
Systems

GC20-1756-2
File No. S370-20

DOS/Virtual Storage
Features Supplement

Release 34

This supplement discusses DOS/Virtual Storage (DOS/VS)
features and organizaiion as of Release 34 .. Only concepts
and functions of DOS/VS that are new to and significantly
different from those of DOS Version 4 are presented in
detail. Transition from DOS Version 4 to DOS/VS is
discussed also.

This supplement is an optional section that is designed to be
inserted in its entirety in anyone of the base guides for
Models 135,138,145,148, and 158 and the 3031 Processor
of System/370. Each of the guides for these processors
contains the conceptual and System/370 hardware infor­
mation required to understand the DOS/VS discussion
presented.

Readers who possess more than one of the base processor
publications need add this supplement to only one of the
documents as the DOS/VS information presented applies to
all supported processors unless otherwise indicated in the text.

The contents of this supplement are designed to acquaint the
DOS Version 4 knowledgeable reader with the new facilities
and the advantages 9f DOS/VS.

--...- ------ ------ ----- ~ - -- - - --------------_.-

PREFACE

This supplement is stocked in the IBM Distribution Center,
Mechanicsburg as a separate form-numbered item and is not automatically
distributed as part of any other publication. Subsequent updates to the
supplement must also be ordered separately. Those who are familiar with
a System/370 processor and DOS Version 4 and who require information
about DOS/Virtual Storage (DOS/VS) should obtain this supplement and
insert it as Section SO in one of the appropriate base publications
listed below. The features provided by the Advanced FUnctions-DOS/VS
program product.are also highlighted.

Base publications for the DOS/VS supplement are:

• A Guide to the IBM System/370 Model 135 (GC20-173S)

• A Guide to the IBM system/370 Model 138 (GC20-1785)

• A Guide to the IBM System/370 Model 145 (GC20-1734)

• A Guide to the IBM System/370 Model 148 (GC20-1784)

• A Guide to the IBM System/370 Model 158 for System/370 Model 155
Users (GC20-1754)

• A Guide to the IBM system/370 Model 158 for System/360 Users
(GC20-1781)

• A Guide to the IBM 3031 Processor Complex of System/370 (GC20-1854)

This supplement is self-contained. It begins with page 1 and
includes its own table of contents and index. The title of the
supplement is printed at the bottom of each page as a means of
identifying the optional supplement to which the page belongs.
Knowledge of intormation contained in other optional supplements that
can be added to the base publications listed above is not required in
order to understand the DOS/Virtual Storage features as they are
presented; However, comprehension of virtual storage concepts and
dynamic address translation hardware and ·terminology as described in any
one of the base publications is assumed.

Third Edition (September 1978)

This is a major revision obsoleting GC20-1756-1. The text and illustrations have been updated
to reflect new features of Releases 33 and 34. Changes are indicated by a vertical line in the
left margin.

This publication applies to DOS/VS Release 34 and is intended for planning purposes only. It
will be updated from time to time; however, the reader should remember that the authoritative
sources of system information are the system library publications for DOS/VS. These publications
will first reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

A form has been provided at the back of this publication for readers' comments. If this form
has been removed, address comments to: IBM Corporation, Technical Publications, Dept. 824,
1133 Westchester Avenue, White Plains, New York 10604. Comments become the property
of IBM.

© Copyright International Business Machines Corporation 1974, 1976, 1978

CONTENTS (Section 80)

Section
80:05
80:10

80:15
80:20

80:25

80:30

80:35

80:40

80:45

80:50
80:55

80: DOS/Virtual Storage Features ••••••
Functions and Hardware Supported. • • • • •
Organization and Initialization of Storage.

Virtual storage Organization. • • • •
Real storage Organization • • • • • •
External Page storage Organization. •
System Initialization • • • • • • • •

Major Components. • • • • • • • • • • •
The Job Control program and operator Commands •

The Job Control Program •
Operator Commands •

The Supervisor ••••
Modifications •
New Features. •
Page Management •

Data Management •
Access Methods.
Support of Additional I/O Devices
The Channel Scheduler ••••
Virtual storage Access Method •

Recovery Management and Debugging Aids.
MCAR, CCH, RMSR/ and OLTEP.
Debugging Aids. • • • • • •

1
1

10
10
22
23
25
31
40
40
48
50
50
53
59
80
80
81
82
87

• 127
• 127
• 127

Language Translators, Service programs, and Emulators ••
DOS/VS Assembler. • • • • • •

• 132
• 132

POWER/VS. • • • • • .• • • • •
Linkage Editor and Librarian.
utilities • • • • • • • •
Sort/Merge Programs • •
Integrated Emulators ••

Advanced Functions-DOS/VS program Product •
Support of Up to Seven Partitions • •
Dynamic Partition Balancing • • • • •
Asynchronous Operator Communications.

• 132
• 204
• 206
• 210
• 212
• 214
• 214

• • • 214
• 215

Faster Linkage Editing. • • • • • • • • • • 215
Device Independence for Private Source Statement and

Relocatable Libraries • • • • • • • • • • •
DOS/VS-VM/310 Linkage Facility ••••••••

DOS Version 4 to DOS/Virtual storage Transition
Summary of Advantages • • • • • • • • • • •

Expanded, More Flexible Multiprogramming.
Operational Enhancements. • • • • • •
Improved utilization of Real Storage.
Performance Enhancements. •

• 216
• • • 216
• • • 218

• 224
• • 224
• • 225

• 226
• 226

Index (Section 80) • • • 228

DOS/Virtual Storage Features Supplement

FIGURES (section 80)

80.10.1
80.10.2
80.10.3
80.10.4

80.10.5
80.10.6

80.10.7

80.10.8

80.10.9

80.15.1
80.15.2
80.15.3
80.20.1
80.25.1

80.25.2
80.25.3
80.25.4
80.25.5
80.25.6
80.25. 7
80.30.1
80.30.2
80.30.3

80.40.1
80.40.2

80.40.3

80.40.4

80.40.5

80.40.6

80.40.7
80.40.8

Organization of virtual storage in DOS/VS • •
Determination of real address area size • • •
Use of the SIZE parameter for a real mode job step.
Sample allocation of virtual storage to the page pool
in the real address area. • • ~ • • • • • • • •
Organization of real storage in DOS/VS. • • • • • • •
Example of real storage allocation for a sample five­
partition system. • • • • • • • • • • • • • • • • •
Relationship of virtual storage, real storage, and
external page storage in DOS/VS • • • • • • • •
Format of a page table entry for a page without a page
frame assigned. • • • • • • • • • • • • • • •
Contents of page table entries after system
initialization. • • • • • • • • • • • • • • •
Control and processing components of DOS/VS •
Organization of a core image library •••••
Layout of the label cylinder for the DOS/VS SYSRES file •
Example of modification of a cataloged procedure.
Organization of a virtual partition when the SIZE
parameter is specified. • • • • • • • • •
Format of a page frame table entry. • • •
Operation of the page selection routine •
Logical flow of page fault processing • • • • • • •
Logical flow of PFIX macro processing • • • • • •
Logical flow of TFIX routine processing • • • • • • • • •
Logical flow of GETREAL routine processing. • • •••
Organization of a control area for a VSAM file. • • • • •
Relationships among VSAM control and request macros
structure of the primary index for a VSAM key-sequenced

10
17
19

20
22

23

25

27

28
31
33
37
45

58
61
64
66
69
71
74
90
97

file. • ~ • • • • 100
General operation of the POWER/VS system. • • • • • • • • 139
Relationship between a queue set, queue records, and a
queue entry •
Example of spool device assignments in POWER/VS without
the use of dummy devices. • • • • • • • • • • • • • • •
Example of the use of a dummy device when a card reader
iSlused directly by a POWER/VS writer-only partition ••
Example of the use of dummy devices when a POWER/VS­
contrOlled partition uses more than one spooled printer/

• 146

• 151

• 153

punch • • 154
Input stream device combinations and contents supported
by POWER/VS • • • • • • • • • • • • • • • • 161
Relationship of POWER/vS functional tasks
Layout of the POWER/VS virtual partition.

DOS/Virtual Storage Features Supplement

• 172
• • • 189

TABLES (Section 80)

80.05.1
80.05.2
80.05.3
80.05.4

80.30.1

80.30.2

80.30.3

80.30.4
80.40.1
80.40.2
80.40.3

$tandard features of DOS/VS • • • • • • • • • • • • • •• 4
Optional features of DOS/VS • • • • • • • • • • • • • •• 5
I/O devices, consoles, and terminals supported by DOS/VS. 7
Permissible I/O device type assignments for system
logical units • • • • • • • • • • • • • • • • • • •• 9
The types of processing supported for VSAM key-seguenced
files • 108
Types of processing supported for VSAM entry-sequenced
files • • • • • • • • • • • • ••• • • • • • • • • • 111
Types of processing supported for VSAM relative record
files • 4 • 113
Comparison table of VSAM and ISAM facilities for DOS/VS • 122
I/O devices supported by POWER/VS • • • • • • • 156
Comparison of POWER/VS and DOS/VS POWER facilities. • 1~4
List of system utility programs • • • • • • • • 207

DOS/virtual storage Features Supplement

SECTION 80: DOS/VIRTUAL STORAGE FEATURES

80:05 FUNCTIONS AND HARDWARE SUPPORTED

DOS/VS, which is Version 5 of DOS, includes features provided by DOS
Version 4 and offers major new functions and feature enhancements. The
most significant new items of DOS/VS are support of:

• One virtual storage of up to 16,777,216 bytes with 64K segments and
2K pages (using dynamic address translation hardware)

• Up to five, instead of a maximum of three, problem program
partitions. During system operation the operator has the capability
of varying the partition dispatching priority that was established
at system generation.

• A relocating loader to provide program phase relocation at phase
load time

• POWER/VS, which replaces the POWER component available for DOS
Version 4 and that provided for releases of DOS/VS prior to 31.
POWER/VS is distributed as a component of the DOS/VS system and need
not be ordered separately. POWER/VS operates in paged mode and
provides functions in addition to those provided by previous POWER
components.

• Use of the interval timing facility in each partition and by each
task in a multitasking environment, instead of in only one partition

• A cataloged procedures facility, which allows job control statements
and certain types of input data to be stored in a procedure library
so that they need not be placed in an input stream

• An additional access method for direct access storage devices called
virtual storage access method (VSAM) that is designed to offer
better performance for files with additions and provide more
function than ISAM

• New I/O devices, such as 3330 Model 11, 3340/3344, and 3350 direct
access storage, and the 3800 printing subsystem.

• An additional access method called virtual telecommunications access
method (VTAM), which supports network control program mode for the
3704 and 3705 Communications Controllers and provides facilities not
available in BTAM or QTAM

• Block multiplexer channels and rotational position sensing

• A new version of the Assembler Language that provides enhanced
performance and improved diagnostics

• A shared virtual area in virtual storage in which reentrant,
relocatable code can be made resident to be shared by concurrently
executing problem programs

• Display mode of operation for the 3277 display as an operator
console and the display consoles provided for the processors
supported by DOS/vS

• A new core image library organization, and residence in virtual
storage of core image library directory entry lists and of second

DOS/Virtual Storage Features Supplement 1

level directories for core image libraries to improve phase fetching
performance

• A more flexible I/O device assignment capability which provides
dynamic allocation by the job control program of available I/O
devices to symbolic units at job step initiation time based on a
generic I/O device type assignment, instead of a specific unit
assignment

• Additional tracing and storage dumping facilities that can be used
for debugging and statistics gathering (SDAIDS routines)

• The "DOS/VS System Installation Productivity Option and improvements
in the system generation procedure, both of which are deSigned to
reduce the time required to produce the DOS/VS system required in an
installation

• The Advanced Function-DOS/VS program product, which provides several
additional capabilities (see Section 80:45)

DOS/VS is upward compatible with DOS Versions 3 and 4 for System/370.
System/360 users with BPS, BOS, or TOS installed can move to a
System/370 and a DOS/vS virtual storage environment without a large
conversion effort as well because of the large degree of source program
and data file compatibility that exists between these programming
systems and DOS,. Transition from DOS Version 4 to DOS/VS is discussed
in Section 80:50.

DOS/VS, classified as system control programming (SCP), supports
System/370 Models 115 (Models 0 and 2), 125 (Models 0 and 2), 135
(Models 0 and 3), 138,. 145 (Models 0, 2, and 3), 148, 155 II, and 158
(Models 1 and 3) operating in EC and translation modes. Support of the
3031 Processor Complex will also be provided. DOS/VS does not support
System/370 processors operating in EC mode without dynamic address
translation specified, System/370 processors operating in BC mode, any
System/360 processors, or Model 158 systems operating in attached
processor or multiprocessor mode.

The following minimum system configuration and hardware features are
us ed by DOS/VS:

2

• Minimum real storage size available for the System/370 processors
supported by DOS/VS

• Dynamic address translation and channel indirect data addressing

• Storage protection

• One reader, one punch, and one printer attached via a byte
multiplexer channel or, on a Model 115 or 125, natively attached. A
cardless system configuration is supported for Models 115 and 125.
If a Model 115/125 configuration includes a 3540 Diskette
Input/Output Unit, a card reader and card punch are not required.
At 1east one 3741 or 3742 Data Entry unit in the installation must
have the Record Insert feature installed to support program service
requirements. The DOS/VS distribution program, standalone Test Copy
utility, and standalone Dump utility are extended to accept control
card-image input from diskettes. IPL control statements cannot be
supplied via a 3540 but must be entered via the display operator
console.

• One console

• Two direct access devices or logical volumes (2314/2319, 3330-
series, 3340, 3344, or 3350) or one direct access device and two

.DOS/Virtual Storage Features Supplement

tape units (the data conversion feature is required for 7-track tape
units

Tables 80.05.1 and 80 .• 05.2 list the standard and optional features of
DOS/VS. DOS/VS supports all the features that are provided in DOS
Version 4 except single program initiator (SPI) mode of foreground
partition scheduling and 2311 Disk Storage as the system residence
device. If one of the IBM-supplied generated DOS/VS supervisors cannot
be used, the desired installation-tailored DOS/VS supervisor must be
generated, at which time user-selected optional features are included,
as is required for a DOS Version 4 supervisor.

Table 80.05.3 lists the I/O devices, consoles, and terminals
supported by DOS/VS. All the System/370 I/O devices supported by DOS
Version 4 are also supported by DOS/VS. The I/O device types that can
be assigned to system logical units are listed in Table 80.05.4. The
SYSUSE logical unit is provided only for use by system routines as
required. For example, job control uses SYSUSE as the logical unit when
it must perform certain I/O operations, such as a magnetic tape rewind
in response to an operator command. The tape unit is assigned to SYSUSE
in order to perform the operation.

A minimum of ten programmer logical units must be assigned to the
background partition and each foreground partition defined must have a
minimum of five programmer logical units assigned. The maximum number
of programmer logical units in the system depends on the number of
partitions generated. The SYSmax value for the system is 241 for one
partition, 226 for two partitions, 212 for three partitions, 198 for
four partitions, and 184 for five partitions~

The SYSmax value for the foreground 1 partition is alway 241,
regardless of the number of partitions defined. The SYSmax value for
any partition other than foreground 1 is the SYSmax value for the system
less the sum of all programmer logical units assigned to other defined
partitions except foreground 1.

Note that the PUB table must contain one entry for each logical
volume in a physical device with more than one logical volume. Thus, a
DVCGEN macro is required for each of the four logical volumes in a 3344
direct access device and for each of the two 3330 Model 1 volumes in a
3350 direct access device.

DOS/Virtual Storage Features Supplement 3

Table 80.05.1. Standard features of DOS/VS. These features are
automatically included during system generation.

4

• Support of one virtual storage of user-specified size (up to 16,384K
bytes) with 64K segments and 2K pages*

• Batched job mode of job initiation and a one-partition
(nonmultiprogramming) environment

• Execution of programs in virtual (paged) mode* and real (nonpaged)
mode

• Shared virtual area for the system directory list, reentrant program
phases, and a system GETVIS area*

• Symbolic I/O device assignment

• Generic I/O device assignment and volume premounting*

• Cataloged procedures*

• Job control exit and IPL exit facilities*

• Second level directory for the system core image library*

• Storage protection

• SAM, ISAM, and DAM

• Command chaining for I/O retry operations

• Selector channel support

• Tape error statistics

• Display operator console support (standard only for Models 115, 125,
138, and 148)*

• Machine Check Analysis and Recording (MCAR), Channel Check Handler
(CCH), and Recovery Management Support Recorder (RMSR) routines
(optional for Models 115 and 125 but RMS=YES must be specified for
Model 115 and 125 supervisors that are to execute on a Model 135,
138, 145, 148, 155 II, or 158)

• OLTEP (can be omitted for all supported processors)

• Job Control

• Linkage Editor

• Relocating Loader* (can be excluded unless required by a selected
optional feature)

• Librarian

• Assembler

• System utilities

• SDAIDS*

*Facility not supported in DOS Version 4

DOs/Virtual storage Features, Supplement

Table 80.05.2. Optional features of DOS/VS. These features must be
requested during system generation or added after
the generation is performed.

• Multiprogramming (from two to five* partitions with BJF scheduling)

• Specification of partition dispatching priority.

• Multitasking (up to 15. tasks maximum)

• Supervisor selection at IPL*

• POWER/VS*

• Teleprocessing support (VTAM. and TOLTEP., BTAM, QTAM)

• Teleprocessing balancing (automatically included when BTAM support
in a multiprogramming system, QTAM support, or VTAM support is
specified)·

• VSAM*

• Multiple wait

• Magnetic ink character reader (MICR) and optical reader support

• ASCII-code support for tapes

• Access to the time-of-day value in the time-of-day clock via the
GETIME macro

• Multiple timer support.

• Task timer support.

• Job accounting interface

• Private core image libraries'

• system input and system output files on the 3540 Diskette
Input/Output Unit. and disk

• Independent directory read-in area

• External interruptions

• Abnormal termination exit

• Console buffering (not supported for display-type consoles)

• Display operator console support for a 3211 as the operator console
for a supported processor

• Track hold (not supported for the 3540)

• DASD file protection

• Seek separation

*Facility not supported in DOS version 4

DOS/Virtual storage Features Supplement 5

Table 80.05.2 (continued)

6

• Support of 3330-series (Models 1, 2, and 11* disk storage

• Support of the 3340 direct access storage facility (includes support
of the 3344)*

• Support of the 3350 (native and 3330 compatibility modes)*

• Support of the 3800 Printing Subsystem*

• Channel switching for tape

• Burst mode devices on the byte multiplexer channel

• MICR or optical reader/sorter device(s) on the byte multiplexer or a
selector channel (burst mode and MICR devices cannot operate
concurrently on a byte multiplexer channel)

• Block multiplexing*

• Rotational position sensing*

• Magnetic tape error volume analysis

• Private second level directories for private core image libraries*

• Support of mixed-parity tapes by the following integrated emulators

Model 20 emulator (Models 115, 125, 135, and 138)
1401/1440/1460 emulator (Models 115, 125, 135, 138, 145, 148,

155 II, and 158)
1410/7010 emulator (Models 145, 148, 155 II, and 158)

• Reliability Data Extractor

• Problem Determination Aids (PDAIDS)

• Page fault handling overlap*

• Support of PFIX/PFREE macros*

• Support of PAGEIN, RELPAG, and FCEPGOUT macros*

• Support of GETVIS/FREEVIS macros*

• Support of the VIRTAD and REALAD macros and the REAL parameter on
the EXCP macro*

• Support of the synchronous exit facility (SYNCH macro)*

• Fast CCW translation*

• Cross partition event control*

• Supervisor identification in IPL COMPLETE message*

*Facility not supported in DOS. Version 4

DOS/Virtual Storage F'eatures Supplement

Table 80.05.3. I/O devices, consoles, and terminals supported by DOS/VS

Card Readers and Punches

1442 Reader/punch, Models N1 and N2
2501 Card Reader, Models B1 and B2·
2520 Card Read Punch, Models B1, B2, B3
2540 Card Read Punch
2560 Multifunction Card Machine, Model A1 (Models 115 and 125 only)
2596 Card Read Punch
3504 Card Reader, Models A1 and A2 (Model 125 only)
3505 Card Reader, MOdels B1 and B2
3525 Card Punch, Models Pl, P2, P3
5425 Multifunction Card unit, Models Al and A2 (Models 115 and 125 only)

Printers

1403 printer, Models Nl, 2, 3, 7
1443 Printer, Model Nl
3203 Printer, Models 1 and 2 (Models 115 and 125 only)
3203 Printer, Model 4 (Models 138 and 148 only)
3211 Printer
3213 Printer (Model 158 only)
3800 printing Subsystem
5203 printer, Model 3 (Model 115 only)
5213 Printer (Model 125 only)

Diskettes

3540 Diskette Input/Output Unit

Direct Access storage

2311 Disk storage Drive, Model 1
2314 Direct Access Storage, Models 1, A, and B
2319 Disk storage, A and B models
2321 Data Cell Drive
3330-Series Disk storage, all models (RPS, Sixteen-Drive

Addressing, and 32-Drive Addressing features are supported)
3340 Direct Access storage Facility (RPS, Sixteen-Drive Addressing,

32-Drive Addressing, and Fixed Head features are supported)
3344 Direct Access Storage
3350 Direct Access Storage (in native or a 3330 compatibility mode)

Note: The Record Overflow, TWO-Channel Switch, Two-Channel Switch
Additional, and string switching features available for the
direct access devices above are not supported.

Magnetic and Paper Tape

1017 Paper Tape Reader
1018 Paper Tape Punch
2400- and 3400-series Magnetic Tape Units, all models and densities'

(channel switching for a maximum of two control units is supported)
2495 Tape Cartridge Reader
2671 Paper Tape Reader

Display Units (locally attached)

2260 Display Station
3277 Display Station

DOS/Virtual Storage Features Supplement 7

Table 80.05.3 (continued)

Optical and Magnetic Character Readers

1287, 1288 Optical Character Readers
1255, 1259, 1419 Magnetic Character Readers
3881 Optical Mark Reader
3886 Optical Character Reader

Consoles

3210, 3215 Console Printer-Keyboards
MOdel 158 display console (in printer-keyboard mode only) and required

3213 Printer
3277 Display Station attached to a 3272 Control Unit
Display Operator Consoles for Models 115, 125, 138, and 148

Transmission Control units and Integrated Communications Adapters (ICA's)

2701, 2702, 2703, 2715 Transmission Control Units
3704 Communications Controller
3705 Communications Controller
7770 Audio Response Unit
ICAs for Models 115, 125, 135, and 138

Terminals (Start/Stop)

1030 Data Collection System
1050 Data Communication System
1060 Data communication System
2260 Display Station
2265 Display station
2721 Portable Audio Terminal
2740 Communication Terminal
2741 communication Terminal
2760 Optical Image Unit
83B3 AT&T Terminal
WU115A Teletype
TWX-33/35 AT'T Teletype Terminal
System/7 Sensor Based Information System (as a 2740 Terminal)
Communicating Magnetic Card Selectric Typewriter

Terminals (Binary Synchronous)

2770 Data Communication System
2780 Data Transmission Terminal
2790 Data Communication System
2792 Models 8 and 11 General Banking Stations
2980 General Banking Terminal system
3270 Information Display' System
3600 Finance Communication System
3650 Retail ,Store System
3660 supermarket System
3735 programmable Buffered Terminal
3740 Data Entry System
3741 Data Station Model 2
3741 programmable Terminal Model 4
3767 Communication Terminal
3770 Data Communication System
3780 Data Communication Terminal
3790 Communication System
1130 System (as a processor station)
1800 System (as a processor station)
System/3 (as a processor station)

8 DOS/Virtual Storage Features Supplement

Table 80.05.3 (continued)

System/7 (as a processor station)
System/32 (as a 3770)
System/360 Models 20 and up (as a processor station)
System/370 models (as a processor statidn)

Note: Terminals that are equivalent to those explicitly supported may
also function satisfactorily. The customer is responsible for
establishing equivalency. IBM assumes no responsibility for the'
impact that any changes to the IBM-supplied products or programs
may have on such terminals.

Table 80.05.4. Permissible I/O device type assignments for system logical
units

Logical Units

Device Type
SYS I SYS I SYS I SYS I SYS I SYS I SYS I SYS I SYS I SYS I SYS I SYS I SYS
RDR IPT LST PCH LOG RES CLB RLB SLB REC VIS LNK CAT

1403 X X
1442 X X X
1443 X X
2501 X X
2520 X X X
2540 X X X
2560 X X X
32,03 X X
3210 X
3211 X X
3800 X X
3213 X
3215 X
3504 X X
3505 X X
3525 X X X
3540 X X X X
5203 X X
5425 X X X
Model 115/125, X
138/148, or
158 display
console
3277 X
2400-series X X X X
3400-series X X X X
2311 X X X X X X
2314 X X X X X X X X X X X
2319 X X X X X X X X X X X
3330-series X X X X X X X X X X X
3340/3344 X X X X X X X X X X X
3350 X X X X X X X X X X X

Note: The DOS/VS supervisor does not assume 80-byte records for SYSRDR
'and SYSIPT files contained on direct access devices, as dpes the
DOS Version 4 supervisor. Both 80- and 81-byte record sizes are
supported. DOS/VS determines whether 80- or 81-byte records are
present on a disk SYSRDR or SYSIPT device and establishes the
control required to handle the record s.ize found. This change
enables a SYSPCH file on disk with 8i-byte records to be used as
a SYSRDR or SYSIPT file. The ft no record found ft condition that
occurs in a DOS Version 4 environment in such a situation is
eliminated in DOS/VS.

DOS/Virtual Storage Features Supplement 9

X
X
X
X
X

80:10 ORGANIZATION AND INITIALIZATION OF STORAGE

VIRTUAL STORAGE ORGANIZATION

DOS/VS supports one partitioned virtual storage of up to 16,777,216
bytes with segments of 64K and pages cf 2K. The size of the virtual
storage to be supported is user-specified at system generation and
cannot be changed during IPL. In DOS/VS, virtual storage is divided
into a virtual address area in highest addressed virtual storage and a
real address area in lowest addressed virtual storage, as shown in
Figure 80.10.1.

The actual size of the real address area is equal to or less than the
size of the real storage present in the system. Thus, virtual storage
in the real address area can have real storage allocated to it on a
virtual storage address equals real storage address basis. The virtual
storage addresses in the virtual address area have no equivalent real
storage addresses.

Parameters (VSIZE and RSIZE» can be specified at system generation
to indicate the size, in 2K multiples, of the virtual address area,
which contains a shared virtual area (SVA), and the real address area.
The real address area must be equal to or greater than 64K for the
systems supported. The virtual address area must be a minimum of 64K
times the number of partitions defined plus the minimum SVA size (which
is 64K). The sum of the values supplied by the RSIZE and VSIZE
parameters is the virtual storage size supported by the generated
supervisor and cannot exceed 16,384K (16,777,216) bytes.

Real Address Area
(Virtual storage addresses for which
equivalent real storage addresses exist)

Virtual Storage
up to 16,777,216 bytes

Virtual Address Area
(Virtual storage addresses for which there are no
equivalent real storage addresses)

r ------------..... -----------..\ r ---------- '-----------..,

\
Virtual
storage
address 0

Resident
supervisor
area
Key 0

8G-R

Key 1

\

F4-R F3-R F2-R

Key 2 Key 3 Key 4

.....,.
..

Real partitions
2K minimum
2K multiple

{t

F1-R Main
page
pool

Key 5
n
n

I \

8G-V

Key 1

F4-V F3-V F2-V

Key 2 Key 3 Key 4

....,
..

Virtual partitions
64K minimum
2K multiple

System Resident System F1-V directory reentrant GETVIS
list relocatable area

Key 5 32K max_ phases

1\,
Shared virtual area
64K minimum

Figure 80.10.1. Organization of virtual storage in DOS/VS

j

The virtual storage defined can be partitioned to permit concurrent
execution of a maximum of five jobs instead of up to three, as in DOS
Version 4. One background (BG) partition and up to four foreground (F1,
F2, F3, and F4) partitions can be defined in DOS/VS. F3 and F4
partitions are positioned between the F2 and the BG partitions. All
facilities available to BJF foreground partitions Fl and F2 are also
available to the two additional foreground partitions, F3 and F4, that
are supported in DOS/vS. Restrictions on the functions that can be
performed in BJF foreground partitions are the same in DOS Version 4 and
DOS/VS. The maximum number of partitions that a DOS/VS supervisor is to
support is specified at system generation via the NPARTS parameter.

In a DOS/VS environment, each partition specified has a unique
portion of the virtual address area assigned to it that is called a
virtual partition. Optionally, each partition can .also have a unique

10 DOS/Virtual Storage Features Supplement

portion of the real address area assigned to it that is called a real
partition.

Virtual partitions are used for the execution of programs in virtual
mode while real partitions are used for programs that must operate in
real mode. Real partitions are also required by virtual mode programs
that use the optional page fixing facility (PFIX/PFREE macros), which is
discussed in Section 80:25. Th~ address space within the virtual
address area that is allocated to a given partition and the address
space allocated to the same partition within the real address area
cannot be used to execute two different job steps at the same time.
That is, when a program is executing in a virtual partition, the
associated real partition cannot also be used for program execution and
vice versa.

All foreground partitions (real and virtual) in DOS/VS are initiated
using BJF mode of initiation. SPI mode is not required or supported by
DOS/VS. The implementation of virtual storage enables real partitions
that are a minimum of 2K in size to be initiated without the necessity
of SPI mode since the job control program always executes in a virtual
partition. Elimination of SPI mode removes SPI mode restrictions from
small real partitions and simplifies job initiation operations. In
addition, the operator need learn and use only BJF commands in DOS/VS.

As in a DOS Version 4 environment in which all foreground partitions
are scheduled using BJF mode, when POWER/VS is not used in a DOS/VS
system each partition (virtual/real pair) must have its own job stream
that indicates the jobs that are to be executed in the partition.
Virtual mode and real mode job steps can be mixed within the same job.
Any mixture of virtual mode and real mode job steps can operate
concurrently up to a maximum of the number of active partitions defined.

A variable partition priority facility that is not supported in DOS
Version 4 is implemented in DOS/VS. A PRTY parameter can be specified
at system generation to assign a dispatching priority to the partitions
defined. If this parameter is not included, the default high-to-Iow
dispatching priority for partitions is Fl, F2, F3, F4, BG.

The dispatching priority established at system generation can be
changed by the operator at any time during system operation using the
PRTY attention command. The PRTY command can also be used to cause the
currently assigned partition dispatching priorities to be printed on the
SYSLOG device. In DOS Version 4, partition dispatching priority is
established by the system and cannot be changed by the user.

The variable partition priority facility will be useful, for example,
in the handling of high priority jobs when job scheduling is designed to
allow a high priority job to be scheduled to execute in any partition
that is available at the time the high priority job must be initiated.
The priority of the partitions can be altered to assign the desired
dispatching priority to the high priority job partition based on the
execution characteristics of the job.

Virtual Address Area

The virtual address area contains from one to five virtual partitions
and the required shared virtual area. All the virtual storage in the
virtual address area that is belOW the SVA is available for allocation
to virtual partitions. One background virtual partition (BG-V) in
lowest addressed virtual storage in the virtual address area and from
one to four batched foreground virtual partitions (F4-V, F3-V, F2-V, and
F1-V) above the background virtual partition can be defined.

DOS/Virtual Storage Features Supplement 11

The size of each foreground virtual partition can be specified at
system generation using the ALLOC macro or during system initialization
using the ALLOC (job control or attention) command. The entire virtual
address area less the minimum requirement for the SVA is allocated to
the background virtual partition if ALLOC is not specified for a
mul tiprograrnrning sys,tem. The ALLOC macro cannot be specified for a one­
partition system.

Each virtual partition defined must be a m1n1IDum of 64K and a
multiple of 2K bytes in size,. The maximum size a virtual partition can
be is the size of the defined virtual address area less the user-defined
or default SVA size. The restriction of 510K bytes maximum for a BJF
foreground partition that exists in DOS Version 4 is removed in DOS/VS.
Each virtual partition has its own partition save area and label' save
area in lowest addressed virtual storage in the partition.

The virtual storage sizes specified in an ALLOC macro or command are
allocated contiguously to foreground virtual partitions beginning with
highest addressed virtual storage in the virtual address area below the
SVA. Any remaining virtual storage below the last foreground virtual
partition allocated is assigned to the background virtual partition,
just as in DOS Version 4~ ,

The number of active virtual partitions established during system
initialization and their sizes 'can be changed by the operator during
system operation, if necessary, using the ALLOC command, as in DOS
Version 4. However, there should be less need for partition
redefinition in a DOS/VS environment because the implementation of
virtual storage enables larger partitions to be defined and more
partitions can be defined without inefficient use of real storage.

A job step executing in virtual mode in a virtual partition operates
with dynamic address translation (DAT) mode specified so that
translation of storage addresses in instructions is performed by DAT
hardware. Translation of storage addresses in the channel programs for
a virtual mode job step is performed by an extension to the channel
scheduler routine. The default execution mode for a job step is
virtual. If a program is to operate in real mode, the REAL parameter
must be specified on the EXEC job control statement for the job step.

Page frames are allocated to a virtual mode program dynamically as
the program is loaded and as it executes. When a page fault occurs in a
virtual mode program, a page frame is allocated, as per the rules of the
page replacement algorithm, and a page-in is performed when necessary.
The real storage allocation routine recognizes the first time a page
frame must be allocated to a virtual storage page in a virtual
partition. When this situation occurs, no page-in is performed and the
page frame allocated is zeroed for data security protection..

The EXEC statement in DOS/VS also has a SIZE parameter that is not
supported in DOS Version 4. If this parameter is not specified for a
job step that is to operate in virtual mode, the job step has access to
all the virtual storage currently allocated to the virtual partition in
which the job step executes. If SIZE is specified, the virtual
partition is divided into two portions. The lowest addressed portion of
the virtual partition is designated as the user area and is the size
specified by the size value in the SIZE parameter. The job step
executes in the user area. The upper portion of the virtual partition
is a virtual storage pool that can be used by the virtual mode program
that is executing in the user area.

Virtual storage in the pool created by the SIZE parameter can be
allocated and deallocated using the GETVIS and FREEVIS supervisor
macros, which are discussed in Section 80:25 under ·Virtual Storage
Management Facility·. The virtual storage pool is also referred to as a

12 DOS/Virtual storage Features Supplement

partition GETVIS area. The virtual storage access method (VSAM), for
example, uses the GETVIS and FREEVIS macros. Therefore, the SIZE
parameter must be specified for job steps that use VSAM. The SIZE
parameter must also be specified for job steps that are to use
rotational position sensing support.

The SIZE parameter has two AUTO options. If AUTO is specified
instead of a size value, the job control program will use the size of
the program that is to execute in the virtual partition as the size
value for the user area. Program size is taken from the 'core image
library directory entry for the phase that is specified in the EXEC
statement. AUTO can also be specified together with a size value. In
this case, the size value used for the user area is the sum of the phase
size and the size value specified.

The SIZE parameter can also be used to limit the amount of virtual
storage in a virtual partition to which a virtual mode program has
access. For example, SIZE can be specified for programs, such as sorts,
that are designed to make use of all the storage available in the
partition in which they execute and that have a random, short duration
reference pattern during execution. Best performance is achieved for
these types of programs when real storage nearly equal to the amount of .
virtual storage they use can be made dynamically available to them
without causing excessive paging. Specification of the SIZE parameter
for a sort program that operates in a relatively large virtual partition
can improve sort performance by limiting the amount of virtual storage
available to the sort when an equal amount of real storage is not
dynamically available.

programs that must execute in virtual mode .. in a DOS/VS environment
are the job control program, POWER/VS, ana any problem programs that are
to use rotational position sensing .support, GETVIS/FREEVIS macros, VSAM,
the ISAM interface routine for VSAM, the VSAM access method services
program, or VTAM.

The shared virtual area is required in all systems but cannot be used
in nonmultiprogramming systems. The SVA is located in highest addressed
virtual storage in the virtual address area.. The size of the SVA can be
specified at system generation using the SVA parameter on the ALLOC
macro. The SVA must be a minimum of 64K and a multiple of 2K. The SVA
size stated at system generation in the SVA parameter can be overridden
by the operator immediately following IPL.

The SVA can contain resident program phases that can be shared by
concurrently executing partitions, a system directory list, and a system
GETVIS area. Phases that are to be placed in the SVA must be contained
in the system core image library. They also must be relocatable,
reentrant (never modified during their execution), and pageable. Once
phases are fetched from the system core image library and made resident
in the SVA, they are paged in from external page storage as required, as
are phases that are executing in virtual partitions. However, phases in
the SVA should never be paged out during system operation since they
should never be modified.

program phases that are to be placed in the SVA are user selected.
Frequently used phases that are required by concurrently executing
problem programs should be chosen for SVA residence. These phases can
be shared by both virtual and real mode programs. Placing such routines
in the SVA can be of benefit to system performance. First, only one
copy of an SVA-resident phase will ever be present in real storage at a
time, regardless of how many programs or tasks are using the phase
concurrently. This makes more real storage available for paging.
Second, a phase in the SVA will tend to remain in real storage during
periods when it is heavily used, since the page replacement algorithm is

DOS/Virtual storage Features Supplement 13

designed to keep the most active pages present in real storage. Thus,
use of the SVA can reduce the total number of page faults that occur.

Note that the $JOBACCT dummy phase for job accounting can be loaded
in the shared virtual area to improve the performance of systems that
use POWER/VS job accounting.

The system directory list is resident in lowest addressed virtual
storage in the SVA and can be a maximum of 32K bytes in size. It can
contain core image library directory entries for user-selected phases
that are present in the system core image library. Normally, the.system
directory list would consist of directory entries for the most frequently
used system and user-written phases in the system core image library.

The system directory list also contains directory entries for all
phases that are resident in the SVA, if any. A directory entry in the
system directory list pOints to the location of the phase the directory
entry describes. It contains the track and record address of the phase
in the system core image library or the virtual storage address of the
phase in the SVA.

The system directory list is shared by all partitions and the
supervisor. Entries in this list are in ascending alphabetic sequence
by phase name. when a FETCH or LOAD macro is issued within any
partition or by the supervisor, the system directory list in the SVA is
searched before the system core image library directory on disk is
searched. Use of the system direc'tory list can reduce the amount of time
required to locate frequently used supervisor transient routines, system
programs, and selected user-written programs by eliminating for these
phases all searching of the system ,core image library directory on disk.

Implementation of a system directory list, in conjunction with other
new DOS/VS features, such as second level directories and a new core
image library organization, also eliminates the need for subdirectories
on disk for the system core image library (transient directory, OPEN
directory, etc.).

If defined, the system GETVIS area is located in highest addressed
virtual storage in the SVA. It must be a multiple of 4K in size and
smaller than the SVA size. The size of the system GETVIS area, up to a
maximum size of 12,168K bytes, can be specified at system generation and
overridden during system initialization. The system GETVIS area is
utilized by rotational position senSing support (see Section 80:30).

Use of the SVA is optional in a multiprogramming environment. That
is, there is no defined list of directory entries that must be made
resident in the system directory list, there is no requirement to have
any program phases resident in the SVA, and a system GETVIS area need
not be defined unless rotational position sensing support is to be used.
Lists of suggested system phases, VSAM phases, and RPS phases whose
directory entri~s should be placed in the system directory list are IBM­
supplied, however. For performance reasons, it is highly desirable to
make these directory entries resident in the system directory list. If
no phases or directory entries are made resident in the SVA, it contains
only required control information in its lowest addressed virtual
storage.

Optionally, a problem program can build one or more local directory
lists within a partition that contain the directory entries of
frequently used phases. The local directory list(s) in one partition
cannot be used by problem programs that are executing in other
partitions. A local directory list is constructed within a program
using the GENL macro to specify the names of phases whose directory
entries are to be included in the local directory list. Phase names
should be listed in ascending alphabetic sequence.

14 DOS/Virtual storage Features Supplement

Directory entries for phases contained in the system core image
library (which mayor may not be resident in the SVA) and/or a private
core image library that a problem program is to use can be included in a
local directory list. When the GENL macro is assembled, each directory
entry constructed contains only the name of the phase. Other directory
data is placed in the local directory list entry for a phase the first
time a FETCH or LOAD macro is issued for the phase and the phase is
located in the SVA or a core image library.

A local directory list is searched when a problem program issues a
FETCH or LOAD macro that specifies the name of the local directory list.
If the directory entry of the specified phase is found in a local
directory list or the system directory list, the phase (unless it is
resident in the SVA) is fetched from the appropriate core image library
without any directory searching on disk. The local directory list
facility can be used in a nonmultiprogramming as well as a
multiprogramming system. (The system directory list cannot be used in a
nonmultiprogramming environm~nt.)

The SVA is initially created immediately following an IPL when the
SET SDL=CREATE command is issued. SVA-defining statements can be
supplied in one of two ways. The operator can enter the SET SDL command
using the SYSLOG device after the size of the SVA and the system GETVIS
area have been established. Control statements that name the phases
whose directory entries are to be placed in the system directory list
must be contained in the SYSRDR device. Inclusion of the SVA parameter
on a control statement indicates the phase is to be made resident in the
SVA as well.

Alternatively, a SET SDL com~and followed by SVA-defining control
statements can be placed in the procedure library and called by the
operator via an EXEC job control command. A user-defined procedure or
one of the IBM-supplied SVA-defining procedures can be used. (See
procedure library discussion in Section 80:20 under "The Job Control
Program").

Use of the procedure library during creation of the SVA is suggested
as an operational aid. The SVA-defining statements in the procedure can
be modified immediately following IPL if the operator enters the SET SDL
command and supplies modifier statements via the SYSLOG device. Job
control reads the SVA-defining control statements from the procedure
library or SYSRDR device as indicated and calls the $MAINDIR service
program, which then constructs the SVA.

The $MAINDIR program, which is not provided in DOS Version 4,
searches the system core image library directory on disk for the phases
specified by the SVA-defining control statements. If the entry for a
specified phase is found, the entry is read in and placed in the system
directory list. If the maximum system directory list size is reached
during loading, the operator is notified and no more SVA-defining
statements are processed. If a specified phase is not currently
cataloged in the core image library, a dummy entry for the phase is
placed in the system directory list. This entry is identified as being
inactive and the operator is notified.

If an SVA-defining control statement contains the SVA parameter but
the specified phase is not marked eligible for SVA residence, the phase
is not loaded into the SVA. A phase is identified as being eligible for
residence in the SVA by inclusion of the SVA parameter on its PHASE
statement when the phase is link-edited. Phases that are to be made
resident in the SVA are allocated virtual storage above the system
directory list, fetched from the system core image library, and placed
in the SVA. In order to reduce page faults, each phase is aligned on a
page boundary in the SVA, unless it fits in the space left in the last
used virtual storage page.

DOS/Virtual Storage Features Supplement 15

Once the $MAINDIR program finishes processing all the SVA-defining
control statements, it writes the contents of the SVA (system directory
list and resident phases) in external page storage, which is called the
page data set in DOS/VS. After an SVA has been written in the page data
set, it can be reused and SVA creation after each IPL can be eliminated.
During IPL, job control determines ~hether the page data set contains a
usable SVA. If One is present, the operator is notified that a warm
start copy of the SVA exists. The operator can indicate that this copy
is to be used as the SVA for this IPL or that a new SVA is to be
created.

During system operation, whenever a new phase is cataloged in or an
existing phase is deleted from the system core image library, a check is
made to determine whether there is a directory entry in the system
directory list for this phase. If so and if a cataloging operation was
just performed, the entry in the system directory list is updated and
made active. If the entry indicates the phase is to be made resident in
the SVA, the phase is fetched and placed in~the SVA if it is marked SVA
eligible. If a delete operation was just performed, the affected
directory entry in the system directory list is flagged as unusable. In
addition, whenever an existing phase is recataloged, if its directory
entry is in the SVA, the existing entry is updated.

A new copy of the SVA must be built if existing directory entries in
the system directory list are to be physically deleted, or if directory
entries are to be added. These types of system directory list
modifications are not supported during normal processing. These
functions must be accomplished by changing the control statements that
define the contents of the SVA and recreating the SVA following an IPL.
(Note that the ALTER command cannot be used to change the contents of
the SVA.)

Real Address Area

Normally, the range of virtual storage addresses in the real address
area is the same as the range of real storage addresses provided by the
real storage present in the computing system. The storage size
specified in the RSIZE system generation parameter should be the size of
the real storage present in the system in which the generated supervisor
~s to operate. The minimum size of the real address area is 64K.

The range of virtual storage addresses in the real address area is
not the same as the range of real storage addresses for the real storage
present in the system used when a DOS/VSsupervisor executes in a system
that has more real storage than was defined by the RSIZE parameter at
system generation.

If the real storage present in the system is larger in size than the
system generation specification, the real storage above the amount
specified by the RSIZE parameter will not be used and the operator is
notified during IPL. (The first address in the virtual address area is
determined at system generation time, based on the specified RSIZE, and
cannot be changed except by another supervisor generation.) Thus, when
real storage is added to a system in which DOS/VS is being used, the
supervisor must be regenerated using an RSIZE parameter that specifies
the new real storage size in order for the additional real storage to be
utilized.

If the real storage present in the system used is smaller in size
than the RSIZE speCification (such as when a system backs up another
system that has more real storage), the virtual storage in the real
address area between the address of the end of real storage and the
address of the beginning of the virtual address area is not used.

16 DOS/Virtual Storage Features Supplement

Figure 80.10.2 illustrates how the size of the real address area is
determined at IPL.

The real address area contains the resident supervisor area, from one
to five contiguous real partitions (optionally), and the main page pool
area. The resident supervisor operates in real mode in the supervisor
area with DAT mode specified most of the time, since the supervisor
references virtual storage addresses outside its area and address errors
would occur if DAT was not operative.

Real
storage

RSIZE Greater Than Real Storage Size

Usable real
storage

Virtual Unused 3
storage __ R_ea_l_a_dd_r_es_s_a_re_a_-'-v_ir_tu_a_1 -,-__ V_i_rt_u_al-/address area storage

Real
storage

~,-----~---------)~---------~-----~)
RSIZE specified VSIZE specified
at system generation at system generation

RSIZE Less Than Real Storage Size

Usable real storage

I Unus­
I able
I real
I storage
I

r-__________ ~I----~~ ~-----~

Virtual
storage r--- Real address area ---+4i4---Virtual address area

'-------------~-----I~ ~-------~

~~--------~~-------~)~,---------~---------)
RSIZE specified VSIZE specified
at system generation at system generation

Figure 80.10~2. Determination of real address area size

Each virtual partition defined in the virtual address area can have a
corresponding real, partition defined in the real address area. Real
partitions are designated as BG-R, F4-R, F3-R, F2-R, and F1-R. Each
real partition has its own partition save area and label save area
reserved in lowest addressed virtual storage in the real partition.

A given partition can have a virtual partition defined without also
having a corresponding real partition defined unless a real mode program
is to operate in the partition or unless a program operating in the
virtual partition is to use page fixing macros. However, a real
partition cannot be defined unless its corresponding virtual partition
is defined as well. This requirement exists because the job control
program always operates in virtual mode. The job control progr~m must

DOS/Virtual Storage Features Supplement 17

execute in a virtual partition in order to schedule the execution of
real mode job steps in the corresponding real partition.

The size of each real partition, including the BG-R partition, can be
specified using the ALLOCR macro at system generation or the ALLOCR (job
control or attention) command after IPL. 'I'he partitions defined by
ALLOCR are called permanent' real'-partitions. A real partition need not
be the same size as its corresponding virtual partition.· If not given a
zero size allocation, a real partition must be a multiple of 2K bytes in
size and can be a minimum of 2K. The maximum size of a real partition
is the size of the real address area less the size of the supervisor
area, less the size of the minimum main page pool area requirement.

virtual storage is allocated to real partitions beginning with the
virtual storage adjacent to the resident supervisor area. The address
space in the real address area that is located above the last defined
real partition is allocated to the main page pool. If ALLOCR is not
specified, all virtual storage in the real address area that is located
above the resident supervisor area is allocated to the main page pool.
The ALLOCR macro cannot be specified for a one-partition system.

The minimum size of the main page pool in the real address area of
virtual storage is:

• 18K if phases are to be made resident in the SVA for use by
executing programs plus 2K if multitasking support is present

• 18K minus the size of the smallest real partition, if this partition
is 0 to 18K in a multiprogramming system without the page fixing
option plus an additional 2K if multitasking support is present. If
the smallest real partition is larger than 18K, OK is the minimum
main page pool size. In both situations, the main page pool must be
4K if the system directory list is to be used.

• 18K in a multiprogramming system with the page fixing option plus 2K
if multitasking support is present

A job step that is to execute in real mode is directed to operate in
a real partition by using the REAL parameter of the EXEC statement.
Programs that operate in real mode execute with DAT mode operative even
though they are not paged. However, channel program translation is not
performed for real mode programs.

Real storage is allocated to a real mode program when the program is
scheduled for execution. Page frames are allocated such that the real
storage assigned to the real partition has addresses equal to those of
the virtual storage allocated to the real partition. Page frames
allocated to a real partition are, in effect, permanently fixed and
remain unavailable for allocation to virtual mode programs for the
duration of the real mode job step.

At the completion of a real mode job step, the page frames allocated
to the real partition are released and added to the list of assignable
page frames. These page frames can then be allocated as required to any
executing virtual mode programs or to another real mode program that is
initiated in the now available real partition.

The SIZE parameter can also be specified for real mode programs. The
storage size indicated in the SIZE parameter specifies the low-order
portion of the real partition that is to be allocated to the real mode
job step, which becomes a temporary real partition that exists for th~
duration of the execution of the job step. The temporary real partition
must be a multiple of 2K in size.

18 Dos/virtual Storage Features Supplement

When the SIZE parameter is specified for a real mode program, page
frames are allocated only to the temporary partition. The virtual
storage \<\lithin the permanent partition that is located above the
temporary partition defined by the SIZE parameter is not available to
the real mode program during its execution. Page frames \<\lith addresses
equal to those of this unallocated virtual storage in the permanent
partition are made available for allocation to executing virtual mode
programs. The t\<\lO AUTO options of the SIZE parameter described
previously can be specified for real as well as virtual partitions.

If the SIZE parameter is not specified, all the virtual storage
defined in the permanent real partition has real storage assigned and is
available to the real mode program. Therefore, the SIZE parame1:er can
be used to make real storage that will not be used by a real mode
program but that otherwise would be allocated to the real partition
available for allocation to executing virtual mode programs. (See
Figure 80.10.3.>

Permanent Real Partition

r-----------------~~------------~\

Virtual storage
available to the
real mode job step

Virtual storage
not available
to the real
mode job step

~~---------~~--------_/~~----~"'----_/
30K

Temporary Real Partition

20K

Correspondingly
addressed page
frames made
available to page
pool in real storage

ALLOCR specifies 50K, SIZE specifies 30K

Figure 80.10.3. Use of the SIZE parameter for a real mode job step

When a job step is initiated in a real partition, all the page frames
with real storage addresses equal to the virtual storage addresses in
the temporary or permanent real partition must be available before the
real mode program is loaded. If any of the required page frames are
found to contain nonfixed pages of an executing virtual mode program,
page-outs are scheduled for those nonfixed pages that have been changed
and the real mode program is fetched at the completion of all the
necessary page-out operations. If any required page frames contain a
temporarily fixed page for an executing virtual mode program, loading of
the real mode program is delayed until all the I/O operations that
caused the temporary fixing are completed, the pages are unfixed, and
any required page-outs have been performed.

The components of DOS/VS that must operate in real mode are CLTEP,
QTAM message control programs, and QTAM message processing programs. A
user-written program must execute in real mode in a DOS/VS environment
if it:

• contains a channel program that is modified while the channel
program is active

• Is highly time dependent (involves a time-dependent I/O operation,
such as stacker selection in a magnetic ink character reader)

DOS/Virtual Storage Features Supplement 19

• Uses an I/O appendage routine, unless the PFIX macro is used to fix
the appendage routine and all pages the appendage references

• Contains a channel program for an I/O device type that is not
supported by DOS/vS, unless channel program translation and page
fixing are performed by the user

• Disables I/O interruptions prior to referring to user data and
causes a page fault

• Changes the instruction address in a new PSW, for example in the new
PSW for program check, and then forces a program check to put the
system in supervisor state

• Executes privileged instructions, such as LOAD PSW or SET STORAGE
KEY, that affect the physical state of the system

• Issues START I/O instructions without ensuring that the addresses
used by the channel are real addresses.

Existing user-written progra~s that are operating under DOS Version 4
and that must operate in real mode under DOS/VS need not be modified to
enable them to run in real mode. These programs may require
modification for other reasons, as discussed in Section 80:50.

The page pool in virtual storage is all the address space in the real
address area that is not allocated to the supervisor area or real
partitions. The page pool consist9 of the main page pool area (the
available virtual storage in the real address area located above the
last real partition currently defined), the virtual storage allocated to
each real partition whose corresponding virtual partition is currently
active, and any virtual storage from permanent real partitions that is
made available by use of the SIZE parameter. Thus, the number of
virtual storage pages in the page pool in the real address area can vary
as real mode programs execute and if real partition sizes are changed.

When no real partitions are defined, the page pool area and the main
page pool area are the same. Figure 80.10.4 shows an example of the
virtual storage allocated to the page pool when two real partitions are
defined and a real mode program is executing for which the SIZE
parameter was specified.

Virtual Storage

Real Address Area Virtual Address Area

~------------------~'----------------~\f~--------------~-~--------------------

Supervisor
area

!
F2-R I T~m~or-

I anly In
tem~~rary I the page
partition I pool

I

F1-R

\ ______ ~ __ ----J~
Permanent
F2-R
partition

Permanent
F1-R
partition

\ 1 ,

in Ma
pa
po

ge
01

J)

8G-V

8G-R, F4-R, and F3-R have a size of zero specified

F4-V F3-V F2-V F1-V

Figure 80.10.4. Sample allocation of virtual storage to the page
pool in the real address area

SVA

20 DOS/Virtual Storage Features Supplement

The virtual storage in the page pool in the real address area is not
available for allocation to executing programs. This condition exists
because the page frames in real storage that have addresses equal to
those of the virtual storage pages in the page pool in the real address
area are available for allocation to programs that are operating in
virtual mode. This is more fully discussed under wReal storage
Organizat~onw below.

storage Protection

storage protection functionally equivalent to that provided in DOS
Version 4 is supported as a stand~rd feature in DOS/VS. Fetch
protection is not supported in either DOS Version 4 or DOS/VS,. Protect
keys are assigned to defined areas in virtual storage in DOS/VS. The
resident supervisor area is assigned protect key O. The protect key
assigned to a partition (virtual/real pair) depends on the number of
partitions defined by the NPARTS parameter. If all five partitions are
defined, keys 1, 2, 3, 4, and 5 are assigned to partitions BG, F4, F3,
F2, and F1, respectively. If three partitions are defined, for example,
keys 1, 2, and 3 are assigned to BG, F2, and F1, respectively.

An allocated page frame is set with the protect key assigned to the
area or partition to which the page frame is allocated. All unallocated
page frames are set with protect key O. When a page frame is allocated
to a virtual storage page within a virtual partition (as a result of a
page fault, for example), the protect key assigned to that virtual
partition is set for the page frame. The page frame retains this key
until the page frame is allocated to another virtual partition, at which
time it is set with the key of that partition, or until the page frame
is unallocated and made available for reassignment.

page frames allocated to a real partition are set with the protect
key of the real partition when a job step is initiated in the real
partition. The page frames retain this key until the job step
terminates, at which time they are set with protect key o. When the
SIZE parameter is specified for a real partition, only the page frames
assigned to the temporary partition are set with the key of the real
partition.

The SVA is assigned storage protect key O. A phase that is resident
in the SVA usually executes using the PSW of the· partition that invokes
its execution and, thus, with the protect key of that partition in
effect. This approach prevents user-written routines that execute in
the SVA from modifying any real storage that is not associated with the
partition that invokes their execution.

Checkpoint/Restart

The checkpoint/restart facilities provided in DOS/VS are functionally
equivalent to those provided in DOS Version 4. However, the formula for
calculating the number of tracks required to contain a given number of
sets of checkpoint records is changed in DOS/VS. When the SIZE
parameter has been specified for a virtual partition, the entire
partition should be checkpointed so that the partition GETVIS area is
included in the checkpoint.

In a DOS/VS environment, the operator must ensure that a checkpointed
job step that ran in virtual mode is restarted in the same virtual
partition and that a job step that ran in real mode is restarted in the
same real partition that was used for the checkpoints. If the program
was using any phases that were resident in the SVA, these phases must be
present in the SVA in the same locations as they were when checkpoints
were taken.

DOS/Virtual Storage Features Supplement 21

In addition, when a virtual mode job step that uses the page fixing
option is restarted, the associated real partition must be located in
the same place in the real address area and be of the same size as when
the checkpoints were ,taken. Pages that were fixed in the real partition
when the checkpoint was taken are automatically refixed when the virtual
mode job step is restarted.

REAL STORAGE ORGANIZATION

A maximum of 6144K bytes of real storage is supported in DOS/VS. The
organization of real storage in DOS/VS is shown in Figure 80.10.5. Real
storage is divided into the resident supervisor~area and the page pool
area. The resident supervisor area is allocated lowest addressed real
storage. The addresses in the resident supervisor area in real storage
are equal to the addresses in the resident supervisor area in virtual
storage. In effect, the page frames in the resident supervisor area in
real storage are permanently fixed.

When a SEND address is not specified at system generation, any real
storage between the address of the end of the generated supervisor and
the address of the end of the supervisor area (which is rounded to a
multiple of 2K when necessary) is allocated to the buffer area used for
channel program translation (see discussion under WThe Channel
Schedulerw in Section 80:30~. If a SEND address is specified, space
between this address and the address of the end of the generated
supervisor is not allocated to the channel program translation buffer
area. A SEND address must be a multiple of 2K.

Real Storage

Resident Supervisor Area Page Pool

r'-----------'~'------------\t------------~~'-----------~,
~-------------------r------?_----------~~~----------~

Resident
supervisor

• Allocated to virtual mode programs
during their execution

• Allocated to real mode programs
on a virtual equals real basis
at job step initiation

~-----------------;'~~----~------------~:~----------~

End of generated \ddress
supervisor or specified
end of supervisor in SEND
rounded to system
2K multiple generation

macro

Figure 80.10.5. Organization of real storage in DOS/VS

All the real storage above the resident supervisor area is called the
page pool and is available for allocation to virtual mode and real mode
programs. Real storage for virtual mode programs that are executing in
a virtual partition or the SVA is allocated from the page pool. When no
real partitions are defined or if real partitions are defined but no
real mode programs are executing, all real storage above the resident
supervisor is in the page pool and available for allocation to virtual
mode programs.

22 DOS/Virtual storage Features Supplement

When one or more real mode programs are executing, all real storage
above the resident supervisor that is not currently allocated to real
mode partition~ is in the page pool and available for allocation to
virtual mode programs. The page pool in real storage is the same size
as the page pool in the real address area in virtual storage.

Figure 80.10.6 shows how real storage is allocated for a sample five­
partition environment in which five virtual partitions and three real
partitions are defined. At the time shown, programs are operating in
F1-V, F3-V, BG-V, and F2-R. The figure, is meant to illustrate the way
in which real storage is allocated and not necessarily a desirable
partition configuration.

r Real Address Area

Page Pool

~ l Page Pool

~

Virtual Address Areal

n

Virtual
Storage

Real
Storage

Resident
supervisor
area

Resident
supervisor
area

F4-R F2-R F1-R

Available, Real mode Cannot
program be used
executing while job

step is
executing
in F1-V

Allocated

Page to real
mode pool
program
in F2-R

\pa e frames ,/ 9
available for allocation
to virtual mode
programs operating
in F1-V, F3-V, and
BG-V partitions and
the SVA

Page
pool

l\

Main
page BG-V F4-V F3-V F2-V F1-V SVA
pool o.

))
\\

Virtual Available Virtual Cannot Virtual
mode mode be used mode
program program while job program
executing executing step is executing

executing
in F2-R

Figure 80.10.6. Example of real storage allocation for a sample five­
partition system

EXTERNAL PAGE STORAGE ORGANIZATION

External page storage is used to contain the contents of page able
virtual storage, which in DOS/VS is that virtual storage contained in
the virtual address area. The direct access storage allocated as
external page storage is called the page data set. The page data set
can be placed on one 2314, 2319, 3330-series, 3340, 3344, or 3350 direct
access device and is assigned the symbolic name SYSVIS. The page data
set need not reside on the same direct access device type as SYSRES.

DOS/Virtual Storage Features Supplement 23

The page data set is sequentially organized and must begin on a
cylinder boundary. It must consist of only ODe extent and is formatted
with records of 2K bytes called slots. Unblocked records without a key
are written, and the track overflow feature is not used. The number of
2K slots per track and cylinder of each supported paging device type is
shown below.

Device Type Slots per Track Slots per Cylinder

2314/2319 3 60

3330-series
(Modell, 2, or 11) 6 114

3340 or 3344
logical volume 3 36

3350 (native
mode 8 240

There must be one slot in the page data set for each virtual storage
page contained in the virtual address area. The number of slots
required, therefore, is the storage size specified in the VSIZE
parameter (rounded to a 2K multiple if necessary) divided by 2. The
amount of disk space required for the page data set is calculated during
system generation using the VSIZE specification. This amount of space
is allocated to the page data set by the system, starting at the user­
specified cylinder address.

The virtual address area is statically mapped on a one-to-one basis
with the page data set extent. That is, the contents of any given
virtual storage page are always placed in the same slot, and the first
virtual storage page in the virtual address area is associated with the
first slot in the page data set extent, etc., as shown in Figure
80.10.7.

24 DOS/Virtual Storage Features Supplement

Page
Data
Set

External Page
Storage

,.C ;:::.

""'- --I --- r- SVA - --- ...:..-

...."

- ---

~ "---Virtual
~ partitions ---- ---- ---
.... -'

Available
direct
access
storage

...... ~

\
\
\
\
\
\
\
\
\
\
\

P · \ aging
activity \

,--­
\

\
\

\
\

\
\

\

\

-

Real
Storage

Page
frames

Resident
supervisor

Virtual
Address
Area
(paged and
mapped 1:1
with
external
page storage)

r--

,.

~

Virtual
Storage

t- SVA -

~ Virtual

r--

-
~ partitions _

- Page pool -
and real

-....,
partitions -

G

Resident
supervisor
area

Real
Address
Area
(Not paged
or mapped
to external
page storage)

Figure 80.10.7. Relationship of virtual storage, real storage, and
external page storage in DOS/VS

SYSTEM INITIALIZATION

The functions the operator performs during the initialization of a
DOS/VS supervisor are like those required to initialize a DOS Version 4
supervisor except that for DOS/VS more parameters can be supplied by the
operator, more functions are performed, and the supervisor to be loaded
can be selected from among several that are contained on the system
residence volume.

Once the IPL routines are loaded, the system enters a wait state.
The operator must indicate the device that is to be used as the operator
console by pressing the request key or END/ENTER key, as appropriate, on
the selected device. This generates an interruption that causes the IPL
program to assign the device that caused the interruption as the SYSLOG
device.

If an IPL communication device-list exists, the IPL program will
check the list and will not accept the device that caused the
interruption unless its address is in the list. This SYSLOG assignment
remains valid until the next IPL and overrides any SYSLOG assignment

DOS/Virtual Storage Features Supplement 25

made during system generation. (Note that for a one-partition DOS/VS
system, a printer cannot be assigned as the SYSLOG device during IPL.)

The IPL communication device list facility can be used to restrict
the devices that will be accepted as a SYSLOG device. This facility is
particularly useful for DOS/VS installations with locally attached
terminals, such a 3277 displays. It can be used to prevent a device
that is not under the control of the operator from being assigned as the
SYSLOG device.

To use the optional IPL communication device list facility, a phase
consisting of the addresses of the acceptable SYSLOG devices (and any
device that can be used to submit IPL commands) must be assembled and
link edited to the system core image library with the phase name
$$A$CDLO assigned. Up to eight addresses can be specified. The IPL
program checks for the presence of this phase, and automatically loads
it into real storage if it is present in the system core image library.

The capability of manually overriding an entry in the IPL
communication device list or manually creating such a list (if one does
not exist) when the first IPL wait occurs is provided. These
assignments are temporary and apply only to the current IPL.

DOS/VS supports an optional supervisor select facility that is not
provided in DOS Version 4. The DOS/VS system residence volume can
contain multiple supervisors. The one to be loaded during an IPL is
selected by the operator if the default supervisor (with phase name
$$A$SUP1) is not to be used. This facility enables an installation to
have multiple supervisors with different options specified without
having to maintain multiple system residence volumes and having to
change system residence volumes in order to change supervisors.

During the IPL procedure, the resident supervisor selected (via the
SYSLOG device) is loaded into real storage after which the system is
again placed in an enabled wait state. The operator must indicate the
I/O device that is to be used to communicate IPL commands to the
operating system by generating an interruption from that device. The
device established as the SYSLOG device, a card reader that was or was
not assigned as the SYSRDR device, or a 3540 Diskette Input/Output unit
(containing unblocked IPL commands) can be used as the IPL communication
device.

The following corr.mands,·not defined in DOS Version 4, must or can be
specified either during or following a DOS/VS IPL:

--. DPD - Defines the page data set (SYSVIS), overrides parameters
supplied at system generation, or indicates whether formatting is
required (must be specified at the end of the IPL procedure). A re­
IPL is required to change the I/O device assigned to SYSVIS.

26

• ALLOCR - Defines or overrides the system generation definition of
real partition sizes (optional)

• PRTY'- Overrides the partition dispatching priorities established
during system generation (optional)

• CAT - Assigns an I/O device to the SYS~AT file (VSAM master catalog)
or overrides the system generation assignment (optional). A re-IPL
is required to change the I/O device assigned to SYSCAT.

• S~T SVA - Overrides the SVA and system GETVIS area sizes specified
at system generation (optional). A re-IPL is required to change
these sizes.

DOS/Virtual Storage Features Supplement

• SET SDL - Indicates the SVA is to be created and written in the page
data set (optional). A re-IPL is required to recreate the SVA if
system directory list entries are to be added or physically deleted.

The segment table and page tables required to describe the virtual
storage size indicated at system generation are built in the supervisor
and initialized during system generation. When required, the page
tables are modified during system initialization to reflect unusable
virtual storage between the address of the end·of real storage and the
beginning address of the virtual address area that exists because real
storage is smaller than the RSIZE value specified at system generation.

All segment table entries have their invalid bit turned off to
indicate that the required page tables exist. The segment table is
never modified during system operation. The virtual storage defined at
system generation need not be a multiple of 64K. However, the segment
table will define a virtual storage that is a 64K multiple since each
entry represents a 64K segment.

There is one full length (32 entry) page table for each segment
defined by the segment, table. The format of a page table entry for a
virtual storage page that does not have a page frame assigned is shown
in Figure 80.10.8. Bit 0 in a page table entry is used to indicate
invalid (unusable) address space within the virtual storage size defined
by the segment table. For example, when the user-specified virtual
storage size is not a multiple of 64K, the page table entries for pages
between the end of specified virtual storage and virtual storage defined
by the segment table will have bit 0 on to indicate unusable virtual
storage.

Bit

I H I
0

.!ill.
0

8-11

8

Storage
protect
key

11 12 13 14 15

A one indicates invalid (unusable) address space within
the defined virtual storage.

When bit 13 is a one, these bits contain the storage
protect key of the partition (virtual or real). If bit
13 is a zero, bits 0 to 12 contain the high-order 13
bits of the address of the assigned page frame.

13 I nval id bit off indicates real storage address in bits
o to 12 can be used for translation. Invalid bit on
indicates entry cannot be used for translation.

14 Always zero.

15 User bit indicates whether a page-in is required.
A one indicates a page-in is not required.

Figure 80.10.8. Format of a page table entry for a page without a
page frame assigned

Bits 8-11 contain the storage protect key assigned to the virtual
storage page that the page table entry describes. This storage protect
key is set for a page frame when it is allocated to a virtual storage
page and the address of the page frame is inserted into bits 0 to 12 of
the page table entry. The invalid bit (13) indicates whether the page
table entry can be used for address translation and the user bit (15)
indicates whether a page-in is required when a page frame is assigned.

DOS/Virtual Storage Features Supplement 27

When a jab step is initiated, all user bits in the page table entries
for the partition are turned on to indicate the fact that a page-in is
not required the first time a page frame is assigned to any virtual
storage page in the partition. The first time a page is paged out, the
user bit is turned off in the appropriate page table entry. The
contents of page table entries after system initialization are shown in
Figure 80.10.9.

Page Table Entries for Supervisor Area

Bit 0

A d dress of assigned page frame
(high-order 13 bits)

Page Table Entries for Defined Real Partitions

II

001

12 13 14 15

Bit 0 8 11 12 13 14 15

Page Table Entries for Defined Virtual Partitions

Bit 0 8

Storage
protect
key

11 12 13 14 15

Page Table Entries for Unusable Virtual Storage Pages

Zeros

Bit 0 12 13 14 15

Figure 80.10.9. Contents of page table entries after system
initialization

The page data set is opened, initialized, and, if necessary,
formatted with slots during IPL. If the page data set was not defined
at system generation (in terms of device address, beginning cylinder
address, and, optionally, disk pack volume serial number> via the DPD
macro, the operator must define it during IPL using the DPD operator
command. The system generation specification can also be overridden
during IPL using the DPD command. The direct access device and disk
pack assigned to SYSVIS during IPL cannot be changed without a re-IPL.

The page data set extent must be formatted with 2K slots during IPL
the first time the page data set is used. Thereafter, the formatted
page data set can be reused without reformatting. Reformatting is
required if the size of the page data set is extended or if a new extent
(on the same or a different volume> is specified. The DPD command
always must be specified at IPL. It indicates whether formatting of the
page data set is required and the end of the IPL procedure.

During the IPL procedure, each direct access device listed in the PUB
table is tested for operational status. Any disk device that is not
operational is marked as not being available (device down indication> in
its PUB table entry.

28 DOS/Virtual Storage Features Supplement

The PUB table is also scanned during IPL for printers that have a
forms control buffer (FCB) and Universal Character set buffer (UCB),
that is, for 3203, 3211, and 5203 device types. The standard FCB image
is automatically loaded into any of these types of printers in the
configuration. The All print chain image is automatically loaded in the
UCB of a 3211 and the AN print chain image is loaded into a 3203 or 5203
UCB.

Note that no attempt is made to load the FCB of dummy printer devices
defined for POWER/VS use. A check is made to determine whether the
printer exists before buffer loading is initiated.

The SYSBUFLD program is provided in DOS/VS, as in DOS Version 4, to
load an FCB or UCB buffer image contained in a core image library or the
SYSIPT device between two job steps or jobs during system operation.
The UCB job control command is provided to load the UCB buffer of a
1403. In DOS/VS, however, FCB and UCB buffers can be loaded in other
ways during system operation.

The LFCB and LUCB attention commands are provided in DOS/VS to enable
the operator to load an image into an FCB or UCB, respectively, at any
time during system operation. In addition, the LFCB macro can be issued
in an executing program to load an FCB. The operator is notified when
FCB loading via the LFCB macro is completed. FCB and UCB images to te
loaded via the LFCB and LUCB corrmands and LFCB macro must be contained
in a core image library.

Care should be exercised in the use of the LFCB command and macro and
the LUCB command while a printer is actually printing as there is no way
of knowing exactly when the printer will complete printing using the
current FCB or UCB image. In addition, when an LFCB or LUCB command is
issued, initiation of any other i/o operation is suspended until
processing of the command is corrpleted. Therefore, these commands
should be used with caution when teleprocessing devices or devices such
as a 1275 or 1419 are also in operation.

The LFCB and LUCB commands can be used, for example, to change the
FCB or UCB image when printing has begun with the wrong image loaded.
The LFCB macro could be issued in a user-written abnormal termination
routine that causes a dump to be written to a 3211 printer for which the
indexing facility was being used. A certain number of characters can be
lost on each line of the printed dump unless an FCB image that does not
specify indexing is used for the dump.

The SETPRT macro provides a way of specifying printer setup
characteristics for 3800, 3211, and 3203 Model 4 printers during program
execution. It can be issued by user-written programs and control
program routines. The QSETPRT macro can be used to determine the
printer setup concurrently in effect for a 3800, 3211, or 3203 Model 4
and/or to build a parameter list that can be passed to a SETPRT macro.

After the IPL procedure has been completed and the job control
program has been loaded into the virtual background partition, the job
control program fetches an exit routine named $SYSOPEN to be executed as
an overlay phase. A user-written routine can replace the dummy $SYSOPEN
phase that is provided in the system core image library of the DOS/VS
distribution volume.

The $SYSOPEN exit can be used in an installation to perform security
checks after IPL, such as determining who performed the IPL, checking
that the correct DOS/vS system residence volume is mounted, and whether
the correct date was entered. This capability is not provided in DOS
Version 4.

DOS/Virtual Storage Features Supplement 29

The user-written $SYSOPEN overlay phase, which executes with storage
protect key zero in effect, must be self-relocating, not larger than 4K
bytes, and perform any 'required I/O operation using the EXCP macro. I/O
operations can be performed and SVC instructions can be issued in user­
written $$B-transient routines. Any routines called by the $SYSOPEN
exit routine must be present in a core image library for which a device
assignment was made prior to IP~.

The job control program cannot read any job control statements while
the $SYSOPEN exit routine is being executed. Thus, if a labelled file
is 'opened by the exit routine, the labels must be present in the
standard label area, partition label area, or user label area and the
device on which the file resides must have had an I/O assignment before
the IPL. Data can be also read from and written to the system console.

If the USERID=id parameter of the FOPT system generation parameter is
specified, the message issued at the completion of the IPL procedure
contains a supervisor identification (IPL COMPLETE FOR DOS/VS REL XX.X
ECLEVEL=nn) •

30 DOS/Virtual storage Features Supplement

80:15 MAJOR COMPONENTS

The major control and processing program components of DOS/VS are
shown in Figure 80.15.1. Components that are identified as SCP are
distributed as part of DOS/VS. Type I programs, program products, and
emulator programs are not distributed with DOS/VS and must be obtained
separately. The DOS/VS COBOL Compiler and the DOS/VS Sort/Merge program
.products execute only in a DOS/VS" environment.

CONTROL PROGRAMS (SCP)

• Job Control ••

• Supervisor

• Data Manangment
Physical IOCS
Logical IOCS

. SAM
DAM
I SAM
VSAM··
BTAM
QTAM·
VTAM*·

• Recovery Management
MCAR/CCH/RMSR/EREF
OLTEP·
Problem Determination Aids

(PDAIDS)
System Debugging Aids (SDAIDS)

PROBLEM PROGRAMS (SCP and PP)

• Service
POWER/VS.. (SCP)
Linkage Editor (SCP)
Librarian (SCP)
System utilities

(SCP)
Access Method Services for

VSAM.. (SCP)
ASCII Magnetic Tape
utilities (pp)

1288 Basic Unformatted Read
Support (PP)

DOS Sort/Merge 5743-SMl (PP)
DOS/VS sort/Merge 5746-SM2 (PP)
Integrated ~ulators

Model 20 (SCP)
1401/1440/1460 (SCP)
.1410/7010 (SCP)

3704/3705 System Support
programs (SCP)

Subsystem Support Services (SCP)

.Must execute in real mode
•• Must execute·in virtual mode

PROBLEM PROGRAMS (SCP and PP)

• Language Translators
Assembler (SCP)
RPG II (PP)
Full ANS COBOL Version 3

and Library (Pp)
Subset ANS COBOL (PP)
DOS/VS COBOL Compiler and Library (PP)
FORTRAN IV Library - Option '1 (PP)
PL/I Optimizing Compiler (PP)
PL/I Resident Library (PP)
PL/I Transient Library (PP)
ITF PL/I (PP).
ITF BASIC (pP).

PROBLEM PROGRAMS (Type I and User-written)

• Language Translators and Service Programs
COBOL D (360N-CB-452)
COBOL LCP (360N-CV-489)
Full ANS COBOL Version 2 (360S-CB-482)
FORTRAN F (360N-FO-479)
FORTRAN F Library (360N-LM-480)
PL/I D (360N-PL-464)
Sort/Merge (360N-SM-483)
Group 1 utilities (360N-UT-461)*
Group 2 utilities (360N-UT-462)*
Group 3 utilities (360N-UT-463)*
Multiprogramming Support utility

Macros (360N-UT-471)*

• General
Application-oriented program
products (some run in virtual or
real mode and some only in real mode)

User-written application programs

Figure 80.15.1. Control and processing program components of DOS/VS

DOS/Virtual Storage Features Supplement 31

The components of DOS/VS and DOS Version 4 are similar. Existing
components have been 'extended to support a virtual storage environment
and other new features. DOS/vS supports all the system logical units,
system libraries, and private libraries that are supported in DOS
Version 4. In addition, DOS/VS supports a page data set (SYSVIS), a
procedure library which is part of SYSRES, and a master catalog for VSAM
files (SYSCAT).

The new features of DOS/VS and the most significant functional
differences 'between DOS/VS and DOS Version 4 are presented in the
discussions that follow.

A new core image library organization and a second level directory
facility are implemented in DOS/VS in order to reduce program phase
locate time and eliminate certain restrictions that exist for previous
DOS releases. The organizatio~of a core~mage library and its
directory in DOS/VS is similar to the partitioned data set (PDS)
organization implemented in as for libraries. The five subdirectories
of the system core image library (transient direc~ory, OPEN directory,
etc.) and the system work area used by librarian routines are deleted
from the SYSRES volume as a result of the new core image library
organization. '

In DOS/VS, the directory of a core image library consists of
directory records written in count, key, and data disk record format, as
shown in Figure 80.15.2., The key area is 8 bytes in size and the data
area is 256 bytes. A directory data record contains a number of
variable-length directory entries, each of which provides required
information about a program phase as it exists in the associated core
image library. Included in a directory entry are the name of the phase
and its location in a core image library in relative track address and
record number (TTR) format.

The directory entries within a core image library directory are
maintained in ascending alphabetic sequence by phase name. The highest
phase name in each directory record (256-byte data area) is written in
the 8-byte key that precedes that data area,. A minimum of two tracks is
required for a core image library directory.

Text data and control information for a phase are written in 1K
(1024) byte records (instead of 1688- or 1504-byte records, as in
previous DOS releases), regardless of the type of direct access device
on which the core image library resides. All text records for a given
phase are written first. All relocation list dictionary data for the
phase is written after the last text record.

programs are placed in a core image library in the sequence in which
they are loaded and are not maintained in any sequence. When a program
is cataloged in a core image library, it is placed in available space
after the last existing program in the library. However, the directory
entry for the program is inserted in alphameric sequence in the
directory for that core image library. (If a directory entry with the
same phase name as the new cataloged phase is present in the directory,
it is deleted.)

This organization enables the directory entry for a program to be
located by a channel search of a directory track. A SEARCH KEY
HIGH/EQUAL command with the name of the desired program (phase) is used
to locate the directory record that contains the required directory
entry and only one directory record need be read into storage. In DOS
Version 4, each directory record, beginning with the first record, must
be read into storage in order to be searched for the required directory
entry.

32 DOS/Virtual storage Features Supplement

Core
Image
Library
Directory

Core
Image
Library

Figure

Directory Record 1

Key-8 bytes Data- 256 bytes

D Entry 1 Entry 2 1- __ Entry L

Highest
phase name
in data
area

Directory entries in
ascending alphameric
sequence by phase
name

Data-1024 bytes

Text data for phase 1 1· .. 1

R LD data for phase 1 I .. ·1

Text data for phase 2

1 ·1

Text data for phase N

I ·1
80.15.2. Organization of a core

Directory Record N

Key Data

D Entry 1 Entry 2 1- __ Entry M

Data-1 024 bytes

Text data for phase 1

R LD data for phase 1

R LD data for phase 2

R LD data for phase N

image library

The new core image library organization is used for the system core
image library and all private core image libraries. The first ten
tracks of a private core image library volume are no longer required for
subdirectories, a librarian work area, etc. Only one track is required
for directory records.

In addition, in DOS/VS a private core image library can be placed on
a direct access device type that is different from that used for the
system core image library and need no longer begin on a cylinder
boundary. 'I'his latter capability and. the availability of tracks in the
first cylinder of the volume (as a result of the elimination of
subdirectories) permit phases to be stored in the first cylinder of a
private core image library. The time required to locate a phase
contained in the first cylinder is reduced by the elimination of a seek
after the directory is searched. Therefore, as many of the most
frequently used routines in a private core image library as will fit
should be stored in the first cylinder.

The second level directory facility is implemented to reduce the
search for a required directory entry to one directory track. This
facility is provided for both nonmultiprograroming and multiprogramming
systems. A system second level directory for the system core image
library is always created. One private second level directory is
created for each private core image library only if the private second
level directory option is specified at supervisor generation. Second

DOS/virtual storage Features Supplement 33

level directories are contained in the supervisor. The number of
entries in the system second level directory and the private second
level directories can be speci'fied at system generation. The minimum
number of entries for each is five.

The second level directory for a core image library contains the
highest phase name on each track in the directory for that core image
library (one entry for each track in the directory if there are enough
entries in the second level directory). In order to determine the
directory track at which the search for a directory entry is to begin,
the second level directory for a core image library, if any, is
inspected before a directory search is performed on disk. For best
performance, therefore, the number of entries specified for a second
level directory should be equal to or greater that the number of tracks
in the core image library directory. If a private second level
directory is not present for a private core image library, the search
for the specified phase name begins at the first track in the directory.

Entries are placed in the second level directory for a private core
image library at the time the job control program processes the ASSGN
statement for the private core image library. The second level
directory for the system core image library is completed during IPL
after assignment of the SYSRES device has been made. The $MAINDIR
service routine is called to place entries in second level directories.

As a result of the implementation of directory lists and second level
jirectories, the sequence of searching to determine the location of a
phase that is requested by a partition is different than in DOS Version
4. When the requested phase is not a $-phase and the new SYS=YES
parameter is not specified in the FETCH or LOAD macro, the search
sequence for the directory entry of the phase name specified is as
follows:

34

• Local directory list in the partiti~n, if one is specified in the
FETCH or LOAD macro. If an active entry for the phase name is found
in the local directory list, searching terminates and the phase is
loaded from the private core image library assigned to the partition
or from the system core image library.

• Link directory on disk of the private core image library for the
partition, if a private core image library is present for the
partition

• Link directory on disk of the system core image library if it is
present and a private core image library is not present

• Private second level directory in the supervisor (if a private core
image library and such a directory are present for the partition)

• Private core image library main directory (of cataloged phases) on
disk (if a private core image library is present). The search
begins at the directory track found during the private second level
directory search (if such a directory is present) or at the first
track of the main directory. If the phase name is found in the main
directory, the search terminates and the phase is fetched from the
private core image library.

• System directory list in the SVA. If the phase name is found in
this list, searching terminates. The phase is then fetched from the
system core image library if it is not resident in the SVA.

• System second level directory in the supervisor

DOS/Virtual Storage Features Supplement

• System core image library main directory on disk. The search begins
at the directory track indicated by the search of the system second
level directory. The phase is fetched from the system core image
library if the phase name is found.

If the FETCH or LOAD macro requests a $-phase or if the SYS=YES
parameter is specified ~or a phase that is not a $-phase, the search
sequence is as follows:

• Local directory list if one is specified in the FETCH or LOAD macro

• System directory list in the SVA

• System second level directory in the supervisor

• System core image library main directory on disk beginning with the
directory track specified in the system second level directory

• Private second lev~l directory in the supervisor if a private core
image library and such a directory are present for the partition

• Private core image library main directory on disk if a private core
image library is present. The search begins at the directory track
found in the private second level directory, if any, or at the first
track of the main directory.

• Private core image library link directory on disk if a private core
image library with a link directory is present

• System core image library link directory if it is present and a
private core image library is not present

The DE=YES parameter, not supported in DOS Version 4, can be
specified on a FETCH or LOAD macro to indicate that a pOinter to a
directory entry is provided by the macro in place of the phase name. If
the specified directory entry is active, it is used and all searching
for the directory entry is bypassed. If the directory entry is not
active, it is located using one of the search sequences listed above and
the local directory list entry is completed by the supervisor.

A TXT parameter for the LOAD macro, not supported in DOS Version 4,
determines whether the phase is actually loaded into virtual storage
after it is located. If TXT=NO is specified, the local directory l:j.st
entry is completed without loading of the phase. TXT=NO can be
specified to cause a directory entry to be filled in for later use in
FETCH/LOAD macros without taking the time required to load the text. It
is also a means by which a test can be made for the presence of the
phase in any library and to determine the specific library in which the
phase resides.

The new core image library organization, second level directories,
and directory lists that are supported in DOS/VS can result in a
significant reduction in the time required to locate a phase,
particularly ~hen the system core image library and/or private core
image libraries are relatively large. In addition, supervisor transient
routines and other frequently used system programs, such as job control,
the linkage editor, and librarian routines, can be fetched more quickly.
This occurs because when the DOS/vS system core image library is built,
all $$- and $-phases are placed at the beginning of the library
immediately after the directory. This can minimize the disk arm
movement required to access these phases.

DOS/Virtual Storage Features Supplement 35

The contents of the DOS/VS SYSRES file, which always starts at track 1
in cylinder 0, is the following:

• System Directory
• IPL retrieval program
• Core Image Library Directory

Directory of cataloged ~hases (main directory)
Directory of linked phases (link directory>

• Core Image Library
• Relocatable Library Directory (optional area)
• Relocatable Library (optional area)
• Source Statement Library Directory (optional area)
• Source Statement Library (optional area)
• Procedure Library Directory (optional area)
• procedure Library (optional area)
• Label cylinder(s)

One label cylinder is allocated for each direct access device type
supported as a SYSRES device except the 3340. For the 3340, two
adjacent 'cylinders are allocated as label cylinders. The second
cylinder can be used to store permanent standard labels for all
partitions defined for the system. Two cylinders are allocated for th~
3340 since for a five partition system, only two tracks would be
available for permanent standard labels for all partitions if only one
cylinder were allocated.

As a result of the support of two more partitions in DOS/VS than in
DOS Version 4, the organization of the label cylinder on the SYSRES file
varies depending on the number of partitions the supervisor is deSigned
to support, as shown in Figure 80.15.3. Only the first of the two label
cylinders for a 3340 is shown. The second label cylinder for a 3340
contains 12 tracks for standard labels for all partitions.

The IPL program is modified to determine whether the number of
partitions supported by the supervisor being loaded is equal to the
number of partitions for which the existing label cylinder on SYSRES is
organized. If not, the required format is established for the label
cylinder and the existing contents are moved within the label cylinder
as necessary.

This IPL facility enables the supervisor on an existing SYSRES volume
to be replaced by a supervisor that supports a different number of
partitions than the replaced supervisor without having to recreate the
SYSRES file on a new volume in order to build' a new label cylinder. For
example, if a supervisor that supports five partitions replaces a
supervisor that supports three, any standard labels on label cylinder
tracks 6-9 (as shown in Figure 80.15.3) would be destroyed by the
storing of labels for the additional two partitions supported, if the
label cylinder were not reorganized first.

DOS/VS supports all the primary operator console devices that are
provided for Models 115 to 158. However, the display console for the
Model 158 is supported in printer-keyboard mode only and the 3213
Printer is required as a hardcopy output console device. Display mode
operations for the Model 158 display console (but not the 3213 Printer
or light pen) are supported by the Advanced Fnnctions-DOS/VS program
product.

Display operator console (DOC) support is provided for the display
console for Models 115 and 125, for the display console of Models 138
and 148 operating in 115/125 Console Display Emulation or normal (3277)
display mode, and a 3277 display station attached to a byte multiplexer
channel via a 3272 Control Unit. Model 115, 125, 138, and 148 display
consoles are also supported operating in printer-keyboard mode.

36 DOS/Virtual Storage Features Supplement

3350
native
mode

3340
first
cylinder

3330-
2314 Series
or
2319

Figure 80.15.3.

1 Partition
Track

o BG(USRLABEL)

BG (PARSTD)

2 Ignored

3 Ignored

4 Ignored

5 Ignored

6 L (STDLABEL) ~
Standard labels

7 r for the -,
L BG partition --1

8
~------------~

9
~------------~

10

11

12
'-----------'

13
'-----------'

14
~------------~

18

19 I'-_____ -J

2 Partitions
Track

o BG (USRLABEL)

BG (PARSTD)

2 F1 (USRLABEL)

3 F1 (PARSTD)

4 Ignored

5 Ignored

6 L (STDLABEL)]
Standard labels

7 r for all]
L partitions

8
'----------'

9

10

11

12

13

14

18 1"--____ -----'
19 IL--____ -----'

29 ,-I ____ --'

3 Partitions
Track

o BG (USRLABEL)

BG (PARSTD)

2 F2 (USRLABEL) I.
3 F2 (PARSTD) 1

4 F1 (USRLABEL)

5 Fl(PARSTD)

6 L (STDLABEL) .J
Standard labels

7 L for all -,
partitions --1

8
~------------~

9

10

11
~------------~

12

13
~------------~

14
~------------~

181 L-_____ ~

19 ,-I _____ ~

29 ,-I _____ ~

4 Partitions
Track

o BG (USRLABEL)

BG (PARSTD)

2 F3 (USRLABEL)

3 F3 (PARSTD)

4 F2 (USRLABEL)

5 F2 (PARSTD)

6 F1 (USRLABEL)

7 Fl (PARSTD)

8 L (STDLABEL) --.J
Standard labels

9 r for all ---,
L partitions ~

10

11

12

13

18 IL--____ ---'

191 '-_____ ~

291L--____ --'

Layout of the first (3340) or only label cylinder for .the
DOS/VS SYSRES file

5 Partitions
Track

o r"1--B-G-(-U-S-R-L-A-B-E-L-) ---,

1 1 . BG (PARSTD)

21 F4 (USRLABEL)

31 F4 (PARSTD)

4 F3 (USRLABEL)

5 F3 (PARSTD)

6 F2 (USRLABEL)

7 F2 (PARSTD)

8 Fl (USRLABEL)

9\ F1 (PARSTD)

10 L (STDLABEL) =oJ
Standard label

11 r for all --,
L partitions -----1

12 1"--____ --'
13 ,-I _____ ---'

14 ,-I _____ ---'

18 1 L-_____ ~

191L.. _____ ~

29 ,-I _____ ~

Dec support is automatically included in supervisors that are
generated for Models 115, 125, 138, and 148. Normal display mode
support is included for Models 138 and 148. Support of 115/125 Console
Display emulation mode must be specifically requested for a Model
138/148 console. The twelve program function keys that are available on
the display console for Models 138 and 148 are not supported by DOS/VS.

DOC support of the display consoles for Models 115 and 125 and
115/125 Console Display Emulation mode for Model 138 and 148 consoles
provides a screen display of 16 lines of 56 characters each, only the
first twelve of which are available to the operator. The last four
lines are a system hardware status display area that is used by customer
engineers. On the Model 138/148 display console, which has 24 lines of
80 characters each, the 56 character lines are centered within the 80-
character line and every other line position is used to display the
twelve operator lines.

The twelve operator lines are the following (from top to bottom of
the screen):

• Message area of eight lines that is used to display messages from
the DOS/VS system and user-written programs. A message longer than
56 characters is continued on the Qext line •

• Instruction line for the display of messages to inform the operator
of incorrect usage of the K control command, which is used by the
operator for screen contents control and to indicate operating
conditions of which the operator should be aware

• Entry area of two lines that is used to display entered commands

• Warning line for the display of messages regarding problems that
must be resolved by the operator

Display operator console support is also provided for Model 138 and
148 display consoles operating in normal display (3277) mode and the
3277 Display Station. DOC support of the 3277 as an operator console is
optional for Models 115, 125, 135, 145, 155 II, and 158. DOC support of
display mode for Models 138 and 148 is included by default. When DOC
support of the 3277 is included for a Model 115, 125, 138, or 148, DOC
support of 115/125 display mode cannot be included in the same
supervisor (that is, 115/125 Console Display emulation mode cannot be
used for a Model 138/148 console or the display console of a Model
115/125 cannot be used as the operator console).

"The screen of a 3217 display or a Model 138/148 display console
operating in display mode is divided into the following areas (from top
to bottom):

• Message area of 20 lines for display messages from the DOS/VS system
user-written programs. A message longer than 77 characters is
continued on the next line.

• Instruction line for the display of messages to inform the operator
of incorrect usage of the K control command

• Entry area of two lines that is used to display entered co«~ands

• Warning line for the display of messages regarding problems that
must be resolved by the operator

The K and D commands are provided to enable the operator to control
screen operations when display mode support is used. When the message
area on the screen becomes full, the K command must be used to delete

38 DOS/Virtual Storage Features supplement

some or all of the messages. The D command is used to redisplay
messages contained in the hard-copy file that were deleted previously.

The audible alarm on the Model 115, 125, 138, and 148 display console
is sounded when the operator must respond to a message, when the
operator makes an error entering the·K command, or when the message
"MESSAGE WAITING" is displayed.

When DOC support of 115/125 display mode is utilized, the 5213
Console Printer is optional for Models 115 and 125, while the 3286 Model
2 or 3287 Model 1 or 2 Printer is optional for Models 138 and 148. When
present, the 5213 or 3286 is used as a hard-copy console printer and is
not uniquely addressable.. All lines displayed on the display console
are automatically written to the hard-copy printer.

If a console printer is present in a Model 115, 125, 138, or 148
configuration, use of a hard-copy file on disk is optional when DOC
support of 115/125 display mode is utilized. If a console printer is
not present, use of the hard-co~y file is required when using 115/125
display mode support .•

When the hard-copy file is present, each message displayed on the
screen and all information keyed in by the operator are automatically
written in the hard-copy file by display console support. This file
must be allocated an extent on the SYSREC disk device.

The 3286 or 3287 Printer is not supported for hard copy when normal
display (3277) mode is utilized for a Model 138/148 display console.
When a 3277, or a Model 138/148 console is used in display mode, a hard­
copy file is required.

The hard-copy file must be created after the first IPL procedure and
if the SYSREC file is damaged. This is accomplished by issuing the SET
HC=CREATE command after the ready message appears. Whenever a new hard­
copy file is created, the existing one is deleted.

The PRINTLOG utility program is used to write the hard copy file to
the SYSLST device. All existing messages in the file or only selected
messages can be written. Selected message types (all action, decision,
information, etc.), messages associated with a specific job, those
issued on a specific date, or those entered since the last running of
the PRINTLOG utility can be printed.

The display consoles for Models 115, 125, 138, and 148 are also
supported in printer-keyboard mode. When this mode is used, the display
console (screen and keyboard) is treated like a 3210/3215 Console
Printer. Each message is printed using two lines beginning with the
first two lines. When the screen is full, the top six lines are
automatically deleted and the remaining lines are moved up to leave
space at the bottom of the screen for new messages.

A console printer (5213, 3286, or 3287) is optional for printer­
keyboard mode oI=eraticns. However, its use is recommended for hard-copy
backup (if present, all data displayed on the screen is also written to
the console printer), since a hard-copy file is not supported for
printer-keyboard mode of operation. Messages that are automatically
deleted cannot be redisplayed (since there is no hard-copy file) hut are
available on the hard-copy console printer. A console printer (5213,
3286 Model 2, or 3287 Modell or 2) cannot be uniquely addressed when
printer-keyboard mode is used.

DOS/Virtual storage Features supplement 39

80:20 THE JOB CONTROL PROGRAM AND OPERATOR COMMANDS

THE JOB CONTROL PROGRAM

The DOS/VS job control program provides the same functions as the DOS
Version 4 job control program and is extended to support a virtual
storage environment, a job control exit facility, a cataloged procedures
facility, and generic I/O device assignment. The job control program is
also modified as required to support other new features of DOS/VS, such
as the shared virtual area and the new core image library organization.

In a DOS/VS environment, the job control program executes in virtual
mode in a virtual partition that must be a minimum of 64K. The job
control program is modified to issue the seize system SVC, which causes
all task dispatching to be suspended only when it is absolutely
necessary. This change is designed to be of benefit to system
performance by reducing the amount of serialized processing that is
caused by the job-controi program.

The same job control statements and parameters are supported in
DOS/VS and DOS Version 4 except for the following new and modified
support in DOS/VS:

40

• The REAL and SIZE parameters (previously discussed) can be specified
on the EXEC statement as can the PROC parameter, which is associated
with the cataloged procedures facility discussed below.

• A VSAM code can be specified on a DLBL statement to indicate VSAM
file organization and the BUFSD parameter can be included to
override the buffer assignment made in the ACB in the program or
when the VSAM file was defined using Access Method Services.

• The BLKSIZE parameter is added to the DLBL statement. This
parameter can be specified only for sequentially organized disk
files allocated to a 3350 or 3330 Model 11 that are defined USing
the DTFSD macro. RPS support must also be utilized. The BLKSIZE
parameter can be used to override the block size specified in the
DTF (BLKSIZE must specify a larger block size value than the DTF).
This parameter enables a larger block size to be used for a file
that was contained on a device type other than a 3350 or 3330 Model
11 without program modification and recompilation.

• The OVEND statement is provided for the cataloged procedures
facility.

• F3 and F4 parameters are added to job control statements as required
to provide support of the two additional foreground partitions that
can be defined in DOS/VS.

• The PARTDUMP option can be specified in the OPTION statement. This
option causes a dump that contains less system information than that
provided by the DUMP option to be written to the SYSLST device when
abnormal termination of a partition occurs. In addition to the
contents of virtual storage in the partition, the PARTDUMP option
causes the contents of the registers as well as the address and
contents of the partition communication region, PUB table, PUB owner
table, partition LUB table, JIB table, and partition DIB table to be
written to SYSLST. The PARTDUMP option can also be specified as a
standard job control option at system generation by including the
DUMP=PART parameter in the STDJC macro.

• The SETPRT statement is provided to be used to specify printer setup
characteristics for 3800, 3211, and 3203 Model 4 printers.

DOS/Virtual Storage Features Supplement

Part of the additional processing the job control program must
perform in support of a virtual storage environment is initialization of
the appropriate page table entries when a job step is initiated in a
partition. As part of EXEC statement processing, the page table entries
for the virtual partition or the real partition and its associated
virtual partition are initialized. In addition, any copy blocks for the
partition that are being used by the fast ccw translation routines (if
this option is present) are released and temporarily fixed page frames
associated with these copy blocks are freed. If the System/370 model
being used has a translation lookaside buffer, its contents are
invalidated.

When a virtual mode program is to execute,' the invalid address bit
(bit 0) in the page table entries for the virtual partition is set to
zero. The invalid and user bits in the page table entries are set to
one (both on). The page table for the associated real partition is not
modified at this time since it is placed in its system initialization
status (invalid address bits set to one and invalid bits set to zero)
each time a real mode job step completes execution.

since the invalid and user bits are on for all pages of the virtual
partition except the first (which contains the save area), the first
reference to any page in the virtual partition except the first will
cause a page fault and the allocation of a page frame without a page-in.

Since the invalid bit is off for all virtual storage pages in the
real partition, any reference to a virtual storage address that is
contained in the real partition during execution of a virtual mode
program will cause address translation to proceed using bits 0 to 12 of
the page table entry. However, the presence of a one in bit 0 (high­
order bit of the 24-bit real storage address) will generate a translated
real address that is not present in any System/370 model supported by
DOS/VS. An addressing exception interruption will occur.

In this manner, executing programs are prevented from accessing
temporarily unusable virtual storage in a real partition when a program
is executing in its associated virtual partition.

When a real mode program is to execute, page table entries for the
real partition and its associated virtual partition are initialized as
follows:

• Real partition - A valid real address is placed ,i~ bits 0 to 12 and
the invalid bit is set to zero (off). The r.eal address in an entry
is equal to the address of the virtual storage page with which the
entry is associated.

• Virtual partition - The invalid address bit is set to one (on) and
the invalid bit is set to zero (off)

These settings enable address translation to be performed for virtual
storage pages in the real partition such that a virtual storage address
translates to an equal real storage address, and prevent access to the
virtual storage in the associated virtual partition during real mode
program execution.

Job Control Exit Facility

The job control exit facility is standard in DOS/VS multiprogramming
systems. It enables a user-written routine to inspect each job control
statement after it has been read and before it is processed by the job
control program. The operand and comments fields can be modified
(positions 11 to 71 of the job control statement) but the operation
field cannot be changed in any way.

DOS/Virtual storage Features Supplement 41

A user-written job control exit routine must be named $JOBEXIT. It
must be reentrant and made resident in the SVA. The exit routine cannot
issue any SVC instructions, perform any I/O operations, or request
cancellation of the job step. The exit routine executes with storage
protect key 0 in effect. A user-written exit routine replaces the IBM­
supplied dummy $JOBEXIT routine that returns control to the calling
routine without performing any function. The job control exit is always
taken after each job control statement is read.

'When the job control exit routine is entered, general registers
indicate the location of the statement in a buffer, address of the
partition communication region, address of the system communication
region, address of th~ job control vector table, and return address to
the job control program. Once the exit routine completes processing, it
must place a return code of Oin general register 15 if the job control
statement is to be processed. Any other return code causes the
statement to be treated as a corr~ents statement.

Cataloged Procedures

The cataloged procedures facility is a standard feature of DOS/VS.
It provides the capability of storing in a procedure library frequently
used job control statements for job steps. Optionally, control
statements and input data fo~ system service and utility programs can
also be placed in a cataloged procedure. Once a procedure is cataloged,
it can be invoked via the EXEC job control statement/command and its
statements and data are included in the input stream just as if they
were physically present in the SYSRDR or, optionally, SYSIN or SYSIPT
device.

When a cataloged procedure is used, job control statements in the
procedure can be modified, if required, by job control statements in the
input stream. Modifications are effective only for the duration of the
job step to which they apply and do not affect the procedure as it is
cataloged in the procedure library.

The cataloged procedures facility is an operational aid. It can te
used to reduce the total number of input stream cards the operator must
handle. This can speed up operations and reduce the possibility of
errors caused by card mishandling. While an input stream also can be
placed on tape or disk to minimize handling, this approach does not
provide the flexibility of temporary modification by cards, as is
provided for cataloged procedures.

Use of the cataloged procedures facility also reduces the total
number of job control statements that must be created and maintained in
the installation since the job control statements for frequently used
job steps that do not require partition-dependent devices (assemblies,
utilities, for example) need be stored only once and can be used by any
number of different jobs, regardless of the partition in which the jobs
execute.

The procedure libr'ary is a system library that is part of the SYSRES
file. It consists of one or more complete cylinders, as determined by
the user. Private procedure libraries are not supported. Use of the
cataloged procedures facility is optional.

The IBM-supplied procedure library contains procedures for linking
and deleting DOS/VS components during a system generation and four
procedures (SDL, RPS, VSAMSVA, and VSAMRPS) that are provided for use
during system operation,. The procedures can be used during the creation
of the SVA.

The SDL procedure contains the control statements that are required
to place the directory entries of selected system phases in the system

42 DOS/Virtual Storage Features Supplement

directory list in the SVA. It is designed for use with a DOS/VS system
without VSAM or RPS support. The RPS procedure contains control
statements for loading selected system phases and RPS phases but no VSAM
phases. The VSAMSVA procedure contains control statements for loading
both the suggested system phases and VSAM phases but no RPS phases. If
the VSAMSVA procedure is used, the SVA must be a minimum of 302K. The
VSAMRPS procedure contains control statements for loading selected
system phases, RPS phases, and VSAM phases. The contents of the
supplied procedures can be modified us~ng the PSERV librarian program.

The procedure library contains a directory which points to the
location of each cataloged procedure. Each procedure has a unique name
(up to eight characters in length) and consists of DOS/VS job control
statements. Any POWER/VS JECL statements contained within a cataloged
procedure are treated as comment statements. Optionally, a procedure
can also contain SYSIPT data stored in SO-byte card image format.

As an installation aid, the procedure library also contains coded
samples for procedures to delete and link system components, create
standard labels, create private libraries, and define VSAM files.

The librarian functions provided for other DOS/VS system libraries
are provided for the procedure library also via extensions to existing
librarian programs. Cataloging, deleting, renaming, condensing,
allocating and reallocating, setting the condense limit, checking the
condense limit and automatic condensing, library copying, and library
directory displaying are supported for the procedure library. In
addition, procedure punching or displaying is provided via the PSERV
program, which is provided in support of the cataloged procedures
facility. .

A cataloged procedure can contain statements for one or more job
steps that are to be executed as part of the same job. statements for
job steps that are part of different jobs cannot be placed in the same
cataloged procedure. The following types of statements can be included
in a cataloged procedure:

• Job control statements for one or more job steps. All types of job
control statements except a /& statement can be cataloged. The
following statements cannot be included in a cataloged procedure
since they are not accepted when a procedure is processed: ASSGN
SYSRDR, RESET SYS, RESET ALL, RESET SYSRDR, and CLOSE SYSRDR. ASSGN
SYSIPT, RESET SYSIPT, and CLOSE SYSIPT statements can be placed in a
cataloged procedure only if SYSIPT data is not contained in the
procedure. Nested cataloged procedures are not supported. That is,
an EXEC statement in a cataloged procedure cannot invoke another
cataloged procedure.

• Linkage editor control statements

• SYSIPT data for IEM-supplied language translators, utilities, and
service programs. For example, a source program could be cataloged
for input to an assemble job step. catalogedSYSIPT data is read
using a DTFCP or DTFDI logic module. Therefore, the SYSFIL option
must be specified during system generation to cause inclusion of the
system-to-programmer interface required by the DTFCP and DTFDI logic
modules, if SYSIPT data is to be cataloged. A problem program can
also read SYSIPT data from a cataloged procedure using the DTFDI
logic module.

The first job step in a job that accesses SYSIPT data determines the
required location of SYSIPT data for all steps in the job. That is,
if the first job step accesses SYSIPT data that is not cataloged, no
steps in the job can access cataloged SYSIPT data.

DOS/Virtual Storage Features Supplement 43

• SET SOL command and SVA-defining control statements and other IPL
commands

A cataloged procedure is invoked using the PROC=procedure name
parameter on an EXEC statement/command contained in the input stream.
If the cataloged procedure facility is~o be used for a job that can
execute in different partitions at different times and that has job
control statements with partition-dependent data, a cataloged procedure
must be defined for each partition in which the job step can execute.
The partition-related cataloged procedure facility can then be utilized
to enable one EXEC statement to be used to invoke the correct procedure
at execution time regardless of the partition in which the job is to
execute.

In order to use one EXEC statement, the following conventions must be
used to define the partition-related procedure names that are assigned
when the set of procedures for the job step is cataloged:

• The first character of the name must bea $

• The second character must identify the partition for which the
procedure is defined 'lB, 1, 2, 3, or 4 to indicate the BG, Fi, F2,
F3, or F4 partition, respectively)

• The .last six characters can be any valid procedure name characters.
The same six characters must be used in each procedure name.

The procedure names assigned, therefore, will differ only by the
partition identification character in the second position. The
procedure name specified in the EXEC statement must consist of a $
chara.cter in the first two positions and the six common procedure name
characters being used. When the job control program finds a $ character
in the first position of a procedure name, it replaces the $ character
in the second position with the partition identification character that
indicates the partition in which the, job control program is currently
executing. In this manner, the procedure name that is required to
select the correct partition-related procedure for this execution is
automatically created.

If the partition-related procedures facility is not used, one EXEC
statement with the appropriate procedure name specified is required for
each partition in whiCh the job step can execute. This approach can be
utilized when the partition to be used for each execution of the job
step is preplanned. However, it cannot be used when a job step is to be
executed in any partition that happens to be available at the time the
job step is initiated if partition-dependent job control data is
required.

A modification facility is also provided that enables job control
statements in a cataloged procedure (except for JOB statements) to be
modified for the duration of the job step(s) involved by job control
statements (called modifier statements) contained in the input stream.
Job control statements can be added to the cataloged procedure and
existing job control statements in the procedure can be deleted entirely
or altered.

Job control statements that are to be referenced by modifier
statements must be named using columns 73-79. The modification facility
cannot be used to alter cataloged SYSIPT data. Such data must be
modified using the appropriate librarian program.

If modifier sta:tements are pr~sent in the input stream, the OV
(ove'rwrite) parameter must be included 'on the EXEC statement that
invokes the procedure and an OVEND statement must follow the last
modifier statement for the procedure. Modifier statements must be

44 DOS/Virtual storage Features Supplement

placed in the input stream in the same sequence in which the job control
statements they reference appear in the cataloged procedure.

The job control program is expanded to recognize a cataloged
procedure request, locate the requested procedure in the procedure
library, include the procedure in the input stream, and make the
modifications indicated by any modifier statements in the input stream.

A cataloged procedure can also be invoked and modified by the
operator. Appropriate EXEC and modifier statements can be supplied
using SYSLOG. Figure 80.20.1 illustrates modification of a cataloged
procedure.

Label statements are written on partition temporary label tracks in
the label cylinder on SYSRES as usual whether or not the cataloged
procedures facility is utilized.

Note that if an unending job, such as POWER/VS, is invoked via the
procedure library, the procedure library cannot be updated while the
unending job is executing. The recommended approach, therefore, is not
to place the EXEC statement for POWER/VS in a cataloged procedure.

Job control statements in the cataloged procedure named EVA are shown
below. statements with an identification in columns 73-79 can be
referenced by modifier statements in the input stream.

// ASSGN SYS010,DISK,VOL=111111,SHR
// ASSGN SYS011,TAPE
// TLBL SYS011,'FILE-IN '
// DLBL MASTER,'FILE-OUT '
// EXTENT SYS010,111111,1,0,200,200
// EXEC PROGRAM
/+ END CF PROCEDURE

Columns
73-79

DLOUT
EXOUT

Assuming the file name in the DLBL statement must be changed and an
additional EXTENT statement must be supplied, the following job
control is placed in the input stream (the A in column 80 indicates
the modifier statement is an addition):

// JOB USER
// EXEC PROC=EVA,OV
// DLBL MAS~ER,'FILE-USER'
// EXTENT SYS010,111111,1,1,1000,100
// OVEND
/&

The following modified job control is used:

//
//
//
//
//
//
//
EOP

ASSGN SYS010,DISK,VOL=111111,SHR
ASSGN SYS011,TAPE
TLBL SYS011,'FILE-IN '
DLBL MASTER, 'FILE-USER I
EXTENT SYS010,111111,1,0,200,200
EXTENT SYS010,111111,1,1,1000,100
EXEC PROGRAM
EVA

Columns
73-ffO

DLOUT M
EXOUT A

DLOUT
EXOUT
EXOUT A

Figure 80.20.1. Example of modification of a cataloged procedure

DOS/Virtual Storage Features Supplement 45

Generic I/O Device Assignment

A generic I/O device assignment facility is supported by the job
control program in DOS/VS. The ASSGN job control statement and command
are modified to permit general as well as specific I/O device
assignments to be made. Job control is 'able to perform I/O device
selection in response to general requests.

In DOS Version 4, the assignment of I/O devices to symbolic units is
a user function and assignments are made strictly in terms of specific
hexadecimal I/O device addresses. In DOS/VS, I/O device assignment can
also be made in nonspecific terms, such as by generic device type (TAPE,
DISK, 3410, 3330, for example), and at job step initiation time an
available specific device of the generic type indicated will be selected
dynamically by the job control program.

The use of generiC names for device assignments makes jobs partition
independent, which eliminates much of the I/O device assignment
preplanning that is required when only specific hexadecimal device
addresses are used. Use of the generic device assignment facility can
also reduce the job control changes that are normally required when I/O
devices are added to the con~iguration or existing device types are
changed. In addition, jobs can be executed on systems with differing
real device addresses without changing ASSGN statements.

Instead of a hexadecimal I/O device address (X'cuu'), one of the new
unit parameters discussed below can be specified on an ASSGN statement
or command to indicate tpe I/O device that is to be assigned to the
specified symbolic unit (SYSxxx). In addition, two other new parameters
are supported. The SHR parameter can be specified only on ASSGN
statements that are for direct access devices. The VOL parameter can be
included to specify a volume serial number when the request is for a
tape or disk unit. The mode and form parameters on an ASSGN statement
are unchanged. However, the TEMP or PERM parameter can now be specified
on an ASSGN job control statement as well as on a command.

The new format of the ASSGN command/statement is

[//]ASSGN SYSxxx, address
generic type
address-list
SYSyyy

[,mode][, form] [, VOL=volsernol [, SHR]

The address parameters supported are the same as in DOS Version 4
(X'cuu', UA, or IGN). New unit assignment parameters for the ASSGN job
control command and statement shown above are as follows.

Generic~. A device-class name or a device-type name can be
specified. The device-class names supported are READER, PRINTER, PUNCH,
TAPE, DISK, and DISKETTE,. User-defined device-class names are not
supported, nor is a mixed device type device class (TAPEDISK, for
example). The device-type names supported are most of the card reader,
card punch, printer, tape, and direct access device types supported by
DOS/VS (3505R, 3505P, 3410T9, 3420T7, 3330, for example).

Specification of a genel:ic type of device without the VOL or SHR
parameters causes the job control program to attempt to select an
available I/O device (one without partition ownership flags on) of the
type indicated. The PUB table is inspected beginning with the first
entry for channel Os If a device-type name is specified on the ASSGN
statement, the PUB table is searched for an unassigned device with that
specific device-type code (all 3330-series device entries inspected, for
example). The first unassigned device of the required type is selected
for assignment.

46 DOS/Virtual Storage Features Supplement

If a device-class name is specified, the PUB table is searched for
entries with the specific device-type codes that are included in that
device class. The search is made in ascending order by device type
within the class. For example, if DISK is specified, PUB table entries
are inspected for a 2311, 2314/2319, 3330-series, 3340/3344, or 3350
device-type code in the sequence listed. The first unassigned direct
access device encountered is selected for the assignment. (If DISK is
specified in an installation with a mixture of direct access device
types, the program must be capable of handling device-type independence
among direct access devices since any type of direct access device can
be selected.) ,

When an available device of the type required is found, it is
assigned to the specified symbolic unit and a message is issued to the
operator that includes the hexadecimal I/O address of the assigned
device. If the specified device type is not present in the I/O
configuration or if all devices of the required type are already
assigned, the operator is notified. The action taken then depends on
the option in effect for this situation.

At system generation, the ACANCEL parameter can be specified on the
STDJC macro to indicate whether a job is to be canceled when job control
cannot perform the reques~d device assignment.' The standard option
specified at system generation can be overridden for the duration of a
job by including an OPTION statement in the job stream with the ACANCEL
or NOACANCEL parameter specified. The standard option becomes effective
again at end of job. If the job control option ACANCEL is in effect, a
job is canceled when an I/O device assignment cannot be made. If the
NOACANCEL option is in effect, the operator can enter whatever commands
are required either to make the aSSignment or cancel the job.

The SHR parameter can be specified for a generic type request that is
for a direct access device type only. Inclusion of SHR permits the
selection of a direct access device that is already assigned to another
symbolic unit. Both assigned and unassigned direct access device PUB
table entries of the type indicated are inspected, as previously
described, when SHR is specified.

The VOL parameter can be specified on a generic type request for a
magnetic tape or direct access device whether or not the SHR parameter
is also present. When a volume serial number is specified via the VOL
parameter, the job control program searches the device entries in the
PUB table as previously described. At the time the entry for an
eligible device is inspected, the job control program also determines
whether a volume is mounted on the device the entry describes. If so,
the volume label is read and the volume serial number of the mounted
volume is compared with the volume serial number given in the VOL
parameter. .

If a match is found, that unit is assigned. If a match is not found
on any of the inspected units, the unit aSSigned is the last assignable
device encountered during the search and the operator is instructed to
mount the volume specified by the VOL parameter on the selected unit.
Once the volume. has been mounted, the operator must enter the NEWVOL
attention command to indicate this fact. If no assignable device was
found, the operator is notified, as in the case when VOL is not
specified, and has the same options.

The VOL parameter allows the operator to mount a tape or disk volume
that does not have a specific I/O device assigned on any available tape
or disk unit prior to job step initiation. In effect, by premounting
these volumes, the operator rather than the job control program is
making the device selection. Premounted volumes must have standard
volume labels. If the premounting' facility is to be used, the volume
serial numbers aSSigned to disk and tape volumes in the installation

DOS/Virtual Storage Features Supplement 47

must be unique so that volume serial number is a positive
identification.

Address List. From one to seven specific hexadecimal I/O device
addresses for devices of the same type can be specified. The PUB tatle
entry for each device included in the list is inspected. Entries are
inspected in the sequence in which they are listed in the ASSGN
statement. The SHR parameter can be specified for a list of direct
access devices. When SHR is not indicated, the first unassigned device
encountered in the list is selected for the aSSignment. If SHR is
~pecified, the first assigned or unassigned direct access device
encountered in the list is selected. The operator is notified of a
successful aSSignment. If none of the specified I/O devices can be
assigned, the operator is notified and has the same options as when a
generic type request cannot be satisfied.

If the VOL parameter is given, the job control program determines
whether the volume specified is mounted on one of the units listed. A
selection is made under the same conditions as described for a generic
type assignment with the VOL parameter specified.

~he address list facility could be used, for example, when a
nonspecific tape unit request but a specific tape speed are desired.
This selectivity is accomplished by including only those tape units with
the required speed in the address list.

SYSyyy. SYSyyy can be any system or programmer logical unit. This
type of request indicates the symbolic unit SYSxxx is to be given the
same assignment as is currently in effect for the symbolic unit Sysyyy.
When this parameter is specified for direct access devices, for example,
it enables the user to indicate that a file is to be placed on the same
direct access device as another file without knowing the address of that
direct access device. The SBR parameter is implied and the VOL
parameter does not apply.

The VOL parameter can also be included on an ASSGN statement or
command that specifies a hexadecimal I/O device address. The SHR
parameter is assumed when a specific direct access device is given since
direct access devices can be shared in DOS Version 4.

The generic I/O assignment capability also complements the RELEASE
macro. When an assigned I/O device is no longer required by a problem
program, it can be released, which makes it immediately available for
allocation to another symbolic unit. I/O units released in this manner
can be selected by the job control program to satisfy a nonspecific
request~ the operator need not become involved, as is required in DOS
Version 4.

The flexibility inherent in dynamic I/O device assignment by the
operating system rather than preplanned assignment by the user enables
DOS/VS to be more responsive to a changing daily workload and simplifies
the planning required to increase the level of multiprogramming in an
installation (number of partitions active concurrently).

OPERATOR COMMANDS

The DOS Version 4 IPL commands and the DPD and CAT commands are
accepted by the DOS/VS IPL program. The DOS/VS job control program
accepts the same job control commands as the DOS Version 4 job control
program. In addition, the ALLOCR command and the additional operands
for the SET command already described are accepted by the DOS/VS jot"
control program. The SETPRT job control can be used to specify printer
setup characteristics in a DOS/VS environment. The job control commands

48 DOS/Virtual Storage Features Supplement

commen to DOS/VS and DOS Version 4 are functionally equivalent and have
the same formats except where additonal parameters are required in
DOS/VS commands to support foreground partitions F3 and F4.

The output of the LISTIO and MAP commands is extended in DOS/VS. The
LISTIO command includesSYSVIS in the system units listed and the output
of the MAP command includes the following new items:

• The. size and highest virtual storage address of each virtual
partition currently defined (in addition to the size and highest
virtual storage address of each real partition defined)

• The size of real partitions with a real mode program in execution.
The value listed is the size given in the SIZE parameter for the job
step (if this parameter is specified) or the size of the defined
permanent real partition.

• Partition priority

• The size and highest real storage address of the main page pool.
The size given is the amount of real storage above the address of
the last real partition currently defined in the real address area.
It does not include the real storage currently available to the page
pool as a result of inoperative real partitions or specification of
the SIZE parameter for a real partition.

• The size and highest virtual storage address of the SVA

• The size and highest virtual storage 'address of the system GETVIS
area in the SVA

In addition to all the attention commands that are accepted in DOS
Version 4, DOS/VS accepts the ALLOCR, LFCB, LUCB, PRTY, and NEWVOL
attention commands previously discussed. DOS/VS also accepts the SETDF
attention command, which enables th~ operator to specify default printer
setup characteristics for 3800 printers. The TPBAL attention co~mand,
not available in DOS Version 4, is discussed under "Page Management" in
Section 80:25. MAP and LISTIO attention commands provide the same
extended output as MAP and LISTIO job control commands.

Note that in a DOS/VS multiprogramming system, the CANCEL attention
command must specify the partition containing the job to be canceled
(there is no default to the BG partition). This reduces the chance of
an operator inadvertantly canceling a background partition job when
trying to cancel a foreground partition.

DOS/Virtual Storage Features Supplement 49

80:25 THE SUPERVISOR

MODIFICATIONS

The minimum DOS/VS supervisor size is increased from the 14K required
to support a single-partitio~ DOS Version 4 environment. The increase
results primarily from the addition of virtual storage support and more
standard features. While a DOS Version'4 supervisor is limiteq to a
maximum size of 32K, support of multiprogramrring environments requires
DOS/VS supervisors larger than 32K.

The minimum supervisor size for a single-partition DOS/vS environment
(no options included and 2311 or 2314/2319 disk storage only) varies
depending on the Systern/370 processor supported. Shown below are the
minimum supervisor sizes for Release 34.

Model 115 30K
Model 125 30K
Model 135 30K
Model 138 34K
Model 145 30K
Model 148 34K
Model 155 'II 30K
Model 158 30K

A change to the supervisor patch area makes supervisor patches easier
to make in DOS/VS than in DOS Version 4. A .low core patch area of 64
bytes (labelled IJBPATCH) is provided that enables patches to be made
using absolute addresses (no base register required). The high core
patch area is 300 bytes.

DOS/VS supervisor code is modified as required to support EC instead
of Be mode of system operation (different PSW format and interruption
codes in permanently assigned locations above address 127, for example).
The DOS/VS supervisor recognizes the same interruptions as a DOS Version
4 supervisor as well as program event recording (if SDAIDS are used) and
translation interruptions: translation speCification, segment
translation, and page translation exceptions.

A translation specification error causes the system to be placed in a
wait state. Since all invalid bits in the segment table are always off,
a segment translation exception can occur only if a storage location
outside of the segment table is addressed, which indicates the virtual
storage address to be translated is outside the virtual storage size
supported. When a segment translation exception occurs, therefore, the
interruption code is changed to that for an addressing exception and the
interruption is handled just as if an actual addressing exception
program check had occurred.

A page translation exception occurs in a DOS/VS environment only if
the invalid bit is on in the addressed page ·table entry, since all page
tables contain the maximum number of entries possible for a 64K segment
size and a 2K page size. All page translation exceptions are handled,
therefore, as page faults.

Code is included in the DOS/VS supervisor to ensure proper system
operation when a disabled page fault occurs. In DOS/VS, a disabled page
fault is a'page fault that occurs during the execution of a routine that
has disabled the processor for external and I/O interruptions. A DOS/VS
supervisor routine operates with external and/or I/O interruptions
disabled because (1) it is not reentrant and, therefore, should not be

50 DOS/Virtual Storage Features Supplement

reentered before it completes execution, or (2) it is reentrant but
processes a serially reusable resource.

The processing of a page fault, which requires the processor to be
enabled for I/O interruptions so that the I/O interruption for a
completed page-in can be presented, could allow a routine that operates
with the processor disabledrto be reentered, with improper processing
the resul"c. Provisions must be made to handle this situation.

The method used to handle a page fault in a DOS/vS supervisor routine
that operates with the processor disabled for interruptions varies
depending on the type of routine. For example, a gating technique
(NOP/BRANCH instruction switch) is used for certain SVC routinFs that
are not reentrant. 'When a disabled page fault occurs during t..L,:;
execution of these SVC routines, the instruction switch is set to a
BRANCH. The task that issued the SVC routine is marked waiting for I/O,
the page request is enqueued, and the dispatcher receives control. The
highest-priority ready task is given processor control.

During the time the task that issued the SVC routine is waiting for
the disabled page fault to be. processed, the SVC routine may be entered
by another task. When the gating instruction is executed, a branch is
taken to a routine that marks the requesting task resource-bound and
establishes the SVC instruction as the first instruction the task will
execute when it again receives CPU control. The dispatcher is entered
to give control to the highest-priority ready task.

As soon as the disabled page fault for the SVC routine is serviced,
the gating switch is set to a NOP instruction, tasks that were marked
resource-bound waiting for this SVC routine are taken out of I/O bound
status, and the SVC routine is dispatched. This technique enables
processing to continue during the time required to handle a disabled
page fault and prevents a nonreentrant svc routine from being reentered
until the page fault has been serviced and the SVC routine completes its
execution.

Disabled page faults are not permitted in user tasks, B-transient
routines, and I/O appendage routines. If a disabled page fault occurs
in one of these types of routines, the associated user task is
abnormally terminated. Note also that an enabled page fault that occurs
during the operation of a MICR stacker selection routine causes the
associated task to be canceled.

The DOS/VS supervisor disables the processor for interruptions caused
by the execution of SET SYSTEM MASK (SSM) instructions. The SSM
instruction is not used in DOS/VS to enable or disable the processor for
I/O and/or external interruptions. The STORE THEN AND SYSTEM MASK and
STORE THEN OR SYSTEM MASK instructions are used instead.

The DOS/VS supervisor is also modified to minimize the impact of the
new EC mode PSW format on existing user-written asynchronous routines
that are entered via a STXIT macro and that inspect the contents of the
PSW. Before giving processor control to a STXIT routine, the DOS/VS
supervisor moves the interruption code, instruction length code,
condition code, program mask, and instruction address fields from the
appropriate EC mode old PSW to the PSW field within the required 12-byte
save area for the asynchronous routine. These fields are placed in
their BC mode instead of their EC mode locations in the user PSW save
area. 'When the STXIT routine returns control to the supervisor, these
five fields are moved from the BC mode PSW save area to the appropriate
Ee mode PSW.

This implementation enables existing user-written STXIT routines that
operate in BC mode to execute in a DOS/VS (EC mode) environment and

DOS/Virtual storage Features Supplement 51

access or modify these five PSW fields without having to be modified,
since the PSW save area remains in BC mode.

The STXIT macro in DOS/VS can specify the TT parameter in addition to
the AB, IT, PC, and OC operands that can be specified in DOS Version 4.
The TT parameter specifies a user-written task timer exit routine (see
discussion of the task timer facility later in this subsection) .• The
DOS/VS EXIT macro also has TT and AB parameters, which are not supported
in DOS/VS.

The TT parameter is used to exit from a task timer exit routine. The
AB parameter can be specified on an EXIT macro only to exit from an
abnormal termination routine for a main task. The EXIT AB macro causes
the abnormal termination condition and ABEND indication for the main
task to be reset and control is returned to the instruction after the
EXIT AB macro. Thus, the abnormal termination routine must clear the
abnormal condition.

The EXIT AB macro cannot be issued by the abnormal termination exit
routine for a subtask. The exit routine must end with a CANCEL, DETACH,
DUMP, JDUMP, or EOJ macro.

The system mask, mode bits (in BC mode PSW bit positions 12 to 15),
and protection key are ~ot placed in the user PSW save area since these
fields are meaningful primarily to the supervisor and should not be
modified by a problem program. It is assumed that existing user-written
STXIT routines that are operating in a DOS Version 3 or 4 environment do
not access these PSW fields. It is also assumed that a subtask in
existing DOS Version 3 and 4 systems does not inspect or modify the PSW
in the save area of the main task or any other subtask in the partition
in which the subtask is executing. Therefore, the PSw is placed in main
task and subtask save areas in EC mode format.

The contents of each partition communication region in the supervisor
are modified as follows:

• Bytes 32-35 contain the virtual storage address of the upper limit
of the address space available to the currently executing program in
the partition. This is the limit specified at system generation or
via the ALLOC (virtual partition) or ALLOCR (real partition) command
wh~n SIZE was not specified in the EXEC command. When the SIZE
parameter was specified, the limit is determined by the SIZE
parameter value.

• Bytes 48-51 contain the virtual storage address of the end of the
virtual' storage defined at system generation.

Note also that bytes 8-9 and 10-11 in a communication region contain
16-bit rather than 15-bit addresses when the supervisor is larger than
32K.

A partition-independent system communication region, which is not
present in DOS Version 4, is defined in the DOS/VS supervisor. This
area contains data that is duplicated in the communication region
extension area for each batched partition in a DOS Version 4
environment. The communication region extension area address in each
partition communication region in a DOS/VS environment points to the
location of the option table in the partition-independent system
communication region. For the sake of compatibility, the layout of the
option table in the system communication region is the same in DOS/VS
and DOS Version 4.

Several system tasks are defined within the DOS/VS supervisor that
have higher dispatching priority than any partition task. System tasks
in high-to-low dispatching priority sequence are recovery management

52 DOS/Virtual Storage Features Supplement

support (RMS), the page manager, the PAGEIN task, program fetch, display
operator console support, and the error recovery routines (ERPs). Any
ready system task is given processor control before a ready partition
task.

In DOS/VS, the value in the time of day clock is Greenwich Mean Time
(GMT) with a base value of January 1, 1900 instead of local time. In
order to have the supervisor display and accept local time values
instead of GMT values, the ZONE parameter must be specified at system
generation or during system initialization to indicate the difference
between GMT and local time. A ZONE parameter is added to the SET
command so that the time differential can be specified during system
initialization. The zone values at system initialization override the
zone values specified at system generation.

A GMT and a LOCAL parameter are supported for the GETIME macro to
enable a programmer to obtain GMT or local time, respectively. As in
DOS Version 4, in DCS/VS the job accounting facility uses the interval
timer rather· than the time of day clock for timing information.

The DOS/VS supervisor also contains a fetch table in support of the
new core image library organization. This table is used by job control,
the linkage editor, librarian routines, and program fetch. The fetch
table contains one entry for the system core image library and one entry
for each partition defined at system generation if support of private
core image libraries is included in the supervisor. The address of the
fetch table is contained in the system communication region.

The fetch table entry for the system core image library contains ~he
address of the second level directory for this library, a condense
counter, the disk address of the directory for this library, the disk
address of the link area for this library, the number of tracks per
cylinder in this library, and the number of library blocks per track in
the library. The fetch table entry for a partition provides the same
information about the private core image library that is assigned to the
partition, if any. The $MAINDIR service program is called as required
by other system routines to place entries in the fetch table.

NEW FEATURES

The DOS/VS supervisor supports other functions that are not provided
in DOS Version 4 in addition to those already discussed. The following
new features are also available in DOS/VS.

Relocating Loader. The relocating loader is a standard feature of
DOS/VS but it can be deleted from the generated system during system
generation by specifying RELLDR=NO in the FOPT macro unless the
reloading loader is required by another selected feature (RPS support,
VSAM, VTAM, GETVIS/FREEVIS macros, OLTEP, or RETAIN).

The relocating loader provides program relocation at execution time
that enables a single phase or multiphase program that is in relocatable
format to be loaded into any virtual storage location for execution. A
relocatable phase can also be relocated when an executing program issues
a LOAD or FETCH macro to hring the phase into virtual storage.

Use of the relocating loader eliminates the need to relink-edit (or
reassemble and relink-edit) relocatable program phases when partition
starting addresses change because of an increase in supervisor size or
because partition sizes are increased or decreased. In addition, this
facility enables a relocatahle program to execute in any partition
without the necessity of having multiple copies of the program cataloged
in a core image library. The need for writing self-relocating programs
is also eliminated.

DOS/Virtual Storage Features Supplement 53

When the relocating loader is present in a DOS/VS supervisor, program
phases are flagged in their core image library directory entry as
relocatable or nonrelocatable. Absolute and self-relocating program
phases are flagged as being nonrelocatable. Relocatable phases can be
produced by the DOS/VS linkage editor program, which is mOdified to
produce relocatable as well as nonrelocatable phases.

A relocatable phase contains relocation information (a relocation
list dictionary--RLD) that is not present in nonrelocatable phases.
This information identifies the location of address constants in the
phase that must be modified by the appropriate relocation factor when
the phase is relocated. The relocation factor is calculated by the
relocating loader when a phase is to be fetched or loaded and is the·
difference between the beginning virtual storage address specified at
link-edit time and the beginning virtual storage address of the
partition (or SVA area location) in which the phase is now to be loaded.

The ACTION linkage editor control statement can specify the REL
parameter to indicate that a relocatable phase is to be produced.
Relocatable phases are produced by the linkage editor as the default
when the relocating loader is present in the supervisor and the ACTION
statement does not contain a relocation parameter. Nonrelocatable
phases are produced (1) when the NOREL parameter is specified on the
ACTION statement, (2) if the relocating loader is not present in the
system and the ACTION statement does not contain a relocation parameter,
or (3) when the phase is identified as self-relocating.

Self-relocating phases are considered to be nonrelocatable by the
relo~ating loader so that address constant relocation will not be
performed by the program fetch routine since this function is handled in
the self-relocating phase. (Note that a self-relocating prograre can be
initiated in a nonmultiprogramroing DOS/VS environment using the EXEC
statement, which is not permitted in DOS Version 4.>

,
The D.OS/VS linkage editor produces a relocatable phase when possil:le

if the REL parameter is specified for the phase, whether or not the
supervisor with which the linkage editor is operating has the relocating
loader included. However, a supervisor without the relocating loader
will not relocate a relocatable phase. The relocatable phase is loaded
at the virtual storage address indicated at link-edit time, just as if
it were a nonrelocatable phase.

The object modules of existing programs that are to be made
relocatable must be processed once by the DOS/VS linkage editor. After
relocatable program phases have been created and cataloged in a core
image library, relink-editing of these programs for the sole purpose of
relocating them to a different starting virtual storage address is not
required.

page-formatted core image libraries are not supported in DOS/VS and
an entire program must be fetched before it can begin executing. The
program fetch routine performs the channel program translation and
temporary page fixing required for I/O operations that load virtual mode
programs. Program fetch obtains and fixes one or more page frames for
each read operation that is initiated to bring in text records and
performs the required channel program translation. (Program fetch
obtains and fixes as many page frames as it can without causing a page­
out.)

A PBDY parameter .can be specified at link-edit time to cause the load
point of a phase to be aligned on a 2K page boundary. This facility can
be used to avoid the situation in which the instructions and/or data in
a text record cross a 2K boundary.

54 DOS/Virtual Storage Features Supplement

program fetch processing of relocatable phases in DOS/VS is. designed
to minimize the possibility of incurring page faults during relocation
processing. The RLD records for each text record are read after the
text record is read and address constant relocation processing is
performed on each text record immediately after the text is read in.
Text record reading is overlapped with relocation processing.

A real mode program phase is loaded by initiating one I/O operation
for each cylinder in which the phase is contained. Each I/O operation
starts a chained CCW list that consists of one read CCW for each 1024-
byte library block record in the cylinder for the phase. Text records
for a real mode phase are read directly into the page frames that have
been assigned to the real partition that is to be used.

When a virtual mode program is fetched from a core image library in
DOS/VS, the program fetch routine does not force all or any part of the
program to be written in the page data set as part of the program
loading procedure. Page frames containing pages of a program that is
being loaded are subject to reassignment as per the page replacement
algorithm, as are the page frames containing nonfixed pages of executing
virtual mode programs. During the loading of a virtual mode program,
pages that have already been loaded may be paged out while the balance
of the program is being fetched, if the real storage they occupy is
required for allocation to pages of other virtual partitions.

The read operation that loads program text into a page frame causes
the change bit for the page frame to be turned on. If the page frame
allocated to a reentrant page is taken for reassignment, the fact that
the change bit is on as a result of program loading causes the first and
only page-out of the reentrant page.

Multitasking. Inclusion of the asynchronous processing option in a
DOS/VS supervisor provides support of a maxirrum of 15 concurrently
operating tasks, three more than the maximum supported in DOS Version 4.
One main task can operate in eac~ partition while the number of subtasks
supported can be allocated among active partitions as desired. The
total number of subtasks permitted depends on the number of partitions
defined. The number of partitions plus the number of subtasks cannot
exceed 15, as shown below.

Number of
Partitions

2
3
4
5

Maximum
Number of Subtasks

13
12
11
10

The CHAP macro, not provided in DOS Version 4, can be issued by a
subtask in a multitasking partition. CHAP causes the subtask that
issues it to be assigned the lowest dispatching priority of all subtasks
in the partition. The CHAP macro is ignored if issued by a main task.
If multitasking support is not present in a DOS/VS system, any task
issuing the CHAP macro is canceled.

Synchronous Exit Facility. This option is provided for use in
multitasking partitions. It provides a SYNCH.macro that is used to give
processor control to a synchronous exit routine. The exit routine
executes until any SVC is issued. The service requested by the SVC is
not performed but control is returned to the routine that issued the·
SYNCH macro (instruction after the SYNCH macro). A program must be
operating in supervisor state in order to issue the SYNCH macro. An EC­
mode PSW and general register values specified by the SYNCH macro are
supplied to the exit routine in a save area.

DOS/Virtual Storage Features Supplement 55

~ Fault Handling Overlap. This optional facility is provided for
virtual mode programs that perform private subtasking r that iS r that
handle their own subtasking instead of using the DOS/VS multitask~ng
facility. When private subtasking is used in a partition r the main task
does not use the ATTACH macro to create subtasks r and the main task and
all its subtasks operate under one program information block (PIB).

Use of the page fault handling overlap facility enables page fault
handling for private subtasks within a virtual partition to be
overlapped with private subtask execution in the partition. When an
executing private tas~ in the partition encounters a page faultr the
affected task can be placed in the wait state and proces$or control can
be given to another ready private task in the same partition (by user
programming). without use of the page fault overlap facilitYr the
entire virtual partition is placed in the wait state after a page fault
occurs for any task in the partition.

In order to use the page fault handling overlap facilitYr the main
task in a virtual partition in which private subtasking is being
performed must issue the new SETPFA macro to indicate the address of a
user-written page fault appendage routine that is to be given control
whenever a page fault occurs for a private task in the partition. The
page fault appendage routine is located in the partition. This routine
and all the virtual storage pages it references must be fixed by the
user (via the PFIX macro) before the SETPFA macro is issued.

A user-written page fault appendage routine executes in supervisor
state with the processor disabled for I/O interruptions and protect key
o assigned. page faults caused by a page fault appendage routine are
not valid and cause task termination.

When the page fault appendage routine receives control after a page
fault occurs for any private task in the partition r it can place the
affected private task in the wait state and dispatch another ready
private task. The appendage routine then returns control to the
supervisor indicating whether the page fault is to be processed. After
a page fault has been servicedr control is returned to the page fault
appendage routine r which can post the affected task ready.

Multiple Timer Support. The interval timing option supported in DOS
Version 4 r which can be used by only one partition at a timer is
replaced by the multiple timer facility in DOS/VS. When the interval
timing option is included in a DOS/vS supervisorr the interval timing
facility is available for concurrent use by all defined partitions and
each of their tasks r if multitasking support is included in the
supervisor. Each task r h6wever r can have only one interval pending at a
time. The interval timer at location 80 is used for interval timing.
In DOS/VS r the real time interval set via a SETIME macro can be
specified in 1/300ths of a second units in addition to units of one
second r as in DOS Version 4.

The interval timing facility available to each partition or task in
DOS/VS provides the same capabilities as those provided in DOS Version
4. However r one additional timer interface macro (TTIMER) is supported
in DOS/VS. A task can use the TTIMER macro to cancel a pending interval
of time it has established or to ascertain the amount of time remaining
in an established interval. The functions provided by the other timer
interface macros are the same in DOS/VS and DOS Version 4 r as are the
formats of these macros.

Elimination of the DOS Version 4 restriction that allows the interval
timing facility to be used by only one partition at a time enables
concurrent execution in a DOS/VS environment of programs that require
the interval timing facility.

56 DOS/Virtual Storage Features Supplement

Task Timer. The task timer option requires the presence of the clock
comparator and CPU timer, which are standard on all System/370
processors supported by DOS/VS except Models 135 (Model 0) and 145
(Models 0 and 2). The TIME parameter of the FOPT macro specifies the
one partition that can use the task timer facility and only the main
task in the o~ning partition can use task timing.

The SETT macro is used to set a task time interval (up to 21,474,836
milliseconds) that will be decremented only when the task that can use
task timing is executing. If SETT is issued by a program in a partition
that does not own the task timer, the program is canceled. When the
task interval elapses, the user-written exit routine specified via the
STXIT TT macro is entered. If a user-written exit routine was not
specified via a STXIT TT, the interruption that occurs~hen the task
interval elapses is ignored. The EXIT TT macro is used to return
control from the user-written task timer routine.

The TEST TT macro can be issued by the task that owns the task timer
to cancel the remaining portion of an interval previously set (without
entering the user-written exit routine) or to obtain the amount of time
remaining in the' interval (in hundreds of milliseconds). If a program
other than that executing in the owning partition issues a TEST TT, the
program is canceled.

When a program is restarted from a checkpoint, the interval that was
outstanding before the restart, if any, is not reestablished.

RUNMODE Macro. The RUNMODE macro can be included in Assembler
Language programs to determine the mode in which they are currently
operating. For example, RUNMODE can be used in a program that can
operate either in virtual or real .mode when this information is needed
for proper processing.

Virtual storage Management Facility. A·virtual storage pool (GETVIS
area) in highest addressed virtual storage in a virtual partition is set
aside when the SIZE parameter is specified for a virtual mode program,
as shown in Figure 80.25.1. The starting address of this pool is
contained in bytes 32-35 of the partition communication region. The
user area in lowest addressed virtual storage in the virtual partition
must be a minimum of 2K bytes. The minimum size of the virtual storage
pool is 4K and the maximum size is 12,168K bytes. The virtual storage
pool is assigned the same storage protect key as the user area. The
first 2K bytes of the pool contain control information and are not
available for allocation.

The virtual mode program that is executing in the user area of the
virtual partition can obtain virtual storage from this pool, in
multiples of 128 bytes, using the GETVIS macro. A request can indicate
that the virtual storage allocated is to be aligned on a page boundary.
The POOL parameter can be used to cause allocation requests to be packed
within virtual storage pages, since the search for the specified space
begins at the user-specified virtual storage address. The FREEVIS macro
is provided to free virtual storage obtained using the GETVIS macro. To
ensure proper allocation and deallocation of virtual storage in the
pool, only GETVIS and FREEVIS macros should be used.

Support of the GETVIS/FREEVIS macros must be requested at system
generation. These macros are required if VSAM, 3800 Printing subsystem
support, rotational position sensing support, VTAM, or the AP-1 Program
for 3344 and 3350 disk storage is·to be utilized.

The GETVIS and FREEVIS macros are also used to obtain and free
virtual storage in the system GETVIS area in the SVA, if such an area
has been defined. Virtual storage is obtained from this area in 512-
byte multiples.

DOS/Virtual Storage Features Supplement 57

The CDLOAD macro is provided to enable a program to load a program
phase into the partition GETVIS area. When a CDLOAD macro is issued,
the supervisor f~rst determines whether the specified phase is already
present in the SVA or partition GETVIS area. If so, the phase is not
loaded. If the phase is not currently resident, the required amount of
space is obtained from the partition GETVIS area and the specified phase
is loaded. Control is returned to the instruction after the CDLOAD
macro. The PAGE parameter can be specified to cause the phase to be
loaded on a page boundary.

Size specified
in ALLOe
macro or
command

Virtual Partition

Virtual storage pool
(GETVlS area)
4K minimum
994K maximum

Address in bytes 32-35

V
of ~artition communication
region

~-------------r ~

User area

Virtual mode
program loaded
into this area
(lowest addresses
in partition)

) Size specified in
SIZE parameter

Figure 80.25.1. Organization of a virtual partition when the SIZE
parameter is specified

Cross Partition Event Control. Cross partition event control is an
optional supervisor feature. It provides a cross partition
communication facility that can be used to synchronize the execution of
programs in two or more partitions. It enables a task in one partition
to wait for the completion of a user-defined event associated with
another'partition and to be notified when the other partition signals
completion of the event.

When cross partition event control is requested at system generation,
an XECB table is generated in the supervisor. It contains room for a
minimum of four XECB entries or the user-specified number of XECB
entries (up to a maximum of eight for each partition defined). The
XECBTAB macro is provided to enable a task to (1) name and define an
XECB table entry, (2) delete an existing XECB table entry that it
defined previously, (3) determine whether a specific XECB table entry
has already been defined, (4) reset an entry, or (5) delete all entries
in the XECB table and cause tasks to be posted ready that are waiting'
for an XECB to be posted by the task deleting the entries.

When the XECBTAB macro is used to name and define a new entry, it
also specifies whether the task that is issuing the XECBTAB macro is to
post the XECB entry being defined (ACCESS=XPOST) or wait for posting by
another task (ACCESS=XWAIT). The XPOST macro is provided to enable a
task to post a specific XECB entry complete. If a task is currently
waiting on the posted XECB entry, it is made ready. The waiting task
can be in the same partition as the task that issued the XPOST macro or
another partition. The XWAIT macro is provided to enable a task to wait
for a specific XECB entry to be posted complete by another task
executing in the same or a different partition. The task that defines
an ECB with ACCESS=WAIT can also use the WAIT and WAITM macros to wait
on the ECB.

58 DOS/Virtual Storage Features Supplement

The XECBTAB macro with a reset specification enables a task that
defined an ECE to clear the information that associates the ECB with the
task. This enables another task to issue an XWAIT or XPOST macro to the
reset ECB.

PAGE MANAGEMENT

General Functions and Operation

page management is the portion of a DOS/VS supervisor that implements
demand paging and provides the progra~ming required by dynamic address
translation hardware for support of a virtual storage environment. Page
management consists of a set of routines that manage real storage and
external page storage.

Page management performs the following functions:

• Allocation of page frames when page faults occur and in response to
specific allocation requests

• Permanent and. temporary fixing and unfixing of pages

• Modification of the page tables and other required tables to reflect
the allocation and deallocation of real storage

• Scheduling of page-in and page-out requests as required

• Partition deactiyation when paging activity is determined to be too
high, and partition reactivation when possible

page management is entered when a page fault occurs, PFIX/PFREE macro
is issued, temporary fix or free (TFIX/TFREE) request is made,
GETREAL/FREEREAL request is issued, or a RELPAG, FCEPGOUT, or PAGEIN
macro is issued. In certain cases, the request can te serviced
immediately by a page handling routine, such as when a temporary fix
request is received for a page that is present in real storage and
already temporarily fixed. If the request cannot be handled
immediately, it is placed at the end of the page queue, the requesting
task is placed in the wait state, and the page manager system task is
entered to service the request, if possible. Otherwise, control returns
to the dispatcher so that CPU control can be given to a ready task.

The page manager system task always must be activated to process a
page fault. However, it mayor may not be activated to process the
following types of requests: GETREAL, TFIX, PFIX, or PAGEIN. It is
never activated to process the following requests: FREEREAL, TFREE,
PFREE, RELPAG, or FCEPGOUT.

When the page manager system task receives control, the first request
in the page queue is selected and the required functions are performed.
This may involve execution of the page selection routine to choose a
page frame for allocation to a 'page and execution of the page I/O
routine to perform the necessary paging operations. When the request
has been processed, it is removed from the page queue and the affected
task is marked ready. The page manager system task then processes the
next queued request, if any.

page management routines maintain a page frame table (PFT) which
contains one eight-byte entry for each page frame in the real storage
defined by the RSIZE parameter at system generation. This table, which
is located near the end of the supervisor area with the segment table
and the page tables, indicates the status of real storage at all times.
Its entries are used by the page selection routine to allocate a page

DOS/Virtual Storage Features Supplement 59

frame when required. The system communication region contains a pointer
to· the beginning of the segment table and a pOinter to the beginning of
the page frame table.

A page frame table entry (PFTE), shown in Figure 80.25.2, contains
the following:

• A counter (of 11 bits) indicating the number of temporary fixes
currently in effect for the associated page frame.

• A nonfixable (NFF) bit which indicates that the page to which this
page. frame is allocated cannot be fixed. This bit is turned on when
a TFIX request is received for a page for which there is a PFIX
request still pending, and when a PFIX request is received for a
page that is temporarily fixed in a page frame that is not eligible
for permanent fixing.

• A bit which indicates whether the associated page frame is failing.
This malfunctioning bit is turned on by recovery management routines
when an uncorrectable real storage error occurs for a page frame.

• A selection pool (SP) bit which indicates whether the associated
page frame is part of the selection pool. Both available and
assigned page frames'are contained in the selection pool. All the
page frames in real storage that are not (1) allocated to an active
real partition, (2) allocated to the PDAID alternate buffer area or
SDAIDS buffer area, (3) per~anently or temporarily fixed, or (4)
contained in the supervisor area are part of the selection pool.
Page frames in the selection pool are inspected by the page
selection routine when a page frame must be chosen for allocation.

• A second nonfixable (NF) bit which indicates whether a page frame is
temporarily fixable,. This bit is used primarily to prevent
temporary fixing of specific page frames that must be assigned to a
real partition or that must be permanently fixed. (See discussions
under "GETREAL/FREEREAL Requests" and "PFIX and PFREE Macros",
respectively.)

• A page number field which contains all ones if the associated page
frame is available (not allocated to a page) or contains the number
of the virtual storage page to which the associated page frame is
allocated (address of the virtual storage page divided by 2048).

• A forward pOinter and a backward pointer which are used to connect
PFTE's in the selection pool together to form queues that are used
by the page selection routine. (see discussion under "page
Replacement Algorithm" below.)

When PFIX/PFREE macro support is included in the supervisor, a page
frame table appendage (PFTA) with the same number of entries as the page
frame table is also maintained. For each entry in the PFT, there is a
corresponding one-byte entry in the PFTA in the same relative table
position. This entry is used as the permanent fix counter for the
associated page frame. Each counter indicates the number of PFIX macros
currently in effect for the page in the associated page frame. A zero
value in the counter indicates the page is not permanently fixed. The
address of the beginnj.ng of the page frame-table appendage is contained
in the system cowmunication region.

60 DOS/Virtual Storage Features Supplement

Bytes 1 and 2 Bytes 3 and 4 Bytes 5 and 6 Bytes 7 and 8

r-------,/'o..------...v.------,/'o..-----____ \ r.----..... ./"'o-.-..... -------, r'--____ A..-..... ____ ,

Temporary "C Forward X 'FFFF' if Backward
5l fix :::l queue unassigned queue

counter r:: pointer or page number pointer ::>

Bit 0 101112131415

NFFb;.Jf
M,II"n";on;ng bH ~
Selection pool bit

NF bit __ -l

Figure 80.25.2. Format of a page frame table entry

The page frame table and, if present, the page frame table appendage
are initialized during system generation. If the real storage present
in the system is smaller in size than the RSIZE value specified at
system generation, the PFTE's for unusable page frames are marked
unusable during system initialization. All entries in the PFTA are
initialized to zero. PFTE's for usable page frames are initialized as
follows:

• PFTE's for page frames that are allocated to the supervisor area are
marked not in the selection pool. The malfunctioning bit,
nonfixable bits, and temporary fix counter are set to zero. The
page number field contains the number of the associated page frame
(real address of the page frame divided by 2048) •

• PFTE' s for all page frames located above the supe'rvisor area (those
in the page pool) are marked as being in the selection pool. These
PFTE 's are marked available and chained together. The t'emporary fix
counter, malfunctioning bit, and nonfixable bits are set to zero for
PFTE's in the selection pool.

The page tables, page frame table, and page frame table appendage are
updated by page management routines, as required, as page requests are
serviced.

Page Replacement Algorithm

The page selection routine is entered to select a page frame for
allocation to a virtual storage page. Thus, the occurrence of a page
fault or the issuing of a specific request usually causes entry into the
page selection routine.

The PTFE's for the page frames that are eligible for allocation
belong to the selection pool. The PFTE's in the selection pool are
connected via their forward and backward pOinters to form five queues.
These queues are structured to indicate the relative activity of the
page frames in the selection pool and which page frames have been
assigned most recently. The page replacement algorithm used by the page
selection routine is deSigned to keep the most frequently referenced

DOS/Virtual Storage Features supplement 61

(active) pages and most recently assigned pages present in real storage.
page frames that have been most recently referenced are considered to be
the most active. Page frames that have not been referenced for the
longest period of ,time are considered to be the least active.

An unreferenced page frame tbat has not been changed is selected for
allocation before an unreferenced page frame that has been changed,
since such a page frame can be made available without performing a page­
out operation. Similarly, when there are no unreferenced page frames,
referenced unchanged page frames are selected for allocation before
those that were referenced and changed. Page reclamation is not
attemptediri DOS/VS. This would involve inspecting the selection pool
to determine whether the page that requires a page frame is still
present in real storage (waiting to be paged out, for example), in which
case the page frame containing the page would be reassigned and a page­
in would be avoided.

The selection pool contains one hold queue and one queue for each
possible combination of reference and change bit settings. Possible
reference and change (R,C) bit settings for a page frame are 0,0; 0,1;
1,0; and 1,1. The five PFTE queues in the selection pool and their
contents are the following:

• QOO - identifies page frames that were unreferenced and unchanged
since the last time they were inspected by the page selection
routine. Only PFTE's for page frames with a 0,0; 1,0; or 1,1
reference and change bit setting can be in this queue. At system
initialization, the PFTE's for all page frames atove the supervisor
area are placed in QOO and the other'four queues are empty.

• QOl - ~dentifies page frames that were unreferenced since the last
time they were inspected by the page selection routine but 'that were
changed at some previpus time. Only PFTE's for page frames with a
0,1 or 1,1 reference and change setting can be in this queue.

• Ql0 - identifies page frames that were referenced since the last
time they were inspected by the page selection routine but that were
not changed. PFTE's associated with page frames with a 0,0; 1,0; or
1,1 reference and change setting can be in this queue.

• Ql1 - identifies page frames that were referenced and changed since
the last time they were inspected by the page selection routine.
Only PFTE's for page frames with a 0,1 or 1,1 reference and change
setting can be in this queue.

• HQ (hold queue) - contains the page frames that were most recently
allocated. This queue is implemented to try to ensure that just
allocated page frames are not reassigned immediately before they can
be used.

Each of the five queues is maintained in first-in, first-out
sequence. This is done to preserve a record of the comparative length
of time in the queue among PFTE's in the same queue.

The following steps are taken by the page selection routine to choose
a page frame for allocation:

62

• QOO is inspected from top to bottom. The first PFTE for a page
frame with a 0,0 reference and change setting is selected for
allocation whether or not it is marked available. Each PFTE for a
page frame with a setting other than 0,0 that is inspected while
searching for a page frame with a 0,0 setting is moved from QOO to
the end of the queue for that setting and the reference bit for the
page frame is turned off. QOO is searched until a PFTE for a page

DOS/Virtual Storage Features Supplement

frame with a 0,0 setting is found or until QOO is depleted of
PFTE's.

• QOl is inspected from top to bottom ifQOO is depleted without
finding a PFTE with a 0,0 setting. The first PFTE for a page frame
with a 0,1 setting is selected for allocation. Inspected PFTE's for
page frames with a 1,1 setting are moved from Q01 to the end of Ql1
and the reference bit for the page frame is turned off. Q01 is
searched until a PFTE for a pa.ge frame with a 0,1 setting is found
or until it is depleted of PFTE's.

• If Q01 becomes depleted without the selection of a page frame, queue
exchanging is performed if the selection pool is not empty. All the
PFTE's in Q10 are placed in QOO, all the PFTE's in Q11 are placed in
Q01, and all the PFTE's in HQ are placed in Q10. Reference bit
settings are not changed. This procedure replenishes QOO and Q01,
if possible, and leaves Q11 and HQ depleted. QOO is then searched
for a PFTE for a page frame with a 0,0 setting and the process
continues as described.

• If the entire selection pool is empty, an exit is taken to a routine
that attempts to make page frames available for the selection pool.
This routine attempts to make temporarily fixed page frames
available by resetting certain system routines (program fetch, the
ccw translation routine, and the SVC44 routine that writes error
records in the SYSREC file) that have partially completed temporary
fix (TFIX) requests outstanding. If one or more page frames are
made available by resetting one or more of the routines listed, the
page manager is reentered to perform page frame selection. If page
frames cannot be made available, page frame selection cannot be
completed at this time and control is given to the highest-priority
ready task.

Page frame selection is illustrated in Figure 80.25.3. Once a page
frame is chosen, its PFTE is inspected to determine whether the page
frame is available or currently assigned. If the page frame is
assigned, a page-out is required if the change bit is on and the
appropriate page table entry must be invalidated. The page I/O routine
is entered to perform any required paging operations. The user bit for
the page frame selected indicates whether a page-in to the selected page
frame is required.

Once the required paging operations have been performed and/or the
S~lected page frame has been cleared to zero, the appropriate page table
entry and PFTE are updated, and reference and change bits for the page
frame are set to zero. If the allocation was made to service a page
fault, the PFTE for the page frame is placed at the end of the hold

. queue. If the allocation was made as a result of a PFIX or TFIX
request, the appropriate fix counter is increased by one and the PFTE is
removed from the selection pool if this was the first fix request issued
for the page.

DOS/Virtual Storage Features Supplement 63

Status of Queues When Selection Begins

aueues in the Selection Pool

r~-------------------------"~----------------------~~
Unreferenced
Unchanged

aoo
10

10

11

10

11

10

10

/
Reference
and Change
recording
bits

aoo

aoo

3

7

15

4

9

6

11

aoo

10 5

11 2

00 3

00 7

00 4

00 6

00 11

/
(From alO)

aoo

00 7

00 4

00 6

00 11

Unreferenced
Changed.

Referenced
Unchanged

aOl
11 1

11 0

11 8

11 13

11 19

aUl

11 1

11 0

11 8

11 13

11 19

aOl

aOl

01 10

11 17

11 14

01 15

01 9

01 1

01 0

01 8

11 13

01 19

I
(From all)

al0

~
~

Status After Searching aoo

alO

10 5

11 2

00 3

00 7

00 4

00 6

00 11

Status After Searching a01

al0

10 5

11 2

00 3

00 7

00 4

00 6

00 11

Status After Switchingaueues

alO

011
01 10

11 17

11 14

01 15

01 9

all

01 10

11 17

11 14

01 15

01 9

01 1

01 0

01 8

01 13

01 19

all

Status After Searching aoo and Selecting Page Frame 3

aOl al0 011

01 10 10 12

11 17 11 16

11 14 10 18

01 15 00 5

01 9

11 1

01 0

01 8

11 13

01 19

Hold
aueue

HO

Ha

Ha

Ha

1001 3 I

Figure 80.25.3. Operation of the page selection routine

64 DOS/Virtual Storage Features Supplement

Page I/O Routine

The page I/O routine is entered after a page frame has been selected
for allocation in order to initiate one of three paging operations: a
page-in only, a page-out only, or a page-out immediately followed by a
page-in to the same page frame. The page I/O routine initiates one
paging operation at a time consisting of one page read or write request.

Before issuing a page I/O request, the page I/O routine inserts the
real address of the page frame involved in the read 'or write CCW of the
paging channel program. Using the address of the virtual storage page
associated with the paging operation, the page I/O routine determines
the disk address of the slot to be accessed by the paging I/O operation.
When a page-out followed by a page-in is required, the page I/O routine
builds the two required channel programs and issues two paging I/O
requests.

A request for a paging I/O operation is placed at the end of the I/O
request queue for the direct access device that contains the page data
set. A paging I/O request is not given priority over nonpaging I/O
requests that may also be queued for the paging device. The'rotating
scheduling technique used for I/O initiation on a given channel in a DOS
Version 4 environment is also used in DOS/VS. Hence, the paging I/O
device is not given initiation priority over other I/O devices connected
to the same channel. Since the page data set is not given any special
initiation priority for I/O operations, it should not be placed on a
direct access volume that contains high-activity files.

a page-in

Servicing Page Requests

The way in which page requests are serviced by page management
routines is as follows.

page Faults. When a page fault occurs for a user-written task that
operates with the CPU enabled for interruptions or for a system task
that is permitted to cause a disabled page fault, a page fault request
is placed in the page queue to be processed by the page manager system
task. The processing of a page fault involves execution of the page
selection routine to choose a page frame for allocation to the page that
caused the page fault.

The page frame selected may be available or currently assigned to
some other page. If the selected page frame is currently unassigned,
the required page is read into the page frame, unless the associated
user bit in the page table entry for the page indicates a page-in is not
necessary. If a page-in is not required, the allocated page frame is
cleared to zero for data security protection. If the page ~rame
selected is currently assigned, a page-out is performed before the page­
in is initiated if the change bit for the selected page frame is on.
Otherwise, a page-out is not required.

The selected page frame is moved to the end of the hold queue and its
reference and change bits are set to zero. Appropriate page table
entries are altered to indicate page frame assignment and, when a page
has been replaced, page frame unassignment. Figure 80.25.4 illustrates
the logical flow of page fault processing.

DOS/Virtual Storage Features Supplement 65

Page
fault
occurs

Page Selection
Routine chooses
a page frame
from selection
pool

Invalidate
PFTE for page
in selected
page frame

Clear
page frame
to zero

Update PFTE
for page to
which page
frame allocated

Turn reference
and change bits
off in allocated
page frame

·Put PFTE
of allocated
page frame at
end of HQ

Figure 80.25.4.

66

Perform
page-out

Perform
page-in

Logical flow of page fault processing

DOS/Virtual Storage Features Supplement

PFIX and PFREE Macros. Support of these macros can be included in
the supervisor during system generation. When this option is selected,
virtual mode problem programs can issue PFIX macros to cause pages to be
permanently fixed and PFREE macros to unfix these pages. If a PFIX or
PFREE macro is issued by a program that is running in real mode, the
request is ignored. If a PFIX is issued for a page whose permanent fix
counter contains a value of 255, the requesting task is canceled. PFIX
requests are also issued to refix the required pages when a checkpointed
program is being restarted.

When a program that uses PFIX and PFREE executes in a virtual
partition, the corresponding real partition must have virtual storage
allocated. page frames with real storage addresses equal to the virtual
storage addresses assigned to the real partition are the only page
frames that can be allocated when a PFIX macro is issued by a program
executing in the corresponding virtual partition. Hence, the maximum
number of pages that can be permanently fixed by a virtual mode program
that is executing in any virtual partition is equal to the number of
pages contained in the associated real partition.

The PFIX macro supplies the virtual storage addressees) of the
pagels) within a virtual partition that are to be permanently fixed.
The PFIX routine handles one page at a time when multiple pages are to
be fixed. The PFIX routine determines whether the page to be fixed is
currently in real storage.

If the page is present in real storage and already permanently fixed
(for example, when multitasking support is present in the supervisor),
the permanent fix counter for the page is incremented by one and control
is returned to the requester. If a page is present in real storage but
not permanently fixed, the page frame the page is allocated is inspected
to determine whether the page frame is eligible for permanent fixing. A
page frame is eligible only if its address is equal to the address of
one of the virtual storage pages in the real partition that is
associated with the virtual partition from which the PFIX macro was
issued.

If the page frame is eligible, it is marked permanently fixed and its
PFTE is removed from the selection pool. If the page frame is not
eligible and if the page to be fixed is not marked temporarily fixed,
the PFIX routine attempts to select an eligible page frame. The one
chosen is the first eligible page frame that currently is not
permanently or temporarily fixed. The page to be fixed is moved to the
selected eligible page frame and marked permanently fixed. The PFTE for
the selected page frame is removed from the selection pool. If the
selected eligible page frame was assigned to another page, its contents
are moved to the vacated ineligible page frame (contents of selected and
ineligible page frames are exchanged).

If the page to be permanently fixed is present in an ineligible page
fraroe and marked temporarily fixed, the request cannot be processed
until the page is unfixed. The PFTE for the ineligible assigned page
frame is marked as containing a page that is not fixable (NFF bit is
turned on) and the requesting task is placed in the wait state. Once
the page has been unfixed (temporary fix counter goes to zero), the
page-not-fixable bit is turned off for the page and the PF'IX request can
be processed, as previously described for the situation in which the
page is present in an ineligible page frame and not temporarily fixed •

. When the page to be permanently fixed is not present in real storage,
the PFIX routine selects an eligible nonfixed page frame, if possible,
marks the page frame not fixable (NF bit is turned on), saves the
address of the selected page frame, and queues the PFIX request in the
page queue. When the page manager system task processes the PFIX

DOS/Virtual Storage Features Supplement 67

request, a page frame is obtained using the normal selection procedure
and a page-in is performed.

A page-in is always performed when a PFIX is issued for a page that
is not present in real storage, uhless the user bit indicates a page-in
is not required. (There is no way to indicate in the PFIX macro that
logically a page-in is not required, such as when the page to be fixed
contains an I/O area. However, the RELPAG macro can be issued before
the PFIX macro to release the page frame without a page-out.)

At the completion of the page-in, the loaded page is moved to the
previously selected eligible page frame and marked permanently fixed.
The contents of the selected eligible page frame, if any, are moved to
the vacated page frame. The PFTE for the eligible page frame is removed
from the selection pool.

If a task issues a PFIX macro to fix a page in a virtual partition
for which another PFIX request is still being processed, the task is
placed .in a PFIX-bound wait state. A return code indicates whether a
PFIX request was satisfied. Either all the pages indicated in a PFIX
request are fixed or none are fixed.

A PFIX request cannot be satisfied if it requires more page frames
that can be allocated to the defined associated real partition or if all
the page frames allocated to the real partition are currently marked
permanently fixed. However, if no eligible page frames are available
because some are temporarily fixed, the PFIX request can be handled once
unfixing occurs.

If the fast ccw translation option is present in the supervisor, the
page frames associated with the channel programs in the copy blocks
saved by the fast ccw translation routine are released. The real
partition is again checked for available page frames. If there still
are no available page frames, a bit is turned on for the partition that
will cause the fast ccw trandlation routine to release the page frames
associated with currently active channel programs when the channel
programs complete.

Whether or not fast CCW translation is present in the supervisor, all
the page frames in the real partition are then marked not fixable (NF
bit is turned on) and the requesting task is placed in the wait state
until a TFREE request causes an eligible page frame to be unfixed.
Figure 80.25.5 illustrate~ the logical flow of PFIX processing.

The PFREE macro supplies the addresses of the pages that are to be
unfixed. The PFREE macro causes the PFIX counter for each page
specified to be decremented by one. If a PFREErequest causes the PFIX
counter to go to zero and the page is not temporarily fixed, the PFTE
for the page frame that contains the unfixed page is placed in the
selection pool (at the end of the hold queue). The page is then
available for a page-out as per the page replacement algorithm.

68 DOS/Virtual Storage Features Supplement

PFIX macro
issued

PFIX routine
attempts to find
eligible page frame
without a fixed page

Indicate why PFIX
not performed in
return code

PFIX routine
attempts to find
eligible page frame
without a fixed
page

Increase PFIX
counter by one

Add one to
PFIX counter

Mark page not
fixable (turn on
NFF bit)

Release page
frames associated
with saved
channel programs

Indicate why PF I X
not performed in
return code

Return to
requestor

Remove PFTE for
page frame fror.n
selection pool

Place requesting
task in wait state
until TFREE issued

Turn off
NFF bit

Move page from
ineligible page frame
to eligible page
frame

Turn on page frame
release bit
for fast CCW
translation

Yes

Save address.
Queue request
for a page frame.

Perform page-out.
Invalidate page table
entry for replaced
page.

Exchange contents
of ineligible page
frame and eligible
page frame

Add one to PFIX
counter for
eligible page frame

Remove PFTE for
selected eligible
page frame from
selection pool

Turn on NF bit
in ali page frames
in real partition
until TFIX issued

Page Selection
Routine obtains
a page frame

Page in page to
be PFIXed to
selected page
frame

Move page from
selected page frame
to eligible page
frame

Move contents of
eligible page frame
to selected page
frame

Figure 80.25.5. Logical flow of PFIX macro processing

DOS/Virtual storage Features Supplement 69

TFIX/TFREE Requests. The channel program translation routine and the
program fetch routine (when loading a virtual mode program) issue
requests to temporarily fix and free pages used in I/O operations. The
TFIX routine receives control when a temporary fix request is made. If
the page indicated is already present in real storage and already
temporarily or permanently fixed, the TFIX routine increases the
temporary fix counter for the page by one, and control is returned to
the requester.

If the page to be temporarily fixed is already present in real
storage in a page frame that is temporarily fixable and the page itself
is temporarily fixable but not yet marked temporarily fixed (both
nonfixable bits for the page frame are off), the TFIX routine processes
the request by adding one to the temporary fix counter for the page
frame. The PFTE for the page frame is removed from the selection pool.
If the page to be temporarily fixed is in real storage and temporarily
fixable but is present in a page frame that is not temporarily fixable
(NF bit is on as a result of a pending PFIX or GETREAL request), the
TFIX routi:t;le inspects the selection pool to locate a page frame that is
temporarily fixable.

First, QOO is inspected for an available page frame. If one is not
found, the entire page frame table is inspected. The first usable page.
frame that is part of the selection pool and not marked nonfixable (NF
bit is off) is selected for allocation. The page in the nonfixable page
.frame is moved to the selected temporarily fixable page frame and marked
temporarily fixed. If the selected temporarily fixable page frame
already contained a page, this page is moved' to the nonfixable page
frame (contents of nonfixable and fixable page frames are exchanged).
The page frame containing the temporarily fixed page is removed from the
selection pool.

The TFIX request cannot be serviced by the TFIX routine arid is placed
at the end of the page queue if (1) the page to be fixed is present in a
page frame that is not temporarily fixable and the TFIX routine cannot
find a page frame that is temporarily fixable, (2) the page to be
temporarily fixed is not in real storage, or (3) the page is present but
marked not temporarily fixable (NFF bit is on) as a result of'a pending
PFIX request.

When the page manager system task processes a TFIX request, the page
selection routine is entered to select a page frame that is temporarily
fixable if (1) a page frame was not previously available or (2) the page
was not present in real storage. If a page frame cannot be allo,cated
because the selection pool is currently empty,. the routine previously
described is entered to reset certain system routines, if possible, to
make page frames available.

When a page frame can be allocated for the first Situation (a page
frame was not previously available), the page is moved from the
nonfixable page frame to the selected fixable page frame and marked
temporarily fixed. if the selected fixable page frame was ,already
assigned, its contents are moved to the vacated nonfixable page frame.
The PFTEfor the selected temporarily fixed page frame is removed from
the selection pool. .

When a page frame can be allocated for the second situation (page was
not present in real storage), a page-out is performed if the change bit
for the selected fixable page frame is on. The page to be fixed is
paged into the selected fixable page frame and marked temporarily fixed.
The PFTE for the selected temporarily fixed page frame is removed from
the selection pool.

If the TFIX request was queued because the page was present in real
storage and marked not temporarily fixable, the request can be serviced

70 DOS/Virtual Storage Features supplement

when the page manager encounters it because this situation no longer
exists. (The PFIX request that caused the TFIX request to be queued
will already have been processed.) The TFIX request is handled as
already described depending on whether the page to be fixed is present
in a-temporarily fixable page frame. Figure 80.25.6 shows the logical
flow of TFIX routine processing.

TFIX
request
issued

TFIX routine
attempts to
select fixable
page frame

Queue TFIX
request

Page Selection
Routine selects
fixable page
frame

Figure 80.25.6.

Queue TFIX
request

,
Increase TFIX
counter by
one

Queue TFIX
request

Add one to
TFIX counter

Move page from
nonfixable page
frame to selected
page frame

. Page Selection
Routine
selects fixable
page frame

Return to
requestor

Select TFIX request
for processing. Page
will no longer be
nonfixable.

Remove PFTE from
selection pool

Return to
requestor

Exchange contents
of nonfixable page
frame and fixable
page frame

Add one to TFIX
counter for selected
page frame

Remove PFTE for
selected page frame
from selection pool

Invalidate page
table entry for
replaced page

Page in page
to be TFIXed

Update PFTE for
selected page
frame

Logical. flow of TFIX routine processing

DOS/Virtual Storage Features Supplement

Perform
page-out

11

The TFREE routine receives control when a temporary free request for
page(s) is issued. Routines such as the channel program translation
extension and program fetch issue TFREE requests to release temporarily
fixed pages.

The temporary fix counter is decremented by one. If this TFREE
request causes the TFIX counter for the page to go to zero and the PFIX
counter for the page is also zero, the page is no longer fixed and the
page frame in which it is contained is returned to the selection pool.
Any task that is waiting for this pag,e to be unfixed (such as one that
issued a PFIX request) or for the page frame the page is assigned (such
as one that issued a GETREAL or PFIX request that involves the page
frame) is posted' ready. If the program fetch routine issued the TFREE
request, the PFTE for the affected page frame is placed at the beginning
of QOO or QOl depending on the setting of the change bit in the page
frame. Otherwi~e, the PFTE for the page frame is placed at the end of
the hold queue.

GETREAL/FREEREAL Reguests. The GETREAL routine is entered during the
initiation of a real mode program in order to allocate page frames to
the virtual storage pages in the real partition to be used. The GETREAL
routine is also called when required to allocate real storage for the
PDAID alternate buffer area or the SDAIDS buffer area. The FREEREAL
routine is entered during real mode job step termination processing to
make available the page frames that have been allocated by the GETREAL
routine.

When a GETREAL request is issued, the low and high virtual storage
addresses of the real partition, SDAIDS buffer, or PDAID buffer to which
real storage is to be assigned are passed to the GETREAL routine. In
order for the request to be satisfied, all page frames with addresses
equal to those in the indicated virtual storage area must be available.
That is, the required page frames must be unassigned or assigned only to
pages that are not temporarily fixed. (None of the required page frames
can contain permanently fixed pages since this is possible only if a
virtual.mode program were executing in the virtual partition
corresponding to the real partition that is currently being initiated.
This situation is not permitted.)

If there is a temporarily fixed page in one or more of the required
page frames, processing of the GETREAL request is delayed until all
these temporarily fixed pages are unfixed. If the GETREAL request is
for real storage for a real partition, initiation of the real mode job
step is also delayed.

When the GETREAL routine receives control, first it marks the PFTE's
for all the required page frames not temporarily fixable (NF bit is
turned on). This is done to prevent any temporary fixing of these
required page frames as processing of the GETREAL request proceeds.

A check is then made to determine whether any of the required page
frames contain a temporarily fixed ~age. If so and the fast ccw
translation option is not present in the supervisor, the requesting task
(job control program) is placed in the wait state with an indication
that it is waiting for required temporarily fixed pages to be unfixed.
As these pages become unfixed, the job control task is posted. Once all
the required pages are unfixed, the GETREAL request can be processed.

When the required area contains temporarily fixed pages and the fast
ccw translation option is present in the supervisor, the page frames
currently allocated to the channel programs in the copy blocks saved by
the fast CCW translation routines are released. The required area is
again checked for temporarily fixed pages. If ,it still contains such
pages, a bit is set on for the partition to cause the fast CCW

72 DOS/Virtual Storage Features Supplement

translation routine to release the page frames associated with the
currently active channel programs when the channel programs complete.

If none of the· required page frames are temporarily fixed when the
GETREAL routine is entered or after the required temporarily fixed page
frames have been unfixed, a request for the first required page frame is
placed in the page queue by the GETREAL routine to be processed by the
page manager routine.. Once this request is satisfied, a request for the
next required page frame is queued. Requests are issued in ascending
page frame address beginning with the lowest addressed page frame. This
process continues until all required page frames have been aSSigned.
The PFTE's for the assigned page frames are removed from the selection
pool. .

If the page manager finds the first of the required page frames
marked unusable (malfunctioning bit is on), the entire GETREAL request
is not processed (no real storage area is allocated). If a required
page frame after the first is found to be marked unusable, processing of
the GETREAL request terminates. The allocated area consists of the page
frames allocated up to this pOint in processing of the request. The
page frames above the unusable page frame that are required to satisfy
this GET REAL request are marked temporarily fixable (NF bit is turned
off). If the GETREAL request is for a real parti~ion, the partition
communication region is updated to indicate the upper byte of the real
partition actually allocated .•

The page frames allocated to a real partition may be available or
assigned to a nonfixed page of some other task at the time they are
allocated to satisfy a GETREAL request. When a required page frame is
already assigned to another page, it is taken away from that page
without the allocation of another page frame to that page.

A check is made to determine whether the page being replaced has been
changed. If it has been, the page is paged out before the page frame to
which it was aSSigned is cleared to zeros and allocated to the real
partition. The page table entry for each page that is so replaced is
changed to indicate the fact that real storage is no longer allocated to
the page. Similarly, the page table entry for each page in the real
partition is updated to reflect the allocation of real storage.

The FREEREAL routine is entered to process requests to free the real
storage allocated via a GETREAL request. The PFTE's for the page frames
to be freed are marked available and temporarily fixable and placed at
the beginning of the selection pool (top of QOO). The reference and
change bits for the freed page frames are turned off. Page table
entries are invalidated as required. Figure 80.25.7 shows the logical
flow of GETREAL routine processing.

DOS/Virtual Storage Features Supplement 73

Wait until
all pages
are unfixed

No

Figure 80.25.7.

74

GETREAL
request
issued

Mark all required
page frames not
fixable (turn on
NF bits)

Release page
frames associated
with saved
channel programs

Turn on page
frame release
bit for fast
CCW translation

Queue next page
frame request

Page Selection
Routine obtains
specified page
frame

Invalidate
page table
entry for page

Remove page
frame from
selection pool

Allocation of
page frames to
real partition
complete. Return
to requestor.

Perform
page-out

Logical flow of GETREAL routine processing

DOS/Virtual Storage Features Supplement

RELPAG, FCEPGOUT, and PAGEIN Macros. Support of these macros is a
system generation option (PAGEIN parameter of the SUPVR macro). They
enable a virtual mode problem program to control page-in and page-out
operations within the virtual partition in which it is executing_ The
RELPAG macro can be issued to cause the page manager to make any page
frames that are allocated to the specified virtual storage area
available for reallocation.

Only virtual storage pages that are completely contained both within
the specified virtual storage area and within the virtual partition from
which the RELPAG macro is issued can have their page frames released.
The RELPAG macro can be issued for pages that are no longer required and
whose contents are not to be saved even if they are changed.

The following can occur when a RELPAG macro is issued:

• All the virtual storage pages that are completely within the
specified area are within the virtual partition and any page frames
assigned to these virtual storage pages are released. (Nothing is
done for a virtual storage page that does not currently have a page
frame assigned.)

• The release function is performed only for some of the virtual
storage pages in the specified area. A release is not performed for
those virtual storage pages that (1) are partially or completely
outside the virtual partition, (2) are temporarily or permanently
fixed, or (3) currently have a page request queued (PFIX, TFIX, or
page fault pending).

• The request is ignored because the requesting program is operating
in real mode.

• The requesting program is abnormally terminated tecause support of
the RELPAG macro is not present in the DOS/vS supervisor.

Return codes indicate the actions taken by the page manager. The
PFTE's for the page frames that are released during RELPAG macro
processing are placed at the beginning of QOO and their reference and
change bits are set to zero. The appropriate page table entries are
also updated (invalid and user bits are set to one). No page-out is
performed for the released page frames. The next time a reference is
made to a virtual storage page whose page frame has teen released, a
zeroed page frame will be aSSigned without a page-in operation.

The FCEPGOUT macro is used to make the page frames allocated to the
specified virtual storage area available for reallocation and to cause a
page-out of changed pages when reallocation occurs. The FCEPGOUT macro
can be issued for pages that are no longer required whose contents are
to be saved if they were changed.

Forced page-out processing is not performed on virtual storage pages
that (1) are temporarily or permanently fixed, (2) have a page request
queued, or (3) are not completely contained both within the specified
virtual storage area and the requesting virtual partition. A request
from a real mode program is ignored and the requesting program is
abnormally terminated if support of the FCEPGOUT macro is not present in
the DOS/VS supervisor. Nothing is done for virtual storage pages that
do not currently have a page frame aSSigned. condition codes are
returned to indicate the processing performed.

When a virtual storage page is eligible for a forced page-out and has
a page frame assigned, the reference bit in the allocated page frame is
set to zero. The PFTE for the allocated page frame is moved to the
beginning of QOO if the change bit for the page frame is zero or to the
beginning of QOl if the change bit for the page frame is one. Hence, a

DOS/Virtual Storage Features Supplement 75

page-out of a changed page does not occur until the page frame it is
allocated is taken for reassignment.

The PAGEIN macro is used to cause one or more pages to be brought
into real storage before they are referenced if they are not already in
real storage. The PAGEIN macro specifies one or more virtual storage
areas within a virtual partition for which page-ins are to be performed.
If all the specified virtual storage areas are not completely contained
within the virtual partition from which the' PAGEIN macro is issued or if
the request is issued by a real mode program, the PAGEIN request is
ignored.

Processing of a PAGEIN macro is as follows. The,PAGEIN macroSVC
routine receives control when the PAGEIN macro is issued. The SVC
routine checks for a valid request (all areas are within the virtual
partition). If the request if valid, the svc routine constructs an
entry in a PAGEIN macro request table. The entry describes the request
and identifies the requesting task. The size of this table is
determined at system generation based on the value specified in the
PAGEIN parameter in the SUPVR macro. The table is maintained in first­
in, first-out sequence. A PAGEIN macro is ignored if there are no
available entries in the table when it is issued. Whenever a task is
terminated, this table is scanned. Any requests that belong to the task
are deleted.

After a valid PAGEIN macro request has been placed in the PAGE IN
macro request table, the SVC routine passes control directly to the
PAGEIN task if possible (no other higher priority system tasks are ready
to execute). When the PAGEIN task receives control either directly or
via the normal task selection procedure, it processes the next request
in the PAGIN macro request table. The PAGEIN task executes
asynchronously with the tasks that issue PAGEIN macros. For each
request, the PAGEIN task processes each page that is contained within
the area(s) specified in the request (PAGEIN macro).

This processing consists first of determining whether the page is
presently in real storage. If it is and is also, permanently or '
temporarily fixed, no further processing of the page is performed. If
the page is present and not fixed, the PFTE for the page frame that
contains the page is placed at the end of the hold queue and the
reference bit in the page frame is set to zero. This gives the page
lowest priority for page replacement.

If the page is not in real storage, the PAGE IN task places a page-in
request for this page in the page queue. This request is then handled
just as if it occurred as a result of a page fault except that there is
no exit to the user-written page fault handling routine for the
partition if such a routine is active.

Optionally, the PAGEIN macro can also specify an event control block
(ECB). This ECB must be contained within the virtual partition from
which the PAGEIN macro is issued or the PAGEIN macro isignor~d. .The
ECB can be specified in a WAIT macro or tested via an instruction to
determine whether processing of the PAGEIN macro has be,en completed and
how. The ECB contains return information bits that indicate error
conditions such as a full request table or specified areas outside of

,the virtual partition.

Partition Deactivation/Reactivation

The partition deactivation routine, which is always present in a
multiprogramm~ng configuration, monitors the paging activity of. the
system. When too much pagfng activity is occurring, ,as determined by
established threshold values, partition deactivation is performed.

76 DOS/Virtual Storage Features Supplement

The deactivation routine is entered every time a certain number of
page-ins occur. The time interval between two successive entries into
the deactivation routine is called a measurement period. The
deactivation routine calculates the exponential average of page-ins per
second that occurred since the deactivation routine was last entered.
This exponential average is one that takes into account the average
number of page-ins per second that occurred during this and all previous
measurement periods and gives proportionally less weight to the older
measurements.

The exponential average of page-ins for a measurement period is also
used to restrict the operation of fast ccw translation when this option
is present in the supervisor. When the exponential average of page-ins
is calculated, it is compared with a constant value that controls the
restriction of fast CCW translation. As long as the exponential average
of page-ins is less than this constant, fast CCW translation is not
restricted.

When the calculated exponential average of page-ins equals or exceeds
the constant value for fast ccw translation restriction, a bit is set on
to cause the fast CCW translation routine to release all page frames
associated with each active channel program as soon as the channel
program completes. ~his bit is turned off when the exponential average
of page-ins drops below the constant value provided the threshold
minimum time period that is, used to control conditional partition
reactivation (discussed below) has elapsed since the last time the bit
was turned off.

A reentry rate for the measurement period is also calculated. This
rate is the total number of page-ins that occurred during the
measurement period for all pages in the virtual address area that were
paged out previously during this measurement period. The deactivation
routine compares the reentry rate for the measurement period against a
reentry threshold value and the calculated exponential average of page­
ins for the meas~rement period against a page-in rate threshold value.
If both thresholds were equalled or exceeded during the measurement
period, the deactivation routine is entered to select a virtual
partition for deactivation. The deactivation routine is not entered if
any task seized the system.

The lowest-priority virtual partition in operation that (1) is not in
the process of being canceled, (2) does not have a request in the page
queue (if it uses the page fault handling overlap facility), .and (3) is
not using the logical transient area is selected when deactivation is
required. Real partitions are never deactivated.

After the selected virtual partition is suspended (all tasks in the
partition marked deactivated), the nonfixed page frames currently
assigned to the virtual partition are made available for reallocation.
Fixed pages are not released. When a page frame is released as a result
of deactivation, its PFTE is placed at the beginning of QOO or Q01
depending on whether its change bit is off or on, respectively. All
copy blocks saved by the fast ccw translation routine are released as
are the temporarily fixed page frames associated with the channel
programs in the saved copy blocks.

A count of the number of nonfixed pages that were present in real
storage for the partition at the time of deactivation is retained. This
is called the reactivation count. Any entries in the page queue for the
deactivated partition are deleted. If the two threshold values are
exceeded again after the first partition is deactivated, the next
lowest-priority virtual partition is placed in deactivated status, if
possible.

DOS/Virtual Storage Features Supplement 77

The reac"tivation routine is entered immediately before the system is
to enter the enabled wait state because no task is ready to execute. If
one or more virtual partitions are currently deactivated and either' of
the following conditions exist, the highest-priority deactivated virtual
partition is unconditionally reactivated:

• No other virtual partitions are currently active

• No I/O requests are queued for any device in the system
configuration except requests for console or ~eleprocessing devices,
or requests with an error condition

when unconditional reactivation is not required, conditional
reactivation processing is performed as follows. If the threshold
minimum time period has elapsed si~ce the last time the reactivation
routine was called and no paging I/O operation is currently in progress,
the exponential average of page-ins that occurred since the last time
the reactivation routine was entered is calculated. The highest­
priority deactivated partition is reactivated if (1) the calculated
exponential average of,page-ins value is less than the established
reactivation threshold page-in value and (2) the number of page frames
in the selection pool is equal to or greater than the reactivation count
for the highest-priority deactivated partition. Oth~rwise, no partition
is reactivated.

The, five, threshold values used by the deactivation and reactivagtoon
routines are determined by the system and cannot be specified by the
user at system generation. Threshold values vary depending on the
System/310' model and the direct access device type that is used for the
page data set.

Teleprocessing Balancing

The teleprocessing balancing option is automatically included in a
multiprogramming DOS/vS supervisor that contains any teleprocessing
access method (BTAM, QTAM, or VTAM). In a mixed teleprocessing and
batch environment, it enables teleprocessing performance to be improved
at the expense of degraded performance for one or more batch partitions.
This facility is designed t'o be used only by teleprocessing access
methods and data base/data communications interface programs, such as
CICS/VS.

The teleprocessing balancing facility is activated when the operator
issues the TPBAL attention command to specify the number of batch
partitions that can be' deactivated. The system selects the lowest
priority partitions as being eligible for deactivation by the
teleprocessing balancing facility and notifies the operator of the
affected partitions. The procedure for deactivating partitions is
modified so that the number specified in the TPBAL command is the
maximum number of partitions that can be deactivated by the
teleprocessing balanCing facility.

When the teleprocessing balancing facility is active, the partitions
eligible for deactivation are displayed whenever a PRTY command is
issued to alter or display partition priority. A TPBAL command without
any operands can be issued at any time to determine whether the
teleprocessing balancing facility is active and to determine the
partitions that can be deactivated by the facility.

The TPIN and TPOUT macros are provided to cause actual partition
deactivation and reactivation, respectively, when the teleprocessing
balancing facility is active. These macros have no effect if they are
issued when teleprocessing balancing is inactive.

18 DOS/Virtual Storage Features Supplement

The TPIN macro should be issued by a teleprocessing access methoq
when it requires priority for use of the resources of the system, such
as immediately beforE! each time a transaction is to be processed.' The
TPIN macro causes the three deactivation thresholdvalues·to be set to
zero and partition reactivation to be disabl$d., An indication is :also
set to prevent deactivation of the partition from which the TPIN macro
was issued.

After a TPIN mac::ro has been issued, the nE!xt time" the page manager is
entered to handle a page-in request, the number of lowest priority
active virtual part.itions' specified in the TPBAL command are: deactivated
if they do not own the B-transient area and are not:scheduled.for
cancellation. No cleactivation occurs if the only active virtual
partition is the OIle from which the TPIN. macro was, issued. ,; ,

When the teleprocessing access method no longer requires ,priority .for
use of the resources of the system, such as at the completion of
processing each transaction, the TPOUT macro should'be issued., This
macro enables partition reactivation' and' sets an indicator that'iwill
cause the page malnager to restore the three deactivation threshold.
values to what thE!y were before the last TPIN macro was issued .'.t When
the reactivation l~outine is next entered, unconditional reactivation of
the deactivated patrti tions is attempted. ,. ,

Note that when partitions are deactivated as a result ·.of a TPIN
macro, they are not reactivated until a TPOUT macro is issued.

DOS/Virtual storage' Feat~ures Supplement 79

80:30 DATA·MANAGEMENT

Data management rcutines in DOS/vS are mcdified as required to.
suppcrt. and ·cperat.e, in a y:irtual stcrage envircnment. The channel
schedul:er ,is extended.tc supp-prt blcck multiplexin9, channel program
translation, and ,page' fix;ing. An interface to. the channel schedule~
extensicn is also. prcvided to. enable channel prcgram translation to. be
handled by prcblem prcgrams. In addition, rotational positicn sensing
(RPS) and two new-a<;;Qess methods. (virtual stcrage access method and
virtual telecommuni'c:at'ions access method) are support.ed. DOS/YS also
. supports I/O devices, that are not supported by DOS VE~rsion 3 er 4 and
other enharic,ements are. ,provided as well.

The capability of handling ,:up, to 2'*,' sense, ,bytes of, data for ,an I/O,
de.vice, instead of a maximum of six, is provided in DOS Versien 4.
Bdwever,;;'on~lysix sens'ebytes,'are dis.playedin an I/O errer mess~ge. In
DOS/VS, up to. 24 sense bytes are handled and also displayed with I/O
error messages. Anether DOS/VS enhancement gives the operator the '
capability,cf adding a variable number of tracks to a sequential disk
file wbep,the allocated extents become filled during I;reblem pre gram
executien.

Several inccmpatibilities between DOS files and OS data.sets are
remeved in DOS/VS to facilitate data interchange between DOS/VS and
OS/VS as follows:

• The default values fer the generatien number and versien number
fields in a HDRl tape label are changed in DOS/vS frem 0001 and 01,
respectively, to,EBCDIC blanks since os/vs'does not use these
fields.

• The volume serial number specified in EXTENT statements is left­
justj"fied and padded on the right with blanks, as is done in OS/VS,
instead of right-justified and padded cn the left wit.h zeros, as is
dene in DOS Version 4. The volume serial number in 'I'LBL statements
in DOS/VS can be enclosed in quctes and i.s handled as in OS/VS
(left-justified and padded en the right with blanks).,

• DOS/VS ensures that the blcck count field in a HDRl tape label
contains zercs so that OS/VS can process the tape correctly. The
TPLAB (but not the TLBL) statement can be used to place a value in
this field that causes erroneous processing by OS/VS.

• DOS/VS will flag disk files that are DOS libraries (system er
private) in the file type code field in the Format 1 disk file
label. This flag identifies these DOS files as not interchangeable
withOS/VS since DOS library organization and OS library
organization are not compatible.

• SUPPOJct of a spanned record that spans two volumes (last physical
block of one velume and first physical block ef the next volume),
which is provided in OS/VS, is also provided in DOS/VS for beth
input and output files.

ACCESS METHODS

S;~M, ISAM, and DAM previde the same facilities in DOS/VS and DOS
Version 4~ and the same restrictiens (such as ccw's with a count no.
larg€~r than 3210 apply to. bcthDOS versiens. l:n DOS/VS, hcwever, these
access methcds also suppert rotational pesition sensing. SAM, ISAM, and
DAM use the channel prcgram translatien and page fixing capabilities of
the clhannel scheduler extension.

80 . DOS/Virtu9-1 S1~er~g~· Featur~s 'Supplement

The functions supported by BTAM and QTAM are the same in DOS/VS and
DOS Version 4. BTAM can operate in virtual or real mode. QTAM message
control programs and QTAM message processing programs must operate in
real mode. When a program that uses BTAM operates in virtual mode, a
corresponding real partition must be defined for the virtual partition.
This is required -because before issuing an EXCP macro, BTAM issues the
PFIX macro to fix all pages that will be referenced during the I/O
operation so that a page fault cannot occur and delay an immediate
response from the communications device. At the completion of the I/O
operation, a PFREE is issued to unfix all the pages that were fixed with
the PFIX macro. BTAM performs its own channel program translation.

VTAM is an optional teleprocessing access method that can be included
in a DOS/VS system that also contains BTAM and/or QTAM. VTAM must
execute in a virtual partition and the corresponding real partition must
be defined as well, since VTAM uses PFIX and PFREE macros. The minimum
VTAM virtual partition size is in excess of 700K bytes.

The application programs that use VTAM must execute in a partition
that has a lower priority than the VTAM partition. VTAM application
programs can execute in virtual or real mode. When VTAM support is
included in a DOS/VS supervisor, support of three partitions is
automatically included during system generation if three or more
partitions are not user-specified. VTAM uses the conditional swapping
instructions (COMPARE AND SWAP and COMPARE DOUBLE AND SWAP).

VTAM requires the presence of the following DOS/VS features: STXIT
macro support, GETVIS and FREEVIS macros, PFIX and PFREE macros, EXCP
macro with the REAL parameter, relocating loader, time-of-day clock, and
multiple wait.

The DOS/VS high-level languages do not support a parameter that can
be used to cause I/O areas to be aligned on page boundaries. However,
if the load point of a phase is page-aligned using the POBY parameter,
an Assembler Language programmer can define I/O areas that are page­
boundary-aligned and/or ensure that buffers are packed such that they do
not cross page boundaries when they are smaller than 2K in size.

SUPPORT OF ADDITIONAL I/O DEVICES

The following I/O devices are supported by DOS/VS but not by DOS
Version 4:

• 3203 printer and 5203 Printer as a programmer logical unit, SYSLST,
or SYSLOG device (like the support provided for the 3211 Printer).
The 3203 and 5203 are also supported by the Assembler language
translator, POWER/VS, System Utilities, OLTEP, the Model 20
emulator, and the 1401/1440/1460 emulator.

• The 2560 Multifunction Card Machine and 5425 Multifunction Card
as a programmer logical unit, SYSRDR, SYSIPT, or SYSPCH device.
2560 and 5425 are also supported by the Assembler Language
translator, POWER/VS, System Utilities, OLTEP, and the DOS/VS
distribution program.

Unit
The

• 3340 Direct Access Storage Facility and 3330-series Model 11 disk
storage for the same functions as 3330-series Model 1 and 2 disk
storage (except that ISAM does not support the 3330 Model 11).
Dynamic data module size recognition is provided (module size need
not be specified with the 3340 device parameter) and multivolume
sequential files can reside on different 3348 data module types.
Only DLBL and EXTENT job control statements are accepted for 3340
files. VOL, DLAB, and XTENT statements cannot be used.

DOS/Virtual Storage Features Supplement 81

Note that the PUB table entry for a 3340 device does specify whether
the drive has the optional RPS feature installed. However, it does
not indicate whether the opt'ional Fixed Bead feature is present.

• 3350 Direct Access storage (all modes) and 3344 Direct Access
Storage for the same functions as 3330-series and 3340 disk storage,
except that ISAM does not support the 3350. ISAM programs can
utilize 3350 (and 3330 Model 11) devices by utilizing VSAM and the
ISAM Interface Program.

• Models 4, 6, and 8 of the 3420 Magnetic Tape Subsystem at 6250-BPI
density

• 3540 Diskette Input/Output Unit as a programmer logical unit,
SYSRDR, SYSIPT, SYSPCH, or SYSLST device. The 3540 is also
supported by POWER/VS, System utilities, and OLTEP. Only DLBL and
EXTENT job control statements are accepted for the 3540. VOL, DLAB,
and XTENT statements cannot be used.

• 3600 Finance Communication System, 3650 Retail Store System, and
3660 Supermarket System

• 3740 Data Entry System

• 3767 Data Communication Terminal

• 3770 Data conmunication System

• 3780 Data Communication Terwinal

• 3790 Communication System

• 3800 printing Subsystem

• 3881 Optical Mark Reader

• 3886 Optical Character Reader

THE CHANNEL SCHEDULER

Block Multiplexer Channel Support

support of block multiplexing is optional. It is automatically
included in a DOS/VS supervisor when rotational position sensing support
is requested. Block multiplexing support can improve channel
utilization when I/O devices that are capable of disconnecting from a
block multiplexer channel during operation of a channel pIogram are
present in the system configuration, such as direct access devices with
rotational position sensing (3330-series, 3340, 3344, and 3350) 3270
display system units, and buffered unit record devices (2540, 3505,
3525, 1403, 3211, 3800, for example).

When block multiplexing support is present in a supervisor, block
multiplexer mode of operation is always established for all installed
block multiplexer channels during IPL (the channel mode bit in control
register 0 is set to block multiplexer mode) and channel-available
interruptions are processed. Block multiplexer mode remains effective
during system operation and cannot be changed to selector mode by the
operator.

82 DOS/Virtual Storage Features Supplement

If the seek separation option is not present in the supervisor,
chained seeks instead of standalone seeks are issued for all movable arm
direct access devices. This provides seek overlap for direct access
devices that have the RPS feature but not for direct access devices
without the feature. If the seek separation facility is present in the
supervisor, standalone seeks are issued for all movable arm direct
access devices that do not have the rotational position sensing
facility. Chained seeks are still issued for direct access devices that
have the RPS feature.

Hence, if direct access devices with and without RPS are included in
a configuration in which block rrultiplexing support is present, seek
separation should be included in the supervisor to provide seek overlap
for non-RPS direct access devices.

Note that block multiplexing support cannot be included in a DOS/VS
supervisor for a Model 115 or 125 that is to use the 2311/3330,
2311/3340, or 2314/3340 Compatibility feature. Block multiplexing
support can be included in a DOS/vS supervisor for a Model 135 or 138
that is to use the 2314/3340 Compatibility feature. In this case, block
multiplexing is supported for 3340 devices that are being used in native
mode but not for those that are emulating 2314/2319 devices.

Rotational Position Sensing Support

Rotational position sensing support is optional. It requires the
inclusion of block multiplexing support and GETVIS/FREEVISmacros in the
DOS/VS supervisor. The relocating loader must also be present in the
DOS/VS system. RPS support is provided for 3340 direct access devices
that have the RPS feature and for 3330-series, 3344, and 3350 direct
access devices, for which RPS is a standard hardware feature. RPS
support is utilized by system routines for which an advantage can be
gained and by the access methods that support 3330-series, 3340, 3344,
and 3350 direct access devices. Specifically, RPS is supported by the
following:

• All the access methods that support direct access devices (SAM, LAM,
ISAM, and VSAM). RPS is used in the I/O operations performed by the
access method logic modules but not for the I/O operations performed
by the OPEN and CLOSE routines. ~he access methods support RPS only
for problem programs that execute in a virtual partition. RPS
support is not provided for real mode programs. Any problem
programs (user-written, language translators, program products,
etc.) that use these access methods have RPS support provided.

• IPL and Job Control

• Program fetch and page manager system tasks

• POWER/VS

• Linkage Editor

• Librarian

• Checkpoint/Restart

• System utilities

DOS/VS access method support of direct access devices consists of a
set of logic modules without RPS support and another set with RPS
support. The RPS version of a logic module is generated when the RPS
parameter is included in the SDMOD, CPMOD, DIMOD, DAMOD, or ISMOD macro.
The RPS version of a logic module is larger than the non-RPS version,

DOS/Virtual Storage Features Supplement 83

assuming the same functions are supported. The RPS versions of the disk
logic modules are reentrant and relocatable. They are contained in the
system core image library and execute only in the SVA. This enables
them to be shared by concurrently executing problem programs.

When a problem program is assembled or link-edited, the non-RPS
versions of the required disk logic modules are included in the program.
If RPS support is provided for any of the direct access devices assigned
to the problem program when it executes, the non-RPS versions of the
logic modules that are contained in the problem program are not used for
these devices.

The DTF'S that are defined in the problem program for disk devices
are the same whether or not RPS support is to be used. (No RPS-related
parameters are added to the existing disk DTF's.) A DTF extension that
is required for RPS support is dynamically created in the GETVIS area
within the virtual partition. Therefore, in order to use RPS support, a
problem program must specify the SIZE parameter on the EXEC statement to
make available in the virtual partition a GETVIS area of sufficient
size. RPS support requires approximately 6K bytes in the partition
GETVIS area.

RPS access method support is automatically provided for a given
direct access device when the DTF for the device is opened and all the
following conditions exist: RPS support is included in the generated
DOS/VS system, the disk device is being accessed by a program that is
executing in a virtual partition, the disk device ha.s the RPS feature,
and sufficient space in both the system GETVIS area and the user GETVIS
area in the partition is available for the RPS logic module.

When the OPEN routine determines that RPS support is to be provided
for a disk device, space in the GETVIS area of the partition is obtained
for the DTF extension that is required for RPS support. This DTF
extension area is used for the construction 'of RPS channel programs and
contains other required work and save areas. The DTF in the problem
program is modified to point to the location of the DTF extension and an
indicator is set on in the DTF to identify it as one with an extension.
The modified DTF is returned to its original state when it is closed.

OPEN also determines whether the RPS version of the required logic
module is currently in the SVA. If not, space is obtained from the
systelIl GETVIS area in the SVA and the required RPS logic module is
loaded in this space. The DTF in the problem program is then linked to
this logic module in the SVA. If the required logic module is already
present in the SVA as a result of having been loaded previously for
another DTF, the partition usage indicator for the logic module is
turned on.

A set of usage indicators is maintained in a directory list within
the SVA that indicates the dynamically loaded RPS logic modules that are
currently being used by the executing job in each active partition.
These indicators are turned off at end of job. When all the partition
indicators for a given dynamically loaded RPS logic module are off
(indicating no partition is currently using the logic module), a FREEVIS
macro is issued to free the space in the SVA that is occupied by that
logic module. Any RPS logic module can be made permanently resident in
the SVA by including it in the list of phases that are specified when
the SVA is created during an IPL.

The RPS logiC module used for a given DTF may be larger than the
minimum logic module the DTF actually requires since superset logic
modules are used for RPS support. This is done to reduce the total
amount of space that is required in the SVA to contain the RPS logic
modules that are required by concurrently executing programs.

84 DOS/Virtual Storage Features Supplement

The way in which RPS support is implemented eliminates the need to
modify existing problem programs that use LIOCS access methods in order
for them to use RPS support. The only user-written programs with
logical IOCS that must: be modified to operate correctly when RPS support
is used are those that.: access fields in the disk DTF that are contained
in the DTF extension in the partition GETVIS a.rea when RPS is used.

User-written programs that utilize PIOCS should be modified to
include sector commanals in their disk channel' programs so that they too
use rotational positicm sensing. otherwise, these non-RPS channel
programs will monopoli.ze channel time and eliminate the effectiveness of
RPS support. (Using RPS and block multiplexing effectively is discussed
in each of the base pu.blications for ,'this supplement.) The SECTVAL macro
is provided tocalculalte sector value using the! .record number and length
specifications Df the desired record~

Rotational position sensing support requires lOOK bytes in the SVA.
The entire 100Krequir€!ment can be allocated in' the system GETVIS area
or 12K can be allocatee] in the system GETVIS a:r;.~a and the' remaining 88K
in the resident reenterable program phases area ..

Dynamic Link support fo!: 3350 and 3330 Model~\ 11 Disk storage

Dynamic link support "is provided to enable ejC:istingDOS/VS programs
that access direct access device types other ",thal) the, 3350 in native or
3330 Model 11 compatibi:litymode ,and the 3330 Model 11 to access' ,the
same files on these dev.ices without modifying" reassembling, andrelink
editing these programs. The inclusion of RPS SUI?pbrt in the generated
supervisor is required :In order to utilized dynaIL~ic link support.

When a direct access file is opened, dynamic link support
automatically invokes the required 3350 or 3330 Mc;del·ll RPS logic
module for the file (as required) if all thereqllirements for utilizing
RPS support (outlined previously)are.met. If the dynamic link support
requirements cannot be mllet by a given program, 3350 native and 3330
Model 11 compatibility mode or 3330 Model 11 support can be obtained by
link editing the relocatable version. of the program (if available) or
reassembling (with new de!vice specifications:) and link editing the
program with the required 3350 or 3330 Model 11 logic module(s).

Channel program Translation and Page Fixing

In DOS/VS, the channel scheduler supports channel program translation
and page fixing for progra.ms operating in virtual mode. These functions
are provided only for the ~I/O device types that are supported by DOS/VS.
Channel program translation and page fixing must be performed by the
user for unsupported I/O dE~vices. Several macros are provided to enable
a problem program to handlE~ these functions. ;

The channel program translation routine is called by the channel
scheduler when required. T.his routine is reentrant and provides the
following support:

• Translation of, the virtual storage addresses contained in CCW lists.
When the fast CCW trans],ation option is not present in the
supervisor, channel program translation is performed for each I/O
oper ation requested by a virtual mode probl:em program.. vi'a the EXCP
macro without the REAL p,iarameter specified. The translation is
performed as part' of the EXCPprocessing that"occurs b,efore the I/O
request is queued. The CCW list with virtual storage addresses that
is indicated in an I/O rE~quest is placed in' one· or more' available
copy blocks located in an area above the resident supervisor that is
reserved for use by the channel program translation routine.

DOS/Virtual Storage Features S:upplement 85

86

Address translation· is performed on the copied CCWlist in the copy
:Plock(s).

D~ingsystem generation., .the number of copy blotcks to be reserved
. above the ~upez.:visor can be specified. The defa1...1lt and minimum
specifications depend on the number of partition~; defined and
whether the fast CCW translation option is included in the
supervisor. .A maximum of. 450 copy blocks can be defined.. A copy'
j:)lock is 7-;' bytes in~length. TheCCB for the I/() operation is also
placed in a copy block and translated. The new 1translated CCW list
is used for the actual I/O operation.

J:f '. there are.' not enoug:h qopy ~locks defined to ctontain the CCB, the
translated C<;Wlist, ajndany r~quired IDAL'S fOl: a given I/O
operation, the tasj{ that initiated the I/O requ(~:st is canceled. If
the required number of copy blocks is not avail.ablewhenthe EXCP
mac~ois issued, the task that issued the I/O r1equest must wait
until e:Qough copy bloc}~s become available. Chal~nel program
tran~latiQn is not performed for I/O requests i~l;sued by (1) system
tasks, (2) real mode pl:ograms, (3) virtual mode programs that use
EXCP with the REAL parameter to request I/O opejrations, or (4) any
task when the request :is for a console I/O operiCltion and the console
buffering option is inc::luded in the supervisor.

When the f,,:st CCWtral}~31ation option .isincluded in the supervisor ,
~.i·an a1;1;~lJlpt is: ,mad~: to r~av,e translated channel programs for reuse so
that retra~:;;..lation is,avoided. Fast CCW transl,iition is attempted
f·or all·virtual channe.l programs except those c'ontaining non­
contiguoll:s CCW lis:ts and those associated withBTAM.

When fast ccw translation is present and an EXCP macro is issued,
the channel· program:i::ranslation routine first cLetermines whether a
transl-ated version of the cl)annel. program has l~eensaved. This is
accomplished by inspect:ing the queue of saved eopy blocks with
translated channel .. progrClIDs that is maintained for the partition
that issued the request. If; a saved translated version is found, no
translation is performed. Any page frames associated with the saved
translated channel program are temporarily fix·ted if necessary and
the saved channel pr.ogram is used.:

When a saved version of the channel program i1~; not found, channel
program translation is performed as usual and the translated version
is saved. The saved translated channel· progr,ams for a partition are
released (copy blocks in which they are contarined are returned to
available status) whenever.job step terminatj~on occurs •

• Construction of indirect data address lists (IDAL's), when
necessary. If the I/O area .specified in one or more'CCW's in a
.channel program cros.ses a virtual storage pa:ge boundary or is larger
than 2K bytes, the appropriate IDAL'S consisttingof indirect data
address words (IDAW' s) are c()nstructed in avo ailable copy blocks
above the supervisor. (Checking is not perf;ormed to determine
whether an I/O area that crosses a virtual E3torage page boundary is
actually assigned contiguous page frames.)

• ~emporary fixing of the pages that will be \1:eferenced during an I/O
operation, to prevent the occurrence of pag,ie faults during the I/O
oper~ti():n. The channel scheduler issues a iTFIX request for all the
pages containl.ng I/O. aZ:~ii.s referenced by tbe channel program. If
the ~lOTreqp~st requ~res mQre p,age frames .. 1tban .can ever be allocated
,(numpE!r o;e. pq,gef,rame's in the page pool lee;s the number' of
perin:~ently,.fixed, p~ges.,is smallerthanth(~ required number>, the
task th~t .iss\J~d the req\lest is terminated,.

DOS/Virtual' Storage Features Supplement

Since the CCB and translated channel program are contained in copy
blocks in the fixed supervisor area, fixing of these pages is not
required. Any I/O appendages that are to be used must be fixed by
the program that issues the EXCP macro before the macro is issued,
since the channel scheduler does not perform this function.

• Translation of the real storage address in the channel status word
to a virtual storage address at the completion of an I/O operation.
In addition, a TFREE request is issued for pages that were
temporarily fixed prior to the I/O operation. All the copy clocks
associated with the I/O operation except the one containing the CCB
are released.

An indicator is set to cause the task dispatcher to move appropriate
parts of the copied CCB to the original CCB and free the copy block.
Updating of the original CCB could cause a page fault. Hence, this
function is performed by the task dispatcher if the original CCB is
not present in real storage at the completion of the I/O operation,
since the task dispatcher is permitted to cause a page fault and the
I/O interruption handler is not.

In order to enable a virtual mode problem program to handle channel'
program translation and page fixing for I/O operations, a REAL parameter
for the EXCP macro and the REALAD and VIRTAD maGros are supported as a
system generation option. A problem program operating in virtual mode
specifies REAL on an EXCP macro to indicate that the CCW list specified
has already been translated, any required IDALls have been constructed,
and all required page fixing has been done. The channel scheduler
queues the I/O request and starts the I/O operation without performing
these functions. The REAL parameter is ignored--~f the EXCP macro is
issued by a real mode program.

The REALAD macro causes the real storage address associated with the
virtual storage address specified to be returned while the VIRTAD causes
the virtual storage address associated with the specified real storage
address to be returned. In both cases, the page referenced must be
permanently fixed. The pages cont~ining areas to be referenced during
I/O operations can be fixed and unfixed using the PFIX and PFREE macros.

VIRTUAL STORAGE ACCESS METHOD

General Description

Virtual Storage Access Method (VSAM) is a new component of DOS/VS
data management. VSAM provides a file organization and access method
for direct access devices that is different from existing DOS file
organizations and access methods for direct access devices (SAM, ISAM,
and DAM). In a DOS/VS environment, VSAM supports 2314/2319, 3330-
series, 3340, 3344, and 3350 direct access devices. Rotational position
sensing is supported when the feature is present on the direct access
device and RPS support is included in the DOS/VS supervisor.

VSAM uses system/370 instructions and is designed to operate
efficiently in a paging environment. Hence, like DOS/VS, VSAM can
operate only on System/370 models with dynamic address translation
hardware and cannot run on System/360 models. VSAM also requires the
inclusion of the GETVIS/FREEVIS macros and the relocating loader in the
DOS/VS supervisor.

The VSAM support provided in DOS/VS is compatible with that provided
in OS/VS. The VSAM Assembler Language macros used in OS/VS and DOS/VS
are compatible, except for OPEN and CLOSE. In addition, a VSAM file '
contained on a DOS/VS volume can be processed by OS/VS programs.

DOS/Virtual storage Features Supplement 87

Similarly, a VSAM data set contained on an OS/VS volUIlle can be precessed
by DOS/VS programs. This compatibility enables VSAM data sets or files
to be processed by both OS/VS and DOS/VS, and aids in the transition
from DOS/VS to OS/VS.

VSAM supports both sequential and ¢lirect processing and is designed
to supersede ISAM, although the two access methods can coexist in the
same DOS/VS operating system. VSAM supports functions equivalent to
those of ISAM and offers several additional features. VSAM also can
provide better performance than ISAM, particularly when the number or
level of additions in the file is high.

In addition, the three data organizations supported by VSAM enable it
to be used in place of SAM for sequential files and in place of DAM for
certain directly organized files. The new structure and features of
VSAM make it more suited to data base and online environments than other
DOS/VS access methods.

VSAM support consists of the following:

• Access method routines (logic modules) with which the user
interfaces to process logical records in VSAM files. Most of these
routines are relocatable and reentrant.

• VSAM catalog/space allocation routines that manage direct access
volumes and space used by VSAM files and catalogs. VSAM files are
cataloged in the new required VSAM master catalog (SYSCAT) or,
optionally, a VSAM user catalog •

• The access method services multifunction service program, which
provides required VSAM services, such as file creation,
reorganization, and printing, and VSAM catalog maintenance.

• The ISAM interface routine, which enables the transition from ISAM
to VSAM to be made with little or no modification of ISAM programs.
This routine is relocatable and reentrant.

This discussion describes Release 2 of VSAM. The conditional
swapping instructions must be present in a system in which DOS/VS with
Release 2 of VSAM is executed.

General Description of VSAM File Organizations

VSAM supports three different data set organizations, key-sequenced,
entry-sequenced, and relative record, all of which allow both sequential
and direct processing, record addition without file rewrite, and record
deletion. The primary difference among these three organizations is the
sequence in which logical records are stored,.

Key-sequenced organization is logically comparable to ISAM
organization in that logical records, either fixed or variable in
length, are placed in the file in ascending collating sequence by a key
field, which is called the primary key. Records added after the key­
sequenced file is created are inserted in primary key sequence and
existing logical records are moved when necessary. In VSAM key­
sequenced file organization, as in ISAM, each logical record must have a
unique, embedded, fixed-length primary key located in the same position
within each logical record.

A key-sequenced file always has a primary index containing primary
key values. The entire primary index is used to process records
directly and a portion is used to process records sequentially.
Optionally, one or more alternate indexes can be created for a key­
sequenced file to enable logical records to be accessed sequentially and

88 DOS/Virtual storage Features Supplement

directly by one or more fields in addition to the primary key field.
Alternate indexes are not supported by ISAM.

An en~ry-sequenced VSAM file, which has no ISAM counterpart, contains
either fixed- or variable-length records sequenced in the order in which
they were submitted for inclusion in the file (like a SAM file).
Records added to an existing entry-sequenced file are placed at the end
of the file after the last record. Therefore, records are sequenced by
their time of arrival rather than by any field in the logical record. A
primary index is never created for an entry-sequenced file. Optionally,
however, one or more alternate indexes can be constructed to enable
logical records to be accessed sequentially and directly by different
fields.

A relative record VSAM file is similar in organization to a fixed­
length DAM file that is processed 'by relative record number. Records in
a relative record file are in sequence by ascending relative record
number (from 1 to N). A relative record file consists of a number of
fixed-length slots, each of which has a unique relative record number
and can contain one logical record. A record is placed in the slot
specified by a user-supplied or VSAM-supplied relative record number.
Relative record files cannot have a primary or alternate index.

Physical structure of VSAM Files

The way in which the extents of the logical records of a VSAM key­
sequenced, entry-sequenced, or relative record file are physically
stored on direct access volumes is quite different from the way in which
ISAM logical record extents are stored.

Each extent of a VSAM file that contains logical records is divided
into a number of control areas. Each'control area contains a number of
control intervals that are on contiguous tracks on the direct access
device. A control interval is composed of one or more fixed-length
physical disk records.

Unlike physical records in an ISAM file, the physical records in a
VSAM file can be 512, 1024, 2048, or (except on 2314/2319 devices) 4096
bytes in size only, and they are written without a key (count and data
disk record format). VSAM chooses the physical record size based on the
user-specified buffer size and the device characteristics. When buffer
size is large enough, the physical record size chosen is that which
makes best use of the track capacity of the direct access device used.

A control interval can be a minimum of 512 and a maximum of 32,768
(32K) bytes in size and contains an integral number of physical records.
If a control interval is less than or equal to 8192 bytes in size, it
must be a multiple of 512 bytes. If a control interval is greater than
8192 bytes, it must be a multiple of 2048 bytes in size.

A control interval contains log~cal records, free space (for key­
sequenced files only), system control information about the logical
records (record definition fields), and system control information about
the free space (control interval definition field), in that sequence.
There is one control interval definition field per control interval and
usually multiple record definition fields, depending on the number of
logical records in the control interval.

A logical record and its control information (record definition
field), although not contiguous within a control interval, are called a
stored record. A complete control interval is the unit of data transfer
between a VSAM file and real storage. Hence, command-chained
reads/writes are used when a control interval contains more than one
physical disk record.

DOS/Virtual Storage Features Supplement 89

A logical record in a VSAM file can span physical records within a
control interval. A logical record in a key-sequenced or entry­
sequenced (but not a relative record) file can also span two or more
control intervals within the same control area, in which case i~ is
called a spanned record. If a key-sequenced or entry-sequenced file is
to have spanned logical records, this fact must be specified when the
file is defined, as the default for these organizations is not to permit
spanned records.

Spanned records enable logical record size to be greater than maximum
control interval size. The maximum size of a nons panned logical record
is 32,761 bytes. The maximum size of a spanned logical record is the
control area size minus ten bytes (for VSAM control information) per
control interval in the control area.

A spanned record always starts at the beginning of a control
interval. If the last segment of a spanned record does not completely
fill a control interval, the unused space is allocated as free space
that can be used only to extend the size of the spanned record. No
other logical record can be placed in this free space.

Figure 80.30.1 shows an example of a control area that consists of
three control intervals. There are three physical records in each
control interval. The number of control intervals in a control area is
determined by VSAM and for a key-sequenced file is chosen taking into
account the amount of space allocated to the file, index and data
control interval size, and buffer space available to the file. The
maximum size of a control area on disk is. one cylinder, and control
area contains an integral number of control intervals. The size of a
control interval can be specified by the user and is used as long as it
is within the limits defined by VSAMi otherwise, a user-specified
control interval size is ignored.

Control Area N

(r--~~--------------------------------------~,
Control

Interval 1
Control

Interval 2
Control

Interval 3

r-------------~~-----------, ·r-.--~--------~~------------, r-------------~~----------~)

[][][B[][][]OOtB
PhYSical 1
record
within
control
area

2 3 4 5 6

LR = Logical record
FS = Free space (key sequenced file only)
SC = System control information (record definition fields

for the logical records and one control interval definition
field)

8 9

Figure 80.30.1. organization of a coptrol area fora VSAM file

When a VSAM file is loaded, VSAM does or does not preformat control
areas, depending on the attribute specifi~d when the file is defined,
RECOVERY or SPEED, respectively. When RECOVERY (the default) is
specified, during loading VSAM preformats each control area immediately
before loading any records into it. Preformatting for a key-sequenced
file consists of putting the appropriate control information in each
control interval and an end-of-file indication in the first control
interval in the next control area after the control area just
preformatted. All zeros in the control interval definition field
indicates end-of-file or end-of-key range for a key-sequenced file. For
an entry-sequenced or relative record file, control information and an

90 DOS/Virtual Storage Features Supplement

end-of-file indication is placed in each control interval of the control
area during preformatting.

The RECOVERY option ensures that if an error that prevents further
processing occurs while a control area is being loaded, the previously
loaded control areas are not lost. Loading can resume from the first or
only end-of-file indicator. preformatting is always done when records
are added to an existing VSAM file.

When SPEED is specified, records are loaded without preformatting
each control area before loading and the end-of-file indicator is not
written until the file is closed. When this option is chosen, loading
proceeds more rapidly, but if an error that prevents further processing
occurs, all the records loaded up to that point may be lost and loading
would have to resume at the beginning of the file.

Like an ISAM file, a VSAM file can be multi-extent and multivolume.
secondary space allocation can be specified when a key-sequenced, entry­
sequenced, or relative record file is defined so that the file can be
extended when logical records are added, if necessary (this facility is
not supported in ISAM). A VSAM file can have a maximum of 123 extents
of logical records.

VSAM files can be placed on disk volumes that contain files with
other organizations. Space on a volume that is defined for exclusive
use by VSAM is called a data space. A VSAM data space can consist of a
maximum of 16 extents on a volume that need not be contiguous. The
maximum size of a "data space is one volume. A volume can contain
multiple data spaces. A data space on a volume can contain one or more
files and a file can occupy one or more data spaces on one or more
volumes.

A direct access space management facility, not supported for other
DOS/VS file organizations, is supported for VSAM files. This facility
relieves the user of having to keep track of the specific extents
allocated to VSAM files. Direct access space on volumes is made
available for allocation to VSAM files using the access method services
program (DEFINE function). At this time, EXTENT statements are used to
indicate the specific tracks on each volume that are to be reserved for
VSAM files.

When a VSAM file is actually created, EXTENT statements need specify
only the amount of space that is to be allocated to the file,. Specific
tracks need not be given. The space management program allocates the
requested space from extents previously reserved for VSAM files.
Thereafter, whenever the VSAM file is processed, EXTENT statements, one
per volume in the file, need specify only the symbolic units that are to
contain the VSAM file and the volume serial numbers of the volumes
containing the file. Specific extents need not be given.

Before a VSAM file or catalog can be loaded, its attributes and space
requirements must be defined using the DEFINE function of the access
method services program. In .order to delete a VSAM file or uncatalog
and make the space available for reassignment, the DELETE function of
the access method services program must be used. VSAM space cannot be
deleted using a DOS/VS file utility.

When a VSAM file is defined, it can be allocated space within a
previously defined data space or the file and the data space it is to
occupy can be defined at the same time. In the latter case, the data
space can contain only the file defined with it and the file is called
unique. Additional extents cannot be added to a unique file after it is
defined.

DOS/Virtual Storage Features Supplement 91

The REUSABLE attribute can be specified for a VSAM file when it is
defined to allow it to be reused multiple times (as a work file, for
example) without having to delete it and then redefine it using the
access method ser~ices program.

The REUSABLE attribute can be specified for a key-sequenced, entry­
sequenced, or relative record file that resides on one or more volumes.
A key-sequenced or entry-sequenced file with an alternate index or a
key-sequenced file with key ranges specified per volume cannot be
reused. However; an alternate index can have the REUSABLE attribute if
it does not contain unique keys (that is, does not have the UNIQUE
attribute specified).

When a file with the REUSABLE parameter specified is opened, it is
set to the status of a file opened for the first time for creation
(reset to empty status). Any allocated secondary extents are
deallocated. preformatting (putting control information in all the
control areas of the file) is performed but the logical records are not
erased.

The~ data in a VSAM file is considered to be mapped into a byte space
that can be over 4.2 billion bytes in size. The physical location of a
logical record or index entry within a file is given in the form of a
relative byte address rather than a CCHHR disk record address. The
relative byte address (RBA) of a logical record or an index entry is the
byte displacement of the logical record or index entry relative to the
beginning of the file. The first record in a file has an RBA of O. The
RBA of a logical record or index entry, therefore, is independent of the
physical characteristics of the direct access device type on which it
resides, the number of extents in the file, the size of a control
interval, etc.

All pOinters to data that are contained in an index or a control
interval are in terms of relative byte address instead of the disk
recor~ address (CCHHR) that is used in ISAM pOinter fields. In order to
locate a desired index or logical record, the VSAM access method
calculates the disk address of the physical record, using the RBA of the
record and the physical characteristics of the file. As a result, VSAM
files are device type independent. A VSAM file can be moved from one
device type to another and its index filets) need not be recreated.

,The logical records of a VSAM file can be processed by keyed and/or
addressed access depending on the organization. For keyed-access,
logical records are processed in a sequential, skip-sequential (key­
sequenced organization only), or direct fashion by a key field, which
must be contained in each logical record. For addressed access, records
are processed in a sequential or direct fashion by REA. with keyed or
addressed processing, a VSAM file is processed by the user on the basis
of logical records and VSAM always manages the I/O buffers.

Access to a VSAM file by control interval is also supported,
primar~~y for use by system programmers. This type of access allows the
user to read and write a VSAM file on a control interval basis. That
is, each read or write accesses an entire control interval of data. A
file that is opened for control interval access can be processed by
keyed and addressed access at the same time (assuming keyed or addressed
is supported for its organization) as long as VSAM manages the I/O
buffers.

When control interval access is used, I/O buffers can be managed by
VSAM or the user. When buffers are managed by the user, control
intervals cannot be processed in the I/O buffer (a work area must be
used) •

92 DOS/Virtual Storage Features Supplement

VSAM Macros

The macros provided to define and process VSAM files are divided into
control block macros and request macros. The control block macros are
used to define, modify, display, and test the contents of VSAM control
blocks and lists. The request macros are used to specify the processing
action (read, write, etc.) to be taken on data and index records.

The following are t.he VSAM control block rr:acros:

• ACB (generate an access control block). The ACE macro is the VSAN
counterpart of the DTF macro that is used for other DOS/VS file
organizations. It causes an access control block to be generated
during program assembly. One ACE (or GENCB) macro must be specified
in a program for each VSAM file that is to be processed by the
program. The access control block for a VSAM file must be opened
before any processing of the file can occur.

The ACB specifies the following for a VSAM file: name of the DLBL
statement for the file, address of a list of exit routine addresses
for user-written exit routines, buffer space requirements, the
password required for the type of processing to be done, all
processing options to be used with the file (keyed, addressed,
and/or control interval, sequential, skip-sequential, and/or direct,
etc.), the number of requests that can be outstanding concurrently
for the file using this ACB, and the address and length of an error
message area to be used by the OPEN, CLOSE, and TCLOSE macros.

• EXLST (generate an exit list). The EXLST macro is used to define a
list of the addresses of the user-written exit routines that are to
be entered when certain conditions occur during the processing of a
VSAM file. The EXLST macro causes an exit list to be generated
during program assembly.

Exit to a user-written routine can be taken when end of file is
reached (EODAD exit), a logical error occurs (LERAD exit), an
uncorrectable physical I/O error occurs (SYNAD exit), to perform a
journaling operation (JRNAD exit), or to overlap VSAM I/O operations
with user processing (EXCPAD). Each exit routine can be marked
active or inactive. An exit routine that is inactive is not entered
when its associated condition occurs.

The journaling exit must be marked active before the file with which
it is to be used is opened; this exit cannot be marked inactive
during processing of the file. The other exits can be activated and
deactivated (via the MODCE macro) during processing of the files
with which they are used. The exits to be used during the
processing of a given VSAM file are specified in its ACE (the
address of an EXLST macro can be given). More than one ACE can
specify the same EXLST macro.

The journaling exit is taken by VSAM at the following times:
whenever a GET, PUT, or ERASE macro is issued to the VSAM file; each
time data is shifted within a control interval or moved to another
control interval (key-sequenced files only); and each time a segment
of a spanned record is read or written.

A user-written journaling routine can be used, therefore, to keep
track of any REA changes for the logical records of a key-sequenced
file, if it is to be processed by REA, record the VSAM transactions
that are processed against a VSAM file (for recovery and
reconstruction purposes, for example), or keep track of the control
intervals that contain spanned records.

DOS/Virtual storage Features Supplement 93

94

When the EXCPAD exit is not specified and a GET or PUT macro is
issued, control is not returned to the instuction after the GET/PUT
macro until all processing of the request, including any required
I/O operations, is completed.

When the EXCPAD exit is specified, the user~written EXCPAD routine
is given control whenever VSAM starts an I/O operation as a result
of a request macro. The exit routine executes concurrently with the
VSAM L/O operation. When the exit routine completes its execution,
it must return control to VSAM. VSAM then returns control to the
instruction after the request macro as soon as the I/O operation
completes successf~lly.

The EXCPAD exit enables the user to overlap problem program
processing with VSAM I/O operations. It is analogous in intent to
the asynchronous processing facility that is supported in OS/VS
VSAM.

• RPL (generate a request parameter list). An RPL macro is used to
generate a request parameter list during p~ogram assembly. This
list defines a request for processing. Certain request macros (GET,
PUT, ERASE, POINT, and ENDREQ) must specify the address of a request
parameter list to indicate the processing to be performed. The same
RPL can be specified in more than one type of request macro.

An RPL macro specifies the following: the ACB of the file with
which it is to be used (multiple RPL maeros can specify the same
ACB>i--the size and address of a work area if logical records are not
to be processed in an I/O buffer; the search argument to be used
during direct retrieval, skip-sequential retrieval, and positioning
(full key, generic key, key greater than, RBA, or relative record
number); the type of processing for this request, such as keyed or
addressed, sequential or direct, forward or backward, etc.

Two or more RPL's can be chained together via a pOinter field in the
RPL itself. A chained paramet~r list can be used to read or write
several records (one for each RPL in the chain) using one GET or PUT
macro instead of multiple macros. Chained parameter lists can be
used only to retrieve several existing records or to add several new
records. It cannot be used to retrieve-for-update, update, or
delete existing records.

• GENCB (generate a control block or list). The GENCB macro can be
used to generate an ACB, EXLST, or RPL during program execution
instead of program assembly. The GENCB macro can be used to
eliminate changing these control macros and reassembling VSAM
problem programs when control block formats change in new versions
of VSAM.

The same parameters can be specified in a GENCB macro as in ACB,
EXLST, and RPL macros. However, a GENCB macro can specify that
multiple copies of the control block are to be generated and
parameter values can be specified in more ways (such as in general
registers).

• MODCB (modify the contents of a control block or list). The MODCB
macro is used to change, during program execution, the contents of
an unopened ACB, an EXLST (entries cannot be added or deleted), or
an inactive RPL (one not currently involved in a processing
operation).

• SHOWCB (display the contents of a control block or list). The
SHOWCB macro is used to place the contents of user-specified fields
of an ACB, EXLST, or RPL in a user-specified work area.

DOS/Virtual storage Features Supplement'

• TESTCB (test the contents of a control block or list). The TESTCB
macro is used to have VSAM compare a user-specified value with a
field in an ACB, EXLST, or RPL. The condition code in the PSW is
set to indicate the results of the comparison.

• SHOWCAT (show or display the catalog). The SBOWCAT macro is used
to retrieve information from a VSAM catalog about any unopened VSAM
file and place it in a user-specified area.

The following request macros are used to process VSAM files:

• OPEN - A VSAM file must be opened before it can be processed by
other request macros. The OPEN macro provides the same types of
processing functions for VSAM files as for other types of files.
OPEN verifies that the required volumes of the VSAM file are
mounted, constructs the control blocks required (in addition to
those already created by EXLST, ACB, and GENCB macros) for the type
of processing to be done, causes loading into the virtual partition
of the required VSAM routines for the processing specified (unless
the VSAM routines are resident in the SVA), and verifies that the
password given is correct.

Both sequential and direct processing can be performed on a VSAM
file using one OPEN macro and one ACB. Closing and reopening of the
file to switch modes, as is required for an ISAM file, is not
necessary.

• GET - This macro is used for retrieval only and for retrieval and
update (GET for update) operaticns. The RPL specified by a GET
macro indicates whether the request is for a retrieval only or a
retrieve and update operation. A record that was retrieved by a GET
for update request need not be written back if it is not to be
changed.

Locate mode (logical record made available in the input buffer) can
be specified for retrieval only (GET) and retrieve for update
without record length change (GET for update) operations. In the
latter case, however, the updated record must be placed in a work
area before it is rewritten. Move mode (logical record made
available in a work area) is supported for all read and write
requests and is required for all write (PUT and ERASE) operations.

• PUT - This macro is used to write a new record in a file during its
creation or insert a new record in an existing file. A PUT for
update is used to change the contents of an existing record (update
it or mark it deleted with a user-defined deletion indication). A
PUT for update request must be preceded by a GET for update request.
Write verification (automatic reading by VSAM after each write
operation) is optional.

• ERASE - This macro is used to delete a logical record from a key­
sequenced or relative record file. The record is physically removed
from the file. An ERASE macro must be preceded by a GET for update
macro.

• POINT - This macro is used to position VSAM to a particular logical
record in the file from which processing is to continue.
Positioning can be in a forward or backward direction and a key
value (including a relative record number) or REA can be used to
identify the logical record at which positioning is set.

• ENDREQ - This macro is used to free VSAM from keeping track of a
position in a file. VSAM can maintain knowledge of the same number
of positions as the number of reques·ts that can be outstanding
concurrently (specified in the ACE or GENCB macro).

DOS/Virtual storage Features Supplement 95

• CLOSE - The CLOSE macro provides the same types of processing
functions for VSAM files as for other types of files. It causes
VSAM to write any unwritten data or index records remaining in the
output buffers if their contents have changed, update the catalog
entry for the file, if necessary (if the location of the end-of-file
indicator has changed, for example), and update the statistics for
the file in its catalog entry. The access method control block(s)
for the file (such as the ACB's) are restored to what they were
before the file was opened and virtual storage that was obtained
during OPEN processing for additional VSAM control blocks and VSAM
routines, if any, is released.

Once a VSAM file has been closed, it must be reopened before any
additional processing can be performed on it. A TCLOSE (temporary
CLOSE) macro can be issued to cause VSAM to complete any outstanding
I/O operations, update the catalog if necessary, and write any
required statistics. TCLOSE also formats the last used control
interval in the file if the file is being loaded or extended and the
SPEED option was specified. processing can continue after a TCLOSE
macro without the issuing of an OPEN macro.

Figure 80.30.2 illustrates the relationships among the most
frequently used control macros and the request macros.

Note that several parts of a VSAM file can be accessed concurrently
via sequential and direct processing by a program or its subtasks using
the same ACB without the necessity of closing ahd reopening the file.
Each request is processed independently and asynchronously with respect
to all other outstanding requests. This is called concurrent request
processing and is made possible by the fact thatVSAM can keep account
of multiple positions in the file at one time. The number of concurrent
requests that can be outstanding for a file is specified in the ACB but
is extended by VSAM during processing if necessary.

A shared resource facility is provided in VSAM that enables buffers,
I/O control blocks, and channel programs to be shared among several VSAM
files wi~in the same partition. Without the use of this facility,
buffers and control blocks are allocated to each VSAM file when it is
opened and freed when the file is closed. Thus, while a VSAM file is
opened, the buffers and control blocks cannot be shared.

The BLDVRP, DLVRP, and WRTBFR macros are provided to support the
shared resource facility~ BLDVRP is used to define a VSAM resource pool
(of buffers, control blocks, and channel programs) that is to be shared
by VSAM files that specify the shared resource facility in their ACB
(via the LSR option). The DLVRP macro deletes a resource pool.

The WRTBFR macro is provided for I/O buffer management. It is used
to cause the writing of buffers whose writing has been deferred. When
the shared resource facility is used, the writing of a buffer specified
in direct PUT requests can be delayed (that is, a direct PUT request
does not cause the affected buffer to be written immediately-). Deferral
of writing can save I/O operations if subsequent requests are for
records in buffers whose writing has been delayed. Buffer writing can
be delayed until a WRTBFR macro is issued to cause writing, a buffer
from the shared pool is required for a GET request, or a file that is
sharing the pool is closed.

96 DOS/Virtual Storage Features Supplement

Request
Macros

OPEN

CLOSE

Figure 80.30.2.

.r"------- Control Macros ------....... +

Relationships among VSAM control and request macros

DOS/Virtual Storage Features Supplement

User­
Written
Exit
Routines

End of
Data
Set

Logical
Error

Physical
I/O Error

Journaling

97

The shared buffer facility is designed to optimize the use of storage
resources for and speed up the direct processing of VSAM files (1) whose
activity is unpredictable or (2) that are used in an environment in
which a transaction may require the processing of several files. It is,
therefore, useful for data base/data communication environments.

Concurrently outstanding requests for a file can be any combination
of sequential and direct processing requests. Each outstanding request
can specify one RPL or a list of RPL's (chained RPL's). When chained
RPL's are specified in a request, control is not returned to the user
until all requests in the list have been processed.

Key-Sequenced File Organization and Processing

The logical organization of a key-sequenced VSAM file is very
different from that of an ISAM file. The primary index (index
component) and logical records (data component) in key-sequenced
organization are two distinct files with separate file names, although a
portion of the primary index can be placed within the logical record
file area to improve performance. A key-sequenced file does not have a.
separate additions (overflow) area, as can be defined for an 1SAM file,
and additions to a key-sequenced file are always blocked.

The primary index file and the logical record file of a key-sequenced
file form a cluster. Each alternate index built for a key-sequenced
file also consists of an index component and a data component. These
two components form an alternate index cluster for the key-sequenced
file, which is then referred to as the base cluster.

All extents of logical records (the data component extents) in a key­
sequenced .file must reside on direct access volulI'es of the same type.
Extents of logical records for a given key-sequenced file do not have to
be contiguous across volumes as is required for DOS 1SAM files. The
primary index file and any alternate index file cluster, however, can be
placed on a device type that is different from that of the logical
record file. The primary index file and alternate index files need not
reside on the same type of direct access device either. In addition,
the index component of an alternate index can be on a different device
type than the data component of the alternate index.

When a key-sequenced file is created, the range of primary key'values
that are to be allocated to each volume of the data component file can
be user-specified. This cannot be done for an ISAM file. Unlike ISAM
file VOlumes, all volumes of the data component of a key-sequenced file
need not always be mounted at OPEN time. Subset mounting by user­
specified volume serial numbers in job control statements is supported
for certain types of sequential processing.

A control interval in the data component file of a key-sequenced file
contains logical records in ascending primary key sequence. Logical
records must have a unique primary key. A primary key must be fixed in
length and in a fixed position within each logical record. primary key
size can be a minimum of 1 byte and a maximum of 255 bytes. If spanned
records are used, the primary key must be contained within the first
control interval.

The data component of a key-sequenced file is divided into control
areas and control intervals in order to distribute free space throughout
the file for the addition of logical records. When a key-sequenced file
is defined, the percentage of unused control intervals that are to be
left in each control area and the percentage of free space to be left at
the end of each control interval during file loading can be user­
specified.

98 DOS/Virtual storage Features Supplement

For example, if 30 percent free control intervals in control areas
and 20 percent free space in control intervals are specified, 70 percent
of the total number of control intervals in each control area will be
used for data in the data component when the key-sequenced file is
created. Each of the control intervals actually used for data will be
80 percent filled at load time. The unused space in control intervals
and the unused control intervals in each control area are available for
additions.

The use of free space requires less record processing to add a record
and to retrieve an addition than would be needed in ISAM, since there
are no overflow chains in key-sequenced organization. When a record
must be added to a control interval, records are shifted to the right
within the control interval to make room for the new record (if the
record does not belong at the end of the control interval). As long as
there is enough free space in the control interval, no other control
interval is involved in the addition process.

If a control interval does not contain enough space to add another
logical record, control interval splitting occurs. Some of the logical
records and their control information are taken from the full control
interval and moved to an empty control interval at the end of the same
control area, if another control interval is available. The logical
record is then added to the appropriate control interval in primary key
sequence.

When control interval, splitting occurs, the physical sequence of
control intervals within a control area no longer represents the correct
sequence of logical records within the control area. Therefore, the
primary index must be updated~o reflect this condition. The only times
the lowest level of the primary index must be updated are when control
interval splitting occurs and when a record is added to the end of the
file. Hence, less primary index maintenance is required for a key­
sequenced VSAM file set than for an ISAM file.

If there is no free control interval within a control area when one
is required, control area splitting occurs if there is free space at the
end of the extent or if secondary allocation was specified at the time
the file was defined. A new control area is established and the
contents of approximately half of the control intervals in the full
control area are moved to the new control area. The new logical record
is then inserted in the appropriate control area in primary key
sequence.

The time required to sequentially retrieve records is only slightly
affected by control area splitting. Since the amount of space allocated
to the file is affected by control area splitting, the number of split
control areas in a key-sequenced file should be a factor that is
considered when determining whether or not to reorganize the file.

Logical records can be physically deleted from a key-sequenced file,
using the ERASE macro, and the length of a logical record in a variable­
length key-sequenced file can be increased or decreased. When space
becomes available as a result of deleting or shortening a record,
records within the control interval are shifted toward the beginning of
the control interval to reclaim the free space and make it available for
additions and record extensions.

The way in which free space can be distributed throughout a key­
sequenced file, support of space reclamation, and implementation of
control interval and control area splitting are all factors that can
minimize or possibly eliminate, in some cases, the need to reorganize a
key-sequenced file. This design makes VSAM key-sequenced organization
more suited than ISAM to an online environment.

DOS/Virtual storage Features Supplement 99

Logical organization of the primary index file for key-sequenced
organization. Like the index for an ISAM file, the primary index for a
key-sequenced VSAM file contains key values and pointers. It is built
when the key-sequenced file is initially loaded. Unlike an ISAM index,
a VSAM primary index also contains information regarding available space
in the primary index file.

The primary index for a key-sequenced VSAM file also has a totally
different logical structure from that used for an ISAM index. A key­
sequenced primary index file consists of two or more levels of index
records structured as a balanced tree, and the highest index level
contains only one index record (physical disk record). The one
exception to this organization is discussed later.

Primary index records are fixed in length and of system-determined
size. Each physical index record contains a number of index entries and
a pointer to the next physical index record at the same index level.
(The last index record in a level does not have such a pointer.) Index
entries contain primary keys in ascending collating sequence.

The lowest level of the primary index is called the sequence set.
All levels above the lowest are collectively referred to as the index
set. The sequence set index level points to all the control intervals
in the key-sequenced file and contains the high compressed primary key
value in each control interval. Since the sequence set does not contain
an entry for each logical record in the key-sequenced file, it is a
nondense index level.

The structure of the primary index for a VSAM key-sequenced file is
shown in Figure 80.30.3. Where a key is specified, it refers to a
primary key.

Index
Component
File

Data
Component
Key­

Sequenced
File

r '"d" I Set

{

Lowest
Sequence level

Set index

C~=-'::::_"""""-____ I
Control Area 1

~~--------~--------_I
Control Area 2

~~--------..........-_------~I
Control Area N

Figure 80.30.3. structure of the primary index for a VSAM key-sequenced
file

Each physical index record in the sequence set contains a number of
index entries that is equal to the number of control intervals in a
control area. Hence, there is one sequence, set index record per control
area in.the file. An index entry in a sequence set index .record
consists .of a primary key value, control information, and a pOinter to
the control interval in the data component file that contains the record
with that primary key value. The key in the index entry is the highest
compressed primary key in the indicated control interval.

100 DOS/Virtual Storage Features Supplement

When the logical record file has few enough control intervals that
one physical index record can contain all the required index entries,
there is only one level of primary index and it consists of one sequence
set index record.

When a key-sequenced file is processed sequentially, the sequence set
index level is used to indicate the order in which control intervals are
to be accessed. To improve performance during sequential processing,
the sequence set index level can be separated from the rest of the
primary index file (index set levels) and stored with the logical
records in the data component file. When this o~tion is chosen, the
index records for a control area are placed on the first track(s) of the
control area so that both index and logical records can be accessed
without moving the disk arm (similar to the location of the track index
within the prime area in an ISAM file).

When the sequence set index level is stored within the data component
file, sequence set records are also replicated. That is, each sequence
set index record is allocated one track at the beginning of the control
area. The index record is duplicated on the track as many times as it
will fit. This technique significantly minimizes the rotational delay
involved in arriving at the beginning of an index record. If there is
only one control area in a cylinder, sequence set index records-will be
replicated beginning with~rack O. If there are two control areas in a
cylinder, initial tracks of the first area will contain replicated index
records for the first control area, while initial tracks of the second
area will contain replicated index records for the second control area.

Index set index records, like sequence set index records, contain
blocked index entries. The index entries in each level of the index set
point to index records of the next lower index level. An index entry
within the index set contains a pOinter to an index record, the highest
primary key in that index record, and control information. Index set
index,levels can also be replicated. When this option is chosen, one
track is required for each index record in the entire index set. An
index record is duplicated on its assigned track as many times as it
will fit.

The index set mayor may not be replicated when the index set and the
sequence set of the primary index are physically separate (sequence set
stored with logical records>. However, when the index set and the
sequence set are stored together, both are replicated or neither is
replicated.

The entire primary index (index and sequence sets) is used to process
a key-sequenced file directly by user-specified primary key values.
Each index level is inspected beginning with the highest level. One
index block in each level must be inspected to obtain a pOinter to the
next lower level.

An advantage of the VSAM index structure over the ISAM index
structure is the fact that the time needed to locate any record directly
is based on the number of levels in the primary index and on the current
location of the index records to be inspected (on the direct access
device or in real storage). Therefore, the same amount of time is
required to locate an addition as an original record. In ISAM,
additional rotation time is required to locate an addition that is not
the first addition in the chain in the cylinder overflow area of a prime
cylinder.

The primary index of a key-sequenced file is designed to require as
little direct access space as possible. In addition to being nondense,
the index entries contain front and rear compressed keys. Compression
is done to eliminate redundant characters in adjacent keys in the index
and thereby reduce the amount of key data that must be stored.

DOS/Virtual Storage Features Supplement 101

Since physical index records are written without a key, index entries
are blocked within index records, and keys are compressed, an index
record must be present in real storage in order for the user-supplied
key value to be compared with the key values contained in an index
record (this comparison cannot be done on disk as for ISAM
organization) •

As much of the total index set as possible, up to the entire index
set, can be resident in virtual storage if enough buffer storage is
specified by the user. Note that VSAM does not preload index record
buffer(s) with as many primary index records as will fit. Index records
are allocated space in a buffer and loaded when required.

The primary index records that are resident in virtual storage are
pageable; however, heavy referencing of an index record can tend to'
cause the page containing the index record to remain in real storage.
(Index records cannot be fixed in real storage.) If an index record
that is not resident in virtual storage is required, and there is not
enough room in the buffer area provided to add the index record, the
access method deletes an existing index record to make room. In
general, an index record is selected that has been in the buffer the
longest time and that belongs to the lowest level index represented in
the buffer.

The compressed index entries in an index record cannot be inspected
using a binary search technique; however, the entries are not inspected
sequentially. Index entries are divided into sections for the purpose
of searching. The number of sections in an index record is
approximately equal to the square root of the number of index entries in
the index record.

A primary index search is begun' by comparing the search key with the
highest key in the first section of the index record. If the search key
is less than the highest key, the search continues with the first key in
the first section. An equal or the first greater than comparison
terminates the search operation. If the search key is higher than the
highest key in the first section, it is then compared with the highest
key in the second section, etc.

Using this technique, the average number of index entries inspected
to locate the desired entry is approximately equal to the square root of
the number of entries in the index record. On the average, half of the
number of entries in an index record would have to be searched if a
linear search technique were used.

PhYSical structure of the primary index of ~ key-seguenced ·file.
primary index records are stored in control intervals as are ,the logical
records ill the data component of a key-sequenced file. However, there
is only one physical index record written in a control interval, control
intervals are not grouped into control areas, and no free space is left
within a control interval between a logical record (index entry) and its
control information. The maximum size of a control interval in an index
component is 2048 bytes for a 2314/2319 and 4096 bytes for a 3330-
series, 3340, 3344, and 3350 in 3330 Model 1 compatibility mode.
Control interval size can be 512, 1024, 2048, or 4069 bytes only for an
index component.

The physical index records associated with each index level of the
primary index are not necessarily stored together in contiguous control
intervals (except when the sequence set level is stored separately from
the index set levels). When a primary index is created or a new index
record is added to an existing primary index, the new index record is
placed in the next available control interval after the last existing
index record. The level to which each index record belongs is indicated
in the control information (header field) in the index record.

102 DOS/Virtual storage Features Supplement

In addition to header information and variable-length index entries,
a sequence set index record (but not an index set record) can contain a
set of free control interval entries. These entries indicate the
location of available control intervals in the data component that are
within the control area governed by the sequence set index record.

Alternate indexes for key-seguenced files. Optionally, one or more
alternate indexes can be built for an existing key-sequenced file. An
alternate index cannot be built for another alternate index file or for
a key-sequenced file with the REUSABLE option assigned.

Alternate indexes enable the logical records of a key-sequenced file
to be accessed sequentially and directly by more than one field. This
eliminates the necessity of having the same data stored in multiple key­
sequenced files that are sequenced by different fields for different
applications. The support of multiple indexes for a given file makes
VSAM key-sequenced organization particularly suitable for data base
applications.

The alternate key for an alternate index can be any fixed-length
field in a fixed position in the logical record. An alternate key, like
a primary key, can be a minimum of 1 byte and a maximum of 255 bytes in
length. If logical records in the data component are spanned, the
alternate key field must be present in the first control interval of the
spanned record. The alternate key field can overlap the primary key
field and any other alternate key fields when multiple alternate indexes
are defined.

When an alternate key appears in only one logical record in the base
key-sequenced file, it is a unique alternate key. If it appears in
multiple logical records, it is a duplicate or nonunique alternate key.
Nonunique alternate keys can appear in a maximum of 32,767 logical
records in the base key-sequenced file as long as the maximum possible
length for a spanned record in the data component of the alternate index
is not exceeded by the record fQr that alternate key. The data
component of an alternate index is always permitted to have spanned
records.

An alternate index can have nonunique alternate keys only if the
NONUNIQUE attribute is specified when the alternate index is defined.
When the NONUNIQUE parameter is not specified, any attempt to add a
nonunique key to an alternate index is rejected as a logical error when
VSAM is handling alternate index updating.

The index component of an alternate index cluster contains compressed
alternate keys in ascending collating sequence and is physically and
logically structured like the primary index for a key-sequenced file, as
shown in Figure 80.30.3. That is, the index component consists of an
index set that pOints to successively lower levels of the alternate
index and a sequence set that points to the highest alternate key in
each of the control intervals in the data component of the alternate
index. Physical index records are fixed in length and contain blocked
index entries. Index entries in a primary and alternate index contain
the same type of information.

The data component of an alternate index is identical in physical
format to the data component of a key-sequenced file. It contains one
variable-length logical record for each unique alternate key value. For
a key-sequenced file, this alternate key record contains system header
information, the alternate key value (not compressed), and the primary
key field (not compressed) of the logical record in the base key­
sequenced file that contains the alternate key. If the alternate key
appears in more than one logical record in the base file, the primary
key of each of these logical records is contained in the alternate key
record for that alternate key.

DOS/Virtual Storage Features Supplement 103

Primary keys are ordered in time-of-arrival sequence within the
logical record for a nonunique alternate key. That is, when another
primary key is added to an alternate key record in the data component of
an alternate index, it is placed at the end of the existing list of
pr imary keys.

A path is the means by which a base key-sequenced file is related to
one of its alternate indexes. r A path is defined and named using the
access method services program. Optionally, a password can be assigned
to the path. One path must be defined for each of the alternate indexes
of a key-sequenced file. When a given alternate index is to be used to
process a key-sequenced file, the path associated with that alternate
index must be specified in an OPEN macro. This causes both the key­
sequenced file and the alternate index to be opened.

When a path is opened, only keyed processing requests can be used.
Addressed and control interval access are not permitted. The keyed
processing that can be performed on a key-sequenced file using an
alternate key is the same as can be performed using a primary key. 'That
is, existing records in the base cluster can be retrieved, updated, or
deleted, and new records can be added using alternate key values. These
operations can be performed using keyed sequential, keyed skip­
sequential, or keyed direct processing.

An alternate index cluster (index and data component files) has its
own name and can be processed as a key-sequenced file independently from
its associated base key-sequenced file. To process an alternate index
cluster independently, the OPEN macro must state the alternate index
name or the path name associated with the alternate index. In the
latter case, the AIX option must be specified in the ACE for the
alternate index to cause independent processing of the alternate index.

when a key-sequenced file is being accessed by an alternate key, the
index component of the associated alternate index is searched, using the
same technique as is used for a primary index, to find a pOinter to the
appropriate control interval in the data component of the alternate
index. When the desired alternate key record is located in the data
component, the primary key is obtained and is used in the search of the
primary index, which points to the control interval in the base file
that contains the desired logical record.

An alternate index must be defined, using the access method services
program, before it can be created. An alternate index can be defined
only after its associated base file has been defined, and it can be
loaded only after the base file has been loaded. An alternate index can
be created using the access method services program (BLDINDEX command).
Alternatively, a user-written program that performs the same functions
as the BLDINDEX command can be used.

The BLDINDEX command causes a sequential scan of the specified key­
sequenced base file, during which alternate key values and the primary
keys of tile logical records in which they reside are extracted. The
extracted alternate keys are sorted into ascending sequence. Alternate
index records are constructed from the sorted alternate keys and their
associated primary keys. These index records are then placed in the
alternate index (a key-sequenced file).

Alternate index maintenance can be handled by the user or
automatically by VSAM. Alternate index updating by VSAM is requested by
specifying the UPGRADE attribute for an alternate index when it is
defined. Specifying the UPGRADE attribute for an alternate index makes
the index a part of the upgrade set of alternate indexes for a given
key-sequenced file. An alternate index can be part of the upgrade set
for a key-sequenced file even though it is not a member of a path for

104 DOS/Virtual storage Features Supplement

· .
the key-sequenced file. The maximum number of alternate indexes that
can be part of the upgrade set for a given key-sequenced file is 125.

Whenever a key-sequenced file is opened for keyed or addressed output
operations, VSAM automatically opens for output all the alternate ~
indexes in the upgrade set for the base file, unless the NOUPDATE job
control parameter is specified~for the key-sequenced file. If NOUPDATE
is not specified, then, whenever an existing logical record is erased or
updated or a new logical record is added during processing of the base
file (by a primary or an alternate key), the upgrade set of alternate
indexes is updated as appropriate. This updating is done as part of the
processing of the logical record. The journaling exit is not taken
during updating of the alternate indexes.

The upgrade set of alternate indexes is not updated by VSAM if
control interval access is used to process a base file. In addition,
VSAM. does not update any alternate indexes for a base key-sequenced file
when the NOUPGRADE attribute is specified for the alternate index.
Updating must be performed by the user. VSAM assumes all required
updating of the alternate indexes for a key-sequenced file has been done
and does not make any synchronization checks between a key-sequenced
file and its alternate indexes during OPEN processing.

During processing of a base key-sequenced file via an alternate
index, an error can occur while processing the key-sequenced file, the
alternate index being used to access the base, or an alternate index in
the upgrade set. When an error occurs, VSAM returns a function code to
the RPL used in the request that indicates which file was involved in
the error.

Key-sequenced file processing. The records in a key-sequenced file
can be processed sequentially, skip-sequentially, or directly using the
primary or an alternate key. Such processing is called keyed
sequential, keyed skip-sequential r or keyed direct processing,
respectively. Keyed access can be used for key-sequenced files that
contain nons panned or spanned records. All volumes of a key-sequenced
file must be mounted at OPEN time for keyed processing.

Records can also be processed sequentially or directly by relative
byte address. Such processing is called addressed sequential or
addressed direct processing, respectively. Control interval access is
supported as well. When addressed sequential processing is used, all
volumes of the file need not be mounted at OPEN time. As many volumes
as there are available direct access devices Cab be mounted at OPEN and
the mounting of additional volumes will be requested as they are
required, as is done for SAM files.

Addressed processing cannot be used with key-sequenced files that
contain spanned records, since the spanned record may not be contained
in physically contiguous control intervals. Spanned records cannot be
processed in locate mode (in the I/O buffer). A work area is required.

The REA of a logical record in an existing key-sequenced file can
change only when a record is inserted or deleted, or the size of a
variable-length record is altered. A user-written routine should be
included to record changes in RBA's when REA is used for update. This
routine is entered from VSAM via the journaling exit when appropriate.
Programs that process a key-sequenced file by REA need not be modified
if direct access device type is changed.

Keyed sequential processing of a key-sequenced file is like
sequential processing of an ISAM file. It is used to load a key­
sequenced file and to retrieve, update, delete, and add logical records
to an existing key-sequenced file. When keyed sequential processing is
used, records can be processed in ascending sequence by primary key,

DOS/Virtual storage Features Supplement 105

using GET and PUT macros. This is called forward processing. The ERASE
macro (not supported by ISAM) can be used to physically delete records.

Key values need not be user-supplied for keyed sequential processing,
sinde VSAM automatically obtains the next logical record in sequence.
The POINT macro can be issued at any time during processing to position
VSAM at a specific logical record from which sequential processing is to
proceed. Positioning can be in a forward or backward direction. Only
the sequence set of the primary index is referenced for keyed sequential
processing by primary key and only for control interval sequencing.

The following types of operations, which are not supported by ISAM,
can be performed on key-sequenced files using keyed sequential
processing:

• Records can be processed sequentially by an alternate key. Existing
logical records can be retrieved, updated, and erased and new
records can be added to a key-sequenced file using keyed sequential
processing by an alternate key. Logical records containing the same
non-unique alternate key are presented in the sequence in which they
were entered in the data component of the alternate index (for both
forward and back~ard processing, which is described below). The
sequence set of the alternate index and the primary index are used
during this type of processing_

• Records can be processed in descending primary or alternate key
sequence_ This is called previous or backward processing_ GET, PUT
(for update only), ERASE, and POINT macros can be used with backward
processing as with forward processing. switching between forward
and backward processing can be accomplished using the POINT macro or
a GET macro for direct processing.

• A mass sequential insertion technique is automatically used by VSAM
when additions are sequenced and ma4e using keyed sequential
processing. When VSAM determines that two or more logical records
are to be inserted between two existing logical record~, the control
interval (and its sequence set index record if control interval
splitting occurs) is not written until the control interval has been
packed with all the additions that will fit. Mass sequential
insertion is also used by VSAM to add logical recoras after the last
existing record (extend a key-sequenced file).

The time required to make additions and update the primary index is
reduced by using the mass sequential insertion facility of keyed
sequential processing. If additions are not sorted and keyed direct
processing is used to add the records, the entire primary index must
be searched to determine where each logical recorg is to be placed.

Keyed skip-sequential proceSSing, which is not supported by ISAM, is
a variation of direct processing. It can be used for retrieval, update,
add, and delete operations (GET, PUT, and ERASE macros). Keys of the
logical records to be processed must be presented by the user in
ascending sequence. Previous processing is not supported for skip­
sequential operations. Primary or alternate keys can be used. Only the
sequence set of the primary index is used for skip-sequential proceSSing
using the primary key. When an alternate key is used, the sequence set
of the alternate index and the entire primary index are used.

If a nonunique alternate key is encountered during skip-sequential
retrieval operations, the first logical record indicated in the
alternate index record in the data component of the alternate index is
presented in response to the GET macro, and an indication is given that
additional records exist. These must be retrieved by keyed sequential
processing.

106 DOS/Virtual storage Features supplement

When a relatively small number of transactions that are in primary
(or alternate) key sequence are to be processed, skip-sequential
processing can be used to retrieve the records directly by key. Since
the primary keys presented are in sequence, the access method uses only
the sequence set index level of the primary index to locate the desired
records.

Skip-sequential processing can be used to avoid retrieving the entire
file sequentially to process a relatively small percentage of the total
number of records, or to avoid using direct retrieval of the desired
records, which causes the entire primary index to be searched for each
record. Skip-sequential processing by alternate key offers the
advantage of eliminating a search of the index set of the alternate
index for each record to be processed.

Keyed direct processing of a key-sequenced file is like direct
processing of an ISAM file. It can be used to retrieve, update, delete,
and add logical records. A key value (primary or alternate) must be
presented by the user for each logical record that is to be processed.
For a retrieval operation, the key can be the exact key of the desired
record, a generic key, or a key that is less than or equal to the key of
the desired record. In ISAM, direct retrieval by exact key value only
is supported.

The entire primary index (or an entire alternate index and the entire
primary index) is searched to locate the requested logical record during
keyed direct processing. As for keyed skip-sequential processing, if a
nonunique alternate key is specified, only the first logical record with
that alternate key is presented and the user must obtain the others via
keyed sequenti~l processing.

Addressed sequential can be used to process the logical records of a
key-sequenced file in ascending (forward) or descending (backward) REA
sequence. It can be used to retrieve, update, or delete logical records
(GET, PUT for update, and ERASE macros). Addressed sequential cannot be
used to add logical records to a key-sequenced file or to change the
length of existing variable-length records.

The user need not supply RBA's during addressed sequential
processing. VSAM automatically retrieves records in RBA sequence.
Logical records will not be presented in primary key sequence if there
have been any control interval or control area splits. POSitioning to a
given REA can be accomplished using the POINT macro, as for keyed
sequential processing.

Addressed direct processing enables the logical records of a key­
sequenced file to be processed directly by user-specified RBA's. As for
addressed sequential processing, only retrieval, update, and delete
operations can be performed. Additions and record length changes cannot
be made using addressed direct processing.

sequential and direct processing of a key-sequenced file by control
intervals is also supported. Skip-sequential processing by control
intervals is not supported. For sequential access, records are
processed in ascending sequence by control interval. Backward
processing is not permitted. Each GET causes the next control retrieval
in sequence to be presented. For direct access, the RBA of each desired
control interval must be supplied by the user. Control intervals can be
processed in the I/O buffer (except when chained RPL's are used) or in a
work area.

The GET, PUT for update, POINT, and ENDREQ macros can be used with
control interval processing. When updating using control interval
access, a control interval can be rewritten without first having been
retrieved. The ERASE macro cannot be used nor can PUT macros be issued

DOS/virtual Storage Features Supplement 107

to load or extend a key-sequenced file when control interval processing
is utilized.

processing of the primary or, alternate index file for 2 key-sequenced
file. The primary index of a key-sequenced file can be processed using
GET and PUT macros. The index component (file) must be opened alone.
The primary index can then be processed like an entry-sequenced file.
It can be accessed using addressed or control interval processing. 'lhe
alternate indexes for a key-sequenced file can be processed in the same
ways as can a key-sequenced file.

Processing summary. Table 80.30.1 summarizes the primary types of
processing supported for key-sequenced VSAM files (control interval
processing is not included in the table).

Table 80.30 .• 1. Types of processing supported for VSAM key-sequenced
files. (An entry indicates whether the access type is
supported, a key or RBA is required, and keys or RBA'S
must be presented in sequence. Where keyed processing is
specified, the key can be the primary or an alternate
key. Addressed processing via an alternate index path is
not permitted.)

Type of Keyed Keyed Skip- Keyed Addressed Addressed
Access Sequential Sequential Direct Sequential Direct

(forward (forward (forward
and processing and
backward only) backward
processing) processing)

Retrieval No keys Ke~ in Keys not No REA's RBA's not
oIlly (GET required ascending in required in
without sequence sequence sequence
update)

Retrieval and No keys Keys in Keys not Retrieval Retrieval
update, required ascending in and update and update
including sequence sequence only. No only. No
changing record record size
record size size changes.
(GET and PUT changes. RBA's not
for update) No REA'S in sequence.

required.

Create and creation Keys in Keys not
add (PUT using ascending in
without primary sequence sequence
update) key only.

Forward
processing
only .•
No keys
required.

Delete No keys Keys in Keys not No REA's REA's not
(ERASE) required ascending in required in sequence

sequence sequence

108 DOS/Virtual storage Features Supplement

Entry-sequenced File Orqanization and processing

The logical records in an entry-sequenced file are ordered by the
sequence in which they are presented for entry into the file. Free
space cannot be left within the control intervals and control areas of
an entry-sequenced file when it is defined. Additions to an existing
entry-sequenced file are placed in any available space left at the end
of the file. Extents can be added to an existing entry-sequenced file
if secondary allocation was specified when the file was defined.
Although an entry-sequenced file consists only of a data component and
cannot have a primary index, it is still referred to as a cluster.

All logical record extents of an entry-sequenced file must be placed
on volumes of the same direct access type. However, an entry-sequenced
file and its alternate index data set(s), if any, can be placed on
different direct access device types. The index component and the data
component for an alternate index can also be on different device types.

The ERASE macro is not supported for entry-sequenced files. A record
that is to be deleted must be marked deleted with an installation­
defined identification. Space made available by marking a record
deleted is not reclaimed. The space occupied by a record marked deleted
can be reused only by storing a new record of the same size in the
space.

Available space at the end of the file is also used when the size of
an existing record in a variable-length entry-sequen,ced file is to be
changed. The existing record must be marked deleted by the user with an
installation-defined deletion identification, and the lengthened or
shortened record must be written at the end of the file.

The only time a change is made in the RBA of a logical record in an
entry-sequenced file is when the size of the logical record is changed
by the user. Other records are not affected since the changed record is
moved to the end of the file. An entry-sequenced file can also be moved
from one direct access device type to another, and programs need not be
modified because the RBA's of the logical records do not change.

Alternate indexes for entry-sequenced files. Optionally, one or more
alternate indexes can be built for an existing entry-sequenced file. An
alternate index cannot be built for another alternate index file or for
an entry-sequenced file with the REUSABLE option assigned. An alternate
index for an entry-sequenced file has the same physical structure,
logical organization, and attributes as an alternate index for a key­
sequenced file, and both types of alternate index are created and
maintained using the same techniques (see alternate index discussion
under "Key-Sequenced File Organization and Processing").

The only wayan alternate index for an entry-sequenced file differs
from one for a key-sequenced file is that it contains REA values instead
of primary keys in its data component. That is, each alternate key
record in the data component contains one or more RBA's of the logical
record(s) in the entry-sequenced file that contain that alternate key.
The RBA's obtained from the alternate index are used to directly
retrieve the required logical records from the entry-sequenced file.

If an alternate index for an entry-sequenced file is to be created
and/or maintained by the user instead of by using BLDINDEX and VSAM
upgrade set support, RBA values must be obtained. Whenever a new
logical record is placed in an entry-sequenced file (either during file
creation or when making additions), VSAM returns the RBA of the record.
These RBA's can be gathered and used to create and maintain the
alternate index.

DOS/Virtual Storage Features Supplement 109

An alternate index must be updated only when a new record is added to
or deleted from the base entry-sequenced file or when the size of an
existing record is increased or decreased (a record size change causes a
change in the REA of the record).

EntrY-Sequenced file processing. Addressed sequential, addressed
direct, and control interval processing are supported for entry­
sequenced files that do or do riot contain spanned records. When
addressed sequential is used, records can be processed in ascending or
descending RBA sequence, using GET and PUT macros. The POINT macro can
be used for forward or backward positioning to a specific RBA. For
addressed sequential processing, no REA is given by the user. VSAM
automatically presents records in REA sequence.

when addressed sequential is used to process records in ascending REA
sequence, existing records can be retrieved, updated (but not changed in
size), and marked deleted, and new records can be added. Record size
changes can be accomplished by the procedure described previously. When
addressed sequential is used to process records in descending REA
sequence, records can be retrieved, updated, and marked deleted. New
records cannot be added and the size of existing records cannot be
changed. .

Addressed direct processing by user-supplied RBA's can be used to
retrieve records, update their contents (but not change their size), and
mark records deleted. New records cannot be added and record size
changes cannot be made during addressed direct processing.

An entry-sequenced file can be processed by control interval using
addressed sequential or addressed direct (by RBA) access. For addressed
sequential, only forward processing is permitted. The control intervals
in an existing entry-sequenced file can be retrieved and updated (but
new control intervals cannot be added) using sequential or direct access
and a new entry-sequenced file can be created using sequential control
interval processing.. GET, PUT, POINT, and ENDREQ macros can be used.
If updating is to be performed, a work area must be used.

When an alternate index is created for an entry-sequenced file, the
records it contains can be processed using sequential, skip-sequential,
or direct processing by the alternate key value. Records can be
retrieved, updated (but not changed in size), and marked deleted when
the alternate index is used to access the entry-sequenced file.

An entry-sequenced file can also be used like a DAM file. . Instead of
using an alternate index of REA and control field values to process the
records directly, a randomizing routine can be used to associate the
control field of a logical record with an RBA. The randomizing routine
must include a technique for assigning an alternate REA to synonyms
(records whose control field converts to the same REA as an existing
record in the file).. The entry-sequenced file must be preformatted with
dummy records before the logical records are placed in the file.

Table 80.30.2 summarizes the primary types of processing supported
for VSAM entry-sequenced files. Access by control interval is not
included in the table.

110 DOS/Virtual Storage Features Supplement

Table 80 .• 30.2. Types of processing supported for VSAM entry-sequenced
files. (An entry indicates whether the access type is
supported, an alternate key or RBA is required, and
alternate keys or RBA'S must be presented in sequence.)

processing Not Using an
Alternate Index

Processing Using an
Alternate Index

Type of
Access

Retrieval
only (GET
without
update)

Addressed
Sequential
(forward and
backward
processing)

No RBA
required

Retrieval No RBA
and update required
without
record
size
changes
(GET and
PUT for
update)

Create and
add after
end of
file (PUT
without
update)

Delete

Forward
processing
only. No
RBA
required .• ,

Records
marked
deleted by
user

Addressed
Direct

RBA's not
in sequence

Keyed
Sequential
(forward
and back­
ward
processing)

No keys
required

RBA's not in No Keys
sequence required

Records Records
marked marked
deleted by deleted by
user user

Keyed Skip­
Sequential
(forward
processing
only)

Keys in
ascending
sequence

Keys in
ascending
sequence

Records
marked
deleted by
user

Keyed
Direct

Keys not
in
sequence

Keys
not in
sequence

Records
marked
deleted
user

by

identifica- identifica- identifica- identifica- identifica-
tion. No tion. RBA's tion. No tion. Keys tion. Keys
RBA'S not in keys in ascending not in
required. sequence. required. sequence. sequence .•

Relative Record File Organization and processing

A relative record file consists of a number of fixed-length slots, 1
to N, where N is the maximum number of logical records that the file can
contain. A slot has a unique relative record number and can contain one
logical record. Logical record size and the RBA of a logical record
cannot change.

Each control interval in a relative record file contains the same
number of slots. The record length specified for a relative record file
when it is created determines the size of a slot. Free space cannot be
left within control intervals and control areas when a relative record
file is defined. All extents of the file must reside on the same device
type. An index cannot be created for a relative record file; however, a
relative record file is still considered to be a cluster.

Keyed sequential, keyed skip-sequential, keyed direct, and control
interval processing are supported for relative record files. The

DOS/Virtual storage Features Supplement 111

relative record number is used as a key for key"ed processing. A
relative record file can be created using keyed sequential, skip­
sequential, or direct processing.

Keyed sequential processing of a relative record file is like keyed
sequential processing of ~ key-sequenced file. Records can be processed
in ascending or descending sequence by relative record number. A key
value (relative record number) is not supplied by the user. VSAM
retrieves the records in slot number sequence and returns the relative
record number of each logical record retrieved. GET, PUT, and ERASE
macros can be used to retrieve, update, add, and delete records. The
POINT macro can be used to position VSAM forward or backward to a given
relative record number.

When the ERASE macro is issued to delete a record during keyed
sequential processing, VSAM writes binary zeros in the indicated slot.
The slot can then be reused. That is, another record of the same length
can be placed in the slot. During sequential retrieval operations,
deleted records are not presented to the user. When a new record is
added during keyed sequential processing, it is placed in the next
highest available slot relative to the current slot position and the
relative record number of the selected slot is returned to the user.

Keyed skip-sequential and keyed direct processing can be used to
retrieve, update, add, and delete records in a relative record file.
For keyed skip-sequential processing, the relative record number of the
desired records must be supplied by the user in ascending sequence.
Backward processing is not supported. For keyed direct processing, the
relative record numbers supplied need not be in any sequence.

VSAM converts the supplied relative record number to an RBA value to
determine the control interval that contains the requested record for
keyed skip-sequential and keyed direct processing. If a deleted record
is requested, a no-record-found indication is returned. When a record
is added to the data set, the relative record number of a slot that does
no~ contain a record must be specified. If a slot passed the current
end-of-file indicator is specified, VSAM preformats the file from the
current end of file up to and including the control interval that is to
contain the new record.

A relative record file can be processed by control interval using
addressed sequential or addressed direct (by RBA) access. The control
intervals in an existing entry-sequenced file can be retrieved and
updated (but new control intervals cannot be added) using sequential or
direct access, and a new relative record file can be created using
sequential control interval processing. only forward processi"ng is
permitted for sequential operations.

GET, PUT, POINT, CHECK, and ENDREQ macros can be used with control
interval processing. If updating is to be performed, a work area must
be used. A relative record file cannot be extended using control
interval processing.

Table 80.30.3 summarizes the primary types of processing supported
for a relative record file. Control interval access is not included in
the table.

112 DOS/Virtual Storage Features Supplement

Table 80.30.3. Types of processing supported for VSAM relative record
files. (An entry indicates whether the access type is
supported, a key is required, and keys must be presented
in sequence.) •

Type of Access Keyed sequential Keyed Skip- Keyed Direct
(forward and Sequential
backward processing) (forward pro-

cessing only)

Retrieval only No keys required Keys in ascending Keys not in
(GET without sequence sequence
update)

Retrieval and No keys required Keys in ascending Keys not in
update without sequence sequence
record size change
(GET and PUT for
update)

create and No keys required Keys in ascending Keys not in
add (PUT sequence sequence
without update)

Delete No keys required Keys in ascending Keys not in
(ERASE) sequence sequence

VSAM Catalogs

All VSAM files (index as well as those with logical records) must be
cataloged in the VSAM master catalog, which is always on logical unit
SYSCAT, or in a VSAM user ~atalog. Information required to process a
VSAM file, such as its location and physical characteristics, is
contained in a VSAM catalog. This cataloging facility is similar to the
data set cataloging facility provided for all OS and OS/VS data sets and
is a new data management facility for DOS/VS users. Non-VSAM files can
also be defined in a VSAM catalog.

There must be one VSAM master catalog for a DOS/VS operating system
that contains VSAM. Optionally, one or more VSAM user catalogs can be
defined. Each catalog is an individual file and can be assigned any
programmer logical unit. Each VSAM user catalog has an entry in the
VSAM master catalog. Each VSAM file is cataloged in the VSAM master
catalog or a user catalog, but not both. All VSAM files on the same
volume must be cataloged in the same VSAM catalog. Duplicate file names
in the same VSAM catalog are not permitted and a given file cannot
appear in more than one VSAM catalog.

VSAM user catalogs can be used to reduce the size of the VSAM master
catalog (to reduce catalog processing time), minimize the effect of a
damaged catalog, and enable a VSAM file to be portable from one system
to another without having to use the access reethod services program to
process VSAM master catalogs.

A VSAM user catalog can be made available to a job by specifying
IJSYSCUC as the file name in the DLBL statement for the catalog. The
job catalog is then used for processing all VSAM files specified by the
job unless it is overridden by the CATALOG parameter of the access
method services program or the CAT parameter of the DLBL statement.

The following information is recorded in the catalog record for a
VSAM file:

• Device type and volume serial numbers of volumes containing the file

DOS/Virtual Storage Features Supplement 113'

• Location of the extents of the file and secondary space allocation,
if any

• Attributes of the file, such as control interval size, physical
record size, number of control intervals in a control area, location
of the primary key field for a key-sequenced file, etc.

• statistics, such as the number of insertions, the number of
deletions, and the amount of remaining free space

• Password protection information

• An indication of the connection between files and their index(es):
the index and data components of a key-sequenced file; the index and
data components of an alternate index cluster; the alternate index
and the base cluster of a path; and an alternate index and upgrade
set and its base cluster.

• Information that indicates whether a key-sequenced file or its
primary index has been processed individually (without reference to
the other)

A VSAM catalog also contains information regarding the location of
data spaces and available space on volumes that contain VSAM files.
Therefore, a volume containing a VSAM file need not be mounted in order
to determine whether it contains available space. VSAM catalog/DADSM
routines are used to process the catalog and to allocate space on VSAM
catalog and file volumes.

Several types of entries are used in a VSAM catalog to describe the
various objects the catalog defines (files, available space, etc.). The
entry types are cluster, data component, primary index component,
alternate index component, path, upgrade set, user catalog, and non-VSAM
space or volume. A given file may require more than one entry type for
its description. A key-sequenced file, for example, requires a cluster,
primary index component, and data component entry.

. A VSAM catalog is logically structured as a key-sequenced file that
contains 44-byte keys and variable-length records. The data component
is physically divided into two address range areas. One area is the
high-address range and the other is the low-address range. The index
component is physically embedded between the two address range areas.

A VSAM catalog can be accessed as a catalog using access method
services commands and the SHOWCAT, SHOWCB, and TESTCB macros. A VSAM
catalog can also be opened and processed as a key-sequenced file.
Keyed, addressed, anq control interval processing are permitted.

A recovery facility is available for VSAM catalogs that enables VSAM
files and their catalog entries to be recovered in the event that a VSAM
catalog cannot be read for any reason. This recovery facility cannot be
used for VSAM catalogs that contain non-VSAM files. Use of the recovery
facility for a VSAM catalog is specified via the RECOVERABLE attribute.
Use of this facility is optional.

When a catalog is to be recoverable, catalog information for each
file described by the catalog is recorded both in the catalog and a
recovery area on the first volume of the file on which a data space is
defined. Thus, each volume identified by a recoverable catalog contains
its own catalog information.

A catalog recovery area is automatically reserved on a volume by VSAM
when the first data space allocation occurs for the volume. The
location of the catalog recovery area is specified in the format 4 label
for the volume and is not indicated in the associated catalog_ Whenever

114 DOS/Virtual storage Features Supplement

an entry in a recoverable catalog is updated, the corresponding catalog
information in the catalog recovery area of the affected volume is also
automatically updated. This means the affected volume must be mounted.

The EXPORTRA, IMPORTRA, and LISTCRA commands of the access method
services program are provided to recover catalog entries and VSAM files.
The EXPORTRA corr~and accesses the catalog recovery area for the
specified VSAM files in order to open them and then produce a copy of
the specified VSAM files. The IMPORTRA command is then used to
reestablish the copied VSAM file and its catalog entry in a VSAM
catalog. .

The LISTCRA command can be used to list the entire contents of one or
more catalog recovery areas or to list only these entries that do not
have a corresponding entry in the specified VSAM catalog.

The RESETCAT command can be used instead of EXPORTRA and IMPORTRA to
recover a catalog that is inconsistent with the catalog recovery areas
of the volumes it defines. The RESETCAT command processes only the
recoverable catalog and its associated catalog recovery areas; that is,
no movement of the data sets defined in the catalog occurs.

RESETCAT can be used to synchronize the entries in a recoverable
catalog to the existing level of all the volumes it describes, or to a
previous level, using a restored backup copy of the unusable catalog or
restored backup copies of the associated catalog recovery area volumes,
as appropriate. When RESETCAT is used, all catalog entries are reset.
Selective resetting of specific entries is not permitted. The
EXPORTRA/IMPORTRA method can be used to selectively repair specific
catalog entries.

Access Method Services program

The access method services general purpose, multifunction service
program is provided to support functions required to create, maintain,
and back up VSAM files. Facilities to convert ISAM and SAM files to
VSAM organization are also included. The access method services program
is invoked via a calling sequence and the functions desired are
requested via a set of access method services commands. In DOS/VS, the
access method services program is called from a problem program or
invoked by executing the IDCAMS program, which can be executed as a job
step with commands supplied via the input stream.

The access method services program is used to:

• Define and allocate direct access space for all VSAM files,
alternate indexes, and VSAM catalogs. The DEFINE function must te
used to describe a VSAM file or catalog before any data is placed in
the file or the catalog. The DEFINE function is also used to define
paths and data spaces and to catalog non-VSAM files in a VSAM
catalog •

• Create, reorganize, and back up VSAM files. Input to the REPRO
function can be an ISAM, SAM, or VSAM (key-sequenced, entry­
sequenced, or relative record) file. The output can be a VSAM (key­
sequenced, entry-sequenced, or relative record) or SAM file. A
range of records that are to be processed can be specified for the
input file (by key, REA, or relative record number). When the input
and the output organizations are different, conversion occurs. The
REPRO function, therefore, can be used to convert an ISAM file to
VSAM key-sequenced format, initially create a VSAM file from
sequenced records, merge new logical records into an existing VSAM
file, and reorganize a VSAM file.

DOS/Virtual Storage Features Supplement 115

• Create a backup copy of a VSAM catalog and reload it if necessary.
The REPRO function can be used to unload a VS~l catalog to a SAM
file or a VSAM key-sequenced or entry-sequenced file. The copy
cannot be used as a catalog but can be unloaded (using REPRO) into a
VSAM catalog if 'the original catalog becomes unusable. The copy can
be reloaded to an earlier or later version of the original catalog
that was unloaded or to a newly defined catalog.

• Create an alternate index for a key-sequenced or entry-sequenced
file. Multiple alternate indexes for the same file can be built at
the same time.

• Print all or the specified range of logical records of a SAM, ISAM,
or VSAM file or a VSAM catalog. Three formats are supported: each
byte printed as a single character, each byte printed as two
hexadecimal digits, and a combination of the previous two (side by
side) •

• Maintain VSAM catalogs (alter, delete, or list catalog entries).
Certain characteristics of a VSAM file can be modified by altering
the catalog entry for the file.

• Delete files, data spaces, alternate indexes, and catalogs and make
the space available for reallocation. The freed space is
overwritten with binart zeros if the erase option is specified,. The
DELETE function is also used to delete paths and uncatalog non-VSAM
files.

• Perform processing required to make a VSAM file portable from one
System/370 to another if a VSAM user catalog is not available. ~he
EXPORT command is used to copy a VSAM file (any organization) to a
tape or disk volume as a sequentially organized file.. Required
information is extracted from the catalog entry for the file and
written on the transporting volume as well. The IMPORT command is
used to create a VSAM file and its catalog entry from the file
created by an EXPORT command,.

Exportation can be temporary or permanent. If it is temporary, a
copy of the file is retained in the exporting system. Thus, a copy
of the file exists in both the exporting and importing systems. If
exportation is permanent, the catalog entry and space for the file
are deleted from the exporting system so that the file is contained
only in the importing system.

EXPORT and IMPORT are also used to disconnect a VSAM user catalog
from one VSAM master catalog and catalog it in another VSAM master
catalog. In this case, the volume containing the VSAM user catalog
is transported from one system to another without copying.

• Create backup copies from VSAM files. The EXPORT command is used to
create the backup copy (as for exportation) and the IMPORT command
is used to load the backup coPY into the system if necessary.

• Verify the accessibility of an existing VSAM file (using the VERIFY
command). This function involves checking for valid end-of-file or
end-of-key range information in the catalog entry for a VSAM file.
If the catalog information does not agree with the actual end-of­
file or end-of-key range in the file, the catalog information is
updated.

• Perform catalog recovery functions using the EXPORTRA, IMPORTRA, and
LISTCRA commands, as previously described.

Since VSAM files must be cataloged, and the access method services
program must be used to define and allocate space for VSAM files, a

116 DOS/Virtual storage Features Supplement

minimum number of job control parameters for DD statements are used by
VSAM. The only changes to job control required for VSAM support are in
the DLBL statement. Note that VOL, X'lENT, and DLAB label statements are
not supported for a VSAM file. EXTENT and DLBL statements must be used.

The DLBL statement has a new code parameter to identify VSAM files
and CAT and BUFSP parameters. Optionally, the CAT parameter can be
specified to indicate the VSAM user catalog containing the VSAM file to
be access~d. The CAT parameter specification overrides the job catalog
defined for the job, if any. Optionally, the BUFSP parameter can be
specified to indicate the amount of buffer space to be used in
processing the VSAM file. This value overrides the buffer space
specified in the catalog entry and/or ACE for the file.

Password Protection

A full password protection facility is supported for VSAM.
Optionally, passwords can be defined for clusters, cluster components
(data component and index component), alternate indexes, paths, and VSAM
catalogs. Passwords are kept in VSAM catalog entries. The password can
be supplied by the programmer via the ACB. If password protection is
indicated for a VSAM file and the ACE does not specify a password, the
operator must supply the correct password in order for the file to be
opened. Up to seven retries can be made as specified when the file is
defined.

If the ACB does not specify the correct password or the.operator does
not supply the correct password in the number of attempts permitted, the
VSAM file is not opened. The user can also specify that the operator is
not to supply the password. In this case, it must be supplied correctly
via the ACB in order for the file to be opened.

Multiple levels of protection are provided:

• Full access, which allows access to a file, its index(es), and its
catalog entry. Any operation (read, add, update, delete) can be
performed on the file and its catalog entry. The master password of
the base key-sequenced file must be specified when an alternate
index is to be created for the base.

• Control interval access, which allows the user to read and write
entire control intervals using the control interval interface. All
read, write, and update operations can be performed at the logical
record level as well. This facility is not provided for general use
and should be reserved for system programmer use only.

• Update access, which allows logical records to be retrieved,
updated, deleted, or added. Limited modification of the catalog
entries for the file is permitted (definition of new objects and
alteration of existing objects), but an entry cannot be deleted.

• Read access, which allows access to a file for read operations only.
Read access to the catalog entries of· the file is permitted also.
No writing is allowed.

A password can be defined for a given VSAM file for each level of
protection: master password, control interval access password, read­
write-add-delete password, and read-only password. When multiple
passwords are defined for a file, the password given when the file is
opened establishes the level of protection to be in effect for this
OPEN.

Authorization to process a VSAM file can be supplemented by a user­
written security authorization routine. It is entered during OPEN

DOS/Virtual storage Features Supplement 117

processing after password verification has been performed by VSAM,
unless the master access password was specified. A user security
authorization record of up to 255 bytes maximum can also be added to the
catalog entry for the file. This record can supply data to the user­
written security authorization routine during its processing.

File Sharing

A VSAM file can be accessed concurrently by two or more subtasks
within the same partition and two or more job steps (partitions). Both
types of sharing can be used for a VSAM file at the same time. The type
of file sharing permitted for two or more partitions is controlled by
using the SHAREOPTIONS parameter of the DEFINE command when the VSAM
file is defined. Cross-system sharing of VSAM files is not supported.

The following types of cross-partition-sharing options are supported:

• The file can be opened by one user for output processing (to update
or add records) or the file can be opened by multiple users for read
operations only. Full read and write integrity is provided by this
option (SHAREOPTIONS 1).

• The file can be opened by one user for updating or record addition
(output operations) and by multiple users for read-only processing.
Since only one user can perform write operations, write integrity is
provided by this option. However, read integrity must be provided
by each user since users can read a record that is in the process of
being updated (SHAREOPTIONS 2).

• The file can be opened by any number of users for both read and
write operations. File integrity must be maintained by the user.
No integrity (read or write) is provided by VSAM (SHAREOPTIONS 3).

• The file can be opened by any number of users for both read and
write operations. VSAM provides write integrity by using the DOS/VS
track hold facility and read in1!egrity only for records read for
update (SHAREOPTIONS 4). When this option is chosen, each task can
open only one ACB for a file at a time and a given ACB can be opened
by only one task at a time.

ISAM Interface Routine

The ISAM interface routine is provided as an aid in converting from
ISAM organization to VSAM organization. It enables existing programs
that process ISAM files to be used to process key-sequenced VSAM files
without modification of ISAM macros. The VSAM files can be newly
created or those that have been converted from ISAM format to VSAM key­
sequenced format. The ISAM interface routine requires the presence of
the track hold feature in the DOS/VS supervisor.

The ISAM interface routine permits VSAM key-sequenced files to be
processed by both ISAM programs and VSAM programs. This allows existing
ISAM application programs to be used as well as additional applications
that take advantage of new VSAM facilities to process the saree VSAM
files. The ISAM interface routine for DOS/VS VSAM can be used in
Assembler, ANS COBOL, PL/I, and RPG II programs. The high-level
language translators that support VSAM directly, without use of the ISAM
interface, are the DOS PL/I Optimizing Compiler and Libraries, DOS/VS
COBOL, and Full ANS COBOL program products.

The ISAM interface routine operates in conjunction with VSAM access
method routines. The interface routine intercepts ISAM requests and
converts t,hem to equivalent VSAM requests. Hence, only functions of

118 DOS/Virtual storage Features Supplement

ISAM that are equivalent to those of VSAM are supported by the ISAM
interface routine. The only ISAM facility that the ISAM interface
routine does not support is record retrieval by record ID (CCHHR). In
addition, no device-dependent data is returned when the ERREXT parameter
is specified in the DTF. Similarly, with a few exceptions, if VSAM
facilities that are not supported by ISAM are to be used, an existing
ISAM program must be modified to define a VSAM file and to use VSAM
macros. Assembler Language macros for"ISAM and VSAM are not compatible.

When the ISAM interface routine is used by an ISAM program, existing
ISAM job control statements for the ISAM file must be changed to VSAM
job control statements as appropriate. The ISAM interface routine and
the access method services program simplify the amount of effort
required to replace ISAM file organization with VSAM organization within
an installation.

Virtual Storage Requirements

DOS/VS VSAM uses GETVIS and FREEVIS macros. Hence, a problem program
that uses VSAM must always execute in virtual mode. VSAM programs must
also specify the SIZE parameter on the EXEC statement to make a virtual
storage pool above the problem program area available for VSAM use.
This GETVIS area is used to contain the VSAM logic module, VSAM I/O
areas, the ISAM .interface routine, if required, and VSAM control blocks
other than access control blocks (ACE'S), request parameter lists
(RPL's), and the exit lists (EXLST's).

The problem program area contains only VSAM ACB's, RPL'S, EXLST's,
and the expansions of VSAM macros. If the problem program uses the
GENCB macro to generate VSAM control blocks, the ACB's, RPL's, and
EXLST's will reside in the partition GETVIS area instead of the problem
program area. VSAM uses the channel program translation and page fixing
facilities of the channel scheduler extension.

A minimum of 302K plus buffer and control block requirements are
needed within a virtual partition for VSAM routines when the access
method services program is not used. If this program is used, a virtual
partition must contain up to 450K bytes (depending on the functions to
be used) for exclusive VSAM use. VSAM routines are dynamically loaded
into the GETVIS area of a virtual partition when a VSAM file is opened
(unless VSAM routines are made resident in the SVA).

The VSAM routines that are relocatable and reentrant' can be made
resident in the SVA so they can be shared by concurrently executing
problem programs. Making VSAM routines resident in the SVA also saves
the time that is required to dynamically load them into a partition each
time they are required. Most of the VSAM logic modules, some VSAM
catalog/space management routines, and the ISAM interface routine can be
made resident in the SVA. No access method services routines can be
made resident in the SVA,. The control statements required to make these
VSAM routines SVA-resident are contained in the IBM-supplied cataloged
procedures VSAMSVA and VSAMRPS. The SVA-eligible VSAM phases specified
in VSAMSVA require 302K of virtual storage in the SVA. The system
GETVIS area in the SVA is not used by VSAM.

When VSAM routines are made resident in the SVA, additional virtual
storage for control blocks and buffers must be made available in each
partition in which VSAM is to execute. This amount is 30K bytes plus
the following minimum for each VSAM file: 3K bytes plus 2 times data
control interval size plus the index control interval size. If VSAM
routines are not made resident in the SVA, 302K bytes plus the buffer
and control block requirements must be available in each virtual
partition that will use VSAM.

DOS/virtual storage Features Supplement 119

Note that VSAM has no logic module generation macros. When VSAM is
included in a DOS/VS system, standard VSAM modules are placed in the
system core image library during system generation. The capability of
assembling or link-editing VSAM modules with a problem program does not exist.

Summary

Highlights of VSAM when it is compared with ISAM are as follows.

VSAM provides new features:

• Three data organizations are supported.

• Variable- as well as fixed-length logical records are supported.

• Files are direct access device-type independent.

• Direct access space utilization is maximized by device type by using
spanned blocked logical records within a control interval.

• Multiple indexes are supported for key-sequenced and entry-sequenced
files.

• Additions and index entries are blocked, and disk space requirements
are therefore reduced.

• Direct access space management for VSAM files relieves the user of
this funtion. Key-sequenced VSAM files can be allocated to specific
volumes by key range.

• Secondary space allocation is supported so that an existing file can
be extended whenever additions are made (not just when a load
function is performed).

• Free space for additions can be allocated at more frequent intervals
throughout the allocated extents when a key-sequenced file is created.

• A record deletion facility is supported by the access method.

• Free space reclamation capabilities are provided. This factor can
eliminate or significantly reduce the frequency of key-sequenced
file reorganizations.

• Subset mounting by volume serial number is supported for sequential
processing.

• Records can be retrieved sequentially in descending as well as
ascending key or REA sequence.

• Multiple levels of password protection are provided and user-written
security protection routines are supported.

• Disk volumes containing VSAM data sets/files are portable between
DOS/VS and OS/VS.

VSAM provides performance enhancements:

• Mass insertion processing reduces the time required to insert a
group of new sequenced records between two existing logical records
or at the end of the file.

• Skip-sequential processing reduces the time required to sequentially
process a low volume of transactions.

120 DOS/Virtual Storage Features Supplement

• Total index size is reduced by compressing keys and blocking index
entries~ Index search time is thus minimized.

• Overflow chains are eliminated, and the time required to make an
addition to a key-sequenced file is therefore reduced.

• The same time is required to retrieve an added record as an original
record in key-sequenced organization.

• Index set and sequence set index records can be replicated to
significantly reduce rotational delay when accessing index records
on disk.

• Index set records, up to a maximum of all index set records, can be
resident in virtual storage.

Table 80,.30.4 compares the features of VSAM and ISAM as supported in
DOS/VS.

DOS/Virtual Storage Features Supplement 121

tj
0
C/)
......
<:
Ii
rt
~
~
~

C/)
rt
0
Ii
~

\.Q
(1)

I'Ij
(1)
~
rt
~
t;
(1)
en

~
"t:l
"'0
t-J
(1)
a
(1)

:s
rT

Table 80.30.4. Comparison table of VSAM and ISAM facilities for DOS/VS

Characteristic

1. Supporting DOS environments

2. Direct access devices
supported

a. RPS supported
b. Track overflow supported

3. Types of organization
a. Key-sequenced

4.

b. Entry-sequenced

c. Relative record

Multiple extents and volumes
for a file
a.. secondary space allocation

indicated at creation

b. Specification of key range
by volume during file
creation

c.. Volumes of the same device
type required

d. All volumes must be online
at OPEN regardless of the
type of processing

VSAM - DOS/VS

DOS/VS

2314/2319, 3330-series (all models),
3340, 3344, and 3350 (in native
and 3330 compatibility modes)
Yes
No

Yes
Records are maintained in ascending
sequence by a primary key. A primary
index is always provided. The logical
records and the primary index are two
separate files. The key-sequenced file
contains logical records, and,
optionally, distributed free space for
additions and the sequence set index
level. One or more alternate indexes
are optiona1.
Yes
Records are sequenced ~y the order in
which they are placed 1n the file.
Records are added to the end of an
existing file. One or more alternate
indexes are optional •
Yes
Fixed-length records are sequenced
by ascending relative record (slot)
number sequence. Indexes are not
supported.

Yes

Yes

Yes

Yes for logical record extents. The
primary index file· and any alternate
index files can be on a device type
that is different from that which
contains the key-sequenced or
entry-sequenced logical records.
No, subset mounting by volume serial
number is supported for sequential
processing.

ISAM - DOS/VS

DOS Version 3, DOS Version 4, and DCS/VS

2311, 2321, 2314/2319, 3330-series (Models 1
and 2), 3340, 3344, and 3350 (in 3330 Mcdel 1
compatibility mode)
Only in a DOS/VS environment
No

Yes
Records are maintained in ascending
sequence by key. An index is provided
that is part of the ISAM file. The
prime area contains logical records, the
track index, and, optionally, overflow
tracks in each cylinder for additions.
A separate additions area can exist also.
'l'he cylinder and master index levels are
a separate extent.

Not supported

Not supported

Yes

No
The space originally specified can be
extended only when the LOAD function is
used to add records after the last
existing record.
No

Yes for all the volumes containing prine
and separate overflow area extents. Index
levels can be on a device type that is
different from that which contains prime
and overflow areas.

Yes

Table 80.30.4. Comparison table of VSAM and ISAM facilities for DOS/VS (continued)

Characteristic

e. Free space available
within the logical record
area

f. File is direct access
device-type independent

5. Rey-sequenced organization
file characteristics
a. Fixed- and variable-length

logical records

h. Rey field is written on
disk

c. Rey field must be embedded
within each logical record

d. Rey must be fixed length
e. Logical records with

duplicate keys permitted
f. Physical record sizes

supported
g. Allocation of logical

records to volumes by key
range

6. Index structure
a. Number of levels

b. Nondense index
c. Rey field written

d. Index records are blocked
e. Index record size

f. Reys are compressed

g~ Index record replicated
on track to reduce
rotational delay

VSAM - DOS/vS

Yes (for key-sequenced files only)
within control intervals and control
areas. Free space is distributed within
the tracks of a cylinder.
Yes
RBA pOinters are used in the control
interval and in the index.

Yes
Spanned blocked record format is used
within a control interval. A logical
record can span control intervals.
Orginal records and additions are
blocked.
No
Records are written in count and data
format.
Yes

Yes
No for primary key. Nonunique alternate
keys are supported.
512, 1024, 2048, and 4096 bytes only

Yes

One to N based on the number of index
entries required and their size. Index
is a balanced tree with one index record
in the highest-level index.
Yes
No
Index records are written in count
and data disk record format.
Yes
Fixed length and determined by
system.
Yes
Both front and rear compression are
performed to eliminate redundant
characters in adjacent keys in the
index.
Yes, as an option

ISAM - DOS/VS

Yes, optionally, at the end of each prirr.€
cylinder. Free space cannot be left on
tracks within the prime cylinders.

No
Record address ID (CCHHR) is used in
index pointers.

Variable length is not supported.
Fixed blocked or unblocked
record formats are used for prime records.
Records in an overflow area are always
unblocked.

Yes
Records are written in count, key, and
data format.
Yes, except for unblocked fixed-length
records
Yes
No

Block size specified by the user up to a
maximum of the track size.
No

Track and cylinder index levels are
required. One master index
level is optional.

Yes
Yes
Index records are written in count, key,
and data disk record format.
No
Data field is always 10 bytes. Rey field
is key size.
No
Full key is always written.

No

,

t;
0
en

" <:
1"'1
rt
s=
OJ
I-'

CIl
rt
0
t1
OJ
~
I'D

~
I'D
OJ g
1"'1
I'D
Cf.I

CIl
s=
ttl
ttl
I-'
('I)
S
('I)
t:S
rt

Table 80.30 .• 4. Comparison table of VSAM and ISAM facilities for DOS/VS (continued)

Characteristic

h. Sequence set index level
placed adjacent to logical
records

i. Index resident in virtual
storage

j. Multiple indexes for the
same key-sequenced or
entry-sequenced file

7. Types of processing supported
for key-sequenced files
a. Sequential retrieval and

update without presenting
key

b. Skip sequential retrieval
and update (by keys
specified in ascending
sequence)

c • Sequential retrieval and
update by record address

d. Sequential updating by
sequenced keys without
retrieving records

e .• Direct retrieval and
update by generic key,
equal key, or key-greater-
than the specified key

f. Direct retrieval and
update by record address

g. Additions by direct
processing

h. Additions by mass insertion
using sequential processing
and key sequenced additions

i. Additions by skip-
sequential processing with
keys specified in sequence

j. Multiple-request processing
supported within a single
program or a program and its
subtasks

VSM - DOS/VS

Optional
If chosen, sequence set index records
are replicated at the beginning of
each control interval area.
Standard '
AS many index records as will fit in
the user-specified buffer can be
resident, up to a maximum of all index
set records.
Yes

Yes
Each logical record is presented in
ascending or descending primary or
alternate key sequence. An alternate
index (and the primary index) or the
sequence set level of the primary index
is used.
Yes
An alternate index (and the primary
index) or only the sequence set index
of the primary index is used.
Yes, via presenting RBA's in sequence

NO

Yes

Yes, via RBA

Yes

Yes

Yes

Yes with one ACB

ISM - DOS/VS

Standard
Track index is always on the first track(s) of
prime cylinders.

Optional
A portion or all of the cylinder index can ce
made resident. Residence of the master index
is not supported.

NO

Yes
Each logical record is presented in key sequence.
The track index is used.

No

Positioning via a SETL macro using record ID
(CCBHR) is supported. Record must be
retrieved sequentially after positioning.
Yes

Yes for equal key. Generic key and key
greater than specified key can be used in a
SETL macro for pOSitioning. The record must
be retrieved separately using sequential mode.
Yes, via record ID (CCBBR)

Yes

No

No

Yes with multiple DTF's

I

Table 80.30.4. Comparison table of VSAM and ISAM facilities for DOS/VS (continued)

Characteristic

k. Concurrent sequential and
direct processing of the
same file with a single
OPEN

1. Deletions physically
removed

m. Logical records can be
lengthened or shortened

n. Write check after a write
o~ Locate and move mode

processing
p. OPEN validation of end-of­

data indication

8. Checkpoint/restart facilities

9. Password protection

a. User-written authorization
routines supported

10. File sharing
a. Within a partition

b. Across partitions

11. File cataloging

VSAM - DOS/vS

Yes

Yes
Records are shifted and free space
is reclaimed.

Yes, and space is reclaimed for a
shortened record.
Optional
Locate mode for read-only operations and
move mode are supported.
Yes
Abnormal termination never occurs
during OPEN processing.
No

Yes
Levels supported for the user are:
• Master access - allows access to the

file, its index files, and
its catalog entry for all operations.

• Control interval access - allows
read/write of entire control
interval as well as of individual
logical records.

• update access - allows access to the
file and its indexes for retrieval,
updating, deletions, and additions.
Limited modification of catalog entries
for,the file is permitted but an
entry cannot be deleted.

• Read access - allows retrieval of
data records
(no writing of any kind).

Yes

Yes, concurrent updating at the track
level prevented with the track hold
option
Yes, as above

Required
The VSAM master catalog or a VSAM user
catalog must be used.

ISAM - DOS/VS

No
The file must be closed and reopened to
change modes. Alternatively, two DTF's,
one for sequential and one for direct
processing, can be used.
ISAM does not recognize deleted records. The
user can mark records deleted. space can be
reclaimed if an update operation retrieves the
deleted record and writes a new one of the
exact same size in its place.
Variable-length records are not supported.

Optional
Yes

Yes
Abnormal termination can occur during OPEN
processing.
Yes

Yes
Two levels of protection are provided.
correct password is presented, the file
be opened for read only or for read and
write processing.

No

Same as VSAM

Same as VSAM

Cataloging is not supported in DOS/VS
except for VSAM files

If the
can

Table 80.30.4. Comparison table o£VSAM·and lSAM facilities for DOS/VS (continued)

Characteristic

12. Languages supporting VSAM

13. VSAM file direct input
to sort/merge

14. Utility program functions

Resource sharing by files
in the same partition

VSAM - DOS/VS

Assembler
DOS/VS COBOL Release 1 program product
Full ANS COBOL
Subset ANS COBOL (via ISAM
interface routine)
PL/I optimizing Compiler and
Libraries Release 4 program product
RPG II (via ISAM interface routine)
program product

Yes (to DOS/VS Sort/Merge 5746-SMl
program product)

Access method services program can
perform the following:
• Define and delete direct access space

for a VSAM file, catalog, alternate
index, etc.

• List, alter, or delete an existing
VSAM catalog entry

• Create new and reorganize existing
VSAM files

• Copy a VSAM, ISAM, or SAM disk
file to a new SAM file or into
an existing VSAM file

• List some or all of the records in a
VSAM, ISAM, or SAM file

• Perform functions required to make a
VSAM file portable from one system
to another

• verify and reestablish, if necessary,
the end-of-file marker in one VSAM
file.

• Build alternate indexes

Yes

ISAM·- DOS/VS

Assembler
COBOL program product
PL/I program product
RPG program product

No

No specific utility program is provided fer
ISAM files. ..

No

80:35 RECOVERY MANAGEMENT AND DEBUGGING AIDS

MCAR, CCH, RMSR, AND OLTEP

MCAR, CCH, and RMSR are standard features that are automatically
included in any DOS/vS supervisor that is generated to support a Model
135, 138, 145, 148, 155 II, or 158., OLTEP is automatically included in
supervisors for these models unless it is specifically omitted. MCAR,
CCH, and RMSR are optional for any DOS/VS supervisor that supports a
Model 115 or 125. OLTEP is included by default for these two models
unless it is specifically deleted at system generation.

MCAR, CCH, and RMSR provide the same support in DOS/.VS as in DOS
Version 4. In addition, MCAR is extended to mark a page frame
unavailable for allocation when an uncorrectable storage error occurs
that cannot be validated by the DRAP (dynamic reallocation of a
partition) routine. The malfunctioning bit in the PF'I'E for the page
frame is turned on and the PFTE is taken out of the selection pool. The
operator is notified when a page frame is so deleted and the task
involved is abnormally terminated.

When the unusable page frame is located within a real storage area
that can be allocated to a currently defined real partition, the DRAP
routine reduces the size of the real partition, just as is done in a DOS
Version 4 environment (ending real partition address is lowered to
eliminate the unusable page frame from the real partition).

CCH is modified in DOS/VS to terminate system operations when a retry
fails to correct a channel error involving an I/O operation on the
paging device.,

OLTEP is modified as required to operate in a DOS/VS environment. In
DOS/VS, OLTEP must execute in the background real partition, which must
be a minimum of 16K (20K when RETAIN is active). The operator should
ensure that the lowest dispatching priority is assigned to the
background partition when OLTEP is executing in it. This minimizes the
impact of OLTEP execution on system performance.

OLTEP can be scheduled by the POWER/VS program in a DOS/VS
environment. Modifications are made to OLTEP to prevent it from
performing test operations on unit record I/O devices being used by
POWER/VS for card reading, card punching, and printing. This prevents
the OLT from receiving erroneous results.

DEBUGGING AIDS

The debugging aids provided in DOS Version 4 are modified as required
to operate correctly in DOS/VS. The standalone and abnormal termination
dumps, the PDUMP and DUMP macros, and the DUMP, ALTER, and DISPLAY
commands are supported in DOS/VS. They support the same functions in
both DOS versions, as do the PDAIDS traces (F'ETCHILOAD Trace, I/O Trace,
SVC Trace, QTAM Trace, and Transient Dump). PDAIDS in DOS/VS also
include a VTAM trace and a VTAM buffer pool trace.

Note that the DUMP macro causes only supervisor control blocks
(instead of the entire supervisor area) to be dumped if the DUMP=PART
option was specified in the STDJC generation macro or an OPTION PARTDUMP
job control statement was included for the job.

The JDUMP macro is also provided in DOS/VS and, like the DUMP macro,
can be used to cause dUmping of the supervisor area, general registers,
and the real or virtual partition that issued the JDUMP macro. But
while DUMP causes canceling only of the job step for which the dump was

DOS/Virtual storage Features Supplement 127

taken when multitasking is not in effect in the partition, JDOMP causes
the entire job to be canceled. When the DUMP macro is issued by a
subtask, only that subtask is canceled. When the DUMP macro is issued
by the main task, the entire job step is canceled.

The standalone dump can be used to display the contents of real
storage only. Therefore, a SYSVIS Dump system utility program (also
called the Page Data Set Dump) is provided in DOS/VS that displays the
contents of the virtual address area (which is contained in the page
data set). All of the virtual address area, a specific virtual
partition, or selected virtual storage pages can be dumped. The SYSVIS
Dump can be executed after an abnormal system termination occurs and the
standalone dump has been executed. If this utility is executed
immediately after the re-IPL, as per operating instructions, no paging
activity occurs between the abnormal termination and dumping of the page
data set.

The output can be written to the SYSLST device, which can be a
printer, tape, or disk device. Alternatively, when the abnormal
termination occurs, SYSVIS Dump output can be directed to a SYSOOl
device, which can be a tape or disk unit. When this latter option is
chosen, a high-speed dump of the user-indicated virtual storage area
occurs and normal system operation can continue sooner. The dump output
on SYSOOl can then be printed later during normal processing using the
SYSVIS Dump program.

DOS/VS supports a high-speed standalone dump program, not supported
by DOS Version 4, that dumps the contents of virtual and real storage to
tape~r disk. The DOSVSDMP program is provided to generate the
standalone dump program and print the dump output. DOSVSDMP is supplied
as a self-relocating program in the system relocatable library. It must
be link edited to a core image library before it is used the first time.

When a high-speed dump is to be ~aken, the DOSVSDMP program must be
executed under DOS/VS control. This program creates a standalone dUmp
program on the user-specified tape or disk volume. Execution of the
standalone dump is initiated by IPLing the device that contains the
resulting dump program.

The standalone dump program writes a dump to the tape or disk volume
on which it resides. The dump contains the contents qf all virtual
storage in page number sequence and the contents of all real storage in
page frame sequence. Pages not residing in real storage are obtained
from the p~ge data set. The system is placed in the wait state at the
completion of the dump.

The DOS/VS system can be IPLed after the high-speed dump is taken.
When the dump is to be printed, the DOSVSDMP program must be executed
under DOS/VS control. The dump can be printed with or without
formatting.

DOS/VS also provides significant new tracing and dumping facilities
via the system debugging aids (SDAIDS) routines. This facility is
standard in DOS/VS. It can be used to debug both control and problem
programs and to collect statistics about page faults and page request
handling operations.

USing program event recording, program interruption hardware, and an
interface to the page" manager, SDAIDS routines can monitor the
occurrence of up to eight different system-defined events, as specified
by the operator. When an event that is being monitored occurs, SDAIDS
receives control to collect and print status information on a printer,
after which normal processing continues.

128 DOS/Virtual Storage Features Suppleroent

The printer used by SDAIDS need not be dedicated to printing SDAIDS
output, but the printer cannot be attached to a channel that has burst
mode I/O devices operating on it while SDAIDS is operative. SDAIDS and
anyone of the PDAIDS traces can operate concurrently.

SDAIDS routines can. monitor the occurrence of the following events,
which are designated as elementary or dedicated:

• Successful execution of any type of branch instruction that is
located within a specified area of virtual storage (elementary
event). program event recording (PER) hardware is enabled to detect
this event.

• Fetching of an' instruction from a specified area of virtual storage
(elementary event). PER hardware is enabled to detect this event.

• Alteration of storage within a specified virtual storage area
(elementary event). PER hardware is enabled to detect this event.

• Alteration of the contents of the general registers specified
(elementary event). PER hardware is enabled to detect this event.

• Page translation exception (page fault) caused by any instruction
within a specified area of virtual storage (elementary event). This
event is detected by programmed checking that is done by SDAIDS
after a page translation exception interruption occurs.

• program check interruption that occurs as a result of any program
interruption except a segment translation exception, page
translation exception, special operation, monitor event, or program
event (program interruption codes X'Ol' to X'OF', X'10', and X'12'
are handled). This is a dedicated event and is monitored for all
executing tasks. It cannot be limited to one or more specific
parti tions.

• Enqueuing of a request for page frame assignment because a page
fault has occurred or a PFIX, TFIX, or GETREAL request was issued
(dedicated event). This event is monitored for all executing tasks
and its occurrence is signalled by page management. This event can
be used to obtain information about the sequence in which a given
task is requesting pages.

• ASSignment of a page frame to a virtual storage request (dedicated
event). This event is monitored for all executing tasks and its
occurrence is signaled by page management after a page request has
been serviced. Essentially, this event provides a page fault
handling trace by providing information about the sequence in which
page-ins are serviced.

The one or more events to be monitored are indicated by the operator
via the system console device when SDAIDS routines are initialized or at
a later time. The amount of status data collected for all elementary
events varies depending on the output class specified by the operator (1
to 8 and Q). The contents of the following can be recorded when an
elementary event occurs; program old PSW, time of day clock, general
registers, fixed locations in lowest real storage, entire supervisor
area, communiObtion regions, control registers, segment table, page
tables, the page frame table, the real storage allocated to the real
address area, and a nondestroying dump of a user-specified portion of
virtual storage.

Only pages within the virtual storage addresses specified, which can
encompasS all of the defined virtual storage, that are present in real
storage are dumped (the page data set is not read) and system operation
continues normally after a nondestroying dump is taken. Various

DOS/Virtual storage Features Supplement 129

combinations of the items listed can be dumped by specifying the
appropriate output class (1 to 8). The instruction or the virtual
storage page that caused the elementary event is also identified in the
output.

The output that is collected when a class from 1 to 8 is specified is
dumped to the printer immediately.after an event that is being monitored
occurs. When output class Q is specified, only certain data is saved
when an event occurs. This data is stored in an SDAIDS buffer area that
is provided in real storage when class Q is specified. The saved data
is printed as a block of output each time a program check event occurs
or as soon as the SDAIDS buffer is filled. The status data saved for
the Q output class is the program old PSW, the time of day, the contents
of general registers 0, 1, 2, 13, 14, and 15, and program event
recording mask settings (contents of control registers 9, 10, and 11).

The data recorded for a dedicated event is fixed by event type. When
a· program check occurs, the contents of the program old psw, time of day
clock, entire supervisor area, general registers, control registers, and
the instruction that caused the interruption are saved. When a request
for a page frame is enqueued, the type of request (PFIX, TFIX, page
fault, or GETREAL) is indicated as are the associated task
identification and the virtual storage page and its storage protect key.
When a page frame is assigned, the address of the page frame is
indicated in addition to all the data supplied when a request for page
frame aSSignment is enqueued.

The operator can also specify the stop-an-event or the stop-on­
address option. If either of these options is in effect, processing
stops after output is printed or saved when an event occurs (a wait
state PSW is loaded). The operator can then do any combination of the
following: use hands-on debugging aids, cause a nondestroying dump of
all of real storage to be printed, or initiate the monitoring of one or
more additional SDAIDS events. Processing continues after the operator
presses the external interrupt key. The status of real storage and
registers are not disturbed by the dumping procedure and system
operation continues normally after the printout.

The difference between the stop-on-event and the stop-on-address
options is that specification of the latter option causes the system to
stop after any of the events being traced occurs. When the stop-on­
event option is used, the system stops only when a specified elementary
or dedicated event occurs. System operation continues after other
events occur and the required data is printed or sav~d in real storage.

Initiation of SDAIDS is requested by entering // EXEC SDAID from the
SYSLOG or SYSRDR device any time after IPL is completed. Once
initiated, SDAIDS remains operative until the attention routine command
ENDSD or the job control statement // EXEC ENDSD is entered by the
operator. Initialization of SDAIDS can be performed in a virtual or
real partition. If a real partition is used, it must be a minimum of
12K.

SDAIDS routines operate in an area of real storage called the SD
area, which must be a minimum of 6K. Since the page frames in the SD
area are removed from the selection pool, these page frames cannot be
reaSSigned and, thus, effectively are permanently fixed. , The operator
can specify the size of the SD area (up to a maximum of 999K) when.
SDAIDS is initialized in order to allocate additional buffer space for
storing the data collected for events.

When SDAIDS is initiated, available page frames from the page pool
with addresses above the the last real partition defined in the real
address area are allocated to the SD area. The available page frames
with the highest addresses are chosen. The operator is notified if

130 DOS/Virtual storage Features SUpplement

I

enough page frames are not available and the SDAIDS initiation process
is terminated.

Once SDAIDS has an SD area allocated, the initialization process
begins. Using the console, the operator enters parameters (events to be
monitored and options to be effective) in response to the listing of
keywords. Once all parameters have been specified, information is typed
on the console to indicate the parameters in effect and to enable the
operator to change the specifications at a later time during system
operation.

Once SDAIDS initialization is completed, the partition used for
initialization is released and SDAIDS routines nlake no further use of
DOS/VS services. SDAIDS receives CPU control as soon as any of the
events being monitored is recognized. It operates without DAT mode
specified and with the CPU disabled for external and I/O interruptions.
(SDAIDS cannot be used to debug time-dependent programs because I/O
interruptions are disabled.)

After SDAIDS has collected the required status information and
printed the output requested, control is returned to the point at which
the event occurred so that operation of SDAIDS is transparent to
executing programs.

DOS/virtual storage Features Supplement 131

80:40 LANGUAGE TRANSLATORS, SERVICE PROGRAMS, AND EMULATORS

DOS/VS ASSEMBLER

The DOS/VS Assembler is the only language translator that is a
standard component of DOS/VS. The DOS/VS Assembler provides the same
functions as DOS Assemblers D and F. It also offers a few extensions
and improved diagnostics. The DOS/VS Assembler accepts all the source
statements accepted by Assemblers D and F, and is a subset version of
the System Assembler provided for OS/VS1 and OS/VS2. The DOS/VS
Assembler is upward-compatible with the OS/VS Assembler.

The DOS/VS As.seIllbler supports. all System/370 instructions· except
INSERT PSW KEY, SET PSW KEY FROM ADDRESS, CLEAR I/O, and multiprocessing
instructions. (SET PR~FIX, STORE PREFIX, SIGNAL PROCESSOR, and .. STORE CPU
ADDRESS). It is the .only DOS Assembler that supports the following
System/370 instructions:

COMPARE AND SWAP
COMPARE DOUBLE AND SWAP
LOAD REAL ADDRESS
PURGE TLB
RESET REFERENCE BIT
SET CLOCK COMPARATOR

SET CPU TIME;R
STORE CLOCK COMPARATQR
STORE CPU TIMER
STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK

The DOS/VS Assembler can operate in virtual or real mode. If a real
partition is used, it must be a minimum of 20K bytes. When a larger
real partition is. made available, the additional storage is used to
improve performance. Only direct access devices are supported for
intermediate work storage during assemblies.

The performance of the DOS/VS Assembler can be up to thirty percent
better than that of Assembler D. The increase in performance is
primarily the result of a change made to the source statement library.
The copy sublibrary of the source statement library contains source code
that can be included in source programs using COpy statements, just as
in DOS Version 4. The macro sublibrary in DOS/VS, however, contains
IBM-supplied Assembler Language macro definitions in preedited
(partially processed) format. Use of a preedited format for macros
speeds up the assembly process for programs that use these macros.
User-written macros can be converted to preedited format using the EDECR
option of the Assembler.

The RLD and NORLD options can be specified to cause printing or
suppression of printing of the Relocation Dictionary at the end of an
assembly.

POWER/vS

Functions and General Operation

POWER/VS (Priority Output writers, Execution Processors, and Input
ReaderS/Virtual Storage) is an optional program that is distributed as
part of DOS/VS. The Type III, Class A Maintenance POWER II program that
can be used with DOS Versions 3 and 4 is still available but cannot be
used with DOS/VS. The version of POWER provided for use with DOS/VS
Releases 28, 29, and 30 (called DOS/VS POWER) cannot be used with DOS/VS
Releases 31 and up. POWER/VS executes with DOS/VS Releases 30 and up.

The POWER/VS program operates in a partition under control of the
DOS/VS supervisor to provide services for up to four other partitions,
each of which is identified as a POWER/VS-controlled partition when it
is started. When the Advanced Function-DOS/VS program product is

132 DOS/Virtual Storage Features Supplement

installed, POWER/VS will support up to six partitions. POWER/VS is
designed to improve system throughput in a multiprogramming environment
by providing job scheduling by priority within class and automatic data
transcription to and from unit record devices (card readers, punches,
and printers) overlapped with job step execution.

Reading input streams from unit record devices and transcribing the
input data they contain to intermediate disk storage and transcribing
the printer and punch output from completed job steps from intermediate
disk storage to printers and punches, both concurrent with job
execution, are called spooling.

When POWER/VS is used, card reading for the jobs to be executed in
POWER/VS controlled partitions is overlapped with card punching and
printing operations for completed jobs/job steps and with job step
execution. Job steps can execute faster as they are no longer limited
by peripheral I/O operations on relatively slower speed unit record
devices. Another advantage of POWER/VS is that it enables one card
reader, one punch, and one printer to be shared by multiple partitions.
Without POWER/VS, each partition must have its own system input device
and system output devices (or disk extents).

Problem programs that currently handle unit record I/O operations
directly need not be modified in order to interface with the POWER/VS
program. POwER/VS execution processor tasks receive CPU control for all
I/O requests from the partitions POWER/VS sChedules that are for unit
record devices that are to be spooled and performs the required
functions in a manner that is transparent to the programs that issue the
I/O requests. Whenever an I/O request (SVC 0) is issued, the DOS/VS
supervisor inspects the specified device address to determine whether
the request is for one of the spooled d~vices. If so, CPU control is
given to POWER/VS, which in turn passes control to the appropriate
execution processor task.

Two basic versions of POwER/VS can be generated: one that handles
job scheduling and input and output spooling operations for local unit
record devices only (a reader/writer system without remote job entry
support) and one that supports job scheduling and input and output
spooling operations for both local and remote unit record devices (a
reader/writer system with remote job entry support).

The remote job entry facility included in POWER/VS can support only
binary synchronous terminals (RJE,ESC support), only system network
architecture (SNA) terminals using synchronous data link control (RJE,
SNA), or both BSC and SNA terminals (RJE,SNA with ESC support included).
POWER/vS interfaces with VTAM to provide RJE support of SNA terminals.

A writer-only version, as supported in DOS/VS POWER, is not supported
in POWER/VS. However, a reader/writer POWER/VS system can control one
or more writer-only partitions. A writer-only partition exists when no
spooled card reader is specified for a partition when it is started to
operate under POWER/VS control. A writer-only partition is useful for
DOS/VS jobs that perform stacker selection of input cards, since this is
not possible under POWER/VS, or that use a card reader feature not
supported by POWER/VS, such as column binary. Stacker selection
requests for card input f~om spooled card readers issued by programs
executing in POWER/VS controlled partitions are ignored by POWER/vS.

Whether POWER/vS is to be used must be specified at DOS/VS system
generation. when POWER/VS is to be used, support of three partitions,
page handling overlap, PFIX/PFREE macros, VIRTAD/REALAD macros, and the
EXCP macro with the REAL parameter are automatically included in the
generated DOS/VS supervisor if they have not been otherwise requested.
An NPARTS specification of at least 2 is required. If the job
accounting facilitiy of POWER/VS is to be used, job accounting support

DOs/virtual storage Features supplement 133

must also be included in the DOS/vS supervisor. A system with a minimum
of 96K of real storage is required for the operation of DOS/VS with
POWER/VS.

POWER/vS is distributed as a set of generation macros and self­
relocating executable program phases. The macros are used to define a
POWER/VS system that is tailored to the functions desired by an
installation. When these macros are assembled and link edited, they
create a phase that causes those POWER/VS program phases required to
support the features and options desired to be loaded into the PCWER/VS
partition during POWER/VS initialization.

If the POWER/VS system defined by the IBM-sUpplied generated POWER/VS
phase for a reader/writer system is not suitable for an installation,
the desired POWER/VS system must be defined using the POWER/VS
generation macros, assembled, and link edited to ~e system core image
library. Since only a system description phase must be assembled and
link edited, significantly less time (a few minutes) is required for the
POWER/vS generation procedure, than for the DOS/VS. POWER generation
procedure, which involves the link editing of DOS/VS POWER object
modules. In addition, the number of generation macros required for
POWER/vS is reduced (14 DOS/VS POWER generation macros have no POWER/VS
counterpart) and a separate generation for RJE support modules is not
required for RJE under POWER/VS.

One (and only one) partition must be dedicated to the POWER/VS
program when it is operating.. POWER/vS can, execute in any partition,
including the background, as long as the partition POWER/VS is aSSigned
has a higher dispatching priority than all the partitions it is to
service. However, if POWER/VS operates in the background partition,
programs that can execute only in the background partition (such as
OLTEP) cannot be executed while POWER/VS is active. POWER/VS operates
only in virtual mode.

POWER/vS uses the PFIX and PFREE macros and, therefore, the real
partition corresponding to the virtual partition in which POWER/VS
executes must be allocated. POWER/VS cannot operate as a subtask of a
main task.

Any POWER/VS system can handle job scheduling and local and remote
spooling operations involving only ESC terminals for four partitions (or
6 when the Advanced Functions-DOS/VS program program product is
installed). A POWER/VS system using RJE,SNA support can control up to
three (or 5) partitions, since VTAM must operate in a partition. The
number of partitions to be handled by POWER/VS is not specified at
generation time as it is for other versions of POWER. The main task and
any subtasks in a POWER/VS-controlled partition can use the spooling
capability POwER/VS provides.

Once POWER/VS is initiated in a partition by the operator, partitions
POWER/VS is to control can be started and stopped by the operator at any
time until POWER/VS is terminated. POWER/VS can schedule both virtual
and real partitions.

If the PRTY command is issued to change the dispatching priority of
the POWER/VS partition and it violates the priority rule, the co~mand is
ignored and the operator is informed. In addition, a DOS/VS CANCEL
command is rejected if it specifies the partition in which POwER/vS is
operating. The POWER/VS partition will not be deactivated by the
partition deactivation routine of DOS/VS page management.

POWER/VS is started and stopped in a partition and its operation is
controlled using a set of POWER/VS operator commands. These commands
are accepted by the DOS/VS attention routine. Once started, POWER/VS
can read one or more input streams of jobs from local card readers

134 DOS/Virtual Storage Features Supplement

and/or 3540 diskette devices. When remote job entry suppor~ is included
in a POWER/VS system, input streams can also be read from one or more
remote terminal units. The POWER/VS routines that read input streams
are called read tasks.

An input stream contains jobs that are to be executed in the
partitions POWER/VS controls. An input stream can also contain card
and/or diskette input for the job steps defined. Jobs are defined using
DOS/VS job control statements only or a combination of DOS/VS and
POWER/vS job control statements.

A POWER/VS job entry control language (JECL) is provided that is used
to request certain POWER/VS processing facilities as well as to aid in
the definition of jobs. The JECL statements supported by POWER/VS are
JOB, CTL, RDR, LST (or PRT), PUN, SLI, DATA, EOJ, /* (end of job step),
and /, (end of job). The DATA, SLI, /*, and /, statements are used only
with the source library inclusion facility.

POWER/VSwrites one input work queue of the jobs contained in all the
local and remote job streams it reads to intermediate direct access
storage and transcribes job control statements (JECL and DOS/VS) and
input data in the input streams to spool input files on intermediate
direct access storage. Note that in this discussion of'POWER/VB, spool
input file is used to logically describe the card or diskette input in
an input stream for a job step that POWER/VS writes to intermediate
direct access storage. Similarly, spool output file or spooled
printer/punch file is used to logically describe the printer/punch
output from a job step thatPOWER/VS writes to intermediate direct
access storage for later transcription to a printer or punch.

Job classes, scheduling, and queues. Using the input work queue,
POWER/vS schedules the execution of jobs in the partitions it controls
by job priority within job class. Each partition POWER/VS controls can
be assigned one partition-dependent job class. The partition-dependent
classes are 0 to 4, which correspond to partitions BG to F4,
respectively. When the Advanced Functions-DOS/VS program product is
installed, partition-dependent numbers 0 to 6 are used for partitions BG
to F6.

Each POWER/VS-controlled partition can also be assigned from one to
four partition-independent job classes. The partition-independent job
classes are A to Z. The same partition-independent job class can be
assigned to more than one partition.

Job classes, both partition-dependent and partition-independent, are
assigned to a partition via the POWER/vS PSTART command. The classes a
POWER/VS controlled partition is assigned determine the jobs that can be
executed in the partition.

If no job class is assigned to a partition, it is assigned only its
partition-dependent class by default. If one or more partition­
independent job classes are assigned to a partition, the partition­
dependent class for the partition is not also assigned automatically (it
must be specified in the PSTART command in ord~ for it to be assig~ed).

Each job submitted to POWER/VS also has a job class and job priority
assigned (by the user or by default) that indicates the partition(s) in
which it can be executed. If a partition-independent class (A to Z) is
assigned, the job is executed in the first POWER/VS-controlled partition
with the same partition-independent class assigned that becomes
available. If a job has a partition-dependent job class assigned, the
job can be executed only in the. associated partition. The job priority,'
o to 9 low to high priority, determines the sequence of scheduling jobs
with the same job class assigned. Jobs with the same job class and
priority assigned are scheduled on a first-in, first-out basis.

DOS/Virtual storage Features Supplement 135

The order in which partition-independent classes are specified when a
partition is started under POWER/VS control determines the high to lqw
priority of the classes within the partition. This means, for example,
if a partition is assigned classes C, B, and A in that sequence, all
queued jobs with class C assigned will be scheduled to execute in the
partition before any queued jobs with class B assigned. Queued class A
jobs will not be scheduled for the partition until all queued class B
jobs are scheduled.

If a partition is not assigned a partition-independent class, only
jobs assigned the partition-dependent class of the partition can be
executed in it. The classes assigned to a par,tition and their priority
wi thin the partition can be changed by stopping the parti tio.n via a
POWER/vS PSTOP command and starting it again with a different set and/or
sequence of classes specified.

Partition-independent job classes can be assigned to jobs on the
basis of job characteristics, such as virtual storage requirements, I/O
device requirements, I/O-oriented proceSSing, CPU-oriented processing,
high or low priority for execution, etc., to enable jobs with the same
characteristics to be scheduled to execute in the same partition.
However, since a partitioq can have more than one partition-independent
class assigned and the same class can be assigned to more than one
partition, job classes can be assigned to make certain jobs eligible for
execution in more than one partition.

Further flexibility is provided by the fact that up until the time a
queued job is selected for execution, its input class can be altered by
the operator. 'Ihe scheduling flexibility provided by POWER/VS via input
classes can result in more balanced partition usage, particularly in an
environment in which workload characteristics can vary.

During the execution of job steps in partitions POWER/VS is
scheduling, POWER/VS execution processor (execution read, execution
list, and execution punch) tasks handle read and write requests for the
unit record .devices that are to be spooled for the partition. (The
spooled devices are specified when the partition is started under
POWER/VS control.) That is, when a card read is issued by an executing
job step to a spooled card reader, POWER/VS supplies the card or
diskette record from the spool input file on intermediate disk storage
it created when reading the input in the job stream. Similarly, when a
punch or print request is issued to a spooled device, POWER/VS writes
the record to a spool output file on its intermediate disk storage. .
Spooled output can be written to magnetic tape instead of disk.

The intermediate direct access storage used by POWER/VS is dedicated
to the POWER/VS system. This disk storage contains the POWER/VS queue
file, data file, and optionally account file. The queue' file contains
three queues, which are the reader queue (also called the input queue),
list queue, and punch queue. The list and punch queues are also called
the output queue. The queue file also contains a master record that
summarizes the contents of the three queues. The master record is used
to warm start POWER/VS.

The reader queue contains one read queue entry for each POWER/vS job
read by POWER/VS. A read queue entry is used in the scheduling of the
POWER/vS job it represents and usually is maintained in the reader queue
until. the job has executed successfully. A read queue entry can also be
deleted by the operator before its associated job has been scheduled or
kept in the qu~ue after its associated. job bas been executed.

The list queue usually contains a single list queue entry for each
spooled printer file written to disk by POWER/VS for the steps of the
local'and remote, if any, jobs it schedules. In effect, each list queue
entry represents one output job to be processed by POWER/VS. A list

136 DOS/Virtual storage Features Supplement

queue entry ~sually is maintained in the list queue until the spool file
it describes has been transcribed to a printer by POWER/VS or it is
deleted by the operator. However, a list queue entry can be kept in the
list queue after transcription of its associated spool file.

. The punch queue usually contains a single punch queue entry for each
spooled punch file written to disk by POWER/VS for the steps of the
local and remote, if any, jobs it schedules. In effect, each punch
queue entry represents one output job to be processed by POWER/VS. A
punch queue entry usually is maintained in the punch queue until the
spool file it describes has been transcribed to a punch by POWER/vS or
it is deleted by the operator. However, a punch queue entry can be kept
in the punch queue after the spool file it describes has been
transcribed.

More than one list/punch queue entry for a spool output file is
created when the file is segmented (as discussed later). In this case,
a list/punch queue entry is created for each segment.

The job control and card/diskette input contained in the input
streams read by POWER/VS are written in spool input files in the data
file. These spool files are pOinted to by the read queue entries. The
data file also contains the spooled punch and spooled printer files that
POWER/VS writes for executing job steps. These spool files are pointed
to by punch queue and list queue entries, respectively. When the
optional accounting facility of POWER/VS is used, the accounting data
collected is written in the account file.

The spooled printer and punch files written by POWER/VS can be
assigned an output class, A to Z, using POWER/VS JECL (LST and PUN)
statements in the input stream. If a LST/PCB statement is not provided
for a spool output file or does not specify a class, the output class
specified in the PSTART command for the partition from which the spool
file was created is assigned. Class A is assigned by default if a class
is not specified for a spool output file. The priority aSSigned to
spool output files can be user-specified or by default is the same as
was assigned to the POWER/VS job for scheduling purposes when the job
was read. The output class and priority of a queued spool file can be
changed by the operator any time before the file is selected for
transcription.

The reader queue logically contains 31 or 33 subqueues, one for each
partition-dependent class (0 to 4 or 6) and one for each partition­
independent class (A to Z). Similarly, the list queue and punch queue
each logically contain 26 subqueues, one for each possible output class
(A to Z). The reader queue, list queue, and punch queue entries each
are maintained in priority sequence within class. Entries in the same
queue with the same class and priority are queued on a first-in, first­
out basis within their class. Note that when the operator issues a
PALTER command to alter any characteristic of a queued entry, except
priority, the entry is requeued at the end of the class queue in which
it belongs.

The POWER/VS routines that transcribe spooled printer and punch files
to printers and punches are called list tasks and punch tasks,
respectively. Each list or punch task can be assigned from one to four
output classes (A to Z) when it is started. Class A is aSSigned by
default if a class is not specified when a list or punch task is
started. A list/punch task can transcribe only those printer/punch
files that have an output class assigned that the task handles. A
queued spooled printer/punch file is transcribed by the first list/punch
task that becomes available and has assigned the same output class.

The sequence in which the output classes are specified for a list or
punch task determines the priority of handling the classes. For

DOS/Virtual storage Features Supplement 137

example, if classes C and B are assigned to a list task in that
sequence, the list task will transcribe any queued spooled printer files
with class C assigned before transcribing any spooled printer files with
class B. All list tasks are scheduled from the single list queue and
all punch tasks are scheduled from the single punch queue. Figure
80.40.1 shows the general operation of aPOWER/VS system.

Disposition attributes. The entries in the reader, list, and punch
queues also have a disposition attribute assigned that determines when
POWER/VS schedules the input and output jobs defined by the entries.
The disposition attribute is assigned via a JECL statement in the input
stream or by default. The JECL JOB statement is used for input jobs.
The JECL LST and PCB statements are used for spooled output files. ~he
disposition attribute of an input or output queue entry can be changed
by the operator any time before the entry is selected for processing.

Disposition attributes are the following:

• D - dispatch and delete. When the D attribute is specified in a
read queue entry, the job it describes is automatically scheduled to
execute by priority within job class in the first available eligible
partition as previously described. When the job completes its
execution, its read queue entry is deleted. For a punch or list
queue entry, the D attribute causes the associated spooled punch or
printer file to be transcribed automatically to.a local punch or
printer or sent to a remote terminal according to priority within
job class. After transcription is completed, the punch or list
queue entry is deleted.

• B - hold job. For a read queue entry, the H attribute causes the
associated job to remain in the reader queue until the operator
changes the disposition attribute to D via a PAL~ER command or
issues a PRELEASE command for the job. Similarly, the H attribute
in a punch or list queue entry,prevents transcription of the
associated spool output file until the operator issues a PALTER or
PRELEASE command for the file. This attribute enables the
processing of input and output jobs to be deferred.

• K - dispatch and keep. When specified in a read queue entry, the
associated job is automatically scheduled for execution according to
priority and job class. However, when the job completes, the read
queue entry is not deleted from the reader queue and its disposition
is changed to L. Similarly, a spooled printer or punch file with a
disposition of K in its output queue entry will be transcribed
automatically according to priority and class but after the file has
been processed, its entry remains in the output queue and its
disposition is changed to L. This attribute enables a job or 'spool
file to be retained after it is processed so that it can be
processed again at a later time without resubmission or reexecution.

• L - leave in queue. The L attribute in a read queue entry prevents
the job from being scheduled for execution until the operator
changes its disposition to D or K via a PALTER command or issues a
PRELEASE command for the job. A spooled printer or punch file with
the L attribute in its queue entry is not transcribed until the
operator issues a PALTER or PRELEASEcommand for the file.

The D, H, K, and L disposition attributes apply only to spool output
files that are written to disk. The T disposition attribute can be
specified for a spooled printer or punch file to cause POWER/VS to write
it to tape instead of disk. In this case, the spool output file is
transcribed to a printer or punch by the list or punch task started for
the tape unit that contains the spool output file. Spool output files
from RJE jobs POWER/VS schedules cannot be written to tape.

138 DOS/Virtual Storage Features Supplement

8
en ,
<:
~
M-
e::
III
en
M-
0
~
III
"l
(1)

"z:J
(1)
III
M-
~
~
(1)
C/l

en e::
an
"0
(1)
S
(1)
t:S
rr

Local
card reader

Local
card reader

Diskette

0
Diskette

0
Remote
card reader

Input stream

• DOS/VS job control

POWER/vS
Reader
tasks

RJE
read
task

• POWER/VS JECL (optional)
• Card and diskette input

for DOS/vS job steps
(optional)

I
I Account
I file I
l.. ___ -J

Execution
read
tasks

Spooled
input

POWERIVS
controlled
partitions

Spooled
punch
output

Execution
list
tasks

Figure 80.40.1. General operation of the POWER/VS system

: Account
L file J ---- ----

Local
printer

List
task

RJE
list
task

Local
card
punch

Remote
card
punch

The I disposition attribute can be specified only for spooled punch
files written to disk. It causes the spool output file to be placed in
the reader queue as an input job instead of transcribed to a punch
device. This attribute should be used only for spooled punch output
that is in executable format and contains all required DOS/VS and
POWER/VS job control.

The N disposition attribute can be specified to indicate that printer
or punch output that is written to a spooled device is not to be spooled
but is to be printed or punched directly from the executing job step.
That is, if a spooled output file is written to printer device OOE (for
example), printer device OOE is specified as a spooled device for the
partition, and the spool output file has the N attribute, POWER/VS will
attempt to write the printer output directly to real printer OOE. If
this printer is not available (currently assigned to another partition,
for example), POWER/VS ignores the N attribute and writes the printer
output to a spool file on disk. The N attribute cannot be specified for
the spooled output from remotely submitted jobs. '

Job Entry Control Language

All POWER/VS JECL statements contain the characters * $$ in the first
four positions and can also contain comments. continuation statements
are supported. Parameters are specified in positional or keyword
format. Some parameters can be specified in either format. Others
(such as those not supported by DOS/VS POWER) can be specified only in
keyword format. The positional format of POWER/VS JECL statements is
the same as the positional format of the equivalent DOS/VS POWER JECL
statements for compatibility purposes (although the POWER/VS parameter
may have more possible operands).

Since JECL statements contain an * in the first position, they are
treated as comments statements by the DOS/VS job control program when it
reads an input stream containing JECL statements. Thus, a job stream
with JECL statements can be executed under POWER/vS control or not
without modification. This * also enables POWER/vS JECL statements to
be included in jobs that are to execute in writer-only partitions, since
such jobs are read by the job control program.

The job entry control language of POWER/VS supplements the DOS/VS job
control language. While DOS/VS job control statements must be used as
usual for the jobs that execute under POWER/VS control, the use of
POWER/VS JECL is optional except when certain POWER/VS' facilities are to
be used.

POWER/VS JECL statements must be used to specify certain attributes
for a POWER/VS job if the default or POWER/VS generation values are not
to be used, if any spooled output is to be written to tape instead of
intermediate disk storage, and to request utilization of the source
library inclusion facility.

Specifically, JECL statements are used to indicate the following
POWER/VS job attributes: input class for jobs, output class for spooled
printer and punch files, priority for scheduling input jobs and
transcribing spooled printer and punch files, input disposition for
input jobs, output disposition for spooled printer and punch files,
output limitation for the spooled printer and punch output of a job,
number of copies, forms identification, segmentation of spooled output
files, the FCB and/or UCB image or carriage control tape format to be
used for printing spooled 'printer files, the printer setup to be used
for a 3800 Printing Subsystem, tape address if intermediate disk storage
is not to be used, and the destination of spooled printer and punch
files created by a remotely submitted job.

140 DOS/Virtual Storage Features Supplement

When POWER/VS is used, there is a distinction between POWER/VS jobs
and DOS/VS jobs. The JECL JOB and EOJ statements are used to delimit
POWER/VS jobs. ,DOS/VS jobs are delimited by the DOS/VS JOB and /& job
control statements as usual. A POWER/VS read task queues POWER/VS jobs
in the reader queue rather than DOS/VS jobs and it is POWER/VS jobs that
are scheduled on a priority within class basis.

A POWER/VS job can contain multiple DOS/VS jobs (JECL JOB statement
followed by two or more sets of DOS/VS JOB and /s statements followed by
a JECL EOJ statement). In this case, a single read queue entry for all
the DOS/VS jobs contained in the POWER/VS job is constructed.. This
POWER/VS job definition technique can be used to cause POWER/VS to
schedule multiple DOS/VS jobs as if they were one job so that they are
executed in a given sequence and one after the other, (not
concurrently). In this Situation, however, once POWER/VS has scheduled
the POWER/VS job for execution, the DOS/VS system still 'treats each
DOS/VS job in the POWER/VS job as a separate job as usual. Thus, if one
of the DOS/VS jobs in a POWER/VS job is canceled, the DOS/VS jobs that
follow the canceled job in the POWER/VS job are still executed.

A DOS/VS job (but not a DOS/VS job step) can contain multiple
POWER/VS jobs. In this case, a POWER/VS job consists of one or more
steps of a DOS/VS job., One read queue entry for each POWER/VS job in
the DOS/VS job is constructed. This POWER/VS job definition technique
was used in DOS/VS POWER to segment spooled printer and punch output and
to assign different attributes to the spooled printer and punch output
from different steps of a DOS/VS job. POWER/vS supports a segmentation
facility and permits multiple LST and PCB statements to appear in one
POWER/vS job. Therefore, there is little need to define POWER/vS jobs
that consist of one or more steps of a DOS/VS job.

If a JECL JOB and EOJ statement are not present for a DOS/VS job or
are provided on a one-far-one basis, the POWER/VS and DOS/VS job
definition is the same. The job name assigned to the POWER/VS job is
taken from the DOS/VS JOB statement if a POWER/VS JECL JOB statement is
not present. Note that when job name is specified in a POWER/VS
command, the POWER/VS job name rather than a DOS/VS job name must be
used.

The JECL statements and their functions are as follows (exceptions
for writer-only partitions are discussed later):

• JOB, which can be placed between DOS/VS jobs or j9b steps to delimit
POWER/VS jobs. If a two-to~eight character job name is specified,
it is placed in the read queue entry for the POWER/VS job. Job name
can contain alphameric, slash, dash, and period characters. The job
attributes that can be assigned using the JOB statement are job
class, priority for scheduling the job (which is also the priority
for transcribing its spooled printer and punch output if priority is
not specified on LST/PCB statements), and input job disposition.

If a class is not specified in a JECL JOB statement, the class
specified in the JECL CTL statement in effect for this input stream,
if any, is assigned to the job. If no CTL statement is in effect,
the class assigned to the read task that read the job is assigned to
the POWER/VS jab. The default priority assigned is the priority
specified in the PRI parameter of the POWER system generation macro.

Up to 16 bytes of user information can be included in the JECL JOB
statement. This information is placed in the account records for
the POWER/VS job, if POWER/VS accounting is used, and in the
separator pages for spooled printer output of the POWER/VS job, if
output separation is used. If the job logging facility is in
effect, user information from the POWER/VS JOB statement is included

DOS/Virtual storage Features Supplement 141

in the data displayed on the SYSLOG device at POWER/VS job start
time.

• EOJ, which normally is placed after a DOS/VS EXEC or /f, statement to
indicate the end of a POWER/VS job. The EOJ statement is accepted
by POWER/VS wherever it is placed in the input stream.

• CTL, which can be placed before any JECL or DOS/VS JOB statement to
establish the input class (partition-dependent or partition­
independent) that is to be assigned to POWER/VS jobs for which a
class was not specified in the JECL JOB statement. A CTL statement
remains in effect until another CTL statement is encountered or
until the read task terminates.

• LST (or PRT), which can be placed anywhere in an input stream
(including within data input) to specify attributes for the spooled
printer output of a POWER/VS job. Any number of LST statements can
be included in a POWER/VS job and JECL JOB and EOJ statements do not
have to be used in order to include LST statements for a POWER/VS
job. A LST statement remains in effect until. another LST statement
for the same spooled printer (as indicated via the LST parameter) 'is
encountered i~ the POWER/VS job or until the last statement of the
POWER/VS job is read. If no LST statements are inchlded in a
POWER/VS job definition, the attributes established during POWER/VS
generation are assigned to the spooled printer output from the job.

142

LST is used to specify for spooled printer files output class,
priority, disposition, spooling of printer output to a tape volume
instead of the POWER/VS data file, the identification of the RJE
user to which the spooled printer file is to be sent or the central
operator identification, the number of copies to he printed, the
number of output separator pages and whether they are to appear
after each copy for multiple copies, the output limitation values,
'the identification (alphameric) of the form to be used for printing,
the format of the carriage control tape (LTAB parameter) or the FCB
image to be used in printing the output, the number of pages in a
segment, the phase name of the UCB image to be used for
transcription, the address of the spooled printer to which the
attributes in this LST statement apply, and specifications for the
3800 printer.

For a 3800, the following can be specified: number of copies in a
group (up to eight group values can be specified), whether the
output is to go to the burster-trimmer stacker, up to four character
arrangement tables to be used during file printing, whether the 3800
is to be set with defaults specified in a SETDF command, the name of
the forms overlay frame to be used, and the copy modification phase
and character arrangement table to use when printing copy
modification text.

The LTAB parameter, which specifies the carriage control tape
format, is used when a job step whose spooled printer output will be
written to a printer depends on sensing channel 12 or 9 (a non-FCB
type printer) to indicate page overflow for printer output. ~he
LTAB parameter specifies the distance between the channels in the
carriage control tape that is to be used for actual printing. The
LTABspecification is used to establish an internal representation
of the page format.

During execution of the job step, the execution list task initiates
a line counter at the beginning of each page of spooled output to a
given spooled printer device and increments the counter using line
print and skip to channel commands from the executing program and
the internal representation of the page format. When the counter
indicates a full page of lines has been written, the execution list

DOS/Virtual storage Features Supplement

tasks turns on the overflow bit in the CCB for the I/O operation to
the spooled printer to indicate end of page to the executing
program. If the LTAB parameter is not specified for a non-FCB type
printer, the specifications in the LTAB parameter of the POWER
generation macro are used.

The LTAB parameter specification is ignored when the FCB parameter
is also present in a LST statement. In this case or when only the
FCB parameter is specified, the internal representation of the page
format is established using the image specified in the FCB
parameter. If an LFCB macro is issued by the executing program, the
execution list task updates the intern~l representation of the page
format to reflect the specified FCB image. If no FCB parameter (or
LST statement) is specified for a printer with an FCB, the standard
FCB load for the printer type (that used during IPL) is loaded.

The LST parameter specifies the spooled printer to which the LST
statement applies in terms of the spooled printer device address or
the logical unit assigned to the spooled printer. When the LST
parameter is not specified in a LST· statement, the attributes the
LST statement contains apply to the first printer specified as a
spooled device in the PRINTERS statement when the partition was
started under POWER/VS control. The LST parameter must be used,
therefore, when a job step is to write to more than one spooled
printer and different attributes are to apply to different ·spooled
printers.

• PUN, which can be placed anywhere in an, input stream (including
within input data) and provides the capability of specifying the
same types of attributes for spooled punch output as the LST
statement, supplies for spooled printer output except UCB and FCB
images, carriage control spacing, and a compaction table (UCB, FCB,
LTAB, and CMPACT ~arameters).

• RDR, which can be placed anywhere in an input stream to indicate
that input is to be read from one or more diskette devices (up to
255) and inserted in the input stream being read from the card
reader. The diskette file can contain POWER/VS and/or DOS/VS job
control statements and input data for job steps. The number of
diskettes to be processed, sequence checking for multiple diskettes,
file verification, and automatic ejection and feeding of ,a new
diskette when end-of-file is reached on the current diskette can ce
requested. .

• SLI., which can be placed anywhere in the input stream to specify the
name of a book that is to be read during job step execution and
inserted in the input being supplied to the job step. The book can
be contained in the private source statement library ~ssigned to the
POWER/VS partition or in the system source statement library.
Source library update statements can be included in the' input stream
to modify the contents of the specified book (add, delete, and
replace statements in the book). Use of the SLI statement does not
require the inclusion of JECL JOB and EOJ statements.

• DATA, which must be preceded by a JECL SLI statement. The DATA
statement is used to insert card or diskette data from the input
stream in the data file into a book being read for submission to an
executing job step.

Intermediate Storage

POWER/VS requires direct access storage dedicated to its use for the
data file, queue file, and if POWER/VS accounting is to be used, account
file. These POWER/VS files can be allocated on 2314/2319, 3330-series

DOS/Virtual storage Features Supplement 143

(all models), 3340 (all models), 3344, or 3350 (in native or ,3330
compatibility mode) disk storage. DLBL and EXTENT statements for these
files must be user supplied. The POWER/VS files can be placed on disk
volumes that contain other DOS/VS files (that is, the volumes containing
POWER/VS files need not be dedicated to POWER/VS). However, for
performance reasons, it is recommended that POWER/VS files not be placed
on disk volumes that contain heavily used files.

Tape can be used for intermediate storage of spooled printer and
punch files from locally submitted jobs only. Multiple spool files can
be written on a tape volume and a spool file can be, contained on
multiple tape volumes. Tape intermediate sto~age can be used, for
example, when direct access space is limited or when spooled printer or
punch output is to be saved for transcription at a later time.

Note that no label processing is performed on tapes to which spool
files are written. That is, the execution list/punch task begins
writing a spool file to the specified tape without reading the tape to
check for the presence of labels and without writing a label. Tape
positioning is a user responsibility.

Data file. The file name of thePOWER/VS data file is IJDFILE. The
data file-can consist of from one to five extents, each of which must
begin and end on a cylinder boundary (split cylinders are not
supported). Each extent of the data file must be on a separate volume.
programmer logical units SYS002 to SYS006 for the POWER/VS partition are
used to access the data file extents. All extents of the data file must
reside on disk volumes of t~e same type. When a 3340 is used for the
data file, all extents must reside on the same type 3348 Data Module.
However, the data file, queue file, and account file each can be placed
on a different device type of those supported for POWER/VS intermediate
disk storage.

The space allocated to the data file is divided into track groups.
The maxim~ number of track groups permitted in the entire data file is
the number that will fit in the space allocated in the one to five
extents of the file. A track group contains an integral number of
cylinders as specified by the user via the TRACKGP POWER/VS generation
parameter or as assigned by default, depending on the device type used
for the data file. The minimum number of tracks in a track group is one
and the maximum is one cylinder of tracks. If the number of tracks in a
cylinder on the device type used for the data file is not a whole
multiple of the number of tracks in a track group, the remaining tracks
in the cylinder are allocated to the last track group in the cylinder.

The size of the physical records written in the track groups of the
data file is the size specified in the DBLK POWER/VS generation
parameter. DBLK can be a minimum of 544 and a maximum of 2008 bytes.
If the UCS parameter is to be used on a LST or PRT statement for a 3211
printer, the minimum DBLK size is 608. If a DBLK size is not user
specified, a default block size is chosen based on the device type used,
as shown below.

Device type Default DBLK
size

2314/2319
3330-series
Models 1, 2, and 11
and 3350 in 3330
compatibility
mode

3340 and 3344
3350

144

920
952

808
960 ,

Approximate number
of 80 column cards
per block

11
12

10
12

Approximate number
of 132 character
lines per block

7
7

6
7

DOS/Virtual Storage Features Supplement

Note that trailing blanks in card input that is spooled to the data
file are eliminated, as are trailing blanks in spooled output cards and
spooled output lines written to the data file. Therefore, the figures
shown above indicate the minimum number of cards and lines per data
block. Note also that specification of a DBLK size smaller than the
default for a given device increases disk arm activity and can affect
POWER/VS performance. In addition, the default block sizes are not
necessarily optimal for track utilization. Therefore, block size should
be that which best utilizes the track capacity of the data file device
type, subject to the availability of the required real storage for
buffers.

Block size can be changed only when a cold start of the POWER/vS
system is performed. When POWER/vS is warm started, the block size
established during the last cold start is utilized.

The DBLK specification determines the size of the data buffers that
are used by the POWER/VS reader, execution processor, and writer tasks.
These buffers are allocated in the POWER/VS partition. A data buffer is
a multiple of 32 minus 8 bytes in size, that is, (N X 32)-8 bytes where
N can vary from 16 to 63. Data'block size is equal to the smallest .
integral multiple of 32 minus 8 bytes that is equal to or greater than
the DBLK specification. The same data block size is used for both the
input and, the output buffers assigned to a reader or writer task.

If a reader task, RJE reader task, or execution list/punch task
requires a track group and none is available in the data file, the
requesting task is placed in the wait state, the operator is notified,
and system operation continues. The operator can do nothing or make
space available by deleting an existing queue entry. He can also start
additional writer tasks.

Queue~. The file name of the queue file is IJQFILE. The queue
file consists of only one extent and is accessed using programmer
logical unit SYS001 for the POWER/VS partition. Split cylinders are not
supported for the queue file. The queue file contains one master
record, which is written as the first record of file, and as many queue
records as will fit in the space allocated to the queue file extent.
The master record and each queue record is 152 bytes in length. The
number of queue records allocated should be one for each track group
contained in the data file plus a few additional records for POWER/VS
use.

A copy of the master record is kept in the POWER/VS-partition.
Whenever this record is updated, it is rewritten to the queue file so
that it will be up to date if needed for a warm start.

A queue record in the queue file is required to point to the location
of each assigned track group in the data file. If the total number of
queue records is less than the total number of track groups, the extra
track groups cannot be utilized. The operator is notified when the
queue file is totally allocated and system operations continue.

If a queue record is required for assignment to a track group and
none is available, the requesting POWER/VS task (reader task, RJE reader
task, or execution list/punch task) is placed in the wait state until a
queue record becomes available. The operator is notified of the out-of­
space condition.

Each POWER/VS job read by a POWER/VS read task is assigned one or
more track groups to contain the DOS/VS job_control statements, any
POWER/VS job control stateme'nts, and any -card . or diskette input for the
job steps in the DOS/vS job(s). The track groups allocated to a given
POWER/vS job are not necessarily contiguous in the data file. Space in
the last or only track group assigned to POWER/VS job that is not used

DOS/Virtu~l Storage Features Supplement 145

by the job remains unused. It is not allocated to any other POWER/VS
job.

The queue records that are allocated to the track groups for a given
POWER/VS job form a queue set and are chained together via pointers.
The queue set itself is contained in one of the input class chains
within the total input (reader) queue. The read queue entry for a job
consists of the queue set records in the queue file plus the track
groups in the data file pointed to by the queue set records. Figure
80.40.2 illustrates the relationship between a queue set, queue records,
and a queue entry.

When output segmentation is not used, each spooled printer file and
each spooled punch file written by the steps of a given DOS/VS job is
allocated one or more track groups as required. Therefore, each spooled
printer file and each spooled punch file created by a DOS/VS job has a
list or punch queue entry, as appropriate, that consists of queue set
records plus the associated track groups in the data file. The queue
set for each spooled printer file is contained in one of the output
class chains within the list queue and the queue set for each spooled
punch file is contained in one of the output class chains within the
punch queue. .

When output segmentation is used, a spool file consists of multiple
segments. Each segment of each spooled printer and each spooled punch
file is allocated one or more track groups as required. Therefore, a
segmented spooled printer or punch file has one list or punch queue
entry for each of its segments instead of only one queue entry.

Queue Entry

~------------------------_I\~--------------------------I \

Queue Set

Queue File Data File

• Queu..e records point to
track groups allocated
for queue entry.

• Queue set consists of
queue records (three
in this example)
allocated for queue entry
and is contained in a
Class queue within the input
or an output queue.

• Queue entry consists
of queue set records
and track groups.

Figure 80.40.2. Relationship between a queue set, queue records, and a
queue entry

During POWER/VS operation, status information about the queue file is
maintained in the PCWER/VS partition. There is a pOinter field for each
class in the reader queue, list queue, and the punch queue. The pointer
for a class in a queue indicates the record address of the first and
last queue record in the class chain. The pointer field also indicates
whether there is a queue entry in the class chain that can be scheduled

146 DOS/Virtual Storage Feature~ Supplement

for execution (reader queue pointers) or transcription (list and punch
queue pointers).

Account file. The optional account file has the filename IJAFILE and
is accessed using the programmer logical unit SYSOOO for the POWER/VS
partition. It consists of only one extent. The account file contains
six different types of records and is written as a DCS/VS sequential,
variable-length unblocked file in chronological order (see discussion
under "Job Accounting").

starting ~ Stopping POWER/VS

POWER/VS can be started in a virtual partition any time after DOS/VS
initilization. Before starting POWER/VS, the operator should ensure
that the following conditions exist:

• The partition in which POWER/vS is to execute is stopped, if it was
previously active, and has assigned the amount of virtual and real
storage required by the POWER/VS system to be used.

Note that in addition to the programmer logical units SYSOOO to
SYS006 that are used for the POWER/VS intermediate disk storage
files, enough programmer logical units must be defined for the
POWER/VS partition to accommodate all the reader and writer tasks
(including RJE reader and writer tasks) that can be active
concurrently. programmer logical units used for reader tasks and
writer tasks are assigned and unassigned automatically by POWER/VS
as required.

• The unit record devices to be used by POWER/VS during its
initialization are unassigned.

• The partitions POWER/VS is to schedule have lower priority than that
of the partition in which POWER/VS is:to be initiated and have been
stopped or unbatched.

• The POWER/VS files (queue file, data file, and account file if
POWER/VS accounting is to be used) are mounted and ready for
processing.

After the above conditions are met, the operator can issue the DOS/VS
START command for the partition to be used by POWER/VS. Initiation of
POWER/VS can then be accomplished manually or using the AUTOSTART
facility. When the AUTOSTART facility is used, POWER/VS start'-up
commands can be entered via the SYSIPT device instead of via the SYSLOG
device.

When the AUTOSTART facility is not used, the operator must do the
following to initiate POWER/VS:

• If not already assigned, assign the SYSRDR device for the POWER/VS
partition if job control statements for the POWER/VS files (called
POWER/VS initiation statements) are to be read from a card reader
instead of entered via the SYSLOG device.

• If not already assigned, assign a SYSLST device if a status report
is to be printed after a warm start of POWER/VS or if a dump of the
POWER/VS partition is desired if abnormal termination of POWER/VS
occurs during its initialization. SYSLST need not be assigned if
neither output is desired.

• If not already aSSigned, assign the queue file (SYS001), data file
(SYS002 to SYS006), and the account file (SYSOOO); supply DLBL and

DOS/Virtual Storage Features Supplement 147

EXTENT statements for these POWER/VS files; if the account file is
to be dumped to a standard labeled tape or a disk, supply DLBL and
EXTENT statements for the file; and supply the EXEC statement for
the POWER/VS system to be started. These POWER/VS initiation
statements can be entered via the SYSRDR device for the POWER/vS
partition, if the device was assigned, or entered via the SYSLOG
device. DLBL and EXTENT statements need not be supplied if they are
stored on the label cylinder of the system residence volume.

POWER/VS initialization begins after the above steps have been
performed. During the initialization, POWER/VS code is loaded into the
POWER/VS partition and POWER/VS files are opened and, optionally,
formatted. The FORMAT QUEUES message is issued during POWER/VS
initialization to enable the operator to specify whether formatting
should occur. If formatting of the queue or data file is requested, a
cold start is performed. The queue file only, account file only, queue
file and account file, queue file and data file, or queue file, data
file, and account file can be formatted. .

When formatting of the queue or data file is not requested, a warm
start is performed. A warm start causes POWER/VS to begin processing
the jobs and spool output files that currently exist in the POWER/VS
queue and data files. If the SYSLST device for the POWER/VS partition
is assigned, a warm start causes a status report to be printed that
lists the jobs in the reader queue and the spool files in the list and
punch queues. The following is listed for each queued entry as
appropriate: job name, job number, priority, disposition, class, number
of copies, number of pages or cards, and forms identification.

The status report also lists information about the queue, data, and
account files. For the queue file, the number of queue records
currently assigned and available is given. The total number of tracks
in the file, track group size, add data block size for the data file is
given. For the account file, the total number of tracks allocated and
the percentage of the file that is filled is given.

When POWER/VS initialization is completed, a message is issued to the
operator and the SYSRDR, SYSIPT, and SYSLST devices for the POWER/VS
partition are unassigned. The operator must issue POWER/VS PSTART
commands to start the partitions POWER/VS is to control, POWER/vS reader
and writer tasks, communications lines POWER/VS RJE,BSC is to handle (if
any), and activate the VTAM interface if RJE,SNA support is to be used.

When a partition is started with a PSTART command, the operator is
promp~ed to specify the device addresses of the unit record devices for
which POWER/VS is to provide spooling. One reader, one diskette, up to
eight printers, and up to eight punches can be specified for each
POWER/VS controlled partition. POWER/vS will intercept all I/O requests
from the partition for the logical units assigned to the unit record
devices designated as spooled devices.

If no jobs with the class(es) assigned to a partition are queued at
the time the partition is started with a PSTART command or any time
thereafter until the partition is stopped with a POWER/VS PSTOP command,
the partition enters the wait state and the operator is notified. .
Processing in the partition starts or resumes automatically as soon as a
POWER/VS job with ~ class the partition is assigned is available in the
reader queue.

When the AUTOSTART facility is to be used, after the POWER/VS
partition is started the operator must assign the POWER/VS partition
SYSIN device to a card reader, tape, or disk. The PCWER/VS initiation
cards followed by PCWER/VS AUTOSTART statements can then be placed in
the assigned card reader.

148 DOS/Virtual storage Features Supplement

AUTOSTART statements can include the FORMAT statement to specify
whether POWER/VS file formatting is desired; PSTART commands to start
the partitions POWER/vS to control; READER, PRINTERS, and PUNCHES
statements to indicate the unit record devices to be spooled in the
started partitions (READER=NO defines a writer-only partition while
specification of PRINTERS=NO and PUNCHES=NO defines a reader-only
partition); PSTART commands to start POWER/VS reader, list, and punch
tasks; and PSTART commands to start RJE,BSC lines and activate the VTAM
interface.

AUTOS~ART statements must be followed by a DOS/VS /* job control
statement, which can be followed by the input stream POWER/VS is to read
from the card reader. POWER/VS initiation statements and AUTOSTART
statements each can be supplied via a cataloged procedure instead of via
a card reader. Note that the EXEC POWER statement should not be
supplied via a cataloged procedure as this approach prevents any
updating of the procedure library during the entire time POWER/vS is in
operation.

Initialization of POWER/VS via the AUTOSTART facility is performed as
for a manual initialization as the input deck is read. The operator is
prompted for a formatting specification for POWER/VS files if a FORMAT
statement is not supplied in the AUTOSTART input and notified if any
PSTART or spool device specification statements are incorrect.

Normal termination of POWER/VS is accomplished by issuing the
POWER/vS PEND command. The PEND command causes all POWER/VS tasks to be
terminated after processing associated with the current queue entry is
completed. That is, reader tasks continue until their current POWER/VS
job is read and queued in the reader queue, writer tasks continue until
the current spool file or spool file segment is transcribed, and
POWER/VS jobs executin9 in POWER/vS controlled partitions are allowed to
complete.

The PEND command also causes the POWER/VS partition and all POWER/VS
controlled partitions to be returned to normal DOS/vS operation after
they complete their current operations. If a printer address is
specified in the PEND command, a status report similar to the one
printed after a warm start is printed before POWER/VS termination.

When immediate termination of POWER/VS is required because of an
emergency, the PEND command with the KILL operand is used. This command
causes read tasks to terminate immediately without completing the
reading of any POWER/VS job they are currently handling. Such jobs are
not queued and must be resubmitted when POWER/VS is restarted. Writer
tasks are stopped immediately also. The spool output files being
transcribed by the terminated writers remain queued in the list and
punch queues and will be transcrib~d from the beginning if a warm start
of POWER/vS is initiated later. POWER/VS jobs executing in POWER/VS
controlled partitions are canceled and remained queued in the reader
queue.

If a printer address is specified in the PEND KILL command, a DUMP
macro is issued to print all virtual storage in the POWER/VS partition
before POWER/VS termination. The supervisor area included in this dump
depends on the dump specification in the STDJC system generation macro
or the OPTION statement in effect for the POWER/VS partition.

The operator is notified when POWER/VS is to be abnormally terminated
because of an error and can request that a dump of the POWER/VS
partition be taken. All POWER/VS controlled partitions are also
abnormally terminated when the POWER/VS partition terminates abnormally.

DOS/Virtual Storage Features Supplement 149

Dummy Assignments and Dummy Devices

ASSGN statements have to be provided for the devices that are to te
spooled for POWER/VS controlled partitions, just as for any other I/O
devices. In addition, any device that is specified as a spooled device
in a READER, PRINTERS, or PUNCHES statement must be defined in the PUB·
table in the DOS/vS supervisor as usual (via the DVCGEN DOS/VS system
generation para~eter or the ADD IPL statement).

However, since the I/O requests to a logical unit assigned to a
spooled device are intercepted by POWER/VS, a physical unit record
device is not actually used for these I/O operations and the assignment
for a spooled device is 'in effect a dummy assignment. Further, if the
physical device that is specified as a spooled device does not actually
exist in the system configuration, the dummy assignment is actually
being made to a dummy device.

In certain situations in POWER/VS, assignments for spooled devices
must be made to dummy devices. The need for dummy devices occurs much
less often for POWER/VS than for DOS/VS POWER because of a change in the
way· assignments for spooled devices in POWER/VS-controlled partitions
are handled by the DOS/VS job control program.

In POWER/VS, logical units in different POWER/VS-controlled
partitions can be assigned to the same physical unit record device if
that physical unit is identified as a spooled device for each of the
partitions. In addition, the same physical unit record device can also
be assigned to the POWER/VS partition for use by a read~r/writer task.
As a result, spooled devices for POWER/VS-controlled partitions do not
have to be assigned to dummy devices except in certain situations
(discussed later).

For example, assume POWER/VS is to execute in partition F1 to control
the operation of partitions BG, F2, and F3, each of which is to use one
spooled card reader, one spooled punch, and one spooled printer. The
same card reader, punch, and printer can be assigned to each of the
POWER/VS-controlled partitions. To avoid the use of dummy devices,
these three devices can be those physically present in the I/O
configuration aDd used by the POWER/VS partition (that is, by reader and
writer tasks). This is illustrated in Figure 80.40.3. Note that the
assignments for the spooled devices for POWER/VS-controlled partitions
can be made during DOS/VS system generation as well as during system
operation • .

In a DOS/VS POWER environment, the situation illustrated in Figure
80.40.3 requires the definition and assignment of one set of dummy
devices (card reader, punch, and printer) for the spooled devices for
one POWER-controlled partition and another set for the spooled devices
for a second POWER-controlled partition. The third POWER-controlled
partition can have real unit record devices assigned to it (the same
that are used by reader and writer tasks in the POWER partition). The
dummy device requirement exists because for DOS/VS POWER, logical units
in different POWER-controlled partitions cannot be assigned to ttle s.ame
uni~ record device.

150 DOS/Virtual Storage Features Supplement

r- ., r------l r --- - -,.
I

SYSLST I I SYSLST I I
SYSLST I I I OOE OOE I OOE I

I I I -I -I --.I

l... - l_ ,.. l
,..

Spooled
devices

,------ ., - --, -- -- - -,
r , r SYSPCH I I SYSPCH I SYSPCH I

000 I I 000 I 000 I
I
L_ _J L_ .J L_ J

__ ------~~------~~ ~------_r--------_r--~--------~L-~----~~------~L-_r----~--------~--_r--------~

OOSIVS
Supervisor

Page pool

Figure 80.40.3.

Fl-R
POWERIVS

BG-V

{ (-S~S:A--~ Spooled
devices

OOC I
. L _____ -oJ

Dummy { ASSGN SYSRDR. X'OOC'
assignments ASSGN SYSLST, X'OOE'
for spooled ASSGN SYSPCH, X'OOD'
devices

Assignment { READER'OOC
of spooled PRINTERS=OOE
devices PUNCHES=OOD

F3-V F2-V

------, ,------,
(SYSROR I r SYSROR I
I OOC I OOC I
L_ - --- ...J

L _____
-oJ

ASSGN SYSRDR, X'OOC' ASSGN SYSROR, X'OOC'
ASSGN SYSLST, X'OOE' ASSGN SYSLST, X'OOE'
ASSGN SYSPCH, X'OOD' ASSGN SYSPCH, X'OOD'

READER=OOC READER=OOC
PRINTERS=OOE PR INTERS=OOE
PUNCHES=OOD PUNCHES=OOD

Example of spool devtce assignments in POWER/VS
without the use of dummy devices

Fl-V
POWERIVS

task

Real unit
record devices
defined in PUB
table

OOC

For POWER/VS, the following situations require the use of duw~y
devices:

• A writer-only POWER/VS-controlled partition is to read directly from
a card reader, say aoe. The other POWER/VS-controlled partitions
that are to read from a spooled card reader cannot assign the
spooled reader to oae because ooe is owned by the writer-only
partition. Therefore, a dummy device must be defined in the PUB
table and assigned to the spooled card readers.

Figure 80.40.4 illustrates this situation. POWER/VS operates in
partition F1 to control partitions BG, F2, and F3. In the example,
BG is the writer-only partition. Dummy devices are not required for
the spooled printers and punches used by the POWER/VS-controlled
partitions. Note that reader ooe cannot be used by a reader task in
the POWER/VS partition while it is being used directly by the
writer-only BG partition.

• A reader-only POWER/VS-controlled partition is to write directly to
a printer/punch.. This situation is like that for a writer-only
partition. The POWER/VS-controlled partitions that are to use a
spooled printer/punch must have a dummy device aSSigned to the
spooled device.

• A POWER/VS-controlled partition is to use more than one spooled
printer or punch. Different logical units in the partition cannot
be assigned to the same printer/punch device. Therefore, one of the
spooled printer/punches can be aSSigned to a real printer/punch
while the other spooled printers/punches are assigned to dummy
devices. Figure 80.40.5 illustrates the situation in which POWER/VS
executes in the F1 partition to control the operation of the BG and
F2 partitions. F2 is using three spooled printers.

• A 1442, 2560, or 5425 is to be used by a POWER/VS-controlled
partition for both card reading and punching. These devices have
only one device address. Since the two logical units to be used for
reading and punching cannot be assigned to the same device, one
logical unit must be aSSigned to a dummy device. The other can be
assigned to a real device.

• A cardless system (Model 115 or 125) is to perform spooling to
diskette devices. A dummy device must be assigned to each spooled
device.

The addresses selected for dummy devices should be selected such that
they do not cause incorrect assignment of device addresses to uew's for
the byte multiplexer channel. Incorrect uew assignment can cause a uew
folding condition that can place the system in a hard wait state. Note
that address OlD should not be used as a dummy punch device for a Model
115 or 125 system in which POWER/VS is being used.

152 DOS/Virtual Storage Features Supplement

OOSIVS
Supervisor Page pool

Spooled
devices

,..
(

I
L

F1-R
POWERIVS

r- -- --

SYSLST
OOE

I
l "'"

- -- -, ,.....

SYSPCH I
(

000 I
-J L-

BG-V

, r-
I
I I

-I

l...

- --
SYSPCH
000

- --

F3-V

-- - , r -----,
SYSLST I I SYSLST I
OOE I OOE I I __ ..J

..J
l "'"

-, ,.- -,
r
I
L

SYSPCH I
000

F2-V

.....J

F1-V
POWERIVS

List
task

~--------~------~{ r--------4--------~--------~--------~--------~---------L--------_,r_--------L---------~

Figure 80.40.4.

Assignment
of spooled
devices {

SYSROR
OOC

Real device
used for direct
card reading

ASSGN SYSROR, X'OOC'
ASSGN SYSLST, X'OOE'
ASSGN SYSPCH, X'OOO'

REAOER=NO
PRINTERS=ooE
PUNCHES=OOO

~ --, r-
r SYSROR I r

- -.,
SYSROR I

I 01C I I 01C I
L_ ...J L ..J , ,,~ ____________ -JJ

Spooled devices assigned to
a dummy device defined in
PUB table

ASSGN SYSROR, X'01C'
ASSGN SYSLST, X'OOE'
ASSGN SYSPCH, X'OOO'

REAOER=01C
PRINTERS=OOE
PUNCHES=OOO

ASSGN SYSROR, X'01C'
ASSGN SYSLST, X'OOE'
ASSGN SYSPCH, X'OOO'

REAOER=01C
PRINTERS=OOE
PUNCHES=ooO

Example of the use of a dummy device when a card reader
is used 9irectly by a POWER/VS writer-only partition

task

Real unit record
devices defined
in PUB table

000

OOE

OOC

OOC cannot be
used by POWERIVS
while it is being
used by BG-V
partition

DOSIVS
Supervisor Page pool

r-----' r-----'r-----'
I SYSLST I I SYSLST

I OOE

l

r-----,
r SYSPCH I
I 000 I
L ____ ...J

F1-R
POWERIVS BG-V

I OOE

_-oJ I
,.-

l....

~----1

r SYSPCH I
I 000 I
L __

F2-V

r- - --, r- - ---,
r r SYSRDR I SYSRDR I

OOC I I OOC I L _____ ..J L _____
..J

I I SYS010 I
I I 01E I

..J
"

- - --,
SYS011 I
02E I

F1-V
POWERIVS

Real unit
record devices
defined in PUB table

000

OOE

OOC

Dummy
assignments
for spooled
devices

{

ASSGN SYSRDR, X'OOC'
ASSGN SYSLST, X'OOE'
ASSGN SYSPCH, X'OOD'

ASSGN SYSRDR, X'OOC'
ASSGN SYSLST, X'OOE'
ASSGN SYSPCH, X'OOD'
ASSGN SYS010, X'01 E'
ASSGN SYS011, X'02E' }

Spooled devices assigned
to two dummy devices

Assignment of {READER = OOC
spooled devices PRINTERS = OOE

PUNCHES = 000

READER = OOC
PRINTERS = OOE, 01 E, 02E
PUNCHES = 000

Figure 80.40.5. Example of the use of a dummy device when a POWER/VS­
controlled partition uses more than one spooled printer

POWER/VS Tasks

The POWER/VS program consists of a group of control and functional
tasks that perform job scheduling and spooling operations. The POWER/V'S
program provides its own multitasking support (private subtasking) and
does not require the presence of multitasking support in the DOS/VS
supervisor under which it operates. The POWER/VS program contains a
page fault qverlap appendage routine to enable it to retain CPU control
when a page fault occurs in the POWER/VS partition so that another ready
POWER/VS task, if any, can be dispatched.

Multitasking in the POWER/VS partition is controlled by the main
task, which is never referenced externally. Other control tasks are the
following:

• Command task, which initiates and terminates other POWER/VS tasks
and handles POWER/VS commands entered by the operator.

• wait task, which places the POWER/VS partition in the wait state
when necessary.

• RJE,BSC line manager task, which controls the communications lines
supported by POWER/VS when RJE,BSC support is utilized. This task
is attached when the first ESC line is started and stopped when the
last ESC line is stopped.

154 DOS/Virtual Storage Features Supplement

• RJE,SNA manager task, which controls the activation of transmission
processing to and from an SNA remote terminal. The task is attached
when the central operator issues a PSTART RJE,SNA command to begin
remote job entry operations for SNA terminals.

• RJE,SNA logon tasks, which initialize and establish a session
between POWER/vS and a remote SNA terminal.

• RJE,SNA logoff task, which terminates a session between POWER/VS and
a remote SNA terminal.

• RJE,SNA message task, which handles the sending of messages to
remote SNA terminals,.

• Spool manager task, which controls the activation and deactivation
of the internal reader task and the spool/command manager list task.
This task is attached during POWER/VS initialization when POWER/VS
cross partition communication support is included in the system and
detached when POWER/VS is terminated.

• Internal reader task, which, performs the read operation when a
PUTSPOOL cross partition communication macro is issued.

• Spool/command manager list task, which performs the retrieval
operation when a GETSPOOL cross partition coremunication macro is
issued and the command invocation for a CTLSPOOL cross partition
communication macro.

• Account task, which handles the disposition of the account file that
is written by POWER/VS job accounting support.

• Status task, which writes the status of the queue file to the SYSLOG
device, a local printer, or a remote printer.

The POWER/VS functional tasks are the following:

• Reader/writer tasks that consist of read tasks, list tasks, and
punch tasks.

• Execution processor tasks that consist of execution read tasks,
execution list tasks, and execution punch tasks.

• RJE tasks that consist of RJE,BSC and RJE,SNA read tasks, RJE,ESC
and RJE,SNA list tasks, and RJE,BSC and RJE,SNA punch tasks. These
RJE tasks are discussed later under WRemote Job Entry Supportw.

The POWER/VS main task maintains a task selection list for
dispatching purposes in the following high to low priority sequence:

• POWER/VS initiator or terminator task

• RJE,BSC line manager task

• RJE,SNA manager task

• Command processor tasks

• RJE reader/writer tasks in the sequence they were started with
PSTART commands

• Writer tasks in the ,sequence they were started

• Execution processor tasks for POWER/VS-controlled partitions in the
sequence in which the partitions were started

DOS/Virtual storage Features supplement 155

• Reader tasks in the sequence they were started

• Command task

If none of the above tasks are ready to execute when POWER/VS
searches the task selection list for a dispatchable task, POWER/VS
issues an SVC 1 instruction to return control to the DOS/VS supervisor.

Read tasks. A read task reads an input stream from a card reader
and/or 3540 diskette device. For each POWER/VS job read, a read queue
entry is placed in the reader queue. The read task places the
information contained in the JECL JOB (or defaults for these parameters)
in the read queue entry for each POWER/VS job it reads. In addition,
all POWER/VS JECL, DOS/VS job control, and card and/or diskette input in
the input stream for the POWER/VS job are transcribed to spool input
files in the POWER/VS data file on disk. The read task processes only
JECL JO~, RDR, CTL, and EOJ statements.

A read task is started in the POWER/VS partition when the POWER/VS
PST ART RDR command is issued by the operator or supplied in the input to
the AUTOSTART facility. The PSTART command indicates the address of the
card reader, diskette device, or card reader and diskette device to be
assigned to the read task (and owned by the POWER/vS partition). The
device specified must be available, that is, not currently assigned to
another partition.

When a read task is started, it is assigned an available programmer
logical unit in the POWER/VS partition for its read operations to the
specified device~ The read task is not started if no programmer logical
unit is available in the POWER/VS partition. As many read tasks as
there are available card readers and/or diskette devices can operate
concurrently. See Table 80.40.1 for the specific card readers and
features supported by POWER/VS read tasks.

When a read task is started for a card reader, one input buffer is
allocated to it from the POWER/VS partition unless the PSTART co«mand
specifies that two input buffers are to be allocated. A read task for
an input stream on a diskette device is allocated only one input buffer.
POWER/VS attempts to obtain one buffer large enough to read in one
entire diskette track at a time. One output buffer in the POWER/VS
partition is assigned to a read task for disk (data file and queue file)
write operations.

A read task has the standard name RDR assigned to it. Read tasks are
distinguished from each other by a suffix to the standard name that
consists of the device address of the card reader or diskette device the
task is assigned. Read tasks are reentrant.

Optionally, an input class can also be specified on a PSTART RDR
command to assign an input class to the read task. The input class
assigned to a read task by the operator or by default is assigned to
each of the POWER/VS jobs rea'd by the read task unless a JECL JOB
statement that specifies an input class was included for the job or a
JECL CTL statement is currently in effect for this input stream. The
input class specified in a JECL JOB statement overrides any CTL
statement class in effect. If an input class is not specified for a
read task, it is assigned class A by default. The same input class can
be assigned to more than one read task.

156 DOS/Virtual storage Features Supplement

Table 80.40.1. I/O devices supported by POWER/VS

Card Reading Devices

1442, 2520, and 2540 Card Read Punches
2501 Card Reader
2560 Multifunction Card Machine
3504 and 3505 Card Readers (Optical Mark Read and Read Column Eliminate

are not supported)
3521, 3525 Card Punch with Card Read feature
5425 Multifunction Card unit (96-column card reading is supported)

Note: Column binary reading, stacker selection, and interpreting are
not supported for the card devices listed above. Reading and
punching into the same card is not supported.

Card Punching Devices

1442, 2520, and 2540 Card Read Punches
2560 Multifunction Card Machine
3521, 3525 Card Punch
5425 Multifunction Card unit (96-column card punching is supported)

Note: Program-controlled stacker selection is supported for the 2560
and 5425.

printing Devices

1403, 1443, 3203, 3211, and 5203 Printers (UCB and FCB loading are
supported)

3800 printing Subsystem
2560 Multifunction Card Machine with card printing
3521, 3525 Card Punch with card printing
3784 Line Printer
5425 Multifunction Card unit with card printing

Note: Punch and interpret as well as punch and multiline print
operations on the same card are supported. For the 3525,
multiline printing, automatic line positioning, user-controlled
line positioning, and print overflow are supported.

Intermediate Storage (for the queue file, data file, and account file)

2314 Direct Access storage Facility (A and B models)
2319 Disk Storage
3330-Series Disk Storage, all models
3340 and 3344 Direct Access storage (all models)
3350 Direct Access Storage (all modes)
2400-Series Magnetic Tape units (for spooled punch and print data only)
3400-Series Magnetic Tape Units (for spooled punch and print data only)

Diskette Devices

3540 Diskette Input/Output Unit (as an input stream device only)

DOS/Virtual Storage Features Supplement 157

Table 80.40.1 (continued)

Remote Job Entry Terminals

2770 Data Communication System (BSC support)
2780 Data Transmission Terminal (BSC support)
3741 Data Station Model 2 (BSC support as a 2780)
3741 programmable Work Station Model 4 (BSC support as a 2780)
3771 Communication Terminal (BSC support as a 2770 and SNA

support as a nonprogrammable terminal)
3773 Communication Terminal (BSC support as a 2770 and SNA

support as a nonprogrammable terminal)
3774 Communication Terminal (BSC suppor~ as a 2770 and SNA

support as a nonprogrammable terminal)
3775 Communication Terminal (BSC support as a 2770 and SNA

support as anonprogrammable terminal)
3776 Communication Terminal (BSC support as a 3780 and SNA

support as a nonprogrammable terminal)
3780 Data Communication Terminal (BSC support)
3790 Communication System (SNA support)
System/32 (as a 3770)

Teleprocessing Control units for RJE Terminals

2701 Data Adapter Unit
2703 Transmission Control Unit
3704/3705 Communications Controllers operating in emulation mode
Integrated Communication Adapters for Models 115, 125, 135, and 138

The input (job) priority aSSigned to each POWER/vS job read by a read
task is that specified in a JECL JOB statement included for the job, if
any. If a JECL JOB statement i~ not present for a POWER/VS job or did
not specify a priority, the default priority specified during POWER/VS
generation is aSSigned to the job. The disposition assigned to each
POWER/VS job read by a read task is that specified in the JECL JOB
statement included for the job. If a JECL JOB statement was not
included or did not specify a disposition, the default disposition of D
is assigned to the POWER/VS job, which causes it to be automatically
scheduled for execution by priority within input class.

A unique job (sequence) number (1 to 65,535) is assigned to each
POWER/VS job read by a read task. The job name and job number together
uniquely identify a POWER/VS job in case duplicate job names are used.
The job number assigned to a POWER/vS job is also placed in the' list
queue and punch queue entries for the spooled output of the job. When a
cold start of POWER/VS is performed, job number is reset to 1.

The input stream a POWER/VS read task reads from a card reader can
contain DOS/VS job control and, optionally, POWER/vS JECL statements.
Optionally, card input data for the job steps defined can be included as
well. Multiple cards decks can be included for a job step. These
decks will be read sequentially from the spooled card reader.

Input for the job steps defined in a card input stream can also be
supplied using the source library inclusion (SLI) facility. The JECL
SLl statement can be included in the input stream to specify the name of
a source statement library book and, optionally, a sublibrary name. If
a private source statement library is aSSigned to the POWER/VS
partition, it is searched first for the specified book. The system
source statement library is searched next or when no private source
statement library is assigned to the POWER/VS partition.

158 DOS/Virtual storage Features Supplement.

The searching for and reading of a source statement book is not
performed by the read task. This function is performed by the execution
read task when it encounters an SLI statement during execution of the
DOS/vS job step for which the SLI statement was included.

When the SLI facility is used, source library update statements can
be placed in the card input stream to insert additional source
statements in the book to be read and to replace or delete existing
source statements. The changes are made to the source statements
presented to the job step (and not to the book in the source statement
library) •

In addition, the JECL DATA statement can be placed in the input
stream after an SLI statement to cause the card input deck following the
DATA statement to be included in the data transcribed to the POWER/VS
data file. This data is then presented to the DOS/vS jOb step during
its execution as an insert to the source statement book specified in the
SLI statement that precedes the DATA statement (as if the deck were
actually present in the book being read from the source statement
library). The input following a DATA statement in the input stream is
presented to the job step at the time the execution read task encounters
a DATA statement in the source statement book it is reading that has the
name specified in the DATA statement in the input stream. The DATA
statement is igDored for a writer-only partition.

A book that will be included in the input stream using the SLI
facility can also contain DOS/VS job control statements and JECL LST and
PUN statements. The latter cannot have continuation statements. If
columns 1-4 of LST and PUN statements in an SLI book contain the four
characters. $x, where x is a character other than a blank or $, the SLI
book can be cataloged using a POWER/VS-controlled partition (LST and PUT
statements are treated as comments). Otherwise, a partition not
controlled by POWER/vS must be used to catalog the SLI book.

The partition-independent naming convention supported for partition
related cataloged procedures can 'be used to name SLI books containing
job control where necessary. If the first two characters of the SLI
book name are $$, when the SLI book ~s encountered during processing of
the job stream POWER/vS changes the second $ to B or 1 through 4 (or 6),
depending on the partition for which the SLI book is being processed,.

The following restrictions apply to the use of the SLI facility:
nested SLI statements are not permitted; an SLI book may invoke a DOS/VS
procedure but a DOS/VS procedure may not invoke an SLI book; each SLI
book represents a POWER/VS procedure and may not contain embedded JOB
statements (but one POWER/VS job may contain multiple SLI statements);
LST and PCB statements in an SLI book cannot be continued; the SYSRDR,
SYSIPT, and SYSIN devices cannot be reassigned with an SLI book; and the
private source statement library containing the SLI books to be used
must be assigned to the POWER/VS partition before POWER/VS is started.

The 3540 is also supported as an input stream device for data mode
and SYSIN mode operations. When the 3540 is used to supply data only
(no job control statements) for an input stream contained on cards, data
mode is in effect. Multiple diskettes (up to 255) containing data
records from 1 to 128 characters in length can be used in data mode.
Multiple data files per 3540 volume can also be read in data mode.

Data mode is invoked by including a card reader and a 3540 physical
device address in the PSTART command for a read task and placing one or
more JECL RDR statements in the card input stream. The RDR statement
specifies the physical device the job step is to use to read the input
data. Multiple RDR statements can be included in one POWER/VS job, but
they all must specify the same physical device. When a RDR statement is
encountered during reading of the card input stream, the read task

DOS/Virtual Storage Features Supplement 159

begins reading input from the 3540 diskette device specified in the
PSTART command for the read task and writes it to the "data file. The
RDR statement can request volume sequence checking when multiple
diskettes are to be read.

Job steps that are to use the data read from the 3540 use DTFDU or
DTFDI to read data from the logical unit assigned to the 3540 that was
specified in the RDR statement. The logical unit cannot be assigned to
the same physical device as the spooled card reader for the partition.
(Note that POWER/vS intercepts I/O requests to the SYSIN device for a
POWER/VS controlled partition only if it is assigned to a card reader.)

Note that although a diskette file can be inserted in the middle of a
card input stream using data mode, card data cannot be inserted in the
middle of a diskette file and one diskette file cannot be i~serted in
the middle of another diskette file.

When SYSIN mode is used for a 3540, the input stream can consist of
job control statements (both DOS/vS and POWER/VS JECL) and data
contained in both a card reader and on a 3540. The 3540 input can be
multivolume and consist of job control and data SO or Sl characters in
length. As for data mode, the card reader and 3540 to be used in SYSIN
mode are specified in the PSTART'co~~and, and RDR statement(s) in the
input stream indicate when the read task is to read from the 3540.
However, any input data from the card reader and 3540 for each job step
must be read from the card reader that is designated as the spooled card
device and DTFDU cannot be used.

A POWER/VS read task can also read an input stream that is totally
contained on a 3540 diskette device using SYSIN mode. The input stream
on a 3540 diskette can contain DOS/vS job control and optionally
POWER/VS JECL statements (SO or Sl characters in length) as well as
input data (SO or 81 character records) for the job steps defined.
Input streams on diskette devices can be multivolume (up to 255
volumes). The PSTART command specifies the 3540 that contains the input
stream. Data supplied via a diskette input stream is read into a
POWER/VS-controlled partition from a spooled card reader.

The source library inclusion facility and DATA statement can be
utilized with diskette input streams as described for card input
streams. However, a RDR statement cannot be included in a diskette
input stream. Figure 80,.40.6 summarizes the input stream device
combinations and contents supported by POWER/VS.

A user-written routine that receives control after each DOS/VS job
control (including comment, /*, and /&) or POWER/vS JECL statement is
read from an input stream by any read. task can be included in ~OWER/VS.
This routine executes in the POWER/vS partition and must be relocatable
(or self-relocating if the relocating loader is not present in the
DOS/VS supervisor) and reentrant. If the user exit routine terminates
abnormally, it also causes POWER/vS to terminate abnormally.

The user-written reader exit routine can inspect the statement just
read and return a code to POWER/VS to indicate the action to be taken.
This reader exit routine can indicate the statement is to be processed
normally, deleted, or replaced with one or more statements supplied by
the exit routine. Alternatively, the exit routine can indicate that the
POWER/VS or DOS/VS job containing the statement is to be flushed.

Note that only //, *, $$, /*, and /& statements in the input stream
are passed to the exit routine, but the contents of a referenced book or
procedure is not. In addition, when a DOS/VS $JOBEXIT routine is
included to inspect job control statements at execution time, the
contents of books included via the JECL SLI statement and procedures
invoked via the EXEC PROC statement are passed to the $JOBEXIT routine

160 DOS/Virtual storage Features Supplement

but POWER/VS JECL is not (because it is deleted from the input stream by
the execution read task).

Input stream from a card
reader only

Input stream from a card reader
with data only supplied via 3540
diskettes in data mode

Modifications
for SLI

Card input
data

Modifications
for SLI

Card input
data

3540 o }

1 to
255
diskettes

DOS/vS
job control

POWER/VS
JECL

Card input
stream

or
Private
Source
Statement
Library

Input stream from 3540
diskettes only in SYSIN mode

Diskette
input stream

• System
or
Private
Source
Statement
Library

DOS/VS
job control

POWER/VS
JECL

Card input
stream

Modifications
for SLI

Card input
data

DOS/VS
job control

POWER/VS
JECL

Card input
Stream

SLI
facility

Input data
1 to 128 character
records

System
or
Private
Source
Statement
Library

Input stream from a card
reader and 3540 diskettes in
SYSIN mode

facility

Diskette
input stream

Figure 80.40.6. Input stream device combinations and contents
supported by POWER/VS

A read task consists of a physical read routine and a logical r~ad
routine. The physical read routine performs device-dependent read
operations to the assigned input stream device and passes the data read
to the logical read routine. The logical read routine performs the
functions required to write the input stream to the POWER/VS data file
and place read queue entries for the POWER/VS jobs read in the
appropriate position in the reader queue in the POWER/VS queue file.

One copy of a device-dependent physical read routine is used by
multiple read tasks that are assigned the same type input stream device.
only one copy of the ~ogical read routine is required. It can be
associated with any number of device-dependent phYSical read tasks.

DOS/Virtual storage Features Supplement 161

If the POWER/VS queue file or data file is located on direct access
storage that has the rotational position sensing feature and RPS support
is included in the DOS/VS supervisor, SET SECTOR commands are used in
the channel programs initiated by the logical read routine to write
queue records and the input stream to these !iles.

Read tasks construct real channel programs and issue EXCP macros with
the REAL parameter specified to handle card reading, queue file writing,
and data file writing so that channel program translation is avoided. A
command-chained channel program that reads multiple cards or diskette
records is initiated for each read operation. The number of cards or
diskette records read per I/O operation to the input stream device
depends on the buffer size specified during POWER/VS generation in the
DBLK parameter.

When the end of a job stream in a card reader is reached, the
associated read task enters the wait state and the buffers in the
POWER/vS partition the task is assigned are released. The operator is
notified that the read task is waiting for work. When an unsolicited
device end from the card reader is received (indicating additional cards
have been placed in the reader and it is again ready), one or two
buffers are allocated to the read task and it is automatically restarted
to resume reading the input stream. When end of file is reached for a
job stream contained on one or more 3540 diskette devices, the
associated read task is terminated.

A read task is also terminated when the operator issues the POWER/VS
PSTOP command. If the read task is in the process of reading an input
stream when the PSTOP command is issued, the read queue entry for the
POWER/VS job being read is not placed in the reader queue unless the EOJ
parameter is specified. EOJ causes the read task to continue reading
the input stream until the current read queue entry is completed and
queued, after which the read task is terminated. The buffers assigned
to a read task are released when the task is terminated and the operator
is notified of the termination.

Execution read tasks. An execution read task is automatically
started in the POWER/vS partition when a partition is brought under the
control of POWER/VS via a POWER/VS PSTART command and is stopped when a
PSTOP command is issued to terminate POWER/VS control of a partition.
An available buffer in the POWER/VS partition is allocated to the
execution read task for disk read operations when it is started and
deallocated when the execution read task is stopped. Only one execution
read task can be active for a partition that is controlled by POWER/VS.

An execution read task has the standard name "ppR" assigned in which
the pp represents the POWER/VS-controlled partition the task is to
service. Execution read tasks are reentrant. The execution read task
for a partition receives CPU control for each read request from the
partition for that card reader or diskette device for which spooling was
specified when the partition was started with a PSTART corr~and. More
than one logical unit in the partition can be assigned to the card
reader that is spooled.

The execution read task performs the job scheduling function for its
associated reader/writer or reader-only partition. It also reads the
input in the data file for the job it is to initiate, performs required
processing of certain JECL statements in the job input, deletes all JECL
statements, and supplies DOS/VS job control statements to the DOS/VS job
control program. The execution read task processes all JECL statements
except CTL and RDR, since all required processing of these two
statements has been done by a read task •

. When a reader-only or reader/writer partition is started under
POWER/VS control, job scheduling occurs as follows. After the job

162 DOS/Virtual Storage Features Supplement

control program is loaded into the partition, the first read it issues
to the spooled card reader device causes the execution read task to
receive control. The execution read task searches the input queue for a
job with a class this partition is assigned.

If no job can be scheduled in the partition, the execution read task
places the partition in the wait state and notifies the operator that
the partition is waiting for work. The buffer allocated to the
execution read task is released and the execution read task also enters
the wait state. Whenever a read task places a job in the input queue,
it determines whether there is a waiting partition that can process the
job. If so, the appropriate execution read task is given control to
schedule the job in its partition. In addition, if the operator changes
a job class or disposition that makes a queued job available for a
waiting partition, the appropriate execution read task is also
reactivated.

When there is a job the execution read task can schedule, the read
queue entry for the job is read by the execution.read task to obtain the
location of track group(s) in the data file for the job. The execution
read task then reads in the first physical record in the spool input
file for the job, which should contain a JECL or DOS/VS JOB statement as
the first logical record.

When the execution read task encounters a JECL JOB statement, job
logging is performed. The job logging facility is included in all
POWER/vS systems. It is activated by default unless JLOG=NO is
specified during POWER/VS generation. When job logging is active, the
execution read task displays the following on the SYSLOG device when it
encounters a 'JECL JOB statement:

• POWER/VS job name and job number

• User information from the POWER/VS JECL JOB statement, if any

• User iQentification of the remote user that submitted the job (for
remotely submitted jobs only)

After performing job logging, the execution read task deletes the
JECL JOB statement (does not present it to the job control program) and
inspects the next logical input record. If this is a LST or PCB
statement, the execution read task obtains an available list or punch
queue record and inserts the information from the LST/PCB statement in
the queue record. A track group ~s not allocated at this time for the
spool file the LST or PCB statement describes.

When a LST statement with the UCB or FCB parameter specified is
encountered by the execution read task, it issues a UCB or FCB load
request to the spooled printer to which the LST statement applies. This
causes the execution list task to receive control. When the execution
list task determines the request is for a UCB or FCB load, it writes the
load channel program and image to the data file so that the load
operation will be the first I/O operation performed when the spool file
is transcribed by a list task.

If an erroneous LST (PRT) or PUN statement is encountered the
operator is notified and can correct the error or flush the affected
job.

After processing a LST/PCB statement, the execution read task deletes
the statement and inspects the next logical record. If it is a DOS/VS
JOB statement, the execution read task moves the statement from the
POWER/VS partition to the partition it is controlling (to the input area
specified in the card read request by the job control program). The job
control program, which has been waiting since issuing a read request to

DOS/Virtual storage Features Supplement 163

the spooled card reader, is then given CPU control to process the DOS/VS
JOB statement.

Each time the job control program issues a read request to the
spooled card reader, the execution read task receives control and
inspects the next logical record in the spoQI input file for this
POWER/vS job (performing disk read operations as they are required).
Any JECL statements encountered are processed by the execution read task
and deleted while all other statements are presented to the job control
program.

When the DOS/VS job control program receives a DOS/VS EXEC statement
from the execution read task, it loads the specified phase for
execution. Thereafter, any read request issued to the spooled card
reader by the executing program are intercepted by the execution .read

. task.

When the execution read task intercepts a request from an executing
program, it simulates the card or diskette read operation by passing an
input record from the appropriate spool input file in the POWER/VS·data
file to the requesting job step.· The record is from' the spool input
file that was transcribed to the data file by a read task when the job
step was read. When reading from the POWER/VS data file, an execution
read task uses real channel programs, the EXCP macro with the REAL
parameter, and sector commands if the RPS feature is present for­
POWER/VSdirect access storage and RPS support is present in the DOS/VS
supervisor.

When the execution read task reads an SLI statement in the spooled
input, it searches for the specified book.;. If the book is found, the
source statements it contains are presented to the executing program
each time the program issues a read request to the spooled card reader
just as if the source statements had been present in the spool input
file.

The execution read task continues to intercept spooled card reader
requests during program execution and to process any JECL statements it
encounters until end of POWER/VS job occurs, which will also be the end
of a DOS/vS job or job step. This condition causes the DOS/VS job
control program to be brought into the partition. When job control
issues a card read request to the spooled card reader, the execution
read task receives control and searches the input queue for another
POWER/vS job to schedule in the partition.

For a writer-only partition, jobs to be executed in the partition are
submitted via a card reader, tape, or disk SYSRDR/SYSIN device and are
read by the job control program as usual. These jobs must contain JECL
JOB andEOJ statements and may contain LST and PCB statements to specify
spool output file characteristics for jobs. Continuation of a JOB
statement is not supported for jobs that are to execute in writer~only
partitions. JECL RDR, CTL, SLI, and DATA statements in the input stream
are treated as comments.

The JECL JOB and EOJ statements must be included when LST or PCB
statements are present for a job that is to execute in a writer-only
partition. LST and PCB statements for writer-only partition jobs cannot
be placed within input data for the job. They must be presented at job
control time. If SLI or DATA statements are encountered in a job, they
are ignored and an error message is issued.

When a writer-only partition is started, an execution read task for
the partition is started as usual. The execution read task intercepts
all I/O requests to the SYSLOG devic~ in order to locate any JECL
statements in the jobs being read by the, job control program. JECL
statements are treated as comments by the job control program and,

164 DOS/Virtual Storage Features SUpplement

therefore, are listed on SYSLOG. The execution read task performs the
required processing of JECL JOB, LST, PCB, and EOJ statements.

An execution read task for any POWER/VS-controlled partition also
starts and stops the execution list and execution punch tasks that also
are to service the partition that the execution read task is assigned.
The execution read task, execution list task, and execution punch task
for a given POWER/VS-controlled partition are collectively called the
execution processor for the partitioh.

Execution list and execution punch tasks. The execution read task
starts an execution list task in the POWER/VS partition for a POWER/VS­
controlled partition the first time an executing job step issues a
request to anyone of the printer devices that are to be spooled for the
partition. Similarly, an execution punch task is started in the
POWER/vS partition by the execution read task the first time an
executing job step issues a request to anyone of the punch devices that
are to be spooled for the partition. When started, an execution
list/punch task obtains a track group from the data file in which to
write spooled data. .

When end of POWERIVS job occurs in the partition, the execution read
task stops the execution list and execution punch tasks it started for
the partition and the buffers allocated to the stopped tasks are
released.

An execution list task has the standard name ·ppL· and an execution
punch task has the standard name .ppp. in which the pp represents the
POWERlVS-controlled partition the task is to service. Execution list
and punch tasks are reentrant.

An available buffer from the POWER/VS partition is allocated to an
execution list or execution punch task for disk output operations when
it is started and deallocated when the task is terminated. A maximum of
one execution and one execution punch task can be active at a time for a
POWERIVS-controlled partition. Execution read, list, and punch tasks
for a partition operate asynchronously with each other and with other
POWERIVS tasks.

The execution list task for a partition receives CPU control for each
request from the executing job step that is' issued to the one to eight
printer devices designated to be spooled for the partition. When an
execution list task intercepts a request, it simulates the print
operation by moving the data to be printed and the channel program
required to perform the printing to its buffer in the POWER/VS
partition. The channel programs contained within a buffer are chained
together so they can be initiated by a list task using one EXCP macro.
When the buffer is filled, the execution list task writes the buffer to
a spooled printer file in the POWERIVS data file (or to tape, if this
option was specified).

An execution list task checks each I/O request it intercepts to
determine whether it contains a command to load the FCB or UCB of the
specified spooled printer. When such a request is received, the
execution list task writes the specified image to the data file for use
when the spool file being written is transcribed to a real printer. If
the FCB is being loaded, the execution list task also updates the
internal representation of the page format for the specified spooled
printer. As discussed later, segmentation also occurs.

The execution punch task for a partition receives CPU control for
each request from the executing job step that is issued to the one to
eight punch devices designated to be spooled for the partition. When
the execution punch task intercepts a request, it simulates the punch
operation by moving the data to be punched and the channel program

DOSIVirtual storage Features Supplement 165

required to perform the punching to its buffer in the POWER/VS
partition. The channel programs contained within a buffer are chained
together so they can be initiated (by a punch task) using one EXCP
macro. When the buffer is filled. the execution list task writes the
buffer to a spooled punch file in the POWER/VS data file (or to tape. if
this option was specified.)

The execution list and execution punch tasks use real channel
programs. the EXCP macro with the REAL parameter, and sector commands if
the RPS feature is present for POWER/VS direct access storage and RPS
support is present in the DOS/VS supervisor to write spooled output to
the POWER/VS data file and queue entries to the queue file for the
spooled files.

When the output segmentation facility of POWER/VS is not used. list
and punch queue entries created for spooled printer and punch files from
a POWER/VS job are not placed in the appropriate output queues in the
POWER/VS queue file until all steps of the job have been processed.
Thus, transcription of spool files to printer and punch devices cannot
begin until end of POWER/VS job occurs.

The output segmentation facility enables a print or punch queue entry
to be queued while a DOS/VS job step is still executing. This facility
enables the transcription of spool output files for a job step to occur
concurrently with execution of the job step if a writer task is
available. " Output segmentation can be used only when spooled printer or
punch output is written to disk.

output segmentation can be controlled using count-driven, data­
driven, or program-driven segmentation. When count-driven segmentation
is to be used. the RES parameter can be specified at POWER/VS generation
to indicate the number of pages (up to 999.999) and/or number of punched
cards (up to 999.999) that are to comprise a segment. Each segment
created by count-driven segmentation is aSSigned the same job number as
the associated reader queue entry.

The count-driven segmentation values specified at POWER/VS generation
can be overridden for a job step by including in the 'input stream a JECL
LST or PUN statement with the RES parameter specified for the POWER/VS
job that contains the job step. These statements can also be used to
specify segment values when output segmentation was not specified during
POWERIVS generation. If count-driven segmentation is specified for a
spool file that has the I attribute, segmentation is suppressed.

Data-driven segmentation occurs when more than one JECL LST/PCH
statement that specifies the same spooled printer/punch is included in
one POWER/VS job. Data-driven segmentation cannot be used in a writer­
only partition. Normally. data-driven segmentation is controlled by
placing multiple LST/PCH statements for the same spooled device within
input data in the input stream.

When the execution read task encounters a LST/PCH statement when it
is reading spooled input for a job step. it initiates closing of the
spool file associated with the last LST/PCH statement that specified the
same spooled device as this LST/PCH statement. A new segment using the
specifications in this LST/PCH statement is then begun (a list/punch
queue record and track group are obtained). '

The list/punch queue entry for the first segment created by data­
driven~segmentation is aSSigned the same job number as the associated
reader queue entry. However. each subsequent segment is assigned a
unique job number. This enables the operator to manipulate individual
segments. The job number in the account file for the job is that of the
reader queue entry so that all output accounting data for a single job
can be sorted together.

166 DOS/Virtual Storage Features Supplement

Program-driven segmentation occurs when a LFCB, SEGMENT, or SETPRT
macro is issued in a program. Segmentation occurs for a spooled printer
file when the executing job step issues an LFCB macro instruction to
change the FCB image to be used. All printer records written in the
spool file up to this point are included in the current segment and
another segment is begun.

The SEGMENT macro can be used to segment printer or punch spooled
output. It can be used only in POWER/VS-controlled partitions that have
been started as multitasking partitions. When issued, the SEGMENT macro
causes a new segment to be begun for the spooled device specified in its
DEVADDR parameter. A return code indicates the success or failure of
the execution of the SEGMENT macro. The first segment created is
assigned the job number in the associated reader queue entry. Each
successive segment is assigned a unique job number.

Optionally, the SEGMENT macro can also specify the four-character
identification of the form to be used for the new segment (NAME
parameter), and the location of a JECL (JOB, LST, or PUN) statement
within the program that is to be used for the new segment (JECL
parameter). The NAME operand should not be specified in a SEGMENT macro
that specifies a JOB JECL statement. JOB statements sould be specified
in a SEGMENT macro only to provide new user information. The NAME
parameter can be used to assign a unique name to segments with DISP=I
(output that is to be returned to the reader queue).

When a JECL PRT or PUN statement is specified in a SEGMENT macro, it
can contain any valid parameters and PRT or PUN statements need not be
submitted via the job stream. The parameters specified in a JECL
statement submitted via the SEGMENT macro override the corresponding
parameters that are in effect for the spooled device.

The SEGMENT macro provides the programmer with the ability to change
the attributes of different segments of a spooled file as well as to
direct different segments to different spooled devices.

Segmentation also occurs when the SETPRT macro for the 3800 printer
is issued to request a printer setup that requires operator
intervention, change copy grouping, or specify a copy number greater
than 1.

When a printer or punch segment is completed, the execution list or
punch task updates the associated list or punch queue entry and places
it in the appropriate class chain within the list or punch queue.
Segments that belong to the same spooled printer file are chained
together in the list queue. Similarly, segments that belong to the same
spooled punch file are chained together in the punch queue. Any command
issued to a segmented spooled printer or punch file is effective for all
segment queue entries in the chain.

Once the queue entry for a segment has been placed in a class queue
within the list or punch queue, it can be selected for transcription by
a writer task. The queue entry for a segment is deleted as soon as
transcription of the segment the required number of times has been
completed if the entry has the 0 disposition attribute. The segments of
a given segmented spool output file are not necessarily transcribed
consecutively, since queue entries for other spool files with the same
class as that of the segmented spool file can be queued between the
queue entries for segments of a given spool file. When a segmented
printer spool file is being transcribed, backspacing can be done only to
the beginning of the segment currently being processed.

The output limitation facility can be used to control the number of
lines and/or cards spooled by a POWER/VS job. The print line and card
limits to be established for each job can be specified in the STDLINE

DOS/Virtual Storage Features Supplement 167

and STDCARD POWER/VS generation macros, respectively. The limit for
each can be a value up to 999,999. A zero value indicates no output
limitation. The JECL LST and PUN statements can be used to override the
limits specified at POWER/VS generation or to request output limiting
when it was not specified at POWER/VS generation.

When the execution list or punch task determines that the print line
or card output limit for the executing POWER/vS job has been reached,
the operator is notified and processing continues. The operator can
terminate further job processing by issuing a POWER/VS PFLUSH command.
The read queue entry for the flushed POWER/VS job is deleted unless the
HOLD parameter i.s specified in the PFLUSH command.

If the operator does not issue a PFLUSH command, job processing
continues until an additional number of print lines or punch records
have been written by the execution list/punch task. Theadditional
limits are also specif~ed in the STDLINE and STDCARD POWER/VS generation
parameters or in the JECL LST and PUN statements. When the additional
limit is reached (up to 999,999 lines or cards), the operator is again
notified and has the same options of flushing the job or letting it
continue. The operator continues to be notified each time the
additional limit is reached until the POWER/VS job is flushed or
completes.

List and punch (writer) tasks. List and punch tasks transcribe to
printers and punches spooled printer and punch files, respectively, that
are written to the POWER/VS data file (or tape) by execution list and
execution punch tasks. All active list tasks are scheduled to
transcribe spooled printer files using the list queue. All active punch
tasks are scheduled to transcribe spooled punch files using the punch
queue. List and punch tasks. operate asynchronously with each other and
otherPOWER/VS tasks.

A writer task is started in the POWER/VS partition when.the POWER/VS
PSTART LST/PUN command is issued by the operator or supplied in the
input to the AUTOSTART facility. As many list tasks can be started as
there are available printers and as many punch tasks can be started as
there are available punches in the I/O device configuration.

The address of the printer or punch device that is to be assigned to
a writer task and owned by the POWER/VS partition is specified in the
PSTART command. Table 80.40.1 lists the printer and punch units and
features supported by POWER/VS writer tasks. The device specified in
the PSTART command must be available, that is, not currently assigned to
another partition. When a writer is started, it is assigned an
available progralt'JIler logical unit assigned to the POWER/VS partition.
The writer task is not started if no programmer logical unit is
available in the POWER/VS partition.

When a list task is started, buffers are assigned according to the n
parameter specification in the PSTART command for the list task. A
maximum of two input and two output buffers can be assigned to a list
task. Buffers are allocated from the POWERVS partition. Whenthe
output buffer is filled, the list task initiates a write I/O operation
to the printer followed by a read I/O operation to the data file to
overlap printer output and disk input I/O operations.

When a punch task is started, it is assigned one input buffer for
disk (data file) read operations and one buffer for punch operations.
These buffers are also allocated from the POWER/VS partition. A punch
operation is initiated as soon as the output buffer is filled. A disk
read operation is initiated as soon as the punch operation completes.

A list task has the standard name LST assigned to it. A list task is
distinguished from other list tasks by a suffix to its standard name

168 DOS/Virtual Storage Features Supplement

that consists of the device address of the printer the task is assigned.
Similarly, a punch task has the standard name PUN and is distinguished
from other punch tasks by a suffix to its standard name that consists of
the device address of the punch the task is assigned. writer tasks are
reentrant.

Optionally, the PS~ART command can specify the output classes a
writer task started to disk is to handle. From one to four classes, A
to Z, can be specified. Class A is assigned to a writer task if none is
specified in the PSTART command. More than one list/punch task can be
assigned the same class.

The class(es) assigned to a writer task determine the spool output
files it can transcribe and the sequence in which the classes are
specified determines the priority of processing output classes for that
writer, as previously described,.

A started writer task transcribes spool files contained in the
POWER/vS data file unless the address of a tape unit containing spool
files is specified in the PSTART command. When a tape unit is
specified, a class cannot also be specified and the list or punch task
transcribes only the spool file(s) contained on the specified tape unit.

When a list/punch task is started, it searches the list~punch queue
for a job it can transcribe. When there are no queued spool files with
the class(es) a started writer task is assigned to handle, the writer
task is placed in the wait state, its buffers are unallocated, and the
operator is notified that the writer task is waiting for work. Whenever
an execution list/punch task queues a spool file, it checks for a
waiting writer that can process the spool file. If one is found,
buffers are allocated to the writer task and it is automatically
restarted to begin transcribing the file. In addition, if the operator
changes the class or disposition of an output queue entry and makes a
job available a waiting writer can process, the writer is reactivated.

Before transcribing a printer spool file or each segment of a printer
spool file, the list task loads the FCB requested for the file/segment
or the default for the printer type to be used. An FCB load is not
performed if the required FCB load is already present in the FCB of the
printer to be used.

If more than one copy of a spool output file on disk is to be printed
or punched, the JECL LST or PUN statement, respectively, can be included
in the input stream to specify the number of copies desired (up to 99).
The number of copies parameter is ignored for spool files on tape. The
tape must be reprinted after transcription by a writer task in order to
obtain additional copies.

When a spool output file or segment has been transcribed the number
of times specified in its copies attribute, the list/punch queue entry

,for the spool file is deleted (queue record in the queue file and
allocated track groups in the data file are made available) unless the
spool file has the "keep" disposition.

Cards punched by a punch task are directed to pocket 1 if stacker
selection is not specified for the punch spool file. When a punch task
has completed the punching of a spooled punch file, transcription of the
next queued spooled punch file or segment (if any) begins immediately
unless the PAUSE=YES parameter was specified at POWER/VS generation. If
it was, the punch task issues a forms change message to the operator
before beginning transcription of the next spool file and enters the
wait state. This enables the operator to remove the deck of cards just
punched. The PGO command must then be issued to reactivate the waiting
punch task. AS an alternate to this procedure, the job separation
facility can be used to separate the card decks punched by punch tasks.

DOs/Virtual Storage Features Supplement 169

The job separation facility can be used to place job separation pages
before and after each transcribed spooled printer file and job
separation cards before and after each transcribed spool punch file.
For segmented files, separation pages/cards are provided before and
after each segment is transcribed. The number of separation pages
and/or cards (from 0 to 9) to be provided is specified during POWER/VS
generation using the JSEP parameter. The JECL LST and PUN statements
can be used to override these specifications and to request job
separation if a value of zero was specified for either amount in the
JSEP parameter.

When both multiple copies and job separation are requested, beginning
separator pages/cards are provided before each copy and ending separator
pages are provided only after the last copy unless COPYSEP=YES is
specified at POWER/vS generation or via a JECL statement. When
COPYSEP=YES is specified, separators are placed before and after each
copy of a file/segment. separation after each copy can also be
specified via\the JSEP paramete;r or a LST/PUN statement. The COPYSEF
specification is used when JSEP does not specify any separation
parameter for. multiple copies.

Note that when JSEP=l is specified, four sepa:r:ation pages are printed
before transcription of a spool file/segment and four separation pages
are printed after transcription is completed. When JSEP=2 is specified,
six separation pages are printed before and after transcription.

Job name, job class, job priority and job number are printed on a
separator page in large block letters. The word LAST is also printed on
the separator pages for a unsegmented file and the last segment of a
segmented file. Forms lengths of 44 through 99 lines are supported with
printing across the perforation.

Except for a 5425 MFCM, when punch separation is requested, each
spool file punched is preceded by from two to eight cards with 12-11-0-
8-9 punches in all columns and one card that contains the job name. Two
blank cards follow the last card of output from the spooled punch file.
For a 5425, from 1 to 9 cards with the job name punched 12 times per
card precede each spool file punched. Stacker selection is ignored for
punched output when output separation is requested and cards are placed
in the default stacker for the punch device.

The JECL LST and PUN statements can specify via the FNO parameter the
identification of the form to be used when transcribing spooled pri~ter
and punch output. The operator is notified by a writer task when the
forms identification for the spool file to be transcribed is different
from that for the spool file it just transcribed. The .writer task then
enters the wait state so that the operator can change the form. The
operator can also use the PSETUP command at this time to perform forms
alignment. The writer task is restarted when a PGO command is issued.
If the first queue entry processed by a writer task after it is started
contains a forms identification of blanks, a mount message is not
issued.

The FNO parameter should be used when the LTAB parameter is specified
to describe a page format, since the FNO parameter causes a pause after
a forms change.that gives the operator the opportunity to change the
carriage control tape on the printer.

A writer task consists of the logical write routine and a physical
write routine. The logical write routine reads records from the spooled
printer/punch files in the POWER/vS data file (list and punch queues).
A physical list or physical punch routine transcribes spooled printer or
punch file records read by the logical write routine to a printer or
~n~. .

110 DOS/Virtual Storage Features supplement

Physical list and physical punch routines are device-type dependent.
If more than one list/punch task is started to the same device type,
only one copy of the required physical list/punch routine is used. Only
one logical write (list/punch) routine is required to interface with all
the device-dependent physical list and physical punch tasks required by
the started writer tasks.

Rotational position sensing is supported by writer tasks if the
feature is present on the device type that contains the POWER/VS file
and RPS support is included in the DOS/VS supervisor. Writer tasks
issue EXCP macros with the REAL parameter specified to initiate the
command-chained channel programs in spool output files that transcribe
spooled output to printers and punches. When an unrecoverable I/O error
occurs On a printer or punch during spool file transcription, the
operator can cancel the writer task involved, indicate the error is to
be ignored, or restart transcription one page/card back.

A writer task is terminated by issuing the POWER/VS PSTOP command.
If a writer task is transcribing a spool output file when the PSTOP
command is issued and the EOJ parameter is not specified, the writer
task is terminated immediately and the list/punch queue entry for the
spool file being transcribed remains in the list/punch queue.. If EOJ is
specified in the PSTOP command, the writer task is not terminated until
it completes transcribing the spool file or spool file segment it is
currently processing. When EOJ is specified, the list/punch queue entry
for the spool file or file segment is deleted after it has been
transcribed and the writer task is then terminated.

The RESTART parameter can be specified on the PSTOP command instead
of EOJ. In this case, the writer task is terminated immediately without
completing transcription and the spool file or spool file segment being
processed remains queued. However, when a writer task for the class of
the partially processe~ spool output file is again started, it begins
transcription with the record (in the partially processed spool file or
segment) after the last record processed before transcription was
terminated. When neither EOJ nor RESTART, which are mutually exclusive,
is specified in a PSTOP command and a writer is restarted, it begins
transcription with the partially processed spool file or segment but at
the first record of the file .•

The relationship of POWER/VS functional tasks to each other is shown
in Figure 80.40.7.

DOS/Virtual Storage Features Supplement 171

Device
dependent
physical
read

Oevice
dependent
physical
read

Diskette

o
Figure 80.40.7.

Logical
read

file

Execution
read
task

GET
to
spooled
card
reader

PUT to
spooled
printer

User
program

PUT to
spooled
punch

Relationship of POWER/VS functional tasks

Execution
list
task

Execution
punch
task file

List r- r---a._~
taskl

Device
dependent
physical
list

Device
dependent
physical
punch

punchL
task ~-...... -~

punch

Cross Partition Communication

Cross partition communication, which utilizes the SPL, PUTSPOOL,
GETSPOOL, and CTLSPOCL macros, is an optional facility of POWER/VS that
is included when SPOOL=YES is specified during POWER/VS generation. The
cross partition event control facility is required in the DOS/VS
supervisor to support cross partition communication.

The cross partition communication macros provide any partition
(whether controlled by POWER/VS or not) the ability to submit jobs to
POWER/VS for execution in a POWER/VS-controlled partition, receive the
spooled output from a job executed in a POWER/VS partition, and modify
the status and attributes of jobs in POWER/VS queues.

Before a cross partition communication macro is issued, the XECBTAB
macro must be issued to define a cross partition event control block for
the macro to be used. The XECBTAB macro must specify TYPE=DEFINE,
XECB=SPMXECB for a GETSPOOL or CTLSPOOL macro or XECB=ICRXECB for a
PUTS POOL macro, and ACCESS=WAIT.

The SPL macro must be used to define the spool parameter lists to be
used by PUTSPOOL, GETSPOOL, and CTLSPOOL macros. The SPL macro supplies
such data as jobname (default is DUMMY), output disposition (default is
K), output class (default is A), the operation requested (for a CTLSPOOL
macro), the address of the buffer area that contains the job stream to
be submitted or that will receive spooled output, and a buffer area for
POWER/VS use and feedback information.

The SPL macro causes a parameter list to be established that will be
used by the PUTSPOOL, GETSPOOL, pr CTLSPOOL macro that specifies the SPL
macro. Parameters within an SPL list can be overridden by specifying
the corresponding parameter in the PUTSPOOL, GETSPOOL, or CTLSPOOL
macro.

The PUTSPOOL macro is used to submit an input job stream contained in
a buffer area in the partition to the POWER/VS input queue for execution
in a POWER/VS-controlled partition. The GETSPOOLmacro is used to
request retrieval of one record (print line) in a list spooled output .
file. The requested record is moved into a buffer in the partition, as
indicated in the RPL list or GETSPOOL macro. The carriage control
character associated with the print line can be obtained also. Records
can be retrieved sequentially or directly using a line number.

The CTLSPOOL macro can be used to issue five of the POWER/VS commands
to perform the following:

• Alter the attributes of a POWER/VS job (class, disposition,
priority, and remote terminal designation) via the PALTER command

• Cancel a submitted job (in the reader queue) before it is selected
for executiop via the PCANCEL command

• Delete from the printer queue via the PDELETE command the list
output of a submitted job after its execution

• Display the status of a submitted job via the PDISPLAY command

• Release POWER/VS jobs for further processing via the PRE LEASE
command

Job Accounting

When support of the job accounting interface is included in a DOS/VS
supervisor, job accounting support can also be included in the POWER/VS
system. The job accounting support in POWER/VS provides its own

DOS/Virtual Storage Features Supplement 173

accounting information and collects job accounting data from the DOS/VS
job accounting interface. This information is collected for each DOS/VS
job step that executes in a partition POWER/VS is controlling and
written in the POWER/vS account file.

The following types of account records are written by POWER/vS:

• Reader. One reader account record is constructed for each read
queue entry created by a POWER/VS reader task for a POWER/VS job.
This record contains such data as the POWER/VS job name, job number,
job read start and stop times, input class, input priority, number
of records read, and number of tracks of intermediate disk storage
required. If a user-written reader exit routine is included in
POWER/VS, the number of records read reflects the number of records
added or deleted by the user routine.

• List. One list account record is written for each list queue entry
created. This record contains such data as POWER/VS job name, job
number, print start and stop times, printer device address, output
class, output priority, print forms identification, number of lines
printed, number of pages printed (including extra pages printed as a
result of operator commands, such as PSETUP), and total number of
copies printed.

• Punch. One punch account record is written for each punch queue
entry created. This record contains such data as POWER/VS job name,
job number, punch start and stop times, punch device address, output
class, output priority, punch forms identification, number of
records punched, and total number of copies punched.

• Execution. One execution account record is created for each DOS/VS
job step. This record contains information provided by POWER/vS
accounting support and that provided by the DOS/VS job accounting
interface. One execution account record is also written for the
POWER/VS partition during a normal termination of POWER/VS.

• Line. A line account record is written whenever anRJE user
terminates his session. This record contains such data as the user
identification, signon and signof£ times, line password, line
address, total number of transmissions, total number of timeouts,
and total number of line errors.

• SNA. An SNA account record is written whenever an RJE,SNA user
terminates his session. It contains information as in a line
account record.

Records are written to the account file in chronological order. If
the account file is not formatted during POWER/VS initialization, new
account records are written after the last existing record of the file.
When the account file becomes 80 percent full, the operator is notified.
When the account file becomes completely filled, the Gperator is
notified and any task requiring the account file is placed in the wait
state until the operator makes space available, which can be
accomplished using the POWER/vS PACCOUNT command.

The PACCOUNT command can specify that the account file is to be
deleted or that it is to be written to tape, disk, or a spooled punch
file. When the account file is spooled to disk, it is assigned a
disposition of hold, priority 1, and output class P This account spool
file can be punched by a POWER/VS punch task with class P assigned after
its disposition of hold is changed. The account file can also be
processed directly after the termination of POWER/VS operation. The
user is responsible for any sorting or summarization of accounting data.
The account file can be processed directly by the DOS/VS sort/Merge
program product.

174 DOS/Virtual storage Features Supplement

When job accounting support is included in POWER/VS, a user-written
job accounting routine ($JOBACCT) is not required unless (1) user
accounting information is to be placed in the execution account records
generated by POWER/VS, (2) there is a partition that does not operate
under POWER/VS control and accounting information for this partition is
desired, or (3) accounting information for the POWER/VS partition is
desired.

Up to sixteen bytes of user information can be placed in the
execution account record.. To do this, a user-written $JOBACCT routine
that issues the PUTACCT macro must be included in the DOS/VS system.
This routine is entered at the end of each DOS/VS job step.

Central operator Commands

All POWER/VS commands for the central operator begin with the letter,
P. Except for PEND, each central operator command has a one-character
abbreviation. The POWER/VS command language consists of the following
types of commands:

• Task management commands that enable the operator to initiate,
continue, and terminate POWER/vS tasks.

• Queue management commands that enable the operator to display and
modify the contents of queue entries in the POWER/VS queue file.

• Miscellaneous commands that enable the operator to perform forms
alignment on printers, save the POWER/VS account file, and
communicate with remote users.

The following are the POWER/VS task management commands:

• PSTART, which is used to start a reader task to a card reader and/or
diskette device, start a writer task (to a printer, punch, or tape
device,) bring a partition under the control of POWER/VS, restart a
partition that is under POWER/VS control, start an RJE,BSC task and
optionally specify a password the remote operator must supply, or
activate the VTAM interface. The PSTART command can also specify
one input class for a read task or up to four output classes for a
writer task. For a partition, PSTART can specify up to four input
classes and one output class that is to be assigned to spool output
files for which a class was not specified in a LST/PCB statement.
For a card read task, the number of buffers, 1 or 2, to be used to
read cards can be specified.

The PSTART command for a partition can specify the NT parameter to
indicate that multitasking ~s to be used in the POWER/VS-controlled
partition and the partition will be long-running or never-ending.
When no more spooled input is available for such a partition, only
the task that reads spooled input is placed in the wait state. All
other tasks continue to operate. segmentation in such a partiti9n
must be controlled USing the SEGMENT macro or, for printers with an

o FCB, program-driven segmentation (LFCB macro).

The job submitted to a partition with MT specified should contain
LST and PUN statements for each spooled output device that can be
used by the partition. Each task can spool output to its own
printer and punch. The ENQ and DEQ macros should be used to serialize
tasks that are to use the same spooled reader, printer, or punch.

When a writer task is started to a tape unit, a check for the
presence of a VOLl label on the mounted tape is made. If one is
found, the operator is notified and can mount a new tape, switch to
a disk device, or ignore the condition.

DOS/Virtual storage Features Supplement 175

• PSTOP, which is used to stop a reader task, writer task, or RJE (BSC
or SNA) task, release a partition from POWER/VS control, or
deactivate the VTAM interface. When PSTOP is issued for a partition
with a job in execution, the command is not effective until
processing of the entire POWER/VS job is completed. After the
partition is released from POWER/VS control, all POWER/VS-controlled
devices for the partition are unassigned. ~he partition can then be
restarted with a DOS/VS START command or restarted under POWER/VS
control by issuing a POWER/VS PSTART command.

For a read or RJE read task, the pOint at which the task is
terminated depends on whether the EOJ parameter is specified, as
previously discussed.. For a writer task, the EOJ or RESTART
parameter can be specified or not to indicate when task termination
should occur. The operator is notified when the task or partition
is actually terminated.

• PGO, which is used to restart a POWER/VS writer task or a POWER/VS­
controlled partition when the writer or partition is waiting for an
operator action (such as forms mounting or changing for a printer,
the clearing of a unit check condition on a printer, or mounting of
a tape volume). PGO cannot be used to restart a writer or partition
that was stopped by a PSTOP command.

• PEND, which is used to terminate the POWER/VS system normally or
abnormally with or without a status report or dump, as previously
described. The operator is notified when termination of POWER/VS is
completed. The printer assigned to the POWER/VS partition remains
so assigned.

• PCANCEL, which terminates the printing initiated by a PDISPLAY queue
management command

• PFLUSH, which terminates transcription by an active reader task,
transcription by an active writer task, or processing in an active
POWER/VS-controlled partition. When PFLUSH is issued for a reader
task, further processing of the current POWER/VS job is terminated
(except for certain LST/PRT statements), a read queue entry is not

176

built for the job, and the reader task continues reading with the
next job in the input stream. During reading of the POWER/vS job to
be flushed, the read task checks for the presence of LST/PRT
statements that specify a UCB or FCB image. If one is found, the
read task loads the specified UCB and/or FCB image (for use by a
successive job, if necessary).

For an active writer task, the PFLUSH cOll'lDand causes further
processing of the current spool file to be terminated and deletion
of the list/punch queue entry for the spool file unless HOLD was
specified. When HOLD is specified, 'processing is terminated;
however, the list/punch queue entry is not deleted but is placed in
hold st~tus (DISP=K). The list/punch queue entry for a spool file
with multiple copies specified is also held whether or not HOLD is
specified. The current copy count is saved so that when processing
is restarted, it starts at the beginning of the copy that was
flushed. The writer task continues processing with the next queued
entry with an output class it is assigned to handle.

When PFLUSH is issued for a partition, further processing of the
current POWER/VS job is terminated. If the POWER/VS job consists of
multiple DOS/VS jobs, the currently executing DOS/VS job is canceled
and the remaining DOS/VS jobs in the POWER/VS job are flushed. The
read queue entry for the POWER/vS job is deleted unless the HOLD
parameter is specified. The HOLD parameter causes termination of
processing but the read queue entry is placed in hold status instead
of deleted. The operator is notified when a read queue entry is

DOS/Virtual storage Features Supplement

deleted. The next POWER/VS job in the read queue with a class the
partition is assigned to handle is then started in the flushed
partition •

• PRESTART, which causes a POWER/vS writer that is currently
transcribing a spool file to forward or backward space a specified
number of pages or cards. A signed or unsigned value from 0 to 9999

. can be specified to indicate forward spacing (plus sign) or backward
spacing (minus sign) from the point of interruption. No sign
indicates a specified page/card count from the beginning of the
spool file or current segment for a segmented file. Printing or
punching resumes at the beginning of the spool file/segment if no
value or too large a minus value is specified. when the writer is
transcribing to a 3800 printer, the PRESTART can specify a new copy
group index.

The following are the POWER/VS queue management commands:

• PDISPLAY, which is used to display the status of POWER/VS jobs and
spool files, queued RJE messages that are for allRJE users and the
users who submitted them, or the status of POWER/VS. resources.

For a POWER/VS job in the reader queue, status information includes
job name, job number, job priority, disposition, class, and (for RJE
jobs only) remote identification of the user that submitted the job.
For a spool file in the list or punch queue, status information
includes that displayed for a POWER/VS job plus number of
pages/cards to be written, number of copies, forms identification,
and remote identification of the user t.hat is to receive the spool
file.

If a status display is requested for a spool file that is in the
process of being transcribed, the number of copies reflects the
number of copies remaining to be transcribed, including the current
copy, and the number of pages/card~ indicates the number still to be
printed/punched for the current copy.

When multiple queues are involved in a display, the name of the
queue is printed before the status data for its requested entries.
An indication is given when a specific queue is empty. Lines of
status data from a given PDISPLAY command can be interspersed with
DOS/VS messages.

A status display can be requested for the following: a specific
POWER/VS job in the reader, list, or punch queue; all POWER/VS jobs
in the reader, list, or punch queue or in all three queues; all
POWER/VS jobs that are in hold or leave status in the reader, list,
or punch queue or in all three queues; all POWER/VS jobs that are
dispatchable or in keep status in the reader, list, or punch queue
or in all three queues; or all POWER/VS jobs whose job name begins
with the specified one to seven characters in the reader, lfst, or
punch queue or in all three queues; or all POWER/VS jobs with the
specified class in the reader, list, or punch queue.

A status display can also be requested for the following: all RJE
jobs in the reader, list, or punch queue or in all three queues; all
RJE jobs in the reader, list, or punch queue that were submitted by
or routed to the specified remote user; or all POWER/VS jobs in the
reader, list, or punch queue or all three queues that were submitted
from or routed to the central location.

Display can also be used to request a list of all active reader and
writer tasks and the POWER/VS jobs and spool files they are
currently processing, a list of all the system messages to which the
operator has not yet responded, a listing of the current time and

DOS/Virtual Storage Features Supplement 177

date (includes the current number of fixed pages and POWER/vS tasks)
ora list of the free queue file records, track groups, and account
file records.

• PALTER, which is used to alter one or 'more attributes of a specific
POWER/VS job, all POWER/VS jobs whose job name begins with the
specified one to seven characters, or all POWER/VS jobs with the
specif'ied class in either the reader, or list, or punch queue.
~hanges are made to the read, list, or punch queue entries for the
affected jobs. The attributes that can be changed are job priority,
disposition, class, number of copies for spool output files, the
destination of spool output files created by RJE jobs, and whether
or not compaction is to he performed for output sent to a remote SNA
workstation.

Attributes cannot be changed for any POWER/VS job in the reader
queue that has been scheduled and is executing. If a spool file is
in the process of being transcribed, only its number of copies
attribute can be changed (unless the output is being transmitted to
a 3790 workstation with PDIR=FMHZ specified). However, if a spool
file being transcribed is segmented and the list/punch queue entry
for its first segment has already been deleted, no attributes can be
changed. Note that the attributes of a spool output file indicated
in a LST/PCH statement cannot ~e changed until the spool file has
actually been created (job step that creates the spool file has
executed) •

• PDELETE, which is used to delete one or more POWER/VS jobs from the
reader, list, or punch queue, a specific queued message to all RJE
users, or all messages submitted by the central operator for. all
users. If a job in the reader queue is being processed or a spool
file in the list or punch queue is being transcribed, it is not
affected by a PDELETE command. A specific POWER/VS job, all
POWER/VS jobs, all POWER/VS jobs with the specified class, or all
POWER/VS jobs whose job name begins with the specified one to seven
characters in a given queue can be deleted with a PDELETE colt'JOand.

• PRELEASE, which is used to change the disposition of one or more
POWER/VS jobs in the hold or leave state in a given queue to
dispatchable so that they can be processed. The queue entry of a
job originally in the hold state is deleted after it is processed.
The queue entry of a job originally in the leave state is returned
to the leave state after it is processed. A specific POWER/VS job,
all POWER/VS jobs, all POWER/vS jobs with the specified class, or
allPOWER/VS jobs whose job name begins with the specified one to
seven characters in the reader, list, or punch queue can be
released. Note that a job with a disposition of leave is not
released by a PRELEASE command with the ALL operand or a class
operand specified.

The following are POWER/VS miscellaneous commands:

• PBRDCST, which is used by the central operator to send a message to
one or all RJE users. Messages generated by the PBRDCST command are
stored in a message area in virtual storage in the POWER/VS
partition. Messages to all users are given a sequence number that
can be determined using the PDISPLAY command and can be a maximum of
46 characters in length. A message from the operator to one
terminal can be a maximum of 49 characters in length.

178

Broadcast messages are sent to a remote user only when the user
requests them via a POWER/VSRJE DISPLAY MSG command •. When a
message is sent to a remote user, it is deleted from the message
area in virtual storage unless it is a message for all users. All­
user-type messages can be deleted by the central operator.

DOS/Virtual Storage Features Supplement

A maximum of 255 messages can be stored in the message area in the
POWER/VS partition. Of these, a maximum of 16 can be of the all­
user type. When the all-user portion of the message area is filled,
the next all-user message causes the 16 exi~ting messages to be
deleted and a message to be issued to indicate the deletion.

Note that output generated as a result of an RJE DISPLAY command and
responses to other commands issued by RJE users are also stored in
the message area of' the POWER/VS partition. They are sent to the
appropriate RJE user as soon as his line becomes available for a
write operation.

• PINQUIRE, which is used to obtain status information about one or
all POWER/VS RJE lines. The status of 'an RJE line can be one of ~he
following: PROCESSING, which is applicable to both BSC and SNA
users (the remote user has entered a.valid SIGNON or LOGON command),
INACTIVE, which is applicable to ESC lines only (the central
operator has started the line but a user is not currently signed
on), NOT INITIATED, which is applicable to ESC lines only (the
central operator has not started the line), NOT SUPPORTED, which is
applicable to BSC lines only (the line was not specified during
POWER/VS generation or is not defined in the PUB table for some
reason), NOT LOGGED ON (no SNA user is currently logged on to the
specified logical unit), LOGGED ON (an SNA session is logged on <but
no processing is a'cti ve), or LOGGING ON (an SNA session is in the
process of being logged on).

• PACCOUNT, which is used to delete the account file or write it to a
labelled or unlabelled tape, disk of the same type as contains the
acco~nt file, or cards. When the account file is' written to disk or
a labelled tape, the label information for the file must be present
in the label cylinder.

• PSETUP, which is used to specify one or more setup pages for the
purpose of forms alignment. The setup pages haveX's in all
positions for all characters that are to be printed on the pages.
Adjustment can be made during printing of the setup pages. The PGO
command is issued to resume normal printing (with the first setup
page) when alignment is correct. The PSETUP command can be issued
as many times as are required to perform alignment.

Remote Job Entry Support

The optional RJE support provided by POWER/VS enables jobs to be
submitted from a remote terminal to a DOS/VS system for execution.
Remotely submitted jobs are defined using DOS/VS and; optionally,
POWER/VS job control statements and are placed in the single input queue
(by priority within job class) that is used by POWER/VS for all job
scheduling.

Spooled printer and punch output from remotely submitted jobs is
queued by class in the list and punch queues in the same way as is
spooled output from locally submitted jobs. The spooled output from a
remote job can be sent to the remote user that submitted the job, sent
to another remote user, or transcribed to local printers and punches in
the DOS/VS system configuration.

Note that when RJE is supported in a POWER/VS system, spooled output
from locally submitted jobs can be sent to a remote user. This is
accomplished using the remote parameter in the LST or PUN JECL
statement.

The terminals supported by POWER/VS RJE are listed in Table 80.40.1
See DOS/VS POWER/VS Installation Guide and Reference, GC33-6048, for the

DOS/Virtual Storage Features Supplement 179

supported and unsupported devices and features for binary synchronous
and SNA terminals.

POWER/VS RJE,BSC. RJE,BSC support can handle up to 25 RJE'
users/lines. POint-to-point switched and ,non-switched lines can be
used. POWER/VS RJE,BSC uses its own remote terminal access method

;.; (RTAM) and does not require the inclusion, of a teleprocessing access
xnethodin the DOS/VS system with which it is used. The RTAM support in
POWER/vS is similar to that used by as/VS1 RES and HASP RJE.

During POWER/VS generation, one PLINE macro must be specified to
define the hardware characteristics (control unit or integrated
communications adapter) of each communications line to be supported by
POWER/VS RJE,BSC. The PLINE macro specifies the line address,
availability of the transparency feature,transmissicn code to be used,
password the user must supply in order to sign on using this line, and a
timeout value. The timeout value is the number of minutes the terminal
signeQ on via this line can remain idle before a signoff is forced.

! For each PLINE macro specified during POWER/VS ge~eration, a PRMT
macro must also be included to define the hardware characteristics of
the BSC terminal attached to the line, identify the remote user with a
remote identification (1 to 200), and indicate where spooled output from
this user's jobs is to be sent. The operator at the DOS/VS installation
(central operator) has remote identification o.

Before any remote users can sign on to POWER/VS RJE,BSC, one or more
of the defined cOIlIInunications lines must be started using POWER/vS
PSTART commands. RJE lines can be started automatically during POWER/VS
initialization or the central operator can start lines any t~me after
POWER/VS has been started.

A PSTART command specifies a line address and causes the specified
line to be logically attached to POWER/VSRJE,BSC. The PSTART command
can also specify a password that must be presented by the user when

. signing on via the line. If a password is not specified, the default
password defined during POWER/VS generation is used. The PSTART command
causes an RJE,BSC read task to be started for the line in the POWER/VS
partitlon and the allocation of one input and one output buffer. Only
one RJE,BSC read task is initiated per started RJE,BSC line. An RJE,BSC
read task has the standard name RDR suffixed with the line address and a
physical identifier ~or the card reader it is assigned.

The RJE,BSC line manager task is started automatically during
POWER/vS initiation and activated when the first RJE,BSC line is started
with a PSTART command. This task remains attached until the last
RJE,BSC line is stopped, at which time it is detached. The line manager
task controls all'line activity for the started RJE,BSC lines using
RTAM.

Once RJE,BSC lines are started, remote users sign on, sign off, and
commu~icate with the central system and other remote users using
POWER/VS RJE,BSC terminal commands. These commands are submitted via
the remote terminal keyboards, or card readers, or diskettes in 3741
stations. The POWER/vS RJE SIGNON command is used to logically connect
a terminal to POWER/VS RJE,BSC. This command must be the first command
submitted after an RJE,BSC line is started.

The SIGNON command identifies the terminal to be used with this line,
specifies'the remote operator identification assigned to the'lineduring
POWER/vS generation, and a password. The password must be that
specified in the PSTART command when the line was started, if any, or
the password specified in the PLINE macro. If a password is not
specified for a line in the PSTART command or PLINE macro, a password
need not be specified in any SIGNONcommand issued for the line.

180 DOs/virtual Storage Features Supplement

After an RJE user has signed on, he can submit POWER/VS RJE terminal
commands and input jobs (an input stream) via a card reader, keyboard,or
the diskette file(s) in a 3741 data station. The 3741 is supported as a
2780 without the multiple record transmission feature.

The input stream submitted via a 3741 can contain fixed-length,
unblocked 80-character records on multiple diskettes. Spooled output
files transmitted to the 3741 by an RJE,BSC writer task can contain
fixed-length, unblocked, 126-character maximum records. The size of a
spool output file for a 3741 is limited to the number of diskettes that
can be loaded at one time, since diskette unloading and loading are not
supported. Therefore, a spool output file for a 3741 is limited to one
diskette or, when the second disk feature is installed on the 3741, two
diskettes. EBCDIC and ASCII codes are supported for input and output.

RJE terminal commands must be placed between POWER/VS job definitions
or they are treated as comments. As soon as the terminal card reade~ or
3741 is made ready, the input it contains is read by the RJE,BSC read
task started for the line. Jobs and. data read are placed in the
POWER/vS queue and data files and are scheduled using the same rules as
are used for locally submitted jobs. Terminal commands in the input
stream are removed and sent to the RJE command processing routine for
processing.

Output messages generated as a result of commands in the input
stream, system messages regarding the input stream, and any messages
from the central operator that are generated during the reading of an
input stream are stored in the message area in the POWER/VS partiticn
until the complete input stream has been read.

When end of file is reached on the remote input device, reading stops
and messages that were generated during input stream reading are sent to
the terminal printer or, for a 3741, written to a mounted diskette. The
RJE,BSC read task then enters the wait state until (1) the remote input
device is again made ready, at which time reading is automatically
resumed if the line is available, (2) a signoff is forced by the
expiration of the timeout specified for the line during POWER/VS
generation, if any, or (3) the central operator issues a POWER/vS PSTOP
command to terminate the RJE,BSC read task.

The spooled printer and punch outpu~ from the jobs submitted by a
remote user is routed to the central operator or the remote user
specified for the user/line when the POWER/VS system was generated.
This destination specification can be overridden using JECL LST and PCB
statements in the remote jobs submitted.

If an RJE user is to receive any output at his remote terminal (other
than the messages sent automatically after a job stream has been read),
POWER/vS RJE START commands must be issued to start an RJE,BSC list task
and/or RJE,BSC punch task for his line. When the writer tasks are
started, a remote user can receive broadcast messages (from other remote
users), diagnostic messages, and spooled output from the jobs h~
submitted as well as spooled output routed to him from other remote
users that has the class(es) specified in the START writer commands for
his line.

System, diagnostic, and broadcast messages for a remote user are
displayed on the terminal printer or written to diskette for a 3741 in
between the printing of spooled printer files.

One RJE,BSC list and one RJE,BSC punch task can be started for each
RJE,BSC line defined. Up to four output classes can be assigned to each
RJE,BSC writer task. An RJE,BSC writer task has the standard name LST
or PUN suffixed with a line address and a physical identifier for the
print/punch/3741 device it is assigned.

DOS/Virtual Storage Features Supplement 181

When an RJE,BSC writer task is started, it transcribes all the
spooled output with the classes it is assigned to handle that is queued
for its associated RJE user. At the completion of the transmission of
each spool output file to a terminal printer or punch, an RJE,BSC writer
task pauses for 6 seconds to allow the remote user to hit the start
button on the terminal card reader. This enables the remote user at a
2770, 2780, or 3780 to submit jobs between the transcription of spool
output files to his terminal.

When a spool output file has been transmitted to a 3741, the RJE,BSC
writer task pauses. At the end of the timeout interval, the 3741 is
signed off. The user must sign on again to cause transcription of spool
files to resume.

When an RJE,BSC list and an RJE,ESC punch task are active for the
same line, any time both tasks have queued spool files to transcribe,
the list spool files will be transmitted before the punch spool files.

When no more spool files are queued for an RJE,BSC writer task, it
enters the wait state and the line is automatically placed in read mode
so that another input stream can be read. For a 2770, 2780, or 3780,
card reading begins automatically if the reader is ready. For a 3741
attached via a leased line, a message is displayed on the 3741 screen
and the operator can place the 3741 in transmit mode to resume read
operations.

After the input stream has been read and any resulting messages have
been sent, the line is automatically placed in write mode and a writer
task for the line resumes operation if any spool files of its class have
been queued for this RJE user during input stream reading. If no spool
files are queued, the writer task enters the wait state until additional
spooled output with the appropriate class is queued, a signoff is forced
by expiration of the timeout interval specified for the line, if any, or
the writer task is stopped via a POWER/VS RJE STOP command.

If a remote user wishes to interrupt the transcription of a spool
file to his printer or punch, in order to submit a command or another
job for example, interruption is accomplished by placing the
printer/punch in not ready and then ready status. This causes the line
to be placed in read mode and any cards in the terminal reader are then
read. If a FLUSH, RESTART, or STOP command f9r the interrupted writer
task is encountered in the input stream, it becomes effective when end
of file occurs for the card reader. Otherwise, at end of file the
writer automatically resumes transcription with the record after the
last one transcribed before the interruption occurred.

Note that when an RJE,BSC list or punch task is interrupted for
another reason, such as when an I/O error occurs, the RJE user can also
submit a FLUSH, RESTART, or STOP corr~and via the terminal card reader.

While signed on, an RJE user can issue the POWER/VS RJE BRDCST
command to send a message to the central operator, a specific remote
user, or all users. A message for a specific remote use is displayed on
the user's terminal printer or written to diskette immediately if the
user is receiving messages (issued a START MSG command). A message to
all users is queued in the message area in the POWER/VS partition. Each
user must issue the POWER/VS RJE DISPLAY command in order to have an
all-users message sent to his terminal.

Note that POWER/VS RJE logs any line errors and timeouts that occur
for the lines it supports in the DOS/VS SYSREC file. Therefore, the
SYSREC file should have more space allocated to it when POWER/VS RJE is
used than would otherwise be allocated.

182 DOS/Virtual Storage Features Supplement

POWER/VS RJE,SNA. RJE,SNA supports the 3110 and 3190 attached to a
3104/3105 operating in NCP mode using synchronous data link control.
RJE,SNA supports up to 200 SNA logical units active concurrently and
uses VTAM to handle physical line management. RJE,SNA interfaces with
VTAM via the VTAM Application program Interface and, thus, appears to
VTAM as an application program.

RJE,SNA support requires a system with a minimum of 256K of real
storage and a DOS/VS supervisor with VTAM and multitasking support (in
addition to the other options required by POWER/VS). RJE,SNA in
POWER/VS can also include support of ESC (2110, 2180, 3141, and 3180)
terminals as well as support of 3110 terminals operating in 2110 or 3180
mode. When both BSC and SNA terminals are supported, of the 200 logical
units supported, 25 can be BSC terminals.

The POWER and PRINT macros are used to generate a POWER/VS RJE,SNA
system that supports only SNA terminals. The PLINE macro is not
required unless ESC terminals are also to be supported. The SNA
parameter is added to the POWER macro to request SNA support. It
specifies the maximum number of SNA logical units that can be active
concurrently.

One PRMT macro must be specified for each SNA terminal to be
supported. It specifies the remote identification of the user of the
terminal, indicates where spooled output from this user's jobs is to be
routed, a password that must be supplied by the user at logon
(optional), and the way messages to the terminal are to be handled. If
the remote terminal configuration contains a line printer in addition to
the stand~rd console printer, specification of CONSOLE=YES causes
POWER/VS to print all messages on the console printer immediately after
they are generated (interrupting any printer transmission currently in
progress) instead of waiting until the current spooled printer file is
totally transcribed.

Before a POWER/VS system with RJE support is started, VTAM must be
started in a partition and the 3704/3705 units connected to SNA
terminals that are to be controlled by RJE,SNA must contain an NCP. A
POWER/VS system with RJE,SNA support can then be started like any other
POWER/VS system and after it is activated, the central operator must
issue a PSTART RJE,SNA command before any SNA terminal user can log on.
This PSTART command activates the interface between VTAM and POWER/VS.
If BSC terminals are also supported, a PSTART must be issued to activate
each line to be used, as for RJE,BSC support (either by the central
operator or via the AU"TOSTART procedure).

After the interface to VTAM is activated, users of remote SNA
terminals must issue the LOGON (or SIGNON) command to logically connect
the SNA terminal to VTAM, which then passes to POWER/VS the required
logon information. The LOGON command must specify a password if one was
specified in the PRMT macro for this terminal, and optionally can
specify up to 16 bytes of user information that will be placed in the
SNA account record for the session. If the VTAM/USS tailoring services
are used to build a USS table, the SIGNON co~mand used to connect to
RJE,BSC can be used instead of a LOGON command for a 3110 but not a
3190. The LOGON and SIGNON commands can be entered only via the
terminal keyboard.

A 3190 workstation can have a maximum of five logical units defined,
each of which can have a session active. Data transmission can occur
concurrently on the five logical units. The following operations can
occur concurrently: transmission of a card input stream from the
logical card reader contained on the disk in the 3191, transmission of
three output printer spool files, and transmission of console data
(input from or output to the keyboard).

DOS/Virtual Storage Features Supplement 183

Once a user has connected to RJE,SNA, commands and input jobs
(POWER/VS JECL and user data) can be submitted to POWER/VS. For a 3770,
commands can be entered via the terminal keyboard, a card reader (except
for LOGON, SIGNON, and LOGOFF), or in card image format from a diskette
(except for LOGON, SIGNON, and LOGOFF). For a 3790, commands can be
entered via a keyboard or the logical card reader, except for LOGON and
LOGOFF which must be entered via a keyboard.

PCWER/vS JECL and user data from a 3770 can be submitted via a card
reader or diskette only. For a 3790, the logical card reader is used.
All input from the terminal keyboard is interpreted as remote terminal
operator commands.

A remote SNA terminal user can receive spooled printer and punch
output only after entering START LST and/or START PCB commands. No
spooled output is sent until such START commands are issued. Output to
a remote 3770 user can be printed, punched, or written to a diskette.
The transmission of spooled printer and punch files (but not messages)
to a 3770 terminal can be interrupted by the remote user, if necessary,
for the transmission of commands of input jobs via the terminal console,
a card reader, or a diskette.

For a 3790, up to three list tasks can operate concurrently. The
START command indicates the device to which the spool printer file will
be sent. START LSTl and START LST2 conimands cause transcription to the
two line printers defined as logical printers 1 and 2, respectively.
START LST3 causes transcription to the disk in the 3791 for later
transcription to a line printer.

Whenever multiple copies are specified for a printer spool file that
is to be sent to a 3790, the file is automatically sent to disk even if
it is directed to line printer 1 or 2. Thus, only one transmission is
required for multiple copies,. Printer spool files can be sent to a 3790
in compacted, as well as compressed, form to reduce the amount of data
that is transmitted.. As for a 3770, a data transmission to or from a
3790 component can be interrupted. The transmission of a printer file
can be interrupted in order to enter a terminal operator command or
submit input from the logical card reader. Transmission of input from
the logical card reader can be interrupted for the sending of a terminal
operator command.

Messages for a remote SNA terminal user are written to the standard
console printer for the 3770,. Messages are transmitted immediately
after they are generated if CONSOLE=YES was specified for the terminal.
That is, the transmission of a printer spool file is interrupted to send
the message. Thus, if an additional line printer is not available for
spooled output, messages are interspersed with printed spool output to
the standard console printer when CONSOLE=YES is specified.

When CONSOLE=NO is specified for a 3770 terminal, messages received
during transcription of a spooled printer file are not transmitted until
printing of the file is completed. Any message received during the
transcription of a punch spool file causes punching to be interrupted
and the message is sent to the console printer.

Messages for a remote 3790 are sent to the operator console device
(3793 keyboard/printer or 3277 display)when the console is in a state in
which terminal commands can be entered.

A remote SNA terminal user terminates a session by issuing a LOGOFF
or SIGNOFF (3770 only) command. A LOGOFF command can specify a
conditional or unconditional termination and can be 'entered only via the
terminal keyboard. A SIGNOFF command always causes a conditional
terminal logoff and can be entered via the terminal keyboard or a card
reader. A conditional logoff request causes VTAM to disconnect the SNA

184 DOS/Virtual storage Features Supplement

terminal from POWER/VS after processing of the current job completes. A
message is sent to the terminal when the disconnection is completed. ,An
unconditional logoff request causes VTAM to terminate the session
immediately without waiting for the completion of any job transmission
that is in progress.

The central operator can issue a PSTOP RJE,SNA command with the
remote user identification to terminate the session of a remote user.
To terminate all RJE,SNA processing, the PSTOP RJE,SNA command without a
remote user specification must be issued. The termination of RJE,SNA is
immediate unless EOJ is also specified. Termination occurs only after
all transcription of the jobs in progress (both input to POWER/vS and
spool files being sent to remote users) is completed when EOJ is
specified.

Terminal commands. The commands provided for POWER/VS RJE,BSC and
RJE,SNA users are a subset of the commands provided for the central
POWER/VS operator. There are four types of POWER/VS RJE terminal
commands: terminal control commands that are used to stop and start
user sessions, task management commands that are used to control RJE
writer tasks (but not RJE read tasks), queue management commands that
are used to control the processing of remote jobs, and miscellaneous
commands that control terminal printer spacing and message handling.
POWER/vS RJE terminal commands contain an asterisk, blank, and two
periods. in the first four positions. A single letter abbreviation can
be used for all RJE commands except SIGNON and SIGNOFF.

The following are the POWER/VS RJE terminal control commands:

• SIGNON, which is used to establish a logical connection between a
remote terminal and POWER/VS RJE via a specified line. SIGNON is
always used for remote BSC terminals and, optionally, can be used
for remote SNA 3770 (but not 3790) terminals if the proper VTAM USS
table is constructed. A SIGNON command initiates a terminal session
that is terminated when the remote user issues a SIGNOFF command, a
signoff is forced by expiration of the timeout interval, or another
SIGNON command is issued (without an intervening SIGNOFF) to
initiate a new terminal session. The central operator is notified
when a remote user successfully signs on~

The SIGNON command specifies the remote identification assigned to
the terminal via the PRMT macro, a password (optionally), and up to
16 bytes of user information (optionally), which are placed in the
line account record for this session. Note that an invalid SIGNON
command is interpreted as a SIGNOFF command and ~he terminal from
which it was received is disconnected if it is·on a switched
communications line after input in the card reader is flushed.

• SIGNOFF, which is issued to terminate a session at the next end-of­
file condition on the card reader. SIGNOFF is always used for
remote BSC terminals and can be used for remote 3770 (but not 3790)
SNA terminals. POWER/VS logically disconnects the terminal and
stops any active writers for the terminal. The central operator is
notified when a remote user signs off. A signoff is forced when a
terminal has been idle for a number of minutes, as specified during
POWER/VS generation.

• LOGON, which is used to establish a logical connection between a
remote SNA terminal and POWER/VS RJE,SNA. LOGON must be used
instead of SIGNON for a 3790. This command initiates a terminal
session that is terminated when the remote user issues a LOGOFF or
SIGNOFF (3170 only) command or the central operator issues a PSTOP
RJE,SNA command with the user specified. LOGON specifies the APPLID
(POWER) parameter to cause VTAM to connect the terminal to POWER/VS,
the name of an entry in the VTAM logon mod table that defines the

DOS/Virtual Storage Features Supplement 185

parameters to be used for this terminal while it operates under
POWER/VS, the remote identification of the user that is using the
terminal, and optionally, a password and 16 bytes of user
information.

• LOGOFF, which is used to terminate a session for an SNA terminal.
LOGOFF must be used instead of SIGNOFF for a 3190. The LOGOFF command
specifies APPLID (POWER) to cause VTAM to logically disconnect the
terminal from POWER/VS and the UNCOND or COND parameter to request
an unconditional or conditional termination, as previously
described.

The POWER/VS RJE (BSC and SNA) task management commands are the
following:

• START, which is used to start an RJE writer task and specify
one to four output classes (A to Z) the writer is to handle.
START MSG co~~and is used to restart the receipt of messages
terminal printer after a STOP MSG command was issued to stop
receipt of messages.

from
The

on the
the

• STOP, which is used to stop an RJE writer task or the receipt of
broadcast and system messages on the terminal printer. If EOJ is
specified, the writer task does not stop until it has finished
transcribing the spool file it is currently processing and the queue
entry for the spool file has been deleted. The writer stops
immediately' if EOJ is not specified and the spool file remains
queued.

If RESTART is specified instead of EOJ, the writer stops immediately
but processing of the spool file currently being transcribed will be
resumed at the record after the last one processed before the writer
stopped.. If neither EOJ nor RESTART is specified, transcription of
the spool file being processed when the STOP was issued begins at
the beginning of the spool file.

• FLUSH, which is used to terminate processing by a writer task of the
spool file it is transcribing. If HOLD is specified, the queue
entry for the spool file is not deleted. The queue entry is deleted
if HOLD is not specified. In either case, the writer continues
processing with the next entry in the class queue, if any. FLUSH
can only be issued for a writer task that has been interrupted by
the remote user, central operator, or an action-type POWER/VS
message.

• RESTART, which is used to terminate processing of a spool file by an
RJE writer task and have it resume at a specified pOint. Processing
can be resumed at the beginning of the spool file or up to 9999
pages/cards forward or backward in the spool file. RESTART can be
issued only for an RJE writer task that has been interrupted by the
remote user, the central operator, or an action-type POWER/VS
message.

• GO, which is used to restart an RJE writer task after it was stopped
because of a forms mount message. The GO command does not apply to
the 3141.

The following are POWER/VS RJE (BSC and SNA) queue management
command,s (which a remote user can issue only for input jobs he
submitted, the spooled output from his jobs, and spooled output from
other remotely submitted jobs that is routed to him):

• DISPLAY, which is used to display the status of POWER/VS RJE jobs.

186

A status display can be requested for the following: a specific
POWER/VS RJE job in the reader, list, or punch queue; all POWER/VS

DOS/Virtual Storage Features Supplement

RJE jobs in the reader, list, or punch queue or in all three queues;
all POWER/VS RJE jobs that are in hold or leave status in the
reader, list, or punch queue or in all three queues; all POWER/VS
RJE jobs that are dispatchable or in keep status in the reader,
list, or punch queue or in all three queues; all POWER/VS RJE jobs
whose job name begins with the specified one to seven characters in
the reader, list, or punch queue or in all three queues; and all
POWER/VS RJE jobs with a specified class in the reader, list, or
punch queue; all the ALLUSER messages and their originators; and
current time, date, number of fixed pages, and current number of
POWER/VS tasks.

• ALTER, which is used to alter one or more attributes of a specific
POWER/VS RJE job, all POWER/VS RJE jobs whose job name begins with
the specified one to seven characters, or all POWER/VS RJE jobs with
the specified class in either the reader, or list, or punch queue.
Changes are made to the read, list, or punch queue entries for the
affected jobs. The attributes that can be changed are job prioritYr
disposition, class, number of copies for spool output files, and the
destination (remote user identification of 0 to 200) of spool output
files for RJE jobs.

Attributes cannot be changed for any POWER/VS RJE job in the reader
queue that has been scheduled and is executing. If a spool file is
in the process of being transcribed, only its number of copies
attribute can be changed. However, if a spool file being
transcribed is segmented and the list/punch queue entry for its
first segment has already been deleted, no attributes can be
changed.

• DELETE, which is used to delete one or more POWER/VS RJE jobs from
the reader, list, or punch queue, a specific queued message to all
RJE users submitted by this user, or all messages to all users
submitted by this remote user. If a job in the reader queue is
being processed or a spool file in the list or punch queue is being
transcribed, it is not affected by a DELETE command. A specific
POWER/VS RJE job, all POWER/VS RJE jobs, all POWER/VS RJE jobs with
the specified class, or all POWER/VS RJE jobs whose job name begins
with the specified one to seven characters in a given queue can be
deleted with a DELETE command.

• RELEASE, which is used to change the disposition of one or more
POWER/VS RJE jobs in the hold or leave state in a given gueue to
dispatchable so that they can be processed. The queue entry of a
job originally in the hold state is deleted after it is processed.
The queue entry of a job originally in the leave state is reset to
leave after it is processed. A specificPOWER/vS RJE job, all
POWER/VS RJE jobs, all POWER/vS RJE jobs with the specified class,
or all POwER/VSRJE jobs whose job name begins with the specified
one to seven characters in the reader, list, or punch queue can be
released.

The miscellaneous POWER/VS RJE terminal commands are the following:

• BRDCST, which is used in RJE,BSC and RJE,SNA to send a message of up
to 40 characters to one remote user, all remote users, or the
central operator. A message to a specific user is sent to that user
immediately if his terminal is ready to receive messages.
Otherwise, it is stored in the message area in the POWER/VS
partition. Messages sent to all users are stored in the message
area also but are displayed only when a user requests their display
via a DISPLAY command. Up to 256 broadcast messages can be stored
at one time. If this limit is exceeded, all messages for the remote
user with the greatest number of stored messages are deleted.

DOS/Virtual Storage Features Supplement 187

• INQUIRE, which is used to request status information about one
specific or all RJE,BSC lines. A status of PROCESSING indicates a
remote user has entered a valid SIGNON command for the line.
INACTIVE status is indicated when the line has been started by the
central operator with aPSTART command but no user is currently
Signed on. A NOT INITIATED status indicates the line has not been
started by the central operator. The NOT SUPPORTED status indicates
the line was not specified during POWER/VS generation.

• SETUP, which is used in RJE,BSC and RJE,SNA to specify one or more
setup pages for the purpose of forms alignment. The setup pages
have X's in all positions for all characters that are to be printed
on the pages. Adjustment can be made during printing of the setup
pages. The GO command is issued to resume normal printing (·with the
first setup page) when alignment is correct. The SETUP command does
not apply to the 3741.

Operator Messages

POWER/vS issues three types of messages to the operator:
information, decision, and action. No operator response is required for
informational messages and processing continues after such messages are
issued. Informational messages for POWER/VS RJE users are stored in the
message area in the POWER/VS partition and sent when the terminal
printer is available. For a 3741, informational messages are recorded
on the diskette unless a STOP MSG command has heen issued by the remote
user.

Decision messages require an immediate reply from the operator and
are never sent to an RJE user. The operator console is unlocked after a
decision message is issued and the entire DOS/VS system waits for the
operator's reply (unless the Advanced Functions-DOS/VS program product
is installed).

An action message is issued when an operator action is required. An
action message for an RJE user is displayed on the remote printer for
the user. When a POWER/VS task issues an action message, it is placed
in the wait state. The central operator can restart the waiting task by
issuing a POWER/VS PGO command after taking the appropriate action or by
issuing a PFLUSH command to discontinue execution of the affected
POWER/vS job. An RJE user can issue a POWER/VS RJE RESTART command to
continue processing or a POWER/VS RJE FLUSH command to discontinue
processing of the affected POWER/vS job.

Virtual Storage Requirements

The virtual partition in which POWER/VS operates is divided into
three areas, as shown in Figure 80.40.8. The permanent area in lowest
addressed virtual storage in the partition is always 8K bytes. It
contains the POWER/VS nucleus and control tables that are not pageable.
This area is permanently fixed when POWER/VS is started and is not
unfixed until operation of POWER/vS is terminated~

188 DOS/Virtual Storage Features Supplement

Pageable
Area

Fixable Area

Permanent
Area

~

......
,r

"

{

Work area for 3800
printer setup processing
12K per printer
SNA control blocks
and work areas

RJE, SNA support· 16K
SLI facility - 2K
Cross Partition
Communication - 4K
RJ E, BSC support - 16K
User RDREXIT phase
Accounting support· 4K

Standard POWER/VS
modules

1/0 buffers and control
blocks
Fixed only when allocated

POWER/VS nucleus and
control tables

Fixed

~ ,

......

!

.,.

}

GETVIS
Area
(required only for
3800 or RJE, SNA
support)

Optional
support

146K

Minimum4K
without RJE

8K

Figure 80.40.8. Layout of the POWER/VS virtual partition

The fixable area is above the permanent area. It contains data
buffers and control blocks that are used by POWER/VS tasks. When a
POWER/vS task is started, the buffers and control blocks it requires are
allocated from the fixable area and permanently fixed. When a POWER/VS
task terminates, its buffers and control blocks are unallocated and
unfixed.

The size of the fixable area is variable. It depends on the size and
number of the buffers to be used, the maximum number of local and remote
reader and writer tasks that can be active concurrently, the maximum
number of execution processor tasks active concurrently (maximum three
per POWER/VS-controlled partition), whether the source library inclusion
facility is to be used, whether cross partition communication is
supported, the maximum number of RJE,BSC lines to be used, and the
buffer size to be used to process the SIGNON command for each RJE
terminal. The fixable area is a minimum of 4K bytes when RJE support is
not used.

The pageable area in highest addressed virtual storage in the
partition contains the POWER/VS code that is pageable. The pageable
area requires a minimum of 146K for basic POWER/VS support and well over

DOS/Virtual storage Features Supplement 189

200K when all POWER/VS options (that is, source library inclusion, job
accounting, cross partition communication, 3800 printer support, RJE,BSC
and RJE,SNA) are selected. The inclusion of a user-written reader exit
routine increases the requirement for the pageable area. Since the IBM­
supplied code in the pageaple area is reentrant, a page-out is not
required when a page frame allocated to this area is taken for
reassignment.

When RJE,SNA or 3800 printer support is included in POWER/VS, a
partition GETVIS area is required also. The size of the GETVIS area is
2K plus (1) 12K for each 3800 printer for which setup processing is to
be done concurrently plus (2) the requirements for remote control
blocks, SNA unit control blocks, and work areas, which vary depending on
the number of SNA terminals supported.

The amount of virtual storage that should be allocated to the real
partition POWER/VS is to use is the sum of the sizes of the permanent
area and the fixable area. This makes the real partition large enough
to support the number of permanently fixed pages required when the
maximum POWER/VS configuration is active.

The minimum size of th'e POWER/VS real partition is 10K without RJE
support and 14K with RJE support (BSC and/or SNA). The maximum real
partition size that POWER/VS will use is 128R. If the virtual storage
in the real partition being used by POWER/VS is totally allocated when a
buffer must be permanently fixed for allocation to a POWER/VS task, the
operator is notified and the task that needs the buffer is placed in the
wait state until virtual storage in the real partition becomes
available.

POWER/vS Generation

The IBM-supplied system core image library on the DOS/VS distribution
volume contains a reader/writer POWER/VS system (with phase name POWER)
that was generated using all the default values for the POWER generation
macro. This POWER/VS system does not support RJE. If this version is
not suitable, the desired POWER/VS system must be defined using the
POWER/VS generation macros and a generation must be performed.

One macro (POWER) is provided to generate a non-RJE POWER/VS system.
Three macros (POWER, PLINE, and PRINT) must be used to generate a
POWER/VS system that supports only RJE,BSC or RJE,SNA with binary
synchronous terminals as well. Only the POWER and PLINE macros are
required to generate a POWER/VS system with RJE,SNA support without
binary synchronous terminals.

The POWER/VS generation macro(s) must be assembled to generate the
POWER/vS generation table object module, which also contains the code
required to invoke the POWER/VS initialization module. The
initialization module loads and initializes POWER/VS program phases.
The generation table object module must be link edited to the system
core image library. As many generation table phases can be cataloged in
the system core image library as the number of different POWER/VS
systems required in an installation.

The phase name of the POWER/VS system is specified in the POWER
generation macro. If a name is not user specif ied, 'POWER is assigned to
the POWER/VS system by default.

Advantages Of POWER/VS OVer other POWER Components

The POWER component provided for DOS/VS Releases 28 to 30 supports
several functions not supported by the Type III Class A Maintenance

190 DOS/Virtual Storage Features Supplement

POWER II program for DOS Versions 3 and 4, which cannot be used with
DOS/VS. These additional functions are also supported by POWER/VS.

The functions provided by DOS/VS POWER for Releases 28 to 30 but not
by DOS Version 3 and 4 POWER are support of up to four partitions, a
punch checkpoint/restart facility, command enhancements, the 5425
Multifunction Card Unit, the 2560 Multifunction Card Machine, the 3340
Direct Access Storage Facility, the 3540 Diskette Input/Output Unit, the
3203 and 5203 Printers, print/punch operations on the 3525 Card Punch,
the 3180 Data Communication Terminal, and certain optional hardware
features for the 2110 Data Transmission Terminal (2203 Printer, Space
Compression/Expansion, and Buffer Expansion, Additional). Messages
issued to the operator by DOS/VS POWER are modified to follow the
standard DOS format for job control messages.

The punch checkpOint/restart facility in DOS/VS POWER provides the
capability of stopping a 2560 MFCM or 5425 MFCU during the punching of a
file so that the device can be used as a reader. Once read operations
have been completed, punch operations on the 2560 or 5425 can be resumed
at the point at which they were stopped. Command enhancements provide
the following new capabilities:

• A single DISPLAY command instead of multiple commands can be issued
to list the entries in all reader, list, or punch queues.

• The FREE operand can be used to list all POWER jobs that are
available for execution.

• The LOCAL operand can be used to list all POWER jobs that have been
submitted locally.

With the exception of the all-users output class for spooled output
from RJE jobs, POWER/VS provides the same functions as DOS/VS POWER as
well as many enhancements to both local and RJE support. The
enhancements provide new capabilities, improved operational
characteristics, and easier installation and can improve system
performance.

POWER/vS is designed to take advantage of virtual storage. Bence,
more features are included as standard in POWER/vS than in DOS/vS POwER
without a corresponding increase in real storage cost. In addition, the
fact that the fixed real storage requirements of POWER/VS are less than
those of DOS/VS POWER can enable POWER/VS to be used effectively in
smaller DOS/VS installations than DOS/VS POWER. In addition, POWER/VS
supports SNA devices, which are not supported by DOS/VS POWER.

The most significant new features of POWER/VS local support when
compared with DOS/VS POWER local support are the following:

• POWER/VS is pageable and requires less fixed real storage than
DOS/VS POwER for like configurations. For a reader/writer system
that supports one partition, DOS/VS POWER requires a minimum 20R
real partition while POWER/VS requires a minimum real partition of
about 10K to 12K.

• partition-independent input classes are supported by POWER/vS to
enable a job to execute in any available partition instead of a
predetermined partition only. In addition, there is only one set of
input and output queues for the entire system in POWER/VS instead of
one set per partition as in DOS/vS POWER. This means the operator
can spend less time starting and stopping readers and writers. The
job scheduling flexibility provided by POWER/vS combined with the
relocating loader, generic device assignment, and partition-related
cataloged procedures DOS/VS features simplifies the operation of a
multiple batch partition DOS/vS system.

DOS/Virtual Storage Features Supplement 191

• output segmentation for spooled printer and punch files is supported
directly byPOWER/VS and does not require any special techniques or
user programming as is required in DOS/VS POWER. Output
segmentation can be used to reduce the amount of disk storage
required for the data file and the turnaround time of certain jobs.

• The AUTOSTART facility in POWER/VS enables multiple read tasks, list
tasks, punch tasks, partitions, and RJE lines to be started
automatically instead of only one read, list, and punch task, as in
DOS/VS POWER.

• The job accounting support in POWER/VS merges the POWER/VS and
DOS/VS accounting data in the POWER/VS account file. In DOS/VS
POWER, a user-supplied accounting routine is required to collect
DOS/VS accounting data for POWER-controlled partitions.

• Up to eight spooled printers and up to eight spooled punches are
supported for each POWER/VS-controlled partition to enable a job
step to create multiple print and punch spool files concurrently.
DOS/VS POWER supports only one spooled printer and one spooled punch
per partition.

• The FCB and UCB image to be used for a printer spool file can be
specified in a LST statement to cause loading to be performed
automatically by FOWER/VS before the transcription of a printer
spool file. The SYSBUFLD program must be executed in DOS/VS POWER
to load a UCB or FCB as these images cannot be specified in a PRT
statement.

• The FCB image being used for a given spooled printer can be changed
during execution of a job step in POWER/VS, which enables a job step
to serially create multiple reports with different formats. This
cannot be done in DOS/VS POWER.

• Additional job disposition attributes are supported in POWER/VS that
enable an executed job or a transcribed spool file to remain queued
for a rerun or transcription of additional copies at a later time.
In DOS/VS POWER, a job or spool file is deleted from the queue file
after it has been processed.

• Additional status information is provided by the POWER/VS DISPLAY
command that can enable the operator to make more effective
decisions during system operation.

• A POWER/VS generation requires only a few minutes and does not
involve the link editing of relocatable object modules, as is
required in a DOS/VS POWER generation.

The most significant new features of POWER/VS RJE,BSC support are the
following:

• Most RJE code in POWER/VS is pageable instead of fixed as in DOS/VS
POWER.

• Up to 25 communications lines are supported by POWER/VS RJE,BSC
instead of a maximum of five as in DOS/VS POWER RJE.

• Remote job scheduling is improved~in POWER/VS. POWER/VS enables an
RJE user to easily interrupt the transcription of a spool file to a
terminal printer or punch so that a job stream can be sent to the
central system. Once the job stream has been read, POWER/VS
automatically resumes transcription of the spool file from the point
of interruption. From an operational point of view, this type of
interruption requires more effort on the part of the DOS/VS POWER

H2 DOS/Virtual Storage Features suppleKient

RJE user (stopping of the writer, forward spacing to the point of
interruption, and restarting the writer).

• Scheduling of RJE spool file transcription is improved in POWER/VS
by the support of hot writers and output classes for spooled RJE
output. In POWER/VS, when a spool file is queued for an RJE user,
it is transcribed automatically by the started writer for its class
and terminal as soon as the terminal is available. This eliminates
the need for the RJE user to specifically inquire about the
existence of spool files for his terminal as is generally required
in a DOS/VS POWER RJE environment.

I • The teleprocessing access method used by POWER/VS RJE,BSC is a
DOS/VS version of RTAM instead of BTAM, which is used in DOS/vS
POWER RJE. RTAM offers several advantages over BTAM. RTAM is
mostly pageable instead of mostly fixed like BTAM. RTAM requires
less virtual storage (about 8K to 10K less) than BTAM and provides
the hot writer support described above.

• The commands available to the POWER/VS RJE user provide the user
with more control over his jobs than the commands available to the
DOS/VS POWER RJE user. Specifically, ALTER, DISPLAY, and SETUP
commands are provided for POWER/VS RJE users.

• The transperency feature is required for a POWER/VS RJE terminal
only if object decks are to be punched at the terminal. A DOS/VS
POWER RJE terminal that is to punch any cards must have the feature.

• POWER/VS provides accounting data (line account record) for RJE
terminals which is not provided by DOS/VS POWER.

• A separate generation of POWER/VS RJE code is not required as for
DOS/VS POwER RJE code.

Table 80.40.2 provides a detailed comparison of POWER/VS and DOS/VS
POWER features.

DOS/Virtual Storage Features supplement 193

Table 80.40.2. Comparison of POW~R/VS and DOS/vS POWER features

Feature

DOS/VS releases
supporting

System versions supported
eReader/writer - local
eWriter-only

eReader/writer with
RJE support

DOS/VS supervisor
options required

Generating requirements

Minimum system real
storage requirement for
operation

Mode of operation of
POWER program

POWER partition storage
requirements

194

POWER/VS

30 and up

Yes
No but writer only
POWER/VS-controlled
partitions can be
defined in reader/
writer systems
Yes (RJE support for
both BSC and SNA
devices is provided).

Two partitions,
page handling overlap,
PFIX/PFREE macros,
VIRTAD/REALAD macros,
EXCP macro with the
REAL parameter: and
job accounting if
POWER/VS job
accounting is to be
used. Three partitions
and VTAM are required
for RJE,SNA support.

Short assembly and
link edit of macros
required to produce
a generation table
module that
initializes POWER/VS
as desired.

96K (256 for RJE,SNA
support)

Virtual only and the
corresponding real
partition must be
defined.

Virtual partition
minimum is 158K
without RJE. Real
partition minimum
is 10K, maximum is
128K. These
requirements do not
vary depending on
the number of
partitions supported.

DOS/VS POWER

28, 29, and 30

Yes
Yes

Yes (RJE support for
BSC devices only)

Two partitions and
BTAM if RJE support
is to be used. Note
that TP=BTAM must be
specified for the DOS/VS
supervisor for any
DOS/VS POWER system
so that channel
appendage support is
included.

Assembly of POWER
generation macros
required. Output
used to link edit
required POWER
modules.

64K

Real only

Real partition
minimums for support
of one partition
are 18K for a
writer-only system,
20K for a reader/
writer system, and
42K for a reader/writer
system) with RJE support
of one line~ An additional
4K is required for
each additional
partition supported.

DOS/Virtual Storage Features Supplement

Table 80.40.2 (continued)

Feature

Reentrant code

Operates as a main task
only

Number of partitions
supported

Mode of partitions
supported

Maximum number of unit
record devices spooled
per POWER-controlled
partition

Subtasks as well as main
task in a POWER­
controlled partition
can use spooled devices

Input job classes
supported for POWER­
controlled partitions

output (spool file)
classes

Input and output queues
in the queue file

Maximum number of input
jobs and spool files in
queue file

Job priority (input and
output)

POWER/VS

Yes, in pageable area

Yes

Always four (or 6)
of lower priority

Virtual or real

One reader, up to
eight printers, and
up to eight punches.
Any logical unit can
be assigned to devices
that are to be
spooled.

Yes

partition-dependent
o to 4 (or 6) and
partition-independent
A to z. Up to four
partition independent
classes can be
assigned to each
partition and the
same class can be
assigned to more
than one partition

A to z

One reader queue, one
list queue, and one
punch queue used to
schedule all POWER/VS­
controlled partitions
and writer tasks.

Not. limited

o to 9

DOS/Virtual storage Features Supplement

DOS/VS POWER

No

Yes

From one to four of
lower priority as
specified at POWER
generation

Virtual or real

One reader, one
printer, and one
punch. Only the
SYSRDR, SYSIN,
SYSLST, and SYSPCB
logical units (and the
other logical units
assigned to the same
devices as these) are
spooled.

No

partition-dependent
o tq 4 only

A to Z

One reader queue,
one list queue, and
one punch queue are
maintained for each
POWER-controlled
partition .•

512

o to 9

195

Table 80.40.2 (continued)

Feature

Job dispositions

Maximum number of read
tasks supported

Types of readers

Reader exit available

Number of buffers
assigned to a re~d
task

Hot reader capability

Source library inclusion
facility with
modifications via the
input stream

Device types supported
by reader tasks

Maximum number of
writer tasks supported

196

Input - dispatch and
delete, dispatch and
keep, hold, and leave
in queue.
output - same as input
plus write to
intermediate tape
instead of disk, do not
spool, and transfer
spool file to reader
queue without
transcription.

Limited only by the
number of card readers
and diskette devices
in the system I/O
configuration. There
is no defined limit
on the number of
POWER/vS tasks that can
operate concurrently.

partition independent

Yes

For a card input
stream, one input
unless two is specified
in the START command
and one output. For
a diskette input
stream, one input and
one output.

Yes

Yes

1442, 2520~ 2540,
2501, 2560, 3504,
3505, 3521, 3525,
3540, and 5425

Limited only by the
number of printers
and punches in the
system I/O
configuration

DOS/VS POWER

Input -dispatch
and hold.
Output - dispatch,
hold, write to tape
instead.of disk,
and do not spool.

Limited by the
maximum number of
spooled devices
supported by POWER (26)

Partition dependent
and partition
independent

No

Same as POWER/VS

Yes

Yes

Same as POWER/VS

Limited by the
maximum number of
spooled devices supported
by POWER (26)

DOS/Virtual Storage Features SUpplement

Table 80.40.2 (continued)

Feature

Output segmentation
for printer and punch
spool files

Page separation

Card separation

Output limitation for
printer and punch spool
files per POwER job

Device types supported
by list tasks

Number of buffers
allocated to a list
task

Device types supported
by punch tasks

Number of buffers
allocated to a punch
task

FeB and UCB loaded by
writer task

Forms change during
DOS/VS job step
execution

Forms setup assistance

Multiple copies of
spooled printer and
punch files

POWER/vS

Yes

Yes - up to nine
pages as specified
at POWER/VS generation
or via a JECL LST
statement

Yes - up to nine
cards as specified
during POWER/VS
generation or via the
JECL PCH statement

Yes - when limit is
reached, operator is
notified and
processing continues.
Operator need not
respond or can flush/
cancel the job.

DOS/VS POWER

No

Optional - up to two
pages as specified at
POWER generation
only

No

Yes - when limit is
reached, processing
stops and operator
must issue conmand
to cancel or
continue.

1403, 1443, 3211, 3203, Same as POWER/vS except
5203, 2560, 3521, 3525, for 3800
5425, and 3800

One or two input
and one or two
output

1442, 2520, 2540,
2560, 3525, and
5425

One input and one
output

Yes if image is
specified in the LST
statement

Yes, via LFCB macro

Yes, via PSETUP
command

Yes

One input and one
or two output as
indicated in start
command.

Same as POWER/vS

One input and one
or two output as
indicated in start
command

FCB and UCB images
cannot be specified
in the PRT statement.

No

No PSETUP command.
Have to stop and
restart printing
from the beginning
of the file.

Yes

..

DOS/Virtual Storage Features Supplement 197

Table 80.40.2 (continued)

Feature

Backspacing and forward
spacing in a spool. file
during transcription

Submission of jobs to
POWER from a partition
and receipt of spooled
printer output by a
partition

Devices supported for
intermediate disk
storage

Queue file record file

Buffer size for I/O
operations to data file

nn~ ,.... _...:..-_~.-~ .&. __
~u QU~~~L~~U LVL

operations to
intermediate disk
storage

Automatic initiation
of POWER program

Warm start

status report printed
after POWER termination

Job logging facility
when job is scheduled
for execution

Job accounting

198

Yes for printer and
punch files

Yes

DOS/VS POWER

Yes for printer
files only

No

2314/2319, 3330-series 2311, 2314/2319,
(all models), 3330-series Models 1
3340/3344 (all models), and 2, and 3340
and 3350 (all modes) (all models)

Always 152 bytes

544 to 2008

Yes

Yes - multiple read
tasks, list tasks,
partitions, and RJE
lines can be started
via AUT as TART
facility. This
facility is not
specified at POWER/VS
generation.

Yes

Yes, if requested via
PEND command

Yes

Requires the inclusion
of DOS/vS accounting
in the supervisor.
POWER/vS and DOS/VS
job accounting data
are merged into one
account file by
POWER/vS.

From 272 to 520 bytes

528 to 4000 bytes
(except for 2311
which has a maximum
of 3625 bytes)

Yes

Yes - one tead, one
list, and one punch
task can be started
automatically. The
AUTOSTAR~ facility
must be specified
at POWER generation.

Yes

No

No

Does not require
the inclusion
of DOS/VS accounting
in the supervisor.
POWER accounting
data is separate
from DOS/VS accounting
data. A user
accounting routine
must be written to
obtain DOS/VS
accounting data for
POWER-controlled
partitions.

DOS/Virtual Storage Features Supplement

Table 80.40.2 (continued)

Feature

Account file printing.

Job entry control
language

One character
abbreviations for
non-RJE command

HOLD parameter for
FLUSH command

CANCEL command to
terminate printing of
output from a DISPLAY
command

Job status attributes
displayed by the DISPLAY
command on the SYSLOG
device

ALTER command for queued
jobs and spool files

,Dummy devices

POWERIVS

PACCOUNT command is
provided to write
account file to tape.
disk. or a spooled
punch under POWER/vS
control.

Statements supported
are CTL. DATA. EOJ.
JOB. LST (PRT). PUN
RDR. SLI. /*. and
/f,.
Statements begin with
* $$.
Con~inuation state­
ments are supported.
Some parameters are
keyword only and some
are both positional
and keyword.

Yes. except PEND

Yes

Yes

Yes. including forms
identification for a
spooled printer file.
remaining number· of
pages and copies to be
printed. and input class
for jobs in the reader
queue.

Yes including
alteration of input
class.

Required only when a
writer-only partition
reads cards directly
from a reader. a
reader-only partition
writes directly to a
printer or punch. a
partition writes to
more than one spooled
printer or punch. or
a 1442. 2560. or 5425
is used for both reading
and punching.

DOS/Virtual Storage Features Supplement

DOS/VS POWER

J command is provided
to write account file
to tape or a punch.

Same as POWER/vS except
for LST.

Same as POWERIVS

Continuation statements
are not supported.
All parameters are
positional only.

Yes

No

No

Yes but does not
included items
listed under
POWER/VS .•

Yes but input class
cannot be altered.

Required whenever POWER
controls spooling in more
more than one partition.

199

Table 80.40.2 (continued)

Feature

RJE Support of BSC
and SNA devices

Number of RJE,BSe
lines supported

Maximum number of RJE,BSC
user identifications

Teleprocessing access
method used by RJE,BSe

RJE,BSC passwords

Bot RJE readers and
writers

RJE accounting

USAseII code supported
for RJE terminals

Transparency feature for
RJE terminals

Route RJE spooled output
to another user

RJE,BSe line timeout

RJE writer classes

Terminals supported
by RJE,BSe

Terminal commands

Generation requirements
for RJE support

200

POWER/VS

Yes

up to 25 point to
.point leased or
switched lines

200

RTAM

By line

Yes

Yes in a line account
record written at the
end of each session

Yes

Required only if
punching object decks

Yes - to any other RJE
user or the central
operator. The
ALLUSERS class for RJE
spooled output is not
supported.

Limit is established
on a line basis.

Yes

2770, 2780, 3780,
and 3741 (and 3170)

Subset of central
operator commands.
SETUP, DISPLAY, and
ALTER commands
provided to give RJE
user more control
over own jobs and
output.

RJE support generated
along with the rest of
POWER/vS system.

DOS/VS POWER

No (BSe only)

Up to 5 point to
point leased or
switched lines .
100

BTAM

By terminal and/or
user

No

No

No

Required for any
punching

Yes to any other
RJE user or the central
operator.

One limit is
established for
all lines.

No

Same as POWER/vS except
for 3141 and 3770

SETUP, ALTER, and
DISPLAY commands
not provided.

Separate generation
of RJE support is
required.

DOS/Virtual Storage Features Supplement

Conversion from DOS/VS POWER to POWER/VS

The following identifies the major areas of incompatibility
DOS/VS POWER and POWER/VS, differences in features provided by
systems, and steps that must be taken to convert to POWER/VS.
information will be of value to DOS/VS users who are currently
DOS/VS POWER and who intend to convert to POWER/VS.

between
both
This
using

The local support provided by POWER/VS is generally compatible with
that provided by DOS/vS POWER. Therefore, little conversion effort
should be required to convert from DOS/VS POWER to POWER/VS when the
same facilities are used,. Additional conversion effort (such as the
addition of POWER/VS or alteration of existing DOS/VS POWER JECL
statements) is required to utilize some of the new facilities of
POWER/vS (such as input class scheduling and output segmentation).

The general items of incompatibility and difference are:

• POWER/VS requires DOS/VS supervisor options that are not required by
DOS/VS POWER and does not require BTAM for RJE,BSC support.
POWER/VS also has less requirement for dummy devices. These
differences may require reassembly of the existing DOS/VS supervisor
for use with POWER/VS.

• The ALLOCR statement for the DOS/VS POWER partition should be
changed to specify the POWER/VS real storage requirement and an
ALLOC statement must be included to define the corresponding virtual
partition.

• A new set of messages exists in POWER/VS. Therefore, all run books
and user-written documentation for programmers, etc. should be
reviewed.

• POWER/VS direct access files are not compatibile in format with
DOS/VS POwER direct access files.

• The IBM 2311 Disk storage Drive is not supported as an intermediate
disk storage device.

• Remote (RJE,BSC) users are defined by a remote identification number
instead of a name.

• POWER/VS uses its own access methods. Therefore, all users of
routines or programs that depend on any access method characteristic
of earlier POWER implementations should carefully review their usage
under POWER/VS.

• The DOS/VS POWER AUTOSTART feature has been replaced by a new
AUTOSTART feature. No decision-type message is issued during
POWER/VS initialization, but the system is automatically started
according to the control cards in the reader, if SYSIPT is assigned
to a unit record device. With these cards any number of
reader/writer tasks, RJE,BSC lines, and POWER/VS-controlled
partitions as well as RJE,SNA activation can be started
automatically. If partition-independent job classes are to be
aSSigned to the partitions that are automatically started, PSTART
commands must be modified to specify the classes. Thus, existing
startup procedures for DOS/VS POWER may require revision..

• If the POwER/VS reader exit is to be used, the user-written exit
routine must be written, assembled, and link edited to the system
core image library before POWER/vS is initiated.

DOS/Virtual Storage Features Supplement 201

• If output segmentation is to be utilized in POWER/VS and the size of
the data file is to be reduced, the EXTENT statement(s) for this
file must be modified.

• If a user-written accounting routine exists to log DOS/VS accounting
data accumulated for DOS/VS POWER-controlled .partitions,this
routine should be modified to determine whether the partition is
operating under POWER/VS control before performing the logging
operation. If so, the user accounting routine should not do the
logging.

• User-written programs (and sorts) that process the account file
written by the DOS/VS POWER accounting routine must be modified to
process the new account file record format and contents.

Incompatibilities between DOS/vS and POWER/VS program generation are:

• The number of generation parameters is reduced in POWER/VS because
many more features are standard in POWER/VS than in DOS/VS POWER.
Thus, the existing POWER generation input must be modified to use
POWER/VS generation parameters. The following DOS/VS POWER
generation parameters have, no equivalent in POWER/VS:

DIAG
DISK
MAXJOBS
NUMDDKS
NTRKGP
ADDITR
AUTOSTR
MAXBUFS
MAXCCB
MAXRW
POWPART
RDRCLOS
SLI
TAPE

The following POWER/VS generation macros have no equivalent in
DOS/VS POWER:

JLOG
JSEP
RBS
RDREXIT

COPYSEP
CLRPRT
MRKFRM

• For POWER/VS RJE, a separate generation is not required for the
BTMOD, RJE blocks, RJE block name list, or userid list. The RJE
components are generated along with the rest of the POWER/VS system
in one assembly.

• The default phase name for the POWER/VS reader/writer system is
POWER. The default phase name for the DOS/VS POWER system is
FGPSPOOL.

In general, job streams being used with DOS/VS POWER can be used with
POWER/VS with little or no modification. Job entry control language
differences and incompatibilities are:

• For DOS/VS POWER job streams, the JECL JOB and EOJ statements are
required for a job if the JECL PRT or PUN statement is to be used.
Only one PRT and one PUN statement per POWER job are permitted. The
JECL PRT (or LST) and PUN statements can be included in POWER/VS
jobs without the use of JECL JOB and EOJ statements. Multiple LST
and PUN statements are permitted in a POWER/VS job.

202 DOS/Virtual Storage Features Supplement

• JECL statements can be placed anywhere in a DOS/VS POWER job stream.
certain JECL statements cannot be intermixed with data in a POWER/VS
job stream. The functions, such as output segmentation, DOS/vS
POWER users accomplished by placing JECL statements in data input
can be accomplished in other ways in POWER/vS. This can require
program modification, such as the addition of the LFCB macro to
serially generate multiple reports with different forms control and
removal of dummy card reading.

• The new JECL features in POWER/VS are supported only in keyword
form. Features supported by DOS/VS POWER and POWER/VS are supported
using the positional format in POWER/VS. DOS/VS POWER JECL
statements using the positional form and no continuation are
accepted by POWER/VS without modification except for userid in the
JOB statement and DISP=T in. the PRT and PUN statements, which are
ignored by POWER/VS. For RJE users, this means all output is routed
according to the LSTROUT and PUNROUT specifications in the RMT macro
or the REMOTE parameter in the POWER/VS LST and PUN statements.

• If partition-independent Job classes are to be used, existing JOB
statements must be modified when the default class of A is not. to be
assigned or CTL statements can be added to the existing job stream.

Operator command language differences are:

• The local POWER/VS command language is a compatible extension of the
DOS/VS POWER command language. corresponding POWER/VS and DOS/VS
commands are compatible with a few exceptions (such as the cancel
command). The DOS/VS POWER H (hold job entry), L (delete job
entry), M (display or alter counter), 0 (change output destination
of a job entry), and Z (diagnostic trace) commands are not supported
by POWER/VS. Except for the diagnostic trace, the functions
provided by these commands in DOS/VS POWER are provided by other
commands in POWER/VS.

• References to partition queues (BGRDR, FQLST, etc.) are invalid.

• The cuu parameter must be specified in all POWER/VS task management
commands (the queue parameter is not accepted in POWER/VS). For
example, PCANCEL RDR is not valid in POWER/VS. PCANCEL OOC is
valid.

• All DOS/VS POWER RJE parameters in the central operator commands are
incompatible with POWER/VS RJE parameters

• The priority in the D (display) and R (release) commands must be
specified as n in POWER/VS instead of Pn.

• The class in the D (display) command must be specified as an
alphabetic character in POWER/vS instead of as CLASSn. A display of
time and date is not supported by the PDISPLAY command in POWER/VS.

• The Band T parameters of the D (display) command ~n DOS/VS POWER
are not valid in the POWER/VS PDISPLAY command.

• The priority parameter of the A (alter) command is positional in
DOS/VS POWER and keyword in POWER/vS.

• The terminate POWER/VS command PEND has no abbreviation. The
abbreviation E is used for this command in DOS/vS POWER.

• A completely new set of RJE terminal commands for remote users is
defined for POWER/VS that is incompatible with the RJE terminal
commands of DOS/VS POWER. POWER/VS RJE terminal commands are a
subset of the local POWER/VS commands. The terminal command

DOS/Virtual storage Features Supplement 203

statements in remote job steams being used with DOS/VS POWER must be
changed to the corresponding POWER/VS terminal commands. Note also
that for POWER/VS RJE support, each remote user must start an RJE
list and RJE punch task for his line if he is to receive output.
This is not required for DOS/vS POWER RJE.

LINKAGE EDITOR AND LIBRARIAN

The linkage editor program and the librarian programs can operate in
a virtual or real partition in DOS/VS. These programs support the same
functions in DOS/vS as in DOS Version 4 and are extended to support new
features of DOS/VS as required. The linkage editor is modified to
produce relocatable program phases that can be loaded by the relocating
loader, as discussed in Section 80:25. When the REL parameter is
specified on the ACTION statement for a phase, the DOS/VS linkage editor
determines whether the phase can be made relocatable by inspecting the
way the load address is specified in the PHASE statement.

A phase can be made relocatable if anyone of the following formats
is used:

• symbol (phase) + or - relocation

• * + or - relocation

• S + relocation

• ROOT

A phase cannot be made relocatable if one of the following formats
(which specify an absolute address) is used:

• + displacement or, for a self-relocating phase, +0

• F + address.

When the ACTION stateme~t is used to indicate that the specified
address is relative to a specific partition, the beginning virtual
storage address of the virtual partition, rather than the real
partition, is used to calculate the load address. Phases that are to be
executed in a real partition must be self-relocating, or relocatable, or
nonrelocatable (absolute phase) and link-edited with the beginning
virtual storage address of the real partition as its load address.

The librarian routines are extended in DOS/VS to support the
relocating loader and the cataloged procedures facility. The linkage
editor is also modified to support the new core image library
organization and to no longer use a librarian work area on .disk. Two
limitations imposed by the size of the librarian work areas in DOS
Version 4 are thereby removed in DOS/vS. Phase size is unlimited and an
unlimited number of phases can be cataloged in one linkage editor job
.step.

The linkage editor also supports two additional parameters on a PHASE
statement. The SVA parameter identifies reentrant, relocatable phases
as being eligible for residence in the SVA, as already discussed. When
a PHASE statement contains the SVA parameter, the linkage editor
determines whether or not the phase actually is relocatable (by
inspecting the load address specified on the PHASE statement). If it is
not, the SVA parameter is ignored and the phase is not marked SVA­
eligible.

The linkage editor cannot determine whether a relocatable phase is
actually reentrant. However, if the phase is not reentrant, a storage

204 DOS/Virtual Storage Features SUpplement

protection program check occurs if there is an attempt to modify the
phase while it is executing in the SVA. The only way a phase can be
marked SVA-eligible is by link-editing it.

The PBDY parameter can be specified to request alignment of the load
point of a phase on a page boundary. If the load point specified is not
so aligned, the next higher page boundary is used as the load pOint.

Whenever the linkage editor places a phase in a core image library,
either in catalog or link mode, the $MAINDIR service program is called
to perform required core image library directory updating. If a second
level directory for the core image library exists in the supervisor,
$MAINDIR updates it as required. The linkage editor also calls the new
$LIBSTAT service program after a phase is cataloged in order to display
the new status of the core image library.

The maintenance and service librarian programs provided in DOS/vS are
the new $MAINDIR and $LIBSTAT service programs and all those provided in
DOS Version 4 except for $MAINEOJ and $MAINTEJP, which are not part of
DOS/VS. Service programs are modified as required to support the new
core image library organization and to request execution of $MAINDIR and
$LIBSTAT when necessary .•

The $MAINDIR program is called by the job control program, the
linkage editor, and librarian routines. It performs the following major
functions:

• constructs an SVA during system initialization. This includes
plaCing selected directory entries from the system core image
library in the system directory list in the SVA, loading selected
phases into the SVA, and writing the contents of the SVA in the page
data set.

• Updates the directory of a core image library when required (such as
when a phase is added or the library is reorganized)

• Builds and updates second level directories for the system and
private core image libraries

• Updates the library descriptor entry in the directory of a core
image library or in the link area

• Updates the link area address in an entry in the fetch table

The $LIBSTAT program prints status reports of the SVA and all system
and private libraries. It performs the functions of the $MAINEOJ and
$MAINEJP service programs that are deleted from DOS/VS. $LIBSTAT is
called by the linkage editor after it catalogs a program and by
appropriate librarian routines after their execution in order to display
the status of the library that was just updated.

The CORGZ librarian program is updated in DOS/vS to provide a library
merge function that is useful when a new release of DOS/VS is installed.
The CORGZ program can be used to compare the directory entries of a
current system library (core image, relocatable, source, or procedure)
with directory entries of a new library. When a member of the old
library does not have a corresponding member in the new library, the
member is automatically placed in the new library.

Note that the merge function of the CORGZ librarian program when
performed on the SYSRES volume and most functions of the MAINT librarian
program can be performed only in the background partition. Only the
delete and renaming functions of the MAINT program can be executed in a
foreground partition and only for a private core image library.

nOS/virtual storage Features Supplement 205

The PDZAP program, not provided in DOS Version 4, is provided in
DOS/VS to enable the operator to display and make changes to a phase in
a system or private core image library. PDZAP can execute in any
partition. It can be invoked from the SYSLOG device or via job control
in the SYSIPT card reader. The changes to be made must be supplied via
the device used to invoke PDZAP. Up to 16 bytes of data in a phase can
be displayed and/or changed at a time.

UTILITIES

The System utility programs component is a standard facility of
DOS/VS. The utility programs supplied in this component and the minimum
size real partition required for their execution are listed in Table
80.40.3. System utility programs can operate in virtual or real mode.
Various initialization and copying functions for the tape and disk units
supported in DOS/VS and the 3540 Diskette Input/Output Unit are provided
by these utilities. All the utilities that are part of the System
utility programs component (370N-UT-491) for DOS Version 4 are also
provided for DOS/VS and the same functions are supported.

Unit record, tape, and .disk I/O devices that are supported in DOS/VS
but not in DOS Version 4 are supported by the DQS/VS system utilities.
In addition, the IEBIMAGE, copy and Restore Diskette, Fast Copy Disk
Volume, Deblock, and page Data Set Dump, Backup and Restore System, copy
File and Maintain Object Module, Maintain System History, and List
system History system utilities are provided for DOS/VS. A Print
Hardcopy File utility is also .provided to print the hard copy disk file
that is created by DOC support for a Model 115, 125, 138, or 148 console
or 3277 display and the Analysis Program-1 utility is provided to
support problem determination functions for 3344 and 3350 volumes.

IEBIMAGE

The IEBIMAGE utility is provided to create and maintain printer
control phases in the system core image library. It handles the
following types of phases:

• Forms control buffer for printers that have an FCB (3800, 3211,
3203, and 5203)

• Copy modification for 3800 printers

• Character arrangement table for 3800 printers

• Graphic character modification for 3800 printers

~~~ 

The Fast Copy Disk Volume utility provides a fast copy facility for 
3330-series, 3350, and 3340/3344 disk storage volumes. It can be used 
to copy the entire contents of one 3330, 3340, or 3350 volume to another 
3330, 3340/3344, or 3350 volume, respectively, or to dump the entire 
volume to tape. The tape can then be used in a restore operation. This 
utility copies an entire volume only, which can contain any combination 
of DOS data formats and organizations. This utility cannot be used to 

I' copy only a portion of a 3330, 3340/3344, or 3350 volume. 

The Fast Copy Disk Volume utility is provided in two versions. One 
version of the program is standalone and card-resident~ This version 
must be loaded from a card reader. The other version runs as a problem 
program under .DOS/VS control in a virtual or real partition. The Fast 
Copy Disk Volume utility is designed to provide a faster copying 

206 DOS/Virtual Storage Features Supplement 



facility for 3330-series, 33QO/33Qq, and 3350 volumes than the Copy and 
Restore Disk utility that operates under DOS/VS control. 

Table SO.QO.3. List of system utility programs and minimum real 
partition sizes 

Assign Alternate Track Data Cell-2QK 
Assign Alternate Track Disk-10K 
Backup System-16K 
Clear Data Cell-14K 
Clear Disk-24K (less for non-3350 devices) 
Copy Disk to Card-10K 
Copy Disk to Disk-10K 
Copy Disk or Data Cell to Tape-10K 
Copy/Restore Diskette-20K 
Copy File and Maintain Object Module (OBJMAINT)-4SK 
Deblock-16K 
Fast Copy Disk Volume-30K (less for non-3350 devices) 
Initialize Data Cell-14K 
Initialize Disk-14K (24K for a 3350) 
Initialize Tape-10K 
List system History (HISTLIST) - 64K 
Maintain System History (PTFHIST)-64K 
Print Hardcopy File (PRINTLOG)-6K 
Restore Card to Disk-10K 
Restore System-36K 
Restore Tape to Disk or Data Cell-10K 
VTOC Display-14K 

Deblock 

The Deblock utility, which operates under DOS/VS control, is 
primarily designed to deblock, block, list, or copy a DOS/VS system 
distribution tape or disk volume. This utility performs the following: 

• Reads a tape or disk volume with aO-byte records contained in 3440-
byte blocks and writes unblocke"d SO-byte records to tape or disk or 
punches cards (deblock function) 

• Reads an unblocked tape that contains SO/Sl-byte records or card 
input and writes SO-byte records in 3440-byte blocks on tape or disk 
(block function) 

• Reads a tape or disk volume with SO-byte records contained in 3440-
byte blocks and prints the records (list function) 

• Reads cards or SO/Sl-byte unblocked tape records and punches cards 
or writes SO-byte unblocked tape or disk records (copy function). 
The copy function can also be" used to read SO-byte records in 3440-
byte blocks on tape or disk and write SO-byte records in 3440-byte 
blocks on tape or disk. 

• Reads a tape or disk volume with 80-byte records contained in 3440-
byte blocks and writes user-selected records to tape or disk in 80-
byte unblocked format or punches the selected records. 

• The card readers, punches, tape units, and disk units that can be 
used with the Deblock utility are all those supported by DOS/VS data 
management. 

DOS/Virtual Storage Features Supplement 207 



Backup and Restore System 

Backup System and Restore System are two separate utility programs 
that produce a device independent backup tape of the system and/or 
private DOS/VS libraries and permit restoration of this copy to all 
direct access devices supported by DOS/VS as SYSRES. The programs have 
the following possible applications: 

• The Backup program alone can be used to create a backup copy on tape 
of a DOS/VS system for future use. 

• The Restore program alone can be used to restore such a backup copy 
of the DOS/VS system to disk. 

• The Restore program alone can also be used to restore the DOS/VS 
distribution tape to disk prior to system generation. 

• Backup and Restore together can be used to transfer DOS/VS libraries 
from one type of disk device to another type. 

• Backup and Restore together can also be used to condense the DOS/VS 
libraries. 

These programs do not support the IBM 5425 Multi-Function Card Unit. 
The IBM 2311 Disk storage Drive may be used to store temporarily the 
stand-alone version of the Restore program. 

The Backup system utility operates in a partition under DOS/VS 
control. It can be used to: 

• Create a backup copy on tape of the system files and of private 
libraries in a format suitable for later use with the Restore 
utility. 

• Create a stand-alone backup tape, that is, a tape complete with the 
necessary supervisor, job control, and restore programs for 
restoring the files and libraries without the use of DOS/VS. 

The Restore System utility operates in a partition under DOS/VS 
control. A standalone version of this utility can be created on tape. 
The Restore System utility can be used to: 

• Restore a DOS/VS system from a tape created by the Backup program. 

• Restore the DOS/VS distribution tape to disk. 

~ File and Maintain Object Module 

The Copy File and Maintain Object Module (OBJMAINT) program is a 
multi-purpose utility with three major functions: file-to-file copying 
of card image files (of particular importance to cardless system and 
diskette users), maintenance of programs in object format, and 
processing of PTFs. 

File-to-file utility functions that can be performed with OBJMAINT 
include: 

, Copying of card image files from card, tape, diskette, and 
sequential disk. 

• Blocking and deblocking of files on tape or sequential disk. 

• Selection or exclusion of specific jobs while copying a SYSIN file. 

~8 DOS/Virtual Storage Features Supplement 



• Listing of data in 80/80 format (one line per logical input record), 
including normally unprintable characters and JOB statements along 
with the total count of statements in each job of a SYSIN file. 

The object program maintenance function provides for updating object 
modules and phases. The object modules may be SYSPCH output from 
language translators or punched from the re~ocatable library (using 
RSERV). The phases may be punched from the core image library (using 
CSERV). . 

IBM provides program temporary fixes (PTFs) to correct errors in IBM 
supplied programs. These PTFs normally consist of object modules 
(including user REP statements containing the code for updating the 
module) that will replace existing modules on the relocatable or core 
image library. The desired PTFs, which normally are included in a PTF 
file in blocked SYSIN format, must be deblocked prior to application. A 
PTF may be updated in the same manner as other programs in object 
format. 

Functions provided for maintenance of both object modules and PTFs 
include: 

• Selective copying of object modules or PTF jobs 

• Deblocking PTFs from a blocked PTF file 

• Selective updating of object modules, phases, or PTFs via user REP 
statements f 

• Removal of previously added user REP statements 

• Expansion or truncation of a control section within an object module 

• Combined object module expansion or truncation and user REP addition 
within the same job step 

• Comprehensive listing options, such as listing of normally 
unprintable characters (for example, EDECKs), suppression of listing 
of non-object module jobs, formatted listing of TXT or RLD 
statements, listing of a TXT statement on a single line, listing of 
JOB statements with a total count of statements within each job, and 
80/80 listing of all statements. 

Maintain System History 

Histories of installed PTFs will be maintained in the DOS/VS system. 
The system history is kept in the form of two books in the source 
statement library, namely: the system control program history 
(Y.PTFSCP) and the program product history (Y.PTFPP). The Maintain 
System History (PTFHIST) utility is designed to simplify this 
maintenance and performs the following tasks: 

• Selects specified PTFs from a PTF file. 

• Generates job control statements to punch a backout PTF. A backout 
PTF consists of control statements that can be used to remove the 
PTF at a later time, if this shpuld be necessary, and to restore the 
libraries to their pre-PTF condition. 

• Generates job control statements to update the system history. 

• Lists the PTF index of a master file or the job control statements 
within a PTF file. 

DOS/Virtual Storage Features Supplement 209 



The program is also able to process summary PTFs. These are 
distributed in the form of three private libraries (CL, RL, SL) 
containing all of the macros, modules, and phases of these PTFs. In 
addition, the private source statement library contains a book with job 
control statements. This jo"b stream contains one job for each PTF. 
Each job contains the comment statements and the COpy statements 
required to merge the modules for the PTF into the system library. 

List System History 

The List System History utility performs the following: 

• Lists the contents of the history books Y.PTFSCP and Y.PTFPP, which 
are generated and maintained by the Maintain System History utility, 
or of any other history book with the same format. 

• Provides edited and sorted cross-reference lists of APAR, local 
fixes, PTFs, and affected library members, with pointers to entries 
in the book printout. 

• Provides an edited list of lost APARs and an error report 

Analysis proqram-i (AP-i) 

AP-i is a problem determination utility program for 3344 and 3350 
Direct Access Storage, which do not have removable data volumes. When 
errors occur on a 3344 or 3350, AP-i can be used to determine whether 
the drive is failing or a problem exists on a r,ecording disk. AP-i 
operates as a job step under DOS/vS control. 

AP-i performs a drive test and then, optionally, a data verification 
test to determine the source of the error. The drive test exercises the 
drive by issuing SEEK, READ, and WRITE commands. Diagnostic messages 
are issued if a failure occurs and the customer engineer should be 
notified. The data verification test issues a read command with the 
skip bit on to each data track in the volume, which prevents the data 
from being read into processor storage. When an uncorrectable error 
occurs, the appropriate ERP is invoked to attempt to correct the error. 
If the error is permanent, diagnostic messages are issued and 
installation recovery procedures should be initiated. AP-i does not 
attempt any recovery. 

The AP-i program resides in a core image library. It can be invoked 
via the job stream or the operator console. The ASSGN SYSOOO statement 
specifies the logical volume to be tested and the UPSI statement 
indicates the test to be performed. AP-i can operate only in virtual 
mode. 

SORT/MERGE PROGRAMS 

The DOS Sort/Merge 5743-SMi and DOS/VS Sort/Merge 5746-SM2 program 
products and the DOS Sort/Merge (360-SM-483) Type I program can he used 
for sorting and merging operations in DOS/VS. The DOS/VS Sort/Merge 
operates only under DOS/VS control and does not operate under DOS 
Version 4as do the other two sorts. The DOS/vS Sort/Merge provides 
facilities that are not supported by the other two sorts and is designed 
to provide better performance in virtual mode than these two sorts. The 
performance of the DOS/VS sort/Merge and the DOS Sort/Merge (5743-SMi) 
is approximately the same when they operate in real mode. The DOS/VS 
sort/Merge requires a minimum of 32K bytes if it operates in a real 
partition. The DOS Sort/Merge (5743-SMi) can operate in 10K. 

210 DOS/Virtual Storage Features Supplement 



The performance increase that can be achieved in virtual mode 
results from the use of private CCw translation by the DOS/vS Sort/Merge 
program. In order for the sort/merge program to do its own CCW 
translation, an associated real partition of at least 10K bytes must be 
defined for the virtual partition in which the sort/merge is operating. 
In addition, the DOS/vS supervisor being used must include support of 
the following macros: PFIX, PFREE, VIRTAD, REALAD, and EXCP with the 
REAL parameter. If any of these requirements are not met, the DOS/VS 
Sort/Merge will not perform CCW translation and this function is handled 
by the channel program translation routine of the channel scheduler as 
usual. 

The DOS/VS Sort/Merge 5746-SM2 program product provides the following 
facilities that are not available in the DOS Sort/Merge program product: 

• Support of 3340/3344 and 3350 (in 3330 Model 1 compatibility mode) 
Direct Access Storage as an input, output, and intermediate work 
file. Tape work files are not supported; however two different disk 
device types can be used for work files and a mixture of tape and 
disk devices is permitted for input to a sort or merge operation. 
Both the DOS/VS and the DOS sort/merge program products also 
2314/2319 disk storage, and 3330-series Models 1 and 2 disk storage 
for input, output, and intermediate work files. The DOS/Sort/Merge 
also support 2400- and 3400- series tape for work files and all work 
files must be of the same type. 

• Support of rotational position sensing for 3330-series Model 1 and 
2, 3340, 3344, and 3350 disk devices if RPS support is included in 
the DOS/vS supervisor being used. 

• Split cylinder input and output SAM files are supported. 

• Support of VSAM files as input to and output from sorting and 
merging operations. 

• An improved disk sorting technique is implemented that reduces work 
file space requirements and provides performance improvements for 
presequenced files. 

• Under certain conditions, sorting can be performed in processor 
storage, regardless of whether work files have been allocated. 

• Reentrant code is used in most of the program modules. These can 
therefore be stored in the SVA increase system performance. 

• subtasking of the program is allowed, that is, more than one sort 
program can be used concurrently in a partition. 

• The support required by the merge facility of the DOS/VS COBOL 
Compiler and Library Release 1 program product. A user-written 
routine can be incorporated in the DOS/VS sort/Merge that reads the 
input files that are to be merged. 

• Four new control statements that can be used to specify (1) 
selection of the records that are to be included in the sort or 
merge operation, (2) reformatting of input records such that only 
selected portions of each sort or merge input record are placed in 
the output record, (3) summary sorting, and (4) the user-defined 
collating sequence that is to be used. When summary sorting is 
requested, user-specified summary fields in records with equal 
control fields are added and the sums are placed in one of the 
records, which is called the summary record. The other records are 
deleted. 

DOS/Virtual Storage Features Supplement 211 



Except for support of 2311 Disk Storage for intermediate work files, 
the DOS/VS Sort/Merge provides the same facilities as the DOS Sort/Merge 
(5743-SM1) and is compatible with it. (The 2311 is supported only as an 
input and output device by the DOS/vS sort/Merge.) Control statements 
and user-written exit routines that are used with the DOS sort/Merge 
(5743-SM1) program can be used with the DOS/VS Sort/Merge program 
without modification except when they specify 2311 disk storage for 
intermediate work files. 

INTEGRATED EMULATORS 

The integrated emulator programs for DOS/VS Release 34 are not 
distributed with the DOS/VS system and must be ordered separately. 
DOS/VS supports integrated emulation of the same systems as DOS Version 
4: Model 20, 1401/1440/1460, and 1410/7010. All the integrated 
emulators can execute in virtual or real mode in DOS/VS. The integrated 
emulator programs that are provided for DOS/VS support the same 
functions as the emulator programs that are provided for DOS Version 4. 

In addition, the emulators for DOS/VS can use System/370 I/O devices 
that are supported in DOS/VS but not DOS Version 4. Specifically, the 
3340 Direct Access storage Facility and 3344 Disk Storage are supported 
by the Model 20, 1401/1440/1460, and 1410/7010 emulator programs for 
emulation of Model 20 or 1400-series disks. The 3203 and 5203 Printers 
are supported by the Model 20 and 1401/1440/1460 Emulator programs for 
emulation of Model 20 or 1400-series printers. The 3420 Magnetic Tape 
Unit Models 4, 6, and 8 at 6250-BPI, as well as 1'600-BPI, density are 
supported by the Model 20, 1401/1440/1460, and 1410/70~0 emulators as 
emulation devices. 

The functions supported by the integrated emulators are discussed in 
appropriate system library publications and in Section 40 of the 
following System/370 guides: 

• A Guide to the IBM System/370 MOdel 135 (GC20-1738) 

• A 
Guide to the IBM system/370 Model 138 (GC20-178S) 

• A 
Guide to the IBM System/370 Model 145 (GC20-1734) 

• A Guide to the IBM System/370 Model 148 (GC20-1784) 

• A Guide to the IBM System/370 Model 158 for System/360 Users (GC20-
1781) 

The m1n1mum virtual storage requirement for a 1401/1440/1460 or 
1410/7010 emulator program that operates under DOS/vS is slightly higher 
than the minimum required for these emulators when they operate under 
DOS Version 4. Listed below are the approximate minimum virtual storage 
requirements for 1400/1010 emulators operating in a DOS/VS environment. 
The minimum size of the partition required for emulation operations is 
the sum of the emulator size listed below, the storage size of the 
1400/7010 system being emulated, and the buffers used. 

Emulated Operations 

1401/1440/1460 unit record only 
1401/1440/1460 unit record and 

6 tapes 
1401/1440/1460 unit record, 6 tapes, 

4 disks 
1410/7010 unit record and 6 tapes 
1410/7010 unit record, 6 tapes, 4 disks 

Minimum Emulator Program Size 

20K 
26K 

30K 

26K 
36K 

212 DOS/Virtual storage Features Supplement 



One new facility is provided in DOS/VS for Model 20 emulator users. 
The Model 20-DOS/VS Disk Interchange program is offered as a transition 
aid. This program can be used to convert direct access files that are 
in Model 20 emulator format to System/370 DOS/VS format. The reverse 
can also be done as long as the Model 20 emulator format extents are 
initialized by a Model 20 job step running in emulation mode prior to 
the conversion run. Sequential, indexed sequential, and direct 
organization files can be converted. 

This program enables a file to be processed by Model 20 programs in 
emulation mode and by DOS/VS programs. It also provides the capability 
of converting Model 20 emulator format files to DOS/VS format files when 
an installation converts from Model 20 emulation operations to native 
System/370 mode operations. 

In addition, performance options are available in the Model 20 
emulator for DOS/VS. The read ahead option can be specified for 2501 
cards readers and/or tape units. This causes the emulator to use two 
buffers for I/O operations to tape and 2501 units instead of only one so 
that I/O operations can be overlapped with processing. To further 
improve performance, 1442 card punch and printer operations have been 
speeded up in the DOS/VS version of the Model 20 emulator. 

If the read ahead feature is specified for the 2501 card reader, 
column binary reading cannot be performed on the 2501 unless the read 
ahead option is cancelled for this execution of the Model 20 emulator. 
Also, any Model 20 program that permits correction of a card just read 
cannot be emulated when the read ahead option is active for 2501 
readers. 

When the read ahead option is specified for tape units, the device 
independence option cannot be included" in the generated Model 20 
emulator (or vice versa) and the checkpoint function sh~uld not be used. 

DOS/Virtual Storage Features Supplement 213 



80:45 ADVANCED FUNCTIONS-DOS/VS PROGRAM PRODUCT 

The Advanced Functions-DOS/VS program product provides the following: 

• Support of a maximum of seven, instead of five partitions 

• Dynamic partition balancing 

• Asynchronous operator communications 

• Faster linkage editing 

• Device independence for private source statement and relocatable 
libraries 

• DOS/VS-VM/370 Linkage facility 

The Advanced Functions program product requires a DOS/vS Release 34 
supervisor as a base. It is distributed in a private source statement 
library and a private relocatable library. Thus, the functions provided 
can be added to an existing DOS/VS syste.m (by link editing the 
relocatable modules desired to the system core image library) or 
included when a supervisor generation is performed to tailor a DOS/VS 
supervisor. 

All the facilities of the Advanced Function-DOS/VS program product 
can be included in a DCS/VS system. However, inclusion of the following 
facilities is optional: support of up to seven partitions, dynamic 
partition balancing, asynchronous operator communications, and the 
DOS/VS-VM/370 Linkage facility. A DOS/VS system with the Advanced 
Functions-DOS/VS program product installed must execute in a processor 
with a minimum of 96K. 

Details regarding the operation, installation, and storage 
requirements of the Advanced Functions-DOS/VS program product are 
contained in Advanced Function-DOS/VS, System Information, SC33-6041. 

SUPPORT OF UP TO SEVEN PARTITIONS 

For a DOS/VS system that is resident on a 2314/2319, 3330-series, or 
3350 volume, a maximum of seven partitions can be supported. When the 
system residence volume is a 3340 or 3344, a maximum of six partitions 
are supported. The additional partitions are F5 and F6 and can be 
utilized in the same manner as the other foreground partitions. When 
support of these additional partitions is included in a DOS/VS 
supervisor, POWER/VS support can be used to handle data transcription 
and job scheduling for the additional partitions. 

DYNAMIC PARTITION BALANCING 

Dynamic partition balancing provides for the dispatching of a set of 
user-specified partitions according to their operating characteristics, 
more CPU-oriented or more I/O-oriented, instead of according to a 
dispatching priority aSSigned to the partitions. The two or more 
partitions that are to be dispatched according to dynamic partition 
balancing rules can be specified at system generation or at any time 
during system operation using the PRTY command. The PRTY specification 
overrides any system generation or any previous PRTY command 
specification. 

The PRTY command specifies those partitions that are to be 
dynamically dispatched and the dispatching priority of this group 
relative to the partitions that are not in the dynamically dispatched 

214 DOS/Virtual Storage Features Supplement 



group. The CPU utilization of each partition in the dynamically 
dispatched group is monitored each time it is dispatched. The 
partitions with higher CPU utilization are dispatched after partitions 
with lower CPU' utilization. Since CPU utilization is constantly 
monitored, the dispatching priorities of the partitions in the 
dynamically dispatched group vary as the execution characteristics of 
the partitions vary. 

Dynamic partition balancing can be utilized to attempt to balance CPU 
utilization among partitions whose operating characteristics are 
unknown or vary widely. This facility can be used to prevent one or 
more cPU-oriented programs that are executing in high priority 
partitions from monopolizing CPU utilization. The clock comparator and 
CPU timer are required for dynamic partition balancing (an optional 
feature only for Models 135 and 145). 

ASYNCHRONOUS OPERATOR COMMUNICATIONS 

When the asynchronous operator communications facility is installed, 
the operator need not respond to messages that require a response in the 
sequence in which the messages are written to the console and can enter 
commands in between responses to messages. In addition, when one 
partition has outstanding a message that requires a response, DOS/VS 
does not prevent other partitions from issuing a message that requires a 
response. Each task in the system can have one message requiring a 
response outstanding at a time. 

TO support asynchronous operator communications, a reply identifier 
is assigned to each message that requires a response and written to the 
console along with the message. When entering a reply, the operator 
uses this reply identifier to indicate the message to which he is 
responding. The REPLID command is provided to enable the operator to 
request a rewriting of the outstanding messages to the console. 

Asynchronous operator communications support is applicable to all the 
console types supported by DOS/VS. In addition, this support enables a 
Model 158 display console to be utilized in display mode (that is, as a 
3277 display). However, light pen suppor~ and support of the 3213 
printer as a hard copy printer are not provided for a Model 158 display 
console operating in display mode. 

Asynchronous operator communication support eliminates the need for 
an operator to respond to a message before another command is issued as 
well as the delay partitions can experience waiting for the operator to 
reply to a message. 

FASTER LINKAGE EDITING 

The linkage editor provided by the Advanced Functions-DOS/VS program 
product reads multiple directory records per read request (EXCP macro) 
when searching for a specific entry (instead of reading one directory 
record at a time) and uses two buffers instead of one to overlap 
processing and reading. This improved directory lookup implementation 
can reduce linkage editing time. The amount of reduction experienced 
depends on the number of relocatable modules that are to be incl~ded in 
the resulting phase, the size of the relocatable library, and how far 
the required directory entries are from the beginning of the directory. 

DOS/Virtual storage Features supplement 215 



DEVICE INDEPENDENCE FOR PRIVATE SOURCE STATEMENT AND RELOCATABLE 
LIBRARIES 

Private source statement and relocatable libraries for a DOS/VS 
system with Advanced Functions-DOS/VS installed can be placed on direct 
access device types that are different from the types used for the 
system source statement and relocatable libraries. This flexibility 
eliminates the need to copy existing source statement and relocatable 
libraries when the device type of the system source statement and 
relocatable libraries is changed and enables private source statement 
and relocatable libraries to be portable from one DOS/VS installation to 
another (as long as the required direct access device types are 
present). 

DOS/VS-VM/370 LINKAGE FACILITY 

This linkage facility is designed to improve the performance of 
DOS/vS system when it executes in a virtual machine by reducing CPU 
utilization. It also provides operational enhancements. The following 
are supported by the DOS/VS-VM/370 Linkage facility: 

• Nonpaged mode of operation for the DOS/VS system. By eliminating 
the paging that normally is performed by DOS/vS, the need for a 
paging device is eliminated and the execution of code in DOS/vS that 
is redundant in a VM/370 environment is avoided. The DOS/VS 
supervisor functions that are completely or partially avoided are 
paging, load levelling, page fixing and freeing, handling of 
supervisor calls, CCW translation, and seek separation. 

• Pseudo Page Fault Handling. When this capability is enabled via the 
appropriate VM/370 SET command, CP does not place the entire DOS/VS 
virtual machine in a wait state when a page fault occurs for an 
executing task. Instead, CP initiates the required page-in 
operation and returns control to DOS/VS to enable it to dispatch the 
next ready task. This capability will be of the most benefit to 
DOS/VS systems with multiple operating partitions and those that use 
multitasking. 

• BTAM Dynamic CCW Modification. Thls capability requces the CP 
processing required to handle BTAM autopoll channel programs. The 
PCI interruption and processing that CP otherwise utilizes to test 
for the modification of virtual BTAM autopoll channel programs is 
eliminated 

• CP CLOSE Support. This support provides for the automatic closing 
of spooled printer and punch files created by POWER/VS at the end of 
each POWER/VS job. For Assembler Language programs that do not 
execute under POWER/VS,the CPCLOSE macro can be used to close 
spooled files. This support eliminates the need for the operator to 
close spool files. 

• Improved Job Accounting. TO improve the accuracy and repeatability 
of DOS/VS job accounting in a virtual machine, CP updates the 
appropriate timing facility before DOS/VS is given control to 
perform job accounting. CP also gains control immediately after a 
timing facility is changed by DOS/VS so that CP can record the 
change. This capability of the VM/370 Linkage facility is not 
required for a Model 135 Model 3, 138, 145 Model 3, or 148, as it is 
automatically provided for these models. 

Note that a DOS/VS supervisor with the DOS/VS-VM/370 Linkage 
facility installed cannot execute in a real machine. It must 
execute in a virtual machine under VM/370 control. In addition, the 
shared virtual area must be created after each IPL of a DOS/VS 

Dos/virtual Storage Features Supplement 



system with the VM/370 linkage facility (an existing copy of the 
shared virtual area cannot be utilized). VM/370 Release 4 (or 
later) is required to utilize the DOS/VS-VM/370 Linkage facility. 

DOS/Virtual Storage Features Supplement 217 



aO:50 DOS VERSION ~ TO DOS/VS TRANSITION 

Since DOS/VS is designed to be upward-compatible with DOS Version 4, 
conversion from DOS Version 4 to DOS/VS should involve minimal 
conversion effort. The amount of work required to install DOS/VS 
depends to a degree on the new optional DOS/VS features used (relocating 
loader, cataloged procedures, for example). Transition from a one­
partition to a multiprogramming environment requires additional system 
planning, as would be the case regardless of the DOS version being used. 

Installation personnel should become familiar with the additional 
facilities and new environment offered by DOS/vS. system programmers 
must become acquainted with the new interfaces to DOS/VS (PFIX/PFREE and 
GETVIS/FREEVIS and other new mac~os, for example) that are to be used. 
Operators must learn how to use the required new operator commands and 
how to respond to new system messages, such as those related to paging 
operations and real storage assignment. 

Application programmers should learn how to use program structuring 
techniques that are designed to enhance program performance in a paged 
environment. system designers must become familiar with the new factors 
that affect system performance in a DOS/VS environment so that the 
system can be designed and operated in a manner that will achieve the 
results desired. 

Once the DOS/VS environment to be supported has heen defined~ a 
system generation procedure similar to that required for a DOS Version 4 
supervisor can be performed to generate the desired DOS/VS supervisor. 
The system generation macros for DOS Version 4 and DOS/VS are the same 
for like functions, with a few exceptions. Additional system generation 
macros and parameters are provided for DOS/VS to describe its new 
features. 

The DOS/VS distribution system is distributed on one or more disk 
packs or one magnetic tape reel for restoration to one or more disk 
volumes. The distribution volume contains the DOS/VS system in a SYSRES 
file that contains a core image, relocatable, source, and procedure 
library. On a tape reel, the SYSRES file is preceded by an initialize 
disk and a restore tape to disk program that are used to restore the 
SYSRES file to disk. 

Significant changes to the system generation procedure have been made 
for DOS/VS that reduce considerably the time required to perform an 
initial generation or release-to-release generations. Improvements to 
the DOS/VS system generation procedure (not available for DOS Version 4) 
are the following: 

• A system generation (including the restore function) can be 
performed in any batch partition COncurrently with normal production 
processing in other partitions in a multiprogramming environment. 
In an installation with an operational DOS/vS system, this 
eliminates the need for dedicating system time to the system 
generation function. Production work need not be interrupted until 
the new system is to be IPLed. 

\ 

• Two device-independent backup/restore utility programs are provided. 
They enable system and/or private libraries to be dumped to tape 
(with automatic condensing being performed) and restored to disk. 
Dumped libraries can be restored to a disk device type different 
from that of the disk from which they were dumped and library size 
can be increased or decreased during the restore. 

• All IBM-supplied system components are pre-linked in the system core 
image library to eliminate this step during system generation. New 

na DOS/virtual Storage Features Supplement 



deletion procedures are provided to delete unwanted system 
components. 

• Seven preassembled supervisors, named $$A$SUPO through $$A$SUP6, are 
supplied in the core image library. Each contains relocating loader 
support. If one of these supervisors is suitable for the 
installation, the supervisor generation procedure (system generation 
macro preparation and generation process) is eliminated. The source 
statement library contains the source code for each of the supplied 
supervisors in the A.sublibrary. The MAINT librarian program can be 
used to tailor one of these supervisors when necessary. A 
supervisor generation can then be performed to obtain a tailored 
supervisor. 

• The distribution system contains preassembled I/O modules for the 
RPG II and PL/I Optimizer Compiler language translators and 
preassembled UCS buffer load modules for 1403-N1 train arrangements 
in the relocatable library. 

• A new function is provided that performs an automatic merge of the 
existing system and private libraries into the new system and 
private libraries. The directories of the existing system and 
private libraries are compared with the directories of the new 
system and private libraries. Modules in the old directories that 
have no match in the new directories are automatically merged into 
the new library. . 

This function enables user-written programs and program products to 
be merged into the new system without the necessity of user 
preparation of the required control cards and ensures that back­
level IBM-supplied system components are not accidentally included 
in the new system. 

• The distribution system is shipped with PTFS preapplied, eliminating 
the necessity to apply them at the installation. 

A new feature of the DOS/VS generation process is the installation 
verification procedure (IVP), which is deSigned to be performed after 
the DOS/VS supervisor is generated. The verification procedure inVOlves 
an IVP generation step and an IVP execution step. During the IVP 
generation step, a tailored IVP job stream is produced based on the 
user-supplied input that describes the system environment the generated 
DOS/VS supervisor is deSigned to support. The generated IVP job stream 
is then executed under control of the generated DOS/VS supervisor. 

The function of the IVP is to exercise the generated SCP system 
components to the degree that general operation of the DOS/VS operating 
system and support of the system hardware configuration specified is 
assured. optional SCP features that are tested by IVP if present in the 
generated supervisor are procedure cataloging, emulator programs (all), 
OLTEP, and POWER/vS,. 

The first time VTAM is included in the generated supervisor, the 
network control programs to be used in the 3704/3705 Communications 
Controllers supported by VTAM must be generated and placed in a core 
image library. If POWER/VS is to be used for the first time and the 
IBM-supplied generated POWER/VS initialization module is not suitable, a 
POWER/VS generation must be performed. A generation procedure must also 
be performed when any of the industry systems (3600, 3650, 3660, or 
3790) are to be used. The Subsystem Support Services utility is 
generated concurrent with the generation of an industry system. 

All DOS program products and Type I and Type II components that are 
to be used with the generated DOS/vS SCP must be added to the DOS/VB 
operating system after its generation. 

DOS/Virtual storage Features Supplement .219 



The time required to obtain an operational DOS/VS system can be 
reduced by utilizing the DOS/VS System Installation Productivity Option 
(IPO) instead of performing the system generation procedure. DOS/VS 
System IPO can be used to install Release 34, the Advanced Functions­
DOS/VS program product, certain Systems Network Architecture (SNA) 
support (such as NCP/VS, 3190 Host Support Service, and 3600 Host 
SUpport Service), certain data base/data communications support (DL/I 
DOS/VS and CICS/DOS/vS, for example), and certain other language 
translator, sort, and utility program products. 

Existing user-written programs (phases) that operate under DOS 
Version 4 can be used without modification in a DOS/VS environment 
unless they do any of the following: 

• Reference permanently aSSigned locations in lower real storage whose 
contents vary depending on whether BC or EC mode is specified. 

• Issue the LPSW or SSM instruction or directly reference fields in 
old or new PSW locations (such as the system mask field and the 
interruption code field) whose function or location is affected by 
which mode, BC or EC, is specified. 

• Depend on an interface to the DOS Version 4 supervisor (code, 
control blocks, and areas) that is release-dependent. 

• Build user standard header or trailer labels in the supervisor area 
prior to issuing the LBRET macro. The DOS/VS supervisor is always 
store-protected so a problem program running under a partition 
protect key cannot modify the supervisor area. 

• Modify an active channel program with data being read (channel 
contains self-modifying CCW's) or by executing instructions, if the 
program is to run in virtual mode. program modification is not 
required if these programs operate in real mode in DOS/VS. Such 
programs do not execute correctly in virtual mode because the 
modification affects the channel program with virtual storage 
addresses rather than the translated channel program that is 
actually controlling the I/O operation. 

• Use the EXCP macro and user-written I/O appendages if the program is 
to operate in virtual mode. The program must ensure that the I/O 
appendage routine and all areas it references are fixed before the 
initiation of each I/O operation that uses the appendage, so that a 
disabled page fault cannot occur in the appendage. Such 
modification is not required if the program is to execute in real 
mode. 

• Access mode-dependent fields in the PSW in the save area of any 
other task in the partition in which the program is executing. As 
discussed in Section 80:25, the PSW is stored in EC instead of Be 
mode format. 

• Access the system mask, mode bits, or protection key field in the 
PSW save area for a STXIT routine. As discussed in Section 80:25, 
these fields are not stored in the Be mode PSW save area. 

• Directly access the interval timer in location 80 to determine the 
amount of time remaining in an established interval. Such programs 
must be modified to use the TTIMER macro. 

The following steps must also be taken (if they apply to the existing 
DOS Version 4 installation): 

• Existing BTAM programs must use the new BTMOD logic module provided 
in DOS/VS, which is modified to operate in a paging environment. 

220 DOS/Virtual Storage Features Supplement 



For source programs that contain BTMOD, reassembly and relink­
editing of each program is required. Each program that incorporates 
BTMOD during link-editing must be relink-edited after the required 
BTMOD is reassembled. 

• Existing QTAM message control programs must be reassembled and 
relink-edited using DOS/VS. QTAM message processing programs need 
not be reassembled. 

• If existing Assembler Language programs that invoke user-written 
macros are to be reassembled using the new DOS/vS Assembler, the 
macros must be placed in the COpy sublibrary and COpy statements for 
the user-written macros that are referenced in a program must be 
included at the beginning of the existing source programs. 
Alternatively, existing user-written Assembler macros can be 
converted to preedited format and placed in the macro sublibrary 
using the DOS/VS Assembler. No source ,program modification is 
required when the second approach is used. 

• Programs that issue the SET STORAGE KEY (SSK) or the INSERT STORAGE 
KEY (ISK) instruction should be inspected to determine whether 
implementation of a seven-bit instead of a five-bit protect key 
affects the processing being performed. It must be remembered that 
the SSK instruction causes the refer~nce and change bits in the 
storage protect key to be set also. Alteration of these bits, 
particularly the change bit, can impair system integrity. Note also 
that these instructions use real and not virtual storage addresses. 

• User-written programs that handle I/O operations for unsupported I/O 
device types must be modified if they are to operate in virtual mode 
in DOS/VS. Channel program translation and page fixing must be done 
by the user and the REAL parameter must be added to the EXCP macros 
that request I/O'operations on the unsupported device. 

• If POWER "is currently being used, the transition steps outlined in 
the POWER/VS discussion in Section 80:40 must be taken to convert to 
POWER/VS. 

• Integrated emulator programs that were generated to operate under 
DOS Version 4 on a Model 135, 145 or 155 cannot operate under a 
DOS/VS supervisor. The required emulator program(s) must be 
regenerated under DOS/VS control on a Model 135, 145, or 155 11/158, 
respectively. Modification of existing emulator generation control 
cards is not required. 

The job control statements for existing problem programs do not 
require alteration, except for the EXEC statements for programs that 
must operate in real mode. The REAL parameter must be added to the EXEC 
statements of real mode programs. Optionally, the SIZE parameter can be 
added as desired. If I/O device type changes are being made, job 
control statements must be modified as is required when such changes are 
made in any DOS environment. Similarly, if more partitions are to be 
operative in the DOS/VSenvironmentthan in the DOS Version 4 
environment, new job streams must be created. 

If the cataloged procedures facility is to be used in the DOS/vS 
environment, the procedure library must be built. Job control 
statements in existing'job streams for job steps that are to be 
cataloged can be altered as required (to use the modify capability, for 
example) and cataloged in the procedure library. Existing job streams 
must then be changed as necessary to inVOke cataloged procedures. 

When the relocating loader is to be used in a DOS/VS environment, all 
existing programs that are to be relocatable must be relink-edited (or 
reassembled and relink-edited if object modules are not available) and 

DOS/Virtual storage Features Supplement 221 



placed in the appropriate core image library. Linkage editor control 
statements do not have to be modified to request relocatability if the 
default for the linkage editor ·is to produce relocatable phases when the 
beginning address specified in the PHASE statement permits. If there 
are any programs that specify a beginning address that is relocatable 
but that are not to be made relocatable, the NOREL parameter must be 
added to the ACTION statement for these prog.rams before they are 
reassembled. 

Existing absolute and self-relocating programs that are to remain 
nonrelocatable need not be relink-edited. However, if a self-relocating 
program is to be made relocatable, all self-relocating code must be 
removed from the program and it must be reassembled. A relocatable 
beginning address must be specified on the PHASE statement before the 
new object module is link-edited. 

Files used by existing DOS Ve~sion 4 programs. can be used without 
alteration in DOS/VS, assuming device type or access method changes are 
not made. If VSAM is to be used to replace ISAM, the affected files 
must be converted from ISAM to VSAM format, as discussed in Section 
80:30, and appropriate changes to existing ISAM job control statements 
must be made. 

If desired, the structure of existing user-written DOS Version 4 
programs can be modified to minimize the occurrence of page faults and 
the use of real storage (as discussed in Section 15:15 or 30:15 of the 
base publication of which this supplement is a part). Such modification 
may improve system performance but is not required to enable existing 
programs (phases) to operate correctly in a DOS/VS environment. 

Private core image libraries used with a DOS Version 3 or 4 system 
cannot be used with DOS/VS and must be converted to the new core image 
library format implemented in DOS/VS. 

When CORGZ is used to create a new SYSRES file in DOS/VS, the ALLOC 
statement must be used1 it is no longer optional. If any user-written 
programs directly access a core image library directory or library 
blocks, they must be modified as required by the new core image library 
format. 

If phases in addition to thOSe specified in the IBM-supplied 
cataloged procedures are to be made resident in the SVA, control 
statements must be prepared for these phases and they should be added to 
the appropriate cataloged procedure. All user-written phases that are 
to be made resident in the SVA must be marked SVA-eligible in their 
PHASE statements and cataloged in the system core image library. This 
requires at least a link edit of these phases. 

If the' generic I/O assignment facility is to be used, existing ASSGN 
statements must be altered as required. Use of this facility may also 
necessitate changing of the volume serial numbers of some volumes to 
ensure unique volume serials within the installation. 

programs that are to use the local directory list facility must be 
modified to include the GENL macro, and FETCH/LOAD statements must be 
altered to specify the resident directory list(s). Reassembly and 
relink-editing of these programs is required. 

When RPS support is to be utilized, RPS versions of the required disk 
logic modules must be generated and placed in the system core image 
library. Any user-written programs that access fields contained in the 
DTF extension when RPS is used must be modified. A system GETVIS area 
must be defined and the SVA must be made large enough to contain the RPS 
logic modules to be used in addition to any existing contents. 

222 DOS/Virtual Storage Features Supplement 



For transition from a System/360 DOS Version 3 environment to a 
System/370 DOS/VS environment, the considerations discussed in section 
60 of one of the following publications apply in addition to the 
preceding discussion: 

• A Guide to the IBM System/370 Model 135 (GC20-1738) 

• A Guide to the IBM System/370 Model 138 (GC20-1785) 

• A Guide to the IBM System/370 Model 145 (GC20-1734) 

• A Guide to the IBM System/370 Model 148 (GC20-1784) 

• A Guide to the IBM System/370 Model 158 for system/360 Users (GC20-
1781) 

DOS/Virtual storage Features Supplement 223 



80:55 SUMMARY OF ADVANTAGES 

As a growth system for DOS Version 4 users, DOS/VS offers many new 
facilities. Some are designed to enhance the usability of 
multiprogramming.in a DOS environment by eliminating some of the job 
scheduling preplanning requi~ed in DOS Version 4 and by providing 
operational enhancements. Other new facilities can improve real storage 
utilization or are designed to improve supervisor performance. others 
provide new functions not available to DOS Version 4 users. 

A DOS/VS operating system can be designed to be more responsive to a 
changing daily workload than a DOS Version 4 operating system, and 
DOS/VS supports an environment in which design changes can be made more 
easily to accommodate maintenance changes and the addition of new 
functions or applications. 

While DOS/VS supports many new features, including functions 
exclusive to System/310 (not provided in System/360), such as Ee mode 
and dynamic address translation, DOS/VS remains upward-compatible with 
DOS Version 4. Supervisor modifications that are required to handle new 
features are, with a few exceptions, transparent to the user so that 
operators and programmers interface with DOS/vS using basically the same 
operator commands, job control statements, files, and programs as they 
use in a DOS Version 4 environment. 

The sinqle most siqnificant new feature of DOS/VS is its sunoort of a 
virtual storage environment. The general advantages that can ~esult 
from using a virtual storage operating system are discussed in the base 
publication of which this supplement is a part (either in Section 15:05 
or 30:05). DOS/VS offers additional specific advantages over DOS 
Version 4, some of which also result from the implementation of virtual 
storage. These are summarized below. 

EXPANDED, MORE FLEXIBLE MULTIPROGRAMMING 

• Two additional batched foreground partitions are supported for all 
functions provided for the two batched foreground partitions in a 
DOS Version 4 environment. When the Advanced Functions-DOS/VS 
program product is installed, four more partitions are supported 
~han in DOS Verbion 4. 

• A maximum of 15 tasks, instead of 12, is supported in a multitasking 
environment. 

• The interval timing facility can be used concurrently by all 
partitions and tasks instead of by only one at a time, enabling 
concurrent operation of programs that require the interval timing 
facility. 

• The relocating loader enables a relocatable program to be loaded at 
any partition starting address, as determined at load time, without 
the necessity of maintaining more than one version of the program in 
executable format or reI ink-editing the program to relocate it. 

• All virtual partitions can be defined of equal size and large enough 
to contain the largest existing application that is to execute in 
any availabie partition. The dispatching priority of partitions can 
be changed during system operations if required. 

• I/O devices can be dynamically selected by the job control program 
for allocation to job steps at initiation time. This facility can 
eliminate much of the I/O device assignment preplanning required in 
a DOS Version 4 environment and provides more flexibility in job 

224 DOS/Virtual storage Features Supplement 



scheduling by reducing requirements for partition-dedicated I/O 
devices. 

OPERATIONAL ENHANCEMENTS 

• The SPI mode of program initiation is eliminated~ however, real 
partitions still can he as small as 2K bytes. 

• The use of cataloged procedures can minimize the amount of card 
handling the operator is required to do for each job stream and can 
reduce the maintenance required for frequently used job control. 

• High-priority jobs can be handled more easily. One partition can be 
defined to handle only high-priority jobs. The dispatching priority 
of this partition can be changed when the high-priority job step is 
initiated, if necessary, to reflect the operational characteristics 
of the program. While this partition requires dedicated virtual 
storage (and, therefore, external page storage), real storage is 
required for the high-priority partition only when a job step is 
active in it. 

• Virtual storage can be defined and organized to relieve the operator 
of some real storage management functions (such as changing 
partition sizes for the purpose of reallocating real storage during 
system operation). 

• The relocating loader significantly reduces the number of operations 
that must be performed when supervisor size is increased by the 
inclusion of new function support, a new release of DOS/VS is 
installed that requires a larger supervisor, or partition starting 
addresses change. 

• The generic I/O assignment capability enables device assignment to 
be partition-independent and labeled tape and disk volumes to be 
premounted on available drives prior to job step initiation. 

• Multiple supervisors can be placed on one system residence volume, 
avoiding the need to have multiple system residence volumes and 
volume changing to change supervisors. 

• POWER/VS requires less operator involvement than DOS/VS POWER. 

• The system generation procedure has been simplified and can be 
performed in a partition concurrent with normal system operations 
instead of only ina standalone environment. 

• DOS/Vq System IPO can be used to further simplify DOS/VS release 
insta1.lation time. 

• Display mode support for the 3277 and the display consoles for 
supported processors provides faster communication from the system 
to the operator. 

• The asynchronous operator communications facility of the Advanced 
Functions-DOS/VS program product gives the operator flexibility in 
responding to messages. 

• Private source statement and relocatable libraries can be placed on 
device types different from system source statement and relocatable 
libraries when Advanced Functions-DOS/VS is installed to ease the 
installation of new direct access device types and aid portability. 

• Installation of 3330 Model 11 and 3350 devices operating;1n.a native 
mode is eased by the dynamic link support that eliminates the need 

DOS/Virtual Storage Features Supplement 225 



to modify and reassemble existing programs to specify the new device 
type 

IMPROVED UTILIZATION OF REAL STORAGE 

• Inefficient use of real storage caused by unused storage within 
defined partition sizes and/or residence of inactive portions of the 
program can be significantly reduced. Unused virtual storage in a 
virtual partition does not have real storage assigned, and real 
storage allocated to inactive pages of a virtual mode program is 
released and reallocated to active pages in the system when 
necessary. The SIZE parameter can be specified for real mode 
programs to free real storage defined for the real partition that 
will not be used by the real mode program. 

• Dynamic real storage management is provided for all programs that 
operate in virtual mode in a DOS/VS environment, regardless of the 
language in which they are written. Limited real storage management 
in a nonplanned overlay program can be handled during program 
execution only by an Assembler Language programmer in DOS Version 4 
(use of FETCH/LOAD macros, for example). 

PERFORMANCE ENHANCEMENTS 

• Concurrent operation of additional partitions can increase system 
throughput for larger system configurations in which required 
resources (such as CPU time, channel time, real storage, etc.) are 
available but unutilized in a three-partition nonvirtual storage 
environment. 

• The availability of five (or seven) partitions, instead of a maximum 
of three, can enable POWER/VS to be used in configurations in which 
support of only. three partitions precludes use of POWER/VS. 
POWER/VS can increase system throughput by operating unit record I/O 
devices near rated speeds and overlapping peripheral unit record I/O 
operations with job step processing. ' 

• Faster program fetching results fro~ the new organization of the 
core image library that enables the location of a phase in a core 
image library to be determined more quickly (resident second level 
directories) or the directory entry for a phase to be located more 
quickly (resident system and local directory lists). 

• Use of the shared virtual area for frequently used routines can 
reduce the total number of page faults encountered. 

• The new preedited format of Assembler Language macros enables 
Assembler Language programs to be assembled faster. 

• Temporary halting of task dispatching during job control processing 
is minimized to reduce the amount of serialized system processing 
that occurs in a multiprogramming environment. 

• Use of block multiplexing and rotational position sensing can 
increase system throughput by better utilizing available channel 
time change as a result of the reorganization that takes place • 

• • The use of VSAM instead of ISAM organization can improve processing 
performance for files with a large number of additions. 

• The newer faster I/O devices (such as 3344 and 3350 direct access 
devices and the 3800 Printing Subsystem) are supported. 

226 DOS/Virtual Storage Features Supplement 

, 



• The time to perform a system generation has been significantly 
reduced by changes to the generation procedure and the support of 
DOS/VS System IPO. 

• Dynamic partition balancing support in Advanced Functions-DOS/VS can 
improve throughput for installations with jobs of widely varying or 
unknown operating characteristics. 

• The DOS/VS-VM/370 Linkage facility in Advanced Functions-DOS/VS is 
designed to improve the performance of DOS/VS when it executes in a 
virtual machine in a VM/370 environment. 

• The linkage editor provided by Advanced Functions-DOS/VS is designed 
to reduce linkage editing through an improved directory search 
technique. 

DOS/Virtual Storage Features Supplement 227 



INDEX (Section 80) 

access methods 
BTAM 81 
DAM 80 
ISAM 80 
QTAM 81 
SAM 80 
VSAM 87 
VTAM 81 

ACTION linkage editor control statement 54,204 
advantages summary 224 
Advanced Functions-DOS/VS program product 

additional partition support 214 
asynchronous operator communications 215 
device independence for private libraries 216 
DOS/VS-VM/370 Linkage facility 216 
dynamic partition balancing 214 
faster linkage editing 215 

ALLOC command and macro 12 
ALLOCR command and macro 18 
Assembler Language 132 
ASSGN command and statement 46 
assigruuents for system logical units 9 
attention'commands 49 
AUTO option of SIZE parameter 13,19 

background partition 10,11,17 
BJF mode 11 
block multiplexing 82 
BTAM 81 
buffer loading for printers 29 

cardless systems 2 
CAT command 26 
cataloged procedures 42 

contents 43 
example 45 
IBM-supplied 42 
modification 44 
partition-related 44 
procedure library 42 

CDLOAD macro 58 
channel check handler 127 
channel program translation 

channel scheduler support 85 
macros for user use 87 

CHAP macro 55 
checkpoint/restart 21 
clock comparator 57 
commands 

attention 49 
IPL 26 
job control 48 

communication region 
changes 52 
partition-related 52 
system-related 52 

consoles 
display mode 38 
hardcopy file 39 

228 DOS/Virtual storage Features Supplement 



hardcopy printer 39 
Model 115/125 console display emulation mode 38 
printer-keyboard mode 39 
types supported 8,36 

control program components 31 
copy blocks 86 
core image library 

organization 32 
private 33 
system 33 

CPU timer 57 
CPU's supported by DOS/VS 2 
cross-partition event control 58 

DAM 80 
data interchange 

DOS and as 80 
Model 20 and DOS/VS 213 

data management 
access methods 80 
block multiplexer channel support 82 
channel program translation and page fixing 85 
new features supported 80 
new I/O devices supported, 81 
rotational position sensing support 83 
VSAM 87 

deactivation, partition 76 
debugging aids 

DUMP macro 127 
JDUMP macro 127 
PDAIDS 127 
SDAIDS 128 
SYSVIS dump 128 

disabled page faults 51 
display operator console support 36 
DOSVSDMP program 128 
DOS/VS 

components 31 
minimum hardware configuration 2 
systems supported 2 ' 
transition from DOS Version 4 218 

DPD command 26 
DUMP macro 127 
dynamic address translation 2,12,17,18 
dynamic link support for 3350 and 3330 Model 11 devices 85 

emulator programs 212 
EXCP macro 85 
external page storage 

direct access devices supported 23 
initialization 28 
organization 24 
page capacity by device type 24 

fast CCW translation 68,72,86 
FCEPGOUT macro 75 
features 

optional 5 
standard 4 

fetch protection 21 
fetch table in supervisor 53 
foreground partitions 

in real address area 17 
in virtual address area 11-12 
restrictions 10 

DOS/Virtual Storage Features Supplement 229 



scheduling 11 
forms control buffer loading 29 
FREEREAL requests 12 
FREEVIS macro 51 

generic I/O device assignment 46 
GENL macro 14 
GETIME macro 53 
GETREAL requests 12 
GETVIS area 

partition 51 
system 14 

GETVIS macro 51 

high-speed standalone dump 128 
hold queue 62 

IEBlMAGE utility 206 
indirect data address list 86 
initialization, system 25 
I/O devices supported 1 
interval timer 56 
IPL communication device list 25 
IPL procedure 

buffer loading for printers 29 
operator commands 26 
supervisor initialization 21 
C!,,'r'\O ....... ,..; C!,.....,. OOc' .0.,..+": "".. ') &... 
~~~~~.~~~~ ~~~~~~~~u ~v 

$SYSOPEN exit routine execution after IPL 29
ISAM 80
installation verification procedure 219

JDUMP macro 121
job control

commands 48
exit facility 41
n~w statements and parameters 40
program 40

label cylinder organization 36-31
language translators supported 31
LFCB command and macro 29
locating a directory entry during program loading 34-35
librarian 205
linkage editor 204
local directory lists 14
LUCB command 29

machine check analysis and recording 127
main page pool 18
minimum system configuration 2
models supported 2
modifier statements, cataloged procedures 44
multiple timer support 56
multitasking 55

nonrelocatable phases 54
NOREL parameter on the ACTION statement 54
NPARTS parameter 10

OLTEP 121
operator commands 48
operator consoles 8,36
optional features 5
OVEND statement 44

230 DOS/Virtual Storage Features SUpplement

page data set
device types supported 23
initialization 28
organization 24

page fault
disabled 51
processing 65

page fault handling overlap 56
page fixing 67,70
page frame table 59-61
page frame table appendage 60
page I/O routine 65
page management

FCEPGOUT macro 75
functions 59
general operation 59
GETREAL/FREEREAL requests 72
hold queue 62
page fault processing 65
page frame table 59-61
page frame table appendage 60
page I/O routine 65
page replacement algorithm 61
PAGEIN macro 76
PFTE queues 62
PFIX/PFREE macros 67
RELPAG macro 75
selection pool 62
TFIx/TFREE requests 70

page pool
in real storage 22
in virtual storage 18

page replacement algorithm 61
page selection routine 63
page tables

initialization 28
location 27
modification by job control program 41

page translation exception 50
PAGEIN macro 76
PART DUMP option 127
partition-related cataloged procedures 44
partitions

deactivation/reactiviation 76
number supported 10
priority 11
real 17
virtual 11

PBDY parameter on a PHASE statement 54,205
PDAIDS 127
PDZAP program 206
permanent fixing 67
PFIX macro 67
PFREE macro 68
PFTE queues 62
POWER for DOS Versions 3 and 4 132
POWER for DOS/VS 132
POWER/VS

account file 147
accounting facilities 173
advantages 190
AUTOSTART 147
buffers 145
commands

DOS/Virtual Storage Features Supplement 231

non-RJE 175
RJE 185

comparison with DOS/VS POWER 194
compatibility with DOS/VS POWER 201
cross partition communication 173
tTL statement 142
data file 144
DATA statement 143
DBLK generation macro 144
devices supported 157
diskette support 159
disposition attributes 138
dummy assignments 150
dummy devices 150
execution processors

list 165
punch 165
read 162

EOJ statement 142
functions 132,134
general operation 133
generation 133,190
initiation 147
input classes 135
input streams 158
intermediate storage 143
;ob classes 135,137
Job definition 141
job entry control language 135,140
job logging 163
job number 158
job priority 135,137
job queuing 137
job scheduling 135,137
job separation 170
JOB statement 141
list queue 136
list tasks 168
LST statement 142
operator commands

non-RJE 175
RJE 185

operator messages 188
output classes 137
output limiting 167
output segmentation 166
partitions controlled by 134
priority 135,137,158
PUN statement 143
punch queue 137
punch tasks 168
queue file 136,145
RDR statement 143
read tasks 156
reader-only partition 149,152
reader queue 136,137
real storage requirements 134,190
remote job entry

functions supported 179
tasks 155,181,184
terminal commands 185
terminals supported 158

RJE,BSC support 180
RJE,SNA support 183
RJE tasks 155

232 DOS/Virtual Storage Features Supplement

SEGMENT macro 167
SLI statement 143
source library inclusion facility 158,164
spooling, definition 133
tasks 154
termination 149
track groups 144
versions 133
virtual storage requirements 188
warm start 148
writer-only partition 133,149,152,164
writer tasks 168

PRINTLOG utility program 39
private core image libraries 33
private second level directories 33
problem determination aids 127
procedure library 42
program event recording 128
program fetch 55
program loading

real mode programs 55
search sequence for a directory entry 34
virtual mode programs 54

programmer logical units 3
PRTY

command 26
parameter 11

QTAM 81
QSETPRT macro 29

reactivation, partition 78
real address area 16
real mode

program operation in 18
programs that must operate in 19

REAL parameter
on EXCP macro 85
on EXEC statement 18

real partitions
allocation 18
definition 11
number 17
permanent 18
size 18
SIZE parameter 18
temporary 18

real storage
allocation 61
minimum system requirements 2
minimum supervisor requirements 50
organization 22

REALAD macro 87
recovery management support recorder 127
REL parameter on ACTION statement 54,204
RELPAG macro 75
relocating loader 53
resident supervisor

in real storage 22
in virtual storage 17
minimum size 50

rotational position sensing 83
RUNMODE macro 57

SAM 80

DOS/Virtual Storage Features supplement 233

SDAIDS 128
second level directory

private 33
system 33

SECTVAL macro 85
segment table

ifiitialization 27
location 27

segment translation exception 50
selection pool 62
SEND system generation macro 22
service programs

librarian 205
linkage editor 204

SETPRT job control statement 40
SETPRT macro 29
SET SYSTEM MASK instruction 51
SET SDL command 15,27
SET SVA command 26
shared virtual area

contents 13
creation 15
size 13

SIZE parameter 13,18,57
slots (see external page storage)
sort/merge programs 210
SPI mode 11
standalone dump program 128
standard features 4
storage protection 21
STORE THEN AND SYSTEM MASK instruction 51
STORE THEN OR SYSTEM MASK instruction 51
STXIT routines 51

. supervisor
loading an alternate during IPL 26
minimum sizes by model 50
modifications 50-53
new features 53-59

supervisor area
in real storage 22
in virtual storage 17
minimum size 50
patch area 50

SVA eligibility 15,204
SVA parameter

on PHASE statements 15,204
on SVA-defining control statements 15
on the ALLOC macro at system generation 13

synchronous exit facility 55
SYSBUFLD program 29
SYSCAT logical unit 26,113
SYSRES file contents 36
system components 31
system configuration, minimum 2
system debugging aids 127
system directory list 14
system generation 218
system GETVIS area in the SVA 14
system initialization 25
system logical units 9
system tasks 52
SYSVIS dump program 128
SYSVIS logical unit 23,28

task timer feature 57

234 DOS/Virtual Storage Features SUpplement

teleprocessing balancing 78
temporary fixing 70
terminals supported 8
TFIX/TFREE requests 70
time-of-day clock support 53
timing facilities 56-57
TPIN macro 78
TPOUT macro 78
transition from DOS Version 4 to DOS/VS 218
translation specification exception 50
TTIMER macro 56
Type I language translator support 31

utilities 206

variable partition priority 11
VIR'I'AD macro 87
virtual address area 11
virtual mode

progra~ operation in 12
programs that must operate in 13

virtual partitions
allocation 12
definition 10
number 11
size 12
SIZE parameter 13,58

virtual storage
organization 10
size supported 10

virtual storage management facility 57
volume premounting 47
VSAM

access method services program 115
addressed proceSSing

entry-sequenced files 110
key-sequenced files 107

advantages 120
alternate indexes

for entry-sequenced files 109
for key-sequenced fi'les 103

alternate key 103
asynchronous processing exit 93
backward processing 106
catalogs 113
chained parameter list 94,98
clusters 98
comparison with ISAM 122
compatibility with OS/VS VSAM 88
concurrent request processing 96
control area 89
control area splitting 99
control interval 89
control interval processing 92,107,110,112
control interval splitting 99
data space 91
devices supported 87
entry-sequenced files

organization 109
proceSSing 110

file sharing 118
free space 98
general,description 87
high-level languages supported 118
index proceSSing 108

DOS/Virtual Storage Features Supplement 235

ISAM interface routine 118
journaling 93
keyed processing

key-sequenced files 105
relative record files 112

key-sequenced files
organization 98
processing 105

macros 93
mass sequential insertion 106
organizations supported 88
password protection 117
paths 104
physical structure of files 89
preformatting 90
primary index file

logical structure 100
physical structure 102
processing 105
searchihg 101-102

primary key 98
relative byte address 92
relative record files

organization 111
processing 112

reusable files 92
shared resource facility 96
space allocation 91
spanned record 90
stored record 89
SVA residence 119
types of processing supported

entry-sequenced files 111
key-sequenced files 108
relative record files 113

use of GETVIS/FREEVIS macros 119
virtual storage requirements 119

VTAM 81

XECBTAB macro 58
XPOST macro 58
XWAIT macro 58

$JOBEXIT exit routine 160
$LIBSTAT program 205
$MAINDIR program 205,15,34,53
$SYSOPEN exit routine 29

236 DOs/Virtual storage Features Supplement

GC20~1756-2

..... -- -® ----- ----- ~--- - ---- - - ------_ .. -
-~-.-

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far east Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

o o en
? ...,
~ s::
~
en
~ o ...,
Q)

CO
(l)

Q)
+-' o
2

DOS/Virtual Storage

Features Supplement

GC20-1756-2

This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed' appropriate. Comments may be
written in your own language; use of English is not required.

READER'S
COMMENT
FORM

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest
is appreciated.

Note: Cop~s of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

Number of latest Newsletter associated with this pUblication: ---------------------------
Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directiy to the address
in the Edition Notice on the back of the title page.)

GC20~1756-2

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

I
(")

S.
Q

" o
c:
»
0'
::I
\Q

r
5'
CD

c
o

I~
.. 1 :;.

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department 824
1133 Westchester Avenue
White Plains, New York 10604

First Class
Permit 40
Armonk
New York

I
I
I
I
I
I
I
I
I

... , ~"'''I

Fold and tape

==-= =® - -------- ---- - --------
-~-,-

International Business Machines Corporation
Data Processing Division

Please Do Not Staple

1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape
I
I
I

r+ c::
~

W ..,
Q)

~

" C'D
Q)
r+ c::
@
en
en c::
'C
'C
CD
3
C'D
:::J
r+

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239

