
Systems Reference Library

IBM DOS Pull American

National Standard COBOL

Program Numbers: (Versions 1 & 2) 360N-CB-4B2

(Version 3) 5736-CB2 (Compiler Only)

5736-LM2 (Library Only)
DOSjVS COBOL 5746-CBl (Compiler & Library)

5746-LM4 (Library Only)

This publication gives the programmer the rules for
writing programs that are to be compiled by the IBM
DOS/VS COBOL and IBM Full American National Standard
COBOL compilers under the Disk Operating System. It is
meant to be used as a reference manual in the writing
of IBM Full American National Standard COBOL programs.

COBOL (Cammon Business Oriented Language) is a
programming-language, similar to English, that is used
for commercial data processing. It was developed by
the Conference On DAta SYstems Languages (CODASYL).
The standard of-the-Ianguage is-American National
Standard COBOL, X3.23-1968, as approved by the American
National Standards Institute (ANSI). American National
Standard COBOL is compatible with, and identical to
international standarj ISO/R1989-1972, Programming
Language COBOL.

IBM DOS/VS COBOL and IBM DOS Full American National
Standard COBOL, Version 3, which include all the
features of earlier versions, incorporate tne eight
processing modules defined in the highest level of the
American national stanjard. These modules include:

Nucleus
Table Handling
Sequential Access
Random Access
Sort
Report Writer
segmentation
Library

A significant number of IBM extensions are implemented
as well; these extensions are printed on a shaded
background.

File No. S360-24 ~
Order No. GC28-6394-6, DOS

I

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

PREFACE

This publication describes the IBM
implementation of Full American National
Standard COBOL, and all IBM extensions to
that standard. Some statements are
extensions to either American National
Standard COBOL or to both American National
Standard COBOL and the complete definition
of CODASYL COBOL.

In this publication, the term standard
COBOL means American National Standard
COBOL; the term IBM Full American National
Standard COBOL means this IBM
implementation of American National
Standard COBOL and all extensions to that
standard. There are two types of
extensions:

1. Those that represent features not
specified by American National
Standard COBOL.

2. Those that represent an easing of the
strict American National standard

Seventh Edition (April 1976)

COBOL rules and allow for greater
programming convenience.

All such extensions are printed on a shaded
background for the convenience of users who
wish strict conformance with the standard.
Use of features that are extensions to the
standard may result in incompatibilities
between the implementation represented by
this document and other implementations.
If a complete chapter is a~ extension, only
the page heading is shaded. These chapters
are:

This editiotJ. is a reprint of GC28-6394-5 incorporating changes released in Technical Newsletter
GN26-0801 (dated November 1,1975).

This edition, as amended by Technical Newsletter GN26-0887, describes Version 2 of IBM DOS Full
American National Standard COBOL at the Release 26 level of the Disk Operating System. It also
describes the Program Product Version 3, Release 3, including amended System/370 device support, and
Release 2 of the Program Product DOS/VS COBOL.

Information in this publication is subject to significant change. Therefore. before using this
publication, consult the latest IBM System!360 Bibliography, GC20-0360, and IBM System!370
Bibliography, GC20-000I. and the technical newsletters that amend the bibliography, to learn
which editions and technical newsletters are current and applicable.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality.

Forms for readers' comments are provided at the back of the publication. If the forms have
been removed. comments may be addressed to IB!\1 Corporation. P.O. Box 50020, Programming
Publishing, San Jose. California 95] 50. Comments and suggestions become the property of IBM.

© Copyright International Business ~lachines Corporation 1968, 1969. 1970.1971. 1972. 1973

For the less experienced programmer, the
introduction summarizes the general
principles of COBOL, highlights features of
American National Standard C~BOL, and,
through an example, illustrates the logical
sequence and interrelationship of conooonly
used elements of a COBOL program. The
balance of the publication gives the
specific rules for correct programming in
IBM Full American National Standard COBOL,
as implemented by the Systerr,/360 Disk
Operating System. Appendixes provide
supplemental information useful in writing
COBOL programs. Appendix A describes the
use of intermediate results in arithmetic
operations; Appendix B contains several
sample programs showing the use of mass
storage files; Appendix C lists all of the
formats and reserved words in IBM Full
American National Standard COBOL; Appendix
D is a file processing summary; Appendix E
gives considerations for the use of ASCII
encoded files; Appendix F explains the
symbolic debugginq feature; Appendix G
explains combined function card processing.

Compiler output and restrictions,
programming examples, and information on
running an IBM American National Standard
COBOL program are found in the publication
IBM DOS Full American National Standard
COBO~ Programmer's Guide, Order
No. GC28-6398 and in the Program Product
publications:

IBM DOS Full American National Standard
COBOL Compiler and Library, Version 3,
Programmer's Guide, Order No. SC28-6441

IBM DOS/VS COBOL Compiler and Library
Progr~lli~er's Guide, Order No. SC28-6478

These programmer's guides and this
lanquage reference manual are corequisite
publications.

A knowledge of basic data processing
techniques is mandatory for the

understanding of this publication. Such
information, as it applies to System/360,
can be found in the following publications:

Introduction to IBM Data Processing
Systems, Order No. GC20-1684

Introduction to IBM System/360 Direct
Access Storage Devices and Organization
Methods, Order No. GC20-1649

The reader should also have a general
knowledge of COBCL before using this
manual. Useful background information can
be found in the following publications:

American National Standard COBOL Codinq:

Card And Tape Applications 'Text, Order
No. SR29-0283

Coding Techniques And Disk Applications
Text, Order No. SR29-0284

Illustrations, Order No. SR29-0285

Student Reference Guide, Order
No. SR29-0286

Where information in the foregoing
publications conflicts with information in
this publication, the contents herein
supersede any other in the writing of COBOL
programs. Any violation of the rules
defined in this publication for using the
Disk Operating System is considered an
error.

A general knowledge of the IBM Disk
Operating System is desirable, although not
mandatory. The following publication gives
such information:

IBM System/360 Disk and Tape Operating
System: Concepts and Facilities, Order
No. GC24-5030.

ACKNOWLEDGMENT

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report
as the basis for an instruction manual or for any other purpose is free
to do so. However, all such organizations are requested to reproduce
this section as part of the introduction to the document. Those using a
short passage, as in a book review, are requested to mention 'COBOL' in
acknowledgment of the source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the
COBOL committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

"Procedures have been established for the maintenance of COBOL.
Inquiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data Systems
Languages.

"The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commerical Translator, Form
No. F28-80l3, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications."

Summary of Amendments Number 10

Date of Publication: December 3, 1976

Form of Publication: TNL GN26-0887 to GC28-6394-4, -5,-6

I BM DOS COBO L

Maintenance: Documentation

• Minor technical changes and additions have been made to the text.

Summary of Amendments Number 9

Date of Publication: March 15, 1974

Form of Publication: TNL GN28-1062 to GC28-6394-4

IBM DOS!VS COBOL

New: Programming Features

• SORT -OPTION clause for Sort and Merge Features

• 5425 MFCU Support

Maintenance: Documentation only

Minor technical changes and corrections to update the documentation to
Release 2

IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

• 5425 MFCU support deleted

• Minor technical changes and corrections

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments

Date of Publication: October 15, 1973
Form of Publication: TNL GN28-1 047 to GC28-6394-4

IBM DOS/VS COBOL

New: Programming Features

• Merge Facility

New: Documentation only

• Miscellaneous File Processing Considerations

Maintenance: Documentation only

Number 8

Minor technical chai1ges to update the documentation to the initial release level.

IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affe·cted.

Summary of Amendments Number 9

Date of Publication: March 15, 1974

Form of Publication: TNL GN28-1062 to GC28-6394-4

IBM DOS/VS COBOL

New: Programming Features

• SORT-OPfION clause for Sort and Merge Features

• 5425 MFCU Support

Maintenance: Documentation only

Minor technical changes and corrections to update the documentation to
Release 2

IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

• 5425 MFCU support deleted

• Minor technical changes and corrections

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments

Date of Publication: October 15, 1973
Form of Publication: TNL GN28-1047 to GC28-6394-4

IBM DOS!VS COBOL

New: Programming Features

• Merge Facility

New: Documentation only

• Miscellaneous File Processing Considerations

Maintenance: Documentation only

Number 8

Minor technical changes to update the documentation to the initial release level.

IBM DOS Full American National Standard COBOL, Versions 2 and 3

Maintenance: Documentation only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

Summary of Amendments Number 4

Date of Publication: May 15, 1972

Form of Publication: TNL GN28-0489 to GC28-6394-2

IBM DOS Full American National Standard COBOL, Version 3

New: Programming Features

• Added System/370 device support: 2319,3211,3330,3410,3420,3505,
3525

New: Documentation Only

• Symbolic Debug example

• 3525 Combined Function Processing

Miscellaneous Changes for Versions 2 and 3

Maintenance: Documentation only

Minor technical changes and corrections

Summary of Amendments Number 3

Date of Pubiication: April 15, 1971

Form of Publication: TNL GN28-0436 to GC28-6394-2

IBM DOS Full American National Standard COBOL, Version 3

New: Programming Features

• ASCII Tape file processing

• SIGN clause implementation

• OBJECT-COMPUTER paragraph requests System/370 instructions

• ON statement enhancement

Miscellaneous Changes for Versions 2 and 3

Maintenance: Documentation only

• PICfURE clause description and table of precedence

• USAGE clause deSCription

• Minor technical changes and corrections

• Added device support

Summary of Amendments Number 2

Date of Pub licatiD n: January 1970

Form of Publication: Revision, GC28-6394-2

IBM DOS Full American National Standard COBOL, Version 2

Maintenance: Documentation only

Minor technical changes and corrections

Summary of Amendments Number 1

Date of Publication: July 1969

Form of Publication: Revision, GC28-6394-1

Miscellaneous Changes

New: Documentation only

• Table Handling clarifications

• Table Handling sample program

Maintenance: Documentation only

Minor technical changes and corrections

CONTENTS -- DOS/VS COBOL

DOS/VS COBOL CONSIDERATIONS • ..
WHEN-COMPILED Special Register
Configuration Section • • •

SOURCE-COMPUTER Paragraph
OBJECT-COMPUTER Paragraph
SPECIAL-NAMES Paragraph •

VSAM File Processing
Environment Division -- File-Control Paragraph

SELECT Clause ..
ASSIGN Clause .. • .. •
RESERVE Clause
ORGANIZATION Clause ..
ACCESS MODE Clause ~ _ _ _ . . _ _
RECORD KEY Clause (Format 2)
PASSWORD Clause • • •
FILE STATUS Clause

Environment Division -- I-O-CONTROL Paragraph
RERUN Clause
SAME Clause • • ..

Data Division -- FD Entry
LABEL RECORDS Clause

Procedure Division
Common processing Facilities
EXCEPTION/ERROR Declarative 0 ..

OPEN Statement • • .. _
START Statement
READ Statement
WRITE Statement •
REWRITE Statement •
DELETE Statement 0

CLOSE Statement • •
Merge Facility •• ...

Environment Division _ _ ..
File-Control Entry for Merge Files
I-O-Control Paragraph _ _ G _

Data Division • .. • .. • _ ..
Merge-File Description Entry

Procedure Division
MERGE Statement .

3886 OCR Processing •
FIPS Flagger • • • • • .. _ ..
Miscellaneous File Processing Considerations

File Processing Summary -- New Devices .. • .. u

ASSIGN Clause • • ..
ACTUAL KEY Clause • _
APPLY WRITE-VERIFY Clause
APPLY CYL-OVERFLOW Clause ..
BLOCK CONTAINS Clause _
LABEL RECORDS Clause
ERROR Declarative
ACCEPT Literal Statement
OPEN Statement
WRITE Statement
CLOSE Statement
Sort Feature
5425 Combined Function Processing

FIGURES

i
i

.. ii

.. ii
• .. ii

.. iv
iv

v
vi

• ... vi
• vi

• u vii
o Vll.

.. vii
viii
viii
viii

ix
ix
ix
ix
ix

x
xi

• xiii
.. xv
.. xvi
xvii
xix

...... xx
• .. xxi

....... - .. xxi
xxii
xxii

....... xxii
.. xxiii

...... xxiii
xxiv

.... xxiv
• xxvii
xxviii

.... xxxiv

.... xxxiv

.... xxxiv
........ xxxv
........ xxxv

- .. - .. xxxv
........ xxxv

.. xxxv
.... - - xxxv

•• xxxvi
.... xxxvi
.... xxxvi
.... xxxvi
.. - xxxvi
- .. xxxvi

Moves and Comparisons -- System/360 vs. System/370
Shift And Round Decimal (SRP) -- System/360 vs ..

Figure I.
Figure II.
System/370
Figure III.
Figure IV.
Figure V.
Figure VI.
Figure VII.
Figure VIII.

..iii

• • • - • - ~ • • • , • • • • • _ u • • • _ _ _ • _ • iv
Status Key Values and Their Meanings x

OPEN Statement Options and Permissible I/O Statements •• xiv
KEY Item Categories and Collating Sequences xxvi
The Four Levels of FIPS Processing ... • xxix
File Processing Summary -- DOS/VS COBOL Devices .. _ -xxxiv
Error Bytes for 3540 -- GIVING Option _ -xxxvi

CONTENTS -- AMERICAN NATIONAL STANDARD COBOL

FEATURES OF THE DOS FULL COBOL PROGRAM
PRODUCT COMPILERS v ~ G G .. 11

INTRODUCTION • .. • •• • • • 15
principles of COBOL •• • ... 16
A Sample COBOL Program • • .. • 18

Identification Division 19
Environment Division .. • 19
Data Division • .. • .. _ 20
Procedure Division • .. a q .. n .. 23
Beginning the program -- Input
Operations • • • • • • •. .. 23
Arithmetic Statements 0 24
Conditional Statements _ _ n 25
Handling Possible Errors .. 26
Data-Manipulation Statements 26
Output Operations _ • • 27
Procedure Branching Statements Q 28
Ending the Program d Q • 31

PART I -- LANGUAGE CONSIDERATIONS

STRUCTURE OF THE LANGUAGE
COBOL Character Set

Characters Used in Words
Characters Used for Punctuation
Character3 Used for Editing
Characters Used in Arithmetic
Expressions Q

Characters Used for
Relation-conditions

35

37
37

.. 37
.. .. 38

.. 39

.. 39

39
Types of Words .. • 39

Reserved Words
Names • •
Special-Names

Constants
Literals
Figurative Constants

Special Registers

40
.. • 41

41
41

.. 41
.. 43

.. .. 44

ORGANIZATION OF THE COBOL PROGRAM 46
Structure of the COBOL Program 46

METHODS OF DATA REFERENCE
Qualification .. •
Subscripting
Indexing ..

• .0 48
.. 48

49
.. 49

USE OF THE COBOL CODING FORM 50
Sequence Numbers 50
Area A and Area B 50

Division Header 51
Section Header 51
Paragraph-names and Paragraphs 51
Level Indicators and Level Numbers • 51

continuation of Lines • .. ft .. 51
Continuation of Nonnumeric Literals 52
Continuation of Words and Numeric
Literals • • .. co ., • • • 52
Blank Lines Q 52
Comment Lines 52

FORMAT NOTATION .. .• '. .. • 53

PART II -- IDENTIFICATION AND
ENVIRONMENT DIVISIONS

IDENTIFICATION DIVISION
PROGRAM-ID Paragraph •
DATE-COMPILED paragraph

ENVIRONMENT DIVISION -- FILE
PROCESSING SUMMARY • • • • ..
Data Organization .. • •

Sequential Data Organization
Direct Data Organization • • •
Indexed Data Organization _ ..

Access Methods • • • • • •
Accessing a Sequential File
Accessing a Direct File

Sequential Access
Random Access

Accessing an Indexed File
sequential Access
Random Access

ORGANIZATION OF THE ENVIRONMENT
DIVISION _ •

ENVIRONMENT DIVISION -- CONFIGURATION
SECTION • • ~ .. •

SOURCE-COMPUTER paragraph
OBJECT-COMPUTER paragraph
Program Product Information -
Version 3 ••
SPECIAL-NAMES Paragraph

ENVIRON~ENT DIVISION -- INPUT-OUTPUT

• 55

• 57
• 57
.. 58

• 59
• 59

59
• 59
.. 60

60
.. 60

60
60

.. 61
61

• 61
• 61

• 63

64
64

.. 65

• 65
• 65

SECTION • n • • 68
FILE-CONTROL Paragraph • .. • .. • 68

SELECT Clause Q .. 0 • • 69
ASSIGN Clause ~ .. • 69
Program Product Information --
Version 3 • .. •

RCE and OMR Format Descriptor
RESERVE Clause • • • a

Program Product Information --
Version 3 _
FILE-LIMIT Clause _ • •
ACCESS MODE Clause • _
PROCESSING MODE Clause • • .. u

ACTUAL KEY Clause
NOMINAL KEY Clause
RECORD KEY Clause •,
TRACK-AREA Clause

I-O-CONTROL Paragraph
RERUN Clause •
SAME Clause
MULTIPLE FILE TAPE Clause
APPLY Clause

PART III -- DATA DIVISION

.. 72

.. 75
.. 77

.. 77
.. 77
.. 78
.. 78
.. 79
.. 82
• 83
.. 83

84
.. 84
.. 85
.. 86
• 87

• 91

DATA DIVISION -- INTRODUCTION 93
Organization of External Data ... ~ .. Q 93
Description of External Data _ .. • • • .. 93

ORGANIZATION OF THE DATA DIVISION
Organization of Data Division Entries

Level Indicator
Level Number .. _ .. •

• 94
• 95

95
95
96 Special Level Numbers

Indentation 97
File Section .. u • .. • • q

File Description Entry ..
97
97

Record Description Entry _ _ _ ~ 97
Working-Storage Section 98

Data Item Description Entries 98
Record Description Entries .. • • _ .. 98

Linkage Section _ • 98
Report section .. _ 99

FILE DESCRIPTION ENTRY -- DETAILS OF
CLAUSES

BLOCK CONTAINS Clause
RECORD CONTAINS Clause ..
Recording Mode .. a ••

RECORDING MODE Clause
LABEL RECORDS Clause ..
VALUE OF Clause
DATA RECORDS Clause
REPORT Clause

DATA DESCRIPTION

DATA DESCRIPTION ENTRY -- DETAILS OF

.. 100
q 100

... 102
..103

.... 104
.. 105

.. .. 106
.106
.107

.. 108

CLAUSES • • • .. 111
Data-name or FILLER Clause .111
REDEFINES Clause _ _ .. 112
BLANK WHEN ZERO Clause.. 0115
JUSTIFIED Clause..116
OCCURS Clause 116
PICTURE Clause.116
The Three Classes of Data .. 117
Character String and Item Size 118
Repetition of Symbols _ 118
Symbols Used in the PICTURE Clause .118
The Five Categories of Data .. 120
Types of Editing.. 125
Insertion Editing _ • .,125
Zero Suppression and Replacement
Editing .. • _ ..
Program Product Information --
Version 3 _
SIGN Clause
SYNCHRONIZED Clause
Slack Bytes
USAGE Clause .. 0

Display Option •
The Computational Options
Program Product Information --

..128

.. .. 129
a .. 129
... 130

.. 132
__ 136

.... 137

.... 138

Version 3 • 139
VALUE Clause.. •142
RENAMES Clause144

PART IV -- PROCEDURE DIVISION .. 147

ORGANIZATION OF THE PROCEDURE DIVISION .149
categories of Statements. Q .150

Conditional Statements _ ... n _ •• 151

Imperative statements a • • •

Compiler-Directing statements

ARITHMETIC EXPRESSIONS • ..
Ari thmetic Operators a •• •• .. 0

CONDITIONS
Test Conditions

Class Condition
Condition-Name Condition ..
Relation Condition
Sign Condition • • • • • •
Switch-Status Condition

Compound Conditions 0.... • • . .. •
Evaluation Rules
Implied Subjects and
Relational-Operators • _

Implied Subject
Implied Subject and Relational
Operator • • • • ..
Implied Subject. and Subject and
Relational-Operator

CONDITIONAL STATEMENTS
I F Statement .. u ••

Nested IF Statements ..

.151

.152

.153

.153

.155

.155

.156
... 157

.158

.162
• .162
• .162

.163

.. 164

.. 165

.165

.. 165

.166

.166

.167

DECLARATIVES .. • • 169
Sample Label Declarative Program. .172

ARITHMETIC STATEMENTS u

CORRESPONDING Option ..
GIVING Option
ROUNDED Option _ • •
SIZE ERROR Option
Overlapping Operands •
ADD Statement
COMPUTE Statement
DIVIDE Statement ..
MULTIPLY statement
SUBTRACT Statement

•179
.179
c 179
.. 179

•180
·180

.. 181

.182

.183

..184
.. _185

PROCEDURE BRANCHING STATEMENTS •
GO TO Statement .'0 .. •

ALTER Statement

.187

.187

.188

.189

.196

.196

PERFORM Statement
STOP statement
EXIT Statement _ _

DATA-MANIPULATION STATEMEN~S •
MOVE Statement .. • •
EXAMINE Statement
TRANSFORM statement

INPUT/OUTPUT STATEMENTS
OPEN statement ~ ~

START Statement
SEEK Statement _ a

READ Statement w

WRITE Statement
Program Product InforITation

.198

.198

.201

.203

• .206
.206
.208
.. 210
m 211
.212

(Version 3) .216
REWRITE Statement d .218
ACCEPT Statement • .. .219
DISPLAY Statement • •220
CLOSE Statement •• U d .221
Sequential File Processing. .222
Random File Processing _ •• 224

SUBPROGRAM LINKAGE STATEMENTS
CALL Statement .. •.
ENTRY Statement • n • • ~ •

USING Option • • • a .. •

Program Termination Considerations
EXIT PROGRAM Statement • • • ~ ~ ..
GOBACK Statement fl

.226

.. 226

.. 227

.228

.. 231

.232

.. 232
co 232 STOP RUN Statement .. •

COMPILER-DIRECTING STATEMENTS
COPY Sta tem"ent ..
ENTER Statement
NOTE Statement 0 ..

PART V -- SPECIAL FEATURES ..

SORT FEATURE • ... • 0 • c

Elements of the Sort Feature ..
Environment Division Considerations

• .. 233
.. 233
.. 233
.,233

co 235

.. .. 237
.. 237

for Sort • .. _ .. • • • .. _ • • _ .. a 238
.... 238

.. 238
Input-Output Section • • .. u

File~Control Paragraph ft • • •

Assignment of Sort Work units
I-O-CONTROL Paragraph _ .. _ ..

n OJ .. 239
0239
.240
.. 240
.241
.241

RERUN Clause • 0 .. _ • ..
SAME RECORD/SORT AREA Clause ..

Data Division Considerations for Sort
File Section n _ • • .. _ u • ..

Sort-File Description _ 241
Procedure Division Considerations for
Sort • • .. _ • _ • _ •

SORT Statement •
RELEASE Statement
RETURN Statement ..
EXIT Statement .. • ..

Special Registers for Sort •

c.242
• .. c.242

.. 247
_ .. 248
• .. 248

... 249

Sample Program Using the Sort Feature .250

REPORT WRITER FEATURE ... _ U fl ..

Data Division -- Overall Description _
Procedure Division -- Overall

.. 252
.. 252

Description ... _ • _ .. • • • n 253
Data Division Considerations for
Report Writer • • • .. 254

File Description .. • n co 254
REPORT Clause .. _ .. _ 0 • _ 254

.255 RECORDING MODE Clause
DATA RECORDS Clause .. _ 255
RECORD CONTAINS Clause ~ • 0 255

.. 256 Report section • • •
Report Description Entry
CODE Clause .. _ • ..
CONTROL Clause • •
PAGE LIMIT Clause
Report Group Description
LINE Clause
NEXT GROUP Clause

• .. 256
• .. 256

.. 257
• ... 258

Entry 261
... 263
.... 265

.267 TYPE Clause
USAGE Clause ..
COLUMN Clause

........... 269

GROUP INDICATE Clause
JUSTIFIED Clause
PICTURE Clause _ _ _
RESET Clause • .. • • • _
BLANK WHEN ZERO Clause

_ .. 269
.270
.270

.... 270

.... 270
• .. 271

SOURCE, SUM, or VALUE Clause _ • 271

Procedure Division Considerations .273
GENERATE Statement .. _ •273
Detail Reporting _ .273
Summary Reporting ... • .. • .. .273
Operation of the GENERATE Statement 274
INITIATE Statement. 275
TERMINATE Statement .. • .. • c. .. _ .275
USE Sentence. _ ••• n 276

Special Registers: PAGE-COUNTER and
LINE-COUNTER • ..

PAGE-COUNTER • .. _ •
•• 277

.277

.278
.. 279

LINE-COUNTER • • • • co .. .,

Sample Report writer Program 0 • Q

Key Relating Report to Report
Writer Source Program

TABLE HANDLING FEATURE ..
Subscripting _ .. • •
Indexing • • • •
Restrictions on Indexing,

.282

.. 289

.289

.290

Subscripting, and Qualification .291
Example of Subscripting and Indexing .. 291

Data Division considerations for Table
Handling _ •• 292

OCCURS Clause _ • _ • H .292
USAGE IS INDEX Clause .299

Procedure Division Considerations for
Table Handling _ • • • _ 0 •• 300

Relation Conditions ... 300
SEARCH Statement .. _ .. • Q _ •• 301
SET Statement u • _ _ _ .306

Sample Table Handling Program .307

SEGMENTATION FEATURE _ •
Organization • • • ~

Fix::d Portion
Independent Segments _ •

Segment Classification
segmentation Control •
Structure of Program Segments
Priori~y Numbers .. _ • • • ..
Segment Limit • • .. • _

Restrictions on Program Flow _
ALTER Statement • _ • • •
PERFORM Statement
Called Programs

SOURCE PROGRAM LIBRARY FACILITY
COpy Statement • • • _ • • ..

Extended Source Program Library
Facility • .. • •

BASIS Card •
INSERT Card _ _ • •
DELETE Card

DEBUGGING LANGUAGE
READY/RESET TRACE Statement
EXHIBIT Statement • _ _ _ •
ON <Count-conditional) Statement •
Program Product Information -
Version 3 •• _ • • Q • _

Compile-Time Debugging Packet
DEBUG Card • • • • • _ • .. • .. • •

FORMAT CONTROL OF THE SOURCE PROGRAM

.309
a 309
.. 309
.309
.310
.310
.310
.310
.311
.312
.312
.312
.312

.313

.313

.316

.316

.316

.316

.. 318

.318

.318
• 320

.321

.322

.322

LISTING •••••••••• _ •• 323
EJECT Statement _ •• ___ • _ •• 323
SKIP1, SKIP2, and SKIP3 Statements .323

STERLING CURRENCY FEATURE AND
INTERNATIONAL CONSIDERATIONS

Sterling Nonreport • • •
Sterling Sign Representation

sterling Report ... 0 • 0 •

Procedure Division Considerations
International Considerations

SUPPLEMENTARY MATERIAL ..

APPENDIX A: INTERMEDIATE RESULTS •
Compiler Calculation of Intermediate
Results

APPENDIX B: SAMPLE PROGRAMS

Creation of a Direct File
Creation of an Indexed File

Random Retrieval and Updating of an

• u 324
.325

.... 326
.. 327

.... 330

.... 330

•• 331

.. 333

.... 333

.. 335

.. .. 336

.. 338

Indexed File.. • .. • _ • .. .339

APPENDIX C: AMERICAN NATIONAL STANDARD
COBOL FORMAT SUMMARY AND RESERVED WORDS 341

APPENDIX D: SUMMARY OF FILE-PROCESSING
TECHNIQUES AND APPLICABLE STATEMENTS
AND CLAUSES .. _ _351

APPENDIX E: ASCII CONSIDERATIONS •
I -- Environment Division

ASSIGN Clause
RERUN Clause

II -- Data Division
File Section • • ..

.. 355

.. 355
.... 355
.... 356
.... 356

.. 356
.. .. 356 BLOCK CONTAINS Clause

LABEL RECORDS Clause ..
RECORDING MODE Clause

.. 356
.. .. 357

Compiler Calculation of Recording
Mode • • .. _ .. • • • .357

Data Description Entries .357
PICTURE Clause .357
SIGN Clause u • _ • .357
USAGE Clause .. _357

III -- Procedure Division 0 .357
LABEL PROCEDURE Declarative •• 358
Relation Conditions ... " _ .. 358

IV -- Sort Feature 0 .. • 360
Environment Division 360

ASSIGN Clause u .. 360
RERUN Clause .361

Data Division .. _ .. • ..361
SIGN Clause 361
USAGE Clause u .361

APPENDIX F: SYI-1BOLIC DEBUGGING FEATURE .363
Object-Time Control Cards · - 363
Sample Program -- TESTRUN .. 365
Debugging TESTRUN ·366

APPENDIX G: COMBINED FUNCTION CARD
PROCESSING 379
I -- Environment Division
Considerations. • • • • 379

SPECIAL-NAMES paragraph .379
SELECT Clause .380
ASSIGN Clause • .. • .380
RESERVE -=:lause ., .. • .. • • • • 381

II -- Data Division Considerations .381
III -- Procedure Division
Considerations • ..

OPEN Statement • _
READ Statement
WRITE Statement -- Punch Function
Files · . ..
WRITE Statement -- Print Function
Files
CLOSE Stateroent ·

IBM AMERICAN NATIONAL STA&DARD COBOL

..

.
..

.382

.382

.382

.382

.383

.. 384

GLOSSARY • •385

INDEX .. 399

FLGURES

Figure 1. Typical Ledger Records
Used for MASTER-RECORD • .. • .. Q • 21
Figure 2. Typical DETAIL-RECORD 22
Figure 3. Illustration of Procedure
Branching • • • • _ .. _ • _ .. • 29
Figure 4. Complete UPDATING Program
(Part 1 of 2) ~. ~ _ .. • _ 33
Figure 5. Reference Format _. _ • _ 50
Figure 6. Summary of File-Processing
Techniques _ .. • 62
Figure 7. Choices of Function-name-l
and Action Taken • • • • • _ .. 66
Figure 8. Values of Organization
Field for File Organization _ 72
Figure 10_ Structure of the First
Eight Bytes of ACTUAL KEY -- Actual
Track Addressing _ • • .. • • 80
Figure 11. Level Indicator Summary 95
Figure 12.. Areas REDEFINED without
Changes in Length • _ .. • • • • .113
Figure 13. Areas REDEFINED and
Rearranged _ • _ .. a • _ .. • • • .114
Figure 14. Class and Category of
Elementary and Group Data Items .117
Figure 15. Precedence of Symbols Used
in the PICTURE Clause _ • 0 • • .121
Figure 16. Editing Sign Control
Symbols and their Results .126
Figure 17.. Insertion of the
Intra-occurrence Slack Bytes .133
Figure 18. Insertion of
Inter-occurrence Slack Bytes •• _ ... 134
Figure 19. Internal Representation of
Numeric Items (Part 1 of 2) 140
Figure 20. Permissible Symbol Pairs
-- Arithmetic Expressions •• 154
Figure 21. Valid Forms of the Class
Test • a ... _ 0 • • • • .. • 0 .156
Figure 22. Relational-operators and
Their Meanings • _ ••• __ 158
Figure 23. Permissible Comparisons •• 161
Figure 24. Logical Operators and the
Resulting Values upon Evaluation 163
Figure 25. Permissible Symbol Pairs
-- Compound Conditions 164
Figure 26. Conditional Statements
with Nested IF Statements _ • .167
Figure 27. Logical Flow of Conditional
Statement with Nested IF Statements Q .168
Figure 28. Error Byte Meaning for the
GIVING Option of an Error Declarative .176
Figure 29. File Processing Techniques
and Associated Error Declaratives
Capabilities _ 178
Figure 30. Logical Flow of option 4
PERFORM Statement Varying One
Identifier •••••••• _ _ .193
Figure 31. Logical Flow of option 4
PERFORM Statement Varying Two
Identifiers ••• n ••• n _ ... n n .194

Figure 32. Logical Flow of option 4
PERFORM Statement Varying Three
Identifiers _ .195
Figure 33. Permissi~le Moves ••••• 200
Figure 34. Examples of Data
Examination • • .. • .. • .. • • • .. • • .202
Figure 35. Examples of Data
Transformation •• _ •• 203
Figure 36.. Combinations of FROM and
TO Options (Part 1 of 2) 0 .204
Figure 37. Action Taken for
Function-Names -- ADVANCING Option ... 214
Figure 38. Values of Identifier-2 and
Their Interpretation -- POSITIONING
Option 215
Figure 39. Values of Integer and Their
Interpretations -- POSITIONING Option .215
Figure 40. Relationship of Types of
Sequential Files and the Options of
the CLOSE Statement •• 0 224
Figure 41. Relationship of Types of
Random Files and the Options of the
CLOSE Statement _ .. • • • • • • • .0 • .225
Figure 42.. Effect of Program
Termination Statements Within Main
Programs and Subprograms231
Figure 43. SORT Collating Sequences
Used for Sort Keys _ .244
Figure 44. Sample Program Using the
SORT Feature (Part 1 of 2) .250
Figure 45. Page Format When the PAGE
LIMIT Clause is Specified .260
Figure 46. Sample Program Using the
Report Writer Feature (Part 1 of 4) ... 279
Figure 47. Report Produced by Report
Writer Feature (Part 1 of 5) .284
Figure 48. Storage Layout for
PARTY-TABLE 292
Figure 49. Index-names and Index Data
Items -- Permissible Comparisons .301
Figure 50.. Format 1 SEARCH Operation
Containing Two WHEN Options __ .304
Figure 51. Sample Table Handling
Program (Part 1 of 2) •.. _ 307
Figure 52. Sterling Currency Editing
Applications 0 • • • • .329
Figure 53. Compiler Action on
Intermediate Results334
Figure 54.. Using the TRANSFORM
Statement with ASCII Comparisons 359
Figure 55. EBCDIC and ASCII Collating
Sequences for COBOL Characters -- in
Ascending Order ___ • __ • _ .360
Figure 56~ Individual Type Codes Used
in SYMDMP output • ft • U • • • .367
Figure 57. Using the Syrobolic
Debugging Features to Debug the
Program TESTRUN (Part 1 of 11) .367
Figure 58. Identifier-2 Stacker Values
for WRITE AFTER POSITIONING •• _ ••• 383

Special DOS/VS COBOL considerations are discussed in the following
pages. Implementation areas described are:

• WHEN-COMPILED special Register

• The Configuration Section

• VSAM (Virtual storage Access Method) Processing

• Merge Facility -- with SORT-OPTION clause

• 3886 OCR (Optical Character Reader) Processing

• FIPS (Federal Information Processing Standard) Flagger

• Miscellaneous File processing considerations

DOS/VS COBOL supports all of the additional features described in
this chaEter. Support for these features is provided through a subset
of the complete COBCL language as documented in CODASYL COBOL Journal Of
Development. IBM-specified language capabilities are also implemented.
All features of DOS Full American National Standard COBOL, Version 3.
continue to be supported.

Compiler output and restrictions. programming examples, and
information on running an IBM DOS/VS COBOL program are found in the
following Program Product publication:

IBM DOS/VS COBOL Compiler and Library Programmer's Guide, Order
No. SC28-6478

Additional information on DOS/VS can be found in the following
publications:

Introduction to DOS/VS. Order NoD GC33-5370

DOS/vS Systems Management Guide. Order Noo GC33-5371

DOS/VS Data Management Guide, Order No. GC33-5372

DOS/VS Access Method Services, Order No. GC33-5832

WHEN-COMPILED SPECIAL REGISTER

The WHEN-COMPILED special register is provided as a maintainability
aid for the user; it makes available to the object program the
date-and-time-compiled constant carried in the object modulew

WHEN-COMPILED is a 16-byte alphanumeric field valid only as the
sending field in a MOVE statement. The format of these sixteen bytes is
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second) or DD/MM/YYhh.rrmwss
(DAY/MONTH/YEARhourominute.second).

This special register is a prograffimer aid that provides a means of
associating a compilation listing with both the object program and the
output produced at execution time.

DOS/VS COBOL Ccnsiderations i

CONFIGURATION SECTION

The Configuration section describes the computer on which the source
program is compiled, the computer on which the object program is
executed, and, optionally, SPECIAL-NAMES, which relate function-names
used by the compiler with user-specified mnemonic-nameso

r--,
I I
I General Format I
~--i

CONFIGURA~ION SECTION.

SOURCE-CQMPUTER. computer-name.

OBJECT-COMPU~ER. computer-name

[MEMORY SIZE integer

'WORDS '\

~~CTERS~
(MODULES)

[SEGMENT-LIMIT IS priority-numberl.

SPECIAL-NAMES. {function-name-l IS mnemoniC-name]

[function-name-2 [IS mnemonic-name]

{

ON S~A~US IS condition-name-l

OFF STATUS IS condition-name-2

(OFF STATUS IS condition-name-2l}

(ON STATUS IS condition-name-ll
] •• co

l
]
I
]
J
]
1
J
f
I
]
l
l
J
I
1
l
J
J
I
]
I
I
J
1
J
I

{CURRENCY SIGN IS literall [DECIMAL-POINT IS COMMAlo I
___________________ ---------------------------________________________ J

The Configuration Section and its associated paragraphs are optional
in a COBOL source program.

SOURCE-COMPUTER PARAGRAPH

The SOURCE-COMPUTER paragraph describes the computer upon which the
source program is to be compiled. This paragraph is treated as
documentation ..

Computer-name is a word in the form IBM-370[-model-numberl ..

OBJECT~COMPUTER PARAGR~PH

The OBJECT-CCMPUTER paragraph aescribes the computer upon which the
object program is to be execuued.

Computer-name must be the first entry in the OBJECT-CCMPUTER
paragraph. Computer-name is a word in the form IBM-370[-model-number].

ii

System/370 instructions are provided automatically by DOS/VS COBOL.
(When IBM-360 is specified, the compiler generates System/370
instructions, and issues a warning message.) The Compiler generates
instructions from the System/370 set, including Move Long (MVCL),
Compare Logical Long (CLCL), and Shift And Round Decimal (SRP) that are
particularly useful to COBOL. These System/370 instructions replace
object-time subroutines and instructions that former COBOL Compilers
generated under System/360 including routines and instructions to handle
decimal arithmetic scaling (where operands have a different number of
decimal places) and rounding. System/370 support also gives much
improved processing of variable length fields.

Since System/370 does not require boundary alignment for
COMPUTATIONAL, COMPUTATIONAL-l, and COMPUTATIONAL-2 items, no moves are
generated for items that are not SYNCHRONIZED.

Performance Considerations:: Space occupied by a DOS/VS COBOL program
is decreased, particularly when calls to object-time subroutines, are no
longer necessary. Such calls are always generated in System/360 for
variable-length moves and comparisons. If there is at least one
variable-length alphanumeric move in the source program, System/370
support reduces the size of the object program by at least 484 bytes; if
there is at least one variable-length alphanumeric comparison,
System/370 support reduces the size of the object program by at least an
additional 498 bytes.

r--------------T---------------------------T---------------------------,
I IFor Each Alphanumeric IFor Each Comparison (in a I
I ,Move: Object-program Iconditional expression): !
INumber of I Instructions IObject-program Instructions I
IBytes in Each r-------------T-------------+-------------T-------------1
IMove or ISystem/360 Isystem/370 ISystem/360 ISystem/370 I
I Comparison IBytes Needed IBytes Needed IBytes Needed IBytes Needed I
r--------------+-------------+-------------+-------------+-------------1
I Variable I I I I I
I length I 26+480* I 14-22 I 26+496* I 16-24 I
r--------------+-------------+-------------+-------------+-------------1
I fixed length I I I I I
I 1-256 I 6-16 I 6-16 I 8-26 I 8-26 I
I 257-512 I 12-22 I 12-22 I 16-36 I 16-24 I
I 513-768 I 18-28 I 14-22 I 24-46 I 16-24 I
I 769-1024 I 24-34 I 14-22 I 32-56 I 16-24 I
I 1025-1280 I 30-40 I 14-22 I 40-66 I 16-24 I
I 1281-1536 I 36-46 I 14-22 I 48-76 I 16-24 I
I I I I I I
I >4096 I 26+480* I 14-22 I 26+496* I 16-24 I
r--------------~-------------~-------------~-------------~-------------~
I*Bytes needed to invoke object-time subroutine, plus size of I
I subroutine itself. I L __ ~ ___ J

Figure I. Moves and Comparisons -- System/360 vs. System/370

Figure I gives comparative figures without right justification for
fixed-length and variable-length MOVE statements, and for fixed-length
and variable-length comaprisons.

Figure II gives comparative figures for Shift And Round Decimal
generation; the savings shown are made for each such operation in the
object program.

The MEMORY SIZE clause can be used to document the actual equipment
configuration needed to run the object program.

The SEGMENT-LIMIT clause is discussed in the Seg~entation Chapter.

DOS/VS COBOL Considerations iii

Except for the computer-name entry and the SEGMENT-LIMIT clause, the
OBJECT-COMPUTER paragraph is treated as documentation.

t-----------------------T-----------------------T----------------------,
I I System/360 I System/370 I
I Function I Bytes ~eeded I Bytes Needed I
~-----------------------+-----------------------+----------------------~
I Rounding I 39 + literal* I 6 I
I Left Scaling I 6 + literal* I 6 I
I Right Scaling I 12 I 6 I
~-----------------------~-----------------------~----------------------~
I*As used for deciwal point alignment the literal varies in length withl
I size of data-item, number of decimal positions defined, and/or I
I scaling positions defined. I L __ J

Figure II. Shift And Round Decimal (SRP) -- System/360 vs. System/370

SPECIAL-NAMES PARAGRAPH

The SPECIAL-NAMES paragraph as discussed in the Environment Division
chapter applies to DOS/VS COBOL without change.

VSAM FILE PROCESSING

VSAM (Virtual storage Access Method) is a high-performance access
method of DOS/VS for use with direct access storage. VSAM provides
high-speed retrieval and storage of data, flexible data organization,
ease of conversion from other access methods, and ease of use -
including simplified job control statements, data protection against
unauthorized access, central control of data management functions,
device independence (freedom from consideration of block sizes, control
information, record deblocking, etc.), and cross-system compatibility.

Access Method Services, a multi-function utility program is used to
define a VSAM data set, and optionally load records into it, convert an
existing indexed or sequential data set to VSAM format, and perform
other tasks as well. Access Method Services is described in DOS/VS
Access Method services, Order No. GC33-5832.

VSAM allows key-sequenced and entry-sequenced data sets; records can
be fixed or variable in length.

In a key-seguenced data set (KSDS), records are stored in the
ascending collating sequence of some embedded key field. For indexed
files of this type, records can be retrieved sequentially in key
sequence; they can also be retrieved randomly according to the
particular value of the key.

In an entry-seguenced data set (ESDS), the records are stored in the
order in which they are presented for inclusion in the data set. New
records are stored at the end of the data set. In COBOL, record
retrieval for sequential files of this type must be sequential.

VSAM files may be written on the following mass storage devices:
2314, 2319, 3330, 3340.

For V5AM file processing in COBOL, there are special language
considerations in the Environment, 0ata, and Procedure Division.

iv

ENVIRONMENT DIVISION FILE-CONTROL PARAGRAPH

The File-Control paragraph names the VSAM file, associates it with an
external medium, and allows specification of other file-related
information.

r--,
I General Format 1 -- Sequential VSAM Files I
~--~

I
FILE-CONTROL.

{SELECT [OPTIONAL] file-name

ASSIGN TO system-name-i [system-name-2]

[RESERVE integer [AREA]
AREAS

[ORGANIZATION IS SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[PASSWORD IS data-name-i]

[FILE STATUS IS data-narne-2J.}

L_~---_________________ J

r--,
I General Format 2 -- Indexed VSAM Files I
~--~

FILE-CONTROL.

{SELECT file-name -
ASSIGN TO system-name-i [system-name-2]

[RESERVE integer [AREA]
AREAS

ORGANIZATION IS INDEXED

{

SEQUENTIAL}
[ACCESS MODE IS. RANDOM]

DYNAMIC

RECORD KEY IS data-name-3

[PASSWORD IS data-name-i]

[FILE STATUS IS data-name-2].}
__ J

Each file described by an FD entry or SD entry in the Data Division
must be described in one and only ppe Fj)e-Control entrr;

The key word FILE-CONTROL may appear only once, at the beginning of
the File-Control paragraph. The word FILE-CONTROL must begin in Area A,
and be followed by.aperiod followed by a space.

DOS/VS COBOL Considerations v

Each File-Control entry m~st begin with a SEL~CT clause followed
in~ediately riy an ASSIGN clause. The order in wnich the other clauses
appear is not significant, except that for indexed VSAN files the
PASSWORD clause, if specified, must iwmediately follow the RECORD KEY
cla~se. Each File-Control entry must end with a period followed by a
space.

Each data-name in the File-Control entry may be qualified; it may not
be subscripted or indexed. ~ach data-name must be at a fixed
displacement from the beginning of the data description entry in whicIl
it appears; that is, it must not appear in the entry after an OCCURS
DEPENDING ON clause.

SELECT Clause

The SELEC1 clause is used to name each file in the program. Each
file described with an FG entry or SD entry in the Data Division must be
named once and only once as a file-name following the key word SELEC1.

FORMAT 1: The OPTIO~AL clause must rie specified for input files that
are not necessarily present each time the object program is executed.

If file-name represents a sort file, only the ASSIGN clause may be
written following the SELECT clause.

ASSIGt"J Clause

The ASSIGN clause associates the file with an external storage
medium.

System-name specifies a system logical unit, and, optionally, a
device class, a device number, the file organiZ,q.tion, and the external
name. System-name has the following structure: ." "

SYSnnn[-class] [-device] [-organization] [-nameL-

The SYSnnn field is required, and nnn must be a three-digit number
from 000 through 240 inclusive. This number represents the symbolic
unit to which the file is assi~ned.

The class and device fields are included for compatibility only; for
VSAM files, these fields are treated as documentation.

The organization field is required for seqnential VSAM files. The
entry must be AS. -

The organization field must not be specified for indexed VSAM files.

The name field is an optional three-character" through s~ven~6haracter
field, specifying the external naI:(l~ by which the file is known to the
system. If name is not specified, the symbolic unit (SYSnnn) 1S used as
the external name. The name field ITust be specified if more than one
file is assigned to the same symbolic unit.

RESERVE Clause

The RESERVE clause is treat~d as documentation.

vi

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical structure of the file.
The file organization is established at the time the file is defined and
cannot subsequently be changed~

FORMAT 1: If the ORGANIZATION clause is omitted, ORGANIZATION
~QUENTIAL is assumed.

When ORGANIZATION SEQUENTIAL is specified or assumed, the records in
the file are positioned sequentially in the order they were created.
Once established, the position of the file records does not change.

FO~ffiT 2: When ORGANIZATION INDEXED is specified, each logical record
in the file contains an embedded RECORD KEX which is associated with an
index, and each record is identified through its RECORD KEY value.
AIter records have been updated n or have been added to or deleted froIT
the file, the position of the records may have changed.

ACCESS MODE Clause

The ACCESS MODE clause specifies the manner in which records in the
file are to be processed.

When the ACCESS MODE clause is omitted, ACCESS MODE SEQUENTIAL is
assumed.

When ACCES~ MODE SEQUENTT~tis specified or assumedi' the records are
processed sequentially. That is, the next logical record in the file is
the next45rocessedo .

When QRGANIZATION IS SEQUENTIAL is specified or assumed, the records
in the file are grocessed in the seqnence established when the file was
created-pr extended~

When~RGANIZATION IS INDEXED is specified, the records in the file
are "Q,rocessed in tbe seQuence Of ascendiPQ record key values.

FORMAT 2: For indexed VSAM files, ACCESS MODE RANDOM and ACCESS MODE
DYNAMIC can also be specified.

When ACCESS MODE RANDOM is specified, the sequence in which records
are processed is determined by the sequence in which record keys are
presented. The desired record is accessed by placing the value of its
key in the RECORD KEY data item before the associated input/output
statement is executed.

When ACCESS MODE DYNAMIC is specified, records in the file are
processed either sequentially and/or randomly. The form of the specific
input/output request determjnes the aCCess mode.

RECORD KEY Clause (Format ~)

The RECORD KEY clause ~pecifies the data item within the recor~ which
contains the key for that record. A RECORD KEY must be specified for an
indexed VSAM file.

Data-name-3 is the RECORD KEY data itemo Data-name-3 must be defined
as a fixed length alphanumeric or unsigned external-decimal numeric data
item within a record description entry associated with file-name.
Data-name-3 is treated as an alphanumeric item.

DQS/VS COBOL Considerations vii

VSAMPASSWOEP/:e-'TLE . STATUS. Cl(i.u.s~sII';';O-CONTROL (POS/VS}

The value contained in data-name-3 must be unique among records in
the file.

The data description of data-name-3 and its relative location in the
record must be the same as that specified when the file was defined.

PASSWORD Cla.use

The PASSWORD clause controls object-time access to the file.

Data-name-l is the password data item; it must be defined in the
working-Storage Section as an alphanumeric itemo The first 8 characters
are used as the password: a shorter field is padded with blanks to 8
characters. The password data item must be equivalent to the one
externally specified.

When the PASSWORD clause is specified, at object time the password
data item must contain the valid password for this VSAM file before the
file can be successfully openedo (See nStatus Keyn in the following
Common Processing Facilities description.)

FILE STATUS Clause

The FILE STATUS clause allows the user to monitor the execution of
each ,input/output request for the file ..

Data-name-2 ~s the Status Key data item. Data-name-2 must be defined
in the Data Division as a two-character a~phanumeric or unsigned
external-decimal numeric item. Data-name-2 must not be defined in ~
~e sect~n or t~ Repo~t ~ection. Data-name:2 is t~ated as ~n
alphanumerlc TIem.

When the FILE STATUS clause is specified, a value is moved into the
Status Key by the system after each input/output request that explicitly
or implicitly refers to this file. The value indicates the status of
the execution of the statement. (See nStatus Key" in the following
Common Processing Facilities description.)

ENVIRONMENT DIVISION -- I-O-CONTROL PARAGRAPH

The I-O-CONTROL paragraph specifies the special input/output
techniques to be used in the program. The I-O-CONTROL paragraph and its
associated clauses are optional.

r--,
I General Format -- VSAM Files I
~-----------------------~--~
I I-
I I-a-CONTROL. I
I]
I [RERUN ON system-name EVERY integer RECORDS I
I I
I OF file-name-i] I
J I
I [~ [RECORD] AREA l
I I
I FOR file-name-2 [file-name-3J ••• J .ue • l L __ J

The key word I-a-CONTROL must begin in Area A and be followed by a
period and a spacen

viii

RERUN Clause

System-name is specified as described in the Environment Division
chapter; the checkpoint file must he a standard sequential file (it may
~t ~ ~ sequential ~AM t!k). The device field may not specify 3540. ".,

File-name may specify a VSAM file.

SAME Clause

The SAME RECORD AREA clause for VSAM files is implemented as
described in the Environment Division chapter.

For VSAM files, the SAME AREA clause has the same meaning as the SAME
RECORD AREA clause.

DATA DIVISION -- FD ENTRY

In the FD entry for a VSAM file. the RECORD CONTAINS clause is
implemented as described in the Data Division chapter.

The BLOCK CQNTA~S, DATA RECORDS, and VALUE OF clauses, ~e treated
as documentation for VSAM files.

fil!~~ RECORDING MODE and REPORT cl~s m~t ~t b~ sp~ified f~ V~l

There are special considerations for the LABEL RECORDS clause.

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether standard labels are
present or omitted, and serves only as documentation.

r--,
I Format I
t---~

: ~ {RECORD IS } {STANDARD{ I
I RECORDS ARE OMITTED f I
I I L __ J

For VSAM files, ~tber the STANDARD or the OMITTED option may be
specified. Either option is treated as documentation.

The LABEL RECORDS clause is required in every FD entry.

PROCEDURE DIVISION

For VSAM files, there are several Common Processing Facilities that
apply to more than one input/output statement. These Corrmon Processing
Facilities are discussed before the descriptions of the separate
input/output verbs.

DOS/VS COBOL Considerations ix

Common Processing Facilities

,fCURRENT ~ECORD POINTER: Conceptually, the Current Record Pointer
specifies the next record to be accessed by a sequential request. The
setting of the Current Record Pointer is affected only by the OPEN.
START, and READ statements. The concept of the Current Record Pointer
~o m~aning for random access or for output files.

------.. --- - ----- -----.

"STATUS KEY: If the FILE STATUS clause is specified in the File Control
Entry, a value is placed into the specified Status Key (the 2-character
data item named in the FILE STATUS clause) during execution of any
request on that file; the value indicates the status of that request.
The value is placed in the Status Key before execution of any Error
Declarative or INVALID KEY/AT END option associated with the request.

The first character of the Status Key is known as Status Key 1; the
second character is known as Status Key 2. Combinations of possible
values and their meanings are shown in Figure III. See the DOS/VS
Proqrammer"s Guide for more information.

x

~lsta~!~u!ey 1 :::::::---------- ~~~u!ey 2 Meaning 1
1 r--- ---------~
I 0 I Successful ,0 INo Further I

t------------+:~~::=~~~~-l:-~~-~-+------------+:~~~=~:~~~~-----------~
, 1 IAt End (no next I 0 INo Further I
I Ilogical record, or I I Information I
I Ian OPTIONAL file not" ,
I I available at OPEN I I I

~--------~---+~~~::----~-~~~-~---t------------~----------------------~ ! 2 !Invalid Key ! I 1 ISequence Error !
I I • ~------------t----------------------~
I I , 2 I Duplicate Key I
I I ~------------t----------------------~
I I I 3 I No Record Found I
I I ~------------t----------------------~
I I I 4 IBoundary Violation I
I I I I (indexed VSAM file) I
~------------t---------------------t------------+----------------------~
I 3 IPermanent Error I Q INo Further I
, I (data check, parity I I Information I
I Icheck, transmission ~------------t----------------------~
I terror) I 4 'Boundary Violation I
I' I I (sequential VSAM I
I' I I file) I
~----------t~--------------------t------------t----------------------~

9 IBM-defined I 1 IPassword Failure]
r------------t----------~-----------~
I 2 ILogic Error I
~------------+----------------------~ i 3 jResource Not I
I I Available 1
~------------t----------------------~
I 4 INo Current Record I
I IPointer For t
I ISequential Request]
r------------t--------~------------~
J 5 IInvalid or Incomplete j
1 IFile Information I
~------------t----------------------~
I 6 INo DLBL card 1

t------------+---------------------+------------t----------------------~
I Z I User-defined I 1-9 IReserved for user J
I I I A-Z I purposes I L-___________ ~ _____________________ ~ ____________ ~ _____________________ J

Figure III. ~tatus Key Values and Their Meaning~

DOS/VS COBOL Considerations x.i

vs~comrno'n ,P rocee;s ing'" ~acili t:iee;'(DOS/V§J

INVALID KEY CONDITION: The INVALID .KEY condition can occur during
execution of a START, READ, WRITE, REWRITE, OR DELETE statement. (Io'or
details of the causes ~th~ndition, see documentation for those
statements.) When the ItNALID KEY condition is recognized, the
following actions are taken in the following order:

1. If the FILE-STATUS clause is specified, a value is placed into the
Status Key to indicate an INVALID KEY condition.

2. If the INVALID KEY option is specified in the statement causing the
condition, control is transferred to the INVALID KEY
imperative-statement. Any EXCEPTION/~OR declarative procedure
specified ~ t.b.l§ We ~ n£,t. executed.

but'
3. If the INVALID KEY option is not spgcJfjed, but an EXCEPTION/ERROR

declarative Rrocedure is specified for the file,~
_EXCEPTION/ERROR prQcedure is executed.

When an INVAL~D KEY condi tion occu~s I ,the input/Qutput statement whicp
caused the condition is unsuccessful.

INTO/FROM IDENTIFIER OPTION: This option is valid for READ, REWRITE,
and WRITE statements.

The INTO identifier option makes a READ statement equivalent to
~ -

READ
MOVE

file-name
record-name TO identifier

After successful execution of the READ statement, the current record
becomes available both in the record-name and identifier.

The FROM identifier option makes a REWRITE or WRITE statement
equivalent to

MOVE identifier TO record-name

{
REWRITE}

record-name
WRITE

After successful execution of the WRITE or REWRITE statement, the
current record may no longer be available in record-nam~~ ~s1ill

~available in identifier. .
- -.;;jc:=;;;;;;;;;;;;:;;:;;;:=-

In all cases, identifier must be the name of an entry in the
Working~Storage Section, the Linkage Section, or of a record description
for another previously opened file. Record-narne/file-name and
identifier must not refer to the same storage area.

. .
EXCEPTION/ERROR Declarative

The EXCEPTION/E~ROR rieclarative specifies pro6edures f~r input/output
exception or error handling that are to be executed in addition to the
standard system procedures.

DOS/VS COBOL Considerations xi

r--,
I Forma.t I
t-----------------:...."~----~----~-----....:---.::..-----..:...--...,;--....:~------------------~

USE AFTER S~ANDARD \ PROCEDURE
)

f EXCEPTION)

---- ,ERROk)

If
'l ~ rc'- 2' 1 e-name-~ tLl1e-name- J

INPUT
ON OUTPUT

1-0
EX~'END

___ ~ _________________________________ .::.. ____ ~ ___________________________ J

A USE statement, when present, must immediately follow a sectiQ.:Q..
header in the Declaratives Section (see "Declaratives" in the Procedure
Division chapt~r). A USE statement must be followed py a period
followed ny a spacie. The remainder of the §ection must consist of one
or more procedural paragraphs that specify the proccedur~s to be uied.

tge USE statement itself is not an executable statement; it merely
defines Ehe conditlons tor execUtiop of the procedural paragraphs.

The words EXCEP~IaN and ERROR are synonymous and may be used
interchangeably. -----

'.,.. .

When the file-name option is specified, the procedure is executed
only for the filets) nawed. Appearance of a file-name must not cause
simultaneous requests for the execution of more than one EXCEPTIO~/ERROR
procedure. No file-name can refer to a sort file.

When the INPUT option is specified, the proce~ure is executed for all
files opened in INPUT mode.

When the OUTPUT option is specified, the procedure is executed for
all f~les opened ~n the OUTPUT mode.

When the 1-0 option is specified, the"procedure is executed for all
files opened~ 1:0 moje.

When the EXTEND option is specified, the procedure is ex~cuted for
all files opened in EXTEND mode.

!be ~XCg:TI..QNa-:R.!WB. p..£~e~u.Ee_ ~s_ e~e;,c~t~d;..

• Either after completing the standard system input/output error
routine, .£!

• Upon recognition of an IiNALID KLY or AT END condition when an
INVALID KEY or AT END option has not been specified in the
input/output "statement, 2.!

• Upon recognition of an IBM-defined condition which causes status key
1 to be set to 9.

After execution of the EXCEPTION/ERROR procedure, control is returned
to the invoking rou~.

The EXCEPTION/ERROR procedures are activated when an input/output
error occurs during execution of a ~, WRITE, ~E, START, or
DELETE~statement.~~

If an OPEN statement is issued ~ file ~~in-!De 0Ben stijtQs,
the EXCEPTION/ERROR procedures are actlvated; when the executlon of an
OPEN statement is unsuccessful due to any other cause, the
EXCEPTION/ERROR procedures are not activated.

xii

If a file is in the OPEN status, and the execution of a CLOSE
statement is unsuccessful, the EX~EPTION/E~ROR procedures are activated.
If the file is in a closed status and a CLOSE statement is issued, the
E~CEPTION/~RROR procedures are not activated.

Within a declarative procedure, there must be no references to
nondeclarative procedures. In nondeclarative procedures, tnere must be
no references to declarative procedur-es,.except that P.LRFORM statements
may refer to procedure-names associated with a declarative procedure.

OPEN Statement

The OPEN statement initiates the processing of VSAl'-'l files.

r--,
I Format I
t--~
I I
I ~INPU~ file-name-l [file-name-2] •.. 1 I
I OPEN OUTPUT file-name-l [file-name-2] ••. ... I
I 1-0 file-name~l [file-name-2] •.• I
I EXTEND file-name--l {file-name-2] .•• . I .
I I l __ J

At least one of the options INPU~', OUTPUT, 1-0, or EXTBND must be
specified; there may be not more than one instance of each option
specified in one OPEN statement, although more than one file-name may De
specified with each option. The INPUT, OUTPUT, 1-0, and EXTEND options
may appear in the any order.

Each file-name designates a file upon which the OPEN statement is to
operate. Each file-name mus be deflned in an FD entry in the Data
Qivision, and must not name a sort file. The FD entry or the file must
be equivalent ~~nformati~p~ied when the file was defined.

The successful execution of an OPhN statement determines the
availability of the file and results in that file being in open mode.
Before successful execution of the OPEN statement for a given file, no
statement can be executed which refers explicitly or implicitly to that
file. The successful execution of the OPEN statement makes the
associated record area available to the program; it does not obtain or
release the first data record.

The INPUT option permits opening the file for input operations.

The 1-0 option permits opening the file for both input and output
operations.

The INPUT and 1-0 options are valid only for files which contain or
which have contained records, whether or not the files still contain any
records when the OPEN statement is executed. (That is, even if all the
~cQrds jn a file have been deleted, that fjle can still be opened INPUT
or I-a) The INPUT and 1-0 options must not be specified when the file
has not been already created.

The OUTPUT option permits opening the file for output operations.
This option can be specified when the file is being created. (The
OUTPUT option must not be specified for a file which contains records,
or which has contained records tnat have been deleted.>

The EXTENR option file for output operations.
i!JI ACCESS MODE SEQUE . 1 s .. When

EXTEND is specl ied, execution of th~ OPEN statement prepares the file
for the addition of records irrroediately following the last record in the

DOS~VS COBOL Considerations xiii

file. Subsequent WRITE statements add records to the file, as if the
file had been opened OUTPUT. The EXTEND option can be specified when a
file is being created; it can also be specified for a file which
contains records, or which has contained records that have been deleted. -

/ The OPEN mode, the ACCESS MOP?, and the fjJe QRGANIZATION determine
~ the valid input/output statements for a given VSAM file. Figure IV

shows permlssible combinations.

----------------------T-----------------------T---~-------------------,

I File Organization I 1 1
I nd OPEN mode 1 INDExED I SEQUENTIAL 1

1 ~-----T------T---T------+-----T------T---T------~
1 ACCESS mode 1 I I 1 I I I I I
land I/O verb I INPUTIOUTPUTI 1-01 EXTEND 1 INPUT I OUTPUT I 1-0 I EXTEND 1

1 SEQUENTIAL
I
I
I
I
I
I

I RANDOM
I
I
I
I
I
I
t
I DYNAMIC
I
I
I
I
I
I

OPEN

READ
WRITE
REWRITE
START
DELETE

OPEN

READ
WRITE
REWRITE
START
DELETE

OPEN

READ
WRITE
REWRITE
START
DELETE

PIP
I

P I
I P
1 -

P I
I -

1
I

P I-
I P
I -
I -
1 -

I
PIP

I
P I-

I P
1 -

P I
I -

PIP
I

P 1
- I P
P 1

P I
P I

I
I

P I
P I
P I
- I
P I

~
P I

I
P I
P I
P I
P I
P I

I P
I
I P
I -
I -
I -
I -

.1.

P

P

I P
I
I P
I -
I P
I -
I -

P

P

IP indicates that this input/output statement is permissible for this I
I combination of File Organization, Access Mode and OPEN Mode I
I I
1- indicates that this input/output statement is not permissible for I
I this combination'of File Organization, Access Mode, and OPEN Hode I L __ J

Figure IV. OPEN Statement Options and Permissible I/O Statements

A file may be opened for INPUT, OUTPUT, 1-0, or EXTEND in the same
program. After the first execution of an OPEN statement for a given
file, each subsequent execution of an OPEN statement must be preceded by
the successful execution of a CLOSE statement without the LOCK option.

Execution of an OPEN INPUT or OPEN 1-0 statement sets the Current
Record Pointer to the first record existing in the file. For indexed
files, the record with the lowest key value is considered the first
record in the file. If no records exist in the file, the Current Record
Pointer is set so that the first Format 1 READ statement executed
results in an AT END condition.

If the PASSWORD clause is soecified in the File-Control entry, the
password data item must contain the valid password before the OPEN
statement is executed. If the valid password is not present, the OPEN
statement is unsuccessful.

If the FILE STATUS clause is specified in the Fiie-Control entry, the
associated Status Key is updated when the OPEN statement is executed.

xiv

If an OPEN statement is issued for a file already in the open status ff

the EXCEPTION/ERROR procedure (if specified) for this file' is executed.

START Statement

The START statement provides a means for logical positioning within
an indexed file for subsequent sequential retrieval of records.

r--,
I ~~~ I
r--~
I J
I EQUAL TO I
I 1
I J
I I
I GREATER THAN I
I START file-name [KEY IS data-name] 1
I >]
I 1
I NOT LESS THAN I
I I
I NOT < I
I I
I [INVALID KEY imperative-statement] I
I I l __ J

When the START statement is executed6 the associated file must be
open in INPUT or 1-0 mode.

Fi~e-name must name an indexed V5AM file with sequential or dynarric
access. File-name must be defined in an FD entry in the Data Division.
File-name ~ n~ ~ t~ n~e 2!. ~s~ ~.

When the KEY option is not specified w the EQUAL TO relational
operator is implied. When the START statement is executed, the EQUAL TO
comparison is made between the current value in the RECORD KEY and the
corresponding key field in the file's records. The Current Record
Pointer is positioned to the logical record in the file who~,e key field
satisfies the comparison. ' ~

When the KEY option is specified, data-name may be either

• The RECORD KEY for this file, or

• Any alphanumeric data item subordinate to the RECORD KEY whose
leftmost character position corresponds to the leftmost character
position of the RECORD KEY (that iSg a generic key).

When the START statement is executed, the comparison specified in the
KEY relational operator is made between data-name and the key field in
the file's records. If the operands are of unequal s~ze. the comparison
proceeds as if the key field were truncated on the right to the length
of the data-name. All other numeric and nonnumeric comparison rules
apply. The Current Record Pointer is positioned to the first logical
record in the file whose key field satisfies the comparison.

If the comparison is not satisfied by any record in the file, an
INVALIp KEY condition exists, and the position of the Current Record
Pointer is undefined. (See "INVALID KEY Condition" in the preceding
Common processing Facilities Section.)

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the START statement is executed.

DOS/VS COBOL Considerations xv

@AD Sta temen1)

For sequential access, the READ statement makes available the next
logical record from a VSAM file. For random access, the READ statement
makes available a specified record from a VSAM file.

r--,
I Format 1]
~--i
I I
I READ file-name [NEXT] RECORD [INTO identifier])
I 1
I [AT END imperative-statement] I
I] L __ J

r--,
I Format 2 I
~--i
I I
I READ file-name RECORD [INTO identifier] J

J I
I [INVALID KEY imperative~statement] I
I 1 L __ J

When the READ statement is executed, the associated file must be open
in INPUT or 1-0 mode.

File~name must te defined in an FD entry in the Data Division.
File-name ~t ~t ~ t..h-e ~e £!. ~s..2Et ~

The INTO identifier option is described in the preceding Common
Processing Facilities Section.

Following the unsuccessful execution of a READ statementw the
contents of the associated record area and the position of the Current
Record Pointer are undefined.

If the FILE STATUS clause is specified in the File-Control entry. the
associated 5tatus Key is updated when the READ staterr.ent is executed.

FORMAT l;~~When ACCESS MODE SEOUENTIAL is specified or assumed for a
VSAM file, thlS format must be used. For such files the statement makes
available the next logical record from the file. For indexed VSAM
files, the NEXT option need not be specified; for sequential VSAM files
the NEXT option must not be specified.

When ACCESS MODE DYNAMIC is specified for indexed VSAM files, the
NEXT option must be specified for sequential retrieval. For such files.
the READ NEXT statement makes available the next logical record from the
file.

Before a Format 1 READ statement is executed. the Current Record
Pointer must be positioned by the successful prior execption of an OPEN~
START, or READ statement. When the Format 1 READ statement is executed.
the record indicated by the Current Record Pointer is made available.
For sequential VSAM files, the next record is the succeeding record in
logical sequence. For a sequentially accessed indexed VSAM file. the
next record is that one having the next higher RECORD KEY in collating
sequence.

If the position of the Current Record Pointer is undefined when a
Format 1 READ stateIT1ent is issued, the execution of the staterrent is
unsuccessful.

If, when a Format 1 READ statement is executed, no next logical
record exists in the file, the AT END condition exists. The execution
of the READ statement is considered unsuccessful.

When the AT END condition is recognized, the following actions are
taken in the following order:

1. If the FILE-STATUS clause is specified in the File-Control entry,
the Status Key is updated to indicate the AT END condition.

2. If the A'I' Er-iD option of the READ statement is specified, control is
transferred to the AT END imperative-statement.

3~ If the AT END option is not specified r and a USE AFTER
EXCEPTION/ERROR procedure for this file is specified, either
explicitly or implicitly, the USE Frocedure is execut~d.

For files with SEQUENTIAL organization, when the AT END condition
been recognized, a READ statement for this file must not be executed
until a successful CLOSE statement followed by a successful OPEN
statement have been executed for this file.

For files with INDEXED organization, when the AT END condition is
recognized, a Format 1 READ statement for this file must not be executed
until one of the following has been successfully executed:

• A CLOSE statement followed by an OPEN statement

• A Format 2 READ statement (dynamic access)

• A START statement

If a sequential VSM-.1 file with the OPTIONAL clause is not present at
the time the file is opened, execution of the first READ statement
causes the AT END condition to occur. Standard end-of-file procedures
are not performed.

FORMAT 2: This format must be used for indexed VSAM files in random
access mode, and for random record retrieval in the dynamic access mode.

Execution of a Format 2 READ statement causes the value in the RECORD
KEY to be compared with the values contained in the corresponding key
field in the file's records until a record having an equal value is
found. The Current Record Poin'ter is positioned to 'this record, which'
is then made available.

If no record can be so identified, an INVALID KEY condition exists,
and execution of the READ statement is unsuccessful. (See nINVALID KEY
Conditionn in the preceding Common Processing Facilities Section.)

(WRITE stateme~

The WRITE statement releases a logical record to an OUTPUT, 1-0, or
EXTEND file.

r--,
I Format I
~----------------------,--------:...:------------,-----.------:.---------------~
I 'I
I h~ITE record-name [FROM identifier] I
I I
I [INVALID KEY imperative-statement] I
I I L ___ . ___________ J

DOS/VS COBOL Considerations xvii

when the WRITB statement is executed, the associated file must be open
in OUTPUT, 1-0, or EXTENG mode.

Record-name must De the ndme of a logical record in the File Section
of the Data Division. Record-naITe may be qualified. Record-name must
not be associatej with a sort file.

The maximum record size for the file is established at the time the
file is created, and must not subsequently be chanced.

Execution of the wRITE statement releases a logical record to the
file associated with record-name.

t7 After the WRITE s ~te ent is executed, tne~l~o~·~"-Q~e~c~o~r~d~=i~s~n~o
~~ ~a2!e~ record-name,

Tne associated file is named in a SAME RECORD AR~A clause (in which
case the record is also available as a record of the other files
named in the SAME RECORD AREA clause), or

The WRITE statement is unsuccessful due to a boundary violation.

In either of these two cases, the logical record is 3till available in
record-name.

~lIf the FROM identifier option is specified, then after the WRITE
s~tement is executed, the information is still available in identifier,
even though it may not be in record-name. (See "INTO/FROM Identifier
8ption" in the preceding Common Processing Facilities Section.)

Record Pointer is not affected b execution of the

The number of character positions required to store tne record in a
VSAM file mayor may not be the same as the number of character
positions defined by the logical description of that record in the COBOL
program.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status hey is updated when the WRITE statement is executed.

SEQUENTIAL VSAM FILES: ~ IN~D W op.tion m..1!§.t ~ ~ specif ied.

When an attempt is made to write beyond the externally-defined
boundaries of the file, the execution of the WRITE statement is
unsuccessful, and an EXCEPTION/ERROR condition exists. The contents of
record-name are unaffected. If an explicit or implicit bXCEPTION/ERROR
procedure is specified for the file, the procedure is then executed; if
no such procedure is specified, the results are undefined.

INDEXED VSAM FILES: Before the WRITE statement is executed, tne
contents of the RECORD KEY must be set to the de~ired value. Note that
the value contained in any specific RECORD KEY must be unique 'within the
records in the file.

When the WRITE statement is executed, the contents of the RECORD KEY
are utilized so that sUbsequent access to the record can be based on the
RECORD KEY.

If sequential a~~ mode is specified.. or implied, records must be
released to the file· ascending order of RECOR~ KEY.

If random or dynamic access is specified, records may be released in
any program-specified order.

IIWALID KEY Option: The INVALID KEY condition exists when any of the
following conditions occur:

xviii

1

.. .- 'I Jtlt.e.r
• For an OUTPUT or. EXTEND f£le in $equential access mode~ when the

value of the RECORD KEY is not greater than the value of tne RhCOHD
KEY for the previous record.

• For an 1-0 or OUTPUT file in random or dynamic access mode, when the
value of the RECORD KEY is equal to the value of a RECORD KEY for an
already existing record.

• When an attempt is made to write beyond the externally-defined
boundaries of the file.

When the INVALID KEY condition is recognized, the execution of the WRITE
statement is unsuccessful, the contents of record-name' are unaffectEo.,
and the Status Key, if specified, is set to a value to indicate the
cause of the condition. (See "INVALID KEY Condition" and "Status Key"
in the preceding Common Processing Facilities Section.)

~WRITE Stateme~

The REWRITE statement logically replaces an existing record in a VSll·:
file.

r--,
I Format I
~--~
I I
I REWRITE record-name [FRON identifier] I
I I
I [INVALID KEY imperative-statement] I
I I l ___ ----_____________ j

~ When the REWRITE statement is executed, the associated file must be
c=72Een in 1-0 mode. -

Record-name must be the name of a logical record in the File Section
of the Data Division. Record-name must not be associated with a sort
file. Record-name may be qualified.

Execution of the REWRITE ,statement replaces ,.·an exist.ing record in the
ile with the information contained in record-name. For a sequential

VSAM fi~, the number qf character positions in record-name ~e9ual
he number of character positions in the record being replaced. For an

indexed VSAM flle, the number of character positions in record-name need
the number of character positions in the record being ----

After successful execution of a REWRITE statement, the logical record
is no longer available in record-name unless the associated file is
named in a SAME RECORD AREA clause (in which case the record is also
available as a record of the other files named in the SAME RECORD AREA
clause).

The Current Record Pointer is not affected by execution of the
REWRITE statement.

If the FILE STATUS clause is specified in the File-Control entry, the
associated Status Key is updated when the REWRITE statement is executed.

For files in the sequential access mode, the last prior input/output
statement executed for this file must be a successfully executed READ
statement. When the REWRITE statemept is executed, the record retrieved
by that READ statement is logically replaced.

DOS/VS COBOL Considerations xix

.. , "

SEOUENTIAL FILES: The INVALID KEY option ~ IJ.21 ~ specified for this
type of file. An EXCEPTION/ERROR declarative procedure may be
specified.

INDEXED FILES: For an indexed file in the sequential access mode, the
record to be replaced by the REWRITE statement is identified by the
current value of the RECORD KEY. When the REWRITE statement is
executed, the RECORD KEY must contain the value of the RECORD KEY for
the last-retrieved record from the file.

For an indexed file in random or dynamic access mode, the record to be
replaced is the record identified by the value of the RECORD KEY.

The INVALID KEY condition exists when:

• The access mode is sequential, and the value contained in the RECORD
KEY of the record to be replaced does not equal the RECORD KEY of
the last-retrieved record from the file •

• The value contained in the RECORD KEY does not equal that of any
record in the file.

If either condition exists, the execution of the REWRITE statement is
unsuccessful, the updating operation does not take place, and the data
in record-name is unaffected. (See "INVALID KEY Condition" in the
preceding Com~on Processing Facilities Section.)

DELETE Statement

The DELETE statement logically removes a record from an indexed VSAM
file.

r--,
I Format I
~--~
I I
I DELETE file-name RECORD I
I I
I [INVALID KEY imperative-statement] I
I I L __ J

When the DELETE statement is e*ecuted, the %ssocjated fi.e must be
open in 1-9 mode

File-'name'must be defined in an FD entry in the Data Division" and
must be the name of an indexed VSAM file.

For a file in sequential access mode, the INVALID KEY option must not
be specified.

For a file in random or dynamic access mode, the INVALID KEY option
may be specified.

For a file in sequential access mode, the last prior input/output
statement must be a successfully executed READ statement. When the
DELETE statement is executed, the system logically removes the record
retrieved by that READ statement. The current record pointer is not
affected by execution of the DELETE statement.

For a file in random or dynamic access mode, when the DELETE
statement is executed, the system logically removes the record
identified by the contents of the associated RECORD KEY data item. If
the file does not contain the record specified by the key, an INVALID
KEY condition exists. (See "INVALID KEY Condition" in the preceding
Common Processing Facilities section.)

xx

After successful execution of a DELETE statement, the record is
logically removed from the file and can no longer be accessed.
Execution of the DELETE statement does not affect the contents of the
record area associated with file-name.

If the FILE STATUS clause is specified in the File-Control entryu the
associated Status Key is updated when the DELETE statement is executed.

~SE State~

The CLOSE statement terminates the processing of VSAM files.

r--,
I Format I
~--i
I 1
I ~ file-name-l [WITH LOCK]]
I, I

I [file-name-2 [WITH LOCK]] . . L
I I l __ J

A CLOSE statement may be executed only for a file in an open mode.
After successful execution of a CLOSE statement. the record area
associated with the file-name is no longer available. Unsuccessful
execution of a CLOSE statement leaves availability of the record area
undefined.

Each file-name designates a file upon which the CLOSE statement is to
operate.,

When the WITH LOCK option is not specified, standard system closing
procedures are performed. This file may be opened again during this
execution of the object program a

When the WITH LOCK option is specified. standard system closing
procedures are performed; the compiler ensures that this file cannot be
opened again during this execution of this object program.

After a CLOSE statement is successfully executed for the file, an
OPEN statement for that file must be executed before any other
input/output statement can refer explicitly or implicitly to the file.

If a CLOSE statement is not executed for an open file before a STOP
RUN statement is executed, results are unpredi~table.

If an input sequential VSAM file is described in the File-Control
entry as OPTIONAL and the file is not present during this execution of
the object program, standard end-of-file processing is not performed ..

If the FILE STATUS clause is specified in the File-Control entryu the
associated Status Key is updated when the CLOSE statement is executed.

If the file is in an open status and the execution of a CLOSE
statement is unsuccessful, the EXCEPTION/ERROR procedure (if specified)
for this file is executed.

(MERGE FACILITY1

The Merge Facility gives the COBOL user access to the merging
capabilities of the Program Product DOS/vS Sort-Merge (Program Number
5746-SM1). Through COBOL, the user can combine two or more identically

DOS/VS COBOL Considerations xxi

ordered input files into one output file according to keyes) contained
in each record. More than one merge operation can be performed during
one execution of the COBOL program. Special processing of output
records can also be specified.

There are special considerations in the Environment Division. the
Data Division. and the Procedure Division for the Merge Facility.

ENVIRONMENT DIVISION

Each input file and the resulting merged output file must be
described in a separate File-Control entry. and each must be a standard
sequential file, or a VSAM file with sequential access. The merge file
must have a separate File-Control entry, as described in the following
paragraphs.

File-Control Entry forferge F11e¢)

The File-Control entry names the merge file and associates it with a
storage medium.

r--,
I General Format I
~--i
I)
I {SELECT file-name J

I]
I ASSIGN TO system-name-l [system-name-21 •••• }... J

I I L _______________________________________ ------_________ ----------______ J

Each File-Control entry for a merge file must begin with a SELECT
clause. and be immediately followed by an ASSIGN clause. There may be
no other clauses.

SELECT Clause: The SELECT clause names each merge file in the program.
Each file described by an SD entry in the Data Division must be named
once and only once as a file-name following the key word SELECT.

ASSIGN Clause: The ASSIGN clause is required. System-name has the same
rules of formation as it has for sort work files; however, the fixed
SYSnnn and name fields (SYSOOl and SORTWK1. etc.) are treated as
documentation:- (See "Assignment of Sort Work units" in the Sort Feature
chapter.)

If an ASCII-collated merge is to be performed, C must be specified in
the organization field. (See "Appendix E: ASCII Considerations.")

I-O-Control Paragraph

The optional I-a-Control Paragraph specifies the storage area to be
shared by different files.

xxii

r--~---------------,
I General Format]
~--~
II

I SAME {~g:;-MERGEl AREA FOR I
I RECORD]
I I
I file-name-l [file-name-2] ••• • I
I I L _____________________________________ ----------------________________ -J

When the SAME SOR~ AREA or SORT-MERGE AREA clause is specified, at
least one file-name specified must name a sort or merge file. Files
that are not sort or merge files may also be specified. The following
rules apply:

• More than one SAME SORT AREA or SORT-MERGE AREA clause may be
specified; however, a sort or merge file must not be named in more
than one such clause.

• If a file that is not a sort or merge file is named in both a SAME
AREA clause and in one or more SAME SORT AREA or SORT-MERGE AREA
clauses, all of the files in the SAME AREA clause must also appear
in all of the SAME SORT AREA or SORT-MERGE AREA clausesG

• Files named in a SAME SORT AREA or SORT-MERGE AREA clause need not
have the same organization or access.

• Files named in a SAME SORT AREA or SORT-MERGE AREA clause that are
not sort or merge files do not share storage with each other unless
the user names them in a SAME AREA or SAME RECORD AREA clause.

The SAME SORT AREA or SORT-MERGE AREA clause specifies one storage
area available for merge operations by each named merge file. That is,
the storage area allocated for one merge operation is available for
reuse in another merge operation.

The function of the SAME SORT AREA or SORT-MERGE AREA clause is to
optimize the assignment of storage areas to a given MERGE statement.
The system handles storage assignment automatically; hence, the SORT
AREA or SORT-MERGE AREA options, if specified, are treated as
documentation ..

when the SAME RECORD AREA option is specified, the named files,
including any sort or merge files, share only the area in which the
current logical record is processed. Several of the files may be open
at the same time, but the logical record of only one of these files can
exist in the record area at one time.

DATA DIVISION

In the Data Division, the user must include file desc~iption entries
for each merge input file and for the merged output file, merge-file
description entries for each merge file, and record description entries
for each.

cJier~-Fiii)DescriPtion Entry

A merge-file description entry must appear in the File section for
each merge file named in a File-Control entry.

DOS/VS COBOL Considerations xxiii

SD Entry for r~erqe (DOS/VS)

r--,
I General Format I
r---~

SD merge-file-name

[RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS]

{

rtECORD IS }
[DATA data-name-i [data-name-2] •••]

RECORDS ARE

[SORT-OPTION IS data-name-3].

J
I
J
1
~
J
]
I
I
1
I

--~

The level indicator SD identifies the beginning of the merge-file
description. and must precede the merge-file-name.

The clauses following merge-file-name are optional. and their order
of appearance is not significant.

One or more record description entries must follow the merge-file
description entry. but no input/output statements may be executed for
the merge file.

Merge-File-Name: The merge-file-name must be the same as that specified
in the merge file File-Control entry. It is also the name specified as
the first operand in the MERGE statement.

RECORD CONTAINS Clause: The size of each data record is completely
defined in the record description entry; therefore. this clause is never
required. When it is specified. the same considerations apply as in its
Data Division description.

DATA RECORDS Clause: This clause names the 01-level data records
associated with this SD entry. This clause is never required. and the
compiler treats it as documentation. When it is specified. the same
considerations apply as in its Data Division description.

SORT-OPTION Clause: This clause specifies that at object time an OPTION
control statement for the Sort/Merge program will be specified in the
data-name-3 area. Rules for specification are given in the DOS/VS Sort
Feature description later in this chapter.

PROCEDURE DIVISION

The Procedure Division contains a MERGE statement describing the
merge operation, and optional output proceduresu The procedure-names of
the output procedures are specified within the MERGE statement. More
than one MERGE statement can be specified, appearing anywhere except in
the declaratives section or in an input or output procedure for a SOR~
or MERGE statement.

C3 Statemen~
The MERGE statement combines two or more identically sequenced files

using specified keyes). and makes records available to an output file in
merged order.

xx~v

r--,
I I
I .-Ib Format I
~-~---~

~ file-naffie-l -
ON

{

ASCENDING ~
KEY

DESCENDING/
data-name-l [data-name-2] ..•

(ASCENDING)
[ON~ \ KEY data-name-3 [data-name-4] •..] ••.

~ DESCENDING j

USING file-name-2 file-name-3 [file-name-4] •••

{

GIVING file-name-5 }

OUTPUT PROCEDURL IS section-name-l [THRU section-name-2]

No file-name specified in the MERGE statement nlay be open at the time
the statement is executed. The files 'are automatically opened and
closed by the merge operation; all implicit functions are performed,
such as execution of system procedures or any associated declarative
procedures.

No file-name may be specified more than once in one Ivll:.RGi: statement.

Only one file-name from a mUltiple file reel may appear in one ~E;RGE
statement.

FILE-NAME-l: This file-name represents the merge file, and must be
described in an SD entry in the Data Division.

ASCENDING/DESCENDING KEY Option:, These options specify whether records
are to be merged in ascending or descending sequence, based on one or
more merge keys.

Each data-name represents a KEY data item, and must be described in
the record description(s) associated with the SD entry for file-name-l,
the merge work file. The following rules apply:

• if file-name-l has more than one associated record description
entry, the KEY data items need be described in only one such record
description

• each data-name may be qualified; it may not De subscripted or
indexed (that is, it may not contain or be contained in an entry
that contains an OCCURS clause)

• KEY data items must be at a fixed displacement from the beginning of
the record (that is, no KEY data item may follow an OCCURS DEPENDING
ON clause in the record description)

• a maximum of 12 keys may be specified; the total length of all keys
must not exceed 256 bytes

• all key fields must be located within the first 4092 bytes of the
logical record

The KEY data items are listed in order of decreasing significance, no
matter how they are divided into KEY phrases. Using the format as an
example, data-name-l is the most significant key, and records are rr,ersed
in ascending or descending order o~ that key; data-name-2 is the next
most significant key; within data-name-l, records are merged on

DOS/VS COBOL Considerations xxv

data-name-2 in ascending or descending order. Within data-name-2,
records are merged on data-name-3 in ascending or descending order;
within data-name-3, records are merged on data-name-4 in ascending or
descending order, etc.

When ASCENDING is specified, the merged sequence is from the lpwest
to the highest value of the contents in the KEY data item accoiding to
the collating sequence used.

When DESCENDING is specified, the merged sequence is from the highest
to the lowest value of the contents in the KEY data item according to
the collating sequence used.

Figure V gives the collating sequence used for each category of KEY
data item.

r------------------------------T---------------------------------------,
I KEY Category I Collating Sequence I

~------------------------------+---------------------------------------~
I Alphabetic I I

I Alphanumeric I I
I Alphanumeric Edited I EBCDIC (non-algebraic and unsigned) I

I Numeric Edited I I

~------------------------------+---------------------------------------~
I Numeric I Algebraic (signed) I L ______________________________ i _______________________________________ J

Figure V. KEY Item Categories and Collating Sequences

The rules for comparison are those for the relation condition (see
"Relation Condition II in the Conditions chapter of the Procedure
Division). If two or more KEY data items test as equal, the merge
operation makes the records available in the order that the input
file-names are specified in the USING option.

USING Option: All file-names listed in the USING option represent
identically ordered input files that are to be merged. Two through
eight file-names may be specified.

GIVING Option: File-name-5 is the name of the merged output file. When
this option is specified, all merged records made available from the
merge operation are automatically written on the output file.

OUTPUT PROCEDURE Option: When this option is specified, all output
records from the merge operation are made available to the user (through
a RETURN statement) for further processing.

When an output procedure is specified, control passes to the
procedure during execution of the MERGE statement. Before entering the
output procedure, the merge operation reaches a point at which it can
provide the next merged record when requested. The RETURN statement in
the output procedure is a request for the next merged record. (See the
RETURN statement description in the Sort Feature chapter.) An output
procedure must contain at least one RETURN statement to make merged
records available for further processing.

Control may be passed to an output procedure only when a related
MERGE statement is being executed.

The output procedure must not form part of any other procedure.

If section-name-l alone is specified, the output procedure must
consist of one contiguous Procedure Division section.

If section-name-l THRU section-name-2 is specified, the output
procedure consists of two or more contiguous Procedure Division
sections; section-name-l specifies the first such section;
section-name-2 specifies the last such section.

xxvi

", < ~.." " • ..' " • , ; .:,':.f •

~:~~~":~~R ""t?~cis~~s~"~~: _J J)q.s/v~)

Control must not be passed to the output procedure unless a related
MERGE or SORT statement is being executed, because RETURN statements in
the output procedure have no meaning unless they are controlled by a
MERGE or SORT statement. The output procedure may consist of the
processing requests necessary to select, modify, or copy the records
being made available, one at a time, from the merge operation. The
following restrictions apply:

• There may be no explicit transfers of control outside the output
procedure. ALTEH, GO TO, and PERFORM statements within the
procedure must not refer to procedure-names outside the output
procedure. However, an implicit transfer of control to a
declarative procedure is allowed.

• No SORT or MERGE statements are allowed.

• The remainder of the Procedure Division must not transfer control to
points inside the output procedure; that is, ALTER, GO TO, and
PERFORM statements in the remainder of the Procedure Division must
not specify procedure-names within an output procedure.

The compiler inserts an end-of-processing transfer at the end of th~
last output procedure section. When end-of-processing is recognized,
the merge operation is terminated, and control is transferred to the
next statement following the MERGE statement.

SEGMENTATION RESTRICTIONS: The MERGE statement may be specified in a
segmented program. However, the following restrictions apply:

• If the MERGE statement appears in the fixed portion, then any
associated output procedure must be:

- completely within the fixed portion, or

- completely within one independent segment

• If the MERGE statement appears in an independent segment, then any
associated output procedure must be:

- completely within the fixed portion, or

- completely within the same independent segment as the ~£RGE
statement

3886 OCR PROCESSING L J
Df)c."",e n r re. .tle.r

The IBM 3886 OCR (Optical Character Reader) Model 1 is a general
purpose online unit record device that satisfies a broad range of data
entry requirements. The 3886 OCR can significantly reduce time and ccst
factors, by eliminating input steps in both new and existing
applications; a keying process is no longer necessary, since the 3886
OCR can read and recognize data created by numeric hand printing,
high-speed computer printing, typewriters, and preprinted forms.

The IBM 3886 OCR uses several new technologies which make it a
compact, highly reliable, modular device. A powerful microprogrammed
recognition and control processor performs all machine control and
character recognition functions, and enables the 3886 OCR to perform
sophisticated data and blank editing.

The 3886 OCR accepts documents from 3 x 3 to 9 x 12 inches in size.
Under program control, it can read documents line-by-line, transmitting
their contents line-by-line to the CPU. Additional facilities, all
under program control, include: document marking, line marking,
document ejecting (with stacker selection), and line reading (of current
line).

DOS/VS COBOL Considerations xxvii

DOS/VS COBOL support for the 3886 OCR is through an object-time
subroutine in the COBOL lihrary, invoked through COBOL CALL statements.
By means of parameters passed to the subroutine, the following
operations are provided: open and close the file, read a line, wait for
read completion, mark a line, mark the current document, eject the
current document, and load a format record. After each operation, a
status indicator is passed back to the COBOL program, so that any
exceptional condition can be tested.

Through a fixed format OCR file information area in the
Working-Storage or Linkage Section, the COBOL user defines storage for
the OCR parameters. Of these parameters, the COBOL programmer is
responsible for providing a file identifier, a format record identifier,
an operation code, and (depending on the operation) a line number, line
format number, mark code, and stacker number. After completion of each
operation a status indicator is returned; after completion of a read
operation, header and data records are also returned.

DOS/VS provides two macro instructions for defining documents. The
DFR macro instruction defines attributes common to a group of line
types. The DLINT macro instruction defines specific attributes of an
individual line type. The DFR and associated DLINT macro instructions
are used in one assenbly to build a format record module. The format
record must be link-edited into the core image library so that it can be
loaded into the 3886 OCR when the file is to be processed. The forRat
record indicates the line types to be read, attributes of the fields in
the lines, and the format of the data records to be processed.

Additional information on the IBM 3886 OCR can be found in the following
publications:

IBM DOS/vS COBOL Compiler and Library Programmer's Guide, Order
No. SC28-6478

IBM 3886 Optical Character Reader

General Information Manual, Order No. GA21-9146

Input Document Design Guide and Specifications, Order No. GA21-9148

DOS/VS Program Planning Guide for IBM 3886 Optical Character
Reader Modell, Order No. GA21-S099

DOS/VS Supervisor and I/O Macros, Order No. GC33-S373

FIPS FLAGGER

The FIPS (Federal Information Processing Standard) is a compatible
subset of full American National standard COBOL, X3.23-1968. The FIPS
itself is subdivided into four levels: low, low-intermediate,
high-intermediate, and full. Any program written to conform to the FIPS
must conform to one of those levels of FIPS processing. Processing
modules included in Full American National Standard COBOL, and those
included in the four levels of the FIPS, are shown in Figure VI.

xxviii

r-------------T----------T-----------------T----------------T----------,
I American I I I I I
I National I I I I 1
I standard I I I I J
I COBOL IFull FIPS 1 High-intermediate I Low-intermediate I Low FIPS 1
I Processing IProcessinglFIPS Processing IFIPS Processing IProcessingl
I Modules I Modules \ Modules jModules I Modules 1
~-------------+----------+-------~---------+----------------+----------~
I 2NUC 1112 I 2NUC 1,2 I 2NUC 1,2 l 2NUC 1,2 I 1NUC 1,2 I
I (Nucleus) I I I) 1
I I I 1 I I
I 3TBL 1" 3 I 3TBL 1,3 I 2TBL 1,3 I 2TBL 1,3 I 1 TBL 1, 3 l
I (Table I I J I 1
I Handling) I I 1 i 1
I I I I I I
I 2SEQ 1,,2 I 2SEQ 1,2 I 2SEQ 1,2 1 2SEQ 1,2 I lSEQ 1,2 1
I (Sequential I I J I I
I Access) I I 1 1 1
I I I I I]
I 2RAC 0" 2 I 2RAC 0, 2 I 2RAC 0, 2 ~ 2RAC 0, 2 l]
I (Random I I I I 1
I Access) I I 1 1)
I I 1 I I]
I 2SRT 017 2 I 2SR'T 0,2 I lSR'l' 0,2 J 11
I (Sort) I I til
I I I I I J
I 2RPW 0",2 I I l I I
I (Report I I ~ I l
I Writer) I I ! I I
I I I] I 1
I 2SEG 0",2 I 2SEG 0,2 I lSEG 0,2 I lSEG 0,2 I f
I (Segmenta- I I 1 I]
I tion) I I J I 1
I I I I I 1
I 2LIB 0,,2 ! 2LIB 0,2 I 1LIB 0,2 I lLIB 0,2 I I
I (Library) I I 1 I I L _____________ ~ __________ ~ _________________ ~ ________________ ~ __________ J

Figure VI. The Four Levels of FIPS Processing

The FIPS Flagger identifies source clauses and statements that do not
conform to the Federal standard. Four levels of flagging, to conform to
the four levels of the FIPS, are provided. The following lists identify
COBOL source elements flagged for each levelQ

FULL FIPS FLAGGING: When flagging for the full FIPS level is specified,
the following elements of the COBOL source, if specified, are
identified.

GLOBAL ITEMS

Single quote instead of double
Floating Point Literals

special Register LINE-COUNTER
Special Register PAGE-COUNTER
Special Register CURRENT-DATE
Special Register TIME-OF-DAY
Special Register COM-REG
Special Register SORT-RETURN
Special Register SORT-FILE-SIZE
Special Register SORT-CaRE-SIZE
Special Register SORT-MODE-SIZE
Special Register NSTD-REELS
Special Register WHEN-COMPILED

Comment Lines with * in Column 7
The SUPPRESS option of the COpy statement

DOS/VS COBOL Considerations xxix

IDENTIFICATION DIVISION Items

ID abbreviation for IDENTIFICATION
Accepting Identification Division Paragraphs in any order
Accepting Program Name in quotes

ENVIRONMENT DIVISION Items

Optional CONFIGURATION SECTION and Paragraphs
SOl through S05 Function~names in SPECIAL-NAMES paragraph

Allowing any order for optional SELECT clauses
w, R, or I as Organization indicator in System-name
Ootional omission of IS in-ACCESS MODE IS Clause
Optional omission of IS in ACTUAL KEY IS Clause
ACTUAL-KEY clause for sequential access of a direct file
ACTUAL-KEY clause for sequential creation of a direct File
NOMINAL KEY Clause in FILE-CONTROL paragraph
RECORD KEY Clause in FILE-CONTRCL Paragraph
TRACK-AREA Clause in FILE-CONTROL Paragraph
The COpy statement in the FILE-CONTROL paragraph

Short form of RERUN ON Clause
Interchangeable use of REEL and UNIT in RERUN ON Clause
APPLY Clause in I-O-CONTROL paragraph
Allowing I-O-CONTROL paragraph clauses in any order

RESERVE integer AREAS clause (as distinguished from the RESERVE
ALTERNATE AREAS clause)

ORGANIZATION clause
ACCESS MODE DYNAMIC clause
PASSWORD clause
FILE STATUS clause
SAME SORT-MERGE AREA clause

DATA DIVISION Items

xxx

REPORT SECTION of DATA DIVISION
RD level indicator
The DATA RECORDS clause for a REPORT FD
LINKAGE SECTION of DATA DIVISION

Allowing unequal level numbers to belong to the same group
RECORDING MODE Clause of FD entry.
REPORT Clause of FD Entry
LABEL RECORDS CLAUSE on Sort File Description
SORT-OPTION clause on Sort File Description
Optional BLOCK CONTAINS for DIRECT Files when RECORDING MODE IS S
Accepting name of preceding entry when using multiple redefinition
External Floating-point picture
The SIGN Clause
Allowing the SYNCHRONIZED Clause at the 01 level
COMPUTATIONAL-1 option of the USAGE Clause
COMPUTATIONAL-2 option of the USAGE Clause
COMPUTATIONAL-3 option of the USAGE Clause
COMPUTATIONAL-4 option of the USAGE Clause
Nested OCCURS DEPENDING ON clauses
Allowing SYNCHRONIZED with USAGE IS INDEX
The COpy statement in the Working-Storage Section
DISPLAY-ST option of the USAGE Clause and associated PICTURE
Use of VALUE Clause as Comments in File Section for other than

Condition-name entries
COpy REDEFINES in Working-Storage Section

PROCEDURE DIVISION Items

USING clause on PROCEDURE DIVISION
THEN used to separate statements
Allowing omission of section header at beginning of Procedure

Division
The START statement
The REWRITE statement
The TRANSFORM statement

The GENERATE statement
The INITIATE statement
The TERMINATE statement

The DEBUG statement
The READY TRACE statement
The RESET TRACE statement
The ON statement
The EXHIBIT statement
The CALL statement
The ENTRY statement
The GO BACK statement
The EXIT PROGRAM statement

The USE AFTER STANDARD EXCEPTION sentence
The READ NEXT statement
The DELETE statement
The MERGE statement
The EXTEND option for the OPEN statement and Error Procedures
The SERVICE RELOAD statement

The unary plus operator
Allowing omission of the space following the unary operator
OTHERWISE in IF statements
The GO TO MORE-LABELS statement
GIVING option of USE sentence
USE BEFORE REPORTING sentence
Allowing omission of the INVALID KEY option for READ and WRITE

statements
The AT END-OF-PAGE or EOP option of the WRITE statement
The WRITE AFTER POSITIONING statement
The FROM SYSIPT or CONSOLE option of the ACCEPT statement
The UPON CONSOLE, SYSPUNCH w SYSPCH. or SYSLST option of the DISPLAY

statement

The BASIS statement
The INSERT statement
The DELETE statement

The EJECT statement
The SKIPl statement
The SKIP2 statement
The SKIP3 statement

HIGH-INTERMEDIATE FIPS FLAGGING: When flagging for the
high-intermediate FIPS level is specified, all elements included in the
preceding list are flagged, plus the following additional COBOL source
elements:

GLOBAL ITEMS

The REPLACING option of the COPY statement

DOS/VS COBOL Considerations xxxi

ENVIRONMENT DIVISION

SEGMENT-LIMIT clause in OBJECT-COMPUTER paragraph
SORT option of SAME Clause

DATA DIVISION

The ASCENDING and DESCENDING KEY option of the OCCURS clause
The DEPENDING ON option of the OCCURS clause

PROCEDURE DIVISION

All sections with the same priority number must be together
All segments with priority number 1-49 must be together

The SEARCH statement
More than one SORT statement
The FROM option of the RELEASE statement
The INTO option of the RETURN statement

LOW-INTERMEDIATE FIPS FLAGGING: When flagging for the low-intermediate
FIPS level is specified, all elements included in the preceding lists
are flagged, plus the following additional COBOL source elements:

ENVIRONMENT DIVISION

The OR option of the SELECT sentence

DATA DIVISION

SD level indicator

PROCEDURE DIVISION

One or more SORT statements
Only one STOP RUN statement in the non-declarative portion
The RETURN statement
The RELEASE statement

LOW FIPS FLAGGING: When flagging for the low FIPS level is specified,
all elements included in the preceding lists are flagged, plus the
following additional COBOL source elements:

GLOBAL ITEMS

Comma and semicolon as punctuation
Datanames which begin with non-alphabetic character
continuation of words and numeric literals

Figurative constant ZEROES
Figurative constant ZEROS
Figurative constant SPACES
Figurative constant HIGH-VALUES
Figurative constant LOW-VALUES
Figurative constant QUOTES
Figurative constant ALL literal
The COpy statement

IDENTIFICATION DIVISION

DATE-COMPILED Paragraph

xxxii

ENVIRONMENT DIVISION

RESERVE ALTERNATE AREAS Clause in File-Control Paragraph (SELECT
sentence)

OPTIONAL in SELECT Clause
ACTUAL KEY Clause in File-Control Paragraph
FILE-LIMITS ARE Clause
Data-name instead of literal in FILE-LIMIT IS clause
Multiple extents in FILE-LIMIT IS clause
RANDOM option in ACCESS MODE IS Clause

RECORD and file-name-2 option of SAME Clause
MULTIPLE FILE TAPE Clause in I-O-CONTROL Paragraph

DATA DIVISION

Level numbers 11 - 49
Level numbers 1 - 9 (i-digit)
Level number 66 RENAMES clause
Level number 88 Condition Name
Nesting of REDEFINES Clause
VALUE Clause as Condition-name entry
Integer-l TO option of BLOCK CONTAINS (RECORD or CHARACTER) Clause
Data-name option on LABEL RECORDS Clause
Data-name option of VALUE OF Clause
Multiple Index-names for OCCURS clause

PROCEDURE DIVISION

+, -, *, /, and **
>, <, and = in relationals
Connectives OF, IN, " D, AND, OR, and NOT
DECLARATIVES, END DECLARATIVES and USE sentence
Qualification of names
priority number on Section header
The COMP~TE verb
The SEEK Statement
The Sign condition (POSITIVE, NEGATIVE, or ZERO)
Condition-name condition
Compound conditions
Nested IF statements
CORRESPONDING option (ADD, SUBTRACT, and MOVE)
Multiple results of ADD and SUBTRACT statements
REMAINDER option of DIVIDE statement
GO TO without object (used with ALTER)
Multiple operands of ALTER statement
UNTIL Condition and VARYING form of PERFORM
REVERSED and NO REWIND options of OPEN statement
Multiple file-names in OPEN statement
INTO option of READ statement
INVALID KEY option of READ statement
FROM option of WRITE statement
ADVANCING identifier LINES/mnemonic/name form of WRITE
The FROM option of the ACCEPT statement
The UPON option of the DISPLAY statement
The WITH NO REWIND or LOCK option of the CLOSE statement
Multiple file-names in a CLOSE statement
Three levels of subscripting
Multiple Index-names/identifier in SET statement
The UP BY and DOWN BY option of the SET statement

DOS/VS COBOL Considerations xxxiii

MISCELLANEOUS FILE PROCESSING CONSIDERATIONS

The following ite~s, concerning standard sequential, direct, and
indexed file processing, as well as the sort feature, apply only for
DOS/VS COBOL.

File Processing Summary -- New Devices

The file processing techniques available for the DOS/VS COBOL devices
are summarized in Figure VII.

r-----------------T----------------T-----------------T-----------------,
IDOS Organization I Device I ACCESS I Organization I
~-----------------+----------------+-----------------+-----------------~

DTFCD I 5425 [SEQUENTIAL] Standard J
I Sequential I
I J

DTFPR I 3203/5203, (SEQUENTIAL] Standard I
I 5425 Sequential I
I I

DTFDU I 3540 [SEQUENTIAL] Standard I
I Sequential I
I I

DTFSD I 3340 [SEQUENTIAL] Standard I
I Sequential I
I I

DTFDA I 3340 [SEQUENTIAL] direct I
I J

DTFDA I 3340 RANDOM direct I
I I

DTFIS I 3340 [SEQUENTIAL] indexed]
I I

DTFIS I 3340 RANDOM indexed I _________________ i ________________ i _________________ i _ ________________ J

Figure VII. File Processing Summary -- DOS/VS COBOL Devices

ASSIGN Clause

For the new DOS/VS COBOL devices. system/name has the following
formats:

For the 3203/5203 printers:

{
3203}

SYSnnn-UR- -S[-name]
5203

For the 5425 multifunction card unit:

SYSnnn-UR-5425 {~} - [-name J

(See the ASSIGN Clause description for the 2560 MFCM for the meaning of
each field ..)

xxxiv

For the 3540 diskette input/output unit:

SYSnnn- { DDT A} -3540-S[-name]

For the 3340 mass storage disk facility:

SYSnnn- [-name]

DOS/VS COBOL Considerations xxxiv.i

"

~lause

When the 3340 device is specified for a direct file. and actual track
addressing is used, the first 8 bytes of the ACTUAL KEY may be specified
as follows:

r-----------T-----------T-----------T-----------T-----------,
I PACK I CELL I CYLINDER I HEAD I RECORD I
I-~---------+-----------+-----------+-----------+-----------~
I M I B B IC ci H H I R I

r----------+-----------+-----------+-----------+-----------t----------~
I Byt e I 1\ 2 3 I 4 51 6 7 I 8 l
i I I I Iii
I Device I I I J 1 I
r----------+-----------+---------~-+-----------+-----------+-----------~
I 3340 I 0-221 I 0 0 I 0-347 I 0~11 10--255 I
I (Mod 35) I J I I I I
~----------+-----------+-----------+-----------+-----------+-----------~
I 3340 I 0-221 I 0 0 I 0-695 I 0-11] 0- 255 I
I (Mod 70) I I I I 1 I
l_~ ________ ~ ___________ ~ ___________ ~ ___________ ~ ___________ ~ ___________ J

APPLY WRITE-VERIFY Clause

For the 3540 diskette input/output unit. this clause has no meaning,
and must not be specified.

APPLY CYL-OVERFLOW Clause

For a 3340 mass storage facility, when-the APPLY CYL-OVERFLOW clause
is specified, the maximum number of tracks that can be reserved for
overflow records is 10. If the clause is not specified, 2 tracks are
reserved for overflow records.

BLOCK CONTAINS Clause

For a file on the 3540 diskette input/output unit, when the BLOCK
CONTAINS clause is specified, the RECORDS option must be used.

LABEL RECORDS Clause

For a file on the 3540 diskette input/output unit, LABEL RECORDS ARE
STANDARD must be specified.

ERROR Declarative

When the GIVING option is specified for a file on the 3540 diskette
input/output unit, the error bytes in data-name-l contain the
information shown in Figure VIII. (For the 3340 device, the contents of
the error bytes are the same as for other mass storage files.)

DOS/VS COBOL Considerations xxxv

..

r---------------------------------T------------------------------------,
I Error Byte I Meaning I
~---------------------------------+------------------------------------~
I 1 I data check J

~-~-------------------------------+------------------------------------~
I 2 I equipment check I
~---------------------------------+------------------------------------~
I 3 thru 8 j unused I l _________________________________ ~ ____________________________________ J

Figure VIII. Error Bytes for 3540 -- GIVING Option

ACCEPT Literal statement

When FROM CONSOLE is specified, the input data can be typed in either
capital or small letters, or a combination of the two. The program
accepts the data as capital letters.

OPEN Statement

A file that resides on the 3540 diskette input/output unit may be
opened only in the INPUT or OUTPUT mode; the REVERSED and WITH NO REWIND
options may not be specified.

WRITE Statement

For a file on the 3540 diskette input/output unit, the INVALID KEY
option must not be specified.

For a file on the 5425 MFCU, the System/370 Card Device
considerations as described in the WRITE Statement of the Procedure
Division chapter apply, with the following additional rules:

• For the print feature, the ADVANCING/POSITIONING options are not
allowed; single spacing is automatically provided.

• For the print feature, there may be only one WRITE statement issued
for each card.

• The print feature allows a maximum of 32 characters per line and 3
or 4 lines per card, for a maximum of 128 characters.

• For the punch feature, in the WRITE AFTER ADVANCING staterrent for
stacker selection, function-names SOl through S04 may be specified.

• For the punch feature, in the WRITE AFTER POSITIONING statement for
stacker selection, V, W, X, Y may be specified for stac~ers 1
through 4, respectively.

CLOSE Statement

For a file on the 3540 diskette input/output unit, only the CLOSE
file-name and CLOSE file-name WITH LOCK options are validq

When the CLOSE statement is executed, standard close file procedures
are performed, and the diskette is fed out of the input/output unit.
When the WITH LOCK option is specified, the compiler ensures that this
file cannot be opened again during this execution of the object program.

xxxvi

Page of GC28-6394-4, -5, -6 revised 12/Q3/76 by TNL GN26-0887

1: __ ltl.:::~:::9.jji.I¥I __ .I.';@il.J.II.Jf
Sort Feature

The in~ut and/or output file can be either a standard sequential file
or a sequentially accessed VSAM file. Up to a input files may be
specified in the USING option.

The sort-file-description entry may be specified as follows:

r--,
I Format I
~---~
I SD sort-file-name ~

I i
I [RECORDING MODE IS mode) ~

II {RECORD IS } 1!
[DATA data-name-l [data-name-2] •••]

I RECORDS ARE ~

I ~
I [RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS] ~

I ~
II {RECORD IS} {STANDARDf)'

[LABEL i
I RECORDS ARE '- OMITTED , I
1 J
1 [SORT-OPTION IS data-name-3]. U L __ J

The SORT-OPTION clause specifies that at object time an OPTION
control statement for the Sort/Merge program will be specified in the
data-name-3 area.

Data-name-3 must be a field defined in the WORKING-STORAGE section.
A full description of the SORT-OPTION clause can be found in the
DOS/VS COBOL Programmer's Guide, SC28-6478.

The other clauses of the sort-file-description entry are implemented
as described in the Sort Feature chapter.

5425 Combined Function Processing

The descriptions in Appendix G apply, with the following special
considerations:

In the SPECIAL-NAMES paragraph, function-names SOl through S04 may be
specified for stacker selection of 5425 punched output.

ASSIGN clause considerations for the 2560 MFCM apply also for the
5425 MFCU.

For the 5425 print function WRITE statement, line control may not be
specified, and there may be only one WRITE statement issued per card. A
maximum of 32 characters per line, and 3 or 4 lines per card may be
specified, for a maximum logical record size of 128 characters.

For the punch function, SOl through S04 (for stacker selection 1
through 4, respectively) may be specified in the WRITE ADVANCING
statement.

For the punch function, V, w. X~ Y (for stacker selection 1 through
4, respectively) may be specified in the WRITE AFTER POSITIONING
statement~

DOS/VS COBOL Considerations xxxvi.i

FEATURES OF THE DOS FULL COBOL PROGRfu~ ?RODUCT COMPILERS

Features of the DOS Full COBOL Program Product Compilers 11

12

DOS FULL AMERICAN NATIONAL STANDARD COBOL VERSION 3: this Program
Product Compiler includes the following features:

Release 3: The following features are included in this release:

• Additional System/370 Device Support -- including the following:

(1) 2560 Multifunction Card Machine MFCM) -- for 80-column
cards. Read/punch/print/select features, and combined
function processing are supported. Without the combined
function processing feature, the 2560 MFCM can be used as a
backup reader or as a punch.

(2) 3504 Reader with OMR (Optical Mark Read) feature -- the
compiler can use the 3504 without the OMR feature as the
SYSIP~ device.

(3) 3881 Optical Mark Reader (OMR) -- which reads hand-written
or machine-printed marks on paper documents. When equi~ped
with the optional BCD feature, the 3881 OMR can also read
binary coding.

• Enhanced Corrpiler Output -- including dateg start-time of
compilation and program-id on every source listing page.
Compiler statistics are also available, and the date and time of
compilation are carried as constants in the object module, so
that the object module can be associated with an output listing.

• Maintainability Improvements -- the installation can set the
compiler default options by cataloging them into the source
statement library.

Base Compiler Features: the following features are continued from
Release 1 and Release 2.

• Improvements in Object Code to save main storage:

(1) Optirrized Object Code which results, when specified, in
up to 30% space saving in object program generated code
and global tables as compared with Version 2. The space
saved depends on the number of referenced procedure-names
and branches, and on 01-level data names.

(2) System/370 Support can be requested, to take advantage of
the System/370 instruction set. When such support is
requested, Systero/370 instructions particularly suited to
COBOL prograrnrninq are generated to replace the equivalent
object-time subroutines and instructions needed when
running under System/360. The System/370 instructions
save up to 12% of generated object program spac~, plus the
space no longer needed by the subroutines.

(4) Improvements in the MOVE Statement and in Comparisons -
when a MOVE statement or a comparison involves a one-byte
literal, generated code for the move and the comparison
has been improved. This saves object program space.

• Alphabetized Cross-Reference Listing (SXREF) -- for easier
reference to user-specified names in a progrruu. SXREF performs
up to 25 times faster than previous Version 2 source-ordered
cross-reference (XREF). Version 3 XREF performance is improved
by at least the same amount. The larger the source program, the
more that performance is improved. Total compilation time is up
to 2 times faster.

Features of the DOS Full COBOL Program Product Compilers 12.1

• Debugging Facilities that are more powerful and flexible

(1) Symbolic Debug Feature -- which provides a symbolic
formatted dump at abnormal termination, or a dynamic dump
during program execution.

(2) Flow Trace QQtion -- a formatted trace can be requested
for a variable number of procedures executed before
abnormal termination.

(3) Statement Number~io~ -- provides information about the
COBOL statement being executed at abnormal termination.

(4) Expanded CLIST and SYM -- for more detailed information
about the Data Division and Procedure Division.

(5) Relocation Factor -- can be requested to be included in
addresses on the object code listing for easier debugging.

(6) Working-Stora~e Location and Size -- When CLIS~ and SYM
are in effect, the starting address and size of
Working-Storage are printed.

• System/370 Device SU2£ort -- the following devices can be
specified:

3211 -- lS0-character printer

2319, 3330 mass storage (direct access) facilities

3410, 3420 tape utility devices

3505, 3525 advanced unit-record devices

• ASCII Support -- allows creation and retrieval of tape files
written in the American National Standard Code for Information
Interchange (ASCII).

:.;"" sepafa:tely,:,'~H·9~;ed",~:utn&:i:a"'"b~i~':WYPe" .• ,":~,:;~;f;~~.:;m~r~!,,;~~~ii)j~~;,:,;IlH~exzi~,'
:;:,gCiZit;a:;:Cl¢,scr'~Ptiqp;:~,:.;Tl!l¢::.£ii,<in','~a~':,:~'7,·:.a:~~~pa;r(i:ti~}k6bq;:r;a:·Grt~r::pr::·tCin::""".:
';;.; :O/Y~f:R~r~~;h,'iD:;?:rl?: i~~?i;'~~"' ::+~~:~H':'Ilg:',Qt:,~i::~~:i;,l::i~~'::: /:;~;1.,;;; ~':; ;;:;:; :,' 1 :,,':,': ' ,

The DOS Full American National Standard COBOL Compiler and
Library are packaged as two separate Program Products. rhe
Compiler is Program Product Number 5736-CB2i the Library is
Program Product Number S736-LM2.

Features of the DOS Full COBOL Program Product Compilers 13

INTRODUCTION

In 1959, a group of computer professionals, representing the U.s.
Government, manufacturers, universities, and users, formed the
~onference Qn DAta SYstems ~anguage (CODASYL). At the first meeting,
the conference agreed upon the development of a common language for the
programming of commercial problems. The proposed language would be
capable of continuous change and development, it would be problem
oriented and machine-independent, and it would use a syntax closely
resembling English, avoiding the use of special symbols as much as
possible. The COmmon ~usiness Qriented ~anguage (COBOL) which resulted
met most of these requirements.

As its name implies, COBOL is especially efficient in the processing
of business problems. Such problems involve relatively little algebraic
or logical processing; instead, they usually manipulate large files of
similar records in a relatively simple way. This means that COBOL
emphasizes the description and handling of data items and input/output
records.

In the years since 1959, COBOL has undergone considerable refinement
and standardization, and a standard COBOL has been approved by ANSI
(~merican ~ational ~tandards Institute), an industry-wide association of
computer manufacturers and users; this standard is called American
National Standard COBOL, X3.23-1968.

This publication explains IBM Full American National Standard COBOL,
which is compatible with the highest level of American National Standard
COBOL and includes a number of IBM extensions to it as well. The
compiler supports the processing modules defined in the standard. These
processing modules include:

NUCLEUS -- which defines the permissible character set and the basic
elements of the language contained in each of the four COBOL divisions:
Identification Division, Environment Division, Data Division, and
Procedure Division.

TABLE HANDLING -- which allows the definition of tables and making
reference to them through subscripts and indexes. A convenient method
for searching a table is provided.

SEQUENTIAL ACCESS -- which allows the records of a file to be read or
written in a serial manner. The order of reference is implicitly
determined by the position of the logical record in the file.

RANDOM ACCESS -- which allows the records of a file to be read or
written in a manner specified by the programmer. Specifically defined
keys, supplied by the programmer, control successive references to the
file.

SORT -- which provides the capability of sorting files in ascending
and/or descending order. This feature also includes procedures for
handling such files both before and after they have been sorted.

REPORT WRITER -- which allows the programmer to describe the format of a
report in the DATA DIVISION, thereby minimizing the amount of PROCEDURE
DIVISION coding necessary.

SEGMENTATION -- which allows large problem programs to be split into
segments that can then be designated as permanent or overlayable core
storage. This assures more efficient use of core storage at object
time.

Introduction 15

LIBRARY -- which supports the retrieval and updating of pre-written
source program entries from a user's library, for inclusion in a COBOL
program at compile time. The effect of the compilation of library text
is as though the tex~ ~ere actually written as part of the source
program.

In this publication, the features included in the NUCLEUS, SEQUENTIAL
ACCESS, and RANDOM ACCESS modules are presented as part of the
discussion of "Language Considerations" and of the four divisions of a
COBOL program. The other five modules -- TABLE HANDLING, SORT, REPORT'
WRITER, LIBRARY, and SEGMENTATION -- are presented as separate features
of American National Standard COBOL.

This manual describes all versions of IBM System/360 Disk Operatinq
System Full American National Standard COBOL. All information relating
to the Program Product Version 3 compiler is presented within separate
paragraphs. Such paragraphs begin with the heading "Program Product
Information -- Version 3," and all following paragraphs pertaining to
such information are indented. All information relating to the DOS/VS
COBOL Compiler andLibr~ry pr~gramproduct is included in the separate
chapter, ~"l~~~'~.

This chapter gives the reader a general understanding of the
principles of IBM Full American National Standard COBOL (hereinafter
simply termed "COBOL"). It introduces the reader to COBOL and
demonstrates some of the ways in which the language can be used in the
solution of c0mmercial problems. This discussion does not define the
rules for using COBOL, but rather attempts to explain the basic concepts
of the language through relatively simple examples.

The reader who has an understanding of the principles of currently
implemented versions of COBOL may wish to go directly to "Language
Considerations." Other readers will find many concepts discussed in
this chapter of help in using the detailed instructions throughout the
rest of this manual.

PRINCIPLES OF COBOL

COBOL is one of a group of high-level computer languages. Such
languages are problem oriented and relatively machine inaependent,
freeing the programmer from many of the machine oriented restrictions of
assembler language, and alloNing him to concentrate instead upon the
logical aspects of his problem.

COBOL looks and reads much like ordinary business English. The
programmer can use English words and conventional arithmetic sy~bols to
direct and control the complicated operations of the computer. The
following are typical COBOL sentences:

ADD DIVIDENDS TO INCO~ili.

MULTIPLY UNIT-PRICE BY STOCK-aN-HAND
GIVING STOCK-V~LUE.

IF STOCK-aN-HAND IS LESS THAN ORDER-POINT
MOVE ITEM-CODE TO REORDER-CODE.

Such COBOL sentences are easily understandable, but they must be
translated into machine language -- the internal instruction codes -
before they can actually be used.

~ special systems program, known as a compiler, is first entered into
the computer. The COBOL program (referred to as the source prograw) is
then entered into the machine, where the compiler reads it and analyzes
it. Th~ COBOL language contains a basic set of reserved words and
symbols. Each combination of reserved words and symbols is transformed
by the compiler into a definite set of usable machine instructions. ~n

16 Introduction

effect, the programmer has at his disposal a whole series of
"prefabricated" portions of the machine-language program he wishes tqe
compiler to construct.

When he writes a COBOL program, he is actually directing the compiler
to bring together, in the proper sequence, the groups of maGhin~
instructions necessary to accomplish the desired result. From the
programmer's instructions, the compiler creates a new program in machine
language. This program is known as an object program.

Once the object program has been produced, it may be used at once, or
it may be recorded on some external medium and stored for future use.
When it is needed, it can then be called upon again and again to process
data.

Every COBOL program is processed first when the compiler translates
the COBOL program into machine language (compile time), then when the
machine language program actually processes the data (execution time).

A simple example illustrates the basic principles of tran9lating a
COBOL sentence. To increase the value of an item named INCOME·by the
value of an item named DIVIDENDS, tne COBOL programmer writes the
following sentence:

ADD DIVIQENDS TO INCOME.

Before the compiler can interpret this sentence, it must be given'
certain information. The programmer describes the data ,represented by
the names DIVIDEND~ and INCOME in such a way that the compiler can
recognize it, obtain it when needed, and treat it in accordance with its
special characteristics.

First, the compiler examines the word ADD. It determines whether or
not ADD is one of the COBOL reserved words, that is, words that have
clearly defined meanings in COBOL (rather than a word like DIVIDENDS,
which is defined by the programmer). ADD is a special kind of reserved
word--a COBOL key word. Therefore, the compiler generates the machine
instructions necessary to perform an addition and inserts them into the
object program.

The compiler next examines the word DIVIDENDS. Because the
programmer has supplied data information about DIVIDENDS, the compiler
knows where and how DIVIDENDS information is to be placed in core
storage, and it inserts into the object program the instructions needed
in order to locate and obtain the data.

When the compiler encounters the word TO, it again determines whether
or not this is a COBOL reserved word. It is such a word, and the
compiler interprets it to mean that the value represented by the name
following the word TO, in this case INCOME, must be increased as a
result of the addition.

The compiler next examines the word INCOME. ~gain, it has access to
data information about the word. As a result, it is able to place in
the object program the instructions necessary to locate and use INCO~ili
data.

The programmer placed a period after the word INCOME. The effect of
the period on the COBOL compiler is similar to its effect in the English
language. The period tells the compiler that it has reached the last
word to which the verb ADD applies, the end of the sentence.

The logical steps we have described are performed by the compiler in
creating the object program, although they might not be performed in
exactly this sequence. All these preparatory steps are required only in
creating the object program. Once created, the object program is used
for the actual processing and may be saved for future reference. rhe
source program is not required further, unless the programmer makes a

Introduction 17

change in it; in that case, it must be compiled again to create a new
object program.

When the machine-language instruction for ADD is actually performed
at execution time, the instruction is executed in either of two ways,
depending on the format of the data:

1. It directly adds the value of DIVIDENDS to the value of the data
representing INCOME, thus giving the new value of INCOME.

or

2. It moves the data representing INCOME into a special work area, or
register; then DIVIDENDS is added to it to create the sum, after
which the new value of INCOME is returned to the proper area in
storage.

In this simple example, the object program could add the two specified
items with very few machine instructions. In actual practice, however,
some comple~ COBOL sentences produce dozens of machine instructions.
Then, too, a computer can be instructed to repeat a procedure any number
of times. A few COBOL sentences can start the computer on operations
that could process millions of data records rapidly and accurately.

A SAMPLE COBOL PROGRAM

COBOL is based on English; it uses English words and certain syntax
rules derived from English. However, because it is a computer language,
it is much more precise than English. The programmer must, therefore,
learn the rules that govern COBOL and follow them exactly. These rules
are detailed later, beginning in the next chapter. The rest of this
chapter gives a general picture of how a COBOL program is put together.

The basic unit of COBOL is the word -- which may be a COBOL reserved
word or a programmer-defined word. Reserved words have a specific
syntactical meaning to the COBOL compiler, and must be spelled exactly
as shown in the reserved word list (see Appendix C). Programmer-defined
words are assigned by the user to such items as data-names and
procedure-names; they must conform to the COBOL rules for the formation
of names.

Reserved words and programmer-defined words are combined by the
programmer into clauses (in the Environment and Data Divisions) and
statements (in the Procedure Division); clauses and statements must be
formed following the specific syntactical rules of COBOL. A clause or a
statement specifies only one action to be performed, one condition to be
analyzed, or one description of data. Clauses and statements can be
combined into sentences. Sentences may be simple (one statement or one
clause), or they may be compound (a combination of statements or a
combination of clauses). Sentences can be combined into paragraphs,
which are named units of logically related sentences, and paragraphs can
be further combined into named sections. Both paragraphs and sections
can be referred to as procedures, and their names can be referred to as
procedure names. Procedures (sections and paragraphs) are combined into
divisions.

There are four divisions in each COBOL program. Each is placed in
its logical sequence, each has its necessary logical function in the
program, and each uses information developed in the divisions preceding
it. The four divisions and their sequence are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

18 IntrodUction

To illustrate how a COBOL program is written, let us create a
simplified procedure to record changes in the stocks of office furniture
offered for sale by a manufacturer. We will need such data items as an
item code to identify each type of product, an item name corresponding
to the code, the unit price of each item of stock, the reorder point at
which the manufacturer replaces each item, and the amount of stock on
hand plus its value for each item. Our procedure will update a
MASTER-FILE of all stocks the manufacturer carries by reading a
DETAIL-FILE of current transactions, performing the necessary
calculations, and placing the updated values in the MASTER-FILE. We
will also create an ACTION-FILE of items to be reordered. The
MASTER-FILE resides on a direct access (mass storage) disk device; the
DETAIL-FILE and ACTION-FILE reside on tape devices.

Many of the examples used in the following discussion have been
simplified for greater clarity. Figure 4, at the end of this chapter,
shows how the entire UPDATING program would actually be written.

Identification Division

First we must assign a name to our program, presenting the
information like this:

IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATING.

PROGRAM-ID informs the compiler that we have chosen the unique name
UPDATING for the program we have written.

In addition to the name of the program, the Identification Division
allows us to list the name of the programmer, the date the program was
written. and other information that will serve to document the program~

Environment Division

Although COBOL is, to a large degree, machine independent, there are
some aspects of any program that depend on the particular computer being
used and on its associated input/output devices. In the Environment
Division, the characteristics of the computer used may be identified.
The location of each file referenced in the program, and how each one of
them will be used, must be described.

First we will describe the source computer (the one the compiler
uses) and the object computer (the one the object program uses) as
follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-F50.
OBJECT-COMPUTER. IBM-360-F50.

This tells us that both computers will be an IBM System/360 model F50.

Next we must identify the files to be used in our program, and assign
them to specific input/output devices. This is done in the Input-Output
Section.

Introduction 19

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE, hSSIGN TO •••
ACCESS MODE IS RANDOM
ACTUAL KEY IS FILEKEY.

SELECT DETAIL-FILE, ASSIGN TO •••
ACCESS MODE IS SEQUENTIAL.

SELECT ACTION-FILE, ASSIGN TO ••.

The ellipses (.••) in the three foregoing ASSIGN clauses indicate the
omission of system-name, an item too complex to illustrate here.
System-name is in a special format, and it tells the compiler on which
symbolic unit the file will be found, on what kind .of device the file
resides, and in what way the data is organized within the file.

Our MASTER-FILE resides on a disk pack, which is a mass storage
device. Access for these devices can be either RANDOM or SEQUENTIAL.
If ACCESS MODE IS RANDOM, then each record within the file can be
located directly through 'che use of a key (identified in the statement
ACTUAL KEY IS FILEKEY). For our program we have named this key FILEKhY,
and later in the Data Division we will describe it fully. During the
processing of our object program, each record will be made available to
the user in the sequence that the keys are presented to the system.

Our DETAIL-FILE and our ACTION-FILE reside on tape. This means that
ACCESS MODE must be sequential. On tape it is necessary to refer to
each successive record in the file in order to find any individual
record we might wish to access. Since the compiler assumes that the
ACCESS MODE is sequential unless specified otherwise, the ACCESS MODE
clause is never needed in describing a tape file.

Data Division

The Data Division of the COBOL program gives a detailed description
of all the data to be used in the program -- whether to be read into the
machine, used in intermediate processing, or written as output. To
simplify this discussion, we will describe only the two most important
aspects of data description.

1. We will inform the compiler that we intend to work with one kind of
input record, our detail record; one kind of update record, our
master record; and one kind of output record, our action record.

2. We will assign data-names to each of the items of data to be used.

First, we must organize the two input records -- a MASTER-RECORD and
a DETAIL-RECORD. The MASTER-RECORD will be derived from ledger records
that look like those shown in Figure 1.

20 Introduction

r-----T----------------------------T--------T--------T---------T-------,
I I I Stock I Unit I Stock I I
I Item I I on I Price IVaI ue larder I
I Code I Item Name I Hand I ($) I <.$) I Point I
~-----+----------------------------+--------+--------+----~----+-------~
~10 2-drawer file cabinets 100 I 50 I 5,000 I 50 I
~11 3-drawer file cabinets 175 I .80 I 14,000 I 80 I
~12 4-drawer file cabinets 200 I 110 I 22,000 I 150 I

B10
B11
B12

Secretarial desks
Salesmen's desks
Executive desks

150
50
75

I I I I
I 200 I 30,000 I 120 I
I 175 I 8,750 I 50 I
I 500 I 37,500 I 60 I
I I I I

Ci0 Secretarial posture chairs 125 I 50 I 6,250 I 140 I
C11 Side chairs 50 I 40 I 2,000 I 60 I
C12 Executive swivel chairs 25 I 150 I 3,750 I 20 I l _____ ~ ____________________________ ~ ________ ~ ________ ~ _________ ~ _______ J

Figure 1. Typical Ledger Records Used for M~STER-RECORD

There will be a MASTER-RECORD for each item in this list. In
defining the data for the compiler, we will make sure that each record
is in the same format as all the others. Thus, if we specify the
characteristics of a single record, we will have specified the
characteristics of the whole set. In this way, all of the master
records can be organized into a data set, or file, that we will name
M~STER-FILE. Each complete record within the file we will name the
M~STER-RECORD, with the individual items of data grouped within it.
Accordingly, we will begin our Data Division as follows:

DATA DIVISION.
FILE SECTION.
FD M~STER-FILE DATA RECORD IS MASTER-RECORD ...

01 MASTER-RECORD.
02 ITEM-CODE •••
02 I TEM- NAlYili •••
02 STOCK-aN-HAND .•.
02 UNIT-PRICE •.•
02 STOCK-VALUE •••
02 ORDER-POINT •••

The FILE SECTION entry informs the COBOL compiler that the items that
follow will describe the format of each file and of each record within
each file to be used in the program. The level indicator FD (File
Description) introduees the MASTER-FILE itself, and tells the compiler
that each entry within MASTER-FILE will be referred to as MASTER-RECORD.
The entry with level number 01 identifies the MASTER-RECORD itself, and
the subordinate entries with level number 02 describe the subdivisions
within the complete MASTER-RECORD. The concept of levels is a basic
attribute of COBOL. The highest level is the FD, the next highest level
is 01. Level numbers from 02 through 49 may subdivide the record, and
the subdivisions themselves can be further subdivided if need be. The
smaller the subdivision, the larger the level number must be.

Each of the data items would actually be described more fully than is
shown here. In an actual program, for example, we would inform the
compiler that each of the items identified as STOCK-ON-HAND, UNIT-PRICE,
STOCK-VALUE, and ORDER-POINT would represent positive numeric values of
a specific size in a specific form, and so forth. At this point, we
need not concern ourselves with these details.

Introduction 21

The MASTER-FILE is the main record of current inventory. Changes to
this record are made by entering the details of individual transactions
or groups of transactions. Thus, receipts of new stocks and shipments
to customers will change both STOCK-ON-HANG and STOCK-VALUE. These
changes are summarized in the detail record for each item. A typical
record would appear in a ledger as shown in Figure 2.

r---------T-------------------------T-----------------T----------------,
I Item I I I I
I Code I Item Name I Receipts I Shipments I
~---------+-------------------------+-----------------+----------------~
IB11 I Salesmen's desks I 25 I 15 I L _________ ~ _________________________ ~ _________________ L ________________ J

Figure 2. Typical DETAIL-RECORD

We will therefore organize a DETAIL-FILE, made up of individual items
to be referred to as DETAIL-RECORD. DETAIL-FILE will be arranged by
ITEM-CODE in ascending numerical order.

FD DETAIL-FILE DATA RECORD IS DETAIL-RECORD .••
01 DETAIL-RECORD.

02 ITEM-CODE •••
02 ITEM-NAME •••
02 RECEIPTS ..•
02 SHIPMENTS ••.

The ACTION-FILE will contain a list of items to be reordered, plus
relevant data:

FD ACTION-FILE DATA RECORD IS ACTION~RECORD •••
01 ACTION-RECORD.

02 ITEN-CODE .••
02 ITEM-NAME •••
02 STOCK-ON-HAND •••
02 UNIT-PRICE •.•
02 ORDER-POINT ...

This completes the description of the files we will use.

Note that the names of data items contained within the files are in
many cases identical. Yet each name within each file must be unique, or
ambiguities in references to them will occur. Since identical names are
used in our data descriptions, we must use a special means of
distinguishing between them. The COBOL naming system, with its concept
of levels, allows us to make this distinction by reference to some
larger group of data of which the item is a part. Thus, ITEM-CODE OF
MASTER-RECORD, and ITEM-CODE OF DETAIL-RECORD, and ITEM-CODE OF
ACTION-RECORD can be clearly differentiated from each other. The use of
a higher level name in this way is called qualification. Qualification
is required in making distinctions between otherwise identical names.

Now we must construct the Working-Storage Section of our Data
Division. This section describes records and data items that are not
part of the files, but are used during the processing of the object
program.

For our program, we will need several entries in our Working-Storage
Section. Among them will be several items constructed with level
numbers, similar to those used to describe the file records.

22 Introduction

WORKING-STORAGE SECTION.

77 QUOTIENT •••

01 THE-KEY •••
02 FILLER •••
02 FILEKEY •.•

01 ERROR-MESSAGE.
02 ERROR-MESSAGE-1 •••
02 ERROR-MESSAGE-2 •••
02 ERROR-MESSAGE-3° •••

We will use THE-KEY record in constructing the FILEKEY. The
ERROR-MESSAGE record we will use to create warning messages when errors
are encountered during object time processing. The data item named
QUOTIENT we have assigned the level number 77. This level number
informs the compiler that QUOTIENT is a noncontiguous data item -- that
is, that this ~tem has no relationship to any other data item described
in the Working-Storage Section. Note that the data items related to
each other must be listed after all the noncontiguous data itemse

Procedure Division

The Procedure Division contains the instructions needed to solve our
problem. To accomplish this, we will use several types of COBOL
statements. In constructing our sample program, we will discover how
each type of statement can be used to obtain the results we want.

Beginning the Program Input Operations

Our first step in building the Procedure Division is to make the
records contained in the MASTER-FILE and the DETAIL-FILE available for
processing. If we write the statements:

PROCEDURE DIVISION.

OPEN INPUT DETAIL-FILE.
OPEN 1-0 MASTER-FILE.

the system establishes a line of communication with each file, checks to
make sure that each is available for use, brings the first record of the
DETAIL-FILE file into special areas of internal storage known as
buffers, and does other housekeeping.

Introduction 23

The files can now be accessed. Our next statements will therefore
be:

READ DETAIL-FILE AT END GO TO END-ROUTINE.

READ MASTER-FILE INVALID KEY PERFORM INPUT-ERROR
GO TO ERROR-ROUTINE-l.

At this point in our program, these two statements make available for
processing the first record from each file. (Note that the AT END
phrase and the INVALID KEY phrase are necessary in these sentences.
Their use will be explained later.) We are now able to begin arithmetic
operations upon the data.

Arithmetic statements

We have already seen that the COBOL language contains the verb ADD.
Using this verb, we can add RECEIPTS to STOCK-aN-HAND by writing the
COBOL statement:

ADD RECEIPTS TO STOCK-aN-HAND.

This instructs the program to find the value of RECEIPTS in the
DETAIL-RECORD and add it to the value of STOCK-aN-HAND in the
MASTER-RECORD. (For the sake of brevity, this example and the ones
following have been simplified by omitting the name qualification which
would be necessary in actual coding. Figure 4, at the end of this
chapter, shows the actual coding necessary.)

Next we must reduce the new value of STOCK-aN-HAND by the amount of
SHIPMENTS. The COBOL verb SUBTRACT will accomplish this result for us,
and so we write:

SUBTRACT SHIPMENTS FROM STOCK-aN-HAND.

These two statements, carried out in succession, will produce a current
value for STOCK-aN-HAND.

Actually, there is a more concise way to perform this particular
calculation. We have broken it into two steps, but COBOL provides
another verb which allows us to specify more than one arithmetic
operation in a single statement. This is the verb COMPUTE.

COMPUTE STOCK-aN-HAND = STOCK-aN-HAND + RECEIPTS - SHIPMENTS.

A COMPUTE statement is always interpreted to mean that the value on
the left of the equal sign will be Changed to equal the value resulting
from the calculation specified on the right. The calculation on the
right of the equal sign is evaluated from left to right. That is, in
our example, the addition is performed first and then the subtraction.

The name STOCK-aN-HAND occurs twice in this sentence, but this causes
no difficulty. The expression to the right is calculated first; thus,
it is the current value of STOCK-aN-HAND that is used as the basis for
computing the new value. When this new value has been calculated, it
replaces the old· value of STOCK-aN-HAND in the MASTER-RECORD.

24 Introduction

So far we have brought only the value of STOCK-aN-HAND up to date,
but a change in this value will also cause a change in STOCK-VALUE. We
will assume that this figure does not include allowances for quantity
discounts, damage to stock, or other such factors, and that STOCK-VALUE
is nothing more than the unit price multiplied by the number of items
currently in stock. COBOL provides us with a MULTIPLY verb, which
permits us to accomplish this:

MULTIPLY STOCK-aN-HAND BY UNIT-PRICE GIVING STOCK-VALUE.

The result of the multiplication will be placed in the MASTER-RECORD as
the new value of STOCK-VALUE. Within the program, this statement must
be executed after the COMPUTE statement we wrote earlier, since
STOCK-aN-HAND must be the updated, not the original, value.

Conditional Statements

There are instructions in COBOL that examine data to determine
whether or not some condition is present and, depending on what is
found, to carry out an appropriate course of action.

The MASTER-RECORD contains an item called ORDER-POINT. An item is to
be reordered when its stock has been reduced either to or below its
order point. Let us assume that we have written a procedure for
initiating s~ch an order, and that we have given the name
REORDER-ROUTINE to this procedure. We then write the following two
sentences:

IF STOCK-aN-HAND IS LESS THAN ORDER-POINT
PERFORM REORDER-l •••

IF STOCK-aN-HAND IS EQUAL TO ORDER-POINT
PERFORM REORDER-l •••

in order to compare the present value of STOCK-aN-HAND with the value of
ORDER-POINT. If STOCK-aN-HAND is a smaller value, the COBOL verb
PERFORM causes a transfer of control to the paragraph named REORDER-l.
If STOCK-aN-HAND is not less than ORDER-POINT, our next instruction is
evaluated. If the values are equal, control is transferred to
REORDER-l. If the values are not equal, control is transferred to the
next instruction.

It is permissible, in COBOL, to combine the two tests into one:

IF STOCK-aN-HAND IS LESS THAN ORDER-POINT OR EQUAL TO
ORDER-POINT PERFORM REORDER-i •.•

Here we are writing a compound condition with an implied sUbject.
STOCK-aN-HAND, the subject of the first condition, is understood to be
the subject of the second condition as we~l. Compound conditions
increase the flexibility of COBOL and make the handling of many kinds of
problems easier.

In this example, we tested successively for two conditions out of
three. Unless the programmer has some need to distinguish between these
two conditions (and he might), it would be simpler to test for the third
condition instead:

IF STOCK-aN-HAND IS GREATER THAN ORDER-POINT NEXT SENTENCE
ELSE PERFORM REORDER-l •••

Introduction 25

The words NEXT SENTENCE have a special meaning in COBOL. When IF
STOCK-ON-HAND IS GREATER THAN ORDER-POINT is true, NEXT SENTENCE takes
effect. Every instruction in the balance of the IF sentence is ignored,
and control is transferred to the sentence following.

The test can be simplified even further, since COBOL allows us to
express negation:

IF STOCK-ON-HAND IS NOT GREATER THAN ORDER-POINT
PERFORM REORDER-l •••

If the value of STOCK-VALUE is less than or equal to that of
ORDER-POINT, control is transferred to REORDER-i. If the value is
greater, control automatically passes to the next successive sentence.

The actual rules for specifying tests and comparisons will be given
in a subsequent chapter.

Handling possible Errors

Let us write one more conditional statement:

IF STOCK-ON-HAND IS LESS THAN ZERO ••.
GO TO ERROR-WRITE.

One would expect that the smallest value STOCK-ON-HAND could assume
would be zero. If a negative record were processed, the values found
would probably be completely erroneous. To prevent this, the programmer
could anticipate the possibility of error and write a special routine to
be executed whenever the value of STOCK-ON-HAND was found to be
negative. such a routine could stop the processing of this record,
print out the erroneous data, and proceed automatically to process the
records following. The more comprehensive a programmer makes his error
checking, the less likely it is that inaccurate information will pass
through without being marked for spe,cial attention.

Data-Manipulation statements

We saw in the foregoing that if the value of STOCK-ON-HAND fell below
a certain point, control would be passed to a special sequence of
instructions named REORDER-i. Our output ACTION-FILE has been set up
for just this purpose. The bulk of REORDER-i could consist of
data-manipulation statements; that is, instructions which move the
necessary data items from the MASTER-R~CORD area in storage to that area
reserved for the ACTION-FILE records. The COBOL verb MOVE can be used
to accomplish this. We m~st explain here that the verb MOVE does not
mean an actual physical movement of data. Instead, it means that the
data items from MASTER-RECORD are copied into ACTION-RECORD. Items
within MASTER-RECORD are not destroyed when a MOVE statement is
executed, and are available for further processing. Individual items

26 Introduction

contained in ACTION-RECORD before the operation, however, are replaced
when the statement is executed. Our MOVE statements will be written:

MOVE ITEM-CODE OF MASTER-RECOkD TO ITEM-CODE
OF ACTION-RECORD.

MOVE ITEM-NAME OF MASTER-RECORD TO ITEM-NAME
OF ACTION-RECORD.

MOVE STOCK-ON-HAND OF MASTER-RECORD TO
STOCK-ON-HAND OF ACTION-RECORD.

MOVE UNIT-PRICE OF MASTER-RECORD TO UNIT-PRICE
OF ACTION-RECORD.

MOVE ORDER-POINT OF ~ffiSTER-RECORD TO ORDER-POINT
OF ACTION-RECORD.

With these five statements, we have set up the ACTION-RECORD to be
written in the ACTION-FILE. However, there is another and easier method
for the programmer to specify the five MOVE operations by taking
advantage of the qualification system in naming:

MOVE CORRESPONDING MASTER~RECORD TO ACTION-RECORD.

The word CORRESPONDING ~ndicates that those data items with names which
are identical in both records are to be copied from MASTER-RECORD into
ACTION-RECORD. Thus, five MOVE statements are "replaced by one.

Output Operations

When all arithmetic and data-manipulation statements have been
executed, we will write the results in some form. COBOL allows us to do
this with a WRITE instruction.

WRITE MASTER-RECORD INVALID KEY ...
GO TO ERROR-WRITE. '

Or, if we were to indicate that an item was to be reordered, we could
write the following:

WRITE ACTION-RECORD.

In either case, the record would be recorded on the output device
specified for the file in the Environment Division; its format would be
determined by the Data Division description of the file.

Introduction 27

Procedure Branching Statements

In our inventory problem, there will be as many master records as
there are kinds of furniture in stock, and there will be a varying
number of detail records. We must read each successive DET~IL-RECORD in
DETAIL-FILE, until everyone of the records in the file has been
processed.

Each time a DETAIL-RECORD is read, we will perform calculations upon
its ITEM-CODE in order to produce our FILEKEY. FILEKEY will then be
used to find a matching record in MASTER-RECORD. If a matching record
cannot be found, either the DET~IL-RECORD is in error, or the
MASTER-RECORD is missing from the" file and we must mark that record for
special processing. Consider the series of statements in Figure 3.

You will note that several new elements have been added to the
arithmetic statements and conditional phrases we have already discussed.
First, there are the elements that extend to the left of the other
statements. These elements are the procedure-names we described
earlier. Each procedure-name indicates the beginning of a paragraph or
a section within the program, and each indicates a reference point for
programmer-specified transfer of control. When a procedure is entered,
each logically successive in,struction is processed in turn.

The procedure-names give us a means of controlling the processing of
successive items in our DETAIL-FILE. If, for example, we have finished
processing one complete DETAIL-RECORD and wish to begin processing the
next, control must be transferred to NEXT-DETAIL-RECORD-ROUTINE. rhis
is accomplished through the use of the COBOL verb GO TO, which transfers
control to the procedure indicated, as in" the statement:

GO TO NEXT-DETAIL-RECORD-ROUTINE.

processing then continues with the first sentence following the
procedure name NEXT-DETAIL-RECORD-ROUTINE. Note the many other examples
of the GO TO statement in our program. Each gives us the means of
transferring control from one procedure to another.

Another way in which to control the processing of a series of records
is through the use of the COBOL verb PERFORM. Like the verb GO TO, the
verb PERFORM specifies a transfer to the first sentence of a routine.
In addition, PERFORM provides various ways of determining the manner in
which the procedure is to be processed.

Within the COMPUTATION-ROUTINE, there is a statement which uses the
COBOL verb PERFORM:

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.

When STOCK-ON-HAND is computed to be less than zero, an error condition
has occurred. First, the compiler is instructed to transfer control to
a procedure named DATA-ERROR. Within DATA-ERROR, there is a MOVE
statement which copies the characters within quotation marks ("DATA
ERROR ON INPUT ") into the area of storage reserved for ERROR-MESSAG£-l.
(The characters within quotation marks are what is known as a literal
because they literally mean themselves. When ERROR-~£SSAGE is
displayed, these words ~ill be an actual part of the error message.)
Control is now transferred back to the next statement following the
PERFORM statement, which is the GO TO ERROR-WRITE statement.

28 Introduction

r--,
INEXT-DETAIL-RECORD-ROUTINE.
I READ DETAIL-FILE AT END GO TO END-ROUTINE-i.
I
I
I
I READ ~ASTER-FILE INVALID KEY PERFORM INPUT-ERROR
I GO TO ERROR-WRITE.
I COMPUTATION-ROUTINE.
I
I
I

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFOR~1 DATA-ERROR GO TO ERROR-WRITE.

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD PERFORM REORDER-i
THRU REORDER-2.

WRITE-MASTER~ROUTINE.

GO TO NE~T-DETAIL-RECORD-ROUTINE.
REORDER-i.

GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE.

ALTER REORDER-~ TO REORDER-2
END-ROUTINE-i TO END-ROUTINE-3.

OPEN OUTPUT ACTION-FILE.
REORDER-2.

MOVE CORRESPONDING ~illSTER-RECORD TO ACTION-RECORD.
WRITE ACTION-RECORD.

ERROR-WRITE.

GO TO NEXT-DETAIL-RECORD-ROUTINE.
INPUT-ERROR.

MOVE n KEY hRROR ON INPUT n TO ERROR-MESSAGE-i.

DATA-ERROR.
MOVE nDATA ERROR ON INPUT II TO ERROR-MESSAGE-i.

END-ROUTINE-i.
GO TO END-ROUTINE-2.

END-ROUTINE-3.
CLOSE ACTION-FILE.

IEND-ROUTINE-2.
I CLOSE DETAIL-FILE.
I CLOSE MASTER-FILE.
I STOP RUN. L __ J

Figure 3. Illustration of Procedure Branching

Introduction 29

Note that within COMPUTATION-ROUTINE there is another PERFORM
statement that is processed in a similar manner:

IF STOCK-ON-HAND IN MASTER-RECORD IS clOT GREATER THAN
ORDER-POINT IN MASTER-RECORD
PERFORM REORDER-l THRU REORDER~2.

This time, the PERFORM statement instructs the object program to
process several paragraphs before returning control to the next
successive statement. Thus, when this PERFORM statement is executed,
control is transferred to REORDER-i. This paragraph is executed, the
next paragraph, SWITCH-ROUTINE, is also executed, and then all the
statements contained in REORDER-2 are executed, at which point control
is returned to the first statement in WRITE-MASTER-ROUTINE -- the next
successive statement after the PERFORM statement.

A PERFORM statement may specify that a single section or paragraph be
processed, or, if the desired procedure consists of more than one
section or paragraph, it can specify two names that identify the
beginning and the end of the procedure.

GO TO and PERFORM statements may seem to do much the same job. Yet
there are specific reasons that will cause the programmer to choose one
over the other. On the one hand, the programmer may wish to transfer
control to the same procedure from two entirely different sections of
the program. In this case, PERFORM offers the most convenient method of
returning to the point from which the transfer was made. On the other
hand, if the programmer wishes to proceed to a portion of the program
without specifying a return to the current routine, a GO TO statement
will provide the best method of making the transfer.

In addition to the GO TO and PERFORM statements, there is another
COBOL statement that affects procedure branching: the ALTER statement.

In any given execution of our object program, we mayor may not use
our ACTION-FILE. Only if some item in STOCK-ON-HAND has fallen below
REORDER-POINT will it be necessary to create an ACTION-RECORD.
Therefore, depending upon the data that is being processed, we will open
ACTION-FILE only if and when such an operation is necessary.

Suppose that for the first time in a particular execution of our
object program we have encountered a value for STOCK-ON-HAND that
indicates it must be reordered. The statement:

IF STOCK-ON-HAND IN ~lliSTER-RECORD IS NOT GREATER THAN
ORDER-POl~T IN MASTER-RECORD
PERFORM REORDER-l THRU REORDER-2.

instructs the compiler, when STOCK-ON-HAND is not greater than
ORDER-POINT, to transfer control to the first sentence in REORDER-i.
REORDER-i consists of but one statement:

GO TO SWITCH-ROUTINE.

SWITCH-ROUTINE, as it happens, is the next paragraph, and it contains
an AL'TER statement:

ALTER REORDER-i TO REORDER-2
END-ROUTINE-i TO END-ROUTINE-3.

This statement instructs the compiler to substitute the words
REORDER-2 for SWITCH-ROUTINE (within REORDER-i), and END-ROUTINE-3 for
END-ROUTINE-2 (within END-ROOTINE-i). Since, at the time the ALTER
statement is executed, we are already beyond the point at which the

30 Introduction

substitution is to be made in REORDER-1, we continue processing each
sequential statement until we reach the end of REORDER-2. We open
ACTION-FILE, and so forth, until we return control to the next statement
following the PERFORM statement.

However, in this execution of our object program, the next time we
must reorder an item, a different sequence of statements is performed.
The program transfers control to REORDER-1, but now the GO TO statement
within REORDER-1 has a different operand. Instead of SWITCH-ROUTINE,
the program is now instructed to transfer control to the paragraph named
REORDER-2. Through use of the ALTER statement, we have created a switch
that bypasses the OPEN ACTION-FILE statement in subsequent processing of
reordered items, since the OPEN statement need be executed but once in
any execution of our object program.

Similarly, if ACTION-FILE was never opened in this execution of our
object program, it is not necessary to close it. Therefore, the second
part of the ALTER statement:

END-ROUTINE-1 TO END-ROUTINE-3

allows alternate paths of program flow, depending on whether or not this
ALTER statement was ever executed. The precise rules for programming
the ALTER statement are given later in this publication; note, however,
the increased programming flexibility it offers.

Ending-the Program

One last step in the logic of our inventory program must now be
taken. We have obtained the update information from a record, performed
the needed arithmetic calculations, moved the data from one area of
storage to another, and written the decision-making and procedure
branching instructions necessary to take care of special cases and to
process each succeeding record. Then we have written the updated
information into the MASTER-FILE, and, when necessary, have written the
ACTION-FILE. We must now terminate the program after all records have
been acted upon. Remeu~er that we wrote our first READ statement as
follows:

READ DETAIL-FILE AT END GO TO END-ROUTINE-1.

END-ROUTINE-1 will consist of the few instructions necessary to
terminate operations for this program.

Just as the programmer made all the files available to the system
with a set of OPEN instructions, he must now disconnect these same files
with another series:

END-ROUTINE-1.
GO TO END-ROUTINE-2.

END-·ROUTINE-3.
CLOSE ACTION-FILE.

END-ROUTINE-2.
CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.

Introduction 31

These instructions initiate necessary housekeeping routines. (Note here
that, in our program, ACTION-FILE will be closed only if REORDER-l THRU
REORDER-2 has been performed and the ALTER statement has been executed.)
Once a file has been closed, it cannot be accessed by the program again.
The programmer now writes one last COBOL instruction, and it must be at
the logical end of his processing:

STOP RUN.

At this point, COBOL ending procedures are initiated, and the execution
of the program is halted.

This is only a general picture of the way in whicn a COBOL program
works. The following chapters in this manual give detailed descriptions
of all four divisions within a COBOL program, with explicit instructions
for correct programming in IBM Full American National Standard COBOL.

32 Introduction

r--,
IDENTIFICATION uIVISION.
PROGRAM-ID. UPDATING.
REMARKS. THIS IS A SIMPLIFIED UPDATE PROGRAM, USED AS AN

EXAMPLE OF BASIC COBOL TECHNIQUES. THE PROGRAM IS
EXPLAINED IN DETAIL IN THE INTRODUCTION TO THIS MANUAL.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-F50.
OBJECT-COMPUTER. IBM-360-F50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO SYS015-DA-2311-A-MASTER
ACCESS MODE IS RANDOM
ACTUAL KEY IS FILEKEY.

SELECT DETAIL-FILE ASSIGN TO SYS007-UT-2400-S-INFILE
ACCESS IS SEQUENTIAL.

SELECT ACTION-FILE ASSIGN TO SYS008-UT-2400-S-0UTFILE.
DATA DIVISION.
FILE SECTION.
FD MASTER-FILE LABEL RECORDS ARE STANDARD

DATA RECORD IS MASTER-RECORD.
01 MASTER-RECORD.

02 ITEM-CODE :PICTURE X(3).
02 ITEM-NAME PICTURE X(29).
02 STOCK-ON-HAND PICTURE S9(6)
02 UNIT-PRICE PICTURE S999V99
02 STOCK-VALUE PICTURE S9(9)V99
02 ORDER-POINT PICTURE S9(3)

FD DETAIL-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS DETAIL-RECORD.

01 DETAIL-RECORD.
02 ITEM-CODE PICTURE X(3).
02 ITEM-NAME PICTURE X(29).
02 RECEIPTS PICTURE S9(3)
02 SHIPMENTS PICTURE S9(3)

FD ACTION~FILE LABEl. RECORDS ARE OtwlITTED
DATA RECORD IS ACTION-RECORD.

01 ACTION-RECORD.
02 ITEM-CODE PICTURE
02 ITEM-NAME PICTURE
02 STOCK-ON-HAND PICTURE
02 UNIT-PRICE PICTURE
02 ORDER-POINT PICTURE

WORKING-STORAGE SECTION.

xc 3) •
X(29).
S9(6)
S999V99
S9 (3)

77 SAVE PICTURE S9(10)
77 QUOTIENT PICTURE S9999
01 KEY-ACTUAL.

USAGE COMP SYNC.
USAGE COMP SYNC.
USAGE COMP SYNC.
USAGE COMP SYNC.

USAGE COMP SYNC.
USAGE COMP SYNC.

USAGE COMP SYNC.
USAGE COMP SYNC.
USAGE COMP SYNC.

USAGE COMP SYNC.
USAGE COMP SYNC.

02 M
02 BB
02 CC
02 HH
02 R

PICTURE S999 COMP SYNC VALUE ZEROS.
PICTURE S9 COMP SYNC VALUE ZEROS.
PICTURE S999 COMP SYNC VALUE ZEROS.
PICTURE S999 COMP SYNC.

02 RECORD-ID
01 THE-KEY REDEFINES

02 FILLER
02 FILEKEY

01 TRACK1
01 TRACK2 REDEFINES

02 CYL
02 HEAD

01 ERROR-MESSAGE.

PICTURE X VALUE LOW-VALUE.
PICTURE X(29).

KEY-ACTUAL.
PICTURE X.
PICTURE X(37).
PICTURE 9(4).

TRACK1 COMPo
PICTURE S999.
PICTURE S9.

02 ERROR-MESSAGE-1 PICTURE X(20).
02 ERROR-MESSAGE-2 PICTURE X(36).
02 ERROR-MESSAGE-3 PICTURE X(46).

L ________________________________ ~--------------------________________ _

Figure 4. Complete UPDATING Program (Part 1 of 2)

Introduction 33

r--,
IPROCEDURE DIVISION.
10PEN-FILES-ROUTINE.
I OPEN INPUT DETAIL-FILE.
I OPEN 1-0 MASTER-FILE.
INEXT-DETAIL-RECORD-ROUTINE.
, READ DETAIL-FILE AT END GO TO END-ROUTINE-l.
INEXT-MASTER-RECORD-ROUTINE.
I MOVE ITEM-CODE IN DETAIL-RECORD TO SAVE.

DIVIDE 19 INTO SAVE GIVING QUOTIENT
REt-1AINDER TRACK1.

ADD 1020 TO TRACK1.
MOVE ~TEM-NAME IN DETAIL-RECORD TO RECORD-ID.
MOVE HEAD TO HH. MOVE CYL TO CC.
READ MASTER-FILE INVALID KEY

PERFORM INPUT-ERROR GO TO ERROR-WRITE.
COMPUTATION-ROUTINE.

COMPUTE STOCK-ON-HAND IN MASTER-RECORD = STOCK-ON-HAND
IN MASTER-RECORD + RECEIPTS - SHIPMENTS.

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR qO TO ERROR-wRITE.

MULTIPLY STOCK-ON-HAND IN MASTER-RECORD BY UNIT-PRICE
IN MASTER-RECORD GIVING STOCK-VALUE
IN MASTER-RECORD.

IF STOCK-ON~HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN ~ASTER-RECORD PERFORM REORDER-1
THRU REORDER-2.

WRITE-MASTER-ROUTINE.
WRITE MASTER-RECORD INVALID KEY

PERFORM OUTPUT-ERROR GO TO ERROR-WRITE.
GO TO NEXT-DETAIL-RECORD-ROUTINE.

REORDER-i. GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE.

ALTER REORDER-1 TO REORDER-2
END-ROUTINE-1 TO END-ROUTINE-3.

DISPLAY "ACTION FILE UTILIZED".
OPEN OUTPUT ACTION-FILE.

REORDER-2.
MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.
WRITE ACTION-RECORD.

/ERROR-WRITE.
I MOVE DETAIL-RECORD TO ERROR-MESSAGE-2.
/ DISPLAY ERROR-MESSAGE.
/ GO TO NEXT-DETAIL-RECORD-ROUTINE.
I INPUT-ERROR.
I MOVE" KEY ERROR ON INPUT" TO ERROR-MESSAGE-1.
I MOVE SPhCES TO ERROR-MESSAGE-3.
/DATA-ERROR.
I MOVE "DATA ERROR ON INPUT" TO ERROR-MESSAGE-1.
/ MOVE MASTER-RECORD TO ERROR-MESSAGE-3.
/OUTPUT-ERROR.
/ MOVE "KEY ERROR ON OUTPUT" TO ERROR-MESSAGE-1.
/ MOVE SPACES TO ERROR-MESSAGE-3.
IEND-ROUTINE-1.
I GO TO END-ROUTINE-2.
/END-ROUTINE-3.
I CLOSE ACTION-FILE.
IEND-ROUTINE-2.
/ CLOSE DETAIL-FILE.
/ CLOSE MASTER-FILE.
I STOP RUN. l __ J

Figure 4. Complete UPDATING Program (Part 2 of 2)

34 Introduction

PART I -- LANGUAGE CONSIDERATIONS

• STRUCTURE OF THE LANGUAGE

• ORGANIZATION OF THE COBOL PROGRAM

• METHODS OF DATA REFERENCE

• USE OF THE COBOL CODING FORM

• FORMAT NOTATION

Language Considerations 35

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

Character Set

STRUCTURE OF THE LANGUAGE

The COBOL language is so structured that the programmer can write his
individual problem program within a framework of words that have
particular meaning to the COBOL compiler. The result is the performance
of a standard action on specific units of data. For example, in a COBOL
statement such as MOVE NET-SALES TO CURRENT-MONTH, the words MOVE and TO
indicate standard actions to the COBOL compiler. NET-SALES and
CURRENT-MONTH are programmer-defined words which refer to particular
units of data being processed by his problem program.

COBOL CHARACTER SET

The complete character set for COBOL consists of the following 51
characters:

Character
0,1, ••• ,9
A,B, •.• ,Z

+

*
/

$

or
(

)

>
<

1-1eaning
digit
letter
space
plus sign
minus sign (hyphen)
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
"greater than" symbol
"less than" symbol

· . ,t.;;fI}iF,i&:f cOlliot~~ce wi tli··)~::"stand;~~::cter
s·et·····I·~ ···desired, the·pr·o·grammer must specify the quotation mark (")
through a CBL card at compile time. If the quotation mark is thus
specified, the apostrophe (I) may not be used.

Note: In addition to these 51 characters, the COBOL compiler will
process (e.g., in a VALUE IS clause or in an IF statement) those
mUltiple characters which function as return codes for CICS.

Characters Used in Words

The characters used in words in a COBOL source program are the
following:

o through 9
A through Z
- (hyphen)

A word is composed of a combination of not more than 30 characters
chosen from the character set for words. The word cannot oegin or end
with a hyphen.

Structure of the Language 37

Character Set

Characters Used for Punctuation

The following characters are used for punctuation:

Character

" ::::9:it:::::m:~f:
(

)

Meaning
space
corruna
semicolon
period
quotation mark
left parenthesis
right parenthesis

The following general rules of punctuation apply in writing a COBOL
source program:

1. When any punctuation mark is indicated in a format in this
publication, it is required in the program.

2. A period, semicolon, or comma, when used, must not be preceded by a
space, but must be followed by a space.

3. A left parenthesis must not be followed irrunediately by a space; a
right parenthesis must not be preceded irrunediately by a space.

4. At least one space must appear between two successive words and/or
parenthetical expressions and/or literals. Two or more successive
spaces are treated as a single space, except within nonnumeric
literals.

5. An arithmetic operator or an equal sign must always be preceded by
a space and followed by a space. A unary operator may be preceded
by a left parenthesis.

6. A comma may be used as a separator between successive operands of a
statement. An operand of a statement is shown in a format as a
lower-case word.

7. A comma or a semicolon may be used to separate a series of clauses.
For example, DATA RECORD IS TRANSACTION, RECORD CONTAINS 80
CHARACTERS.

8. A semicolon may be used to separate a series of statements. For
example, ADD A TO B; SUBTRACT B FROM C.

38 Part I Language Considerations

Character Set

Characters Used for Editing

Editing characters are single characters or specific two-character
combinations belonging to the following set:

Character
B
o
+

CR
DB
Z

* $

Meaning
space
zero
plus
minus
credit
debit
zero suppression
check protection
currency sign
comma
period (decimal point)

(For applications, see the discussion of alphanumeric edited and numeric
edited data items in "Data Division.")

Characters Used in Arithmetic Expressions

The characters used in arithmetic expressions are as follows:

Character
+

*
/

**

Meaning
addition
subtraction
multiplication
division
exponentiation

Arithmetic expressions are used in the COMPUTE statement and in
relation conditions (see "Procedure Division" for more details).

Characters Used for Relation-conditions

A relation character is a character that belongs to the following
set:

Character
>
<

Meaning
greater than
less than
equal to

Relation characters are used in relation-conditions (discussed in
"Procedure Division").

TYPES OF WORDS

A word is composed of a combination of not more than 30 characters
chosen from the character set for words. The word cannot begin or end
with a hyphen.

Structure of the Language 39

Words

The space (blank) is not an allowable character in a word; the space
is a word separator. Wherever a space is used as a word separator, more
than one may be used.

A word is terminated by a space, or by a period, right parenthesis,
comma, or semicolon.

Reserved Words

Reserved words exist for syntactical purposes and must not appear as
user-defined words. However, reserved words may appear as nonnumeric
literals, i.e., a reserved word may be enclosed in quotation n~rks.
When used in this manner, they do not take on the meaning of reserved
words and violate no syntactical rules.

There are three types of reserved words:

1. Key Words. ~ key word is a word whose presence is required in a
COBOL entry. Such words are upper case and underlined in the
formats given in this publication.

Key words are of three types:

a. Verbs such as ADD, RE~D, and ENTER.

b. Required words, which appear in statement and entry formats,
such as the word TO in the ADD statement.

c. words that have a specific functional meaning, such as ZERO,
NEGATIVE, SECTION, TALLY, etc.

2. Optional Words. within each format, upper case words that are not
underlined are called optional words because they may appear at the
user's option. The presence or absence of each optional word in
the source. program does not alter the compiler's translation.
Misspelling of an optional word, or its replacement by another word
of any kind, is not allowed.

3. Connectives. There are three types of connectives:

a. Qualifier connectives, which are used to associate a data-name
or paragraph-name with its qualifier. The qualifier
connectives are OF and IN (see "Methods of Data Reference").

b. series connectives, which link two or more consecutive
operands. The series connective is the comma (,).

c. Logical connectives that are used in compound conditions. The
logical connectives are AND, OR, ~ND NOT, and OR NOT (see
"Conditions").

Note: Abbreviations (such as PIC for PICTURE) are allowed for some
reserved words; the abbreviation is the equivalent of the complete word.
For the formats in which they are allowable, such abbreviations are
shown in the format. The reserved. words THRU and THROUGH are
equivalent. In statement formats, wherever the reserved word THRU
appears, the word THROUGH is also allowed.

40 Part I -- Language Considerations

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

There are three types of names used in a COBOL program:

1. A data-name is a word that contains at least one alphabetic
character and identifies a data item in the Data Division.rhe
following are formed according to the rules for data-names:

file-names
index-names
mnemonic-names
record-names
report-names
sort-file-names
sort-record-names

2. A condition-name is a name given to a specific value, set of
values, or range of values, within the complete set of values that
a particular data item may assume. The data item itself is called
a conditional variable. The condition-name must cOhtain at least
one alphabetic character (see "Data Division" and the discussion of
"Special-Names" in "Environment Division").

3. A procedure-name is either a paragraph-name or a section-name. A
procedure-name may be composed solely of numeric Characters. Two
numeric procedure-names are equivalent if, and only if, they are
composed of the same number of digits and have the same value (see
"Procedure Division"). The following are formed according to the
rules for procedure-names:

library-names
program-names

I
Note: The first 8 characters of a file-name must be unique to
avoid duplicate names.

Special-Names

Special-names are used in the SPECIAL-NAMES paragraph of the
Environment Division. The term special-name refers to a mnemonic-name.
A mnemonic-name is a programmer-defined word that is associated in the
Environment Division with a function-name: function-names are names
with a fixed meaning, defined by IBM.

In the Procedure Division, mnemonic-name can be written in place of
its associated function-name in any format where such substitution is
valid. The formation of a mnemonic-name follows the rules for formation
of a data-name (see "Special-Names" in "Environment Division").

CONSTANTS

A constant is a unit of data whose value is not subject to change.
There are two types of constants: literals and figurative constants.

Literals

A literal is a string of cnaracters whose value is determined by tne
set of characters of which the literal is composed. ~very literal
belongs to one of two categories, numeric and nonnumeric.

Structure of the Langua;e 41

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

Literals

NUMERIC LITE~ALS: There are two types of numeric literals:
ana-Iloatlng~point.

fixed-point

A fixed-point numeric literal is defined as a string of characters
chosen from the digits 0 through 9, the plus sign, the minus sign, and
the decimal point. The literal -0 is treated by the compiler as a +0.
Every fixed-point numeric literal:

1. must contain from 1 through 18 digits.

2. must not contain more than one sign character. If a sign is used,
it must appear as the leftmost character of the literal. If the
literal is unsigned, the literal is positive.

3. must not contain more than one aecimal point. The decimal point is
treated as an assumed decimal point, and may appear anywhere in the
literal except as the rightmost character. If the literal contains
no decimal point, the literal is an integer.

(See discussion of fixed-point numeric items in "Data Division.")

If the literal conforms to the rules for the formation of numeric
literals, but is enclosed in quotation marks, it is a nonnumeric
literal.

NONNUMERIC LITERALS: A nonnumeric literal is defined as a string of any
allowable characters in the Extended Binary Coded Decimal Interchange
Code (EBCDIC) set, excluding the quotation mark character. A nonnumeric
literal may be composed of from 1 through 120 characters enclosed in
quotation marks. Any spaces within the quotation marks are part of the
nonnumeric literal and, therefore, are part of the value. All non
numeric literals are in the alphanumeric category.

T"li __ ..L T
r UJ.. L. J... Language

Figurative Constants

Figurative constants

A figurative constant is a constant to which a specific data-name has
been assigned. These data-names are reserved words. Such a data-name
must not be enclosed in quotation marks when used as a figurative
constant. The singular and plural forms of a figurative constant are
equivalent and may be used interchangeably.

A figurative constant may be used in place of a literal wherever a
literal appears in a format. There is one exception to this rule: if
the literal is restricted to numeric characters: only the figurative
constant ZERO (ZEROES, ZEROS) is allowed.

The fixed data-names and their meanings are as follows:

SPACE
SPACES

HIGH-VALUE_
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

ALL literal

Represents the value 0, or one or more
occurrences of the character 0, depending on
context.

Represents one or more blanks or spaces.

Represents one or more occurrences of the
character that has the highest value in the computer's
collating sequence. The character for HIGH-VALUE is
the hexadecimal 'FF'.

Represents one or more occurrences of the
character that has the lowest value in the computer's
collating sequence. The character for LOW-VALUE is
the hexadecimal '00'.

Represents one or more occurrences of the
quotation mark character. The word QUOTE (QUOTES)
cannot be used in place of a quotation mark to enclose
a nonnumeric literal.

Represents one or more occurrences of the string of
characters composing the literal. The literal must be
either a nonnumeric literal or a figurative constant
other than the ALL literal. When a figurative
constant is used, the word ALL is redundant and is
used for readability only.

Structure of the Language 43

Special Registers

SPECIAL REGISTERS

The compiler generates storage areas that are primarily used to store
information produced with the use of special C8BOL features; these
storage areas are called ~2~~!~1-register~.

TALLY

The word TALLY is the name of a special register whose implicit
description is that of an integer of five digits without an
operational sign, and whose implicit USAGE is COMPUTATIONAL. The
primary use of the TALLY register is to hold information produced by
the EXAMINE statement. References to TALLY may appear wherever an
elementary data item of integral value may appear (see the "EXAMINE
Statement" in "Procedure Division").

LINE-COUNTER

LI~E-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see "Report writer.")

PAGE-COUNTER

PAGE-COUNTER is a numeric counter that is generated by the Report
writer. (For a complete discussion, see "Report Writer.")

CURRENT-DATE

CURRENT-DATE is an 8-byte alphanumeric field, valid only as the
sending field in a MOVE statement. The format of these eight bytes
is MM/DD/YY (month/day/year) or DD/1'Iil.'1/YY (day/month/year).

TIME-OF-DAY

TIME-OF-DAY is a 6-byte external-decimal field, valid only as the
sending field in a MOVE statement. The format is HHMIvi8S (hour,
minute, second).

COM-REG

COM-REGis an Ii-byte alphanumeric field. This field corresponds
to bytes 12 through 22 of the DOS Communication Region. COM-REG is
valid only as the sending or receiving field in a fl<10VEstatement,~
When COM-REGis used as the receiving field in a MOVE statement, the
sending field must be 11 bytes in length. ..

(The use of CURRENT-DATE,' TIME-OF-DAY, and COM-REG is explained in
the Programrner:'sGuidesla~cited in "Preface").)

44 Part I Language Considerations

"jj>",;ibi:iia~y':::fi~ldYho/h8s:~','Il~e-rUf{l;t~i~i :,?:~9",ahd5~hds€:
jtl<i:Ki~~~:v~J)ue'~~??5: •• ',It.'f~,'<\is,~ :to::i<ll<lj.cat~t~'Aq:,qtb~:r::<>{:neelS'il1"
:,'an,,;illPut,:,'~:il~'.w:i:th,.:nc:fn$tarida>I.':4;'.1.~bels.:::,.·:'Tt1~s,::fie1:~·;i~::iti'i,t:,iaJ.ll.y.','set,;
:!t.o' .zero.·.' 'N~Tn~'I~E~':::LS;: :t~s:teQ:' ,~aclr,tiime",ap,:"QP,EN:~tatem~X1t;> '~,s',:: .:.:':" :.: :', .::" ':

•• 6!~~~.;~~:,~~1~~~~~~nu~~~~~~1~~;J'~l!~~~!@f:d6~~~i,!'i;'
::']I:fi.··i.t::J~:';~e~o,.::t',I:1;e.'::riuriip~~::ot::;~:e'~:+,s':;::fr~:::t.i;l~·.·(f;i;'+~:iJ.is.;g~t~r:mi:ne:q::if~~m··:tn~r:
'~~~i~~::~~~~~;.,·;,\·::' " "': ,,:;;' ' :;:;:;;;; ;',::'::.'.:~-,' :;;;"':.~,' '":>::::_'_,,,',::;,~,;<::,<:: """

Structure of the Language 45

COBOL Program Structure

ORGANIZATION OF THE COBOL PROGRAM

Every COBOL source program is divided into four divisions. Each
division must be placed in its proper sequence, and each must begin with
a division header.

The four divisions, listed in sequence, and their functions are:

• IDENTIFICATION DIVISION, which names the program.

• ENVIRONMENT DIVISION, which indicates the machine equipment and
equipment features to be used in the program.

• DATA DIVISION, which defines the nature and characteristics of data
to be processed.

• PROCEDURE DIVISION, which consists of statements directing the
processing of data in a specified manner at execution time.

Note: In all formats within this publication, the required clauses and
optional clauses (when written) must appear in the sequence given in the
fo~mat, unless the associated rules explicitly state otherwise.

Structure of the COBOL Program

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] •..]

[INSTALLATION. [comment-entry] •.•]

[DATE-WRITTEN. [comment-entry] •••]

[DATE-COMPILED. [comment-entry] •.•]

[SECURITY. [comment-entry] .•.]

[REMARKS. [comment-entry] •••]

ENVIRONMENT DIVISION.

ICONFIGURATION SECTION.

SOURCE-COMPUTER. entry

OBJECT-COMPUTER. entry

[SPECIAL-NAMES. entryll

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {entry} •••

[I~O-CONTROL. entry]]

46 Part I Language Considerations

DATA DIVISION.

[FILE SECTION.

{file description entry

{record description entry} ••• } •••]

[WORKING-STORAGE SECTION.

[data item description entry] ••.

[record description entry] •••]

[REPORT SECTION.

{report description entry

{report group description entry} ••• } •••]

PROCEDURE DIVISION

[[DECLARATlVES.

{section-name ShCTION. USE Sentence.

{paragraph-name. {sentence} ••. } ••• } •••

END DECLARATIVES.]

{section-name SECTION [priority].]

{paragraph-name. {sentence} ••• } ••• } •••

COBOL Program Structure

Organization of the COBOL Program 47

Qualification

METHODS OF DATA REFERENCE

Every name used in a COBOL source program must be unique, either
because no other name has the identical spelling; or because it is made
unique through qualification, subscripting, or indexing.

An identifier is a data-name, unique in itself, or made unique by the
syntactically correct combination of qualifiers, subscripts, and/or
indexes.

QUALIFICATION

A name may be made unique if the name exists within a hierarchy of
names and the name can be singled opt by mentioning one or more of the
higher levels of the hierarchy. The higher levels are called
qualifiers. Q~alification is the process by which such a name is made
unique.

Qualification is applied by placing after a data-name or a
paragraph-name one or more phrases, each composed of a qualifier
preceded by IN or OF. IN and OF are logically equivalent. Only one
qualifier is allowed for a paragraph-name.

Enough qualification must be mentioned to make the name unique;
however, it may not be necessary to mention all levels of the hierarchy.
For example, if there is more than one file whose records contain the
field EMPLOYEE-NO, yet there is but one file whose records are named
MASTER-RECORD, EMPLOYEE-NO OF MASTER-RECORD would sufficiently qualify
EMPLOYEE-NO. EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but
unnecessary (see discussion of level indicators and level numbers in
"Data Division").

The name associated with a level indicator is the highest level
qualifier available for a data-name. (A level indicator (FD, SD, RD)
specifies the beginning of a file description, sort file description, or
report description.) A section-name is the highest (and the only)
qualifier available for a procedure-name (see discussion of procedure
names in "Procedure Division"). Thus, level indicator names and
section-names must be unique in themselves since they cannot be
qualified.

The name of a conditional variable can be used as a qualifier for any
of its condition-names. In addition, a conditional variable may be
qualified to make it unique.

The rules for qualification follow:

1. Each qualifier must be of a successively higher level, and must be
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a conaition-name is assigned to more than one
data item in a source program, the data-name or condition-name must
be qualified each time reference is made to it in the Procedure,
Environment, or Data Division (except in the REDbFINES clause
where, by definition, qualification is unnecessary). (See the
REDEFINES clause in "Data Division.")

48 Part I -- Language Considerations

Subscripting/Indexing

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION
must not appear. A paragraph-name need not be qualified when
referred to within the section in which it appears.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need qualification;
if there is more than one combination of qualifiers that ensures
uniqueness, then any of these combinations can De used.

Altnough user-cerlnea data-names can be duplicated within the Data
Division and Procedure Division, the following rules should be noted:

1. No duplicate section-names are allowed.

2. No data-name can be the same as a section-name or a paragraph-name.

3. Duplication of data-names must not occur in those places where the
data-names cannot be made unique by qualification.

SUBSCRIPTING

subscripts can be used only when reference is made to an individual
element within a list or table of elements that nave not been assigned
individual data-names (see "Table Handling").

INDEXING

References can be made to individual elements witnin a table of
elements by speci=ying indexing for that reference. An index is
assigned to a given level of a table by using an INDEXED BY clause in
the definition of the table. ~ name given in the INDEXED BY clause is
known as an index-name and is used to refer to the assigned index (see
"Table Handling").

Methods ot Data Reference 49

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

Reference Format

USE OF THE COBOL CODING FORM

The reference format provides a standard method for writing COBOL
source programs. The format is described in terms of character
positions in a line on an input/output medium. Punched cards are the
initial input medium to the COBOL compiler. The compiler only accepts
source programs written in 80-column reference format (see Figure 5)
and produces an output listing of the source program in the same
reference format. 81-column input is not accepted.

r--,

II., COBOL Coding Form
I SYSTEM

PROGRAM GRAPHIC

PROGRAMMER DATE PUNCH

PAGE OF

CARD FORM# *!
i

I
I
I
I
I
I
I
!
I
I
I
I
I
I

~--~
I Columns 1-6 represent the sequence number area. I
I Column 7 is the continuation area. I
I Columns 8-11 represent Area A} Used for writing COBOL source statements. I
I Columns 12-72 represent Area B I
I Columns 73-80 are used to identify the program. I l __ J

Figure 5. Reference Format

The rules for spacing given in the following discussion of the
reference format take precedence over any other specifications for
spacing given in this publication.

SEQUENCE NUMBERS

A sequence number, consisting of six digits in the sequence number
area, is used to identify numerically each card image to be compiled by
the COBOL compiler. The use of sequence numbers is optional.

If" sequence numbers are present, they must be in ascending order. ~n
error message is issued when source language input is out of sequence.

AREA A-AND AREA B

Area A, columns 8 through 11, is reserved for the beginning of
division headers, section-names, paragraph-names, level indicators, and
certain level numbers. Area~ occupies columns 12 through 72.

50 Part I -- Language Considerations

Subscripting/Indexing

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION
must not appear. A paragraph-name need not be qualified when
referred to within the section in which it appears.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need qualification;
if there is more than one combination of qualifiers that ensures
uniqueness, then any of these combinations can De used.

Although user-defined data-names can be duplicated within the Data
Division and Procedure Division, the following rules should be noted:

1. No duplicate section-names are allowed.

2. No data-name can be the same as a section-name or a paragraph-name.

3. Duplication of data-names must not occur in those places where the
data-names cannot be made unique by qualification.

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual
element within a list or table of elements that nave not been assigned
individual data-names (see "T~ble Handling").

INDEXING

References can be made to individual elements witnin a table of
elements by specifying indexing for that reference. An index is
assigned to a given level of a table by using an INDEXED BY clause in
the definition of the table. A name given in the INDEXED BY clause is
known as an index-name and is used to refer to the assigned index (see
"Table Handling").

Methods of Data Reference 49

Reference Format

USE OF THE COBOL CODING FORM

The reference format provides a standard method for writing COBOL
source programs. The format is described in terms of character
positions in a line on an input/output medium. Punched cards are tht
initial input medium to the COBOL compiler. The compiler accepts source
programs written in reference format (see Figure 5) and produces an
output listing of the source program in the same reference format.

r--,

COBO L Coding Form

~--~
I Columns 1-6 represent the sequence number area. I
I Column 7 is the continuation area. I
I Columns 8-11 represent Area A} Used for writing COBOL source statements. I
I Columns 12-72 represent Area B I
I Columns 73-80 are used to identify the program. I L __ J

Figure 5. Reference Format

The rules for spacing given in the following discussion of the
reference format take precedence over any other specifications for
spacing given in this publication.

SEQUENCE NUMBERS

~ sequence number, consisting of six digits in the sequence number
area, is used to identify numerically each card image to be compiled by
the COBOL compiler. The use of sequence numbers is optional.

If sequence numbers are present, must be in ascending order. ~n
issued when source ut is out of s

""'j-'~i~I-Cj.To'~r'~I~~'~,~Il:

ARE~ ~ AND AREA B

Area A, columns 8 through 11, is reserved for the beginning of
division headers, section-names, paragraph-names, level indicators, and
certain level numbers. Area~ occupies columns 12 through 72.

50 Part I -- Language Considerations

Reference Format

Division Header

The division header must be the first line in a division. The
division header starts in Area A with the division-name, followed
space and the word DIVISION, and a period.

may appear on the same line as the division
header.

Section Header

The name of a section starts in Area A of any line following the
division header. The section-name is followed by a space, the word
SECTION, and a period. If program segmentation is desired, a space and
a priority number may follow the word SECTION. No other text may appear
on the same line as the section-header, except USE and COpy sentences.

Note: Although USE and COpy may appear in the Declaratives portion of
the Procedure Division, only USE is restricted to the Declaratives
portion. COpy may be used elsewhere in the COBOL program.

Paraqraph-names and paragraphs

The name of a paragraph starts in Area A of any line following the
division headere It is followed by a period followed by a space.

A para~raph consists of one or more successive sentences. The first
sentence in a paragraph begins anywhere in Area B of either the same
line as paragraph-name or the· immediately following line. Each
successive line in the paragraph starts anywhere in Area B.

Level Indicators and Level Numbers

In those Data Division entries that begin with a level indicator, the
level indicator begins in Area A followed in Area B by its associated
file-name and appropriate descriptive information.

In those data description entries that begin with a level number 01
or 77, the level number begins in Area A followed in Area B by its
associated data-name and appropriate descriptive information.

In those data description entries that begin with level numbers 02
through 49, 66, or 88, the level number may begin anywhere in Area A or
Area B, followed in Area B by its associated data-name and descriptive
information.

CONTINUATION OF LINES

Any sentence or entry that requires more than one line is continued
by starting subsequent line(s) in Area B. These subsequent lines are
called continuation lines. The line being continued is called the
continued line. If a sentence or entry occupies more than two lines,
all lines other than the first and last are both continuation and
continued lines.

Use of the COBOL Coding Form 51

Reference Format

CONTINUATION OF NONNUMERIC LITERALS

When a nonnumeric literal is continued from one line to another, a
hyphen is placed in column 7 of the continuation line, and a quotation
mark preceding the continuation of the literal may be placed anywhere in
Area B. All spaces at the end of the continued line and any spaces
following the quotation mark of the continuation line and preceding the
final quotation mark are considered part of the literal.

CONTINUATION OF WORDS AND NUMERIC LITERALS

When a word or numeric literal is continued from one line to another,
a hyphen must be placed in column 7 of the continuation line to indicate
that the first nonblank character in Area B of the continuation line is
to follow the last nonblank cparacter on the continued line, without an
intervening space. In the case of numeric literals the last nonblank
character of the continued line must not be a period or comma.

A blank line is one that contains nothing but spaces from column 7
through column 72, inclusive. A blank line may appear anywhere in the
source program, except immediately preceding a continuation line .

,of,',
. f:i{l ; .. ,,:,.~;i

i~.

':-.'::: :.:? ilt~·::'';~·· ~.; ~.::.;" .: . .;".<

Explanatory ~.nt."_Yi1"'fF';"'~:'~;':'.i;,.~~:::wi,*!a':':;.).'~<i.; ,
piogra'ln01p~"8,clngall~f:1~.~~~_,;:"iiwF:;~~:~~.~~~,,,,,,ArC!~"' of,to";";~i;, •• , '; ,\ ':'/
Any ,combination pf~b~~~~qt""!ir,'F~,;tJle:pcE)I~,<s.t' 'may ,bta:1acill4e4,'itl
Areaf5A ~nd af)~,~t:;~ .. : .. "':~;-,~~~C!~'~@",,~~;cJ1aratJt.~s ';.111, be .',' <>,~,
produced on the',sollr¢e';'l~$'*";f~'~~.'l've':;n();"'oe"r P\lt:p().Ut,~ (Als 0, see
tne NOTE statement in "Compiler Directing Statements" in "Procedure
Division").

52 Part I -- Language Considerations

Format Notation

FORMAT NOTATION

Throughout this publication, basic formats are prescribed for various
elements of COBOL. These generalized descriptions are intended to guide
the programmer in writing his own statements. They are presented in a
uniform system of notation, explained in the following paragraphs.
Although it is not part of COBOL, this notation is useful in describing
COBOL.

1. All words printed entirely in capital letters are reserved words.
These are words that have preassigned meanings in COBOL. In-all
formats, words in capital letters represent an actual occurrence of
those words. If any such word is incorrectly spelled, it will not
be recognized as a reserved word and may cause an error-in the
program.

2. All underlined reserved words are required unless the portion of
the format containing them is itself optional. These are ~gy
words. If any such word is missing or is incorrectly spelled, it
is considered an error in the program. Reserved words not
underlined may be included or omitted at the option of the
programmer. These words are used only for the sake of readability;
they are called optional words and, when used, must be correctly
spelled.

3. The characters +, -, <, >, =, when appearing in formats, although
not underlined, are required when such formats are used.

4. All punctuation and other special characters (except those symbols
cited in the following paragraphs) represent the actual occurrence
of those characters. Punctuation is essential where it is shown.
Additional punctuation can be inserted, according to the rules for
punctuation specified in this publication.

5. Words that are printed in lower-case letters represent information
to be supplied by the programmer. All such words are defined in
the accompanying text.

6. In order to facilitate references to them in text, some lower-case
words are followed by a hyphen and a digit or letter. This
modification does not change the syntactical definition of the
word.

7. Certain entries in the formats consist of a capitalized word(s)
followed by the word "Clause" or "Statement." These designate
clauses or statements that are described in other formats, in
appropriate sections of the text.

8. Square brackets ([]) are used to indicate that the enclosed item
may be used or omitt~d, depending on the requirements of the
particular program. When two or more items are stacked within
brackets, one or none of them may occur.

9. Braces ({ }) enclosing vertically stacked items indicate that one
of the enclosed items is obligatory.

53

Format Notation

10. The ellipsis (•..) indicates that the immediately preceding unit
may occur once, or any number of times in succession. A unit means
either a single lower-case word, or a group of lower-case words ana
one or more reserved words enclosed in brackets or braces. If a
term is enclosed in brackets or braces, the entire unit of which it
is a part must be repeated when repetition is specified.

11. Comments, restrictions, and clarifications on the use and meaning
of every format are contained in the appropriate portions of the
text.

54 Part I -- Language Considerations

PART II -- IDENTIFICATION AND ENVIRONMENT DIVISIONS

• IDENTIFICATION DIVISION

• ENVIRONMENT DIVISION -- FILE PROCESSING SUMMARY

• ORGANIZATION OF THE ENVIRONMENT DIVISION

• ENVIRONMENT DIVISION -- CONFIGURATION SECTION

• ENVIRONMENT DIVISION -- INPUT-OUTPUT SECTION

55

PROGRAM-ID Paragraph

IDENTIFICATION DIVISION

The Identification Oivision is the first division of a COBOL program.
It identifies the source program and the object program. A source
program is the initial problem program; an object program is the output
from a compilation.

In addition, the user may include the date the program is written,
the date the compilation of the source program is accomplished, etc., in
the paragraphs shown.

Structure of the Identification Division

{tDEN~TIFICATIPN DIVISION.}

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] •••]

[INSTALLATION. [comment-entry] •••]

[DATE-WRITTEN. [comment-entry] ••.]

[DATE-COMPILED. [comment-entry] •••]

[SECURITY. [comment-entry] •.•]

[REMARKS. [comment-entry] .••]

Specific paragraph-names identify the type of information contained
in the paragraph. The name of the program must be given in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs are
optional. If included, they must be presented in the order shown.
~JIII.j

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period. Each comment-entry may be
any ~ombination of characters from the EBCDIC set, organized to conform
to sentence and paragraph structure.

PROGRAM~ID Paragraph

The PROGRAM-ID paragraph gives the name by which a program is
identified.

r--,
I Format I
~--~
I I
I PROGRAM-ID. program-name. I
I I L __ -------------_________________ J

Identification Division 57

DATE-COMPILED Paragraph

The PROGRAM-ID paragraph contains the name of the program and must be
present in every program.

Program-name identifies the object program to the control program.
Program-name must conform to the rules for formation of a
procedure-name.

used as the
unique as a program-name.

program-name are
therefore be

since the system expects the first character of program-name to be
alphabetic, the first character, if it is numeric, will be converted as
follows:

o to J

1-9 to A-I

Since the system does not include the hyphen as an allowable
character, the hyphen is converted to zero if it appears as the second
through eighth character of the name.

Note: For additional information concerning program-name when using the
Sort feature, the Segmentation feature, or the CATALR option, see the
Programmer's Guide.

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph provides the compilation date on the
source program listing.

r--,
I ~r~t I
~--~
I I
I DATE-COMPILED. [comment-entry] I
I I l __ J

The paragraph-name DATE-COMPILED causes the current date to be
inserted during program compilation. If a comment-entry is present,
even though it spans lines, it is replaced in its entirety with the
current date.

58 Part II -- Identification and Environment Divisions

Data Organization

ENVIRONMENT DIVISION -- FILE PROCESSING SUMMARY

In COBOL, all aspects of the total data processing problem that
depend on the physical characteristics of a specific computer are given
in one portion of the source program known as the Environment Division.
Thus, a change in computers entails major changes in this division only.
The primary functions of the Environment Division are to describe the
computer system on which the object program is run and to establish the
necessary links between the other divisions of the source program and
the characteristics of the computer.

The exact contents of the Environment Division depend on the method
used to process files in the COBOL program. Before the language
elements used in the Environment Division can be discussed meaningfully,
some background in the file processing techniques available to the COBOL
user must be given.

Each combination of data organization and access met~od specified in
the COBOL language is defined as a file-processing technique. The
file-processing tecnnique to be used for a particular file is determined
by the data organization of that file and whether the access method is
sequential or random. Figure 6 summarizes the file-processing
techniques.

DATA ORGANIZATIO~

Three types of data organization are made available to Disk Operating
System COBOL users: sequential, direct~~. The means of
creating or retrieving logical records in a file differ, depending on
which type of data organization exists (organization being the structure
of data on a physical file). Each type of data organization is
incompatible with the others. Organization of an input file must be the
same as the organization of the file when it was created.

Sequential Data Organization

When sequential data organization is used, the logical records in a
file are positioned sequentially in the order in which they are created
and are read sequentially in the order in which they were created (or in
sequentially reversed order if the REVERSED option of the OPEN statement
is written for tape files). Such a file organization is referred to in
this publication as standard sequential organization.

This type of data organization must be used for tape or unit-record
files and may be used for files assigned to mass storage devices. No
key is associated with records on a sequentially organized file.

Direct Data Organization

When direct data organization is used, the positioning of the logical
records in a file is controlled by the user through the specification of
an ACTUAL KEY defined in the Environment Division. The ACTUAL KEY has
two components. The first is a track identifier which identifies the
relative or actual track at which a record is to be placed or at which
the search for a record is to begin. The second component is a record

Environment Division -- File Processing Summary 59

Access Methods

identifier, which serves as a unique logical identifier for a specific
record on the track. Files with direct data organization ~ust be
assigned to ~ass storage devices.

ACCESS b"£THODS

Two access methods are available to users of DOS COBOL: sequential
access and random access.

Sequential access is the method of reading and writing records of a
file in a serial manner: the order of reference is implicitly determined
by the position of a record in the file.

Random access is the method of reading qnd writing records in a
programmer-specified manner; the control of successive references to the
file is expressed by specifically defined keys supplied by the user.

ACCESSING A SEQUENTIAL FILE

A standard sequential file may be accessed only sequentially, i.e.,
records are read or written in order. Records can be created and
retrieved; for standard sequential files on mass storage devices,
records can also be updated.

ACCESSING A DIRECT FILE

Direct files may be accessed both sequentially and randomly. Records
can be retrieved sequentially; they can be created, retrieved, updated,
or added randomly. '

Sequential Access

When reading a direct file sequentially, records are retrieved in
logical sequence; this logical sequence corresponds exactly to the
physical sequence of the records.

'." . T+r~~~e,AcTUAL;:ISE:y, ~j.~~~~~,ist ~~ei~;f;ieq~:~tle:lt~y~ ~f~o~ia t'ed wi tht-he
~~c0l"~1,i~~ ~ t>~f.F:'P'~lt~; ~P~~if;~lld~,~l}r~~~i\~~ib:'~;t;t~t~~!UALKEY, clause,
for e"ch READ stateQ\e,t:, exe9utfed+ 'J, .'" "',' < ,,:;, ~'::f

60 Part II -- Identification and Environment Divisions

Access M.ethods

Random Access

When accessing a direct file randomly, the ACTUAL KEY clause is
required.

The system uses the ACTUAL KEY to determine which track a particular
record is on and to locate the record on that track. If the record is
found, the data portion of the record is read, or, for a rewrite
operation, replaced by a new record. If during a READ operation, the
desired record cannot be found on the specified track, an invalid key
condition is said to exist.

~~~=St~r~~eB~!~~~-;~!~~~±r~~~~~~~1:~~~~~~···. 
th~",' s~~~t~m~,~a,rp~'~s"'t:he,,ent:ire~~(l~PdE;~:':~,q~::,~e'i,':r~:cq~:"~~~:i~"t;; ie' ~, 
:r~~~~J:d 'cann<?J::,}D~:,_.~9~¢1,.:,',' ,," ',<,\',::,';':' ," ",;~';':·:".',:':",'",,;,;'L:,:',~~~{,·):,\~.\,;:/':L,lfJ"L:',:~:J~h/i~l\ 

For a write operation, the system, after locating the track, searches 
for the last record on the track, and writes the new record (with 
control fields, including a key field equal to the identifier found 
within the ACTUAL KEY field) after tne last record. 

When a direct file is being created, OPEN initializes the capacity 
records (RO) on,all the tracks of the file. Therefore, a WRITE 
statement issued for an output file is processed in the same manner as a 
WRITE statement that adds a record to an input-output file. 

Environment Division -- File Processing Summary 61 



.A.ccess Methods 

Appendix B contains three sample COBOL programs that illustrate: 

1. Creation of a direct file 

(Figure 4 contains a sample COBOL program illustrating random 
retrieval and updating of a direct file.) 

r----------------T-----------------T-----------------T-----------------, 
IDOS Organization I Device Type I Access I Organization I 
~----------------+-----------------+-----------------+-----------------~ 
DTFCD Reader [SEQUENTIAL] standard 

sequential 

DTFCD Punch [SEQUENTIAL] standard 
sequential 

DTFPR Printer [SEQUENTIAL] standard 
sequential 

DTFMT Tape [SEQUENTIAL] standard 
sequential 

DTFSD Mass Storage [SEQUENTIAL] standard 
sequential 

DTFDA Mass Storage [SEQUENTIAL] direct 

DTFDA Mass Storage RANDOM direct 

I L...:......:. ____________ _ 

Figure 6. Summary of File-Processing Techniques 

62 Part II -- Identification and Environment Divisions 



Environment Division -- Structure 

ORGANIZATION OF THE ENVIRONMENT DIVISION 

The Environment Division must begin in Area A with the heading 
ENVIRONMENT DIVISION followed by a period. 

The Environment Division is divided into two sections: the 
Configuration Section and the Input-output Section. When written, the 
sections and paragraphs must be in the sequence shown. 

Structure-of the Environment Division 

ENVIRONMENT DIVISION. 

CONFIGURATION SECTION. 

SOURCE-COMPUTER paragraph 

OBJECT-COMPUTER paragraph 

[SPECIAL-NAMES paragraph] 

[INPUT-OUTPUT SECTION. 

FILE-CONTROL paragraph 

[I-a-CONTROL paragraph]] 

Organization of the Environment Division 63 



SOURCE-COMPUTER Paragraph 

ENVIRONMENT DIVISION -- CONFIGURATION SECTION 

The Configuration Section deals with the overall specifications of 
computers. It is divided into three paragraphs: the SOURCE-COMPurER 
paragraph, which describes the computer on which the source program is 
compiled; the OBJECT-COMPUTER paragraph, which describes the computer on 
which the object program (the program produced by the COBOL compiler) is 
executed; and, optionally, the SPECIAL-NAMES paragraph which relates the 
function-names used by the compiler to user-specified mnemonic-names. 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 
I I 
I CONFIGURATION SECTION. I 
I SOURCE-COMPUTER. source-computer-entry I 
I OBJECT-COMPUTER. object-computer-entry I 
I [SPECIAL-NAMES. special-names-entryJ I 
I I l ______________________________________________________________________ J 

Section-names and paragraph-names must begin in Area A. 

SOURCE-COMPUTER paragraph 

The SOURCE-COMPUTER paragraph serves only as documentation, and 
describes the computer upon which the program is to be compiled. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I SOURCE-COMPUTER. computer-name. I 
I I L _________________________________________ ~ ____________________________ J 

Computer-name may be specified as IBM-360[-model-numberJ or as 
IBM-370[-model-numberJ. 

The SOURCE-COMPUTER paragraph is treated as comments by the COBOL 
compiler. 

64 Part II -- Identification and Environment Divisions 



OBJECT-COMPUTER paragraph 

OBJECT-COMPUTER Paragraph 

The OBJECT-COMPUTER paragraph describes the computer on which the 
program is to be executed. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I OBJECT-COMPUTER. computer-name I 
i I 

: [MEMORY SIZE integer {~~:!CTERS } I 
I MODULES I 
I I 
I [SEGMENT-LIMIT IS priority-number]. I 
I I L ___________________________________________________ ~ __________________ J 

Computer-name is a word of the form IBM-360[~model-number]. 
Computer-name must be the first entry in the OBJECT-COMPUTER paragraph. 

If the configuration implied Dy computer-name comprises more or less 
equipment than is actually needed by the object program, the MEMORY SIZE 
clause permits the specification of the actual subset (or superset) of 
the configuration. 

The MEMORY SIZE clause is treated as comments by the COBOL compiler. 

The SEGMENT-LIMIT clause is discussed in nsegmentation.n 

Program Product Information -- Version 3 

Computer-name may also be specified as IBM-370[-model-number]. If 
IBM-370 is specified, Systeml370 instructions are generated by the 
compiler. When IBM-370 is specified, the object program must be 
executed on a System/370 machine. 

SPECTAL-NAMES paragraph 

The SPECIAL-NAMES paragraph provides a means of relating 
function-names to user-specified mnemonic-names. The SPECIAL-NAMES 
paragraph can also be used to exchange the functions of the comma and 
the period in the PICTURE character string and in numeric literals. In 
addition, the user may specify a substitution character for the currency 
symbol ($) in the PICTURE character string. 

Environment Division -- Configuration Section 65 



SPECIAL-N&~ES paragraph 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 

SPECIAL-NAMES. 

[function-name-l IS mnemonic-name] •.• 

[function-name-2 [IS mnemonic-name] 

{

ON STATUS I£ condition-name-l 

OFF STATUS IS condition-name-2 

(Q[[ STATUS IS condition-name-2] } 

(Q~ STATUS IS condition-name-l] 
] ... 

(CURRENCY SIGN IS literal] [DECIMAL~POINT IS CO~MA]. 
L ______________________________________________________________________ J 

When the SPECIAL-NAMES paragraph is specified, the corr~a or the 
semicolon may optionally be used to separate successive entries: there 
must be one, and only one, period, placed at the end of the paragraph. 

Function-name-l may be chosen from the following list: 

SYSLST 
SYSPCH 
SYSPUNCH 
SYSIPT 
CONSOLE 
Cal through C12 
CSP 
~~j lite;al' , .,' ,;:.<,' 

If SYSLST, SYSPCH, SYSPUNCH, SYSIPT, or CONSOLE are specified, the 
associated mnemonic-names may be used in ACCEPT and DISPLAY statements. 
Each of these function-names may appear only once in the SPECIAL-NAMES 
paragraph. 

If Cal through C12, C are specified, the 
associated mnemonic-names may be used naTE statement with the 
BEFORE/AFTER ADVANCING option. These function-names are the carriage 
control characters shown in Figure 7. 

r----------------------------T-----------------------------------------, 
I Function-name-l I Action Taken I 
r----------------------------+-----------------------------------------~ 
I CSP I suppress spacing I 
~----------------------------+-----------------------------------------~ 
I Cal through C09 I skip to channel 1 through 9, 1 
I I respectively 1 

~----------------------------+-----------------------------------------~ 
I Cl0 through C12, I skip to channel 10, 11, I 
I I 12, respectively I 
~------------.----·-,-'-.,---,.,....,.,-..."--+~.-,,--.:-.-,,.-:-:...,G:;:--,-,~.,.".~ .. ,..(-".""".-~:"y7,"";"'.,.""'=.-.=...,;-.,...-.,.,..-.:-: __ .,.,.,;--~ 
I SOl through 805 I IBM,:i~4i42;:·;,Pd'ck~b, 'q;eil~:l or:2"':"'{ I 
I ", ~';rBI-;~:~8\4~:~'~poPke;~ !$e.l~;::~l' ~:,oi,(;,p:j;: ",:';»::;~i ~ I 
I :1; IBM,~::,25i60·':;,stJa,cker,Aseilectl thro~9'h,d~, I 
I ' j :,I;SM~.3j5!215\~~}stack€iZ'~seledt. 1 "Or 2: '<',,/:;t; I 
I ".' '" 'r.,IlBM~;5~~i5~,:,: ~ta,c~exs~l~ct 1 through;~. I 
L ___ :~:...._~ ___ ~ _ _'__.:....:.....:.. __ :.....:..:.:..:.._:......:;i:.:..-'":l.::....._:.:...~,::.:~.:.....:...:.:... _ _':..... __ ..... _____ :....: ... L.:._'_ _____ ------..:..----J 
Figure 7. Choices of Function-name-l and Action Taken 

66 Part II -- Identification ~uu Environment uivisions 



Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887 

SPECIAL-NAMES paragraph 

The use of a literal indicates that function-name-l identifies Report 
Writer output. The mnemonic-name should appear in a CODE clause in a 
report description entry (RD) (see "Report Writer"). One such 
SPECIAL-NAMES entry may be given for each report defined in a program. 
The specified literal must be a one-character nonnumeric literal. 

Function-name-2 is used to define a one-byte switch and may be 
specified as UPSI-O through UPSI-7. These switches represent the User 
Program Status Indicator bits in the DOS communications region (see IBM 
System/360 Disk Operating System: System Control and system Service 
Programs, Form C24-5036). The status of the switch is specified by a 
condition-name and interrogated by testing it. One condition-name may 
be associated with the ON status; another may be associated with the OFF 
status (see nswitch-Status ConditionUj. One condition-name must be 
associated with function-name-2. A mnemonic-name, a second 
condition-name, or both may be associated with the function-name-2 as 
well. The condition-names represent the equivalent of level-88 items 
where UPSI-n or mnemonic-name may be considered the conditional 
variable. 

To use UPSI switches #2, you could code your program as follows: 

SPECIAL NAMES. 

UPSI-2 IS SWITCH-02 
ON STATUS IS TAPE-FILE 
OFF STATUS IS DISK-FILE. 

PROCEDURE DIVISION. 

TEST-SWITCH-02. 
IF TAPE-FILE 
THEN GO TO OPEN~TAPE. 
IF DISK-FILE 
THEN GO TO OPEN-DISK. 

(1) I I LJPSI 00100000 

(2) II UPSI 00000000 

When executing your program with the first UPSI card you would 
go to OPEN-TAPE; when executing it with the second UPSI card 
you would go to OPEN-DISK. 

The liter~! which appears in the CURREl'1CY SIGN clause is used in the 
?ICTURE clause to represent the currency symbol. The literal must be 
nonnumeric and is limited to a single character which must not De any of 
the following characters: 

1. digits 0 through 9 

2. alphabetic characters A, B, C, D, P, R, S, V, X, Z, or the space 

3. special characters * + " or ' 

If the CUKREl~CY SIGU clause is not present, only the $ can be used as 
the currency symbol in the PICTURE clause. 

Environment Division -- Configuration Section 67 



FILE-CONTROL Paragraph 

The clause DECI~AL-POINT IS COt'ltllA means that the function of the 
comma and the period are exchanged in PICTURE character strings anj in 
numeric literals. 

ENVIRONHENT DIVISION -- INPUT-OUTPUT SECTION 

The Input-Output Section deals with the definition of each file, the 
identification of its external storage media, the assignment of the file 
to one or more input/output devices and with information needed for tne 
most efficient transmission of data between the media and the object 
program. The section is divided into two paragraphs: the FILE-CONTROL 
paragraph, which names and associates the files used in the program with 
the external media; and the I-a-CONTROL paragraph, wnich defines special 
input/output techniques. 

r----------------------------------------------------------------------, 
I General Format I 
r----------------------------------------------------------------------~ 
I I 
I [INPUT-OUTPUT SECTION. I 
I FILE-CONTROL. {file-control-entry} I 
I [I-a-CONTROL. input-output-control-entry]] I 
I I l ______________________________________________________________________ J 

FILE-CONTROL PARAGRAPH 

Information that is used or developed by the program may be stored 
externally. File description entries in the Data Division name the 
files into which information is placed and specify their physical 
characteristics. The FILE-CONTROL paragraph assigns the files (by the 
names given in the file description entries) to input/output devices. 

r----------------------------------------------------------------------, 
I General Format I 
r----------------------------------------------------------------------~ 

FILE-CONTROL. 

{SELECT Clause 
ASSIGN Clause 
[RESERVE Clause] 
[FILE-LIMIT Clause] 
[ACCESS MODE Clause] 
[PROCESSING MODE Clause] 
[ACTUAL KEY Clause] 
[NOMINAL KEY Clause] 
[RECORD KEY Clause] 
[TRACK-AREA Clause].} .•• 

l _____________________________________________________ -----------------

Each SELECT sentence must begil1.with a SELECT clause followed 

68 Part II Identification and Environment Divisions 



SPECIAL-NAMES Paragraph 

The use of a literal indicates that function-name-1 identifies Report 
Writer output. The mnemogi~~~~me should appear in a CODE clause in ~ 
report description entry (RD) (see "Report Writer"). One such 
SPECIAL-NAMES entry may be given for each report defined in a program. 
The specified literal must be a one-character nonnumeric literal. 

Function-name-2 is used to define a one-byte switch and may be 
specified as UPSI-O through UPSI-7. These switches represent the User 
Prog} m Status Indicator bits in the DOS communications region (see IBM 
System/360 Disk Operating System: system Control and System Service--
Programs, Form C24-5036). The status of the switch is specified by a 
condition-name and interrogated by testing it. One condition-name may 
be associated with the ON status; another may be associated with the OFF 
status (see "Switch-Status Condition"). One condition-name must be 
associated with function-"name-2. A mnemonic-name, a second 
condition-name, or both may be associated with the function-name-2 as 
well. The condition-names represent the equivalent of level-88 items 
where UPSI-n or mnemonic-name may be considered the conditional 
variable. 

The literal which appears in the CURRENCY SIGN clause is used in the 
PICTURE clause to represent the currency symbol. The literal must be 
nonnumeric and is limited to a single character which must not be any of 
the following characters: 

1. digits 0 through 9 

2. alphabetic characters A, B, C, D, P, R, S, V, X, Z, or the space 

3. special characters * + ) 

If the CURRENCY SIGN clause is not present, only the $ can be used as 
the currency symbol in the PICTURE clause. 

The clause DECI~AL-POINT IS COMMA means that the function of the 
comma and the period are exchanged in PICTURE character strings and in 
numeric literals. 

Environment Division -- Configuration Section 67 



FILE-CONTROL paragraph 

ENVIRONMENT DIVISION -- INPUT-OUTPUT SECTION 

The Input-Output Section deals with the definition of each file, the 
identification of its external storage media: the assignment of the file 
to one or more input/output devices and with information needed for tne 
most efficient transmission of data between the media and the object 
program. The section is divided into two paragraphs: the FILE-CONTRJL 
paragraph, which names and associates the files used in the program with 
the external media; and the I-O-CONTROL paragraph, which defines special 
input/output techniques. 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 
I I 
I [INPUT-OUTPUT SECTION. I 
I FILE-CONTROL. {file-control-entry} •.. I 
I [I-O-CONTROL. input-output-control-entry]] I 
I I L ______________________________________________________________________ J 

FILE-CONTROL PARAGRAPH 

Information that is used or developed by the program may be stored 
externally. File description entries in the Data Division name the 
files into which information is placed and specify their physical 
characteristics. The FILE-CONTROL paragraph assigns the files (by the 
names given in the file description entries) to input/output devices. 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

FILE-CONTROL. 

{SELECT Clause 
ASSIGN Clause 
[RESERVE Clause] 
[FILE-LIMIT Clause] 
[ACCESS MODE Clause] 
[PROCESSING MODE Clause] 
[ACTUAL KEY Clause] 

L _____________________________________________________________________ _ 

Each SELECT sentence must begin with a SELECT clause followed 
:!-rnrI!~diate:lx }:)y ~Ei~S'~Jc:;~~-c+,~ps~i:t'~:;~~t::in ;rtticJ;.lft~~ optional clauses 
(J,e ft:~t,: t~~ ;is n~~;" S)l.'f1ll:t.~(lnt. 

68 Part II -- Identification and Environment Divisions 



SELECT/ASSIGN Clauses 

SELECT Clause 

The SELECT clause is used to name each file in a program. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I SELECT [OPTIONAL] file-name I 
I ! L ______________________________________________________________________ J 

Each file used in tne program must be named once and only once as a 
file-name following the key word SELECT. 

Each file named in a SELECT clause must have a File Description (FD) 
entry or Sort File Description (SD) entry in the Data Division. 

The key word OPTIONAL may be specified only for input files accessed 
sequentially. It is required for input files that are not necessarily 
present each time the object program is executed. When a file is not 
present at object time, the first READ statement for that file causes 
the imperative-statement following the key words AT END to be executed. 

t¥1Jt'iQtl~~;j~~~ifJ~~~; "';iSJP!€f~~':ii#f'I;';anar: :Will,;~be; :tr,eait:eQ;j,~, a';' " 
, ' , '~:'~O' ii' ltlie '~i-t Cd '!t~rbl' 

_L~fJl,:t;;~/;;~~~,;',:; )r,J';;";~,~:;~L,.:,r:;~~c,"',';';;,X,.;:, ;~": ," ;,,:, 

ASSIGN Clause 

The ASSIGN clause is used to assign a file to an external medium. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I ASSIGN TO [integer] system-name-l [system-name-2] •.. I 
I I 
II {REEL} II [FOR MULTIPLE 
I UNIT I 
I I L ______________________________________________________________________ J 

Integer indicates the number of input/output units for a given medium 
assigned to file-name. Since the number of units is determined at 
program execution time (see IBM System/360 Disk Operating System: 
System Control and System Service Programs, Order No. GC24-~036), the 
standard definition given above is not the action taken by this 
compiler. 

When specified for files with standard labels or for unlabeled output 
tape files, the integer option is treated as comments. When integer is 
specified as greater than one for unlabeled input tape files, then at 
the end of every reel a message is issued to the operator asking whetner 
or not end-of-file has been reached. It is the user's responsibility to 
provide the operator with correct information as to the number of reels 
in the file. 

Environment Division -- Input-Output Section 69 



ASSIGN Clause 

For multivolume input files with nonstandard labels, the integer 
option is required. For such files, the compiler is unable to 
distinguish between end-of-volume and end-of-file and, therefore, cannot 
deterrr,ine the number of reels in the file. Therefore, for input files 
with nonstandard labels, the integer option is used to determine the 
number of reels in the file. Integer is an unsigned integer from 1 
thro-~qh 15. ,. ····,lng.f,f, 
iI~'''-';c,- 'F:i~e!~ 
integer is not system assumes that the is contained 
on one reel. 

All files used in a program must be assigned to an external mediun,. 
System-name specifies a device class, a particular device, the 
organization of data upon this device, and the external name of the 
file. Any system-names beyond the first are treated as comments. 

FOR MULTIPLE REEL/UNIT is applicable whenever the number of tape 
units or mass storage devices assigned might be less than the number of 
reels or units in the file. However, this clause need not be specified. 
~he system will automatically handle volume switching for sequentially 
accessed files. All volumes must be mounted for randomly accessed 
files. Therefore, when this clause is specified, it is treated as 
comments. 

System-name has the following structure: 

SYSnnn-class-device-organization[-nameJ 

where: 

nnn is a three-digit number from 000 through 240 inclusive. This field 
represents the symbolic unit to which the file is assigned. 

class is a two-digit field that represents the device class. The 
allowable combinations of characters are: 

DA for mass storage 
U~' for utility 
UR for unit record 

Files assigned to DA devices may have standard sequential or direct 
organization. When organization is direct, access may be either 
sequential or random. 

Files assigned to UT or UR devices must have standard sequential 
organization. 

device is a four- or five-digit field that represents a device number. 
Device number is used to specify a particular device within a device 
class. 

The allowable devices for any given device class are as follows: 

Mass storage CDA) 2311, 2314, 2321 

utility CUT) 2400, 2311, 2314, 2321 

Unit record (UR) 1442R, 1442P, 1403, 1404 <continuous forms only), 1443, 
2501, 2520R, 2520P, 2540R, 2540P 

(B indicates reader, R indicates punch) 

70 Part II -- Identification and Environment Divisions 



ASSIGN Clause 

Note: Sort input, output, and work files may be assigned to any utility 
device except a 2321 (see ftSortft). 

organization is a one-character field that specifies file organization. 
The letters that may be specified for each type of file are as follows: 

standard sequential files 
direct files actual track addressing 
direct files -- relative track address· 

Figure 8 can be used to determine the correct choice of the organization 
field in system-na~es. 

name is a three- through seven-character field specifying the 
external-name by which the file is known to the system. If specified, 
it is the name that appears in the file-name field of the VOL, DLBL, or 
TLBL job control statement (see the appropriate programmer's Guide). If 
name is not specified, the symbolic unit (SYSnnn) is used as the 
external-name. The field must be specified if more than one file is 
assigned to the same symbolic unit. 

Note: An INPUT file must have the same file characteristics as it had 
when created. That is, file-dependent descriptions for the INPUT file 
-- such as the device and organization fields of the system-name, OPEN 
and CLOSE mode, record descriptions:if}i!,i~M':'i£~~~~:;'iil:r~I;a~ __ ~~§j must 
be consistent with those specified when the file was created. 

Environment Division -- Input-Output Section 71 



ASSIGN Clause (Version 3) 

r--------T-------------T-------------T------------T--------------------, 
I Device I I File I Track I Organization Field I 
I Type I ACCESS I Organizationl Addressing I in System-name I 
~--------+-------------+-------------t------------t--------------------~ 
I tape, I [SEQUEN'IIAL] I standard I I S I 
I punch, I I sequential I I I 
I reader, I I I I I 
I printerl I I! J 

~--------+-------------+-------------t------------t--------------------~ 
I mass I [SEQUENTIAL] I standard I I S I 
I storage I I sequential I I I 
I device I I I I I 
t--------t-------------+-------------+------------f--------------------i 
! mass. I [SEQUENTIAL] I direct I actual I A I 
I storage I I r------------t--------------------i 
I device I I I relative I D I 
t--------+-------------t-------------+------------+---~----------------i 
I mass I RANDOM I direct I actual I A I 
I storage I I r------------t--------------------~ 
I device I I I relative I D I 
t 

Figure 8. Values of Organization Field for File Organization 

Program Product Information -- Version 3 

Note: ASCII considerations for the ASSIGN clause are given in 
Appendix E. 

For Version 3.r the following additional system devices are 
allowable: 

Mass storage (DA) 
utility (UT) 
unit Record (UR) 

2319, 3330 
2319. 3330. 3410, 3420 
2560P, 2560R, 2560W, 3211, 3504, 3505, 3525P, 
3525R, 3525W, 3525M, 3881 

For the Version 3 DA and UT devices (2319, 3330, 3410, 3420), as 
well as for the DR 3211 and 3881 devices, these numbers can be 
specified in the device field of system-name. For these devices, 
the valid entries for the other fields in system-name are unchangedG 

For the 3504 and 3505 card readers, system-name has the following 
format: 

{
3504} 

SYSnnn-UR- -
3505 

[-name] 

The SYSnnn and name fields have the same valid entries as other 
devices. 

72 Part II -- Identification and Environment Divisions 



ASSIGN Clause (Version 31 

For the 2560 MFCM, system-name has the following format: 

SYSnnn-UR-2560 

The name field has the same valid entries as for other devices. 

The SYSnnn field, for card files that do not utilize combined 
function processing, has the same valid entries as other devices. 

The SYSnnn field has special considerations when combined function 
card processing is used. For each associated logical file within 
the co~bined function structure there must be a separate SELECT 
sentence; each such associated logical file must be specified with 
the sa~e SYSnnn field. (See Appendix G: Combined Function Card 
Processing for a more detailed discussion.) 

For the device field, the following entries are valid: 

2560R, 3525R 
2560P, 3525P 
2560W, 3525W 
3525M 

for a card read file 
for a card punch file 
for a 1 to 6 line card print file 
for a multiline card print file 

For the organization field, depending on the device field, the following 
entries are valid: 

(S[R] for sequential card read files 
3525R ~V[R] for read/print associated files 
treader) jX[R] for read/punch/print associated files 

\Y[R] for read/punch associated files 

2560R 
(reader) 

3525P 
(p-ctncnJ 

Note: the optional R field specifies RCE (Read 
Column Eliminate) card reading. (See "RCE and 
OMR Format Descriptor" for further discussion.) 

S [P] for sequential card read files, primary input 
hopper 

SS for sequential card read files, secondary input 
hopper 

V [P] for read/print associated files, primary input 
hopper 

VS for read/print associated files, secondary input 
hopper 

X[P] for read/punch/print associated files, primary 
input hopper 

XS for read/punch/print associated files, secondary 
input hopper 

Y [P] for read/punch associated files, primary input 
hopper 

YS for read/punch associated files, secondary input 
hopper 

II 
for sequential card punch files 
for punch-and-interpret files (see Note) 
for read/punch/print associated files 
for read/punch associated files 
for punch/print associated files 

Environment Division -- Input-Output Section 73 



ASSIGN Clause (Version 3) 

2560P 
(punch) 

2560W 
(1 to 6 
line 
print) 

3525W 
(2-line 
print) 

3525M 
(mul ti
line 
print) 

S[p] for sequential card punch filesjf primary input 
hopper 

S8 for sequential card punch files, secondary input 
hopper 

'I[P] for punch-interpret files, primary input hopper 
'I8 for punch-interpret files, secondary input 

hopper 
X [P] for read/punch/print associated files, primary 

input hopper 
XS for read/punch/print associated files, secondary 

input hopper 
y [p] for read/punch associated files, primary input 

hopper 
YS for read/punch associated files" secondary input 

hopper 
Z[p] for punch/print associated files, primary input 

hopper 
ZS for punch/print associated files, secondary 

input hopper 

Note: The T field denotes a normal punched 
output file-for which the graphically printable 
punched characters are also printed on print 
lines 1 and 3 of the card. Line 1 contains the 
first 64 characters, left justified; line 3 
contains the last 16 characters, right 
justified. 

for sequential print files, primary input hopper 
for sequential print files, secondary input 
hopper 
for read/print associated files, primary input 
hopper 
for read/print associated files, secondary input 
hopper 
for read/punch/print associated files, primary 
input hopper 
for read/punch/print associated files, secondary 
input hopper 
for punch/print associated files, primary input 
hopper 
for punch/print associated files, secondary 
input hopper 

for sequential 2-line print files 
for read/print associated files 
for read/punch/print associated files 
for punch/print associated files 

sequential multiline print files 
for read/print associated files 
for read-punch-print associated files 
for punch/print associated files 

Note: All input hopper specifications for one 
associated file must be identical. 

74 Part II -- Identification and Environment Divisions 



Figure 9 has been deleted. 

Environment Division -- Input-Output Section 75 



RCE/OMR Format Descriptor (Version 3) 

RCE AND OMR FORMAT DESCRIP~O~ 

When the user specifies 0 (for Optical Mark Read) or R (for Read 
Column Eliminate) in the oroanization field of system-name, then at 
object time he must provide a format descriptor as the first card(s) in 
his data deck. If the format descriptor is missing for such files, a 
message is issuej to the operator, and the job is terminated. 

The format descriptor must be the first card(s) in the data deck. 
Column 1 of the first card must be blank. The keyword FOID-iAT must be 
punched in columns 2 through 7. Column 8 must be blank. Columns 9 
through 71 can contain the parameters that specify which columns of the 
data cards are to be read in OMR or RCE mode. continuation cards are 
valid. A continuation code must be placed in column 72 of the preceding 
card. Parameters may then be continued, beginning in column 16 of the 
continuation card. Comments, if used, must follow the last operand on 
each card by at least one blank space, and continuation card 
restrictions must be observed. 

The format of the format descriptor is as follows: 

Col. 

12 •••• 7.9 ..••.••••.•.• 
II I I 
II I I 
II I I 
w VV 

FORMAT (Nl,N2) [, (N3,N4)] •.• 

Nl, N2, N3, and N4 may be any decimal integers from 1 through 80. 
However, N2 must be greater than or equal to N1. N4 must be greater 
than or equal to N3. In addition, for OMR processing, Nl and N2 must be 
both even or both odd, N3 and N4 must be both even or both odd, and N3 -
N2 must be greater than or equal to 2. 

In OMi{ mode, the user establishes which columns are to be read in OMR 
mode. For example, if the user wishes to ·read colUmns 1, 3, 5, 7, 9 and 
70, 72, 74, 76, 78, 80 in OMR mode, the following format descriptor is 
valid: 

FORMAT (1,9), (70,80) 

In RCE mode, the user specifies those columns which are not to be 
read. For example, if the user chooses to eliminate columns 20 through 
30, and columns 52 through 73, the following format descriptor is valid: 

:FOR1'IlAT (20,30), (52,73) 

76 Part II -- Identification and Environment Divisions 



RESERVE/FILE-LIMITS Clauses 

RESERVE Clause 

The RESERVE clause allows tne user to modify the number of 
input/output areas (buffers) allocated by the compiler for a standard 
sequential file or(.versi<?n;:3.'()I11}f),Tit>':sequeritiiiaL1,;<aq~~t;iH.A~~4 
fi~le,. ' , ' " " ~ " " "" ' , 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
i I 

I
I {integer} [AREA J II RESERVE ALTERNATE 
I NO AREAS I 
I I l ______________________________________________________________________ J 

This clause may be specified only for a standard sequential file. 

Integer must have a value of 1. 

A minimum of one buffer is required for a file. If this clause is 
omitted or if 1 is specified, one additional buffer is assumed. 

If NO is specified, no additional buffer areas are reserved aside 
from the minimum of one • 

. ,?r~~v~~:=~~:~:t~~i~E;1~_J 
,:for' a :,sequent±a.lly; access,ed: 'iridexed':file.;:' " "," c',::,,:""'" 

,~.d ,~,,".;. :':--::'~·.f",;~. 

Combined function file processing considerations for the RESERVE 
clause are given in Appendix G. 

FILE-LIMIT Clause 

The FILE-LIMIT clause serves only as documentation, and is used to 
specify the beginning and the end of a logical file on a mass storage 
device. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
: fFILE-LIMIT IS } {data-name-1} THRU {data-name- 2t : 
I lFILE-LIMITS ARE literal-1 ,literal-2 S I 
I I 
: {data-name-3} THRU {data-name-4} ] ••• I 
I literal-3 literal-4 I 
I I l ______________________________________________________________________ J 

Environment Division -- Input-Output Section 77 



ACCESS MODE/PROCESSING MODE Clauses 

The logical beginning of a mass storage file is the address specified 
as the first operand of the FILE-LIMIT clause; the logical end of a mass 
storage file is the ajdress specified as the last operand of the 
FILE-LIMIT clause. Because file boundaries are determined at execution 
time from the control cards, this clause need not be specified and will 
be treated as comments. 

ACCESS MODE Clause 

The ACCESS MODE clause defines the manner in which records of a file 
are to be accessed. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 

I

' {SEQUENTIAL} I, ACCESS MODE IS 
I . RANDOM , 
J I L ______________________________________________________________________ J 

If this clause is not specified, ACCESS IS SEQUENTIAL is assumed. 
For ACCESS IS SEQUENTIAL, records are placed or obtained sequentially. 
That is, the next logical record is made available from the file when 
the READ statement is executed, or the next logical record is placed 
into the file when a WRITE statement is executed. ACCESS IS SEQUENTIAL 
may be applied to files assigned to tape, unit-record, or mass storage 
devices. 

For ACCESS IS RANDOM, storage and retrieval are based on an ACTUAL 
KEY~ associated with each record. When the RANDOM option 
is specified, the file must be assigned to a mass storage device. 
ACCESS IS RANDOM may be specified when file organization is direct II 
II· •• · 

The keyw?rd.IS must be specified. 

PROCESSING MODE Clause 

The PROCESSING MODE clause serves only as documentation, and 
indicates the order in which records are processed. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I , 
I PROCESSING MODE IS SEQUENTIAL I 
, I L ______________________________________________________________________ J 

78 Part II -- Identification and Environment Divisions 



· ACTUAL KEY Clause 

This clause is treated as comments, and may be omitted. 

ACTUAL KEY Clause 

An ACTUAL KEY is a key that is directly usable by the system to 
locate a logical record on a mass storage device. The ACTUAL KEY is 
made up of two components. 

1. The track identifier, which expresses a track address at which the 
search for a record, or for a space in which to place a new record, 
is to begin. 

2. The record identifier, which serves as a unique identifier for the 
record and is associated with the record itself. 

When processing a randomly accessed direct file, the programmer is 
responsible for providing the ACTUAL KEY for each record to be 
processed. 

r----------------------------------------------------------------------, 
I Format I 
t----------------------------------------------------------------------~ 
I I 
I ACTUAL KEY IS data-name I 
I I 
l _________ ~-------------------------------------------_________________ J 

Records are accessed randomly and are processed in the order in which 
they are accessed. 

The ACTUAL KEY clause must be specified for direct files when ~CCESS 
IS RANDOM is specified. 

When a SEEK statement is executed, the contents of data-name are used 
to locate a specific mass storage record area. 

When a READ statement is executed, a specific logical record (located 
by the system using the contents of data-name) is made available from 
the file. 

When a WRITE statement is executed, the given logical record is 
written at a specific location in the file. 

At file creation time, ~hen no more room remains on a given track, a 
standard error occurs, and the user must provide a USE AFTER STANDARD 
ERROR declarative routin~ to update the track address. 

The keyword IS must be specified. 

The location of a particular logical record must be placed in 
data-name before the execution of the SEEK statement (or if no SEEK 
statement is present, the RE~D and WRITE statements). 

Data-name must be a fixed-length item. It must be defined in the 
File Section, the Working-Storage Section 
However, if data-name is specified in the File Section it may not be 
contained in the file for which it is the key. Data-name is made up of 
two components: the track identifier, and the record identifier. 

Environment Division -- Input-Output Section 79 



ACTUAL KEY Clause 

TkACK IDENTIFIER: 1he track identifier may be expressed in two ways -
through relative track addressing, or through actual track addressing. 

nelative Track Addressing: The track identifier is used to specify tne 
relative track address at which a record is to be placed, or at which 
tIle search for a record is to begin. 

Track, identifier must be 4 bytes in length r and wust be defined as a ' 
8-integer binary data item whose maximum value does not exceed 
16,777,215. 

Actual Track Addressing: The track identifier is used to specify the 
actual track address at which a record i p to be placed, or at which the 
search for a record is to begin. 

Track identifier must be a binary data item eight bytes in length. 
No conversion is made by the compiler when determining the actual track 
address. 'The structure of these eight bytes and the permissible 
specifications are shown in Figure 10. 

Before beginning processing, it is the user's responsibility to 
initialize R to the figurative-constant LOW-VALUE;. 'l'he user need not 
concern himself fUrther with this field. 

r--------T----------T------------T-----~-------T---------, 

I PACK I CELL 1 CYLItWhR 1 .cl~AD 1 RECORD 1 

t--------+----------+------------+-------------+---------~ 
I Ivj 1 B B ICC 1 H H I R 1 

r-------------+--------+----------+------------+-------------+---------~ 
I Byte I 0 1 1 2 1 3 4 I 5 6 1 7 1 
I Dev ic e I I 'I I 1 
t-------------t--------+----------+------------+-------------+---------~ 
I 2311 I 0-221 I 0 0 I 0 0-1991 0 0-9 1 0-255 1 
t-------------+--------+----------+------------+-------------+---------~ 
I 2314 I 0-221 1 0 0 1 0 0-1991 0 0-19 I 0-255 I 
t-------------+--------+----------t------------+-------------+---------~ 

~-:~:~--------~-~=:::--t-~---~=~--t~~=:~--~=~--~--~=~--~=:~--~-~=:~~---~ 
I 2319 I 0-221 1 0 0 I 0 0-+991 0 0-19 I 0-255 I 
I (Version 3) I I 1 1 1 1 
t-------------+--------+----------t------------+-------------t---------~ 
I 3330 1 0-221 I 0 0 1 0-403 1 0-18 1 0-255 1 
I (Version 3) I 1 1 1 I 1 L _____________ i ________ L __________ L ____________ L _____________ i _________ J 

Figure 10. structure of the First Eight Bytes of ~CTUAL KEY -- Actual 
Track Addressing 

RECORD IDENTIFIER: The symbolic portion of ACTUAL KbY used to identify 
a particular record on a track is the record identifier. 

Record identifier must be from 1 through 255 oytes in length. Data 
within these bytes is treated exactly as specified. 

A record is considered "found" when, for a given track, the record 
identifier at retrieval time matches the record identifier of a record 
in the file being searched. 

ACTUAL KEY EXAMPLES: Two examples follow, to represent the coding 
necessary'to specify the data-name in the ACTUAL KEY clause. 

80 Part II -- Identification and Environment Divisions 



ACTUAL KEY Clause 

Relative Track Addressing: The following example shows an ACTUAL KEY 
using relative track addressing: 

ENVIRONMENT DIVISION. 

ACTUAL KEY IS THE-ACTUAL-KEY. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 
01 THE ACTUAL-KEY. 

02 RELATIVE-TRACK-KEY USAGE COMPUTATIONAL PICTURE IS S9(8) 
VALUE IS 10 SYNCHRONIZED. 

02 EMPLOYEE-NO PICTURE IS X(6) VALUE IS LOW-VALUE. 

Actual Track Addressing: The following example shows an ACTUAL KEY 
using actual track addressing: 

ENVIRONMENT DIVISION. 

ACTUAL KEY IS THE-ACTUAL-KEY. 

DATA DIVISION. 

WORKING-STORAGE SECTION. 
01 BINARY-FIELD-l .. 

05 TRACK-ID. 
10 M USAGE 
10 BB USAGE 
10 CC USAGE 
10 HH USAGE 
10 R 

COMPUTATIONAL 
COMPUTATIONAL 
COMPUTATIONAL 
COMPUTATIONAL 

PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 
PICTURE 

01 
05 EMPLOYEE-NO 
ACTUAL-FIELD-l REDEFINES 
05 FILLER 

BINARY-FIELD-l. 

05 THE-ACTUAL-KEY 
PICTURE 
PICTURE 

S999 VALUE IS O. 
S9 VALUE IS O. 
S999 VALUE IS 10. 
S999 VALUE IS O. 
IS X VALUE IS LOW-VALUE. 
XXXXXX VALUE IS LOW-VALUES. 

IS X. 
IS X(14). 

Although the track identifier field must consist of eight bytes, nine 
bytes are defined within TRACK-ID. This is because the entry 

10 M USAGE COMPU1:'ATIONAL PICTURE S999 

necessarily defines two bytes. However, as Figure 4 shows, the M field 
must be one byte in length. Therefore, BINARY-FIELD-l must be redefined 
as ACTUAL-FIELD-l. In this way the superfluous high-order M byte can be 
stripped off from THE-ACTUAL-KEY through specification of the entry 

05 FILLER PICTURE IS X 

in ACTUAL-FIELD-l. The first eight bytes of THE-ACTUAL-KEY thus 
represent the track identifier, and the last six bytes represent the 
record identifier. 

Environment Division -- Input-Output section 81 



"NOMINAL KEY Clause 

NOMINAL KEY Clause 

,~, A NOMINAL KEY is used with indexed files. The clause specifies ,a 
:!symbolic identity for~speci£ic logical record. 
11 
4i ' 
II 
ilr~:"---~-------~-------------------~--~--------------------.. ~-------~--"'1 
.'it.. .. Format ". ." 
':·1: '~,...",:,---,,,,:,.-~-,,,:,-.--- ..... -:--....:. ..... -.--.... ----.---~---....:.--...:....:.--- .... --~---...:.------. .:...--....:.--. ....:.----:-,...--'~: 
J~1 t 
il:'fl NOMINAL KEY IS data-name T 
<Iq: I !( .. L. __ ._.-__ ............. _ . ....:.....:.....:. ___ ....:. __ .:.......:. __ ....:. ...... ___ . __ -:-__ . ___ -:-______ ....:. ......... __ ....;.-:-....:. .. ....:.,... ..... ____ ..,.... ____ ...:.....:. __ ...... _.-:, ... ;' 

";"j' 

:Ii 
'I'i, \ , 
:,.\'" A"NOMINAL 
·.·~andomly, or 

,I" r.;~t;atement;is 

KEY clause is required when an indexedfil~ is accessed 
when an indexed file is accessed sequentially and a START 
used. 

t" 

"I" 
.t: When the NOMINAL KEY clause is specified for an indexed file that is 
~~essed randomly: 

Data-name may specify any fixed-length Working-Storage item from 1 
through 255 bytes in length. 

Data-name must be at a fixed displacement from the beginning of the 
record description in which it appears; that is, it may not appear' 
in the entry subsequent to an OCCURS clause with a DEPENDING ON 
option. 

The symbolic identity of the record must be placed in data-name 
before the execution of the READ, WRITE, or REWRITE statement. 

The symbolic identity is used when retrieving or updating a record 
to locate the logical record with a matching RECORD KEY', or, wh~p. 
adding a record, to create the key that will be associated with the 
record. . 

: :!1: 

:when a READ statement is ex;~cuted, <:l specific logical record is made:;; 
available 'from the file~ using the contents of data-name. 

i ;1 

When a WRITE or 'RElWRIT~ ::statement is' executed, the symbolic identity':: 
of the record s~ecif'ieQby data-name is used to 'determine the 
physicalloqation ·at 'whicht;·he . r~cordis written. , L : :,' . { 1 ' '.':;: . 1. ~.;: =". .; 

:When. the ·NOz.tr'NAL t~Y jls i~p~crfi1ed i~oran index~d'file that is 
, .. ,}~ssed ,sequential1;}j:; . i i . '. • " , : : ~; . 

(loata-name .jay ~f'r' ia~Yff~~.iengtli woikin'Jjst~rage it~ f;ranl 
':through 25~ byteS, ::in'ljeAgth.. ; • . .... . :;',:..: ' "< ' .;::: 
~~ta~nam~~us,t ~J~t :~~jJ~d d~a~~~emerif ,~~qJ k¥~beqinnin\g"Of:t~ 

. r~rdi:d~~d:pti~ :i:~'lw~iq.l:r, ;~i:f;',~;I?11~~l\~:~~ ;,fh~~.,,~d~~iA'f .*ynp'1::,~pp.aa,r:" 
\:;"in ithje en'tq 'S'ubse:quen1t: :t~anacC;-ORS clause:~t~'a::.DEPEND:r:NG ON . :'Ijif·· ()ption,. . :~ .• ;'f: .', ' " : . ; ; :: 

•... , ... ~ •• ,': .... ,; ... 'I~' ,rile 'NmUN;AL;.K&Y :,e, ia,:,·,~ .. ..... ~.·,.,·,·.j,n ',u.,sit," i,l. e,~~.",. ,.:Lf,. ··.ie .. ,.d.·' .. : .. iif: :~""': ;, ~,'"."".T(lR". T, s. tate .. :~, ~nt; i's 

.. :: .•.. I','.'~,: .. I.~'.': ... ,·.·', .... ,.". ·~:.~.s:e.·. d.·.I·':,·,';:,.·:.t.'I'l.. .• ;;..,. ""'.n'.·,.!.·.:.'.i. ..... ,: ... ,.1.0 .. ,.: iT! ,T .• , ' ;LoA iLfI..:.... tf ,~1.I "J.~ .. Ll.""'~r",l\'R:':r:rstp.t~m~n~+5,eXec:u~~·,!~~<;~ntents 0". 

~r~a-n.mefat~' ~~;~,'~@~i~f~,tat~t~,;·[~feIt~tt~~ r;~:::?IOd' ~~,$~in~: ~+s 
~~,ni';f Tbet~,p, ;,~~,~,.,.~~ mn¥,,:a~~.~rl ~'f': ~""'!O, .. ,; 

82 Part II -- Identification and Environment Divisions 



;~;_RD}@~l:~d1.amj~~<;;;",','~,~;",;',:',;:\:~;c;' :,' !,;:.!:~: 
;;1r ':1'1,:;.;;;' ;·'~):H("·~ -,,< ~q.>( 

;ii' ", ,:c, , ".. j. , ::"";;",,,; ',,;;;:,(;,'':~tt~\i,J¥' 
,~;' ,~~OR:D KEY i~' ~~"to '~;,cess ')~k:,;:nd~(f~tl:i1t1l~:': 1;1!iE:t:~'$:peqlt(t~~~~1' 
?~Ji;~eln~:~itJ,h~n'1the: data x~~or;d ttn,a.p ;Oqn~ ltne kjeYf,f~Fld~hefIi¢~~~l: :'" 

iF±]~t-!\+-~±--C;iJ;;,lZ:±~tLL_~J:~i~ff 
i·;t~ ,I' ,,~, iKiEY::IS' :d:'ata.-.;name:" ;; ~ ,{; ,,1 cy"r::j >:,',""'," ,<:"1" t, < ,I ',;, , '~ : ; ~ ~' ',; :: 

r0:--'::~~,,' '~;!,-0T~ ;,':,;: ;,"-~T:0~:' nTTTr, 
~""" ~~ '~,()$: ,KEY',:c~a:\1S~; mus:t~ 1b~ ·~peqi!fli.JeJ~',,~d.i<a~'~i~x~d' f±:le~, ~'I ~,',;' ~ :' 

~~ ~~!'",~.,. (, h,~ ~,~ ~, ~ h <',< " ~ y~:, <.,~: / < .~! i < ';, .y' vt i,'-:;... :' <: ~ "': .... " t J"" 

~ , ; '~~t:a~:na1me :~us;t roe '1~, tfi~ed~~ed~fi i'tiem ,wit'~~' tIti~ ~rd.~ , tit ~~tl' " : 
~~~f. ~an, 2,~J)j' :pyt:.~~' ,tn' :~~oo~.t ",; ,- ~ , :" ;~. ;'~, :;,,",;' '; , , " :' ':;': '; ! .' ~ ~ ,"-T:: ',:;': ' 
~;"'I." ""q' , ,,~i '" ',r,~:' ""f' ,,:, ,", ": ,,"' [i '"j ,1, ,',I

~,:,; ~~, ~cir~:';t#l~n ~n~, i~c~r,a::~~s\~r:~Pt'i:an l~i" '~~s6ci~fie4, W~'1:;h' la ;fi~,~J#t ~n
~ich:ihtiCal, 'fiel:d' 'nMst, :'appeair' ,xci eaan :d8s\cDipti'on ,ahld ~nW.s,t b~ 'ifni ~bd s,~~
F.elJGtbLVEf'posJifidn, (:f;i;Qmitl1ef ;ti~iriri:i1n(i ;ofr::;t!h~::r~,¢cir~ ,~i::, iall:bhough ,'itllt1' :~~') ;

~~~"~~Bill 
fe,*p:iWle"":1::h~;:,,('i,r~t::liyt~:,:(J,(\t;t\e:~:r;,eedra:':irj:'#p~': toll.:gw;l~<1',Ga~$:::J;".,}:::':'; ,," 
~,,,<:,,,; : ,; <">::.:', ;;:" ,':>':::,:,,;';;:,',';:';":""; , 

]f' ,1,. ' A , f l.le WI; th unblocked l;'ecordS ' , 
$' ~ / ~ ~ y , Y;, < < ~' ~ ~ ,,' 

~:,':2.' 
~ , 

t>;J. ;, ' 

, r~-~~-~-'~----~-~";'-~"'7-':""--~'~:";'-:--:-:':-:---:-:':':--':--'-:-""":"-:-~~:-~---~":'''''-~7'~-~--",,--,-... 
. , ' : Format. , , ' ': 
",t;';'--..,.-~--...;.-... ---,------------:-..;.-..".----:,-~---,---,...~---:.....;.-:---:...--..;,- __ -.;-'"'"':--;-~, .... -..;.-4 : ~' , : 

'I TRACK-AREA IS integer CHARACTERS 
;l __ ~ ____________________ ..;. __________________________________ ~ __ ~ ______ ..;. 

The size of the area may be defined to hold from one 'to all the 
blocks on a track including their count and key fields. 

Integer must be at least 24 + N (40 + RECORD KEY length + black 
. siz.e), where N is any number from 2 to the maximum number of blocks 
track. If N equals 1, then integer must be 24 + 50 + RECORD KEY lengtll 
+ block size. Integer must not exceed 32,767. (See IBM System/360 DiS,; 
O~rating System: Data Management Concepts, Form C24-3427). _ ~1 

Environment Division -- Input-Output Section 83 



RERUN Clause 

I-a-CONTROL PARAGRAPH 

The I-a-CONTROL paragraph defines some of the special techniques to 
be used in the program. It specifies the points at which checkpoints 
are to be established, the core storage area which is to be shared by 
different files, the location of files on multiple-file reels, and 
optimization techniques. The I-a-CONTROL paragraph and its associated 
clauses are an optional part of the Environment Division. 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 
I I 
I I-a-CONTROL. I 
I [RERUN Clause] ••• I 
I [SAME AREA Clause] I 
I [MULTIPLE FILE TAPE Clause] I 
I ~:~~~."fl • I 
I I L ______________________________________________________________________ J 

RERUN Clause 

The presence of a RERUN clause specifies that checkpoint records are 
to be taken. A checkpoint record is a recording of the status of a 
problem program and main storage resources at desired intervals. The 
contents of core storage are recorded on an external storage device at 
the time of the checkpoint and can be read back into core storage to 
restart the program from that point. 

r----------------------------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I RERUN ON system-name I 
I I 
I EVERY integer RECQRDS OF file-name I 
I I L ______________________________________________________________________ J 

The system-name in the RERUN clause specifies the external medium for 
the checkpoint file, the file upon which checkpoint records are to be 
written. It has the following structure: 

SYSnnn-class-device-organization[-name] 

84 Part II -- Identification and Environment Divisions 



SAME Clause 

The SYSnnn and ~ fields in the system-name for the checkpoint file 
cannot be the same as any specified in any ASSIGN clause. 

Checkpoint records are written sequentially, and may be assigned to 
any utility or mass storage device (except the 2321). Only one RERUN 
clause in a program may use a mass storage device for writing checkpoint 
records. (A complete list of utility and mass storage devices is given 
in the description of system-name in the ASSIGN clause.) 

Format 1 specifies that checkpoint records are to be written on the 
unit specified by system-name for every integer records of file-name 
that are processed. The value of integer must not exceed 16;777;215. 

More than one Format 1 RERUN clause may be included in a program. If 
multiple RERUN clauses are specified, they may be specified either for 
the same or for different checkpoint files. 

Note: ASCII considerations for the RERUN clause are given in 
Appendix E. 

The S&~ clause specifies tnat two or more files are to use the same 
core storage during processing. 

r----------------------------------------------------------------------, 
I Format I 
r----------------------------------------------------------------------~ 
I I 
I I 
I SM1E AREA FOR file-name-1 {file-name-2} ••• I 
I I 
I / I 
L _______ ~---------------------------------------------_________________ J 

A SAME clause with the SORT option is described in "Sort." The 
following discussion pertains only to the SAME AREA and SAME RECORD hREA 
clauses. 

The SAME RECORD AREA clause specifies that two or more files are to 
use the same main storage for processing the current logical record. 
All of the files may be open at the same time. A logical record in the 
shared storage area is considered to be: 

• a logical record of each opened output file in this SAME RECORD AREA 
clause, and 

• a logical record of the most recently read input file in this SAML 
RECORD AREA clause. 

If the SAME clause does not contain the RECORD option, the area being 
shared includes all storage areas assigned to the files; therefore, it 
is not valid to have more than one of these files open at one time. 

Environment Division -- Input-Output Section 85 



MULTIPLE FILE TAPE Clause 

More than one SAME clause may be included in a program; however: 

1. A file-name must not appear in more than one SAME AREA clause. 

2. A file-name must not appear in more than one SAME RECORD AREA 
clause. 

3. If one or more file-names of a SAME AREA clause appear in a SAME 
RECORD AREA clause, all of the file-names in that SAME AREA clause 
must appear in that SAME RECORD AREA clause. However. that SAME 
RECORD AREA clause may contain additional file-names other than 
those that appear in that SAME AREA clause. 

The SAME RECORD AREA clause implicitly redefines the logical records 
of each file named. This allows the user to write the same record to 
more than one file, or to write a record he has just read without any 
extra MOVE statement. An extra record area is generated for this 
purpose. 

The SAME AREA clause saves space generated for record areas. 
However, files named in a SAME AREA clause cannot be open at the same 
time. thus limiting processing possibilities. 

MULTIPLE FILE TAPE Clause 

The MULTIPLE FILE TAPE clause is used to indicate that two or more 
files share the same physical reel of tape. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I MULTIPLE FILE TAPE CONTAINS file-name-l J 

I I 
I [POSITION integer-i) [file-name-2 [POSITION integer-2]] ••• I 
I I L ______________________________________________________________________ J 

The MULTIPLE FILE TAPE clause is pertinent only when the tape has 
nonstandard labels, or when labels are omitted. It is treated as 
comments for a tape that has standard labels. 

Regardless of the number of files on a single reel, only those files 
that are used in the object program need be specified .• 

For purposes of positioning. a physical file is considered to be that 
segment of a tape that is terminated by a tape mark. Note that two 
consecutive tape marks are considered to terminate two physical files. 

If all file-names refer to single physical files and have been listed 
in consecutive order, the POSITION option need not be given. 

The POSITION inteqer relative to the beginning of the tape must be 
given if any file on the tape is not listed. or if a tape contains more 
than one physical file" i. e., more than one tape mark. Therefore, if a 
tape contains two files. each having one nonstandard header label 

86 Part II -- Identification and Environment Divisions 



Page of GC28-6394-4, -5. -6 revised 12/03/76 by TNL GN26-0887 

APPLY Clause 

terminated by a tape mark, their positions would be 1 and 3. If the 
labels are not to be processed, the positions may be specified as 2 and 
4, and the LABEL RECORDS clause must specify OMITTED. 

The compiler will position the tape by skipping past a number of tape 
marks equal to POSI~ION number minus one. 

Caution: POSITION should be used only for input files. If POSITION is 
used for output files, overlay may occur. 

More than one MULTIPLE FILE clause may be included in a program. 

Environment Division -- Input-Output Section 87 



88 l-'art II Identification and ~nvironment Divisions 



Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887 

Environment Division -- Input-Output section 89 





, . " 

PART III -- DATA DIVISION 

• DATA DIVISION -- INTRODUCTION 

• ORGANIZATION OF THE DATA DIVISION 

• FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES 

• DATA DESCRIPTION 

• DATA DESCRIPTION -- DETAILS OF CLAUSES 

91 



l 
I ,J 

~ 



External Data Description 

DATA DIVISION -- INTRODUCTION 

The Data Division of a COBOL source program contains the description 
of all information to be processed by the object program. Two types of 
data may be processed by a COBOL program: information recorded 
externally on files and information created internally. The second 
type, which exists only during the execution of a program, will be 
discussed later in this chapter in "Working-Storage Section." 

ORGANIZATION OF EXTERNAL DATA 

A file is a collection of records. There are two types of records: 
physical records and logical records. A physical record is a group of 
characters or records which is treated as an entity when moved into or 
out of core storage. A logical record is a number of related data 
items. It may itself be a physical record, i.e., contained within a 
single physical unit, or it may be.one of several logical records 
contained wit~in a single physical unit, or it may extend across two or 
more physical units. 

COBOL source language statements provide the means of describing the 
relationship between physical and logical records. Once this 
relationship is established, only logical records are made available to 
the COBOL programmer. Hence, in this publication, a reference to 
records means logical records unless the term "physical records" is 
used. 

DESCRIPTION OF EXTERNAL DATA 

In the discussion of data description, a distinction must first be 
made between a record's external description and its internal content. 

External description refers to the physical aspects of a file, i.e., 
the way in which the file appears on an external medium. Fo£ example, 
the number of logical records per physical record describes,the grouping 
of records in the file. The physical aspects of a file are specified in 
File Description entries. 

A COBOL record usually consists of groups of related information that 
are treated as an entity. The explicit description of the contents of 
each record defines its internal characteristics. For example, the type 
of data to be contained within each field of a logical record is an 
internal characteristic. This type of information about each field of a 
particular record is grouped into a Record Description entry. 

Data Division -- Introduction 93 



Data Division -- Structure 

ORGANIZATION OF THE DATA DIVISION 

The Data Division is divided in~o_fo9rs~cti?ps: the File Section, 
the Working-Storage Section, ~~~~~~~~ and the Report 
Section. 

All data that is stored externally, for example, on magnetic tape, 
must be described in the File Section before it can be processed by a 
COBOL program. Information that is developed for internal use must be 
described in the Working-Storage Section. l:~::-"'-; 
__ ~~~~~ft~riij~~MIi--',~' .· .. Uh.' •. , , The 
content and format of all reports that are to generated the Report 
Writer feature must be described in the Report section. 

The Data Division is identified by, and must begin with, the header 
DATA DIVISION. The File section is identified by, and must begin with, 
the header FILE SECTION. The header is followed by one or more file 
description entries and one or more associated record description 
entries. The Working-Storage Section is identified by, and must begin 
with, the header WORKING-STORAGE SECTION. The header is followed by 
data item description entries for nonconti uous followed b 
record descr" ion entries. 

The Report Section is 
header REPORT SECTION. The 

description entries, and one or more report group 
entries. 

For the proper formats of Division and Section headers, see nUse of 
the COBOL Coding Form" in "Language Considerations." 

Structure of the Data Division 

DATA DIVISION. 

FILE SECTION. 

{file description entry 

{record description entry} ••• } ••. 

WORKING-STORAGE SECTION. 

[data item description entry] ••• 

[record description entry] •.• 

REPORT SECTION. 

{report description entry 

{report group description entry} ••. } ••. 

Each of the sections of the Data Division is optional and may be 
omitted from the source program when the section is unnecessary. When 
used, the sections must appear in the foregoing sequence. 

94 Part III -- Data Division 

or 



Level Indicator/Number 

ORGANIZATION OF DATA DIVISION ENTRIES 

Each Data Division entry begins with a level indicator or a level 
number, followed by one or more spaces, followed by the name of a data 
item (except in the Report Section), followed by a sequence of 
independent clauses describing the data item. The last clause is always 
terminated by a period followed by a space. 

Level-Indicator 

The level indicator FD is used to specify the beginning of a file 
description entry. When the file is a sort-file, the level indicator SD 
must be used instead of FD (see "Sort"). When a report is to be 
generated by the Report writer feature, the level indicator RD, 
specifying the beginning of a report description entry must be provided 
for each report in addition to the FD for the file on which the report 
is generated (see "Report Writer"). Figure 11 summarizes the level 
indicators. 

r---------------T------------------------------------------------------, 
I Indicator I Use I 
~---------------+------------------------------------------------------~ 
I FD I File description entries I 
I SD I Sort-file description entries i 
I RD I Report description entries I L _______________ ~ ______________________________________________________ J 

Figure 11. Level Indicator Summary 

Each level indicator must begin in Area A and be followed in Area B 
by its associated file-name-and appropriate descriptive information. 

Level indicators are illustrated in the sample COBOL programs found 
in Appendix B. 

Level Number_ 

Level-numbers are used to structure a logical record to satisfy the 
need to specify subdivisions of a record for the purpose of data 
reference. Once a subdivision has been specified, it may be further 
subdivided to permit more detailed data reference. 

The basic subdivisions of a record, that is, those not further 
subdivided, are called elementary items; consequently, a record may 
consist of a sequence of elementary items, or the record itself may be 
an elementary item. 

In order to refer to a set of elementary items, the elementary items 
are combined into groups. A group item consists of a named sequence of 
one or more elementary items. Groups, in turn, may be combined into 
larger groups. Thus, an elementary item may belong to more than one 

Organization of the Data Division 95 



Level Number 

group. In the following example, the group items MARRIED and SINGLE are 
themselves part of a larger group named RETIRED-EMPLOYEES: 

02 RETIRED-EMPLOYEES. 
03 MARRIED. 

04 NO-MALE PICTURE 9(8). 
04 NO-FEMALE PICTURE 9(8). 

03 SINGLE. 
04 NO-MALE PICTURE 9(8). 
04 NO-FEMALE PICTURE 9(8). 

A system of level numbers shows the organization of elementary items 
and group items. Since records are the most inclusive data items, the 
level number for a record must be 1 or 01. Less inclusive data items 
are assigned higher (not necessarily successive) level numbers not 
greater than 49. There are special level numbers -- 66, 77. and 88 
which are exceptions to this rule. Separate entries are written in the 
source program for each level number used. 

A group includes all group and elementary items following it until a 
level number less than or equal to the level number of that group is 
encountered. The level number of an item which immediately follows the 
last elementary item of the previous group must be equal to the level 
number of one of the groups to which a prior elementary item belongs. 

Standard 
01 A. 

05 C-l. 
06 D PICTURE X. 
06 E PICTURE X. 

05 C-2. 

Level numbers 01 and 77 must begin in Area A, followed in Area B by 
associated data names and appropriate descriptive information. All 
other level numbers may begin in either Area A or in Area B, followed in 
Area B by associated data names and appropr~ate descriptive information. 

A single-digit level number is written either as a space followed by 
a digit or as a zero followed by a digit. At least one space must 
separate a level number from the word following the level number. 

Special Level Numbers 

Three types of data exist whose level numbers are not intended to 
structure a record. They are: 

66: Names of elementary items or groups described by a RENAMES clause 
for the purpose of regrouping data items have been assigned the 
special level number 66. F9r an example of the function of the 
RENAMES clause, see "Data Description." 

77: Noncontiguous Working-Storage items, which are not subdivisions of 
other items and are not themselves subdivided, have been assigned 
the special level number 77. 

96 Part III -- Data Division 



File Section 

88: Entries that specify condition-names to be associated with 
particular values of a conditional variable have been assigned the 
special level number 88. For an example of level-88 items, see 
"Data Description." 

Indentation 

successive data description entries may have the same format as the 
first such entry or may be indented according to level number. 
Indentation is useful for documentation purposes, and does not affect 
the action of the compiler. 

FILE SECTION 

The File Section contains a description of all externally stored data 
(FO), and a description of each sort-file (SO) used in the program. 

The File Section must begin with the header FILE SECTION followed by 
a period. The File Section contains. file description entries and 
sort-file description entries, each one followed by its associated 
record description entry (or entries). 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 
I I 
I FILE SECTION. I 
I I 
I {file description entry I 
I I 
I {record description entry} ••• }... I 
I I L ______________________________________________________________________ J 

File Description Entry 

In a COBOL program, the File Description Entries (FD and SD> 
represent the highest level of organization in the File Section. rhe 
File Description entry provides inflormation about the physical structure 
and identification of a file, and gives the record-name(s) associated 
with that file" 

For a complete discussion of the sort-file-description entry, see 
"Sort." 

Record Description Entry 

The Record-Description-Entry consists of a set of data description 
entries which describe the particular record(s) contained within a 
particular file. For a full discussion of the format and the clauses 
required within the Record Description entry, see -Data Description." 

Organization of the Data Division 97 



Working-Storage Section 

WORKING-STORAGE SECTION 

The Working-Storage Section may contain descriptions of records which 
are not part of external data files but are developed and processed 
internally. 

The Working-Storage Section must begin with the section header 
WORKING-STORAGE SECTION followed by a period. The Working-Storage 
Section contains data description entries for noncontiguous items and 
record description entries, in that order. 

r----------------------------------------------------------------------, 
I General Format I 
t---------~------------------------------------------------------------1 
I I 
I WORKING-STORAGE SECTION. I 
I I 
I [data item description entry] I 
I I 
I [record description entry] ••• I 
I I L ______________________________________________________________________ J 

Data Item Description Entries 

Noncontiguous items in Working-Storage that bear no hierarchical 
relationship to one another need not be grouped into records, provided 
they do not need to be further subdivided. Instead, they are classified 
and defined as noncontiguous elementary items. Each of these items is 
defined in a separate data item description entry that begins with the 
special level number 77. 

Record Description Entries 

Data elements in Working-Storage that bear a definite hierarchical 
relationship to one another must be grouped into records structured by 
level number • 

. , ' 

.," Thte; ~~ge, s,*:tion: d~5'P~:ribes data made available from another 
f;i(I~~ITuJi?7fg:~~~~~tf'~age" in "Procedure Division" ) • 

98 Part III -- Data Division 



Report Sections 

REPORT SECTION 

The Report Section contains Report Description entries and report 
group description entries for every report named in the aEPORT clause. 
The Report Section is discussed in "Report Writer." 

Organization of the Data Division 99 



FD Entry/BLOCK CONTAINS Clause 

FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES 

The file description entry consists of level indicator (FD) , followed 
by file-name, followed by a series of independent clauses. The entry 
itself is terminated by a period. 

r----------------------------------------------------------------------, 
I General Format I 
~----------------------------------------------------------------------~ 

FD file-name 

[BLOCK CONTAINS Clause] 

[RECORD CONTAINS Clause] 

LABEL RECORDS Clause 

[VALUE OF Clause] 

[DATA RECORDS Clause] 

[REPORT Clause]. 
______________________________________________________________________ J 

The level indicator FD identifies the beginning of a file description 
entry and must precede the file-name. The clauses that follow the name 
of the file are optional in many cases, and their order of appearance is 
not significant. 

BLOCK CONTAINS Clause 

The BLOCK CONTAINS clause is used to specify the size of a physical 
record. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 

I BLOCK CONTAINS [integer-1 rO] integer-2 I 
I fCHARACTERS} I 

I lRECORDS I 
I I L ______________________________________________________________________ J 

The BLOCK CONTAINS clause is unnecessary when a physical record 
contains one and only one complete logical record. In all other 
instances, this clause is required. 

100 Part III -- Data Division 



BLOCK CONTAINS Clause 

The BLOCK CONTAINS clause need not be specified for: 

• direct files with F, U, or V mode records 

• files containing U-mode records 

For these types of files f the compiler accepts the clause and treats it 
as comments. 

The RECORDS option may be used unless one of the following situations 
exists, in which case the CHARACTERS option should be used: 

1. The physical record contains padding (areas not contained in a 
logical record) 

2. Logical records are -grouped in such a manner that an inaccurate 
physical record size would be implied. Such would be the case 
where the user describes a mode V record of 100 characters, yet 
each time he writes a block of 4, he writes a 50-character record 
followed by three 100-character records. Had he used the RECORDS 
option, the compiler would have calculated the block length as 420. 

3. Logical records extend across physical records; that is, recording 
mode is S (spanned). 

When the RECORDS option is used, the compiler assumes that the 
blocksize provides for integer-2 records of maximum~ize and ~ 
provides additional space for any re . ed control bYtes. 

When the CHARACTERS option is used, the physical record size is 
specified in Standard Data Format, i.e., in terms of the number of bytes 
occupied internally by its characters, regardless of the number of 
characters used to represent the item within the physical record. The 
number of bytes occupied internally by a data item is included as part 
of the discussion of the USAGE clause. Integer-l and integer-2 must 
include ~bytes and control ~ contained in the physical record. 

When the CHARACTERS option is used, if only integer-2 is shown, it 
represents the exact size of the physical record. If integer-l and 
integer-2 are both shown, they refer to the minimum and maximum size of 
the physical record, respectiveli. 

Integer-l and integer-2 must be positive integers., 

If this clause is omitted, it is assumed that records are not 
blocked. 

When neither the CHARACTERS nor the RECORDS option is specified, the 
CHARACTERS option is assumed. 

Note: ASCII considerations for the BLOCK CONTAINS clause are given in 
Appendix E. 

File Description Entry -- Details of Clauses 101 



RECORD CONTAINS Clause 

RECORD CONTAINS Clause 

The RECORD CONTAINS clause is used to specify the size of a file's 
data records. 

r----------------------------------------------------------------------, 
I Format I 
t----------------------------------------------------------------------~ 
I I 
I RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS I 
I I L ______________________________________________________________________ J 

Since the size of each data record is completely defined within the 
record description entry, this clause is never required. When the 
clause is specified, the following notes apply: 

1. If both integer-1 and integer-2 are shown, they refer to the number 
of characters in the smallest data record and the number in the 
largest data record, respectively. 

2. Integer-2 should not be used by itself unless all the data records 
in the file have the same size. In this case, integer-2 represents 
the exact number of characters in the data record. 

3. ,The size of the record must be specified in Standard Data Format, 
i.e., in terms of the number of bytes occupied internally by its 
characters, regardless of the number of characters used to 
repLe~ent the ,item within the record. The number of bytes occupied 
internally by a data item is discussed in the description of the 
USAGE clause. 'The size" of·· a record is determined according to the 
rules for obtai"ning the size of a group item. 

Normally, whether this clause is specified or omitted, the record 
lengths are determined by the compiler from the record descriptions. 
When one or more of the data item description entries within a record 
contains an OCCURS clause with the DEPENDING ON option, the compiler 
uses the maximum val:ue of the varian.le to calculate the rec~rd ;Length. 

However, if more than one entry in a given record description 
contains an OCCURS clause with the DEPENDING ON option, and the maximum 
values of the variables in these OCCURS clauses do not occur 
simultaneously, integer-2, as specified by the user, may indicate a 
maximum record size other than the size calculated by the compiler from 
the maximum values of the OCCURS clause variables. In this case, the 
user-specified value of integer-2 determines the amount of storage set 
aside to contain the data record. 

For example, in a school whose total enrollment is 500, an unblocked 
file of collective attendance records is being created, each record of 
which is described as follows: 

01 ATTENDANCE-RECORD. 
02 DATE PICTURE X(6). 
02 NUMBER-ABSENT PICTURe S999 USAGE IS COMP SYNC. 
02 NUMBER-PRESENT PICTURE S999 USAGE IS COMP SYNC. 
02 NAMES-OF-ABSENT OCCURS 0 TO 500 TIMES DEPENDING ON 

NUMBER-ABSENT PICTURE A(20). 
02 NAMES-OF-PRESENT OCCURS 0 TO 500 TIMES DEPENDING ON 

NUMBER-PRESENT PICTURE A(20). 

102 Part III -- Data Division 



Recording Mode 

The programmer can save storage by taking advantage of the fact that 
NUMBER-ABSENT plus NUMBER-PRESENT will never exceed the school's total 
enrollment. Unless the programmer writes RECORD CONTAINS 10,010 
CHARACTERS in the FD entry for the file, the compiler calculates the 
record size to be almost twice as large. 

Recording Mode 

U 

~jp~EID;rNiG",:KQ~if:t~,;t1Ei~~~e,:':lp;<"l)()t:+:u~~Cl::~:tiq,;?,pe~:i;:y,,·.th;e,r~9P~¢li.pg: 
the COBOL complIer scans each record 

recording mode may be F (fixed), 
or S (spanned). 

Recording Mode F -- All of tne records in a file are the same length and 
each is wholly contained in one block. Blocks may contain more than one 
record, and there is usually a fixed number of records per block. In 
this mode, there are no record-length or block-descriptor fields. 

Recording Mode U -- The records may be either fixed or variable in 
length. However, there is only one record per block. There are no 
record-length or block-descriptor fields. 

Recording~ode V -- The records may be either fixed or variable in 
length, and each must be wholly contained in one block. Blocks may 
contain more than one record. Each data record includes a record-length 
field and each block includes a block-descriptor field. These fields 
are not described in the Data Division; provision is automatically made 
for themQ These fields are not available to the user. 

Recording Mode S -- The records may be either fixed or variable in 
length and may be larger than a block. If a record is larger than the 
remaining space in a block, a segment of the record is written to fill 
the block. The remainder of the record is stored in the next block (or 
blocks if required). Only complete records are made available ~b the 
user. Each segment of a record in a block, even if it is the entire 
record, includes a segment-descriptor field, and each block includes a 
block-descriptor field. These fields are not described in the Data 
Division; provision is automatically made for them. These fields are 
not available to the user. 

For standard sequential files, the compiler determines the recording 
mode for a given file to be: 

F if all the records are defined as being the same size and the 
size is smaller than or equal to the block size 

f:Jif the records are defined as variable in size, or if the RECORD 
CONTAINS clause specifies variable size records and the longest 
record is less than or equal to the maximum block size 

S if the maximum block size is smaller than the largest record 
size 

For direct files, the compiler determines the recording mode for a 
given file to be: 

F if all the records are defined as being the same size, and the 
size is smaller than or equal to the block size 

U if the records are defined as being variable in size, or if the 
RECORD CONTAINS clause specifies variable size records and the 
longest record is less than or equal to the maximum block size 

File Description Entry -- Details of Clauses 103 



S if tne maximum block size is smaller than the largest record 
size 

Files assigned to the card reader and files with'indexed orgalji{z?"tion 
must be F mode <fixed format). 

Note: ASCII considerations for compiler calculat.ion of recording mode 
are given in Appendix E. 

RECORDING MODE Clause 

'The RECORDING MODE clause is used to specify the format of 
logical recordS in the file. 

r-:--------------:--'""---'-.------.... --..... --~--------'-'--..;,..------·----.,..-------'-'--'-.'""-.;..~..;,..~;.;. 
I Format :f; 
t-·---,.-'--------·-:----..... -----.-----;-.------..,..-------.,..--·--.,.......:----.:..--,-.---. .;..-----;--.,..~;." 
I ~1 
I RECORDING MODE IS mode ;t 
I f 
L.:.. ______________________ .--_------------·-----------,--.:..---------------------l' 

Mode may be specif ied as F:, V, U, or S. I f this clause is not 
specified, the recording mode is deterqtined as described in " Record ill$" 
Mode." 

The F mode (fixed-Iengt.h format) may be specified when al,l, the 
logical records in a: file: are: ,the sante length and each is wholly 
contained in one physical block. This implies that no OCCURS clause , 
with the DEPENDING O:N option' is associated with an entry in any reco:rd 
description for the file. If more than one re-cord description entryis~' 
given following the FD entry, all record lengths calculated from the 
record descriptions must be equal. Files assigned to the card reade;r: ; 
and files with indexed organization must be in F mode. 

The Lmode (variable-length format) may be speqified forapy ~ , 
combination of record descriptions if each record is wholly contained 
within one physical block. A, mode V record is preceded by a control ' 
field containing the leng:th of the logical record. Blocks of 
variable-length records'include a block-descriptor cont-rol field,. 
mode may be specified only fO,r standard sequential files. 

The !Lmode (un1efined format) may be specified for any combination of 
record descriptions if each record is wholly contained within one " 
physical block. It ,is comparable to V mode with the exception that U 
mode records are not blocked and have no preceding control field. U 
mode may be specified only for direct files or standard sequential 
files. 

The S mode (spanned format) may be specified for any combination of' ,i 

record descriptions. A record that cannot fit into the remaining space; 
in a block appears as mUltiple segments, one segment per block. A 
record that can be comple:tely contained ina block appears as a singTe 
segment _ An S-mode segment is preceded by a control field containing ;" 
the length of the; segment and indicating whether it is the firs;t and/orY 
last or an intermedj,ate segment. Blocks of S-mode segments include a 
block~descriptor control field. S mode may be specified for standard 
sequential or direct files. 

Note: ASCII considerations for the RECORDING MODE clause are given in 
Appendix E. 

104 Part III -- Data Division 



LABEL RECORDS Clause 

LABEL RECORDS Clause 

The LABEL RECORDS clause specifies whether labels are present, and if 
present, identifies the labels. 

r---------------------------------------------------------------------~ 
I Format / I 
r----------------------------------------------------------------------~ 
I I 
: LABEL {. RECORD IS}' {~~i~~i~D l I 
I RECORDS ARE data-name-1 [data-name-2] ... f I 
I I L ______________________________________________________________________ J 

The LABEL RECORDS clause is required in every FD. 

The OMITTED option specifies either that no explicit labels exist for 
the file or that the existing labels are nonstandard and the user does 
not want them to be prooessed by a label declarative (i.e., they will be 
processed as data records). The OMITTED option must be specified for 
files assigned to unit record devices. it may be specified for files 
assigned to magnetic tape units. Use of the OMITTED option does not 
result in automatic bypassing of nonstandard labels on input. It is the 
user's responsibility either to process or to bypass nonstandard labels 
on input and create them on output. 

STANDARD specifies that labels exist for the file and the labels 
conform to system specification. The system will bypass user labels 
appearing in the file if the STANDARD option is specified. 

'u', ,;:;~~i0f~"r'~to\ .~.'~~1(f,:i~ #;r .. f~ ."i,th~Me~. 
In the discussion that follows, all references to data-name-l apply 

equally to data-name-2. 

The data-name-l option indicates either the presence of user labels 
in addition to standard labels, or the presence of nonstandard labels. 
Data-name-l specifies the name of a user label record. Data-name-l must 
appear as the subject of a record description entry associated with the 
file, and must not appear as an operand of the DATA RECORDS clause for 
the file. 

If user labels are to be processed, data-name-1 may be specified for 
direct files, or for standard sequential files with the exception of 
files assigned to unit-record devices. 

A user label is 80 characters in length. A user header label must 
have UHL in character positions 1 through 3. A user trailer label must 
have UTL in character positions 1 through 3. Both header and trailer 
labels may be grouped and each label must show the relative position (1, 
2, ••• ) of the label within the user label group, in character position 
4. The remaining 76 characters are formatted according to the user's 
choice. User header labels follow standard beginning file labels but 
precede the first data record; user trailer labels follow standard 
closing file labels. 

If nonstandard labels are to be processed, data-name-l may be 
specified only for standard sequential files, with the exception of 
files assigned to unit-record devices. The length of a nonstandard 
label may not exceed 4,095 character positions. 

File Description Entry -- Details of Clauses 105 



VALUE OF/DATA RECORDS Clauses 

All Procedure Division references to data-name-l, or to any item 
subordinate to data-name-l, must appear within label processing 
declaratives. 

Note: ASCII considerations for the LABEL RECORDS clause are given in 
Appendix E. 

VALUE OF Clause 

The VALUE OF clause particularizes the description of an item in the 
label records associated with a file, and serves only as documentation. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I {'data-name-2t I 
I VALUE OF data-name-l IS ( I 
I literal-l ) I 
I I 
I fdata-name-4 t I 
I [data-name-3 IS ) ( ] ••• I 
I ~literal-2 ) I 
I I L ______________________________________________________________________ J 

To specify the required values of identifying data items in the label 
records for the file, the programmer must use the VALUE OF clause. 

However, this compiler treats the VALUE OF clause as comments, since 
for standard labels this function is performed by the system through the 
TLBL or DLBL control statement as described in the Programmer's Guides 
(as cited in "Preface"), and through the Label Declarative procedures 
for user standard labels and nonstandard labels. 

DATA RECORDS Clause 

The DATA RECORDS clause serves only as documentation, and identifies 
the records in the file by name. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
II {RECORD IS } II DATA data-name-l [data-name-2] •.. 
I RECORDS ARE I 
I I L ______________________________________________________________________ J 

The presence of more than one data-name indicates that the file 
contains more than one type of data record. That is, two or more record 
descriptions for a given file occupy the same storage area. These 
records need not have the same description. The order in which the 
data-names are listed is not significant. 

106 Part III -- Data Division 



REPORT Clause 

Data~name-1, data-name-2, etc., are the names of data records and 
each must be preceded in its record description entry by the level 
number 01. 

This clause is never required. 

REPORT Clause 

The REPORT clause is used in conjunction with the Report Writer 
feature. A complete description of the REPORT clause can be found in 
"Report Writer." 

File Description Entry -- Details of Clauses 107 



Data Description -- General Formats 

DATA DESCRIPTION 

In COBOL, the terms used in connection with data description are: 

Data Description Entry -- the clause, or clauses, that specify the 
characteristics of any particular noncontiguous data item, or of any 
data item that is a portion of a record. The data description entry 
consists of a level number, a data-name (or condition-name), plus any 
associated data description clauses. 

Data Item Description Ent~ -- a data description entry that defines 
a noncontiguous data item. It consists of a level number (77), a 
data-name plus any associated data description entries. Data item 
description entries are valid in the Working-Storage section~llIlIlIlmlilii 

~,'~. ~ 

Record De~cription Entry -- the term used in connection with a 
record. rt consists of a hierarchy of data description ent.~rliilelsl.IIIRleicord 
description entries are valid in the File, working-storage. 
sections. 

Note: For the 3881 optical mark reader, the first 6 bytes of the record 
descri~tion entry should be described as a FILLER item; these 6 bytes 
are reserved for control information and are not available to the COBOL 
program. 

The maximum length for a data description entry is 32,767 bytes, 
except for a fixed-length Working-Storage ..... rrlM Section group item, 
which may be as long as 131,071 bytes. 

r----------------------------------------------------------------------, 
I General Format 1 I 
t----------------------------------------------------------------------~ 

level number 
{

data-name} 

FILLER 

[REDEFINES Clause] 
[BLANK WHEN ZERO Clause] 
[JUSTIFIED Clause] 
(OCCURS Clause]: 
[PICTURE Clause] 
'-~I~tI " " ':~~ i " 

[SYNCHRONIZED Clause] 
[USAGE Clause] 
[VALUE Clause]. 

l _____________________________________________________ -----------------

r----------------------------------------------------------------------, 
I G~neral Format 2 I 
~----------------------------------------------------------------------~ 
I I 
I 66 data-name-l RENAMES Clause. I 
I I l ______________________________________________________________________ J 

108 Part III -- Data Division 



Data Description ~- General Formats 

r----------------------------------------------------------------------, 
I Genera 1 Format 3 I 
~-------------------------------------------------------------------~--1 
I I 
I 88 condition-name VALUE Clause. I 
I I L _____________________________________________________ ~--------------__ J 

General Format 1 is used for record description entries in the File, 
Working-storage~,:'~mcJ~~~~ Sections and for data item description 
entries in the Working-Storage\~irp;tJ4~~Sections. The following 
rules apply: 

1. Level number may De any number from 1 through 49 for record 
description entries, or 77 for data item description entries. 

2. The clauses may be written in any order, with one exception: the 
REDEFINES clause, when used, must immediately follow the data-name. 

3. The PICTURE clause must be specified for every elementary item, 
with .. the exception of index data i tems~~L~~~~~:r!~l,:itj+1~~~~~~:' 
';i\~. Index data items are described in "Table Handling." 

4. Each entry must be terminated ·by a period. 

5. Semicolons or commas may be used as separators between clauses. 

General Format 2 is used for the purpose of regrouping data items. 
The following rules apply: 

1. A level-66 entry cannot rename another level-66 entry, nor can it 
rename a level-77, level-88, or level-01 entry. 

2. All level-66 entries associated with a given logical record must 
immediately follow the last data description entry in the record. 

3. The entry must be terminated by a period. 

The RENAMES clause is discussed in detail later in this chapter. 

General Format 3 is used to describe entries that specify 
condition-names to be associated with particular values of a conditional 
variable. A condition-name is a name assigned by the user to a specific 
value that a data item may assume during object program execution. The 
following rules apply: 

1. The condition-name entries for a particular conditional variable 
must immediately follow the conditional variable. 

2. A condition-name can be associated with any elementary data 
description entry except another condition-name, or an index data 
item. 

3. A condition-name can be associated with a group item data 
description entry. In this case: 

• The condition value must be specified as a nonnumeric literal or 
figurative constant • 

• The size of the condition value must not exceed the sum of the 
sizes specified by the pictures in all the elementary items 
within the group. 

Data Description 109 



Data Description -- General Formats 

• No element within the group may contain a JUSTIFIED or 
SYNCHRONIZED clause . 

• No USAGE other than USAGE IS DISPLAY may be specified within the 
group. 

4. The specification of a condition-name at the group level does not 
restrict the specification of condition-na.mes at levels subordinate 
to that group. 

5. The relation test implied by the definition of a condition-name at 
the group level is performed in accordance with the rules for 
comparison of nonnumeric operands, regardless of the nature of 
elementary items within the group. 

6. Each entry must be terminated by a period. 

Examples of both group and elementary condition-name entries are 
given in the description of the VALUE clause. 

110 Part III -- Data Division 



Data-name/FILLER Clause 

DATA DESCRIPTION ENTRY -- DETAILS OF CLhUSES 

The data description entry consists of a level number, followed by a 
data-name, followed by a series of independent clauses. The clauses may 
be written in any order, with one exception: the REDEFINES clause, when 
used, must immediately follow the data-name. The entry must be 
terminated by a period. 

Data-name or FILLER Clause 

A data-name specifies the name of the data being described. The word 
FILLER specifies an elementary ~~ item of the logical record that 
is never referred to and therefore need not be named. 

r----------------------------------------------------------------------, 
I Format I 
r----------------------------------------------------------------------~ 
I I 
I, (data-name) II 

level number 2. > 
I tFILLER ) I 
I I l ______________________________________________________________________ J 

File Sections, a data-name or the 
following the level number in 

A data-name is a name assigned by the user to identify a data item 
used in a program. A data-name refers to a kind of data, not to a 
particular value; the item referred to may assume a number of different 
values during the course of a program. 

The key !Nord FILLER is used to specify an elementary _1(_ 
item that is never referred to in the program, and therefore need not be 
named. Under no circumstances may a FILLER item be referred to 
directly. In a MOVE, ADD, or SUBTRACT statement with the CORRESPONDING 
option, FILLER items are ignored. 

Note: Level-77 and level-Ol entries in the Working-Storage 
Section must be given unique data-names, since neither can be qualified. 
Subordinate data-names, if they can be qualified, need not be unique. 

Data Description Entry -- Details of Clauses 111 



REDEFINES Clause 

REDEFINES Clause 

The REDEFINES clause allows the same computer storage area to contain 
different data items or provides an alternative grouping or descripticn 
of the same data. That is, the REDEFINES clause specifies the 
redefinition of a storage area, not of the data items occupying the 
area. 

r----------------------------------------------------------------------, 
I Format I 
r----------------------------------------------------------------------~ 
I I 
I level number data-name-1 REDb.FINES data-name-2 I 
I I L ______________________________________________________________________ J 

The level numbers of data-name-1 and data-name-2 must be identical, 
but must not be 66 or 88. Data-name-2 is the name associated with the 
previous data description entry. Data-name-l is an alternate name for 
the same area. When written, the REDEFINES clause must be the first 
clause following data-name-l. 

The REDEFINES clause must not be used in level-01 entries in the File 
Section. Implicit redefinition is provided when more than one level-01 
entry follows a file description 8ntry. 

Redefinition starts at data-name-2 and ends when a level number less 
than or equal to that of data-narne-2 is encountered. Between the data 
descriptions of data-name-2 and data-name-1, there may be no entries 
having lower level numbers (numerically> than the level number of 
data-name-2 and data-name-1. Example: 

02 

02 

A. 
03 A-l 
03 A-2 
03 A-3 
B REDEFlriJES 

PICTURE X. 
PICTURE XXX. 
PICTURE 99. 

A PICTURE X(6). 

In this case, B is data-name-l, and A is aata-name-2. When B redefines 
A, the redefinition includes all of the items sUDordinate to A (A-l, 
A-2, and A-3). 

The data description entry for data-name-2 cannot contain an OCCURS 
clause, nor can data-name-2 be subordinate to an entry which contains an 
OCCURS clause. An item subordinate to data-name-2 may contain an OCCURS 
clause without the DEPENDING ON option. Data-name-l or any items 
subordinate to data-name-l may contain an OCCURS clause without the 
DEPENDING ON option. Neither data-name-2 nor data-name-l nor any of 
their subordinate items may contain an OCCURS clause with the DEPENDING 
ON option. 

When data-name-1 has a level number other than 01, it must specify a 
storage area of the same size as data-name-2. 

If data-name-l contains an OCCURS clause, its size is computed by 
multiplying the length of one occurrence by the number of occurrences. 

Note: In the discussion that follows, i=:he i=:e!m"coITIt:>?tational n refers 
to COMPUTAT IONAL ,';.i:,CQ'p.~Wif,~9ijit::~fi-'-Ta~d. COMPutATt6N~t-2' items. 

112 Part III -- Data Division 



REDEFINES Clause 

When the SYNCHRONIZED clause is specified for an item that also 
contains a REDEFINES clause, the data item that is redefined must have 
the proper boundary alignment for the data item that REDEFINES it. For 
example, if the programmer writes: 

02 A PICTURE X(4). 
02 B REDEFINES A PICTURE S9 (9) COL-W SYNC. 

he must ensure that A begins on a fullword boundary. 

When the SYNCHRONIZED clause is specified for a computational item 
that is subordinate to an item that contains a REDEFI~~S clause, the 
computational item must not require the addition of slack bytes. 

Except for condition-name entries, the entries giving the new 
description of the storage area must not contain any VALUE clauses. 

The entries giving the new description of the storage area must 
follow the entries describing the area being redefined, without 
intervening entries that define new storage areas. Multiple 
redefinitions of the same storage area shouldal~ll~e the, data-n~m~ ()f 

.~he entr;::~at~~~~\;R~T~g;tg~~~···jl~ 
tfl"""" :~:~ tLid!~:it·\,' For example, both of the following are valid uses 
of the REDEFINES clause: 

02 A PICTURE 9999. 
02 B REDEFINES A PICTURE 9V999. 
02 C REDEFINES A PICTURE 99V99. 

Data items within an area can be redefined without their lengths 
being changed; the following statements result in the storage layout 
shown in Figure 12. 

02 N&M..E-2. 
03 SALARY PICTURE XXX. 
03 SO-SEC-NO PICTURE X(9). 
03 MONTH PICTURE XX. 

02 NAME-1 REDEFINES NAME-2. 
03 WAGE PICTURE XXX. 
03 MAN-NO PICTURE X(9). 
03 YEAR PICTURE XX. 

r----------------------------------------------------------------------, 

NAME-2 

SALARY SO-SEC-NO MONTH 

WAGE MAN-NO YEAR 

--....--. --- ~ --~ r--T--T--T--T--T--T--T--T--T--T--T--T--T--' 
I I I I I I I I I I I I I I I 

NAME-1 I I I I 
I I I I I I I I I I I I I I I L __ L __ L __ L __ L __ L __ L __ L __ L __ L_~L __ L __ L __ L __ J 

______________________________________________________________________ J 

Figure 12. Areas REDEFINED without Changes in Length 

Data Description Entry -- Details of Clauses 113 



REDEFINES Clause 

Data items can also be rearranged within an area; the following 
statements result in the storage layout shown in Figure 13. 

02 NAME-2. 
03 SALARY PICTURE XXX. 
03 SO-SEC-NO PICTURE X(9). 
03 MONTH PICTURE XX. 

02 NAME-l REDEFINES NAME-2. 
03 MAN-NO PICTURE X(6). 
03 WAGE PICTURE 999V999. 
03 YEAR PICTURE XX. 

r----------------------------------------------------------------------, 
SALARY SO-SEC-NO MONTH 

NAME-2 

MAN-NO WAGE YEAR 

NAME-l 

Figure 13. Areas REDEFINED and Rearranged 

When an area is redefined, all descriptions of the area remain in 
effect. Thus, if Band C are two separate items that share the same 
storage area due to redefinition, the procedure statements MOVE X TO B 
or MOVE Y TO C could be executed at any point in the program. In the 
first case, B would assume the value of X and take the form specified by 
the description of B. In the second case, the same physical area would 
receive Y according to the description of C. It should be noted, how
ever, that if both of the foregoing statements are executed successively 
in the order specified, the value Y will overlay the value X. However, 
-redefinition in itself does not cause any data to be erased and does not 
supersede a previous description. 

The usage of data items within an area can be redefined. 

Altering the USAGE of an area through redefinition does not cause any 
change in existing data. Consider the example: 

02 
02 
02 

B 
C REDEFINES B 
A 

PICTURE 99 USAGE DISPLAY VALUE IS 8. 
PICTURE S99 USAGE COMPUTATIONAL. 
PICTURE S9999 USAGE COMPUTATIONAL. 

Assuming that B is on a halfword boundary, the bit configuration of 
the value 8 is 1111 0000 1111 1000, because B is a DISPLAY item. 
Redefining B does not change its appearance in storage. Therefore, a 
great difference results from the two statements ADD B TO A and ADD C TO 
A. In the former case, the va~ue 8 is added to A, because B is a 
display item. In the latter case, the value -3,848 is added to A, 
because C is a binary item (USAGE IS COMPUTATIONAL), and the bit 
configuration appears as a negative number. 

ii4 Part III -- Data Division 



BL&~K WHEN ZERO Clause 

Moving a data item to a second data item that redefines the first one 
(for example, MOVE B TO C when C redefines B), may produce results that 
are not those expected by the programmer. The same is true of the 
reverse (MOVE B TO C when B redefines C). 

A REDEFINES clause may be specified for an item within the scope of 
an area being redefined, that is, an item subordinate to a redefined 
item. The following example would thus be a valid use of the REDEFINES 
clause: 

02 REGULAR-EMPLOYEE. 
03 LOCATION PICTURE A( 8) e 

03 STATUS PICTURE X(4). 
03 SEMI-MONTHLY-PAY PICTURE 9999V99. 
03 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY PICTURE 999V999. 

02 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE. 
03 LOCATION PICTURE A (a) • 
03 FILLER PICTURE X(6). 
03 HOURLY-PAY PICTURE 99\199. 

REDEFINES clauses may also be specified for items subordinate to 
items containing REDEFINES clauses. For example: 

02 REGULAR-EMPLOYEE. 
03 LOCATION PICTURE A (a) . 
03 STATUS PICTURE X(4). 
03 SEMI-MONTHLY-PAY PICTURE 999V999. 

02 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE. 
03 LOCATION PICTURE 1\(8). 
03 FILLER PICTURE X(6). 
03 HOURLY-PAY PICTURE 99\199. 
03 CODE-H REDEFINEs HOURLY-PAY PICTURE 9999. 

BLANK WHEN ZERO Clause 

This clause specifies that an item is to be set to blanks whenever 
its value is zero. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I BLANK WHEN ZERO I 
I I L ______________________________________________________________________ J 

When the BLANK WHEN ZERO clause is used, the item will contain only 
blanks if the value of the item is zero. 

The BLANK WHEN ZERO clause may be specified only at the elementary 
level for numeric edited or numeric items. When this clause is used for 
an item whose PICTURE is numeric, the category of the item is considered 
to be numeric edited. 

This clause may not be specified for level-66 and level-aa data 
items. 

Data Description Entry -- Details of Clauses 115 



JUSTIFIED Clause 

JUSTIFIED Clause 

The JUSTIFIED clause is used to override normal positioning of data 
within a receiving alphabetic or alpnanumeric data item. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
II {JUSTIFIED} II 

RIGHT 
I JUST I 
I I l ______________________________________________________________________ J 

Normally, the rule for positioning data within a receiving 
alphanumeric or alphabetic data item is: 

• The data is aligned in tne receiving field, beginning at the 
leftmost character position within the receiving field. Unused 
character positions to the right are filled with spaces. If 
truncation occurs, it will be at the right. 

The JUSTIFIED clause affects the positioning of data in the receiving 
field as follows: 

• When the receiving data item is described with the JUSTIFIED clause 
and the data item sent is larger than the receiving data item, the 
leftmost characters are truncated. 

• When the receiving data item is described with the JUSTIFIED clause 
and is larger than the data item sent, the data is aligned at the 
rightmost character position in the data item. Unused character 
positions to the left are filled with spaces. 

The JUSTIFIED clause may only be specified for elementary items. 

This clause must not be specified for level-66 or level-aa data 
items. 

OCCURS Clause 

The OCCURS clause is used to define tables and other homogeneous sets 
of data, whose elements can be referred to by subscripting or indexing. 
The OCCURS clause is described in "Table Handling." 

PICTURE Clause 

The PICTURE clause describes the general characteristics and editing 
requirements of an elementary item. 

116 Part III -- Data Division 



PICTURE Clause 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
II {PICTURE} II IS character string 
I PIC I 
I I l ______________________________________________________________________ J 

The PICTURE clause can be used only at the elementary level. 

The character string consists of certain allowable combinations of 
Characters in the COBOL character set. The maximum number of characters 
allowed in the character string is 30. The allowable combinations 
determine the category of the elementary item. 

There are five categories of data that can be described with a 
PICTURE claus~. They are: 

1. Alphabetic 
2. Numeric 
3. Alphanume~ic 
4. Alphanumeric edited 
5. Numeric edited 

The Three Classes of Data 

The five categories of data items are grouped into three classes: 
alphabetic, numeric, and alphanumeric. For alphabetic and numeric, the 
class and the category are synonymous. The alphanumeric class includes 
the categories of alphanumeric (without editing>, alphanumeric edited, 
and numeric edited. 

Every elementary item belongs to one of the three classes and to one 
of the five categories. The class of a group item is treated at object 
t·ime as alphanumeric regardless of the class of the elementary items 
subordinate to that group item. 

Figure 14 shows the relationship of the class and category for 
elementary and group data items. 

r--------------------T---------------------T---------------------------, 
I Level of Item I Class I Category I 
r--------------------+---------------------t---------------------------1 
I I Alphabetic I Alphabetic I 
I r---------------------t---------------------------~ 
I Elementary I Numeric I Numeric i 
I r---------------------t---------------------------1 
I I I Alphanumeric I 
I I Alphanumeric I Alphanumeric Edited I 
I I I Numeric Edited I 
r--------------------+---------------------t---------------------------~ 
I I I Alphabetic I 
I I I Numeric I 
I Group I Alphanumeric I Alphanumeric I 
I I I Alphanumeric Edited I 
I I I Numer ic Edited I l ____________________ ~ _____________________ ~ ___________________________ J 

Figure 14. Class and Category of Elementary and Group Data Items 

Data Description Entry -- Details of Clauses 117 



PICTURE Clause 

Character String and Item Size 

In the processing of data through COBOL statements, the size of an 
elementary item is determined through the number of character positions 
specified in its PICTURE character string. In core storage, however, 
the size is determined by the actual number of bytes the item occupies, 
as determined by its PICTURE character string. and also by its USAGE 
(see "USAGE Clause"). 

Normally, when an arithmetic item is moved from a longer field into a 
shorter one, this compiler will truncate the data to the number of 
characters represented in the PICTURE character string of the shorter 
item. 

For example, if a sending field with PICTURE S99999, and containing 
the value +12345, is moved to a COMPU'l'ATIONAL receiving field with 
PICTURE S99, the data is truncated to +45. 

Repetition of Symbols 

An integer which is enclosed in parentheses following one of the 
symbols 

A x 9 p z * B o + 

indicates the number of consecutive occurrences of the symbol. For 
example, if the programmer writes 

A(40) 

$ 

the four characters (40) indicate forty consecutive appearances of the 
symbol A. The number within parentheses may not exceed 32,767. 

Note: The following symbols may appear only once in a given PICTURE 
clause: 

S v CR DB 

Symbols Used in the PICTURE Clause 

The functions of the symbols used to describe an elementary item are: 

A Each A in the character string represents a character position that 
can contain only a letter of the alphabet or a space. 

BEach B in the character string represents a character position into 
which the space character will be inserted. 

~ ';?\' , -

rep~esent:s ,theex~nent in ,an 
,l'he.,'Et 'occ;.l~pi'~s,: p~ ::byrteqf ,st;o:r:'a;ge',:" 
, ,,:~~€"' ~',f ,th~,j~l~~nitary·i t,em •. , ,: The 

:.~~t.~,;ti,/·~~;r~~; :~~ef~~~/~~aG!;i:;'~~"T :.:'::;;; " 

118 Part III -- Data Division 



PICTURE Clause 

P The P indicates an assumed decimal scaling position and is used to 
specify the location of an assumed decimal point when the point is 
not within the number that appears in the data item. The scaling 
position character P is not counted in the size of the data item. 
Scaling position characters are counted in determining the maximum 
number of digit positions (18) in numeric edited items or in items 
that appear as operands in arithmetic statements. 

The scaling position character P may appear only to the left or 
right of the other characters in the string as a continuous string 
of pes within a PICTURE description. The sign character S and the 
assumed decimal point V are the only characters which may appear to 
the left of a leftmost string of pes. Since the scaling position 
character P implies an assumed decimal point (to the left of the 
pes if the pes are leftmost PICTURE characters and to the right of 
the pes if the pes are rightmost PICTURE characters), the assumed 
decimal point symbol V is redundant as either the leftmost or 
rightmost character within such a PICTURE description. 

S The symbol S is used in a PICTURE character string to indicate the 
presence (b~t not the representation nor, necessarily, the 
position) of an operational sign, and must be written as the 
leftmost character in the PICTURE string. An operational sign 
indicates whether the value of an item involved in an operation is 
positive or negative. The symbol S is not counted in determining 
.the size of the e!e ~~~!~g~i 

V The V is used in a character string to indicate the location of the 
assumed decimal point and may appear only once in a character 
string. The V does not represent a character position and, 
therefore, is not counted in the size of the elementary item. When 
the assumed decimal point is to the right of the rightmost symbol 
in the string, the V is redundant. 

X Each X in the character string represents a character position 
which may contain any allowable character from the EBCDIC set. 

Z Each Z in the character string represents a leading numeric 
character position; when that position contains a zero, the zero is 
replaced by a space character. Each Z is counted in the size of 
the item. 

9 Each 9 in the character string represents a character position that 
contains a numeral and is counted in the size of the item. 

o Each zero in the character string represents a character position 
into which the numeral zero will be inserted. The 0 is counted in 
the size of the item. 

Each comma in the character string represents a character position 
into which a comma will be inserted. This character is counted in 
the size of the item. The comma insertion character cannot be the 
last character in the PICTURE character string. 

When a period appears in the character string, it is an editing 
symbol that represents the decimal point for alignment purposes. 
In addition, it represents a character position into which a period 
will be inserted. This character is counted in the size of the 
item. The period insertion character cannot be the last character 
in the PICTURE character string. 

Note: For a given program, the functions of the period and comma 
are exchanged if the clause DECIMAL-POINT IS COMMA is stated in the 
SPECIAL-NAMES paragraph. In this exchange, the rules for the 
period apply to the comma and the rules for the comma apply to the 
period wherever they appear in a PICTURE clause. 

Data Description Entry -- Details of Clauses 119 



PICTURE Clause 

These symbols are used as editing sigh control symbols. When 
used, each represents the character position into which the 
editing sign control symbol will be placed. The symbols are 
mutually exclusive in one character string. Each character used in 
the symbol is counted in determining the size of the data item. 

* Each asterisk (check protect symbol) in the character string 
represents a leading numeric character position into which an 
asterisk will be placed when that position contains a zero. Each * 
is counted in the size of the item. 

$ The currency symbol in the character string represents a character 
position into which a currency symbol is to be placed. The 
currency symbol in a character string is represented either by the 
symbol $ or by the single character specified in the CURRENCY SIGN 
clause in the SPECIAL-N~MES paragraph of the Environment Division. 
The currency symbol is counted in the size of the item. 

Figure 15 shows the order of precedence of the symbols used in the 
PICTURE clause. 

The Five categories.of Data 

The following is a detailed description of the allowable combinations 
of characters for each category of data. 

ALPHABETIC ITEMS: An alphabetic item is one whose PICTURE character 
string contains only the symbol A. Its contents, when represented in 
Standard Data Format, must be any combination of the 26 letters of the 
Roman alphabet and the space from the COBOL character set. Each 
alphabetic character is stored in a separate byte. 

If a VALUE clause is specified for an alphabetic item, the literal 
must be nonnumeric. 

ALPHANUMERIC ITEMS: An alphanumeric item is one whose PICTURE character 
string is restricted to combinations of the symbols A, X, and 9. The 
item is treated as if the character string contained all XiS. Its 
contents, when represented in Standard Data Format, are allowable 
characters from the EBCDIC set. 

A PICTURE character string which contains all A's or all 9's does not 
define an alphanumeric item. 

If a VALUE clause is specified for an alphanumeric item, the literal 
must be nonnumeric. 

120 Part III -- Data Division 



PICTURE Clause 

-----------------------T------------------------T-----------------------T--------------, 
I FIRST I I I I 
I SYMBOL I I I I 
I I NON-FLOATING I FLOATING I OTHER I 
I I INSERTION SYMBOLS I INSERTION SYMBOLS I SYMBOLS I 
I r-T-T-T-T---T---T----T---+---T---T---T---T---T---+-T-T-T-T-T-T'--'~ 
I SECOND I I I I I{+}I{+}I{CR}I I{Z}I{Z}I{+}I{+}I I I IAI I I I ':"1 
I SYMBOL IBIOI,I.I - I - I DB Ics11 * I * I - I - Ics1Ics119IXISIi1IPIPI,~.a1 
r------------T---------- -+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+r:..;..~ 

I B IXIXIXIXI X I I IX I X I X I X I X IX IX IXIXI IXI IXI·.·I 
r----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-~~~ 
I 0 IXIXIXIXI X I I !X! X ! X ! X I X!X !X !XIXI !lC! !XL;.:' 

NON-FLOATINGr----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-1:'::'1 
INSERTION 

SYMBOLS 

I, IXIXIXIXI X I I IX I X I X I X I X IX IX IXI I IXI IXP,'I 
r----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+:_:_,-H 
I IX I X I XI I X I I I X I X I I X I I X I I XI I I I I I:·;':'; I 
t{:-~~-=~-t-t-t-t-t---t---t----t---t---t---t---t---t---t---t-t-t-t-t-t-n~~1 
~-~-;;-=}--t~t~t~t~t---t---t----t~--t-~-t-~-t---t---t~--t~--t~t-t-t~t~t~tl~1 
r{------ -r+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-f,~~~ 
~{=~-~=-~~ ~~~:~:~:~---~---~----~:--~-:-~-:-~---~---~:--~:--~:~-~-~:~:~:~~;~ 
I cs1 I I I I I X I I I I I I I I I I I I I I I 1>;:\1 

r------------+-------I--+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+~~~ 

I ~{~-~~-: --~:~:t:t-~-:-~---t----t:--t-~-~---~---t---~---~---t-~-~-~-~-t-t~i~ 
I FLOATING ~!~-~~-:l--~~~~~:t~t-:-t---t----t:--t-:-+-:-+---+---+---+---+-+-t-+:+-+:+.:.:.~.;.;.; .•. -.:.:.:.:::.~ I INSERTION I + or -J I X I XI X I I I I I X I I I X I I I I I I I I I L':'I 
I SYMBOLS r ~-;~-=I--t~t~t~t~t---t---t----t~--t---t---t-~-t-~-t---t---t-t-t-t~t-t~tf~1 
I r ------ --+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+~~ 
I I cs1 I XI XI XI I X I I I 1 Iii i xii iii i I I;;;' I 
I r----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-f~~~ 
I I cs1 I X I X I X I X I X I I I I I I I I X I X I I I PC! I X I·>: I 
r------------+----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-t~~ 

OTHER 

SYMBOLS 

I 9 IXIXIXIXI X I I IX I X I I X I IX I IXIXIXIXI IXIX·;:I 
r----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-f-,~~ 
I A X I X I X I I I I I I I I I I I I I X I X I I I I 1::"<1 
r----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+~~~ 
I S I I I I I I I I I I ! ! ! ! !!!!,! !'~:~; , 
r----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+~~~ 
I V IXIXIXI 1 X I I IX I X I I X I IX I IXI IXI IXI 1'..::·1 
r----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+;~ 
I P I X I X I X I I X I I I X I X I I X I I X I I X I I X I I X I I·: .1 
r----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-+~~ 
I P I I I I I X I I IX I I I I I I I I IXIXI IXI::I 
h-i~;"7,-:;7",:_:_'l"7,~n1r-:tc-;+r+"':-.--:+"7"7-,:t"7-,-7"t,.,.;7·~t7""7"7t:~-,,.,... .... J,--:--: . .,...+::::,t,"7,-,c:+.,...,.,....,..t:±·:Ji-t,-,.+,:±-+7.-8 
1!·:T~,:~~t! i ;j: :,t ~p ':I~I::X 'I:: :;l:> l;il>:·,:'tt;:·:t; ~ :.:.,p ;:YL:q::Lndr ff~I,:a; HIX:U:ht'~I,i'I r ____________ J.:~~'~.::::.:'.:..::'--''-_'--:L..:.r:~'i"'--i...:.i;...:.:.:.:.'...:.i:...:.:_~.:L.:..:.:.;::::.:.'.:.:i:...::=:.:.'i..:.::.:.'::~.::=::.:i':...:::.::,;i:....:..::.:.'..1.~'--...:..1.::i.:..:.::.:.1;...::.1;:...:.':t::.:.:t..:.;l:...:..1.'.:.;~ . ...:..:..:.~ 

I~.~.C.S ... ,.,.,~S.' '. t~.,;e .... ,.a,.b.b .... ,:.te? .... ~. ".,a.J.-~ipn.,., . .f •. o."~' .,U.le .. : .c*u. F.,r".~n.'}?lH:,X:~l .. "i.1.': .. ·":.e..".,: .. k:.'<~l:.·· •... ".: •. ,.,!$.nTr..'h '.' tg~:':s .. ;'.~ ... ~.i!¥\!li):kP" ··~~.f.'·.~.\c.d.)'8~. "lj.~".'I.':.·~ ... ~:ld:iI."' .... 1.d,.f.'.' .. '.'.' ..... *1 I .; .~ ~_ p~~;t,e~;~~~~ iQ .' :t;,,~,m~td."'q~"~~l p~;~:;;Ktq~It7; ~, 't~: ii' '" i I".'t I 
L~:l!3'~:t:~;;~~~,~~V!?::t:(l;~~.:'..:"~.:.:.·, .... , '::'::::::":.,"'.:'.: ':; ':::'.;,1>", i...... .'1',1 
r---------------------------------------------------------------------------------------~ At least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, -, or I 
cs must be present in a PICTURE string. I 

I 
An X at an intersection indicates that the symbolCs) at the top of the colu~ill m3Y, in al 
given character~string, appear anywhere to the left of the symbol(s) at the left of thel 
row. I 

I 
Non-floating insertion symbcls + and -, floating insertion symbols Z, *, +, -, and cs, I 
and other symbol P appear twice in the above PICTURE character precedence table. The I 
leftmost column and uppermost row for each symbol represents its use to the left of thel 
decimal point position. The second appearance of the symbol in the table represents I 
its use to the right of the decimal point position. I 

IBraces ({}) indicate items that are mutually exclusive I l _______________________________________________________________________________________ J 

Figure 15. Precedence of Symbols Used in the PICTURE Clause 

Data Description Entry -- Details of Clauses 121 



PICTURE Clause 

NUMERIC ITEMS: There are two types of numeric items: fixed-point items 
and'floating-p6int items. 

Fixed-Point Numeric Items: Ther~}!.~.~~-,;t:h,Fe(§!, •• ~'yP_~S ,9.tJixed-point nUIT,eric 
items: external decimal, binary l.~L!1tlf£qill'lWmBl.i~~Il!_i;~ See the 
discussion of the USAGE clause for details concerning each. 

The PICTURE of a fixed-point numeric item may contain a valid 
combination of tne following symbols: 

9 v P S 

Examples of fixed-point numeric items: 

PICTURE 
9999 

S99 
S999V9 
PPP999 
S999PPP 

Valid Range of Values 
o through 9999 
-99 through +99 
-999.9 through +999.9 
o through .000999 
-1000 through -999000 and 
+1000 through +999000 or zero 

The maximum size of a fixed-point numeric item is 18 digits. 

The contents of a fixed-point numeric item, when represented in 
Standard Data Format, must be a combination of the Arabic numerals 0 
through 9; the item may contain an operational sign. If the PICTURE 
contains an 5, the contents of the item are treated as positive or 
negative values, depending on the operational sign; if the PICTURE does 
not contain an S, the contents of the item are treated as absolute 
values. 

Note: ASCII considerations for the PICTU~E clause are given in 
Appendix E. 

Floating-point Numeric Items: These items define data whose potenti~l,-':'F 
"z;ange of value is too gr~at for fixe~-poin~ pr7sentation. ",Th.e ,~gni.t;~~~,', 
'of the :number represented bya float~ng-po~nt ~tem must be grE¥lt;~r :t:h.i:i~:~-' 
'5.;4 x 10-79 but must not :exceed .72 x 10"16. ;" :!':>::-~ 

,. . i . "' " ",": ·.~f l~ 

There are two 'types oi fld,ating-point items: internal ;flo~t!iJng;-;p 
;;a~d. ~~~~rnalf;l<:>a:ting-PiQ~nt.; t See the discussio~of:th;e:q~,~ ~~~~ 
'~~tallls concern~ng each. ' ,',- ,\ .' 

NdPICTUREclause may ,be 
i;tem.' , 

i·, '. 

, ,) . ; ;:';:\ 
If a VALUEcla'use isspeci'fied for an elementary nume,:ti'c::il~,:, 

li:teral must bent.mteric. ' If lB. VALUE clause: is specifii~ ~fijx[',)a':(: ; 
item Qonsisting .0£: elemen;tary:numeric items, the qr,OUpiS'<b'~ill<i~, 
,a,liphanupleric, and the liter;al must therefore benonn_t'~'c"-';:;;;:::i ,:,;:::r;",~~~t£: 

, , : '. , . ..' ~'.' .. :.~ :.~ .: h .«: ":.:' ::::/~ ~(~:::r }. j:; ::h .:1" y;.:, 

; An exte'~al floating .... ppi!nt, item has a PICTURE ,chi1:r,~t,:E:lJ1"~*1:" 
follow:ingf:brm:' ,.' . ;iTi i';,!,l ,'.,,'L': <,'·;F:',ti!,~"'w, 

f 'I i< 

{~-+.' ~,t. ,.,', ~' 
m.al;ltissrr:·' ,..:~ 1 FfKPpnent 

".:-~ -> >:.' . '. ';, "."". .~< .. ~' : \L~ l; ;'j;. i 

~trei;e~ch,;;ele~entLqf t~~,:~t~in~ is composed according t,o 
r;-.!les;~ ~. :":;;;:~.:,~ a-- ~ r;>J;ll~~; 
, .' '! . ~ 

122 Part III -- Oata Division 

,~,~, H~ ;~ 



PICTURE Clause 

,i~:'ll;~~~=qJttla~ ,. ". ..... ... ' .[ . '., . i i !l:'iEtpl~.~(t 
,\;:~'t"Tbe"pI~g $:iJ9rl"" ~eSpage,!~ha;act~r,. i~mf ltll~ 'I·n p!lm~:r 

:lJ<J,;IDbyt¢· dt;$tarage,~:,anq,Clre ')i:rtcl~deq:in :tl1~ iPI;J!lIl;t1::lUt.,.; 
>'" 'Hi. ft' .' .... , ' .. T," .... , ... ,' ',," " 

, "'['" . ·.t. '.. <,;; 

• 'i""';::;; ~~:~s's~,'a;;;;;. .. · >"f:T~~,tri~ti£j;$$·:.Jmaied:i~t.~I'y: . :f(>.jJ;oY'lS·~ue "1:ixs t:~~g#, 
·'i.~· .. · isreprese:q.tedt1sing.~thef()llo,wing ·three·· symbols::), 'i~ 

, .. ~ , ·r.· " .' .: , . : . . . . : . . . . ,: . : :'. . ". . .' ~ .. ", 

';'" i >f., ? 

,:~, '·,i .. y(:. '.J,. ,,' : ',. . .1,\ 

':.:'9 ':" ': ' .E~h, ~ in the ~ntissa",·,ch,(lriiqt~f<$.ti~rig:repJ;'~s,~~t:S.::i~Ai9 
\ " ,:.:." int.o,' w1;lich ,,'~ " fl\1lner i'c·:,ctla~~¢t;,e:r.:·wi'l]:.qe,.pla·c,eq·~:. : '~~Oqt !,OIJe' 
!:':'.','..\ ';", ,9: ~ ):ll'aY 'be, ,p,resen:t' In:','the'',st:I:',i,{lg .. ,., ... tClcb:,,~~.g~tt,<·po$i):ii>ri ' , 
:i'~\'i:':i,;;~,~~t,~ ''<?r, k:d:o,;~.ff:~i~'· : ':.' ': >, ,:' ' '",''''; ',';" ", .,".' .: ' ',< 
" '~', "'", ~ ,":.. .. \". ':·h. \ <Y.·~ " ',' . \h. " h, , " '.h.' < • Y < , 

',%i;t~:,~~*ie~~.~$~~iMtl)~1'~~~.....r'·~~i~~'''.''.~~<?C~~B~0~,~<~;"'~ .•. \:':;:':t,t.':."< ),:'l'~Cf~~i~ 
.1;'< ~ ~'"\ ~<' .. ~., ::::. ~ ~.~ .. ~h' , , ,,'~ , ~ ,y ., ' '-; , ~ .: ~ .:. ~ .;,.' ' . <.. ~ \ < ' .~, ' ' 

,; ,vc:~':. '{ ndi.c~'t~· ,~?,'.~~~'rt,~,~ .~~S~~.gi",~¢~Ilt~:~· :t~:·:·dci~,:s:··~6~,:;·fak~,::di:ari~:'1.· ift) ~ 
;;tti;;<st&aCj~. . ... .. . ' ... 

:''-:." 

';·:":',',; .. ,.'t'.,:.·.':'.,:Orie .. '.··· .•.. ,ac.fu. ',ill,·'~.f. . ."' .•. ~a·,s·~,um'~d··.":d.ec.i.'ma.'l "p. ·.or.ri¥:'m~~t ... ·be .•.. ,. ~r'~~fl,~'t<i'h.,~he:: .. :'m~:~.:~. :.1 
'.' ·-:i::!,.;, ·~s.a.:'fea4irtg ;:emb€d.ded' .. o.r>trai'l~tig .. s.yfnbQi ~.:, '. . :. 

. . 

inqica~~s:~t·he':'eXpqn~itt#: ... ~nd··;romeaia~~l.Y ·;£cillows· t:he 
occtipieso?-e",byte of" "·sto~ag,e.. . . . 

< •• ; ~~.. ~ .. , ~., :. , '.., ' 

':.;,':,:)?!:r.;, "., .:: ".:.<';,', ,.",' '.,"" "'. ','. ....,>.'.', ." . .', •... ,\. .. "", ...., ... ',,; 
·~;:f=}rgonent:'·.,Tpe.'·.ex:pQn¢llt, .. ,.,i~eq,i.~t:~:Ly·.· .. ~ql.l:(.)~s:.:,th~,s,e,<::O~d .. ~'·~9n'·cha,i"act.~I:,'~.·: 

~~cS,<~~~.:~~~~~~~~'e.I,f~.·~~:~~,,~~?S~'t~·i<'·;:.f .. ?;,()j~;.~~~~.,,:~y~.~ ...... 
,,' »,', .:<.i- ·'<~'.'~'Y' '.h ~ .. :".h •. " '."';; ,~< ..... , , .. ' ___ ,,,,::>,,,: .. ~~.<,,,,./:, .. ~,~ ,~ .. ~ , ,~~ 

" ,",. , , . , ~ , 

. ,·,'Bit·e,r.·. n.·,al.·: ·.' .• d. 'a. t.a~ust. dont o:rrn::tq~·'·the",r~presentaticm .'Sp~cifle<l·; In\'·f:.ne . 
·'.'·P,ICTURE·,claus¢.;;· ' .. '. ,.,." >, ..... ", ........ '., ..•..... ,... . . 

PICTURE 

-9V99E-99 
+999.99E+99 

-V9(6)E+99 
+.9(10)E-99 

items: 

Format of External 'Data 

540E-79 
+123.45E-14 

565656E+45 
+.7200000000E 76 

Value Expressed 

+5.40 x 10 79 

1-123.45 x 10 1.~ 

+.565656 X 10 .. 5 

+.72 X 1076 

(Note that any of the above PICTURE representations can express 
full range of possible values.) 

No VALUE clause may be associated with an external floating-point 
item. 

Data Description Entry -- ~etails of Clauses 123 



PICTURE Clause 

ALPHANUMERIC EDITED ITEMS: An alphanumeric edited item is one whose 
PICTURE character string is restricted to certain combinations of the 
following symbols: 

A x 9 B o 

To qualify as an alphanumeric edited item, one of the following 
conditions must be true: 

1. The character string must contain at least one B and at least one 
X. 

2. The character string must contain at least one 0 and at least one 
X. 

3. The character string must contain at least one 0 (zero) and at 
least one A. Its contents, when represented in Standard Data 
Format, are allowable characters chosen from the EBCDIC set. 

USAGE IS DISPLAY is used in conjunction with alphanumeric edited 
items. 

If a VALUE clause is specified for an alphanumeric edited item, the 
literal:must be nonnumeric. The literal is treated exactly as 
specified; no editing is performed. 

Editinq Rules: Alphanumeric edited items are subject to only one type 
of editing: simple insertion using the symbols 0 and B. 

Examples of alphanumeric edited items: 

PICTURE 
OOOX(12) 
BBBX(12) 
OOOA(12) 
X(S)BX(7) 

Value of Data 
ALPHANUMEROl 
ALPHANUMEROl 
ALPHABETIC 
ALPHANUMERIC 

Edited Result 
OOOALPHANUMER01 

ALPHANUMEROl 
OOOALPHABETIC 
ALPHA NUMERIC 

NUMERIC EDITED ITEMS: A numeric edited item is one whose PICTURE 
character string is restricted to certain combinations of the symbols: 

B P v z o 9 * + CR 

The allowable combinations are determined from the order of 
precedence of symbols and editing rules. 

DB $ 

The maximum number of digit positions that may be represented in the 
character string is 18. 

The contents of the character positions that represent a digit, in 
Standard Data Format, must be one of the numerals. 

USAGE IS DISPLAY is used in conjunction with numeric edited items. 

If a VALUE clause is specified for a numeric edited item, the literal 
must be nonnumeric. The literal is treated exactly as specified; no 
editing is performed. 

The maximum length of a numeric edited item is 127 characters. 

Editing Rules: All types of editing are valid for numeric edited items. 

124 Part III -- Data Division 



PICTURE Clause 

Types of Editing 

There are two general methods of performing editing in the PIcrURE 
clause: by insertion or by suppression and replacement. 

There are four types of insertion editing: 

1. simple insertion 
2. special insertion 
3. fixed insertion 
4. floating insertion 

There are two types of suppression and replacement editing: 

1. zero suppression and replacement with spaces 
2. zero suppression and replacement with asterisks 

Insertion Editing 

Simple insertion editing is performed using the following insertion 
characters: 

(comma) B (space) o (zero) 

The insertion characters are counted in the size of the item and 
represent the position in the item into which the character will be 
inserted. 

Examples of simple insertion editing: 

PICTURE 
99,999 

9,999,000 
99B999BOOO 
99B999BOOO 

99BBB999 

Value of Data 
12345 
12345 

1234 
12345 

123456 

Edited Result 
12,345 

2,345,000 
01 234 000 
12 345 000 

23 456 

Special insertion editing is performed using the period (.) as the 
insertion character. The result of special insertion editing is the 
appearance of the insertion character in the item in the same position 
as shown in the character string. 

In addition to being an insertion character, the period represents a 
decimal point for alignment purposes. The insertion character used for 
the actual decimal point is counted in the size of the item. 

The use of both the assumed decimal point,. represented by the symbol 
V, and the actual decimal point, represented by the period insertion 
character, in one PICTURE character string is not allowed. 

Examples of special insertion editing: 

PICTURE 
999.99 
999.99 
999.99 
999.99 

Value of Data 
1.234 

12.34 
123.45 

1234.5 

Edited Result 
001.23 
012.34 
123.45 
234.50 

Data Description Entry -- Details of Clauses 125 



PICTURE Clause 

Fixed insertion editing is performed by using the following insertion 
characters: 

currency symbol $ 
editing sign control symbols + CR DB 

Only one currency symbol and only one of the editing sign control 
symbols can be used in a given PICTURE character string. 

Fixed insertion editing results in the insertion character occupying 
the same character position in the edited item as it occupied in the 
PICTURE character string. 

$ The currency symbol must be the leftmost character position to 
be counted in the size of the item, unless it is preceded by 
either a + or a - symbol. 

+ or - When either symbol is used, it must represent the leftmost or 
rightmost character position to be counted in the size of the 
item. 

CR or DB When either symbol is used, it represents two character 
positions in determining the size of the item and must 
represent the rightmost character positions that are counted 
in the size of the item. 

Editing sign control symbols produce results depending upon the value 
of the data item as shown in Figure 16. 

r---------------------------------T------------------------------------, 
I I Result I 
I ~--------------------T---------------~ 
I Editing Symbol in PICTURE I Data Item I Data Item I 
I Character String I Positive or Zero I Negative I 
~---------------------------------+--------------------+---------------~ 
I + I + I I 
I I space I I 
I CR I 2 spaces I CR I 
I DB I 2 spaces I DB I L _________________________________ i ____________________ i _______________ J 

Figure 16. Editing Sign Control Symbols and their Results 

Examples of fixed insertion editing: 

PICTURE 
999.99+ 

+9999.99 
9999.99-
$999.99 

-$999.99 
$9999.99CR 
$9999.99DB 

Value of Data 
+6555.556 
-5555.555 
+1234.56 
-123.45 
-123.456 
+123.45 
-123.45 

126 Part III -- Data Division 

Edited Result 
555.55+ 

-5555.55 
1234.56 
$123.45 

-$123.45 
$0123.45 
$0123.45DB 



PICTURE Clause 

Floating insertion editing is indicated in a PICTURE character string 
by using a string of at least two of the allowable insertion characters 
$ + or - to represent the leftmost numeric character positions into 
which the insertion characters can be floated. 

The currency symbol ($) and the editing sign symbols (+ or -) are 
mutually exclusive as floating insertion characters in a given PICTURE 
character string. 

Any of the simple insertion characters (, B 0) embedded in the string 
of floating insertion characters, or to the immediate right of this 
string, are part of the floating string. 

In a PICTURE character string, there are only two ways of 
representing floating insertion editing: 

1. Any or all leading numeric character positions to the left of the 
decimal point are represented by the insertion character. 

2. All of the numeric character positions in the PICTURE character 
string are represented by the insertion character. 

The result of floating insertion editing depends upon the 
representation in the PICTURE character string: 

1. If the insertion characters are only to the left of the decimal 
point, a single insertion character is placed into the character 
position immediately preceding the first nonzero digit in the data 
represented by the insertion symbol string or the decimal point, 
whichever is farther to the left of the PICTURE character string. 

2. If all numeric character positions in the PICTURE character string 
are represented by the insertion character, the result depends upon 
the value of the data. If the value is zero, the entire data item 
will contain spaces. If the value is not zero, the result is the 
same as when the insertion characters are only to the left of the 
decimal point. 

To avoid truncation when using floating insertion editing, the 
programmer must specify the minimum size of the PICTURE character string 
for the receiving data item to be: 

1. The number of characters in the sending item, plus 

2. The number of insertion characters (other than floating insertion 
characters) being edited into the receiving data item, plus 

3. One character for the floating insertion character. 

Examples of floating insertion editing: 

PICTURE 
$$$$.99 

$$$$9.99 
$$,$$$,999.99 
++,+++,999.99 
$$,$$$,$$$.99CR 
$$,$$$,$$$.99DB 
++,+++,+++.+++ 

Value of Data 
.123 
.12 

-1234.56 
-123456.789 

-1234567 
+1234567 

0000.00 

Edited Result 
$.12 

$0.12 
$1,234.56 

-123,456.78 
$1,234,567.00CR 
$1,234,567.00 

Data Description Entry -- Details of Clauses 127 



PICTURE Clause 

Zero Suppression and Replacement Editing 

Zero suppression and replacement editing means the suppression of 
leading zeros in numeric character positions and is indicated by the use 
of the alphabetic character Z or the character * in the PICTURE 
character string. If Z is used, the replacement character will be the 
space; if * is used, the replacement character will be *. 

The symbols + - * Z and $ are mutually exclusive as floating 
replacement characters in a given PICTURE character string. 

Each suppression symbol is counted in determining the size of an 
item. 

Zero suppression and replacement editing is indicated in a PIcrURE 
character string by using a string of one or more of either allowable 
symbol to represent leading numeric character positions, which are to be 
replaced when the associated character position in the data contains a 
zero. Any of the simple insertion characters embedded in the string of 
symbols or to the immediate right of this string are part of the string. 
Simple insertion or fixed insertion editing characters to the left of 
the string are not included. 

In a PICTURE character string, there are only two ways of 
representing zero suppression: 

1. Any or all of the leading numeric sharacter positions to the left 
of the decimal point are represented by suppression symbols. 

2. All of the numeric character positions in the PICTURE character 
string are represented by suppression symbols. 

If the suppression symbols appear only to the left of the decimal 
point, any leading zero in the data which appears in a character 
position corresponding to a suppression symbol in the string is replaced 
by the replacement character. Suppression terminates at the fi~st 
nonzero digit in the data or at the decimal point, whichever is 
encountered first. 

If all numeric character positions in the PICTURE character string 
are represented by suppression symbols, and the value of the data is not 
zero, the result is the same as if the suppression characters were only 
to the left of the decimal point. 

If the value of the data is zero, the entire data item will be spaces 
if the suppression symbol is Z, or it will be asterisks (except for the 
actual decimal point) if the suppression symbol is *. 

If the value of the data is zero and the asterisk is used as the 
suppression symbol, zero suppression editing overrides the function of 
the BLANK WHEN ZERO clause, if specified. 

Examples of Zero Suppression and Replacement Editing: 

PICTURE 
ZZZZ.ZZ 
****.** 
ZZZZ.99 
****.99 
ZZ99.99 

Z,ZZZ.ZZ+ 
*,***.**+ 

**,***,***.**+ 
$Z,ZZZ,ZZZ.ZZCR 

$B*,***,***.**BBDB 

128 Pact III Data Division 

Value of Data 
0000.00 
0000.00 
0000.00 
0000.00 

00000.00 
+123.456 
-123.45 

+12345678.9 
+12345.67 
-12345.67 

Edited Result 

****.** 
.00 

****.00 
00.00 

123.45+ 
**123.45-

12,345,678.90+ 
$ 12,345.67 

$ ***12,345.67 DB 



, SIGN"CTause(Version3) 

Program Product Information -- Version 3 

~J~~~ii~~!;ij~{[~~~t,[jifit1~:;i',/ . 
~.'0.~~.:::e.·.·· ';S.tGN:cliii~s~~~\~i)t:~~i;lffjfi:eS(.l't~e,~:iPO~d;tionandinOde.Qf'representation' of 
'~L.U 'P~~r,atir~~:l,:,·si}Jp.)f~r. Ja'n~,ic data,descr:iptionentry. , ' .. ': .". . . . ~ ~ ,. )' . ..... .' . t' . " ." .:' i" . " " " , 

h',·".ll", 

~'~'.; <." ~.~;. , 'J~ , 
. . ". r '-:..>'"'' + ; ",:. ;" ... ~ y' 

~<~~ -,' ,.~~. " ' '.(\ •••• '.:'~<:.~ .~~:(.~ ~. ~'. -:~, 

,'::r·"l'--~~';"'~-:"':""'-:;~';"':~";;'~T-:-.Jj~·:",,·--~r,""-:'~~':'""~T:':''-'--:""~'~~:''''-'~~·"'':'"''~';''';':''"'-~'':'''':''~~'~-:-~''''~,~'':'"'--'i 

~":~h~·,':'~,~'GN.,'."~1~'~:~':'.'.is',,'::r:e4~ii'i:~A'··'Qtily::.:,'··~he#· .. ·.'?,h': .·.'~*Pl".ic±t··.·:,d,es·cri1?tiori:,Of" .... the·' 
:~p~op,e:~ti~S .• ·.Qf·.,:t,h7·'·opera.ti,onal,':~lgn'iS~.~.necessc1JPi~ ..... ,:.,' .. '.:.,,",.:.... .:.';" 

:~.:.~he':'nu~e~i~:,:d~'t~ .. "de'~·~r.i Pt'io~',eri~ rl:~s., .. t~6 'Whi¢h:"'trl~'.·. ~lGN '::dl arise, 
. 'iii>~l'ies··'. must;'~"'::'~*pli:6itii or': imp.l:ic:i:tlYj 'be·':,.de'$'(:r'iped: .. a,s OSAGE, ~S .. 
',DISPL-AY:.··,~·, . ", ' 

, ~ i : . y', 
. '.,:, . " )' <:. : .'~, ' : ., < , '.,.~. < : , 

':·:()~·~f,:bh~·:siGN:cia't1S,~,'<niay.,apPlY~tQ,·';any' 'g~ven' nume'ric data' descr1.£'t.iqrl 
"epiry;;;" ' . , '. '.' .' , 
';' 

~he.'·'S'IGN clause may 'be specitied only· for' a 'hurnerlc data des'cription 
e,htt;Y . ~h,os~ . PIC.TURE·¢o,nt·a~n's'the ,eharac'ter'.s,·· 'or"f ora,',group item 

;"cpntai'n:ing" ·.at',+east .. ,on~':such, nURler~<:.,datj3'~' d~scripti()n .. eIlt-;r:Y,~ 

'::\-lh~ri;;·'~·p'e~'i·ii~!r;·'lh~,'. :st~N·:"·ci~use.·:~d'e~(L'nes';·.t:he· ,'p'os,1.t.ion·' alid.:mod'e .. ,Of,,'.,.···: ' 
.:.,~eJ?J::.~Mt:;1;.,io~ .. '·Q+,:::t:ll~,',<>p~ri!l,~i,9~Cl:l,.~;i~Il,>,f6,r-.ttle' ~l~Rleri·c ... cia'ta:· .... ":':"'" ' 
:·ca.~~Qr:ip;i;c:)#:::~'[rtiy:" to:::wh~'¢:~: ."i:t:Apf?lie,~'; .. :: 9~.,J9,~"~clC:h' nuine·ti.::·:aat.-?'{', : ..... :: 
\·4~s:S·tj:i?:~:d,<)]:1,·~ntr·y,{:lubol?d:l-~i:l.'~'e';'t();,tl;te,::;,gr:oup':to':\tlh:ich,,'i·;,,"applies·~',.':'· •. :.,,:, 

':"!£:.::::~~~~':·~Ek~Arr~,·.~HA,R·~~;~·R':,;~;~ti:~~:i~ ':~ot: $~~~'if,~~d, ,,~hen:' ," .' " ''-' .. ,'. "" :,>.: 

\. : ~ The' ope~~'tional 'si9~ i~ presumed to b~' a~sOciated with the 
" LE~DI.NGorTRAILING, d~git.'PQsition,,'whiclleveris·specified;' of 

theelementary.numer.ic dat.a .,item. (In thisinstan:cei 
specifica:tion.()f SIC;N,ISTRAILING is . . the eq~i valent ;ofthe, 
'standard, action of the cOlT\P~le:r~)' , ' 

• 'Th.~<:!'ha:ta<:!ters'J.n the PICTURE character string is.not counted 
in , deterrnihing 'the' size of the item (interms,'or'StandardData 
Format characters). 

If the SEPARATE CHARACTER option is specified, then: 

• The operational sign is presumed to be the LEADING or TRt\_ILING 
character position, whichever is specified, of the elementary 
numeric data item. This character position is not a digit 
position. 

• The character S in the PICTURE character string is counted in 
determining the size of the data item (in terms of Standard Data 
Format characters). 

• + is the character used for the positive operational signo 

• - is the character used for the negative operational sign. 

Data Description Entry -- Details of Clauses 129 



SYNCHRONIZED Clause 

'" 

• -At object time if Qne of the characters + or - is not present i,n 
the data an error occurs, and the program will termina.te 
abnorma~lY .. , 

'd:esciipt;iqlientry!wtlosePlcTqRE c0l1;tainstl1e:: ": 
:S:Lq]n.ect,' !nqm~l:iic;data,.,de~crifltiQnentry;" if .the !~U~~N 

:eq-qr~,: ,an~~q~n.v:erc~i~~ ,i;~ ',,~~c!~s,~a.~y; ~.~~'~:i\ir:' 
tQj~: J(:lQIqpl~~~·iJQiQIF1· ,1~911. '!dqnqtlrlli~driS,t!~qn~~ljSllqtl ,ta'ke!~ iP~~C:if;: 

:Qa\U;jJ!Qai.L.~~'\' ' ' i' ~ f, ',V , "if"" " , ' , " ' 

SYNCHRONIZED Clause 

The SYNCHRONIZED clause specifies the alignment of an elementary item 
on one of the proper boundaries in core storage. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I I {SYNCHRONIZED} [LEFT] : 

I SYNC RIGHT I 
I I L ______________________________________________________________________ J 

The SYNCHRONIZED clause is used to ensure efficiency when performing 
arithmetic operations on an item. 

If either the LEFT or the RIGHT option is specified, it is treated as 
comments. 

The length of an elementary item is not affected by the SYNCHRONIZED 
clause. 

When the SYNCHRONIZED clause is specified for an item within the 
scope of an OCCURS clause, each occurrence of the item is synchronized. 

When the item is aligned, the character positions between the last 
item assigned and the current item are known as "slack bytes." These 
unused character positions are included in the size of any group to 
which the elementary item preceding the synchronized elementary item 
belongs. 

The proper boundary used to align the item to be synchronized depends 
on the format of the item as defined by the USAGE clause. 

130 Part III -- Data Division 



SYNCHRONIZED Clause 

When the SYNCHRONIZED clause is specified, the following actions are 
taken: 

For a COMPUTATIONAL item: 

1. If its PICTURE is in the range of S9 through S9(4), the item is 
aligned on a halfword (even) boundary. 

2. If its PICTURE is in the range of S9(5) through S9(18), the item is 
aligned on a fullword (multiple of 4) boundary. 

, " 

';po.r~'·: a~c'oMPUTltT:r:~-'1<itetll'~, 
OOunii,ary'.. ' , 

, .' .'~.r·'a'-. CoMPUTATT,ONAL~\2·:~'i feni, 
,: .~inui·ti.pi;e. 'of :8) 'bqundar-y,.~ , 

For a DISPLAY ,9.t:'·'·C<)MP~ATl·9NAL':'::3 item, the SYNCHRONIZED clause is 
treated as comments. 

Note: In the discussion that follows, the term "computational" refers 
to COMPUTATIONAL, .;C()MPUT~::rIONA,r.~l .. ~ ... aqc1 ·:C9~·:Q'];':A'l;',;r()~:4~? items. 

when the SYNCHRONIZED clause is specified for an item that also 
contains a REDEFINES clause, the data item that is redefined must have 
the proper boundary alignment for the data item that REDEFINES it. For 
example, if the programmer writes: 

02 A PICTURE X(4). 
02 B REDEFINES A PICTURE S9(9) COMP SYNC. 

he must ensure that A begins on a fullword boundarYe 

When the SYNCHRONIZED clause is specified for a computational item 
that is the first elementary item subordinate to an item that contains a 
REDEFINES clause, the computational item must not require the addition 
of slack bytes. 

When SYNCHRONIZED is not specified for binary or internal 
floating-point items, no space is reserved for slack bytes. However, 
when computation is done on these fields, the compiler generates the 
necessary instructions to move the items to a work area Which has the 
correct boundary necessary for computation. 

In the File Section, the compiler assumes that all level-01 records 
containing SYNCHRONIZED items are aligned on a doubleword bOwldary in 
the buffer. The user must provide the necessary inter-record slack 
bytes to ensure alignment. 

In the Working-Storage Section, the compiler will align all level-01 
entries on a doubleword boundary. 

Data Description Entry -- Details of Clauses 131 



Slack Bytes 

Slack Bytes 

There are two types of slack bytes: intra-record slack bytes and 
inter-record slack bytes. 

Intra-record slack bytes are unused character positions preceding 
each synchronized item in the record. 

Inter-record slack bytes are unused character positions added between 
blocked logical records. 

INTRA-RECORD SLACK BYTES: For an output file, or in the Working-Storage 
Section, the compiler inserts intra-record slack bytes to ensure that 
all SYNCHRONIZED items are on their proper boundaries. For an input 
file, or in the Linkage Section, the compilef expects intra-record slack 
bytes to be present when necessary to assure the proper alignment of a 
SYNCHRONIZED item. 

Because it is important for the user to know the length of the 
records in a file, the algorithm the compiler uses to determine whether 
slack bytes are required and, if they are required, the number of slack 
bytes to add, is as follows: 

• The total number of bytes occupied by all elementary data items 
preceding the computational item are added together, including 
any slack bytes previously added. 

• This sum is divided by ~, where: 

m 2 for COMPUTATIONAL items of four-digit length or less 

m 4 for COMPUTATIONAL items of five-digit length or more 

• If the remainder (~) of this division is equal to zero, no 
slack bytes are required. If the remainder is not equal to 
zero, the number of slack bytes that must be added is equal to 

.!!! - £. 

These slack bytes are added to each record immediately following the 
elementary data item preceding the computational item. They are defined 
as if they were an item with a level number equal to that of the 
elementary item that immediately precedes the SYNCHRONIZED item, and are 
included in the size of the group which contains them. 

For example: 

01 FIELD-A. 
02 FIELD-B PICTURE XeS). 
02 FIELD-C. 

03 FIELD-D PICTURE XX. 
[03 Slack-Bytes PICTURE X. Inserted by compiler] 
03 FIELD-E PICTURE S9(6) COMP SYNC. 

01 FIELD-L. 
02 FIELD-M PICTURE xeS). 
02 FIELD-N PICTURE XX. 

[02 Slack-Bytes PICTURE X. Inserted by compiler] 
02 FIELD-O. 

03 FIELD-P PICTURE S9(6) COMP SYNC. 

132 Part III -- Data Division 



Slack Bytes 

Slack bytes may also be added by the compiler when a group item is 
defined with an OCCURS clause and contains within it a SYNCHRONIZED data 
item with USAGE, defined as COMPUTATIONAL "","} 
__ • To determine whether slack bytes are to be"added, the 
following action is taken: 

• The compiler calculates the size of the group, including all the 
necessary intra-record slack bytes5 

• This sum is divided by the largest ~ required by any elementary 
item within the group. 

• If ~ is equal to zero, no' slack bytes are required. If E is not 
equal to zero, ~ - ~ slack bytes must be added. 

The slack bytes are inserted at the end of each occurrence of the 
group item containing the OCCURS clause. For example, if a record is 
defined as follows: 

01 WORK-RECORD. 
02 WORK-CODE 
02 COMP-TABLE OCCURS 10 

03 COMP-TYPE 
[03 Ia-Slack-Bytes 

03 COMP-PAY 
03 COMP-fiRS 
03 COMP-NAME 

PICTURE X. 
TIMES. 
PICTURE X. 
PICTURE XX. Inserted by compiler] 
PICTURE S9(4)V99 CO~~ SYNC. 
PICTURE S9(3) COMP SYNC. 
PICTURE X(5). 

The record will appear in storage as shown in Figure 17. 

I I 
I- First Occurrence of COMP-TABLE -I 

~wl I 
081 I 
3= UI I 

fA I I 1 1 
I I I 

I~wl I I I I I I 

10 >:1 Slack 
I I COMP- I 1 I I I 

IU 1-1 
Bytes 

I COMP-PAY I HOURS I COMP-NAME I I i I 
I 

i I 1 I I I I I I 
I I I I I I I I 1 I J 1 1 

! ! 1 1 1 1 
F F F 

0 0 0 

o = cIoubleword boundary 
F = fullword boundary 
H = halfword boundary 

Figure 17. Insertion of the Intra-occurrence Slack Bytes 
\ 

1 
I 
I 
I 
I 

I 
1 1 

0 

In order to align COMP-PAY and COMP-HRS upon their proper boundaries, 
the compiler has added two intra-occurrence slack bytes (shown above as 
IA-SLACK-BYTES). 

However, without further adjustment, the second occurrence of 
COMP-TABLE would now begin one byte before a doubleword boundary, and 
the alignment of COMP-PAY and COMP-HRS would not be valid for any 
occurrence of the table after the first. Therefore, the compiler must 
add inter-occurrence slack bytes at the end of the group, as though the 
record had been written: 

Data Description Entry -- Details of Clauses 133 



Slack Bytes 

01 WORK-RECORD. 
02 WORK-CODE 
02 COMP-TABLE OCCURS 10 

03 COMP-TYPE 
[03 Ia-Slack-Bytes 

03 COMP-PAY 
03 COMP-HRS 
03 Cor"IP- NAME 

[03 Ie-Slack-Bytes 

PICTURE x. 
TIMES. 
PICTURE X. 
PICTURE XX. Inserted by compiler] 
PICTURE S9(4)V99 COMP SYNC. 
PICTURE S9(3) COMP SYNC. 
PICTURE xes). 
PICTURE XX. Inserted by compiler] 

so that the second (and each succeeding) occurrence of COMP-TABLE begins 
one byte beyond a doubleword boundary. The storage layout for the first 
occurrences of COMP-TABLE will now appear as shown in Figure 18. 

I i I 
... I.t---------First Occurrence of COMP-TABLE-------il.*I ..... -----Second Occurrence of COMP-TABLE-----....-; .. , 

I : I I 
~~ I I I I I 
~ 81d. I IA I I IE I I 

1::E:;e Siock I COMP- Slack I I 
18 ~I Bytes COMP-PAY I HOURS I COMP-NAME Bytes: I 
I I I I I , 

D 

D = doubleword boundary 
F = fullword boundary 
H = halfword boundary 

D D o 

Figure 18. Insertion of Inter-occurrence Slack Bytes 

Each succeeding occurrence within the table wili now begin at the same 
relative position to word boundaries as the first. 

Where SYNCHRONIZED data items defined as COMPUTATIONAL, 
~_'<~~~l!i';<~~ follow an entry containing an OCCURS 
clause with the DEPENDING ON option, slack bytes are added on the basis 
of the field occurring the maximum number of times. If the length of 
this field is not divisible by the ~ required for the computational 
data, only certain values of the data-name that is the object of the 
DEPENDING ON option will give proper alignment of the computational 
fields. These values are those for which the length of the field times 
the number of occurrences plus the slack bytes that have been calculated 
based on the maximum number of occurrences is divisible by ~. 

For example: 

01 FIELD-A. 
02 FIELD-B 
02 FIELD-C 

DEPENDING ON FIELD-B. 
[02 Slack-Byte 
02 FIELD-D 

134 Part III -- Data Division 

PICTURE 99. 
PICTURE X OCCURS 20 TO 99 TIMES 

PICTURE X. Inserted by compiler] 
PICTURE S99 COMP SYNC. 

D 



Slack Bytes 

In this example, when references to FIELD-D are required, FIELD-B is 
restricted to odd values only. 

01 FIELD-A. 
02 FIELD-B 
02 FIELD-C 

DEPENDING ON FIELD-B. 
[02 Slack-Byte 
02 FIELD-D 

PICTURE 999. 
PICTURE XX OCCURS 20 TO·99 TIMES 

PICTURE X. Inserted by compiler] 
PICTURE S99 COMP SYNC. 

In this example all values of FIELD-B give proper references to 
FIELD-D. 

INTER-RECORD SLACK BYTES: If the file contains blocked logical records 

tha t . are to. be processed in a bU;~~.~,~.":r:r: .. "ff .. ,, ,., ,.,,000;.~n .. ~.~d .. "" .. a,a.H .. n ... ,x ...... '. __ "."'~ o. >.f .. _.~.' ~.:l;1.'?t._,e.'.;.l .... ~ ... r ..... _.;.,.e .. ",.c.,., .• ~ .. r.': .. c.~ .. ,." .. S .. : .... , .. , .... 5?. o., ... ~.,.t ....... ~ .... i .... "n .. :1>j., ..• ,'., •. '. entrl.es defl.ned as COMPUTATIONAL~;{'~~~~~~:~\t~::":L', -', -: ~ ,,_._~_ .. ~,,_. ~ _ ,.~.(i 
for which the SYNCHRONIZED clause is specified, the user must add any 
~er-r~ord slac$ bytes needed for proper alignment. 

The lengths of all the elementary data items in the record, including 
all intra-record slack bytes, are added. For mode V recorgs, i~ 
n~e~c~e~s~s~a~r~~t~o~~d~d~~~-u¥-~~~~t~huge~c~o~u~n~t~rJ~l.~e~ld. The total is then 
ivided by the highest va·lue of !!! for anyone of the elementary iterrls in 

the record. 

If r (the remainder) is equal to zero, no inter-record slack bytes 
are required. If £'is not equal to zero, !!! - £ slack bytes are 
required. These slack bytes may be specified by writing a level-02 
FILLER at the end of the record. 

Example: The following example shows the method of calculating both 
intra-record and inter-record slack bytes. Consider the following 
record description: 

01 COMP-RECORD. 
02 A-l PICTURE XCS). 
02 A-2 PICTURE X(3). 
02 A-3 PICTURE X (3). 

02 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED. 
02 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED. 
02 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED. 

The number of bytes in A-l, A-2, and A-3 total 11. B-1 is a 4-digit 
COMPUTATIONAL item and, therefore, one intra-record slack byte must be 
added before B-1. With this byte added, the number of bytes preceding 
B-2 total 14. Since B-2 is a COMPUTATIONAL item of 5 digits in length, 
two intra-record slack bytes must be added before it. No slack bytes 
are needed before B-3. 

The revised record description entry now appears as: 

01 COMP-RECORD. 
02 A-l 
02 A-2 
02 A-3 

[02 Slack-Byte-l 
02 B-1 

[02 Slack-Byte-2 
02 B-2 
02 B-3 

PICTURE XeS). 
PICTURE X(3). 
PICTURE X(3). 
PICTURE X. Inserted by compiler] 
PICTURE S9999 USAGE COMP SYNCHRONIZED. 
PICTURE XX. Inserted by compiler] 
PICTURE 599999 USAGE COMP SYNCHRONIZED. 
PICTURE 59999 USAGE COMP SYNCHRONIZED. 

There are a total of 22 bytes in COMP-RECORD, but from the rules 
given in the preceding discussion, it appears that!!! = 4 and ~ = 2. 

Data Description Entry -- Details of Clauses 135 



USAGE Clause 

Therefore, to attain proper alignment for blocked records, the user must 
add two inter-record slack bytes at the end of the record. 

The final record description entry appears as: 

01 COMP-RECORD. 
02 A-1 
02 A-2 
02 A-3 

[02 Slack-Byte-1 
02 B-1 

[02 Slack-Byte-2 
02 B-2 
02 B-3 
02 FILLER 

USAGE Clause 

PICTURE X (5) . 
PICTURE X(3). 
PIC'l'URE X ( 3) • 
PICTURE X. Inserted by compiler] 
PICTURE S9999 USAGE COMP SYNCHRONIZED. 
PICTURE XX. Inserted by compiler] 
PICTURE S99999 USAGE COMP SYNCHRONIZED. 
PICTURE S9999 USAGE COMP SYNCHRONIZED. 
PICTURE XX. [inter-record slack bytes added by 

user] 

The USAGE clause specifies the manner in which a data item is 
represented in core storage. 

r----------------------------------------------------------------------, 
I Format 1 I 
t----------------------------------------------------------------------~ 
I I 
I DISPLAY I 
: {~~:~ATIONAL} I 
I lC' OMPUTATIONAL-l}', I I [USAGE IS] .COMP-l I 
I COMPUTATIONAL- 2} I 
I CQMP-2' I 
: {~g:~;ATION~.~3} I 
I . DIsiPUY-ST:" :i I 
I INDE~ I 
I I l ______________________________________________________________________ J 

The USAGE clause can be specified at any level of data description. 
However, if the USAGE clause is written at a group level, it applies to 
each elementary item in the group. The usage of an elementary item 
cannot contradict the usage of a group to which an elementary item 
belongs. 

This clause specifies the manner in which a data item is represented 
in core storage. However, the specifications for some statements in the 
Procedure Division may restrict the USAGE clause of the operand referred 
to. 

136 Part III -- Data Division 



USAGE Clause 

If the USAGE clause is not specified for an elementary item, or for 
any group to which the item belongs, it is assumed that the usage is 
DISPLAY. 

Note: ASCII considerations for the USAGE clause are given in 
Appendix E. 

DISPLAY OPTION 

The DISPLAY option can be explicit or implicit. It speclIles Lnat 
the data item is stored in character form, one character per eight-bit 
byte. This corresponds to the form in which information is represented 
for initial card input or for final printed or punched output. USAGE IS 
DISPLAY is valid for the following types of items: 

• alphabetic 

• alphanumeric 

• alphanumeric edited 

• numeric edited 

• external decimal 

The alphabetic e alphanumeric, alphanumeric edited, and numeric edited 
items are discussed in the description of the PICTURE clause. 

External Decimal Items: These items are sometimes referred to as zoned 
decimal items. Each digit of a number is represented by a single byte. 
The four high-order bits of each byte are zone bits; the four high-order 
bits of the low-order byte represent the sign of the item. The four 
low-order bits of each byte contain the value of the digit. When 
external decimal items are used for computations, the compiler performs 
the necessary conversions. 

The 'maximum length of an external decimal item is 18 digits. 

Examples of external decimal items and their internal representation 
are shown in Figure 19. 

0#'., t .;. ! I 1 

, 'THe value of 'an external :t'loat1ng'-:'point :nurriber~ is :tneman'tTs'sa ,,' 
[mJltiplied by the power 'of: ten expressed bY' the exponent. The magnitude 
:of a, number represented by a fl,oating~point item must be greater than 
'rS.4 ,x (10- 79 ) but must not ~xceed .12 X (1076 ). 

When used as a numeric operand an external floating-paint number is 
lscanned at object time, and converted to the equivalent internal 
1floating-point values. In this form, the number is used in arithmetic 
:operations. (See cor4PUT~TIONAL-l and COMPUTATIONAL-2 options.) 

Data Description Entry -- Details of Clauses 137 



USAGE Clause 

The Computational Options 

A COMPUTATIONAL "'_ '. '" """.' •• ' ,,' . ,.,'.. • ".. ' ... ' .,' .... ,". ',C . ' .. ' ',' '.<, " .. .. .""' "." •.. al;. " , , . 
i~k~~'i!w~1+a item represents a value to be used in arithmetic 
operations and must be nUlr,eric. If the USAGE of any group item is 
described with any of these options, it is the elementary items within 
this group which have that USAGE. The group item itself cannot be used 
in computations. 

COMPUTATIONAL OPTION: Ttis option is specified for Dinary data items. 
such items have a decimal equivalent consisting of the decimal digits 0 
through 9, plus a sign. 

'l'he amount of storage occupied by a binary item depends on the number 
of decimal digits defined in its PICTURE clause: 

Digits in PICTURE Clause 
1 througn 4 
5 through 9 

10 througfl 18 

Storage Occupied 
2 bytes (halfword) 
4 bytes (fullword) 
8 bytes (2 fullwords 

not necessarily 
a doubleword) 

The leftmost bit of the storage area is the operational sign. 

The PICTURE of a COMPUTATIONAL item may contain only g's, the 
operational sign character S, the implied decimal pOint V, and one or 
rrore PiS. 

An exarrple of a binary item is shown in Figure 19. 

Note: The COMPUTATIONAL cption is system dependent and normally is 
assigned to representations that yield the greatest efficiency when 
perforwing arithmetic operations on that system; for tnis compiler, the 
CCMPCTA~IONAL option is binary. 

"COt-'lPU'lATIONAL-h cor~PUTA'lIJNiil.L- 2 OPTIONS: 'Tt;ese options are 
for internal floating-point·~tems. ,Suchan item is equivalent 

:external floating";point item in capability and purpo.se~' ~.~.'Ch, 
[.q<:cupY'either q, (j)'t118 byteslo" stQrage. ! ; <. f<" .l." i~' 1 : '! t.· ~·t ; ,'I: :f • 

:,:\, The 'signof :'"tlt1~ is 
!iqrma t ... . ': i; 
t .,;, i; I. j 
(.[ r ! 

Tqe, iexponent ."a km?~i~:r':~. 

138 Part III -- Data Division 



USAGE Clause 

No PTCTtJRE clause lliayJjeassocia"t.€:d with, a'ninteinal ,floati'Il.<J,-,po!1rlt; 
item;. 

":Examples of' :inter~aT floa:ting~poin,t 'items, 
i~presentation" 'a:te' showriin Figur:e vL., 

Data Description Entry -- Details of Clauses 138.1 





USAGE Clause 

COMPUTATIONAL::3 'OPTION:" 'This opt,ioh····.·is;, , speci~fied !for;,::intetnal~~':"',:;}:,:.i,,·', .. .~~' 
items.':,Such,an item appe'arsin ;stor~ge~'inpack~· dep;im,al~orm«(t;.",~>,T , ,<~, 
are two digits per .byte •.. ~ith.,th,e s,igf\:~onta:i~'~ntiielow:~qrdJe:r:;flqux;t.': 
bits of the rightmost~yte.;LSllqh anit~nl 'maiyo,on:tia~'anY"¥ !thle,r idlJ;g;~';1; 
o through 9, plus a sign, :r~epres:ent'ingavalue'n~t:etx;ce'eUin'l ).:8, '~d~iimai1J~'~~, 
digits. "', " ... ' . "; .' . . .. '.! '.' ,;, I! ~. l{ 

, ,For, internal .d:ecirnalitems.who~e . ?IdTURE ,does 'inoti!contafq :an ~,; the 1 ~, 
sign; positioJl is occupied.b,Y'.a'.hit, 'configur;;tti(>n.'ttiat is interpre:t:ed a~ ,_ 
pq~'j..ti'v¢·, but ,that.··:dQes· n·o:~';,r~l?·~~~~I)~. ~l1: ~~,~r·p.~~:9~~ ! 

'The'-PiCTURE ,of, a COMPUTATIONAL':"3 ·ii:eiIi !lto.}' c?ntaih only ,?~s, 
operatiqna'l s'ign character, s~,,'the assumed' decimal po·in-t,\l,. a,nd 
mor:e,'P~ s.~', 

,EX~mplf=.S,'~~:,int:~in~i;'deci,irta'l". items ani! ,th~ii::\nt'e,rn~i,,~~p'i:e,~~,~'~#,i~i6~:::,;: 
• ' c, 1?·i(;Jl.ri:":~ , ,', ' Y' 

~ , " ' '<:., . ~ "; . ,> 

, ~ ... '··i~~ 
tOMP~TA~IONAL-,'4 ,;:OPT'ION':.· '.This; ;C>pt'ion"'~fFor:mat, .. 2)'::'.i'~, ,specifi~':¥pt,'; '. \']:,:' 

,~'"sys,teni-: indep~'ndent:,binaryi,tems:.'" ::, For 'th~,~,:compil.e'Z:'T,; ,it', is'··th'e ',:",:,.,,', :':",: 
: ,e'quivalent()f'CO,MP~,TAt,IOt~AL. ' , ' , ", 

" US1\.ti~' .bIsPLAy::':s'T is' di~cusS~'d: in the q·b.?rPt,¢~::· ()rl"!?"~~I:JJl'lg :c.u.r:r:~ncy~ 
US~GE INDEX is discussed in the chapter on Table Handling. 

Data Description Entry -- Details of Clauses 139 



USAGE Clause 

r----------------T---------T---------------T---------------------------, 
I Item I Value I Description I Internal Representation* I 
~----------------+---------+---------------+---------------------------~ 
External Decimal -1234 DI8PLAY IZ11 Z21Z31 F41 I 

PICTURE 9999 L __ .L __ .L __ ~ I 

DISPLAY 
PICTURE 89999 

byte 

IZ11Z21Z31 D4 1 
L __ .L __ .L __ J. __ J 

~ 

byte 

Note that, internally, 
the D4, which represents 
-4, is the same bit 
configuration as the 
EBCDIC character M. 

~----------------+---------+----:_-----:-:----:t:-.:--:-----------------------~~ 
I I(Version 3) :l,;;'{," , 
I I DISPLAY : f!~; , I D11 Z2lZ3jZ41 
I I 'PICTURES9999lf~'l": L __ .L_-:..L __ ..L_ .... J: ' 
I I ~J:G~ . LEAD I. I1G, 1,~i~J "-.-' 

'

I II:; ',~;i~J : byt~ 
"ll'h'! ; , i ( , 

II II .. J!,,~~;NDi~~ th~a~ i~te::na,1~y;Hfr 
,it'ltil~~: ,..I .. t,: ~. ~Cl~ reprvs~n\..s,;,n..l;' 

, I' , :ft,fr,U.: "esaJrnebit ;; ;"J;'~k: 
I 1" ~~r~-,f; , "rguraticiti ~ast111~T~f'" 

l I" : : ' i; : \ \~ c j'" "~4~rnn ~1~\':~;'; 
I I ' ~-ilr.n :3,)1 i ~' "I • ft,; ~,~:) 
I It ,,' t~' ;.;; ~:'I~' ~t14 
I 1 ~ ,iI" ." . , " '. 
I I 11 ;I~;; '. . ;": I 

~----------------+---------+J~~~~'~--~:!~'ctj'~fJU21]~it~~ _______________ ,_~~~_:~ 
I Binary I -1234 ICOMPUTATIONAL 1 111111101110010111101 1 
1 I I PICTURE 899991 L ____ .L ____ L ____ .L ____ J I 

I 1 1 I t ~ I 
I I I I S byte I 

1 I I .. '.' , : 1.:' ';.;, '. I I I I L(~~'QIl;'-~)l"f"i: I Note that, internally, I 
I I I~. ·.4H' '.::'" i;.·~;!.' .· .•. 1 negative binary numbers I 
I 1 ~-~~;';UJ .. j·" 

1·'~J?:~~~L.:,~9,9,:1 appear 1..n two's I 
1 I I I complement form. I 
t----------------.L---------J.---------------J.--------------------------_~ 
*Codes used in this column are as follows: 

Z = zone, equivalent to hexadecimal F, bit configuration 1111 

Hexadecimal numbers and their equivalent meanings are: 
F nonprinting plus sign (treated as an absolute value) 
C internal equivalent of plus sign, bit configuration 1100 
D internal equivalent of minus sign, bit configuration 1101 

8 sign position of a numeric field; internally, 
1 in this position means the number is negative 
o in this position means the number is positive 

b = a blank I ______________________________________________________________________ J 

Figure 19. Internal R~presentation of Numeric Items (Part 1 of 2) 

140 Part III -- Data Division 



USAGE Clause 

r----------------T---------T---------------T---------------------------, 
I Item I Value IDescription I Internal Representatio~* I 
~__:-:-:--:--:-:--:--: __ --:~__:--:l ... ---:--:-- . ..... ---~-----__:-:~---------------~ 

I ]::llternal.·~.ci~:ti·,.:. ,:,: ,',:. . . ,. I 

I;EXt~ina;l\·, :::. L,,"; Jl~tt2' .. ,:a4!~+,:~lTj:r;s~y·' ,.; . 
I "FlCiat;.iiig:-'Pdinjt'li ' .~.) 1;1 ;\p:rCT:Uf¢·;: 
I ' , ' j', 'f} It" , " :';, 1· '+99'~'~9E:",~9," 

t.~t~~1':1t7~~~ti':~""i'I''''';'·''' •. -"'"''J "',--'"-' ...... ; . .;.:.,..;...,.,. .... ',. ..... '.-~';O-~;-. .;.".-~,~*'""~'i""+"~,.,.., ..... --...-..,...;..;...::.;.-.... ..,+'_'A~ .... ;;.; 
I ""Flb~t'.i.ng,;;.~9,:l;rl~,1 "":",,,:,:.:;,;f"~~: 

I*Codes used in this column are as follows: ' 
I z = zone, equivalent to hexadecimal F, bit configuration 1111 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Hexadecimal numbers and their equivalent meanings are: 

S 

F nonprinting plus sign (treated as an absolute value) 
C internal equivalent of plus sign, bit configuration 1100 
D internal equivalent of minus sign, bit configuration l1Cl 

sign position of a numeric field; internally, 
1 in this position means the number is negative 
o in this position means the number is positive 

b = a blank L _____________________________________________________________________ _ 

Figure 19. Internal Representation of Numeric Items (Part 2 of 2) 

Data Description Entry ...... Details of Clauses 141 



VALUE Clause 

VALUE Clause 

The VALUE clause is used to define the initial value of a 
Working-Storage item or the value associated with a condition-name. 

There are two formats of the VALUE clause~ 

r----------------------------------------------------------------------, 
I Format 1 I 
r----------------------------------------------------------------------~ 
I I 
I VALUE IS literal I 
I I l ______________________________________________________________________ J 

r----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
II {VALUE IS } II literal-1 [THRU literal-21 
I VALUES ARE I 
I I 
I [Ii teral-3 [THRU literal-411... I 
I I l _____________________ ~ ________________________________________________ J 

The VALUE clause must not be stated for any item whose size, explicit 
or implicit, is variable. 

A figurative constant may be sUbstituted wherever a literal is 
specified. 

Rules governing the use of the VALUE clause differ with the 
particular section of the Data Division in which it is specified. 

1. In the File section~;~' ~~~r the VALUE clause must 
be ,used o,nly in,condit,ion-name eptries. ~'. ··,w.~er;'i;"th)i~, ..• ~ ,',' 
~Jl1l !a~tioo ;un:;rir-h;.i k116i.~icl Ii!nl »~ lFti .,_U'.f.! , ~;iaInat"· 
~,~~.r~;~lPJt~~:,;~~J4t:~~~:lr ;iJ ~~ • .\ Ff rtL·r:t··1fJ·~ttJ 

2. In the Working-Storage Section, the VALUE clause must be used in 
condition-name entries, and it may also be used to specify the 
initial value of any data item. It causes the item to assume the 
specified value at the start of execution of the object program. 
If the VALUE clause is not used in an item's description, the 
initial value is unpredictable. 

3. In the Report section, the VALUE clause causes the report data item 
to assume the specified value each time its report group is 
presented. This clause may be used only at an elementary level in 
the Report Section. The Report Section is discussed in detail in 
the "Report Writer" chapter. 

The VALUE clause must not be specified in a data description entry 
that contains an OCCURS clause or in an entry that is subordinate to an 
entry containing an OCCURS clause. This rule does not apply to 
condition-name entries. 

Within a given record description, the VALUE clause must not be used 
in a data description entry that is subsequent to a data description 
entry which contains an OCCURS clause with a DEPENDING ON phrase. 

142 Part III -- Data Division 



Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887 

VALUE Clause 

The VALUE clause must not be specified in a data description entry 
which contains a REDEFINES clause or in an entry which is subordinate to 
an entry containing a REDEFINES clause. This rule does not apply to 
condition-name entries. 

If the VALUE clause is used in an entry at the group level, the 

[
literal must be a figurative constant or a nonnumeric literal. The 
VALUE clause then cannot be specified at subordinate levels within 
this group. 

The VALUE clause cannot be specified for a group containing items 
with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other 
than USAGE IS DISPLAY). 

The following rules apply: 

1. If the item is numeric, all literals in the VALUE clause must be 
numeric literals. If the literal defines the value of a 
Working-Storage item, the literal is aligned according to the rules 
for numeric moves, except that the literal must not have a value 
that would require truncation of nonzero digits. 

2 .. If the item is alphabetic or alphanumeric (elementary or group), 
all literals in the VALUE clause must be nonnumeric literals. The 
literal is aligned according to the alignment rules (see "JUSTIFIED 
Clause"), except that the number of characters in the literal must 
not exceed the size of the item. 

3. All numeric literals in a VALUE clause of an item must have a value 
that is within the range of values indicated by the PICTURE clause 
for that item. For example, for PICTURE 99PPP, the literal must be 
within the range 1000 through 99000 or zero. For PICTURE PPP99, 
the literal must be within the range .00000 through .00099. 

4. The function of the editing characters in a PICTURE clause is 
ignored in determining the initial appearance of the item 
described. However, editing characters are included in determining 
the size of the item. 

Format 1 of the VALUE clause must not conflict with other clauses 
either in the data description of the item or in the data descriptions 
within the hierarchy of this term. 

Format 2 of the VALUE clause is used to describe a condition-name. 
Each condition-name requires a separate level-SS entry. A Format 2 
VALUE clause associates a value, values, or range of values with the 
condition-name. In a condition-name entry, the VALUE clause is required 
and is the only clause permitted in the entry. 

A condition-name is a name assigned by the user to the values a data 
item may assume during object program execution. A condition-name must 
be formed according to the rules for data-name formation. The 
condition-name entries for a particular conditional variable must follow 
the conditional variable. Hence, a level-8S entry must always be 
preceded either by the entry for the conditional variable or by another 
level-88 entry (in the case of several consecutive condition-names 
pertaining to a given item). 

Data Description Entry -- Details of Clauses 143 



RENAMES Clause 

The THRU option assigns a range of values to a condition-name. 
Wherever used, literal-1 must be less than literal-2, literal-3 less 
than literal-4, etc. 

The type of literal in a condition-name entry must be consistent with 
the data type of the conditional variable. In the following example, 
CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables; the 
associated condition-names immediately follow the level-number 88. The 
PICTURE associated with COUNTY-NO limits the condition-name value to a 
2-digit numeric literal. The PICTURL associated with CITY limits the 
condition-name value to a 3-character nonnumeric literal. Any values 
for the condition-names associated with CITY-COUNTY-INFC cannot exceed 5 
characters, and the literal (since this is a group item) must be 
nonnumeric: 

05 CITY-COUNTY-INFO., 
88 BRONX VALUE "03NYC". 
86 BROOKLYN VALUE "24NYC" . 
88 MANHA'ITAN VALUE "31NYC". 
88 QUEENS VALUE "41NYC". 
88 STATEN-ISLAND VALUE "43NYC". 

10 COUNTY-NO PICTURE 99. 
88 DUTCHESS VALUE 14. 
88 KINGS VALUE 24. 
88 NEW-YORK VALUE 31. 
88 RICHMOND VALUE 43. 

10 CITY PICTURE X (3) • 

88 BUFFALO VALUE "BUF". 
88 NEW-YORK-CITY VALUE "NYC". 
88 POUGHKEEPSIE VALUE "POK". 

05 POPULATION ... 
Every condition-name pertains to an item in such a way that the 

condition-name may be qualified by the name of the item and the item's 
qualifiers. The use of condition-names in conditions is described in 
"Conditions." 

A condition-name may pertain to an item (a conditional variable) 
requiring subscripts. In this case, the condition-name, when written in 
the Procedure Division, must be subscripted according to the require
ments of the associated conditional variable. 

A condition-name can be associated with any elementary or group item 
except the following: 

1. A level-66 item 

2. A group containing items with descriptions which include JUSTIFIED, 
SYNCHRONIZED, or USAGE other than DISPLAY 

3. An index data item (see "Table Handling") 

RENAMES Clause 

The RENAMES clause permits alternate, possibly overlapping, groupings 
of elementary data. 

r----------------------------------------------------------------------, 
I Format I 
t-----------------------------------------------------------------------1 
I I 
I 66 data-name-1 RENAMES data-name-2 [THRU data-name-3J I 
I I l ______________________________________________________________________ J 

144 Part III Data Division 



RENAMES Clause 

One or more RENAMES entries can be written for a logical record. 

All RENAMES entries associated with a given logical record must 
immediately follow its last data description entry. 

Data-name-2 and data-name-3 must be the names of elementary items or 
groups of elementary items in the associated logical record and cannot 
be the same data name. Data-name-3 cannot be subordinate to 
data-name-2. 

When data-name-3 is not specified, data-name-2 can be either a group 
item or an elementary item. WRen data-name-2 is a group item, 
data-name~i is treated as a group item, and when data-name-2 is an 
elementary item, data-name-1 is treated as an elementary item. 

When data-name-3 is specified, data-name-1 is a group item that 
includes all elementary items: 

1. starting with data-name-2 Cif it is an elementary item); or 
starting with the first elementary item within data-name-2 (if it 
is a group item), and 

2. ending with data-name-3 (if it is an elementary item); or ending 
with the last elementary item within data-name-3 (if it is a group 
item). 

A level-66 entry cannot rename another level-66 entry nor can it 
rename a level-77, level-SS, or level-01 entry. 

Data-name-1 cannot be used as a qualifier and can be qualified only 
by the names of the level-01 or FD entries. 

Both, data-name-2 and data-name-3 may be qualified. 

Neither data-name-2 nor data-name-3 may have an OCCURS clause in its 
data description entry nor may either of them be subordinate to an item 
that has an OCCURS clause in its data description entry. 

Data-name-2 must precede data-name-3 in the record description; after 
any associated redefinition, the beginning point of the area described 
by data-name-3 must logically follow the beginning point of the area 
described by data-name-2. 

For example, the following Working-Storage record is incorrect: 

01 ERR-REC. 
02 GROUP-A. 

03 FIELD-1A. 
04 ITEM-1A PICTURE XXXX. 
04 ITEM-2A PICTURE XXX. 

03 FIELD-ZA. 
04 ITEM-3A PICTURE XXX. 
04 ITEM-4A PICTURE XXX. 

02 GROUP-B REDEFINES GROOP-A. 
03 FIELD-lB. 

04 ITEM-1B PICTURE XX. 
04 ITEM-2B PICTURE XXX. 
04 ITEM-3B PICTURE XX. 

03 FIELD-2B. 
04 ITEM-4B PICTURE XX. 
04 ITEM-5B PICTURE XX. 
04 ITEM-6B PICTURE XX. 

66 NEW-ERR-REC RENAMES ITEM-3A THRU ITEM-2B. 

Although ITEM-3A precedes ITEM-2B in the record description, ITEM-2B 
logically precedes ITEM-3A in storage. Thus, this example is incorrect. 

Data Description Entry -- Details of Clauses 145 



RENAMES Clause 

The following shows the corrected Working-Storage record: 

01 CORRECTED-RECORD. 
02 GROUP-A. 

03 FIELD-1A. 
04 ITEM-1A PICTURE XX. 
04 ITEM-2A PICTURE xxx~ 
04 ITEM-3A PICTURE XX. 

03 FIELD-2A. 
04 ITEM-4A PICTURE XX. 
04 ITEM-SA PICTURE XX. 
04 ITEM-6A PICTURE XX. 

02 GROUP-B REDEFINES GROUP-A. 
03 FIELD-lB. 

04 ITEM-1B PICTURE XXXX. 
04 ITEM-2B PICTURE XXX. 

03 FIELD-2B. 
04 ITEM-3B PICTURE XXX. 
04 ITEM-4B PICTURE XXX., 

66 NEW-REC RENAMES ITEM-2A THRU ITEM-3B. 

In this example ITEM-2A precedes ITEM-3B both in the record 
description and logically in storage. 

The following example shows how the RENAMES clause might be used in 
an actual program: 

01 OUT-REC. 
02 FIELD-X. 

03 SUMMARY-GROUPX. 
04 FILE-l PICTURE X. 
04 FILE-2 PICTURE X. 
04 FILE-3 PICTURE X. 

02 FIELD-Y. 
03 SUMMARY-GROUPY. 

04 FILE-l PICTURE X 
04 FILE-2 PICTURE X. 
04 FILE-3 PICTURE X. 

02 FIELD-Z. 
03 SUMMARY-GROUPZ. 

04 FILE-l PICTURE X. 
04 FILE-2 PICTURE X. 
04 FILE-3 PICTURE X. 

66 SUM-X RENAMES FIELD-X. 
66 SUM-XY RENAMES FIELD-X THRU FIELD-Y. 
66 SUM-XYZ RENAMES FIELD-X THRU FIELD-Z. 

In the Procedure Division, the programmer may wish, for example, to 
do a complete tally of files in each field of the foregoing record. If 
all active files are represented by an A and all inactive files are 
represented by an I, the statement 

EXAMINE SUM-XYZ TALLYING ALL "A" 

would accomplish this purpose. The two additional RENAMES entries 
(SUM-X and SUM-XY) allow a less inclusive tally, if desired. (The 
EXAMINE statement is discussed in "Procedure Division.") 

146 Part III -- Data Division 



PART IV -- PROCEDURE DIVISION 

• ORGANIZATION OF THE PROCEDURE DIVISION 

• ARITHMETIC EXPRESSIONS 

• CONDITIONS 

• CONDITIONAL STATEMENTS 

• DECLARATIVES 

• ARITHMETIC STATEMENTS 

• PROCEDURE BRANCHING STATEMENTS 

• DATA-MANIPULATION STATEMENTS 

• INPUT/OUTPUT STATEMENTS 

• COMPILER-DIRECTING STATEMENTS 

147 





Procedure Division -- Description 

ORGANIZATION OF THE PROCEDURE DIVISION 

The Procedure Division contains the specific instructions for solving 
a data processing problem. COBOL instructions are written in state
ments, which may be combined to form sentences. Groups of sentences may 
form paragraphs, and paragraphs may be combined to form sections. 

The Procedure Division must begin with the header PROCEDURE DIVISION 

The Procedure Division header is followed, optionally, by Declarative 
Sections, which are in turn followed by procedures, each made up of 
statements, sentences, paragraphs, and/or sections, in a syntactically 
valid format. The end of the Procedure Division (and the physical end 
of the program) is that physical position in a COBOL source program 
after which no further procedures appear. 

The statement is the basic unit of the Procedure Division. A 
statement is a syntactically valid combination of words and symbols 
beginning with a COBOL verb. There are three types of statements: 
conditional statements containing conditional expressions (that is, 
tests for a given condition), imperative statements consisting of an 
imperative verb and its operands, and compiler-directing statements 
consisting of a compiler-directing verb and its operands. 

A sentence is composed of one or 
optionally be separated by semicolons 
be terminated by a period followed by a space. 

he statements may 
A sentence must 

Several sentences that convey one idea or procedure may be grouped to 
form a paragraph. A paragraph must begin with a paragraph-name followed 
by a period. A paragraph may be composed of one or more successive 
sentences. A paragraph ends immediately before the next paragraph-name 
or section-name, at the end of the Procedure Division, or, in the 
Declarative portion, at the key words END DECLARATIVES. 

One or more paragraphs form a section. A section must begin with a 
section header (section-name followed by the word SECTION, followed by a 
period; if program segmentation is desired, a space and a priority 
number followed by a period may be inserted after the word SECTION). 
The general term procedure-name may refer to both paragraph-names and 
section-names. 

The Procedure Division may contain both declaratives and procedures. 

Declarative sections must be grouped at the beginning of the 
Procedure Division, preceded by the key word DECLARATIVES followed by a 
period and a space. Declarative sections are concluded by the key words 
END DECLARATIVES followed by a period and a space. (For a more complete 
discussion of declarative sections, see "Declaratives.") 

A procedure is composed of a paragraph or group of successive 
paragraphs, or a section or group of successive sections within the 
Procedure Division. paragraphs need not be grouped into sections. 

If sections are used within the Procedure Division, a section header 
should immediately follow the Procedure Division header, except when a 
declarative section is included, in which case the section header should 
immediatel follow END DECLARATIVES. 

Organization of the Procedure Division 149 



Procedure Division -- Structure 

A section ends immediately before the next section-name or at the end 
of the Procedure Division, or, in the Declarative portion of the 
Procedure Division, immediately before the next section-name or at the 
words END DECLARATIVES, where END must appear in Area A. 

If program segmentation is used, the programmer must divide the 
entire Procedure Division into named sections. Program segmentation is 
discussed in "Segmentation." 

Execution begins with the first statement of the Procedure Division, 
excluding declaratives. statements are then executed in the order in 
which they are presented for compilation, except where the rules in this 
chapter indicate some other order. 

Structure of-the Procedure Division 

PROCEDURE DIVISION 

[[OECLARATIVES. 

{section-name SECTION. USE Sentence. 

{paragraph-name. {sentence} ••• } ••• } •.• 

END DECLARATIVES.] 

{section-name SECTION [priority].] 

{paragraph-name. {sentence} ••• } ••• } ••• 

CATEGORIES OF STATEMENTS 

There are three categories of statements used in COBOL: conditional 
statements, imperative statements, and compiler-directing statements. 

A conditional statement is a statement containing a condition that is 
tested (see "Conditions") to determine which of the alternate paths of 
program flow is to be taken. 

An imperative statement specifies that an unconditional action is to 
be taken by an object program. An imperative statement may also consist 
of a series of imperative statements. 

A compiler-directing statement directs the compiler to take certain 
actions at compile time. 

150 Part IV -- Procedure Division 



Statement Categories 

CONDITIONAL STATEMENTS 

COBOL statements used as conditional statements are: 

IF .. 
ADD 
COMPUTE 
SUBTRACT 
MULTIPLY 
DIVIDE 
GO TO 

! 
READ } 
SEARCH 
RETURN 
WRITE 

READ } .... 
WRITE 
IIII.'!I. 

(ON SIZE ERROR) 

(DEPEt~Dlr{G ON) 

(AT END) 

(AT END-OF-PAGE) 

(INvALID KEY) 

PERFORM (UNTIL) 
SEARCH (WHEN) 
__ 7, •• ,a." 

The options in parentheses cause otherwise imperative statements to 
be treated as conditionals at execution time. A discussion of these 
options is included as part of the description of the associated 
imperative statement. 

IMPERATIVE STATEMENTS 

COBOL verbs used in imperative statements can be grouped into the 
following categories and subcategories: 

A. DECLARATIVES 

USE 

B. PROCEDURAL 

1. Arithmetic 
ADD 
COMPUTE 
DIVIDE 
MULTIPLY 
SUBTRACT 

2. Procedure Branching: 
GO TO 
ALTER 
PERFORM 
STOP 
EXIT 

3. Data-ManiEulation 
MOVE 
EXAMINE 

Organization of the Procedure Division 151 



Statement categories 

4. 

ACCEPT 
DISPLAY 
CLOSE 

5. Report Writer 
GENERATE 
INITIATE 
TERMINATE 

6. Table Handling 
SEARCH 
SET 

7. Sort 
SORT 
RETURN 
RELEASE 

Note: Report Writer, Table Handling, and Sort statements 
are-discussed in separate chapters. 

COMPILER-DIRECTING STATEMENTS 

COBOL verbs used in compiler-directing statements are: 

COPY 
ENTER 
NOTE 

The COpy statement is discussed in "Source Program Library 

152 Part IV -- Procedure Division 



Arithmetic Operators 

ARITHMETIC EXPRESSIONS 

Arithmetic expressions are used as operands of certain conditional 
and arithmetic statements ... 

\ 

An arithmetic expressi6n may consist of any of the following: 

1. an identifier described as a numeric elementary item 

2. a numeric literal 

3. identifiers and literals, as defined in items 1 and 2, separated ny 
arithmetic operators 

4. two arithmetic expressions, as defined, in items 1, 2, and/or 3, 
separated by an arithmetic operator 

5. an arithmetic expression, as defined in items 1, 2, 3, and/or 4, 
enclosed in parentheses 

Any arithmetic expression may be preceded by 11111111 ••• a unary -

ARITHMETIC OPERATORS 

There are five arithmetic operators that may be used in arithmetic 
expressions. Each is represented by a specific character or character 
combination that must be preceded by a space and followed by 
except that a unary operator must not be ceded 
follows a left renthesis. 

Arithmetic Ooerator 
+ 

* 
/ 

** 

Meaning 
addition 
subtraction 
multiplication 
division 
exponentiation 

Parentheses may be used in arithmetic expressions to specify the 
order in which elements are to be evaluated. 

Expressions within parentheses are evaluated first. When expressions 
are contained within a nest of parentheses, evaluation proceeds from the 
least inclusive to the most inclusive set. 

When parentheses are not used, or parenthesized expressions are at 
the same level of inclusiveness, the following hierarchical order is 
implied: 

1. unary -

2. ** 
3. * and / 

4. + and -

When the order of consecutive operations on the same hierarchical 
level is not completely specified by parentheses, the order ~f operation 
is from left to right. 

Arithmetic Expressions 153 



Arithmetic Symbol Pairs 

Figure 20 shows permissible symbol pairs. A symbol pair in an 
arithmetic expression is the occurrence of two symbols that appear i~ 
sequence. 

----------------T------------T------------T-----------T-------T-------, 
I Second I iii i i 
I Symbol I I I I I I 
I I Variable I I I I I 
I First I (identifier I I I I I 
I Symbol I or literal) I * / ** + - I unary - I ( I ) I 

[~~~:~~~;~;~~~~~~l~~~~:~~~~~~~l~~~~~~~~~~~~~~~:~~~l~~~~~~~l 
I * / ** + - I p I I pip I I 
~----------------+------------+------------+-----------+-------+-------~ 
I I I I I I I 
I unary - I p I I I p I I 
~----------------+------------+------------+-----------+-------+-------~ 
I ( I p I I·p I p I I 
r------)---------t----=-------t-----~------~-~---=---t---~---1 
~----------------L-----~-----L------------~-------L---____ ~ 
I p indicates a permissible pairing I 
I - indicates that the pairing is not permitted I L ______________________________________________________________________ J 

Figure 20. Permissible Symbol Pairs -- Arithmetic Expressions 

An arithmetic expression may begin only with a left parenthesis, a 
""'111"1 unary -, or a variable, and may end only with a right 
parenthesis or a variable. 

There must be a one-to-one correspondence between left and right 
parentheses of an arithmetic expression. 

154 Part IV -- Procedure Division 



Test Conditions 

CONDITIONS 

A condition causes the object program to select between alternate 
paths of control depending on the truth value of a test. Conditions are 
used in IF, PERFORM, and SEARCH statements. 

A condition is one of the following: 

• class condition 

• condition-name condition 

• relation condition 

• sign condition 

• switch-status condition 

In addition, there are two constructions that affect the evaluation 
of conditions. These are: 

1. (condition) 

Parentheses may be used to group conditions (see "Compound 
Conditions"). 

2. NOT condition 

The construction -- NOT condition -- (where condition is one of 
the five conditions listed above) is not permitted if the condition 
itself contains a NOT. 

Conditions may be combined through the use of logical operators to 
form compound conditions (for a full discussion, see "Compound 
Conditions"). 

TEST CONDITIONS 

A test condition is an expression that, taken as a whole, may be 
either true or false, depending on the circumstances existing when the 
expression is evaluated. 

There are five types of simple conditions which, when preceded by the 
word IF, constitute one of the five types of tests: class test, 
condition-name test, relation test, sign test, and switch-status test. 

The construction -- NOT condition -- may be used in any simple test 
condition to make the relation specify the opposite of what it would 
express without the word NOT. For example, NOT (AGE GREATER THAN 21) is 
the opposite of AGE GREATER THAN 21. 

Each of the previously mentioned tests, when used within the IF 
statement, constitutes a conditional statement (see ·Conditional 
Statements"). 

Conditions 155 



Class Condition 

Class Condition 

The class test determines whether data is alphabetic or numeric. 

r----------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
II {NUMERIC } II identifier IS [NOT] 
I ALPHABETIC I 
I I L ______________________________________________________________________ J 

The operand being tested must be described implicitly or explicitly 
as USAGE DISPLAY ~~~.U~8:. 

A numeric data item consists of the digits a through 9, with or 
without an operational sign. 

The identifier being tested is determined to be numeric only if the 
contents consist of any combination of the digits a through 9. If the 
PICTURE of the identifier being tested does not contain an operational 
sign, the identifier being tested is determined to be numeric only if 
the contents are numeric and an operational sign is not present. If its 
PICTURE does contain an operational sign, the identifier being tested is 
determined to be numeric only if the contents are numeric and a valid 
operational sign is present. Valid operational signs are hexadecimal F, 
C, and D. 

Program Product Information -- Version 3 

The NUMERIC test cannot be used with an identifier described as 
alphabetic. 

An alphabetic data item consists of the space character and the 
characters A through Z. 

The identifier being tested is determined to be alphabetic only if 
the contents consist of any combination of the alphabetic characters A 
through Z and the space. 

The ALPHABETIC test cannot be used with an identifier described as 
numeric. 

Figure 21 shows valid forms of the class test. 

r-----------------------T--------------~-------------------------------, 
I Type of Identifier I Valid Forms of the Class Test I 
~-----------------------+-------------------T--------------------------1 
I Alphabetic I ALPHABETIC I NOT ALPHABETIC I 
~-----------------------+-------------------+--------------------------~ 
I Alphanumeric, I ALPHABETIC I NOT ALPHABETIC I 
I Alphanumeric Edited, I NUMERIC I NOT NUMERIC I 
I or Numeric Edited I I I 
~-----------------------+-------------------+--------------------------1 
I "_~?:!=~,es.n~J.,::peC;-imCil . I I I 
1.~ .. !_J!!Ii1jd~ I NUMERIC I NOT NUMERIC I L _______________________ ~ ___________________ ~ __________________________ J 

Figure 21. Valid Forms of the Class Test 

156 Part IV -- Procedure Division 



Condition-name Condition 
Condition-Name Condition 

The condition-name condition causes a conditional variable to be 
tested to determine whether or not its value is equal to one of the 
values associated with condition-name. 

r----------------------------------------------------------------------, 
I Format I 
t-----------------===--------------------------------------------------~ 
I I 
I condition-name I 
I I L ______________________________________________________________________ J 

An example of the use of the condition-name condition follows: 

02 MARITAL-STATUS PICTURE 9. 
88 SINGLE VALUE 1. 
88 . MARRIED VALUE 2. 
88 DIVORCED VALUE 3. 

MARITAL-STATUS is the conditional variable; SINGLE i MARRIED: and 
DIVORCED are condition-names. Only one of the conditions specified by 
condition-name can be present for individual records in the file. To 
determine the marital status of the individual whose record is being 
processed, IF SINGLE ••• can be coded, and its evaluation as true or 
false determines the subsequent path the object program takes. 

A condition-name is used in conditions as an abbreviation for the 
relation condition, since the associated condition-name is equal to only 
one of the values (or ranges of values) assigned to that conditional 
variable. That is, to determine whether the condition SINGLE is 
present, IF MARITAL-STATUS = 1 ••• would have the same effect as using 
the condition-name test IF SINGLE ••• 

If the condition~name is associated with a range of values (or with 
several ranges of values), the conditional variable is tested to 
determine whether or not its value falls within the range(s), including 
the end values. The result of the test is true if one of the values 
corresponding to the condition-name equals the value of its associated 
conditional variable. 

(An example of both group and elementary condition-name entries is 
given in the description of the VALUE clause in ftData Division ft .) 

Conditions 157 



Relation Condition 

Relation Condition 

A relation conjition causes a comparison of two operands, either of 
which may be an identifier, a literal, or an arithmetic expression. 

r----------------------------------------------------------------------, 
, Format I 
~----------------------------------------------------------------------1 
I I 
I {identifier-l } I 
I literal-l relational-operator I 
I arithmetic-expression-l I 
, I 
'{identifier-2} I 
I literal-2 I 
I arithmetic-expression-2 I 
I , L ______________________________________________________________________ J 

The first operand is called the sUbject of the condition; the second 
operand is called the object of the condition. 

The subject and object may not both be literals. 

The subject and object must have the same USAGE, except when two 
numeric operands are compared. 

A relational-operator specifies the type of comparison to be made in 
a relation condition. The meaning of the relational operators is shown 
in Figure 22. 

r-----------------------T----------------------------------------------, 
,Relational-operator I Meaning I 
~-----------------------+----------------------------------------------~ 
I' I 

lIS [~] GREATER THAN IGreater than or not greater than I 
lIS [NOT] > I I 
~-----------------------+----------------------------------------------~ 
lIS [NOT] LESS THAN ILess than or not less than I 
lIS [NOT] < I I 
~----------~------------t----------------------------------------------~ 
lIS [NOT] EQUAL TO IEqual to or not equal to I 
I IS [NOT] = ~ I L _______________________ ~ ______________________________________________ J 

Figure 22. Relational-operators and Their Meanings 

The word TO in the EQUAL TO relational operator is 
~~~.~m.i'. 
~;~~~f*:~"

The relational-operator must be preceded by, and fol-lowed by, a
space.

158 Part IV -- Procedure Division

Relation Condition

COMPARISON OF NUMERIC OPERANDS: For operands whose class is numeric, a
comparison is made with respect to the algebraic value of the op~rands.

Zero is considered a unique value, regardless of sign.

Comparison of numeric operands is permitted regardless of the manner
in which their USAGE is described.

Unsigned numeric operanjs are considered positive for purposes of
comparison.

COMPARISON OF NO~NUMERIC OPERANDS: E'or notIIiurnefic operands, or for one
numeric and one nonnumeric operand, a comparison is made with respect to
the binary collating sequence of the characters in the EBCDIC set.

The EBCDIC collating sequence, in ascending order~ is:

1. (space)
2.. (period or decimal point)
3. < ("less thann symbol)
4. ((left parenthesis)
5. + (plus sign)

7
6 •• '*~ (currency symbol)

(asterisk)
8.) (right parenthesis)
9. (semicolon)

10. - (hyphen or minus symbol)
11. I (stroke, virgule, slash)
12. (comma)
13. > (ngreater than" symbol)
1"._ •• Uj.lI[,!~~-
15. = (equal sign)
16. n (quotation mark)

17-42. A thru Z
43-52. 0 thru 9

(The complete EBCDIC collating sequence is given in the publication
IBM System/360 Reference Data, Order No. X20-1703.)

If one of the operands is described as numeric, it is treated as
though it were moved to an alphanumeric data item of the same size and
the contents of this alphanumeric data item were then compared to the
nonnumeric operand (see "MOVE Statementn).

The size of an operand is the total number of characters in the
operand.

All group items are treated as nonnumeric operands.

Numeric and nonnumeric operands may be compared only when their USAGE
is the same, implicitly or explicitly.

There are two cases of nonnumeric comparison to consider: operands
of equal size and operands of unequal size.

Conditions 159

Relation Condition

1. Comparison of Operands of Equal Size

Characters in corresponding character positions of the two operands
are compared from the high-order end through the low-order end.
The high-order end is the leftmost position; the low-order end is
the rightmost character position.

If all pairs of characters compare equally through the last pair,
the operands are considered equal when the low-order end is
reached.

If a pair of unequal characters is encountered, the two characters
are compared to determine their relative position in the collating
sequence. The operand that contains the character higher in the
collating sequence is considered to be the greater operand.

2. comparison of Operands of Unequal Size

If the operands are of unequal size, comparison proceeds as though
the shorter operand were extended on the right by a sufficient
number of spaces to make the operands of equal size.

COMPARISONS INVOLVING INDEX-N~MES AND/OR INDEX DATA ITEMS: The
compar~son of two index-names is equivalent to the comparison of their
corresponding occurrence numbers.

In the comparison of an index data item with an index-name or with
another index data item, the actual values are compared without
conversion.

The comparison of an index-name with a numeric item is permitted if
the numeric item is an integer. The numeric integer is treated as an
occurrence number. All other comparisons involving an index-name or
index data item are not allowed. (For a discussion of indexing, see
"Table Handling.")

Permissible comparisons are shown in Figure 23.

160 Part IV -- Procedure Division

Relation Condition

-------------------------------T--T--T--T---T--T---T---T---T---T:~'_:;0,T7.fi, -- ---;'T---T---'
I Second Operand I GR I AL I AN I ANE I NE I FC* I ZR I ED I BI 1:i!D:~" ,;,;' 1 IN I IDI 1
,First Operand I \ \ 1 \ \ NNL I NL I 1 I~,'j:;,~ ,::i::~ I I 1
~------------------------------ --+--+--+---+--+---+---+---+~~-dr+~i11f ':';'! ' ---+---1
'Group (GR) INNINNINNINN INNINN INN INN h,.;!'Lll~;:;l~~ 'I I I
~-------------------------------+--+--+--+---+--+---+---+---T~j~~:f;-:'" ,HH-l~ ; ,,' : ---+---4
I Alphabetic (AL) I NN I NN 1 NN I NN I NN I NN INN INN, F:,lINt~f, , I,)!~~:' I I
~-------------------------------+--+--+--+---+--+---+---+---+---+7n+""4~-i ,;-·a:~~+---+---1
I Alphanumeric (AN) ,NN I NN\ NNI NN I NNI NN INN I NN I Ic:"',IN~l]ll,N~INNI I 1
t-------------------------------+--+--+--+---+--+---+---+---+---+-:,-,--4~~+7-iT~-:-if~:-+---+---4
'Alphanumeric Edited (ANE) 'NNI NNI NNI NN I NNI NN INN INN 1 I', ,dNNll':fl:NNlt~~J I I
~-------------------------------+--+--+--+---+--+---+---+---+---+'7~ ... +--'f7+-:~+-~+---+---4
I Numeric Edited (NE) ! NN! NN I NN INN 1 NNI NN INN INN 1 I, .JNNr(~tirNNI I 1
t-------------------------------+--+--+--+---+--+---+---+---+---t,-~7+~~f~'~+~'7f~'7t---+---i
'Figurative Constant (FC) * & I NNI NNI NNI NN \ NNI I I NN I I' HiNJ', INNlNN.;I , I
I Nonnumeric Literal (NNL) I 1 I , 1 lit 1 1:,.,',"'.I,l,l"J',,1 I I
t-------------------------------+--+--+--+---+--+---+---+---+---+.;,.-:~-+~~+'"':_:+':":~+~-+---+---4
I Fig. Constant ZERO (ZR) & ,NN I NN INN 1 NN I NN\ 1 1 NU 1 NU \'NP,"INUlNUJlt-l~Jl:m] 1:)1\ 1
I Numeric Literal (NL) 1 1 I I I 1 I 1 I t~":',t,',',l ... <,,'l,· .. ,r>:,,'J I I
~-------------------------------+--+--+--+---+--+---+---+---+---+~~:_+-,7+~~f,:_~+~'~+---+---4
I External Decimal (ED) \ NN I NNI NN INN 1 NN\ NN I NU I NU 1 NU I,Ntj''.''lNIJl~,UrN,N'I'N~:I 1:)11 I
~-------------------------------t'"':::+--+--+---+--+---+---+---+---+.:..~..,:+:-:_+'"'::-+~~++,-1t---+---1
I Binary (BI) t~'1 I I I 1 I NU I NU 1 NU LNQ',lNU1Nvl:::'lNQ;'1 1011 1
hiJk"""7:-------------------------...,,-- ;~~ - ';~'7J~~.,.t7'~+2:.:.f:..~f~~---;t---4
It,,;,;: ',,',,11NtJ,>lNyl'N~t,~'J:No;l . I I

'I, I, . . ,'':':' ~+~,':7+----+"7*,..t'7--4 -"""T---~

1m " .' .' . :ot~~ . ", ',' "' .' ~,~lt!~~t~~,I~~f~,~l~~I---I---1
~,4\';'l,:;J'i'~ <"fJ'f """.~,,, ,,"':'" ",'; "",~'~t"" , ,/~,t" •. ,,:,:hff "., t ' +, +, t,.+ + 4
~4Jl;:}. >. ,~;;f;,~~~~WJ~9l:J~~,f~1i~?rrJ":l~~Jt;t,;n'i.'lJi;,Ji~;;;lt;},;,l[:\!':I!, :,:,:(, ,'.',,' }lXl~tJ']~UlNUI: ... iN~:1 I I
~~/-.;-:1~~~.,..,.-.T'~'~-:'--,"1-:'?'"i~1-:' . .,'~~~~:;~~it-Htt·· ., ... ~ .. ;-fi-:1:-4~1i-~4i..,.-,.1ik ~+..,.-.,.f--+.--+-"""+~-+---+---1
1;$,t¢HJ.ti;I19f~~r;¥>r:t,'~:~~)!::.,ri'3"J,\IJ,J"J ,il!NN,Jltfflf~Ntfl~'y~t~~J,tJN~',{IJ,~~:t~r',' .. ":·;\l;",:.,,I N.Nl'.:':'I~~l,N,~.1 I I
~~---:-f~-i-,~'7-.;;.~.~~,;,.~_i-:-_:A~~ ,·:-:....;~~-f·~·d'~ ... ~'~~r~'if~--:,;...~-hf,f:-l~--~Af~,;...·~-f-"'7--+~~-+~~+,~,~t-,-+ -:t---+---4
IH~1;er1f:ij,~~':N~nre~6~t,. 'SS~); ':' ,[. L :l~ ';'<~,~~,::N~'LNN:l;~",~'~,l.'~~ 'iFNU,a N:{J '; ',}fU;,; tNU'! NtJl~'ulNN,! N{J,I I i
~ '--""";...'""'=""'-"""==.;.;;.,.;;.' '===~""''-'.;..' ... '="-''= ~'='..o;.~=--'+'=~,t='"--+-'·:'o;,.·t'.;,.;' --'f--,"-'+'-''"'",--f,;.;..,-,-f·--;.;..~;f·--,;.;..~+:~:..;,'--.. +-' '+·--'-'+--';';"+'-'-+---+---~
I Index Name (IN) I I I I I I 110111011 101 I IOirij 1 1 I 110 1 IV 1
t-------------------------------+--+--+--+---+--+---+---+---+---+~~'~·+--+--+--+--+---+---4
IIndex Data Item (101) 1 I I 1 I I I I I 1 I 1 I I IIV IIV 1
~-------------------------------~--~--~--~---~--~---~---~---~---~---~--~--~--~--~---~---1
I*FC includes all Figurative Constants except ZERO. I
11 Valid only if the numeric item is an integer. I

I 1
I NN = comparison as described for nonnumeric operands \
I NU = comparison as described for numeric operands I
I 10 = comparison as described for two index-names I
I IV = comparison as described for index data items I L ___ J

Figure 23. Permissible Comparisons

Conditions 161

Sign/Switch-status Conditions

Sign Condition

The sign condition determines whether or not the algebraic value of a
numeric operand (i.e., an item described as numeric) is less than,
greater than, or equal to zero.

r--,
I Format I
~--1
I I

I
I {identifier } {POSITIVE} II IS [NOT] NEGATIVE
I arithmetic-expression ZERO I
I I L __ J

An operand is positive if its value is greater than zero, negative if
its value is less than zero, and zero if its value is equal to zero. An
unsigned field is positive or zero.

Switch-Status Condition

A switch-status condition determines the on or off status of a device
switch.

r--,
I F~~t I
~--~
I I
I condition-name I
I I L-___ J

The SPECIAL-NAMES paragraph of the Environment Division associates an
ON or OFF value (condition-name) with a switch (function-name). The
switch-status condition tests the value associated with the switch. The
result of the test is true if the switch is set to the position
corresponding to condition-name.

COMPOUND CONDITIONS

Two or more simple conditions can be combined to form a compound
condition. Each simple condition is separated from the next by one of
the logical operators AND or OR.

The logical operators must be preceded by a space and followed by a
space. The meaning of the logical operators is as follows:

Logical operator Meaning

logical inclusive OR, i.e., either or both
are true

logical conjunction, i.e., both are true
logical negation

162 Part IV -- Procedure Division

Compound Conditions

Figure 24 shows the relationships between the logical operators and
simple conditions A and B, where A and B have the following values:

Values for Condition A Values for Condition B
True True
False True
True False
False False

r-------T------T-----T-------------T-----------T------------T----------,
IA AND BIA OR BINOT AINOT (A AND B) I NOT A AND BINOT (A OR B) I NOT A OR BI
~-------+------+-----+-------------+-----------+------------+----------~
I True I True I FalselFalse I False I False I True I
~-------+------+-----+-------------+-----------+--------~---+----------~
\False I True ITrue Irrue I True \ False I True I
~-------+------+-----+-------------+-----------+------------+----------~
I False I True IFalselTrue IFalse IFalse IFalse I
~-------+------+-----+-------------+-----------+------------+----------~
IFalse IFalse ITrue ITrue I False I True I True I L _______ ~ ______ ~ _____ ~ _____________ ~ ___________ ~ ____________ ~ __________ J

Figure 24. Logical Operators and the Resulting Values upon Evaluation

EVALUATION RULES

Logical evaluation begins with the least inclusive pair of
parentheses and proceeds to the most inclusive.

If the order of evaluation is not specified by parentheses, the
expression is evaluated in the following order:

1. Arithmetic expressions

2. Relational-operators

3. [NOT] condition'

4. AND and its surrounding conditions are evaluated first, starting at
the left of the expression and proceeding to the right.

5. OR and its surrounding conditions are then evaluated, also
proceeding from left to right.

Consider the expression:

A IS NOT GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSIrIVE

This will be evaluated as if it were parenthesized as follows:

(A IS NOT GREATER THAN B) OR «CA + B) IS EQUAL TO C> AND (D IS
POSITIVE».

Conditions 163

Compound Conditions

The order of evaluation is as follows:

1. (A + B) is evaluated, giving some intermediate result, for example,
x.

2. (A IS NOT GREATER THAN B) is evaluated, giving some intermediate
truth value, for example, t1.

3. (x IS EQUAL TO C) is evaluated, giving some intermediate truth
value, for example, t2.

4. (D IS POSITIVE) is evaluated, giving some intermediate truth value,
for example, t3.

5. (t2 AND t3) is evaluated, giving some intermediate truth value, for
example, t4.

6. (t1 OR t4) is evaluated, giving the final truth value, and the
result of the expression.

Figure 25 shows permissible symbol pairs. A symbol pair in a
compound condition is the occurrence of two symbols appearing in
sequence.

-------------------T--------------T-------T-------T-------T-----T-----'
I Second 1 I I I I I I
IFirst Symbol I I I I I I I
1 Symbol I Condition I OR I AND I NOT I (I) I
~------------------- --------------+-------+-------+-------+-----+-----1
I Condition I I pip I I I p I
~-------------------+--------------+-------+-------+-------+-----+-----~
1 OR I p I I I pip I I
~-------------------+--------------+-------+-------+-------+-----+-----1
1 AND I p I I I pip I I
~-------------------+--------------+-------+-------+-------+-----+-----~
I NOT I p I - I - I - I p I - I
~-------------------+--------------+-------+-------+-------+-----+-----1
I (I p I I I pip I I
~-------------------+--------------+-------+-------+-------+-----+-----~
I) I I pip I I I p I
~-------------------i--------------i-------i-------i-------i-----i-----1
Ip indicates a permissible pairing I
1- indicates that the pairing is not permitted I l __ J

Figure 25. Permissible Symbol Pairs -- compound Conditions

IMPLIED SUBJECTS ~ND R~L~TION~L-OPERATORS

When relation conditions are written in a consecutive sequence, any
relation condition except the first may be abbreviated by:

1. The omission of the subject of the relation condition, or

2. The omission of the subject and relational-operator of the relation
condition.

Within a sequence of relation conditions, both forms of abbreviation may
be used~ The effect of using such abbreviations is as if the omitted
subject was taken from the most recently stated subject, or the omitted
relational-operator was taken from the most recently stated relational
operator.

164 Part IV -- Procedure Division

Compound Conditions

r---,
IFormat of Implied Subject: I
~-------------------------~--~
I I
I ••• subject relational-operator object I
I I : j~D} [NOT] relational-operator object... I
I ~- I
I I L __ J

r---------------------------~--,
IFormat of Implied Subject and Relational-operator: I
~--~-----~
I I

1 ... sUbject relational-operator object {AND} [NOT] object... I
I OR I
I I L __ J

Ambiguity may result from using NOT in conjunction with
abbreviations. When only the subject is implied, NOT is interpreted as
a logical operator rather than as part of the relational" operator. For
example, A NOT > BAND < C is equivalent to A NOT > B AND A < C. When
both the subject and the relational operator are implied, NOT is
interpreted as part of the relational operator. For example, A NOr > B
AND C is equivalent to A NOT> B AND A NOT > C.

The following are examples of implied subjects, and relational
operators. Each example consists of two equivalent statements:

Implied.Subject

A = B OR NOT > C
A ~ B OR NOT A > C

(The subject, A, is implied.)
(The subject, A, is explicit.)

Implied SUbject and Relational Operator

A B AND C (Subject and relational-operator, A are
implied.)

A B AND A C (Subject and relational-operator, A are
explicit.)

A NOT B AND C (Subject and relational-operator, A NOr =,
are implied.)

A NOT B AND A NOT C (Subject and relational-operator, A NOr
are explicit.)

Implied Subject, and Subject and Relational-Operator

A > B AND NOT < C AND D

A > B AND NOT A < C
AND A < D

(Subject, A, is implied in the second condi
tion. Subject, A, and relational-operator,
<, are implied in the third condition.)

(Subject, A, and relational-operator, <, are
explicit.)

The omitted subject is taken from the most recently stated subject,
i.e., A.

The omitted relational-operator is taken from the most recently
stated relational-operator, i.e., <.

Conditions 165

IF Statement

CONDITIONAL STATE~ENTS

A conditional statement specifies that the truth value of a condition
is to be determined and that the subsequent action of the object program
is dependent on this truth value. Conditional statements are listed in
"Categories of Statements."

A conditional sentence is a conditional statement optionally preceded
by an imperative statement, terminated by a period followed by a space.

Only the IF statement is discussed in this section. Discussion of
the other conditional statements is included as part of the description
of the associated imperative statements.

IF Statement

The IF statement causes a condition to be evaluated. The subsequent
action of the object program depends upon whether the condition is true
or false.

r--,
I Format I
~--~
I I
I {statement-l } {ELSE } {statement-2 } I I IF condition I
I NEXT SENTENC~ (11111'111 1ft NEXT SENTENCE I
I I L-___ J

The phrase ELSEllllllillil NEXT SENTENCE may be omitted if and only if
it immediately precedes the period for the sentence.

When an IF statement is executed, the following action is taken:

1. If the condition is true, the statement immediately following the
condition or THEN (statement-l) is executed. (If ELSE is
omitted, then all imperative statements following the condition and
preceding the period for the sentence are considered to be part of
statement-l.) Control is then passed implicitly to the next
sentence unless GO TO procedure-name is specified in statement-l.
If the condition is true and NEXT SENTENCE is written, control
passes explicitly to the next sentence.

2. If the condition is false, either the statement following ELSE
__ (statement-2) is executed, or, if the E.LSE 1.< •••• 111
option is omitted, the next sentence is executed. If the condition
is false and NEXT SENTENCE is written following ELSE, control
passes explicitly to the next sentence.

When IF statements are not nested, statement-l and statement-2 must
represent imperative statements.

166 Part IV -- Procedure Division

,~

Fl

IF Statement

Nested IF Statements

The presence of one or more IF statements ~ithin the initial IF
statement constitutes a "nested IF statement."

Statement-l and statement-2 in IF statements may consist of one or
more imperative statements and/or a conditional statement. If a
conditional statement appears as statement-lor as part of statement-l,
it is said to be nested. Nesting statements is much like specifying
subordinate arithmetic expressions enclosed in parentheses and combined
in larger arithmetic expressions.

IF statements contained ~ithin IF statements must be considered as
paired IF and ELSE combinations, proceeding from left to right. Thus,
any ELSE encountered must be considered to apply to the immediately
preceding IF that has not already been paired with an ELSE.

In the conditional statement in Figure 26, C stands for condition; S
stands for any number of imperative statements; and the pairing of IF
and ELSE is shown by the lines connecting them.

Figure 27 is a flowchart indicating the logical flo~ of the
conditional statement in Figure 26.

I t t ~ 'f t t
Cl Sl IF2 C2 IF3 C3 S2 ELSE S3 ELSE S4 IF4 C4 IF5 C5 S5 ELSE

I r c1 c2 I l el

dl
\,. ~ \.

bl b2

al

S6
e2

at - Statement-l for IFI (IfCl is false, the next sentence is executed, since there is no ELSE for it.)

bl - Statement-l for IF2
b2 - Statement-2 for IF2
cl - Statement-l for IF3
c2 - Statement-2 for IF3
dl - Statementol for IF4 (IfC4 is false, the next sentence is executed, since there is no ELSE for it.)

el - Statement-l for IF5
e2 - S~tement-2 for IFS

,Ir

~

~

Figure 26. Conditional statements with Nested IF Statements

Conditional statements 167

IF Statement

* * **A1 *** * ... ** ... *
* EXECUTION OF *
.. IF STATEME~T *
* BEGINS *

I
~

· *. B1 * .
.. * * . . * *. FALSE

*. C1 • *---
*. . * *. .. * * .. * ('m

** ***C1*** ** ** ***
* *
* * *

Sl

* * · .. T· .. · .. ·
· *. . *. 01 *. *****02********** 03 * •

. * *g * * .* *. * *. FALSE * * • * *. FALSE
*: C2 • *-------->* S4 *-------->*. C4 • *--------------------------->

*. . * * * * *..* * * *..* * .. * ***************** * .• * 1 TRUE 1 TRUE

· *. E1 *. *****E2**********
* . * * • * . FALSE : :

*: C3 • *-------->* S3 *
*. .. * * ... • * *

* .• * ***************** I nUE

***** F1 ** ... ** *****
* * * * S2 *

* * * ** .. ** **+ ** ** * *** *

. *.
E3 *. *****E4**********

.. * *. * * • * *. FALSE * *
* • C5 • *-------->* S6 *

*.. • * * *
*.. • * * *

* .. * ***************** I TRUE

***** F3* *** ** *** *
* * * * * S5 *
* * * * * * * ** * ****** * *** *

I
<---

** *** Hi ***** *** **
* *
* * * NEXT SENTENCE *
* * • *
** ***:Ie ** ** ** *****

Figure 27. Logical Flow of Conditional statement with Nested IF
Statements

168 Part IV -- Procedure Division

Declaratives -- General Format

DECLARATIVES

The Declaratives section provides a method of including procedures
that are invoked nonsynchronously: that is, they are executed not as
part of the sequential coding written by the programmer, but rather when
a condition occurs which cannot normally be tested by the programmer.

Although the system automatically handles checking and creation of
standard labels and executes error recovery routines in the case of
input/output errors, additional procedures may be specified by the COBOL
programmer. The Report Writer feature also uses declarative procedures.

since these procedures are executed only when labels of a file are to
be processed, or at the time an error in reading or writing occurs or
when a report group is to be produced, they cannot. appear in the regular
sequence of procedural statements. They must be written at the
beginning of the Procedure Division in a subdivision called
DECLARATIVES. A group of declarative procedures constitutes a
declarative section. Related procedures are preceded by a USE sentence
that specifies their function. A declarative section ends with the
occurrence of another section-name with a USE sentence or with the words
END DECLARATIVES.

The key words DECLARATIVES and END DECLARATIVES must each begin in
Area A. No other text may appear on the same line.

r--,
I General Format I
~----------------------------------.------------------------------------~

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION. USE sentence.
{paragraph-name. {sentence} ••• } •••

END DECLARATIVES.

} ...

I
I
I
I
I
I
I
I
I
I __ J

The USE sentence identifies the type of declarative.

There are three formats of the USE sentence. Each is associated with
one of the following types of procedures:

1. Input/output label handling

2. Input/output error-checking procedures

3. Report writing procedures

A USE sentence, when present, must immediately follow a section
header in the Declarative portion of the Procedure Division and must be
~ollowed by a period followed by a space. The remainder of the section
must consist of one or more procedural paragraphs that define the
procedures to be used.

The USE sentence itself is never executed, rather it defines the
conditions for the execution of the USE procedure.

Declaratives 169

LABEL Declarative

Format 1 is used to provide user label-handling procedures. There
are two options of Format 1.

r--,
I Format 1 I
~--~

option 1

USE {BEFORE}

AFTER
STANDARD [BEGINNING]

LABEL PROCEDURE ON {

{file-name} ••• 1
OUTPUT
INPUT
1-0

~--~

Option 2

USE
{

BEFORE}
STANDARD [ENDING] FILE

[

REEL]

AFTER

LABEL PROCEDURE ON

UNIT

{

{file-name} ••• ~
OUTPUT
INPUT
1-0

L ___ _

When BEFORE is specified, it indicates that nonstandard labels are to
be processed. Nonstandard labels may be specified only for tape files.

When AFTER is specified, it indicates that user labels follow
standard file labels, and are to be processed.

Note: ASCII considerations for user label-handling procedures are given
in Appendix E.

The labels must be listed as data-names in the LABEL REcoaDS clause
in the File Description entry for the file, and must be described as
level-01 data items subordinate to the file entry.

If neither BEGINNING nor ENDING is specified, the designated
procedures are-executed for both beginning and ending labels.

If UNIT, REEL, or FILE are not included, the designated procedures
are executed both for REEL or UNIT, whichever is appropriate, and for
FILE labels. The REEL option is not applicable to mass storage files.
The UNIT option is not applicable to files in the random access mode
since only FILE labels are processed in this mode.

If FILE is specified, the designated procedures are executed at
beginning-of-file (on first volume) and/or at end-of-file (on last
volume) only. If REEL or UNIT is specified, the designated procedures
are executed at beginning-of-volume (on each volume but the first)
and/or at end-of-volume (on each volume but the last.) Both BEGINNING
and ENDING label processing is executed if BEGINNING or ENDING has not
been specified.

170 Part IV -- Procedure Division

LABEL Declarative

The same file-name may appear in different specific arrangements of
Format 1. However, appearance of a file-name in a USE statement must
not cause the simultaneous request for execution of more than one USE
declarative.

If the file-name option is used, the File Description entry for
file-name must not specify a LABEL RECORDS ARE OMITT£D clause.

The user label procedures are executed as follows when the OUTPUT,
I~PUT, or 1-0 options are specified:

• When OUTPUT is specified, only for files opened as output.

• When INPUT is specified, only for files opened as input.

• When 1-0 is specified, only for files opened as 1-0.

The file-name must not represent a sort-file.

If the INPUT, OUTPUT, or 1-0 option is specified, and an input,
output, or input-output file, respectively, is described with a LABEL
RECORDS ARE OMITTED clause, the USE procedures do not apply.

The standard system procedures are performed:

1. Before or after the user's beginning or ending input label check
procedure is executed.

2. Before the user's beginning or ending output label is created.

3. After the user's beginning or ending output label is created, but
before it is written on tape.

4. Before or after the user's beginning or ending input-output label
check procedure is executed.

Within the procedures of a USE declarative in which the USE sentence
specifies an option other than file-name, references to common label
items need not be qualifie1 by a file-name. A common label item is an
elementary data item that appears in every label recorj of the program,
but does not appear in any data record of this program. such items must
have identical descriptions and positions within each label record.

within a Format 1 declarative section there must be no reference to
any nondeclarative procedures. conversely, in the nondeclarative
portion there must be no reference to procedure-names that appear in the
declaratives section, except that PERFORM statements may refer to a USE
procedure, or to procedures associated with it.

The exit from a Format 1 declarative section is inserted by the
compiler following the last statement in the section. All logical
program paths within the section must lead to the exit point.

Declaratives 171

LABEL Declarative -- Sample Program

there i~ -another user label to check. Hence, there, n~ed not bea
program ,path that flows ,through the last statement in :the :!isection~
For nonstandard labelE1"the compiler does not kno~'hio~,ma h 1 cU!>e Is
ex~s~~" ~her€!f,o:r::~,!,th~ :,~~s:t~tt,ctt,~~e.qtr ;i,p ,the ,se9~iQ.rt l'us~' '
~~"iecu~£Td ,:totez.:m1.~ate 111~qgtartda.1q ;~~'q~~ ,pr,ocess~ng., J' I !

:' ;"" " , "'" ': j l '; ,; t ':' ;", ' ,!';t f"

r;l"l,Y~J:4'~:~~,c!\Mv !~ti:art;~9mE~n;t.! 1jf~ .

No tape marks are written following nonstandard header labels. A
tape mark is written following the last nonstandard trailer label on
each reel.

SAMPLE LABEL DE~LARATIVE PROGR~M

The following program creates two files, one with user labels, the other
with nonstandard labels. To create the labels, the program contains a
DECLAR~TIVES section, with USE procedures for creating both header and
trailer labels.

172

The program illustrates the following items:

For the two files requiring label creation, the LABEL RECORDS
clause specifies the data-name option.

The user labels are created by a USE ~FrER BEGINNING/ENDING LABEL
procedure.

The nonstandard labels are created by a USE BEFORE BEGINNING/ENDING
LABEL procedure.

Label information for the program is taken in part from the input
file; therefore input records containing the information must be
read and stored before the output files are opened, and the header
label procedures invoked.

Part IV -- Procedure Division

LABEL Declarative -- Sample Program

IDENTIFICATION DIVISION.
PROGRAM-ID. LABELPGM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-F50.
OBJECT-COMPUTER. IBM-360-F50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT NO-LBL ASSIGN TO SYS010-UT-2400-S.
SELECT USER ASSIGN TO SYS011-UT-2400-S.
SELECT NON-STD ASSIGN TO SYS012-UT-2400-S.

DATA DIVISION.
FILE SECTION.
FD NO-LBL

RECORD CONTAINS 80 CHARACTERS
DATA RECORDS ARE IN-REC IN-LBL-dIST
LABEL RECORD IS OMITTED.

01 IN-REC.
05 TYPEN PIC X(4).

88 NSTD VALUE 'NSTD'.
05 DEPT-ID PIC X(11). '
05 BIL-PERIOD PIC X(5).
05 NA¥~ PIC X(20).
05 AMOUNT PIC 9(6).
05 FIL-NAM PIC X(15).
05 SECUR-CODE PIC XX.
05 AREAN PIC 9.

BB HDR-REC VALUE 9.
05 ACCT-NUM PIC 9(10).
05 SER-NUM PIC 9(6).

01 IN-LBL-HIST.
05 FILLER PIC X(4).
05 FILE-HISTORY PIC X(76).

FD USER
RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 5 RECORDS
DATA RECORD IS USR-REC
LABEL RECORDS ARE USR-LBL USR-LBL-HIST.

01 USR-LBL.
05 USR-HDR PIC X(4).
05 DEPT-ID PIC X(11).
05 USR-REC-CNT PIC 9(8) CO~~-3.

05 BIL-PERIOD PIC X(5).
05 FILLER PIC X(53).
05 SECUR-CODE PIC XX.

01 USR-LBL-HIST.
05 FILLER PIC X(4).
05 LBL-HISTORY PIC X(76).

01 USR-REC.
05 TYPEN PIC X(4).
05 FILLER PIC X(5).
05 NAME PIC X(20).
05 FILLER PIC X(4).
05 ACCT-NUM PIC 9(10).
05 AMOUNT PIC 9(6) COMP-3.
05 FILLER PIC X(25).
05 U-SFQ-NU~m PIC 9(8).

FD NON-STD
RECORDING MODE IS U
DATA RECORDS ARE NSTD-REC1 NSTD-REC2
LABEL RECORD IS NSTD-LBL.

01 NSTD-LBL.
05 NSTD-HDR PIC XC?).
05 NSTD-REC-CNT PIC 9(8) COMP-3.
05 FILLER PIC X(3).
05 FIL-NAM PIC X(15).
05 DEPT-ID PIC X(11).
05 SER-NUM PIC 9(6).

Declaratives 173

LABEL Declarative -- Sample Program

o

OS CREAT-DATE PIC XeS).
01 NSTD-REC1.

OS ACCT-NUM PIC 9(10).
OS BIL-PERIOD PIC xes).
OS NAME PIC X(20).
OS FILLER PIC X(40).
OS AREAN PIC 9.
OS FILLER PIC X(20).
05 &~OUNT PIC 9(6) COME-3.

01 NSTD-REC2.
OS ACCT-NUM PIC 9(10).
OS BIL-PERIOD PIC xes).
OS NAME PIC X(20).
OS FILLER PIC X(lS).
OS DEPT-ID PIC XCll).
OS AMOUNT PIC 9(6).
OS N-SEQ-NUMB PIC 9(S).
OS AREAN PIC 9.
OS FILLER PIC X(4).

WORKING-STORAGE SECTION.
77 N-REC-NUMB PIC 9(S) VALUE ZERO.
77 U-REC-NUMB PIC 9(S) VALUE ZERO.
77 SAV-FIL-NAM PIC X(lS).
77 SAV-DEPT-ID PIC X(11).
77 LBL-SWITCH PIC 9 V~LUE ZERO.
77 USER-SWITCH PIC 9 VALUE ZERO.
77 NSTD-SWITCH PIC 9 VALUE ZERO.
77 NSTD-REC2-CNT PIC 9(S) VALUE ZERO.
01 STOR-~C.

OS DEPT-ID PIC X(11).
OS BIL-PERIOD PIC xes).
OS SECUR-CODE PIC xx.

PROCEDURE DIVISION.

DECLARATIVES.
USR-HDR-LBL SECTION. USE AFTER BEGINNING FILE

LABEL PROCEDURE ON USER.
A. IF LBL-SWITCH = 0

MOVE SPACES TO USR-LBL
MOVE ZEROES TO USR-REC-CNT
MOVE 'UHL1' TO USR-HDR
MOVE CORRESPONDING STOR-REC TO USR-LBL
ADD 1 TO LBL-SWITCH GO TO MORE-LABELS

ELSE MOVE 'UHL2' TO USR-HDR
MOVE FILE-HISTORY TO LBL-HISTORY.

USR-TRLR-LBL SECTION. USE AFTER ENDING FILE
LABEL PROCEDURE ON USER.

B. MOVE SPACES TO USR-LBL.
MOVE 'UTL1' TO USR-HDR.
MOVE SAV-DEPT-ID TO DEPT-ID IN USR-LBL.
MOVE U-REC-NUMB TO USR-REC-CNT,

NSTD-HDR-LBL SECTION. USE BEFORE BEGINNING FILE
LABEL PROCEDURE ON NON-STD.

C. MOVE 'NSTHDR1' TO NSTD-HDR.
MOVE ZEROES TO NSTD-REC-CNT
MOVE CORRESPONDING IN-REC TO NSTD-LBL.
MOVE CURRENT-DATE TO CREAT-DATE.
MOVE FIL-NAM OF IN-RFC TO SAV-~IL-NAM.

NSTD-TRLR-LBL SECTION. USE BEFORE ENDING FILE
LABEL PROCEDURE ON NON-STD.

D. MOVE SPACES TO NSTD-LBL.
MOVE 'NSTEOF ' TO NSTD-HDR.
MOVE N-REC-NUMB TO NSTD-REC-CNT.
MOVE SAV-FIL-NAM TO FIL-NAM IN NSTD-LBL.

END DECLARATIVES.

NON-DECLARATIVE SECTION.
OPEN INPUT NO-LBL.

1"" 'I l"""lo __ .I- T1'7 Procedure Division .L f ~ ra..1. '- ..1. V

CD

READ-IN.
READ NO-LBL AT END GO TO END-JOB.

E. IF NSTD NEXT Sl!;NTENCE
ELSE GO TO PROCESS-USER.

IF NSTD-SWITCH = 1 NEXT SENTENCE
ELSE ADD 1 TO NSTD-SWITCH

OPEN OUTPUT NON-STD
GO TO READ-IN.

ADD 1 TO N-REC-NUMB.
IF HDR-REC MOVE SPACES TO NSTD-REC1

ERROR Declarative

MOVE CORRESPONDING IN-REC TO NSTD-REC1
WRITE NSTD-REC1

ELSE ADD 1 TO NSTD-REC2-CNT
MOVE SPACES TO NSTD-REC2
MOVE CORRESPONDING IN-REC TO NSTD-REC2
MOVE NSTD-REC2-CNT TO N-SEQ-NU~~
WRITE NSTD-REC2.

GO TO READ-IN.
PROCESS-USER.

IF USER-SWITCH = 1 NEXT SENTENCE
ELSE ADD 1 TO USER-SWITCH

MOVE CORRES?ONDING IN-REC TO STOR-REC
MOVE DEPT-ID OF IN-REC TO SAV-DEPT-ID

PERFORM READ-IN
OPEN OUTPUT USER
GO TO READ-IN.

ADD 1 TO U-REC-NUM3.
MOVE CORRESPONDING IN-REC TO USR-REC.
MOVE U-REC-NUMB TO U-SEQ-NUMB
WRITE USR-REC
GO TO READ-IN.

END-JOB.
CLOSE NO-LBL.
IF USER-SWITCH
IF NSTD-SWITCH
STOP RUN.

1 CLOSE USER.
1 CLOSE NON-STD.

A Format 2 USE sentence specifies procedures to be followed if an
input/output error occurs during file processing.

r--,
I Format 2 I
~--~
I I
I USE AFTER STANDARD ERROR PROCEDURE I
I I
I ! {file-name-1} ••• i I
I)~if~'i~~tmlt~t:~~~~~~;~f l;l,~@:~~~~~t~}; I
I ON INPUT I
I OUTPUT I
I 1-0 I
! I L __ J

When Format 2 is used, automatic system error routines are executed
before user-specified procedures.

USE declaratives which specify error handling procedures are
acti va~E:!cl,ltlh~I'l,,~ni'~I'lP,?'t:.(Output error occurs during execution of a READ,
WRITE~~~mi~~t:;~~'t(statement.

Within the section, the tile associated with the USE sentence may not
be referred to by an OPEN,::~;,,~; SEEK, READ, WRITEij:t~&\~m;
statement.

Declaratives 175

ERROR Declarative

Within a USE procedure there must be no reference to nondeclarative
procedures '~iG~ptit}\~Jnen,',:'ap.' ex:it:';:is:ta'k(;h':"'wi.tli"ii',(;O"TO:':statemel'lt.
Conversely, in the nondeclarative portion, there wust be no reference tc
procedure-names that appear in the declaratives portion, except that
PERFORM statements may refer to a USE declarative, or to procedures
associated with such a declarative.

Whened'.ithel;) the file-naITIe-19r;:'if'lte;';":!l~m~:4:'Z; option is used, user errcr
handling procedures are executed ,;S);-!p"Ptl1:{,2,~,1:g11t:,~Erors occurring
during execution of a READ, WRITE",;:g~~'!<$lW~i:friQ:;t'};i9~~W' statement for that
file only.

A file-name must not be referred to, implicitly or explicitly, in
more than one Format 2 USE sentence.

The user error procedures are executed when the INPU~, OUTPUT, or 1-0
options are specified and an input/output error occurs, as follows:

• When INPUT is specified, only for files opened as INPUT.

• When OUTPUT is specified, only for files opened as OUTPUT.

• When 1-0 is specified, only for files opened as 1-0 (input-output).

,Wl1f:!nth~,.,.GI\lING.",opt~oni$ ",use(j,'d(ita-name-l,~ill., b~set •• t() reflect
the, ~rro:r;conditi?nthat 'caused the errorcieclarative" to be entered.; A
value, >of}inan~rror, byte indicatesi:hat its corresponding error
condition has occurred. Indi vidual bytes will correspond to specific
error conditions depending on the type of file being processed as shown
in Figure 28~

The GIVING option must not be specified for files on unit record
devices.

r-------~-,-,,...--:-,-T---,--,..,.-----.,...'----- T--------'--..;.------T------"...-:---------,
I . I L'lPEXED II. I
I Error Byte I SEQUENTIAL I DIRECT t SEQUENTIAL . I
~---------~--- -t--~-~~---------t-.... -----'-:....--------+-.;.;. ... ---.,.;.;..---.;..-.... ---~
I 1 t DASD error I Data check I parity error I
I I I in count I I
t-------.;.;.-----.,.;---t-------------~,-.,.;-+--------...;,--,....;.;.-,-+-' ------,-,'-,~---,~-i
I 2 I wrong length I Wrong length I wrong length I
I I record I record I record I
l----""'r-.--------...,-t---.;..-------------.-+-----.... ------:----t.----:...;----------...;-i
'I 3 I Prime data J NO room J J

.1:, >', ,I full•... .>1< found ... ,1; .',.1
'P----" '-.. ----.... ----+-~ __ -._.'"":---:----'-.~~-.+-:"-__ --._.~_.-_.-~-.-7'"'-.+-,..,.-.-.----""'r-. _:"-.,... ~-i
., 4 Icylin~erilJdex I Data <:heck,in I J

I, "'tQO small........ J ker oy:dat(i,, . .. '.. , J
~_....,.-::-,-:-----~-:-t-t-~.... •... , ... -'-~-+_.~-,...--:'---'"":-.... -.... --t-.... ----.,...--_:'---.... 7'"' -:'~
',>,5 i,' .J,Ma~terJAd~x ,I>",' , L·, J

t.>'i ..<i';J>,~C?o:sm~ll, .· •.••.. il ". ..,\,;' ,I.. ..' , >,J
f:---:-~~'"":~-,-'--.,..,""'r-..,.,t~_.,_.T-:-:'-.---'--. -.-+-:----:-~-.--:-.-;-:-:'::':''"'':-:+-.---:_'_'-""'r~-~-:,-:-::--i
l:,"t.,;< ,J',p"'et"flQ'waJ:;ea.., .J ." ...1<, <: ' .. ', J
1.:,i:,'·.··· .•• :i .. ';,',".J,~UtN.~· ... ·.,',"\':< .• ·1•...............•.••.•....•..•.. · .•.. ·.· .•• ·.· i"t' " ... ,'·· •. • .•• ii ·,·.· .. :,,1
r""'r'--:'~,.,.,..~~---:'-:-.+:__~:,T::---:-~--;-'::':'--:-+---~~--"":--.... ---, :--q'---;-:--........ ·-_.:__--. :--... :71
I.", •.. ·.·.·.?• ,' ·,.··.··., .• ,:1·.No .. '~oF::r;t:!.<='?)':4, : .. 1." .. ', ... ' .•.••. 1,., .. ,,'•. '.', .• ·· •. ··, .•. · ...•.•.• ·.·.· .. , .•. ,;1
":i· ... ······.· .. ·· ··.·.· ·.·· ... ·.: · .. · .. ·.· ... ··'.·l'w;~tten; .ill,:!>:t:'~~l,.···,'·,· ·., .. ,·.,' .• · •. · •. "l<•.. ·· •. ······ ...• · ...•.• ··,'/<:,',:,i",<>l
:' .. </" '··>··>",i"· •• lda't:~areai"'.·',i.··l.,,:';,.... .' ... ":.... .' •. » - .•. ,·.·.· .. l:·'·','«',· .•.•.•.• ····.,',<".,l
f-:' -...,.,~--... -:-......,.,-:~·+-7--.-.~--·-:-.-...-': 7'"'---+~ """:'"""·--.,..'"": ... -:'::':' ... 7----+ -~-:',...-. '-:"-~:'"!'::':'-:''i
t ,',8,' . ..::1 •.•..•....... "" . ..1 '.' .. ' . ..' .. t•.. '<>. .,1
l_'-~--~-7 ~~ --"'""'---:-~-.---,"":_. ... -:....--,-~J.-;-;~7~-...... - ... --'-""'r _J. ~.--_ _' ""'r-......... , _J
Fiqure28.E,rro,r;B¥t~ Meaning;rfor the" GIVING Option of' an Erro'r

Decla1:"<lt,ive '

, ,

_ Data"'ria1l)e~l ',mQ~i:::;~e"atl~H-l>yt~,,~xternal -(i€ci.ma'l
~~tin~~ti,*n[},~h~ ·w~,;~~~~7~1tp~p.~~~;iR~~tion;.

176 Part IV -- Procedure Division

ERROR/BEFORE REPORTING Declarative

, ',nata-'name::'2'",{f s~i~'ied, "wJ.ll:~on~fri}tihe!:,.:~~k:;1~~:}A'~:J t:n,:),r'<;@;,~)-1
'"it: 'DO data was tra,ilsn\iJtted) , bat.:t·...:riarde~i,:~il1?~Ctjnta~~; i\t1],,~~Jt!;,
,erroronl ywhen' tih;e er;ror 'occurs during: a;,·RiiA:)j;:~~a~idJj.,;:

~. , .. ' . f .". . , ' !: t· ". 0;' ,,~. j ~ ~.': .. <

, ., ',~",;i, ',J
~ .1>i !! "' y ~ ~

.nata""name~2 :must J)e l,aj:'ge enou<jIi t~;hbTd '~hi€i :~tgt~~~' ,'!l: !ny~si!da~lti:
>thatexlstso:C:;wil.l,be written 'onfile:-iname"':2.: 'I,t'must
>the' Working-Storage or Linkage, :Sectlon., "rfIdata~name~i, ;is :dE~f!:iJil1e~
':the'LinkilgeSection, :the :block in 'error is'referenced in
al';"!:~~L._!lP~,~~_C?.~~'ge, 'neE;d' be :defined,for: 'the ~r.ror'hlock,':' .

~~ exit from this type of declarative section can be effected by
executing the l(ist statement in the section (normal return)flo,~~Jgt'A&~
P~".cf~,(;O;",TO/~~:J::(l,t:,eIn.ent:. Figure 29 summarizes the facilities and
li~i~~fi6~i'as~ocii~ied with each file-processing technique when an error
occurs.

The normal return from an error declarative is to the statement
following the input/output statement that caused the error.

A Format 3 USE sentence specifies Procedure Division statements that
are executed just before a report group named in the Report Section of
the Data Division is produced (see "Report Writer").

r--,
i Format 3 I
~--~
I I
I Q~~ BEFORE REPORTING data-name. I
I I L __ J

Declaratives 177

ERROR Declarative

r--------T-------T----------T--~~=~~T-------------------------------------T-------------,

I I IType of I I Error Declarative written I No Error I
I IOrgani-1 I/O I Error ~------------------T------------------1 Declarative I
I Access Ization IStatement I Bytes I Normal Return I GO TO Exit I written I
~--------+-------+----------+~----~~+------------------+------------------+-------------~
SEQUEN- ISequen-IREAD 110r 2 IContinued process-IUser limited to I Diagnostic I
TIAL Itial I I ling of file per- ICLOSE for file lerror messagel
(or not I I I 'I mitted; bad block I I is printed; I
speci-, I I ',is bypassed I I job is I
fied) I I I I I ,terminated I

I ~----------+;,..--_:~--+------------------+------------------1 I
I tWRITE 11 or 2 IContinued process-I continued process-I ,
I I I ling of file per- ling of file per- I I
I I I Imitted; bad block Imitted; bad block,
I I r I has been written I has been written I
~-------+----------+..:..- --..... ___+------------------+------------------1
I Direct I READ Ll,2', orl User limited to I User limited to I
I I , 4~ ICLOSE for file ,CLOSE for file ,

~--------+-------+----------+..:..,"'"' ---....;+------------------+------------------1
I RANDOM I Direct I READ 11,2'" orl Continued process-I continued process-I
I I I I ! 4' I ing of file per- I ing of file per- I
I I I I~ Imitted; bad block Imitted; bad block I
I I I I Ihas not been by- Ihas not been by- I
, I , I I passed I passed I
I I ~----------+-------+------------------+------------------~
I I I WRITE I ~" 2',3, I Continued process-I Continued process-I
I I I I~r 4 ling of file per- ling of file per- I
I I ~=~=-_....,-_....,~+-i -.;..---~mitted; bad block Imitted; bad block I
I I I REWRITE ; Ili .. 2, orl has been written I has been written I
I I I ~ 1'1 ."·4 : I I I
h...,-,.,,.,.-·...,,,·,· ,-+-'''''_.---,.,,=.+-....,·------~,.,j-,-+...;;-·-_-.,.----I-, ._-.--.-.-,,.,.,...,,-._-,-.--. .,,-,..._,+ ... , __ ,....,,.,..,.,..,.,. . ..,...,..,..,.,, .. _.,...,.-._.,..,,--:

2: J:Continued process-I Continued proces$
'ling of fi~e per- 'I ingof file per
Imitted; bad block Imitted; bad blQc~
(has 'not be,en QY- i (has ~not beenbYi- ;

I
I

I
I
I
I

!: I passed iii 'h?as~ed i I

H~-.--,--,---ih,-I+i~I-!_I-'-...J+-...:---...:-'-_...;-_-J--J4---.J-----!...:-..;--..; ,
, . tinued ipro~es~-J 'inueq lp,r:'oc~~~-;

of fill~ , i J,f~~e ,
j!mJ~tt:;eCl t i i •

I
L"Ji~it'ri~~'!:'!!i~~::!£,! :
Figure 29. File Processing Techniques and Associated Error Declaratives

178 Part IV -- Procedure Division

CORRESPONDING/GIVING/ROUNDED Options

ARITHMETIC STATEMENTS

The arithmetic statements are used for computations. Individual
operations are specified by the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements. These operations can be combined symbolically in a formula,
using the COMPUTE statement.

Because there are several options common to the arithmetic state
ments, their discussion precedes individual statement descriptions.

CORRESPONDING Option

The CORRESPONDING option enables computations to be performed on
elementary items of the same name simply by specifying the group item to
which they belong. The word CORRESPONDING may be abbreviated as CORR.

Both identifiers fol~owing CORRESPONDING must refer to group items.
For the purposes of this discussion, these identifiers will be called d 1
and d 2 •

Elementary data items from each group are considered CORRESPONDING
when both data items have the same name anj qualification, up to but not
including d 1 and d 2 •

Neither d 1 nor d 2 may be a data item with level number 66, 77, or 88,
nor may either be described with the USAGE IS INDEX clause. Neither d 1

nor d 2 may be a FILLER item.

Each data item subordinate to d 1 or d 2 that is describe~ with a
REDEFINES, RENAMES, OCCURS, or USAGE IS INDEX clause is ignored; any
items subordinate to such data items are also ignored. HOwever, d 1 or
d 2 may themselves be described with REDEFINES or OCCURS clauses, or be
subordinate to items described with REDEFINES or OCCURS clauses.

Each FILLER item subordinate to d 1 or d 2 is ignored •
. ~~~~:;~:~~~~~'~~~~W~,\~~!\:,~:;;'~:::~.·.~:i~\r:~!,~:~!~~J:':¥ .. ,,;,~

GIVING Option

If the GIVING option is specified, the value of the identifier that
follows the word GIVING is set equal to the calculated result of the
arithmetic operation. This identifier, since not itself involved in the
computation, may be a numeric edited item.

ROUNDED Option

After decimal point alignment, the number of places in the fraction
of the result of an arithmetic operation is compared with the number of
places provided for the fraction of the resultant identifier.

Arithmetic Statements 179

SIZE ERROR Option/Overlapping Operands

When the size of the fractional result exceeds the number of places
provided for its storage, truncation occurs unless ROUNDED is specified.
When ROUNDED is specified, the least significant digit of the resultant
identifier has its value increased by 1 whenever the most significant
digit of the excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause
containing piS and when the number of places in the calculated result
exceeds this size, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

SIZE ERROR Option

If, after decimal point alignment, the value of a result exceeds the
largest value that can be contained in the associated resultant
identifier, a size error condition exists. Division by zero always
causes a size error condition. The size error condition applies only to
the final results of an arithmetic operation and does not apply to
intermediate results. If the ROUNDED option is specified, rounding
takes place before checking for size error. When such a size error
condition occurs, the subsequent action depends on whether or not the
SIZE ERROR option is specified.

If the SIZE ERROR option is not specified and a size error condition
occurs, the value of the resultant identifier affected may be
unpredictable.

If the SIZE ERROR option is specified and a size error condition
occurs, the value of the resultant identifier affected by the size error
is not altered. After completion of the execution of the arithmetic
operation, the imperative statement in the SIZE ERROR option is
executed.

Overlapping Operands

When the sending and receiving operands of an arithmetic statement or
a MOVE statement share a part of their storage (that is, when the
operands overlap), the result of the execution of such a statement is
unpredictable.

180 Part IV -- Procedure Division

ADD statement

ADD statement

The ADD statement causes two or more numeric operands to be summed
and the result to be stored.

r--,
, Format 1 ,

~--~ , ,
I \identifier-l, fidentifier-21 ' i ADD lliteral-l \ Lliteral-2 J TO identifier-m [ROUNDED] I
, ,
, [identifier-n [ROUNDED]] ••• [ON SIZE ERROR imperative-statement] I
I I L __ J

r--,
I Format 2 I
~--~
I I I ADD 'jidentifier-li jident.ifier-2t [identifier-3] I
I literal-l ~ literal-2 ~ literal-3 I
I I
I GIVING identifier-m [ROUNDED] [ON SIZE ERROR imperative-statement], , ,
L __ J

r--,
I Format 3 ,
~---~--------------------------~
I I
I, jCORR 1 II ADD identifier-l TO identifier-2
, CORRESPONDING ,
I I
, [ROUNDED] [ON SIZE ERROR imperative-statement] I
I I L __________________________ ~ ___ J

Format 1 -- the values of the operands preceding the word TO are
added together, and the sum is added to the current value of'
identifier~m (identifier-n), etc. The result is 'stored in identifier-m
(identifier-n), etc.

Format 2 -- when the GIVING option is used, there must be at least
two operands preceding the word GIVING. The values of these operands
are added together, and the sum is stored as the new value of
identifier~m.

In Formats 1 and 2 each identifier must refer to an elementary
numeric item, with the exception of identifiers appearing to the right
of the word GIVING. These may refer to numeric edited data items.

Each literal must be a numeric literal.

The maximum size of each operand is 18 decimal digits. The maximum
size of the resulting sum, after decimal point alignment, is 18 decimal
digits.

Format 3 -- when the CORRESPONDING option is used, elementary data
items within identifier-l are added to and stored in corresponding
elementary data items within identifier-2. Identifier-l and
identifier-2 must be group items.

Arithmetic Statements 1,8-1

COMPUTE Statement

When ON SIZE ERROR is used in conjunction with CORRESPONDING, the
size error test is made only after the completion of all the ADD
operations. If any of the additions produces a size error condition,
the resultant field for that addition remains unchanged, and the
imperative statement specified in the SIZE ERROR option is executed.

COMPUTE statement

The COMPUTE statement assigns to a data item the value of a data
item, literal, or arithmetic expression.

r--,
I Format I
~--1
I I
I lidentifier-2 I I
I COMPUTE identifier-1 [ROUNDED] = literal-1 I
I arithmetic-expression I
I I
I [ON SIZE ERROR imperative-statement] I
I I L __ J

Literal-1 must be a numeric literal.

Identifier-2 must refer to an elementary numeric item. Identifier-1
may describe a numeric edited data item.

The identifier-2and literal-1 options provide a method for setting
the value of identifier-1 equal to the value of identifier-2 or
literal-1.

The arithmetic-expression option permits the use of a meaningful
combination 6f identifiers, numeric literals, and arithmetic operators.
Hence, the user can combine arithmetic operations without the
restrictions imposed by the arithmetic statements ADD, SUBTRACT,
MULTIPLY, and DIVIDE.

As in all arithmetic statements, the ma~imum size of each operand is
18 decimal digits.

182 Part IV -- Procedure Division

I DIVIDE Statement

DIVIDE Statement

The DIVIDE statement is used to find the quotient resulting froIT! the
division of one data item into another data item.

r--,
I Format 1 I
~--1
I I

DIVIDE l~::::::~:r-lt INTO identifier-2 [ROUNDED) i

I
[ON SIZE ERROR imperative-statement] I

I I L __ J

r--,
I Format 2 I
~--1
I I
II lidentifier-1f lINTO f lid. entifier-2f II

DIVIDE §IVING identifier-3
I literal-l BY l1teral-2 I
I I
I [ROUNDED] [REMAINDER identifier-4] I
I I
I [ON SIZE ERROR imperative-statement] I
I I L __ J

When Format 1 is used, the value of identifier-l (or literal-i) is
divided into the value of identifier-2. The value of the dividend
(identifier-2) is replaced by the value of the quot{ent.

When Format 2 is used, the value of identifier-l (or literal-i) is
divided into or by identifier-2 (or literal-2), the quotient is stored
in identifier-3, and the remainder optionally is stored in identifier-4.

remainder is defined as the result of subtracting
tient and the divisor from the dividend.

after remainder is

Each identifier must refer to an elementary numeric item except the
identifier following the word GIVING, which may be a numeric edited
item.

Each literal must be a numeric literal.

The maximum size of the resulting quotient, after decimal point
alignment, is 18 decimal digits. The maximum size of the resulting
remainder (if specified), after decimal point alignment, is 18 decimal
digits.

Division by zero always results in a size error condition.

Arithmetic Statements 183

MULTIPLY Statement

MULTIPLY Statement

The MULTIPLY statement is used to multiply one data item by another
data item.

r--,
I Format 1 I
~--~
I I
II lidentifier-1~ II

MULTIPLY BY identifier-2 [ROUNDED]
I literal-1 I
I I
I [ON SIZE ERROR imperative-statement] I
I I L ___ ~-----_________________ J

r-----------·---,
I Format 2 I
~--~
I I
I lidentifier-1! lidentifier-2! I
I MULTIPLY BY GIVING identifier-3 I
I literal-1 literal-2 I
I I
I [ROUNDED] [ON SIZE ERROR imperative-statement] I
I I L __ J

When Format 1 is used, the value of identifier-1 (or literal-1) is
multiplied by the value of identifier-2. The'value of the multiplier
(identifier-2) is replaced by the. product.

When Format 2 is used, the value of identifier-1 (or literal-1) is
multiplied by identifier-2 (or literal-2), and the product is stored in
identifier-3.

Each identifier must refer to an elementary numeric item except the
identifier following the word GIVING, which may be a numeric edited
item.

Each literal must be a numeric literal •.

The maximum size of each operand is 18 decimal digits. The maximum
size of the resulting product, after decimal point alignment, is 18
decimal digits.

184 Part IV procedure Division

SUBTRACT Statement

SUBTRACT Statement

The SUBTRACT statement is used to subtract one, or the sum of two or
more, numeric data items from another data item(s).

r--,
I Format 1 I
~--1
I I
I ,identifier-l/ ridentifier-21 I
I SUBTRACT) ! L J I
I (literal-l , literal-2 I
I I
I FROM identifier-m [ROUNDED] I
I I
I [identifier-n [ROUNDED]] ••• [ON SIZE ERROR imperative-statement] I
I I "L __ J

r--------------------------------------~-------------------------------,
I Format 2 I
~--1
I
I
I SUBTRACT
I
I
!
I
I
I
I
I

[ROUNDED]

l
identif ier-ll

literal-l ~

,identif ier-m)

IIi teral-m f

[

identifier-j

literal-2

GIVING identifier-n

[ON SIZE ~RROR imperative-statement]
L ___ _

r------------~---,

I Format 3 I
~---~--------------~
I

: SUBTRACT lCORR t identifier-l FROM identifier-2
I CORRESPONDING\
I
I [ROUNDED] [ON SIZE ERROR imperative-statement]
I I L __ J

Format 1 -- all literals or identifiers preceding the word FROM are
added together, and this total is subtracted from identifier-m and
identifier-n (if stated), etc. The result of the subtraction is stored
as the new value of identifier-ro, identifier-n, etc.

Format-2 -- all literals or identifiers preceding the word FROM are
added together, and this total is subtracted from literal-m or
identifier-me The result of the subtraction is stored as the value of
identifier-n.

Format 3 -- data items in identifier-l are subtracted from, and the
difference stored into corresponding data items in identifier-2. When
the CORRESPONDING option is used in conjunction with ON SIZE ERROR and
an ON SIZE ERROR condition arises, the result for SUBTRACT is analogous
to that for ADD.

Arithmetic Statements 185

SUBTRACT Statement

Each identifier must refer to an elementary numeric item except the
identifier following the word GIVING, which may be a numeric edited
item.

Each literal must be a numeric literal.

The maximum size of each operand is 18 decimal digits. The maximum
size of the resulting difference, after decimal point alignment 1 is 18
decimal digits.

'\
-..;
.~.

186 Part IV -- Procedure Division

GO TO Statement

PROCEDURE BRANCHING STATEMENTS

Statements, sentences, and paragraphs in the Procedure Division are
ordinarily executed sequentially. The procedure branching statements
(GO TO, ALTER, PERFORM, STOP, and EXIT) allow alterations in the
sequence.

GO TO Statement

The GO TO statement allows a transfer from one part of the program to
another.

r--,
I Format 1 I
~--1
I I
I GO TO procedure-name-1 I
I I L __ J

r--,
I Format 2 I
~--~
I I
I GO TO procedure-name-1 [procedure-name-2J I
I I
I DEPENDING ON identifier I
I I L __ J

r---=--------1
I Format 3 I
~--1
I I
I GO TO. I
I I L __ J

When Format 1 is specified, control is passed to procedure-name-1 or
to another procedure name if the GO TO statement has been changed by an
ALTER statement. (If the latter is the case, the GO TO statement must
have a paragraph name, and the GO TO statement must be the only
statement in the paragraph.)

If ·a GO TO statement represented by Format 1 appears in an imperative
sentence, it must appear as the only or last statement in a sequence of
imperative statements.

When Format 2 is used, control is transferred to one of a series of
procedures, depending on the value of the identifier. When identifier
has a value of 1, control is passed to procedure-name-1; a value of 2
causes control to be passed to procedure-name-2, ••• ; a value of ~
causes control to be passed to procedure-name-n. For the GO TO
statement to have effect, identifier must represent a positive or
unsigned integer, i'-e., 1, 2, ••• , n. If the value of the identifier is
anything other than a value within the range 1 through ~, the GO TO
statement is ignored. The number of procedure-names must not exceed
2031.

Procedure Branching Statements 187

ALTER Statement

Identifier is the name of a numeric elementary item described as an
integer. Its PICTURE must be of four digits or less. Its USAGE must be
DISPLAY, COMPUTATIONAL, 9~Cti~1:PW;rATJ:ONAL;""3.

When Format 3 is used, an ALTER statement, referring to the GO TO
statement, must have been executed prior to the execution of the GO TO
statement. The GO TO statement must immediately follow a paragraph name
and must be the only statement in the paragraph. -

ALTER statement

The ALTER statement is used to change the transfer point specified in
a GO TO statement.

r--,
I Format I
~--~
I I
I ALTER procedure-name-l TO [PROCEED TO] procedure-name-2 I
I I
I I
I [procedure-name-3 !Q [PROCEED TO] procedure-name-4]... I
I I L __ J

procedure-name-l, procedure-name-3, etc., must be the names of
paragraphs that contain only one sentence consisting of a GO TO
statement without the DEPENDING option.

Procedure-name-2, procedure-name-4, etc., must be the names of
paragraphs or sections in the Procedure Division.

The effect of the ALTER statement is to replace the procedure-name
operands of the GO TO statements with procedure-name-2,
procedure-name-4, etc., of the ALTER statement, where the paragraph-name
containing the GO TO statement is procedure-name-l, procedure-name-3,
etc. For 'example:

PARAGRAPH-i.
GO TO BYPASS-PARAGRAPH.

PARAGRAPH-1A.

BYPASS-PARAGRAPH.

ALTER PARAGRAPH-l TO PROCEED TO PARAGRAPH-2.

PARAGRAPH-2.

Before the ALTER statement is executed, when control reaches
PARAGRAPH-l, the GO TO statement transfers control to BYPASS-PARAGRAPH.
After execution of the ALTER statement, however, when control reaches
PARAGRAPH-l, the GO TO statement transfers control to PARAGRAPH-2.

segmentation Informatiou: A GO TO statement in a section whose
priority is greater than or equal to 50 must not be referred to by an
ALTER statement in a section with a different priority. All other uses
of the ALTER statement are valid and are performed even if the GO TO to
which the ALTER refers is in an overlayable fixed segment (see
"Segmentation").

188 Part IV -- Procedure Division

PERFOFWI statement

PERFORM Statement

The PERFORM statement is used to depart from the normal sequence of
procedures in order to execute a statement, or a series of statements, a
specified number of times; or until a predetermined condition is
satisfied. After the statements are executed, control is returned to
the statement-after the PERFORM statement.

r--,
I Format 1 I
r--~-~~----------------~
I I
I PERFORM procedure-name-l [THRU procedure-name-2] I L __ J

r--,
I Format 2 1

r--1
I I
I PERFORM procedure-name-l [THRU procedure-name-21 I
I I
II li.dentifier-11 II

TIMES
I 1nteger-l I
L __________________________ ---------------------------_________________ J

r--,
I Format 3 I
~--~
I I
I PERFORM procedure-name-l [THRU procedure-name-21 I
I I
I UNTIL condition-l I L __ J

r--,
I Format 4 I
~--~

I
I
I
I
I
I
I
I
I
I
I
I
I
I

PERFORM procedure-name-l [THRU procedure-name-21

l

index-name-l!
VARYING

identifier-l l
index-name-2!

FROM literal-2
identifier-2

Iliteral-3 !
BY UNTIL condition-l

identifier-3

[AFTER l
index-name-4l

. identifier-4\ I index-name- 51
literal-5
identifier-5

jliteral-6 l
identifier-6\

UNTIL condition-2

[AFTER
l

index-name -7l
identifier-7\

FROM I index-name-8!
literal-8
identifier-8

Iliteral-9 l
i den tif ier-9\

UNTIL condition-311
L __ J

Procedure Branching Statements 189

PERFORM Statement

Each procedure-name must be the name of a section or paragraph in the
Procedure Division.

Each identifier represents a n~meric elementary item described in the
Data Division. In Format 2, and Format 4 with the AFTER option, each
identifier ents a numeric item described as an ere

Each literal represents a numeric literal.

Whenever a PERFORM statement is executed, control is transferred to
the first statement of the procedure named procedure-name-1. Control is
always returned to the statement following the PERFORM statement. The
pOint from which this control is passed is determined as follows:

1. If procedure-name-1 is a paragraph name and procedure-name-2 is not
specified, the return is made after the execution of the last
statement of procedure-name-1.

2. If procedure-name-1 is a section name and procedure-name-2 is not
specified, the return is made after the execution of the last
sentence of the last paragraph in procedure-name-1.

3. If procedure-name-2 is specified and it is a paragraph name, the
return is made after the execution of the last statement of that
paragraph.

4. If procedure-name-2 is specified and it is a section name, the
return is made after the execution of the last sentence of the last
paragraph in the section.

When both procedure-name-l and ~ocedure-name-2 are specified, GO TO
and PERFORM statements may appear within the sequence of statements
within these paragraphs or sections. When procedure-name-1 alone is
specified, PERFORM statements may appear within the procedure. GO TO
may also appear but may not refer to a procedure-name outside the range
of procedure-name-1.

When a PERFORM statement includes within its range of procedures
another PERFORM statement, this embedded PERFORM statement must have its
range of procedures either totally included in or totally excluded from
the range of procedures of the original PERFORM statement. That is, the
exit point of the original PERFORM statement cannot be contained within
the r of procedures of the embedded PERFORM statement

Control may be passed to a sequence of statements that lies between
the entry and exit points of a PERFORM statement by means other than a
PERFORM. In this case, control passes through the last- statement of the
procedure to the following statement as if no PERFORM statement referred
to these procedures.

FORMAT 1: When Format 1 is used, the procedure(s) referred to are
executed once, and control returns to the statement following the
PERFORM statement.

FORMAT 2: When Format 2 is used, the procedure(s) are performed the
number of times specified by identifier-lor integer-i. Once the TI~lliS
option is satisfied, control is transferred to the statement following
the PERFORM statement.

The following rules apply to the use of a Format 2 PERFORM statement:

190 Part IV -- procedure Division

PERFORM statement

1. if integer-lor identifier-1 is zero or a negative number at the
time the PERFORM statement is initiated, control passes to the
statement following the PERFORM statement.

2. once the PERFORM statement has been initiated, any reference to
identifier-l has no effect in varying the number of times the
procedures are initiated.

FORMAT 3: When Format 3 is used, the specified procedures are performed
until the condition specified by the UNTIL option is true. At this
time, control is transferred to the statement following the PERFORM
statement. If the condition is true at the time that the PERFORM
statement is encountered, the specified procedure(s) are not executed.

FORMAT 4:- Format 4 is used to augment the value of one or more
identifiers or index-names during the execution of a PERFORM statement.

When executing a Format 4 PERFORM statement, the initial values of
identifier-2 (index-name-2) and identifier-5 (index-name-5) must be

~ositive in .order to confbrm;~~~~~~d"_]~itli_r:~~~~1~~0/
In the following discussion of Format 4, every reference to

identifier-n also refers to index-name-n except when identifier-n is the
object of the BY option. Also, when index-names are used, the FROM and
BY clauses have the same effect as in a SET statement (see "Table
Handling").

Dur~ng execution of the PERFORM statement, reference to index-names
or identifiers of the FROM option has no effect in altering the number
of times the procedures are to be executed. Changing the value of
index-names or identifiers of the VARYING option or identifiers of the
BY option, however, will change the nuwber of times the procedures are
executed.

When one identifier is varied, the following is the sequence of
events:

1. Identifier-l is set equal to its starting value, identifier-2 or
literal-2.

2. If condition-1 is false, the specified procedure(s) are executed
once.

3. The value of identifier-l is augmented by the specified increment
or decrement, identifier-3 or literal-3, and condition-l is
evaluated again.

4. steps 2 and 3 are repeated, if necessary, until the condition is
true. When the condition is true, control passes directly to the
statement following the PERFORM statement. If the condition is
true for the starting value of identifier-l, the procedure(s) are
not executed, and control passes directly to the statement
following the PERFORM statement.

Figure 30 is a flowchart illustrating the logic of the PERFORM
statement when one identifier is varied.

When_~wo identifiers are varied, the following is the sequence of
events:

1. Identifier-l and identifier-4 are set to their initial values,
identifier-2 (or literal-2> and identifier-5 (or literal-5),
respectively.

2. Condition-l is evaluated; if true, control is passed to the
statement following the PERFORM statement; if false, condition-2 is
evaluated.

Procedure Branching statements 191

PERFORM statement

3. If condition-2 is false, procedure-name-l through procedure-name-2
(if specified) is executed once.

4. Identifier-4 is augmented by identifier-6 (or literal-6), and
condition-2 is evaluated again.

5. If condition-2 is false, steps 3 and 4 are repeated.

6. If condition-2 is true, identifier-4 is set to its initial value,
identifier-5.

7. Identifier-l is augmented by identifier-3 (or literal-3).

8. steps 2 through 7 are repeated until condition-l is true.

At the termination of the PERFORM statement, if condition-l was true
when the PERFORM statement was encountered, identifier-1 and
identifier-4 contain their initial values. Otherwise, identifier-l has
a value that differs from its last used setting by an increment or
decrement, as the case may be.

Figure 31 is a flowchart illustrating the logic of the PERFORM
statement when two identifiers are varied.

For three identifiers, the mechanism is the same as for two
identifiers except that identifier-7 goes through the complete cycle
each time that identifier-4 is augmented by identifier-6 or literal-6,
which in turn goes through a complete cycle each time identifier-l is
varied.

Figure 32 is a flowchart illustrating the logic of the PERFORM
statement when three identifiers are varied.

SEGMENTATION INFORMATION: A PERFORM statement appearing in a section
whose priority is less than the segment limit can have within its range
only one of the following:

1. sections each of which has a priority number less than 50

2. Sections wholly contained in a single segment whose priority number
is greater than 49

t~':~:~:i,~~~*~,'i~b,,:J~eE~~l":~~,~
~l~"~"~~~~ .,

A PERFORM statement appearing in a section whose priority number is
equal to or greater than the segment limit can have within its range
only one of the following:

1. Sections each of which has the same priority number as that
containing the PERFORM statement

2. Sections with a priority number less than the segment limit
.~(' .. ,~." .. ~··:·.::-~!J1.i"~'r·:: H.~~;~(r.;;J"l·f""·!~' -~,,--. ·.;.,iit~

However ,this compiler allows the .PERfORM" t'O:'bave'~~Ulin ii:s"+ra:n:ge'
sections with any priority numbers~ .:;.: "';:;:':'~::' .' . ,; t~"

When a procedure-name in a permanent segment is referred to by a
PERFORM statement in an independent segment, the independent segment is
reinitialized upon exit from the performed procedure (see
"Segmentation").

192 '-.7
.LV -- Procedure Division

Figure 30.

****A2 ** *** * ***
* EXECUTION OF *
* PERFORM STWT
* BEGINS
* * **** *** ** * * * *

1
* * * **B2* ** * * * ** **
* SET *
* IDENTIFIER-i' *
* EQUAL TO ITS *
* FRO~ VALUE *
* * ** ** *** * * * ** *** * *

1
. *.

* C2 *. * ****C3*********
• * • TEST • *. TRUE *

__ >*. CON9ITION-i • *-------->* EXIT

*. * * .. * * *************** .. * ... *. r"
*** **D2 **** * ** ***
* * * EXECUTE *
* PROCEDURE-i *
* TqRU *
* PROCEDURE- 2 *
** * * *** ***** ** ***

1
* ****E2 * * * * * * ** **
* * * AUGMENT

---* IDENTI~IFR-i
* WITR ITS BY
* VALUE *
"* ***~~* *"" *** * ** **

PERFORM Statement

Logical Flow of Option 4 PERFORM statement Varying One
Identifier

Procedure Branching Statements 193

PERFORM statement

** ** Ai *** ** ** ** * EXECUTION OF ..
* PERFORM STMT *
* BEGINS *

v
* * ***Bi *** ** *** ** * * * IDENTIFIER-l *
* IDENTIFIER-L! *
*SET TO INITIAL * * F«OM VALUE *
* .. *** * ****** **** *

:*::*:->1
* * **** V . *.

* Ci *. *. ****C2********* • * T!':ST *. TRUE * *
*. CONDITION-i • *-------->* EXIT *

*.. ... * *
*.. .." *************** * * r"

. *.
Di *.

'" * . . * TEST • TRUE

-->*. CONDI'I'ION-
2

• *----------------[*. . * *. . * * ... * r"
** ***El ***** ** * ** ** ***E2 ** * *** '" *** * * * SET * .. EXECUTE *IDENTIFIEP-L! TO*

PROCEDURE-l * ITS INITIAL *
THRU FROM VALUE *

* PROCEDURE- 2 *
** *** *** **** *** ** * * ***** * .. ** * **

1 1
.... * **Fl ** * ** ** * ** ** ** * F2 ** * ** ** *** * *.. *
.. AUGMENT * * AUGMEt>T ---* IDEN'IIFIER-4 * IDENTIFIER-l * HITH ITS BY * WIT':! ITS BY * VALUE" ,. VALUE ,.
** *** ***** ** ***** ** ** *** ***** * **

Figure 31.

194 n~ Tt7 ~v

1

* * .. Cl *
* *

Logical Flow of Option 4 PERFORM statement Varying Two
Identifiers

Procedure Division

Figure 32.

** **1'.2 *** ** * ***
* EXECU":'ION OF *
* PERFORM STMT *
* BEGINS *

1
*****32* **** *****
'" IDENTIFIER-l *
* IDENTIFIER-II *
* IDENTIFIER-7 *
*SET TO INITIAL *
* FROM VALUES *
** ***** ******* ***

1
. *.

C2 *.
**** • * *. ****C3*********

* * • * TEST *. TRUE * *
* C2 *---->*. CONDITION-l • *-------->* EXIT *
* * *. • * * *
**** *.. * * * ** * ***** ** *** * .. * rSE

. *.
D2 *.

**** .* *.
* * • * TEST *. TRUE

PERFORM statement

* D2 *---->*. CONDITION-2 • *--
* * *. . *

**** *.. *
* .. * rSE

.*.
E2 * .

. * * •
• * TEST *. TRUE

r
-->*· CONDITION- 3 • *-----------------1

*. . *

···r~;E 1
** ***F2* * **** ** ** * * ***F3* *** ** *** *
* * * SET *
* EXECUTE * * IDENTIFIER-7 *
* PROCEDURE-l * *TO ITS INITIAL *
* THRU * * FROM VALUE *
* ?ROCEDURE- 2 * * *
** * *** * ***** ***** ** * *** ** ***** *** *

1 j
** ***G2 ** ** ** **** ** * **G3**** ** ****
* * * *
* AUGMENT * * AUGMENT *

---* IDENTIFIER-7 * * IDENTIFIER-4 *
* WITH ITS BY * * WITH ITS BY *
'" VALUE * * VALUE *
*** ***'" **** * * **** ** * *** ** ******** *

1

* * * D2 *
* * ****

1
*****FII * ** * ***** * * SE'I *
IDENTIFIEi<-1I TO
* ITS INITIAL *
* FROM VALUE *
* * **** ****** ** *****

1
*****G!! * *** * *** **
* * * AUGMENT
* IDENTIFIER-l
* WITH ITS BY
* 'VALUE *
** ** **** **** * * ** *

1

* * * C2 *
* * ****

Logical Flow of Option 4 PERFORM statement Varying Three
Identifiers

Procedure Branching Statements 195

STOP/EXIT Statements

S'IOP Statement

The STOP statement halts the object program either permanently or
temporarily.

r--,
I Format I
r--~
I I
II IRUN (II STOP
I llteral I
I I L __ J

When the RUN option is used, the execution of the object program is
terminated, and control is returned to the system.

If a STOP statement with the RUN option appears in an imperative
statement, it must appear as the only or last statement in a sequence of
imperative statements. All files should be closed before a STOP RUN
statement is issued.

When the literal option is used, the literal is communicated to the
operator. The program may be resumed only by operator intervention.
Continuation of the object program begins with the execution of the nExt
statement in sequence.

The literal may be numeric or nonnumeric, or it may be any figurative
constant except ALL.

EXIT Statement

The EXIT statement provides a common end point for a series of
procedures.

r--,
I Format I
r--~
I I
I paragraph-name. EXI'I tP~j. I
I I L __ J

It is sometimes necessary to transfer control to the end point of a
series of procedures. This is normally done by transferring control to
the next paragraph or section, but in some cases this does not have the
required effect. For instance, the point to which control is to be
transferred may be at the end of a range of procedures governed by a

196 PaLt IV -- Procedure Division

EXIT Statement

PERFORM or at the end of a declarative section. The BXIT statement is
provided to enable a procedure-name to be associated with such a point.

If control reaches an EXIT paragraph and no associated PERFORM or USE
statement is active, control passes through the EXIT point to the first
sentence of the next paragraph.

The EXIT statement must be preceded by a paragraph-name and be the
only statement in the paragraph.

Procedure Branching statements 197

MOVE Statement

DATA-MANI~ULATION STATEMENTS

Movement and inspection of data are implicit in the functioning of
several of the COBOL statements. These statements are: MOVE, EXAMINE,
Mt~~~

MOVE Statement

The MOVE statement is used to trans-fer data from one area of storage
to one or more other areas:

r--,
I Format 1 I
~--~
I I
II lidentifier-11 I,

MOVE ~Q identifier-2 [identifier-31 ••.
I literal I
I I l __ J

r--,
I Format 2 I
~--~
I I
I, lCORRESPONDING! II

MOVE identifier-1 Ta identifier-2
I CORR I
I I l __ J

FORMAT 1: identifier-1 and literal represent the sending area;
identifier-2, identifier-3, .•• represent the receiving areas.

The data designated by literal or identifier-1 is moved first to
identifier-2, then to identifier-l Cif specified), etc.

An index data item cannot appear as an operand of a MOVE statement.

FORMAT 2: the CORRESPONDING option is used to transfer data between
items of the same name simply by specifying the group items to which
they belong.

Neither identifier may be a level-66, level-77, or level-aa data
item.

Data items from each group are considered CORRESPONDING when they
have the same name and qualification, up to but not including
identifier-1 and identifier-2.

At least one of the data items of a pair of matching items must be an
elementary data item.

Each subordinate item containing an OCCURS, REDEFINES, USAGE IS
INDEX, or RENAMES clause is ignored. However, either identifier may
have a REDEFINES or OCCURS clause in its description or may be
subordinate to a data item described with these clauses.

i98 Part IV -- Procedure Division

MOVE statement

General Rules Applying to Any MOVE Statement:

1. Any move in which the sending and receiving items are both elemen
tary items is an elementary move. Each elementary item belongs to
one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, or alphanumeric edited (see "PICTURE
Clause" in "Data Division"). Numeric literals belong to the
category numeric; nonnumeric literals belong to the category
alphanumeric.

2. When an alphanumeric edited, alphanumeric, or alphabetic item is a
receiving item:

a. Justification and any necessary filling of unused character
positions takes place as defined under the JUSTIFIED clause.
Unused character positions are filled with spaces.

b. If the size of the sending item is greater than the size of the
receiving item, the excess characters are truncated after the
receiving item is filled.

c. If the sending item has an operational s~gn, the absolute value
is used.

3. When a numeric or numeric edited item is a receiving item:

a. Alignment by decimal point and any necessary zero filling of
unused character positions takes place, except when zeros are
replaced becau&e of editing requirements.

b. The absolute value of the sending item is used if the receiving
item has no operational sign.

c. If the sending item has more digits to the left or right of the
decimal point than the receiving item can contain, excess
digits are truncated.

d. The results at object time may be unpredictable if the sending
item contains any nonnumeric characters.

4. Any necessary conversion of data from one form of internal
representation to another takes place during the move, along with
any specified editing in the receiving item.

5. Any move that is not an elementary move is treated exactly as
though it were an alphanumeric elementary move, except that there
is no conversion of data from one form of internal representation
to another. In such a move, the receiving area is filled without
consideration for the individual elementary or group items
contained within either the sending or the receiving area.

6. When the sending and receiving operands of a MOVE statement share a
part of their storage (that is, when the operands overlap), the
result of the execution of such a statement is unpredictable.

There are certain restrictions on elementary moves. These are shown
in Figure 33.

Data-Manipulation Statements 199

MOVE Statement

---------------------------------T--T--T--T--T--T--T---T,-~T=~,T"".~=T""",= .. T.',...,..."."
I Recei ving Field I I I I I I I I I I I I I
I Source Field I GR I AL I AN I ED I BI I NE I ANE I ID I EFI IF, Sl~iSR I
~--------------------------------- --+--+--+--+--+--+---+--+--+--+~-+-~i
IGroup (GR) IY IY IY ly11Y11Y11Y1 ly1IY1IY~IY~ly11

~---------------------------------+--+--+--+--+--+--+---+--+~-+--+--+-~~
IAlphabetic (AL) IY IY IY IN IN IN IY IN IN IN ININI
~---------------------------------+--+--+--+--+-.-+--+---+~+~-+~-+""-+--i
I A.lphanumeric (AN) I Y I Y I Y I y't I y't I y't I Y I ytt I ytt I ytt I y't I y'tJ
~---------------------------------+--+--+--+--+--+--+---+"'~+~-+--=+~-+-,4
IExternal Decimal (ED) IY1 1N ly2 1Y IY IY IY2 IY IY jYjY IY J
~---------------------------------+--+--+--+--+--+--+---+--+~-+--+--+---~
IBinary (BI) ly1 1N ly2 1Y IY IY IY2 IY,fYiY fY"lY 1
~---------------------------------+--+--+--+--+--+--+---+-"-+---+-...;+--+--~
INumeric Edited eNE) IY IN IY IN IN IN IY IN IN IN ININ<I
~---------------------------------+--+--+--+--+--+--+---+-:-~+~~+-~+~~+,-... "
lA.lphanumeric Edited (ANE) IY IY IY IN IN IN IY IN IN,IN IN IN;,~

~---------------------------------+--+--+--+--+--+--+---+--f--+-~+--+--~
IZEROS (numeric or I I I I I I I I I I I I I
I alphanumeric) I Y IN I Y I y 3 1 y 3 1 Y3 1 Y IY~ IY3 1 y3'1 Y3 1y3c1
~---------------------------------+--+--+--+--+--+--+---+--f-~+--f~-+--~
ISPACES (AL) IY IY IY IN IN IN IY IN 'ININ,fN j'N'1
~---------------------------------+--+--+--+--+--+--+---+-~+--+-"':+-~+-"";i
I HIGH-VALUE, LOW-VALUE, QUOTES I YIN I YIN I N I N I YIN .j NIN ,I N INI
~---------------------------------+--+--+--+--+--+--+---+--+--H--:"+-:--t---:-J
I ALL literal I Y I Y I Y I YSI YSI YSI Y I YSfIN IN qN IJ.~I

~---------------------------------+--+--+--+--+--+--+---+-..,+-,+-..;+-~f~-~
INumeric Literal ly1 1N ly2 1Y IY IY IY2 IY 'IY :IY 'tlYi j'YI
~---------------------------------+--+--+--+--+--+--+---+-'+'--1+~-:-+""~T-~-J
I Nonnumeric Literal I Y I Y I Y I YSI YSI YSI Y LY~IiN i 1:~1I;~:\ P~,I
~-------",,,,,,-----~,,,,-,..,-----~--------~+--+ ~+--+--+---t-,-+.--,-+--Hj--jf-+~*+1't-4-i
I Interna;l;" De,ci;m~,l :, <,ID>, ,', I,:', ,:,:,';, ;,. , ,1:Y:1, f:,'~ 1 t,Y2,',' 11,I,~, '1;,,'Yi ,t, ,\~"; 1,IIY2\J1IiY: Ul,Y;, JI,:Yi, t,",H,~', HIY-,' ,;1 ~---------;-""-""'--!---""'---------~-+--f...J-If,--if-<-t+-l.jtl-'!-+H--f i'--l-r:...,...;-ti-l-HH-l11--~
1E;xt:e,rnaLU :~loa;tij~~-\P,o~n1Iq~); t 1 !IJ:;~l{ll~ ill~, !Ii~ 111~ !t1~:I'IN I t/ijlli; IJI ,JII~':lfl~ ~I
~--~..:_.J~..J.J_~'~---...J-;~~...,.' ... -~"'; h--!..:,"';-:-l-:-Il, iI, · 1; I,:.' ! "I " ',c :' ;'.;iti--rrlti-Hi
1~~terqa11 'F'l!o.a~i~ncj...Jpof,ntJ lq:rlE1)l t ~ 1,1 :llYl4'l~ !J!tfH~ 111~ \1 IllN'~ .l:i,hl f;ijt~iH'~fl
~-;---,....,.-,----+--~~-.~-tl-.,.j-:"+"'~-i""-...,-\"'+-:~-ij; . !I : 'II ~ , 'I, '\1, ' !, ;-IHfl-W,~
I ~~erli!ng Nqnrepq:qt; (:~)': ' " , \ : " : ,i I:Yl1illN jl:()'~JY; ;jtY) :tlYl !I~ !'Ji~'i ~Y!'ll! t~'!;,liYf.,H
~l--;~j ~: ia '; tL)!!,Lld 1;,Jl:11 ~-Ih-L!l~~tll ::\';,1"1 :"IJ;~;" ' : ,~;: ,::;,,~:~;:t:,:~
I ~~1;iAg; ~, ',,.t;~ ~', " '\;;'1, ,';:;l, .":1,, i' i.il~, 4~!f~i~;I;~;'I'1 ldl Hi!ID1'i',l~< jJ: ,;~1;N~11~,':1
~~-~h~,:!--l;f:, :.;~~~:;.J:; • ,* !:::t;',:;h~:~'~J:j~'~,;;::L:t7j T~I"'~J;r">l': it!;~1-~h:{~:,,_r'j' \' '~~t:~rt:r-J
I ~~~~~7,l\9;}?~s,~f"i~~~i~::,*N"!l"~1\t$,t,<'c';iJ"~~,1;~\\,t'''';~'~;fi'~rJ~~ "lt~:~;~L~I~~:~'~IJI~~:!J~:., I
~---------------------------------.1--.1.-~'"1--.1.--i--:1._-.1.---:.1.--;l.-~:J.--.1.- ;L''''''-i
11Move without conversion (like AN to AN) I
120nly if the decimal point is at the right of the least significant I
I digit I
13 Numeric move I
I'tThe alphanumeric field is treated as an ED (integer) field I
ISThe literal must consist only of numeric characters and is treated asl
I an ED integer field I L __ J

Figure 33. Permissible Moves

200 Part IV -- Procedure Division

EXAMINE Statement

EXAMINE Statement

The EXAMINE statement is used to count the number of times a
specified character appears in a data item and/or to replace a character
with another character.

r--,
I Format 1 I
t--~
I I
I
I
I
I
I
I

EXAMINE identifier TA~LYING l
~iIL FIRSTl

LEADING f

[REPLACING BY literal-2J

literal-l
i
I
I
i
I
I l __ J

r--,
I Format 2 I
t--~
I I

: f~~ING ! I I EXAMINE identifier REPLACING FIRST literal-l I
UNTI~ FIRST I

I
BY literal-2 I

I I l __ J

In all cases, the description of identifier must be such that its
usage is display (explicitly or implicitly).

When identifier represents a numeric data item, this data item must
consist of numeric characters, and may possess an operational sign.
Examination starts at the leftmost character and proceeds to the right.
Each character is examined in turn.

If the letter ·S· is used in the PICTURE of the data item description
to indicate the presence of an operational sign, the sign is ignored by
the EXAMINE statement.

Each literal must consist of a single character belonging to a class
consistent with that of the identifier; in addition, each literal may be
any figurative constant except ALL. If identifier is numeric, each
literal must be an unsigned integer or the figurative constant ZERO
(ZEROES, ZEROS).

When Format 1 is used, an integral count is created which replaces
the value of a special register called TALLY, whose implicit description
is that of an unsigned integer of five digits (see "Language
Considerations n).

Data-Manipulation Statements 201

EXAMINE Statement

1. When the ALL option is used, this count represents the number of
occurrences of literal-l.

2. When the LEADING option is used, this count represents the number
of occurrences of literal-l prior to encountering a character other
than literal-l.

3. When the UNTIL FIRST option is used, this count represents all
characters encountered before the first occurrence of literal-l.

Whether Format 2 is used, or the REPLACING option of Format 1, the
replacement rules are the same. They are as follows:

1. When the ALL option is used, literal-2 is substituted for each
occurrence of literal-l.

2. When the LEADING option is used, the substitution of literal-2 for
each occurrence of literal-l terminates as soon as a character
other than literal-1 or the right-hand boundary of the data item is
encountered.

3. When the UNTIL FIRST option is used, the substitution of literal-2
terminates as soon as literal-lor the right-hand boundary of the
data item is encountered.

4. When the FIRST option is used, the fir~t occurrence of literal-l is
replaced by literal-2.

Specific EXAMINE statements showing the effect of each statement on
the associated data item and the TALLY are shown in Figure 34.

r---T--------T-~-----T-------,

1 1 1 I Result-I
1 I 1 ling 1
I 1 I I Value I
1 IITEM-l I Data lof I
1 EXAMINE Statement I (Before) I (After) I rALLY I
~---+--------+-------+-------~
lEXAMINE ITEM-l TALLYING ALL 0 1101010 1101010 I 3 1
r---+--------+-------+-------1
IEXAMINE ITEM-l TALLYING ALL 1 REPLACING BY 0 1101010 1000000 1 3 I
~---+--------+-------+-------~
/EXAMINE ITEM-1 REPLACING LEADING U*R BY SPACE/**7000 I 7000 I + I
r---+--------+---~---+-------1
IEXAMINE ITEM-l REPLACING FIRST n*R by n$n 1**1.94 1$*1.94 I + 1
k., ,--.1.-----___ .1. _______ .1. _______ ~

1+\ unchanged I L __ J

Figure 34. Examples of Data Examination

202 Part IV -- Procedure Division

. ..' .~ . " ;~:', . . \! .. ;;

. ' '....... ':"~ :(>::~,'~,ii!;~;t¥~[~tl~i'~;;!0~1~~f.,l,/ ~:,;,.
, ,The :TRANSFORM stateIrie"n't''''';is·.''i'fiSecr ·;t·o.·a,l~r:~aq;l~~~:f~nfJH J:h:;;"a" .;;.' ,

......... '.: .. ' . . '. ~figq:ra~~V~-(£Qnsta:nt-1j' il :.; .. '.:.·~
:1: lnon~uI1le:r1i'C-literal-l.{ T'
~:t·· !:ideQt:.i:ei~r~·l. ," d·;
',:1.:: '! ··t'
:J':. .·~r
•...•. {. '. : •. TO. , . · 1.·.':.·,
'~ • i <'~,,:. <; , tz'

····tdij\-~~~L\-+~~~~~c~:~--_·.·.'-_L~'-i_j;/~;2~i:;;.i'-j~L' • .-d"',"-c,: .. U_ .. .JDi.-U_JI;
• ':'. •• " • ' ' < .~. ;;. ~. • < "" '

oft.:,..t.,<'

....... a~eIltifier~3 .. ,.·';rrl~·~t.re~r~~e~··t:····~rr.:eiemerita~i::·~lP~·~tJ~ti.d,::,··a·£f>ll.~Ildm~J!·l.c;.·>.·:;!"
:.oi;n:umerie,.edi,ted: item'.or·,a:group':.i:t:,enL. ' , ," .' ': " .. :.'.' .'., ":'" ;:";.l;\
: :::.: .. '.:.' : ":\.'.' "': :::' ',:~:.:;'.:.:.'. .;: :. ',' :'.':'.:.<.,' . \ ., ' :';:.. .. ',:":' \::: ... , .. , "': ; . . ":, ~.. .. '. . ~ .' :'.:,:~ .. ~": .' .. ,.; . '. >. ~ : ': ,.: .. ".' ::".'\;::

" ".:'T}re· • .'.q·ompinat,ioI1; .. o.f.·, t:h~ . ;FROM:~na ... TP,.·pptioris>d~tern:i:in;¢s:, what· :th~ '.' ' .. ~', ~",':f
:t~1;'allsfc)rmat·;i()n,rule·is~ ,

'The, fol.+owing r,ules pe,rtain .to l;..J:.l~.t?l?e+·a.n'd.s.· ··o.f',the' "FRO~~:and:':};r()
'options: '., . . ", ',' ..

• ,v , y

:\:.:::j:.\:·,>.· ~·· ... '~.ha:·ra6·~~~.···ina:.~··;.·~bt···:.·:b~··.···t:.ep·e~t~(i.:.~···i'ri .. · •. n~fintimer:~·c~···i~·tei~i~.·i:.····o·~ .. :···ih.,····~.tie'::.·,:,,::·
;,>.:.:::.;· .. ;.:a;-:ea:;def.;int:d:.:J:~y,.iden1::ifit:~.~~t;, '~t,.a ,character is .repeated" the . ;
:.:·~\':,',:.,·::.:r,:es,\lH:s:::·V1fJ:J;j~:l?·~:Ullpred];ct~~le •. "'.' . ."'::, ',j. :.... . . <',': .. '

·'·:: .. ·.4:':.: ... ·:·Th~.'·~'~·l~~~~le '~~~urati~~, Gonst~~t~.'aie; .. ~mRo"" ZER~ES;' Z~~dS,':';' ,:, .~,:~
, ",SPAC,£,,';SPAGJ;:S', ·?U?TE". QOO.TE·S, Hi~B-v~LUE,:' HTGfI-VALtJES,::'LOW:"VALUE, ;' ,>'

, , a·nd"LOW"':VALUES... . "'., ". ': .z':
, . . . <".~; ~ . . ~. . ., . . ,. ~; h' :

.; i:~':'.
. ..wh¢n·eith~r'identifie.r";lor identifier:: 2 . appears as an opetahdof th~.\ .
. $Pt:cif ic i:ransformation, tneu$er· can change the.transformationrule. at";.:
·'.object time'. . ' .

Examples of data transformation are given in:F'ig\lre, 35;.
·of :theFR:OM.andTOoptions.ar~.shown i.n' F:ig\lre.·36.

If .' any of the operands of a' TRANSFORM :stat.ement s'haie aiJart. oftheir'~
. stora'ge' (that· is, if the operaridsoverlap)., the result· of" the. execution
of such a statement is unpredictable.

r-------------------T---------------T.------------.---T-------------:----:-.---,
I Identifier-3 I I I Identifier-3 I~
I (Before) I FROM I TO I (After) I
~------.-::....-----..;.-----+------.---------+--..;..------------+-----...;.-~..;.----.,..----~
I lb7bbABC I SPACE l QUOTE I 1 n 7" "ABC I
I lb7bbABC I "17CB" I "QRST" I QbRbbATS 1
I lb7bbABC I b17ABC I CBA71b I BCACC71b I
I 1234WXY89 I 98YXW4321 I ABCDEFGHI I IHGFEDCBA L L _____ ._: ______ ...;. ______ .1._,.., _____________ .L _______________ .L __________________ J."

Figure 35. Examples of Data Transformation

Data-Manipulation Statements 203

TRANSFORM Statement

r----~------~---------Tr------------~---~---------~~-------------------,
I Operands I' 'Transformation Rule I
~:----~----""'-------~--'-~--~----:------""-~""'--.--------~-------,.... .. ----:--------~
IF'ROM '. ..' ; ir1 All characters in the data item represented byt
Ifigurative--constant-t1i identifier-3 equal to the single character' I
ITt) '. . ,l:j figurative-constant-l are replaced by the I
I figurative-constant-2J

tt
' single character fjullrative-constant-2. f

J . ,t~ f
, I 1* I
itFROM;. ' , , IlAII characters in lhedata item represent'ed bYI
!Jfigurative-constant""lJ~. identifier-3 equal to the single character t
>]TO .' .' . ':I~ figurative~constant-l 'are replaced by the r·.
;lnonnumer.ilc-literal~2'.",~! single character nonnumeric....;literal-2. .,
~t . '. ri I
il Iqf
~,tFROM . '" ; ; 1;1, All characters inthe~ata. item repre~ented by: I
!'lfig.uiat,ive-cohstailt-ll:: identifier-3 equal to thesingTe character ··r.
~ITO' .' ' 'j;r figurative;":constant-lare replaced by tbe;t
~ fidentifier-2 ' I,~ single character represented by , ,
~" . . f ~~, i3entifier- 2 . t,
Ht l~ ,:,
HFr I
U~FROM ': ". i ! I t ~ll characters in the data item .repI:"esented byf
i ~no~Elumeric_literal"":l: I ~, ' identifier-3 that are equal to any charactej;l
i ITO '.. ...'.! 1 \t innonnumeric-li teral-l are replaced by the' I
Ilfi(}urativ~-¢onstant-2~: single character figurative-constant-2. t
I : " . j'~;':;; I ~rH:
J:'FRO~,: .. r;,L ".' , :.1. : .. :ll~' Nonnumeric-literal-l and nonnumeric-litet;'~1,;2<~,
tfi~m~~~er~~~:t.t~r~t~:l·: . ~ . must be ~qua~ in length or I
I t~~~~r ,l,:~ ii!t~ " '~ i I ~ ~~~~~~~~~~-11 teral -

2
must be a single ,if

t1; ~'~ 'J i'~~, r t" f~11 tU rl '11; the nonnumeric-literals are equal in ;Hr
Ill'\! , tl'l! ;" i'! ~ It ~ .. '\ ~length, any character in the data item '.l
~I:.~ ~ f ' J - I { ~ ~ : i ,I ~represented by identifier-3 equal to a 'f
i.:.'.",:.'.". '. I,i ... ,.t t; E I ~'i' i I U ~character in nonnumeric-literal-l is : t
i.' '-" ~.','.~" I:, ... \"i.'. ' !: h q ; I; ~ freplaced b¥ the c~a7"acter in the d, iii1j: ~' ii f." ! . ~ I~ J,' j ~f "correspond~ng pos~ t~on of "l I l,l'l} ~ i:!!:!'~! ,nQ:n~~eriC-literal-2. , '1

1.

··.'.'H.',•. i,.,~ •.........•....••... '.,.I.,!. :~~ . L ii' ~! ill i ~f:i yqe ~~ength of nonnumeric-lit,eral-2 ~s ,on~" ·i ft~'~,::· t 'ii< ~ ~ 11 n ;I~ I 11fa41i.r~l1a:r~c~ers in the data item repr:es,e~ ff
t.!·": ... ~ , f" 'l' ~ , !Ij 1\ ; bl1 !lJ~nt~f~'er-3 that are equal to any, ,1

H~l :). ~'; I'! l' ~! h~ ~: 1 ,~rJaid,ter appearing in non~Wneric-literal-l tT
rP .. · ... i.': '.~ .,.·:·, '·t .. i ~. ,'.' ,:,': i 111 ~' : ~~zJ.~ ~rl~placed by the single characte~ give,!)' t ",>l';";;i J ~.'t}'! t I ~ f ~U n' 1 ~~ ~umeric-literal-2. I ':f;
1i1:t.:f';.~.;~: ~.'.~.·<~iU."'bil;WH .. :,/. ~d •. ';.·.·~.:~~T~-~~~i;~;-(~;;~.,f oi-Ij,:' '~';1~7"p~r
~,<~:;'!~~;;\,;""'f\' ,.' ;' ", i"',·.

204 Part IV -- Procedure Division

i~""~ __ --:~~;"':-"""~+~-'-'-,;"'~;"'-r-;"::~-;'---':'-~""""-~--"-;"'--;"'--;"'--~~--'-;':'-';:--__ --:.;..i'.-..i:;.....i..,..,..i-..i~
I,' ';~,;";o~'rands '" I' ,Transf,ormation Rule' , ", I
'~-f--:--: __ -';";'~"';';':"':"'---;"'''''''';-+--'''''''';'~'----__ ---__ ..,.----__ -.;,...,.--..,.-..,. ,,-,-:---~-"';-__ ~..J~ __ -".;..-:-,-,:':":'-t

lFR~ "" " """ """ 'r 'Nonnume'ric-literal-land,"the dataj,tem , ' , ' ,'.:1
't nonn\l1t\eriC'~literal~l ,t r'epresented by identif ier':' 2 must'beeqtia,l:inl
ITO' ',: '" T length or identifier __ 2 must repr~sent a:t
Jide:t1ti'f:i~r""2" I single characte:r it,em. 'I
t ,I ' , 't
I, L If',~Orinumeric __ literal':'l 'andidentifier-2ar€ 'I
f' I"', e,qual""in, length", ,aJlY',characte:r: 'represented 'I
l l');>t'ident'ifier7'"3"eqv.alt? a:cll<lracter' i~t
J' ' '1, nonnu~eric-lite:r:Gi171is 're,placed'byth~;' 1
I t, ,cha~a~eI,' in,the~'corresp()nding ;,position,'of ,{
t'", l' th'e ite~,':repres'ented,by:'ide~tifiei::"-2'. 'i

, , , ; . .:, ..,."... "... . ~ , ' < ".. , < •• '

Ii', ,', ,,' ,,' , """,,' " , "',', '" ,',' " " ",~"l
.'" ' 1 ",Tf ',t9~'leIl9th.<>fth,e:,dClt:a,,,i,te~:repre~entecl, by,t
'I, ~ , 1',>,,'" ifl,ent:~fi~:r:'~ 2, :"i.s':,'OI)~'r'"all'cha:~acters',,~\ ",",,','<,\' ,';J,
't , , , ,1,'>',:,rep;c~sen,t~d"pY",'id€int~fier~3"tll~t,:"'4re .• ~qual,'>l
1':'" , . ,',,',f"",'," ",'t?:"a~¥:'c~~racte'r',app~ar~n9 .,in,,', "",~,' /',,,, " :', ':>:>,',}
r':," ' '>",:, ': l,c>",' " . no,nriumer,i~7).~ite:fa;l. -\1" (i]::'e."r,e,pla(:ed '. :hy,"~he" ", >~J
t'~",,-,':'l'::'·,, :\:,::$'l:flgle,C):lCir,acter,~epr'~sent.ed ,by" "', "3l
1 ','>' " , ,,:"r,:':,':",','.iqelltif"ie'r':""'2',.,' " 'J
" """ : ';, >',','<',l,"'::",:>:', , .. " . ",' '.'" ' " ," ' ," ,'J'
lFR~"", ,',,':'"' "'",',\""r",<:1\fl,chara'<?-ter,s reEr~s,ente,d 'byiilenti~i:er-3",,':r,,1
I £dentif ier-1,: """ .:',,<':::,1':";< :'t:llClt.,ar'~:~'\iill:'t:o"'aiiy",:chci'I,'Clct~~"in'th¢',:d:at~':~l
iTO,,:,,'.,'...... .':'~\,:'/,':',"",',",,>,I":",' iterR,ie,pr'e~~n~~,d'bY,i,de.ntJ,'fi~r-:l'>a,r¢,re-",'·',""',',}
J~':i9'~riltbTe-:-C!()1l9t:aIlt,~21,,'" j" pl:ac,~~,by ·the,~,ingle . character' ' " .. ':~{
t>',<\i,'<',', ",' ,;.\' ',',1-:'>" ~igura:tive~:c()ris,fclrit~2. ' " ',ji:J

',1 ' ",1' ' "'1
I~;' .. ', "'<L",j"""""",. .' '.' 'l',.',· .. ,', , ,",':""""'"',',,,':':,,,,'::,:,;'>\~:i,
l~flQM" , ",:1,;,,' Th,e ,c1at~ item: r~p,resen:ted"'b¥' iden,ti'~ie,r~l,'a;hd,';:~,
Fi'de.ntif,i~r~l ',"1 " "n6nIlumeri<="::~iter,al:-,2 mu!:it:',:be,"Qf,,~qu~l,," ::l
lTO, .. ' .. ' ... ,'. .<,,1:,', leIlgtll or nonnUmeric-'lit:eral~4,'lnustbe :ot:le' ;'t
:1:n9Iln:U111~ri,c-literal,:""2, 1,;" character. " :':1

J " ,,' '.~"'k.. " .." ... , ' .. " ;.... ,.a t 'I .If, ,identi£,ier,--1 ' andnbnn'umeri,c-litera-l ~2 'are ,,;',1,
L', '.1' ',," ",equal,in . ~~ngtll,; ",any, ,epqt:"q.qter, in', . ' ',' <! J
[,',','" .,.',t,:\,"." .. ',:iClentif~e'r~:l:,'eq\ia:l."t().'a',c,h~racter,. in, ""., " ":"";':1:
t""",,,, ,,'> '-"'.' , ,'.~;'f',· '~iClen~tf:i.,e'i:-:~.i,s, ,,':r.:ePla~,~ti:,'ll:y",tge,'cQar<lct:;er i'ot

F"". " ..•..... ":, .. ,. .' .. c.' ··'·':\':H;,>';~~~R~;~i~il~~i;+~"o~;.>c',:.2ila
'l,,':,:''-'''' ',.··.l,:,;If:, .. ~h¢,'lengt:l1··.()~ .noriJlUII\eri~ __ .l,i teiaT~3;.'~s'Qne,,,··<J
t,', ' ,J,:. 'all" cbaraqters,repr~~et:lt,edbY~~~Ptifier-3,'.';1
'I .r~', ,that· ,ate,eqhal',1:o'anY;'c:hara9ter,repr~s,ented t
t '1>' 'byidentifier":l' arer:eplaced,bY ,the single t
1 , 'I character given in nonnume,ric,-literal __ 2., I
J, 'F' f
l'FROM' t iAnycharact~t in ,the, da:ta':\.te~:C~pre~e,nted' by't
lidentifier.',.;l, I ,ideIltifieJ:-Jequal ,to a, ,cha,racteriI)the I'
VI~O ' 1.', "da.tGiitemrepreseIlted, by, idelltifi,~r-l is I
lidentifier:-2 j replaced by" the, ,cl)aracter ~n ,the' "1
I , corresponding position of the datai tem ' f
I , represented by identifier-2~' 'Identifier-l I
! , and identifier-2can be one or more J
t I characters. but must be equal in length. i L _______________ -" _____ .L __ "-_______ ---------____________ ;.,.;.,.~ _______ ______ 'J

Figure 36. Combinations of FROM ,and TO Op~ions (Part 2 of ~)

Data-Manipulation Statements 205

OPEN Statement

INPUT/OUTPUT STATEMENTS

The flow of data through the computer is governed by the Disk
Operating System. The COBOL statements discussed in this section are
used to initiate the flow of data to and from files stored on external
media and to govern low-volume information that is to be obtained from
or sent to input/output devices such as a card reader or console
typewriter.

The Disk Operating System is a record processing system. That is,
the unit of data made available by a READ or passed along by a WRIrE is
the record. The COBOL user need be concerned only with the use of
individual records; provision is automatically made for such operations
as the movement of data into buffers and/or internal storage, validity
checking, error correction (where feasible), unblocking and blocking,
and volume switching procedures. .

Discussions in this section use the terms volume aqd reel. The term
vol~ applies to all input/output devic~s. The term reel applies only
to tape devices. Treatment of mass storage devices in the sequential
access mode is logically equivalent to the treatment of tape files.

Note: The WRITE statement with the BEFORE/AFTER ADVANCING option is
referred to in some of the discussions that follow as the WRI~E
BEFORE/AFTER ADVANCING statement.

OPEN Statement

The OPEN statement initiates the processing of input, output, and
input-output files. It performs checking and/or writing of labels and
other input/output operations.

r--,
I Format I
~--~
I I
II [REVERSED~ II OPEN [INPUT {file-name } •••]
I WITH NO REWIND I
I I
I ~OUTPUT {file-name [WITH NO REWINQ] } ••.] I
I I
I [1-0 {file-name} ••• 1 I
I I L __ J

At least one of the options INPUT, OUTPUT, or 1-0 must be specified.
However, there must be no more than one instance of each option in the
same statement, although more than one file-name may be used with each
option. These options may appear in any order.

206 Part IV -- Procedure Division

1

OPEN Statement

The 1-0 option pertains only to mass storage files.

The file-name must be defined by a file description entry in the Data
Division. The FD entry for the file must be equivalent to that
specified when the file was created.

The OPEN statement must not specify a sort-file; an OPEN statement
must be specified for all other files. The QPEN statement for a file
must be executed prior to the first READ, SEEK, :;~~r{~ or WRITE
statement for that file. A second OPEN statement for a file cannot be
executed prior to the execution of a CLOSE statement for that file. The
OPEN statement does not obtain or release the first data record. A READ
or WRITE statement must be executed to obtain or release, respectively,
the first data record.

When checking or writing the first label, the OPEN statement causes
the user's beginning label subroutine to be executed if one is specified
by a USE sentence in the Declaratives.

The REVERSED and the NO REWIND options can be used only with
sequential single reel files. The REVERSED option may be specified only
for a file containing fixed-length (F mode) records.

Files with nonstandard header labels must not be opened for reversed
reading unless the last header label is followed by a tape mark.

For tape files, the following rules apply:

1. When neither the REVERSED nor the NO REWIND option is specified,
execution of the OPEN statement causes the file to be positioned at
its beginning.

2. When either the REVERSED or the NO REWIND option is specified,
execution of the OPEN statement does not cause the file to be
repositioned. When the REVERSED option is specified, the file must
have been previously positioned at its end. When the NO REWIND
option is specified, the file must have been previously positioned
at its beginning.

When the REVERSED option is specified, subsequent READ statements for
the file make the data records of the file available in reversed order;
that is, starting with the last record.

If an input file is designated with the OPTIONAL clause in the File
Control paragraph of the Environment Division (sequential file
processing), the clause is treated as comments. The desired effect is
achieved by specifying the IGN parameter in the ASSGN control statement
for the file. If the file is not present, the first READ statement for
this file causes control to be passed to the imperative statement in the
AT END phrase.

The 1-0 option permits the opening of a mass storage file for both
input and output operations. Since this option implies the existence of

Input/Output Statements 207

tne file, it cannot be used if the wass storage file is being initially
created.

When the 1-0 option is used, tIle execution of the OPEN statement
includes the followin~ steps:

1. The label is checked.

2. The user's label subroutine, if one is specified by a USE sentence,
is executed.

3. The label is written.

A file may be opened as I~PUT and OUTPUT and 1-0 in any order (with
intervening CLOSE statements wi th01]t +:he U~H':!:' or REEL Cftion). However"
an-indexed-file may not be opened QUTPUTaridINPU'I orI~C wit.hIn the
same program.

-- .
START Statemen.t

The STPRT statement initiates processing of a segment of a sequen
tially accessed indexed file at a specified key.

r--,
I Format 1 I
t--~
I I
I START file-name INVALID KEY imperative-statement I
I I L __ ~ _______________ J

r--,
I Format 2 (Version 3) I
t--~
I !'
I {EQUAL TO l I
: STAl<T file-name KEY IS = (identifier ~

I .. I I INVALID KEY ~mperat1ve-statement I L __ J

Normally, an indexed file in the sequential mode is processed
sequentially from the first record to the last or until the file is
closed. If processing is to begin at other than the first record, a
S'IART statement must be executed after the OPEN but before the first
READ statement. processing will ,then continue sequentially until a
START statement or a CLOSE statement is executed or until the
end-of-file is reached.

If processing is to begin at the tirst record, a START statement is
not required before the first READ.

File-name: The file-name mus't be defined bya file description entry in
the Data. Division.

Format 1: When Forroat 1 is used, the contents of the NOMINAL KEY are
used as the key value of the record at which processing is to begin. In
this instancet this ~ey value must be placed in the data-name specified
~y the' NGrUNAL KEY clause for this file before the S'I'AR'I statement is
t.~~ue(h

208 Part IV -- Procedure Division

'Ii

Input/Catput Stateffients 209

SEEK Statement

The SEEK statemEnt is meant to initiate the accessing of a mass
storage data record for subsequent reading or writing. It is used to
optimize programming efficiency.

r--,
I Format I
t--1
I I
I SEEK file-name RECORD I
I I L ___ . _____ - _________________ J

A SEEK statement pertains only to direct files in the random access
mode and may be executed prior to the execution of a ~EAO or WRITE
statement.

The file~ must De defined by a file description entry in the Data
Division.

The SEEK statement uses the contents of the data-name in the ACTUAL
KEY clause for the location of the record to be accessed. At the time
of execution, the determination is made as to the validity of the
contents of the ACTUAL KEY data item for the particular mass storage
file. If the key is invalid, when the next READ or WRIT£ statement for
the associated file is executed, control will be given to the
imperative-statement in the INVALID KEY option.

Two SEEK statements for the same direct file may logically follow
each other. Any validity check associated with the first SEEK statement
is negated by the execution of the sEcond SEEK statement.

If the contents of the ACTUAL KEY are altered between the SEEK
statement and the subsequent READ or WRITE statement, any validity check
associated with the SEEK statement is negated, and the READ or WRITE
statement is processed as if no SEEK statement preceded it.

.,..,,, n __ .&.. Tt':"
"IV :&:Q.LI.-./..V Procedure Division

READ Statement

READ Statement

The functions of the READ statement are:

1. For sequential file processing, to make available the next logical
record from an input file and to give control to a specified
imperative-statement when end-of-file is detected.

2. For random file processing, to make available a specific record
from a mass storage file and to give control to a specified
imperative-statement if the contents of the associated ACTUAL KEY
]ii::::::::iiQgli)I:::::::®.IX::: data item are found to be invalid.

r--,
I F~~t I
~--~
I I
I READ file-name RECORD [INTO identifier] I
I I
II IAT END I II imperative-statement
I INVALID KEY I
I I L __ J

An OPEN statement must be executed for the file prior to the execu
tion of the first READ for that file.

When a READ statement is executed, the next logical record in the
named file becomes accessible in the input area defined by the
associated record description entry.

The record remains in the input area until the next input/output
statement for that file is executed. No reference can be made by any
statement in the Procedure Division to information that is not actually
present in the current record. Thus, it is not permissible to refer to
the nth occurrence of data that appears fewer than n times. If such a
reference is made, no assumption should be made about the results in the
object program.

When a file consists of more than one type of logical record, these
records automatically share the same storage area; this is equivalent to
an implicit redefinition of the area. Only the information that is
present in the current record is accessible.

FILE-NAME: The file-name must be defined by a file description entry in
the Data Division.

INTO IDENTIFIER OPTION: The INTO identifier option makes the READ
statement equivalent to a READ statement plus a MOVE statement.
Identifier must be the name of a Working-Storage or Linkage Section
entry, or an output record of a previously opened file. When this
option is used, the current record becomes available in the input area,
as well as in the area specified by identifier. Data will be moved into
identifier in accordance with the COBOL rules for the MOVE statement
without the CORRESPONDING option.

AT END OPTION: The AT END option must be specified for all files in the
sequential access mode. If, during the execution of a READ statement,
the logical end of the file is reached, control is passed to the
imperative-statement specified in the AT END phrase. After execution of
the imperative-statement associated with the AT END phrase, a READ
statement for that file must not be given without prior execution of a
CLOSE statement and an OPEN statement for that file.

Input/Output Statements 211

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

READ Statement

If an input file is designated with the OPTIONAL clause in the File
Control paragraph of the Environment Division (sequential file
processing), the clause is treated as comments. The desired effect is
achieved by specifying the IGN parameter in the ASSGN control statement
for the file. If the file is not present, the first READ statement for
this file causes the imperative-statement in the AT END phrase to be
executed.

If, during the processing of a multivolume file in the sequential
access mode, end-of-volume is recognized on a READ, the following
operations are carried out:

1. The standard ending volume label procedure and the user's ending
volume label procedure, if specified by the USE sentence. The
order of execution of these two procedures is specified by the USE
sentence.

2. A volume switch.

3. The standard beginning volume label procedure and the user's
beginning volume label procedure, if specified. The order of
execution is again specified by the USE sentence.

4. The first data record of the new volume is made available.

INVALID-KEY OPTION: If ACCESS IS RANDOM is specified for the file, the
contents of the ACTUAL or NOMINAL KEY for the file must be set to the
desired value before the execution of the READ statement.

Only the track specified in the ACTUAL KEY is searched for the record
being read.

For a randomly accessed file, the READ statement implicitly performs
the functions of the SEEK statement, unless a SEEK statement for the
file has been executed prior to the READ statement.

The INVALID KEY option must be specified for files in the random
access mode. The imperative-statement following INVALID KEY is executed
when the contents of the ACTUAL KEY or NOMINAL KEY field are invalid.

The key is considered invalid under the following conditions:

1. For a direct file that is accessed randomly, when the record is not
found within the search limits (using relative addressing), or when
the track address in the ACTUAL KEY field is outside the limits of
the file (using actual addressing).

WRITE Statement

The WRITE statement releases a logical record to an output file. It
can also be used for vertical positioning of a print file. For
sequentially accessed mass storage files, the WRITE statement passes
control to a specified imperative-statement if the file limit is
exceeded. For randomly accessed mass storage files, the WRITE statement
passes control to a specified imperative-statement if the contents of
the associated ACTUAL or NOMIN~L KEY data item are found to be invalid.

212 Part IV Procedure Division

WRITE statement

r--,
I Format 1 I
~--~

WRITE record-name [FRQ~ identifier-i]

i)BEFOREt

L/AFTER ,
ADVANCING l

~dentifier-2 LINES!]
lnteger LINES
mnemonic-name

L __ J

r--,
I Format 3 I
~--~
! I
I WRITE record-name [FROM identifier-i] I
I I
I INVALID KEY imperative-statement I
I I L __ J

An OPEN statement for a file must be executed prior to executing the
first WRITE statement for that file.

For files in both the sequential and random access modes, the logical
record released is no longer available after the WRITE statement is
executed.

RECORD-NAME: The record-name is the name of a logical record in the
File Section of the Data Division and must not be part of a sort-file.

FROM OPTION: When the FROM option is written, the WRITE statement is
equivalent to the statement MOVE identifier-i TO record-name followed by
the statement WRITE record-name. Data is moved into record-name in
accordance with the COBOL rules for the MOVE statement without the
CORRESPONDING option. Identifier-i should be defined in the
Working-Storage Section, :MOIIg,j.::::::::;j:::"::::Iiii_iilor in another FD.

Input/Output Statements 213

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

WRITE Statement

FORMAT 1 AND FORMAT 2: Formats 1 and 2 are used only with standard
sequential files not residing on a mass storage device.

The ADVANCING and POSITIONING options allow control of the vertical
positioning of each record on the printed page,. If the ADVANCING or
POSITIONING option is not used, automatic advancing is provided to cause
single spacing. If the ADVANCING or POSITIONING option is used" auto
matic advancing is overridden.

When the ADVANCING or POSITIONING option is written for a record in a
file" every WRITE statement for records in the same file must also
contain one of these options. The POSITIONING and ADVANCING options may
not both be specified for a file.

When the ADVANCING or POSITIONING option is used, the first character
in each logical record for the file must be reserved by the user for the
control character. The compiler will generate instructions to insert
the appropriate carriage control character as the first character in the
record. If the records are to be punched, the first character is used
for pocket selection. It is the user's responsibility to see that the
appropriate channels are punched on the carriage control tape.

Format 1: In the ADVANCING option, when identifier-2 is used, it must
be the name of a nonnegative numeric elementary item (less than 100)
described as an integer. If identifier-2 is specified, the printer page
is advanced the number of lines contained in the identifier.

When integer is used in the ADVANCING option. it must be nonnegative,
and less than 100. If integer is specified, the printer page is
advanced the number of lines equal to the value of integer.

When the mnemonic-name option is used in the ADVANCING option, it
must be defined as a function-name in the Special-Names paragraph of the
Environment Division. It is used for a skip to channels 1-9, 10-12, and
to suppress spacing. It is also used for pocket selection for a card
punch file.

The meaning of each function-name is shown in Figure 37.

r---------------T--,
, Function-name , Action Taken ,
~---------------+--~
ICSP I Suppress spacing I
r---------------+--~
IC01 through C091 Skip to channell through 9, respectively ,
~---------------+--~
IC10 through C12, Skip to channel 10, 11, and 12, respectively I
~---------------+--~
IS01, S02 'IBM 1442: pocket select 1 or 2 I
I 1 IBM 2540: pocket select P1 or P2 1
IS01 through 8051 IBM 2560: stacker select 1 through 5 I
1 (Version 3) 1 IBM 3525: stacker select 1 or 2 1 L _______________ ~ __ J

Figure 37. Action Taken for Function-Names -- ADVANCING Option

If the BEFORE ADVANCING option is usea, the record is written before
the printer page is advanced according to the preceding rules.

If the AFTER ADVANCING option is used, the record is written after
the printer page is advanced according to the preceding rules.

~14 Part IV -- Procedure Division

WRITE Statement

Input/Output statements 215

WRITE statement (Version 3)

p1:"i!lt~!l~:,;,~?~rE:!!0:r:-~ , it is possible that mixed DISPLAY statements,
'Y:XR+:f!J~'§tca:~'~~~~','< and simple WRITE statements or WRITE BEFORE
ADVANCING statements within the same program may cause overprinting.

program Product Information (Version 3)

System/370 Card Devices: The System/370 multifunction card devices
have special considerations for the WRITE statement.

::~~~;:::P';t:;~,g~~}~~1?~\jj5;;i;;g(t;i§~;;,_Q~~~~jF;\~~~B;'iiigij!1~~;j~~~i'::~~,j~1i
In addition, any attempt to write beyond the limits of the card
causes abnormal termination of the job.

For the 2560 print feature, the ADVANCING ;~i*#~t~,r.m'i.!i:options
are not allowed. Automatic single spacing is provided. There may
be only one WRITE statement issued for each card.

The 2560 print feature allows a maximum of 64 characters per line
and up to 6 lines per card, for a maximum of 384 characters.

To position printed output on the card, the user can include SPACE
characters in the output record. If, for example, he wishes to
position the printing on lines 2 and 4 using the 2560 device, he can
define the output record as follows:

01 OUTRECORD-2560.
05 FILLER PIC X(64) VALUE SPACES.
05 OUT-LINE-1 PIC X(64).
05 FILLER PIC X(64) VALUE SPACES.
05 OUT-LINE-2 PIC X(64).
05 FILLER PIC X(128) VALUE SPACES.

The 3525 print featUre allows either a 2-line print file or a
multiline print file, depending on the capabilities of the specific
model in use. Up to 64 characters may be printed on each line.

For a 2-line print file, the lines are printed on line 1 (top edge
()~ c:ard)C;lnd line 3 (between rows 11 and 12). The ADVANCING"
~R:~r.r;~()N~:options are not allowed; automatic spacing is provided.
Up to two WRITE statements may be issued for each card.

For a multiline print file up to 25 lines of characters may be
printed. Line control may be specified through the AFTER ADVANCING
~?;lig,,:)~~;aR;/'i~ll~,~~$,~;;options. (BEFORE ADVANCING may not be
specified.)

Identifier and integer"p,"::~,tlli~,,:~,r,!l,~<}£!::;~~l,';~'~~,::=~y have for other
WRITE AFTER ADVANCING ~';;~+f~ff_f:f{~~,;;',:",'~fstatements.
However, such sta.:tements must not __ sp~9ify space suppression, and
they must not advance the line position beyond the limits of the
card.

The mnemonic-name option of the wRITE AFTER ADVANCING statement ITay
also be specified. Only the following function-names may be
associated with the mnemonic-name:

216 Part IV -- Procedure Division

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

Function-name
C02
C03
C04

C12

Meaning
Line 3
Line 5
Line 7

Line 23

(Note that COl and CSP may not be used.)

(See also Appendix G: Combined Function Card Processing.)

MUT.TIVOT.UMR SEQUENTIAT. FILES: The discussion below applies to all
multivolume tape files and to multivolume mass storage files in the
sequential access mode.

After the recognition of an end-of-volume on a multivolume OUTPUT or
1-0 file in the sequential access mode, the WRITE statement performs the
following operations:

1. The standard ending volume label procedure and the user's ending
volume label procedure if specified by a USE sentence. The order
of execution of these two procedures is specified by the USE
sentence.

2. A volume switch.

3. The standard beginning volume label procedures and the user's
beginning volume label procedure if specified by the USE sentence.
The order is specified by the USE sentence.

FORMAT 3: Format 3 is used for randomly or sequentially accessed mass
storage files.

For standard sequential files opened as OUTPUT, the WRITE statement
can be specified only to create the file. For such files opened as I-a,
a READ statement must be executed before the WRITE statement is issued;
the WRITE statement updates the record retrieved by the previous READ
statement.

If ACCESS IS RANDOM is specified for the file, the contents of the
ACTUAL or NOMINAL KEY field for the file must be set to the desired
value before the execution of a WRITE statement. For a direct file, the
track specified in the ACTUAL KEY field is searched for space for the
record to be written.

The INVALID KEY phrase must be specified for a file that resides on a
mass storage device. Control is passed to the imperative-statement
following INVALID KEY when the following conditions exist:

1. For a mass storage file in the sequential access mode opened as
OUTPUT, when an attempt is made to write beyond the limit of the
file. In this case, the file cannot be closed, because there is
no space for an EOF record. Rerun the job with larger extents.

2. For a direct file opened as 1-0 or OUTPUT, if access is random and
a record is being added to the file, when the track address
specified in the ACTUAL KEY field is outside the limits of the
file.

3. For a direct file opened as 1-0, if access is random and a record
is being updated, control is passed to the imperative-statement
following INVALID KEY when the record is not found, or when the
track number in the ACTUAL KEY field is outside the limits of the
file.

Input/Output Statements 217

R~NDOMLY ~CCESSED DIRECT FILES: The WRITE statement performs the
function of a SEEK statement, unless a SEEK statement for this record
was executed prior to the WRITE statement.

For a randomly accessed direct file that is opened I-a, the following
considerations apply:

• If ~ or Q is specified in the ASSIGN clause system-name, then:

')10
""Q

(1) a WRITE statement updates a record if the preceding
input/output statement was a READ statement for a record with
the same ACTUAL KEY.

(2) a WRITE statement adds a new record to the file, whether or not
a duplicate record exists, if the preceding READ statement was
not for a record with the same ACTUAL KEY.

Part Division

ACCEPT Statement

"'If;"A.CCE'SSI~S'"R~NDOM,'<is',specified ,fortnef'i:1e, :t,heAC'I'UiAL:;or~~MIN1ili
, KEY must besetto,'the;desi,redvalue prior be) the execut1.:Oil; :d{,t¥'
,REWRITE' statement.

, ,.: . ~

The reoord...;name is the name of a ~ogic:a:1 record in ,the" '!'~:i..i;e
of the DataDi visioh"',and mus't not be part o(a s:ort file.:

: ;

;. ,

1"

When ,the" FROM,opt:ion"isus~~"th€ REWRI:I'Est:.at.ement is\~qUiv~~~n.t :to,::'
the. s,ta,tementl-10VE ,identifier ,'TO ,record-mime 'f:ol~owed;:bytt:ie ,statt;Js,ment ",
:REWRIT&reccjrd-name,/~Identifier,:sllould be def'inecrin",tne " '
~c)rkJng-:Stqr(ige'.sectio~i ,Li,nkage, ,Section"or,";rl,.atiotbe:r FD."

":" "'For',a.,'dir'ect,"f.ite,.,.t:ha~,"is"",,,acc~,~ed.:r:andomly~,,":COJltr91 "is" ,;pa~s'ed ",to .tri~,
"imper-ati've __ s,tatement'~f() 11owing:,I NYALl:D", KEY, when.,tl!e ';' 'c:on tent~:' ' of:' ,jt;be'
ACTUAL:,KEY"f,ie1:d'"clr'e.,itlyal,i~i.'"',;,, Tlle.:~eY",',is" c'ons:i..de:r:ed i,nvalid'when' 'the,:"
£,ec9r(ji's:' not.;,'foundJ,:qr :whetI".the£ra~kaddr:es's, is'PQtsi,de':th,e ''li,mitg,qf '

,,,t,he file.;", " ' "'''<;' ':':, , :"" ,,,,,'," ,,;,~':,'/

,;:·,,:,,':,,','.·"','F6-i',' ::~n,:;: :iA'a~'x.¢<i,',':f+:+.·~··.'·.':t¥~ t.:'::~'~'.'; ~,6b~$,s.~"".t?lIld6,tn~Y:;,:. '~'britiqJ:'· ... ·:,i.~' .. · .•. 'p;;;S,$:e.d, ... ""t6:,."i'\{::,
"'tl1e' .. · •. fmpeia't,iV'e:..statement"'f()l}o~i~g,,.~~lJ,l\.LIP,::'~~y:···wtr~n":the,.,pre¢~in:g,,Rl:!:Afi",:·'

;,.$~,atement:,,:?'a,~~e~~;~~'<::epr-~f,:,~~~,n{jit;,:n::~";':":" .. : .. ' :', ":" ',':' •. "':"':,' .::::',:' .: ,,: ',."" :~ .. ',', ::d\"':':':' ., .. :\:':',:,"<'.:
.;N,6t~':'."For"t:be:',rel:at:i:orishiI;r',:het:we~n',:,t'he'R:E;,wR,I'l'E·':~tCi'terq~nt>"aI)d,··.··~tl.E!',;ASSJG~;;,~
... ~,la'l:i,~~,,:'~y~~t,~,(Il7,n~~t'.··s:~~(:,:~tl'i~,:;~.I'(i:9"r,c;l?,~~:,'9~,:,.~c;T1,a?~1¥:;,~Cc:ef:;'s~~,':pi:r,,~C'~,.·.~·4-1e~'~
,:.In:.!':WR'I.~~'~'S,,~?i,'t:-:ement:' .. ,' ':. < ,,;~:,. ., :' ',>:\, ':. ':,:',,',,':,:,',:",. ,'" ":, .• ,,,,\,-,:, ::". ':; ", ',',':,';>','"

ACCEPT Statement

The function of the ACCEPT statement is to obtain data from the
system logical input device (SYSIPT), or from the CONSOLE.

r--,
! Format I
~--1
I I
I S.YSlP$,>;, I
I ACCEPT identifier [FROM):CONSOLE"" l I
I mnemonic-nameS I
I I L __ J

Identifier may be either a fixed-lengttlg;r?~~ item or anelemE!ntary
alphabetic, alphanumeric, external decimali.:;~~,,~}tt;:~:r:_~:1,fJ:9atin:g,~p():fP;t
item. Identifier may not be any Special Register except TALLY. rhe
data is read and the a~propriate number of characters is moved into the
area reserved for identifier. No editing or error checking of the
incoming data is done.

If the input/output device specified by an ACCEPT statement is the
same one designated for a READ statement, the results may be
unpredictable.

Mnemonic-name may assume either the meaning SYSIPT or CONSOLE.
Mnemonic-name must be specified in the Special-Names paragraph of the
Environment Division. If mnemonic-name is associated with CONSOLE,
identifier must not exceed 255 character positions in length. If the
FROM option is not specified, SYSIPT is assumed.

When an ACCEPT statement with the FROM mnemonic-name for CONSOLE
option ·.~FROM ,CONSOtE is executed, the following actions are taken:

Input/Output Statements 219

DISPLAY Statement

1. A system generated message code is automatically displayed followed
by the literal nAWAITING REPLY".

2. Execution is suspended. When a console input message is identified
by the control program, execution of the ACCEPT statement is
resumed and the message is moved to the specified identifier and
left justified regardless of the PICTURE. If the field is not
filled the low-order positions may contain invalid data.

If mnemonic-name is associated with SYSIPTdl:f,it~beFiloM';S'¥l~;rdpijj:;oip£liQn
is specified, an input record size of 80 is assumed. If the size of the
accepting data item is less than 80 characters, the data must appear as
the first set of characters within the input record; any characters
beyond the length of the accepting identifier are truncated. If the
size of tne accepting data item is greater than 80 characters, as many
input records as necessary are read until the storage area allocated to
the data item is filled. If the accepting data item is greater than 80
characters, but is not an exact multiple of 80, the remainder of the
last input record is not accessible.

DISPLAY. Statement

The function of the DISPL~Y statement is to write data on an output
device.

r--,
I Format I
~--~

I
I jliteral-1! [literal-2] II

DISPLAY
I identifier-1 identifier-2 I
I I
I j C:ONSOLE~ .• ! I I SYSPCH _ ., I
: [uPON~~~; 1 I
I . mnemonlc-name I
I I L __ J

Mnemonic-name must be specified in the Special-Names paragraph of the
Environment Division. ~illemonic-name may be associated only with the
reserved words CONSOLE, SYSPCH, SYSPUNCH, or SYSLST.

When the UPON option is omitted, the system list device- (SYSLSr) is
assumed.

A maximum logical record size is assumed for each device. For
CONSOLE <the system logical console device), the maximum is 100
characters. For SYSLST (the system logical output device), the maximum
is 120 characters. For SYSPCH or SYSPUNCH (the system punch device),
the maximum is 72 characters, with positions 73-80 used for the
PROGRAM-ID name.

If the total character count of all operands is less than the maximum
(or 72 for SYSPCH or SYSPUNCH), the remaining character positions are
padded with blanks. If the count exceeds the maximum size, operands are
continued in the next record. As many records as necessary are written
to display all the operands specified. Those operands pending.at the
time of the break are split between lines if necessary.

220 Part IV -- Procedure Division

CLOSE Statement

Identifiers described as USAGE COMPUTATIONAL, COMPUTATI.:()NAL-:l,
COMPtJT~TI.0NAL-:2f or COMPUTATIONAL-.3 are converted autoinatically'to
e'xternal format, as follows:

1. Internal--d~imaland binary items are converted to external
5ecim~l. Only negative signed values cause a low-order sign
overpunch to be developed.

'~r~; Inte.rnallf16atlng-pOtipt items are ::converted to ext.ernal
f'lpating--point.

3. No other data items require conversion.

'Fdr ,ieX\ample,,:if't.l;il:"~e inte'rnal-decimal '~t;emshave valiues ;,of,,--3'4:/i::+34.
and;.,34',' -"the'y ,are displaye~'as'3M, 3-4;, ,and 3,4, ~espect:tv~ly,_' <

If a figurative constant is specified as one of the operands, only a
single occurrence of the figurative constant is displayed.

Identifier may not be any Special Register except TALLY.

When a DISPLAY statement contains more than one operand, the data
contained in the first operand is s,tored as the first set of characters,
and so on, un~il the output record is filled. This operation continues
until all information is·displayed. Data contained in an operand may
extend into subsequent records.

Note: DISPLAY ,E}~:tlIB11:,·~R~TE;A.F'1'ERp(j$IT:rt?NI'N(;'i' and WRITE AFTER
ADVANCING statements all' cause t'he 'printer to' s'pace before printing.
However, a simple WRITE statement without any option given, or a WRITE
BEFORE ADVANCING statement both cause the printer to space after
printing. Therefore, it is possible that mixed DISPLAY statements,
~gr:e~'1',~~t.q,t,~~en,t!::t'/ and simple WRITE statements or WRITE BEFORE
ADVANCING statements within the same program may cause overprinting.

CLOSE Statement

The CLOSE statement terminates the processing of input and output
reels, units, and files, witn optional rewind and/or lock where
applicable.

r--,
I Format I
~--~
II ~EE~] [WITH lNO REWIND\ CLOSE file-name-1
I UNIT LOCK
!
I
I
I
I
I
I

[file-name-2
jREgq
ill~ru

[WITH l
NO REWINQ,

LOCK)
]] ...

l ___ -----------------

Each file-name is the name of a file upon which the CLOSE statement
is to operate; it must not be the name of a sort-file. The file-name
must be defined by a file-1escription entry in the Data Division.

Input/Output Statements 221

CLOSE Statement

The REEL and WITH NO REwIND options are applicable only to tape
files. The UNIT option is applicable only to mass storage files in
sequential access modee

A file may be closed more than once, but each CLOSE statement
(without the REEL/UNIT option) must be preceded by an OPEN statement for
that file. A file which is opened in a run unit must be closed within
that run unit.

For purposes of showing the effect of various CLOSE options as
applied to various storage media, all input/output files are divided
into the following categories:

1. Unit record volume. A file whose input or output medium is such
that rewinding, units, and reels have no meaning.

2. Sequential single-volume.
contained on one volume.
volume.

A sequential file that is entirely
There may be more than one file on this

3. Sequential multivolume. A sequential file that may be contained on
more than one volume.

4. Random single-volume. A file in the random access mode that may be
contained on a single mass storage volume.

5. Random multivolume. A file in the random access mode that may be
contained on more than one mass storage volume.

Note: See also "File Processing Summary" in the Environment Division,
and "Appendix D: Summary of File Processing Techniques and Applicable
Statements and Clauses".

Seguential File Processing

The results of executing each CLOSE option for each type of file are
summarized in Figure 40. The 1efinitions of the symbols in the
illustration are given below. Where the definition of the symbol
depends on whether the file is an input or output file, alternate
definitions are given; otherwise, a definition applies to INPUT, OUTPUT,
and I-O files.

A--Previous Volumes Unaffected

All volumes in the file prior to the current volume are processed
according to standard volume switch procedures except those volumes
controlled by a prior CLOSE REEL/UNIT statement.

B--No Rewind of Current Reel

The current volume is left in its current position.

C--Standard Close File

Files Opened as INPUT and I-O: If the file is positioned at its end
and there is an ending label record, the standard ending label
procedures and the user's ending label procedures (if specified by a
USE sentence) are performed. System closing procedures are then
performed.

If the file is positioned at its end and there is no ending label
record, system closing procedures are performed.

222 Part IV -- Procedure Division

Page of GC28-6394~4, -5, -6 revised 12/03/76 by TNL GN26-0887

CLOSE Statement

If the file is positioned other than at its end, system closing
procedures are performed but there is no ending label processing. An
INPUT or an 1-0 file is considered to be at end-of-file if the
imperative-statement in the AT END phrase has been executed and no
CLOSE statement has been executed.

Files Opened as OUTPUT: If an ending label record has been described
for the file, it is constructed and written on the output medium.
System closing procedures are performed.

D--Standard Reel/Unit Lock

This feature has no meaning in this system and is treated as
comments.

E--Standard File Lock

The compiler ensures that this file cannot be opened again during
this execution of the object program. Magnetic tapes are unloaded.

F--Standard Close Volume

Files Opened as INPUT and 1-0: The following operations are
performed:

1. A volume switch.

2. The standard beginning volume label procedure and the user's
beginning volume label procedure (if specified by the USE
sentence). The order of execution of these two procedures is
specified by the USE sentence.

3. Makes the next data record on the new volume available to be
read.

Files Opened as OUTPUT: The following operations are performed:

1. The standard ending volume label procedure and the user's ending
volume label procedure (if specified by the USE statement). The
order of execution of these two procedures is specified by the
USE statement.

2. A volume switch.

3. The standard beginning volume label procedure and the user's
beginning volume label procedure (if specified by the USE
statement). The order of execution of these two procedures is
specified by the USE statement.

G--Rewind

The current volume is positioned at its beginning.

X--Illeqal

This is an illegal combination of a CLOSE option and a file type.
The results at object time may be unpredicatable.

Input/Output Statements 223

CLOSE Statement

--------------------T---------T--------------------T------------------,
I FILE I I I I

I Type I I I I
I CLOSE I Unit I Sequential I sequential I

I Option I Record I Single-Volume I Multivolume I

~-------------------- ---------+--------------------+------------------~
CLOSE C C, G C, G, A

CLOSE C, E C, G, E C, G, E, A
WITH LOCK

CLOSE WITH X C, B C, B, A
NO REWIND

CLOSE REEL X X F, G

CLOSE REEL X X F, D, G
WITH LOCK

CLOSE REEL X X F, B
WITH NO REWIND

I
CLOSE UNIT X X F I

I
CLOSE UNIT X X F, D I
WITH LOCK I ____________________ ~ _________ ~ ____________________ ~ __________________ J

Figure 40. Relationship of Types of sequential Files and the Options of
the CLOSE Statement

General Considerations: A file is designated as optional by specifying
the IGN parameter in the ASSGN control statement. If an optional file
is not present, the standard end-of-file processing is not performed.
For purposes of language consistency, the OPTIONAL phrase of the SELECT
clause should be specified for this type of file.

If a CLOSE statement without the REEL or UNIT option has been
executed for a file, the next input/output statement to be executed for
that file must be an OPEN statement.

Random File Processing

The results of executing each CLOSE option for each type of file are
summarized in Figure 41. The definitions of the symbols in the figure
are given below. Where the definition depends on whether the file is an
INPUT or OUTPUT file, alternate definitions are given; otherwise, a
definition applies to INPUT, OUTPUT and 1-0 files.

H--Standard Clqse File

Files Opened as INPUT and 1-0: If there is an ending label record,
the ending label r~cord is checked, and the conventional system
closing procedures are performed. If there is no ending label
record, the system closing procedures are performed. For 1-0 files,
the label is updated anj written.

Filg2_Q~ned as~UTPUT: If an ending label record has been described
for the file, it is constructed and written on the output medium.
The system closinq procedures are performed.

224 Part IV Procedure Division

CLOSE Statement

J--standard File Lock

The compiler ensures that this file cannot be opened again juring
this execution of the object program.

-----------------------T------------------------T---------------------,
I FILE I I I
I Type I I I
I CLOSE I Random I Random I
IOption I Single-Volume I Multivolume I
t----------------------- ------------------------+---------------------~
I I i
I CLOSE I H I cl

I I I
I CLOSE I I
I WITH LOCK I H, J I ti, J l _______________________ L ________________________ L _____________________ J

Figure 41. Relationship of Types of Random Files and the ~ptions of tne
CLOSS Statement

Input/Output statements 225

Subprogram linkage statements are special statements that permit
communication between object programs. These statements are CALL,
ENTRY, GOBACK, and EXIT.

CALL Statement

The CALL statement permits communication between a COBOL object
program and one or more COBOL subprograms or other language subprogramso

f--,
I Format J

r--i
I J
I CALL literal [USING identifier-l [identifier-2] •.•] I
I I l __ J

Literal is a nonnumeric literal and is the name of the program that
is being called, or the name of an entry point in the called program.
The program in which the CALL statement appears is the calling program.
Literal must conform to the rules for formation of a program-name. The
first eight characters of literal are used to make the correspondence
between the called and calling program.

When the called program is to be ente+ed at the beginning of the
Procedure Division, literal must specify the program-name in the
PROGRAM-ID paragraph of the called program, and the called program must
have a USING clause as part of its Procedure Division header if there is
a USING clause in the CALL statement that invoked it.

When the called program is to be entered at entry points other than
the beginning of the Procedure Division, these alternate entry points
are identified by an ENTRY statement and a USING option corresponding to
the USING option of the invoking CALL statement. In the case of a CALL
statement with a corresponding ENTRY, literal must be a name other than
the program-name but follows the same rules as those for the formation
of a program-name.

The identifiers specified in the USING option of the CALL statement
indicate those data items available to a calling program that may be
referred to in the called program.

When the called subprogram is a COBOL program, each of the operands
in the USING option of the calling program must be defined as a data
item in the File Section, Working-Storage Section, or Linkage section.
If the called subprogram is written in a language other than COBOL, the
operands of the USING option of the calling program may additionally be
a file-name or a procedure-name. If the operand of the USING option is
a file-name, the file with which the file-name is associated must be
opened in the calling program.

Names in the two USING lists (that of the CALL in the main prograrr
and that of the Procedure Division header or the ENTRY in the
subprogram) are paired in a one-for-one correspondence. In the case of
index-names, no such correspondence is established.

226 Part IV -- Procedure Division

'-" .- ~" '.::......:~ .. '.;.......:....'.~ .~: ." .'

There is no necessary relationship between the actual names used for
such paired names, but the data descriptions must be equivalent. ,When a
group data item is named in the USING list of a Procedure Division
header or an ENTRY statement, names subordinate to it in the subpro
gram's Linkage Section may be employed in subsequent subprogram
procedural statements.

When group items with level numbers other than 01 are specified,
proper word-boundary alignment is required if subordinate items are
described as CO~PUTATIONAL, COMPUTATIONAL-1, or COMPUTATIONAL-2.

The USING option should be included in the CALL statement only if
there is a USING option in tne called entry point, which is either
included in the Procedure Division header of the called program or
included in an ENTRY statement in the called program. The number of
operands in the USING option of the ChLL statement should be the same as
the number of operands in the USING option of the Procedure Division
header, or ENTRY statement. If the number of operands in the USING
option of the CALL statement is greater than the number in the USING
option in the called program, only those specified in tne USING option
of the called program may be referred to by the called program.

The execution of a CALL statement causes control to pass to the
called program. The first time ,a called program is entered, its state
is that of a fresh copy of the program. Each subsequent time a called
program is entered, the state is as it was upon the last exit from that
program. Thus, the reinitialization of the following items is the
responsibility of the programmer:

GO TO statements which have been altered
TALLY
Data items
ON statements
PERFORM statements
EXHIBIT CHru~GED statements
EXHIBIT CHANGED N~ED statements

EXHIBIT CHANGED and EXHIBIT CHANGED NAMED operands will be compared
against the value of the item at the time of its last execution, whether
or not that execution was during another CALL to this program. If a
branch is made out of the range of a PERFORM, after which an exit is
made from the program, the range of that PERFORM is still in effect upon
a subsequent entry.

Called programs may contain CALL statements. However, a called
program must not contain a CALL statement that directly or indirectly
calls the calling program.

A called program may not be segmented.

ENTRY Statement

The ENTRY statement establishes an entry point in a COBOL subprogram.

r--,
I Format I
~--~
I I
I ENTRY literal [USING identifier-1 [identifier-21 ..•] I
I I L ____________________ ~· ________________________ , _________________________ J

Subprogram Linkage Statements 227

Control is transferred to the ENTRY point by a CALL statement in an
invoking program.

Literal must not be the name of the called program, but is formed
according to the same rules followed for program-names. Literal must
not be the name of any other entry point or program-name in the run
unit.

A called program, once invoked, is entered at that ENTRY statement
whose operand, literal, is the same as the literal specified in the CALL
statement that invoked it.

USING Option

The USING option makes jata items defined in a calling program
available to a called program. The number of operands in the USING
option of a called program must be less than or equal to the number of
operands in the corresponding CALL statement of the invoking program.

The USING option may be specified in the CALL statement, the ENTRY
statement, or in the Procedure Division header.

r--,
I Format 1 (within a Calling Program) ,
~--~
, I
I CALL literal [USING identifier-l [identifier-2J •.• J , , ,
l __ J

r--,
I Format 2 (Within a Called Program) I
~--,
,Option 1 I
I I
I ENTRY literal [USING identifier-l [identifier-2J ••• J ,
I ,
~--,
IOption 2 I
I I
I PROCEDURE DIVISION [USING identifier-l [identifier-2J •.• J. I
, I l __ J

When the USING option is specified in the CALL statement, it must
appear on either the Procedure Division header of the called program, or
in an ENTRY statement in the called program.

The USING option may be present on the Procedure Division header or
in an ENTRY statement, if the object program is to function under the
control of a CALL statement, and the CALL statement contains a USING
option.

When a called program has a USING option on its Procedure Division
header and linkage was effected by a CALL statement where literal is the
name of the called program, execution of the called program begins with
the first instruction in the Procedure Division after the Declaratives
Section.

228 Part IV -- Procedure Division

When linkage to a called program is effected by a CALL statement
where literal is the na~ of an entry point specified in the ENTRY
statement of ·the called program, that execution of the called program
begins with the first statement following the ENTRY statement.

Each of the operands in the USING option of the Procedure Division
header or the ENTRY statement must have been defined as a data item in
the Linkage Section of the program in which this header or ENTRY
statement occurs, and must have a level number of 01 or 77. Since the
compiler assumes that each level-Ol item is aligned upon a double-word
boundary, it is the prog~ammer's responsibility to ensure proper
alignment.

When the USING option is present, the object program operates as
though each occurrence of identifier-l, identifier-2, etc., in the
Procedure Division had been replaced by the corresponding identifier
from the USING option in the CALL statement of the calling program.
That is, corresponding identifiers refer to a single set of data which
is available to the calling program. The correspondence is positional
and not by name. In the case of index-names, no such correspondence is
established.

The following is an example of a calling program with the USING
option:

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLPROG.

DATA DIVISION.

WORKING-STORAGE
01 RECORD-i.

03 SALARY
03 RATE
03 HOURS

SECTION.

PICTURE S9(S)V99.
PICTURE S9V99.
PICTURE S99V9.

PROCEDURE DIVISION.

CALL "SUBPROG" USING RECORD-i.

CALL "PAYMASTR" USING RECORD-i.

Subprogram Linkage Statements 229

The following is an example of a called subprogram associated with
the preceding calling program:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROG.

DATA DIVISION.

LINKAGE SECTION.
01 PAYRf.C.

02 PAY
02 HOUi<Ly-aATE
02 HOURS

PICTURE S9(5)V99.
PICTURE S9V99.
PICTURE S99V9.

PROCEDURE DIVISION USING PAYREC.

GOBACK.
ENTRY "PAYJv1.ASTR" USING PAYRBC.

GOBACK.

processing begins in CALLPROG, which is the calling program. when the
statement

CALL "SUBPROG" USING RECORD-1.

1s executed, control is transferred to the first statement of the
Procedure Division in SUBPROG, which is the called program. In the
calling program, the operand of the USING option is identified as
RECORD-1.

When SUBPROG receives control, the values within RECORD-1 are made
available to SUBPROG; in SUBPROG, however, they are referred to as
PAYREC. Note that the PICTURE clauses for the subfields of PAYREC
(described in the Linkage section of SUBPROG) are the same as those for
RECORD-1.

When processing within SUBPROG reaches the first GOBACK statement,
control is returned to CALLPROG at the statement immediately following
the original CALL statement. Processing then continues in CALLPROG
until the statement

CALL "PAYMASTR" USING RECORD-1.

is reached. control is again transferred to SUBPROG, but this time
processing begins at the statement following the ENTRY statement in
SUBPROG. The values within RECORD-1 are again made available to SUBPROG
through the matching USING operand PAYREC. When processing reaches the
second GOBACK statement, control is returned to CALLPROG at the
statement immediately following the second CALL statement.

230 Part IV -- procedure Division

In any given execution of these two programs, if the values within
RECORD-1 are changed between the time of the first CALL and the second,
the values passed at the time of the second CALL statement will be the
changed, not the original, values. If the prograrr@er wishes to use the
original values, then he must ensure that they have been saved.

Program Termination Considerations

There are three ways in COBOL source language to terminate a program.
They are:

1. EXIT PROGRAM

2. GOBACK

3. STOP RUN

Figure 42 shows the effect of each program termination statement
based on whether it is issued within a main program or a subprogram.

A main program is the highest level COBOL program invoked in a step.
A subprogram is a COBOL program that is invoked by another COBOL
program. (Programs written in other languages that follow COBOL linkage
conventions are considered COBOL programs in this sense.)

r----------------T----------------------T------------------------------,
I Termination I I I
I statement I Main Program I Subprogram I
~~---------------+----------------------+------------------------------~
I EXIT I Non-operational I Return to invoking I
I PROGRAM I I program I
I I I I

STOP RUN I Return to system I Return to ~ystem I
I and cause end of I and cause end of I
I job step (EOJ macro) I job step (EOJ macro) i
I I I

GOBACK I Abnormal termination I Return to invoking program I
I I of job I I L ________________ i ______________________ i ______________________________ J

Figure 42. Effect of Program Termination Statements ~ithin Main
Programs and Subprograms

Subprogram Linkage Statements 231

EXIT PROGRAM Statement

This form of the EXIT statement marks the logical end of a called
program.

r--,
I Format I
t--~
I I
I paragraph-name. EXI! PROGRAM. I
I I L ___ ~----------J

The EXIT statement must be preceded by a paragraph-name and be the
only statement in the paragraph.

If control reaches an EXIT PROGRAM statement while operating under
the control of a CALL statement, control returns to the point in the
calling program immediately following the CALL statement.

If control reaches an EXIT PROGRAM statement and no CALL statement is
active, control passes through the exit point to the first sentence of
the next paragraph.

GOBACK Statement

The GOBACK statement marks the logical end of a called program.

r--,
I Format I
t--~
I I
I GOBACK. I
I I L __ J

A GOBACK statement must appear as the only statement or as the last
of a series of imperative-statements in a sentence.

If control reaches a GOBACK statement while operating under the
control of a CALL statement, control returns to the point in the calling
program immediately following the CALL statement.

If control reaches a GOBACK statement and no CALL statement is
active, there will be an abnormal termination of the job.

STOP RUN Statement

For a discussion of the STOP statement with the RUN option, see
"Procedure Branching Statements. n

232 Part IV -- Procedure Division

ENTER/NOTE statements

COMPILER-DIRECTING STATEHENTS

Compiler directing statements are special statements that provide
instructions for the COBOL compiler. The compiler directing statements
are COPY, ENTER, and NOTE.

COpy statement

Prewritten source program entries can be included in a COBOL program
at compile time. Thus, an installation can utilize standard file
descriptions, record descriptions, or procedures without having to
repeat programming them. These entries and procedures are contained in
user-created libraries. They are included in a source program by means
of a COpy statement (see "Source Program Library Facility").

1::.NTER statem~nt

The ENTER statement serves only as documentation and is intended to
provide a means of allowing the use of more than one source language in
the same source program. This compiler allows no other source language
in the program.

r--,
I Format I
~--~
I I
I ENTER language-name [routine-name]. I
I I L __ J

The ENTER statement is accepted as comments.

NOTE statement

The NOTE statement allows the programmer to write commentary which
will be produced on the source listing, but not compiled.

r--,
I Format I
t--~
I I
I NOTE character string I
I I L __ J

Any combination of the characters from the EBCDIC set may be included
in the character string.

Compiler-Directing Statements 233

NOTE Statement

If a NOTE sentence is the first sentence of a paragraph, the entire
paragraph is considered to be part of the character strinq. proper
format rules for paragraph structure must be observed.

If a NOTE sentence appears as other than the first sentence of a
paragraph, the commentary ends with the first instance of a period
followed by a space.

~Exptana'Eori'co~t:S -"ir¥iY-:~e '~#i~er.ted' on anY-line wiIii.1.il a :source.... '.'
fprqg~a~ hrplacfp,9,;~n .. Clstfr~:t\.ip;k; .,j.tn· ;co1umn7 of; the >line •. Any combination
",;0£ t;l,le;<=haracterp>f~pnl't~EBCb~~ set maY,.be, :in~;Luded .. inArea ,A and_
;::~l:"e'a.':'B::rof:that !:ine~::;' .Tbe,~"a$~,~;r:~sk a-rid .the·· characters :\oIi11 .,beproduced
;'9n ·t'ljl.e'\,!isting, ;!bt1:tt's~ve:;no;l;otb.er purpo&e. .

~ - . ! , .. t" ~ , ,.'

234 Part IV -- Procedure Division

PART V -- SPECI~L FEATURES

• SORT FEATURE

• REPORT WRITER FEATURE

• TABLE HANDLING FEATURE

• SEG~ENTATION FEATURE

• SOURCE PROGR~l LIBRARY FACILITY

Special Features 235

Sort Feature -- Description

SORT FEATURE

The COBOL programrr~r can gain convenient access to the sorting
capability of the system sort/merge program by including a SORT
statement and other elements of the Sort Feature in his source program.
The Sort Feature provides the capability for sorting files and including
procedures for special handling of these files both before and after
they have been sorted. Within the limits of object-time storage, a
source program may have any number of SORT statements, and each SORT
statement may have its own special procedures.

rhe basic elements of the Sort Feature are the SaRI' statement in tne
Procedure Division and the Sort-File-Description (SD) entry, with its
associated record description entries, in the Data Division. A sorting
operation is based on sort-keys named in the SORT statement. A sort-key
specifies the field within a record on which the file is sorted.
Sort-keys are defined in the record description associated with the SD
entry. The records of a file may be sorted in ascending or descending
order or-in a mixture of the two; that is, the sort-keys may be
specified as ascending or descending, independent of one another, and
the sequence of the sorted records will conform to the mixture
specified. Additional information on the Sort Feature can be found in
the programmer's Guide.'

Note: Language considerations for an ASCII-collated sort are given in
Appendix E.

ELEMENTS OF THE SORT FEATURE

To use the Sort Feature, the COBOL programmer must provide additional
information in the Environment, Data. and Procedure Divisions of the
source program.

The SORT statement in the Procedure Division is the primary element
of a source program that performs one or more sorting operations. The
term "sorting operation" means not only the manipulation by the Sort
Program of sort~work-files on the basis of the sort-keys designated by
the COBOL programmer, but also includes the method of making records
available to, and retrieving records from, these sort-work-files. A
sort-work-file is the collection of records that is involved in the
sorting operation as it exists on an intermediate device(s). Records
are made available either by the USING or INPUT PROCEDURE options of the
SORT statement. Sorted records are retrieved either by the GIVING or
OUTPUT PROCEDURE options of the SORT statement.

In the Environment Division, the programmer must write SELECT
sentences for all files used as input and output to the Sort Program
a,n"d"for t,he s,ort-" fil, e., ,4f~,""':','" ,'" ";~f,w~,,"r4*~~,"',tl6b," +mUfi1~~,'~~,""';*"',:,',,,',~f,7,,","",,"
:00, ~r,b",,~~\.~~'t~~~m. ~,~:,~.,~ ~~~nEi~J:1;ij.~;,li.~,~~,

~.·.· :, ..• "b.:.t·. __ :'t .. ".' .. " .i .. ~., .. , :: .. :.::; :•.... ~ ... :.:.: ' .. '~.: •. : "oJ,' : ',,"' ! I ~. ~ ;::.11 .. ' .. in- t ' .. 1.: •• J .. : .'.:.,.<_ .. ·:.,;.,btti.j/;. 1L:..h':; . .i-,~,: '<.tl •..• <!~.~,"<

In the Data Division, the. programmer must include File Description
entries (FD) for all files that are used to provide input to or output
from the sort program and for the sort file. He must also write a
Sort-File-Description (SO) entry and its associated record description
entries to describe the records that are to be sorted, including their
sort-key fields.

Sort Feature 237

SELECT Sentence -- GIVING Option

In the Procedure Division SORT statement, the programmer specifies
the sort-file to be sorted, and the sort-key names. He must also
specify whether the sort is to be in ascending or descending sequence by
key, and whether records are to have special processing. If there is to
be such processing, he also includes in the ProcedurePiy,i,siof}t.he
?rogram sections that pe:-fo,rm ttl.e, processi~g:" ~:sp,eci;~L;::SOOi""reg~t.~~~
1,f used, ;are referenc:ed .1n ,the·Procedure· D1v1s;Lon....;.:}1,: ;:.:7,;:':;'.;. '.':-;t;:::t~!tf.';f:V~:~;'

ENVIRONMENT DIVISION CONSIDERATIONS FOR SORT

There are certain statements the programmer must include in the
Bnvironment Division to use the Sort Feature. Detailed descriptions of
these statements follow.

INPUT-OUTPUT SECTION

The Input-Output section is composed of two parts: the File-Control
Paragraph and the I-a-Control Paragraph.

File-Control Paragraph

The File-Control paragraph is specified once in a COBOL program.
Withiq this paragraph, all files referred to in the source program must
be named in a SELECT clause.

Files used within input and output procedures and files named in the
USING and GIVING options of the SORT statement are named in the SELECT
clause as described in "Environment Division." The file named in the
GIVING option of the SORT statement can alternately be described in the
following format.

r--,
1 Format I

~--~
1 I
1 SELECT file-name I

-I I
1 ASSIGN TO [integer-i] system-name-i [system-name-2] I

1 I

: OR system-name-3 [FOR MULTIPLE lREELt I
I UNIT~ I
I I

i [RESERVE 1~:teger-21 ALTERNATE1:::~1 1. i

1 I L __ J

The OR option is neither required nor used by this compiler, and is
treated as comments.

238 Part V Special Features

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

SELECT sort-file-name

The MULTIPLE clause function is specified by object time control
cards; hence, the MULTIPLE clause is neither required nor used by this
compiler. The RESERVE clause is applicable as described in the
"Environment Division" chapter.

Assignment of Sort Work Units

The File Control paragraph must be specified for the sort file and is
used to assign work units for the sorting opeI-ation.

r--,
I Format I
~--~
I I
I SELECT sort-file-name I
I I
I ASSIGN TO [integer] system-name-l [system-name-2] ••. I
I I L __ J

sort-file-name: the name used as the first operand of the SORT
statement (also the name associated with the SD entry for the
sorting operation).

integer: specifies the number of work units available to the Sort
Prog.ram. From one through eight units may be assigRed for a disk
sort. From three through nine units may be assigned for a tape
sort. If integer is not specified, the compiler assumes one unit
for a disk sort and three units for a tape sort.

systern-name-l: created in the same format as the system-name in other
ASSIGN clauses (see "Environment Division"). However, the names by
which the work files are known to the Sort Program are fixed.
System-name-l must always contain the symbolic unit n'.lmber SYS001.
If the sort work files have standard labels, system-name-l must
specify a name field of SORTWK1. The class and organization fields
are treated as comments. Class will always default to UT, and
organization will always default to S.

In~~~~ work units beginning with the first are reserved for the
sorting operation. The user may, if he wishes, specify these additional
work units in multiple ~stem-names. However, the compiler treats these
as documentation. Instead, the second work unit is assigned to SYSOG2
with name SORTWK2, the third to SYS003 with name SORTWK3, etc.

For example, the SELECT sentence for a sort-file with standard
labels, which has five work units (tape) availaole, would be:

SELECT SORTFILE
ASSIGN TO 5 SYS001-UT-2400-S-S0KTWK1.

SYSOOl through SYS005 are assigned by the compiler to the work units.

Tne I-O-Control paragraph specifies when checkpoints are to be taken,
as well as what core storage area is to be shared by different files.

Sort Feature 239

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

,>. i"'. i . .• , .•. ,.".

.. >',','
. . " .. ", ... , ..

~l'
.. , .. , ',.'

.... · ' i'

" I", ,'Ililtl! i'" .~.1I1·
. ,i ... ,

,.,' ".:."'" .:.
, •• ,.,'"., . >"":" " ..

· ". I> . ' •. '11t
' ... " '.,

. " .. ' .. ,' .•. , .• ,"{

..... '/ ' ' .
.. ,:'.'

.. "",.

...."

................

'''''
.. ,', , .. , .. ;' .',',.

~' "',. <4. i,>::" ,. >.', '".'.

<':;:';'.' ::..;- •.•....•... ,;...

' ' ' .. '. ,"'. , cTS.·.·,··.·,·.··.·.· ... , "."".""
· ,' ... ' .. , .. ,. ,.,....._:: ~;-2~~,<:i .: < ..•. , r () ')i}'

;,;,~ ,;;;..;....

,>,,,,- ...• ,.,. '

"".

:: ",:~i •..•• '.'..'. • ... "' .. ,..w,.}; . '.;:.: ,>, , .'., " • .
TJtI:l,.s "':;;;:', _.,~ ,j/ ""',' " .. ' " ... ' .\.,·.' •• ,',< <,.",i· .

,~. " , iii /i .. ·.· i': ii it i' "·i·' \>'r\ i>i . ',' •.•. , " " ,
. . " . ," " ,' 'in.·,. C>(.... ' , . .' <)<.,{,

<,'.,".'..... ""',:: :: ,.,.' '".;.... • .. ,,'" ",.....i, ' ' .. '"., .. ' .. , ,< ••.•..
At the " ' " '

· effe.ct,the ,'. : ".', , ',',':::; .,
operation' 'o£i.ilo t:{~'6'

SAME RECORD/SORT AREA Clause

The SAME RECORD/SORT AREA clause specifies that two or more files are
to use the same storage area during processing.

r--,
I Format I
~--~
I I

I
I 1 RECORD (II

SAME AREA FOR file-name-l {file-name-2} •••
I SORT I
I I L ___ -----____________ J

The RECORD option is used when only FD or mixed FD and SD files are
named. The named files share only the processing area of the current
logical record. Although several of the files may be open at the same
time, only the logical record of one of these files can exist in the
record area at one time.

The SORT option is used when only SD files are named. Its function
is to optimize the assignment of storage areas to a given SORT
statement. The system will handle storage allocation automatically;
hence, the SORT storage option, if given, will be ignored.

240 Part V -- Special Features

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

SD (sort-file description) Entry

DATA DIVISION CONSIDERATIONS FOR SORT

In the Data Division the programmer must include File Description
entries for files that are input to or output from the Sort,
sort-file-description entries which describe the records as they appear
on the sort work files, and record description entries for each.

FILE SECTION

The File Section of a program which contains a sorting operation must
furnish information concerning the physical structure, identification,
and record names of the sort work file. This is provided in the
sort-file-description entry.

'Sort-File Description

A sort-file-description entry must appear in the File section for
every file named as the first operand of a SORT statement.

r--,
I Format I
~--~
I

SD sort-file-name

[DATA lRECORD IS l
RECORDS ARE~

data-name-1 [data-name-2] .•. J

[RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

There must be a SELECT sentence for sort-file-name that describes the
system-name for the sort work file. Sort-file-name is also the name
specified in the SORT statement.

The

Sort Feature 241

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

Sort -- Procedure Division Considerations

The DATA RECORDS clause specifies the names of the records in the
file to be sorted. Data-name-l, data-name-2, ••• of the DATA RECORDS
clause refer to the records described in the record descriptions
associated with this SD.

The RECORD CONTAINS clause specifies the size of data records in the
file to be sorted. This clause is optional. The actual size and mode
(fixed or variable) of the records to be sorted are determined from the
level-Ol descriptions associated with a given SD entry. When the USING
and GIVING options of the SORT statement are used, the record length
associated with the SD must be the same length as the record associated
with the FD's for the USING and GIVING files. If any of the SD data
record descriptions contains an OCCURS clause with the DEPENDING ON
option, variable-length records are assumed. Refer to "Data Division"
for the format assumptions that are made by the compiler when the
RECORDING MODE clause is not specified.

Both the DATA RECORDS and the RECORD CONTAINS clauses are described
in "Data Division."

PROCEDURE DIVISION,CONSIDERATIONS FOR SORT

The Procedure Division must contain a SORT statement to describe the
sorting operation and, optionally, input and output procedures. rhe
procedure-names constituting the input and output procedures are
specified within the SORT statement.

The Procedure Division -may contain more than one SORT statement
appearing anywhere except in the declaratives portion or in the input
and output procedures associated with a SORT statement.

Note: If DISPLAY or EXHIBIT is used in an input or output procedure
of a SORT verb, each time DISPLAY or EXHIBIT is executed SYSLST will
be opened since it is closed by SORT. To achieve a good performance
of a COBOL program, the DISPLAY and EXHIBIT verbs should only be used
for debugging purposes in input or output procedures for SORT.

SORT Statement

The SORT statement provides information that controls the sorting
operation. This information directs the sorting operation to obtain
records to be sorted either from an input procedure or the USING file to
sort the records on a set of specified sort keys, and in the final phase
of the sorting operation to make each record available in sorted order,
either to an output procedure or to the GIVING file.

242 Part V special Features

SORT Statement

r--,
I fu~rt I
~--~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SORT file-name-l ON l
DESCENDING~

KEY {data-name-l} •••
ASCENDING

[ON l
DESCENDING l
ASCENDING f

KEY {data-name-2} ••. 1 •••

(INPUT PROCEDURE IS section-name-l [THRU section-name-21}
tUSING file-name-2 J

{
OUTPUT PROCEDURE IS section-name-3 [THRU section-name-41}
GIVING file-name-3 _

L ___ _

File-name-l is the name given in the sort-file-description entry that
describes the records to be sorted.

ASCENDING and DESCENDING: The ASCENDING and DESCENDING options specify
whether records are to be sorted into an ascending or descending
sequence: respectively, based on one or more sort keys.

Each data-name represents a "key· data item and must be described in
the records associated with the sort-file-name.

At least one ASCENDING or DESCENDING clause must be specified. Both
options may be specified in the same SORT statement, in which case,
records are sorted on data-name-l, in ascending or descending order! and
then within data-name-l, they are sorted on the KEY data item
represented by data-name-2, in ascending or descending order, etc.

Keys are always listed from left to right in order of decreasing
significance, regardless of whether they are ascending or descending.

The direction of the sort depends on the use of the ASCENDING or
DESCENDING clauses as follows:

1. When an ASCENDING clause is used, the sorted sequence is from the
lowest value of the key to the highest value, according to the
collating sequence for the COBOL character set.

2. When a DESCENDING clause is used, the sorted sequence is from the
highest value of the key to the lowest value, according to the
collating sequence of the COBOL character set.

Sort keys must be one of the types of data item listed in Figure 43.
corresponding to each type of data item is a collating sequence that is
used with it for sorting.

A character in the EBCDIC collating sequence (used with alphabetic,
alphanumeric, etc., data items) is interpreted as not being signed. For
fixed-point and internal floating-point numeric data items, characters
are collated algebraically (that is, as being signed).

Sort Feature 243

SORT Statement

r-------------------------------------T--------------------------------1
IType of Data Item Used for Sort Key I Collating Sequence I
~-------------------------------------+-----------------------~--------~
I Alphabetic I EBCDIC I
I Alphanumeric I EBCDIC I
INumeric Edited I EBCDIC I
I Group I EBCDIC I
IExternal Decimal I Zoned Decimal I
I Bina Fixed Point I
l:pk:.i:i,1h:t:: ." ;. ..~:::, ';.. . I

I ... L~~~-'iL011t{~lif0t1gCJ
Figure 43. SORT Collating Sequences Used for Sort Keys

is:
The EBCDIC collating sequence for COBOL characters in ascending order

1. (space)
2. (period or decimal point)
3. < (less than)
4. ((left parenthesis)
5. + (plus symbol)
6. $ (currency symbol)
7. * (asterisk)
8. (right parenthesis)
9. (semicolon)

10. (hyphen or minus symbol)
11. / (stroke, virgule, slash)
12. , (comma)
13. > (greater than)
a~It4 ~,~:_ .. 9~~Di~~i:~~~~J"
15. = (equal sign)
16. (quotation mark)

17-42. A through Z
43-52. 0 through 9

(The complete EBCDIC collating sequence is given in IBM System/360
Reference Data, Order No. X20-1703.)

The record description for every record that is listed in the DATA
RECORDS clause of an SD description must contain the "key" items
data-name~l, data-name-2, etc. These "key" items are subject to the
following rules:

1. Keys must be physically located in the same position and have the
same data format in every logical record of the sort-file. If
there are multiple record descriptions in an SO, it is sufficient
to describe a key-in "only one of the record descriptions.

2. Key items must not contain an OCCURS clause nor be subordinate to
entries that contain an OCCURS clause.

3. A maximum of 12 keys may be specified. The total length of all the
keys must not exceed 256 bytes.

4. All keys must be at a fixed displacement from the beginning of a
record; that is, they cannot be located following a variable table
in a record.

5. All key fields must be located within the first 4092 bytes of a
logical record.

6. The data-names describing the keys may be qualified.

244 part V -- Special Features

SORT Statement

SECTION-NAME-1 AND SECTION-N~ME-2: Section-name-1 is the name of an
input procedure. Section-name-2 is the name of the last section that
contains the input procedure in the COBOL main program. Section-name-2
is required if the procedure terminates in a section other than that in
which it was started.

INPUT PROCEDURE: The presence of the INPUT PROCEDURE option indicates
that the programmer has written an input procedure to process records
before they are sorted and has included the procedure in the Procedure
Division as one or more distinct sections.

The input procedure must consist of one or more sections that are
written consecutively and do not form a part of any output procedure.
The input procedure must include at least one RELEASE statement in order
to transfer records to the sort-file.

Control must not be passed to the input procedure unless a related
SORT statement is being executed, because the RELEASE statement in the
input procedure has no meaning unless it is controlled by a SORT
statement. The input procedure can include any procedures needed to
select, create, or modify records. There are three restrictions on the
procedural statements within an input procedure:

1. The input procedure must not contain any SORT statements.

2. The input procedure must not contain any transfers of control to
points outside the input procedur~. ~~fuPn·~ ~ ~L

:i~pHIcl~~'~,~~~'S:~~',~~~~s, ~_~d::~~~
.,' 'J':~~ 'the execution of USE declaratives for label

handling and error processing are not considered transfers of
control outside of an input procedure. Hence, they are allowed to
be activated within these procedures.

t. ,; <'" .t~'}~~'h~,;~~i~R:~·"·:;~:,';rq~t;.~n:d:j~E~q~J.cr;'}:",,
!:~~ .,' j ." ,;,~ . ·flr'·:'*;'-,:,~'~.'~~;"~e~&=:,:;~P:;~~tit5~~~~~r~~!ftf~'~~c~::
j)' ., ,:t::':'~:Ij" ,.' ,%~';',;,>;~t+'::J:S;:"tf}"*=:)u,s~~ ,;q,',::r:;eSP9Il.s)j:pJl:~~t-y' '~?:"'~.:~'."
:lUiu: .1t!a,,"~~d~ptft,r·.,~dd~dU:r:e,,',aft,er'. "'exb::t:±ng'",,throil<ih,,:a:"~Wi:;;,

c:Lc-,Llc~:.,~:,g#:~~~~~·\k',:"~,'\-;Jjjl:,':~'~',,~,'\,,:,:,,\,{~,~::~::,',~-'._,--";""',:," ,"".-,':'",:,"':(':"'~'~~':':,,'

3. The remainder of the Procedure Division must not contain any
transfers of control' to points inside the input procedure (with the
exception of the return of control from a declarative section).

~(j.~~tf::f:~.ai'iJ·.·~~~~~~~~;;~ailol#a .. · :~~~~~~i(i ;~(ti .. "J~~ ;~~~tl~M",il~~t~~'rltr!F!,
:;i)/Ji~:;t~!,.i'E!m{l;inde;f'x:ff:·tbe, :pi:odea~r)8" Di~i'sj;on;ito'rie~'e'rljto ':,' ",: .,':' " '.~iiJ:!';
~ceA\lre~namesw:i,thintAe J;Pput: :Pr"qced,ti,i€'} . "ir a, S'ORT·~ta tieinent' (fi~'
a;ct'~Ve:'wheh :the ',tran$fer" of control, is"'ma~, ,tiknaJ1!l g!uen . '. '~'r"
t'rans~je~s,;a;re;val;~d;. Ifa .SORTstatement,is 'not!,adtive.howe~~r#, .,'
then "the user .mUs..t'ell;sure tn,at such' atransf,erofc'ontr.ol d.oes' riOt!
OciUSiet:' :' " I i

:":':1: '. ,i :., ',' I' '". , ,

a:: 'aj iR~LE.l.l.sE 'statement to be executed
i I

b., '?:dntrol to reach the end of the Input ,Procedure

If an input procedure is specified, control is passed to the inpu~
procedure when the SORT program input phase is ready to receive the
first record. The ~ompiler inserts a return mechanism at the end of the
last section of the input procedure and, when control passes the last
statement in the input procedure, the records that have been released to
file-name-1 are sorted.

The RELEASE statement transfers records from the Input.Procedure to
the input phase of tne sort operation (see "RELEASE Statement").

Sort Feature 245

SORT Statement

USING: If the USING option is specified, all the records in file-name-2
are transferred automatically to file-name-1. ~me of exec~tion
,9f the SO~T -~ement.l.,_~:Ig!m~-:-2.,_JO.lJ~.t not be _ ~,p,eE. File-name=-Tlllust
.o'e-a-·atcrndard sequential file.

For the USING option, the compiler will open, read, release, and
close file-name-2 without the programmer specifying these functions. If
the user specifies error handling and/or label processing declaratives
for file-name-2 , the compiler will make the necessary linkage to the
appropriate declarative section.

SECTION-NAME-3 AND SECTION-NAME-4: Section-name-3 represents the name
of an output procedure. Section-name-4 is the name of the last section
that contains the output procedure in the COBOL main program.
Section-name-4 is required if the procedure terminates in a section
other than that in which it is started.

OUTPUT PROCEDURE: The output procedure must consist of one or more
sections that are written consecutively and do not form a part of any
input procedure. The output procedure must include at least one RETURN
statement in order to make sorted records available for processing.

Control must not be passed to the output procedure unless a related
SORT statement is being executed, because RETURN statements in the
output procedure have no meaning unless they are controlled by a SORT
statement. The output procedure may consist of any procedures needed to
select, modify, or copy the records that are being returned ene at a
time, in sorted order, from the sort-file. There are three restrictions
on the procedural statements within the output procedure.

1. The output procedure must not contain any SORT statements.

2. The output procedure must not contain any transfers of control to
points outside the output procedure. ,The;:ie:xechltt61IFdf'~it "1:'~
sta F~m,enttp ,p:no;t.her ' ,p~qg.Z;~1tj "itRfi~:;itqil.l~i"!I~t.a~g,;;u:;dht~ii~~~!J·' '~' .t~!I!~'li'l
'CQI1~ntion$)#' q'~the execution of USE declarati ves for label
handling and error processing are not considered transfers of
control outside of an out9ut procedure. Hence, they are allowed to
be activated within these procedures.

H~eVjer ,. th~s Icpmpiler: permi:ts~; ~T~~' ~ 'TP'~'" ~~ !P~~~ : \ :,r
s;ta,~tsi :~n tfhe o,utPllt, pr<y;c~d~i Jtp, refetr ;tQ Pqyq~dm\r1e-n;alniS'$(:!:
~tsiide :th~ ou;tput prQce,dU;re.·~, ,~:t:,. i.~':~h~ : user'~~:I\~S; ,:.~ti~ltlJ;ri ~IP; ,,:

~:~p:~~~:r:~!~e!~:t~~~~:~~~e;Ai'~~W.:~~i~'~:I:~t;~]~'~f"" ,,~;~)~~e~
3. The remainder of the Procedure Division must not contain any

transfers of control to points inside the output procedure (with
the exception of the return of control from a declarative section).

However, this compiler 'allows AtTER~ GOT(),aind·pE.RE)dRM·,s,tait;emeii~iic.
ijn ,the remai;nder of the Procedure Di vision i:tct~~f~ ;~" i' I,j; ;;;'
'~,rdced'.lre-name,swith,in, ',t,he, Output proce,~""uz;e,','-,', ;1,\f \i\ 'S,' , fF,I,' , ,.,:rs,;t:a!, ,it",;1j'ment,'~X;
~:a:~i!;:=~:n v=~~~~ra~~f:r S~~Tc~~~~~;e~i" ~4~~~:~~~;: t:'~r ,;;
then the user must ensure that such a 'tr~~'f:er .of~~~9r~~"'R :not'
c~use: . ~" j'" r; ,~~ti:~~'f;n~tl;I'. ~ , '

I " ! ~ ~ '<0 ~ ~, f ~ ~!.,;, ~ ~:~ :f:~ * :~ '1f /' ~,;;:r 4

. ' , . , 1.' r ';,~ ',!l*~" .' " -,~~ ,
a~. a' RETURN s~atement to be' executed, ',: 1;; , :;:,

,,~ '" ',::;, .rt~;l;; ~i";1i
be. '~~:mtrol' tp: tea<;h' th~ end oftbe"ou~pUt.pro~~~p.~fr,;tJ r;:t~

If an output procedure is specified, control passes to it after
file-name-l has been placed in sequence by the SJRT statement. The

246 Part V -- Special Features

RELEASE Statement

compiler inserts a return mechanism at the end of the last section in
the output procedure. When control passes the last statement in the
output procedure, the return mechanism provides for termination of the
SORT and then passes control to the next statement after the SORT
statement.

When all the records are sorted, control is passed to the output
procedure. The RETURN statement in the output procedure is a request
for the next record (see "RETURN Statement").

GIVING: If the GIVING option is used, all sorted records in file-name-l
are automatically transferred to file-name-3. At the time of execution
of the SORT statement, file-name-3 must not be open. File-name-3 must
name a standard sequential file.

For the GIVING option, the compiler will open, return, write, and
close file-name-3 without the programmer specifying these functions. If
the user specifies error handling and/or label processing declaratives
for file-name-3, the compiler will make the necessary linkage to the
appropriate declarative section.

CONTROL OF INPUT OR OUTPUT PROCEDURES: The INPUT or OUTPUT PROCEDURE
options function in a manner similar to the PERFORM statement
(Option 1); for example, naming a section in an INPUT PROCEDURE clause
causes execution of that section during the sorting operation to proceed
as though that section had been the subject of a PERFORM statement. As
in the execution of a PERFORM statement, the execution of the section is
terminated after execution of its last statement. The procedure may be
terminated by an EXIT statement (see "EXIT Statement").

RELEASE Statement

The RELEASE statement transfers records from the Input Procedure to
the input phase of the Sort operation.

r--,
I Format I
r--~
I I
I RELEASE sort-record-name [FROM identifier] I
I I L __ J

A RELEASE statement may be used only within the range of an input
procedure associated with a SORT statement.

If the INPUT PROCEDURE option is specified, the RELEASE statement
must be included within the given set of procedures.

Sort-record-name must be the name of a logical record in the asso
ciated sort-file description.

When the FROM identifier option is used, it makes the RELEASE
statement equivalent to the statement MOVE identifier TO
sort-record-name, followed by the statement RELEASE.

Sort Feature 247

RETURN/EXIT statements

Sort-record-name and identifier must not refer to the same storage
area. A move with the rules for group items is effected from
identifier, using the length of the record-name associated with the SD
entry.

After the RELEASE statement is executed, the logical record is no
longer available. When control passes from the input procedure, the
file consists of those records that were placed in it by the execution
of RELEASE statements.

RETURN statement

The RETURN statement obtains individual records in sorted order from
the final phase of the sort program.

r-------------------~--,
I Format I
~--~
I I
I RETURN sort-file-name RECORD [INTO identifier] I
I I
I AT END imperative-statement I
I I l __ J

sort-file-name is the name given in the sort-file-description entry
that describes the records to be sorted.

All references to records retrieved by a RETURN statement must be in
terms of the record description(s) associated with the SD entry, unless
the INTO option is specified. The retrieved record may, optionally, be
moved to the user's own area and be referenced as appropriate.

A RETURN statement may only be used within the range of an output
procedure associated with a SORT statement for file-name-i.

The identifier must be the name of a working-storage area or an
output record area. Use of the INTO option has the same effect as the
MOVE statement for alphanumeric items.

The imperative-statement in the AT END phrase specifies the action to
be taken when all the sorted records have been obtained from the sorting
operation.

After execution of the imperative-statement in the AT END phrase, no
RETURN statements may be executed within the current output procedure.

EXIT statement

The EXIT statement may be used as a common e~d point for input or
output procedures as with procedures executed through a PERFORM
statement.

r--,
I Format I
~--~
I I
I paragraph-name. EXIT. I
I I l __ J

248 part V -- Special Features

When used in this manner, the EXIT statement must appear as the only
statement in the last paragraph of the input or output procedure.

,SJ?ECIAL-,REr;is~!~fFPR;;:~Tj,,\; '('

, ,.Four,: speQiai,' 'r~<1J-s~r;s:
, 'These "regist¢rs" :praviqe 'a', tr" ,lE,,~, ,bJ:,~, j,'>(:xt •.

't}se;r ciTld ".the, Sort, Feat\lr;~~':~,
J>e:r::fprmanc,e- " 'i'J:,.; :,'l,':\',

: . : ..r~. , L

:.:""'t;F:'L;+f,',, .
,. ". . The 'f'ix:st . three ' .. :regi'ster\~ : /nIalY .:hav,e, ;~clqt)~.1;:. ·i:JLn:f:{ql:;nlCm.l~Qr~: jt:)t
thewat:."opj'ect: 'time j~~ .th~'u~",$:pq""".'.",",· :, ... , ... ,,,,,,,,!,

:,.'()~,,',stat~in~nts··:S:uoh:.~~',~PVE;.:'::::lHd'YlWe,:r:·i:'
'!¥f~:,:l;:~,~s:" opera,ndS"irf'ACCEPTi; >q:r:SP,IJAYi',"
:l.n$o~mCit:~.oI,l;'in~st:.:,:oe':pa$~ed:';b~fQre:,'t~f.{:,
::l:-¢gfst~r::? "Gfre;':initi~liz e'd::t;;~,~er(> "b.y, j:~
,':af,tfe~':,a:'$ort':p:rocedur~,;:is:,'~~equ£e<l."::Y~h~~ i' '. '., ,'i.f),1 ~.~< ,~:~ :r~(~'
;SORT 'siateinents;':~xl1':va~ues:::ijn. t:h~,,7;eg:i:st~,1;is\cit:'i::he, C(JtmJ:U.iE~uJLlo,:n

, 'sotting> ()peratiox(~will:;Re':>i~rl ';the,~:eg~,$Bet:s: :~t.(",t;J~e":QE~Jl;ml'~':tg:i
"tint~s"'m,()ditie:Cl,~"";,,',, ;'~,;:, ,,':,~,::-,:,::,:':' ':: ':i';<'i:j:.~·:J.:? '~::, ,;", :',' ,:Y',
,'f~'~;:SoRT'"'FI1E':;SI.z,E is' the ~'riaime"pf': a binaciy,' "a~t~,: item ,'~hd~~' ,l?,~', 0'111l,lUt

,' . ~ :'" '. ..: . '. .'!' . . .' . x. : .' '. . . (. . . :.,' ".'., :' . : ". ~ ." : '. .".;. <",! • r .·1
;59; {':~).',::Lt",j.S' use(i ,.;fpr:'J+h,e,,;estim,aJ:~l~d:numb~:r::::,()f,,:r:~C:?JJ::~q$':.i.
,t(),','be' S9r't,~g.,,':I,i: .. ~o.RT~ F:ILE~ ~TZ,~ 'j~s', (>rilittred "the ,1~9rt" :FE!at:,qr:'e
;as$~s ''"t:hcf,'t::thefil-e' contaTns,' ~he';max,itnulttnum~)~r:"pf,,:ieco,r:

, ,: ',C,(p;l'.':b~, :fJl"O~eS~~d~:wi~h '::tb~', 'a;y(i'i,+,Cib:J.;e'99r~'::,si:z:e ';a'nd,";nJJmh~i:::,Ct~
uIl'its'.,: .. ':;.If', 'fhe estim?, te··· ~c~eds ;:the m~x?::muitl, ,:t:he, ,estl.llla t~ . will-
i~lnored~:: ,::' '

s6wr~,GORE-~,~E 'is' :the: na.m,e;o~,'a 'binftrY,d,G\ta,j,.telTI:"w~o,S~,P~C.TU~~
'$9'<SL., .. lt ,is ,used ,to~t?ec:ify';'t:l1enumbetQf,.qy:tes,of'~torG\~ .',

, . avaiJ,:.ahl e:' to thesorting':dpera;tionif ':it,is: ,ai ~fet:ent 'frQm; th~':
," ',~ize,;;tl1~t .. ,:t:h~' ;po,~:t;;: Jfea~ure" ,wo\l;+d ;I)ormally, ,~',e •

. ···· •• ·~t~oD~~~i~~:~~~!~~;iii:ft:t~r~i~.;::t~~~·~~tjTI:e.CTn"'qttnot:;; '~:
'mdst:"'~~Cq:cd~:;ln::'::t::h~~":i~le,"i's,::s~n1f'icatitii,'diff~~'ent:I'f~Om:'th~,
"av€<rac;i,e· .. ',i:ec9rFi<:1~'~<Jtti:,:,:,:p~t~Oilttftice, '.is,·~::im,Iti()~~4::)~y,:':~pe~~fy,in<J',:,
mo.st'; ~~eq'uentlY"opeu~rin<j:,r:ecord",le11-9tb,.:'·'Lf:,S~T~,MODE"',S,IZE·i;s' i

omi:tt:.'ea ", ,:tl?-e'.averfl,g~:,:l'e,~gthiS' ~s ~umt?Cl ~< '}'-,()z-, : example'" .. if,<~:eco'r~:~ 'i,'
'vary'in'length from: 20 to "100'bytes:;',but~~ost,re,Gorasare 3,O,byt$
long, the" 'Value '30 sho(lldbe mo'ved ,to' $ORT-MoOE""SIZE~ The max:iim~
record length ,handled byttie Sort Feature is -32"OOO~ bytes.

,. , •• h • • ••• " •••• , •••• ,."; ,

4 .: SORT~RETORN,is the name of a
S9(4). It'containsa' return

, sorting ope r,at iOI1 to"Signify
of ,the sort operation. '

~n example of how variable infotmation
Feature by use of a register is:

ACCEPT FILE-SIZE FROM CONSOLE.
MOVE FILE-SIZE TO SORT-FILE-SIZE.

Sort Feature 249

Sort -- Sample program

SAMPLE PROGRAM USING THE SORT FEATURE

This example (Figure 44) illustrates a sort based on a sales contest.
The records to be sorted contain data on salesmen: name and address,
employee number, department number, and pre-calculated net sales for the
contest period.

The salesman with the highest net sales in each department wins a
prize, and smaller prizes are awarded for second highest sales, third
highest, etc. The order of the SORT is (1) by department, the lowest
numbered first (ASCENDING KEY DEPT); and (2) by net sales within each
department, the highest net sales first (DESCENDING KEY NET-SALES).

The records for the employees of departments 7 and 9 are eliminated
in an input procedure (SCREEN-DEPT) before sorting begins. The
remaining records are then sorted, and the output is placed on another
file for use in a later job step.

r--,
000005 IDENTIFICATION DIVISION.
000010 PROGR&~-ID. CONTEST.
000015 ENVIRONMENT DIVISION.
000016 CONFIGURATION SECTION.
000017 SOURCE-COMPUTER. IBM-360-F50.
000018 OBJECT-COMPUTER. IBM-360-F50.
000019 SPECIAL-NAMES. SYSLST IS PRINTER.
000020 INPUT-OUTPUT SECTION.
000025 FILE-CONTROL.
000030 SELECT NET-FILE-IN ASSIGN TO SYS008-UT-2400-S.
000035 SELECT NET-FILE-OUT ASSIGN TO SYS007-UT-2400-S-S0RTOUT.
000040 SELECT NET-FILE ASSIGN TO 3 SYS001-UT-2400-S.
000050 DATA DIVISION.
000055 FILE SECTION.
000060 SD NET-FILE
000065 DATA RECORD IS SALES-RECORD.
000070 01 SALES-RECORD.
000075 02 EMPL-NO
000080 02 DEPT
000085 02 NET-SALES
000090 02 NAME-ADDR
000095 FD NET-FILE-IN

PICTURE 9(6).
PICTURE 9(2).
PICTURE 9(7)V99.
PICTURE X(55).

000096 LABEL RECORDS ARE OMITTED
000100 DATA RECORD IS NET-CARD-IN.
000105 01 NET-CARD-IN.
000110 02 EMPL-NO-IN
000115 02 DEPT-IN
000120 02 NET-SALES~IN

000125 02 NAME-ADDR-IN
000130 FD NET-FILE-OUT

PICTURE 9(6).
PICTURE 9(2).
PICTURE 9(7)V99.
PICTURE X(55).

00013l LABEL RECORDS ARE OMITTED
000135 DATA RECORD IS NET-CARD-OUT.
000140 01 NET-CARD-OUT.
0001l~5 02 EMPL-NO-OUT PICTURE 9 (6).
0001'50 02 DEPT-OUT PICTURE 9(2).
000155 02 NET-SALES-OUT PICTURE 9(7)V99.

1000160 02 NAME-ADDR-QUT PICTURE X(55). l ___ _

Figure 44. Sample Program Using the SORT Feature (Part 1 of 2)

250 Part V -- Special Features

Sort -- Sample Program

r--,
000165
000170
000175
000180
000185
000190
000195
000200
000205
000210
000215

1000220
1000225
1000230
1000235
1000240
1000245
1000250
1000255
1000260
1000265
1000270
1000275
1000280
1000285
1000290
1000295
1000300
1000305
1000310
1000315
1000320
1000325
1000330
1000335
1000340

PROCEDURZ DIVISION.
ELIM-DEPT-7-9-NO-PRINTOUT.

SORT NE'r- FILE
ASCENDING KEY DEPT,
DESCENDING KEY NET-SALES
INPUT PROCEDURE SCRE~N-DEPT
GIVING NET-FILE-OUT.

CHECK-RESULTS SECTION.
C-R-l.

OPEN INPUT N£T-FILE-OUT.
C-R-2.

READ NET-FILE-OUT AT END GO TO C-R-FINAL.
DISPLAY EMPL-NO-OUT DEPT-OUT NET-SALES-OUT

NAr.-lE-ADDR-OUr UPON PRINTER.
C-R-3.

GO TO C-R-2.
C-R-FINAL.

CLOSE NET-FILE-OUT.
STOP RUN.

SCREEN-DEPT SECTION.
S-D-l.

OPEN INPU~ NET-FILE-IN.
S-0-2.

READ NET-FILE-IN AT END GO TO S-D-FINAL.
DISPLAY EtllPL-NO-IN DEPT-It~ NET-ShLES-IN

NA~£-ADDR-IN UPON PRINTER.
S-D-3.

IF DEPT-IN = 7 OR 9 GO TO S-D-2
ELSE

S-D-FINAL.

MOVE NET-CARD-IN TO SALES-RECORD,
RELEASE SALES-RECORD,
GO TO S-D-2.

CLOSE NET-FILE-IN.
S-D-El'm.

EXIT. l __ J

Figure 44. Sample Program Using the SORT Feature (Part 2 of 2)

Sort Feature 251

Report Writer--Description

REPORT WRITER FEATURE

The Report Writer Feature permits the programmer to specify the
format of a printed report in the Data Division, thereby miniITizing the
amount of Procedure Division coding he would have to write to create the
report.

A printed report consists of the information reported and the format
in which it is printed. Several reports can be produced by one program.

In the Data Division, the programmer gives the name(s) and describes
the format(s) of the report(s) he wishes produced. In the Procedure
Division, he writes the statements that produce the report(s).

At program execution time, the report in the format defined is
produced -- data to be accumulated is summed, totals are produced,
counters are stepped and reset, and each line and each page is printed.
Thus, the programmer need not concern himself with the details of these
operations.

DATA DIVISION -- OVERALL DESCRIPTION

In the Data Division, the programmer must write an FD entry that
names the output file upon which the report is to be written, and must
also name the report itself. A report may be written on two files at
the same time.

At the end of the Data Division, he must add a Report Section to
define the format of each report named. In the Report Section, there
are two types of entries:

1. The Report Description Entry (RD) which describes the physical
aspects of the report format.

2. The report group description entries which describe the data items
within the report and their relation to the report format.

In the report description entry, the programmer specifies the maxirrum
number of lines per page, where report groups are to appear on the page,
and which data items are to be considered as controls.

Controls govern the basic format of the report. When a control
changes value -- that is, when a control break occurs -- special actions
will be taken before the next line of the report is printed. Controls
are listed in a hierarchy, proceeding from the most inclusive down to
the least inclusive. Thus, by specifying HEADING and FOCTING controls,
the programmer is able to instruct the Report Writer to produce the
report in whatever format he desires.

For example, in the program at the end of this chapter, the hierarchy
of controls proceeds from the highest (FINAL) to an intermediate control
(MONTH) to the minor control (DAY-1). DAY-1 is the minor control since,
if MONTH changes, DAY-1 also must change. Whenever any control changes,
special actions are performed by the Report Writer -- sum information is
totaled, counters are reset, special information is printed, and so
forth -- before the next detail line is printed.

The report group description entries describe the characteristics of
all data items contained within the report group: the format of each
data item present, its placement in relation to the other data items
within the report group, and any control factors associated with the

252 Part V Special FeatUres

Report writer -- Description

group. Information to be presented within a report group can be
described in three ways:

• as SOURCE information, which is information from outside the report

• as SUM information, which is the result of addition operations upon
any data present, whether SOURCE information or other SUM
information

• as VALUE information, which is constant information

Through the RD and the report group description entries, the
programmer has thus defined completely the content; the format, and the
summing operations necessary to produce the desired report.

PROCEDURE DIVISION ~- OVERALL DESCRIPTION

In the Procedure Division, the programmer instructs the Report Writer
to produce the report through the use of three Report writer statements:
INITIATE, GENERATE, and 'TERMINATE.

The INITIATE statement performs functions in the Report Writer
analogous to the OPEN statement for individual files.

The GENERATE statement automatically produces the body of the report.
Necessary headings and footings are printed, counters are incremented
and reset as desired, source information is obtained, and sum
information is produced, data is moved to the data item(s) in the report
group description entry, controls are tested, and when a control break
occurs, the additional lines requested are printed, as well as the
detail line that caused the control break. All of this is done
automatically, thus relieving the programmer of the responsibility for
writing detailed tests and looping procedures that would otherwise be
necessary.

The TERMINATE statement completes the processing of a report. It is
analogous to the CLOSE statement for individual files.

In the Declaratives portion of the Procedure Division, the programmer
may also specify a USE BEFORE REPORTING procedure for report group. In
this procedure, he is able to specify any additional processing he
wishes done before a specific report group is printed.

Two special registers are used by the Report writer feature:

LINE-COUNTER -- which is a numeric counter used by the Report Writer to
determine when a PAGE HEADING and/or a PAGE FOOTING report group is
to be presented. The maximum value of LINE-COUNTER is based on the
number of lines per page as specified in the PAGE LIMIT(S) clause.
LINE-COUNTER may be referred to in any Procedure Division
statement.

PAGE-COUNTER -- which is a numeric counter that may De used as a SOURCE
data item in order to present the page number on a report line.
The maximum size of PAGE-COUNTER is based on the size specified in
the PICTURE clause associated with an elementary item whose SOURCE
IS PAGE-COUNTER. This counter may be referred to by any Procedure
Division statement.

Figure 46, at the end of this chapter, gives an example of a Report
Writer program for a manufacturer's quarterly report.

Report Writer Feature 253

FD Entry/REPORT Clause

Figure 47, which follows the program, shows the report that would oe
produced.

DATA DIVISION CONSIDERATIONS FOR REPORT WRITER

The names of all the reports to be produced must be named in the File
Section of the Data Division. An entry is required in the FD entry to
list the names of the reports to be produced on that file. A Report
Section must be added at the end of the Data Division to define the
format of each report.

FILE DESCRIPTION

The File Description furnishes information concerning the physical
structure, identification, and record-names pertaining to a given file.

r--,
I General Format I
~--~

FD file-name

[BLOCK CONTAINS Clause]
[RECORD CONTAINS Clause]

'[RE<1QlWIiNG '~~ plilU$,el
LABEL RECORDS Clause
[VALUE OF Clause]
[~,;~,'~c:J!'a.us~]
REPORT Clause.

I
I
I
I
I
I
I
I , ,
I __ J

A discussion of all the above-mentioned clauses appears in "Data
Divisioll • n ,A description of the REPORT clause, th~RECOJIDI.NG: MODE
~):~,~:t~jit;t¥~ulQ~,ll~lol~~ and the RECORD CONTAINS clause for a
file on which a report is produced follows.

REPORT Clause

Each unique report-name must appear in the REPORT clause of the FD
entry (or entries> for the file(s) on which the report(s) is to be
produced. The REPORT clause cross references the description of Report
Description entries with their associated File Description entry.

r--,
, fur~t ,
~--~ , ,

"

IREPORT IS I I, report-name-l [report-name-2J •••
, REPORTS ARE I
, I L __ J

254 Part V -- special Features

'RECORDINGMODE/DATARECORDSjRECORD CONTAINS Clauses

Each File Description entry for standard sequential OUTPUT files
within the File Section may include a REPORT clause containing the names
of one or more reports. These reports may be of different sizes,
formats, etc., and the order in which their names appear in the clause
is not significant.

Each unique report-name listed in an FD entry must be the subject of
an RD entry in the Report section. A given report-name may appear in a
maximum of two REPORT clauses.

,., ,

~:' <, Th~··.:.·UCQRDr~G.·:·.M01)E~ cla:~se ~i~~ us.e"d to s~p·~c~'fy' the··:··~f.Qrmat:> of t·h~
'logical 'records withIIi "the ',file. If t:h~S' clause,:is,orr.itted t the'"
:'roec9rding mode is, determined as d~sc:r::;ibed.' i~'~nDa:t~:1'"D.tvfs'iori.'~ ,:'

,,' ',., , ,;'-

,:.'",t~"th~:'D,~TA,·t{E<::ORPSclause is: s'pecif.ied, artd, the' ii'le'is used for
"'()1itput .. ",t,l1e':~fTER.·AnVANeING 'option' inus,the: used wpen w'ri.tin<Jrecords

pamecLin th~s clause'.' ' ' ,
'"

RECORD CONTAINS Clause

The RECORD CONTAINS clause enables the user to specify the maxim~m
size of his report record.

r--,
I Format I
~--~
I I
I RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS I
I I L __ J

The specified size of each report record must include the carriage
control/line spacing character, and the CODE character, if the CODE
option is used. If the RECORD CONTAINS clause is omitted, the compiler
assumes a default size of 133 characters.

For variable-length records, the size of each print line will be
integer-2 characters, and the size of each blank line required for
spacing will be 17 characters. For fixed-length records, the size of
each print line and each blank line required for spacing will be
integer-2 characters.

For further information on the RECORD CONTAINS clause, see "Data
Division."

Report writer Feature 255

RD (Report Description) Entry

REPORT SECTION

The Report Section consists of two types of entries for each report;
one describes the physical aspects of the report format, the other type
describes conceptual characteristics of the items that make up the
report and their relationship to the report format. These are:

1. Report Description entry (RD)

2. Report group description entries

The Report Section must begin with the header REPORT SECTION.

Report Description Entry

The Report Description entry contains information pertaining to the
overall format of a report named in the File Section and is uniquely
identified by the level indicator RD. The clauses that follow the name
of the report are optional, and their- order of appearance is not
significant.

The entries in this section stipulate:

1. The maximum number of lines that can appear on a page.

2. Where report groups are to appear on a page.

3. Data items that act as control factors during presentation of the
report·

r--,
I General F'ormat I
~--~
I I
I REPORT SECTION. I
I I
I RD report-name I
I (CODE Clause] I
I (CONTROL Clause] I
I [PAGE LIMIT Clause]. I
I I L __ J

RD is the level indicator.

Report-name is the name of the report and must be unique. The
report-name must be specified in a REPORT clause in the File Description
entry for the file on which the report is to be written.

CODE Clause

The CODE clause is used to specify an identifying character added at
the beginning of each line produced. The identification is meaningful
when more than one report is written on a file.

256 Part V -- Special Features

CODE/CONTROL Clauses

r--,
I Format I
~--~
I I
I 'WiTH' CODE mnemonic-name I
I I L ___ - ________________ J

Mnemonic-name must be associated with a sinole character literal used
as function-name-l in the SPECIAL-NA~lliS paragraph in the ~nvironment
Division. The identifying character is appended to the beginning of the
line, preceding the carriage control/line spacing character. rhis
clause should not be specified if the report is to be printed on-line.

CONTROL Clause

The CONTROL clause indicates the identifiers that specify the control
hierarchy for this report, that is, the control breaks.

r---~,

I Format I
~~---~
I I
I lCONTROL IS I ,FINAL i I
I ~ iidentifier-l [identifier-2]... \ !
I CONTROLS ARE~ (FINAL identifier-l [identifier-2] .•. ~ I
I I L __ J

A control is a data item that is tested each time a detail report
group is generated. If the test indicates that the value of the data
item (i.e., CONTROL) has changed, a control break is saia to occur, and
special action (described below) is taken before printing the detail
line.

FINAL is the highest level control. (It is the one exception to the
statement that controls are data itenls.) The identifiers specify the
control hierarchy of the other controls. Identifier-l is the major
control, identifier-2 is the intermediate control, etc. The last
identifier specified is the minor control. The levels of the controls
ar~, indicated by the "orde,:r ,in,whicht~e! arewri tten. "rI~ALneed::llcot,,:be
i~~~~':~~,,;i;tipie.,~R?Ii,~:clau~,e!. ':even,:ifa'COXURGL,llf!2illIt'Ki F'INA'L,or! '
~,~_,~,!1~:'S'~g.J.T:ted., -",""" "'I,," " ,',

The control identifiers must each specify different data items; that
is, their descriptions must not be such that they occupy (partially or
completely) the same area of storage, or overlap in any way.

When controls are tested, the highest level control specified is
tested first, then the second highest level, etc. When a control break
is found for a particular level, a control break is implied for each
lower level as well. A control break for FINAL occurs only at the
beginning and ending of a report (i.e., before the first detail line is
printed and after the last detail is printed).

The action to be taken as a result of a control break depends on what
the programmer defines. He may define a CONTROL HEADING report group
and/or a CONTROL FOOTING group or neither for each control.

Report Writer Feature 257

PAGE LIMIT Clause

The control footings and headings that are defined are printed prior
to printing the originally referenced detail. They are printed in th~
following order: lowest level control footing, next higher level
control footing, etc., up to and including the control footing for the
level at wh~ch the control break occurred; then the control heading for
that level, then the next lower level control heading, etc.,·down to and
including the minor control heading; then the detail is printed. If, in
the course of printing control headings and footings, a page condition
is detected, the current page is ejected and a new page begun. If the
associated report groups are given, a page footing and/or a page heading
are also printed.

The CONTROL clause is required when CONTROL HE&DING or CONTROL
FOOTING report groups ',~~~li:~:rJ~:: are specif ied.

The identifiers specified in the CONTROL clause are the only
identifiers referred to by the RESET and TYPE clauses in a report group
description entry for this report. The identifiers must be defined in
the File or Working-Storage Section of the Data Division.

PAGE LIMIT Clause

The PAGE LIMIT clause indicates the specific line control to be
maintained within the logical presentation of a page, i.e., it describes
the physical format of a page of the report.

r--,
I Format I
~--~
I I
II [LIr.UT IS] 1 LINE ! II PAGE integer-l
I LIMI TS ARE LINES I
I I
1· [HEADING integer-2] I
I [FIRST DETAIL integer-3] I
I [LAST DETAIL integer-41 I
I [FOOTING integer-51 I
I I L __ J

If this clause is not specified, PAGE-COUNTER and LIN£-COUNTER
special registers are not generated.

The PAGE LIMIT clause is required when page format must be controlled
by the Report Writer.

integer-l:

integer-2 :

The PAGE LIMIT integer-l LINES clause is required to
specify the depth of the report page; the depth of the
report page mayor may not be equal to the physical
perforated continuous form often associated in a report
with the page length. The size of the fixed data-name,
LINE-COUNTER, is the maximum numeric size based on
integer-l lines required for the counter to prevent
overflow.

The first line number of the first heading print group is
specified by integer-2. No print group will start
preceding integer-2, i.e., integer-2 is the first line on
which anything may be printed.

258 Part V -- Special Features

integer-3:

integer-4:

integer-5:

PAGE LHHT Clause

The first line number of the first normal print group
(body group) is specified by integer-3. No DETAIL,
CONTROL HEADING, or CONTROL FOOTING print group will start
before integer-3.

The last line number of the last nonfooting body group is
specified by integer-4. No DETAIL or CONTROL HEADING
print group will extend beyond integer-4.

The last line number of the last CONTROL FOOTING print
group is specified by integer-5. No CONTROL FOOTING print
group will extend beyond integer-5. PAGE FOOTING print
groups will follow integer-5.

Using the parameters of the PAGE LIMIT clause, the Report Writer
establishes the areas of the page where each type of report group is
allowed to be printed. The following are the page areas for each type
of report group:

1. A REPORT HEADING report group can extend from line integer-2 to
line integer-1, inclusive. If the REPORT HEADING report group is
not on a page by itself, the FIRST DETAIL integer-3 clause must be
present in the PAGE LIMIT clause of the report.

2. A PAGE HEADING report group may extend from line integer-2 to line
integer-3 minus 1, inclusive. If a PAGE HEADING report group is
specified in the report description, the FIRST DETAIL integer-3
clause must be present in the PAGE LIMIT clause of the report. A
PAGE HEADING report group that follows a REPORT HEADING report
group on the same page must be able to be printed in the area of
the page defined in this rule.

3. CONTROL HEADING report groups and DETAIL report groups must be
printed in the area of the page that extends from line integer-3 to
line integer-4, inclusive.

4. CONTROL FOOTING report groups must be printed in the area of the
page extending from line integer-3 to line integer-5, inclusive.

5. A PAGE FOOTING report group may extend from line integer-5 plus 1
to line integer-l, inclusive. If PAGE FOOTING is specified in the
report description, either the FOOTING integer-5 or LAST DETAIL
integer-4 clause must be present in the PAGE LI~JT clause of the
report.

6. A REPORT FOOTING report group can extend from line integer-2 to
line integer-l, inclusive. If the REPORT FOOTING report group is
not on a page by itself, either the FOOTING integer-5 or LAST
DETAIL integer-4 clause must be present in the PAGE LIMIT clause of
the report.

Figure 45 pictorially represents page format report group control
when the PAGE LIMIT clause is specified.

Report Writer Feature 259

PAGE LIMIT Clause

integer-2

integer-3

integer-4

integer-5

integer-l

REPORT

HEADING/

FOOTING

,r

PAGE

HEADING

~

DETAIL &

CONTROL

HEADING

+

CONTROL

FOOTING

r

PAGE

rOOTING

+

Figure 45. Page Format When the PAGE LIMIT Clause is Specified

The PAGE LIMIT clause may be omitted when no association is desired
between report groups and the physical format of an output page. In
this case, relative line spacing must be indicated for ~ll report groups
of the report.

If absolute line spacing is indicated for all the report groups, none
of the integer-2 through integer-5 controls need be specified. If any
of these limits are specified for a report that has only absolute line
spacing, the limits are ignored.

If relative line spacing is indicated for any report group, all LINE
NUMBER and NEXT GROUP spacing must be consistent with the controls
specified or implied in the PAGE LIMIT clause.

If PAGE LIMITS integer-l is specified and some or all of the HEADING
integer-2, FIRST DETAIL integer-3, LAST DETAIL integer-4, FOOTING
integer-5 clauses are omitted, the following implicit control is assumed
for all omitted specifications:

1. If HEADING integer-2 is omitted, integer-2 is considered to be
equivalent to the value 1, that is, LINE NUMBER one.

2. If FIRST DETAIL integer-3 is omitted, integer-3 is considered to be
equivalent to the value of integer-2.

3. If LAST DETAIL integer-4 is omitted, integer-4 is considered to be
equivalent to the value of integer-5.

4. If FOOTING integer-5 is omitted, integer-5 is considered to be
equivalent to the value of integer-4. If both LAST DETAIL
integer-4 and FOOTING integer-5 are omitted, integer-4 and
integer-5 are both considered to be equivalent to the value of
integer-i.

Only one PAGE LIMIT clause may be specified for a Report Description
entry.

• Integer-i through integer-5 must be positive integers.

• Integer-2 through integer-5 must be in ascending order. Integer-5
must not exceed integer-i.

260 Part V -- Special Features

Report Group Description Entry

Report Group Description Entry

A report comprises one or more report groups. Each report group is
described by a hierarchy of entries similar to the description of a data
record. There are three categories of report groups: heading groups,
detail groups, and footing groups. A CONTROL HEADING, DETAIL, or
CONTROL FOOTING report group may also be referred to as a body group.

The report group description entry defines the format and
characteristics for a report group. The relative placement of a
particular report group within the hierarchy of report groups, the
format of all items, and any control factors associated with the group
are defined in this entry.

Schematically, a report group is a line, a series of lines, or a null
(i.e., nonprintable) group. A report group is considered to be one unit
of the report. Therefore, the lines of a report group are printed as a
unit.

A null group is a report group for which no LINE or COLUMN clauses
have been specified (that is, a nonprintable report group).

The report group description entry defines the format and
characteristics applicable to the type of report group.

1. For all report groups that are not null groups, the description
entry indicates where and when the report group is to be presented.

2. For all report groups, the description entry indicates when the
nonprinting functions of the report group, such as summation" are
to be performed.

3. For all report groups except DETAIL, the description entry allows
for the execution of a user-specified procedure prior to printing a
report group. If a report group is a null group, the execution of
the user procedure occurs in the same manner as though the report
group were printed.

4. For CONTROL FOOTING report groups, the description entry indicates
the userGs summation algorithm.

Report group names are required when reference is made in the Procedure
Division:

• to a DETAIL report group by a GENERATE statement.

• to a HEADING or FOOTING report group by a USE sentence.

Report group names are required when reference is made in the Report
Section to a DE'TAIL report group by a SUM UPON clause.

Except for the data-name clause which, when present, must immediately
follow the level number, the clauses may be written in any order.

Report-name is the only qualifier available for report groups and SUM
counters.

Note: A report group description entry is not a true hierarchical
structure like a record in the File or Working-Storage Sections. In the
Report Section, an 01-level item does not define a continuous area of
storage occupied by subordinate items. For this reason, the 01
data-name may not be used as a qualifier for what outwardly appear to be
subordinate items. Since a CONTROL FOOTING in a given report may only
roll forward SUM counters defined within the same RD, qualification of
the SUM counter is implicit and never necessary. In the Procedure
Division, a SUM counter data-name may be qualified by the appropriate RD
report-name.

Report Writer Feature 261

Report Group Description Entry--Formats

r--,
I General Format 1 I
~--~
I I
I 01 [data-name-1] I
I [LINE Clause] I
I [HEXT GROUP Clause] I
I TYPE Clause !
I [USAGE Clause).. I
I I L __ J

r---,
I General Format 2 I
~--~
I I
I level number [data-name-1] I
I [LINE clause] I
I [USAGE clause].. I
I I L __ J

r--,
I General Format 3 I
~---~

level number [data-name-1]
[BLANK WHEN ZERO Clause]
[COLUMN Clause]
[GROUP Clause]
[JUSTIFIED Clause]
[LINE Clause]
(PICTURE Clause]
[RESET Clause]

{
SOURCE}
SUM Clause
VALUE

[USAGE Clause] ..

I
I
I
I
I
I
I
I
I
I
I
I
I
~ __ J

r---,
I General Format 4 I
~--~

01 [data-name-1]
[BLANK WHEN ZERO Clause]
[COLUMN Clause]
[GROUP Clause]
[JUSTIFIED Clause]
[LINE Clause]
(NEXT GROUP Clause]
PICTURE Clause
[RESET Clause]

{~~~RCE} Clause
VALUE

TYPE Clause
[USAGE Clause] ..

---~

262 :?art V special Features

Report Group Description

For~ is used to indicate a report group. A report group
description must contain a report group entry (level-01) and it must be
the first entry. A report group extends from this entry either to the
next report group level-01 entry or to the end of the next report
description. A null report group may contain only a Format 1 report
group entry.

Forrrat 2 is used to indicate a group item. A group item entry may
contain a level number from 02 through 48; this entry has the following
functions:

Report Writer Feature 262.1

LINE Clause

• If a report group has more than one line and one of the lines
contains more than one elementary item, a group item entry may be
used to indicate the LINE number of the subordinate elementary
items.

• If a group item entry contains no LINE clause and there are no SUM
counters subordinate to it, its only function is documentation.

Format 3 is used to indicate an elementary item. An elementary item
entry may contain a level number from 02 through 49; this entry has the
following functions:

• An elementary item entry may be used to describe an item that is to
be presented on a printed line. In this case, a COLUMN clause, a
PICTURE clause, and either a SOURCE, SUM, or VALUE clause must be
present •

• An elementary item entry in a DETAIL report group may be used to
indicate to the Report Writer what operands are to be summed upon
presentation of the DETAIL report group •

• An elementary item entry in a CONTROL FOOTING report group may be
used to define a SUM counter. (See SUM Clause.)

Format 4 is used to indicate a report group that consists of only one
elementary item. If Format 4 is used to define the report group instead
of Format 1, it must be the only entry in the group.

LINE Clause

The LINE clause indicates the absolute or relative line number of
this entry in reference to the page or previous entry.

r--,
I Format I
r--~
I I
I linteger-l I I I LINE NUMBER IS PLU§ integer-2 I
I NEX:r PAGE I
I I l __ J

Each line of a report must have a LINE clause associated with it.
For the first line of a report group, the LINE claus€ must be given
either at the report group level or prior to or for the first elementary
item in tne line. For report lines other than the first in a report
group, the LINE clause must be given prior to or for the first
elementary item in the line. When a LINE clause is encountered,
subsequent entries following the entry with the LINE clause are
implicitly presented on the same line until either another LINE clause
or the end of the report group is encountered.

Integer-l and integer-2 must be positive integers.

LINE NUMBER IS integer-l is an absolute LINE clause. It indicates
the fixed line of the page on which this line is to be printed.
LINE-COUNTER is set to the value of integer-l and is used for printing
the items in this and the following entries within the report group
until a different value for the LINE-COUNTER is specified.

Report Writer Feature 263

LINE Clause

LINE NUMBER IS PLUS int~er-2 is a relative LINE clause. The line is
printed relative to the previous line either printed or skipped.
LINE-COUNTER is incremented by the value of integer-2 and is used for
printing the items in this and the following entries within the report
group until a different value for the LINE-COU~T£R is specified.
Exceptions to this rule are discussed later.

LINE NUMBER IS NEXT PAGE indicates that this report group is to be
printed on the next page, not on the current page. This LINE clause may
appear only in a report group entry or may be the LI~E clause of the
first line of the report group.

Within any report group, absolute LINE NUMBER entries must be
indicated in ascending order, and an absolute LINE NU~IDER cannot be
preceded by a relative LINE NUMBER. If the first line of the first body
group that is to be printed on a page contains either a relative LINE
clause or a LINE NUMBER IS NEXT PAGE clause, the line is printed on line
FIRST DETAIL integer-3. However, if the LINE-COUNTER contains a value
that is greater than or equal to FIRST DETAIL integer-3, the line is
printed on line LINE-COUNTER plus 1~ This value of LINE-COUNTER was set
by an absolute NEXT GROUP clause in the previously printed body group
(see rules for NEXT GROUP).

If the report group entry of a body group contains a LINE NUMBER IS
NEXT PAGE clause and the first line contains a relative LINE clause, the
first line is printed relative to either FIRST DETAIL integer-3 or
LINE-COUNTER, whichever is greater. This value of LINE-COUNTER was set
by an absolute NEXT GROUP clause in the previously printed body group.

The following are the rules for the LINE clause by report group type:

1. REPORT HEADING

• LINE NUMBER IS NEXT PAGE cannot be specified in the report group.

• The first line of the report group may contain an absolute or
relative LINE clause.

• If the first line contains a relative line clause, it is relative
to HEADING integer-2.

2. PAGE HEADING

• LINE NUMBER IS NEXT PAGE cannot be specified in the report group.

• The first line may contain either an absolute or relative LINE
clause.

• If the first line contains a relative LINE clause, it is relative
to either HEADING integer-2 or the value of LINE-COUNTER,
whichever is greater. The value in LINE-COUNThR that is greater
than HEADING integer-2 can only result from a REPORT HEADING
report group being printed on the same page as the PAGE HEADING
report group.

3. CONTROL HEADING, DETAIL, and CONTROL FOOTING

• LINE NUMBER IS NEXT PAGE may be specified in the report group.

• The first line of the report group may contain either an absolute
or relative LINE clause.

264 Part V -- Special Features

NEXT GROUP Clause

4. PAGE FOOTING

• LINE NUMBER IS NEXT PAGE cannot be specified in the report group.

• The first line of the report group may contain an absolute or
relative LINE clause.

• If the first line contains a relative LINE clause, it is relative
to FOOTING integer-5.

5. REPORT FOOTING

• If the report group is to be printed on a page by itself, LINE
NUMBER IS NEXT PAGE must be specified.

• If LINE NUMBEr< IS NEX'!' PAGE is the only LINE clause in the report
group description, the line will be printed on line HEADING
integer-2.

• If the report group description does not contain a LINE NUMBER IS
NEXT PAGE clause, the first line must contain an absolute or
relative LINE clause. If it contains a relative LINE clause, the
line is relative to either FOOTING integer-5 or the value of
LINE-COUNTER, whichever is greater. The value in LINE-COUNTER
that is greater than FOOTING integer-5 can only result from tht
printing of the PAGE FOOTING report group.

NEXT GROUP Clause

The NEXT GROUP clause indicates the spacing condition following the
last line of the report group.

r--,
I Format I
~--i
I I
I 1 integer-l ! I
I NEXT GROUP IS PLUS integer-2 I
I NEXT PAGE I
I I L __ J

The NEXT GROUP clause can appear only in a report group entry.
Integer-l and integer-2 must be positive integers.

Report Writer Feature 265

NEXT GROUP Clause

The following are the rules for the NEXT GROUP clause by report group
type:

1. REPORT HEADING

• If the report group is to be printed on a page ny itself, NEXT
GROUP IS NEXT PAGE must be specified in the report group
description.

• Integer-i indicates an absolute line number which sets the
LINE-COUNTER to this value after printing the last line of the
report group.

• Integer-2 indicates a relative line number which increments the
LINE-COUNTER by the integer-2 value after printing the last line
of the report group.

• An absolute or relative NEXT GROUP clause must not cause the
LINE-COUNTER to be set to a value greater than FIRST DETAIL
integer-3 minus 1.

2. PAGE HEADING, PAGE FOOTING, and REPORT FOOTING

• A NEXT GROUP clause cannot be- specified in the report group.

3. CONTROL HEADING, DETAIL, and CONTROL FOOTING

• If a NEXT GROUP clause implies a page change, the change occurs
only when the next body group is to be printed.

• The NEXT GROUP IS NEXT PAGE clause indicates that no more body
groups are to be printed on this page.

• An absolute or relative NEXT GROUP clause may cause the
LINE-COUNTER to be set to a value greater than or equal to FIRST
DETAIL integer-3 and less than or equal to FOOTING integer-5.
This is an exception to the rule which defines the page area of
CONTROL HEADING and DETAIL report groups.

• If a NEXT GROUP IS integer-1 clause causes a page change, the
value of LINE-COUNTER is set to the value of integer-i before the
formatting of the first line of the next body group to be
printed. This implies that if the first line of the next body
group to be printed contains a relative LINE NUMBER clause, the
line will be printed on line LINE-COUNTER plus 1; if the first
line contains an absolute LINE NUMBER clause that is less than or
equal to integer-i, a page will be printed which contains only
PAGE HEADING and FOOTING report groups, and the following page
will contain the body group.

• When the NEXT GROUP clause is specified for a CONTROL FOOTING
report group, the NEXT GROUP clause functions are performed only
when- a control break occurs for the control that is associated
with this report group.

If the USE proceduref,or a report group contains a MOVE 1 PRINT~SWITcij
stateme;nt, the NEXT GROUP;' clauSe functions are not performed:fol: t~:1s:
:report 'group. ' ". it;;,)

266 Part V -- special Features

TYPE Clause

TYPE Clause

The TYPE clause specifies the particular type of report group that is
described by this entry and indicates the time at which the report group
is to be generated.

r--,
I Format I
~------------------~---~

I
I

TYPE IS

REPORT HEADING}
RH
PAGE HEADING}
PH
CONTROL HEADING}
CH '
DETAIL}
DE
CONTROL FOOTING}
CF
PAGE FOOTING}
PF
~PORT FOOTING}

{
identifier-n}
FINAL

{
identifier-n}
FINAL

L __ J

The TYPE clause in a particular report group entry indicates the
point in time at which this report group will be generated as output.

If the report group is described as TYPE DETAIL or DE, then a
GENERATE statement in the Procedure Division directs the Report writer
to produce this report group. Each DETAIL report group must have a
unique data-name at level-Ol in a report.

If the report group is described as other than TYPE DETAIL or DE, the
generation of this report group is an automatic feature of the Report
Writer, as detailed in the following paragraphs.

The REPORT HEADING or RH entry indicates a report group that is
produced only once at the beginning of a report during the execution of
the first GENERATE statement. There can be only one report group of
this type in a report. SOURCE clauses used in REPORT HEADING report
groups refer to the values of data items at the time the first GENERATE
statement is executed.

The PAGE HEADING or PH entry indicates a report group that is pro
duced at the beginning of each page according to PAGE condition rules as
specified below. There can be only one report group of this type in a
report.

The CONTROL HEADING or CH entry indicates a report group that is pro
duced at the beginning of a control group for a designated identifier,
or, in the case of FINAL, is produced once before the first control
group during the execution of the first GENERATE statement. There can
be only one report group of this type for. each id~_I:1tifier and for the
~INAL entry specified in a report. In order to produce any CONTROL
H~AnING report groups, a control break must occur. SOURCE clauses used
in CONTROL HEADING FINAL report groups refer to the values of the items
at the time the first GENERATE statement is executed.

The CONTROL FOOTING or CF entry indicates a report group that is
produced at the end of a control group for a designated identifier or is

Report Writer Feature 267

TYPE Clause

produced once at the termination of a report ending a FINAL control
group. There can be only one report group of this type for each identi
fier and for the FINAL entry specified in a report. In order to produce
any CONTROL FOOTING report groups, a control break must occur. SOURCE
clauses used in CONTaOL FOOTING FINAL report groups refer to the values
of the items at the time the TERMINATE statement is executed.

The PAGE FOOTING or PF entry indicates a report group that is
produced at the bottom of each page according to PAGE condition rules as
specified below. There can De only one report group of this type in a
report.

The REPORT FOOTING or RF entry indicates a report group that is
produced only at the termination of a report. There can be only one
report group of this type in a report. SOURCE clauses used in TYPE
REPORT FOOTING report groups refer to the value of items at the time the
TERMINATE statement is executed.

Identifier-n, as well as FINAL, must be one of the identifiers
described in the CONTROL clause in the Report Description entry.

A FINAL type control break may be designated only once for CONTROL
dEADING or CONTROL FOOTING entries within a particular report
description.

Nothing precedes a REPORT HEADING entry and nothing follows a REPORT
FOOTING entry within a report.

The HEADING or FOOTING report groups occur in the following Report
Writer sequence if all exist for a given report:

REPORT HEADING (one occurrence only)
PAGE HEADING

CONTROL HEADING
DETAIL
CONTROL FOOTING

PAGE FOOTING
REPORT FOOTING (one occurrence only)

CONTROL HEADING report groups are presented in the following
hierarchical arrangement:

Final Control Heading (one occurrence only)
Major Control Heading

Minor Control Heading

CONTROL FOOTING report groups are presented in the following
hierarchical arrangement:

Minor Control Footing

Major control Footing
Final Control Footing (one occurrence only)

268 Part V -- Special Features

COLUMN Clause

CONTROL HEADING report groups appear with the current values of any
indicated SOURCE data items before the DETAIL report groups of the
CONTROL group are produced. CONTROL FOOTING report groups appear with
the previous values of any indicated SOURCE data items specified in the
CONTROL clause, just after the DETAIL report groups of that CONTROL
group have been produced.

The USE procedures specified for a CONTROL FOOTING report group that
refer to:

• source data items that are specified in the CONTkOL clause affect
the previous value of the items

• source data items that are not specified in the CONTROLS clause
affect the current value of the items

These report groups appear whenever a control break occurs. LINE NU~~ER
determines the absolute or relative positi0n of the CONTROL report
groups exclusive of the other HEADING and FOOTING report groups.

USAGE Clause

DISPLAY is the only option that may be ,specified for group and
elementary items in a Report Group Description entry (see "USAGE
Clause") .

COLUMN Clause

The COLUMN clause indicates the absolute column number on ~ne printed
page of the high-order (leftmost) character of an elementary itew.

r-----------~--,
I Format I
r--~
I I
I COLUMN NUMBEd IS integer I
I I L __ J

The COLUMN clause indicates that the leftmost character of the
elementary item is placed in the position specified by integer. If the
COLUMN clause is not specified, the elementary item, though included in
the description of the report group, is suppressed when the report group
is produced at object time.

Integer must be a positive integer.

The COLUMN number clause is given at the elementary level within a
report group even if the elementary level is a single level-Gl entry,
which alone constitutes the report group.

~iithina, ,report. group arid a par;ticular I!INE NU~~BER specification,
cdU:rMN n;uJnber 'entr'ies need' not be indicated from left to fright.

Report Writer Feature 269

GROUP INDICATE/RESET Clause

GROUP INDICATE Clause

The GROUP INDICATE clause specifies that this elementary item is to
be produced only on the first occurrence of the item afte~ any control
or page break.

r--,
I Format I
~--1
I I
I GROUP INDICATE I
I I l __ J

The GROUP INDICA'I'E clause must be specified only at the elementary
item level within a DETAIL report group.

An elementary item is not only group indicated in the first DETAIL
report group containing the item after a control break, but is also
group indicated in the first DETAIL report group containing the item on
a new page, even though 'a control break did not occur.

JUSTIFIED Clause

The JUSTIFIED clause is applicable in report group description
entries as described in "Data Division."

PICTURE Clause

The PICTURE clause is applicable in Report Group Description entries
as described in nData Division."

RESET Clause

The RESET clause indicates the CONTROL identifier that causes the SUM
counter in the elementary item entry to be reset to zero on a CONTROL
break.

r--,
I Format I
~--~
I I
II I identifier I II

RESET ON
I FINll I
I I l __ J

After presentation of the CONTROL FOOTING report group, the counters
associated with the report group are reset automatically to zero, unless

270 Part V -- Special Features

SOURCE/SUM/VALUE Clause

an explicit RESET clause is given specifying reset based on a higher
level control than the associated control for the report group.

The RESET clause may be used for progressive totaling of identifie-rs
where subtotals of identifiers may be desired without automatic -----
resetting upon producing the report group.

Identifier must be one of the identifiers described in the CONTROL
clause in the Report Description entry (RD). Identifier must be a
higher level CONTROL identifier than the CONTROL identifier associated
with the CONTROL FOOTING report group in which the SUM and RESET clauses
appear.

The RESET clause may De usej only in conjunction with a su~ clause.

BLANK WHEN ZERO_Clause

The BLANK WHEN ZERO clause is applicable here as discussed in "Data
Division."

SOURCE, SUM, or VALUE Clause

The SOURCE, SUM, or VALUE clause defines the purpose of this
elementary ite~ within the report group.

r--,
I Format I
~--~
I I

! S~RCE IS l~dentifier-ll i

I I
~--~
I I

! SUH identifier-2 f [=fier-3] ... [UPON data-namel I
I I
~--~
I I
I VALUE IS literal-1 I
I I L __ J

SOURCE: The SOURCE clause indicates a data item that is to be used as
the source for this report item. The item is presented according to the
PICTURE clause and the COLUMN clause in this elementary item entry.

The SOURCE clause has two functions:

1. To specify a data item that is to be printed

2. To specify a data item that is to be summed in a CONTROL FOOTING
report group (see SUM clause)

:;~t~,<;~t-:-;~~r_;~>~~~-r~~'~~~:-<,~~-?:~~~~F~;:;l~i\;~!,<i~;::!:~

Report Writer Feature 271

SOURCE/SUM/VALUE Clause

SUM: The SUM clause is used to cause automatic su~mation of data and
may appear only in an elementary item entry of a CONTROL FOOTING report
group. The presence of a SUM clause defines a SU~ counter. If a SUM
counter is to be referred to by a Procedure Division statement or Report
Section entry# a data-name clause must be specified with the SUM clause
entry. The data-name then represents the summation counter generated by
the Report Writer to total the operands specified immediately following
SUM. If reference is never made to a summation counter, the counter
need not be named explicitly by a data-name entry.

whether the elementary item entry that contains a SUM clause names
the summation counter or not, the PICTURE clause must be specified for
each SUM counter. Editing characters or editing clauses may be included
in the description of a SUM counter. Editing of a SUM counter occurs
only upon presentation of that SUM counter. At all other times, the SUM
counter is treated as a numeric data item. The SUM counter must be
large enough to accommodate the summed quantity without truncation of
integral digits.

An operand of a SUM clause must be an elementary numeric data item
that appears in the File, Working-Storagej,:?'pi;,~.l;~~~g? section, or is the
name of a SUM counter. Except when they are names of SUM counters, SUM
operands may be qualified, subscripted or indexed. A SUM counter that
is an operand of SUM clause must be defined in the same CONTROL FOOTING
report group that contains this SUM clause or in a CONTROL FOOTING
report group that is at a lower level in the control hierarchy of this
report ..

A SUM counter is incremented by its operands in the following manner:

• An operand that is an elementary numeric data item appearing in the
File, Working-Storage, or Linkage section is added to the SUM
counter upon the generation of a DETAIL report group that contains
this operand as a SOURCE data item; even if the operand appears in
more than one SOURCE clause of the DETAIL report group. it is added
only once to the SUM counter. The operands must appear exactly as
they are in the SOURCE claus'es 'With, rega!:dt~(),gu(1lificati0rl~
subscript~ng, "an~ ,indexing." ,',',', .If,t~es'UM :claqs~'~:<.lntai~sth~"pP~N
0~:~ti~;~~~k~Jr:z:~~;'~~:~1~~~~,."t~":ii~r};,tir:':,.~.;j8W~f:,.:.~~;~,~ ,()f

• An operand that is a SUM counter and is defined in a CONTROL FOOTING
that is at any lower level in the control hierarchy of this report
is summed before presentation of the CONTROL FOOTING in which it is
defined. This counter updating is commonly called rolling counters
forward.

• An operand that is a SUM counter and is defined in the same CONTROL
FOOTING as this SUM clause, is summed before presentation of this
CONTROL FOOTING. This counter updating is commonly called
cross-footing. SUM counter operands are added to their respective
SUM counters in the order in which they physically a~pear in the
CONTROL FOOTING report group description, i.e., left to right within
an elementary item entry and down the elementary item entries.

The UPON data-name option is required to obtain selective summation for
a particular data item that is named as a SOURCE item in two or more
DETAIL report groups. Identifier-2 and identifier-3 must be SOURCE data
~i:~rn~.,,~rl. ".,d~,i:,~:,Il.a~~~,." ",' ,~f?,~y~~~;.~~~~,<::~ritl?il~~':'~()rf)<p()F>:reg'j{t~,J:~iit
i<i~nt;;i:;f:l~:r;+,~~ ·'.iiif,en~i,fif;:Pt":3 ••• '.:.~~·9:';i"" be.i,$PtJ:RGE<:4~ta"iteWs indata~name.'
Data-name must be the name of a DETAIL report group.

The following is the chronology of summing events.

1. Cross-footing and counter rolling.

2. Execution of the USE BEFORE REPORTING procedure.

3. Presentation of the control footing if it is not a null group.

272 Part V -- Special Features

Page of GC28-6394-4, -SA -6 revised 12/03/76 by TNL GN26-0887

GENERATE Statement

4. SUM counter resetting unless an explicit RESET clause appears in
the entry that defines the SUM counter.

Note: Undefined operands in the SUM clause are not diagnosed by the
compiler, and no warning message is issued. Thus, when using the report
writer, ensure that no operand is misspelled or that each operand is
defined previously in the working storage, file, or linkage section or
is the name of some other sum-counter.

VALUE: The VALUE clause causes the report data item to assume the
specified value each time its report group is presented only if the
elementary item entry does not contain a GROUP INDICATE clause. If the
GROUP INDICATE clause is present and a given object time condition
exists, the item will not assume the specified value (see GROUP INDICATE
rules).

PROCEDURE DIVISION CONSIDERATIONS

To produce a report, the INITIATE, GENERATE, and TERMINATE statements
must be sDecified in the Procedure Division. In addition, a USE BEFORe
REPORTING declarative may be written in a Declarative Section of the
Procedure Division. This option allows the programmer to manipulate or
alter data immediately before it is printed.

GENERATE statement

The GENERATE statement is used to produce a report.

r--,
I Format I
~--~
I I
I GENERATE identifier I
I I l __ J

Identifier is the name of either a DETAIL report group or an RD
entry. If identifier is the name of a DETAIL report group, it can be
maje unique through qualification, using the associated report-name.

If identifier is the name of a DETAIL report group, the GENER~TE
statement does all the automatic operations within a Keport Writer
program and produces an actual output detail report group on the output
medium. At least one DETAIL report group must be specified.

If identifier is the name of an RD entry, the GENERAT~ statement does
all of the-automatic operations of tHe Report Writer except producing
any detail report group associated with the report. For summary
reporting, a DETAIL report group need not be specified.

Report writer Feature 213

GENERATE Statement

In summary reporting, SUM counters are algebraically incremented in
the same manner as for detail reporting. If more than one DETAIL report
group is specified in a re90rt, SUM counters are algebraically
incremented as though consecutive GENERATE statements were issued for
all the DETAIL report groups of the report. This consecutive summing
takes place in the order of the physical appearance of the DETAIL report
group descriptions. Even if there is more than one DErAIL report group
within a report, only one test for control break is made for tach
GENERATE report-name. This test is made by the Report Writer prior to
the summary reporting. After initiating a report and before terminatlng
the same report, both jetail reporting and summary reporting may be
performed.

Operation of the GENERATE Statement

A GENERATE statement, implicitly in both detail and summary
reporting, produces the following automatic operations (if definej):

1. Steps and tests the LINE COUNTER anj/or PAG~ COUNT~R to produce
appropriate PAGE FOOTING and/or PAGE HEADING report groups, after a
line is printed.

2. Recognizes any specifiej control breaks to produce appropriate
CONTROL FOOTING and/or CONTROL HEADING report groups.

3. Accumulates into the SUM counters all specified identifier(s).
Resets the SU~ counters.

4. Executes any specified routines defined by a USE statement before
generation of the associated report group(s).

During the execution of the first GENERATE statement, the following
report groups associated with the report (if specified) are produced in
the order:

1. REPORT HEADING report group

2. PAGE HEADING report group

3. All CONTROL HEADING report groups in the order FINAL, major to
minor

4. The DETAIL report group if specified in the GENERATE statement.

If a control break is recognized at the time of the execution of a
GENERATE statement (other than the first that is executed for a report),
all CONTROL FOOTING report groups specified for the report are produced
from the minor report group, up to and including the report group speci
fied for the identifier which caused the control break. Then, the
CONTROL HEADING report group(s) specified for the report are produced,
starting with the report group specified for the identifier that caused
the control break, and continuing down to and ending with the minor
report group. Then, the DET~IL report group specified in the GENERATE
statement is produced.

Data is moved to the data item in the Report Group Description entry
of the Report Section and is edited under control of the Report writer
according to the same rules for movement and editing as described for
the MOVE statement (see "Procedure Division").

274 Part V Special Features

I
INITIATE/TERMINATE Statements

INITIATE statement

The INITIATE statement begins the processing of a report.

r--,
I Format I
~--~
I I
I INITIATE report-name-l [report-name-2] ••. I
i I L __ J

Each report-name must be defined by a Report Description entry in the
Report section of the Data Division.

The INITIATE statement resets all data-name entries that contain SUM
clauses associated with the report; the Report Writer controls for all
the TYPE report groups that are associated with this report are set up
in their respective order.

The PAGE-COUNTER register, if specified, is set to 1 (one) during the
execution of the INITIATE statement. If a starting value other than 1
is desired, the programmer may reset this PAGE-COUNTER following the
INITIATE statement.

The LINE-COUNTER register, if specified, is set to zero during the
execution of the INITIATE statement.

The INITIATE statement does not open the file with which the report
is associated; an OPEN statement for the file must be given by the user.
The INITIATE statement performs Report Writer functions for individually
described reports analogous to the input and/or output functions that
the OPEN statement performs for individually described files.

A seconQ INITIATE statement for a particular report-name may not be
executed unless a TERMINATE statement has been executed for that
report-name subsequent to the first INITIATE statement.

TERMINATE Statement

The TERMINATE statement completes the processing of a report.

r--,
I Format I
r--~
I I
I TERMINATE report-name-l [report-name-2] •.• I
I I L ____________________________ - ___ J

Each report-name given in a TERMINATE statement must be defined by an
RD entry in the Data Division.

Report Writer Feature 275

USE BEFORE REPORTING Declarative

The TERMINATE statement produces all the CONTROL FOOTING report
groups associated with this report as though a cOlitrol break had just
occurred at the highest level, and completes the Report Writer functions
for the named reports. The TERMINATE statement also produces the last
REPORT FOOTING report group associated with this report.

Appropriate PAGE HEADING and/or PAGE FOOTING report groups are
prepared in their respective order for the report description.

A second TERMINATE statement for a particular report may not be
executed unless a second INITIATE statement has been executed for the
report-name.

The TERMINATE statement does not close the file with which the report
is associated; a CLOSE statement for the file must be given by the user.
The TERMINATE statement performs Report Writer fUnctions for indi
vidually described report programs analogous to the input/output
functions that the CLOSE statement performs for individually described
files.

If, at object time, no GENERATE statement is executed for a report,
the TERMINATE statement of the report will not produce any report groups
and will not perform any SUM processing.

SOURCE clauses used in CONTROL FOOTING FINAL or REPORT FOOTING report
groups refer to the values of the items during the execution of the
TERMINATE statement.

USE Sentence

The USE sentence specifies Procedure Division statements that are
executed just before a report group named in the Report Section of the
Data Division is produced.

r--,
I Format I
~--1
I I
I USE BEFORE REPORTING data-name. I
I I L __ J

A USE sentence, when present, must immediately follow a section
header in the declaratives portion of the Procedure Division and must be
followed by a period followed by a space. The remainder of the section
must consist of one or more procedural paragraphs that define the
procedures to be used.

Data-name represents a report group named in the Report Section of
the Data Division. A data-name must not appear in more than one USE
sentence. Data-name must be qualified by the report-name if data-name
is not unique.

No Report Writer statement (GENERATE, INITIATE, or TERMINATE) may be
written in a procedural paragraph(s) following the USE sentence in the
declaratives portion.

The USE sentence itself is never executed; rather it defines the
conditions calling for the execution of the USE procedures.

276 Part V -- Special Features

PAGE-COUNTER Special Register

The designated procedures are executed by the Report writer just
before the named report group is produced, regardless of page or control
break associations with report groups. The report group may be any type
except DETAIL.

Within a USE procedure, there must not be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion,
there must be no reference to procedure names that appear in the De
claratives Section, except that PERFORM statements may refer to a USE
procedure or to the procedures associated with the USE procedure.

b':'~~ ~f~ '~~~' ;to.,,;S~~s' ttn;e 'Wi.:nlti;rtg ,ot' ~€! s~fu,e'Q rep6rt.
~;,(~n'j~tt!a;t~t1 1 i" '. , :., :. , • , " ' '",';: ,.,' "

n;l: l ni~, , ;~ ; i,::: ::: '; , : r: , ::: i : , ' ;' : :, ; ,

11f~i:'~~~)ffl~,~S;W·*~;;. ~!.! r' h~< ~,. i~" \'

J 1 } I j t ' ': ~~i '~I ~, ,q!,' .' ; .:; , , ." ,'; 1 '. " ! ~, • ':' " ,
t! j;l'" t 1',' \ ! ,}.~ r, , "j, t f' ',' :' , ' ''',' , i.., ',. ;'"

~'~~~',iiln '~~ fUSE: DEmoRE REP~OOT~t~ de'cJ:ar~1ii'~ "~n:.:'. ~11~1 J:l1d:s,'" ,
'1]1 j t1~r;t, is ~~tJ~d~,<'qnl.Y :t.[dEi s:~i£;i'ed, ~epoiti,,;gjrdup ii's rkfu",:",',", ' 'v,'",:

: ':- '~a;f ,;tHd t~:tI?l~eme~t: ~s~t:~ 'J,r'i.1t:t,en 1fdr !e,a;(:¥l' r~*~ 'g,r9up', :~hQs~, : ":, ;' ,,':,
:i:!r1i!nt.~pgL is!,lt;'q 'h~ supl;ir:ess-ed,.;' "" : ",;.:.' ' l' : I ;, ,~':,' .' ":,:.: I • .') , ". ~,~ • ,',

:R~~~~"~~~~Wt~,,a!~d,;~1f~.Hs,~.;~h.e, ;~i.1,t~~."g~i\~il~~~~t:~~~i~;STt·.;~
'~I 1 " < < h { ", ' •• ~ .' ,"< ~. <" '~·h,.~' ,',~.>',,\<~~~~.

1{~·r,j~?t;~i'2<tj}fri~~~,~;,,: , ,.,'; :i':",::,: . .,:'{,x'.,,'[,:; i,'~ ,': .. ' 'r ,),:' :,': ,:,': ': ,;.·,r'";:~,, ,';',":i"y'
r:~2';:1";'IThe>tmE-rCduNTE~'il:{not;laJ~t,t~r¢d" "':" '., , ' ';'<~,'::".'<'>
r:}':",\:J,""~;':"~",:,";)':,~:': ":,',: ":",":::~,1<:",:.", ,;': ":-" ','. r~' "{)~'S:',, ;',j ,

J';'~:'J,":.',iTh~,:',;~c,t:i()Il,'O£, th~ ,NE~T GROUP clqUSe,' ~f :,Jp,~,i~~e'il;r::$:~~.',:,·th,~':,\rep~,~~~,::"
J;\':;i:::~ql:01i.'p'g.~$'qript±on,·, is nullified' ":,:' , ,.',:,\','
l:.J_~:,:.~·,··~.~.:.:~·,·;i~"" "',<> .. ;~""'~""~':"":" ,. '. " ,< ",~ ~.,~~ ,,"<

SPECIAL REGISTERS: PAGE-COUNTER AND LINE-COUNTER

The fixed data-names, PAGE-COUNTER and LINE-COUNTER, are numeric
counters automatically generated by the Report Writer based on the
presence of specific entries; they do not require data description
clauses. The description of these two counters is included here in
order to explain their resultant effect on the overall report format.

PAGE-COUNTER

A PAGE-COUNTER is a counter generated by the Report Writer to be used
as a source data item in order to present the page number on a report
line. A PAGE-COUNTER is generated for a report by the Report Writer if
a PAGE-LIMIT clause is specified·in the RD entry of the report. The
numeric counter is a 3-byte COMPUTATIONAL-3 item that is presented
according to the PICTURE clause associated with the elementary item
whose SOURCE is PAGE-COUNTER.

If more than one PAGE-COUNTER is given as a SOURCE data item within a
given report, the number of numeric characters indicated by the PICTURE
clauses must be identical. If more than one PAGE-COUNTER exists in the
program, the user must qualify PAGE-COUNTER by the report name.

PAGE-COUNTER may be referred to in Report Section entries and in
Procedure Division statements. After an INITIATE statement,
P~GE-COUNTER contains one; if a starting value for PAGE-COUNTER other
than one is desired, the programmer may change the contents of the
PAGE-COU~TER by a Procedure Division statement after an INITIATE
statement has been executed. PAGE-COUNTER is automatically incremented
by one each time a page break is recognized by the Report Writer, after

Report Writer Feature 211

LINE-com~TER Special Register

the production of any PAGE FOOTING report group but before production of
any PAGE HEADING report group.

LINE-COUNTER

A LINE-COUNTER is a counter used by the Report Writer to determine
when a PAGE HEADING and/or a PAGE FOOTING report group is to be
presented. One line counter is supplied for each report with a PAGE
LIMIT (S> clause written in thc=RC=l?ort Dc=?c:ription entry (RD). The
numeric counter is a 3-byte _item that is presented
according to the PICTURE clause associated with the elementary item
whose SOURCE is LINE-COUNTER.

LINE-COUNTER may be referred to in Report Section entries and in
Procedure Division statements. If more than one Report Description
entry (RD) exists in the Report Section, the user must qualify
LINE-COUNTER by the report-name. LINE-COUNTER is automatically tested
and incremented by the Report Writer based on control specifications in
the PAGE LIMIT(S) clause and values specified in the LINE NUMBER and
NEXT GROUP clauses. After an INITIATE statement, LINE-COUNTER contains
zero. Changing the value of LINE-COUNTER by Procedure Division
statements may cause page format control to become unpredictable in the
Report Writer.

The value of LINE-COUNTER during any Procedure Division test state
ment represents the number of the last line printed by the previously
generated report group or represents the number of the last line skipped
to by a previous NEXT GROUP specification.

In a USE BEFORE REPORTING, if no lines have been printed or skipped
on the current page, LINE-COUNTER will contain zero. In all other
cases, LINE-COUNTER represents the last line printed or skipped.

278 Part V -- Special Features

Report writer -- Sample Program

SAMPLE REPORT WRITER PROGRAM

Figure 46 illustrates a Report Writer source program. The records
used in the report (i.e., input data) are shown after the STOP RUN card
in the program. Using the first record as an example, the data fields
are arranged in the following card format:

1 1
--~- ___ ~ __ ! _____ l _______ _

A 0 0 0 2 A 0 1 0 1 002 0 0

~1
Department Number of Type of Month Day Cost

Number Purchases Purchase

The decimal point in the cost field is assumed to be two places from
the right.

r--,
000005 IDENTIFICATION DIVISION.
000010 PROGRAM-ID. ACME.
000015 REMARKS. THE REPORT WAS PRODUCED BY THE REPORT WRITER.
000020 ENVIRON~£NT DIVISION.
000025 CONFIGURATION SECTI~N.
000030 SOURCE-COMPUTER. IBM-360-F50.
000035 OBJECT-COMPUTER. IBM-360-F50.
000040 INPUT-OUTPUT SECTION.
000045 FILE-CONTROL.
000050 SELECT INFILE ASSIGN TO SYSOOO-UT-2400-S.
000055 SELECT REPORT-FILE ASSIGN TO SYS001-UT-2400-S.

1000060 DATA DIVISION.
000065 FILE SECTION.
000070 FD INFILE
000075 LABEL RECORDS ARE OMITTED
000080 DATA RECORD IS INPUT-RECORD.
000085 01 INPUT-RECORD.
000090 05 FILLER
000095 05 DEPT
000100 05 FILLER
000105 05 NO-PURCHASES
000110 05 FILLER
000115 05 TYPE-PURCHASE
000120 05 MONTH
000125 05 DAY-l
000130 05 FILLER
000135 05 COST
000140 05 FILLER
000145 FD REPORT-FILE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

000150 LABEL RECORDS ARE STANDARD

M.
XXX.
AA.
99.
A.
A.
99.
99.
A.
999V99.
X(59).

000151 RECORD CONTAINS 121 CHARACTERS
000155 REPORT IS EXPENSE-REPORT.
000160 WORKING-STORAGE SECTION.
000165 77 SAVED-MONTH PICTURE 99 VALUE IS O.

1000175 77 CONTINUED PICTURE X(11) VALUE IS SPACE. L ___ ~ _________________________ _

Figure 46. Sample Program Using the Report Writer Feature (Part 1 of 4)

Report Writer Feature 279

Report Writer -- Sample Program

r--,
000180 01 MONTH-TABLE-l.
000185 05 RECORD-MONTH.
000190 10 FILLER PICTURE A(9) VALUE IS "JANUARY "
000195 10 FILLBR PICTURE A(9) VALUE IS "FEBRUARY"
000200 10 FILLER PICTURE A(9) VALUE IS "MARCH
000205 10 FILLER PICTURE A(9) VALUE IS "APRIL "
000210 10 FILLER PICTURE A(9) VALUE IS "MAY "
000215 10 FILLER PICTURE A(9) VALUE IS "JUNE "
000220 10 FILLER PICTURE A(9) VALUE IS "JULY
000225 10 FILLER PICTURE A(9) VALUE IS "AUGUST
000230 10 FILLER PICTURE A(9) VALUE IS "S~PTEMBER".
000235 10 FILLER PICTURE A(9) VALUE IS "OCTOBER "
000240 10 FILLER PICTURE A(9) VALUE IS "NOVE~rnER ".
000245 10 FILLER PICTURE A(9) VALUE IS "DECEMBER ".
000250 05 RECORD-AREA REDEFINES RECORD-MONTH.
000255 10 ~ONTHNAME PICTURE A(9) OCCURS 12 TIMES.
000260 REPORT SECTION.
000265 RD EXPENSE-REPORT
000270 CONTROLS ARE FINAL MONTH DAY-l
000275 PAGE LIMIT IS 59 LINES
000280 HEADING 1
000285 FIRST DETAIL 9
000290 LAST DETAIL 48
000295 FOOTING 52.
000300 01 TYPE IS REPORT HEADING.
000305 05 LINE NUMBER IS 1
000310 COLUMN NUMBER IS 27
000315 PICTURE IS A(26)
000320 VALUE IS "ACME MANUFACTURING COMPANY".
000325 05 LINE NU~illER IS 3
000330 COLUMN NUMBER IS 26
000335 PICTURE IS A(29)
000340 VALUE IS "QUARTERLY EXPENDITURES REPORT".
000345 01 ~AGE-HEAD
000350 TYPE IS PAGE HEADING.
000355 05 LINE NUMBER IS 5.
000360 10 COLUMN IS 30
000365 PICTURE IS A(9)
000370 SOURCE IS MONTHNAME (MONTH).
000375 10 COLUMN IS 39
000380 PICTURE IS A(12)
000385 VALUE IS "EXPENDITURES".
000390 10 COLUMN IS 52
000395 PICTURE IS X(11)
000400 SOURCE IS CONTINUED.
000405 05 LINE IS 7.
000410 10 COLUMN IS 2
000415 PICTURE IS X(35)
000420 VALUE IS "MONTH DAY DEPT NO-PURCHASES".
000425 10 COLUMN IS 40
000430 PICTURE IS X(33)

1000435 VALUE IS· "TYPE COST CUMULATIVE-COST". 1 L __ J

Figure 46. Sample Program Using the Report Writer Feature (Part 2 of 4)

280 Part V -- Special Features

Report Writer -- Sample Program

r--,
000440
000445
000450
000455
000460
000465
000470
000475
000480
000485
000490
000495
000500
000505
000510
000515
000520
000525
000530
000535
000540
000545
000550
000555
000560
000565
000570
000575

1000580
000585
000590
000595
000600
000605
000610
000615
000620
000625
000630
000635
000640
000645
000650
000655
000660
000665
000670
000675
000680
000685
000690
000695
000697
000698
000700
000705
000710
000715
000720

01 DETAIL-LINE TYPE IS DE'l'AIL LINE NUMBER IS PLUS 1.
05 COLUMN IS 2 GROUP INDICATE PICTURE IS A(9)

SOURCE IS MONTHNAME (MONTH).
05 COLU~~ IS 13 GROUP INDICATE PICTURE IS 99

SOURCE IS DAY-l.
05 COLUMN IS 19 PICTURE IS XXX SOURCE IS DEPT.
05 COLUMN IS 31 PICTURE IS Z9 SOURCE IS NO-PURCHASES:
05 COLUMN IS 42 PICTURE IS A SOURCE IS TYPE-PURCHASE.
05 COLUMN IS 50 PICTURE IS ZZ9.99 SOURCE IS COST.,

01 TYPE IS CONTROL FOOTING DAY-l.
05 LINE NUMBER IS PLUS 2.

10 COLUMN 2 PICTURE X(22)
VALUE "PURCHASES AND COST FOR".

10 COLUMN 24 PICTURE Z9 SOURCE SAVED-MONTH.
10 COLUMN 26 PICTURE X VALUE "-no

10 COLUMN 27 PICTURE 99 SOURCE DAY-l.
10 COLUMN 30 PICTURE ZZ9 SUM NO-PURCHASES.-
10 MIN-
~MN 49 PICTURE '$$$9.99 SUM COST.·

10 COLUMN 65 PICTURE $$$$9.99 SUM COST·
RESET ON FINAL.

05 LINE PLUS 1 caLUMN 2 PICTURE X(71)
VALUE ALL "*".

01 TYPE CONTROL FOOTING MONTH
LINE PLUS 1 NEXT GROUP NEXT PAGE.
05 COLUMN 16 PICTURE A{14) VALUE "TOTAL COST FOR".
05 COLUMN 31 PICTURE A(9)

SOURCE MONTH NAME (MONTH).
05 COLUMN 43 PICTURE; AAA VALUE "WAS".
05 INT

COLUMN 48 PICTURE $$$9.99 SUM MIN ••
01 TYPE CONTROL FOOTING FINAL LINE NEXT PAGE:

05 COLUMN 16 PICTURE A(26)
VALUE "TOTAL COST FOR QUARTER WAS".

05 COLUMN 45 PICTURE $$$$9.99 SUM ~
01 TYPE PAGE FOOTING LINE 57.

05 COLUMN 59 PICTURE X(12) VALUE "REPORT-PAGE-".
05 COLUr-iN 71 PICTURE 99 SOURCE PAGE-COUNTER ..

01 TYPE REPORT FOOTING
LINE PLUS 1 COLUMN 32 PICTURE A(13)
VALUE "END OF REPORT".

PROCEDURE DIVISION.
DECLARATIVES.
PAGE-HEAD-RTN SECTION.

USE BEFORE REPORTING PAGE-HEAD.
PAGE-HEAD-RTN-SWITCH.

GO TO PAGE-HEAD-RTN-TEST.
PAGE-HEAD-RTN-TEST.

IF MONTH = SAVED-MONTH MOVE "(CONTINUED)" TO CONTINUED
ELSE MOVE SPACES TO CONTINUED

MOVE M~NTH TO SAVED-MONTH.
GO TO PAGE-HEAD-RTN-EXIT.

PAGE-HEAD-RTN-ALTER.
ALTER PAGE-HEAD-RTN-SWITCH TO PAGE-HEAD-RTN-SUPPRESS.

PAGE-HEAD-RTN-SUPPRESS.
MOVE 1 TO PRINT-SWITCH.

PAGE-HEAD-RTN-EXIT.
EXIT.

END DECLARATIVES. L __ J

Figure 46. Sample Program Using the Report Writer Feature (Part 3 of 4)

Report Writer Feature 281

Report Writer -- Sample Program

r--,
1000722 NON-DECLARATIVES SECTION.
1000725 OPEN-FILES. OPEN INPUT INFILE OUTPUT REPORT-FILE.
1000730 INITIATE EXPENSE-REPORT.
1000735 READATA.
1000740 READ INFILE AT END GO TO COMPLETE.
1000745 GENERATE DETAIL-LINE.
1000760 GO TO READATAe
1000765 COMPLETE.
1000770 PERFORM PAGE-HEAD-RTN-ALTER.
1000780 TERMINATE EXPENSE-REPORT.
1000785 CLOSE INFILE REPORT-FILE.
1000790 STOP RUN.
I
1
1
1
1

1
1
1
1
1
1

AOO
A02
A02
A01
A04

02 A0101
01 A010l
02 C0101
02 B0102
10 A0102

00200
00100
01600
00200
01000

1 A01 06 CQ329 04800
I A03 20 E0331 06000 L __ ~ __ _

Figure 46. Sample Program Using the Report writer Feature (Part 4 of 4)

Key Relating Repo;t to Report Writer Source Program

In the key, the numbers enclosed in circles (for example, (!» relate
the explanatio~ below to the corresponding output line in Figure 47.

The six-digit numbers (for example, 000615) show the source statement
from the program illustrated in Figure 46.

282

is the REPORT HEADING resulting from source lines 000300-000340.

is the PAGE HEADING resulting from source lines 000345-000435.

is the DETAIL line resulting from source lines 000440-000480 (note
that since it is the first detail line after a control break, the
fields defined with the GROUP INDICATE clause, lines
000445-000460, appear).

is a DETAIL line resulting from the same source lines as ~
In this case, however, the fields described as GROUP INDICATE do
not appear (since the control break did not immediately precede
the detail line).

is the CONTROL FOOTING (for DAY-l) resulting from source lines
000485-000550.

is the PAGE FOOTING resulting from source lines 000615-000625.

is the CONTROL FOOTING (for MONTH) resulting from source lines
000555-000575.

Part V -- Special Features

®
Report Writer -- Sample Program

is the CONTROL FOOTING (for FINAL) resulting from source lines
000595-000610.

is the REPORTING FOOTI1~G resulting from source lines
000630-000640.

Lines 000650-000715 of the example illustrate a use of USE BEFORE
REPORTING. The effect of the source is that each time a new page is
started, a test is made to determine whether the new page is being
started because a change in MONTH has been recognized (the definition
for the control footing for MONTH specifies NEXT GROUP NEXT PAGE) or
because the physical limits of the page were exhausted. If a change in
MONTH has been recognized, spaces are moved to the PAGE HEADING; if the
physical limits of the page are exhausted, "(CONTINUED)" is moved to the
PAGE HEADING.

Report Writer Feature 283

Report writer -- Sample Program

CI)~---------------------------ACME M~NUFACTUPTNr- COMPANY

QUARTFRLY EXPENDITVRfS RfPrRT

~-------------------JANU~RY EXPENDITUPES

~~MONTH DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST

@--JANUARY 01 AOO
-A02

A02

2
1
2

A
A
C

2.00
1.00

16.00 0-
~:~:;~!;;;*!~~*;;;:*:~~*!;~!***;*****************!;;;~~***********!;;;~~

JANUARY 02 AOI 2 B 2.00
A04 10 A 10.00
A04 10 C 80.00

Pl'~O.jASES AND COST FOP. 1-02 22 $92.00 $111.00
~******************
JANUARY 05 A01 2 B 2.00

PUPCHASES A~O CrST FOR 1-05 2 $2.00 $113.00

JANUARY 08 AO!

AO 1
AOI

10

20

PURCHASES AND COST FOP 1-08 38

A
B
D

10.00
12.48
38.40

$60.88 $173.88

JAf'IUAPY 13 AOO

AOO

PURCHASES AND COST FOR 1-13

4

1

5

6.24
8.00

$14.24 $188.12

JA f\IUARY 15 AOO

A02
10

1

PURCHASES AND Cr.ST FOR 1-15 11

o
C

1°.20
8.00

$27.20 $21'5.32

JANUARY 21 A03

A03
A03

10
10
10

PURCHASES AND COST FOP 1-21 30

E
F
G

30.00
25.00
50.00

$105.00

JANUARY 23 AOO 5 A 5.00

PUPCHASES AMD COST FrR 1-23 5 $5.00 $325.32

(!) REPORT-PAGE-Ol

Figure 47. Report Produced by Report writer Feature (Part 1 of 5)

284 Part V -- Special Features

~---------------JANUARY
~~rNTH DAY OFPT NO-PURCHASES

PURCHASES AND COST FOR 1-27 21

Report Writer -- Sample Program

EXPENDITURES (CONTINUED)

TYPE (CST eUMULATIV~-eCST

$12q.36 $467.48

JAr'-'UflDV 30 AI)O 2 B 3.12

AO? 10 A 10.00
AO? 1 C 13.00
A04 15 B 23.40
A04 10 e 80.00

PURCHASES AND CrST FOR 1-30 38 $124.52 $592.00

31 AOO
A04

PURCHASES AND erST FeR 1-31

1
6

7

A
A

1.00
6.00

~7.00 $599.00

CD~--------TOTAL e(lST FOR JANUARv \-JAS $599.00

(!)~--REPORT-PAGE-02

Figure 47. Report Produced by Report writer Feature (Part 2 of 5)

Report Writer Feature 285

Report Writer -- Sample Program

~Mr"T"
FEBRLIARY EXPHWITURES

rAY DEPT t--!O-PUR CH AS ES TYPE COST CUMULA Tl VF:-C(lST

@-FEBPUARY 15 A02 10 A 10.00
A02 2 P, 3.12
A02 1 C 8.00
AO? 15 G 75.00
A04 5 B 7,,80
A05 8 A 8.00
A05 5 C 40.00

~~;:~~!;;;*:.~~*;;;!*:~:*~:;:**:~****************!!;!;;;**********!:;~;;;
FEBFUAPV 16 A02 2 C 16.00

A06 10 A 10.00
A07 10 A 10.00
A07 10 F 25.00

PURCHASES ANn COST FOP 2-16 32 $61.00 $811.92

FEBRUARy 17 AO?

A07
10
10

PURC~ASE~ AND COST FOP 2-17 20

E
G

30.00
50.00

$80.00 $~91.92

*****~***
FFBR !JAR V 21 AOt 20 A 20.00

AOf 20 B 31.20
AOf. 20 C 160.00
AOf 20 [) 38.40
AOt 20 E AO.OO
AOt- 20 F 5(1.00
.AOt 20 G 100.00

PURCHASF.S Af',ID COST FOP 2-21 140 $459.60 $1351.52

27 AOI 21 D 40.32

PURCHASE~ A~D C(lST FOR 2-27 21 $40.32 $1391.84

FFB~UAPY 28 A02

AO?
A03

3
5

15

PURC~ASES ~ND CCST Fnp 2-28 23

B
C
E

4.68
40.00
45.00

$89.68 $1481.52

Cl)~---------------TrTAL erST FOR FER.RUARY WAS $882.52

(!)~---REPORT-PAGE-03

Figure 47. Report Produced by Report Writer Feature (Part 3 of 5)

286 Part V Special Features

Report Writer -- Sample Program

(!)~------------------------------~1AReH EXPENCITURES

Mor-nH

C!r-MAPCH

[lAY

01

DEPT NO-PURCHASES

A02 E:;

AO? 1

TYPE

A
C
G

COST CUMULATIVE-COST

5.00
P.OO

125.00 0- A03 25

~DUF'CHASFS AND COST FOP. 3-01 31 $138.00 $161<;.52
~***

MARCH 06 A02 5 A 5.00

PURCHAS~S AND erST FOP 3-06 5 $5.00 $1624.52

MA.RCI-' 07 A02 5 A 5.00

PURCHASES AND COST FO~ 3-07 5 $5.00 $lA29.52

,"1APCH 13 A02 10 10.00

PURCI-'ASES ANQ crST FrR 3-13 10 $10.00

MAPCH 1 ') A01 ?l A 21.00

A02 1 A 1.00
A03 15 F '2.7.50
AOt E:; F 15.00
AO£- 5 F 12.5C

PURCHASES ANn CCST FOP 3-15 47 $87.00 $1726.52

MAPCI-1 20 A03 15 E 45.00

PURCHASES AND (CST FOP 3-20 15 $45.00 $1771.52

MARCH 21 A02

AO?
15
15

PURCHftS~S AND CGST FOR 3-21 30

15.00
37.1';0

$52.50 51324.02

~ARCH 23 A.02 2 A 2.00

PUQ(HASES AND eCST FOP 3-23 2 $2.00 $1826.02

MAFCH 25 AO? 30 F 75.0r

PUR(HASFS AND CCST FQR 3-25 30 !75.C'O $1901.02
************~**

(!) ~EPORT-PAGE-04

Figure 47. Report Produced by Report Writer Feature (Part 4 of 5)

Report writer Feature 287

Report Writer -- Sample Program

~-----------____ '.1ARrf-J EXPENDITURES (CONTINUED)

~MO~TH DAY DEPT NO-PURCHASES TYP~ crST CI..IMUL.ATIVI=-cnST

0-~ARCf-J 26 A02 A 1.00

r;r-:::PUFCHASES AND erST FOf' 3-26 1 $1.00 $1 0 02.02
~***

MARCH 2 0 t01 6 C 48.00

PURCHASES AND COST FOP 3-29 6 $48.00 $1950.02

MAPCH 31 A03 20 E 60.00

PURCH~SES AND COST FOR 3-31 20 $60.00 $2010.02

(2)~---------------TOTAL crST FOR MARCH WAC:; $528.'50

(!)~---R~PORT-PAGE-05

@--TOTAL CCST FOR QUARTER WAS $2010.02

(!)--- REPORT-PAGE-Ob

01-------------------EI\,O OF REPORT

Figure 47. Report Produced by Report Writer Feature (Part 5 of 5)

288 Part V -- Special Features

Subscripting and Indexing

TABLE riANDLING FEA~URE

The Table Handling feature enables the progra~rner to process tables
or lists of repeated data conveniently. A table may have up to three
dimensions, i.e., three levels of subscripting or indexing can be
nandled. Such a case exists when a group item described with an OCCURS
clause contains another group iteI~ with an ~ccuas clause, which in turn
contains an item with an OCCURS clause. To make reference to any
element witnin such a table, each level must be subscripted or indexed.

SUBSCRIPTING

Subscripts are used only to refer to an individual element within a
list or table of elements that have not been assigned individual
data-names.

r--,
I Format I
r--~
I I
I data-name (subscript[, subscript] [, subscript]) I
I I l __ J

The §.~bscript, or set of subscripts, that identifies the table
element is enclosed in parentheses immediatelj following the space that
terminates data-name, which is the name of the table element. When more
than one subscript appears within a pair of parentheses, each subscript
must:.b~ .. separC3tedfro~ltt1e n~xtb¥ a. corruTla .followedb¥ a space.
·~2~§~£5~.iL~j:~q~~~l!e._t::;~JJt~:;:;~~:~~.;ito: ::~;:;~i.;t~.d~ No space may
appear between the left parenthesis and the leftmost subscript or
between the riqhtmost subscript and the right parenthesis. To identify
an element in the table named SALARY by the set of subscripts Y£AR,
MO~TH, and WEEK, the programmer would write:

SALARY (YEAR, MONTH, WE£K).

The subscript can be represented by a numeric literal that is a
positive integer, by the special register TALLY, or by a data-name.
Restrictions on the use of a data-name as a subscript are:

1. Data-name must be a numeric elementary item that represents a
positive int€qer.

2. The name itself may be qualified, but not subscripted.

The subscript may contain a sign, but the lowest permissible
subscript value is 1. Hence, the use of zero or a negative subscript is
not permitted. The highest permissible subscript value in any
particular case is the maximum number of occurrences of the item as
specified in the OCCDRS clause.

Qualification may be used in conjunction with subscripting, in which
case OF or IN follows the ~~~~~narrle being subscripted.

Table Handling Feature 289

Subscripting and Indexing

r--,
j Fo:cmat I
~--~
I I
I {OF } { O:r } I I data-name - data-name-l [- data-name-2J... I
I IN , IN I
I
I
I

(suDscript(, sUDscri?tJ (, subscri9tJ)
I
I

I
I l __ J

Note: Data-name is the item being subscripted, not a.ata-name-l. 'llJat
lS, in the statement SALJ._RY OF Et-'lPLOYEE-RECORD (YEAR, MOiJTH, WEEK), ti1e
data item SALARY is 3ubscripted by Y~AR, MO~TH, and W~~K.

INDEXING

References can be rr-ade to individual elements witnin a Table of
elements by specifying indexing for that reference.

An index is assigned to a given level of a table ny using an INL~XED
bY clause in the definition of the table. A name given in the INDEXED
BY clause is known as an index-name and is used to refer to tl~ assigned
index. An index-name must be initialized by a S~T or PERFORM statement
before it is use~ in a table reference. An index may be modified only
by a SET, SEARCH, or PERFORM statement.

r--,
I Format I
t--~
I I

! data-name (index-name [{ : } integer] !
I I

! [. index-name [{ : } integer]] [. index-name [{: } integer]]) !
I I l __ J

Direct indexing is specified by using an index-name in the forro of a
subscript. For example,

ELEMENT (PRIME-INDEX)

Relative indexing is specified when the terminal space of the
data-name is followed by a parenthesized group of items: the
index-name, followed by a space, followed by one of the operators +
or -, followed by another space, followed by an unsigned integral
numeric literal. For example,

ELEMENT (PRIME-INDEX + 5)

Qualification may be used in conjunction with indexing, in which case
OF or IN follows the data-narr,e being indexed.

290 Part V -- Special Features

Subscripting and Indexing

r--,
I Format I
~--~
I I

data-name data-name-1 data~naThe-2] ... I: {OINF} {OINF} I:

I I

i (index-na'1le [{:} integerJ[. index-name [{: } integerll i
I I

I [. index-naroe [{:} integer III !
I I L __ J

Note: Data items described by the USAGE IS INDEX clause permit storage
of the values of index-names as data without conversion. such items are
called index data items.

RESTRICTIONS ON INDEXING, SUBSCRIPTING, AND QUALIFICATION

Tables may have one, two, or three dimensions. Therefore, references
to an element in a table may require up to three subscripts or indexes.

1. A data-name must not be subscripted or indexed when the data-name
is itself being used as an index, subscript, or qualifier.

2. When qualification, subscripting, or indexing are required for a
given data item, the indexes or sUbscripts are specified after all
necessary qualification is given.

3. Subscripting and indexing must not be used together in a single
reference.

4. Wherever subscripting is not permitted, indexing is not permitted.

5. The commas shown in the formats for indexes and subscripts are
required.

EXAMPLE OF SUBSCRIPTING AND INDEXING

For a table with three levels of indexing, the following Data
Division entries would result in a storage layout as shown in Figure 48.

01 PARTY-TABLE REDEFINES T'ABLE.
02 PARTY-CODE OCCURS 3 TIMES INDEXED BY PARTY.

03 AGE-CODE OCCURS 3 TIMES INDEXED BY AGE.
04 ~-F-INFO OCCURS 2 TIMES INDEXED BY M-F

PICTURE 9(7)V9 USAGE DISPLAY.

PARTY-TABLE contains three levels of indexing. Reference to
elementary items within PARTY-TABLE is made by use of a name that is
subscripted or indexed. A typical Procedure Division statement might
be:

MOVE M-F-INFO (PARTY, AGE, M-F) TO M-F-RECORD.

In order to use the Table Handling feature, the programmer must
provide certain information in the Data Division and Procedure Division
of the program.

Tanle Handling Feature 291

Subscripting and Indexing

r--,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I PARTY-TABLE
I
I
I

. l\GE-CODE (1, 1)

PARTY-CODE (1) ,AGE-CODE (1, 2)

AGE-CODE (1, 3)

AG.E;-CODE (2, 1)

PARTY-CODE (2) l\GE-COJE (2, 2)

l\GE-CODE (2, 3)

AGE-CODE (3, 1)

PARTY-CODE (3) AGE-CODE (3, 2)

AGE-CODE (3, 3)

8 bytes

ir~=;=~;;;-(~~-~~-~)1 t------------------~
I i"l-F-INFO (1, 1" 2) I
t------------------~
IM-F-INFO (1, 2, 1)1
t------------------~
IM-F-INFO (1, 2, 2) I
------------------~

IM-F-INFO (1, 3, 1)1
t------------------~
I M-F-INFO (1, 3, 2) I
t------------------~
IM-F-INFO (2, 1, 1)1
t------------------~
IM-F-INFO (2, 1, 2) I
------------------~

IM-F-INFO (2, 2, 1)1
~------------------~
IM-F-INFO (2, 2, 2) I
------------------~

IM-F-INFO (2, 3, 1)1
t------------------~
I~-F-INFO (2, 3, 2) I
t------------------~
IM-F-INFO (3, 1, 1)1
t------------------~
IM-F-INFO (3, 1, ·2)1
t------------------~
IM-F-INFO (3, 2, 1)1
t----~-------------~
IM-F-INFO (3, 2, 2) I
t------------------~
IM-F-INFO (3, 3, 1)1
t------------------1
IM-F-INFO (3, 3, 2) I L __________________ J

~~-------

By tel
No·1

I
01

I
8/

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136
I
I
I
/

I OCCURS 3 TIMES OCCURS 3 TIMES OCCURS 2 TIMES / L __ J

Figure 48. Storage Layout for PARTY-TABLE

DATA DIVISION CONSIDERATIONS FOR TABLE HANDLING

The OCCURS and USAGE clauses are included as part of the record
description entries in a program utilizing the Table Handling feature.

OCCURS Clause

The OCCURS clause eliminates the need for separate entries for
repeated data, since it indicates the number of times a series of
records with identical format is repeated. It also supplies information
required for the application of subscripts or indexes.

The OCCURS clause has three formats.

292 Part V -- special Features

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

OCCURS Clause

r--,
I Format 1 I
r--~
I I
I OCCU~S integer-2 TIMES I
I I
II ~ASCENDING I II

I ~ KEY IS data-name-2 [data-name-3] .•.] •..
I 'QESC~~QI~G~ I
I I
I [I~DEXED BY index-name-1[index-name-2] ...] I

I I l __ J

r--,
I Format 2 I
r--~
I I
I OC~URS integer-1 TO integer-2 TIM~S [DEPENDING ON data-name-1] I
I I

I
I 1 ASCENDING (II

KEY IS data-name-2 [data-name-3] .••] .••
I DESCE~DING I
I I
I [INDEXED BY index-name-1 [index-name-2] .•.] I
I I l __ J

The other data description clauses associated with an entry whose
description includes an OCCUkS clause apply to each occurrence of the
item described.

Since three subscripts or indexes are allowed, three nested levels of
the OCCURS clause are allowed. That is, 3-dimensional tables can De
specified. No table may be longer than 32,767 bytes in length, except
for fixed-length tables in the Working-Storage Section or Linkage
Section, which may be as long as 131,071 bytes.

The subject of an OCCURS clause is the data-name of the entry that
contains this OCCURS clause. The sUbject of an OCCURS clause must be
subscripted or indexed whenever reference is made to it in any statement
other than SEARCH. The subject of an OCCURS clause must not be longer
than 32,767 bytes.

When subscripted, the subject refers to one occurrence within the
table. When not subscripted (permissible only in the SEARCH statement),
the subject represents the entire table element.

Table Handling Feature 293

OCCURS Clause

The OCCURS clause may not be specified in a data description entry
that:

1. has a level-Ol or level-77 number

2. describes an item whose size is variable

(The size of an item is variable if the data description of any
subordinate item within it contains an OCCURS DEPENDING ON clause--that
is, an OCCURS clause with the DEPENDING ON option.)

Except for condition-name entries, a record description entry that
contains an OCCURS clause must not also contain a VALUE clause.

Within a given record description, the VALUE clause must not be used
in a data description entry that is subsequent to a data description
entry that contains an OCCURS DEPENDING ON clause.

In the discussion that follows, the term "computational" refers to
COMPUTA.TIONAL, :::::I_._mm!::;::;::.:::::::_.I~D •• :~::::: data items.

When a computational elementary item specifies both the OCCURS and
SYNCHRONIZED clauses, any necessary slack bytes for each occurrence of
the item are adde1 by the compiler. When a group iteuL specifies the
OCCURS clause and also contains SYNCHRONIZED computational elementary
items, any necessary slack bytes for each occurrence of the group are
added by the compiler, as well as the necessary slack bytes for the
computational items (see "Slack Bytes" in "Data Division" for a complete
discussion).

In Format 1, integer-2 represents the exact number of occurrences.
In this case, integer-2 must be greater than zero.

DEPENDING ON OPTION: In Format 2·::~:nl:::·:·:·lgEml~::.::·:::I:~:; the DEPENDING ON option
is used. This indicates that the subject of this entry has a variable
number of occurrences. This does not mean that the length of the
sUbject is variable, but rather that the number of times the subject may
be repeated is variable, the number of times being controlled by the
value of ~ata-name-l at object time.

In Format 2, integ~r-l represents the minimum number of occurrences,
and intgg§r-~ represents the maximum number of occurrences. Integer-l
may be zero or any positive integer. Integer-2 must be greater than
zero, and also greater than integer-i. Integer-2 must be less than
32,768. The value of 9.~t§::.!:!§:@.~:.l must not exceed integer-2.

294 Part V Special Features

OCCURS Clause

Data~name-1, the object of the DEBENDING ON option:

• Must be described as a positive integer

• Must not exceed integer-2 in value

• ~ay be qualified, when necessary

• Must not be subscripted (that is, must not itself be the subject of,
or an entry within, a table)

• Must, if it appears in the same record as the table it controls,
appear before the variable portion of the record

If the value of data-name-1 is reduced, the contents of data items
whose occurrence numbers exceed the new value of data-narne-1 become
unpredictable.

Unused character positions resulting from the DEPENDING ON option
will not appear on external media.

The DEPENDING ON option is required only when the last occurrence of
the subject cannot otherwise be determined.

Any Data Division entry that contains an OCCURS DEPENDING ON clause,
or which has subordinate to it an entry that contains an OCCURS
DEPENDING ON clause! cannot be the object of a REDEFINES clause.

KEY OPTION: The KEY option is used in conjunction with the INDEXED Bt
option in the execution of a SEARCH ALL statement. The KEY option is
used to indicate that the repeated data is arranged in ASCENDING or in
DESCENDING order, according to the values contained in data-name-2,
data-name-3, etc.

Data-name-2 must be either the name of the entry containing an OCCDRS
clause, or it must be an entry subordinate to the entry containing the
OCCURS clause. If data-name-2 is the subject of this table entry, it is
the only key that may be specified for this table. If data-name-2 is
not the subject of this table entry, all the keys identified by
data-name-2, data-name-3, etc.;

• Must be sUbordinate to the subject of th~ table entry itself

• Must not be subordinate to any other entry that contains an OCCURS
clause

• Must not themselves contain an OCCURS clause

When the KEY option is specified, the following rules apply:

• Keys must be listed in ~escending order of significance.

• The total number of keys for a given table element must not exceed
12.

• The sum of the lengths of all keys associated with one table element
must not exceed 256 bytes.

• A key may have the following usages: DISPLAY, COMPUTATIONAL-3, or
COMPUTATIONAL.

Table Handling Feature 295

OCCURS Clau.se

When subordinate entries within the table are variable in length, the
following rule also applies:

• Any key in a table element must beat a fixed displacement from the
beginning of that element (that is, if a table element isot
variable length, then the keys must precede the ,v?~iable portion) ..

The following example sholNs a violation of the last :precedin~ rule:

WORKING-STORAGE SECTION.
71 CURRENT-WEEK
01 TABLE-RECORD.

02 EMPLOYEE-TABLE OCCURS 10,0 TIMES

PICTURE 99 ..

ASCENDING KEY IS WAGE-RATE,EMPLOYEE-NO
IND,EXED 'BY A, B.
03 WEEK-RECORDOCCDRS 1'1'0 52 'rIMES

I
; ')1

DEPENDING ON CURRENT-WEEK
INDEXED BY C ..
04 WEEK-NO
04 AUTHORIZED~ABSENCES
04 UNAUTHORIZED-ABSENCES
04 LP.TENESSES

03 EMPLOYEE-NAME
03 EMPLOYEE";' NO
03 WAGE.;". RATE

PIC
PIC
PIC
PIC
PIC
PIC
PIC

99.
9.
9.
9.

X(20).
9 (6) •

9999V99.o

if
,H

·:H WAGE-RATE and EMPLOYEE-NO are invalid as keys,
~fterthe variable portion of the table.
Ll '
t ~t ~

t ~J The· following example of the KEY option is corre<#' d '
I;t: I~i tH .
\ ; ,~WO~~ING-STORAGE SECTION.
1 fJ7l1 tCU~RE~-WEEK
f &;·l 011 'TABLE-RECORD.
i; :1:" ", I! .'
t'!i " '(;)2 : 1 EMPLOYEE-TABLE OCCURS 100 TI~..ES
l1l \ r, l Ii ~ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO'
1 ~'~I ! ::t ~.·I :: INt'!EXED BY A, B.

H! ': I i ll3 ... ". :EMPLOYE.E-NAME
I ~'f \! ; Td,:f :EMPLOYEE-NO
I >i i ; °13 1

:' ~ WA(iE-RATE
i~l ~ 1Q:~',: :WE~K-R~CORDOCCURS .1 TO 52 :TIMES
; 1,1 1 DEFENDING ON CURRENT-WEEK; .,
L;r, INqEXED BYC. .
; 'i " .' Oll! ; ,:WE~-NO I!; .~ : Q~ \ ':AUTHORIZED~ARSENCES' ,:PIiC' 19.'
i l. i" ;04,UNAUTHORIZED-AaSENC~sprCi .9. ; " p;' l' ,',

:04' :'1:,iAT~NEsSES '. '.' ' ." ;:;; :pliQ 1 '9.1 '\ I;: j,

, .. j i'- . {.i" .: .. " ~ :.~.~ '. '{!:f.i:' it;;;~ ~ ~;..

~~;~_~~~i:~~~~.
INDEXED-BY OPTION: The INDEXED BY option is required if the subject of
this entry (the data-name described by the OCCURS clause, or an item
within this data-name, if it is a group item) is to be referred to by
indexing. The index-nameCs) identified by this clause is not defined
elsewhere in the program, since its allocation and format are dependent
on the system, and, not being data, cannot be associated with any data
hierarchy.

The number of index-names for a Data Division entry must not exceed
12.

296 Part V -- Special Features

OCCURS Clause

An index-name must be initialized through a SErT or PERFORM staten-,ent
before it is used.

Each index-name is a fullword in length and contains a binary value
that represents an actual displacement from the beginning of the table
that corresponds to an occurrence nillJber in the table. The value is
calculated as the occurrence number minus one, multiplied by the length
of the entry that is indexed by this index-name.

For example, if tne programmer writes

A OCCURS 15 TIMES INDEXED BY Z PICTURE IS X(10)

on the fifth occurrence of A, the binary value contained in Z will be:

Z = (5 - 1) * 10 = 40

Note that, for a table entry of variable length, the value contained in
the index-name entry will become invalid when the table entry length is
changed, unless the user issues a new SET statement to correct the value
contained in the index-name.

The following exarople of the setting of values in index-name is
incorrect:

DATA DIVISION.

77 E PICTURE S9(5) CaMP SYNC.
01

02 A OCCURS 10 INDEXED BY IND-1 .••
03 B OCCURS 10 DEPENDING ON E INDEXED BY IND-2 ••.

PROCEDURE DIVISION.

MOVE 8 TO E
SET IND-l TO 3
SEARCH A ..•

MOVE 10 '1'0 E
SEARCH A ••.

(Moving 10 to E changes the length of the table entry A, so that IND-1
now contains an invalid value.)

Table Handling Feature 297

OCCURS Clause

The following example of the settin~ of values in index-name is
correct:

DATA DIVISION.

77 E PICTURE S9(5) COMP SYNC.
77 D PICTURE S9(5) COMP SYNC.
01

02 A OCCURS 10 INDEXED BY IND-l .•.
03 B OCCURS 10 DEPENDING ON E INDEXED BY IND-2 .•.

PROCEDURE DIVISION.

MOVE 8 TO E
SET IND-1 TO 3
SET D TO IND-1
SEARCH A •••

MOVE 10 TO E
SET IND-1 TO D
SEARCH A •••

(Here the user has saved the occurrence number in 0, and then later
reset IND-l to obtain the corrected value.)

There are two types of indexing: Direct Indexing and Relative
Indexing.

Direct Indexing: If a data-name is used in the procedure text with
index-names, the data-name itself must be the subject of an INDEXED BY
option, or be subordinate to a group(s) that is the subject of the
INDEXED BY option.

In the following example

A (INDEX-l, INDEX-2, INDEX-3)

implies that A belongs to a structure with three levels of OCCURS
options, each with an INDEXED BY option. However, if'data':':name'(A'~ in
this example) belongs to an OCCURS' struCture that does not use the
INDEXED BY option, this compil,er accepts the, specif ication of
index-names (in this, example INDEX-l, INDEX-2, INDEX-3) and 'assumes tJ1e
l:;lser: has s'et them to values'that correspond to the occu,rrenc-enumber. he
~ishes~to referei~e~ - ,;

298 Part V -- Speclal Features

USAGE IS INDEX Clause

Relative Indexing: The index-name is followed by a space, followed
by one of the operators + or -, followed by another space, followed by
an unsigned numeric literal. The numeric literal is considered to be an
occurrence number, and is converted to an index value before being added
to, or subtracted from, the corresponding index-name.

Given the following example:

A (Z + 1, J + 3, K + 4)

where:

table element indexed by Z has an ~r\~ "....,,7
~.&..a.'-..LJ length of 100

table element indexed by J has an entry length of 10

table element indexed by K has an entry length of 2

the resulting address will be computed as follows:

(ADDRESS of A) + Z + /100 * 1/ + J + 110 * 31 + K + 14 * 21

USAGE IS IND~X Clause

I I
conversion of integers

to index values

The USAGE IS INDEX clause is used to specify the format of a data
item stored internally.

r--,
I Format I
~---------------------------~--~
I I
/ [USAGE IS] INDEX I
I I L __ J

The USAGE IS INDEX clause allows the programmer to specify index data
items.

An index data item is an elementary item (not necessarily connected
with any table) that can be used to save index-name values for future
reference. An index data item must be assigned an index-name value
(i.e., (occurrence number - 1) * entry length) tnrough the SET
statement. Such a value corresponds to a~ occurrence number in a table.

The USAGE IS INDEX clause may be written at any level. If a group
item is described with the USAGE IS INDEX clause, it is the elementary
items within the group that are index data items; the group itself is
not an index data item, and the group name cannot be used in SEARCH and
SET statements or in relation conditions. The USAGE clause of an
elementary item canQot contradict the USAGE clause of a group to whiCh
the item belongs.

An index data item can be referred to directly only in a SEARCH or
SET statement or in a relation condition. An index data i±em can be
part of a group which is referred to in a MOVE or an input/output

Table Handling Feature 299

Table Handling -- Relation Condition

statement. When such operations are executed, however, there is no
conversion of the contents of the index data item.

An index data item cannot be a conditional variable.

The SYNCHRONIZED, JUSTIFIED, PICTURE, BLANK W::-:IEN ZERO, or VALUE
clauses cannot be used to describegrollP ()I:"e~~mentar .+te~~de~Gribed

,;~~~~~~~~~~:~~f~;~~~~~~~~:,'" ',~ ~~-~':~~i1'f' ' .. :~~

PR~CEDURE DIVISION CONSIDERATIONS FOR TABLE HANDLING

The SEARCH and the SET statements may be used to facilitate table
handling. In addition, there are special rules involving Table Handling
elements when they are used in relation conditions.

Relation Conditions

Comparisons involving index-names and/or index data items conform to
the following rules:

1. The comparison of two index-names is actually the comparison of the
corresponding occurrence numbers.

2. In the comparison of an index-name with a data item (other than an
index data item), or in the comparison of an index-name with a
literal, the occurrence number that corresponds to the value of the
index-name is compared with the data item or literal.

3. In the comparison of an index data item with an index-name or
another index data item, the actual values are compared without
conversion.

Any other comparison involving an index data item is illegal.

Figure 49 gives permissible comparisons for index-names and index
data items.

300 Part V -- Special Features

SEARCH Statement

----------------T-----------T-----------T-------------T---------------,
I Second I I I I I
I Operandi I I Data-name I Numeric I
I First I I Index I (numeric I literal I
I Operand IIndex-name IData Item linteger only) I (integer only) I
r---------------- -----------f-----------+-------------f---------------~
I Index-name I compare I compare I compare I compare I
I loccurrence Iwithout I occurrence I occurrence I
I I number Iconversion Inumber with Inumber with I
I I I I data-name I literal I
r----------------f-----------f-----------f-------------+---------------~
IIndex Data Item Icompare I compare I illegal lillegal I
I I without I without I I I
I i conversion i conversion Ii!
t----------------+-----------+-----------f------------_i _______________ ~

I Data-name I compare I illegal I I
I (numeric I occurrence I I I
I integer only) I number I I I
I I with I I See Figure 23 I
I I data-name I I for I
r----------------f-----------f-----------~ Permissible I
I Numeric I compare I illegal I Comparisons I
I literal loccurrence I I I
I (integer only) I number I I I
I I with I I I
I IIi teral I I I l ________________ i ___________ i ___________ i _____________________________ J

Figure 49. Index-names and Index Data Items -- Permissible Comparisons

SEARCH Statement

The SEARCH statement is used to search a table for an element that
satisfies a specified condition, and to adjust the value of the
associated index-name to the occurrence number corresponding to that
table element~

r--,
I Format 1 I
~--~

SEARCH identifier-1 [VARYING
~index-name-1l

tidentifier-2f

[AT END imperative-statement-1]

~ condition-l

[WHEN condition-2

~imperative-statement-2t

I~EXT SENTENCE ~
~imperative-statement-3 {

lNEXT SENTENCE ~
] ...

l __ J

Table Handling Feature 301

SEARCH Statement

r--,
I Format 2 I

~--~
I I
I SEARCff ALL identifier-1 [AT END imperative-statement-i] I
I I
II -\~perative-statement-2.1 11

WHEN condition-i ~ }
I l NEXT SENTENCE ~ I
I I L __ J

The Data Division description of identifier-i must contain an OCCURS
clause with the INDEXED BY option.(L~~'*~:+:e;r:;-<f~,·!ll· Lm::':':ixlE
·;a:s,;',:~;;flo~:ip.:i-:'~~:t:n~,i;t,~~;; " : -.~ :,~?i,':<~;4,:-,r:,t\2U _ " ,,:-;; :':- .. ' .::.

When written in the SEARCH statement, identifier-i must refer to all
occurrences within one level of a table; that is, it must not be
subscripted or indexed.

Identifier-i can be a data item subordinate to a data item that
contains an OCCURS clause, thus providing for a two or three dimensional
table. An index-name must be associated with each dimension of the
table through the INDEXED BY phrase of the OCCURS clause. hxecution of
a SEARCH statement causes modification only of the setting of the
index-name associated with identifier-i (and, if present, of
index-name-i or identifier-2). Therefore, to search an entire two or
three dimensional table, it is necessary to execute a SEARCH statement
several times; prior to each execution, SET statements must De executed
to adjust the associated index-names to their appropriate settings.

In the AT END and WHEN options, if any of the specified imoerative
statement(s) do not terminate with a GO TO statement, control passes to
the next sentence after execution of the imperative statement.

Format 1 Considerations -- Identifier-2, when specified, must be
described as an index data item, or it must be a fixed-point numeric
elementary item described as an integer. When an occurrence number is
incremented, identifier-2 is simultaneously increffiented by the same
amount.

Condition-i, condition-2, etc., may be any condition, as follows:

relation condition
class condition
condition-name condition
sign condition
switch-status condition
(condition)

[NOT] {::D} condition

(See Conditions section of "Procedure Division.")

Upon the execution of a SEARCH statement, a serial search takes
place, starting with the current~_setti~g.

If, at the start of the SEARCH, the value of the index-name
associated with identifier-i is not greater than the highest possible
occurrence number for identifier-i, the following actions take place:

1. The condition<s) in the wHEN option are evaluatec in the order they
are written.

302 ~art V -- Special Features

2.

3.

4.

SEARCH~ent

\
If none of the conditions are satisfied, the index-name for i

identifier-i is incremented to reference the next table element, \
and step 1 is repeated. ~

~
\

If, upon evaluation, one of the WHEN conditions is satisfied, tne \
search terrr;inates immediately, and the impel.-ati ve-statemE:nt
associated with that condition is executed. The index-name pOints \
to the table elerrent that satisfied the conditi"on. \

~

If the end of the table is reacned ~ithout the WHEN condition being
satisfied, thE: search terminates as describea in the next
paragraph.

If at the start of the search, the value of the index-name associated
with identifier-i is greater than the highest permissible occurrence
number for identifier-i, the search is terminated immediately, and if
the AT END option is specified, imperative-statement-l- is executed. If
this option is omitted, control passes to the next sentence.

When the VAHyr1G index-name-i opt.ion is n~?~£!~d, thE: index used
for the search is the first (or only) index~name associated w~th
identifie r -1.

When tne VARYING index-narne-i option is specified, one of tne
following appliesi

• If index-name-l is one of the indexes for identifier-i, index-name-l
is used for the search. Otherwise, the first (or only> index-namE:
for identifier-l is used~

• If index-name-i is an index for another table entry, then when the
index-name for identifier-l is incremented to represent the next
occurrence of the table: index-name-l is simultaneously incremented
to represent the next occurrence of the table it indexes.

A flowchart of the Format 1 S~ARCrl operation containing two WHEN
options is shown in Figure 50.

Table Handling Feature 303

SEARCH Statement

INDEX SETTING EQUALS
HIGHEST PERMISSIBLE
OCCURRENCE NUMBER

* * **11.2*** ** * * **
* EXECUTION *

OF SEARCH *
* BEGINS *
****** **** * *** *

~-----,l
· *. B2 *. *****B4**********

· * *. * *
• * *. GT AT E:-l"D * * IMPERATIVE- * * *

*. • *----------------------------------> * STATEMENT-l *------->
*. . * * * *. . * * *

* .. * ***************** rOR
=

· *. C2 *. *****C4**********
· * *. * * .* *. TRUE WHE~ C01IDITION-l * IMPERATIVE- * **

*. CONDITION-l • *--------------------------------->* STATEMENT-2 *------>
*. . * * *

*. . * * * *. . * ******** ********* r"
· *. D2 *. *****D!I**********

· * * * • * *. TRUE WHE:~ co,mITION-2 * * I~PERATIVE- * **
*. CONDITION-2 • *---------------------------------->* STA'C'E!>lE::lT-3 *------->

*. . * *
*. . * * * .. * ***************** r"

**** "'E2 ****"'* * ***
* INCREMENT *
*INDEX-NAME FOR *
* IDENTIFIER-l *
* IINDEX-NA."IE-l *
* IF APPLICABLE) *
* * **** * * ****** ***

1
*****F2*** ***** **
* INCREMENT *
* INDEX-NAME-l *

---* (FOR ANOTHER *
* TABLE) OR *
* IDENTIFIER-2 *
******* * **** *****

THESE OPERATIONS ARE INCLUDED ONLY WHEN CALLED FOR
IN THE STATEMENT.

*'" EACH OF THESE CONTROL TRANSFE~S IS TO THE NEXT
SENTENCE UNLESS THE IMPERATIVE-STATEMENT ENDS WIT"
A GO TO STATEMENT.

Figure 50. Format 1 SEARCH Operation Containing Two WHEN Options

304 Part V Special Features

SEARCH Statement

Format 2 Considerations -- The first index-name assigned to
identifier-l will be used for the search.

The description of identifier-l must contain the KEY option in its
OCCURS clause.

Condition-l must consist of one of the following:

• A relation condition incorporating the EQUALS, EQUAL TO, or equal
sign (=) relation. Either the subject or the object (but not
both) of the relation condition must consist solely of one of the
data-names that appear in the KEY clause of identifier-i.

• A condition-name condition in which the VALUE clause describing the
condition-name consists of a single literal only. The conditional
variable associated with the condition-name must be one of the
data-names that appear in the KEY clause of identifier-i.

• A compound condition formed from simple conditions of the types
described above, with AND as the only connec~ive.

Any data-name that appears in the KEY clause of identifier-l may be
tested in condition-i. However, all data-names in the KEY clause
preceding the one to be tested must alsQ be so tested in condition-i.
No other tes·ts may be made in condition-i.

For example, if the following table were defined in the Data
Division:

77 VALUE-l PICTURE 99.

02 A OCCURS 10 TIMES ASCENDING KEY IS KEY1, KEY2, KEY3, KEY4
INDEXED BY I.
03 KEYl PICTURE 9.
03 KEY2 PICTURE, 99.
03 KEY3 PICTURE 9.
03 KEY4 PICTURE 9.

88 BLUE VALUE 1.

in the Procedure Division, valid WHEN phrases could be:

WHEN KEY1 (I) 3 AND KEY2 (I) 10 AND KEY3 (I)

WHEN KEYl (I) 3 AND KEY2 (I) VALUE-l
AND' KEY3 (I) = 5 AND BLUE (I) •••

5 •••

During execution of a.X()rmat 2 SEARCH st.atement, a binary search
takes place; the setting of index-name is varied during the search so
that at no time is it less than the value that corresponds to the first
element of the table, nor is it ever greater than the value that
corresponds to the last element of the table. If condition-l cannot be
satisfied for any setting of the index within this permitted range,
control is passed to imperative- statement-l when the AT END option
appears, or to the next sentence when this clause does not appear. In
either case, the final setting of the index is not predictable. If tEe
index indiCates--.iii-·-6-ccu:ct'ence---ili-a-£--allows-C-orrd1ffo-n-T'To"~sa ti s f ied,
control passes to imperative-statement-2.

Table Handling Feature 305

SET Statement

SET Statement

The SET statement establishes reference points for table handling
operations by setting index-names to values associated with table
elements. The SET statement must be used when initializing index-name
values before execution of a SEARCH statement; it may also be used to
transfer values between index-names and other elementary data items.

r--,
, Format 1 ,
~--~ , ,
I lindex-name-1 [index-name-2J ••• j lindex-name-3) ,
I SET t TO identif ier-3 (I
, identifier-1 [identifier-2J ..• , literal-1' I
I I L __ J

r--,
, Format 2 I
~--~
I I
'I I UP BY i I identifier- 4(II

SET index-name-4 [index-name-SJ •••
, DOWN ~ literal-2 I
, I L _____ ~ __ J

All identifiers must name either index data items or fixed-point
numeric elementary items described as integers; however, identifie~-4
must not name an index data item. When a literal is used, it must be a
positive integer or zero. Index-names are related to a given table
through the INDEXED BY option of the OCCURS clause; when index-names are
specified in the INDEXED BY option, they are automatically defined.

All references to index-name-1, identifier-1, and index-name-4 apply
eq~ally to index-name-2, identifier-2, and index-name-S, respectively.

Format 1 considerations -- When the SET statement is executed, one of
the following actions occurs:

1. Index-name-1 is converted to a value that corresponds to the same
table element to which either index-name-3, identifier-3, or
literal~l corresponds. If identifier-3 is an index data item, or
if index-name-3 is related to the same table as index-name-1, no
conversion takes place. To be valid, the resultant value of
index-name must correspond to the occurrence number of an element
in the associated table.

2. If identifier-1 is an index data item, it is set equal to either
the contents of index-name-3 or identifier-3, where identifier-3 is
also an index data item. Literal-1 cannot be used in this case.

3. If identifier-1 is not an index data item, it is set to an
occurrence number that corresponds to the value of index-name-3.
Neither identifier-3 nor literal-1 can be used in this case.

Format 2 Considerations -- When the SET statement is executed, the
contents of index-name-4 (and index-name-S, etc., if present) are
incremented (UP BY) or decremented (DOWN BY) by a value that corresponds
to the number of occurrences represented by the value of literal-2 or
identifier-4.

306 Part V -- Special Features

Table Handling -- Sample Program

SAMPLE TABLE HANDLING PROGRAM

The program in Figure 51 illustrates the Table Handling feature,
including the use of indexing, of the SET statement, and of the SEARCh
statement (including the VARYING option and the SEARCH ALL format).

The census bureau uses the program to compare:

1. The number of births and deaths that occurred in anyone of the 50
states in anyone of the past 20 years with

2. The total number of births and deaths that occurred in the same
state over the entire 20-year period

The input file, INCARDS, contains the specific information upon which
the search of the table is to be conducted. INCARDS is formatted as
follows:

STATE-NAME a 4-character alphabetic abbreviation of the state name

M-F-CODE 1 = male; 2 = female

YEARCODE a 4-digit field in the range 1950 through 1969

A typical run might determine the number of females born in New York
in 1953 as compared with the total number of females born in New York in
the past 20 years.

r--,
IDENTIFICATION DIVISION. I
PROGRAM-ID. TABLES. I
ENVIRONMENT DIVISION. I
CONFIGURATION SECTION. I
SOURCE-COMPUTER. IBM-360. I
OBJECT-COMPUTER. IBM-360. I
SPECIAL-NAMES. CONSOLE IS TYPEWRITER. I
INPUT-OUTPUT SECTION. I
FILE-CONTROL.

SELECT INFILE ASSIGN TO SYS007-UT-2400-S-INTAPE.
SELECT OUTFILE ASSIGN TO SYS012-UR-1403-S-PRTOUT.
SELECT INCARDS ASSIGN TO SYS013-UR-2540R-S-ICARDS.

DATA DIVISION.
FILE SECTION.
FD INFILE LABEL RECORDS ARE OMITTED.
01 TABLE-l PIC X(28200).
01 TABLE-2 PIC X(1800).
FD OUTFILE LABEL RECORDS ARE OMITT~D.
01 PRTLINE PIC X(133).
FD INCARDS LABEL RECORDS ARE OMITTED.
01 CARDS.

02 STATE-NAME PIC X(4).
02 M-F-CODE PIC 9.
02 YEARCODE PIC 9(4).
02 FILLER PIC X(71).

WORKING-STORAGE SECTION.
101 PRTAREA-20.
I 02 FILLER PIC X VALUE SPACES.
I 02 YEARS-20 PIC 9(4).
I 02 FILLER PIC X(3) VALUE SPACES.
I 02 BIRTHS-20 PIC 9(7).
I 02 FILLER PIC X(3) VALUE SPACES.
I 02 DEATHS-20 PIC 9(7).
I 02 FILLER PIC X(108) VALUE SPACES. L __ J

Figure 51. Sample Table Handling Program (Part 1 of 2)

Table Handling Feature 307

Table Handling -- Sample Program

r--,
01 PRTAREA.

02 FILLER PIC X.
02 YEAR PIC 9(4).
02 FILLER PIC X(3) VALUE SPACES.
02 BIRTHS PIC 9(5).
02 FILLER PIC X(3) VALUE SPACES.
02 DEATHS PIC 9(5).
02 FILLER PIC X(112) VALUE SPACES.

01 CENSUS-STATISTICS-TABLE.
02 STATE-TABLE OCCURS 50 TI~illS INDEXED BY ST.

03 STATE-ABBREV PIC X(4).
03 M-F OCCURS 2 TIMES INDEXED BY SE.

04 STATISTICS OCCURS 20 TIMES ASCENDING KEY IS YEAR
INDEXED BY YR.
05 YEAR PIC 9(4).
05 BIRTHS PIC 9(5).
05 DEATHS PIC 9(5).

01 STATISTICS-LAST-20-YRS.
02 M-F-20 OCCURS 2 TIMES INDEXED BY SE-20.

03 STATE-20 OCCURS 50 TIMES INDEXED BY ST-20.
04 YEARS-20 PIC 9(4).
04 BIRTHS-20 PIC 9(7).
04 DEATHS-20 PIC 9(7).

PROCEDURE DIVISION.
OPEN-FILES.

OPEN INPUT INFILE INCARDS OUTPUT OUTFILE.
READ-TABLE.

READ INFILE INTO CENSUS-STATISTICS-TABLE
AT END GO TO READ-CARDS.

READ INFILE INTO STATISTICS-LAST-20-YRS
AT END GO TO READ-CARDS.

READ-CARDS.
READ INCARDS

AT END GO TO EOJ.
DETERMINE-ST.

SET ST ST-20 TO 1.
SEARCH STATE-TABLE VARYING ST-20 AT ENB GO TO ERROR-MSG-1

WHEN STATE-NAME = STATE-ABBREV (ST) NEXT SENTENCE.
DETERMINE-SE.

SET SE SE-20 TO M-F-CODE.
DETERMINE-YR.

SEARCH ALL STATISTICS AT END GO TO ERROR-MSG-2
WHEN YEAR OF STATISTICS (ST, SE, YR) = YEARCODE

GO TO WRITE-RECORD.
ERROR-MSG-1.

DISPLAY "INCORRECT STATE" STATE-NAME UPON TYPEWRITER.
GO TO READ-CARDS.

ERROR-MSG-2.
DISPLAY "INCORRECT YEAR" YEARCODE UPON TYPEWRITER.
GO TO ~EAD-CARDS.

WRITE-RECORD.

IEOJ.

MOVE CORRESPONDING STATISTICS (ST, SE, YR) TO PRTAREA.
WRITE PRTLINE FROM PRTAREA AFTER ADVANCING 3.
MOVE CORRESPONDING STATE-20 (SE-20, ST-20) TO PRTAREA-20.
WRITE PRTLINE FROM PRTAREA-20 AFTER ADVANCING 1.
GO TO READ-CARDS.

I CLOSE INFILE INCARDS OUTFILE.
I STOP RUN. L __ J

Figure 51. Sample Program for the Table Handling Feature (Part 2 of 2)

308 v -- Special Features

Segmentation -- Organization

SEGMENTATION FEATURE

The segmentation feature allows the problem programmer to specify
object program overlay requirements. The segmentation feature permits
segmentation of procedures only. The Procedure Division and Environment
Division are considered in determining segmentation requirements for an
object program.

ORGANIZATION

Although it is not mandatory, the Procedur~ Division for a source
program is usually written as several consecutive sections, each of
which is composed of a series of closely related operations that are
designed to-perform collectively a particular function. However, when
segmentation is used, the entire Procedure Division must be in sections.
In addition, each section must be classified as belonging either to the
fixed portion or,toone of the independent segments of the object
program. segmentation in no way affects the need for qualification of
procedure-names to ensure uniqueness.

FIXED PORTION

The fixed portion is defined as that part of the object program that
is logically treated as if it were always in computer storage. This
portion of the program is composed of two types of computer storage seg
ments, permanent segments and overlayable fixed segments.

A permanent segment is a segment in the fixed portion that cannot be
overlaid by any other part of the program.

An overlayable fixed segment is a segment in the fixed portion which,
although logically 'treated as if it were always in storage, can be
overlaid (if necessary) by another segment to optimize storage utiliza
tion. However, such a segment, if called for by the program, is always
made available in the state it was in when it was last used.

Depending on the availability of storage, the numoer of permanent
segments in the fixed portion can be varied through the use of a special
facility called SEGMENT-LIMIT, which is discussed in "Structure of
Program Segments."

INDEPENDENT SEGMENTS

An independent segment is defined as that part of the object program
which can overlay, and be overlaid by, either an overlay able fixed seg
ment or another independent segment. An independent segment is always
considered to be in its initial state each time it is made available to
the program.

Segmentation Feature 309

Segmentation control and Structure

SEGMENT CLASSIFICATION

Sections that are to be segmented are classified by means of a system
of priority numbers. The following criteria should be used:

• Logical requirements: Sections that must be available for
reference at all times, or which are referred to very frequently,
are normally classified as belonging to one of the permanent
segments; sections that are less frequently used are normally
classified as belonging either to one of the overlayable fixed
segments or to one of the independent segments, depending on logic
requirements.

• Frequency of use: Generally, the more frequently a section is
referred to, the lower its priority number should be; the less
frequently it is referred to, the higher its priority number should
be.

• Relationship to other sections: sections that frequently
communicate with one another should be given equal priority
numbers. All sections with the same priority number constitute a
single program segment.

SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical
sequence except for specific transfers of control. A reordering of the
object module will be necessary if a given segment has its sections
scattered throughout the source program. However, the compiler will
provide transfers to maintain the logic flow of the source program. The
compiler will also insert instructions necessary to load and/or initial
ize a segment when necessary. Control may be transferred within a
source program to any paragraph in a section; that is, it is not
mandatory to transfer control to the beginning of a section.

STRUCTURE OF PROG~ SEGMENTS

PRIORITY NUMBERS

Section classification is accomplished by means of a system of
priority numbers. The priority number is included in the section
header.

r--,
I Format I
~--i
I I
I section-name SECTION [priority-number]. I
I I L __ J

All sections that have the same priority-number constitute a program
segment with that priority.

The priority-number must be an integer ranging in value from 0
through 99.

310 Part V -- Special Features

SEGMENT-LIMIT Clause

Segments with priority-numbers 0 through 49 belong to the fixed
portion of the object program.

Segments with priority-numbers 50 through 99 are independent
segments.

Sections in the declaratives portion of the Procedure Division must
not contain priority-numbers in their section headers. They are treated
as fixed segments with a priority-number of zero.

If the priority-number is omitted from the section header, the
priority is assumed to be zero.

When a procedure-name in an independent segment is referred to by a
PERFORM statement contained in a segment with a different priority
number, the segment referred to is made available in its initial state
for each execution of the PERFORM statement.

SEGMENT LIMIT

Ideally, all program segments having priority-numbers ranging from 0
through 49 are treated as permanent segments. However, when insuffi
cient storage is available to contain all permanent segments plus the
largest overlayable segment, it becomes necessary to decrease the number
of permanent segments. The SEGMENT-LIMIT feature provides the user with
a means by which he can reduce the number of permanent segments in his
program, while these permanent segments still retain the logical
properties of fixed portion segments (priority numbers 0 through 49).

r--,
I Format I
~--~
I I
I [SEGMENT-LIMIT IS priority-number] I
I I L __ J

The SEGMENT-LIMIT clause is coded in the OBJECT-COMPBTER paragraph.

Priority-number must be an integer that ranges in value from 1
through 49.

When the SEGMENT-LIMIT clause is specified, only those segments
having priority-numbers from 0 up to, but not including, the priority
number designated as the segment limit are considered as permanent
segments of the object program.

Those segments having ~iority numbers from the segment limit through
49 are considered as overlayable fixed segments.

When the SEGMENT-LIMIT clause is omitted, all segments having
priority numbers from 0 through 49 are considered to be permanent
segments of the object program.

Segmentation Feature 311

Segmentation Restrictions

RESTRICTIONS ON PROGRAM FLOW

When segmentation is used, th~ ",.f .•.... / .. Ol}-.?~.~." .. _ ,.r.,.~ .. ~ .. ~~"f;"l.:.,.c.."t.,}.:.:-"" .. ().,,n.~s are placed on
the ALTER and PERFORM st-atemen.t.s!~~:m~ ... :

ALTER Statement

1. A GO TO statement in a section whose priority number is 50 or
higher must not be referred to by an ALTER statement in a section
with a different priority number.

2. A GO TO statement in-a section whose priority number is lower than
50 may be referred to by an ALTER statement in any section, even if
the GO TO statement to which the ALTER refers is in a segment of
the program that has not yet been called for execution.

PERFORM Statement

1. A PERFORM statement that appears in a section whose priority number
is iower than the segment limit can have within its range only the
following:

a. Sections with priority numbers lower than 50.

b. Sections wholly contained in a single segment whose priority
number is higher than 49.

2. A PERFORM statement that appears in a section whose priority number
is equal to or higher than the segment limit can have within its
range only the following:

a. Sections with the same priority number as the section
containing the PERFORM statement.

b. sections with priority numbers that are lower than the segment
limit.

When a procedure-name in a permanent segment is referred to by a.
PERFORM statement in an independent segment, the independent segment is
reinitialized upon exit from the performed paragraphs.

312 Part V -- Special Features

COpy Statement

SOURCE PROGRAM LIBRARY F~CILITY

Prewritten source program entries can be included in a source program
at compile time. Thus, an installation can use standard file
descriptions, record descriptions, or procedures, without recoding them.
These entries and procedures are contained in user-created libraries;
they are included in a source program by means of a COpy statement.

COpy statement

The COpy statement permits the user to include prewritten Data
Division entries, Environment Division clauses, and Procedure Division
procedures in his source program.

r--,
I Format I
t---~------------~
I I
I COpy library-name ~~ I
I I
I lword-2 J I
I [REP~ACING word-l BY literal-l ~ I
I identifier-l\ I
I I

: [word-3 BY l~~~~~~l-2 (]. .•]. I
I identifier-2 ~ I L __ J

statement or clause may aJ?pear in the same en~:s¥.a~, ~"h~ /;OPY

When the library text is copied from the library, compilation is the
same as though the text were actually part of the source program.

The COpy statement processing is terminated by the end of the library
text.

The text contained in the library must not contain any COpy
statements.

Library-name is the name of the library text contained in the user's
library. Library-name must follow the rules of formation for
program-name. The first eight characters are used as the identifying
name.

Source Program Library Facility 313

COpy Statement

r--,
, General Format I
~--~-1
,Option 1 <within the Configuration Section): I
I I
, SOURCE-COMPUTER. COpy statement. I
I OBJECT-COMPUTER. COpy statement. I
I SPECIAL-NAMES. COpy statement~ I
~------------------------------------~---------------------------------~
,Option 2 <within the Input-Output Section): I
I I
I FILE-CONTROL. COpy statement. I
, I-O-CONTROL. COPY statement. I
~--.----------------~~---~

IOption 4 (within the File Section):
I

I
I
I

I FD file-name COPY statement. I
I SD sort-file-name COpy statement. I
~--i
IOption 5 <within the Report Section): I
, I
, RD report-name COpy statement. I
, "~. I
~--1
,Option 6 (within a File or Sort description entry, or within the ,
, Working-Storage section or~~~): I , ,
, 01 data-name COPY statement. I
~--~
,Option 7 (with a Report Group): ,
, I
, 01 [data-name] COpy statement. I
--~-------.-~-~--~~-~~~------~---~~---~-----~-~~--~-.j,~-------~~------:-;:-1

, I
I
i
I
I
I
I
~

,Option 10 (within the Procedure Division): I
, I
, section-name SECTION [priority-number]. COpy statement. I
, paragraph-name. COPY statement. I L __ J

The words preceding COpy conform to margin restrictions for COBOL
programs. On a given source program card containing the completion of a
COpy statement, there must be no information beyond the statement
terminating period. The material introduced into the source program by
the COPY statement will follow the COPY statement on the listing
beginning on the next line. II

If the REPLACING option is used, each word specified in the format is
replaced by the stipulated word, identifier, or literal which is
associated with it in the format.

Word~l, word-2, etc., may be a data-name, procedure-name
condition-name, mnemonic-name, or file-name.

314 Part V -- Special Features

COPY Statement

Use of the REPLACING option does not alter the material as it appears
in the library.

When options 1, 2, ;j~i 4, 5, or 10 are written, the words COpy
library-name are replaced by the information identified by llDrary-naroe.
This information comprises the sentences or clauses needed to complete
the paragraph, sentence, or entry containing the COpy statement.

When options 6, 7~[~~~21~t:j~ are written, the entire entry is replaced
by the information identified by library-name, except that data-name (if
specified) replaces the corresponding data-name from the library.

For example, if the library entry PAYLIB consists u~ the following
Data Division record:

01 A.
02 B
02 C
02 D

PIC S99.
PIC S9(5)V99.
PIC S9999 OCCURS 0 TO 52 TIMES

DEPENDING ON B OF A.

the programmer can use the COpy statement in the Lata Division of his
program as follows:

01 PAYROLL COFY PAYLIB.

In this program, the library entry is then copied; the resulting entry
is treated as if it had been written as follows:

01 PAYROLL.
02 B
02 C
02 D

PIC S99.
PIC S9(5)V99.
PIC S9999 OCCURS 0 TO 52 TIMES

DEPENDING ON B OF A.

Note that the data-name A has not been changed in the DEPENDING ON
option.

To change some (or all) of the names within the library entry to
names he wishes to reference within his program, the progra~mer can use
the REPLACING option:

01 PAYROLL COpy PAYLIB REPLACING A BY PAYROLL
B BY PAY-CODE C BY GROSSPAY.

In this program, the library entry is copied; the resulting entry is
treated as if it had been written as follows:

01 PAYROLL.
02 PAY-CODE PIC S99.
02 GROSS-FAY PIC S9(5)V99.
02 D PIC S9999 OCCURS 0 TO 52 TIMES

DEPENDING ON PAY-CODE OF PAYROLL.

The changes shown are made only for this prograrr.. The entry as it
appears in the library remains unchanged.

Source Program Library Facility 315

BASIS/INSERT/DELETE Statements

EXTENDED SOURCE PROGRAM LIBRhRY FACILIT!

A complete program may be included as an entry in the user's libr ry
and may be used as the basis of compilation. Input to the compiler s,a
BhSIS card I followed by any number of INSERT and/or'DELETE cards, fo -
lowed oy any number of debugging packets, ,if desired. Debug packets
must be inserted (using the INSERT card) at the end of the BASTS member
(see "Debugging Language~).

BASIS Card

r---..,..-::'-----------------'-----:'--------------'--'- - -----,-'----------.... -----'---,
I Format I
I-------------,----'-------.... ----~--..::.~-----:--..:.'-----~-;.--------..:.-:..;.---------..;.~
I I
I BASIS library-name I
I f l __ ~ ___ J

The word BASIS followed by library-name may appear anywhere within
columns 1 through 72 on the card. There must be no other text on the
card.

Library-name must follow the rules of formation for program-name. It
is the name by which the library entry is known to the control program.
The first eight characters are used as the identifying name.

If the INSERT or DELETE cards follow the BASIS card, the library
entry is modified prior to being processed by the compiler. Use of
INSERT or DELETE cards does not alter the material in the library.

INSERT Card

r----------------------------:------------------------------:------------,
I ~r~t I
I------------------------~--i
I ,
I INSERT sequence-number-field I
I I l _________________________ ..:. ____ ----------------'-------_________________ J

DELETE Card

r-------------------------- -----------------------:-----------~---,--:----,
I Format I
~-'------------------------------------:------------------------:..:.--------i
I I
I DELETE sequence-number-field I
'/ I
l _________________________ ---~------------------------_________________ 1

316 Part V -- Special Features

Source Program Library Facility 311

\

Page of GC28-6394-4, -5, -6 revised 12/03/76 by TNL GN26-0887

\lIBmll!mB,l¥I\\:\\:\:I,:m\I •• i1Mfi\l\l:

The following statements are provided for program debugging. They
may appear anywhere in an IBM American National Standard COBOL program
after the first paragraph name or in a compile-time debugging packet.

For the TRACE and EXHIBIT statements, the output is written on the
system list device (SYSLST).

READY/RESET TRACE Statement

r--,
I fur~t I
r--~
I I
II I READY! II TRACE
I RESET I
I I l __ J

After a READY TRACE statement is executed, each time execution of a
paragraph or section begins, its compiler-generated card number is
displayed.

The execution of a RESET TRACE statement terminates the functions of
a previous READY TRACE statement.

EXHIBIT Statement

r--,
I Format I
r--~
I I
II I NAMED ! I identifier-l! II

EXdIBIT CHANGED NAMgQ
I CHANGED nonnurneric-literal-l I
I I I [identifier-2 1 I
I nonnumeric-literal-~ I
·1 I l __ J

The execution of an EXHIBIT statement causes a formatted display of
the identifiers (or nonnumeric literals) listed in the statement.

Idegtifiers listed in the statement cannot be any special register
except TALLY.

Nonnumeric-literals listed in the statement are followed by a space
when displayed-. -----

318 Part TV Special Features

EXHIBIT statement

The display of the operands is continued as described for the DISPLAY
statement. A maximum logical record size of 120 characters is assumed.

EXHIBIT NAMED: Each time an EXHIBIT NAMED statement is executed, there
is a formatted display of each identifier listed and its value. Since
both the identifying name and the value of the identifier are displayed,
a fixed columnar format is unnecessary. If the list of operands
includes nonnumeri£-literals, they are displayed as remarks each time
the statement is executed.

The format of the output for each identifier listed in the EXHIBIT
N~_M£D statement is:

original identifying name, including qualifiers if written (no more
than 120 characters in length)

space
equal sign
space
value of identifier (no more than 256 bytes in length)
space

EXHIBIT CHANGED NA~lliD: Each time an EXHIBIT CHANGED NAMED statement is
executed, there is a display of each identifier listed and its value
only if the value has changed since the previous time the statement was
executed. The initial time such a statement is executed, all values are
considered changed and are displayed. If the list of operands includes
nonnumeric-literals, they are displayed as remarks each time the
statement is executed.

Since both the identifying name and the value of each identifier is
displayed, a fixed columnar format is unnecessary. If some of the
identifiers have not changed in value, no space is reserved for them.
If none of the identifiers have changed in value, no blank line(s) will
be printed.

• The format of the output for each identifier listed in the EXHIBIT
ChANGED NA}lliD statement is:

original identifying name, including qualifiers if written (no more
than 120 characters in length)

space
equal sign
space
value of identifier (no more than 256 bytes in length)
space

EXHIBIT CHANGED: Each time an EXHIBIT CHANGED statement is executed,
there is a display of the current value of each identifier listed only
if the value has changed since the previous time the statement was
executed. The initial time the statement is executed, all values are
considered changed and are displayed. If the list of operands includes
nonnumeric-literals i they are printed as remarks each time the statement
is executed.

The format of the output for a specific EXHIBIT CHANGED statement
presents each operand in a fixed columnar position. Since the operands
are displayed in the order they are listed in the statement, the
programmer can easily distinguish each operand. The following
considerations apply:

• If there are two or more identifiers as operands, and some, but not
all, are changed from the previous execution of the statement, only
the changed values are displayed. The positions reserved for a
given operand are blank when the value of the operand has not
changed.

Debugging Language 319

• If none of the operands nave changed in value from the previous
execution of the statement, a blank line(s) will be printed.

• Variable length identifiers are not permitted as operands.

• The storage reserved for any operand cannot exceed 256 bytes.

Note: The combined total length of all operands for all EXHIBIT CHANGED
NAMED plus all EXHIBIT CHANGED statements in one program cannot exceed
32,767 bytes.

If two distinct EXHIBIT CHANGED NAMED or two EXHIBIT CHANGED
statements appear in one program, each specifying the same identifiers,
the changes in value of those identifiers are associated with each of
the two separate statements. Depending on the path of program flow, the
values of the identifier saved for comparison may differ for each of the
two statements.

ON (Count-conditional) statement

The ON statement allows the programmer to specify when the statements
it contains are to be executed.

r--,
I Format 1 I
~--~
I I
I ON integer-1 [AND EVERY integer-21 [UNTIL integer-3] I
I I
I {imperative-statement ••• } {ELSE } jstatement ... l I
I NEXT SENTENCE OTHERWISE t NEXT SElIj'TENCE f I
I I L __ J

r--,
I Format 2 (Version 3) I
~--~
I I
I I
I linteger-1 ! 1 integer-2 I I I ON [AND EVERY I
I identifier-1 --- ----- identifier-2 I
I I
II linteger-3 ! 1 imperative-statement/ II

[UNTIL 1
I identifier-3 NEXT SENTENCE I
I I
I jELSE} {statement •.• } I
I t OTHERWISE NEXT SENTENCE I L __ J

All integers specified in the ON statement must be positive and no
greater than 16,777,215.

The phrase ELSE/OTHERWISE NEXT SENTENCE may be omitted if it
immediately precedes the period for the sentence.

320 Part V -- Special Features

Program Product Information version 3

All identifiers must be fixed-point numeric items described as
integers. Their values must be positive and no greater than
16,777,215.

At object time each identifi~ must be initialized to a positive
value before the first execution of the ON statement. Between
executions of the ON statement, the values contained in the
identifiers may be modified. The programmer's manipulation of these
values in no way affects the compiler-generated counters associated
with the ON statement.

In the following discussion, each reference to integer-l applies
equally to identifier-i. Similarly, each reference to integer-2
applies to identifier-2, and each reference to integer-3 applies to
identifier-3.

In all ~ersions of the compiler, the ON statement is evaluated and
executed as follows:

• Each ON statement has compiler-generated counters and save areas
associated with it. The counters are initialized in the object
program. Each time the path of program flow reaches the ON
statement, the counters are incremented, and the count-condition
(integer-l AND EVERY integer-2 UNTIL integer-3) is tested.

• If the count-condition is satisfied, the imperative-statement (or
NEXT SENTENCE) preceding ELSE/OTHERWISE is executed. (Note that an
imperative-statement may consist of a series of imperative
statements.)

• If the count-condition is not satisfied, the statement(s) (or NEXT
SENTENCE) following ELSE/OTHERWISE is executed. If the
ELSE/OTHERWISE option does not appear, the next sentence is
executed.

The count-conditi0n is evaluated as follows:

• If only integer-l has been specified, then the count-condition is
satisfied only once: when the path of program flow has reached the
ON statement integer-l times -- that is, when the value in the
counter equals integer-i.

• When only integer-l and integer-3 are specified, then the value of
inteqer-2 is assumed to be one, and the count~condition is satisfied
when the value in the counter is any value within the range
integer-l through integer-3.

• If only integer~l and integer-2 are specified, then the
count-condition is satisfied each time the value in the counter is
equal to integer-l + (integer-2 * K), where K is any positive
integer or zero. No upper limit for the execution of the ON
statement is assumed.

• When all three integers are specified, then the count-condition is
satisfied as in the last preceding case, except that an upper limit
beyond which the count-condition cannot be satisfied is specified.
The upper limit is integer-3.

Debugging Language 321

DEBUG Card

COMPILE-TI~E DEBUGGING PACKET

Debugging statements for a given paraqraph or section in a program
may be grouped together into a deb~gging ~ket. These statements will
be compiled with the source language program and will be executed at
object time. Each packet refers to a specified paragraph-name or
section-name in the Procedure Division. Compile-time debugging packets
are grouped together and are placed immediately following the source
program. No reference to procedure-names in debug packets may be made
in the body of the program.

DEBUG Card

Each compile time debug packet is headed by the control card DEBUG.

r--,
I Format I
t--~
I I
I DEBUG location I
I I l __ J

The word DEBUG followed by location may appear anywhere within
columns 1 through 72 on the card. There must be no other text on the
card.

The location is the section-name or paragraph-name (qualified, if
necessary) indicating the point in tne program at which the packet is to
be executed. Effectively, the statements in the packet are executed as
though they were physically placed in the source program following the
section-name or paragraph-name, but preceding the text associated with
the procedure. The same location must not be used in more than one
DEBUG control card. Location cannot be a paragraph-name within any
DEBUG packet.

A debug packet may consist of any procedural statements conforming to
the requirements of COBOL. The following considerations apply:

• A PERFORM or ALTER statement in a debug packet may refer to a
procedure-name in any debug packet or in the main body of the
Procedure Division.

• A GO TO statement in a debug packet may not refer to a
procedure-name-in another debug packet, but it may refer to a
procedure-name in the main body of the Procedure Division.

322 Part V -- Special Features

There a~e four statements that allow the programmer to control the
spacing of the source program listings produced by the COBOL compiler.
These statements are: EJECT, SKIP1, SKIP2, and SKIP3. They may be
written anywhere in the source program.

EJECT Statiement

The EJECT statement instructs the compiler to print the next source
statement at the top of the next page.

r--,
I Format I
~--~
I I
I 1 Area B I
I --------------------- I
I EJECT I
I t L __ J

The word EJECT may be written anywhere within Area B and must be the
only statement on the card. There must be no punctuation.

SKIP1, SKIP2 L and SKIP3 Statements

These statements instruct the compiler to skip 1, 2, or 3 lines
before printing the next source statement.

r--,
I Format I
~--~
I I
I 1 Area B I
I --------------------- I
I lSKIP1! I I SKIP2 I
I SKIP3 I
I I L __ J

SKIPl tells the compiler to skip 1 line (double spacing).

SKIP2 tells the compiler to skip 2 lines (triple spacing).

SKIP3 tells the compiler to skip 3 lines (quadruple spacing).

SKIP1, SKIP2, or SKIP3 may be written anywhere within Area B and must
be the only statement on the card. There must be no punctuation.

Format Control of the Source Program Listing 323

Sterling Conventions

STERLING CURRENCY FEATURE AND INTERNATIONA:t.CONSIDERATLONS

COBOL provides facilities for handling sterling currency items by
means of an extension of the PICTURE clause. Additional options and
formats, necessitated by the nondecimal nature of sterling
and by the conventions by which sterling amounts are represented in
punched cards, are also available.

COBOL provides a means to express sterling currency in pounds,
shillings, and pence, in that order •. There are 2C shillings in a pound,
and 12 pence in a shilling. Although sterling amounts are sometimes
expressed in shillings and pence only (in which case the number of
shillings may exceed 99), within machine systems, shillings will always
be expressed as a two-digit field. Pence, when in the form of integers,
likewise will be expressed as a two-digit field. However, provision
must be made for pence to be expressed as decimal fractions as well, as
in the form 17s.10.237d.

The IBM method for representing sterling amounts in punched cards
uses two columns for shillings and one for pence. Tenpence (10d.) is
represented by ari '~1' punch and elevenpence (11d.) by a '12' punch.
The British Standards Institution (B.S.I.) representation. uses single
columns for both shillings and pence. The B.S.I. representation for
shillings consists of a '12' punch for ten shillings and the alphabetic
punches A through I for 11 through 19 shillings, respectively.

Note: The B.S.I. representation for shillings precludes the use of more
than 19 shillings in a sterling expression; therefore, 22/10 (that is,
22 shillings 10 pence) must be expanded by the user to 1/2/10.
Similarly, the guinea -- 21 shillings -- or any multiple thereof, must
be expanded to pounds and shillings.

The indicated representations may be used separately or in
combination, resulting in four possible conventions.

1. IBM shillings and IBM pence

2. IBM shillings and B.S.I. pence

3. B.S.I. shillings and IBM pence

4. B.S.I. shillings and B.S.I. pence

Any of these conventions may be associated with any number of digits
(or none) in the pound field and any number of decimal places (or none)
in the pence field. In addition, sign representation may be present as
an overpunch in one of several allowable positions in the amount, or may
be separately entered from another field.

Two formats are provided in the PICTURE clause for the representation
of sterling amounts: sterling report format (used for editing) and
sterling nonreport format (used for arithmetic).

324 Part V -- Special Features

sterll.ng Non:r:eportForma:t

In the formats that follow, ~ stands for a positive integer other
than zero. This integer enclosed in parentheses and following the
symbols 9, B, etc., indicates the number of consecutive occurrences of
the preceding symbol. For example, 9(6) and 999999 are equivalent. The
PICTURE characters used to describe sterling items are:

6789CD* ,/BZV. £ s d CR DB + -

(The character £ is the sterling equivalent of the character $.)

Note: The lower-case letters "s" and "d" are represented by an 11-0-2
punch and a 12-0-4 punch, respectively.

STERLING NON REPORT

The format of the PICTURE clause for a sterling nonreport data item is:

r--,
I Format I
~--~
I I

I
I lPICTURE({6 [6] } II . IS 9[(n)]O[8]8D [[V]9(n)]] [USAGE IS] DISP~~Y-ST
I PIC 7[7] I
I I
L __________________ ~----------------------------------_________________ J

Note: For a sterling nonreport picture to be valid, it must contain a
pound field, a shilling ~ield, and a pence field.

The representation for pounds is 9[(n)]D where:

1. The character 9 indicates that a character position will always
contain a numeric character, and may extend to Q positions.

2. The character D indicates the position of an assumed pound
separator.

The representation for shillings is [8]80 where:

1. The characters [8]8 indicate the position of the shillinq field and
the convention by which shillings are represented in punched cards.
88 indicates IBM shilling representation occupying a two-column
field. 8 indicates B.S.I. single-column shilling representation.

2. The character D indicates the position of an assumed shilling
separator.

The representation for pence is:

)6[6J l
h [7]~ [[V] 9 [(n)]]

1. The character 6 indicates IBM single-column pence representation
wherein 10d. is represented by an '11' punch and lld. by a '12'
punch. The characters 66 indicate two-column representation of
pence, usually from some external medium other than punched cards.

Sterling Currency and International Considerations 325

2. The character 7 indicates B.S.I. single-column pence representation
wherein lOde is represented by a '12' punch and lid. by an '11'
punch. The characters 77 indicate two-column representation of
pence. Consequently, 66 and 77 serve the same purpose and are
interchangeable.

3. The character V indicates the position of an assumed decimal point
in the pence field. Its properties and use are identical with that
of V in dollar amounts. Decimal positions in the pence field may
extend to Q positions.

4. The character 9 indicates that a character position will always
contain a numeric character, and may extend to ~ positions.

Example: Assume that a sterling currency data item used in arithmetic
expressions is to be represented in IBM shillings and IBM pence, and
that this data item will never exceed 99/19s/11d. Its picture should
be:

PICTURE 9(2)D88D6 DISPLAY-ST.

The VALUE clause must not be specified for sterling nonreport items.

sterling Sign Representation

Signs for sterling amounts may be entered as overpunches in one of
several allowable positions of the amount. A sign is indicated by an
embedded S in the nonreport PICTURE immediately to the left of the
position containing the overpunch. Allowable overpunch positions are
the high-order and low-order positions of the pound field, the high
order shilling digit in two-column shilling representation, the
low-order pence digit in two-column pence representation, or the least
significant decimal position of pence.

The following are examples of sterling currency nonreport data items
showing sign representation in each of the allowable positions:

PICTURE S99D88D6V9(3) DISPLAY-ST

PICTURE 9S9D88D6V9(3) DISPLAY-ST

PICTURE 9(2)DS88D6V9(3) DISPLAY-ST

PICTURE 9(2)D88D6S6V9(3) DISPLAY-ST

PICTURE 9(2)088D6V99S9 DISPLAY-ST

326 Part V -- Special Features

Sterling Report Format

STERLING REPORT

The sterling currency report data is composed of four portions:
pounds, shillings, pence, and pence decimal fractions.

r--,
I FORMAT I
t--~

lPICTURE l IS

PIC \

[pound-report-string] [pound-separator-string] delimiter

shilling-report-string [shilling-separator-string] delimiter

pence-report-string [pence-separator-string] [sign-string]

[USAGE IS] DISPLAY-ST L __ J

Pound-Report-String - This string is optional. It is subject to the
same rules as other numeric edited items, with tne following exceptions:

• The allowable characters are:
i (comma).

£ (pound symbol) 9 Z * + - 0 (zero) B

• The total number of digits in the pound-report-string plus the
fractional-pence field cannot exceed 15. (That is, if there are 11
digits in the pound-report-string, there cannot De more than 4
digits in the fractional-pence-field.)

• The character £ is the sterling equivalent of $.

• Termination is controlled by the pound-separator-string.

Pound-Separator-String - This string is optional. It may include one
character, or any combination of the following characters:

B: /. (period or decimal point)

Editing of the separator characters is dependent upon the use of C or
D as delimiters.

The Delimiter characters - The delimiter characters C and Dare
required. They primarily serve to indicate the end of the pounds and
shillings portions of the picture. In addition, they serve to indicate
the type of editing to be applied to separator characters to the right
of the low-order digit (of the pounds and shillings integer portions of
the item).

The delimiter character D indicates that separator character(s) to
the right of the low-order digit position (of the field delimited) are
always to appear; that is, no editing is performed on the separator
character(s).

The delimiter character C jndicates that if the law-order digit
position (of the field delimited) is represented by other than the edit
character 9, editing continues through the separator character(s).

The delimiter characters C and D are used for editing purposes only.
They do not take up space in the printed result.

sterling Currency and International Considerations 327

The following examples show the editing performed when a value of
zero is moved to a sterling report item.

**/CZ9s/D99d

would result in

***bOs/OOd

whereas, if the picture were

**/DZ9s/D99d

the result would be

**/bOs/OOd

The delimiter C is equivalent to D when the low-order digit position
is represented by a 9. That is, the following two pictures are
equivalent:

ZZ9/DZ9/D99
ZZ9/CZ9/C99

The delimiters used for the pounds and shillings portion of the
picture need not be the same.

Note: Although the pound-report-string and the pound-separator-string
are optional, a delimiter character (either C or D) must be present;
thus, when programming for shillings and pence only, the PICTURE clause
must begin PICTURE IS C (or D).

Shilling-Report-String - This is a required two-character field. It is
made up o~ the following characters:

9 8 X *
The valid combinations of these characters are:

99 Z9 ZZ Z8 *9 ** *8

The 8 is an edit character and is treated as a 9. However, if the
digits to the left of the edit character 8 are zeros, the 8 is treated
as the character that precedes it (either Z or *).

Shilling-Separator-String - This string is optional. It may include one
character, or any combination of the following characters:

B: / s . (period or decimal point)

Editing of the shilling-separator characters is dependent upon the
use of C or D as delimiters.

Pence-Report-String - This field is made up of two parts: a required
whole-pence field, and an optional fractional-pence field.

The required whole-pence field is a two-character field, made up of
the following symbols:

9 8 Z *
Valid combinations of these characters are:

99 Z9 ZZ Z8 *9 ** *8

The function of the editing character 8 is the same as in the
shilling-report-string.

328 Part V -- Special Features

The optional fractional-pence field is indicated by a decimal point
followed by one or more 9's. It is used to specify fractional pence in
decimal form.

The total number of digits in the fractional-pence field plus the
pound-report-string cannot exceed 15.

pence-Separator-string - This string is optional and may consist of one
or both of the following characters:

d. (period or decimal point)

If both characters are used, they must be used in the order shown above.

Sign-Field - This field is optional and may consist of:

• optionally, one or more blanks (B), followed by

• one of the following one- or two~character combinations:

+ - CR DB

Sterling Report editing applications are shown in Figure 52.

r------------------T--------------T---------------------T--------------,
I Picture INumeric Value I Sterling Equlvalent I 1
1 1 (in pence) 1 £ s d IPrinted Resultl
~------------------+--------------+---------------------+--------------~

£££/D99s/D99d 306S 12 15 OS I £12/15s/0Sd I
£££/D99s/D99d 0668 2 15 08 I £ 2/15s/0Sd I
£££/D99s/D99d 01S8 0 15 08 I /15s/08d 1
£££ :C99s:D99d 018S 0 15 OS I 15s/0Sd 1

ZZZ/DZZs/DZZd 0000 0 00 00 i / s/ d 1
ZZZ/CZZs/DZZd 0000 0 00 00 I s/ d I
BD99sBD99.9d 080.5 0 06 OS.5 I 06s OS.5d I

***/C**D/C**.99d 1040.12 4 06 OS.12 1**~/*6s/*S.12dl
~C**s:C**e99d OSO.12 0 06 OS.12 !**6s:*S.12dl
/D**s/D**.99d 00001.23 0 00 01.23 1/**s/*1.23dl
£££/O*9s/D**.99d 00961.23 4 00 01.23 I £4/*Os/*1.23dl
£**/D*9s/D**.99d 00961.23 4 00 01.23 1£*4/*Os/*1.23dl
£**/D*9s/D**.99d 00001.23 0 00 01.23 1£**/*Os/*1.23dl
£££ /D99s/D99dCR 1 -3068 12 15 OS 1 £12/15s/08dCR I --________________ ~ ______________ ~ _____________________ L ______________ J

Figure 52. Sterling Currency Editing Applications

A sterling report PICTURE may have a BLANK WHEN Z~RO clause
associated with it specifying that the item described is filled with
spaces whenever the value of the item is zero.

If the VALUE clause is specified for a Sterling Report item, the
literal must be alphanumeric. The VALUE clause is treated exactly as it
is specified, with no editing performed.

The maximum length of a sterling report item is 127 characters.

Sterling Currency and International Considerations 329

PROCEDURE DIVISION CONSIDERATIONS

The MOVE, DISPLAY, ACCEPT, EXAMINE, and TRANSFORM statements,
arithmetic statements, and relation tests may be written containing
identifiers that represent sterling items.

If a nonsterling value is moved into a Sterling report item. the
compiler treats the value as pence, and converts it to
pounds/shillings/pence.

Sterling items are not considered to be integers and should not be
used where an integer is required.

INTERNATIONAL CONSIDERATIONS

1. The functions of the period and the comma may be exchanged in the
PICTURE character-string and in numeric literals by writing the
clause DECIMAL-POINT IS COMMA in the SPECIAL-NAr."£S paragraph of t.he
Environment Division.

2. The PICTURE of report items may terminate with the currency symbol
in cases where the graphic $ is supplanted oy a particular national
currency symbol, through use of the CURRENCY SIGN IS literal clause
in the SPECIAL-NAMES paragraph of the Environment Division.

330 Part V -- Special Features

SUPPLEMENTARY MATERIAL

• APPENDIXES

A: Intermediate Results

B: Sample Programs

C: American National Standard COBOL Formats and Keserved Words

D: File-Processing Techniques and Applicable Statements and Clauses

E: ASCII Considerations (Version 3)

F: Symbolic Debugging Feature (Version 3)

G: Combined Function Card Processing (Version 3)

• IBM American National Standard COBOL Glossary

supplementary Material 331

APPENDIX A: INTERMEDIATE RESULTS

This appendix discusses the conceptual compiler algorithms for
determining the number of integer and decimal places reserved for
intermediate results. The following abbreviations are used:

i--nurnber of integer places carried for an intermediate result

d--number of decimal places carried for an intermediate result

dmax--maximum number of decimal places defined for any operand (except
for floating-point operands, exponents, or divisors> in a particular
statement

op1--first operand in a generated arithmetic statement

op2--second operand in a generated arithmetic statement

d1,d2--number of decimal places defined for opl or op2, respectively

ir--intermediate result field obtained from the execution of a generated
arithmetic statement or operation. Irl, ir2, etc., represent
successive intermediate resultq • These intermediate results are
generated either in registers or in storage locations. Successive
intermediate results may have the same location.

In the case of an arithmetic statement containing only a single pair
of operands, no intermediate results are generated, except when the
TRUNC option is specified for COMPUTATIONAL items. Intermediate results
are possible in the following cases:

1. In an ADD or SUBTRACT statement containing multiple operands
immediately follo~ing the verb.

2. In a COMPUTE statement for a series of arithmetic operations.

3. In arithmetic expressions contained in IF or PERFORM statements.

In such cases, the compiler treats the statement as a succession of
operations For example, the following statement:

COMPUTE Y A + B * C - D / E + F ** G

is replaced by

... * F BY G yielding irl
MULTIPLY B BY C yielding ir2
DIVIDE E INTO D yielding ir3
ADD A TO ir2 yielding ir4
SUBTRACT ir3 FROM ir4 yielding ir5
ADD ir5 TO irl yielding Y

COMPILER CALCULATION OF INTERMEDIATE RESULTS

The number of integer places in an ir is calculated as follows:

• The compiler first determines the maximum value the ir can contain
b,y performing the statement in which the ir occurs.

Appendix A: Intermediate Results 333

1. If an operand in this statement is a data-name, the value used
for the data-name is equal to the numerical value of the
PICTURE for data-name (e.g., PICTURE 9V99 has value 9.99).

2. If an operand is a literal, the literal's actual value is used.

3. If an operand is an intermediate result, the value determined
for the intermediate result in a previous arithmetic operation
is used.

4. If the operation is division:

a. If op2 is a data-name, the value used for op2 is the
minurnum nonzero value of the digit in the PICTURE for the
data-name (e.g., PICTURE 9V99 has the value 0.01).

b. If op2 is an intermediate result, the intermediate result
is treated as though it had a PICTURE, and the mlnlmum
nonzero value of the digits in this PICTURE is used.

• When the maximum value of the ir is determined by the above
procedures, i is set equal to the number of integers in the
maximum 'tralue .

• The number of decimal places contained in an ir is calculated as:

Operation
+ or -

*
/

**

Decimal Places
dl or d2, whichever is greater
dl + d2
dl - d2 or dmax, whichever is greater
dmax if op2 is nonintegral or a data-name;

dl * op2 if op2 is an integral literal

Figure 53 indicates the action of the compiler when handling
intermediate results.

r--------T---------T-------------T-------------------------------------,
I Value I Value I Value I I

I of I of I of I I
I i + did I i + dmax I Action Taken I

~--------+---------+-------------+-------------------------------------~
I <30 I Any I Any value I ~ integer and £ decimal places I

~--------~ value I I are carried for ir I
I =30 I I I I
~--------+---------+-~-----------+-------------------------------------~
I >30 I <dmax I Any value I 30 - ~ integer and £ decimal I

I ~---------~ I places are carried for ir I
I I =dmax I I I
I ~---------+-------------t-------------------------------------~
I I >dmax I <30 I ~ integer and 30 - ~ decimal places I
I I ~-------------~ are carried for ir I
I I I =30 I I

I I ~-------------+-------------------------------------~
I I I >30 I 30 - dmax integer and dmax decimal I

I I I I places are carried for ir I L ________ L _________ ~ _____________ ~ _____________________________________ J

Figure 53. Compiler Action on Intermediate Results

334 Supplementary Material

APPENDIX B: SAMPLE PROGRAMS

The three programs 1n this appendix illustrate several" methods of
accessing mass storage files. The three programs are:

1. CREATION OF A DIRECT FILE

." . - ~ - ~

, " :'"" ' . J ' . ,; ;; :. :,:
~, ii-· -~ '::.", "i~ r--"";-;:" l~-~.;"··- ~'-" " .- .• ":: -- :.: -..

Appendix B: Sample Programs 335

CREATION OF A DIRECT FILE

This program creates a file with direct organization through use of
an ACTUAL KEY -- using 'actual track addressing. The ACTUAL KEY has two
components:

1. A track identifier, which is the actual track address, calculated
through a simple remainder randomizing technique. A field from the
input record CCD-ITEM-CODE) is converted to a track address
(TRACK1). CD-ITEM-CODE is divided by 19; the remainder is placed
in TRACK1. This gives a valid track address ranging in value from
o to 18. The program assumes that the file must begin on cylinder
102; therefore, a displacement value of 1020 is added to assure
that the CC field will contain the value of decimal 102.

2. A unique record identifier, in this case TRACK-NAME, that contains
the CD-ITEM-NAME of the input record.

The UPDATING prQgram in the introduction updates the file that this
program creates.

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATEDF.
REMARKS. ILLUSTRATE CREATION OF A DIRECT FILE. THE FILE MAY BE

USED AS THE MASTER FILE FOR THE SAMPLE PROGRAM ~LLUSTRATED
IN THE INTRODUCTION TO THIS MANUAL.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-F50.
OBJECT-COMPUTER. IBM-360-F50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DA-FILE ASSIGN TO SYS015-DA-2311-A-MASTER
ACCESS IS RANDOM
ACTUAL KEY IS FILEKEY.

SELECT CARD-FILE ASSIGN TO SYS007-UR-2540R-S.
DATA DIVISION.
FILE SECTION.
FD DA-FILE

DATA RECORD IS DISK
LABEL RECORDS ARE STANDARD.

01 DISK.
02 DISK-ITEM-CODE
02 DISK-ITEM-NAME
02 DISK-STOCK~ON-HAND

02 DISK-UNIT-PRICE
02 DISK-STOCK-VALUE
02 DISK-ORDER-POINT

FO CARD-FILE

PICTURE
PICTURE
PICTUkE
PIC'I'URE
PICTURE
PICTURE

X(3).
X(29).
S9(6) USAGE COMP SYNC.
S999V99 USAGE COMP SYNC.
S9(9)V99 uSAGE COMP SYNC.
S9(3) USAGE COMP SYNC.

LABEL RECORDS ARE OMITTED
DATA RECOrtD IS CARDS.

01 CARDS.
02 CD-ITEM-CODE
02 CD-ITEM-NAME
02 CD-STOCK-ON-HAND
02 CD-UNIT-PRICE
02 CD-STOCK-VALUE
02 CD-ORDER-POINT
02 FILLER

336 Supplementary Material

PICTURE X(3).
PICTURE XC 29) •
PICTURE S9(6).
PICTURE S999V99.
PICTURE S9(9)V99.
PICTURE S9(3).
PICTURE X(23).

WORKING-STORAGE SECTION.
77 SAVE
77 QUOTIENT
01 TRACK1
01 TRACK2 REDEFIN~S

02 CYL
02 HEAD

TRACK1.

PICTURE S9(5) USAGE
PICTURE S9(4) USAGE
PICTURE 9999.

PICTURE 999.
PICTURE 9.

COMP SYNC.
COMP SYNC.

01 KEY-1.
02 M
02 BB
02 CC
02 HH
02 R

PICTURE S999 CO~W SYNC VALUE ZEROES.
PICTURE S9 COMP SYNC VALUE ZERO.
PICTURE 8999 COMP SYNC.
PICTURE S999 COMP SYNC.
PICTURE X VALUE LOW-VALUE.

02 TRACK-N~ill PICTURE X(29).
01 THE-KEY REDEFINES KEY-1.

02 FILLER PICTURE X.
02 FILEKEY PICTURE X(37).

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT CARD-FILE.
OPEN OUTPUT DA-FILE.

PARA-1.

WR.

READ CARD-FILE AT END GO TO BND-JOB.
MOVE CD-ITEM-CODE TO SAVE.
DIVIDE 19 INTO SAVE GIVING QUOTIENT

REMAINDER TRACK1.
ADD 1020 TO TQACK1.
MOVE CD-ITEM-NAME TO l'RACK-NAl.vili.
MOVE CYL TO CC.
MOVE HEAD TO HH.
MOVE CD-ITEM-COD3 TO DISK-ITEM-CODE.
MOVE CD-ITEM-NAME 'I'O DISK-ITEM-NAME.
MOVE CD-STOCK-ON-HAND TO DISK-STOCK-ON-HAND.
MOVE CD-UNIT-PRICE TO DISK-UNIT-PRICE.
MOVE CD-STOCK-VALUE TO DISK-STOCK-VALUE.
MOVE CD-ORDBR-POINT TO DISK-ORDER-POINT.

WRITE DISK INVALID KEY GO TO ERROR-ROUTINE.
GO TO PARA-1.

END-JOB.
CLOSE CARD-FILE DA-FILE.
DISPLAY "END OF JOB".
STOP RUN.

ERROR-ROUTINE.
DISPLAY "UNABLE TO WRITE RECORD".
DISPLAY TRACK-NAME.
GO TO PARA-1.

Appendix B: Sample Programs 337

I ;:'; "~, ' "' :: f"t1¥, 1!::'~!l:11~ '" '; q;
"'~ , ,I ~ N _~j'~1;)~ ~~ _~,:. ",": .. '~ ~'" !~ .. ~ ','1'-

l- ~ .. ~. • ~ ;

This program creates an indexed file. These records are presented in
ascending sequence by RECORD KEY. The APPLY clause builds the master
index.

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATEIS.
REMARKS. ILLUSTRATE CREATION OF INDEXED SEQUENTIAL FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-FSO.
OBJECT-COMPUTER. IBM-360-FSO.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IS-FILE ASSIGN TO SYS01S-DA-2311-I-MASTER
ACCESS IS SEQUENTIAL
RECORD KEY IS REC-ID.

SELECT CARD-FILE ASSIGN TO SYS007-UR-2S40R-S
RESERVE 1 ALTERNATE AREA.

I-a-CONTROL. APPLY MASTER-INDEX TO 2311 ON IS-FILE.
DATA DIVISION.
FILE SECTION.
FD IS-FILE BLOCK CONTAINS 5 RECORDS

RECORDING MODE IS F
LABEL RECORDS ARE STANDARD.

01 DISK.
02 DELETE-CODE PICTURE
02 REC-ID PICTURE
02 DISK-FLDl PICTURE
02 DISK-NAME PICTURE
02 DISK-BAL PICTURE
02 FILLER PICTURE

X.
9(10).
X(10).
X(20).
99999V99.
X(S2).

FD CARD-FILE RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.

01 CARDS.
02 KEY-ID
02 CD-NAME
02 CD-BAL
02 FILLER

PICTURE 9(10).
PICTURE X(20).
PICTURE 99999V99.
PICTURE X(43).

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT CARD-FILE.
OPEN OUTPUT IS-FILE.

PARA-l.

ERR.

READ CARD-FILE AT END GO TO END-JOB.
MOVE LOW-VALUE TO DELETE-CODE.
MOVE KEY-ID TO REC-ID.
MOVE CD-NAME TO DISK-NAM~.
MOVE CD-BAL TO DISK-BAL.
WRITE DISK IiWALID KEY GO TO ERR.
GO TO PARA-l.

DISPLAY "DUPLICATE OR SEQ-ERR" UPON CONSOLE.
DISPLAY KEY-ID UPON CONSOLE.
GO TO PARA-l.

END-JOB.
CLOSE CARD-FILE IS-FILE.
DISPLAY "END OF JOB" UPON CONSOLE.
STOP RUN.

338 Supplementary Material

This program randomly updates an existing indexed file. The READ
IS-FILE statement causes a search of indexes for an equal compare
between the NOMINAL KEY obtained from the input record and the RECORD
KEY of the I-O file. If an equal compare occurs, the record is updated,
and the details of this update are printed. If a matching recora is not
found, the invalid key branch is taken.

IDENTIFICATION DIVISION.
PROGRAM-ID. RANDOMIS.
REMARKS. ILLUSTRATE ~ANDOM RETRIEVAL FROM IS-FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-FSO.
OBJECT-COMPUTER. IBM-360-FSO.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IS-FILE ASSIGN TO SYS01S-DA-2311-I-MASTER
ACCESS IS RANDOM
NOMINAL KEY IS KEY-ID
RECORD KEY IS REC-ID.

SELECT CARD-FILE ASSIGN TO SYS007-UR-2S40R-S
RESERVE 1 ALTERNATE AREA.

SELECT PRINT-FILE ASSIGN TO SYS008-UT-2400-S-PROUT
RESERVE NO ALTERNATE AREAS.

I-O-CONTROL.
APPLY MASTE~-INDEX TO 2311 ON IS-FILE.
RERUN ON SYS002-UT-2400-S-CKPT EVERY 10000 RECORDS

OF IS-FILE.
DATA DIVISION.
FILE SECTION.
FD IS-FILE

01

FD

01

FD

BLOCK CONTAINS S RECORDS
RECORD CONTAINS 100 CHARACTERS
LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
DATA RECORD IS DISK.
DISK.
02 DELETE-CODE PICTURE X.
02 REC-ID PICTURE 9(10).
02 DISK-FLDl PICTURE X(lC).
02 DISK-NAME PICTURE X(20).
02 DISK-BAL PICTURE 99999V99.
02 FILLER PICTURE X(S2).
CARD-FILE
RECORDING MODE IS F
LABEL RECORDS ARB OMITTED
DATA RECORD IS CARDS.
CARDS.
n KEY~IDA PICTURE 9 (10) • V,G

02 CD-NAME PICTURE X(20).
02 CD-AMT PICTURE 99999V99.
02 FILLER PICTURE X(43).
PRINT- F'ILE
RECORDING MODE IS F
LABEL RECORDS ARE STANDARD
DATA RECORD IS PRINTER.

Appendix B: -Sample Programs 339

01 PRINTER.
02 FORMSC PICTURE X.
02 PRINT-ID PICTURE X(lO).
02 FILLER PICTURE X(lO).
02 PRINT-NAME PICTURE X(20).
02 FILLER PICTURE X(lO).
02 PRINT-BAL PICTURE $ZZZ,999.99-.
02 FILLER PICTURE X(10).
02 PRINT-AMT PICTURE $ZZZ,ZZZ.99-.
02 FILLER PICTURE X(10).
02 PRINT-NEW-BAL PICTURE $ZZZ,ZZZ.99-.

WORKING-STORAGE SECTION.
77 KEY-ID PICTURE 9(10).
PROCEDURE DIVISION.
BEGIN •

.oPEN INPUT CARD-FILE.
OPEN OUTPUT PRINT-FILE.
OPEN 1-0 IS-FILE.

PARA-l.
MOVE SPACES TO PRINTER.
READ CARD-FILE AT END GO TO END-JOB.
MOVE KEY-IDA TO KEY-ID.
READ IS-FILE INVALID KEY GO TO NO-RECORD.
MOVE REC-ID TO PRINT-ID.
MOVE DISK-NAME TO PRINT-NAME.
MOVE DISK-BAL TO P~INT-BAL.
MOVE CD-AMT TO PRINT-AMT.
ADD CD-AMT TO DISK-BAL.
MOVE DISK-BAL TO PRINT-NEW-BAL.
REWRITE DISK INVALID KEY GOTO NO-RECORD.
WRITE PRINTER AFTER POSITIONING 2 LINES.
GO TO PARA-l.

NO-RECORD.
DISPLAY 'NO RECORD FOUND' UPON CONSOLE.
DISPLAY KEY-ID UPON CONSOLE.
GO TO PARA-l.

END-JOB.
CLOSE CARD-FILE PRINT-FILE IS-FILE.
DISPLAY 'END OF JOB' UPON CONSOLE.
STOP RUN.

340 Supplementary Material

III
l1li:
11.1
:z:
:e • ..

APPENDIX C: AMERICAN NATIONAL STANDARD COBOL FORMAT SUMMARY AND RESERVED WORDS

The Formats and Reserved words in tilis appendix have beerL printed iu a specially reduced size '\-!i t..'" ·pages n1JTIl.bereo in
sequence to make up a pocket-sized reference booklet for use while coding IBM American National Standard COBOL
programs. Al though mas t readers may prefer to retain this reference rna terial wi thin the manual, the booklet can be
prepared as follows:

Cut along trim lines.

Place sheets so that page numbers at lower right-hand corner are in ascending order in odd-number progression
(i.e., 1, 3, 5, etc.); lower left-hand page numbers will then be in descending order in even-number progression
(i.e., 16, lQ, 12, etc.).

Fold trimmed sheets after collating.

Staple along fold if desired. ~I
Punch for six-hole bin4er.

-----------------------------------~~-~~-----------------------------------

!
:>
0
U
w ..
0:0: C

::l °i
I-

~ U
Ii:
II

-£
.:
-0
II
~
J!
=< ..
"0
.Sl
E
;t;

IntenuIIIonaI B-'- 1IechI_ Corpondlon
Data "-Ins! DI¥IIIon
1133"""'" A-. ... PIHIs, New York 10804
(U.s.A. onIr)

Prin1lld in U.s.A.

IBII World Tracie CorpondIon
121 UnIted ~.PIUII
N_ York, "- York 10017
(InIerndonIII)

EXtr8Cled from GC28-6394-4

Not orderable S8~IV

e e

e -

e e

e e

e e

IBlf1 Reference Data n
DOS

Appendix C: IBM Full American

National Standard COBOL

Format Summary and

Reserved Words

IBM Pull
American
National
Standard
COBOL

The general format of a COBOL program is illustrated
in these format summaries. Included within the general for-
mat is the specific format for each valid COBOL statement.
All clauses are shown as though they were required by the
COBOL source program, although within a given context
many are optional. Repetition of clauses has not been indi-
cated. Several formats are included under special headings,
which are different from, or additions to, the general format.
Under t.~ese special headings are included formats peculiar
to the following COBOL features: Sort, Report Writer, Table
Handling, Source Program Library Facility,

is of this publication -
IBM DOS Full American National Standard COBOL, Order
No. GC28-6394-4.

~---.

Appendix C:

TRIM HERE

9
2

Format Summary and Reserved Words 341

o

2

TRIM HERE ._--,
IDENTIFICATION DIVISION - BASIC FORMATS

{i~1~ON DIVISION.}

PROGRAM-ID. program-name.

AUTHOR. [comment-entry] ...

INSTALLATION. [comment-entry] .. .

DATE-WRITTEl\. [comment-entry] .. .

DATE-COMPILED. [comment-entry] .. .

SECURITY. [comment-entry] .. .

REMARKS. [comment-entry] .. .

ENVIRONMENT DIVISION - BASIC FORMATS

ENVIRONMENT DIVISION.

CONFIGURATI01': SECTION.

SOURCE-CO~PUTER. computer-name.

OBJECT-COMPUTER computer-name [MEMORY SIZE integer CHARACTERS]
{

WORDS }

[SEGMENT-LIMIT IS priority-number].

SPECIAL-'<AMES. [function-oome-l !§ mnemonic-name] ..

[function-name-2 tlli. mnemonic-name]

MODULES

{~ STATUS ~ condition-oome-l [OFF STATUS IS COndition-name-2]}
OFF STATUS.!§ condition-name-2 [QN STATUS!§ condition-nome-I]] ..

[CURRE'<CY SIGN !!i literal]

[DECIMAL-POINT IS COMMA].

INPUT-OUTPUT SECTION.

FILE-CONTROL.

{SELECT [OPTIONAL] file-name

ASSIGN TO [Integer] system-name-l [system-name-2] .. ,

[FOR MULTIPLE {REEL)] ---illiITf

RESERVE {~ger} ALTERNATE [1~~1s]

{
FILE-LIMIT.!§ } {data-name-It THRU \data-name-2}
FILE-LIMITS ARE literal-I f -- lliteral-2

[{data-name-31 TURU fdaia-name-4}]
literal-3 f -- lliteral-4 '"

ACCESS MODE IS {SEQUENTIAL)
-- - RANDOM f
PROCESSI1':G MODE !l? SEQUENTIAL

ACTUAL KEY !!i data-name

RERUN Q!l sy.,tem-name EVERY integer RECORDS OF file-name

[
SORT] SAME RECORD AREA FOR file-name-I {file-name-2} ...

~ FILE TAPE CONTAINS file-name-I [POSITION integer-I]

[file-Tlame-2 [POSITIOl'I: ;nteger-2]] ...

READ Statement

FORMAT 1

READ file-name [1':EXT] RECORD [INTO identifier]

[AT END imperative-statement]

FORMAT 2

~ file-name RECORD [lliIQ identifier]

[INVALID KEY imperati~e-statement]

REWRITE Statement

~ record-name [FROM identifier]

[I.KVALID KEY imperative-statement]

START Statement

{

:'QUALTO 1
START file-name [KEY IS GREATER THAN]
-- - >

1':OT LESS THA1':
NOT~

[INVALID KEY imperative-statement]

USE Sentence

USE AFTER STA'<DARD {EXCEPTIO:\l PROCEDURE
--- ~ f

{

file_name-I [file-name-2] }
INPUT

ON OUTPUT .
1:0-
~)

WRITE Statement

~ record-name [~identifier]

[~ KEY imperative-statement]

ifti.b)j,~A~~!"'~~~~~i:;
Environment Division - Input-Output Section

FILE-CONTROL Entry

FILE-CONTROL.

{~file-name

~ TO system-name-I [system-name-2] ... }.

I-Q-CONTROL Entry

I-O-CONTROL.

{
SORT }

~ SCiii'i"-MERGE AREA FOR file-name-l [file-name-2] ..

~

Data Division - Merge File Description Entry

ill merge-file-name

~ CO"'TAINS [integer-I IQ] integer-2 CHARACTERS

{
RECORD IS }

~ RECORDS ARE data-name-l [data-name-2 . ..]

SORT-OPTION IS data-name-3.

Procedure Division - Merge Statement

~file-name-l

ON {
ASCENDIl\G }
DESCE"'DING KEY data-name-l [data-name-2] ...

, {ASCENDING l [ON i5ESC'Eiiii5iNGJ KEY data-name-3 [data-oome-4] ...] ...

~ file-name-2 file-name-3 [file-name-4] ...

J~ file-name-5 1
l~ ~ IS section-name-I [11!illl section-name-2] J

2 ~I '----------___ ---------____________ 1
TRIM HERE

o

2

342 supplementary Material

~
°1

-----------------------------------~~-~~-----------------------------------

Environment Division - File-Control Entry

FORMAT 1 - Sequential VSAM Files

FILE-CONTROl .

{SELEQI. [QfTIQNM,] file-name

ASSIGN TO system-name-l [system-name-2]

[RESERVE integeT [~~S J]
[ORGANIZATION IS SEOUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[PASSWORD IS data-name-l]

[FILE STATUS IS data-name-2] . } ...

FORMAT 2 - Indexed VSAM Files

FILE-CO]l;TROL.

{SELECffile-name

ASSIG]I; TO system-name-l [system-name-2] ...

[RESERVE integeT [~t]]
ORGANnATIONISmDEXED

{

SEQUENTIAL}
[ACCESS MODE IS RANDOM]

DYNAMIC

RECORD KEY IS data-name.;1

[PASSWORD IS data-name-l]

[FILE STATUS IS data-name-2]. } .

Environment Division - I-O-Control Entry

!-O-CONTROL.

[RERUN QN system-name EVERY integer RECORDS

OF file-name-l] ...

[SAME [RECORD] AREA

FOR file-name-2 [file-name.;1] ...]

Data Division

LABEL RECORDS Clause

{
RECORD IS } {STA..1IJDARD}

LABEL RECORDS ARE OMITTED

NOTE: Other Data Division clauses have the same syntax for VSAM files that they
-have for other files. -

Procedure Division

CLOSE Statement

CLOSE file-name-l [WITH LOCK]

[/ile-name-2 [WITH LOCK]] ...

DELETE Statement

~file-name RECORD

[INVALID KEY imperative-statement]

OPEN Statement

18

fl
lliBIT file-name-l [file-name-2] . . '1

OPEN ~ %:=~ ~~=~;~ : : : ..
EXTEND fik-name-l [file-name-2] . . . r

DATA DIVISION - BASIC FORMATS

~~.

FILE~.

FDfile-name

~ CONTAI~S [integer-l IQ] integeT-2 {~~~ERS}

RECORD CONTAINS [integeT-l TO] integeT-2 CHARACTERS

liiiillll:I •• : -
[RECORD IS j IOMITTED }

~ lRECORDS AREf L2~~~ [data-name-2] •..

(data-narne-2) {data-name-4l .Y&.!lli. ill' data-name-l IS lliteral-l f [data-name.;1 IS . •. liteml-2 f]

~ n~~~~sIk} data-name-l [data-name-2]

NOTE: The Format of the REPORT Clause is included willi Formats for the REPORT
writer feature.

01-49 {~:-l}
~ data-name-2

~WHEN~

{
JUSTIFIED) RIGHT
JUST - f

{~) IS ha cter ~ PIC (c ra

{
SYNCHRONIZED) [LEFT]
~ f RIGHT

[~IS]

88 condition-name {~fr:giSI:..aE} literal-l [THRU literal-2]

[liteml-3 [THRU literal-4]]

66 data-name-l RE]I;AMES data-name-2 [!!!ill.! data-name.;1] .

NOTE: Formats of the OCCURS Clause are included with Formats fm- the TABLE
HANDUNG feature.

3

~----------------------------------~~-;~----------------------------------_.

Appendix c: Format Summary and Reserved Words 343

-----------------------------------~~-~~!----------------------------------.
WORKING-STORAGE SECfION.

77 data-name-l

01-49 {data-name-l l
FILLER f

REDEFINES data-name-2

BLANK WHEN ZERO

{
JUSTIFIED} RIGHT
JUST

{
PICfURE} PIC IS character string

{
SYNCHRO:\IZEDl [LEFT]
~ f WillIT

[~IS]

~ISliteral.

d. . {VALUE IS 1 88 c,!" .flon-name VALUES AREf literal-l [THRU literal-2]

[literal-3 [THRU literal-4]] ...•

66 data-name-I RENAMES data-name-2 [TI!!!!! data-name-3] .

NOTE: Formats of the OCCl'RS Clause are included with Formats for the TABLE
HA!IIDUNG feature.

(xac) PRINT -SWITCH
PROCEDURE

(ca) PROCEDURES
PROCEED

(ea) PROCESS
PROCESSING

(xa) PROGRAM
PROGRAM-ID

(spn) QUEUE
QUOTE
QUOTES

RANDOM
RD
READ

(xae) READY
(spn) RECEIVE

RECORD
(spn) RECORD-OVERFLOW
(xa) RECORDING

RECORDS
REDEFINES

(ca) REFERENCES
REEL

(ea) RELATIVE
RELEASE

(spn) RELOAD
REMAINDER
REMARKS

(ca) REMOVAL
RENAMES

(spn) REORG-CRITERIA
REPLACING
REPORT
REPORTING
REPORTS

(spn) REREAD
RERUN
RESERVE
RESET
RETURN

(spn) RETURN-CODE
REVERSED
REWIND

(xa) REWRITE

(ca)

(spn)

(spn)

(xa)

(spn)

(xae)
(xae)
(xae)

(xae)
(xae)
(xa)
(spn)
(xae)
(xae)
(xae)

(xa)

RF
RH
RIGHT
ROUNDED
RUN

SA
SAME
SD
SEARCH
SECTION
SECURITY
SEEK
SEGMENT
SEGMENT-LIMIT
SELECf
SEND
SENTENCE
SEPARATE
SEQUENTIAL
SERVICE
SET
SIGN
SIZE
SKIP1
SKIP2
SKIP3
SORT
SORT -CORE-SIZE
SORT-FILE-SIZE
SORT-MERGE
SORT-MESSAGE
SORT-MODE-SIZE
SORT-OPTION
SORT-RETURN
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
START
STATUS

(spn)
(spn)
(spn)
(spn)

(ea)
(xa)
(ea)
(spn)

(spn)
(sp)
(sp)
(spn)
(sp)
(sp)
(sp)
(sp)

I
(sp)
(sp)
(sp)

(spn)

(ca)

(spn)

(xae)

(spn)
(xae)

(ca)
(spn)
(spn)
(xae)
(spn)
(me)
(spn)
(xae)
(m)
(me)

(ca)

(spn)

(ca)
(ea)
(sp)
(sp)
(sp)
(sp)
(sp)
(sp)
(sp)
(sp)

I (xae)

(xae)
(xae)

STOP
STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACf
SUM
SUPERVISOR
SUPPRESS
SUSPEND
SYMBOLIC
SYNC
SYNCHRONIZED
SYSIN
SYSIPT
SYSLST
SYSOUT
SYSPCH
SYSPUNCH
501
S02
so~

S04
S05

TABLE
TALLY
TALLYING
TAPE
TERMINAL
TERMINATE
TEXT
THAN
THEN
THROUGH
THRU
TIME
TIME-OF-DAY
TIMES
TO
TOP
TOTALED
TOTALING
TRACE
TRACK
TRACK-AREA
TRACK-LIMIT
TRACKS
TRAILING
TRA.1IISFORM
TYPE

UNEQUAL
UNIT
UNSTRING
UNTIL
UP
UPON
UPPER-BOUND
UPPER-BOUNDS
UPSI-O
UPSI-l
UPSI-2
UPSI-3
UPSI-4
UPSI-5
UPSI-6
UPSI-7
USAGE
USE
USING

VALUE
VALUES
VARYING

WHEN
WHE~OMPILED
WITH
WORDS
WORKING-STORAGE
WRITE
WRITE-ONLY
WRITE-VERIFY

ZERO
ZEROES
ZEROS

17

----------------------------------T~M-HaE----------------------------------

344 Supplementary Material

9
2

w
~
w
::E:

~
iX ...

~
°1

-----------------------------------~~-~~----------------------------------
(cal DEBCG-SUB-l
(cal DEBUG-S'C"B-2
(ca) DEBCG-SCB-3
(ca) DEBCGGI:\G (xac)

DECD-IAL-POI:\T (ca)
DECLAHATIVES

(xa) DELETE
(spn) DELI~IITED
(spn) DELIWTER

DEPE:\DI:\G
(spn) DEPTH

DESCE:\DI:\G
(spn) DESTI:\ATIOl\

DETAIL
(ca) DISABLE
(spn) DISP I 'pn)

DISPLAY
(xac) DISPLAY-ST
(ca) DISPL-\y-o ('pn)

DIVIDE
DIVISIOX I ,po)
DOWX

(cal DUPLICATES (ca)
(xa) DY:\'AMIC

(,po) EGI (ca)
(xac) EJECT (ca)

ELSE
(spn) E~fI
(ca) EXABLE

E:\D (xa)
(xa) E:>ID-OF-PAGE

EXDIXG
E:\TER

(xac) EI\TRY
EXVIROX~fE:\T (xac)

(xa) EOP
EQCAL (xa)

i ('a) EQUALS (,pn)
ERROR

(spn) ESI
EVERY
EXA\fIXE

(XiiC)

(ca) EXCEEDS
(xa) EXCEPTlOl\
(xac) EXHIBIT

EXIT (xac)
(xa) EXTEND
ixac) EXTEXDED-SEARCH

FD I ,ac)
FILE
FILE-CO"-TROI.
FIlE-LIWT (,ac)
FILE-LI~fITS
FilLER
FI:\AL (C'a)

FIRST
FOOTl:\C
FOR (ca)
FROM

GEXER_-\TF
GI\"IXC
GO

I xac) GOBACK
GREATER
GROUP

ha)
HEADI:\G (xac)
HIGH-VALUE
HIGH-\,.-\IXES (,po)

I ca) HOLD

1-0
I-O-CO:\TROL (,ac)

'xac-) ID
lDEXTIFIC_-\TIOl\
iF
11\
I:\DE:X

Il"rt) I'\DEX-n
I,\DEXED (,spn)
I,\DIG.-\TE

(cal 1,\ITlAl (xac·)
(ca' I \HI.\UZE

16

r::\ITlATE
C'Pl:T
[,PCT-OCTPl:T
I:\SERT
I:\SPECT
I:\STALLATIO:\
I:\TO
I:\\,M.ID
IS

JUST
JCSTIFiED

KEY
LABEL
L-\BEL-REn-RX
LAST
LEADIXG
LEAVE
LEFT
lEXGTH
LESS
LIBRARY
LI}'fIT
LI~fITS
LIXAGE
LIXAGE-COUXTER
LI:\E
U:\E-COl-XTER
LI:\ES
LIXKAGE
LOCK
lOW-\,ALCE
LO\\,-\,ALCES

\HSTER-IXDE:X
ME~IORY
\lERGE
,iESSAGE
:'fODE
~IODCLES
~IORE-lABELS
\lO\'E
\IlTrIPI.E
\IClTIPLY

XA\IED
XEGATl\'E
XEXT
XO
XO}.fIX_-\L
KOT
:\OTE
XSTD-REElS
XnlBER
XnlERIC
XDIERIC-EDITED

OBJECT-CO\IPl-TER
OBJECT-PROCRA~f
OCCl-RS
OF
OFF
O~IITTED
0:\
OPEX
OPTIO:\:>'!.
OR
ORG.-ISIZATIOX
OTHERWISE
Ol-TPl-T
OVERFLOW

PAGE
1'_-\CE-COl-:\TER
PASSWORD
PERFOR\!
PE
PH
PIC
PICn-RE
PLl'S
POI:\TER
POSITIO:\
I'OSITIOXIXG
P(NTIVE

e e

PROCEDURE DIVISION - BASIC FORMATS

.-\CCEI'T St.ltvnwnt

J

\1)1) St.lIl"lIll"lIl

FOR!'I.IAT I

_\])1))/:::-'/:,t;,-I ([;:;::~:,t~I-" J ~ ill, ,diji'l-/l/ [Hot:\])I])]

[id,l/liti,,-1/ [HOl·\DEDJ] ... cO:\ SIZE FHHOH iU'lwr(//ir,-,I(/tcl//C"l/l]

FOR!'I.IA'l 2

liclell/ilil r-/ I \. idlll!i/icr-2/ [jdf liN/if r-3J
_-\I)D IIi/md-1 \ /I"md-2 \ li/('1(11-3 -

_-\1)1) l~ilt."!'()"Dl"C i idcllliji, I-I TO idcllliti, I-~ [H()l":\J)ED]

[O:\" SIZE CHBOl{ iIllJJ(Tatirf"-,.;fafc"IIICllr]

"\1."11':1{ SI"h-IiH lit

;ALTER lJrof"('cilll"C"-I/(l1Ill'-i".!.i2 [I'HOCEEV Til] P((JfCCltllf"-II11ll/{"-:]

[p/{lU"dUI"f"-IWflH'.31Q [PHOCEED .~] 1!({/("('(h:r("·'l(lHll"."J.] .

Cl.OSE S!;.!i-n1l"llt

C! (lSI: "I . ' [HEEL] [\\·ITII !~ HEW!\DI] --_._- ./, c-II(/1I1(-, C\n ll.OCK r

[til 0 [HEELJ [\\·1· -[I \ Vl HE"·[:\D/]J "-IIIiIl'C-~ l'XIT [IWC:~! - . -

C:O\!l'l"TE Statemellt

Co\IPl'TI·: hlllllif' I-I [HOl·:\DED] = .1 :;'t;,';;;;';:;'·XIII'''iOl/ t L lOcUli-])

[():\SIZI·:~ill""./"{/Ii • .,.-,/(//,'/II(""t]

IJITl. .. \HATI\-E S(,,·tillll

PROCEDUlE DIVISIO);_

DECLAH.\TI\-ES.

{s('cfioll-'WIIII' SECTlO);. LOSE '("III('lIce.

{pau:"r.::aJd:-1HW1C" :"~('II/('nc(': ... } ... } ..

E:\D DFCL\IL\TI\-ES.

DIS!'I .\ Y St"km .. "t

[
irl' I/lili, 1-2J
li/r"/(j1-2 . .[~

5

-----------------------~--TRIM HERE

Appendix c: Format Summary and Reserved Words 345

o

2

TRIM HERE --,
OlnDE Statement

DIVIDE li~l('nlifier-1j I:\TO id('IIlificr-:! [ROl':\DED]
--III('f(Il-1 I

[0:\ SIZE EHROH illl/lemlirt'-.-Ialclllenl]

FORMAT 2

, .. jid('lIli/iU-11 \I:\TO) lid",wfi,'r-21 " " " "_
m\IDE lileml-I Il!!l' I/Iil('/(/I-:! I (,I\I':\(.rc/croll/iCT-3 [ROl:\DI-.D]

[RE\I.-\I:\DEH id"rolifi(,T-4] [0:\ SIZE EHHOH illl}l('f(Ilirr'-"llIlelll,'nl]

Ei\TER St,ltemcnt

E:"TEH lllllt!UlI:.!£'-nallU' [roulillC-namc].

EXA\II,:\E Statenwllt

FORMAT 1

J LXnL FIHST "1
EXAl\II:\E ici.'nlifj(,T llL.Ll.!hli l;~~~D1:\(; J IUeTul-l

[HEI'L\CI:\G !!I 1i/('ral-2]

FORMAT 2

EXAl\II;>\E identifier REI'LACIl'I:G J
l
~t~~_I:\G Jl lil('",/-[~'/ilC'I'OI-2
l':\TIL FIRST

EXIT Statement

l1lJrol!ra"ll-namc, EXIT __ .

-GO TO Statement

FORMAl' I

QQ IQ l'roceclrrrc-uamc-l

FORMAT 2

gQ I9 /lTocedllr('-llCIme-l [flTo('C'dllre-numc-2] ... DEPE:\DIl\:C 0;>\ ie/ell/ifier

FORMAT 3

gQIQ.

IF Statl'ment

\IO\,E Statement

FORMAT I

I identijier-ll '
MOVE lliteral I TIl ic/clllifier-2 [idC'/I/ifi"r-3] ,

FOR!\JAT 2

, jCOHHESI'O'\DI':\G/ ' ' " MOVE Qlill! I ic/C'lItl/l('r-l IQ lC/ent·fier-2

6

I,I\I-:\.T SE:\TE:\CE}
/.-lal('/l1('1I1-2

e e

e e

e e

e e

IBM AMERICAN NATIONAL STANDARD
COBOL RESERVED WORDS

No word in the following list should appear as a programmer defined name.
['he keys that appear before some of the words, and their meanings, are:

(xa) before a word means that the word is an IBM extension to American
National Standard COBOL.

(xac) hefore a word means that the word is an IB~1 extension to both
American National Standard COBOL and CODASYL COBOL.

(ca) before a word means that the word is a CODASYL COBOL re
served word not incorporated in American National Standard
COBOL or in IBr-1 American l\ational Standard COBOL.

(aSll)

(ca)
(ca)

(xa)

(xac)

(ca)

(xa)
(spn)
(spn)
(spn)

(xac)
(xa)

(a, ..)

(asn)

(Kill')

(spn)

(sp) before a word means that the word is an IBM function-name estab
lished in support of the SPECIAL-NAMES function.

(spn) before a word means that the word is used by an IBM American
National Standard COBOL compiler, but not this compiler.

(asn) before a word means that the word is defined by American National
Standard COBOL. hut is not used by this compiler,

ACCEPT (xa) COMP-I
ACCESS (xa) COMP-2
ACTUAL (xa) COMP-3
ADD (xa) COMP-4
ADDRESS COMPUTATIO:-iAL
ADVA!'ICING (xa) COMPUTA TlONAL-I
AFTER (xa) COMPUT A TIO,",AL-2
ALL (xa) COMPUTATIONAL-l
ALPHABETIC (Ia) COMPUT A TIONAL-4
ALPHANUMERIC COMPUTE
ALPHAl\:U~IERIC-EDITED CO;>\FIGURATION
ALTER ('1') CONSOLE
ALTERNATE CONTAINS
AND CONTROL
APPLY CONTROLS
ARE COpy
AREA (xac) CORE-INDEX
AREAS CORR
ASCENDING CORRESPONDING
ASSIGN (spo) COUNT
AT (sp) CSP
AUTHOR CURRE]';CY

(xac) CURRENT-DATE

BASIS
(xar) CYL-INDEX

BEFORE
(xac) CYL-OVERFLOW

BEGINNING
(sp) Cal

BLANK
(sp) CO2

BLOCK ('1') coo
BOTTOM

(sp) C04

BY ('1') cos
(sp) coo
(sp) C07

CALL (sp) C08
CANCEL (sp) C09
CBL (sp) CIa
CD (sp) Cli
CF (sp) Cl2
CH
CHANGED DATA
CHARACTER (spo) DATE
CHARACTERS DATE-COMPILED
CLOCK. UNITS DATE-WRITTEN
CLOSE (spo) DAY
COBOL (ca) DAY-OF-WEEK
CODE DE
COLUMN (xac) DEBUG
COM-REG (ca) DEBUG-CO;\;TEl\:TS
CmfMA (ca) DEBUG-ITE~I
COMMU:XICATION (ca) DEBUG-L1:\,E
COMP (ca) DEBUG-NA~fE

15 .-----__ -----------------_1
TRIM HERE

346 Supplementary Material

III
DC
III
:z:
~
ii2
t-

___________________________________ ~!1~~ __________________________________ _
Procedure Division Debugging Formots

EXHIBIT Statement

r ~AMED } {identifier-I } [identifier-2]
EXHIBIT ~ CHA:'I:CED :\"A:\1ED nonnumeric-literal-I nonnumeric-literal-2'" ,--- l CHA:"IGED--

ON (Count-conditional) Statement

FORMAT 1

~ integer-I [AND EVERY integer-21 [UNTIL integer-31

{
imperative-statement, , '} {ELSE } {statement , , ' }
NEXT SENTENCE OTHERWISE ~~

FORMAT 2 ~Version 3)

ON {~nteg~-I } [AND EVERY {integer-2 }
- ,dent.fier-l - -- identifier-2]

[UNTIL {integer-3 }] {imperative-statement}
-'- identifier-3 KEXT SE~TE:"ICE

{
ELSE } {statement", l
OTHERWISE :\EXT~f

READY/RESET TRACE Statement

{
READYl
RESET) TRACE

Comp.ie-Time Debugging Pocket

DEBUG Card

~ location

EJECT Statement

AreaB

SKIPl, SKIP2, SKIP3 Statements

Area B

{~l SKlP2 f
SKiP3

Data Division Sterling Formats

Nonreport PICTURE Clause

{
PICTCHEl IS9[(n)] D [8] 8D {6[6H [[V]9[(n)]] [~IS]~
PIC \ 7[7](

Report PICrURE Ciause

\~} IS [pound-report-string] [pound-sel'arator-string] delimiter
l~ shilling-report-string [shilling-sepaTator-string] delimiter

pence-Teport-string [pence-separatoT-string] [sign-string]
[~IS]~

14

:\1CLTIPLY Statement

FORMAT 1

, {identifier-ll " , '
~1ULTIPLY literal-I) lrr ,dentifier-2 [ROCNDED]

[O:\I SIZE ERROR imperat;,;e-statement]

FORMAT 2

MULTIPLY {identifier-I} BY {identifier-21 GIVIl\G 'den 'fi -3 --- hteral-l _ l,teral-2 I __ "_, t, er

[ROL'::-IDED] [OK SIZE ERROR imperative-statement]

:-';OTE Statement

KOJ"E character string

OPE]\; Statement

., [REVERSED] OPEN [INPUT {file-name WITH ~ REWIKD },' ,]

[OUTPUT {file-name [WITH ~ RE\\<lND]} , , ,]

[!:Q {file-name} , , ,]

PERFORM Statement

FORMAT 1

PERFOR\1 procedure-name-l [THRU procedure-name-2]

FORMAT 2

d {
identifier-I} PERFOR:\i proce ure-name-l [THRU procedure-name-2] integer-l TIMES

FORMAT 3

PERFOR\1 /lToceJure-name-l [THRL' procedure-name-2] U:"ITIL condition-l

FORMAT 4

PERFOR:\1)lrocedurc-name-l [THRU procedure-name-2]

" , " (index-name-2 i
VARYI~G)maex~name-l(FROM ~ literal-2 ~ BY
--- l·dentzfier-I \ -- L identifier-2 J-

{
literal-3 1. , '
identifier-3) UNTIL cond,lIon-1

{
index~name-4l FROM {:7t:~-_,;,me-5} BY
.denttfier-4 I -- identifier-5 -

{
literal-6 l. /' ,
identifier-6) ~ con< ,t/On-2

[AFTEH
(inJeX-narne-8} I index~name-7} FROM J literal-8 lrr

l·Jenhfier-7 -- L identifier-8

{
literal-9 1 '''TI d" -3]]
identifier-9f ~ COli ilIOn

READ Statement

READ file-name RECORD [I]\;TO identifier] {t:v~~£ KEY} imperative-statement

SEEK Statement

SEEK file-name RECORD

7

-----------------------------------:;:-R~-;e;E-------------------<----------------,

o

2

Appendix c: Format Summary and Reserved Words 347

o

2

TRIM HERE --.

STOP Statement

(RUN}
STOP tliteral

SUBTRACT Statement

FORMAT I

SUBTRACT (identifier-I] [li.~teenraltifie-2r-2J". FRO\I identifier-m [ROUNDED]
---II,ler"I-1 I

[identifier-n [ROUNDED]] , , . [ON SIZE ERROR imperative-statement]

FORMAT 2

SUBTRACT Iidentifier-I} [i~lentifier-2J ' , ,FRml jiclentifier-ml GIVING
--- lhteral-I l.teral-2 -- tltteral-m 1--

identifier-n [ROUNDED] [ON SIZE ERROR iml'erative-statement]

FORMAT 3

SUBTRACT f=ESPONDI:\G} identifier-I l1lQM identifier-2 [ROUNDED]

[ON SIZE ERROR itnl'erative-statement]

l'SE Sl'nlence

FORMAT I

Option 1:

USE IBEFC?REl STA:\DARD [BEGI:\NI~GJ [~ii~LJ
- lAFTER I ---- UNIT

LABEL PROCEDURE ON 1
{file-name} . , ,1
OUTPL:T ~
I~PUT J
bQ

Option 2:

USE {BEFOREl STANDAHD [E;";DlNG] [~~LEiJ
- AFTER I U:"IT

LABEL PROCEDUHE 0:"
{

{file-name} , , ,1
OUTPUT
11\ PUT r'
!:Q j

FORMAT 2

USE AFTEH STANDAHD EHHOR PROCEDURE

f {file-nam.-1 l
~.~"' •• "a_"·M 0'\ '0 ,_""""''-0.---'",' !IV" ,-'", ie",

~ OUTPUT J
L!:Q

:-IOTE: Format 3 of the USE Sentence is included in Fonnats for the REPORT WRITER
feature,

8

SET Statement

FORMAT I

SET {index-name-! [index~name-21 " '} TO {:'t':ifi:;:;-3}
- identifier-! [tdent.fier-2 1", - literal-!

FORMAT 2

, d' (UP BY } (identifier-4}
SET In ex-name-4 [lndex-name-5] , " lOO"~.!IT lliteral-2

SEGMENTATION - BASIC FORMATS

Environment Division Segmentation Formats

SEGMENT-LIMIT Clause

Ohject-Computer Paragraph

SEGME:'I:T-LI\HT IS 1"iorit!l-numl,er

Procedure Division Segmentation Formats

Priority Numbers

section-name SECfIO:\ [priority-number],

SOURCE PROGRAM LIBRARY FACILITY - BASIC FORMATS

COpy Slal,'ment

COpy /ilJT(I,!/-n(/me,~

[REPLACI:\G ,",,,,,-, !IT {i~~~~i~1 l [,c()rd~3!IT {i~;~~~i~ } J ' ' ,] ,
identifier-I J idenfificr-2

13

·--------------------------------T~M-HgE--------------------------------__ l

348 Supplementary Material

W
GI:
W
%

:::e
Ci2
I-

TRIM HERE --_.
Procedure Division Report Writer Formats

GENERATE Statement

GEm:RA TE identifier

INITIATE Statement

Il\ITIATE report-name-1 [report-name-2] , , ,

TERMINATE Statement c.

TERMINATE report-name-I [report-name-2] , , ,

USE Sentence

USE BEFORE REPORTING identifier-I,

TABLE HANDLING - BASIC FORMATS

Data Divisian Table Handling Formats

OCCURS Clause

FORMAT I

OCCURS integer-2 TIMES

{
ASCENDING 1 ' [~Gf KEY IS data-name-2 [data-name-3] , ,]," •

[INDEXED BY index-name-I [index-name-2] , , ,]

FORMAT 2

OCCURS integer-I '!Q integer-2 TIMES [DEPE:'IIDING ON data-name-I]

{
ASCENDING } [~G KEY IS data-name-2 [data-name-3] , , ,] , , '

[INDEXED.BY index-name-I [index-name-2] , , ,]

USAGE Clause

[USAGE IS] IXDEX

Procedure Division Table Handling Formats

SEARCH Statement

FORMAT 1

SEARCH identifier-I [VARYIl\G {=;':~~-1}]
[AT END imperative-statement-I]

WHEl\ ' d't' I {imperative-statement-21 __ ' con i IOn- :'IIEXT SENTENCE

[
_ "~ (imperative-statement-31

WHEN cond,tlOn-_ 1 NEXT SENTE'\CE (],"

FORMAT 2

12

SEARCH ALL identifier-I [AT END imperative-statement-1]

WHE1\ condition-l {imperative-statement-21
NEXT SEl\:TENCE (

WRITE Statement

FORMAT 1

WRITE record-name [FROM identifier-I] [1 ~~~~E\ ADVA:\CIXC

FORMAT 3

WRITE record-name [FROM identifier-I] ~ KEY imperative-statement

SORT - BASIC FORMATS

Environment Division Sort Formats

FILE-CONTROL PARAGRAPH - SELECT SE:'IITENCE

SELECT Sentence (for GIVIl\G option only)

SELECT file-name

ASSIGN TO [integer-I] system-name-I [system-name-2] , , ,

OR SlJstem-name-3 [FOR ML'LTIPLE \~~i}]
[RESERVE {i~teger-21 AL TERNA TE [AREA J] --- ?ill AREAS

SELECT Sentence (for Sort Work Files)

SELECT sort-tile-name

ASSIGN TO [integer] system-name-I [system-name-2] , , ,

1-0 CONTROL PARAGRAPH

{
RECORD1 SAME SORT (AREA FOR Me-name I {file-name-2} , , ,

Data Division Sort Formats

SORT-FILE DESCRIPTION

~ sort-file-name

REOOROINC'MdDEIS;,'iiiOtle

{
RECORD IS 1 .Qlli RECORDS AREf data-name-I [data-name-2] '"

RECORD CO:'llTAI:\,S [integer-I TO] integer-2 CHARACTERS

,*-~~;~ ••• _L~
(OOS!VS COBOL only)

9

- = - - - - - - - - - - - - - - ;~- ;e;e- - - - - - - - - - - - - --- -,

Appendix c: Format Summary and Reserved Words 349

Procedure Division Sort Formats

RELEASE Statement

RELEASE sort-record-name [FROM identt/ier]

RETURN Statement

RETURN sort-file-name RECORD [INTO identifier]

AT END imperative-statement

SORT Statement

, {DESCENDING} SORT file-name-I ON ASCENDING KEY {data-name-I} ...

{
DESCENDING} [ON ASCENDING KEY {data-name-2} ...] ...

In'-PUT PROCEDURE IS section-name-I [THRU section-name-2]}
) USIl'iG file-name-2

JOUTIUT PROCEDURE IS section-name-3 [THRU section-name-4]}
)GIVING file-name-3

REPORT WRITER - BASIC FORMATS

Data Division - Report Writer Formats

NOTE: Formats which appear as Basic Formats within the general description of the Data
Division are illustrated there.

FILE SECTION - REPORT Clause

(REPORT IS)
)REPORTS ARE[report-name-I [report-name-2] ...

REPORT SECTION

REPORT SECTION.

.!!Q report-name

~ CQJ:lli mnemonic-name

{
CONTROL IS) {FIN~ . . }
CONTROLS ARE r ~~1{e:i.J;~:~f[~~iifi~r-2] . ..

10

[
LIMIT IS].

PAGE LIMITS ARE mteger-I

[HEADING integer-2]

[FIRST DETAIL integer-3]

[LAST DETAIL integer-4]

[FOOTING integer-5]

{
LI:'IIE }
LINES

Q

2

TRIM HERE

REPORT GROUP DESCRIPTION ENTRY

FORMAT 1

01 [data-name-I]

LINE NUMBER IS PLUS integer-2 {

integer-I }

NEXT PAGE

NEXT GROUP IS PLUS integer-2 ,
{

integer-I I
NEXT PAGE)

r

~PORT HEADING}

~GE HEADING}

J
CONTROL HEADINC) \identifier-nl
Q!! I /FINAL I

TYPE IS 1 i:::l FOOTING) (identifier-n}
g I)FINAL
PAGE FOOTING)
.IT (
REPORT FOOTING)
!!f I

USAGE Clause.

FORMAT 2

nn [data-name-I]

LINE Clause - See Format I

USAGE Clause.

FORMAT 3

no [data-name-I]

BLANK WHEN ZERO Clause

~ NUMBER IS integer-I

GROUP INDICATE

JUSTIFIED Clause

U!\,E Clause - See Format I

PICTURE Clause

RESET ON {identifier-I)
-- FINAL J

SOURCE IS {!!!r-2}

SUM Er-3} {~ler-4l ... [CPO;\; data-name]

VALUE IS literal-I

USAGE Clause.

FORMAT 4

01 data-name-l

BLANK WHEN ZERO Clause

COLUMN Clause - See Format 2

GROUP Clause - See Format 2

JUSTIFIED Clame

LI!\,E Clause - See Format 1

:\EXT GROUP Clause - See FOImat 1

PICTURE Clause

RESET Clause - See Format 2

(SOl'RCE Clau,e }
~ SUM Clause Sec Fo,mat 2
L VALUE Clause

TYPE CIa lise - See Fonnat I

USAGE Clause.

11 ----------------------------------TRrMIH5e----------------------------------

Q

2

350 Supplementary Material

APPENDIX D: SUMMARY ~F FILE-PROCESSING T~CHNIQUES AND APPLICABLE
STATEMENTS AND CLAUSES

This appendix summarizes the statements and
specified for each file-processing technique.
file-name must be specified in a SELECT clause
Division and must be defined by an FD entry in
Data Division.

clauses that may be
In addition, each
in the Environment
the File Section of the

Appendix D: Summary of File-Processing Techniques 351

STANDARD SEQUENTIAL FILES - Required and Optional Entries

W Device Required Entries
U'l Type tv

en
~

System-name Access Verbs

ro
ro
~ Reader SYSnnn-UR-xxxx-S [-name) OMITIED INPUT [LOCK) , READ [INTO) -, (I)
a AT END
(I)
l:'
rt

I

Punch I SYSM..uR-uM [--I I OMITIED I oun",

I

[LOCK) IWRllEl [FROMI_I ~
t;
'< [{!~~:n} ADVANCING)

~
~
rt
(I)
t;

I I SYSnnn-UR-xxxx-S [-name) I I OUTPUT I I WRITE! [FROM) _I ~. Printer OMITIED [LOCK)
~ BEFORE
~ [{AFTER} ADVANCING)

, "'--..)' ~ "';"1)..~

Tape I SYSnnn-UT-xxxx-S [-name) I I STANDARD I I INPUT
[REEL) I READ [INTO)

OMITIED [REVERSED] [LOCK J AT END
data-name [NO REWIND) NO REWIND

OUTPUT [REIlLI I W1UTE

I
[FROMI

[NO REWIND) LOCK BEFORE
[NO REWIND] [{AFTER} ADVANCING]

Mass I IUT} I {STANDARD{ I READ [INTO]
SYSnnn- -xxxx-S -name

Storage lDA [) data-name j INPUT [UNIT) AT END
[LOCK]

---- ----
OUTPUT [UNIT] I WRITE! [FROM]

[LOCK] {BEFORE} [AFTER ADVANCING) -WRITE! [FROM]
INVALID KEY

I: - - -'[:::T;- -

[LOCK] I READ [INTO]
AT END

WRlTE2 [FROM)
INVALID KEY

~In~~ert

lin~~ert

t~grf

NO

Optional Entries

Other ENVIRONMENT
DIVISION Clauses

, SEQUENTIAL SAME [RECORD] AREA
RERUN

I SEQUENTIAL I SAME [RECORD] AREA
RERUN

1 SEQUENTIAL 1 SAME [RECORD) AREA
RERUN

SEQUENTIAL I SAME [RECORD) AREA
RERUN
MULTIPLE FILE TAPE

SEQUENTIAL i SAME [RECORD) AREA
RERUN

MI

W.

[nTO) m

[nTO) rn

USE

ERROR4

ERROR4

ERROR4

REPORTING

LABEL
ERROR

LABEL
ERROR
REPORTING

AFTER LABEL
ERROR

AFTER LABEL
ERROR
REPORTING

AFTERLADEL
ERROR

DIRECT FILES {mass storage devices only) - Required and Optional Entries

Required Entries Optional Entries

Other ENVIRONMENT
ACCESS KEY System-name LABEL RECORDS I OPEN I CLOSE I Access Verbs Il'~ti:~';~1 DIVISION Clauses 1r=~"lmD~1 USE

I [ACTUAL) I SYSnnn-DA-XXXX-{~} [-name) SAME [RECORD) AREA [SEQUENTIAL) {STANDARD} INPUT [UNIT) READ [INTO) AFTER LABEL
data-name [LOCK] AT END RERUN ERROR

RANDOM ACTUAL SYSnnn-DA-XXXX-{~} [-name) {STANDARD} INPUT [LOCK) SEEK I i' c:::'AXrENlYeP;SIlmll~1 SAME [RECORD) AREA I U":':- c(l!l~J;~l!1 AFTER LABEL
data-name READ [INTO)

;J::I INVALID KEY ro
ro ----- -----(1)
::I OUTPUT SEEK OJ

WRITE I 1-'.
X INVALID KEY

0 ----- __ f __

1-0 [LOCK] SEEK

Ul READ [INTO)

~ INVALlDKEY
9 WRITE2 [FROM) S
OJ INVALID KEY
Ii
"<
0

I
RANDOM

I
ACTUAL

I
SYSnnn-DA-XXXX-{~} [-name) I {STANDARD} I INPUT

I
[LOCK)

I
SEEK I :.' J1)(lJiJ'llDElJ;s.~A8(;a" 'I SAME [RECORD) AREA 1;'-"~i'FE,-::S:;';,o;?'1 AFTER LABEL

I-h data-name READ [INTO]

I-zJ INVAL!DKEY
1-'.
~
(1)

I OUTPUT I
'U
Ii
0
()
(I)
en I. RANDOM I ACTUAL en
1-'.
~

lQ

t-3
(I)
()

P'
~
1-'.

loG
~
(I)
en

w lCreate 2Update and add 3Add 4Update U1
W

w
U1
.t=

en
~
ro
"tl
I-'
ro
ffi
::l
rt
III
11

"<

s::
III
rt
ro
t1
~,

III
t-

Program Product Information -- Version 3

APPENDIX E: ASCII CONSIDERATIONS

This compiler supports the American National Standard Code f~r
Information Interchange (ASCII). Thus the programmer can create and
process tape files recorded in accordance with the following
standards:

• ASCII Standard Code X3.4-1967

• American National Standard X3.27-1969, Magnetic Tape Labels for
Information Interchange

• American National Standard 9-track, 800 bpi, NRZI Magnetic Tape
Standard X3.22-1967

ASCII encoded tape files, when read into the system, are
automatically translated in the buffers into EBCDIC. Internal
manipulation of data is performed exactly as if they were EBCDIC
encoded files. For an output file, the system translates the EBCDIC
characters into ASCII in the buffers before writing the file out on
tape. Therefore there are special considerations concerning ASCII
encoded files when they are processed in COBOL. The following
paragraphs discuss these considerations.

I -- ENVIRONMENT DIVISION

Environment Division clauses affected by the specification of ASCII
files are the ASSIGN clause and the RERUN clause.

ASSIGN Clause

When ASCII files are to be processed, the system-name in the ASSIGN
clause has the following format:

SYSnnn-UT-device-C[-offsetl [-namel

nnn is a three-digit number between 000 and 221. This number
represents the symbolic unit to which the file is assigned.

UT for utility must be specified in the class field

device must specify a magnetic tape device (2400).

f in the organization field specifies that an ASCII encoded
sequential file is to be processed, or that an ASCII collated sort
is to be performed.

offset may be specified only for an ASCII file, and then only if a
block prefix of length 01 through 99 exists. It is a 2-digit field,
and may be specified as follows:

01 through 99
04

for an input file
for an output file (D-mode records only)

Appendix E: ASCII Considerations 355

name is a one- to seven-character field specifying the external-name
by which the file is known to the system. If specified, it is the
name that appears in the file-name field of the VOL, DLBL, or rLBL
job control statement. If this field is not specified, the symbolic
unit (SYSnnn) is used as the external-name. rhis field must be
specified if more than one file is assigned to the same symbolic
unit.

RERUN Clause

The system-name in a RERUN clause must not specify an ~SCII encoded
file.

ASCII encoded files containing checkpoint records cannot be
processed.

II ~- DATA DIVISION

In the Data Division there are special considerations for ASCII
files, both in the File Section and in Data Description Entries.

FILE SECTION

In the File Section the BLOCK CONTAINS clause, the LABEL RECORDS
clause and the RECORDING MODE clause are affected. There are also
special considerations regarding the compiler default options for
recording mode.

BLOCK CONTAINS Clause

For an ASCII file that contains a buffer offset field, the following
considerations apply:

• If the BLOCK CONTAINS clause with the RECORDS option is
specified, or if the BLOCK CONTAINS clause is omitted, the
compiler compensates for the buffer offset field •

• If the BLOCK CONTAINS clause with the CHARACTERS option is
specified, the programmer must include the buffer offset as part
of the physical record.

LABEL RECORDS Clause

All three options of the clause (OMITTED/STANDARD/data-name) are
allowed. However, if the programmer specifies the data-name option,
he must make sure that data-name refers only to user standard
labels. Nonstandard labels are not allowed for ~SCII files.

356 Supplementary Material

Compiler Calculation of Recording Mode

When the RECORDING MODE clause is n0t used to specify the mode of
the records in an ASCII file i the COBOL compiler determines the mode
by scanning each record description entry. The default option may
be:

F if all tne records are defined as being the same size.

D if the records are defined as variable in size, or if the RECORD
CONTAINS clause specifies variable size records. Internally D
mode' is the equivalent of V mode for EBCDIC encoded files.

DATA DESCRIPTION ENTRIES

For ASCII files the Data Description Entries affected are the
PICTURE c~ause, the SIGN clause, and the USAGE clause.

PICTURE Clause

For ASCII files all five categories of data are valid.

USAGE Clause

For data items in ASCII files, only the DISPLAY option of the USAGE
clause is valid.

111.-- PROCEDURE DIVISION

For ASCII files, there are special considerations in regard to Label
Declaratives and relation conditions.

Appendix E: ASCII Considerations 357

358

LABEL PROCEDURE Declarative

since the user may Dot specify nons~andard labels for an ~SCII
encoded file, the BEFORE option of the L~BEL PROCEDURE Declarative
is not allowed.

Relation Conditions

If the ASCII character strings to be compared contain mixed
alphabetic/numerit characters and/or special characters, then the
TRANSFORM verb can be used before t.he comparison is made to ensure a
valid comparison.

The following example illu.strates a method of making the comparisoI?
(Figure 54 shows the necessary COBOL statements).

Suppose that the COBOL programmer specifies that orie alphanumeric
data item (ASCII-l) from ASCII-FILE is to be compared with another
such data item (ASCII-2), and that the results of the comparison
determine the path of program execution~ Each data item may contaiQ
any valid COBOL character. '

When ASCII-RECORD is read into the buffer, the system changes each,
ASCII character into its EBCDIC equivalent. Therefore, before a
valid ASCII comparison can be made, the relative position of each
character in the ASCII collating sequence must be reestablished.

In the Working-storage Section, the VALUE of IDENT-EBCDIC is the
ascending EBCDIC collat.ing sequence (as shown in Figure 55).;
similarly, the VALUE of IDENT-ASCII is the ascending ASCII collating
sequence. The contents of ASCII-l are moved to DN-l, and the
contents of ASCII-2 are moved to DN-2, and DN-l and DN-2 are then'
used in the two TRANSFORM statements. (This avoids the necessity of
a second. pair of TRA~SE'O~M statements to restore the original
contents of ASCII-l and ~SCII-2.)

When the two TRANSFORM statements are executed, each EBCDIC
dharacte~ i~ ~xchaQged for another EBCDIC character that occupies
the original~SCIlcharacter's position in the ASCII collating
sequence. :['LlUS, when the comparison is made, it is valid for the
ASCI,I coll.ating sequence.

(Note that if ASCII-l and ~SCII-2 are restricted to mixed alphabetic
a;nd numeric c~aracte:rs, then the VALUE clauses in IDENT-EBCDIC and
IDEl'TT-ASC!!need. ~r..ly c~:1t(lin alp~abetic and rluft1eric characters from
the' collating' sequences .~ote too that in the VALUE clause when
q·Uota:tion marks (") are used as delimiters, then the quotation mark
i;pself cannot; be one. of the literals contained within the delimiter:
similarly, if: the apostrophe (t) is used as the delimiter, then the
aJ?o§t;tppoe C(J.p.np~ be; contained within the delimiter.)

s up pI emert ta.ry :l.it_.L ___ ..! _ ~

:'lCl \.-C:l_ .J..ClJ..

p~ppendix E: ASCII Considerations 359

r---------------------------------T--------------------------------,
I EBCDIC Collating Sequence I ASCII Collating Sequence 1
~---------------------------------+--------------------------------~

1. (space) 1. (space) 1
2. (period, decimal point) 2. (quotation 1
3. < (less than) 3. (curr I
4. ((left parenthesis) 1

+

$

*)

/

(plus symbol)
(currency symbol)
(asterisk)
(right parenthesis)
(semicolon)
(hyphen, minus symbol)
(stroke, virgule, slash)
(comma)
(

15. (equal sign)
16. (quotation mark)

5.
6.
7.
8.
9.

10.
11.
12.

(

)

* +

/

(left parenthesis)
(right parenthesis)
(asterisk)
(plus symbol)
(comma)
(hyphen, minus symbol)
(period, decimal point)
(stroke, virgule, slash)

13-22. 0 through 9

23. (semicolon)
24. < (less than)

17-42. A through Z 25. (equal sign)
26. > (greater than)

143-52. 0 through 9 27-52. A through Z

1
1

L _________________ ~ _______________ ~ ________________________________ J

Figure 55. EBCDIC and ASCII Collating Sequences for COBOL
Characters -- in Ascending Order

IV ~- SORT FEATURE

For ASCII-collated sorts, there are special considerations in the
Environment Division and in the Data Division.

ENVIRONMENT DIVISION

For ASCII-collated sorts, there are special considerations for the
ASSIGN clause ~_III"i

ASSIGN Clause

The ASSIGN clause for an ASCII collated sort has the same format as
for an EBCDIC collated sort. However, the system-name must be in
the following format:

SYSnnn-class-device-C-name

The following considerations apply:

SYSnnn must specify the fixed sort work units assigned to the
sort-file. The first work unit for every sort-file in the program
must be assigned to SYS001, the second to SYS002, etc.

class may be specified as UT or DA.

360 Supplementary Material

device may specify a utility or mass storage device.

£ in the organization field specifies an ASCII collated sort.

~ specifies the external-name by which the sort-file is known to
the system. If the file has standard labels, the name field must be
specified as SORTWK1 for SYS001, SORTWK2 for SYS002, etc.

Note: For an ASCII-collated sort~ the buffer offset field is not
permitted.

DATA DIVISION

USAGE Clause

., there are special considerations for the
'USAGE caluse.

If an ASCII-collated sort is requested, the sort keys must be
DISPLAY items, explicitly or implicitly.

Appendix E: ASCII Considerations 361

Program Product Information -- Version 3

APPENDIX F:SYMBOLIC DEBUGGING FEATURE

A programmer uS1ng IBM Full American National Standard COBOL,
Version 3, under the Disk Operating System, has several methods
available to him for testing and debugging his progrwus. USe of the
symbolic debugging feature is the easiest and most efficient method
for testing and debugging and is described in detail in this
appendix.

The symbolic debug option produces a symbolic formatted dump of
the object program's data area when the program abnormally
terminates. It also enables the programmer to request dynamic dumps
of specific data-names at strategic points during program execution.
If two or more COBOL programs are link edited together and one of
them terminates abnormally, the program causing termination and any
callers compiled with the symbolic debug option, up to and including
the main program, will be given a formatted dump.

The abnormal termination dump consists of the following parts:

1. Abnormal termination message, including the number of the
statement and of the verb being executed at the time of an
abnormal termination.

2. Selected areas in the Task Global Table.

3. Formatted dump of the Data Division including:

(a) for an SD, the card number, the sort-file-name, the type,
and the sort record.

(b) for an FD, the card number, the file-name, the type, SYSnnn,
DTF status, the contents of the Pre-DTF and DTF in
hexadecimal, and the fields of the record.

(c) for an RD, the card number, the report-name, the type, the
report line, and the contents of PAGE-COUNTER and
LINE-COUNTER if present . .

(d> For an index-name, the name, the type, and the contents in
decimal.

Note: For DTFDA when ACCESS IS RANDOM, the actual key is not
provided in the Pre-DTF.

Operation of the symbolic debug option is dependent on
object-time control cards placed in the input stream. These cards
are discussed below.

Object-Time Control Cards

The operation of the symbolic debug option is determined by two
types of control cards:

Program-control card -- required if abnormal termination and/or
dynamic dumps are requested.

Appendix F: Symbolic Debugging Feature 363

Line-control card -- required only if dynamic dumps are
requested.

Program-Control Cards: h program-control card must be present at
execution time for any program requesting symbolic debugging. A
program-control card must contain the following information:

The 1-8 character program-name of the COBOL program compiled
using symbolic debugging.

The logical unit and file-name assigned to the file produced at
compile time on SYS005.

Additional optional parameters can also be specified:

An entry used to provide a trace of a program-name when several
programs are link edited together. Each time the specified
program is entered, its program name is displayed.

Two formats of the Data Division area in the abnormal
termination dump are allowed:

1. Level-Ol items are provided in hexadecimal. Items
subordinate to level-Ol items are printed in EBCDIC if
possible. Level-77 items are printed both in hexadecimal
and EBCDIC.

2. Level-71 items and items subordinate to level-Cl items are
provided in EBCDIC. If these items contain unprintable
characters, hexadecimal notation is provided. This is the
default option.

Line-Control Cards: A line-control card must contain the following
information:

The card number associated with the point in the Procedure
Division at which the dynamic dump is to be taken. The number
specified is the compiler-generated card number.

Additional optional parameters can also be specified:

The position of the verb in the specified line number at which
the dynamic dump is to be taken. When the verb position is not
specified, the first verb in the line is assumed. Any verb
position not exceeding 15 may be specified.

An equivalent to the COBOL statement nON n AND EVERY m UNTIL k
n This option limits the request dynamic dumps to

specified times. For example "ON n" results in one dump,
produced the Qth time the line number is reached during
execution. "ON n AND EVERY m" results in a dump the first time
at the Qth execution of the specified line number, anq
thereafter at every ~th execution until end-of-job.

Two formats of the Data Division areas displayed in the dynamic
dump are allowed:

1. Level-Ol items are provided in hexadecimal. Items
subordinate to level-Ol items are provided in EBCDIC, if
possible. Level-77 items are provided both in hexadecimal
and EBCDIC.

2. Level-77 items subordinate to level-Ol items are provided
in EBCDIC. If these items contain unprintable characters,
hexadecimal notation is provided. Note that if a group
item is specified, neither the group nor the elementary
items in the group are provided in hexadecimal. This is
the default option.

364 Supplementary Material

Selected areas of the Data Division to De dumped. A single
data-name or a range of consecutive data-names can be
specified. (If the programmer wishes to see a subscripted
item, he specifies the name of the item without the subscript;
this results in a dump of every occurrence of the subscripted
item.)

A dump of everything that would be dumped in the event of an
abnormal termination can also be specified. This allows the
programmer to receive a formatted dump at normal end-of-job.
To do this, the programmer must specify the generated statement
number of the STOP RUN, GOB~CK, or EXIT PROGRAM statement.

Sample Program -- TESTRUN

Figure 57 is an illustration of a program that utilizes the
symbolic debugging features. In the following description of the
program and its output, letters identifying the text correspond to
letters in the program listing.

®

®

®

®

Because the SYMDMP option is requested on the CBL card, the
logical unit SYS005 must be assigned at compile time.

The CBL card specifications indicate that an alphabetically
ordered cross-reference dictionary, a flow trace of 10
proced~res, and the symbolic d~bug option are being requested.

An alphabetically ordered cross-reference dlctionary of
data-names and procedure-names is produced by the compiler as a
result 'of theSXREF specification on the CBL card.

The file assigned at compile time to SYS005 to store SY~illMP
information is assigned to SYSOU9 at execution time.

The SY~~MP control cards placed in the input stream at
execution time are printed along with any diagnostics.

~ The first card is the program-control card where:

(a) TESTRUN is the PROGRAM-ID.

o

(b) 9 is the logical unit t9 which the SYMDMP file is
assigned.

(c) MT indicates that the SYMDMP file is on tape.

(d) (HEX) indicates the fo~mat of the abnormal termination
dump.

The.second card is a line-control card which requests a
(HEX) formatted dynamic dump of COUNT, J.~AME-FIELD,
NO-OF-DEPENDENTS, and RECORD-NO prior to the first and
every fourth execution of generated card number 71.

The third card is also a line-control card which requests a
(HEX) formatted dynamic dump of wORK-RECORD and B prior to
the execQtion of generated card number 80.

The type code combinations used to identify data-names in
abnormal terrrdnation and dynamic dumps are defined. Individual
codes are illustrated in Figure 56.

The dynamic dumps requested by the first line-control card.

Appendix F: Symbolic Debugging Feature 365

®

®

®

®

®

The dynamic dumps requested by the second line-control card.

Program interrupt information is provided by the system when a
program terminates abnormally.

The statement number information indicates the number of the
verb and of the statement being executed at the time of the
abnormal termination. The name of the program containing the
statement is also provided.

A flow trace of the last 10 procedures executed is provided
because FLOW=10 was specified on the CBL card.

Selected areas of the Task Global Table are provided as part of
the abnormal termination dump.

For each file-name, the generated card number, the file type,
SYSnnn, the DTF status, and the fields of the Pre-DTF and DTF
in hexadecimal are provided.

The fields of records associated with each FO are provided in
the format requested on the program-control card.

The contents of the fields of the Working-storage Section are
provided in the format requested on the program-control card.

The values associated with each of the possible subscripts are
provided for data items described with an OCCURS clause.

Asterisks appearing within the EBCDIC representation of the
value of a given field indicate that the type and the actual
content of the field conflict.

Note: When using the symbolic debugging option, level numbers
appear "normalized" in the symbolic dump produced. For example, a
group of data items described as:

01 RECORDA.
05 FIELD-A.

10 FIBLD-Al PIC X.
10 FIELD-A2 PIC X.

will appear as follows in symbolic debugging output:

01 RECORDA •.•
02 FIELD-A •••
03 FIELD-Al •••
03 FIELD-A2 •••

Debugging TESTRUN

1. Referring to the statement number information J provided by
the symbolic debug option, it is learned that the abend
occurred during the execution of the first verb on card 80.

2. Generated card number 80 contains the statement COMPUTE B = B +
1.

3. Verifying the contents of B at the time of the abnormal
termination R it can be seen that the usage of B (numeric
packed) conflicts with the value contained in the data area
reserved for B (numeric display).

366 Supplementary Material

4. The abnormal termination occurred while trying to perform an
addition on a display item.

More complex errors may require the use of dynamic dumps to
isolate the problem area. Line~control cards are included in
TESTRUN merely to illustrate how they are used and the output they
produce.

r--------------------T---,
I Code I Meaning I
~--------------------+---~
i
I
I
I
I
I
I
I
I
I
I
I
I

A
B
D
E

*

L ___________________ _

Alphabetic I

Binary
Display
Edited

Figure 56. Individual Type Codes Used in SY~IDMP Output

I I JOB DEElUGL
I I OPTION NODECK, LINK, LIST, LISTX, SYM, ERRS
II ASSGN SYS005,X' 183' ~
/ I EX£C FC:OBOL \.V

20.36.22

Figure 57. Using the Symbolic Debugging Features to Debug the
Program TESTRUN (Part 1 of 11)

Appendix F: Symbolic Debugging Feature 367

IBM DOS AMFRICAN NATIONAL STANDARD COBOL VERSION 3 REL 3.0 PP ;<0. 5736-C32

CBL SXREF,FLOW=10 ,sn:m:p, QUOTE.,SEQ ----®
00001 000010 IDENTIFICATION DIVISIOl~.
00002 000020 PROGRAM-ID. TESTRUN.
00003 000030 AUTHOR. PROGRAMMER :"AM,.
00004 INSTALLATION. NEW YORK DEVELOPMENT CENTER.
00005 DATE-WRITTEN. APRIL 18,1973.
00006 DATE-COMPILED. 04/27/13.
00007 REMARKS. THIS PROGRAM HAS BEEN WRITTEN A.S A SAMPLE. PROGRAM FOi(
00008 COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK
00009 AS INPUT.
00010 000100
00011 000110
00012 000120
00013 000130
00014 000140
00015 000150
00016 000160
00017 000170
00018 000180
00019 000190
00020 000200
00021 000210
00022 000220
00023 000230
00024 000240
00025 000250
00026 000255
00027 000260

ENVIaONi'lENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-H50.
OBJECT-Cmr.PUTER. IBM-360-d50.
INPeT-OUTPUT S;';CTION.
FILE-CONTROL.

SELECT FILE-l ASSIGN TO SYS008-UT-2400-S.
SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S.

DATA DIVISION.
FILE SECTION.
FD FILE.-l

LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 5 RECORDS
RECORDING MODE IS F
RECORD CONTAINS 20 CHARACTERS
DATA RECORD IS RECORD-I.

00028 000270 01 RECORD-l.
00029
00030
00031
00032
00033
00034
00035
00036
00037

000290
000300
000310
000320
000330
000340
000350

00038 000370
00039 000380
00040
00041
OC042
00043 000420
00044
00045

05 FIELD-A PIC X(20).
FD FILE-2

LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 5 RECORDS
RECORD CONTAINS 20 CHARACTE~S
RECORDING MODE IS F
DATA RECORO IS RECORD- 2.

01 RECORD-2.
05 FIELD-P.. PIC X(20).

WORKING-STORAGE SECTION.
01 FILLER.

02 KOUNT PIC S99 COMP SY,~C.

02 ALPHABET PIC X(26) VALUE wABCDEFGHIJKLMNOPIdRSl'UVWXYZ w•
02 ALPHA REDEFINES ALPHABET PIC X OCCURS 20 TIMES.
02 NUMBR PIC S99 COMP SYNC.
02 DEPENDENTS PIC X(26) VALUE w01234012340123401234012340 w•
02 DEPEND REDEFINES DEPENDENTS PIC X OCCURS 2b TIMES.

00046
00047
000Ll8
00049
00050
00051

C00450 01
C00460
0001170
000480
000490

WORK-RECORD.
05 NAME-FIELD PIC X.
05 FILLER PIC X.
05 RECORD-NO PIC 9999.
05 FILLER PIC X VALUE IS SPACE.

00052 000510
00053 000520
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068

000550

00069 000660
00070
00071
00072
00073
00074
00075
00070
00077
00078
00079
00080
00081
00082
00083
00084
00085

000720

000780
000790

05 LOCATION PIC AAA VALUE IS wNYC w•
GO:; FILLER PIC X VALUE IS SPAC:.
(5 NO-OF-DEPENDENTS PIC XX.
05 FILLER PIC X(7) VALUE IS SPACES.

01 R!>CORDA.
02 A PICTURE 89(4) VALUE 1234.
02 B REDEFINES A PICTURE S9(7) COMPUTATIONAL-3.

PR:lCE0URE DIVISION.
BEGIN.

NOTE THAT l'hE FOLLOWING OPENS THE OUTPUT FILE
TO BE CREATED AND INITIALIZES THE COUNTERS.

STEP-l. OPEN OUTPUT FILE-I. MOVE ZERO TO KOUNT, NUl-;BR.
NOTE rHAT THE FOLLOWING C.il.EII.TES INTERNII.LLY THE
RECORDS TO BE CONTAINED IN THE FILE, WRITES THE.r'.
ON TAPE, AND DISPLAYS THEN ON THE CONSOLE.

STEP-2. ADD 1 TO KOUNT, NUMBR. MOVE ALPHA (KOUN'I) TO
NAME-FIELD.
MOVE DEPEND (KOUNT) TO NO-OF-DEPENDENTS.
MOVE NUMBR TO RECORD-NO.

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE.
WRITE RECORD-l FROM WORK-RECORD.

STEP-4. PERFORM STEP-2 THRU STEP-3
UNTIL KOUNT IS EQUAL TO 26.
NOTE THAT THE FOLLOWING CLOSES THE OUTPUT FILE
AND REOPEl'IS IT AS INPUT.

STJ;;P- 5. CLOSE FILE-l. OPEN INPUT FILE- 2.
NOTE THAT THE FOLLOwING READS BACK THE FILE
AND SINGLES OUT EMPLOYEES WITH ,~O DEPENDENTS.

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-S.
COMPUrE B = B + 1-

SThP-7. IF NO-OF-DEPENDENTS IS J"QUAL TO ·0· MOIiE ·Z· TO
NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD.
GO TO STEP-6.

STEP-8. CLOSE FILE-2.
STOP RUN.

Figure 57. Using the Symbolic Debugging Features to Debug the
Program TESTRUN (Part 2 of 11)

368 Supplementary Material

20.30.27 04/27173

TESTRUN

INTRNL NAt'£ THT

DN~I=1-11l8 FD
DNM=1-179 01
DNM.=1-200 02
DNM=1-2l7 FD
DNM=1-248 01
D;I!M=1-269 02
DNM.=1-289 01
DNM=1-308 02
DNM=1-323 02
DNM=1-3111 02
DNM=1-359 02
DNM=1-374 02
DNM=1-3911 02
DNM=1-1I10 01
DNM=I-434 02
DNM=1-454 02
[jN~;=1-lI73 02
DNM=I-492 02
DNM=2-000 02
DNM=2-018 02
DNM=2-037 02
DNM=2-063 02
DNM=2-082 01
DNM=2-102 02
DNM=2-113 02

TGT

SAVE AREA
SwITCH
TALLY
SORT SAVE
ENTRY-SAVE

20.36.27

SOURCE NP-_M..£

FILE-l
RECORD-l
FIELD-A
FILE-2
RECORD-2
FIELD-A
FILLER
KOUNT
ALPHABET
ALPHA
NUMBR
DEPENDENTS
DEPEND
wORK-RECORD
NAL'1E- FIELD
FILLER
ReCORD-NO
FILLER
LOCATION
FILLER
NO-OF- DEPENDENTS
FILLER
RECORDA
A
B

MEMORY MAP

SORT CORE SIZE
NSTD-REELS
SORT RET
WORKING CELLS
SORT FILE SIZE
SJRT MODE SIZE
PGT-VN TBL
TGT-VN TBL
SORTAS ADDRESS
LENGTH OF VN TBL
LNGTH OF SORrAB
PGM ID
ACINITll
UPSI SWITCHES
DEBUG TABLE PTR
CURRENT PRIORITY
TA LENGTH
PROCEDURE BLOCKI PTR
UNUSED
OVERFLOW CELLS
BL CELLS
DTFADR CELLS
TEMP STORAGe
TEMP STORAGE-2
TEMP STORAGE-3
TEMP STORAGE-II
ELL CELLS
VLC CELLS
SBL CELLS
INVEX CELLS
SUBADR CELLS
ONCTL CELLS
PFMCTL CELLS
PFMSAV CELLS
VN CELLS
SAllE AREA =2
XSASW CELLS
XSA CELLS
PARMl CELLS
RPTSAV "..REA
CHECKPT CTR
IOPTR CELLS

04/27/73

001100

00400
001l1l8
0044C
001150
001154
00458
001l5C
001l5E
001160
00590
005911
00598
0059C
005AO
005Al1
005A6
005A8
005BO
005B4
005EC
oosco
005Cl
005C4
005C8
005CC
005CC
005D8
OOSEO
005E8
005E8
005E8
005E8
005EC
005EC
005EC
005EC
005FlI
005F4
005FlI
005F8
005FC
005FC
005FC
005FC
00600
00600
00600

flll.SE

DTF=Ol
BL=l
BL=l

DTF=02
BL=2
BL=2
BL=3
BL=3
BL=3
BL=3
BL=3
BL=3
BL=3
BL=3
BL=3
BL=3
SL=3
BL=3
BL=3
BL=3
BL=3
BL=3
BL=3
BL=3
BL=3

DISPL INTRNL NAME

DNM=1-148
000 DN!r.=1-179
000 DNM=1-200

DN~j=1-2l7

000 DNr.;=1-2118
000 DNM=1-269
000 DNM=1-289
000 DNlt.=1-308
002 DNM=1-323
002 DN~:=1-34l

OlC m:IM=1-359
OlE DNM=1-374
OlE DNM=I-394
038 DNM=1-4l0
038 DNM=I-11311
039 DNM=I-4511
03A DN~:=1-473

03E DNM=1-492
03F DNM=2-000
042 DNM=2-0l8
0113 DNM=2-037

V"" DNM.=2-063
050 DNM=2-082
050 DN~;=2-l02

050 DNM=2-113

DeFINITION USAGE

DTFMT
DS OCL20 GR:>UP
DS 20C DISP

DTFMT
DS OCL20 GROUP
DS 20C DISP
DS OCL56 GROUP
DS lH COMP
DS 26C DISP
os lC DISP
DS lH CO~;P

DS 26C DISP
DS lC DISP
DS OCL20 GRJUP
DS lC DISP
DS lc DISP
DS lIC DISP-NM
DS lC DISP
DS 3c DISP
DS lC DISP
DS 2c DISP
DS 7C DISP
DS OCL4 GRJUP
DS 4C DISP-NM
DS liP COM.P-3

Figure 57. Using the Symbolic Debugging Features to Debug the
Program TESTRUN (Part 3 of 11)

R 0

R 0

R 0

R

Appendix F: Symbolic Debugging Feature

Q M

F

F

369

TESTRUN 20.36.27 04/27/73

LITERAL POOL (HEX)

00668 (LIT+O)
00680 (LIT+24)

00000001 001A1C5B 5BC2D6D7 C505405B 5BC2C303 ObE2C55B
5BC2C6C3 D4ElID300 COOOOOOO

DISPLAY LIrERALS (BCD)

0068C (LrL+36) , WORK-RECORD'

PGT

DEBUG LINKAGE AREA
OVERFLOW CELLS
VIRTUAL CELLS
PROCEDURE NAME CELLS
GENERATED NAME CELLS
SUBOTF ADDRESS CELLS
VNI CELLS
LITERALS
DISPLAY LITERALS
PROCEDURE BLOCK CELLS

REGISTER ASSIGNMENT

REG 6
REG 7
REG S

BL =3
BL =1
BL =2

00610

00610
00618
00618
0063C
0064C
00660
00660
00668
0068C
00698

WORKING-STORAGE STARTS AT LOCATION 00100 FOR A LENGTH OF 00058.

59 000698 START EQU *
000698 58 FO C 018 [, 15,018(0,12)
00069C 05 EF BALR 111,15
00069E 58 FO C 01C L 15,OlCCO,12l
0006A2 05 IF BALR 1,15
0006Al1 003B DC X'OO3B'

62 0006A6 58 FO C 018 L 15,018CO,12)
0006AA 05 EF BALR 14,15
0006AC 58 FO C OlC L 15,01CCO,12)
0006BO 05 IF BALR 1,15
0006B2 003E DC X'003E'

62 0006B4 58 FO C 018 L 15,018(0,12)
0006B8 05 EF BALR 14,15
0006BA 58 20 D ICC L 2 , ICC (0 ,13)
0006BE 41 10 C 05F LA 1,05F(0,12)
0006C2 58 00 0 1D8 L 0,108 (0,13)
0006C6 18 1I0 LR 4,0
0006C8 07 00 BCR 0,0
0006CA 05 FO BALR 15,0
0006CC 50 00 F 008 ST 0, 008 (0,15)

S'lATISTICS SOURCE RECORDS 85 OArA IT El>lS 25

V <ILBDDBG4)

V <I LBDFLWl)

V (ILBDDBGlI)

V <ILBiJFLWll

V <ILBDDBG4)

BL =1
LIT+7
DTF=l

NO OF VERBS = 29
STATISTICS PARTITION SIZE 495560 LINE COUNT 56 cUFFLR SIZE = 256
OPTIONS IN EFFECT
OPTIONS IN EFFECr
OPTIONS IN EFFECT
OPTIONS IN EFFEC:::

Figure 57.

PMAP RELOC ADR NONE. SPACI,'/G 1 FLO .. 10
LISTX QUOTE SYM NOCATALR LIST LINK NCSTXII

NOCLIST FLAGW ZWE NOSUPMAP lIOXRE.F ERRS SXRE.F
NOSTATE TRUI'C SEQ SYMDMP NODECK

Using the Symbolic Debugging Features to Debug the
Program TESTRUN (Part 4 of 11)

370 Supplementary Material

LIB
NOOPT

13 TESTRUN 20.36.27 04/27/73

CD CROSS-REFERENCE DICTIONARY

DATA NAMES DEFN REFERENCE

A 000056
ALPHA 000042 000066
ALPHABE:r 000041
B 000057 000080
DEPEND 000045 000068
DEPENDENTS 000044
FIELD-A 000029
FIELD-A 000037
FILE-1 000017 000062 000071 000076
FlLE-2 000018 000076 000079 000084
KOUNT 000040 000062 000066 000068 000072
LOCATION 000051
NAME-FIELD 000047 000066
NO-OF-DEPENDENTS 000053 000068 000081
NUMBR 000043 000062 000066 000069
RECORD-NO 000049 000069
RECORD-1 000028 000071
RECORD-2 000036 000079
RECORDA 000055
WORK-RECORD 000046 000070 000071 000079 000082

CD
PROCEDURE NAMES DEFN REFERENCE

BEGIN 000059
STEP-1 000062
STEP-2 000066 000072
STEP-3 000070 000072
STEP-4 000072
STEP-5 000076
STEP-6 000079 000083
STEP-7 000081
STEP-'l 000084 000079

CARD ERROR ~.ESSAGE

56
66
66

ILA.2190I-;i
ILA5011I-W
ILA5011I-W

PICTURE CLAUSE IS SIGNED. VALUE CLAUSE UNSIGNED. ASSUMSD POSITIVE.
HIGH ORDER TRUNCATI,)!'I ~IGHT OCCUR.
HIGH millER TRUNCATION MIGHT OCCUR.

END OF COMPILATION

/ / EX",C LNKEDT

JOB DEBUGL 04/27/73 DISK LINKAGE EDITOR DIAGNOSTIC Ol' I;~PU:r

ACTION :rAKEi" ~;p.P

LIST AUTOLINK IJFFBZZN
LIST AUl'OLINK ILBDADRO
LIST AUTOLINK ILBDDBGO
LIST A.UrOLINK IJJCPDIl1
LIST A.Ul'OLINK ILBDDSPO
LIST INCLUDE IJJCPD1
LIST AUTOLINK ILBDFLWO
LIST A.U:rOLINK ILBDIMLO
LIST AUl'OLINK ILBDMNSO
LIST AUTOLINK ILBDSAEO
LIST ENTRY

Figure 57. Usinq the Symbolic Debugging Features to Debug the
Program TESTRUN (Part 5 of 11)

A.ppendix F: Symbolic Debugging Feature 371

011/27/73 PHASE XFR-AD LOCORE HICORE DSK-AD ESD TYPE LABEL LOIWED REL-FR

PHASE*** 007000 007000 009BD3 20 03 1 CSECT Tt;STRUN 007000 007000

CSECT !JFFBZZN 007AC8 007AC8
ENTRY IJFFZZZN 007AC8
ENTRY IJFFBZZZ 007AC8
ENTRY IJFFZZZZ 007A.C8

CSECT ILBDSAEO 009A.98 009A98
ENTRY ILBDSAEl 009AAE

CSECT ILBDMNSO 009A90 009A90

CSECT ILBDDBGO 007F98 007F98
E~TRY ILBDDBG5 008117A
ENTRY ILBDDBGII 00811EC
ENTRY ILBDDBG7 008510
ENTRY ILBDDBG2 008262
ENTRY I:LBDDBG1 0080F4
ENTRY ILBDDBG3 0084E2
ENTRY ILBDDBG6 0084FC
ENTRY STXI~PSW 0085A.8
FNTRY S::lRTEP 0087118

CSECT ILBDFLWO 0095AO 0095AO
ENTRY IL!3CFLWl 00%60
ENTRY ILBDFLW2 00973C

CSECT ILBDIMLO 009A38 009A38

CSE.CT ILBDADRO 007E38 007E38
ENTRY ILBDADR1 007EIIlj

CSECT ILBDDSPO 008DC8 006DC8
ENTRY ILBDDSSO 008DC8
ENTRY ILBDDSSl 009318
ENTRY ILBDDSs2 0093BO
ENTRY ILBDDSS3 009568

CSECT IJJCPDVl 0089FO 0089FO
E~Til.Y IJJCPDV2 0089FO

CSECT IJJCPD1 008BDO 008800
ENTRY IJJCPD1N 008BDO
ENTRY IJJCPD3 008BDO

* UNREFERENCED SYMBOL~ WXTR:l ILBDSTNO
WXTRN ILBDSRTO
WXl'RN ILBDTEF3

003 UN.l.ESOLVED ADDRESS CONSTANTS

// ASSGl~ SYS008,X'182'
// ASSGN SYS009,X'183'~
// EXEC 0

Figure 57. Using the Symbolic Debugging Features to Debug the
Program TESTttUN (Part 6 of 11)

372 Supplementary Material

SYMDMP CO~TROL CARDS

Q) TESTRUN, 009,MT, (HEX)

CD 71, ON 1,4, (HEX) ,KOUNT ,NME-FIELD, NO-OF-DEPENDENTS, RECORD-NO

CD 80, (HEX), ~-mRK-RECORD, B

NO ERRORS FOUND IN CO~TROL CARDS

TYPE CODES USED IN SYMDt-1-P OUTPUT

CODE MEANING

CD

A
AN
ANE
D
DE
F
FD
NB
NB-S
ND
ND-OL
~D-OT

ND-SL
ND-ST
NE
NP
NP-S

TESTRUi. AI' CARD 000071
LOC CARD LV NAl'.E

007100 000040 02 KOUNT

007138 000047 02 NAME-FIELD

007143 000053 02 NO-OF-DEPENDENTS

0071311. 000049 02 RECORD-NO

TESTRUN AT CARD 000071
LOC CARD LV NAME

007100 000040 02 KOU"NT

007138 000047 02 NAME-FIELD

00711\3 000053 02 l~O-OF-DEPENDENTS

00713A 000049 02 RECORD-NO

TESTRUN AT CARD 000071
LOC CARD LV NAME

007100 000040 02 KOUNT

007138 000047 02 NAME-FIELD

007143 000053 02 NO-OF-!:>EPENDENTS

00713A 000049 02 RECORD-NO

ALPHABETIC
ALPHANUMERIC
ALPHANUMERIC EDITED
DISPLAY (STERLING i~ONREPORT)
DISPLAY EDITED (STERLING REPORT)
FLOATING POINT (COMP-l/CmiP-2l
FLOATI~G POINT DISPLI\.Y (E.XTERNAL FLOATING POINT)
NUI-IERiC BIl'ARY UNSIGNED (COMP)
NUMERIC BINARY: SIGNED
NUMERIC DISPLAY UNSIGNED (E.XTERNAL DECltI,AL)
NUMERIC DISPLAY OVERPu:'CH SIGL~ LEADING
NUMEiUC DISPLAY OVERPUNCH SIGN TRAILING
NUHERIC DISPLAY SE.PARATE SIG1~ LEADlNG
NUI-IERIC DISPLAY SEPARATE SIGN TRAILING
NUMERIC EDITED
NUt-:ERIC PACKED DECIMAL UN~IGNED (COMP-3)
NUMERIC PACKED DECIMAL SIGNED
SUBSCRIPTED

TYPE VALUE

NB-S +01
(HEX) 0001

AN A

AN

ND 0001

TYPE VALUE

NB-S +05
(HEX) 0005

AN E

I'.N

ND 0005

TYPE VALUE.

IIB-S +09
(HEX) 0009

AN

AN

@ 00C9

Figure 57. Using the Symbolic Debugging Features to Debug the
Program TESTRUN (Part 7 of 11)

A.ppendix F: Symbolic Debugging Feature 373

TBSTRUN AT CARD 000071
LOC CARD LV NAME TYPE VALUE

007100 OOOOqO 02 KOUNT NB-S +13
(HEX) OOOD

007138 0000q7 02 l~AME-FIELD AN M

00nq3 000053 02 NO-OF-DEPENDENTS AN

00713A 0000q9 02 RECORD-NO ND 0013

TESTRUN AT CARD 000071
LOC CARD LV NAME TYPE VALUE

007100 OOOOqO 02 KOUNT NB-S +17
(HEX) 0011

007138 0000Q7 02 NAME-FIELD AN Q

0071Q3 000053 02 NO-OF-DEPENDENTS AN

00713A 0000Q9 02 RECORD-NO ND 0017

TESTRUN AT CARD 000071
LOC CARD LV NAME TYPE VALUE

007100 OOOOQ 0 02 KOUNT NB-S +21
(HElD 0015

007138 OOOOQ 7 02 NAME-FIELD AN U

0071Q3 000053 02 NO-OF-DEPENDENTS AN

00713A GOOOQ9 02 RECORD-NO ND 0021

TESTRUN AT CARD 000071
LOC CARD LV NAME TYPE VALUE

007100 OOOOQO 02 KOUNT NB-S +25
(hEX) 0019

007138 000U47 02 NAME-FIELD AN y

007143 000053 02 NO- OF- DEPENDENTS AN

00713A 000049 02 RECORD-NO ND 0025

®
TESTRUN AT CARD 000080

L0C CARD LV NAl-1E TYPE VALUE

000046 01 WORK-RECORD
007138 (HEX) C1C1FOFO FOFlQOD5 E8C3liOFO 4040li040 1I040liOliO
007138 0000Q7 02 NAME-FIELD AN A
007139 0000li8 02 FILLER AN A
00713A 000049 02 RECORD-NO ND 0001
00713L 000050 02 FILLER AN
00713F 000051 02 LOCATION A NYC
007142 000052 02 FILLER AN
0071li3 000053 02 NO-OF-DEPE)lDENTS AN
007145 00005Q 02 FILLER AN

007150 000057 02 B NP-S *1*2*3*
(hEX) F1F2F3C4

Figure 57. Using the Symbolic Debugging Features to Debug the
Program TESTRUN (Part 8 of 11)

374 Supplementary Material

COBOL ABEND DIA.GNOSTIC AIDS

I,i'i'E~RiJ2r CODE 7 LAST PSW ADDR BEFORE ABEllO D000790E ~
PROGRA.;'<i l'ESTRiJN

LAST CARD NUMBER/VERB NUMBER EXECUTED -- CARD 'lUMBER OOOOBO/VERB NUMBER 01.

FLOw TRACE
TESTRU~ 000066 000070 000066 000070 000066 000070 000066 000070 000076 000079

CD
TASK GLOBAL TA.BLE

SA.VE A.REA

SWI'ICt:!
TALLY
SORT-SA.VE
ENTi{Y-SA.VE
SORT-CORE-SIZE
NSTD-REELS
SORT-RETURN
WORi-ING CELLS

SORT-FILE-SIZE
SORT-1.;ODE-SIZE
j>GT-V~ TBL
TGT-Vrl TBL
SORTAB ADDR
VN TBL LENGTH
SORTAB LENGTH
PROGRAM-ID
A(INIT1)
UPSI-SWITCHES
TGT-DBG TABLE
CURRE:'T PRIORITY
TRANSIENT AREA. LENGTH
PROCEDURE-BLOCK
UNUSED
OVERFLOW CELLS
BL CELLS
DTFADR CELLS
TEMP STORAGE
BLL CE.LLS
VLC CELLS
SBL CELLS
INDEX CELLS

LOC

007400
0071120
0071140
0071111B
007411C
0071150
00711511
0071158
00745C
007115E
0071160
0071180
0074AO
00711CO
00711EO
007500
007520
007540
007560
0075BO
007590
0075911
007598
00759c
0075AO
0075Al1
0075A6
0075AB
007530
0075BlI
0075BC
0075CO
0075Cl
0075C4
0075C8
(NONE)
0075CC
007508
0075EO
0075E8
(NONE)
(NONE)
(NONE)

DA.TA DIVISION DUMP OF TESTRU~'

VALUE

00000000 0105010B 00009998 80007BEE 00007908
0000001A. 000071EB 500079FA. 00007100 000072711
1I000790E 00007610
3COOOOllB
00000000
00000000
00007698
00000000
0000
7E10
000071E8 .000072C8 0000001A. 000071E8 500079FA
F2F640D5 E8C340FO 404040110 4040ti040 00007F10
31007116C 1I0000005 0800711A.0 00000000 06007E10
00000000 00000000 00000101 00000000 00000000
00008201l 00000103 000075118 00000000 OllOOABEO
0000001A 01000800 00007700 000uBDC8 00007137
00007137 500079FA 00007100 00007260 00007330
00007610 81100CEBO 0700751A 40000006 3100751C
10007E08 00000109 3100751C 1I0000005 08007568
1C7ECBE3 8B030141 1B130B61 5C10C6E2
00000000
00000000
ClIE2D7FO
F3F090EC
010896FF
F7C9
D201
TESTRUN
00007000
1I7FOl"030 4160007C
00000200
00
000101l
91B01000
41110002

00007274 ()0007330 00007100
00007170 00007IE8
00000000 0000026C
00000000

®

1I000790A 000071E8 00007330
00007330 000079ClI 00007000

00000000 FF000100 E9C1FOFO
BOOOCEBO 0700746h 40000006
60000101 920074CO 00000008
00000000 00000000 00000000
2008C4D2 E2D8FOFl 000077E2
000077E4 0000001A 0000001A
000079c4 00007000 700077EA
40000005 000271;50 000071;78
00000000 1E007578 30000001

OTHER (SEE MEMORY MA.P) 0075EC 0000711B 00007137 0000780C 0000780C 4780FlFil. OAOOOMO 000009AA 5F431B75
00760C 06704450

Figure 57. Using the Symbolic Debugging Features to Debug the
program TESTRUN (Part 9 of 11)

Appendix F: Symbolic Debugging Feature 375

LOC CARD LV NAl'lE

000017 FD F'ILE-1 ®
007158 PRE-DTF
007170 DTFMT
007190
0071BO
0071DO

000028 01 RECORD-1 ® 007274
007274 000029 02 FIELD-A

000018 FD FILE-2 ®
0071DO PRE-OTF
0071E8 DTFMT
007208
007228
007248

000036 01 RECORD-2 ® 007330
007330 000037 02 FIELD-A

000039 01 FILLER CD 007100
007118
007130
007100 000040 02 KOUNT
007102 000041 02 ALPHABET

000042 02 ALPHA

® (SUBll
007102 1
007103 2
007104 3
007105 4
007106 5
007107 6
007108 7
007109 8
00710A 9
00710B 10
00710C 11
00710D 12
00710E 13
00710F 14
007110 15
007111 16
007112 17

DATA DIVISION 'JUMP OF TESTRUN

TYPE VALUE

STANDARD SEQUENTIAL, ASSIGNED TO SYS008, CLOSED

01010014 00000000 00000000 00000000 OCOOOOCO OOOOOliOO
00009200 OCOOO108 000071A8 000071BO 00007AC8 1160E2E8 E2F'OFOF8 40400162
00000000 00000000 00000000 8bBCF018 41EOE001 58201044 01007260 20000064
000072C8 000072C8 00000014 0000732B 00640063 00000000 00000000 C3009A98
01010014 00000000 00000000 00000000 OCOOOOOO 00000000 00008200 OCOO0108

(HEX) D8C1FOFO F'lF740D5 E8C340F1 40404040 404040 lL O
AN QA0017 NYC 1

STANDARD SEQUENTIAL, ASSIGNED TO SYS008, OPEN INPUT

01010014 00000000 00000000 00000000 OCOOOOOO 00000000
00008200 OCOO0108 00007220 00007228 00007 AC8 11E8E2E8 E2FOFOF8 40400272
10000000 24007902 00000001 86BCF018 41EOE001 58201044 02007398 00000064
00007330 00007330 00000014 00007393 00640063 00000000 00009AA;:; 00009A98
00000000 00000000 00000000 00000000 07000700 07000700 E9ClFOFO F2F640D5

(HEX) C1C1FOFO FOF'l40D5 E8C340FO 40404040 40404040
AN AA0001 NYC 0

(HEX) 001AC1C2 C3C4C5C6 C7C8C901 02D30405 0607D809 E2E3E4E.5

NB-S
AN

*AN

E6):;7E8E9 001AFOF1 F2F3F4FO F1F2F3E'4 FOF1F2F3 F4FGFlF2
F3F4FOF1 F2F3F4FO
+26
ABCOEFGHIJKLMNOPQkSTUVWXYZ

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
P
Q

Figure 57. Using the Symbolic Debugging Features to Debug the
Program TESTRUN (Part 10 of 11)

376 Supplementary Material

D1\.TA DIVISION DUl'.? OF TESTRUN

LOC CARD LV N1\.ME TYPE VALUE

007113 18 R
007114 19 S-
007115 20 T
007116 21 U
007117 22 V
007118 23 W
007119 24 X
00711A 25 y

00711B 26 Z
00711C 000043 02 NUl'iBR NB-S +26
00711E 000044 02 DEPENDENTS AN 01234012340123401234012340

000045 02 DEPEND *AN

@ (SUBD
00711E 1
00711F 2
007120 3
007121 4
007122 5
007123 6
007124 7
007125 8
007126 9
007127 10 4
007128 11 0
007129 12 1
00712A 13 2
007120 14 3
00712C 15 4
00712D 16 0
00712E 17 1
00712F 18 2
007130 19 3
007131 20 4
007132 21 0
007133 22 1
007134 23 2
007135 24 3
007136 25 4
007137 26 0

000046 01 WORK-RECORD 0 007138 (HEX) C1C1FOFO FOF140D5 E8C340FO 40404040 40404040
007138 000047 02 NAME-FIELD AN A
007139 000048 02 FILLER AN A
00713A 000049 02 RECORD-NO ND 0001
00713E 000050 02 FILLER AN
00713F 000051 02 LOCATION A NYC
007142 000052 02 FILLER AN
007143 000053 02 NO-OF-DEPENDENTS AN
007145 000054 02 FILLER AN

000055 01 RECORDA 0 007150 (HEX) F1F2F3C4
007150 000056 02 A ND-OT +1234
007150 000057 02 B @--NP-S *1*2*3*

END OF' COBOL DIAGNOSTIC AIDS

Figure 57. Using ~he Symbolic Debugging Features to Debug the
Program TESTRUN (Part 11 of 11)

~ppendix F: Symbolic Debugging Feature 377

Program Product Information -- Version 3

APPENDIX G: COMBINED FUNCTION CARD PROCESSING

The IBM System/370 card punch devices offer more flexible
processing capabilities than former card devices. When equipped
with appropriate special features, these devices can be used
separately as a card reader, as a card punch, or as a card printer.
Any two or all three of these functions can be combined, so that
those functions specified are all performed during one pass of a
card through the device.

For anyone data card, the operations, when specified, must be
performed in the following order: read, punch, print. Anyone
function may be omitted -- that is, no file need be defined for that
function. The remaining functions must still be performed in the
order shown. All operations on one card must be completed before
operations on the next card are begun, or there is an abnormal
termination of the job. When such combined function processing is
to be used, the programmer must be aware of the special
considerations needed to accomplish the desired results.

COBOL handles each of the separate functions to be combined as a
separate logical file. Each such logical file has its own file
structure and procedural processing requirements. However, because
such combined function files (also called associated files) refer to
one physical unit, the user must observe certain restri'ctions during
processing. The following sections explain the programming
requirements for combined function processing in DOS American
National Standard COBOL.

I -- ENVIRONMENT DIVISION CONSIDERATIONS

For combined function processing there are special considerations
for the SPECIAL-NAMES Paragraph, and for the SELECT, ASSIGN, and
RESERVE Clauses.

SPECIAL-NAMES Paragraph

~,·i::':~~,f~~1~*~~~~~~:~~~~~s~~~.l~~"~~~¢A~e .. ·.<,o~~~~~.;.;X~ .. ,:.~~§i~~d;t:~enti1ii~tt~
'::f:?+(~~ ·p~rms,e ~~., , .•. ~··:sp~:~fJ;ed ·l;ll 't:be<~ECfJ\L-;~S ,]?a.ra:9'ra'Pl1;;~
"~pe' ·~on:ie:.....,.~a;mes raay l?e ;equ.at~ . wiW,thefAJl;lowing: function-'na:me~$:

··:~t:i.ori
501
S02
503
5.04
S05

M~aIling
St~cl<~~'l
Stacker '2
Stacker 3'
Stacker: 4
Stacker 5

(for
(f'or
(for
(for
(for

25,6:(),.
256.0:,
2.56Q)
2566'}
2560)

Appendix G: Combined Function Card Processing 379

For the 3525 device, if line control of multiline printed output is
desired, mnemonic-names may be equated with the following
function-names:

Function Name
C02
C03
C04

C12

Meaning
Line 3
Line 5
Line 7

Line 23

(Note that these function-names are not valid for 2-line 3525 print
files, or for the 2560 print features.)

SELECT Clause

For each of the functions (reading, punching, printing) to be
combined, a unique file-name must be defined.

ASSIGN Clause

For combined function card files, the ASSIGN clause has the
following formats:

sYsnnn-UR-35251~~ -1;~:~~ [-name]
W V[R]
M Z

SYSnnn-UR-2560 n} -1; ~r:]} [-name]

where nnn is a 3-digit number between 000 and 221, inclusive. Each
of the associated logical files must be specified with the same
SYSnnn field. (The field represents the symbolic unit to which the
logical file is assigned.) The name field has the same meaning it
has for other files.

The device and organization fields are interdependent. The
following entries are valid:

Device

3525R
(reader)

2560R
(reader)

Organization

{

V[R]
X[R]
Y[R]

Meaning

read/print associated file
read/punch/print associated file
read/punch associated file

Note: The optional R code in the
organization field specifies RCE
(Read Colu~n Eliminate) card reading.

l
v [p]

VS

X[P]

read/print associated file~ primary
input hopper
read/print associated file,
secondary input hopper
read/punch/p~int associated file,
primary input hopper

380 Supplementary Material

Device
2560R
(reader)
(continued)

3525P
(punch)

2560P
(punch)

3525W
(2-line
printer)

2560W
(1 to 6
line
printer)

3525M
(multiline
printer)

{

\
~

\

{

anization
XS

Meaning
read/punch/print associated file,
secondary input hOfper

y[p] read/punch associated file, primary
input hopper

YS read/punch associated file,
secondary input hOfper

x
Y
Z

X[p]

XS

Y[P]

YS

Z[p]

ZS

v
X
Z

V[P]

VS

X[p]

XS

Z[P]

ZS

v
X
Z

read/punch/print associated file
read/punch associated file
punch/print associated file

read/punch/print associated file,
primary input hopper
read/punch/print associated file,
secondary input hopper
read/punch associated file, primary
input hopper
read/punch associated file,
secondary input hopper
punch/print associated file, primary
input hopper
punch/print associated file,
secondary input hopper

read/print associated file
read/punch/print associated file
punch/print associated fiie

read/print associated file, primary
input hopper
read/print associated file,
secondary input hopper
read/punch/print associated file,
primary input hopper
read/punch/print associated file,
secondary input hopper
punch/print associated file, primary
input hopper
punch/print associat~d file,
secondary input hopper

read/print associated file
read/punch/print associated file
punch/print associated file

Note: For the 2560 device, all input hopper specifications in cne
combined function file structure must be identical.

RESERVE Clause

For a combined function structure, the files assigned to the read
function and the punch function must eaCh specify RESERVE NO
ALTERNATE AREA(S).

A file assigned to the print function may specify either NO or 1
ALTERNATE AREA(S).

II -- DATA DIVISION CONSIDERATIONS

For each logical file defined in the Environment Division for the
combined function structure, there must be a corresponding FD entry
and 01 record description entry in the File Section of the Data
Division.

Appendix G: Corr.bined Function Card Processing 381

III -- PROCEDURE DIVISION CONSIDERATIONS

When combined function processing is to be used, input/output
operations must proceed in a specified order in the Procedure
Division. The card passes first through the reading station, next
through the punching station, and last through the printing station.
Therefore, the following combined functions may be specified, in the
order shown:

Functions to be
Combined

read/punch/print

read/punch

read/print

punch/print

Order of
Operations

read
punch

[print]

read
punch

read
[print]

punch
[print]

Associated COBOL
Statement

READ ••• AT END
WRITE ,""ji>;..;;~~~liNt.1:f'~~t:l?Q$:~W:~Q~:ttJ~~l,
WRITE ~2~66)' ..
WRITE

[AFTER ADVANCING~J?9$-*-~4t;g~j;~q] (3525)

READ AT END
WRITE ,?,~¥~'{:';;;l~@:lf~*:J~4~1?~~~~tq~~m~J/

READ ••.. AT END
WRITE (2560)
WRITE

[AFTER ADVANCINGlt~'
~ .. ' :;- . :i.;.' . ~

WRITE ;~'~;~;:::;I~~!If~iji~~~
WRITE (2560)
WRITE

[AFTER ADVANCING , (3525)

All operations on one card must be completed before the next card
is obtained, or there is an abnormal termination of the job.

The following Procedure Division considerations in the COBOL
source program apply:

OPEN Statement

Combined function files may be opened in any sequence. The read
function file must be opened INPUT; the punch and print function
files must be opened OUTPUT. All files must be opened before
processing begins: if they are not, the job is terminated.

READ Statement

For combined function files, the READ statement, if the function
is specified, must be the first input/output operation specified. A
second READ statement must not be issued before all necessary
combined function operations for the same card have been completed,
or abnormal termination of the job results.

WRITE statement -- Punch Function Files

When the punch function is used, then after the READ statement is
issued, the next input/output operation must be tl WRITE statement
for the punch function file.

382 supplementary Material

If the user wishes to punch additional data into some of the
cards and not into others, he must issue a dummy WRITE statement for
the null cards, first filling the output area with SPACES.

WRITE Statement -- Print Function Files

After the punch function operations (if specified) are completed,
the user can issue WRITE statement(s) for the print function file.

If the user wishes to print additional data on some of the data
cards and not on others, he may omit the WRITE statement for the
null cards ..

2560 DEVICE: One WRITE statement may be issued for each card. 'I'he
print feature allows a maximum of 64 characters per line and 6 lines
per card; thus the maximum logical record size is 384 characters.
Line control may not be specified (that is no WRITE
ADVANCINGl:'1?PSITIOrUNG statements are allowed).

3525 DEVICE: Depending on the capabilities of the specific model in
use, the print file may be either a 2-line print file or a
multi-line print file. Up to 64 characters may be printed on each
line.

For a 2-line print file, the lines are printed on line 1 (top
edge of card) and line 3 (between rows 11 and 12). Line control may
not be specified. Automatic spacing is provided.

For a multi-line print file up to 25 lines of characters may be
printed. Line control may be specified. If line control is not
specified, automatic spacing is provided.

Line control is specified by issuing WRITE AFTER ADVANCING
statements, or WRITE AFTE~,POSJTIONING statements for the print
function file. If line control is used for one such statement, it
must be used for all other WRITE statements issued to the file. 'Ihe
maximum number of printable characters, including any SPACE
characters, is 64. The first character of the record defined must
be reserved by the programmer for the line control character;
therefore, the record may be defined as containing up to 65

Appendix G: Combined Function Card Processing 383

charactersn Such WRITE statements must not specify space
suppr2ssion ..

Ijentifier and integerl'lC!:Yt?ot:,p~§9-J:Ilt?,}t1~B,ni,:ng§ they have for other
WRITE AFTER ADVANCING ;olZ::'aR.I:i!E:>A~ER.,ipOS;$'1'ION;tN(#, statements.
However, such WRITE statements must not increase the line position
on the card beyond the card limits, or abnormal termination results.

The mnemonic-name of the WRITE AFTER ADVANCING statement may also
be specified. In the SPECIAL-NAMES Paragraph, the following
function-names may be associated with the mneroonic-names:

Function Name
C02
C03
C04

C12

Meaning
Line 3
Line 5
Line 7

Line 23

(See also "System/370 Card Devices" in the Procedure Division WRITE
Statement jocumentation.)

CLOSE Statement

When processing is completed. a CLOSE statement must be issued
for each of the combined function files. After a CLOSE statement
has been issued for anyone of the functions, an attempt to perform
processing for any of the functions results in abnormal termination.

384 Supplementary Material

ACCESS

IBM ~~RICAN NATIONAL STANDARD COBOL GLOSSARY

ACCESS: The manner in which files are referenced by the computer.
Access can be sequential (records are referred to one after another in
the order in which they appear on the file), or it can be random (the
individual records can be referred to in a nonsequential manner).

Actual Decimal Point: The physical representation, using either of the
decimal point characters (. or ,), of the decimal pOint position in a
data item. When specified, it will appear in a printed report, anj it
requires an actual space in storage.

ACTUAL KEY: A key which can be directly used by the system to locate a
logical record on a mass storage device.

Alphabetic Character: A character which is one of the 26 characters of
the alphabet, or a space. In COBOL, the term does not include any other
characters.

Alphanumeric Character: Any character in the computer's character set.

Alphanumeric Edited Character: ~ character within an alphanumeric
character string which contains at least one B or o.

Arithmetic Expression: A statement containing any combination of data
names, numeric literals, and figurative constants, joined together by
one or more arithmetic operators in such a way that the statement as a
whole can be reduced to a single numeric value;

Arithmetic~erator: ~ symbol (single character or two-character set)
which directs the systeffi to perform an arithmetic operation. rhe
following list shows arithmetic operators:

Meaning
Addition
Subtraction
Multiplication
Division
Exponentiation

Symbol
+

*
/

**

Assumed Decimal Point: A decimal pOint position which does not involve
the existence of an actual character in a data item. It does not occupy
an actual space in storage, but is used by the compiler to align a value
properly for calculation.

BLOCK: In COBOL, a group of characters or records which is treatej as
an entity when moved into or out of the computer. rhe term is
synonymous with the term Physical Record.

Buffer~ A portion of main storage into which data is read or from which
it is written.

Byte: A sequence of eight adjacent binary bits. When properly aligned,
two bytes form a halfword, four bytes a fullword, and eight bytes a
doubleword.

Channel: A device that directs the flow of information between the
computer main storage and the input/output devices.

Character: One of a set of in1ivisible symbols that can be arranged in
sequences to express information. These symbols include the letters A
through Z, the decimal digits 0 through 9, punctuation symbols, and any
other symbols which will be accepted by the data-processing system.

IBM ~erican National Standard COBOL Glossary 385

Character Set

Character Set: All the valid COBOL characters. The complete set of 51
characters is listed in "Language Considerations."

Character String: A connected sequence of characters. All COBOL
characters are valid.

Checkpoint: A reference point in a program at which information about
the contents of core storage can be recorded so that, if necessary, the
program can be restarted at an intermediate point.

Class Condition: A statement that the content of an item is wholly
alphabetic or wholly numeric. It may be true or false.

Clause: A set of consecutive COBOL words whose purpose is to specify an
attribute of an entry. There are three types of clauses: data,
environment, and file.

COBOL Character: Any of the 51 valid characters (see CHARACTER) in the
COBOL character set. The complete set is listed in "Language
Considerations."

Collating Sequence: The arrangement of all valid characters in the
order of their relative precedence. The collating sequence of a
computer is part of the computer design -- each acceptable character has
a predetermined place in the sequence. A collating sequence is used
primarily in comparison operations.

COLUMN Clause: ~ COBOL clause used to identify a specific position
within a report line.

Comment: An annotation in the Identification Division or Procedure
Division of a COBOL source program. A comment is ignored by the
compiler. As an IBM extension, comments may be included at any point in
a COBOL source program.

Compile Time: The time during which a COBOL source program is
translated by the COBOL compiler into a machine language object program.

Compiler: A program which translates a program written in a higher
level language into a machine language object program.

Compiler Directing Statement: A COBOL statement which causes the
compiler to take a specific action at compile time, rather than the
ooject program to take a particular action at execution time.

Compound Condition: A statement that tests two or more relational
expressions. It may be true or false.

Condition:

• One of a set of specified values a data item can assume.

• A simple conditional expression: relation condition, class
condition, condition-name condition, sign condition, switch-status
condition, NOT condition.

Conditional Statement: A statement which specifies that the truth value
of a condition is to be determined, and that the subsequent action of
the object program is dependent on this truth value.

Conditional Variable: A data item that can assume more than one value;
one or more of the values it assumes has a condition-name assigned to
it.

Condition Name: The name assigned to a specific value, set of values,
or range of values, that a data item may assume.

386 Supplementary Material

Condition-name Condition

Condition-name Condition: A statement that the value of a conditional
variable is one of a set (or range) of values of a data item identified
by a condition-name. The statement may be true or false.

CONFIGURATION SECTION: A section of the Environment Division of the
COBOL program. It describes the overall specifications of computers.

Connective: A word or a punctuation character that does one of the
following:

• Associates a data-name or paragraph-name with its qualifier

• Links two or more operands in a series

• Forms a conditional expression

CONSOLE: A COBOL mnemonic-name associated with the console typewriter.

Contiguous Items: Consecutive elementary or group items in the Data
Division that have a definite relationship with each other.

Control-Break: A recognition of a change in the contents of a control
data item that governs a hierarchy.

Control-Bytes: Bytes associated with a physical record that serve to
identify the record and indicate its length, blocking factor, etc.

Control-Data Item: A data item that is tested each time a report line
is to be printed. If the value of the data item has changed, a control
break occurs and special actions are performed before the line is
printed.

CONTROL-FOOTING: A report group that occurs at the end of the control
group of which it is a member.

Control Group: An integral set of related data that is specifically
associated with a control data item •

CONTROL-HEADING: A report group that occurs at the beginning of the
control group of which it is- a member.

Control-Hierarchy: A designated order of specific control data items.
The highest level is the final control; the lowest level is the minor
control.

Core storage: storage within the central processing unit of the
computer, so called because this storage exists in the form of magnetic
cores.

Cylinder-Index: A higher level index, always present in indexed data
organization. Its entries point to track indexes.

Data Description Entry: An entry in the Data Division that is used to
describe the characteristics of a data item. It consists of a level
number, followed by an optional data-name, fo~lowed by data clauses that
fully describe the format the data will take. An elementary data
description entry (or item) cannot logically be subdivided further. A
group data description entry (or item) is made up of a number of related
group and/or elementary items.

DATA DIVISION: One of the four main component parts of a COBOL program.
The Data Division describes the files to be used in the program and the
records contained within the files. It also describes any internal
Working-Storage records that will be needed (see -Data Division ft for
full details).

IBM American National Standard COBOL Glossary 387

Data Item

Data Item: A unit of recorded information that can be identified by a
symbolic name or by a combination of names and subscripts. Elementary
data items cannot logically be subdivided. A group data item is made up
of logically related group and/or elementary items and can be a logical
group within a record or can itself be a complete record.

Data-name: A name assigned by the programmer to a data item in a COBOL
program. It must contain at least one alphabetic character.

DECLARATIVES: A set of one or more compiler-directing sections written
at the beginning -of the Procedure Division of a COBOL program. The
first section is preceded by the header DECLARATIVES. The last section
is followed by the header END DECLARATIVES. There are three options:

1. Input/output label handling

2. Input/output error-checking procedures

3. Report Writing procedures

Each has its standard format (see "Procedure Division").

Device-number: The reference number assigned to any external device.

Digit: Any of the numerals from 0 through 9. In COBOL, the term is not
used in reference to any other symbol.

DIVISION: One of the four major portions of a COBOL program:

• IDENTIFICATION DIVISION, which names the program.

• ENVIRONMENT DIVISION, which indicates the machine equipment and
equipment features to be used in the program.

• DATA DIVISION, which defines the nature and characteristics of data
to be processed.

• PROCEDURE DIVISION, which consists of statements directing the
processing of data in a specified manner at execution time.

Division Header: The COBOL words that indicate the beginning of a
particular division of a COBOL program. The four division headers are:

• IDENTIFICATION DIVISION.

• ENVIRONMENT DIVISION.

• DATA DIVISION.

• PROCEDURE DIVISION.

Division-name: The name of one of the four divisions of a COBOL
program.

EBCDIC Character: Anyone of the symbols included in the eight-bit
EBCDIC (Extended Binary-Coded-Decimal Interchange Code) set. All 51
COBOL characters are included.

Editing Character: A single character or a fixed two-character
combination used to create proper formats for output reports (see
"Language Considerations" for a complete list of editing characters).

388 Supplementary Material

Elementary Item

Element~ry Item: A data item that cannot logically be subdivided.

Entry: Any consecutive set of descriptive clauses terminated by a
period, written in the Identification, Environment, or Procedure
Divisions of a COBOL program.

Entry-name: A programmer-specified name that establishes an entry pOint
into a COBOL subprogram.

ENVIRONMENT DIVISION: One of the four main component parts of a COBOL
program. The Environment Division describes the computers upon which
the source program is compiled and those on which the object program is
executed, and provides a linkage between the logical concept ot files
and their records, and toe physical aspects of the devices on which
files are stored (see "Environment Division" for full details).

Execution Time: The time at which an object program actually performs
the instructions coded in the Procedure Division, using the actual data
provided.

Exponent: A number, indicating how many times another number (the base)
is to be repeated as a factor. Positive exponents denote multiplica
tion, negative exponents denote division, fractional exponents denote a
root of a quantity. In COBOL, exponentiation is indicated with the
symbol ** fo~lowed by the exponent.

F-mode Records: Records of a fixed length, each of which is wholly
contained within a block. Blocks may contain more than one record.

Figurative Constant: A reserved word that represents a numeric value, a
character, or ~ string of repeated values or characters. The word can
be written in a COBOL program to represent the values or characters
without being defined in the Data Division (see "Language Considera
tions" fo~ a complete list).

FILE-CONTROL: The name and Header of an Environment Division paragraph
in which the data files for a given source program are named and
assigned to specific input/output devices.

File Description: An entry in tbe File Section of the Data Division
that provides information about the identification and physical
structure of a file~

File-name: A name assigned to a set of input data or output data. A
file-name must include at least one alphabetic character.

FILE SECTION: A section of the Data Division that contains descriptions
of all externally stored data (or files) used in a program. such
information is given in one or more file description entries.

Floating-point Literal: ~ numeric literal whose value is expressed in
floating-point notation -- that is, as a decimal number followed by an
exponent which indicates the actual placement of the decimal point.

Function-name: A name, supplied by IBM, that identifies system logical
units, printer and card punch control characters, and report codes.
When a function-name is associated with a mnemonic-name in the
Environment Division, the mnemonic-name can then be substituted in any
format in which substitution is valid.

Group Item: A data item made up of a series of logically related
elementary items. It can be part of a record or a complete record.

Header Label: ~ record that identifies the beginning of a physical file
or a volume.

IBM American National Standard COBOL Glossary 389

High-Order

High-Order Tne leftmost position in a string of characters.

IDENTIFICATION DIVISION: One of the four main component parts of a
COBOL program. The Identification Division identifies the source
program and the object program and, in addition, may include such
documentation as the author's name, the installation where written, date
written~ etc. (see "Identification Division" for full details).

Identifier: A data-name, unique in itself, or made unique by the
syntactically correct combination of qualifiers, subscripts, and/or
indexes.

Imperative-statement: A statement consisting of an imperative verb and
its operands, which specifies that an action be taken, unconditionally.
An imperative-statement may consist of a series of imperative
statements.

Index: A computer storage position or register, the contents of which
identify a particular element in a table.

Index Data Item: A data item in which the contents of an index can be
stored without conversion to subscript form.

Index-name: A name, given by the programmer, for an index of a specific
table. An index-name must contain at least one alphabetic character.
It is one word (4 bytes) in length.

Indexed Data-name: A data-name identifier which is subscripted with one
or more index-names.

INPUT-OUTPUT SECTION: In the Environment Division, the section that
names the files and external media needed by an object program. It also
provides information required for the transmission and handling of data
during the execution of an object program.

INPUT PROCEDURE: A set of statements that is executed each time a
record is released to the sort file. Input procedures are optional;
whether they are used or not depends upon the logic of the program.

Integer: A numeric data item or literal that does not include any
character positions to the right of the decimal point, actual or
assumed. Where the term "integer" appears in formats, "integer" must
not be a numeric data item.

INVALID KEY Condition: A condition that may arise at execution time in
which the value of a specific key associated with a mass storage file
does not result in a correct reference to the file (see the READ,
REWRITE, START, and WRITE statements for the specific error conditions
involved).

I-a-CONTROL: The name, and the header, for an Environment Division
paragraph in which object program requirements for specific input/output
techniques are specified. These techniques include rerun checkpoints,
sharing of same areas by several data files, and multiple file storage
on a single tape device.

KEY: One or mor~ data items, the contents of which identify the type or
the location of a record, or the ordering of data.

Ke~ Word: A reserved word whose employment is essential to the meaning
and structure of a COBOL statement. In this manual, key words are
indicated in the formats of statements by underscoring. Key words are
included in the reserved word list.

390 Supplementary Material

Level Indicator

Level Indicator: Two alphabetic characters that identify a specific
type of file, or the highest position in a hierarchy. The level
indicators are: PD, SD, RD.

Level Number: A numeric character or two-character set that identifies
the properties of a data description entry. Level numbers' 01 through 49
define group items, the highest level being identified as 01, and the
subordinate data items within the hierarchy being identified with level
numbers 02 through 49. Level numbers 66, 77, and 88 identify special
properties of a data description entry in the Data Division.

Library~name: The name of a member of a data set containing COBOL
entries, used with the COpy and BASIS statements.

LINKAGE SECTION: A section of the Data Division that describes data
made available from another program.

Literal: A character string whose value is implicit in the characters
themselves. The numeric literal 7 expresses the value 7, and the
nonnumeric literal "CHARACTERS" expresses the value CHARACTERS.

Logical Operator: A COBOL word that defines the logical connections
between relational operators. The three logical operators and their
meanings are:

OR (logical inclusive -- either or both)

AND (logical connective -- both)

NOT (logical negation)

(See "Procedure Division" for a more detailed explanation.)

Logical Record: The most inclusive data item, identified by a level-01
entry. It consists of one or more related data items.

Low-Order: The rightmost position in a string of characters.

Main Program: The highest level COBOL program involved in a step.
(Programs written in other languages that follow COBOL linkage
conventions are considered COBOL programs in this sense.)

Mantissa: The decimal part of a logarithm. Therefore, the part of a
floating-point number that is expressed as a decimal fraction.

Mass storage: A storage medium -- disk, drum, or data cell -- in which
data can be collected and maintained in a sequential, direct, or indexed
organization.

Mass Storage File: A collection of records assigned to a mass storage
device.

Mass Storage File segment: A part of a mass storage file whose
beginning and end are define5 by the FILE-LIMIT clause in the
Environment Division.

Master Index: The highest level index, which is optional, in the
indexed data organization.

Mnemonic-name: A programmer-supplied word associated with a specific
function-name in the Environment Division. It then may be written in
place of the function-name in any format where such a substitution is
valid.

MODE: The manner in which records of a file are accessed or processed.

IBM American National Standard COBOL Glossary 391

Name

Name: A word composed of not more than 30 characters, which defines a
COBOL operand (see "Language Considerations" for a more complete
discussion).

Noncontiguous Item: A data item in the working-Storage section of the
Data Division which bears no relationship with other data items.

Nonnumeric Literal: A character string bounded by quotation marks,
which means literally itself. For example, "CHARACTER" is the literal
for and means CHARACTER. The string of characters may include any
characters in the computer's set, with the exception of the quotation
mark. Characters that are not COBOL characters may be included.

Numeric Character: A character that belongs to one of the set of digits
o through 9.

Numeric Edited Character: A numeric character which is in such a form
that it may be used in a printed output. It may consist of external
decimal digits 0 through 9, the decimal point, commas, the dollar sign,
etc., as the programmer wishes (see "Data Division" for a fuller
explanation).

Numeric Item: An item whose description restricts its contents to a
value represented by characters from the digits 0 through 9. rhe item
may also contain a leading or trailing operational sign represented
either as an overpunch or as a separate character.

Numeric-Literal: A numeric character or string of characters whose
value is implicit in the characters themselves. Thus, 777 is the
literal as well as the value of the number 777.

OBJECT-COMPUTER: The name of an Environment Division paragraph in which
the computer upon which the object program will be run is described.

Object Program: The set of machine language instructions that is the
output from the compilation of a COBOL source program. The actual
processing of data is done by the object program.

Object Time: The time during which an object program is executed.

Operand: The "object" of a verb or an operator. That is, the data or
equipment governed or directed by a verb or operator.

Operational Sign: An algebraic sign associated with a numeric data
item, which indicates whether the item is positive or negative.

Optional Word: A reserved word included in a specific format only to
improve the readability of a COBOL statement. If the programmer wishes,
optional words may be omitted.

OUTPUT PROCEDURE: A set of programmer-defined statements that is
executed each time a sorted record is returned from the sort file.
Output procedures are optional; whether they are used or not depends
upon the logic of the program.

Overlay: The technique of repeatedly using the same areas of internal
storage during different stages in processing a problem.

PAGE: A physical separation of continuous data in a report. The
separation is based on internal requirements and/or the physical
characteristics of the reporting medium.

PAGE FOOTING: A report group at the end of a report page which is
printed before a page control break is executed.

PAGE HEADING: A report group printed at the beginning of a report page,
after a page control break is executed.

392 Supplementary Material

Paragraph

Paragraph: A set of one or more COBOL sentences, making up a logical
processing entity, and preceded by a paragraph-name or a paragraph
header.

Paragraph Header: A word followed by a period that identifies and
precedes all paragraphs in the Identification Division and Environment
Division.

Paragraph-name: A programmer-defined word that identifies and precedes
a paragraph.

Parameter: A variable that is given a specific value for a specific
purpose or process. In COBOL, parameters are most often used to pass
data values between calling and called programs.

Physical Record: A physical unit of data, synonymous with a block. It
can be composed of a portion of one logical record, of one complete
logical record, or of a group of logical records.

Print Group: An integral set of related data within a report.

Priority-Number: A number, ranging in value from 0 to 99, which
classifies source program sections in the Procedure Division (see
"Segmentation" for more information).

Procedure: One or more logically connected paragraphs or sections
within the Procedure Division, which direct the computer to perform some
action or series of related actions.

PROCEDURE DIVISION: One of the four main component parts of a COBOL
program. The Procedure Division contains instructions for solving a
problem. The Procedure Division may contain imperative-statements,
conditional statements, paragraphs, procedures, and sections (see
"Procedure Division n for full details).

procedure-name: A word that precedes and identifies a procedure, used
by the programmer to transfer control from one point of the program to
another.

Process; Any operation or combination of operations on data.

Program-name: A word in the Identification Division that identifies a
COBOL source program.

Punctuation Character: A comma, semicolon, period, quotation mark, left
or right parenthesis, or a space.

Qualifier: A group data-name that is used to reference a non-unique
data-name at a lower level in the same hierarchy, or a section-name that
is used to reference a non-unique paragraph. In this way, the data-name
or the paragraph-name can be made unique.

Random Access: An access mode in which specific logical records are
obtained from, or placed into, a mass storage file in a nonsequential
manner.

RECORD: A set of one or more related data items grouped for handling
either internally or by the input/output systems (see "Logical Record").

Record Description: The total set of data description entries
associated with a particular logical record.

Record~name: A data-name that identifies a logical record.

Reel: A module of external storage associated with a tape device.

IBM American National Standard COBOL Glossary 393

Relation character

Relation Character: A character that expresses a relationship between
two operands. The following are COBOL relation characters:

Character
>

<

Meaning
Greater than

Less than

Equal to

Relation Condition: A statement that the value of an arithmetic
expression or data item has a specific relationship to another
arithmetic expression or data item. The statement may be true or false.

Relational Operator: A reserved word, or a group of reserved words, or
a group of reserved words and relation characters. A relational
operator plus programmer-defined operands make up a relational
expression. A complete listing is given in "Procedure Division."

REPORT: A presentation of a set of processed data described in a Report
File.

Report Description Entry: An entry in the Report Section of the Data
Division that names and describes the format of a report to be produced.

Report File: A collection of records, produced by the Report writer,
that can be used to print a report in the desired format.

REPORT FOOTING: A report group that occurs, and is printed, only at the
end of a report.

Report Group: A set of related data that makes up a logical entity in a
report.

REPORT HEADING: A report group that occurs, and is printed, only at the
beginning of a report.

Report Line: One row of printed characters in a report.

Report-name: A data-name that identifies a report.

REPORT-SECTION: A section of the Data Division that contains one or
more Report Description entries.

Reserved Word: A word used in a COBOL source program for syntactical
purposes. It must not appear in a program as a user-defined operand.

Routine: A set of statements in a program that causes the computer to
perform an operation or series of related operations.

Run Unit: A set of one or more object programs that function, at object
time, as a unit to provide problem solutions. This compiler considers a
run unit to be the highest level calling program plus all called
subprograms.

S-mode Records: Records that span physical blocks. Records may be
fixed or variable in length. Blocks may contain one or more segments.
A segment may contain one record or a portion of a record. Each segment
contains a segment-length field and a control field indicating whether
or not it is the first and/or last or an intermediate segment of the
record. Each block contains a block-length field.

SECTION: A logically related sequence of one or more paragraphs. A
section must always be named.

Section-Header: A combination of words that precedes and identifies
each section in the Environment, Data, and Procedure Divisions.

394 Sl.!pplementary Material

Section-name

Section-name: A word specified by the programmer that precedes an~
identifies a section in the Procedure Division.

Sentence: A sequence of one or more statements, the last ending with a
period followed by a space.

Separator: An optional word or character that improves readability.

sequential Access: An access mode in which logical records are obtained
from, or placed into, a file in such a way that each successive access
to the file refers to the next subsequent logical record in the file.
The order of the records is established by the programmer when creating
the file.

seguential Processing: The processing of logical records in the order
in which records are accessed.

Sign Condition: A statement that the algebraic value of a data item is
less than, equal to, or greater than zero. It may be true or false.

Simple Condition: An expression that can have two values, and causes
the object program to select between alternate paths of control,
depending on the value found. The expression can be either true or
false.

Slack Bytes: Bytes inserted between data items or records to ensure
correct alignment of some numeric items. Slack bytes contain no
meaningful data. In some cases, they a~e inserted by the compiler; in
others, it is the responsibility of the programmer to insert them. The
SYNCHRONIZED clause instructs the compiler to insert slack bytes when
they are needed for proper alignment. Slack bytes between records are
inserted by the programmer.

Sort File: A collection of records that is sorted by a SORT statement.
The sort file as created and used only while the sort function is
operative.

Sort File Description Entr~: An entry in the File Section of the Data
Division that names and describes a collection of records that is used
in a SORT statement.

Sort-file-name: A data-name that identifies a Sort File.

Sort-key: The field within a record on which a file is sorted.

sort-work-file: A collection of records involved in the sorting
operation as this collection exists on intermediate device(s).

SOURCE-COMPUTER: The name of an Environment Division paragraph. In it,
the computer upon which the source program will be compiled is
described.

Source Program: A problem-solving program written in COBOL.

Special Character: A character that is neither numeric nor alphabetic.
special characters in COBOL include the space (), the period(.), as
well as the following:

+ * / $)

SPECIAL~NAMES: The name of an Environment Division paragraph, and the
paragraph itself, in which names supplied by IBM are related to
mnemonic-names specified by the programmer. In addition, this paragraph
can be used to exchange the functions of the comma and the period, or to
specify a substitution character for the currency sign, in the PIcrURE
string.

IBM American National Standard COBOL Glossary 395

Special Register

SQecial Register: Compiler-generated storage areas primarily used to
store information produced with the use of specific COBOL features. lhe
special registers are: ThLLY, LINE-COUNTER, PAGE-COUNTER, CURRENT-DATE:
TIME-OF-DhY, COM-REG, SORT-RETURN, SORT-FILE-SIZE, SORT-CORE-SIZE,
SORT-MODE-SIZE, and NSTD-REELS.

Standard Data Format: The concept of actual physical or logical record
size in storage. The length in the Standard Data Format is expressed in
the number of bytes a record occupies and not necessarily the number of
characters, since some characters take up one full byte of storage and
others take up less.

statement: A syntactically valid combination of words and symbols
written in the Procedure Division. A statement combines COBOL reserved
words and programmer-defined operands.

Subject of entry: A data-name or reserved word that appears immediately
after a level indicator or level number in a Data Division entry. It
serves to reference the entry.

Subprogram: A COBOL program that is invoked by another COBOL program.
(Programs written in other languages that follow COBOL linkage conven
tions are COBOL programs in tpis sense.)

Subscript: An integer or a variable whose value references a particular
element in a table.

Switch-status Condition:
to an ON or OFF condition.

A statement that an UPSI switch has been set
The statement may be true or false.

SYSIPT: The system input device.

SYSLST: The system output device.

SYSPCH: The system punch device.

SYSPUNCH: An alternate Qame for the system punch device.

System-name: A name, specified by IBM, that identifies any particular
external device used with the computer, and characteristics of files
contained within it.

Table: A collection and arrangement of data in a fixed form for ready
reference. Such a coilection foliows some logical order, expressing
particular values (functions) corresponding to other values (arguments)
by which they are referenced.

Table Element: A data item that belongs to the set of repeated items
comprising a table.

Test Condition: A statement that, taken as a whole, may be either true
or false, depending on the circumstances existing at the time the
express~on is evaluated.

Trailer Label: A record that identifies the ending of a physical file
or of a volume.

U-mode Reoords: Records of undefined length. They may be fixed or
variable 'in length; there is only one record per block.

Unary Operator: An arLthmetic operator C+ or -) that can precede a
single variable, a literal, or a left parenthesis in an arithmetic
expression. The plus sign multiplies the value by +1; the minus sign
multiplies the value by -1.

UNIT: A module of external storage. Its dimensions are determined by
IBM.

396 supplementary Material

V-mode Records

V-mode Records: Records of variable length, each of which is wholly
contained within a block. Blocks may contain more than one record.
Each record contains a record length field, and each block contains a
block length field.

Variable: A data item whose value may be changed during execution of
the object program.

Verb: A COBOL reserved word that expresses an action to be taken by a
COBOL compiler or an object program.

Volume: A module of external storage. For tape devices it is a reel;
for mass storage devices it is a unit.

Volume Switch Procedures: Standard procedures executed automatically
when the end of a unit or reel has been reached before end-of-file has
been reached.

Word:

1. In COBOL: A string of not more than 30 characters, chosen from the
following: the letters A through Z, the digits 0 through 9, and
the hyphen (-). The hyphen may not appear as either the first or
last character.

2. In Systern/360: A fullwora is 4 bytes of storage; a doubleword is 8
bytes of storage; a halfword is 2 bytes of storage.

Word Boundary: Any particular storage position at which data must be
aligned for certain processing operations in System/360. The halfword
boundary must be divisible by 2, the fullword boundary must be divisible
by 4, the doubleword boundary must be divisible by 8.

WORKING~STORAGE SECTION: A section-name (and the section itself) in the
Data Division. The section describes records and noncontiguous data
items that are not part of external files, but are developed and
processed internally. It also defines data items whose values are
assigned in the source program.

IBM American National Standard COBOL Glossary 397

(When more than one page reference is given. the major reference appears first. Entries
ending in "(DOS/vS)" apply only to the DOS/VS COBOL implementation. All other entries
apply both to DOS/VS COBOL and DOS Full American National Standard COBOL.)

Special Characters

[(see braces)
{ (see brackets)

(see pound sign)
• (see period)
••• (see ellipsis)
< in relation conditions 158,159
(and) in

arithmetic expressions 153,154
compound conditions 162-165
PICTURE clause 118-120
subscripting and indexing 289-291

+ (see plus symbol)
$ (see currency symbol, dollar sign)
* in

arithmetic expressions 153,154
intermediate results 333,334

(see also asterisks, used in PICTURE
clause)

** in
arithmetic expressions 153,154
intermediate results 333,334

in Data Division and Procedure Division
entries 109,149

(see also semicolon)
(see either hyphen, or minus symbol)

/ in
arithmetic expressions 153,154
intermediate results 333,334
sterling report items 327-329

, (see comma)
> in relation conditions 158,159

in
COMPUTE statement 182
relation conditions 158,159

• or II in nonnumeric literals 42,37
(see also quotation mark)

A, in PICTURE clause
alphabetic items 120
alphabetic symbol 118
alphanumeric edited items 124
alphanumeric items 120

abbreviations
ADD CORRESPONDING statement 181
compound conditions 164,165
CORRESPONDING option 179
END-OF-PAGE option 213
Identification Division Header 57,46
JUSTIFIED clause 116
MOVE CORRESPONDING statement 198
PICTURE clause 117
relation conditions 164.165

relational operators 158
reserved words 40
SUBTRACT CORRESPONDING statement 185
SYNCHRONIZED clause 130
TYPE clause 267
USAGE clause 136

absolute
column number 269
line spacing in a report 263-265
values in MOVE statement 199

ACCEPT statement 219,220
ACCEPT statement enhancement

(DOS/VS) xxxvi
access methods

direct files 60,61
indexed files 61,62
sequential files 60

ACCESS MODE and VSAM capabilities
(DOS/VS) xiv

ACCESS MODE clause 78
ACCESS MODE clause, VSk~ (DOS/vS) vii,v
acknowledgment 4
actual decimal point

description 119
in editing 124-128

ACTUAL KEY clause
description and format 79-81
READ statement 211,212
REWRITE statement 218,,219
SEEK statement 210
WRITE statement 218

ACTUAL KEY clause for 3340 (DOS/vS) xxxv
ADD statement

description and formats 181,182
addition operator 153~154
addressing schemes

direct 59,60
indexed 60
sequential 59
VSAM (OOS/VS) iv

algebraic value in a sign condition 162
algorithm

ACTUAL KEY example 336
direct indexing 298
intermediate results 333,334
relative indexing 299
slack bytes

computational items 119
inter-record 135,136
intra-record 132-135

alignment of data items
comparisons 159,160
decimal point 119,199
editing 125-128
File Section Items 131
JUSTIFIED clause 116

Index 399

Linkaqe section Items 131
PICTURE clause 119,125-128
SYNCHRONIZED clause 130.131
USING option 229
VALUE clause 143
Working-Storage items 131

ALL literal figurative constant
description 43
MOVE statement 200
relation condition 161
STOP statement 196

alphabetic character 118
alphabetic class test 156
alphabetic collating sequence 244
alphabetic data items

allowable symbols 120
in a class test 156
description 118
internal representation 120,137
JUSTIFIED clause 116
MOVE statement 199,200
relation condition 159-161
USAGE clause 136,137
VALUE clause 143

alphabetized cross-reference listing
(SXREF) 12

alphanumeric character 119
alphanumeric collating sequence 244
alphanumeric data item

allowable symbols 120
class test 156
description 120
internal representation 120,137
JUSTIFIED clause 116
MOVE statement 199,200
relation condition 159-161
USAGE clause 136,137
VALUE clause 143

alphanumeric data item (DOS/VS)
FILE STATUS clause, VSAM viii
RECORD KEY clause, VSAM Vll,Vlll

alphanumeric edited character 124
alphanumeric edited item

allowable symbols 124
description 124
MOVE statement 199,200
relation condition 159-161
USAGE clause 136,137
VALUE clause 143

alphanumeric literals (see nonnumeric
literals)

ALTER statement
and called programs 227
in debug packets 322
description and format 188
effect on GO TO statement 188
segmentation 312
sort procedure 245,246

altering characters 201-205
altering execution sequence 187-197
altering usage of data items 114,115
alternative grouping of data

REDEFINES clause 112-115
RENAMES clause 144-146

AND logical operator
compound conditions 162-165
order of evaluation 163

apostrophe (see quotation mark)

400

APPLY clause
CORE-INDEX option 89
CYL-INDEX option 89
CYL-OVERFLOW option 88
EXTENDED-SEARCH option 87
MASTER-INDEX option 89
WRITE-ONLY option 87
WRITE-VERIFY option 88

APPLY CYL-OVERFLOW clause for 3340
(DOS/VS) xxxv

APPLY WRITE-VERIFY invalid for 3540
(DOS/vS) xxxv

arabic numerals 122,123
Area A and Area B in reference

format 50,51
arithmetic expressions

characters used 153
COMPUTE statement 182
conditions 158
description 153,154
evaluation rules 154

arithmetic operators
description and list 153,39
order of evaluation 153
symbol pairs 154

arithmetic statements
ADD 181,182
COMPUTE 182
CORRESPONDING option 179
DIVIDE 183
GIVING option 179
intermediate results 333,334
MULTIPLY 184
overlapping operands 180
REMAINDER option 183
ROUNDED option 179,180
SIZE ERROR option 180
SUBTRACT 185,186

ascending sequence
ASCII character set 360
EBCDIC character set 159,244
sort 243,244
table handling 293,295,296

ascending sequence, merge
(DOS/vS) xxv, xxvi

ASCII considerations 355-361
ASSIGN clause

ASCII considerations 355,356
description and format 69-75
NSTD-REELS special register 70,45
sort

ASCII considerations 360,361
file in GIVING option 238,239
sort work units 239

system-name 70-75
Version ,3 considerations 72-75

ASSIGN clause (DOS/VS)
merge facility xxii
VSAM files v,vi
3340 and 3540 devices xxxiv

assumed
decimal point

description 119
numeric edited items 124
numeric items 122,123
sterling nonreport items 325,326

decimal scaling positions 119,122-124
pound and shilling separators 325

asterisk
arithmetic expressions 153,154
comments 52,234
PICTURE clause

check protect symbol 120
numeric edited items 124,128
sterling report items 327-329

AT END phrase
READ statement 211,212
RETURN statement 248
SEk~CH statement 301-305

AUTHOR paragraph 57
automatic

advancing of printer page 214
end-of-volume 212
error procedures 175,178
label handling 171,105

B, in PICTURE clause
alphanumeric edited items 124
numeric edited items 124
space symbol 118
sterling report items 327-329

BASIS card 316
BEFORE REPORTING declarative 276,277
binary collating sequence 244
binary data item

in PICTURE clause 118
description 138,139
internal representation 140
MOVE statement 200
relation condition 161
SYNCHRONIZED clause 130,131
USAGE clause 136,138-140

blank (see space)
BLANK clause (see BLANK WHEN ZERO clause)
blank figurative constant (see SPACE
figurative constant)

blank line
definition and use 52
for spacing reports 265,266

blank (space) as word separator 40
BLANK WHEN ZERO clause

description and format 115
with sterling report items 329

BLOCK CONTAINS clause
ASCII considerations 356
description and format 100,101

BLOCK CONTAINS clause (DOS/VS)
for 3540 xxxv
VSAM ix

block-descriptor control field 103,104
block size 100,101
blocked records

APPLY WRITE-ONLY clause 87
BLOCK CONTAINS clause 100,101
inter-record slack bytes 135,136
recording mode 103,104

body print group 258-260
boundary alignment 131-136,138
braces and brackets in formats 53
British Standards Institution (BSI) 324
buffer

allocation 77
ASCII considerations 356
combined function processing 381
truncation 87

buffer allocation VSAM (DOS/VS) vi
bypassing label processing

LABEL RECORDS clause 105,106
MULTIPLE FILE TAPE clause 86,87

byte, contents of
alphabetic and alphanumeric items

137,140

137
binary item 138,140
external decimal items
external floating-point
internal decimal items
internal floating-point

items 137,141
139,141
items 138,141

C, in sterling PICTURE 327-329
CALL statement

boundary alignment in 229
description and format 226,227
limitations with segmentation 312
USING option 228-231

CALL statement for 3886 OCR processing
(DOS/VS) xxviii

capitalized words in formats 53
carriage control character

definition 68
System/370 card devices

combined function processing 383,384
WRITE statement 216,217

WRITE statement 212-216
categories of data (see PICTURE clause)
changing description of data
items 112-115,144-146

character set
arithmetic expressions 153,39
ASCII 360
COBOL 37
EBCDIC 37
editing 39
punctuation 38
relation-conditions 158,39
words 37

character string
and item size 118
NOTE statement 233,234
PICTURE clause 117-121
truncation 116

check protect symbol (see asterisk)
checkpoint

description and format 84,85
sort considerations 240

class test 156
classes of data 117
CLOSE statement

description and format 221-225
OPEN REVERSED statement 207
random file options 224,225
sequential file options 222-224

CLOSE statement (DOS/VS)
VSAM xx,xxi
3540 device xxxvi

CODE clause 256,257,66,67
description and format 256,257
SPECIAL-NAMES paragraph 66,67

coding form, COBOL 50
collating sequence

ASCII 360
EBCDIC 159,244
for sort 244

Index 401

COLUMN clause 269
combined function processing 379-384
combined function processing, 5425

(DOS/VS) xxxvi
comma, exchanging with period

international considerations 330
SPECIAL-NAMES paragraph 66,67

comma
in editing 124-128
PICTURE string 119,121
as punctuation 38

comment-entry
asterisk preceding 52,233,234
DATE-COMPILED paragraph 58
Identification Division 57,58
NOTE statement 233,234

comment lines
in every division 234,52
in Procedure Division 233,234

common exit point for procedures
and PERFORM statement 190
in program 196,197

common processing facilities, VSAM (DOS/VS)
current record pointer x
INTO/FROM identifier option xi
INVALID KEY condition xi
status key x

communication
operating system

sort special registers 249
system special registers 44,45

operator
ACCEPT statement 219,220
ASSIGN clause 69
STOP statement 196

sort feature 249
subprogram 226-232

COMP items (see binary data items)
COMP-l items (see short precision internal
floating-point items)

COMP-2 items (see long precision internal
floating-point data items)

COMP-3 items (see internal decimal items)
COMP-4 items (see binary data items)
comparison

index data items 300,301
index-names 300,301
operands 158
in relation conditions 161

compilation of
copied text 313-315
debugging packet 322

compile-time debugging packet 322
compiler directing statements

BASIS 316
COpy 313-315
DEBUG 322
description 152
DELETE 316,317
EJECT 323
ENTER 233
INSERT 316,317
list of 152
NOTE 233,234
SKIP 323

compiler options
current-date 44
quotation mark 37

402

sequence checking 50
truncation of binary items 118

compound conditions
description 162-165
evaluation rules 163
implied subjects and
relational-operators 164,165

logical operators 162
permissible symbol pairs 164
SEARCH statement 305

COMPUTATIONAL items (see binary data items)
COMPUTATIONAL usage

descriptions and format 138,136
internal representation 140

COMPUTATIONAL-1 items (see short precision
internal floating-point items)

COMPUTATIONAL-l and COMPUTATIONAL-2 usage
descriptions and format 138,136
internal representation 141

COMPUTATIONAL-2 items (see long precision
internal floating-point data items)

COMPUTATIONAL-3 items (see internal decimal
items)

COMPUTATIONAL-3 usage
description and format
internal representation

COMPUTATIONAL-4 items (see
items)

COMPUTATIONAL-4 usage
description and format
internal representation

COMPUTE statement 182
computer-name

139,136
141

binary data

139,136
140

OBJECT-COMPUTER paragraph 65
SOURCE-COMPUTER paragraph 64
System/370 instructions 65

computer-name (DOS/VS) ii-iv
COM-REG special register 44
condition-name (see level number 88 items)
condition-name condition

description and format 157
and SEARCH statement 305

conditional sentence, definition 166
conditional statement

definition 166,150
IF statement 166-168
list of 151
ON statement 320,321

conditional variable
assigning values to 142-144
condition-name condition 157
example 144
qualification of 48,49

conditions
compound conditions 162-165
PERFORM statement

descriptions 191-195
formats 189

SEARCH statement 301-305
test conditions 155-162

Configuration Section
copying 313-315
description and format 64-67
OBJECT-COMPUTER paragraph 65
SOURCE-COMPUTER paragraph 64
SPECIAL-NAMES paragraph 65-67
and System/370 instruction
generation 65

Configuration section (DOS/vS)
description and format ii-iv
OBJECT-COMPUTER paragraph ii-iv
SOURCE-COMPUTER paragraph 11

System/370 instruction generation ii-iv
CONSOLE

ACCEPT statement 219,220
DISPLAY statement 220,221
SPECIAL-NAMES paragraph 66

constant
definition 41
figurative 43
literal 41

continuation area
comment lines 52,234
reference format 50

continuation line 51
continuation of

ACCEPT operands 219,220
comments 52,234
DISPLAY operands 220,221
lines 51
nonnumeric literals 52
NOTE statement 233,234
numeric literals 52
words 52

continued line 51
control breaks (see CONTROL clause)
control bytes

BLOCK CONTAINS clause 101
inter-record slack bytes 135,136
S-mode and V-mode records 103

CONTROL clause 257,258
control hierarchy 257,258
control of sort procedures 245-247
CONTROL report group

CONTROL clause 257,258
GENERATE statement 273,274
LINE clause 263-265
NEXT GROUP clause 265,266
PAGE LIMIT clause 258-260
report group description entry 261-263
summation 212,273
TYPE clause 267-269

controls in report writer (see CONTROL
clause)

conversion of data (see data conversion)
COpy statement 313-315
copying

entire program 316,311
part of a program 313-315

CORE-INDEX option of the APPLY clause 89
core storage for sort

SAME clause 240,241
SORT-CORE-SIZE special register 249

CORRESPONDING option
arithmetic statements

ADD 181
description 119
SUBTRACT 185,186

MOVE statement 198,119
counter updating 272,213
CR, in PICTURE clause

description 120,121
numeric edited items 124,128
sterling report items 327-329

creating files
direct 60,61

indexed 61,62
sample programs 336-338
standard sequential 60
(see also output files)

creating labels 110-115
credit symbol (see CR in PICTURE clause)
cross-footing 272
CSP function-name defined 66
CURRENCY-SIGN clause

description and format 66,61
international considerations 330
restriction 61

currency symbol in PICTURE clause
(see also Cl~RENCY SIGN clause)
dollar sign

description 120,121
numeric edited items 124-128

pound sign 327-329
CURRENT-DATE special register 44
current record pointer, VSAM (DOS/VS) ix
cylinder overflow 88
CYL-INDEX option, APPLY clause 89
CYL-OVERFLOW option, APPLY clause 88
COl through C12 function-names defined 66

D, in sterling PICTURE clause 325-329
·data, categories of (see PICTURE clause)
data conversion

DISPLAY statement 220.221
EXAMINE statement 201,202
first character of program-name 58
GIVING option 119
MOVE statement 199
TRANSFORM statement 203-205

data description clauses
BLANK WHEN ZERO 115
data-name 111
FILLER 111
JUSTIFIED 116
OCCURS 292-299
PICTURE 116-128
REDEFINES 112-115
RENAMES 144-146
SYNCHRONIZED 130,131
USAGE 136-141
VALUE 142-144

data description entry
(see also "data description clauses")
ASCII considerations 351
definition 108
general formats 108,109
indentation 97
maximum length 108

data description entry·w VSAM (DOS/VS) ix
data description terms 108
Data Division

ASCII considerations 357
description 91-146
organization 94
report writer considerations

File Section 254,255
Report Section 256-273

sort considerations 241,242
structure 94
table handling considerations 292-299

Data Division, VSAM (DOS/VS) ix

Index 403

data item
assigning a value to 142-144
definition 108
maximum length 108
overlapping

arithmetic statements 180
MOVE statement 199
TRANSFORM statement 203

data item alignment (see ~alignment of data
items")

data item description entry
description 108
Linkage Section 98,99
Working-Storage section 98

data management techniques 59-62
data manipulation statements

EXAMINE 201,202
MOVE 198-200
TRANSFORM 203-205

data-name
definition 41
qualification of 48,49
in reference format 51

data-name clause 111
data organization

direct 59-60
indexed 60
sequential 59
specification of 71-75

data organization, VSAM (DOS/VS) iv
DATA RECORDS clause

description and format 106,107
report writer considerations 255
sort considerations 241,242

DATA RECORDS clause, VSAM (DOS/vS) ix
data reference methods 48,49
data sets for symbolic debugging 364,365
data transformation 203-205
DATE-COMPILED paragraph 58
DATE-WRITTEN paragraph 57
DB, in PICTURE clause

description 120,121
numeric edited items 124-128
sterling report items 327-329

debit symbol (see DB, in PICTURE clause)
DEBUG card 322
debugging, symbolic 363-377
debugging language

output 318
packet 322
statements

DEBUG card 322
EXHIBIT 318-320
ON 320,321
READY/RESET TRACE 318

decimal point (see period., used in a
PICTURE clause)

decimal point alignment
MOVE statement 199
period insertion character 119~124
rounding 179,180
size error 180

DECIMAL-POINT IS COMMA clause
description and format 66,67
international considerations 330

declaratives

,. "'I ~v~

error processing
EXIT statement in

175-178
177,178

label handling 170-175
report writer 276,277
section

description and format 169,150
USE sentence 169

defaults
ACCESS MODE clause 78
APPLY CYL/MASTER-INDEX clause 89
BLOCK CONTAINS clause 101
cylinder overflow area 88
name-field in system-name 71
page format in Report Writer 260
printer spacing 214
priority number 311
quotation mark character 37
record sizes in DISPLAY 220
recording mode 103,104
segment limit 311
sequence checking 50
truncation of binary items 118
USAGE clause 137

definitions of terms 385-397
DELETE card for copying 316-317
DELETE statement, VSAM (DOS/VS)

description and format xx, xxi
processing capabilities xiv

DEPENDING ON option
GO TO statement

description and format 187
maximum number of operands 187

OCCURS clause
description and formats 292-299
logical record size
considerations 102,103

slack bytes 133-135
SYNCHRONIZED clause 133-135
VALUE clause 142

depth of a report page 258-260
descending sequence

in sort 243,244
in table handling 295,296

descending sequence in merge
(DOS/vS) xxv, xxvi

DETAIL report group
description 261-263
GENERATE statement 273.274
LINE clause 263-265
NEXT GROUP clause 265,266
SUM counters 272,273
TYPE clause 267-269

detail reporting 273,274
device type specification 70
DFR OCR macro instruction (DOS-VS) xxvij
difference (in subtraction) 185.,186
direct access device (see mass storage

device)
direct data organization 59,60
direct files

accessing techniques 60,61
ACTUAL KEY clause 79-81
APPLY EXTENDED-SEARCH clause 87
ASSIGN clause 69-72
BLOCK CONTAINS clause 100,,101
error processing 175-178
initiating access 206-208
invalid key condition

READ statement 211.212
REWRITE statement 218,219

WRITE statement 213,217,218
random access 78,61
READ statement 211,212
recording mode 103,104
REWRITE statement 218,219
sequential access 78,60
user labels

description 105,106
processing 170,171

WRITE statement
description 217,218
format 213

direct indexing 298,290
DISPLAY statement 220,221
DISPLAY usage

alignment 131
alphabetic items 137
alphanumeric items 137
ASCII considerations 357
description 136,137
edited items 137
numeric items 137
SYNCHRONIZED clause 131

DISPLAY-ST usage 325-329
DIVIDE statement 183
division, arithmetic operation 183
division by zero 183,180
division header 51
division operator 153,154
division of a program, definition 46
DLINT OCR macro instruction

(DOS/VS) xxvJ...J...J...
dollar sign (see currency symbol, dollar

sign)
DOS/VS COBOL features (DOS/vS)

FIPS flagger XXV111-XXXlll
merge facility xxi-xxvii
miscellaneous

considerations xxxiv-xxxvi
OBJECT-COMPUTER paragraph ii-iv
VSAM file processing iv-xxi
WHEN-COMPILED special register i
3886 OCR processing xxvii,xxviii

DOS/vS miscellaneous considerations
(DOS/VS)

ACTUAL KEY clause for 3340 xxxv
APPLY CYL-OVERFLOW clause for 3340 xxxv
APPLY WRITE-VERIFY invalid for

3540 xxxv
ASSIGN clause for 3340, 3540 xxxiv
BLOCK CONTAINS clause for 3540 xxxv
CLOSE statement for 3540 xxxvi
ERROR declaratives GIVING option for

3540 xxxv
file processing summary xxxiv
OPEN statement for 3540 xxxv
sort input/output files xxxvi
WRITE statement for 3540 xxxvi

double spacing
printer page 214,215
source program listing 323

doubleword
floating-point items 138
SYNCHRONIZED clause 131
USING operands 229

dummy files 69
duplication of names 48,49

E, in
external floating-point
items 118,121-123

floating-point numeric literals 41
EBCDIC collating sequence (Extended Binary

Coded Decimal Interchange Code) 159,244
editing

insertion
fixed 126
floating 127
simple 125
special 125

replacement 128.
sign control symbols

description 119-121,126
in fixed insertion editing 126
in floating insertion editing 127
in sterling report items 327-329

symbols
in alphanumeric edited items 124
in arithmetic statements 179
description 119-121
in numeric edited items 124
in SUM counter description 272

zero suppression 128
editing character

description 119-121
insertion

fixed 126
floating 127
simple 125
special 125

zero suppression and replacement 128
EJECT statement 323
elementary item

(see also data description clauses)
description 95,96
renaming 144-146
slack bytes 132-135
SYNCHRONIZED clause 130,131

ellipsis (•••) in formats 54
ELSE option

IF statement 166-168
nested IF statements 167,168
ON statement 320,321

END DECLARATIVES. 169,150
end of file

when reading 212
when sorting 248

end of page condition 213.215
end of volume positioning 222-224
ENTER statement 233
entry point 226-228
ENTRY statement 227.228
Environment Division

ASCII considerations 355,356
Configuration Section

OBJECT-COMPUTER paragraph 65
SOURCE-COMPUTER paragraph 64
SPECIAL-NAMES paragraph 65-67

Input-Output Section
FILE-CONTROL paragraph 68-83
1-0 CONTROL paragraph 84-89

international considerations 330
organization 63
segmentation considerations 311,65
sort considerations 238-241

Index 405

System/370 card devices 379-381
System/370 instructions 65

Environment Division, VSAM (DOS/VS) v-ix
equal sign (=)

in COMPUTE statement 182
in relation condition 158

equal size operands in a relation
condition 160

equivalents
reserved words and abbreviations 40
THROUGH and THRU 40

error bytes 176,178
error conditions, arithmetic operations

(see arithmetic statements, SIZE ERROR
option)

ERROR procedure, VSAM (DOS/VS)
(see EXCEPTION/ERROR procedure, VSAM)

error processing declaratives
and ACTUAL KEY 79
description and format 175-178
and Linkage section 177
with sort 245,246
table of capabilities 178

error processing declaratives (DOS/vS)
GIVING option for 3540 xxxv
VSAM file processing xii, xiii

evaluation rules
arithmetic expressions 153
compound conditions 163-165
IF statements 166-168

EXAMINE statement
description and formats 201,202
with sterling items 330

EXCEPTION/ERROR procedure, VSAM (DOS/VS)
CLOSE statement xxi
description and format xii,xiii
OPEN statement xv
READ statement xvii
WRITE statement xviii

execution, order of 150
EXHIBIT statement 318-320
exit point for procedures

error processing 176
EXIT statement 196 , 197
label handling 171
PERFORM statement 190
sort input/output procedures 245-249

EXIT PROGRAM statement
description and format 232,231
symbolic debugging 365

EXIT statement
description and format 196,197
PERFORM statement 190
PROGRAM option 232,231
with sort procedures 248,249,

explanatory comments
in every division 52,234
in Procedure Division 233,234

exponent
floating-point items 137,138
floating-point numeric literals 41

exponentiation operation 153,154
Extended Binary Coded Decimal Interchange

Code (EBCDIC)

406

collating sequence 159,244
nonnumeric literals 41

extended search
for direct files 87
when reading 212

EXTENDED-SEARCH option of the APPLY
clause 87

extended source program library
facility 316,317

external data 93
external decimal items

class test 156
collating sequence for sort 244
description 137
internal representation 140
MOVE statement 200
relation condition 161
USAGE clause

description 137,140
format 136

external floating-point items
collating sequence 244
description 137
internal representation 141
MOVE statement 200
relation condition 161
USAGE clause

description and format 137,136
internal representation 141

VALUE clause 143
external-name in ASSIGN clause 71

F-mode records
description 103,104
and OPEN REVERSED 207
recording mode 103,104
report print line 255
in sort 241
specification 104

FD (see file description entry)
figurative constants

description 43
EXAMINE statement 201,202
MOVE statement 200
relation condition 161
TRANSFORM statement 203-205
VALUE clause' 142

file
definition 93
disposition of

CLOSE statement 221-225
OPEN statement 206-208

FILE-CONTROL paragraph 68-83
file description entry 100-107
inter-record slack bytes 135,136
I-O-CONTROL paragraph 84-89

FILE-CONTROL paragraph
ACCESS MODE clause 78
ACTUAL KEY clause 79-81
ASSIGN clause

description and format 69-75
for sort 238~239

copying 313-315
FILE-LIMIT clause 77,78
format 68
NOMINAL KEY clause 82
PROCESSING MODE clause 78,79
RECORD KEY clause 83

RESERVE clause 77,238
SELECT clause

description and format 69
for sort 238,239

sort considerations 238,239
TRACK-AREA clause 83

FILE-CONTROL paragraph (DOS/VS)
merge facility XXll
VSAH files v-viii
3340 and 3540 devices xxiv,xxv

file description entry
BLOCK CONTAINS clause 100,101
description and format 100,97
DATA RECORDS clause

description and format 106,107
report writer 255

LABEL RECORDS clause 105,106
RECORD CONTAINS clause

description and format 102,103
report writer 255

RECORDING MODE clause 104,255
REPORT clause 254,255
report writer 254,255
sort 241,242
VALUE OF clause 106

file description entry, VSAM (DOS/VS) ix
file information area for OCR

(DOS/VS) XXVlll
FILE-LIMIT clause 77,78
file-name, definition 41
file processing technique

general description 59-62
input/output errors 175-178
sample programs 33,34,336-340
statements and clauses 352-354
summary 59-62,352-354

file processing technique (DOS/VS)
System/370 device summary xxxiv
VSAM summary xiv

File section
ASCII considerations 356,357
boundary alignment 131
content 97,100-107
copying 313-315
file description entry 97,100-107
format 97,100
naming data 111
record description entry 108,109,97
report writer considerations 254,255
sort considerations 241,242

file size for sort 249
FILE STATUS clause, VSAM (DOS/vS) V,Vlll
files sharing same storage area 85,86
FILLER

CORRESPONDING option 179
inter-record slack bytes 135,136
record description entry 111,108

FINAL control
CONTROL clause 257,258
TYPE clause 267-269

final phase of sort 248
FIPS flagger description

(DOS/VS) xxviii-xxxiii
fixed insertion editing 126
fixed length record format (see F mode
records)

fixed point numeric item 122
fixed point numeric literal 42

fixed portion of a segmented
program 309,311

floating insertion editing 127
floating-point data items (see external and
internal floating-point items)

floating-point numeric literal
description 42
MOVE statement 200

flowchart
nested IF statement 168
PERFORM statements

varying one identifier 193
varying three identifiers 195
varying two identifiers 194

SEARCH statement 304
footing report groups

CONTROL clause 257,258
GENERATE statement 274
NEXT GROUP clause 266
PAGE LIMIT clause 259,260
report group description 261
SUM clause 272,273
TYPE clause 267-269

form overflow (see end of page condition)
format

DISPLAY statement output 220,221
EXHIBIT statement output 318-320
logical records 95,96
reference 50-52
report page 252-254

format control of the source program
listing 323

format F records (see F-mode records)
format notation 53,54
format S records (see S-mode records)
format summary 341-350
format U records (see U-mode records)
format V records (see V-mode records)
fractions, internal floating-point
items 138,141

FROM identifier option, VSAM (DOS/VS)
description x,xi
REWRITE statement xi
WRITE statement xvii,xi

full FIPS flagging (DOS/VS) xxix-xxxi
full word

binary item 138
slack bytes 132
SYNCHRONIZED clause 131

function-name
CODE clause

description and format 256,257
in SPECIAL-NAMES 66,67

description 66,67,41
in SPECIAL-NAMES paragraph 66.67
in switch-status condition 162,66,67
System/370 card devices 379,380
in WRITE statement 214-217,66

GENERATE statement 273,274.,253
generic key

specification 208,209
GIVING option

arithmetic statements
ADD 181
description 179

Index 407

DIVIDE 183
MULTIPLY 184
SUBTRACT 185

error handling declarative 175-178
SELECT sentence format 238
SORT statement

description 247,243
GIVING option (DOS/VS)

merge statement xxvi
3540 error processing xxxv, xxxvi

glossary 385-397
GO TO MORE-LABELS 171,172
GO TO statement

ALTER statement 188
CALL statement 227
debug packet 322
description and formats 187,188
error processing procedures 177
IF statement 166
label handling procedures 171,172
PERFORM statement 190
segmentation 312
sort procedure 245,246

GO BACK statement
description and format 232,231
symbolic debugging 365

group
collating sequence for sort 244
contents 95,96
report 261-263

GROUP INDICATE clause 270~273
group item

description 95,96
MOVE statement 200,199
OCCURS clause 294
relation condition 161
renaming 144-146,112-115
report 261-263
slack bytes 132-136
USAGE clause 136
VALUE clause 143,144

halfword
binary item 138,140
slack bytes 132
SYNCHRONIZED clause 131

halting execution
STOP RUN 196
subprograms linkage 231,232

header labels
description 105
nonstandard 105,170
standard 105,170
user 105,170

heading report groups
CONTROL clause 257,258
GENERATE statement 274
NEXT GROUP clause 266
PAGE LIMIT clause 259,260
report group description 261
SUM clause 272,273
TYPE clause 267-269

hierarchy

408

arithmetic expressions 153
controls in report writer 268,257
qualification 48,49

relations 163
structure of a record 95,96

high-intermediate FIPS flagging
(DOS/VS) xxxi, xxxii

HIGH-VALUE (HIGH-VALUES) figurative
constant

description 43
MOVE statement 200
permissible comparisons 161
RECORD KEY 83
TRANSFORM statement 203-205

hyphen
(see also minus symbol)
collating sequence 159,244
continuing lines 52
program-names 58
words 37

1-0 files
CLOSE options 222-225
error handling 175-178
label handling 170-171
OPEN statement 206-208
REWRITE statement 218,219
WRITE statement 213,217,218

I-O-CONTROL entry (DOS/VS)
merge facility xxii, xxiii
VSAM files viii,ix
3340 and 3540 devices xxxv

I-O-CONTROL paragraph
APPLY clause 87-89
copying 313-315
description and formats 84-89
MULTIPLE FILE TAPE clause 86,87
purpose 84
RERUN clause 84,85
SAME clause 85,86
sort considerations 239-241

IBM sterling representation 324
ID Division header 57,46
Identification Division

comment-entry in 57,58
DATE-COMPILED paragraph 58
header 57,46
PROGRAM-ID paragraph 57,58
structure of 57

identifier, definition 48
identifying records

da ta -name 111
indexing 290~291
qualification 48,49
reports 261
subscripting 289,290

IF statement
description and format 166-168
nested 167,168

IGN parameter of ASSGN job control
statement 69

imperative statements
arithmetic 179-186
data-manipulation 198-205
declarative 169-178,276,277
definition 150
input/output 206-225
procedure branching 187-197
report writer 273-276

sort 242-249
table handling 301-306

implied subjects and
relational-operators 164,165

IN qualifier connective
indexes 291
names 48
subscripts 290

incrementing
index-name values 306,299
LINE-COUNTER special register 278
PAGE-COUNTER special register 277
SUM counters 272,273

indentation of level numbers 97
independent segment 309-312
index data it-em

MOVE statement 198
relation condition 300,301,161
USAGE clause description 299,300

index-name
description 297,41
modifying values in 306,299
MOVE statement 198
OCCURS clause 293,296-299
PERFORM statement 189,191,192
relation condition 300,301,161
SEARCH statement 301-305
SET statement 306
subprogram linkage and 236,229
value in 297-299

INDEX option of the USAGE clause (see index
data item)

INDEXED BY option of the OCCURS clause (see
index-name)

indexed data organization 60
indexed files

access techniques 61,62
APPLY clause 88,89
ASSIGN clause 69-71
blocking factor 101
error processing 175-178
index in core 89
initiating processing 206-209
invalid key condition

READ 211,212
REWRITE 218,219
START 208,209
WRITE 213,217,218

LABEL RECORD clause 105
NOMINAL KEY clause 82
OPEN statement 206-208
overflow areas 88
READ statement 211,212
RECORD KEY clause 83
recording mode 104
restrictions on processing of 208,61
REWRITE statement 218,219
START statement 208,209
VSAM (see VSAM file processing)
WRITE statement 213,217~218

indexes used with qualifiers 290,291
indexing tables

description 290,291
direct 298,.290
INDEXED BY option 296-299
relative 299,291

initializing
index values 306,191

report writer special registers 275
sort special registers 249
values of data items 142

INITIATE statement 275,253
initiating

access to a mass storage file 208-210
file processing 206-208
report processing 275

input files
APPLY EXTENDED-SEARCH 87
effect of close options 222-225
error handling 175-178
inter-record slack bytes 135,136
intra-record slack bytes 132-135
label handling 170-172
OPEN statement 206-208
READ statement 211,212
record size 102

input format for source programs 50-52
input/output areas (buffers) 77
input/output error (see error processing
declaratives,. invalid key condition)

Input-Output Section
copying 313-315
description and format 68
File-Control paragraph 68-83
I-O-Control paragraph 84-89
sort considerations 238-241

Input-Output Section (DOS/VS)
merge facility xxii, xxiii
sort feature xxxvi
VSAM files v-ix
3340,3540 considerations xxxiv.xxxv

input/output statements
ACCEPT 219,220
CLOSE 221-225
DISPLAY 220,221
OPEN 206-208
READ 211,212
REWRITE 218,219
SEEK 210
START 208,209
WRITE 212-218

input/output statements, VSAM (DOS/VS)
CLOSE xxi
DELETE xx, xxi
OPEN xiii-xv
READ xvi,xvl.l.
REWRITE xix,xx
START xv
WRITE xVl.l.-xix

input phase of merge (DOS/VS) xxv, xxvi
input phase of sort 245-248
input phase of sort (DOS/VS) xxxvi
INSERT card for copying 316,317
insertion

asterisks 128,120
commas 125,119
currency symbol 126,120
periods 125,119
sign control symbols 126,120
spaces

single insertion 125
symbols 118,119
zero suppression 128

zeros 125 .. 119
insertion character, and item size 118-120

Index 409

insertion editing
fixed 126
floating 127
simple 125
special 125

INSTALLATION paragraph 57
integer, description 42
integer literals (see fixed-point numeric
literals)

inter-record slack bytes 135,136
intermediate results

arithmetic statements 333,334
compound conditions 163,164

internal data 98
internal decimal items

allowable characters 139
class test 156
collating sequence 243,244
description 139
internal representation 141
MOVE statement 200
relation condition 161
SYNCHRONIZED clause 131
USAGE clause

description and format 139~136
internal representation 141

internal floating-point items
collating sequence 244
description 138
internal representation 141
MOVE statement 200
relation condition 161
USAGE clause

description and format 138,136
internal representation 141

internal representation
alphabetic and alphanumeric items 137
external decimal items 137,140
numeric items 140,141
sterling items 324

international currency
considerations 330,65-67

INTO/FROM identifier option, VSAM (DOS/VS)
description xi
READ statement xi ,.xvi
REWRITE statement xi
WRITE statement xi,xviii

intra-record slack bytes 132-135
INVALID KEY condition

READ 211,212
REWRITE 218,219
SEEK 210
START 208,209
WRITE 213,217,218

INVALID KEY condition, VSAM (DOS/VS)
DELETE statement xx.xi
description xi
READ statement xv~~,xi
REWRITE statement xx,xi
START statement xv,xi
WRITE statement xviii,xix,x

INVALID KEY option (see invalid key
condition)

justification
and JUSTIFIED clause 116
and MOVE statement 199

JUSTIFIED clause 116

"1 f\LV

KEY clauses
ACTUAL 79-81
NOMINAL 82
RECORD 83
RECORD, VSAM (DOS/VS) vii,viii

KEY option
MERGE statement CDOS/VS} xxv, xxvi
OCCURS clause 295,296
SEARCH ALL statement 302,305
SORT statement 243,244
START statement 208,209

key words
description 40
format notation 53

keys
for MERGE statement (DOS/VS) xxv, xxvi
for SORT statement 243,244
for START statement 208,209
for START statement (DOS/VS) xv
for table SEARCH

KEY option 295,296
SEARCH ALL statement 305,302

label handling
ASCII considerations 356
CLOSE options 222-225
declarative 170-175
LABEL RECORDS clause 105,106
multivolume files 223
OPEN statement 206-208
sample program 172-175
for sort 241,242
USE sentence 170,171
writing 217

LABEL RECORDS clause
ASCII considerations 356
description and format 105,106
label procedures 170.171

LABEL RECORDS clause (DOS/VS)
VSAM ix
3540 xxxv

leading zeros, suppression 127,128
left justification 116
length

binary items 138
BLOCK CONTAINS clause 100,101
data-name in APPLY CORE-INDEX 89
external decimal items 137
external floating-point items 122,123
internal decimal items 139
internal floating-point items 138
RECORD CONTAINS clause 102,103
and standard data format 102

level indicator
file description entry 97,100
reference format 51
report writer feature 254,256
sort feature 241
summary of 95

level number
data description entry 111,108-110
indentation of 97
reference format 51
special 108-110
summary of 96,97
use 95-97

level number 01 items
boundary alignment 131,229
CALL statement 229
copying 313-315
description 96
File Section

data description 108,109
REDEFINES restriction 112
word boundary 131

Linkage Section
data description 108,109
description 98,99
subprogram linkage 229
word boundary 131,132

reference format 51
Report Section 261-263,265-269
SYNCHRONIZED clause 130.131
Working-Storage Section 108,109,131

level number 02-49 items
data description clauses 108,109
description 95,96
indentation 97
reference format 51
Report Section 261-263
slack bytes 132-135
SYNCHRONIZED clause 130
Working-Storage section 108,109,98

level number 66 items
description 96,109
format 108
indentation 97
RENAMES clause 144-146
restrictions 109
rules for use 109

level number 77 items
called subprograms 229
copying 313-315
description 96
Linkage section

description 99
subprogram linkage 229
word boundary 131

reference format 51
use 96,108,109
VALUE clause 142,143
Working-Storage section 98,108,109

level number 88 items
condition-name condition 157
description and format 109,110,91
indentation 97
rules for use 109,110
VALUE clause 142-144

library facility (see source program
library facility)

library-name 313-315,41
LINE clause 263-265
line-control cards 364,365
LINE-COUNTER special register

description 218
GENERATE statement 214
INITIATE statement 215

lines in a report 258-260,263-266
lines, spacing of

program output 213-211
report 263-266
source program 323~52

Linkage Section
boundary alignment 130,131,229

content 98,99
copying 313-315
data item description entry 108,109
error declarative 111
format 99
intra-record slack bytes 132-135
record description entry 108,109
structure 94
use of FILLER 111
USING option of the CALL statement 229
VALUE clause 142

Linkage Section and OCR processing
(DOS/vS) xxviii

liT~age statements for subprograms (see
subprogram linkage statements)

list of compiler features
DOS/VS COBOL 11
Version 3 COBOL 11-13

lister facility (DOS/VS) 11
literal

CODE clause 256,257
description 41,42
as a function-name 66,61
MOVE statement 200
nonnumeric 42
numeric 42
permissible comparisons 161
VALUE clause 142-144

location of slack bytes 132-136
logical connectives in compound
conditions 162-165~40

logical operators 162,40
logical record

description 93
redefining

description 112-115
File Section restriction 112

renaming 144-146
size of 102
slack bytes in 132-136

long-precision internal floating point
items (see internal floating-point items)

low FIPS flagging (DOS/VS) xxxii. xxxiii
low-intermediate FIPS flagging

(DOS/VS) xxxii
LOW-VALUE (LOW-VALUES) figurative constant

in ACTUAL KEY clause 80
description 43
MOVE statement 200
track identifi~r 80
TRANSFORM 203-205

lowercase letters in ACCEPT (DOS/VS) xxxvi
lower-case words in formats 53

magnetic tape (see tape)
magnitude of floating-point items 137
main program, description 226,,221
major control break 251,258
mantissa

description 131,138
internal representation 141
PICTURE clause 123

mass storage devices
DOS/VS information

(DOS/VS) iv, xxxiv-xxxvi

Index 411

error information 176,178
list of 70,72

mass storage files
(see also VSAM file processing (DOS/VS»
CLOSE statement 221-225
OPEN statement 206-208
READ statement 211,212
REWRITE statement 218,219
SEEK statement 210
START statement 208,209
WRITE statement 213,217,218

maximum length
arithmetic operands 181-184,186
binary items 138
data description entries 108
external decimal items 137,122
floating-point items 122,123,137
internal decimal items 138,122
items in EXHIBIT statement 318-320
keys in

sort 244
table handling 295

numeric edited items 124
PICTURE character string 117
record

CONSOLE 220
data 108
SYSLST 220
SYSPCH/SYSPUNCH 220

tables 293
maximum length, keys in merge (DOS/VS) xxv
maximum number

index-names 296
keys

sort 244
table handling 295

procedure-names in GO TO statement 187
maximum number, keys in merge (DOS/VS) xxv
maximum size (see maximum length)
maximum value

ACTUAL KEY track identifier 80
binary item and PICTURE clause 118,138
floating-point items 137,42
NSTD-REELS special register 45
ON statement integer 321
RERUN clause integer 85
RESERVE clause integer 77
subscript 289

MEMORY SIZE clause 65
merge feature (DOS/VS)

FILE-CONTROL entry
ASSIGN clause xxii
SELECT clause xxii

I-O-CONTROL entry xx~~,xx~~~

input/output files valid xxii
MERGE statement

ASCENDING/DESCENDING KEY
option xxv, xxvi

file-names in xxv, xxvi
format xxv
GIVING option xxvi
OUTPUT PROCEDURE option xxvi,xxv~~
segmentation restrictions xxvii
USING option xxvi

SAME clause xxii, xxiii
SO entry xxiv

methods of data reference 48,49

412

MFCU (multifunction card unit) support
(DOS/vS) xxxiv,xxxvi,ll

minimum value
floating-point items 137,42
subscript 289

minor control break 268~257,258
minus symbol

(see also hyphen)
arithmetic expressions 153,154,39
collating sequence 159,244
external floating-point literals 42
indexing 299,290,291
PICTURE clause

description 120,121
external floating-point
items 137,123

numeric edited items 124-128
sterling items 325-329

SIGN clause 129,130
as unary operator 153,154

miscellaneous considerations
(DOS/VS) xxxiv-xxxvi

mnemonic-name
ACCEPT statement 219,220
assignment of 66,67
CODE clause 256,257
DISPLAY statement 220
SPECIAL-NAMES paragraph 66,67
WRITE statement 213-216

mode F records (see F-mode records)
mode U records (see U-mode records)
mode V records (see V-mode records)
modification

library text
DELETB and INSERT cards 316,317

sort records
after sorting 246,241
before sorting 245

MOVE statement
CORRESPONDING option 198,199
description and formats 198-200
permissible moves 200
sort special registers 249
sterling items 330

multifunction card unit (MFCU) support
(DOS/VS) xxxiv,xxxvi wll

MULTIPLE FILE TAPE clause 86,87
multiple results

ADD statement 181
SUBTRACT statement 185

multiplication 184,153,154
multiplication operator 153,154,39
MULTIPLY statement 184
multivolume processing

ASSIGN clause 69,10
CLOSE statement 221-225
NSTD-REELS special register 69,70,45
reading 212
writing 217

name
data item 111
description of 41
field in system-name 71
indexing of 290,291,296-299
procedure 41
qualification 48,49
record 111,41
subscripting of 289,290

NEGATIVE operand in a sign condition 162
negative value

DISPLAY statement 221
external floating point items 123
numeric edited items 124-128
PERFOR~ statement 191
SIGN clause 129,130
sign condition 162

nested
IF statements 167,168
OCCURS clauses 293-295
PERFORM statements 190
REDEFINES clauses 113

NEXT GROUP clause
description and format 265,266
effect of PRINT-SWITCH 277

NOMINAL KEY clause
description and format 82
indexed files 61,62
READ statement 211,212
REWRITE statement 218,219
START statement 208,209,82
WRITE statement 217,218,212

noncontiguous data items
(see level number 77 items)

nonnumeric literals
continuation of 52
description 42
EXAMINE statement 201,202
MOVE statement 200
relation condition 161
TRANSFORM statement 20~-205
VALUE clause 142-144

nonnumeric operands
MOVE statement 199,200
relation condition 159-161

nonstandard labels
declarative 170-175
GO TO MORE-LABELS 171,172
LABEL RECORDS clause 105,106
multiple reel files 69,70,45
NSTD-REELS special register 45,69,70
reversed reading 86,81,201
sample program 173-115
system procedures 110,111

NOT condition construction
abbreviated conditions 164,165
compound conditions 162-165
test conditions 155

NOT logical operator
description 162-165
implied subjects and relational
operands 164,165

NOTE statement 233,234
NSTD-REELS special register 45,69,70
null report group 261
numeric character

description 119-121
PICTURE clause 119-128

numeric class test 156
numeric data item

BLANK WHEN ZERO clause 115
class test 156
EXAMINE statement 201,202
fixed-point

binary 138-140
external decimal 131,140
internal decimal 139,141

floating-point
external

description 131,122,123
internal representation 141

internal 138,141
internal representation 140,141
MOVE statement 199,200
PICTURE clause 122,123
relation condition 161,159
VALUE clause 142-144

numeric data item (DOS/VS)
FILE STATUS clause, VSAM viii
RECORD y~y clause, vs~_~ vii. vii

numeric edited items
BLANK WHEN ZERO clause 115
description 124-128
MOVE statement 199,200
relation condition 159-161
USAGE clause 137

numeric item, description 122,123
numeric literal

continuation 52
description 42
MOVE statement 200
relation condition 161
VALUE clause 142-144

numeric operands
ADD statement 181,182
COMPUTE statement 182
DISPLAY statement 221
DIVIDE statement 183
EXAMINE statement 201~202
MOVE statement 199,200
MULTIPLY statement 184
relation conditions 159,161
SUBTRACT statement 185,186

OBJECT-COMPUTER paragraph
computer-name 65
copying 313-315
description and format 65
SEGMENT-LIMIT clause 311,65
System/310 instruction generation 65

OBJECT-COMPUTER paragraph (DOS/VS) ii-iv
object of a condition 158
object program definition 51
OCCURS clause

description and formats 292-299
direct indexing 298
redefining restriction 112
relative indexing 299
renaming restriction 145
slack bytes 133-135
value restriction 142

OCR processing (DOS/VS) xxvii,xxviii
OF qualifier connective

with indexes and subscripts 289-291
with name 48,49

OFF/ON STATUS clause 66,67
OMR (optical mark read) processing 72,16
ON statement 320,321

Version 3 improvement 320,321
ON/OFF STATUS clause 66,67
OPEN statement

declaratives 170-115
description and format 206-208

Index 413

OPEN statement, VSAM (DOS/VS)
description and format xiii-xv
PASSWORD clause xiv,viii
processing capabilities xiv
status key xiv,x

OPEN statement for 3540 (DOS/VS) xxxvi
operands, overlapping

arithmetic statements 180
MOVE statement 199
TRANSFORM statement 203

operation sign (see sign, SIGN clause)
operator communication 196,219-221
optical character reader

(DOS/VS) xxvii,xxviii
optical mark read processing 72,76
optimized object code, Version 3 12
optional words in formats 53
OR logical operator in compound
conditions 162-165

order of evaluation for compound
conditions 163,164

order of execution 150
organization

COBOL program 46~47

data 59-62,93
Data Division 94
Data Division entries 95-97
Environment Division 63
field of system-name 71-75
Identification Division 57
Procedure Division 149,150

ORGANIZATION clause, VSAM (DOS/vS>
description and format vii,v
processing capabilities xiv

output files
CLOSE options 222-225
error handling 175-178
inter-record slack bytes 135,136
intra-record slack bytes 132-135
label handling 170-175
OPEN statement 206-208
sample programs 336-338
WRITE statement 212-218

output files, VSAM (DOS/VS)
OPEN statement Xl11-XV
processing capabilities xiv
WRITE statement xvii-xix

output phase of merge (DOS/vS) xxv-xxvii
output phase of sort 246-248
output source listing format

compiler 50-52
control of 323

overflow records 88
overlapping data groupings 144-146
overlapping operands

arithmetic statements 180
MOVE statement 199
TRANSFORM statement 203

overlayable fixed segment 309-311
overlaying procedures 309-312

P, in PICTURE clause (see assumed decimal
point)

packed decimal format (see internal decimal
items)

padding in a physical record
BLOCK CONTAINS clause 100,101
slack bytes 132-136

page change in a report
GENERATE statement 274
LINE clause 263-265
NEXT GROUP clause 265,266
PAGE LIMIT clause 258-260

PAGE clause (see PAGE LIMIT clause)
page condition 258-260
PAGE-COUNTER special register

description 277
GENERATE statement 274
INITIATE statement 275

PAGE FOOTING report group
description 268
LINE clause 263-265
NEXT GROUP clause 265,266
PAGE LIMIT clause 258-260
TERMINATE statement 275,276
TYPE clause 267-269

page format in Report Writer 258-260
PAGE HEADING report group

definition 267
GENERATE statement 273,274
LINE clause 263-265
NEXT GROUP clause 265,266
PAGE LIMIT clause 258-260
TYPE clause 267-269

PAGE LIMIT clause 258-260
pairing

ELSE in nestep IF statements 167,168
parentheses in arithmetic
expressions 153,154

parentheses in subscripts and
indexes 289-291

symbols in arithmetic expressions 154
symbols in compound conditions 164

paragraph
DATE-COMPILED 58
definition 149
FILE-CONTROL 68-83
I-O-CONTROL 84-89
OBJECT-COMPUTER 65
Procedure Division 149,51
PROGRAM-ID 57,58
SOURCE-COMPUTER 64
SPECIAL-NAMES 65-67

paragraph-name
qualification 48,49
reference format 51
rules for forming 149,41

parameters for OCR processing
(DOS/VS) xxviii
parentheses

arithmetic expressions 153,154
conditions 163,164,155
PICTURE clause 118
punctuation rules 38
subscripting and indexing 289-291

parity checking 88
PASSWORD clause, VSAM (DOS/VS)

description and formats viii,v
OPEN statement xiv

pence
internal representations 324
nonreport items 325,326

report items 327-329
PERFORM statement

CALL statement 227
debug packets 322
declarative section 171,176,277
description and formats 189-195
flowcharts 193-195
segmentation 312
sort procedures 245,246

period
and comma exchanged 66,67,330
data description entry 108,109
division header 51
END DECLARATIVES 169,150
fixed-point numeric literals 42
floating-point numeric literals 42
paragraph-name 149,51
PICTURE clause

description 119.121
external floating-point items 123
indicated by P 119
indicated by V 119
numeric edited items 124-128
sterling items 325-329

section-header 149,51
section-name 149,51
sentence 149

permanent segment 309-311
permissible

comparisons 161
moves 200
symbol pairs

arithmetic expressions 154
compound conditions 164

physical file, definition 93
physical record

definition 93
size specification 100,101

PICTURE clause
allowable symbols 118-120
ASCII considerations 357,361
categories of data

alphabetic 120
alphanumeric 120
alphanumeric edieed 124
numeric 122,123
numeric edited 124-128
table of 117

character string 117,118
classes of data 117
editing

fixed insertion 126
floating insertion 127
simple insertion 125
special insertion 125
zero suppression and replacement 128

format 117
precedence of symbols in 121
repetition of symbols 118

plus symbol
arithmetic expressions 153,154
collating sequence 159,244
indexing 290,291,299
PICTURE clause

description 120,121
external floating-point

items 122,123
fixed insertion editing 126

floating insertion editing 127
numeric edited items 124-128
precedence in 121
sterling items 325-329

SIGN clause ~29,130
unary operator 153,154

pocket select characters
combined function processing 379,383
definition 66
WRITE statement 214-216

positioning a file
CLOSE statement 222-224
MULTIPLE FILE TAPE clause 86,87
OPEN statement 206-208

POSITIVE operand in sign condition 162
positive value

external floating-point items 122,123
PERFORM statement 191
sign condition 162
unsigned operands 162,199

pound-report-string 327
pound-separator-string 327
pound sign

report item 327,329
representation 329

print line size for report 255
PRINT-SWITCH

description 277
INITIATE statement 275
NEXT GROUP report groups 266

printer support, Version 3 13
printer support, DOS/VS 11
priority numbers

ALTER statement 312
called programs 312
description 310,311
information for use 310
PERFORM statement 312
section header 310,311
seqment limit 311

procedure branching statements
ALTER statement 188
EXIT statement

description and format 196,197
subprogram linkage 231,232

GO TO statement 187,188
PERFORM statement 189-195
STOP statement 196,231

procedure, definition 149
Procedure Division

content 149-152
copying 313-315
definition 46
organization 149,150
Report Writer cons~derations

declarative 276,277
GENERATE statement 273,274
INITATE statement 275
overall 252-254
TERMINATE statement 275,276

Sort considerations
EXIT statement 248,249
RELEASE statement 247,248
RETURN statement 248
SORT statement 242-247

statement list 151,152

Index 415

statements (see compiler-directin~
statements, conditional statements,
imperative statements)

sterling considerations 330
structure 150
table handling considerations

relation conditions 300,301
SEARCH statement 301-305
SET statement 306

USING option on the division
header 228-231,149,150

Procedure Division (DOS/VS)
merge facility XXV-XXVll
VSAM file processing

common processing facilities ix-xi
CLOSE statement xxi
DELETE statement xx, xxi
EXCEPTION/ERROR declarative xii, xiii
file processing capabilities xiv
OPEN statement xiii-xv
READ statement xvi, xvii
REWRITE statement xix,xx
START statement xv
WRITE statement xvii-xix

procedure-name, definition 41
procedures, Declarative 169-178,276,277
processing capabilities summary, VSAM

(DOS/VS) xiv
PROCESSING MODE clause 78,79
program-control card 364
PROGRAM-ID paragraph 57,58
program-name

description 58
subprogram linkage 226

program termination 196,231,232
punctuation character

in formats 53
in a source program 38

quadruple spacing of source program
listing 323

qualification
condition-names 144,48,49
description 48,49
index-names 290,291
names 48,49
subscripts 289,290

qualifier connective, definition 40
qualifier, definition 48
quotation mark option

default 37
nonnumeric literals 42
program-name 58

QUOTE (QUOTES) figurative constant
description 43
in EXAMINE 201
in MOVE 200
in relation condition 161
in TRANSFORM 203

quotient 183

random access

I,., c.
"t.l.U

ACCESS MODE clause 78
CLOSE statement 224,225
definition 60
direct files 61

error processing 175-178
indexed files 61,62
READ statement 211,212
REWRITE statement 218,219
SEEK statement 210
WRITE statement 213,217,218

random access, VSAM (DOS/VS) vii
random file processing

effect of CLOSE options 224,225
function of a read 211,212
function of a REWRITE 218,219
function of a SEEK 210
function of a WRITE 212,217,218
summary charts 353,354

range of a PERFORM statement 190-195
range of values

condition-name 143,144
priority numbers 310,311
sequence numbers on DELETE card 316,317

RCE (read column eliminate)
processing 72,73,76

RD (see report description entry)
READ statement

description and format 211,212
error processing 178

READ statement, VSAM (DOS/VS)
description and formats xvi, xvii
processing capabilities xiv

reading backwards 207
reading nonstandard labels

ASSIGN clause 70,71
MULTIPLE FILE TAPE clause 86
OPEN statement 207

READY/RESET TRACE statement 318
receiving data item

justification 116
MOVE statement 199,200

record
description 108,109
level number 95-97
naming 111
slack bytes

between records 135,136
within records 132-135

RECORD CONTAINS clause
description and format 102,103
Report Writer 255
Sort 241,242

RECORD CONTAINS clause, VSAM (DOS/VS) ix
record description entry

contents 108,109
definition 96
File Section 97
format 108
Linkage section 99
maximum length 108
Report Writer 255
Sort records 241,242
Working-Storage Section 98
(see also data description clauses)

RECORD KEY clause 83
RECORD KEY clause., VSAM (DOS/VS)

description and format vii.viii,v
START statement xv

record length for sort records 241,242
record size default

ACCEPT statement 219
DISPLAY statement 220
report writer 255

recording mode
ASCII considerations 357
default 103,104
specification 104
types 103,104

RECORDING MODE clause
ASCII considerations 357
description and format 102

RECORDING MODE clause invalid, VSAM
(DOS/VS) ix

REDEFINES clause
APPLY CORE-INDEX option 89
description and format 112-115
position when used 109,112
SYNCHRONIZED clause 131
VALUE clause 143

reference format 50-52
reformatted (lister) source listing

(DOS/VS) 11
registers (see special registers)
regrouping data items

REDEFINES clause 112-115
RENAHES clause 144-146

relation character
definition 39
in relation conditions 158

relation conditions
ASCII considerations 358-360
characters used 158,39
condition-name as abbreviation 157
description and format 158-161
impliea subject and relational
operators 164,165

operands allowed 161
table handling 300,301

relational-operators
compound conditions 162-165
definition 39
implied 164,165
relation condition 158

relative indexing 290.291,299
relative LINE clause 263-265
RELEASE statement in sort 247,248
relocation factor, Version 3 13
remainder, definition 183
REMARKS paragraph 57
RENAMES clause

data description entry 108,109
description and format 144-146
level number summary 96

renaming
data items (see REDEFINES clause,

RENAMES clause)
logical records 112,97

repetition of symbols in PICTu~E 118
replacement editing 128
replacing zero with a space

BLANK WHEN ZERO clause 115
editing rules 124-128
PICTURE clause symbol 119

REPORT clause 254,255,100
REPORT clause invalid, VSAM (DOS/VS) ix
report, description 252-254
report description entry

CODE clause 256,257
CONTROL clause 257,258
COPY statement 313-315
definition 256

GENERATE statement 273,274
PAGE LIMIT clause 258-260

report file, definition 254
REPORT FOOTING report group

description 267-269
LINE clause 263-265
NEXT GROUP clause 265",266
PAGE LIMIT clause 258-260
TERMINATE statement 275,276
TYPE clause 267-269

report group description entry
COLUMN clause 269
COpy statement 313-315
description and formats 261-263
GROUP INDICATE clause 270
LINE clause 263-265
NEXT GROUP clause 265,266
RESET clause 270,271
SOURCE clause 271
SUM clause 271-273
TYPE clause 267-269
USAGE clause 269
VALUE clause 273.271

report groups
definition 261
page format 259
sequence of printing 268,269
types 267-269
USE sentence 276,277

REPO~J:' HEADING report group
descrl.ptIori 26"7-269
GENERATE statement 274
LINE clause 264
NEXT GROUP clause 266
PAGE LIMIT clause 259
TYPE clause 267,268

report page format effect on
LINE-COUNTER special register 278
PAGE-COUNTER special register 277
PAGE LIMIT clause 258-260

Report Section
content 256-273
COpy statement 313-315
formats

report description entry 256
report group description
entry 261,262

structure 94
VALUE clause

description and format 273,271
overall description 142

Report Writer
Data Division considerations

File Section 254,255
overall description 252-254
Report Section 256-273

Procedure Division considerations
declarative 276,277
GENERATE statement 273,274
INITIATE statement 275
overall description 253,254
TERMINATE statement 275,276
USE statement 276,277

sample program
coding 279-283
output 284-288

special registers 277.278

Index 417

report-name
definition 41
qualifier for SUM counter 261
specification 256,273,274

RERUN clause
ASCII considerations 356,361
processing programs 84,85
sort feature 240,361

RERUN clause, VSN~ (DOS/VS) Vlll,lX
required words in formats 53
RESERVE clause

description and format 77
System/370 card devices 381

RESERVE clause, VSAM (DOS/VS) v,vi
reserved words

definition 40
in formats 53
list of 344-346

RESET clause, Report Writer 270,271
RESET TRACE statement 318
restarting a program 84,85,240
retrieving an indexed file

access methods 61,62
READ statement 211,212
restriction 208
START statement 208,209

return code
multivolume files 69,70
sort 249

return code, VSAM status key (DOS/VS) x
return from merge (DOS/VS)

GIVING option xxv, xxvi
output procedure xxv-xxvii

return from sort
GIVING option 247
output procedure 246,247

RE'I'URN statement in merge (DOS/VS) xxvi
RETURN statement in sort 248
reversed reading of a file 207
rewinding a tape file

CLOSE statement 222-224
OPEN statement 206,207

REWRITE statement
description and format 218,219
error processing 178

REWRITE statement, VSAM (DOS/VS)
description and format xix,xx
processing capabilities xiv

rewriting mass storage files 218,219 w60-62
right justification 116
rolling counters forward 272
ROUNDED option in arithmetic statements

ADD 181
COMPUTE 182
description 179,180
DIVIDE 183
MULTIPLY 184
SUBTRACT 185

rounding 179,180

S, in PICTURE clause
class test 156
description 119,121
numeric items 122,123
precedence 121
SIGN clause 129-130

418

sterling nonreport items 326
S-mode records

BLOCK CONTAINS clause 101
description 103,104
RECORDING MODE clause 104

SAME clause
description and format 85 w 86
sort considerations 240,241

SAME clause (DOS/vS)
merge facility xxii,xxiii
VSAM files viii,ix

sample programs
creation of a direct file 336 u 337
creation of an indexed file 338
report writer 279-288
retrieval of a direct file 33,34
retrieval of an indexed file 339,340
sort 250,251
table handling 307,308

scaling, effect on rounding 180
scaling position character (p) 119,121
scientific decimal item (see external
floating-point items)

SEARCH statement
description and formats 301-305
flowchart 304

section
classification in segmentation 310,311
definition 149
format 150,310

section header 149,51
section-name 150,310
SECURITY paragraph 57
SEEK statement 210
segment classification 310,311
SEGMENT-LIMIT clause 311
segmentation

ALTER statement 312
called programs 312
classifying segments 310,311
control of 310
fixed portion 309,311
GO TO statement 312
independent segments 309,311
overlayable fixed segments 309,311
PERFORM statement 312
permanent segments 309,311
priority numbers 310,311
program organization 309
restrictions on program flow 312
segment limit 311

segmentation merge restrictions
(DOS/VS) xxvii

SELECT clause
COPY statement 313-315
description and format 69
GIVING option of SORT statement 238,239
sort work units 239

SELECT clause (DOS/VS)
merge facility xxii
VSAM files v,vi

semicolon
data description entry
separating statements
source program 38
SPECIAL-NAMES paragraph

sentence
conditional 166

109
149

66

t

description 149
termination 149

SEPARATE CHARACTER option of SIGN
clause 129.130

separator
statements 149
sterling items 327-329
words 40

sequence
entries in Data Division 100,109
entries in Environment Division 68,84
entries in formats 46
execution of Procedure Division 150
execution of segmented programs 310
report groups 261
sorting 243,244
table entries 295,296

sequence checking compilation default 50
sequence-number-field for copying 316,317
sequence number in a source program 50
sequential access

ACCESS MODE clause 78
ACTUAL KEY clause 79
APPLY WRITE-ONLY clause 87

,ASSIGN clause 69-75
description 60
direct files 60
indexed files 61
NOMINAL KEY clause 82
recording mode 103-104
RECORDING MODE clause 104
RESER\-1E clause 7'''
sequential files 60
size of records 103,104

sequential data organization 59
sequential files (see standard sequential
files)

sequential multivolume files
effect of CLOSE options 222-224
reading 212

sequential processing 60,61
sequential single-volume files. effect of

CLOSE options 222-224
sequential VSAM files (see VSAM file
processing)

serial search of a table 302-304
series connective, definition 40
SET statement

description and formats 306
with index data items 299.,300
with indexes 296-299.290

setting 'values for index-names 306
shading in text, explained (see Preface)
sharing storage between files 85.,86
shilling representation

BSI and IBM conventions 324
internal 325,326
PICTURE clause 325,327
report items 327-329

short-precision internal floating-point
items (see internal floating-point items)

sign
class condition 156
internal representation 140,141
literals 42
MOVE statement 199
PICTURE clause 119,121
relation condition 159

SIGN clause 129,130
sign condition 162
sterling items 326-329
subscripts 289
unary operator 153,154

SIGN clause
ASCII considerations 357,361
class condition 156
description and format 129,130
Version 3 feature 13

sign condition 162
simple insertion editing 125
single digit level number 96
single spacing

printer page 214
source program listing 323

SIZE ERROR option in arithmetic statements
ADD 181,182
COMPUTE 182
description 180
DIVIDE 1,83
MULTIPLY 184
SUBTRACT 185

SKIP statements 323
slack bytes

description 132-136
elementary computational items 132,133
group items containing an OCCURS
clause 133-135

inter-occurrence 133-135
inter-record 135.136
intra-occurrence 133
intra-record 132-135
physical record size 101

small letters in ACCEPT (DOS/VS) xxxvi
sort

ascending and descending
sequence 243,244

ASCII considerations 360,361
checkpoints 240
collating sequence 244
control of procedures 247
Data Division considerations 241,242
Environment Division considerations

File-Control paragraph 238,239
I-O-Control paragraph 239-241

file description entry 241,242
final phase 246.247
input phase 245,246
keys 243,244
modification of records 245-241
optimizing performance 249
Procedure Division considerations

EXIT statement 248,249
RELEASE statement 241,248
RETURN statement 248
SORT statement 242-241

sample program 250,251
special registers 249
work units 239

sort enhancements (DOS/VS) xxxvi
sort-file

COPY statement 313-315
description entry 241.242
SELECT clause 239

sort special registers 249
SORT statement

description and format 242-247

Index 419

GIVING option 247
INPUT PROCEDURE option 245
OUTPUT PROCEDURE option 246,247
RELEASE statement 247,248
RETURN statement 248
USING option 246

SORT statement enhancement (DOS/VS) xxxvi
SORT-OPTION clause (DOS/VS) xxxvi
SORTWK1, SORTWK2 in sort 239
SOURCE clause

description and format 271
report groups 269

SOURCE-COMPUTER paragraph 64
source program

definition 57
reference format 50-52
structure 46,47

source program library facility
COPY statement 313-315
extended

BASIS 316
DELETE and INSERT 316,317

space
alphabetic items 120
BLANK WHEN ZERO clause 115
collating sequence 159,244
in editing 124-128
external floating-point items 122,123
replacement character 118,119~121
simple insertion editing 125
word separator 40

space insertion 125-128,115
SPACE (SPACES) figurative constant

definition 43
EXAMINE statement 201
MOVE statement 200
permissible comparisons 161
TRANSFORM statement 203-205

spacing program output 213-217
spacing source program listing 323,52
special characters

CURRENCY-SIGN clause 67
in formats 53

special insertion editing 125
special level numbers 96,97,108-110
special-names, definition 41

(see also mnemonic-name)
SPECIAL-NAMES paragraph

COPY statement 313-315
description and format 65-67

special register WHEN-COMPILED (DOS/VS) i
special registers

report writer
LINE-COUNTER 278
PAGE-COUNTER 277
PRINT-SWITCH 277

sort
SORT-CORE-SIZE 249
SORT-FILE-SIZE 249
SORT-MODE-SIZE 249
SORT-RETURN 249

system
COM-REG 44
CURRENT-DATE 44
NSTD-REELS 45,70
TALLY (see TALLY special register)
TIME-OF-DAY 44

stacked items in formats 53

420

standard data format
alphabetic items 120
alphanumeric items 120,124
description 102
logical records 102
numeric items 122,124
physical records 101

standard labels 105.170~171
STANDARD option of the LABEL RECORDS
clause 105

standard sequential file
APPLY WRITE-ONLY clause 87
ASSIGN clause 69-75
BLOCK CONTAINS clause 100,101
definition 59
effect of CLOSE options 222-224
error declarative capabilities 178
labels 105,106
reading 211,212
recording mode 103,104
RESERVE clause 77
writing 212-217

standard system procedures
error routines 175-178
label handling 170,171

START statement
description and format 208,209
error processing ~78
NOMINAL KEY 82,61 -'

START statement, VSAM (DOS/VS)
description and format xv
processing capabilities xiv

statement categories
compiler-directing, list 152
conditional~ list 151
description 150
imperative, list 151,152

statement number option., Version 3 13
status key., VSAM (DOS/VS)

CLOSE statement xxi
DELETE statement xxi
description v~~~,x
EXCEPTION/ERROR declarative xii
OPEN statement xiv
READ statement xvi
REWRITE statement xix
START statement xv
table of possible values x
WRITE statement xviii

sterling currency
international considerations 330
nonreport items

description andlformat 325,326
MOVE statement 200
relation condition 161
sign representation 326

Procedure Division considerations 330
report items

description and format 327-329
MOVE statement 200
relation condition 161

representations 324
STOP RUN statement 196,231,232
STOP statement

calling and called programs 231,232
format and description 196

storage available for sort 249

structure of
COBOL language 37-45
COBOL program 46,47
Data Division 94
Environment Division 63
Identification Division 57
Procedure Division 150

subdivisions of data records
data description entry 108,109
description 95,96

subject -
of a condition

explicit 158,164,165
implied 164,165

of a data description entry 111
of an OCCURS clause 293

subprogram, description 226
subprogram linkage statements

CALL 226,227
ENTRY 227,228
EXIT PROGRAM 232
GOBACK 232
STOP RUN 196
termination consierations 231
USING option 228-231

subroutine for OCR processing
(DOS/VS) xxv].].].
subscripts

condition-name 144
description and formats 289,290
qualification 290
qualifier 289 f 290
restrictions on use 291

substitution
asterisk for zero 128,120
comma for period 66,67,330
dollar sign 66,67,330
space for zero

BLANK WHEN ZERO clause 115
in editing 127,128
PICTURE symbol 119,121

subtotaling in a report 272,273
SUBTRACT statement

CORRESPONDING option 179
description and formats 185,186
GIVING option 179
overlapping operands 180
ROUNDED option 179,180
SIZE ERROR option 180

subtraction operator 153,154,39
SUM clause 272,273
SUM counter

definition 272
GENERATE statement 274
INITI~TE statement 275
report-name only

qualifier for 261
RESET clause 270,271
resetting to zero

GENERATE statement 274
INITIATE statement 275
RESET clause 270,271
SUM clause 272,273

summary reporting 273,274
summation in a report 270-275
suppress spacing 214,215
suppression of

library entry listing 314

report group printing 277
sequence checking 50
spacing in WRITE statement 214,215
zeros in PICTURE clause 118-121,127,128

suppression and replacement editing 128
suppression symbols 118-121
switch-status condition

description and format 162
function-names 162,66,67

symbol pairs
arithmetic expressions 154
compound conditions 164
PICTURE clause 121
subscripting and indexing 289-291

symbolic debugging, Version 3 13
symbolic portion of ACTUAL KEY 80
symbols

arithmetic expressions 153,154,39
floating-point literals 42
PICTURE clause 118-121
relation conditions 158,39
sterling currency formats 325

SYNCHRONIZED clause
description and format 130,131
index data items 300
OCCURS clause 133-135
slack bytes 132-136

SYSIPT 66,219,220
SYSLST 66,220,221
SYSPCH and SYSPUNCH 66,220,221
system closing conventions 222-225
system logical input device 66,219,220
system logical output device 66,220,221
system-name

ASSIGN clause 70-75
RERUN clause 84,85
sort feature 238-240

system-name, VSAM (DOS/VS) vi,xxxiv
system procedures (see standard system
procedures)

system special registers (see special
registers)

Systern/370 device support (DOS/VS) 11
System/370 support, Version 3 65,11-13
SYS001, SYS002 in Sort 239
SOl through S05 function-names

combined function processing 379
SPECIAL-NAMES paragraph 66
WRITE statement 214,216

Table Handling
ascending/descending sequence 295,296
Data Division considerations

OCCURS clause 292-299
USAGE clause 299;300

indexing 290,291,296-299
Procedure Division considerations

relation conditions 300,301
SEARCH statement 301-305
SET statement 306

sample program 307,308
subscripting 289-291

TALLY special register
ACCEPT statement 219
description 44
DISPLAY statement 221
EXAMINE statement 201,202
SOURCE clause 271

Index 421

I

~
J
!
1
l

i
I

subscripting 289
SUM clasue 271,273

tape device, error information 176,178
tape file, label handling

CLOSE statement 222-224
LABEL RECORDS clause 105,106
OPEN statement 207,208
READ statement 212
USE statement 170,171

TERMINATE statement 275,276
termination of

execution 196
main programs 231,196
report processing 275,276
sort processing 248,249
subprograms 231,232

test conditions
class 156
compound 162-165
condition-name 157
description 155
relation 158-161
sign 162
switch-status 162

THEN
used in IF statement 166
used in sentences 38,149

THRU reserved word
and PERFORM statement 189,190
and THROUGH, equivalence of 40
and VALUE clause 142-144

TIME-OF-DAY special register 44
TRACE statement 318
track address

algorithm example 336
component of ACTUAL KEY 80,81
direct file 59-61

TRP~CK-AREA clause 83
trailer labels 170,171,105
transfer of control

ALTER statement 188
CALL statement 226,221
CALL statement for OCR (DOS/VS) XXVll1
calling and called programs 226-232
DECLARATIVES 169
end of series of procedures 196,191
EXIT statement

description and format 196,197
sort procedures 248,249
subprogram linkage 231,232

GO TO statement 187,188
GO TO MORE LABELS 171,112
GO BACK statement 231,232
merge feature (DOS/VS) xxVi,XXVll
operating system 231,232,196
operator 220,196
PERFO~l statement 189-195
RELEASE statement 247,248
RETURN statement 248
segments, among 310
sort feature 247-249

TRANSFORM statement
ASCII considerations 358-360
description and format 203-205

transmission errors 116
triple spacing

1.f22

printer page 213-216
source progra.m listing 323

truncation
alphabetic and alphanumeric

items 199,116
arithmetic operations 180
of buffers 87
floating insertion editing 127
MOVE statement 199,116
numeric items 180,199

TYPE clause 267-269

U-mode records
description 103,104
physical record size 100,101
specification 104

UHL (user header label) 105
unary + and - 153,154
undefined record format (see U-mode
records)

unique names
indexing 290,291
qualification 48,49
subscripting 289,290

unit, definition
in formats 54
in storage 222

unit record volume
CLOSE options 222-224
description 222
error information 118
list 10,12

unsigned numeric operands
considered positive 159,162
MOVE statement 199
relation condition 159
sign condition 162

updating a file
REWRITE statement 218.219
sample programs 33,34.339,340
WRITE statement 213,211,218

UPSI-O through 1 (User Program Status
Indicator bits) 67

USAGE clause
alteration by redefining 114
ASCII considerations 351,361
default 136
description and formats 136-141
index data items 299,300
internal representations 140~141
sterling items 325-329

use of coding form 50-52
USE statement

declarative description and format 169
error processing 115-118
label processing 170-175
report writer 216,211

user-created libraries 313-315
user error procedures 115-118
user header label CUHL) 105
user labels

description 105
GO TO MORE-LABELS 111,112
procedures for handling 110-112
standard systems procedure

CLOSE statement 222-225
label processing 110~111

,

READ statement 212
WRITE statement 217

user program status indicator bits 67
user trailer label (UTL) 105
USING option in calling and called programs

boundary alignment of identifiers 229
in a CALL statement 226-229
in a called program 227-229
in a calling program 226-229
in ENTRY statement 227-229
index-names invalid 229 6 226
on Procedure Division
header 228,229,150

U;:).Ll'l\.:i option in rnerge (DOS/VS) XXVi

USING option in sort 246
USING option in sort (DOS/VS) xxxvi
utility device

class field in system-name 70
list 70,72

UTL (user trailer label) 105

V, in PICTURE clause
description 119,121
external floating-point items 123
fixed point numeric items 122
numeric edited item 124
with P 119
precedence 121
sterling nonreport items 325,326

V-mode records
APPLY WRITE-ONLY clause 87
description 103,104
inter-record slack bytes 135,136
intra-record slack bytes 132-135
in sort 241
specification 104
specification of physical record
size 100,101

VALUE clause
condition-names 142-144,109,110
description and formats 142-144,109,110
example 144
report writer data items 271,273
sterling items 326,329

VALUE OF clause 106
variable-length record format (see V-mode

records)
variable-length records

recording mode 103,104
size of print line in a report 255
in sort 241

variable length table 293-295,297,298
verb profiles and statistics (DOS/vS) 11
vertical positioning of a printed
line 213-217

volume positioning
CLOSE statement 222-224
OPEN statement 207

volume switch
CLOSE options 222-224
label processing 170
READ statement 212
WRITE statement 217

VSAM file processing (DOS/VS)
Data Division considerations
entry-sequenced data sets iv

ix

FILE-CONTROL paragraph v-viii
I-O-CONTROL paragraph viii-ix
indexed files iv, v, xiv
key-sequenced data sets iv
overall description iv
Procedure Division
considerations ix-xxi

processing capabilities summary iv,xiv
sequential files iv, v, xiv

description iv,v,xiv
input to merge xxii
input to sort xxxvi
valid mass storage devices iv

WHEN-COMPILED special register (DOS/VS) i
word

characters used in 37
continuation of 52
definition 39,40
separators 40
types

name 41
reserved word 40
special-name 41

word boundary 138,131,132
Working-Storage Section

boundary alignment 131
condition-name entries 142
content 108-110,98
COPY statement 313-315
data item description entry 108-110
formats 98,108,109
level-numbers in 98,108
naming data 111
record description entry 98,108,109
renaming entries in 144-146
structure 94
used in error processing 177
use of FILLER 111
values of items 142
Version 3 support 13

Working-Storage Section and OCR processing
(DOS/vS) xxv].].].

WRITE-ONLY option of the APPLY clause 87
WRITE statement

combined function processing 382-384
description and formats 212-218
error processing 176,178
multivolume sequential files 217
system-name organization field 218

WRITE statement (DOS/VS)
VSAM files

description and format xvii-xix
processing capabilities xiv

3540 device xxxvi
WRITE-VERIFY option of the APPLY clause

description and format 88
3540 device (DOS/VS) xxxv

writing user labels 170-175,217

X, in PICTURE clause
alphanumeric edited items 124
alphanumeric items 120
description 119,121
precedence 121

Index 423

Z, in PICTURE clause
description 119,121
numeric edited items 128,124
precedence 121
sterling r~port items 327-329
zero suppression editing 128

ZERO (ZEROES, ZEROS) figurative constant
description 43
EXAMINE statement 201
MOVE statement 200
relation condition 161
replacing numeric literal 43
TRANSFORM statement 203-205

zero divisor 183,180
zero insertion 119,121,124,125
zero operand

DIVIDE statement 183
internal floating-point items 180
relation condition 159,161
sign condition 162

zero, simple insertion editing 125
zero suppression and replacement
editing 128

zone bits, external decimal items 137
zoned decimal format 137,140

0, in PICTURE clause

424

alphanumeric edited items 124
description 119,121
floating insertion editing 127
numeric edited items 124
precedence 121
simple insertion editing 125

01-49 level numbers 96,109
6, in sterling PICTURE clause 325
66 level number

definition 96
description 144-146
general description 108,109

7, in sterling PICTURE clause 325,326
77 level number 96,108,109
8, in sterling PICTURE clause 325,326,:
88 level number

definition 97
description 143,144
general description 109

9, in PICTURE clause
alphanumeric edited items 124
description 119,121
numeric edited items 124-128
numeric items 122,123
precedence 121
sterling items 325-329

2319, 3211, 3330, 3410, 3420, 3505, 3525
support, Version 3 13

2560, 3504, 3881 support, Version 3 12
3203, 3340, 3540, 5203 (DOS/VS)

processing support 11
programming considerations xxxiv-xxx

3886 OCR (DOS/vS)
processing support 11
programming considerations xxvii,xxv

5425 MFCU (DOS/VS)
processing support 11
programming considerations xxxiv, xxx'

llJ]5llir
®

International Business Machines Corporation

Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United !'-Jations Plaza, !\Je\rA.t York, l'Je"A, York 10017
(I nternational)

OJ
s:
o a en

" c

»
3
(I) ..,
0'
Ol
::J

Z
Ol
.-+
0'
::J
!!.
en
.-+
Ol
::J
C.
Ol a.
(')
a
OJ a
r-

" CD
z
o
en
w
0')
o
r()
~

" ..,
5'
.-+
(I)
C.

5'
c
en
~
G)
(')
I\J
(X)

en w
(0
~ en

IBM DOS Full American
National Standard COBOL
GC28-6394-6

Your comments about this publication wiil help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the .property of IBM.

Please do not use this form to ask technical questions about IBM systems and
programs or to request copies of publications. Rather, direct such questions or
requests to your local IBM representative.

If you would like a reply, please provide your name, job ritie, and business
address (including ZIP code).

Fold on two lines, staple, and mail. No postage necessary if mailed in the C.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

Reader's
Comment
Form

GC28-6394-6

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
P. O. Box 50020
Programming Publishing
San Jose, California 95150

Fold and Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Co!'poration
821 United Nations Plaza, New York, New York 10017
! International)

First Class Permit
Number 6090
San Jose, California

(

§
c
e

-4
C'
C
c
C
r

This Newsletter No.

Date

Base Publication No.

File No.

Previous Newsletters

IBM DOS Full American National Standard COBOL

© IBM Corp. 1968, 1969. 1970,1971, 1972. 1973

GN26-0887

December 3, 1976

GC28-6394-4, -5, -6

S360-24

GN26-0801 (-4,-5)
GN28-1047 (-4)
GN28-1062 (-4)

This technical newsletter, a part of Version 2 of IBM DOS Full American National Standard COBOL
for Release 26 of DOS. of Release 3 of Version 3 of the IBM DOS Full American National Standard
COBOL Compiler and Library, and of Release 2 of the IBM DOS!VS COBOL Compiler and Library,
provides replacement pages of the subject publication. These replacement pages remain in effect for
subsequent releases unless specifically altered.

Pages to be added and! or replaced are listed below:

Cover. edition notice
Summary of Amendments (#10 added)
xxxvi.i
37,38
41,42
49,50
67,68
87-90
143, 144
211-214
217,218
223,224
239-242
273,274
293,294
317,318

Please place the Summary of Amendments page following the cover page.

Each technical change is marked by a vertical line to the left of the change.

Note: Please me this cover letter at the back of the publication to provide a record of change.

IBM Corporation, P.O. Box 50020, Programming Publishing, San Jose, California 95150

Printed in U.S.A.

