DOS/VS
System Management Guide

Release 33

GC33-5371-5
File No. S370-34

DOS/VS
Systems System Management Guide

Release 33

Summary of Amendments

Release 33

Edition GC33-5371-5 documents:

e Second label information cylinder for the IBM 3340
« POWER/VS enhancements

o Installation improvements

« Cardless system support

« Extended timer services

In addition, technical corrections and editorial changes have been made throughout the manual.

Release 32

Technical Newsletter GN33-8801 includes information on cross-partition event control and the fast CCW
translation (FASTTR) option, as well as miscellaneous corrections and updates.

Release 31

Edition GC33-5371-4 includes changes reflecting support for POWER/VS and VTAM.

Sixth Edition (July, 1976)

This is a major revision of, and obsoletes, GC33-5371-4 and Technical Newsletter
GN33-8801, dated November 30, 1975.

This edition applies to Version 5, Releases 33 of the IBM Disk Operating
System/Virtual Storage, DOS/VS, and to all subsequent versions and releases until
otherwise indicated in new editions or Technical Newsletters.

Changes and additions to the text or illustrations are indicated by a vertical line to the
left of the changes. Changes are continually made to the information herein; before
using this publication in connection with operation of IBM systems, consult the latest
IBM System/370 Bibliography, GC20-0001, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Laboratories, Publications
Department, Schoenaicher Str. 220, 7030 Boeblingen, Germany. Comments become the
property of IBM.

© Copyright International Business Machines Corporation 1972, 1973, 1974, 1975, 1976

THIS MANUAL. . .

. .. is a guide to the IBM Disk Operating System/Virtual Storage
(DOS/VS). The system in its entirety is discussed on a conceptual and
functional level. System management refers not only to the way DOS/VS is
organized, but also to the way the user can efficiently manage the system
facilities at his disposal. This manual, therefore, does more than describe
the functions and interaction of the system control and system service
programs that constitute DOS/VS. It also describes how you -- as a
systems planner, systems programmer, applications programmer, or operator
-- can use DOS/VS to your best advantage.

Before you begin reading this manual, you should be familiar with the
information contained in the Introduction to DOS/VS, GC33-5370.

This book is not a guide to data management; instead, a separate manual is
provided for this purpose, called the DOS/VS Data Management Guide,
GC33-5372.

A manual that complements both the DOS/VS System Management Guide
and the DOS/VS Data Management Guide is also available at this time to
meet your installation’s planning requirements. It is called DOS/VS
Supervisor and I/O Macros, GC33-5373.

After reading the above mentioned manuals, you should be able to turn
directly to the DOS/VS library of reference manuals in order to work with
your operating system. A reference manual is organized so that you can
easily retrieve specific information on the formats of the control statements,
macro instructions, labels, and messages, which you deal with daily.

This manual is divided into three parts:

Part I: The Organization of DOS/VS provides conceptual, descriptive, and
planning information. Part I contains three chapters. The first chapter
introduces the concepts of several of the main topics discussed
throughout this part of the manual. The second chapter summarizes the
standard and optional features of DOS/VS. The third chapter includes
planning information for system generation.

Part II: Using the System provides the information on how to use the
system. Part IT contains five chapters, which consist of guidance
information on using the IPL, job control, linkage editor, librarian, and
POWER/VS programs.

Part III: Designing Programs provides guidance in designing programs to be
run under DOS/VS. Part III contains three chapters, which discuss how
to design a program for execution in virtual mode, how to use the
facilities of DOS/VS, and how to use the multitasking macros.

For reference purposes the organization of the system residence disk file
(SYSRES) is shown in Appendix A.

The following IBM manuals are referred to in the text of this manual:

Introduction to DOS/VS i GC33-5370
DOS/VS Data Management Guide GC33-5372
DOS/VS Supervisor and I/O Macros GC33-5373
DOS/VSTapeLabelsc.c.0iiiiinnneennn.. GC33-5374
DOS/VSDASD Labelsovviviie .. GC33-5375
DOS/VS System Control Statements GC33-5376
DOS/VS System Generationc.couuiuerneen.. GC33-5377
DOS/VS Operating Proceduresco0vuueeen.. GC33-5378
DOS/VS MESSAZES .« o v v vt et it ie e e e e e GC33-5379
DOS/VS Serviceability Aids and Debugging Procedures GC33-5380
DOS/VS System Utilitiesccuuunnnn... GC33-5381
1401/1440/1460 DOS/VS Emulator on System/370 GC33-5384
1410/7010 DOS/VS Emulator on System/370 GC33-5385
Model 20 DOS/VS Emulator on System/370 GC33-5388
Guide to the DOS/VS Assembler GC33-4024
DOS/VS VTAM System Programmer’s Guide GC27-6957
IBM System/370 Principles of Operation GA22-7000
DOS/VS Supervisor Logict e SY33-8551
DOS/VS Librarian Logicc0viiin e SY33-8557
DOS/VS POWER/VS Logicovv vt SY33-8570
DOS/VS Access Method Services User’s Guide GC33-5382

DOS/VS POWER/VS with RJE, SNA Guide GC33-5405

Table of Contents

Part I: The Organization of DOS/VS

Chapter 1: Understanding the System 1.1
Multiprogrammingot i i it e e e e e e e e e e e e e e 1.1
Partitionso e e e e e 1.2
Storage Protectionttt e e 1.3

Partition Priorities e 1.3
Executing a Program in Any Partition 1.3

Device Considerationsttt ittt tnn ittt 1.4
Virtual Storage i e e e e 1.5
Real and Virtual Partitionst 1.8

The Shared Virtual Areac. .ttt eeennnnnnnnn 1.8
Executing Programs in Real and in Virtual Mode 1.8

Page Pool e e e e 1.10
Advantages of Virtual Storagettt 1.10
Multitaskingt e e e 1.10
Two Types of Multitaskingttt iinnnnnn.. 1.11
Cross-Partition Event Control 1.11
POWER/ VS Lttt e e e e e e 1.12
Implementation of POWER/VSttt 1.12
Input .. e e e e e e e e 1.13

Reader Taskttt it iien. 1.14
Intermediate Storage e e 1.14
Execution Processors e 1.14

Writer Tasksttt e e e 1.14
Operator Communications Task 1.14

Some Basic Terminologyttt in ittt 1.15
Advantages of POWER/VS 1.15
POWER/VS Remote Job Entry (POWER/VSRIE) 1.16
Input at the Terminalttt enennenenn.. 1.16

Output at the Terminalttt iienennenenn.. 1.16

1Y (T =T 1.17
Chapter 2: Summary of DOS/VS Features 2.1
Standard Features of DOS/VS it i e e 2.1
Optional Features of DOS/VS ittt it ittt e e 2.1
DOS/VSin Various CPUSt ittt ittt ittt et e e 2.2
Chapter 3: Planning the System 3.1
System Generation Procedure 3.1
Tailoring the SUPEIVISOrottt ittt ettt ee e aennn 3.3
Storage Management Optionstiuitiinennnnnn.. 3.3
Defining the Size of Virtual Storage 3.4

Defining the Number of Partitions 3.7

Defining the Size of Partitions, 3.7

Defining Partition Priorities 3.9

Defining the Page Data Setttt 3.10

Fixing Pages in Real Storagec.0utiiuinenennn.. 3.10
Improving the Paging Mechanism 3.11

Virtual Storage Access Method 3.11
Multiple-Partition Optionsttt ennenenenn.. 3.12
Relocating Loader it iinitinnnnnennn. 3.12
POWER/ VS .ttt e e e e e e e 3.13
Multitaskingo ittt ittt ittt ettt e 3.13
Cross-Partition Event Controlot iuuiennen.n. 3.13

Wait Multiple Optionttt 3.14

Library Optionsot i ittt ittt ettt e e e e e 3.14
Private Core Image Libraries, 3.14
Extended Support for the Procedure Library 3.14

Second Level Directory for Core Image Libraries 3.14
Independent Directory Read-in Area 3.15
TeleproCessingo vt v ittt et ittt e e e 3.15

BT AM ... e e e e e e e e 3.16

QT AM .. e e e e e e e e e 3.16

VT AM o e e e e 3.16

7 N O 3.17

JOb AcCoUnting v it ittt e e e e e 3.17
TImer SeIVICES . . .t v ittt ittt ittt et ettt et e et et 3.18
Time-of-Day Clockttt iennnann. 3.18

Interval Timert iiiti ittt ittt eneninnennsn 3.18

Task Timerttt ittt it ettt e e 3.19

Console Bufferingttt ittt 3.20
User Exit Routines iitiiiineenienennenennnnn 3.20
Interval Timer Exit ittt tiii e 3.21

Program Check Exitt ininennnnn. 3.21

Abnormal Termination Exit00t irnenn.. 3.22

Operator Communications Exit 3.22

Task Timer Exit et e e e e 3.22

Page Fault Handling Overlap Exit 3.23

Disk OPLiONS . . o vt vttt et e e e e e e e e e e e e e e 3.23
System Files on Disk or Diskette 3.23

DASD File Protectiont iiinnneennnnn. 3.24

Track Hold Optionttt ittt e 3.24

Seek Separation e e 3.25
Rotational Position Sensingttt 3.25

Block Multiplexer Channel Support 3.27

I/0 Options ..ot ittt e e e e e e e e e e e 3.28
Defining the Number of CCW Translation Buffers 3.28
Bypassing System CCW Translation 3.29

Channel Queuettt et e 3.30

Error QUeue e e e 3.31
Reliability/ Availability/Serviceability 3.31
Recovery Management SUpportttt 3.32

OLTEP .. e e e e e 3.33

Problem Determination Aids, 3.33
Defining the System/370 Configuration 3.34
Central Processing Unit i 3.34

I/O DeVICES . vt it ittt e e e e e e e e e 3.34
Emulators e e 3.35
Standard Job Control Settingst 3.35

End of Supervisor e e e 3.36
Generating POWER/VS e e e e 3.37
Virtual and Real Storage Requirements 3.37
Intermediate Storage Requirements oin... 3.38
Size of the Data File and Queue File 3.39

Account File e 3.41

Input OPtionS i ittt it e e e e e e 3.42
Source Library Inclusion 3.42

User Exit Routine i 3.43
Processing Optionsttt 3.43
Assigning Default Priorities 3.43

Limiting Output o e e e 3.43

Logging Job Names and Numberst ineen... 3.44
Providing Forms Control, 3.44

Output OptionNS . . . ¢ ottt e e e 3.44
Separating Jobs e 3.44
Segmenting Outputt e e e e 3.45

Remote Job Entry Support e 3.45
Planning the Librariesttt ittt et e 3.45
Purpose and Contents of the Libraries 3.46
The Core Image Library 3.46

The Relocatable Library 3.46

The Source Statement Library 3.46

The Procedure Libraryttt ittt et e 3.47

Private Libraries e 3.47
Choosing the Libraries for an Installation 3.48
Relocatable and Source Statement Libraries 3.48
Procedure Library e 3.48

Private Libraries e 3.49
Determining the Location of the Libraries 3.50
Planning the Size and Contents of the Libraries 3.51

Part II: Using the System

Chapter 4: Starting the System 4.1
Initial Program Loading (IPL)ttt 4.1
Establishing the Communications Device for IPL. 4.2
Changing I/0 Device ASSIgNMENSo\t vttt ettt ee e e 4.2
Adding Devicest e e 4.3

Deleting Devicesot i it e 43

Setting System Valuesttt e e 4.4
Assigning the VSAM Master Catalog oo, 4.4
Initiating Page Data Set Handling 4.4
Automatic Functions of IPL e 4.4
Building the SDL and Loading the SVA 4.5
Creating the System Recorder File, 4.6
Creating the Hard Copy File for Models 115and 125 4.7
Security Checking after IPL it e 4.8

Entering RDE Datattt e et et e 4.8

Chapter 5: Controlling Jobs 5.1

Defining a JObo e e e e 5.2
Setting up Job Streams e e 5.3
Summary of Job Control Statements and Commands 5.4

JOB Statement e e e 5.4
End-of-Job (/&) Statementt 5.4
PAUSE Statement/Commandc.u.titenenenneennn. 5.5
DATE Statementt e 5.5

Relating Files to Your Program 5.6

Symbolic [/O ASSIgNMENntottt e 5.6
Logical Units and Symbolic Device Names 5.6
Programmer Logical Units0, 5.9
Types of Device ASSIignments uuueeeeemnnneeeeenn. 5.10
Device Assignments in a Multiprogramming System 5.11
Device Assignments Required for an Assembly 5.11

Files on Diskette Devicesttt ittt ettt e 5.12
Example for Submitting Label Information 5.14

Files on Direct Access Devices 5.15
Examples for Submitting Label Information 5.16

Files on Magnetic Tapeottt it i e e 5.18
Controlling Magnetic Tape Operationcueun... 5.18
Controlling Printed Output i, 5.19

Editing and Storing Label Information 5.20
Types of Label Information 5.20

Summary of Job Control Statements and Commands 5.23
ASSGN Statement/Command, 5.23
RESET Statement/Commandttt ettt et e 5.24
LISTIO Statement/Command v vt ittt ittt ettt 5.25
DVCDN Commandottt ittt et e e e 5.25
DVCUP Commandttt ettt e it eeeeen 5.25
DLBL Statementttt 5.25
EXTENT Statementttt ineeeeennneeanns 5.25
TLBL Statementttt 5.25
MTC Statement/Command it ennnnenn.. 5.25
LECB Commandttt ittt ittt ieeann 5.25
LUCB Commandttt einenan. 5.25

Executing a Program i e e 5.25
Assembling, Link-Editing, and Executing a Program 5.26
Executing Cataloged Programsttt 5.29
Preparing Programs for Execution, 5.29
Defining Options for Program Execution 5.31
Communicating with Problem Programs via Job Control 5.32
Controlling Jobs in a Multiprogramming System 5.33

Reserving Storage for VSAM e 5.33
Reserving Storage for RPS 5.33
Teleprocessing Balancing0ttt 5.34

Restarting a Program from a Checkpoint 5.35

Executing in Virtualor Real Mode 5.36
Programs That Must Run in Virtual Mode 5.37
Programs That Must Runin Real Mode 5.37

Summary of Job Control Statements and Commands 5.37
EXEC Statement/Commandt ennenenenn.. 5.37
OPTION Statementttt ittt ettt teeeaeaen 5.38
RSTRT Statementttt ittt et ettt eee e 5.38
UPSI Statementttt e e e 5.38

Checking and Altering Job Control Statements 5.38

System Files on Tape, Disk, or Diskettet iieuenne... 5.39
System Files on Tapet ittt e e 5.39
System Files on Disk e e 5.40
System Files on Diskettettt 5.42
Interrupting Job Streams on Disk, Diskette, or Tape 5.43
Record Formats of System Files, 5.44

Using Cataloged Proceduresttt it tmenenenannnees 5.45
Retrieving Cataloged Procedures0ttt ennennn. 5.45
Modifying Cataloged Procedurest iiuenneennn. 5.46
Several Job Steps in One Procedure 5.48
Modifying Multistep Procedures without SYSIPT Data 5.49

SYSIPT Data in Cataloged Procedures 5.50
Partition-Related Cataloged Procedures, 5.51

Use of Cataloged Procedures by the Operator 5.52

Chapter 6: Linking Programs 6.1

Structure of a Program e e e 6.1
Source Modulesttt e e e 6.2
Object Modulesttt it e e 6.3
Program Phasesttt ettt e e 6.4

Relocatable Phasesttt it 6.4

Self-Relocating Phasest mtinnnnnnnn. 6.4

Non-Relocatable Phases 6.4

The Three Basic Applications of the Linkage Editor 6.5
Cataloging Phases into the Core Image Library 6.5
Link-edit and Executettt 6.6
Assemble (or Compile), Link-edit and Execute 6.7
Processing Requirementst 6.8
Symbolic Units Required 6.9
Preparing Input for the Linkage Editor 6.9
Assigning a Name to a Program Phase 6.10
Defining a Load AddressforaPhase 6.10
Aligning a Phase on a Page Boundary 6.11
Link-editing for Execution at Any Address 6.11
Link-editing for Inclusion in the Shared Virtual Area 6.12
Link-editing for Execution in a Virtual Partition 6.12
Link-editing for Execution in a Real Partition 6.13
Link-editing for Execution at an Absolute Address 6.14

Using Self-Relocating Programsc.. .o, 6.14

Building Phases from Object Modules 6.14
Including Modules from SYSIPT, 6.14
Including Modules from the Relocatable Library 6.15
Including Parts of Modules from SYSLNK 6.15

Using the AUTOLINK Feature0t iiienunennnn.n 6.15
Suppressing the AUTOLINK Feature 6.16
Reserving Storage for Labels 6.16
Specifying Linkage Editor Aids for Problem Determination or Prevention6.17
Clearing the Unused Portion of the Core Image Library 6.17
Obtaining a Storage Mapttt 6.17
Terminating an Erroneous Job 6.18
Designing an Overlay Program0 uiuiininnn.. 6.18
Organizing Control Sections in an Overlay Tree Structure 6.18

Relating Control Sections to Phases 6.18

Using FETCH and LOAD Macrosttt eennnnnn. 6.20
Summary of Control Statements Related to Link-editing 6.20
Job Control Statementsttt 6.20
Linkage Editor Control Statements0uuueenen.. 6.21
Examples of Linkage Editor Applications0ouuuurnun... 6.22
Catalog to Core Image Library Example 6.23
Catalog to Private Core Image Library Example 6.24
Link-edit and Execute Example, 6.26
Compile and Execute Example uiuennen.. 6.29
Chapter 7: Using the Libraries 7.1
How the System Accesses the Libraries 7.1
The Directories u ittt ittt et e e e e et e e e e 7.2
Naming Elements in the Libraries 7.2
Storing and Accessing Elements in the Libraries 7.5
Working with the Libraries, 7.5
Processing Requirements uniutniinentennnenen. 7.6
Maintaining the Libraries i 7.7
Cataloging e e e e e e 7.8

Deleting . . . vt e e e e 7.13
Condensingottt e e e e e e 7.14
Reallocatingt 7.17
Renamingttt ittt ittt et e e e e e e e e 7.20
Updating Object Modules and Phases 7.20
Updating the Source Statement Library 7.23

Copying and Reorganizing the Libraries 7.23
Copy Service Program (COPYSERV)c.c.v... 7.24
COPYSERV Jobstream Examples 7.24

Copy Program (CORGZ) ittt e i 7.25

Creating a New System Residencec.iuunn.. 7.26
Transferring Elements between Libraries 7.28

Using the Service Functions of the Librarian 7.29
Displaying the Directoriesttt ennn.. 7.29
Displaying and Punching the Contents of the Libraries 7.30
Preparing Edited Macros for Update 7.31

Creating and Working with Private Libraries 7.32
Creating Private Librariest 7.32
Creating Private Core Image Libraries 7.34

Using Private Librariesttt 7.35
Using Private Core Image Libraries 7.36
Chapter 8: Using POWER/VS 8.1
Starting POWER/VS e 8.1
Dummy ASSIBNMENTS . . . ot vttt ittt e e e e e e e e e e e e e 8.2
Changing Priorities of Partitions i iiinennn. 8.2

Using POWER/VS Statements and Commandsc0uueun... 8.2

Job Attributes e 8.3
Using SLI BOOKSo e 8.6
Cataloging SLI Books e 8.6
Modifying SLI Books e 8.6
DATA Statement.ottt it e e e e e e 8.7

SLI Modification Examplesttt 8.7

Partition Independent SLI Books 8.9
POWER/VS MaCIOS . o ot ottt it e et e et e et et e e e et et et e e 8.9
PUTSPOOL e e e e e e 8.9
GETSPOOL e e e e e 8.9
CTLSPOOL ... e e e e e e e e e 8.10
SEGMENT e 8.10

PUT ACCT .. e 8.10

Support of Multitasking Partitions, 8.11
Spooling a 3540 Diskette File 8.11
The 3540 asaData File 8.11

The 3540 as a SYSIN File i 8.11

Using POWER/VS RIE e e 8.13
Shutdown Procedures e 8.15
Coding Conventions for POWER/VS User Exit Routines 8.15

Part III: Designing Programs

Chapter 9: Designing Programs for Virtual-Mode Execution . 9.1
Programming Hints for Reducing Page Faults 9.1
General Hints for Reducing the Working Set 9.1
Data and Constants in Assembler Language Programs 9.3

Using Virtual Storage Macrosttt ittt ettt e e e 9.4
Fixing Pages in Real Storagettt 9.4
Determining the Execution Mode of a Program 9.6
Releasing Pages i e 9.6
Forcing Page-out e 9.6
Advancing Page-in 9.6
Balancing Teleprocessingttt e 9.6
Coding for the Shared Virtual Areattt nnennnnn.. 9.7
Chapter 10: Using the Facilities and Options of DOS/VS 10.1
Direct Linkage between Programsttt eenennnn.. 10.1
Interlanguage CommUNICAtIONS v v vttt vt ettt e 10.1
User Program Switch Indicators (UPSI) 10.1
Timing Featuresttt it it e e e e e e e 10.2
Using the Time-of-Day Clock i, 10.2
Interval Timer e e 10.3
Waiting for a Time Interval to Elapse 10.4

Getting the Unexpired Timettt 10.4

Task Timer e e e e 10.4
Obtaining or Canceling the Time Remaining 10.5

Linkages to User Exit Routinesttt . 10.5
Interval Timer User Exit Routine 10.6
Multitasking Considerationst 10.6

Task Timer User EXit ittt et ettt et e e ee e 10.6
Abnormal Termination User Exit Routine 10.6
Program Check User Exit Routine oo, 10.8
Operator Communications User Exit 10.9
Writing an IPL User Exit Routine 10.10
Writing a Job Control User Exit Routine 10.11
Checkpointing Facility e 10.15
Choosing a Checkpointttt 10.16
Timing the Entry to the Checkpoint Routine 10.16
Saving Data for Restartttt 10.16
Restarting a Checkpointed Programt .n.. 10.16

Job Accounting Interface Featuret . 10.18
Basic Job Accounting Information o ... 10.18

I/0 Accounting Information iiieienenenen.n. 10.18
Save Area for the User's Routine, 10.19
User’s Area for LIOCS Label Processingcuuuenennen... 10.19
Programming Considerationsttt nneennn 10.19
Register Usagettt ittt e e e 10.19
Tailoring the Program it 10.21
POWER/VS Job ACCOUNINGot i ittt ettt e it e e et eeeen 10.21
User Account Information 10.24
Storage Dump Facilityt e e 10.31
DASD Switching under DOS/VS e 10.32
Channel Switchingttt e 10.32
String Switching e 10.33
Using DASD Switchingttt i e 10.33
Appendix A: System Layouton Disk 11.1

List of Figures

Glossary 12.1

Index

Chapter 1: Understanding the System

Figure 1.1 The Five Partitionsttt nneenennnn 1.3
Figure 1.2 Assigning Different Physical Devices to the Same Logical Units 1.4
Figure 1.3 Interrelationship of Real and Virtual Storage, Real and Virtual

Address Area e e e e e 1.5
Figure 1.4 Four Programs Being Paged 1.7
Figure 1.5 A System With and Without Real Partitions 1.9
Figure 1.6 POWER/VS Data FIowttt it 1.13
Chapter 3: Planning the System
Figure 3.1 Insufficient Specification of RSIZE 3.5
Figure 3.2 Specification of RSIZE Larger Than the Size of Real Storage 3.5
Figure 3.3 Location of the Shared Virtual Area 3.6
Figure 3.4 Default Partition Priorities, 39
Figure 3.5 User Program Running in Virtual Storage without RPS Support3.27
Figure 3.6 User Program Running in Virutal Storage using RPS Versions

of Logic Module and Channel Program 3.28
Figure 3.7 Location of RPS Version of Logic Modules 3.28
Figure 3.8 POWER/VS Partition Allocationsc.......... 3.38
Figure 3.9 Intermediate Storage 3.40
Figure 3.10 The Relative Location of the Four System Libraries 3.50
Figure 3.11 Alternative Locations of the Libraries 3.52
Figure 3.12 Example of Library Organization 3.53
Chapter 4: Starting the System
Figure 4.1 Example of Creation of the Shared Virtual Area

and of the SYSREC File 4.7
Chapter 5: Controlling Jobs
Figure 5.1 Example of aJob Stream 5.3
Figure 5.2 Example of Symbolic I/O Assignments 5.7
Figure 5.3 Possible Device Assignments Set at Supervisor Generation 5.12
Figure 5.4 Device Assignments Required for an Assembly 5.13
Figure 5.5 Storing Label Information in the Label Information Cylinder(s)5.22
Figure 5.6 Summary of Label Option Functions 5.23
Figure 5.7 Job Control Statements to Assemble, Link-Edit, and Execute

aPrograminOnelJob 5.26
Figure 5.8 Submitting Input Data on SYSIPT 5.27
Figure 5.9 System Operation of an Assemble, Link-Edit, and Execute Job5.28
Figure 5.10 Preparing the Loading of Temporarily and Permanently Stored

Programs 5.30
Figure 5.11 Example of a RESTART Job 5.36
Figure 5.12 Creation of SYSINon Tapecciiiuiieninennnnn. 5.40
Figure 5.13 Processing System Input and Output Filesson Disk 5.42
Figure 5.14 Interrupting a Job Streamon Disk 5.44
Figure 5.15 Example of Modifying a Three-Step Procedure 5.50
Chapter 6: Linking Programs
Figure 6.1 Stages of Program Development 6.2
Figure 6.2 A Job Stream to Catalog a Program into the Core Image Library ... 6.6
Figure 6.3 A Job Stream to Link-Edit a Program for Immediate Execution 6.7
Figure 6.4 A Job Stream to Assemble, Link-Edit, and Execute 6.8
Figure 6.5 Overlay Tree Structurettt enenen.. 6.19
Figure 6.6 Link-Editing an Overlay Program 6.19
Chapter 7: Using the Libraries
Figure 7.1 Organization of the Directories on SYSRES 7.3
Figure 7.2 Naming Multiphase Programs 7.4
Figure 7.3 Summary of Librarian Programs and Their Functions 7.6
Figure 7.4 Assembling and Cataloging to the Relocatable Library in the Same

Job e 7.9
Figure 7.5 Example of Deleting and Condensing 7.15
Figure 7.6 When Can Condense Be Performed 7.17
Figure 7.7 Symbolic Unit Names and Filenames Required to Create Private

Librariest e e e e e 7.33
Figure 7.8 Possible Assignments of Private Libraries in a Multiprogramming

7251153 o o Y 7.37

Chapter 8: Using POWER/VS

Figure 8.1 Examples of the Use of POWER/VSJECL 8.4
Figure 8.2 Example for the Use of the SEGMENT Macro 8.10
Figure 8.3 Transition between RJE Line States 8.14
Chapter 9: Designing Programs for Virtual-Mode Execution
Figure 9.1 PFIX and PFREE Example 9.5
Figure 9.2 Example of Conventions for SVA Coding 9.8
Chapter 10: Using the Facilities and Options of the Supervisor
Figure 10.1 Setting and Testing UPSI 10.2
Figure 10.2 Method for Agcurate Measurement of a Real Time Interval 10.3
Figure 10.3 Skeleton Example of a Program in which a 30-second Interval Must

Elapse before Special Processing is Performed 10.4
Figure 10.4 Example of Using the Interval Timer for Taking a Checkpoint Every

Half-hour e 10.7
Figure 10.5 Skeleton Example of Multitask Linkage to a Common IT Exit

Routine e e 10.8
Figure 10.6 Skeleton Example of a Routine for Processing a Program Check Caused

by Zero DiviSion e e e e e 10.9
Figure 10.7 IPL User Exit Example0 een... 10.12
Figure 10.8 Job Control User Exit Example 10.14
Figure 10.9 Skeleton Example of a Routine for Checkpointing a Program on

Operator Commandttt i 10.17
Figure 10.10 Example of Job Control Statements for Restarting a Checkpointed

Job from Checkpoint 1111 10.18
Figure 10.11 Job Accounting Table 10.20
Figure 10.12 Job Accounting Routine Example 10.22
Figure 10.13 POWER/VS Line Account Record 10.25
Figure 10.14 POWER/VS Reader Account Record 10.26
Figure 10.15 POWER/VS List Account Record 10.27
Figure 10.16 POWER/VS Punch Account Record 10.28
Figure 10.17 POWER/VS Execution Account Record 10.29
Figure 10.18 POWER/VS Cancel Codesiiiiuueunen... 10.30
Figure 10.19 Example Routine to Insert User Information in POWER/VS

Execution Account Records 10.31
Appendix A: System Layout on Disk
Figure 11.1 System Residence Organizationccc..... 11.2

Part I: The Organization of DOS/VS

Part 1 introduces DOS/VS. DOS/VS is a complex combination of programs
that interact with user programs running on a System/370 central
processing unit. The main features of DOS/VS, what the supervisor does
for you, and how you tailor the system are presented in this part in three
chapters:

Chapter 1: Understanding the System presents all readers with a
description of the key features of DOS/VS, in particular the concepts of
multiprogramming, virtual storage, multitasking, and POWER/VS.

Chapter 2: Summary of DOS/VS Features lists the standard and optional
features of DOS/VS.

Chapter 3: Planning the System is of particular interest to system
programmers. This chapter includes four topics: system generation,
supervisor generation, POWER/VS generation, and planning the libraries.

Chapter 1: Understanding the System

Multiprogramming

This chapter introduces and describes the major concepts of DOS/VS.
After reading this information, you will have gained an understanding of the
principles on which DOS/VS operates. You will also be familiar with many
of the terms that are used throughout the manual.

The main topics described in this chapter are:
« Multiprogramming

« Virtual storage

e Multitasking

« POWER/VS.

Multiprogramming is a technique that allows the concurrent execution of
more than one program in a single computer system. Multiprogramming
balances the difference between the speed of the central processing unit
(CPU) and the relatively slower speed of the 1/0 devices, and thereby
improves the overall throughput of the system.

When a single executing program requests an /O operation, it may not
be able to continue with any useful processing until the 1/0 request has
been satisfied. During this time, the CPU stands idle. With multi-
programming the CPU is used more efficiently. When one program stops
processing, the CPU is put at the disposal of another program.

A program is said to be in control of the system when its instructions
are being executed by the CPU. A program can voluntarily yield control of
the CPU, or control can be withdrawn from it.

Programs that share the use of the CPU in multiprogramming do not
have an equal claim on the CPU. Instead, one program is given a greater
priority than another.

When a program must wait for a given event to occur before it can
continue processing, it yields control of the CPU. The supervisor then
passes control to a program of lower priority. Conversely, the supervisor
withdraws control from a program whenever a program with higher priority
is ready to resume processing. This generally happens when the /O
operation for which the program has been waiting is now completed.

Multiprogramming, therefore, allows the 1/O operations of one program
to be overlapped by the processing of other programs. When a program has
to wait for the completion of an 1/0 operation, the supervisor sets the
program in the wait state and selects another program for execution on the
basis of its priority and readiness to run. This process is called task
selection.

Chapter 1: Understanding the System 1.1

Partitions

Efficient use of the system relates not only to the degree of CPU
activity but also to storage management. During system generation, storage
may be allocated to partitions to accommodate the programs that will be
executed in them. At times, only a portion of the partition is used by the
program being executed. Some programs require a large partition. DOS/VS
can automatically balance the storage demands made by programs by
making processor storage not being used by one program available to a
program in another partition as required.

This storage management, which was not present in earlier versions of
DOS, is not inherent to multiprogramming, but is implemented by certain
virtual storage functions. It is described in more detail in the section Virtual
Storage, later in this chapter.

DOS/VS can support up to five separate partitions in each of which a
problem program can be executed. Thus, up to five problem programs can
be executed concurrently within the system. The actual number of partitions
in a particular configuration is a supervisor generation option, and as such is
described in the section Tailoring the Supervisor in Chapter 3: Planning
the System.

Each program gets the priority associated with the partition in which it
is executed. Priorities are assigned to partitions during supervisor
generation, but may be altered by an operator command during processing
to accelerate the execution of a particular program.

The five partitions are made up of one background partition (BG) and
up to four foreground partitions (F1, F2, F3, and F4) as shown in
Figure 1.1.

The background partition differs from the foreground partitions in the
following respects:

« The background partition is automatically activated by IPL. A
foreground partition must be activated via the BATCH or START
operator command. (The BATCH and START operator commands are
discussed in detail in DOS/VS Operating Procedures.)

« Certain IBM-supplied programs can be executed only in the background
partition. These programs are OLTEP, discussed under Tailoring the
Supervisor; CORGZ, (merging into SYSRES functions); and MAINT
(except deleting, renaming and condensing functions for a private core
image library). Refer to the chapter Using the Libraries.

« To link-edit in a foreground partition, a private core image library must
be assigned to that partition. To link-edit in the background partition,
no private core image library need be assigned.

1.2 DOS/VS System Management Guide

Storage Protection

Partition Priorities

Background

Foreground-4

Storage

available
to problem Foreground-3
programs

Foreground-2

Foreground-1

Figure 1.1. The Five Partitions

Storage protection, which is standard on all System/370 models, ensures
that the instructions and data of one program in a given partition do not
interfere with those of another program in another partition.

During supervisor generation, priorities are established for each partition
defined in the system. The default priorities are (from low to high): BG,
F4, F3, F2, F1.

During processing the operator can display the partition priorities and
change them dynamically by issuing the PRTY command. This can be used
to accelerate the execution of a given program. However, the priorities
should be reset to the installation standards as soon as possible to handle
the normal flow of jobs through the system. Changing priorities in the
middle of a job stream should be used with special care if POWER/VS or
teleprocessing, which normally run in a high-priority partition, are active in
the system. (Refer to POWER/VS later in this chapter.)

Executing a Program in Any Partition

When the relocating loader is generated in the system, most programs can
be executed in any partition. Provided that a program being link-edited
does not have an origin specified as an absolute address, the program
produced for inclusion in the core image library is relocatable.

A relocatable program can be executed in any partition that is large
enough to accommodate it.

Chapter 1: Understanding the System 1.3

Device Considerations

The relocating loader, as a supervisor generation option, is described in
the section Tailoring the Supervisor in Chapter 3: Planning the System.

Generally, the same physical /O device (or extent of a direct access or
diskette device) may not be used concurrently by programs being executed
in different partitions. The exceptions to this are:

« The device or extents assigned to the system logical units SYSRES,
SYSREC, SYSLOG, SYSVIS, and SYSCAT. These devices (extents) are
considered to belong to the system as a whole, rather than to individual
partitions. (A brief description of these system logical units is contained
in the section Symbolic I/O Assignment in Chapter 5: Controlling
Jobs.)

« Private libraries which may be shared for read-only operations (for
more information refer to Using Private Libraries in chapter 7. Using
the Libraries.

e A file on a direct access device can be accessed across partitions,
providing it is not being created simultaneously by programs in more
than one partition (see Track Hold Option in Chapter 3: Planning
the System for information on protection when updating a file
concurrently by separate tasks).

If, for example, you wish to link-edit programs in different partitions
concurrently, different physical devices or extents (except for SYSRES and
SYSLOG) must be assigned for each partition to all logical units used by
the linkage editor program. Figure 1.2 shows how devices may be assigned
in order to link-edit in two partitions concurrently.

Logical Unit F1 Partition BG Partition
SYSIN X181 X'00C’
SYSLST X182 X'00E’
SYSLOG X'01F X01F
SYSLNK X131 X132
SYS001 X131 X132
SYSCLB X130’ -
SYSRES X130’ X130

Figure 1.2. Assigning Different Physical Devices to the Same Logical Units

In this case, the output on SYSLST in F1 is written on a tape. A listing
of this output can be obtained by printing the tape after the job is
completed. If POWER/VS is used, the listing could be automatically
obtained whenever a printer becomes available. (Refer to the section
POWER/VS later in this chapter.)

1.4 DOS/VS System Management Guide

Virtual Storage

Through a combination of System/370 hardware design and programming
support, DOS/VS has an address space, called virtual storage, that can
extend to the maximum allowed by the system’s addressing scheme, which
is 16,777,216 bytes (16M bytes).

Virtual storage consists of two distinct areas; the real and the virtual
address area.

Virtual Storage Real Storage
oK
Real
Address
Area
Virtual
Address Real Storage: storage
Area physically present in
the CPU.

Figure 1.3. Interrelationship of Real and Virtual Storage, Real and Virtual
Address Area

Figure 1.3 shows that the area of virtual storage where the virtual
addresses match the real addresses is called the real address area, and the
area that begins at the end of the real address area and extends to the end
of virtual storage is called the virtual address area. Addresses in this area
have no direct equivalent to addresses in real storage.

How much of the maximum address space (16 M bytes) will be used in
a particular system depends on a number of factors: the size of the
computer’s real storage, the amount of disk storage available, the number of
partitions, their sizes, and the characteristics of the installation’s programs
and operating environment.

Chapter 1: Understanding the System 1.5

Both the real address area and the virtual address area are available for
use when writing your programs, but not both together for a single
program. Some of your programs can be considered to be loaded into the
virtual address area, and others into the real address area. Of course, each
instruction of a program must be in real storage at the moment it is
executed, and so must the data it manipulates. The other instructions and
data of a program loaded into the virtual address area need not be in real
storage at that same moment; they can reside on auxiliary storage until
needed. The file used for this purpose is called the page data set. This
makes it possible to execute programs that are larger than any real
partition, or even real storage.

Some programs can be loaded at IPL time into a special area, called the
shared virtual area (SVA). Those programs can then be executed directly
(without subsequent loading) by any job in any partition, and may be
executed concurrently from more than one partition. The shared virtual area
is located in the virtual address area and, therefore, is represented on the
page data set.

It would be inefficient, however, to bring every instruction and its
associated data into real storage individually. Programs in virtual storage are
manipulated in sections called pages; the size of a page in DOS/VS is 2K
bytes. Real storage is divided into 2K byte sections; these are called page
frames. Page frames accommodate pages of a program during execution.
This is illustrated in Figure 1.4.

The DOS/VS supervisor will occupy the low order page frames, while
the remaining page frames are available for the execution of processing
programs. Those page frames unoccupied by the supervisor and available
for execution of programs in the virtual area, are collectively called the

page pool.

When a program is loaded from the core image library into virtual
storage, all its pages are brought into page frames of the page pool. If there
are not enough page frames available to contain all the pages of a program
being loaded into the virtual address area, the system moves the contents of
some page frames to a disk extent called the page data set. The remaining
pages of the program can then be loaded.

During execution of the program, whenever a required instruction or
some data is not present in real storage, execution is interrupted by a
so-called page fault. The system must then bring the requested page into
real storage.

For programs loaded into the virtual address area, pages can be placed
into any available page frame during execution. Since the system does not
anticipate where in real storage a page will be loaded, the virtual addresses
must be translated into real addresses when required for execution. The
address translation is performed by a combination of the System/370
Dynamic Address Translation (DAT) facility and DOS/VS.

1.6 DOS/VS System Management Guide

Virtual
Address
Area

F3
Program B

F2
Program C

SVA

Real Storage

L {§

Figwre 1.4,

Fowr Programs Being Paged

Assignment of page frames is done by the supervisor which works
toward keeping the most frequently-used pages of each program in real
storage.

Any or all of the four programs being paged may also concurrently
use phascs in the shared virtual area (SVA).

Chapter 1: Understanding the System 1.7

Real and Virtual Partitions

The Shared Virtual Area

During system generation, the number of partitions (from one to five) is
defined for the system. A certain amount of address space must be
associated with (allocated to) each partition. Each partition in which a
program is to be loaded for execution is required to have address space in
the virtual address area; this space is called a virtual partition. Each
partition may also have address space in the real address area; this space is
called a real partition. Because the job control program (which is necessary
to start the execution of each problem program) requires a virtual partition
for its execution, a real partition always has a corresponding virtual
partition.

Figure 1.5 assumes that all five partitions have been defined in the
system. On the left is a system without real partitions; on the right is a
system with real partitions. It is unlikely that you will have allocated all five
real partitions, but they are illustrated here to show their relative position in
storage.

In multiprogramming systems, a system directory list (SDL) and certain
frequently used programs can be loaded into the shared virtual area (SVA),
which is located in the highest address space in the virtual address area.
Such programs (or parts of programs), which are relocatable and
reenterable, are available for concurrent use by programs running in virtual
or real mode. Programs in the SVA are always executed in virtual mode in

the page pool.

Executing Programs in Real and in Virtual Mode

Programs can be executed in two modes:

e Virtual Mode: the program’s addresses refer to addresses in the virtual
address area, and the program executes in the page pool; the precise
location a page occupies is not known until it is needed for execution.
Paging can take place.

e Real Mode: the program’s addresses refer to addresses in the real
address area and the program executes in a contiguous, defined block
of real storage: the real partition. No paging takes place.

For either mode, sufficient address space must be allocated to the partition
to accommodate the program to be executed. Sufficient page frames must
be available in the main page pool to execute programs from the shared
virtual area.

Under DOS/VS certain programs - such as those with critical time
dependencies - may have to run in real mode. The DOS/VS supervisor also
always runs in real mode.

1.8 DOS/VS System Management Guide

Virtual Storage Real Storage Virtual Storage Real Storage

Supervisor Supervisor Supervisor Supervisor
being
BG-R used
by
Real 22 real
Address F3R mode
Area F2-R programs
F1-R
BG-V BG-V
not being used, because
F4-v F4-v corresponding real
partitions are used
Virtual
Address F3-v . F3-v
Area bgmg used by
virtual mode
< programs
F2.v F2-v
F1-v F1-v
<¢——— being used by
relocatable reenterable
SVA '
SVA programs
\

Figwre 1.5. A System With and Without Real Partitions

I In both systems the heavily shaded parts of real storage are not allocated
to any particular partition. These parts are called the main page pool,

which (in the system on the right) is augmented by the address space of
I the real partitions that are not being used (lightly shaded), to form the

page pool.
When a real partition is being used, the address space in the
corresponding virtual partition cannot be used.

Programs in the shared virtual area (SVA) can be shared
concurrently by programs running in either virtual or real mode. The
programs from the SVA are executed in the page pool.

Real partitions are used not only for programs running in real mode,
but also for programs running in virtual mode that fix a set of instructions
or data (using the PFIX macro, which is discussed in more detail under
Fixing Pages in Real Storage in the section Tailoring the Supervisor in
Chapter 3). Such pages of a virtual-mode program are fixed in page frames
of the real partition that corresponds with the virtual partition in which the
program is running.

Chapter 1: Understanding the System 1.9

Page Pool

As shown in Figure 1.5, the real storage not allocated to any real partition

(or occupied by the supervisor) is always available for paging activities. It

forms the main page pool. Other page frames may also belong to the page

pool:

+ When not occupied by a program running in real mode, the area
allocated to a real partition is available to virtual-mode programs.

« When a program running in real mode does not require the entire real
partition, the unused part of the real partition may be made available to
the page pool by specifying the required amount of storage in the SIZE
operand of the EXEC job control statement for the real-mode program.

Advantages of Virtual Storage

Multitasking

In summary, executing programs in virtual storage has two main advantages:

o It allows execution of programs that are larger than the available real
partition, or even larger than real storage.

o The real storage available is better utilized: programs running in a
virtual partition are not confined to a particular area of real storage, but
may use all available page frames.

Partition and system performance requirements should be considered as you
relate these advantages to your particular installation.

At the beginning of this chapter, we defined multiprogramming as the
ability to execute more than one program concurrently in separate partitions
within a single computer system. Multitasking can be regarded as an
extension of multiprogramming in that it provides the ability to execute
more than one program concurrently in a single partition. In simple terms,
therefore, multitasking can be regarded as multiprogramming within a
partition.

Multitasking presupposes the existence of the multiprogramming
facilities in the supervisor (in particular, the task selection routines).
Multitasking is, therefore, possible only in a multiple-partition environment.
As a supervisor generation option, multitasking is described in the section
Tailoring the Supervisor in Chapter 3: Planning the System.

Some installations using former versions of DOS, employed multitasking
to run more than three programs in a three-partition system. The additional
two partitions that DOS/VS provides may serve the same purpose. You
should note that running programs concurrently in separate partitions
usually requires less preparation than running programs concurrently in the
same partition.

1.10 DOS/VS System Management Guide

Two Types of Multitasking

Programs (or parts of a program) that are executed concurrently in a given
partition are called tasks. A distinction is drawn between the main task in a
partition and one or more subtasks in the same partition. The main task is
that program (or program part) initiated by job control. The subtasks are
those programs (or program parts) initiated by the main task through the
use of the ATTACH macro instruction. To use the multitasking facilities of
DOS/ VS it is necessary to code the main task in the assembler language.

The subtasks executed in a given partition may be: (1) logically
independent, or (2) logically dependent.

In the first case, the main task monitors the execution of the subtasks,
treating them as independent programs. Such subtasks may be coded in any
programming language. This type of multitasking is sometimes called multi-
programming within a partition. It is a suitable technique, for example, by
which to execute more than five programs concurrently.

In the second case, both the main task and the subtasks are program
routines that are logically part of the same program. Thus, the tasks can
communicate with one another. In this case the subtasks are likely to be
coded in assembler language to allow the use of the task intercommuni-
cation macros. They can share code (in particular, an access method or
subroutines), provided that it is of a read-only nature (that is, that the code
or subroutines are not modified during execution). This technique is
complex and can best be understood after studying the first type of
multitasking.

Cross-Partition Event Control

Certain applications may have a need for communication between programs
executing in separate partitions. Some programs, for example, may perform
complex operations on common data files. For relatively simple files,
accidental data destruction resulting from concurrent access can be
prevented by invoking supervisor services. (See Track Hold Option in
Chapter 3: Planning the System.) Data files with complex interrelations,
however, may require actual communication between the programs
accessing those files.

One way of establishing communication between such programs is
through multitasking within a partition, with a main task monitoring and
controlling the communication. A second way is by cross-partition event
control. Through cross-partition event control macros, one partition can
delay the execution of part of a program until another partition signals the
completion of a critical event. This allows synchronized multiprogramming
in separate partitions --thus protecting programs against inadvertent
destruction of each other-- while at the same time provides for any
necessary communication between them.

Chapter 1: Understanding the System 1.11

POWER/VS

There is always a large discrepancy between the speed of the CPU and the
speeds of card or diskette readers, card punches, and printers. This
discrepancy causes these devices to have an unfavorable effect on the
overall duration of jobs. Spooling (Simultaneous Peripheral Operations On
Line) increases total system thruput in two ways. First, program
dependency on mechanical 1/0O devices is reduced by the use of faster disk
devices as intermediate storage. Secondly, the output of programs is
actually printed/punched in a separate partition allowing for execution of
additional programs in the non-spooling partition(s). This overlap of
printing/punching with program execution more effectively utilizes CPU
time.

The POWER/VS program performs spooling of unit record data in
DOS/VS. All card or diskette job streams are read and stored on disk by
POWER/VS before programs are scheduled for execution. Any attempt by
a program to read from a unit record device during program execution is
intercepted by POWER/VS which then satisfies the request with the data
on intermediate storage. Similarly, card and printer output is intercepted for
storage on disk, and scheduled for punching or printing in the POWER/VS
partition.

Implementation of POWER/VS

POWER/VS is a program that provides spooling services for up to four
partitions. It resides in a virtual partition with a priority higher than that of
the partitions it controls. Although POWER/VS runs in virtual mode, it
supports programs running in real or virtual mode.

Figure 1.6 shows the data flow through POWER/VS. The paragraphs
that follow discuss the steps depicted in Figure 1.6.

1.12 DOS/VS System Management Guide

DISKETTE

O

OPERATOR'S CARD
CONSOLE INPUT INPUT
Y |
OPERATOR
COMMUNICATIONS |- — ——— — READER @
TASK TASK
T
|
I
|
|
| INTERME- @
[DIATE
| STORAGE
I
I
I \
| |
I
| EXECUTION
e ———— —»| PROCESSOR @
| TASK
I
|
|
|
I
: INTERME- @
DIATE
| STORAGE
I
I
| /
|
L — 1 wriTER @
TASK
|
LISTED PUNCHED
OUTPUT ouTPUT
Figwe 1.6. POWER/VS Data Flow

Chapter 1: Understanding the System 1.13

Input

Reader Task

Intermediate Storage

Execution Processors

Writer Tasks

Operator Communications Task

POWER/ VS intercepts unit-record jobstreams (1) (card or diskette)
destined for any partition it supports. This input is delimited by the
DOS/VS job control language either alone or in combination with the
POWER/ VS job entry control language (JECL). By adding JECL
statements to the normal DOS/VS job stream, you indicate to POWER/VS
that special handling is required for particular DOS/VS jobs or job steps.

A reader task (2) reads card or diskette input and places it into disk
intermediate storage. Depending on the JECL options selected, execution is
scheduled directly, or must be scheduled by the operator, and will proceed
according to the job’s priority.

By entering a command on the console, the operator can initiate as
many reader tasks as he has physical readers available. Reader tasks may
also be initiated through the Autostart procedure.

Intermediate storage (3) for jobstreams and printer/punch output consists
of the queue file, data file, and (optional) account file. The three files may
be on the same physical unit or on separate units.

There is one execution processor for each partition supported by
POWER/VS. The execution processor is the generic name for the execution
read, execution list, and execution punch tasks. The execution read tasks
are initiated by an operator command at partition start-up. The execution
list and execution punch tasks (collectively called execution writer tasks) are
automatically initiated by the execution read tasks when a write request is
issued by an existing program.

The execution read task (4) retrieves data records from intermediate storage
and presents them to the user partition where they are executed. The
execution writer tasks intercept the output from the user partition and
transfer it to intermediate storage.

The writer tasks (5) print and punch data (6) from intermediate storage.
The operator initiates these tasks by entering a command on the console.
Writer tasks may also be initiated through the Autostart procedure.

The operator communications task (7) handles all the communications
between POWER/VS and the console operator. It is always present and
active in POWER/VS.

1.14 DOS/VS System Management Guide

Some Basic Terminology

Advantages of POWER/VS

The input stream provided by the user to POWER/VS is broken up into a
series of descrete jobs, each with its own identifying name, assigned by the
user, and sequence number, assigned by POWER/VS at the time the job
enters the system.

Each input job is represented by records in direct access storage, which
together make up a read queue entry. List and punch output is similarly
described by groups of records called list queue entries and punch queue
entries, respectively.

A read queue entry is created for each input job read by a reader task
and is retained within the system at least until that job has successfully
completed execution.

A list queue entry is created for each output list segment produced by
an execution list task and is retained within the system until the output it
describes has been completely processed by a list task.

A punch queue entry is created for each output punch segment
produced by an execution punch task and is retained within the system until
the output it describes has been completely processed by a punch task.

A summary of POWER/VS control information is maintained in a
master record. The master record is the first record of the POWER/VS
queue file, and provides the system with a warm start capability.

Depending on the workload, POWER/VS may increase system throughput
in the following ways:

« Since writer tasks are essentially disk-to-print and disk-to-punch
utilities, the determining factor in print and punch output is the speed
of the output devices. This feature increases device utilization since all
the output is already available in queues when printing or punching
starts, and devices do not wait for process-bound operations during job
execution. Because the CPU dependency on unit record equipment is
removed, all 1/0 for batch partitions is performed at disk or tape
speed.

« POWER/VS requires less 1/0 equipment than basic multiprogramming.
For example, one card reader, punch, printer and disk drive can
perform all the 1/0 operations required for four partitions running
under POWER/VS. Basic multiprogramming requires one card reader,
one punch, and one printer per partition; cardless systems require a
diskette device and a printer per partition.

« Since reader and writer tasks may be initiated by the operator and are
not necessary for partition operation, a fail soft condition exists. For
example, if the printer becomes unavailable, job stream execution can
continue with the print-output data being collected in the print queue.
When the printer becomes available, the operator can start a print

Chapter 1: Understanding the System 1.15

writer task and printing commences for all jobs in the print queue
without loss of output or CPU time.

POWER/VS Remote Job Entry (POWER/VS RJE)

Input at the Terminal

Output at the Terminal

POWER/VS RIJE offers an efficient and convenient method of submitting
jobs via a remote terminal. Terminals are usually separated from the central
system by a distance sufficient to require leased or dialed up lines to
accomplish communications, but the system may also include terminals
attached to the system by local lines. Regardless of location, however, all
supported terminals are classified as remote.

The POWER/VS RIJE tasks interface with the input and output queues
in the same manner as local reader and writer routines. As a result, the
execution processors handle remotely submitted jobs in the same way as
locally submitted jobs.

After a job has been executed, its output may be returned to any
terminal or to the central installation. Routing specified during system
generation may be overridden by the terminal user or by the central
operator.

After the SIGNON procedure at the terminal, which can only be done after
the line is started at the central system, jobs may be submitted from the
terminal.

Additional JECL parameters allow you to direct output of the job entry
to a remote terminal or to a local unit record device. The terminal
commands, which are necessary to control the RJE terminal operation, are
also entered from the reader at the terminal. A detailed description of the
terminal commands is given in DOS/VS Operating Procedures.

The ability to accept input automatically from remote terminals greatly
increases the need for strong system discipline. For example, if a remote
job requiring data files at the central installation is to be submitted, the
volumes containing the data files should be available for prompt mounting;
and if a remote job needs to use tape units in a particular partition, these
units should not already be assigned to another partition. Otherwise, the
system flow can be upset or even interrupted.

Two kinds of output are received at the terminal: job output and messages.
Job output at the terminal allows a number of options which are specified
in JECL statements and terminal commands:

« The output may be directed to another terminal.
« Input and output can utilize different terminals.

« The output is held at the central station until the terminal user requests
it.

1.16 DOS/VS System Management Guide

e Output may be directed to unit record devices at the central
installation.

« The remote user has a page restart capability that provides forward or
backward page spacing for a printed job allowing the user to print or
skip selected portions of a job.

Examples of JECL statements are given in the section Using POWER/VS
Statements and Commands in Chapter 8: Using POWER/VS.

Messages

Messages received at a terminal include responses to input from the
terminal, diagnostic messages, and broadcast messages. These messages
appear on the printer between job output.

Messages destined for all users are only displayed on request. They
appear at the terminal as response to a DISPLAY command. Detailed
specifications for messages are given in DOS/VS Messages.

Chapter 1: Understanding the System 1.17

Chapter 2: Summary of DOS/VS Features

Standard Features of DOS/VS

These features are automatically included during system generation:

Support for one virtual storage of user-specified size (up to 16M
bytes).

Batched-job mode of job initiation in a single-partition environment.
Execution of programs in real mode and virtual mode.

Symbolic I/0 device assignment.

Cataloged procedures.

Storage protection.

SAM, DAM, and ISAM.

Command chaining for I/O retry operations.

Tape error statistics.

Selector channel support.

Display operator console support (for Models 115 and 125: Video
Display Keyboard Console).

Machine check analysis and recording (MCAR), channel check handler
(CCH), and recovery management support recorder routines (RMSR).

OLTEP (optional on Models 115 and 125; can be omitted for other
models).

Job control.

Linkage editor.

Librarian.

Assembiler.

System utilities (including Disk Volume Fast Copy).
System debugging aids (SDAIDS).

Relocating loader

Optional Features of DOS/VS

These features must be requested during system generation or added after
the generation has been performed:

Multiprogramming (from two to five partitions, with standard BJF
scheduling).

Specification of partition dispatching priority.
Multitasking (up to a maximum of 15 tasks).
POWER/VS.

Teleprocessing support (BTAM, QTAM, and VTAM).
VSAM.

Chapter 2: Summary of DOS/VS Features 2.1

¢ Wait multiple support.
o Cross-partition event control support.
« Magnetic ink character reader and optical character reader support.
o Page fault handling overlap.
o Support for PFIX/PFREE macros.
o Support for GETVIS/FREEVIS macros.
« Support for RELPAG/PAGEIN/FCEPGOUT macros.
« Integrated emulators.
« Time-of-day clock support.
e Multiple timer support.
e Job accounting interface.
o Private core image libraries.
« External interruptions.
« Abnormal termination exit.
« Console buffering.
e Track hold.
« DASD file protection.
« Rotational Position Sensing (RPS).
e Seek separation.
e Channel switching for magnetic tapes.
« Burst mode operation on the byte multiplexer channel.
« Error volume analysis for magnetic tapes.
« Reliability data extractor.
¢ Problem determination aids (PDAIDS).
« ASCII support for tapes.
« System input and system output files on disk (SYSFIL option).
« Independent directory read-in area.
| « Task timer support

DOS/VS in Various CPUs

This section shows, by way of a series of examples, how real and virtual
storage could typically be employed by DOS/VS running in CPUs with
different amounts of real storage. The real storage requirements of the
supervisors and of the main DOS/VS features are indicated, as are the
types of jobs that are processed in the partitions. In each of the examples,
the real storage available to the main page pool can be obtained by
subtracting the amount of real storage allocated to the supervisor and the
real partitions from the CPU size. In all cases, the figures given are
approximations.

All systems have an SVA that contains a system directory list.
However, the illustrations do not explicitly show the SVA unless it must be
larger than the minimum size, as for example for RPS or VSAM.

2.2 DOS/VS System Management Guide

96K CPU

Storage (K bytes)
Real Virtual
Supervisor 40
BG 10 64
F3 0 64
F2 0 64
F1 24 156
74

Notes:

« Batch processing operation.

« One "hot" partition for urgent, unscheduled jobs.

« POWER/VS in F1

The system described above might be typical of a DOS/VS user who

formerly operated a Model 20 with programs that did not require large
amounts of storage.

144K CPU
Storage (K bytes)
Real Virtual
Supervisor 42
BG 0 600
F3 0 256
F2 0 256
F1 24 156
SVA 302
66
Notes:

« POWER/VS in F1
« VSAM and Access Method Services in BG
¢ VSAM and SDL in SVA

Chapter 2: Summary of DOS/VS Features 2.3

192K CPU

Storage (K bytes)
Real Virtual
Supervisor 52
BG 0 600
F4 0 192
F3 0 192
F2 26 158
F1 50 192
SVA 302
128

Notes:
« POWER/VS in F2

+ CICS/VS (an IBM program product, Customer Information Control
System/Virtual Storage) in F1

e VSAM and SDL in SVA
¢ VSAM and Access Method Services in BG

240K CPU
Storage (K bytes)
DAYTIME
Real Virtual
Supervisor 58
BG 30 288
F3 0 288
F2 30 170
F1 60 672
178
Notes:

e One partition (BG) for compiling/testing
« one production partition F3

« POWER/VS in F2

« CICS/VS in F1

Storage (K bytes)
NIGHTTIME
Real Virtual
Supervisor 58
BG 50 608
F3 0 288
F2 0 288
F1 30 170
138

Notes:
e One batch partition (using PFIX/PFREE macros) in BG
« POWER/VS in F1

I « Two batch partitions (not using PFIX/PFREE macros) in F2 and F3

2.4 DOS/VS System Management Guide

384K CPU

Storage (K bytes)
DAYTIME
Real Virtual
Supervisor 54
BG 14 722
F3 28 228
F2 48 176
F1 66 228
SVA 100
210

Notes:

« CICS/VSin F1

« POWER/VS RJE in F2
 Two batch partitions

¢« RPS code in SVA

Storage (K bytes)
NIGHTTIME
Real Virtual
Supervisor 54
BG 36 600
F4 36 228
F3 36 228
F2 36 164
F1 72 512
SVA 402
270

Notes:

« CICS/VSin F1

« POWER/VS in F2

e Access Method Services in BG
« Three batch partitions

e VSAM and RPS code in SVA

Chapter 2: Summary of DOS/VS Features 2.5

Chapter 3: Planning the System

The IBM-shipped DOS/VS includes a number of supervisors, in the core
image library, from which one or more can be selected to form the base for
the system to be generated. Each of the supervisors provides a specific
range of functions. Should the functions of the supervisor(s) not be in
agreement with the system functions planned, the system programmer can
tailor the supervisors to include the desired functions.

The assembler language source for the provided supervisors is contained
in the source statemetn library (sublibrary A) and can be displayed by using
the job stream given under System Generation Example (on-line) in
DOS/VS System Generation.

After a brief description of the system generation procedure in general,
this chapter describes in greater detail the three major considerations during
system generation, namely:

« Tailoring the supervisor (adding functions to those of the basic
supervisor)

« Generating POWER/VS, if POWER/VS as distributed in the core
image library is not suitable to installation requirements.

« Planning the libraries (planning the contents, the location and size of
the libraries).

Because of the nature of this information, this chapter primarily addresses
system programmers, who are responsible for planning the system. The two
sections, Tailoring the Supervisor and Generating POWER/VS, however,
may be of interest to all DOS/VS users who wish to become more
acquainted with these components of the system.

System Generation Procedure

Proper and detailed planning is essential to efficient system generation and
minimizes the need to modify the system after it is generated. You may
want to contact your IBM marketing representative to set up a system
generation planning meeting. IBM field engineering would also attend the
meeting to discuss the procedure to install the SCP (systems control
programming). Generating a system includes:

o Planning the options and estimating the approximate size of the
supervisor. This entails selecting from the programming services
provided by IBM, those options you wish to include in the supervisor,
and estimating the cost of these services in terms of bytes of storage.

« Planning the contents, organization, and size of the system and
(optionally) private libraries. This entails distributing the storage space
available (on the disk packs) between the libraries desired for
day-to-day use. The major points you must consider are:

a. the size of the system core image library and, other system and
private libraries

Chapter 3: Planning the System 3.1

b. workfile space needed to assemble the supervisor and to link-edit
and catalog the components selected to the system core image
library

c. standard assignments for workfiles needed for everyday operation.

You work with the IBM-supplied distribution medium, which is composed
of four libraries:

The system procedure library initially contains procedures useful for
generating DOS/ VS, linking and deleting DOS/VS component, and loading
the SVA with SDL entries and recommended phases.

The system source statement library contains macro definitions for
various system components and services. Included are macro definitions
(sublibrary E) from which you choose desired parameters in order to
assemble your new supervisor. For your convenience, the source statement
library also contains sample programs (sublibrary Z), system history model
macros (sublibrary Y), and sample supervisors; they are illustrated in
DOS/VS System Generation.

The system relocatable library contains assembled IBM programs and
assembled macros from the source statement library. For example, logical
IOCS, which performs input and output operations for IBM programs and
your programs.

The system core image library contains all programs that are ready for
execution.

The specific contents of these libraries vary from release to release and
are identified in the Program Directory, which accompanies the system
distribution medium.

Using the elements of these libraries, you

« Generate the supervisor by coding a set of supervisor generation
macros, which define the system configuration and the services you
wish the supervisor to contain. (These are described in detail in the
section Tailoring the Supervisor which follows.)

+ Generate POWER/VS, if desired, by coding a set of POWER/VS
generation macros, which define its configuration and optional services.
(These are described in detail in the section Generating POWER/VS.)

o Delete from the libraries any components you do not require and then
condense to free library space.

« Assemble (or compile) and/or link-edit programs - both your own and
IBM’s - and catalog them into the appropriate libraries.

After determining what elements are to be contained in the system libraries,
you may wish to retain additional elements in private libraries and therefore
you may want to create private core image, relocatable, or source statement
libraries. These choices are discussed in the section Planning the Libraries.

The system libraries, together with certain system work areas, constitute
the system residence file (SYSRES), which is one extent of a direct access
storage volume. The SYSRES file is described in Appendix A: System
Layout on Disk.

3.2 DOS/VS System Management Guide

After establishing your SYSRES file, you should copy it onto tape or
disk for backup purposes. The utility programs Backup/Restore DOS/VS
System and Fast Copy Disk Volume, which are provided for this purpose,
are described in DOS/VS System Utilities.

For complete details on how to perform a system generation procedure
refer to DOS/VS System Generation.

Tailoring the Supervisor

This section describes the optional and required parameters that you select
for the generation of the supervisor. The parameters are included in the
following supervisor generation macros:

ALLOC IOTAB
ALLOCR PIOCS
ASSGN SEND
CONFG STDIC
DPD SUPVR
DVCGEN VSTAB
FOPT

The parameters of these macros are discussed in a topical sequence, such
that related options are presented together regardless of the macros in
which they are contained. For the exact formats of these macros, refer to
DOS/VS System Generation.

This section discusses the advantages or necessity of specifying the
support for the various features in the supervisor.

In tailoring your supervisor to the requirements of your installation, you
can take into consideration future plans to add hardware (main storage, I/O
devices, and so on) or other functions that require supervisor options by
including their requirements in your supervisor generation macros. This will
allow you to upgrade your installation without having to regenerate your
supervisor. You may also want to include in the libraries modules or
components that will be required by planned future configuration or
functional upgrades. The storage cost of additional supervisor options may
be estimated by consulting the supervisor storage requirements in Module 1
of DOS/VS System Generation.

Storage Management Options

This section describes those supervisor options that relate to virtual and real
storage. These include defining:

e The size of virtual storage (virtual address area, real address area,
and the shared virtual area)

« The number and size of partitions, and their priorities

« The page data set (SYSVIS)

« The ability to fix pages in real storage

o The virtual storage access method (VSAM)

Chapter 3: Planning the System 3.3

Defining the Size of Virtual Storage

The size of virtual storage must be defined. Virtual storage is composed of
the virtual address area and the real address area, and the size of each must
be separately specified. You specify the size of the virtual and real address
areas in the VSIZE and RSIZE operands of the VSTAB macro.

Defining the Size of the Real Address Area. Normally, you select a value for
RSIZE that coincides with the amount of real storage in your CPU model.
If, however, you anticipate that your system may also be used on a CPU
with larger real storage, you should select the value for RSIZE- such that the
end of your real address area coincides with the end of real storage of the
larger CPU. Otherwise, some real storage remains unused when using the
larger CPU. This is illustrated in Figure 3.1. Specifying a value for RSIZE
that is larger than the size of your current real storage, (see Figure 3.2)
causes the start address of the virtual address area to be higher than the
end address of real storage. Nevertheless, none of the virtual address area
or real storage of the smaller CPU will remain unused.

Defining the Size of the Virtual Address Area. The value you specify for
VSIZE is equal to the sum of the sizes of the virtual partitions and the size
of the shared virtual area. Therefore, you must know these sizes before you
can specify VSIZE. For selecting the size of the individual partitions, see
Defining the Size of Virtual Partitions, later in this section. For selecting
the size of the shared virtual area, see Defining the Size of the Shared
Virtual Area.

The value specified for VSIZE cannot be changed without a new
supervisor generation.

The maximum size of virtual storage is 16M (16,777,216) bytes.
Because the real address area is part of virtual storage, the maximum value
you can specify for VSIZE is 16M minus the size of the real address area
(RSIZE).

In a single-partition system, the value you specify for VSIZE must be
equal to or greater than 64K bytes (the minimum virtual background
partition).

The value you specify for VSIZE is used by the system to determine
the size of the page data set. Refer to Defining the Page Data Set later
in this section.

Defining the Size of the Shared Virtual Area. The shared virtual area (SVA)
can contain any program that is reenterable and relocatable. Such programs
can be used concurrently by more than one partition. Having phases
resident in the SVA avoids frequent fetches; the phases can be loaded into
the SVA at IPL time or at the time they are cataloged into the system core
image library.

As illustrated in Figure 3.3, the SVA is located in the high address
space of the virtual address area. The SVA contains a system directory list
(SDL), which provides fast retrieval of frequently used phases that are
resident in the SVA or in the system core image library. Having SDL
entries avoids searching multiple tracks of the core image directory for each
FETCH or LOAD request. The SDL and the SVA always reflect the

3.4 DOS/VS System Management Guide

Real Used
> Address RSIZE Real
Area Storage

Virtual D, Real
Storage Storage

Virtual
Address
Area

L&\W

Figure 3.1. Insufficient Specification of RSIZE

Addressable Real
part of the [Storage
real address
area
r RSIZE
Virtual J
Storage ——— -

on-address-

Virtual
Address
Area

Figure 3.2. Specification of RSIZE Larger Than the Size of Real Storage

current status of the equivalent information in the system core image
directory and library. In other words, the SVA will be updated when an
SV A-eligible program is cataloged into the core image library.

Chapter 3: Planning the System 3.5

r ~
SUPERVISOR
PRSIZE
S
Virtual {
Storage
gVSIZE
| SYSTEM DIRECTORY LIST__
RESIDENT, REENTERABLE SVA
RELOCATABLE PHASES
SYSTEM GETVIS AREA)
~

Figure 3.3. Location of the Shared Virtual Area

Note that the VSIZE specification includes the SVA specification.

l You specify the size of the shared virtual area and the system GETVIS
area in the SVA parameter of the VSTAB macro. If the supervisor supports
RPS (rotational position sensing), 100K bytes are required for it in the
SVA. Either all or part of the RPS code will be loaded into the system
GETVIS area (a part of the SVA). If RPS is not preloaded at IPL time,
then 100K is required in the system GETVIS area. If RPS is preloaded,
then 12K is required in the system GETVIS area and 88K must be
available for RPS in the SVA.

If your programs will process VSAM files, VSAM phases should be
loaded into the SVA. If the IBM distributed VSAMSVA procedure is used
to load VSAM phases (along with other recommended SVA eligible IBM
phases) into the SVA, approximately 302K is needed in the SVA.

The SVA must be large enough to accommodate the system directory
list and the programs loaded there, but it cannot be smaller than 64K. The
size of the SVA that you specify during supervisor generation can be
overridden by issuing SET SVA immediately after IPL. This command is
discussed in the section Building the SDL and Loading the SVA in
Chapter 4: Starting the System.

3.6 DOS/VS System Management Guide

Defining the Number of Partitions

Defining the Size of Partitions

In the NPARTS parameter of the SUPVR macro you define the maximum
number of partitions for your system.

In selecting the appropriate number of partitions for your particular
installation, you should consider the type of processing you require. For
example, assume you want to run concurrently the following types of
programs:

« Test cases (assemble/compile, link-edit, and execute)
« Daily application programs
« POWER/VS

« Teleprocessing application program.

For this case, you should generate a system with four to five partitions,
depending on the volume of application program processing. If your system
includes VTAM, at least two partitions must be specified: one for VTAM
and one for VTAM application programs.

For examples of typical partition usage, refer to DOS/VS in various
CPUs in chapter 2.

Because you cannot alter the NPARTS specification unless you
regenerate the supervisor, it may be adyantageous to specify more partitions
than you see an immediate need for.

Note: For VTAM and QTAM at least two partitions must be specified.

If you generate a multiple-partition system, you may explicitly define the
size of each partition (except the virtual background partition). In a
single-partition system the size of the virtual partition is implied by the
specification of the VSIZE parameter, and the size of the real partition is
implied by the specification of the RSIZE parameter minus the supervisor
size.

The size of a partition is defined by specifying the amount of storage
you wish to allocate to it. The ALLOC macro is used to allocate storage to
virtual partitions; the ALLOCR macro is used to allocate storage to real
partitions. Specification of ALLOC and ALLOCR macros during
supervisor generation is optional since operator commands to allocate real
and virtual storage are provided in DOS/VS. The size of both virtual and
real partitions is specified as a multiple of 2K bytes.

Defining the Size of Virtual Partitions. Only the size of the virtual
foreground partitions is explicitly defined (via the ALLOC macro). The
virtual address area not allocated to any of the virtual foreground partitions
and not allocated to the SVA is automatically allocated to the virtual
background partition. At least 64K bytes must be left for the virtual
background partition.

Chapter 3: Planning the System 3.7

The size of an active virtual foreground partition must be at least 64K
bytes. If a virtual foreground partition is defined but need not be used for a
while (see Defining the Number of Partitions above), its size can be set
to OK, either by the ALLOC macro during system generation, or by the
ALLOC command during actual operation. When using RPS, leave
approximately 6K available for the partition GETVIS area, required by RPS
for control blocks.

You specify the size of each virtual foreground partition by means of
the ALLOC macro. The system then calculates the difference between the
VSIZE specified minus the SVA value and the ALLOC value to determine
the size of the virtual background partition. If this difference is less than
64K or if you omit the ALLOC macro during supervisor generation, all of
virtual storage except the shared virtual area is allocated to the virtual
background partition and the size of each virtual foreground partition
defined in NPARTS is set to zero.

During certain periods of processing, the operator can modify the size
of the individual virtual partitions by using the ALLOC command. Details
on the ALLOC command are given in DOS/VS Operating Procedures.

Defining the Size of Real Partitions. Potentially, for each virtual partition
defined in the system a corresponding real partition can be allocated. A real
partition consists of a contiguous set of addresses in the real address area.

Real partitions need only be allocated to enable the following:

o Program execution in real mode
+ Use of the PFIX/PFREE macros.

When a real partition is used for running a real mode program, or for fixing
pages of a virtual mode program, (for example, POWER/VS), the page
pool is reduced by the number of page frames required.

Because reducing the page pool in turn may reduce total system
throughput, the use of real partitions should be carefully considered. When
a program is running in real mode, the real storage allocated to its partition
is taken from the page pool.

For each of the above cases, the virtual partition that corresponds to
the real partition must be allocated (64K bytes minimum). This is because
the initiation of either virtual-mode or real-mode programs is performed by
the job control program, which itself runs in virtual mode. Thus, for
example, the virtual F1 partition must be allocated at least 64K bytes if the
real F1 partition is to be used.

When a program running in virtual mode issues a PFIX macro, the
pages are fixed within the corresponding real partition. This ensures that
other real partitions are available for other programs that run in real mode
or that fix pages in real storage.

To allocate a real partition, specify the partition identifier and its size in
the ALLOCR macro. Each real partition you require must be specified
explicitly. Note, however, that ALLOCR must not be specified for a
single-partition system, because all available real storage is permanently
allocated to the background real partition.

3.8 DOS/VS System Management Guide

Defining Partition Priorities

A real partition may be as small as 2K bytes: the size of a given real
partition is determined either by the largest program you must run in real
mode, or by the maximum number of pages a virtual-mode program may fix.

The allocation of real partitions cannot exceed the size of the real
address area (specified in the RSIZE parameter) minus the supervisor area.

In addition, the main page pool size must be taken into account and
may be determined from the table below. The sizes shown are minimums.
Also not reflected is the additional storage available to the page pool, as
described in the section Page Pool in chapter 1.

Size of smallest PFIX=NO PFIX=YES or SVA | AP=YES
real partition phases used (Note 2)
18K or less 18K minus size of 18K +2K
(including OK) smallest real

partition (Note 1)

larger than 18K oK 18K +2K
(Note 1)

Note 1. If the SDL is active, the main page pool must be at least 4K.

Note 2. An additional 2K bytes must be added to the main page pool size if
multitasking (AP = YES) is specified.

The system ensures (for single as well as multipartition systems) that this minimum, in
which pages cannot be fixed, remains.

The supervisor indicates, by means of return codes in register 15, whether
or not a PFIX macro has been executed successfully. For an example of the
use of PFIX and PFREE macros and the supervisor return codes, refer to
the section Fixing Pages in Real Storage.

A priority is associated with each partition in a multiprogramming system. If
you do not specify priorities during system generation, the supervisor will
establish default priorities. These default priorities (from low to high) are
shown in Figure 3.4.

NPARTS=2 | PRTY=(BG,F1)
NPARTS=3 | PRTY=(BG,F2,F1)
NPARTS=4 | PRTY=(BG,F3,F2,F1)

NPARTS=5 | PRTY=(BG,F4,F3 F2,F1)

Figure 3.4. Default Partition Priorities

In most cases, there will be no need to select another priority sequence;
however, the PRTY parameter in the FOPT macro is provided for this
purpose. In the PRTY parameter you can specify the partition identifiers in
any desired sequence, and thus select another priority sequence.

The operator can display and modify the priorities established during
supervisor generation at any time during processing with the PRTY
command. He may want to do this in order to accelerate the execution of a
given job.

Chapter 3: Planning the System 3.9

Defining the Page Data Set

Fixing Pages in Real Storage

The page data set, a sequentially organized set of records on a direct access
device, is required in DOS/VS to accommodate pages of programs that are
being executed in virtual mode that have been paged out. There are as
many 2K records on the page data set as there are 2K pages in the virtual
address area. The size of the page data set, therefore, depends on the size
of the virtual address area.

The page data set can reside on any disk device that is supported by
DOS/VS as a system residence device.

You can define the page data set in the DPD macro, in which you can
specify the channel and unit number of the device and the lower limit
address of the extent. The upper limit address is calculated by the system
according to the VSIZE parameter specified in the VSTAB macro. If you
correctly specify the DPD macro, an MNOTE is issued in the supervisor
assembly listing that indicates the required number of tracks for all different
types of devices supported as a page data set.

You may also specify a volume serial number, which will be checked
when the page data set is opened.

If you omit the DPD macro, or some of its parameters, during
supervisor generation, or the information you specify is erroneous, you must
define the page data set during IPL via the DPD command. (This command
is discussed in the section Initiating Page Data Set Handling in Chapter
4: Starting the System.) The information specified in the DPD command
overrides the information supplied during supervisor generation until the
next IPL.

A program that runs in virtual mode is executed in page frames of the page
pool. When a page frame is required by a virtual-mode program and all are
currently occupied, one of the occupied page frames will be freed, if
necessary by paging its contents out onto the page data set.

Some programs that run in virtual mode contain code (such as I/O
appendages) that must be in real storage when needed and therefore cannot
tolerate paging. The pages containing such code can be fixed temporarily
via the PFIX macro instruction, and freed immediately after use via the
PFREE macro instruction. POWER/VS is an example of an IBM-supplied
program that uses PFIX/PFREE macros.

When pages of a program running in a given virtual partition are fixed
in response to the PFIX macro, they are fixed in the corresponding real
partition. Therefore, the use of the PFIX macro requires that a real
partition be allocated sufficient storage to accommodate the pages to be
fixed at any given time. If a PFIX macro is issued when a real partition is
not allocated enough storage, the pages are not fixed, and a completion
code indicating this is returned to the program.

3.10 DOS/VS System Management Guide

Improving the Paging Mechanism

Virtual Storage Access Method

If you anticipate the need for the PFIX/PFREE macro instructions in
any of your virtual-mode programs, specify PFIX=YES in the FOPT macro
during supervisor generation.

Fixing pages in real storage means that in a multiprogramming
environment fewer page frames are available to other programs running in
virtual mode, potentially degrading total system performance. Consider this
effect carefully before enabling the use of the PFIX macro. Examples of
the use of the PFIX/PFREE macros are provided in Chapter 9: Designing
Programs for Virtual-Mode Execution.

The page handling of virtual mode programs is controlled by the page
management routines of the supcrvisor. You can, however, influence the
paging mechanism in order to reduce the number of page faults, to
minimize the page 1/0 activity, and to control the page traffic within a
specific partition. You can do this by means of three macros: RELPAG,
FCEPGOUT, and PAGEIN.

RELPAG (Release Page). With this macro you inform the page
management routines that the contents of one or more pages is no longer
required and need not be saved on the page data set when the page frames
occupied by these pages are claimed for use by other pages. This saves
unnecessary page 1/0.

FCEPGOUT (Force Page-out). With this macro you inform the page
management routines that one or more pages will not be needed until a
later stage of processing, and that they should be given highest page-out
priority. This prevents page-out of other pages which might be needed again
immediately after being written out.

PAGEIN. With this macro you request one or more pages to be paged in in
advance, so that page faults can be avoided when the specified pages are
needed in real storage. If the specified pages are already in real storage
when the macro is issued, they are given lowest priority for page-out.

If you anticipate the use of one or more of the above macros in any of
your virtual mode programs, specify PAGEIN=n in the SUPVR macro
during supervisor generation. This will generate support for the three
macros. The value of n must be 1 or greater. It specifies the number of
page-in requests that can be queued if more than one PAGEIN macro is
issued concurrently in the system.

The virtual storage access method (VSAM) can be used for direct or
sequential processing of fixed and variable-length records (including
spanned records) on direct access storage devices. A significant feature of
VSAM is data portability. VSAM files can be processed by DOS/VS,
0S/VS1, and OS/VS2.

VSAM requires a special file, the VSAM master catalog, which contains
information on file and disk characteristics. In addition, VSAM supports any

Chapter 3: Planning the System 3.11

Multiple-Partition Options

Relocating Loader

number of user catalogs for alternative use. The VSAM master catalog resides
on a disk extent that is contained on the logical unit SYSCAT. Catalogs are
defined and maintained by the Access Method Services and used by OPEN
and CLOSE. For complete information on VSAM, refer to DOS/VS Data
Management Guide and DOS/VS Supervisor and 1/0 Macros.

Support for VSAM is generated in the supervisor, by specifying
VSAM=YES in the FOPT macro. Most VSAM phases can be loaded into
the shared virtual area. For details refer to the sections Defining the Size
of the Shared Virtual Area, and Reserving Storage for VSAM.

There are certain options that can be specified during supervisor generation
that are particularly designed for a multiprogramming environment. The
options described in this section are:

« Relocating loader

« POWER/VS

e Multitasking

« Wait multiple.

o Cross-partition event control.

The relocating loader, a standard feature of DOS/VS, causes the linkage
editor to produce relocatable phases which can then be executed in any
partition.

In a system supporting the relocating loader, it is not necessary

« to write an assembler-language self-relocating program, if you want the
program to be executable in any partition. The high-level language
programmer can thus obtain the advantages of self-relocating programs.

o to link-edit again if the size of the supervisor or the boundaries of the
partitions change after a program has been cataloged into the core
image library.

« to maintain multiple copies of individual programs in a core image
library.

The relocating loader is also advantageous to the operator, who can execute
a relocatable phase in any available partition large enough to contain it.

You can exclude the relocating loader from the supervisor by specifying
RELLDR=NO in the FOPT macro. However, some DOS/VS options
require the relocating loader. Therefore, if you specify OLTEP=YES,
RETAIN=YES, RPS=YES, GETVIS=YES, TP=VTAM, or VSAM=YES,
the relocating loader is automatically included in your supervisor.

3.12 DOS/VS System Management Guide

POWER/VS

Multitasking

Cross-Partition Event Control

When the supervisor contains the relocating loader and if the phase
origin is not an absolute address, the linkage editor automatically produces
a relocatable phase. You can suppress this by specifying ACTION NOREL
at link-edit time.

Note: A supervisor generated without the relocating loader can still load
relocatable phases. No relocation is performed, however, and the phase is
loaded at the link-edited origin.

Relocating loader applications are discussed in the section Link-editing
for Execution at Any Address in Chapter 6: Linking Programs.

POWER/VS provides spooling services for up to four partitions and resides
in a virtual partition with a higher priority than that of the partitions it
controls. Although POWER/VS runs in virtual mode, it supports programs
running in virtual or real mode.

Specifying POWER=YES in the SUPVR macro sets up the necessary
linkages in the supervisor which are used when POWER/VS is active. The
version of POWER/VS distributed in the core image library will suit the
needs of many users; however, if you have special requirements, you can
assemble the POWER/VS generation macros, which are distributed in the
source statement library. Refer to Generating POWER/VS later in this
chapter.

Multitasking provides the ability to execute more than one task concurrently
in a single partition. Because multitasking presupposes the
multiprogramming facilities (for instance, task selection) multitasking is only
available in a multiple-partition system.

A program engaged in multitasking consists of one main task, which
initiates (attaches) a number of subtasks. The maximum number of subtasks
depends on the number of partitions specified in the NPARTS parameter,
as shown below. These subtasks may reside together in one partition or
they may be distributed among the various partitions.

NPARTS Specified Maximum Number of Subtasks

2 13
3 12
4 1"
5 10

To generate multitasking support (also known as asynchronous processing)
in the supervisor, you specify AP=YES in the SUPVR macro.

The cross-partition event control option allows tasks that execute in
different partitions to wait upon completion of user-defined events and to
signal event completion to each other.

Chapter 3: Planning the System 3.13

Wait Multiple Option

The wait multiple option allows a task to wait on more than one event. The
task regains control on the completion of any one of the events on which it
was waiting.

Library Options

You can generate support for private core image libraries, for special
applications in the procedure library, and for reserved supervisor space to
achieve better fetching performance. These options are described below. No
supervisor generation options apply to the relocatable library or to the
source statement library. For full details on the type of library for your
installation, refer to the section Planning the Libraries.

Private Core Image Libraries

Private core image libraries (PCIL) have the same format as and are
supplementary to the system core image library.

To include support for private core image libraries in the supervisor,
specify PCIL=YES in the FOPT macro. For more information on the
creation, organization, and maintenance of private core image libraries, turn
to Chapter 7: Using the Libraries. Refer also to the section Second
Level Directory for the Core Image Library.

Extended Support for the Procedure Library

Normally, cataloged procedures can consist of job control statements
and/or linkage editor control statements. However, with the extended
support, cataloged procedures can also consist of data that is to be read
from SYSIPT. Such data, for instance, may be utility control statements to
be processed by a utility program.

To include the extended support for the procedure library, specify the
SYSFIL parameter in the FOPT macro, which is discussed in the section
System Files on Disk in this chapter.

More information on the procedure library is contained in the section
Planning the Libraries.

Second Level Directory for Core Image Libraries

The directory entries for phases in the core image library are sorted by
phase name in alphameric sequence. The entries are organized in 256-byte
blocks, where the highest phase name in each block serves as the key. The
highest key on each track of the core image directory is stored in a second
level directory (SLD) in the supervisor. To help ensure good performance
when a phase is fetched, the number of entries in the SLD should not be
less than the number of tracks used for the core image directory.

3.14 DOS/VS System Management Guide

Specify the SLD parameter in the FOPT macro if you intend to use
more than five tracks for the core image directory entries. Similarly, if
private core image libraries are used in the system, specify the PSLD
parameter in the FOPT macro. Note that the default value for PSLD is
zero, compared to five for the SLD parameter.

Independent Directory Read-in Area

Teleprocessing

If a phase must be loaded and the phase name is not found in the System
Directory List (SDL) or Local Directory List, then the core image directory
(in conjunction with the Second Level Directory) is searched to find the
location of the phase in the core image library. Normally, the directory
blocks are read into the physical transient area, which is scanned for the
required entry. If a system error recovery routine is in progress, it resides in
the same physical transient area. During this time, the physical transient
area cannot be used for directory blocks, or for building the fetch channel
programs. This effectively prevents any partition of a higher priority from
fetching or loading a program phase until error recovery is complete.

By specifying IDRA=YES in the FOPT macro, an independent
directory read-in area is generated in the supervisor for holding directory
blocks and fetch channel programs during fetching or loading of core image
of phases. IDRA=YES is available only in a multiple-partition system.

Note: The Local Directory List is similar to the SDL, and may be defined for
a partition (via assembler) to improve loading of dynamically called programs.

DOS/VS provides facilities for teleprocessing, the interchange of data
between an application in the system and terminals connected by
telecommunications lines. These facilities provide the ability to define
teleprocessing lines during supervisor generation and to specify one or more
access methods for input/output services between an application and
terminals.

Teleprocessing devices (terminals) are normally attached to the CPU
through transmission control units or communications controllers. In some
cases there is a direct local attachment. The control unit must be specified
in a DVCGEN macro.

The access methods, defined in the TP parameter of the SUPVR macro
instruction, are:

« BTAM (the Basic Telecommunications Access Method)

« QTAM (the Queued Telecommunications Access Method)

« VTAM (the Virtual Telecommunications Access Method).

Except when BTAM is specified for a single-partition system, support for

any of these access methods automatically includes support for TP
balancing (teleprocessing balancing).

Chapter 3: Planning the System 3.15

BTAM

QTAM

VTAM

For detailed information on generating and using a teleprocessing access
method, refer to the appropriate teleprocessing publications. Teleprocessing
users should also pay particular attention to the section I/0 Options later
in this chapter and the section Balancing Teleprocessing in Chapter 9:
Designing Programs for Virtual-Mode Execution.

BTAM provides READ, WRITE, and CONTROL macro instructions to
control input/output. A WAIT macro instruction is used to synchronize
I/O with application program processing.

Applications using BTAM can execute in either virtual or real mode.
Users of previous DOS releases must reassemble and catalog BTMOD. If
BTMOD and the application program were assembled together, the
application program must also be reassembled and re-link edited. To
execute BTAM in virtual mode, PFIX=YES must be specified in the FOPT
macro.

QTAM provides a way to write one or several application programs using
GET and PUT macro instructions to request input/output from a Message
Control Program (MCP). This MCP, which you generate using QTAM
macro instructions, frees the application (called a Message Processing
Program) from I/O processing details required by a BTAM application.

The QTAM MCP and its application programs (MPP) can execute only
in real mode, and require two separate partitions. Users of previous DOS
releases must reassemble the QTAM MCP.

When support for QTAM is generated in the supervisor, BTAM is also
supported.

QTAM requires a special disk extent for messages and, in some cases,
the interval timer. For more information, see the QTAM MCP publication.

VTAM directs transmission of data between application programs and local
or remote terminals, and controls the terminals in a telecommunications
network. Because VTAM operates with the IBM 3704 and 3705
Communications Controllers, communications lines and communications
controllers need not be considered in coding application programs.

Basic services performed by VTAM include:

« Establishing, terminating, and controlling access between application
programs and terminals.

« Moving data between application programs and terminals.

« Permitting application programs to share communications lines,
communications controllers, and terminals.

3.16 DOS/VS System Management Guide

ASCII

Job Accounting

VTAM requires that multitasking support be specified during supervisor
generation. Other options automatically generated when VTAM is specified
include:

« Support for the use of the STXIT macro instructions (all options) by
problem programs.

« Storage management support for the GETVIS and FREEVIS macro
instructions.

o Use of the PFIX and PFREE macro instructions for fixing and freeing
pages.

« Inclusion of the relocating loader.

e Support for the time-of-day clock.

o Support for the multiple wait function.

» Support for the use of the EXCP macro instruction with the REAL
parameter.

Both real and virtual storage must be allocated for the partition in which
VTAM is to run. A second partition is required for VTAM application
programs. For information on calculating storage requirements for both the
VTAM partition and the application program partition, refer to DOS/VS
System Generation. Other installation details are contained in the DOS/VS
VIAM System Programmmer’s Guide.

In addition to processing EBCDIC files, DOS/VS can process magnetic
tape files written in ASCII (American National Standard Code for
Information Interchange), a 128-character, 7-bit code. The high-order bit in
the System/370 8-bit environment is zero. ASCII tape files may be either
unlabeled or labeled according to the specifications of the American
National Standards Institute, Inc., (ANSI).

ASCII tape files may be processed in any partition. Because internal
processing of ASCII files is performed in EBCDIC, the data is translated at
I/0 time. No user translation tables or instructions are required.

Input files containing ASCII data are translated to EBCDIC as soon as
the record is read into the I/O area. Output files described as ASCII are
translated from EBCDIC to ASCII just prior to writing the record.

If your system is required to process ASCII files, specify ASCII=YES
in the SUPVR macro. This generates the two translation tables needed for
the conversion from ASCII to EBCDIC and from EBCDIC to ASCII, in
the supervisor.

The job accounting interface facility provides job and job step information
that can be used for charging system use, supervising system operation,
planning new applications, etc.

Chapter 3: Planning the System 3.17

Timer Services

Time-of-Day Clock

When this option is selected (JA=YES in the FOPT macro), job
accounting tables are built in the supervisor to accumulate accounting
information. One DOS/VS job accounting table is maintained per partition.
The format of these tables is shown in Chapter 10: Using the Facilities
and Options of the Supervisor.

To utilize this information, you must write a routine to store or print
the desired portions of the table. This routine must be cataloged in the core
image library under the name $JOBACCT.

If the user I/O routine ($JOBACCT) is written using LIOCS with label
processing, the JALIOCS parameter of the FOPT macro must be specified
in addition to the JA parameter. JALIOCS indicates that a user save area
and a label area in the supervisor are to be reserved. The label area
replaces the one normally used by LIOCS label processing routines.

Information on how to write a DOS/VS job accounting routine can be
found in Chapter 10: Using the Facilities and Options of the Supervisor.

If POWER/VS job accounting is desired, support for the job
accounting interface is required. job accounting interface information and
POWER/VS job accounting information are combined in the POWER/VS
account file for each partition running under POWER/VS. No user-written
data collection routine is necessary. Refer to Account File in the section
Generating POWER/VS for more details.

The following timer services are available to DOS/VS users:

« Time-of-day clock
« Interval timer
o Task Timer

Both the time-of-day clock and the interval timer are standard hardware
features; while the task timer requires other hardware features (the clock
comparator and the cpu timer) which are standard on all System/370
models except the 135 and the 145. Utilization of these timer services in
DOS/ VS also requires software support, for which supervisor generation
parameters are provided.

The time-of-day (TOD) clock provides a consistent measure of elapsed time
suitable for time-of-day indication. You can use the TOD clock to
time-stamp programs. Regardless of whether or not DOS/VS programming
support for the TOD clock is included in the supervisor, programs can
inspect the contents of the TOD clock by means of a store clock (STCK)
instruction. For more information on the use of this instruction, refer to
IBM System/370 Principles of Operation.

To include support for the time-of-day clock in the supervisor, specify
TOD=YES in the FOPT macro. The time-of-day and the date are then
automatically included with each // JOB and / & job control statement
that is printed on SYSLST and/or SYSLOG.

3.18 DOS/VS System Management Guide

Interval Timer

Task Timer

The ZONE parameter in the FOPT macro is associated with the
TOD=YES specification. In the ZONE parameter you indicate the
difference between Greenwich Mean Time (GMT) and local time in hours
and minutes. If the local time to be specified is GMT, the ZONE parameter
can be omitted.

During the IPL procedure, if IPL is performed from SYSLOG, a
message is printed on the operator console to inform the operator of the
status of the date, clock, and zone. If necessary, the operator can correct
this information in the SET command.

The TOD clock support also enables programs to issue the GETIME
macro instruction, which causes the exact time-of-day to be stored in
general register 1. When a GETIME macro instruction is issued, the date
fields in the supervisor communications region are updated, if necessary. A
description of the use of the GETIME macro instruction is included in the
section Using the Time-of-Day Clock in Chapter 10: Using the
Facilities and Options of the Supervisor.

The interval timer can be used by programs (main tasks and/or subtasks)
that need to schedule certain processing based on discrete time intervals. If
support for the interval timer is included in the supervisor, and a problem
program is written with the appropriate macro instructions and routines, the
interval timer causes an external interrupt when the time limit established
by the program has elapsed.

To include support for the interval timer in the supervisor, specify the
IT parameter in the FOPT macro.

Seven problem program macro instructions relate to interval timer support.
These are described in other parts of this manual, as indicated below:

e The section User Exit Routines which follows describes the STXIT
and EXIT macros in general, and the section Interval Time Exit
describes their specific use in relation to the SETIME macro.

e Chapter 10: Using the Facilities and Options of the Supervisor
describes how to implement the SETIME, STXIT, EXIT and TTIMER
macros.

The task timer can be used by the main task of the partition owning the
task timer to escape from processing and enter an exit routine after a
specified period of time. This discrete time interval is decremented only
when the main task is executing. If support for the task timer is included in
the supervisor, and the owning partition’s main task is written with the
appropriate macro instructions and routines, the specified task timer routine
is entered when the time interval has elapsed.

To include support for the task timer in the supervisor, specify the
TTIME parameter in the FOPT macro.

Chapter 3: Planning the System 3.19

Console Buffering

User Exit Routines

If an exit routine is not specified in the STXIT TT macro, the interrupt
is ignored. The SETT macro is used to set the time interval, and that
interval can be tested or cancelled by means of the TESTT macro. The
EXIT TT macro is used to return control from a task timer exit routine.

Since there is only one console typewriter in the system and it is a relatively
slow device, the entire system can be held up while messages are being
issued to the operator. Console buffering support builds a queue of output
messages and returns control immediately to the partition requesting the
output. The messages are then written as soon as the console becomes
available.

Support for console buffering is indicated by the CBF=n parameter in
the FOPT macro (where n is the number of I/0 requests to be buffered.)
At least one buffer should be specified for each partition or task issuing
messages so that buffers are available and the task can continue processing
while the message is being printed. Five per batched-job partition is
recommended. The console buffering is not split per partition, but used by
the whole system.

Console buffering is not supported for Models 115 and 125.

If required, the supervisor can permit user routines to gain control when
any of the following types of events occurs:

« Interval Timer Interrupt (IT)

e Program Check Interrupt (PC)

« Abnormal Termination (AB)

o Operator Communication Interrupt (OC)
« Task Timer Interrupt (TT)

« Page Fault Handling Overlap (PHO)

Both the supervisor and the problem program that contain the user routine
must have the proper code to establish an interface. The supervisor part of
this interface is specified during system generation with the first five options
being specified in the FOPT macro, and the last option in the SUPVR
macro.

The problem program that wants to utilize the options must contain
code to set up the interface. For the first five events, code can be generated
by the STXIT macro. For the last event, code is generated by the SETPFA
macro. This code is assembled in the main line of a problem program.

The first operand of the STXIT macro indicates the type of event to be
handled. It must have an equivalent in the supervisor. The second and third
operands indicate the addresses of the user routine and its save area. If the
second and third operands are missing, this means that an existing interface
has to be discontinued. Once the linkage has been established and one of
the events occurs, control is passed to the user routine, which takes
appropriate action and returns control to the supervisor, either directly or
via a termination macro. The direct return can be handled by including the

3.20 DOS/VS System Management Guide

Interval Timer Exit

Program Check Exit

EXIT macro in the user routine. The job termination return can be handled
by the CANCEL, EOIJ, JDUMP, or DUMP macro; one of these must be
used for the abnormal termination condition.

Short descriptions of the support for each of the types of user exit
routines follow. For more details refer to Chapter 10: Using the
Facilities and Options of the Supervisor. For information on how
multitasking affects this support and what happens if multiple events
coincide, refer to the DOS/VS Supervisor and I/0O Macros. Some
high-level languages offer similar facilities, for details of which see the
appropriate programmer’s guide.

Interval timer support is indicated by the [T=parameter of the FOPT
macro. If IT=YES is specified, all tasks in all partitions may refer to the
interval timer.

Example of how to use the Interval Timer: Suppose you want to take a
checkpoint on a job at a certain time after it has started. Include the STXIT
and the SETIME macros in your program. The first macro will set up the
interface with the supervisor; the second will enable you to set a time
interval. When that interval elapses, an interval timer interrupt occurs and
control is given to the user routine. Please note that the user routine need
not be entered immediately. For instance, if the user routine is in a
background partition, and a foreground partition is active, the user routine
will not be entered until the background partition becomes active. Chapter
10 contains coded examples of this option.

To find out the time remaining in an interval, a program can issue the
TTIMER macro instruction. The supervisor then loads this value in general
register 0. This macro can also be used to cancel the remaining time in the
interval.

If PC=YES is specified in the FOPT macro, programs can establish linkage
from the supervisor to a user routine by executing a STXIT macro. If a
program check occurs within the program, the supervisor gives control to
the user routine instead of discontinuing the program. The user routine can
analyze the program check and choose to ignore, to correct, or to accept it.
If the check is ignored, control can be given back to the supervisor by
executing an EXIT PC macro.

In some cases it may be possible to correct the error condition. For
example, if a data exception occurs on an add pack (AP) instruction, the
user routine can be written to correct the sign and arrange for the
instruction to be processed again. The user routine can request that
processing of the main line program continue via the EXIT macro.

In case the problem cannot be resolved the program check is accepted
as valid. The user routine can then terminate further processing of the
program by issuing a CANCEL, DUMP, JDUMP, or EOJ macro.

Chapter 3: Planning the System 3.21

Abnormal Termination Exit

Operator Communications Exit

Task Timer Exit

The ability to include a user routine to process program checks can be
especially advantageous when using LIOCS. In that case I/0O housekeeping
such as closing files and freeing tracks can be performed before termination
of the job or task.

If AB=YES is specified in the FOPT macro, any program can issue a
STXIT AB macro. This instruction allows a user routine to get control from
the supervisor before an abnormal end-of-job condition discontinues the
processing of the program. The user routine normally ends with one of the
termination macros (CANCEL, DUMP, JDUMP or EQOJ), to terminate the
problem program and to return control to the supervisor, rather than by
initiating the continuation of the problem program.

OC=YES in the FOPT macro supports the use of user routines for
handling external interrupts from the operator. This support is useful in a
number of applications, for example:

« A change in the environment is needed. A message is then issued by
the program. For example: MOUNT TAPE XXX on unit xxx and press
the interrupt key.

o In teleprocessing, the OC exit allows the operator to start and stop
activities on certain lines or terminals, or to invoke diagnostic
procedures. In this case, program run books with explicit instructions
may be required to ensure understanding between programmer and
operator.

The external interrupt that links to an OC user exit routine can be caused
in one of two ways:

« If the program with the OC exit routine is being executed in the
background partition, the operator can press the interrupt key on the
system console.

« If the program with the OC exit routine is being executed in a
foreground partition, the operator can press the request key on the
console typewriter. When the attention routine identifier AR appears,
he should reply MSG F1 (or give the appropriate partition identifier).

Task timer support is included by the TTIME= parameter of the FOPT
macro. This parameter also identifies the partition owning the task timer.
Only the main task in the owning partition can utilize the task timer.

The time interval is specified in the SETT macro and is decremented
only when the task is executing. The exit routine specified in the STXIT
TT macro is entered when the interval has elapsed, provided that routine
has already been supplied to the supervisor.

3.22 DOS/VS System Management Guide

To find out the time remaining in an interval, the task can issue a
TESTT macro. This causes the time remaining in the interval to be
returned in register 0. The task can also issue a TESTT CANCEL to
cancel the remaining interval time. In this case the exit routine is not
entered.

Page Fault Handling Overlap Exit

Disk Options

System Files on Disk or Diskette

If PHO=YES is specified in the SUPVR macro, a user routine can continue
processing during the time a page fault is being handled by the system, if
this page fault occurs in the same task and not in a supervisor routine
invoked by this task. This support is of interest only for programs executed
in a virtual partition that make use of user-developed subtasking rather than
IBM-supplied multitasking.

Such programs may issue the SETPFA macro instruction to establish
linkage from the page management routines in the supervisor to a user
routine, called the page fault appendage routine. The SETPFA macro
instruction is described in DOS/VS Supervisor and I/O Macros.

Options are provided for some DASD devices. These are:

« System files on disk (or diskette)
« DASD file protection

e Track hold option

« Seek separation

« Rotational position sensing

« Block multiplexer channel support.

The system logical units SYSRDR, SYSIPT, SYSLST, and SYSPCH are
normally assigned to card readers, printer, and card punches, respectively.
They may also be assigned to a tape, or to a disk or diskette extent.

For example, you may want to catalog the output from a language
translator to the relocatable library. During the language translation step,
SYSPCH could be assigned to a disk extent. The resultant object module
would then be cataloged via MAINT by assigning SYSIPT to the same disk
extent.

Support for system files on disk or diskette is specified in the SYSFIL
parameter of the FOPT macro.

The SYSFIL option also implies extended support for the procedure
library. This means that cataloged procedures may contain in-line SYSIPT
data. The sets of control statements that can be cataloged into the
procedure library are, therefore, not limited to job control or linkage editor
control statements. (See also Extended Support for the Procedure Library.)

For systems without magnetic tapes, the SYSFIL option is required in
order to apply IBM programs and program maintenance, which, in this case,
must be distributed on disk packs in SYSIN format.

Chapter 3: Planning the System 3.23

DASD File Protection

Track Hold Option

This feature is provided to prevent user programs, which utilize DAM or
user-written channel programs for writing onto DASD, from writing data
outside of the limits of the DASD file currently being accessed. This might
happen if, for example, a randomizing algorithm produces an unexpected
DASD address which is outside the file limits.

DASD file protection support is indicated in the DASDFP parameter of
the FOPT macro. The parameters indicate that protection is given to
channels and device types. If used, DASDFP should be provided for the
entire channel range, for instance, DASDFP=(1, 3, 3330).

DASDFP gives protection on the basis of programmer logical units. If
two files in the same partition are assigned to the same programmer logical
unit, the DASDFP option gives no protection.

Protection begins and ends on a disk cylinder boundary or a data cell
strip boundary. Files to be protected should, therefore, begin and end on
such boundaries. No protection is given to partially allocated cylinders or
strips.

If you are using physical IOCS, you must use the DTFPH macro to
define the file. The file must be opened using the OPEN or OPENR macro,
and each channel program must commence with a long seek (X‘07’)
command, and contain no chained long seeks.

If you specify DASDFP, the SYSRES file must reside on a protected
channel: otherwise, it will not be possible to IPL the system.

DASDFP does not prevent file contention between partitions, or within
partitions if the same symbolic unit is used. Thus, more than one partition
may access the same file at the same time, and may even attempt to update
the same record simultaneously. The track hold option (TRKHLD) is
provided to solve this problem. Note, however, that all DASD writes
(DAM and otherwise) within the DASDFP range will be checked.

The track hold option is used to ensure that if a DASD track is being
modified by one task, no other task in the system can access that track
provided that they also use track hold. The facility is available for all
VSAM, ISAM and ISAM interface program functions (except LOAD), all
DAM functions, all SAM work file functions and other SAM update
functions. The facility is a combination of supervisor (PIOCS) and LIOCS
functions.

The track hold option can be selected by specifying the TRKHLD
parameter in the FOPT macro. For non-VSAM files, the DTF must specify
HOLD=YES.

For VSAM files, if SHAREOPTION 4 is specified at the time a VSAM
file is defined, VSAM uses the track hold facility to ensure file write
integrity. Note: Performance may be affected.

If you write your own channel programs, each program must begin with
a long seek (X‘07’) command. If multiple track search channel programs are
used, only the first track will be held, which is not necessarily the track on
which the record is located.

3.24 DOS/VS System Management Guide

Seek Separation

Rotational Position Sensing

Deadlock occurs if one task is waiting for a track held by a second task
and the second task is waiting for a track held by the first. This can easily
be prevented by establishing the convention that every task must be
programmed so that it will not hold more than one track at a time.
Deadlock may also occur if the maximum number of tracks demanded to be
held by all tasks combined exceeds the maximum specified in the TRKHLD
parameter.

A channel program for a DASD device usually consists of a number of
functions to perform the I/O operation as follows:

1. A long seek to position the access arm over the required cylinder.
2. A search to find the required record on a track on that cylinder.

3. A transfer in channel to branch back to the search until the search is
completed successfully or unsuccessfully.

4. The actual read or write which transfers the data.

Since the channel is monopolized once the channel program has been
initiated, no other device on this channel can be accessed until the data has
been transferred. This is inefficient, particularly since most of the time
utilized during the execution of a DASD channel program is taken up by
the long seek (1). With seek separation support, the supervisor handles this
by separating the long seek from the rest of its channel program and
initiating the seek command separately. The channel is then free while the
disk access arm is being moved and other devices on the channel and
control unit can be accessed.

Once the access arm has been positioned over the correct cylinder, the
rest of the entire channel program is executed. By performing this function
in the supervisor, contention is avoided between two tasks trying to move
the same disk access arm.

This does not apply to DASDs with disconnect command chaining
(DCC) on block multiplexer channels running in block multiplex mode; in
such instances the seek separation function is handled by the channel.

Specifying SKSEP=YES in the FOPT macro creates seek separation
support for each DASD device specified in a DVCGEN macro at supervisor
generation time.

Specifying SKSEP=n indicates the number of DASDs to be supported
and must not be less than the number of DASDs you specify in DVCGEN
macros. Specifying n adds flexibility to your installation by allowing for
expansion: seek separation support then also applies to the DASDs added at
IPL time.

Rotational Position Sensing (RPS) is a feature on all IBM disk storage
devices except 2311, 2314, and 2319 (optional feature on IBM 3340,
Models A2, B1, and B2). It provides the ability to overlap positioning

Chapter 3: Planning the System 3.25

operations on one device with service requests for other devices on a block
multiplexer channel (or its equivalent on Model 3115/3125 CPUs).

Better channel utilization can increase system throughput, especially in
large multiprogramming systems with heavy concurrent I/O activity.
Because a selector channel is monopolized once a channel program has
been initiated, no other device on this channel can be accessed until the
data has been transferred. With block multiplexer channels and the RPS
feature of DASD devices, however, the device can disconnect from the
channel during positioning operations. The channel is then available for
other requests so that other devices on the channel can be accessed.

Overlap of positioning to a record on a track requires adding RPS
CCWs to the direct access storage device channel programs. DOS/VS
system control and service programs that support RPS create these CCWs
at execution time provided that the supervisor is generated with RPS=YES
and that the direct access storage device has the feature.

RPS support for DOS/VS is provided in all access methods which
support RPS DASD devices and in the DOS/VS system control and service
programs where the implementation benefits total system performance.
Implementation of RPS support in DOS/VS utilizes virtual storage to
enable you to use RPS without recompiling or relink-editing your problem
programs. The partition GETVIS area is used to generate an extension to
the DTF, and the shared virtual area is used to hold the RPS version of the
logic modules. Since this implementation requires a partition GETVIS area,
programs executing in real mode do not have RPS support for DASD
LIOCS functions. If you have specified RPS=YES in the FOPT macro at
supervisor generation time, all programs using DASD LIOCS should define
a GETVIS area within the partition to enable the access methods to
construct RPS channel programs.

The effective use of RPS depends on each channel program’s ability to
free that channel so that it can service requests for other devices. Programs
using DOS/VS DASD LIOCS access methods will have RPS channel
programs constructed by the access method provided a GETVIS area is
defined in the partition (by using the SIZE parameter of the EXEC job
control statement) and that sufficient virtual storage is available in the SVA
for loading RPS versions of the logic modules. Programs using PIOCS for
DASD access have to be recoded to include Set Sector CCWs and to
establish arguments for the CCWs. If this is not done, these programs will
destroy the effectiveness of RPS by monopolizing the channel.

Specification of RPS=YES forces generation of block multiplexer
channel support, which is a prerequisite for RPS support. See section Block
Multiplexer Channel Support for a further description.

For a more effective use of RPS with SAM, DAM, or ISAM, you
should preload frequently used RPS logic modules into the SVA during IPL
by specifying them in your System Directory List (SDL). You may
determine frequently used modules by using the Fetch/Load Trace facility
of PDAIDS. When using Checkpoint/Restart, modules used must be
preloaded. Each access method has RPS versions of the logic modules
associated with it. These modules reside in the core image library and are
not assembled or link-edited with the user’s program. However, any user
coded logic modules, coded with the RPS=SVA parameter, must be

3.26 DOS/VS System Management Guide

I link-edited to the core image library. The RPS modules are then loaded in
the SVA either during IPL or dynamically as needed when the file is
opened.

Figure 3.5 shows the organization of a user’s program running in virtual
storage without RPS support.

Figure 3.6 shows how, with RPS support, this organization will be
modified at OPEN time to put the DTF extension in the partition GETVIS
area. The pointers to the RPS version of the logic module and channel
program will be put into the DTF while the non-RPS logic module and
channel program addresses will be saved in the DTF extension. The DTF
extension will be freed and the pointers restored at CLOSE time.

Figure 3.7 shows that the RPS version of the logic modules can be
either in the SVA or in the SVA GETVIS area, or in some combination of
both.

SVA storage requirements for RPS are discussed in Defining the Size
of the Shared Virtual Area, and Reserving Storage for RPS.

USER PROGRAM

DTF

NON-RPS CCW STRING 4
NON-RPS LOGIC MODULE 4

NON-RPS CHANNEL PROGRAM

VIRTUAL STORAGE

NON-RPS
LOGIC MODULE

GETVIS
AREA

Figure 3.5. User Program Running in Virtual Storage without RPS Support

Block Multiplexer Channel Support

Block multiplexer channel support is useful in configurations with 3330 and
3340 DASD devices that are attached to block multiplexer channels. To
obtain block multiplexer support, specify BLKMPX=YES in the PIOCS
macro during supervisor generation.

In a DASD configuration that consists only of 3330 and 3340 devices,
there is no need to request seek separation support since the block
multiplexer support provides channel overlap during seeks in a more
efficient way. Furthermore, the code generated by a specification of
SKSEP=YES is bypassed for these devices if BLKMPX=YES is specified.
You cannot have block multiplexer channel support if you are planning to
use the 2311 or 2314 compatibility features and your CPU is a Model 115
or Model 125. If your CPU is a Model 135, block multiplexer support may

Chapter 3: Planning the System 3.27

USER PROGRAM

DTF

RPS CCW STRING 4
RPS LOGIC MODULE 4

NON-RPS CHANNEL PROGRAM
(not used)

NON-RPS

LOGIC MODULE
(not used by RPS DTF
but available to other DTF)

VIRTUAL STORAGE —'—-————Fl

NON-RPS CCW STRING
NON-RPS LOGIC MODULE

DTF EXTENSION
RPS CHANNEL PROGRAM

GETVIS
AREA
.

Figure 3.6. User Program Running in Virtual Storage using RPS Versions of
Logic Module and Channel Program

Ny

______ .
] Il !
: Fomeed
I d
RPS VERSION OF LOGIC MODULES
g LOADED AT IPL
o -——T——7T - ———— ———
oL . . i
7] [~ : ;
w | SUS——
S
L%
o RPS VERSION OF LOGIC MODULES
y LOADED DYNAMICALLY

Figure 3.7. Location of RPS Version of Logic Modules

be specified. This support will be inoperative for files being handled by the
Emulator, but it will work properly for files being addressed in native mode.

I/0 Options

Defining the Number of CCW Translation Buffers

Because all addresses associated with instructions and data are virtual, they
are translated to real addresses before they are actually used. All addresses
except those in channel programs are translated by the DAT facility;

I addresses of 1/0 areas and channel programs, including channel command

3.28 DOS/VS System Management Guide

blocks (CCBs) and channel command words (CCWSs) are translated by
DOS/VS. The translation for channel programs is done using buffers (copy
blocks) in the supervisor area. Because this software address translation
may be time consuming for repetitive 1/O requests, the fast translation
option may be specified (FASTTR=YES in FOPT macro). This option, if
selected, causes DOS/VS to retain and reuse the translated channel
programs in the copy blocks and the associated fixed I/O areas. However,
when there are no available copy blocks and/or the paging rate reaches the
threshold (page pool is too small), those saved copy blocks and fixed 1/0
areas are released (least recently used first).

Specification of FASTTR=YES may cause degradation of performance
when CICS accesses SAM, ISAM, and DAM files.

The required number of CCW translation buffers (specified with the
BUFSIZE operand of the VSTAB macro) generally depends on the number
of channel queue entries and on the number of CCWs in the channel
program. If the number of buffers is too small, overall performance
degradation will occur because tasks are put into the wait state until buffer
space is available. On the other hand, too large a value for BUFSIZE
wastes storage.

If you expect that most of the I/O requests will be made from virtual-mode
programs, the number of buffers specified in the BUFSIZE operand should
be three times the number of entries in the channel queue for normal CCW
translation. Fast CCW translation needs more buffers, and you should
specify six buffers for each channel queue entry. If you expect to do much
I/0 from real-mode programs, the number of buffers should be reduced
proportionally. If ISAM is the predominant access method, about 20%
more buffers should be specified. If RPS is specified, about 20% more
buffers should also be specified. At least 40 additional buffers should be
specified when VSAM is used. If teleprocessing terminals are supported
under BTAM or if the fast CCW translation option (FASTTR) is specified,
read the description of the BUFSIZE parameter of the VSTAB macro in
DOS/VS System Generation.

In order to determine if the number of copy blocks are sufficient, refer
to Channel Queue for a similar procedure.

Bypassing System CCW Translation

In most instances, double buffering techniques and an increase in block size
can significantly reduce the system overhead associated with channel
program translation. However, in extreme cases, you may wish to perform
your own translation of channel programs and thereby avoid system CCW
translation overhead. Programs that might require this are EXCP programs
that have very high start I/O rates and that repeatedly use the same
channel programs.

By specifying ECPREAL=YES during supervisor generation you obtain
support that assists in the translation of channel programs. This support
allows you to use the VIRTAD and REALAD macros as well as the REAL
parameter of the EXCP macro. You must obtain real storage by means of
the PFIX macro and then translate the channel program. The CCB must

Chapter 3: Planning the System 3.29

Channel Queue

have the REAL operand. For detailed information see DOS/VS Supervisor
and I/0 Macros.

The channel queue (CHANQ) is used by the supervisor to schedule I/0
operations. An entry is made in the channel queue whenever a request is
made for an I/O operation and the entry remains until the operation has
completed. Thus, at any point in time, the queue will consist of entries for
1/0 operations in progress and I/O operations waiting for initiation.
Whenever an I/0O event completes, the queue is examined cyclically to see
if another entry exists for the channel, and if so, the operation is initiated.

The number of channel queue entries to be reserved in the supervisor
can be specified in the CHANQ parameter of the IOTAB macro.

The number of occupied entries in the channel queue depends on the
activity in the system. No accurate formulas for determining the optimum
size can be given though.

The thing to bear in mind is that specifying too small a channel queue
will cause performance degradation, too large a CHANQ value will waste
storage space (8 bytes per entry).

Real-mode tasks or programs that request an /O operation when the
channel queue is full will be set to reissue the request until an entry
becomes free. Virtual-mode tasks or programs that request an I/0
operation when the channel queue is full will be set in the wait state until
an entry becomes free.

To avoid performance degradation it is better initially to specify ample
channel queue space, and reduce the allotted space later, if desired. The
rule-of-thumb to be followed is:

« At least one queue entry should be available for each I/0 request that
can be issued concurrently (open files per jobstep per partition).

o Specify one entry for the SYSRES file and one for the page data set
(SYSVIS).

o Specify one entry for each task or partition in the system.
» Specify one entry for each console buffer in the system.

« If multiple volume files are used on the system, specify one entry for
each file being accessed at the same time.

¢ Add two entries per tape drive.

« One entry should be specified for each teleprocessing line that could
solicit input. If IBM 2260 local or 3270 local video display units are to
be supported by BTAM one CHANQ entry should be specified for
each display.

o Add five entries to the total for contingencies.

When the system has been generated, run the programs that make the
heaviest use of logical I/O units in the system. If a multiple-partition
system, run as many programs as represent the heaviest work load; in
particular, run any teleprocessing programs. Then, before the next IPL,

3.30 DOS/VS System Management Guide

Error Queue

obtain a dump of the channel queue (by using the DUMP command or the
standalone program generated by DUMPGEN). The channel queue location
and format, as well as the use of the DUMP command and DUMPGEN are
fully described in DOS/VS Serviceability Aids and Debugging Procedures.

An analysis of the channel queue should show that entries near the
beginning of the table have been used, whereas those near the end are
unused. Although the unused entries are normally redundant, a few surplus
entries should be retained to allow for exceptional cases. If all the entries
have been used, then the channel queue was almost certainly too small, and
a process of experimentation will show the correct size.

The error queue option is of value to installations employing large numbers
of 1/0 devices, for instance, teleprocessing systems. The ERRQ parameter
allows you to specify the number the error queue entries within the error
recovery block of the supervisor. These entries are used to record
information on I/O device errors, and is used by the ERP and RMSR
routines. The normal default value is five entries for a multiprogramming
system, but in ERRQ you can specify up to 25. Each entry is 40 bytes.

Reliability/ Availability/Serviceability

IBM provides software routines that analyze and record CPU, channel, and
device errors and attempt to recover from them. The data is stored on the
system recorder file (SYSREC). The information obtained from this file
serves not only as an aid in diagnosing machine errors, but also helps IBM
customer engineers to increase reliability, availability and serviceability
(RAS) of your system.

If on-line recovery is impossible, the system may be placed in a hard
wait state. A message is then issued to the system operator to run either the
SEREP or EREP program to obtain the diagnostic data.

On the IBM System/370 Models 115 and 125, errors in the CPU and
natively attached input/output devices (for example, card reader/punch,
disks and printer) are recorded on the service diskette (see note).This
hardware error recording is independent of the software routines. The
recorded hardware statistics may be obtained on the video display unit
(DOC), on advice of the IBM CE, through the LOG ANALYSIS displays.
Error recovery for channel-attached input/output devices for these CPU
models requires the use of software routines with error recording on
SYSREC. The information covered here introduces RMS, OLTEP and
PDAIDS. Since SDAIDS and OLTEP do not require supervisor generation
macros, these topics are covered in detail in DOS/VS Serviceability Aids
and Debugging Procedures, which contains extensive information about the
various RAS features discussed below.

Note: IBM System/370 Model 158 has a similar hardware error recording
feature in addition to software error recording facility.

Chapter 3: Planning the System 3.31

Recovery Management Support

These routines, referred to as Recovery Management Support (RMS), are
standard for all System/370 models, except for the Models 115 and 125.
For these models, specify the RMS, MCH, or CHAN parameters to obtain
the RMS support of your choice.

If full RMS support is included (RMS=YES is specified or forced for
models 135 and above), the following RAS facilities are provided:

« Machine Check Analysis and Recovery (MCAR)
« Channel Check Handler (CCH)

« 1/0 device Error Recovery Procedures (ERP)

« Recovery Management Support Recorder (RMSR)

Device ERP routines are standard for all CPU models. The first three
facilities provide hardware error analysis and attempt recovery, while RMSR
provides for recording of error and operational statistics on SYSREC as
follows:

« Machine Check (CPU)

« Channel Check

« Unit check

« Tape/disk error statistics by volume

« MDR (Miscellaneous Data Recorder)

« IPL information

« End-of-Day statistics held in main storage

For models 115 and 125, if full RMS support is not desired, RMSR
support for channel attached devices, tape units, and TP devices must be
included by specifying CHAN=YES and RMS=NO. RMSR support for
MCAR and CCH is provided by specifying MCH=YES and RMS=NO.
Specification of RMS=NO, CHAN=NO, and MCH=NO will cause the
system to enter a hard wait on the occurrence of a hardware failure with no
recording on SYSREC. However, the service diskette will contain error
recordings for the CPU and natively attached devices.

RMS has several options that must be specified, in addition, during
supervisor generation if they are desired. These options involve the

reliability data extractor, tape error statistics and error volume analysis.

Reliability Data Extractor. If included in addition to RMSR support in the
supervisor, the reliability data extractor (RDE) enables data about the IPL
procedure to be recorded on the system recorder file (SYSREC). This
option requests the operator, when he performs an IPL, to enter the reason
for the IPL. This data alerts IBM and installation management to recurring
machine errors or other operational problems.

If RDE support is desired, specify ERRLOG=RDE in the SUPVR
macro. More information on RDE is included in this manual in the section
Entering RDE Data in Chapter 4: Starting the System.

Tape Error Statistics. As a standard feature the DOS/VS system gathers
tape error statistics. This information is accumulated in the PUB2 table for
each tape unit and stored in the system recorder file SYSREC (if RMSR
support is included in the supervisor). For tapes with standard labels the
information is accumulated and stored per volume. When error statistics are
required to enable the monitoring of nonstandard or unlabeled tapes, the
TEBV parameter of the FOPT macro gives you two options: the parameter

3.32 DOS/VS System Management Guide

OLTEP

Problem Determination Aids

can be specified as IR (individual recording) or as CR (combined
recording). IR refers to the accumulation of error statistics between two
consecutive OPENs on the same tape unit. CR refers to the accumulation
of error statistics on the same tape unit until a standard labeled tape is
opened on that unit or until a ROD-command is issued. When error
statistics are required to monitor the IBM 2495 cartridge reader, the TEB
parameter in the FOPT macro must be specified.

Error Volume Analysis. This option of RMS enables you to specify the
number of temporary read/write errors that occur on a tape volume to be
specified before an informatory message is printed on SYSLOG. The
threshold value of temporary read/write errors is specified in the EVA
parameter of the FOPT macro. This option is not applicable if RMSR
support is not included in the supervisor.

The On-line Test Executive Program (OLTEP) gives the IBM customer
engineer the opportunity to test whether the I/O devices attached to the
CPU are in working order. OLTEP runs in real mode in the background
partition and can run concurrently with user jobs in other partitions.

OLTEP=YES is the default value in the FOPT macro. If you do not
want support for OLTEP, specify OLTEP=NO.

The RETAIN function of OLTEP enables the IBM customer engineer
to execute OLTEP from a location remote from the CPU. The RETAIN
function is available only in the United States of America and Canada.
RETAIN is provided only with Models 145, 155-I1, and 158 and requires
that the 2955 Data Adapter Unit be attached to the CPU.

To generate support for RETAIN in the supervisor specify
RETAIN=YES in the FOPT macro.

Problem determination aids (PDAIDS) can be used to assist the
programmer in debugging his program. Six trace routines and a dump
routine are included in the PDAIDS:

« Input/Output trace

« FETCH/LOAD trace

o Generalized supervisor call (SVC) trace
« QTAM trace

¢ VTAM trace

« VTAM buffer pool trace

o Transient dump.

Because these routines are executed within the supervisor, the PD
parameter in the FOPT macro must be specified. The PD parameter
reserves an area in the supervisor for the use of the trace routines.

In addition to the trace and dump routines, PDAIDS contains a
program to display and modify object code in a core image library, thereby
facilitating the application of quick fixes until a permanent fix can be made

Chapter 3: Planning the System 3.33

by modifying and recompiling source statements. The PD parameter in the
FOPT macro need not be specified to use this program.

Defining the System/370 Configuration

Central Processing Unit

1/0 Devices

During supervisor generation you must specify various macros that relate to
the central processing unit, whether programs written for execution on
another system may be run on this model, the I/O devices installed (or
planned to be installed), and other macros that indicate the standard job
control settings for the installation.

In the MODEL parameter of the CONFG macro, you must specify which
model of the System/370 line of central processing units is to be used. If
you plan to run your generated system on more than one CPU model, you
should specify the larger model.

If you specify MODEL=115 or MODEL =125 in the CONFG macro,
support for the video-display keyboard console (DOC=125D) is always
included. If you specify a model number other than 115 or 125, DOC=NO
is the assumed default. For reasons of system portability, you may wish to
specify DOC=125D for larger models. On these models, if DOC=125D is
specified, the system will operate in 3210/3215 mode; whereas on the
Model 115 or 125, the system will operate in DOC mode.

The supervisor generation macros that relate to the I/O devices attached to
the CPU that are described below are: PIOCS, IOTAB, and DVCGEN.

The PIOCS macro defines the configuration requirements to be
supported by IOCS. The associated parameters involve the channel
switching, specific tape and disk device support, and the use of burst mode
devices on the byte multiplexer channel. No distinction is made between 7-
and 9-track tapes.

The IOTAB macro, in general, defines the area for the necessary device
tables for the system. The parameters involved refer to:

o The number of programmer logical units for each partition defined by
the NPARTS parameter in the SUPVR macro.

e The number of job information blocks for the system. (One is required
whenever a temporary assignment is made, see Chapter 5: Controlling
Jobs. Extra JIBs are required if DASDFP is specified.)

+ The number of DASD devices (2311, 2314, 2321, 3330, 3333, and
'3340).

« The number of tape devices (2400-series, 3410, and 3420).
¢« The number of TP devices.
« The estimated number of physical I/O devices.

The DVCGEN macro defines each physical input and output unit in terms
of their channel and unit address, device type, whether channel is

3.34 DOS/VS System Management Guide

Emulators

Standard Job Control Settings

switchable, and (if applicable) their mode. One DVCGEN macro
instruction must be used for each unit on the system. Each individual drive
of a 2314/2319, 3333/3330, or 3340 needs a DVCGEN macro. The total
number of DVCGEN macros must not exceed the total number of devices
specified in the [ODEV parameter of the IOTAB macro. Note that if one
physical spindle contains two or more logical spindles, DVCGEN macro
instructions must be issued for each of these logical spindles. Device
generation by the DVCGEN macro can be changed with ADD and/or DEL
commands at IPL time. Refer to the section Changing I/O Device
Assignments in Chapter 4: Starting the System.

Through emulation, a program can be run on a machine series other than
that for which it was designed. The emulator program, serving as the
interface between the user program and the DOS/VS supervisor, runs
together with the user program in the same partition, in either a
single-partition or multiple-partition environment. In a multiple-partition
environment, several emulators can be executed concurrently. One
exception, however, is the Model 125, which cannot execute two
1400-series emulator jobs concurrently. For both a Model 20 and a 14xx
emulator on a Model 125, RPQ SU002 is required.

Tape reading and writing on 1400-series machines can operate with odd
or even parity checking. To make use of mixed-parity tape processing under
1400-series emulation, you must specify EU=YES in the SUPVR macro. If
you do not use mixed-parity tape processing, you need not specify EU=YES.

Prior to executing emulator jobs, you must generate the emulator
program and catalog it into the core image library. This can be done when
the system is generated or at a later time.

Further information on the emulator programs is contained in the following
publications:

e 1401/1440/1460 DOS/VS Emulator on System/370.
« 1410/7010 DOS/VS Emulator on System/370.
e« Model 20 DOS/VS Emulator on System/370.

Each time a programmer submits a job to be executed, he includes job
control statements that define the beginning and end of his job and all the
physical or logical requirements or options associated with the job. If
certain job control settings are agreed upon within an installation and made
standard during supervisor generation, the programmer need not provide a
lengthy OPTION job control statement for each job submitted. If a given
job requires different settings from those that are standard, the // OPTION
card can be used to override the standard settings for the duration of that
job.

The job control settings that can be defined as standard include:
whether a dump is desired if an abnormal termination occurs, whether
language translators are to list source module diagnostics or to produce an

Chapter 3: Planning the System 3.35

End of Supervisor

object deck, and whether a symbolic cross-reference list is desired from the
assembler or ANS COBOL, etc.

These job control settings are specified in individual parameters of the
STDJC macro.

Another macro that deals with standard job control settings is ASSGN.
This macro establishes standard job control associations between symbolic
device names and physical I/O devices. If multiple assignments within one
job stream are made for a single logical unit, only the last assignment for
that logical unit is valid: the rest are ignored. These standard assignments
can be overridden for the duration of a job via the // ASSGN job control
statement or for the duration until the next IPL via the ASSGN job control
command (no //).

Standard assignments may be established for all programmer logical
units and all of the system logical units, except the following: SYSRES
(which is established during the IPL procedure), SYSVIS (which is
established via the DPD macro during supervisor generation or the DPD
command during IPL), SYSIN, SYSOUT, and SYSCLB (the latter three
during job control execution).

These standard assignments are supplemented in the system by
cataloging disk and tape labels to the various system and partition standard
label tracks. This relieves the programmer of having to supply this label
information for regular jobs such as compilations and linkage editor
functions. (Refer to Chapter 5: Controlling Jobs for the details on how
this is done.)

The last macro instruction supplied during supervisor generation must be
the SEND macro, which may indicate the address of the end of the
supervisor (or more accurately, the requested starting address of the real
storage to be used by problem programs).

Regardless of your particular supervisor configuration, the SEND
address can be calculated internally. If you have previously assembled a
DOS supervisor (previous to DOS/VS), you may still of course calculate
the size of the supervisor and round the value up to the nearest 2048 bytes
(2K). However, keep in mind that storage protection is a standard feature
on all models of the System/370, and therefore:

o The SEND address is always a multiple of 2K bytes.

o The address you specify in the SEND macro is compared with the
actual size of your generated supervisor, so that the calculated address
never overlaps any part of the supervisor.

o If no address is specified in the SEND macro, the default is the lowest
address possible (that is, the minimum space to contain the generated
supervisor plus 1, and rounded up to the nearest 2K bytes, if
necessary).

3.36 DOS/VS System Management Guide

Generating POWER/VS

POWER/VS allows you to make more efficient use of the CPU and unit
record 1/0 devices. The POWER/VS code distributed in the core image
library is ready to run, but you should evaluate its options for your
installation. If you need to tailor it, you generate your own version(s) of
POWER/VS from the POWER/VS macros, which are provided in the
source statement library. The three macros for this purpose are:

POWER
PLINE
PRMT

If you want RJE (remote job entry) support, you need to assemble the
PLINE and PRMT macros in addition to the POWER macro. If you do not
require RJE, the POWER macro is sufficient.

Virtual and Real Storage Requirements

Because POWER/VS uses PFIX and PFREE macro instructions, not only
is a virtual partition needed but also the corresponding real partition.
Figure 3.8 illustrates the POWER/VS partition, and shows the following
three areas:

« Permanent area - contains the POWER/VS nucleus and control tables.
Because this code does not tolerate paging, it is fixed at POWER/VS
initiation and remains fixed until POWER/VS is terminated.

« Fixable area - contains data buffers and dynamic control blocks: pages
that will be fixed in the corresponding real partition and freed again
when the task becomes inoperative.

+ Pageable area - contains POWER/VS pages that can be freed when
other partitions require additional real storage.

When the DOS/VS supervisor is generated, POWER/VS storage
requirements must be taken into account.

The virtual partition must at least be large enough to contain the
permanent area, the fixable area, and the pageable area. The minimum size
I of the pageable area is 132K bytes.

The size of the real partition that POWER/VS needs is based on the
size of the permanent area, which is always 6K bytes, plus the size of the
fixable area, which is variable (minimum 4K bytes). It varies according to
the DBLK parameter specification, the number of reader/writer tasks and
execution processors in the system, and the number of active RJE (remote
job entry) lines. Formulas for determining the size of the real partition are
found in DOS/VS System Generation .

Allocating a real partition that is too small can cause performance
degradation. However, allocating a real partition that is larger than required
will not cause system performance degradation because page frames not
being used by POWER/VS are made available to the page pool. The
POWER/VS status report tells you the maximum number of pages fixed at
any one time.

Chapter 3: Planning the System 3.37

POWER/VS F1R
(ALLOCR)

POWER/VS F1V
(ALLOC)

SUPERVISOR

BGR

fo > > - - e e e e o w -

F2R

F1R

o - - - - e e - - e o

MAIN PAGE POOL

BGV

F4vVv

F3Vv

F2v

PERMANENT AREA

FIXABLE AREA

PAGEABLE AREA

SVA

Figure 3.8 POWER/VS Partition Allocations

J\.

Real address
Y area
(RSIZE)

Virtual address
area
(VSIZE)

In this example, POWER/VS resides in the foreground-one (F1)
partition. Both Fl-virtual and Fl-real must be allocated.

Intermediate Storage Requirements

Intermediate storage in POWER/VS is on disk (or tape, for output only)

and contains the queue file, data file, and (optional) account file. These

three files may be on the same physical unit or on separate units. Different

device types may be used for each file. The interaction between the
POWER/VS tasks and intermediate storage is illustrated in Figure 3.9.

In general, it is best at first to assign more intermediate storage than

you think you will need. Then use the POWER/VS status report to

determine how to reduce the storage allocations. From the status report you

can see how much disk space was used and unused in each session.

3.38 DOS/VS System Management Guide

Size of the Data File and Queue File

The data file, which is made up of track groups, and the queue file, which
is primarily made up of queue records, are directly related. Each track
group has a corresponding queue record. The size of the data file is defined
by the total number of track groups, which in turn is limited by the number
of records in the queue file.

In estimating the size of the data file and queue file, you should
consider the following:

« The maximum number of POWER/VS jobs in the system at any one
time

o The largest volume of spooled 1/O for any job

« Whether output segmentation is used.

For the data file extents, estimate separately the total number of
input/output card images and the total number of line images spooled to
disk in a typical 8-hour shift. Choose a file size large enough to hold half
this amount of data. This should prevent POWER/VS from running out of
file space. File extents can be respecified if they prove to be too large or
too small (check the status report).

The queue file should be large enough to support the entire data file:
that is, there should be one queue record for each track group in the data
file. It is good practice to allocate six additional queue file records for
internal POWER/VS usage.

You must supply the DLBL and EXTENT information for the queue
file and the data file. For the queue file the file name is IJQFILE and the
symbolic unit is SYS001. IJDFILE is the file name for the data file, which
may be on up to five extents (SYS002 - SYS006). If more than one volume
is used for the data file, all volumes must be of the same device type. Each
EXTENT for the data file must start and end on a cylinder boundary.
Multiple extents must reside on separate volumes.

There are two parameters relating directly to the data file and indirectly
to the queue file that you can specify during POWER/VS generation: the
block size of the data file records (DBLK) and the number of track group
size (TRACKGP).

Block Size of the Data File. The size of the physical records written to the
data file is determined by the DBLK parameter. This also influences the
size of the data buffers required for each POWER/VS task. If not explicitly
specified by the user, the system chooses a default block size, which suits
the characteristics of the disk device assigned to the data file. The default
values for each device are shown below:

. Default Data Block | Approx. # cards | Approx. # lines per
Device Type Size per block * block **
2314/2319 920 11 7
3330/3333 952 12 7
3340 808 10 6

** Based on 132 print positions per line.

* POWER/VS suppresses trailing blanks so the figures shown are the worst case.

Chapter 3: Planning the System 3.39

DISKETTE

O
INPUT

INPUT
Y
READER
TASKS
QUEUE FILE PUNCHED
. (SYS001) o o OUTPUT
géggggs'g'; - DATA FILE - WRITER
RS A (SYS002-006) J TASKS -
o - o LISTED
ACCOUNT FILE OUTPUT
(SYS000) /—
PACCOUNT
TASKS
Y
o= .
(
| CARD* |
] ‘]
e e e d

* Obtained by rerouting
IJAFILE to punch queue.

Figure 3.9. Intermediate Storage

Intermediate storage is divided into three files: the queue file, the data file, and the account file (optional).
Each file may be on a different disk unit. Intermediate storage for output can also be on tape (not shown in
figure). Information is maintained in each of these files by the POWER/VS reader, execution, and writer
tasks.

3.40 DOS/VS System Management Guide

Account File

If you specify a value other than the default, it is possible to achieve better
performance. In general, the smaller the DBLK is, the less real storage is
required to run a given number of tasks. Conversely, the larger the DBLK
is, the more real storage is required; however, more efficient use is made of
intermediate storage because the larger the block size, the more spool
records per track. The more records in a block, the fewer the disk 1/0
operations to perform. If the data buffer size, which increases by 32-byte
increments, is larger than 1000 bytes, only one data buffer will fit into a
storage page. The largest buffer size is 2008 bytes, which is one data buffer
per page with its control information.

Determining the Number of Track Groups. After you know your DBLK size,
you can determine the track group size. You know how many blocks per
cylinder of DASD and approximately how many records in each block.

If the track group size is small (the smallest is 1), then one queue
record is needed for each track on the data file. This results in a larger
queue file and an overhead in queue record management, but best utilizes
the disk space availabe in the data file. If the track group size is large (the
largest number would be that equal to the number of tracks per cylinder),
then fewer queue records (one per cylinder) are needed. However, because
there can be only one POWER/VS job for each track group, disk space is
wasted on the data file whenever a job does not fill a track group.

If you do not specify a track group size, the system will try to use all of
the data file. The system calculates the number of tracks within the extents
provided by the data file. It then determines the number of 152-byte
records it can write within the queue file. From these two figures it
determines the number of track groups to allocate, by calculating the
samllest value possible for TRACKGP, which utilizes the largest amount of
the data file.

At POWER/VS initialization time if the TRACKGP you specify
conflicts with the EXTENT information for the data file, the system
changes the TRACKGP value. You are informed of the new TRACKGP
value in a message.

If the DOS/VS supervisor was generated with job accounting interface
support, then you can meaningfully specify the ACCOUNT parameter in
the POWER macro. This generates job accounting support within
POWER/VS that accumulates job accounting interface information and
POWER/VS job accounting information. No user-written data collection
routine is necessary. POWER/VS automatically collects accounting
information for POWER/VS supported partitions (and the partition in
which POWER/VS is running) and writes it onto the account file on disk.
You can process this file directly or issue a PACCOUNT command to store
the information on another medium for processing at a later date.

You must supply the DLBL and EXTENT information for the account
file. Use the file name IJAFILE and the symbolic unit number SYS000 for
the DLBL and EXTENT cards, respectively. If a user disk file (SD type
only) or a standard labeled tape file will be used to save account

| information, DLBL and EXTENT information must be supplied.

Chapter 3: Planning the System 3.41

Input Options

Source Library Inclusion

To estimate the size of the account file, you should consider that each
POWER/VS job can create at least one reader, one file, and one punch
account record. In addition, each DOS/VS job step within a POWER/VS
job creates one execution account record. The following list shows
approximately how many POWER/VS jobs can be handled by one cylinder
of the account file:

2314 110 jobs
3330 170 jobs
3340 60 jobs

These estimates are based on an average of 5 account records per
POWER/VS job.

When the account file becomes 80% full, a warning message is issued.
The file should then be saved or deleted using the PACCOUNT command.
If the account file fills completely, the operator is notified and any task
requiring space in the account file is put in the wait state until space
becomes available.

Refer to POWER/VS Job Accounting in Chapter 10: Using the
Facilities and Options of DOS/VS for the format and contents of the
account file.

In POWER/VS the options that are related to input are:
« Source library inclusion

« User exit routine.

The POWER/VS source library inclusion (SLI) option may be used in
conjunction with, or as an alternative to, the DOS/VS procedure library.
Use of the SLI option allows the following:

» execution of single or multiple jobs cataloged in a private or system
source statement library

» inclusion of JECL LST and PUN statements in the cataloged job

» inclusion of SYSIPT data in the cataloged job and insertion of SYSIPT
data when the job is executed

o SLI book modification (including data) at execution time

o use of partition independent SLI books

In the SUBLIB parameter as POWER/VS is being generated, you can
specify the sublibrary that is to be searched if no sublibrary is specified in
the SLI statement. You may select any sublibrary other than those reserved
for IBM system use (refer to The Source Statement Library in Chapter 3:
Planning the System). For further details about using the SLI option refer
to Using SLI Books in Chapter 8: Using POWER/VS.

3.42 DOS/VS System Management Guide

User Exit Routine

Processing Options

Assigning Default Priorities

Limiting Output

Support for a user exit during the POWER/VS reader routine is generated
if the name of the user exit routine is specified in the RDREXIT parameter.
Such a routine might be used, for example, to verify private passwords or
accounting information. Your routines must be relocatable (or
self-relocating) and reenterable (for a similar example, refer to job control
user exit routine in chapter 10). It should not perform any operation that
might cause a wait condition in the POWER/VS partition.

When POWER/VS is initiated, your routine is loaded into-the
POWER/VS partition. The POWER/VS reader routine gives control to the
user routine each time a DOS/VS JCL or POWER/VS JECL statement is
read. Your routine must return control to the POWER/VS reader routine.
The programming and register conventions are described in Chapter 9:
Designing Programs for Virtual-Mode Executions.

Note: An abnormal termination of your exit routine will also abnormally
terminate POWER/VS.

In POWER/VS the options that are related to processing are:
« Assigning default priorities

« Limiting output

« Logging job names and numbers

« Providing forms control.

As each job is entered for processing, it is assigned a certain priority within
its class. This simplifies the scheduling of high-priority jobs. The priority is
normally specified in the * $$ JOB statement. If it is not specified,
POWER/VS assumes the default priority in the PRI parameter.

Because POWER/ VS spools unit record output on intermediate storage, the
operator cannot check the amount of output being stored. If a loop occurs,
for example, the output could be excessive. The STDLINE and STDCARD
parameters should therefore be used to restrict the output to a standard
number of printed lines or punched cards. When either of these limits is
exceeded, an informative message is issued to the operator. He can choose
to ignore the message or terminate the job. The STDLINE parameter can
be overridden for a particular job by specifying it in the LST statement.
The STDCARD parameter can be overridden for a particular job by
specifying it in the PUN statement.

Chapter 3: Planning the System 3.43

Logging Job Names and Numbers

Providing Forms Control

Output Options

Separating Jobs

Each job name as specified in the * $$ JOB statement together with the
job number POWER/VS assigned to it, the partition identification, user
information, and (for RJE) remote identification, is displayed in a message
on SYSLOG if the JLOG parameter is not specified as NO. The message is
displayed at the time at which the job starts execution. JLOG is not
necessary if unique job names are always used or if there is always one
DOS/VS job for each POWER/VS job.

Because output is transferred to intermediate storage and the program that
generates the output is no longer present when the output is produced,
POWER/VS keeps track of the current print line of the output being
intercepted. The LTAB parameter contains a description of the forms
control tape or forms control buffer of the printers. This enables
POWER/VS to calculate the next line on a page, even in case of skip
operations. Based on this information, POWER/VS simulates channel 9 and
channel 12 occurrences to allow the program to format end-of-page output
correctly. The physical printer that is used to print the output must,
however, have a forms control tape or buffer content that matches the
LTAB specification. The LTAB specification can be overridden for the
duration of one job by means of the LTAB parameter in the LST
statement.

In POWER/VS the options that are related to output are:
« Job separation

« Output segmentation.

You can specify job separation in the JSEP parameter for both print and
punch output. This specification can be overriden at execution time for a
particular job by specifying the JSEP operand in the LST or PUN
statement.

Job separation for print output means that up to nine separator pages
are to be inserted before and after each job’s output. Separator pages
contain information about the job. Each separator page is printed with 10
lines (120 characters in length). Each line contains the job name, job
number, user information, date, and time. The last or only segment of
output will have the word last printed on it.

Job separation for punch output (except for the 5425, which is handled
differently) means that before the job’s punched output two cards
containing 12-11-0-8-9 punches (in all columns) and one card containing
the POWER/VS job name (to be read from the back of the card) are
added and that behind the job’s punched output two blank cards are added.
This occurs if 1, 2, or 3 is specified. If 4 is specified, one additional

3.44 DOS/VS System Management Guide

Segmenting Output

Remote Job Entry Support

Planning the Libraries

12-11-0-8-9 card is punched; if 5 is specified, two additional 12-11-0-8-9
cards are punched, and so on up to nine. For the 5425 from one to nine
cards are added before the job’s output containing the POWER/VS job
name (12 times per card).

Note: Stacker selection is ignored if job separation is requested. The default
stacker for the given device is used instead.

Turnaround time for jobs with extensive printed or punched output can be
improved by segmenting the output. This means that as each part of the
output becomes available, it can be printed or punched even though the
entire job may not be finished executing. In the RBS (records before
segmentation) parameter you specify the number of pages and cards that
can be processed before an output writer is started. The RBS parameter is
only used when spooling to disk intermediate storage. This parameter can
be overridden for a particular job by means of the RBS parameter in the
LST or PUN statement.

If you want POWER/VS to support RJE (remote job entry), you must
specify two macro instructions in addition to the POWER macro. In the
PLINE macro you specify the hardware characteritics of each RJE line. In
the PRMT macro you specify the characteristics of each RJE user.

The components of the DOS/VS system are shipped in four system
libraries: the core image library, the relocatable library, the source
statement library, and the procedure library. Most programs and procedures
developed and used by your installation will also be stored in these libraries.
In addition to the system libraries, DOS/VS supports private libraries which
you can use to either substitute for or supplement the corresponding system
libraries.

Planning the size, contents, and location of these libraries according to
the needs of your installation is an essential part of the system generation
procedure. Such detailed planning will ensure that:

« No disk space is wasted by components not required in your
installation.

« The libraries are large enough to allow for future additions.

o The libraries are accessed by the system with maximum efficiency.
Following a brief description of the purpose and contents of the individual
libraries, this section discusses the three major considerations involved in

tailoring the libraries to the needs of your installation. These considerations
are:

1. Which libraries are required.

Chapter 3: Planning the System 3.45

Purpose and Contents of the

The Core Image Library

The Relocatable Library

The Source Statement Library

3.46 DOS/VS System Management

2. How many disk drives are available and where on these devices should
the individual libraries be placed.

3. How large should each of the libraries be and what should they contain.

Note that this section is intended to give only general guidance for planning
the libraries. More details are contained in DOS/VS System Generation.
How to change the size of a library, how to insert elements into or delete
elements from a library, and how to create private libraries is described in
Chapter 7: Using the Libraries.

Libraries

The following is a brief summary of the purpose and contents of the
DOS/VS system and private libraries.

The core image library contains system and user programs (phases) ready
for execution. Each program phase must first be placed in a core image
library by the linkage editor program. (The structure of a program in the
core image library is described in Chapter 6: Linking Programs.)

The relocatable library contains object modules in relocatable form. These
object modules are the output of the language translator programs
(assemblers and compilers).

The purpose of the relocatable library is to allow you to maintain
frequently-used object modules in the library and combine them with other
modules without requiring recompilation. The modules from the relocatable
library must be processed by the linkage editor and stored in the core image
library before they can be executed.

The elements in the source statement library are called books. A book is
either a sequence of source statements or a macro definition.

You can catalog into the source statement library sets of source
statements that are used by more than one program, and then include these
statements in your source program by specifying a COPY (assembler and
COBOL) or %INCLUDE (PL/I) statement.

The macro definitions in the source statement library include those
macros supplied by IBM as well as any others which you have written and
cataloged yourself. When you issue a macro instruction in your program,
the corresponding macro definition is retrieved from the source statement
library and included in your program according to the parameters you
specified.

Guide

The Procedure Library

Private Libraries

Each book in the source statement library is classified as belonging to a
specific sublibrary; for example, an assembler, a PL/I, or a COBOL
sublibrary. Sublibraries are identified by a one-letter prefix added to the
book name. Letters A through I and the letter Z are reserved for
sublibraries containing system components. You can use the letters J
through Y, the digits O through 9, and the special characters $, &, and #,
to define your own sublibraries.

Classifying books by a sublibrary prefix allows a program, for example
written in COBOL, to have the same name as a program written in
assembler language, or for two COBOL programs to have the same name.
A book is defined to belong to a certain sublibrary at the time it is
cataloged into the source statement library.

Frequently-used sets of control statements can be cataloged into the
procedure library. The elements of the procedure library, called cataloged
procedures, can consist of job control statements and/or SYSIPT data.
Included POWER/VS JECL statements will be treated as DOS/VS
comment statements. If extended procedure support was included during
supervisor generation (by specifying the SYSFIL option) you can also
catalog procedures containing data that is to be read from SYSIPT under
control of the device-independent sequential IOCS, by your program or by
IBM-supplied service programs and language translators. SYSIPT in-line
data can be, for example, the control statements processed by the librarian
or the sort/merge program. Cataloged procedures are retrieved from the
procedure library by a special form of the EXEC job control statement.

Private libraries can be defined for the core image, relocatable, and source
statement libraries. The procedure library is supported as a system library
only. You can use private libraries to either replace or supplement the
corresponding system libraries.

Private core image libraries (PCIL) have the same format as and are
supplementary to the system core image library. A private core image
library can be used:

o During maintenance or development of operational programs. You can
catalog the copy of the program that you are altering to a PCIL with
the same name as the operational version in the system core image
library.

« To preserve security of operational programs, they may be cataloged
into PCIL which is controlled exclusively by the operations department.

« In a multiple-partition system, allocation of PCILs on separate volumes
can relieve disk arm contention on the SYSRES volume.

« If the linkage editor is to be used in a foreground partition. In that case
a PCIL must be exclusively assigned to that partition.

A private core image library is created by the librarian program CORGZ
and is not located on the system residence (SYSRES) extent. The private

Chapter 3: Planning the System 3.47

core image library extent (associated with the logical name SYSCLB) can
reside on any disk volume that is supported by DOS/VS. Multiple private
core image libraries can reside on one volume or they can be created on
separate volumes. They can be created on the same volume as SYSRES, but
this is not recommended unless the access level is low. SYSCLB can only
be assigned permanently (not temporarily) and is not acceptable as a
standard assignment during supervisor generation.

Choosing the Libraries for an Installation

In as well as executable user programs an operational DOS/VS system all
system components (supervisor, job control program, linkage editor, etc.)
must reside in the system core image library. Therefore, a system core
image library must be present in every DOS/VS installation. Which of the
other libraries you need depends largely on the type and amount of work to
be done and the resources available at your installation. The following
discussion of the advantages and possible applications of the individual
libraries is intended to assist you in selecting a set of libraries that will help
guarantee optimum performance of your system.

Relocatable and Source Statement Libraries

Procedure Library

Although these libraries are optional, few installations can operate
efficiently without them. If, for example, you work with a PL/I compiler
and you need to have the PL/I resident library routines on-line at all times,
these routines must be in' the relocatable library. (The only -- and very
inefficient -- alternative would be to include the physical card decks for
such modules in-line with the linkage editor input.) Similarly, when you
assemble programs that use IBM-supplied macros the corresponding macro
definitions must be present in the source statement library.

The same advantages as those gained by having IBM-supplied modules
in a library can of course be obtained if you store your own object modules
or source statement books in a relocatable or source statement library. The
more information you have on-line in a library the less card handling is
required and the more efficient your system will operate. Because the disk
space available to the libraries is limited, you may prefer to reduce the
contents of the relocatable and source statement libraries to a minimum to
allow for sufficient space for the core image library. If additional disk drives
are available, the space problem can be solved by creating private libraries
(see Private Libraries, later in this section.)

In most data processing installations there are a number of programs that
are frequently executed. An inventory control program, for instance, may
have to be run daily or weekly. Or a payroll program may have to be
executed weekly or monthly. These programs are probably used for a long
period of time without being changed.

For each of these programs, there would be one or more sets of job
control statements, which the programmer prepared and tested when the

3.48 DOS/VS System Management Guide

Private Libraries

program was first run. These sets of job control statements can be
cataloged in a procedure library and then, to retrieve a set, only one
statement is required.

This minimizes repetitive operator handling (which often includes the
replacement of defective cards and reinsertion of diskettes), and reduces
machine time and errors.

A cataloged procedure is exactly the same as what is described above
as a fixed set of job control statements. But the individual procedures are
no longer collected by the operator and selected manually for use; instead,
they are cataloged in card image format in the procedure library, from
where they can be retrieved through a special form of the EXEC job
control statement or operator command. Cataloged procedures can be
modified as they are retrieved from the library.

Refer to Chapter 7: Using the Libraries for information on how to
create and maintain (catalog, delete, etc.) a procedure library. The use of
cataloged procedures (retrieving and modifying) is discussed in Chapter 5:
Controlling Jobs.

You can establish private relocatable or source statement libraries either to
supplement or to replace the system libraries on the SYSRES file, thereby
extending the space available to the system core image library. Conversely,
you can reduce the size of the system core image library by cataloging
selected programs in a private core image library.

Private libraries are also useful in a testing environment where you can
keep working copies of your programs intact on a system library while you
test modifications of the same programs on a private library. Private
libraries can thus add a great deal of flexibility to your system.

You may define as many private core image, relocatable, and source
statement libraries as desired, each serving a particular purpose. For
instance, having a separate core image library for each partition, each on a
separate disk drive, would reduce the disk arm movements on the SYSRES
volume, which means faster access to the libraries. Be careful, however, not
to have too many private libraries in your installation because of the
additional maintenance required. Also, if each programmer were allowed to
have his own private library, the total time spent by the operator in
mounting and dismounting disks might exceed the execution time of the
program.

To be able to use a private core image library the PCIL option must
have been specified when the supervisor was generated. The PCIL option,
and other special considerations concerning the planning of private core
image libraries are discussed under Tailoring the Supervisor, earlier in this
chapter.

Chapter 3: Planning the System 3.49

Determining the Location of the Libraries

Having decided which libraries you want in your system, you must
determine where on the available devices these libraries are to be placed.
All system libraries must reside in the SYSRES extent of the system disk
pack in a predefined sequence (see Figure 3.10). Although it is theoretically
possible to have private libraries on the system pack (outside the SYSRES
extent), this is not recommended because it involves increased movement of
the disk arm.

Note: For details on the first tracks of
SYSRES, the label information cylin-
der, the user area, and the VTOC, refer
to Appendix A: System Layout on Disk.

Core Image Library

Relocatable Library

_Source Statement Library

Procedure Library <= end of SYSRES extent

Label Information

Figure 3.10. The Relative Location of the Four System Libraries

The directory area for each library is not shown in the figure. By
definition, all system libraries reside on the system residence file (SYSRES).
If you have additional disk drives, you can define private core image,
relocatable, and/or source statement libraries on the extra volumes. Private
relocatable and private source statement library volumes must be of the
same type as the SYSRES pack. Private core image libraries can be on any
disk device type supported by DOS/VS. The system relocatable and system
source statement libraries can be removed from SYSRES and established as
private libraries; the system core image library, however, must always be
present on SYSRES. It can be supplemented but not replaced by a private
core image library. The procedure library is supported only as a system
library; you cannot create a private procedure library.

Figure 3.11 shows two examples of how you can organize the libraries
in a system with three disk drives. Any other combination of libraries on
the available devices in possible.

3.50 DOS/VS System Management Guide

The examples in Figure 3.11 are to demonstrate that you can distribute
your private libraries among the available devices as desired. A more
practical example of how you can organize your libraries is given in Figure
3.12. The example assumes a system with three disk drives, but it is also
applicable if you have only two or more than three drives. The organization
of the libraries in this example is especially useful when you need large
amounts of data on-line during execution.

Planning the Size and Contents of the Libraries

When planning the libraries for an operational system, you must decide on
their precise contents and size for daily use. Although you can change the
size of your system libraries at any time after system generation (by means
of the librarian programs), you should try to anticipate future space
requirements and, if possible, provide this space. Such detailed planning can
eliminate the need for a complete reorganization of the libraries which
would be necessary if the extension of a library results in an overflow on
the disk pack. Careful planning of the private libraries will save you
additional work because you cannot redefine the extents of a private library
once it has been created. To change the size of a private library you must
create a new private library and copy the contents of the old library into it.
Consider the following factors before deciding on the contents and size of
the libraries:

« The average size of a program in your installation.
o The number of programs you want on-line.

e The amount of space available.

The core image library, for example, is the library in which you will keep
most of your programs. (Otherwise, each program must be submitted to the
linkage editor and placed in the core image library temporarily before it can
be executed.) Therefore, ensure that your core image library is large enough
to accommodate all programs that must be resident and on line; this
includes your own programs as well as IBM-supplied components.

Special considerations apply when you work with an on-line private core
image library:

e Program phases starting with $ could be in a private core image library,
but it is more efficient to keep them in the system core image library.
When a $ phase is required, the system first searches the system core
image library and, if it does not find the phase, it then searches the
assigned private core image library.

o For all other phases (not beginning with $), first the private and then
the system core image library is searched; thus, if you work with a
private core image library, search time is reduced for these phases
cataloged in the private core image library.

To plan the contents and size of the relocatable library, determine which of
the IBM-supplied modules can be deleted and how much space you need to
store your own object modules on-line. For any modules you wish to retain
in relocatable form, you can copy them onto a backup disk and delete them
from the operational pack.

Chapter 3: Planning the System 3.51

apingy juswageuey WSS SA/SOA TS €

QU 3y} JO SUOPEIOT JAPEWdY []°¢ B

sauIel

Core Image Library
Procedure Library

Label Information

Private

Relocatable Library

Private Source

Statement Library

If a private relocatable library and a private source statement library are to rep/ace the corresponding system library, the core image library
directly precedes the procedure library. These private libraries can also be used to supplement the system relocatable and source statement
libraries, in which case the SYSRES file would appear exactly as shown in Figure 3.6,

Core Image Library
Procedure Library

Label Information

Private Core
Image Library

Private

Relocatable Library

Private Source
Statement Library |, .

A private core image library can only be used to supp/ement the system core image library, which must always be present on SYSRES.
Several private libraries may reside on the same disk as illustrated.

] SYSRLB

SYSSLB

@Compiling — Assembling — Link-Editing

Drive X'190’ Drive X191’ Drive X192’

Data

PSSL

N—

The system core image library (CIL) contains only those programs required for execution-time
processing. The compilers, assemblers, and the linkage editor are kept in the private core
image library (PCIL).

e o - - ———— — — — — —— —— ———————————————— —————— ————————

@ Processing

Drive X'190’ Drive X191’ Drive X'192’

For execution-time processing, the private libraries are no longer required and can be replaced
by a data volume. Thus, maximum possible space is allowed for processing data.

CIL = system core image library

= procedure library
PCIL = private core image library

= private relocatable library
PSSL = private source statement library

Figure 3.12. Example of Library Organization

Chapter 3: Planning the System 3.53

With one disk drive you may prefer to maintain only enough free space
in the relocatable library of the operational pack to contain the modules for
the largest component in the system. This small relocatable library permits
temporary insertion of any component in relocatable form. This component
can then be immediately link-edited into thé core image library and deleted
from the relocatable library.

Similar considerations apply for the source statement library. Determine
which of the IBM-supplied components you need on-line, which should be
transferred to a backup volume for future extensions of your system, and
which can be deleted entirely.

If you intend to use a procedure library, you should allocate sufficient
space for it on the SYSRES file during system generation. In estimating the
amount of space required, consider the number of job control statements
and SYSIPT data records (source modules, utility control statements, etc.)

I you expect to store in the procedure library.

After you have determined the space requirements for. your libraries in
terms of number and size of programs, you must define and allocate the
amount of disk space needed to accommodate these programs. A set of
formulas is available to calculate the number of tracks and cylinders
required for each library. These formulas are contained in DOS/VS
System Generation. Refer to Chapter 7: Using the Libraries for
information on how disk space is allocated to a library.

The contents of the libraries are identified in the Memorandum to
Users (shipped with the distributed DOS/VS system). The storage
requirements (sizes) for these components and macro definitions are
identified in the section for each component.

3.54 DOS/VS System Management Guide

Part II: Using the System

This section is provided especially for applications programmers and
operators. It is a guide to the day-to-day use of the system. The chapters it
contains are:

Chapter 4: Starting the System describes how the operator performs the
initial program load (IPL) procedure. It also describes how to create the file
required for recording error information.

Chapter 5: Controlling Jobs describes how the applications programmer or
operator supplies input to the job control program, which controls the
execution of a job.

Chapter 6: Linking Programs describes how the applications programmer
prepares input to the linkage editor program, which links the modules
produced by language translators and produces executable programs that
are placed in the core image library.

Chapter 7: Using the Libraries provides applications programmers and
operators with the information on how to alter, copy, and inspect the
contents of the libraries. It also describes how to allocate space to the
libraries and how to create private libraries.

Chapter 8: Using POWER/VS addresses the applications programmer
who submits jobs for entry into a DOS/VS system running under
POWER/VS, and the operator who is working with a system with
POWER/VS or POWER/VS RIJE.

Chapter 4: Starting the System

Before a job can be entered into the system for execution, the supervisor
must be read into the supervisor area of real storage and the job control
program must be loaded into the virtual background partition. To do this,
the operator starts the system by following the initial program load (IPL)
procedure.

This chapter describes the use of the IPL commands. The exact
formats of these commands are contained in DOS/VS System Control
Statements, and DOS/VS Operating Procedures. This chapter also provides
a summary of the automatic functions of IPL; descriptions of how to
modify the shared virtual area, and how to create the system record file
(SYSREC) and the hard copy file for the Model 115 or 125; a section on
the optional user exit routine for security checking after IPL; and a section
on entering SYSREC if the reliability data extractor (RDE) option was
generated in the supervisor.

You must perform the IPL procedure each time you have to:

« Load a new supervisor (for normal system start-up, for different
supervisor options, or to recover from a system malfunction. For the last,
refer to DOS/VS Serviceability Aids and Debugging Procedures).

« Change the channel and unit assignment of the system residence
(SYSRES), the VSAM master catalog (SYSCAT), or the page data set
(SYSVIS) due to hardware problems with the channel or disk drive.

e Modify the shared virtual area (to change allocation or to create the
system directory list).

e Create SYSREC (for the first time or because the file was damaged).

« Replace SYSRES or SYSVIS because of a hardware problem with the
pack.

« Add devices to or delete them from the system configuration.
« Set or change the time-of-day clock value.

« Set or change the system’s time zone value (if TOD=YES was specified
in the FOPT macro during supervisor generation).

Initial Program Loading (IPL)

To invoke the IPL routines, you place the system residence disk pack on a
drive, set the address of that drive in the load unit switches, and press
LOAD (on the video display/keyboard console, type in the address on the
drive and press ENTER). This causes the first record on track O to be read
into storage bytes 0-23. The information read in consists of an IPL PSW
(program status word) and two CCWs (channel command words), which in
turn cause the reading and loading of the IPL routines.

Next, the system enters the wait state. At this time, you must indicate
which device is to be used to communicate the name of the desired
supervisor to the system.

Chapter 4: Starting the System 4.1

o If you wish to use the default supervisor ($$A$SUP1), simply press the
external interrupt key.

« [If you wish to use the console to specify the supervisor name, press the
request key, await the message requesting the supervisor name, and
then type the name. (On the video display/keyboard console, you can
press either the enter key, the request key, or the cancel key.)

« If you wish to use the card reader to specify the name, ready the card
reader. The name of the supervisor must be punched into the first eight
columns of a card. Start the reader, and, when the card containing the
name has been read, stop the reader.

Operating in the supervisor state, IPL reads the supervisor nucleus into low
real storage from the core image library. If an unrecoverable error is sensed
while reading the supervisor nucleus, the hard wait status is entered and an
error code is set in the first four bytes of real storage. The IPL procedure
must then be restarted. For more information on wait states and error
codes, refer to the DOS/VS Serviceability Aids and Debugging
Procedures.

After successfully reading in the supervisor nucleus, IPL assigns the
current physical unit address of the system residence disk pack to the
SYSRES file (in response to your dialing this address in the load unit
switches).

Establishing the Communications Device for IPL

Next, the IPL routine places the central processing unit in the wait state
(with all interrupts enabled). At this time you must indicate which device is
to be used to communicate the IPL. commands to the system. The specific
manual operation you must perform depends on the device desired:

o If you wish to use the console (SYSLOG), press the request key on the
console. (On the video display/keyboard console, you can either press
the enter key, the request key, or the cancel key.)

« If you wish to use a card reader that was not assigned as SYSRDR in
the ASSGN macro during supervisor generation, ready this card reader.
IPL then assigns the SYSRDR file to this device for the duration of this
procedure.

« If you wish to use the card reader that is assigned as SYSRDR, press
the interrupt key. (This card reader must have been readied before you
pressed LOAD to invoke the IPL routines as described above.)

« If you wish to use the card reader that was used to read in the name of
the supervisor, start the reader and the IPL. commands are read.

When you submit [PL. commands, enter them via the selected
communications device.

Changing I/0 Device Assignments
If the physical addresses of any 1/0O devices are different from those

established by DVCGEN macros during supervisor generation, you have to
change the systém configuration. (To determine which devices are

4.2 DOS/VS System Management Guide

Adding Devices

Deleting Devices

supported in the system configuration, check the supervisor assembly
listing.) You can change the configuration by adding or deleting devices.
IPL changes the physical unit configuration accordingly. The modified
system configuration remains in effect until the next IPL.

If you want to change any symbolic unit assignments (except SYSRES,
SYSCAT, and SYSVIS), you must use ASSGN statements or commands.
These are processed by job control as described in the section Symbolic
I/0O Assignment in Chapter 5: Controlling Jobs.

Use the ADD command to include an 1/0 device and physical unit address
that were not included in the system configuration during supervisor
generation. The following requirements should be kept in mind:

« You can add a device only if sufficient device table space was provided
via the IOTAB macro during supervisor generation.

« If you add a tape cartridge unit, there must be enough space for an
associated Tape Error Block (TEB) if TEBs were specified during
supervisor generation.

« If DASD file protection was generated in the supervisor and you add a
DASD, the DASD must conform to the channel range and DASD types
specified in the DASDFP parameter.

« If the seek separation option was generated in the supervisor and you
add a DASD, the system must be able to accommodate an additional
seek address block (SAB).

e To add TP devices, TP support must have been specified during
supervisor generation.

If any of these requirements is not satisfied, you will get an appropriate
error message. You must then provide space in the control blocks for the
additional device by:

« re-assembling the supervisor, or

« deleting unnecessary devices of the type you want to add. You must
then re-issue the ADD command.

Use the DEL command to drop an I/O device from the existing system
configuration. Because all references to the device are removed, any
subsequent ASSGN job control statement that refers to a deleted device
will not be accepted. If you perform the IPL procedure from a card reader,
you must use a DEL command to delete any consoles that are not online
but were defined in a DVCGEN macro. (This is not necessary for other
devices that are not online.)

Chapter 4: Starting the System 4.3

Setting System Values

The SET command is required because it indicates to IPL that the ADD
and DEL commands (if any) are to be checked. The channel and unit
assignment for SYSRES is also checked at this time.

You can use the SET command to set the system date in the
communications region, the time-of-day clock, and the system time zone. If
you specify a time-of-day clock setting, you must depress the time-of-day
clock switch to the "enable set" position at the exact time specified in the
SET command. '

Assigning the VSAM Master Catalog

If VSAM is to be used, the CAT command may be used during IPL to
assign the VSAM master catalog to the SYSCAT file. This is only necessary
if you wish to override the SYSCAT assignment made during system
generation, or if you failed to assign SYSCAT during system generation.
The CAT command (if used) must be submitted after the SET command
and before the DPD command (described below). In the CAT command,
you indicate the channel and unit number to be associated with the
SYSCAT file.

Initiating Page Data Set Handling

Automatic Functions of IPL

You must follow the SET command (or the CAT command) by the DPD
command to indicate that IPL is to handle the page data set, which is
necessary for the virtual address area. The DPD command is required, with
or without operands. If submitted without operands, IPL will use the
information specified in the DPD macro during supervisor generation to
perform page data set handling. This includes opening the page data set,
checking its extent limits, and creating label information in the volume table
of contents (VTOC). IPL assigns the symbolic name SYSVIS to the page
data set.

The operands of the DPD command indicate whether the page data set
is to be formatted, its location, extent, and (optional) volume identification.
Because formatting the page data set is time-consuming, you should only
request it if the pack was damaged. The first time you use the page data
set, it will be formatted automatically.

The page data set can reside on any DASD supported by DOS/VS as a
system residence device. To help ensure better performance, the page data
set should not reside on a pack that is subject to heavy 1/0O requests.

IPL performs the following operations automatically:

« Sets storage protection keys to coincide with the partition allocations
determined during supervisor generation.

¢ Checks that the CPU model specified during supervisor generation is
the same as the model being used.

4.4 DOS/VS System Management Guide

o Informs the operator about the status of the time-of-day clock.

« Checks that all DASDs included in the configuration conform to the
channel range and DASD types specified in the DASDFP parameter (if
specified during supervisor generation).

o Checks that 3340 disk storage devices that are on line contain data
modules of a size as described by the pertinent PUB and, if they do
not, updates the PUB accordingly.

« Unassigns any DASD assignments for devices that are not operational
at this time (so as to prevent the error recovery routines from trying to
establish error recording statistics for these devices).

« Fetches the buffer loader transients to load the printer-control buffers
of the 3203, 3211, or 5203 printers if one or more of these printers is
| attached to the system and operational.

« Builds an address list in the supervisor for all RAS transients cataloged
in the system core image library. (The first RAS transient is also loaded
during IPL.)

After IPL completes these operations, the system loader loads the job
control program into the virtual background partition and places the system
in the problem program state. The message "READY FOR COMMUNI-
CATIONS" appears on the console immediately after IPL is complete
unless a warm start copy of the SVA is found (in which case the message
appears directly thereafter).

Building the SDL and Loading the SVA

After IPL when job control is first invoked, it will attempt to find a warm
start copy of the shared virtual area (SVA). If a warm start copy is found,
you can either accept it or reject it. You should reject it if you want to
reallocate the SVA, load other phases into the SVA and system directory
list (SDL), or add phase names to the (SDL).

If the warm start copy is rejected or not available, you can change (if
desired) the allocation of the SVA specified during supervisor generation by
means of the SET SVA job control command.

Next, you must submit SET SDL=CREATE, which enables job control
to build the system directory list and to load the SVA. (Note: The
procedure library initially contains suggested statements for loading the system
directory list.) Immediately following these statements, enter the phase
names to be included in the system directory list via SYSRDR or SYSLOG
(depending on the device from which job control is reading). These
statements can be entered via the IPL. communications device. Figure 4.1
illustrates such a job stream.

These statements can also be entered via a cataloged procedure. The
procedure library, as distributed with the system, contains two procedures
for loading the SVA, for which refer to DOS/VS System Generation. You
can also create your own procedure to load your own phases into the SVA.
Execute this procedure immediately after IPL.

The phases need not be currently cataloged in the core image library,
and, if they are not, the system issues a message on SYSLST (or SYSLOG

Chapter 4: Starting the System 4.5

if SYSLST is not available). If you subsequently catalog a phase into the
system core image library under a name listed as uncataloged, the entry in
the SDL is activated. In this case, if the phase is also identified in the SDL
as eligible for the SVA, it is loaded there immediately after it has been
link-edited. Thus, under the circumstances described above, you do not
have to re-IPL when you want to load additional phases in the SVA.

Creating the System Recorder File

The DOS/VS Recovery Management Support Recorder (RMSR) requires a
disk extent on which to record statistical information about machine errors
and environmental information. This disk extent is called the system
recorder file and is identified by the symbolic name SYSREC. The
SYSREC file must be created before job control encounters the first JOB
card following an IPL procedure. Usually, you create the SYSREC file only
after the first IPL (not after each IPL). If the SYSREC file has been
damaged, however, you must re-IPL and re-create SYSREC.

The SYSREC file requires a minimum of ten tracks (not including an
alternate track) and cannot be a split cylinder file. You must define
SYSREC as an extent of a permanently online disk device that DOS/VS
supports as a system residence device.

The SYSREC file label information must be included in the standard
label portion of the label cylinder on the SYSRES file. You must, therefore,
submit the // OPTION STDLABEL statement when creating the SYSREC
file. (Since the label information you submit is written at the beginning of
the standard label track, which overwrites the information that was present
there, you must resubmit all the necessary information. A more detailed
description of preparing standard label information is contained in
Chapter 5: Controlling Jobs.)

Figure 4.1 illustrates a job stream to create the system recorder file.
The IPL commands are included in the figure to emphasize the proper
placement of the statements that create the SYSREC file. Do not include a
// JOB statement until you have supplied all the information applicable to
SYSREC. This is because the SYSREC file is opened when the first
// JOB statement is encountered. Note that the file name IJSYSRC is
required in the DLBL job control statement.

When the system is to be shut down, you should issue the Record On
Demand (ROD) command to ensure that no statistical data is lost. For the
IBM System/370 Models 115 and 125, the U command of the mode select
display, should also be issued to save disk usage statistics on the service
DISKETTE. These commands are not valid for recording teleprocessing
statistical data. Refer to the appropriate teleprocessing guides for more
information.

To obtain a listing of the SYSREC file, run the EREP program as
described in DOS/VS Serviceability Aids and Debugging Procedures.
During execution of the EREP program, recording on SYSREC is
suppressed.

4.6 DOS/VS System Management Guide

01301 DATE=../../..,CLOCK=../../..
0110A GIVE IPL CONTROL COMMANDS
DEL } __ If different from information

ADD " supplied during supervisor generation
SET .
CAT » |f VSAM catalog has not been assigned
DPD during SYSGEN, or if SYSGEN

| 01201 IPL COMPLETE FOR DOS/VS REL 33.0 ECLEVEL= 01 assignment must be changed.
BG 1T00A WARM START COPY OF SVA FOUND
BG rej
BG 1100A READY FOR COMMUNICATIONS
BG SET SVA=(290K, OK)
BG SET SDL= CREATE

BGS$$BOPEN
BGSMAINDIR,SVA
BG .
BG
BG .
BG /*
BG ASSGN
BG ASSGN SYSREC, X190’ » |f different from information
BG SET RF-CREATE supplied during supervisor generation.
BG // OPTION STDLABEL Submit with the rest of
BG // DLBL IJSYSRC, '‘DOS.SYSTEM.RMSR.FILE’ the STDLABEL statements.
BG / / EXTENT SYSREC, ,,, 1700,43
/l-

BG // JOB FIRST

Continue with normal job stream.

Figwre 4.1. Example of Creation of the Shared Virtual Area and the
SYSREC File

Creating the Hard Copy File for Models 115 and 125

On a Model 115 or 125 with the video display/keyboard console, all
messages displayed on the screen and all information typed in by the
operator are saved in a file on the device assigned to SYSREC. This file is
called the hard copy file because you can obtain printed copies of the file
whenever required.

You must create the hard copy file after the first IPL procedure and
before you submit the first // JOB statement to the job control program.

The control statements and commands needed to create the hard copy
file are the same as those shown in Figure 4.1 for the SYSREC file with
the exception that you specify HC=CREATE in the SET command, and
the filename IJSYSCN in the DLBL job control statement. More
information about creating and printing the hard copy file is given in
DOS/VS Operating Procedures.

Security Checking after IPL

In the larger DOS/VS systems it is often desirable to perform certain
security checks at the end of an IPL procedure. It may, for instance, be
important to know who performed the procedure, whether the right system
pack was mounted, and whether the correct date was entered for the new
work session. Moreover, if you work with labeled data files it is important

Chapter 4: Starting the System 4.7

Entering RDE Data

that they bear the correct creation date, so as to guarantee that data files
are protected until their expiration date.

After the IPL procedure has been completed, control can be passed to a
user exit routine (phase name=$SYSOPEN) that checks system security
and integrity. This routine is entered once after every IPL procedure. The
DOS/VS distribution volume contains a dummy phase $SYSOPEN in the

- system core image library. If you do not use the facility it has no effect on

your system. Conventions for writing this kind of user exit routine, together
with an example, are contained in the section Writing an IPL User Exit
Routine in Chapter 10: Using the Facilities and Options of the
Supervisor.

If the supervisor was generated to support the reliability data extractor
(RDE), the system will ask you to provide additional information about the
system when the first // JOB statement after IPL is processed. A message
(1L90D IPL REASON CODE-=) is issued on the device assigned to
SYSLOG. You should respond with a reason code (two characters), which
indicates why the system was restarted. The system may have been started
as the beginning of normal operation or restarted because of a machine
error, a program error, an operator error, etc. Another message (11891
SUB-SYSTEM ID=) is issued and you should respond with a code
identifying the device type or program type that failed. On the basis of
these replies job control will build a record for SYSREC.

Before shutting down at the end of the day (or processing period), you
must ensure that no environmental data is lost, by issuing the ROD
command. This command also causes the RDE end-of-day record to be
written on the disk assigned to SYSREC. To obtain a listing of this file,
run the EREP program as described in DOS/VS Serviceability Aids and
Debugging Procedures.

This information will be very valuable to your operations management.
By replying with the exact reason code that applies in each case, you are in
fact ensuring a permanent record of the reason why you had to re-IPL.

Refer to the DOS/VS Operating Procedures, for more extensive
information on the RDE messages and the valid replies to them. DOS/VS
Messages also contains this information for use at the console.

4.8 DOS/VS System Management Guide

Chapter 5: Controlling Jobs

After the system has been successfully started by means of the IPL
program it is ready to accept input for execution.

The unit of work that is submitted to the system for execution is called
a job. A job, and the environment in which it is to run, must be defined to
the system through job control statements and commands. These job
control statements and commands are processed by the job control
program. The job control program is invoked by the supervisor

« after initial program loading, to process the first job after an IPL
procedure, or

« at the normal or abnormal end of a job or job step.

The job control program runs in any virtual partition of at least 64K bytes.
It performs its functions only between jobs and job steps, and, therefore, it
is not present in the partition while a problem program is being executed.

This chapter describes how to supply information to the job control
program to enable it to prepare a job for execution. It shows how to define
jobs and job steps, how to associate files on auxiliary storage with problem
programs and how to execute programs in virtual or real mode. Moreover, it
describes how standard sets of job control statements, called cataloged
procedures, can be retrieved from the procedure library, and how cataloged
statements can be modified.

After each job control statement is read, control can be given to a user
exit routine for examining and altering job control statements prior to their
being processed by the system. For a comprehensive description of this
facility refer to the section Checking and Altering Job Control Statements
later in this chapter.

The differences between job control statements and commands are not
spelled out in detail because a clear-cut distinction is not required in the
context of this chapter. Whenever applicable, it is simply stated whether the
function can be performed using statements, commands, or both. The
description of the job control statements and commands in this chapter is
limited to their use and functions; formats and characteristics of statements
and commands are detailed in DOS/VS System Control Statements.

The information in this chapter is intended for use by system
programmers, application programmers, and system operators.

Chapter 5: Controlling Jobs 5.1

Defining a Job

The beginning and end of a job are defined by the JOB and / &
(end-of-job) statements: '

// JOB jobname
additional job control statements and program input

/&

The program to be executed in a job is invoked through the EXEC
statement. In the following example, the program PROGA is fetched from
the core image library and executed:

// JOB jobname
// EXEC PROGA

/&

One or more programs can be executed within a job; the execution of a
single program is a job step. Therefore, each job can consist of one or more
job steps. The following job comprises two job steps.

// JOB jobname
// EXEC PROGA
// EXEC PROGB

/&

You are free to include as many job steps in a job as you wish. It is,
however, not advisable to execute, in one job, several programs that are
completely independent of one another. This is because, if one step
terminates abnormally, the job control program will ignore the remaining
job steps up to the next / & statement.

Thus, although perfectly in order, the programs following the one that
failed will not be executed. A typical example of related job steps that
should form a single job are assembling, link-editing, and executing a
program, where correct execution of one job step depends on successful
completion of the preceding one.

For POWER/VS job setup considerations and examples refer to section
Using POWER/VS Statements and Commands.

5.2 DOS/VS System Management Guide

Setting Up Job Streams

The job control program provides automatic job-to-job transition. This
means that an unlimited number of jobs can be submitted to the system in
one batch, and that job control processes one job after the other without
requiring intervention by the operator. The job or jobs submitted are
referred to as a job stream (see Figure 5.1 for an example of a payroll
jobstream).

(/e,

(// FXECT PAYCHEK
[// PAUSE LOAD DAYCHECKS

f'l‘ ime cards U

r'// EXEC PAYRUN
r/// EXTENT SYSO01
rr}/ DLBL PP, "PAYE LR

(// ASSGN SYSO01,X'160"

ff// ASSGN SYSIEST, X'O0R'

// JOB PAY1

Figure 5.1. Example of a Jobstream

The operator can interrupt the processing of a job stream in any
partition to make last-minute changes to one of the jobs or to squeeze in a
special rush job. He does this by pressing the request key on the operator
console and entering a PAUSE job control command. This causes
processing to halt at the end of the current job step, or, if the EOJ operand
is specified in the PAUSE command, at the end of the current job.

When setting up a job stream for a partition, you should bear in mind
that all jobs will get the priority of that partition. The selection of the jobs
for a particular partition in a multiprogramming system can help to improve
the efficiency of your installation. For example, jobs which have a relatively
low CPU usage and a relatively high rate of 1/0 activity, and which
therefore spend most of their time waiting for the completion of 1/0
operations, should run in a high priority partition. Conversely, CPU-bound
jobs should be in a partition with a lower priority. More information about
partition priorities is given in the section Multiprogramming in Chapter I:
Understanding the System.

Chapter 5: Controlling Jobs 5.3

Summary of Job Control Statements and Commands

The following describes the JOB, end-of-job (/ &), DATE, and PAUSE
statements/commands. The EXEC statement is discussed under Executing
a Program, later in this chapter. The description of the statements will
touch upon a number of subjects (for example, job control options, logical
unit assignments, UPSI byte, label information cylinder, etc.), which will be
discussed later in this chapter.

JOB The JOB statement indicates the beginning of control information for a job.
The specified job name is stored in the communications region of the
corresponding partition and is used by job accounting and to identify
listings produced during execution of the job.

The JOB statement may be omitted, in which case the job name
NONAME is stored in the communications region. If the JOB statement is
present, it must contain a job name; otherwise, an error condition occurs.

The JOB statement is always printed in positions | through 72 on
SYSLST and SYSLOG. If the time-of-day clock is supported, the time of
day is also printed. The JOB statement causes a skip to a new page before
printing is started on SYSLST.

When a JOB statement is encountered, the job control program stores
the job name from the JOB statement into the communications region. If
the / & statement was omitted, the JOB statement will cause control to be
transferred to the end-of-job routine to simulate the / & statement. Refer
to the following section for the operations that are performed.

End-of-Job (/ &) This statement is the last one for each job (not job step). It signals the end
of the input stream for the job. When job control encounters / & on
SYSRDR during normal operation, the standard assignment for SYSIPT
becomes effective and SYSIPT is checked for an end-of-file condition.

If the standard assignments for SYSRDR and SYSIPT are not to the
same device, SYSIPT is advanced to the next / & statement. In the event
of an abnormal termination, job control advances SYSRDR and SYSIPT to
the next / & and proceeds, only if a JOB statement is provided. Therefore
if SYSRDR and SYSIPT are assigned to different devices, the / &
statement should be present on both devices.

If the / & statement is omitted, the next JOB statement will cause
control to be transferred to the end-of-job routine to simulate the / &
statement.

When a / & statement is encountered, the job control program performs
such operations as the following:

« Resets all job control options for the partition to standard, as established
at system generation, resets the LINK and CATAL options to zero.

« Resets all system and programmer logical unit assignments for the
partition to the permanent assignment established by job control
commands, or (if no permanent assignments have been made) to the
standard assignment established during supervisor generation.

« Modifies the communications region as follows:

5.4 DOS/VS System Management Guide

PAUSE

DATE

I. Resets the date from the DATE statement to the one specified in
the SET command during IPL, or (if the time-of-day clock is
supported) to the date currently valid.

2. Stores the job name NONAME.
3. Sets the user area and the UPSI byte to zero.

« Displays the EOJ message on SYSLST and SYSLOG with the time and
duration of the job if the time-of-day clock is supported.

« Lists all tape error statistics (TEBs) for the IBM 2495 tape cartridge
reader.

« Ensures that end-of-file has been reached on SYSIPT.

« Deletes the temporary labels in the |abel information cylinder on
SYSRES and restores the USRLABEL mode. (See Editing and
Storing Label Information, later in this chapter.)

o Checks whether the automatic condense limits of any of the libraries
have been reached (if maintenance has been done in the job).

The PAUSE statement or command can be used to allow for operator
intervention between jobs or job steps.

The PAUSE statement can be included anywhere among the job
control statements of a job stream. It becomes cffective at the point where
it was inserted; processing is suspended in the affected partition, and the
operator console is unlocked for input. The PAUSE statement can contain
instructions to the operator and is always listed on SYSLOG.

The PAUSE statement may also be helpful when SYSIN is assigned to
a 5425 card reader (which does not have an end-of-file button). Place the
// PAUSE card after the last / & card; this will force control to be given
to the console-keyboard, which enables the console operator to control
subsequent system operation.

The PAUSE command may be entered either through the operator
console (after pressing the request key), or as a job control card; if entered
through the console to the attention routine, the command must specify the
partition that is to pause (if the background partition is intended, however,
no operand is required). After encountering a PAUSE command, the system
passes control to the operator (through the console) the next time that the
job control program is fetched into the specified partition, that is, at the
end of the current job step (which may also be the end of the job). If the
PAUSE command that is entered through the console specifies the EOJ
operand, however, control will pass to the operator only at the end of the
current job, regardless of the number of steps needed to reach that point.

The DATE statement can be used to override the date specified in the SET
command during IPL. The new date is stored in the communications region
for the duration of one job only, unless it is overridden by another DATE
statement.

You can use the DATE statement, for example, when your program’s
output is to indicate yesterday’s date. The DATE statement can be
submitted with the rest of the job control statements.

Chapter 5: Controlling Jobs 5.5

Relating Files to your Program

Symbolic I/O Assignment

Programs always perform some kind of input/output operation, that is they
process files on auxiliary storage devices. Before such files can be
processed, certain information about the files must be provided to the
system. This information includes:

o The generic device name and volume serial number or the physical
address of the I/O device on which each of the files resides. (Relating a
file to an actual I/O device is called symbolic I/O assignment).

« For files on direct access storage devices (DASD), the exact location of
the file on the storage medium.

« For files on DASD, on diskettes, or on labeled magnetic tape, a
description of the file, called a label, which is used for checking and
protection purposes.

The above information, specified in job control statements, is stored in the
system by the job control program for use by the DOS/VS data
management routines. How this is done is described below.

Whenever a processing program needs access to a file on auxiliary storage,
the system must be informed of the address of the 1/O device involved.
The program need not specify an actual device address, but only a symbolic
name which refers to a logical, rather than physical, unit. Before the
program is executed the logical unit must be associated with an actual
device. This is done by either the system, the programmer, or the operator,
by means of the ASSGN job control statement or command which specifies
the symbolic name of the logical unit and one of the following:

« A general device class or specific device type, with or without volume
serial number.

o The physical address (channel and unit number) of the I/O device.
o A list of physical addresses.

o Another logical unit.

See Figure 5.2 for an illustration of some of these combinations.

Logical Units and Symbolic Device Names

There are two types of logical units: system logical units, primarily used by
the system control and service programs, and programmer logical units,
primarily used by the processing programs. The following list shows the
symbolic names that refer to a logical unit and the I/O devices that each
unit can represent. In the case of disk devices, the logical unit is not
assigned to the entire volume mounted on the device but only to the
referenced extent(s). Refer to the section Files on Direct Access Devices
for more information on disk files.

5.6 DOS/VS System Management Guide

Processing Program

SYSLST

Job Control
/ / ASSGN

. ... Physical Device Address

1/0 Device

.

.

3
N
.
J
8

Figure 5.2. Example of Symbolic I/O Assignment (Part 1 of 2)

1. The logical unit specified in the processing program (via a DTF or
CCB) is a print file referred to by the symbolic device name
SYSLST.

2. An ASSGN statement is used to associate SYSLST with the physical
address 00E of a printer. This information is stored in the system by
job control and can be accessed when a program is executed.

System Logical Units

SYSRDR Card reader, magnetic tape unit, disk device, or diskette used as
input unit for job control statements or commands.

SYSIPT Card reader, magnetic tape unit (single volume), disk device, or
diskette used as input unit for programs.

SYSPCH Card punch, magnetic tape unit, disk device, or diskette used as
' the unit for punched output.

Chapter 3: Planning the System 5.7

Processing Program

ff——————-ﬁ‘
...Symbolic device name

~=~

Job Control /

/ | ASSGN SYS002, }(X'130°,X'131")
...List of
physical

devices

1/0 Devices {

3330

Figure 5.2.

SYSLST

SYSLOG

SYSLNK
SYSRES
SYSCLB

5.8 DOS/VS System Management Guide

...Device type

3330,
VOL=000001

/ | ASSGN

...Device class

/ / ASSGN $YS002,

i

000001 '

132

131
3330 3330
Example of Symbokic 1/0 Assignment (Part 2 of 2)

If you use the DISK device class option, or device type option use
volume serial numbers, and be sure that they are unique.

Printer, magnetic tape unit, disk device, or diskette used as the
unit for printed output.

Operator console used for communication between the system
and the operator and for logging job control statements.

Disk device used as input to the linkage editor.
System residence extent on a disk pack.

Disk device used for a private core image library.

Programmer Logical Units

SYSSLB Disk device used for a private source statement library.
SYSRLB Disk device used for a private relocatable library.

SYSREC Disk device used to store error records collected by the
recovery management support recorder (RMSR) function. For
the Models 115 and 125, messages to or from the operator are
stored on another file on SYSREC so that a hard copy listing
of these messages can be produced.

SYSVIS Disk device used to hold the virtual storage page data set.
SYSCAT Disk device used to hold the VSAM master catalog.

SYSCTL Used by DOS/VS at IPL time to load the buffer(s) of
FCB-type printers.

Of these system logical units, user programs may also use SYSIPT and
SYSRDR for input, SYSLST and SYSPCH for output, and SYSLOG for
communication with the operator. However, other system logical units must
not be used in place of programmer logical units (within user programs or
EXTENT statements).

Two additional symbolic names, SYSIN and SYSOUT, are used under
certain conditions:

SYSIN Can be used if you want to assign SYSRDR and SYSIPT to
the same card reader or magnetic tape unit. You cannot assign
SYSRDR and SYSIPT to the same disk or diskette extent, you
must instead assign SYSIN to that extent.

SYSOUT Must be used if you want to assign SYSPCH and SYSLST to
the same magnetic tape unit. It cannor be used to assign
SYSPCH and SYSLST to disk or diskette because these two
units must refer to separate extents.

SYSIN and SYSOUT are valid only to job control and cannot be
referenced in a user program. Examples for the use of SYSIN and SYSOUT
are given in the section System Files on Tape, Disk, or Diskette later in
this chapter.

SYS000 - SYSmax: Any devices in the system used for processing program
(including user program) input/output.

Note: The linkage editor uses SYS001 and the assembler uses SYS001,
SYS002, and SYS003. Some IBM language translators also use SYS004 and
DOS/VS system utilities use SYS005 (refer to the appropriate programmer’s
guides).

You can assign each of these programmer logical units to any of the
existing partitions without a prescribed sequence. The maximum number of
programmer logical units for the system and for each partition as well as
the minimum per partition can be determined as follows:

« The background partition requires a minimum of ten programmer
logical units.

Chapter 5: Controlling Jobs 5.9

Types of Device Assignments

« Each foreground partition requires a minimum of five programmer
logical units.

o The maximum number of programmer logical units in the system
depends on the partitions generated. The maximum value that you can
specify as SYSmax is as follows:

SYSmax Value for
NPARTS F1 BG, F2, F3,

F4
1 - 240
2 240 225
3 240 211
4 240 197
5 240 183

Note that SYSmax for the foreground partition F1, independent of the
number of partitions, is always 240.

» The maximum value you can specify for a specific partition is
determined by the formula:

SYSmax - sum of all programmer logical units assigned to all
other partitions except F1.

As an example, assume that your system has five partitions. The
SYSmax value for a five partition system is 183. Assume further that
15 programmer logical units have been assigned to the partition F1, 13
to F2, 19 to F3, and 11 to F4. The SYSmax value for the background
partition would then be

183 - (13 + 19 + 11) = 140
(The 15 programmer LUBs for F1 are not included).

Device assignments are either standard, permanent, or temporary,
depending on the time of the assignment and the type of ASSGN statement
or command used.

Standard Device Assignments. Standard device assignments are established
during supervisor generation in the ASSGN macro. These assignments are
valid until the next supervisor generation.

Once the supervisor is loaded, and after IPL, modifications to the
existing standard assignments can be introduced. These assignments can be
either permanent or temporary.

Permanent Device Assignments. A permanent assignment is set up between
jobs or job steps any time after IPL by the ASSGN job control command
(no //) or the ASSGN job control statement with the PERM operand. It is

5.10 DOS/VS System Management Guide

valid until the next IPL procedure unless superseded by another ASSGN
job control command. A permanent assignment can be changed for the
duration of a job or job step by a // ASSGN statement or by an ASSGN
command with the TEMP option.

Temporary Device Assignments. A temporary assignment is established
either by a // ASSGN statement or by an ASSGN command with the
TEMP option. It is valid for a single job only, unless superseded by another
temporary or permanent assignment. Temporary assignments are reset to
standard or permanent by

o a /& or JOB statement, whichever occurs first, or by

« a RESET job control statement or command.

Restrictions: The type of device assignment is restricted under certain

conditions:

1. If one of the system logical units SYSRDR, SYSIPT, SYSLST, or
SYSPCH is assigned to a disk device or diskette the assignment must
be permanent or standard.

2. If SYSRDR and SYSIPT are to be assigned to the same disk device or
diskette SYSIN must instead be assigned and this assignment must be
permanent.

SYSOUT, if used, must always be permanent assignment.

4. SYSIN and SYSOUT cannot be specified in the ASSGN macro during
supervisor generation, that is, they cannot be standard assignments.

Device Assignments in a Multiprogramming System

Device Assignments Required for

During supervisor generation you can establish the standard assignments for
the system and programmer logical units for each partition. The same
logical unit can be defined for all partitions referring either to the same or
to different physical devices. Also, different logical units can refer to the
same physical device. This is illustrated in Figure 5.3.

At any other time, however, it is not possible to share a physical device
(except DASD) between partitions. If the physical device in cases (2) and
(3) in Figure 5.3 is not DASD and, for example, no program is in the F2
partition when you want to initiate the F1 partition, you must first unassign
this physical device in the background partition.

With direct access devices this problem does not exist because each
extent of a disk or data cell can be thought of as a separate device. It is
not possible, however, to share a diskette between partitions.

When assigning a DASD, it is advantageous to specify a volume serial
number in the EXTENT statement, especially for a scratch pack.
an Assembly
Figure 5.4 shows the logical units that must be assigned to assemble a

program. Note that the ASSGN statements must always precede the EXEC
statement of the job step for which they are to be effective.

Chapter 5: Controlling Jobs 5.11

: BG SYS005 ,—J X191’
F2 SYS005 Ll X192
F1 SYS005 >ll X193’

: BG SYS005
F2 SYS005 ‘ X'191’
F1 SYS005

: BG SYS005
F2 SYS006 X197’
F1 SYS007

Figure 5.3. Possible Device Assignments Set at Supervisor Generation

The device assignments for compilers are similar to the device
assignments shown in this assembler example; any variations are
documented in the applicable programmer’s guides.

Files on Diskette Devices

After you have informed the system, via the ASSGN statement or
command, on which physical device the file is to reside, you must supply
the following information to allow the creation and checking of diskette
labels:

1. A description of the characteristics of the file. You specify this in the
DLBL job control statement.

2. The volume(s) the file is contained on. You specify this in one or more
EXTENT job control statements.

5.12 DOS/VS System Management Guide

| b}
| |
|
K’_L~‘C\ |
|
| T |
Lo
/7 N !
\
, V)
Only if the program is to -
be link-edited \ -7
———~ 1
Only if an objectdeck o JI- . :
is desired (/ s*) |
..... / l ___’/ ' I
| I
’ i I
PN |
// \ |
\
| L_-/)
]
/
// JOB.... <
Page B
Data SYSRDR r 1
Set 1 |
SOURCE - —\4") |
SYSvIS PROGRAM -~ . ,J'- :
|
SYSIPT L :-————‘
s AN
/ \ |
L \
Y I__—,)
4
<™.
System cPU - SYSLST
Residence

SYSRES
3Work | 5y5001
files SYS002
SYS003
SYSLOG
SYSLNK
SYSPCH (Optional)
(Optional)

Figure 5.4. Device Assignments Required for an Assembly

1. These assignments will usually be standard, established during
supervisor generation.

2. W SYSRDR and SYSIPT arc assigned to the same device, the source
input must be placed after the // EXEC ASSEMBLY card.

The label information you supply in the DLBL job control statement may
include the following:

« The name of the file. This name must be identical to the corresponding
file name specified in your program. For programs written in assembler
language, this would be the name of the DTF (Define The File).

Chapter S: Controlling Jobs 5.13

e An identification of the file. This name is the one contained in the
volume table of contents (VTOC) on the diskette. It is associated with
the file name via a DLBL statement for the duration of a specific job
or job step to make programs independent of physical files.

e The expiration date of the file.

« The type of access method used to process the file; always coded as
DU.

A diskette file can consist of a data area on one or more volumes; each
volume can contain only one data area for a particular file. For each of
these data areas, called extents, you must supply the following information
on an EXTENT job control statement:

» The symbolic name of the device on which the volume containing the
file is mounted.

o The serial number of the volume.

o The type of extent; always coded as 1.

In the following example, the program CREATE creates a diskette (DU)
I file named SALES that is to be retained for 30 days. The file comprises up
to three diskettes. The diskettes have the volume serial numbers 111111,
111112, and 111113, and are mounted on the drive assigned to the
symbolic device named SYS005.
// JOB EXAMPLE
// ASSGN SYS005,X'060"'
I // DLBL SALES, '"MONTHLY', 30 , DU
// EXTENT SYS005,111111,1
// EXTENT SYS005,111112,1
// EXTENT SYS005,111113,1
// EXEC CREATE

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label cylinder on
SYSRES for the duration of the job (see the section Editing and Storing
Label Information, later in this chapter).

Example for Submitting Label Information

Here is an example of how to code the job control statements required to
create or access the labels for a diskette file. It is helpful if you are familiar
with the formats of the DLBL and EXTENT job control statements as
described in DOS/VS System Control Statements.

l Assume that a program PROG100 needs a diskette file. The file
consists of four extents; one extent is the diskette with serial number
000020, one is diskette 000030, one is diskette 000040, and one is diskette
000050. The following job stream shows the label statements required:

// JOB SAMLABEL
// ASSGN SYS005,X'060'
1 // DLBL FILNAME,'FILE ID',99/365,DU
// EXTENT SYS005,000020, 1
// EXTENT SYS005,000030, 1
// EXTENT SYS005,000040,1
// EXTENT SYS005,000050, 1

5.14 DOS/VS System Management Guide

Files on Direct Access Devices

// EXEC PROG100
/&

Only onc DLBL statement is required. For cach extent, one EXTENT statement
must be supplied in the sequence in which the extents are processed.

Logical 1OCS in PROG 100 opens the first extent using the file name and file 1D in
the DLBL statement, and the logical unit and volume scrial number in the first
EXTENT statcment to locate the actual label on the disk pack. After PROG 100 has
processed the first extent, logical TOCS, based on the extent sequence number,
opens the second extent.

Processing is identical for the third and fourth extents.

The / & statement causes the label information stored in the label information
cylinder to be cleared. Thus, if the next job requires the same file, the label
statements must be resubmitted (see Types of Label Information, later in this
chapter and Figure 5.6).

After you have informed the system, via the ASSGN job control statement or
command, which volume or physical device you want, you must supply the
following information to allow the creation and checking of DASD labels:

A description of the characteristics of the file. You specify this in the
DLBL job control statement.

The exact location of the file on the storage medium. You specify this
in one or more EXTENT job control statements.

For non-sequential DASD files the amount of storage in the partition to
be reserved for label processing. You specify this in the LBLTYP job
control statement. Since this information is needed by the linkage
editor, the LBLTYP statement is discussed in Chapter 6: Linking
Programs.

The label information you supply in the DLBL job control statement may
include the following:

The name of the file. This name must be identical to the corresponding
file name specified in your program. For programs written in assembler
language this would be the name of the DTF (Define The File).

An identification of the file which may include generation and version
numbers of the file. This name is the one contained in the volume table
of contents (VTOC) on the storage device. It is associated with the file
name via a DLBL statement for the duration of a specific job or job
step to make programs independent of physical files.

The expiration date of the file.
The type of access method used to process the file.

An indication of whether or not a data secured file is to be created.

A DASD file can consist of one or more data areas on one or more
volumes. For each of these data areas, called extents, you must supply the
following information on an EXTENT job control statement:

The symbolic name of the device on which the volume containing the
file extent is mounted.

Chapter 5: Controlling Jobs 5.15

« The serial number of this volume.

« The type of the extent. An indexed sequential file, for instance, can
consist of data areas, index areas, and overflow areas. For each of these
areas an extent must be defined, and its type (data, index, or overflow)
must be specified.

« The sequence number of the extent within the file.

o The number of the track (relative to zero) on which the file extent
begins.

« The amount of space (in tracks) the file occupies.

In the following example, the program CREATE creates a sequential disk
(SD) file named SALES that is to be retained until the end of 1975. The
file comprises one extent of 190 tracks, starting on track number 1320. The
disk pack has the volume serial number 111111 and is mounted on the
drive assigned to the symbolic device name SYS005:

// JOB EXAMPLE

| // ASSGN SYS005,DISK,VOL=111111,SHR

// DLBL SALES, 'ANNUAL SALES RECORDS',75/365,SD

// EXTENT SYS005,111111,1,0,1320,190

// EXEC CREATE

/&

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label cylinders on
SYSRES for the duration of the job or job step (see the section Editing
and Storing Label Information, later in this chapter).

Examples for Submitting Label Information

Here are a number of examples of how to code the job control statements
required to create or access the labels for the various types and
organizations of DASD files. It is helpful if you are familiar with the
formats of the DLBL and EXTENT job control statements as described in
DOS/VS System Control Statements. Detailed information on the possible
organizations and access methods for DASD files is given in DOS/VS
Data Management Guide.

Sequentially Organized Disk Files (Single Drive). Assume that a program
PROG 100 needs a sequential disk file located on three different disk packs
that are to be mounted successively on the same device (SYS005). The file
consists of four extents: two on the pack with serial number 000020, one
on pack 000100, and one on pack 000006. The following job stream shows
the label statements required:

// JOB SAMLABEL

// BASSGN SYS005,DISK,VOL=000020
1 // DLBL FILNAME,'FILE ID',99/365,SD

// EXTENT SYS005,000020,1,0,1320,190

// EXTENT SYS005,000020,1,1,8,740

// EXTENT SYS005,000100,1,2,1275,64

// EXTENT SYS005,000006,8,3,50,636,6
2 // EXEC PROG100

1 Only onec DLBL statement is required. For cach extent one EXTENT statement

5.16 DOS/VS System Management Guide

must be supplicd in the sequence in which the extents are processed. The last extent

occupics a split cylinder to illustrate that this is acceptable for sequential files.

Logical TOCS in PROG 100 opens the first extent using the lile name and file 1D in
the DLBL statement, and the logical unit and volume scrial number in the first
EXTENT statement to locate the actual label on the disk pack. After PROG 00 has
processed the first extent, logical TOCS opens the sccond extent, based on the

extent sequence number.

For the third extent, volume serial number 000100 is specificd while the volume
currently mounted on SYS005 has the number 000020. The OPEN routine of
LIOCS notifies the operator of this discrepancy, and the operator can mount the
correct volume, at which time the OPEN routine regains control.

The /& statement causes the label information stored in the label information
cylinder to be cleared. Thus, if the next job requires the same file, the label
statements must be resubmitted (see Types of Label Information later in this

chapter and Figure 5.6).

Sequentially Organized Disk Files (Multiple Drives). This example has the
same requirements as the preceding 'Single Drive’ example except that the
three volumes are mounted on three different drives. The required job
control statements are as follows:

// JOB SAMLABEL

// BSSGN SYS005,DI1SK,VOL=000020

// ASSGN SYS006,DISK,VOL=000100

// ASSGN SYS007,DI1SK,VO1L,=000006

// DLBL FLLNAME, 'FILE ID',99/365,SD
// EXTENT SYS005,000020,1,0,1320,190
// EXTENT SYS005,000020,1,1,8,740

// EXTENT SYS006,000100,1,2,1275,64
// EXTENT SYS007,000006,8,3,50,636,6
// EXEC PROG100

All label statements submitted are identical o the “Single Drive’ example except for
SYSnnn in the EXTENT statements.

Logical IOCS opens cach extent in the same way as described in the ‘Single Drive’
example except that processing does not stop for removal and mounting of packs,
because enough devices are online o contain the file. A combination of this and
the “Single Drive’ example could be used to reduce handling time without

excessively increasing the total drive requirements.

DA Files. The program PROG101 processes a direct access file consisting
of four extents contained on three disk packs. The three packs must be
ready at the same time. The following job shows the label statements
required to process the file:

1

// JOB DALABEL

// ASSGN SYS005,DISK,VOL=000065

// ASSGN SYS006,DISK,VOL=000025

// ASSGN SYS007,D1SK,VOL=000002

// DLBL FILNAME,'FILE ID',99/365,DA
// EXTENT SYS005,000065,1,0,1320,190
// EXTENT SYS005,000065,1,1,80,740
// EXTENT SYS006,000025,1,2,50,906
// EXTENT SYS007,000002,1,3,1275,64
// EXEC PROG101

The label statements follow the same pattern as for sequential files (described in the

Chapter 5: Controlling Jobs 5.17

Files on Magnetic Tape

preceding examples) except that (1) the DLBL statement must specify DA (o
indicate direct access, and (2) split cylinder mode cannot be used for direct access
files.

Note: If program PROG101 is a prior DOS self-relocating program. a //
LBLTYP NSD(4) statement must be included immediately preceding the
EXEC PROG101 statement.

Files on magnetic tape can be processed with or without labels. For tape
files with IBM standard labels, the label information must be submitted
through the TLBL job control statement. (A tape file can also have
standard-user or non-standard labels; for these labels no job control
statements are required. More information on tape labels is given in
DOS/VS Data Management Guide.)

The standard label information submitted in the TLBL statement may
include the following:

e The name of the file. This name must be identical to the corresponding
filename (DTF name) specified in your program.
« An identification of the file.

« Creation date for input and expiration date (or retention period) for
output files.

e The volume serial number of the tape reel that contains the file.

« For files that extend over more than one volume, thc sequence number
of the volume.

« For volumes that contain more than one file, sequence number of the file.

o The version and modification number of the file.

When a program that processes tape files with standard labels is to be
link-edited, you must supply a LBLTYP job control statement to define the
amount of storage required in the partition for label processing (see also
Chapter 6: Linking Programs).

As with DASD files, the label information you supply in the TLBL job
control statement is checked and stored in the label information cylinders
on SYSRES for the duration of the job or job step (see Editing and
Storing Label Information later in this chapter).

Controlling Magnetic Tape Operation

The MTC job control statement or command controls certain magnetic tape
operations, for example, file positioning. Files on magnetic tape are almost
invariably processed sequentially. This means, for example, that if you have
five files on one tape reel and you want to process the last one, you have
to read four files before you can access the one you need. Since this is time
consuming, however, you can instruct the job control program to position
the tape at any particular file. .

5.18 DOS/VS System Management Guide

Controlling Printed Output

The MTC job control statement or command controls operations such
as:
« Spacing the tape backward or forward to the required file.
« Spacing the tape backward or forward a specified number of records.
« Rewinding the tape to the beginning.

o Writing a tapemark to indicate the end of a file.

In the following example, program PROGA creates a labeled tape file
named RATES on tape volume 222222. At the end of the first job step, an
MTC job control statement is used to rewind (REW) the tape to the
beginning so that the newly created file can be processed by PROGB.

// JOB TAPE

// TLBL RATES, 'MASTER',75/365,222222
// EXEC PROGA

// MTC REW,SYS004

// EXEC PROGB

Most of the DOS/VS supported printers use a forms control buffer (FCB)
to control the length of forms skips. In addition, printers may be equipped
with the universal character set feature, which is controlled by a universal
character set buffer (UCB). Examples of printers equipped with these
buffers are the 3203 and 3211 printers.

The buffers of these printers must be loaded during, or immediately
after, IPL and they may have to be reloaded later between job steps or,
occasionally, while a job step using the printer is being executed.

The following methods for loading the buffers are available:
To load the FCB
« Automatic loading during IPL

« Using the SYSBUFLD program between job steps or immediately after
IPL

« Using the LFCB command
e Using the LFCB macro in the problem program.

To load the UCB

« Automatic loading during IPL (applies to 3203, 3211, and 5203U
printers)

« Using the SYSBUFLD program between job steps or immediately after
IPL

« Using the LUCB command
e Using the UCS command (only applies to a 1403 UCS printer).
« Using the FCB parameter in the POWER/VS * $$ LST statement.

Chapter 5: Controlling Jobs 5.19

The method of loading the buffers by using the SYSBUFLD program offers
the advantage that hardly any operator activity is involved; however,
loading the buffers by using the LFCB or LUCB command does not
require the operator to wait for a partition to finish processing.

When the contents of an FCB or a UCB are replaced by a new buffer
load, the system uses this new buffer load to control printed output until
the buffer is reloaded (or until the next IPL). None of the above methods
provides automatic resetting of the buffer load to the original contents. It
may be necessary to reset the buffer load to the original contents before
taking a storage dump, to ensure that the dump is printed in the correct
format, without any part of it being left out.

Details on how to load the FCB and UCB are contained in DOS/VS
System Control Statements.

Editing and Storing Label Information

Types of Label Information

The job control program checks the DLBL, EXTENT, and TLBL
statements for correctness and stores the supplied label information in the
label information cylinders on SYSRES. Label information (DLBL and
EXTENT) for a sequential disk file is written after each EXTENT
statement is checked; however, all EXTENT statements for a
non-sequential disk file are processed prior to storing on the label
information cylinders. When the program that processes the file is executed,
the data management routines access the label data in the label information
cylinders

1. to write the appropriate labels onto the storage volume, if the file is to
be created, or

2. if an existing file is to be processed, to check the contents of the label
information cylinders against the label(s) of the file to ensure that the
correct volume is mounted, that no unexpired files are overwritten, etc.

Detailed information on labels and label processing is given in DOS/VS
Data Management Guide, DOS/VS DASD Labels, and DOS/VS Tape
Labels.

Label information can be stored in the label cylinder either temporarily (for
the duration of one job or job step) or permanently (until the next IPL). In
addition, label information can either be dedicated to a single partition or it
can be accessed by all partitions. For the 3340, label information can also
be stored permanently on a second, adjacent cylinder which can be
accessed by all partitions.

The various types of label information are controlled by the following
three options of the OPTION job control statement:

USRLABEL causes all DASD, diskette, and tape label information to be
stored temporarily for one job or job step. The label
information is accessible only by the partition in which it
was submitted. User label information submitted at the

5.20 DOS/VS System Management Guide

beginning of one job step can be used in subsequent job
steps, unless it is overwritten by label information
submitted for an intermediate job step. When label
information is submitted in an intermediate job step, the
USRLABEL area for that partition is cleared and only
label information submitted by the intermediate job step is
written in the USRLABEL area. Therefore, it is a good
idea to inculde all TLBL, DLBL, and EXTENT statements
in the first step of a job (preceding the // EXEC
statement). If no option is specified, or if the OPTION
statement is omitted, USRLABEL is assumed.

PARSTD causes all DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is accessible only by the partition in which it
was submitted.

STDLABEL causes all DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is accessible by all partitions but can only be
submitted in the background partition. This ensures that the
label information cylinder(s) is/are not updated
simultaneously by two partitions. Symbolic logical units
contained in the submitted label information must not be
greater then the highest symbolic logical unit specified for
background at system generation.

Each type of label information is stored in a separate area of the label
information cylinder(s) depending on the specified option. This is illustrated
in Figure 5.5. The system searches the label information cylinder(s) in the
following sequence:

(1) user label information,
(2) partition label information, and
(3) standard label information.

It is important to distinguish between (1) the period of time for which a
label option is in effect and (2) the period of time for which the label
information is retained on the label information cylinder(s). For example,
the label data submitted following an OPTION statement with the PARSTD
option is retained for all subsequent jobs until overwritten by another
PARSTD option, but the PARSTD option is canceled at the end of the job
or job step in which it was specified. This is shown more clearly in the
summary of label options in Figure 5.6.

Chapter 5: Controlling Jobs 5.21

// OPTION USRLABEL / / OPTION PARSTD

Label Information Cylinder

Temporary labels for BG

Permanent labels for BG

Temporary labels for F3

Permanent labels for F3

Temporary labels for F1

Permanent labels for F1

Permanent labels for all partitions

Note: The layout of the label information cylinder depends
on the number of partitions defined in your system. This
example assumes that four partitions are present.

If the SYSRES device is a 3340, a second label information
cylinder is available to contain permanent labels for all
partitions.

// OPTION STDLABEL

Figure 5.5. Storing Label Information in the Label Information Cylinder(s)

5.22 DOS/VS System Management Guide

. Type of label Option in effect Label information
Option! information until retained For
USRLABEL? temporary STDLABEL or for one job. The the partition in
PARSTD is / & statement which the option
specified. causes the was specified.
temporary label area
to be cleared.S
PARSTD permanent a) end of job step for all subsequent the partition in
b) end of job jobs until another which the option
c) USRLABEL or PARSTD option is was specified.
STDLABEL is used.?
specified.
STDLABEL permanent a) end of job step for all subsequent all partitions.4
b) end of job jobs until another
c) USRLABEL or STDLABEL option is
PARSTD is used.3
specified.

background programs.

1 Search sequence is USRLABEL, PARSTD, and STDLABEL.
2 |f no option is given or if the OPTION statement is omitted, USRLABEL is assumed.

3 All label information submitted following a PARSTD or STDLABEL option is written at the beginning of the label area thus
destroying any previously stored information. Therefore, if you want to add label data for another file, all previously stored
label information that is to be kept must be resubmitted.

4 Label information stored with the STDLABEL option is available to all partitions but can be submitted only through

5 Additional label information from a subsequent job step will overlay previous label information.

Figure 5.6.

Summary of Label Option Functions

Summary of Job Control Statements and Commands

ASSGN

The following summarizes the functions of those job control statements and
commands needed to handle 1/0 devices and files, as discussed in the
preceding section. Also included are a number of commands that can be
used by the operator to manipulate 1/0 devices.

Note: The previous forms of label information statements (DLAB, VOL,
XTENT, TPLAB) are still supported, except when you use 3330 or 3340 disk
drives. However. when new statements are prepared, DLBL, EXTENT, and
TLBL should be used.

The ASSGN statement or command is used to connect a logical 1/0 unit to
a general device class, a specific device type, a physical device or a list of
physical devices, or another logical unit. An ASSGN statement or command

can also be used:

e to specify a temporary or permanent assignment.

« to specify a volume serial number for a tape, disk, or diskette.

« to specify that a disk is shareable by more then one partition or logical

unit.

e to unassign a logical unit to free it for assignment to another partition.

Chapter 5: Controlling Jobs 5.23

to ignore the assignment of a logical unit, that is, program references to
the logical unit are ignored (useful in testing and certain rerun
situations).

to specify an alternate tape unit to be used when the capacity of the
original is reached.

The assignment routines check the operands of the ASSGN statement/
command for the relationship between the physical device, the logical unit,
the type of assignment (permanent or temporary), etc. The following list
summarizes the most pertinent items to remember when making
assignments:

10.

Assignments are effective only for the partition in which they are
issued.

Apart from the operator console, no physical device except DASD can
be assigned to more than one active partition or logical unit at the same
time.

All system input and output file assignments to disk or diskette must be
permanent.

SYSIN must be assigned if both SYSRDR and SYSIPT are to be
assigned to the same extent.

SYSOUT cannot be assigned to disk or diskette; it must be a
permanent assignment if assigned to tape.

SYSLNK must be assigned before issuing the LINK or CATAL option
in the OPTION statement; otherwise, the option is ignored and the
message 'PLEASE ASSIGN SYSLNK' is issued to the operator.

If SYSRDR, SYSIPT, SYSLST, or SYSPCH is assigned to tape,
diskette, or disk when the system is generated, it will be unassigned by
IPL. Such assignments can be made effective only with the job control
ASSGN statement or command, because ASSGN also opens the file.

Before a tape unit is assigned to SYSLST, SYSPCH, or SYSOUT, all
previous assignments to this tape unit must be permanently unassigned.
This may be done by using a DVCDN command instead.

The assignment of SYSLOG cannot be changed while a foreground
partition is active.

SYSRES, SYSCAT, and SYSVIS can never be assigned by an ASSGN
statement or command. An IPL is required to change these
assignments.

RESET The RESET statement or command can be used to reset temporary
assignments to standard or permanent. With one RESET statement or
command you can reset

all logical units, or
all system logical units, or
all programmer logical units, or

one specific system or programmer logical unit.

The RESET statement is effective only for the partition in which it is
issued.

5.24 DOS/VS System Management Guide

LISTIO

DVCDN

Dvcup

DLBL

EXTENT

TLBL

MTC

LFCB

LuUCB

Executing a Program

With the LISTIO statement or command you can obtain a listing of the
current status of all 1/0 assignments in your system.

The DVCDN (device down) command informs the system that a device is
no longer physically available for system operations.

When the device becomes available again for system operations a
DVCUP (device up) command must be given before new assignments can
be made.

The DVCUP (device up) command informs the system that a device is
available for system operations after it has been down.

One DLBL statement is required for each DASD or diskette file to be
processed. This statement and its associated EXTENT statement(s) are
used for checking or creating DASD and diskette file labels.

One extent statement must be supplied for each area (extent) of a DASD
file or each volume of a diskette file. The EXTENT statement(s) must
directly follow the associated DLBL statement.

For tape files with standard labels, a TLBL statcment must be supplied for
checking or creating the standard label.

The MTC statement or command can be used to control magnetic tape
operation. For example, a tape can be rewound to the beginning or it can
be positioned to a certain file or record.

The LFCB command causes the system to load the specified FCB image
from the core image library into the FCB of the printer for which the
command was issued.

The LUCB command causes the system to load the specified UCB image
from the core image library into the UCB of the printer for which the
command was issued.

After you have properly defined the 1/0 requirements of your program to
the system you can instruct job control to prepare your program for
execution. How this is done and how the supplied information is processed
is described in the following section.

Chapter 5: Controlling Jobs 5.25

Assembling, Link-Editing, and Executing a Program

In DOS/VS, three processing steps are necessary to obtain results from a
problem program once the source program has been written:

1. Assembly or compiling of the source program into an object module.
(Object modules are discussed in Chapter 6: Linking Programs.)

2. Link-editing of the object module to form an executable program phase
(see Chapter 6: Linking Programs).

3. Execution of the program phase.

Each of these steps is initiated by the job control program in response to an
EXEC job control statement. The EXEC statement must be the last of the
job control statements submitted for any one job step. Figure 5.7 shows an
example of the job control statements needed to assemble, link-edit, and
execute a source program.

// JOB EXECUTE
// OPTION LINK
// EXEC ASSEMBLY
LBLTYP TAPE
// EXEC LNKEDT
// EXEC

N BN =
~
~N

1 To link-cdit and exccute a program in the same job, the LINK option must be
specified in the OPTION job control statement.

The assembler is fetched from the core image library and starts execution.
Required to reserve a partition arca for processing tape labels at exceution time.

The linkage cditor is fetched from the core image library and starts exccution.

(% I R

I an EXEC statement without a program name is encountered, the program last
stored (if stored within the same job) in the core image library by the linkage
cditor is fetched for exceution (see also Preparing Programs for Execution).

Figure 5.7. Job Control Statements to Assemble, Link-edit, and Execute a
Program in one Job

If SYSRDR and SYSIPT are assigned to the same device, and you wish
to submit data to your program via SYSIPT, the data cards must follow the
corresponding EXEC job control statement. For example, the data
processed by the assembler is your source program which must follow the
// EXEC ASSEMBLY statement. The end of the input data submitted for
one program must be indicated by a /* (end-of-data) statement. The /*
statement is not processed by job control but is read by the processing
program. (Note: For an input file on an IBM 5424 MFCU, the /* card
must be followed by a blank card.) The placement of input data and the /*
statement is shown in Figure 5.8.

5.26 DOS/VS System Management Guide

// JOB INPUT
// OPTION LINK
// EXEC ASSEMBLY

source program

/*

// LBLTYP

// EXEC LNKEDT
// EXEC

input data for user program

/%
/€

Figure 5.8. Submitting Input Data on SYSIPT

How the job shown in Figure 5.8 is processed by the system is
illustrated in Figure 5.9. The inclusion of SYSIPT data in job streams in
the procedure library is described in the section SYSIPT Data in
Cataloged Procedures.

1 Job control reads the JOB statement and stores the job name in the
communications region in the supervisor. Other functions of the JOB
statement are described under Defining a Job, earlier in this chapter.

2 Job control reads the OPTION statement with the LINK option and
sets the LINK bit in the supervisor. This indicates

a) to the assembiler, that the assembled object module is to be written
onto SYSLNK,

b) to the linkage editor, that the executable program is to be stored in
the core image library only temporarily for execution in the same job.

3 On encountering the // EXEC ASSEMBLY statement, job control
transfers control to the supervisor passing it the name of the assembler
program.

4 The supervisor loads the assembler into the partition, overlaying job
control.

5 The assembler reads the source program, assembles it, and stores the
object module on SYSLNK (not shown).

The assembler transfers control to the supervisor.
The supervisor loads job control into storage, overlaying the assembler.

8 Job control reads the // EXEC LNKEDT statement, as well as any
preceding linkage editor statements, and transfers control to the
supervisor, passing it the name of the linkage editor.

9 The supervisor loads the linkage editor into storage, overlaying job
control.

10 The linkage editor reads the object module from SYSLNK and
link-edits it.

Chapter 5: Controlling Jobs 5.27

Input on SYSIN Any Partition Supervisor . Core Image Library

JOB CONTROL
/1 J0B INPUT — @ INPUT {
// OPTION LINK ® LINK
//EXECASSEMBLY _| Q T, ASSEMBLY o

ASSEMBLER | ASSEMBLER
. LER INPUT -
source program -—-——-—_>e LINK
o o JOB CONTROL
/* JOB CONTROL INPUT
//LBLTYP LINK
/] EXEC LNKEDT ——————-—-@ BRI LNKEDT e
) LINKAGE EDITOR
LINK. EDITOR ; e |]
(10} ONK] @) ——f= EXECUTABLE USER
. PROGRAM
JOB CONTROL
JOB CONTROL INPUT
LINK
// EXEC -@ @
) EXECUTABLE USER
PROGRAM

USER PR AM e
OGR INPUT —

LINK

input data - @ . D Q

/e -~ JOB CONTROL INONAME .
/& -0

JOB CONTROL

N~

|

- Transfer of data

TEn® Transfer of control

':: Loading from core image library
Figure 5.9. System Operation of an Assemble, Link-Edit and Execute Job
11 The linkage editor stores the executable program in the core image
library.
12 The linkage editor transfers control to the supervisor.
13 The supervisor loads job control into storage.

14 Job control reads an EXEC statement without a program name.

15 The program last stored in the core image library by the linkage editor
to be loaded and executed. (See also Preparing a Program for Execution).

16 The user program is executed. It reads and processes the data from
SYSIPT and at EQJ relinquishes control to the supervisor.

17 The supervisor loads job control.

5.28 DOS/VS System Management Guide

18 When job control reads the / & statement, it cancels the LINK option
and replaces the jobname by NONAME in the communications region.
Other functions of the / & statement are described under Defining a Job,
earlier in this chapter.

Executing Cataloged Programs

Programs can be cataloged permanently in the core image library after they
have been assembled and link-edited. This saves assembling and link-editing
the program for every run.

Cataloging into the core image library is done by the linkage editor in
response to an OPTION job control statement with the CATAL option (see
Chapter 6: Linking Programs).

To execute a cataloged program you use an EXEC job control
statement specifying the name under which the program was cataloged (as
shown for the assembler and linkage editor in the preceding example).

For example, the following job executes a program that was cataloged
in the core image library under the name PROGA; data cards are submitted

on SYSIPT:
// JOB CAT

assignment and label
statements, if required

// EXEC PROGA
input data

/%
/&

Preparing Programs for Execution

Before any program can be executed it must be stored in the core image
library by the linkage editor. Programs are stored either temporarily or
permanently, depending on the option specified in the OPTION job control
statement:

« If the LINK option is specified, the program is stored temporarily for
immediate execution, in the same job. This program will be overwritten
by the next program that is link-edited.

« If the CATAL option is specified, the program is stored permanently
and can be executed any time after the catalog job. It can be deleted
only by the library maintenance program (see Chapter 7: Using the
Libraries), or by another program cataloged with the same name.

Chapter 5: Controlling Jobs 5.29

These two situations require different preparations for the loading of a
program into a partition Figure 5.10 shows the functions performed by the
linkage editor and the job control program to load programs into storage.

SYSRES

DIRECTORY FOR
CATALOGED PHASES

ibrary
Descriptor

‘ SYSTEM DIRECTORY
I .: I Entry
Library
@ Descriptor
Entry I
(4)

Clsj|
ALOGED PHASES
4

@ L=

DIRECTORY FOR
LINKED PHASES

|/

CORE IMAGE LIBRARY

Figure 5.10. Preparing the Loading of Temporarily and Permanently Stored Programs

The core image directory comprises two directories: one for cataloged phasces, and onc for linked phases. The
directory for linked phases begins at the first unused track of the core image directory.

// OPTIONLINK Linkage Editor

5.30 DOS/VS System Management Guide

@ Uses the information in the library descriptor entry of the core image
directory for cataloged phases to determine the first available block in
the core image library.

@ Stores the phase in the core image library.

Updates the library descriptor entry of the core image directory for
linked phases to indicate the first phase link-edited in the job step (in
case of multiple phases).

Makes a directory entry in the core image directory for linked phases,
inserting this entry in alphameric sequence (in case of multiple phases).

// EXEC Job Control

Uses the information in the library descriptor entry of the core image
directory for linked phases to check which phase was the first link-edited
and passes this information to the supervisor, which loads this phase into
the partition.

Note: The next phase link-edited (OPTION LINK or OPTION CATAL) into
the core image library will overwrite the one just temporarily stored.

// OPTION CATAL Linkage Editor

Same as for OPTION LINK.
2)

Updates the library descriptor entry of the core image directory for
cataloged phases to indicate the first phase link-edited in the job step
(in case of multiple phases).

Updates the library descriptor entry of the core image directory for
cataloged phases to indicate the new address of the next available block
in the core image library.

Makes a directory entry in the core image directory for cataloged
phases, inserting this entry in alphameric sequence.

// EXEC NAME Job Control

Locates the corresponding entry in the core image directory for cataloged
phases and passes this information to the supervisor, which loads the phase
into the partition.,

Note: If no phase name is specified in the EXEC card, job control uses the

information in the library descriptor entry of the core image directory for
cataloged phases to check which was the first phase link-edited in this job step.

Defining Options for Program Execution

In the preceding section, it was shown how the OPTION job control
statement can be used

Chapter 5: Controlling Jobs 5.31

« to specify the type of label information to be stored for a file
(USRLABEL, PARSTD, STDLABEL options), and

« to define whether a link-edited program is to be stored temporarily or
permanently in the core image library (LINK, CATAL options).

There are a number of additional functions which you can invoke through
the OPTION job control statement. The most important ones are:

« To lbg all job control statements submitted to the system on SYSLST.
This faciliates diagnosing the job control statements in case of an error.
The option is LOG.

o To dump the contents of the registers, the supervisor area, and the
current partition (real or virtual) on SYSLST in case of abnormal
program termination. This is useful for debugging. The option is
DUMP.

« To cancel a job if an 1/O assignment cannot be performed. The option
is ACANCEL. (Note: If this option is suppressed, control is passed to
the operator.)

o To put an object deck on SYSPCH. The object module can then be
combined with other object modules by the linkage editor to form one
executable program, or it can be used as input to the library
maintenance program to catalog it into the relocatable library. The
option is DECK.

o To print various listings produced by the language translators on
SYSLST. These listings include object code, symbol table,
cross-reference, and error lists which are useful debugging aids during
the test period of a program. Among the possible options are LIST,
LISTX, SYMA, and XREF.

Each of these options can be suppressed by specifying the prefix NO (for
example, NOLIST, NODUMP). A complete list of the available options is
given in DOS/VS System Control Statements.

You can establish a standard set of these options during supervisor
generation by using the STDJC macro. Standard options are valid for all
jobs unless superseded by an OPTION job control statement. Options
specified in an OPTION statement remain in effect until (1) a contrary
option is read or (2) a JOB or / & statement is encountered which resets
the option to standard.

Communicating with Problem Programs via Job Control

Via job control a problem program can take a specific path of action
dependent on some external event. Such an instruction is given at job
control time by setting program switches in the communications region
which can be tested by the problem program at execution time.

For example, an accounting program that prepares reports of daily,
weekly, and monthly accounts can be instructed through these program
switches when the weekly or monthly reports are due.

The program switches are set at job control time by the UPSI (user
program switch indicator) job control statement. The specific meaning
attached to each bit in the UPSI byte depends on the design of the problem

5.32 DOS/VS System Management Guide

program. When a JOB or / & statement is encountered, the UPSI byte is
reset to zero.

Controlling Jobs in a Multiprogramming System

Reserving Storage for VSAM

Reserving Storage for RPS

After IPL, the job control program is always loaded automatically into the
virtual background partition. It is loaded into a foreground partition in
response to a BATCH or START command issued by the operator and
specifying the required partition. (More information on the operator
commands that control partitions is given in DOS/VS Operating
Procedures.)

A program is always loaded into the partition in which job control was
loaded (or in the corresponding real partition).

If the program is relocatable and the relocating loader is supported in
the system, the program can run in any partition. If the program (or single
phase) is reenterable and resident in the shared virtual area, it can be
shared by programs in more than one partition.

The relocating loader and self-relocating programs are discussed in
Chapter 6: Linking Programs.)

For VSAM, there are two general areas for storage considerations. First,
Access Method Services must be utilized for file definitions, catalog
manipulation and other VSAM file utility functions. Access Method
Services modules cannot be loaded into the SVA and therefore have a
virtual partition requirement that depends on the functions required for the
current job. A partition GETVIS area must be provided by specifying
SIZE=AUTO on the EXEC statement for Access Method Services. For
further details, refer to the DOS/VS Access Method Services User’s Guide.

Secondly, when user programs access VSAM files, the VSAM modules
may be loaded into either the partition GETVIS area or the shared virtual
area. For best performance, it is recommended that the SVA be used. This
also reduces storage requirements for your virtual partition. The partition in
which VSAM files are to be processed must allow for a GETVIS area to
accomodate VSAM buffers and control blocks. Approximately 302K is
required for VSAM modules in the SVA, while the partition must be large
enough to accomodate the user program and the GETVIS area. The size of
the partition GETVIS area depends on the number of VSAM files being
accessed as well as their control interval sizes. For specific details on
VSAM storage requirements, refer to the VSAM Module in the DOS/VS
System Generation manual.

For programs using RPS (rotational position sensing), part of the virtual
partition in which the program is to be executed must be reserved to
accommodate the RPS DTF extensions. This is done by the SIZE parameter

Chapter 5: Controlling Jobs 5.33

Teleprocessing Balancing

of the EXEC job control statement. These DTF extensions vary in size
from a minimum of 256 bytes to a maximum of 512 bytes.

Example of a program requiring 75K:
// JOB WEEKLY ‘

// EXEC WEEKEND,SIZE=AUTO
/&

If the job WEEKLY runs in a virtual partition of 100K, the program
WEEKEND will occupy 76K as calculated by the system, while the
remaining 24K are reserved as an additional storage pool, also available to
RPS support for DTF extensions.

The RPS version of logic modules are loaded into and executed out of
the SVA. The SVA must be large enough to accommodate the RPS versions
of the logic modules and the GETVIS area of the SVA must have an
additional 2K for the LDL (local directory list) used by RPS. (The
GETVIS area must have this 2K space even if all the RPS logic modules
are preloaded into the SVA.) The sizes of the SVA and of the GETVIS
work area can be specified in the SVA parameter of the VSTAB macro
during supervisor generation. This specification can be overridden by the
SET SVA command issued immediately after 1PL.

The RPS versions of the logic modules are contained in the core image
library of the distribution medium. They can either be loaded into the SVA
at IPL time or loaded dynamically as needed into the GETVIS area in the
SVA at execution time. For a user who loads frequently used RPS versions
of the logic modules into the SVA at IPL time, a typical specification might
be SVA=(88K,12K) for the SVA and GETVIS area, respectively. While
this might be a typical value, it is not intended to be totally representative
of every RPS situation.

If there is insufficient virtual storage in either the user area, for the
DTF extension, or in the GETVIS area of the SVA for the RPS version of
the logic module, the file will be opened without RPS support and
processing will continue.

The use of teleprocessing and batch processing at the same time may
occasionally result in long or erratic teleprocessing response times. This may
be especially true if you have overcommitted real storage, thus causing
excessive paging. The teleprocessing application may have to compete so
strongly for real page frames (because of high processing activity in the
batch partitions) that response time increases substantially.

Teleprocessing balancing improves response time by trading off
teleprocessing response time against batch throughput. TP balancing tends -
to reduce response times, or at least to stablize them.

After IPL, TP balancing can be activated by the operator’s issuing the
TPBAL command, which specifies the number of batch partitions that can
tolerate delayed processing. These will be the lowest priority partitions. The

5.34 DOS/VS System Management Guide

Restarting a Program from a

TPBAL command is also used to change or display the current setting. For
more information, see the DOS/VS Operating Procedures.

Once activated, the TP balancing function can be invoked by using
TPIN/TPOUT macros. Refer to Balancing Teleprocessing in Chapter 9:
Designing Programs for Virtual-Mode Execution for more details.

Checkpoint

When you expect a program to run for an extended period of time, you can
make provisions for taking checkpoint records periodically during the run.
These records contain the status of the job and system at the time the
records were written. Thus, they provide a means of restarting at some
point rather than at the beginning of the job if, for any reason, processing
is terminated before the normal end of the job.

Checkpoints are taken by means of a macro which you specify in your
source program. How this is done is described in Chapter 10: Using the
Facilities and Options of the Supervisor. To restart a program from a
checkpoint the RSTRT job control statement is used. The sequence of job
control statements that must be submitted to restart a program is as
follows:

1. A JOB statement specifying the jobname used when the checkpoints
were taken.

2. ASSGN statements, if necessary, to establish the 1/0 assignments for
the program that is to be restarted.

3. A RSTRT statement specifying
a) the symbolic name of the tape or disk device on which the
checkpoint records are stored,
b) the sequence number of the checkpoint record to be used for
restart,
¢) for checkpoint records on disk, the filename (DTF name) of the
checkpoint file.

4. An end-of-job (/ &) statement.

Figure 5.11 shows the sequence of job control statements needed to restart
a checkpointed program that ended abnormally due to, for example, a
power failure. Following are the characteristics of the checkpointed program
that must be considered for restart:

o The job name specified in the JOB statement was CHECKP; the same
name must be used for restart.

o The checkpoint records were written on magnetic tape; therefore, no
filename need be specified in the RSTRT statement.

« The symbolic device name SYS005 was used for the checkpoint file;
this name may be different for restart.

o The sequence number of the last checkpoint record written was 0013;
this or any previous checkpoint record can be used for restart. (The
sequence numbers are supplied by the checkpoint routine.)

Chapter 5: Controlling Jobs 5.35

// JOB CHECKP

// ASSGN SYS006,X'380" CHKPT TAPE
// ASSGN ...

// BSSGN ...

// RSTRT SYS006,0013

Figure 5.11. Example of a RESTART job

Additional restart considerations are given in Chapter 10: Using the
Facilities and Options of the Supervisor.

Programs that reserve virtual storage with the SIZE operand of the
EXEC job control statement, and allocate this storage with the GETVIS
macro instruction, should checkpoint the full virtual partition to ensure a
valid restart. Programs using VSAM, the ISAM interface program, or
Access Method Services should checkpoint the full virtual partition since
these programs use the reserved virtual storage. Programs using RPS
support for SAM, DAM, ISAM, and VSAM must checkpoint the entire
virtual partition. In addition, any RPS 1/0 phases to be used by the
checkpointing program must be preloaded into the SVA. (See Saving Data
for Restart in Chapter 10: Using the Facilities and Options of the
Supervisor for additional Checkpoint/Restart considerations.)

Executing in Virtual or Real Mode

All programs invoked for execution through an EXEC job control
statement are executed in virtual mode in the same virtual partition as the
job control program. You can, however, force a program to run in real
mode, that is, the program is executed in a real partition and no paging is
performed. To run a program in real mode, you must specify the REAL
operand in the EXEC statement. Example:

// JOB NAME

// EXEC PROGA,REAL
/&

If, for the above example, job control runs in virtual partition F2, then
the program PROGA will be loaded and executed in real partition F2. This
requires that the real partition F2 be large enough to hold the entire
program PROGA. For all the considerations for enabling a program to run
in a real partition see Chapter 6: Linking Programs.

If a program in real mode is smaller than its associated real partition
the unused portion of that partition, should be given to the page pool by
specifying the size of the program in the SIZE operand of the EXEC
statement. Example:

// JOB NAME

// EXEC PROGA,REAL,SIZE=30K
/&

5.36 DOS/VS System Management Guide

If the program PROGA which is 30K bytes long runs in a 50K real
partition, the remaining 20K bytes of that partition will be given to the
page pool.

If you specify SIZE=AUTO job control automatically uses the
information in the core image directory entry to calculate the size of the
program to be loaded. If you specify SIZE=(AUTO,nK) job control adds
nK bytes to the calculated length. This is especially useful for programs that
dynamically allocate storage during execution (such as compilers).

Running programs in real mode implies temporarily forfeiting a number
of page frames in the page pool, which may lead to degradation of system
throughput. Therefore, real mode execution should be used sparingly.

If phase names are present in the system directory list, a main page
pool of at least 4K bytes must be available. If phases resident in the shared
virtual area are to be executed, a main page pool of at least 18K must be
available. For further details on page pool requirements, refer to Defining
the Size of Real Partitions in chapter 3: Planning the System.

With a few exceptions, all IBM-supplied and user-written programs can

be executed under DOS/VS either in virtual or real mode. These exceptions
are listed in the following two sections.

Programs that Must Run in Virtual Mode

Besides job control, which always runs in a virtual partition, POWER/VS
and all programs using VTAM, VSAM, the ISAM interface program,
Access Method Services, or RPS support must be executed in virtual mode.

Programs that Must Run in Real Mode

The IBM-supplied programs OLTEP and the QTAM message control and
message processing programs must be executed in real mode.

User-written programs must be executed in real mode if they contain
channel programs for devices not supported by DOS/VS.

User-written programs must be executed in real mode or modified if they
« contain channel programs that are modified during command execution.
« contain 1/O appendage routines causing page faults.

« contain MICR stacker selection routines or other time-dependent code
for execution of 1/0 requests.

Summary of Job Control Statements and Commands

The following summarizes the job control statements and commands
discussed in this section in relation to program execution.

EXEC The EXEC statement indicates that the end of control information for a

Chapter 5: Controlling Jobs 5.37

job step has been reached, and that execution of a program is to start. It is
the last job control statement processed before a job step is executed.

If the program to be executed has just been processed by the linkage
editor, the program name operand of the EXEC statement is blank.

To execute a program that is permanently cataloged in the core image
library, the EXEC statement must specify the name of the first or only
phase of that program.

All programs invoked through an EXEC statement are executed in
virtual mode unless the operand REAL is specified. The SIZE parameter of
the EXEC job control statement defines the low-end portion of the
partition which will be used during the job step. When the REAL operand
is used, SIZE should also be specified to release the remainder of the
partition to the page pool. SIZE must be specified for virtual mode
programs that require the use of the GETVIS macro to obtain additional
virtual storage during execution.

In response to an EXEC statement with the REAL operand, job
control clears storage from the beginning to the end of the partition, a
FETCH is issued for the desired program, and control is given to its entry
point. When both REAL and SIZE are specified in the EXEC statement,
only the portion of the real partition defined by SIZE is cleared.

(During execution of a virtual-mode program, the page management
routine of the supervisor clears a page frame to zero if no page-in occurs
when this page frame is assigned to the program.)

OPTION The OPTION statement can be used to specify certain functions (options)
to be performed by the system when a program is executed. Most of these
functions pertain to the execution of the language processors.

A standard set of options can be established during system generation
by the STDJC macro. If these standard options satisfy the requirements of
your job, an OPTION statement is not needed. Exceptions are the options
LINK, CATAL, PARSTD, and STDLABEL, which cannot be standard and
must, if desired, be specified in an OPTION statement.

RSTRT The RSTRT statement is used to restart a program from a checkpoint.

UPSI The UPSI (user program switch indicator) statement can be used to set
program switches in the communications region that can be tested by the
problem program. The switches (UPSI byte) are reset to zero by a JOB or
/ & statement.

Checking and Altering Job Control Statements
It is often desirable to exercise a certain measure of control on the initiation

of a job step. To this end a facility is provided which enables you to keep a
running check on how a job step is executed, thereby enhancing security,

5.38 DOS/VS System Management Guide

serviceability, and reliability. After a job control statement has been read,
control can be passed to a user exit routine for the purpose of examining
and altering the statement prior to its being processed by the system.

The DOS/VS distribution volume contains a dummy phase $JOBEXIT
in the system core image library. If you do not use the Job-control-exit
facility, it has no effect on your system. For more information on the
conventions for writing such a job control exit routine, together with an
example, refer to Writing a Job Control User Exit Routine in Chapter
10: Using the Facilities and Options of the Supervisor.

System Files on Tape, Disk or Diskette

System Files on Tape

In the section Symbolic 1/0 Assignment, earlier in this chapter, it was
stated that a physical 1/0 device (except DASD) cannot be assigned to
more than one active partition at the same time. This means, for instance,
that in an installation with only one card reader the input job stream on
SYSRDR and SYSIPT for one partition must have been completely
processed by job control and unassigned for that partition before job
streams can be read by another partition. This also applies to the system
output on SYSLST and SYSPCH if only one printer and one card punch
are available.

Since this situation can cause a considerable decrease of system
throughput, DOS/VS permits storing the input job streams and the system
output on a direct access device or, if enough tape units are available, on
magnetic tape. This allows several partitions simultaneously to read system
input from or to write system output to high-speed devices, thus increasing
system throughput and, due to reduced CPU wait time, improving the
overall performance.

The following section describes how to store system input and output
on high-speed devices and to read and process the job streams from these
devices.

The same improvements as those gained by having system files on
high-speed devices - but far more efficient and easier to use - can be
achieved by using an optional service program of DOS/VS: POWER/VS.
POWER/VS stores the job streams on disk, transfers the jobs to the
partitions for execution, and stores list and punch output on disk before it
is finally printed or punched. In short, everything described in this section is
done automatically by POWER/VS. Thus, if your installation works with
POWER/ VS, the following paragraphs may not be of interest to you. Refer
to Chapter 8: Using POWER/VS. to the section Generating POWER/VS
in Chapter 3: Planning the System, and to the section POWER/VS in
Chapter |: Understanding the System.

If the system input units SYSRDR and SYSIPT are assigned to the same
magnetic tape unit, they may (but need not) be referred to as SYSIN. If the
system output units SYSLST and SYSPCH are assigned to the same

Chapter 5: Controlling Jobs 5.39

System Files on Disk

magnetic tape they must be referred to as SYSOUT. The tapes may be
unlabeled or they may have standard labels. SYSIPT assigned to a magnetic
tape cannot be a multi-volume file.

To store the input stream on magnetic tape you must write your own
program that transfers the job stream to the tape. Assume, in the following
example, that you have written such a program and cataloged it in the core
image library under the name CDTOTP; the program CDTOTP uses
SYS004 to read the input job stream, and SYS00S5 for the tape onto which
the job stream is to be written; the end of input data for CDTOTP is

indicated by **. The example in Figure 5.12 shows how to use the program

CDTOTP to create a combined system input file on tape.

// JOB BUILDIN
1 // ASSGN SYS004,X'00C"'
2 // ASSGN SYS005,x'182"'
3 // EXEC CDTOTP

// JOB A 2

/& L
// JOB B job stream

/&
4 xx /

/&

SYS004 is assigned to the card reader from which CDTOTP rcads the job stream.
SYSO005S is assigned to the tape which is to receive the job stream.

The CDTOTP program is exccuted and writes the job stream onto tape.

AW =

(or any other significant character combination) signals end-of-data to
CDTOTP

Figure 5.12. Creation of SYSIN on Tape

After completion of the job BUILDIN shown in Figure 5.12 you can
assign SYSIN to the tape containing the job stream; job control will then
read and process the jobs A and B from the tape just as it would have done
from the card reader.

In the same way you can direct the system output on SYSLST and
SYSPCH to go on magnetic tape and then use your own or an
IBM-supplied program to print or punch the contents of the tape on the
printer or card punch, respectively.

System files on disk can be used only if the SYSFIL parameter was
specified in the FOPT macro during supervisor generation. Systems without
tape units should specify the SYSFIL parameter to facilitate system
maintenance.

5.40 DOS/VS System Management Guide

When both SYSRDR and SYSIPT are assigned to disk, they must refer
to the same disk extent, and be referred to as SYSIN. Since the output
units SYSLST and SYSPCH have different record lengths, they must be
assigned to separate disk extents; SYSOUT can therefore not be used if
SYSLST and SYSPCH are assigned to disk.

For system files on disk, you must provide the required label
information by means of DLBL and EXTENT job control statements. Note
that only single extent system files are supported. You must use the
following predefined filenames when reading system input from disk or
writing system output on disk:

1JSYSIN for SYSRDR, SYSIPT, SYSIN
JSYSPH for SYSPCH
IJSYSLS for SYSLST

For example, the label information for SYSIN assigned to a disk extent
could be submitted by the following job control statements:

// DLBL TJSYSIN, 'DISKINFILE'
// EXTENT SYSIN,DOSRES,1,0,1260,30

The assignment of a system file to a disk extent must always be
permanent (no //), and it must follow the DLBL and EXTENT statement.
Example:

// DLBL 1JSYSIN, 'DISKINFILE"
// EXTENT SYSIN,DOSRES,1,0,1260,30
ASSGN SYSIN,X'131'

After a system file on disk has been processed, it must be closed by a
CLOSE job control command (no //). The second (optional) operand of
the CLOSE command can be used to unassign a system logical unit or
reassign it to another device. The following command closes the SYSIN file
on disk and reassigns SYSIN to the card reader:

CLOSE SYSIN,X'oocC!'

The CLOSE command can either be entered on SYSLOG by the operator
or it can be included at the end of the job stream on disk.

If SYSIPT is assigned to a disk extent, the CLOSE command must
precede the / & . Multiple SYSIPT data files can be read via multiple job
steps with one / & at the end of the job stream.

The example in Figure 5.13 shows the job control statements needed to
1. write a job stream on disk,

2. execute the job stream from disk and store the print output on disk,
and

3. print the output from disk on the printer.

The example assumes that you have written your own programs to write the
job stream on disk (CDTODISK) and to list on the printer the print output
stored on disk (DISKTOPR).

Chapter 5: Controlling Jobs 5.41

@ // JOB STORE

/ / ASSGN SYS001,X'00C’

/ / ASSGN SYS006,X'190'

/ / DLBL DASDOUT, ‘DASDOUTFILE’

/ / EXTENT SYS006,DOSRES, 1,0,1260,30
/ / EXEC CDTODISK

@ // DLBL 1JSYSLS,"OUTPR’
// EXTENT SYSLST PVRLSL,1,0,1970,20
ASSGN SYSLST,X'191’

// DLBL IJSYSIN,'DASDOUTFILE’
// EXTENT SYSIN,DOSRES, 1,0,1260,30
ASSGN SYSIN, X 190’

@ // JOB PRINT

/ / ASSGN SYS001,X'191’

/ / ASSGN SYS002,X'00E’

// DLBL OUTPR

// EXTENT SYS001,PVRLSL,1,0,1970,20
/ / EXEC DISKTOPR

/&

JOB STREAM
IS EXECUTED
FROM DISK

PRINT
OUTPUT

PRINTED
LISTING

@ The program CDTODISK reads the following job stream from the card reader (SYS001) and stores it on disk (SYS006).

The end of the job stream is indicated to CDTODISK by **,

@ SYSLST and SYSIN are switched to disk. Job contral now reads the job stream from the disk on device X‘190’.
The job stream is executed and the print output is stored on the disk on device X'191’. The CLOSE commands at
the end of the job stream will close the system files on disk and reassign them to the printer and card reader, resp.

@ The program DISKTOPR reads the print output from disk (SYS001) and lists it on the printer (SYS002).

Figure 5.13. Processing System Input and Output Files on Disk

System Files on Diskette

System files on diskette can be used only if the SYSFIL parameter was
specified in the FOPT macro during supervisor generation.

If the system input units SYSRDR and SYSIPT are assigned to the
same diskette extent, they must be referred to as SYSIN. Since the output
units SYSLST and SYSPCH have different record lengths, they must be

5.42 DOS/VS System Management Guide

assigned to separate diskette extents; SYSOUT can therefore not be used if
SYSLST and SYSPCH are assigned to diskette.

For system files on diskette, you must provide the required label
information by means of DLBL and EXTENT job control statements. You
must use the following predefined filenames when reading system input
from diskettes or writing system output on diskettes.

IJISYSIN FOR SYSRDR, SYSIPT, SYSIN

1IJSYSPH for SYSPCH

1JSYSLS for SYSLST
For example, the label information for SYSIN assigned to a diskette extent
could be submitted by the following job control statements:

| // DLBL LJSYSIN,'DISKETTE',,DU
// EXTENT SYSIN,DSKFETF., i

The assignment of a system file to a diskette extent must always be
permanent (no //), and it must follow the DLBL and EXTENT statement.

Example:
// DLBL IJSYSIN, "DISKETTE', ,6 DU
// EXTENT SYSIN,DSKETE, 1

ASSGN SYSIN,X'060'
After a system file on diskette has been processed, it must be closed by
a CLOSE job control command (no //). The second (optional) operand of
the CLOSE command can be used to unassign a system logical unit or
reassign it to another device. The following command closes the SYSIN file
on diskette and reassigns SYSIN to the card reader:

CLOSE SYSIN,X'00C'

The CLOSE command can either be entered on SYSLOG by the operator
or it can be included at the end of the job stream on diskette.

If SYSIPT is assigned to a 3540 diskette, the CLOSE command must
be issued prior to reading the / & . Multiple input data files can be read via
multiple job steps with one / & at the end of the job stream.

When job control encounters / & on SYSRDR during normal
operation, the standard assignment for SYSIPT becomes effective and
SYSIPT is checked for an end-of-file condition. If the standard assignments
for SYSRDR and SYSIPT are not to the same device, SYSIPT is advanced
to the next / & statement.

In the event of an abnormal termination, job control advances SYSRDR
and SYSIPT to the next / & and proceeds, only if a JOB statement is
provided.

Interrupting Job Streams on Disk, Diskette, or Tape

After a SYSIN or SYSRDR job stream has been prepared on tape, diskette,
or disk, it may be necessary to interrupt the normal schedule to execute a
special rush job. To do this, you press the request key on the operator
console and enter a PAUSE command with the EOJ operand causing the
corresponding partition to suspend processing at the end of the current job.

Chapter 5: Controlling Jobs 5.43

At this point you can make a temporary assignment for SYSIN to the card
reader to execute the rush job. At the end of this job, processing of the job
stream on disk, diskette, or tape will resume at the point of interruption.
This is illustrated in Figure 5.14. Starting an urgent job that uses a catalog
procedure by means of a single EXEC statement is discussed in the section
Partition-Related Cataloged Procedures.

Card Reader Disk Extent Operator Console

//DLBL SYSIN, ...
// EXTENT SYSIN, . .. N

ASSGN svsnn,x’191’:L> //J0B A
P ®

/13088 Press request key and enter

PAUSE xx, EOJ
where xx is the name of the partition

N
/1108 RUSH :::::::.:::::::::J::[: // ASSGN SYSIN,X'00C’
. /1308¢C
-~
/&
/&
/1308 D< (6} CLOSE SYSIN,X'00C’
18
/1308 E
/&

@ SYSIN is assigned to disk and processing of the jobstream on disk begins.
@ While job B is being executed a PAUSE command is entered at the operator console.

At the end of job B control comes to the operator who can now enter a temporary assignment for
SYSIN to the card reader.

® The iob RUSH is read and processed from the card reader. Note that the temporary assignment of
SYSIN is not reset by the / / JOB RUSH statement but is retained to end of the job.

The/ & resets the temporary assignment of SYSIN to permanent (X'190’) and the next
job in the stream on disk is read and executed.

The CLOSE command closes the system file on disk and reassigns SYSIN to the card reader to
process jobs D and E.

Figure 5.14. Interrupting a Job Stream on Disk

Record Formats of System Files

SYSLST records are 121 characters and SYSPCH records 81 characters in
length. From SYSRDR and SYSIPT, job control accepts either 80- or
81-character records. (For none of these files can the records be blocked.)
You can use object modules written on tape, diskette, or disk as input to
the linkage editor after the tape, diskette, or disk has been assigned to
SYSIPT.

5.44 DOS/VS System Management Guide

The first character of the SYSLST and SYSPCH records is assumed to
be an ASA carriage control or stacker selection character. SYSIPT,
SYSRDR, SYSPCH, and SYSLST records assigned to DASD have no keys,
and record lengths are the same as stated above.

Using Cataloged Procedures

This section describes how to retrieve a cataloged procedure from the
procedure library and how to modify the contents of a cataloged procedure.
How a procedure is cataloged in the procedure library is discussed in
Chapter 7: Using the Libraries.

Note: The procedure library should not be updated in a running
multiprogramming system.

Retrieving Cataloged Procedures

To retrieve a cataloged procedure from the procedure library you use the
PROC parameter in the EXEC job control statement specifying the name
of the cataloged procedure. Assume that a certain program called
PAYROLL uses the following job control statements (in addition to the
// JOB and / & statements):

// ASSGN SYS017,READER

// ASSGN SYS018, PUNCH

| // ASSGN SYS019,X'00E'

// ASSGN SYS020, TAPE

// ASSGN SYS021,DISK,VOL=111111

// TLBL TAPFLE,'PLLE-IN'

// DLBL DSKFLE, 'F1LE-OUT',99/365,SD

// EXTENT SYS021,111111,1,0,200,400

// EXEC PAYROLL

Assume further that these control statements have been cataloged in the
procedure library under the name PAY. If the program PAYROLL is to be
executed, the programmer or operator would simply prepare the following
job control statements:

// JOB USER1

// EXEC PROC=PAY

/&

When the job control program starts reading the job control statements in
the input stream on SYSRDR and finds the EXEC statement, it knows by
the operand PROC that a cataloged procedure is to be inserted. It takes the
name of the procedure to be used (PAY), retrieves the procedure with that
name from the procedure library, and replaces the EXEC statement in the
input stream by the retrieved procedure. The individual statements that are
inserted are then processed from the very beginning. The statement

// EXEC PAYROLL

causes the program PAYROLL to be loaded and given control. When
execution of PAYROLL is complete, the job control program finds the / &
statement and performs end-of-job processing as usual.

Chapter 5: Controlling Jobs 5.45

Note: The listing of job control statements on SYSLOG and/or SYSLST will
show the message EOP PAY at the end of the inserted procedure.

Modifying Cataloged Procedures

The preceding example is the simplest case of the use of cataloged procedu-
res. It will work as long as the requirements of the program do not change.

It may happen, however, that some of the statements in a cataloged
procedure must be modified for a specific run of a program. For example,
the printer normally used (X‘00E’ in the preceding example) may be
temporarily unavailable so that a different printer must be assigned. It does
not make much sense to delete the old version and to catalog the new one
because the old version will be needed as soon as the normal printer
becomes operational again.

Likewise, it may be necessary to add or remove certain statements to or
from a cataloged procedure for a specific run of a program. You may wish, for
example, to process a different copy of the file FILE-OUT (see the preceding
example). You must therefore temporarily suppress the corresponding DLBL
and EXTENT statements in the cataloged procedure and replace them by
statements that identify the file you want to process instead.

For cases like this DOS/VS permits

o temporarily modifying one or more statements in a cataloged procedure
(thus, overriding what was present).

« temporarily suppressing (deleting) one or more statements in a
cataloged procedure without modifying them.

« temporarily incorporating one or more additional statements at desired
locations in a cataloged procedure.

You can request temporary modification of statements in a cataloged
procedure by supplying the corresponding modifier statements in the input
stream. Normally, not all statements are to be modified.

You must therefore establish an exact correspondence between the
statement to be modified and the modifier statement by giving them the
same symbolic name. This symbolic name may have from one to seven
characters, and must be specified in columns 73 through 79 of both
statements.

Note: An unnamed statement cannot be modified. To be able to modify a
single statement in a cataloged procedure, you should name each statement
when cataloging. Moreover, the modifier statements must be in the sequence in
which modification is to be performed on the cataloged statements. The JOB
and /& statements cannot be used as modifier statements.

A single character in column 80 of the modifier statement specifies
which function is to be performed:

A - indicates that the statement is to be inserted after the statement in the
cataloged procedure that has the same name.

5.46 DOS/VS Systcm Management Guide

B - indicates that the statement is to be inserted before the statement in
the cataloged procedure that has the same name.

D - indicates that the statement in the cataloged procedure that has the
same name is to be deleted.

Any other character or a blank in column 80 of the modifier statement
indicates that the statement is to replace (override) the statement in the
cataloged procedure that has the same name.

In addition to naming the statements and indicating the function to be
performed, you must inform the job control program that it has to carry out
a procedure modification. This is done

(1) by specifying an additional parameter (OV for overriding) in the EXEC
statement that calls the procedure, and

(2) by using the statement // OVEND to indicate the end of the modifier
statements.

Placement of the // OVEND statement is as follows:

« Place directly behind the last modifier statement

« If the last modifier statement overwrites a // EXEC statement and is
followed by data input, place the // OVEND between the /* and the
/&.

The following examples show how you can temporarily modify a cataloged
procedure.

Assume that a cataloged procedure named PROCS5 for the program
PAYROLL contains the following statements:

73--79
// ASSGN SYS017,READER PAYO0001
// ASSGN SYS018,PUNCH PAY0002
// ASSGN SYS019,PRINTER PAY0O003
// ASSGN SYS020,X'181"' PAYO0004
// ASSGN SYS021,DISK,VOL=111111 PAYO005
// TLBL TAPFLE, 'FILE-IN' PAYO0006
// DLBL DSKFLE, 'FILE-OUT' PAY0007
// EXTENT SYs021,111111,1,0,200,200 PAY0008
// EXEC PAYROLL PAY0009

Assume further that the programmer wants to use tape unit X‘183’ instead
of X‘181°. The input stream on SYSRDR, in this case, would have to be as
follows:

73--79
// JOB USER
// EXEC PROC=PROCS,0OV
// ASSGN SYS020,X'183" PAY0004
// OVEND
/6

The form of the EXEC statement in the input stream indicated that (1) the
procedure PROCS is to be used and (2) this procedure is to be modified in
some way. The first three procedure statements are processed without
change. The procedure statement named PAY(0004 is replaced by the
corresponding statement in the input stream (a blank in column 80 specifies

Chapter 5: Controlling Jobs 5.47

overriding). The remaining procedure statements are again processed
without change.

As another example, assume that the program PAYROLL is to use the
file FILE-OUT!1 instead of FILE-OUT and that this file resides on two
extents of a disk pack that has the volume serial number 111112. The input
stream might then look as follows:

Col.73--79 80
// JOB USER
// EXEC PROC=PROCS, 0V
I // DLBL DSKFLE,'FILE-OUT1' PAY0007
// EXTENT SYS021,111112,1,0,100,200 PAY0008
// EXTENT SYS021,111112,1,1,500,200 PAYOOO8A
// OVEND
/&

Processing would be as follows: The JOB statement and all procedure
statements up to the statement named PAY0006 are processed without
modification. The procedure statements named PAY0007 and PAY0008 are
replaced by the corresponding statements in the input stream (due to the
blank in column 80). The second EXTENT statement in the input stream
has the character A in column 80, which indicates that the statement is to
be inserted after the (replaced) statement named PAYQ008. The procedure
statement named PAYO0009 is again processed without modification.

The possibility of modification as described above makes the use of
cataloged procedures more flexible. Often, however, it is simpler and more
economical to have different procedures for the same program than to have
a single procedure and modify it.

Several Job Steps in one Procedure

A cataloged procedure may contain more than one EXEC statement, that
is, it may contain control statements for more than one job step (within the
same job). Bear in mind that as the number of job steps in a procedure
increases, so does the time required to re-execute the whole procedure after
an error occurs. A program written in assembler language, for instance,
requires three job steps to assemble, link-edit, and execute the program. For
the use of a cataloged procedure, your input stream for the entire job (on
SYSIN for simplicity) would contain the following:

// JOB USER

// OPTION LINK

// EXEC ASSEMBLY

source deck of program to be assembled

£ 3

;/ EXEC LNKEDT

// EXEC

data for program to be executed

*

7
If the OPTION statement and the three EXEC statements were cataloged
under the name ASDPROC, the input stream could be simplified to the
following (the shaded portions represent statements from the procedure
library):

// JOB USER

// EXEC PROC=ASDPROC

5.48 DOS/VS System Management Guide

// OPTION LINK

// EXEC ASSEMBLY

source deck of program to be assembled
/%

// EXEC LNKEDT

// EXEC

data

/%

/&

The same can be done for any number of job steps that logically belong
together and are frequently executed. A stock control program STOCK, for
instance, may be run daily to compile statistics that can be used to prepare
the following lists:

1. An exception list that shows which items are low in stock. Required
daily.

2.. A list that shows the turnover in currency for a certain item or group of
items. Required weekly.

3. A list that shows the turnover in number of units for each item or
group of items. Required monthly.

4. An inventory list. Required semi-annually.

To simplify processing, four procedures may have been cataloged:

STKPR1 - two job steps: the first to execute STOCK, the second to
prepare list 1.

STKPR2 - three job steps: the first two are the same as for STKPRI1, the
third to prepare list 2.

STKPR3 - four job steps: the first three the same as for STKPR2, the
fourth to prepare list 3.

STKPR4 - five job steps: the first four the same as for STKPR3, the fifth
to prepare list 4.

Which lists are printed after every run of STOCK then depends on what
cataloged procedure is used.

Modifying Multistep Procedures without SYSIPT Data

Multistep procedures may be modified in the same way as the single-step
procedure described earlier. A number of considerations, however, apply to
the ordering of the modification statements in the input stream when a
logical unit is assigned to the same physical unit as SYSRDR.

1. It is advisable to avoid using identical symbolic names for the
statements in the procedure.

2. The modifier statements must be in the same sequence as the
statements in the referenced procedure.

3. If one step of a procedure is unmodified, the first modifier statement
for the following step must be placed either before the data input for
the unmodified step or after the last modifier statement of the
preceding job step. If it is the first modifier statement in the input
stream, it must be placed immediately after the EXEC PROC
statement.

Chapter 5: Controlling Jobs 5.49

4.

If a modifier statement overwrites an EXEC statement, a subsequent
modifier statement must be placed affer the data input (and /*) for

this step.

Figure 5.15 shows an example of modifying the second and third steps of a
three-step procedure.

1

2
3
4
S

In the example given in Figure 5.1, it is assumed that SYSRDR and
SYSIPT are assigned to the same physical unit. The following notes apply
to the example:

This is the first modifier statement. It refers to step 2.
This statement provides SYSIPT data for PSERV.
This modification overwrites the EXEC statement.
This statement provides SYSIPT data for DSERV.
This statement provides SYSIPT data for DSERV.

SYSIN Input Stream

Procedure CATO0l Containing JCL Only

// JOB EXAMPLE

// EXEC PROC=CATO01,0V

// ASSGN SYSRLB,UA

OJC,

DSPLY CATO1l

/*

// ASSGN SYSSLB,UA
// EXEC DSERV,REAL

DSPLY CD,RD,SD

®©E

/*

ASSGN SYSCLB,UA

// OVEND

G DSPLY CD,PD
/*
/&

Column 73-79

STMT3

STMT4

STMT5

STMT6

// EXEC PSERV

ASSGN SYSCLB,X'130'
// ASSGN SYSRLB,X'130'
// ASSGN SYSSLB,X'130'

// EXEC DSERV

// ASSGN SYSSLB,UA
// EXEC DSERV,REAL

/+

Figure 5.15. Example of Modifying a Three-Step Procedure

SYSIPT Data in Cataloged Procedures

Column 73-79

STMT1

STMT2
STMT3
STMT4

STMT5

STMT6

STMT7

Procedures may additionally contain SYSIPT inline data, such as control
statements for system utility and service programs and source modules.

Note: This extended support requires a supervisor that was generated with the
SYSFIL option.

5.50 DOS/VS System Management Guide

SYSIPT inline data in procedures may also be any data that is
processed under control of the device independent 1OCS used by your
program or IBM-supplied programs. Normally, though, you would not
catalog source programs or data for your problem programs in the
procedure library.

Including SYSIPT inline data in procedures is useful and convenient
mainly in the case of control information for system utility and service
programs.

A job stream for an initialize disk utility run could, for instance, contain
the following control statements (the statements are shown in skeleton
format only):

// RASSGN

// EXEC INTDK

// UID IR,C1,R=(0027003)

// VTOC STANDARD

VOL1T11111

// END

/&

If SYSRDR and SYSIPT were not combined and no cataloged procedure
was used, the job control statements would have to be placed on SYSRDR.
whereas the utility control statements would have to be placed on SYSIPT.
If, however, these control statements had been cataloged (for example,
under the name INITDK), only the following statements would be required
on SYSRDR:

// JOB NAME

// EXEC PROC=INITDK

/&

SYSIPT data can either be read from SYSIPT or be retrieved from the
procedure library. Combining the two possibilities in a (single-step or
multi-step) procedure is not permitted. Also, SYSIPT data read from the
procedure library cannot be modified. In a cataloged procedure with in-line
SYSIPT data, you should not delete or overwrite an EXEC statement that
gives control to a program that uses the SYSIPT data.

For multistep procedures, SYSIPT data must be read in all job steps
either from SYSIPT or from the procedure library. If the SYSIPT data for
the first job step is read from SYSIPT, having SYSIPT data for any of the
following job steps in the procedure would lead to an error. Conversely, if
the SYSIPT data for the first job step is contained in the procedure, any
SYSIPT data for subsequent job steps must also be contained in the
procedure.

Partition-Related Cataloged Procedures

In some instances, a particular cataloged job may need a specific set of job
control statements, dependent on the partition of execution. For example,
you may want to run a job to store DLBL and EXTENT statements onto
the partition label track for each partition (OPTION PARSTD). Since each
partition requires a different set of label information, you would need a
cataloged procedure for each partition.

Chapter 5: Controlling Jobs 5.51

I Partition-related cataloged procedures, then allows you to retrieve and

execute the appropriate procedure with a single EXEC statement. One
benefit of this feature lies in the ease with which unscheduled jobs can be
started. At execution time, the system selects the proper
procedure--including the appropriate EXTENT and DLBL
statements--based on the partition in which the job is to be executed.

To use the feature, you must first create separate sets of job control
statements that conform to the specific partitions in your system. Most
probably, the difference in these sets will be in the EXTENT and DLBL
statements, because of the different device and DASD space assignments
from partition to partition. Second, in order to distinguish between the
procedures and relate them to the appropriate partitions, the following
naming convention must be used for procedures to be placed in the library:

First character of name $
Second character - B for BG partition
- 1 for F1 partition
- 2 for F2 partition
- 3 for F3 partition
- 4 for F4 partition
any alphameric characters

Third-eighth characters

In the EXEC statement used to start the job, however, the first two
characters of the procedure name must be $$, with the remaining characters
identical to the cataloged name.

On reading the EXEC statement, the system replaces the second $ with
the identifier for the partition in which the job is to run. The procedure
with this name is then retrieved, read, and executed.

To continue the previous example, the procedures may be named
$BPARSTD for the BG partition, $1PARSTD for the F1 partition and so
on. The statement thus needed to invoke the appropriate procedure is //
EXEC PROC=$$PARSTD.

Use of Cataloged Procedures by the Operator

All the previously described functions and advantages of cataloged
procedures are also available to the operator. Of special importance in the
operator’s use of cataloged procedures is the starting of urgent jobs or
long-running jobs like POWER/VS or teleprocessing.

Full details on the use of cataloged procedures by the operator are
given in DOS/VS Operating Procedures.

5.52 DOS/VS System Management Guide

Chapter 6: Linking Programs

Structure of a Program

Prior to execution in storage, all programs must be placed in the core image
library by the linkage editor. This chapter describes the rcle of the linkage
editor and how you can communicate with it through control statements.

The name linkage editor appropriately reflects the editing and the
linking operations that this program performs. The linkage editor prepares a
program for execution by editing the output of a language translator into
core image format. The linkage editor also combines separately assembled
or compiled program sections or subprograms (called object modules) into
phases. This process is referred to as linking.

A program can be link-edited and

« cataloged permanently,
« cataloged permanently and executed immediately, or

« cataloged temporarily and executed immediately.

When a program is cataloged permanently into the core image library, the
linkage editor is no longer required for that program*, because the
supervisor can load it directly from the library in response to an EXEC job
control statement, or a FETCH or LOAD macro. On the other hand, if the
program is cataloged temporarily and executed immediately, the linkage
editor is required again the next time the program is to be run.

If a private core image library is assigned to the partition in which the
execution of the linkage editor occurs, the phases produced are entered into
this private core image library. Otherwise (for the background partition),
the phases are entered into the system core image library. To execute the
linkage editor in a foreground partition, a private core image library must
be uniquely assigned to that partition. For more information on using private
libraries, refer to Chapter 7: Using the Libraries.

To understand the functions of the linkage editor, you must understand the
structure of a program during the various stages of its development.

Figure 6.1 summarizes the three sections that follow, which discuss source
modules, object modules, and program phases.

*If the partition boundaries change so that the cataloged program’s START and END
addresses no longer fall within the partition, the program must be link-edited again.
This restriction does not apply to relocatable programs loaded by the relocating loader.

Chapter 6: Linking Programs 6.1

SOURCE MODULE OBJECT MODULE

Linkage
Editor

Language
Translator
Source Statement Relocatable Core Image

BOOK 9
Library Library Library

(U=
(U=

Figure 6.1. Stages of Program Development

A set of source statements, or source module (1), must be processed by a language translator, but can first be
cataloged as a book (2) into the source statement library. The output of the language translator is called an
object module (3), which must be processed by the linkage editor, but can first be cataloged as a module (4)
into the relocatable library. The output of the linkage editor is called a phase (5), which is cataloged into the
core image library temporarily or permanently, and can also be loaded into the shared virtual area. (A phase
is cataloged temporarily if // OPTION LINK is specified; a phase is cataloged permanently if // OPTION
CATAL is specified.) At execution time, either the system loader loads a phase from the core image library
into the problem program partition, or (if appicable) the partition requesting the phase uses the copy available
in the shared virtual area.

Source Modules

After planning the most logical approach to the problem you are to submit
to the computer, you write a set of source statements in a programming
language. Your set of source statements, called a source module, must be
processed by a language translator. The language translator assembles
source modules written in assembler language, or it compiles source
modules written in a high-level language (for instance, ANS COBOL,
FORTRAN, PL/I, or RPG II). The language translator transforms the
source module into an object module, which is in machine language.

You can either submit your source module directly to the language
translator for processing, or you can catalog it into a sublibrary of the
source statement library for processing at a later time by the language
translator. (Refer to Chapter 7: Using the Libraries for guidelines on
how to catalog into the source statement library.)

A source module written in assembler consists of definitions for one or
more control sections (CSECTs). Source modules written in a high-level
language do not have this structure.

6.2 DOS/VS System Management Guide

Object Modules

An object module, the output of a language translator, consists of the
dictionaries and text of one or more control sections. The dictionaries
contain the information necessary for the linkage editor to modify portions
of the text for relocation and to resolve cross-references between different
object modules. The text consists of the actual instructions and data fields
of the object module.

You can either submit your object module directly to the linkage editor
for processing, or catalog it into the relocatable library for later inclusion in
a linkage editor job stream. (Refer to Chapter 7: Using the Libraries for
guidelines on how to catalog into the relocatable library.)

The language translator produces four types of cards for each object
module. An identifier field in columns 2-4 indicates the content of each
card. Column 1 contains a multipunch (12-2-9) that identifies the card as
being part of an object module (also referred to as a loader card). The four
types of cards are: ESD, TXT, RLD, and END. The contents of these
cards are summarized below.

ESD (Extermal Symbol Dictienary). This card contains all the symbols
defined in this module that are referred to by another module and all the
symbols referred to by this module that are defined in another module.
There are six classifications of the ESD card, which are described in
DOS/VS System Control Statements.

TXT (Text). This card consists of the actual code of the object module. It
contains the assembled (or compiled) address of the instructions or data
included in the card, and the number of bytes contained in the card. It also
includes a reference to the control section where this text occurs. The
linkage editor uses this reference when applying a relocation factor. If
address constants are present, TXT information is modified as required by
RLD information.

RLD (Relocation List Dictiomary). The RLD cards identify portions of the
text that must be modified if the program is subsequently relocated. They
provide information necessary to perform the relocation.

END (End of Module). The END card indicates the end of the module to
the linkage editor. The END card may supply a transfer address (where
execution is to begin). It may also contain the control section length, which

was not previously specified in the ESD section definition or private code
(unnamed CSECT).

If you want to change information in a TXT card, you can prepare a
REP card (user replace card) and submit it with your object module for
cataloging into the relocatable library or for linkage editor processing. A
REP card must be submitted between the TXT card it modifies and the
END card; otherwise, the TXT card is not modified. Usually, you place the
REP card(s) immediately before the END card.

For the exact formats of the ESD, TXT, RLD, REP, and END cards,
refer to DOS/VS System Control Statements.

Chapter 6: Linking Programs 6.3

Program Phases

Relocatable Phases

Self-Relocating Phases

Non-Relocatable Phases

The linkage editor produces a program phase from the object module(s)
you identify in linkage editor control statements. A phase is the smallest
functional unit (one or more control sections) that the system loader can
load into a partition in response to a single EXEC job control statement or
a FETCH or a LOAD macro instruction.

In the PHASE control statement you can instruct the linkage editor to
produce one of three types of phases: relocatable, self-relocating, or
non-relocatable.

The linkage editor can produce a relocatable phase for those phases with an
origin that is not an absolute address and that is not relative to a
non-relocatable phase. If the supervisor was generated to support the
relocating loader, a relocatable phase can be loaded into any partition for
execution.

For each relocatable phase the linkage editor prepares special relocation
information that the relocating loader uses to modify the text if necessary.
Relocation is not performed if the program is to be executed at the same
address for which it was link-edited.

For more information on relocatable phases, refer to the section
Link-editing for Execution at Any Address.

If a relocatable phase is also designed as a reenterable phase, it is
eligible to be loaded into the shared virtual area (SVA). Phases resident in
the SVA can be shared concurrently by programs running in either real or
virtual mode.

Prior to the availability of the relocating loader in DOS/VS, users had to
write self-relocating programs in order to gain the advantages of
relocatability. If you have to perform maintenance on such a program, you
must write this program in assembler language according to the rules
described in DOS/VS Supervisor and I/0 Macros. In the PHASE
control statement you indicate an origin of +0. The program must relocate
all its addresses at execution time to correspond with the addresses available
in the partition where the program is loaded.

You do not need to write a self-relocating program if your supervisor
includes support for the relocating loader. (Refer to Relocatable Phases
above.)

A non-relocatable phase is link-edited to be loaded at a specific location
(absolute address) in a partition. Phases link-edited without relocating
loader support are also non-relocatable. When you request execution of a

6.4 DOS/VS System Management Guide

non-relocatable phase in a given partition, the starting and ending addresses
of the phase must be included within that partition. Otherwise, the job is
canceled. If you wish to execute a non-relocatable phase in more than one
partition, you must catalog a separate copy of the phase for each partition.

The Three Basic Applications of the Linkage Editor

The three basic applications of the linkage editor are referred to as:
1. cataloging phases into the core image library
2. link-edit and execute

3. assemble (or compile), link-edit, and execute.

The following sections include a discussion of the system flow during each
of these applications.

Cataloging Phases into the Core Image Library

When you have an operational program that you expect to use frequently,
you should catalog it into a core image library. You can do this in a single
job step, which is shown in Figure 6.2, and described below.

When job control reads the CATAL operand of the OPTION
statement, it sets a switch that causes the linkage editor input file,
SYSLNK, to be opened. Job control copies onto SYSLNK the linkage
editor control statements present on SYSRDR, and the INCLUDE
statement signals job control to read any object modules that are to be
included from SYSIPT. If an ENTRY statement is not encountered before
the // EXEC LNKEDT statement, job control includes one on SYSLNK.
This signals termination of the input to the linkage editor.

The linkage editor is then loaded into the partition where the job
stream was submitted, and uses SYS001 as a work file to process the input
found on SYSLNK.

Because the CATAL option was specified, the linkage editor places the
executable program permanently into a core image library. If a private core
image library is assigned to this partition, the program is cataloged there;
otherwise, (for the background partition) it is cataloged into the system
core image library. The library descriptor entry in the core image directory
for cataloged phases is updated.

If the phase is eligible for the shared virtual area and is indicated as
SVA eligible in the system directory list, the phase is als<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>