
Systems

GC33·5371·6
File No. 5370-34

Release 34

Systems

GC33-5371-6
File No. S370-34

DOS/VS
System Management Guide

Release 34

Summary of Amendments

Release 34

Edition GC33-5371-6 documents:
Full support of

IBM 3350 Direct Access Storage (DOS/VS previously supported the device only in 3330-11
compatibility mode).
IBM 3330-11.

Common device class for 3211-compatible printers (IBM 3211 and IBM 3203-4).
Support of IBM 3277 Display Station as Operator Console.
Support of IBM 3540 Diskette Unit as an IPL communication device.
Improvement of initial program load through the use of an IPL communication device list.
Support for dynamically changing the blocking factor for a sequential disk file through the job control
DLBL statement.
Inclusion of the functions of the COPYSERV program into the CORGZ program and removal of the
COPYSERV program for DOS/VS.
Integration of support information on SYSTEM/370 CPU Models 135-3, 138, 145-3, and 148 and on
the IBM 3203-4 printer.

In addition, corrections and editorial changes have been made to improve the manual's usability, and
POWER/VS information has been removed.

Release 33
Edition GC33-5371-5 documents:

Second label information cylinder for the IBM 3340
POWER/VS enhancements

• Installation improvements
Cardless system support
Extended timer services

Release 32
Technical Newsletter GN33-8801 includes information on cross-partition event control and the fast CCW
translation (F ASTTR) option, as well as miscellaneous corrections and updates.

Seventh Edition (April, 1977)

This is a major revision of, and obsoletes, GC33-5371-5. This edition applies to Version
5, Release 34, of the IBM Disk Operating System/Virtual Storage, DOS/VS, and to all
subsequent versions and releases until otherwise indicated in new editions or Technical
Newsletters.

Changes and additions to the text or illustrations are indicated by a vertical line to the
left of the changes. Changes are continually made to the information herein; before
using this publication in connection with operation of IBM systems, consult the latest
IBM System/370 Bibliography, GC20-0001, for the editions that are applicable and
current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Laboratories, Publications
Department, Schoenaicher Str. 220, 7030 Boeblingen, Germany. Comments become the
property of IBM.

© Copyright International Business Machines Corporation 1972, 1973, 1974, 1975, 1976,
1977

THIS MANUAL ...

'J

I

. . . is a guide to the IBM Disk Operating System/Virtual Storage
(DOS/VS). The system in its entirety is discussed on a conceptual and
functional level. System management refers not only to the way DOS/VS is
organized, but also to the way the user can efficiently manage the system
facilities at his disposal. This manual, therefore, does more than describe
the functions and interaction of the system control and system service
programs that constitute DOS/VS. It also describes how you -- as a
systems planner, systems programmer, applications programmer, or operator
-- can use DOS/VS to your best advantage.

Before you begin reading this manual, you should be familiar with the
information contained in the Introduction to DOS/VS, GC33-5370.

This book is not a guide to data management; instead, a separate manual is
provided for this purpose, called the DOS/VS Data Management Guide,
GC33-5372.

A manual that complements both the DOS/VS System Management Guide
and the DOS/VS Data Management Guide is also available at this time to
meet your installation's planning requirements. It is called DOS/VS
Supervisor and I/O Macros, GC33-5373.

After reading the above mentioned manuals, you should be able to turn
directly to the DOS/VS library of reference manuals in order to work with
your operating system. A reference manual is organized so that you can
easily retrieve specific information on the formats of the control statements,
macro instructions, labels, and messages, which you deal with daily.

This manual is divided into three parts:

Part I: The Organization of DOS/VS provides conceptual, descriptive, and
planning information. Part I contains three chapters. The first chapter
introduces the concepts of several of the main topics discussed
throughout this part of the manual. The second chapter summarizes the
standard and optional features of DOS/VS. The third chapter includes
planning information for system generation.

Part II: Using the System provides the information on how to use the
system. Part II contains five chapters, which consist of guidance
information on using the IPL, job control, linkage editor, and librarian
programs.

Part III: Designing Programs provides guidance in designing programs to be
run under DOS/VS. Part III contains three chapters, which discuss how
to design a program for execution in virtual mode, how to use the
facilities of DOS/VS, and how to use the multitasking macros.

For reference purposes the organization of the system residence disk file
(SYSRES) is shown in Appendix A.

The following IBM manuals are referred to in the text of this manual:

Introduction to DOS/VS GC33-5370

DOS/VS Data Management Guide GC33-5372

DOS/VS Supervisor and I/O Macros GC33-5373

DOS/VS Tape Labels GC33-5374

DOS/VS DASD Labels GC33-5375
L'

DOS/VS System Control Statements GC33-5376

DOS/VS System Generation GC33-5377

DOS/VS Operating Procedures GC33-5378

DOS/VS Messages GC33-5379

DOS/VS Serviceability Aids and Debugging Procedures GC33-5380

DOS/VS System Utilities GC33-5381

1401/1440/1460 DOS/VS Emulator on System/370 GC33-5384

1410/7010 DOS/VS Emulator on System/370 GC33-5385

Model 20 DOS/VS Emulator on System/370 GC33-5388

Guide to the DOS/VS Assembler GC33-4024

DOS/VS VT AM System Programmer's Guide GC27-6957

IBM System/370 Principles of Operation GA22-7000

DOS/VS Supervisor Logic SY33-8551

DOS/VS Librarian Logic SY33-8557

DOS/VS Access Method Services User's Guide GC33-5382

I DOS/VS POWER/VS Installation Guide and Reference GC33-6048

Table of Contents

Part I: The Organization of DOS/VS
Chapter 1: Understanding the System 1.1
Multiprogramming .. " 1.1

Partitions .. 1.2
Storage Protection 1.3
Partition Priorities 1. 3
Executing a Program in Any Partition 1.3

Device Considerations .. 1.4
Virtual Storage .. 1.5

Real and Virtual Partitions " 1.8
The Shared Virtual Area 1.8

Executing Programs in Real and in Virtual Mode 1.8
Page Pool ... 1.10

Advantages of Virtual Storage 1. 10
Multitasking .. 1.10

Two Types of Multitasking 1.11
Cross-Partition Event Control 1.11

I Chapter 2: Summary of DOS/VS Features 2.1
Standard Features of DOS/VS 2.1
Optional Features of DOS/VS . 2.1

DOS/VS in Various CPUs .. 2.2

Chapter 3: Planning the System . 3.1
System Generation Procedure 3.1
Tailoring the Supervisor .. " 3.3

Storage Management Options 3.3
Defining the Size of Virtual Storage 3.4
Defining the Number of Partitions 3.7
Defining the Size of Partitions 3.7
Defining Partition Priorities 3.9
Defining the Page Data Set 3.10
Fixing Pages in Real Storage 3.10
Improving the Paging Mechanism 3.11
Virtual Storage Access Method 3.11

Multiple-Partition Options 3.12
Relocating Loader 3. 12
POWER/VS ... 3.13
Multitasking ... 3.13
Cross-Partition Event Control ~ .. 3.13
Wait Multiple Option 3.14

Library Options .. 3.14
Private Core Image Libraries 3.14
Extended Support for the Procedure Library 3.14
Second Level Directory for Core Image Libraries 3.14
Independent Directory Read-in Area 3.15

Teleprocessing ... 3.15
BTAM ... 3.16
QTAM ... 3.16
VTAM ... 3.16

ASCII ... 3.17
Job Accounting ... 3.17
Timer Services ... 3.18

Time-of-Day Clock 3.18
Interval Timer .. 3.19
Task Timer .. 3.19

Console Buffering ... 3.20
User Exit Routines .. 3.20

Interval Timer Exit / 3.21
Program Check Exit 3.21
Abnormal Termination Exit 3.22
Operator Communications Exit 3.22
Task Timer Exit ... 3.22
Page Fault Handling Overlap Exit 3.23

Disk Options .. 3.23
System Files on Disk or Diskette 3.23
DASD File Protection 3.24
Track Hold Option 3.24
Seek Separation ... 3.25

I

Rotational Position Sensing 3 .26
Sequential DASD File Support for 3330-11 and 3350 3.28
Block Multiplexer Channel Support 3.29

I/O Options ... 3.29
Defining the Number of CCW Translation Buffers 3.29
Bypassing System CCW Translation 3.30
Channel Queue ... 3.30
Error Queue ... 3.31

Reliability / Availability/Serviceability 3.32
Recovery Management Support 3.32
OLTEP ' 3.33
Problem Determination Aids 3.34

Defining the System/370 Configuration 3.34
Central Processing Unit 3.34
I/O Devices .. 3.35
Emulators ... 3.35
Standard Job Control Settings 3.36

End of Supervisor ... 3.37
Planning the Libraries ... 3.37

Purpose and Contents of the Libraries 3.38
The Core Image Library 3.38
The Relocatable Library 3.38
The Source Statement Library 3.38
The Procedure Library 3.39
Private Libraries .. 3.39

Choosing the Libraries for an Installation 3.40
Relocatable and Source Statement Libraries 3.40
Procedure Library 3.40
Private Libraries .. 3.41

Determining the Location of the Libraries 3.42
Planning the Size and Contents of the Libraries 3.43

Part II: Using the System
Chapter 4: Starting the System 4.1
Initial Program Loading (IpL) .. 4.1

Establishing the Communications Device for IPL 4.2
Changing I/O Device Assignments 4.3

Adding Devices ... 4.3
Deleting Devices .. 4.3

Setting System Values .. 4.4
Assigning the VSAM Master Catalog . 4.4
Initiating Page Data Set Handling . 4.4
Automatic Functions of IPL .. 4.4
IPL Communication Device List . 4.5
RESTART/ALTER Memory Facilities 4.6

Building the SDL and Loading the SVA " 4.7
Replacing Phases Stored in the SV A 4.8

Creating the System Recorder File 4.8
Creating the Hard Copy File . 4.9
Security Checking after IPL 4.9
Entering RDE Data ... 4.10

Chapter 5: Controlling Jobs 5.1
Defining a Job .. 5.2

Setting up Job Streams 5.2
Summary of Job Control Statements and Commands 5.3

JOB Statement .. 5.4
End-of-Job U &) Statement 5.4
PAUSE Statement/Command 5.5
DATE Statement .. 5.5

Relating Files to Your Program 5.6
Symbolic I/O Assignment 5.6

Logical Units and Symbolic Device Names 5.6
Programmer Logical Units 5.10
Types of Device Assignments 5.11
Device Assignments in a Multiprogramming System 5.12
Device Assignments Required for an Assembly 5.12

Files on Diskette Devices 5.12
Example for Submitting Label Information 5.15

Files on Direct Access Devices 5.16
Examples for Submitting Label Information 5.17

Files on Magnetic Tape 5.19
Controlling Magnetic Tape Operation 5.19

Controlling Printed Output 5.20
Editing and Storing Label Information 5.21

Types of Label Information 5.21
Summary of Job Control Statements and Commands 5.24

ASSGN Statement/Command 5.24
RESET Statement/Command 5.25
LISTIO Statement/Command 5.25
DVCDN Command 5.26
DVCUP Command 5.26
DLBL Statement .. 5.26
EXTENT Statement 5.26
TLBL Statement .. 5.26
MTC Statement/Command 5.26
LFCB Command .. 5.26
LUCB Command .. 5.26

Executing a Program .. 5.26
Assembling, Link-Editing, and Executing a Program 5.26
Executing Cataloged Programs 5.30
Preparing Programs for Execution 5.30
Defining Options for Program Execution 5.32
Communicating with Problem Programs via Job Control 5.33
Controlling Jobs in a Multiprogramming System 5.34

Reserving Storage for VSAM 5.34
Reserving Storage for RPS 5.34
Teleprocessing Balancing 5.35

Restarting a Program from a Checkpoint 5.36
Executing in Virtual or Real Mode 5.37

Programs That Must Run in Virtual Mode 5.38
Programs That Must Run in Real Mode 5.38

Summary of Job Control Statements and Commands 5.38
EXEC Statement/Command 5.38
OPTION Statement 5.39
RSTRT Statement 5.39
UPS I Statement " 5.39

Checking and Altering Job Control Statements 5.39
System Files on Tape, Disk, or Diskette 5.40

System Files on Tape .. 5.40
System Files on Disk ... 5.41
System Files on Diskette 5.42
Interrupting Job Streams on Disk, Diskette, or Tape 5.44
Record Formats of System Files 5.44

Using Cataloged Procedures 5.45
Retrieving Cataloged Procedures 5.46
Modifying Cataloged Procedures 5.46
Several Job Steps in One Procedure 5.49
Modifying Multistep Procedures without SYSIPT Data 5.50
SYSIPT Data in Cataloged Procedures 5.51
Partition-Related Cataloged Procedures 5.52
Use of Cataloged Procedures by the Operator 5.53

Chapter 6: Linking Programs 6.1
Structure of a Program . 6.1

Source Modules .. 6.2

' .. Object Modules .. 6.3
Program Phases .. 6.4

Relocatable Phases . 6.4
Self-Relocating Phases 6.4
Non-Relocatable Phases 6.4

The Three Basic Applications of the Linkage Editor 6.5
Cataloging Phases into the Core Image Library '. 6.5
Link-edit and Execute .. 6.6
Assemble (or Compile), Link-edit and Execute 6.7

Processing Requirements ... 6.8
Symbolic Units Required 6.8

Preparing Input for the Linkage Editor 6.9
Assigning a Name to a Program Phase 6.9
Defining a Load Address for a Phase 6.10

Aligning a Phase on a Page Boundary 6.11
Link-editing for Execution at Any Address 6.11
Link-editing for Inclusion in the Shared Virtual Area 6.12
Link-editing for Execution in a Virtual Partition 6.12

Link-editing for Execution in a Real Partition , 6.13
Link-editing for Execution at an Absolute Address 6.14
Using Self-Relocating Programs 6.14

Building Phases from Object Modules 6.14
Including Modules from SYSIPT 6.14
Including Modules from the Relocatable Library 6.14
Including Parts of Modules from SYSLNK 6.15

Using the AUTO LINK Feature 6.15
Suppressing the AUTO LINK Feature 6.15

Reserving Storage for Labels 6.16
Specifying Linkage Editor Aids for Problem Determination or Prevention 6.16

Clearing the Unused Portion of the Core Image Library 6.17
Obtaining a Storage Map 6.17
Terminating an Erroneous Job 6.17

Designing an Overlay Program 6.18
Organizing Control Sections in an Overlay Tree Structure 6.18
Relating Control Sections to Phases 6.18
Using FETCH and LOAD Macros 6.20

Summary of Control Statements Related to Link-editing 6.21
Job Control Statements 6.21
Linkage Editor Control Statements 6.22

Examples of Linkage Editor Applications 6.23
Catalog to Core Image Library Example · 6.23
Catalog to Private Core Image Library Example 6.25
Link-edit and Execute Example 6.27
Compile and Execute Example 6.29

Chapter 7: Using the Libraries 7.1
How the System Accesses the Libraries 7.1

The Directories ... 7.2
Naming Elements in the Libraries 7.2
Storing and Accessing Elements in the Libraries 7.5

Working with the Libraries .. 7.5
Processing Requirements 7.6
Maintaining the Libraries .. 7.7

Cataloging ... 7.8
Deleting .. 7.13
CondensiJlg .7.14
Reallocating 7.17
Renaming ... 7.19
Updating Object Modules and Phases 7.20
Updating the Source Statement Library 7.22

Organizing the Libraries 7.23
Creating a New System Residence 7.24
Transferring Elements between Libraries 7.25

Using the Service Functions of the Librarian 7.27
Displaying the Directories 7.27
Displaying and Punching the Contents of the Libraries 7.28
Preparing Edited Macros for Update 7.29

Creating and Working with Private Libraries 7.30
Creating Private Libraries 7.31

Creating Private Core Image Libraries 7.32
Using Private Libraries 7.33

Chapter 8: Using POWER/VS
(removed, refer to DOS/VS POWER/VS Installation Guide and Reference)

Part III: Designing Programs
Chapter 9: Designing Programs for Virtual-Mode Execution
Programming Hints for Reducing Page Faults

General Hints for Reducing the Working Set
Data and Constants in Assembler Language Programs

Using Virtual Storage Macros
Fixing Pages in Real Storage
Determining the Execution Mode of a Program
Releasing Pages
Forcing Page-out
Advancing Page-in
Balancing Teleprocessing :

Coding for the Shared Virtual Area

9.1
9.1
9.1
9.3
9.4
9.4
9.6
9.6
9.6
9.6
9.6
9.7

..

Chapter 10: Using the Facilities and Options of DOS/VS 10.1
Direct Linkage between Programs 10.1

Interlanguage Communications 10. 1
User Program Switch Indicators (UPSI) 10.1

Timing Features ... 10.2
Using the Time-of-Day Clock 10.2
Interval Timer ... 10.3

Waiting for a Time Interval to Elapse 10.4
Getting the Unexpired Time 10.4

Task Timer ... 10.4
Obtaining or Canceling the Time Remaining 10.5

Linkages to User Exit Routines 10.5
Interval Timer User Exit Routine 10.5

Multitasking Considerations 10.6
Task Timer User Exit .. 10.6
Abnormal Termination User Exit Routine 10.6
Program Check User Exit Routine 10.8
Operator Communications User Exit 10.9
Writing an IPL User Exit Routines 10.10
Writing a Job Control User Exit Routine 10.12

Check pointing Facility .. 10.16
Choosing a Checkpoint 10.16
Timing the Entry to the Checkpoint Routine 10.16
Saving Data for Restart 10.17
Restarting a Check pointed Program 10.18

Job Accounting Interface Feature 10.18
Basic Job Accounting Information 10.19
I/O Accounting Information 10.19
Save Area for the User's Routine 10.19
User's Area for LIOCS Label Processing 10.19
Programming Considerations 10.19

Register Usage ... 10.21
Tailoring the Program 10.21

Storage Dump Facility .. 10.24
DASD Switching under DOS/VS 10.24

Channel Switching ... 10.25
String Switching ... 10.25
Using DASD Switching 10.25

Appendix A: System Layout on Disk 11.1

Glossary . .. 12.1

Index 13.1

List of Figures

Chapter 1: Understanding the System

Figure 1.1
Figure 1.2
Figure 1.3

Figure 1.4
Figure 1.5

The Five Partitions 1.3
Assigning Different Physical Devices to the Same Logical Units 1.4
Interrelationship of Real and Virtual Storage, Real and Virtual
Address Area 1.5
Four Programs Being Paged 1.7
A 5-Partition System With and Without Real Partitions 1.9

Chapter 3: Planning the System

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6

Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10

Insufficient Specification of RSIZE 3.5
Specification of RSIZE Larger Than the Size of Real Storage 3.5
Location of the Shared Virtual Area 3.6
Default Partition Priorities 3.9
User Program Running in Virtual Storage without RPS Support 3.27
User Program Running in Virutal Storage using RPS Versions
of Logic Module and Channel Program 3.28
Location of RPS Version of Logic Modules 3.28
The Relative Location of the Four System Libraries 3.42
Alternative Locations of the Libraries 3.44
Example of Library Organization 3.45

Chapter 4: Starting the System

Figure 4.1 Example of Creation of the Shared Virtual Area

and of the SYSREC File 4.9

Chapter 5: Controlling Jobs

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

Figure 5.8
Figure 5.9
Figure 5.10

Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15

Example of a Job Stream 5.3
Example of Symbolic I/O Assignments 5.7
Possible Device Assignments Set at Supervisor Generation 5.13
Device Assignments Required for an Assembly 5.14
Storing Label Information in the Label Information Cylinder(s) 5.23
Summary of Label Option Functions 5.24
Job Control Statements to Assemble, Link-Edit, and Execute
a Program in One Job 5.27
Submitting Input Data on SYSIPT 5.28
System Operation of an Assemble, Link-Edit, and Execute Job 5.29
Preparing the Loading of Temporarily and Permanently Stored
Programs .. 5.31
Example of a RESTART Job 5.36
Creation of SYSIN on Tape 5.41
Processing System Input and Output Files on Disk 5.43
Interrupting a Job Stream on Disk 5.45
Example of Modifying a Three-Step Procedure 5.51

Chapter 6: Linking Programs

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6

Stages of Program Development 6.2
A Job Stream to Catalog a Program into the Core Image Library ... 6.6
A Job Stream to Link-Edit a Program for Immediate Execution 6.7
A Job Stream to Assemble, Link-Edit, and Execute 6.8
Overlay Tree Structure 6.19
Link-Editing an Overlay Program 6.20

Chapter 7: Using the Libraries

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4

Figure 7.5
Figure 7.6

Organization of the Directories on SYSRES 7.3
Naming Multiphase Programs 7.4
Summary of Librarian Programs and Their Functions 7.6
Assembling and Cataloging to the Relocatable Library in the Same
Job .. 7.9
Example of Deleting and Condensing 7.15
When Can Condense Be Performed 7.17

Figure 7.7 Symbolic Unit Names and Filenames Required to Create Private
Libraries ... 7.31

Figure 7.8 Possible Assignments of Private Libraries in a MUltiprogramming
System .. 7.35

Chapter 9: Designing Programs for Virtual-Mode Execution

Figure 9.1
Figure 9.2

PFIX and PFREE Example . 9.5
Example of Conventions for SVA Coding . 9.8

Chapter 10: Using the Facilities and Options of the Supervisor

Figure 10.1
Figure 10.2
Figure 10.3

Figure 10.4

Figure 10.5

Figure 10.6

Figure 10.7
Figure 10.8
Figure 10.9

Figure 10.10

Figure 10.11
Figure 10.12

Setting and Testing UPSI 10.2
Method for Accurate Measurement of a Real Time Interval 10.3
Skeleton Example of a Program in which a 30-second Interval Must
Elapse before Special Processing is Performed 10.4
Example of Using the Interval Timer for Taking a Checkpoint Every
Half-hour .. 10.7
Skeleton Example of Multitask Linkage to a Common IT Exit
Routine ... 10.8
Skeleton Example of a Routine for Processing a Program Check Caused
by Zero Division 10.9
IPL User Exit Example 10.11
Job Control User Exit Example 10.14
Skeleton Example of a Routine for Checkpointing a Program on
Operator Command 10. 17
Example of Job Control Statements for Restarting a Check pointed
Job from Checkpoint 1111 10.18
Job Accounting Table 10.20
Job Accounting Routine Example 10.22

Appendix A: System Layout on Disk

Figure 11.1 System Residence Organization 11.2

Part I: The Organization of DOS/VS

Part I introduces DOS/VS. DOS/VS is a complex combination of programs
that interact with user programs running on a System/370 central
processing unit. The main features of DOS/VS, what the supervisor does
for you, and how you tailor the system are presented in this part in three
chapters:

Chapter 1: Understanding the System presents all readers with a
description of the key features of DOS/VS, in particular the concepts of

I multiprogramming, virtual storage. and multitasking.

Chapter 2: Summary of DOS / VS Features lists the standard and optional
features of DOS/VS.

Chapter 3: Planning the System is of particular interest to system
programmers. This chapter includes three topics: system generation,

I supervisor generation, and planning the libraries.

,.

Chapter 1: Understanding the System

I
Multiprogramming

This chapter introduces and describes the major concepts of DOS/VS.
After reading this information, you will have gained an understanding of the
principles on which DOS/VS operates. You will also be familiar with many
of the terms that are used throughout the manual.

The main topics described in this chapter are:

Multiprogramming

Virtual storage

Multitasking

Multiprogramming is a technique that allows the concurrent execution of
more than one program in a single computer system. Multiprogramming
balances the difference between the speed of the central processing unit
(CPU) and the relatively slower speed of the I/O devices, and thereby
improves the overall throughput of the system.

When a single executing program requests an I/O operation, it may not
be able to continue with any useful processing until the I/O request has
been satisfied. During this time, the CPU stands idle. With multi
programming the CPU is used more efficiently. When one program stops
processing, the CPU is put at the disposal of another program.

A program is said to be in control of the system when its instructions
are being executed by the CPU. A program can voluntarily yield control of
the CPU, or control can be withdrawn from it.

Programs that share the use of the CPU in mUltiprogramming do not
have an equal claim on the CPU. Instead, one program is given a greater
priority than another.

When a program must wait for a given event to occur before it can
continue processing, it yields control of the CPU. The supervisor then
passes control to a program of lower priority. Conversely, the supervisor
withdraws control from a program whenever a program with higher priority
is ready to resume processing. This generally happens when the I/O
operation for which the program has been waiting is now completed.

Multiprogramming, therefore, allows the I/O operations of one program
to be overlapped by the processing of other programs. When a program has
to wait for the completion of an I/O operation, the supervisor sets the
program in the wait state and selects another program for execution on the
basis of its priority and readiness to run. This process is called task
selection.

Chapter 1: Understanding the System 1.1

Partitions

Efficient use of the system relates not only to the degree of CPU
activity but also to storage management. During system generation, storage
may be allocated to partitions to accommodate the programs that will be
executed in them. At times, only a portion of the partition is used by the
program being executed. Some programs require a large partition. DOS/VS
can automatically balance the storage demands made by programs by
making processor storage not being used by one program available to a
program in another partition as required.

This storage management, which was not present in earlier versions of
DOS, is not inherent to multiprogramming, but is implemented by certain
virtual storage functions. It is described in more detail in the section Virtual
Storage, later in this chapter.

DOS/VS can support two or more partitions (depending on the number
generated) in each of which a problem program can be executed. The
number of partitions supported equals the number of problem programs that
can be executed concurrently within the system. The actual number of
partitions in a particular configuration is a supervisor generation option, and
as such is described in the section Tailoring the Supervisor in Chapter 3:
Planning the System.

Each program gets the priority associated with the partition in which it
is executed. Priorities are assigned to partitions during supervisor
generation, but may be altered by an operator command during processing
to accelerate the execution of a particular program.

In any particular configuration, there is always one background (BG)
partition; optionally, there can also be one or more foreground (FGx)
partitions. The number of foreground partitions that can be specified is four
(see Figure 1.1).

The background partition differs from the foreground partitions in the
following respects:

• The background partition is automatically activated by IPL. A
foreground partition must be activated via the BATCH or START
operator command. (The BATCH and START operator commands are
discussed in detail in DOS/VS Operating Procedures.)

• Certain IBM -supplied programs can be executed only in the background
partition. The~e programs are OLTEP, discussed under Tailoring the
Supervisor; CORGZ (merging into SYSRES functions); and MAINT
(except deleting, renaming and condensing functions for a private core
image library). Refer to the chapter Using the Libraries.

• To link-edit in a foreground partition, a private core image library must
be assigned to that partition. To link-edit in the background partition,
no private core image library need be assigned.

1.2 DOS/VS System Management Guide

Storage Protection

Partition Priorities

Storage
available
to problem
programs

Background

Foreground-4

Foreground-3

Foreground-2

Foreground-1

Figure 1.1. The Five Partitions

Storage protection, which is standard on all System/370 models, ensures
that the instructions and data of one program in a given partition do not
interfere with those of another program in another partition.

During supervisor generation, priorities are established for each partition
defined in the system. The default priorities are (from low to high): BG,
F4, F3, F2, FI.

During processing the operator can display the partition priorities and
change them dynamically by issuing the PRTY command. This can be used
to accelerate the execution of a given program. However, the priorities
should be reset to the installation standards as soon as possible to handle
the normal flow of jobs through the system. Changing priorities in the
middle of a job stream should be used with special care if POWER/VS or
teleprocessing, which normally run in a high-priority partition, are active in

I the system. (Refer to DOS/VS POWER/VS Installation Guide and
Reference .)

Executing a Program in Any Partition

When the relocating loader is generated in the system, most programs can
be executed in any partition. Provided that a program being link-edited
does not have an origin specified as an absolute address, the program
produced for inclusion in the core image library is relocatable.

A relocatable program can be executed in any partition that is large
enough to accommodate it.

Chapter 1: Understanding the System 1.3

Device Considerations

The relocating loader, as a supervisor generation option, is described in
the section Tailoring the Supervisor in Chapter 3: Planning the System.

Generally, the same physical 110 device (or extent of a direct access or
diskette device) may not be used concurrently by programs being executed
in different partitions. The exceptions to this are:

• The device or extents assigned to the system logical units SYSRES,
SYSREC, SYSLOG, SYSVIS, and SYSCAT. These devices (extents) are
considered to belong to the system as a whole, rather than to individual
partitions. (A brief description of these system logical units is contained
in the section Symbolic I/O Assignment in Chapter 5: Controlling Jobs.)

Private libraries which may be shared for read-only operations (for
more information refer to Using Private Libraries in chapter 7: Using
the Libraries.

A file on a direct access device can be accessed across partitions,
providing it is not being created simultaneously by programs in more
than one partition (see Track Hold Option in Chapter 3: Planning the
System for information on protection when updating a file concurrently
by separate tasks).

If, for example, you wish to link-edit programs in different partitions
concurrently, different physical devices or extents (except for SYSRES and
SYSLOG) must be assigned for each partition to all logical units used by
the linkage editor program. Figure 1.2 shows how devices may be assigned
in order to link-edit in two partitions concurrently.

Logical Unit F1 Partition BG Partition

SYSIN X'181' X'OOC'
SYSLST X'182' X'OOE'
SYSLOG X'01 F' X'01 F'
SYSLNK X'131' X'132'
SYSOO1 X'131' X'132'
SYSCLB X'130' --
SYSRES X'130' X'130'

Figure 1.2. Assigning Different Physical Devices to the Same Logical Units

In this case, the output on SYSLST in F 1 is written on a tape. A listing
of this output can be obtained by printing the tape after the job is
completed. If POWER/VS is used, the listing could be automatically

I obtained whenever a printer becomes available. (Refer to DOS / VS
POWER/VS Installation Guide and Reference.)

1.4 DOS/VS System Management Guide

•

Virtual Storage

Through a combination of System/370 hardware design and programming
support, DOS/VS has an address space, called virtual storage, that can
extend to the maximum allowed by the system's addressing scheme, which
is 16,777,216 bytes (16M bytes).

Virtual storage consists of two distinct areas; the real and the virtual
address area.

Virtual Storage Real Storage r----------_- - -------------__.

Real
Address
Area

OK

t-----------.... ----- -'----------~

Virtual
Address
Area

Real Storage: storagf!
physically present in
the CPU.

Figure 1.3. Interrelationship of Real and Virtual Storage, Real and Virtual
Address Area

Figure 1.3 shows that the area of virtual storage where the virtual
addresses match the real addresses is called the real address area, and the
area that begins at the end of the real address area and extends to the end
of virtual storage ~s called the virtual address area. Addresses in this area
have no direct equivalent to addresses in real storage.

How much of the maximum address space (16 M bytes) will be used in
a particular system depends on a number of factors: the size of the
computer's real storage, the amount of disk storage available, the number of
partitions, their sizes, and the characteristics of the installation's programs
and operating environment.

Chapter 1: Understanding the System 1.5

Both the real address area and the virtual address area are available for
use when writing your programs, but not both together for a single
program. Some of your programs can be considered to be loaded into the
virtual address area, and others into the real address area. Of course, each
instruction of a program must be in real storage at the moment it is
executed, and so must the data it manipulates. The other instructions and
data of a program loaded into the virtual address area need not be in real
storage at that same moment; they can reside on auxiliary storage until
needed. The file used for this purpose is called the page data set. This
makes it possible to execute programs that are larger than any real
partition, or even real storage.

Some programs can be loaded at IPL time into a special area, called the
shared virtual area (SVA). Those programs can then be executed directly
(without subsequent loading) by any job in any partition, and may be
executed concurrently from more than one partition. The shared virtual area
is located in the virtual address area and, therefore, is represented on the
page data set.

It would be inefficient, however, to bring every instruction and its
associated data into real storage individually. Programs in virtual storage are
manipulated in sections called pages; the size of a page in DOS/VS is 2K
bytes. Real storage is divided into 2K byte sections; these are called page
frames. Page frames accommodate pages of a program during execution.
This is illustrated in Figure 1.4.

The DOS/VS supervisor will occupy the low order page frames, while
the remaining page frames are available for the execution of processing
programs. Those page frames unoccupied by the supervisor and available
for execution of programs in the virtual area, are collectively called the
page pool.

When a program is loaded from the core image library into virtual
storage, all its pages are brought into page frames of the page pool. If there
are not enough page frames available to contain all the pages of a program
being loaded into the virtual address area, the system moves the contents of
some page frames to a disk extent called the page data set. The remaining
pages of the program can then be loaded.

During execution of the program, whenever a required instruction or
some data is not present in real storage, execution is interrupted by a
so-called page fault. The system must then bring the requested page into
real storage.

For programs loaded into the virtual address area, pages can be placed
into any available page frame during execution. Since the system does not
anticipate where in real storage a page will be loaded, the virtual addresses
must be translated into real addresses when required for execution. The
address translation is performed by a combination of the System/370
Dynamic Address Translation (DAT) facility and DOS/VS.

1.6 DOS/VS System Management Guide

.•.

Virtual
Address
Area

BG
Program A

F3
Program B

F2
Program C

F1
Program D

SVA

Real Storage

Page
Pool

Figure 1.4. Four Programs Being Paged

Assignment of page frames is done by the supervisor which works
toward keeping the most frequently-used pages of each program in real
storage.

Any or all of the four programs being paged may also concurrently
use phases in the shared virtual area (SY A).

Chapter 1: Understanding the System 1.7

Real and Virtual Partitions

The Shared Virtual Area

During system generation, the number of partitions is defined for the
system. A certain amount of address space must be associated with
(allocated to) each partition. Each partition in which a program is to be
loaded for execution is required to have address space in the virtual address
area; this space is called a virtual partition. Each partition may also have
address space in the real address area; this space is called a real partition.
Because the job control program (which is necessary to start the execution
of each problem program) requires a virtual partition for its execution, a
real partition always has a corresponding virtual partition.

Figure 1.5 assumes that five partitions have been defined in the system.
On the left is a system without real partitions; on the right is a system with
real partitions. It is unlikely that you will have allocated five real partitions,
but they are illustrated here to show their relative position in storage.

In multiprogramming systems, a system directory list (SDL) and certain
frequently used programs can be loaded into the shared virtual area (SVA),
which is located in the highest address space in the virtual address area.
Such programs (or parts of programs), which are relocatable and
reenterable, are available for concurrent use by programs running in virtual
or real mode. Programs in the SVA are always executed in virtual mode in
the page pool.

Executing Programs in Real and in Virtual Mode

Programs can be executed in two modes:

• Virtual Mode: the program's addresses refer to addresses in the virtual
address area, and the program executes in the page pool; the precise
location a page occupies is not known until it is needed for execution.
Paging can take place.

Real Mode: the program's addresses refer to addresses in the real
address area and the program executes in a contiguous, defined block
of real storage: the real partition. No paging takes place.

For either mode, sufficient address space must be allocated to the partition
to accommodate the program to be executed. Sufficient page frames must
be available in the main page pool to execute programs from the shared
virtual area.

Under DOS/VS certain programs - such as those with critical time
dependencies - may have to run in real mode. The DOS/VS supervisor also
always runs in real mode.

1.8 DOS/VS System Management Guide

Real
Address
Area

Virtual
Address
Area

~

~

>

'-

Virtual Storage

Supervisor

BG-V

F4-V

F3-V

F2-V

F1-V

SVA

Real Storage

being used by
virtual mode
programs

r---+

~

~

Virtual Storage

Supervisor

BG-V

F4-V

F3-V

F2-V

F1-V

SVA

I+--

f+-

f+--

Real Storage

Supervisor
being
used
by
real
mode
programs

not being used, because
corresponding real
partitions are used

bei ng used by
relocatable, reenterable
programs

Figure 1.5. A 5-Partition System With and Without Real Partitions

In both systems the heavily shaded parts of real storage are not allocated
to any particular partition. These parts are called the main page pool,
which (in the system on the right) is augmented by the address space of
the real partitions that are not being used (lightly shaded), to form the
page pool.

When a real partition is being used, the address space in the
corresponding virtual partition cannot be used.

Programs in the shared virtual area (SY A) can be shared
concurrently by programs running in either virtual or real mode. The
programs from the SY A are executed in the page pool.

Real partitions are used not only for programs running in real mode,
but also for programs running in virtual mode that fix a set of instructions
or data (using the PFIX macro, which is discussed in more detail under
Fixing Pages in Real Storage in the section Tailoring the Supervisor in
Chapter 3). Such pages of a virtual-mode program are fixed in page frames
of the real partition that corresponds with the virtual partition in which the
program is running.

Chapter 1: Understanding the System 1.9

Page Pool

As shown in Figure 1.5, the real storage not allocated to any real partition
(or occupied by the supervisor) is always available for paging activities. It
forms the main page pool. Other page frames may also belong to the page
pool:

When not occupied by a program running in real mode, the area
allocated to a real partition is available to virtual-mode programs.

When a program running in real mode does not require the entire real
partition, the unused part of the real partition may be made available to
the page pool by specifying the required amount of storage in the SIZE
operand of the EXEC job control statement for the real-mode program.

Advantages of Virtual Storage

Multitasking

In summary, executing programs in virtual storage has two main advantages:

It allows execution of programs that are larger than the available real
partition,. or even larger than real storage.

The real storage available is better utilized: programs running in a
virtual partition are not confined to a particular area of real storage, but
may use all available page frames.

Partition and system performance requirements should be considered as you
relate these advantages to your particular installation.

At the beginning of this chapter, we defined multiprogramming as the
ability to execute more than one program concurrently in separate partitions
within a single computer system. Multitasking can be regarded as an
extension of multiprogramming in that it provides the ability to execute
more than one program concurrently in a single partition. In simple terms,
therefore, multitasking can be regarded as multiprogramming within a
partition.

Multitasking presupposes the existence of the multiprogramming
facilities in the supervisor (in particular, the task selection routines).
Multitasking is, therefore, possible only in a multiple-partition environment.
As a supervisor generation option, multitasking is described in the section
Tailoring the Supervisor in Chapter 3: Planning the System.

Some installations using former versions of DOS, employed multitasking
to run more than three programs in a three-partition system. The additional
partitions that DOS/VS provides may serve the same purpose. You should
note that running programs concurrently in separate partitions usually
requires less preparation than running programs concurrently in the same
partition.

1.10 DOS/VS System Management Guide

o

Two Types of Multitasking

Programs (or parts of a program) that are executed concurrently in a given
partition are called tasks. A distinction is drawn between the main task in a
partition and one or more subtasks in the same partition. The main task is
that program (or program part) initiated by job control. The sub tasks are
those programs (or program parts) initiated by the main task through the
use of the ATTACH macro instruction. To use the multitasking facilities of
DOS/VS it is necessary to code the main task in the assembler language.

The sub tasks executed in a given partition may be: (1) logically
independent, or (2) logically dependent.

In the first case, the main task monitors the execution of the subtasks,
treating them as independent programs. Such sub tasks may be coded in any
programming language. This type of multitasking is sometimes called
multiprogramming within a partition. It is suitable technique to use, for
example, for concurrent execution of more programs than partitions
available.

In the second case, both the main task and the subtasks are program
routines that are logically part of the same program. Thus, the tasks can
communicate with one another. In this case the subtasks are likely to be
coded in assembler language to allow the use of the task
intercommunication macros. They can share code (in particular, an access
method or subroutines), provided that it is of a read-only nature (that is,
that the code or subroutines are not modified during execution). This
technique is complex and can best be understood after studying the first
type of multitasking.

Cross-Partition Event Control

Highly complex applications may have a need for communication between
programs executing in separate partitions. For example, two such programs
may need to perform operations on a common file, and the operations may
require actual communication between the two programs.

Through cross-partition event control macros, one partition can delay the
execution of part of a program until another partition signals the completion
of a critical event. This allows synchronized multiprogramming in separate
partitions --thus protecting programs against inadvertent destruction of each
other-- while at the same time providing for any necessary communication

I between them. For details about this support, see Supervisor and I/O
Macros.

Chapter 1: Understanding the System 1.11

o

D

Chapter 2: Summary of DOS/VS Features

Standard Features of DOS/VS

These features are automatically included during system generation:

Support for one virtual storage of user-specified size (up to 16M
bytes).

Batched-job mode of job initiation in a single-partition environment.

Execution of programs in real mode and virtual mode.

Symbolic 110 device assignment.

Cataloged procedures.

Storage protection.

SAM, DAM, and ISAM.

Command chaining for II 0 retry operations.

• Tape error statistics.

Selector channel support.

• Display operator console support (for Models 115 and 125: Video
Display Keyboard Console).

Machine check analysis and recording (MCAR), channel check handler
(CCH), and recovery management support recorder routines (RMSR).

• OLTEP (optional on Models 115 and 125; can be omitted for other
models).

•
•
•

Job control.

Linkage editor.

Librarian.

Assembler.

System utilities (including Disk Volume Fast Copy).

System debugging aids (SDAIDS).

Relocating loader

Optional Features of DOS/VS

These features must be requested during system generation or added after
the generation has been performed:

I · Level of Multiprogramming.

• Specification of partition dispatching priority.

Multitasking.

POWER/VS.

Teleprocessing support (BTAM, QTAM and VTAM).

VSAM.

Chapter 2: Summary of DOS/VS Features 2.1

• Wait multiple support.

Cross-partition event control support.

Magnetic ink character reader and optical character reader support.

• Page fault handling overlap.

• Support for PFIX/PFREE macros.

• Support for GETVIS/FREEVIS macros.

• Support for RELPAG/PAGEIN/FCEPGOUT macros.

• Integrated emulators.

Time-of-day clock support.

Multiple timer support.

• Job accounting interface.

Private core image libraries.

External interruptions.

• Abnormal termination exit.

• Console buffering.

• Track hold.

• DASD file protection.

• Rotational Position Sensing (RPS).

• Seek separation.

• Channel switching for magnetic tapes.

• Burst mode operation on the byte multiplexer channel.

• Error volume analysis for magnetic tapes.

• Reliability data extractor.

• Problem determination aids (PDAIDS).

• ASCII support for tapes.

• System input and system output files on disk (SYSFIL option).

• Independent directory read-in area.

• Task timer support

DOS/VS in Various CPUs

This section shows, by way of a series of examples, how real and virtual
storage could typically be employed by DOS/VS running in CPUs with
different amounts of real storage. The real storage requirements of the
supervisors and of the main DOS/VS features are indicated, as are the
types of jobs that are processed in the partitions. In each of the examples,
the real storage available to the main page pool can be obtained by
subtracting the amount of real storage allocated to the supervisor and the
real partitions from the CPU size. In all cases, the figures given are
approximations.

All systems have an SV A that contains a system directory list.
However, the illustrations do not explicitly show the SVA unless it must be
larger than the minimum size, as for example for RPS or VSAM.

2.2 DOS/VS System Management Guide

96K CPU

Storage (K bytes)

Real Virtual

Supervisor 40
BG 10 64
F3 0 64
F2 0 64
F1 24 156

74

Notes:

Batch processing operation.

One "hot" partition for urgent, unscheduled jobs.

POWER/VS in FI

The system described above might be typical of a DOS/VS user who
formerly operated a Model 20 with programs that did not require large
amounts of storage.

144K CPU

Storage (K bytes)

Real Virtual

Supervisor 42
BG 0 600
F3 0 256
F2 0 256
F1 24 156
SVA 302

66

Notes:

POWER/VS in FI

VSAM and Access Method Services in BG

VSAM and SDL in SV A

Chapter 2: Summary of DOS/VS Features 2.3

192K CPU

Storage (K bytes)

Real Virtual

Supervisor 52
BG 0 600
F4 0 192
F3 0 192
F2 26 158
F1 50 192
SVA 302

128

Notes:

POWER/VS in F2

CICS/VS (an IBM program product, Customer Information Control
System/Virtual Storage) in F 1

VSAM and SDL in SV A

VSAM and Access Method Services in BG

240K CPU

Storage (K bytes)
DAYTIME

Real Virtual

Supervisor 58
BG 30 288
F3 0 288
F2 30 170
F1 60 672

178

Notes:

One partition (BG) for compiling/testing

• one production partition F3

POWER/VS in F2

CICS/VS in FI

NIGHTTIME

Supervisor
BG
F3
F2
F1

Notes:

Storage (K bytes)

Real Virtual

58
50 608

0 288
0 288

30 170

138

One batch partition (using PFIX/PFREE macros) in BG

POWER/VS in FI

Two batch partitions (not using PFIX/PFREE macros) in F2 and F3

2.4 DOS/VS System Management Guide

384K CPU

DAYTIME

Supervisor
BG
F3
F2
F1
SVA

Notes:

• POWER/VS RJE in FI

• CICS/VS in F2

Two batch partitions

RPS code in SV A

NIGHlTlME

Supervisor
BG
F4
F3
F2
F1
SVA

Notes:

CICS/VS in FI

POWER/VS in F2

Storage (K bytes)

Real Virtual

54
14 722
28 228
66 228
48 176

100

210

Storage (K bytes)

Real Virtual

54
36 600
36 228
36 228
36 164
72 512

402

270

Access Method Services in BG

Three batch partitions

• VSAM and RPS code in SV A

Chapter 2: Summary of DOS/VS Features 2.5

Chapter 3: Planning the System

The IBM-shipped DOS/VS includes a number of supervisors, in the core
image library, from which one or more can be selected to form the base for
the system to be generated. Each of the supervisors provides a specific
range of functions. Should the functions of the supervisor(s) not be in
agreement with the system functions. planned, the system programmer can
tailor the supervisors to include the desired functions.

The assembler language source for the provided supervisors is contained
in the source statement library (sublibrary A) and can be displayed by using
the job stream given under System Generation Example (on-line) in
DOS/VS System Generation.

After a brief description of the system generation procedure in general,
this chapter describes in greater detail two major considerations during
system generation, namely:

•

I .
Tailoring the supervisor (adding functions to those of the basic
supervisor)

Planning the libraries (planning the contents, the location and size of
the libraries).

Because of the nature of this information, this chapter primarily addresses
system programmers, who are responsible for planning the system. The

I section Tailoring the Supervisor, however, may be of interest to all
DOS/VS users who wish to become more acquainted with this component
of the system.

System Generation Procedure

Proper and detailed planning is essential to efficient system generation and
minimizes the need to modify the system after it is generated. You may
want to contact your IBM marketing representative to set up a system
generation planning meeting. IBM field engineering would also attend the
meeting to discuss the procedure to install the SCP (systems control
programming). Generating a system includes:

Planning the options and estimating the approximate size of the
supervisor. This entails selecting from the programming services
provided by IBM, those options you wish to include in the supervisor,
and estimating the cost of these services in terms of bytes of storage.

Planning the contents, organization, and size of the system and
(optionally) private libraries. This entails distributing the storage space
available (on the disk packs) between the libraries desired for
day-to-day use. The major points you must consider are:

a. the size of the system core image library and, other system and
private libraries

Chapter 3: Planning the System 3.1

b. workfile space needed to assemble the supervisor and to link-edit
and catalog the components selected to the system core image
library

c. standard assignments for workfiles needed for everyday operation.

You work with the IBM-supplied distribution medium, which is composed
of four libraries:

The system procedure library initially contains procedures useful for
generating DOS/VS, linking and deleting DOS/VS component, and loading
the SV A with SDL entries and recommended phases.

The system source statement library contains macro definitions for
various. system components and services. Included are macro definitions
(sublibrary E) from which you choose desired parameters in order to
assemble your new supervisor. For your convenience, the source statement
library also contains sample programs (sublibrary Z), system history model
macros (sublibrary Y), and sample supervisors; they are illustrated in
DOS / VS System Generation.

The system relocatable library contains assembled IBM programs and
assembled macros from the source statement library. For example, logical
IOCS, which performs input and output operations for IBM programs and
your programs.

The system core image library contains all programs that are ready for
execution.

The specific contents of these libraries vary from release to release and
are identified in the Program Directory, which accompanies the system
distribution medium.

Using the elements of these libraries, you

• Generate the supervisor by coding a set of supervisor generation
macros, which define the system configuration and the services you
wish the supervisor to contain. (These are described in detail in the
section Tailoring the Supervisor.

Generate POWER/VS, if desired, by coding a set of POWER/VS
generation macros, which define its configuration and optional services.
(These are described in detail in DOS/VS POWER/VS Installation
Guide and Reference.)

Delete from the libraries any components you do not require and then
condense to free library space.

• Assemble (or compile) and/or link-edit programs - both your own and
IBM's - and catalog them into the appropriate libraries.

After determining what elements are to be contained in the system libraries,
you may wish to retain additional elements in private libraries and therefore
you may want to create private core image, relocatable, or source statement
libraries. These choices are discussed in the section Planning the Libraries.

The system libraries, together with certain system work areas, constitute
the system residence file (SYSRES), which is one extent of a direct access
storage volume. The SYSRES file is described in Appendix A,' System
Layout on Disk.

3.2 DOS/VS System Management Guide

Tailoring the Supervisor

After establishing your SYSRES file, you should copy it onto tape or
disk for backup purposes. The utility programs Backup/Restore DOS/VS
System and Fast Copy Disk Volume, which are provided for this purpose,
are described in DOS / VS System Utilities.

For complete details on how to perform a system generation procedure
refer to DOS/VS System Generation.

This section describes the optional and required parameters that you select
for the generation of the supervisor. The parameters are included in the
following supervisor generation macros:

ALLOC
ALLOCR
ASSGN
CONFG
DPD
DVCGEN
FOPT

IOTAB
PIOCS
SEND
STDJC
SUPVR
VSTAB

The parameters of these macros are discussed in a topical sequence, such
that related options are presented together regardless of the macros in
which they are contained. For the exact formats of these macros, refer to
DOS / VS System Generation.

This section discusses the advantages or necessity of specifying the
support for the various features in the supervisor.

In tailoring your supervisor to the requirements of your installation, you
can take into consideration future plans to add hardware (main storage, I/O
devices, and so on) or other functions that require supervisor options by
including their requirements in your supervisor generation macros. This will
allow you to upgrade your installation without having to regenerate your
supervisor. You may also want to include in the libraries modules or
components that will be required by planned future configuration or
functional upgrades. The storage cost of additional supervisor options may
be estimated by consulting the supervisor storage requirements in Module 1
of DOS / VS System Generation.

Storage Management Options

This section describes those supervisor options that relate to virtual and real
storage. These include defining:

• The size of virtual storage (virtual address area, real address area,
and the shared virtual area)
The number and size of partitions, and their priorities
The page data set (SYSVIS)
The ability to fix pages in real storage
The virtual storage access method (VSAM)

Chapter 3: Planning the System 3.3

Defining the Size of Virtual Storage

The size of virtual storage must be defined. Virtual storage is composed of
the virtual address area and the real address area, and the size of each must
be separately specified. You specify the size of the virtual and real address
areas in the VSIZE and RSIZE operands of the VST AB macro.

Defining the Size of the Real Address Area. Normally, you select a value for
RSIZE that coincides with the amount of real storage in your CPU model.
If, however, you anticipate that your system may also be used on a CPU
with larger real storage, you should select the value for RSIZE such that the
end of your real address area coincides with the end of real storage of the
larger CPU. Otherwise, some real storage remains unused when using the
larger CPU. This is illustrated in Figure 3.1. Specifying a value for RSIZE
that is larger than the size of your current real storage, (see Figure 3.2)
causes the start address of the virtual address area to be higher than the
end address of real storage. Nevertheless, none of the virtual address area
or real storage of the smaller CPU will remain unused.

Defining the Size of the Virtual Address Area. The value you specify for
VSIZE is equal to the sum of the sizes of the virtual partitions and the size
of the shared virtual area. Therefore, you must know these sizes before you
can specify VSIZE. For selecting the size of the individual partitions, see
Defining the Size of Virtual Partitions, later in this section. For selecting
the size of the shared virtual area, see Defining the Size of the Shared
Virtual Area.

The value specified for VSIZE cannot be changed without a new
supervisor generation.

The maximum size of virtual storage is 16M (16,777,216) bytes.
Because the real address area is part of virtual storage, the maximum value
you can specify for VSIZE is 16M minus the size of the real address area
(RSIZE).

In a single-partition system, the value you specify for VSIZE must be
equal to or greater than 64K bytes (the minimum virtual background
partition) .

The value you specify for VSIZE is used by the system to determine
the size of the page data set. Refer to Defining the Page Data Set later in
this section.

Defining the Size of the Shared Virtual Area. The shared virtual area (SVA)
can contain any program that is reenterable and relocatable. Such programs
can be used concurrently by more than one partition. Having phases
resident in the SV A avoids frequent fetches; the phases can be loaded into
the SV A at IPL time or at the time they are cataloged into the system core
image library.

As illustrated in Figure 3.3, the SVA is located in the high address
space of the virtual address area. The SV A contains a system directory list
(SDL), which provides fast retrieval of frequently used phases that are
resident in the SVA or in the system core image library. Having SDL
entries avoids searching multiple tracks of the core image directory for each
FETCH or LOAD request. The SDL and the SV A always reflect the

3.4 DOS/VS System Management Guide

Virtual
Storage

RSIZE
Area

~--------t-- ------

Virtual
Address
Area

Real
Storage

Real
Storage

Figure 3.1. Insufficient Specification of RSIZE

Virtual
Storage

Addressable
part of the
real address
area

Virtual
Address
Area

RSIZE

Real
Storage

Figure 3.2. Specification of RSIZE Larger Than the Size of Real Storage

current status of the equivalent information in the system core image
directory and library. In other words, the SVA will be updated when an
SVA-eligible program is cataloged into the core image library.

Chapter 3: Planning the System 3.5

Virtual
Storage

SUPERVISOR

SYSTEM DIRECTORY LIST '-----------
RESIDENT,REENTERABLE

RELOCATABLEPHASES 1-----------
SYSTEM GETVIS AREA

Figure 3.3. Location of the Shared Virtual Area

RSIZE

VSIZE

SVA

Note that the VSIZE specification includes the SV A specification.

You specify the size of the shared virtual area and the system GETVIS
area in the SV A parameter of the VST AB macro. If the supervisor supports
RPS (rotational position sensing), lOOK bytes are required for it in the
SV A. Either all or part of the RPS code will be loaded into the system
GETVIS area (a part of the SVA). If RPS is not preloaded at IPL time,
then lOOK is required in the system GETVIS area. If RPS is preloaded,
then 12K is required in the system GETVIS area and 88K must be
available for RPS in the SV A.

If your programs will process VSAM files, VSAM phases should be
loaded into the SV A. If the IBM distributed VSAMSV A procedure is used
to load VSAM phases (along with other recommended SVA eligible IBM
phases) into the SVA, approximately 302K is needed in the SVA.

The SV A must be large enough to accommodate the system directory
list and the programs loaded there, but it cannot be smaller than 64K. The
size of the SV A that you specify during supervisor generation can be
overridden by issuing SET SV A immediately after IPL. This command is
discussed in the section Building the SDL and Loading the SVA in
Chapter 4: Starting the System.

3.6 DOS/VS System Management Guide

Defining the Number of Partitions

Defining the Size of Partitions

In the NPARTS parameter of the SUPVR macro you define the maximum
number of partitions for your system.

In selecting the appropriate number of partitions for your particular
installation, you should consider the type of processing you require. For
example, assume you want to run concurrently the following types of
programs:

Test cases (assemble/compile, link-edit, and execute)

Daily application programs

POWER/VS

Teleprocessing application program.

For this case, you should generate a system with four to five partitions,
depending on the volume of application program processing. If your system
includes the unlicensed version of VT AM, at least two partitions must be
specified: one for VT AM and one for VT AM application programs.

For examples of typical partition usage, refer to DOS/VS in various
CPUs in chapter 2.

Because you cannot alter the NPARTS specification unless you
regenerate the supervisor, it may be advantageous to specify more partitions
than you see an immediate need for.

Note: For VTAM and QTAM at least two partitions must be specified.

If you generate a mUltiple-partition system, you may explicitly define the
size of each partition (except the virtual background partition). In a
single-partition system the size of the virtual partition is implied by the
specification of the VSIZE parameter, and the size of the real partition is
implied by the specification of the RSIZE parameter minus the supervisor
size.

The size of a partition is defined by specifying the amount of storage
you wish to allocate to it. The. ALLOC macro is used to allocate storage to
virtual partitions; the ALLOCR macro is used to allocate storage to real
partitions. Specification of ALLOC and ALLOCR macros during
supervisor generation is optional since operator commands to allocate real
and virtual storage are provided in DOS/VS. The size of both virtual and
real partitions is specified as a mUltiple of 2K bytes.

Defining the Size of Virtual Partitions. Only the size of the virtual
foreground partitions is explicitly defined (via the ALLOC macro). The
virtual address area not allocated to any of the virtual foreground partitions
and not allocated to the SV A is automatically allocated to the virtual
background partition. At least 64K bytes must be left for the virtual
background partition.

Chapter 3: Planning the System 3.7

The size of an active virtual foreground partition must be at least 64K
bytes. If a virtual foreground partition is defined but need not be used for a
while (see Defining the Number of Partitions above), its size can be set to
OK, either by the ALLOC macro during system generation, or by the
ALLOC command during actual operation. When using RPS, leave
approximately 6K available for the partition GETVIS area, required by RPS
for control blocks.

You specify the size of each virtual foreground partition by means of
the ALLOC macro. The system then calculates the difference between the
VSIZE specified minus the SV A value and the ALLOC value to determine
the size of the virtual background partition. If this difference is less than
64K or if you omit the ALLOC macro during supervisor generation, all of
virtual storage except the shared virtual area is allocated to the virtual
background partition and the size of each virtual foreground partition
defined in NP ARTS is set to zero.

During certain periods of processing, the operator can modify the size
of the individual virtual partitions by using the ALLOC command. Details
on the ALLOC command are given in DOS / VS Operating Procedures.

Defining the Size of Real Partitions. Potentially, for each virtual partition
defined in the system a corresponding real partition can be allocated. A real
partition consists of a contiguous set of addresses in the real address area.

Real partitions need only be allocated to enable the following:

Program execution in real mode
Use of the PFIX/PFREE macros.

When a real partition is used for running a real mode program, or for fixing
pages of a virtual mode program, (for example, POWER/VS), the page
pool is reduced by the number of page frames required.

Because reducing the page pool in turn may reduce total system
throughput, the use of real partitions should be carefully considered. When
a program is running in real mode, the real storage allocated to its partition
is taken from the page pool.

For each of the above cases, the virtual partition that corresponds to
the real partition must be allocated (64K bytes minimum). This is because
the initiation of either virtual-mode or real-mode programs is performed by
the job control program, which itself runs in virtual mode. Thus, for
example, the virtual Fl partition must be allocated at least 64K bytes if the
real Fl partition is to be used.

When a program running in virtual mode issues a PFIX macro, the
pages are fixed within the corresponding real partition. This ensures that
other real partitions are available for other programs that run in real mode
or that fix pages in real storage.

To allocate a real partition, specify the partition identifier and its size in
the ALLOCR macro. Each real partition you require must be specified
explicitly. Note, however, that ALLOCR must not be specified for a
single-partition system, because all available real storage is permanently
allocated to the background real partition.

3.8 DOS/VS System Management Guide

Defining Partition Priorities

A real partition may be as small as 2K bytes: the size of a given real
partition is determined either by the largest program you must run in real
mode, or by the maximum number of pages a virtual-mode program may fix.

The allocation of real partitions cannot exceed the size of the real
address area (specified in the RSIZE parameter) minus the supervisor area.

In addition, the main page pool size must be taken into account and
may be determined from the table below. The sizes shown are minimums.
Also not reflected is the additional storage available to the page pool, as
described in the section Page Pool in chapter 1.

Size of smallest PFIX=NO PFIX=YES or SVA AP=YES
real partition phases used (Note 2)

18K or less 18K minus size of 18K +2K
(including OK) smallest real

partition (Note 1)

larger than 18K OK 18K +2K
(Note 1)

Note 1. If the SOL is active, the main page pool must be at least 4K.

Note 2. An additional 2K bytes must be added to the main page pool size if
multitasking (AP = YES) is specified.

The system ensures (for single as well as multipartition systems) that this minimum, in
which pages cannot be fixed, remains.

The supervisor indicates, by means of return codes in register 15, whether
or not a PFIX macro has been executed successfully. For an example of the
use of PFIX and PFREE macros and the supervisor return codes, refer to
the section Fixing Pages in Real Storage.

A priority is associated with each partition in a multiprogramming system. If
you do not specify priorities during system generation, the supervisor will
establish default priorities. These default priorities (from low to high) are
shown in Figure 3.4.

NPARTS=2 PRTY=(BG,Fl)
NPARTS=3 PRTY=(BG,F2,Fl)
NPARTS=4 PRTY=(BG,F3,F2,Fl)
NPARTS=5 PRTY=(BG,F4,F3,F2,F1)

Figure 3.4. Default Partition Priorities

In most cases, there will be no need to select another priority sequence;
however, the PRTY parameter in the FOPT macro is provided for this
purpose. In the PR TY parameter you can specify the partition identifiers in
any desired sequence, and thus select another priority sequence.

The operator can display and modify the priorities established during
supervisor generation at any time during processing with the PRTY
command. He may want to do this in order to accelerate the execution of a
given job.

Chapter 3: Planning the System 3.9

Defining the Page Data Set

Fixing Pages in Real Storage

The page data set, a sequentially organized set of records on a direct access
device, is required in DOS/VS to accommodate pages of programs that are
being executed in virtual mode that have been paged out. There are as
many 2K records on the page data set as there are 2K pages in the virtual
address area. The size of the page data set, therefore, depends on the size
of the virtual address area.

The page data set can reside on any disk device that is supported by
DOS/VS as a system residence device.

You can define the page data set in the DPD macro, in which you can
specify the channel and unit number of the device and the lower limit
address of the extent. The upper limit address is calculated by the system
according to the VSIZE parameter specified in the VST AB macro. If you
correctly specify the DPD macro, an MNOTE is issued in the supervisor
assembly listing that indicates the required number of tracks for all different
types of devices supported as a page data set.

You may also specify a volume serial number, which will be checked
when the page data set is opened.

If you omit the DPD macro, or some of its parameters, during
supervisor generation, or the information you specify is erroneous, you must
define the page data set during IPL via the DPD command. (This command
is discussed in the section Initiating Page Data Set Handling in Chapter 4:
Starting the System.) The information specified in the DPD command
overrides the information supplied during supervisor generation until the
next IPL.

A program that runs in virtual mode is executed in page frames of the page
pool. When a page frame is required by a virtual-mode program and all are
currently occupied, one of the occupied page frames will be freed, if
necessary by paging its contents out onto the page data set.

Some programs that run in virtual mode contain code (such as I/O
appendages) that must be in real storage when needed and therefore cannot
tolerate paging. The pages containing such code can be fixed temporarily
via the PFIX macro instruction, and freed immediately after use via the
PFREE macro instruction. POWER/VS is an example of an IBM-supplied
program that uses PFIX/PFREE macros.

When pages of a program running in a given virtual partition are fixed
in response to the PFIX macro, they are fixed in the corresponding real
partition. Therefore, the use of the PFIX macro requires that a real
partition be allocated sufficient storage to accommodate the pages to be
fixed at any given time. If a PFIX macro is issued when a real partition is
not allocated enough storage, the pages are not fixed, and a completion
code indicating this is returned to the program.

3.10 DOS/VS System Management Guide

/

If you anticipate the need for the PFIX/PFREE macro instructions in
any of your virtual-mode programs, specify PFIX= YES in the FOPT macro
during supervisor generation.

Fixing pages in real storage means that in a multiprogramming
environment fewer page frames are available to other programs running in

I
virtual mode, potentially degrading total system performance. When
channel programs with large I/O areas are involved, the initial size of the
page pool may be too small. Consider this effect carefully before enabling
the use of the PFIX macro. Examples of the use of the PFIX/PFREE

Improving the Paging Mechanism

Virtual Storage Access Method

macros are provided in Chapter 9: Designing Programs for Virtual-Mode
Execution.

The page handling of virtual mode programs is controlled by the page
management routines of the supervisor. You can, however, influence the
paging mechanism in order to reduce the number of page faults, to
minimize the page I/O activity, and to control the page traffic within a
specific partition. You can do this by means of three macros: RELPAG,
FCEPGOUT, and PAGEIN.

RELPAG (Release Page). With this macro you inform the page
management routines that the contents of one or more pages is no longer
required and need not be saved on the page data set when the page frames
occupied by these pages are claimed for use by other pages. This saves
unnecessary page I/O.

FCEPGOUT (Force Page-out). With this macro you inform the page
management routines that one or more pages will not be needed until a
later stage of processing, and that they should be given highest page-out
priority. This prevents page-out of other pages which might be needed again
immediately after being written out.

PAGEIN. With this macro you request one or more pages to be paged in in
advance, so that page faults can be avoided when the specified pages are
needed in real storage. If the specified pages are already in real storage
when the macro is issued, they are given lowest priority for page-out.

If you anticipate the use of one or more of the above macros in any of
your virtual mode programs, specify P AGEIN =n in the SUPVR macro
during supervisor generation. This will generate support for the three
macros. The value of n must be 1 or greater. It specifies the number of
page-in requests that can be queued if more than one P AGEIN macro is
issued concurrently in the system.

The virtual storage access method (VSAM) can be used for direct or
sequential processing of fixed and variable-length records (including
spanned records) on direct access storage devices. A significant feature of
VSAM is data portability. VSAM files can be processed by DOS/VS,
OS/VSl, and OS/VS2.

Chapter 3: Planning the System 3.11

Multiple-Partition Options

Relocating Loader

VSAM requires a special file, the VSAM master catalog, which contains
information on file and disk characteristics. In addition, VSAM supports any
number of user catalogs for alternative use. The VSAM master catalog resides
on a disk extent that is contained on the logical unit SYSCAT. Catalogs are
defined and maintained by the Access Method Services and used by OPEN
and CLOSE. For complete information on VSAM, refer to DOS/VS Data
Management Guide and DOS/VS Supervisor and I/O Macros.

Support for VSAM is generated in the supervisor, by specifying
VSAM= YES in the FOPT macro. Most VSAM phases can be loaded into
the shared virtual area. For details refer to the sections Defining the Size
of the Shared Virtual Area, and Reserving Storage for VSAM.

There are certain options that can be specified during supervisor generation
that are particularly designed for ,a multiprogramming environment. The
options described in this section are:

Relocating loader
POWER/VS

• Multitasking
Wait mUltiple.
Cross-partition event control.

The relocating loader, a standard feature of DOS/VS, causes the linkage
editor to produce relocatable phases which can then be executed in any
partition.

In a system supporting the relocating loader, it is not necessary

• to write an assembler-language self-relocating program, if you want the
program to be executable in any partition. The high-level language
programmer can thus obtain the advantages of self-relocating programs.

to link-edit again if the size of the supervisor or the boundaries of the
partitions change after a program has been cataloged into the core
image library.

• to maintain multiple copies of individual programs in a core image
library.

The relocating loader is also advantageous to the operator, who can execute
a relocatable phase in any available partition large enough to contain it.

You can exclude the relocating loader from the supervisor by specifying
RELLDR=NO in the FOPT macro. However, some DOS/VS options
require the relocating loader. Therefore, if you specify OLTEP= YES,
RETAIN=YES, RPS=YES, GETVIS=YES, TP=VTAM, or VSAM=YES,
the relocating loader is automatically included in your supervisor.

When the supervisor contains the relocating loader and if the phase
origin is not an absolute address, the linkage editor automatically produces

3.12 DOS/VS System Management Guide

POWER/VS

Multitasking

Cross-Partition Event Control

a relocatable phase. You can suppress this by specifying ACTION NOREL
at link-edit time.

Note: A supervisor generated without the relocating loader can still load
relocatable phases. No relocation is performed, however, and the phase is
loaded at the link-edited origin.

Relocating loader applications are discussed in the section Link-editing
for Execution at Any Address in Chapter 6: Linking Programs.

POWER/VS provides spooling services for up to four partitions and resides
in a virtual partition with a higher priority than that of the partitions it
controls. Although POWER/VS runs in virtual mode, it supports programs

I running in virtual or real mode. POWER/VS will honor a spooling request
originating from the SVA; however, the DTF (or CCB), CCWs, and data
areas must reside in a partition (and not in the SVA).

Specifying POWER= YES in the SUPVR macro sets up the necessary
linkages in the supervisor which are used when POWER/VS is active. The
version of POWER/VS distributed in the core image library will suit the
needs of many users; however, if you have special requirements, you can
assemble the POWER/VS generation macros, which are distributed in the
source statement library. Refer to DOS/VS POWER/VS Installation Guide
and Reference.

Multitasking provides the ability to execute more than one task concurrently
in a single partition. Because multitasking presupposes the
mUltiprogramming facilities (for instance, task selection) multitasking is only
available in a multiple-partition system.

A program engaged in multitasking consists of one main task, which
initiates (attaches) a number of subtasks. The maximum number of sub tasks
in the sytem depends on the number of partitions specified in the NP ARTS I parameter: max. number of sub tasks = 15 - number of partitions.

These subtasks may reside together in one partition or they may be
distributed among the various partitions.

To generate multitasking support (also known as asynchronous processing)
in the supervisor, you specify AP=YES in the SUPVR macro.

The cross-partition event control option allows tasks that execute in
different partitions to wait upon completion of user-defined events and to
signal event completion to each other.

Chapter 3: Planning the System 3.13

Wait Multiple Option

Library Options

Private Core Image Libraries

The wait multiple option allows a task to wait on more than one event. The
task regains control on the completion of anyone of the events on which it
was waiting:

You can generate support for private core image libraries, for special
applications in the procedure library, and for reserved supervisor space to
achieve better fetching performance. These options are described below. No
supervisor generation options apply to the relocatable library or to the
source statement library. For full details on the type of library for your
installation, refer to the section Planning the Libraries.

Private core image libraries (PCIL) have the same format as and are
supplementary to the system core image library.

To include support for private core image libraries in the supervisor,
specify PCIL= YES in tr..e FOPT macro. For more information on the
creation, organization, and maintenance of private core image libraries, turn
to Chapter 7: Using the Libraries. Refer also to the section Second Level
Directory for the Core Image Library.

Extended Support for the Procedure Library

Normally, cataloged procedures can consist of job control statements
and/ or linkage editor control statements. However, with the extended
support, cataloged procedures can also consist of data that is to be read
from SYSIPT. Such data, for instance, may be utility control statements to
be processed by a utility program.

To include the extended support for the procedure library, specify the
SYSFIL parameter in the FOPT macro, which is discussed in the section
System Files on Disk in this chapter.

More information on the procedure library is contained in the section
Planning the Libraries.

Second Level Directory for Core Image Libraries

The directory entries for phases in the core image library are sorted by
phase name in alphameric sequence. The entries are organized in 256-byte
blocks, where the highest phase name in each block serves as the key. The
highest key on each track of the core image directory is stored in a second
level directory (SLD) in the supervisor. To help ensure good performance
when a phase is fetched, the number of entries in the SLD should not be
less than the number of tracks used for the core image directory.

3.14 DOS/VS System Management Guide

Specify the SLD parameter in the FOPT macro if you intend to use
more than five tracks for the core image directory entries. Similarly, if
private core image libraries are used in the system, specify the PSLD
parameter in the FOPT macro. Note that the default value for PSLD is
zero, compared to five for the SLD parameter.

Independent Directory Read-in Area

Teleprocessing

If a phase must be loaded and the phase name is not found in the System
Directory List (SDL) or Local Directory List, then the core image directory
(in conjunction with the Second Level Directory) is searched to find the
location of the phase in the core image library. Normally, the directory
blocks are read into the physical transient area, which is scanned for the
required entry. If a system error recovery routine is in progress, it resides in
the same physical transient area. During this time, the physical transient
area cannot be used for directory blocks, or for building the fetch channel
programs. This effectively prevents any partition of a higher priority from
fetching or loading a program phase until error recovery is complete.

By specifying IDRA= YES in the FOPT macro, an independent
directory read-in area is generated in the supervisor for holding directory
blocks and fetch channel programs during fetching or loading of core image
of phases. IDRA= YES is available only in a multiple-partition system.

Note: The Local Directory List is similar to the SDL, and may be defined for
a partition (via assembler) to improve loading of dynamically called programs.

DOS/VS provides facilities for teleprocessing, the interchange of data
between an application in the system and terminals connected by
telecommunications lines. These facilities provide the ability to define
teleprocessing lines during supervisor generation and to specify one or more
access methods for input/output services between an application and
terminals.

Teleprocessing devices (terminals) are normally attached to the CPU
through transmission control units or communications controllers. In some
cases there is a direct local attachment. The control unit must be specified
in a DVCGEN macro.

The access methods, defined in the TP parameter of the SUPVR macro
instruction, are:

BT AM (the Basic Telecommunications Access Method)

QTAM (the Queued Telecommunications Access Method)

VTAM (the Virtual Telecommunications Access Method).

Except when BT AM is specified for a single-partition system, support for
any of these access methods automatically includes support for TP
balancing (teleprocessing balancing).

Chapter 3: Planning the System 3.15

BTAM

QTAM

VTAM

For detailed information on generating and using a teleprocessing access
method, refer to the appropriate teleprocessing publications. Teleprocessing
users should also pay particular attention to the section I/O Options later
in this chapter and the section Balancing Teleprocessing in Chapter 9:
Designing Programs for Virtual-Mode Execution.

BT AM provides READ, WRITE, and CONTROL macro instructions to
control input/output. A WAIT macro instruction is used to synchronize
I/O with application program processing.

Applications using BT AM can execute in either virtual or real mode.
Users of previous DOS releases must reassemble and catalog BTMOD. If
BTMOD and the application program were assembled together, the
application program must also be reassembled and re-link edited. To
execute BT AM in virtual mode, PFIX= YES must be specified in the FOPT
macro. the interval timer. For more information, see the QTAM MCP
publication.

QT AM provides a way to write one or several application programs using
GET and PUT macro instructions to request input/output from a Message
Control Program (MCP). This MCP, which you generate using QTAM
macro instructions, frees the application (called a Message Processing
Program) from I/O processing details required by a BTAM application.

The QTAM MCP and its application programs (MPP) can execute only
in real mode, and require two separate partitions. Users of previous DOS
releases must reassemble the QTAM MCP.

When support for QTAM is generated in the supervisor, BTAM is also
supported.

QT AM requires a special disk extent for messages and, in some cases,
the interval timer. For more information, see the QT AM MCP publication.

VT AM directs transmission of data between application programs and local
or remote terminals, and controls the terminals in a telecommunications
network. Because VTAM operates with the IBM 3704 and 3705
Communications Controllers, communications lines and communications
controllers need not be considered in coding application programs.

Basic services performed by VT AM include:

Establishing, terminating, and controlling access between application
programs and terminals.

Moving data between application programs and terminals.

3.16 DOS/VS System Management Guide

ASCII

Job Accounting

• Permitting application programs to share communications lines,
communications controllers, and terminals.

VT AM requires that multitasking support be specified during supervisor
generation. Other options automatically generated when VT AM is specified
include:

Support for the use of the STXIT macro instructions (all options) by
problem programs.

Storage management support for the GETVIS and FREEVIS macro
instructions.

• Use of the PFIX and PFREE macro instructions for fixing and freeing
pages.

Inclusion of the relocating loader.

Support for the time-of-day clock.

Support for the multiple wait function.

Support for the use of the EXCP macro instruction with the REAL
parameter.

Both real and virtual storage must be allocated for the partition in which
VT AM is to run. A second partition is required for VT AM application
programs. For information on calculating storage requirements for both the
VTAM partition and the application program partition, refer to DOS/VS
System Generation. Other installation details are contained in the DOS/VS
VTAM System Programmmer's Guide.

In addition to processing EBCDIC files, DOS/VS can process magnetic
tape files written in ASCII (American National Standard Code for
Information Interchange), a 128-character, 7-bit code. The high-order bit in
the System/370 8-bit environment is zero. ASCII tape files may be either
unlabeled or labeled according to the specifications of the American
National Standards Institute, Inc., (ANSI).

ASCII tape files may be processed in any partition. Because internal
processing of ASCII files is performed in EBCDIC, the data is translated at
I/O time. No user translation tables or instructions are required.

Input files containing ASCII data are translated to EBCDIC as soon as
the record is read into the I/O area. Output files described as ASCII are
translated from EBCDIC to ASCII just prior to writing the record.

If your system is required to process ASCII files, specify ASCII= YES
in the SUPVR macro. This generates the two translation tables needed for
the conversion from ASCII to EBCDIC and from EBCDIC to ASCII, in
the supervisor.

The job accounting interface facility provides job and job step information
that can be used for charging system use, supervising system operation,
planning new applications, etc.

Chapter 3: Planning the System 3.17

I
Timer Services

Time-of -Day Clock

When this option is selected (JA= YES in the FOPT macro), job
accounting tables are built in the supervisor to accumulate accounting
information. One DOS/VS job accounting table is maintained per partition.
The format of these tables is shown in Chapter 10: Using the Facilities and
Options of the Supervisor.

To utilize this information, you must write a routine to store or print
the desired portions of the table. This routine must be cataloged in the core
image library under the name $JOBACCT.

If the user I/O routine ($JOBACCT) is written using LIOCS with label
processing, the JALIOCS parameter of the FOPT macro must be specified
in addition to the JA parameter. JALIOCS indicates that a user save area
and a label area in the supervisor are to be reserved. The label area
replaces the one normally used by LIOCS label processing routines.

Information on how to write a DOS/VS job accounting routine can be
found in Chapter 10: Using the Facilities and Options of the Supervisor.

If POWER/VS job accounting is desired, support for the job
accounting interface is required. Job accounting interface information and
POWER/VS job accounting information are combined in the POWER/VS
account file for each partition running under POWER/VS. No user-written
data collection routine is necessary. Refer to DOS/VS POWER/VS
Installation Guide and Reference.

The following timer services are available to DOS/VS users:

Time-of -day clock
Interval timer

• Task Timer

Both the time-of -day clock and the interval timer are standard hardware
features; while the task timer requires other hardware features (the clock
comparator and the cpu timer) which are standard on all System/370
models except the 135 and the 145. Utilization of these timer services in
DOS/VS also requires software support, for which supervisor generation
parameters are provided.

The time-of -day (TOD) clock provides a consistent measure of elapsed time
suitable for time-of-day indication. You can use the TOD clock to
time-stamp programs. Regardless of whether or not DOS/VS programming
support for the TOD clock is included in the supervisor, programs can
inspect the contents of the TOD clock by means of a store clock (STCK)
instruction. For more information on the use of this instruction, refer to
IBM System/370 Principles of Operation.

To include support for the time-of-day clock in the supervisor, specify
TOD=YES in the FOPT macro. The time-of-day and the date are then

3.18 DOS/VS System Management Guide

Interval Timer

Task Timer

automatically included with each / / JOB and / & job control statement
that is printed on SYSLST and/or SYSLOG.

The ZONE parameter in the FOPT macro is associated with the
TOD= YES specification. In the ZONE parameter you indicate the
difference between Greenwich Mean Time (GMT) and local time in hours
and minutes. If the local time to be specified is GMT, the ZONE parameter
can be omitted.

During the IPL procedure, if IPL is performed from SYSLOG, a
message is printed on the operator console to inform the operator of the
status of the date, clock, and zone. If necessary, the operator can correct
this information in the SET command.

The TOD clock support also enables programs to issue the GETIME
macro instruction, which causes the exact time-of -day to be stored in
general register 1. When a GETIME macro instruction is issued, the date
fields in the supervisor communications region are updated, if necessary. A
description of the use of the GETIME macro instruction is included in the
section Using the Time-of-Day Clock in Chapter 10: Using the Facilities
and Options of the Supervisor.

The interval timer can be used by programs (main tasks and/or sub tasks)
that need to schedule certain processing based on discrete time intervals. If
support for the interval timer is included in the supervisor, and a problem
program is written with the appropriate macro instructions and routines, the
interval timer causes an external interrupt when the time limit established
by the program has elapsed.

To include support for the interval timer in the supervisor, specify the
IT parameter in the FOPT macro.

Seven problem program macro instructions relate to interval timer support.
These are described in other parts of this manual, as indicated below:

• The section User Exit Routines which follows describes the STXIT and
EXIT macros in general, and the section Interval Time Exit describes
their specific use in relation to the SETIME macro.

Chapter 10: Using the Facilities and Options of the Supervisor
describes how to implement the SETIME, STXIT, EXIT and TTIMER
macros.

The task timer can be used by the main task of the partition owning the
task timer to escape from processing and enter an exit routine after a
specified period of time. This discrete time interval is decremented only
when the main task is executing. If support for the task timer is included in
the supervisor, and the owning partition's main task is written with the
appropriate macro instructions and routines, the specified task timer routine
is entered when the time interval has elapsed.

Chapter 3: Planning the System 3.19

Console Buffering

User Exit Routines

To include support for the task timer in the supervisor, specify the
TTIME parameter in the FOPT macro.

If an exit routine is not specified in the STXIT TT macro, the interrupt
is ignored. The SETT macro is used to set the time interval, and that
interval can be tested or cancelled by means of the TESTT macro. The
EXIT TT macro is used to return control from a task timer exit routine.

Since there is only one console typewriter in the system and it is a relatively
slow device, the entire system can be held up while messages are being
issued to the operator. Console buffering support builds a queue of output
messages and returns control immediately to the partition requesting the
output. The messages are then written as soon as the console becomes
available.

Support for console buffering is indicated by the CBF=n parameter in
the FOPT macro (where n is the number of I/O requests to be buffered.)
At least one buffer should be specified for each partition or task issuing
messages so that buffers are available and the task can continue processing
while the message is being printed. Five per batched-job partition is
recommended. The console buffering is not split per partition, but used by
the whole system.

Console buffering is not supported:

when Models 115, 125, 138, or 148 are used and DOC= 125D or
DOC=3277 is specified.

If required, the supervisor can permit user routines to gain control when
any of the following types of events occurs:

• Interval Timer Interrupt (IT)
• Program Check Interrupt (PC)
• Abnormal Termination (AB)
• Operator Communication Interrupt (OC)

Task Timer Interrupt (TT)
• Page Fault Handling Overlap (PHO)

Both the supervisor and the problem program that contain the user routine
must have the proper code to establish an interface. The supervisor part of
this interface is specified during system generation with the first five options
being specified in the FOPT macro, and the last option in the SUPVR
macro.

The problem program that wants to utilize the options must contain
code to set up the interface. For the first five events, code can be generated
by the STXIT macro. For the last event, code is generated by the SETPFA
macro. This code is assembled in the main line of a problem program.

The first operand of the STXIT macro indicates the type of event to be
handled. It must have an equivalent in the supervisor. The second and third

3.20 DOS/VS System Management Guide

Interval Timer Exit

Program Check Exit

operands indicate the addresses of the user routine and its save area. If the
second and third operands are missing, this means that an existing interface
has to be discontinued. Once the linkage has been established and one of
the events occurs, control is passed to the user routine, which takes
appropriate action and returns control to the supervisor, either directly or
via a termination macro. The direct return can be handled by including the
EXIT macro in the user routine. The job termination return can be handled
by the CANCEL, EOJ, JDUMP, or DUMP macro; one of these must be
used for the abnormal termination condition.

Short descriptions of the support for each of the types of user exit
routines follow. For more details refer to Chapter 10: Using the Facilities
and Options of the Supervisor. For information on how multitasking affects
this support and what happens if multiple events coincide, refer to the
DOS/VS Supervisor and I/O Macros. Some high-level languages offer
similar facilities, for details of which see the appropriate programmer's
guide.

Interval timer support is indicated by the IT=parameter of the FOPT
macro. If IT = YES is specified, all tasks in all partitions may refer to the
interval timer.

Example of how to use the Interval Timer: Suppose you want to take a
checkpoint on a job at a certain time after it has started. Include the STXIT
and the SETIME macros in your program. The first macro will set up the
interface with the supervisor; the second will enable you to set a time
interval. When that interval elapses, an interval timer interrupt occurs and
control is given to the user routine. Please note that the user routine need
not be entered immediately. For instance, if the user routine is in a
background partition, and a foreground partition is active, the user routine
will not be entered until the background partition becomes active. Chapter
10 contains coded examples of this option.

To find out the time remaining in an interval, a program can issue the
TTIMER macro instruction. The supervisor then loads this value in general
register O. This macro can also be used to cancel the remaining time in the
interval.

If PC= YES is specified in the FOPT macro, programs can establish linkage
from the supervisor to a user routine by executing a STXIT macro. If a
program check occurs within the program, the supervisor gives control to
the user routine instead of discontinuing the program. The user routine can
analyze the program check and choose to ignore, to correct, or to accept it.
If the check is ignored, control can be given back to the supervisor by
executing an EXIT PC macro.

In some cases it may be possible to correct the error condition. For
example, if a data exception occurs on an add pack (AP) instruction, the
user routine can be written to correct the sign and arrange for the

Chapter 3: Planning the System 3.21

Abnormal Termination Exit

Operator Communications Exit

Task Timer Exit

instruction to be processed again. The user routine can request that
processing of the main line program continue via the EXIT macro.

In case the problem cannot be resolved the program check is accepted
as valid. The user routine can then terminate further processing of the
program by issuing a CANCEL, DUMP, JDUMP, or EOJ macro.

The ability to include a user routine to process program checks can be
especially advantageous when using LIOCS. In that case 110 housekeeping
such as closing files and freeing tracks can be performed before termination
of the job or task.

If AB= YES is specified in the FOPT macro, any program can issue a
STXIT AB macro. This instruction allows a user routine to get control from
the supervisor before an abnormal end-of-job condition discontinues the
processing of the program. The user routine normally ends with one of the
termination macros (CANCEL, DUMP, JDUMP or EOJ), to terminate the
problem program and to return control to the supervisor, rather than by
initiating the continuation of the problem program.

oc= YES in the FOPT macro supports the use of user routines for
handling external interrupts from the operator. This support is useful in a
number of applications, for example:

A change in the environment is needed. A message is then issued by
the program. For example: MOUNT TAPE XXX on unit xxx and press
the interrupt key.

In teleprocessing, the OC exit allows the operator to start and stop
activities on certain lines or terminals, or to invoke diagnostic
procedures. In this case, program run books with explicit instructions
may be required to ensure understanding between programmer and
operator.

The external interrupt that links to an OC user exit routine can be caused
in one of two ways:

If the program with the OC exit routine is being executed in the
background partition, the operator can press the interrupt key on the
system console.

If the program with the OC exit routine is being executed in a
foreground partition, the operator can press the request key on the
console typewriter. When the attention routine identifier AR appears,
he should reply MSG FI (or give the appropriate partition identifier).

Task timer support is included by the TTIME= parameter of the FOPT
macro. This parameter also identifies the partition owning the task timer.

3.22 DOS/VS System Management Guide

Only the main task in the owning partition can utilize the task timer.

The time interval is specified in the SETT macro and is decremented
only when the task is executing. The exit routine specified in the STXIT
TT macro is entered when the interval has elapsed, provided that routine
has already been supplied to the supervisor.

To find out the time remaining in an interval, the task can issue a
TESTT macro. This causes the time remaining in the interval to be
returned in register O. The task can also issue a TESTT CANCEL to
cancel the remaining interval time. In this case the exit routine is not
entered.

Page Fault Handling Overlap Exit

Disk Options

If PHO= YES is specified in the SUPVR macro, a user routine can continue
processing during the time a page fault is being handled by the system, if
this page fault occurs in the same task and not in a supervisor routine
invoked by this task. This support is of interest only for programs executed
in a virtual partition that make use of user-developed subtasking rather than
IBM-supplied multitasking.

Such programs may issue the SETPF A macro instruction to establish
linkage from the page management routines in the supervisor to a user
routine, called the page fault appendage routine. The SETPF A macro
instruction is described in DOS/VS Supervisor and I/O Macros.

Options are provided for some DASD devices. These are:

System files on disk (or diskette)
DASD file protection
Track hold option

• Seek separation
Rotational position sensing
Block multiplexer channel support.

System Files on Disk or Diskette

The system logical units SYSRDR, SYSIPT, SYSLST, and SYSPCH can be

I assigned to the following devices: card reader, printer, card punch, magnetic
tape, disk, or diskette. When a system logical unit is assigned to a disk, it
must have only one extent.

For example, you may want to catalog the output from a language
translator to the relocatable library. During the language translation step,
SYSPCH could be assigned to a disk extent. The resultant object module
would then be cataloged via MAINT by assigning SYSIPT to the same disk
extent.

Support for system files on disk or diskette is specified in the SYSFIL
parameter of the FOPT macro.

Chapter 3: Planning the System 3.23

DASD File Protection

Track Hold Option

The SYSFIL option also implies extended support for the procedure
library. This means that cataloged procedures may contain in-line SYSIPT
data. The sets of control statements that can be cataloged into the
procedure library are, therefore, not limited to job control or linkage editor
control statements. (See also Extended Support for the Procedure Library.)

For systems without magnetic tapes, the SYSFIL option is required in
order to apply IBM programs and program maintenance, which, in this case,
must be distributed on disk packs in SYSIN fonnat.

This feature is provided to prevent user programs, which utilize DAM or
user-written channel programs for writing onto DASD, from writing data
outside of the limits of the DASD file currently being accessed. This might
happen if, for example, a randomizing algorithm produces an unexpected
DASD address which is outside the file limits.

DASD file protection support is indicated in the DASDFP parameter of
the FOPT macro. The parameters indicate that protection is given to
channels and device types. If used, DASDFP should be provided for the
entire channel range, for instance, DASDFP=(1, 3, 3330).

DASDFP gives protection on the basis of programmer logical units. If
two files in the same partition are assigned to the same programmer logical
unit, the DASDFP option gives no protection.

Protection begins and ends on a disk cylinder boundary or a data cell
strip boundary. Files to be protected should, therefore, begin and end on
such boundaries. No protection is given to partially allocated cylinders or
strirs.

If you are using physical IOeS, you must use the DTFPH macro to
define the file. The file must be opened using the OPEN or OPENR macro,
and each channel program must commence with a long seek (X'OT)
command, and contain no chained long seeks.

If you specify DASDFP, the SYSRES file must reside on a protected
channel: otherwise, it will not be possible to IPL the system.

DASDFP does not prevent file contention between partitions, or within
partitions if the same symbolic unit is used. Thus, more than one partition
may access the same file at the same time, and may even attempt to update
the same record simultaneously. The track hold option (TRKHLD) is
provided to solve this problem. Note, however, that all DASD writes
(DAM and otherwise) within the DASDFP range will be checked.

The track hold option is used to ensure that if a DASD track is being
modified by one task, no other task in the system can access that track
provided that they also use track hold. The facility is available for all
VSAM, ISAM and ISAM interface program functions (except LOAD), all
DAM functions, all SAM work file functions and other SAM update
functions. The facility is a combination of supervisor (PIOeS) and LIOeS
functions.

3.24 DOS/VS System Management Guide

Seek Separation

The track hold option can be selected by specifying the TRKHLD
parameter in the FOPT macro. For non-VSAM files, the DTF must specify
HOLD=YES.

For VSAM files, if SHAREOPTION 4 is specified at the time a VSAM
file is defined, VSAM uses the track hold facility to ensure file write
integrity. Note: Performance may be affected.

If you write your own channel programs, each program must begin with
a long seek (X'O?') command. If multiple track search channel programs are
used, only the first track will be held, which is not necessarily the track on
which the record is located.

Deadlock occurs if one task is waiting for a track held by a second task
and the second task is waiting for a track held by the first. This can easily
be prevented by establishing the convention that every task must be
programmed so that it will not hold more than one track at a time.
Deadlock may also occur if the maximum number of tracks demanded to be
held by all tasks combined exceeds the maximum specified in the TRKHLD
parameter.

A channel program for a DASD device usually consists of a number of
functions to perform the I/O operation as follows:

1. A long seek to position the access arm over the required cylinder.

2. A search to find the required record on a track on that cylinder.

3. A transfer in channel to branch back to the search until the search is
completed successfully or unsuccessfully.

4. The actual read or write which transfers the data.

Since the channel is monopolized once the channel program has been
initiated, no other device on this channel can be accessed until the data has
been transferred. This is inefficient, particularly since most of the time
utilized during the execution of a DASD channel program is taken up by
the long seek (1). With seek separation support, the supervisor handles this
by separating the long seek from the rest of its channel program and
initiating the seek command separately. The channel is then free while the
disk access arm is being moved and other devices on the channel and
control unit can be accessed.

Once the access arm has been positioned over the correct cylinder, the
rest of the entire channel program is executed. By performing this function
in the supervisor, contention is avoided between two tasks trying to move
the same disk access arm.

I For 3330's and 3340's attached to block multiplexer channels seek
separation is handled by the channel. See the section Block Multiplexer
Channel Support in this chapter.

Specifying SKSEP= YES in the FOPT macro creates seek separation
support for each DASD device specified in a DVCGEN macro at supervisor
generation time.

Chapter 3: Planning the System 3.25

Rotational Position Sensing

Specifying SKSEP=n indicates the number of DASDs to be supported
and must not be less than the number of DASDs you specify in DVCGEN
macros. Specifying n adds flexibility to your installation by allowing for
expansion: seek separation support then also applies to the DASDs added at
IPL time.

Rotational Position Sensing (RPS) is a feature on all IBM disk storage
devices except 2311,2314, and 2319 (optional feature on IBM 3340,
Models A2, Bl, and B2). It provides the ability to overlap positioning
operations on one device with service requests for other devices on a block
multiplexer channel (or its equivalent on Model 3115/3125 CPUs).

Better channel utilization can increase system througp.put, especially in
large multiprogramming systems with heavy concurrent I/O activity.
Because a selector channel is monopolized once a channel program has
been initiated, no other device on this channel can be accessed until the
data has been transferred. With block multiplexer channels and the RPS
feature of DASD devices, however, the device can disconnect from the
channel during positioning operations. The channel is then available for
other requests so that other devices on the channel can be accessed.

Overlap of positioning to a record on a track requires adding RPS
CCWs to the direct access storage device channel programs. DOS/VS
system control and service programs that support RPS create these CCW s
at execution time provided that the supervisor is generated with RPS= YES
and that the direct access storage device has the feature.

RPS support for DOS/VS is provided in all access methods which
support RPS DASD devices and in the DOS/VS system control and service
programs where the implementation benefits total system performance.
Implementation of RPS support in DOS/VS utilizes virtual storage to
enable you to use RPS without recompiling or relink-editing your problem
programs. The partition GETVIS area is used to generate an extension to
the DTF, and the shared virtual area is used to hold the RPS version of the
logic modules. Since this implementation requires a partition GETVIS area,
programs executing in real mode do not have RPS support for DASD
LIOCS functions. If you have specified RPS= YES in the FOPT macro at
supervisor generation time, all programs using DASD LIOCS should define
a GETVIS area within the partition to enable the access methods to
construct RPS channel programs.

The effective use of RPS depends on each channel program's ability to
free that channel so that it can service requests for other devices. Programs
using DOS/VS DASD LIOCS access methods will have RPS channel
programs constructed by the access method provided a GETVIS area is
defined in the partition (by using the SIZE parameter of the EXEC job
control statement) and that sufficient virtual storage is available in the SV A
for loading RPS versions of the logic modules. Programs using PIOCS for
DASD access have to be recoded to include Set Sector CCWs and to
establish arguments for the CCWs. If this is not done, these programs will
destroy the effectiveness of RPS by monopolizing the channel.

3.26 DOS/VS System Management Guide

Specification of RPS= YES forces generation of block multiplexer
channel support, which is a prerequisite for RPS support. See section Block
Multiplexer Channel Support for a further description.

For a more effective use of RPS with SAM, DAM, or ISAM, you
should preload frequently used RPS logic modules into the SV A during IPL
by specifying them in your System Directory List (SDL). You may
determine frequently used modules by using the Fetch/Load Trace facility
of PDAIDS. When using Checkpoint/Restart, modules used must be
preloaded. Each access method has RPS versions of the logic modules
associated with it. These modules reside in the core image library and are
not assembled or link-edited with the user's program. However, any user
coded logic modules, coded with the RPS=SVA parameter, must be
link-edited to the core image library. the RPS modules are then loaded in
the SV A either during IPL or dynamically as needed when the file is
opened.

Figure 3.5 shows the organization of a user's program running in virtual
storage without RPS support.

Figure 3.6 shows how, with RPS support, this organization will be
modified at OPEN time to put the DTF extension in the partition GETVlS
area. The pointers to the RPS version of the logic module and channel
program will be put into the DTF while the non-RPS logic module and
channel program addresses will be saved in the DTF extension. The DTF
extension will be freed and the pointers restored at CLOSE time.

Figure 3.7 shows that the RPS version of the logic modules can be
either in the SV A or in the SV A GETVlS area, or in some combination of
both.

SV A storage requirements for RPS are discussed in Defining the Size
of the Shared Virtual Area, and Reserving Storage for RPS.

T USER PROGRAM

DTF

NON-RPS CCW STRING +
NON-RPS LOGIC MODULE +

NON-RPS CHANNEL PROGRAM

Figure 3.5. User Program Running in Virtual Storage without RPS Support

Chapter 3: Planning the System 3.27

·w
(!)

« a:
o
Ii;
...J

:§ .
a:
>

~« >w
'-a:
~«

USER PROGRAM

DTF

RPS CCW STRING
RPS LOGIC MODULE

f-.-------------
NON-RPS CHANNEL PROGRAM

(not used)

NON-RPS

LOGIC MODULE
(not used by RPS DTF

but available to other DTF)

Figure 3.6. User Program Running in Virtual Storage using RPS Versions of
Logic Module and Channel Program

T -----r-----'-----,
I I I
I I I

« -;;jvE;isf~-~-:F LOGIC MODULES
> LOADED AT IPL
fJ) ,f--_,_---r--j--------

I
LDL ~------~ I _____ .. I •

_
~ ~~ L ___ J

~«
RPS VERSION OF LOGIC MODULES

LOADED DYNAMICALLY

Figure 3.7. Location of RPS Version of Logic Modules

Sequential DASD File Support for 3330-11 and 3350

Sequential or direct-access files can be created and accessed on these
devices in the same way as on other mM DASDs if the pertinent program
has so been written.

However, to use these devices also with programs that were written to
create and access sequential and direct-access files on other IBM DASD
types (such as 2314 or 3330-1), specify for supervisor generation
RPS= YES. This enables DOS/VS to write on and read from a 3330-11 or
3350 also for programs that reference different mM DASD types without a
need for recompiling or reassembling these programs.

3.28 DOS/VS System Management Guide

Block Multiplexer Channel Support

I/O Options

I
Block multiplexer channel support is useful in configurations with 3330,
3340, and 3350 DASD devices that are attached to block multiplexer
channels. To obtain block multiplexer support, specify BLKMPX= YES in
the PIOCS macro during supervisor generation.

I In a DASD configuration that consists only of 3330, 3340, and 3350
devices, there is no need to request seek separation support since the block
multiplexer support provides channel overlap during seeks in a more
efficient way. Furthermore, the code generated by a specification of
SKSEP= YES is bypassed for these devices if BLKMPX= YES is specified.
You cannot have block multiplexer channel support if you are planning to
use the 2311 or 2314 compatibility features and your CPU is a Model 115

I or Model 125. If your CPU is a Model 135 or 138 block multiplexer
support may be specified. This support will be inoperative for files being
handled by the Emulator, but it will work properly for files being addressed
in native mode.

Denning the Number of CCW Translation Buffers

Because all addresses associated with instructions and data are virtual, they
are translated to real addresses before they are actually used. All addresses
except those in channel programs are translated by the DAT facility;
addresses of I/O areas and channel programs, including channel command
blocks (CCBs) and channel command words(CCWs) are translated by
DOS/VS. The translation for channel programs is done using buffers (copy
blocks) in the supervisor area. Because this software address translation
may be time consuming for repetitive I/O requests, the fast translation
option may be specified (FASTTR=YES in FOPT macro). This option, if
selected, causes DOS/VS to retain and reuse the translated channel
programs in the copy blocks and the associated fixed I/O areas. However,
when there are no available copy blocks and/or the paging rate reaches the
threshold (page pool is too small), those saved copy blocks and fixed I/O
areas are released (least recently used first).

Specification of F ASTTR= YES may cause degradation of performance
when CICS accesses SAM, ISAM, and DAM files.

The required number of CCW translation buffers (specified with the
BUFSIZE operand of the VST AB macro) generally depends on the number
of channel queue entries and on the number of CCWs in the channel
program. If the number of buffers is too small, overall performance
degradation will occur because tasks are put into the wait state until buffer
space is available. On the other hand, too large a value for BUFSIZE
wastes storage.

If you expect that most of the I/O requests will be made from virtual-mode
programs, the number of buffers specified in the BUFSIZE operand should
be three times the number of entries in the channel queue for normal CCW
translation. Fast CCW translation needs more buffers, and you should

Chapter 3: Planning the System 3.29

specify six buffers for each channel queue entry. If you expect to do much
I/O from real-mode programs, the number of buffers should be reduced
proportionally. If ISAM is the predominant access method, about 200/0
more buffers should be specified. If RPS is specified, about 20% more
buffers should also be specified. At least 40 additional buffers should be
specified when VSAM is used. If teleprocessing terminals are supported
under BT AM or if the fast CCW translation option (FASTTR) is specified,
read the description of the BUFSIZE parameter of the VST AB macro in
DOS/VS System Generation.

In order to determine if the number of copy blocks are sufficient, refer
to Channel Queue for a similar procedure.

Bypassing System CCW Translation

Channel Queue

In most instances, double buffering techniques and an increase in block size
can significantly reduce the system overhead associated with channel
program translation. However, in extreme cases, you may wish to perform
your own translation of channel programs and thereby avoid system CCW
translation overhead. Programs that might require this are EXCP programs
that have very high start I/O rates and that repeatedly use the same
channel programs.

By specifying ECPREAL= YES during supervisor generation you obtain
support that assists in the translation of channel programs. This support
allows you to use the VIR T AD and REALAD macros as well as the REAL
parameter of the EXCP macro. You must obtain real storage by means of
the PFIX macro and then translate the channel program. The CCB must
have the REAL operand. For detailed information see DOS/VS Supervisor
and I/O Macros.

The channel queue (CHANQ) is used by the supervisor to schedule I/O
operations. An entry is made in the channel queue whenever a request is
made for an I/O operation and the entry remains until the operation has
completed. Thus, at any point in time, the queue will consist of entries for
I/O operations in progress and I/O operations waiting for initiation.
Whenever an I/O event completes, the queue is examined cyclically to see
if another entry exists for the channel, and if so, the operation is initiated.

The number of channel queue entries to be reserved in the supervisor
can be specified in the CHANQ parameter of the lOT AB macro.

The number of occupied entries in the channel queue depends on the
activity in the system. No accurate formulas for determining the optimum
size can be given though.

The thing to bear in mind is that specifying too small a channel queue
will cause performance degradation, too large a CHANQ value will waste
storage space (8 bytes per entry).

Real-mode tasks or programs that request an I/O operation when the
channel. queue is full will be set to reissue the request until an entry

3.30 DOS/VS System Management Guide

Error Queue

becomes free. Virtual-mode tasks or programs that request an 1/0
operation when the channel queue is full will be set in the wait state until
an entry becomes free.

To avoid performance degradation it is better initially to specify ample
channel queue space, and reduce the allotted space later, if desired. The
rule-oj-thumb to be followed is:

• At least one queue entry should be available for each 110 request that
can be issued concurrently (open files per jobstep per partition).

• Specify one entry for the SYSRES file and one for the page data set
(SYSVlS).

• Specify one entry for each task or partition in the system.

• Specify one entry for each console buffer in the system.

• If multiple volume files are used on the system, specify one entry for
each file being accessed at the same time.

• Add two entries per tape drive.

• One entry should be specified for each teleprocessing line that could
solicit input. If mM 2260 local or 3270 local video display units are to
be supported by BT AM one CHANQ entry should be specified for
each display.

• Add five entries to the total· for contingencies.

When the system has been generated, run the programs that make the
heaviest use of logical 110 units in the system. If a multiple-partition
system, run as many programs as represent the heaviest work load; in
particular, run any teleprocessing programs. Then, before the next IPL,
obtain a dump of the channel queue (by using the DUMP command or the
standalone program generated by DUMPGEN). The channel queue location
and format, as well as the use of the DUMP command ,and DUMPGEN are
fully described in DOS/VS Serviceability Aids and Debugging Procedures.

An analysis of the channel queue should show that entries near the
beginning of the table have been used, whereas those near the end are
unused. Although the unused entries are normally redundant, a few surplus
entries should be retained to allow for exceptional cases. If all the entries
have been used, then the channel queue was almost certainly too small, and
a process of experimentation will show the correct size.

The error queue option is of value to installations employing large numbers
of 110 devices, for instance, teleprocessing systems. The ERRQ parameter
allows you to specify the number the error queue entries within the error
recovery block of the supervisor. These entries are used to record
information on I/O device errors, and is used by the ERP and RMSR
routines. The normal default value is five entries for a multiprogramming

I system, but in ERRQ you can specify up to 25. Each entry is 44 bytes.

Chapter 3: Planning the System 3.31

Reliability / Availability / Serviceability

Recovery Management Support

mM provides software routines that analyze and record CPU, channel, and
device errors and attempt to recover from them. The data is stored on the
system recorder file (SYSREC). The information obtained from this file
serves not only as an aid in diagnosing machine errors, but also helps mM
customer engineers to increase reliability, availability and serviceability
(RAS) of your system.

If on-line recovery is impossible, the system may be placed in a hard
wait state. A message is then issued to the system operator to run either the
SEREP or EREP program to obtain the diagnostic data.

On the mM System/370 Models 115 and 125, errors in the CPU and
natively attached input/output devices (for example, card reader/punch,
disks and printer) are recorded on the service diskette (see note).This
hardware error recording is independent of the software routines. The
recorded hardware statistics may be obtained on the video display unit
(DOC), on advice of the mM CE, through the LOG ANALYSIS displays.
Error recovery for channel-attached input/output devices for these CPU
models requires the use of software routines with error recording on
SYSREC. The information covered here introduces RMS, OLTEP and
PDAIDS. Since SDAIDS and OL TEP do not require supervisor generation
macros, these topics are covered in detail in DOS/VS Serviceability Aids
and Debugging Procedures, which contains extensive information about the
various RAS features discussed below.

Note: IBM System/370 Model 158 has a similar hardware error recording
feature in addition to software error recording facility.

These routines, referred to as Recovery Management Support (RMS), are
standard for all System/370 models, except for the Models 115 and 125.
For these models, specify the RMS, MCH, or CHAN parameters to obtain
the RMS support of your choice.

If full RMS support is included (RMS= YES is specified or forced for
models 135 and above), the following RAS facilities are provided:

• Machine Check Analysis and Recovery (MCAR)
• Channel Check Handler (CCH)
• I/O device Error Recovery Procedures (ERP)
• Recovery Management Support Recorder (RMSR)

Device ERP routines are standard for all CPU models. The first three
facilities provide hardware error analysis and attempt recovery, while RMSR
provides for recording of error and operational statistics on SYSREC as
follows:

• Machine Check (CPU)
• Channel Check
• Unit check
• Tape/ disk error statistics by volume
• MDR (Miscellaneous Data Recorder)
• IPL information
• End-of-Day statistics held in main storage

3.32 DOS/VS System Management Guide

OLTEP

For models 115 and 125, if full RMS support is not desired, RMSR
support for channel attached devices, tape units, and TP devices must be
included by specifying CHAN=YES and RMS=NO. RMSR support for
MCAR and CCH is provided by specifying MCH=YES and RMS=NO.
Specification of RMS=NO, CHAN=NO, and MCH=NO will cause the
system to enter a hard wait on the occurrence of a hardware failure with no
recording on SYSREC. However, the service diskette will contain error

I recordings for the CPU and natively attached devices. If your installation
plans to use DASD switching, RMS= YES must be specified.

RMS has several options that must be specified, in addition, during
supervisor generation if they are desired. These options involve the
reliability data extractor, tape error statistics and error volume analysis.

Reliability Data Extractor. If included in addition to RMSR support in the
supervisor, the reliability data extractor (RDE) enables data about the IPL
procedure to be recorded on the system recorder file (SYSREC). This
option requests the operator, when he performs an IPL, to enter the reason
for the IPL. This data alerts IBM and installation management to recurring
machine errors or other operational problems.

If RDE support is desired, specify ERRLOG=RDE in the SUPVR
macro. More information on RDE is included in this manual in the section
Entering RDE Data in Chapter 4: Starting the System.

Tape Error Statistics. As a standard feature the DOS/VS system gathers
tape error statistics. This information is accumulated in the PUB2 table for
each tape unit and stored in the system recorder file SYSREC (if RMSR
support is included in the supervisor). For tapes with standard labels the
information is accumulated and stored per volume. When error statistics are
required to enable the monitoring of nonstandard or unlabeled tapes, the
TEBV parameter of the FOPT macro gives you two options: the parameter
can be specified as IR (individual recording) or as CR (combined
recording). IR refers to the accumulation of error statistics between two
consecutive OPENs on the same tape unit. CR refers to the accumulation
of error statistics on the same tape unit until a standard labeled tape is
opened on that unit or until a ROD-command is issued. When error
statistics are required to monitor the mM 2495 cartridge reader, the TEB
parameter in the FOPT macro must be specified.

Error Volume Analysis. This option of RMS enables you to specify the
number of temporary read/write errors that occur on a tape volume to be
specified before an informatory message is printed on SYSLOG. The
threshold value of temporary read/write errors is specified in the EVA
parameter of the FOPT macro. This option is· not applicable if RMSR
support is not included in the supervisor.

The On-line Test Executive Program (OLTEP) gives the mM customer
engineer the opportunity to test whether the I/O devices attached to the
CPU are in working order. OLTEP runs in real mode in the background
partition and can run concurrently with user jobs in other partitions.

OLTEP= YES is the default value in the FOPT macro. If you do not
want support for OLTEP, specify OLTEP=NO.

Chapter 3: Planning the System 3.33

Problem Determination Aids

The RETAIN function of OL TEP enables the mM customer engineer
to execute OLTEP from a location remote from the CPU. The RETAIN
function is available only in the United States of America and Canada.

I RETAIN is provided only with Models 145, 145-3, 148, 155-11, and 158
and requires that the 2955 Data Adapter Unit be attached to the CPU.

To generate support for RETAIN in the supervisor specify
RETAIN=YES in the FOPT macro.

Problem determination aids (PDAIDS) can be used to assist the
programmer in debugging his program. Six trace routines and a dump
routine are included in the PDAIDS:

Input/ Output trace
• FETCH/LOAD trace
• Generalized supervisor call (SVC) trace
• QTAM trace
• VTAM trace
• VT AM buffer pool trace
• Transient dump.

Because these routines are executed within the supervisor, the PD
parameter in the FOPT macro must be specified. The PD parameter
reserves an area in the supervisor for the use of the trace routines.

In addition to the trace and dump routines, PDAIDS contains a
program to display and modify object code in a core image library, thereby
facilitating the application of quick fixes until a permanent fix can be made
by modifying and recompiling source statements. The PD parameter in the
FOPT macro need not be specified to use this program.

Defining the System/370 Configuration

Central Processing Unit

During supervisor generation you must specify various macros that relate to
the central processing unit, whether programs written for execution on
another system may be run on this model, the I/O devices installed (or
planned to be installed), and other macros that indicate the standard job
control settings for the installation.

In the MODEL parameter of the CONFG macro, you must specify which
model of the System/370 line of central processing units is to be used. If
you plan to run your generated system on more than one CPU model, you
should specify the larger model.

If you specify MODEL=115 or MODEL = 125 in the CONFG macro,
support for the video display keyboard console (DOC=125D) is always
included.

For reasons of system portability, you may wish to specify DOC= 125D
for larger models. The larger model will then operate in 3210/3215 mode.
If, on a CPU model other than 115 or 125, a 3277 is used as operator

3.34 DOS/VS System Management Guide

I/O Devices

Emulators

I
console, specify DOC=3277. When you specify MODEL=138 or MODEL
148, the default used for system generation is DOC=3277.

The supervisor generation macros that relate to the I/O devices attached to
the CPU that are described below are: PIOCS, IOTAB, and DVCGEN.

The PIOCS macro defines the configuration requirements to be
supported by IOCS. The associated parameters involve the channel
switching, specific tape and disk device support, and the use of burst mode
devices on the byte multiplexer channel. No distinction is made between 7-
and 9-track tapes.

The IOTAB macro, in general, defines the area for the necessary device
tables for the system. The parameters involved refer to:

• The number of programmer logical units for each partition defined by
the NPARTS parameter in the SUPVR macro.

•

•

The number of job information blocks for the system. (One is required
whenever a temporary assignment is made, see Chapter 5: Controlling
Jobs. Extra JIDs are required if DASDFP is specified.)

The number of DASD devices (2311,2314,2321,3330, 3333, 3340,
and 3350).

The number of tape devices (2400-series, 3410, and 3420).

The number of TP devices.

• The estimated number of physical I/O devices.

The DVCGEN macro defines each physical input and output unit in terms
of their channel and unit address, device type, whether channel is
switchable, and (if applicable) their mode. One DVCGEN macro
instruction must be used for each unit on the system. Each individual drive
of a 2314/2319, 3333/3330, 3340, or 3350 needs a DVCGEN macro. The
total number of DVCGEN macros must not exceed the total number of
devices specified in the IODEV parameter of the IOTAB macro. Note that
if one physical spindle contains two or more logical spindles, DVCGEN
macro instructions must be issued for each of these logical spindles. Device
generation by the DVCGEN macro can be changed with ADD and/or DEL
commands at IPL time. Refer to the section Changing I/O Device
Assignments in Chapter 4: Starting the System.

Through emulation, a program can be run on a machine series other than
that for which it was designed. The emulator program, serving as the
interface between the user program and the DOS/VS supervisor, runs
together with the user program in the same partition, in either a
single-partition or mUltiple-partition environment. In a multiple-partition
environment, several emulators can be executed concurrently. One
exception, however, is the Model 125, which cannot execute two
1400-series emulator jobs concurrently. For both a Model 20 and a 14xx
emulator on a Model 125, RPQ SU002 is required.

Chapter 3: Planning the System 3.35

Standard Job Control Settings

I
Tape re~ding and writing on 1400-series machines can operate with odd

or even parity checking. If you will be using a 1400-series emulator and
mixed-parity tape processing, you must specify EU = YES in the SUPVR
macro. If you do not use mixed-parity tape processing, you need not specify
EU=YES.

Prior to executing emulator jobs, you must generate the emulator
program and catalog it into the core image library. This can be done when
the system is generated or at a later time.

Further information on the emulator programs is contained in the following
publications:

• 1401/1440/1460 DOS/VS Emulator on System/370.
• 1410/7010 DOS/VS Emulator on System/370.
• Model 20 DOS/VS Emulator on System/370.

Each time a programmer submits a job to be executed, he includes job
control statements that define the beginning and end of his job and all the
physical or logical requirements or options associated with the job. If
certain job control settings are agreed upon within an installation and made
standard during supervisor generation, the programmer need not provide a
lengthy OPTION job control statement for each job submitted. If a given
job requires different settings from those that are standard, the / / OPTION
card can be used to override the standard settings for the duration of that
job.

The job control settings that can be defined as standard include:
whether a dump is desired if an abnormal termination occurs, whether
language translators are to list source module diagnostics or to produce an
object deck, and whether a symbolic cross-reference list is desired from the
assembler or ANS COBOL, etc.

These job control settings are specified in individual parameters of the
STDJC macro.

Another macro that deals with standard job control settings is ASSGN.
This macro establishes standard job control associations between symbolic
device names and physical I/O devices. If multiple assignments within one
job stream are made for a single logical unit, only the last assignment for
that logical unit is valid: the rest are ignored. These standard assignments
can be overridden for the duration of a job via the / / ASSGN job control
statement or for the duration until the next IPL via the ASSGN job control
command (no / I).

Standard assignments may be established for all programmer logical
units and all of the system logical units, except the following: SYSRES
(which is established during the IPL procedure), SYSVIS (which is
established via the DPD macro during supervisor generation or the DPD
command during IPL), SYSIN, SYSOUT, and SYSCLB (the latter three
during job control execution).

These standard assignments are supplemented in the system by
cataloging disk and tape labels to the various system and partition standard

3.36 DOS/VS System Management Guide

End of Supervisor

I
Planning the Libraries

label tracks. This relieves the programmer of having to supply this label
information for regular jobs such as compilations and linkage editor
functions. (Refer to Chapter 5: Controlling Jobs for the details on how this
is done.)

The last macro instruction supplied during supervisor generation must be
the SEND macro, which may indicate the address of the end of the
supervisor (or more accurately, the requested starting address of the real
storage to be used by problem programs).

Regardless of your particular supervisor configuration, the SEND
address can be calculated internally. If you have previously assembled a
DOS supervisor (previous to DOS/VS), you may still of course calculate
the size of the supervisor and round the value up to the nearest 2048 bytes
(2K). However, keep in mind that storage protection is a standard feature
on all models of the System/370, and therefore:

The SEND address is always a mUltiple of 2K bytes.

• The address you specify in the SEND macro is compared with the
actual size of your generated supervisor, so that the calculated address
never overlaps any part of the supervisor.

If no address is specified in the SEND macro, the default is the lowest
address possible (that is, the minimum space to contain the generated
supervisor plus 1, and rounded up to the nearest 2K bytes, if
necessary) .

The components of the DOS/VS system are shipped in four system
libraries: the core image library, the relocatable library, the source
statement library, and the procedure library. Most programs and procedures
developed and used by your installation will also be stored in these libraries.
In addition to the system libraries, DOS/VS supports private libraries which
you can use to either substitute for or supplement the corresponding system
libraries.

Planning the size, contents, and location of these libraries according to
the needs of your installation is an essential part of the system generation
procedure. Such detailed planning will ensure that:

• No disk space is wasted by components not required in your
installation.

The libraries are large enough to allow for future additions.

The libraries are accessed by the system with maximum efficiency.

Following a brief description of the purpose and contents of the individual
libraries, this section discusses the three major considerations involved in
tailoring the libraries to the needs of your installation. These considerations
are:

1. Which libraries are required.

Chapter 3: Planning the System 3.37

2. How many disk drives are available and where on these devices should
the individual libraries be placed.

3. How large should each of the libraries be and what should they contain.

Note that this section is intended to give only general guidance for planning
the libraries. More details are contained in DOS / VS System Generation
.and DOS/VS System Control Statements. How to change the size of a
library, how to insert elements into or delete elements from a library, and
how to create private libraries is described in Chapter 7: Using the
Libraries.

Purpose and Contents of the Libraries

The Core Image Library

The Relocatable Library

The Source Statement Library

The following is a brief summary of the purpose and contents of the
DOS/VS system and private libraries.

The core image library contains system and user programs (phases) ready
for execution. Each program phase must first be placed in a core image
library by the linkage editor program. (The structure of a program in the
core image library is described in Chapter 6: Linking Programs.)

The relocatable library contains object modules in relocatable form. These
object modules are the output of the language translator programs
(assemblers and compilers).

The purpose of the relocatable library is to allow you to maintain·
frequently-used object modules in the library and combine them with other
modules without requiring recompilation. The modules from the relocatable
library must be processed by the linkage editor and stored in the core image
library before they can be executed.

The elements in the source statement library are called books. A book is
either a sequence of source statements or a macro definition.

You can catalog into the source statement library sets of source
statements that are used by more than one program, and then include these
statements in your source program by specifying a COpy (assembler and
COBOL) or °A>INCLUDE (PL/I) statement.

The macro definitions in the source statement library include those
macros supplied by IBM as well as any others which you have written and
cataloged yourself. When you issue a macro instruction in your program,
the corresponding macro definition is retrieved from the source statement
library and included in yonr prQgram according to the parameterf: yO!!

specified.

3.38 DOS/VS System Management Guide

The Procedure Library

Private Libraries

Each book in the source statement library is classified as belonging to a
specific sublibrary; for example, an assembler, a PL/I, or a COBOL
sublibrary. Sublibraries are identified by a one-letter prefix added to the
book name. Letters A through I and the letter Z are reserved for
sublibraries containing system components. You can use the letters J
through Y, the digits 0 through 9, and the special characters $, &, and #,
to define your own sublibraries.

Classifying books by a sublibrary prefix allows a program, for example
written in COBOL, to have the same name as a program written in
assembler language, or for two COBOL programs to have the same name.
A book is defined to belong to a certain sub library at the time it is
cataloged into the source statement library.

Frequently-used sets of control statements can be cataloged into the
procedure library. The elements of the procedure library, called cataloged
procedures, can consist of job control statements and/or SYSIPT data.
Included POWER/VS JECL statements will be treated as DOS/VS
comment statements. If extended procedure support was included during
supervisor generation (by specifying the SYSFIL option) you can also
catalog procedures containing data that is to be read from SYSIPT under
control of the device-independent sequential laCS, by your program or by
IBM-supplied service programs and language translators. SYSIPT in-line
data can be, for example, the control statements processed by the librarian
or the sort/merge program. Cataloged procedures are retrieved from the
procedure library by a special form of the EXEC job control statement.

Private libraries can be defined for the core image, relocatable, and source
statement libraries. The procedure library is supported as a system library
only. You can use private libraries to either replace or supplement the
corresponding system libraries.

Private core image libraries (PCIL) have the same format as and are
supplementary to the system core image library. A private core image
library can be used:

During maintenance or development of operational programs. You can
catalog the copy of the program that you are altering to a PCIL with
the same name as the operational version in the system core image
library.

To preserve security of operational programs, they may be cataloged
into PCIL which is controlled exclusively by the operations department.

• In a multiple-partition system, allocation of PCILs on separate volumes
can relieve disk arm contention on the SYSRES volume.

• If the linkage editor is to be used to catalog into a PCIL in a
foreground partition. Then that PCIL must be exclusively assigned to
that partition.

Chapter 3: Planning the System 3.39

A private core image library is created by the librarian program CORGZ
and is not located on the system residence (SYSRES) extent. The private
core image library extent (associated with the logical name SYSCLB) can
reside on any disk volume that is supported by DOS/VS. Multiple private
core image libraries can reside on one volume or they can be created on
separate volumes. They can be created on the same volume as SYSRES, but
this is not recommended unless the access level is low. SYSCLB can only
be assigned permanently (not temporarily) and is not acceptable as a
standard assignment during supervisor generation.

Choosing the Libraries for an Installation

In as well as executable user programs an operational DOS/VS system all
system components (supervisor, job control program, linkage editor, etc.)
must reside in the system core image library. Therefore, a system core
image library must be present in every DOS/VS installation. Which of the
other libraries you need depends largely on the type and amount of work to
be done and the resources available at your installation. The following
discussion of the advantages and possible applications of the individual
libraries is intended to assist you in selecting a set of libraries that will help
guarantee optimum performance of your system.

Relocatable and Source Statement Libraries

Procedure Library

Although these libraries are optional, few installations can operate
efficiently without them. If, for example, you work with a PL/I compiler
and you need to have the PL/I resident library routines on-line at all times,
these routines must be in the relocatable library. (The only -- and very
inefficient -- alternative would be to include the physical card decks for
such modules in-line with the linkage editor input.) Similarly, when you
assemble programs that use IBM -supplied ma.cros the corresponding macro
definitions must be present in the source statement library.

The same advantages as those gained by having IBM -supplied modules
in a library can of course be obtained if you store your own object modules
or source statement books in a relocatable or source statement library. The
more information you have on-line in a library the less card handling is
required and the more efficient your system will operate. Because the disk
space available to the libraries is limited, you may prefer to reduce the
contents of the relocatable and source statement libraries to a minimum to
allow for sufficient space for the core image library. If additional disk drives
are available, the space problem can be solved by creating private libraries
(see Private Libraries, later in this section.)

In most data processing installations there are a number of programs that
are frequently executed. An inventory control program, for instance, may
have to be run daily or weekly. Or a payroll program may have to be
executed weekly or monthly. These programs are probably used for a long
pericd cf ti..-nc withOut bdiig chaiiged.

3.40 DOS/VS System Management Guide

Private Libraries

For each of these programs, there would be one or more sets of job
control statements, which the programmer prepared and tested when the
program was first run. These sets of job control statements can be
cataloged in a procedure library and then, to retrieve a set, only one
statement is required.

This minimizes repetitive operator handling (which often includes the
replacement of defective cards and reinsertion of diskettes), and reduces
machine time and errors.

A cataloged procedure is exactly the same as what is described above
as a fixed set of job control statements. But the individual procedures are
no longer collected by the operator and selected manually for use; instead,
they are cataloged in card image format in the procedure library, from
where they can be retrieved through a special form of the EXEC job
control statement or operator command. Cataloged procedures can be
modified as they are retrieved from the library.

Refer to Chapter 7: Using the Libraries for information on how to
create and maintain (catalog, delete, etc.) a procedure library. The use of
cataloged procedures (retrieving and modifying) is discussed in Chapter 5:
Controlling Jobs.

You can establish private relocatable or source statement libraries either to
supplement or to replace the system libraries on the SYSRES file, thereby
extending the space available to the system core image library. Conversely,
you can reduce the size of the system core image library by cataloging
selected programs in a private core image library.

Private libraries are also useful in a testing environment where you can
keep working copies of your programs intact on a system library while you
test modifications of the same programs on a private library. Prival~e
libraries can thus add a great deal of flexibility to your system.

You may define as many private core image, relocatable, and source
statement libraries as desired, each serving a particular purpose. For
instance, having a separate core image library for each partition, each on a
separate disk drive, would reduce the disk arm movements on the SYSRES
volume, which means faster access to the libraries. Be careful, however, not
to have too many private libraries in your installation because of the
additional maintenance required. Also, if each programmer were allowed to
have his own private library, the total time spent by the operator in
mounting and dismounting disks might exceed the execution time of the
program.

To be able to use a private core image library the PCIL option must
have been specified when the supervisor was generated. The PCIL option,
and other special considerations concerning the planning of private core
image libraries are discussed under Tailoring the Supervisor, earlier in this
chapter.

Chapter 3: Planning the System 3.41

I Note: Private relocatable and private source statement library are restricted to
the same device type as the SYSRES device; the private core image can be on a
different device type than the SYSRES.

Determining the Location of the Libraries

Having decided which libraries you want in your system, you must
determine where on the available devices these libraries are to be placed.
All system libraries must reside in the SYSRES extent of the system disk
pack in a predefined sequence (see Figure 3.8). Although it is theoretically
possible to have private libraries on the system pack (outside the SYSRES
extent), this is not recommended because it involves increased movement of
the disk arm.

Figure 3.8.

Note: For details on the first tracks of
SYSR ES, the label information cyli n
der, the user area, and the VTOC, refer
to Appendix A: System Layout on Disk.

.. end of SYSRES extent

The Relative Location of the Four System Libraries

The directory area for each library is not shown in the figure. By
definition, all system libraries reside on the system residence file (SYSRES).
If you have additional disk drives, you can define private core image,
relocatable, and/or source statement libraries on the extra volumes. Private
relocatable and private source statement library volumes must be of the
same type as the SYSRES pack. Private core image libraries can be on any
disk device type supported by DOS/VS. The system relocatable and system
source statement libraries can be removed from SYSRES and established as
private libraries; the system core image library, however, must always be
present on SYSRES. It can be supplemented but not replaced by a private
core image library. The procedure library is supported only as a system
library; you cannot create a private procedure library.

Figure 3.9 shows two examples of how you can organize the libraries in
a system '.vith three disk drives. Any other combination of librari~s un ih~
available devices in possible.

3.42 DOS/VS System Management Guide

The examples in Figure 3.9 are to demonstrate that you can distribute
your private libraries among the available devices as desired. A more
practical example of how you can organize your libraries is given in Figure
3.10. The example assumes a system with three disk drives, but it is also
applicable if you have only two or more than three drives. The organization
of the libraries in this example is especially useful when you need large
amounts of data on-line during execution.

Planning the Size and Contents of the Libraries

When planning the libraries for an operational system, you must decide on
their precise contents and size for daily use. Although you can change the
size of your system libraries at any time after system generation (by means
of the librarian programs), you should try to anticipate future space
requirements and, if possible, provide this space. Such detailed planning can
eliminate the need for a complete reorganization of the libraries which
would be necessary if the extension of a library results in an overflow on
the disk pack. Careful planning of the private libraries will save you
additional work because you cannot redefine the extents of a private library
once it has been created. To change the size of a private library you must
create a new private library and copy the contents of the old library into it.
Consider the following factors before deciding on the contents and size of
the libraries:

The average size of a program in your installation.

The number of programs you want on-line.

The amount of space available.

The core image library, for example, is the library in which you will keep
most of your programs. (Otherwise, each program must be submitted to the
linkage editor and placed in the core image library temporarily before it can
be executed.) Therefore, ensure that your core image library is large enough
to accommodate all programs that must be resident and on line; this
includes your own programs as well as IBM-supplied components.

Special considerations apply when you work with an on-line private core
image library:

Program phases starting with $ could be in a private core image library,
but it is more efficient to keep them in the system core image library.
When a $ phase is required, the system first searches the system core
image library and, if it does not find the phase, it then searches the
assigned private core image library.

• For all other phases (not beginning with $), first the private and then
the system core image library is searched; thus, if you work with a
private core image library, search time is reduced for these phases
cataloged in the private core image library.

To plan the contents and size of the relocatable library, determine which of
the IBM-supplied modules can be deleted and how much space you need to
store your own object modules on-line. For any modules you wish to retain
in relocatable form, you can copy them onto a backup disk and delete them
from the operational pack.

Chapter 3: Planning the System 3.43

Vol

~
+::a-

0
0
en ,
< en
en
'< en
(t
:3
s:
~ ::s
~

(JQ
n
:3 n
a
0 c::
0: n

"'rl
jQ'
c
'"I
~

~

~

~ -~ :3
~ -<'
t!)

~
0
r')
~ -0'
::s
rIJ

0

"'" -=-~
t-
so:
'"I
~
::3,
t!)
rIJ

If a private relocatable library and a private source statement library are to replace the corresponding system library, the core image library
directly precedes the procedure library. These private libraries can also be used to supplement the system relocatable and source statement
libraries, in which case the SYSR ES file would appear exactly as shown in Figure 3.6.

A private core image library can only be used to supplement the system core image library, which must always be present on SYSRES.
Several private libraries may reside on the same disk as illustrated,

} SYSRLB

} SYSSLB

D Compiling - Assembling - Link-Editing

Drive X'190' Drive X'191' Drive X'192'

The system core image library (CI U contains only those programs required for execition-time
processing. The compilers, assemblers, and the linkage editor are kept in the private core
image library (PCI Ll.

f) Processing

Cil
Pl
PCll
PRl
PSSl

Drive X'190' Drive X'191' Drive X'192'

For execution-time processing, the private libraries are no longer required and can be replaced
by a data volume. Thus, maximum possible space is allowed for processing data.

system core image library
procedure library
private core image library
private relocatable library
private source statement library

Figure 3. t o. Example of Library Organization

Chapter 3: Planning the System 3.45

With one disk drive you may prefer to maintain only enough free space
in the relocatable library of the operational pack to contain the modules for
the largest component in the system. This small relocatable library permits
temporary insertion of any component in relocatable form. This component
can then be immediately link-edited into the core image library and deleted
from the relocatable library.

Similar considerations apply for the source statement library. Determine
which of the IBM-supplied components you need on-line, which should be
transferred to a backup volume for future extensions of your system, and
which can be deleted entirely.

If you intend to use a procedure library, you should allocate sufficient
space for it on the SYSRES file during system generation. In estimating the
amount of space required, consider the number of job control statements
and SYSIPT data records (source modules, utility control statements, etc.)
you expect to store in the procedure library.

After you have determined the space requirements for your libraries in
terms of number and size of programs, you must define and allocate the
amount of disk space needed to accommodate these programs. A set of
formulas is available to calculate the number of tracks and cylinders
required for each library. These formulas are contained in DOS/VS System
Generation. Refer to Chapter 7: Using the Libraries for information on
how disk space is allocated to a library.

The contents of the libraries are identified in the Memorandum to Users
(shipped with the distributed DOS/VS system). The storage requirements
(sizes) for these components and macro definitions are identified in the
section for each component.

3.46 DOS/VS System Management Guide

Part II: Using the System

This section is provided especially for applications programmers and
operators. It is a guide to the day-to-day use of the system. The chapters it
contains are:

Chapter 4: Starting the System describes how the operator performs the
initial program load (IPL) procedure. It also describes how to create the file
required for recording error information.

Chapter 5: Controlling Jobs describes how the applications programmer or
operator supplies input to the job control program, which controls the
execution of a job.

Chapter 6: Linking Programs describes how the applications programmer
prepares input to the linkage editor program, which links the modules
produced by language translators and produces executable programs that
are placed in the core image library.

Chapter 7: Using the Libraries provides applications programmers and
operators with the information on how to alter, copy, and inspect the
contents of the libraries. It also describes how to allocate space to the
libraries and how to create private libraries.

I
Chapter 8: Using POWER/VS has been deleted. See DOS/VS
POWER/VS Installation Guide and Reference.

Chapter 4: Starting the System

Before a job can be entered into the system for execution, the supervisor
must be read into the supervisor area of real storage and the job control
program must be loaded into the virtual background partition. To do this,
the operator starts the system by following the initial program load (IPL)
procedure.

This chapter describes the use of the IPL commands. The exact
formats of these commands are contained in DOS / VS System Control
Statements, and DOS/VS Operating Procedures. This chapter also provides
a summary of the automatic functions of IPL; descriptions of how to
modify the shared virtual area, and how to create the system record file
(SYSREC) and the hard copy file; a section on the optional user exit
routine for security checking after IPL; and a section on entering SYSREC
if the reliability data extractor (RDE) option was generated in the
supervisor.

You must perform the IPL procedure each time you have to:

Load a new supervisor (for normal system start-up, for different
supervisor options, or to recover from a system malfunction. For the last,
refer to DOS/VS Serviceability Aids and Debugging Procedures).

Change the channel and unit assignment of the system residence
(SYSRES), the VSAM master catalog (SYSCAT), or the page data set
(SYSVIS) due to hardware problems with the channel or disk drive.

Modify the shared virtual area (to change allocation or to create the
system directory list).

Create SYSREC (for the first time or because the file was damaged).

Replace SYSRES or SYSVIS because of a hardware problem with the
pack.

Add devices to or delete them from the system configuration.

Set or change the time-of -day clock value.

Set or change the system's time zone value (if TOD= YES was specified
in the FOPT macro during supervisor generation).

Initial Program Loading (IPL)

To invoke the IPL routines, you place the system residence disk pack on a
drive, set the address of that drive in the load unit switches, and press
LOAD (on the video display/keyboard console, type in the address on the
drive and press ENTER). This causes the first record on track 0 to be read
into storage bytes 0-23. The information read in consists of an IPL PSW
(program status word) and two CCWs (channel command words), which in
turn cause the reading and loading of the IPL routines.

I Next, IPL enters the wait state. You now must indicate to IPL the device that
is to be used as the operator console. To do so, press the Request key (or
END/ENTER) on the selected device. This causes an interrupt and automatically

Chapter 4: Starting the System 4.1

transmits the address of this device to IPL. (If you have installed an IPL
communication device list, the interrupt will only be accepted if the address
of the device is contained in the list). IPL assigns the device to SYSLOG.
The assigment remains valid until the next IPL; it overrides any SYSLOG
assigments made during supervisor generation.

After SYSLOG assignment, IPL responds with an information type
message requesting you to enter the supervisor name. If you wish to use
the default supervisor ($$A$SUPl) simply press the request key or enter
key; otherwise type in the name of the supervisor and press ENTER.

Operating in the supervisor state, IPL reads the supervisor nucleus into
low real storage from the core image library. If an unrecoverable error is

I sensed while reading the supervisor nucleus, an error message is displayed
on SYSLOG; the hard wait status is entered and an error code is set in the
first four bytes of real storage. The IPL procedure must then be restarted.
For more information on wait states and error codes, refer to the DOS/VS
Serviceability Aids and Debugging Procedures.

After successfully reading in the supervisor nucleus, IPL assigns the
current physical unit address of the system residence disk pack to the
SYSRES file (in response to your dialing this address in the load unit
switches).

Establishing the Communications Device for IPL

Next, the IPL routine places the central processing unit in the wait state

I
with all interrupts enabled (see Note O. At this time you must indicate
which device is to be used to communicate the IPL commands to the
system (see Note 2). The specific manual operation you must perform
depends on the device desired:

If you wish to use the console (SYSLOG), press the request key on the
console. (On the video display/keyboard console, you can either press
the enter key, the request key, or the cancel key.)

• If you wish to use a card reader that was not assigned as SYSRDR in
the ASSGN macro during supervisor generation, ready this card reader.
IPL then assigns the SYSRDR file to this device for the duration of this
procedure.

• If you wish to use the card reader that is assigned as SYSRDR, press
the interrupt key. (This card reader must have been readied before you
pressed LOAD to invoke the IPL routines as described above.)

If you wish to use the IBM 3540 Diskette I/O Unit, ready it. IPL
assumes that the file IJIPL is part of the diskette and that it contains
the IPL commands in card image format (unblocked 80 byte records).

Note 1: Because any interrupt will (on a first-come basis) establish the issuing
device as the IPL communication device, it is advisable that TP installations
and terminal-oriented installations with locally attached terminals, (for
example, IBM 3277) install the IPL-phase $$A$CDLO. (See IPL
communication Device List.) A 3277 terminal which is to be used as an
operator console or as an IPL communication device must not be attached to a
selector channel.

I Note 2: When you submit IPL commands, enter them via the selected
communication device.

4.2 DOS/VS System Management Guide

Changing 110 Device Assignments

Adding Devices

Deleting Devices

I

If the physical addresses of any I/O devices are different from those
established by DVCGEN macros during supervisor generation, you have to
change the system configuration. (To determine which devices are
supported in the system configuration, check the supervisor assembly
listing.) You can change the configuration by adding or deleting devices.
IPL changes the physical unit configuration accordingly. The modified
system configuration remains in effect until the next IPL.

If you want to change any symbolic unit assignments (except SYSRES,
SYSCAT, and SYSVIS), you must use ASSGN statements or commands.
These are processed by job control as described in the section Symbolic
I/O Assignment in Chapter 5: Controlling Jobs.

Use the ADD command to include an I/O device and physical unit address
that were not included in the system configuration during supervisor
generation. The following requirements should be kept in mind:

You can add a device only if sufficient device table space was provided
via the lOT AB macro during supervisor generation.

If you add a tape cartridge unit, there must be enough space for an
associated Tape Error Block (TEB) if TEBs were specified during
supervisor generation.

If DASD file protection was generated in the supervisor and you add a
DASD, the DASD must conform to the channel range and DASD types
specified in the DASDFP parameter.

If the seek separation option was generated in the supervisor and you
add a DASD, the system must be able to accommodate an additional
seek address block (SAB).

To add TP devices, TP support must have been specified during
supervisor generation.

If any of these requirements is not satisfied, you will get an appropriate
error message. You must then provide space in the control blocks for the
additional device by:

• re-assembling the supervisor, or

deleting unnecessary devices of the type you want to add. You must
then re-issue the ADD command.

Use the DEL command to drop an I/O device from the existing system
configuration. Because all references to the device are removed, any
subsequent ASSGN job control statement that refers to a deleted device
will not be accepted.

Chapter 4: Starting the System 4.3

Setting System Values

The SET command is required because it indicates to IPL that the ADD
and DEL commands (if any) are to be checked. The channel and unit
assignment for SYSRES is also checked at this time.

You can use the SET command to set the system date in the
communications region, the time-of -day clock, and the system time zone. If
you specify a time-of-day clock setting, you must depress the time-of-day
clock switch to the "enable set" position at the exact time specified in the
SET command.

Assigning the VSAM Master Catalog

If VSAM is to be used, the CAT command may be used during IPL to
assign the VSAM master catalog to the SYSCAT file. This is only necessary
if you wish to override the SYSCAT .assignment made during system
generation, or if you failed to assign SYSCAT during system generation.
The CAT command (if used) must be submitted after the SET command
and before the DPD command (described below). In the CAT command,
you indicate the channel and unit number to be associated with the

I SYSCAT file. If the VSAM master catalog resides on a 3340 disk storage
device, this device must be ready before starting the IPL procedure.

Initiating Page Data Set Handling

Automatic Functions of IPL

You must follow the SET command (or the CAT command) by the DPD
command to indicate that IPL is to handle the page data set, which is
necessary for the virtual address area. The DPD command is required, with
or without operands. If submitted without operands, IPL will use the
information specified in the DPD macro during supervisor generation to
perform page data set handling. This includes opening the page data set,
checking its extent limits, and creating label information in the volume table
of contents (VTOC). IPL assigns the symbolic name SYSVIS to the page
data set.

The operands of the DPD command indicate whether the page data set
is to be formatted, its location, extent, and (optional) volume identification.
Because formatting the page data set is time-consuming, you should only
request it if the pack was damaged. The first time you use the page data
set, it will be formatted automatically.

The page data set can reside on any DASD supported by DOS/VS as a
system residence device. To help ensure better performance, the page data
set should not reside on a pack that is subject to heavy I/O requests.

IPL performs the following operations automatically:

• Sets storage protection keys to coincide with the partition allocations
determined during supervisor generation.

4.4 DOS/VS System Management Guide

I

Checks that the CPU model specified during supervisor generation is
the same as the model being used.

• Informs the operator about the status of the time-of-day clock.

•

•

Checks that all DASDs included in the configuration conform to the
channel range and DASD types specified in the DASDFP parameter (if
specified during supervisor generation).

Checks that 3340 disk storage devices that are on line contain data
modules of a size as described by the pertinent PUB and, if they do
not, updates the PUB accordingly.

Unassigns any DASD assignments for devices that are not operational
at this time (so as to prevent the error recovery routines from trying to
establish error recording statistics for these devices).

Fetches the buffer loader transients to load the printer-control buffers
of pertinent printers.

Builds an address list in the supervisor for all RAS transients cataloged
in the system core image library. (The first RAS transient is also loaded
during IPL.)

After IPL completes these operations, the system loader loads the job
control program into the virtual background partition and places the system
in the problem program state. The message "READY FOR COMMUNI
CATIONS" appears on the console immediately after IPL is complete
unless a warm start copy of the SV A is found (in which case the message
appears directly thereafter).

IPL Communication Device List

For teleprocessing installations and for installations with locally attached
terminals (such as the IBM 3277), devices allowed to present an interrupt to
IPL should be restricted; in this way, a device outside the operator's control
cannot establish itself as the device for submitting IPL commands.

To build a restrictive pool of allowable IPL communication devices you
can create an IPL communication device list (CDL) and catalog the list
under the phasename $$A$CDLO in the system core image library (SCIL).
IPL automatically checks for the presence of this phase and, if it is present,
reads the CDL into real storage. (Installation of the phase is optional.)
When IPL enters the wait state and an interrupt occurs, the CDL is
searched for the address of the device issuing the interrupt. If the address is
listed, the interrupting device is accepted as an IPL communication device
and processing continues. If the address is not found, IPL again enters the
wait state.

Once phase $$A$CDLO has been cataloged, the CDL addresses remain
effective for subsequent IPLs. However, you can delete or make changes in
the list as follows:

Delete or rename the phase, using the MAINT program.
Override any CDL entry by manual intervention.

You cannot add or delete addresses in the CDL list singly; instead, you
must reassemble and catalog any updates you can find necessary. You can,
however, create a temporary CDL by using the ALTER MEMORY

Chapter 4: Starting the System 4.5

function - the temporary CDL is effective for only a single run (see the
following section on RESTART/ALTER MEMORY facilities).

For IPL to be successful, once $$A$CDLO is installed, the SYSLOG device
address must be present in the CDL (it usually ranges from 009 to OIF). If
you intend to submit IPL commands (such as ADD, DEL, etc.) from card
reader or diskette, you must enter these addresses in the CDL as well. To
ensure backup in case of hardware errors during IPL, consider stand-by
devices, such as another card reader, diskette, or even an additional
SYSLOG device; list the addresses of these alternatives in the CDL.

The CDL may have up to eight entries each of which is four bytes in
length:

I reserved I cc I uu

0 I 2 3

where: cc = channel number
uu = unit number

You create the CDL by submitting a job that catalogs $$A$CDLO into
the system core image library. The following example creates a CDL with
five entries:

II JOB CATALOG CDL
II OPTION CATAL,NODECK

PHASE $$A$CDLO,+O
II EXEC ASSEMBLY
$$A$CDLO CSECT

1*

DC XL4'OOC'
DC XL4'009'
DC XL4'01F'
DC XL4'4BD'
DC XL4'240'
END

II EXEC LNKEDT
IF:,

card reader
1052
SYSLOG (DOC)
3277
diskette

RESTART / ALTER MEMORY Facilities

I

If your CDL has been created incorrectly (for example, the SYSLOG
device address was omitted, or the CDL contains invalid code), IPL will
enter an endless loop because the address of the device used by the
operator cannot be found in the CDL. You can recover from this situation
by manual intervention using the RESTART/ALTER MEMORY facilities.

• Activate a RESTART interrupt when IPL is waiting for an interrupt
from the SYSLOG device. IPL then enters the disabled wait state.

Use the ALTER MEMORY function and

key in the device address of SYSLOG into real storage locations
X'IO' to X'13' (for example, OOOOOOIF).

4.6 DOS/VS System Management Guide

If your IPL communication device is a card reader or diskette, key
in the address of the device into real storage locations X'14' to
X'l7' (for example, 000004BD).

Activate RESTART again. This signals IPL to take a new CDL from
storage locations X'10' to X'l7'. IPL enters the enabled wait state.

Now press the Request key (or END/ENTER) on the SYSLOG device to continue
normal IPL processing.

Note: The above RESTART/ALTER MEMORY facilities can also be used to
enter a CDL manually at IPL wait time. It allows you to override an existing
CDL entry or to provide CDL functions in the case that a CDL was not
created. In both instances, the address of the SYSLOG device must be given.
All assignments are of temporary nature, they do not apply to subsequent
IPLs.

Building the SDL and Loading the SV A

After IPL when job control is first invoked, it will attempt to find a warm
start copy of the shared virtual area (SVA). If a warm start copy is found,
you can either accept it or reject it. You should reject it if you want to
reallocate the SV A, load other phases into the SV A and system directory
list (SDL), or add phase names to the (SDL).

If the warm start copy is rejected or not available, you can change (if
desired) the allocation of the SV A specified during supervisor generation by
means of the SET SV A job control command.

Next, you must submit SET SDL=CREATE, which enables job control
to build the system directory list and to load the SVA. (Note: The procedure
library initially contains suggested statements for loading the system directory
list.) Immediately following these statements, enter the phase names to be
included in the system directory list via SYSRDR or SYSLOG (depending
on the device from which job control is reading). These statements can be
entered via the IPL communications device. Figure 4.1 illustrates such a job
stream.

These statements can also be entered via a cataloged procedure. The
procedure library, as distributed with the system, contains two procedures
for loading the SVA, for which refer to DOS/VS System Generation. You
can also create your own procedure to load your own phases into the SV A.
Execute this procedure immediately after IPL.

The phases need not be currently cataloged in the core image library,
and, if they are not, the system issues a message on SYSLST (or SYSLOG
if SYSLST is not available). If you subsequently catalog a phase into the
system core image library under a name listed as uncataloged, the entry in
the SDL is activated. In this case, if the phase is also identified in the SDL
as eligible for the SVA, it is loaded there immediately after it has been
link-edited. Thus, under the circumstances described above, you do not
have to re-IPL when you want to load additional phases in the SV A.

Note: The SDL is not searched for a phase that is loaded by an attention
routine.

Chapter 4: Starting the System 4.7

Replacing Phases Stored in the SV A

Occasionally, a phase stored in the SVA needs to be changed; that is, it
must be replaced by an updated version. To replace a phase in the SV A,
linkedit the updated version of the phase to the system core-image library.
Immediately after this linkedit operation, DOS/VS loads the updated phase
into the SV A. The old version of the phase remains in the SV A, but is
made inaddressable. Linkediting for inclusion of a phase in the SV A is
further discussed in Chapter 6: Linking Programs.

Creating the System Recorder File

The DOS/VS Recovery Management Support Recorder (RMSR) requires a
disk extent on which to record statistical information about machine errors
and environmental information. This disk extent is called the system
recorder file and is identified by the symbolic name SYSREC. The
SYSREC file must be created before job control encounters the first JOB
card following an IPL procedure. Usually, you create the SYSREC file only
after the first IPL (not after each IPL). If the SYSREC file has been
damaged, however, you must re-IPL and re-create SYSREC.

The SYSREC file requires a minimum of ten tracks (not including an
alternate track) and cannot be a split cylinder file. You must define
SYSREC as an extent of a permanently online disk device that DOS/VS
supports as a system residence device.

The SYSREC file label information must be included in the standard
label portion of the label cylinder on the SYSRES file. You must, therefore,
submit the / / OPTION STDLABEL statement when creating the SYSREC
file. (Since the label information you submit is written at the beginning of
the standard label track, which overwrites the information that was present
there, you must resubmit all the necessary information. A more detailed
description of preparing standard label information is contained in
Chapter 5: Controlling Jobs.)

Figure 4.1 illustrates a job stream to create the system recorder file.
The IPL commands are included in the figure to emphasize the proper
placement of the statements that create the SYSREC file. Do not include a
/ / JOB statement until you have supplied all the information applicable to
SYSREC. This is because the SYSREC file is opened when the first
/ / JOB statement is encountered. Note that the file name IJSYSRC is
required in the DLBL job control statement.

When the system· is to be shut down, you should issue the Record On
Demand (ROD) command to ensure that no statistical data is lost. For the
IBM System/370 Models 115 and 125, the U command of the mode select
display, should also be issued to save disk usage statistics on the service
DISKETTE. These commands are not valid for recording teleprocessing
statisticat' data. Refer to the appropriate teleprocessing guides for more
information.

To obtain a listing of the SYSREC file, run the EREP program as
described in DOSjVS Serviceability Aids and Debugging Procedures.

4.8 DOS/VS System Management Guide

01301 DATE= .. / .. / .. , CLOCK= .. / .. / ..
0110A GIVE IPL CONTROL COMMANDS
DEL } __________________ -If different from information
ADD .. supplied during supervisor generation
SET
CAT ... If VSAM catalog has not been assigned
DPD during SYSGEN, or if SYSGEN
01201 IPL COMPLETE FOR DOS/VS REL nn.n ECLEVEL= 01 assignment must be changed.
BG 1TOOA WARM START COPY OF SVA FOUND
BG rej
BG 1100A READY FOR COMMUNICATIONS
BG SET SVA=(380K, OK)
BG SET SDL= CREATE
BG$$BOPEN
BG$MAINDIR,SVA
BG
BG
BG
BG /*
BG ASSGN

BG ASSGN SYSREC, X'190' ----------.... - If different from information
BG SET RF·CREATE supplied during supervisor generation.
BG / / OPTION STDLABEL Submit with the rest of
BG / / DLBL IJSYSRC, 'DOS.SYSTEM.RMSR.FILE' the STDLABEL statements.
BG / / EXTENT SYSREC, , , , 1700,43

/*
BG / / JOB FIRST

Continue with normal job stream.

Figure 4.1. Example of Creation of the Shared Virtual Area and the
SYSREC File

During execution of the EREP program, recording on SYSREC is
suppressed.

I Creating the Hard Copy File

I On a system that supports a video display/keyboard console, all messages
displayed on the screen and all information typed in by the operator are
saved in a file on the device assigned to SYSREC. This file is called the
hard copy file because you can obtain printed copies of the file whenever
required.

You must create the hard copy file after the first IPL procedure and
before you submit the first / / JOB statement to the job control program.

The control statements and commands needed to create the hard copy
file are the same as those shown in Figure 4.1 for the SYSREC file with
the exception that you specify HC=CREATE in the SET command, and
the filename IJSYSCN in the DLBL job control statement. More

I
information about creating and printing the hard copy file is given in
DOS/VS Operating Procedures, and DOS/VS System Utilities.

Security Checking after IPL

In the larger DOS/VS systems it is often desirable to perform certain
security checks at the end of an IPL procedure. It may, for instance, be

Chapter 4: Starting the System 4.9

Entering RDE Data

important to know who performed the procedure, whether the right system
pack was mounted, and whether the correct date was entered for the new
work session. Moreover, if you work with labeled data files it is important
that they bear the correct creation date, so as to guarantee that data files
are protected until their expiration date.

After the IPL procedure has been completed, control can be passed to a
user exit routine (phase name=$SYSOPEN) that checks system security
and integrity. This routine is entered once after every IPL procedure. The
DOS/VS distribution volume contains a dummy phase $SYSOPEN in the
system core image library. If you do not use the facility it has no effect on
your system. Conventions for writing this kind of user exit routine, together
with an example, are contained in the section Writing an I P L User Exit
Routine in Chapter 10: Using the Facilities and Options of the Supervisor.

If the supervisor was generated to support the reliability data extractor
(RDE), the system will ask you to provide additional information about the
system when the first / / JOB statement after IPL is processed. A message
(1I89A IPL REASON CODE=) is issued on the device assigned to
SYSLOG. You should respond with a reason code (two characters), which
indicates why the system was restarted. The system may have been started
as the beginning of normal operation or restarted because of a machine
error, a program error, an operator error, etc. Another message (1I91A
SUB-SYSTEM ID=) is issued and you should respond with a code
identifying the device type or program type that failed. On the basis of
these replies job control will build a record for SYSREC.

Before shutting down at the end of the day (or processing period), you
must ensure that no environmental data is lost, by issuing the ROD
command. This command also causes the RDE end-of -day record to be
written on the disk assigned to SYSREC. To obtain a listing of this file,
run the EREP program as described in DOS/VS Serviceability Aids and
Debugging Procedures.

This information will be very valuable to your operations management.
By replying with the exact reason code that applies in each case, you are in
fact ensuring a permanent record of the reason why you had to re-IPL.

Refer to the DOS/VS Operating Procedures, for more extensive
information on the RDE messages and the valid replies to them. DOS/VS
Messages also contains this information for use at the console.

4.10 DOSjVS System Management Guide

Chapter 5: Controlling Jobs

After the system has been successfully started by means of the IPL
program it is ready to accept input for execution.

The unit of work that is submitted to the system for execution is called
a job. A job, and the environment in which it is to run, must be defined to
the system through job control statements and commands. These job
control statements and commands are processed by the job control
program. The job control program is invoked by the supervisor

after initial program !oading, to process the first job after an IPL
procedure, or

• at the normal or abnormal end of a job or job step.

The job control program runs in any virtual partition of at least 64K bytes.
It performs its functions only between jobs and job steps, and, therefore, it
is not present in the partition while a problem program is being executed.

This chapter describes how to supply information to the job control
program to enable it to prepare a job for execution. It shows how to define
jobs and job steps, how to associate files on auxiliary storage with problem
programs and how to execute programs in virtual or real mode. Moreover, it
describes how standard sets of job control statements, called cataloged
procedures, can be retrieved from the procedure library, and how cataloged
statements can be modified.

After each job control statement is read, control can be given to a user
exit routine for examining and altering job control statements prior to their
being processed by the system. For a comprehensive description of this
facility refer to the section Checking and Altering Job Control Statements
later in this chapter.

The differences between job control statements and commands are not
spelled out in detail because a clear-cut distinction is not required in the
context of this chapter. Whenever applicable, it is simply stated whether the
function can be performed using statements, commands, or both. The
description of the job control statements and commands in this chapter is
limited to their use and functions; formats and characteristics of statements
and commands are detailed in DOS/VS System Control Statements.

The information in this chapter is intended for use by system
programmers, application programmers, and system operators.

Chapter 5: Controlling Jobs 5.1

Defining a Job

Setting Up Job Streams

The beginning and end of a job are defined by the JOB and / &
(end-of-job) statements:
II JOB jobname

additional job control statements and program input

If,

The program to be executed in a job is invoked through the EXEC
statement. In the following example, the program PROGA is fetched from
the core image library and executed:
II JOB jobname

II EXEC PROGA

If,

One or more programs can be executed within a job; the execution of a
single program is a job step. Therefore, each job can consist of one or more
job steps. The following job comprises two job steps.

II JOB jobname

II EXEC PROGA

II EXEC PROGB

If,

You are free to include as many job steps in a job as you wish. It is,
however, not advisable to execute, in one job, several programs that are
completely independent of one another. This is because, if one step
terminates abnormally, the job control program will ignore the remaining
job steps up to the next / & statement.

Thus, although perfectly in order, the programs following the one that
failed will not be executed. A typical example of related job steps that
should form a single job are assembling, link-editing, and executing a
program, where correct execution of one job step depends on successful
completion of the preceding one.

I For POWER/VS job setup considerations and examples refer to
DOS/VS POWER/VS Installation Guide and Reference.

The job control program provides automatic job-to-job transition. This
means that an uniimiteu number of jobs can be submitteu to the system in
one batch, and that job control processes one job after the other without

5.2 DOS/VS System Management Guide

requiring intervention by the operator. The job or jobs submitted are
referred to as a job stream (see Figure 5.1 for an example of a payroll
jobstream).

(1&

(II f·:Xf·:<: P/\Y<:IIK

(II P/\USf·: 1,<)/\/) 1>/\ Y<:III·:< 'KS

(1*
f--

I--

f--

(Time cards

(II EXEC PAYHUN

{II
f--

EXTENT SYSOO1

(I I OLBL
I--

FILEP, 'P/\YFI"I':'

(I I ASSGN
I--

SYSOO1,X'160'

(I I ASSGN SYSLS'l', X' 001':'
I--

~

II JOB PAY1

~

Figure 5.1. Example of a Job Stream

-

The operator can interrupt the processing of a job stream in any
partition to make last-minute changes to one of the jobs or to squeeze in a
special rush job. He does this by pressing the request key on the operator
console and entering a PAUSE job control command. This causes
processing to halt at the end of the current job step, or, if the E01 operand
is specified in the PAUSE command, at the end of the current job.

When setting up a job stream for a partition, you should bear in mind
that all jobs will get the priority of that partition. The selection of the jobs
for a particular partition in a multiprogramming system can help to improve
the efficiency of your installation. For example, jobs which have a relatively
low CPU usage and a relatively high rate of I/O activity, and which
therefore spend most of their time waiting for the completion of I/O
operations, should run in a high priority partition. Conversely, CPU-bound
jobs should be in a partition with a lower priority. More information about
partition priorities is given in the section M uitiprogramming in Chapter 1:
Understanding the System.

Summary of Job Control Statements and Commands

The following describes the JOB, end-of-job (/ &), DATE, and PAUSE
statements/ commands. The EXEC statement is discussed under Executing
a Program, later in this chapter. The description of the statements will

Chapter 5: Controlling Jobs 5.3

JOB

touch upon a number of subjects (for example, job control options, logical
unit assignments, UPSI byte, label information cylinder, etc.), which will be
discussed later in this chapter.

The JOB statement indicates the beginning of control information for a job.
The specified job name is stored in the communications region of the
corresponding partition and is used by job accounting and to identify
listings produced during execution of the job.

The JOB statement may be omitted, in which case the job name
NONAME is stored in the communications region. If the JOB statement is
present, it must contain a job name; otherwise, an error condition occurs.

The JOB statement is always printed in positions 1 through 72 on
SYSLST and SYSLOG. If the time-of-day clock is supported, the time of
day is also printed. The JOB statement causes a skip to a new page before
printing is started on SYSLST.

When a JOB statement is encountered, the job control program stores
the job name from the JOB statement into the communications region. If
the / & statement was omitted, the JOB statement will cause control to be
transferred to the end-of-job routine to simulate the / & statement. Refer
to the following section for the operations that are performed.

End-of-Job (/ &) This statement is the last one for each job (not job step). It signals the end
of the input stream for the job. When job control encounters / & on
SYSRDR during normal operation, the standard assignment for SYSIPT
becomes effective and SYSIPT is checked for an end-of-file condition.

If the standard assignments for SYSRDR and SYSIPT are not to the
same device, SYSIPT is advanced to the next / & statement. In the event
of an abnormal termination, job control advances SYSRDR and SYSIPT to
the next / & and proceeds, only if a JOB statement is provided. Therefore
if SYSRDR and SYSIPT are assigned to different devices, the / &
statement should be present on both devices.

If the / & statement is omitted, the next JOB statement will cause
control to be transferred to the end-of-job routine to simulate the / &
statement.

When a / & statement is encountered, the job control program performs
such operations as the following:

5.4 DOS/VS System Management Guide

Resets all job control options for the partition to standard, as established
at system generation, resets the LINK and CAT AL options to zero.

Resets all system and programmer logical unit assignments for the
partition to the permanent assignment established by job control
commands, or (if no permanent assignments have been made) to the
standard assignment established during supervisor generation.

Modifies the communications region as follows:

1. Resets the date from the DATE statement to the one specified in
the SET command during IPL, or (if the time-of -day clock is
supported) to the date currently valid.

2. Stores the job name NONAME.

3. Sets the user area and the UPSI byte to zero.

PAUSE

DATE

Displays the EOJ message on SYSLST and SYSLOG with the time and
duration of the job if the time-of-day clock is supported.

Lists all tape error statistics (TEBs) for the IBM 2495 tape cartridge
reader.

Ensures that end-of-file has been reached on SYSIPT.

Deletes the temporary labels in the label information cylinder on
SYSRES and restores the USRLABEL mode. (See Editing and Storing
Label Information, later in this chapter.)

Checks whether the automatic condense limits of any of the libraries
have been reached (if maintenance has been done in the job).

The PAUSE statement or command can be used to allow for operator
intervention between jobs or job steps.

The PAUSE statement can be included anywhere among the job
control statements of a job stream. It becomes effective at the point where
it was inserted; processing is suspended in the affected partition, and the
operator console is unlocked for input. The PAUSE statement can contain
instructions to the operator and is always listed on SYSLOG.

The PAUSE statement may also be helpful when SYSIN is assigned to
a 5425 card reader (which does not have an end-of-file button). Place the
/ / PAUSE card after the last I & card; this will force control to be given
to the console-keyboard, which enables the console operator to control
subsequent system operation.

The PAUSE command may be entered either through the operator
console (after pressing the request key), or as a job control card; if entered
through the console to the attention routine, the command must specify the
partition that is to pause (if the background partition is intended, however,
no operand is required). After encountering a PAUSE command, the system
passes control to the operator (through the console) the next time that the
job control program is fetched into the specified partition, that is, at the
end of the current job step (which may also be the end of the job). If the
PAUSE command that is entered through the console specifies the EOJ
operand, however, control will pass to the operator only at the end of the
current job, regardless of the number of steps needed to reach that point.

The DATE statement can be used to override the date specified in the SET
command during IPL. The new date is stored in the communications region
for the duration of one job only, unless it is overridden by another DATE
statement.

I Note: The date is not incremented if the job runs past midnight.

You can use the DATE statement, for example, when your program's
output is to indicate yesterday'S date. The DATE statement can be
submitted with the rest of the job control statements.

Chapter 5: Controlling Jobs 5.5

Relating Files to your Program

Symbolic 110 Assignment

Programs always perform some kind of input/output operation, that is they
process files on auxiliary storage devices. Before such files can be
processed, certain information about the files must be provided to the
system. This information includes:

The generic device name and volume serial number or the physical
address of the I/O device on which each of the files resides. (Relating
a file to an actual I/O device is called symbolic I/O assignment).

For files on direct access storage devices (DASD), the exact location of
the file on the storage medium.

• For files on DASD, on diskettes, or on labeled magnetic tape, a
description of the file, called a label, which is used for checking and
protection purposes.

The above information, specified in job control statements, is stored in the
system by the job control program for use by the DOS/VS data
management routines. How this is done is described below.

Whenever a processing program needs access to a file on auxiliary storage,
the system must be informed of the address of the I/O device involved.
The program need not specify an actual device address, but only a symbolic
name which refers to a logical, rather than physical, unit. Before the
program is executed the logical unit must be associated with an actual
device. This is done by either the system, the programmer, or the operator,
by means of the ASSGN job control statement or command which specifies
the symbolic name of the logical unit and one of the following:

• A general device class or specific device type, with or without volume
serial number.

The physical address (channel and unit number) of the I/O device.

• A list of physical addresses.

Another logical unit.

See Figure 5.2 for an illustration of some of these combinations.

Logical Units and Symbolic Device Names

There are two types of logical units: system logical units, primarily used by
the system control and service programs, and programmer logical units,
primarily used by the processing programs. The following list shows the
symbolic names that refer to a logical unit and the I/O devices that each
unit can represent. In the case of disk devices, the logical unit is not
assigned to the entire volume mounted on the device but only to the
referenced extent(s). Refer to the section Files on Direct Access Devices
for more inform~tion on disk files.

5.6 DOSjVS System Management Guide

Processing Program

... Symbolic Device Name

Job Control

//ASSGN

... Physical Device Address

I/O Device

Figure 5.2. Example of Symbolic I/O Assignment (Part 1 of 2)

l. The logical unit specified in the processing program (via DTF or
CCB) is a print file referred to by the symbolic device name
SYSLST.

2. An ASSGN statement is used to associate SYSLST with the
physical address OOE of a printer. This information is stored in the
system by job control and can be accessed when a program is
executed.

Chapter 5: Controlling Jobs 5.7

Processing prog.~ra~m~~~~~~~=~~~~~~

I/O Devices

130

3330

Figure 5.2.

5.8 DOS/VS System Management Guide

000001

131 132

3330 3330

... List of
physical
devices

... Device type

3330,
VOL=OO0001

... Symbolic device name

888
Example of Symbolic 110 Assignment (Part 2 of 2)

If you use the DISK device class option, or device type option use
volume serial numbers, and be sure that they are unique.

System Logical Units

SYSRDR

SYSIPT

SYSPCH

SYSLST

SYSLOG

SYSLNK

SYSRES

SYSCLB

SYSSLB

SYSRLB

SYSREC

SYSVIS

SYSCAT

SYSCTL

Card reader, magnetic tape unit, disk device, or diskette used as
input unit for job control statements or commands.

Card reader, magnetic tape unit (single volume), disk device, or
diskette used as input unit for programs.

Card punch, magnetic tape unit, disk device, or diskette used as
the unit for punched output.

Printer, magnetic tape unit, disk device, or diskette used as the
unit for printed output.

Operator console used for communication between the system
and the operator and for logging job control statements.

Disk device used as input to the linkage editor.

System residence extent on a disk pack.

Disk device used for a private core image library.

Disk device used for a private source statement library.

Disk device used for a private relocatable library.

Disk device used to store error records collected by the
recovery management support recorder (RMSR) function. For
the Models 115 and 125, messages to or from the operator are
stored on another file on SYSREC so that a hard copy listing
of these messages can be produced.

Disk device used to hold the virtual storage page data set.

Disk device used to hold the VSAM master catalog.

Used by DOS/VS at IPL time to load the buffer(s) of
FCB-type printers.

Of these system logical units, user programs may also use SYSIPT and
SYSRDR for input, SYSLST and SYSPCH for output, and SYSLOG for
communication with the operator. However, other system logical units must
not be used in place of programmer logical units (within user programs or
EXTENT statements).

Two additional symbolic names, SYSIN and SYSOUT, are used under
certain conditions:

SYSIN Can be used if you want to assign SYSRDR and SYSIPT to
the same card reader or magnetic tape unit. You cannot assign
SYSRDR and SYSIPT to the same disk or diskette extent, you
must instead assign SYSIN to that extent.

SYSOUT Must be used if you want to assign SYSPCH and SYSLST to
the same magnetic tape unit. It cannot be used to assign
SYSPCH and SYSLST to disk or diskette because these two
units must refer to separate extents.

SYSIN and SYSOUT are valid only to job control and cannot be
referenced in a user program. Examples for the use of SYSIN and SYSOUT
are given in the section System Files on Tape, Disk, or Diskette later in this
chapter.

Chapter 5: Controlling Jobs 5.9

Programmer Logical Units

SYSOOO - SYSmax: Any devices in tlie system used for processing program
(including user program) input/output.

Note: The linkage editor uses SYSOOJ and the assembler uses SYSOOJ,
SYS002, and SYS003. Some IBM language translators also use SYS004 and
DOS/VS system utilities use SYS005 (refer to the appropriate programmer's
guides).

You can assign each of these programmer logical units to any of the
existing partitions without a prescribed sequence. The maximum number of
programmer logical units for the system and for each partition as well as
the minimum per partition can be determined as follows:

The background partition requires a minimum of ten programmer
logical units.

• Each foreground partition requires a minimum of five programmer
logical units.

The maximum number of programmer logical units in the system
depends on the partitions generated. The maximum value that you can
specify as SYSmax is as follows:

Maximum number of
programmer logical units for

NPARTS F1 Total of all other
partitions

(including BG)

1 - 241

2 241 226

3 241 212

4 241 198

5 241 184

The maximum number of programmer logical units for the foreground
partition F1, independent of the number of other partitions, is always
241.

The maximum number of programmer logical units for a specific
partition is determined by the formula:

max. number - sum of all programmer logical units assigned to all
other partitions except Fl.

As an example, assume that your system has five partitions. The
maximum number of programmer logical units for a five partition
system is 184. Assume further that 15 programmer logical units have
been assigned to the partition F1, 13 to F2, 19 to F3, and 11 to F4.
The maximum number of programmer logical units for the background
partition would then be

184 - (13 + 19 + 11) = 141

I (The 15 programmer logical units (LUBs) for F1 are not included).

5.10 DOS/VS System Management Guide

Types of Device Assignments

I When you specify a programmer logical unit in the form SYSnnn, the
range for nnn is 000 up to but not including the maximum number of
programmer logical units.

Device assignments are either standard, permanent, or temporary,
depending on the time of the assignment and the type of ASSGN statement
or command used.

Standard Device Assignments. Standard device assignments are established
during supervisor generation in the ASSGN macro. These assignments are
valid until the next supervisor generation.

Once the supervisor is loaded, and after IPL, modifications to the
existing standard assignments can be introduced. These assignments can be
either permanent or temporary.

Pennanent Device Assignments. A permanent assignment is set up between
jobs or job steps any time after IPL by the ASSGN job control command
(no / /) or the ASSGN job control statement with the PERM operand. It is
valid until the next IPL procedure unless superseded by another ASSGN
job control command. A permanent assignment can be changed for the
duration of a job or job step by a / / ASSGN statement or by an ASSGN
command with the TEMP option.

Temporary Device Assignments. A temporary assignment is established
either by a / / ASSGN statement or by an ASSGN command with the
TEMP option. It is valid for a single job only, unless superseded by another
temporary or permanent assignment. Temporary assignments are reset to
standard or permanent by

a / & or JOB statement, whichever occurs first, or by

a RESET job control statement or command.

Restrictions: The type of device assignment is restricted under certain
conditions:

1. If one of the system logical units SYSRDR, SYSIPT, SYSLST, or
SYSPCH is assigned to a disk device or diskette the assignment must
be permanent or standard.

2. If SYSRDR and SYSIPT are to be assigned to the same disk device or
diskette SYSIN must instead be assigned and this assignment must be
permanent.

3. SYSOUT, if used, must always be a permanent assignment.

4. SYSIN and SYSOUT cannot be specified in the ASSGN macro during
supervisor generation, that is, they cannot be standard assignments.

1
5. The SYSLOG assignment is restricted when SYSLOG was previously

assigned during IPL or by an ASSGN statement/command. The
following table shows the restrictions to the SYSLOG assignments:

Chapter 5: Cont~olling Jobs 5.11

new
ASSGN

old
PRINTER 1052 1250 3277

ASSGN

If IPL from 125D If IPL from 3277

PRINTER YES YES YES YES

Else NO Else NO

If IPL from 125D If IPL from 3277

1052 YES YES YES YES

Else NO Else NO

125D YES YES YES NO

3277 YES YES NO YES

YES = New ASSGN is allowed
NO = New ASSGN is not allowed

Device Assignments in a Multiprogramming System

During supervisor generation you can establish the standard assignments for
the system and programmer logical units for each partition. The same
logical unit can be defined for all partitions referring either to the same or
to different physical devices. Also, different logical units can refer to the
same physical device. This is illustrated in Figure 5.3.

At any other time, however, it is not possible to share a physical device
(except DASD) between partitions. If the physical device in cases (2) and
(3) in Figure 5.3 is not DASD and, for example, no program is in the F2
partition when you want to initiate the F1 partition, you must first unassign
this physical device in the background partition.

With direct access devices this problem does not exist because each
extent of a disk or data cell can be thought of as a separate device. It is
not possible, however, to share a diskette between partitions.

When assigning a DASD, it is advantageous to specify a volume serial
number in the EXTENT statement, especially for a scratch pack.

Device Assignments Required for an Assembly

Files on Diskette Devices

Figure 5.4 shows the logical units that must be assigned to assemble a
program. Note that the ASSGN statements must always precede the EXEC
statement of the job step for which they are to be effective.

The device assignments for compilers are similar to the device
assignments shown in this assembler example; any variations are
documented in the applicable programmer's guides.

After you have informed the system, via the ASSGN statement or
command, on which physical device the file is to reside, you must suppiy
the following information to allow the creation and checking of diskette
labels:

5.12 DOS/VS System Management Guide

0)
BG I SYSOO5 ·U X'191'

F21 SYSOO5 ·U X'192'

Fl I SYSOO5 -u X'193'

CD BG SYSOO5

F2 SYSOO5 X'191'

F1 SYSOO5

CD BG SYS005

F2 SYS006 X'191'

F1 SYS007

Figure 5.3. Possible Device Assignments Set at Supervisor Generation

1. A description of the characteristics of the file. You specify this in the
DLBL job control statement.

2. The volume(s) the file is contained on. You specify this in one or more
EXTENT job control statements.

The label information you supply in the DLBL job control statement may
include the following:

• The name of the file. This name must be identical to the corresponding
file name specified in your program. For programs written in assembler
language, this would be the name of the DTF (Define The File).

• An identification of the file. This name is the one contained in the
volume table of contents (VTOC) on the diskette. It is associated with
the file name via a DLBL statement for the duration of a specific job
or job step to make programs independent of physical files.

• The expiration date of the file.

Chapter 5: Controlling Jobs 5.13

SYSRES

SYSLOG

r-----'
I I __ l __ .c' I

... :r'
~-----~ I :
i ~ __ .J

,J.--, I
, \ I

.----.1.---, \)
~ I _, ,-Only if the program is to

be link-edited ~ II EXEC ASSEMBLY

II OPTION
-~-

7 r------,
II ASSGN SYSLNK..... i' I I

Only if an object deck~ '// .L _ I
is desired II ASSGNSYSPCH..... / (.. _..J_~~ I

II ASSGN SYSO03..... // I -----' I I
// l I-.J

II ASSGN SYSO01 •....
/ _l..., I

/ /' I
/ I ,)

II ASSGN SYSLST..... // I L-_-~

/1 ASSGN SYSIPT~.... // ~/_& ___ --1.._...,;/
II JOB.... // 1* Co __

L

--- r-----,
SYSRDR I I

CPU

SYSPCH
(Optional)

SOURCE ~ __ ..J __ .{ , I
(t' I

PROGRAM r------ ...
I

I
I I--_.J

SYSLNK
(Optionall

;_J.._, I
I \ I

\)

'---' ,1
..::--

SYSLST

SYSOOl
SYS002
SYS003

Figure 5.4. Device Assignments Required for an Assembly

5.14 DOS/VS System Management Guide

1. These assignments will usually be standard, established during
supervisor generation.

2. If SYSRDR and SYSIPT are assigned to the same device, the source
input must be placed after the / / EXEC ASSEMBLY card.

• The type of access method used to process the file; always coded as
DU.

A diskette file can consist of a data area on one or more volumes; each
volume can contain only one data area for a particular file. For each of
these data areas, called extents, you must supply the following information
on an EXTENT job control statement:

• The symbolic name of the devict! on which the volume containing the
file is mounted.

The serial number of the volume.

The type of extent; always coded as 1.

In the following example, the program CREATE creates a diskette (DU)
file named SALES that is to be retained for 30 days. The file comprises up
to three diskettes. The diskettes have the volume serial numbers 111111,
111112, and 111113, and are mounted on the drive assigned to the
symbolic device named SYS005.

II JOB EXAMPLE
II ASSGN SYS005,X'060'
II DLBL SALES, 'MONTHLY' ,30,DU
II EXTENT SYS005,111111,1
II EXTENT SYS005,111112,1
II EXTENT SYS005,111113,1
II EXEC'CREATE
1&

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label cylinder on
SYSRES for the duration of the job (see the section Editing and Storing
Label Information, later in this chapter).

Example for Submitting Label Information

Here is an example of how to code the job control statements required to
create or access the labels for a diskette file. It is helpful if you are familiar
with the formats of the DLBL and EXTENT job control statements as
described in DOS / VS System Control Statements.

Assume that a program PROG 1 00 needs a diskette file. The file
consists of four extents; one extent is the diskette with serial number
000020, one is diskette 000030, one is diskette 000040, and one is diskette
000050. The following job stream shows the label statements required:

II JOB SAMLABEL
II ASSGN SYS005,X'060'

1 II DLBL FILNAME,'FILE ID' ,99/365,DU
II EXTENT SYS005,000020,1
II EXTENT SYS005,000030,1
II EXTENT SYS005,000040,1
II EXTENT SYS005,000050,1

2 II EXEC PROG100

3 1&
1 Only one DLBL statement is required. For each extent, one EXTENT statement

must be supplied in the sequence in which the extents are processed.

2 Logical IOCS in PROG too opens the first extent using the file name and file ID in

Chapter 5: Controlling Jobs 5.15

the DLBL statement, and the logical unit and volume serial number in the first
EXTENT statement to locate the actual label on the disk pack. After PROGIOO has
processed the first extent, logical IOCS, based on the extent sequence number,
opens the second extent.

Processing is identical for the third and fourth extents.

3 The / & statement causes the label information stored in the label information
cylinder to be cleared. Thus, if the next job requires the same file, the label
statements must be resubmitted (see Types of Label Information, later in this
chapter and Figure 5.6).

Files on Direct Access Devices

After you have informed the system, via the ASSGN job control statement or
command, which volume or physical device you want, you must supply the
following information to allow the creation and checking of DASD labels:

1. A description of the characteristics of the file. You specify this in the
DLBL job control statement.

2. The exact location of the file on the storage medium. You specify this
in one or more EXTENT job control statements.

3. For non-sequential DASD files the amount of storage in the partition to
be reserved for label processing. You specify this in the LBLTYP job
control statement. Since this information is needed by the linkage
editor, the LBLTYP statement is discussed in Chapter 6: Linking
Programs.

The label information you supply in the DLBL job control statement may
include the following:

• The name of the file. This name must be identical to the corresponding
file name specified in your program. For programs written in assembler
language this would be the name of the DTF (Define The File).

An identification of the file which may include generation and version
numbers of the file. This name is the one contained in the volume table
of contents (VTOC) on the storage device. It is associated with the file
name via a DLBL statement for the duration of a specific job or job
step to make programs independent of physical files.

The expiration date of the file.

The type of access method used to process the file.

An indication of whether or not a data secured file is to be created.

The name of the catalog owning this VSAM file (valid only for
VSAM).

The buffer space to be allocated for this file (VSAM only).

The blocksize to be used for this file on an IBM 3330-11 or 3350
device.

A DASD file can consist of one or more data areas on one or more
volumes. For each of these data areas, called extents, you must supply the
following information on an EXTENT job control statement:

The s~Tmbolic name of the de~lice en \y"hich the v"olumc containing the
file extent is mounted.

5.16 DOS/VS System Management Guide

The serial number of this volume.

The type of the extent. An indexed sequential file, for instance, can
consist of data areas, index areas, and overflow areas. For each of these
areas an extent must be defined, and its type (data, index, or overflow)
must be specified.

The sequence number of the extent within the file.

The number of the track (relative to zero) on which the file extent
begins.

The amount of space (in tracks) the file occupies.

In the following example, the program CREATE creates a sequential disk
(SD) file named SALES that is to be retained until the end of 1975. The
file comprises one extent of 190 tracks, starting on track number 1320. The
disk pack has the volume serial number 111111 and is mounted on the
drive assigned to the symbolic device name SYSOOS:

II JOB EXAMPLE
II ASSGN SYS005,DISK,VOL=111111,SHR
II DLBL SALES, 'ANNUAL SALES RECORDS' ,75/365,SD
II EXTENT SYS005,111111,1,O,1320,190
II EXEC CREATE
1&

The job control program checks the DLBL and EXTENT statements for
correctness and stores the supplied information in the label cylinders on
SYSRES for the duration of the job or job step (see the section Editing
and Storing Label Information, later in this chapter).

Examples for Submitting Label Information

Here are a number of examples of how to code the job control statements
required to create or access the labels for the various types and
organizations of DASD files. It is helpful if you are familiar with the
formats of the DLBL and EXTENT job control statements as described in
DOS/VS System Control Statements. Detailed information on the possible
organizations and access methods for DASD files is given in DOS/VS Data
Management Guide.

Sequentially Organized Disk Files (Single Drive). Assume that a program
PROG 100 needs a sequential disk file located on three different disk packs
that are to be mounted successively on the same device (SYSOOS). The file
consists of four extents: two on the pack with serial number 000020, one
on pack 000100, and one on pack 000006. The following job stream shows
the label statements required:

II JOB SAMLABEL
II ASSGN SYS005,DISK,VOL=000020

1 II DLBL FILNAME, 'FILE ID' ,99/365,SD
II EXTENT SYS005,000020,1,O,1320,190
II EXTENT SYS005,000020,1,1,8,740
II EXTENT SYS005,000100,1,2,1275,64
II EXTENT SYS005,000006,8,3,50,636,6

2 II EXEC PROG100
3 1&

Chapter 5: Controlling Jobs S.17

1 Only one DLBL statement is required. For each extent one EXTENT statement
must be supplied in the sequence in which the extents are processed. The last extent

occupies a split cylinder to illustrate that this is acceptable for sequential files.

2 Logical lacs in PROGIOO opens the first extent using the file name and file ID in

the DLBL statement, and the logical unit and volume serial number in the first

EXTENT statement to locate the actual label on the disk pack. After PROG 100 has

processed the first extent, logical lacs opens the second extent, based on the

extent sequence number.

For the third extent, volume serial number 000100 is specified while the volume

currently mounted on SYS005 has the number 000020. The OPEN routine of

LIOCS notifies the operator of this discrepancy, and the operator can mount the

correct volume, at which time the OPEN routine regains control.

3 The / & statement causes the label information stored in the label information

cylinder to be cleared. Thus, if the next job requires the same file, the label

statements must be resubmitted (see Types of Label Information later in this

chapter and Figure 5.6).

Sequentially Organized Disk Files (Multiple Drives). This example has the
same requirements as the preceding 'Single Drive' example except that the
three volumes are mounted on three different drives. The required job
control statements are as follows:

II JOB SAMLABEL
II ASSGN SYS005,DISK,VOL=000020
II ASSGN SYS006,DISK,VOL=000100
II ASSGN SYS007,DISK,VOL=000006

1 II DLBL FILNAME,'FILE ID' ,99/365,SD
II EXTENT SYS005,000020,1,O,1320,190
II EXTENT SYS005,000020,1,1,B,740
II EXTENT SYS006,000100,1,2,1275,64
II EXTENT SYS007,000006,B,3,50,636,6

2 II EXEC PROG100
1&

1 All label statements submitted are identical to the 'Single Drive' example except for
SYSnnn in the EXTENT statements.

2 Logical IOCS opens each extent in the same way as described in the 'Single Drive'
example except that processing does not stop for removal and mounting of packs,
because enough devices are online to contain the file. A combination of this and
the 'Single Drive' example could be used to reduce handling time without

excessively increasing the total drive requirements.

DA Files. The program PROGIOI processes a direct access file consisting
of four extents contained on three disk packs. The three packs must be
ready at the same time. The following job shows the label statements
required to process the file:

II JOB DALABEL
II ASSGN SYS005,DISK,VOL=000065
II ASSGN SYS006,DISK,VOL=000025
1/ ASSGN SYS007,DISK,VOL=000002

1 II DLBL FILNAME,'FILE ID' ,99/365,DA
II EXTENT SYS005,000065,1,O,1320,190
II EXTENT SYS005,000065,1,1,BO,740
II EXTENT SYS006,000025,1,2,50,906
II EXTENT SYS007,000002,1,3,1275,64
II EXEC PROG101
1&

5.18 DOS/VS System Management Guide

Files on Magnetic Tape

1 The label statements follow the same pattern as for sequential files (described in the
preceding examples) except that (1) the DLBL statement must specify DA to
indicate direct access, and (2) split cylinder mode cannot be used for direct access
files.

Note: If program PROGIOI is a prior DOS self-relocating program, a / /
LBLTYP NSD(4) statement must be included immediately preceding the EXEC
PROGIOI statement.

Files on magnetic tape can be processed with or without labels. For tape
files with IBM standard labels, the label information must be submitted
through the TLBL job control statement. (A tape file can also have
standard-user or non-standard labels; for these labels no job control
statements are required. More information on tape labels is given in
DOS/VS Data Management Guide.)

The standard label information submitted in the TLBL statement may
include the following:

• The name of the file. This name must be identical to the corresponding
filename (DTF name) specified in your program.

An identification of the file.

Creation date for input and expiration date (or retention period) for
output files.

• The volume serial number of the tape reel that contains the file.

For files that extend over more than one volume, the sequence number
of the volume.

• For volumes that contain more than one file, sequence number of the file.

The version and modification number of the file.

When a program that processes tape files with standard labels is to be
link-edited, you must supply a LBLTYP job control statement to define the
amount of storage required in the partition for label processing (see also
Chapter 6: Linking Programs).

As with DASD files, the label information you supply in the TLBL job
control statement is checked and stored in the label information cylinders
on SYSRES for the duration of the job or job step (see Editing and Storing
Label Information later in this chapter).

Controlling Magnetic Tape Operation

The MTC job control statement or command controls certain magnetic tape
operations, for example, file positioning. Files on magnetic tape are almost
invariably processed sequentially. This means, for example, that if you have
five files on one tape reel and you want to process the last one, you have
to read four files before you can access the one you need. Since this is time
consuming, however, you can instruct the job control program to position
the tape at any particular file.

Chapter 5: Controlling Jobs 5.19

Controlling Printed Output

The MTC job control statement or command controls operations such
as:

• Spacing the tape backward or forward to the required file.

Spacing the tape backward or forward a specified number of records.

Rewinding the tape to the beginning.

Writing a tapemark to indicate the end of a file.

In the following example, program PROGA creates a labeled tape file
named RATES on tape volume 222222. At the end of the first job step, an
MTC job control statement is used to rewind (REW) the tape to the
beginning so that the newly created file can be processed by PROGB.

II JOB TAPE
II ASSGN SYS004,TAPE,VOL=222222
II TLBL RATES, 'MASTER' ,75/365,222222
II EXEC PROGA
II MTC REW,SYS004
II EXEC PROGB
1&

Most of the DOS/VS supported printers use a forms control buffer (FCB)
to control the length of forms skips. In addition, printers may be equipped
with the universal character set feature, which is controlled by a universal
character set buffer (UCB). Examples of printers equipped with these
buffers are the 3203 and 3211 printers.

The buffers of these printers must be loaded during, or immediately
after, IPL and they may have to be reloaded later between job steps or,
occasionally, while a job step using the printer is being executed.

The following methods for loading the buffers are available:
To load the FeB

Automatic loading during IPL

Using the SYSBUFLD program between job steps or immediately after
IPL

Using the LFCB command

Using the LFCB macro in the problem program.

To load the UeB

Automatic loading during IPL (applies to 3203, 3211, and 5203U
printers)

• Using the SYSBUFLD program between job steps or immediately after
IPL

• Using the LUCB command

• Using the UCS command (only applies to a 1403 UCS printer).

Using the FCB parameter in the POWER/VS * $$ LST statement.

The method of loading the buffers by using the SYSBUFLD program offers
the advantage that hardly any operator activity is involved; however,

5.20 DOS/VS System Management Guide

loading the buffers by using the LFCB or LUCB command does not
require the operator to wait for a partition to finish processing.

When the contents of an FCB or a UCB are replaced by a new buffer
load, the system uses this new buffer load to control printed output until
the buffer is reloaded (or until the next IPL). None of the above methods
provides automatic resetting of the buffer load to the original contents. It
may be necessary to reset the buffer load to the original contents before
taking a storage dump, to ensure that the dump is printed in the correct
format, without any part of it being left out.

Details on how to load the FCB and UCB are contained in DOS/VS
System Control Statements.

Editing and Storing Label Information

Types of Label Information

The job control program checks the DLBL, EXTENT, and TLBL
statements for correctness and stores the supplied label information in the
label information cylinders on SYSRES. Label information (DLBL and
EXTENT) for a sequential disk file is written after each EXTENT
statement is checked; however, all EXTENT statements for a
non-sequential disk file are processed prior to storing on the label
information cylinders. When the program that processes the file is executed,
the data management routines access the label data in the label information
cylinders
1. to write the appropriate labels onto the storage volume, if the file is to

be created, or

2. if an existing file is to be processed, to check the contents of the label
information cylinders against the label(s) of the file to ensure that the
correct volume is mounted, that no unexpired files are overwritten, etc.

Detailed information on labels and label processing is given in DOS/VS
Data Management Guide, DOS/VS DASD Labels, and DOS/VS Tape
Labels.

Label information can be stored in the label cylinder either temporarily (for
the duration of one job or job step) or permanently (until the next IPL). In
addition, label information can either be dedicated to a single partition or it
can be accessed by all partitions. For the 3340, label information can also
be stored permanently on a second, adjacent cylinder which can be
accessed by all partitions.

The various types of label information are controlled by the following
three options of the OPTION job control statement:

USRLABEL causes all DASD, diskette, and tape label information to be
stored temporarily for one job or job step. The label
information is accessible only by the partition in which it
was submitted. User label information submitted at the
beginning of one job step can be used in subsequent job
steps, unless it is overwritten by label information

Chapter 5: Controlling Jobs 5.21

PARSTD

submitted for an intermediate job step. When label
information is submitted in an intermediate job step, the
USRLABEL area for that partition is cleared and only
label information submitted by the intermediate job step is
written in th~ USRLABEL area. Therefore, it is a good
idea to inculde all TLBL, DLBL, and EXTENT statements
in the first step of a job (preceding the / / EXEC
statement). If no option is specified, or if the OPTION
statement is omitted, USRLABEL is assumed.

causes all DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is accessible only by the partition in which it
was submitted.

STDLABEL causes all DASD, diskette, and tape label information to be
stored permanently for all subsequent jobs. The label
information is accessible by all partitions but can only be
submitted in the background partition. This ensures that the
label information cylinder(s) is/are not updated
simultaneously by two partitions. Symbolic logical units
contained in the submitted label information must not be
greater then the highest symbolic logical unit specified for
background at system generation.

Each type of label information is stored in a separate area of the label
information cylinder(s) depending on the specified option. This is illustrated
in Figure 5.5. The system searches the label information cylinder(s) in the
following sequence:

(1) user label information,
(2) partition label information, and
(3) standard label information.

It is important to distinguish between (1) the period of time for which a
label option is in effect and (2) the period of time for which the label
information is retained on the label information cylinder(s). For example,
the label data submitted following an OPTION statement with the P ARSTD
option is retained for all subsequent jobs until overwritten by another
P ARSTD option, but the P ARSTD option is canceled at the end of the job
or job step in which it was specified. This is shown more clearly in the
summary of label options in Figure 5.6.

By storing the label information for a disk file on the label cylinder(s),
DOS/VS relates that file to the type of the device which is assigned to the
pertinent logical unit when this file is processed for the first time. A later
attempt to use this label information for the same file (and extent) on a
different device type causes DOS/VS to cancel the job. If a different
device type has to be used for a file whose label information is stored on
the label cylinder(s), DOS/VS requires that the original label statements be
resubmitted with the pertinent logical unit assigned to an extent on a device
of the new type.

5.22 DOS/VS System Management Guide

~
i.:;.~ Temporary labels for Fl f~

Permanent labels for Fl

iff Permanent labels for all partitions

.." 't
I::':'·:

.. ", " .. ,.

,::,

/ / OPTION STDLABEL

.,

<':'"

L-______________________________________ -'

':/

Note: The layout of the label information cylinder depends
on the number of partitions defined in your system. This
example assumes that four partitions are present.
If the SYSRES device is a 3340, a second label information
cylinder is available to contain permanent labels for all
partitions.

Figure 5.5. Storing Label Information in the Label Information Cylinder(s)

Chapter 5: Controlling Jobs 5.23

Option l Type of label Option in effect Label information
For

information until retained

USRLABEL2 temporary STDLABEL or for one job. The the partition in
PARSTD is / & statement which the option
specified. causes the was specified.

temporary label area
to be cleared.5

PARSTD permanent a) end of job step for all subsequent the partition in
b) end of job jobs until another which the option

c) USRLABEL or PARSTD option is was specified.

STDLABEL is used.3

specified.

STDLABEL permanent a) end of job step for all subsequent all partitions.4

b) end of job jobs until another
c) USRLABEL or STDLABEL option is
PARSTD is used.3

specified.

1 Search sequence is USRLABEL, PARSTD, and STDLABEL.
2 If no option is given or if the OPTION statement is omitted, USRLABEL is assumed.
3 All label information submitted following a PARSTD or STDLABEL option is written at the beginning of the label area thus

destroying any previously stored information. Therefore, if you want to add label data for another file, all previously stored
label information that is to be kept must be resubmitted.

4 Label information stored with the STDLABEL option is available to all partitions but can be submitted only through
background programs.

5 Additional label information from a subsequent job step will overlay previous label information.

Figure 5.6. Summary of Label Option Functions

Summary of Job Control Statements and Commands

ASSGN

The following summarizes the functions of those job control statements and
commands needed to handle I/O devices and files, as discU'3sed in the
preceding section. Also included are a number of commands that can be
used by the operator to manipulate I/O devices. Note: The previous forms
of label information statements (DLAB, VOL, XTENT, TPLrlB) are still
supported, except when you use 3330, 3340 or 3350 disk drives. However,
when new statements are prepared, DLBL, EXTENT, and TLBL should be
used.

The ASSGN statement or command is used to connect a logical I/O unit to
a general device class, a specific device type, a physical device or a list of
physical devices, or another logical unit. An ASSGN statement or command
can also be used:

• to specify a temporary or permanent assignment.

to specify a volume serial number for a tape, disk, or diskette.

to specify that a disk is shareable by more then one partition or logical
unit.

to unassign a logical unit to free it for assignment to another partition.

to ignore the assignment of a logical unit, that is, program references to
the logical unit are ignored (useful in testing and certain rerun
siiuaiions) .

5.24 DOS/VS System Management Guide

RESET

L1STIO

to specify an alternate tape unit to be used when the capacity of the
original is reached.

The assignment routines check the operands of the ASSGN statementl
command for the relationship between the physical device, the logical unit,
the type of assignment (permanent or temporary), etc. The following list
summarizes the most pertinent items to remember when making
assignments:

1. Assignments are effective only for the partition in which they are
issued.

2. Apart from the operator console, no physical device except DASD can
be assigned to more than one active partition or logical unit at the same
time.

3. All system input and output file assignments to disk or diskette must be
permanent.

4. SYSIN must be assigned if both SYSRDR and SYSIPT are to be
assigned to the same extent.

5. SYSOUT cannot be assigned to disk or diskette; it must be a
permanent assignment if assigned to tape.

6. SYSLNK must be assigned before issuing the LINK or CATAL option
in the OPTION statement; otherwise, the option is ignored and the
message 'PLEASE ASSIGN SYSLNK' is issued to the operator.

7. If SYSRDR, SYSIPT, SYSLST, or SYSPCH is assigned to tape,
diskette, or disk when the system is generated, it will be unassigned by
IPL. Such assignments can be made effective only with the job control
ASSGN statement or command, because ASSGN also opens the file.

8. Before a tape unit is assigned to SYSLST, SYSPCH, or SYSOUT, all
previous assignments to this tape unit must be permanently unassigned.
This may be done by using a DVCDN command instead.

9. The assignment of SYSLOG cannot be changed while a foreground
partition is active.

10. SYSRES, SYSCAT, and SYSVIS can never be assigned by an ASSGN
statement or command. An IPL is required to change these
assignments.

The RESET statement or command can be used to reset temporary
assignments to standard or permanent. With one RESET statement or
command you can reset

all logical units, or

all system logical units, or

all programmer logical units, or

one specific system or programmer logical unit.

The RESET statement is effective only for the partition in which it is
issued.

With the LISTIO statement or command you can obtain a listing of the
current status of all 110 assignments in your system.

Chapter 5: Controlling Jobs 5.25

DVCDN

DVCUP

DLBL

EXTENT

TLBL

MTC

LFCB

LUCB

Executing a Program

The DVCDN (device down) command informs the system that a device is
no longer physically available for system operations.

When the device becomes available again for system operations a
DVCUP (device up) command must be given before new assignments can
be made.

The DVCUP (device up) command informs the system that a device is
available for system operations after it has been down.

One DLBL statement is required for each DASD or diskette file to be
processed. This statement and its associated EXTENT statement(s) are
used for checking or creating DASD and diskette file labels.

One extent statement must be supplied for each area (extent) of a DASD
file or each volume of a diskette file. The EXTENT statement(s) must
directly follow the associated DLBL statement.

For tape files with standard labels, a TLBL statement must be supplied for
checking or creating the standard label.

The MTC statement or command can be used to control magnetic tape
operation. For example, a tape can be rewound to the beginning or it can
be positioned to a certain file or record.

The LFCB command causes the system to load the specified FCB image
from the core image library into the FCB of the printer for which the
command was issued.

The LUCB command causes the system to load the specified UCB image
from the core image library into the UCB of the printer for which the
command was issued.

After you have properly defined the I/O requirements of your program to
the system you can instruct job control to prepare your program for
execution. How this is done and how the supplied information is processed
is described in the following section.

Assembling, Link-Editing, and Executing a Program

In DOS/VS, three processing steps are necessary to obtain results from a
problem program once the source program has been written:

1. Assembly or compiling of the source program into an object module.
(Object modules are discussed in Chapter 6: Linking Programs.)

5.26 DOS/VS System Management Guide

..

2. Link-editing of the object module to form an executable program phase
(see Chapter 6: Linking Programs).

3. Execution of the program phase.

Each of these steps is initiated by the job control program in response to an
EXEC job control statement. The EXEC statement must be the last of the
job control statements submitted for anyone job step. Figure 5.7 shows an
example of the job control statements needed to assemble, link-edit, and
execute a source program.

II JOB EXECUTE
1 II OPTION LINK
2 II EXEC ASSEMBLY
3 II LBLTYP TAPE
4 II EXEC LNKEDT
5 II EXEC

1&

1 To link-edit and execute a program in the same job, the LINK option must be

specified in the OPTION job control statement.

2 The assembler is fetched from the core image library and starts execution.

3 Required to reserve a partition area for processing tape labels at execution time.

4 The linkage editor is fetched from the core image library and starts execution.

5 If an EXEC statement without a program name is encountered, the program last

stored (if stored within the same job) in the core image library by the linkage

editor is fetched for execution (see also Preparing Programs for Execution).

Figure 5.7. Job Control Statements to Assemble, Link-edit, and Execute a
Program in one Job

If SYSRDR and SYSIPT are assigned to the same device, and you wish
to submit data to your program via SYSIPT, the data cards must follow the
corresponding EXEC job control statement. For example, the data
processed by the assembler is your source program which must follow the
/ / EXEC ASSEMBLY statement. The end of the input data submitted for
one program must be indicated by a /* (end-of-data) statement. The /*
statement is not processed by job control but is read by the processing
program. (Note: For an input file on an IBM 5424 MFCU, the /* card
must be followed by a blank card.) The placement of input data and the /*
statement is shown in Figure 5.8.

Chapter 5: Controlling Jobs 5.27

II JOB INPUT
II OPTION LINK
II EXEC ASSEMBLY

source program

1*
II LBLTYP
II EXEC LNKEDT
II EXEC

input data for user program

1*
1&

Figure S.S. Submitting Input Data on SYSIPT

How the job shown in Figure 5.8 is processed by the system is
illustrated in Figure 5.9. The inclusion of SYSIPT data in job streams in
the procedure library is described in the section SYSIPT Data in Cataloged
Procedures.

1 Job control reads the JOB statement and stores the job name in the
communications region in the supervisor. Other functions of the JOB
statement are described under Defining a Job, earlier in this chapter.

2 Job control reads the OPTION statement with the LINK option and
sets the LINK bit in the supervisor. This indicates

a) to the assembler, that the assembled object module is to be written
onto SYSLNK,

b) to the'linkage editor, that the executable program is to be stored in
the core image library only temporarily for execution in the same job.

3 On encountering the / / EXEC ASSEMBLY statement, job control
transfers control to the supervisor passing it the name of the assembler
program.

4 The supervisor loads the assembler into the partition, overlaying job
control.

5 The assembler reads the source program, assembles it, and stores the
object module on SYSLNK (not shown).

6 The assembler transfers control to the supervisor.

7 The supervisor loads job control into storage, overlaying the assembler.

8 Job control reads the / / EXEC LNKEDT statement, as well as any
preceding linkage editor statements, and transfers control to the
supervisor, passing it the name of the linkage editor.

9 The supervisor loads the linkage editor into storage, overlaying job
control.

10 The linkage editor reads the object module from SYSLNK and
link-edits it.

5.28 DOS/VS System Management Guide

Input on SYSI N

OB INPUT IIJ
110
lIE

PTION LINK
XEC ASSEMBLY

sou r~ ~rogram }

/*
IlL
lIE

lIE

inp

/*
1&

BLTYP
XEC LNKEDT

XEC

ut data

Any Partition Supervisor

JOB CONTROL

0 I INPUT

@ I LINK J
.. · ...• :\:~·ASSEMB L Y ---. @):::.:;.:.;.

ASSEMBLER
~ INPUT I r--

0 LINK I

- .t\.
It· - v

I.....- JOB CONTROL --- I INPUT

- t\.l LINK J
---. I: LNKEDT - V

LlNK.EDITOR
~ INPUT I r--

• LINK J

.- t\.

- V
JOB CONTROL

~ --- I INPUT

~
.1 LINK

::::;:::-:;:;:;:;:;:-:;:;:;:;:;:;:;:.;.;.;.;.;.; ;.: ... ::::::::::::::::::::::::{)

y

USER I

PROGRAM [INPUT I r--
LINK I

~:::::::.:::::::::::::::::::::::::::':.:-... ;.:-:;:;:.-:-:-::;:;.

JOB CONTROL
INONAMEI

I.....- ~

---. ~

Core I mage Library

~ ~ r-o ASSEMBLER

I:'t;.
~

JOB CONTROL

.
~

LINKAGE EDITOR

t'r\ EXECUTABLE USER
'AI PROGRAM
t'C\ ,.....

JOB CONTROL

t'f':& ,.....
EXECUTABLE USER
PROGRAM

.t'e'L
'-&'

JOB CONTROL

--... - Tra nsfer of data

:::::::::::::::::::::::::::::~ Transfer of control

__---') Loading from core image library

Figure 5.9. System Operation of an Assemble, Link-Edit and Execute Job

11 The linkage editor stores the executable program in the core image
library.

12 The linkage editor transfers control to the supervisor.

13 The supervisor loads job control into storage.

14 Job control reads an EXEC statement without a program name.

15 The program last stored in the core image library by the linkage editor
to be loaded and executed. (See also Preparing a Program for
Execution) .

16 The user program is executed. It reads and processes the data from
SYSIPT and at EOJ relinquishes control to the supervisor.

17 The supervisor loads job control.

Chapter 5: Controlling Jobs 5.29

18 When job control reads the / & statement, it cancels the LINK option
and replaces the jobname by NONAME in the communications region.
Other functions of the / & statement are described under Defining a
Job, earlier in this chapter.

Executing Ca(aloged Programs

Programs can be cataloged permanently in the core image library after they
have been assembled and link-edited. This saves assembling and link-editing
the program for every run.

Cataloging into the core image library is done by the linkage editor in
response to an OPTION job control statement with the CAT AL option (see
Chapter 6: Linking Programs).

To execute a cataloged program you use an EXEC job control
statement specifying the name under which the program was cataloged (as
shown for the assembler and linkage editor in the preceding example).

For example, the following job executes a program that was cataloged
in the core image library under the name PROGA; data cards are submitted
on SYSIPT:

II JOB CAT

assignment and label
statements, if required

II EXEC PROGA

input data

1*
If:,

Preparing Programs for Execution

Before any program can be executed it must be stored in the core image
library by the linkage editor. Programs are stored either temporarily or
permanently, depending on the option specified in the OPTION job control
statement:

• If the LINK option is specified, the program is stored temporarily for
immediate execution, in the same job. This program will be overwritten
by the next program that is link-edited.

If the CAT AL option is specified, the program is stored permanently
and can be executed any time after the catalog job. It can be deleted
only by the library maintenance program (see Chapter 7: Using the
Libraries), or by another program cataloged with the same name.

5.30 DOS/VS System Management Guide

These two situations require different preparations for the loading of a
program into a partition Figure 5.10 shows the functions performed by the
linkage editor and the job control program to load programs into storage.

SYSRES

DIRECTORY FOR
CATALOGED PHASES

}

DIRECTORY FOR
LINKED PHASES

CORE IMAGE LIBRARY

Figure 5.10. Preparing the Loading of Temporarily and Permanently Stored Programs

The core image directory comprises two directories: one for cataloged phases, and one for linked phases. The
directory for linked phases begins at the first unused track of the core image directory.

/ / OPTION LINK Linkage Editor

Q) Uses the information in the library descriptor entry of the core image
directory for cataloged phases to determine the first available block in
the core image library.

Chapter 5: Controlling Jobs 5.31

® Stores the phase in the core image library.

® Updates the library descriptor entry of the core image directory for
linked phases to indicate the first phase link-edited in the job step (in
case of multiple phases).

® Makes a directory entry in the core image directory for linked phases,
inserting this entry in alphameric sequence (in case of multiple phases).

Job Control

Uses the information in the library descriptor entry of the core image
directory for linked phases to check which phase was the first link-edited
and passes this information to the supervisor, which loads this phase into
the partition.

Note: The next phase link-edited (OPTION LINK or OPTION CATAL) into
the core image library will overwrite the one just temporarily stored.

/ / OPTION CATAL Linkage Editor

(/ / EXEC NAME

S5} Same as for OPTION LINK.

[1J Updates the library descriptor entry of the core image directory for
cataloged phases to indicate the first phase link-edited in the job step
(in case of multiple phases).

o Updates the library descriptor entry of the core image directory for
cataloged phases to indicate the new address of the next available block
in the core image library.

[II Makes a directory entry in the core image directory for cataloged
phases, inserting this entry in alphameric sequence.

Job Control

Locates the corresponding entry in the core image directory for cataloged
phases and passes this information to the supervisor, which loads the phase
into the partition.

Note: If no phase name is specified in the EXEC card, job control uses the
information in the library descriptor entry of the core image directory for
cataloged phases to check which was the first phase link-edited in this job step.

Defining Options for Program Execution

In the preceding section, it was shown how the OPTION job control
statement can be used

to specify the type of label information to be stored for a file
(USRLABEL, PARSTD, STDLABEL options), and

5.32 DOS/VS System Management Guide

to define whether a link-edited program is to be stored temporarily or
permanently in the core image library (LINK, CATAL options).

There are a number of additional functions which you can invoke through
the OPTION job control statement. The most important ones are:

To log all job control statements submitted to the system on SYSLST.
This faciliates diagnosing the job control statements in case of an error.
The option is LOG.

To dump the contents of the registers, the supervisor area, and the
current partition (real or virtual) on SYSLST in case of abnormal
program termination. This is useful for debugging. The option is
DUMP.

To cancel a job if an I/O assignment cannot be performed. The option
is ACANCEL. (Note: If this option is suppressed, control is passed to
the operator.)

To put an object deck on SYSPCH. The object module can then be
combined with other object modules by the linkage editor to form one
executable program, or it can be used as input to the library
maintenance program to catalog it into the relocatable library. The
option is DECK.

To print various listings produced by the language translators on
SYSLST. These listings include object code, symbol table,
cross-reference, and error lists which are useful debugging aids during
the test period of a program. Among the possible options are LIST,
LISTX, SYMA, and XREF.

Each of these options can be suppressed by specifying the prefix NO (for
example, NOLIST, NODUMP). A complete list of the available options is
given in DOS / VS System Control Statements.

You can establish a standard set of these options during supervisor
generation by using the STDJC macro. Standard options are valid for all
jobs unless superseded by an OPTION job control statement. Options
specified in an OPTION statement remain in effect until (1) a contrary
option is read or (2) a JOB or / & statement is encountered which resets
the option to standard.

Communicating with Problem Programs via Job Control

Via job control a problem program can take a specific path of action
dependent on some external event. Such an instruction is given at job
control time by setting program switches in the communications region
which can be tested by the problem program at execution time.

For example, an accounting program that prepares reports of daily,
weekly, and monthly accounts can be instructed through these program
switches when the weekly or monthly reports are due.

The program switches are set at job control time by the UPSI (user
program switch indicator) job control statement. The specific meaning
attached to each bit in the UPSI byte depends on the design of the problem
program. When a JOB or / & statement is encountered, the UPSI byte is
reset to zero.

Chapter 5: Controlling Jobs 5.33

Controlling Jobs in a Multiprogramming System

Reserving Storage for VSAM

Reserving Storage for RPS

After IPL, the job control program is always loaded automatically into the
virtual background partition. It is loaded into a foreground partition in
response to a BATCH or ST ART command issued by the operator and
specifying the required partition. (More information on the operator
commands that control partitions is given in DOS/VS Operating Procedures.)

A program is always loaded into the partition in which job control was
loaded (or in the corresponding real partition).

If the program is relocatable and the relocating loader is supported in
the system, the program can run in any partition. If the program (or single
phase) is reenterable and resident in the shared virtual area, it can be
shared by programs in more than one partition.

The relocating loader and self -relocating programs are discussed in
Chapter 6: Linking Programs.)

For VSAM, there are two general areas for storage considerations. First,
Access Method Services must be utilized for file definitions, catalog
manipulation and other VSAM file utility functions. Access Method
Services modules cannot be loaded into the SV A and therefore have a
virtual partition requirement that depends on the functions required for the
current job. A partition GETVIS area must be provided by specifying
SIZE=AUTO on the EXEC statement for Access Method Services. For
further details, refer to the DOS/VS Access Method Services User's Guide.

Secondly, when user programs access VSAM files, the VSAM modules
may be loaded into either the partition GETVIS area or the shared virtual
area. For best performance, it is recommended that the SV A be used. This
also reduces storage requirements for your virtual partition. The partition in
which VSAM files are to be processed must allow for a GETVIS area to
accomodate VSAM buffers and control blocks. Approximately 302K is
required for VSAM modules in the SVA, while the partition must be large
enough to accomodate the user program and the GETVIS area. The size of
the partition GETVIS area depends on the number of VSAM files being
accessed as well as their control interval sizes. For specific details on
VSAM storage requirements, refer to the VSAM Module in the DOS / VS
System Generation manual.

For programs using RPS (rotational position sensing), part of the virtual
partition in which the program is to be executed must be reserved to
accommodate the RPS DTF extensions. This is done by the SIZE parameter
of the EXEC job control statement. These DTF extensions vary in size
from a minimum of 256 bytes to a maximum of 512 bytes.

Example of a program requiring 75K:

II JOB WEEKLY

II EXEC WEEKEND,SIZE=AUTO
1&

5.34 DOS/VS System Management Guide

Teleprocessing Balancing

If the job WEEKLY runs in a virtual partition of lOOK, the program
WEEKEND will occupy 76K as calculated by the system, while the
remaining 24K are reserved as an additional storage pool, also available to
RPS support for DTF extensions.

The RPS version of logic modules are loaded into and executed out of
the SV A. The SV A must be large enough to accommodate the RPS versions
of the logic modules and the GETVIS area of the SV A must have an
additional 2K for the LDL (local directory list) used by RPS. (The
GETVIS area must have this 2K space even if all the RPS logic modules
are preloaded into the SV A.) The sizes of the SV A and of the GETVIS
work area can be specified in the SV A parameter of the VST AB macro
during supervisor generation. This specification can be overridden by the
SET SV A command issued immediately after IPL.

The RPS versions of the logic modules are contained in the core image
library of the distribution medium. They can either be loaded into the SV A
at IPL time or loaded dynamically as needed into the GETVIS area in the
SV A at execution time. For a user who loads frequently used RPS versions
of the logic modules into the SV A at IPL time, a typical specification might
be SVA=(88K,12K) for the SVA and GETVIS area, respectively. While
this might be a typical value, it is not intended to be totally representative
of every RPS situation.

If there is insufficient virtual storage in either the user area, for the
DTF extension, or in the GETVIS area of the SVA for the RPS version of
the logic module, the file will be opened without RPS support and
processing will continue.

The use of teleprocessing and batch processing at the same time may
occasionally result in long or erratic teleprocessing response times. This may
be especially true if you have overcommitted real storage, thus causing
excessive paging. The teleprocessing application may have to compete so
strongly for real page frames (because of high processing activity in the
batch partitions) that response time increases substantially.

Teleprocessing balancing improves response time by trading off
teleprocessing response time against batch throughput. TP balancing tends
to reduce response times, or at least to stablize them.

After IPL, TP balancing can be activated by the operator's issuing the
TPBAL command, which specifies the number of batch partitions that can
tolerate delayed processing. These will be the lowest priority partitions. The
TPBAL command is also used to change or display the current setting. For
more information, see the DOS/VS Operating Procedures.

Once activated, the TP balancing function can be invoked by using
TPIN/TPOUT macros. Refer to Balancing Teleprocessing in Chapter 9:
Designing Programs for Virtual-Mode Execution for more details.

Chapter 5: Controlling Jobs 5.35

Restarting a Program from a Checkpoint

When you expect a program to run for an extended period of time, you can
make provisions for taking checkpoint records periodically during the run.
These records contain the status of the job and system at the time the
records were written. Thus, they provide a means of restarting at some
point rather than at the beginning of the job if, for any reason, processing
is terminated before the normal end of the job.

Checkpoints are taken by means of a macro which you specify in your
source program. How this is done is described in Chapter 10: Using the
Facilities and Options of the Supervisor. To restart a program from a
checkpoint the RSTRT job control statement is used. The sequence of job
control statements that must be submitted to restart a program is as
follows:

1. A JOB statement specifying the jobname used when the checkpoints
were taken.

2. ASSGN statements, if necessary, to establish the I/O assignments for
the program that is to be restarted.

3. A RSTRT statement specifying
a) the symbolic name of the tape or disk device on which the

checkpoint records are stored,

b) the sequence number of the checkpoint record to be used for
restart,

c) for checkpoint records on disk, the filename (DTF name) of the
checkpoint file.

4. An end-of-job (/ &) statement.

Figure 5.11 shows the sequence of job control statements needed to restart
a checkpointed program that ended abnormally due to, for example, a
power failure. Following are the characteristics of the checkpointed program
that must be considered for restart:

The job name specified in the JOB statement was CHECKP; the same
name must be used for restart.

The checkpoint records were written on magnetic tape; therefore, no
filename need be specified in the RSTRT statement.

The symbolic device name SYS005 was used for the checkpoint file;
this name may be different for restart.

The sequence number of the last checkpoint record written was 0013;
this or any previous checkpoint record can be used for restart. (The
sequence numbers are supplied by the checkpoint routine.)

II JOB CHECKP
II ASSGN SYS006,X'380'
II ASSGN
II ASSGN
II RSTRT SYS006,0013
1&

CHKPT TAPE

Figure 5.11. Example of a RESTART job

5.36 DOS/VS System Management Guide

Additional restart considerations are given in Chapter 10: Using the
Facilities and Options of the Supervisor.

Programs that reserve virtual storage with the SIZE operand of the
EXEC job control statement, and allocate this storage with the GETVIS
macro instruction, should checkpoint the full virtual partition to ensure a
valid restart. Programs using VSAM, the ISAM interface program, or
Access Method Services should checkpoint the full virtual partition since
these programs use the reserved virtual storage. Programs using RPS
support for SAM, DAM, ISAM, and VSAM must checkpoint the entire
virtual partition. In addition, any RPS I/O phases to be used by the
checkpointing program must be preloaded into the SV A. (See Saving Data
for Restart in Chapter 10: Using the Facilities and Options of the
Supervisor for additional Checkpoint/Restart considerations.)

Executing in Virtual or Real Mode

All programs invoked for execution through an EXEC job control
statement are executed in virtual mode in the same virtual partition as the
job control program. You can, however, force a program to run in real
mode, that is, the program is executed in a real partition and no paging is
performed. To run a program in real mode, you must specify the REAL
operand in the EXEC statement. Example:

II JOB NAME

II EXEC PROGA,REAL
1&

If, for the above example, job control runs in virtual partition F2, then
the program PROGA will be loaded and executed in real partition F2. This
requires that the real partition F2 be large enough to hold the entire
program PRO GA. For all the considerations for enabling a program to run
in a real partition see Chapter 6: Linking Programs.

If a program in real mode is smaller than its associated real partition
the unused portion of that partition, should be given to the page pool by
specifying the size of the program in the SIZE operand of the EXEC
statement. Example:

II JOB NAME

II EXEC PROGA,REAL,SIZE=30K
1&

If the program PROGA which is 30K bytes long runs in a 50K real
partition, the remaining 20K bytes of that partition will be given to the
page pool.

If you specify SIZE = AUTO job control automatically uses the
information in the core image directory entry to calculate the size of the
program to be loaded. If you specify SIZE= (AUTO,nK) job control adds
nK bytes to the calculated length. This is especially useful for programs that
dynamically allocate storage during execution (such as compilers).

Chapter 5: Controlling Jobs 5.37

Running programs in real mode implies temporarily forfeiting a number
of page frames in the page pool, which may lead to degradation of system
throughput. Therefore, real mode execution should be used sparingly.

If phase names are present in the system directory list, a main page
pool of at least 4K bytes must be available. If phases resident in the shared
virtual area are to be executed, a main page pool of at least 18K must be
available. For further details on page pool requirements, refer to Defining
the Size of Real Partitions in chapter 3: Planning the System.

With a few exceptions, all IBM-supplied and user-written programs can
be executed under DOS/VS either in virtual or real mode. These exceptions
are listed in the following two sections.

Programs that Must Run in Virtual Mode

Besides job control, which always runs in a virtual partition, POWER/VS
and all programs using VT AM, VSAM, the ISAM interface program,
Access Method Services, or RPS support must be executed in virtual mode.

Programs that Must Run in Real Mode

The IBM-supplied programs OLTEP and the QTAM message control and
message processing programs must be executed in real mode.

User-written programs must be executed in real mode if they contain
channel programs for devices not supported by DOS/VS.

User-written programs must be executed in real mode or modified if they
contain channel programs that are modified during command execution.

• contain I/O appendage routines causing page faults.

contain MICR stacker selection routines or other time-dependent code
for execution of I/O requests.

Summary of Job Control Statements and Commands

EXEC

The following summarizes the job control statements and commands
discussed in this section in relation to program execution.

The EXEC statement indicates that the end of control information for a
job step has been reached, and that execution of a program is to start. It is
the last job control statement processed before a job step is executed.

If the program to be executed has just been processed by the linkage
editor, the program name operand of the EXEC statement is blank.

To execute a program that is permanently cataloged in the core image
library, the EXEC statement must specify the name of the first or only
phase of that program ..

All programs invoked through an EXEC statement are executed in
viriual mode unless the operand REAL is specified. i l'he SiZE parameter of
the EXEC job control statement defines the low-end portion of the

5.38 DOS/VS System Management Guide

•

OPTION

RSTRT

UPSI

partition which will be used during the job step. When the REAL operand
is used, SIZE should also be specified to release the remainder of the
partition to the page pool. SIZE must be specified for virtual mode
programs that require the use of the GETVIS macro to obtain additional
virtual storage during execution.

In response to an EXEC statement with the REAL operand, job
control clears storage from the beginning to the end of the partition, a
FETCH is issued for the desired program, and control is given to its entry
point. When both REAL and SIZE are specified in the EXEC statement,
only the portion of the real partition defined by SIZE is cleared.

(During execution of a virtual-mode program, the page management
routine of the supervisor clears a page frame to zero if no page-in occurs
when this page frame is assigned to the program.)

The OPTION statement can be used to specify certain functions (options)
to be performed by the system when a program is executed. Most of these
functions pertain to the execution of the language processors.

A standard set of options can be established during system generation
by the STDJC macro. If these standard options satisfy the requirements of
your job, an OPTION statement is not needed. Exceptions are the options
LINK, CATAL, PARSTD, and STDLABEL, which cannot be standard and
must, if desired, be specified in an OPTION statement.

The RSTRT statement is used to restart a program from a checkpoint.

The UPSI (user program switch indicator) statement can be used to set
program switches in the communications region that can be tested by the
problem program. The switches (UPSI byte) are reset to zero by a JOB or
/ & statement.

Checking and Altering Job Control Statements

It is often desirable to exercise a certain measure of control on the initiation
of a job step. To this end a facility is provided which enables you to keep a
running check on how a job step is executed, thereby enhancing security,
serviceability, and reliability. After a job control statement has been read,
control can be passed to a user exit routine for the purpose of examining
and altering the statement prior to its being processed by the system.

The DOS/VS distribution volume contains a dummy phase $JOBEXIT
in the system core image library. If you do not use the Job-control-exit
facility, it has no effect on your system. For more information on the
conventions for writing such a job control exit routine, together with an
example, refer to Writing a Job Control User Exit Routine in Chapter 10:
Using the Facilities and Options of the Supervisor.

Chapter 5: Controlling Jobs 5.39

System Files on Tape, Disk or Diskette

System Files on Tape

In the section Symbolic I/O Assignment, earlier in this chapter, it was
stated that a physical I/O device (except DASD) cannot be assigned to
more than one active partition at the same time. This means, for instance,
that in an installation with only one card reader the input job stream on
SYSRDR and SYSIPT for one partition must have been completely
processed by job control and unassigned for that partition before job
streams can be read by another partition. This also applies to the system
output on SYSLST and SYSPCH if only one printer and one card punch
are available.

Since this situation can cause a considerable decrease of system
throughput, DOS/VS permits storing the input job streams and the system
output on a direct access device or, if enough tape units are available, on
magnetic tape. This allows several partitions simultaneously to read system
input from or to write system output to high-speed devices, thus increasing
system throughput and, due to reduced CPU wait time, improving the
overall performance.

I Note: If system logical units (SYSIPT, SYSLST, SYSPCH, SYSRDR) are to
be device independent, DTFDI must be used in the application program.

The following section describes how to store system input and output
on high-speed devices and to read and process the job streams from these
devices.

The same improvements as those gained by having system files on
high-speed devices - but far more efficient and easier to use - can be
achieved by using an optional service program of DOS/VS: POWER/VS.
POWER/VS stores the job streams on disk, transfers the jobs to the
partitions for execution, and stores list and punch output on disk before it
is finally printed or punched. In short, everything described in this section is

I
done automatically by POWER/VS. Thus, if your installation works with
POWER/VS, refer to DOS/VS POWER/VS Installation Guide and
Reference.

If the system input units SYSRDR and SYSIPT are assigned to the same
magnetic tape unit, they may (but need not) be referred to as SYSIN. If the
system output units SYSLST and SYSPCH are assigned to the same
magnetic tape they must be referred to as SYSOUT. The tapes may be
unlabeled or they may have standard labels. SYSIPT assigned to a magnetic
tape cannot be a multi-volume file.

To store the input stream on magnetic tape you must write your own
program that transfers the job stream to the tape. Assume, in the following
example, that you have written such a program and cataloged it in the core
image library under the name CDTOTP; the program CDTOTP uses
SYS004 to read the input job stream, and SYS005 for the tape onto which
the job stream is to be written; the end of input data for CDTOTP is
indicated by * *. The example in Figure 5.12 shows how to use the program

5.40 DOS/VS System Management Guide

System Files on Disk

CDTOTP to create a combined system input file on tape.

II JOB BUILDIN
1 II ASSGN SYSOO4,X'OOC'
2 II ASSGN SYSOO5,X'182'
3 II EXEC CDTOTP

II JOB A

If:,
II JOB B job stream

If:,
4 ** 1&

1 SYS004 is assigned to the card reader from which CDTOTP reads the job stream.

2 SYS005 is assigned to the tape which is to receive the job stream.

3 The CDTOTP program is executed and writes the job stream onto tape.

4 ** (or any other significant character combination) signals end-or-data to
CDTOTP

Figure 5.12. Creation of SYSIN on Tape

After completion of the job BUILDIN shown in Figure 5.12 you can
assign SYSIN to the tape containing the job stream; job control will then
read and process the jobs A and B from the tape just as it would have done
from the card reader.

In the same way you can direct the system output on SYSLST and
SYSPCH to go on magnetic tape and then use your own or an
IBM-supplied program to print or punch the contents of the tape on the
printer or card punch, respectively.

System files on disk can be used only if the SYSFIL parameter was
specified in the FOPT macro during supervisor generation. Systems without
tape units should specify the SYSFIL parameter to facilitate system
maintenance.

When both SYSRDR and SYSIPT are assigned to disk, they must refer
to the same disk extent, and be referred to as SYSIN. Since the output
units SYSLST and SYSPCH have different record lengths, they must be
assigned to separate disk extents; SYSOUT can therefore not be used if
SYSLST and SYSPCH are assigned to disk.

For system files on disk, you must provide the required label
information by means of DLBL and EXTENT job control statements. Note
that only single extent system files are supported. You must use the
following predefined filenames when reading system input from disk or
writing system output on disk:

IJSYSIN for SYSRDR, SYSIPT, SYSIN
IJSYSPH for SYSPCH
IJSYSLS for SYSLST

Chapter 5: Controlling Jobs 5.41

System Files on Diskette

For example, the label information for SYSIN assigned to a disk extent
could be submitted by the following job control statements:

II DLBL IJSYSIN,'DISKINFILE'
II EXTENT SYSIN,DOSRES,1,O,1260,30

The assignment of a system file to a disk extent must always be
permanent (no I I), and it must follow the DLBL and EXTENT statement.
Example:

II DLBL IJSYSIN, 'DISKINFILE'
II EXTENT SYSIN,DOSRES,1,O,1260,30

ASSGN SYSIN,X'131'

After a system file on disk has been processed, it must be closed by a
CLOSE job control command (no II). The second (optional) operand of
the CLOSE command can be used to un assign a system logical unit or
reassign it to another device. The following command closes the SYSIN file
on disk and reassigns SYSIN to the card reader:

CLOSE SYSIN,X'OOC'

The CLOSE command can either be entered on SYSLOG by the operator
or it can be included at the end of the job stream on disk.

If SYSIPT is assigned to a disk extent, the CLOSE command must
precede the I & . Multiple SYSIPT data files can be read via multiple job
steps with one I & at the end of the job stream.

The example in Figure 5.13 shows the job control statements needed to

1. write a job stream on disk,

2. execute the job stream from disk and store the print output on disk,
and

3. print the output from disk on the printer.

The example assumes that you have written your own programs to write the
job stream on disk (CDTODISK) and to list on the printer the print output
stored on disk (DISKTOPR).

System files on diskette can be used only if the SYSFIL parameter was
specified in the FOPT macro during supervisor generation.

If the system input units SYSRDR and SYSIPT are assigned to the
same diskette extent, they must be referred to as SYSIN. Since the output
units SYSLST and SYSPCH have different record lengths, they must be
assigned to separate diskette extents; SYSOUT can therefore not be used if
SYSLST and SYSPCH are assigned to diskette.

For system files on diskette, you must provide the required label
information by means of DLBL and EXTENT job control statements. You
must use the following predefined filenames when reading system input
from diskettes or writing system output on diskettes.

5.42 DOS/VS System Management Guide

®

®

G)

®
®

//JOB STORE
//ASSGN SYS001,X'00C'
//ASSGN SYS006,X'190'
//DLBL DASDOUT, 'DASDOUTFILE'
//EXTENT SYS006,DOSR ES, 1 ,0,1260,30
//EXEC CDTODISK

A

/&
//JOB B

/&
CLOSE SYSLST,X'OOE'
CLOSE SYSI

**
/&

//DLBL IJSYSLS,'OUTPR'
//EXTENT SYSLST,PVR LST, 1,0, 1970,20
ASSGN SYSLST,S'191'

//DLBL IJSYSIN,'DASDOUTFILE'
//EXTENT SYSI N,DOSRES, 1,0,1260,30
ASSGN SYSIN,X'190'

//JOB PRINT
//ASSGN SYS001 ,X'191'
//ASSGN SYS002,X'00E'
//DLBL OUTPR
//EXTENT SYS001,PVR LSL, 1,0,1970,20
//EXEC DISKTOPR
/&

JOB STREAM
IS EXECUTED
FROM DISK

PRINTED
LISTING

The program CDTODISK reads the following job stream from the card reader (SYS001) and stores it on disk (SYS006l. The end
of the job stream is indicated to CDTODISK by * *.

SYSLST and SYSI N are switched to disk. Job control now reads the job stream from the disk on device X'190'. The job stream
is executed and the print output is stored on the disk on divice X'191'. The CLOSE commands at the end of the job stream will
close the system files on disk and reassign them to the printer and card reader, resp.

The program DISKTOPR reads the print output from disk (SYS001) and lists it on the printer (SYS002)'

Figure 5.13. Processing System Input and Output Files on Disk

IJSYSIN FOR SYSRDR, SYSIPT, SYSIN
IJSYSPH for SYSPCH
IJSYSLS for SYSLST

For example, the label information for SYSIN assigned to a diskette extent
could be submitted by the following job control statements:

II DLBL IJSYSIN,'DISKETTE'"DU
II EXTENT SYSIN,DSKETE,l

Chapter 5: Controlling Jobs 5.43

The assignment of a system file to a diskette extent must always be
permanent (no / I), and it must follow the DLBL and EXTENT statement.

Example:
II DLBL IJSYSIN,'DISKETTE' "DU
II EXTENT SYSIN,DSKETE,1

ASSGN SYSIN,X'060'

After a system file on diskette has been processed, it must be closed by
a CLOSE job control command (no / I). The second (optional) operand of
the CLOSE command can be used to unassign a system logical unit or
reassign it to another device. The following command closes the SYSIN file
on diskette and reassigns SYSIN to the card reader:

CLOSE SYSIN,X'OOC'

The CLOSE command can either be entered on SYSLOG by the operator
or it can be included at the end of the job stream on diskette.

If SYSIPT is assigned to a 3540 diskette, the CLOSE command must
be issued prior to reading the / & . Multiple input data files can be read via
multiple job steps with one / & at the end of the job stream.

When job control encounters / & on SYSRDR during normal
operation, the standard assignment for SYSIPT becomes effective and
SYSIPT is checked for an end-of-file condition. If the standard assignments
for SYSRDR and SYSIPT are not to the same device, SYSIPT is advanced
to the next / & statement.

In the event of an abnormal termination, job control advances SYSRDR
and SYSIPT to the next / & and proceeds, only if a JOB statement is
provided.

Interrupting Job Streams on Disk, Diskette, or Tape

After a SYSIN or SYSRDR job stream has been prepared on tape, diskette,
or disk, it may be necessary to interrupt the normal schedule to execute a
special rush job. To do this, you press the request key on the operator
console and enter a PAUSE command with the EOJ operand causing the
corresponding partition to suspend processing at the end of the current job.
At this point you can make a temporary assignment for SYSIN to the card
reader to execute the rush job. At the end of this job, processing of the job
stream on disk, diskette, or tape will resume at the point of interruption.
This is illustrated in Figure 5.14. Starting an urgent job that uses a catalog
procedure by means of a single EXEC statement is discussed in the section
Partition-Related Cataloged Procedures.

Record Formats of System Files

SYSLST records are 121 characters and SYSPCH records 81 characters in
length. From SYSRDR and SYSIPT, job control accepts either 80- or
81-character records. (For none of these files can the records be blocked.)
You can use object modules written on tape, diskette, or disk as input to
the linkage editor after the tape, diskette, or disk has been assigned to
SYSIPT.

5.44 DOS/VS System Management Guide

CD
®
®

®

®

Card Reader Disk Extent Operator Console

//DLBL IJSYSIN, .. .
//EXTENT SYSIN, .. .
ASSGN SYSIN,X'191' //JOB A

/&

/&
//JOB B

/& ----::;~-""'""

//JOB C

/&

o
Press request key and
enter PAUSE xx, EOJ
where xx is the name
of the partition

//ASSGN SYSIN,X'OOC'

//JOB D 'o-...L--L_ CLOSE SYSIN,X'OOC'

/&
//JOB E

/&

SYSIN is assigned to disk and processing of the jobstream on disk begins.

While job B is being executed a PAUSE command is entered at the operator console.

At the end of job B control comes to the operator who can now enter a temporary assign
ment for SYSI N to the card reader.

The job RUSH is read and processed from the card reader. Note that the temporary
assignment of SYSIN is not reset by the //JOB RUSH statement but is retained to end of
the job.

The /& statement resets the temporary assignment of SYSIN to permanent (X'190') and
the next job in the stream on disk is read and executed.

The CLOSE command closes the system file on disk and reassigns SYSIN to the card
reader to process jobs D and E.

Figure 5.14. Interrupting a Job Stream on Disk

The first character of the SYSLST and SYSPCH records is assumed to
be an ASA carriage control or stacker selection character. SYSIPT,
SYSRDR, SYSPCH, and SYSLST records assigned to DASD have no keys,
and record lengths are the same as stated above.

Using Cataloged Procedures

This section describes how to retrieve a cataloged procedure from the
procedure library and how to modify the contents of a cataloged procedure.
How a procedure is cataloged in the procedure library is discussed in
Chapter 7: Using the Libraries.

Chapter 5: Controlling Jobs 5.45

Note: The procedure library should not be updated in a running
multiprogramming system.

Retrieving Cataloged Procedures

To retrieve a cataloged procedure from the procedure library you use the
PROC parameter in the EXEC job control statement specifying the name
of the cataloged procedure. Assume that a certain program called
PAYROLL uses the following job control statements (in addition to the
/ / JOB and / & statements):

II ASSGN SYS017,READER
II ASSGN SYS018,PUNCH
II ASSGN SYS019,X'OOE'
II ASSGN SYS020,TAPE
II ASSGN SYS021,DISK,VOL=111111
II TLBL TAPFLE,'FILE-IN'
II DLBL DSKFLE,'FILE-OUT' ,99/365,SD
II EXTENT SYS021,111111,1,O,200,400
II EXEC PAYROLL

Assume further that these control statements have been cataloged in the
procedure library under the name PAY. If the program PAYROLL is to be
executed, the programmer or operator would simply prepare the following
job control statements:

II JOB USERl
II EXEC PROC=PAY
1&

When the job control program starts reading the job control statements in
the input stream on SYSRDR and finds the EXEC statement, it knows by
the operand PROC that a cataloged procedure is to be inserted. It takes the
name of the procedure to be used (PAY), retrieves the procedure with that
name from the procedure library, and replaces the EXEC statement in the
input stream by the retrieved Pfocedure. The individual statements that are
inserted are then processed from the very beginning. The statement

I I EXEC PAYROLL

causes the program PAYROLL to be loaded and given control. When
execution of PAYROLL is complete, the job control program finds the / &
statement and performs end-of-job processing as usual.

Note: The listing of job control statements on SYSLOG and/or SYSLST will
show the message EOP PAY at the end of the inserted procedure.

Modifying Cataloged Procedures

The preceding example is the simplest case of the use of cataloged procedu
res. It will work as long as the requirements of the program do not change.

It may happen, however, that some of the statements in a cataloged
procedure must be modified for a specific run of a program. For example~
the printer normally used (X'OOE' in the preceding example) may be
temporarily unavailable so that a different printer must be assigned. It does

5.46 DOS/VS System Management Guide

not make much sense to delete the old version and to catalog the new one
because the old version will be needed as soon as the normal printer
becomes operational again.

Likewise, it may be necessary to add or remove certain statements to or
from a cataloged procedure for a specific run of a program. You may wish, for
example, to process a different copy of the file FILE-OUT (see the preceding
example). You must therefore temporarily suppress the corresponding DLBL
and EXTENT statements in the cataloged procedure and replace them by
statements that identify the file you want to process instead.

For cases like this DOS/VS permits

temporarily modifying one or more statements in a cataloged procedure
(thus, overriding what was present).

temporarily suppressing (deleting) one or more statements in a
cataloged procedure without modifying them.

temporarily incorporating one or more additional statements at desired
locations in a cataloged procedure.

You can request temporary modification of statements in a cataloged
procedure by supplying the corresponding modifier statements in the input
stream. Normally, not all statements are to be modified.

You must therefore establish an exact correspondence between the
statement to be modified and the modifier statement by giving them the
same symbolic name. This symbolic name may have from one to seven
characters, and must be specified in columns 73 through 79 of both
statements.

Note: An unnamed statement cannot be modified. To be able to modify a
single statement in a cataloged procedure, you should name each statement
when cataloging. Moreover, the modifier statements must be in the sequence in
which modification is to be performed on the cataloged statements. The JOB
and / & statements cannot be used as modifier statements.

A single character in column 80 of the modifier statement specifies
which function is to be performed:

A - indicates that the statement is to be inserted after the statement in the
cataloged procedure that has the same name.

B - indicates that the statement is to be inserted before the statement in
the cataloged procedure that has the same name.

D - indicates that the statement in the cataloged procedure that has the
same name is to be deleted.

Any other character or a blank in column 80 of the modifier statement
indicates that the statement is to replace (override) the statement in the
cataloged procedure that has the same name.

In addition to naming the statements and indicating the function to be
performed, you must inform the job control program that it has to carry out
a procedure modification. This is done

Chapter 5: Controlling Jobs 5.47

(1) by specifying an additional parameter (OV for overriding) in the EXEC
statement that calls the procedure, and

(2) by using the statement / / OVEND to indicate the end of the modifier
statements.

Placement of the / / OVEND statement is as follows:

Place directly behind the last modifier statement

• If the last modifier statement overwrites a / / EXEC statement and is
followed by data input, place the / / OVEND between the /* and the
/ &.

The following examples show how you can temporarily modify a cataloged
procedure.

Assume that a cataloged procedure named PROC5 for the program
PAYROLL contains the following statements:

// ASSGN SYS017,READER
// ASSGN SYS018,PUNCH
// ASSGN SYS019,PRINTER
// ASSGN SYS020,X'181'
// ASSGN SYS021,DISK,VOL=111111
// TLBL TAPFLE,'FILE-IN'
// DLBL DSKFLE,'FILE-OUT'
// EXTENT SYS021,111111,1,O,200,200
// EXEC PAYROLL

73--79
PAY0001
PAY0002
PAY0003
PAY0004
PAY0005
PAY0006
PAY0007
PAY0008
PAY0009

Assume further that the programmer wants to use tape unit X'183' instead
of X' 181'. The input stream on SYSRDR, in this case, would have to be as
follows:

// JOB USER
// EXEC PROC=PROC5,OV
// ASSGN SYS020,X'183'
// OVEND
/&

73--79

PAY0004

The form of the EXEC statement in the input stream indicated that (1) the
procedure PROC5 is to be used and (2) this procedure is to be modified in
some way. The first three procedure statements are processed without
change. The procedure statement named P A Y0004 is replaced by the
corresponding statement in the input stream (a blank in column 80 specifies
overriding). The remaining procedure statements are again processed
without change.

As another example, assume that the program PAYROLL is to use the
file FILE-OUT 1 instead of FILE-OUT and that this file resides on two
extents of a disk pack that has the volume serial number 111112. The input
stream might then look as follows:

Co1.73--79 80
/1 JOB USER
/1 EXEC PROC=PROC5,OV
II DLBL DSKFLE,'FILE-OUT1'
/1 EXTENT SYS021,111112,1,O,100,200
II EXTENT SYS021,111112,1,1,500,200
II OVEND
/&

5.48 DOS/VS System Management Guide

PAY0007
PAY0008
PAY0008A

Processing would be as follows: The JOB statement and all procedure
statements up to the statement named P A Y0006 are processed without
modification. The procedure statements named P A Y0007 and P A YOOOS are
replaced by the corresponding statements in the input stream (due to the
blank in column SO). The second EXTENT statement in the input stream
has the character A in column SO, which indicates that the statement is to
be inserted after the (replaced) statement named P A YOOOS. The procedure
statement named P A Y0009 is again processed without modification.

The possibility of modification as described above makes the use of
cataloged procedures more flexible. Often, however, it is simpler and more
economical to have different procedures for the same program than to have
a single procedure and modify it.

Several Job Steps in one Procedure

A cataloged procedure may contain more than one EXEC statement, that
is, it may contain control statements for more than one job step (within the
same job). Bear in mind that as the number of job steps in a procedure
increases, so does the time required to re-execute the whole procedure after
an error occurs. A program written in assembler language, for instance,
requires three job steps to assemble, link-edit, and execute the program. For
the use of a cataloged procedure, your input stream for the entire job (on
SYSIN for simplicity) would contain the following:

II JOB USER
II OPTION LINK
II EXEC ASSEMBLY
source deck of program to be assembled
1*
II EXEC LNKEDT
II EXEC
data for program to be executed
1*
1&

If the OPTION statement and the three EXEC statements were cataloged
under the name ASDPROC, the input stream could be simplified to the
following (the shaded portions represent statements from the procedure
library):

II JOB USER
II EXEC PROC=ASDPROC
II OPTION LINK
II EXEC ASSEMBLY
source deck of program to be assembled
1*
II EXEC LNKEDT
II EXEC
data
1*
1&

The same can be done for any number of job steps that logically belong
together and are frequently executed. A stock control program STOCK, for
instance, may be run daily to compile statistics that can be used to prepare
the following lists:

1. An exception list that shows which items are low in stock. Required
daily.

Chapter 5: Controlling Jobs 5.49

2. A list that shows the turnover in currency for a certain item or group of
items. Required weekly.

3. A list that shows the turnover in number of units for each item or
group of items. Required monthly.

4. An inventory list. Required semi-annually.

To simplify processing, four procedures may have been cataloged:

STKPR1 - two job steps: the first to execute STOCK, the second to
prepare list 1.

STKPR2 - three job steps: the first two are the same as for STKPR1, the
third to prepare list 2.

STKPR3 - four job steps: the first three the same as for STKPR2, the
fourth to prepare list 3.

STKPR4 - five job steps: the first four the same as for STKPR3, the fifth
to prepare list 4.

Which lists are printed after every run of STOCK then depends on what
cataloged procedure is used.

Modifying Multistep Procedures without SYSIPT Data

Multistep procedures may be modified in the same way as the single-step
procedure described earlier. A number of considerations, however, apply to
the ordering of the modification statements in the input stream when a
logical unit is assigned to the same physical unit as SYSRDR.

1. It is advisable to avoid using identical symbolic names for the
statements in the procedure.

2. The modifier statements must be in the same sequence as the
statements in the referenced procedure.

3. If one step of a procedure is unmodified, the first modifier statement
for the following step must be placed either before the data input for
the unmodified step or after the last modifier statement of the
preceding job step. If it is the first modifier statement in the input
stream, it must be placed immediately after the EXEC PROC
statement.

4. If a modifier statement overwrites an EXEC statement, a subsequent
modifier statement must be placed after the data input (and /*) for
this step.

Figure 5.15 shows an example of modifying the second and third steps of a
three-step procedure.

In the example given in Figure 5.1, it is assumed that SYSRDR and
SYSIPT are assigned to the same physical unit. The following notes apply
to the example:

1 This is the first modifier statement. It refers to step 2.

2 This statement provides SYSIPT data for PSERV.

3 This modification overwrites the EXEC statement.

4 This statement provides SYSIPT data for DSERV.

5.50 DOS/VS System Management Guide

o

5 This statement provides SYSIPT data for DSERV.

SYSIN Input Stream Procedure CATOI Containing JCL Only

/ / JOB EXAMPLE

/ / EXEC PROC=CATOl,OV

/ / ASSGN SYSRLB,UA

DSPLY CATOI

/ *

/ / ASSGN SYSSLB,UA

/ / EXEC DSERV,REAL

DSPLY CD,RD,SD

/ *
ASSGN SYSCLB,UA

/ /OVEND

DSPLY CD,PD

/ *
/&

Column 73-79

I
STMT3

STMT4

STMTS

STMT6

/ / EXEC PSER V

ASSGN SYSCLB,X'130'

/ / ASSGN SYSRLB,X'130'

/ / ASSGN SYSSLB,X'130'

/ / EXEC DSER V

/ / ASSGN SYSSLB, UA

/ / EXEC DSER V,REAL

/+

Figure 5.15. Example of Modifying a Three-Step Procedure

Column 73-79

I
STMTI

STMT2

STMT3

STMT4

STMT5

STMT6

STMT7

SYSIPT Data in Cataloged Procedures

Procedures may additionally contain SYSIPT inline data, such as control
statements for system utility and service programs and source modules.

Note: This extended support reHuires a supervisor that was generated with the
SYSFIL option.

SYSIPT inline data in procedures may also be any data that is
processed under control of the device independent IOCS used by your
program or IBM-supplied programs. Normally, though, you would not
catalog source programs or data for your problem programs in the
procedure library.

Including ,SYSIPT inline data in procedures is useful and convenient
mainly in the case of control information for system utility and service
programs.

A job stream for an initialize disk utility run could, for instance, contain
the following control statements (the statements are shown in skeleton
format only):

II ASSGN
II EXEC INTDK
II UID IR,C1,R=(0027003)

I
II VTOC STANDARD
VOL 1111111

Chapter 5: Controlling Jobs 5.51

II END
1&

If SYSRDR and SYSIPT were not combined and no cataloged procedure
was used, the job control statements would have to be placed on SYSRDR.
whereas the utility control statements would have to be placed on SYSIPT.
If, however, these control statements had been cataloged (for example,
under the name INITDK), only the following statements would be required
ort SYSRDR:

II JOB NAME
II EXEC PROC=INITDK
1&

SYSIPT data can either be read from SYSIPT or be retrieved from the
procedure library. Combining the two possibilities in a (single-step or
multi-step) procedure is not permitted. Also, SYSIPT data read from the
procedure library cannot be modified. In a cataloged procedure with in-line
SYSIPT data, you should not delete or overwrite an EXEC statement that
gives control to a program that uses the SYSIPT data.

For multistep procedures, SYSIPT data must be read in all job steps
either from SYSIPT or from the procedure library. If the SYSIPT data for
the first job step is read from SYSIPT, having SYSIPT data for any of the
following job steps in the procedure would lead to an error. Conversely, if
the SYSIPT data for the first job step is contained in the procedure, any
SYSIPT data for subsequent job steps must also be contained in the
procedure.

Partition-Related Cataloged Procedures

In some instances, a particular cataloged job may need a specific set of job
control statements, dependent on the partition of execution. For example,
you may want to run a job to store DLBL and EXTENT statements onto
the partition label track for each partition (OPTION PARSTD). Since each
partition requires a different set of label information, you would need a
cataloged procedure for each partition.

Partition-related cataloged procedures, then allow you to retrieve and
execute the appropriate procedure with a single EXEC statement. One
benefit of this feature lies in the ease with which unscheduled jobs can be
started. At execution time, the system selects the proper
procedure--including the appropriate EXTENT and DLBL
statements--based on the partition in which the job is to be executed.

To use the feature, you must first create separate sets of job control
statements that conform to the specific partitions in your system. Most
probably, the difference in these sets will be in the EXTENT and DLBL
statements, because of the different device and DASD space assignments
from partition to partition. Second, in order to distinguish between the
procedures and relate them to the appropriate partitions, the following
naming convention must be used for procedures to be placed in the library:

5.52 DOS/VS System Management Guide

First character of name -
Second character

$
B for BG partition
1 for Fl partition
2 for F2 partition
etc.

Third-eighth characters - any alphameric characters

In the EXEC statement used to start the job, however, the first two
characters of the procedure name must be $$, with the remaining characters
identical to the cataloged name.

On reading the EXEC statement, the system replaces the second $ with
the identifier for the partition in which the job is to run. The procedure
with this name is then retrieved, read, and executed.

To continue the previous example, the procedures may be named
$BPARSTD for the BG partition, $lPARSTD for the Fl partition and so
on. The statement thus needed to invoke the appropriate procedure is
/ / EXEC PROC=$$PARSTD.

Use of Cataloged Procedures by the Operator

All the previously described functions and advantages of cataloged
procedures are also available to the operator. Of special importance in the
operator's use of cataloged procedures is the starting of urgent jobs or
long-running jobs like POWER/VS or teleprocessing.

Full details on the use of cataloged procedures by the operator are
given in DOS / VS Operating Procedures.

Chapter 5: Controlling Jobs 5.53

Chapter 6: Linking Programs

Structure of a Program

Prior to execution in storage, all programs must be placed in the core image
library by the linkage editor. This chapter describes the role of the linkage
editor and how you can communicate with it through control statements.

The name linkage editor appropriately reflects the editing and the
linking operations that this program performs. The linkage editor prepares a
program for execution by editing the output of a language translator into
core image format. The linkage editor also combines separately assembled
or compiled program sections or subprograms (called object modules) into
phases. This process is referred to as linking.

A program can be link-edited and

cataloged permanently,

cataloged permanently and executed immediately, or

cataloged temporarily and executed immediately.

When a program is cataloged permanently into the core image library, the
linkage editor is no longer required for that program*, because the
supervisor can load it directly from the library in response to an EXEC job
control statement, or a FETCH or LOAD macro. On the other hand, if the
program is cataloged temporarily and executed immediately, the linkage
editor is required again the next time the program is to be run.

If a private core image library is assigned to the partition in which the
execution of the linkage editor occurs, the phases produced are entered into
this private core image library. Otherwise (for the background partition),
the phases are entered into the system core image library. To execute the
linkage editor in a foreground partition, a private core image library must
be uniquely assigned to that partition. For more information on using private
libraries, refer to Chapter 7: Using the Libraries.

To understand the functions of the linkage editor, you must understand the
structure of a program during the various stages of its development.
Figure 6.1 summarizes the three sections that follow, which discuss source
modules, object modules, and program phases.

*If the partition boundaries change so that the cataloged program's START and END
addresses no longer fall within the partition, the program must be link-edited again.
This restriction does not apply to relocatable programs loaded by the relocating loader.

Chapter 6: Linking Programs 6.1

SOURCE MODULE

Source Statement
Library

-> Language
Translator

OBJECT MODULE

Relocatable
Library

-> Linkage
Editor

Core Image
Library

Figure 6.1. Stages of Program Development

A set of source statements, or source module 0), must be processed by a language translator, but can first be
cataloged as a book (2) into the source statement library. The output of the language translator is called an
object module (3), which must be processed by the linkage editor, but can first be cataloged as a module (4)
into the relocatable library. The output of the linkage editor is called a phase (5), which is cataloged into the
core image library temporarily or permanently, and can also be loaded into the shared virtual area. (A phase
is cataloged temporarily if / / OPTION LINK is specified; a phase is cataloged permanently if / / OPTION
CAT AL is specified.) At execution time, either the system loader loads a phase from the core image library
into the problem program partition, or (if appicable) the partition requesting the phase uses the copy available
in the shared virtual area.

Source Modules

After planning the most logical approach to the problem you are to submit
to the computer, you write a set of source statements in a programming
language. Your set of source statements, called a source module, must be
processed by a language translator. The language translator assembles
source modules written in assembler language, or it compiles source
modules written in a high-level language (for instance, ANS COBOL,
FORTRAN, PL/I, or RPG II). The language translator transforms the
source module into an object module, which is in machine language.

You can either submit your source module directly to the language
translator for processing, or you can catalog it into a sublibrary of the
source statement library for processing at a later time by the language
translator. (Refer to Chapter 7: Using the Libraries for guidelines on how
to catalog into the source statement library.)

A source module written in assembler consists of definitions for one or
more control sections (CSECTs). Source modules written in a high-level
language do not have this structure.

6.2 DOS/VS System Management Guide

Object Modules

An object module, the output of a language translator, consists of the
dictionaries and text of one or more control sections. The dictionaries
contain the information necessary for the linkage editor to modify portions
of the text for relocation and to resolve cross-references between different
object modules. The text consists of the actual instructions and data fields
of the object module.

You can either submit your object module directly to the linkage editor
for processing, or catalog it into the relocatable library for later inclusion in
a linkage editor job stream. (Refer to Chapter 7: Using the Libraries for
guidelines on how to catalog into the relocatable library.)

The language translator produces four types of cards for each object
module. An identifier field in columns 2-4 indicates the content of each
card. Column 1 contains a multipunch (12-2-9) that identifies the card as
being part of an object module (also referred to as a loader card). The four
types of cards are: ESD, TXT, RLD, and END. The contents of these
cards are summarized below.

ESD (External Symbol Dictionary). This card contains all the symbols
defined in this module that are referred to by another module and all the
symbols referred to by this module that are defined in another module.
There are six classifications of the ESD card, which are described in
DOS / VS System Control Statements.

TXT (Text). This card consists of the actual code of the object module. It
contains the assembled (or compiled) address of the instructions or data
included in the card, and the number of bytes contained in the card. It also
includes a reference to the control section where this text occurs. The
linkage editor uses this reference when applying a relocation factor. If
address constants are present, TXT information is modified as required by
RLD information.

RLD (Relocation List Dictionary). The RLD cards identify portions of the
text that must be modified if the program is subsequently relocated. They
provide information necessary to perform the relocation.

END (End of Module). The END card indicates the end of the module to
the linkage editor. The END card may supply a transfer address (where
execution is to begin). It may also contain the control section length, which
was not previously specified in the ESD section definition or private code
(unnamed CSECT).

If you want to change information in a TXT card, you can prepare a
REP card (user replace card) and submit it with your object module for
cataloging into the relocatable library or for linkage editor processing. A
REP card must be submitted between the TXT card it modifies and the
END card; otherwise, the TXT card is not modified. Usually, you place the
REP card(s) immediately before the END card.

For the exact formats of the ESD, TXT, RLD, REP, and END cards,
refer to DOS/VS System Control Statements.

Chapter 6: Linking Programs 6.3

Program Phases

Relocatable Phases

Self-Relocating Phases

Non-Relocatable Phases

The linkage editor produces a program phase from the object module(s)
you identify in linkage editor control statements. A phase is the smallest
functional unit (one or more control sections) that the system loader can
load into a partition in response to a single EXEC job control statement or
a FETCH or a LOAD macro instruction.

In the PHASE control statement you can instruct the linkage editor to
produce one of three types of phases: relocatable, self-relocating, or
non-relocatable.

The linkage editor can produce a relocatable phase for those phases with an
origin that is not an absolute address and that is not relative to a
non-relocatable phase. If the supervisor was generated to support the
relocating loader, a relocatable phase can be loaded into any partition for
execution.

For each relocatable phase the linkage editor prepares special relocation
information that the relocating loader uses to modify the text if necessary.
Relocation is not performed if the program is to be executed at the same
address for which it was link-edited.

For more information on relocatable phases, refer to the section
Link-editing for Execution at Any Address.

If a relocatable phase is also designed as a reenterable phase, it is
eligible to be loaded into the shared virtual area (SVA). Phases resident in
the SV A can be shared concurrently by programs running in either real or
virtual mode.

Prior to the availability of the relocating loader in DOS/VS, users had to
write self-relocating programs in order to gain the advantages of
relocatability. If you have to perform maintenance on such a program, you
must write this program in assembler language according to the rules
described in DOS/VS Supervisor and I/O Macros. In the PHASE control
statement you indicate an origin of +0. The program must relocate all its
addresses at execution time to correspond with the addresses available in
the partition where the program is loaded.

You do not need to write a self -relocating program if your supervisor
includes support for the relocating loader. (Refer to Relocatable Phases
above.)

A non-relocatable phase is link-edited to be loaded at a specific location
(absolute address) in a partition. Phases link-edited without relocating
loader support are also non-relocatable. When you request execution of a

6.4 DOS/VS System Management Guide

non-relocatable phase in a given partition, the starting and ending addresses
of the phase must be included within that partition. Otherwise, the job is
canceled. If you wish to execute a non-relocatable phase in more than one
partition, you must catalog a separate copy of the phase for each partition.

The Three Basic Applications of the Linkage Editor

The three basic applications of the linkage editor are referred to as:

1. cataloging phases into the core image library

2. link-edit and execute

3. assemble (or compile), link-edit, and execute.

The following sections include a discussion of the system flow during each
of these applications.

Cataloging Phases into the Core Image Library

When you have an operational program that you expect to use frequently,
you should catalog it into a core image library. You can do this in a single
job step, which is shown in Figure 6.2, and described below.

When job control reads the CAT AL operand of the OPTION
statement, it sets a switch that causes the linkage editor input file,
SYSLNK, to be opened. Job control copies onto SYSLNK the linkage
editor control statements present on SYSRDR, and the INCLUDE
statement signals job control to read any object modules that are to be
included from SYSIPT. If an ENTRY statement is not encountered before
the / / EXEC LNKEDT statement, job control includes one on SYSLNK.
This signals termination of the input to the linkage editor.

The linkage editor is then loaded into the partition where the job
stream was submitted, and uses SYSOO 1 as a work file to process the input
found on SYSLNK.

Because the CAT AL option was specified, the linkage editor places the
executable program permanently into a core image library. If a private core
image library is assigned to this partition, the program is cataloged there;
otherwise, (for the background partition) it is cataloged into the system
core image library. The library descriptor entry in the core image directory
for cataloged phases is updated.

If the phase is eligible for the shared virtual area and is indicated as
SV A eligible in the system directory list, the phase is also loaded into the
SVA.

Note: System and work files such as SYSLNK and SYSOO 1 must be defined.

Cataloging a Supervisor. Supervisors may also be cataloged permanently into
the core image library as described above. Be sure, when doing this, to
specify a unique name (eight alphameric characters) for each supervisor.
Because the name of the supervisor must reside on the first cylinder of the

Chapter 6: Linking Programs 6.5

Link-Edit and Execute

core image directory, give the name a low collating sequence (for example,
use $ $ as the first two characters).

/&

SYSIPT ~~------~
/ ~dUle 1-----'

Figure 6.2. A Job Stream to Catalog a Program into the Core Image
Library

The input to the linkage editor may consist of the linkage editor control
statements ACTION, PHASE, INCLUDE, and ENTRY submitted on
SYSRDR and object modules on SYSIPT.

You do not always need to catalog a permanent copy of your program into
the core image library. For instance, you have modified parts of your
program and want to test these modifications with the entire program. In
this case, you can specify the LINK option, which requests that the linkage
editor place a temporary copy of the program into the core image library.
The INCLUDE statement signals job control to read the following input
from SYSIPT.

By specifying an EXEC statement without a program name operand
after the EXEC LNKEDT statement, the program just link-edited is loaded
for execution. The space temporarily occupied by this program in the core
image library is overwritten the next time a program is link-edited.

The shaded portions of Figure 6.3 illustrate how this job stream differs
from Figure 6.2.

6.6 DOS/VS System Management Guide

SYSIPT ~-'----~
? ~dUle ...----'

Figure 6.3. A Job Stream to Link-edit a Program for Immediate Execution

The / / OPTION LINK card causes the linkage editor to place a
temporary copy of the program into the core image library. INCLUDE
(with NO operand) signals job control to read the program from
SYSIPT. The / / EXEC card (without a program name operand) causes
this same program to be loaded for execution immediately thereafter.

The / / OPTION CAT AL card may also be used in this job stream.
In this case, the program that was cataloged (permanently) is executed
immediately.

Assemble (or Compile), Link-Edit, and Execute

You can also combine the job steps described above with a job step for
assembly (or compilation) of your source program. This is especially useful
when you are developing a program. Figure 6.4 shows how your job stream
should be set up. The shaded portions of the figure illustrate how this job
stream differs from that shown in Figure 6.3. Linkage editor control
statements are not required when linking single-phase programs temporarily
into the core image library.

You direct the language translator to write the object module directly
onto SYSLNK by specifying the LINK option at the beginning of the job.
After the linkage editor processes the input on SYSLNK, the same program
is loaded for execution.

If errors occur in one job step causing an abnormal termination, the
remaining job steps are ignored. Other types of errors that do not cause
termination of a job step remain throughout the entire job. If you do not
want to execute the program when errors occur during the link-edit step,
you can specify ACTION CANCEL after the / / OPTION LINK.

Chapter 6: Linking Programs 6.7

/&

Figure 6.4. A Job Stream to Assemble, Link-edit, and Execute

You can omit linkage editor control statements when you specify / /
OPTION LINK. If you specify / / OPTION CAT AL, you must supply at
least one PHASE card with a phase name before / / EXEC
ASSEMBLY.

Processing Requirements

Symbolic Units Required

In a system without private core image library support, the linkage editor
can be executed in the background partition only and places phases into the
system core image library on SYSRES. In a multiple-partition system where
the supervisor supports private core image libraries, the linkage editor can
be executed in any partition. When the linkage editor is executed in a
foreground partition, a private core image library (SYSCLB) must be
uniquely assigned to that partition and phases are placed there. When the
linkage editor is executed in the background partition where no private core
image library is assigned, phases are placed into the system core image
library by default.

The size of the partition in which the linkage editor is operating directly
influences the number of phases and ESD items that can be processed in
one job step., By referring to the specific formulas listed in DOS/VS
System Control Statements, you can determine if a particular combination
can be processed within a given partition.

The linkage editor requires the following symbolic units:

SYSIPT Module input

6.8 DOS/VS System Management Guide

SYSLST

SYSLOG

SYSRDR

SYSLNK

SYSOOI

Programmer messages and listings (if SYSLST is not assigned
no map is printed and programmer messages appear on
SYSLOG)

Operator messages

Control statement input (via job control)

Input to the linkage editor

Work file.

Note that SYSRDR and SYSIPT may contain input for the linkage editor.
This input is written on SYSLNK by job control.

If output from the linkage editor is to be placed in a private core image
library, the following symbolic unit is required:

SYSCLB The private core image library may be assigned anywhere in the
job stream but must be before the / / EXEC LNKEDT
statement.

If object modules from a private relocatable library are to be link-edited,
the symbolic unit SYSRLB must be assigned.

Preparing Input for the Linkage Editor

The input you prepare for the linkage editor consists of job control
statements, linkage editor control statements, and object modules. Job
control reads the job control statements and the linkage editor control
statements from the device assigned to SYSRDR and object modules from
SYSIPT. The linkage editor control statements and object modules are
copied onto the disk extent assigned to SYSLNK.

The linkage editor control statements direct the execution of the linkage
editor. The four linkage editor control statements are: ACTION, ENTRY,
INCLUDE, and PHASE. Position 1 must be blank on linkage editor
control statements; no / / is used. In all other respects their format is the
same as that for job control statements.

The job control statements that directly influence the linkage editor are:
OPTION CATAL, OPTION LINK, and LBLTYP.

A description of how to prepare these control statements is given on
the following pages. Here, the various operands of the control statements
are described under headings that indicate their function. In the section
Summary of Control Statements Related to Link-editing, these operands
are briefly described again under the control statements to which they
pertain.

Assigning a Name to a Program Phase

Each program phase you submit for link-editing should have a name, which
you specify in the PHASE statement. When a phase is cataloged in the
core image library, the phase name identifies that phase for subsequent
retrieval. In other words, the same phase name you supplied in the PHASE
statement when permanently cataloging the initial or only phase of a

Chapter 6: Linking Programs 6.9

program must be used as the operand in the EXEC job control statement
or in a FETCH or a LOAD macro instruction.

The first four characters of the phase name of a single-phase program
should be unique. Any phases with the same first four characters of their
phase name will be classified as a multiphase program. When a phase of a
multiphase program is fetched, the partition must be large enough to
contain the largest phase.

You are not required to supply a phase name if you have specified the
LINK option. The linkage editor will construct a dummy phase name
(PHASE***) and your program can still be executed. A program with a
dummy phase name cannot be permanently cataloged into a core image
library; that is, you must supply a phase name in the PHASE statement
when you specify the CAT AL option. If the CAT AL option is specified
and no phase card is supplied before the first object module (or the phase
card is invalid), a dummy phase card is created (phase name PHASE***).
The link-edit job is canceled after a map has been printed (provided
SYSLST is assigned and ACTION NOMAP was not in effect).

Defining a Load Address for a Phase

At link-edit time you can specify where your program is to be loaded for
execution. You have several choices.

A phase can be link-edited to be loaded and executed from:

a virtual partition
a real partition

• the shared virtual area
an absolute address (either in a virtual or a real partition).

A phase can be link-edited as a

relocatable phase
• self -relocating phase

non-relocatable phase.

You define the load address for a phase in the origin operand of the
PHASE statement. (The load address can be changed by the system at
execution time if the link-edited phase is relocatable and the relocating
loader is supported in the supervisor. This is described in the sections that
follow.) You can specify the origin in six different formats:

1. symbol [(phase)][± relocation]
2. * [± relocation]
3. S [+ relocation]
4. ROOT

5. + displacement
6. F+address.

Specifies a load
address relative to
the beginning of a
virtual partition or
to another phase.
Specifies an absolute
address.

These specifications are described in DOS/VS System Control Statements.

6.10 DOS/VS System Management Guide

Aligning a Phase on a Page Boundary

For performance reasons it can be advantageous to load a phase on a page
boundary. If you specify the PBDY parameter in the PHASE statement, the
linkage editor will align the load point of the phase on the nearest page
boundary (the next higher).

Link-editing for Execution at Any Address

If you want to ensure that your program can be loaded at any storage
address (except within the supervisor area), you can make use of the
relocating loader.

Phases produced by the linkage editor for loading by the relocatable
loader are called relocatable phases. If a relocatable phase is also
reenterable it can be specified for inclusion in the shared virtual area. (See
the section Link-editing for Inclusion in the Shared Virtual Area).

Using the Relocating Loader If your supervisor supports the relocating
loader (refer to this supervisor generation option in the section Tailoring
the Supervisor in Chapter 3: Planning the System), you do not need to
write a self-relocating program to enable that program to execute in any
real or virtual partition. The linkage editor will produce relocatable phases
whenever possible. The linkage editor determines whether a phase can be
made relocatable by inspecting the origin of the PHASE statement. If the
origin specified is in one of the following formats, the phase is eligible for
relocation:

symbol[(phase)][± relocation]
*[± relocation]

• S [+ relocation]
ROOT

Note: The first format specifies a symbolic load origin. If the phase referred to
in a symbolic origin is not relocatable, the referring phase cannot be made
relocatable. If a phase is relative to another phase whose origin is specified as
an absolute address, none of the phases can be made relocatable during this
linkage editor execution.

If the linkage editor determines that a phase is to be given the the
relocatable format, it flags the core image directory entry for that phase,
prints a message (relocatable) after the phase information in the linkage
editor map (see Obtaining a Storage Map), and inserts the relocation
information behind the text of the phase in the core image library. This
relocation information consists of a set of pointers to address constants, the
length of these address constants, and an indication as to whether the
supervisor should add or subtract a relocation factor when loading the
phase into storage.

If your supervisor does not contain the relocating loader, the linkage
editor can still produce a relocatable phase if you specify ACTION REL
for a phase eligible for relocation. Such a supervisor, however, loads
relocatable phases into storage as link-edited without performing any
relocation.

Chapter 6: Linking Programs 6.11

If your supervisor contains the relocating loader and you do not want
the linkage editor to produce a relocatable phase for a particular program,
specify ACTION NOREL.

The default action taken depends on whether or not the supervisor contains
the relocating loader. If it does, ACTION REL is the default; otherwise,
ACTION NOREL is the default.

The REL operand and a partition-identifier operand (described in the
section Link-editing for Execution in a Virtual Partition) are not mutually
exclusive. For instance, if a program is normally to be executed in the
virtual Fl partition, but not exclusively, specify ACTION Fl,REL.
Whenever this program is to be executed in the virtual Fl partition,
relocation will not be necessary and the load time will be minimized.

Link-editing for Inclusion in the Shared Virtual Area

If a relocatable phase is also reenterable, it can be included in the shared
virtual area (SVA). Phases resident in the SVA can be shared concurrently
by more than one partition. It is advantageous to include frequently-used
phases in the SV A because these are then resident when requested for
execution (they are not reloaded from the core image library). All phases
resident in the SV A must also be cataloged in the system core image
library.

To indicate that a phase should reside in the SV A, you must specify the
SV A operand in the PHASE statement when cataloging the phase. This
operand is ignored if the phase is not relocatable (see above); otherwise,
the SVA operand is accepted and the phase is said to be SVA-eligible.

The linkage editor cannot check whether a phase is reenterable;
however, a protection check can occur when executing a phase from the
SV A that is not reenterable, since the SV A is key zero storage. Sin~e the
SOL is sorted prior to the loading of phases into the SVA, the packaging of
phases to be executed together should be done using the linkage editor.

Immediately after an SVA-eligible phase is cataloged into the system
core image library, it is loaded into the SVA if this phase is listed as
SVA-eligible in the system directory list (SOL). The SOL can be created
only immediately after IPL; see the section Building the SDL and Loading
the SVA in Chapter 4: Starting the System.

Link-editing for Execution in a Virtual Partition

Unless otherwise specified in the PHASE statement, a program is
link-edited to execute in the same virtual partition in which the linkage
editor function occurs. When the linkage editor is running in a real
partition, the program is link-edited to execute in the corresponding virtual
partition.

By using the ACTION statement with one of the partition identifiers
(BG, Fl, F2, etc.), however, you specify the virtual partition in which the
program is to be ex~cuted. Ii is necessary to specify a partition identifier

6.12 DOS/VS System Management Guide

only if the "run" partition differs from the partition in which the linkage
editor is being executed.

Use of the ACTION statement with a foreground partition identifier
requires that the virtual partition be allocated; if not, the action is ignored.

An ACTION statement with a partition identifier is effective only for
those phases designated to be loaded at an address relative to the beginning
of a partition: that is, for those phases with a load address specification
(origin operand in the PHASE statement) in any of the following formats:

symbol [(phase)] [± relocation]
*[± relocation]
S [+ relocation]
ROOT.

These operands are described in more detail in DOS/VS System Control
Statements.

An example of the use of the ACTION FI statement follows. Assume
that three virtual partitions are allocated: background, foreground-two, and
foreground-one. If you are executing the linkage editor in the background,
the statement PHASE PROG I ,S causes PROG I to have its origin at the
beginning of the virtual background partition (plus the BG save area and
the BG label area). The sequence

ACTION FI
PHASE PROG I ,S

causes PROG I to have its origin at the beginning of the virtual
foreground-one partition (plus the length of the Fl save area and the FI
label area. The length of the F I label area is determined from the LBL TYP
statement, if any, supplied in the partition in which the linkage editor is
running.)

Link-editing for Execution in a Real Partition

If you specify an absolute address in the origin operand of the PHASE
statement, the phase is link-edited to be loaded at this specific address. If
you specify an origin that is not an absolute address, the phase is
link-edited to be loaded in the virtual partition where the linkage editor
function occurs, regardless of whether the linkage editor is running in real
or virtual mode.

To link-edit a program that will execute in a real partition, you can:

Link-edit the program in such a way that it can be relocated to the real
partition at the time the program is loaded. Relocatable programs are
loaded by the relocating loader in a real partition if you specify REAL
in the EXEC job control statement. (See the section Link-editing for'
Execution at Any Address.)

Write the program to be self-relocating if the supervisor does not
contain the relocating loader. (See the section Using Self-Relocating
Programs.)

Link-edit the program with a PHASE statement that contains an
absolute address within a real partition. (See the section Link-editing
for Execution at an Absolute Address.)

Chapter 6: Linking Programs 6.13

Link-editing for Execution at an Absolute Address

Using Self-Relocating Programs

If you specify an absolute address in the PHASE statement (other than
zero), your program can be loaded only at this address at execution time.
Not only must the address you specified be within the address range of
your installation's virtual storage, but also the entire program must be
included within the boundaries of the partition where you request the
execution.

You should identify self-relocating programs by a PHASE statement with
an origin point of +0:

PHASE PROGA,+O

The linkage editor assumes that the program is loaded at location zero, and
computes all addresses accordingly. The job control EXEC function
recognizes a zero phase address and adjusts the origin address to
compensate for the current partition boundary save area and label area. It
then gives control to the updated entry address of the phase. The
programming techniques used in writing self-relocating programs, which are
always in assembler language, are described in DOS/VS Supervisor and
I/O Macros.

Building Phases from Object Modules

Including Modules from SYSIPT

You indicate which object modules or parts of object modules are to be
included in a phase by specifying the INCLUDE statement. The format of
the INCLUDE statement indicates the location of the modules. The object
modules can be either on the card reader, tape unit, disk or diskette device
assigned to SYSIPT, or in the relocatable library, or on the disk device
assigned to SYSLNK. The modules are extracted in the same order as the
INCLUDE statements are issued.

If the object modules you want to include in a phase are on the SYSIPT
file, specify the INCLUDE statement without operands. Job control copies
the data from SYSIPT until it encounters end-of-data (/*).

Including Modules from the Relocatable Library

You may want to include in a phase object modules or parts of an object
module that are cataloged in the relocatable library. To include an entire
module, specify the module name in the INCLUDE statement. To include
part of a module, specify the name of the module followed by the name of
the control section(s) in that module you wish included.

6.14 DOS/VS System Management Guide

Including Parts of Modules from SYSLNK

You do not need an INCLUDE statement unless you want to change the
sequence of control sections or to extract certain control sections from an
object module. For either of these cases, specify the names of the control
sections in an INCLUDE statement.

Using the AUTOLINK Feature

For each phase the automatic library look-up feature (referred to as
AUTOLINK) collects any unresolved external references and attempts to
resolve them. An unresolved external reference is an ER item in the control
dictionary that has not been matched with an entry point. AUTO LINK
searches the private relocatable directory (if assigned) and then the system
relocatable directory until a cataloged module with the same name as the
unresolved external reference is found (or the end of the directory is
reached). If found, the module is included in the phase (autolinked). This
retrieved module must have an entry point matching the external reference
in order to resolve its address.

Studying the following examples, may help you to understand how the
AUTOLINK feature works.

Assume that the relocatable library contains the following:

Module Name Entry Names External References
A A,B,C
D
E
F

A
B
A,C

Examples:

In your linkage editor input stream you specify INCLUDE D. A will be
autolinked (included with module D) because the external reference A is
also a module name in the relocatable library.

If you specify INCLUDE E, then A will not be autolinked because the
external reference B does not relate to a module name. In this case, you
must also specify INCLUDE A, so that the external reference B can be
resolved. No autolink is required.

If you specify INCLUDE D and INCLUDE E, then A will be autolinked
by module D and the external reference B in module E can then be
resolved.

If you specify INCLUDE F, then module A will be autolinked by the
reference to A, and the reference to C will also be resolved.

Suppressing the AUTOLINK Feature

You can suppress the AUTOLINK feature in two ways:

By specifying NOAUTO in a PHASE statement, AUTOLINK is
canceled for that phase only.

Chapter 6: Linking Programs 6.15

Reserving Storage for Labels

• By specifying NOAUTO in the ACTION statement, AUTOLINK is
canceled for this execution of the linkage editor. By writing a weak
external reference (WXTRN), AUTOLINK is canceled for one symbol.

You can do this in assembler language by specifying for example:

DC A(LABEL)
WXTRN LABEL

or

DC V(LABEL)
WXTRN LABEL

For more information, refer to the assembler language publications.

NO AUTO can be used to force a CSECT into a specific phase within
an overlay structure. For example, four phases of a program have a V-type
address constant called PETE, but in the overlay structure you want the
coding for PETE included only in the third phase.

PHASE PROGA,*,NOAUTO
PHASE PROGB,*,NOAUTO
PHASE PROGC,*
PHASE PROGD,*,NOAUTO

cause PETE to be included in PROGC only.

If your program uses standard tape files or nonsequential DASD files
(direct access, indexed sequential, or DTFPH with all packs mounted), you
must ensure that storage is reserved for the tape and disk labels. These
labels are brought into the label save area of the partition containing your
program when the file is opened.

You reserve a label save area by specifying the LBL TYP job control
statement. The amount of storage you specify to be reserved must be large
enough to contain all the labels of the file with the most extents processed
by the program. The operand specified in the LBL TYP statement for tape
files is different from that for DASD files. For their formats, refer to
DOS/VS System Control Statements.

The LBL TYP statement is to be submitted immediately before the
/ / EXEC LNKEDT statement. If your program is self-relocating,
however, submit the LBLTYP statement immediately before the / / EXEC
statement for your program.

The LBL TYP statement is not required if only unlabeled tape files,
sequential DASD files, or VSAM files, are to be processed. For more
information on file organizations, refer to the DOS/VS Data Management
Guide. For information on file labeling, refer to DOS/VS DASD Labels,
or DOS/VS Tape Labels.

Specifying Linkage Editor Aids for Problem Determination or Prevention

You can ~pedfy that the linkage editor aid yeu in avoiding certain problems
in your programs or determining what they are. The actions discussed below

6.16 DOS/VS System Management Guide

are CLEAR, MAP, and CANCEL, which may be specified as operands of
the ACTION statement.

Clearing the Unused Portion of the Core Image Library

Obtaining a Storage Map

Terminating an Erroneous Job

If you used DS (define storage) statements in your source module, it may
be advantageous to fill these areas with binary zeros when the program is
link-edited. This eliminates the risk that residual data from a previously
linked program be loaded with your program at execution time. Such
irrelevant data might disrupt your program considerably. By specifying
CLEAR in the ACTION statement, you request that the unused portion of
the core image library is to be set to binary zeros.

Because CLEAR is a time-consuming function, you might want to use
DC statements instead of DS statements when designing future programs.

You can obtain a linkage editor storage map and a listing of linkage editor
error diagnostics, which assist you in determining the reasons for particular
errors in your program. If SYSLST is assigned, ACTION MAP is the
default. You can specify ACTION NOMAP if you are not interested in this
service of the linkage editor.

The storage map contains such information as:

The lowest and highest addresses that each phase occupies in the
partition for which it is link-edited.

The starting disk address of the phase in the core image library.

The names of all control sections and entry points, their load addresses
and relocation factors.

• The names of all external references that are unresolved.

An indication whether the phase is relocatable, non-relocatable,
self-relocating, or SV A eligible.

The error diagnostics warn you, for example, if:

The ROOT phase has been overlaid.

• A control section has a length of zero.

• An address constant could not be resolved.

A sample storage map, together with a description of how to interpret it, is
included in DOS/VS Serviceability Aids and Debugging Procedures.

If errors are present in the input to the linkage editor, the output of the
linkage editor will most likely also be erroneous. If you specify CANCEL in
the ACTION statement, the entire job is terminated when the type of
errors represented by messages 21001 through 21701 occur. Refer to these
messages in DOS/VS Messages.

Chapter 6: Linking Programs 6.17

Designing an Overlay Program

The nature of virtual storage makes it unnecessary to write programs in
an overlay structure, because virtual partitions can be allocated to
accommodate very large programs.

Organizing Control Sections in an Overlay Tree Structure

Overlay programs consist of control sections organized in an overlay tree
structure. A tree is a graphic representation that shows how phases use
storage at different times. An example of an overlay tree structure is shown
in Figure 6.5. This structure does not imply the order of execution,
although the root phase is normally the first to receive control.

The manner in which control should pass between control sections is
discussed in the section Using FETCH and LOAD Macros.

Relating Control Sections to Phases

After having organized the control sections of your program into an overlay
tree structure, you must prepare a corresponding set of linkage editor
control statements. If you first want to test the program, specify / /
OPTION LINK. When you are satisfied that the overlay structure you
designed is a workable combination, specify / / OPTION CAT AL to
catalog a permanent copy of the program in the core image library.

Link-edit your complete overlay program in a single job step, and
conversely, do not include in this job step any phases that are not related to
the overlay. Otherwise, the linkage editor may not be able to resolve
external references correctly.

The PHASE and INCLUDE statements you prepare are critical to
ensure the overlay tree structure you designed. Figure 6.6 is an example of
the job stream that ensures the overlay tree structure shown in Figure 6.5.

6.18 DOS/VS System Management Guide

Root
Phase 1
(6000)

~ A
I
I
I .. ----
I

Phase 2 : Phase 7
(50QO) I B (6000)
~------------~------------.
: C : J
I I
I I
1----- 1-----
I I

Phase 3 I Phase 4
(5000) : 0 (3000)

Phase 8 I Phase 9
(3000) : K (8000)

~ ______ L- _____ ~ t""--- ___ L_ ------,
I I F
: Phase 5 ~--__ Phase 6

I I

I (7000) I G (3000)
: E ~-------I------;

: L
I

I
1M
I L ___ _

I

I : I
I I

I

1-----
L____ : L ___ _

IH
I

I
I
I
IN
I

Figure 6.5.

I
I L ___ _

I
I l. ___ _

Overlay Tree Structure

The letters A through N represent control sections, which are organized
to form nine phases in one program. The root phase resides in storage
during the entire execution of the program. The remaining phases can
overlay each other during execution.

You must guarantee a partition size that is equal to the longest
combination of phases that can possibly reside in storage together,
namely, phases 1,2,4, and 5, which total 21,000 bytes. If the program
had not been organized in an overlay structure, it would have required
an address space of 46,000 bytes.

Chapter 6: Linking Programs 6.19

II JOB OVERLAY
II OPTION CATAL

1*

PHASE PHASE1,ROOT
INCLUDE ,(CSECTA,CSECTB)
PHASE PHASE2,*
INCLUDE ,(CSECTC,CSECTD)
PHASE PHASE3,*
INCLUDE ,(CSECTE)
PHASE PHASE4,PHASE3
INCLUDE ,(CSECTF,CSECTG)
PHASE PHASES,*
INCLUDE ,(CSECTH)
PHASE PHASE6,PHASES
INCLUDE ,(CSECTI)
PHASE PHASE7,PHASE2
INCLUDE ,(CSECTJ,CSECTK)
PHASE PHASES, *
INCLUDE ,(CSECTL)
PHASE PHASE9,PHASES
INCLUDE ,(CSECTM,CSECTN)
INCLUDE

PHASEl stays in storage during
execution of the entire program.
PHASE2 is to be loaded
immediately behind PHASE1.
Since PHASE3 needs PHASE2, PHASE3 is
not allowed to overlay PHASE2.
PHASE4 will occupy the same
storage locations as PHASE3.
PHASES will be loaded
immediately behind PHASE4.
PHASE6 will be loaded at the
same address as PHASES.
PHASE7 will be loaded at the
end of the root phase.
PHASES will be loaded at the
end of PHASE7.
PHASE9 will overlay
PHASES.

(Object modules containing CSECTs A through N)

II LBLTYP
II EXEC LNKEDT
1&

Figure 6.6. Link-editing an Overlay Program

Using FETCH and LOAD Macros

During execution, an overlay program communicates with the supervisor to
request that a subsequent phase be brought into the partition. You include
FETCH or LOAD macros within your phases for this purpose.

Use a LOAD macro in a phase that is to remain in control after the
requested phase is brought into the partition. A phase loaded by the LOAD
macro is relocated (if necessary) so that the displacement between the start
of the partition and the beginning of the phase is the same as at link-edit
time. By using a LOAD macro with an explicit address, you can violate the
overlay tree structure you defined. When a relocatable phase is loaded, all
address constants will be relocated with the same relocation factor as
computed for that phase. This means that address constants referring to
entry points in other phases of this same relocatable program will be
incorrect.

Use a FETCH macro if you want the requested phase to gain control
immediately after it is brought into the partition. If a phase loaded by the
FETCH macro is relocatable, it will be relocated if necessary. You cannot
issue a FETCH macro for a self-relocating phase.

Parameters in FETCH and LOAD allow these macros to use the SDL
and to execute code from the SV A, thereby reducing fetching and loading
time. The benefits that stem from using the SDL apply to phases that are
used frequently throughout the day by many programs in an installation.
For a phase that is used heavily at one time only, however, it is preferable
to use the GENL macro rather than to include the phase in the SDL. The

6.20 DOS/VS System Management Guide

GENL macro places the directory entry of a phase in storage, where it can
be accessed rapidly by FETCH and LOAD for use by the program that
requires it.

DOS/VS Supervisor and I/O Macros contains details on the format of
the FETCH, LOAD and GENL macros.

Summary of Control Statements Related to Link-Editing

Job Control Statements

OPTION

The following sections summarize the linkage editor control statements and
the job control statements that are associated with a linkage editor run.
This summary is provided to make it easier for you when referencing the
formats of the statements in DOS / VS System Control Statements.

The job control statements that relate to a linkage editor job stream and
that are summarized below are:

• II OPTION

• II LBLTYP

CATAL
LINK

To make use of the linkage editor, you must specify either the LINK or
CAT AL operands in the OPTION job control statement. These options set
switches in the supervisor that are tested when the linkage editor program is
requested. Linkage editor control statements are accepted only after one of
these options has been specified. SYSLNK must be assigned; otherwise, the
LINK and CATAL options are ignored (switches are not set).

By specifying the LINK option (/ / OPTION LINK), you indicate that
the output of the language translators is to be written on the SYSLNK file.
Because SYSLNK is the required input file for each linkage editor
operation, the CATAL option (/ / OPTION CATAL) also sets the LINK
switch. The differences between LINK and CATAL are described below.

The CAT AL option causes a phase to be entered permanently into the
core image library. The object module is link-edited and placed in the first
available area of the core image library (immediately after the last cataloged
phase). An entry identifying the name of the phase, load address, entry
point, and starting disk address of the phase in the core image library is
then inserted in alphameric sequence in the core image directory for
cataloged phases. If the same phase name was previously cataloged, the new
directory entry replaces the old. A status report of the core image library
and directory is then printed.

The LINK option causes a phase to be entered temporarily in the core
image library in order to be executed immediately; that is, for an assemble,
link-edit, and execute operation, or a link-edit and execute operation. The
linkage editor prepares the phase just as described for the CAT AL option,
except that an entry is made in the core image directory for linked phases.
When you specify the EXEC statement without the program name operand
the phase is executed immediately. The space taken up by the phase in the

Chapter 6: Linking Programs 6.21

LBLTYP

core image library is overwritten by the next phase cataloged or linked to
the core image library. No status report is printed.

The LBL TYP job control statement reserves a label save area for tape
labels or DASD labels. You must specify the LBL TYP statement if your
program uses standard tape files or nonsequential DASD files.

For a non-self-relocating program, you must submit the LBLTYP
statement immediately before the / / EXEC LNKEDT statement. For a
self-relocating program, you must submit this card immediately before the
/ / EXEC statement for the program.

Linkage Editor Control Statements

ACTION

PHASE

The linkage editor control statements that are summarized below are:

ACTION
PHASE
INCLUDE
ENTRY.

ACTION statements, if used, must be the first statements in the linkage
editor input stream. An ACTION statement is effective only for this linkage
editor execution.

The ACTION statement can indicate that the linkage editor do any or
all of the following:

Set the unused portion of the core image library to binary zeros
(CLEAR).

Write a storage map and error diagnostics on SYSLST (MAP), or not
(NOMAP).

Suppress the automatic library lookup feature for thh; entire linkage
editor run (NOAUTO).

Terminate the job if errors are present in the linkage editor input
(CANCEL).

Link-edit the program to run in a specific virtual partition.

Produce a relocatable program if possible (REL) or do not produce a
relocatable program (NOREL).

The PHASE statement indicates the beginning of a phase by providing the
linkage editor with the phase name and the storage address (origin point)
where the phase is to be loaded. The origin point defines whether the phase
is to be relocatable, self-relocating, or non-relocatable. The PHASE
statement may also indicate that the automatic library lookup feature
(AUTOLINK) be canceled for this phase only, that the phase is considered
to be SV A eligible, or that the load point of the phase be aligned on a page
boundary.

The first (or only) object module in the input for the linkage editor
shouid inciude a PHASE statement beiore the iirst ESD item. A PHASE

6.22 DOS/VS System Management Guide

INCLUDE

ENTRY

statement must be supplied if you specify the CAT AL option. A PHASE
statement is not required if you specify the LINK option.

The INCLUDE statement specifies that an object module is to be included
for link-editing. The format of the statement indicates where the object
module is located and whether all or parts of it are to be included. The
object module may be on SYSIPT or SYSLNK, or cataloged in the
relocatable library.

The ENTRY statement signals the end of the input to the linkage editor. If
the entry point operand is used it also indicates a transfer address for the
first phase (the name of a control section or label definition). In case of a
label definition, it must occur in an ENTRY source statement.

Examples of Linkage Editor Applications

The linkage editor examples on the following pages illustrate the use of and
relation between the control statements just discussed. After studying these
examples, you should be able to set up a link-edit job for your own
purposes.

Catalog to Core Image Library Example

II JOB CATALCIL
* LINK EDIT AND CATALOG TO CORE IMAGE LIBRARY
* SINGLE PHASE, ELIGIBLE FOR LOADING INTO SHARED
* VIRTUAL AREA, MULTIPLE OBJECT MODULES,
* MIXTURE OF CATALOGED AND UNCATALOGED OBJECT MODULES
* LABELED TAPE FILES AND SEQUENTIAL DASD FILES TO
* BE PROCESSED

1 II ASSGN SYSLNK,X'190'
2 II OPTION CATAL
3 PHASE PROGB,*,SVA
4 INCLUDE

1*

1*

Object deck

INCLUDE SUBRX
INCLUDE SUBRY
INCLUDE
Object deck

II LBLTYP TAPE
5 II EXEC LNKEDT
6 If:,

Explanation for Catalog to Core Image Library. This example illustrates the
cataloging of a single phase composed of multiple object modules. These
modules are located in the input stream and the relocatable library. Labeled
tape files and sequential DASD files are processed when the phase is
executed. The program is to be executed in a foreground partition. The
linkage editor run occurs in the virtual background partition.

Chapter 6: Linking Programs 6.23

Statement 1: The SYSLNK assignment indicates the relationship of
ASSGN statements to the OPTION statement. ASSGN statements are not
required if they are standard assignments.

Statement 2: The OPTION CAT AL statement sets the LINK switch, as
well as the CAT AL switch. If SYSLNK is not assigned, the statement is
ignored. The linkage editor control statements are not accepted unless the
OPTION statement is processed. Link-editing and cataloging to the core
image library will occur.

Statement 3: Only one PHASE is constructed. It is cataloged to the core
image library and retrieved by the name PROGB. Because there is only
one phase, the origin point * indicates that this phase originates at the
starting address of the virtual partition plus the length of the partition save
area, the label area (if any), and the COMMON pool (if any). The SV A
operand indicates that the phase should be considered SVA-eligible. If the
phase name PROGB is already entered as SV A-eligible in the system
directory list, PROGB is loaded into the shared virtual area immediately
after it is cataloged into the system core image library. (This could not
occur had PROGB been link-edited with OPTION LINK.)

Note: COMMON is used by FORTRAN programs to store data shared by
multiple programs.

Statement 4: Four modules make up this phase. The first and last are not
cataloged in the relocatable library; therefore the object decks must be on
SYSIPT, and each must be followed by the end-of-data record (/*).
SUBRX and SUBRY were cataloged previously to the relocatable library by
those names. Job control puts the uncataloged modules on SYSLNK in
place of their INCLUDE statements. Job control copies onto SYSLNK the
INCLUDE statements for the cataloged modules.

Statement 5: The EXEC LNKEDT statement causes the system loader to
bring in the linkage editor program. SYSLNK now becomes input to the
linkage editor. It contains the following:

PHASE PROGB,F+32768
First uncataloged relocatable deck
INCLUDE SUBRX
INCLUDE SUBRY
Second ~ncataloged relocatable deck
ENTRY

The modules are link-edited into one phase so that they occupy contiguous
addresses in the sequence in which they appear in the input stream. When
the linkage editing is completed, cataloging to the core image libary occurs
because of the CAT AL option.

The core image directory is checked to make sure the new phase entry
fits. If not, the job is canceled. The directory for cataloged phases is
scanned for any match to a phase being cataloged. If there is a match, the
earlier directory entry is replaced by the new entry. The descriptor entry is
updated to reflect the changes. Job control is brought into the virtual
background partition.

6.24 DOS/VS System Management Guide

Because the CAT AL option was specified, a status report is printed to
reflect the usage and available space in the core image library. (This does
not occur in a LINK situation.)

Statement 6: The / & resets the CATAL option, that is, it turns off the
LINK and CAT AL switches.

The example can be modified to illustrate a catalog-and-execute
operation by inserting the following statements between the EXEC
LNKEDT and / & statements:

1. Any job control statements required for execution of PROGB.

2. A / / EXEC statement

3. Any card reader input for PROGB.

Catalog to Private Core Image Library Example

II JOB CATLCIL
* LINK EDIT AND CATALOG TO PRIVATE CORE IMAGE LIBRARY
* LINKAGE EDITOR EXECUTING IN FOREGROUND
* SINGLE PHASE, ALIGNED ON A PAGE BOUNDARY, MULTIPLE
* OBJECT MODULES, FOREGROUND PROGRAM
* MIXTURE OF CATALOGED AND UNCATALOGED OBJECT MODULES
* LABELED TAPE FILES AND SEQUENTIAL DASD FILES TO
* BE PROCESSED

1 ASSGN SYSCLB,X'130'
2 II ASSGN SYSLNK,X'190'
3 II OPTION CATAL
4 PHASE PROGB,S,PBDY
5 INCLUDE

1*

1*

object deck

INCLUDE SUBRX
INCLUDE SUBRY
INCLUDE
Object deck

6 II LBLTYP TAPE
7 II EXEC LNKEDT
8 If,

Explanation for Catalog to Private Core Image Library. This example
illustrates the execution of the linkage editor in a foreground partition;
therefore the phase is cataloged to a private core image library. This
function is possible only in a system supporting multiple-partitions and
private core image library options. The phase being cataloged is the same
as that in the previous example where the linkage editor was executed in
the background.

Statement 1: The assignment of a private library is accomplished by the
ASSGN SYSCLB command. The label for SYSCLB must be stored on
P ARSTD or STDLABEL cylinder, or, of the DLBL and EXTENT
statements are included in the job stream, they must precede the ASSGN
SYSCLB command.

Chapter 6: Linking Programs 6.25

Statement 2: The SYSLNK assignment indicates the relationship of
ASSGN statements to the OPTION statement. ASSGN statements are not
required if they are standard assignments.

Statement 3: The OPTION CAT AL statement sets the LINK switch, as
well as a CAT AL switch. If SYSLNK is not assigned, the statement is
ignored. The linkage editor control statements are not accepted unless the
OPTION statement is processed. Linkage editing and cataloging to the
private core image library will occur.

Statement 4: Only one PHASE is constructed. It is cataloged to the private
core image library and retrieved by the name PROGB. An origin point of S
origins PROGB at the starting address of the foreground partition, plus the
length of the save area and the label area (if any) and the COMMON pool
(if any). PBDY indicates that the load point of the phase is to be aligned
on a page boundary.

Statement 5: Four modules make up this phase. The first and last are not
cataloged in the relocatable library; therefore, the object decks must be on
SYSIPT, and each must be followed by the end-of-data record (/*).
SUBRX and SUBR Y were cataloged previously to the system relocatable
library by those names. Job control puts the uncataloged modules on
SYSLNK in place of their INCLUDE statements. Job control copies onto
SYSLNK the INCLUDE statements for the cataloged modules.

Statement 6: The LBLTYP statement has the operand TAPE, rather than
NSD, because labeled tapes and sequential DASD files are processed when
the phase is executed. 80 bytes are reserved ahead of the actual phase for
label information. LBLTYP NSD is also satisfactory because it generates a
minimum of 104 bytes and tapes require only 80.

Statement 7: The EXEC LNKEDT statement causes the system loader to
bring in the linkage editor program. SYSLNK now becomes input to the
linkage editor. It contains the following:

PHASE PROGB,S,PBDY
First uncataloged relocatable deck
INCLUDE SUBRX
INCLUDE SUBRY
Second uncataloged relocatable deck
ENTRY

The modules are link-edited so that they occupy contiguous areas in storage
in the sequence in which they appear in the input stream. When
link-editing is completed, cataloging to the private core image library occurs
because of the CAT AL option. The private core image directory is checked
to make sure the new phase entry fits. If not, the job is canceled. The
directory is scanned for any match to a phase being cataloged. If a match is
found, the earlier phase directory entry is replaced. The system library
descriptor record is updated to reflect the changes. Job control is then
brought into this virtual foreground partition.

Because CAT AL was specified, a status report is printed to reflect the
usage and the available space in the private core image library and
directory. (This does not occur in a LINK situation.)

6.26 DOS/VS System Management Guide

Statement 8: The / & resets the CAT AL option, that is, it turns off the
LINK and CAT AL switches.

The example can be modified to illustrate a catalog-and-execute
operation by inserting the following statements between the EXEC
LNKEDT and / & statements:

1. Any job control statements required for execution of PROGB

2. A / / EXEC statement

3. Any card reader input for PROGB.

Link-Edit and Execute Example

II JOB LINKEXEC
* LINK EDIT AND EXECUTE SINGLE PHASE, SINGLE OBJECT
* MODULE NOT CATALOGED, BACKGROUND PROGRAM
* NONSEQUENTIAL DASD & LABELED TAPE FILES TO
* BE PROCESSED

1 II ASSGN SYSLNK,X'190'
2 II OPTION LINK
3 PHASE PROGA,*
4 INCLUDE

object deck
1*

5 II LBLTYP NSD(2)
6 II EXEC LNKEDT

7 Any job control statement required for execution
such as ASSGN or label statements

8 I I EXEC

1*
1&

Input Data as required

* lTO CATALOG AND EXECUTE, CHANGE STATEMENT @
* TO II OPTION CATAL
* 2TO CATALOG ONLY, CHANGE STATEMENT 2 TO
* II OPTION CATAL AND REMOVE ALL STATEMENTS
* FOLLOWING EXEC LINKEDT EXCEPT 1&
* 3TO USE A MODULE FROM RELOCATABLE LIBRARY,
* CHANGE STATEMENT 4 TO INCLUDE MODULES AND
* REMOVE ALL STATEMENTS UP TO II LBLTYP AND
* IF THE PHASE CARD IS IN THE RELOCATABLE LIBRARY,
* ALSO REMOVE STATEMENT 3.

Explanation for Link-edit and Execute. This example illustrates the basic
concept of link-editing and executing by using a single phase that is
constructed from a single object module contained in punched cards.
Labeled tape and nonsequential DASD files are to be processed when the
phase is executed. No more than two extents are used by any DASD file.

Statement 1: No assignments are necessary because the system units
required for link-editing are in the assumed configuration. However, an
ASSGN for SYSLNK is included to illustrate its position relative to the
OPTION statement in case an assignment is required.

Statement 2: The OPTION LINK statement indicates that a link-edit
operation is to be performed. If SYSLNK has not been assigned, the
statement is ignored. Linkage editor control statements are not accepted

Chapter 6: Linking Programs 6.27

unless the OPTION statement is processed. Because the option is LINK,
and not CATAL, only link-editing is performed; permanent cataloging to
the core image library does not occur. To catalog, change the statement to
/ / OPTION CAT AL.

Statement 3: The PHASE statement is copied on SYSLNK because the
LINK switch is on. The first operand is checked; the following operands
are not examined until SYSLNK is used as input to the linkage editor
program.

When the PHASE statement is processed by the linkage editor, only
one phase is constructed, because only one PHASE statement is submitted
for the entire run. The name of this phase is PROGA, as specified in the
first operand. The second operand indicates the origin point for the phase.
Because an * has been used, the phase begins in the next storage location
available, with forced doubleword alignment. Because this is the first and
only phase, it is located at the beginning of the virtual partition plus the
length of the save area and label area (reserved by LBL TYP) plus the
length of any area assigned to the COMMON pool (as designated by a CM
entry in the object module).

A displacement, either plus or minus, may be used with the *, such as
*+ 1024. This causes the origin point of the phase to be set relative to the
* by the amount of the displacement. This displacement is expressed as:

X'hhhhhh' -- 1 to 6 hexadecimal digits
dddddddd -- 1 to 8 decimal digits
nK -- where K = 1024.

*+ 1024 uses the second format and adds 1024 bytes to the origin location.
+ lK or +X'400' gives the same result as + 1024.

Statement 4: The INCLUDE statement has no operands so the system
reads the records from SYSIPT and writes them on SYSLNK until SYSIPT
has an end-of-data (/*) record. The data on SYSIPT is expected to be the
object module in card image format that is used in this linkage editor
operation.

Statement 5: The LBL TYP statement causes a computation of the number
of bytes that are required for label data in the program to be link-edited. In
this example, 124 bytes are reserved (84 + [2x20D. The calculation is
saved by job control and passed on first to the linkage editor and later to
LIOCS.

Statement 6: On encountering the EXEC LNKEDT statement, job control
writes an ENTRY statement with no operand on SYSLNK and causes the
system loader to bring in the linkage editor program.

Using the data just placed on SYSLNK as input, the linkage editor
develops executable code. The output is placed in the next available space
of the core image library (immediately after the last cataloged phase). This
is true regardless of whether the program is cataloged permanently
(OPTION CATAL) or temporarily (OPTION LINK). Cataloging
permanently causes the updating of the library descriptor entry in the core
image direciory to refiect a new ending point lor the library. If OPTION
LINK is specified, however, the next program that is link-edited overlays it.

6.28 DOS/VS System Management Guide

For this reason, a program that is cataloged temporarily is said to be placed
in the temporary area of the core image library. Such a program must be
link-edited each time it is used. No ACTION options are specified.
Therefore, in resolving the external references, the system makes use of the
AUTO LINK feature. Error diagnostics and a storage map are written on
SYSLST, assuming that SYSLST is assigned and ACTION NOMAP was
not specified.

Statement 7: Because the program is not cataloged, it must be executed
immediately. Any pertinent job control statements are entered at this point.

Statement 8: An EXEC statement with no program name operand
indicates that the phase to be executed was just link-edited. Therefore, no
search of the core image directory for linked phases is required, and the
system loader brings the program into storage from the temporary area and
transfers control to its enty point. Because the automatic ENTRY
statement is in effect for this example, the entry point is either the address
specified in the END record, or the phase load address if the END address
is omitted.

This example can be modified to illustrate the following:

1. Catalog and execute. To cause this phase to be cataloged permanently,
change the OPTION (statement 2) from LINK to CATAL.

2. Catalog only. To catalog only, change the OPTION (statement 2)
from LINK to CAT AL and remove all statements following the EXEC
LNKEDT (statement 6) up to the / & statement.

3. Include object module from relocatable library. The name of the object
module in the relocatable library must be added to the INCLUDE
statement. If the name is RELOCA, the statement becomes INCLUDE
RELOCA. The relocatable object deck and /* statement are removed.
This form of the INCLUDE statement is written on SYSLNK when it
is read by job control. The linkage editor retrieves the object module
when it encounters the INCLUDE statement because it uses SYSLNK
for input.

Compile and Execute Example

II JOB COMPEXEC
* COMPILE OR ASSEMBLE, LINK EDIT AND EXECUTE
* SINGLE PHASE, MULTIPLE OBJECT MODULES, BACKGROUND
* PROGRAM SEQUENTIAL DASD FILES TO BE PROCESSED
* INPUT TO LINKAGE EDITOR FROM LANGUAGE TRANSLATOR,
* RELOCATABLE LIBRARY AND SYSIPT

1 II ASSGN SYSLNK,X'190'
2 II OPTION LINK
3 PHASE PROGA,S
4 II EXEC FCOBOL

COBOL source statements
1*

INCLUDE SUBRX
5 INCLUDE

object module
1*

6 ENTRY BEGINl
II EXEC LNKEDT

Chapter 6: Linking Programs 6.29

7 Any job control statements required for PROGA
execution

II EXEC

1*
1&

Any input data required for PROGA execution

Explanation for Compile and Execute. The language translators provide the
option of placing their output on SYSLNK. Because the linkage editor uses
SYSLNK for input, a program can be assembled or compiled, link-edited
and executed. This operation is illustrated by this example.

All three sources of object module input to the linkage editor are used:
SYSIPT, the relocatable library, and the output from a language translator.
It is assumed that the phase is executed in the background partition, and
that only sequential DASD files or unlabeled tape files are processed.

Statement 1: The SYSLNK assignment is given to illustrate the relationship
of ASSGN statements to the OPTION statement. ASSGN statements are
not required if they are standard assignments.

Statement 2: Because SYSLNK is assigned, the OPTION LINK statement
sets the link indicator switches.

Statement 3: The PHASE statement must always precede the relocatable
modules to which it applies; therefore, it is written on SYSLNK first for
later use by the linkage editor. S is the origin point, that is, the phase
originates with the first doubleword at the end of the supervisor plus the
length of the partition save area and label area plus the length of the area
assigned to the COMMON pool (if any). This gives the same effect as *
gives for a single phase or the first phase. As with the *, the S may be used
with a relocation factor, for example, S+ 1024. The factor must always be
positive, because a negative factor could cause the origin point to overlay
the supervisor.

Statement 4: The appropriate language translator is called (in this case,
COBOL). The normal rules for compiling are followed; the source deck
must be on the unit assigned to SYSIPT and the /* defines the end of the
source data. Because the LINK switches are set, the output of the language
translator is written on SYSLNK. Except for PL/I, FORTRAN(F), ANS or
VS COBOL, and the assembler, the DECK option is ignored when
SYSLNK is used.

Statement 5: The INCLUDE SUBRX statement is written on SYSLNK.
The linkage editor retrieves the named module from the relocatable library.
Because the operand is blank, the next INCLUDE statement signifies that
the relocatable module is on SYSIPT. The data on SYSIPT is copied on
SYSLNK up to the /* statement.

Statement 6: The ENTRY statement is written on SYSLNK as the last
linkage editor control statement. The symbol BEGIN1 must be the name of
a CSECT or a label definition (which occurs in an ENTRY source
statement) defined in the first or only phase. The address of BEGIN1
becomes the transfer address for the first or only phase of the program.
The ENTRY is used to provide a specific entry point rather than to use the
point specified in the END record or the load address of the phase.

6.30 DOS/VS System Management Guide

Statement 7: No LBL TYP statement is required, because only sequential
DASD files are to be processed. The rest of the statements follow the same
pattern as discussed in the Link-Edit and Execute example. The input from
SYSLNK to the linkage editor is:

PHASE PROGA,S
Relocatable module produced by COBOL compilation
INCLUDE SUBRX
Relocatable module from SYSIPT
ENTRY BEGIN1

If certain types of errors are detected during compilation of a source
program, the LINK option is suppressed. Under these circumstances the
EXEC LNKEDT and EXEC statements are ignored and the message
'STATEMENT OUT OF SEQUENCE' results. This LINK option
suppression should be kept in mind if a series of programs is to be compiled
and cataloged as a single job. Failure of one job step would cause failure of
all succeeding steps.

An OPTION LINK cannot be given if OPTION CAT AL is in effect. The
message 'STATEMENT OUT OF SEQUENCE' results. Therefore, the
CATAL switch remains on (until reset), and link-editing only cannot be
performed.

Chapter 6: Linking Programs 6.31

Chapter 7: Using the Libraries

After you have planned the size, contents, and location of the libraries (see
Chapter 3: Planning the System), you need to know how to allocate space
to a library, how to create private libraries and how to alter, copy, and
inspect the contents of the libraries. All these functions are performed by a
group of library processing programs, collectively referred to as the
librarian.

This chapter describes how you can use the librarian to manage the
system and private libraries in your installation. The chapter is divided into
three major sections:

I ·

The first section looks at the libraries from a system point of view, that
is, it shows how the system stores or retrieves elements into or from the
libraries. Although knowledge of this internal processing is not essential
for working with the libraries, it contributes to a better understanding
of the librarian functions.

The second section introduces the three functional components of the
librarian (maintenance, organization, and service) and gives a detailed
description of their applications to the individual libraries.

The third section describes the creation and use of private libraries.

The information in this chapter is useful for programmers and perhaps also
for operators.

How the System Accesses the Libraries

DOS/VS supports four types of libraries. Their purpose and contents are
described in Chapter 3: Planning the System and are summarized here:

• Core image library -- contains the output from the linkage editor
(executable program phases).

Relocatable library -- contains the output of a language translator
(object modules) which is used as input to the linkage editor.

Source statement library -- contains books (source language statements,
macro definitions, and pre-edited macro definitions) used as input to a
language translator.

• Procedure library -- contains collections of frequently-used control
statements (cataloged procedures). These cataloged procedures can
include job control and linkage editor control statements and (if the
SYSFIL option was specified during supervisor generation) inline
SYSIPT data.

The following describes how these libraries are accessed by the system
when a maintenance function for one of the libraries is requested.

Chapter 7: Using the Libraries 7.1

The Directories

Associated with each library is a directory that occupies the first track(s)
allocated to the library. For each element in a library, the corresponding
directory contains a unique entry describing the element. A directory entry
contains such information as name, disk address, size, load address (core
image library only), and version number (relocatable, source statement, and
procedure libraries only) of the element. These directory entries are used by
the system to locate and retrieve elements from a library.

The begin addresses of the individual system library directories are
stored in a separate directory, the system directory. For the core image
library, the first entry of the core image directory (library descriptor entry)
contains such information as the address of the next available record, the
number of active and deleted blocks, and the amount of space allocated to
the library. For the other libraries, this information is contained in the first
five entries of their own directories.

A core image library normally contains a large number of program
phases. Thus, searching for a specific phase can become rather time
consuming. To reduce the search time, the phases in the core image library
are entered in the core image directory in alphameric sequence. The highest
phase name on each track of the core image directory is listed in the second
level directory contained in the supervisor. If the phase cataloged is eligible
for the shared virtual area (SVA) (that is, its phase name is already entered
with the SV A operand in the system directory list, and it was cataloged in
the core image library with the SVA operand), the phase is loaded into the
SV A. When requested for execution, such a phase is always available in
virtual storage.

The organization of the directories on SYSRES is shown in Figure 7.1.
A more detailed description of the complete SYSRES organization is given
in Appendix A: System Layout on Disk.

Naming Elements in the Libraries

The choice of a phase name has a bearing on retrieval efficiency and the
subsequent use of the librarian programs. In general, you should not catalog
a phase with the same name as a phase already residing in the core image
library. When you do, the earlier phase-name entry is deleted from the core
image directory (and, if applicable, the system directory list) and cannot be
accessed again.

Job control scans the directory of the appropriate library for all phases
starting with the same four characters as the program name specified in the
EXEC statement. The highest storage address of these phases is stored in
the communication region of the partition. All phases just link-edited will
be taken if no program name is specified in the EXEC statement.

Phase names may only be formed from the characters 0-9, A-Z, /, #, $,
and @. Otherwise, the phase card is invalid.

7.2 DOS/VS System Management Guide

I

System Directory

Core Image Directory Cataloged Phases

Li nked Phases

Core I mage Library

Relocatable Directory

Relocatable Library

Source Statement Directory

Source Statement Library

Procedure Directory

Procedure Library

Figure 7.1. Organization of the Directories on SYSRES

In choosing a name for any multiphase program, make sure that the
first four characters are the same for all phases of that program but
different from those of other programs. Such unique names simplify the
procedures of deleting, displaying, punching, merging, and copying the
entire program. Figure 7.2 summarizes the above recommendations.

There is one other restriction when choosing a phase name. The
linkage editor interprets the phase name "ALL" as invalid because this
would subsequently be misinterpreted by the librarian programs. (This
applies to the control statements DELETC ALL and COPYC ALL.) Also
'S' and 'ROOT' as phase names may cause calculation of an invalid load
address.

Certain special naming considerations apply depending on the library in
which an element is stored:

Core Image Library. The names of some IBM programs in the core
image library begin with $; the IBM programs are normally stored in
the system core image library where they can be retrieved faster.
User-program names should not begin with $, because this is
specifically reserved for certain IBM programs, and user programs
should be placed in a private core image library if fast retrieval is
desired. The reason for this is that the system searches the system core
image directory first for phase names beginning with $ and the private
library directory first for other phase names, provided a private library
is assigned to the partition in question. When an attention routine
command results in a phase being loaded into virtual storage, DOS/VS

Chapter 7: Using the Libraries 7.3

I

Prog1

ABCD1
ABCD2
ABCD3
ABCD4

Different names should be given to each
multiphase program; each phase of a

multi phase program should be named
with the same first four characters. This

simplifies library maintenance.

Prog2

ANN11
ANN12
ANN13
ANN14
ANN15

Prog3

WXYZ1
WXYZ2
WXYZ3

WXYZn

Simplified library maintenance means, for example, that one simple control state
ment deletes all phases of Prog1:

(DELETC ABCD.ALL

If the programs had been named:

Prog1

ABCD1
ABCD2
ABCD3
ABCD4

Prog2

ABCD5
ABCD6
ABCD7
ABCD8
ABCD9

the statement required to delete Prog1 would be:

DELETC ABCD1, ABCD2, ABCD3, ABCD4

Figure 7.2. Naming Multiphase Programs

Prog3

ABCD10
ABCD11
ABCD12

ABCDn

searches only the system" core image library. Phases such as buffer
image phases for an FCB or a UCB are to be cataloged in the system
core image library and not in a private core image library.

Relocatable Library. User-written modules should not use names
beginning with I since this is used as the first letter of the names of
ffiM-supplied modules.

7.4 DOS/VS System Management Guide

• Source Statement Library. Initial letters A, B, C, D, E, F, G, H, I, and
Z refer to sublibraries reserved for IBM components, and you should
avoid as far as possible cataloging into one of these reserved
sublibraries. If you have an earlier version of DOS with books
cataloged in one of the sublibraries reserved under DOS/VS, you can
easily transfer them by using the librarian rename function.

Procedure Library. Names for procedures cataloged in the procedure
library can consist of any combination of alphanumeric characters. The
naming convention to follow when creating partition-related cataloged
procedures is given in Chapter 5: Controlling Jobs.

Change levels can be appended to names of elements in the relocatable,
source statement, and procedure libraries to help you keep track of the
current versions of your programs. The change level is specified in the
catalog control statement, and the procedure is described in detail later in
this chapter under Cataloging.

Storing and Accessing Elements in the Libraries

Whenever an element is to be stored (cataloged) in one of the libraries, the
system:

• obtains the address of the library directory from the system directory

determines the locations in the directory and the library where the
directory entry and the element should be placed.

places the element into the library and creates a new directory entry;
searches for duplicate entries and, if found, deletes the earlier entry.

If a phase is added to the core image library, the applicable information in
the library descriptor entry is updated. If the phase is eligible for the shared
virtual area and is indicated as SV A-eligible in the system directory list, the
phase is also loaded into the SV A. The second level directory is updated, if
necessary.

In general, the library elements and their respective directory entries
appear in the order in which they were cataloged. For the core image
library, however, the directory entries are sorted in alphameric sequence.

Source statements cataloged in the source statement library are stored
in compressed form, that is, all blanks are eliminated. When a source
statement book is retrieved, the statements are expanded to their original
80-character format. Control statements in the procedure library are not
compressed but are stored in card image format.

To access an element in a library, the system searches the
corresponding directory if it contains an entry with the name of the
requested element.

Working with the Libraries

This section describes how you can manage and control your libraries with
the use of the librarian programs. The librarian programs fall into three

I functional groups: maintenance, organization, and service. The functions are
applicable both to the system and private libraries. Figure 7.3 is a summary

Chapter 7: Using the Libraries 7.5

I

I

of the librarian programs, their functions, and partitions allowed for
execution.

GROUP PROGRAM FUNCTIONS PARTITION
NAME (EXEC)

Maintenance MAINT Catalog BG
Delete BG (Note 2)
Condense BG (Note 3)
Reallocate (Note 1) BG
Rename BG (Note 2)
Update BG

Organization CORGZ Create a new system pack ANY (Note 4)

Create private libraries

Transfer elements between any two libraries of the same type

Service DSERV Display the contents of the library directories ANY

CSERV Display, punch, or display and punch the contents of the Core
RSERV image, Relocatable, Source statement, or Procedure library.
SSERV Display, update the contents of the assembler sublibrary (in source
PSERV statement format).

ESERV Convert edited macros to source format. Display and/or catalog
converted macros in the source statement library.

Note 1 Reallocate cannot be used for private libaries.

Note 2 This function may be executed in a foreground partition for a private core image library.

Note 3 Refer to figure 7.6 for restrictions related to execution of the CONDS and CONDl functions of the MAINT
program.

Note 4 A MERGE to SYSRES function must be run in BG.

Figure 7.3. Summary of Librarian Programs and Their Functions

You invoke the individual functions of the librarian programs by means of librarian control statements.
The use of these control statements is described and demonstrated by examples in the following section.
Their formats are contained in DOS/VS System Control Statements.

Note 1: If the extended support for the procedure library (SYSFIL) was selected during supervisor generation, the
librarian control statements can be cataloged into the procedure library. This excludes maintenance functions for
the procedure library itself and reallocation of library sizes.

Note2: If a cataloged procedure is used to start POWER/VS no maintenance functions can be performed on the
procedure library as long as POWER/VS is active.

I
Note3: Results may be unpredictable if librarian programs access a library while this library is being updated in
another partition. Therefore, if a private library is assigned to more than one partition, the library should not be
updated.

Processing Requirements

No special considerations apply to executing the librarian programs in a

I virtual partition. If you wish to run a librarian program other than MAINT,
CORGZ, or DSERV in either a real partition or a large virtual partition,
specify AUTO in the SIZE parameter of the EXEC job control statement.
Since MAINT, CORGZ, and DSERV dynamically allocate storage during
execution, the SIZE=AUTO specification shouid noi be used for ihese
programs; SIZE=64K should be specified instead.

7.6 DOS/VS System Management Guide

Maintaining the Libraries

The merge function (for copying elements onto SYSRES) of the
CORGZ program and most functions of the MAINT program must always
be executed in the background partition (real or virtual). If the relocating
loader is not used, note the following statements. The MAINT, CSERV,
and DSERV programs are self-relocating so that they can be executed in
any partition. The ESERV, PSERV, RSERV, SSERV, and CORGZ
programs run only in the virtual background partition, unless they were
link-edited to be relocatable and loaded by the relocating loader.

The table in figure 7.3 shows which partitions you can use to hilVe the
librarian programs executed. For instance, the CORGZ program may be
used to create both system and private libaries in any partition.

When you execute MAINT in a foreground partition, a private core
image library must be uniquely assigned to that partition. The maintenance
functions then apply only to this private core image library. Neither the
system libraries nor the private relocatable or source statement libraries can
be accessed by MAINT executing in the foreground.

The maintenance functions of the librarian will probably be the ones most
frequently used in daily operation. They include:

1. Cataloging elements to the libraries
2. Deleting elements from the libraries
3. Condensing the libraries (or establishing limits for automatic condense)
4. Allocating space to the libraries
5. Renaming elements of the libraries
6. Updating books in the source statement library.

The maintenance program is invoked by the job control statement:

II EXEC MAINT

The functions to be performed are specified in librarian control statements
which must follow the EXEC MAINT statement on SYSIPT. (If SYSIPT is
assigned to a tape unit, it must be a single file and a single volume.) Any
combination of the maintenance functions can be performed in a single run.
A sample maintenance job in skeleton form is shown below:

II JOB ANYMAINT

assignments, if necessary

II EXEC MAINT

librarian control statements

1*
1&

When the / * is processed after completion of the maintenance run, a status
report of the library just updated is printed on SYSLST.

The symbolic unit assignments required for the individual maintenance
functions are described in DOS/VS System Control Statements. The

Chapter 7: Using the Libraries 7.7

Cataloging

examples in this chapter assume that all necessary assignments are
established as standard assignments.

The catalog function adds a module to a relocatable library, a book to a
source statement library, or a procedure to the procedure library. You
cannot use the catalog function of the librarian to add a phase to the core
image library; this is done by the linkage editor (see Chapter 6: Linking
Programs).

The catalog control statements specify the name of the element to be cata
loged and, optionally, a change level number. The control statements are:

Relocatable library . . .
Source statement library
Procedure library

· CATALR
· CATALS
· CATALP

Elements added to a library by cataloging can be removed by deleting (see
Deleting, later in this section). Under certain circumstances the catalog
function itself implies a delete function. For instance, if a module to be
cataloged has the same name as a module already existing in the relocatable
library, the existing module is automatically deleted and the new module is
cataloged. No warning message is issued. The same is true for a book in the
source statement library and a procedure in the procedure library.

When you add to the contents of a library, watch the status of the system
directory, which is printed at the end of the catalog run. If the libraries are
becoming full, you may wish to condense them or allocate more space to
them. (Condensing and allocating are described later in this section.)

Cataloging to the Relocatable Library. To catalog an object module to the
relocatable library you must submit the object deck on SYSIPT following
the CAT ALR control statement. The following job catalogs two object
modules, named MODt and MOD2, to the relocatable library; the object
decks were produced by language translators in previous jobs:

II JOB CATREL
II EXEC MAINT

CATALR MOD1

object deck for MOD1

CATALR MOD2

object deck for MOD2

1*
1&

You can also compile or assemble a program and catalog the resulting
object module in the relocatable library in the same job, without obtaining a
card deck of the object module. In this case, you assign SYSPCH, which
receives the output of the language translator, to a disk, diskette or tape
and then use the object module on that device as input to the MAINT
program. An example using a magnetic tape for SYSPCH is shown in

7.8 DOS/VS System Management Guide

Figure 7.4. To assign SYSPCH to a disk, or diskette, the SYSFIL option
must have been specified during supervisor generation, and you must supply
the necessary DLBL and EXTENT job control statements (see also System
Files on Tape, Disk, or Diskette in Chapter 5: Controlling Jobs).

II JOB CATREL
II OPTION DECK

1 II ASSGN SYSPCH,X'180'
2 II EXEC ASSEMBLY
3 PUNCH 'CATALR MODULE 1 ,

source module

1*
4 II MTC WTM,SYSPCH,2
5 II MTC REW,SYSPCH
6 II RESET SYSPCH
7 II ASSGN SYSIPT,X'180'
8 II EXEC MAINT

1&
1 A magnetic tape device is assigned to SYSPCH to receive the assembler output.

2 The assembler processes the source module and writes the object module onto
SYSPCH following the CAT ALR statement.

3 The assembler will punch a CAT ALR statement.
4 Tapemarks are written on SYSPCH to indicate the end of the object module.

S The tape is rewound to its load point.
6 The tape is unassigned as SYSPCH.
7 The tape is assigned to SYSIPT to serve as input for the MAINT program.
8 MAINT reads the object module from the tape and catalogs it in the relocatable

library.

Figure 7.4. Assembling and Cataloging to the Relocatable Library in the
Same Job

All modules in the relocatable library that have the first three characters
of the module name in common are considered to belong to one program.
This simplifies the control statements to delete, display, punch, merge, and
copy an entire program. The names of IBM-supplied modules in the
relocatable library begin with the letter I, which should therefore be
considered reserved so that you can readily distinguish your modules from
IBM's.

Cataloging to the Source Statement Library. To add a book to the source
statement library you use the CA T ALS statement specifying the name of the
book and the sublibrary to which it belongs. A sub library is defined by an
alphameric character preceding the bookname. For example, the statement

CATALS P.NEWBOOK

adds the book NEWBOOK to sublibrary P. Note that the sublibraries in the
range from A to I, and Z are reserved for IBM components.

A is the assembler copy sublibrary. It contains books of assembler
source code and source macro definitions. See DOS/VS System
Control Statements for details.

B is the VT AM network definition sub library .

D is the alternate copy sublibrary. It contains non-edited macros and
copy books for programs that are to be executed in a teleprocessing
network control unit.

Chapter 7: Using the Libraries 7.9

I
E -- is the assembler macro sublibrary. It contains IBM-supplied and

user-written macro definitions in an edited (partially processed)
format. See DOS/VS System Control Statements for details.

F is the alternate macro sublibrary. IBM uses it to distribute edited
macros for use by programs that are to be executed in a
teleprocessing network control unit.

C is the COBOL sublibrary.

Z contains sample programs supplied by IBM.

The rest of the reserved characters (G, H, I) will be used by IBM for
future additions to the source statement library. You should avoid, wherever
possible, cataloging to one of the reserved sublibraries. If you must catalog
to a sublibrary that is reserved for IBM components, ensure that you do not
use duplicate names. You can obtain a listing of the contents of each
sublibrary by means of the SSERV librarian program (see Using the Service
Functions of the Librarian later in this chapter). You can obtain a listing
of the book names within each sublibrary by means of the DSERV librarian
program.

Users of previous versions of DOS, who have books in a sublibrary
which is reserved under DOS/VS can easily transfer this sublibrary from
the IBM range to the user range by means of the librarian rename
function (see Renaming, later in this section).

Edited macro definitions that are to be cataloged in the assembler
sublibrary must be preceded by a MACRO statement and followed by a
MEND statement. Example:

I I JOB CATMAC
II EXEC MAINT

CATALS E.MBOOK
MACRO

edited macro definition statements

1*
IF:,

MEND

Books other than macro definitions that are to be cataloged must be
preceded and followed by BKEND-statements. Example!

II JOB CATBOOK
II EXEC MAINT

CATALS P.SBOOK
BKEND

source statements

1*
IF:,

BKEND

The BKEND statement can have optional operands specifying that a
sequence check or a card count be performed on the statements to be
cataloged, or that the book to be cataloged is in compressed format. If you
desire these functions when you catalog a macro definition, BKEND

7.10 DOS/VS System Management Guide

statements can be included in addition to the MACRO and MEND
statements.

Cataloging to the Procedure Library. To catalog a procedure in the
procedure library you submit a CAT ALP statement specifying the
procedure name. Procedure names can consist of any combination of
alphanumeric characters. The control statements to be cataloged follow the
CAT ALP statement; they can be job control or linkage editor control
statements or both. The end of the control statements to be cataloged must
be indicated by / +.

Each control statement cataloged in the procedure library should have a
unique identity. This identity is required if you want to be able to modify
the job stream at execution time. Therefore, when cataloging, identify each
control statement in columns 73-79 (blanks may be embedded). Refer also
to the section Modifying Cataloged Procedures in Chapter 5: Controlling
Jobs.

The following job catalogs the procedure PROCA in the procedure library:
II JOB CATPROC
II EXEC MAlNT

CATALP PROCA

control statements to be cataloged

1+ END OF PROCEDURE
1*
IS

If your supervisor was generated with the SYSFIL option, you can also
include inline SYSIPT data in the cataloged procedure. The presence of
SYSIPT data must be indicated to the MAINT program by the DATA

I parameter of the CAT ALP statement. In addition, you must indicate the
end of inline data by the /* statement. The following example catalogs a
procedure consisting of control statements and SYSIPT data:

I

I

I

II JOB CATPROC
II EXEC MAl NT

CATALP PROCA,DATA=YES

control statements

SYSIPT data

1* END OF SYSIPT DATA

control statements

1+ END OF PROCEDURE
1*
IS

The following restrictions apply when you catalog procedures to the
procedure library:

Chapter 7: Using the Libraries 7.11

1. A cataloged procedure cannot contain control statements or SYSIPT
data for more than one job.

2. If the cataloged control statements include the JOB statement you must
not have a JOB statement when you retrieve the procedure through the
EXEC statement.

3. A cataloged procedure with DAT A= YES must not include either of the
following statements:

[II] RESET SYS
[II] RESET ALL

In addition, it must not include any of the following statements for
SYSIN, SYSRDR, or SYSIPT:

[II] ASSGN
[II] CLOSE
[II] RESET

1&
4. A cataloged procedure with DATA=NO must not include either of the

following statements:

[II] RESET SYS
[II] RESET ALL

In addition, it must not include any of the following statements for
SYSIN or SYSRDR:

[II] ASSGN
[II] CLOSE
[II] RESET

1&

5. Cataloged procedures cannot be nested, that is, a cataloged procedure
cannot contain an EXEC statement that invokes another cataloged
procedure.

6. When cataloging a procedure that contains an imbedded / / JOB
statement, in a POWER/VS controlled partition, POWER/VS * $$
JOB and * $$ EOJ statements must define the cataloging job.

Refer to Chapter 5: Controlling Jobs for a detailed description of how to
retrieve cataloged procedures from the procedure library and how to modify
cataloged control statements using the overwrite facility.

Assigning Change Levels. When you catalog an element in one of the
libraries, you can assign a change level to the element, which will enable
you to keep track of the current version of your programs. The change
level is specified in the catalog control statement by a version and a
modification number. The following statement catalogs version 1,
modification 3, of module MOD 1 in the relocatable library:

CATALR MOD1,1.3

Change levels are stored in the directory entry for the element and can be
displayed by the librarian service program DSERV. A change level is not
used by the system for identification purposes, that is, a change level is not
sufficient to allow two elements having the same name to coexist in a
library.

For the source statement library only, you can request verification of
the change level before a book is updated. This can prevent an accidental
updating of the wrong version of a book in a particular sublibrary. Specify

7.12 DOS/VS System Management Guide

Deleting

the character C in the CAT ALS statement to request change level
verification. Example:

CATALS M.BOOK1,1.1,C

To update the book you must supply the current change level of the book
in the update control statement. This change level is then checked against
the change level in the directory entry and, if they match, the book is
updated and its change level is increased by one to reflect the new status of
the book. If you want to overwrite the version and modification numbers of
a book, supply the new change level information in the END statement of
the update function. If change level verification is requested for a particular
book, the letter C will appear in the column headed LEV CHK (level
check) in the DSERV listing.

You can delete an unwanted element from a library either by cataloging a
new element with the same name or by means of the delete function of the
librarian, using the following control statements:

Core image library . . .
Relocatable library
Source statement library
Procedure library

. DELETC
. DELETR

.. DELETS
. DELETP

To delete individual elements from the libraries, you must specify each
element name in full in the delete control statement. If a group of elements
is to be deleted, however, you can simplify the specification of the control
statement provided that the recommended naming conventions were used
when the elements were cataloged.

1. If all the phases of one program in the core image library were named
with the same first four characters, you need to specify only these four
characters to delete the entire program.

2. You can delete all modules in the relocatable library that have the first
three characters in common by specifying these three characters in one
delete control statement.

3. Similarly, you can delete an entire sub library from the source statement
library by specifying the sublibrary name.

Since no special naming conventions apply to the procedure library, each
cataloged procedure to be deleted must be individually specified.

You can also use the delete function to remove all elements of a
relocatable library, source statement library, procedure library, or private
core image library. In this case, the system directory information is updated
to show that all blocks of the library in question are available for cataloging
programs; no condense operation is required. You cannot delete the entire
system core image library, but only individual phases or programs.

The following job deletes (1) all phases starting with PHAS from the
core image library, (2) modules MODI and MOD2 from the relocatable
library, (3) sublibrary P from the source statement library, and (4) all the
elements of the procedure library:

II JOB DELETE
II EXEC MAINT

Chapter 7: Using the Libraries 7.13

Condensing

1*
1&

DELETC PHAS.ALL
DELETR MOD1,MOD2
DELETS P.ALL
DELETP ALL

When you request the deletion of a library element, the name of the
element is removed from the corresponding directory entry. The system is
then no longer able to recognize the element although it is still physically
present in the library. The area taken up by such an element can be
referred to as unavailable free space. To make such space available again
for cataloging programs, use the condense function. The delete and
condense functions are illustrated in Figure 7.5.

When a phase is deleted from the core image library, it is also flagged
as not present in the system directory list (if applicable). The shared virtual
area cannot be condensed; it must be recreated. See Building the SDL and
Loading the SVA in Chapter 4: Starting the System.)

When you delete an element from a library, the space occupied by the
'deleted' element -- referred to as unavailable free space -- is unavailable
for cataloging new elements (see Figure 7.4). To make this space avdlable
for cataloging, you use the condense function of the MAINT program.

To condense any of the libraries you use the CONDS control statement
specifying which of the libraries is (are) to be condensed. The following job
condenses the core image, relocatable, and source statement libraries after
the deletion of elements from the libraries:

II JOB DELCOND
II EXEC MAINT

1*
1&

DELETC PHAS1,PHAS5,PROGA
DELETR MOD.ALL
DELETS P.ALL
DELETP ALL
CONDS CL,RL,SL

Note that you need not condense a library -- in the above example, the
procedure library -- if that library is deleted entirely.

The reallocation function of the MAINT program automatically causes
the libraries to be condensed. Refer to the section Reallocating.

If a condense operation is interrupted by a hardware error or by
operator intervention before the next statement is read, the library being
condensed is unusable and must be reconstructed. Note that the condense
program shows all the symptoms of a looping program, but should never be
canceled by the operator.

I
Specifying the condense limit. You can specify that a message is to be
delivered to the operator whenever the number of available blocks in a
library drops below a specified minimum, which is referred to as the

., condense iimit. Through the CONDL statement you specify the library or
libraries and the condense limit(s).

7.14 DOS/VS System Management Guide

t::'\ Assume that phases A, B, and C are cataloged in the
~ core image library (c.i.I.). Each core image directory

(c.i.d.l entry, which refers to one of these phases,
points to the beginning disk address of the phase.

f2\ If phase B is no longer desired in the core image

\.V library, specify (DELETC B I, which deletes the

name B from the directory,

0 TO make full use of the core image library, eliminate
3 'f b 'f ' the unavailable ree spaces y speci ylng

(CONDS CL I.

F!rst area available
for cataloging

}coi.do

}coiod

First area available This becomes unavailable free
for cataloging space - 'Jnavailable because

no other program can be cata
loged in this area,

First area available
for cataloging I

}coi.do

Figure 7.5 Example of Deleting and Condensing

Chapter 7: Using the Libraries 7.15

Example:

II JOB CONDSLMT
II EXEC MAINT

CONDL CL=10
1*
1&

In the above example, the CONDL statement specifies that, whenever the
number of available library blocks falls below 10, a message is to be issued.
(The block size of the core image library is 1024 bytes.)

The condense limit should always be less than the number of blocks
allocated to the library; otherwise this message is given after each
maintenance function. The MAINT program stores the condense limits in
the system directory, which can be displayed at the end of each librarian
maintenance job. If a library has reached a condense limit, this is indicated
in the status report by a note.

When Condense Can Be Performed. While the condense function is being
executed, the library directories do not represent the actual status of the
library. Thus, if a program in any partition were to attempt to use the
library in any way, the results would be unpredictable. For this reason,
various controls are provided to minimize the chances of unpredictable
results:

The system core image library and either the system or private
relocatable and source statement libraries can only be condensed from
the background partition, and then only if there are no active
foreground partitions.

A private core image library may be condensed in any partition,
provided it is exclusively assigned to that partition.

The procedure library can be condensed from the background partition
unless it is being accessed by the job control program in another
partition or a procedure is being executed. Thus, a job stream to
condense the procedure library cannot be cataloged.

A summary of where/when condense can be performed is shown in Figure
7.6.

7.16 DOS/VS System Management Guide

Core Image Relocatable Source Statement Procedure (system)

System Private System I Private System I Private

CONDS Yes if FG Yes if issued Yes if FG is inactive. Yes if not being
is inactive. from the only accessed by job

partition to control or if a
which the procedure is not being
PCIL is executed.
assigned.

I
Figure 7.6. When Can Condense Be Performed?

Reallocating

I The CONDL control statement (which sets the condense limits) can be submitted with the MAINT
program at any time.

A partition is inactive if it has never been activated with a START or BATCH command or has been
deactivated with an UNBA TCH command.

Even though POWER/VS may not be doing any work, if it is resident in a partition, the partition is
considered to be active.

You can use the reallocation function of the MAINT program to

• increase the size of a library for further additions

• decrease the size of a library, for example, to provide space for
expanding other libraries.

eliminate a library if it is replaced by a private library or is no longer
required

reestablish a library after it has been eliminated.

Each library that is reallocated is automatically condensed. You can
reallocate any combination of the system libraries on SYSRES within a
single run. You cannot reallocate private libraries. To change the track and
cylinder allocation of a private library, you must create a new private
library using the CORGZ program (see Creating Private Libraries, later in
this chapter). If a private library is assigned and you attempt to reallocate
the corresponding system library, a message is issued and the job is
canceled.

The reallocation function of the MAINT program must always be
~xecuted in the background partition and all foreground partitions must be
inactive. This ensures that no program can access any library during
reallocation; otherwise, the results would be most unreliable because the
final addresses may not have been established and (similar to the condense
function) because the directory entries do not reflect the actual status of
the libraries until end-of-job.

You invoke the reallocation function through the ALLOC control
statement. In the operand field you specify the libraries to be reallocated,
the number of cylinders to be allotted to each library, and the number of
tracks to be reserved for the library directory. The ALLOC statement can
be submitted together with any other maintenance control statements.

Chapter 7: Using the Libraries 7.17

Changing the Size of the Libraries. When you increase the size of one
library, you must consider the space remaining for the libraries that follow.
The combined number of cylinders for all system libraries cannot exceed

198 for 2314 or 2319
402 for 3330 or 3333

I 804 for 3330-11
345 for 3340 with 3348 data module Model 35
693 for 3340 with 3348 data module Model 70.

I 554 for 3350

Note: You must allow 1 cylinder for the VTOC and 1 or 2 (on 3340) cylinders
for the label cylinder(s).

If not enough space is available for the following libraries, you must reduce
one or more of these libraries to compensate for the increase.

Assume, for example, that the SYSRES library space on a 2314 was
allocated during system generation as

ALLOC CL=90(5),RL=40(2),SL=60(3),PL=6(5)

An attempt to reallocate only the core image library to 120 cylinders would
fail, because cylinder 199 would be exceeded. To avoid this, you can reduce
the combined sizes of the relocatable and source statement libraries by 28
cylinders. In this case, the ALLOC statement should read:

ALLOC CL=120(7),RL=30(2),SL=42(3),PL=6(5)

When you alter the size of the SYSRES file by reallocating libraries, you
must define the new SYSRES extent by means of DLBL and EXTENT job
control statements. The new SYSRES extent must begin with cylinder 0,
track 1, and end with the last track of the label cylinder. The ALLOC
statement starts calculating from cylinder 0, track O. This means that
EXTENT information for the SYSRES file must be one cylinder (or two
for 3340) larger than the total number of cylinders specified in the
ALLOC statement to include the label cylinder(s).

The following example shows the job control statements required to
reallocate the system libraries as discussed above when the SYSRES device
type is 2314/2319:

II JOB REORG
II DLBL IJSYSRS,'DOS/vs SYSTEM RESIDENCE' ,99/365
II EXTENT SYSRES,111111,1,O,OOOl,3979
II EXEC MAINT

1*
If:.

ALLOC CL=120(7),RL=30(2),SL=42(3),PL=6(5)

Note that the filename specified in the DLBL statement for the SYSRES
file must always be IJSYSRS. The new label information for the SYSRES
file is stored in the volume table of contents (VTOC) of the SYSRES pack.

No special considerations apply for reducing the size of a library except
that you must also supply the necessary label information for the new
SYSRES extent. Reducing a library does not cause any gaps, that is, the
libraries follo'.ving the one that was reduced are 'moved up' to elose the
gap.

7.18 DOS/VS System Management Guide

Renaming

Eliminating Libraries. If you have created a private relocatable or source
statement library containing all the modules or books that you require from
the corresponding system library, you can use the reallocation function to
eliminate that system library. You do this by setting the track and cylinder
indications in the ALLOC statement to zero. This is only effective,
however, if all the directory entries have first been cleared by the DELETS
or DELETR control statements.

Similarly, you can eliminate the procedure library if it contains no
active elements and you are sure that you do not want to use cataloged
procedures.

The following job eliminates the system relocatable library. The
example assumes that the libraries were allocated with CL=80(5),
RL=40(2), SL=30(3), PL= 10(5). (SYSRES device type assumed to be
2314/2319.)

II JOB ELIMNT
II DLBL IJSYSRS,'DOS/VS SYSTEM RESIDENCE' ,99/365
II EXTENT SYSRES,111111,1,O,OOOl,3219
II EXEC MAINT

DELETR ALL
ALLOC RL=O(O),CL=120(7),SL=30(3),PL=10(5)

1*
1&

You cannot eliminate the system core image library because it is required
for system operation. If you inadvertently specify a zero allocation for the
system core image library, the job is canceled.

Once eliminated, the relocatable, source statement, or procedure library
can be added again to the SYSRES file. The same considerations apply to
adding a library as to increasing the size of a library. Using the reallocation
function to add a library does not include adding the actual elements of the
library. Once a library exists you can add elements either by cataloging or
by merging from a private library or another SYSRES. (The merge function
is described in Copying and Reorganizing the Libraries, later in this
chapter.)

To change a name of a cataloged phase, module, book, or procedure, use
the rename function. In a control statement unique to each type of library,
you supply the existing name and the name to which you want to change it.
If the new name is identical to a name already cataloged in the library, an
error message is issued. You must then select a different name and resubmit
the job.

When you name a phase in the system core image library that is also
listed in the system directory list, the phase name is changed in both
directories.

After a valid rename control statement is processed, the system
recognizes only the new name. The version and modification level (change
level) is not changed by the rename function.

Each type of library has a unique rename control statement:

Chapter 7: Using the Libraries 7.19

Core image library
Relocatable library
Source statement library .
Procedure library

.. RENAMC
..... RENAMR

RENAMS
.. RENAMP

The rename function can be used to establish naming conventions. All
phases in the core image library that have the first four characters in
common are considered to belong to one program. All modules in the
relocatable library that have the first three characters in common are
considered to belong to one program. Since the names of IBM-supplied
relocatable modules begin with the letter I, it is advantageous to avoid this
first character when naming user modules. Similarly, you should avoid the
use of the first characters A-I and Z when renaming sublibraries in the
source statement library. These prefixes are reserved for IBM-supplied
components. Names for procedures cataloged in the procedure library can
consist of any combination of alphanumeric characters.

Renaming a member of a library can be advantageous in a testing
environment. For instance, after making changes to your source deck,
rename the previous version residing in the library and catalog the new
source under the original name. This assures you of backup until your new
program is in working order, at which time you can delete the old
(renamed) version(s).

Updating Object Modules and Phases

During or after system generation, you may need to update already
cataloged object modules or phases. The IBM system utility Copy File and
Maintain Object Module (OBJMAINT), allows you to modify object code
by submitting approriate control statements via card, tape, sequential disk
or diskette; the program supports the following functions:

LIST

ACTION

BLOCK

SELECT

EXCLUDE

UNREP

EXIT

CARD

EXPAND

REP

7.20 DOS/VS System Management Guide

provides formatted listings of the object code

allows OBJMAINT processing of SYSIN files on disk, tape
or diskette

blocks output data to tape or disk

selects jobs to be processed from an input file containing
SYSIN data

excludes jobs from an input file

eliminates any or all user REP cards in a named CSECT

names a precataloged user phase to optionally process the
input file

specifies an alternate EOF delimiter, other than / *, when
input is on cards

allows specification of a new CSECT length

allows object code patching; may be followed with user
REP statements or used to advance to a subsequent
CSECT.

EXP AND /REP allows both CSECT length modification and patching with
user REP statements

COpy allows file-to-file copying with blocking and deblocking
capability

DEBLOCK same as COpy except that the output is always in 80-byte
blocks

END required when doing a LIST only operation with card input.

To update object programs cataloged in either the relocatable or the
core image library, you must

1. use RSERV or CSERV to write the object modules to be modified to
SYSPCH, which should be assigned to tape, disk, or diskette

2. execute OBJMAINT with control statements on SYSIPT or from the
procedure library. Input object modules are assigned to SYS004 and
OBJMAINT output is assigned to SYSOOS.

3. execute MAINT or LNKEDT to catalog updated object modules.

The following job stream shows the three steps involved in updating an
object module, PA YRLOl, from the relocatable library. After PAYRLOI is
written out to disk, OBJMAINT is used to remove any prior updates (user
REP statements) before adding a new user REP statement. The updated
module, on tape, is then recataloged using the MAINT program.

II JOB UPOTMOO
II OLBL IJSYSPH,'PTF.WORK.FILE.l' ,O,so

1 II EXTENT SYSPCH,CPMOY5",5681,38
II ASSGN SYSPCH,X'130' ,PERM,VOL=CPMOY5,SHR
II EXEC RSERV

2 PUNCH PAYRLOl
1*

3 CLOSE SYSPCH,X'OOO'
II OLBL UIN,'PTF.WORK.FILE.l',O,SO

4 II EXTENT SYS004,CPMOY5
II ASSGN SYS004,3330,TEMP,VOL=CPMOY5,SHR

5 II ASSGN SYS005,X'281'
II MTC REW,SYS005

6 II MTC WTM,SYS005
II MTC REW,SYS005
II EXEC OBJMAINT

7 .1 LIST PARM=SHORTTXT
8 .1 UNREP
9 .1 REP NM=PAYRL01,SO=(001)
10 +REP 000010 001FFFF,FFFF,FFFF,FFFF,FFFF,FFFF,FFFF,FFFF

1*
11 II MTC REW,SYS005

II RESET SYS005
12 II ASSGN SYSIPT,X'281,
13 I I EXEC MAINT

II MTC REW,SYSIPT
II RESET SYSIPT
1*

14 I I EXEC RSERV
OSPLY PAYRLOl

1*
1&

Chapter 7: Using the Libraries 7.21

Label and device assignment information required for the SYSPCH disk file, to be
used by the RSERV program. The assignment is a permanent one (PERM), with
disk volume CPMDY5 available for multiple assignments (SHR).

2 These statements cause writing of the object module PAYRL01 to SYSPCH from
the relocatable library. A CATALR statement is included on SYSPCH.

3 The SYSPCH FILE IS CLOSED AND SYSPCH assigned to device, X'OOD'.

4 Label and device assignment information for the disk file containing object module
PAYRL01, now assigned to SYS004 as OBJMAINT input.

5 Output of OBJMAINT (in deblocked SYSIN format) will be written to the SYS005
tape on drive X'281'.

6 These statements cause writing of a tape mark and rewinding of the SYS005 tape.

7 This OBJMAINT LIST function will print one TXT statement per line.

8 This OBJMAINT UNREP function will eliminate any existing user REP statements
from PAYRL01.

9 This OBJMAINT REP function will allow application of new user REP statements.

10 This user REP statement (X'02' or + in column 1) contains the new object code
modification for PAYRL01.

11 After the OBJMAINT step the output tape is repositioned to the beginning;
SYS005 assignment is reset to the default.

12 The SYS005 output file of OBJMAINT becomes the SYSIPT file for the MAINT
program.

13 The updated module is recataloged to the relocatable library.

14 RSERV is used to list PAYRL01 for verification and documentation of the update.

For further details on the use of OBJMAINT, refer to DOS/VS System
Utilities; for details on the format of the user REP statement for the
patching of object modules, refer to DOS / VS System Control Statements.

Updating the Source Statement Library

The update function applies only to a source statement library. This
function revises one or more source statements within a particular book. By
using update you can make minor changes to a book, without having to
catalog an entire, new book.

Besides adding, deleting, or replacing a certain number of source
statements within a book, the update function allows you to:

• resequence statements within a book

revise a change level (version and modification) of a book

• add or remove the requirement for change level verification

copy an entire book and rename the old book (for backup purposes).

The UPDATE control statement identifies the update function. This
statement may also be followed by one or more of these additional
statements as required:

ADD -- To add source statements
DEL -- To deiete source statements
REP -- To replace source statements.

7.22 DOS/VS System Management Guide

Organizing the Libraries

The END statement indicates the end of updates to the particular book
specified in the UPDATE control statement.

If the requirement for change level verification was specified in the
CAT ALS control statement when a book was cataloged, the version and
modification level must be specified in the UPDATE control statement that
refers to this book. This change level must agree with the current change
level in the directory entry for that book. (Check the DSERV listing for the
current change level and/or requirement for change level verification. For
more information on the DSERV program, refer to the section Displaying

I the Directories.) The specification of the version and modification level in
the UPDATE statement prevents you from inadvertently making an update
based on a book with the the wrong version and modification. Regardless
of whether or not the requirement is in effect, the version and modification
level are incremented by one after each update. If a version and
modification level is specified in the END statement, this overrides the
current change level.

The copy (CORGZ) program is an important tool for establishing and
organizing your libraries during system generation or any time thereafter.
The following section discusses this program, its functions, and its
application to your library organization requirements. Its functions are to:

Create a new system residence (SYSRES)

Transfer elements between any two existing libraries of the same type,
as follows:

all elements, or
some elements, or
only those elements which do not yet exist in the receiving library.

Create private libraries.

The first two points are described in this section. The creation of private
libraries is discussed in Creating and Working with Private Libraries, later
in this chapter.

The organization program can be executed in any partition, except for
the merge function (to copy elements onto SYSRES), which must be
executed in the background partition. It is invoked by the statement

II EXEC CORGZ

When /* is processed after completion of the CORGZ program, a
status report of the library just updated is printed on SYSLST.

You cannot have different device types for input and output.

The functions to be performed by the CORGZ program are specified in
a set of librarian control statements, which will be introduced in the course
of the following discussions.

Note: The library-compare and copy-select functions of the COPYSER V program,
which was made available with release 33, have been integrated in the CORGZ
program, and the COPYSER V program is removed from DOS/VS. Integrating
these COPYSER V functions in CORGZ eliminates the need for an extra job when
two libraries are to be merged.

Chapter 7: Using the Libraries 7.23

Creating a New System Residence

When system generation is completed, you will want a backup SYSRES,
which can save you regenerating the system from your distribution medium
if the operational pack is inadvertently destroyed. This backup SYSRES is
usually kept on tape, but may also be kept on a disk of the same device
type as the original SYSRES. If the backup is to be on tape, use the
Backup/Restore DOS/VS System program. When required the tape may be
restored to a disk of the same or different device type. If the backup
SYSRES is to be on disk, use the CORGZ program with the ALLOC and a
COpy control statements to define the new· SYSRES file and copy the
entire contents of the original SYSRES file onto it.

You can also copy the SYSRES file selectively; that is, the new system
residence will contain only part of the original SYSRES. This may be useful
in an installation that uses certain components only during specific
processing periods. For instance, if teleprocessing and support for five
partitions is required only during the prime shift, a different system
configuration (for instance, no teleprocessing and three partitions) could be
used during the second shift. Therefore, you could copy onto a new
SYSRES file only those components required for the second shift and add
any additional components needed to that SYSRES. In this case, you must
assemble a new supervisor and catalog it into the new SYSRES file. The
effect is a smaller supervisor and smaller libraries on both system residence
packs which means faster access to library elements and, thus, improved
overall system performance.

When you create a new system residence, SYS002 must be assigned to
the device on which the new SYSRES pack resides. In addition, you must
clefine the extents of the new SYSRES file by means of DLBL and
EXTENT job control statements. The filename in the DLBL statement
must be IJSYSRS. The lower extent must be cylinder zero, track one, and
the upper extent must include the label information cylinder(s). The
information to be copied from the original to the new SYSRES is specified
in one or more of the following COpy control statements:

COpy ALL

COPYC
COPYR
COPYS
COPYP

to copy the entire system residence file. Note that you can
use this form of the COPY statement only if all four
system libraries are allocated on the original SYSRES file;
otherwise, you must use a combination of the following
COpy statements.

to copy one or more elements, one or more

groups of elements, or all elements of the

Core image, Relocatable, Source statement
or Procedure library.

The following job creates a backup SYSRES file on disk drive X'131'. The
example assumes that the original SYSRES file does not contain a
procedure library:

II JOB BACKUP
II ASSGN SYS002,X'131'
II DLBL IJSYSRS,'Dos/vS SYSRES BACKUP' ,99/365,SD
II EXTENT SYS002,111111,1,O,0001,2219
II EXEC CORGZ

ALLOC CL=50(5),RL=30(5),SL=30(5),PL=O(O)

7.24 DOS/VS System Management Guide

1*
1&

COPYC ALL
COPYR ALL
COPYS ALL

For each CORGZ run an ALLOC control statement is required, preceding
any COpy statements. If you wish to exclude an entire library from being
copied, specify a 'zero' allocation (for example, RL=O(O».

Assume that you have a SYSRES file that contains all four system
libraries and you want to create a second SYSRES file containing only
selected information from the core image library and the entire relocatable
library. The following job creates this new SYSRES file (device type
2314/2319 assumed):

II JOB SYSRES
II ASSGN SYS002,X'131'
II OLBL IJSYSRS,'DOS/VS SYSRES II' ,99/365,SO
II EXTENT SYS002,111111,1,O,OOOl,1619
II EXEC CORGZ

ALLOC CL=50(5),RL=30(5),SL=O(O),PL=O(O)
COPYC PHAS.ALL,PROG.ALL,ABCO.ALL

1*
1&

COPYR ALL

Note that all components essential to a minimum system are copied
automatically by the CORGZ program. These components are:

• Supervisor

Initial program loader (IPL)

All logical and physical transients

Job control

Linkage editor

Partition and system standard labels (cataloged with the P ARSTD and
STDLABEL options) from the label information cylinder(s).

Thus, if you execute the CORGZ program without any COpy statements,
the above components will be copied automatically onto the new SYSRES
file.

Transferring Elements between Libraries

If you work with more than one system residence pack or private library,
you may want to transfer elements from one library to another. Instead of
punching the elements into cards and re-cataloging them, you can use the
CORGZ program with a MERGE statement to transfer the elements. This
is especially useful for system generation when a new version of the system
is installed; you can then copy the library elements directly from the old
version to the new one. (For backup purposes you should of course have a
duplicate of the library to which elements are transferred.)

You use the MERGE control statement to define the characteristics of
the libraries to be merged and the direction of transfer between the
libraries. The operands of the MERGE control statement are:

Chapter 7: Using the Libraries 7.25

RES -- For the system libraries on the system residence file

NRS -- For the system libraries on a modified or duplicate system residence
file

PRV -- For any private libraries.

For example, the statement MERGE RES,PRV indicates to the CORGZ
program that elements are to be transferred from one or more libraries on
the system residence file to the corresponding private libraries. The type of
library involved and the elements to be transferred are specified in COPY
statements immediately following the MERGE statement. (The COPY
statements are the same as those described in the preceding section

I Creating a New System Residence).

You must define the extents of the libraries involved in a merge
operation by DLBL and EXTENT job control statements. The filenames to
be used and the necessary symbolic unit assignments are described in detail
in DOS / VS System Control Statements.

Note that, when the CORGZ program performs a merge operation, it does
not automatically copy the basic system components as it does when a new
system residence is created (see preceding section). You must specify
COPYC ALL to transfer the entire core image library or COPY ALL to
transfer the entire SYSRES extent. Moreover, when the merge function is
being performed, you cannot reallocate the libraries with an ALLOC
statement.

The job in the following example adds the contents of the core image
library on a duplicate SYSRES file (NRS) to the elements in a private core
image library (PRV). Any elements with duplicate names (supervisor, job
control etc.) are deleted from the receiving library.

II ASSGN SYS002,X'130'
II DLBL IJSYSRS,'DOS/VS SYSRES II' ,99/365,SD
II EXTENT SYS002,111111,1,O,OOOl,2519
II DLBL IJSYSCL, 'PRIVATE CIL' ,99/365,SD
II EXTENT SYSCLB,222222,1,O,1600,200

ASSGN SYSCLB,X'131'
II EXEC CORGZ

1*
1&

MERGE NRS,PRV
COPYC ALL

Alternatively, for the COPYC, COPYR, COPYS, and COPYP
statements, the NEW operand can be used to copy only those members that
do not already exist in the receiving library. Note, however, that for
COPYC NEW:'

• supervisor phases are never copied, and
a number of system phases are always copied.

See DOS/VS System Control Statements for a list of these phases. In addition, you
must ensure that your receiving library has sufficient space allocated to accommodate
the library members that are copied from the other library.

The job in the following example also adds the contents of the core

I image library on a duplicate SYSRES file (NRS) to the elements in a
private core image library (PRV). In this example, only nonduplicate
elements are copied.

7.26 DOS/VS System Management Guide

II JOB NRSPRV
II ASSGN SYS002,X'130'
II DLBL lJSYSRS,'DOS/VS SYSRES 11',99/365,SD
II EXTENT SYS002,111111,1,O,0001,2519
II DLBL lJSYSCL,'PRlVATE ClL' ,99/365,SD
II EXTENT SYSCLB,222222,1,O,1600,200
ASSGN SYSCLB,X'131'
II EXEC CORGZ

1*
1&

MERGE NRS,PRV
COPYC NEW

U sing the Service Functions of the Librarian

Displaying the Directories

The service functions of the librarian enable you

to obtain reports on the contents of your libraries by displaying the
directories on SYSLST

to print and/or punch the contents of your libraries on SYSLST or
SYSPCH in order to transfer the library elements to a different location
or to correct them

to prepare macro definitions in the assembler macro (E) sublibrary for
update.

The directories are displayed by the DSERV program. Edited macros in the
E-sublibrary can be de-edited for update by the ESERV program. To print
or punch the contents of the libraries, a separate program is available for
each type of library:

CSERV -- Core image library
RSERV -- Relocatable library
SSERV -- Source statement library
PSERV -- Procedure library

If you use private libraries, the service functions apply only to the private
libraries assigned. Private libraries must be unassigned before the
corresponding system libraries can be accessed by the service programs.

Using the directory service program (DSERV) you can obtain a listing of
the following directories:

Core image directory, or the directory entry of a specific phase or
group of phases (transients, for instance) in the core image library
together with their change level, if present

System directory list (SDL)

• Relocatable directory

• Source statement directory

Procedure directory

System directory. This directory is always listed before any of the
directories is printed. This information is called a status report.

Chapter 7: Using the Libraries 7.27

Depending on the control statement used, the directories can be displayed
in one of two formats:
• An alphamerically sorted listing of the directory entries (DSPL YS

control statement)

A listing of the entries in the order in which they appear in the
directory (DSPL Y control statement).

Note: The entries in the core image directory are always displayed in
alphameric sequence.

Within a single job step you can obtain mUltiple displays of the same
directory, either sorted or unsorted, by supplying a separate control
statement for each desired display. Similarly, any number of directories can
be displayed within one job step, depending on the operands in the control
statement. The following job will produce a sorted listing of all transients
($-phases) and unsorted listings of the relocatable and source statement
libraries:

II JOB DISPDIR
II EXEC DSERV

DSPLYS TD

1*
1&

DSPLY RD,SD

If you specify / / EXEC DSERV without any control statements, a status
report of all libraries present on SYSRES and all private libraries assigned
(if any) is printed on SYSLST.

Displaying and Punching the Contents of the Libraries

You can use the library service programs to obtain a listing, a card deck, or
a card image copy of the elements in a library. There is a service program
for each library:

CSERV -- Core image library
RSERV -- Relocatable library
SSERV -- Source statement library
PSERV -- Procedure library.

You request the library service functions by means of three control
statements which are used for all four library service programs. These
control statements are:

DSPL Y -- To print the elements of a library
PUNCH -- To punch the elements of a library
DSPCH -- To print and punch the elements of a library.

Each of these statements can specify one or more individual elements, one
or more groups of elements, or all elements of a library to be printed or
punched. The following job prints the entire sub library P and punches
phases PHAS 1 and PHAS3 of the core image library:

II JOB LIBSERV
II EXEC SSERV

DSPLY P.ALL
1*
II EXEC CSERV

1*
1&

7.28 DOS/VS System Management Guide

PUNCH PHAS1,PHAS3

The punched output (either in cards or on tape, diskette, or disk) of any
service program can be used as input for recataloging into the type of
library from which it was extracted. Except for the CSERV punched
output, the service programs automatically punch a CAT ALR, CAT ALS, or
CATALP statement immediately preceding each element, and a /*
statement (/ + in case of the procedure library) immediately following the
last element. Such output can therefore be submitted with a / / EXEC
MAINT statement for recataloging.

Punched output of the CSERV program is suitable for input to the
linkage editor for recataloging to the core image library. The control
statement stream would be as follows:

II JOB RECATAL
II OPTION CATAL

INCLUDE

1*
II EXEC LNKEDT
1&

Phases punched from the core image library are relocatable if ACTION
REL was active when the phases were originally cataloged. If relocatable
phases are recataloged, their origin is at an address relative to the end of
the supervisor (S+displacement). If nonrelocatable phas\es are recataloged,
their origin is at the same absolute address as when they were originally
link-edited.

Phases originally cataloged with the SV A operand are punched and
displayed with this indication.

Printed output from any of the service programs is useful for debugging
purposes. For instance, after determining an error from a dump or source
listing, you implement a change to the RSERV object deck by inserting the
appropriate REP card(s) directly before the END card and run the MAINT
program to recatalog the object module; then to verify that the REP card
was correct, execute the RSERV program to obtain a listing. An SSERV
listing may be necessary before a single statement update can be
performed; after locating the statement in error in the listing, submit an
UPDATE maintenance run to implement the change in the source statement
library.

Preparing Edited Macros for Update

The assembler uses two sublibraries of the source statement library: the
macro sub library (sublibrary E) and the copy sub library (sublibrary A). All
macro definitions in the assembler macro (E) sub library have been
preprocessed by the assembler; they are said to be edited. An edited macro
definition cannot be directly updated; instead, the squrce macro, either in a
card deck or in the copy (A) sublibrary is updated. After the changed
macro has been tested and debugged, it must be edited again before it can
be recataloged in the macro sublibrary.

If the macro to be updated is not available in source format, you can
use the ESERV program to convert the edited macro back to source

Chapter 7: Using the Libraries 7.29

format: this is called de-editing. If the output of the ESER V program is to
be used directly as input to the assembler, you can specify the GENEND
control statement to cause the END card and a /* card to be included after
the last macro. If the output is to be cataloged directly into the copy (A)
sublibrary, you can specify the GENCATALS control statement. This
causes a CAT ALS card to be generated before each macro in the run and a
/* card after the last macro. If neither the GENEND nor the
GENCATALS control statement is specified after the / / EXEC ESERV
statement, GENCAT ALS is assumed.

The remainder of the control statements that you submit to the ESERV
program are the same as for the other librarian service programs: DSPLY,
PUNCH, and DSPCH. The following job de-edits the macro named MAC!:

II JOB DEEDIT
II EXEC ESERV

GENEND
PUNCH E.MAC1

1*
1&

The output of the above job is the macro MAC! in source format on
SYSPCH. An END card and a /* card is included after the macro. You can
now update the macro, edit it, and catalog it back into the E sublibrary of
the source statement library.

You can de-edit and update a macro in a single run by sUbmitting the
necessary update control statements. The following job de-edits and updates
the macro MAC2. The result will be the updated macro in source format
on SYSPCH and a listing of the updated macro on SYSLST:

II JOB EDTUPDTE
II EXEC ESERV

GENCATALS
DSPCH E.MAC2

1*
1&

update control statements

The update function of the librarian is described in Updating the Source
Statement Library, earlier in this chapter. Detailed information on editing,
de-editing, and updating macro definitions is given in Guide to the
DOS/VS Assembler.

Creating and Working with Private Libraries

Private libraries are created and maintained by the system librarian
programs. All librarian functions are performed in the same manner for
private libraries as for system libraries. The reallocate (ALLOC) function is
the only one not available to private libraries. To change the extents of a
private library you must create a new private library and copy the contents
of the old library into it.

7.30 DOS/VS System Management Guide

Creating Private Libraries

I

The following sections describe how to create private libraries and what
you must consider when you use private libraries.

You can create private libraries either during system generation or at any
time thereafter. Private libraries can reside on the SYSRES pack (outside
the SYSRES extent) or on separate disk packs which (except for a private
core image library) must be of the same device type as the SYSRES pack.
You can define any number of private core image, relocatable, and source
statement library; private procedure libraries are not supported.

You create private libraries with the CORGZ librarian program. The
creation of an operational private library involves two stages:

1. Defining the extents of the library by means of a NEWVOL (new
volume) control statement.

2. Transferring information to the library from an existing library by
means of COpy and/or MERGE control statements.

You can execute the two stages either in one job step by one invocation of
the CORGZ program or in separate job steps. Exception: creation of a
private core image library requires separate job steps.

To define the device on which a private library is to be created and the
disk extents occupied by the library, you must supply a set of ASSGN,
DLBL, and EXTENT job control statements specifying predetermined
symbolic unit names and filenames (see Figure 7.7).

Private Library Symbolic Unit Name Filename

Core image SYSOO3 IJSYSPC

Relocatable SYSRLB IJSYSRL

Source statement SYSSLB IJSYSSL

Figure 7.7. Symbolic Unit Names and Filenames Required to Create Private
Libraries

You can store the label information submitted by DLBL and EXTENT
statements either temporarily (option USRLABEL) or permanently (option
PARSTD or STDLABEL). Temporary labels must be resubmitted with
every job (or job step, if new labels are submitted in an intermediate job
step) that accesses the corresponding library; permanent labels are valid for
all subsequent jobs.

Note: If you catalog additional permanent labels with the STDLABEL option
you must also resubmit all existing standard labels; otherwise, they are lost (see
also Types of Label Information in Chapter 5: Controlling Jobs).

The following example shows the job control and librarian control
statements necessary to define the extents of a private relocatable and a
private source statement library. The NEWVOL control statement indicates
the type of library to be created and the number of cylinders (tracks) to be
allocated to each library (directory).

Chapter 7: Using the Libraries 7.31

II JOB DEFINE
II ASSGN SYSRLB,X'191,
II ASSGN SYSSLB,X'192'
II OLBL IJSYSRL,'OOS/VS PRIVATE RL' ,99/365,SO
II EXTENT SYSRLB,111111,1,O,20,800
II OLBL IJSYSSL,'OOS/VS PRIVATE SSL',99/365,SO
II EXTENT SYSSLB,222222,1,O,500,600
II EXEC CORGZ

1*
1&

NEWVOL RL=40(5),SL=30(5)

After you have defined the extents of the private libraries you can either
use the merge function of the CORGZ program to transfer elements from
existing libraries or the catalog function of the MAINT program to store
new elements.

To create a private library and at the same time copy information into
it from the corresponding system library, you submit a COpy statement
following the NEWVOL statement. To transfer information from an
existing private library, a MERGE statement must precede the COPY
statement. The following job creates a private relocatable library and copies
into it the contents of the system relocatable library and of an existing
private relocatable library:

II JOB CREATE
II ASSGN SYSRLB,X'191,
II ASSGN SYS001,X'192'
II OLBL IJSYSRL,'NEW PRIVATE RL' ,99/365,SO
II EXTENT SYSRLB,111111,1,O,1700,1200
II OLBL IJSYSPR,'OLO PRIVATE RL' ,99/365,SO
II EXTENT SYS001,222222,1,O,700,400
II EXEC CORGZ

NEWVOL RL=60(8)
MERGE PRV,PRV
COPYR ALL

1*
1&

Note: To merge from a private relocatable library, you must assign SYSOO 1 to
the device containing the library and specify the filename IJSYSPR in the
DLBL statement. The logical unit assignments and filenames required for the
various merge operations are described in DOS/VS System Control Statements.

Creating Private Core Image Libraries

The organization of a private core image library is the same as the system
core image library. A private core image library, however, may start on any
track. The space requirements must be entered in the NEWVOL statement.

For example, on a 2314 device, the statement NEWVOL CL= 14(5)
creates a directory of five tracks and a library of 14 cylinders. To create
this private core image library on a 2314 device starting at relative track
number 120, you submit the following control statements:

II JOB PCIL
II ASSGN SYS003,X'191'
II OLBL IJSYSPC,'OOS/VS PRIVATE CL',99/365,SO
II EXTENT SYS003,111111,1,O,0120,280
II EXEC CORGZ

7.32 DOS/VS System Management Guide

U sing Private Libraries

1*
1&

NEWVOL CL=14(5)

In the above example, the core image directory resides on cylinder 6 (tracks
0-4), and the private core image library on cylinders 6-19.

If you desire to start a private core image library in the same relative
location as the system core image library (that is, the library directory
starting at cylinder 0 track 2), the relative track specification in the
EXTENT statement must be 0002. The EXTENT statement in the
preceding example then reads:

II EXTENT SYS003,111111,1,O,0002,280

Transferring phases from another core image library would require a second
job step.

To access the private libraries, you must assign the following symbolic unit
names to the device(s) containing the libraries:

SYSCLB -- Private core image library
SYSRLB -- Private relocatable library
SYSSLB -- Private source library

Note that the symbolic unit name required to create a private core image
library is SYS003; for private relocatable and source statement libraries,
however, the symbolic unit names are the same for creation and subsequent
access.

You can assign private relocatable libraries and private source statement
libraries either temporarily or permanently by an ASSG N command or
statement; you can assign private core image libraries only by an ASSGN
command (that is, permanently). You cannot establish standard assignments
for private core image libraries with the ASSGN macro during supervisor
generation.

Unless you have cataloged standard labels for your private libraries, you
must submit label statements with every job that accesses the libraries. The
filenames and file identifications in the DLBL statements must be identical
to those specified when the libraries were created (except for a private core
image library, where the filename IJSYSPC is used for creation, and
IJSYSCL is used thereafter).

A private library must be unassigned if maintenance and service
functions are to be performed on the corresponding system library. The
librarian programs assume that the private library is intended whenever
assigned. So if, by mistake, your private relocatable library is assigned when
you request changes in the system relocatable library, these changes will be
performed on the private relocatable library and reconstruction of this
library may be necessary, depending on the nature of the changes. The only
system service programs that can access the system libraries when SYSRLB
and SYSSLB are assigned are the linkage editor and the CORGZ librarian I program.

Chapter 7: Using the Libraries 7.33

You can have an unlimited number of private libraries in your system;
however, no more than one private core image, one private relocatable, and
one private source statement library can be assigned at one time to the
same partition. For read access you can also assign a private library to more
than one partition, but if you want to update a private library, it must be
assigned to one partition only (see Figure 7.8).

If you have more than one private library of the same type, each must
be distinguished by a unique file identification in the DLBL statement for
the library.

Using Private Core Image Libraries

Private core image libraries provide an efficient multiprogramming
environment. The linkage editor can be executed not only in the
background but also in a foreground partition to which a private core image
library is assigned. You can then link-edit a program in any given partition
to be executed in the same or in a different partition. If the linkage editor is
executed in more than one partition at the same time, you must assign a
separate SYSLNK and SYSOO 1 file for each of these partitions.

A separate private core image library can be defined for each partition.
Such a private core image library is then said to be dedicated to a given
partition. Separate versions of the same non-self -relocating program may be
link-edited for execution in each partition. This is not necessary, however,
for relocatable phases, when the system includes support for the relocating
loader.

If you work with the relocating loader, private core image libraries are
nevertheless useful to hold special-purpose programs. This allows, for
instance, a new version of a program to be tested while the original version
remains in working order on the system core image library.

A private core image library should not be assigned to more than one
partition at the same time if the linkage editor is being executed in one of
these partitions. If this occurs, the linkage editor issues a message and
terminates abnormally.

Output from the linkage editor is, therefore, placed in a private core
image library only if it is uniquely assigned to the partition where the
linkage editor is executed. When fetching or loading a phase, the system
first searches the private core image library, if assigned, and if the phase is
not found, the search is continued in the system core image library. For
phases starting with $, first the system and then the assigned private core
image library is searched. This library search sequence, particularly
important in teleprocessing and VSAM applications, should be considered
when de terming names and library residence of programs.

7.34 DOS/VS System Management Guide

,/

READ!WRITE READ ONLY

Supervisor

BG

F4

F3

F2

F1

Figure 7.S. Possible Assignments of Private Libraries in a Multiprogramming
System

The example assumes a five-partition system. For update access, a
private re10catable or source statement library must be assigned to the
background partition (see Figure 7.3 for ESERV and CORGZ
exceptions).

Chapter 7: Using the Libraries 7.35

Chapter 8: Using POWER/VS

The POWER/VS information has been removed from this manual and is
now contained in: DOS/VS POWER/VS Installation Guide and Reference,
GC33·6048.

Chapter 8: Using POWER/VS 8.1

Part III: Designing Programs

This section addresses the system programmer and application programmer.
It gives some programming considerations for designing virtual-mode
programs and shows how to use many of the macros and special features of
DOS/VS. This section consists of two chapters:

Chapter 9: Designing Programs for Virtual-Mode Execution provides
considerations for designing programs and using the macros especially
provided for the virtual-mode environment. This chapter also describes how
to code for the shared virtual area and the programming conventions for a
POWER/VS user exit routine.

Chapter 10: Using the Facilities and Options of DOS/VS describes how
user programs can communicate with one another and with the system. This
chapter discusses how programs can take advantage of user exit routines,
the time-of-day clock support, cancel and checkpoint services, and job
accounting interface.

CAUTION: If a program (or routine) written in assembler language reads
or manipulates DOS/VS control information through code other than IBM
provided macros, this program may be executed successfully under the
DOS/VS release with which the program was tested. The program may fail,
however, when it is executed under a later DOS/VS release.

Chapter 9: Designing Programs for Virtual-Mode Execution

This chapter addresses system programmers and application programmers
who are concerned with designing programs for the DOS/VS environment.
This chapter contains information that may improve the efficiency of those
programs that exceed the amount of real storage available to them at any
one time. It is recommended that these techniques be considered as new
programs are written and as old programs are revised. The chapter also
contains information on the use of certain assembler language macro
instructions that are provided especially for virtual storage. Programming
conventions for the shared virtual area and a POWER/VS user exit routine
are also discussed.

Programming Hints for Reducing Page Faults

It is desirable to spend some extra programming effort to tune virtual-mode
programs that are used frequently or that require long periods of processing
time so that they will cause fewer page faults during execution. Page faults
generally occur when the size of the virtual-mode program exceeds the
number of page frames available to it during execution. Efforts to reduce
the number of page faults occuring in a program generally center around
efforts to reduce the size of the working set of the program. The term
working set is one that recurs often in discussions of virtual storage
systems.

The working set of a program is the minimum number of pages (not
specific pages) which must be in real storage in order for a program to
execute efficiently. In other words, the working set of a program is the
minimum number of page frames that the program requires for efficient
execution. The supervisor determines which specific pages should be in real
storage at any particular time.

What does execute efficiently mean? Essentially, this means that a
program will not execute appreciably slower than if the entire program were
in real storage during its entire execution.

Although the following section does not tell you how to determine the
size of the working set, it does provide techniques for reducing its size.

General Hints for Reducing the Working Set

You should especially try to reduce the size of the working set of programs
that you use frequently or that execute for long periods of time. Your
programming efforts are more worthwhile for such programs than for
relatively short and less frequently-used programs.

There are three general rules to keep in mind when working to reduce
the working set. The first is locality of reference, that is, instructions and
data used together should be in storage near each other. Second is
minimum real storage. In other words, the amount of real storage

Chapter 9: Designing Programs for Virtual-Mode Execution 9.1

necessary for a program to do something should be kept as low as possible.
Third is validity of reference, that is, references should be made only to
data which will actually be used.

The chief means of achieving locality of reference is to make execution
sequential whenever possible, by avoiding excessive branching.

A program that executes sequentially normally requires a partition
larger than the same program when it does not execute sequentially. For
example, the functions of a section of code repeat themselves several times
throughout the logic of your program. You are tempted to write this code
once and branch to it whenever necessary, but branching violates the
principle of locality of reference. Branching may cause more page faults the
program incurs than would coding the routine in line each time it is used.
Also, it is easier for someone else to follow the logic of a program which is
written to execute sequentially.

Locality of reference can be achieved only to a limited extent by
programs written in a high-level language.

Elements in arrays in FORTRAN or PL/I can be referred to in the
order in which they appear in storage. In FORTRAN, for example, arrays
are ordered by columns. The elements of the array DIMENSION (2,2,2)
are arranged as follows in contiguous virtual storage locations:

(1,1,1)
(2,1,1)
(1,2,1)
(2,2,1)
(1,1,2)
(2,1,2)
(1,2,2)
(2,2,2)

For array structures of other compilers, refer to the appropriate
programming language reference manuals.

A routine which processes all the elements of such an array should
refer to them in this order. If only certain elements of an array are
processed, the elements should be arranged in the order in which they are
to be processed. If arranging an array in a certain manner causes it to be
processed advantageously one time, but disadvantageously another time,
you should consider writing two arrays, even at the cost of additional
virtual storage.

9.2 DOS/VS System Management Guide

Another good practice to help reduce paging is to not initialize variables
until just before they are to be used. For example in PL/I instead of the
following:

use:

DCL A FIXED INIT (10);

DO B=l TO 100;
A=A+B;
END;

DCL A FIXED;

A=10;
DO B=l TO 100;
A=A+B;
END;

In the first method of coding, PL/I initializes the automatic variable at the
beginning of execution. The second method of coding does not require the
page containing A to be in real storage until just before A is used.

An important help in reducing the amount of real storage needed for
execution is to remove coding which is used for errors or other unusual
occurrences. If, for example, the main routine contains code for conditions
that only occur 5 % of the time, by removing this error code and making it
into a separate section of code you can reduce the amount of real storage
necessary for 95% of the processing.

Frequently-used subroutines should be loaded near each other. Because
of their frequent use, these routines tend to be in real storage almost
continuously. If they are scattered over several pages, each of these pages
will need to be in real storage most of the time, thus increasing the size of
the working set. By loading these routines near each other, you reduce the
number of pages required in real storage at anyone time.

Subroutines should be designed to do as much processing as possible
whenever they are called. It is better to duplicate some code from the
calling routine in the called routine in order to avoid switching back and
forth between routines. One technique for accomplishing this is to have the
calling program pass several parameters to the subroutine each time a call is
made, rather than passing one parameter at a time and making several calls.

Data and Constants in Assembler Language Programs

You should keep frequently used data and constants near each other in
storage, and near the instructions which use them. This contrasts with the
traditional practice of having one area at the end of the program reserved
for all the data areas and constants. By the same token, seldom used data
should be separated from the frequently used data and placed with the
routines which use it.

Avoid, if possible, using chains which must be searched each time a
data item is required. If chains are unavoidable they should be kept in a
compact area of storage. This may result in some wasted storage but will be
better than searches of large areas of storage.

Chapter 9: Designing Programs for Virtual-Mode Execution 9.3

You should try to keep code that can be modified and code that cannot
be modified in separate sections of a large program. This will reduce page
traffic by reducing the number of pages that are changed. Also, try to
prevent I/O buffers from crossing page boundaries unnecessarily. Check
the assembler listing and the linkage editor map to determine where 2K
boundaries occur in your programs.

Using Virtual Storage Macros

Fixing Pages in Real Storage

The macros designed for use by virtual-mode programs, which are discussed
in this section, perform the following services:

• influence the paging mechanism in order to reduce the number of page
faults, to minimize the page I/O activity, and to control the page traffic
within a specific partition.

fix pages in real storage (PFIX macro) and later free the same pages
for normal paging (PFREE macro).

determine the mode of execution of a program (RUNMODE macro).

In order to use these macros you must be programming in assembler
language or, if your program is written in a high-level language, you must
write an assembler subroutine to accommodate them. Refer to DOS / VS
Supervisor and I/O Macros for a complete description of the formats of
these macros.

In DOS/VS parts of virtual-mode programs must be in real storage only at
certain times. These parts include not only the instructions and data being
processed at anyone moment by the CPU, but also data areas for use by
channel programs. Instructions and data are always in real storage when
being used. Because of the nature of I/O operations, the data areas for
these operations could be paged out during the I/O operation if something
were not done to keep them in real storage during the entire operation. The
DOS/VS supervisor fixes I/O areas in real storage for the duration of the
110 operation.

There are other parts of a program, however, which cannot tolerate
paging, and these parts are not necessarily kept in storage by the system.
For instance, I/O appendages and programs that control time-dependent
I/O operations cannot tolerate paging. A familiar example of the latter is a
MICR (Magnetic Ink Character Reader) stacker select routine. If a page
fault were to occur during the execution of one of these programs, the
results would be unpredictable. A page fault in one of these programs can
be avoided by fixing the affected pages in real storage (using the PFIX
macro).

The supervisor fixes pages for I/O operations temporarily anywhere in
the page pool. The pages that you fix by the PFIX macro, however, are
fixed in the storage allocated to the corresponding real partition. Only as
many pages may be fixed by a program at anyone time as there are page
frames in the corresponding real partition. This is done to prevent a loop in
" 0 ""' ... "n ... ,... of ... "f.;~.; n ,..11 +l..-" ~n,.,...,... :_ +k_ ,.. + ____ ,.1 + ____ 1-.1 __ +1. __
V1J.~ PJ.V5J. UJ. J.J.VJ.U J..lA.lU5 au un ... pa5'-'~ U.l U.l'-' ~'y~L'-'.l.l.l, a.l.lU LV v.l.laU1\;;; VU.lI;;.l

programs to issue a PFIX macro concurrently.

9.4 DOS/VS System Management Guide

\

The PFIX macro fixes the pages in real storage, regardless of whether
these pages are stored in contiguous page frames or not. The supervisor
keeps a count of the number of times a page has been fixed without being
freed. A page that is fixed more than once without having been freed (via
the PFREE macro) is not brought in a second time and given another page
frame. Instead, the counter for that page is just increased by one and the
page remains in the same page frame. If more than 255 PFIX requests were
issued for the same page (without having issued PFREE requests in the
meantime), the issuing task is canceled.

The PFREE macro does not directly free a page for paging out; but
each time it is issued, the counter of fixes is reduced by one. As soon as
the counter for a page reaches zero, the page can be paged out. At the end
of a job step, all pages that have been fixed during the job step are freed.
The PFREE macro should be used as soon as possible to make the page
frames available to all. programs running in virtual mode.

Figure 9.1 is an example using the PFIX and PFREE macros. After the
execution of a PFIX macro, a return code is given in register 15. The
meanings of the return codes are:

o - The pages were fixed successfully.

4 - You requested more page frames than can be contained in a real
partition of the size you are working in.

8 - Insufficient free page frames were available.

12 - You specified invalid addresses in your macros.
Note in the example how the return code can be used to establish a branch
to parts of the program that handle these specific conditions.

FIXER

HERE

ARTN

ARTNEND
NOPAGES

CANCL
WAIT

END
OPCCB
OPCCW
MSG

PFIX ARTN,ARTNEND+2 FIX ARTN IN STORAGE
B *+4(15) BRANCH ACCORDING TO RETURN CODE
B HERE CONTINUE IF OK
B NOPAGES GO TO CANCEL IF PART TOO SMALL
B WAIT GO TO WAIT UNTIL PAGES FREED

BAL 14, ARTN GO TO ARTN
PFREE ARTN,ARTNEND+2 FREE ROUTINE AFTER EXECUTION

(time dependent processing which cannot be
paged out during execution)

BR R14 RETURN
LA R1,OPCCB
EXCP (1) WRITE MESSAGE TO OPERATOR
WAIT (1) WAIT FOR COMPLETION
CANCEL ALL

(routine to free other pages)

EOJ
CCB
CCW
DC
DC

SYSLOG,OPCCW
X'09' ,MSG,X'20' ,61
CL32'AM CANCELING PLEASE ENLARGE REAL'
CL29'PARTITION AND RESTART THE JOB'

Figure 9.1. PFIX and PFREE Example

Chapter 9: Designing Programs for Virtual-Mode Execution 9.5

Determining the Execution Mode of a Program

Releasing Pages

Forcing Page-out

Advancing Page-in

Balancing Teleprocessing

You may have a program that must do different processing depending upon
what its execution mode is. It may be impractical to have two separate
programs cataloged in the core image library, one program for real mode
and another program for virtual mode. The RUNMODE macro can be issued
during the execution of the program to inquire which mode of execution is
being used. A return code is issued to the program in register 1.

With the RELP AG macro, you inform the page management routines that
the contents of one or more pages is no longer required and need not be
saved on the page data set. Thus, page frames occupied by these released
pages can be claimed for use by other pages, and page I/O activity is
reduced.

The FCEPGOUT macro is used to inform the page management routines
that one or more pages will not be needed until a later stage of processing.
The pages are given the highest page-out priority, with the result that other
pages, which may be needed immediately, are kept in storage. Except when
the RELP AG macro is in operation, the contents of any pages written out
are saved.

The PAGEIN macro allows you to request that one or more pages be paged
in in advance, in order to avoid page faults when the specified pages are
needed in real storage. If the specified pages are already in real storage
when the macro is issued, they are given the lowest priority for page-out.

The TPIN macro signals the DOS/VS supervisor that an immediate demand
for system resources is to be made by the teleprocessing application, for
instance, when a message has arrived. After processing is completed,
TPOUT informs DOS/VS that the teleprocessing application has no further
processing to do for the time being, and that the system resources that were
exclusively used for teleprocessing should be released. Failure to issue the
TPOUT macro can cause serious performance degradation in batch
processing.

It is not recommended that you use TPIN/TPOUT macros in your
teleprocessing application programs. Use them instead in the
telecommunications access methods and data base/data communication
interface programs such as the IBM program product CICS/VS. The latter,
when running under DOS/VS, supports the TPIN/TPOUT interface with

details.

9.6 DOS/VS System Management Guide

Coding for the Shared Virtual Area

Besides accommodating the system directory list (SDL), and perhaps the
VSAM phases with their associated GETVIS work area, the shared virtual
area (SV A) contains phases that can be used concurrently by more than
one partition. The SV A phases must be fully reenterable and relocatable;
code that modifies itself will cause a protection check when executed from
the SV A. This section presents some advice on coding phases to use SV A
facilities and suggests some standards for base-register usage.

The basic assumptions for coding an SVA phase are:

The reenterable code must not modify any storage Within its own
storage area.

The phase can modify registers only if it saves and restores them for
each user.

A user-specified work area (within the calling partition) must be
provided for storing registers and for any storage modifications.

Suggested register conventions:

Use register 12 as the base register in both the main routine and the
reenterable code.

Use register 13 as base for the working storage area. It is the
responsibility of the main routine to provide address ability to the work
area by loading register 13; the reenterable routine must not modify
r.egister 13. The easiest way to address the working storage area in the
reenterable code is by a DSECT that defines the fields of the work area
and a USING DSECTNAME,13. In this way symbolic addressing can
be used.

Use CALL, SAVE, and RETURN macros. Since register 13 is the base
register, SAVE (14,12) and RETURN (14,12) result. Use register
notation for CALL, for example, CALL (15) Before issuing the
CALL, load register 15 with the transfer address. Register 14 will
always contain the return address. The standard is thus established of
register 15 for calling and register 14 for returning.

Switches, and other areas that may be modified, can be placed in the
working storage area using base register 13.

Figure 9.2 illustrates the suggested conventions: MASTER is the main
routine, SLAVE is the SV A phase contained in the SDL.

Chapter 9: Designing Programs for Virtual-Mode Execution 9.7

MASTER CSECT
BALR BASE,O
USING *,BASE
LA 13,SAVE

I LOAD SLAVE,WORKAREA+2 CANCELS IF SLAVE NOT IN CIL
LR 15, 1
CALL (15),(SWITCH,TECB,FIELDA,FIELDB,WORKAREA)

EOJ
SAVE DS 9D

I WORKAREA DS 200D
SWITCH DC XL 1 '00'
TECB DS CL4
FIELDA DS CL15
FIELDB DS CL11

END

I SLAVE CSECT MUST BE SEPARATE ASSEMBLY
SAVE (14,12)
BALR BASE,O
USING *,BASE
USING WORKAREA,6
LM 2,6, O(1)
MVC 0(15,4),DATA1
MVC o (11 ,5) , DATA2
CLI O(2),X' FF'
BE EXIT
SETIME 3, (3) SETIME ALTERS THE TECB
WAIT (3)

EXIT XI O(2),X' FF'
RETURN (14,12)

DATA 1 DC CL15'THIS IS FIELDA'
DATA2 DC CL11 'THIS IS FIELDB'

LTORG
WORKAREA DSECT
FIELDC DS 3D
FIELDD DS 3D

END

Figure 9.2. Example of Conventions for SV A Coding

9.8 DOS/VS System Management Guide

Chapter 10: Using the Facilities and Options of DOS/VS

DOS/VS provides a variety of standard and optional services for programs
to communicate with each other, with one or more systems, and with the
operator. The most prominent of these are:

Direct linkage between programs
Timing features
Linkages to user exit routines
Checkpointing facility
Job accounting interface feature
Storage dump facility
DASD switching

Judicious use of these services enhances the benefits to be obtained from
computer operations.

Direct Linkage between Programs

Any user phase or routine can communicate with another phase or routine
in the same partition by direct linkage, and, in multitasking (asynchronous
processing), the main task and subtasks within a partition can communicate
with each other.

For efficient virtual mode processing under DOS/VS with
multiprogramming support, a modular program structure is recommended.
Ideally, within a module the instructions should be sequential.

Sequential execution of instructions moderates paging activity necessary
for the programs to proceed and thus promotes system throughput.

Interlanguage Communications

Every programming language provides for communicating and passing
control between modules written in the same language or in Assembler
language. Communication is also possible between any modules written in
languages that use compatible linkage conventions. Transferring data
between high-level languages is usually difficult, however, because of
differences in data formats and storage allocations.

The PL/1 optimizing compiler (an IBM program product) provides for
communication between programs written in PL/1 and others written in
COBOL or FORTRAN.

User Program Switch Indicators (UPSI)

A user program switch in the partition communication region of the
supervisor can be used to execute a special routine in a program, or to
cause a module to call another module for special processing. A typical
application enables a program that regularly processes certain standard data
to do some special processing periodically. The special processing routine

Chapter 10: Using the Facilities and Options of the Supervisor 10.1

Timing Features

can be entered by using a program switch that is set by the UPSI job
control statement as illustrated by the assembler language example in Figure
10.1.

1/ UPSI

COMRG
TM
BNZ

SPECIAL

00000001

23 (R 1), X' FF'
SPECIAL

SET SWITCH

GET COMRG ADDRESS INTO REG 1
TEST UPSI FOR ANY BIT SET ON
IF NO BIT ON NORMAL PROCESSING

Figure 10.1. Setting and Testing UPSI

Note that the UPSI job control statement is included only when special
processing is required. For . optimal processing efficiency, the type of routine
entered at the label SPECIAL depends on the amount of special processing
and on what options the system supports. It could be the special processing
routine directly or it could be a routine to load and enter a new phase or,
in multitasking, a routine to attach a subtask.

Also, in this example, without the UPSI job control statement the
special routine will never be entered because the UPSI byte is set to all
zeros when a JOB or / & statement is encountered, but the special routine
will always be entered when any UPSI bit is set to 1 by an UPSI
statement.

DOS/VS provides optional timing facilities which use hardware features
that are standard in any System/370 CPU. (Note):

1. The time-of-day (TaD) clock is used to determine the current time.

2. The interval timer (IT) which enables a time interval in seconds on
1/300ths of a second to be preset so that a program can be notified
when the time interval has expired.

3. The task timer (TT) which allows a timer interval in milliseconds to be
preset by a task so that the task can give control to an exit routine
when the specified time interval has elapsed.

Note: For hardware feature requirements, refer to Timer Services in chapter 3.

Using the Time of Day Clock

The time-of-day (TaD) clock is a standard high-resolution System/370
hardware feature. Any program executing under DOS/VS can obtain the
time of day. Two methods are available, the first of which requires the

in the FOPT macro at system generation time). The methods are:

10.2 DOS/VS System Management Guide

Interval Timer

1. Issue a GETIME macro. This returns the time of day in hours, minutes,
and seconds, or as a binary integer value in seconds, or as a binary integer
in units of 1/300 seconds, depending on the optional operand specified.
For details of this method, refer to DOS/VS Supervisor and I/O Macros.

2. Issue a STCK instruction. This stores the high-resolution time of day
value at a specified address in the program's partition. A very accurate
real-time interval measurement is facilitated by issuing this instruction
at the beginning and again at the end of a routine with all pages of the
routine (including the STCK instructions), and all pages containing
referenced addresses, being previously fixed in real storage. Any
interrupt that occurs during an interval is included in the measurement.

Figure 10.2 illustrates the use of the STCK instruction and a typical routine
to calculate the time interval.

STCK START STORE THE STARTING TIME
BEGIN (Routine to be timed)

STCK FINISH STORE THE FINISHING TIME
BR R14 RETURN TO NORMAL PROCESSING

* TIMER ROUTINE
TIME LM R2,R3,FINISH GET FINISHING TIME

SL R3,START+4 SUBTRACT RIGHT-HAND HALVES
BC 3,SUBLEFT BRANCH IF CARRY
BCTR R2,O SUBTRACT ONE

SUBLEFT S R2,START SUBTRACT LEFT-HAND HALVES
SRDL R2,12 SHIFT TO GET MICROSECONDS
STM R2,R3,TIMEINT SAVE THE TIME INTERVAL

END EOJ
START DS D
FINISH DS D
TIMEINT DS D

END

Figure 10.2. Method for Accurate Measurement of a Real Time Interval

Interval timer support may be generated optionally for all programs
(including subtasks if multitasking is supported) in all partitions.

Any program (or task) can set a real time interval, in seconds, or
1/300ths of a second, by issuing a SETIME macro. Expiration of the
specified interval causes an external interrupt. The maximum valid interval
is 55918 seconds (15 hours, 31 minutes, and 58 seconds). When the
interrupt occurs, the program that issued the SETIME macro may continue
processing, another task may be given control if it was waiting on the same
event and has higher priority, or a special user routine may be entered if
linkage has been established by a STXIT IT macro. If no task is waiting on
the event and no linkage has been established, the interrupt is ignored.

Chapter 10: Using the Facilities and Options of the Supervisor 10.3

Waiting for a Time Interval to Elapse

Getting the Unexpired Time

Task Timer

When processing is dependent on the expiration of a time interval, a WAIT
macro will suspend processing until the interval set by a SETIME macro
has elapsed.

The SETIME macro passes to the supervisor the name of the timer
event control block (TECB) to be posted when the specified interval has
elapsed. The WAIT macro specifies the same TECB and passes control to
the supervisor which, in a multiprogramming environment, allows a task in
another partition to execute in the meantime. When the timer interrupt
occurs, the event bit in the TECB is turned on and any task that has issued
a WAIT macro specifying this same TECB is made ready to proceed; if
more than one task, then the task having the highest priority is dispatched.
Figure 10.3 illustrates a program that waits for a time interval to expire.

START 0

TECB1 TECB

STIMER SETIME 30,TECB1 START 30 SECOND INTERVAL

(normal processing not time-dependent)

WAIT TECB1 WAIT FOR TIMER END

(time-dependent processing)

END

Figure 10.3. Skeleton Example of a Program in which a 30-second Interval
Must Elapse before Special Processing is Performed

After a SETIME macro has been issued, any program or task executing in
the same partition can obtain the unexpended part of the interval by issuing
a TTIMER macro. This macro returns the residual time (seconds) without
disturbing the interval timer function.

If the TTIMER macro includes the operand CANCEL, a previously
issued SETIME macro is canceled.

The task timer support can be generated only for the main task of a
specific partition.

The main task sets the desired time interval by specifying it, in
milliseconds, in the operand of the SETT macro; or by putting the desired
interval, in milliseconds, in binary, in the register specified as the operand

10.4 DOS/VS System Management Guide

of the SETT macro. The maximum valid interval is 21,474,836
milliseconds.

When the specified time interval has elapsed, the task timer routine
supplied in the STXIT TT macro is entered. If a routine was not supplied
to the supervisor by the time the interrupt occurs, the interrupt is ignored.

When a program is restarted from a checkpoint, the timer interval set
by the SETT macro is not restarted.

Obtaining or Canceling the Time Remaining

The task using the task timer can issue a TESTT macro to test how much
time remains in the time interval set by an associated SETT macro. The
time remaining in the interval is returned, expressed in hundredths of
milliseconds - in binary, in register O.

The time remaining in the interval can be canceled by specifying
CANCEL as the operand of a TESTT macro. This prevents the task timer
exit routine from being entered.

Linkages to User Exit Routines*

Through the STXIT macro instruction, linkage can be established to one or
more user routines if the appropriate FOPT macro parameter was specified
to generate the support in the supervisor.

The first operand of a STXIT macro instruction informs the supervisor
where to store the special routine entry point address that is specified by
the second operand. When the specific condition arises, the supervisor
passes control by entering the routine at that address. The conditions,
STXIT macro first operands, and the special user-written routines entered,
are shown in the following table:

Condition STXIT Operand User Routine

Interval Timer External IT Interval Timer Exit
Interrupt

Task Timer Interrupt TT Task Timer Exit

Abnormal Termination of AS Abnormal Termination Exit
Problem Program

Program Check Interrupt PC Program Check Exit

Operator Communications OC Operator Communications Exit
Interrupt

Interval Timer User Exit Routine

If special processing is required when a specified time interval has elapsed,
the STXIT IT macro can be used to establish linkage to the appropriate

* The IPL user exit and the job control user exit are described separately later in this
chapter.

Chapter 10: Using the Facilities and Options of the Supervisor 10.5

Multitasking Considerations

Task Timer User Exit

routine and subsequently, when this routine completes the special
processing, an EXIT macro to return to the next sequential instruction in
the main routine.

Note: If the program issuing the STXIT IT macro is an application program,
under VT AM, the exit will not be taken while VT AM is processing any request
on behalf of the application program. The exit will be taken when VT AM has
completed the program's request.

Figure 10.4 shows the application of a STXIT IT macro to enter a
checkpoint routine every half hour during processing. Notice that in this
example the user's interval timer exit routine need not be fixed in real
storage; since there is no real-time dependency, the results cannot be
influenced by paging activity.

When the supervisor includes interval timer support, the main task and/or
any sub task in a partition may issue a SETIME macro. Each may also issue
a STXIT macro to establish linkage to a common user routine provided that
the routine is reenterable and that each task has its own unique save area.
Figure 10.5 illustrates this principle.

The linkage from the supervisor to a routine for processing a task timer
interrupt is established and terminated by the STXIT TT macro. This
linkage must be established before an interrupt occurs, or the interrupt will
be ignored.

No linkage is established if the macro contains an error or is
incomplete. This macro can only be issued by the main task of the partition
owning the task timer.

The task timer exit routine has to return control to the supervisor by
issuing an EXIT TT macro. When the EXIT TT :macro is processed, the
interrupt status information and registers from the save area are restored. It
is important, therefore, that the contents of the save area specified in the
associated STXIT TT macro not be destroyed.

Abnormal Termination User Exit Routine

The STXIT AB macro establishes linkage to a user routine that is entered
whenever the issuing program is to be terminated for any reason other than
a normal end-of-job. In this routine, you can do any necessary
housekeeping such as closing LIOCS files and writing messages before the
program is terminated. If the exit routine is associated with a subtask, you
cannot recover from an error and it must end with a CANCEL, DETACH,
DUMP, JDUMP, or EOJ macro. However, if the exit routine is associated

purpose the EXIT AB macro can be used. For further details see the
DOS/VS Supervisor and I/O Macros manual.

10.6 DOS/VS System Management Guide

TIMECHK START 0
STXIT IT,TIMINTR,TIMSA SET UP LINK TO TIMER RTN
MVI STATSW,X'80' SET SW FIRST TIME THROUGH
SETIME 1800 TAKE CHCKPNTS EVERY 30 MIN

PROCESS (perform normal processing)

CLI
BNE
B

STATSW,X'40'
PROCESS
CHKPTR

CHECK FOR TIMER INTERRUPT
IF NOT CONT PROCESSING
IF SO TAKE CHECKPOINT

* TIMER INTERRUPT ROUTINE
TIMINTR MVI STATSW,X'40'

EXIT IT
SHOW INTERRUPT
RETURN TO INTERRUPTED PNT

* CHECKPOINT ROUTINE
CHKPTR (do necessary processing before taking checkpnt)

CHKPT SYS001,RSTRTR""DSKFLE TAKE CHECKPOINT
LTR RO,RO CHECK IF CHECKPOINT OK
BE ERROR GO TO ERROR RTN IF NOT
ST RO,CHKPTNR PUT CHKPT NUMBER IN MSG
LA R1,MSG1 GET ADDRESS OF RIGHT MSG
STCM R1,7,OPCCW+1 PUT MSG AD DR IN CCW
LA R1,OPCCB MESSAGE CCB
EXCP (1) WRITE MESSAGE TO OPERATOR
WAIT (1) WAIT FOR COMPLETION
MVI STATSW,X'80' RESET CHECKPOINT SWITCH
SETIME 1800 RESET TIMER
B PROCESS RESUME PROCESSING

* RESTART ROUTINE
RSTRTR STXIT IT,TIMINTR,TIMSA RESTORE TIMER INTERR LINK

SETIME 1800 SET TIMER

(restore everything saved in checkpoint)

B PROCESS START PROCESSING

* MESSAGE ROUTINE FOR INVALID CHECKPOINT
ERROR LA R 1 ,MSG2

STCM R1,7,OPCCW+1
LA R1,OPCCB
EXCP (1)
WAIT (1)
CANCEL ALL

END EOJ

GET ADDRESS OF ERR MSG
PUT MSG ADDR IN CCW
LOAD MESSAGE CCB
WRITE MESSAGE TO OPERATOR
WAIT FOR COMPLETION
CANCEL PROGRAM

Figure 10.4 Example of Using the Interval Timer for Taking a Checkpoint Every
Half-hour (Part 1 of 2)

Chapter 10: Using the Facilities and Options of the Supervisor 10.7

* CONSTANTS
TIMSA DS
OPCCB CCB
OPCCW CCW
MSG1 DC
CHKPTNR DS

9D
SYSLOG,OPCCW
X'09' ,MSG1,X'20' ,80
CL16'CHECKPOINT NR'
F

DC
MSG2 DC
STATSW DS

END

CL60'HAS BEEN TAKEN'
CL80'CHECKPOINT FAILED JOB IS CANCELED'
X

Figure 10.4. Example of Using the Interval Timer for Taking a Checkpoint Every
Half -hour (Part 2 of 2)

MAINTASK START 0

(set up addressability)

STXIT IT,STRTER,MTSKSA
SETIME 300 MAIN TASK TIMER TO 5 MINS
ATTACH SUBTASK1,SAVE=SAV1
ATTACH SUBTASK2,SAVE=SAV2

* IT USER EXIT ROUTINE
STRTER (reenterable routine)

EXIT IT

SUBTASK1 STXIT IT,STRTER,STSK1SA USE SAME EXIT ROUTINE
SETTIME 400 SET TIME INTERVAL

DETACH

SUBTASK2 STXIT IT,STRTER,STSK2SA USE SAME EXIT ROUTINE
SETIME 500 SET TIME INTERVAL

TTIMER CANCEL

DETACH

MTSKSA DS 9D
STSK1SA DS 9D
STSK2SA DS 9D
SAV1 DS 16D
SAV2 DS 16D

CNCL INTRVL THIS TSK ONLY

Figure 10.5. Skeleton Example of Multitask Linkage to a Common IT Exit Routine

Program Check User Exit Routine

The linkage established by the STXIT PC macro instruction provides entry
to a user routine for handling any program check interrupt that is not
caused by a page fault (page or segment translation exception or a

10.8 DOS/VS System Management Guide

translation specification exception). The routine can analyze the interrupt
status information and the contents of the general registers stored in the
user's save area.

If an error condition caused the interrupt, this can be corrected or
ignored (depending on the severity of the error) and control returned to the
interrupted program, or termination of the program may be requested.

Note: As with the interval timer exit, the program check exit is not taken if the
program check occurs while VT AM is processing a VT AM request issued by the
program. When VT AM has completed processing the request, the exit will be
taken.

DIVTEST CSECT

STXIT PC,PCRTN,PCSAV

LM
D

R2,R3,DIVIDEND
R2,DIVISOR

* USER'S PROGRAM CHECK ROUTINE
PCRTN SR R5,R5

CL R5,DIVISOR
ENE CANCELR

(set up addressability)

SET UP PROGRAM CHECK LINK

LOAD FOR DIVIDING
DIVIDE

CLEAR REGISTER 5
CHECK FOR ZERO DIVISOR
IF NOT CLEAR FILES & CNCL

(special recovery routine)

EXIT PC
CANCELR PDUMP PCSAV,PCSAV+71

RETURN TO NORMAL PROC
DUMP SAVE AREA

(close files and do other housekeeping)
(equates and storage definitions)

CANCEL ALL

Figure 10.6. Skeleton Example of a Routine for Processing a Program Check
Caused by Zero Division

Supervisor support for entering a user's program check routine is useful
when it is known that one or more programs may be checked by processing
errors that are insignificant to the results or can easily be corrected. Figure
10.6 shows a routine for recovering from a program check caused by
attempting to divide by zero. In this example, any other causative errors
result in the user save area being dumped before the job is terminated.

Operator Communications User Exit

A direct communications link between the operator and a program can be
established by issuing a STXIT OC macro instruction. In a multitasking
environment, the STXIT OC macro instruction may be issued only by the

Chapter 10: Using the Facilities and Options of the Supervisor 10.9

main task in any partition. The operator procedure to initiate
communication depends, however, on whether the program executes in the
background or in a foreground partition.

For a program in the background partition, the operator initiates
communication by pressing the external interrupt key. This activates the
attention task which sets the linkage to the user's operator communications
routine. This routine is then entered instead of returning to the program
that issued the STXIT OC macro instruction.

For a program in a foreground partition, the operator presses the
request key. This initiates an I/O interrupt. When the attention routine
identifier AR appears, the operator enters MSG followed by the partition
identifier (such as Fl or F4) which sets the linkage to the user's operator
communications routine. This routine is then entered instead of returning to
the program that issued the STXIT OC macro instruction.

The operator communications routine may perform any special
processing, a typical application being the taking of a checkpoint record in a
program that has to be canceled in order to start a high-priority job that
has just been handed in; the checkpointed program can then be restarted
later on.

Writing an IPL User Exit Routine

The IPL Exit allows you to do some processing at the end of IPL and prior
to execution of the job control program. For example, you may want to
open a job accounting file and accumulate and/or store IPL values and
statistics. Data may be read from and written to the operator console.

Before you actually start coding your $SYSOPEN routine, take account of
any system requirements that should be met at the time the routine is to be
executed. For instance, labeled files that are to be opened need device
assignments and label information in the specific label area. Any routines
called by your routine must be present in the system core image library.

Moreover, the following conventions must be followed:

Register 15 is to contain the entry point of the routine.

Register 14 is to be loaded with the return address to job control.

.• The format of the phase card must be as follows:

PHASE SYSOPEN,+O[NOAUTO]

The phase is to be self -relocating.

Use EXCP macros to perform all I/O operations within your routine; any
use of LIOCS or of a DTFPH will destroy the job control program. After
IPL job control executes the exit routine as an overlay phase. In your exit
routine you can issue SVCs and perform I/O operations in user-written
$$B-transient routines. While the routine is being executed job control is
unable to read any JCL statements. Therefore, if your routine is written to
perform some level of OPEN function for a labeled device, make sure that
labels are present in the standard label area, the partition label area, or the
user label area. Likewise, assignmenis for ihe specific physical devices must

10.10 DOS/VS System Management Guide

ISEQ
IPLEXIT START

USING
BEGIN ST

L
MVC
MVC
MVC
MVC
LA
LA
ST

INQUIRYD LA
ST
MVI
BAL
LA
LA
SVC
L
BR
DC

PARM DC
DC

PHASNAME DC
OUTLOG ST

MVI
SVC
TM
BO
SVC
MVC
L
BR

OUTSAVE DC

INLOG ST

have been made. Code your routine as an overlay of an existing program
phase. A slot of 4K bytes has been reserved for the exit routine.

Phase $SYSOPEN will be executed with a storage protect key of zero.
If the phase is abnormally terminated, the job control program will be
loaded for execution.

Figure 10.7 illustrates a user-written routine that can be entered once
each time the IPL procedure is performed.

73,80
o
* ,R15
R14,RETURN
Rl,20
SYSDATE(2),79(Rl)
SYSDATE+3(2),81(Rl)
SYSDATE+6(2),83(Rl)
SYSDATE+9(3),85(Rl)
Rl,LOGCCB
RO,LOGCCW
RO,LOGCCB+8
R8,SYSCODE
R8,LOGCCW
LOGCCW+7,X'11,
R14,OUTLOG
RO,PARM
Rl,PHASNAME
2
R14,RETURN
R14
OF'O'
C'OPEN'
X'80000000'
C'$$BACSEE'
R14,OUTSAVE
LOGCCW,X'09'
o
2(Rl),X'80'
*+6
7
MSGAREA,BLANKS
R14,OUTSAVE
R14
F'O'

R14,INSAVE

SET BASE
SAVE RETURN ADDRESS
GET COMREG. ADDRESS
GET DAY
GET MONTH
GET YEAR
GET CURRENT DAY OF YEAR
GET LOGCCB ADDRESS
GET LOGCCW ADDRESS
AND STORE IT IN CCB
GET SYSTEM DATE ADDRESS
AND STORE IT IN CCW
SET LENGTH
WRITE MESSAGE
LOAD PARAMETER REGISTER
LOAD PHASE NAME
OPEN ACCOUNTING
LOAD RETURN ADDRESS
RETURN TO CALLER
ALIGNMENT
SET ID.

PHASE NAME
SAVE RETURN ADDRESS
SET WRITE COMMAND
EXCP
COMPLETE?
YES
WAIT
CLEAR MESSAGE AREA
LOAD RETURN ADDRESS
RETURN TO CALLER
RETURN ADDRESS

SAVE RETURN ADDRESS

Figure 10.7. IPL User Exit Example (Part 1 of 2)

Chapter 10: Using the Facilities and Options of the Supervisor 10.11

INLOGl MVI LOGCCW,X'OA' SET READ COMMAND
SVC 0 EXCP
TM 2(Rl),X'80' COMPLETE?
BO *+6 YES
SVC 7 WAIT
TM LOGCCB+4 , X ' 01 ' WAS MESSAGE CANCELED?
BNZ INLOGl YES READ AGAIN
OC MSGAREA,BLANKS CONVERT TO UPPER CASE
L R14,INSAVE LOAD RETURN ADDRESS
BR R14 RETURN TO CALLER

INSAVE DC F'O' RETURN ADDRESS
LOGCCB CCB SYSLOG,LOGCCW
* SUPVR COMMN MACROS - CCB - 5745-SC-SUP - REL. 28.0
LOGCCB DC XL2'0' RESIDUAL COUNT

DC XL2'0' COMMUNICATIONS BYTES
DC XL2'0' CSW STATUS BYTES
DC AL1(0) LOGICAL UNIT CLASS
DC ALl (4) LOGICAL UNIT
DC XLl '0'
DC AL3(LOGCCW) CCW ADDRESS
DC B'OOOOOOOO' STATUS BYTE
DC AL3(0) CSW CCW ADDRESS

LOGCCW CCW X'OO' ,*,X'20',0
RETURN DC F'O'
MSGAREA DC CL60' ,
SYSCODE DC C'DATE='
SYSDATE DC CL12' /
BLANKS DC CL60' ,
RO EQU 0
Rl EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
Rl0 EQU 10
R 11 EQU 1 1
R12 EQU 12
R13 EQU 13
R14 EQU 14

• R15 EQU 15
END BEGIN

Figure 10.7. IPL User Exit Example (Part 2 of 2)

Writing a Job Control User Exit Routine

In your routine you are free to modify the operands of the job control
statement and to add comments. You must not, however, modify the
operation field of the statement. For example, / / EXEC IBM can be
modified to / / EXEC USER; the operation field (EXEC) cannot be
modified. In your exit routine do not perform any I/O operations, do not
issue any SVCs, or request the system to cancel the job step.

The phase card must be coded as follows:

PHASE $JOBEXIT, S [, NOAUTO] , SVA [, PBDY]

10.12 DOS/VS System Management Guide

Your routine must be coded reenterable, SV A eligible, and must reside in
the SV A. SV A residence may be achieved at IPL time as shown below:

If message

lIOOA READY FOR COMMUNICATIONS

is displayed, enter
set sdl=create

$JOBEXIT,SVA

/*

or, if message

lTOOA WARM START COPY OF SVA FOUND

is displayed, press END/ENTER. Phase $JOBEXIT, if previously loaded
into the SVA, is contained in the warm start copy.

Phase $JOBEXIT is executed with a storage protection key of zero.
The code is shared between partitions.

When your routine is entered, the following registers contain:

Register Number: Contents of Register:

0 System identification characters 'SDOS'

1 Address of partition communication region

2 Address of system communication region

3 Address of job control vector table*

4 Address of buffer into which the job control statement is
loaded

14 Return address to job control

15 Entry point to $JOBEXIT; at completion of the routine it
contains the return code for job control.

Before taking the exit to your routine, job control saves the contents of all
general-purpose registers. These registers will be restored when job control
regains control.

Prior to returning control to job control, your routine must store a return
code value into register 15:
a zero value - requests job control to continue processing the current

statement as normal.

a non-zero value - requests job control to process the statement as if it
were a comment.

The vector table shows which job control statement will be processed
by job control. You must not modify its contents. Use it for comparison
only. The size of the buffer into which the job control statement is loaded
(left-justified) is 120 bytes, the first 71 bytes of which are printed on the
console printer. The full length of 120 bytes is printed on the printer
assigned to SYSLST. The / & and End-of-job statements are not displayed.
In the buffer, you may modify the first byte following the operation field
through byte 71. Bytes 72-80 could contain a statement identification, such
as for procedure overwrites, and therefore should not be modified. After

Chapter 10: Using the Facilities and Options of the Supervisor 10.13

the return code has been set, control is passed back to job control.

* Vector Table Layout

Operation field
Condition switches
Branch displacement
Phase ID.

Total

7 bytes (Name of job control statement)
1 bytes
1 byte
1 byte

10 bytes

Do not attempt to modify the table or modify the operation field in the
buffer.

Note: Care must be taken to ensure that your exit routine is free of errors that
could cause abnormal termination in a production environment.

Figure 10.8 illustrates a job control user exit routine.

II JOB EXIT ROUTINE
II OPTION CATAL,NODECK

PHASE $JOBEXIT,S,NOAUTO,SVA,PBDY
II EXEC ASSEMBLY

EJECT

*
*
*
*
* [II]
*
* [II]
*
*
*
*
*
*
*
*
*
*

THIS PROGRAM, PHASE $JOBEXIT, EXAMINES ALL EXEC CONTROL STATE- *
MENTS AND EXEC COMMANDS WHETHER THEY WANT TO EXECUTE A PROGRAM *
NAMED: IBM. THIS PROGRAM IS ASSUMED TO BE RESTRICTED FOR *
GENERAL USE AND THE STATEMENT: *
EXEC IBM *
IS CHANGED TO: *
EXEC USER *
MESSAGE, 'PROG. IBM RESTRICTED FOR ALL USERS' ,IS PLACED *
INTO THE EXEC CARD AND PRINTED ON SYSLOG (IF LOG IS *
ON) AND SYSLST. *

*
*

THE PHASE NAMED USER MUST BE CATALOGED IN THE CIL *
*

$JOBEXIT IS REENTRANT AND SVA ELIGIBLE AND MUST BE LOADED INTO *
THE SVA. *

*
**

JOBEXIT

Figure 10.8

EJECT
START 0
BALR R12,O
USING *,R12

ESTABLISH
ADRESSABILITY

Job Control User Exit Example (Part 1 of 2)

10.14 DOS/VS System Management Guide

*
*
*
*

*
*
*
*

*
*
*
SEARCHE

EXFOUND

SEARCHP

*
*
*
PFOUND

*
*
*
*
RETURN

EXECNAM
PROGNAM
USERTXT
R3
R4
R5
R6
R7
R8
R12
R14
R15

1*

CHECK FOR EXEC STATMENT
REG.3 POINTS TO JOB CONTROL VECTOR TABLE

CLC
BNE

EXECNAM,O(R3)
RETURN

IS IT AN EXEC STATEMENT?
IF NOT RETURN

EXAMINE THE STATEMENT
REG.4 POINTS TO STATEMENT BUFFER

L
L
SR

R6, =F' 1 '
R7,=F'67'
R5,R5

INCREMENT VALUE FOR SEARCH LOOP
COUNT MAXIMUM FOR SEARCH LOOP
CLEAR R5, USED AS INDEXING REG.

FIND POSITION OF EXEC STATEMENT

EQU
LA
CLC
BE
BXLE
LA
BR
EQU
LA
EQU
LA
CLC
BE
BXLE
B

*
R8 , ° (R5 , R4)
EXECNAM,O(R8)
EXFOUND
R5,R6,SEARCHE
R15,8
R14

*
R5,5(R5)

*
R8,O(R5,R4)
PROGNAM,O(R8)
PFOUND
R5,R6,SEARCHP
RETURN

POINT TO INDEXED POSe IN STMNT. BUF
DETERMINE POSITION OF EXEC
FOUND THE STATEMENT
INCREMENT INDEX AND LOOP
NO EXEC FOUND, RETURN CODE=8
RETURN TO CALLER

SKIP OVER EXEC TO PROGNAME

POINT TO INDEXED POSe IN STMNT. BUF
LOOK FOR PROGRAM-NAME IBM
PROGRAM-NAME FOUND
INCREMENT INDEX AND LOOP
IF ANY OTHER OR NO PROG.-NAME RETURN

PROGRAM-NAME-IBM-FOUND PROCESSING

EQU
LA
MVC

*
R4,O(R5,R4) POINT TO PROG.-NAME IN BUFFER
O(L'USERTXT,R4),USERTXT MOVE USERTXT TO BUFFER

PREVIOUS MVC CHANGED PROGRAM-NAME IBM INTO PROGRAM-NAME USER
AN ADDITIONAL MESSAGE IS MOVED INTO THE BUFFER

EQU
SR
BR
DC
DC
DC
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
END

*
R15,R15
R14
C'EXEC'
C'IBM'

RETURNCODE ZERO TO REG.15
RETURN TO CALLER

C'USER *** PROG. IBM RESTRICTED FOR ALL USERS'
3
4
5
6
7
8
12
14
15
JOBEXIT

II EXEC LNKEDT
1&

Figure 10.8. Job Control User Exit Example (Part 2 of 2)

Chapter 10: Using the Facilities and Options of the Supervisor 10.15

Checkpointing Facility

Choosing a Checkpoint

The progress of a program that performs considerable processing in one job
step should be protected against destruction in case the program is
canceled. DOS/VS provides support for taking up to 9999 checkpoint
records in a job. Through this facility, information can be preserved at
regular intervals and in sufficient quantity to allow restarting a program at
an intermediate point.

The CHKPT macro stores the checkpoint record on a magnetic tape or
disk. For full details regarding the use and restrictions of this macro, refer
to DOS/VS Supervisor and I/O Macros.

The RSTRT job control statement restarts the program from the last or
any specified checkpoint taken before cancelation. For full details on using
this statement, see DOS/VS System Control Statements.

The most important criterion for a checkpoint decision is a minimum of
necessary housekeeping before the checkpoint record can be taken. The
possibility of an error occurring either in the checkpoint routine or at restart
is then also minimal. Checkpoints cannot be taken by a subtask or by a
main task with sub tasks attached. Therefore, when multitasking, checkpoints
should be avoided where a number of subtasks must first be detached.

A successful checkpoint record taken immediately after opening files
indicates that processing can safely proceed. If such a checkpoint record is
invalid, however, then the program should be canceled.

Other checkpoint records may be taken at logical breaks in data, such
as at the end of a reel of magnetic tape.

After a CHKPT macro is successfully executed, register 0 contains the
checkpoint number; if CHKPT macro execution is unsuccessful register 0
contains zero, and the reason for failure is printed on SYSLOG.

Timing the Entry to the Checkpoint Routine

Having decided where a program can conveniently be checkpointed, it may
be useful to enter the checkpoint routine only if a certain time interval has
elapsed since the previous checkpoint record was taken.

By issuing a SETIME macro after a STXIT IT macro has established
linkage to a user routine that sets a switch and returns, the main program
can test this switch and then branch to the checkpoint routine or continue
processing according to whether the switch is set or not. An example of this
technique can be found in Figure 10.4.

By issuing a STXIT OC macro instruction, it is also possible to have
checkpoint records taken at convenient points on command from the
operator. This method is illustrated by Figure 10.9.

10.16 DOS/VS System Management Guide

CHKPTRTN CSECT
(set up addressability)
STXIT OC,OCMSG,OCSAV SET UP LINKAGE FOR OC MSG

MVI SW1,X'40' SET CHECKPOINT SWITCH
OPENR (RDISKOUT),(RCHKPTF) OPEN FILES

* DTF ADDRESSES FROM MAIN ROUTINE ARE USED
BAL RLINK,CHECKPT TAKE TEST CHECKPOINT

START (normal processing)

CLI
BE

* THE FOLLOWING
* A SIGNAL FROM

STD
STD
STD
STD
CHKPT
LTR
BZ
MVI
B

SW1,X'40'
START

SEE IF OPER HAS SENT MSG
CONTINUE IF NOT

IS THE CHECKPOINT ROUTINE ENTERED ON
THE OPERATOR
FO,REGO SAVE FLOATING POINT REGS
F2,REG2
F4,REG4
F6,REG6
SYS011,(RSTRTR)",,(RCKPTF) TAKE CHKPTS
RO,RO TEST IF SUCCESSFUL
CANCEL CANCEL IF NOT
SW1,X'40' RESET CHECKPOINT SWITCH
START RETURN TO NORMAL PROCESSING

(equates)
OCMSG MVI SW1,X'80' SET CHECKPOINT SWITCH

EXIT OC RETURN TO POINT OF INTERR
CHECKPT CHKPT SYS011,(RSTRTR)",,(RCHKPTF)

LTR RO,RO SEE IF CHECKPNT SUCCESSFUL
BNZ O(RLINK) RETURN IF TAKEN

CANCEL CANCEL ALL CANCEL IF CHECKPOINT FAILED
STRTR STXIT OC,OCMSG,OCSAV RESTORE LINKAGE

LD FO,REGO RESTORE FLOATING POINT REGS
LD F2,REG2
LD F4,REG4
LD F6,REG6
B START RESTART PROGRAM

END EOJ
REGO DS D
REG2 DS D
REG4 DS D
REG6 DS D
OCSAV DS 9D
SW1 DS X

(equates)

end

Figure 10.9. Skeleton Example of a Routine for Checkpointing a Program on
Operator Command

Saving Data for Restart

Besides the information stored by the CHKPT macro, certain data must
usually be saved by the user's checkpoint routine in order to facilitate a

Chapter 10: Using the Facilities and Options of the Supervisor 10.17

successful restart. This may include the contents of floating point registers,
any linkage that was established by a STXIT or a SETPFA macro, the
interval value for a SETIME macro, and the program mask in the problem
program PSW.

For the repositioning of I/O files so that they point to the next record
to be read or written, refer to DOS/VS Supervisor and I/O Macros.

Restarting a Checkpointed Program

II JOB
II ASSGN

ASSGN
ASSGN

A checkpointed program can be restarted only in the same partition. The
virtual partition (or real partition if a real mode program) must start at the
same location as when the program was checkpointed and its end address
must not be lower than at that time unless a lower end address was
specified in the CHKPT macro instruction. Unless the user resets all
linkages to SVA phases himself, the contents and location of the modules in
the SV A when restarting must also be the same as when the program was
checkpointed. The SDL need not be identical.

If any pages of a virtual mode program were fixed when the checkpoint
record was taken, then the real partition must also start at the same
location and its end address must be at least as high as at that time. The
pages that were fixed are refixed by the supervisor when the program is
restarted.

The appropriate job control statements for restarting a checkpointed
program on disk are illustrated in Figure 10.10.

CHECKPOINT (the JOBNAME must be the same as before)
(all ASSGNs must be renewed)
(new assignments may be made) II

II
II RSTRT SYS001,1111,CHKPTF

Figure 10.10. Example of Job Control Statements for Restarting a Checkpointed Job from
Checkpoint 1111

Job Accounting Interface Feature

A DOS/VS supervisor generation option provides job accounting interface
support for all partitions in the system. At the end of each job step or job,
accounting information is accumulated in a table for that partition and can
be processed by a user routine, which must be either relocatable or
self-relocating. This user routine can extract data for such purposes as
charging system usage, supervising system operation, or for planning new
applications or changing the system configuration.

Since the processing of the information is an overhead element, the user
routine should be efficient and avoid unnecessary reduction or reformatting
of data.

10.18 DOS/VS System Management Guide

If your system also supports POWER/VS job accounting, you do not
need such a user routine. Refer to DOS/VS POWER/VS Installation
Guide and Reference.

Basic Job Accounting Information

1/0 Accounting Information

When support is generated for basic job accounting, the supervisor includes
for each partition in the system a job accounting table comprising fourteen
fields. At the end of each job step and job, information is stored as shown
in Figure 10.11, fields 1 to 14 inclusive.

Job accounting automatically includes support for the interval timer.

Additional support can be provided at system generation time to include the
number of SIO (Start I/O) instructions issued per device for each job step
and job. The job accounting table for each partition is then extended to
contain the additional fields 15 and 16 shown in Figure 10.11.

SIO accounting is performed for the number of devices specified to be
supported by the feature for each partition. The maximum is 255 and has
no relation to the number of devices specified for the system. If more
devices are accessed than the number specified, SIOs on the excess devices
will not be counted.

Save Area for the User's Routine

The address of a save area that can be used by the user's routine is passed
in general register 13. This save area is 16 bytes long unless a greater
length (up to 1024 bytes), to save DTF information for LIOCS, was
specified at system generation time. However, CCBs and executable CCWs
must not be included.

User's Area for LIOCS Label Processing

Programming Considerations

If the user's routine uses LIOCS for processing such items as standard tape
labels, DTFDA, or DTFPH with MOUNTED=ALL, then an alternative
label area must be specified at system generation time. The length of this
label area should normally be the number of bytes that would be allocated
by a given parameter of the LBLTYP statement. For information on
determining the number of bytes, see DOS/VS System Control Statements.

The user program to process the information entered by the supervisor in
the Job Accounting Table must be cataloged in a core image library with
the name $JOBACCT. If the supervisor supports relocating load, then the
user program must be relocatable, otherwise it must be self-relocatir~g in a
multiprogramming environment.

Chapter 10: Using the Facilities and Options of the Supervisor 10.19

...
c: '5 Q)

E en c:
Q) Q) Contents u ...J

"C
(Q

Gi]. e
> u: i5 aJ

1 0-7 8 Job name. 8-byte character string taken from
JOB card.

2 8- 23 16 User Information. 16 characters of information
taken from the JOB card.

3 24 - 25 2 Partition 10, BG, F4, F3, F2, or F1.

4 26 1 Cancel Code. Refer to DOS/VS Serviceability Aids and
Debugging Procedures, GC33-5380.

5 27 1 Type of Record. S = job step; L = last step of job.

6 28- 35 8 Date. mm/dd/yy or dd/mm/yy depending on
supervisor option.

7 36- 39 4 Job Step Start Time. OhhmmssF, where h hours,
m minutes, s seconds, F is a sign (in packed
decimal format).

8 40-43 4 Job Step Stop Time (in same format as start time).

9 44 - 47 4 Reserved.

10 48- 55 8 Phase Name. 8-byte character string taken from the
EXEC card.

11 56- 59 4 Real Mode Processing:
High storage address of partition. If the SIZE parameter
is used in the EXEC statement, this field reflects the
value of the parameter.
Virtual Mode Processing:
Simulated high storage address. Calculated by multiplying
the number of pages referenced in the partition by 2K and
adding the result to the start address of the virtual partition.

12 60 - 63 4 CPU Time. 4 binary bytes given in 300ths of a second.
Time is calculated from exit of the user-written routine
called during job control to next entry of the routine.
Time used by the user-written output routine is charged
to overhead of the next record.

13 64 - 67 4 Overhead Ti me. 4 binary bytes given in 300th of a second.
Includes time taken by functions that cannot be charged
readily to one partition (such as attention routine and
error recovery). System overhead time is divided by the
number of active batch partitions and recorded in each
accounting table.

68- 71 4 All Bound Time. 4 binary bytes in 300th of a second.
This is the time the system is in the wait state divided by
the number of partitions running.

15 72- SIO Tables. Variable number of bytes. Six bytes are
reserved for each device specified in the JA parameter.
First two bytes are X.Ocuu', next four are hex count of
SIOs for job step. Unused entries contain X'1 0' followed by
five bytes of zeros. Stacker select commands for MICR
devices are not counted. Error recovery SIOs are not charged
to the JOB Accounting Table. Devices are added to the table
as they are used.

16 1 Overflow. Normally X'20'. Set to X'30' if more devices are
used than set by the JA parameter at system generation time.

Note: The difference between Start and Stop times will not necessarily equal the sum of CPU,
All Bound, and Overhead times. All Bound and Overhead times will vary, depending on the
number of active partitions and the type of partition activity. CPU time is accurate for each
partition, but it may not be reproducible. That is, the same job being executed under different
system conditions (varying number of active partitions, logical transient available, etc.) may

show differences in CPU time.

Figure 10.11. Job Accounting Table

10.20 DOS/VS System Management Guide

Register Usage

Tailoring the Program

If physical IOCS is used for printing, a skip must be issued to prevent
overwriting of job control statements.

For efficiency, an overlay structure should be avoided and the length of
the program should preferably not exceed one core image library block.

If the job accounting program is canceled as the result of an error
condition, the current information cannot be retrieved. If the job
accounting program is canceled, the job accounting information for the
current job step is unreliable. However, provision is made that the job
accounting information for any subsequent job steps will be correct,
provided the cancellation was not caused by an error in the $JOBACCT
routine itself. If there was an error in the $JOBACCT routine, it must be
corrected first. If not, the routine will be re-entered for every subsequent
job step and will continue to produce wrong job accounting information.

In order to avoid accidental cancellation of the job accounting program
by the operator, the operator should issue the MAP command and check
the job name for the running partition. If the job name is 'JOB ACCT', the
job accounting routine is active; the CANCEL command should not be
issued until the original job name is displayed after another MAP command.

Important data for the user's job accounting routine are passed in the
following general registers:

12 Base address for $JOBACCT
15 Address of the job accounting table
11 Length of the job accounting table
13 Address of the user save area
14 Return address to job control

If $JOBACCT uses LIOCS, the contents of general registers 14 and 15
must be saved (also registers 0 and 1 if necessary) because LIOCS uses
these registers.

The requirements of the program may be simply to record the accounting
information as part of the SYSLST output for each job step or job, or it
may be to accumulate information to be used for equitably allocating the
costs of a computing center.

If data is to be written out on a disk or tape, the save area can be used
for communicating between job steps.' Such information as the disk address
for the next record or an indication that tape labels have been successfully
processed, or even the DTF used to control the output, may be stored in
the save area.

Figure 10.12 illustrates a job accounting program that writes records to
disk without additional processing.

Chapter 10: Using the Facilities and Options of the Supervisor 10.21

JAACT CSECT
USING *,R12
USING JASAVE,R13
LA RO,JABROUT
LA R 1 ,JABSAVE
STXIT AB, (°) , (1)
TM JASTATSW,X'CO'
BO JARET
BM JAOPEN

JOB ACCT SAVE AREA
AB ROUTINE
AB SAVE AREA
SET ABNRML TERM EXIT
TEST STATUS
DISK AREA FULL
SAVE AREA INITIALIZED

* PERFORM LABEL PROCESSING AND INITIALIZE SAVE AREA
OPENR JADTF OPEN FILE (see Note)
MVC JACCB,JADTF
MVC JASEEK,JADTF+58
MVI JAR,X'01'
MVC JAHIGH,JADTF+54

* RELOCATE CCWS
MVC JASKCCW(32),JAMODCCW
LA R10,JASEEK
STCM R10,7,JASKCCW+1
LA R10,JASRCH
STCM R10,7,JASRCCW+1
LA R10,JASRCCW
STCM R10,7,JATIC+1
LA R10,JASKCCW
STCM R10,7,JACCB+9
MVI JASTATSW,X'80'

* WRITE JOB ACCOUNTING TABLE TO DISK

MOVE CCB TO SAVE AREA
EXTENT LOWER LIMIT
FIRST RECORD
HIGH EXTENT LIMIT

PUT MOD CCWS IN SVE
SEEK ADDRESS
PUT ADDRESS IN CCW
SEARCH ADDRESS
PUT ADDRESS IN CCW
SEARCH CCW ADDRESS
PUT ADDRESS IN CCW
CHANNEL PROGRAM ADDR
PUT ADDRESS IN CCB
IND SAVE AREA INIT

AREA

JAOPEN STCM R15,7,JADATA+1 PUT ADDR OF TBL IN CCW
MVC JADTF(16),JACCB
LA R 1 ,JADTF
EXCP (1)
WAIT (1)

* UPDATE SEEK ADDRESS

JAHTST

TR
CLI
BNE
TR
CLI
BNE
LH
LA
STH
CLC
BH

JAR,JARECTAB
JAR,X'01 '
JARET
JAHEAD+1(1),JAHDTAB
JAHEAD+1,X'OO'
JAHTST
R10,JACYL
R10,1(R10)
R10,JACYL
JAHIGH,JASRCH
JARET

LA R 1 ,JACCBL
LA R2,JAMSG1
STCM R2,7,9(R1)
LA R3,JAERR1
STCM R3 , 7 , 1 (R2)

POINT TO CCB
WRITE DATA
WAIT FOR COMPLETION

RECORD
NEW TRACK
NO
HEAD
NEW CYLINDER
NO
CYLINDER ADDRESS
INCREMENT BY ONE
REPLACE IN SEEK ADDR
BEYOND UPPER LIMIT
NO
CONSOLE CCB
ERROR MESSAGE
PUT ADDRESS IN CCB
DATA ADDRESS
PLACE IN CCW

Note: If the supervisor does not support relocating load, the self-relocating form of the OPEN macro
(OPENR) should be used in a multiprogramming environment; otherwise OPEN may be used instead.

Figure 10.12. Job Accounting Routine Example (Part 1 of 2)

10.22 DOS/VS System Management Guide

JARET

JABROUT

EXCP
WAIT
01
STXIT
BR
BALR
USING
LA
LA
STCM
LA
STCM
EXCP
WAIT
EOJ

JAMODCCW CCW
CCW

JACCBL
JADTF

CCW
CCW
CCB
DTFPH

ORG
DC
ORG

JAMSG1 CCW
JAMSG2 CCW
JAERR1 DC
JAERR2 DC
JARECTAB DC
JAHDTAB DC
JABSAVE DS

JASAVE
JASEEK
JABB
JASRCH
JACYL
JAHEAD

LTORG
DSECT
DS
DS
DS
DS
DS

JAR DS
JASTATSW DS
JACCB DS
JAHIGH DS

JASKCCW
JASRCCW
JATIC
JADATA

*

DS
CCW
CCW
CCW
CCW

CSECT
JABROUTE EQU *

(1)
(1)
JASTATSW,X'40'
AB
R14
R10,0

INFORM OPERATOR
WAIT FOR COMPLETION
INDICATE DISK FULL
RESET EXIT LINKAGE
RETURN TO SUPERVISOR
BASE REGISTER

* ,R1 0
R1,JACCBL
R2,JAMSG2

ESTABL ADDRESSABILITY
CONSOLE CCB

R2, 7, 9(R 1)
R3,JAERR2
R3, 7 ,1 (R2)
(1)
(1)

X' 07' , *, X' 60' ,6
X' 31 ' , *, X' 60' ,5
X' 08' , *, X' 00' ,1
X'05' ,*,X'20' ,246
SYSLOG,*
TYPEFLE=INPUT,
DEVICE=2314,
MOUNTED=SINGLE
JADTF
X'OOOOOBOO'

ERROR MESSAGE
PUT ADDRESS IN CCB
DATA ADDRESS
PLACE IN CCW
INFORM OPERATOR
WAIT FOR COMPLETION

MEANS CHECK LABELS

SET CCB OPTION BITS

X'09' ,JAERR1,X'20' ,L'JAERRl
X'09' ,JAERR2,X'20' ,L'JAERR2
C'JOB ACCOUNTING DISK FULL'

*
*

C'JOB ACCOUNTING ROUTINE CANCELED'
X'0002030405060708090AOBOCODOEOF101112131401'
X'0102030405060708090AOBOCODOEOF1011121300'
9D
USED IF LITERALS ARE PRESENT

OXL6
XL2
OXL5
XL2
XL2
X
X
XL16
XL4
XL4

SEEK ADDRESS BBCCHH
BB
SEARCH ADDRESS CCHHR
CC
HH
R

COMMAND CONTROL BLOCK
HIGH EXTENT LIMIT

X'07' ,JASEEK,X'60',6 SEEK CCW
X'31' ,JASRCH,X'60',5 SEARCH CCW
X'08' ,JASRCCW,X'OO',l TIC CCW
X'05' ,*,X'20' ,246 WRITE DATA ASSUMING 29

SIO DEVICES TRACED

YOUR AB ROUTINE

(equates)

END

Note: The DSECT labeled JASAVE through JADATA defines.. the layout of the Job Accounting user save
area, which resides within the supervisor. The address of this area is passed, in register 13, to your Job
Accounting phase. When generating your supervisor you must specify the desired length of this save area by
substituting'a value for s, the first operand of the JALIOCS parameter of the FOPT macro. If the operand

is omitted or if JALIOCS=NO is specified the length of the user save area is set to 16 bytes by default.

Figure 10.12. Job Accounting Routine Example (Part 2 of 2)

Chapter 10: Using the Facilities and Options of the Supervisor 10.23

Storage Dump Facility

DUMP

JDUMP

PDUMP

Whenever a program is to be terminated by the system for any reason other
than a normal end-of-job condition, and especially after a program check
interrupt, a printout of all or part of the storage area occupied or used by
the program at that moment is a useful aid for tracing the cause. Facilities
for obtaining such a printout are provided by most high-level languages and
are described in the various language manuals. For guidance on reading and
interpreting the printout, see DOS/VS Serviceability Aids and Debugging
Procedures.

The DOS/VS supervisor supports several macro instructions that dump
the contents of real or virtual partitions to SYSLST, which may be assigned
to a printer, a disk, or a tape unit. These macro instructions, details of
which are given in DOS/VS Supervisor and I/O Macros, may be used, for
example, at the end of a user's routine for handling an abnormal
termination condition.

The following is a summary of the functions of supervisor macros that
provide storage dumps:

The DUMP macro instruction dumps, in hexadecimal format, the contents
of the supervisor area, or the contents of the supervisor control blocks,
depending on the parameter specified in the STDJC macro during system
generation or on the / / OPTION job control statement in a specific job
step. (For details, see DOS/VS Serviceability Aids and Debugging
Erocedures.) In addition, the DUMP macro instruction dumps the entire real
or virtual partition of the issuing program, and all the general registers. The
job step is always terminated if multitasking is not supported; with
multitasking, the job step is terminated if the macro is issued by the main
task but if issued by a subtask then only that sub task is detached.

This macro instruction causes the same areas to be dumped as for a DUMP
macro, but terminates the entire job.

A PDUMP macro instruction furnishes a dynamic hexadecimal dump of the
general registers and of the virtual or real storage area between the
addresses specified by two operands. After execution of this macro
instruction, processing continues at the next sequential instruction.

A PDUMP macro instruction may therefore be issued several times in a
program to provide dumps of selected storage fields for examination at
different stages of the program's execution.

DASD Switching under DOS/VS

The standard I/O interface between an I/O device and the CPU is a
channel and a control unit.

Normally, this interface provides one, and only one, path by which a

10.24 DOS/VS System Management Guide

Channel Switching

String Switching

Using DASD Switching

CPU communicates with an I/O device. However, it may be desirable to
access a device, especially a DASD device, by more than one path. For
example, a second CPU may be required to back-up the host CPU such
that should the host CPU become inoperable, the attached DASD devices
may be switched immediately to (made accessible to) the back-up CPU.
Multiple CPUs may also need to access the same data base.

A single CPU may require back-up channels and control units,
providing alternate paths to the same DASD devices.

In order to do this device sharing the hardware provides a two-level
switching mechanism that allows you to connect one or more DASDs either
dynamically or manually to different I/O paths. This mechanism is known
as channel switching and string switching.

Channel switching provides the switching mechanism at the control unit
level. The channel switch allows you to connect the control unit to up to
four channels, which may belong to the same or different CPUs thus
providing up to four distinct I/O paths. A maximum of two channels may
connect to one CPU. The connection of any channel can be manually
enabled or disabled. When enabled, the switch is dynamically controlled by
the hardware.

In the case of string switching, the switching mechanism is at the DASD
string level. String switching allows you to connect a string of DASDs to
two distinct control units, or integrated disk attachments. The two 1/0
paths may be connected to a single or two different CPUs.

In both types of this hardware-supported switching, a desired I/O path
may be selected in one of two ways. In the first case, connection is made
dynamically when an I/O command is issued for a device. Provided that
the control unit (in channel switching) and the DASD string (in string
switching) are free for connection, the target DASD device can be accessed
by the requesting CPU. Once a connection is estabilshed by one CPU, the
other CPU receives device busy status if attempting to access a device on
the string.

In the second case, the operator may manually switch the sharable
devices to the desired CPU (via the Enable/Disable toggle switches). It
should be noted that in this case an entire string of DASD is disconnected
from the other CPU.

If, at your installation, a DASD switching feature is being used, it is
your responsibility to resolve conflicting CPU references to shared devices
(or files) and thus ensure data integrity. Following are two ways of
preventing potential conflicts.

Chapter 10: Using the Facilities and Options of the Supervisor 10.25

First, through scheduling of CPU file referencing, ensure that only one
CPU that is updating the file is connected to the shared DASD. The
operator needs only to switch the manual control to the updating CPU for
that period of time.

Secondly, through scheduling and the use of the operator commands
DVCUP and DVCDN (as described below), devices may be reserved for
use by one CPU for a particular period of time.

An individual device can be excluded from use by a particular CPU by
entering a DVCDN command for that device via the operator console. The
other system then has exclusive access to that device. The device can be
made available again by issuing a DVCUP command for the device.
However, the other system should then issue a DVCDN command for that
device. To avoid conflicts both system operators have to inform each other
about the status of the reserved devices. It is therefore recommended that a
job, which requires exclusive access to a file or device, notifies the operator
when the device has to be reserved, and when it may be released.

Note that the DVCUP /DVCDN commands reserve the DASD at the
device level, although the programmer may only be interested in reserving
only one file on that particular device.

DVCUP and DVCDN commands can only be entered via the console.

Further hardware details on channel or string switching may be found
in the appropriate hardware manuals for the IBM 370/115, 370/125, 3340,
3330, 3350, and 3830 Storage Control Unit Model 2.

When using DASD Switching, in order to facilitate the diagnosis of
hardware failures, the inclusion of Recovery Management Support (RMS) is
required. RMS may be included during DOS/VS system generation by
specifying RMS= YES in the SUPVR macro.

10.26 DOS/VS System Management Guide

I,

Appendix A: System Layout on Disk

IPL

System Volume Label

User Volume Label

System Directory

Figure 11.1 illustrates how DOS/VS is organized on the volume containing
the system residence file, which is called SYSRES. The device itself can be
any IBM DASD device except a 2321 data cell, or a 2311 disk. The
organization of SYSRES is as follows:

This area contains the initial program load (IPL) bootstrap program, which
causes the IPL retrieval program to be read from SYSRES and loaded into
real storage.

The volume label (VOL1 label) contains the address of the volume table of
contents (VTOC) established when the pack was initialized. (The DOS/VS
system utility program Initialize Disk is provided for this purpose). The
VTOC can be located on any cylinder outside of the SYSRES file.

The user volume label area is provided for any additional standard volume
labels (VOL2-VOL8 labels). This area can extend from record 4 through
the end of track O.

This area contains the system (master) directory. Record 1 contains the
starting address of the core image directory and the address of the label
information cylinder. Records 2, 3, and 4 contain the starting addresses of
the relocatable directory, source statement directory, and procedure
directory, respectively. Record 5 contains the IPL retrieval program, which
reads the supervisor from the core image library into real storage.

Appendix A: System Layout on Disk 11.1

I

Starting Disk Address
Component

BB

I PL Bootstrap Record 1 ($$A$I PL1) 00

I PL Bootstrap Record 2 ($$A$I PLA) 00

System Volume Label 00

User Volume Label 00

Record 1 00

System Record 2 00

Directory Record 3 00

Record 4 00

I PL Retrieval Program ($$A$I PL2) 00

Core Image Cataloged phases Directory

Linked Phase 00

Core Image Library 00

Relocatable Directory 00

Relocatable Library 00

Source Statement Directory 00

Source Statement Library 00

Procedure Directory 00

Procedure Library 00

Label Information Cylinder(s) 00

* Allocation Dependent on User Requirements
X=Ending CC of the Preceding Directory
Y=Ending HH of the Preceding Directory
Z=Ending CC of the Preceding Library

Figure 11.1. System Residence Organization

CC HH

00 00

00 00

00 00

00 00

00 01

00 01

00 01

00 01

00 01

00 02

End of CI Directory

X Y+1

End of CI Library

Z+l 00

End of RL Directory

X Y+1

End of RL Library

Z+l 00

End of SS Directory

X Y+1

End of SS Library

Z+l 00

End of P Directory

X Y+1

End of P Library

Z+l 00

Number R=Required of Tracks O=Optional R (Alloc.)

1 R

2 R
1

3 R

4 a
1 R

2 R

3 1 R

4 R

5 R

* R

1 * R

1 * a

1 * a

1 * a

1 * a

1 * a

1 * a

2314/2319:20

1 3330/3333:19 R 3340/3344:24
3350:30

Core Image Directory

This directory consists of two or more tracks, depending on the allocation
specified by the user. The directory is in two parts: the first is the directory
of cataloged phases; the second is the directory of linked phases.

Note: As the directory for linked phases begins at the first unused track of the
core image direciury, ihe iuia; direciory aUocaIion must aiiow for this.

11.2 DOS/VS System Management Guide

Core Image Library

Relocatable Directory

Relocatable Library

Each directory entry describes one phase in the core image library and
contains such information as the phase name, loading address, number of
blocks, type of phase, entry point, starting disk address in the core image
library, and the number of text bytes in the last block. The entries are
sorted in alphameric sequence.

The first entry in the directory is called the library descriptor entry.
This contains such information as the number of directory tracks, library
cylinders, active phases, directory blocks available, and library blocks
available.

I Thereafter, the entries have a length varying from 18 bytes to 34 bytes
(depending on the specifications in the PHASE statement). Entries are
grouped in blocks of 256 bytes, plus an 8-byte key for the highest phase
name in the block. The number of blocks per track for the 2314/2319,

I 3330/3333, 3340 and 3350 is 17, 28, 16, and 36, respectively. As the size
of an entry can vary from 18 to 34 bytes, one block can have a maximum
of 18 entries. The maximum number of entries per track again depends on
the device.

The core image library consists of one or more complete cylinders,
depending on the allocation specified by the user. Each block is 1024
bytes. For the 2314/2319, each track contains six blocks. For the
3333/3330 each track contains eleven blocks. For the 3340, each track

I contains seven blocks .. For the 3350, each track contains fifteen blocks.
The number of phases and the size of each program dictates the number of
cylinders that must be allocated. Each program starts with a new block.

This directory consists of one or more tracks, depending on the allocation
specified by the user. It contains two types of information:

1. System directory information for the relocatable directory and library.
This information occupies the first five entries of the first record in the
relocatable directory.

2. An entry that describes each module (the output of a complete
language translator run) in the relocatable library and contains: the
module name, total number of text-record blocks required to contain
this module, starting disk address of the first text-record of this module,
and change level identification.

The relocatable library consists of one or more complete cylinders,
depending on the allocation specified by the user. The number of modules

I
and the size of each module to be contained in this library dictate the
number of tracks that must be allocated. Each allocated track contains 16
blocks (2314/2319), or 28 blocks (3333/3330), 17 blocks (3340), or 37
blocks (3350), and block has a fixed length of 322 bytes. Each module
starts with a new block but not necessarily a new track.

Appendix A: System Layout on Disk 11.3

Source Statement Directory

Source Statement Library

Procedure Directory

Procedure Library

This directory consists of one or more tracks, depending on the allocation
specified by the user. It contains two types of information:

1. System directory information for the source statement directory and
library. This information occupies the first five entries of the first
record in the source statement directory.

2. An entry that describes each book (a sequence of source language
statements in a compressed card image format, accessed by a single
name) in the source statement library and contains: a sublibrary prefix,
the book name, starting disk address of the first block of this book,
total number of blocks required to contain this book in the source
statement library, and change level information.

The source statement library consists of one or more complete cylinders,
depending on the allocation specified by the user. The number of blocks
and the size of each book to be contained in this library dictates the
number of tracks that must be allocated. Each track contains 27 blocks

I (2314/2319) or 44 blocks (3333/3330) or 26 blocks (3340) or 55 blocks
(3350). Each block has a fixed length of 160 bytes. Each book starts with
a new block but not necessarily on a new track.

This directory consists of one or more tracks depending on the allocation
specified by the user. It contains two types of information:

1. System directory information for the procedure directory and procedure
library. This information occupies the first five entries of the first
record in the procedure library.

2. An entry that describes each procedure (a set of control statements in
card image format) cataloged in the procedure library and contains: the
name of the procedure, the starting disk address of the procedure, the
number of blocks occupied in the procedure library, and a version and
modification level.

The blocksize of the directory is 160 bytes, and the length of each
entry is 16 bytes.

The procedure library consists of one or more complete cylinders,
depending on the allocation specified by the user. Each procedure consists
of one or more consecutive 80-byte blocks, containing control statements
(one card image per block).

Label Information Cylinder(s)

The label information cylinder(s) contains standard, partition standard, and
user label information for background and foreground partitions. This area

11.4 DOS/VS System Management Guide

Volume Table Of Contents

Alternate SYSRES Layout

is allocated 2 cylinders on the 3340 or 1 cylinder on other DASD. Job
control stores label information found in job control statements here. The
label information cylinder(s) is/are the last cylinder on the SYSRES file.

The LSERV program can be executed to print the contents of the label
information cylinders on SYSLST. Secured data files are not listed.
Information on the LSERV program can be found in DOS/VS
Serviceability Aids and Debugging Procedures.

Following the label information cylinder(s), the use of the remaining areas
on the disk pack is left to the user's discretion. However, the volume table
of contents (VTOC) must be contained on the same physical disk pack as
the SYSRES file. (A VTOC is required on every disk pack, and is created
by the Initialize Disk utility.) The VTOC is most frequently the last
cylinder before the alternate track area for SYSRES. For non-SYSRES
packs, the standard location is cylinder 0, track 0, record 4 to the end of
cylinder o. The location and length of the VTOC are determined when the
pack is initialized. (The DOS/VS system utility program, Initialize Disk, is
provided for this purpose.) The DOS/VS system utility program VTOC
Display can be used to obtain a formatted listing of the VTOC. (Refer to
DOS/VS System Utilities.)

The VTOC is a file describing the organization of the disk pack. It
contains the VTOC identifier (format 4 label) that contains the starting and
ending addresses of the VTOC, a format 5 label that is not used by
DOS/VS, and format 1, 2, and 3 labels that identify and describe all files
on the pack. More specific information on label formats is contained in the
DOS/VS DASD Labels.

In Figure 11.1 the relocatable library, the source statement library, and the
procedure library are shown as optional areas of the SYSRES file, because
these libraries are not essential for system operation. If desired, the
relocatable and source statement libraries can be defined as private
libraries; a private library for the procedure library is not supported. A
private core image library can also be defined, but the system core image
library must always be included on the SYSRES file. Planning information
concerning private libraries is contained in the section Planning theLibraries
in Chapter 3: Planning the System.

Appendix A: System Layout on Disk 11.5

Glossary

*

This glossary defines the terms proper to this manual. If you do not find the term you
are looking for, refer to the IBM Data Processing Glossary, GC20-1699.

IBM is grateful to the American National Standards Institute (ANSI) for permission to
reprint its definitions from the American National Standard Vocabulary for Information
Processing (Copyright © 1970 by American National Standards Institute, Incorporated),
which was prepared by Subcommittee X3K5 on Terminology and Glossary of American
National Standards Committee X3. American National Standard Definitions are marked

with an asterisk (*).

access method: A technique for moving data between virtual storage and
input/ output devices.

access method services: A multifunction service program that defines
VSAM files and allocates space for them, converts indexed-sequential files
to key-sequenced files with indexes, modifies file attributes in the catalog,
reorganizes files, facilitates data portability between operating systems,
creates backup copies of files and indexes, helps make inaccessible files
accessible, and lists the records of the files and catalogs.

address: (1) An identification, as represented by a name, label, or number,
for a register, location in storage, or any other data source or destination
such as the location of a station in a communication network. (2) Loosely,
any part of an instruction that specifies the location of an operand for the
instruction.

address translation: The process of changing the address of an item of
data or an instruction from its virtual address to its real storage address.
See also dynamic address translation.

alternate track: One of a number of tracks set aside on a disk pack for use
as alternatives to any defective tracks found elsewhere on the disk pack.

application program: A program written by a user that applies to his own
work.

assembler language: A source language that includes symbolic machine
language statements in which there is a one-to-one correspondence with the
instruction formats and data formats of the computer.

attach: (1) To create a task and present it to the supervisor. (2) A macro
instruction that causes the control program to create a new task and
indicates the entry point in the program to be given control when the new
task becomes active.

auxiliary storage: Data storage other than real storage; for example,
storage on magnetic tape or disk. Synonymous with external storage,
secondary storage .

. blocking: Combining two or more logical records into one block.

blocking factor: The number of logical records combined into one
physical record or block.

book: A group of source statements written in any of the languages
supported by DOS/VS and stored in a source statement library.

Glossary 12.1

*

buffer: An area of storage that is temporarily reserved for use in
performing an input/output operation, into which data is read or from
which data is written. Synonymous with I/O area.

byte: A sequence of eight adjacent binary digits that are operated upon as
a unit and that constitute the smallest addressable unit of the system.

card punch: A device to record information in cards by punching holes in
the cards to represent letters, digits, and special characters.

card reader: A device which senses and translates into machine code the
holes in punched cards.

cardless system: A System/370 Model 115/125 configured without a
card reader or card punch, but with an IBM 3540 Diskette Input/Output
Unit.

catalog: To enter a phase, module, book, or procedure into one of the
system or private libraries.

central processing unit: A unit of a computer that includes the circuits
controlling the interpretation and execution of instructions. Abbreviated
CPU.

channel: (1) * A path along which signals can be sent, for example, data
channel, output channel. (2) A hardware device that connects the CPU and
real storage with the I/O control units.

channel program translation: In a copy of a channel program,
replacement, by software, of virtual addresses with real addresses.

compile: To prepare a machine language program from a computer
program written in a high-level language by making use of the overall logic
structure of the program, or generating more than one machine instruction
for each symbolic statement, or both, as well as performing the function of
an assembler.

compiler: A program that translates high-level language statements into
machine language instructions.

configuration: The group of machines, devices, etc., which make up a data
processing system.

control area: A group of control intervals used as a unit for formatting a
file before adding records to it. Also, in a key-sequenced file, the set of
control intervals covered by an index record; used by VSAM for
distributing free space and for placing a low-level index adjacent to its data.

control interval: A fixed-length area of auxiliary storage space in which
VSAM stores records and distributes free space, also, in a key-sequenced
file, the set of records pointed to by an entry in the index record. It is the
unit of information transmitted to or from auxiliary storage by VSAM,
independent of blocksize.

control program: A program that is designed to schedule and supervise
the performance of data processing work by a computing system.

control registers: A set of registers used for operating system control of
relocation, priority interruption, program event recording, error recovery,
and masking operations.

12.2 DOS!VS System Management Guide

control section: That part of a program specified by the programmer to
be a relocatable unit.

control unit: A device that controls the reading, writing, or display of data
at one or more input/output devices.

core image library: A library of phases that have been produced as
output from link-editing. The phases in the core image library are in a
format that is executable either directly or after processing by the relocating
loader in the supervisor.

CPU busy time: The amount of time devoted by the central processing
unit to the execution of instructions.

data file: A collection of related data records organized in a specific
manner. For example, a payroll file (one record for each employee,
showing his rate of pay, deductions, etc., or an inventory item, showing the
cost, selling price, number in stock, etc.). See also file.

data integrity: See integrity.

data management: A major function of DOS/VS that involves
organizing, storing, locating, retrieving, and maintaining data.

data security: See security.

deblocking: The action of making the first and each subsequent logical
record of a block available for processing one record at a time.

default value: The choice among exclusive alternatives made by the
system when no explicit choice is specified by the user.

deletion of an I/O Device: Removal of the I/O unit from the supervisor
configuration tables.

diagnostic routine: A program that facilitates computer maintenance by
detection and isolation of malfunctions or mistakes.

dial-up terminal: A terminal on a switched teleprocessing line.

direct access: (1) Retrieval or storage of data by a reference to its
location on a volume, other than relative to the previously retrieved or
stored data. (2) * Pertaining to the process of obtaining data from, or
placing data into, storage where the time required for such access is
independent of the location of the data most recently obtained or placed in
storage. (3) * Pertaining to a storage device in which the access time is
effectively independent of the location of the data. Synonymous with
random access.

direct organization: Direct file organization implies that for purposes of
storage and retrieval there is a direct relationship between the contents of
the records and their addresses on disk storage.

directory: An index that is used by the system control and service
programs to locate one or more sequential blocks of program information
that are stored on direct access storage.

diskette: A flexible magnetic-oxide coated disk suitable for data storage
and retrieval. Data may be stored and retrieved via such devices as the
IBM 3740 Data Entry Unit and the IBM 3540 Diskette Input/Output Unit.
Diskettes are also used to contain microprograms for some central
processing UlutS.

Glossary 12.3

*

*

*

disk pack: A direct access storage volume containing magnetic disks on
which data is stored. Disk packs are mounted on a disk storage drive, such
as the mM 3330 Disk Storage Drive.

distributed free space: Space reserved within the control intervals of a
key-sequenced file for inserting new records into the file in key sequence;
also, whole control intervals reserved in a control area for the same
purpose.

dump: (1) To copy the contents of all or part of virtual storage. (2) The
data reSUlting from the process as in (1).

dynamic address translation (OAT): (1) The change of a virtual storage
address to an address in real storage during execution of an instruction. (2)
A hardware function that performs the translation.

entry sequence: The order in which data records are physically arranged
in auxiliary storage, without respect to their contents (contrast with key
sequence).

entry-sequenced file: A VSAM file whose records are loaded without
respect to their contents, and whose relative byte addresses cannot change.
Records are retrieved and stored by addressed access, and new records are
added to the end of the file.

error message: The communication that an error has been detected.

error recovery procedures: Procedures designed to help isolate, and,
when possible, to recover from errors in equipment. The procedures are
often used in conjunction with programs that record the statistics of
machine malfunctions.

extent: A continuous space on a direct access storage device, occupied by
or reserved for a particular file.

file: A collection of related records treated as a unit. For example, one line
of an invoice may form an item, a complete invoice may form a record, the
complete set of such records may form a file, the collection of inventory
control files may form a library, and the libraries used by an organization
are known as its data bank.

fixed page: A page in real storage that is not to be paged out.

hard copy: A printed copy of machine output in a visually readable form,
for example, printed reports, listings, documents, and summaries.

hard wait state: In general, a wait state is the condition of a CPU when
all operations are suspended. System recovery from a hard wait state
requires that the user performs a new IPL (initial program load) procedure.

hardware: Physical equipment, as opposed to the computer program or
method of use, for example, mechanical, magnetic, electrical, or electronic
devices. Contrast with software.

idle time: That part of available time during which the hardware is not
being used.

12.4 DOS/VS System Management Guide

*

*

*

index: (1) * An ordered reference list of the contents of a file or
document, together with keys or reference notations for identification or
location of those contents. (2) A table used to locate the records of an
indexed sequential file.

indexed-sequential organization: The records of an indexed sequential
file are arranged in logical sequence by key. Indexes to these keys permit
direct access to individual records. All or part of the file can be processed
sequentially.

Initial Program Load (IPL): The intialization procedure that causes
DOS/VS to commence operation.

integrity: Preservation of data or programs for their intended purpose.

interface: A shared boundary. An interface might be a hardware
component to link two devices or it might be a portion of storage or
registers accessed by two or more computer programs.

I/O: An abbreviation for input/output.

ISAM interface program: A set of routines that allow a processing
program coded to use ISAM to gain access to a VSAM key-sequenced file
with an index.

job: (1) * A specified group of tasks prescribed as a unit of work for a
computer. By extension, a job usually includes all necessary computer
programs, linkages, files, and instructions to the operating system. (2) A
collection of related problem programs, identified in the input stream by a
JOB statement followed by one or more EXEC statements.

job accounting interface: A function that accumulates, for each job step,
accounting information that can be used for charging usage of the system,
planning new applications, and supervising system operation more efficiently.

job control: A program that is called into a virtual partition to prepare each
job or job step to be run. Some of its functions are to assign I/O devices to
certain symbolic names, set switches for program use, log (or print) job
control statements, and fetch the first program phase of each job step.

job (JOB) statement: The job control statement that identifies the
beginning of a job. It contains the name of the job.

job step: The execution of a single processing program.

K: 1024.

key: One or more characters associated within an item of data that are
used to identify it or control its use.

key sequence: The collating sequence of data records, determined by the
value of the key field in each of the data records. May be the same as, or
different from, the entry sequence of the records.

key-sequenced file: A file whose records are loaded in key sequence and
controlled by an index. Records are retrieved and stored by keyed access or
by addressed access, and new records are inserted in the file in key
sequence by means of distributed free space. Relative byte addresses of
records can change.

label: identification record for a tape, diskette, or disk file.

Glossary 12.5

*

*

label information cylinder(s): Under DOS/VS, the last one or two
cylinder(s) of the system residence file that stores label information read
from job control statements or commands. Synonymous with label
cylinder(s).

language translator: A general term for any assembler, compiler, or other
routine that accepts statements in one language and procedures equivalent
statements in another language.

leased facility: A circuit of the public telephone network made available
for the exclusive use of one subscriber.

librarian: The set of programs that maintains, services, and organizes the
system and private libraries.

library: A collection of files or programs, each element of which has a
unique name, that are related by some common characteristics. For
example, all phases in the core image library have been processed by the
linkage editor.

linkage editor: A processing program that prepares the output of language
translators for execution. It combines separately produced object modules;
resolves symbolic cross references among them, and generates overlay
structure on request; and produces executable code (a phase) that is ready
to be fetched or loaded into virtual storage.

load: (1) * In programming, to enter instructions or data into storage or
working registers. (2) In DOS/VS, to bring a program phase from a core
image library into virtual storage for execution.

main page pool: The set of all page frames in real storage not assigned to
the supervisor or one of the real partitions.

message: See error message, operator message.

microprogramming: A method of working of the CPU in which each
complete instruction starts the execution of a sequence of instructions,
called microinstructions, which are generally at a more elementary level.

multiprogramming system: A system that controls more than one
program simultaneously by interleaving their execution.

multitasking: The concurrent execution of one main task and one or more
subtasks in the same partition.

object code: Output from a compiler or assembler which is suitable for
processing by the linkage editor to produce executable machine code.

object module: A module that is the output of an assembler or compiler
and is input to a linkage editor.

object program: A fully compiled or assembled program. Contrast with
source program.

online: (1) Pertaining to equipment or devices under control of the central
processing unit. (2) Pertaining to a user's ability to interact with a computer.

operand: (1) * That which is operated upon. An operand is usually
identified by an address part of an instruction. (2) Information entered with
a command name to define the data on which a command processor
operates and to control the execution of the command processor.

12.6 DOS/VS System Management Guide

*

*

operator command: A statement to the control program, issued via a
console device, which causes the control program to provide requested
information, alter normal operations, initiate new operations, or terminate
existing operations.

operator message: A message from the operating system or a problem
program directing the operator to perform a specific function, such as
mounting a tape reel, or informing him of specific conditions within the
system, such as an error condition.

overflow: (1) That portion of the result of an operation that exceeds the
capacity of the intended unit of storage. (2) Pertaining to the generation of
overflow as in (1).

overlay: n. (1) One of the segments, which consists of one or more
phases, of a program that is so structured that not all of the segments need
be in virtual storage at anyone time. v. (2) The process of replacing a
previously retrieved program segment in virtual storage by another segment.

page: (1) In DOS/VS, a 2K block of instructions, data or both. (2) To
transfer instructions, data, or both between real storage and the page data set.

page data set: An extent in auxiliary storage, in which pages are stored.

page fault: A program check interruption that occurs when a page that is
marked not in real storage is referred to by an active page. Synonymous
with page translation exception.

page fixing: Marking a page as nonpageable so that it remains in real
storage.

page frame: A 2K block of real storage that can contain a page.

page in: The process of transferring a page from the page data set to real
storage.

page out: The process of transferring a page from real storage to the page
data set.

page pool: The set of all page frames that may contain pages of programs
in virtual mode.

paging: The process of transferring pages between real storage and the
page data set.

parameter: A variable that is given a constant value for a specific purpose
or process.

peripheral equipment: A term used to refer to card devices, magnetic
tape and disk devices, diskettes, printers, and other equipment bearing a
similar relation to the CPU.

phase: The smallest complete unit that can be referred to in the core
image library.

POWER: Priority Output Writers, Execution Processors and Input
Readers. _.

printer: A device that expresses coded characters as hard copy.

priority: A rank assigned to a partition that determines its precedence in
receiving CPU time.

private library: A user-owned library that is separate and distinct from the
system library.

Glossary 12.7

private second level directory: The private second level directory is a
table located in the supervisor containing the highest phase names found on
the corresponding directory tracks of the private core image library.

problem determination aid: A program that traces a specified event
when it occurs during the operation of a program. Abbreviated PDAID.

problem program: Any program that is executed when the central
processing unit is in the problem state; that is, any program that does not
contain privileged instructions. This includes IBM-distributed programs, such
as language translators and service programs, as well as programs written by
a user.

processing program: (1) A general term for any program that is not a
control program. (2) Synonymous with problem program.

processor storage: The general purpose storage of a computer. Processor
storage can be accessed directly by the operating registers. Synonymous
with real storage.

queue: (1) A waiting line or list formed by items in a system waiting for
service; for example, tasks to be performed or messages to be transmitted
in message switching system. (2) To arrange in, or form, a queue.

random processing: The treatment of data without respect to its location
in auxiliary storage, and in an arbitrary sequence governed by the input
against which it is to be processed.

real address; The address of a location in real storage.

real address area: In DOS/VS, the area of virtual storage where virtual
addresses are equal to real addresses.

real mode: In DOS/VS, the mode of a program that cannot be paged.

real partition; In DOS/VS, a division of the real address area of virtual
storage that may be allocated for programs that are not to be paged, or
virtual programs that contain pages that are to be fixed.

real storage: The storage of a System/370 computing system from which
the central processing unit can directly obtain instructions and data, and to
which it can directly return results. Synonymous with processor storage.

reenterable: The attribute of a load module that allows the same copy of
the load module to be used concurrently by two or more tasks.

relocatable: The attribute of a set of code whose address constants can be
modified to compensate for a change in origin.

relocatable library: A library of relocatable object modules and IOCS
modules required by various compilers. It allows the user to keep frequently
used modules available for combination with other modules without
recompilation.

restore: To return a data file created previously by a copy operation from
cards, disk or magnetic tape to disk storage.

'

rotational position sensing (RPS): A standard or optional feature of
most IBM disk storage devices. It permits these devices to disconnect from
a block multiplexer channel (or its equivalent on Model 3115/3125 CPUs)

12.8 DOS/VS System Management Guide

*

*

during rotational positioning operations, thereby allowing the channel to
service other devices.

routine: An ordered set of instructions that may have some general or
frequent use.

secondary storage: Same as auxiliary storage.

second level directory: A table located in the supervisor containing the
highest phase names found on the corresponding directory tracks of the
system core image library.

security: Prevention of access to or use of data or programs without
authorization.

sequential organization: Records of a sequential file are arranged in the
order in which they will be processed.

service program: A program that assists in the use of a computing
system, without contributing directly to the control of the system or the
production of results.

shared virtual area: An area located in the highest addresses of virtual
storage. It can contain a system directory list of highly used phases, resident
programs that can be shared between partitions, and an area for system
GETVIS support.

software: A set of programs, concerned with the operation of the
hardware in a data processing system.

source: The statements written by the programmer in any programming
language with the exception of actual machine language.

source program: A computer program written in a source language.
Contrast with object program.

source statement library: A collection of books (such as macro
definitions) cataloged in the system by the librarian program.

spanned records: Records of varying length that may be longer than the
currently used blocksize, and which may therefore be written in one or
more continuous blocks. A spanned record may occupy more than 1 track
of a disk device.

stand-alone dump: A program that displays the contents of the registers
and part of the real address area and that runs independently and is not
controlled by DOS/VS.

standard label: A fixed-format identification record for a tape, diskette, or
disk file. Standard labels can be written and processed by DOS/VS.

storage protection: An arrangement for preventing access to storage.

supervisor: A component of the control program. It consists of routines to
control the functions of program loading, machine interruptions, external
interruptions, operator communications and physical IOCS requests and
interruptions. The supervisor alone operates in the privileged (supervisor)
state. It coexists in real storage with problem programs.

switched line: A communication line in which the connection between the
computer and a remote station is established by dialing. Synonymous with
dial line.

Glossary 12.9

system directory list: A list containing directory entries of highly used
phases and of all phases resident in the shared virtual area. This list is
contained in the shared virtual area.

system residence device: The direct access device on which the system
residence file is located.

system residence volume: The volume on which the basic system and
all related supervisor code is located.

task: A unit of work for the central processing unit from the standpoint of
the control program.

teleprocessing: The processing of data that is received from or sent to
remote locations by way of telecommunication lines.

terminal: (1) * A point in a system or communication network at which
data can either enter or leave. (2) Any device capable of sending and
receiving information over a communication channel.

throughput: The total volume of work performed by a computing system
over a given period of time.

track: The portion of a moving storage medium, such as a drum, tape,
diskette, or disk, that is accessible to a given reading head position.

transient area: An area of real storage used for temporary storage of
transient routines.

UCS: Universal character set.

unit record: A card containing one complete record; a punched card.

universal character set: A printer feature that permits the use of a
variety of charac~er arrays. Abbreviated ues.
unrecoverable error: A hardware error which cannot be recovered from
by the normal retry procedures.

user label: An identification record for a tape or disk file; the format and
contents are defined by the user, who must also write the necessary
processing routines.

utility program: A problem program designed to perform a routine task,
such as transcribing data from one storage device to another.

virtual address: An address that refers to virtual storage and must,
therefore, be translated into a real storage address when it is used.

virtual address area: In DOS/VS, the area of virtual storage whose
addresses are greater than the highest address of the real address area.

virtual mode: In DOS/VS, the mode of execution of a program which
may be paged.

virtual partition: In DOS/VS, a division of the virtual address area of
virtual storage that is allocated for programs that may be paged.

virtual storage: Addressable space that appears to the user as real storage,
from which instructions and data are mapped into real storage locations.
Thp c1'7P nf ulrtll'.ll dnr'.l(Tp lC ll1Y1ltprl hu thp '.lrlrlrpccln(T c,.hp1YIP nf thp

.&. -- ..., -- "... ".LL -, ba.t.J .a..a..&. _~ '"' J - -~~ ... ---......... b _.&..&_ - _... -

12.10 DOS/VS System Management Guide

computing system and by the capacity of the page data set, rather than by
the actual number of real storage locations.

virtual storage access method (VSAM): VSAM is an access method
for direct or sequential processing of fixed and variable length records on
direct access devices. The records in a VSAM file can be organized either
in logical sequence by a key field (key sequence) or in the physical
sequence in which they are written on the file (entry-sequence). A key
sequenced file has an index, an entry-sequenced file does not.

virtual telecommunications access method (VTAM): VTAM is an
access method that supports communication between application programs
and terminals in a telecommunications network.

volume: (1) That portion of a single unit of storage media which is
accessible to a single read/write mechanism, for example, a drum, a
diskette, a disk pack, or part of a disk storage module. (2) A recording
medium that is mounted and dismounted as a unit, for example, a reel of
magnetic tape, a disk pack, a diskette, or a data cell.

volume table of contents: A table on a direct access volume or diskette
that describes each file on the volume. Abbreviated VTOC.

VSAM access method services: A multifunction utility program that
defines VSAM files and allocates space for them, converts indexed
sequential files to key-sequenced files with indexes, facilitates data
portability between operating systems, creates backup copies of files and
indexes, helps to make inaccessible files accessible, and lists file and catalog
entries.

VSAM catalog: A key-sequenced file, with an index, containing extensive
file and volume information that VSAM requires to locate files, to allocate
and deallocate storage space, to verify the authorization of a program or
operator to gain access to a file, and to accumulate usage statistics for files.

VTOC: See volume table of contents.

work file: A file on an auxiliary storage medium reserved for intermediate
results during execution of the program.

working set: The set of pages of a user's virtual-mode program that must
be in real storage in order to avoid excessive paging.

Glossary 12.11

Index

$ phases 7.34
$$A$CDLO phase, names CDL
$$A$SUPl, as default supervisor
/ + statement 7.11
/ & statement 5.2, 5.4

A

4.2,4.5
4.2

abnormal termination, user exit routine
support 3.22, 10.6

access method services 3.12, 5.34, 5.37
ACANCEL option 5.33
ACTION statement 6.12,6.22

CANCEL option 6.22, 6.17
CLEAR option 6.22, 6.17
MAP option 6.22, 6.17
REL option 6.12

ADD command 4.3
ADD statement 7.22
ALLOC macro 3.7
ALLOC statement

for CORGZ program 7.24
for library reallocation 7.17

ALLOCR macro 3.7,3.8
ALTER MEMORY function and IPL 4.5,4.6
American National Standards Institute

(ANSI) 3.17
ASCII, supervisor generation considerations 3.17
assemble and execute 6.7
assembler copy library 7.9
assembler language program 9.3
assembler macro library 7.10,7.29
ASSGN macro 3.36, 5.11
ASSGN statement/command 5.11,5.12,5.24
asynchronous processing (see also

multitasking) 3.13
AUTO LINK feature 6.15

suppressing 6.15

B
backup and restore system utility 7.24
BATCH command 5.34
BKEND statement 7.10
BLKMPX operand in FOPT macro 3.29
block multiplexer channel support 3.29
books, naming conventions 7.9
BTAM 3.16

supervisor generation considerations 3.15
BTMOD 3.16
buffers, CCW translation 3.29
BUFSIZE operand 3.29
building SDL 4.7

c
CANCEL (linkage editor option) 6.22
CAT command 4.4
CATAL option 5.30, 6.5, 6.21
cataloged procedures 5.45

modifying 5.46
partition-related 5.52
retrieving 5.46
SYSIPT data 5.51
use by operator 5.53

cataloging to core image library 6.1, 6.5
permanently 6.1
temporarily 6.1

cataloging 7.8
a CDL 4.5
a supervisor 6.5
naming conventions for books 7.9
naming conventions for modules 7.9
naming conventions for phases 6.10,7.2
naming conventions for procedures 7.11
to core image library 6.5
to procedure library 7.11
to relocatable library 7.8
to source statement library 7.9

CA T ALP statement 7.11
CAT ALR statement 7.8
CAT ALS statement 7.9
CCW translation buffers 3.29
CDL (communication device list) 4.5
central processing unit 3.34
CHAN 3.33
change levels 7.13
channel programs 3.28
channel queue(CHANQ) 3.30
channel switching 10.25
checkpoint 5.36, 10.16

example of use 10.17
restarting from 5.36, 10.18

CHKPT macro
use of 10.17

choosing the libraries for an installation 3.40
CLEAR 6.22, 6.17
clearing unused portion of core image

library 6.22, 6.17
CLOSE command 5.42,5.44
COBOL sublibrary 7.10
coding techniques 9.1
COMMON 6.24
communication device list 4.5

correcting errors in 4.6
description of 4.5
sample job stream 4.6
terminal-oriented installations 4.2, 4.5

Index 13.1

condensing 7.14
restriction for POWER/VS users 7.17
when performed 7.17

CONDL statement 7.16
CONDS statement 7.14
CONFG macro 3.3

MODEL operand 3.34
console buffering 3.20
control sections (CSECT) 6.18, 7.20
controlling jobs 5.1
controlling printed output 5.20
copy (A) sublibrary 7.29
COPY statement 7.24, 7.31

NEW operand 7.26
copy file and maintain object module utility 7.20
core image library 11.3, 6.1

cataloging to 6.23
clearing the unused portion of 6.22
contents of 3.2, 3.38
directory 11.2
renaming phases in 7.20

CORGZ program 7.23,7.31
auto generation of input 7.25

creating private core image libraries 7.32
creating private libraries 7.31
creating the shared virtual area 4.7
cross-partition event control 1.11, 3.13
CSECT 6.16, 7.20
CSERV program 7.27

D
DASD file protection 3.24
DASD files 5.16
DASD switching 10.24

channel switching 10.25
string switching 10.25

DAT facility 1.6, 3.29
DATE statement 5.5
DECK option 5.33
de-editing assembler macros 7.30
defining partition priorities 3.9
defining the number of partitions 3.7, 2.2
defining the page data set 3.10
defining the size of partitions 3.7, 2.2
defining the size of the real address area 3.4, 2.2
defining the size of the shared virtual area 3.4
defining the size of the virtual address area 3.4,

2.2
defining the size of virtual storage 3.4, 2.2
defining the System/370

configuration 3.34
CPU 3.34
I/O devices 3.35

DEL command 4.3
DEL statement 7.22

13.2 DOS/VS System Management Guide

deleting 7.13
example 7.14
relation to condensing 7.14

designing programs for virtual-mode
execution 9.1

determing the location of the libraries 3.42
device assignments 5.11

in a multiprogramming environment 5.12
permanent 5.11
required for an assembler 5.12
standard 5.11
temporary 5.11

device considerations 1.4
directories, displaying the contents of 7.27
directory entry 7.2
directory 7.2

core image library 11.2
entries in 7.2
procedure library 11.4
relocatable library 11.3
second level 3.14,7.2
source statement library 11.4
system 7.2, 11.1

disk and diskette options 3.23
block multiplexer channel support 3.29
DASD file protection 3.24
rotational position sensing 3.26
seek separation 3.25
system files on disk 3.23
track hold facility 3.24
diskette as IPL device 4.2

diskette files 5.12
system files on 5.42

displaying the contents of the libraries 7.28
displaying the directories 7.27
distribution medium 3.2
DLAB 5.24
DLBL statement 5.13, 5.26
DPD command 4.4
DPD macro 3.10
DSERV program 7.27
DSPCH statement 7.28
DSPL Y statement 7.28
DSPL YS statement 7.28
dump facilities 10.24

DUMP macro 10.24
JDUMP macro 10.24
PDUMP macro 10.24

DUMP option 5.33
DUMP macro

use of 10.24
DVCDN command 5.26
DVCGEN macro 3.3, 3.35
""rr-.YTn ~~ __ ~_,.1 c I')t::.
.lJ" ,""U.I. ,",v.u.u.ua.uu .J.~V

dynamic address translation (DAT) 1.6, 3.29

E
ECPREAL 3.30
edited macros, preparing for update 7.29
emulators 3.35
END card 6.3
end of supervisor 3.37
end-of-day (EOD) record 4.10
end-of-job statement 5.2, 5.4
end-of-procedure statement 7.11
ENTRY statement 6.23
ER item 6.15
EREP 3.32,4.8
error queue 3.31
error volume analysis 3.33
ESD card 6.3
ESERV program 7.30
EVA (error volume analysis) 3.33
event control, cross-partition 1.11, 3.13
EXEC statement 5.2, 5.37

PROC operand 5.46
REAL operand 5.37
SIZE operand 5.37

executing a program 5.26
preparation for 5.30

executing cataloged programs 5.30
exits 3.20, 10.5

abnormal termination 3.22, 10.6
interval timer 3.21, 10.3
IPL 4.10, 10.10
job control 5.39, 10.12
operator communications 3.22
page fault handling overlap 3.23
program check 3.21, 10.8
task timer 3.22

EXTENT statement 5.13,5.26
external references, resolution of 6.15

F
FCB (see forms control buffer)
FCEPGOUT macro 3.11,9.6
FETCH macro

use of 6.20
file information 5.6, 5.13
fixing pages 1.9, 3.10, 9.4
FOPT macro 3.3

AB operand 3.20, 3.22
BLKMPX operand 3.29
CBF operand 3.20
DASDFP operand 3.24
DOC operand 3.34,3.35
ECPREAL operand 3.30
EVA operand 3.33
FASTTR operand 3.29

IDRA operand 3.15
IT operand 3.20, 3.21
JA operand 3.18
JALIOCS operand 3.18
OC operand 3.20, 3.22
OLTEP operand 3.33
PC operand 3.20, 3.21
PCIL operand 3.14
PD operand 3.34
PFIX operand 3.10
PRTY operand 3.9
RELLDR operand 3.12
RETAIN operand 3.34
SKSEP operand 3.25,3.26
SLD operand 3.14,3.15
SYSFIL operand 3.14, 3.23
TEB operand 3.33
TEBVoperand 3.33
TOD operand 3.18
TRKHLD operand 3.24
TTIME operand 3.20
ZONE operand 3.19

forms control buffer (FCB) 4.5
FORTRAN 9.2

G
GENCATALS statement 7.30
GENEND statement 7.30
GENL macro 6.20
GETIME macro

support for 3.19
use of 10.3

GETVIS area 3.6,5.34,5.35
GETVIS macro 5.37, 5.39
glossary 12.1

H
hard copy file 4.9

I
110 devices, supervisor generation

considerations 3.35
IJIPL file 4.2
INCLUDE statement 6.14, 6.23
independent directory read-in area 3.15
initial program load (IPL) 4.1

ADD command 4.3
adding devices 4.3
assigning the VSAM catalog 4.4
automatic functions of 4.4
bootstrap records 11.1
CAT command 4.4
communication device 4.2
communication device list (CDL) 4.5

Index 13.3

DEL command 4.3
deleting devices 4.3
DPD command 4.4
exit after 10.10
page data set handling 4.4
SET command 4.4
user exit 10.10

initialize disk utility 11.1, 11.5
intedanguage communications 10.1
interrupts during IPL 4.5, 4.1
interval timer 3.19

example of use 10.4
supervisor generation considerations 3.19
user exit routine support 3.21, 10.5

I/O options 3.29
CCW translation buffers 3.29
channel queue 3.30
console buffering 3.20
independent directory read-in area 3.15
RPS 3.26
seek separation 3.25, 3.26

IOTAB macro 3.3,3.35
CHANQ operand 3.30

IPL (see also initial program load) 4.1
ISAM 3.29
ISAM interface program 5.37

J
JDUMP macro

use of 10.24
job 5.1
job accounting 3.17,10.18

example 10.22
register usage 10.21
supervisor generation considerations 3.18
table 10.20

job control 5.1
job control exit in the SVA 5.39, 10.13
job name 5.4
JOB statement 5.2, 5.4
job step 5.2
job stream 5.2, 5.3

L
label information 5.15, 5.17

cylinder 5.5, 5.21, 11.4
editing 5.21
for DA files 5.18
for diskette files 5.15
for magnetic tape files 5.19
for sequentially-organized disk files 5.18
for non-sequential disk files 5.18
PARSTD 5.22, 7.31
STDLABEL 5.22, 7.31

13.4 DOS/VS System Management Guide

storing 5.21
USRLABEL 5.21,7.31

label save area 6.16
labels, reserving storage for 6.16
language translator 6.2
LBLTYP statement 5.16,5.19, 6.16, 6.22
LFCB command 5.20, 5.26
librarian programs 7.6

organize (CORGZ) 7.23
CSERV 7.28,7.29
DSERV 7.28
ESERV 7.30
maintenance (MAINT) 7.7
names of 7.2
processing requirements 7.6
PSERV 7.28
requirements 7.6
RSERV 7.28
service functions 7.28
SSERV 7.28
summary of functions 7.6

libraries
allocation maximums 7.18
changing the size of 7.18
creating private 7.31
displaying the contents of 7.28
eliminating 7.19
how accessed by the system 7.1
planning the 3.37
punching the contents of 7.28
search sequence 7.34
transferring elements between 7.25
using the 7.1
using private 7.34

library directories 7.2
library options 3.14

private core image libraries 3.14
procedure library (extended support) 3.14

LINK option 5.30,6.6,6.21
link-edit and execute 6.6
link-editing 6.1
linkage editor control statements 6.9

ACTION 6.22
ENTRY 6.23
INCLUDE 6.23
PHASE 6.22

linkage editor examples 6.23
cataloging to core image library 6.23
catalog to private core image library 6.25
compile and execute 6.29
link-edit and execute 6.27

linkage editor 6.1
applications 6.5
examples 6.23
processing requirements 6.8

storage map 6.17
symbolic units required 6.8

linking programs 6.1
LIOCS label processing 10.19
LISTIO statement/command 5.25
LOAD macro

use of 6.20
loading the FCB 5.20
loading the UCB 5.20

local directory list 3.15
locality of reference 9.1
logical units 5.6, 5.9
LSERV program 11.5
LUB 5.10
LUCB command 5.20, 5.26

M
MACRO statement 7.10
magnetic tape files 5.19
main page pool 1.10, 3.9
main task 1.11
MAP 6.17
MCH 3.32
Memorandum to users 3.46
MERGE statement 7.25,7.31
merging of libraries

CORGZ 7.25
MICR stacker select routines 5.38
minimum real storage 9.1
mode of execution 1.8

determining the 9.6
real 1.8, 5.38
virtual 1. 8, 5.3 8

Models 115 and 125
hard copy file of video display console 4.9
supervisor generation considerations 3.34

modules, naming conventions 7.9
MTC statement/command 5.19,5.26
multiple-partition options 3.12
cross partition event control 3.13

multitasking 3.13
POWER/VS 3.13
relocating loader 3.12
wait multiple 3.14

multiphase program names 7.3
multiprogramming 1.1, 1.10
multitasking

concepts of 1.10
supervisor generation considerations 3.13

N
naming conventions

for phases 6.10,7.2, 7.3
for books 7.4, 7.9

for modules 7.4, 7.9
procedures 7.11

NEW operand 7.26
NEWVOL statement 7.31,7.32
NOAUTO 6.15,6.16
NOMAP 6.17
nonrelocatable phases

recataloging 7.29

: ~s parameter

object module 6.3
updating of 7.20

OBJMAINT 7.20
OLTEP 3.33,5.38

6.4

3.7

operator communications exit 3.22
operator console, specifying 4.2
OPTION statement 5.21,5.28,5.39

CATAL option 6.21
LINK option 6.21

OVEND statement 5.48
overlay structure 6.18

control sections 6.18

p

relating control sections to phases
use of FETCH and LOAD macros

page 1.6
page boundaries 9.4
page data set 1.6

defining the 3.10
formatting of 4.4
label information for 4.4
location of 4.4
opening of 4.4

page fault 1.6
reducing occurrence of 9.1
user exit routine support 3.23

6.18
6.20

page fault handling overlap (PHO) 3.20, 3.23
page fixing 3.10, 9.4
page frame 1.6
page pool 1.6, 1.10, 3.9
PAGEIN macro 3.11,9.6
PAGEIN operand of SUPVR macro 3.11
PARSTD 5.22
partitions 1.2

differences between 1.2
number of 3.7
priorities of 1.3, 3.9
real 1.8
size of 3.7
size of real
size of virtual

3.8
3.7

utilization examples .7.3

Index 13.5

virtual 1.8
partition-independent names

procedures 5.52
PAUSE statement/command 5.5,5.44
PBDY parameter in PHASE statement 6.11
PCIL operand 3.14
PDAIDS 3.32, 3.34
PDUMP macro

use of 10.24
PFIX macro

supervisor generation considerations 3.10
PHASE statement 6.22
phases 6.4

defining load addresses for 6.10
link-editing to execute in a real partition 6.13
link-editing to execute in a virtual

partition 6.12
link-editing to execute in any partition 6.11
naming conventions 6.10, 7.2
non-relocatable 6.4
reenterable 9.7
relocatable 6.4, 6.11, 9.7
self-relocating 6.4, 6.14
updating of 7.20

PHO 3.20, 3.23
PIOCS macro 3.3,3.29,3.35
PL/I 9.3
planning the libraries 3.37
planning the size and contents of the

libraries 3.37
planning the system 3.1
POWER/VS 3.13
private core image libraries 3.39, 7.32

creating 7.31,7.32
organization of 7.32
support for 3.14

private libraries 3.39, 3.41
assignments in MPS system 7.35
creating 7.31
creating private core image 7.32
filenames used for creating 7.31
search sequence 7.34
symbolic unit names for creating 7.31
using 7.33

problem determination aids 3.32, 3.34
procedure library 3.39, 3.40

cataloging to 7.11
contents of 3.2, 3.39
directory 11.4
extended support for 3.14
modifying procedures in 5.46
partition-independent 5.52
POWER/VS considerations 7.12
renaming procedures in 7.19
retrieving procedures from 5.46

13.6 DOS/VS System Management Guide

processing requirements, librarian 7.6
program check, user exit routine support 3.21
program execution 5~26

program phases 6.4
nonrelocatable 6.4
reenterable 9.7
relocatable 6.4, 9.7
self-relocating 6.4

program
stages of development 6.1, 6.2
design 9.1
structure of 6.1

programmer logical units 5.10
maximum number of 5.10

PRTY command 3.9
PRTY parameter 3.9
PSERV program 7.27,7.28
PUNCH statement 7.28
punching the contents of the libraries 7.28

Q
QT AM, supervisor generation

considerations 3.15, 3.16

R
RAS transients 4.5
RAS 3.32

On-Line Test Executive Program
(OLTEP) 3.32,3.33

Problem Determination Aids (PDAIDS) 3.34
Recovery Management Support (RMS) 3.32

RDE data entry 3.33,4.10
real address area 1.5

defining the size of 3.4
real mode 1.8
real mode execution 5.37

programs requiring 5.38
REAL operand 5.38
real partitions 1.8

priority of 3.9
size of 3~8

real storage 1.5
reallocating 7.17 _
record on demand (ROD) command 4.8, 4.10
recorder file (see system recorder file)
recovery management support (RMS) 3.32
recovery management support recorder

(RMSR) 3.32, 4.8
RDE and 3.33
TEBV and 3.33
EVA and 3.33

reenterable phases 9.7
reliability data extractor (RDE) 4.10

support for 3.33

relocatable library 3.38, 3.40
cataloging to 7.8
contents of 3.2, 3.38
directory 11.3
renaming modules in 7.19

relocatable phases 6.4,6.11,9.7
recataloging 7.8,7.21

relocating loader 3.12, 5.34
librarian processing and 7.6
supervisor generation considerations 3.12
use of 6.11

RELPAG macro 3.11,9.6
renaming library elements 7.19
REP card 6.3
REP statement

linkage editor
OBJMAINT

7.20,7.22
7.21

RESET statement/command
REST ART function and IPL
restarting from a checkpoint
RETAIN 3.34
RLD card 6.3
RMS 3.32
RMSR 3.32, 4.8
ROD command 4.8, 4.10

5.25
4.6
5.36, 10.18

rotational position sensing (RPS) 3.26
reserving storage for 5.34
RPS=SV A parameter 3.27
supervisor support for 3.6

RSERV program 7.27
RSIZE operand 3.4
RSTRT statement 5.36, 5.39
RUNMODE macro 9.6

S
sample programs 7.10
sample supervisors 3.1
SCIL (see system core image library)
SDAIDs 3.32
SDL (system directory list) 3.4, 3.6, 4.7
second-level directory 3.14,7.2
seek separation 3.25
self-relocating programs 5.34, 6.14
SEND macro 3.37

I sequential DASD files
support for 3330-11/3350 3.28

SEREP 3.32
service functions of librarian programs 7.27
SET command 4.4
SETIME macro, use of 10.4
SETPFA macro 3.23
SET SDL command 4.7
SET SVA command 4.7
shared virtual area 1. 8, 3.4

coding for 9.7
creating 4.7
link-editing for 6.12

RPS in 3.6
VSAM in 3.6

SHAREOPTION 4 3.25
SIZE operand 5.37
SLD operand in FOPT macro 3.15
source module 6.2
source statement library 3.2, 3.38, 3.40

assembler macro (E) sublibrary 7.29
cataloging to 7.9
contents of . 3.2, 3.38
copy (A) sublibrary 7.29
directory 11.4
renaming books in 7.19
sample supervisors 3.1
System history model macros

(Y sublibrary) 3.2
SSERV program 7.27
standard assignments 3.36
standard job control settings 3.36
START command 5.34
starting the system 4.1
STCK instruction 10.3
STDJC macro 3.3, 3.36
STDLABEL 5.22
storage management options 3.3
storage protection 1.3

storing of keys 4.4
string switching 10.25
STXIT macro, use of 10.3

VTAM considerations 10.6, 10.9
sublibraries 7.9, 7.10

assembler macro (E) 7.29
copy (A) 7.29
naming conventions 7.9,7.10

subroutines 9.3
subtasks 1.11

maximum number of 3.13
supervisor cataloging 6.5
supervisor generation 3.3
supervisor selection during IPL 4.1
SUPVR macro 3.3

AP operand 3.13
ASCII operand 3.17
ERRLOG operand 3.33
EU operand 3.36
NP ARTS operand 3.7
PAGEIN operand 3.11
PHO operand 3.23
POWER operand 3.13
TP operand 3.15

SVA parameter in VSTAB macro 3.6
symbolic I/O assignment 5.6
SYSCAT 4.4,5.9
SYSCLB 5.9
SYSCTL 5.9

Index 13.7

SYSFIL option 3.14,3.23, 5.42,7.11
SYSIN 5.9
SYSIPT 5.9
SYSIPT data, cataloging in procedure library 7.11
SYSLNK 5.9
SYSLOG 5.9

IPL assignment 4.2
SYSLST 5.9
SYSOUT 5.9
SYSPCH 5.9
SYSRDR 5.9
SYSREC (see also system recorder file) 4.8, 5.9
SYSRES 5.9

creating a new 7.24
layout 11.2

SYSRLB 5.9
SYSSLB 5.9
system core image library 3.2

CDL as phase in 4.5
system directory

list (SDL) 3.6, 4.7
listing of 7.27
contents of 11.1
location of 11.1
status report of 7.8

system files on disk 5.40
supervisor support for 3.23

system files 5.40
on disk 5.41
on diskette 5.42
on tape 5.40

system generation procedure 3.1
system history model macros 3.2
system layout on disk 11.1
system logical units 5.9

SYSCAT 4.4,5.9
SYSCLB 5.9
SYSCTL 5.9
SYSIPT 5.9
SYSLNK 5.9
SYSLOG 5.9
SYSLST 5.9
SYSPCH 5.9
SYSRDR 5.9
SYSREC 4.8, 5.9
SYSRES 5.9
SYSRLB 5.9
SYSSLB 5.9
SYSVIS 4.4,5.9

system recorder file 4.8
creation of 4.8
label information for
supervisor support for

4.8
3.33

system residence fiie
organization of 11.1, 11.2

13.8 DOS/VS System Management Guide

creating a new 7.24
system volume label 11.1
SYSVIS 5.9

assigning 4.4
defining 3.10

T
tailoring the supervisor 3.3
tape error statistics 3.33
task

maintask 1.11
subtask 1.11

task timer 3.19, 10.4
TEBV 3.33
teleprocessing 3.15

BTAM 3.16
QTAM 3.16
VTAM 3.16

teleprocessing balancing 3.15
operator considerations 5.35
TPBAL command 5.35
TPIN/TPOUT macros 9.6

time-of-day clock 3.18, 5.4
status 4.4
supervisor generation considerations 3.18
use of 10.2

timer services 3.18
interval timer 3.19
time-of -day clock 3.18
task timer 3.19

TLBL statement 5.19, 5.26
TPLAB 5.24
trace routines 3.34
track hold 1.4

supervisor support for 3.24
transfer address 6.23
transferring elements between libraries 7.25
TRKHLD 3.24

non-VSAM files 3.25
VSAM files 3.25

TTIMER macro 3.21, 10.4
TXT card 6.3
typical DOS/VS systems 2.2

u
U command 4.8
unavailable free space 7.14
UPDATE statement 7.22
updating

edited macros 7.29
object modules and phases 7.20
source statement libary 7.22

lJPST statement 5.33, 5.39
use of 10.1

{

user exit routines 3.20, 10.5
abnormal termination 3.22, 10.6
interval timer 3.21, 10.5
IPL 4.10, 10.10
job control 5.39, 10.12
operator communications 3.22, 10.9
page fault handling overlap 3.23
task timer 10.6
program check 3.21, 10.8

user program switch
indicator (UPS!) 5.33, 5.39, 10.1

user volume label 11.1
using private core image libraries 7.34
using private libraries 7.33
using the facilities and options of DOS/VS
using the libraries 7.1
USRLABEL 5.21
utility programs

initialize disk
VTOC display

v

11.1,11.5
11.5

validity of reference 9.2
video display/keyboard console 4.9
virtual address area 1.5

defining the size of 3.4
virtual mode 1.8
virtual mode execution 5.37

programs requiring 5.38
virtual partitions 1.8

priority of 3.9
size of 3.7

virtual storage 1.5
defining the size of 3.4
GETVIS area 3.6
macros 9.4
real address area 3.4
shared virtual area 1. 8, 3.4
summary of advantages 1.10
virtual address area 3.4

virtual storage access method (VSAM) 3.11
reserving storage 5.34
support for 3.12

virtual storage macros 9.4
PFIX 3.10, 9.4
PFREE 3.10,9.5
RUNMODE 9.6

virtual telecommunications access method
(VTAM) 3.16,2.1
number of partitions 3.7
supervisor generation considerations 3.17
with interval timer exit 10.6
with program check exit 10.9
sublibrary 7.9

VOL 5.24

10.1

volume table of contents 11.5
VSAM 3.6, 5.34

access method services 3.11, 3.6
catalog 4.4
reserving storage for 5.34
SHAREOPTION4 3.25
supervisor generation considerations
SV A resident 3.6
track hold considerations 3.24
VSAMSVA procedure 3.6

VSIZE operand 3.4
VST AB macro 3.3, 3.4

BUFSIZE operand 3.29
RSIZE operand 3.4
SVA operand 3.6
VSIZE operand 3.4

VTAM 3.16,2.1
sublibrary 7.9
number of partitions 3.7
supervisor generation considerations
with interval timer exit 10.6
with program check exit 10.9

VTOC 11.5
VTOC display utility 11.5

w
wait multiple facility 3.14
working set 9.1

X
XTENT 5.24

13330-11/3350
sequential DASD file, support for

3540 Diskette, as IPL device 4.2
5424 MFCU 5.27

3.12

3.17

3.28

Index 13.9

GC33-5371-6

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

-,J

0
0 en
< en
en
~
(t)

3
s:
Ql
:l
Ql
to
(t)

3
(t)

~
G')
c
c.: 1
(t)

::,0
~'
(t)
Co

:5'
c
en
?>
G')
C1
w
w
U1
w
-"

m

DOS/VS
System Management Guide

GC33-5371-6

READER'S
COMMENT
FORM

This sheet is for comments and suggestions about this manual. We would appreciate your
views, favorable or unfavorable, in order to aid us in improving this publication. This form
will be sent directly to the author's department. Please include your name and address if
you wish a reply. Contact your IBM branch office for answers to technical questions about
the system or when requesting additional publications. Thank you.

Name

Address

What is your occupation?

Your comments* and suggestions:

• We would especially appreciate your comments on any of the following topics:

Clarity of the text
Organization of the text

Accuracy
Cros~references

Index
Tables

Illustrations
Examples

How did you use this manual?

As a reference source

As a classroom tex t

As a self-study text

Appearance
Printing

Paper
Binding

GC33-5371-6

YOUR COMMENTS, PLEASE ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold

n
c
--l

>
r
0
Z
C)

--l
I
Vi
C
Z
m

Fold

... :

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Department 813 BP

POSTAGE WILL BE PAID BY ...

I BM Corporation
1133 Westchester Avenue
White Plains, N.Y. 10604

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

o o
fJ)

~
fJ)
<
~
CD
3
s:
Q)

:l
Q)

• co CD
3
CD

~
G>
c:
0:
CD

~
, .. :

Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

5'
0.
~
5'
C
en
~
G>

:, 2
w

• U, · w
~ · a,

..c.

i'

