20b

Some examples of the numbering
sequence are:

o
OA
OAA
DAB
OAC

OAY
OAZ
OAO
OA1
OA2

OA8
OA9
OB
OBA
OBB

Chapter 23. SCRIPT/VS Control Word Descriptions 319

.SP [SPACEl

Use the .SP [Space] control word to generate blank vertical space before the next
text output line.

The .SP [Space] control word is discussed in "Vertical Space" on page 43.

.SP

I [
!] [Cl
V

[Al [Pl

where:

V is the amount of space to be
inserted in the output. If no number
is given, 1 line is assumed. If the
size in "v" is not qualified as any
of the other space un its (i nches,
picas, ciceros, or millimeters), it
i s a rE!quest to space a number of
lines. In this case, the size of the
request is multiplied by the appro
priate factor if double spacing or
multiple spacing is in effect,
unless A is specified.

C indicates conditional spaces. These
spaces depend upon what follows them
in the output column. If conditional
spaces are followed by ali ne of
text, they appear in the column as
requested. If they are followed by
another skip or space request, the
two skip or space requests are com
pared, and only the larger of the
two remains in the column.

A i ndi cates absolute spaces. If the
vertical size of the space given in
"v" is expressed in inches, picas,
ciceros, or millimeters, it is
already an absolute number, and the
actual requested depth wi 11 be
spaced, to the closest approxi
mation possible on the current
logical device. In this case, A need
not be specified.

P indicates page spaces. These spaces
will generate space across the full
width of the page, even when format
ting in multiple columns. Since this
type of space causes a section
break, it is not allowed in a keep.

Defaul t: 1

Notes:

1. If double spacing is in effect, the
number of spaces generated is
multiplied by the line spacing
amount, unless absolute spacing is
specified.

2. This control word acts as a break.

3. If the space request i sin lines
(unqualified space units), the
si ze of each line is as defi ned
with the .SL [Set Line Space] con
trol word.

4. If the space request exceeds the
remai ni ng column depth, the space
is placed at the top of the next
column. If the space request
exceeds the maximum column depth,
the excess space is discarded.

5. Spacing via .SP for large amounts
of space may produce undesi rable
results if column balancing is in
effect. This is because the space
will not be split across columns.

320 Document Composition Facility: User's Guide

.SS [SINGLE SPACE MODE]

Use the .SS [Single Space Mode] control word to cancel a previous .DS [Double
Space Mode] or .LS [Line Spacing] control word, and to resume single-spacing of
output .

• SS

Notes:

1. This control word does not cause a
break.

2. Output following the .SS [Single
Space Mode] control word is single

.SU [SUBSTITUTE SYMBOL]

spaced. Since this is the normal
output format, .SS is needed only
to cancel a previous .DS [Double
Space Mode] or .lS [line Spacing]
control word.

Use the .SU [Substitute Symbol] control word to cause SCRIPT/VS to stop substi
tution of defined set symbols or to restore substitution.

.SU

where:

[
! 1 n
ON
OFF
line

n specifies the number of lines to
be scanned for set symbols to be
substituted. If omitted, 1 is
assumed.

ON turns on an open-ended subst i
tution mode. ON is the initial
setting.

OFF turns off substitution mode if it
was ON, or if n was given and is
not yet exhausted.

line is a line containing symbols that
you want SCRIPT/VS to substitute
with values previously set. Sym
bols may be set via the .SE, .RV,
.IM, or .AP control words, or by
a macro call.

Initial Setting: ON

Default: 1

Notes:

1. The .SU control word causes a spec
ified number of the following input
lines, control words as well as
text, to be scanned for defined set
symbols. If the argument ON is in
effect, every line up to a subse-

quent .SU OFF will be scanned. Sub
stitution ON is the initial mode of
operation, but it is reset to OFF
with .SU OFF or with .SU n, after n
lines have been read. Use of ".SU
line" will not cause resetting of
the count of the number of lines to
be substituted.

2. When an input line is substituted,
each complex symbol may go through
several stages of subst i tut ion
unti I no further subst i tuti on can
be done. Any "symbol name" for
which no definition exists is left
in the input line as text.

3. The substitution of set symbols may
increase or decrease the length of
the text line. If the line's length
reduces to zero, it becomes a "null
line."

4. The TWOPASS opt i on of the SCRIPT
command may result in defining sym
bols during the first pass that can
be substi tuted duri ng the second,
even though these symbols are
defined physically later in the
SCRIPT file. If the length of the
symbol value and the length of the
symbol name are grossly different,
the formatting may come out slight
ly differently in the two passes.

Chapter 23. SCRIPT/VS Control Word Descriptions 321

.SV [SPELLING VERIFICATION]

Use the .SV [Spelling Verification] control word to cause spelling checking to
start and stop. This control word must be enabled by the SPELLCHK option of the
SCRIPT command. If the SPELLCHK option is not in effect, the .SV control word is
ignored.

The .SV [Spelling Verification] control word is discussed in "Chapter 16. Automat
ic Hyphenation and Spelling Verification" on page 171.

.SV [ON] OFF

[NOADD] [NOSTEM] [NUH]

where:

ON speci fi es that spell i ng ver
ification is to be started. Any
addenda di cti onary wi 11 be
searched before the user and
main dictionaries, and stem
processi ng wi 11 be performed,
but numbers will not be
checke'd.

NOADD The addenda dictionary will
not be searched, stem process
ing will be performed, and
words that contain numeric
characters will not be
checked. Turns on verification
if it was off and inhibits use
of the addenda di ct i onary for
spelling checking. This dic
tionary is created using the
.DU[Dictionary Update] con
trol word. If NOADD is
specified, only the main dic
tionary will be used for word
verification.

NOSTEH turns on verification if it was
off and stops the spelling
checking function from per
formi ng stem processi ng on
words to be verified. Stem
process i ng i s descr i bed in
more detail in "Chapter 16.
Automat i c Hyphenat i on and
Spelling Verification" on page
171.

NUH turns on veri fi cati on if it was
off and i ndi cates that spell-

i ng veri fi cati on is to be
started for words whi ch con
tain numeric as well as alpha
betic characters. This option
allows text that contains num
bers to be verified. If ON
instead of NUM is spec; fi ed,
words that conta in al phabet i c
characters only will be
checked.

OFF stops spelling checking.

Initial Setting: ON

Default: ON

Notes:

1. Each time the .SV control word is
used, the settings that control
spelling verification are all
reset. For example:

. sv noadd

will stop spelling checking
against the addenda dictionary. If
this is followed later in the docu
ment by:

• sv num

spelling verification will now
start for numbers, and will be
resumed from the addenda di cti on
ary.

322 Document Composition Facility: User's Guide

.SX [SPLIT TEXT]

The .SX [Split Text] control word is used to split a string of text between the
left and right column margins, with a filler in between the two.

The .SX [Split Text] control word is described in "Positioning Lines on the Page"
on page 44.

.SX I [~] "lparVf ill/rpart [/ I

where:

F allows the left part of a split
line to be folded if it will not
fit in the column. The folding
is done according to rules
appropri ate for creat i ng table
of contents entries. The fill
stri ng and the ri ght part are
never folded; they must fit in
the column.

c speci fi es that the mi ddle part
of the string, usually the fill
string, is to be centered, and
not replicated.

/ is any delimiter character. The
fi rst nonblank character wi 11
be taken as the delimiter char
acter.

lpart is the string to be placed
against the current left
margin.

fill is a stri ng of up to ei ght char
acters to be used to fi 11 the
space between Ipart and rpart.
If no fill is specified, blanks
are used. The beginning posi
tion of the fill string is a
multiple of its length from the
left margin. Multiples of the
fill string are inserted until
they would overlap the right
part. If the fill string is
longer than the space between
the strings, it is not used. The
fill string may not contain tabs
or backspaces.

If the "C" parameter was speci
fied, the fill string is cen
tered between the left end of
the left part and the right end
of the right part, and not rep
licated. When the "C" parameter
is used, the fill string is not
limited to eight characters,
but may not overlap either the
left or right parts.

rpart ; s the
against
gin.

string to be placed
the current right mar-

Notes:

1. The delimiter character between
the str i ngs may be any un i que char
acter that does not occur wi thi n
the strings themselves.

2. Any of the three parts of the line
may be nUll.

3. The final split line is printed in
the font that is in effect when the
.SX control word is encountered.

4. This control word causes a break.

5. The . PT [Put Table of Contents]
control word writes .SX control
words into the the table of con
tents file to be processed when the
table of contents is formatted. The
delimiter used for these
internally generated .SX control
words is hexadecimal 00.

Examples:

• Split text with null fill string:

.sx /left part//right part/

left part right part

• A foldable split text, as used in
tables of contents:

•

. of 1

.sx f /An example ..• ne/ ./323/

An example of a folded split
text line ...• 323

Split text with null left and right
parts:

. sx //-+//

-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Chapter 23. SCRIPT/VS Control Word Descriptions 323

.SY [SYSTEM COMMAND]

The .SY [System Command] control word is only supported in the interactive envi
ronments of CMS and TSO. In CMS, SCRIPT/VS passes a line to CMS for processing as a
CMS or CP command line. In TSO, the line is stacked until the end of SCRIPT/VS
processing .

• SY line

where:

line is a CMS, CP, or TSO command
line. In CMS, if line is omitted,
CMS subset is entered.

Notes:

1. Use the . SY control word if you
want to perform some eMS or CP com
mand when your SCRIPT file is proc
essed, or, in TSO, if you want some
command to be performed after for
matting is complete.

2. The .SY control word does not cause
a break.

3. No CMS command or user program is
allowed that requi res the use of
the same area of storage that is
being used by SCRIPT/VS. CMS com
mands that are valid in CMS SUBSET
are val i d on the . SY command. An
invalid SUBSET command results in a
return code of -2.

4. To test whether a command executed
successfully in a SCRIPT file, you
can use the .IF control word to
test the value of the reserved sym
bol &$RET. For example:

.if &$ret ne 0 .qu

causes SCRIPT/VS to terminate
processing if the return code from
the last executed CMS command is
not zero.

5. If the command does not exi st or
was not executed at all, &$RET is
set to a negative value. This would
be the case for nonexi stent com
mands in CMS, and for all commands
in environments other than CMS.

6. In the TSO environment, if the .SY
control word is used more than
once, the commands will be executed
in the order in whi ch they were
encountered.

7. No command or program should be
used that wi 11 free the storage
controlled by SCRIPT/VS Cfor exam
ple, XEDIT in CMS).

Example:

The .IM [Imb~d] control word issues an
error message if the designated file is
not found. The CONTINUE option of the
SCRIPT command allows SCRIPT/VS to con
tinue processing after this error. The
following .CIM [conditional imbed]
macro would allow SCRIPT/VS to test for
the existence of a file in CMS before
attempting to imbed it, and only imbed
it if it is available:

.dm cimC) /.sy state &*1 * *

.dm cimC) /.if &$ret eq 0 .im &*

The macro would be invoked as follows:

.cim filename

324 Document Composition Facility: User's Guide

.TB [TAB SETTING]

Use the .TB [Tab Setting] control word to define how tab characters (hexadecimal
05) are to be resolved. They may be changed into a number of blanks or to a string
of another character.

The .TB [Tab Setting] control word is discussed in "Using Tabs In SCRIPT/VS" on
page 36.

.TB

[
SET 1 [[f/lh [f/lh ••• tf/]hl

where:

ADD
CLR
DEL

ADD speci fi es that the tab di splace
ments gi ven are to be added to
those currently defined.

DEL Dr CLR specifies that the tab dis
placements given are to be removed
from those currently defined.

SET specifies that all the old tab
stops are to be cleared and a new
set of tab stops is to be defined.

h specifies the horizontal dis
placements of the tab stops.
SCRIPT /VS di splaces to the next
stop by paddi ng wi th blanks or
other fill character. The
sequence for any single .TB con
trol word must consist of
i ncreasi ng posi ti ve values sepa
rated by one or more blanks.
However, a . TB ADD control word
can insert new tab stops between
exi sti ng ones.

If no parameters are specified
with .TB SET, the default tab set
t i ngs are resto red.

If .TB SET 0 is specified, all tab
settings are cleared.

f/ speci fi es the fi 11 character to be
used in di splaci ng through posi
tion h. If the fill character is
to be the blank, it need not be
specified.

Default: 5, 10, 15, 20, 25, 30, 35, 40,
45, 45, 50, 55, 60, 65, 70, 75,
and 80

Hotes:

1. Thi s control word acts as a break.

2. The tab settings on any single .TB
control word must be i ncreasi ng.
Tab settings on any single .TB con
trol word that are not so ordered
result in an error message.

3. Tab characters that are found
beyond (to the right) of the last
defined tab stop are converted to a
single blank.

4. The fill character is formatted in
the current font when the fill
string is being formatted.

5. If the space to the next tab stop
is less than the width of one fill
character, the tab stop after the
next is used.

6. On the 3800, fill characters are
only supported with monospaced
fonts If you use fi 11 characters
wi th proporti onally spaced fonts,
vertical misalignment may result.

7 . Backspaces after a tab have the
effect of reducing the tab position
for non-3800 logi cal devi ces, but
the distance to be tabbed is never
reduced to less than one character
space.

8. No more than 99 tab stops may be
set at one time.

9. Tabs beyond the column margin set
by . Cl [Column line length] are
ignored.

Examples:

• .tb 10 20 */30 40

Tab posi t ions are ; nterpreted as
character positions 10, 20, 30, and
40. If a tab character is processed
between positions 20 and 30 of a
line, the positions from the cur
rent po sit i on up through and
including position 30 are filled
with aster i sks 00 instead of
blanks. The next character goes in
position 31. For example, using the
system symbol &$TAB to generate tab
characters, the line,

&$TAB.text&$TAB.text&$TAB.text

results in:

Chapter 23. SCRIPT/VS Control Word Descriptions 325

text text~nnnBBEtext

• . tb

.TC [TABLE OF CONTENTS]

Tab positions revert to default
values of 5, 10, 15, etc.

The .TC [Table of Contents] control word causes the automatically generated table
of contents to be imbedded and printed. Entries may be placed in the table of con
tents by head level control words .HO - .H6 [Head level 0 - 6] and by the .PT [Put
Table of Contents] control word.

The .TC [Table of Contents] control word is discussed in "Chapter 6. Head levels
and Table of Contents" on page 73.

where:

n

name
control
/]

is the number of page numbers
to be reserved for the table
of contents. If omitted, 1 is
assumed. This operand is
mean i ngful when the table of
content sis at the front of
the document, and the TWOPASS
option is used to process it.
On the first pass, the table
of contents is empty, but on
the second pass, it may occupy
several pages. If the page
numbers in the table of con
tents are to be accurate,
every entry in the table of
contents must have the same
page number on both passes.
After .TC, if .PA n, or .PN n,
explicitly sets the page num
ber before . PT sets anythi ng
into the table of contents,
then all the pages from the
table of contents to the
explicit .PA n, or .PN n will
be sequent i all y numbered. If
not, the n value on the • TC
control word will be used to
determi ne the number of the
page after the table of con
tents.

name is an opti onal 1 i neto be used
as the title of the table of
cbntents. If no name is given,
the word CONTENTS is used. A
head-level 1 (.Hl) is gener
ated at the top of the table
of contents usi ng the name
given or the word CONTENTS.

control is a control word or macro to
be processed at the top of the
table of contents in lieu of
the .H1. If this parameter
begins with a period, it is
assumed to be a control word,
and not a name.

/ signals SCRIPT/VS not to gen
erate any head level 1 for the
table of contents. Use thi s
when you want no name on the
table of contents, you have no
control word to be executed,
and you don't want the default
name CONTENTS to be
generated.

Defaul t: 1

Notes:

1. When . TC is encountered, a head
level 1 is processed. A page eject
is done if not already at the top
of a page, but no entry is placed
in the table of contents for the
head. All table of contents entries
that have been saved in the utility
fi Ie DSMUTTOC are then formatted
and printed. The entries come from
the head level control words whose
definitions call for table of con
tents entries (by default, the
control words .HO through .H3 cause
these entries) and from any explic
it .PT control words in the source
file which have been executed prior
to the .TC, either on the current
or previ ous pass.

2. The table of contents is formatted
according to the line and page
dimensions in effect at the time
the .TC control word is
encountered, not those in effect
when the head level was processed.
Each 1 i ne in the table has the
revision code and the page number
that were in effect when the head
level was processed.

3. When the table of contents is com
pletely formatted, another page
eject is done, and the new page is

326 Document Composition Facility: User's Guide

numbered as though sequential page
numbering had occurred and the
table of contents had occupied
exactly n pages. If the table takes
other than n pages, there will be
ei ther a gap or an overlap in pagi
nation. If TWOPASS is in effect,
the pag i nat i on may be a 11 owed to
run sequentially if the page number
is explicitly reset before the
first table of contents entry fol
lowing .TC. In this case, it
doesn't matter what was specified
for n.

4. This control word acts as a break.
It is not allowed in a keep .

• TE [TERMINAL INPUT]

5. If the .TC control word is used at
the begi nn i ng of a document you
must be careful that the resolution
of symbols during the second pass
does not cause the document to
expand or contract in such a way
that the page numbers establ i shed
during the first pass are caused to
be invalid.

Example:

See the table of contents of this docu
ment for an example of an automatically
generated table of contents.

Use the .TE [Terminal Inputl control word when you want to enter text or control
lines during the processing of the input file.

.TE

where:

n

ON

OFF

line

[
1 1 n
ON
OFF
line

specifies
that wi 11
terminal.
assumed.

the number of lines
be accepted from the
If omi tted, 1 is

starts an open-ended terminal
input mode.

turns off terminal input mode if
it was ON, or if n was given and
has not yet been exhausted.

is an input line to be processed.
The "1 i nett form is avai lable wi th
.TE because it is a Type 1 con
trol word, but it actuallY does
not read anything from the termi
nal. The control word:

. te read this line

causes the line "read this line"
to be processed as an ordi nary
; nput 1 i ne, but SCRI PT /VS obv i -
ously does not read it from the
terminal, because it already has
the 1 i ne.

Default: 1

Notes:

1. When the .TE control word is
encountered, your terminal key
board is unlocked to accept input
lines. The input lines may be text

or control words and are processed
as if they had been read from an
imbedded file (see the .IM [Imbedl
control word). The only exceptions
to this are the .GO [Gotol and ...
[Set Labell control words, which
are not allowed duri ng termi nal
input. If a numeri c operand was
specified, terminal input is ended
after reading n lines. If no oper
and was specified, only one line is
read from the terminal. If ON was
spec if i ed, input i s accepted from
the terminal until ended with .TE
OFF. When terminal input is ended,
processing reverts back to the line
following the .TE control word in
the file. If the TWOPASS option of
the SCRIPT command is in effect,
.TE control words in the input file
will be processed on both passes .

2. If you use .TE while the formatted
output is being displayed at your
terminal, the input and output may
be interspersed. This can be useful
for testing or experimentation,
but is not usually appropriate for
final output.

3. The .RO [Read Terminall control
word merely unlocks the keyboard to
allow you to type 1 i nes in the
mi dst of the normal termi nal
output. I t does not process what
you type. The .TE control word, on
the other hand, may be u sed to
~nter control words or cause text

Chapter 23. SCRIPT/VS Control Word Descriptions 327

input to be formatted and to appear
in the output when the output i s
written to a device other than the
termi nal. The . TE control is in
effec~ an imbed, where the "file"
imbedded is your keyboard.

4. Use t~e .TY [Type on Terminal] con
trol word immediately before the
.TE control word to dlsplay prompt
i ng messages.

5. If. TE ON was speci fi ed, the number
of lines to be read is open ended.
It can be ended by . TE OFF, but
since your keyboard is a simulated
imbed fi Ie, . EF, .QQ, or .QU wi 11
al so end it .

• TH [THEN]

6. The .TE control word may be used to
enter control words to speci fy a
particular processing of the input
fi Ie, such as revi si on codes or
conditional sections.

7. Terminal input may be read from a
disk file if the terminal input
file name DSMTERMI has been associ
ated with the file or data set name
with the .DD [Define Data File-id]
control word. See the discussion of
.00 for more information.

8. In the ATMS-III envi ronment, a null
line is returned. In batch environ
ments, the file DSMTERMI is read.

The .TH [Then] control word can be used in conjunction with the .IF [If] control
word to process SCRIPT/VS input lines conditionally. The target line is processed
~nly if the most recently performed .IF [If], .AN [And], or .OR [Or] control word
resulted in a true condition.

The .TH [Then] control word is discussed in "The .IF Control Word Family" on page
111 .

• TH target

where:

target is any val i d SCRIPT /VS input
line. It may be a control word
or text. If the most recently
performed .IF [If] was true,
the target 1 i ne i s processed
next, wi th the f1 rst nonblank
character after .TH treated as
the first position of the sub
ject line. If the condition
was not true, the target line
is ignored, and processi ng
conti nues wi th the input 1 i ne
that follows the .TH control
line.

Notes:

1. For readabi 1 i ty, an opt i onal "EN"
may be added without an intervening
blank to the .TH control word. This
allows the control word to be writ
ten as ". TH" or ". THEN".

2. The .TH [Then] and .EL [Else] con
trol words, in conjunction with .IF
[If], .AN [And], and .OR [Or],
allow you to construct complex log
ic statements.

3. The . TH and . El control words do
not cause a break or change the
true/false condition; the target
control word might, if it is proc
essed. For example, the input lines

• if &aeq &b
.else .if &c eq &d
.then .ty Yes.

are equivalent to the line

• if &a eq &b . or &c eq &d . ty Yes.

4. Multiple .TH [Then] and .El [Else]
control words may follow an . IF
[If] control word; only the • TH
[Then] control words will be exe
cuted if the .IF [If] resulted in a
true comparison; only the .El
[Else] control words will be exe
cuted if the .IF [If] resulted in a
false comparison.

5. If there is no most recently per
formed comparison, the target will
be processed.

Examples:

• The following input lines

.if &a eq &b .ty Yes,

. if &a eq &b . ty st ill.

are equivalent to the following
lines:

. if &a eq &b

.then .ty Yes,

.th .ty still.

328 Document Composition Facility: User's Guide

.TI [TRANSLATE INPUT]

Use the .TI [Translate Input] control word to translate the input te~t from one
input representation to another. This control word should be used with caution,
since this translation will occur before any other processing is done.

The .TI [Translate Input] control word is discussed in "Character Manipulation" on
page 87 .

• TI [s t] •••

where:

sis the source character to be trans
lated. It may be a single character,
or a 2-character hexadecimal c~de.

t is the desired output represen
tation of the source character. It
may be a si ngle character, or a
2-character hexadecimal code.

Default: Restores the initial input
translate table.

• TM [TOP MARGIN]

Notes:

1. Multiple pairs of translate char
acters may be specified with a sin
gle .TI control word.

2. Translate-character specifications
remain in effect until explicitly
respecified.

3. A .TI control word with no operands
causes the translation table to be
reinitialized and all previously
specified translations to be
reset.

4. The .TI control word does not cause
a break .

The .TM [Top Margin] control word specifies the amount of vertical space to be
reserved above the text and running heading on output pages, overriding the ini
tial value established for the device.

The .TM [Top Margin] control word is discussed in "Changing thQ Page Length" on
page 57. Figure 8 on page 56 shows the relationship of the .TM [Top Margin] to the
layout of a SCRIPT/VS output page.

where:

V speci fi es the amount of vert i cal
space to be reserved at the top of
output pages. If no value is speci
fied for v, the default value for
the logical device will be used. v
must be large enough to accommodate
the heading margin and the heading
space, both of which are allocated
from the top margin area. The top
and bottom margins may not fill the
page so that there is no room left
for formatted text. If the value
specified for the top margin is so
large that there would not be at
least one line available for text,
the old top margi n is left
unchanged, and an error message is
issued.

+v or -v increases or decreases the
existing top margin by the amount
gi ven. The calculated top margi n
value must fall within the allowed
range, or an error message will be
issued.

Initial Setting: Dependent upon the
logical device for which the docu
ment is being formatted.

Default: Restores thQ initial setting.

Notes:

1. When the .TM control word is proc
essed, a new top margin is set for
future pages, but it is too late
for the new value to take effect on

Chapter 23. SCRIPT/VS Control Word Descriptions 329

the current page. If you want to
increase the headi ng margi n (. HM)
or th~ heading space (.HS) beyond
what "the current top margin will
accommodate, you must change the
top margin value first.

2. This control word does not cause a
break, and it takes effect on the
page after the control word is
encountered.

3. If you specify .TM 0, the heading
margi n and the headi ng space are
also made zero automati cally. Any
other top margin specification
that is smaller than the current
size of the heading margin plus the
heading space cannot be satisfied,
and results in an error message .

• TR [TRANSLATE CHARACTER]

4. An error message is also issued if
you try to set the top and bottom
margins so that they fill the
entire page, without at least one
1 i ne left for text.

5. An extra blank page wi 11 precede
the first formatted page for 1403
output if you request, through some
combination of .TM, .HS, and .HM,
that the first line be printed
above the fourth line of the page.
The blank page occurs because
SCRIPT/VS assumes that the channel
one punch of the carriage control
tape is at the fourth line of the
page.

The .TR [Translate Character] control word allows you to specify the output repre
sentation of each character in the source text.

The • TR [Translate Character] control word is di scussed in "Character
Manipulation" on page 87 .

• TR [s tl

where:

s is the source character to be trans
lated. It may be a single character,
or a 2-character hexadecimal code.

t is the desired output represen
tation of the source character.

More than one pa i r of source and
intended output codes may be speci
fied with a single .TR control word.

Default: Restores the initial output
translate table.

Notes:

1. The .TR control word is primarily
of use when the final output device
uses a different character set than
was used to create the source
SCRIPT file.

2. The text associ ated wi th runn i ng
title lines (.RT) is translated
under control of the translat ions
in effect at the time that the .RT
control word was processed. If you
change the translat ions after the
running title has been saved for
future use, it is too late to
affect that running title.

3. Since control words are only proc
essed i nterna 11 y, they a re never
translated by the .TR control word.
However, text data associated with

a control word (as in running
titles and typed messages) can be
translated.

4. Translate-character specifications
rema in in effect unt i 1 expl i ci tly
respecified.

5. A .TR control word with no operands
causes the translation table to be
reinitialized and all previously
specified translations to be
reset.

6. By using the .IF, .CS, or .TE con
trol words, you may specify differ
ent output character sets for
different runs with different out
put devices.

7. The .TR control word does not cause
a break.

8. The hexadecimal codes for each
pri ntable character for the vari-
0us character sets and fonts used
by SCRIPT/VS are shown in "Appendix
A. SCRIPT/VS Summary" on page 341.

9. During the time a translation is in
effect, every occurrence of the
character is translated to the des
i gnated output character in for
matted text. You should therefore
take care not to translate charac
ters that wi 11 be needed duri ng
that range. The actual translation
is done at various times in the

330 Document Composition Facility: User's Guide

formatting process, depending on
the requirements of the logical
dev ice fo r wh i ch the document i s
be i ng fo rmatted. The latest time
when a translation can be done is
when a line is finished, and is
placed in a column. You should
assume, therefore, that a trans
lati on wi 11 be needed unti I the
next break is done, whether thi s
happens naturally because a line is
full, or is forced by a control
word that causes a break. .

Examples:

• . tr 0 bO 1 bl ..• 9 b9

• TS [TRANSLATE STRING]

•

Thi s causes the characters 0, 1,
.•. , 9 to pri nt as thei r corre
sponding superscript characters if
they are available in the current
font. For example, the formula:

X2+Y2=Z3

pri nts as:

. tr 40 ?

This causes all blanks in the file
to be translated to question marks
(1) on output .

Use the .TS [Translate String] control word to translate an input character to a
string. This control word should be used with caution, since this translation will
occur after input translation but before any other processing is done.

The .TS [Translate String] control word is discussed in "Character Manipulation"
on page 87.

I .TS I s

where:

[

/string[/]
OFF
IGNORE]

sis the source character to be
translated. It may be a single
character or a 2-character
hexadecimal code.

/ is any del i mi ter character.

string is the desi red output repre
sentat i on of the source char
acter. It may be any stri ng
from 0 to 255 characters in
length.

OFF specifies that string trans
lation is to be stopped for the
specified character.

IGNORE specifies that the given char
acter string is to be retained
in the text and included in the
output, but not measured dur
i ng formatti ng. That is, an
IGNOREd character is treated
as a zero width character.

Notes:

1. A character may be set to a null
stri ng by ei ther speci fyi ng adja
cent delimiters or omitting the
string specification altogether.

2. Unl ike other del i mi ted stri ngs
(for example, on the .RT [Running
Ti tIel control word), the . TS
string is not scanned for internal
delimiters. Thus the end delimiter
is only required if you want trail
ing blanks or the string ends with
the character that you have chosen
as the delimiter.

3. String translation is only per
formed when symbol substitution is
in effect.

4. String translation specifications
remain in effect until explicitly
respecified.

5. Unlike the .TI [Translate Input]
and .TR [Translate Character] con
trol words, you must explicitly
stop each string translation by
specifying the OFF option. For
example:

.ts X /<percent sign>

will cause all occurrences of X in
the input to be replaced by the
string <percent sign> until you
enter:

.ts 6c off

Chapter 23. SCRIPT/VS Control Word Descriptions 331

Note that it can be di ffi cuI t to
use the .TS [Translate String] con
trol jword unless you turn substi
tution off or you specify the value
in hexadecimal (be careful if you
have translated one of the charac
ters used as a hexadecimal digit).

6. String translations specified with
the .TS [Translate String] control

.TU [TRANSLATE UPPERCASE]

word are stored in the symbol
table. Since string translation
occurs at the same time as symbol
subst i tut ion, the subst i tuted
stri ng is not subject to further
symbol substitution.

7. The .TS control word does not cause
a break.

The .TU [Translate Uppercase] control word allows you to specify the output repre
sentat i on of characters when uppercase output has been requested wi th the . UC
[Underscore and Capitalize], .UP [Uppercase], or .BF [Begin Font] control words or
the UPCASE option on the SCRIPT command.

The . TU [Translate Uppercase] control word is di scussed in "Character
Manipulation" on page 87.

.TU [s t]

where:

s is the source character to be trans
lated. It may be a single character,
or a 2-character hexadecimal code.

t is the desired output represen
tation of the source character.

More than one pa i r of source and
intended output codes may be speci
fied with a single .TU control word.

Defau 1 t : Resto res the in it i a 1 output
translate table.

Notes:

1. The .TU control word is primarily
of use when the default translate

table designed for English is not
appropriate.

2. Translate specifications remain in
effect until explicitly respeci
fied.

3. A .TU control word with no operands
restores uppercase translat i on to
the default.

4. The defaul t uppercase translati on
has the same effect as the follow
ing .TR [Translate Character] con
trol word:

.tr a A b B .•. z Z

5. The .TU control word does not cause
a break.

332 Document Composition Facility: User's Guide

.TY [TYPE ON TERMINAL]

The .TY [Type on Terminal] control word causes one line of information to be dis
played at your terminal, or written into the file DSMTERMO, no matter where the
SCRIPT/VS formatted output is going .

• TY text

where:

text is the 1 i ne to be typed. It is
used only for thi s message. It
does not become part of your doc
ument unless the document output
is also being typed at your ter
minal.

Notes:

1. The .TY [Type on Terminal] control
word will cause a file with the id
DSMTERMO to be created in the back
ground environment.

2. When the .TY control word is proc
essed, the text line given is typed
at the termi nal. Thi s 1 i ne is not
part of the document. SCRIPT/VS
does not process the line for out
put; the line is not justified, or
formatted in any way. However, the
line is scanned for control word
separators and symbols are substi
tuted. The text to be typed is
translated according to the .TR
[Translate Character] translations
currently in effect.

3. You may use the .TY control word to
issue a prompting message before a
.TE [Terminal Input] or .RV [Read
Variable] control word.

4. The information line printed is not
counted as part of the normal out-

put. Thus, if the formatted output
is being typed on the terminal, the
paper positioning may become
incorrect and require manual
adjustment. In general, the .TY
control word should be used for
document-dr; ven messages when the
formatted output is going to a
pri nter or to a di sk fi Ie.

5. Contrast this control word with .MG
[Message]. The .MG control word
allows you to issue a true
SCRIPT /VS message. A true message
may have any of several different
degrees of severity, it may termi
nate SCRIPT/VS processing, and its
destination and final form are con
trolled by the MESSAGE command
option. The .TY control word merely
types out a line without any of the
function of a true message.

6. The .TY control word is ignored in
the ATMS-III environment.

Example:

.ty Do you want 2 column output?
· rv answer
· if x&answer ne xyes . go by2col
· cd 2 0 46
.cl 43
. .• by2col

Chapter 23. SCRIPT/VS Control Word Descriptions 333

.UC [UNDERSCORE AND CAPITALIZE]

The .UC [Underscore and Capitalize] control word automatically underscores and
capitalizes one or more input lines.

The .UC [Underscore and Capitalize] control word is discussed in "Underlining and
Capi tal i zi ng" on page 47 .

• UC

where:

n specifies the number of lines to
be underscored and capi tal i zed.
If omitted, 1 is assumed. If .UC
n is specified when .UC ON is in
effect, .UC is turned off when n
1 i nes have been underscored and
capitalized, or when .UC OFF is
encountered.

ON

OFF

specifies that subsequent text
lines are to be underscored and
capitalized.

termi nates under"score and cap
italization mode if it was ON, or
if n has been specified and has
not been exhausted.

line is a single text line to be capi
talized and underscored.

Initial Setting: OFF

Defaul t: 1

Notes:

1. Use the .UC control word whenever
you have a line of data that is to

be formatted in capital letters and
underscored. Thi s control word
prov i des the comb i ned funct i on of
. US [Underscore] and . UP [Upper
casel.

2. The .UC control word does not cause
an automatic break; single words in
a sentence may be underscored and
capitalized.

3. By default, capitalization is per
formed by translating a-z to A-Z.
The .TU [Translate Uppercase] con
trol word may be used to extend
capitalization for languages other
than English.

Examples:

• Underscoring and capitalizing a
si ngle word:
This sentence has
. uc one
word processed by .UC.

results in

Thi s sentence has ONE word proc
essed by . UC.

334 Document Composition Facility: User's Guide

.UD [UNDERSCORE DEFINITION]

Use the .UD [Underscore Definition] control word to specify whether blank charac
ters should be underscored whenever automatic underscoring is done using the .US
[Underscore] and .UC [Underscore and Capitalize] control words or when a font that
calls for underscoring is in effect.

.UD

where:

ON
OFF]

ON speci fi es that blanks are to be
underscored.

OFF specifies that blanks are not to
be underscored.

Initial Setting: ON

Default: ON

• UN [UNDENT]

Notes:

1. This control word does not cause a
break.

2. In order that documents containing
.UD [Underscore Definition] spec
if i cat ion s suppo rted by SCRI PT IVS
Versi on 1.0 wi 11 be processed, no
error messages wi 11 be issued if
the .UD [Underscore Definition]
control word is used in the form
previously supported .

Use the .UN [Undent] control word to cause the next line to be shifted. The current
indention is changed for the next line only, then restored to its previous value
for subsequent lines .

• UN

where:

h specifies the amount of horizontal
space by which the indention is to
be altered for the next output line
only. A SCRIPT IVS "undent" is a
negative indent. If -h is
speci fi ed, 'the . UN control word is
effect i vel y the same a s the . I L
[Indent Line] control word. If
om i tted, 0 i s assumed, and the
indention is not changed.

Initial Setting: 0

Default: 0

Hotes:

1. The .UN control word provides func
tion similar to that provided by
the .OF [Offset] control word. The
choice between using .UN and .OF is
usually a matter of personal pref
erence. They may a 1 so be u sed at

the same time to control margins
that shift both right and left.

2. Thi s control word acts as a break.

3. The value specified in a .UN con
trol word is subtracted from the
current indention (indent value
plus offset value) to determine,
where to format the next line. If
the .UN amount exceeds the current
indention amount, an error message
results.

4. If successive .UN or .IL control
words with positive or negative
speci fi cati on for h are encount
ered without intervening text
lines, the . UN value is reset to
the latest specified value each
time.

5. The .UN control word is triggered
by the next text, sk i p, or space
line.

Chapter 23. SCRIPT/VS Control Word Descriptions 335

Example:

.; n 3p

.un 3p

If an indention of 3 picas is ;n effect
(as in these 1 i nes), the next

.UP [UPPERCASE]

line is undented to the left mar
gini all following lines have the
normal indention of 3 picas from
the left margin.

The . UP [Uppercase] control word automati cally cap; tal i zes one or more input
lines.

The .UP [Uppercase] control word is discussed in "Underlining and Capitalizing" on
page 47.

.UP

where:

[
! 1 n
ON
OFF
line

n specifies the number of lines to
be capitalized. If omitted, 1 is
assumed. If .UP n is specified
when • UP ON is in effect, cap
italization is turned off when n
1 i nes have been capi tal i zed, or
when .UP OFF is encountered.

ON speci fi es that subsequent text
lines are to be capitalized.

OFF terminates capitalization mode
if it was ON, or if n has been
speci fi ed and has not been
exhausted.

line is the line to be capitalized.

Initial Setting: OFF

Default: 1

Notes:

1. Use the .UP control word whenever
you have a line of data that is to
be formatted in capital letters. If
your ent i re document is to be in
capital letters, use the UPCASE
option of the SCRIPT/VS command
line.

2. The .UP control word does not cause
an automat i c break. Single words
in a sentence may be capitalized.

3. Another method of capi tal i zi ng a
single word is to use the uppercase
attribute symbol &u' that is recog
nized by the symbol processor.

4. By default, capitalization ;s per
formed by translating a-z to A-Z.
Thi s translat i on can be extended
with the .TU [Translate Uppercase]
control word for languages other
than English.

Examples:

•

•

Capitalizing a single word:

This sentence has
• up one
capitalized word.

results in:

Thi s sentence has ONE capi tal i zed
word.

Capitalizing a single word using
the symbo 1 processo r' s upperca se
attribute:

Thi s sentence has &u' one capi tal
i zed word.

results in:

Thi s sentence has ONE capi tal i zed
word.

336 Document Composition Facility: User's Guide

.US [UNDERSCORE]

The . US [Underscore] control word automati cally underscores one or more input
lines.

The .US [Underscore] control word is discussed in "Underlining and Capitalizing"
on page 47.

.US

where:

n

ON

OFF

[
! 1 n
ON
OFF
line

specifies the number of lines to
be underscored. If omitted, 1 is
assumed. If . US n is speci fi ed
when .US ON ;s in effect, .US is
turned off when n lines have been
underscored, or when .US OFF is
encountered.

specifies that subsequent text
lines are to be underscored.

terminates underscoring if it
was ON, or if n has been speci
fied and has not been exhausted.

line is a s;ngle text line to be
underscored.

Initial Setting: OFF

Default: 1

Notes:

1. Use the .US control word whenever
you have a line of data that is to

.UW [UNVERIFIED WORD]

be underscored.

2. The .US control word does not cause
an automatic break; single words in
a sentence may be underscored.

3. The .UD [Underscore Definition]
control word controls whether
blank characters (X'40') are
underscored or not by the .US
[Underscore] control word.

Examples:

• Underscoring a single word:

This sentence has
. us one
underscored word.

results ;n:

Thi s sentence has .Q.!l.g underscored
word.

The .UW [Unveri fi ed Word] control word is generated by SCRIPT/VS and executed
whenever unverified and potentially misspelled words are found.

The .UW [Unverified Word] control word is discussed in "SPEllCHK: Verify Spelling"
on page 182 .

• UW word word •••

where:

word is the list of unverified words
found for one input line.

Notes:

1. Whenever misspelled words are
found in an input line, the . UW
control word is executed with the
misspelled words as parameters.

Normally this control word issues
an error message to tell you that
those words were not verified.

However, if you wish to have some
function performed when a mis
spelled word is encountered, you
can defi ne a • UW macro wi th • DM
[Define Macro], and, assuming mac
ro subst i tut ion is ON, your . UW
macro will be executed whenever

Chapter 23. SCRIPT/VS Control Word Descriptions 337

mi sspelled words are found. Note,
however, that after the .UW control
word or macro is processed, the
misspelled words are still on the
line, and are processed as part of
that text input line. In other
words, you cannot use the .UW macro
to correct or remove such words
from ali ne.

2. When unveri fi ed words are found,
you may want to add them to an

.WF [WRITE TO FILE]

addenda dictionary using the .DU
[Dictionary Update] control word
so that only the first occurrence
is detected, or write the words to
a fi Ie usi ng the . WF [Wri te To
File] control word so that you can
review the file created for possi
ble permanent addition to your
dictionary.

Use the .WF [Write To File] control word to cause lines of text or control words to
be written to an output file with the id DSMUTWTF .

.
• &.IF !

n
ON
OFF
line
IMBED
ERASE . .

where:

n specifies that the next n lines
are to be written into the
DSMUTWTF fi Ie.

ON specifies that the following
text and control words are to be
written into the DSMUTWTF file
until .WF OFF is encountered.

OFF stops wr it i ng text and cont ro 1
words to the DSMUTWTF file,
whether ON was specified, or a
number of lines in 'n' that has
not yet been exhausted. The .WF
OFF control word must occur on a
line by itself.

line is a line of text or control
words to be written to the file.

IMBED causes the DSMUTWTF file to be
imbedded.

ERASE causes the DSMUTWTF file to be
erased.

Notes:

1. All the text and control words
between the .WF ON and OFF control
words will be written into the
DSMUTWTF file. No .WF control word
is wri tten to the fi Ie. Any .WF
other than .WF OFF is ignored when
.WF is wri ti ng 1 i nes to the fi Ie.

2. If symbol substitution is ON, the
lines that are written to the file
will have been substituted. If sub
sti tuti on is ON when the fi Ie is
imbedded, the lines will be substi
tuted again if any unresolved
symbols remained from the first
substitution.

3. The file-id DSMUTWTF may be associ
ated wi th di fferent fi Ie or data
set names using the .00 [Define
Data File-id] control word. See the
discussion of .00 for more informa
tion. Different groups of
information can be written to dif
ferent actual fi les when . DO is
used.

4. The .WF control word cannot write
into a fi Ie that is currently in
use for .AP [Append] or .IM
[Imbed]. If an imbedded or appended
file is ended with the .EF [End of
File] control word it is still "in
use" unless the CLOSE opti on was
specified.

5. The data written to a file will be
added after any exi sti ng data in
the file, unless DSMUTWTF has been
associated with a member of a par
titioned dataset. In this case, the
data replaces any existing member.

338 Document Composition Facility: User's Guide

.WZ [WIDOW ZONE]

The .WZ [Widow Zone] control word specifies that single-line widows in body text
are to be suppressed.

.WZ

where:

ON
OFF]

ON speci fi es that wi dows are to be
suppressed. Thi sis the defaul t
and the initial setting.

OFF specifies that widows are not to
be suppressed.

Initial Setting: ON

Default: ON

Notes:

1. This control word causes a break.

2. Widow processing is not performed
if the depth of the body of the
page is less than 8 lines.

3. All control s that cause a break
effectively end any widow zone and
the next line of text will start a
new widow zone. This may result in
what appears to be a si ngle 1 i ne
widow but which is actuallY a sin
gle line paragraph.

4. Widow zone processing is not per
formed in footnotes.

Chapter 23. SCRIPT/VS Control Word Descriptions 339

.zz [DIAGNOSTIC]

The .ZZ [Diagnostic] control word provides the system programmer with the ability
to dump selected internal SCRIPT/VS control blocks. This control word is ignored
unless enabled by the DUMP option of the SCRIPT command •

• ZZ C ON 1

where:

ON

OFF

C OFF 1
C PROG 1
C DUMP nn [nn •••] 1

allows dump data that is speci
fied in message definitions to be
printed. This is the initial set
t i ng if the DUMP opt i on of the
SCRIPT command is specified.

prevents dump data that is speci
fied in message definitions from
being printed.

PROG causes a program exception,
regardless of whether the DUMP
option was specified on the
SCRIPT command. Thi sis useful
when used in an interactive envi
ronment whi ch provi des dynami c
debugging tools.

DUMP causes immediate dumping of the
data areas indicated by the code
numbers given in "nn". The valid
range of values is 9 through 64.
Any number of values may be spec
ified; if none is specified, all
are set on. The valid code num
bers are as follows:

Notes:

9 Act i ve save areas (most
recent first) - DSMSAVD

10 Global area - DSMSGLB

11 Language processor common
area - DSMSECT

16 Logical
DSMSLDT

Device table

17 TRS work area - DSMTRSC

1. The .ZZ control word may be used
several times within the source
text to provide selective dump
information.

2. The information is dumped to the
same destination to which error
messages are wri tten.

3. The control will only be active if
the DUMP option was specified on
the SCRIPT command.

340 Document Composition Facility: User's Guide

APPENDIX A. SCRIPT/VS SUMMARY

Figure Page Description

21 342 A picture of the SCRIPT/VS page layout.

22 343 List of the utility fil~s that SCRIPT/VS creates or uses.

23 343 Summary of the options of the SCRIPT command.

24 345 Summary of the SCRIPT/VS control words and their parameters.

25 354 List of the control words that always result in a break
between input lines of text.

26 354 List of the control words that always take effect on the
next output page.

27 355 List of the control words that are not allowed within a
keep, float, footnote, or running heading or footing.

28 355 List of the control words that are executed during the defi-
nition phase of a running heading or footing.

29 356 List of control words that start the page.

30 356 List of obsolete control words.

31 357 List of the control words whose initial values are based on
the logical output device.

32 358 List of logical devices defined to SCRIPT/VS.

33 359 Summary of default head-level characteristics.

34 360 List of paramaters contained within the formatting environ-
ment.

35 361 Summary of SCRIPT/VS system symbols.

36 363 List of the attributes of a symbol.

37 363 List of the characters that delimit words for purposes of
spelling verification.

38 364 The IBM 1403 Printer's TN print train character set.

39 364 List of the fonts provided with SCRIPT/VS for use with the
IBM 3800 Printing Subsystem.

40 365 List of the fonts provided with the IBM 3800 Printing Sub-
system.

Figure 20. Index to SCRIPT/VS Summary

Appendix A. SCRIPT/VS Summary 341

0
>

0
Top
Margin 0
(.TM)

0

0

0

0

0

0

0
P
a 0
g
e 0 B

Body I
L of 0 N
e the 0
n Page 0 I
g N
t 0 G
h

0

0

0

0

0

0

0
Bottom
Margin 0
(.BM)

0
>

0

<----------Line Length (.LL)------------> o

o

Heading Space (.HS/.RT) o

Heading Margin (.HM) o

o
Running Heading (.RH)

o

o
Top Page Float (.FL)

o

o

· o
< Column Width (.CL) >

o

· .•...........•....••.•.... <-Indent 0
· . . • • • • R i ght->
.....•..................•.. (.IR) 0

<-Indent-> ...•....
(.IN)•..•

Bottom Column
Float (.FL)

G
U
T
T
E
R

Footnotes

<--Column Width-->
...... (.CL)•

(.FN)

Running Footing (. RF)

Footing Margin (. FM)

Footing Space (.FS/.RT)

o

o

o

o

o

o

o

o

o

o

o

o

Figure 21. SCRIPT/VS Terms for Parts of the Page: Note that Top Margin and
Bottom Margin include all the space on the paper that is accessi
ble to SCRIPT /VS. For termi nals and 1403-type pri nters, thi s
includes the entire page. For 3800-type devices, Top and Bottom
Margin do not include 1/2 inch on each side of the interpage per
foration. This space is reserved by the 3800 Printing Subsystem
for accelerating and decelerating the paper when it is necessary
to halt the paper.

342 Document Composition Facility: User's Guide

/

SCRIPT/VS utility Files

Control
File-id Description Word Option

DSMTERMI Terminal input file .TE, .RV
DSMTERMO Terminal output file .TY TERM
DSMUTCTF STAIRS/VS CTF file .SO CTF
DSMUTDIM Delay imbed file .DI
DSMUTMSG Error messages file .MG MESSAGE(DELAY)
DSMUTTOC Table of Contents file .TC, .PT
DSMUTWTF Write to File file .WF

Figure 22. File-id's of SCRIPT/VS Utility files: SCRIPT/VS uses or creates
these files as a result of the control words or options indicated.
Any of these fi les may be redefi ned wi th the . DD [Defi ne Data
File-id] control word.

option Par-ameter-s Descr-iption

BIND (bind) Shift the page image to the right.
(obind ebind)

CHARS (font! ... font4) Specify up to four fonts.

CONTINUE Continue processing after a non severe error
occurs.

CTF Prepare output in STAIRS/VS Condensed Text
Format.

DEST (station-id) Specify a remote output station. (Valid
only in TSO.)

DEVICE (devtype) Specify a logical output device.

DUMP Enables the .ZZ [Diagnostic] control word.

FILE [(fileid)] Specify a disk file for output. (Not valid
in ATMS-III.)

INDEX Enable the .PI [Put Index] control word.

LIB (libname ...) Specify symbol and macro libraries. (Only
(opnum ...) one in TSO; up to eight in CMS and

ATMS-III.)

MESSAGE ([DELAY] Control message printing.
[ID]
[TRACE])

NOPROF Suppress the profile.

NOSPIE Prevent entering SPIE exit routines. (Valid
only in CMS and TSO.)

NOWAIT Prevent prompting for paper adjustment.
(Valid only for typewriter terminals in CMS
and TSO.) I

NUMBER Print file name and line number.

Figure 23. Summary of SCRIPT Options (Part 1 of 2)

Appendix A. SCRIPT/VS Summary 343

option Parameters Description

OPTIONS [(fileid)] Specify a fi Ie that contains SCRIPT
options. (Valid only in CMS and ATMS-III.)

PAGE [([PROMPT] Selectively print pages. (PROMPT is val i d
[[FROM] p [TO] q] only in CMS and TSO.)
[[FROM] p FOR n]
[[FROM] p ONLY])]

PRINT [(copies,class, Produce printer output. (Suboptions are
fcb,ucs)] valid only in TSO.)

PROFILE [(fileid)] Specify a profile. (A file to be imbedded
before the primary input file is
processed.)

QUIET Suppress formatter identifier message.

SEARCH (libname) Specify a library. (Not valid in CMS.)
(opnum ...)

SPELLCHK Enable the .SV [Spelling Verification] con-
trol word.

STOP Print separate pages at the terminal. (Val-
id only for typewriter terminals in CMS and
TSO.)

SYSVAR (n value ...) Set symbol values for &SYSVARn.

TERM Display the output at a user's terminal.

TLIB (libname ...) Specify spelling checking and hyphenation
Ii brari es. (Valid only in CMS.)

TWOPASS Prepare with two formatting passes, and
produce output on the second pass.

UNFORMAT Print all input lines without formatting.

UPCASE Fold lowercase letters to uppercase before
printing.

O)user- [(sub-options ...)] User-defined options, which must begin with
option the character "0)". (Valid only in CMS.)

Figure 23. Summary of SCRIPT Options (Part 2 of 2)

344 Document Composition Facility: User's Guide

Control
Word Parameters Description

... label [input line] Set label: Inserts a line that can be used
as the target of a .GO control word.

.AA tag [apf [(rules)]] Associate APF: Maps a GMl tag to the macro
[apf [(rules)]] or control word which processes it, and

gives the attribute scanning rules for the
tag.

.AN x test y input-line And: Tests the relationship between "x" and
"y". When the test is satisfied and the

"test" can be: most recently executed .IF, .AN, or .OR
It Ie eq ne gt ge was also satisfied, SCRIPT/VS processes
< <= = - > >= the "input-line".

.AP {namel(file-id)} Append: Allows an additional file to to be
[tokenl ... tokenl4] appended to the file just processed

.BC [ONIOFF] Balance Columns: Causes SCRIPT/VS to
attempt to balance the columns when a page
eject occurs or when the column definition
is changed.

.BF [font-id] Begin Font: Causes SCRIPT/VS to use a new
font. Based on logical device.

.BM [vl+vl-v] Bottom' Margin: Specifies the amount of
space in the bottom margin area. Causes
break.

SCRIPT/VS system symbol: &$BM

.BR Break: Prevents the concatenation of the
following text line with preceding text.

.BX [NEWIOFFlcANISET] Box: Draws horizontal and vertical lines
[dl [/] d2 ...] around subsequent output text.
[CHAR name] Causes a break.

.CB Column Begin: Causes an eject to the next
column (or next page) .

Causes a break.

.CC [v] Conditional Column Begin: Causes a column
eject if less than a specified amount of
space remains in the column.

Causes a break.
.CC causes a column eject unless there is

no data in the current column.

.CD n [pl p2 ... p9] Column Definition: Specifies the number of
columns on the page and position of each
column.

Causes a break.
Initial value: One column at position o.

.CE [llnIONIOFFI Center: Centers text lines between the cur-
input-line] rent left and right margins.

Causes a break.

.Cl [hl+hl-h] Column Width: Specifies the width of each
column (all columns are the same wi dth) .

Causes a break.
SCRIPT/VS system symbol: &$Cl
Default: line length

.CM Comment: Identifies a comment line.

Figure 24. SCRIPT/VS Control Word Summary (Part 1 of 9)

Appendix A. SCRIPT/VS Summary 345

Control
Word

.CO

.CP

.CS

.CT

.CW

.DC

.00

.DF

.DH

.01

.DL

Parameters

[ONIOFF]

[v]

n [ONIOFF]

n [INCLUDEIIGNORE]

[input-line]

[character]

[option char ..• IOFF]

name
[LIBIDDIDSN file-id]

font-id
[USIUPIUClsTOpl

OS RPT nlOS CHAR cl
BOX cnamelFONT name]

n [options]

[llnIONIOFFI
input-line]

name ..• name

Description

Concatenate Mode: Causes output lines to be
formed by concatenating input lines.

Causes a break.

Conditional Page Eject: Causes a page eject
if less than a specified amount of space
remains on the page.

Causes a break.
Default: .CP causes a page eject unless
there is no data on the current page.

Conditional Section: Allows conditional
inclusion of input in the formatted output.
Initial value: All conditional sections

included.

Continued Text: Appends the "input-line" to
the previous input text without an inter
vening word space.

Control Word Separator: Defines the control
word separator character.

SCRIPT/VS special character: &$CW
Initial value: ; (semi-colon)

Define Character: Defines the characters
for special functions.

Options:
ASEP: Array element separator characters
CONT: line continuation character (&$CONT)
CW: Control word separator (&$CW)
GMl: GML tag delimiter (&$GML)
IXB: Index term blanks
IXI: Index term nulls
STOP: End-of-sentence characters
PUNC: Punctuation characters
PS: Page number symbol (&$PS)
RB: Required blank (&$RB)
WORD: [See Figure 37 on page 363]
Initial Values:

ASEP: , 40
CONT: none
CW: ;

GML:
STOP:
PUNC:

: : : PS:
. ! ? RB: - ,

&
41

Define Data File-id: Specifies the file-id
of a file to be used with the .IM [Imbed],
.AP [Append] or .WF [Write To File] con
trol words.

Define Font: Define internal fonts composed
of external font characteristics and line
formatting functions.

Define Head Level: Defines the format and
characteristics of the section headings
produced by the .Hn control words.

Default: Restores initial settings.

Delay Imbed: Delays the processing of input
lines until the next page eject occurs.

Causes a break.

Dictionary List: names spelling checking
and hyphenation dictionaries.

Figure 24. SCRIPT/VS Control Word Summary (Part 2 of 9)

346 Document Composition Facility: User's Guide

Control
Word Parameters Description

.DM name(n) / Define Macro: Defines a macro using text,
[xIOFFlinput-linel SCRIPT/VS control words, and special sym-

bols.
name [xIOFFILIB]

.DS Doublespace Mode: Causes subsequent output
lines to be doublespaced.

.DU {ADDIDEL} word ... Dictionary Update: Adds words to or deletes
words from an addenda dictionary, which is
used to supplement a SCRIPT/VS main dic-
tionary for spelling verification and
hyphenation.

.EC input line Execute Control: Execute the input line as
a control word even if there is a macro of
the same name.

.EF [CLOSE] End of File: Simulates an end of file con-
dition.

. EL [input-line] Else: Processes the "input-line" if the
most recently executed .IF, .AH, or .OR
control word was not satisfied.

.EM input line Execute Macro: Execute the input line as a
macro even if macro substitution is off.

.EZ oHIOFFltag EasySCRIPT: Enables or disables the
EasySCRIPT processing functions.

.FL [OHIOFFIDUMP] Float: Delimits a group of lines to be kept
[TOpIBOTTOM] together and placed at the top or bottom
[COLlpAGE] of a column or page.
[ODDIEVEH]
[ORDER]

.FM [vl+vl-v] Footing Margin: Specifies the amount of
space between the last line of text in the
page's body and the first bottom title
line.

SCRIPT/VS system symbol: &$FM
Default: Based on logical device type.

.FH {OHIOFFILEADER} Footnote: Saves formatted text and prints
it at the bottom of the page in single-
column format.

.FO [OHIOFFI Format Mode: Controls concatenation and
LEFTIRIGHTICEHTER] justification of input lines.

[EXTEHDITRUHCIFOLD] Default (for .FO OFF): EXTEND

. FS [nl+nl-n] Footing Space: Specifies the number of
lines in the bottom margin area that can
contain bottom title lines.

SCRIPT/VS system symbol: &$FS
Default: Based on logical device type.

.GO label Go To: Causes SCRIPT/VS to locate the input
line identified with "label" and resume
processing with that input line.

.GS [options] GML Services: Provides a variety of func-
tions helpful in writing APFs, including
attribute scanning and symbol
manipulation.

Figure 24. SCRIPT/VS Control Word Summary (Part 3 of 9)

Appendix A. SCRIPT/VS Summary 347

Control
Word Parameters Description

.HM [v/+v/-v] Heading Margin: Specifies the amount of
space between the top title lines and the
first line of text (or running heading) on
the body of the page.

SCRIPT/VS system symbol: &$HM

.HS [nl+nl-n] Heading Space: Specifies the number of
lines in the top margin area that contain
top title lines.

SCRIPT/VS system symbol: &$HS

.HW text-word Hyphenate Word: Specifies hyphenation
points for a word that might need to be
hyphenated during formatting.

.HY [ONIOFFISUPINOADDl Hyphenate: Controls the SCRIPT/VS automatic
[SET MINPT n] hyphenation function.
[SET THRESH n] Initial setting: OFF 1 MINPT=4, THRESH=7

.Hn [text-linel Head Level n: Formats a section heading
according to default characteristics sup-
plied for the heading.

.IE {HI!1213} string Index Entry: Generated by the .IX control
word to format an index entry.

.IF x test y input-line If: Tests the relationship between "x" and
"y". When the test is satisfied,

"test" can be: SCRIPT/VS processes the "input-line."
It Ie eq ne gt ge Otherwise, SCRIPT/VS ignores the
< <= = - > >= "input-line."

"x test y" can also be:
SYSPAGE eqlne EVENloDD
SYSOUT eqlne PRINTITERM

.IL [Qlhl+hl-h] Indent Line: Indents the next output line
the specified amount of horizontal space.

Causes a break.

.IM {namel(file-id)} Imbed: Processes the named file at this
[token! . . . token!4l point .

.IN [Qlhl+hl-h] Indent: Specifies the amount of space sub-
[FOR vI] sequent output lines are to be indented
[AFTER v2l from the current left margin.
[NOBREAK] May cause a break.

SCRIPT/VS system symbol: &$IN

.IR [.Q.lhl+hl-h] Indent Right: Specifies the amount of space
[FOR v!] subsequent input lines are to be indented
[AFTER v2l from the current right margin.
[NOBREAKl May cause a break.

SCRIPT/VS system symbol: &$IR

.IT [ON/OFF/ALLI Input Substitution Trace: Provides a trace
CTLIGMLIMACISUBI of processing for each SCRIPT/VS control
SNAPISTEPIRUN] word and macro, as well as symbol substi-

tution. When .IT STEP is in effect, the
Response to STEP: user responds interactively.
(null) Initial value: No input tracing.
PRE input-line
REP input-line
STK input-line

Figure 24. SCRIPT/VS Control Word Summary (Part 4 of 9)

348 Document Composition Facility: User's Guide

Control
Word parameters Description

. IX n [namel/] Index: Generates an index from terms previ-
ously specified by with the .PI control
word.

Causes a break.

.JU [OHIOFF] Justify Mode: Causes left and right justi-
fication of output lines as needed to make
the end of each line even with the current
right margin.

Causes a break.

.KP [OHIFlOATIDElAyl Keep: Ensures that a group of output lines
IHlIHElvlv + vIOFF] are kept together 1n the same column.

SCRIPT/VS system symbol: &$KP

.lB leading Blank: Is processed whenever an
input line with a blank as the first char-
acter i s encountered.

Causes a break.

.lI [llnIOHIOFFI literal: Ensures that input lines are
input-line] treated as text lines by SCRIPT/VS (used

when a text input line begins with a peri-
od).

.ll [hl+hl-h] line length: Specifies the length of each
subsequent output line.

SCRIPT/VS system symbol: &$ll

.IT leading Tab: Is processed whenever an input
line with a tab as the first character is
encountered.

Causes a break.

.lY [OHIOFFISYMIMACl library: Specifies whether a library is to
be used to resolve symbol and macro defi-
nitions.

Use the lIB option to i denti fy the
libraries .

. MC Multicolumn Mode: Restores column defi-
nition saved by a previous .SC [Single
Column Model control word.

Causes a break.

.ME [input-linel Macro Exit: Ends a macro and returns con-
trol to the macro's caller. The
"input-line" is processed as though it
were part of the macro's caller.

.MG /[id]/text/ Message: Produces a message simi lar in for-
mat to the SCRIPT/VS error messages.

\

.MS [OHIOFF] Macro Substitution: Causes SCRIPT/VS to
recognize and process macros.

Initial value: OFF

.Hl Hull line: Is processed whenever an input
line that contains no characters is
encountered.

.OC {linel'string'} Output Comment: Specifies data that is to
be inserted into the output document as it
is, as an output comment.

Figure 24. SCRIPT/VS Control Word Summary (Part 5 of 9)

Appendix A. SCRIPT/VS Summary 349

Control
Word Parameters Description

.OF [.Q.lhl+hl-hl Offset: Causes a hanging indention (a para-
graph in which the indention of the first
line is unchanged and subsequent lines are
indented to the offset value.)

Causes a break.
SCRIPT/VS system symbol: &$OF

.OR x test y input-line Or: Tests the relationship between "x" and
"y". When the test is satisfied .Ql: the

"test" can be: most recently executed • IF, .AN, or .OR
It Ie eq ne gt ge was also satisfied, SCRIPT/VS processes
< <= = ... - > >= the "input-line".

.PA [ODDIEVEN] Page Eject: Causes a page eject, and can
[ONIOFF] set the page number of the new page.
[+Olnl+nl-n]
[NOSTART]

.PF Previous Font: Causes the last stacked font
to become the current font.

.PI [STARTIENDIORDERIREFJ Put Index: Puts a mutli-level term in the
[KEY /k1/k2/k3/] index.
/t1[/t2[/t3[/pn]]1

.PL [vl+vl-v] Page Length: Specifies the amount of space,
including top and bottom margins, for each
output page.

SCRIPT/VS system symbol: &$PL

.PM [obind [ebindll Page Margins: Overrides page binding set
with BIND option of the SCRIPT command.

.PN [nIONIOFFIOFFNOI Page Numbering Mode: Controls external and
ARABICIROMANIALPHAI internal page numbering.
NORMIFRACI Initial value: Arabic numerals from 1.
PREF string]

.PP [input-line] Paragraph Start: Begins formatting the out-
put line as the start of a paragraph after
a skip.

.PS character Page Number Symbol: Sets a page number sym-
bol.

SCRIPT/VS system symbol: &$PS
Initial value: & (ampersand)

.PT input-line Put Table of Contents: Places the input
line (which may be a control word, macro,
GML tag, symbol, or line of text) into the
file used to accumulate table of contents
entries (DSMUTTOC).

.QQ Quick Quit: Causes SCRIPT/VS processing to
terminate immediately without completing
the current page .

. QU Quit: Causes SCRIPT/VS processing to termi-
nate after completing the current page.

.RC n s Revision Code: Specifies a reV1Slon code
n [ONIOFFloN/OFF] symbol that is to be printed to the left

* s of the output line that contains updated
ADJUST h material.

Figure 24. SCRIPT/VS Control Word Summary (Part 6 of 9)

350 Document Composition Facility: User's Guide

Control
Word Parameters Description

.RD [llnISTOP] Read Terminal: Allows user to type in one
or more text lines while a file is being
formatted.

Causes a break.

.RE Restore Status: Restores environment that
has been previously saved with the .SA
[Save Environment] control word.

.RF [ONIOFFICANCEL] Running Footing: Specifies input lines that
[ODDIEVEN] are to be saved as a running footing and
[SUPIRES] processed at the bottom of each appropri-

ate page.
Initial value: No runr;ling footing.

.RH [ONIOFFICANCEL] Running Heading: Specifies input lines that
[ODDIEVEN] are to be saved as a running heading and
[SUPIRES] processed at the top of each appropriate

page.
Initial value: No running heading.

.RI [llnIONIOFFI Right Adjust: Produces output lines that
input-line] are un concatenated input lines al i gned

with the right-hand margin.
Causes a break.

.RN [ONIOFF] Reference Numbers: serially numbers output
lines in body of page.

.RT [TOPIBOTTOM] Running Title: Defines running title lines
[ALLIODDIEVEH] for the top and bottom of even, odd, or
[lin] all output pages.
/left/center/right/ Initial value: .RT TOP ALL 1 ///PAGE &/

.RV symbolname [='] Read Variable: Allows user to assign a val-
ue to a symbolname by entering it at the
terminal in response to an interactive
request made while SCRIPT/VS is processing
the input file.

.SA Save Status: Saves the current values and
parameters of the formatting environment.

.SC Single-Column Mode: Causes SCRIPT/VS to
save the current column definition and
format subsequent input lines in a single
column.

Causes a break.

.SE symname[(n)] Set Symbol: Defines a symbol name and
[LIBIOFF] assigns a value to it.
[= value]
[= SUBSTR str n1 n2]
[= INDEX str1 str2]

.SK [llv] [A] [C] [P] Skip Lines: Specifies the amount of space
to insert before the next text output
line. No lines are inserted if the .SK
occurs at the top of a page or column.

Causes a break.

.SL [v] Set Line Spacing: Specifies the vertical
distance between baselines of output
lines.

Default: Based on logical output dev'i ce.

Figure 24. SCRIPT/VS Control Word Summary (Part 7 of 9)

Appendix A. SCRIPT/VS Summary 351

Control
Word Parameters Description

.SO [DOC name] STAIRS Output: Specifies information for
[PID naa] STAIRS/VS CTF output.
[OPR number]
[RPW password]
[DPW password]

.SP [llv] [A] [C] [P] Space lines: Specifies the amount of space
to insert before the next text output
line. The specified number of lines are
inserted even when the .SP occurs at the
top of a page or column.

Causes a break.

.SS Single-Space Mode: Causes subsequent output
lines to be single-spaced.

.SU [llnIONIOFFI Substitute Symbol: Controls the substi-
input-line] tution of symbols with their previously

assigned values.
SCRIPT/VS system symbol: &$SU
Initial value: ON

.SV [ONIOFF] Spelling Verification: Defines the start
[NOADD] and functions of the SCRIPT/VS spelling
[NOSTEM] verification function.
[NUM] Enabled with the SPEllCHK option.

.sx [FIC] Split Text: Produces an output line of
/left/fill/right/ three parts: "left" is aligned with the

current left margin; "right" is aligned
with the current right margin; "fill" is
centered or repeated between the two
strings.

Causes a break.

.SY input-line System Command: SCRIPT/VS passes the input
line to the host system for processing.

SCRIPT/VS system symbol: &$RET

.TB [ADDICLRIDELISET] Tab Setting: Specifies the tab settings to
[h h h] be used when the input file is formatted.
[f/h f/h ...] Causes a break.

Default: 5 10 15 20 ... 75

.TC n [namel/] Table of Contents: Imbeds the table con-
tents file (DSMUTTOC), which consists of
table of contents entries automatically
generated by the .Hn control words, and
entries inserted by using the .PT [Put
Table of Contents] control word.

Use the TWOPASS option if the table of con-
tents is not at the back of the document.

Causes a break.

.TE [llnIONIOFFl Terminal Input: Allows user to enter lines
interactively from the terminal when the
file is formatted.

.TH [input-line] Then: Processes the "input-line" if the
most recently executed . IF, .AN, or .OR
control word was satisfied.

.TI [s t ...] Translate Input: Specifies character trans-
lations to be performed on input lines
before SCRIPT/VS processing begins.

Default: Identity

Figure 24. SCRIPT/VS Control Word Summary (Part 8 of 9)

352 Document Composition Facility: User's Guide

Control
Word Parameters Description

.TM [vl+vl-v] Top Margin: Specifies the amount of space
in the top margin area.

SCRIPT/VS system symbol: &$TM

.TR [s t ...] Translate Character: Specifies character
translations to be performed on output.

Default: Identity

.TS s Translate String: translates a single char-
[/string/IOFFIIGNORE] acter into a string.

.TU [s t ...] Translate Uppercase: Specifies character
translations to be performed for capital-
ization.

Defaul t:· a-z is mapped to A-Z.

.TY input-line Type On Terminal: Types the input line on
the user's terminal during formatting.

.UC [llnIONIOFFI Underscore and Capitalize: UNDERSCORES AND
input-line] CAPITALIZES one or more subsequent input

lines.

.UD {ONIOFF} Underscore Definition: Determines whether
blanks will be underscored when the .UC
and .US control words are used.

.UN [.Q.lhl+hl-h] Undent: Causes the next output line's
indention to change: it is moved to the
left of the current left margin.

Causes a break.

.UP [lln\ONIOFFI Uppercase: Prints one or more subsequent
input-line] input lines in UPPERCASE characters.

.US [llnIONIOFFI Underscore: Prints one or more subsequent
input-line] input lines with underscored characters.

.UW [word ...] Unverified Words: Generated by spelling
verification for unverified words.

.WF [llnIONIOFF\ Writes one or more input lines to the out-
IMBEDIERASEI put file DSMUTWTF.
input-line] IMBED: imbeds file DSMUTWTF.

ERASE: erases file DSMUTWTF.

.WZ [ONIOFF] Widow Zone: Turns widow processing on or
off.

.ZZ [ONIOFFlpROGl nn ... Diagnostic: Turns on or off the diagnostic
trace function, and selects the type of
data to be traced.

Enabled with the DUMP option.

Figure 24. SCRIPT/VS Control Word Summary (Part 9 of 9)

Appendix A. SCRIPT/VS Summary 353

1

2

·BR [Break]
.BX [Box]
.CB [Column Beginl
.CC [Conditional Column Beginl 1
.CD [Column Definition]
.CE [Center]
.CL [Column Line Length]
.CO [Concatenate Mode]
.CP [Conditional Page Eject] 1
.EP [Even Page Eject]
.FI [Fill Model
.FO [Format Mode]
.HN [Headnote]
.H1 [Head Level 1]
.H2 [Head Level 2]
.H3 [Head Level 3]
.H4 [Head Level 4]
.HS [Head Level 5]
.H6 tHead Level 6]
.IE [Index Entry]
.IL [Indent Line]
.IN.[Indent] 2
.IR [Indent Right] 2
. IX: [Index]
.JU [Justify Mode]
.LB [Leading Blank]

.LL [Line Length]

.LT [Leading Tab]

.MC [Multicolumn Mode] 1

.NB [No Balancing]

.NC [No Concatenation]

.NF [No Formatting]

.NJ [No Justification]

.OF [Offset]

.OP [Odd Page Eject]

.PA [Page Eject]

.PM [Page Margins]

.PP [Paragraph Start]

.QU [Quit]

.RD [Read Terminal]

.RF [Running Footing]

.RH [Running Heading]

.RI [Right Adjust]

.SC [Single Column Mode]

.SK [Skip]

.SO [STAIRS/VS Output]

.SP [Space]

.SX [Split Text]

.TB [Tab Setting]

.TC [Table of Contents]

.UN [Undent]

.WZ [Widow Zone]

The break occurs only if the control word performs its function.
These control words may do nothing if the function is not needed.

These control words ordinarily cause a break. Their functions will
be performed without a break if the NOBREAK parameter is specified.

Figure 25. Control Words That Cause a Break: When concatenation is on (see
the .FO [Format Mode] control word), words from input lines are
rearranged on output lines to make each column line as full as
possible. This process is inhibited for the current line if any of
these control words is encountered .

1

. BM [Bottom Margin]

.FM [Footing Margin]

.FS [Footing Space]

.H1 [Head Level 1] 1

.HM [Heading Margin]

.HS [Heading Space]

.LL [Line Length]

.PL [Pa9~ Length]

.PN [Page Numbering Mode]

.RF [Running Footing]

.RH [Running Heading]

.RT [Running Title]

.TM [Top Margin]

.H1 causes a page eject by default. The .DH [Define Head Level] con
trol word allows you to redefine the meaning of the .Hl control
word.

Figure 26. Control Words That Take Effect On the Next Page: These control
words take effect on the next output page to be started. If no
data has yet been placed on the first page of the document, or the
previ ous page was ended wi th a .PA NOSTART control word, the
first, or next, page has not yet been started, and these control
words can take effect on this page.

354 Document Composition Facility: User's Guide

.BM [Bottom Margin]

.BT [Bottom Title]

.CB [Column Begin]

.CC [Conditional Column Begin]

.CD [Column Definition]

.CP [Conditional Page Eject]

.DI [Delay Imbed]

.EB [Even Page Bottom Title]

.EF [End of File]

.EP [Even Page Eject]

.ET [Even Page Top Title]

.FL [Float]

.FM [Footing Margin]

.FN [Footnote]

.FS [Footing Space]

.FT [Footing]

.HE [Heading]

.HM [Heading Margin]

.HN [Headnote]

.HS [Heading Space]

.IX [Index]

.KP [Keep]

.LL [Line Length]

.MC [Multi column Mode]

.OB [Odd Page Bottom Title]

.OP [Odd Page Eject]

.OT [Odd Page Top Title]

.PA [Page Eject]

.PL [Page Length]

.PN [Page Numbering Mode]

.RD [Read Terminal]

.RN [Reference Numbers]

.RT [Running Title]

.SC [Single Column Mode]

.SK [Skip]

.SP [Space]

.TC [Table of Contents]

.TM [Top Margin]

.TT [Top Title]

Figure 27. Control Words That End a Keep, Float, Running Heading or Footing,
or Footnote: If found, a message is issued and the Keep, Heading
or Footing, or Footnote is terminated before the control word is
processed.

Note: .RF and .RH are disallowed in keeps, floats, and footnotes .
. KP, .FL, and .FN are disallowed in running headings and footings.
Only the 'P' (Page) option of the .SK [Skip] and .SP [Space] con
trol words ends a keep.

.AA [Associate APF]

.AN [And]

.AP [Append]

.CM [Comment]

.CS [Conditional Section]

.CW [Control Word Separator]

.DC [Define Character]

.DD [Define Data File-id]

.DF [Define Font]

.DL [Dictionary List]

.DM [Define Macro]

.DU [Dictionary Update]

.EL [Else]

.FL [Float]

.GO [Goto]

.GS [GML Services]

.IF [If]

.IM [Imbed]

.IT [Input Trace]

.LI [Literal]

.LY [Library]

.MS [Macro Substitution]

.OR [Or]

.PI [Put Index]

.PN [Page Numbering Mode]

.PP [Paragraph Start]

.PT [Put Table of Contents]

.QQ [Quick Quit]

.QU [Quit]

.RF [Running Footing]

.RH [Running Heading]

.RV [Read Variable]

.SE [Set Symbcl]

.SU [Substitute Symbol]

.SV [Spelling Verification]

.SY [System Command]

.TE [Terminal Input]

.TH [Then]

.TY [Type on Terminal]

.UD [Underscore Definition]

.WF [Write To File]

Figure 28. Control Words Within a Running Heading or Footing: These control
words are processed only once, during a running heading or footing
definition. All other control words are saved as part of the head
ing or footing definition, and processed each time the definition
is formatted for a new page.

Appendix A. SCRIPT/VS Summary 355

.BX [Box] .IX [Index]

.CB [Column Begin] .KP [Keep]

.CC [Conditional Column Begin] .PI [Put Index]

.CD [Column Definition] .PP [Paragraph start]

.CP [Conditional Page Eject] .PT [Put Table of Contents]

.CT [Continued Text] .RD [Read Terminal]

.FL [Float] .SK [Skip]

.FN [Footnote] .SO [STAIRS/VS Output] DOC

.HW [Hyphenate Word] .SP [Space]

.HO - .H6 [Head Level o - 6] .SX [Split Text]

.IE [Index Entry] .TC [Table of Contents]

Figure 29. Control Words ,That Start the Page: If the page is not already
started, either because no text has yet been formatted for page
one, or because the previous page was ended with .PA NOSTART, any
of these control words will cause the page to be started.

Obsolete
Control Word SCRIPT/VS Equivalent Control Word

.BT .RT [Running Title] BOTTOM

.CO .FO [Format Mode]
.' CW .DC [Define Character] CW
.EB .RT [Running Title] BOTTOM EVEN
.EP .PA [Page Eject] EVEN
.ET .RT [Running Title] TOP EVEN
.FI .FO [Format Mode] ON
.FT .RT [Running Titlel BOTTOM
.HE .RT [Running Title] TOP EVEN
.HN .RH [Running Heading]
. JU .FO [Format Model
.LS .SL [Set Line Space]
.NB .BC [Balance Columns] OFF
.NC .CO [Concatenate Mode] OFF
.NF . FO [Format Mode] OFF
.NJ .JU [Justify Mode] OFF
.OB .RT [Running Title] BOTTOM ODD
.OP .PA [Page Eject] ODD
.OT .RT [Running Title] TOP ODD
.PS .DC [Define Character] PS
.SF .BF [Begin Font]
.TT .RT [Running Title] TOP

Fi gure 30. Obsolete Control Words: SCRIPT /VS cont i nues to recogn i ze and
support these control words, but their functions have been
subsumed by more general control words as indicated.

356 Document Composition Facility: User's Guide

Initial Values
Device Type .TM .HS .HM .BM .FS .FM .LL

1403 6 1 2 6 1 2 6i
2741 6 1 2 6 1 2 6 i
3270 6 1 2 6 1 2 6 i
3800 3 1 2 3 1 2 6i

.BM [Bottom Margin] .HS [Heading Space]

.FM [Footing Margin] .Ll [line length]

.FS [Footing Space] .Pl [Page length] 1

.HM [Heading Margin] .TM [Top Margin]

1 For 3800-type devices, Page length does not include 1/2 inch at the
top and bottom of each page. This area is inaccessible.

Figure 31. Control Word Values Based On the logical Device: The initial and
default values for these control words vary, depending upon the
specified or implied logical output device.

Appendix A. SCRIPT/VS Summary 357

1

2

3

4

Logical
Device
Type

TERM
2741
3270

1403N6
1403N8
1403W6
1403W8
1403W6S
1403W8S
1403SW 4
STAIRS

3800N6
3800N8
3800N12
3800W6
3800W,g
3800W12
3800N6S
3800N8S
3800N12S
3800W6S
3800W8S
3800W12S

Real
Device
Type

(3)

2741
3270

1403
1403
1403
1403
1403
1403
1403
1403

3800
3800
3800
3800
3800
3800
3800
3800
3800
3800
3800
3800

Lines
per

Inch

6
6
6

6
8
6
8
6
8
6
6

6
8

12
6
8

12
6
8

12
6
8

12

Page size
(inches)

width

8-1/2
8-1/2
8-1/2

8-1/2
8-1/2

13-1/2
13-1/2
13-1/2
13-1/2
8-1/2

13-1/2

8-1/2
8-1/2
8-1/2

13-1/2
13-1/2
13-1/2
11
11
11
13-1/2
13-1/2
13-1/2

Depth

11
11
11

11
11
11
11
8-1/2
8-1/2

11
11

11
11
11
11
11
11
8-1/2
8-1/2
8-1/2
8-1/2
8-1/2
8-1/2

Line
Length1

(bytes)

60/132
60/132
60/132

60/85
60/85
60/132
60/132
60/132
60/132
72/90
60/132

60/85
60/85
60/85
60/136
60/136
60/136
60/110
60/110
60/110
60/136
60/136
60/136

Page
LengthZ

(lines)

66/144
66/144
66/144

66/144
88/192
66/144
88/192
51/144
68/192
66/102
66/144

60
80

120
60
80

120
45
60
90
45
60
90

Line lengths are given as "default/maximum" in 10-pitch characters.
For the IBM 3800 Printer, 12-pitch and IS-pitch fonts have values
20% and 50% greater, respectively. The potential maximum line length
includes binding. The text fonts (as shown in Figure 39 on page 364)
c~ntain 10, 12, and 15 pitch blank characters. If these fonts are
used, you should allow for an output record length, in bytes, that
is 15 times the length (in inches) of your longest print line (in
cluding the binding).

Default and maximum page lengths are identical for 3800 devices.

The physical device type corresponding to the TERM logical device
may be either 2741 or 3270, depending upon the actual terminal type.

This is a 12-pitch device, as opposed to the normal 10-pitch 1403.

Figure 32. SCRIPT/VS Logical Device Characteristics

358 Document Composition Facility: User's Guide

keys

SKBF

SPAF

TCIN

TO

TC

TS

US

UP

OJ

PA

SECT

BR

.Hn Control Word EasySCRIPT Head Levels

HO

0

0

0

X

X

HI H2 H3 H4 H5 H6 keys HO HI H2 H3

0 3 3 3 I I SKBF 0 0 3 3

5 2 2 2 0 0 SPAF 0 5 3 3

0 0 2 4 6 8 TCIN 0 0 0 2

TO X

X X X TC X X X X

X TS X

X X X X X US X X

X X X X UP X X X

X OJ X

X PA X

X SECT X

X X X X BR X X X

where the "keys" are:

SKBF:
SPAF:
TCIN:
TO:
TC:
TS:
US:
UP:
OJ:
PA:
SECT:
BR:

number of line skips before the head.
number of line spaces after the head.
amount of indention for table of contents entry.
table of contents entry only; no heading in text.
table of contents entry.
line space before table of contents entry.
head is underscored.
head is capitalized.
head is out justified.
page eject before head.
section break around head.
break after head.

H4

3

3

4

X

X

X

H5 H6

I I

0 0

6 8

X

X

Fi gure 33. Summary of Head Level Characteri sti cs: Thi stable 1 i sts the
default characteristics of the .Hn [Head level nl control words
and EasySCRIPT &Hn tags. The .DH [Define Head Levell control word
allows you to redefine any of these Head Levels to suit your
needs.

Appendix A. SCRIPT/VS Summary 359

Parameter

Capitalization
Column balancing
Continuation Character
Control Word Separator
Current font
Column definition
Centering 2
Column width
Concatenation
Conditional sections
Font save stack
Line spacing
Format mode
GML tag delimiter
Indention 3

Justification
Page number symbol
Revision code, adjust
Right adjustment
Right indention
Spelling verification
Tab setting
Terminal input 2
Underscoring

Parameter

Bottom margin
Footing margin
Footing space
Heading margin
Heading space
Hyphenation
Page length
Page numbering mode
Macro substitution
Symbol substitution
Top margin

Parameter

Input translation
Output translation

2
2

Active Environment

Control Word

.UC, .UP

.BC

.DC CONT

. DC CW, . CW

.BF, .DF, .PF

.CD

.CE

.CL

.FO

.CS

.BF, .PF

.SS, .DS, .SL

.FO

.DC GML

.FO

.DC PS, .PS

.RC

.RI

.IR

.SV

.TB

.TE

.UC, .UD, .US

Page Environment

Control Word

.BM

.FM

.FS

.HM

.HS

.HY

.PL

.PN

.MS

.SU

.TM

Translate Tables

Control Word

.TI

.TR

Initial Setting

OFF
ON
(null)
".n ,
(1)

Single column
OFF
Line length
ON
INCLUDE
empty
Single spacing
ON
":"
o
ON
"&"
OFF, 2
OFF
o
OFF
5 10 15 ••• 80
OFF
OFF

Initial Setting

(1)
(1)
(1)
(1)
(1)

OFF
(1)

Arabic
OFF
ON
(1)

Initial Setting

Identity
Identity

Symbol

&$CONT
&$CW

&$CL

&$GML
&$IN

&$PS

&$IR

Symbol

&$BM
&$FM
&$FS
&$HM
&$HS

&$PL

&$SU
&$TM

Symbol

These parameters' initial settings are based upon the logical output
device.

2

3

The number of lines remaining, or ON or OFF, is saved.

The composite current indention is determined from the .IN, .IR, .IL,
.UN and .OF control word values. These values are individually saved.

Fi gure 34. The SCRIPT /VS Formatt i ng Env ironment: The . SA [Save
Environment], .KP [Keep], .FL [Float], and .FN [Footnote] control
words preserve the active environment. The .SA [Save Environment]
control word also preserves the page environment and translate
tables.

36~ DocumeMt Composition Faeility: User's Guide

Date and Time 1

Symbol Description Value

&SYSYEAR Year of the century 00-99
&SYSMONTH Month of the year 01-12
&SYSDAYOFM Day of the month 01-31
&SYSDAYOFW Day of the week 1-7 ("1" is Sunday)
&SYSDAYOFY Day of the year 001-366
&SYSHOUR Hour of the day 00-23
&SYSMINUTE Minute of the hour 00-59
&SYSSECOND Second of the minute 00-59

output Device Chal'actel'istics

Symbol Description Value

&$LDEV Logical output device 2 1-8 characters
&$OUT Output destination TERM, PRINT, FILE
&$PDEV Physical output device 1403, 2741, 3270, 3800

SCRIPT Command options

Symbol Description Value

&$BE Even bind ;3 4 0-
&$BO Odd bind 3 4 0-
&$CHAR(n) Fonts 5 1-4 characters
&$INDX Indexing 6 0, 1
&$LIB Macro library available 6 0, 1
&$PARM Command options 7 8-256 characters
&$SYS Environment CMS, TSO; VS2, VS1, DOS, CICS
&$TWO TWOPASS option in effect 6 0, 1
&$UNF Unformatted output 6 0, 1

1 These symbols may contain leading zeros. They can be eliminated with a
.SE [Set Symbol] control word: ".se SYSHOUR = &SYSHOUR + 0".

2

4

5

6

7

Set by the DEVICE option of the SCRIPT command.

Set by the BIND opti on of the SCRIPT command and the .PM [Page
Margins} control word.

The system symbol values are represented in character spaces, regard
less of the space uni ts used in setti ng them. The maximum value
depends upon the logical output device.

Set by the CHARS option of the SCRIPT command. This is a symbol array;
element 0 contains the number of fonts specified and elements 1, 2,

contain the names of the fonts specified.

"1" indicates the command option was specified; "0" indicates it was
not specified.

This is the SCRIPT command options list. In CMS, the command options
list is tokenized (divided into eight character fields separated by
blanks and parentheses) and truncated at 32 tokens (256 characters).

Figure 35. SCRIPT/VS System Symbol Names (Part 1 of 2)

Appendix A. SCRIPT/VS Summary 361

Symbol

&$BM
&$CL
&$FM
&$FS
&$HM
&$HS
&$IN
&$IR
&$LC
&$LL
&$OF
&$Pl
&$TM

Symbol

&$BS
&$CONT
&$CW
&$C256
&$EGMl
&$FNAM
&$GML
&$KP
&$lNUM
&$MCS
&$PN
&$PS
&$RB
&$RET
&$SU
&$TAB
&$TAG
&$TAGD

Page Char'acter'istics

Description Value

Bottom margin (.BM) 8 0-
Column width (.CL) 9 0-
Footing margin (.FM) 8 0-
Footing space (. FS) 0-6
Heading margin (.HM) 8 0-
Heading space (.HS) 0-6
Left indention 9 0-
Right indention 9 0-
Internal line counter 8 10 0-
Line length (.Ll) 9 0-
Offset 9 0-
Page length (. Pl) 8 0-
Top margin (. TM) 8 0-

SCRIPT/VS FOr'matter' Par'ameter's

Description

Backspace Character
Continuation character 11
Control word separator 11
Identity vector
GMl end-tag delimiter 11
Current input file name
GMl tag delimiter 11
Keep in effect
Last line number read
GML markup/content separator
Page number 12
Page number symbol 11
Required Blank 11
Return code from .SY 13
Symbol substitution enabled
Tab Character
Name of last GMl tag found
Delimiter of last tag found

Value

hexadecimal 16
one character
(default: "j")
256 characters
(default: ": :")
eight characters
(default: ":")
ON, OFF
0-
(default: ".")
1-
(default: "&")
(default: hexadecimal 41)
0-
OH, OFF
hexadecimal 05
(any valid tag name)
(&$GMl or &$EGML)

These values are represented in line spaces, regardless of the space
units used in setting them. The maximum value depends upon the logical
output device.

9

10

11

12

13

The values of these symbol s are represented in character spaces,
regardless of the space units used in setting them. The maximum value
depends upon the logical output device.

The value of the symbol &$lC is the number of lines remaining in the
current column, excluding unplaced keeps, floats, footnotes, and wid
ow zones.

Set by the .DC [Define Character] control word.

&$PN contains the numeric portion of the current page number. The page
number as substituted can be obtained with the control word
".se x = &".

In CMS, any possible return code value. In TSO, "0" to indicate the
command was stacked for execut i on after SCRIPT /VS term i nates. In
ATMS-III, "0" to indicate the control word was ignored. In batch, "-3"
to indicate that the .SY [System Command] control word is not sup
ported.

Figure 35. SCRIPT/VS System Symbol Hames (Part '2 of 2)

362 Document Composition Facility: User's Guide

Attribute Function

1

&a' Converts a numeric character stringl to a "base-26" lowercase
alphabetic "number."

&A' Converts a numeric character stringl to a "base-26" uppercase
alphabetic "number."

iE' Verifies the existence of a symbol; the value is 1 if the symbol
has been set; 0 if not.

&l' Yields the length of a character stringl.

&1" Converts a numeric character string 1 into a lowercase roman
numeral.

&R' Converts a numeric character string 1 into an uppercase roman
numeral.

&T' Yields the type of the current value of a symbol. The type is
either "N" for numeric or "C" for character.

au' Converts a lowercase character string to uppercase.

tv' Yields the current value of a symbol.

ax' Yields the hexadecimal string represented by the character
string 1 •

The character string may be the value of a symbol.

Figure 36. Attributes of a Symbol's Value

1

2

Code Character Code Character Code Character
05 Tab 4E + 6C %
11 Special Blank 1 4F I 6D
12 Special Blank 1 5A ! 6F "1
13 Special Blank 1 5B $ 7A
16 Backspace 5C * 7E =
40 Blank 5D) 7F " 41 Required Blank 2 5E 8B {
4B . (Period) 5F 9B }
4C < 61 / AD [
4D (6B BD]

Special Blanks are used for justification in documents formatted for
the 3800 Printing Subsystem.

The required blank is a blank which cannot have space added to it
during justification. Its value may be changed with the .DC [Define
Character] control word.

Figure 37. Characters that Delimit Words for Spelling Verification: These
default characters can be changed with the .DC [Define Character]
control word, which accepts 'either single characters or 2-digit
hexadecimal character codes.

Appendix A. SCRIPT/VS Summary 363

00
10
20
30
40
50
60
70
80
90
AO
BO
CO
DO
EO
FO

o 1 234 5 6 789 ABC D E F

, - < (+ ,
& 1 $ •) . -. • - / , , > ? . I iii , = " .

a b c d e f 9 h i { ~ (+ +
j k 1 • n 0 p q r 1 a) ± •

- o s t u .- • :J: Y z l. r { ~ .
0 1 2 3 4 5 • 7 • 9 ... , 1 # -

A B C D E P G B I
J K L " I 0 p Q B

S T U V W X y ~

0 1 2 3 4 5 6 7 8 9

o 1 234 5 6 789 ABC D E F

OF
IF
2F
3F
4F
5F
6F
7F
8F
9F
AF
SF
CF
DF
EF
FF

Figure 38. TN Translate Table For the 1403 Printer

Text Fonts Highlight Fonts

GT10 Gothic (10-pitch) GB10 Gothic Bold
GT12 Gothic (12-pitch) GB12 Gothic Bold
GT15 Gothic (15-pitch) GI12 Gothic Italic

ST10 Serif (10-pitch) SIlO Serif Italic
ST12 Serif (12-pitch) SI12 Serif Italic
ST15 Serif (15-pi tch) 5B12 Serif Bold

special Fonts

GR10 Gothic Reverse
GP12 Proportional

RT10 Roman Text
S012 Serif Overstruck

Figure 39. Complete 3800 Fonts Provided With 5CRIPT/VS: Each font is a com
plete set of special, upper- and lowercase characters. Any two of
these fonts may be specified with the CHARS option of the SCRIPT
command.

364 Document Composition Facility: User's Guide

10-pitch Fonts

GS10 Gothic
GFIO Gothic Folded
GU10 Gothic Underscored
TU10 Text Underscored 1

12-pitch Fonts

GS12 Gothic
GF12 Gothic Folded
GU12 Gothic Underscored

IS-pitch Fonts

GS15 Gothic
GSC Gothic Condensed
GF15 Gothic Folded
GFC Gothic Folded Condensed
GU15 Gothic Underscored
GUC Gothic Underscored Condensed
DUMP Condensed DUMP 2

Format Fonts

FM10 Format 10-pitch
FM12 Format 12-pitch
FM15 Format 15-pitch

lO-pitch Katakana Fonts

2773 Gothic and Katakana
2774 Gothic and Katakana 2
KN1 Gothic and Katakana 2

3211 Print Trains

All Gothic 10-pitch
G11 Gothic 10-pitch
H11 Gothic 10-pitch
P11 Gothic 10-pitch
T11 Text 10-pitch 1

1403 Print Trains

AN Gothic 10-pitch
GN Gothic 10-pitch
HN Gothic 10-pitch
PCAN Gothic 10-pitch
PCHN Gothic 10-pitch
PN Gothic 10-pitch
QN Gothic 10-pitch
QNC Gothic 10-pitch
RN Gothic 10-pitch
XN Gothic 10-pitch
YN Gothic 10-pitch
SN Text 10-pitch 1

TN Text 10-pitch 1

10-pitch OCR Fonts

AOA Gothic and O'CR-A
AOD Gothic and OCR-A
AON Gothic and OCR-A
OAA Gothic and OCR-A
ODA Gothic and OCR-A
ONA Gothic and OCR-A
BOA Gothic and OCR-B
BON Gothic and OCR-B
OAB OCR-B
ONB Gothic and OCR-B

1 This is an upper- and lowercase font which closely resembles the ST10
SCRIPT/VS font. It counts as two fonts when combined with other fonts
in the CHARS option of the SCRIPT command.

Z This font contains more than 64 characters. It counts as two fonts
when combined with other fonts in the CHARS option of the SCRIPT com
mand.

Figure 40. Fonts Supplied With the 3800 Printing Subsystem: These are all
uppercase-only fonts, unless otherwi se marked. Any four fonts
(except those otherwise marked) of identical pitch may be speci
fied with the CHARS option of the SCRIPT command.

Appendix A. SCRIPT/VS Summary 365

APPENDIX B. DEVICE AND FONT TABLE MAINTENANCE

The logical devices and font tables provided w1th SCRIPT/VS are
intended to be comprehensive enough to serve the needs of most
general users. When no existing logical device or font table defi
nition seems suitable, the procedures described in ~his appendix
can be used to modify the supplied tables, or to create new ones.

LOGICAL DEVICE TABLE MAINTENANCE

SCRIPT /VS bases its formatt i ng of a document on the character
istics of a specified (or implied) logical output device.
SCRIPT/VS takes into account the characteristics of the physical
device, as well as dynamically changing characteristics: font,
lines per inch, and form size.

The combination of these fixed (physical) characteristics and
changeable characteristics is called the logical output device,
which corresponds to the "setup" of a physical output device.

The module OSMlPlOT contains one logical device table (lOT) for
each logical output device. Each LOT is created by an lOT macro
and is mapped by OSMSlOT.

Updating a Logical Device Table (LDT)

Use the following procedure to add or change an LOT entry:

1. Obtain a listing of the OSMlPLOT module from your library.

2. Obtain the source code for the OSMlPlOT module and add a new
lDT macro that describes the new logical output device

- or -

Modify an existing LDT specification macro that describes the
logi cal output devi ce whose characteri sti cs you want to
change. The macro's field names are described in detail in
"lDT field Descriptions."

3. Assemble the DSMlPLDT module to include the changes you've
made.

4. Link the newly-assembled version of the DSMlPLDT module with
the rest of SCRIPT/VS, as described in the Program Directory.

LDT Field Descriptions

Each logical device table (LDT) macro is specified as:

lDT LD=name,
PD=dev ice name,
DF=font name
[,DLl=device unitsl~1
[,DOTxx=value1
[,OPl=device unitsl~1
[,FSS=font spacel11
[,HS=device unitsT!1
[,LPI=.§.181121
[,MLl=device unitsl~1
[,MPL=device unitsl~1
[,P=1l1121151
[,VS=device unitsl!]

logical device name
Physical device identifier
Default font identifier
Default line length
Page margin values 48

Default page length
Font storage size
Horizontal space unit
lines per inch
Maximum line length
Maximum page length
Pitch
Vertical space unit

Page dimensions (MPL, DPL, MLl, DLl) and space units (HS and VS)
are represented as device units: the printer's physical unit of

Appendix B. Device and Font Table Maintenance 367

resolution in the relevant direction. Vertically, this is one
line for all printers. Horizontally, this is one character space
for all printers except the 3800 Printing Subsystem. The 3800
Printing Subsystem's unit of horizontal resolution is the pel, a
space of 1/180th of an inch. The HS space unit for the 3800 Print
ing Subsystem, therefore, could be 18 (for a 10-pitch horizontal
space), 15 (for a 12-pitch space), or 12 (for a IS-pitch space).

The content and meaning of each lDT field that you can specify
with the LDT are shown below.

LDT Field Description (Requfred Parameters)

LD logical device name: 1 to 8 alphameric characters.

PD Physical device name: 4 to 8 alphameric characters.
The values recognized are 1403, 2741, 3270, and 3800.

DF Name of the default font, 1 to 4 alphameric characters
The default font is used when the CHARS option of the
SCRIPT command is not specified.

LDT Field Description (optional Parameters)

DLL The default line width in device units. This value is
used unt i I reset wi th the .ll [l i ne length] control
word. Dll cannot be greater than Mll. Default = 60.

DLl and DPl establ ish the defaul t page si ze, whi ch
cannot be larger than the form size.

DOTXX These keywords can be used to overri de the defaul t
page margin parameters:

DPL

FSS

HS

48

Keyword

DOTBM
DOTTM
DOTHM
DOTFM
DOTHS
DOTFS

Overrides Default

Bottom margin
Top margin
Heading margin
Footing margin
Heading space
Footing space

Note: For 3800-type logical devices, DOTBM and DOTTM
are ignored. Instead,

Bottom margin = Footing margin + Footing space

Top margin = Heading margin + Heading space

The default page length in device units. This value is
used unti I reset wi th the . Pl [Page length] control
word. DPl cannot be greater than MPl. Default = 66.

The font storage size of the device. This value is used
to ensure that all fonts speci fi ed wi th the CHARS
option of the SCRIPT command will fit in the physical
dev ice. Refer to the FS parameter of the FIB macro.
Default = 1.

The number of devi ce uni ts in one "hori zontal space
unit" (the width of a character in the default font).
This value is used to resolve a control word's parame
ter that specifies a horizontal space or displacement,
but does not specify a unit of measurement (for exam
ple, .IN2).

xx = TM (Top Margin), HS (Heading Space), HM (Heading Margin),
BM (Bottom Margin), FS (Footing Space), or FM (Footing
Margi n). DOTxx can be speci fi ed repeatedly (for example:
"DOTTM=3,DOTBM=3").

368 Document Composition Facility: User's Guide

LPI

MLL

MPL

P

vs

Lines per inch. A decimal number: 6, 8, or 12. Default
= 6.

The maximum number of horizontal device units in the
printable portion of the page. Default = 60.

MLL and MPL establ ish the form si ze for the logi cal
output device (that is, the size of its physical
page.)

The maximum number of vertical device units in the
printable portion of the page. Default = 66.

Pitch, or number of equal-width characters per inch.
For monospaced devices only. A decimal number: 10, 12,
or 15. Default = 10.

The number of dev ice un its in one "vert i ca 1 space
unit" (that is, the vertical space of a print line).
This value is used to resolve a control word's parame
ter that specifies a vertical space or displacement,
but does not specify a unit of measurement (for exam
ple, .SP2).

The blank-character codes are used for line justifica
t i on when the output i sin a font that i ncl udes
pseudo-blanks. All fonts to be used in a mixed-pitch
environment must include the proportional-spaced blank
character codes in their character arrangement tables.

Default Values for Log;cal Output Dev;ces

When you speci fy values for the vari ous fi elds of the LDT,
SCRIPT/VS will use those values to derive the following defaults:

Parameter

Top marg;n

Head; ng space

Head;ng Marg;n

Bottom Marg; n

Foot; ng space

Foot;ng Marg;n

FONT TABLE MAINTENANCE

Default derived from

6 times VS (6 vertical line spaces) or, for the
3800 Printing Subsystem, 3 times VS or 0, if
page length ;s less than 15.

VS (1 vertical line space) or 0, if page length
is less than 15.

2 times VS (2 vertical line spaces) or 0, if page
length is less than 15.

6 times VS (6 vertical line spaces) or for the
3800 Printing Subsystem, 3 times VS or 0, if
page length is less than 15.

VS (1 vertical line space) or 0, if page length
is less than 15.

2 times VS (2 vertical line spaces) or 0, if page
length is less than 15.

When formatting documents for the 3800 Printing Subsystem,
SCRIPT/VS makes use of font tables for each of the fonts named in
the CHARS option of the SCRIPT command. Each font table describes
the font in terms of its name, pitch, and the width of each char
acter.

The module DSMAFFIB contains one font information block (FIB) for
each known font. The FIBs are created by the FIB macro and are
mapped by DSMFIBD.

Appendix B. Device and Font Table Maintenance 369

* * 00-3F:
GP12WT DC

DC
DC
DC * 40-7F:
DC
DC
DC
DC * 80-BF:
DC
DC
DC
DC * CO-FF:

* *

DC
DC
DC
DC

o 1 2 3 4 5 6 7 8 9 ABC D E F. 0123456789ABCDEF

H'15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15' ---------------
H'15,18,15,12,15,15,15,15,15,15,15,15,15,15,15,15' ---------------
H'15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15' ---------------
H'15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15' ----------------

H'15,15,15,15,15,15,15,15,15,15,15,12,15,12,15,12' ---------9.«+1
H'18,15,15,15,15,15,15,15,15,15,12,15,15,12,12,15' &---------!$*);
H'15,18,15,15,15,15,15,15,15,15,15,12,18,18,15,15' -/---------,Y._>?
H'15,15,15,15,15,15,15,15,15,15,12,18,18,12,15,15' ----------:#~,="

H'15,15,15,15,15,15,12,15,15,12,15,12,15,12,12,15' -abcdefghi-----
H'15,12,15,12,18,15,15,15,15,15,15,12,15,12,15,12' -jklmnopqr-----
H'12,15,15,12,15,15,18,15,15,15,15,15,15,12,15,12' --stuvwxyZ-----
H'12,12,12,12,12,12,12,12,12,12,15,15,15,12,15,15' ----------------

H'15,15,15,15,15,15~15,15,15,12,15,15,15,15,15,15' -ABCDEFGHI-----
H'15,12,15,12,18,15,15,15,15,15,15,15,15,18,15,15' -JKlMNOPQR-----
H'18,15,15,15,15,15,18,15,15,15,15,15,15,15,l,5,15' --STUVWXyZ-----
H'15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15' 0123456789------

o 1 2 3 4 5 6 7 8 9 ABC D E F 0123456789ABCDEF

Figure 41. Example of a Font Width Table: GP12
proportional-spaced font with psuedo-blanks.

is a 12-pitch

Updating the Font Table (FIB)

Use the following procedure to add or change a font table:

1. Obtain a listing of the DSMAFFIB module from your library.

2. Code a FIB macro that describes the new font.

- or -

Modify the FIB macro that describes the font whose character
i st i cs you want to change. (The macro's f·i el d names are
described in detail in "FIB Field Descriptions," which fol
lows.)

3. Assemble the DSMAFFIB module to include the changes you've
made.

4. Link the newly-assembled version of the DSMAFFIB module with
the rest of SCRIPT/VS. (See the Program Directory for
deta i 1 s.)

FIB Field Descriptions

Each font information block (FIB) macro is specified as:

FIB font-name,
width-table,
box-vector
[,PITCH=101121151
[, CODE=tiTMB 1 PB]
[,FS=font-sizell1

Font name
Character width table
Box character vector
Pitch
Font type code
Font size

The content and meaning of each font table (FIB) field that you
can specify with the FIB macro are shown below:

FIB Field

font-name

Description (Required parameters)

The font name: 1 to 8 characters.

370 Document Composition Facility: User's Guide

wi dth-table The address of the font's wi dth table. The wi dth
table contains a halfword entry for each of the 256
character codes. Each entry specifies the width of
the character as a binary number of device units. See
Figure 41 for an example of the width table.

box-vector The address of the box character set vector. The vec
tors defined are:

FIB Field

PITCH

CODE

FS

DSMBXAPL: t r , L .I T ~ ~ .L

DSMBXGPC: + r 1 L J I 1
DSMBXSUC: + r 1 L J T ~ ~ .L

DSMBXTNC: + r 1 L J -,1 I, r 1,1 L

DSMBXTST: + 1 2 3 4 A B C D

DSMBXVAN: + + + + + + + + +

DSMBX32A: + r , L .I T ~ ~ .L

DSMBX32T: + r 1
L .I T ~ ~ .L

DSMBX38C: + r 1
L J T ~ ~ .L

Note that the intersection characters in the DSMBXTNC
vector are composites, formed by overstriking the two
characters shown.

Description (Optional parameters)

The font's pi tch (characters per hori zontal inch);
either 10, 12, or 15.

A 1- or 2-character code to specify the font type:

M Monospace font

MB Monospace font with special blanks

PB Proportional-spaced font with special blanks

Special blanks are described in "Appendix E. Format
ting Considerations for the 3800 Printing Subsystem"
on page 385.

Font size. The sum of the values of the FS parameters
of all fonts specified with the CHARS option of the
SCRIPT command may not exceed the value of the FSS
parameter of the logical device specified with the
DEVICE option.

Fonts Provided with SCRIPT/VS

The fonts provided with SCRIPT/VS for use with the 3800 Printing
Subsystem are listed and illustrated in "Appendix D. Fonts Sup
plied with SCRIPT/VS" on page 377.

3800 printing Subsystem Fonts Supported By SCRIPT/VS

The fonts provided with the 3800 Printing Subsystem are listed in
Figure 39 on page 364. For details on creating a character
arrangement table and its correspondi ng character set, see IBM
3800 Printing Subsystem Programmer's Guide.

Appendix B. Device and Font Table Maintenance 371

APPENDIX C. STEM PROCESSING

During stem processing, SCRIPT/VS removes prefixes and suffixes
in order to obtain the stem of a word that it is trying to hyphen
ate or verify the spelling of. The following descriptions summa
rize, by language the prefixes and suffixes SCRIPT/VS checks for
during this process.

ENGLISH PREFIXES AND SUFFIXES

SCRIPT/VS checks for the following prefixes during stem process
ing:

ANTI
DIS
INTRA
MINI
PRE
SUPER

ANY
DOWN
KILO
MIS
PRO
TELE

BACK
EN
MACRO
MULTI
RE
TRANS

COUNTER
FORE
MEGA
NON
SEMI
UN

CROSS
IN
MICRO
OUT
SOME
UNDER

SCRIPT/VS also checks for these seven suffixes:

, (apostrophe)
ING

FRENCH PREFIXES AND SUFFIXES

S
ION

ED AL

DE
INTER
MILLI
OVER
SUB
UP

ALLY

There are two types of French49 prefixes that SCRIPT/VS checks
duri ng stem processi ng. They are: contract ions that are the
result of elision processing; and grammatical prefixes. The fol
lowing are the contractions that SCRIPT/VS checks for:

D' (DE) J' (JE) L' (LE/LA) S' (SE/SI)
N' (NE) M' (ME) JUSQU' (JUSQUE) LORSQU' (LORSQUE)
QU' (QUE) T' (TE) PUISQU' (PUISQUE) QUOIQU' (QUOIQUE)

SCRIPT/VS also checks for these grammatical prefixes:

INTER ENTRE CONTRE TRANS SUR ANTI
DE(S) EN EM IN 1M RE
REM REN RES REDE

The French suffi xes that SCRIPT/VS checks for are:

ERAI ERAS ERA ERONS EREZ
ERONT ERAIS ERAIT ERIEZ ERIONS
ERAIENT IRAI IRAS IRA IRONS
IREZ IRONT IRAIS IRAIT IRIONS
IRAIENT OSITION(S) ATION(S) ATEUR(S) ATRICE(S),
ATIF(S) ATIVE(S) ATIVEMENT IVE(S) IVEMENT
IONS SIONS TIONS INS INT
I/NMES I/NTES INRENT IS IT
I/MES I/TES IRENT US UT
U/MES U/TES URENT ISSE ISSES
ISSENT ISSEMENT ELLE(S) ELLEMENT EUSE(S)
EUSEMENT ENT(S) ENTES ENCE(S) ANT(S)
ANTE(S) ALE(S) AUX ALS ALEMENT
E EMENT X AIS AIT
AITS IEZ AlENT ABLE(S) ABLEMENT
AI AS A A/MES A/TES
ABILITECS) IBILITECS) E S ER(S)
lEUR EUR EURS RONT

49 These prefixes and suffixes are also checked for Canadian
French.

Appendix C. Stem Processing 373

DUTCH PREFIXES AND SUFFIXES

The following Dutch prefixes are processed by SCRIPT/VS during
stem processing:

AAN
AF
AVERIJ
BELEIDS
BIJ
BOUW
BURGER
CONTRA
DISCONTO
DRIE
EI
FILM
GELD
HER
HOEK
KABEL
KLUB
KOSTEN
MAATSCHAPPIJ
MICRO
NETTO
OCTROOI
ONT
PERS
PRIJS
PSYCHO
RESEARCH
SALDO SPROEI
SLIB
STUDIE
TELEGRAM
TOE
TUSSEN
VALUTA VLIEGTUIG
VERZEKERINGS VRACHT
VOOR
WEER
ZAND
ZIJ

AARDAPPEL
ANTI
BANK BOEREN
BE
BINNEN
BOVEN
BURO
DAAR
DOOR
DRIEE:N
EIND
FOTO
GROND
HOEK
HUUR
KALK
KOMMANDO
LABORATORIUM
MASSA
MIKRO
NIEUWBOUW
OKTROOI
ON
PLAN
PRODUCTIE
RADIO
RIJ
SAMEN
STAATS
TEGEN
TENTOON
TOUW
UIT
VENDU VOORT
VIJFEN
VRACHTEN
WEG
ZEE
ZINK

ACHTEN
ATOOM
BASIS BOOM
BIER BUITEN
BLAAS
BRUTO
CLUB
DAK
DRAAD
DRUK
EXPORT
GAS GIRO
HALF
HOOFD
IN INCASSO
KANTOOR
KONTRA
LEIDING
MEDE MILIEU
NA
NIVEAU
OM
OP
POMP
PRODUKTIE
RECLAME
RISICO
SCHAKEL
STOF
TELEFOON
TERREIN
TRANSITO
VAST
VER
VLOEI
VRIJ
WERP
ZELF

SCRIPT/VS also checks for the following Dutch suffixes:

ELIJKE
DENDE
LOZE
IE: LE
LIJKEN
TOREN
EN
ER
LIJKHEID
ING

ITALIAN PREFIXES AND SUFFIXES

LIJKE
ENDE
E
DE
ELIJKHEDEN
EREN
DEN
DER
HElD
DING

IJE
KTE
ERE
INGEN
LIJKHEDEN
ELEN
VAN
LOOS
END
lING

JE
PTE
ElE
IINGEN
HEDEN
BAREN
lEN
S
DEND

ACHTER
AUTO
BEDRIJFS
BIJEEN
BODEM
BUREAU
COMMANDO
DEPOSITO
DRAAI
EENEN
FABRIEKS
GE GROEI
HAVEN
HUIS
JAAR
KAPITAAL
KOOP
LOS
MEE
NEGENEN
NIVO
ONDER
OVER
POST
PROGRAMMA
REKLAME
RISIKO
SCHEEPS
STROOM
TELEGRAAF
TERUG
TROUW
VEEl
VIEREN
VLOEISTOF
WAAR
WONING
ZEVENEN

ENDE
BARE
AGE
ElIJKEN
SOREN
LOZEN
BAAR
ELIJKHEID
lEND

There are two types of Italian prefixes that SCRIPT/VS checks for
duri ng stem processi ng. They are: contract; ons that are formed
during ellsion processing; and grammatical prefixes. The follow
ing list summarizes the contractions that SCRIPT/VS checks for:

L ' ALL' ANCH' BELL' COLL' D'
DALL' DEGL' DELL' GL' NELL' QUELL'
QUEST' SULL' UN' NEANCH' NESSUN' NEINT'
QUAL' QUALCOS' QUALCUN' QUAND' QUANT' SENZ'
C' V' DAGL' S' M' T'
BUON' COM' DEV' AGL' SUGI' COS
TUTT GRAND

374 Document Composition Facility: User's GUlde

The following list summarizes the grammatical prefixes that
SCRIPT/VS checks for:

AUTO
CON
FILO
SEMI
SUPER
VICE
'INTRA

ANTI
CONTRO
FOTO
SODDIS
TELE
PRE
'CONTRA

APPAR
DIS
IN
SOM
TRAS
SOM
'SOTT

BIS
DE
IPER
SOPRA
TRAT
STRA

CAPO
EX
INTER
SOS
ULTRA
'SOVRA

CENTRO
EXTRA
RI
SOTTO
SUB
'S

SCRIPT /VS processed the suffi xes of Ital i an verbs di fferently
than it does suffixes for Italian nouns. The Italian noun suffixes
that SCRIPT/VS checks for are:

A
ANZA
ATURA
ETTO
HETTA
NCINO
AMENTO
CHE(
ATIVO

E
ANZE
ATURE
ETTI
LINO
TINA
AMENT I
CHE)
ATIVI

I
ATORE
IZIONE
ETTA
LINI
TINa
IMENTO
ISSIMA
ATIVA

o
ATORI
IZIONI
ETTE
INA
AMENTE
IMENTI
ISSIME
ATIVE

AZIONE
ATRICE
ISTA
HETTO
INE
CAMENTE
LMENTE
ISSIMI
ABILE

AZIONI
ATRICI
ETTO
HETTI
INI
EMENTE
TAMENTE
ISSIMO
ABILI

The Italian verb suffixes that SCRIPT/VS checks for are:

A
ANTI
ASTE
AVA
a
ENTE
ESSI
EVAMO
UTE
ERAI
ERESTI
METTERAI
ITA
IRE
IRESTE
ITO
IVO
lATE
ISCONO
CHE
RANNO
SERa

AI
ARE
ASTI
AVAMO
INa
ENTI
ESSIMO
EVANO
UTI
ERA
EREBBE
MANGERAI
II
IREBBE
IRESTI
IVA
ISSE
ISCA
CO
CIA
RESTI
ETTERO

AMMO
ARONO
ATA
AVANO
E
ERONO
ESTE
EVATE
UTO
EREMO
EREBBERO
LASCERAI
I
IREBBERO
IRETE
IVAMO
ISSERO
ISCANO
GO
RAI
REBBE

ANDO
ASSE
ATE
AVATE
EMMa
ESIMO
ESTI
EVI
aNa
ERETE
EREMMO
ISTE
IMMO
IREI
ITA
IVANa
ISSI
ISCE
CA
RA
REMMO

ANa
ASS I
ATI
AVI
ENDO
ESSE
ETE
EVa
ERE
ERANNO
ERESTE
ISTI
IRAI
IREMMO
ITE
IVATE
ANa
ISCI
GA
REMO
RESTE

ANTE
ASSIMO
ATO
AVO
EI
ESSERO
EVA
UTA
ERa
EREI
AMERAI
ITA
IRANNO
IREMO
ITI
IVI
lAMa
ISCO
GHE
RETE
REBBERO

Appendix C. Stem Processing 375

APPENDIX D. FONTS SUPPLIED WITH SCRIPT/VS

The fonts illustrated in this appendix are provided with SCRIPT/VS for use with
the 3800 Printing Subsystem. One or two font names can be specified with the CHARS
option of the SCRIPT command (for details, refer to "CHARS: Specify Fonts" on page
19). The SCRIPT/VS fonts cannot, in general, be combined in the CHARS option with
the IBM 3800 fonts listed in Figure 40 on page 365.

Figure 42 lists the fonts provided by SCRIPT/VS for use with the 3800 Printing
Subsystem. Each is a full uppercase and lowercase font.

Text Fonts Highlight Fonts special Fonts

GTlO Gothic (lO-pitch) GBlO Gothic Bold GRlO Gothic Reverse
GT12 Gothic (12-pitch) GB12 Gothic Bold GP12 Proportional
GTl5 Gothic (15-pitch) GI12 Gothic Italic

STIO Serif (lO-pitch) SIlO Serif Italic RTIO Roman Text
ST12 Serif e12-pitch) SI12 Serif Italic S012 Serif Overstruck
5T15 Serif (15-pitch) SB12 Serif Bold

Figure 42. Complete 3800 Fonts Provided With SCRIPT/VS: Each font is a com
plete set of special, upper- and lowercase characters. Any two of
these fonts may be specified with the CHARS option of the SCRIPT
command.

Appendix D. Fonts Supplied with 5CRIPT/VS 377

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 OF
10 IF
20 2F
30 3F
40 ¢ . < (+ I 4F
50 & ! $ *) ; -- SF
60 - / , % > - ? 6F
70 : # Q) , = " 7F
80 b d f h i { S + 8F SCRIPT/VS

a c e g
FONT: GTIO

90 j k 1 m n 0 p q r } ± • 9F
AO 5 t u v w x y z L r [~ • AF
BO 0 1 2 J 4 5 b 7 8 9 J

1] '¢. - BF
CO A B C D E F G H I J..

T CF
DO J K l M N 0 P Q R § DF D E F
EO '\ S T U V W X Y Z I- i EF
FO 0 1 2 3 4 5 6 7 8 9 I FF OF

IF
0 1 2 3 4 5 6 7 8 9 A B C D E F 2F

- - 3F
40 ¢ < (+ I 4F
50 & ! $ *) ; ... 5F
60 - I , % - > ? 6F

SCRIPT/VS FONT: GT12 70 : # 4) ,
= " 7F

80 a b c d e f 9 h i { ::; + 8F
90 j k 1 m n 0 p q r } ± • 9F
AO 5 t U v w x y z L r [~ . AF
BO 0 1 2 3 4 5 6 7 8 9 J 1] ;/: - BF
CO A B C D E F G H I 1. T CF
DO J K L M N 0 P Q R § DF
EO , S T U V W X Y Z I- 1 EF

o 1 2 3 4 5 6 789 FO 0 1 2 3 4 5 6 7 8 9 I FF

00
10 0 1 2 3 4 5 6 7 8 9 ABC D E F
20
30 3F
40 ¢ • < (+ I 4F
50 & ! $ *) ; ... 5F
60 - I , % - > ? 6F
70 : 14)1 - .. 7F
80 abc d e f 9 h 1 { $ + 8F SCRIPT/VS FONT: GT15

90 j kIm n 0 p q r } ± • 9F
AO 5 t u v w x ~ z L r [~ . AF
BO 01234 5 679 J ,) ;e - SF
CO ABC 0 E F G H I ! T CF
DO J K L M N 0 P Q R § OF
EO , STU V W X Y Z I ~ ~ EF
FO o 1 234 5 6 789 FF

o 1 2 3 4 5 6 7 8 9 ABC 0 E F

Figure 43. SCRIPT/VS Fonts: Gothic Text

378 Document Composition Facility: User's Guide

0 1 2 3 4 5 6 7

00
10
20
30
40
50 &
60 - /

70
80 a b c d e f 9
90 j k 1 m n 0 p
AO s t u v W K
BO 0 1 Z 3 If 5 6 7

CO A B C D E F G
DO J K L M N 0 P
EO "- S T U V W X
FO 0 1 2 3 4 5 6 7

0 I 2 3 4 5 6 7

8 9 A B C D

¢ . < (

! $:+:)

, % -
: i 0) ,

h i { $
q r }

Y z l r [
8 9 J ,]

H I .1
T

Q R §

Y Z ~ -t
8 9 I
8 9 A BCD

&
- I

E F

+ I
; ...
> ?
= "
+

:t •
~ •

* -

E F

OF
IF
2F
3F
4F
SF
6F
7F SCRIPT/VS FONT: STIO
8F
9F
AF
BF
CF
DF C 0 E F
EF
FF

¢ . < (+ I
! $ *) ; ...

, ~ - > ?
SCRIPT/VS FONT: ST12

30
40
50
60
70
80
90
AO
80
CO
00
EO
FO

: # ~ , = "
{ s +

OF
IF
2F
3F
4F
5F
6F
7F
8F
9F
AF
BF
CF
OF
EF
Ff

00
10
20
30
40
50
60
70
80
90
AO
80
CO
DO
EO
FO

o 1 2 3 4 5 6 7 8 9 A

¢

& !
- I

:
abe d e f g h i
j k 1 m n 0 p q r
stu V \J X Y 'Z

012 345 6 7 6 9

ABC 0 E F G H I
J K L H N 0 P Q R

\ STU V W X Y Z
0 1 234 5 6 789 I

• < (
$ *)

abc d e f g h i
j k 1 m n 0 p q r
stu v W K Y Z

o 1 Z 3 q 567 8 9

ABC 0 E F G H I
J K L M N 0 P Q R

, STU V W X Y Z
o 1 234 5 6 789

} ± •

J
L r [~ •
1. 1] ~ -

T
§

IH

o 1 234 5 6 7 8 9 ABC 0 E F

3F
+ I 4F
; ... 5F

,x_>? 6F
Q) I = II 7F SCRIPT/VS FONT: ST15
{ =:;; + 8F
} ± • 9F
l r [~ . AF
J ,] ~ _ BF
loT CF

§ OF
~ ~ EF

FF

o 1 2 3 4 5 6 7 8 9 ABC 0 E F

Figure 44. SCRIPT/VS Fonts: Serif Text

Appendix D. Fonts Supplied with SCRIPT/VS 379

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 OF
10 IF
20 2F
30 3F
40 ¢ . < (+ I 4F
50 & ! $ *) ; -, SF
60 - / I % > ? 6F -
70 : **

@ , = " 7F SCRIPT/VS FON
80 a b c d e f 9 h ; C :s + 8F

T: GB 10

90 j k 1 m n 0 p q r) :!: .. 9F
AO s t u v w x y Z L r [~ ., AF
BO 0 1 Z 3 4 S b 7 8 9 J

1] ..,. - BF :r-

CO A B C D E F G H I .L T CF
DO J K L t'1 N 0 P Q R § DF BCD E F

EO '\. S T U V W X Y Z t -f EF
------_.

FO 0 1 2 3 4 5 6 7 8 9 I FF OF

-- IF

0 1 '1 3 4 S 6 7 8 9 A B C D E F 2F
c:..

3F
40 ¢ . < (+ I 4F
50 & ! $ *) ; ., 5F
60 - / , % > - 1 6F
70 : # G) , = " 7F

SCRIPT/VS FONT: GB12 80 a b c d e f 9 h i (:S. t 8F
90 j k: 1 m n 0 p q r } :!: • 9F
AO s t u v w x y z L r [~ 0 AF
BO 0 1 Z 3 4 5 6 7 8 9 J ,] ~ - BF
CO A B C D E F G H I J.

T CF
0 1 234 5 6 7 8 DO J K L M N a p Q R § DF

-
EO " S T U V U x y z ~ ~ EF

00 FO 0 1 2 3 4 5 6 7 8 9 I FF
10 -----------
20 0 1 2 3 4 5 6 7 8 9 ABC D E F
30
40 ¢ < (+ I 4F
50 & ! $ *) ; .. SF
60 - / I Z - > ? 6F
70 : # OJ

,
= " 7F SCRIPT/VS FONT: GI12

80 d b c d e f 9 h i { i + SF
90 j k 1 m n 0 p q r } :t • 9F
AO 5 t U V 14 X Y z L r { ~ • AF
BO 0 1 2 3 ~ 5 6 "7 B 9 J

1] f: - BF
CO A B C D E F G H I 1.. T CF
DO J K L H N a p Q R § DF
EO '\. 5 T U V H X y Z ~ i EF
FO a 1 2 3 4 5 6 7 8 9 I FF

--------------.. ---------~------.

0 1 234 5 6 7 8 9 ABC 0 E F

Figure 45. SCRIPT/VS Fonts: Gothic Highlight

380 Document Composition Facility: User's Guide

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

00 OF
10 IF
20 2F
30 3F
40 ~ . < (+ I 4F
50 & ! $ *) ; .. SF
60 - / , % - > ? 6F
70 : :It cil , = " 7F SCRIPT/VS FONT: SIlO
80 a b c d e f g h i { ~ + 8F
90 j k I m n o p q r } ± • 9F
AO s t u v w x y z L r [~ • AF
BO 0 1 2 3 It 5 6 7 8 4) J

1] :f: - BF
CO A B C D E F G H I -L

T CF
00 J K L 1'1 N 0 P Q R § OF
EO " S T U V W X y Z ~ ~ EF 7 8 9 ABC D E F
FO 0 1 2 3 4 5 6 7 8 9 I FF

OF
0 1 2 3 4 5 6 7 8 9 A B C 0 E F IF

c..v 2F
30 3F
40 ¢ . < (+ I 4F
50 & ! $ *) ; ... 5F
60 - / , ~ - > ? 6F

SCR1PT/VS FONT: S112 70 : # G} 1 = " 7F
80 a b c d e f g h i { S. + 8F
90 j k. I m n o p q r } t • 9F
AO s t u v w x y z L r [l • AF
BO o 1 2 3 C, 567 B 9 J 1 J 'i: - BF
CO ABC D E F G H 1 .L T CF
00 J KLNNOPQR § OF

o 1 234 EO " STUVWXYZ ~ ~ EF
FO 0 1 2345678 9 I FF

00
10 o 1 2 3 4
20

5 6 7 8 9 A B C 0 E F

30 3F
40 ¢ • < (+ I 4F
50 & ! $ *) ; .. 5F I
60 - / , Y. _ > ? 6F
70 : 10)' = " 7F SCR1PT/VS FONT:
80 a b c d e f 9 h :i. (~ t 8F SB12
90 j k 1 m n o p q r J t • 9F
AO s t u v w x y z L r [2 • AF
BO o 1 2 3 4 5 6 7 8 9 J 1] '1-- BF
CO ABC D E F G H I .1. T CF
00 J K L 1'1 N 0 P Q R § OF
EO " S T U V W X Y Z ~ i EF
FO o 1 2 3 " 5 6 7 8 9 I FF

o 1 2 3 4 5 6 7 8 9 ABC 0 E F

Figure 46. SCRIPT/VS Fonts: Serif Highlight

Appendix D. Fonts Supplied with SCRIPT/VS 381

00
10
20
30
40
50
60
70
80
90
AO
80
CO
DO
EO
FO

00
10
20
30
40
50
60

o 1 234 5 6 7 8 9 A 8 C D E F

B·

o I 234 5 6 7 8 9 ABC D E F

o 1 2 3 4 5 6 7 8 9 ABC 0 E F

OF
IF
2F
3F

¢ • < (+ 4F
& $ *) . ~ 5F ,
- / , % > ? 6F

"

OF
IF
2F
3F
4F
SF
6F
7F
8F
9F
AF
BF
CF
DF
EF
FF

SCRIPT/VS FONT: GRIO

70
**

Q) , = 7F SCRIPT/VS FONT: GP12
80 c d e { ~ (+ + a b f 9 h 8F
90 j k 1 m n o p q r }) ± • 9F
AO 5 t u v w x y Z L r ~ . AF
BO 0 1 2 345 6 7 8 9 .J ,] ¢ - BF
CO A B C D E F G H I CF
00 J K L M N o P Q R § DF
EO , S T U V W X y Z EF
FO o 1 2 3 if. 5 I) 7 8 ~ FF

0 1 2 3 4 5 6 7 8 9 A B C 0 E F

Flgure 47. SCRIPT/VS Fonts: Gothic Special Purpose

382 Document Composition Facility: User's Guide

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 OF
10 IF
20 2F
30 3F
40 ¢ . < (+ 4F
50 & ! $ }I{) 5F
60 - / % > ? 6F
70 n 0)

,
" 7F SCRIPT/VS FONT:

80 abc d e f g h i { ~ + 8F RTIO
90 j k I m n 0 p q T } ± • 9F
AO s t u v u x y z l r [?: • AF
BO 0 l. 2 3 4 .s 6 7 6 9 J

1] ~ BF
CO A B C D E F G H I i

T CF
DO J K L M N 0 p Q R § OF
EO " S T U V W X Y Z ~ ~ EF
FO 0 1 2 3 4 5 6 7 8 <) FF

0 1 2 3 4 5 6 7 8 9 A B C D E F

o 123 4 5 6 7 8 9 ABC 0 E F

00 OF
10 IF
20 2F
30 3F
40 +-:-~+++ 4F
50 • -!-$-*+-t- SF
60 - r T*=~7' 6F
70 +*a..L..;;..lL 7F 5CRIPT/V5 FONT: 5012 80 -a b e d e-f-9'tr± t ~ + 8F
90 t~T m n (:7 P "C{ T t ± ... 9F
AO s t tt 't"wxyz .LTt-t-+ AF
BO .Q..1..2..3...IL~.6.~.as .LT-]-~- BF
CO *i1eDEP5Hi- ..LT CF
DO -a-*i:;MNep-&R ! DF
EO ~ 5!fBVW*¥i!; +++ EF
FO ~+~3'r5v-ra-9 FF

o 1 2 3 4 5 6 7 8 9 ABC 0 E F

Figure 48. SCRIPT/VS Fonts: Serif Special Purpose

Appendix D. Fonts Supplied with SCRIPT/VS 383

APPENDIX E. FORMATTING CONSIDERATIONS FOR THE 3800 PRINTING SUBSYSTEM

Font Management

This section contains some information and simple guidelines to
help you when formatting documents for the 3800 Printing Subsys
tem.

Before reading this section, you should have a working knowledge
of the control word syntax and functional capabilities of
SCRIPT/VS. Additionally you should be fami liar with the 3800
Printing Subsystem hardware and its system control program (SCP)
support. Information about the 3800 Printing Subsystem can be
found in IBM 3800 Printing Subsystem Programmer's Guide.

The current font may potentially change each time a new input line
is processed. A new font may be started at any point in the input
stream. This may be between words or within a continued word. At
the time a new font is started, the followi ng i nformati on is
available to the formatter:

• Address of the "font wi dth table"

• Table Reference Character (TRC) for this font

• Availability of "special blanks"50

line formatting proceeds based on these parameters until another
font change is requested.

Fonts of different pitch that do not contain special blanks cannot
be used on the same output line. Failure to observe this
restriction may result in severe column misalignment.

A single output line includes all data in all columns that occupy
a single print line position on the output device.

Usually, the desired results may be achieved using
SCRIPT/VS-supplied fonts which contain the special blanks. Howev
er, if a local font is required, it is recommended that you supply
"graphmods" for the special blank character codes.

Care should be taken in the definition of new fonts to observe the
following conventions:

• The font should contain a multiple of 64 characters less one.
This ensures that the Writable Character Generatjon Matrix
(WCGM) storage in the 3800 Printing Subsystem is used effi
ciently (that is, has no unused WCGM positions).

• The first WCGM position (hexadecimal 00) should be assigned
to the normal blank, usually hexadecimal 40, rather than
SCRIPT/VS special blanks. Data positions in the output line
that are not otherwise assigned (that is, unprintable charac
ters) will be assigned to this character by the 3800 Printing
Subsystem.

• The underscore character (hexadecimal 60) should be assigned
to the 45th WCGM position (hexadecimal 20). The 3800 Printing
Subsystem assumes that WCGM posi t ion 45 is the underscore
character. If this position is unassigned, underscores will
not appear in the output. Assigning this position to a charac
ter other than the underscore may cause unpredictable
results.

50 Hexadecimal 11 is 10 pitch. Hexadecimal 12 is 12 pitch.
Hexadecimal 13 is 15 pitch.

Appendix E. Formatting Considerations for the 3800 Printing Subsystem 385

• The last WCGM position (hexadecimal 3F) should not be
assigned to any character code.

Tab, Backspace, and Underscore Resolution

Interword Space

It is necessary to resolve backspaces and tabs before line format
ting can begin. The tab, backspace, or underscore characters,SI
when processed, cause changes in the input line data string.

If no fill character has been specified in the tab definition,
tabs are expanded by inserting hexadecimal 40 characters or spe
cial blanks in appropriate combinations to fill the space from the
character preceding the tab to the next defined tab stop position.
Current character position ;s measured in pels from the beginning
of the column, including indention.

A minimum space of 11 pel is required from the current line posi
tion to the tab stop; if the space is less than 11 pel, the next
defined tab stop is used.

This minimum value guarantees that the tab expansion will end
within 1 pel of the desired tab stop position if special blanks
are available. See "Inline Space Management" on page 387 for more
information.

All data to the left of a tab expansion is considered to be a sin
gle word segment. No wordspaces to the left of the tab will be
considered for justification purposes. Normal line folding 52 at
wordspaces is also inhibited to the left of a tab expansion.

Overstruck characters are ignored when formatt i ng for the 3800
Printing Subsystem, except when the overstrike character i$ the
underscore (_). This is true regardless of whether overstriking
occurs because of backspacing or the .DF [Define Font] OS control
word.

If justification is on and special blanks are present, all inter
word spaces in the input 1 i ne are consi dered to be 15-pi tch
blanks.

When an input line does not fill the column width, a wordspace is
added to the end. Successive input lines are formatted with inter
vening spaces until the column width is filled.

• If the input line ends with a full stop character, two word
spaces are added.

• When the input line ends in a continuation character, no word
space i s added.

Revision Code Characters

The revision code character is normally placed immediately pre
ceding each changed line, separated from the column by a blank.
Because the RC field has a variable width based on the width of
the RC character and the RC adjust, it is necessary to measure and
format it in the same way as text data.

It is most desirable for the first character of each text line to
start in the same relative position. To ensure this, the RC char
acter and its field must have a combined width that does not vary
from line to 1 i ne. If speci al blanks are present, thi s may be

51 Hexadecimal 05, 16, and 6D are tab, backspace, and
underscore, respectively.

52 .FO ON or .CO ON.

386 Document Composition Facility: User's Guide

achieved by combining the RC character with a special blank which
brings the total width of RC and blank to 30 pel. The following
table shows relative widths:

RC Width

12
15
18

Blank Width

18
15
12

The RC field is allocated from the binding margin in the first
column, and from,the intercolumn gutter space in subsequent col
umns. If ;nsufficient space is available, the revision code will
not appear in the output.

The RC field width should be defined such that sufficient space is
allocated on both sides of the revision code character for proper
inline space management. This requires that:

• The width of the RC field, less the width of the RC character,
should be 0, 11-19, or more than 23 pel.

• The width of the intercolumn gutter, less the width of the RC
field, should be 0, 11-19, or more than 23 pel.

If these r~strictions are violated, inline space errors of up to 6
pel may result, as illustrated in Figure 49 on page 388.

Inline Space Management

Any time there is a need to fill some space in the output line, a
space character string must be generated which will have a meas
ured length equal to that of the desired space. This character
string will be hexadecimal 40 characters, or a combination of spe
cial blanks. The accuracy of the length of a space string has a
direct effect on the column alignment of the output line of which
that string is a part.

The best accuracy that may be hoped for with the hexadecimal 40
string is ± one-half hexadecimal 40 character width. With care,
one may set parameters in such a way as to minimize the probabili
ty that half-character alignment errors will occur.

One-half-character rounding errors may occur when space units are
not specified in multiples of the character width. This occurs
because the space unit value is resolved to native device units,
pels in the horizontal direction, and may not always be satisfied
accurately with a string of hexadecimal 40 characters. The situ
ation is not affected by the magnitude of the request but by the
relationship of the space value to the width of the hexadecimal 40
character at the point in time when the space is generated.

The best accuracy that may be hoped for with the special blank
string is ± one pel. This level of accuracy is the best attainable
on the 3800 Prlnting Subsystem and is quite satisfactory for most
applications. This level of accuracy can normally be expected
when these guidelines are followed:

• Define tabs so that the text before the tab always has room to
end 11-19 pel, or more than 23 pel, before the defined tab
stop position.

• Define columns and revision code fields in accordance with
the discussion of revision codes earlier in this appendix.

• Specify indent values of 11-19 pel, or values greater than 23
pel.

• Limit split text filler strings to 1 or 2 characters.

If special blanks are present and the above guidelines are not
followed, inline space errors of ± six pel may be encountered.

Appendix E. Formatting Considerations for the 3800 Printing Subsystem 387

Box processing

Thi sis because it is not always possi ble to sati sfy space
requests accurately if the value requested is less than 23 pel.

With a 10-pitch font, errors of ± 9 pel may be encountered.

Alignment errors may potentially occur any time a space string is
generated. The cumulative effect across a multi column line may be
much greater than six pel.

Figure 49 illustrates the alignment errors that will be encount
ered when using special blanks and space values of less than 23
pel.

As can be seen from the table, the degree of error varies consid
erably in the 0 to 6 pel range for any request of less than 23 pel.
Any request equal to or greater than 23 pel can be satisfied with
in 1 pel by a combination of the special blanks.

When special blanks are present, and a space request is processed
whi ch can not be accurately sati sfl ed, a warni ng message is
issued. The line in error will be flagged in the right margin with
"<---- SPACE ERROR."

The formatter takes steps to ensure that inline space is specified
outside the error windows shown in the table. The area in which
errors are most likely to occur is in the gutter space. This is
because the column definition may be disregarded when processing
a line longer than column length with the EXTEND option of the .FO
[Format Model control word. For this reason, the use of EXTEND is
not recommended.

Requested
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Actual
o
o
o
o
o
o

12
12
12
12
12
12
12
15
15
15
18
18
18
18
18
18
24
24
24

Error
--::y-

-2
-3
-4
-5
-6
+5
+4
+3
+2
+1
o

-1
+1
o

-1
+1
o

-1
-2
-3
-4
+1
o

-1

Figure 49. Justification Alignment Error for 3800 Printing
Subsystem Output: Horizontal space cannot be
reliably generated for distances less than 23
pel.

Boxes are supported in logical overlay mode relative to the output
line; the box characters are overlaid on the output line after it
is completely processed. Characters in the box line that occupy
the same print position as a text character are printed; the text
character does not appear in the output.

388 Document Composition Facility: User's Guide

The use of special blanks is inhibited while box processing is in
effect. That is, from the .BX definition input line to the .BX OFF
input line. Slight variations in column alignment may occur in
transition from the normal formatting environment, when special
blanks are available for inline space management, to the box for
matting environment, when hexadecimal 40 characters are used for
inline space management. See "Inline Space Management" on page
387 for more information.

All characters in the box line and all characters in the text
within the box must be of the same width:

• Truly proportional fonts may not be used for the box charac
ters or the text within a box. The special blank characters
may be present in the font, but all other characters must be
of the same width.

• All fonts used within a box must be of the same pitch as the
box font. The box font is the current font at the time the box
is defined.

Formatter Escape Character

Formatted lines contain imbedded controls which are prefixed with
the "escape" character hexadecimal 27. This use of hexadecimal 27
by SCRIPT/VS precludes its use as a data character code.

Appendix E. Formatting Considerations for the 3800 Printing Subsystem 389

APPENDIX F. MAINTAINING USER DICTIONARIES

You can create user dictionaries to provide spelling verification
and hyphenation support for words that are frequently used in your
documents but are not included in the SCRIPT/VS main dictionary.
These words may reflect the nature of your business and include
such thi ngs as techni cal terms and company acronyms.

The user dictionaries are created and maintained using the dic
tionary maintenance process. This process reduces the words that
are being placed in the user dictionary to a numerical represen
tation that is expressed in Assembler language source statements.
These source statements are assembled and linked to produce a mod
ule that is loaded by SCRIPT/VS when a .DL [Dictionary List]
control word referencing the user dictionary is encountered.

Three types of reports can be generated when the dictionary main
tenance process is run. They are:

• The alpha dictionary report, which is an alphabetical list of
all words in the alpha dictionary file

• The hyphenation report, which is an alphabetic list of all
words in the alpha dictionary file with their hyphenation
points shown

• The oldest usage report, which lists words that have not been
frequently updated by the dictionary maintenance process

The hyphenation report can be used to check for invalid hyphen
ation. It can also be used in conjunction with the oldest usage
report to identify high-usage words for which hyphenation infor
mation should be added.

The oldest usage report can be used to determine which nonperma
nent words should be deleted because of lack of use. It can also
be used to determine which words are frequently used and should,
therefore, be made permanent.

Two types of files are used in creating and maintaining a user
dictionary:

• The alpha dictionary file, which contains the records that
make up the user dictionary

• The alpha dictionary control file, which contains the user
dictionary control information, such as the 4-character name
used to access it and the date when it was last updated by the
dictionary maintenance process

To create a user dictionary, the dictionary maintenance process
must be run as a batch job in a background environment with the
appropriate JCL. A sample of the JCL needed to create a user dic
tionary in an OS/VS1, OS/VS2 MVS, or D~S/VSE environment is pro
vided with SCRIPT/VS.

The dictionary maintenance process requires an input file that
consi sts of a control card and di ct i onary update transact ion
records:

• The control card i ndi cates whi ch of the three reports, if any,
are to be produced, and the type of updates that are to be
made to the alpha dictionary file. Figure SO illustrates the
format of this control card.

• The update transaction records contain the words that are to
be added to or deleted from the user dictionary. FigureS1 on"
page 392 illustrates the format of these records. The control
card and the update transaction records are all 80 characters
in length.

Appendix F. Maintaining User Dictionaries 391

Byte Field Desc~iption

1 ACTION Is blank or "+,, (The individual dictionary record for
each word determines what action is to be performed.)

2 REPORT Indicates which reports are to be generated:
blank - no reports
1 - all three reports
2 - the alpha dictionary report
3 - the oldest usage report
4 - the hyphenation report
5 - the alpha dictionary and oldest usage reports
6 - the alpha dictionary and hyphenation reports
7 - the oldest usage and hyphenation reports

3-5 BLANK This field is reserved.

6-7 OLDUSG Contains a 2-digit number that ;s decremented by the
number specified in the OUDEC field each time the dic-
tionary ma i ntenance process . is run. When this number
becomes less than or equal to the value specified in the
OUDEC field, the temporary word it applies to is eligi-
ble for deletion if the alpha dictionary file becomes
too large. This field only applies for nonpermanent
words.

8-9 OUDEC Contains a two-digit number (nn) that is used to deter-
mine when a nonpermanent word is eligible for deletion
from the Alpha Dictionary file.

10 BLANK This field is reserved.

11 DELALP Indicates that any temporary word whose oldest usage
counter (field OLDUSG) is below the number specified in
the DELSET field is to be deleted. ("0" is specified in
this case.) This field is left blank if you do not want
to delete infrequently used words.

12-14 DELSET Specifies a 3-digit number that is used in conjunction
with the DELALP field to determine when a nonpermanent
word should be deleted.

15-20 MAXDICT Contains a six-digit number that indicates the maximum
size of the user dictionary (usually 100000 bytes).

21-26 RUNDATE Indicates (in the form mmddyy) the date that the dic-
tionary maintenance process is being run. This date is
placed in the DATE field of the record for each word
being added if the field was left blank.

27-70 BLANK This field is reserved.

71-72 CONTROL Contains the characters "TR," which indicate that this
is a control card.

Figure 50. Dictionary Maintenance Process Control Card Format

The update input file is checked for syntax errors and
dupl i cati on. Any syntacti cally incorrect and dupl i cate trans
action records are eliminated. The remaining records are then
used to update the alpha dictionary file.

392 Document Composition Facility: User's Guide

Bytes Field Description

1 ACTION Contains the code that indicates what action is to be
performed: "A" indicates that the word is to be added to
the dictionary; "0" indicates that it is to be deleted;
and "H" indicates that the word includes its hypenation
points and is to be added to the dictionary if it does
not already exist there.

2 PERM Indicates whether the word is to be permanent or tempo-
rary. "P" is specified if the word is permanent and can
only be deleted by specifying a "0" transaction code; it
is left blank if the word is temporary and can be deleted
if not used for a set period of time (it can also be
deleted by specifying the "0" action code) i and "4)" is
specified if the status of the word is to be changed from
permanent to temporary.

3-65 ALPHA Contains the word that is to be placed in the Alpha Dic-
tionary file. This word must not start or end with a
hyphen, and must consist of alphabetic characters or an
apostrophe. (Hyphens can be included if "H" was specified
in the ACTION field.) Imbedded blanks are not allowed.

66-71 DATE Specifies the date that the word was added to the Alpha
Dictionary file. The date must be specified in the form
"mmddyy." It defaults to the date on the control card if
the record is being added to the Alpha Dictionary file
via the Input Output file.

72-80 BLANK These columns should be left blank.
,.

Figure 51. Format of an Update Transaction Record

The di cti onary mai ntenance process consi sts of fourteen job
steps:

• Step 1: The records in the update input file are checked for
syntax errors. If any errors are found, warning messages will
be issued; however, processing of the dictionary maintenance
process will continue.

• Step 2: The file is sorted and the words are placed in alpha
betical order.

• Step 3: The file is scanned for multiple entries for the same
word. If any are found, the extra entries are deleted accord
ing to the transaction that they are requesting; an input card
for a delete transaction takes precedence over a card for a
hyphenation or addition transaction; and an input card for a
hyphenation transaction takes precedence over a card for an
addition transaction.

• Step 4: The alpha dictionary file is updated with the contents
of the update input file, and the alpha dictionary report is
produced if one was requested on the control card.

• Step 5: The hyphenation report is produced if one was
requested on the control card. This job step is optional.

• Steps 6-12: Two assembler fi les are bui It, assembled, and
linked into the SCRIPT/VS load library.

• Steps 13-14: The oldest usage report is produced if one has
been requested on the control card. This job step is optional.

Appendix F. Maintaining User Dictionaries 393

Once a user dictionary is created, you can issue a .Dl control
word to indicate to SCRIPT/VS that this dictionary is to be used,
along with the SCRIPT/VS main dictionary, for hyp"henation and
spelling verification processing.

394 Document Composition Facility: User's Guide

APPENDIX G. PERFORMANCE CONSIDERATIONS

Several facilities provided by SCRIPT/VS can significantly
increase the system resources consumed in formatting documents.
The facilities discussed in this appendix should be used with dis
cretion, only when really needed, with an understanding of their
impact on performance.

SCRIPT COMMAND OPTIONS

These opt ions of the SCRIPT command can si gn i fi cantly increase
the CPU resources needed to format a document:

• TWOPASS - Process the document twice

• SPELLCHK - Perform spelling verfication

• INDEX - Create an index

Each function must be explicitly specifiedi none are defaults.
The effect on performance of each option is independent of the
other options, and is discussed separately.

The TWOPASS option

The TWOPASS option causes the document being formatted, including
all imbedded files and macros, to be processed twice. Only the
SCRIPT/VS symbol table and table of contents file are saved from
the first pass; formatted output is produced only on the second
pass.

The TWOPASS option must be used when an automatically generated
table of contents is placed in the front of a document, or when
reference is made to symbols which are set later in the
document. 53

Not unexpectedly, the TWOPASS option roughly doubles the system
resources consumed in formatting a document. However, unresolved
forward references are often acceptable in early proofing ver
sions of a document. Similarly, the table of contents can often be
moved temporarily to the back of the document. In these cases, the
TWOPASS option may be omitted for all but the final formatting
runs, when the table of contents is replaced properly.

The SPELLCHK option

The INDEX option

When spelling verification is enabled, each occurrence of every
word in the document being formatted is reduced to its root form
and checked against the active dictionaries.

Because spell i ng veri fi cati on si gni fi cantly increases the
processor time required to format a document, it should be used
only occasionally. Often it is sufficent to perform spelling ver
ification only twice: once, when the document is first created, to
find entry errors, acronyms, and valid words which are not in the
dictionaries, and again, just before the final formatting runs,
to catch any errors made while updating or revising the document.

When the INDEX option is included, index terms specified in the
body of the document are saved and sorted to produce an index in
the back of the document. Producing a large index can consume S1g-

53 These are called "forward references," because the value of
the symbol is used before the symbol is defined.

Appendix G. Performance Considerations 395

nificant amounts of both virtual storage and processor time,
since the index entries are kept in storage and sorted
dynamically.

Since an INDEX is often not needed for draft copies of a document,
the INDEX option may simply be omitted; the index terms specified
in the document will be ignored.

SCRIPT/VS IN THE CICS ENVIRONMENT

In the CICS environment, ATMS-III provides facilities for creat
ing and editing documents, and SCRIPT/VS may be used to format
these documents. If you are an ATMS user, you may invoke SCRIPT/VS
to format your documents in anyone of three ways:

Online formatting: SCRIPT/VS may be invoked at the terminal
to format a document currently residing in ATMS Working Stor
age. The output is placed in CICS/VS auxi Ii ary temporary
storage; it may then be transferred to a printer, or reviewed
at your terminal.

Via a peripheral queue: Requests may be placed on a special
queue for deferred document processing by SCRIPT/VS. A single
CICS task is used to process all such queues.

Batch formatting: A batch job may be submitted to format a
document using SCRIPT/VS if the document and all imbedded
documents and macros reside within the Document Library
Facility.

Tun;ng ATMS-III for SCRIPT/VS

Five parameters provided with the ATMS-III system generation mac
ro DOKVA may be used to regulate SCRIPT/VS in the CICS
environment. They are:

SPA limits the amount of virtual storage used by SCRIPT/VS
when formatti ng documents submi tted to a peri pheral
queue. SPA gives the number of 8K byte blocks which may
be obta i ned per document, beyond an in it i al 64K byte
block.

SPP limits the number of output pages which may be produced
when formatti ng documents submi tted to a peri pheral
queue. SPP gives the number of pages permitted.

STA limits the amount of virtual storage used by SCRIPT/VS
when formatting documents online from a terminal. STA
gives the number of 8K byte blocks which may be obtained
per document, beyond an initial 64K byte block.

STO limits the number of concurrent online users of
SCRIPT/VS.

TSP limits the number of output pages which may be produced
when formatting documents online from a terminal. TSP
gives the number of pages permitted.

Further i nformati on on tuni ng ATMS-III in the CICS envi ronment
may be found in the ATMS-III Program Reference Manual.

396 Document Composition Facility; User's Guide

The glossary illustrates some basic
SCRIPT /VS formatt i ng concepts, and
defi nes words and phrases that have
special meanings in SCRIPT/VS or spe
cial meanings in a typographical sense.
The terms are defined as they are used
in thi s book. If you do not fi nd the
term you are looking for, refer to the
; ndex or to the IBM Data Processi ng
Glossary, GC20-1699.

This glossary includes definitions
developed by the American National
Standards Institute (ANSI) and the
International Organization for
Standardi zat ion (ISO) . Thi s materi al
is reproduced from the American
National Dictionary for Information
Processing, copyright 1977 by the Com
puter and Business Equipment
Manufacturers Association, copies of
which may be purchased from the Ameri
can National Standards Institute, 1430
Broadway, New York, New York 10018.

ampersand: The "&" character.

When an ampersand begi ns a character
string, SCRIPT/VS assumes the charac
ter string is a symbol name. If the
symbol name ;s defined, SCRIPT/VS
replaces the symbol with its value (un
less symbol substitution is off).

In running footings, running headings,
and runn i ng tit I es, the ampersand i s
usually the page number symbol.

When encountered by itself on the right
side of a .SE [Set Symbol] control
word, it i s interpreted as the page
number symbol.

APF: See application processing func
tion.

application processing function
(APF): In GML processing, the process
ing that is performed when a document
element or attribute is recognized. In
SCRIPT/VS, an APF is implemented as a
sequence of control words, possibly
intermixed with text and symbols, in
one of three forms: macro definition,
value of a symbol, or imbedded file.

attribute: A characteristic of a docu
ment (or document element) other than
its type or content. For example, the
securi ty level of a document or the
depth of a figure.

attribute label: In GML markup, a name
of an attribute that is entered in the
source document when specifying the
attribute's value.

* American National Standard Definition

GLOSSARY

back matter: In a book, those sections
(such as glossary and index) that are
placed after the main chapters or
sections.

balancing: In multi column formatting,
the process of making column depths on
a page approximately equal.

batch environment: The environment in
which noninteractive programs are exe
cuted.

binding edge: The edge of a page to be
bound, stapled, or drilled. Defined
with the BIND option of the SCRIPT com
mand. (See also Figure 21 on page 342.)

body: (1) Of a printed page, that por
tion between the top and bottom margins
that contains the text. (2) Of a book,
that portion between the front matter
and the back matter.

boldface: A heavy-faced type. A 1 so,
printing in this type.

bottom margin: On a page, the space
between the body or the runn 1 ng
footing, if any, and the bottom edge of
the page. The bottom margin area
includes the bottom ti tIe lines, if
any. (See also Figure 21 on page 342.)

bottom title: Up to six lines of data
repeated at the bottom of consecutive
pages (or of consecutive odd- or
even-numbered pages) in the footing
space. (See also Figure 21 on page
342.)

break: An interruption in the format
ting of input lines, so that the next
input line is printed on a new output
line.

caps: Capital letters. (See also ini
tial caps.)

caption: Text accompanying and
describing an illustration.

character: A symbol used in printing.
For example, a letter of the alphabet,
a numeral, a punctuation mark, or any
other symbol that represents i nforma
tion.

character set*: A finite set of dif
ferent characters that i~ agreed to be
complete for some purpose. For example,
in printing, the characters that con
st i tute a font.

character spacing: The space between
characters in a word.

Glossary 397

cicero: In the Di dot poi nt system, a
unit of 0.1776 inch (4.512 millimeters)
used in measuring typographical mate
rial.

(
CMS: An interactive processor that
operates within VM/370.

column width: The width of each text
column on a page. Speci fi ed wi th the
.Cl [Column line length] control word.
(In multicolumn formatting, all col
umns on a page usually have the same
width.) (See also Figure 21 on page
342.)

command: A request from a terminal or
specified in a batch processing job for
the performance of an operation or the
execution of a particular program. For
example, a request given at a terminal
for SCRIPT/VS to format a document, or
for an editor to edit a line of text.

comment: A control word line which is
igno~ed by SCRIPT/VS. Such lines begin
with either ".*" or ".cm". (See "Chap
ter 3. Basic Text Processing" on page
33.)

composition: The act or result of for
matting a document.

concatenation: The forming of an out
put line that contai ns as many words as
the column width allows, by placing the
fi rst words from an input line after
the last words from the preceding input
line. When words from an input line
would reach beyond the right margin and
hyphenation cannot be performed, they
are placed at the beginning of the next
output line, and so on.

control word: An instruction within a
document that identifies its parts or
tells SCRIPT/VS how to format the docu
ment. (See also macro.)

control word line: An input line that
contains at least one control word.

current left margin: The left limit of
a column that is in effect for format
ting. Each column's left margin is
specified with the .CD [Column Defi
nition] control word. However, the cur
rent left margi n (that is, the left
boundary for an output line) might vary
to the right of the column's left mar
gin when indention is changed with the
.IN [Indent], .UN [Undent], .Il [Indent
line], and .OF [Offset] control words.
(See also Figure 6 on page 40.)

current I ine: The 1 i ne ina source
document at whi ch a computer program
(such as an editor or a formatter) is
positioned for processing.

* American National Standard Definition

debug: T~ detect, trace, and eliminate
errors in computer programs and
SCRIPT/VS documents.

defaul t value: A value assumed by a
computer program when a control word,
command, or control statement with no
parameters is processed.

dictionary: A collection of "word
stems" that is used with the spelling
verification and automatic hyphenation
functions.

Didot point system: A standard print
er's measurement system on which type
sizes are based. A Didot point is
0.0148 inch (0.376 millimeter). There
are 12 Didot points to a cicero. (See
also cicero and point.)

document: (1) A publication or other
written material. (2) A
machine-readable collection of lines
of text or images, usually called a
source document. (See also output docu
ment and source document.)

document conversion processor: A com
puter program that processes a
machine-readable document which
i ncl udes fo rmatt i ng cont ro 1 s wr i tten
in one formatter language, to produce a
machine-readable document which
includes formatting controls appropri
ate for another formatter language.

document library: A set of VSAM data
sets, accessible in a batch
environment, that contain documents
and related files.

duplex: A mode of formatting appropri
ate for pri nti ng on both si des of a
sheet.

EBCDIC*: Extended binary-coded deci
mal interchange code. A coded character
set consisting of 8-bit coded charac
ters.

edit: To create or modify the contents
of a document or file. For example, to
insert, delete, change, rearrange, or
copy 1 i nes.

editor: A computer program that proc
esses commands to enter 1 i nes into a
document or to modify it.

eject: In formatting, a skip to the
next column or page.

em: A unit of measure for a particular
font that is equal to the point size of
that font.

extended symbol processing: The proc
essing of a symbol whose value causes
the remainder of the line to be stacked

398 Document Composition Facility: User's Guide

and later processed as a new input
line.

fill character: The character that is
used to fill up a space; for example,
blanks used to fill up the space left
by tabbing.

float: (1) (noun) A keep (group of
input 1 i nes kept together) whose
location in the source file may vary
from its location in the printed docu
ment. (2) (verb) Of a keep, to be for
matted in a location different from its
location in the source file.

flush: Having no indention.

fold: (1) To translate the lowercase
characters of a character string into
uppercase. (2) To place that portion of
a line which does not fit within a col
umn on the next output line.

font: An assortment of type, all of
one size and style.

font set: The set of fonts to be used
in formatting a source document.

footing: Words located at the bottom
of the text area. (See also running
footing, bottom title, and Figure 21 on
page 342.)

footing margin: That part of the bot
tom margin area between the body of the
page or runni ng footi ng, if any, and
the bottom title(s), which is located
in the footi ng space. (See also
Figure 21 on page 342.)

footing space: That part of the bottom
rna rg in that i s ava i labl e fo r bottom
title(s). (See also Figure 21 on page
342.)

footnote: A note of reference, expla
nat ion, or comment, placed below the
text of a column or page, but wi thi n
the body of the page (above the running
footing).

foreground:
interactive
Interactive
foreground.

The environment in which
programs are executed.

processors resi de in the

format: (1) (noun) The shape, size,
and general makeup of a printed docu
ment. (2) (verb) To prepare a document
for printing in a specified format.

formatting mode: In document format
ting, the state in which input lines
are concatenated and the resulting out
put lines are justified.

formatter: (1) A computer program that
prepares a source document to be
printed. (2) That part of SCRIPT/VS
that formats input lines for a partic
ular logical device type.

front matter: In a book, those
sect; ons (such as preface, abstract,
table of contents, list of illus
trat ions) that are placed before the
main chapters or sections.

Generalized Markup Language (GML): A
language that may be used to identify
the parts of a source document without
respect to particular processing.

GML: Generalized Markup Language

gutter: In multi column formatting,
the space between columns. (See also
Figure 21 on page 342.)

hanging indention: The indention of
all lines of a block of text, following
the first line (which is not indented
the same number of spaces). Specified
with the .OF [Offset] or .UN [Undent]
control word. (See also Figure 6 on
page 40.)

head-level: The typeface and charac
ter size associated with the words
standing at the beginning of a chapter
or chapter topic.

heading: Words located at the begin
ning of a chapter or section or at the
top of a page. (See a 1 so head-level,
running heading, and top title.

heading margin: That part of the top
margi n area between the body of the
page or runn i ng headi ng, if any, and
the top title, which is located in the
heading space. Specified with the .HM
[Heading Margin] control word. (See
also Figure 21 on page 342.)

heading space: That part of the top
margin area that is available for top
title(s). Specified with the .HS [Head
ing Space] control word. (See also
Figure 21 on page 342.)

hexadecimal: Pertaining to, a number
system based on 16, using the sixteen
digits 0, 1, ... 9, A, B, C, D, E, and
F. For example, hexadecimal 1B equals
decimal 27. (See also EBCDIC.)

indent: To set typographical material
to the right of the left margin.

indention: The action of indenting.
The condition of being indented. The
blank space produced by indenting.
Specified with the .IN [Indent], .IR
[Indent Right], .UN [Undent], .OF [Off
set], and . IL [Indent Line] control
words. (See also hanging indention and
Figure 6 on page 40.)

initial caps: Capital letters occur
ring as the first letter of each word
in a phrase. To set a phrase in initial
caps is to capitalize the first letter
of each word in the phrase.

Glossary 399

initial value: A value assumed by
SCRIPT/VS for a formatting function
until the value is explicitly changed
with a control word. The initial value
is assumed even before the control word
is encountered, whereas the default
value is assumed when the control word
is issued without parameters. (See also
default value.)

input device~ A machine used to enter
information into a computer system (for
example, a termi nal used to create a
document).

input line: A line, as entered into a
source file, to be processed by a for
matter.

interactive: Pertaining to an appli
cation in which entries call forth a
response from a system or program, as
in an i nqu i ry system. An interact i ve
system mi ght also be conversati onal,
implying a continuous dialog between
the user and the system. Interact i ve
systems are usually communicated with
via terminals, and respond immediately
to commands. (See also foreground.)

interactive environment: The environ
ment in which an interactive processor
operates.

italic: A typestyle with characters
that slant upward to the right.

JeL: Job control language.

job control language (JeL HE: A lan
guage of control statements used to
identify a computer job or describe its
requirements to the operating system.

job control statement: A statement
that provides an operating system with
information about the job being run.

justify: To insert extra blank space
between the words in an output line to
cause the last word in the 1 i ne to
reach the right margin. As a result,
the right-hand edge of each output line
is al i gned wi th precedi ng and followi ng
output lines.

keep: (noun) In a source document, a
collection of lines of text to be
pr i nted in the same col umn. When the
vertical space remaining in the current
column is insufficient for the block of
text, the text is printed in the next
column. (In the case of single-column
format, the next column is on the next
page.)

layout: The arrangement of matter to
be printed. (See also format.)

leader: (1) Dots or hyphens (as ina
table of contents) used to lead the eye

* American National Standard Definition

horizontally. (2) The divider between
text and footnotes on a page (usually a
short line of dashes, although you can
redefi ne it).

left-hand page:
when a book
even-numbered.

The page on the left
is openedi usually

I ine spacing: The space between the
basel i ne of one output 1 i ne and the
baseline of the adjacent output line.

lowercase: Pertaining to small let
ters as di st i ngu i shed from cap; tal Si
for example, "a, b, g" rather than "A,
B, G."

machine-readable: Data in a form such
that a machine can acquire or interpret
(read) it from a storage device, from a
data medium, or from another source.

macro*: An instruction in a source
language that i s to be replaced by a
def i ned sequence of instruct ions ; n the
same source language. In SCRIPT/VS, a
macro is a sequence of one or more con
trol words, symbols, and input lines. A
macro's definition can be recursive.

macro
formatting,
trol words,
macro.

substitution: During
the subst i tut i on of con
symbols, and text for a

margin: (1) The space above, below,
and on ei ther si de of the body of a
page. (2) The left or right limit of a
column. (See also Figure 21 on page
342.)

mark up: (verb) (1) To determine the
markup for a document. (2) To insert
markup into a source document.

markup: (noun) Information added to a
document that enables a person or sys
tem to process it. Markup may describe
the document's characteristics, or it
may specify the actual processing to be
performed. In SCRIPT /VS, markup con
sists of GML tags, attribute labels and
values, and control words.

offset: (verb) To indent all lines of
a block of text, except the first line.
(noun) The indention of all lines of a
block of text following the first line.
(See also Figure 6 on page 40.)

option: Information entered with a
SCRIPT command to control the execution
of SCRIPT /VS.

output device: A machine used to
print, display, or store the result of
processing.

output document: A machine-readable
collection of lines of text or images

400 Document Composition Facility: User's Guide

that have been formatted, or otherwise
processed, by a document processor.
The output document can be printed or
it can be filed for future processing.

output line: A line of text produced
by a formatter.

paginate: To number pages.

parameter: Anyone of a set of proper
ties whose values determine the charac
teristics or behavior of something. The
syntax of some SCRIPT/VS control words
includes parameters, whi ch establ ish
the properties of a formatting function
or a printed page.

PDS: partitioned data set.

pel: The unit of horizontal measure
ment for the IBM 3800 Printing Subsys
tem. One pel equals approximately
1/180th inch.

pica: A unit of about 1/6 inch used in
measuring typographical material. Sim
i lar to a ci cero in the Di dot poi nt
system.

pi teh: A number that represents the
amount of hori zontal space a font's
character occupies on a line. For exam
ple, 10-pitch means 10 characters per
inch, or each character is 0.1 (1/10)
inch wide. 12-pitch means 12 characters
per inch, and lS-pitch means 15 charac
ters per inch.

point: (1) A unit of about 1/72 of an
inch used in measuri ng typographi cal
materi al. There are twelve poi nts to
the pica. (2) In the Didot point
system, a unit of 0.0148 inch There are
twelve Didot points to the cicero.

profile: (1) In SCRIPT/VS processing,
a file that is imbedded before the pri
mary file is processed. It can be used
to control the formatti ng of a class of
source documents. When processi ng GML
markup, the profile usually contains
the mapping from GML to APFs, and the
symbol settings that define the format
ting style. (2) In the Document Library
Facility library, a collection of
information that identifies a batch
SCRIPT/VS user (user profile) or a doc
ument processor (attribute profile) or
that defi nes certa in 1 i brary parame
ters (system profile).

proportional spacing: The spacing of
characters ina pri nted 1 i ne so that
each character is allotted a space pro
portional to the character's width.

ragged right: The unjustified right
edge of text lines. (See also justify.)

residual text: The line of text fol
lowing the markup/content separator of
a GML tag.

right-hand page:
when a book
odd-numbered.

The page on the right
is opened; usually

rule: (noun) A straight horizontal or
verti cal line used, for example, to
separate or border the parts of a fig
ure or box.

running footing: A footing that is
repeated above the bottom margin area
on consecut i ve pages (or consecut i ve
odd- or even-numbered pages) in the
page's body (text area). (See also
Figure 21 on page 342.)

running heading: A headi ng that is
repeated below the top margin area on
consecutive pages (or consecutive odd
or even-numbered pages) in the page's
body (text area). (See also Figure 21
on page 342.)

running title: In SCRIPT/VS, up to six
lines of data that may be repeated in
the top or bottom margin area of con
secutive pages (or of odd- or
even-numbered pages.)

section: When an output page has two
or more si ngle-column parts wi th the
same or different column-widths, or a
single-column part and a multicolumn
part, or two or more different multi
column parts, each part of the output
page is called a section.

small caps: Capital letters in the
same style as the normal capital let
ters in a font, but approximately the
size of the lowercase letters.

source document: A machine-readable
collection of lines of text or images
that is used for input to a computer
program.

space: A blank area separating words
or lines.

symbol: A name ina source document
that can be replaced wi th somethi ng
else. In SCRIPT/VS, a symbol is
replaced with a character string.
SCRIPT /VS may interpret the character
string as a number, a character string,
a control word, or another symbol.

symbol substitution: During format
ting, the replacement of a symbol with
a character string which SCRIPT/VS may
interpret as a value (numeric, charac
ter stri ng, or control word) or as
another symbol.

tab: (1) (noun) A preset point in the
typing line of a typewriter-like termi
nal. A preset point in an output line.
(2) (verb) To advance to a tab for
printing or typing. (3) (noun) a tab
character, hexadecimal 05.

tag: In GML markup, a name for a type
of document (or document element) which

Glossary 401

is entered in the source document to
identify it. For example, ":P." might
be the tag used to identify each para
graph.

terminal: A device, usually equipped
with a keyboard and some kind of dis
play, capable of sending and receiving
information over a communication chan
nel.

text line: An input line that contains
only text.

title: See running title.

token: A string of characters which is
treated as a single entity. In
SCRIPT/VS, a parameter passed to a mac
ro in one of the local variables &*1,

&*n. (See "Chapter 13. Writing
SCRIPT /VS Macro Instruct ions" on page
147.)

top margin: On a page, the space
between the body or running heading and
the top edge of the page. The top mar
gi n includes the top ti tIes, if any.
(See also Figure 21 on page 342.)

top title: Up to six lines of data
repeated at the top of consecutive
pages (or of consecutive odd- or
even-numbered pages) in the heading
space. (See also running title and
Figure 21 on page 342.)

TRC: table reference character. In
printer SYSOUT data sets, a second con
trol byte, following the carriage con
trol byte, which indicates which font
the record is to be pri nted in. The
presence of TRCs is i ndi cated by the
JCL parameter DCB=OPTCD=J.

TSO: An interactive processor within
OS/VS2.

typeface: All type of a single style.
There might be several fonts (different
sizes) with the same typeface or style.

typeset: (1) (verb) To arrange the
type on a page for printing. (2) (ad
jective) Pertaining to material that
has been set in type.

underscore: (1) (noun) A line printed
under a character. (2) (verb) To place
a line under a character. To underline.

unformatted mode: (1) In document for
matting, the state in which each input
line is processed and printed without
formatting. Other SCRIPT/VS control
words remain in effect and are recog
nized. (2) In document printing using
the UNFORMAT option, the state in which
each input line (control words as well
as text) is printed as it exists in the
input, in the order in which it is
processed. No formatting is done.

uppercase: Pertaining to capital let
ters, as distinguished from small let
ters; for example, "A, B, G" rather
than "a, b, g."

widow: One or two lines or words at
the end of a paragraph that are printed
separately from the rest of the para
graph.

word spacing: The space between words
in a line. Also called wordspace.

402 Document Composition Facility: User's Guide

special Characters

•.. [Set Labell control word 222
~* 54 ,

See control word modifier
&

See ampersands
&$CHAR(n) 49
&$lDEV 113
&$PDEV 113
&$RET 128, 140
&$TAB 36
&A' 133
&E' 134
&l' 117, 134
&R' 134
&SYSDAYOFM 132, 138
&SYSDAYOFW 138
&SYSDAYOFY 138
&SYSHOUR 138
&SYSMINUTE 138
&SYSMONTH 138
&SYSSECOND 138
&SYSYEAR 138
& T' 134
&U' 135
lV' 135
&X' 132
; (semicolon)

See control word separator
~user-option 32

.AA [Associate APFl control word
description of 223

ADD parameter
of .DU control word 174, 176

addenda dictionaries
building 176
definition of 174
searching 171
using for spelling
verification 173

adding comments to a SCRIPT/VS
file 53

ADJUST parameter
of .RC control word 100

Advanced Text Management System-III
See ATMS-III

AFTER parameter
of .IN control word 41
of .IR control word 41

algorithmic hyphenator 171, 172
aligning text 45
All parameter

of .IT control word 184
allocating space for running
titles 63

alpha dictionary control file 391

alpha dictionary file 391
alpha dictionary report 391
alphabetic page numbers 65
ampersands

as default page number symbol 62
in text 132
using as page number symbol 142

.AN [And] control word
description of 224-225
using in macros 148
using to check multiple
conditions 112

using with .IF 111
.AP [Appendl control word

description of 225-226
effect of UNFORMAT option on 31
using 119

APFs
formatting considerations 8
implementing 3
modifying 168
when using SCRIPT/VS as a

preprocessor 167
appended files, passing values to 120
appending input files

description of 119
naming the files to be

appended 120
symbols set when files are
appended 141

application processing function
See APFs

ARABIC parameter
of .PH control word 64

array element separators 91
arrays

controlling elements of 143
index counter of 144
specifying 143

ASEP parameter
of .DC control word 143

associating file-id with data set
name 120

associating file-id with file
name 120

ATMS conversion routine
conversion technique 211
converting ATMS controls

to SCRIPT/VS symbols 215
description of 211-215
handling formatting controls 213
handling non-formatting
controls 212

limitations of 211
profile for 211

ATMS-II 211
converting documents to SCRIPT/VS
format 211

ATMS-III
creating macro libraries in 157
file naming conventions 14
input file characteristics 5
using .lY control word with 155
using with SCRIPT/VS 1

ATMSPRF2 211
attributes of a symbol's value 133

Index 403

background environment
using SCRIPT/VS in 1, 2

.BC [Balance Columns] control word
description of 226

.BF [Begin Font] control word
description of 227
using 48, 108

BIND option
description of 18
effect on page margins 57
using 169

blanks
processing input lines that begin
with 154

terminating a symbol with 129
blocks of text

keeping them together
See floats
See keeps

.BM [Bottom Margin] control word
description of 228
using 55

boldface font 108
BOTTOM parameter

of .RT control word 61
bottom running titles

See top and bottom running titles
boxes

centering text within 102
different configurations for 103
drawing in a horizontal row 105
drawing only the bottom line

of 106
drawing only the middle portion
of 106

drawing only the top line 106
drawing with an open top and

bottom 105
drawing with the 3800 printing

subsystem 106
drawing within a box 104
formatting text within 101
specifying 101
stacking 103
terminating 101

.BR [Break] control word
description of 229
using 39

breaks 35
causes of section breaks 69
causing 51
definition of 38
effect of multi column format on 68
specifying 39

.BX [Box] control word
CAN parameter of 104, 106
description of 229-231
NEW parameter of 104
SET parameter of 106
using to draw boxes' 101

CAN parameter
of .BX control word 104

Canadian French prefixes 373
Canadian French suffixes 373
CANCEL parameter

of .RF control word 60
capitalization

of text 47
providing for languages other than

English 90
using &U' for 135

.CB [Column Begin] control word
description of 232
effect on inline keeps 94
using 98

.CC [Conditional Column Begin] control
word

description of 232
effect on inline keeps 94
using 98

.CD [Column Definition] control word
description of 233
using 67

.CE [Center] control word
description of 234
using 45

CENTER parameter
of .FO control word 45

center text within a box 102
centering text

on a page 45
change bars 99
character mappings

cancelling 88
changing 88
defining 87

CHARS option
description of 19
using 48

CICS/VS 1
circular definition

See definition, circular
.Cl [Column line length] control word

description of 235
using 58, 67

CLOSE parameter
of .EF control word 124

.CM [Comment] control word
description of 236
using 53

CMS
creating macro libraries in 156
file naming conventions 14
input file characteristics 5
interactive processing with 126
using MAClIB command 156
using with SCRIPT/VS 1, 128

CMS SUBSET 128
.CO [Concatenate Model control ~ord

description of 236-237
column balancing

definition of 69
keeping blocks of text together
during 71

column width
See page dimensions
See page dimensions

columns
changing positions of 67
conditional ejects of 99

404 Document Composition Facility: User's Guide

specifying the dimensions of 67
starting a new one 98

combining input files 117
comments

adding to a SCRIPT/VS file 53
using ".*" to enter 54

compatibility 195
compound symbols 131
concatenation 33
Condensed Text Format (CTF) 179
conditional processing

effect of TWOPASS option on 31
special techniques for 113
using macros for 148
with symbols 116

conditional processing by SCRIPT/VS
methods available for 111

conditional section number 115
CONT parameter

of .DC control word 92
continuation character 92
CONTINUE option

description of 20
effect on TWOPASS option 31, 183
using to diagnose problems 181

control card
required by dictionary maintenance
process 391

control word modifier 219
control word separator

definition of 52
effect of 52
function of 91
redefining 52
starting a symbol with 145

control words
defaults of 4, 33
definition of 2
direct entry of 168
guidlines for entering 50
how to select 8
how to use 4
marking up a document with 33
redefining 151
See individual control words
syntax 219
testing a sequence of 187
using in footnotes 98
using to diagnose problems 183

Conversational Monitor System
See CMS

converting ATMS documents 211
see ATMS conversion routine

converting documents to SCRIPT/VS
format 211

converting ATMS documents 211
con~erting numbers to character
strings 133

.CP [Conditional Page Eject] control
word

description of 237
using 49, 98

.CS [Conditional Section] control word
description of 237-238
effect of UN FORMAT option on 31
IGNORE parameter of 115
INCLUDE parameter of 115
using 115

.CT [Continued Text] control word
description of 238-239

CTF option
description of

See SCRIPT/VS
using 179

CTl parameter
of .IT control word 185

customizing documents 125
.CW [Control Word Separator] control
word

description of 239-240
CW parameter

of .DC control word 52

date system symbol 138
dating your document 138
.DC [Define Character] control word

ASEP parameter of 143
changing full stop characters
with 35

changing page number symbol
with 62

CONT parameter of 92
CW parameter of 52
description of 241-243
IXB parameter of 83
IXI parameter of 82
PS parameter of 64
PUNC parameter of 173, 176
WORD parameter of 173

.DD [Define Data File-idl control word
description of 244-245
used for associating file-ids 120
using in ATMS-III 121
using in CMS 120
using in TSO 121

decimal numbers
converting to roman numerals 134
using for page numbers 64

decimal point numbering 64
defining hexadecimal codes 132
defining macros 147
defining symbols 129
definition

circular 81
See also circular definition

list 42
DEL parameter

of .DU control word 176
DELAY parameter

of .KP control word 93, 98
delayed keeps 93
DEST option

description of 20
DEVICE option

description of 21
effect on TERM option 30
specifying 5
using to specify STAIRS/VS
output 179

.DF [Define Font] control word
description of 246-247
STOP parameter of 108, 126
using 107

.DH [Define Head levell control word
description of 247-248
SPAF parameter of 75
TC parameter of 75
using to redefine head levels 73

.01 [Delay Imbed] control word
description of 249
using 98, 124

diagnostic aids
description of 181-188

Index 405

tracing 183
dictionaries

See addenda, main, root word,
SCRIPT/VS, and user dictionaries

dictionary maintenance process
description of 391

Display Editing System 156
displaying output at a terminal 30
.DL [Dictionary Listl control word

description of 250
specifying languages with 174
specifying user dictionary
with 391

.DM [Define Macrol control word
description of 250-252
using subscripted form of 148
using to define macros 147
using to redefine head levels 75

Document Library Facility
as a SCRIPT/VS requirement 1
input file characteristics of 5
using SCRIPT/VS as a
subroutine 167

using to create SCRIPT/VS macro
libraries 157

DOS/VSE 1
.DS [Double Space Model control word

description of 253
DSMUTDIM file 124
DSMUTTOC file

using to process table of
contents 73, 75

DSMUTWTF file 122, 123
.DU [Dictionary Updatel control word

ADD parameter of 174, 176
DEL parameter of 176
description of 253-254
using 176

DUMP option
description of 22
using to diagnose problems 181

DUMP parameter
of .FL control word 96

Dutch prefixes 374
Dutch suffixes 374

EasySCRIPT 189
DSMEZSHO - DSMEZSH6 macros of 75

.EC [Execute Controll control word
description of 254-255
using 151
using in running heading or footing
definition 61

.EF [End of Filel control word
CLOSE parameter of 124
description of 255
effect of UNFORMAT option on 31
providing epifile facility with 29
using to terminate SCRIPT/VS
processing 124

using to test control word
sequences 188

ejecting a page 50
.EL [EIsel control word

description of 256
using for alternative
processing 112

using in macros 148
using with .IF 111

.EM [Execute Macrol control word
description of 257
using 151

END parameter
of .PI control word 80

English prefixes 373
English suffixes 373
entering text

guidelines for 50
ERASE parameter

of .WF control word ·123
error messages

control information in 181
printing 25

EVEN parameter
of .FL control word 95
of .PA control word 50, 75
of .RT control word 62

even-numbered pages
printing only on 50
testing for 113

EXTEND parameter
of .FO control word 58

extended symbol processing 145
.EZ [EasySCRIPT] control word

description of 257-258

F parameter
of .SX control word 46

FILE option
description of 22
specifying 6

fi 1 e- i d
associating with a real file or

data set name 120
using in ATMS-III 120, 121
using in CMS 120
using in TSO 120, 121

files
See input files
See output files

fill characters
between split text 46
between tab positions 38

.FL [Floatl control word
description of 259-260
DUMP parameter of 96
effect of .LL control word on 68
EVEN parameter of 95
ODD parameter of 95
ORDER parameter of 95
PAGE parameter of 95
using 95

FLOAT parameter
of .KP control word 93

floating keeps 93
floats 95

description of 95
formatting environment of 109

.FM [Footing Margin] control word
description of 260

.FN [Footnote] control word
description of 261
effect of .LL control word on .68
using 96

.FO [Format Mode] control word
CENTER parameter 6f 46
description of 262-263
FOLD parameter of 58

406 Document Composition Facility: User's Guide

RIGHT parameter of 46
TRUNC parameter of 58

FOLD parameter
of .FO control word 58

fonts
boldface 108
defining 107
for impact printers 7
for the 3800 Printing Subsystem 7
for typewriter terminals 7
provided by SCRlPT/VS 48
specifying 7
specifying with CHARS option 19
using with the 3800 Printing

Subsystem 48
with STOP attribute 108

footnotes
controlling line lengths of 58
formatting environment of 110
providing a "leader" for 96
providing special formatting
within 98

rules for entering 96
specifying 96

FOR parameter
of .IN control word 41
of .IR control word 41

forcing a new page 49, 98
Foreground Environment Feature 1
format mode 33
formatting

termination of 124
text within boxes 101

formatting conventions, implicit 35
formatting features of

SCRIPT/VS 87-108
FRAC parameter

of .PN control word 64
French prefixes 373
French suffixes 373
.FS [Footing Space] control word

description of 263-264
using for running titles 63

full stop characters
changing 35
definition of 35

Generalized Markup Language
See GMl tags

GML delimiter
definition of 91

GMl markup 33
see GML tags

GML tags
as symbols 165
converting ATMS to SCRlPT/VS 211
definition of 2
mapping 162
marking up a document with 33
processing by SCRIPT/VS 162
scanning 162
using 3
using in footnotes 98
using in macro definitions 147
when using SCRIPT/VS as a

preprocessor 167
.GO [Goto] control word

description of 264
effect of UNFORMAT option on 31

using to bypass part of a file 113
.GS [GMl Services] control word

description of 265-269

head levels
characteristics of 73
defining 75
definition of 73
redefining 73
spacing for 74
that cause page ejects 74

headings
See head levels
See running headings and footings

hexadecimal codes
defining 132
for special characters 88

highlighting 108
.HM [Heading Margin] control word

description of 269
.Hn [Head level n] control word

SCRIPT/VS processing of 73
.HS [Heading Space] control word

description of 270
using for running titles 63

.HW [Hyphenate ,Word] control word
description of 271
using 172

.HY [Hyphenate] control word
description of 271-272
MINPT parameter of 172
HOADD parameter of 171
HOALG parameter of 171, 172
HODlCT parameter of 171
THRESH parameter of 172

hyphenation
changing the frequency of 172
of single words 172
prefixes checked for during 373
SCRIPT/VS support for 171-172
search sequence for 171
See also algorithmic hyphenator
suffixes checked for during 373

hyphenation report 391
.HO - .H6 [Head Level 0 - 6] ~ontrol
word

description of 272-273

.IE [Index Entry] control word
description of 273
"header" parameter of 85
using 84

.IF [If] control word
description of 274-275
using for character
translations 89

using for conditional
processing 111

using in macros 148
using SYSOUT comparand ,with
using SYSPAGE comparand with
using with substitution off

IGNORE parameter
of .CS control word 115

113
113

111

Index 407

.IL [Indent Linel control word
description of 276

.IM [Imbed] control word
description of 276-277
effect of UNFORMAT option on 31
using 119

IMBED parameter
of .WF control word 123

imbedded files, passing values to
imbedding input files

delaying of for subsequent
processing 124

description of 119
naming the files to be

imbedded 120
symbols set when files are

imbedded 141
impact printers 1
implicit formatting conventions 35
.IN [Indent] control word

description of 278-279
FOR and AFTER parameters of 41
using 39-43

INCLUDE parameter
of .CS control word 115

indention 40
of a single line or paragraph 41
simplest form of 40
temporary 41
using with tabs 42

index counter
accessing 144
setting 144

index entries
creating 79
generating page numbers for 79
including multi-levels of 80
specifying null page numbers
for 82

specifying page numbers for 81
specifying ranges of pages 80
specifying terms for 79
specifying text of 82

INDEX option
description of 24
using 79

INDEX parameter
of .SE control word 130

index terms
cross-referencing 81
emphasizing a reference to 80
multiple ~eferences to 79
specifying 79
with same sort key 82

indexes
See also index entries
See also index terms
automatically generating 79-85
creat ifl9 84
creating entries for 79
generating section headers for 85
handli~g of special characters 82
includ1ng cross references 81
incluaing multi-level entries 80
including page references 79
positioning within a document 79
sorting entries for 82

See also sort keys
specifying headings for 79

inline keeps 94
input files

appending 119
bypassing part of 113
combining 119

conditionally merging 114
d~fault characteristics of 5
dynamically creating 167
formatting of 13
imbedding 119
naming of 13
passing parameters to 141
preparing for processing 169
terminating formatting of 124
using a master file 121

input lines
beginning with a blank 154
beginning with a tab 154

input processing
tracing of 183

input trace
effect of MESSAGE option 186
output lines generated by 183
stepping through 186

input, conditionally processing 111
interactive environment

processing SCRIPT/VS documents
in 126

using SCRIPT/VS in 1, 130
interactive processing 126
interword spacing 35
.IR [Indent Right] control word

description of 280-281
FO~ and AFTER parameters of 41
using 39-42

.IT [Input Trace] control word
ALL parameter of 184
CTl parameter of 185
description of 281-283
SNAP parameter of 186
STEP parameter of 184
using 183, 185

Italian prefixes 374
Italian suffixes 375
.IX [Index] control word

description of 283-284
using 79

IXB parameter
of .DC control word 83

IXI parameter
of .DC control word 82

.JU [Justify Model control word
description of 284

justification 33

keeping blocks of text together 92
keeps

control words not allowed
within 94 .

formatting environment of 109
order of precedence among 93
types of 93

KEY parameter
of .PI control word 83

.KP [Keep] control word
DELAY parameter of 93, 98
descri~tion of 284-286
FLOAT parameter of 93

408 Document Composition Facility: User's Guide

labels
using 113

layout of a page
See page layout

.LB [Leading Blank] control word
description of 286

length of a page 55
.LI [Literal] control word

description of 286-287
using 51

LIB option
description of 24
specifying macro libraries

wi th 137, 155
in a CMS environment 156
in a TSO environment 156
in an ATMS-III environment 157

specifying symbol libraries
with 137

line lengths
See page dimensions

line reference numbers 108
line spacing 44
.LL [Line Length] control word

control words it affects 68
description of 287
specifying 58

logical device table 367
logical output device

effect on page dimensions 58
logical output devices

defaults for 18, 35
formatting considerations for 18
specifying 5
specifying as destination of
output 18

loops, avoiding 152
.LT [Leading Tab] control word

description of 288
.LY [Library] control word

description of 288
MAC parameter of 155
SYM parameter of 137, 155
using 137
using in an ATMS-III
environment 155

MAC parameter
of .LY control word 155
of .SE control word 137

macro definitions 147
macro libraries

creating in
a batch environment 157
a CMS environment 156
a TSO environment 156
an ATMS-III environment 157

definition of 136
specifying 155
using 155

macros
conditional processing with 148
converting ATMS to SCRIPT/VS 211
defining 147
defining symbols within 149
definition of 2
local symbols for 149
naming conventions for 149
processing 147
putting messages in 188
redefining SCRIPT/VS control words
with 151

rules for symbol substitution
within 149

substituting values for symbols
within 152

used to emulate ATMS functions 211
using in footnotes 98
using with substitution off 147
when to use 147
writing 147-157

main dictionaries
searching 171
using for spelling
verification 173

managing source documents 169
mappings 87
margins 45

changing 39, 55
defining 39-43
effect of BIND option on 57
effect of column width on 39
specifying for even-numbered
pages 57

specifying for odd-numbered
pages 57

marking updated material 99
markup content separator 91
master files, using 121
.Me [Multi column Mode] control word

description of 289
using 69, 72

.ME [Macro Exit] control word
description of 289

merging documents 125
MESSAGE option

description of 25
effect on input trace 186
using to diagnose problems 181

messages
See also error messages
putting in macros 188

.MG [Message] control word
description of 290
using 188

MINPT parameter
of .HY control word 172

.MS [Macro Substitution] control word
description of 291
required for macro processing 147

multi column format i

defining 67, 69
effect on p_ge sections 68
processing of for STAIRS/VS

output 179 '
resuming processing of 72
starting a new column 71
suspending processing of 72

Index 409

new page, specifying 49
NEW parameter

of .BX control word 104
.Nl [Null line] control word

description of 291
NOADD parameter

of .HY control word 171
of .SV control word 173

NOAlG parameter
of.HY control word 171

NODleT parameter
of .HY control word 171

nonimpact printers 1
NOPROF option

description of 25
NORM parameter

of .PN control word 64
NOSPIE option

description of 26
using to diagnose problems 182

NOSTEM parameter
of .SV control word 173

NOWAIT option
description of 26

null lines
redefining formatting convention
for 154

NUM parameter
of .SV control word 173

NUMBER option
description of 26
effect on UNFORMAT option 32
using 121
using to diagnose problems 182

numbering pages 64

.OC [Output Comment] control word
defining for postprocessor use 169
description of 292
formatting effect of 169

ODD parameter
of .Fl control word 95
of .PA control word 50, 75
of .RT control word 62

odd-numbered pages
printing only on 50
testing for 113

.OF [Offset] control word
description of 293

oldest usage report 391
OPTIONS option

description of 26
.OR [Or] control word

description of 294-295
using in macros 148
using to check multiple
conditions 112

using with .IF 111
ORDER parameter

of .Fl control word 95
of .PI control word 80

OS/VSl 1
OS/VS2 MVS 1
output

displaying at a terminal 30

obtaining printed 27
specifying destination of 18

output file
writing to 122

output files
printing part of 26

output lines, generated by
tracing 183

overstriking 108

.PA [Page Eject] control word
description of 295-296
EVEN parameter of 50, 75
ODD parameter of 50, 75
using to reset page numbers 64
using to start a new page 49, 98

page breaks 49
page dimensions

adjusting for special
situations 57

changing 56
column width

changing 58, 70
default value for 58
defining 70
effect of concatenation on 58

defaults for 55
definition of 55
effect of logical output device 58
for 3800 Printing Subsystem 57
line lengths

changing 58
default values for 55

page lengths
changing 57
default values for 55
for non-3800 devices 57

See also margins
page eject mode 50
page ejects, conditional 99
page layout

defining 55-65
multi column format for 67-72
positioning text on a page 44
see also multi column format

page length 55
page lengths

See page dimensions
page number symbol

changing 62
default for 62
definition of 91

page numbers
automatically inserting 55
default symbol for 64
including in a running heading or
footing 59

including in a top or bottom run-
ning title 62

including prefixes for 65
placing in a title 64
resetting 50
resetting in table of contents 77
resetting the internal counter 64
restoring arabic numbering 64
setting current 142
specifying as roman numerals 64
specifying decimal-point

numbering 64

410 Document Composition Facility: User's Guide

PAGE option
description of 26
PROMPT parameter of 17

PAGE parameter
of .Fl control word 95

page sections 68
pagination

forcing an even-numbered page 50
forcing an odd-numbered page 50
printing only on even-numbered

pages 50
printing only on odd-numbered

pages 50
starting a new column 98
starting a new page 49, 98

period, guidelines for using 51
.PF [Previous Font] control word

description of 296
using 49

physical output devices
formatting considerations for 18
specifying 5

.PI [Put Index] control word
description of 297
END parameter of 80
KEY parameter of 83
ORDER parameter of 80
REF parameter of 81
START parameter of 80
using 79

.Pl [Page length] control word
description of 298
using 55

.PM [Page Margins] control word
description of 299
using 57

.PH [Page Numbering Mode] control word
ARABIC parameter of 64
description of 299-301
FRAC parameter of 64
NORM parameter of 64
PREF parameter of 65
ROMAN parameter of 64
using 64

positioning text on a page 44
postprocessor, using SCRIPT/VS as 167
.PP [Paragraph Start] control word

description of 301
PREF parameter

of .PN control word 65
prefixes for page numbers 65
prefixes removed during stem
processing 373

preprocessor, using SCRIPT/VS as 167
PRINT option

description of 27
printer output, obtaining 27
printing characters not available on
terminal

printing part of an output
document 10, 26

producing input for STAIRS/VS 179-180
PROFILE option

description of 28
profiles

when using SCRIPT/VS as a
preprocessor 167

.PS [Page Number Symbol] control word
description of 302

PS parameter
of .DC control word 64

.PT [Put Table of Contents] control
word

description of 303-304

using to place text in table of
contents 76

PUNC parameter
of .DC control word 173, 176

.QQ [Quick Quit] control word
affect on TWOPASS option 125
description of 304
usi ng 124, 188

.QU [Quit] control word
description of 304
usi ng 124, 188

QUIET option
description of 29

ragged right 35
.RC [Revision Code] control word

ADJUST parameter of 100
defining for postprocessor use 169
description of 304-305
formatting effect of 169
using to mark updated material 99

.RD [Read Terminal] control word
description of 306
using 126

.RE [Restore Environment] control word
description of 307
using 110

redefining control word separator 52
redefining symbols 168
REF parameter

of .PI control word 81
relative indention

advantage of using 41
definition of 40
example of 41

RES parameter
of .RH control word 60

residual text
definition 401
in macro processing 147

revision codes 99
.RF [Running Footing] control word

CANCEL parameter of 60
description of 307-308
effect of .ll control word on 68
using 58

.RH [Running Heading] control word
description of 308-309
effect of .ll control word :on 68
RES parameter of 60 -
SUP parameter of 60 ~
using 58

.RI [Right Adjust] control wOljd
description of 309-310
using 45

right margin
aligning text with 45

RIGHT parameter
of .FO control word 46

.RN [Reference Numbers] control word
description of 310

roman numerals
converting decimal numbers to 134

Index 411

specifying page numbers as 64
ROMAN parameter

of .PN control word 64
root word dictionaries 174
root word dictionaries provided by

IBM 174
root word processing

See stem processing
.RT [Running Title] control word

affect on table of contents 77
BOTTOM parameter of 61
description of 311-312
effect of .LL control word on 68
EVEN parameter of 62
ODD parameter of 62
specifying 61
TOP parameter of 61

running footings
See running headings and footings

running headings
See running headings and footings

running headings and footings
controlling line lengths of 58
defining for even-numbered

pages 59
defining for odd-numbered pages 59
definition of 55
placement on a page 59
processing of

definition phase 60
formatting phase 60
symbol substitution 60

redefining 60
specifying 58-61
suppressing 60
where to define 63

running titles
allocating space for 63
definition of

See running headings and
footings

See top and bottom running
titles

where to define 63
.RV [Read Variable] control word

description of 312-313
setting symbols with 130
using 126

.SA [Save Environment] control word
description of 313
using 110

saving text for subsequent
processi.ng 124

.SC [Single Column Model control word
descr~.ption of 313-314
using: 69, 72

SCRIPT command
See also individual options
abbreviating option names 15
default options of 17
issuing as a

ATMS-III command 13
CMS command 13
TSO command 13

mutuallY exclusive options of 17
options of 15-32
setting symbols with 141
user defined options 32

us~ng 13-32
uSlng to diagnose problems 181

SCRIPT/VS
conditional processing by 111
control words

See individual control words
current formatting environment

restoring 110
saving 110

diagnosing problems 181-188
files

See input files
See output files

flexibility of 3
formatting considerations 8
formatting environment

description of 109-110
for footnotes 110
for keeps and floats 109
parameters that define 109
three parts of 109

formatting features of 87-108
formatting input with 33
how it works 4
implicit formatting conventions 35
input file characteristics

See imput files
introduction to 1-12
invoking 7
processing in an interactive

environment 126
processing input lines

beginning with a blank 154
beginning with a tab 154

redefining formatting
conventions 154

Release 2 highlights 3
root word dictionaries provided
with 174

summary of functions 8-12
system symbols

See system symbols
terminating processing by 124
using as a preprocessor 8, 167
using as a subroutine 7, 167
using as postprocessor 167
using in a background

environment I, 2
using in an interactive

environment I, 130
using with impact printers 1
using with nonimpact printers 1
using with other programs 167-169

SCRIPT/VS dictionaries
searching 171
specifying language of 174
three types of 174

SCRIPT/370 195
.SE [Set Symboll control word

description of 314-317
INDEX parameter of 130
MAC parameter of 137
SUBSTR parameter of 130
using 129

SEARCH option
description of 29

section breacks 68
semicolon

See control word separator
separating lines of text 43
SET parameter

of .BX control word 106
setting tabs 36
simple indention 40

412 Document Composition Facility: User's Guide

single spacing 44
single words, hyphenation of 172
.SK [Skip] control word

description of 317-318
using 43

.Sl [Set line Space] control word
description of 318
using 44

SNAP parameter
of .IT control word 186

.SO [STAIRS/VS Output]
using 180

.SO [STAIRS/VS Output] control word
description of 319

sort keys
See also indexes
creating 82
definition of 82
explicitly specifying 83
multiple occurrences of the same

one 82
using 82

source documents, managing 169
.SP [Space] control word

description of 320
using to position lines on a

page 43
space units

specifying 6
types of 6

spacing
between output lines 44
positioning text on a page 44
separating lines of text 43
using the .SK control word 43
using the .SP control word 43

SPAF parameter
of .DH control word 75

special characters
entering into a file 87
ignoring during index
processing 82

including in an index 82
that affect SCRIPT/VS
processing 91

treating as blanks during index
processing 83

SPEllCHK option
description of 29
using 173
using to diagnose problems 182

spelling verification
fallibility of 174
SCRIPT/VS support for 173-174
verification process 173

SPF-II
using to edit macro library

members 157
using utility function of 157

SPF/CMS 156
using to edit macro library

members 156
splitting text 46
.SS [Single Space Mode] control word

description of 321
STAIRS/VS

definition of 179
input restrictions 179
paragraph number

description of 179
printing of 180
resetting of numbering
counter 180

producing input for 179-180

restrictions in formatting input
for 179

using the CTF option for 20
START parameter

of .PI control word 80
starting a new column 98
starting a new page 49, 98
starting an even-numbered page 50
starting an odd-numbered page 50
stem processing

description of 177
prefixes removed during 373-375
suffixes removed during 373-375

STEP parameter
of .IT control word 184

STOP option
description of 29

STOP parameter
of .DF control word 108, 126

Storage and Information Retrieval SyS
tem/Virtual Storage

See STAIRS/VS
Structuted Programming Facility-II

see SPF-II
.SU [Substitute Symbol] control word

description of 321
using 132

SUBSTR parameter
of .SE control word 130

suffixes removed during stem
processing 373

SUP parameter
of .RH control word 60

.SV [Spelling Verification] control
word

description of 322
HOADD parameter of 173
HOSTEM parameter of 173
HUM parameter of 173
using to diagnose problems 183

.SX [Split Text] control word
description of 323
F parameter of 46
using 46
using to position text in table of
contents 76

.SY [System Command] control word
description of 324
using 128

SYM parameter
of .lY control word 137, 155

symbol length attribute 117
symbol substitution 131, 132
symbols

analyzing type of 134
attributes of their values 133
beginning with an asterisk C*) 142
canceling 133
comparing null values 113
conditional processing wi\h 111,

116
containing special characters 114
converting ATMS to SCRIPT/VS 211
defining 129 '
defi n i ng a null value for' 133
defining in a macro library 155
defining within a macro 149
definition of 2
determining current value 135
effect of TWOPASS option on 31
extended processing of 145
inhibiting substitution 132
libraries containing 136
multiple substitutions 131

Index 413

name restrictions 129
redefining 168
set by tokens 141
set when file is appended 141
set when file is imbedded 141
set when macro is processed 142
set with SCRIPT command 141
specifying attributes for 133
specifying length value 134
starting with control word
separator 145

substituting values for 131
substituting values for within a

macro 149, 152
unresolved 132
using for arrays of values 143
using to set current page

number 142
verifying the existence of 134
when to use 129-142

SYSOUT comparand 113
SYSPAGE comparand 113
system symbols

&$CHAR(n) 49
&$LC 140
&$lDEV 113
&$PDEV 113
&$RET 128, 140
&$TAB 36
&$TWO 31
&SYSDAYOFM 132
beginning with &$ 137
for control values 139
for system date and time 138
names 361
summary of 137-142

SYSVAR option
description of 30
setting symbols with 141
specifying subdocuments with 212

table of contents
adding bottom titles to 77
adding lines to 76
automatic generation of 73
entries generated by head
levels 73

printing of 76
processing of 75
producing 31
resetting the page numbers 77
specifying entries for 73
TWOPASS considerations 77
using DSMUTTOC file to process 75
using the DSMUTTOC file 73

tabs
default values of 36
fill characters for 38
processing input lines that begin
with 154

setting 36
using in SCRIPT/VS 36

.TB [Tab Setting] control word
description of 325-326
setting tabs with 36
using with the .BX control

word 102
.TC [Table of Contents] control word

description of 326-327

using 76
TC parameter

of .DH control word 75
.TE [Terminal Input] control word

description of 327-328
effect of TWOPASS option on 31
using 126, 188

techniques for conditional processing
See conditional processing by

SCRIPT/VS
TERM option

description of 30
terminals, displaying output at 30
terminating formatting of a file 124
terminating SCRIPT/VS processing 124

while testing control word
sequence 187

testing control word'sequence 187
text ampersands 132
text formatting

implicit conventions for 35
text processing, conditional 111
.TH [Then] control word

description of 328
using for alternative
processing 112

using in macros 148
using with .IF 111

THRESH parameter
of .HY control word 172

.TI [Translate Input] control word
description of 329
restrictions in using 49, 89
using 89

Time Sharing Option
See TSO

time system symbol 138
TLIB option

description of 30
.TM [Top Margin] control word

description of 329-330
using 55

tokens
definition of 141
used in passing symbol values 141

top and bottom running titles
allocating space for 63
controlling line lengths of 58
default values for 61
definition of 55
including page number in 62
specifying 61-63

TOP parameter
of .RT control word 61

top running titles
See top and bottom running titles

.TR [Translate Character] control word
description of 330-331
restrictions in using 49
using 87, 89

tracing of input processing 183
tracing, output lines generated

by 183
translation

cancelling 88
defining 87
of character strings
of input characters
of output characters
SCRIPT/VS support of
to. uppercase 90

90
89
87, 89
87

using .IF control word for 89
TRUNC parameter

EXTEND parameter of 58

414 Document Composition Facility: User's Guide

of .FO control word 58
.TS [Translate String] control word

description of 331-332

TSO
using 91

communicating with 128
creating macro libraries in 156
file naming conventions 14
input file characteristics 5
interactive processing with 126
using with SCRIPT/VS 1

TSO ClIST 128
TSO/FORMAT 217
.TU [Translate Uppercase] control word

description of 332
using 90

two formatting passes
See TWOPASS option

TWOPASS option
description of 31
effect of .QQ control word on 125
effect on symbol substitution 132
effect on table of contents 77
using to diagnose problems 182

.TY [Type on Terminal] control word
description of 333
using 126

typewriter terminal
formatting a document for 127

.UC [Underscore and Capitalize] con
trol word

description of 334
using 47

.UD [Underscore Definition] control
word

description of 335
using 108

.UN [Undent] control word
description of 335-336

underlining text 47, 108
underscoring

See underlining text
UNFORMAT option

description of 31
using 122
using to diagnose problems 183

unresolved symbols 132
.UP [Uppercase] control word

description of 336
using 47

UPCASE option
description of 32

update transaction records
definition of 391
format of 391

updated material, marking 99
.US [Underscore] control word

description of 337
using 47

user dictionaries

building 175
creating and maintaining 391
definition of 174
See also dictionary maintenance
process

.UW [Unverified Word] control word
description of 337-338
using 182

vertical space
specifying 44
units for specifying 6

VM/370
See CMS

VSPC 2

.WF [Write To File] control word
ATMS-III restrictions in using 123
description of 338
ERASE parameter of 123
IMBED parameter of 123
using 122
using to dynamically create input
files 167

using with the .UW control
word 182

widow control 95
word delimiters 92
WORD parameter

of .DC control word 173
.WZ [Widow Zone] control word

description of 339
using 95

.ZZ [Diagnostic] control word
description of 340
enabling 22
using 181

3800 Printing Subsystem
drawing boxes with 106
fonts distributed with 48
formatting documents for printing

on 107
page dimension considerations 57
using fonts with 48

Index 415

/ I
J

Document Composition Facility:
User's Guide
Order No. SH20-9161-3

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate your views
about this publication. They will be sent to the author's department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own language; use of
English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information
you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or the IBM branch office serving your locality.

Yes No

• Does the publication meet your needs? 0 0

• Did you find the information:

Accurate? 0 0
Easy to read and understand? 0 0
Easy to retrieve? 0 0
Organized for convenient use? 0 0
Legible? 0 0
Complete? 0 0
Well illustrated? 0 0
Written for your technical level? 0 0

• How do you use this publication:

As an introduction to the subject? 0
For advanced knowledge of the subject? 0
To learn about operating procedures? 0
As an instructor in class? 0
As a student in class? 0
As a reference manual? 0

• What is your occupation?

Comments:

If you would like a reply, please give your name and address.

Thank you for your cooperation. No postage stamp- necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail them directly to
the address on the back of the title page.)

SH20-9161-3

Reader's Comment Form

Fold and tape Plesse Do Not Staple

Attention: Information Development
Department 61 C

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
General Products Division
P. O. Box 27155
Tucson, Arizona 85726

Fold and tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

c
o o c
3
CD
::J
(')
o
3

"'C
o en
;::t:
o·
::J

" Q)

g
~:

C
en
CD
.,~

en
C)
c
a
CD

." .,
:5"
CD

- c.

Fold and tape Plesse Do Not Staple Fold and tape

:r
c
en
>
CJ)
J:
~ o
I

(0 .-
m .-
I

W

Document Composition Facility:
User's Guide
Order No. SH20-9161-3

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate your views
about this publication. They will be sent to the author's department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own language; use of
English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information
you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or the IBM branch office serving your locality.

Yes No

• Does the publication meet your needs? 0 0

• Did you find the information:

Accurate? 0 0
Easy to read and understand? 0 0
Easy to retrieve? 0 0
Organized for convenient use? 0 0
Legible? 0 0
Complete? 0 0
Well illustrated? 0 0
Written for your technical level? 0 0

• How do you use this publication:

As an introduction to the subject? 0
For advanced knowledge of the subject? 0
To learn about operating procedures? 0
As an instructor in class? 0
As a student in class? 0
As a reference manual? 0

• What is your occupation?

Comments:

If you would like a reply, please give your name and address.

Thank you for your cooperation. No postage stamp- necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail them directly to
the address on the back of the title page.)

SH20-9161-3

Reader's Comment Form

Fold and tape Please Do Not Staple

Attention: Information Development
Department 61 C

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
General Products Division
P. O. Box 27155
Tucson, Arizona 85726

Fold and tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

o
o o c:
3
CD
::l
r+

(')
o
3
'C o o
;::+
O·
::l

."
m g
~.

C
o
CD
..,~

o
G)
c:
0.:
CD

""0 ..,
:r
CD

- Q.

Fold and tape Please Do Not Staple Fold and tape

:i'
c
(J)

~
(J)
:J:

'" o
I

CD
0)
I

.W

Document Composition Facility:
User's Guide
Order No. SH20-9161-3

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. This form may be used to communicate your views
about this publication. They will be sent to the author's department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own language; use of
English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information
you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or the IBM branch office serving your locality.

Yes No

• Does the publication meet your needs? 0 0

• Did you find the information:

Accurate? 0 0
Easy to read and understand? 0 0
Easy to retrieve? 0 0
Organized for convenient use? 0 0
Legible? 0 0
Complete? 0 0
Well illustrated? 0 0
Written for your technical level? 0 [J

• How do you use this publication:

As an introduction to the subject? 0
For advanced knowledge of the subject? 0
To learn about operating procedures? 0
As an instructor in class? 0
As a student in class? 0
As a reference manual? 0

• What is your occupation?

Comments:

If you would like a reply, please give your name and address.

Thank you for your cooperation. No postage stamp- necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments or you may mail them directly to
the address on the back of the title page.)

SH20-9161-3

Reader's Comment Form

Fold and tape Please Do Not Staple

Attention: Information Development
Department 61 C

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. ,40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
General Products Division
P. a, Box 27155
Tucson, Arizona 85726

Fold and tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

c o
(")
c
3
CD
::J
n
o
3
'C o en
;:i:
cr
::J

"'T1
m
g
~
C
en
CD
..,~

en
C)
c a:
CD

"'0 ..,
S'
CD

- Q.

Fold and tape Please Do Not Staple Fold and tape

S"
c
en
~
en
J:
I\.)
o
I

(0
0)
I

CIJ

SH20-9161-3

