
Program Product

SC28-6478-2

IBM DOS/VS COBOL
(:ompiler and Library
F'rogrammer's Guide

Pr10gram Numbers: 5746-CB1 (Compiler and Library)
5746-LM4 (Library)

Third Edition (June 1976)

This edition is a reprint of SC28-64 78-1 incorporating changes rele:ased in Technical Newsletters
SN20-9121 (dated November 1, 1975) and SN20-9141 (dated January 9,1976) and corresponds
to Release 2 of the IBM DOS/VS COBOL Compiler and Library.

Information in this publication is subject to significant change. Any such changes will be
published in new editions or technical newsletters. Before using this publication, consult the
latest IBM System/370 Bibliography, GC20-0001, and the technical newsletters that amend the
bibliography, to learn which editions and technical newsletters me applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California 95150. Comments become the property of IBM.

© Copyright International Business M::Ichines Co!porati0I! 1973

Summary of Amendments

Date of Publication: January 9, 1976

Form of Publication: SN20-9141 to SC28-6478-0,-1

Support has been added to run OOS/VS COBOL under control of VM/370 CMS Release 3.

OOS/VS COBOL programs can be compiled in CMS and then executed in a OOS virtual machine~ or
under a OOS system.

The following restrictions apply to execution of OOS/VS COBOL programs in CMS:

1. Indexed mes (DTFIS) are not supported. Various clauses and statements are therefore invalid:
RECORD KEY~ APPLY CYL-OVERFLOW~ NOMINAL KEY~ APPLY MASTER/CYL-INDEX~
TRACK-AREA~ APPLY CORE-INDEX~ and START.

2. Creating direct files is restricted as follows:
-For U or V recording modes, access mode must be sequential.
-For ACCESS IS SEQUENTIAL, track identifier must not be modified.

3. None of the user label-handling functions are supported. Therefore, the label-handling format of
USE is invalid. The data-name option of the LABEL RECORDS clause is invalid.

4. There is no Sort or Segmentation feature.
5. ASCII-encoded tape mes are not supported.
6. Spanned records (S-mode) processing is not available. This means that the S-mode default (block

size smaller than record size) cannot be specified, and that the RECORDING MODE IS S clause
cannot be specified.

In addition, multitasking, multipartition operation, and teleprocessing functions are not supported
when executing under CMS.

For a more detailed description of VM/370 CMS for OOS!VS COBOL, see IBM VM/370 CMS User's
Guide for COBOL, order number SC28-6469.

Summary of Amendments

Date of Publication: March 22, 1974

Form of Publication: TNL SN28-1063 to SC28-6478-0

New: Addi tional Compiler Capabilities

Lister feature
Execution Statistics and
Verb summary feature

SORT-OPTION

Maintenance: Documentation Only

Minor technical changes and corrections.

Editorial changes that have no technical significance are not noted here.

Number 1

Specific changes to the text made as of this publishing date are indicated by a vertical bar to the
left of the text. These bars will be deleted at any subsequent republication of the page affected.

PREFACE

This publication describes how to
compile a COBOL program using the Program
Product IBM DOS/VS COBOL Compiler. It also
describes how to link edit the resulting
object module, and execute the program.
Included is a description of the output
from each of these three steps: compile,
link edit, and execute. This pUblication
explains features of the DOS/VS Compiler
and Library, and available options of the
operating system.

This publication is logically and
functionally divided into four parts. Part
I contains information useful to
programmers who are running COBOL programs
compiled on the DOS/VS Compiler, under the
control of the IBM Disk Operating System
Virtual Storage. Part I covers such topics
as job control language, library usage, and
interpreting output.

Part II contains supplemental
information on the use of the language as
specified in the publication IBM DOS Full
American National Standard COBOL, Order
No. GC28-6394, and should be used in
conjunction with this publication for
coding COBOL programs. Part II covers in
detail such topics as file organization,
file label handling, and record formats.
Part II is intended as reference material
for language features that are primarily
system-dependent.

Part III contains information on
programming technigues useful to the
programmer running COBOL programs compiled
on the DOS/VS Compiler. Topics such as
coding considerations, table handling
considerations, and formatting data are
covered in Part III.

Part IV contains error determination
information. This part covers such topics
as program debugging and program testing.

Diagnostic messages generated by the
DOS/VS Compiler and Library and their
accompanying documentation can be found in
this publication.

Information on installing the DOS/VS
Compiler and Library can be found in the
following publication:

IBM DOS/VS COBOL Compiler and Libra£YL
Installation Reference Material, Order
No. SC28-6479.

Wider ranging and more detailed
discussions of the DOS/VS System are given
in the following publications:

Introduction to DOS/VS, Order
No.·GC33-5370

DOSIVS System Generation, Order
No. GC33-5-377

DOSIYS S~tem Management Guide, Order
No. GC33-5371

DO~ Data Manaqement Guide, Order
No. GC33-5372

DOS/V~ervis~~O Ma££Q
Reference, Order No. GC33-5373

~S Access ~ethod Services, Order
No. GC33-5382

DOSL!S System utilities Reference, Order
No. GC33-5381

The following publications providE
detailed information on the IBM 3886
Optical Character Reader:

IBM 3886 Optical Character REader
General Information Manual, Order
No. GA21-9146

IBM 3886 Optical Character REader Input
Document Design and Specifications,
Order No. GA21-9148

DOSLYS Planning Guide for the IBM 3886
Optical_Charact~B.eadef.L-1iQdel-1, Order
No. GC21-5059

The following publications provide
information on the IBM DOS/VS Sort/Merge
Program Product, Program Number 5746-SM1,
and the DOS Sort/Merge Program Product,
Program Number 5743-SM1:

IBM DOS/VS Sort/Merqe General
Inf~tion, Order No. GC33-4030

IBM DOS/VS Sort/Merge Proaram Product
Desi£!LObjg£tivg§, Order No. GC33-4027

IBM,.DOSIYS SortLl'lli.£9.L!1!stallation
Re~erence Material, Order No. SC33-4026

IBM DOS Sort/Merge Proarammer's Guide,
Order No. SC33-4018

The titles and abstracts of related
publications are listed in IBM System/360
and System/370 Eibliographv, Order
No. GA22-6822.

FEATURES OF THE PROGRAM PRODUCT DOS/VS
COMPILER • • • • • • • •• 7

PART I • • 9

INTRODUCTION • • 11
Control Program • • • • • • 11

Supervisor • • • • 11
Job Control Processor 11
Initial Program Loader •• • • _ • 11

Processing Programs • • • • • 11
System Service Programs • • • • 11
Application Programs • • • • _ • • 12
IBM-Supplied Processing Programs ~ • • 12
Data Management • • • • • • • • • 12

Multiprogramming • • • • • • • • • 12
Background vs. Foreground Programs • • 12

JOB DEFINITION • • • • • • • 13
Job Steps • • • • • • 13

Compilation Job Steps 13
Multiphase Program Execution _ • 13

Types of Jobs •• • • • • • • • • • • 14
Job Definition Statements • • • • 15
Other Job Control statements • • • 16

JOB PROCESSING
Compilation
Editing
Phase Execution

Multiphase Programs

• 17
• 17
• 17

18
• 18

PREPARING COBOL PROGRAMS FOR PROCESSING 19
Assignment of Input/Output Devices • • • 19
Job Control •••••••• • • • • _ • 22

Job Control Statements • • • • • •• 22
Comments in Job Control Statements 22
Statement Formats •• • • • • • • • 22
Sequence of Job Control Statements 23

Description and Formats of Job
Control Statements • • • • _ 23

JOB Statement _ 23
ASSGN statement • • • • • 24
CLOSE statement ••• _ 26
DATE Statement • • • • • • • 26
TLBL Statement • • • 27
DLBL Statement • • • 28
EXTENT Statement • • • • • • 28

VOL, DLAB, TPLAB and XTENT Statements • 30
LBLTYP Statement • • • • • • • • 30
LISTIO Statement _ • • • • • 31
MTC Statement • • • • • _ • • 31
OPTION Statement • 32
PAUSE Statement • 34
RESET Statement 34
RS'IRT Statement ••• _ 34
UPSI Statement • • • _ • • 35
EXEC Statement • • • 35

CBL Statement -- COBOL Option
Control Card • • _ • • • _ • 36

LST Statement -- New Compiler
Option Card • • • • • • 40

CONTENTS

Mutually Exclusive Options • • • • • 40
Changing the Installation Defaults • 40
Significant Characters for Various
Options • • • • • • • • • • • • •

Job Control Commands • • • • • •
• 40

40
• 40 Linkage Editor Control Statements

Control Statement Placement • • • • 41
PHASE Statement
INCLUDE Statement
ENTRY Statement
ACTION Statement •

41
42

• • 42
• • • • • 42

Autolink Feature • •
Relocating Loader Feature

• • • • • 43

LIBRARIAN FUNCTIONS
Planning the Libraries • •
Librarian • • • •
Core Image Library • •

Cataloging and ~etieving Program

43

45
45

• 45
45

Phases -- Core Image Library • • _ • 45
Relocatable Library • • • _ • • • 46

Maintenance Functions • • • • • • 46
Cataloging a Module -- Relocatable
Library • • • • • • • 46

Source Statement Library _ • _ • • 47
Maintenance Functions • • • • • 48

Cataloging a Book Source
Statement Library • • • • 48
Updating Books -- Source Statement
Library • • • • • • • • • • • • • • 50
UPDATE Function -- Invalid Operand
Defaults • • • • • • • • • • • • 52
The Procedure Library • • • • • 53

MAINT, Procedure Library _ 53
Catalog _ • • • _ • • 53

PSERV, Procedure Library • • • • • • 54
Calling Cataloged Procedures • • • • • • 54
Private Libraries •••• • • 55

Determining the Location of the
Libraries • • • • • • •

Source Language Considerations _
Extended Source Program Library

55
• 56

Facility • • • • • • • • • • • • • • • • 57
Reformatted Source Deck • 57

INTERPRETING OUTPUT
Compiler Output

Object Module

59
59

• 69
• 69
• 71

71

Linkage Editor Output
Comments on the Phase Map
Linkage Editor Messages
DOS ANS COBOL Unresolved External
References • • • • • • • •

COBOL Execution Output • •
Operator Messages

STOP Statement • • • • • •
ACCEPT Statement •

System Output • _ • •

• • • • • 71
• • • • • 72
• • • • • 72

•• 73
• • • • • 73
• • _ • • 73

CALLING AND CALLED PROGRAMS • • • • • • 75
Linkage • • • • • • • • • 75

Linkage In A Calling Program • 75

Linkage In A Called Program
Entry points • • • • • • • •
Correspondence of Arguments and
Parameters • • • • • • • • • •

Link Editing Without Overlay ••
Assembler Language Subprograms •

Register Use • • • • • • • • •
Save Area • • • • • • • • • •
Argument List •• • • • • • •
File-Name and Procedure-Name
Arguments •••• • • • • • • •

In-Line Parameter List •
Lowest Level Program •• • • •

Overlays • • • • • • • • • •
Special Considerations When Using
Overlay Structures • • • • • • • •

• 76
76

• • 77
• • 77

• 78
• • 78

79
• 79

• 79
81

• • 81
81

• 81
Assembler Language Subroutine for
Accomplishing Overlay •••• • • •
Link Editing with Overlay ••••
Job control for Accomplishing Overlay

• 82
83
84

USING THE SEGMENTATION FEATURE •
Operation •• • • • • • • • •

Output From a Segmented Program
Compiler Output • • • •
Linkage Editor Output • • • •

Cataloging a Segmented ~rogram •
Determining the Priority of the
Last Segment Loaded into the
Transient Area • • • • • • • • •

Sort in a Segmented Program
Using the PERFORM Statement in a
segmented progra~

PART II

89
90
91
91
92
92

92
• • 93

• • 93

• 95

PROCESSING COBOL FILES ON MASS STORAGE
DEVICES •••• • ••• 97
File Organization

Sequential Organization
Direct Organization
Indexed Organization • • •

Data Management Concepts • •

97
97

• 97
•••• 97

Sequential Organization (DTFSD) ••••
Processing a Sequentially Organized

98
99

File • • • • • • • • • • • • •
Direct Organization (DTFDA)

Accessing a Directly Organized
ACTUAL KEY Clause • • • •

Randomizing Techniques • • •
Actual Track Addressing

• 99
• • • • 99
File .100

.101

.102

Considerations for Specific Devices .116
Randomizing for the 2311 Disk Drive 116
Randomizing for the 2321 Data Cell .111

Indexed Organization (DTFIS> •• 118
Prime Area. • • .118
Indexes • • • • • • ••••• 119

Track Index •••••• _ •• 119
Cylinder Index •••• _ • • .119
Master Index • ~119

Overflow Area . _ • • • .119
Cylinder Overflow Area. • .119
Independent Overflow Area ••••• 119
Adding Records to an Indexed File .120

Accessing an Indexed File (DTFIS> •• 121
Key Clauses •••• • .121
Improving Efficiency ••••• _ •• 122

PROCESSING 3540 DISKETTE UNIT FILES •• 123
File processing • • • •
DTFDU • • • • • • • • •

.123

.124
Job Control Requirements •
DLBL Statement • •

••••• 124

EXTENT Statement ~

.125
••••• 125

3540 File • • • • •••••• 125

VIRTUAL STORAGE ACCESS METHOD (VSAM) •• 127
File Organization ••••• 127
Key-Sequenced Files ••••• 127
Entry-Sequenced Files .127
Data Organization .128
Data Access • • • • • • .128
VSAM Catalog. • • • • • .128
File and Volume Portability .130
Service Programs .130
Device Support. • .130
Security. • • • • .130
Error Processing. . •••• 130
VSAM Messages .130

Access Method Services ••••••••• 130
Functional Commands .130
The DEFINE Command • • • • • • .130
Specification of the DEFINE Command 131
Defining a VSAM Master Catalog:
DEFINE ~ASTERCATALOG •••••••• 131
Defining a VSAM Data Space: DEFINE
SPACE • • _ • • • • • • .132
Defining a VSAM File: DEFINE
CLUSTER • • • • • • • • • • • • • .133

.134 File Processing Techniques •
Current Record Pointer • •

Error Handling • • • • • • • •
Record Formats for ?SAM Files
Initial Loading of Records into a

• .134
• .136

.136

File. • • • • • • • • • • • .137
File Status Initialization •• 137
Opening a VSAM File ••• 137

Writing Records into a VSAM File ••• 139
Entry-Sequenced File
Considerations for the WRITE
Statement ••••• • • • • .139
Key-Sequenced File Considerations
for the WRITE Statement •••••• 139

Rewriting Records on a VSAM File .139
Entry-Sequenced File
Considerations for the REWRITE
Statement •• • • • • • • • •
Key-Sequenced File Considerations

.139

for the REWRITE Statement •• 140
Reading Records on a VSAM File .140

Entry-Sequenced File
Considerations for the READ
Statement • • • • .• •• • •
Key-Sequenced File Considerations

.140

for the READ Statement. • • .140
READ NEXT Statement ••••• 140
READ Statement • •

Using the START Verb • • • • • • •
• .141

.141

.141

.141

.141

DELETE Statement • • • • • • •
COBOL Language Usage with VSAM
Creating a VSAM File
Retrieving a VSAM File • •
Job Control Language for a VSAM

• .143

File • • • • • • • • • • • • • • • .144

converting Non-VSAM Files to VSAM
Files 144
Using ISAM Programs to Process
VSAM Files. • • • • • • • • • .144

DETAILED FILE PROCESSING CAPABILITIES .145
COBOL VSAM Control blocks ••••••• 145
Control Blocks For VSAM • _ •• __ •• 146

VSAM File Information Block (FIB) •• 146
VSAM File Control Block .148

DTF Tables _ • _ ••• _150
Pre-DTF Switch. • • • • • •• • .155

Error Recovery for Non-VSAM Files ••• 155
Volume and File Label Handling. • _162

Tape Labels • • • • • • .162
Volume Labels •• _ • .162
Standard File Labels. • .162
User Standard Labels. • • ••• 162
Nonstandard Labels. • • ••• 162

Label processing Considerations • _ .165
Sample Programs .166

Mass Storage File Labels. • •• 174
Volume Labels • • • • • .174
Standard File Labels ••••• _ •• 174
User Labels • • • • • .174

Label processing considerations .174
Files on Mass Storage Device
Opened as Input •••••••••• 174
Files on Mass Storage Devices
Opened as Output •

Unlabeled Files •• • . • •
.175

• .175

.177
• .177

• 177
• .178

PROCESSING ASCII TAPE FILES
COBOL Language Considerations
File Handling ••• • _ • •
Operational Considerations •
Obtaining an ASCII Collating
on a Sort • • • • •

Sequence

RECORD FORMATS FOR NON-VSAM FILES
Fixed-length (Format F) Records
Undefined (Format U) Records •
Variable-Length Records

APPLY WRITE-ONLY Clause
Spanned (Format S) Records •

• .178

.... 179
• ••• 179

S-Mode Capabilities ••••
Sequentially Organized S-Mode Files

• _180
.180
.183

~ _183
• .184

on Tape or Mass Storage Devices .185
Source Language considerations 185
Processing Sequentially Organized
S-Mode Files •••••••••••• 185

Directly Organized S-Mode Files .187
Source Language Considerations ••• 187
processing Directly Organized
S-Mode Files • • • • • •

PART III •

.188

• .189

PROGRAMMING TECHNIQUES • • • • • • .191
Coding Considerations for D0S/V3
General considerations •
COpy • • • • • • • • • • .. • • • •

• .191
.191

..... 191
.191 Syntax Checking ••••• _ • •

Formatting the Source Program
Listing • • • •

Environment Division • • • •
RESERVE Clause • • • • _
APPLY WRITE-ONLY Clause

• .191
• ••• 192

• 192
.192

Data Division •••••• • •••• 193
Overall Considerations •

FD Entries • •
Prefixes _ • •

• •193
• •••• 193

.193
Level Numbers

File Section • • • • • •
RECORD CONTAINS Clause •
BLOCK CONTAINS Clause

• .193
• 194

• • .. • • • 194

Working-Storage Section
Separate Modules • • .. • •
Locating the Working-Storage
Section in Dumps • • • • •
REDEFINES Clause •
PICTURE Clause • ~
USAGE Clause • • •
SYNCHRONIZED Clause

• .194
• .194

.194

• .194
.194
.196

• .197
• .200

Special Considerations for DISPLAY
and COMPUTATIONAL Fields. • .200
Data Formats in the Computer ... _ .200

Procedure Division ••••••••••• 202
Modularizing the Procedure Division .202

Main-Line Routine •••••• 203
Processing Subroutines 203
Input/Output Subroutines. • .203

Overall Considerations. .203
OPTIMIZE Option .203

Intermediate Results. • •• 203
Intermediate Results and Binary
Data Items • • • • •
Intermediate Results and COBOL
Library Subroutines
Intermediate Results Greater Than
30 Digits •••••
Intermediate Results and
Floating-point Data Items
Intermediate Results and the ON
SIZE ERROR Option •••• •

Exponentiation • • • • •
Optimization Based on Execution

.203

.203

.204

• .204

.204

.204

Frequency •• • • • • .. •• • .204
Procedure Division Statements .204

COMPUTE Statement 204
IF Statement. .205
MOVE Statement. • • .205
NOTE Statement • • • ,.205
PERFORM Statement ••• • .205

READ INTO and WRITE FROM Options •• 205
TRANSFORM Statement 206

USING THE SORT/MERGE FEATURE. • .207
Sort/Merge Job Control Requirements •• 207

Sort Input and Output Control
Statements 207
Sort Work File Control Statements •• 208

Amount of Intermediate Storage
Required • .. _ • • • ..
Improving Performance

.208

.208

.208 SORT-OPTION Clause •
PRINT Option •
LABEL Option • ..
STORAGE Option
ALTWK Option •

· • • • .208
• • • 208

.208

ERASE Option •
ROUTE option •
SORTWK Option • •
SORT-OPTION Clause Examples

Output File Statements •
Sort Diagnostic Messages • • • •

• .208
• .208

.208
• .208

.208
• .208
• .209

Linkage with the Sort/Merge Feature •• 209
Completion Codes 209
Cataloging a Sort Program •• 209

Checkpoint/Restart During a Sort •••• 210
Using Sort in a Multiphase Environment .210

USING THE REPORT WRITER FEATURE
REPORT Clause in a File

• .211

• .211
• • • • • 211
• •••• 211

.212

.213

Description (FD) Entry
Summing Techniques ..
Use of SUM • • • • •
SUM Routines • • • •
Output Line Overlay
Page Breaks 213

Page Format •• 213
... 214

••• 214

Control Footings and
WITH CODE Clause • •
NEXT GROUP Clause
Floating First Detail
Report Writer Routines

TABLE HANDLING CONSIDERATIONS
Subscripts • • • •
Index-names
Index Data Items •
OCCURS Clause

.215
•••• 215

.217
• • • •• 217

.217
.217

DEPENDING ON Option • • • •
OCCURS Clause with the DEPENDING ON

• .217
.217

Option • • • • • • • • • •
SET Statement
SEARCH Statement • • •
SEARCH ALL Statement • •
Building Tables

PART IV

• .218
• .221

.224
• .224

.225

• .227

LISTER FEATURE. .228
Overall Operation of the Lister •••• 228

The Listing • • • • • .228
The Output Deck • • • • • .228

• 228
.228

Reformatting of Identification and
Environment Divisions ... • • ••
Data Division Reformatting • •
Procedure Division Reformatting
Summary Listing

• .228
• .228

.228

.228
The Source Listing • • •

General Appearance •
Format Conventions •
Type Indicators

The Summary Listing ..,
General Appearance •

The Output Deck
Using the Lister • • • •

Options • • • • •
Programming Considerations

• • • • .. 228
• .228

• • • • • .228
• .228

•••••• 228
.228

• .228
•••• 228

SY~~OLIC DEBUGGING FEATURES .229
Use of the Symbolic Debugging Features .229

Statement Number Option _ • • .229
Flow Trace Option • • • • • • .229
Symbolic Debug Option •••• .. .229

Object-Time Control Cards ••••• 230
Overall Considerations. • • .232
Sample Program -- Testrun •• 232

Debugging TESTRUN • • • • .. • .233

PROGRAM CHECKOUT • • • •
Syntax-Checking Compilation
Identification of Program Versions

.247

.. 247

.247

Debug Language _ ••••••• 247
Flow of Control • • • • .247
Displaying Data Values During
Execution • • • • • • .. • • • • .248
Testing a Program Selectively .250

Testing Changes and Additions to
Programs ••••••••••••• 250
Dumps ••• • • • • • • • • • .251

How to Use a Dump 251
Errors That Can Cause a Dump. • .252
Locating a DTF • • • • • • • .252
Locating Data 253

EXECUTION STATISTICS. • 260
Obtaining Execution Statistics •••• 260

Debugging and Testing •• 260
Optimization Methods •••••••••• 260

Resequencing the Program.. • .260
Insight into SYMDMP output. .260
Common Expression Elimination .260
Backward Movement ••• • .260
Unrolling • • .. • .260
Jamming • • • • • • .260
Unswitching 260
Incorporating Procedures Inline •• 260
Tabling • • • • • • • .260
Efficiency Guidelines •• • .. .260

Diagnostic Messages • • • • .260
Working with Diagnostic Messages .260
Generation of Diagnostic Messages •• 260

Linkage Editor Output •• 261
Execution Time Messages •••••• 261
Recording Program Status. • .262

RERUN Clause. • • • • ••• _ .262
Taking a Checkpoint ... • • • .262

Restarting a Program. .263

APPENDIX A: SAMPLE PROGRAM OUTPUT .265

APPENDIX B: STANDARD TAPE FILE LABELS .279

APPENDIX C: STANDARD MASS STORAGE
DEVICE LABELS • • • •• _ •• 281

APPENDIX D: TRACK FORMATS FOR
DIRECT-ACCESS STORAGE DEVICES .287

APPENDIX E: COBOL LIBRARY SUBROUTINES .289
Input/Output Subroutines 289

Printer Spacing 289
Tape and Sequential Disk Labels •• 289
CLOSE WITH LOCK Subroutine. • .289
WRITE Statement Subroutines .289
READ Statement Subroutines. • .289
REWRITE Statement Subroutines .290
DISPLAY (EXHIBIT and TRACE)
Subroutines • • .. • • • • • • .290
ACCEPT and ST0P (literal) Statement
Subroutines • • • • • • .290
CLOSE Subroutine. • • • • • • .290
Multiple File Tape Subroutine .290
Tape pointer Subroutine •••••• 290
Input/Output Error Subroutines 290
Disk Extent Subroutines .290
3886 OCR Subroutine .290
VSAM Subroutines. • .. • • • .290
Auxiliary Subroutines 291

ASCII Support Subroutines •••••• 291

separately Signed Numeric
Subroutine • • • • • • • • • • .291

Conversion Subroutines. • • • • .291
Arithmetic Verb Subroutines ••••• 293
SOrt/Merge Feature Interface Routine .293
Checkpoint (RERUN) Subroutine .293
Segmentation Feature Subroutine .293
Other Verb Routines •• 293

Compare Subroutines •• 293
MOVE Subroutines. • • • • • • .294
TRANSFORM Subroutine .294
Class Test Subroutine •• 294
SEARCH Subroutine •• 294
Main program or Subprogram
Subroutine • • • • • • • • •

Object-Time Debugging Subroutines
Debug Control Subroutine • •
Statement Number Subroutine
Flow Trace Subroutine
Symbolic Debug Subroutines _ •

Object-Time Execution statistics

• .294
• .294
• .294

.294

.295
••• 295

Subroutines • • • • • • • • • • • • .295
• .295 COUNT Initialization Subroutine

COUNT Frequency Subroutine • •
COUNT Termination Subroutine •
COUNT Print Subroutine

Optimizer Subroutines •• • • •

••• 295
.295
.295
.295
.295 GO TO ••• DEPENDING ON Subroutine

Optimizer DISPLAY Subroutine • •
Transient Subroutines •• • • • •

Symbolic Debug Subroutines • • •
SYMDMP Error Message Subroutine
Error Message Subroutine • • •
Error Message Print Subroutine •
Reposition Tape Subroutine

APPENDIX F: SYSTEM AND SIZE

• .296
• .296
• .296
• .296

.296
• .296

.296

CONSIDERATIONS. • • • • • • • .291
Minimum Machine Requirements for the
compiler. • • • • • • • • • .297
Source Program Size Considerations •• 291

Compiler Capacity ••••••••• 291
Effective Storage Considerations •• 298

Execution Time Considerations •• 299
Multiprogramming Considerations 5 ~ .300
Sort Feature Considerations •• 300

APPENDIX G: COMMUNICATION REGION
Communication Region •

APPENDIX H: SAMPLE JOB DECKS •
Direct Files • • • •

Creating a Direct File • •

• .301
.301

• .303
• 304

• .304

Retrieving and Updating a Direct
File. • • • • • • • • • • • .304

Indexed Files • • • • • • • • .305
Creating an Indexed File. • .305
Retrieving and Updating an Indexed
File. • • • • • • • • . • • .306

Files Used in a Sort Operation. .306
sorting an Unlabeled Tape File .306

APPEtJDIX I: DIAGNOSTIC MESSAGES
Compile-Time Messages
Operator Messages • • • • • • •
Object-Time Messages • • • • • •

COBOL Object Program Unnumbered
Messages • • • • • • • • • • •

APPENDIX J: COBOL 3886 OPTICAL

• .307
.307
.307
.309

• .318

CHARACTER READER SUPPORT. • • .319
3886 OCR Processing •••• .319
Implementing an OCR Operation •• 319

Document Design ••••• 319
Document Description. .320
COBOL Support •••••• 320
File Description. • •••• 320
Record Description. • .320
Procedural Code •••••••••• 321
JCL Considerations. • • •••• 321
Subprogram Interface • • • • • .321

Statements for Invoking 3886 I/O
Functions ••••••••• • .324

OPEN Function (Equivalent to OPEN
Macro) • • • • • • • • • • • • • •
CLOSE Function (Equivalent to DOS
CLOSE Macro) • • • • • • • •
READ Function (Equivalent to DOS
READ and WAITF Macros) • • • • _ •
READO Function (Equivalent to DuS
READ Macro) ••••••••
WAIT Function (Equivalent to DOS
WAITF Macro) • • • • • • • • • • •
MARKL Function (Equivalent to DOS
CNTRL Macro with LMK Option) • • •
MARKD Function (Equivalent to DOS
CNTRL Macro with DMK Option) •• _
EJECT Function (Equivalent to DOS
CNTRL Macro, with ESP Option)
SETDV (Set Device by Loading a
Format Record) Function
(Equivalent to DOS SETDEV Macro) •
COBOL 3886 Library Routine • • • •

processing Tapes from the OCR 3886,
Model 2 • • • • • • ••

INDEX

.324

.324

• 324

.324

,. 324

.324

.325

.325

.325

.325

.326

.333

ILLUSTRATIONS

TABLES

Table 1. Job Control Statements • 16
Table 2. Symbolic Names, Functions,
and Permissible Device Types • • • • • • 21
Table 3. Significant Characters for
Various options ••••••• 40
Table 4. Glossary Definition and
Usage • • • • • • • • _ • • • • • • 65
Table 5. Symbols Used in the Listing
and Glossary to Define
Compiler-Generated Information 66
Table 6. System Message
Identification Codes • • • • • • • _ • • 73
Table 7. Conventional Use of Linkage
Registers • • • • _ • • • • • • • _ • • 78
Table 8. Save Area Layout and Word
Contents • • • • • • • • • _ .• • • • 79
Table 9. Recording Capacities of Mass
Storage Devices ••••• • • • • 97
Table 10. Partial List of Prime
Numbers ••••••• _ • • • • • .105
Table 11. File Status Values and
Error Handling. • • • _ • • • .136
Table 12. File Status ~ey ?alues at
OPEN .••••••••••••••••• 138
Table 13. File Status at Action
Request Time. • • • • • • • • • .138
Table 14. COBOL Statements for
Creating a VSAM File •• _ • • • • .141
Table 15. COBOL Statements for
Retrieving a VSAM File. • • • • .143
Table 16. Fields Preceding DTFMT and
DTFSD •••••••• _ ••• _ •• 151
Table 17. Fields Preceding DTFDA -
ACCESS IS RANDOM -- Actual Track
Addressing •••••••••••• _ •• 151
Table 18. Fields Preceding DTFDA --
ACCESS IS RANDOM -- Relative Track
Addressing ••••••••••••••• 152
Table 19. Fields Preceding DTFDA --
ACCESS IS SEQUENTIAL -- Actual Track
Addressing •••••••••••• _ •• 153

Table 20. Fields Preceding DTFDA --
ACCESS IS SEQUENTIAL -- Relative Track
Addressing ••••••••••••••• 154
Table 21. Fields Preceding DTFIS .154
Table 22. Fields Preceding DTFDU ••• 155
Table 23. Meaning of Pre-DTF Switch •• 155
Table 24. Errors Causing an Invalid
Key Condition ••••••••••••• 156
Table 25. Meaning of Error Bytes for
GIVING Option of Error Declarative
(Part 1 of 2) ••••• _ • • • • .157
Table 26. Location and Meaning of
Error Bits
Table 27.
Error Bits
Table 28.
Error Bits
Table 29.

for DTFMT • • • • • . • .159
Location and Meaning of
for DTFSD •••••••••• 159
Location and Meaning of
for DTFDA • • • • • • • .160
Location and Meaning of

Error Bits for DTFIS •••••• _ ••• 160
Table 30. Location and Meaning of
Error Bits for DTFDU • • • • • • • .161
Table 31. Data Format Conversion
(Part 1 of 2) •••••• _ • • • .198
Table 32. Relationship of PICTURE to
Storage Allocation. • • • • • . • .202
Table 33. Rules for the SET Statement .223
Table 34. Individual Type Codes Used
in SYMDMP Output • • • • • • • • • • • .234
Table 35. Functions of COBOL Library
Conversion Subroutines ••••••••• 292
Table 36. Functions of COBOL Library
Arithmetic Subroutines. • • • • .293
Table 37. OCR Status Key Values and
User Actions • • • • • • • • .322
Table 38. possible Status Key Values,
By Operation • • • • • • • • • • • • • .322
Table 39. User Responses to Status Key 323
Table 40. CALL Statements for
Invoking 3886 I/O Functions •••••• 326

Figure 1. Sample structure of Job Deck
for Compiling, Link Editing, and
Executing a Main Program and Two
Subprograms •••••••••••••• 13
Figure 3. possible Specifications for
X'ss' in the ASSGN Control Statement • 25
Figure 4. Sample Label and File
Extent Information for Mass Storage
Files ••••••• • • • • • • • • • • 30
Figure 5. Job Definition -- Use of
the Librarian • • • • • • • • • • • • • 41
Figure 6. options Available During
Link-Editing •••••••••••
Figure 7. The Relative Location of
the Four System Libraries • • • • •
Figure 8. sample Coding to Calculate
FICA • • • • • • • • • • • • •
Figure 9. Altering a program from
the Source Statement Library Using
INSERT and DELETE Cards
Figure 10. Effect of INSERT and
DELETE Cards • • • •
Figure ,11. Examples of Compiler

44

56

58

58

58

Output (Part 1 of 4) •••• 60
Figure 12. A Program that Produces
COBOL Compiler Diagnostics ••••
Figure 13. Linkage Editor Output
Figure 14. Output from Execution Job

69
• 70

Step • • • • • • • • • • • • • • • 72
Figure 15. Calling and Called
Programs ••••••••••••
Figure 16. Example of Data Flow Logic
in a Call Structure • • • • • •
Figure 17. Sample Linkage Koutines
Used with a Calling subprogram • • •
Figure 18. Sample In-line Parameter
List •••••••••••••••
Figure 19. Sample Linkage Routines
Used with a Lowest Level Subprogram
Figure 20. Example of an Assembler
Language Subroutine for Accomplishing
Overlay •• • • • • • • • • • • • •
Figure 21. Flow Diagram of Overlay
Logic • • • • • • • • •
Figure 22. Job Control for
Accomplishing Overlay
Figure 23. Calling Sequence to Obtain
Overlay Between Three COBOL
Subprograms (Part 1 of 3) ••••
Figure 24. Segmenting the Program

• 75

• 78

80

81

81

82

84

84

• 85

SAVECORE •••••••• • 89
Figure 25. Storage Layout for SAVECORE 91
Figure 26. Compiler Output for
SAVECORE • • • • • • • • • • 92
Figure 27. Link Editing a segmented
Program •• • • • • • • •• • • • •
Figure 28. Location of Sort Program
in a Segmentation Structure • _ • •
Figure 29. Structures of the Actual

94

94

Key •••••••••••••••••• 102

FIGURES

Figure 30. Permissible Specifications
for the First Eight Bytes of the
Actual Key •••••••••••••• 102
Figure 31. Creating a Direct File
Usinq Method B (Part 1 of 4)
Figure 32. Creating a Direct File
with Relative Track Addressing Using
Method B (Part 1 of 4)

• .107

• .112
Figure 33. Formats of Blocked and
Unblocked Records •••••• ~ •••• 118
Figure 34. Adding a Record to a Prime
Track ••••••••••• • .120
Figure 35. VSAM Data Organization •• 129
Figure 36. Defining a VSAM Master
Catalog •••••••••••••••• 131
Figure 37. Defining a VSAM Data Space 132
Figure 38. Defining a Key-Sequenced
Suballocated VSAM File ••••• 133
Figure 39. Standard Tape File Label
and TLBL Card (Showing Maximum
Specifications) •••••••
Figure 40. Standard Tape File Label
and TLBL Card (Showing Minimum
Requi remen ts) ••••••
Figure 41. Standard, User Standard.

• .163

• .164

and Volume Labels ••••••••••• 165
Fig~re 42. Nonstandard Labels ••••• 165
Figure 43. processing an Unlabeled
Multifile VolUme (Part 1 of 2)
Figure 44. Reading a Multivolume File
with Standard Labels; Creating a
Multifile Volume with Standard Labels

.168

(Part 1 of 2) ••••••••••••• 170
Figure 45. Creating an Unlabeled
Multivolume File (Part 1 of 2)
Figure 46. Fixed-Length (Format F)
Records • • • • • • • • • • • • •
Figure 47. Undefined (Format U)

.172

.179

Records • • • • • • • • • • • • .180
Figure 48. Unblocked V-Mode Records .180
Figure 49. Blocked V-Mode Records •• 181
Figure 50. Fields in Unblocked V-Mode
Records _ ••••••••••••••• 182
Figure 51. Fields in Blocked V-Mode
Records • • • • • • • • • •
Figure 52. First Two Blocks of
VARIABLE-FILE-2 •••••
Figure 53. Control Fields of an

.182

.183

S-Mode Record ••••••••••••• 184
Figure 54. One Logical Record
Spanning Physical Blocks ••••• 185
Figure 55. First Four Blocks of
SPAN-FILE • • • • • • • • • • •
Figure 56. Advantage of S-Mode
Records Over V-Mode Records
Figure 57. Direct and Sequential

.186

• .186

Spanned Files on a Mass Storage Device 187
Figure 58. Treatment of Varying
Values in a Data Item of PICTURE S9 •• 202
Figure 58.1. OPTION Control Statement
to SORT/MERGE .•••••••• _ ••• 208

Figure 58.2. File Name and Default
Symbolic Unit Names • • • • • .208
Figure 58.3. SUMMARY OF SO~T-OPTION
Operands ••••••••••••••• 208
Figure 59. Sample of GROUP INDICATE
Clause and Resultant Execution Output .213
Figure 60. Format of a Report Record
When the CODE Clause is Specified .214
Figure 61. Activating the NEXT GROUP
Clause •••••••••••••••• 215
Figure 62. Calculating Record Lengths
When Using the OCCURS Clause with the
DEPENDING ON Option •••••••••• 220

Figure 63. Table Structure in Virtual
Storage •••••••••••••••• 221
Figure 64. Using the Symbolic
Debugging Features to Debug the
Program TESTRUi-.J (Part 1 of 12) •• 235
Figure 65. Sample Output of EXHIBIT
Statement with the CHANGED NAMED
Option •••••••••••••••• 249
Figure 66. Sample Dump Resulting from
Abnormal Termination (Part 1 of 6) •• 254
Figure 67. Track Format .288
Figure 68. Communication Region in
the Supervisor • • • • .• _ • .302
Figure 69. Sample OCR ~rogram (Part 1
of 5) ••••.• • • • • • .327

FEATURES OF THE PROGRAM PRODUCT DOS/vS COMPILER

The IBM DOS/VS COBOL Compiler includes
the following features:

• Object Code:

(1) Optimized Object Code -- which
results, when specified, in up to
30% space saving in object program
generated code and global tables
as compared with Version 2 of the
IBM DOS Full American National
Standard COBOL Compiler. The
space saved depends on I'the number
of ref erenced procedurE~-names and
branches, and on 01-level data
names.

(2) Double-Buffered ISAM -- allows
faster sequential processing of
indexed files.

(3) The MOVE Statement and Comparisons
-- when a MOVE statement or a
comparison involves a one-byte
literal, generated code for the
move and the comparison saves
object program space and
compilation time.

(4) DISPLAY Routines -- the DISPLAY
routine has been spli.t into
subsets for efficient: object
program code.

• Alphabetized Cross-Reference Listing
(SXREF) -- for easier reference to
user-specified names in a program.
SXREF performs up to 25 times faster
than the source-ordered cross-reference
(XREF) feature of V'ersion 2 of the IBM
DOS Full American National Standard
COBOL Compiler. The larger the source
program, the more ,that performance is
improved. Total compilation time is up
to 2 times faster.

• Debugging Facilities:

(1) Symbolic Debug Feature -- which
provides a symbolic formatted dump
at abnormal termination, or a
dynamic dump during program
execution.

(2) Flow Trace Option -- a formatted
trace can be requested for a
variable number of procedures
executed before abnormal
termination.

(3) Statement Number Option -
identifies the COBOL statement

being executed at abnormal
termination.

(4) Expanded CLIST and SYM -- for
detailed information about the
Data Division and Procedure
Division.

(5) Relocation Factor -- can be
requested to be included in
addresses on t,he object code
listing, for easier debugging.

(6) Working-Storage Location and Size
-- When CLIST and SYM are in
effect, the starting address and
size of Working-Storage are
printed.

(7) Syntax-Check Feature -- optionally
provides a quick scan of the
source program without producing
object code. Syntax checking can
be conditional or unconditional.

(8) WHEN-COMPILED Special Register -
makes the date-and-time-compiled
constant carried in the object
module available to the object
program. This special register is
a programmer aid ,that provides a
means of associating a compilation
listing with both the object
program and the output produced at
execution time.

• Device Support -- the following devices
can be specified in addition to de~ices
supported by the IBM DOS Full American
National Standard COBOL compilers:

5203,3203 -- line printers

3211 -- 150-character printer

3330,3340 -- mass storage (direct
access) facilities

3540 -- Diskette input/output unit

3410,3420 -- tape utility devices

2560,3504,3505,3525,3881,3886,5425
advanced unit-record devices

• ASCII Support -- allows creation and
retrieval of tape files written in the
American National Standard Code for
Information Interchange (ASCII).

• VSAM (Virtual Storage Access Method)
Support -- provides fast storage and

Features of the Program Product DOS/VS Compiler 7

8

retrieval of records, password
protection, centralized and simplified
data and space management, advanced
error recovery facilities, plus system
catalog. COBOL supports indexed
(key-sequenced) files and sequential
(entry-sequenced) files. Records can
be fixed or variable in length.

• FIPS (Federal Information Processing
Standard) Flagger -- issues messages
identifying nonstandard elements in a
COBOL source program. The FIPS Flagger
makes it possible to ensure that COBOL
clauses and statements in a DOS/VS
COBOL source program conform to the
Federal Information Processing
Standard.

• Lister -- provides a specially
formatted source listing with embedded
cross-references for increased
intelligibility and ease of use. A
reformatted source deck is available as
an option.

• Generic Key Facility for ISAM Files
sequential record retrieval can be

reque~ted using a search argument
comprised of a user-specified number of
high-order characters <generic portion)
of tfue NOMINAL KEY. The user need not
spectfy a full or exact search key.
This feature is supported via the START
verb •.

• MERGE i'Support -- combines from two to
eight ~dentically sequenced files on a
set o~ specified keys and makes records
available, in merged order, to an
output procedure or a sequential output
file.

• Verb p~ofiles -- facilitates
identifying and locating verbs in the
COBOL spurce program. Options provide
a verb summary or a verb
cross-reference listing which includes
the verb summary.

• Execution-time statistics -- maintains
a count of the number of times each
verb in the COBOL source program is
executed during an individual program
eX'ecution.

PART I

INTRODUCTION--).

JOE DEFINITION~--.)

JOB PROCESSING--.)

PREPARING COBOL PROGRAMS FOR PROCESSING--------------------~)

LIBRARIAN FUNCTIONS--~)

INTERPRETING OUTPUT--~)

CALLING AND CALLED PROGRAMS--------------------------------~. ~

USING THE SEGMENTATION FEATURE----------------------------~: ~

COBOL has undergone considerable
refinement and standardization since 1959.
A standard COBOL has been approved by the
American National Standards Institute, an
industry-wide association of computer
manufacturers and users. This standard is
called American National Standard COBOL.
IBM Full American National Standard COBOL
is compatible with American National
Standard COBOL and includes a number of
extensions to it as well.

An IBM COBOL program may be processed by
the IBM DOS/VS System. Under control of
the operating system, a set of COBOL source
statements is translated to form a module.
In order to be executed, the module in turn
must be processed to form a phase. The
reasons for this will become clear later.
For now it is sufficient to note that the
flow of a COBOL program through the
operating system is from source statements
to module to phase.

The DOS/VS System. consists essentially
of a control prooram and a number of
processing programs, and data man~gment.

CONTROL PROGRAM

The components of the control program
are: the Supervisor, Job Control
Processor, and the Initial Program loader.

SUPERVISOR

The main function of the Supervisor is
to provide an orderly and efficient flow of
jobs through the operating system. (A job
is some specified unit of work, such as the
processing of a COBOL program.) The
Supervisor loads into the computer the
phases that are to be executed. During
execution of the program, control usually
alternates between the Supervisor and the
processing program. The Supervisor, for
example, handles all requests for
input/output operations.

JOB CONTROL PROCESSOR

The primary function of the Job Control
Processor is the processing of job control

statements. Job control statements
describe the jobs to be performed and
specify the programmer's reguirements for
each job. Job control statemen ts are
written by the programmer using the job
control language. The use of job control
statements and the rules for ~pecifying
them are discussed later.

INITIAL PROGRAM lOADER

The Initial Program loader (1Pl) routine
loads the Supervisor into storage when
system operation is initiated. Detailed
information about the Initial Program
loader need not concern the COBOL
programmer. Anyone interested in this
material, however, can find it in the
publication DOS/VS Sygtem Manag~n1-Guide.

PROCESSING PROGRAMS

The processing programs include the
COSOl compiler, service programs, and
application programs.

SYSTEM SERVICE PROGRAMS

The system service programs provide the
functions of generating the system,
creating and maintaining the library
sections, and editing programs into disk
residence before execution. The system
service programs are:

1. Linkage Editor. The linkage Editor
processes modules and incorporates
them into phases. A single module can
be edited to form a single phase, or
several modules can be edited or
linke~ together to form one executable
phase. Moreover, a module to be
processed by the linkage Editor may be
one that was just created (during the
same job) or one that was created in a
previous job and saved.

The programmer instructs the Linkage
Editor to perform these functions
through job control statements. In
addition, there are several linkage
editor control statements.
Information on their use is given
later.

Introduction 11

2. Librarian. The Librarian consists of
a group of programs used for
generating the system, maintaining and
reorganizing the disk library areas,
and providing printed and punched
output from the libraries. The system
libraries are: the core image
library, the relocatable library, the
source statement library, and the
procedure library. In addition, the
Librarian supports private core image,
relocatable, and source statement
libraries. Detailed information on
the Librarian is given later.

APPLICATION PROGRAMS

Application programs are usually
programs written in a higher-level
programming language (e.g., COBOL). All
application programs within the Disk
Operating System/Virtual Storage are
executed under the supervision of the
control program.

IBM-SUPPLIED PROCESSING PROGRAMS

The following are examples of
IBM-supplied processing programs:

1. Language translators, e.g., DOS/VS
COBOL, which translate source programs
written in various languages into
machine (or object) language.

2. Sort/Merge

3. Utilities

DATA MANAGEMENT

A third important class of components is
data management routines. These are
available for inclusion in problem programs
to relieve the programmer of the detailed
programming associated with the transfer of
data between programs and auxiliary
storage.

MULTIPROGRAMMING

Multiprogramming refers to the ability
of the system to control more than one

12

program concurrently by interleaving their
execution. This support is referred to as
fixed partitioned multiprogramming, since
the virtual address space is divided into a
fixed number of partitions. Each program
occupies a contiguous area of storage. The
amount of virtual storage allocated to
programs to be executed may be determined
when the system is generated, or it may be
determined by the operator when the program
is loaded into storage for execution.

BACKGROUND VS= FOREGROUND PROGRAMS

There are two types of problem programs
in multiprogramming: background and
foreground. Background and foreground
programs are initiated by the Job Control
Processor from batched-job input streams.

Background and foreground programs
initiate and terminate independently of one
another. Neither is aware of the other's
status or existence.

The system is capable of concurrently
operating one background program and four
foreground programs. Priority for CPU
processing is controlled by the Supervisor
with foreground programs normally having
priority over background programs. Control
is taken away from a high priority program
when that program encounters a condition
that prevents continuation of processing,
until a specified 'event has occurred.
Control is taken away from a lower priority
program when an event for which a higher
priority program was waiting has been
completed. Interruptions are received and
processed by the Supervisor.

In a multiprogramming environment, the
DOS/VS COBOL compiler can execute either in
the background or the foreground. In
systems that support the batched-job
foreground and private core image library
options, the Linkage Editor can execute in
any foreground partition as well as in the
background partition. To execute the
DOS/VS COBOL compiler for the linkage
editor in any foreground partition, a
private core-image library is required.
Additional information on executing the
compiler and Linkage Editor in the
foreground is contained in "Appendix F:
System and Size Considerations." COBOL
program phases can be executed as either
background or foreground programs.

A job is a specified unit of work to be
performed under control of the operating
system. A typical job might be the
processing of a COBOL program -- compiling
source statements, editing the module
produced to form a p~ase, and then
executing the phase. Job definition the
process of specifying the work to be done
during a single job -- allows the
programmer considerable flexibility. A job
can include as many or as few job step§. as
the programmer desires.

JOB STEPS

A job step is exactly what the name
implies -- one step in the processing of a
job. Thus, in the job mentioned above, one
job step is the compilation of source
statements; another is the link editing of
a module; another is the execution of a
phase. In contrast to a job definition,
the definition of a job step is fixed.
Each job step involves the execution of a
program, whether it be a program that is
part of the Disk Operating SystemlVirtual
Storage or a program that is written by the
programmer. A compilation requires the
execution of the DOS/VS COBOL compiler.
Similarly, an editing implies the execution
of the Linkage Editor Finally, the
execution of a phase is the execution of
the problem program itself.

Compilation Job Steps

The compilation of a COBOL program may
necessitate more than one job step (more
than" one execution of the DOS/VS COBOL
compiler). In some cases, a COBOL program
consists of a main prog~am and one or more
subprograms. To compile such a program, a
separate job step must be specified for the
main program and for each of the
subprograms. Thus, the DOS/VS COBOL
compiler is executed once for the main
program and once for each subprogram. Each
execution of the compiler produces a
module. The separate modules can then be
combined into one phase by a single job
step -- the ex~cution of the Linkage
Fditor.

For a COBOL program that consists of a
main program and two subprograms,
compilation and execution require five

steps: (1) compile (main progr am), (2)
compile (first subprogram), (3) compile
(second subprogram), {4} link edit {three
modules combined into one phase}, and (5)
execute (phase). Figure 1 shows a sample I
structure of the job deck for these five .':
job steps. Compilation and execution in •
three job steps -- compile, link edit, and
execute -- is applicable only when the
COBOL source program is a single main
program.

III JOB PROG1
I •
I •
I .
III EXEC FCOBOL
I {source deck - main program]
1/*
I •
I .
I •
III EXEC rCOBOL
I {source deck - first subprogram]
1/*
I .
I •
I .
III EXEC FCOBOL
I {source deck - second subprogram]
1/*
I .
I .
I .
III EXEC LNKEDT
I .
I •
I •
III EXEC

Figure 1. Sample structure of Job Deck
for Compiling, Link Editing,
and Executing a Main Program
and Two Subprograms

The execution of a COBOL program has
thus far been referred to as the execution
of a phase. It is possible, however, to
organize a COBOL program so that it is
executed as two or more phases. Such a
proqram is known as a multiphase proqram.

By definition, a Eh~ is that portion
of a program that is loaded into virtual
storage by a single operation of the
Supervisor. A COBOL program can be

Job Definition 13

executed as a single phase only if there is
an area of virtual storage available to
accommodate all of it. A program that is
too large to be executed as a single phase
must be structured as a multiphase program.
The technique that enables the programmer
to use subprograms that do not fit into
virtual storage (along with the main
program) is called ~lay.

The number of phases in a COBOL program
has no effect on the number of job steps
required to process that program. As will
be seen, the Linkage Editor can produce one
or more phases in a single job step.
Similarly, both single-phase and multiphase
programs require only one execution job
step. Phase execution is the execution of
all phases that constitute one COBOL
program.

Detailed information on overlay
structures, as well as information on using
the facilities of the operating system to
create multiple phases and to execute them,
can be found in the chapter "Calling and
Called Programs."

TYPES OF JOBS

A typical job falls into one of several
categories. A brief description of these
categories follows; a complete discussion
is found in the chapter IIPreparing COBOL
Programs for Processing. 1I

Compile-Only: This type of job involves
only the execution of the COBOL compiler
It is useful when checking for errors in
COBOL source statements. A compile-only
job is also used to produce a module that
is to be further processed in a subsequent
job.

A compile-only job can consist of one
job step or several successive job steps.

Edit-Only: This type of job involves only
the execution of the Linkage Editor. It is
used primarily to combine modules produced
in previous compile-only jobs, and to check
that all cross references between modules
have been resolved. The programmer can
specify that all modules be combined to
form one phase; or he can specify that some
modules form one phase and that others form
additional phases. The phase output
produced as the result of an edit-only job
can be retained for execution in a
subsequent job.

Compil~and Fdit: This type of job
combines the functions of the compile-only
and the edit-only jobs. It requires the
execution of both the COBOL compiler and
the Linkage Editor. The job can include
one or more compilations, resulting in one
or more modules. The programmer can
specify that the Linkage Editor process any
or all of the modules just produced; in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing.

ExecuiE=0nly: This type of job involveF
the execution of a phase (or multiple
phases) produced in a previous job. OnCE a
COBOL program has been compiled and edited
successfully, it can be retained as one or
more phases and executed whenever needed.
This eliminates the need for recompiling
and re-editing every time a COBOL program
is to be executed.

Edit and-!~te: This type of job
combines the functions of the edit-only and
the execute-only jobs. It reauires the
execution of both the Linkage Editor and
the resulting phase(s).

Compile, Edit.L and Execute: This type of
job combines the functions of the compile
and edit and the execute-only jobs. It
calls for the execution of the COBOL
compiler, the Linkage Editor, and the
problem program; that is, the COBOL program
is to be completely processed.

When considering the definition of his
job, the programmer should be aware of the
following: if a job step is cancelled
during execution, the entire job is
terminated; any remaining job si~~~~
skipped. Thus, in a compile-edit-and
execute job, a failure in compilation
precludes the editing of the module(s) and
phase execution. Similarly, a failure in
editing precludes phase execution.

For this reason, a job usually should
(but need not) consist 0= related job steps
only. For example, if two independent
single-phase executions are included in one
job, the failure of the first phase
execution precludes the execution of the
second phase. Defining each phase
execution as a separate job would prevent
this from happening. If successful
execution of both phases can be guaranteed
before the job is run, however, the
programmer may prefer to include both
executions in a single job.

JOB DEFINITION STATEMENTS

Once the programmer has decided the work
to be done within his job and how many jab
steps are required to perform the job, he
can then define his job by writing job
control statements. Since these statements
are usually punched in cards, the set of
job control statements is referred to as a
job deck. In addition to job control
statements, the job deck can include input
data for a program that is executed during
a job step. For example, input data for
the COBOL compiler the COBOL program to
be compiled -- can be placed in the job
deck.

The inclusion of input data in the job
deck depends upon the manner in which the
installation has assigned input/output
devices. Job control statements are read
from the unit named SYSRDR (system reader),
which can be either a card reader., a
magnetic tape unit, or a disk extent.
Input to the processing programs is read
from the unit named SYSIPT (system input),
which also can be either a card reader~ a
magnetic tape unit, or a disk extent. The
installation has the option of assigning
either two separate devices for these units
(one device for SYSRDR, a second device for
SYSIPT) or one device to serve as both
SYSRDR and SYSIPT. If two devices have
been assigned, the job deck must consist of
only job control statements; input data
must be kept separate. If only one device
has been assigned, input data must be
included within the job deck.

There are four job control statements
that are used for job definition: the JOB
statement, the EXEC statement, the
end-of-data s"tatement (/*), and the
end-of-job statement (/&). In this
chapter, the discussion of these job
control statements is limited to the
function and use of each statement. The
rules for writing each statement are given
in the chapter "Preparing COBOL Programs
for Processing."

The JOB statement indicates the
beginning of control information for a job.
The specified job name is stored in the
communications region of the corresponding
partition and is used by job accountinq and
to identify listings produced during
execution of the job.

The JOB statement may be omitted, in
which case the job name NONAME is stored in
the communications region. If the JOB
statement is present, it must contain a job
name; otherwise, an error condition occurs.

The JOB statement is always printed in
positions 1 through 72 on SYSLST and
SYSLOG. The time-of-day and date are also
printed. The JOB statement causes a skip
to a new paqe before printing is started on
SYSLST.

When a JOB statement is encountered, the
job control program stores the job name
from the JOB statement into the
communications region. If the /& statement
was omitted, the next JOB statement will
cause control to be transferred to the
end-of-job routine to simulate the /&
statement.

The EXEC statement requests the
execution of a program. Therefore, one
EXEC statement is required for each job
step within a job. The EXEC statement
indicates the program that is to be
executed (for example, the COBOL compiler,
the Linkage Editor). As soon as the EXEC
statement has been processed, the program
indicated by the statement begins
execution.

The end-of-data statement, also referred
to as the /* (slaSh asterisk) statement,
defines the end of a program's input data.
When the data is included within the job
deck (that is, SYSIPT and SYSRDR are the
same device), the /* statement immediately
follows the input data. For example, COBOL
source statements would be placed
immediately after the EXEC statement for
the COBOL compiler; a /* statement would
follow the last COBOL source statement.

Note: For an input file on a 5425 MFCU,
the /* card must be followed by a blank
card.

When input data is kept separate (that
is, SYSIPT and SYSRDR are separate
devices), the /* statement immediately
follows each set of input data on SYSIPT.
For example, if a job consists of two
compilation job steps, an editing job step,
and an execution job step, SYSIPT would
contain the source statements for the first
compilation followed by a /* statement, the
source statements for the second
compilation followed by a /* statement, any
input data for the Linkage Editor followed
by a /* s"tatement, and perhaps some input
data for the problem program followed by a
1* statement.

The end-of-job statement, also referred
to as the /& (slash ampersand) statement,
.defines the end of the job. A /& statement
must appear as the last statement in the
job deck.

Job Definition 15

OTHER JOB CONTROL STATEMENTS

The four job definition statements form
the framework of the job deck. There are a
number of other job control stateIT.ents in
the job control language; however, not all
of them must appear in the job deck. The
job control statements are summarized
briefly in Table 1.

The double slash preceding each
statement name identifies the statement as
a job control statement. ~ost of the
statements are used for data management
creating, manipulating, and keeping track
of data files. (Data files are externally
stored collections of data from which data
is read and onto which data is written.)

16

Table 1. Job Control statements
r---------T-------------------------------,
I Statement 1 Function I

r---------+-------------------------------~
// ASSGN Input/output assignments. 1

// CLOSE

// DATE

// DLAB

// DLBL

// EXEC

// EXTENT

// JOB
1
I

// LBLTYPI

1
//

I
1

LISTIOI

// MTC

// OP'I'ION

// PAUSE

// RESET
1
I
I
1// RSTRT
1
1
1// TLBL
1

1// TPLAB
I
1// UPSI
1

1// VOL
I
1// XTENT
1
1/*
1
I
1/&
I

1
1

I
Closes a logical unit assignedl

to magnetic tape. 1

Provides a date for the
Communication Region.

1

I
1
I

Disk file label information. 1

Disk file label informatio!.l
and VSAM file processing.

Execute program.

Disk file extent.

Beginning of control
information for a job.

Reserves storage for label
information.

Lists input/output
assignments.

Controls operations on
magnetic tape.

specifies one or more job
control options.

Creates a pause for operator
intervention.

Resets input/output
assignments to standard
assignments.

Restarts a checkpointed
program ..

Tape label information.

Tape label information.

sets user-program switches.

Disk/tape label information.

Disk file extent.

End-of-data-file or
end-of-job-step.

End-of-job.

I
i
1
I
I
I
I
1
1
1
I
1
I
I
I
I
i
I
I
1

1

I

1 * Corrments. 1 l _________ ~ _______________________________ J

This chapter describes in greater detail
the three types of job steps involved in
processing a COBOL program. Once the
reader becomes familiar with the
information presented here, he should be
able to write control statements by
referring only to the next chapter,
"Preparing COEOL Programs for Processing."

COMPILATION

Compilation. is the execution of the
COBOL compiler~ The programmer requests
compilation by placing in the job deck an
EXEC statement that contains the program
name FCOEOL, the name of the DOS/VS COBOL
compiler. This is the EXEC FCOBOL
statement.

Input to the compiler is a set of COBOL
source statements, consisting of either a
main program or a subprogram. Source
statements must be punched in Extended
Binary-Coded-Decimal Interchange Code
(EBCDIC). The COBOL source statements are
read from SYSIPT. The job deck is read
from SYSBDR. If SYSRDR and SYSIPT are
assigned to the same unit, the COBOL source
statements should be placed after the EXEC
FCOBOL statement in the job deck.

Output from the COBOL compiler is
dependent upon the options specified when
the system is generated. This output may
include a listing of source statements
exactly as they appear in the input deck.
The source listing is produced on SYSLST.
In addition, the module produced by the
compiler may be written on SYSLNK, the
linkage editor input unit, and punched on
SYSPCH. Separate Data and/or Procedure
Division maps, a.symbolic cross-reference
list, and diagnostic messages can also be
produced. The format of compiler output is
discussed and illustrated in the chapter
"Interpreting Output."

The programmer can override any of the
compiler options specified when the system
was generated, or include some not
previously specified, by using the OPTION
control statement in the compile job step.
Compiler options are discussed in detail in
the chapter "Preparing COBOL Programs for
Processing."

EDITING

Editing is the execution of the Linkage
Editor. The programmer requests editing by

. placing in the job deck an EXEC statement
that contains the program name LNKEDT, the
name of the Linkage Editor. This is the
EXEC LNKEDT statement.

Input to the Linkage Editor consists of
a set of linkage editor control statements
and one or more modules to be edited.
These modules include any of the following:

1. Modules that were compiled previously
in the job and placed at that time on
the linkage editor input unit, SYSLNK.

2. Modules that were compiled in a
previous job and saved as module
decks. The module decks must be
placed on SYSIPT. Linkage editor
control statements are read from
SYSRDR.

3. Modules that were compiled in a
previous job step and cataloged in the
relocatable library. The relocatable
library is a collection of frequently
used routines in the form of modules,
that can be incluJed in a program
phase via the INCLUDE control
~tatement in the linkage editor job
step.

Output from the Linkage Editor consists
of one or more phases. A phase may be an
entire program or it may be part of an
overlay structure (multiple phases) •

A phase produced by the Linkage Editor
can be executed immediately after it is
produced (that is, in the job step
immediately following the linkage editor
job step), or it can be executed later,
either in a subsequent job step of the same
job or in a subsequent job. In either of
the latter cases, the phase to be executed
must be cataloged in the core image libary.
Such a phase can be retrieved in the
execute job step by specifying the phase
name in the EXEC statement, where phase
name is the name under which it was
cataloged. Otherwise, the phase output is
retained only for the duration of one job
step following the linkage editor job step.
That is, if the module that was just link
edited is to be executed in the next job
step, it need not have been cataloged. An
EXEC statement will cause the phase to be
brought in from the temporary part of the

Job Processing 17

core image library and will begin
execution. However, the next time such a
module is to be executed, the linkage
editor job step is required since the phase
was not cataloged in the core image
library.

If a private core image library is
assigned, output from the Linkage Editor is
placed in the private core image library
(either permanently or temporarily) rather
than in the resident system core image
library. When execution of a program is
requested and a private core image library
is assigned, this library is searched first
for the requested phase name and then the
system core image library is searched.

In addition to the phase, the Linkage
Editor produces a phase map on SYSLST.
Linkage editor diagnostic messages are also
printed on SYSLST. If the NOMAP option of
the linkage editor ACTION control statement
is specified, no phase map is produced and
linkage editor diagnostic messages are
listed on SYSLST, if assigned. Otherwise,
the diagnostic messages are listed on
SYSLOG. The contents of the phase map are
discussed and illustrated in the chapter
"Interpreting Output."

Linkage editor control statements direct
the execution of the Linkage Editor.
Together with any module decks to be
processed, they form the linkage editor
input deck, which is read by the Job
Control Processor from SYSIPT and written
on SYSLNK.

There are four linkage editor control
statements: the ACTION statement, the
PHASE sta~ement, the ENTRY statement, and
the INCLUDE statement. These statements
are discussed in the next chapter.

PHASE EXECUTION

Phase execution is the execution of the
problem program, for example, the program
written by the COBOL programmer. If the
program is an overlay structure (multiple
phase), the execution job step actually
involves the execution of all the phases in
the program.

18

The phase(s) to be executed must be
contained in the core ima~ibrary. The
core image library is a collection of
executable phases from which programs are
loaded by the Supervisor. A phase is
written in the temporary part of the core
image library by the Linkage Editor at the
time the phase is produced. It is
permanently retained (cataloged) in the
core image library, if the programmer has
so requested, via the CATAL option in the
OPTION control statement.

The programmer requests the execution of
a phase by placing in the job deck an EXEC
statement that specifies the name of the
phase. However~ if the phase to be
executed was produced in the immediately
preceding job step, it is not necessary to
specify its name in the EXEC statement.

MULTIPHASE PROGRAMS

A COBOL program can be executed as a
single phase as long as there is an area of
virtual storage available to accommodate
it. This area, known as the £robl~
proaram area, must be large enough to
contain the main program and all called
subprograms. When a program is too large
to be executed as a single phase, it must
be structured as a multiphase program.

The overlay structure available to the
COBOL programmer for multiphase programs is
known as root phase overlay, and is used
primarily for programs of three or more
phases. One phase of the program is
designated as the root phase (main program)
and, as such, remains in the problem
program area throughout the execution of
the entire program. The other phases in
the program -- subordinate phas~ -- are
loaded into the problem program area as
they are needed. A subordinate phase may
overlay any previously loaded subordinate
phase, but no subordinate phase may overlay
the root phase. One or more subordinate
phases can reside simultaneously in storage
with the root phase.

Use of the linkage editor control
statements needed to effect overlay are
discussed in the chapter "Calling and
Called Programs."

This chapter provides information about
preparing COBOL source programs for
compilation, link editing, and execution.

ASSIGNMENT OF INPUT/OUTPUT DEVICES

Almost all COBOL programs include
input/output statements calling for data to
be read from or written into data files
stored on external devices. COBOL programs
do not reference input/output devices by
their actual physical address, but rather
by their symbolic names. Thus, a COBOL
program is dependent on the device type but
not on the actual device address. Using
VSAM, it is not even dependent on the
device type. The COBOL programmer need
only select the symbolic name of a device
from a fixed set of symbolic names. At
execution time, as a job control function,
the symbolic name is associated with an
actual physical device. The standard
assignment of physical addresses to
symbolic names may be made at system
generation time. However, job control
statements and operator commands can alter
the standard device assignment before
program execution. This is discussed later
in this chapter.

Using DOS/VS, a logical unit may also be
assigned to another logical unit or a
qeneral device class or specific device
type. For more information on this, see
DOS/VS System Management Guide and DOS/VS
System Control statementse

The symbolic names are divided into two
classes: system logical units and
programmer logical units.

PREPARING COBOL PROGRAMS FOR PROCESSING

The system logical units are used by the
control program and by IBM-supplied
processing programs. SYSIPT, SYSLST,
SYSPCH, and SYSLOG can be implicitly
referenced by certain COBOL procedural
statements. Two additional names, SYSI~
and SYSOUT, are defined for background
program assignments~ The names are valid
only to the Job Control Processor, and
cannot be referenced in the COBOL program.
SYSIN can be used when SYSRDR and SYSIPT
are the same device; SYSOUT must be used
when SYSLST and SYSPCH are assigned to the
same magnetic tape unit. A complete
discussion of the assignment of the logical
unit SYSCLB can be found in the publication
DOS/VS System Control statements.

Prograrr.mer logical units are those in
the range SYSOOO through SYS240 (depending
on the number of partitions in the system)
and are referred to in the COBOL source
language ASSIGN clause.

A COBOL programmer uses the source
language ASSIGN clause to assign a file
used by his problem program to the
appropriate symbolic name. Although
symbolic names may be assigned to physical
devices at system generation time, the
programmer may alter these assignments at
execution time by means of the ASSGN
control statement. However, if the
programmer wishes to use the assignments
made at system generation time for his own
data files in the COBOL program, ASSGN
control statements are unnecessary.

Table 2 is a complete list of symbolic
names and their usage.

Preparing COBOL Programs for Processing 19

I

Table 2. Symbolic Names, Functions, and Permissible Device Types
r
I Symbolic I Function I Permissible I
IName I I Device Types I
r --+ ------------------+I----------------------~I
ISYSRDR IInput unit for control statements or commands. I Card reader \
I I I Magnetic Tape unit I
I I , Disk extent I
I I I 3540 diskette I
r----_+_ --t---------------------~I
15YSIPT IInput unit for programs. I Card reader I
I I I Magnetic tape unit I
I I I Disk extent I
I I I 3540 diskette I
r----+ I I
ISYSPCE l:1ain unit for punched output. I Card punch I
I I I ~agnetic tape unit I
I I I Disk extent I
I I I 3540 diskette I
t I -+-\ -----. r
\SYSLST IMain unit for printed output. I Printer 1
I I I Magnetic tape unit I
I I , Disk extent 1
I I I 3540 diskette I
t I -------------------~I~---------------------;I
ISYSLOG IReceives operator messages and logs in job control I Printer keyboard I
I I sta tements. I Printer I
I I , Display operator consolel
i-----+_ I f
ISYS1~K IInput to the Linkage E;ditor. 1 Difk extent I
I I 'I
r I I I
ISYShLS IContains the operating system, the core imaqe I Disk extent I
I Ilibrary, relocatable library, source statement I (2314,3330,3340) I
I ,library, and. procedure library. I I
I +-- --t I
I SYSCLE I A pri va te core image library. I Disk extent I
r , ----;1-------- ,
ISYSSLB IA private source statement library. I Disk extent ,
t- I I ,
ISYSRLE IA private relocatable library. , Disk extent I
~ I ------~I------------ I
ISYSIN IMust be useJ when SYSBDR and SYSIFT are assigned tol Disk I
I Ithe same disk extent. May be used when they are I Magnetic tape unit I
I Isame aisk extent. ~ay be used when they are I Card reader I
, lassigned to the same ~ard reader or magnetic tape. , ~540 Diskette ,
I- I I t
ISYSOUT IThis name must be used when SYSPCH and SYSLST are I Magnetic tape unit I
I ,assigned to the same magnetic tape unit. It must , I
I I be assigned by the opera tor ASSGN command., ,
r----t I I
ISYSmax IThese units are available to the programmer as workl Any unit ,
I Ifiles or for storing data files. They are called I I
I INOGrarnrr!er-1..Q.gical~n.i ts as opposed to the above- I I
, Im~ntioned names which are always referred to as , ,
I I §.Ystem logical units. 'The largest number of I ,
I Iprogrammer logical units available in the system isl I
I 1240 (SYSOOO through SIS240, depending on number of I I
I Ipartitions). The value of SYSmax is determined by I I
I Ithe distribution of the programmer logical units I I
I I among the partitions. I I
t- I I I
ISYSVIS ,Holds virtua: storage page data set. , Disk extent ,
I I ------------------~I~---------------------~I
ISYSCAI IHolds the VSAM cataloq. I Disk extent I
I- I I I
I SYSREC I Logs error records. , Disk extent I
~ ________ L---__ ~ ________ __

Preparing COBOL Programs for Processing 21

JOB CONTROL

The Job Control Processor for the Disk
Operating System/Virtual storage prepares
the system for execution of programs in a
batched job environment. Input to the Job
Control Processor is in the form of job
control statements and job control
commands.

JOB CONTROL STATEMENTS

Job control statements are designed for
an SO-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form. Job
control statements conform to these rules:

1. ~. Two slashes (/~ identify the
statement as a job control statement.
They must be in columns 1 and 2. At
least one blank immediately follows
the second slash.

Exceptions: The end-of-job statement
contains /& in columns 1 and 2; the
end-of-data-file statement contains /*
in columns 1 and 2; the comment
statement contains * in column 1 and a
blank in column 2.

2. Operation. This identifies the
operation to be performed. It can be
up to eight characters long. At least
one blank follows its last character.

3. Operand. This may be blank or may
contain one or more entries separated
by commas. The last term must be
followed by a blank, unless its last
character is in column 11.

4. Comments. Optional programmer
comments must be separated from the
operand by at least one space.

Continuation cards are not recognized by
the Job Control Processor. For the
exception to this rule, see the
descriptions of the DLAB and TPLAB
statements.

All job control statements are read from
the device identified by the symbolic name
SYSRDR.

Comments in Job Control Statements

Comment statements (i.e., statements
preceded by an asterisk in column 1
followed by a blank) may be placed anywhere

22

in the job deck. The remainder of the card
may contain any character from the EBCDIC
set. Comment statements are designed for
communication with the operator;
accordingly, they are written on the
console output unit, SYSLOG, in addition to
being written on SYSLST. If followed by a
PAUSE control statement, the comment
statement ca~ be used to request operator
action.

Statement Formats

The following notation is used in the
statement formats:

1. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For example,
JOB in the operation field of the JOB
statement should be punched exactly as
shown.

2. All lower-case letters represent
generic terms that are to be replaced
in the actual statement. For example,
jobname is a generic term that should
be replaced by the name that the
programmer is giving his job.

3. Hyphens are used to join two or more
words in order to form a single
generic term. For example,
device-address is one generic term.

4. Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [type) indicates that the
programmer's replacement for the
generic term, type, mayor may not
appear in the statement, depending on
the programmer's requirements.

5. Braces enclosing stacked items
indicate that a choice of one item
~i be made by the programmer. For
example:

SYS
PROG
ALL
SYSxxx

indicates that either SYS, PFOG, ALL,
or SYSxxx must appear in the actual
statement.

6. Brackets enclosing stacked items
indicate that a choice of one item
may, but need not, be made by the
programmer. For example:

,X'ss'
,ALT

indicates that either ,X'ss' or .ALT
but not both, may appear in the actual
statement, or the specification can be
omitted entirely.

7. All punctuation marks shown in the
statement formats other than hyphens,
brackets, and braces must be punched
as shown. This includes periods,
commas, and parentheses. For example,
, [date] means that the specification,
if present in the statement, should
consist of the prograrrmer's
replacement for the generic term date
preceded by the comma with no
intervening space. Even if the date
is omitted, the comma must be punched
as shown.

8. The ellipsis (•••) indicates where
repetition may occur at the
programmer's option. The portion of
the format that may be repeated is
determined as follows:

a. Scanning right to left, determine
the bracket or brace delimiter
immediately to the left of the
ellipsis.

b. continue scanning right to left
and determine the logically
matching bracket or brace
delimiter.

c. The ellipsis applies to the words
and punctuation between the pair
of delimiters.

Seguence of Job Control Statements

The job deck for a specific job always
begins with a JOB statement and ends with a
/& (end-of-job) statement. A specific job
consists of one or more job steps. The
beginning of a job step is indicated by the
appearance of an EXEC statement. When an
EXEC statement is encountered, it initiates
the execution of the job step, which
includes all preceding control statements
up to, but not including, a previous EXEC
statement.

The only limitation on the sequence of
statements within a job step is that which
is discussed here for the label information
statements.

The label statements must be in the
order:

or

DLBL
EXTENT (one for each area or file in

the volume)

TLBL

and must immediately precede the EXEC
statement to which they apply.

DESCRIPTION AND FOR~ATS OF JOB CONTROL
STATEMENTS

This section contains descriptions and
formats of job control statements.

Job control statements, with the
exception of /*, /&, ·and ~, contain two
slashes in columns 1 and 2 to identify
them.

JOB Statement

The JOB control statement indicates the
beginning of control information for a job.
The JOB control statement is in the
following format:

r---,
1// JOB jobname I L ___ J

jobname
is a programmer-defined narr.e
consisting of from one to eight
alphanumeric characters. Any user
comments can appear on the JOB control
statement following the jobname
(through column 72). The time of day
and date appear in columns 73 to 80
when the JOB staterrent is printed on
SYSLST. The time of day and date are
also printed in columns 1 through 8 on
the next line of SYSLOG.

If a job is restarted, the jobname
must be identical to that used when
the checkpoint was taken.

Note: The JOB statement resets the effect
of all previously issued OPTION and ASSGN
control statements.

Preparing COBOL Programs for Processing 23

ASSGN statement

The ASSGN control statement assigns a
logical input/output unit to a physical
device. An ASSGN control statement must be
present in the job deck for each data file
assigned to an external storage device in
the COBOL program where these assignments
differ from those established at system
generation time. Data files are assigned
to programmer logical units in COBOL by
means of the source language ASSIGN clause.
An ASSGN statement or command can also be
used

• to unassign a logical unit to free it
for assignment to another partition

• to ignore the assignment of a logical
unit, that is, program references to
the logical unit are ignored (useful in
testing and certain rerun situations)

• to specify an alternate tape unit to be
used when the capacity of the original
is reached.

The assignment routines check the
operands of the ASSGN statement/command for
the relationship between the physical
device, the logical unit, the type of
assignment (permanent or temporary), etc.
The following list summarizes the most
pertinent items to remember when making
assignments:

1. Assignments are effective only for the
partition in which they are issued.

2. No physical device except DASD can be
assigned to more than one active
partition at the same time.

3. All system input and output file
assignments to disk or diskette must
be permanent.

4. SYSIN must be assigned if both SYSRDR
and SYSIPT are to be assigned to the
same extent.

5. SYSOUT cannot be assigned to disk or
diskette; it must be a permanent
assignment if assigned to tape.

6. SYSLNK must be assigned before issuing
the LINK or CATAL option in the OPTION
statement; otherwise, the option is
ignored and the message 'PLEASE ASSIGN
SYSLNK' is issued to the operator.

7. If SYSRDR, SYSIPT, SYSLST, or SYSPCH
is assigned to tape or diskette, or
disk when the system is generated, it
will be unassigned by IPL. Such
assianments can be made effective only
with-the job control ASSGN statement

or command, because ASSGN also opens
the file.

8. Before a tape unit is assigned to
SYSLST~ SYSPCH~ or SYSOUT, all
previous assignments to this tape unit
must be permanently unassigned. This
may be done by using a DVCDN command
instead.

9. The assignment of SYSLOG cannot be
changed while a foreground partition
is active.

10. SYSRES: SYSCAT. and SYSVIS can never
be assigned by an ASSGN statement or
command. An IPL is required to change
these assignments.

The ASSGN control statement may also be
used to change a system standard assignment
for the duration of the job.

The format of the ASSGN control
statement is as follows:

// ASSGN SYSxxx,device-address [
,X' ss ']

,ALT

SYSxxx
is one of the logical devices listed
in Table 2.

Exception: SYSOUT must be assigned
using the ASSGN job control command.
Job control commands are described in
detail in the publication DOS/VS
System Control Statements.

device-address
allows three different formats:

X'cuu'

UA

where c is the channel number and uu
the unit number in hexadecimal
notation. The values of 'cuu' are
determined by each installation.

c = 0 for multiplexor channel.,
1 through 6 for selector
channels 1 through 6.

uu 00 to FE (0 to 254) in
hexadecimal.

indicates that the logical unit is
to be unassigned. Any source
language input/output operation
attempted on this device causes
cancellation of the job.

X'ss'

ALT

Hi

H2

IGN
indicates that the logical unit is
to be unassigned. Each time a READ
statement for the file assigned to
IGN is encountered, control will be
transferred to the
imperative-statement following the
AT END option. The IGN option is
not valid for SYSRDR, SYSIPT, and
SYSIN. This option is useful in
program debugging since source
language references to input files
residing on symbolic units for which
IGN has been specified are ignored.
Any file for which the IGN option is
used must be a sequential input
file. Output files assigned with
the IGN option are not supported by
DOS/VS COBOL object programs.

is the device specification. It is
used for specifying mode settings for
7-track and dual density 9-track
tapes. If X'ss' is not specified, the
system assumes the value specified at
system generation for 7-track tapes
and X'CO' for 9-track tapes. The
possible specifications for X'ss' are
shown in Figure 3.

must be specified in the control
statement that assigns an alternate
magnetic tape unit which is used when
the capacity of the original
assignment is reached. The
specifications for the alternate unit
must be the same as those of the
original unit, since X'ss' cannot be
specified. The characteristics of the
alternate unit must be the same as
those of the original unit. Multiple
alternates can be assigned to a
symbolic unit.

indicates input hopper one for 2560 or
5425.

indicates input hopper two for 2560 or
5425. H2 may only be assigned to
SYSRDR, SYSIPT or SYSPCH.

Device assignments made by the ASSGN
control statement are considered temporary.
They are in effect until another ASSGN
control statement or a RESET statement for
that logical unit, or the next 1& or JOB
statement is read, whichever occurs first.
If a RESET, 1&, or JOB statement is
encountered, the assignment reverts to the
standard assignment established at system
generation time plus any modification by an
ASSGN corr:mand.

The COBOL programmer may assign only the
programmer logical units (SYSOOO through
SYS240, depending on the number of
partitions) to data files used in his
program. For example, if the following
ASSIGN clause is used,

SELECT IN-FILE ASSIGN TO SYS004-DA-2314-S

an ASSGN control statement must appear in
the job deck which assigns SYS004 to a
physical device if the physical device
differs from the permanent assignment. In
this case, the physical device must be a
2314 direct access device. An example of
such a control statement is:

II ASSGN SYS004,X'00C'

Physical unit X'OOC' was perrranently
assigned to a 2314 direct access device at
system generation time.

Note: The ASSGN control statement is
necessary only when the symbolic unit
assignment is being made to a physical
device address which differs from that
established at systew generation time.

"Appendix H: Sarople Job Decks" contains
illustrations of ASSGN statement usage.

r----T------T-----------------------------,
I I I 7-Track Tape I
I I Bytest--------T-----------T--------~
I I per 1 I Translate I Convert I
I ss I Inch I parity I Feature I Feature I
~----+------+--------+-----------+--------~
I 10 I 200 odd I off I on
I 20 I 200 even I off I off
I 28 I 200 even I on I off

30 I 200 odd I off I off
38 I 200 odd I on I off
50 I 556 odd I off I on
60 I 556 even I off I off
68 I 556 even I on I off
70 I 556 odd I off I off
78 I 556 odd I on I off
90 I 800 odd I off I on
AO I 800 even I off I off
A8 I 800 even I on I off
BO I 800 odd I off I off
B8 I 800 I odd I on I off

I ~--------~-----------~--------~
I I 9-Track Tape I
1 ~-----------------------------~

co I 800 I single density 9-track I
co I 1600 I single density 9-track I
co I 1600 I dual density 9-track I
C8 I 800 I dual density 9-track I
DO I 6250 I single density 9-track I

I DO I 6250 I dual density 9-track I l ____ ~ ______ L _____________________________ J

Figure 3. possible Specifications for
X'ss' in the ASSGN Control
Statement

Preparing COBOL Programs for Processing 25

CLOSE Statement

The CLOSE control statement is used to
close either a system or programmer logical
unit assigned to tape. As a result of the
CLOSE control statement w a standard
end-of-volume label set is written and the
tape is rewound and unloaded. The CLOSE
statement applies only to a temporarily
assigned logical unit, that is, a logical
unit for which an ASSGN control statement
has been specified within the same job.
The format of the CLOSE control statement
is as follows:

r---------------------~~~==~--------------,

/]
/ [, X' cu u· [, X ' s s']] I
I ,UA I
/// CLOSE SYSxxx ,IGN I
/ ,ALT I l ___ J

The logical unit can optionally be
reassigned to another device w unassigned,
or switched to an alternate unit.

Note that when SYSxxx is a system
logical unit, one of the optional
parameters must be specified. When closing
a programmer logical unit, no optional
parameter need be specified.

SYSxxx
may only be used for magnetic tape and
may be specified as SYSPCH, SYSLST,
SYSOUT, or SYSOOO through SYS240 w
depending on the number of partitions.

X'cuu'

X'ss'

UA

IGN

26

specifies that after the logical unit
is closed w it will be assigned to the
channel and unit specified. (See
"ASSGN Control Statement" for an
explanation of 'cuu'.) When
reassigning a system logical unit, the
new unit will be opened if it is
either a mass storage device or a
magnetic tape at load point.

represents device specification for
mode settings on 7-track and 9-track
tape. (See "ASSGN Control Statement"
for an explanation of 'ss'.) If X'ss'
is not specified, the mode settings
remain unchanged.

specifies that the logical unit is to
be closed and unassigned.

specifies that the logical unit is to

ALT

be closed and unassigned with the
ignore option. This operand is
invalid for SYSRDR, SYSIPT, or SYSIN.

specifies that the logical unit is to
be closed and an alternate unit is to
be opened and used. This operand is
valid only for system logical output
units <SYSPCH, SYSLST, or SYSOUT)
currently assigned to a rragnetic tape
unit·

DATE Statement

The DATE control statement contains a
date that is put in the Corrmunication
Region of the supervisor. A complete
description of the fields of the
Communication Region is given in "Appendix
G: Communication Region." The DATE
statement is in one of the following
formats:

r---,
J / / DATE mm/dd/yy I
~---~
1// DATE dd/mm/yy I l ___ J

where:
mm
dd
yy

month (01 to 12)
day (01 to 31>
year (00 to 99)

The format to be used is the format
selected when the system was generated.

When the DATE statement is used w it
applies only to the current job being
executed. The Job Control Processor does
not check the operand except to ensure that
its length is eight characters. If no DATE
statement is specified in the current job,
the Job Control Processor supplies the date
aiven in the last SET command. The SET
command is discussed in detail in the
publication DOS/vS System Control
Statements.

A DATE statement should be included in
every job deck that has as one of its job
steps the execution of a COBOL program that
utilizes the special register CURRENT-DATE,
if the date desired is other than that
designated in the previous SET command.

The DATE statement should be used at
compile time so that the DATE-COMPILED
paraqraph is accurate and the WHEN-COMPILED
special register is effective.

'ILBL Statement

The TLlsI. control statement replaces the
VOL and TPLAE combination used in previous
versions of the system. However, the
current system will continue to support
these statements. The TLBL control
statement contains file label information
for tap~ label checking and writing. Its
format follows:

j

III TLBL filename,
I ['file-identifier'],[date],
I [file-serial-number],
I [volume-sequence-number],
I [file-seguence-nulliber],
I [generatiop--number],
I [version-number]

filename
identifies the file to the control
program. It can be from three to
seven characters in length. If the
following SELECT sentence appears in a
COBOL program:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S-0UTFILE

the filename operand on control
statements for this file must be
OUTFILE. If the SELECT clause were
coded:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S

the filename operand on the control
statement for the file must be SYS003.

'file-identifier'

date

consists of from 1 to 17 characters,
contained within apostrophes,
indicating the name associated with
the file on the volume. This operand
may contain embedded blanks. If this
operand is omitted on output files,
the filename will be used. If this
operand is omitted on input files, no
checking will be done.

consists of from one to six
characters, in the format YYlddd,
indicating the expiration date of the
file for output or the creation date
for input. (The day of the year may
consist of from one to three
characters.) For output files, a one
to four character retention period
(d-dddd) may be specified. If this
operand is omitted, a O-day retention
period will be assumed for output
files. For input files, no checking
will be done if this operand is

omitted or if a retention period is
specified.

file-serial-number
consists of from one to six characters
indicating the volume serial number of
the first (or only) reel of the file.
If fewer than six characters are
specified, the field will be
right-justified and padded with zeros.
If this operand is omitted on output
files, the volume serial number of the
first (or only) reel of the file will
be used. If the operand is omitted on
input files, no checking will be done.

volume-sequence-number
consists of from one to four
characters in ascending order for each
volume of a multivolume file. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If
omitted on input files, no checking is
done.

file-sequence-number fl'· .
consists of from one to four
characters in ascending order for each
file of a multifile volume. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If it
is omitted on input files, no checking
will be done.

generation-number
consists of from one to four numeric
characters that modify the
file-identifier. If this operand is
omitted on output files, BCD 0001 is
used. If it is omitted on input
files, no checking will be done.

version-number
consists of from one to two numeric
characters that modify the generation
number. If this operand is omitted on
output files, BCD 01 will be used. If
it is omitted on input files, no
checking will be done.

Note: If a tape file with standard labels
is opened two different ways in the same
COBOL program, and that file resides on a
multifile volume, the programmer should use
two separate TLBL cards with different
filenames specified on each.

Preparing COBOL Programs for Processing 27

DLBL Statement

The DLBL control statement, in
conjunction with the EXTENT statement,
replaces the VOL, DLAB, and XTENT
combination used in previous versions of
the Disk Operating System. The DLEL
statement has the following format:

1// DLBL filename
I ,['file-identifer l],[date],[codes]

filename
identifies the file to the control
program. It can be from three to
seven characters long. If the
following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYS005-DA-2314-A-INPUTA

the filename operand on control
statements for this file must be
INPUTA. If the SELECT sentence is
coded:

SELECT INFILE ASSIGN TO
SYS005-DA-2314-A

the filename operand on control
statements for the file must be
SYS005.

'file-identifier'

date

28

is the name associated with the file
on the volume. This can consist of
from 1 to 44 alphanumeric characters
contained within apostrophes,
including the file-identifier and, if
used, generation-number and version
number of generation. If fewer than
44 characters are used, the field is
left-justified and padded with blanks.
If this operand is omitted, filename
will be used.

consists of from one to six characters
indicating either the retention period
of the file in the format d through
dddd (0-9999), or the absolute
expiration date of the file in the
format yY/ddd. When the d through
dddd format is used, the file is
retained for the number of days
specified as dddd. For example, if
dat~ is specified as 31, the file will
be retained a month from the day of
creation. When the yy/ddd format is
used, the file is retained until the
day (ddd) in the year (yy) specified.
For example, if date is specified as
73/200, the file will be retained

codes

through the 200th day of the year
1973.

If date is omitted when the file is
created, a 7-day retention period is
assumed. If this operand is present
for a file opened as INPUT or 1-0, it
is ignored.

is a 2 to 4 character field indicating
the type of file label, as follows:

SD Sequential Disk
DA Direct Access

ISC Indexed Sequential using Load
Create

ISE Indexed Sequential using Load
Extension, Add, or Retrieve

DU 3540 Diskette
VSAM VSAM file

If code is omitted, SD is a~sumed.

"Appendix H: Sample Job Decks" contains
illustrations of DLBL statement usage.

See the section "Processing 3540
Diskette Unit Files" for the use of DLBL
Cards for 3540 and the section "Virtual
Storage Access Method" for use of DLBL
cards for VSAM.

EXTENT Statement

The EXTENT control statement defines
each area (or extent) of a DASD file -- a
file assigned to a mass storage device.
One or more EXTENT control statements must
follow each DLBL statement.

The EXTENT control statement replaces
the XTENT statement used in previous
versions of the Disk Operating System. For
more information on the XTENT statement,
see DO~Vs~stem Control Statements.

The ~ormat of the EXTENT control
statement is:

I

III EXTENT [symbolic-unit],[serial-number]1
I ,[type],[sequence-number] I
I ,[relative-track],[number-of-tracks] I
I ,[split-cylinder-track],[B=bins] I

symbolic-unit
is a 6-character field indicating the
symbolic unit (SYSxxx) of the volume
for which this extent is effective.
If this operand is omitted, the
symbolic unit of the preceding EXTENT
statement will be used. When
specified, symbolic-unit may be any
SYSxxx assigned to the device type

I

indicated in the SELECT sentence for
the file. For example, if the
following coding appears in a COBOL
program:

SELECT OUTFILE ASSIGN TO
SYS004-DA-2314-A

the symbolic unit in the EXTENT
control statement can by any SYSxxx
assigned to a 2314 disk pack. The
symbolic unit operand is not required
for an IJSYSxx filename, where xx is
IN, PH, LS, RS, SL, or RL. If SYSRDR
or SYSIPT is assigned, this operand
must be included.

serial-number

type

consists of from one to six characters
indicating the volume serial number of
the volume for which this exteDt is
effective. If fewer than six
characters are used, the field will be
right-justified and padded with zeros.
If this operand is omitted, the volume
serial number of the preceding EXTENT
control statement will be used. If no
serial number was provided in the
EXTENT control statement, the serial
number will not be checked and it will
be the programmer's responsibility if
files are destroyed as a result of
mounting the incorrect volume.

consists of one character indicating
the type of the extent, as follows:

1
2

4
8

Data area (no split cylinder)
Overflow area (for an indexed
file)
Index area (for an indexed file)
Data area (split cylinder)

If this operand is omitted, 1 is
assumed.

sequence-number
consists of from one to three
characters containing a decimal number
from 0 to 255 indicating the sequence
number of this extent within a
multi-extent file. Extent sequence 0
is used for the master index of an
indexed file. If the master index is
not used, the first extent of an
indexed file has the sequence number
1. The extent sequence number for all
other types of files begins with o.
If this operand is omitted for the
first extent of ISAM files, the extent
will not be accepted. For SD or DA
files, this operand is not required.
For DA files this operand should be
specified when using more than one
EXTENT for a file. Direct files can
have up to five extents. Indexed
files can have up to eleven data

extents (nine prime, one cylinder
index, one separate overflow).

relative-track
consists of from one to five
characters indicating the sequential
number of the track, relative to zero,
where the data extent is to begin. If
this field is omitted on an ISAl"1 file,
the extent will not be accepted. This
field is not required for DA input or
for SD input files (the extents from
the file labels will be used).

Formulas for converting actual to
relative track addresses (RT) and
relative track to actual for the DASD
devices follow.

Actual to Relative:

2311 10 x cylinder number + track
number = RT

2314 20 x cylinder number + track fl .. .
or number = RT

2319

2321 1000 x subcell number + 100 x
strip number + 20 x block
number + track number = RT

3330 19 x cylinder number + track
number = RT

3340 12 x cylinder number + track
nllillber = RT

Relative to Actual:

2311

2314
or

2319

3330

2321

3340

RT quotient is cylinder
10 remainder is tra.ck

RT quotient is cylinder,
20 remainder is track

RT quotient is cylinder,
19 remainder is track

RT quotient is subcell,
1000 remainder1

remainderl
100

remainder2
20

quotient is strip,
remainder2

quotient is block,
remainder is track

RT quotient is cylinder,
12 remainder is track

Preparing COBOL programs for Processing 29

number-of-tracks
consists of from one to five
characters indicating the number of
tracks to be allocated to the file.
For SD input files, this field may be
omitted. The number of tracks for a
split cylinder file must be a multiple
of the number of cylinders specified
for the file and the number of tracks
specified for each cylinder.

split-cylinder-track

bins

consists of from one to two
characters, with a value of 0 through
19, indicating the upper track number
for the split cylinder in SD files;

consists of from one to two characters
identifying the 2321 bin that the
extent was created for, or on which
the extent is currently located. If
the field is one character, the
creating bin is assumed to be zero.
There is no need to specify a creating
bin for SD or ISAM files. If this
operand is omitted, bin 0 is assumed
for both bins. If the operand is
included and positional operands are
omitted, only one comma is required
preceding the keyword operand. If any
operands preceding the bin
specification are omitted, one comma
for each operand is acceptable, but
unnecessary.

Figure 4 shows examples of using the
DLBL statement in conjunction with the
EXTENT statement. "Appendix H: Sample Job
Decks" contains illustrations of EXTENT
statement usage.

VOL, DLAB, TPLAB AND XTENT STATEMENTS

These statements have been replaced by
the DLBL, TLBL, and EXTENT statements, and,
although they are still supported by the
Disk Operating System, they cannot be used
for 3330 or 3340 disk files, or for VSAM
files. Details as to their usage can be
found in DOS/vS System Control Statements.
For their use with respect to COBOL, see
IBM DOS Full American National Standard
COBOL Programmer's Guide. When new label
information statements are prepared, DLBL,
TLBL, and EXTENT should be used.

LBLTYP Statement

The LBLTYP control statement defines the
amount of storage to be reserved at linkage
edit time in the problem program area of
storage in order to process tape and
nonsequential DASD file labels. It applies
to both background and foreground object
programs, and is required if the file
contains standard labels.

The LBLTYP control statement immediately
precedes the // EXEC LNKEDT statement in
the job deck, with the exception of
self-relocating programs for which it is
instead submitted immediately preceding the
// EXEC statement for the program. The
format of the LBLTYP control statement is:

r---,
, 1 TAPE [(nn)] ! '
J// LBLTYP I
,NSD(nn) I l ___ J

r---,
IDirect file: I
I I
, The following DLBL and EXTENT statements describe a direct file· occupying 840 ,
,tracks, beginning on relative track 10. I
I I
I / / DLBL MASTER" 15/001,DA ,
I // EXTENT SYS015,111111,1,0,10,840 I
I I
I I
I I
IIndexed file: I
I I
, The following DLBL and EXTENT statements describe an indexed file on a 2314 I
loccupying 100 tracks, beginning on relative track 1100. The first EXTENT allocates a ,
120-track cylinder index. The second EXTENT allocates a 80-track data area. I
I I
I // DLBL MASTER" 15/001, ISC I
I // EXTENT SYS015,111111,4,1,1100,20 I
I // EXTENT SYS015,111111,1,2,1120,80 I l ___ J

Figure 4. Sample Label and File Extent Information for Mass Storage Files

30

TAPE [(nn)]
is used only if tape files requ1r1ng
label information are to be processed
and if no nonsequential DASD files are
to be processed. nn is optional and
is present only for future expansion.
It is ignored by the Job Control
Processor.

NSD(nn)
is used if any nonsequential DASD
files are to be processed, regardless
of other type files that are used. nn
specifies the largest number of -
extents to be used for a single file.

LISTIO Statement

The LISTIO control statement causes the
system to print a list of input/output
assignments on SYSLST. The format of the
LISTIO control statement is:

r---,
I SYS I
I PROG I
I BG I
I F1 I
I F2 J
I F3 1
I F4 I
1/1 LISTIO ALL I
I SYSxxx J
I UNITS I
I DOWN I
I UA I
I X'cuu' J l ___ J

SYS

PROG

BG

Fi

F2

F3

causes the physical units assigned to
all system logical units to be listed.

causes the physical units assigned to
all background programmer logical
units to be listedo

lists the physical units assigned to
all logical units of the background
partition.

causes the physical units assigned to
all foreground-one logical units to be
listed.

causes the physical units assigned to
all foreground-two logical units to be
listed.

causes the physical units assigned to
all foreground-three logical units to
be listed.

F4

ALL

causes the physical units assigned to
all foreground~four logical units to
be listed.

causes the physical units assigned to
all logical units to be listed.

SYSxxx

UNITS

DOWN

UA

causes the physical units assigned to
the logical unit specified to be
listed.

causes the logical units assigned to
all physical units to be listed.

causes all physical units specified as
inoperative to be listed.

causes all physical units not
currently assigned to a logical unit
to be listed.

x'cuu'
causes the logical units assigned to
the physical unit specified to be
listed.

MTC Statement

The MTC control statement controls 2400
and 3400 series magnetic tape operations.
The format is as follows:

r---,
1// MTC opcode,SYSxxx[,nnl I l ___ J

opcode
specifies the operation to be
performed. opcode can be chosen from
the following:

BSF Backspace to taperrark

BSR Backspace to interrecord gap

ERG Erase gap (write blank tape)

FSF Forward space to tafemark

FSR Forward space to interrecord
gap

RUN -- Rewind and unload

Preparing COBOL Programs for Processing 31

REW Rewind

WTM Write tapemark

SYSxxx

[, nn]

represents any logical unit assigned
to magnetic tape upon which the MTC
control statement is to operate.

is the decimal number (01 through 99)
which, if specified, represents the
number of times the operation is to be
performed. If nn is omitted" the
operation is performed once.

OPTION Statement

The OPTION control statement is used to
specify one or more of the options of the
Job Control Processor. The format of the
OPTION statement is:

r---,
1// OPTION option1[,option2]... I L ___ J

The order in which the selected options
appear in the operand field is arbitrary.
Options are reset to the standard
established at system generation time upon
encountering the next JOB statement or the
/& statement.

The options are:

LOG

NOLOG

DUMP

32

causes the listing of columns 1
through 80 of all control statements
on SYSLST. If LOG is not the standard
established at system generation time,
control statements are not listed
until a LOG option is encountered.
Once a LOG option statement is read,
logging continues from job step to job
step until a NOLOG option is
encountered or until either the JOB or
/& control statement is encountered.

suppresses the listing of all control
statements on SYSLST until a LOG
option is encountered, or until either
the JOB or /& control statement is
encountered.

causes a dump of the registers and
virtual storage to be printed on
SYSLST in the case of an abnormal
program termination (such as a program
check). Using the compiler SYMDMP,
FLOW, or STATE features, it may not be
necessary to use this option.

NODUMP

LINK

suppresses the DUMP option.

indicates that the object module is to
be link edited. when the LINK option
is used, the output of the COBOL
compiler is written on SYSLNK. The
LINK option must always precede an
EXEC LNKEDT statement in the job deck.
(CATAL also causes the LINK option to
be set.) LINK is not acceptable to
the Job Control Processor operating in
the foreground unless the private core
image library option is supported and
a private core image library is
assigned.

NOLINK

DECK

suppresses the LINK option. The COBOL
compiler can also suppress the LINK
option if the program contains an
error that would preclude the
successful execution of the program,
or if SYNTAX is in effect, or if
CSYNTAX is in effect and an E-Ievel
error is encountered.

causes the COBOL compiler to punch an
object module on SYSPCH. If both DECK
and LINK are specified, the output of
the compiler is written on both SYSPCH
and SYSLNK.1.

NODECK

LIST

suppresses the DECK option. The DECK
option is also suppressed if SYNTAX is
in effect, or if CSYNTAX is in effect
and E-Ievel errors exist.

causes the compiler to write the COBOL
source statements on SYSLST. If
lister is in effect, the LIST option
is overridden; LISTER causes a listing
regardless of whether LIST or NOLIST
is specified.

NOLIST

LISTX

suppresses the LIST option.

causes the COBOL compiler to write a
Procedure Division map on SYSLST. In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided. You may want to use the CBL

l.The //option card options pertaining to
the compiler will be suppressed if the
nLISTER ONLy n option of lister is in
effect. Otherwise, when nLISTER AND
COMPILE" is in effect, the options
specified will be in effect for
compilation.

option CLIST (condensed list) in place
of this .. 1.

NOLISTX

XREF

suppresses the LISTX option, as do the
same conditions as cause DECK to be
suppressed ..

causes the COBOL compiler to write a
symbolic cross-reference list on
SYSLST. You may want to use the CBL
option SXREF in place of this, or the
lister cross-reference information for
large COBOL programs.

NOXREF

SYM

suppresses the XREF option.
also suppresses XREF, as do
conditions as cause DECK to
suppressed ..

SXREF
the same
be

causes the COBOL compiler to write a
Data Division map on SYSLST. In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided. 1.

NOSYM

ERRS

suppresses the SYM option.

causes the COBOL compiler to write the
diagnostic messages related to the
source program on SYSLST.1.

NOERRS

CATAL

suppresses the ERRS option. It does
not suppress FIPS messages.

causes the cataloging of a phase or
program in the core image library upon
completion of a linkage editor job
step. CATAL also causes the LINK
option to be set. CATAL is not
accepted by the Job Control Processor
operating in a batched-job foreground
environment unless the private core
image library option is supported and
a private core image library is
assigned.

STDLABEL
causes the standard label track to be
cleared and all DASD or tape labels
submitted after this point to be

1.The //option card options pertaining to
the compiler will be suppressed if the
"LISTER ONLY" option of lister is in
effect. Otherwise, when "LISTER AND
COMPILE" is in effect, the options
specified will be in effect for
compilation.

written on the standard label track.
This option is reset to the USRLABEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the STDLABEL option
are available to any program in any
area until another set of standard
file definition statements is
submitted. S~DLABEL is not accepted
by the Job Control Processor operating
in a batched-job foreground
environment. All file definition
statements following OPTION STDLABEL
are included in the standard file
definition set until one of the
following occurs:

• End-of-job step

• End-of-job

• OPTION USRLABEL is specified

• OPTION PARS~D is specified

USRLABEL
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the user
label track.

PARSTD
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the
partition standard label track. The
PARSTD option is reset to the USRLABEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the PARSTD option will
be available to any program in the
current partition until another set of
partition standard file definition
statements is submitted. All file
definition statements subrr-itted after
OPTION PARSTD will be included in the
standard file definition set until one
of the following occurs:

• End-of-job step

• End-of-job

• OPTION USRLABEL is specified

• OPTION STDLABEL is specified

For a given filename, the sequence of
search for label information during an
OPEN is the USRLABEL area, followed by
the PARSTD area, followed by the
STDLABEL area.

Note: If NOLINK and NODECK are requested
on the OPTION control statement and either
SYMDMP or OPT is specified on the CEL card,
the SYfvlDMP or OPT specification is ignored.

preparing COBOL Programs for Processing 33

The options specified in the OPTION
statement remain in effect until a
contradictory option is encountered or
until a JOB control statement is read. In
the latter case. the options are reset to
the standard that was established at system
generation time.

Any assignment for SYSLNK, after the
occurrence of the OPTION statement, cancels
the LINK and CATAL options. These two
options are also canceled after each
occurrence of an EXEC statement with a
blank operand.

PAUSE statement

The PAUSE control statement allows for
operator intervention between job steps.
The format of the PAUSE control statement
is:

r---,
1// PAUSE [comments] I l ___ J

The PAUSE control statement is effective
just before the next input control
statement in the job deck is read. The
PAUSE control statement always prints on
SYSLOG and SYSLST.

An example of this statement is:

// PAUSE SAVE SYS004, SYS005, MOUNT
NEW TAPES

This sample statement instructs the
operator to save the output tapes and mount
two new tapes.

When the PAUSE statement is encountered
by the Job Control Processor, processing is
stopped in the partition until a response
is given. The end/enter key causes
processing to continue.

RESET Statement

The RESET control statement resets
input/output assignments to the standard
assignments. The standard assignments are
those specified at system generation time
plus any modifications made by the operator
by means of the ASSGN command without the
TEMP option. The RESET cowmand is
discussed in detail in the publication
DOS/VS~em Control Statements. The
format of the RESET statement is:

34

~~-:::::---f~~~--;t---------------------!
1 t SYSxxx ~ 1 l-__ J

SYS

PROG

ALL

resets all system logical units to
their standard assignments.

resets all prograrrmer logical units to
their standard assignments.

resets all system and programmer
logical units to their standard
assignments.

SYSxxx
resets the logical unit specified to
its standard assignment.

RSTRT Statement

A restart facility is available for
checkpoint programs. A programmer can use
the source language RERUN clause in his
program to cause checkpoint records to be
written. This allows sufficient
information to be stored so that program
execution can be restarted at a specified
point. The checkpoint information includes
the registers, tape positioning
information, a dump of virtual storage, and
a restart address.

The restart facility allows the
programmer to continue execution of an
interrupted job at a point other than the
beginning. The procedure is to submit a
group of job control statements including a
RSTRT control statement. The format is as
follows:

r---,
1// RSTRT SYSxxx,nnnn,filename 1 l ___ J

SYSxxx
is the symbolic unit name of the 2400,
3410, 3420, 2311, 2314, 2319. 3330, or
3340 checkpoint file used for
restarting. This unit must have been
assigned previously.

nnnn
is the identification of the
checkpoint record to be used for
restarting. This serial number
consists of four characters. It
corresponds to the checkpoint
identification used when the
checkpoint was taken. The serial
number is supplied by the checkpoint
routine.

filename
is the symbolic name of the 2311,
2314, 2319, 3330, or 3340 disk
checkpoint file used for restarting.
It must be identical to the SYSxxx of
the system-name specified in the RERUN
clause.

When a checkpoint is taken, the
completed checkpoint is noted on SYSLOG.
REstarting can be done from any checkpoint
record, not just the last. The jobname
specified in the JOB statement must be
identical to the jobname used when the
checkpoint was taken. The proper
inputloutput device assignments must
precede the RSTRT control statement.

Assignment of inputloutput devices to
symbolic unit names may vary from the
initial assignment. Assignments are made
for restarting jobs in the same manner as
assignments are made for normal jobs.

See the chapter "Program Checkout" for
further details on taking checkpoints and
restarting a program for which checkpoints
have been taken.

UPSI Statement

The UPSI control statement allows the
programmer to set program switches that can
be tested by problem programs at execution
time. The UPS I control statement has the
following format:

r---,
III UPSI nnnnnnnn I L ___ J

nnnnnnnn
consists of from one to eight
characters of 0, 1, or X. Positions
containing 1 are set to 1; positions
containing X are unchanged.
Unspecified rightmost positions are
assumed to be X.

The UPSI byte is the 24th byte in the
Communication Region of the Supervisor. A
complete description of the fields of the
Communication Region is given in "Appendix
G: Communication Region." Th", Job Control
Processor clears the UPSI byte to binary
zeros before reading control statements for
each jobo when the UPSI control statement
is read, the Job Control Processor sets
these bits to the programmer's
specifications. Any combination of the
eight bits can be tested in the COBOL
source program at execution time by means
of the source language switches UPSI-O
through UPSI-7.

EXEC Statement

The EXEC statement (Execute Program or
Procedure) indicates the end of control
inforreation for a job step and the
beginning of execution of a program, in
which case it must be the last command or
statement processed before a job step is
executed.

II EXEC [[PGM=]programname] [,REAL] [,SIZE]
[PROC=procedurenamel

PGM=programname

REAL

represents the name of the program in
the core image library to be executed.
The program name corresponds to the
first or only phase of the program in
the library. The program name can be
one to eight alphameric characters
(0-9, A-Z, #, $, @). The first
character must not be numeric.

If the program to be executed has just
been processed by the linkage editor,
the program name is omitted and the
PGM keyword cannot be used.

indicates that the job step started by
EXEC will be executed in real mode.
If REAL is not specified the job"step
is always executed in virtual mode.
REAL cannot be specified for prograrrs
using VSAM, the 3886, for ISAM
programs using the ISAM interface
program or, for programs compiled with
the CBL option count.

SIZE=size
Size can be nK, AUTO or (AUTO, nK).

(a) If specified with REAL, it indicates
the size of that part of the real
partition that will be needed by the
job step's associated EXEC. The
remaining part of the real partition
is given to the page pool.

Preparing COBOL Programs for Processing 35

If SIZE is omitted and REAL is
specified, the whole real partition is
used by the job step.

Cb) If used without REAL, it specifies
that the virtual partition to be used
by the job step is divided into two
parts: the lower part with a size of
nK will contain the program initiated
with EXEC; the upper part serves as
additional storage pool for other
modules (for example, VSAM) required
by the program in that partition. The
program reserves the upper storage
part for its needs by issuing GETVIS
macros with the required amount of
storage as parameter; it releases the
storage by issuing FREEVIS macros.

If SIZE is omitted, the whole virtual
partition is used for the job
initiated with EXEC.

SIZE (without REAL) must always be
specified for VSAM programs or for
ISAM programs using the ISAM Interface
Program (lIP), as well as for 3886
processing, and for programs compiled
with the CBL option count.

If you specify SIZE=AUTO, the system
automatically uses the information in
the core image directory to calculate
the size of the program to be loaded.
If you specify SIZE=(AUTO,nK). The
system adds nK bytes to the calculated
length.

The following restrictions apply to n:

• n must not be larger than the size
of the partition it refers to.

• n must be greater than zero.

• if n is not a multiple of 2, n+1 is
used

PROC=procedurename

36

represents the name of the procedure
to be retrieved from the procedure
library. The procedure name can be
from one to eight alphameric
characters, the first of which must be
alphabetic.

For more information on cataloged
procedures, as well as the use of
overwrite statements and the rules
that apply to temporary procedure
modification, refer to the DOS/VS
System Management Guide and the
chapter "Librarian Functions" in this
book.

CBL STATEMENT -- COBOL OPTION CONTROL CARD

Although some options for compilation
are specified either at system generation
time or in the OPTION control statement,
the COBOL compiler provides an additional
statement, the CBL statement, for the
specification of compile-time options
unique to COBOL.

The CBL card must be placed between the
EXEC FCOBOL statement and the first
statement in the CCBOL program. The CBL
card cannot be continued. However, if
specification of options will continue past
column 71, multiple CBL cards may be used.

The options shown in the following
format may appear in any order. No
embedded blanks may appear in the operand
field, and no comments should appear in the
operand field. Underscoring indicates the
default case.
To change the defaults for your
installation, see "Changing the
Installation Defaults".

r---,
I I
I [, g.Q] [, FLAGW] I
I CBL [BUF=nnnnn] ,NOSEQ ,FLAGE I
I
I [, SUPMAP]
I , NOSUPMAP

[, SPACEn] [, CLIST]
, NOCLIST

I
I
1
I

[
,STXIT] [,QUOTE] [,TRUNC] [, ZWB]
, NOSTXIT , APOST , NOTRUNC ,NOZWB

I [,SXREF] [,PMAP=h]
',NOSXREF
J
I
J

I [,FLOW[=nn]][,STATE]
I , NOSTATE
I
J

[

,OPTIMIZE]
, NCOPTn.u ZE
,OPT
, NCOPT

[

,SYNTAX]
,CSYNTAX
, NOSYNTAX

I [,SYMDMP[=filename]] [,VERBSUM]
J , NOVERBSUM
I
I[,VERBREF][,COUNT]
I , NOVERBREF, NOCOUNT

II; [, CATALR] [, LIB] [, VERB] [. LVL= ~ ED: l]i,
, NOCATALR , NOLIB , NOVERB t)

, , NOLVL I L ___ J

CBL
must begin in column 2 (column 1 must
be blank) and be followed by at least
one blank.

BUF=nnnnn
the BUF option specifies the amount of
storage to be assigned to each
compiler work file buffer. nnnnn is a
decimal number from 512 to 32,767. If
this option is not specified, 512 is
assumed. The BUF option should be
used to specify an optional blocksize
(which will depend on the device type)
for the workfiles. Usually, a larger
blocksize will enhance the performance
of the compiler. However, for any
given BUF specification the compiler
space requirements (over 60K) are
increased by a factor of
6x(nnnnnn-512).

SEQ
NOSEQ

FLAGW
FLAGE

indicates whether or not the compiler
is to check the sequence of source
statements. If SEQ is specified and a
statement is not in sequence, it is
flagged. If the lister feature is
invoked, the source statements are
resequenced automatically before the
sequence check is performed.

determines which diagnostics the
compiler will list. FLAGW indicates
that all diagnostics will be listed
(severity levels W, C, E, and D).
FLAGE indicates that only those
diagnostics with severity levels C, E,
and D will be listed. This has no
effect on FIPS messages.

SUPMAP
NOSUPMAP

causes the CLIST and LISTX options to
be suppressed if an E-level diagnostic
message is produced by the compiler.
SUPMAP also suppresses the DECK option
and no object module is produced.

SPACEn
indic~te~ the type of spacing to be
used on the output listing. n can be
specified as either 1 (single
spacing), 2 (double spacing), or 3
(triple spacing). If the SPACEn
option is omitted, single spacing is
provided. Single spacing is always in
effect if the lister feature is
invoked.

CLIST
NOCLIST

indicates that a condensed listino is
to be produced. The condensed listing
will contain only the address of the

first generated instruction for each
verb in the Procedure Division. In
addition, global tables, literal
pools, register assignments, and
procedure block assignments will be
provided. The CLIST opticn overrides
the LISTX or NOLISTX options. The
LISTX or NCLISTX options are either
established at system generation time
or specified in the OPTION control
statement.

STXIT
NOSTXIT

enables a USE AFTER STANDARD ERROR
declarative to receive control when an
input/output error occurs on a unit
record device~ The use of STXIT
precludes the use of SYMDMP, STATE,
and FLOW in the compiled program and
in any other frogram link-edited with
the compiled program, and vice versa.

QUOTE
APCST
-----QUOTE indicates to the compiler that

the double quotation marks (") should
be accepted as the character to
delineate literals; APOST indicates
that the apostrophe (W) should be
accepted instead. The compiler will
generate the specified character for
the figurative constant QUOTE(S).

TRUNC
NOTRUNC

ZWB
NCZWB

applies only to CO~PUTATIONAL
receiving fields in MOVE statements
and arithmetic expressions. If TRUNC
is specified, extra code is generated
to truncate the final intermediate
result of the arithmetic expression,
or the sending field in the 'MOVE
statement, to the number of digits
specified in the PICTURE clause of the
COMPUTATIONAL receiving field. If
NOTRUNC is specified, the compiler
assumes that the data being
manipulated conforms to PICTURE and
USAGE specifications. The compiler
then generates code to manipulate the
data based on the size of the field in
storage (halfword, etc.). TRUNC
conforms to the American National
Standard, while NOTRUNC leads to more
efficient processingo This will
occasionally cause dissimilar results
for various sending fields because of
the differtnt code generated to
perform the operation.

determines if the compiler ~ill
generate code to strip the sign when
comparing a signed external decimal
field to an alphanumeric field. If
ZWB is in effect, the signed external

Preparing COBOL Programs for Processing 37

decimal field is moved to an
intermedra-·fe field and has its sign
stripped before being compared to the
alphanumeric field. Z~B conforms to
the ANS standard, while NOZWB allows
the user to test input numeric fields
for SPACES to prevent aCnormal
termination.

one may be in effect during a given
compilation. In addition, FLOW and
STXIT are mutually exclusive at
execution time. Additional
information on the flow trace option
can be found in the chapter "Symbolic
Debugging Features."

SXREF
NOSXREF

STATE
NOSTATE

causes the compiler to write an
alphabetically-ordered cross-reference
list on SYSLST. You may want to use
the lister cross-reference information
in place of this option for large
COBOL programs, to decrease run time.

P!VlAP=h
enables the programmer to request a
relocation factor "hIt. If the PMAP
option is specified, the relocation
factor is included in the addresses of
the object code listing. The
relocation factor "h" is a hexadecimal
number of from one to eight digits.
If the PMAP option is not specified,
the relocation factor is assumed to be
zero. When P~AP is specified in a
segmented program, the listinq for
segments of priority higher than the
segment limit (49, if the SEGMENT-

STATE provides the prograrrrrer with
information about the statement being
executed at the time of an abnormal
termination of a job. It identifies
the program containing the statement
and provides the number of the
statement and of the vert being
executed. STATE and STXIT, STATE and
SYr-1DMP, and STATE and OPT are mutually
exclusive options, i.e., no more than
one may be in effect during a given
compilation. (However, the facilities
provided by STATE automatically exist
with SYMDMP.) In addition, STATE and
STXIT are mutually exclusive at
execution time. Additional
information on the staterrent number
option can be found in the chapter
"Symbolic Debugging Features."

LIMIT clause is not specified), will
not be relocated. The PMAP option

SYNTAX, CSYNTAX, NOSYNTAX,

has meaning only when LISTX or CLIST
and/or SYM (for the loc.;;::-:ion of WORKING
STORAGE) is in effect.

OPTHlIZE
NCOPTIMIZE
OPT
NOOPT

OPTIMIZE (OPT) causes optimized object
code to be generated by the compiler.
The more efficient code generated con
siderably reduces the amount of space
required by the object program. If
neither LINK nor DECK is specified in
the OPTION statement, then optimized
code is not generated by the compiler.

This option cannot be used if either the
svrnbolic debug option (SY~mMP), the state
m~nt number option (STATE), or the flow
trace option (FLOWI=nn]) is requested.

FLOv] [=nn]

38

provides the programmer vIi th a formatted
trace (i.e., a list containing the pro
aram identification and statement
~umbers) corresponding to a variable
number of procedures executed prior to
an abnormal termination. The value "nn"
may range from 0 through 99. If "nn" is
not specified, a value of 99 is assumed.

FLOW and STXIT, and FLOW and OPT are
mutually exclusive options, i.e., only

indicates whether the source text is
to be scanned for syntax errors only
and appropriate error messages are to
be generated. For conditional ~ynt~x
checkina (CSYNTAX), a full compllatlon
is prod~ced so long as no messages
exceed the C level. If one or more
E-Ievel or higher severity rressages
are produced, the compiler generates
the messages tut does not generate
object text.

Notes:

1. When the SYNTAX option is in
effect, all of the following
compile-time options are
suppressed:

OPTION control statement: LINK,
DECK, XREF

CBL statement: SXR~F, CLlST,
COUNT, VERBREF, VERBSUM

2. ~vhen CSYNTAX is requested and one
or more D- or E-Ievel messages
occur, then the preceding options
are suppressed and the eBL option
FLAGE is made active.

3. Unconditional syntax checking is
assumed if all of the following
cornpile-tirre options are
specified:

OPTION control statement: NOLINK,
NOXREF, NODECK

CBL statement: SUPMAP (and CLIST,
SXREF, VERBSUM, and VERBREF are
not specified)

4. Some compiler diagnostics do not
appear when SYNTAX or CSYNTAX is
in effect. These are listed in
"Program Checkout."

SYMDMP[=filename]
indicates to the compiler that
execution-time dumps might be
requested for the program currently
being compiled. If dumps are desired,
the programmer must provide the
required control cards at execution
time.

Use of the symbolic debug option
necessitates the presence of an
additional work file, SYS005, at
compil~ time. The nfilename"
parameter enables the programmer to
specify a name for the SYS005 file
that he can retain. If no filename is
specified. IJSYS05 will be used. When
several COBOL programs are link edited
together, the "filename n parameter
enables each to have a unique SYMDMP
name. For a tape file, only unlabeled
tapes may be used, and the filename in
the SYMDMP=filename parameter is
ignored.

SYMDMP and STXIT, SYMDMP and STATE,
and SYMDMP and OPT are mutually
exclusive options, i.e., no more than
one may be in effect during a given
compilation. (However, the facilities
provided by STATE are automatically
included with SYMDMP.) In addition,
SYMDMP and STXIT are mutually
exclusive at execution-time.
Additional information on the symbolic
debug option and the required
execution-time control cards can be
found in the chapter "Symbolic
Debugging. Features."

Note: If NODECK and NOLINK are requested
on the OPTION control statement and either
SYMDMP or OPT is specified on the CBL card,
the SYMDMP or OPT specification is ignored.

CATALR
NOCATALR

causes the compiler to generate CATALR
card images on the SYSPCH file if
OPTION DECK is in effect during
compilation. This will allow
cataloging of the compiler produced
object modules into the relocatable
library. The module names in the
CATALR cards adhere to the same rules
as the phase names in the compiler

LIB
NCLIB

produced PHASE cards according to the
segmentation and sort phase naming
conventions (see the sections on Sort
and Segmentation Features).

-----indicates that BASIS and/or COpy
statements are in the source progra~.
If either COpy or BASIS is present,
LIB must be in effect. If COpy and/or
BASIS statements are not present, use
of the NOLIB option yields more
efficient compiler processing.

VERB
NOVERB

indicates whether procedure-names and
verb-names are to be listed with the
associated code on the object-program
listing. VERB has meaning only if
LISTX, CLIST, VERBSUM, VERBREF, COUNT
or READY TRACE are in effect. NOVERB
yields more efficient compilation.

A
LVL= B

C

NOLVL

D t·· . -----indicates whether the compiler should
identify COBOL clauses and statements
in'a DOS/VS COBOL source program that
do not conform to the Federal
Information Processing Standard. FIPS
recognizes four language levels: low,
low-intermediate, high-intermediate
and full. The FIPS Flagger provides
four levels of flagging from low (A)
to high (D) to conform to the four
levels of the FIPS.

VERBSUM
NOVERBSUM

provides a brief summary of verbs used
in the program and a count of how
often each verb was used. This option
provides the user with a quick search
for specific types of statements.
VERBSUM implies VERB.

VERBREF
NOVERBREF

provides a cross reference of all
verbs used in the program. This
option provides the prograrrmer with a
quick index to any verb used in the
program. VERB REF implies VERB and
VERBSUM.

COUNT
NOCOUNT

generates code to produce verb
execution summaries at the end of
problem program execution. Each verb
is identified by procedure-name and by

Preparing COBOL Programs for Processing 39

statement number, and the number of
times it was used is indicated. In
addition, the percentage of verb
execution for each verb with respect
to the execution of all verbs is
given. A summary of all executable
verbs used in a program and the number
of times they are executed is
provided. COUNT implies VERB.

Note: If COUNT and S~XIT are desired,
then either STXIT must be requested in
the program unit requesting COUNT, or
the program unit requesting COUNT must
be entered before the program unit
requesting STXIT. See the chapter
entitled "Execution Statistics" for
additional information on the COUNT
option.

LST Statement -- New Compiler Option Card

The LST statement is used to invoke the
lister, a portion of the compiler that
processes programs written in American
National Standard COBOL to produce a
reformatted source code listing containing
embedded cross-reference information, and
uniform indenting conventions.

The LST option card can be placed
anywhere between the EXEC statement and the
first statement of the COBOL program. It
may be placed between any other compiler
option cards. The options shown in the
following format may appear in any order.
Underscoring indicates the default case.

r---,
I I I[DECK,] [COPYPCH,] [LSTCOMP'J [PROC=lCOI,ll
I NODEC~ NOCOPYPCH LSTONLY 2colJI
I I L ___ J

LST
must begin in column 2 (column 1 must
be blank) and be followed by at least
one blank.

DECK
NODECK

indicates whether an updated source
deck is to be produced as a result of
the lister reformatting and/or the
update BASIS library.

COPYPCH
NOCOPYPCH

40

will punch updated and reformatted
copy libraries as a permanent part of
the source when DECK is specified.
When no updated source deck is

requested, an updated and reformatted
COpy library will be punched out.

LSTONLY
LSTCOMP

when LSTONLY is specified, the program
will not be compiled, but a
reformatted listing will be produced
along with a deck if DECK has been
specified. LSTCOMP will provide a
source listing and will compile the
program as part of the job step.
LSTCOMP does not suppress CLIST.

PROC=lcol
2col
will list ~ne Procedure Division in
either single- or double-column
format. At least 132 print positions
are required on the printer for the
double-column format.

For more details on the lister program,
see the chapter entitled "Using the Lister
Feature".

Mutually Exclusive Options

In some of the preceding descriptions of
the CBL card options, restrictions have
been placed on the use of one option in
conjunction with others. It should be
noted that if these restrictions are
violated, the compiler ignores all but the
last of the conflicting options specified.
For this reason, if after a CBL card is
coded the programmer decides to use a new
option that is mutually exclusive with an
option on the original CBL card, a new CBL
card can be added rather than changing the
original card.

Changing the installation Defaults

In order to change the compiler default
options to suit your installation, a new
member, C.CBLOPTNS, must be added to the
source statement library. This module must
contain CBL option cards specifying the
desired defaults. Resultant defaults may
be overridden at compilation tirre by
supplying a CBL card in the compiler input
stream.

Significant Characters for Various Options

The DOS/VS COBOL compiler selects the
valid options for processing by looking for
three significant characters of each key

option word. When the keyword is
identified, it is checked for the presence
or absence of the prefix ~Or as
appropriate. The programmer can make the
most efficient use of the CBL card by using
the significant characters instead of the
entire option. Table 3 lists the
significant characters for each option.

Table 3. Significant Characters for
Various Options

r------------------T----------------------,
I I Significant I
I Option I Characters I
t------------------+----------------------~
I SEQ 1 SEQ I
I FLAGE(W) I LAG,LAGW I
I BUF I BUF 1
I SPACE 1 ACE I
I PMAP I PMA I
1 SUPMAP I sUP I
I CLIST I CLI I
I TRUNC I TRU I
I APOST I APO I
I QUOTE I QUO I
I SXREF I SXR I
I STATE I STA I
I FLOW I FLO I
I LIB 1 LIB I
I SYMDMP I SYM I
I OPTIMIZE I OPT I
I SYNTAX I SYN I
I CSYNTAX I CSY I
I VERB I VER I
I ZWB I ZWB I
I LVL 1 LVL I
I COUNT I cou I
I VERBSUM I VERBSUM I
I VEREREF I VERBREF I
I STXIT I STX I
I DECK I DEC I
I COPYPCH I COP I
I LSTCOMP I STC I
I LSTONLY 1 STO I
I PROC I PRO 1 L __________________ ~ ______________________ J

Note: SYM on the CBL card should not be
confused with SYM on the OPTION card.

JOB CONTROL COMMANDS

Job control commands are distinguished
from job control statements by the absence
of // blank in positions 1 through 3 of
each command. They permit the operator to
adjust the system according to day-to-day
operating conditions. This is particularly
true in the area of device assignment,
where the operator may need to
(1) communicate to the system that a device
is unavailable, or (2) designate a
different device as the standard for a
given symbolic unit. Therefore, these
commands normally are not a part of the

regular job deck for a job. Job control
commands tend to be effective across jobs,
whereas job control statements are confined
within a job.

Job control commands are discussed in
detail in the publication DOS/vS system
Control Statements.

LINKAGE EDITOR CONTROL STATE~ENTS

Object modules used as input to the
Linkage Editor must include linkage editor
control statements. 'There are four linkage
editor control statements: PHASE, INCLUDE,
ENTRY, and ACTION.

Linkage editor control statements
initially enter the system through the
device assigned to SYSRDR as part of the
input job stream. PHASE and INCLUDE
statements may also be present on SYSIPT or
in the relocatable library. All four
statements are verified for operation
(INCLUDE, ACTION, ENTRY, or PHASE) and are
copied to SYSLNK to become input when the
Linkage Editor is executed.

Linkage editor control statements must
be blank in position 1 of the statement.
The operand field is terminated by the
first blank position. It cannot extend
beyond column 72.

The Linkage Editor is executed as a
distinct job step. Figure 5 shows how the
linkage editor function is performed as a
job step in three kinds of operations.

1. Catalog Programs in Core Image
Library. The linkage editor function
is performed immediately preceding the
operation that catalogs programs into
the core image library. When the
CATAL option is specified, programs
edited by the Linkage Editor are
cataloged in the core image library by
the Librarian after the editing
function is performed. The sequence
of this operation is shown in Part A
of Figure 5. Note that the input for
the LNKEDT function could contain
modules from the relocatable library
instead of, or in addition to, those
modules from the card reader, tape
unit, or mass storage unit extent
assigned to SYSIPT. This is
accomplished by naming the module(s)
to be copied from the relocatable
library in an INCLUDE statement.

Preparing COBOL Programs for Processing 40.1

I

2. Load-and-Execute. The sequence of
this operation is shown in Part B of
Figure 5. Specifying OPTION LINK
causes the Job Control Processor to
open SYSLNK, and allows the Job
Control Processor to place the object
module(s) and linkage editor control
statements on SYSLNK. As with the
catalog operation, the input can
consist of object modules from the
relocatable library instead of, or in
addition to, those modules from the
card reader, tape unit, or disk extent
assigned to SYSIPT. This is accom
plished by specifying the name of the
module to be included in the operand
of an INCLUDE statement. After the
object modules have been edited and
placed in the core image library, the
program is executed. The blank
operand in the EXEC control statement
indicates that the program that has
just been link edited and temporarily
stored in the core image library is to
be executed.

3. Compile-and-Execute. Source modules
can be compiled and then executed in a

40.2

single sequence of job steps. In
order to do this, the COBOL compiler
is directed to write the object module
directly on SYSLNK. This is done by
using the LINK option in the OPTION
control statement. Upon completion of
this output operation, the linkage
editor function is performed. The
program is link edited and tem
porarily stored in the core image
library. The sequence of this
operation is shown in Part C of Figure
5.

In each of the operations described in
Figure 5, if a private core image library
is assigned, output from the Linkage Editor
will be placed (either permanently or
temporarily> in the private core image
library rather than in the system core
image library. If the Linkage Editor is
executed in a batched-job foreground
partition, a private core image library
must be assigned. Private core image
libraries are a system generation option.

~----- EXEC FCOBOl -----..., OPTION CATAl
PHASE PROGA, *

I
I
I ______ INCLUDE

{object module}
ENTRY

-----------.·~I·~---------EXECPROGA----------~

EXEC lNKEDT
® lOAD AND EXECUTE

..... -----EXEC FCOBOl

.CoR
Storage
ExecutIon

OPTION LINK I
INCLUDE I
{object module) .1

~----------------------------ENTRY --------------------------~I

EXEC lNKEDT
EXEC

OPTION LINK
EXEC FCOBOl
ENTRY

~------------------------------- EXEClNKEDT
FXF{"

Cor.
Storage
execution

I
I
I
I

.1

Figure 5. Job Definition -- Use of the Librarian

Control Statement Placement

The placement of linkage editor control
statements is subject to the following
rules:

1. The ACTION statement must be the first
linkage editor control statement
encountered in the input stream;
otherwise, it is ignored.

2. The PHASE statement must precede each
object module that is to begin a
phase.

3. The INCLUDF statement must be
specified for each object module that
is to be included in a program phase.

4. A single ENTRY statement should follow
the last object module when multiple
object modules are processed in a
single linkage editor run.

ACTION and E~TRY statements, when
present, must be on SYSRDR. PHASE and
INCLUDE statements may be present on
SYSRDR, SYSIPT, or in the relocatable
library.

PHASE Statement

The PHASE statement must be specified if
the output of the Linkage Editor is to
consist of more than one phase or if the
program phase is to be cataloged in the
core image library. Each object module
that begins a phase must be preceded by a
PHASE statement. Any object module not
preceded by a PHASE statement will be
included in the current phase.

The statement provides the Linkage
Editor with a phase name and an origin
point for the phase. The PHASE statement
is in the following format:

r---,
I PHASE naree,origin[,NOAUTO] I L ___ J

preparing COBOL Programs for Processing 41

name
is the symbolic name of the phase. It
is the name under which the program
phase is to be cataloged. This name
does not have to be the name specified
in the PROGRAM-ID paragraph in the
Identification Division of- the source
program and, in the case of
segmentation and/or sort, it should
not be the same. It must consist of
from one to eight alphanumeric
characters. Phases that are to be
executed in a segmentation and/or sort
structure should have phase names of
from five to eight alphanumeric
characters, the first four of which
should be the same. An asterisk
cannot be used as the first character
of a phase name. If no phase name is
specified, a dummy phase name of
PHASE*** is used and execution stops
at end of compilation. The job is
then cancelled.

origin
indicates to the Linkage Editor the
starting address of this specific
phase. An asterisk may be used as an
origin specification to indicate that
this phase is to follow the previous
phase. This origin specification
format of the PHASE statement covers
all applications that do not include
setting up overlay structures. See
the chapter "Calling and Called
Programs" for information on the PHASE
statement for overlay applications.

NOAUTO
indicates that the Automatic Library
Look-Up (AUTOLINK) feature is
suppressed for both the private
relocatable library and the system
relocatable library. (The use of
NOAUTO causes the AUTOLINK process to
be suppressed for that phase only.)
The AUTOLINK feature is discussed
later in this chapter.

INCLUDE Statement

The INCLUDE statement must be specified
for each object module deck or object
module in the relocatable library that is
to be included in a program phase. The
format of the INCLUDE statement is as
follows:

r---,
I INCLUDE [module-name] [,enamelist)] I L ___ J

The INCLUDE statement has two optional
operands. When both operands are used,
they must be in the prescribed order. When
the first operand is omitted and the second

42

operand is used, a comma must precede the
second operand.

module-name
must be specified when the object
module is in the relocatable library.
It is not specified when the module to
be included is in the form of a card
deck being entered from SYSIPT.
module-name is the name under which
the module was cataloged in the
library, and must consist of from one
to eight alphanumeric characters.

(namelist)
causes the Linkage Editor to construct
a phase from the control sections
specified in the list. Since control
sections are of no interest to the
COBOL programmer, users interested in
this option should refer to the
description of the INCLUDE statement
in the publication DOS/VS System
Control Statements.

ENTRY Statement

The ENTRY statement is required only if
the programmer wishes to provide a specific
entry point in the first phase produced by
the Linkage Editor. When no ENTRY
statement is provided, the Job Control
Processor writes an ENTRY statement with a
blank operand on SYSLNK to ensure that an
ENTRY statement will be present to halt
link editing. The transfer address will be
the load address of the first phase. The
ENTRY statement is described further in the
publication DOS/VS System Control
Statements.

ACTION Statement

The ACTION statement is used to indicate
linkage editor options. When used, the
statement must be the first linkage editor
statement in the input stream. The format
of the ACTION statement is as follows:

r---,
I CLEAR I
I MP I
I NOMAP I
I NOAUTO I
I NOOn I
I ACTION CANCEL I
I BG I
I Fi I
I F2 I
I F3 I
I F4 I L ___ J

CLE:AR

MAP

indicates that the entire temporary
portion of the core image library will
be set to binary zero before the
beginning of the linkage editor
function. CLEAR is a time-consuming
function and should be used only when
necessary.

indicates that SYSLST is available for
diagnostic messages. In addition, a
storage map is output on SYSLST.

NOMAP
indicates that SYSLST is unavailable
when performing the link edit
function. The mapping of storage is
not performed, and all linkage editor
diagnoFtic messages are listed on
SYSLOG.

NOAU'l'O
suppresses the AUTOLINK function for
both the private and system
relocatable libraries during the link
editing of the entire program.
AUTOLINK is discussed later in this
chapter.

CANCEL
causes an automatic cancellation of
the job if any of the linkage editor
errors 21001 through 21701 occur.
These diagnostic messages can be found
in the. publication DOS/VS System
Control Statements.

BG, F1, F2, F3, and F4

NOREL

are options used to link edit a
program for execution in a partition
other than that in which the link edit
function is taking place. See the
publication DOS/VS System Control
Statements.

suppresses the relocating loader.

Link editing for a specific address is
performed.

AUTOLINK FEATURE

If any references to external-names are
still unresolved after all modules have
been read from SYSLNK, SYSIPT, and/or the
relocatable library, AUTOLINK collects each
unresolved external reference from the
phase. It then searches the private
relocatable library (if SYSRLB has been
assigned) and the system relocatable
library for module names identical to the
unresolved names and includes these modules
in the program phase. This feature should
not be suppressed (via PHASE or ACTION
statements) in linkage editor job steps
which include COBOL subroutines cataloged
in the relocatable library. See the
chapter "Calling and Called Programs" for
additional details.

RELOCATING LOADER FEATURE

The relocating loader feature allows
users to load single-phase and multi-phase
programs at any valid problem program
address in the system. Under this option,
the linkage editor catalogs relocatable
phases into the core image library, and the
relocating loader in the supervisor assigns
the absolute machine addresses that are
necessary for program execution. This
means the user need retain only one copy of
the program in the core image library.

The relocating loader is an optional
feature, and must be specified at system
generation time.

Figure 6 illustrates options available
during link-editing.

Preparing COBOL Programs for Processing 43

LINKAGE EDITOR
PRODUCES

RElOCATABlE
PHASES

Yes

System retains flexibility of
loading in any partition.

Program may be included in
job stream for any partition
when program is loaded.

Default: Program runs
in virtual mode.

Option: User may specify
execution in associated
real partition.

YES

NO

LINKAGE-EDITING FOR A
SPECIFIC PARTITION

- Default: Addresses will be
adjusted for the specified
virtual partition.

- Option: User may
specify linking for
the associated real
partition.

This supervisor cannot
load relocatable phases.
The user shou Id specify
ACTION=NOREl at
link-edit time, or generate
another supervisor with
relocating loader.

Figure 6. options Available During Link-Editing

44

DOS/VS supports four libraries: the
core image library, the relocatable
library, the source statement library, and
the procedure library. The core image,
relocatable, and source statement libraries
are classified as system libraries and
private libraries. The procedure library
exists only as a system library. The
system residence device (SYSRES) contains
the system libraries. Private libraries
can be contained on separate disk packs.
These libraries are discussed under
"Private Libraries" in this chapter.
Executable programs (core image format) are
stored in the core image library;
relocatable object modules are stored in
the relocatable library; source language
routines are stored in the source statement
library; catalogued procedures are stored
in the procedure library.

PLANNING THE LIBRARIES

The components of the DOS/VS system are
shipped in three system libraries: the
core image library, the relocatable
library, and the source statement library.
A fourth library -- the procedure library
-- is available but it does not contain any
information when the system is shipped. -
Most programs and procedures developed and
used by your installation will also be
stored in these libraries. In addition to
the system libraries, DOS/VS supports
private libraries which you can use to
either substitute for or supplement the
corresponding system libraries.

Planning the size, contents, and
location of these libraries according to
the needs of your installation is an
essential part of the system generation
procedure. Such detailed planning will
ensure that:

• No disk space is wasted by components
not required in your installation.

• The libraries are large enough to allow
for future additions.

• The libraries are accessed by the
system with maximum efficiency.

LIBRARIAN fUNCTIONS

LIBRARIAN

The Librarian is a group of programs
that perform three major functions:

1. Maintenance

2. Service

3. Copy

Maintenance functions are used to
catalog (that is, add), delete, or rename
components of the four libraries, condense
libraries and directories, set a condense
limit for an automatic condense function,
reallocate directory and library extents,
and update the source statement and
procedure libraries.

The copy function is used either to
completely or selectively copy the disk on
which the system resides. Service
functions are used to translate information
from a particular library to printed
(displayed) or punched output.

Only the catalog maintenance function of
the Librarian is discussed in this
publication for the four system libraries.
In addition, the update function of the
source statement library is discussed. A t
comPblet; dedsc~iption ofl~ibr~rian functions :
can e ~oun 1n the pub 1cat1on DOS/VS
System Control statements.

CORE TMAGE LIBRARY

The core image library may contain any
number of programs. Each program consists
of one or more separate phases. Associated
with the core image library is a core image
directory which contains a unique
descriptive entry for each phase in the
core image library. These entries in the
core image directory are used to locate and
retrieve phases from the core image
library.

Cataloaina and Retieving Program Phases -
Core Image Library

If a program is to be cataloged in the
core image library, the job control
statement II OPTION with the CATAL option

Librarian Functions 45

must be specified prior to the first
linkage editor control card, and must
precede the first PEASE card of the program
to be cataloged. Upon successful
completion of the linkage editor job step,
output from the Linkage Editor is placed in
the core image library as a permanent
member. The program phase is cataloged
under the name specified in the PHASE
statement.

If a phase in the core image library is
to be replaced by a new phase having the
same name, only the catalog function need
be used. The previously cataloged phase of
the same name is implicitly deleted from
the core image directory by the catalog
function, and the space it occupies in the
library can later be released by the
condense function.

Note: The necessary ASSGN control
statements must follow the // JOB control
statement if the current assignments are
not the following:

1. SYSRDR -- Card reader, tape unit, or
disk extent

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST -- Printer, tape unit, or disk
extent

4. SYSLOG Printer keyboard

5. SYSLNK Disk extent

The following is an example of
cataloging a single phase, FOURA, into the
core image library. (The program phase
FOURA can be executed in the next job step
by specifying the // EXEC statement with a
blank name field.)

// JOB CATALOG
// OPTION CATAL

PHASE FOURA,*
INCLUDE

{object deck}
/*
// LBLTYP TAPE
// EXEC LNKEDT
// EXEC
/&

To compile, link edit, and catalog the
phase FOURA into the core image library in
the same job, the following job deck could
be used:

// JOB CATALOG
// OPTION CATAL

PHASE FOURA,*
// EXEC FCOSOL

46

{source deck}
/*
// EXEC LNKFDT
/*
/&

When the phase is executed in a
subsequent job, the EXEC statement that
calls for execution must specify FOURA,
i.e., the name by which the phase has been
cataloged.

// JOB EXJOB
// RXFC FOURA
/&

Phases can be in either non-relocatable
U~ relocatable format. The non-relocatable
phases are loaded at the addresF computed
at link-edit time into a real or virtual
partition. The load addresses and address
constants of relocatable phases can be
modified by the relocating loader. These
phases can be loaded at a virtual address
different from the one for which it was
link-edited.

RELOCATABLE LIBRARY

The relocatable library contains any
number of modules. Each module is a
complete object deck in relocatable format.
The purpose of the relocatable library is
to allow the programmer to maintain
frequently used routines in residence and
combine them with other modules without
recompiling.

Associated with the relocatable library
is the relocatable directory. The
directory contains a uniaue, descriptive
entry for each module in the relocatable
library. The entries in the relocatable
directory are used to locate and retrieve
modules in the relocatable library.

MAINTENANCE FUNCTIONS

To request a maintenance function for
the relocatable library, the following
control statement is used:

// EXEC MAINT

Cataloging a Module -- Relocatable Library

The cataloq function adds a module to
the relocatabie library. A module in the
relocatable library is the output of a
complete COBOL compilation.

The catalog function implies a delete
function. Thus, if a module exists in the
relocatable library with the same name as a
module to be cataloged, the module in the
library is deleted by deleting reference to
it in the relocatable directory.

The CATALR control statement is required
to add a module to the relocatable library.
The format of the CATALR control statement
is:

r---,
I CATALR module-name [,v.m] 1 L ___ J

module-name

v.m

is the name by which the module is
known to the control program. The
module-name consists of from one to
eight characters , the first of which
must not be an asterisk.

specifies the change level at which
the module is to be cataloged. ~ may
be any decimal number from 0 through
127. ~ may be any decimal number from
o through 255. If this operand is
omitted, a change level of 0.0 is
assumed. A change level can be
assigned only when a module is
cataloged.

All control statements required to
catalog an object module must be read from
SYSIPT.

Note: If SYSRDR and/or SYSIPT are assigned
to a tape unit, the MAINT program assumes
that the tape is positioned to the first
input record. The tape is not rewound at
the end of the job. If a tape mark is
found, MAINT assumes end-of-job.

The following is an example of compiling
a source program and cataloging the
resultant module in the relocatable
library. The job deck is read from SYSIPTo

II JOB NINE
II OPTION DECK
II EXEC FCOBOL

{source deck}
1*
II PAUSE PLACE DECK AFTER CATALR CARD
II EXEC MAINT

1*
1&

CATALR MOD9

(punched deck goes here)

In the above example, as a result of the
compile step, the object module is written

on SYSPCH. The next job step catalogs the
object module nmD9) into the relocatable
library. Since the object module must be
cataloged from SYSIPT. a message to the
operator instructs him to place the object
module on SYSIPT behind the CATALR
statement.

The following is an example of
cataloging two previously created object
modules in the relocatable library:

II JOB EIGHT
II EXEC MAINT

CATALR MOD8A

1*
1&

{object deck}
CATALR MOD8B

{object deck}

An additional capability of the system
permits a programmer to compile a program
and to catalog it to the system
relocatable, or private relocatable,
library in one continuous run. The
programmer inserts a CATALR statement in
his job control input stream preceding the
compiler execute statement. The CATALR
statement will be written on the SYSPCH
file (tape or mass storage device) ahead of
the compiler output when OPTION DECK is in
effect. The programmer then reassigns the
SYSPCH file as SYSIPT and executes the
MAINT program to perform the catalog
function. The output of the cowpilation
(on tape or mass storage device) may be
cataloged immediately or it may be
cataloged at some later time. It can also
be held after cataloging as backup of the
compilation.

The preceding method is recorrmended for
single-module object decks.. In programs
for which the compiler produces multimodule
object decks (when segmentation and/or SORT
are being used), it is necessary to use the
CBL card CATALR option. This option causes
a CATALR card to precede each object
module.

SOURCE STATEMENT LIBRARY

The source statement library contains
any number of books. Each book in the
source statement library is composed of a
sequence of source language statementS.
The purpose of the source statement library
is to allow the COBOL prograrrmer to
initiate the compilation of a book into the
source program by using the COpy statement
or BASIS card.

Librarian Functions 47

Each book in the source statement
library is classified as belonging to a
specific sublibrary. Sublibraries are
defined for three programming languages:
Assembler, PL/I, and COBOL. Individual
books are classified by sublibrary names.
Therefore, books written in each of these
languages may have the same name.

Associated with the source statement
library is a source statement directory.
The directory contains a unique descriptive
entry for each book in the source statement
library. The entries in the source
statement directory are used to locate and
retrieve books in the source statement
library.

MAINTENANCE FUNCTIONS

To request a maintenance function for
the source statement library, the following
control statement must be used:

// EXEC MAINT

cataloging a Book -- Source Statement
Library

The CATALS control statement is required
to add a book to a sublibrary of the source
statement library.

A book added to a sublibrary of the
source statement library is removed by
using the delete function. When a book
exists in a sublibrary with the same name
as a book to be cataloged in that
sublibrary, the existing book in the
sublibrary is deleted. The following is
the format of the CATALS control statement:

r---,
I CATALS sublib.library-name[,v.m[,c]] I L ___ J

48

The operation field contains CATALS.

sublib
represents the sublibrary to which a
book is to be cataloged and can be:

Any alphanumeric character (0-9, A-Z,
#, $, and ~) representing source
statement libraries. The characters
A, C, E, and P have special uses:

A and E are used for the Assembler
sublibrary

C is used for the COBOL sublibrary

P is used for POWER in PL/I

The sublib qualifier is required. If
omitted, the operand will be flagged as
invalid and no processing will be done on
the book.

library-name

v.m

C

represents the name of the book to be
cataloged. The library-name consists
of from one to eight alphanumeric
characters, the first of which must be
alphabetic. It is the name the
programmer uses to retrieve the book
when using the source language COpy
statement or BASIS card.

specifies the change level at which
the book is to be cataloged. ~ may be
any decimal number from 0 through 127;
ill may be any decimal number from 0
through 255. If this operand is
omitted, a change level of 0.0 is
assumed. The ~ operand becomes part
of the entry in the directory for the
specified book. Its value is
incremented each time an update is
performed on the book.

indicates that change level
verification is required before
updates are accepted for this book.

See the UPDATE control statement,
discussed later in this chapter, for its
relationship to the ~ and C operands of
the CATALS control statement.

In addition to the CATALS control
statement, a control statement of the
following form must precede and follow the
book to be cataloged:

BKEND [sublib.library-name],[SEQNCE],
[count],[CMPRSD]

All operand entries are optional. When
used, the entries must be in the prescribed
order and need appear only in the BKEND
statement preceding the book to be
cataloged.

The first entry in the operand field is
identical to the operand of the CATALS
control statement.

SE:QNCE

count

specifies that columns 76 to 80 of the
card images constituting the book are
to be checked for ascending sequence
numbers. If an error is detected in
the sequence checking, an error mes
sage is printed. The error can be
correct~d, and thE book can be
recataloged.

specifies the number of card images in
the book. When the £ount operand is
used, the card input is counted,
beginning with preceding BKEND
statement and including the subsequent
BKEND statement. If an error is
detected in the card count, an error
message is printed. The error can be
corrected, and the book can be
recataloged.

CMPRSD
indicates that the book to be
cataloged in the library is in
compressed format as a result of
CMPRSD having been specified when
performing a PUNCH or DSPCH service
function. These functions are
described in the publication DOS/VS
~stem Control Statements.

Card input for the catalog function is
from the device assigned to SYSIPT. The
CATALS control statement is also read from
the device assigned to SYSIPT.

Frequently used Environment Division,
Data Division, and Procedure Division
entries can be cataloged in the COBOL
sublibrary of the source statement library.
A book in the source statement library
might consist, for example, of a file

description of the Data Division or a
paragraph of the Procedure Division.

The following is an example of
cataloging a file description in the COBOL
sublibrary of the source statement library.

II JOB ANYNAME
II EXEC MAINT

CATALS C.FILEA
BKEND C.FILEA

1*
1&

BKEND

BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS RECA.

Retrieving a Cataloged Book -- COBOL COpy
Statement: The preceding file description
can be included in a COBOL source program
by writing the following statement:

FD FILEE COpy FILEA.

Note that the library entry does not
include FD or the file-name. It begins
with the first clause that is actually to
follow the file-name. This is true for all
options of the COpy statement. However,
data entries in the library may have a
level number (01 or 77) identical to the
level number of the data-name that precedes
the COpy statement. In this case, all
information about the library data-name is
copied from the library and all references
to the l:.brary data-name are replaced by
the data-name in the program if the
REPLACING option is specified. The change
is made only for this program. The entry
as it appears in the library remains
unchanged. For example, assume the
following data entry is cataloged under the
library-name DATAR,

01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF
PAYFILE.

and the following statement is written in a
COBOL source module:

01 GROSS COPY DATAR REPLACING PAYFILE
BY GROSS.

The compiler interprets this as:

01 GROSS USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF
GROSS.

Librarian Functions 49

Note also that the library-name is used
to identify the book in the library. It
has no other use in the COBOL program.

Text cataloged in the source statement
library must conform to COBOL margin
restrictions.

The COBOL COpy statement is discussed in
detail in the section "Extended Source
Program Library Facility."

Updating Books -- Source Statement Library

The update function is used to make
changes to properly identified statements
within a book in the source statement
library. Statements are identified in the
identification field, columns 73 through
80, which is fixed in format as follows:

Columns 73-76 Program identification
which must be constant
throughout the book.

Columns 77-80 Sequence number of the
statement within the
book.

One or more source statements may be
added to, deleted from, or replaced in a
book in the library without the necessity
of replacing the entire book. The update
function also provides these facilities:

1. Resequencing statements within a book
in the source statement library

2. Changing the change level (v.m) of the
book

3. Adding or removing the change level
requirement

4. Copying a book with optional retention
of the old book with a new name (for
backup purposes)

The UPDATE control statement is used for
the update function and has the following
format:

I

UPDATE sublib.library-name,[s.book1],1
[v • m], [nn] I

The operation field contains UPDATE.

sublib

50

represents the sublibrary that
contains the book to be updated. It
may be any of the characters 0 through
9, A through Z, i, $, or ~.

s.book1

v.m

nn

provides a temporary update option.
The old book is renamed s.book1 and
the updated book is namea-----
sublib.library-na~. § indicates the
sublibrary that contains the old,
renamed book. It may be one of the
characters 0 through 9, A through Z,
i, $, or w. If this operand is not
specified, the old book is deleted.

represents the change level of the
book to be updated. y may be any
decimal number from 0 through 127; N
may be anY decimal number from 0
through 255. This operand must be
present if change level verification
is to be performed. Use of the
optional entry C in the CATALS control
statement at the time the book is
cataloged in the library determines
whether change level verification is
required before updating. If the
directory entry specifies that change
level verification is not required
before updating, the change level
operand in the UPDATE control
statement is ignored.

If the change level is verified, the
change level in the book's directory
entry is increased by 1 by the system
for verification of the next update.
If m is at its maximum value and an
update is processed, m is reset to 0
and the value of y is increased by 1.
If both v and m are at their maximum
values and an update is processed,
both v and m are reset to O.

represents the resequencing status
required for the update. nn may be a
1- or 2-character decimal number from
1 through 10, or it may be the word
NO. If nn is a decimal number, it
represents the increment that will be
used in resequencing the statements in
the book. If nn is NO, the statements
will not be resequenced. If nn is not
specified, the statements will be
resequenced with an increment of 1.
When a book is resequenced, the
sequence number of thefirst statement
is 0000. For example, if a book is
cataloged in the source statement
library with sequence numbers ranging
from 0010 through 1000 with increments
of 5 for each statement:

and ~ is not specified when the
update function is performed, the book
is resequenced with numbers 0000,
0001, 0002, ••• etc.

and NO is specified, insertions,
deletions, and/or replacements are
made with no effect on the original
sequence numbers.

anu nn is specified as 2, the book is
resequenced~with numbers 0000, 0002,
0004, .•• etc., regardless of the
original sequencing of the book in the
library or the sequence numbers of the
added or replacement cards.

The UPDATE control statement is followed
by ADD, DEL (delete), and/or REP (replace)
control statements as required, followed by
the terminat1ng END statement. The ADD,
DEL, REP, and END statements are identified
as update control statements by a right
parenthesis in the first position (column 1
in card format). This is a variation from
the general librarian control statement
format; thus, it clearly identifies these
control statements as part of the update
function.

ADD Statement: The ADD statement is used
for the addition of source statements to a
book. The format is:

r--,
ADD seq-no L-__ ~

ADD indicates that source statements
following this statement are to be added to
the book.

seq-no
represents the sequence number of the
statement in the book after which the
new statements are to be added. It
may be any decimal number consisting
of from one to four characters.

DEL Statement: The DEL statement causes
the deletion of source statements from the
book. The format is:

} DEL first-seq-nor ,last-seq-no]

DEL indicates that statements are to be
deleted from the book.

first-seq-no
last-seg-no

represent the sequence numbers of the
first and last statements of a section
to be deleted. Each number may be a
decimal number consisting of from one
to four characters. If last-seq-no is
not specified, the statement
represented by first-seq-no is the
only statement deleted.

REP Statement: The REP statement is used
when replacement of source statements is
required in a book. The format is:

) REP first-seq-no[,last-seg-no] L __ ~

REP indicates that source statements
following this statement are to replace
existing statements in a book.

first-seg-no
last-seq-no

represent the sequence numbers of the
first and last statements of a section
to be replaced. Each number may be a
decimal number consisting of from one
to four characters. Any number of new
statements can be added to a book when
a section is replaced. (The number of
statements added need not egual the
number of statements being replaced.)

Sequence number 9999 is the highest
number acceptable for a statement to be
updated. If the book is so large that
statement sequence numbers have "wrapped
around" (progressed from 9998, 9999, to
0000,0001), it will not be possible to
update statements 0000 and 0001.

END Statement: This statement indicates
the end of updates for a given book. The
format is:

} END [v. m[, C]]

v.m

C

represents the change level to be
assigned to the book after it is
updated; y may be any decimal number
from 0 through 127. ~ may be any
decimal number from 0 through 255.
This operand provides an additional
means of specifying the change level
of a book in the library. (Theother
method is through the use of the v.m
operand in the CATALS statement.)

indicates that change level
verification is required before any
subsequent updates for a given book.'

If v.m is specified and £ is omitted,
the book does not require change level
verification before a subsequent update.
This feature removes a previously specified
verification requirement for a particular
book.

If both optional operands are omitted,
the change lev~ in the book's directory
entry is increased as a result of the

Librarian Functions 51

update, and the verification requirement
remains unchanged.

Control statement Placement: Control
statement input for the update function,
read from the device assigned to SYSIN,
must be in the following order:

1. The JOB control statement.

2. The ASSGN control statements, if the
current assignments are not those
required. The ASSGN control
statements that can be used are SYSIN,
SYSLST, and SYSLOG.

3. The EXEC MAINT control statement.

4. The UPDATE control statement.

5.) ADD,) DEL, or) REP statements with
appropriate source statements.

6.) END statement.

7. The /* control statement.

8. The /& control statement, which is the
last control statement of the job.

The source statement library can also be
updated by using the DELETE and INSERT
cards. These are discussed in "Extended
Source Program Library Facility" in this
chapter, and in the publication IBM DOS
Full American National Standard COBOL.

UPDATE Function -- Invalid Operand Defaults

UPDATE Statement:

1. If the first or second operand is
invalid, the statement is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity.

2. If change level verification is
required and the incorrect change
level is specified, the statement is
flagged, the book is not updated, and
the remaining control statements are
checked to determine their validity.

3. If the resequencing operand is
invalid, resequencing is done in
increments of 1.

52

ADD, DELL-or REP Statements:

1. If there is an invalid operation or
operand in an ADD, DEL, or REP
statement, the statement is flagged,
the book is not updated, and the
remaining control statements are
checked to determine their validity.
All options of the UPDATE and END
statements are ignored.

2. The second operand must be greater
than the first operand in a DEL or REP
statement. If not, the statement is
considered invalid and is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity. All options
of the UPDATE and END statements are
ignored.

3. ~ll updates to a book between an
UPDATE statement and an END statement
must be in ascending sequential order
of statement sequence numbers. The
first operand of a DEL or REP
statement must be greater than the
last operand of the preceding control
statement. The operand of an ADD
statement must be eoual to or greater
than the last operand of the preceding
control statement. Consecutive ADD
statements must not have the same
operand. If these conditions are not
met, the default is the same as for
items 1 and 2.

END statement: If the first operand of the
END statement is invalid, the statement is
flagged, both operands are ignored, and the
book is updated as though no operands were
specified. If the second operand is
invalid~ the statement is flagged, the
operand is ignored, and the book is updated
as though the second operand were not
specified.

Out-of-S~uence Updates: If the source
statements to be added to a book are not in
sequence or do not contain sequence
numbers, the book is updated, and a message
indicating the error appears following the
END statement. If the resequencing option
has been specified in the UPDATE statement,
the book is sequenced by the specified
value, and subsequent updating is possible.
If the resequencing option is not
specified, the book is resequenced in
increments of 1, and subsequent updating
will be possible. If the resequencing
option NO is specified, the book will be
out of sequence, and subsequent updating
may not be possible.

The Procedure Library

The procedure library is a new system
library that may be used to store -- in
card image format --

• Frequently used sets, procedures, of
job control and linkage editor
statements (basic support).

• Procedures additionally containing
inline SYSIPT data, especially control
statements for system utility and
service programs <extended support).
The inline SYSIPT data must be
processed under control of the
device-independent sequential IOCS or
by IBM-supplied service programs and
language translators.

The procedure library is part of SYSRES,
so the maintenance and service functions
available for the other DOS/VS libraries
will also support the procedure library.

Cataloged procedures may be included in
the job control input stream by a job
control statement and temporarily modified
by overwrite statements. For more details
on cataloged procedures, see DOS/VS System
Control statements.

MAINT, PROCEDURE LIBRARY

To request a maintenance function for
the procedure library, use the following
BXEC control statement:

// EXEC MAINT

One or more of the maintenance functions
(catalog, delete, rename, condense, set
condense limit, or reallocate) can be
requested within a single run. Any number
of procedures within the procedure library
can be acted upon in this run. Further,
one or more of the maintenance functions
for either of the other three libraries
(core image, source statement, or
relocatable) can be requested within this
run, for the same MAINT program maintains
all four libraries.

catalog

The control statement required to add a
procedure to the procedure library is the
CATALP statement. Any number of procedures
may be cataloged in a single run. Each
procedure must immediately follow the
respective CATALP statement.

statement Format:

CATALP procedurename[,VM=v.ro] [,EOP=yyl
NO

,DATA=YES

Each control statement in the procedure
library should have a unique identity •
This identity is required to modify the job
stream at execution time. Therefore, when
cataloging, identify each control statement
in columns 73-79 (blanks may be embedded) •

procedurename
represents the name of the procedure
to be cataloged. The procedurename
consists of one to eight alphameric
characters, the first of which must be
alphabetic. It must not be ALL.

VM=v.m
specifies the change level at which
the procedure is to be cataloged. v
may be any decimal number from 0-127.
m may be any decimal number from
0-255. If this operand is omitted, a
change level of 0.0 is assumed.

A change level can be assigned only
when a procedure is cataloged. The
change level is displayed and punched
by the service functions.

EOP=yy
specifies a two-character
end-of-procedure delimiter. The EOP
parameter can be any combination of
characters except /*. /&, //; it must
not contain a blank or a comma. The
system assumes /+ as default
end-of-procedure delimiter. Otherwise
you can omit the EOP parameter.

DATA=YES
specifies that a procedure contains
SYSIPT inline data.

These procedures can only be executed
in the extended procedure support.

A procedure to be cataloged into the
procedure. library may consist of Job
Control and linkage editor statements and,
if the supervisor was generated with the
SYSFIL option, additional contrel
statements for IBM-supplied control and
service programs and data processed under
control of the deVice-independent
sequential IOCS. The end of a procedure is
indicated by the /+ end-of-procedure
delimiter or by the end-of-procedure
delimiter as specified in the EOP
parameter.

If SYSIN is assigned to a tape unit, the
MAINT program aSSUIT,es that the tape is
positioned to the first input record. The
tape is not rewound at the end of job.

Librarian Functions 53

Control statement input for the catalog
function, read from the properly assigned
device (usually SYSIN), is:

1. the JOB control statement, followed by

2. the ASSGN control statements, if the
current assignments are not those
required. The ASSGN statements that
can be used are SYSIN, SYSLST, and
SYSLOG. The ASSGN statements are
followed by

3. the EXEC MAINT control statement,
followed by

4. the CATALP control statement(s),
followed by

5. the module to be cataloged, followed
by

6. the /* control statement if other job
steps are to follow, or

7. the /& control statement, which is the
last control statement of the job.

For example:

// JOB CATPROC

ASSGN control statements,
if required

// EXEC MAINT
CATALP PROCA,EOP=AA,DATA=YES

control statements

SY3IPT inline data

/* END OF SYSIPT DATA

control statements

AA END OF PROCEDURE

The following restrictions apply when
you catalog procedures to the procedure
library:

1. A cataloged procedure cannot contain
control statements or SYSIPT data for
more than one job.

2. If the cataloged control statements
include the JOB statement, you must
not have a JOB statement when you
retrieve the procedure through the

EXEC statement. Conversely, if the
JOB statement is not cataloged, a JOB
statement must precede the EXEC
statement that retrieves the
procedure.

3. A cataloged procedure must not include
any of the following control
statements because they are not
accepted when the procedure is
processed:

// ASSGN SYSRDR,X'cuu'
// RESET SYS
// RESET ALL
// RESET SYSRDR
// CLOSE SYSRDR,X'cuu' [// ASSGN SYSIPT.x.cuu]
// RESET SYSIPT only if SYSIPT

data is
included

// CLOSE SYSIPT,X'cuu'

4. Cataloged procedures cannot be nested,
that is, a cataloged procedure cannot
contain an EXEC statement that invokes
another cataloged procedure.

Note: Maintenance cannot be performed in
the background partition on the procedure
library while a foreground partition is
using the library.

PSERV, PROCEDURE LIBRARY

To request a service function for the
procedure library, use the following EXEC
control statement:

// EXEC PSERV

One or more of the three service
functions can be requested within a single
run. Any number of procedures within the
procedure library can be acted upon in this
run,.

CALLING CATALOGED PROCEDURES

A cataloged procedure is called by a job
that appears in the input stream or via an
operator command. The job must consist of
a JOB statement and an EXEC statement that
specifies the cataloged procedure name.
For example:

// EXEC PROC=VCOBCLG

The proqrammer can write cataloged
procedures which incorporate job control he
used frequently. For example, the
programmer may wish to catalog a procedure

for compiling, link-editing, and executing
a program. It is particularly useful for
compiling in a low-priority test partition
to which no card reader has been assigned.
Using cataloged procedures, the operator
can execute via the EXEC statement a
cataloged procedure from the console.

PRIVATE LIBRARIES

Private libraries are desirable in the
system to permit some libraries to be
located on a disk pack other than the one
used by SYSRES.

Private libraries are supported for the
core image library, the relocatable
library, and the source statement library,
on the 2311, 2314, 2319, 3330, and 3340
mass storage devices. However, the
following restrictions apply:

1. The private library must be on the
same type of disk device as SYSRES;
the private core-image library can be
on a type of device other than the one
SYSRES is on.

2. Reference may be made to a private
core image library only if SYSCLB is
assigned. If SYSCLB is assigned, the
system core image library cannot be
changed.

30 Reference may be made to a private
relocatable library only if SYSRLB is
assigned. If SYSRLB is assigned, the
system relocatable library cannot be
changed.

4. Reference may be made to a private
source statement library only if
SYSSLB is assigned. If SYSSLB is
assigned, the system source statement
library cannot be changed.

5. Private libraries cannot be
reallocated.

6. The COpy function is not effective for
private libraries except when they are
being created.

An unlimited nu~ber of private libraries
is possible. However, each must be
distinguished by a unique file
identification in the DLBL statement for
the library. No more than one private
relocatable library and one private source
statement library may be assigned in a
given job.

The creation and maintenance of private
libraries is discussed in the publication
DOS/VS System Control Statements.

Determininq the Location of the Libraries

Having decided which libraries you want
in your system, you must determine where on
the available devices these libraries are
to be placed. All system libraries must
reside in the SYSRES extent of the system
disk pack in a predefined sequence (Figure
7). Although it is theoretically possible
to have private libraries on the system
pack (outside the SYSRES extent), this is
not recommended because it involves
increased movement of the disk arm.

Librarian Functions 55

~ end of SYSR ES extent

Figure 7. The Relative Location of the Four System Libraries

The directory area for each library is
not shown in the Figure 7. By definition,
all system libraries reside on the system
residence file (SYSRES). If you have
additional disk drives, you can define
private core image, relocatable, and/or
source statement libraries on the extra
volumes. These volumes must be of the same
type as the SYSRES pack. ~he system
relocatable and system source statement
libraries can be removed from SYSRES and
established as private libraries; the
system core image library, however, must
always be present on SYSRES. It can be
supplemented but not replaced by a private
core image library. The procedure library
is supported only as a system library; you
cannot create a private procedure library.

56

SOURCE LANGUAGE CONSIDERATIONS

To use the private source statement
library for COPY, BASIS, INSERT, and
DELETE(see "Extended Source Program Library
Facility" for further details), the ASSGN,
DLBL, and EXTENT control statewents that
define this private library must be present
in the job deck for compilation (unless
they are permanently set up by the
installation). When present, a search for
the book is wade in the private library.
If it is not there, the system library is
searched. If the statewents for the
private library are not present, the system
library is searched. A prograrrmer may
create several private libraries, but only
one private library can be used in a given
job.

EXTENDED SOURCE PROGRAM LIBRARY FACILITY

A complete program may be included as an
entry in the source statement library by
using the catalog function. This program
can then be retrieved by a BASIS card and
compiled in a subsequent job.

The following control statements would
be used to catalog the program SAMPLE as a
book in the COBOL sublibrary of the source
statement library:

II JOB CATALOG
II EXEC MAINT

CATALS C.SAMPLE
BKEND C.SAMPLE

1*
1&

{source program}

BKEND

When compiling a program that has been
cataloged in the COBOL sublibrary of the
source statement library, a BASIS card
brings in an entire source program. The
following control statements could be used
to compile the cataloged program SAMPLE:

II JOB PGMl
II OPTION LOG,DECK,LIST,LIS~X,ERRS
II EXEC FCOBOL

CBL LIB
BASIS SAlViPLE

1*
1&

INSERT or DELETE cards may follow the
BASIS card if the user wishes to modify the
Dook SAMPLE before it is processed by the
compiler. The original source program must
have been coded with sequence numbers in
columns 1 through 6 of each source card.

The INSERT statement will add new source
statements after the specified sequence
numbers. The DELETE statement will delete
the statements indicated by the sequence
numbers, or will delete more than one
statement when the first and last sequence
numbers to be deleted are specified,
separated by a hyphen. Source program
cards may follow a DELETE card for
insertion before the card following the
last one deleted. The sequence numbers in
columns 1 throug-h 6 are used to update
COBOL source statements at compilation
time, and are in effect for the one run
only.

Assume that a company runs its payroll
program each week as a source program taken

from the source statement library. The
name of the program is PAYROLL. During a
particular year, the old age insurance tax
(FICA) is deducted at the rate of 4-2/5%
each week for all personnel until earnings
exceed $7800. The coding to accomplish
this is shown in Figure 8.

NOw, however, due to a change in the old
age tax laws, tax is to be taken out until
earnings exceed $10800 and a new percentage
is to be placed. The programmer can code
these changes as shown in Figure 9.

The altered program will contain the
coding shown in Figure 10.

Reformatted Source Deck

By specifying the DECK option on the LS~
card, a new COBOL source deck can be
produced that reflects the reformatted
source listing. This deck may be saved in
a BASIS library, use~ directly as input to
the compiler, or punched onto cards.
Because of reformatting, the new deck may
contain more-cards than the original, but
the difference is not great enough to cause
any appreciable increase in compilation
time. The output deck differs from the
listing as follows:

1. References, footnotes, and blank lines
are omitted.

2. Literals will be repositicned, if
needed, to assure proper continuation.

3. Statement numbers are converted to
card numbers.

a~ The statement number is multiplied
by 10, and leading zeros are added
as necessary to fill columns 1
through 6.

b. Comment and continuation cards are
numbered one higher than the
preceding card.

c. Statement-beginning cards are
given the higher of the two
numbers produced by the first two
rules.

The use of this feature avoids having to
resequence cards for permanent updating
after they have been tested by terrporary
updating using the BASIS feature; it also
avoids the errors incurred during that
resequencing process.

Librarian Functions 57

r---,
1000730 IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE. 1
1000735 IF ANNUAL-PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-FICA. 1
1000740 FICA-PAYR. COMPUTE FICA-PAY = BASE-PAY * .044 I
1000745 MOVE TAX-PAY TO OUTPUT-TAX. 1
1000750 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-EASE. 1
1000755 ADD BASE-PAY TO ANNUAL-PAY. 1
1 1
I 1
I 1
1000850 STOP RUN. 1 L ___ J

Figure 8. Sample Coding to Calculate FICA

r---,
1// JOB PGM2 1
1// OPTION LOG.DECK.LIST,LISTX,ERRS 1
1// EXEC FCOBOL 1
1 CBL QUOTE, LIB I
IBASIS PAYROLL 1

IDELETE 000730-000740 1
1000730 IF ANNUAL-PAY GREATER THAN 10800 GO TO PAY-WRITE. 1
1000735 IF ANNUAL-PAY GREATER THAN 10800 - BASE-PAY GO TO LAST-TAX. I
1000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY * .0585 1
1/* 1 L ___ J

Figure 9. Altering a Program from the Source Statement Library Using INSERT and DELETE
Cards

r---,
1000730 IF ANNUAL-PAY GREATER THAN 10800 GO TO PAY-WRITE. 1
1000735 IF ANNUAL-PAY GREATER THAN 10800 - BASE-PAY GO TO LAST-TAX. 1
1000740 TAX-PAYR. COMPUTE TAX-PAY = BASE-PAY* .0585. 1
1000750 MOVE TAX-PAY TO OUTPUT-TAX. 1
1000760 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE. 1
1000770 ADD BASE-PAY TO ANNUAL-PAY. 1
I 1
1 1
I 1
1000850 STOP RUN. I L ___ J

Figure 10. Effect of INSERT and DELETE Cards

The DOS/VS COBOL compiler, COBOL object
module, Linkage Editor, and other system
components can produce output in the form
of printed listings, punched card decks,
diagnostic or informative messages, and
data files directed to tape or to mass
storage devices. This chapter gives the
format of and describes this output. The
same COBOL program is used for each
example. "Appendix A: sample Program
Output" shows the output formats in the
context of a complete listing generated by
the sample program.

COMPILER OUTPUT

The output of the compilation job step
may include:

• A printed listing of the job control
statements

• A printed listing of the statements
contained in the source program

• A glossary of compiler-generated
information about data

• Global tables, register assignments,
and literal pools

• A printed listing of the object code

• A condensed listing containing only the
relative address of the first generated
instruction for each verb

• Compiler statistics

• Compiler diagnostic messages

• Cross-reference listings

• System messages

• An object module

• FIPS diagnostic messages

The presence or absence of the
above-mentioned types of compiler output is
determined by options specified at system
generation time. These options can De
overridden or additional options specified
at compilation time by using the OPTION
control statement and the CBL card.

INTERPRETING OUTPUT

The level of diagnostic message printed
depends upon the FLAGW or FLAGE option of
the CBL card.

All output to be listed is written on
the device assigned to SYSLST. If SYSLST
is assigned to a magnetic tape, COBOL will
treat the file as an unlabelled tape. Line
spacing of the source listing is controlled
by the SPACEn option of the CBL card and by
SKIP 1/2/3 and EJECT in the COBOL source
program. (The lister feature ignores these
commands.) The number of lines per page
can be specified in the SET corrrrand. In
addition, a listing of input/output
assignments can be printed on SYSLST by
using the LISTIO control staterrent.

an each page of the output, there is a
header which contains the PROGRAM-ID, date
and time of compilation, as well as an
indication of the modification level of the
compiler which produced this listing.

Figure 11 contains the compiler output
listing shown in "Appendix A: Sample
Program Output." Each type of output is
numbered, and each format within each type
is lettered. The text below and that
following the figure is an explanation of
the figure.

The listinq of the~b control
statements associated with this job
step. These statements are listed
because the LOG option was specified
at system generation time.

Compiler ootions. The CEL card, if
specified, is printed on SYSLST unless
the LIST option is suppressed.

The source module listing. The
statements in the source program are
listed exactly as submitted except
that a compiler-generated card number
is listed to the left of each line.
This is the number referenced in
diagnostic messages and in the object
code listing. It is also the number
printed on SYSLST as a result of the
source lanquage TRACE statement (if
NOVERB is in effect)o The source
module is not listed when the NOLIST
option is specified.

Interpreting Output 59

// JOE SA~PLE ~ It\
// OPTION NODECK.LINK.LIS!.LI5TX.SY~,EaRS I ~
/ / EXEC FCOECL }

IBM DOS VS COBOL

CEL QUOTE,OPT,SXrtEF,LVL=A (!)
COOOI 000010 ID~NTIFICATICN DIVISION.
C0002 000020 PRO('RAI'<:-ID. TES'IRUi'~.
CC003 AU'IHOR. PROGRA~I"iEH NllJ.1E.

REL 1. 0

CC004 INSTALLA'lION. NEW YORK Dl:.V1LOH,Ln CFlUiR
ce005 LATE-wRITTE~. FEBRUARY 18, 1974
CCOOb DATE-CO~PILF~. 03/03/74

PP NO. 5746-CBl

GI.I007 RE~jhRKS. THIS l'ROGRAI'<: HAS BE~:l .. RlTTEi. 1-.S A SM,PL::' PROGRM' Fa"
C0008 CObOL USERS. IT CREATES AN OUTPUT YlL;'; AND i<l:.ADE IT BAO
C0009 AS INPUT.
00010
00011
00012
C0013
C0014
COOlS
C0016
C0017
C0018
C0019

00(':'6
C0057
CCOj8
C(J059
C0060

C0073
C0074
C0075
C0076
CU077
CO(;78
C0079
COO~O

000100
C00110 ~NVIRONI'<:ENT GIVISIOd.
000120 CONFIG{1F<ATION SECTION.

000140
000150
000160
000170
000180
000190

OBJl:.CT-COMPUTER. IBI'<:-370.
INPUT-OUTPUT Sf-CTION.
l<'ILE-COt;TROL.

SELECT FILE-l ASSIGil TO SYSOOS-t;'I-2400-S.
SELECT FILE-2 ASSIGN TO 8YS008-UT-2400-S.

000550 PROCE~UHB DIVISION.
E~C;H;.

000570 Non TH1,T TIiE FOLLOwING OF~NS TH", OUTi'UT FLU' 'TO EE CiUA'll:.lJ
000581.1 ~Nu INITIALIZES COUNT1H,s.
(,00590 STt'P-I. 01'1:.:< OUTPUT FILL-I. i~JVl! ~:,:i{::; TO KClU.l'I, .• U1> 1:".

Ou0720
uu0730
000740
000750
00U760
OU0770
000780
000790

';Tll,-5. CL(;:;E rILE-I. OPU] Ilii'UT 1-1LE:-2.
;WU T,-IA'l 'IiiI'. FOLL()\oiL~G REt,;)S EACh '1 'll:. Fla. IINu SINGLl:.S
Cll'l EMI'LOYHS WITH NO DE1'LilD! Kn;.

STI:.P-b. HElie FIL~-2 RECORD IN'lO hOHh-kECURD A'l ~ND GO 'IO S'ltP-8.
ST!:,p-7. IF tlO-OF-DEPENDE:lT<; IG :::<.,lJAL 'Ie """ MOVk " .. " T,)

NO-CF-DEPENUEN'lS. I:.XHIll'l NA~l:.u ~CH~-~~COHD. bG 'Ie STEP-6.
::;'It.i'-8. CL.1SI:. FJLI:.-2.

STU· RUN.

Figure 11. Examples of Corr,piler output (Part 1 of 4)

60

07.43.04 03/03/74

IBM OOS VS COBOL

o
INTR~L NAME

DNM=1-148
DNM=1-119
DNl>I=1-200
DNl'I=1-211
DNb=1-248
DNi'l=1-269
D~N=1-289

DNN=1-308
Dl'IM=1-323
DNl';=1-341
DNM=1-359
DNl-i=1-314
DNM=1-394
DNM=1-410
DNM=1-434
DLIl"=1-454
DNM=1-473
DNN=1-492
DN~=2-000

DN/I,=2-018
Di<J!IJ=2-037
DNM=2-063

® CD
LVL SOURCE NAr-:E

~'D FILE-l
01 RECORD-l
02 FIELD-A
FD FILE-2
01 ;{ECORD-2
02 FIELI:-A
01 FILLER
02 ROUN'I
02 ALPHABET
02 ALPHA
02 NUMBR
02 DEPENDEN'IS
02 DEPEND
01 WORK-RECORD
02 NAME-FIELD
02 FILLER
02 RECORD-NO
02 FILLER
02 LOCATION
02 FILLER
02 NO-OF-DEPENDENTS
02 FILLER

MEMORY MAP

'IG'I o
SAVE A}(EA
SWI'ICH
TALLY
SOR'I SAVE
ENTRY-SAVE
SOR'I CORE SIZE
NS'ID-REELS
SOrt'I RE'I
WORKING CELLS
SOR'I FILE SIZE
SORT MODE SIZE
PGT-VN 'IBL
TGT-VN TEL
SOR'IAB ADDRESS
LENG'IH OF VN TEL
LNG'IH OF SOR'IAB
PGN ID
A <INI'Il)
UPSI SWITCHES
DEBUG TABLE P'IR
CURFENT PRIORI'IY
'IA LENG'IH
PRoLl CELL PTR
UNUSED
RESERV):;D
VSAK SAVE AREA ADDRESS
UNUSED
RESERVED
OVERFLO~ CJ::LLS
BL CELLS
LTFADR CELLS
FIr. CELLS
TEl'olP STCRAGE
TEMP STORAGE-2
TEl<)P S'ICRAGE-3
TEMP S'IORAGE-4
BLL CELLS
VLC CELLS
SBL CELLS
INDEX CELLS
SUBADR CELLS
ONC'IL CELLS
PFNCTL CELLS
PFMSAV CELLS
VN CBLLS
SAVE AREA =2
XSAbW CELLS

LI'IEHAL POCL (HEX) (!)

003F8

003F8
00440
00444
()0448
0044C
00450
00454
00456
00458
00588
0058C
00590
00594
00598
0059C
0059E
0051,0
005A8
005AC
005B4
005B8
005E9
005EC
005CO
005C4
005CS
005CC
005D4
005EC
OOSEC
005F8
00600
00608
00610
00610
00610
00610
00614
00614
00614
00614
C061C
0061C
0061C
00620
00624
00624

REL 1.0 pp NO. 5746-CBl

® CD CD
BASE DISPL HI'IRNL NAl'If:

DTF=Ol Dl~r.:=1-148

BL=l 000 DNM=1-179
BL=l 000 WM=1-20C

D'lF=02 DNM=1-217
13L=2 000 DNM=1-248
3L=2 000 DN~=1-269

bL=3 000 DNI',=1-289
BL=3 000 DNM=1-308
BL=3 002 DN~=1-323

BL=3 002 DNM=1-341
3L=3 01C DNM=1-359
BL=3 OlE DNM=1-374
BL=3 OU DNM=1-394
3L=3 038 DNM=1-410
BL=3 038 DNM=1-434
EL=3 039 DNM=1-454
BL=3 03A DNM=1-473
BL=3 03E DNM=1-492
BL=3 03F DNM=2-000
BL=3 042 DNM=2-018
BL=3 043 DNM=2-031
BL=3 045 DNl'I.=2-063

OC640 (LIT+O)
00658 (LIT+24)

00000001 00lA5B5E C2D6D1C5 D5405E5B C2C3D3D6 B2C55B5B
C2C6C3D4 E4D35B5B COOOOOOO

DISPLAY LI~ERALS (BCD)

00664 (LTL+36) 'WCRl<-RECORD'

PGT CD
DEBUG LI~KAGE AREA
OVERFLew CJ:;LLS
VIR~UAL CELLS
PROCEDURE NAME CELLS
GENERAUD NAME CELLS
SUBDTF ADDRESS CELLS
VNI CELLS
LITERALS
DISPLAY LIT~RALS
PROCEDURE BLOC~ CELLS

00628

00628
00628
0062C
00638
00638
0063C
0063C
00640
006b4
00670

CD
DEFI;U'IIm.

DS OCL2C
DS 20C

DS OCL20
DS 20C
DS OCL56
DS lH
DS 26C
DS lC
DS lH
DS 2be
DS lC
DS OCL20
DS lC
DS lc
DS 4C
DS lC
DS 3C
DS lC
DS 2C
DS 7c

Figure 11. Examples of compiler Output (Part 2 of 4)

07.43.04 10/03/73

® CD
USAGE R 0 Q M

LJ'IFMT F
6ROU<,
::lISP
DTFJ.,T F
GROUP
DISP
GROUP
C01·;P
illSP

CD DISP rt 0
CCMP
DISP
DISP .K 0
GROUP
DISP
DISP
DISP-NM
DISP
DISP
DISP
!.lISP
DISP

Interpreting output 61

REL 1.0 PP NO. 5746-CB1 07.43.04 10/03/73
IBM DOS VS COBOL

REG1..,T';;£<. ASSIGNMF,NT)
REG 6 BL =3)0 !U:'l. 7 BL =1
rtEG 8 BL =2

WORKING-STORAGE STAR'IS AT LOCA'IION 00100 FOR A LENG'IH OF ~0050. CD
FRCCE.DU~E BLCCK ASSIGNMEN'I (!)

PEL = REG 11

PEL =1 S'IARTS A'! LOCA'IION 000674 STA'IEMEi'i'1 00

CD CD CD ® CD
57

000674 PN=02 EQU

\ bO
000674 PN=03 EQU

6e
000674 S'1ART l:;IJU *
000674 58 BO C 048 L 11,()4S(G.12) !':iL=l
0006;8 58 20 D lFI! L L,lF4(0,13) BL =1
00067C 41 10 C OlE LA 1,0U;(0,12) LI'I+6
00C680 58 00 D 200 L 0,200(0,13) D'lF=l
00()684 18 40 LIt 4,0
000686 05 FO BALR 15,0
000688 50 00 F 008 S'1' 0,008(0,15)
00068C 45 00 F OOC BAL 0,OGC(0,15)
000690 00000000 DC x'OOOOOOOO'
000694 OA 02 SVC 2
000696 41 00 D 200 LA C,20i)(0,13) D'lF=l
0006911. 58 FO C 008 L 15,Q08(0,12) VCILECl£l:LO)
00069E 05 EF EALR 14,15
e006AO 58 10 D 20e L 1,200(0,13) D'IF=l
0006A4 96 10 1 020 or 020 (1) ,X'10'
0006A8 50 20 D H4 S'I 2 , IF 4 (0, 13) EL =1
0006AC 58 70 D IF4 L 7,U4(0,13) BL =1

60
0006BO 02 01 6 000 C 018

CD
MVC 00C(2,6),018(12) DJloi=1-308 LI'l+O

0006E6 D2 01 6 01C C C18 MVC 01C(2,6),018(12) CNM=1-359 LI'l.+C
64

0006EC l'N=04 E\iU
64

0006BC 48 30 C 01A La 3,01A(0,12) Ll'I+2
0006Ce 4A 30 6 000 Ah 3,OCO(0,6) DtlM-"1-308

CD 0006C4 4E 30 D 210 CVD 3,210(0,13) 'IS=Ol
0006C8 D7 05 0 210 D 210 xc 210(6,13),210(13) '1S=Ol TS=(jl
0006CE 911 OF 0 216 i'U 216(13),X'OF' '1S=01+6
0006D2 IIF 30 D 210 CVB 3,210(0,13) '15=01
000606 110 30 6 000 S'l'M 3,000(0,6) DHf.:=1-308
00G6DA 48 30 C 01A Lti 3,OlJdO,12) LlT+2
0006DE 4A 30 6 01C AM 3,OlC(0,6) ON1,:=1-359
0006E2 4E 30 C 210 CVD 3,210(0,13) '1::;=01
0006E6 07 OS D 210 D 210 xc 210(6,13),210(13) '1.3=01 'IS=Gl
0006EC 94 OF D 216 Nl 216(13),X'OF' 'IS=01+6
00C6FO 4E 30 D 210 CVB 3,210(0,13) '1S=Cl
0006F4 110 30 6 01C S'l'ii 3,01C(C,6) DlolM=1-359

64
0006F8 41 40 002 LA 4,002(0,6) LN":=1-341
0006FC 48 20 000 L.-1 2,000(0,6) DNM=1-308
000700 IIC 20 C 01A MH 2,01A(0,12) l1T+2
0007011 11\ 42 Art 4,2
000706 5E 40 C 018 S 4,018(0,12) 1IT+0
00070A 50 40 0 21C ST 4,21C(0,13) SBS=l
00070E 58 EO D 21C L 111,21C(0,13) SES=l

66 000712 02 00 6 038 E 000 MVC 038(1,6),000(14) 0NM=1-4311 DNi'l=1-3111
000718 41 40 6 OlE LA II,OlE(O,b) DNM=1-394
00071C 48 20 6 000 Ld 2,000(0,6) DNN=1-308
000720 4C 20 C 01A Mri 2,01A(0,12) LIT+2
0007211 lA 112 Art 4,2
000726 5B 40 C 018 S 11,018(0,12) Ll'I+C
00072A 50 110 [; 220 ST 4,220(0,13) SBS=2
00072F 58 FO 0 220 L 15,220(0,13) SBS=2
000732 D2 00 6 043 F 000 MVC 0113(1,6),000(15) LllM=2-37 [;.,/',=1- 39 4
000738 92 40 6 044 MVI (;44(6),X'IIO' DNM=2-37+1

S'IATISTICS SOURCE RECOf<i:lS 80 DATA I 'I EMS = 22 t.c OF VERBS = 28

l
S'1ATISTICS PAR'l I 'II ON SIZE 655170 ll~~E COUNT = 56 bUFF1R SIZE = ~12
CF'1ICNS IN EFFlCT PMAP RELOC ADR NCNE S.t'ACING 1 FLOW .'ON):'
OFTIOt>S 1;~ EFFECT LIsn: QUOTE SY~l :~OCATALR LIST L1NR NC~TX1'l SeLl.!:: ® *CP'IICNS IN EFFECT* NOCLIS'1 FLAGIi ZWi:; NOSUPMAF XR£F ER:t!S SXRLF OPT
CF'1ICNS IN EFFECT NOS'IATE 'IRUNC 51::<;" NOSY/o;Dt-,F NCDEC..l\ NCVERE NCSYT-<'1'AX LVL=A

Figure 11. Examples of Compiler output (Part 3 of 4)

62

IBM OOS VS COBOL REL 1.0 PP NO. 5746-CBl

DA'IA NAMES

ALPdA
ALPHAEr.'I
DEPE-im
DEPE~DENTS

FIELD-A
FIElD-A
FIlE-l
FILE-2
KCUN'I
LCCA'IICN
NAME-FIELD
NC-CF-DEPENDEN'IS
;~UMBR

RECCI-;D-NO
RECORD-1
RECORD-2
WORK-RECORD

®
PHCCEiJURi: NAMl:.S

EEGIN
S'IEP-1
S'IEP-2
S'IEP-3
S'IEP-4
S'IEP-5
S'IEP-6
S'IEP-7
S'IEP-8

DEFN

000042
000041
000045
000044
000029
000037
000017
000018
000040
000051
000047
000053
000043
000049
000028
000036
000046

DEFN

000057
000060
000064
000068
000070
000073
000076
000077
000079

CROSS-REFERENCE DICTIONARY

REFE~ENCE

000064

000066

000060
000073
00006()

000064
000066
000060
000067
000068
000076
000068

000068
000076
000064

000077
0000b4

000076

REFERl::NCE

000070
000070

000018

000076

000073
000079
000066

000067

000078

000070

®

fA\.-CA~D (jiRROR t-'!ESS~ ® 1
\VOC064~5011I-w HIGH ORDER 'IRUNCATION MIGH'I OCCUR.

00064 ILAS011I-W HIGH ORDER 'IRUNCA'IION MIGH'I OCCUR.
®

~NE®:BER }D
A C00068ILA8003I-W

C0025 lLA8002I-W
C0034 ILA8002I-W
C0054 ILA8003I-W
C0060 ILA8003I-W
COCb2 lLA8003I-W
C0062 IL88003I-W
C0064 ILA8003I-W
00064 ILA8003I-W
00068 ILA8003I-W
C0068 ILA8002I-W
C0068 ILA8003I-W
C0070 ILA8003I-W
C0076 ILA8003I-W
C0078 lLA8002I-W

END OF CO~PILATION

FEDERAL INFORMATION PROCESSING :;'IANDAROb (}'IPS) DIA(..I,OS'lIC l'lES;:;AGES

~ESSAGE ®
DATE-COMPILED PARAGRAPH IS AN EX'IENSION 'IO rIPS LEVEL A.
RECORDING MODE IS CLAUS}:; IS AN EXTEilSION TO ALL FIPS LEVELS.
RECORDING MODE IS CLAUSE IS AN EXTENSION TO ALL FIPS LEVELS.
SPACES IS AN EX'IENSION TO FIPS LEVEL A.
COMMA OR SEr-:ICOLON AS PUNCTUATION IS AN EXTENSION TO FIPS LEVEL A.
COMMA OR SEMICOLON AS PU!'IC'IUA'IION IS AN hxn.NSION 'IO FIPS LEVEL A.
COMMA OR SEMICOLON AS PUNCTUATIO~ IS A~ EXTENSION TO FIPS LEVLL A.
COMMA OR SEMICOLON AS PUNC'IUA'IION IS AN EX'I~NSION TO FIPS LEVEL A.
MULTIPLE RESUL'IS IN ADD S'IATEMEtl'I IS AN EX'ILNSION 'IO FIPS L:VhL A.
UPON OP~ION OF DISPLAY S'IA~EMEN~ IS AN EX~£NSIO~ TC FIPS LEVEL A.
UPON CONSOLE OF'IION OF DISPLAY S'IAT1MEN'I IS]IN EXTENSION TC ALL LEVELS.
FROM OP'IION OF WRIT]:; S'IATEKi:.NT IS Ail EXTENSION TO FIPS LEVEL A.
UNTIL OP'IION OF PERFORM S'IA'l~MEN'I IS AN EX'I~NSION TO FIPS L~VEL A.
IN'IO OP'IION OF READ S'IATEM1NT IS AN EXTENSION 'IO fIPS Li.VEL]I.
EXHIBI'I STATEMEN'I IS AN EX'IENSION 'IO ALL FIPS LLVELS.

Figure 11. Examples of Compiler output (Part q of q)

07.43.04 03/03/74

1'AG!:. 1

@

Interpreting output 63

The following notations way appear on
the listing:

C Denotes that the statement was inserted
with a COpy statement.

** Denotes that the card is out of
sequence. NOSEQ should be specified on
the CBL card if the sequence check is
to be suppressed.

I Denotes that the card was inserted with
an INSERT or BASIS card.

If DATE-COMPILED is specified in the
Identification Division. any sentences in
that paragraph are replaced in the listing
by the date of compilation. It is printed
in one of the following formats depending
upon the format chosen at system generation
time.

DATE-COMPILED. month/day/year or

DATE-COMPILED. day/month/year

Glossary. The glossary is listed
when the SYM option is specified.
The glossary contains information
about names in the COBOL source
program.

® and(!) The internal-name
generated by the compiler.
This name is used in the
compiler object code listing
to represent the name used in
the source program. It is
repeated in column F for
readability.

A normalized level number.
This level number is
determined by the compiler as
follows: the first level
number of any hierarchy is
always 01, and increments for
other levels are always by
one. Only level numbers 03
through 49 are affected;
level numbers 66, 77, and aa,
and FD, SD, and RD indicators
are not changed.

The data-name that is used in
the source module.

Note: The following Report writer
internally-generated data-names
can appear under the SOURCE NAME
cOlumn:

CTL.LVL Used to coordinate
control break
activities.

GRP.IND Used by coding for GROUP
INDICATE clause.

TER.COD Used by coding for
TERMINATE clause.

FRS.GEN Used by coding for
GENERATE clause.

-nnnn Generated report record
associated with the file
on which the report is
to be printed.

RPT.RCD Build area for print
record.

CTL.CHR First or second position
of RPT.RCD. Used for
carriage control
character.

RPT.LIN Beginning of ac~ual
information which will
be displayed. Second or
third position of
RPT,.RCD.

CODE
CELL

E.nnnn

S.nnnn

N.nnnn

Used to hold code
specified.

Name generated from
COLUMN clause in
02-level statement.

Used for elementary
level with SUM clause,
but not with data-name.

Used to save the total
number of lines used by
a report group when
relative line numbering
is specified.

@ and(§) For data-names, these columns
contain information about the
address in the form of a base and
displacement. For file-names, the
column contains information about
the associated DTF or FIB (for
VSAM). An indication is also
given here if the FD is invalid.

@ This column defines storage for
each data item. It is represented
in assembler-like terroinology.
Table 4 refers to information in
this column.

Usage of the data-name. For FD
entries, either VSAM is specified,
or the DTF type is identified
(e.g., DTFDA). For group items
containing a ~SAGE clause, the
usage type is printed. For group
items that do not contain a USAGE
clause" GROUP is printed. For
elementary items, the information
in the USAGE clause is printed.

Table 4. Glossary Definition and Usage
r----------------------------T-----------------------T----------------------------------,
I Type I Definition I Usage I
r----------------------------+-----------------------+----------------------------------~

Group Fixed-Length I DS OCLN I GROUP I
Alphabetic I DS ~C I DISP
Alphanumeric I DS NC I DISP
Alphanumeric Edited I DS NC I AN-EDIT
Numeric Edited I DS NC I NM-EDIT
Index-Name I DS lH I INDEX-NM
Group Variable-Length I DS VLI=N I GROUP
Sterling Report I DS NC I RPT-ST
External Decimal I DS NC I DISP-NM
External Floating-Point I DS NC I DISP-FP
Internal Floating-Point I DS iF I COMP-l

I DS lD I COMP-2
Binary I DS lH, iF, OR 2F I COMP
Internal Decimal I DS NP I COMP-3
Sterling Non-Report I DS NC I DISP-ST
Index-Name I BLANK I INDEX-NAME
File (FD) I BLANK I DTF TYPE
Condition (88) I BLANK I BLANK
Report Definition (RD) I BLANK I BLANK
Sort Definition (SD) I BLANK I BLANK

~------------------- ... ________ .l. _______________________ .l. ________________________________ ~

INote: Under the definition column, N = size in bytes, except in group variable-length I
Iwhere it is a variable cell number. I L __ J

@ A letter under column:

R - Indicates that the data-name
redefines another data-name.

o - Indicates that an OCCURS
clause has been specified for
that data-name ..

Q - Indicates that the data-name
is or contains the DEPENDING
ON object of the OCCURS
clause.

M - Indicates the record format.
This field is not applicable
to VSAM. The letters which
may appear under column Mare:

F - fixed-length records

U - undefined records

v - variable-length records

S - spanned records

The location and length of WORKING
STORAGE are noted here when CLIST,
SYM or LSTX is specified, except under
the same conditions as noted below.

Global tables and literal pool:
Global tables and the literal pool are
listed when the CLIST, SYM, or LISTX
option is specified, unless SUPMAP is
specified and an E-Ievel error is

encountered, or CSYNTAX is specified
and an E-Ievel error is encountered.
A global table contains easily
addressable information needed by the
object program for execution. For
example, in the Procedure Division
output coding (3), the address of the
first instruction under ST~P-l (OPEN
OUTPUT FILE-i) is found in the
PROCEDURE NAME CELLS portion of the
Program Global Table (PGT).

®

The Task Global Table (TGT). This
table is used to record and save
information needed during the
execution of the object program.
This information includes
switches, addresses, and work
areas. ~

all~
with

The Literal Pool. This lists
literals used in the program,
duplications removed. These
literals include those specified
by the programmer (e.g., MOVE
"ABC" TO DATA-NAME) and those
generated by the compiler (e.g.,
to align decimal points in
arithmetic computations).. The
literals are divided into two
groups: those that are referenced
by instructions (marked "LITERAL
POOL") and those that are
parameters to the display object
time subroutine (marked "DISPLAY
LITERALS").

Interpreting output 65

@ The Program Global Table (PGT).
This table contains literals and
the addresses of procedure-names,
generated procedure-names, and
procedure block locators
referenced by Procedure Division
instructions.

Register assignment: This lists the
permanent register assigned to each
base locator in the object program.
The remaining base locators are given
temporary register assignments but are
not listed. Register assignments are
listed when CLIST, SYM, or LISTX is
specified, and output is not overriden
by the same conditions as above.

Procedure block assignments:
Procedure block assignments are
printed when OPT is specified. The
procedure block assignments give the
location within the object program for
each block of code addressed by
register 11.

Object code listing. The object code
listing is produced when the LISTX
option is specified, unless SUPMAP is
also specified and an E-level error is
encountered, or unless CSYNTAX is
specified and an E-level error is
encountered. The actual object code
listing contains:

®

@

The compiler-generated card
number. This number identifies
the COBOL statement in the source
deck which contains the verb that
generates the object code found in
column C. When VERB is specified,
the actual verb or paragraph-name
is listed with the generated card
number.

The relative location, in
hexadecimal notation, of the
object code instruction in the
module.

The actual object code instruction
in hexadecimal notation.

The procedure-name number. A
number is assigned only to
procedure-names referred to in
other Procedure Division
statements.

The object code instruction in the
form that closely resembles
assembler language. (Displacements
are in hexadecimal notation.)

Compiler-generated information
about the operands of the
generated instruction. This
includes names and relative
locations of literals. Table 5
refers to information in this
column.

Table 5. Symbols Used in the Listing and
Glossary to Define
Compiler-Generated Information

r----------T------------------------------,
I Symbol I ~eaning J

~----------+------------------------------~
IDNM I SOURCE DATA NAME
1 C7\"1:1 C""7\.'T7T:'t '7't.TlT."l'1'l. "'~T T"
I~=V unv~ nn~n ~~~~

ISWT SWITCH CELL
ITLY TALLY CELL
IWC WORKING CELL
ITS TEMPORARY STORAGE CELL
IVLC VARIABLE LENGTH CELL
ISBL SECONDARY BASE LOCATOR
IBL BASE LOCATOR
IBLL BASE LOCATOR FOR LINKAGE
I SECTION
ION ON COUNTER
IPFM PERFORM COUNTER
I PSV PERFORl~ SAVE
IVN VARIABLE PROCEDURE NAME
ISBS SUBSCRIPT ADDRESS
IXSW EXHIBIT SWITCH
IXSA EXHIBIT SAVE AREA
I PRM PARAMETER
IPN SOURCE PROCEDURE NAME
IPBL Procedure Plock Locator
IGN GENERATED PROCEDURE NAME
IDTF DTF ADDRESS
IFIB File Information Plock
\ (for VSAM)
IVNI VARIABLE NAME INITIALIZATION
ILIT LITERAL
ITS2 TEMPORARY STORAGE
I (NON-ARITHMETIC)
\RSV REPORT SAVE AREA
ISDF Secondary DTF Pointer
ITS3 TEMPORARY STORAGE
I (SYNCHRONIZATION)
ITS4 TEMPORARY STORAGE
I (SYNCHRONIZATION)
lINX I INDEX CELL
IV(BCDNAME)I VIRTUAL
IVIR I VIRTUAL
IOVF I Overflow Cell I L __________ ~ ______________________________ J

Statistics: The compiler statistics
list the options in effect for this
run, the number of Data Division
statements specified, and the
Procedure Division size. Each level
number is counted as one statement in
the Data Division. The Procedure
Division size is approximately the
number of verts in the Procedure
Division.

An indicator is also given here if
d~ctionary spill occurred during
compilation. If spill occurred, the
amount of storage assigned to the
compiler may be increased for better
performance. Statistics are not
listed if SYNTAX (or CSYNTAX and an
E-level or higher error occurred) was
in effect.

Cross-reference dictionary: The
cross-reference dictionary is produced
when the XREF or SXREF option is
specified. It is suppressed if
CSYNTAX is in effect and an E-level
error is encountered. It consists of
two parts:

The cross-reference dictionary for
data-names consists of data-names
followed by the generated card
number of the statement which
defines each data-name, and the
generated card number of
statements where each data-name is
referenced. Report Writer
data-names, with the exception of
data-names in the form "-nnn", are
defined with the generated card
number of their respective RD's.

The cross-reference dictionary for
procedure-names consists of the
procedure-names followed by the
generated card number of the
statement where each
procedure-name is used as a
section-name or paragraph-name,
and the generated card number of
statements where each
procedure-name is referenced.

A reference will appear to a procedure
name if there is a reference to a
logically equivalent procedure-name; a
reference will also appear to a
procedure name, if, in a segmented
program, an implied branch to a
segment entry is made.

If XREF is specified~ the names are
presented in the order in which they
appear in the source program. If
SXREF is specified, the names are
presented alphabetically. The number
of references appearing in the
cross-reference dictionary for a given
name is based upon the number of times
the name is referenced in the code
generated by the compiler.

Verb Cross-Reference: A verb
cross-reference is produced when
VERBSUM or VERBREF is specified. It
is suppressed when CSYNTAX is in
effect and an E-Ievel error is
encountered. The cross-reference
consists of a listing of all Procedure

Division verbs used in the source
program followed by the number of
times the verb is actually used in the
source program. In additicn, if
VERBREF is specified, the generated
card numbers of each verb are printed.
For VERBSUM and VERBREF, the COBOL
verb OTHERWISE is treated as if the
source program used the verb ELSE.

Diagnostic messages: The diagnostic
messages associated with the
compilation are always listed. The
format of the diagnostic rressage is:

@

Compiler-generated card number.
This is the number of a line in
the source program related to the
error.

Message identification. The
message identification for the
DOS/vS COBOL compiler always
begins with the symbols ILA.

The severity level. There are
four severity levels as follows:

(W) Warning
This level indicates that an
error was made in the source
program. However, it is not
serious enough to interfere
with the execution of the
programo These warning
messages are listed only if
the FLAGW option is specified
in the CBL card or chosen at
system generation time.

(C) Conditional
This level indicates that an
error was made but the
compiler usually rrakes a
corrective assumption. The
statement containing the error
is retained. Execution can be
attempted.

(El Error
This level indicates that a
serious error was made.
Usually the compiler makes no
corrective assuwption. The
statement or option containing
the error is dropped.
Compilation is completed, but
execution of the program
should not be attempted.

(D) Disaster
This error indicates that a
serious error was rrade.
Compilation is not completed.
Results are unpredictable. If
this is a compiler error, the
job will terminate via the

Interpreting Output 67

@

CANCEL macro and produce a
dump.

The message text. The text
identifies the condition that
caused the error and indicates the
action taken by the compiler.

Since Report Writer generates a
number of internal data items and
procedural statements, some error
messages may reflect internal
names. In cases where the error
occurs mainly in these generated
routines, the error messages may
indicate the card number of the RD
entry for the report under
consideration. In addition, there
are errors that may indicate the
number of the card upon which the
statement containing the error
ends rather than the card upon
which the error occurs. Internal
name formats for Report Writer are
discussed under "Glossary"
(heading 4, item C). Statement
numbers are generated when a verb
or procedure name is encountered.

The COBOL compile-time message that follows
serves as an example of the format of COBOL
compiler messages:

CARD ERROR MESSAGE

00105 ILA1002I-W ***** SEC~ION HEADER
MISSING.

68

ASSUMED PRESENT.

• The code "00105" at the left is the
card number of the statement in which
the error has occurred. (Some errors
may not be discovered until information
from various sections of the program is
combined. For this reason, the source
card number in the error message may
not be exact.)

• ILA identifies this as a DOS/VS COBOL
compiler message.

• The numeral "1002" represents the
identifying number of the message; the
first digit of this identifier
indicates the phase in which the error
was detected. In this case the message
was generated by phase 1.

• The symbol "I" means that this is a
message to the programmer for his
action.

• "W n (warning) is a level of severity in
the error codes described in item C.

• The five asterisks (*****) indicate
words in a message that vary according
to the program being compiled.

The message text is usually composed of
two sentences. The first describes the
error; the second describes what the
compiler has done as a result of the error.

~ote: By specifying a PROGRAM-ID of ERRMSG
ln any source program, the user can
generate a complete listing of compiler
diagnostics and pxoblem determination aids.
(See Figure 12.) In this case, a normal
compilation never takes place. Only a list
of all error messages and problem
determination information is produced. The
link option is reset if it was in effect.

Some messages are not given if CSYNTAX
or SYNTAX is in effect. See "Program
Checkout" for the list of these messages.

FIPS Diagnostic Messages: The
diagnostic messages associated with
FIPS are listed separately from the
compiler diagnostic messages, with a
header identifying them as FIPS
diagnostics. The format of the FIPS
diagnostic messages is:

Compiler-generated line number.
This is the nureber of a line in
the source program containing a
nonstandard element.

(§) Message identification. The
message identification for FIPS
diagnostic messages always begins
with the symbols lLA. The
identifying numbers of the
messages will always be 8001,
8002, 8003, or 8004, where:

@

1 indicates an extension to a
certain level of the FIPS

2 indicates an extension to all
levels of the FIPS

3 indicates an extension to one
or all levels of the FIPS, or
an unusual condition;

4 indicates that there are no
FIPS diagnostic messages.

The severity level. All FIPS
diagnostic messages have a
severity level of W (warning).
This level indicates that
something in the source program
does not conform to the FIPS, but
the compilation of the program
will not be interrupted.

The message text. The text
identifies the condition or
element that does not conform to
the FIPS. The FIPS level is also
designated.

J

III JOB
II

ERRORMSG User information
EXEC FCOBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. ERRMSG.
REMARKS. COMPILATION OF THIS PROGRAM WILL RESULT IN ALL COMPILER

DIAGNOSTICS BEING PRODUCED. NO OBJECT MODULE AND NO COMPILE
TIME STATISTICS ARE PRODDCED.

ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

* THE SAME RESULTS CAN BE ACHIEVED BY CHANGING THE PROGRAM-ID OF
* ANY PROGRAM TO 'ERRMSG'.

STOP RUN.

Figure 12. A Program that Produces COBOL Compiler Diagnostics

OBJECT MODULE

The object module contains the external
symbol dictionary, the text of the program,
and the relocation dictionary. It is
followed by an END statement that marks the
end of the module. For additional
information about the external symbol
dictionary and the relocation dictionary,
see the publication DOS/VS System Control
Statements.

An object deck is punched if the DECK
option is specified, unless an E-Ievel
diagnostic message is generated. The
object module is written on SYSLNK if the
LINK option is specified, unless an E-Ievel
diagnostic message is generated. No deck
is punched if CSYNTAX is in effect and
E-Ievel errors are encountered, or if
SYNTAX is in effect.

LINKAGE EDITOR OUTPUT

The output of the link edit step may
include:

• A printed listing of the job control
statements

• A map of the phase after it has been
processed by the Linkage Editor

• Diagnostic messages

• A listing of the linkage editor control
statements

• A phase which may be assigned to the
core image library

Any diagnostic messages associated with
the Linkage Editor are automatically
generated as output. The other forms of
output may be requested by the OPTION
control statement. All output to be listed
is printed on the device assigned to
SYSLST.

Figure 13 is an example of a linkage
editor output listing. It shows the job
control statements and the phase map. The
different types of output are numbered and
each type to be explained is lettered. The
text following the figure is an explanation
of the figure.

Interpreting output 69

// EXtC LNKEDl (!)

JCE SAfviPLE DCS LINKAGE EDI1CR DIAGKOS1IC OF IN~UT (!)
AC1IOil
LISl
LIST
LIST
LISl
LIST
LIST
LISl
LIST
LIST

TAKEN flAP
AUTOLINl\
AU10LINK
AUTOLINK
AUTOLINK

REL
IJFFEZZN
ILEDDSPO
IJJCFDV
ILBDDSSO

INCLUDE
AUTOLINK
AUTOLINK
AUTOLINlI
ENTRY

IJJCPDV
ILBDIMLO
ILBDNNSO
ILBDSAEO

CD ® CD
PHASE XFR-AD LOCORE

PHASE·** 07DB78 07[;878

• UNREFER}:;NChD SYMBOLS

CD
002 UNRESOLVED ADDRESS CONSTANTS

® CD
BICORE DSI\.-AD

07FlFF 05F Of

Figure 13. Linkage Editor output

70

CD CD
ESD 'TiPF LABEL

·CSICl TES'IRUN

CSECT IJFFEZZ,'1
ENTRY IJ~'FZZZN

ENTRY IJFFhZZZ
ENTJ.;Y IJi'FZZZZ

CSECT lLBDSAE(;
ENTRY lLEDSAEl

CSECT LLBDMNSO

CSEC'l ILBJ..JIt-'LO

CSECT LLBDiJSPO
ENT1<Y IlBiJDSPl

CSECT ILBDDSSO
ENTRY ILBDDSSl
ENTRY LLBDDSS2
ENT1<Y ILBLDSS3
ENTRY IlBDDSS4
ENTRY IL£DDSS5
EN1'RY ILi::iI:DSS6
ENTRY ILBDDSS7
ENTRY ILbLiDSS8

CSECl IJJCPDV
ENTRY IJJCPDVl
ENTRY IJJCPDV2

WXTRL~ STX1TPSW
IoiXTRN ILBI:JDBG2

® CD
LOADED R£L-Frt

01D818 07D876 RELCCATAELl:.

07E1C8 07ElC6
07E1Ce
01I1C8
07E1CB

07F078 07F078
07FOCO

07F070 07Jr070

07F018 07.1"018

07E578 07J:.S78 CD 07E918

07ECFO 07ECiO
07£F50
07EF~8

07F008
07EDlb
07EDC2
07EE22
07EDEC
07ED46

01tAA8 07i!,AAB
07EAA8
07EM8

The job control statements. These
statements are listed because the LOG
option is specified.

Disk linkage editor diagnostic message
of input. The ACTION statement is not
required. If the MAP option is
specified, SYSLST must be assigned.
If the statement is not used and
SYSLST is assigned, MAP is assumed and
a storage map and any error diagnostic
messages are considered output on
SYSLST.

Map of virtual storage. A phase map
is printed when MAP is specified (or
assumed) during linkage editor
processing. The following information
is contained in the storage map:

@

®

The name of each phase. This is
the name specified in the phase
statement.

The transfer address of each
phase.

The lowest virtual storage
location of each phase.

The highest virtual storage
location of each phase.

The hexadecimal disk address where
the phase begins in the core image
library.

The names of all CSECT's belonging
to a phase.

All defined entry points within a
CSECT. If an entry point is not
referenced, it is flagged with an
asterisk C*}.

The address where each CSECT is
loaded.

The relocation factor of each
CSECT.

The number of unresolved weak
external references. This
indication need not concern the
programmer. An unresolved weak
external reference does not cause
the Linkage Editor to use the
automatic library call mechanism.
Instead, the reference is left
unresolved, and the load module is
marked as executable. The number
of unresolved address constants
will not necessarily be the same
as the number of unreferenced
symbols listed in the Linkage
Editor output.

Comments on the Phase Map

The severity of linkage editor
diagnostic messages may affect the
production of the phase map. Since various
processing options affect the structure of
the phase, the text of the phase map will
sometimes provide additional information.
For example, the phase may contain an
overlay structure. In this case, a map
will be listed for each segment in the
overlay structure.

Linkage Editor Messages

The Linkage Editor may generate
informative or diagnostic messages. A
complete list of these messages is included
in the publication DOS/VS System Control
Statements.

DOS ANS COBOL Unresolved External
References

When the Linkage Editor encounters a
weak external reference (WXTRN),
autolinking is suppressed and the V-type
address constant is either resolved from
those modules included into the load module
or it remains unresolved. Unresolved
WXTRNs will not cause the Linkage Editor to
cancel the link step if ACTION CANCEL is in
effect.

The DOS/VS COBOL object time subroutine
library utilizes WXTRNs not only as address
constants but also as switches to determine
at object time whether certain options are
in effect. It is a very convenient feature
which can lead to tight and efficient code.

Unresolved WXTRNs are normally
intentional but unresolved EXTRNs are
normally unintentional and an error.

Any of the following unresolved WXTRNs
may appear when link editing an object
module produced by an ANS COBOL compiler:

STXITPSW
ILBDDBG2
ILBDADRl
ILBDDBGO
SORTEP
ILBDSTNO
ILBDFLWO

ILBDFLW2
ILBDSRTO
ILBDRELO
ILBDTEFO
ILBDDSSl
ILBDDSS3
ILBDVOCl

ILBDMRGO
ILBDFLW3
ILBDTCOO
ILBDTCOl
ILBDDBG7
ILBDDBG8
ILBDTC30

Interpreting Output 71

•

COBOL EXECUTION OUTPUT

The output generated by program
execution (in addition to data written on
output files) may include:

• Data displayed on the console or on the
printer

• Diagnostic messages to the programmer

• Messages to the operator

• System informative messages

@ SYMDMP, STATE, FLOW, and/or COUNT
output

• System diagnostic messages

• A system dump

Appendix I contains the full list of
execution time diagnostic messages.

A dump and system diagnostic messages
are generated automatically during program
execution only if the program contains
errors that cause abnormal termination.

SYMDMP output is generated upon request,
or upon abnormal termination. STATE and
FLOW output are generated upon abnormal
termination. The output of these features

// ASSGN
// EXEC

WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
wORK - RECORD
WORK-RECORD
WORK-RECORD
WORK-RECORD
wORK-RECORD
WORK-RECO"KD
WORK-RECORD
WORK-RECORD
WORK-RECORD

SYS008,X'483' I CD
A 0001 l~YC Z
B 0002 NYC 1
C 0003 NYC 2
D 0004 NYC 3
E 00G5 NYC 4
F 0006 NYC Z
G 0007 NYC 1
H 0008 NYC 2
I 0009 NYC 3
J 0010 NYC 4
K 0011 NYC Z
L 0012 NYC 1
M 0013 NYC 2
N 0014 NYC 3
o 0015 NYC 4
P 0016 NYC Z
Q 0017 NYC 1
R 0018 NYC 2
S 0019 NYC 3
T 0020 NYC 4
U 0021 NYC Z
V 0022 NYC 1
W 0023 NYC 2
X 0024 NYC 3
Y 0025 NYC 4
Z 0026 NYC Z

Figure 14. Output from Execution Job step

72

is discussed in the chapter entitled
"Symbolic Debugging Features".

COUNT output is generated upon normal or
abnormal termination of the program.
Output from this feature is described in
the chapter "Execution Statistics".

Figure 14 is an example of output from
the execution job step. The following text
is an explanation of the illustration.

Job control statements. These
statements are listed because the LOG
option is specified.

Program output on printer. The
results of execution of the EXHIBIT
NAMED statement appear on the program
listing.

Console output. Data is printed on
the console output unit as a result of
the execution of DISPLAY UPON CONSOLE.

OPERATOR MESSAGES

The COBOL phase may issue operator
messages. In the message .. XX denotes a
system-generated 2-character numeric field
that is used to identify the program
issuing the message.

BG
BG A 0001 NYC 0
BG B 0002 NYC 1
BG C 0003 NYC 2
BG D 0004 NYC 3
BG E 0005 NYC 4
BG F 0006 NYC 0
BG G 0007 NYC 1
BG H 0008 NYC 2
BG r 0009 NYC 3
BG J 0010 NYC 4
BG K 0011 NYC 0
BG L 0012 NYC 1
9G ~·1 0013 ~i,(C 2 CD 13<.7 N UU14 NYC 3
BG 0 0015 NYC 4
BG P 0016 NYC 0
BG Q 0017 NYC 1
BG R 0018 NYC 2
BG S 0019 NYC 3
8G T 0020 NYC 4
BG U 0021 NYC 0
BG V 0022 NYC 1
BG W 0023 NYC 2
BG X 0024 NYC 3
BG Y 0025 NYC 4
BG Z 0026 NYC 0
BG EOJ SAMPLE

00.56.19,DURATION Of). 03. 1,2

STOP Statement

The following message is generated by
the STOP statement with the literal option:

XX CllOA STOP 'literal U

Explanation: This message is issued at the
programmer's discretion to indicate
possible alternative action to be taken by
the operator.

Operator Response: Follows the
instructions given both by the message and
on the job request form supplied by the
programmer. If the job is to be resumed,
hit the end/enter key.

ACCEPT Statement

The following message is generated by an
ACCEPT statement with the FROM CONSOLE
option:

XX CiliA "AWAITING REPLY"

Explanation: This message is issued by the
object program when operator intervention
is required.

Operator Response: Enter the reply and hit
the end/enter key. (The contents of the
text field should be supplied by the
programmer on the job request form.)
Alphabetic characters may be entered lower
case.

SYSTEM OUTPUT

Informative and diagnostic messages may
appear in the listing during the execution
of the object program.

Each of these messages contains an
identification code in the first column of
the message to indicate the portion of the
operating system that generated the
message. Table 6 lists these codes.
together with identification for each.

Table 6. System Message Identification
Codes

r----T------------------------------------,
lCodel Identification I
~----+------------------------------------~
I 0 I An on-line console message from I
I I the Supervisor I
~----+------------------------------------i
I 1) A message from the Job Control I
I I Processor I
~----+------------------------------------~
I 2 I A message from the Linkage Editor I
~----+------------------------------------i
I 3 I A message from the Librarian I
~----+------------------------------------1
I 4 I A message from LIOCS I
~----t------------------------------------~
I 7 I A message from the Sort program I
r----t------------------------------------i
I C I A message from COBOL object-time I
I I subroutines I l ____ ~ ____________________________________ J

Interpreting Output 73

This chapter describes the accepted
linkage conventions for calling and called
programs and discusses linkage methods when
using an assembler language program. In
addition, this chapter contains a
description of the overlay facility which
enables different called programs to occupy
the same area in virtual storage at
different times. It also contains a
suggested assembler language program to be
used in conjunction with the overlay
feature.

A COBOL source program that passes
control to another program is a calling
proq~. The program that receives control
from the calling program is referred to as
a called program. Both programs must be
compiled (or assembled) in separate job
steps, but the resulting object modules
must be link edited together in the same
phase.

A called program can also be a calling
program; that is, a called program can, in
turn, call another program. In Figure 15
for instance, program A calls program B;
program B calls program C. Therefore:

1. A is considered a calling program by B

2. B is considered a called program by A

3. B is considered a calling program by C

4. C is considered a called program by B

A

i Call'ing
I program
lof B
I
I
I
I

B
I

ICalled
I program

I lof A
1->1
I ICalling
I Iprogram
I lof C

C
I

ICalled
I program

I lof B
1-->1
I I
I I
1 I

Figure 15. Calling and Called Programs

By convention, a called program may call
to an entry point in any other program,
except one on a higher level in the "path"
of that program. That is, A may call to an
entry point in B or C, and B may call C;
however, C should not call A or B.
Instead, C transfers control only to B by
issuing the EXIT PROGRA! or GOBACK
statements in COBOL (or its equivalent in
another language). B then returns to A.

CALLING AND CALLED PROGRAMS

Compiler-generated switches, e.g., ON
and ALTER, are not reinitialized upon each
entrance to the called program, that is,
the program is in its last executed state.

Note: It is necessary for an American
National Standard COBOL program to know
whether it is the main or the called
program. For this reason, any non-American
National Standard COBOL program calling an
American National Standard program must
first call the subroutine ILBDSETO. The
function of this subroutine is to set a
switch to XtF?' in subroutine ILBDMNSO,
which is the indication to the COBOL
program that it is a called program.
Standard linkage conventions should be
observed when calling ILBDSETO; there are
no parameters to be passed.

LINKAGE

Whenever a program calls another
program, linkage must be established
between the two. The calling program must
state the entry point of the called program
and must specify any arguments to be
passed. The called program must have an
entry point and must be able to accept the
arguments. Further, the called program
must establish the linkage for the return
of control to the calling program.

LINKAGE IN A CALLING PROGRAM

A calling COBOL program must contain the
following statement at the point where
another program is to be called:

ICALL literal-1 [USING identifier-1
I [identifier-2] •••]

literal-1
is the name specified as the
program-name in the PROGRAM-ID
paragraph of the called program, or
the name of the entry point in the
called program. When the called
program is to be entered at the
beginning of the Procedure Division,
literal-1 is the name of the program
being called. When the called program
is to be entered at some point other
than the beginning of the Procedure

Calling and Called Programs 75

Division, literal-1 should not be the
same as the name specified in the
PROGRAM-ID paragraph of the called
program. Since the program-name in
the PROGRAM-ID paragraph produces an
external reference defining an entry
point, this entry point name would not
be uniquely defined as an external
reference.

If the first character of PROGRAM-ID
is numeric, the correspondence
algorithm is as follows:

o becomes J
1-9 become A-I

Since the system does not include the
hyphen as an allowable character, the
hyphen is converted to zero if it
appears as the second through eighth
character of the name.

identifier-l [identifier-2] •••
are the arguments being passed to the
called program. Each identifier
represents a data item defined in the
File, working-storage, or Linkage
section of the calling program and
should contain a level number 01 or
77. When passing identifiers from the
File Section, the file should be open
before the CALL statement is executed.
If the called program is an assembler
language program, the arguments may
represent file-names and procedure
names in addition to data-names. If
no arguments are to be passed, the
USING option is omitted.

LINKAGE IN A CALLED PROGRAM

A called COBOL program must contain two
sets of statements:

1. One of the following statements must
appear at the point where the program
is entered.

76

If the called program is entered at
the first instruction in the Procedure
Division and arguments are passed by
the calling program:

I
IPROCEDURE DIVISION [USING
I identifier-l (identifier-2] •••).

---J

If the entry point of the called
program is not the first statement of
the Procedure Division:

ENTRY literal-l [~ identifier-l
(identifier-2] •••] L---____________________________________ ~

literal-1
is the name of the entry point in
the called program. It is the
same name that appears in the
CALL statement of the program
that calls this program.

literal-l must not be the name of
any other entry point or
program-name in the run unit.

identifier-1 [identifier-2] •••]
are the data items representing
parameters. They correspond to
the arguments of the CALL
statement of the calling program.
Each data item in this parameter
list must be defined in the
Linkage Section of the called
program and must contain a level
number of 01 or 77.

2. Either of the following statements
must be inserted where control is to
be returned to the calling program:

EXIT PROGRAM.

GOBACK. L---____________________________________ ~

Both the EXIT PROGRAM and GOBACK
statements cause the restoration of
the necessary registers, and return
control to the point in the calling
program immediately following the
calling sequence.

ENTRY POINTS

Each time an entry point is specified in
a called program, an external-name is
defined. An external-name is a name that
can be referenced by another program that
has been separately compiled or assembled.
Each time an entry name is specified in a
calling program, an external reference is
defined. An external reference is a symbol
that is defined as an external-name in
another separately compiled or assembled
program. The Linkage Editor resolves
external-names and external references, and
combines calling and called programs into a
format suitable for execution together,
i.e., as a single phase.

Note: Several different entry points may
be defined in one COBOL source module.
Different CALL statements in any module of
the phase may specify the same entry point,
but each definition of an entry point must
be unique in the same phase.

CORRESPONDENCE OF ARGUMENTS AND PARAMETERS

The number of identifiers in the
argument list of the calling program should
b~ the same as the number of identifiers in
the parameter list of the called program.
If the number of identifiers in the
argument list of the calling program is
areater than the number of identifiers in
the param~ter list of the called program,
only those specified in the parameter list
of the called program may be ref~rred to by
the called progra~. There is a one-for-one
correspondence. The correspondence is
positional and not by name. An identifier
must not appear more than once in the same
USING clause.

Only the address of an argument is
passed. Consequently, both the identifier
that is an argument and the identifier that
is the corresponding parameter refer to the
same location in storage. The pair of
identifiers need not be identical, but the
data descriptions must be equivalent. For
example, if an argument is a level-77
data-name representing a 30-character
string, its corresponding parameter could
also be a level-77 data-name representing a
character string of length 30, or the
parameter could be a level-01 data item
with subordinate items representing
character strings whose combined length is
30.

Although all parameters in the ENTRY
statement must be described with level
numbers 01 or 77, there is no such
restriction made for arguments in the CALL
statement. An argument may be a qualified
name or a subscripted name. When a group
item with a level number other than 01 is
specified as an argument, proper boundary
word alignment is required if subordinate
items are described as COMPUTATIONAL,
COMPUTATIONAL-1, or COMPUTATIONAL-2. If
the argument corresponds to an 01-level
parameter, doubleword alignment is
required.

LINK EDITING WITEOUT OVERLAY

Assume that a COBOL main program
(COB~AIN), at one or more points in its
logic eXEcutes CALL statem~nts to COBOL
programs SUEPRGA, SUEPRGB, SUBFRGC, and

SUBPRGD. Also assume that the module sizes
for the main program and SUbprograms are:

~roqra!!l.
COBMAIN
SUBPRGA
SUBPRGE
SUBPRGC
SUBPRGD

Module Size
(in bytesl.

20,000
4,000
5,000
6,000
3,000

Through the linkage mechanism, all
called programs plus COBMAIN must be link
edited together to form one module of
38,000 bytes. Therefore, COBMAIN would
require 38,000 bytes of storage in order to
be executed. No overlay structure need be
specified at link edit time if 38,000 bytes
of virtual storage are available.

The following is an example of the job
control statements needed to link edit
these calling and called programs without
specifying an overlay structure. The
source decks for COBMAIN and SUBPRGA are
included in the job deck, whereas SUBPRGB,
SUBPRGC, and SUBPRGD are in the relocatable
library.

II JOB NOVFRLAY
II OPTION LINK, LIST, DUMP

ACTION MAP
PHASE EXAMP1,*
!NCLUDE

{object module COBMAIN}
1*

INCLUDE SUBPRGB
INCLUDE SUBPRGC
INCLUDE SUB1?RGD
INCLUDE

{object module SUBPRGA)
1*

ENTRY
II EXEC LNKEDT
II EXEC

{data for program)
1*
1&

Figure 16 is an example of the data flow
logic of this call structure where all the
programs fit into virtual storage.

Calling and Called Programs 77

Execute
LNKEDT

Linkugc
Editor

t----------l- - -} Storage

Layout

Figure 16. Example of Data Flow Logic in a
Call Structure

Note: For the example given, it is assumed
that SYSLNK is a standard assignment. The
flow diagram illustrates how the various
program segments are link edited into
storage in a sequential arrangement.

ASSEMBLER LANGUAGE SUBPROGRAMS

A main program written in COBOL can call
programs written in other languages that
use the same linkage conventions. Whenever
a COBOL program calls an assembler language
program, certain conventions and techniques
must be used.

There are three basic ways to use
assembler-written called programs with a
main program written in COBOL:

1. A COBOL main program or called program
calling an assembler-writtem program.

2. An assembler-written program calling a
COBOL program.

3. An assembler-written program calling
another assembler-written program.

78

From these combinations, more
complicated structures can be formed.

In a COBOL program, the expansions of
the CALL and GOBACK or EXIT PROGRAM
statements provide the save and return
coding that is necessary to establish
linkage between the calling and called
programs in accordance with the linkage
conventions of the system. Assembler
language programs must be prepared in
accordance with the same linkage
conventions. These conventions include:

1. using the proper registers to
establish linkage.

2. Reserving, in the calling program, a
storage area for items contained in
the argument list. This storage area
can be referenced by the called
program.

3. Reserving, in the calling program, a
save area in which the contents of thE
registers can be saved.

REGISTER USE

The Disk Operating System has assigned
functions to certain registers used in
linkages. Table 7 shows the conventions
for using general registers as linkage
registers. The calling program must load
the address of the return point into
register 14, and it must load the address
of the entry point of the called program
into register 15.

Table 7. Conventional Use of Linkage
Registers

I Reg. 1 Reg.
INo. IName
I I (
I 1 I Argument ,
, Ilist ,
, ,register,
I I ,
113 ISave I
, (area I
, ,register I
I 1 I
" ,
'I I
I I I
114 IReturn (
I I register I

" I I I (
'I I
I I I
115 I Entry I
I 1 point I
I I register I

(

Function

Address of the argument 1
list passed to the called I
program. I

I
Address of the area re- 1
served by the calling pro-I
gram in which the contents I
of certain registers are ,
stored by the called I
program. I ,

inl
I
(

Address of the location
the calling program to
which control is returned
after execution of the
called program.

I
I
I

Address of the entry pointl
in the called program. I

I

SAVE AREA

A calling assembler language program
must reserve a save area of 18 words,
beginning on a fullword boundary, to be
us~d by the called program for saving
registers; it must load the address of this
area into register 13. Table 8 shows the
layout of the saVE area and the contents of
each word.

A called COBOL program does not save
floating-point registers. The programmer
is responsible for saving and restoring the
contents of these registers in the calling
program.

Table 8. Save Area Layout and Word
Contents

r------- ---,
I I I
IAREA This wore. 1.S a part of the II
I (word 1) standard linkage convention II
I established under the DOS/VS " I SystEm. The word must be II
I reserved for proper II
I addressing of the subsequent II
I entries~ However, an II
I assembler subpro~ram may use II
I the word for any desired II
I purpose .. II
I t-- 1\
IAREA+4 IThe address of the previous II
I (word 2) lEave area, that is, the save II
I larea of the SUbprogram that II
I Icalled this one. II
I I -il
IAREA,+8 IThe address of the next save II
I {word 3} larea, that is, the save area II
I lof the subprogram to which II
I Ithis SUbprogram refers. II
I t-- --t I
IAREA+12 IThe contents of register 14, II
I {word 4} Ithat is, the return address. II
I l- II
IAREA+16 IThe contents of register 15, II
I (word 15) I that is, the entry address. II
I l- II
IAREA+20 IThe contents 0"':

~ register o. II
I (word 6) I II
I l- --t I
IAREA+24 IThe cont~nts of register 1. 1\
I (word 7) I II
I . I II
I I II
I . I II
I I " I AREA+68 IThe contents of register 12. II
I (word 18) I II
I I , I
L-__

ARGUMENT LIST

The argument list is a group of
contiguous fullwords, beginning on a
fullword boundary, each of which is an
address of a data item to be passed to the
called program. If the program is to pass
arguments, an argument list must be
prepared and its address loaded into
register 1. The high-order bit of the last
argument, by convention, is set to 1 to
indicate the end of the list.

Any assembler-written program must be
coded with a detailed knowledge of the data
formats of the arguments being passed.
Most coding errors occur because of the
data format discrepancies of the arguments.

If one programmer writes both the
calling program and the called program, the
data format of the arguments should not
present a problem when passed as
parameters. However, when the programs are
written by different programmers, the data
format specifications for the arguments
must be clearly defined for the programmer.

The linkage conventions used by an
assembler program that calls another
program are illustrated in Figure 16. The
linkage should include:

1. The calling sequence.

2. The save and return routines.

3. The out-of-line parameter list. (An
in-line parameter list may be used.)

4. A save area on a fullword boundary.

PILE-NAME AND PROCEDURE-NAME ARGUMENTS

A callina COBOL program that calls an
assembler-language program can pass
file-names and procedure-names, in addition
to data-names, as identifiers. In the
actual identifier-list that the compiler
generates, the procedure-name is passed as
the address of the procedure. For a file,
the address of the DTF is passed, and the
user must ensure that the file is already
open. A VSAM file-name may not be passed.

Care must be taken when using these
options. The user must be thoroughly
familiar with the generated coding for each
6plion and statement, as well as the
structure of the object program.

Calling and Called Programs 79

I

deck name

*
*

* SAVE
name 1

*
*
*

*
*
*
*
*
*
*
*
AREA

START

ENTRY
EXTRN
USING

ROUTINE
STPJ

LR
DROP
USING
LR

LA

ST

ST

BC
DS

0

name1
name2
name'1 ,15

14,r1,12(13)

r3,15
15
name1,r3
r2,13

13,AREA

13,8 (r2)

r 2,4 (13)

15,prob1
laF

INITIATES PROGRAPJ ASSEMBLAGE AT FIRST
AVAILABLE LOCATION. ENTRY POINT TO THE
PROGRAM.

THE CONTENTS OF REGISTERS 14, 15, AND
o THROUGH r 1 ARE STORED IN THE SAVE
AREA OF THE CALLING PROGRAPJ (PREVIOUS
SAVE AREA). r1 IS ANY NUMBER FROM 0 THROUGH 12.

WHERE r3 AND r2 HAV~ BEEN SAVED
LOADS REGISTER 13, WHICH POINTS TO THE
SAVE AREA OF THE CALLING PROGRAPJ, INTO
ANY GENERAL REGISTER, r 21 EXCEPT 0 AND 13.
LOADS THE ADDRESS OF THIS PROGRAM'S
SAVE AREA INTO REGISTER 13.
STORES THE ADDRESS OF THIS PROGRAPJ'S SAVE
AREA INTO WORD 3 OF THE SAVE AREA OF THE
CALLING PROGRAM.
STORES THE ADDRESS OF THE PREVIOUS SAVE
AREA (I.E., THE SAME AREA OF THE CALLING
PROGRAPJ) INTO WORD 2 OF THIS PROGRAPJ'S
SAVE AREA.

RESERVES 18 WORDS FOR THE SAVE AREA
THIS IS LAST STATEPJENT OF SAVE ROUTINE. * prob 1 {User-written program statements}

L 15,VCON INDICATE COBOL PROGRAPJ IS
BALR 14,15 A SUBPROGRAPJ

* CALLING SEQUENCE
LA 1,ARGLST
L 15,ADCON
BALR 14,15

*
{Remainder of user-written program statements}

RETURN ROUTINE
L 13,4 (13)

*
*
*
*
*
*

Lft

L

MVI

BCR
VCON DC
ADCON DC
* PARAPJETER
ARGLST DC

DC

DC
DC

LIST

2,r 1 ,28(13)

14,12(13)

12 (13) ,X'FF'

15,14
V (ILBDSETO)
A (name 2)

AL4 (arg 1)
AL4 (arg 2)

X'80'
AL3 (argn)

LOADS THE ADDRESS OF THE PREVIOUS SAVE
AREA BACK INTO REGISTER 13.
THE CONTENTS OF REGISTER 2 THROUGH r1 ARE
RESTORED FROPJ THE PREVIOUS SAVE AREA.
LOADS THE RETURN ADDRESS, WHICH IS IN
WORD 4 OF THE CALLING PROGRAPJ'S SAVE AREA,
INTO REGISTER 14.
SETS FLAG FF IN THE SAVE AREA OF THE
CALLING PROGRAPJ TO INDICATE THAT CONTROL
HAS RETURNED TO THE CALLING PROGRAPJ.
LAST STATEPJENT IN RETURN ROUTINE

CONTAINS THE ADDRESS OF SUBPROGRAPJ

FIRST STATEPJENT IN PARAftETER AREA SETUP

FIRST BYTE OF LAST ARGUPJENT SETS BIT 0 TO 1
LAST STATEMENT IN PARAMETER AREA SETUP

igure 17. Sample Linkage Routines Used with a Calling Subprogram

80

r---~
I ADCON DC A (prob 1 l
I
I

LA 14,RETURN
L 15,ADCON
CNOP 2,4
BALR 1,15
DC AL4 (arg 1)

DC AL4 (arg 2)

DC X'80'
DC AL3 (argn)
EOU *

Figure 18. Sample In-line Parameter List

In-Lin~ Parameter List

11e assembler programmer may establish
an in-line parameter list instead of an
out-oi-line list. In this case, he may
substitute the calling sequence and
parameter list illustrated in Figure 18 for
that shown in Figure 17.

LOWEST LEVEL PROGRAM

If an assembler called program does not
call any other program (i.e., if it is at
the lowest level), the programmer should
omit the save routine, calling sequence,
and parameter list shown in Figure 17. If
the assembler called program uses any
registers, it must save them. Figure 19
illustrates the appropriate linkage
conventions used by an assembler program at
the lowest level.

,
tdeckname
I

START
ENTRY

o
name

I
I
Iname
I
I

USING
STM

*,15
14,r 1 ,12(13)

IUser-written program statements
I
I
I
I
I
I
\!Q1g:
lin the
Ishould
Icalled

LM
MVI
ReB

2,r l' 28 (13)
12 (13) , X • FF •
15,14

If registers 13 and/or 14 are usedl
called subprogram, their contents I
be saved and restored by the I
subproqram. I

Figure lS. Sample Linkage Routines Used
with a Lowest Level Subprogram

OVERLAYS

If a program is too large to be
contained in the number of bytes available
in virtual storage, it can still be
executed by means of an gxerlay structure.
An overlay structure permits the re-use of
storage locations previously occupied by
another program. In order to use an
overlay structure, the programmer must plan
his program so that one or more called
programs need not be in storage at the same
time as the rest of the program phase. The
programmer should reassess, when going to
VS, whether programs which used to require
an overlay structure still do.

The following is a diagram of the basic
form of a program to be overlaid:

I
I
I
I
I
ISUEA

I
I
tROOT
I
I
I

PHASE

I
I
I
I
I
ISUEE

The root phase consists of the COBOL
main program and an assembler language
subroutine which handles the overlay
structures. SUBA and SUBB are the called
programs that are to be overlaid in
storage.

In using the overlay technique, the
programmer specifies to the Linkage Editor
which programs
These programs
Editor so they
in storage for
main program.
Linkage Editor
structure.

are to overlay each other.
are processed by the Linkage
can be placed automatically
execution when called by the
The resulting output of the
is called an overlay

SPECIAL CONSIDERATIONS WHEN USING OVERLAY
STRUCTURES

There are three areas of special concern
to the programmer who decides to use the
overlay feature. These problems concern
the use of the assembler language
subroutine, proper link editing, and job
control statements.

Calling and Called Programs 81

ASSEMBLER LANGUAGE SUBROUTINE FOR
ACCOMPLISHING OVERLAY

The CALL statement is used for "direct"
linkage; that is, the assistance of the
Supervisor is not required (as it is when
loading or fetching a phase). There are no
COBOL statements that will generate the
equivalent of the LOAD or FETCH assembler
macro instructions. For this reason, one
must call an assembler program to effect an
overlay of a COBOL program. This routine
must be link edited as part of either a
root phase or permanently resident phase.

2. It can be used for assembler overlay~
if the programmer has a desired entry
point in his END card and the first
statement at that entry point is 'S1M
14,12,12(13) '.

3. This subroutine can be used for a
COBOL program which contains an ENTRY
statement immediately following the
Procedure Division header. It will
not work with a COBOL subprogram
compiled with a Procedure~Division
USING statement or for entry points in
a COEOL subprogram which appear
anywhere other than as the first
instruction of the Procedure Division.
A suggested technique for diverse
entry points is a table look-up using
v-type constants.

The sample overlay subroutine shown in
Figure 20 is governed by the following
restrictions:

1. The example is a suggested technique,
and is not the only technique.

r---~
STMNT

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039

SOURCE STATEMENT

OVERLAY START 0
ENTRY OVRLAY

* AT ENTRY TIME
* Rl=POINTER TO ADCON LIST OF USING ARGUMENTS
* FIRST ARGUMENT IS PHASE OR SUBROUTINE NAME
* MUST BE 8 BYTES
* R13=ADDRESS OF SAVE AREA
* R14=RETURN POINT OF CALLING PROGRAM
* R15=ENTRY POINT OF OVERLAY PROGRAM
* AT EXIT
* Rl=POINTER TO SECOND ARGUMENT OF ADCON LIST
* OF USING ARGUMENTS
* R14=RETURN POINT OF CALLING PROGRAM--NOT THIS PROG
* R15=ENTRY POINT OF PHASE OR SUBPROGRAM

*
OVRLAY

SEARCHl

SUBIN

CORSUB

ASUB
SAVE

OSING
STM
L
CLC
BE
MVC
SR
SVC
LA
CLC
BNE
S
L
LA
ST
LM
LA
L
BE
DS
DC
DS
DS
END

*,15
O,l,SAVE
1,0(1)
CORSUB,O (1)
SUBIN
CORSUB (8) ,0 (1)
0,0
4
1,4(1)
o {3,1} ,=C'COB'
SEARCHl
1, =F' 8'
1,0(1)
1,8(1)
1,ASUB
0,1, SAVE
1,4(1)
15,ASUB
15
OCLS
8X'FF'
F
2F

SAVE WORK REGS
POINT Rl TO PHASE NAME
IN CORE?
YES,BR
SET CURRENT PHASE

LOAD PHASE
STEP SEARCH POINT
END OF INIT1?
NO, LOOP
POINT TO "START" ADCON
LOAD "START"
INCREMENT TO "ENTRY"
SAVE ENTRY ADDRESS
RELOAD WORK REGS
POINT TO PARAMETERS

BRANCH TO ENTRY POINT

Figure 20. Example of an Assembler Language Subroutine for Accomplishing Overlay

B2

Note: Care should be taken with the
techniques used in statements 0019 and
0020. Only when the COBOL program is
loaded are altered GO TO statements
reinitialized. A better technique would be
to load the called programs each time they
are required.

The examples given in Figures 20, 21 and 22
require that all overlay modules be linked
together. To permit linkage to and return
from modules, compiled and link edited
separately, t.he following changes to
Figure 19 are necessary:

Replace lines 25 through 28

CLC
BNE
LR
L
L
MVI
LR
L

COBCON, 1 6 (1)
SEARCH1
0,1
1,0(1)
1,4(1)
0(1) , X' FF '
1 , °
1,8(1)

Insert after line 38

COBCON DC

END OF INIT?
NO, LOOP
SAVE INIT1 ADDRESS
LOAD "PGT"
LOAD ADDRESS OF ILBD~~SO

SET "CALLED PROGRAM" FLAG
RESTORE INIT1 ADDR
LOAD "START" ADDRESS

CL3'COB'

LINK EDITING WITE OVERLAY

In a linkage editor job step, the
programmer specifies the overlay points in
a program by using PHASE statements. In
the Working-Storage Section, a level-01 or
level-11 constant must be created for each
phase to be called at execution time.
These constants have a PICTURE of X(8) and
a VALUE clause containing the same name as
that appearing on the PRASE card for that
segment in the link edit run.

In addition, each argument to be passed
to the called program must have an entry in
the Linkage Section. Remember, also, that
the ENTRY statement should not refer to the
program-name. (Use of the program-name
will result in incorrect execution.)

When more than one subprogram in the
overlay structure requires the same COBOL
subroutine, the II EXEC LNKEDT statement
must be preceded by INCLUDE cards for each
of these subroutines. The names of these
subroutines can be determined by requesting
LISTX at compile time.

When preparing the control cards for the
Linkage Editor, the programmer should be
certain to include the assembler language
subroutine with the main (root) phase.

Also, to achieve maximum overlay, the phase
names for the called programs should be
different from the names of the called
prog~specified in the PROGRA~-ID
paragraphs.

Figure 21 is a flow diagram of the
overlay logic. The PHASE cards indicate
the beginning address of each phase. The
phases OVERLAYC and OVERLAYD will have the
same beginning address as OVERLAYB. The
sequence of events is:

1. The main program calls the overlay
routine.

2. The overlay routine fetches the
particular COBOL subprogram and places
it in the overlay area.

3. The overlay routine transfers control
to the first instruction of the called
program.

4. The called program returns to the
COBOL calling program (llQ! to the
assembler language overlay routine).

If OVERLAYB were known to be in storage,
the CALL statement would be:

I

CALL "OVERLAYB" USING PARAM-1, PARAM-2.1

But when using the assembler language
overlay routine (OVRLAY), it becomes:

CALL "OVRLAY" USING PROCESS-LABEL,
PARM-1, PARM-2.

where PROCESS-LABEL contains the
external-name OVERLAYB of the called
program.

However, the ENTRY statement of the
called program is the same for both cases,
i.e., ENTRY "OVERLAYB" USING PARAM-1, t
PARAM-2, whether it is called indirectly by
the main program through the overlay .
program or called directly by the main .
program.

Note: An ENTRY which is to be called by
OVRLAY must precede the first executable
statement in the called program.

Calling and Called Programs 83

COBOL
Main or Root

Overlay Routine

Overlay Area

JOB CONTROL FOR ACCOKPLISHING OVERLAY

The job control statements required to
accomplish the overlay illustrated in
Figure 21 are shown in Figure 22. The
PHASE statements specify to the Linkage
Editor that the overlay structure to be
established is one in which the called
programs OVERLAYB, OVERLAYC, and OVERLAYD
overlay each other when called during
execution.

Note: The phase name specified in the
PHASE card must be the same as the value
contained in the first argument for CALL
"OYRLIY", i.e., PROCESS-LABEL, COMPUTE-TAX,
etc., contain OVERLAYB, OVERLAYC,
respectively, which are the names given in
the PHASE card.

It is the programmer's responsibility to
write the entire overlay, i.e., the COBOL
main (or calling) program and an assembler
language subroutine (for which a sample
program is given in this chapter) that
fetches and overlays the called programs.

Figure 21. Flow Diagram of Overlay Logic

A calling sequence to obtain an overlay
structure between three COBOL subprograms
is illustrated in Figure 23.

// JOB OVERLAYS
// OPTION LINK

PHASE OVERLAY,ROOT
// EXEC FCOBOL

{COBOL Source for Kain Program KAINLINE}
/*
// EXEC ASSEKBLY

[Source deck for Assembler Language Routine OVERLAY)
/*

PHASE OVERLAYB,*
// EXEC FCOBOL

{COBOL Source for Called Program OVERLAYB}
/*

PHASE OVERLAYC,OVERLAYB
// EXEC FCOBOL

{COBOL Source for Called Program OVERLAYC}
/*

PHASE OVERLAYD,OVERLAYC
// EXEC FCOBOL

{COBOL Source for Called Program OVERLAYD}
/*
// EXEC LNKEDT
// EXEC
/*
/&

Figure 22. Job Control for Accomplishing Overlay

84

COBOL Program Main (Root or Main Program)

IDENTIFICATION DIVISION.
PROGRAM-ID. MAINLINE.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 PROCESS-LABEL PICTURE IS X(8) VALUE IS "OVERLAYB".
77 PARAM-1 PICTURE IS X.
77 PARAM-2 PICTURE IS XX.
77 COMPUTE-TAX PICTURE IS X(8) VALUE IS "OVERLAYC".

01 NAMET.
02 EMPLY-NUMB PICTURE IS 9(5).
02 SALARY PICTURE IS 9(4)V99.
02 RATE PICTURE IS 9(3)V99.
02 HOURS-REG PICTURE IS 9(3)V99.
02 HOURS-OT PICTURE IS 9(2)V99.

01 COMPUTE-SALARY PICTURE IS X(8) VALUE IS "OVERLAYD".
01 NAMES.

I •

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.

CALL "OVRLAY" USING PROCESS-LABEL, PARAM-1, PARAM-2.

CALL "OVRLAY" USING COMPUTE-TAX, NAMET.

CALL "OVRLAY" USING COMPUTE-SALARY, NAMES.

igure 23. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms (Part 1 of
3)

Calling and Called Programs 85

--,
COBOL Subprogram B

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY1.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 PARAM-l0 PICTURE X.
01 PARAM-20 PICTURE XX.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYB" USING PARAM-10, PARAM-20.

GOBACK.

COBOL Subprogram C

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY2.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 NAMEX.
02 EMPLY-NUMBX PICTURE IS 9(5).
02 SALARYX PICTURE IS 9(4) V99.
02 RATEX PICTURE IS 9(3)V99.
02 HOURS-REGX PICTURE IS 9(3)V99.
02 HOURS-OTX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYC" USING NAMEX.

GOBACR.

Figure 23. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 2 of 3)

86

I
I
I
I
I
I
I
I
I

COBOL Subprogram D

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY3.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION
01 NAMES.

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2}V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY nOVERLAYD" USING NAMES.

I .
I GOBACK. L __ --J

Figure 23e Calling Sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 3 of 3)

Calling and Called Programs 87

COBOL segmentation permits the user to
subdivide logically and physically the
Procedure Division of a COBOL object
program. All source sections which contain
the same seGment-number in their section
headers vili be considered at object time
to be on€ segment. Since segment-numbers
can range from 00 through 99, it is
possible to subdivide any object program
into a maximum of 100 se~ments.

Program segments may be of three types:
fixed permanent, fixed overlayable, and
independent as determined by the
programmer's a£signment of segment numbers.

Segmentation of a program would be used
when virtual storage is limited. In a real
storage system, the following would apply:

1. Fixed segment£ are always in real
storage during the execution of the
entire program, that is, they cannot
be overlayed except when the system
itself is executing another program,
in which case fixed segments may be
"rolled out."

2. Fixed overlayable segments may be
overlayed during program execution,
but any sucn overlaying is transparent
to the user, that is, they are
logically identical to fixed segments,
but physically different from them.

3. Independent segments may be overlayed,
but such overlaying will resuit in the
initialization of that segment.
Therefore, independent segments are
logically different from fixed
permanent/fixed overlayable segments,
and physically different from fixed
segments.

In a virtual storage system, all
logically "fixed" segments, that is, fixed
permanent and fixed overlayable, are
treated the same. They are both "paged in
and out" as required for execution.

In the same manner, independent segments
are paged in and out; when they are paged
in, however, they are brought back in the
initial state.

In DOS/VS COBOL, segments that are
overlayed are not actually "paged out".
All the variable data items associated with
the segment are contained in one segment,
which is considered the root segment. When
a segment is "paged in", all the fields
which must be reinitialized are contained

USING THE SEGMENTATION FEATURE

in the root segment. Thus no fields in
other than the root seqment are modified.

The program SAVECORE could be segmented
as illustrated in Figure 24.

i

IIDENTIFICATION DIVISION.
I
IPROGRAM-ID. SAVECORE.
I .
I •
IENVIRONMENT DIVISION.
I
I OBJECT-COMPUTER. IBM-370.
I SEGMENT-LIMIT IS 15.
I .
I •
IDATA DIVISION.
I •
I •
IPROCEDURE DIVISION.
ISECTION-1 SECTION 8.

SECTION-2 SECTION 8.

SECTION-3 SECTION 16.

SECTION-4 SECTION 8.

SECTION-5 SECTION 50.

SECTION-6 SECTION 16.

ISECTION-7 SECTION 50.
I .
I •

Figure 24. Segmenting the Program SAVECORE

Assuming that 12K of virtual storage is
available for the program SAVECORE, Figure
25 shows the manner in which storage would
be utilized. It is apparent from the
illustration that SECTION-3, SECTION-6, and
SECTION-7 cannot be in storage at the same
time, nor can SECTION-3, SECTION-5 and
SECTION-7 be in storage simultaneously.

Sections in the permanent segment
(SECTION-1, SECTION-2, and SECTION-4) are
those which must be available for reference
at all times, or which are referenced
frequently. They are distinguished here
the fact that they have been assigned by ~

89 'I Using the Segmentation Feature

priority numbers less than the segment
limit.

sections in the overlayable fixed
segment are sections which are less
frequently used. They are always made
available in the state they were in when
last used. They are distinguishable here
by the fact that they have been assigned
priority numbers greater than the segment
limit but less than 49.

Sections in the independent segment can
overlay, and be overlaid by, either an
overlayable fixed segment or another
independent segment. Independent segments
are those assigned priority numbers greater
than 49 and less than 100, and they are
always given control in their initial
state.

OPERATION

Execution of the object program begins
in the root segment. The first segment in
the permanent segment is considered the
root segment. If the program does not
contain a permanent segment, the compiler
generates a dummy segment which will
initiate the execution of the first
overlayable or independent segment. All
global tables, literals, and data areas are
part of the root segment. Called object
time subroutines are also part of the root
segment. When CALL statements appear in a
segmented program, subprograms are loaded
with the fixed portion of the main program
as if they had a priority of zero.

90

Segmented programs must not be called by
another program (segmented or not
segmented). If a segmented program calls a
subprogram, the CALL statement may appear
in any segment. However, the object module
associated with the subprogram must be
included in the root segment prior to the
execution of the main program. This can be
accomplished in either of two ways as
follows:

1. Produce object decks for both programs
and place the one for the subprogram
in the root segment:

~n~~~ ~---
rn~~L,nuur

ESD card for the root segment

{object deck for the main program}

{object deck for the subprogram}

followed by a // EXEC LNKEDT and a //
EXEC.

2. Catalog the object module for the
subprogram in the relocatable library
prior to link editing the main
program. Insert an INCLUDE card for
the subprogram and an ENTRY card for
the root phase into the linkage editor
control cards for the root phase of
the main program. The ENTRY card will
cause the linkage editor to pass
control to the main program at
execution time. The Linkage Editor
will search the relocatable library
for the subprogram and include it with
the root phase.

fixed portion
(12K)

5K

data-buffers,
table, etc. ,

SECTION-1 (2K)

SECTION-2 (2K)

SECTION-4 (2K)

SECTION-3 (3K)

global I
(1K) I

I
I

--t
I

--t
I

permanent segment
(segment limit < 15)

SECTION-5 (2K)

SECTION-6 (2K) SECTION -7 PK)

---------~ ---------- -------------~----------------
SECTION-3 and SECTION-6 SECTION-5 and SECTION-7 are

independent segments are overlayable fixed segments
(14 < segment limit < 50) (49 < segment limit < 100)

Figure 25. Storage Layout for SAVECORE

OUTPUT FROM A SEGMENTED PROGRAM

COMPILER OUTPUT

The o~tput produced by the compiler is
an overlay structure consisting of multiple
object modules preceded by linkage editor
control statements. Segments whose
priority is greater than the segment limit
(or 49, if no SEGMENT-LIMIT clause is
specified) consist of executable
instructions only.

The compiler generates each segment as a
separate object module preceded by a PHASE
card. The names appearing on these PHASE
cards (segment-names) conform to the
following naming conventions:

1. The name of the root segment is the
same as the program-name specified in
the PROGRAM-ID clause.

2. The name of each overlayable and
independent segment is a combination
of the program-name and the priority
number of the segment. These names
are formed according to the following
rules:

a. If the program-name is 6, 7, or 8
characters in length, the
segment-name consists of the first
6 characters of program-name plus
the 2-character priority number.

b. If the program-name is less than 6
characters in length, the priority
number is appended after the
program-name.

c. Since the system expects the first
character of PROGRAM-ID to be
alphabetic, the first character,
if numeric, is converted as
follows:

o -) J
1-9 -) A-I

The hyphen is converted to zero if
it appears as the second through
eighth character.

d. When DECK is specified, the
punched object deck is sequenced
according to segments. Columns
73-74 contain the first two
characters of the program-id,
columns 75-76 contain the priority
number of the segment, and columns t
77-80 contain the sequence number

Using the Segmentation Feature 91

of the card. The priority of the
root segment is punched as 00.

e. When the compiler option CATALR is
in effect, the PHASE card for each
segment is preceded by a CATALR
card with the same name. This
will enable direct cataloging of
the compiler-produced object
module into the relocatable
library from which a load module
may be link edited into the
core-image library.

Note: Single-digit priority numbers
are preceded by a zero.

Warning: In order to avoid duplicate
names, the programmer must be aware of the
above naming conventions. If the last two
characters of an 8-character PROGRAM-ID are
numeric, these same two characters may not
appe'ar in the source program as a segment
number.

Figure 26 is an illustration of the
comDiler output for the skeleton program
shown in Figure 24.

PHASE SAVECORE,ROOT

{object module for the root segment
(sections with priority-numbers less
than the segment limit) including any
programs called by SAVECORE}

PHASE SAVEC016,*

{object module for segments with a
priority of 16 (two sections)}

PHASE SAVECOSO,SAVEC016

{object module for segments with a
priority of 50 (two sections)}

igure 26. Compiler output for SAVECORE

LINKAGE EDITOR OUTPUT

Figure 27 is an illustration of the
input to the Linkage Editor and the phase
map produced by the Linkage Editor
resulting from the compilation and editing
of the segmented program BIGJOB. The
following text is an explanation of the
figure.

C!) PHASE card generated by the compiler
for the root segment BIGJOB.

92

o

®

AUTOLINK card for the Segmentation
subrou tine.

PHASE cards generated by the compiler
for segments of priority 10, 47-50, 60,
62, and 63.

Control card generated for the Sort
Feature. This card is explained in
"Sort in a segmented Program."

Location of the entry point CURSEGM.
Item 5 is explained in "Determining the
Priority of the Last Segment Loaded
into the Transient Area."

Load address of phase BIGJOBOO. Item 6
is explained in "Sort in a Segmented
Program."

Note: If the CATALR option of the CBL card
is specified, the compiler generates CATALR
cards in front of PHASE cards.

Cataloging a Segmented Program

When the CATAL option is used to catalog
a segmented program, the following points
should be observed:

1. To avoid duplicate names, the
programmer must be aware of the naming
conventions used by the compiler (see
"Compiler Output") because a
segment-name may be the same as a
phase-name already existing in the
core image library.

2. Since the PEASE card is generated by
the compiler, the programmer must not
specify a PHASE card for the program.

To invoke a previously cataloged
segmented program, the programmer must use
the following control statement:

// EXEC name

where ~~ is the program-name specified in
the PROGRAM-ID clause.

Determining the Priority of the Last
Segment Loaded into the Transient Area

If a segmented program is abnormally
terminated during execution, and the SYMDMP
option has been specified, the CURRENT
PRIORITY cell in the Task Global Table
contains the priority of the last segment
loaded into the transient area. If SYMDMP
has not been specified, the priority of
this segment can be determined as follows:

1. In the map of virtual storage
generated by the Linkage Editor, under
the column LABEL, look for the name
'CURSEGM' (see item 5 in Figure 27).

2. Associated with this label, in the
column LOADED, is an address.

3. At this location iE stored the
priority (one byte) of the segment
current in the transient area. If
this byte is X·OO·, no segment has
been loaded into the transient area.
This indicates that the error causing
the dump occurred in the root segment.

SORT IN A SEGMENTED PROGRAM

If a segmented program contains a SORT
statement, the sort program will be loaded
above the largest overlayable or
independent segment as shown in Figure 28.

The compiler accomplishes this by
providing the following control statement
at the end of the overlay structure:

PHASE BIGJOBOO,transient area + L

This card is illustrated in Figure 27, item
4. The value of "L" in the I1gure is
X'002F2' which is the length of the longest
segment, BIGJOB47, rounded to the next
halfword boundary. Note that Linkage
Editor relocates the phase BIGJOBOO to the
next doubleword boundary (see Figure 27,
item 6).

using the PERFORM Statement in a Seqment~d
Proaram

When the PERFORM statement is used in a
segmented program, the programmer should be
aware of the following:

• A PERFORM statement that appears in a
section whos€ priority-numb€r is less
than the segment limit can have within
its range only (al sections with
priority-numbers less than 50, and (b)
sections wholly contained in a single
segment whose priority-number is
greater than 49.

Note: As an extension to American
National Standard COEOL, DOS/VS COBOL
allows sections with any
priority-number to fall within the
range of a PERFORM statement.

• A PERFORM statement that aooears in a
section whose priority-number is equal
to or greater than the segment limit
can have within its range only (a)
sections with the same priority-number
as the section containing the PERFORM
statement, and (b) sections with
priority-numbers that are less than the
segment limit.

Note: As an extension to Am€rican
National Standard COBOL, DOS/VS COBOL
allows sections with any
priority-number to fall" within the
range of a PERFORM statement.

• When a procedure-name in a segment with
a priority-number less than the segment
limit is referred to by a PERFORM
statement in a segment with a
priority-number greater than the
segment limit, the independent segment
will be reinitialized upon exit from
the PERFORM.

Using the Segmentation Feature

I

IJOB BIGJ DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT
I
I
IACTION TAKEN MAP

BIGJOB,ROOT~
I
ILIST
I •
I •
I .
ILIST
ILIST
I •
I •
ILIST
ILIST
ILIST
IT'T'COm oJ.
ILIST
ILIST
ILIST
ILIST
ILIST
I

PHASE

AUTOLINK
AUTOLINK

ILBDSEMO..--{D
ILBDSRTO

PHASE
PHASE
PHASE

PHASE
PHASE
PHASE
PHASE
PHASE

PHASE

BIGJOB10,*
BI,GJOB47 , BIGJOB 10)
BIGJOB48,BIGJOB47
BIGJOB49 ,BIGJOB48 ~~
BIGJOB50,BIGJOB49 ~
BIGJOB60,BIGJOB50
BIGJOB62,BIGJOB60
BIGJOB63,BIGJOB62
BIGJOBOO,BIGJOB63+X'002F2'~

XFR-AD LOCORE HICORE DSK-AD ESD TYPE LABEL

ROOT BIGJOB 003000 003000 0075A3 64 04 1 CSECT BIG JOB

BIGJOB10 0075A8 0075A8 0075E9 64 09
BIGJOB47 0075A8 0075A8 007899 65 00
BIGJOB48 0075A8 0015A8 0075DB 65 00
BIGJOB49 0075A8 0075A8 0075D3 65 01
BIGJOB50 0075A8 0075A8 0075F1 65 01
BIGJOB60 0075A8 0075A8 0076ED 65 02
BIGJOB62 0075A8 0075A8 0015D1 65 02
BIGJOB63 0015A8 0075A8 007621 65 03
BIGJOBOO 0078AO 0078AO 0078A1 65 03

E'igure 27. Link Editing a Segmented Program

i

2
1
2
1
2
1
2
1
2

CSECT
* ENTRY
CSECT

CSECT
CSECT
CSECT
CSECT
CSECT
eSECT
CSECT
CSRCT
CSECT

ILBDSEMO
CURSEGM
ILBDSRTO

BIGJOB10
BIGJOB47
BIGJOB48
BIGJOB49
BIGJOB50
BIGJOB60
BIGJOB62
BIGJOB63
ILBDDUMO

LOADED REL-FR

003000 003000

006268 006268
00637D~'------~(!)
006B38 006B38

0075A8 0075A8
0075A8 0075A8
0075A8 0075A8
0075A8 0075A8
0075A8 0015A8
0075A8 0075A8
0075A8 0075A8
0075A8 0075A8

® 0018AO~ 0018AO

ROOT I Including COBOL subroutines and called programs

{:

,
TRANSIENT I

L AREA I Overlayable and independent segments
I I
ISORT PROGRAM I
I I

L = length of the largest segment in bytes.

Figure 28. Location of Sort Program in a Segmentation Structure

94

PART II

PROCESSING COBOL FILES ON MASS STORAGE DEVICES-----~~ ~

PROCESSING 3540 DISKETTE FILES--------------------~. ~

DETAILED FILE PROCESSING CAPABILITIES--------------~. ~
~

PROCESSING ASCII TAPE FILES------------------------•• ~

RECORD FORMATS------------------------------------~. ~

95

A mass storage device is one on which
records can be stored in such a way that
the location of anyone record can be
determined without extensive searching.
Records can be accessed directly rather
than ~erially.

The recording surface of a mass storage
device is divided into many track~. A
track is defined as a circumference of the
recording surface. The number of tracks
per recording surface and the capacity of a
track for each device are shown in Table 9.

Table 9. Recording Capacities of Mass
storage Devices

I

IDevice I Capacity 1
I I ,
12311 1200 tracks per surface; 3625 I
I 1 bytes per track. 1
I 1 ,
12314, 1200 tracks per surface; 7294 I
12319 I bytes per track. I
r- I ~
12321 1100 tracks per strip; 2000 1
I 1 bytes per track. 1

• I I
13330 1400 tracks per surface; 13030 I
I 1 bytes per track. I .-- I ,
13340 1348 tracks per surface; 8368 1
I Model 351 bytes per track. 1
I I ,
13340 1696 tracks per surface; 8368 1
1 Model 701 bytes per track. I

Each device has some type of access
mechanism through which data is transferred
to and from the device. The mechanisms are
different for each device, but each
mechanism contains a number of read/write
heads that transfer data as the recording
surfaces rotate past them. Only one head
can transfer data (either reading or
writing) at a time.

FILE ORGANIZATION

Records in a file must be logically
organized so that they can be retrieved
efficiently for processing. Fou.r method&.
of or~anization for mass storage devices
are supported by the DOS/VS COBOL compiler:
sequential, direct, indexed, and VSAM.
VSAM is di~cussed in the chapter entitled
"Virtual Storage Access Method (VSAM)".

PROCESSING COBOL FILES ON MASS STORAGE DEVICES

SEQUENTIAL ORGANIZATION

In a seguential file, records are
organized solely on the basis of their
successive physical location in the file.
The records are read or updated in the same
order in which they appear.

Individual records cannot be located
quickly. Records usually cannot be deleted
or added unless the entire file is
rewritten. This organization is used when
most of the records in the file are
processed each time the file is used.

DIRECT ORGANIZATION

A file with direct organization is
characterized by some predictable
relationship between the key of a record
and the address of that record on a mass
storage device. This relationship is
established by the programmer.

Direct organization is generally used
for files where the time required to locate
individual records must be kept to an
absolute minimum, or for files whose
characteristics do not permit the use of
sequential or indexed organization.

This organization method has
considerable flexibility. The accompanying
disadvantage is that although the Disk
Operating System Virtual Storage provides
the routines to read or write a file of
this type, the programmer is largely
responsible for the logic and programming
required to locate the key of a record and
its address on a mass storage device.

INDEXED ORGANIZATION

An indexed file is similar to a
sequential file in that rapid sequential
processing is possible. The indexes
associated with an indexed file also allow
quick retrieval of individual records
through random access. ~oreover, a
separate area of the file is set aside for
additions; this eliminates the need to
rewrite the entire file when adding
records, a process that would usually be
necessary with a seguentially organized
file. Although the added records are not

Processing COBOL Files on Mass Storage Devices 97

physically in key sequence, the indexes are
constructed in such a way that the added
records can be quickly retrieved in key
sequence, thus making rapid sequential
access possible.

In this method of organization, the
system has control over the location of the
individual records. Since the
characteristics of the file are known, most
of the mechanics of locating a particular
record are handled by the system.

DATA MANAGEMENT CONCEPTS

The data management facilities of the
Disk Operating System Virtual Storage are
provided by a group of routines that are
collectively referred to as the
Input/Output Control System (IOCS). A
distinction is made between two types of
routines:

1. Physical IOCS (PIOCS) -- the physical
input/output routines included in the
Supervisor. PIOCS is used by all
programs run within the system. It
includes facilities for scheduling
input/output operations, checking for
and handling error conditions related
to input/output devices, and handling
input/output interruptions to maintain
maximum input/output speeds without
burdening the programmer's problem
program.

2. Logical IOCS (LIOCS) -- the logical
input/output routines linked with the
programmer's problem program. These
routines provide an interface between
the programmer's file processing
routines and the PIOCS routines.

98

LIOCS performs those functions that a
programmer needs to locate and access
a logical record for processing. A
logical record is one unit of
information in a file of similar
units, for example, one employee's
record in a master payroll file, one
part-number record in an inventory
file, or one customer account record
in an account file. One or more
logical records may be included in one
physical record. LIOCS refers to the
routines that perform the following
functions:

a. Blocking and deblocking records

b. Switching between input/output
areas when two areas are specified
for a file

c. Handling end-of-file and
end-of~olume conditions

d. Checking and writing labels

A brief description of functions
performed by LIOCS and their relationship
to a COBOL program follows.

Whenever COBOL imperative-statements
(READ, WRITE, REWRITE, etc.) are used in a
program to control the input/output of
records in a file, that file must be
defined by a DTF (~efine Ihe file) or, for
VSAM~ an ACE (Access Method Control Blockj.
A DTF or ACB is created for each file
opened in a COBOL program from information
specified in the Environment Division, FD
entry, and input/output statements in the
source program. The DTF for each file is
part of the object module that is generated
by the compiler. The ACB is generated at
object time. They describe the
characteristics of the logical file,
indicate the type of processing to be used
for the file, and specify the storage areas
and routines used for the file. Further
and more detailed onformation in VSAM is to
be found in the chapter "VSAM."

One of the constants in the DTF table is
the address of a logic module that is to be
used at execution time to process that
file. A logic module contains the coding
necessary to perform data management
functions required by the file such as
blocking and deblocking, initiating label
checking, etc.

Generally, these logic modules are
assembled separately and cataloged in the
relocatable library under a standard name.
At link edit time, the Linkage Editor
searches the relocatable library using the
virtual reference to locate the logic
module. The logic module is then included
as part of the program phase. Note that
since the Autolink feature of the Linkage
Editor is responsible for including the
logic modules, the COBOL programmer need
not specify any INCLUDE statements.

The type of DTF table prepared by the
compiler depends on the organization of the
file and the device to which it is
assigned. The DTF's used for processing
files assigned to mass storage devices are
as follows:

DTFSD -- Sequential organization,
sequential access

DTFDA -- Direct organization,
seguential or random access

DTFIS -- Indexed organization,

For a 3540 diskette unit, the DTF is
DTFDU. More detail on this is given in the
chapter "processing 3540 Diskette unit
Files."

The remainder of this chapter provides
information about preparing programs which
process files assigned to mass storage
devices. Included are general descriptions
of the organization, the COBOL statements
that must be specified in order to build
the correct DTF tables, and coding
examples.

SEQUENTIAL ORGANIZATION-1QTFSQl

In a sequential file on a mass storage
device, records are written one after
another -- track by track, cylinder by
cylinder -- at successively higher
addresses.

Records may be fixed-length, spanned, or
variable-length, blocked or unblocked, or
undefined. Since the file is always
accessed sequentially, it is not formatted
with keys.

Processing a sequentially organized file
for selected records is inefficient. If it
is done infrequently, the time spent in
locating the records is not significant.
The slowest way is to read the records
sequentially until the desired one is
located. On the average, half of the file
must be read to locate one record.

Additions and deletions require a
complete rewrite of a sequentially
organized file on a mass storage device.
Sequential organization is used on mass
storage devices primarily for tables and
intermediate storage rather than for master
files.

Sequentially organized files formatted
with keys cannot be created using DTFSD.
DTFDA may be used to create and access
(sequentially or randomly) such files.

PROCESSING A SEQUENTIALLY ORGANIZED FILE

To create, retrieve, or update a DTFSD
file, the following specifications should
be made in the source program:

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO SYSnnn-

Optional clauses:

RESERVE Clause
FILE-LIMIT Clause

{D
UTA} l

2311

l 2314
- .2321 -S

2319
3330
3340

ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL
RERUN Clause
SAME Clause
APPLY WRITE-ONLY Clause (create only)
APPLY WRITE-VERIFY Clause (create or

update only)

Invalid clauses:

ACCESS MODE IS RANDOM
ACTUAL KEY Clause
NOMINAL KEY Clause
RECORD KEY Clause
TRACK-AREA Clause
"ULTIPLE FILE TAPE Clause
APPLY EXTENDED-SEARCH Clause
APPLY CYL-OVERFLOW Clause

{

MASTER-INDEX}
APPLY Clause

CYL-INDEX

APPLY CORE-INDEX Clause

DTPSD files may be opened as INPUT,
OUTPUT, or 1-0. When creating such a file,
an INVALID KEY condition occurs when the
file limit has been reached and an attempt
is made to place another record on the mass
storage device. The file limit is
determined from the EXTENT control
statements.

When a DTFSD file is opened as OUTPUT,
each WRITE statement signifies the creation
of a new record. When opened as I-a, each
WRITE statement signifies that the record
just read is to be rewritten.

DIRECT ORGANIZATIO!-JQTFDA}

With direct organization, there is a
definite relationship beteween the key of a
record and its address. This relationship
permits rapid access to any record if the
file is carefully organized. The
programmer develops a record address that
ranges from z~ro to some maximum by
converting a particular field in each
record to a track address. Each byte in
the address is a binary number. To

Processing COBOL Files on Mass Storage Devices 99

reference a particular record, the
programmer must supply both the track
address and the identifier that makes each
record unique on its track. Both the track
address and the identifier are supplied by
the programmer in the ACTUAL KEY clause.
This will be discussed in detail later in
this chapter.

With direct organization, records may be
fixed length, spanned or undefined. The
records must be unblocked. RO (record
zero) of each track is used as a capacity
record. It contains the address of the
last record written on the track, and is
used by the system to determine whether a
new record will fit on the track. The
capacity records are updated by the system
as records are added to the file. The
capacity records do not account for
deletions: as far as the system is
concerned, once a track is full it remains
full (even if the programmer deletes
records) until the file is reorganized.

Often, more records are converted to a
given track address than will actually fit
on the track. These surplus records are
known as overflow records and are usually
written into a separate area known as an
overflow area.

As already noted, the programmer has an
unlimited choice in deciding where records
are to be located in a directly organized
file. The logic and programming are his
responsibility.

When creating or making additions to the
file, the programmer must specify the
location for a record (track address) and
the identifier that makes each record on
the track unique. If there is space on the
track, the system writes the record and
updates the capacity record. If the
specified track is full, a standard error
condition occurs, and the programmer may
specify another track address in his USE
AFTER STANDARD ERROR declarative routine.

In the case of one maximum size record
per track (when spanned records are not
specified), the data length plus the length
of the symbolic key cannot exceed the
following values:

2311 -- 3605 bytes
2314, 2319 -- 7249 bytes
2321 1984 bytes
3330 -- 12974 bytes
3340 -- 8293 bytes

When reading or updating the file, the
programmer must supply the track address
and the unique identifier on the track for
the specific record being sought. The
system locates the track and searches that
track for the record with the specified

iOO

identifier. If the record is not found,
COBOL indicates this to the programmer by
raising an INVALID KEY condition. Only the
track specified by the programmer is
searched. If, however, the APPLY
EXTENDED-SEARCH clause has been soecified
for the file, the entire cylinder~is
searched for the desired record. In this
case, the INVALID KEY condition arises only
if the record cannot be found on the
cylinder. To ensure file integrity, the
upper limit of each extent of a file using
EXTENDED-SEARCH must be the last track of a
cylinder.

Error recovery from a DTFDA file is
described in detail in th~ chapter
"Advanced Processing capabilities."

ACCESSING A DIRECTLY ORGANIZED PILE

A directly organized file (DTPDA) may be
accessed either sequentially or randomly.

ACCESSING A DIRECTLY ORGANIZED FILE
SEQUE!TIALLY: When reading a direct file
sequentially, records are retrieved in
logical sequence; this logical seguenc€
corresponds exactly to the physical
sequence of the records. To retrieve a
DTFDA file sequentially, the following
specifications are made in the source
program:

FNVIRONME~T DIVISION

Reguired clauses:

SELECT [OPTIONAL] file-name

2321 A
ASSIGN TO SYSnnn-DA- 2314 _f }

2319 tD
3330 1
23111

3340

QEtional clauses:

FILE-LIMIT Clause
ACCESS MODE IS SEOUENTIAL
PROCESSING MODE IS SEOUENTIAL
ACTUAL KEY Clause
RERUN Clause
SAME Clause

Invalid clauses:

R:eSERVE Clause
ACCESS MODE IS RANDOM
NOMINAL KEY Clause
RECORD KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause

APPLY CYL-OVERFLOW Clause
APPLY EXTENDED- SEARCH Clause
APPLY WRITE-VERIFY Clause

APPLY Clause {
MASTER-INDEX}

CYL-INDEX

APPLY CORE-INDEX Clause

When DTFDA records are retrieved
sequentially, the file may be opened only
as INPUT. The AT END condition occurs when
the last record has been read and execution
of another READ is attempted.

Note that in the ASSIGN clause, an A
must be specified for files with actual
track addressing, and a ~ must be specified
for files with relative track addressing.

ACCESSING A DIRECTLY ORGANIZED FILE
RANDOMLY: To create a directly organized
file randomly, the following specifications
are made in the source program:

ENVIRONMENT DIVISION

Required clauses:

SELECT file-name

ASSIGN
2321 A

TO SYSnnn-DA- 2314 -{ }
2319 D
3330 l2311\

ACCESS MODE IS RANDOM
ACTUAL KEY Clause

Optional clauses:

FILE-LIMIT Clause

3340

PROCESSING MODE IS SEQUENTIAL
RERUN Clause
SAME Clause
APPLY WRITE-VERIFY Clause

Invalid clauses:

RESERVE Clause
ACCESS MODE IS SEQUENTIAL
NOMINAL KEY Clause
RECORD KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause
APPLY EXTENDED-SEARCH Clause
APPLY WRITE-VERIFY Clause
APPLY CYL-OVERFLOW Clause

{
MASTER-INDEX}

APPLY Clause
CYL-INDEX

APPLY CORE-INDEX Clause

Note that in the ASSIGN clause, an A
must be specified for files with actual
track addressing, and a Q must be specified
for files with relative track addressing.

To retrieve or update a directly
organized file randomly, the following
specifications must be made in the source
program.

ENVIRONMENT DIVISION

Required clauses:

SELECT file-name

TO SYSnnn-DA- ~llli(-ff~
(3340 ~

ASSIGN

ACCESS MODE IS RANDOM
ACTUAL KEY Clause

Note that in the ASSIGN clause an A must
be specified for files with actual track
addressing, a Q must be specified for files
with relative track addressing, a Q must be
specified for files with actual track
addressing when the REWRITE statement is
used, and! must be specified for files
with relative track addressing when the
REWRITE statement is used.

The optional and invalid clauses are the
same as those specified previously for
creating a directly organized file.

Exception: APPLY EXTENDED-SEARCH is
optional when retrieving or updating a
directly organized file randomly.

ACTUAL KEY CLAUSE

Note that the ACTUAL KEY clause is
required for DTFDA files when ACCESS IS
RANDOM, is optional for DTFDA files when
ACCESS IS SEQUENTIAL, and is not used for
DTFSD files.

The actual key consists of two
components. One component expresses the
track address at which the record is to be
placed for an output operation, or at which
the search is to begin for an input
operation. The track address can be
expressed either as an actual address or as
a relative address, depending upon the
addressing scheme chosen when the file was
created. The other component is associated
with the record itself and serves as its
unique identifier. The structures of both
actual keys are shown in Figure 29.

Processing COBOL Files on Mass Storage Devices 101

Byte

IByte ,

I Actual Key I
I i I
IActual Track IRecord Identifierl
IAddress I ,
1 8 9 263

I Actual Key I
, i r
IRelative IRecord Identifierl
ITrack Address I I
I , I

1 4 5 258

Figure 29. Structures of the Actual Key

The format of the ACTUAL KEY clause is:

ACTUAL KEY IS data-name

When actual track addressing is used,
data-name may be any fixed item from 9
through 263 bytes in length. It must be
defined in the Working-Storage, File, or
Linkage Section. The first eight bytes are
used to specify the actual track address.
The structure of these bytes and
permissible specifications for the mass
storage devices are shown in Figure 30.
The programmer may select from 1 to 255
bytes for the record identifier portion of
the actual key field.

Note: If a SEEK statement is used when
retrieving a direct file randomly, actual
track addressing is required.

When relative track addressing is used,
data-name may be any fixed item from 5

Pack Cell

M B B

0 1 2

2311 I 0-221 0 0
I

2314 I 0-221 0 0
1

2321 I 0-221 0 0-9
I

3330 I 0-221 0 0
I

3340 Model 351 0-221 0 0
I

3340 Model 101 0-221 0 0

Figure 30. Permissible Specifications for

102

C

3

0

0

through 258 bytes in length. It must be
defined in the File Section, the working
Storage Section, or the Linkage Section.
The first four bytes of data-name are the
track identifier. The identifier is used
to specify the relative track address for
the record and must be defined as an
8-integer binary data item whose maximum
value does not exceed 16,777,215. The
remainder of data-name, which is 1 through
254 bytes in length, is the record
identifier. It represents the symbolic
portion of the key field used to identify a
particular record on a track.

For a complete discussion of the ACTUAL
KEY clause, see the publication IBM DQ~
Full American National Standard COBOL.

Randomizinq Techniques

One method of determining the value of
the track address portion of the field
defined in the ACTUAL KEY clause is
referred to as indirect addressina.
Indirect addressing generally is used when
the range of keys for a file includes a
high percentage of unused values. For
example, employee numbers may range from
000001 to 009999, but only 3000 of the
possible 9999 numbers are currently
assigned. Indirect addressing is also used
for nonnumeric keys. Key, in this
discussion, refers to that field of the
record being written that will be converted
to the track address portion.

Indirect addressing 5ignifies that the
key is converted to a value for the actual
track address by using some algorithm
intended to limit the range of addresses.

Cylinder Head Record

C H E R

I
I

4 5 6 I 7

I
I
I
I
I
I
I

I ~
0-199 0 0-9 I 0-255 I

I I
0-199 0 0-19 I 0-255 I

-r- ,
0-19 0-9 0-4 0-19 I 0-255 I

I ,
0-403 0 0-18 I 0-255 I

I ,
0-341 0 0-11 I 0-255 I

I I
0-695 0 0-11 I 0-255 I

the First Eight Bytes of the Actual Key

Such an algorithm is called a randomizing
technique. Randomizing techniques need not
produce a unique address for every record
and, in fact, such techniques usually
produce synonyms. Synonyms are records
whose keys randomize to the same address.

Two objectives must be considered in
selecting a randomizing technique:

1. Every possible key in the file must
randomize to an address within the
designated range.

2. The addresses should be distributed
evenly across the range so that there
are as few syno~yms as possible.

Note that one way to minimize synonyms
is to allocate more space for the file than
is actually required to contain all the
records. For example, the percentage of
locations that are actually used might be
801 to 85% of the allocated space.

When actual track addressing is used,
the first eight bytes of the ACTUAL KEY
field can be thought of as a "discontinuous
binary address." This is significant to
the programmer because he must keep two
considerations in mind. First, the
cylinder and head number must be in binary
notation, so the results of the randomizing
formula must be in binary format. Second,
the address is "discontinuous" since a
mathematical overflow from one element
(e.g., head number) does not increment the
adjacent element (e.g., cylinder number).

DIVISION/REMAINDER METHOD: One of the
simplest ways to indirectly address a
directly organized file is by using the
division/remainder method. (For a
discussion of other randomizing techniques,
see the publication Introduction to IBM
Direct Access Stora~ Devi£gs and
organization Methods, Order No.
GC20-1649.)

1. Determine the amount of locations
required to contain the data file.
Include a packing factor for
additional space to eliminate
synonyms. The packing factor should
be approximately 20% of the total
space allocated to contain the data
file.

2. Select, from the prime number table,
the nearest prime number that is less
than the total of step 1. A Erime
number is a number divisible only by
itself and the integer 1. Table 10 is
a partial list of prime numbers.

3. Clear any zones from the first eight
bytes of the actual key field. This

can be accomplished by moving the key
to a field described as COMPUTATIONAL.

4. Divide the key by the prime number
selected.

5. Ignore the quotient; utilize the
remainder as the relative location
within the data file.

6. (For actual track addressing only)
Locate the beginning of the space
available and manipulate the relativ~
address, to the actual device address
if necessary.

For example, assume that a company is
planning to create an inventory file on a
2311 disk storage device. There are 8000
different inventory parts, each identified
by an a-character part number. Using a 20%
packing factor, 10,000 record positions are
allocated to store the data filE.

Method A: The closest prime number to
10,000, but under 10,000, is 9973. Using
one inventory part number as an example, in
this case #25DF3514, and clearing the zones
we have 25463514. Dividing by 9973 we get
a quotient of 2553 and a remainder of 2445.
2445 is the relative location of the record
within the data file corresponding to part
number 25DF3514. ThE record address can be
determined from the relative location as
follows:

1. (For actual track addressing only)
Determine the beginning point for the
data file (e.g., cylinder 100, track
0) •

2. Determine the number of records that
can be stored on a track (e.g., twelve
per track on a 2314 disk pack,
assuming each inventory record is 200
bytes long) •

Because each data record contains
non-data components, such as a count
area and interrecord gaps, track
capacity for data storage will vary
with record length. As the number of
separate records on a track increases,
interrecord gaps occupy additional
byte positions so that data capacity
is reduced. Track capacity formulas
provide the means to determine total
byte reguirement~ for records of
various sizes on a track. These
formulas can be found in the
publications IBM Component
Descriptions, Order Nos. GA26-5988
and GA26-3599.

3. Divide the relative number (2445) by
the number of records to be stored on
each track.

Processing COBOL Files on Mass Storage Devices 103

q. (For actual track addressing only)
The result, quotient = 203, is now
divided into cylinder and head
designation. Since the 2311 disk pack
has ten heads, the quotient of 203 is
divided by 10 to show:

Cylinder or CC = 20
Head or HH = 03 (high-order zero

added)

4B. (For relative track addressing only)
The result, quotient = 203, now
becomes the track identifier of the
actual key.

Method B: utilizing the same example,
another approach will also provide the
relative track address:

.,,, "
IV"

1. The number of records that may be
contained on one track i~ tweive.
Therefore, if 10,000 record locations
are to be provided, 634 tracks mu£t be
reserved.

2. The prime number nearest, but less
than 834, i~ 829.

3. Divide the zone-stripped key by the
prime value. (I n t he exam pIe,
25463514 divided by 829 provides a
quotient of 30715 and a rernain~er of
779. The remainder is the relative
address.)

Table 10. Partial List of Prime Numbers Table 10. Partial List of Prime Numbers
(Part 1 of 2) (Part 2 of 2)

r-- i I , A B I A B I , (Num ber) (Nearest Prime Number, (Number) (Nearest Prime Number,
I Less Than A) Less Than A) ,
I I , 500 499 5600 ~591 , , 600 ~99 5100 9693 ,
I 100 691 5800 5191 I , 800 191 5900 5891 , , 900 887 6000 5961 I
I 1000 997 6100 6091 I
I 1100 1091 6200 6199 I
I 1200 1193 6300 6299 ,
I 1300 1297 6400 6391 I
I 1400 1399 6500 6491 I
I 1500 1499 6600 6599 I
I 1600 1597 6700 6691 ,
I 1700 1699 6800 6193 I
I 1800 1189 6900 6899 , , 1900 1889 7000 6991 I , 2000 1999 1100 1019 , , 2100 2099 7200 1193 I
I 2200 2119 1300 1291 ,
I 2300 2291 1400 7393 I
I 2400 2399 1500 1499 I , 2500 2471 7600 1591 , , 2600 2593 1100 1699 I , 2100 2699 7800 1193 ,
I 2800 2197 1900 1883 I
I 2900 2897 8000 1993 I , 3000 2999 8100 8093 I , 3100 3089 8200 8191 ,
I 3200 3191 8300 8297 ,
I 3300 3299 8400 8389 I
I 3400 3391 8500 8467 I , 3500 3499 8600 8599 , , 3600 3593 8700 8699 I
I 3100 3691 8800 8793 I , 3800 3197 8900 8899 I
I 3900 3889 9000 8899 I
I 4000 3989 9100 9091 I
I 4100 4099 9200 9199 I
I 4200 4171 9300 9293
I 4300 4291 9400 9397
I 4400 4397 9500 9491
I 4500 4493 9600 9581
I 4600 4597 9700 9691
I 4700 4691 9800 9191
I 4800 4199 9900 9881 , 4900 4889 10,000 9913 , 5000 4999 10,100 10,099
I 5100 5099 10,200 10,193 , 5200 4191 10,300 10,289 , 5300 5297 10,400 10,399
I 5400 4399 10,500 10,499 , 5500 5483 10,600 10,591
I

Processing COBOL Files on Mass storage DeviceE 105

4. (For actual track addressing only) To
convert the relative address to an
actual device address, divide the
relative address by the number of
tracks in a cylinder. The quotient
will provide the cylinder number and
the remainder will be the track
number. For example, the 2311 disk
pack would utilize 119 as:

Cylinder or CC = 11
Track or HH :: 9

Figure 31 is a sample COBOL program
which creates a direct file with actual
track addressing using Method Band
provides for the possibility of synonym
overflow. Synonym over=low will occur if a
record randomizes to a track that is
already full. The following description
highlights the features of the example.
Circled numbers on the program listing
correspond to the numbers in the text.

106

The value 10 is added to TRACK-1 to
ensure that the problem program does
not write on cylinder o. Cylinder 0
must be reserved for the Volume Table
of Contents.

• Since the prime number used as a
divisor is 829, the largest possible
remainder will be 828. Adding 10 to
TRACK-1 adjusts the largest possible
remainder to 838.

If synonym overflow occurs, control is
given to the error procedure
declarative specified in the first
section of the Procedure Division.
The declarative provides that:

• Any record which cannot fit on a
track (i.e., tracks 0 through 8 of
any cylinder) will be written in the
first available position on the
following track(s).

• Any record which cannot fit within a
single cylinder will be written on
cylinder 84 (i.e., the cylinder
overflow area) •

• If a record cannot fit on either
cylinders 1 through 83, or on
cylinder 84, the job is terminated.

The standard error condition "no room
found" is tested before control is
given to the synonym routine. Other
standard error conditions as well as
invalid key conditions result in job
termination.

ERROR-COND is the identifier which
specifies the error condition that
caused control to be qiven to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLST. They are printed before the
execution of each WRITE statement.
This output has been provided in order
to· facilitate an understanding of the
logic involved in the creation of
D-FILE.

The first twelve records which
randomize to cylinder 002 track 8 are
actually written on track 8.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 002 track 9.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 84 track 0 (i.e.,
the overflow cylinder).

TIte last two records which randomize
to cylinder 002 track 8 arE adjusted
by the SYNONYM-ROUTINE and written on
cylinder 84 track 1 (i.e., the
overflow cylinder).

II JOB MLl'HODBA
II OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS
II EXEC FCOBOL

110M DOS VS COBOL

IDENTIFICATIOl~ DIVISlOi~.

PRCGRAH-ID. METhOD-B.
ENVIRONt'.£NT DIVISION.
CONFIGURATION St,CTION.
SOURCE-COMPUTEk. IBM-370.
OBJECT-COMPUTER. IBM-370.
IN~UT-OUTPUT SECTION.
FILE-CONTROL.

REL 1.0

SELECT D-FILE ASSIGN SYS01S-DA-2314-A-~AST£R
ACCESS IS RANDOM
ACTUAL KEY IS ACT-KEY.
SELECT C-FILE ASSIGr~ TO SYSOC7-Ui'I.-2540«.-S.

DATA DIVISION.
FILE SECTION.
FD D-FILE

LABEL RECORDS ARE S'I'ANDARD.
01 D-REC.

02
02
02
02

FD C-FILE

PAin-NUM PIC X(S).
NUM-ON-HAND PIC 9(4).
PRICE PIC 9(S)V99.
FILLER PIC X(181).

LABEL H.ECORDS ARE OMITTED.
01 C-REC.

02 PAR1:-i~UH PIC X(S).
02 NUM-ON-HAND PIC 9(4}9.
02 PRICE PIC 9(S)V99.

WORKING-STORAGE SECTION.
77 HD rIC 9 VALUE ZERO.
77 SAVL PIC S9(8) COMP SYNC.
77 QUOTIEd'I PIC S9 (5) CaMP SYi~C.
01 ERROR-COND.

02 FILLER PIC 99 VALUE Z£~O.
02 ERR PIC 9 VALUh ZERO.
02 FILLER PIC 9(S) VALUE ZERO.

01 'IRACK-1 PIC 9999.
01 TRACK-ID REDEFINES TRACK-1.

02 CYL PIC 999.
02 HEAD PIC 9.

01 KEY-l.
02 M i?IC S999 COL4P SYNC VALlH: ZLkOE3.
02 BB PIC S9 CaMP SYNC VALUE, ZERO.
02 CC PIC S999 COMP SYNC.
02 HH PIC S999 COHP SYl'.C.
02 R PIC X VALUE LOW-VALU~.
02 REC-ID PIC xes).

01 KEY-2 R£iJEF1l.ES KEY-l.
02 FILL~R FIC X.
02 ACT-KEY PIC X(16).

PP NO. S746-CBl

Figure 31. Creating a Direct File Using Method B (Part 1 of 4)

08.47.44 10/04/73

Processing COBOL Files on Mass Storage Devices 107

IBM DOS VS COBOL
REL 1.0 PP NO. 5746-CB1

PROCEDURE DIVISION.
DECLARA'IIVES.
ERRCR-PROCEDURE. SECTION. USE AFT~FI STANDARD ERROR PROCEDURE.

ON D-FILE GIVING E.~ROk-CONj).

ERROR-ROUTIUE.
E.XHIBI1 NAMED ERROR-COND.

IF ERR = 1 GO TO SYNONtM-ROU'I'INE
DISPLAY 'OTHER. STANDI'.RJ 1;RROR'

GO TO EOJ.
SYllO;~YM-ROUTINE;.

ELSE
Rr_C-liJ

IF CC = 84 AND rID = 9 l.JISPL.ll,.Y 'OVERFLOw /l,f{.t:A FuLL'
GO TO EOJ.

IF CC = 84 ADD 1 TO HD GO TO ADJUS'I-H').
IF riB = 9 GO TO END-CYLINDER.
Fo..DD 1 '1'0 Hi!.
GO TO WRITLS.

E;ND-CYLIND.l:;R.
r-~OV.ic 84 TO CC.

ADJUS'I-rlD.
MOVE HD TO HR.
GO TO ~RITES.

END DECLARATIVES.
FILE-CREATION SECTION.

OPhN IIJPUT C-FILE
OUTPUT D-FILE.

READS.
READ C-FILE AT END GO TO EO,J.

)
MOVE. CORRESPONDING C-REC TO D-H£C.
MOVE PART-NUM OF C-RE;C TO REC-ID SAVE.
DIVIDE SAVE BY 829 GIVn~G QUO'IIEllT i<EMAIND£k TkhCK-l.} 'i'
JlJJD 10 TO 'I'RACK-i. \V
MOVE CYL TO CC.
MOVE. HEAD TO HH.

WRITES.
EXHIBIT NAMED TRACK-ID C-REC CC HH.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.

INVALID-KEY.

E.OJ.
DISPLAY 'INVALID KEY' REC-ID.

CLOSE C-FILE D-FILE.
STOP RUN.

II LBLTYP NSD(Ol)
II EXE.C LNKEDT

Figure 31. Creating a Direct File Using Method B (Part 2 of 4)

108

08.47.44 10/04/73

IBM DOS VS COBOL REL 1.0 PP NO.5746-CBl 08.47.44 10/04/73

II ASSGN'SYS007,X'OCC'
II AS~GN SYS015,X'231'
II DLBL MAST~R,,93/365,OA
II EXTENT SYS015,111111,1,0,2C,840
II EXLC

TAACK-ID 0010 C-REC 82900000 CC 001 Hd 000
TRACK-ID 0011 C-RcC 82900001 CC ·0(;1 tiH OC1
TAACK-ID 0028 C-REC 8290001801 CC 002 HH ooe

.TRACK-IO 0028 C-i{EC 8290001802 CC 002 ad 008
TRACK-ID 0028 C-REC 8290001803 CC 002 HH 008
TRACK-ID OC28 C-RBC 8290001804 CC 002 BH 008

CD TAACK-IL> 0028 C-REC 8290001805 CC 002 Hrl 008
TRACK-ID 0028 C-REC 8290001806 CC 002 tid 008
TPACK-ID 0028 C-REC 8290001807 CC 002 Hii 008
Tf<ACK-ID 0028 C-REC 8290001808 CC 002 titi 008
TRACK-J:D 0028 C-REC 8290001809 CC Ou2 HH 008
T~ACK-I;) 0028 C-REC 8290001810 CC OC2 Hii 008
TRACK-ID 0028 C-REC 8290001811 CC 002 rid 008
T~ACK-lD 0028 C-REC 8290001812 CC 002 Hli 006
T.<ACK-ID 0028 C-REC 8290001813 CC 002 btl OOS
TrthCK-ID 0028 C-REC 8290001814 CC 002 hH 008
TkACK-lD 0186 C-REC 290001815 CC 018 hd 006
TAACK-ID 0186 C-REC 290001816 CC 018 HH 006
TRACK-LD 0028 C-REC 8290001817 CC 002 kid 008
TRACK-ID 0028 C-REC 8290001818 CC 002 HH 008
TAACK-ID 0028 C-REC 8290001819 CC 002 titl 008
TRACK-ID 0028 C-REC 8290001820 CC 002 dd 008 CD Tl<ACK-ID 0028 C-REC 8290001821 CC 002 Hd OOS
T.rtACK-ID 0028 C-REC 82900Ci1822 CC 002 kiB 008
TRACK-ID 0028 C-REC 8290001823 CC 002 tid 008
E.'RROR-CONO = 00100COO
TRACK-Hi = 0028 C-REC 8290001823 CC 002 Htl 009
TRhCz,.-ID = 0028 C-REC 82900018214 CC 002 tiH OM
ERROR-COND = 00100000
TrtACt(-ID = 0028 C-REC 8290001824 CC 002 HH 009

Figure 31. Creating a Direct File Using Method B (Part 3 of 4)

Processing COBOL Files on Kass storage Devices 109

IBM .DOS VS COBOL REL 1.0 pp NO. 5746-CBl 08.47.44 10/04/73

TRACK-ID = 0028 C-REC 8290001825 CC 002 Hrl 008
ERROR-CmolD = 00100000
TAACK-ID = 0028 C-REC 8290001825 CC 002 HH 009
TRACK-ID = 0028 C-REC 8290001826 CC 002 hti 008
ERROR-COND = 00100000
TRACK-ID 0028 C-REC 8290001826 CC 002 HH 009
TRACK-ID 0011 C-REC 8290001827 CC 001 brl 001
TRACK-ID = 0011 C-REC 8290001828 CC 001 HH 001
TRACK-ID = 0011 C-REC 8290001829 CC 001 HH 001
TRACK-ID = 0028 C-REC 8290001830 CC 002 HB 008
EHROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001830 CC 002 HH 009
TRACK-ID = 0028 C-REC 8290001831 CC 002 bH 008
ERROR-COND = 00100000
'!'AACK-ID = 0028 C-REC 8290001831 CC 002 Btl 009 CD TRACK-ID = 0028 C-REC 8290001832 CC 002 Hd 008
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001832 CC 002 HH 009
TRACK-ID = 0028 C-REC 8290001833 CC 002 bd 008
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001833 '-'- 002 liii 009
TRACK-ID = 0028 C-REC 8290001834 CC 002 HH 008
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001834 CC 002 tiH 009
TRACK-ID = 0028 C-REC 8290001835 CC 002 HB 008
ERROR-cmm = 00100000
TRACK-ID = 0028 C-REC 8290001835 CC 002 Hri 009
TRACK-ID = 0028 C-REC 8290001836 CC 002 riH 008
ErtROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001836 CC 002 dH 009
TRACK-ID = 0028 C-REC 8290001837 CC 002 HH 008

! ERROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001837 CC 002 HH 009 CD TRACK-ID = 0028 C-REC 8290001838 CC 002 Hrl 008
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001838 CC 002 riH 009

Figure 31. Creating a Direct File using Method B (Part 4 of 4)

110

Figure 32 is a sample COBOL program
which creates a direct file with relative
track addressing using Method B. The
sample program provides for the possibility
of synonym overflow. Synonym overflow will
occur if a record randomizes to a track
which is already full. The following
discussion highlights some basic features.
circled numbers on the program listing
correspond to numbers in the text.

o

since the prime number used as a
divisor is 829, the largest possible
remainder will be 828.

If synonym overflow occurs, control is
given to the USE AFTER STANDARD ERROR
declarative specified in the first
section of the Procedure Division.
The declarative provides that any
record that cannot fit on the track .to
which it randomizes will be written on
the first subsequent track available.

The standard error condition "no room
found" is tested before control is
given to the SYNONYM-ROUTINE. Other
standard error conditions as well as
invalid key conditions result in job
termination (EOJ).

ERROR-COND is the identifier which
specifies the error condition that

®

(j)

caused control to be given to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLS! before execution of each WRITE
statement. This output has been
provided in order to facilitate an
understanding of the logic involved in
the creation of D-FILE.

The first twelve records which
randomize to relative track 18 are
actually written on relative track 18.

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-FO~TI~E and
are actually written on relative track
19.

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-ROUTINE and
are actually written on relative track
20.

The last two records which randomize
to relative track 18 are adjusted by
the SYNONYM-ROUTINE and are actually
written on relative track 21.

Processing COBOL Files on Mass Storage Devices 111

/ / JOB ME'I'!iOuu"
// OP'IION NODECK,LINK,LIST,LISTX,b:t1"l,.c."
// EXEC FCOBOL

1 IBM DOS VS COBOL

CBL {,IUO'I'L
IDENTIFICA'I'lON DIVISIOH.
PROGRAM-ID. METHODB.
ENVIRONf{..ENT DIVISION.
CONFIGURATION S:r:;CTION.
SOURCE-COMPUTER. IBM-370.
OBJLC'l-COMPUTEd. IBM-370.
INPUT-OUTPUT SBCTION.
FILE-COl'i"TROL.

REL 1. 0

SELECT D=FILE ASSIG[; TO S-iS015-DA-231Q-D-MAS'lEl{
ACCESS IS RANDOM
ACTUAL KEY IS ACT-KEY.
SELBCT C-FILE ASSIGN TO SYS007-UR-2540R-S.

DATA DIVISION.
FILE. SECTION.
~'D D-FlLE

LABEL RLCORDS ARE STANDARD.
01 D-REC.

05 PART-NUM PIC xeS).
05 NOM-ON-HAND PIC 9(4).
05 PRICE PIC 9(S)V99.
05 FILLER ~IC X(lSl).

FD C-FlLE
LABEL RECONDS ARE Ol·lITTED.

01 C-k.EC.
05 PAkT-NU.'. PIC X(S).
05 NUM-ON-HAND PIC 9(4).
05 PRICE PIC 9(S)V99.
CiS ULLF.R PIC X(61).

WORKWG-STORAGl:. SECTIO~.
77 SAVl:. PIC S9(8) COMP SYNC.
77 QUO'IIE~~'l PIC 59(8) COMP SY.IjC.
01 ACT-KEY.

02 'IRACK-ID PIC 59(S) COMP SYNC.
02 RI:;C-ID PIC xes).

(i1 ERkOR-COND.
02 F1LLER PIC 99 VALUE ZER~.
02 £RR FIC 9 VALUE ZERO.
02 FILLER PIC 9(5) VALUE ZE~O.

PP NO. 5746-CB1 C8. 40. ~3 10/0 1

Figure 32. Creating a Direct File with Relative Track Addressing usinq Method B (Part 1
of 4)

112

IBM DOS VS COBOL

PROCEDURE DIVISION.
DECLAkh'I'IV.<:.S.

REL 1. 0 PP NO. 5746-CB1

ERi<Oh-PROCEDURE SJ:.CTION. USE AFTER STANjjARD ER~OR r'kOCEDURE.
ON IJ-FILf: GIVING E~ROrt-COi~iJ.

f..fU.:.Od-ROUTINE.
EXHIBIT Nhl,ED E.RROR-COl'm. J
IF ERR = 1 GO TO SYL~ONYM-f{orJTI:'IIE. ELSE CD

DISPLAY "OTHER STANDARD E~kOR "R~C-ID
(,0 TO .c.:OJ.

SYLlGtlYI<,-ROUTIliF:.
IF 'lRACK-iLi IS LESS THAN 83~, ADD! 'l'0 'I!<ACK-Iu. GO '10

;.mITES.
BND DECLARA'liVES.

OPI':il INPUT C-FILE

OUTPU'l' D-FILE.
READS.

READ C-FILE AT I:.ND GO TO EOJ.

~OVE PART-NUM OF C-REC '10 REC-ID, SAVE. fi\
MOVE. C;J<{RESPO,WIrlG C-rtEC TO D-rtLC. }

DIVIDE. SAVB BY 829 GIVIi~G QUOTIENT RLl'~~INDEk TXbCl'---ID. \.V
WRITES.

EXHIBIT NM'JED TrtACK-ID C-Kt;;C.
WRITE D-REC Ii~vALID KEY GO TO ItNALID-K~Y.
GO '10 RBADS.

INVALID-KEY.

EOJ.

/ / LBL'l'YP i~SD (1,;1)

// l:.XJ::C LNKEDT

DISPLAY "HWALID KEY "RIC-ID.

CLOSI:. C-FILJ:. D-FILE.
STOP RUN.

08.40.53

Figur€ 32. Creating a Direct File with Relative Track Addressing Using Method B
(Part 2 of 4)

10/04/72

Processing COBOL Files on Mass storage Devices 113

IBM DOS VS COBOL REL 1. 0 PP NO. 5746-CBl 08.40.53

II ASSG~ SYS007,X'00C'
II ASSGN SYS015,X'231'
II DLBL MASTER,,99/365,DA
II EXT~Nr SYS015,111111,1,0,20,840
II EXEC

Tkl'.CK-ID 00000000 C-REC 82900000
TRACK-ID 00000001 C-REC 82900001
TRACK-ID 00000018 C-RE::: 8290001801
TRACK-ID 00000018 C-REC 8290001802
TRACK-ID 00000018 C-REC 8290001803
TRACK-ID 0(,000018 C-REC 8290001804
.TRACK-ID 00000018 C-REC 829000180S CD THACK-ID 00000018 C-REC 8290001806
TKACK-IO 00000018 C-RL:::: 8290001807
TRACK-ID 00000018 C-REC 8290001808
T({ACK-ID 00000018 C-REC 8290001809
Tt<.ACK-ID 00000018 C-REC 8290001810
TkACK-ID 00000018 C-REC 8290001811 } TkACK-ID 00000018 C-REC 8290001812
Tf(ACK-ID 00000018 C-REC 8290001813
Tt<.ACK-ID 0'0000018 C-REC 8290001814
THACK-ID 00000018 C-REC 8290001815
TRACK-ID 00000018 C-REC 8290001816
TRACK-ID 000COO18 C-REC 8290001817
TRACK-ID 00000018 C-REC 8290001818
TRACK-ID 00000018 C-REC 8290001819
TkACK-ID 00000018 C-REC 8290001820
TRACK-ID 00000018 C-REC 8290001821 CD ERROR-Calm = 00100000
TkACK-ID = 00000019 C-REC 8290001821
TRACK-ID = 00000018 C-REC 8290001822
£RHOR-COND = 00100000
TRACK-II) = 00000019 C-REC 8290001822
TRACK-ID = 00000018 C-REC 8290001823
ERkOR-CON;) = 00100000
TRACK-ID = 00000019 C-REC 8290001823
TRACK-ID = 00000018 C-REC 8290001824
ERROR-C::lrlD = 00100000
TRACK-Hi = 00000019 C-REC 8290001824

Figure 32. Creating a Direct File with Relative Track Addressing Using Method B
(Part 3 of 4)

114

10/04/7:

IBM DOS VS COBOL REL 1.0 pp NO. 5746-CB1 08.40.53

TRACK-ID = 00000018 C-REC 8290001825
ERROR-COND = 00100000
Tr<.ACK-liJ = 00000019 C-ki:C 8290001825
TrtACK-ID = 00000CJ18 C-REC 8290001826
EREoR-corm = 00100000
TRACK-ID = 00000019 C-flE.C 8290001826
TRACK-ID = 00000018 C-REC 8290001827
ERROR-Cm::O = 00100000
TKl>_CK-IlJ = 00000019 C-REC 8290001827
TRACK-ID = 00000018 C-Rl:.C 8290001828
Et'<ROit-CONC = 00100000
TRACK-ID = 00000019 C-REC 8290001828
Ti<.ACK-ID = 00000018 C-REC 8290001829
ERROR-COr~D = 00100000
Ti<ACK-ID = 00000019 C-REC 8290001829
TRACK-ID = 00000018 C-REC 8290001830
E.£<.ROR-CO,.D = 00100000 CD T"ACK-ID = 00000019 C-REC 8290001830
TRACK-IO = 00000018 C-R£C 8290001831
ERxOR-CO[\;U = 00100000
TRACl\.-li.i = 00000019 C-RSC 8290001831
TRACK-I;) = 00000018 C-xEC 8290001832
E.KROR-C:)l~:) = 00100000
TRACK-IiJ = 00000019 C-REC 8290001832
Tf{A.CK-ID = 00000018 C-REC 8290001833
E.R'WR-C:)flD = 00100000
TxA.CK-li) = 0000001<:1 C-REC 8290001833
T!<.ACK-ID = 00000010 C-REC 8290001834
i::rtROR-C.OND = 00100000
TRACK-ID = 00000019 C-REC 8290001834
TPA.CK-ID = 00000018 C-RIC 8290001835
E~RROR-CO"I[) = 00100000
TRACK-ID = 00000019 C-REC 8290001835
TRACK-ID = 0000001& C-REoC 8290001836
ERROR-COND = 00100000
T~ACK-ID .: 00000019 C-REC 8290001836

I TRACK-ID = 00000018 C-REC 8290001837
ERROR-CO:W = 00100000 CD TRACK-ID = 00COOO19 C-REC 8290001837
TRACK-ID = 00000018 C-REC 8290001838
ERROR-CONi) = 0010000('
TRACK-Ii.) = 00000019 C-REC 8290001838

Figure 32. Creating a Direct Pile with Relative Track Addressing Using Method E
{Part 4 of 4}

10/04/73

Processing COBOL Files on Mass storage Devices 115

ACTUAL TRACK ADDRESSING CONSIDERATIONS FOR
SPECIFIC DEVICES

Randomizinq for the 2311 Disk Drive

When randomizinq for the 2311 Disk
Drive, it is possible to circumvent the
discontinous binary address by coding the
randomizing formula in decimal arithmetic
and then converting the results to binary.
This can be done by setting aside a decimal
field with th~ low-order bytE reserved for
the head number, and the high-order bytes
reserved for the cylinder number. A
mathematical overflow from the head number
will now increment the cylinder number and
produce a valid address. The low-order
byte should then be converted to binary and
stored in the 8M field, and the high-order
bytes converted to binary and stored in the
CC field of the actual key field.

Randomizing to the 2311 Disk Drive
should Dresent no significant problems if
the programmer using direct organization is
completely aware that the cylinder and head
number give him a unique track number. To
illustrate, the 2311 could be thought of as
consisting of tracks numbered as follows:

Cylinder 0

Track
Numbers

--,
I 0

--f
I

--f
I

--f
I

--f
I

--f
I

--f
I

--f
I 9

Cylinder 1
--,

110
--f

1
--f

1
--f

1
--f

1
--f

1
--f

1
--f

119

Cylinder 2
--,

120
--f

1
--f

1
--f

1
--f

I
--f

1
--f

1
--t

129

If the randomizing formula resulted in
an address of cylinder 001, head 9:

Cylinder
Number

001

Head
Number

9

this would be a reference to track 19.
This fact allows the programmer to ignore
the discontinuous cylinder and head number.
If his formula resulted in an address of
0020, this would result in accessinq
cylinder 2, head 0, the location of" track
20.

116

The programmer can make another use of
this decimal track address. He may wish to
reserve the last track of each cylinder for
synonyms. If this is the case, he is in
effect redefiiling the cylinder to consist
of nine tracks rather than ten tracks. The
2311 cylinder could then be thought of as
consisting of track numbers, as follows:

Cylinder 0 Cylinder 1 Cylinder 2
--, --, --,

Track 1 0 19 118
Numbers --f --f --t

1 1 119
---f ~ -1

1 1 120
--f --f --t

1 1 1
--f --f --t

1 1 1
--f --f --t

1 I I
--f --f --t

1 I 1
--f --f --t

I 8 117 126

If the programmer randomizes to relative
track number 20, he can access it by
dividing the track address by the number of
tracks (9) in a cylinder. The quotient new
becomes the cylinder number, and the
remainder becomes the head number.

2

9) 0020
18

2

cylinder number

head number

To simplify randomizing, an algorithm
must be developed to generate a decimal
track address. This track address can then
be converted to a binary cylinder number
and head number. In addition, tracks can
be reserved by dividing the track address
by the number of tracks in a cylinder. The
same concepts will hold true for devices
such as the 2314, 3330, or 3340. For
example, an algorithm can be developed
using 20 tracks per cylinder and dividing
by the closest prime number less than 20.

Randomizing for the 2321 Data Cell

The track reference field for the 2321
Data C~ll is composed of the following
diEcontinuou~ binary address:

sub
cell cell strip cyl. head record

M B Bee H H R
L-__ ~ __ ~ ____ ~ __ ~ __________ ~ ____ ~ ____ --J

0-9 0-19 0-9 0-4 0-19

At first glance, this presents an almost
impossible randomizing task; but since each
strip includes 100 tracks that are
accessible through cylinder and head
number, the 2321 Data Cell can be
considered to consist of consecutively
numbered tracks.

Tracks Strip

a

1

9

1099 10

1999 19

10 ° ° uc:E---~ 100

199

19990(~--~ 1999

It can be seen that relative track 20 is
located on cylinder 1, head 0 of some
particular strip. Its address can be
calculated by dividing by 20.

1 = cylinder number

20 Y20
20

° = head number

Thus, relative track number 120 will be
located on strip 1, cylinder 1, head 0 of
some subcell. Note that the strip number
is given by the hundreds digit, and the
cylinder and head number are derived by
dividing the two low-order digits by 20.

The same relationship holds true for
relative track number 900. It is located
on strip 9, cylinder 0, track O. Again,
the hundreds digit gives the strip number,
and dividing the two low-ordEr digits by 20

results in a guotient and remainder of
zero.

This relationship holds true throuoh a
relative track number of 19999, which is
the number of tracks that can be contained
on one cell of a data cell array. Ey
applying the foregoing rules, an address of
subcell 19, Etrip 9, cylinder 4, head 19 is
derived.

Thus, by randomizing to a 5-digit
decimal track number, the proqrammer will
be able to access the 20,000 tracks
(40,000,000 characters) contained in a
cell.

The thousands digits would represent the
subcell number, the hundreds digit the
strip number, and the guotient and
remainder of the two low-order digits
divided by 20 would represent the cylinder
and head number. Each one of these
resulting decimal digits would then be
converted to binary and placed in the
appropriate location in the track reference
field.

There is a total of 200,000 tracks per
data cell array. To derive valid addresses
that cross cell boundaries, the programmer
should randomize to a 6-digit decimal track
address. The highest address possible
should be 199,999. To conv~rt this to a
data cell address, similar rules apply. In
this case, the programmer must divide the
three high-order digits by 20:

9 = cell

20) 199
180

19 subcell

The quotient becomes the cell number and
the remainder becomes the subcell number.
The hundreds digit is still the strip
number, and the cylinder and head number
can be derived as previously illustrated.
The resulting address is 0091994190 and
would appear in the first eight bytes of
the actual key field as follows:

sub
cell cell strip cyl.head

.--,-
M B B C C I H R R

I
0 0 9 19 9 I 4 19 C

---L.

Randomizinq to the data cell can be
accomplished by developing an algorithm to
generate decimal track addresses. The use
of the foregoing rules makes it possible to

Processing COBOL Files on Mass Storage Devices 117

convert these generated track addresses to
the appropriate discontinuous binary
address.

An indexed file is a sequential file
wi th __ i:!l_~exes that permit rapid access to
individual records as well as rapid
sequential processing. Error recovery from
a DTFIS file is described in detail in the
chapter "Advanced processing Capabilities."
An indexed file has three distinct areas:
a prime area, indexes, and an overflow
area. Each area is described in detail
below.

Unblocked Records

IKEY NUMBERI COUNT KEY DATA

1\ 1\ 1\
I I I
I I I
I , I

PRIME AREA

When the file is first created, or when
it is subsequently reorganized, records arl
written in the prime area. Until the primE
area is full, additions to the file may
also be written there. The prime area may
span multiple volumes. Note that the last
track of the prime area may not be used by
the COBOL programmer.

The records in the prime area must be
formatted with keys, and must be positionec
in key sequence. The records may be
blocked or unblocked. If records are
blocked, each logical record within the
block contains its key, and the key area
for the block contains the key of the
highest record in the block. The Disk
Operating System Virtual Storage permits
fixed-length records only. Figure 33 show~
the formats of blocked and unblocked
records on a track.

COUNT KEY DATA

I I L--Logical record (key embedded)
I
I
I ,
I
L--Eighest key on track

I
I
L--Key of logical record

Blocked Records

r-----------~i---T----------~----~~-----T------~------~--~-----------------__,

IKEY NUMBER I COUNT KEY DATA DATA DATA I
L-_________ ~ __ ~ __________ ~ ____ _L~ __ ~==~~~~~~~~~--~~--~------------------~

1\
I
I
I
I
I
I
I
I
I
I
'--Highest key on track

1\
I
I
I
I
I
I
I

1\

I
I
I
'--Logical records with embedded keys

L--Key of last logical record in block

Figure 33. Formats of Blocked and Unblocked Records

118

INDEXES

There are three possible levels of
indexes for a file with indexed
organization: a track index, a cylinder
index, and a master index. They are
created and written by the system when the
file is created or reorganized.

Track Index

This is the lowest level of index and is
always present. There is one track index
for each cylinder in the prime area. It is
always written on the first track of the
cylinder that it indexes.

The track index contains a pair of
entries for each prime data track in the
cylinder: a normal entry and an overflow
entry. The normal entry contains the home
address of the prime track and the key of
the highest record on the track. The
overflow entry contains the highest key
associated with that track and the address
of the lowest record in the overflow area.
If no overflow entry has yet been made, the
address of the lowest record in the
overflow area is the dummy entry X'FF'.

Cylinder Index

The cylinder index is a higher level of
index and is always present. Its entries
point to track indexes. There is one
cylinder index for the file. It is written
on the device specified in the APPLY
CYL-INDEX clause. If this clause is not
specified, the cylinder index is written on
the same device as the prime area.

Master Index

The master index is the highest level
index and is optional. It is used when the
cylinder index is so long that searching it
is very time consuming. It is suggested
that a master index be requested when the
cylinder index occupies more than four
tracks. (A master index consists of one
entry for each track of the cylinder
index.)

The DOSjVS System permits one level of
master index for the file and requires that
it be written immediately before the
cylinder index. If a master index is
desired, the APPLY MASTER-INDEX clause must

be specified in the source program. When
this clause is specified, the cylinder
index is placed on the same device as the
master index.

Note: The indexes are terminated by a
dummy entry containing a key composed of
all ones (bits). To avoid any possibility
of errors, the user should not specify a
key of all ones (HIGH VALUES) for any of
his records.

OVERFLOW AREA

There are two types of overflow areas:
a cylinder overflow area and an independent
overflow area. Either or both may be
specified for an indexed file. Records are
written in the overflow area(s) as
additions are made to the file.

Cylinder Overflow Area

A certain number of whole tracks are
reserved in each cylinder for overflow
records from the prime tracks in that
cylinder. The programmer may specify the
number of tracks to be reserved by means of
the APPLY eYL-OVERFLOW clause. If he
specifies ° as the number of tracks in this
clause, no cylinder overflow area is
reserved. If the clause is omitted, 20% of
each cylinder is reserved for overflow.
For the 3330, three tracks of each cylinder
will be reserved for overflow. For the
3340, two tracks of each cylinder will be
reserved for overflow. ~Jhen an ISM·1 file
has been created with the APPLY CYL-OVERFLOW
clause all FD's, which use the same file,
must specify the same number of cylinder
overflow tracks.

Independent Overflow Area

Overflow records from anywhere in the
prime area are placed in a certain number
of cylinders reserved soley for this
purpose. The size and location of the
in~ependent overflow area can be specified
if the programmer includes the proper job
control EXTENT cards. The area must,
however, be on the same mass storage device
type as the prime area.

A suggested approach is to have cylinder
overflow areas large enough to contain the
average number of overflow records caused
by additions and an independent overflow
area to be used as the cylinder overflow
areas are filled.

Processing COBOL Files on Mass Storage Devices 119

PRIME DATA AREA

i , ,
0001 1000011 ,000031

r---,
1000091
'--__ J

, i

1000101

A

I
I
1

New record----------~t

r---,
1000111
L----.J

A
I
I
I
1
I

Original record moved up------------------~

I I

0002 1000161

OVERFLOW AREA

I I

1000141

1\

I

I ,

100017!
I ,
IOOO?!:;, .-----1

r---,
1000271
L----.J

~-----Record removed from Track 0001

Figure 34. Adding a Record to a Prime Track

Adding Records to an Indexed File

A new record added to an indexed file is
placed into a location on a track in the
prime area determined by the value of its
key field. If records in the file were
placed in precise physical sequence, the
addition of a new record would require the
shifting of all records with keys higher
than that of the one inserted. However,
indexed organization allows a record to be
inserted into its proper position on a
track, with the shifting of only the
records on that track. Any records for
which there is no space on that track are
then placed in an overflow area, and become
overflow records. Overflow records are
always fixed-length, unblocked records,
formatted with keys.

As records are added to the overflow
area, they are no longer in key sequence.
The system ensures, however, that they are
always in logical sequence.

Figure 34 illustrates the addition of a
record to a prime track.

The new record (00010) is written in its
proper sequential location on the prime
track. The rest of its prime records are

120

moved up one location. The bumped record
(00014) is written in the first available
location in the overflow area. The record
is placed in the cylinder overflow area for
that cylinder, if a cylinder overflow area
exists and if there is space in it;
otherwise, the record is placed in the
independent overflow area. The first
addition to a track is always handled in
this manner. Any record that is higher
than the original highest record on the
preceding track, but lower than the
original highest record on this track, is
written on the prime track. Record 00015,
for example, would be written as the first
record on track 0002, and record 00027
would be bumped into the overflow area.

Subsequent additions are written either
on the prime track where they belong or as
part of the overflow chain from that track.
If the addition belongs between the last
prime record on a track and a previous
overflow from that track (as is the case
with record 00013), it is written in the
first available location in the overflow
area on an empty track, or on a track whose
first record has a numerically lower key.

If the addition belongs on a prime track
(as would be the case with record 00005),
it is written in its proper sequential
location on the prime track. The bumped
record (record 00011) is written in the
overflow area.

A record with a key higher than the
current highest key in the file is placed
on the last prime track containing data
records. If that track is full, the record
is placed in the overflow area.

ACCESSING AN INDEXED FILE (DTFrS)

An indexed file may be accessed both
sequentially and randomly.

ACCESSING AN INDEXED FILE ~UENTIALLY: An
indexed file may only be created
sequentially. It can also be read and
updated in the sequential access mode. The
following specifications may be made in the
source program.

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO sYsnnn-DA-l~i~~!- I
2319
3330
3340

RECORD KEY Clause
NOMINAL KEY Clause (when reading, if the

START statement is used)

FILE-LIMIT Clause
ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL
RERUN Clause
SAME Clause
APPLY WRITE-VERIFY Clause (create and

update)
APPLY CYL-OVERFLOW Clause (create)

{

MASTER-INDEX}
APPLY Clause

CYL-INDEX

RESERVE Clause

Invalid clauses:

ACCESS MODE IS RANDOM
ACTUAL KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause t
APPLY WRITE-ONLY Clause .
APPLY EXTENDED-SEARCH Clause
APPLY CORE-INDEX Clause

ACCESSING AN INDEXED FILE RANDOMLY: A
randomly-accessed indexed file may be read,
updated, or added to. The following
specifications may be made in the source
program:

ENVIRONMENT DIVISION

SELECT [OPTIONAL] file-name

ASSIGN TO SYSnnn-DA- l~i~~l -I
2319
3330
3340

ACCESS IS RANDOM
NOMINAL KEY Clause
RECORD KEY Clause

FILE LIMIT Clause
PROCESSING MODE IS SEQUENTIAL
TRACK-AREA Clause
RERUN Clause
SAME Clause
APPLY WRITE VERIFY Clause
APPLY CYL-OVERFLOW Clause
APPLY CORE-INDEX Clause

{

MASTER-INDEX}
APPLY

CYL-INDEX

Invalid clauses:

RESERVE Clause

Clause

ACCESS MODE IS SEQUENTIAL
ACTUAL KEY Clause
~ULTIPLE FILE TAPE Clause
APPLY EXTENDED-SEARCH Clause

Key Clauses

When creating an indexed file, the only
key clause required is the RECORD KEY
clause. The data-name specified in this
clause is the name of the field within the
record that contains the key. Keys must be
in ascending numerical order when creating
an indexed file.

Processing COBOL Files on Mass Storage Devices 121

If a START statement is used when
retrieving an indexed file sequentially,
the NOMINAL KEY clause is required.

When accessing an indexed file randomly,
both the NOMINAL KEY and RECORD KEY clauses
are required. When reading the file, the
data-name specified in the NOMINAL KEY
clause is the key of the record which is
being retrieved. The data-name specified
in the RECORD KEY clause is the name of the
field within the record that contains this
Key.

When adding records to an indexed file,
the data-name specified in the NOMINAL KEY
clause is the key for the record being
written and is used to determine its
physical location. The data-name specified
in the RECORD KEY clause specifies the
field in the record that contains the key.

Note: If an INVALID KEY exit is taken on a
START statement, the key value in the
NOMINAL KEY data-name should be corrected

122

and another START statement issued to
ensure correct retrieval of blocked
records.

Improving Efficiency

When processing an indexed file, the
following source language Environment
Division clauses may be used to improve
efficiency:

TRACK-AREA Clause
APPLY CORE-INDEX Clause

For additional details, see the
publication IBM DOS Full American National
Standard COfOL.

The DOS/VS Compiler supports 3540
Diskette unit file management. This device
is quite different from standard direct
access devices as it does not access data
randomly. The medium used for reading and
writing is a diskette which can be easily
mailed from one location to another.

Data can be recorded on the 3540
diskette in two ways:

1. Keypunching on the diskette via the
3740 processing device.

2. writing sequential data sets on the
diskette via the 3540 Diskette unit
attached to a System/370.

DOS/VS COBOL processing applies only to
the processing of data on the diskette by
the 3540 Diskette unit.

For the use of system files on diskette,
see DOS/VS System Management Guide.

PILE PROCESSING

File processing for the 3540 is
sequential only. Only fixed-length
physical records can reside on the
diskette. Logical blocking of records is
an available function and will be discussed
in the section entitled "Cobol Language
Considerations."

The system interfaces with the COBOL
object module through DTF'DU, (generated as
part of the object module), and DUMOD logic
modules (used to perform actual 1-0
processing). The generated DTFDU will
correspond to a DTFDU generated by the
DTFDU macro (described in DOS/VS SUE~rviEQ£
and 1-0 M~) with the exceptions
specified later in this section.

The physical considerations of the 3540
diskette include:

• The diskette is divided into character
sectors with each sector containing 128
characters.

• Each record may occupy no more than one
sector, and may be from 1 to 128
characters long.

• Each record in a file must be the same
size.

PROCESSIWG 3540 DISKETTE UNIT FILES

• Blocking factors can be only 1, 2, 13,
or 26 records.

Files may be extended to additional
diskettes if one diskette is too small.
This is done automatically by LIoes if DLBL
and EXTENT cards are provided for
additional processing. There is no user
program control to force end of volume for
this device.

File labels exist on the 3540 Diskette
for each file, but no user control or
processing of these labels is provided by
the DOS/VS system. Label management will
be handled strictly by LIOCS. The user
will only have to provide the name for the
file in the DLBL control card.

COBOL LANGUAGE CONSIDERATIONS

ENVIRONMENT DIVISION

The following format of the SFLECT
statement applies to the 3540:

Required clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO SYsnnn~if3540-S[-name]

Sort work files may not be assigned to
the 3540. A 3540 may not be a checkpoint
device.

RESERVE clause
ACCESS MODE IS SEQUENTIAL Clause
PROCESSING MODE IS SFQUENTI~L clause
RERUN ON system-name EVERY inteqer

RECORDS OF file-name
(System-name cannot specify 3540;

file-name can refer to 3540 file;
checkpoint records cannot be taken on
a diskette, but a diskette can be us~d
to control when checkpoints are
taken.)

SAME clause
FILE LIMIT clause

Invalid Clauses:

APPLY WRITE-ONLY clause (only
fixed-length records allowed)

APPLY WRITE-VERIFY clause (function not
supported)

ACCESS MODE IS RANDOM clause
ACTUAL KEY clause

Processing 3540 Diskette Unit Files 123

NOftINAL KEY clause
RECORD KEY clause
TRACK-AREA clause
ftULTIPLE FILE TAPE clause
RERUN clause (see restrictions above)
APPLY EXTENDED-SEARCH clause
APPLY CYL-OVERFLOW Clause

{
MASTER -INDEX}

APPLY clause
CYL-INDEX

APPLY CORE-INDEX clause

DATA DIVISION

The following restrictions apply to the
FD and record description for a 3540 file:

• Recording mode must be F.

• Label records must be standard.

• RECORD CONTAINS clause cannot specify
more than 128 characters, or "integer-1
to integer-2" CHARACTERS.

• The BLOCK CONTAINS clause must specify
the ~ECORDS option only. Blocking is
permitted for the most efficient usage
of the 3540. If this clause is
specified, only 1, 2, 13, or 26, will
be accepted as the blocking factor.
Any other number will cause a
diagnostic.

• In the record description, a maximum of
128 characters will be allowed for a
3540 file.

• The record description for a 3540 file
must not include any items with the
OCCURS DEPENDING ON clause, as variable
records are not allowed.

Procedure Division -- Special
Considerations

• OPEN Statement. 3540 files may be
opened for input or output only. Since
updating is not permitted for a 3540
file, OPEN 1-0 is not allowed.

• Only one 3540 file per diskette may be
open simultaneously.

• The REVERSED and NO REWIND options of
the OPEN statement are not valid for a
3540 file.

• WRITE Statement. The INVALID KEY
option may not be used for a 3540 file.
If the end of the diskette is reached
and additional diskette information has
not been supplied via additional EXTENT
control cards, the operator will be

121J

queried to either supply an EXTENT
through the console or cancel the job.

• Standard errors can be handled in a USE
AFTER STANDARD ERROR Declarative. Two
types of errors will cause control to
return to an error declarative for 3540
files:

1. Data check

2. Equipment check

If the GIVING option is specified, byte
1 will indicate a data check, and byte
2 will indicate an equipment check.

In either case, the error procedure is
used to continue processing or to close
the file. If processing continues and
the file is blocked, the remaining
records in the block after the record
causing the error may b~ lost when the
next READ or WRITE statement is
executed.

If no error declarative is specified, a
message will be issued describing the
type of error, and the job will be
canceled.

CLOSE Statement. When a CLOSE
statement is executed for a 3540 file,
the present diskette will be fed out
into the output hopper. CLOSE UNIT may
not be used as no forced end-of-volume
support is included for the 3540
Diskette unit. CLOSE NO REWIND may not
be used. The LOCK option will be
supported for 3540 files.

The compiler will generate DTFDO with
the following defaults:

1. No write protection

2. Feed = yes

3. Volume sequencing will be checked.

4. No read/write security.

Normal job control DLBL and FXTENT
statements for the 3540 are shown below.

DLBL Statement

The format of the DLBL statement is:

II DLBL filename,['file-ID'],[date],[code]

file~ -- is a unique filename of 3 to 7
characters identical to the symbolic name
of the DTF that identifies the file.
supported in the same way as for current
devices. This corresponds to the nname"
field of system-name in the SELECT
statement if specified, or to SYSnnn in the
system-name.

'file-ID' -- only the first 8 characters
will be used. Supported in the same manner
as for current devices.

date -- provides the expiration date for
the file. Supported in the same way as for
current devices.

code -- is a field indicating the type of
file label. DU for diskette unit is
supported. It is supported in the same way
as for current devices.

EXTENT Statement

The format of the EXTENT statement is:

II EXTENT [symbolic-unit],
[serial-number],[l]

symbolic unit -- indicates the symbolic
unit (SYSxxx) of the volume for which the
extent is effective. It is supported in
the same way as for current devices.

serial number -- indicates the volume
serial number of the volume for which this
extent is effective. It is supported in
the same way as for other devices. The
serial number is optional. If omitted, the
volume that is mounted is assumed to be the
correct volume.

~ -- indicates the type of extent. A
'1' indicates 'data area.' No other types
are supported.

3540 'File

The following DLBL and EXTENT statements
describe a file that resides on a 3540
diskette.

II DLBL MASTER,,75/001,DU
II EXTENT SYS015,111111,1

in the following example, the program
CREATES creates a diskette (DU) file named
SALES that is to be retained until the end
of 1975. The file comprises up to three
diskettes. The diskettes have the volume
serial numbers 111111, 111112, and 111113,
and are mounted on the drive assigned to
the symbolic device name SYS005.

II JOB EXAMPLE
II ASSGN SYS005,X'060'
II DLBL SALES,'ANNUAL',75/365,DU
II EXTENT SYS005,111111,1
II EXTENT SYS005,111112,1
II EXTENT SYS005,111113,1
II EXEC CREATE
IS

The COBOL statements which correspond to
this are:

SELECT SALES-FILE ASSIGN
TO SYS005-DA-3540-S-SALES.

PD SALES -FILE
RECORDING MODE IS F
LABEL RECORDS ARE STANDARD
RECORD CONTAINS 80 CHARACTERS.

01 DISKETTE-RECORD.
02

processing 3540 Diskette Unit Files 125

VSAM is a new access method for direct
or sequential processing of fixed and
variable length records on direct-access
devices. It has more functions, generally
better performance, better data integrity
and security, improved data organization,
and is easier to use and control than the
DOS/VS DAM and ISAM access methods.

VSAM files can be processed only by the
VSAM file processing technique. The
programmer can convert SAM and ISAM files
to VSAM files by using the method described
in the section entitled "Converting
Non-VSAM Files to VSAM Files." The
following topics related to VSAM are
discussed in this chapter:

VSAM File processing
Access Method Services
Error Handling

File Organization

The records in a VSAM file can be
organized either in logical sequence by a
key field (key-sequence) or in the physical
sequence in which they are written on the
file (entry-sequence).

A key-sequenced file has an index, like
ISAM: the records in a key-sequenced file
can be accessed by key, either randomly or
sequentially. An entry-sequenced file does
not have an index, and records can be
accessed sequentially only.

Key-Sequenced Files

Like ISAM files, key-sequenced files
are ordered according to a user-defined key
field in each record. That is, they are
ordered according to the collating sequence
of the key field in each record. Each
record has a unique value in the key field,
such as employee number or invoice number.
VSAM uses the key associated with each
record to insert a new record in the file or
to retrieve a record from the file. The
order of access can be random or sequential.
Kev-sequenced files, however, can generally
be"" processed faster than ISAM files because
VSAM has a more efficient index and does
not use chained record overflow.

VIRTUAL STORAGE ACCESS METHOD (VSAM)

Nhen a key-sequenced file is created,
certain portions can be left empty, that
is, free space can be distributed
throughout the file. This free space is
used ,.;hen inserting new records or
lengthening existing records. This
eliminates the need for overflow chains
and overflow areas; it also minimizes
data movement. Thus performance does
not degrade substantially as records
are added and the file does not have to
be reorganized as often as an ISAM file.
VSAM reclaims space when a record is
deleted or shortened, and the space
r~leased becomes free space.

The index of a key-sequenced VSM~ file
is more efficient than an ISAM index
because it generally requires less direct
access space and less updating of index
entri~s. Space is saved in three ways:
by eliminating redundant key information
(key qompression), by having fewer keys
in the index than there are records in
the file (~on-dense index), and by
blocking index records. A shorter index
requires less time to search and update.
Updating is infrequent, because index
entries are not usually modified when
records are added to or deleted from
the file.

A key-sequenced file is defined in COBOL
by specifying:

SELECT file-name ASSIGN TO
SYSnnn[-class][-device][-name)
ORGANIZATION IS INDEXED ••••
RECORD KEY IS •••

Entry-seguenced Files

Records are stored in entry-sequenced
files in the order they are presented for
inclusion on the file (that is, their
entry-sequence), and without respect to the
contents of the records. No keys are
recognized and, consequently, no indexes

vtrtual Storage Access Method (VSAM) 127

are built. The order of records is fixed;
they are not moved. Thus, free space is
not distributed throughout the file and new
records are placed at the end. Records
cannot be shortened, deleted, or
lengthened. Since there is no index, the
user must access the file sequentially (in
the order the records were written).

An entry-sequenced file is defined in
COBOL by specifying:

SELECT file-name ASSIGN TO
SYSnnn[-class][-device]-AS[-name]
ORGANIZATION IS SEQUENTIAL ••••

Data Organization

The data organization of ISAM is based
on the physical units of disk cylinder and
disk track, while the data organization of
VSAM is based on logical units called
control intervals and control areas. A
control interval is the unit of
direct-access storage that is transferred
to and from virtual storage. It can
contain one or more records in one or more
blocks. Each entry in the lowest index
level of a key-sequenced VSA~ file points
to a control interval. Free space in a
kev-seauenced file is distributed in terms
of the percent of total space. A per
centage of each control interval can be
free space and some control intervals can
be entirely free space. Indexes are also
organized in control intervals. Each
contains a single index record which can
have manv index entries. A control area
is a group of control intervals. VSAM
data organization provides for device
independence by reducing the programmer's
concern about the physical characteristics
of the data and the index. Figure 35
illustrates VSAM data and index structure.

i2B

Data Access

Key sequenced files can be accessed
either sequentially, or directly by key.
The kev used can be either the full kev or
a generic key (any front part of the full
key) •

The COBOL user can retrieve, add,
update or delete records from a VSAM file
by means of the READ, WRITE, REWRITE and
DELETE verbs. Also, by means of the START
verb he can position himself to anv record
in the file and begin sequential retrieval
from that record. -

VSAM Catalog

VSAM keeps central control over the
creation, access, and deletion of files and
over the management of direct-access
storage space allocated to those files.
This is done by keeping information on file
and space characteristics in one place, the
VSAM catalog. The catalog, which is unique
to VSA~, makes it easier to (1) keep track
of files and available direct-access
space, (2) write job control statements to
create and process VSAM files, and (3) move
VSAM files to other DOS/VS systems or to
OS/VS systems. There can be more than one
VSAM catalog. However, only one catalog
at a time can be connected to the system.
Each catalog can keep track of VS~1 files
on many volumes; it is not necessary to
mount a volume to determine whether or
not it has space available for a VSAM file.

Figure 35 shows the structure of the
data and index in a VSN1 file. It
does not represent accurate propor
tions in terms of the number of
records in a control interval, etc.

1) ~ew records are physically
lnserted where they 10gica11v
belong with only local record
movement required. Thus, ne"v
records are retrieved in the
same fashion as are old records.

In the example, if the user wanted to
add a record whose record key was 1048
it logically belongs between records '
102l.J· and 1068. This is where VSM~
would insert the record physically.

2) Since the index pointers are
non-dense (one for each control
interval rather than one for
each record), the insertion of
the record requires no change The record with key 1068 would be

moved over in the control interval
taking up free space, to make room
for the new record. This movement
of.r~cords is Cone in core before any
wrltlng takes place.

This example illustrates several
points:

to the index. .

3) Record movement for insertion
deletion and updating takes '
place in core, before any I/O
takes place, thus improving
data integrity.

Index
Records

1-----_--- or----

Figure 35. VSAM Data Organization

I __ """ __ -1. __ _

Data records
collected into
control intervals

Note: The numbers
represent RECORD KEY
values for the records

Virtual Storage Access Method (VSAM) 129

File and Volume Portability

A siqnificant feature of VSM1 is that
files ca~ be moved from one DOS/VS system
to another o~ to an OS/VS system. This
is possible because VSAM data format is
identical under both DOS/VS and OS/VS.

Service Proarams

VSAM has an extensive service program
package, called Access Method Services,
which can be used to:

• Define, print, copy, or
reorganize VSAM files.

• Add, alter, delete, or print catalog
entries.

• Convert ISAM and SAM files to VSAM
files.

• Export and import files from one
system to another.

Device Support

VSAM files can be written on the 2314,
3330, and 3340 devices.

Through COBOL, access to the file can be
restricted by use of the PASSWORD clause in
the SELECT statement.

Error processing

VSAM provides exits to a user-supplied
routine to handle I/O and/or logical errors
or exeception conditions. This is done in
COBOL via the USE AFTER STANDARD ERROR
declarative and the INVALID KEY and AT END
clauses. A STATUS KEY may be specified,
and the details of the condition
determined.

VSAM Messages

Like other access methods, VSAM issues
messages to the operator, if for example,
the incorrect volume is mounted, etc.
These messages are described in DOSIVS
Messages. VSAM Access Method Services also
issues messages to the programmer which are
documented in DOS/VS Access Method
Services. COBOL issues VSAM messages to

130

the operator and/or programmer. These are
listed in "Appendix I: Diagnostic
Messages. n

For more detail on VSAM, refer to DOS/VS
Access Method Services.

ACCESS METHOD SERVICES

Access Method Services is a utility
program. A number of user-entered
commands, either modal or functional,
initiate the Access Method Services
programs. The functional commands
invoke the desired Access Method
Services function while the modal
commands control the sequence of exe
cution of the functional commands. In
this chapter, only certain commands
and parameters are discussed. For
complete details on the use of
commands see DOS/VS Utilities Access
Method Services.

Functional Commands

There are nine functional commands:
DEFINE, ALTER, DELETE, LISTCAT, REPRO,
PREJT, IMPORT, EXPORT, and VERIFY. The
commands DEFINE, ALTER, and DE~ETE are
used to create, modify, and remove VSAM
catalogs and files. LISTCAT is used to
list the contents of a VSAM catalog.
The REPRO and PRINT commands reproduce
files either as new files or as printed
output. The IMPORT and EXPORT commands
provide for transfers of files from one
system to another. The VERIFY command
provides a file recovery service fo~
VSAM files by ensuring that the end of
the file indicated in the catalog is
the same as the actual file end.

The DEFINE Command

All VSM1 files must be cataloged in a
VSAM catalog. This catalog must be defined
and allocated by Access Method Services. Thi!
is the first step which must be taken by a
user who plans to use VSAM.

The DEFINE command is used to define a
VSAM object. In VSkM terminology, an object
is either a VSM1 catalog, a VSAM data space,
or a VSAM file.

VSAM files must be cataloged in a VSAM
catalog. Non-VSAM files may also be cata
loged in a VSAM catalog. All VSAM files
are introduced to the system through the
DEFINE command.

There are two steps in the creation of
an object: defining the object in the
catalog, and generating the contents of
that object. The DEFINE command simply
makes an entry in the catalog, it does not
generate any content.

Specification of the DEFINE Command

---,
Format

DEFINE object parameters

The definable objects are:

• MASTERCATALOG -- specifies that the
VSAa master catalog is to be defined.

• SPACE specifies that a VSAM data
space is to be defined.

• CLUSTER -- specifies that a file is to
be defined.

For each file there is an associated
valid parameter list.

Defining a VSAM Master Catalog: DEFINE
MASTERCATALOG

I
I

The DEFINE MASTERCATALOG command must
be used to set up the master catalog. It
is the first Access Method Services com
mand used since without a master catalog
other objects cannot be defined. Defining
a master catalog is somewhat different
from defining a file. When the user de
fines a file he need not necessarily allo
cate space as part of the define operation.
However, the process of defining catalog
always involves the allocation of space
for that catalog. Entries for both the
master catalog itself and the volume con
taining the data space automatically
created are placed in the master catalog.

The following is an example of defining
a VSAM master catalog.

III JOB
III DLBL
III EXTENT
1// EXEC

DEFINE A VSAM CATALOG I
IJSYSCT,'VSAMCAT'"VSAM I
SYSCAT,321940,1,,100,250 I
IDCAMS,SIZE=26K I

1 DEFINE
I
I
I

MASTERCATALOG(NAME(VSAMCAT) - I
VOLUME (321940) TP~CKS (250) - I
FILE (IJSYSCT) UPDATEPW(SECRET)-I
READPW(NOSECRET» I

11*
1/&
I

Figure 36. Defining a VSAM Master Catalog

The DLBL statement must be used to
specify the filename and the code which
identifies VSAM. The filename must be
specified as IJSYSCT.

I
I

The logical unit in the EXTENT statement
must be SYSCAT. The user must decide which
volumes and which extents will contain the
catalog. Note that the VOLUMES parameter
and the space allocation parameter
(CYLINDERS, TRACKS, or RECORDS) must be
included in the DEFINE command, and must
agree with the information in the EXTENT
statement. If the CYLINDERS parameter is
used, each extent must begin on a cylinder
boundary.

The following parameters were used in
the above example:

NAME (VSAMCAT)
The name of the VSAM master catalog
is VSAMCAT. All future references to
the catalog are made using this name.

VOLUME (321940)
The volume serial number on which the
catalog is to reside is 321940.

TRACKS (250)
The number of tracks allocated to the
catalog is 250. This must agree with
the information on the EXTENT card.

Note that every key-sequenced file
requires three catalog entries: one
each for the cluster, data component,
and index component. Every
entry-sequenced file requires two
~atalog entries: one for the cluster
and one for the data component.

FILE (IJSYSCT)
This parameter identifies the
filename of the DLBL statement
that specifies the device and
volume for allocation. The
filename must be specified as
IJSYSCT.

Virtual Storage Access Method (VSAM) 131

UPDATEPW (SECRET)
The update level password is SECRET.
This is an optional parameter.
However, if any file which is
cataloged in the VSN1 catalog is to
be password protected, the catalog
itself must also be password
protected.

READPW (NOSECRET)
The read level password is NOSECRET.
This is an optional parameter. If
specified, all reading of the catalog
requires this password.

There are 4 levels of password pro
tection for a VSAM catalog or file; They
are: master level (this is the highest
level of protection), the CI level (this is
a special case and should not be used with
COBOL), the update level and the read level
(the lowest level of protection).

If password protection is not speci
fied at a higher level, but is specified at
a lower level, then the lower level pass
word becomes the password for the higher
levels which are not specified. If
password protection is not specified for
the lowest level (read level) then there is
no password protection for that lowest
level or for the higher levels which
are not specified.

So in the example, SECRET is the mas
ter ·level password as well as the update
level password, since the master level
password was not specified.

The update level password of the
catalog is required in order to change
the content of the catalog, for example to
DEFINE or DELETE a file in that catalog.

Defining a VSAM Data Space: DEFINE SPACE

VSN4 data space is space which is
owned and managed by VSAM. When space on a
volume is defined in a VSAM catalog then
that volume is said to be owned by that
VSill~ catalog. This means that no other
VSN1 catalog can own space on that volume.
It does not mean that there can be no
non-VSAH space on the volume. .

VSAM data space can conta1n the
records for one file or for many files,
but all the files occupying a VSAM data
space must be cataloged in the same VSAM
catalog as is the space. .,

Since the process of def1n1ng VSAM
data space necessarily requires the allo
cation of space, JCL is required for ex
tent information.

Figure 37 is an example of defining a
VSAM data space:

I

1// JOB
1// ASSGN
1// DIEI
1// EXTENT
1// EXEC

DEFINE A VSAM DATA SPAC~
SYS001,X'130'
VFILENM",VSAM
SYS001,321942,1,,800,400
IDCAMS,SIZE=26K

1 DEFINE
1

SPACE (FILE (VFILENM)
TRACKS (400)
VOLUMES(321942» I

1 CATALOG (VSAMCAT/SECRET)
1/*
1/& L-__ ~

Figure 37. Defining a VSAM Data Space

The DLBL statement must be used to
specify the filename and the code which
identifies VSAM files. The filename
(VFILENM) is the same as the FILE parameter
and connects the job control statements to
the DEFINE command. The EXTENT statement
must be used to specify the symbolic unit
name, the volume serial number, and the
space parameters. The VOLUMES parameter
and the space allocation parameter
(CYLINDERS, TRACKS, or RECORDS) must be
included in the DEFINE command, and must
aqree with the information in the EXTENT
statements. If the CYLINDERS parameter is
used, each extent must begin on a cylinder
boundary.

The following parameters were used in
Figure 37.

FILE (VFILENM)
This required parameter identifies the
filename of a DLBL statement that
specifies the devices and volumes to
be used for space allocation.

TRACKS (40D)
This parameter specifies the amount
of space to be allocated in terms of
tracks. The number used to specify
the tracks to be allocated to the
data space must agree with the
information in the extent statements.

VOLUMES (321942)
This required parameter specifies the
volumes to contain the data spaces.
If more than one volume is specified,
each volume will contain a data space
of the same size. Note that the
VOLUMES parameter must agree with the
information in the EXTENT statements.
The volume serial number of the
volume(s) containing the data space(s}
is SUbstituted for volser.

CATALOG (VSAMCAT/SECRET)
This is a required parameter if the
master catalog is password protected.
It specifies the name of the catalog
which is to own the space, and the
update password for that catalog.

Definino a VSAM File: DEFINE CLUSTER

DEFINE CLUSTER is used to define all
attributes of all VSAM files and to catalog
the files in a VSAM catalog.

Note: This command cannot be used to add
records to the VSAM file.

VSAM files can be sub-allocated or
unique. A sub-allocated file is one which
is defined using space from one or more
existing data spaces. For such a file, DLBL
and EXTENT statements are not required.
Label processing is not performed since
information needed to set up the file is in
the DEFINE command, and information about
the data spaces to be used for the file is
in the VSAM catalog.

A unique VSAH file is one which
occupies data space uniquely allocated
to it, not to be shared by other files.
The data and the index of a key
sequenced unique file must occupy
separate data spaces; each requires
DLBL and EXTENT statements.

Figure 38 is an example of defining a
suballocated key-sequenced file.

i

1// JOB
1// EXEC

DEFINE
IDCAMS,SIZE=26K
CLUSTER {NAME (MSTRFILE)
RECORDS (100,10)

DEFINE

igure 38.

VOLU:1E (231942)
RECORDSIZE{40 55)

FREES PACE (10 5)
SUBALLOCATION
INDEXED

KEYS (8 2) UPDATEPW(WRITEFL) -
ATTEMPTS (0) }
CATALOG (VSAMCAT/SECRET)

Defining a Key-Sequenced
Suballocated VSAM File

The following parameters are used in
Figure 38.

• NAME (HSTRFILE) -- This parameter is
required and specifies the name to be
given to the file being defined.

• VOLUME (231942) -- This required
parameter is used to specify the
volume on which the defined object is
to be placed.

• RECORDS (primary [secondary]) -- This
parameter specifies the amount of
space to be suballocated in terms of
the number of records the space is to
hold.

• RECORDSIZE (size1 size2) -- This
required parameter specifies the length
attributes of the logical records in
the file. The size specified can be
from 1 to 32,761. size1 is the average
length of all logical records. size2
is the maximum length of any logical
record.

• FREESPACE (percent 1 [percent 2]) -
This parameter specifies the percen
tage of space that is to be reserved
during initial and subsequent alloca
tions. percent 1 specifies the amount
of unused space to be left in each
control interval. percent 2 specifies
the amount of unused control intervals
be left in each control area.

Note: This parameter is valid for
key-sequenced files only.

• UNIOUE/SUBALLOCATION -- This parameter
specifies whether the object 1S
allocated a space of its own, or
whether a portion of an already defined
VSAM data ~pace is suballocated to the
object.

UNIQUE
specifies that the object being
defined is allocated a space of its
own. An object with the UNIQUE
attribute appears in the VTOC of
its volume under its own name.

SUBALLOCATION
specifies that a portion of an
already defined VSAM data space is
suballocated to the object. Objects
with the SUBALLOCATION attribute do
not appear in the VTOC. Only the
name of the data space that
contains the object appears there.
If the object has the SUBALLOCATION
attribute, there must be a VSAM
data space defined on the volume on
which the object is being defined.

Virtual Storage Access Method (VSAM) 133

• INDEXEDjNONINDEXFD This parameter
specifies the type of cluster being
defined.

INDEXED
specifies that the cluster being
defined is for a key-sequenced
file. This is the default.

NONINDEXED
specifies that the cluster being
defined is for an entry-seguenced
file.

• KEYS (length position) -- This
parameter specifies the length and the
starting position of the key field
w;+hin ~~rh lnq;r~l r~cord, {position
;-i;-~h;-iir;iJ~~~e i~ the lo~ical
record.} The key field with this
specified length, and starting in the
specified position, is in all logical
records in a key-seguenced file. The
sum of length and position must be
equal to or less than the length of the
l~gical record.

• UPDATEPW (password) -- This parameter
specifies the update level password
for the file being defined. The
update level password permits input
and output operations (READ, START,
DELETE, WRITE, REWRITE) against the
logical records of the file.

Note that this file has no read-level
protection and that its master level
password is WRITEFL.

ATTEMPTS (count)
specifies the maximum number of
times the operator can try to enter
the password in response to a
prompting message. Count can be
any number from 0 through 7. The
value 0 prevents any password
prompting.

CATALOG (catalog name/password)
specifies the catalog and its update
level password that is to contain the
entries for the cluster.

File Processinq Techniques

The COBOL user has three different file
processing techniques available to him;
seguential, random, and a combination of
sequential and random. The technigue to be
used is specified through the ACCESS clause
of the SELECT statement.

134

Entry-Sequenced File Processing: An
entry-sequenced file can only be processed
seguentially; therefore, since the default
is sequential, the ACCESS clause need not
be specified.

Key-Sequenced File Processing: A
key-sequenced file can be processed
sequentially, randomly, or both
sequentially and randomly. To process
sequentially, ACCESS IS SEQUENTIAL is
specified. To process randomly, ACCESS IS
RANDOM is specified. To process both
sequentially and randomly, ACCESS IS
DYNAMIC is specified.

ACCESS IS DYNAMIC provides the greatest
flexibility since all the capabilities of
both seguential and random processing are
supported. Processing can be switched
from sequential to random and vice-versa,
as many times as desired.

Current Record Pointer

The current record pointer (CRP), a
conceptual pointer, is applicable only to
key-sequenced files. The current record
pointer indicates the next record to be
accessed by a seguential request; the CRP
has no meaning for random processing. The
CRP is affected only by the OPEN, START and
READ statements, it is not used or affected
by the WRITE, REWRITE, or DELETE
statements. The following are examples of
how the CRP is affected by various COBOL
statements.

Example 1:

Assuming a file has records with keys
from 1 to 10, if the sequence of I/O
operations on the file with ACCESS IS
DYNAMIC and opened 1-0 is:

MOVE 7 TO RECORD-KEY
READ filename
H0VE 114 TO RECORD-KEY
WRITE record-name
READ f i lena.me NEXT RECORD

the READ NEXT reads record 8 if the
prev~ous READ was successful. If the
prev10us READ was not successful, the
STATUS KEY will be set to 94 (No Current
Record Pointer) when the READ NEXT is
attempted. This occurs independently of
the successful intervening WRITE.

Generally, the last request on a file
which establishes a CRP (OPEN, READ, or
START) must have been successful in order
for a sequential read to be successful.

Example 2:

In this example, ACCESS IS SEQUENTIAL is
specified; therefore, records are retrieved
in ascending key sequence starting at the
position indicated by the CRP. (Assume
this file has records with keys from 1 to
10.)

OPEN INPUT filename

MOVE 10 TO RECORD-KEY

START filename

READ filename

MOVE 5 TO RECORD-KEY

START filename

READ filename

READ filename

(CRP is at first
record on the
file)

(CRP is now at
record 10)

(record 10 is
read)

(CRP is now at
record 5)

(record 5 is read
CRP is set to
record 6)

(record 6 is read
CRP,is set to
record 7)

Note that the CRP can be changed randomly
through the use of the START statement.
All reading is then done sequentially from
that point. In this example, if the START
request for record key 5 had failed with
no record found (File Status=23), the
three READ statements following would have
failed with no current record pointer
(File Status=94).

Example 3:

In this example ACCESS IS DYNAMIC is
specified. Therefore, records are accessed
randomly if READ is specified and
sequentially if READ NEXT is specified.
(Assume this file has records with keys
from 1 to 44.)

OPEN INPUT (CRP is set to first
record on file)

MOVE 5 TO RECORD-KEY

READ filename

READ filename
NEXT RECORD
(or indent a couple
of spaces)

Move 41 TO PECORD-KEY

READ filename
NEXT RECORD
(or indent a couple
of spa.ces)

(record 5 is read, CRP
is set to record 6)

(record 6 is read, CRP
is set to record 7)

(record 7 is read, eRP
is set to record 8)

The last READ---NEXT RECORD does not read
record 41 even though the record key field
contained 41. This is true because a
sequential read does not use the contents
of the record key to determine which record
to read, it uses the position of CRP as
established by a previous request. If the
last READ had been a random read (no NEXT)
then record 41 would have been read.

Example 4:

In this updating example, ACCESS IS
DYNAMIC is specified; the REWRITE statement
does not affect the CRP. (Assume this file
has records with keys from 1 to 44.)

OPEN 1-0

HOVE 10 TO RECORD-KEY

(eRP is at first
record on file)

READ filename (record 10 is read,

MOVE 44 TO RECORD-KEY

REWRITE record-name

READ filename
NEXT RECORD

MOVE 74 TO RECORD-KEY

REWRITE

READ NEXT

CRP is set at record
11)

(record 44 is updated,
CRP is set at record 11)

(record 11 is read, CRP
is set at record 12)

(fails, record not
found in this file)

(record 12 is read,
CRP is set at record 13)

Note that although the last REWRITE failed,
the following READ NEXT was successful.

Virtual Storage Access Kethod (VSAK) 135

Table 11. File status Values and Error Handling

I No USE Declarative I USE Declarative I
r---- i I I I
I INo AT END or I INo AT END or I

IFirst CharacterlAT END or INVALIDIINVALID KEY IAT END or INVALID IINVALID KEY I
lof FILE STATUS IKEY clause I clause IKEY clause I clause I
I I , , I I
, 0 IReturn to next IReturn to next !Return to next IReturn to next I
I I sentence I sentence I sentence I sentence I
, I I I I I
, 1 IReturn to AT END IReturn to next IReturn to AT END IEeturn to next I
, I address !sentence I address Isentence after USEI
I I , I I declarative is ,
I I I I lexecuted,
r- I I I I ,
, 2 IReturn to INVALIDIReturn to next IReturn to INVALID IReturn to next i

,KEY address I sentence IKEY address Isentence after USEI
I I I ,declarative is I
I I I , executed I

~------------~I~--------------+I--------------~I--------------I~--------------1
3 IWrite message andlWrite message IReturn to next IReturn to next I

Ireturn to next land return to Isentence after USElsentence after USEI
I sentence Inext sentence Ideclarative is Ideclarative is I
I I ,executed I executed I
I I I I I

9 (Return to next IReturn to next IReturn to next IReturn to next I
Isentence I sentence Isentence after USElsentence after USEI
I , Ideclarative is ,declarative is I
I I lexecuted lexecuted I

ERROR HANDLING

All errors on a VSAM file, whether logic
errors caused by the COBOL programmer (for
example, reading an unopened file), or 1-0
errors on the external storage media,
return control to the COBOL program. The
contents of PILE STATUS indicate the status
of the last request on the file. It is
strongly recommended that all files have a
file status associated with them, and· that
the COBOL programmer check the contents of
PILE STATUS after each request.

Table 11 describes the actions taken for
all the combinations of AT END, INVALID
KEY, and error declaratives for each value
of FILE STATUS.

Note: Return is always to NEXT STATEMENT
unless the request that caused the error
contained an AT END or INVALID KEY clause.
By omitting both the AT END and INVALID KEY
clauses and the USE ERROR/EXCEPTION for the
file, any type of error for the file can be
intercepted by checking the PILE STATUS
data name following each I/O reguest
(including OPEN and CLOSE) for the file.
This will simplify the exception-condition
handling in the COBOL program.

136

Record Formats for VSAM Piles

Por VSAM files, processing is
independent of whether or not the records
on a file are fixed-length (that is, all
records in the file are the same length)
or of variable-length format.

Thus for example, the considerations
which are discussed in "Record Pormats Por
Non-VSAM Piles" generally do not apply_

Hmvever, the following points should
be considered:

• Por record handling purposes, the
records are considered to be
fixed-length when

1. All the records in the file are the
same size (or there is only one
record description) •

2. No record contains an OCCURS clause
with the DEPENDING ON option.

Otherwise, the records are
considered to be variable length.

• For variable length records, without
OCCURS DEPENDING ON clauses, the
following applies:

When a READ INTO statement is used, the
size of the longest record for the file
is moved to the input area. Coding
considerations for records with the
OCCURS DEPENDING ON option are
discussed in "Table Handling
Considerations."

Initial Loading of Records into a File

A non-loaded file is one which has
been defined but has never contained
any records. An unloaded file is one
\vhich has contained records but from
which all records have been deleted.
A loaded file is one which contains
records.

Initial loading is the process of
writing records into a non-loaded file.

It is strongly recorr.mended that initial
loading of records into a key-sequenced
file be done sequentially. If the initial
loading is done randomly, performance wi~l
be slower, not only for the initial loading
process, but also for all processing done
on that file later on. Random loading of
records does not reserve free space in the
file; therefore, the file will be
dynamically reorganized when any subsequent
records are inserted.

The following table illustrates which OPEN
options are allowed for each file state.

" FILE :
',STATE I

, I
, I

" I
, I OPEN

OPTION " ~ON-LOADED UNLOADED LOADED
, I ------------1-----------------------------

INPUT

OUTPUT

1-0

EXTEND

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

NO

YES

NO

YES

YES YES

NO NO

YES YES

YES YES

______ ..J

From this table it can be seen that opening
a file with the OUTPUT option is valid only
when the file is new (has never contained
any records). Also, opening a file with
the INPUT or 1-0 option is valid only when
the file is not new. If such a file
contains no records (is in the unloaded
state) the first READ request results in
an AT END condition (if ACCESS IS
SEQUENTIAL) or an INVALID KEY condition
(if ACCESS IS RANDOM or DYNAMIC).

File Status Initialization

The value of uZ· in Status Key 1 is
reserved for the programmer's use. This
permits his determining whether a request
was made against his file. For example, if
he initializes Status Key 1 to the value Z
before attempting to OPEN his file he can
then determine if his program actually
attempted the OPEN by checking the contents
of Status Key 1. If it is Z, the OPEN
statement was not executed; if it is a
value other than Zn the statement was
executed. This same technique can be used
for any request against the file (CLOSE,
READ, etc.) to determine if such a request
was attempted in his program.

Opening a VSAM File

If any of these rules are violated, the
file is not opened and the FILE STATUS key
is set to the appropriate value. Refer to
Table 12 for FILE STATUS key values at open
time. Table 13 describes file status at
action request time.

A loaded file can be opened EXTEND,
INPUT, or 1-0. If such a file is
opened EXTEND and it is a key-sequenced
file, the first record to be added must
have its record key higher than the
hiqhest record key on the file when
it-was opened. If it is not higher, a
logic error results, and the FILE
STATUS key is equal to 92. For an
entry-sequenced file, the records are
added after the last record.

Since the USE declarative is executed
only for files that are in open status, the
only OPEN error which can cause the USE
DECLARATIVE to be invoked is trying to open
a file which is already in the open status.
This is a logic error and causes file
status to be set to 92. The open status of
the file is not affected. However, if the
file is defined as ACCESS IS DYNAMIC, the
illegal OPEN statement causes the current
record pointer to be undefined.

Virtual Storage Access Method (VSAM) 137

Table 12. File Status Key Values at OPEN
r-------------T---,
I File status I Probable Cause I
~-------------+---1
I 30 I 1-0 error I
~-------------+--------------------~--~
I 91 I Incorrect password. Either an incorrect password was specified or a I
I I required password was not specified. If a file is opened OUTPUT, I
I I EXTEND, or 1-0, the UPDATE password is required. l
~-------------+---~
I 92 I Logic error caused by opening an opened file, or by opening a locked I
I I file. I
~-------------+---~
I 93 I Resource not available. Caused by insufficient virtual storage w or the I
I , file is not available for the type of processing requested. 1 I
~-------------+---~
I 95 I Invalid or incomplete information in the ASSGN card, or the file was notl
I I found in the catalog. 2 i
~-------------+---~
I 96 I Missing DLBL card I
~-------------~---~
11 Indicates that the file was already opened by someone else and opening it fer this I
I request would violate the share options specified for the file. I
12FILE STATUS 95 can also be caused by the following: l
I I
I - an attempt to open a key-sequenced file as if it were an entry-sequenced file or I
I vice versa. I
I I
I - an attempt to open a non-loaded file with the INPUT or 1-0 option. I
I I
I - an attempt to open OUTPUT a file not in the non-loaded state. I
I I
I - record key length or displacement specification that does not match what was I
I specified when the file was defined. I l ___ J

Table 13. File Status at Action Request Time
r-------------------T---,
I File Status I Probable Cause I
~-------------------+------------------~--~

00 I Successful
I

10 I A sequential READ statement encountered EOF.
I

21 I A request was issued to change the record key during execution of
I a REWRITE statement, or a sequence error occurred for a
I sequentially-accessed key-sequenced file.
I

22 I A request was issued to add a record whose record key was a
I duplicate of a record already on the file.

key-sequenced I
23 file only I Either a READ statement was issued for a record whose record key

I does not match any record on the file, or a REWRITE or DELETE
I statement was issued for a record not on the file.
I

24 I A request was issued to write a record beyond the
I externally-defined boundaries of the file.
I

30 I An 1-0 error occurred.
I

34 I A request was issued to write a record beycnd the
I externally-defined boundaries of an entry-sequenced file.
I

92 I A logic error occurred. (See Note below.)
J

94 I No current record pointer for a sequential READ statement.
-------------------~---------------------------~---------------------------------------

138

Note: File Status
the following:

92 can be caused by

• Any reguest issued against an unopened
file.

• Any request issued which is not allowed
for the OPEN option; for example,
issuing a READ statement for a file
opened OUTPUT, or a REWRITE statement
for a file opened INPUT.

• Any attempt to write or rewrite a
record longer than the maximum record
size specified when the file was
defined.

• Any action taken on a file after EOF
has been encountered (entry-sequenced
or key-sequenced file). If EOF is
encountered on a key-sequenced file, a
START or a READ statement can be issued
to reset the CRP and continue
processing. For example, a
key-sequenced file with ACCESS IS
SEQUENTIAL specified:

OPEN
READ
READ
READ
START
READ

successful
EOF encountered
logic error
reset CRP
successful

or, a key-sequenced file with ACCESS IS
DYNAMIC specified:

OPEN
READ NEXT
READ NEXT
READ NEXT
READ
READ NEXT

successful
EOl"'encountered
logic error
reset CRP (random READ)
successful

• An attempt to rewrite when ACCESS IS
SEQUENTIAL has been specified if the
preceding action was not a successful
READ operation.

• An attempt to delete when ACCESS IS
SEQUENTIAL was specified if the
preceding action was not a successful
READ operation (key-sequenced file
only).

WRITING RECORDS INTO A VSAK FILE

The COBOL WRITE statement is used to add
a record to a file. (Existing records in
the file are not replaced with this
statement.) The record to be written must
not be larger than the maximum record size
specified when the file was defined.

Entry-Sequenced File Considerations for the
WRITE Statement

Entry-sequenced file records are
written sequentially. If the file
is not opened OUTPUT or EXTEND, FILE
STATUS is set to 92 and the record
is not written.

Key-Seguenced File Considerations for the
WRITE Statement

When ACCESS IS SEQUENTIAL is specified,
the file must be opened OUTPUT or EXTEND.
If not, the WRITE statement is not executed
and FILE STATUS is set to 92.

The records must be written in ascending
key sequence. If the file is opened
EXTEND, the record keys of the records to
be added must be higher than the highest
record key on the file when it was opened.
The following example shows the action and
resultant FILE STATUS when a file
containing records whose keys are 2, 4, 6,
8, and 10 is opened EXTEND. (Refer to
Table 13 explanations of FILE STATUS values
at action request time.)

ACTION FILE STATUS
\'7RITE (record key 8) 92
WRITE (record key 9) 92
WRITE (record key 12) 00
WRITE (record key 11) 21
WRITE (record key 6) 21

Note that the first two 'V7RITE requests
result in a logic error (FILE STATUS=~2)
because their key values are not higher
than the highest key on the file when
it was opened. Once a successful WRITE
has taken place all subsequent WRITE
requests are handled as though the file
were opened OUTPUT. This is why the
WRITE of record key 6 causes a sequence
error, not a logic error.

If .many records are to be added to a
file, it is strongly recommended that
sequential access be used. Performance is
improved both for the process of adding the
records and for later retrieval of them.

When ACCESS IS RANDOM or ACCESS IS
DYNAMIC is specified, the file must be
opened 1-0 or OUTPUT. If not, the WRITE
statement is not executed and FILE STATUS
is set to 92. The records can be written
in any order.

Virtual Storage Access Method (VSAM) 139

REWRITING RECORDS ON A VSAM FILE

The COBOL REWRITE statement is used to
replace existing records on the file.

Entry-Sequenced File Considerations for the
REWRITE Statement

For successful REWRITE statement
execution, the file must be opened 1-0.
The record to be rewritten must first be
read by the COBOL program, then updated by
the REWRITE statement. (The length of the
record being rewritten cannot be changed.)
If there was no preceding READ statement,
or if the preceding READ statement was not
successful (EOF was reached), the REWRITE
statement is not executed and FILE STATUS
is set to 92.

Key-Sequenced File Considerations for the
REWRITE statement

For successful REWRITE statement
execution, the file must be opened 1-0.
The length of the record can be changed,
but the value of the record key cannot be
changed.

When ACCESS IS SEQUENTIAL is specified,
the record to be rewritten must first be
read by the COBOL program, then updated by
the REWRITE statement. The REWRITE
statement is not successful if the
preceding statement for the file was not a
successful READ of this record. This
causes file status to be set to 92.

When ACCESS IS RAHDO~ or ACCESS IS
DYNAMIC is specified, the record does not
need to be read by the COBOL program. The
record is updated by moving its key to
the record key field and doing the REWRITE.

READING RECORDS ON A VSAM FILE

The COBOL READ statement is used to
access records on a file. If the file is
not opened INPUT or 1-0, the READ statement
is not executed and FILE STATUS is set to
92.

Entry-Sequenced File Considerations for the
READ Statement

Records are read sequentially, in the
order in which they vere written.

Key-Sequenced File Considerations for the
READ Statement

When ACCESS IS SEQUENTIAL is specified,
records are read sequentially, beginning at
the position of the current record pointer.
If the current record pointer is undefined
when the READ is executed, FILE STATUS is
set to 94. The following example shows

.... " ... v

successful and unsuccessful READ and START
executions. (Assume this file has records
with keys 1 through 8 and 20.)

OPEN 1-0 CRP at first record on
filename file

READ (first record on file is
file name read)

r-.~OVE 10 TO
RECORD-KEY

START (fails-no record found)
file name

READ (fails-no CRP)
file name

r.l0VE 20 TO
RECORD-KEY

START
file name

READ
file name

(successful)

(record 20 is read)

When ACCESS IS RANDOM is specified,
records are read in the order specified by
the program. To read records whose record
key is 10, move 10 to the RECORD KEY field
in the record area and issue a READ .•
statement.

When ACCESS IS DYNA~IC is specified,
records can be read randomly or
sequentially. The READ NEXT statement is
used for sequential accessing, and the READ
statement is used for random accessing.

READ NEXT Statement

Records are read sequentially beginning
at the position of the current record
pointer. If the current record pointer is
not defined when the READ NEXT statement is
issued, FILE STATUS is set to 94 as a result
of the READ. The current record pointer is
considered undefined if the preceding START
or READ statement was not successful.

For details on the effect of COBOL
statements on the position on the current
record pointer, refer to the section
entitled "Current Record Pointer."

~FAD statement

The READ statement reads records
randomly using the value placed in the
record key field.

aSING THE START VERB

The START statement is only valid for
key-sequenced files but not when ACCESS IS
RANDOM is specified or when the file is
opentd OUTPUT or EXTEND.

In some of the preceding examples, the
START verb was used to position the CRP.
Then the READ (for ACCESS IS SEQUENTIAL)
and READ NEXT (for sequential processing
when ACCESS IS DYNAMIC) retrieves the
record pointed to by the CRP as established
by the START.

Example:

05 RECORD-KEY.
10 GEN11.

15 GEN12 PIC 99.
15 GEN13 PIC 99.

10 GEN14 PIC9.

In this example, GEN12, GEN11, or
RECORD-KEY could be used as the data-name
in the "KEY IS relational data-name" option
of the START statement. The lengths would
be 2, 4, and 5 respectively. GEN13 and
GEN14 could not be used as they are not in
the leftmost part of RECORD-KEY.

Assume that the value of RECORD-KEY is
01472:

• START filename KEY = GEN11 would
position the CRP to the first record on
the file whose key has 0147 as the
first 4 characters.

• START file-name KEY> GEN12 would
position the CRP to the first record in
the file whose key has the first two
characters greater than 01.

DELETE Statement

The DELETE is valid only for a
key-sequenced Pile. The same
considerations discussed under
"Key-Sequenced File Considerations for the
REWRITE Statement" apply to the DELETE
statement.

COBOL Language Usage With VSAM

The COBOL language statements which are
directly related to VSAM processing are in
the section "DOS/VS COBOL Considerations"
in the publication IBM DOS Full American
National Standard COBOL. The following
paragraphs are intended only to highlight
and summarize the basic language statements
used in writing a VSAM-file:processing
COBOL program.

A COBOL programmer can use VSN1 in three
basic wavs: to create a file, to retrieve
a file, and to update a file. However,
prior to processing a VSAM file, it is an
absolute necessity that the previously
discussed Access Method Services functions
be performed. Most significant to the
COBOL programmer is whether the file is
defined as an entry-sequenced file or as a
key-sequenced file.

Creating a VSAM File

The minimum COBOL language statements
required to create a VSAM file are
summarized in Table 14.

Table 14. COBOL Statements for Creating a
VSAM File

r-----------~--------------~----------_,

I I I
I Entry-Seguenced I Key-Seguenced I
I File I I File I

I I I I
I Environment I SELECT I SELECT I
I Division IASSIGN IASSIGN I
I I IORGANIZATION I
I I I IS INDEXED I
I I IRECORD KEY I
I I I I
IData IFD entry IFD entry I
I Division ILABEL RECORDS ILABEL RECORDS I
I I , I
I Procedure IOPEN OUTPUT ,OPEN OUTPUT I
I Division I or ,or I
I IOPEN EXTEND ,OPEN EXTEND ,
I I WRITE I WR ITF ,
I ICLOSE I CLOSE I

Tne following discussion illustrates the
steps wnich must be taken to create an
entry-sequenced file. Assume the VSAM
catalog and VSAM data space have been
created as previously illustrated. The
next thing a user must do is define the
entry in the catalog for the VSAM file.

/ / JOB DEFINE FILE
II EXEC IDCAMS,SIZE=100K

/*

DEFINE CLUSTER (UAME (TRANFILE)
VOLUME(321942) RECORDS(50 5}
RECORDSIZE(80 80) READPW(R0104) -
UPDATEPW(W0104) ATTEMPTS (0)
NONINDEXED SUBALLOCATION)

CATALOG (VSM1:CAT/SECRET)

I

Virtual Storage Access Method (VSAM) 141

The meaning of the parameters is:

NAlV1E
(TRANFILE)

VOLUME
(321942)

RECORDS
(50 5)

RECORDSIZE
(80 80)

READPW
(R() 1 (Hl'
'\ - .. - • " I I

UPDATEPW
(W0104)

ATTEMPTS (0)

NON INDEXED

SUBALLOCATION

CATALOG
(VSAl'1CAT/
SECRET)

This is the data set name.

This is the volume on which
the space for the data set
resides.

Primary allocation is for
50 records, secondary
allocation is for 5 records.

The average and maximum
record size is 80 characters.

The password R0104 must be
r"I"""'''''''''''': _...::I .L _ _____ 1'_ - ~. ~

",u,.t:-'.t:-'..L..L<:::u. \...U up~u "CI1e I~J.e

with the INPUT optio~

The password W0104 must be
supplied to open the file
with the OUTPUT, EXTEND or
1-0 option.

The operator is not to be
prompted for the password
when the file is opened.

The file is an entry
sequenced file.

Space for this file is to
be suballocated from exist
ing VSAM data space on the
volume.

The name of the catalog into
~hich this file is cataloged
~s VSAMCAT and its update
password is SECRET.

Note: When the user gains update access
to the file (by supplying the update level
of the password) he has also gained read
access. In general, when a user gains
access to a file at a given level of
protection, he has gained access to that
file for all lower levels. This means that
the above file could be opened INPUT by
supplying the update level of the password.
However, it could not be opened OUTPUT,
EXTEND or 1-0 by supplying the read level
password.

;42

The COBOL program to access such a file
would include the following statements.

FILE-CONTROL.

DATA
FILE
FD

01

SELECT VSAMSEQ
ASSIGN TO SYS010-AS-TESTFL
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL
PASSWORD IS VSAMPW
FILE STATUS IS STATKE~ ,

DIVISIONI
SECTION.
VSAMSEQ

LABEL RECORDS
VSAMREC.

ARE OMITTED.

05
as FIELD2

PICTURE X(a).
PICTURE X(72).

WORKING-STORAGE SECTION.
77 STATKEY
77 VSAMPW

PROCEDURE DIVISION.
BUILD-PASSWORD.

PICTURE 99.
PICTURE XeS).

PERFORM PASSWORD-BUILDER.
PERFORM PASSWORD-SCRAMBLER.

OPEN OUTPUT VSAMSEQ.
IF STATKEY NOT = a

GO TO ERROR-HANDLER.
BUILD-A-RECORD.

WRITE VSAMREC.
IF STATKEY NOT = a

GO TO ERROR-HANDLER.

GO TO BUILD-A-RECORD.

In this sample program the routines
PASSWORD-BUILDER and PASSWORD-SCRAMBLER
construct the update level password so
that the file can be opened OUTPUT. These
routines can be written in such a way
that they are difficult to follow, thus
improving security.

Jote that the FILE-STATUS is checked
lfter each request on the fi~e7 Thi~
Lnsures that unexpected condltlons wlll
)e detected.

rhe JCL needed to execute the program is

II JOB
II ASSGN
II DLBL
II EXTENT
II EXEC

Example 2:

SYS010 X'130'
TESTFILE,'TRANFILE' "VSAM
SYS010,321942
program-name,SIZE=nnnk

This example shows the creation.of a
COBOL key-sequenced VSA~ file. ThlS
program performs the same function as
example 1 except that now a key-sequenced
file is being created. The records in the
file "INREC" are in ascending key order.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
'FILE-CONTROL.

SELECT INREC
ASSIGN TO SYS005-UR-2540R-CARDIN.

SELECT OUTREC
ASSIGN TO SYS010-0UTMAST
ORGANIZATION IS INDEXED
RECORD KEY IS ARG-1
FILE STATUS IS CHK.

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE OMITTED

DATA RECORD IS INHASTER
01 INMASTER PIC X(80}.
FD OUTREC LABEL RECORDS ARF STANDARD

DATA RECORD IS OUTMASTER.
01 OUTMASTFR.

05 FILLER PIC x.
05 ARG-1 PIC xxx.
05 REM PIC X(76).

WORKING-STORAGE SECTION.
77 CHK PIC xx.

PROCEDURE DIVISION.
PARA1.

OPEN INPUT INREC OUTPUT OUTREC.
IF CHK IS NOT = "00" GO TO CBKRTN.

PARA2.
READ IHREC INTO OUTMASTER

AT END GO TO PARA4.
PARA3.

WRITE OUTMASTER.
IF CHK IS NOT = "00" GO TO CHKRTN.
GO TO PARA2.

PARA4.
CLOSE INREC OUTREC.
TF CRK IS NOT = "00" GO TO CBKRTN.

FINIT.
STOP RUN.

CHKRTN.
DISPLAY "ERROR. STATUS KEY VALUE

ISft CRK
GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This routine
can determine the exact cause of the error
by checking the Status Key. Once the cause
is determined, instructions can be issued
according to the user's desired response to
each type of error.

Retrieving a VSAM File

The mlnlmum COBOL language statements
required to retrieve a VSAM file are
summarized in Table 15.

Table 15. COBOL Statements for Retrieving
a VSAM File

I I I
I Entry-Seguencedl Key-Seguencedl
I File I File I

, I I ,
IEnvironmentlSBLECT ISELECT I
I Division IASSIGN IASSIGN I
, , 10RGANIZATION I
I , I IS INDEXED ,
I , IRECORD KEY I
I I I I
IData IFD entry IFD entry ,
I Division ILABEL RECORDS ILABEL RECORDS I
I I I f
,Procedure 10PEN INPUT ,OPEN INPUT I
I Division IREAD ••• IREAD I
I I AT END I I
I ICLOSE ICLOSE I

I I

Virtual Storage Access Method (VSAM) 143

The following examples show the
retrieval of records from VSAM files.

Example 3:

This example shows the retrieval of
records from the entry-se~uenced file
created in example 1. The records are then
printed.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION.
FILE-CONTROL

SELECT INREC
ASSIGN TO SYS010-AS-INMAST
FILE STATUS IS CHK.
SELECT PREC
ASSIGN TO SYS005-UR-1403-S-PRNTR

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE STANDARD

DATA RECORD IS INMASTER.
01 INMASTER PIC X (80) •
FD PREC LABEL RECORDS ARE OMITTED

DATA RECORD IS POUT.
01 POUT PIC X (80) •
WORKING-STORAGE SECTION.
77 CHK PIC XX.
PROCEDURE DIVISION.
PARA1.

OPEN INPUT INREC OUTPUT PREC.
IF CHK IS NOT = "00" GO TO CHKRTN.

PARA2.
READ IHREC INTO POUT AT END GO TO

PARA4.
IF CHK IS NOT "00" GO TO CHKRTN

PARA3.
WRITE POUT.
GO TO PARA2.

PARA4.
CLOSE OUTREC PREC.
IF CHK IS NOT = "00" GO TO CHKRTN.

FINIT.
STOP RUN.

CHKRTN.
DISPLAY 'ERROR. STATUS KEY VALUE

IS' CHK.
GO TO FINI'!'.

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This routine
can determine the exact cause of the error
by checking the Status Key. Once the cause
is determined, instructions can be issued
according to the user's desired response to
each type of error.

144

Example 4:

This example shows the retrieval of
records from the key-sequenced file creatE
in example 2. Note that in the Procedure
Division there is a switch from seguentia:
processing to random processing; this is
permitted since ACCESS IS DYNAMIC is
specified in the ENVIRONMENT Division.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INREC
ASSIGN TO SYS010-INMAST
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC

RECORD KEY IS ARG-l
FILE STATUS IS CHK.

SELECT PREC
ASSIGN TO SYS005-UR-1403-S-PRINTR

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE STANDARD

DATA RECORD IS INMASTER.
01 INMASTER.

05 FILLER PIC X.
05 ARG-l PIC XXX.
05 ARG-2 PIC XX.
05 ARG-3 PIC XX.
05 FILLER PIC X(72).

FD PREC LABEL RECORDS ARE OMITTED
~ATA RECORD IS POUT.

01 POUT PIC X(80).
WORKING-STORAGE SECTION.
77 CHK PIC XX.
PROCEDURE DIVISION.
PARA1.

OPEN INPUT INREC OUTPUT PREC.
IF CHK IS NOT = "00" GO TO CHKRTN.

PARA2.
MOVE "003" TO ARG-l.
START INREC.

PARA3.
READ INREC NEXT RECORD AT END GO TO

PARA4.
IF CHK IS NOT = "00" GO TO CHKRTN.
IF ARG-2 IS = "02" GO TO PARA4.
IF ARG-3 IS NOT = "73" GO TO PARA3.
WRITE POUT FROM INMASTER.
GO TO PARA3.

PARA4.
MOVE "101" TO ARG-l.
READ IHREC INVALID KEY GO TO CHKRTN.
WRITE POUT FROM INMASTER.
MOVE "103" TO ARG-l.
READ INREC INVALID KEY GO TO CHKRTN.
WRITE POUT FROM INMASTER.

PARA5.
CLOSE INREC PREC.

IF CHK lS NOT = "00" GO TO CHKRTN.
FINIT.

STOP RUN.
CHKRTN.

DISPLAY 'ERROR. STATUS KEY VALUE
IS' CHK.

GO TO FINIT.

Note that in this example any status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This routine
can determine the exact cause of the error
by checking the Status Key. Once the cause
is determined, instructions can be issued
according to the user's desired response to
each type of error.

Job Control Language for a VSAM File

JCL is simplified for VSAM since all
VSAM files must be cataloged through Access
Method Services.

The JCL to execute the program in
example 1 is

II JOB
II ASSGN
II DLBL
II EXTENT
II EXEC

SYS010,X'233'
OUT~AST,'PAYFILE'"VSAM
SYS010,VSAHVOL
EXAMPLE,SIZE=50K

The volume on which the VSAM file was
defined is mounted at address 233, the
volume ID is VSAMVOL, and the file was
given the name PAYFILE when it was defined.
The SIZE parameter is required on the
EXEC card for VSAM programs.

Converting Non-VSAM Files to VSAM Files

ISAM files can be converted to VSAH
files so that they may be processed by a
COBOL program using VSAM. The conversion
is done through Access Method Services.

Essentially, the conversion process
consists of defining a VSAM file as the
target for the file being converted. Then
through the appropriate JCL 'and the REPRO
command, the conversion is accomplished.

For a complete description of the
conversion process, see DOS/yS utilities
VSAM Access Method Services, and DOS/VS
Data Management Guide.

Using ISAM Programs to Process VSAM Files

Once the file is converted the
programmer can process the new VSA~ file
with his old IS AM program by converting his
ISAM JeL to VSAMJCL. For more details on
this procedure see DOS/yS Data Management
Guide.

Virtual Storage Access Method (VSAM) 144.1

The following topics are discussed
within this chapter:

COBOL VSAM Control Blocks

DTF Tables

Error Recovery for Non-VSAM Files

Volume and File Label Handling

COBOL VSAM CONTROL BLOCKS

The compiler generates a File
Information Block (FIB) from information in

DETAILED FILE PROCESSING CAPABILITIES

the Environment Division (SELEC~, RERUN,
and SAME statements) and the Data Division
(FD and associated records). The File
Control Block (FCB) is generated
dynamically at execution time by the VSAM
library subroutines. ~he user may wish to
refer to fields in these blocks for
debugging. The format of the VSAM control
block (Access Method Control Block -- ACP)
is not given here, as the knowledge of its
contents is not needed by the COBOL user.

Detailed File Processing Capabilities 145

CONTROL BLOCKS FOR VSAM

The following two control blocks are required to process input/output requests for
VSAN files.

VSAM FILE INFORMATION BLOCK (FIB)

The file information block, a portion of the completed object module, is used at
execution time by the ILBDINTO, ILBDVOCO, and ILBDVIOO COBOL library subroutines for
processing input/output verbs used with VSAM files. The FIB is built by phase 21.

Fixed Portion:

Displacement No. of
Hex Decimal Field Bytes DescriEtion
-0- 0 IFIBID 1 FIB identification code: X'I'

1 1 IFIBLVL 1 FIB level number
2 2 INAMED 7 External name
9 9 INAMEDB 1 External name
A 10 1 Reserved
B 11 IORG 1 ORGANIZATION

Code:
Equate Bit

Bits Name settings Meaning
0-7 IORGVPS 1000 1000 VSAM ADDRESSED

SEQUENTIAL
IORGVIX 0100 1000 VSAM INDEXED

C 12 IACCESS 1 ACCESS MODE

Code:
Equate Bit

Bits Name Settings Meaning
0-7 IACCSEQ 1000 0000 SEQUENTIAL

IACCRAN 0100 0000 RANDOM
IACCDYN 0010 0000 DYNAMIC

D 13 1 Reserved

E 14 ISWl 1 Miscellaneous switches

Code:
Equate Bit

Bits Name Settings Meaning
0-7 ISOPTNL 1000 0000 OPTIONAL specified

ISSAMREC 0010 0000 SAME RECORD AREA
specified

F 15 1 Reserved

10 16 6 Reserved

16 22 IRECLEN 2 Number of bytes in longest 01-entry
18 24 IRECDBL 2 Displacement in TGT of record's first base locator cell
lA 26 IRECNBL 1 Number of base locators for RECORD AREA
lB 27 1 Res'erved
lC 28 ISTATDBL 2 Displacement in TGT of base locator for STATUS data-narre
lE 30 ISTATDDN 2 Displacement from base locator of STATUS data-name
20 32 ISTATLDN 2 Length of STATUS data-name
22 34 1 Reserved
23 35 IKEYNO 1 Number of entries in key list

146

24 ~6 IKEYFN'IL L Length of each entry in key list
26 38 IPSwISW 1 Miscellaneous switches
27 39 IPSWNO 1 Number of entries in password list
28 40 IPSWENTL L Length of each entry in password list
2A 42 14 Reserved
38 56 I:nSCAD 4 Address in variable length portion of FIB for

miscellaneous clauses
3C 60 ILAEELAD 4 Reserved
40 64 IKBYLSTA 4 Address of first key list entry
44 68 IPSwLSTA 4 Address of first password list entry
48 72 16 Reserved

variable Length Portion:

Supplementary information for miscellaneous clauses (one for each clause) :

Displacement
Hex Decimal -0 --0-

2

6
8

2

6
b

Field
IMSwl

IF-ERUNI

IRERUNN

No. of
Bytes

2

4

2
8

DeFcription
Switch bytes

Code:

Bits
0-7
8-15

Equate
!~
IMRREOV

Bit
Settinas
10000000

!1eaning
RERON at end of volume
Reserved

RERUN integer (field contains zeros if RERUN not
specified)
Slack bytes
External-name of RERUN clause

Key List Entry: (oDe per user-defined key--RECORD/ALTERNATE/RELATIVE)

Di~placement
:-rex Decimal
-0- --0-

2
4

Password

0

1
2
4

1
2
4

0

1
2
4

List

Field
KEYSW

IKl:YLDN
lKl:;YDBL
IKEYDDN

Entry:

IPSWDIXN

IPSWDLDN
IPswDDBL
IPSWDDDN

No. of
Evtes
--1-

1
2
2

(one

1
2
2

per

Des,£riDtion
Miscellaneous switches

Code:

Meani!l.9, Bit~
0-7

Equate
!~
IKEYCOMP

Bit
Settings
1000 0000 Key is USAGE CO~P (binary)

Length of key data-name
Displacement of key data-name's locator in TGT
Data-name displacement from locator

password)

Associated index number
0 =: none
1 = primary
Length of password data-name
Displacement of password data-name's locator in
Data-name displacement from locator

TGT

Detailed File Processing Capabilities 147

I

VSAM FILE CONTROL BLOCK (FCB)

Th~ VSAM File Control Block is created by the ILBD!NTO COBOL library subroutine. It
is used by the ILBDVIOO and ILBDVOCO subroutines to interface with the VSAM system
control subroutines

Displacement No. of
He! Decimal FielQ.. !!Yies

0 ---0- FCBID l'
1 1 FCBLVL 1
2 2 FOPENOPT 4
6 6 FCLOSOP'!' 4
A 10 2
C 12 FCOBRTN 4

10 16 FUSERR 4
14 20 FUSELIST 4
18 24 6
lE 30 FRECKEY 1
11" 31 FADVANC 1
20 32 FENDINV 4
24 36 12
30 48 FOPENOPS 4

34 S2 FCLOSOPS 4

38 56 FSW-l 4

145

Description
FCB identification code: 'F'
FCB level number
Save area for OPEN options
Save area for CLOSE options
Reserved
Address of COEOL transmitter routine
Address of USE ••• ERROR declarative
Address of USE declarative Exit List
Reserved
Number of RECORD KEY
Reserved
Return address from INVALID KEY, AT END, or end-of-page
Reserved for compilation-dependent fields
Options for VSAM OPEN verb

Code:

Equate
Bits Name
0-7- FOPIN

FOPOUT
FOPIO
FOP EXT

8-15 Reserved
16-23 FOPUERR

24-31 Reserved

VSAM CLOSE options

Code:
Equate
~ame
FCLLOCK

8-31 Reserved

Bit
Settin~
1000 0000
0100 0000
0010 0000
0001 0000

1000 0000

Bit
Settinas
0001 0000

Miscellaneous switches

Code:
Equate Bit

Bits ~amg settings
0-7- FSOPEN 1000 0000

F'SLOCKFD 0100 0000
FSOPTNL 0010 0000
FSOKACT 0001 0000

FSEOF 0000 1000

FSVCORE: 0000 0100

8-31

Meanilli!
INPUT
OUTPUT
1-0
EXTEND

USE ••• ERROR
address in

Meaning
LOCK

Meaning

declarative
FUSERR cell

File is open
File is closed with lock
Optional file not present
Successful action has
occurred since open
Sequential read has
encountered end-of-file
Main storage to process
this open has been
acquired
Reserved

3C

40
44
48
4A
4C

50
54
58
5C
60
62

63

60

64
68
72
74
76

80
84
88
92
96
98

99

FTRSTMT

FSYSCBAL
FSYSCBLL
FSYSCBNO
FKEYLEN
FRECCNT

FFIBAD
FWORKAD
FRECA
FSAMRECA
F'STATKEY
FLASTREQ

4

4
4
2
2
4

4
4
4
4
2
1

13

Transmission statement switches

Code:

Equate
Bits !~
0-7 FTREAD

FTWRITE
FTREWRT
FTSTART
FTDELET

8-15 FTINVKEY
FTATEND
FTNEXT
FTKEY

16-23 FTSRCHGT
FTSRCHEQ
FTSRCHGE

24-31 Reserved

Bit
Settin£,2
0000 0100
0000 1000
0000 1100
0001 0000
0001 0100
1000 0000
0100 0000
0000 0010
0000 0001
1000 0000
0100 0000
0010 0000

Meaning§.
READ statement
WRITE statement
REWRITE statement
START
DELETE statement
INVALID KI:Y
AT END
NEXT
KEY
GREATER THAN
EQUAL TO
NOT LESS THAN

Address of system control blocks address list
Address of system control blocks lengths list
Number of system control blocks (DTF, DCB, ACB)
Length of KEY data-name
Record count for checkpoint subroutine, if RERUN
specified
Address of File Information Block (FIE)
Add~ess of system-dependent work area
Address of current record area
Address of SAME RECORD AREA
STATUS KEY work area
Last 1/0 statement

Code:

Bits
0-7-

Equate
!!~
FLASTRD
FLASTWRT
FLASTRWT
FLASTSTR
FLASTDLT
FLASTOPN
FLASTCLO

Reserved

Bit
Settinqs
0000 0100
0000 1000
0000 1100
0001 0000
0001 0100
0001 1000
0001 1100

Me a niill!§
READ statement
WRITE statement
REWRITE statement
START statement
DELETE statement
OPEN statement
CLOSE statement

Detailed File Processing Capabilities 149

DTF TABLES

Whenever COBOL imperative-statements
(READ, WRITE, REWRITE, etc.) are used in a
program to control the input and/or output
of records in a file, that file must be
defined by a DTF. A DTF is created by the
compiler for each file opened in a COBOL
program from information specified in the
Environment Division, FD entry, and
input/output statements in the source
program. The DTF for each file is part of
the object module that is generated by the
compiler. It describes the characteristics
of the logical file, indicates the type of
processing to be used for the file, and
specifies the storage areas and routines
used for the file.

The DTF's generated for the permissible
combinations of device type and COBOL file
processing technique are as follows:

150

DTFCD Card reader, punch -
organization and access
sequential

DTFPR Printer -- organization and
access sequential

DTFMT Tape -- organization and access
sequential

DTFSD Mass storage device -
organization and access
sequential

DTFDA Mass storage device -
organization direct, access
seguential or random

DTFIS Mass storage device -
organization indexed, access
sequential or random

DTFDU 3540 diskette -- organization and
access sequential

Because of their limited interest fnr
the COBOL programmer, the contents and
location of the fields of each of the DTF
types are not discussed in this
publication. However, there are certain
fields which immediately precede the
storage area allocated for the DTF which
are pertinent. These fields are provided
on the listing in hexadecimal if an
abnormal termination occurs and the SYMDMP
option is in effect. The SYMDMP option is
described in detail in the chapter
"Symbolic Debugging Features." Fields
preceding the DTF are described below.

For ma~netic tape files (DTFMT) or
sequentially organized files on mass
storage devices (DTFSD), a 26-byte Pre-DTF
is reserved in front of the DTF. The
fields of the Pre-DTF are shown in Table
16. If any option is not specified, the
field will contain binary zeros.

When actual track addressing is used for
files with direct organization and random
access (DTFDA), a variable-length Pre-DTF
is reserved. The fields of the Pre-DTF are
shown in Table 17. If any option is not
specified, the field will contain binary
zeros.

When relative track addressing is used
for files with direct organization and
random access (DTFDA), a variable-length
Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 18. If any
option is not specified, the field will
contain binary zeros.

Table 16. Fields Preceding DTFMT and DTFSD
Ii'

12 bytesl Length of nonstandard label, if present I
I I I
11 byte I Number of reels (as specified in the ASSIGN clause) when file is opened 1 I
~ I ,
11 byte I Number of reels remaining (i.e., file not completely read) 1 I
~ I ,
12 bytesl Maximum record lenqth if records are variable, blocked and APPLY WRITE-ONLY isl
1 I not speci~ied. I
~ --rl--~,
I 1 REEL I
14 bytesl Address of label declarative with BEGINNING option I
I I UNIT I
~ I ,
1 I REEL I
14 bytesl Address of label declarative with ENDING option I
I 1 UNIT I
t I ,
14 bytesl Address of label declarative with ENDING FILE option I
~ I I
14 bytesl Address of label declarative with BEGINNING FILE option I
I- I I
11 ~yte I Switch -- FF if closed WITH LOCK; otherwise, the switch is used as shown in I
I I Table 17 I
1--- -rl --- ---------i
13 bytesl Address of USE AFTER STANDARD ERROR declarative I
~ ~I---.---------------------_i,

~ DTFMT/DTFSD ~
1 1 ,
1 1 For INPUT files with nonstandard labels only. L __ ~ ____ ~

Table 17. Fields Preceding DTFDA -- ACCESS IS RANDOM -- Actual Track Addressing
.--
19-263 1 I
Ibytes I ACTUAL KEyl I
I I ,
18 bytesl SEEK Address 2 I
I I ,
12 bytesl Error bytes 3 1
I I ,
14 bytesl Address of file extent information I
I I ,
14 bytesl Address of label declarative with ENDING FILE option ,
~ I ,
14 bytesl Address of label declarative with BEGINNING PILE option I
~ I ,
11 byte I Switch -- FF i£ closed WITH LOCK; otherwise the switch is used as shown in I
I 1 Table 17 I
~ I ,
13 bytesl Address of USE AFTER STANDARD ERROR declarative I
, I

~ DTFDA ~
I--
11 ACTUAL KEY specified in last executed WRITE statement
12 In the form MBECCHBR
13 This area is reserved by the Supervisor and assigned the name ERRBYTE. For a
I complete discussion, refer to the publication DOS/VS Supervisor and I/O Macros,
I Order No. GC24-5037. L--___ ~

Detailed File Processing Capabilities 151

Table 18. Fields Preceding DTFDA -- ACCESS IS RANDOM -- Relative Track Addressing
I

15-258 I 1
Ibytes IACTUAL KEyl 1
I- 1 ,
14 byteslSEEK address 2 I
I- 1 ,
13 byteslLast extent used 3 1
I I I
11 byte INot used I
, I ,
12 byteslError bytes~ 1
t 1 I
11 byte IIndex to last extent used in the Disk Extent Table 1
~ 1 ,
13 bytesl~ddress of Disk Extent Table in the DTF 1
t---f- I
j4 bytesjAddress of label declarative with ENDING fiLE option 1
t------~--~I
14 byteslAddress of label declarative with BEGINNING FILE option 1
• I ,
11 byte ISwitch -- FF if closed WITH LOCK; otherwise the switch is used as shown in I
I ITable 17 1

I 1 I
13 byteslAddress of USE AFTER STANDARD ERROR declarative I
~-----~---- ---.--------------------~

~I ~) DTFDA ~

1
J--
tlACTUAL KEY specified in the last executed WRITE statement
12 In the form TTTR
13 In the form TTT
I~This area is reserved by the DOS/VS Supervisor and assigned the name ERRBYTE. For c
I complete discussion, refer to the publication DOS/VS Supervisor and I/O Macros.

152

When actual track addressing is used for
files with direct organization and
sequential access (DTFDA), a 31-byte
Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 19. If any
option is not specified, the field will
contain binary zeros.

When relative track addressing is used
for files with direct organization and
sequential access (DTFDA), a 31-byte

Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 20. If any
option is not specified, the field will
contain binary zeros.

For files whose organization is indexed,
eight bytes are reserved preceding the DTP,
as shown in Table 21. The fields preceding
the DTFDU for the 3540 are shown in Table
22.

Table 19. Fields Preceding DTFDA -- ACCESS IS SEQUENTIAL -- Actual Track Addressing
J i
18 byteslSEEK address 1 I
I I ,
15 bytesiIDLOC2 I
I- I I
12 byteslError bytes 3 I
, I 1
14 byteslAddress of file extent information I
I- I I
14 bytes I Address of label declarative with ENDING FILE option 1
, I I
14 byteslAddress of label declarative with BEGINNING FILE option I
I~-----+I---~
11 byte ISwitch -- FF if closed WITH LOCK; otherwise the switch is used as shown in 1
1 ITable 17 I
rl------rl--~
13 bytesIAdd~es~ of USE AFTER STANDARD ERROR declarative 1
I ,

1 DTFDA ~
1 I
I I
11 In the form MBBCCHHR I
12Address (returned by the system) of next record in the form CCHHR 1
13 This area is reserved by the DOS/VS Supervisor and assigned the name ERRBYTE. For a I
I complete discussion, refer to the publication DOS/VS Supervisor and I/O Macros. 1

Detailed File Processing Capabilities 153

Table 20. Fields Preceding DTFDA -- ACCESS IS SEQUENTIAL -- Relative Track Addressing , i

14 byteslSEEK address 1

I I
13 byteslLast extent used 2

I I
11 byte INot used
I I
14 bytesiIDLOC3
I 1
11 byte INot used
I 1
12 byteslError bytes"
I I
11 byte IIndex to the last extent used in the Disk Extent Table
1 1
13 byteslAddress of Disk Extent Table in the DTF 1
iii

14 byteslAddress of label declarative with ENDING FILE option I
I 1 1
14 byteslAddress of label declarative with BEGINNING FILE option 1
I 1 I
11 byte ISwitch -- FF if closed with LOCK; otherwise the switch is used as shown in 1
1 ITable 17 I
~------~I--~I
13 byteslAddress of USE AFTER STANDARD ERROR declarative I
, I

~ DTPDA ~
1
I
IIIn the form TTTR
12 In the form TTT
13Address (returned by the system) of the next record in the form TTTR
I"This area is reserved by the DOS/VS Supervisor and assigned the name ERRBYTE. For a
1 complete discussion, refer to the publication DOS/yS Superviso~nd I/O~££Q&. ,

Table 21. Fields Preceding DTFIS
i i

12 bytes I Unused
1 I
12 byteslDisplacement of record key within record
I 1
11 byte ISwitch -- F1 if closed WITH LOCK; otherwise the switch is used as shown in
1 ITable 17
I 1
13 byteslAddress of USE AFTER STANDARD ERROR declarative ,
~ DTPIS

154

I
----t

1
I ,

Table ~2. Fields preceding DTFDU
r--------r---~
14 byteslUnused
~ I
11 byte IDTP switch -- FF if closed with LOCK
I I
13 byteslAddress of USE AFTER STANDARD ERROR declarative
~--~

I

(DTFDU

Some files can be opened several
different ways in one COBOL program.

For DTFCD and DTFPR, only one DTF will
be generated for each file.

For DTFMT, a maximum of three DIP's may
be needed -- one each for OPEN INPUT r OPEN
INPUT REVERSED, and OPEN OUTPUT.

For DT~SDr a maximum of three DTP's may
be needed -- one each for OPEN INPUT r OPEN
OUTPUT, and OPEN 1-0 statements.

For DIFIS and DTFDAr only one DTP is
needed.

WhEn used, this switch provides
communication between the executing program
and its input/output subroutines at
execution time. The entire byte may be set
to X'FF' to indicate that the file was
closed ~ITh LOCK and cannot be reopened.
Otherwise the switch is used as shown in
Table 23.

ERROR RECOVERY POR NON-YSAM FILES

COEOL allows the programmer to handle
input/output errors through 1) the INVALID
KEY clause for certain source language
statements, and 2) the USE AFTER STANDARD
ERROh declarative sentence.

Input/output errors caused by the
program can be recovered from directly by
the procedure specified in the INVALID KEY
clause. That is, when the system
d~termines that an invalid key condition
exists, control is returned to the

programmer at the imperative-statement
specified in the INVALID KEY clause. An
invalid key condition can occur on files
with direct or indexed organization and on
sequentially organized disk files. The
errors that cause an invalid key condition
are shown in Table 24.

Table 23. Meaning of Pre-DTF Switch
i

I Bit I Meaning, if ON
I I
I 0 ITurned
I \output
I I DTF' is
I IOUTFUT
I I

ON the first time a DTFSD
file is opened. The entire
saved for subsequent OPEN
statements.

I

~

I 1 ITurned ON when DTFDA or DTFSD
I lare opened 1-0.
I I

filesl
I
I

1 2 IThis bit is ON to indicate
I Ibeginning of volume user label
1 Iprocessing. The bit is set OFF
I Iwhen a file is opened to indicate
1 Ito the user label processing
1 Isubroutine (ILBDUSLO) that
I Ibeginning-of-file user labels are
I Ito be processed. That subroutine
I Isets the bit ON after beginning-
1 lof-file processing to indicate that
I lall subseauent calls for this
I Isubroutine are for beginning-of-
I (volume user label processing.
I- I ,
I 3 IFor output files with variable- I
I Ilength blocked records, this bit isl
I Iturned OFF when a file is opened I
I land ON for all WRITE's after the 1
1 Ifirst. I
I 1 I
I 4 ITurned ON for spanned record I
I (processing on a DTFDA file. I
I I ,
I 5-71Not used. 1

Detailed File Processing Capabilities 155

Table 24. Errors Causing an Invalid Key Condition
i i

Organization I ACCESS I OPEN 1-0 Verb, Condition
I I

Sequential I [SEQUENTIAL] I OUTPUT WRITE
I I

Direct I [SEQUENTIAL] I OUTPUT WRITE , I
Direct , RANDOM , INPUT READ

I ..
I I OUTPUT WRITE
I I
I , 1-0 READ
I , REWRITE
I I

Indexed I [SEQUENTIAL] , INPUT START
I , 1-0
I I
I I OUTPUT WRITE
I I
I RANDOM , INPUT READ
I ..
I I 1-0 REWRITE
I ..
I I 1-0 WRITE ,

Other input/output errors cause the job
to be cancelled unless the programmer has
specified a USE AFTER STANDARD ERROR
declarative. Control is transferred to
this declarative section if the system
determines that a "standard" error has
occurred during input/output processing.
In this declarative section, the programmer

156

I , End of extents reached.
I
I Track address outside file extents.
I
I No record found.
I , Track address outside file extents.
I , Track address outside file extents. ,
I
I No record found.
I
! , Duplicate record; sequence check.
I
I No record found.
I
I
I
I Duplicate record. ,

may interrogate the COBOL error bytes if he
has specified the GIVING option of the USE
AFTER STANDARD ERROR declarative sentence.
The meaning of these bytes for a specified
combination of device type and file
processing technique is shown in Table 25.

Table 25. Meaning of Error Bytes for GIVING Option of Error Declarative (Part 1 of 2)
iii i , ,

I I I '11/0 I I I I
IDevice I Organization 1 ACCESS 10PEN IVerb, Condition IBytel Result I
I I I I I I I ,
IUnit ISequential I[SEQUENTIAL]I I I Input/output 1 IFile must be clo~ed I
I record I I 'I I error I and job must be ,
" I 'I I I terminated. I
I I I I I I , ,
ITape Sequential I[SEQUENTIAL]IINPUT IREAD ,Wrong length 2 ,Skip block if ,
I I I I I record I return is made to I
, I I' 1 I non-declarative I
I I I I' I portion. I
I I 1 I I I I
I 1 1 I ,Pari ty error 1 I Ski p block if I
I I 1 1 I , return is made to I
I "I I , non-declarative I
I 'I I' , portion. I
I ,.. I I I 1
I 'IOUTPUT,WRITEIAll exceptional conditions are handled I
, I' 1 ,by the system. I
" I I I Ii'
IDASD Sequential [SEQUENTIAL]IINPUT IREAD IWrong length 2 ,Skip block if I
1 11-0 I I record I return is made to I
I I I I I non-declarative I
I I I I I port ion. ,
I I I I I ,
I , I I Pari ty error 1 I Skip block if I
I I I I I return is made to I
, I 'I I non-declarative I
I I I I I portion. I
I I I I I ,
I 10UTPUTIWRITEIParity error 1 IBad block written. I

I 11-0 I I I --f G
I I I ,Wrong length 2, Bad block written. I =
'I , , ,record I , .••
'I I I I I I I
IDASD I Direct I[SEQUENTIAL]IINPUT IREAD ,Wrong length 2 ,Return to statement I
I I , 'I I record , after READ. ,
I' I I I t I I
I' 1 I 1 ,Data check in 1 I Return to statement I
I I I 1 1 I count area I after READ. I
I 1 1 I I I I I I
I I 1 I i ,Data check fori 4 IReturn to statement,
" , I I I key and/or 1 I after FEAD. I
1 1 , 'I' data 'I I
I I I I I I I I I
IDASD I Direct RANDOM IINPUT IREAD ISame as ACCESS SEQUENTIAL (above). 1
'I 11-0, I ,
'I I I I I ,

I I OUTPUTIWRITEIWrong length 2 ,Return to next I
I 1 , I record 1 statement; bad I
I I I I I block written. ,
I I I I I I
I I IData check in 1 ,Return to next I
I I I count area I statement; bad ,
I I 'I block written. I
I I I I I I
I I IData check fori 4 IReturn to next I
I , , key and/or I I statement; bad I
, I I data 'I block written. I
I I I I I ,
1 I INo room found I 3 IReturn to next I
I I I I I statement. I
I ' I I I ,

INote: If no USE AFT R STANDARD ERROR routine is specified and one of the above con- I
Iditions occurs, the programmer is notified of the condition and the job is cancelled. I

I

Detailed File processing Capabilities 157

Table 25. Meaning of Error Bytes for GIVING Option of Error Declarative (Part 2 of 2)
I

1
I Device ,
IDASD
1 ,
(,
I
I
1
I
1
1
I

DASD

DASD

i I

I I
1 Organization I ACCESS
I I
Direct RANDOM

i

I
10PEN
I
11/0
I
I
I , ,
I ,
I
1
1

I

11/0
IVerb Condition
I 1
REWRITEIWrong length

1 record
I
I
IData check in
1 count area
I
I
IData check in
I key and/or
I data

i

I 1
(By tel Result

2

1

4

IReturn to next
I statement; bad
1 block written. ,
IReturn to next
I statement; bad
I block written.
I
IReturn to next
1 statement; bad
I block written.

! ! i
I Indexed
1
1
1
t

Indexed

I[SEQUENTIAL]IINPUT READ IDASD error 1 1 IReturn to next 1

RANDOM

11-0 REWRITE. I I statement; bad ,
I IWrong length I 2 I block read or ,
, 1 record , 1 written. I
, ~'------~I------------~I---+I------·--------~I
1 ,START IDASD error I 1 ,Continued pro- ,
1 " I' ce~sing of file I
1 1 1 1 1 permitted. ,
I 1 1 1 1 ,
OUTPUT WRITE IDASD error ,1 IReturn to next I

rl------------~I~--~' statement; bad ,
,wrong length 1 2 I block written. I
1 record I 1 1
I 1 I ,
IPrime data I 3 IFile must be I
1 area full 1 1 closed. ,
I 'I I
,Cylinder indexl 4 ,File must be I
I full " closed. 1
r-- I' ,
IMaster index I 5 IFile must be 1
1 full 'I closed. 1

I I 'I 1
IINPUT IREAD IDASD error 1 1 ,Return to next 1
11-0 IREWRITEI 1 1 statement; bad 1
1 I IWrong length I 2 I block read or ,
I I 1 record 1 1 written. 1
~I----~I------rl------------+I---+I 1
11-0 IWRITE IDASD error I 1 IReturn to next I
I I 1 I I statement; bad 1
I 1 IWrong length I 2 1 block written. 1
I 1 1 record 1 1 I
1 1 I 1 1 I
I 1 IOverflow area I 6 IFiles must be I
1 I I full I 1 closed. 1

I 1 I I 1 I I I I
13540 ISequential 1 Sequential IINPUT IPEAD ,Data check ,1 IReturn'to next 1
1 I 1 1 1 1 I 1 statement. 1
1 1 I I I I I I ,
I I I 10UTPUTIWRITF IEquipment I 2 lEad block read or I
I I I 'I I check , written up until I
1 I I I I' 1 bad physical 1
1 I I 1 1 I I record. 1
I' I I I I I I
INote: If no USE AFTER STANDARD ERROR routine is specified and one of the above con- 1
Iditions occurs, the programmer is notified of the condition and the job is cancelled. ,
I I

158

If the programmer includes a USE AFTER
STANDA~D ERROR routine without specifying
the GIVING option, he must call an
as~erobler language routine within the
declarative if he wishes to interrogate the
error bits -- set either in the DT? (DTFMT,
DTPSD, or DTFIS) or in the fields preceding
the DT? (D'I'PDA).

Interrogation of these error bits should
be made to the locations shown in 'I'ables
26, 27, 28, 29, and 30.

Note: The byte and bit displacement in
Tables 26, 27, 28, 29, and 30 is relative
to zero.

Table 26. Location and ~eaning of Error Bits for DTFMT

I OPEN Verb
I
IINPUT READ
I
I

I
I
I
I--
I

Condition Eyte* Bit

Wrong length record 3 1

Parity error 2 6

t--------------~----------~--------------------------r------------~------------------~ I
IOUTPUT wRITE
I
I
I
I*Within thE DTF.

I Wrong
~ , Pari ty

length record 3 1

error 2 6

L ___ ~

TablE 27. Location and l'!eaning of Error Bits for DTFSD
r -.-, OPEN I Verb I Condition Byte* Bit
t- I I
,INPUT, 1-0 I READ I Wrong length record 3 1
I I I--
I I I Parity error 2 6
t I ,
IOUTPUT, 1-0 I WRITE I Parity error 2 6
t
I*within the DTP.

Detailed File Processing Capabilities 159

t

'rable 28. Location and Meaning of Error
i

ACCESS I OPEN Verb
l- I
I [SEQUENTIAL] I INPUT READ
I I
I I
I I
I I
I I
I I
I I

RANDOM I INPUT, 1-0 READ
I
I OUTPUT WRITE
I
I

1-0 REWRITE

I
I*within error bytes preceding DTF. See
I these bytes.

Table 29. Location and
I

ACCESS I OPEN , I
[SEQUENTIAL] I INPUT,

• RANDOM

I*Within
L

'1en
IUV

the

I
I
I
I OUTPUT
I
I
I
I
I
I
I
I
I
I INPUT,
I
I
I
I
I 1-0
I
I
I
I ,
DTF.

Meaning of Error

Verb

1-0 READ

WRITE

1-0 READ
REWRITE

WHITE

Bits for DTFDA
I

I Condition Byte* Bit
I
I Wrong length record 0 1
I
I Data check in count area 1 0
I
I Data check in key or data 1 3
I
I No record found 1 2 or 4
I
I Same as sequential
I
I Wron~ length record 0 1
I
I No room found 0 ! 4
I ,
I Data check in count area 1 0 I
I ----1
I Data check in key or data 1 3 I
I I
I Wrong length record 0 1 I , I
I Data check in count area 1 0 I
I ,
I Data check in key or data 1 3 I , ,
I No record found 1 2 or 4 I ,
the section "DTF Tables" for the location of I

I

Bits for DTFIS
I

Condition Byte* I Bit I
I I

DASD error 30 I 0 I
I I

Wrong length record 30 I 1 I
I I

DASD error 30 I 0 I
I ,

Wrong length record 30 I 1 I
I I

Prime data area full 30 I 2 I
I ,

Cylinder index full 30 I 3 I
I I

Master index full 30', I 4 I
-+- I

DASD error 30 I 0 I
I I
I ----1

Wrong length record 30 I 1 I
I --f

DASD error 30 I 0 I
-+- ,

Wrong length record 30 I 1 I
I ,

Overflow area full 30 I 6 I ,
I
I

Table 30. Location and Meaning of Error Bits for DTFDU
r-------------r---------------~------------,-------------------------------r-------~---------,

I ACCESS OPEN Verb Condition Byte* Bit I
~-----------;----------------r----------+---------------------------r--------;---------i,
,Sequential Input READ Data check 3 3,
, ~--------------------------~-------+-----~
I Output WRITE P.quipment check 2 2 I
,

The following should be considered when
processing tape input files:

1. Two types of errors are returned to
the programmer: wrong length record
and parity check. The COBOL error
bytes, if requested, are set to
reflect the error condition and
control is transferred to the USE
AFTER STANDARD ERROR declarative
sentence. The error block is made
available at data-name-2 of the GIVING
option, if specified.

If a parity error is detected when a
block of records is read, the tape is
backspaced and reread 100 times before
control is returned to the programmer.
If the error persists, the block is
considered an error block and is added
to the block count found in the DTF
table.

2. Normal return (to the non-declarative
portion) from a USE AFTER STANDARD
ERROR declarative section :5 through
the invoked Ioes subroutine. Thu~,
the next sequential block is brought
into storage permitting continued
processing of the file. (The error
block is bypassed.) A return through
the use of a GO TO statement does not
bring the next block into storage;
therefore, it is impos~lble to
continue processing~the file.

The proces$ing of a sequential disk !11e
opened as input is the same as the previous
discussion of tape files, except that the
disk block is reread ten times before being
considered an error block.

COBOL cannot handle nested errors on
sequential files. If errors occur within
an-error declarative, results are
unpredictable.

Detailed File Processing Capabilities 161

VOLU!E AND FILE LABEL HANDLING

TAPE LABELS

Among the several types of tape labels
allowed under the Disk Operating System
virtual storage are: volume labels,
standard file labels, user standard labels,
and nonstandard labels. Unlabeled files
are also permitted. The description of
each type of label follows.

Volume Labels

A volume label is used whenever standard
file labels are used. Logical Ioes
requires a volume label with VOLl as its
first four characters on every standard or
user standard labeled file. VOL2-VOL8 are
also allowed, but must be written and
checked by the programmer.

Standard File Labels

A standard file label is an 80-character
label created when an output file is opened
or closed, in part by Ioes using the TLBL
control statement. The first three
characters are RDR (header), EOV
(end-of-volume), or EOF (end-of-file). The
fourth character is a 1, indicating the
first of a possible eight labels. The
remainder of the label is formatted into
fields describing the file. Labels 2
through 8 in this field are bypassed on
input, and are not created on output under
the Disk Operating System Virtual Storage.

162

The contents of the fields of a standard
file label are described in "Appendix B:
Standard Tape File Labels." The
relationship between the TLBL statement and
a standard file label is shown in Figures
39 and 40.

User Standard Labels

A user standard label is an BO-character
label having UHL (user header label) or UTL
(user trailer label) in the first three
positions. The fourth position contains a
number 1 through 8 which represents the
relative position of the user label within
a group of user labels. The contents of
the remaining 76 positions are entirely up
to the programmer. User labels, if
present, follow HDR, EOV, or FOF standard
labels. On multivolume files, they may
also appear at beginning-of-volume. User
header labels are resequenced starting with
one (UEL1) at the beginning of a new
volume. Figure 41 shows the positioning of
user labels on a file.

Nonstandard Labels

A nonstandard label may be any length.
The contents of a nonstandard label is
entirely programmer-dependent. It is the
COBOL programmer's responsibility either to
process or bypass nonstandard labels on
input and to create them on output.
Nonstandard label processing is not
permitted on ASCII files. Figure 42 shows
the positioning of nonstandard labtl~ on a
file.

"lII
t-J.
\Q
P
Ii
IT)

W
1.0

tn
rt
Sll
::I
p..
Sll
Ii
p..

t-3
Sll

I'd
(l)

....,
t-J.
I-'
(1)

t-4
Sll
0-
(1)
I-'

Sll
::s
p..

t-3
1:"4
t:l1
t-4

n
t:1 Sll
«) Ii
rt p..
Sll
~. -I-' VI
«) ::r'
p.. 0

:c
t'Sj t-J.
~. ::s
I-' '.0
«)

;lI:
"d Sll
Ii ><
0 t-J.
(') a
(l) p
en a
til
t-J. VI
::s '"0

\Q (1)

(')
() ~.

Sll HI
I'd t-J.
III 0
0- Sll
~. rt
I-' ~.

~. 0
rt ::I UI
(I)

UI

....
C'\
W

Standard Tape File Label

iH DR: 1:
:E 0 F: :
iE 0 V; :
'--y-J

Supplied
by IOCS

,
I ..s Oper-c

:2 atlon

00 00000
12 34581

t 1 11111

22 22222

33 33333

44 44444

55 55555

& & & 6 & 6 6

71 77111

88 9 8 8 8 8

File Identifier

~i~ File Name File-ID
8~

ooooooo~ 00 ~OOOOOOOOOOOOOOO(
• , 10 111213 141! 111 ~ 1120 2122 23 24 2516 27 212130 3132 33

1111111 11 111111111111111

22222224 22 ~222222222222222j

3333333' 33 ~333333333333333

4444444~ 44 ~444444444444444~

55555551 55 ~555555555555555

66666661 66 ~6666666666666&66

1717717 17 7717177717177771

3686R881 S 8 38883888888888U

III

SE
oE Date

p,8
00 00000
3UI 1:11 •• 4141

11 11111

22 '22222

33 d 3 333

44 444 44

55 ~55555

6& Ii&&&&&

P 771777

88 B88888

III File ~ Vol. E
Serial E E Seq.

0 No. L~ No. y

0000000 00000
431445454141. !O 15253$4

1111111 11111

2222222 22222

3333333 33333

4444444 44444

5555555 55555

&&66666 6&&66

1711711 17117

8U8888 8888 e

Version Number

~~ File Seq.
No.

o ~ 00 0
~ ~515U1
11111

2~222

3 ~ 3 3 3

4 ~ 44 4

5~555

&.666

1 ~ 11 7

8 ~ B8 8

~ G~ner~ ~~
E atlon E •
r8 No• 8 ~

1""'>
00000 o ~ 0
IG 1525314 55 ~II

11111 ql
22222 2 ~ 2

33333 3 ~ 3

444 4 4 4~4

555 5 5 5 ~ 5

66666 6.6

System Code

-(13
(Reserved

for A. S. A.)

0000000 DOS / TO S / 3 60 b b b b b b b b b

r (1n HRDl) I

I
Supplied by IOCS
on output

0000000000000
~ 51 10 11 12131415 1& 11111' 10

1111111111111

2222222222222

3333333333333

4444444444444

5555555555555

6666&6&6E6666

I

I

Notes:

Maximum size TLBL fields
are shown.
• Any field (except Ident,

Operation, and Date)
may be from 1 position to
the maximum shown. IOCS
fills in the remaining
positions of the label field.

777777 71777717777777 • Id"ent and Operation must
be as shown.

888888 88B&888S8I1ae88

999~~~9~S9q9999~~ -9Sq9999999999S99999999999.q9999999999.9999~9999 999999999~9999
, ~ l .. ;, . :: .. :' . .: Ii 12 I~ '" 151£ \} " Ii 2tl 21 22 2j 2. 2i 26;, ~. 2~ 3U J' 3:- 3: II 3~ 3ft 31 J8 39 4G 41 42 "344 4,r, 46 4} 4d 49:tO ~1 s.z . .,3 a4 ~5 51 ~I $I 59" 'I 52 &3 64 IS '" 51 0. ~ 1(. }. ;,. lJ 14 1." 1': n 1,. '9 ao

• Date may be 4- 6 positions;
Retention period, 1 - 4.

IBM 50':1

/ltLBLj
Blank

DTF
Nome L- 8 -5 punch--1 1

Dote - yy/d or yy/dd or yy/ddd (on Input or Output)
Retention Period - d-dddd (on Output only)

-

- 2 If a field is omitted, shift the
following comma and fields
to the left.
IOCS supplies a default value
for the label field on output.

3 No comma fo I lows the last
field used.

-) .. ~
0' 1-'-.. : ~

~
H
ro

-'=
0

til
rt
~
:;,
p,.
P.I
ti
PJ

I-'J
Al

'"tJ
ro
'">;I
~
ro
t-'
III
0'
ro
r-'

III
~
p,.

~-3

t-'
b:I
t-'

()
III
Ii
p,.

-til
::T'
0
~
1-'-
:::s

<.Q

:::;c
1-'-
~
1-"
a
~
B

~
ro

I.Q
~
1-'-
H
ro
;::I
(1)

:::s
rt
~

Standard Tape File Label

Vemon Number

File Identifier System Code

\H 0 R: ,!
IE 0 F: :

OTF Nome ib b b b b b b b b b Volume
Serial

Number

lO 0 0

IE OV' ,
I I I

~

Supplied
by 10CS

I
I
I

I
I
I

Job Control TLBL Card

tllope'-IIFUO Nomoi ~ ation
~

OOOOOOOOOOOOOOOoGlOOOtGOOOOOOOOOO
.0 11 12 1~ 14 l' If l' ~. " 2D 21 22 2J 24 :Ii 2i 21 ZI 2t 11I JI JZ ,'J J. J5 » 3J • It 40 41 42 4~ 44 45 4& 47 4B 43 50 ~I 52 U 54 ~ til ~I 51 ~ SO" U 13 14 15 " 11 II It Jt 71 12 n 14 15 Jt n 111 ...

1

On input, no values
are suppl ied and no
checking is performed.

22212

33133333333 i
4444444~444 ~.

5 !i 5 5 5 5 5 5 5 5

& 6 6 6 & 6 & 6 & 6 & & 6 & 6 & & & & & & & I, & & 6 & & 6 & &

'111177777177777717777771711717717171171111171711777 7 7117 7777771' 7117 7 711

8888888888888888&888888888888888888888888, •••• ' •• '8" ••••••• 8., •••••• "

9 91919 9 9 91919 9999 9 9 9 9 9 9 9 9 9 99 9 9 9 999
• 2 J • 5 I 7 •• II 11 12 IJ '''5 1& :; l' II 20 21 22 23 24 25 ~U72' 21 • 21 11 3J 34 3UI 31 • » •• 1 42 43 44 45 4141 4141 50 51 U USUS 51" II 121314 7 71 11' n 74 15 II n Jt Jt ..

I It L B j
Blank

OTF
Nome

LABEL PROCESSING CONSIDERATIONS

Label considerations for VSAM are
discrib£d in the chapter "Virtual Storage
Access ~ethod (VSAK)".

The labels which may appear on tape are
shown in Figures 40 and 41. The compiler
allows the programmer to work with all the

previously mentioned labels as well as with
unlabeled files.

If user standard labels are to be
created or checked in the COBOL program,
the USE AFTER BEGINNING/ENDING LABELS
declarative sentence and the LABEL RECORDS
clause with the data-~ option must be
specified.

r--------------------·---------------------------------
I Load Point Marker
I I
I I
I V R N N R N N P p p R R N N P P F R N N P P R
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

"'--'-~i·~ r t , , , j j iii iii iii , , , , I i I I t Iii

f-J
I

IVIVI-IVIHlhl-IHIUI-IUI I 1 IEIEI-IEIUI-IUI IRIEI-IEIUI-IUI I
IOIOI-IOIDIDI-IDIBI-IEITI ITIOIOI-IOITI-ITITIDIDI-IDIHI-IHITI

1 IL1LI-ILIRIRI-IRILI-ILIMI FILE #1IMIFIFI-IFILI-ILIMIRIR\-IRILI-ILIMI FILE #2
I 11121-1811121-18111-181 1 I 11121-18111-181 11121-18111-18\ I
'---__ -L-....L-..L.....L- I I I I I I I I I I ! I I ! I I I I I I I I I I I I I

End of Tape Marker
I
I
V R R N N P P R R
iii i I I I J j iii

Y IEIEI-IEIUI-IUI 1 I
FILE #2 ITIOIOI-IOITI-ITITITI

IMIVIVI-IVILI-ILIMIMI
1 11121-18111-181 t I

R
N

p

I I ! I I I I I I I I

Pequired, processed by Ioes.
Permitted, but not written or checked, by IOCS and not available to
programmer.
Processed by IOCS and available to user.

Figure 41. Standard, U~er Standard, and Volume Labels

Load Point
I
1
v

i

f---J
I
I
I
\
I

Bote§.: R
o
C

Marker

0 R C

I i i i I I i i i i

ILl ILl I I ILl ILl I
I A I I A I I I IAI I A I I
ISI-IBITI ITIBI-IBITI
lEI IEIM 1 FILE #l\MIEI lEI M I
ILl-ILl I I ILl-ILl I
I S I lSI I I IS I I S I 1
I , I , ! I i I I i

Required, processed by IOCS.
Optional.
written by COBOL compiler.

Fiqure 42. Nonstandard Labels

____ ---J

Detailed File processing Capabilities 165

Header labels are written or read when
the file is opened or when a volume switch
occurs. Trailer labels are written when
the physical end of the reel is reached, or
when a CLOSE REEL or CLOSE file-name is
issued. Trailer labels are read on each
reel except the last when a tapemark is
reached. For the last reel (i.e., EOF
labels), trailer labels are not read until
the file is closed.

For multivolume input files with
nonstandard labels, the programmer must
specify the inteaer-1 option of the source
language ASSIGN clause, where integer-1 is
~ne number of reels in the file. This
number can be overridden at execution time
by storing a nonzero integer in the special
register NSTD-REELS before opening the
file. The number of reels is then
available to the programmer while the file
is opened both in the special register
NSTD-RFFLS and in the field reserved for
this purpose which precedes the DTF table
for DTFMT (see "DTF Tables" in this
chapter). In addition, the number of reels
remaining after each volume switch can also
be found in the field reserved for this
purpose which precedes the DTF table for
DTF~T.

When processing a multivolume file with
nonstandard labels (i.e., when the
data-name option of the LABEL RECORDS
clause is s~ecified), if the proqrammer
wishes to stop reading or writing before
the physical end of a reel is reached, he
must set a switch in the appropriate
declarative section. In the Procedure
Division, he can either CLOSE REEL or CLOSE
FILE depending on the switch setting.
Volume switching is done by LIOCS when
CLOSE REEL is Executed.

Figure 43 illustrates the manner in
which unlabeled input files on a multifile
volume are processed by a COEOL program.
The input volume contains four files, only
three of which are being used by the
program. This unusea file, which resides
between the first and third file on the
volume, must be bypassed during file
processing. The program creates a single
multivolume file with standard labels.

i66

All input files residing on the same
volume are assigned to the same
sY!llbolic unit.

®

®

The second file on the input reel is
not used in this program and is
bypassed through use of the POSITION
option of the MULTIPLE FILE TAPE
clause.

The first and second input files are
closed by the execution of the CLOSE
statement with the NO REWIND option,
leaving the tape positioned in
mid-reel for the next OPEN.

All volumes with the exception of the
last volume of the multivolume output
file are closed by a close statement
with the REEL option. Volume
switchina is performed as noted in
Step@ • J

The second and third input files
processed by the program are opened by
an OPEN statement with the NO REWIND
option.

At job completion, a ~tandard CLOSE is
issued to reposition the tapes of the
closed files at their physical
beginnings.

An LBLTYP control statement is
included because a tape file requiring
label information is to be processed.

Alternate assignments have been made
for SYS011. Because these alternate
assignments are in the sequence in
which the ASSGN statements are
submitted, the first volume of the
output file will be on tape drive 282,
the second on 283, and the third on
181. When the first CLOSE OUT-PUT
REEL statement is executed, a standard
EOV label is written on the volume
assigned to drive 282 and the reel is
rewound and positioned at its physical
beginning. The next WRITE RECO
statement executed will then be
written on the volume mounted on drive
283.

Although the file OUT-PUT consists of
mUltiple volumes, only one TLBL
control ~tatement need be submitted.

Figure 44 is a sample program that
illustrates the manner in which the
multivolume file created in Figure 43 is
read as an input file. The sample program
also creates a multifile volume with
standard labels.

All output files residing on the same
volume are assigned to the same
symbolic unit.

The name field of the system-name in
the ASSIGN clause is specified. This
is the external-name by which the file

®

is known to the system. When
specified, it is the name that appears
in the filename field of the DLBL or
TLBL job control statements.

For the multivolume input file IN-PUT,
the AT END option of the READ
statement applies only to the last
volume containing the EOF label. For
prior volumes containing EOV labels,
automatic volume switching will take
place as indicated in the ASSGN
control statements pertaining to the
file IN-PUT.

The first and second file written on
the volume are closed using the NO
REWIND option of the CLOSE statement.
This option leaves the tape positioned
in mid-reel following the EOF label of
the file just closed.

At job's completion, a standard CLOSE
is issued to reposition the tapes of
the closed files at their physical
beginning.

A LBLTYP control statement is included
because tape files requiring label
information are being processed.

There are three TLBL control
statements for the volume assigned to
SYS013, one for each file referenced
on the volume. The filename field of
the TLBL control statements for these
files contains the names used in the
ASSIGN clauses of the COBOL source
program, not the programmer logical
unit name.

Alternate assignments have been made
for SYS012 to handle the multiple
volumes of the file IN-PUT.

Figure 45 illustrates the creation of an
unlabeled multivolume file. The number of
output volumes is determined dynamically
during program execution. The program's
input consists of the labeled multifile
volume created in Figure 44.

All input files residing on the same
volume are assigned to the same
symbolic unit.

o

o

The name field of the system-name of
the ASSIGN clause is specified. These
names will appear on the TLBL control
statements that refer to these files.

The KULTIPLE FILE TAPE clause is not
required for the multifile volume
because each file is being processed
in the sequence in which it appears on
the reel. A rewind will not be
executed for any file on the reel
except for that processed last.

The CLOSE statement for files IN-PUT-1
and IN-PUT-2, and the OPEN statement
for files IN-PUT-2 and IN-PUT-3, use
the NO REWIND option. This leaves the
tape positioned in mid-reel for the
multifile volumets next OPEN
statement.

When it has been determined from the
input data that a new output reel is
required for the multivolume output
file, a CLOSE OUT-PUT REEL statement
is executed, processing is halted, and
a message is issued to the operator
which requests a new volume to be
mounted.

At job's completion, a standard CLOSE
is issued to reposition the tapes of

the closed file at their PhysiSical t .. beginning.

An LBLTYP control statement
included because tape files requiring
label information are being processed.

There are three TLBL control
statements for the volume assigned to
SYS014, one for each file referenced
on the volume. The filename field of
the TLBL control statements for these
files contaijs the names used in the
ASSIGN clauses of the source program
and not the programmer logical unit
names.

Only one tape drive is assigned to the
multivolume file OUT-PUT. Therefore,
each time a volume is closed,
processing must be halted and the
operator informed to mount ~ew tape.
This is illustrated in Step(V.

Detailed File Processing Capabilities 167

// JOB SAMPLE
* UNLABELED MULTIFILE VOLUME TO MULTIVOLUME FILE WITH STANDARD LABELS
// OPTION LOG,DUMP,LINK,LIST,LISTX,XREF,SYM,ERRS,NODECK
// EXEC FCOBOL

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE-l.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUTl ASSIGN TO SYS010-UT-3410-S-FILE1.) ~
SELECT INPUT2 ASSIGN TO SYS010-0T-34'10-S-FILE2. ~ '-!)
SELECT INPUT3ASSIGN TO SYS010-UT-3410-S-FILE3.)
SELECT OUT-POT ASSIGN TO SYS011-UT-3410-S.

I-O-CONTROL.
MULTIPLE FILE TAPE CONTAINS INPUTl POSITION 1 }

INPUT2 POSITION 3
4

• C!)
INPUT3 POSITION

DATA DIVISION.
FILE SECTION.
FD INPUTl

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED.

01 RECl PIC X(80).
FD INPUT2

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED.

01 REC2 PIC X (80) •
FD INPUT3

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED.

01 REC3 PIC X(80).
FD OUT-PUT

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 RECO PIC X(80).
PROCEDURE DIVISION.

OPEN INPUT INPUT1 OUTPUT OUT-PUT.
READ1.

READ INPUTl INTO RECO AT END GO TO CLOSE1.
A. WRITE RECO.
B. GO TO READ1.
CLOSE1.

CLOSE INPUT1 WITH NmEWINDe(!)
C. CLOSE OUT-PUT REEL. 4
D. OPEN INPUT INPUT2 WI NO REWIND.!5\
READ2. \V

READ INPUT2 INTO RECO AT END GO TO CLOSE2.
PERFORM A.
GO TO READ2.

CLOSE2.
CLOSE INPUT2 WITH NO REWIND. (!)
PERFORM C.
OPEN INPUT INPUT3 WITH NO REWIND. CD

Figure 43. Processing an Unlabeled Multifile Volume (Part 1 of 2)

168

READ3. 000540
000550
000560
000570
000580
000590
000600

READ INPUT3 INTO RECO AT END GO TO CLOSE3.
PERFORM. A.
GO TO READ3.

CLOSE3.
CLOSE INPUT3 OUT-PUT. (!)
STOP RUN.

/ / LBLTYP TAPE (J)
// EXEC LNKEDT

// ASSGN SYS010,X'281'
// ASSGN SYS011,X'282'
// ASSGN SYS011,X'283' ,ALT} CD
// ASSGB SYS011,X'181',ALT 8
// TLBL SYS011,'MULTI-VOL FILE',99/214
// EXEC ®

Figure 43. Processing an Unlabeled M.ultifile Volume (Part 2 of 2)

Detailed File Processing Capabilities 169

// JOB SAMPLE
* LABELED MULTIVOLUME FILE TO LABELED MULTIFILE VOLUME
// OPTION LOG,DUMP,LINK,LIST,LISTX,XREF,SYM,ERRS,NODECK
// EXEC FCOBOL

000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390
000400
000410
000420
000430
000440
000450

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE-2.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IN-PUT ASSIGN TO SYS012-UT-3410-S.
SELECT OUT-PUTl ASSIGN TO SYS013-UT-3410-S-FILE1~ ~
SELECT OUT-pnT2 ASSIGN TO SYSO 13-UT-341 0-S-FILE2.> l!)
SELECT OUT-PUT3 ASSIGN TO SYS013-UT-3410-S-FILE3~

DATA DIVISION.
FILE SECTION.
FD IN-PUT

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 IN-REC.
05 FILLER PIC X(4).
05 CODA PIC X.
05 FILLER PIC X(6).
05 CODB PIC X.

88 SW-FILl VALUE "9".
88 SW-FIL2 VALUE "8".

05 FILLER PIC X(68).
FD OUT-PUTl

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 OUT-REC 1 PIC X (80) •
PD OUT-PUT2

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 OUT-REC2 PIC X(80).
FD OUT-PUT3

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 OUT-REC3 PIC X(80).
WORKING-STORAGE SECTION.
77 TAPE-NUMBER PIC 9 VALUE O.
PROCEDURE DIVISION.

OPEN INPUT IN-PUT OUTPUT OUT-PUT1.

Figure 44. Reading a Multivolume File with Standard Labels; Creating a Multifile Volume
with Standard Labels (Part 1 of 2)

170

000460
000470
000480
000490
000500
000510
000520
000530
000540
000550
000560
000570
000580
000590
000600
000610
000620
000630
000640
000650
000660
000670
000680
000690

READ-IN.
READ IN-PUT AT END GO TO END-OF-JOB. (!)

A. ftOVE IN-REC TO OUT-REC1.
WRITE OUT-REC1.
IF SW-FIL1 NEXT SENTENCE ELSE G~O READ-IN.
CLOSE OUT-PUT1 WITH NO REWIND. \!J
OPEN OUTPUT OUT-PUT2.
ADD 1 TO TAPE-NUMBER.

B. PERFORft READ-IN.
MOVE IN-REC TO OUT-REC2.
WRITE OUT-REC2.
IF SW-FIL2 NEXT SENTENCE ELSE GG)0 TO B.
CLOSE OUT-PUT2 WITH NO REWIND. 3
OPEN OUTPUT OUT-PUT3.
ADD 1 TO TAPE-NUMBER.

C. PERFORM READ-IN.
MOVE IN-REC TO OUT-REC3.
iR ITE OUT-R EC3 •
GO TO C.

END-OF -JOB.
CLOSE IN-PUT.
IF TAPE-NUMBER = 0 CLOSE OUT-PUT1 GO TO D. } f4\
IF TAPE-NUMBER = 1 CLOSE OUT-PUT2 ELSE CLOSE OUT-PUT3. ~

D. STOP RUN.

1/ LBLTYP TAPE (!)
// EXEC LNKEDT

// ASSGN SYS018,X'283'
II TLBL FILE1,'KULTI-FILE1 VOL'} (;\
1/ TLBL FILE2,'MULTI-FILE2 VOL' \!J
II TLBL FILE3,'MULTI-FILE3 VOLI
1/ ASSGB SYS012,X'281'
1/ ASSGN SYS012,X'282' ,ALT} fJ\
/1 ASSGN SYS012,X'181',ALT ~
1/ TLBL SYS012,'MULTI-VOL FILE'
II EXEC

Figure 44. Reading a Multivolume File with Standard Labels; creating a Multifile Volume
with Standard Labels (Part 2 of 2)

Detailed File Processing Capabilities 171

// JOB SAMPLE
* LABELED MULTIFILE VOLUME TO UNLABELED MULTIVOLUME FILE
// OPTION LOG,DUMP,LINK,LIST,LISTX,XREF,SYM,ERRS,NODECK
// EXEC FCOBOL

00.0010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
000360
000370
000380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540
000550

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLE-3.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IN-PUT-1 ASSIGN TO SYS014-UT-3410-S-FILE1.J
SELECT IN-PUT-2 ASSIGN TO SYS014-UT-3410-S-FILE2.\11'
SELECT IN-PUT-3 ASSIGN TO SYS014-UT-3410-S-FILE3.j \!)
SELECT OUT-PUT ASSIGN TO SYS015-UT-3410-S.

DATA DIVISION.
FILE SECTION.
FD IN-PUT-l

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 IN-RECl PIC X(80).
FD IN-PUT-2

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 IN-REC2 PIC X(80}.
FD IN-PUT-3

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS STANDARD.

01 IN-REC3 PIC X(80).
FD OUT-PUT

RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 3 RECORDS
LABEL RECORD IS OMITTED.

01 OUT-REC.
05 FILLER PIC X(4).
05 CODA PIC X.

88 HI VALUE "9".
05 FILLER PIC X(6).
05 CODB PIC X.

88 LO VALUE "8".
05 FILLER PIC X(68}.

PROCEDURE DIVISION.
OPEN INPUT IN-PUT-l OUTPUT OUT-PUT.

IN-1.
READ IN-PUT-1 INTO OUT-REC AT END GO TO CLOSE1.

TESTER.
IF HI AND LO PERFORM CLOSE-oUT ELSE WRITE OUT-REC.(!)

A. GO TO IN-1.
CLOSE1.

CLOSE IN-PUT-1 WITH NO REWIND. } f;;'\
OPEN INPUT IN-PUT-2 WITH NO REWIND. \!J

IN-2.
READ IN-PUT-2 INTO OUT-REC AT END GO TO CiOSE2.
PERFORM TESTER.
GO TO IN-2.

Figure 45e Creating an Unlabeled Multivolume File (Part 1 of 2)

112

CLOSE2. 000560
000570
000580
000590
000600
000610
000620
000630
000640
000650
000660
000670
000680

CLOSE IN-PUT-2 WITH NO REWIND. } 0
OPEN INPUT IN-PUT-3 WITH NO REWIND. ~

IN-3.
READ IN-PUT-3 INTO OUT-REe AT END GO TO CLOSE3.
PERFORM TESTER.
GO TO IN-3.

CLOSE-OUT.
CLOSE OUT-PUT REEL. } ,;;)
STOP "REMOVE TAPE ON SYS015 AND MOUNT NEW TAPE". 0

CLOSE3.
CLOSE IN-PUT-3 OUT-PUT. (!)
STOP RUN.

II LBLTYP TAPE (!)
II EXEC LNKEDT

II ASSGN SYS014,X'283'
II TLEL FILE1,'~ULTI-FILE1
II TL3L FILE2,'MULTI-FILE2
II TLBL FILE3"MULTI-F~3
II ASSGN SYS015,X'282' (!j
II EXEC

VOT f}
VO~' CD
VOL'

Figure 45. Creating an Unlabeled Multivolume File (Part 2 of 2)

Detailed File processing Capabilities 173

~ASS STORAGE FILE LABELS

The IBM Disk Operating System/Virtual
Storage provides postive identification and
protection of all files on mass storage
devices by recording labels on each volume.
These labels ensure that the correct volume
i~ used for input, and that no current
information is destroyed on output.

The mass storage labels always include
one volume label for each volume and one or
more file labels for each logical file on
the volume. There may also be user header
labels and user trailer labels.

Volume Labels

The volume label is an aO-byte data
field preceded by a 4-~e key field. Both
the key field and the first four bytes of
the data field contain the label identifier
VOLle IOCS creates a standard volume label
for every volume processed by the Disk
Operating System/Virtual Storage. It is
always the third record on cylinder 0,
track O. The format and contents of a
standard volume label can be found in the
publication DOS/VS Disk Labels.

Standard File Labels

A standard file label identifies a
particular logical file, gives its
location(s) on the mass storage device, and
contains information to prevent premature
destruction of current files. A standard
file label for a file located on a mass
storage device is a l40-character label
created (OPEN/CLOSE OUTPUT) in part by IOCS
using the DLBL control statement. The
fields contained within the label follow
three standard formats.

1. Format 1 is used for all logical
files. The contents of the fields of
a Format 1 label is discussed in
"Appendix C: Standard Mass Storage
Device Labels."

2. Format 2 is required for indexed
files. ~he contents of the fields of
a Format 2 label can be found in the
publication DOS/iS Disk Labels.

3. Format 3 is required if a logical file
uses more than three extents of any
volume. The contents of the fields of
a Format 3 label can be found in the
publication DOS/VS Disk Labels.

174

User Labels

The programmer can include additional
labels to further define his file. The
labels are referred to as user standard
labels. They cannot be specified for
indexed files. A user label is an
aO-character label containing UHL (user
header label) or UTL (user trailer label)
in the first three character positions.
The fourth position contains a number 1
through a which represents the relative
position of the user label with a group of
user labels. The contents of the remaining
76 positions is entirely up to the
programmer. User header and trailer labels
are written en the first track of the first
extent of each volume allocated by the
programmer for the file. User header
labels are resequenced starting with one
(UHL1) at the beginning of each new volume.

LABEL PROCESSING CONSIDERATIONS

Files on ~ass Storage Device Opened as
Input

1. Standard labels checked

a. The volume serial numbers in the
volume labels are compared to the
file serial numbers in the EXTENT
card.

b. Fields 1 through 3 in Format 1
label are compared to the
corresponding fields in the DLBL
card.

c. Each of the extent definitions in
the Format 1 and Format 3 labels
is checked against the limit
fields supplied in the EXTENT
card.

2. User labels checked

a. If user header labels are
indicated for directly or
sequentially organized files, they
are read as each volume of the
file is opened. After reading
each label, the OPEN routine
branches to the programmer's label
routine if the appropriate USE
AFTER STANDARD LABEL PROCEDURE
declarative is specified in the
source program. The LABEL RECORDS
clause with the data-name option
must be specified in the Data
Division. The programmer's label
routine then performs any
processing required.

b. If user trailer labels are
indicated on a sequential file,
they are read after reaching the
end of the last extent on each
volume when the file is closed,
provided end-of-file has been
reached. Trailer labels are
processed by the programmer's
label routine if the appropriate
USE AFTER STANDARD LABEL PROCEDURE
declarative is specified in the
source program. The LABEL RECORDS
clause with the data-name option
must be specified in the Data
Division.

Files on Mass Storage Devices Opened as
Output

1. Standard labels created

a. The volume serial numbers in the
volume labels are compared to the
file serial numbers in the EXTENT
card.

b. The extent definitions in all
current labels on the volume are
checked to determine whether any
extend into those defined in the
EXTENT card. If any overlap, the
expiration date is checked against
the current date in the
Communication Region of the
Supervisor. If the expiration
date has passed, the old labels
are deleted. If not, the operator
is notified of the condition.

c. The new Format 1 label is written
with information supplied in the
DLBL card. If an indexed file is
being processed, the DTFIS routine
supplies information for the
Format 2 label.

d. The information in the EXTENT card
is placed in the Format 1 labels
and, if necessary, in the
additional Format 3 labels.

2. User header labels created

a. If user header labels are
indicated by the presence of the
appropriate USE AFTER STANDARD
LABEL PROCEDURE declarative and
the LABEL RECORDS clause with the
data-name option, the programmer's
label routine is entered to
furnish the labels as each volume
of the file is opened. This can
be done for as many as eight user
header labels per volume. As each
label is presented, Ioes writes it
out on the first track of the
first extent of the volume.

b. If user trailer labels are
indicated by the presence of the
appropriate USE AFTER STANDARD
LABEL PROCEDURE declarative and
the LAPEL RECORDS clause with the
data-name option, the programmer's
label routine is entered to
furnish the labels when the end of
the last extent on each volume is
reached. This can be done for as
many as eight user trailer labels.
The CLOSE statement must be issued
to create trailer labels for the
last volume of a sequential file
or for a direct file.

UNLABELED FILES

When a multivolume tape file is opened
as INPUT and integer as specified in the
ASSIGN clause is greater than 1, the
compiler will generate the following
message to the operator:

C126D IS IT EOF?

The operator must respond either with N if
it is not the last reel, or with y if it is
the last reel. If it is end-of-file,
control passes to the imperative-statement
specified in the AT END phrase of the READ
statement; if it is not end-of-file,
processing of the next volume is initiated.

If the integer specified in the ASSIGN
clause is not greater than 1, control
always passes at end-of-volume to the
imperative-statement specified in the AT
END phrase of the READ statement.

Detailed File Processing Capabilities 175

The IBM DOS/VS COBOL Compiler and
Library support the American National
Standard Code for Information Interchange
(ASCII) as well a~ EBCDIC. This support
allows the user at object time to accept
and create magnetic tapes in accordance
with all of the following standards:

• American National Standard Code for
Information Interchange, X3.4-1968.

• American National Standard Magnetic
Tape Labels for Information
Interchange, X3.27-1969.

• American National Standard Recorded
Magnetic Tape for Information
Interchange (800 CPI, NRZI),
X3.22-1967.

COBOL LANGUAGE CONSIDERATIONS

The ASCII feature is supported by the
following addition to IEM's implementation
of American National Standard COBOL:

ThE system-name specified in the ASSIGN
clause is now coded as

SYSnnn-UT-device-C[-buffer offset][-name]

where

Organization code C indicates that an
ASCII-encoded tape file is to be
processed.

Buffer o=±set is a two-character field
that serves to indicate the size of the
block prefix. A block prefix, if
present, precedes each physical record
and is not accessible to the COBOL
programmer. This entry may only be
present for ASCII tape files and is only
required if a non-zero block prefix
exists. For output files, buffer offset
may be specified as 00 for P, U, or
D-mode records, or as 04 fo~ D-mode
records only. A buffer offset of 04 on
output means that the block prefix will
contain the length of each physical
record. For input files, buffer offset
may be in the range 00 through 99.

PROCESSING ASCII TAPE FILES

FILE HANDLING

In processing ASCII files, the supported
record formats are fixed, undefined, and
variable. A variable-length record on an
ASCII file is known as a D-format record~
ASCII support does not extend to spanned
records. Record formats are discussed in
detail in the chapter "Record Formats."

For an ASCII file that contains a buffer
offset field, the following considerations
apply:

• If the BLOCK CONTAINS clause·with the
RECOBDS option is specified, or if the
BLOCK CONTAINS clause is omitted, the
compiler compensates for the buffer
offset field.

• If the BLOCK CONTAINS clause with the
CHARACTERS option is specified, the
programmer must include the buffer
offset as part of the physical record.

Labels on ASCII files are processed as
are the existing DOS/VS standard and user
standard labels.

Nonstandard label procedures, however, are
not supported. Therefore, USE BEPORE
STANDARD LABEL PROCEDUFEs are not permitted
for ASCII files. ASCII files on unlabeled
tapes are supported. These unlabeled tapes
may contain data in any of the supported
record formats. A complete discussion of
tape file labels can be found in the
ch~pter "Advanced Processing Capabilities."

The ASCII option (organization code C in
the ASSIGN clause) must not be specified
for a file on which checkpoints are to be
written.

Diagnostic messages associated with
ASCII file handling are provided. At
compile time, E-level messages are issued
for files whose record descriptions contain
data formats that are inconsistent with
ASCII conversion. At object time, a
message is issued if an invalid sign
configuration is present during
translation, and the job will be
terminated.

processing ASCII Tape Files 177

OPERATIONAL CONSIDERATIONS

It should be noted that ASCII support
causes translation from ASCII to EBCDIC on
input and from EBCDIC to ASCII on output.
Translation occurs automatically and is
transparent to the conOL programmer. Since
an ASCII file is assumed to contain only
ASCII characters, standard character
sUbstitution occurs when untranslatable
configurations are present. The character
X'lA' is substituted for invalid EBCDIC
configurations during translation. An
invalid ASCII configuration (high-order bit
on) translates to the character X'3F'.

OBTAINING AN ASCII COLLATING SEQUENCE ON A
~

If an ASCII collated sort is desired or
numeric sort keys contain a sign in the

178

form of a leading overpunch or separate
character, a Program Product IBM DOS/VS
Sort/!erge program must be used. If sort
files reside on a 3330 or 3340 device, the
Sort program that supports these devices is
required. The Program Product IBM DOSjVS
Tape and Disk Sort/Merge, Program Number
5746-SMl is designed specifically for use
with a DOS/VS system.

To obtain an ASCII collated sort, the
system-name in the ASSIGN clause for the
sort work files should contain a C in the
organization field. The class field may be
specified as either UT or DA. (Since ASCII
support causes translation from ASCII to
EBCDIC on input, sort work files are not
restricted to tapes.)

Note that for an ASCII collated sort,
the buffer offset field is not permitted.

The ASCII collating sequence is listed
in the publication IBM DOS Full American
National Standard COBOL.

Logical records for files which are not
VSA~ files may be in one of four formats:
fixed-length (format F), variable-length
(format V) , undefined (format U), or
spanned (format S). All of these formats
are not supported for all access methods.
F-mode files must contain records of eaual
lengths. Files containing records of -
unequal lengths must be V-mode, S-mode, or
U-mode. Files containing logical records
that are longer than physical records must
be S-mode.

The record format is specified in the
RECORDING MODE clause in the Data Division.
If this clause is omitted, the compiler
determines the record format from the
record descriptions associated with the
file. If the file is to be blocked, the
BLOCK CONTAINS clause must be specified in
the Data Division.

rhe prime consideration in the selection
of a record format is the nature of the
file itself. The programmer knows the type
of input his program will receive and the
type of output it will produce. The
selection of a record format is based on
this knowledge as well as an understanding
of the type of input/output devices on
which the file is written and of the access
method used to read or write the file.

Coding considerations for non-fixed
length records are discussed in the chapter
"Table Handling Considerations."

FIXED-LENGTH (FOR MAr F) RECORDS

Format F records are fixed-length
records. The programmer specifies format F
records by including RECORDING MODE IS F in
the file description entry in the Data
Division. If the clause is omitted and
both of the following are true:

• All records in the file are the same
size

• BLOCK CONTAINS [integer-1 TO]
integer-~ ••• does not specify
integer-2 less than the length of the
maximum level-01 record

the compiler determines the recording mode
to be F. All records in the file are the
same size if there is only one record
description associated with the file and it
contains no OCCURS clauEe with the

RECORD FORMATS FOR NON-VSAM FILES

DEPENDING ON option, or if multiple record
descriptions are all the same length.

The number of logical records within a
block (blocking factor) is normally
constant for every block in the file. When
fixed-length records are blocked, the
programmer specifies the BLOCK CONTAINS
clause in the file description entry in the
Data Division.

In unblocked format F, the logical
record constitutes the block. The BLOCK
CONTAINS clause is unnecessary for
unblocked records.

Format F records are shown in Figure 46.
The optional control character, represented
by C, is used for stacker selection and
carriage control. When carriage control or
stacker selection is desired, the WRITE
statement with the ADVANCING or POSITIONING
option is used to write records on the
output file. In this case one character
position must be included as the first
character of the record. This position
will be automatically filled in with the
carriage control or stacker select
character. The carriage control character
never appears when the file is written on
the printer or punched on the card punch.

<

<

Logical Record
r--.~--------------------------'

I C Data I
~--~----------------------~

Blocked Records

Logical
Record

Logical
Record

--------Fixed Length

Logical
Record

---->

Unblocked Record

Logical Record

-------Fixed Length ------>

igure 46. Fixed-Length (Format F) Record

Record Formats for Non-VSAM Files 179

UNDEFINED (FORMAT U) RECORDS

Format U is provided to permit the
processing of any blocks that do not
conform to F or V formats. Format U
records are shown in Figure 47. The
optional control character C, as discussed
under "Fixed-Length (Format F) Records,"
may be used in each logical record.

The programmer specifies format U
records by including RECORDING MODE IS U in
the file description entry in the Data
Division. U-mode records may be specified
only for directly organized or standard
sequential files.

If the RECORDING MODE clause is omitted,
and BLOCK CONTAINS [integer-l TO]
integer-2 ••• does not specify integer-2
less than the maximum level-Ol record, the
compiler determines the recording mode to
be U if the file is directly organized and
one of the following conditions exist:

• The FD entry contains two or more
level-Ol descriptions of different
lengths.

• A record description contains an OCCURS
clause with the DEPENDING ON option.

• A RECORD CONTAINS clause specifies a
range of record lengths.

Each block on the external storage media
is treated as a logical record. There are
no record-length or block-length fields.

Note: When a READ INTO statement is used
for a U-mode file, the size of the longest
record for that file is used in the MOVE
statement. All other rules of the ~OVE
statement apply.

Logical Record

Data

Format U Record

Logical Record

L-_______________________________________~

igure 47. Undefined (Format U) Records

VARIABLE-LENGTH RECORDS

There are two types of variable length
record: D-format and V-format. AD-format
record is a variable-length record on an

180

ASCII tape file. D-format records are
processed in the same manner as V-format
records on tape files.

The programmer specifies format V
records by including RECORDING ~ODE IS V in
the file description entry in the Data
Division. V-mode records may only be
specified for standard sequential files.
If the RECORDING MODE clause is omitted and
BLOCK CONTAINS (integer-l TO] integer-2 •••
does not specify integer-2 less than the
maximum level-Ol record, the compiler
determines the recording mode to be V if
the file is standard sequential and one of
the following conditions exists:

• The FD entry contains two or more level
01 descriptions of different lengths.

• A record description contains an OCCUFS
clause with the DEPENDING ON option.

• A RECORD CONTAINS clause specifies a
range of record lengths.

V-mode records, unlike U-mode or F-mode
records, are preceded by fields containing
control information. These control fields
are illustrated in Figures 48 and 49.

The first four bytes of each block
contain control information (CC):

LL -- represents two bytes designating
the length of the block (including
the 'CC' field).

BB -- represents two bytes reserved for
system use.

The first four bytes of each logical
record contain control information (cc):

11 -- represents two bytes designating
the logical record length
(including the 'cc' field).

bb -- represents two bytes reserved for
system use.

For unblocked V mode records (see Figure
45) the data portion + CC + cc constitute
the block.

1 1
1 4 4 variable I
I<--bytes-><--bytes--><------bytes ------>1
I rl----~·--~i.----.i----~i----------------------,,'
I' LL EE I 11 I bb I Data II
I', ,~I ---.--J I
I I
I 'CC' 'cc' I
I I L-______________________________ __

Figure 48. Unblocked V-Mode Records

LL BB 11

1st
Logical Record

bb DATA-1

I 11

2nd
Logical Record

bb DATA-2 I 11

3rd
Logical Record

--,
bb DATA-3

~I __ ~~I~~~I~-=~~~~ __________ ~I ____ -LI ____ ~I __________ ~ __ ~~ ____ ~ ______ ~

~ ~

'CC'
(block control

bytes)
'cc'

{record control
bytes} L--___ --------------____________ -J

Figure 49. Blocked V-Mode Records

For blocked V-mode records (see Figure
49) the data portion of each record + the
cc of each record + CC constitute the
block.

The control bytes are automatically
provided when the file is written and are
not communicated to the programmer when the
file is read. Although they do not appear
in the description of the logical record
provided by the programmer, the compiler
will allocate input and output buffers
which are large enough to accomodate them.
When variable-length records are written on
unit record devices, control bytes are
neither printed nor punched. They appear,
however, on other external storage devices
as well as in buffer areas of storage.
V-mode records moved from an input buffer
to a working-storage area will be moved
without the control bytes~

Not~: When a READ INTO statement is used
for a V-mode file, the size of the longest
record for that file is used in the MOVE
statement. All other rules of the MOVE
statement apply.

Example 1:

Consider the following standard
sequential file consisting of unblocked
V-mode records:

FD VARIABLE-FILE-l
RECORDING ftODE IS V
BLOCK CONTAINS 35 TO 80 CHARACTERS
RECORD CONTAINS 27 TO 72 CHARACTERS
DATA RECORD IS VARIABLE-RECORD-1
LABEL RECORDS ARE STANDARD.

01 VARIABLE-RECORD-l.
05 FIELD-A PIC X (20) •
05 FIELD-B PIC 99.
05 FIELD-C OCCURS 1 TO 10 TIMES

DEPENDING ON
FIELD-B PIC 9 (5) •

The LABEL RECORDS clause is always
required. The DATA RECORD{S) clause is
never required. If the RECORDING MODE
clause is omitted, the compiler determines
the mode as V since the record associated
with VARIABLE-FILE-l varies in length
depending on the contents of FIELD-B. The
RECORD CONTAINS clause is never required.
The compiler determines record sizes from
the record description entries. Record
length calculations are affected by the
following:

• When the BLOCK CONTAINS clause with the
RECORDS option is used, the compiler
adds four bytes to the logical record
length and four more bytes to the block
length.

• When the BLOCK CONTAINS clause with the
CHARACTERS option is used, the
programmer must include each cc + CC in
the length calculation (see Figure 45) •
In the definition of VARIABLE-FILE-l,
the ELOCK CONTAINS clause specifies 8
more bytes than does the record
contains clause. Four of these bytes
are the logical record control bytes
and the other four are the block
control bytes.

Assumming that FIELD-B contains the t
value 02 for the first record of a file and
FIELD-B contains the value 03 for the
second record of the file, the first two
records will appear on an external storage
device and in buffer areas of storage as
shown in Figure 50.

If the file described in Example 1 had a
blocking factor of 2, the first two records
would appear on an external storage medium
as shown in Figure 51.

Record Formats for Non-VSAM Files 181

I 1st Block 2nd Block

: ,"""""- i I I i ~, i -:-=-; iii i ;:=:; i I I

II0040IBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-CI0045IBBIO041IbbIFIELD-AI03IFIELD-CIFIELD-CIFIELD-CI
I ' " I. " I I , I " " I

I
I~: Lengths appear in decimal notation for illustrative purposes.
I
I

Figure 50. Fields in Unblocked V-Mode Records

1st Record

----------~--~~------~
2nd Record

~~~=--------------~~----t Iii iii iii iii iii 

10081IBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-C10041IbbIFIELD-AI03IFIELD-CIFIELD-CIFIELD-C1 
I I I " I I I , I I 

Note: Lengths appear in decimal notation for illustrative purposes. 

igure 51. Fields in Blocked V-Mode Records 

Example 2: 

If VARI~BLE-FILE-2 is blocked, with 
space allocated for three records of 
maximum size per block, the following FD 
entry could be used when the file is 
created: 

FD VARIABLE-FILE-2 
RECORDING MODE IS V 
BLOCK CONTAINS 3 RECORDS 
RECORD CONTAINS 20 TO 100 CHARACTERS 
DATA RECORDS ARE VARIABLE-RECORD-l, 
VARIABLE-RECORD-2 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-1. 
OS FIElD-A PIC X (20) • 
05 FIElD-B PIC XCSO). 

01 VARIABLE-RECORD-2. 
05 FIELD-X PIC X (20) • 

As mentioned previously, the RECORDING 
MODE, RECORD CONTAINS, and DATA RECORDS 
clauses are unnecessary. By specifying 

182 

that each block contains three records, the 
programmer allows the compiler to provide 
space for three records of maximum size 
plus additional space for the required 
control bytes. Hence, 316 character 
positions are reserved by the compiler for 
each output buffer. If this size is other 
than the maximum, the BLOCK CONTAINS clause 
with the CHARACTERS option should be 
specified. 

Assuming that the first six records 
written are five 100-character records 
followed by one 20-character record, the 
first two blocks of VARIABLE-FILE-2 will 
appear on the external storage device as 
shown in Figure 52. 

The buffer for the second block is 
truncated after the sixth WRITE statement 
is executed since there is not enough space 
left for a maximum size record. Hence, 
even if the seventh WRITE to 
VARIABLE-FILE-2 is a 20-character record, 
it will appear as the first record in the 
third block. This situation can be avoided 
by using the APPLY WRITE-ONLY clause when 
creating files of variable-length blocked 
records. 



1st Block 

..- ~ --...... 
Iii iii i j iii i 

13161BBI1041bblDatal1041bblDatal1041bb iDatai 
It' " I I I I " I 

2nd Block 

.-- ~ --...... 
iii iii i j 

12361BBll041bblDatall041bbiDatal241bbiDatai 
, I I t I , I I 

Note: Lengths appear in decimal notation for illustrative purposes. 

Figure 52. First Two Blocks of VARIABLE-FILE-2 

APPLY WRITE-ONLY Clause 

The APPLY WRITE-ONLY clause is used to 
make optimum use of buffer and external 
storage space when creating a standard 
sequential file with blocked V-mode 
records. 

Suppose VARIABLE-FILE-2 is being created 
with the following FD entry: 

FD VARIABLE-FILE-2 
RECORDING MODE IS V 
BLOCK CONTAINS 316 CHARACTERS 
RECORD CONTAINS 20 TO 100 CHARACTERS 
DATA RECORDS ARE VARIABLE-RECORD-1, 
VARIABLE-RECORD-2 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-1. 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC X(80). 

01 VARIABLE-RECORD-2. 
05 FIELD-X PIC X (20) • 

The first three WRITE statements to the 
file create one 20-character record 
followed by two 100-character records. 
Without the APPLY WRITE-ONLY clause, the 
buffer is truncated after the third WRITE 
statement is executed, since the maximum 
size record no longer fits. The block is 
written as shown below: 

i , iii iii i , i 

12361bbl241bbiDatall041bbiDatall041bbiDatai 
I I " , I I I " J 

Using the APPLY WRITE-ONLY clause will 
cause a buffer to be truncated only when 
the next record does not fit in the buffer. 
That is, if the next three WRITE statements 
to the file specify VARIABLE-RECORD-2, the 
block will be created containing six 
logical records, as shown below: 

iii j iii i-----"T i i ~ 

13081bbl241bbiDatall041bbiDatai 1041bbiData ~ 
.\ 

Note: When using the APPLY WRITE-ONLY 
clause, records must not be constructed in 
buffer areas. An intermediate work area 
must be used with a WRITE FPOM statement. 

SPANNED (FORMAT S) RECORDS 

A spanned record is a logical record 
that may be contained in one or more 
physical blocks. Format S records may be 
specified for direct files and for standard 
sequential files assigned to magnetic tape 
or to mass storage devices. 

When creating files with S-mode records, 
if a record is larger than the rema1n1ng 
space in a block, a segment of the record 
is written to fill the block. The 
remainder of the record is stored in the 
next block or blocks, as required. 

When retrieving a file with S-mode 
records, only complete records are made 
available to the programmer. 

Spanned records are preceded by fields 
containing control information. Figure 53 
illustrates the control fields. 

BDF (Block Descriptor Field) : 

LL -- represents 2 bytes designating the 
length of the physical block 
(including the block descriptor 
field itself). 

BB -- represents 2 bytes reserved for 
system use. 

Record Formats for Non-VSAM Files 183 



SDF (Segment Descriptor Field) : 

11 -- represents 2 bytes designating the 
length of the record segment 
(including the segment descriptor 
field itself). 

bb -- represents 2 bytes reserved for 
system use. 

Note: There is only one block descriptor 
field at the beginning of each physical 
block. There is, however, one segment 
descriptor field for each record segment 
within the block. 

Each segment of a record in a block, 
even if it is the entire record, is 
preceded by a segment descriptor field. 
The segment descriptor field also indicates 
whether the segment is the first, the last, 
or an intermediate segment. Each block 
includes a block descriptor field. These 
fields are not described in the Data 
Division; provision is automatically made 
for them. These fields are not available 
to the programmer. 

A spanned blocked file may be described 
as a file composed of physical blocks of 
fixed length established by the programmer. 
The logical records may be either fixed or 
variable in length and that size may be 
smaller, equal to, or larger than the 
physical block size. There are no required 
relationships between logical records and 
physical block sizes. 

A spanned unblocked file may be 
described as a file composed of physical 
blocks each containing one logical record 
or one segment of a logical record. The 
logical records may be either fixed or 
variable in length. When the physical 
block contains one logical record, the 
length of the block is determined by the 
logical record size. When a logical record 
has to be segmented, the system always 
writes the largest physical block possible. 
The system segments the logical record when 
the entire logical record cannot fit on the 
track. 

Figure 54 is an illustration of blocked 
spanned records of SFILE. SFILE is 
described in the Data Division with the 
following file description entry: 

PD SFILE 
RECORD CONTAINS 250 CHARACTERS 
BLOCK CONTAINS 100 CHARACTERS 

Figure 54 also illustrates the concept 
of record segments. Note that the third 
block contains the last 50 bytes of REC-1 
and the first 50 bytes of REC-2. Such 
portions of logical records are called 
record segments. It is therefore correct 
to say that the third block contains the 
last segment of REC-1 and the first segment 
of REC-2. The first block contains the 
first segment of REC-1 and the second block 
contains an intermediate segment of REC-1. 

S-MODE CAPABILITIES 

Formatting a file in the S-mode allows 
the programmer to make the most efficient 
use of external storage while organizing 
data files with logical record lengths most 
suited to his needs. 

1. Physical record lengths can be 
designated in such a manner as to make 
the most efficient use of track 
capacities on mass storage devices. 

2. The programmer is not required to 
adjust logical record lengths to 
maximum physical record lengths and 
their device-dependent variants when 
designing his data files. 

3. The programmer has greater flexibility 
in transferring logical records across 
DASD types. 

Spanned record processing will support 
the 2400, 3410, 3420 tape series, the 2311, 
2314, 2319, 3330, and 3340 disk sto~age 
devices, and the 2321 data cell drive. 

<--4 bytes---> <--4 bytes--> <-----------------Variable bytes-------------------> 

LL BB 11 bb Data Record or Segment 
, I I I 

BDF SDF 

Figure 53. Control Fields of an S-Mode Record 

184 



<--------100 bytes-------> 

REC-1 G 

<--------100 bytes-------> 

REC-1 G 

<-50 bytes-> <-50 bytes-> 
--, 

REC-1 RBC-2 I 

1st Block 2nd Block 3rd Block 

Figure 54. One Logical Record Spanning Physical Blocks 

SEQUENTIALLY ORGANIZED S-MODE FILES ON TAPE 
OR MASS STORAGE DEVICES 

When the spanned format is used for 
DTFMT or DTFSD files, the logical records 
may be either fixed or variable in length 
and are complete-Iy independent of physical 
record length. A logical record may span 
physical records. A physical record may 
contain one or more logical records and/or 
segments of logical records. 

Source Language Considerations 

The programmer specifies S-mode by 
describing the file with the following 
clauses in the file description (FD) entry 
of his COBOL program: 

• BLOCK CONTAINS integer-2 CHARACTERS 

• RECORD CONTAINS [integer-1 TO] 
integer-2 CHARACTERS 

• RECORDING MODE IS S 

The size of the physical record must be 
specified using the BLOCK CONTAINS clause 
with the CHARACTERS option. Any block size 
may be specified. Block size is 
independent of logical record size. 

The size of the logical record may be 
specified by the RECORD CONTAINS clause. 
If this clause is omitted, the compiler 
will determine the maximum record size from 
the record descriptions under the FD. 

Format S may be specified by the 
RECORDING MODE IS S clause. If this clause 
is omitted, the compiler will set the 
recording mode to S if the BLOCK CONTAINS 
integer-2 CHARACTERS clause was specified 
and either: 

1. integer-2 is less than the largest 
fixed-length level-01 FD entry 

2. integer-2 is less than the maximum 
length of a variable level-01 FD entry 
(i.e., an entry containing one or more 

OCCURS clauses with the DEPENDING ON 
option). 

When the spanned recording mode is being 
used, each logical record is processed in a 
work area, not in the buffer. Logical 
records are always aligned on a double-word 
boundary. Therefore, the programmer is not 
required to add inter-record slack bytes 
for alignment purposes. 

Except for the APPLY WRITE-ONLY clause, 
all the options for a variable file apply 
to a spanned file. 

Processinq Sequentially Organized S-Mode 
Files 

Suppose a file has the following file 
description entry: 

FD SPAN-FILE 
BLOCK CONTAINS 100 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS DATAREC. 

01 DATAREC. 
05 FIELD-A PIC X(100). 
05 FIELD-B PIC X (50) • 

Figure 55 illustrates the first four 
blocks of SPAN-FILE as they would appear on 
external storage devices (i.e., tape or 
mass storage) or in buffer areas of virtual 
storage. 

Note: 

1. The RECORDING MODE clause is not 
specified~ The compiler determines 
the recording mode to be S since the 
block size is less than the record 
size. 

2. The length of each physical block is 
100 bytes, as specified in the BLOCK 
CONTAINS clause. All required control 
fields, as well as data, must be 
contained within these 100 bytes. 

3. No provision is made for the control 
fields within the level-01 entry 
DATAREC. 

Record Formats for Non-VSAM Files 185 



4 4 92 4 4 58 4 30 
<-bytes-><-bytes->< bytes -----------> <-bytes-><-bytes-><---bytes---><-bytes-><--bytes---> 
i i i i i • 

ILL IBB III bb DATAREC (1) bb DATAHEC (1) III bb IDITAREC (2) I 
! ! 

1st Block 2nd Block 

4 4 92 4 4 28 4 60 
<-bytes-><-bytes->< bytes ------------.> <-bytes-><-bytes-><--bytes---><-bytes-><---bytes---->I 
i i i r----.,.---r---,---.,.---------------------. i ' i ii, I 
ILL IBB III bb DATAREC (2) 

3rd Block 

Pigure 55. Pirst Pour Blocks of SPAN-PILE 

RECORDING ftODE IS V 

I 
I 
I 
I 150 150 
I '-v-' ~ 
I , R1 R2 
I 
I 
I 

r----..-----. 
G , 1S0 100 

R3 R4 

G 1S0 

R5 

ILL IBB III bb IDATAREC (2) 111 bb DATAREC (3) II 
, , 'I 

I 
4th Block I 

I 

RECORDING ftODE IS S 

150 150 50 G 100 100 150 

R1 R2 R3 R4 R5 

,~: The enclosed diagrams are for illustrative purposes only. Neither takes into 
,account the space required for control fields. 

Pigure 56. Advantage of S-Mode Records Over V-Mode Records 

The preceding discussion dealt with 
S-mode records which were larger than the 
physical blocks that contained them. It is 
also possible to have S-mode records which 
are equal to or smaller than the physical 
blocks that contain them. In such cases, 
the RECORDING MODE clause must specify S 
(if so desired) since the compiler cannot 
determine this by comparing block size and 
record size. 

One advantage of S-mode records over 
V-mode records is illustrated by a file 
with the following characteristics: 

1. RECORD CONTAINS SO TO 1S0 CHARACTERS 

2. BLOCK CONTAINS 3S0 CHARACTERS 

3. The first fiv€ records written are 
1S0, 150, 150, 100, and 150 characters 
in length. 

186 

For V-mode records, buffers are 
truncated if the next logical record is too 
large to be completely contained in the 
block (see Figure 56). This re~ults in 
more physical blocks and more inter-record 
gaps on the external storage device. 

Note: For V-mode records, buffer 
truncation occurs: 

1. When the maximum level-01 record is 
too large. 

2. If APPLY WRITE-ONLY or SAME RECORD 
AREA is specified and the actual 
logical record is too large. 

For S-mode records, all blocks are 350 
bytes long and records that are too large 
to fit entirely into a block will be 
segmented. This results in more efficient 
use of external storage devices since the 



number of inter-record gaps are minimized 
(Figure 56) • 

With the exception of the last block, 
the actual physical block size will always 
fall between the limits of specified block 
size and four bytes less than the specified 
block size, depending on whether or not the 
residual space of an incomplete block in 
the buffer is sufficient to add a segment 
length field and at least one byte of data. 
That is, specified block si2e - 4 $ actual 
block size $ specified block size. 

The last block may be short when an 
incomplete block remains in the buffer at 
CLOSE time. 

A second advantage of S-mode processing 
over that of V-mode is that the programmer 
is no longer limited to a record length 
that does not exceed the track capacity of 
the mass storage device selected. Records 
may span track, cylinders, and extents, but 
not volumes. 

DTFMT and DTFSD spanned records differ 
from other formats because of an allocation 
of an area of storage known as the "logical 
record area." If logical records span 
physical blocks, COBOL will use this 
logical record area to assemble complete 
logical records. If logical records do not 
span blocks (i.e., they are contained 
within a single physical block) the logical 
record area is not used. Regardless, it is 
complete logical records that are made 
available to the programmer. Both READ and 
WRITE statements should be thought of as 
manipulating complete log~cal records and 
not record segments. 

Sequential File 

DIRECTLY ORGANIZED S-MODE FILES 

When S-mode is used for a directly 
organized file, only unblocked records are 
permitted. Logical records may be either 
fixed or ~ariable in length. A logical 
record will span physical records if, and 
only if, it spans tracks. A physical 
record will contain only one logical record 
or a segment of a logical record, or 
segments of two logical records and/or 
whole logical records. Records may span 
tracks, cylinders, and extents, but not 
volumes. 

Source Language Considerations 

The programmer specifies S-mode by 
describing the file with the following 
clauses in the file description (FD) entry 
of his COBOL program: 

• BLOCK CONTAINS integer-2 CHARACTERS 

• RECORD CONTAINS [integer-l TO] integer-2 
CHARACTERS 

• RECORDING MODE IS S 

The size of a logical record may be 
specified by the RECORD CONTAINS clause. 
If this clause is omitted, the compiler 
will determine the maximum record size from 
the record descriptions under the FD. 

The spanned format may be specified by 
the RECORDING MODE IS S clause. If this 
clause is omitted, the compiler will set 
the recording mode to S if the BLOCK 
CONTAINS integer-2 CHARACTERS clause was 

Direct File 

R1 R2 R3 ••• 1st track ••• Rl G R2 G R3 

R3 ••• 2nd track ••• R3 

r-
R3 R4 ••• 3rd track ••• R3 G I R4 

L-

••• 4th track ••• R4 

Figure 57. Direct and Sequential Spanned Files on a Mass storage Device 

Record Formats for Non-VSAM Files 187 

t 



specified and integer-2 is less than the 
greatest logical record size. This is the 
only use of the BLOCK CONTAINS clause. It 
is otherwise treated as comments. 

The physical block size is determined by 
either: 

1. The logical record length, or 

2. The track capacity of the device being 
used. 

If, for example, the track capacity of a 
mass storage device is 3625 characters, any 
record smaller than 3625 charac~ers may be 
written as a single physical block. If a 
logical record is greater than 3625 
characters, the record is segmented. The 
first segment may be contained in a 
physical block of up to 3625 bytes, and the 
remaining segments must be contained in 
succeeding blocks. In oth~r words, a 
logical record will span physical blocks 
if, any only if, it spans tracks. 

Figure 57 illustrates four 
variable-length records (Rl, R2, R3, and 
R4) as they would appear in direct and 
sequential files on a mass storage device. 
In both cases, control fields have been 
omitted for illustrative purposes. For 
both files, assume: 

1. BLOCK CONTAINS 3625 CHARACTERS (track 
capacity = 3625) 

2. RECORD CONTAINS 500 TO 5000 CHARACTERS 

In the sequential file, each physical 
block is 3625 bytes in length and is 
completely filled with logical records. 
The file consists of three physical blocks, 
occupies three tracks, and contains no 
inter-record gaps. 

In the direct file, the physical blocks 
vary in length. Each block contains only 

188 

one logical record or one record segment. 
Logical record R3 spans physical blocks 
only because it spans tracks. The file 
consists of seven physical blocks, occupies 
more than three tracks, and contains three 
inter-record gaps. 

Processing Directly Organized S-Mode Files 

When processing directly organized 
files, there are two advantages spanned 
format has over the other record formats: 

1. Logical record lengths may exceed the 
length restriction of the track 
capacity of the mass storage device. 
If, for example, the track capacity of 
a mass storage device is 2000 bytes, 
the length of each logical record for 
formats other than spanned is, by 
necessity, restricted to the track 
capacity. 

Note: Even when the spanned format is 
used, the COBOL restriction on the 
length of logical records (i.e., a 
maximum length of 32,767 characters) 
must be adhered to. 

2. For formats other than spanned, only 
complete logical records can be 
written on any single track. This 
means that if a track has only 1000 
unoccupied bytes and the programmer 
attempts to add a record of 1100 bytes 
to this track, an INVALID KEY 
condition will occur. When the 
spanned format is used, a 1000 byte 
segment will be written on the 
specified track, and the remainder 
will be written on the next track. 
The segmenting is transparent to the 
programmer. 



PART III 

PROGRAMMING TECHNIQUES----------------------------------------------+. ~ 

USING THE REPORT WRITER FEATURE------------------------------------~. ~ 

TABLE HANDLING CONSIDERATIONS----------------------------------------.. ~ 
~ 

189 





This chapter describes techniques and 
hints for better COBOL programming. 

CODING CONSIDERATIONS FOR DOS/vS 

These suggestions will aid DOS/VS 
efficiency: 

• If a short subprogram is referenced 
only once or twice (and is not an 
exception condition routine), then its 
code should be incorporated in the 
calling program, if convenient. 

• Subprograms and frequently used 
subroutines should be loaded near the 
programs which use them. This can be 
done via linkage editor control cards. 

• Segmentation in many cases is no longer 
necessary or desirable. 

• Data items of constant value should be 
grouped together. Data items whose 
values vary during execution should 
also be grouped together and should be 
separate from those of constant value, 
if feasible. 

• FDs for files that will be opened at 
the same time should be grouped 
together. 

• The most frequently referenced data 
items should be placed in the beginning 
of the Working Storage Section. 

• The COBOL Procedure Division should be 
organized generally as follows: 

- All frequently used paragraphs or 
sections should be located near the 
routines that use them. 

- All infrequently used paragraphs or 
sections should be grouped together 
and apart from frequently used 
routines. The COUNT option can be 
used as an aid in this process. 

• Avoid initializing data areas until 
just before they are needed. 

• Reference data in the order in which it 
is stored. 

• Use the OPTIMIZE feature if possible. 

PROGRA~~ING TECHNIQUES 

Note: When OPT is in effect, the 
generated code is more suitable for 
running under VS, as the addressing 
scheme is designed to reduce possible 
page faults. 

Further, the procedure is divided into 
4K blocks, each of which is assigned a 
PBL. Since these blocks correspond to 
two pages each, the user may qet some 
idea of the inter-page relationships in 
his program (although the first is not 
page aligned). The statement range for 
each PBL is given on the compiler 
output listing. This should help the 
user rearrange his program if he so 
desires. 

• The ~EDEFINES clause should be used for 
its alternate grouping and alternate 
description capabilities rather than 
for merely saving space. Although it 
will save virtual space, it can lead to 
coding errors if not used carefully. 

GENERAL CONSIDERATIONS 

The COpy function should be used by an 
installation so that if a record format, 
for example, changes, each program does not 
need to be modified itself. Rather, the 
COpy library is updated and each program 
then recompiled. 

Use of this function can lead to 
standardization of naming conventions and 
ease of maintenance. 

SYNTAX CHECKING 

The first several compilations of a 
program should use the CSYNTAX or SYNTAX 
feature to save compilation time. 

Formatting the Source Program Listing 

The lister feature increases 
significantly the usability of the source 
program listing, not only by producing 
cross-reference information, but by 

Prograrr.~ing Techniques 191 



formatting the listing to aid logic 
tracing. There are four statements that 
can be coded in any or all of the four 
divisions of a source program: SKIP1, 
SKIP2, SKIP3, and EJECT. These statements 
provide the programmer with the ability to 
control the spacing of a source listing and 
thereby improve its readability. These 
statements should not be used when the 
lister feature is used. 

ENVIRONMENT DIVISION 

RESERVE Clause 

When using an additional buffer to 
process standard sequential or indexed 

192 

files, care must be taken to ensure that 
the buffer is filled before the execution 
of each WRITE or REWRITE statement. 

APPLY WRITE-ONLY Clause 

To make optimum use of buffer and 
external storage space allocated when 
creating a standard sequential file with 
blocked V-mode records, the programmer 
should use the APPLY WRITE-ONLY clause for 
the file. Using this clause causes a 
buffer to be truncated only when the next 
record does not fit in the buffer. (If 
APPLY WRITE-ONLY is not specified, the 
buffer is truncated when the maximum size 
record will not fit in the space remaining 
in the buffer.) 



DATA DIVISION 

OVERALL CONSIDERATIONS 

FD Entries 

File Description (FD) entries for the 
most active files should appear first, 
since the COBOL compiler assigns registers 
to files until it runs out of registers, 
and then reuses the last registers for all 
subsequent files. This does not apply when 
OPT is in effect, since in that case the 
compiler will determine-the frequency of 
usage and assign registers accordingly. 

Prefixes 

Assign a prefix to each level-Ol item in 
a program, and use this prefix on every 
subordinate item (except FILLER) to 
associate a file with its records and work 
areas. For example, MASTER is the prefix 
used here: 

FILE SECTION. 
FD ~illSTER-INPUT-FILE 

01 MASTER-INPUT-RECORD. 

WORKING-STORAGE SECTION. 
01 MASTER-WORK-AREA. 

05 MASTER-PAYROLL PICTURE 9(3). 
05 MASTER-SSNO PICTURE 9(9). 

If files or work areas have the same 
fields, use the prefix to distinguish 
between them. For example, if three files 
all have a date field, instead of DATE, 
DAT, and DA-TE, use MASTER-DATE, 
DETAIL-DATE, and REPORT-DATE. Using a 
unique prefix for each level-Ol item and 
all subordinate fields makes it easier for 
a programmer unfamiliar with the program to 
find fields in the program listing, and to 
know which fields are logically part of the 
same record or area. 

When using the MOVE statement with the 
CORRESPONDING option and referring to 
individual fields, redefine or rename 
"corresponding" names with the prefixed 
unique names. This technique eliminates 
excessive qualifying. For example: 

01 MST-WORK-AREA. 
05 SAME-NAMES. (***) 

10 LAST-NAME PIC ••• 
10 FIRST-NAME PIC ••• 
10 PAYROLL PIC ••• 

05 DIFF-NAMES REDEFINES SAME-NAMES. 
10 MST-LAST-NAME PIC ••• 
10 MST-FIRST-NAME PIC ••• 
10 MST-PAYROLL PIC ••• 

01 RPT-WORK-AREA. 
05 SAME-NAMES. (***) 

10 PAYROL~ PIC ••• 
10 FILLER PIC ••• 
10 FIRST-NAME PIC ••• 
10 FILLER PIC ••• 
10 LAST-NAME PIC ••• 

PROCEDURE DIVISION. 

IF MST-PAYROLL IS EQUAL TO HDQ-PAYROLL 
AND MST-LAST-NAME 
IS NOT EQUAL TO PRRV-LAST-NAME 
MOVE CORRESPONDING 
MST-WORK-AREA 
TO RPT-WORK-AREA. 

Note: Fields marked *** above must have 
exactly the same names for their 
subordinate fields to be considered 
"corresponding." The same names must not 
be the redefining ones or they will not be 
considered to correspond. 

Level Numbers 

The programmer should use widely 
incremented-level numbers such as 01, 05, 
10, 15, etc.~ instead of 01, 02, 03~ 04, 
etc., In order to allow space for future 
insertions of group levels. For 
readability, indent level numbers. (The 
lister feature does this automatically, 
even if the original source program does 
not follow such indenting practices.) 

Note that when using the SYMDMP option, 
level numbers appear "normalized" in the 
symbolic dump produced. For example, a 
group of data items described as: 

01 RECORDA. 
05 FIELD-A. 

10 FIELD-Al PIC X. 
10 FIELD-A2 PIC X. 

Programming Techniques 193 



will appear as follows in SYMDMP output: 

01 RECORDA ••• 
02 FIELD-A ••• 
03 FIELD-Al ••• 
03 FIELD-A2 ••• 

Use level number 88 for codes. Thus, if 
the codes must be changed, the "Procedure 
Division coding for tests need not be 
changed. 

FILE SECTION 

RECORD CONTAINS Clause 

The programmer should use the RECORD 
CONTAINS clause with the integer CHARACTERS 
option in order to save himself, as well as 
any future programmer, the task of counting 
the data record description positions. In 
addition, the compiler can the~ diagnose 
errors if the data record description 
conflicts with the RECORD CONTAINS clause. 

BLOCK CONTAINS Clause 

If a block prefix exists on an ASCII 
file and the BLOCK CONTAINS clause is used 
in the COBOL program, the length of the 
block prefix must be included in the BLOCK 
CONTAINS clause. 

WORKING-STORAGE SECTION 

Separate Modules 

In a large program, the programmer may 
wish to plan ahead for breaking the 
programs into separately compiled modules~ 
as follows: 

1. When using separate modules, an 
attempt should be made to combine 
entries "of each Working-storage 
Section into a single level-Ol record 
(or a single level-Ol record for each 
32K bytes). Logical record areas can 
be indicated by using level-02, -03, 
etc •. , entries. A CALL statement with 
the USING option is more efficient 
when a single item is passed than when 
many level-Ol and/or -77 items are 
passed. When this method is employed, 
mistakes are more easily avoided. 

1 C}U 

2. Areas which do not contain VALUE 
clauses should be separated from areas 
that do contain VALUE clauses. VALUE 
clauses (except for level-88 items) 
are invalid in the Linkage Section. 

3. When the Working-Storage Section 
consists of one level-Ol item without 
any VALUE clauses, the copy statement 
can easily be used to include the item 
as the description of a Linkage 
Section in a separately compiled 
module. 

4. See the chapter "Using the 
segmentation Feature" for information 
on how to modularize the Procedure 
Division of a COBOL program; VS coding 
considerations should also be taken 
into account. 

Locating the Working-Storage Section in 
Dumps 

If the SYMDMP option is not used for 
program debugging, a method of locating the 
Working-Storage Section of a program in 
object-time dumps is to include the two 
following statements as the first and last 
Working-Storage statements, respectively, 
in the program. 

77 FILLER PICTURE X(44), VALUE "PROGRAM 
XXXXXXXX WORKING-S~ORAGE BEGINS HERE". 

01 FILLER PICTURE X(42), VALUE "PROGRAM 
XXXXXXXX WORKING-STORAGE ENDS HERE". 

These two nonnumeric literals will 
appear in all dumps of the program, 
delimiting the Working-Storage Section. 
The program-name specified in the 
PROGRAM-ID clause should replace the 
XXXXXXXX in the literal. 

The location and length of 
Working-Storage is given in the compiler 
output when SYM, LISTX, or CLIST is in 
effect. 

REDEFINES Clause 

REUSING DATA AREAS: Virtual storage can be 
used more efficiently by writing different 
data descriptions for the same data area. 
For example, the coding that follows shows 
how the same area can be used as a wor~ 
area for the records of several input files 
that are not processed concurrently. 
caution should be exercised when using this 
procedure, as it can lead to programming 
errors. 



WORKING-STORAGE SECTION. 
01 WORK-AREA-FILE1. 

(largest record description for FILE1) 

01 WORK-AREA-FILE2 REDEFINES 
WORK-ARBA-FILE1. 

(largest record description for FILE2) 

ALTERNATE GROUPINGS AND DESCRIPTIONS: 
Program data can often be described more 
efficiently by providing alternate 
groupings or data descriptions for the same 
data. For example, a program references 
both a field and its subfields, each of 
which is more efficiently described with a 
different usage. This can be done by using 
the REDEFINES clause as follows: 

01 PAYROLL-RECORD. 
05 EMPLOYEE-RECORD PICTURE X(28). 
05 EMPLOYEE-FIELD REDEFINES 

EMPLOYEE-RECORD. 
10 NAME PICTURE X{24}. 
10 NUMBERX PICTURE S9(5) COMP. 

05 DATE-RECORD PICTURE X(lO). 

The following illustrates how a table 
(TABLEA) can be initialized by having 
different data descriptions for the same 
data: 

05 VALUE-A. 
10 A1 PICTURE S9(9) COMPUTATIONAL 

10 A2 PICTURE S9(9) COMPUTATIONAL . 
VALUE IS 1. 

VALUE IS ZEROES. t 
10 Al00 PICTURE S9(9} COMPUTATIONAL 

VALUE IS 99. 
05 TABLE! REDEFINES VALUE-A 

PICTURE S9(9) COMPUTATIONAL 
OCCURS 100 TIMES. 

Note: caution should be exercised when 
redefining a subscript. If the value of 
the redefining data item is changed in the 
Procedure Division, no new calculation for 
the subscript is performed. 

programming Techniques 195 



PICTURE Clause 

DECIMAL-POINT ALIGNMENT: Procedure 
Division operations are most efficient when 
the decimal positions of the data items 
involved are aligned. If they. are not, the 
compiler generates instructions to align 
the decimal positions before any operations 
involving the data items can be executed. 

Assume, for example, that a program 
contains the following instructions: 

WORKING-STORAGE SECTION. 
77 A PICTURE S999V99. 
77 B PICTURE S99V9. 

PROCEDURE DIVISION. 

ADD A TO B. 

Time and internal storage space are 
saved by defining Bas: 

77 B PICTURE S99V99. 

If it is inefficient to define B 
differently, a one-time conversion can be 
done, as explained in "Data Format 
Conversion" in this chapter. 

PIELDS OF UNEQUAL LENGTH: When a data item 
is moved to another data item of a 
different length, the following should be 
considered: 

• If the items are external decimal 
items, the compiler generates 
instructions to insert zeros in the 
high-order positions of the receiving 
field, when it is the larger. 

• If the items are nonnumeric, the 
compiler may generate instructions to 
insert spaces in the low-order 
positions of the receiving field (or 
the high-order positions if the 
JUSTIFIED RIGHT clause is specified). 
This generation of extra instructions 
can be avoided if the sending field is 
described with a length egual to or 
greater than the receiving field. 

SIGN USAGE: The presence or absence of a 
plus or minus sign in the description of an 
arithmetic field often can affect the 
efficiency of a program. The following 
paragraphs discuss some of the 
considerations. 

Decimal Items: The sign position in an 
internal or external decimal item can 
contain: 

195 

1. A plus or minus sign. If S is 
specified in the PICTURE clause, a 
plus or minus sign is inserted when 
either of the following conditions 
prevail: 

a. The item is in the Working-Storage 
Section and a VALUE clause has 
been specified. 

b. A value for the item is assigned 
as a result of an arithmetic 
operation during execution of the 
program. 

If an external decimal item is 
punched, printed, or displayed~ an 
overpunch will appear in the low-order 
digit. In EBCDIC, the configuration 
for low-order zeros normally is a 
nonprintable character. Low-order 
digits of positive values will be 
represented by one of the letters A 
through I (digits 1 through 9) ; 
low-order digits of negative values 
will be represented by one of the 
letters J through R (digits 1 through 
9) • 

2. A hexadecimal P. If S is not 
specified in the PICTURE clause, an P 
is inserted in the sign position when 
either of the following conditions 
prevail: 

a. The item is in the working-Storage 
section and a VALUE clause has 
been specified 

b. A value for the item is developed 
during the execution of the 
program. 

An F is treated as positive, but is 
not an overpunch. 

3. An invalid configuration. If an 
internal or external decimal item 
contains an invalid configuration in 
the sign position, and if the item is 
involved in a Procedure Division 
operation, the program will be 
abnormally terminated. 

Note: If the SIGN clause is used and it 
specifies that the sign is LEADING, more 
object code will be generated when that 
data item is used with a verb. The 
additional code is needed to move the sign 
character to the TRAILING position before 
performing the operation. 

Unsiqned items (items for which no S has 
been specified) are treated as absolute 
values. Whenever a value (signed or 
unsigned) is stored in or moved in an 



elementary move to an unsigned item, a 
hexadecimal F is stored in the sign 
position of the unsigned item. For 
example, if an arithmetic operation 
involves signed operands and an unsigned 
result field, compiler-generated code will 
insert an F in the sign position of the 
result field when the result is stored. 

For internal and external decimal items 
used as input, it is the programmer's 
responsibility to ensure that the input 
data is valid. The compiler does not 
generate a test to ensure that the 
configuration in the sign position is 
valid. 

WhEn a group item is being moved, the 
data is moved without regard to the level 
structure of the group items involved. The 
possibility exists that the configuration 
in the sign position of a subordinate 
numEric item may be destroyed. Therefore, 
caution should be exercised in moving group 
items with subordinate numeric fields or 
with other group operations such as READ or 
ACCEPT. 

USAGE Clause 

DATA FORMAT CONVERSION: Operations 
involving mixed, elementary numeric data 
formats require conversion to a common 
format. This usually means that additional 
storage is used and execution time is 
increased. The code generated must often 
move data to an internal work area, perform 
any necessary conversion, and then execute 
the indicated operation. Often, too, the 
result may have to be converted in the same 
way. Table 31 indicates when data 
conversion is necessary. 

If it is impractical to use the same 
data formats throughout a program, and if 
two data items of different formats are 
frequently used together, a one-time 
conversion can be effected. For example, 
if A is defined as a COMPUTATIONAL item and 
B as a COMPUTATIONAL-3 item, A can be moved 
to a work area that has been defined as 
COMPUTATIONAL-3. This move cau~es the data 
in A to be converted to COMPUTATIONAL-3. 
Whenever A and B are used in a Procedure 
Division operation, reference can be made 
to the work area rather than to A. When 
this technigue is used, the conversion is 
performed only once, instead of each time 
an operation is performed. 

Programming Techniques 197 



Table 31. Data Format Conversion (Part 1 of 2) 

I I 
I I 
I 1 Bytes 
IUsage 1 Required 
I I 
IDISPLAY 11 per digit 
I (external I (except for 
I decimal) I V) 
1 1 
I 1 
1 / 
1 I 
I 1 
I I 
/DISPLAY 11 per 
I (external I character 
1 floating 1 (except for 
I point) 
I 
ICO~P-3 
I (internal 
I decimal) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

COMP 
(binary) 

198 

J V) 
I 

1 per 2 
digits plus 
1 byte for 
lOW-order 
digit and 
sign 

2 if lSNS4 

4 if 5:5N:59 

8 if 10:5N:518 
where N is 
the number of 
9's in the 
picture 

I 
,Boundary I 
IAlignmentl 
IRequired I 
1 , 

Typical 
Osage 

, No IInput from 
I Icards, output 
I Ito cards, 
1 I listings 
I I 
I 1 
1 I 
I 1 
I I 
I No IInput from 

icards, output 
Ito cards, 
Ilistings 
I 

No Input to a 
report item 

Arithmetic 
fields 

Work areas 

/Halfword /Subscripting 
1 

Fullword IArithmetic 
/fields 

Fullword 1 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

converted 
I for 
,Arithmetic 
IOperations 
I 
, Yes 
1 
I 
I , , , 
I 
I 
I Yes 
1 
1 
I 
I 
Sometimes 
when a 
small 
CO~P-3 item 
is used 
with a 
small CO~P 
item 

Sometimes 
for both 
mixed and 
unmixed 
usages 

Special 
Characteristics 

~ay be used for numeric 
fields up to 18 digits 
long. 

Fields over 15 digits 
require extra instruc
tions if used in 
computations. 

Converted to CO~P-2 
format via COBOL library , 
subroutine. I 

1 
f 

Requires less space than 1 
DISPLAY. , 

Convenient form for 
decimal alignment. 

, 
I 
I 
I 

Can be used in arithmeticl 
computations without I 
conversion. I , 
Fields over 15 digits 1 
require a subroutine when I 
used in computations. I 

Rounding and testing for 
the ON SIZE ERROR 
condition are cumbersome 
if calculated result is 
greater than 9(9). 

Extra instructions are 
generated for computa
tions if the SYNCHRONIZED 
clause is not specified. 

Fields of over nine 
digits require additional 
handling. 

, 



Table 31. Data Format Conversion (Part 2 of 2) 

I I I Con verted 
I I I Bountary I I for 
I I Bytes IAlignmentl Typical IArithmetic 
IUsage I Required IRequired I Usage I Operations 

Special 
Characteristics 

r ---rl -----------~I--------~I-------------rl--------~r----------------------~ 
ICOMP-1 14 (short- Fullword lFractional I No Tends to produce less 

accurate results if more 
than 17 significant 
digits are reguired and 
if the exponent is 
large. -

I (internall precision) exponentiation I 
1 floatingl I 
I point} I I 
I I I 
I I I 
I I I 
I I I Extra instructions are 

generated for computa
tions if the SYNCHRONIZED 
clause is not specified. 

I I I 
I I I 
I I I 
1 I I 
I I I I Reguires floating-point 

feature. I I I I 
, I I I 
ICOMP-2 18 (long- I Double- I Fractional I 'No Same as COMP-1. 
I (internall precision) Iword lexponentiationl 
I floatingl I Iwhen addition-I 
I point) I I I al precision I 
I I I lis required I L _________ ~ ____________ ~ ________ ~ ______________ ~ _____________ ~ ___________________________ ~ 

The following seven cases show how data 
conversions are handled on mixed elementary 
items for names, data comparisions, and 
arithmetic operations. Moves without the 
CORRESPONDING option to and from group 
items, as well as comparisons involving 
group items, are done without conversion. 

Numeric DISPLAY to COMPUTATIONAL-3: 

To Move Data: Converts DISPLAY data to 
COMPUTATIONAL-3 data. 

To Compare Data: Converts DISPLAY data to 
COMPUTATIONAL-3 data. 

To Perform Arithmetic Operations: Converts 
DISPLAY data to COMPUTATIONAL-3 data. 

Numeric DISPLAY to COMPUTATIONAL: 

To Move Data: Converts DISPLAY data to 
COMPUTATIONAL-3 data and then to 
COMPUTATIONAL data. 

To Compare Data: Converts DISPLAY to 
COMPUTATIONAL or converts both DISPLAY and 
COMPUTATIONAL data to COMPUTATIONAL-3 data. 

To Perform Arithmetic Operations: Converts 
DISPLAI data to COMPUTATIONAL-3 or 
COMPUTATIONAL data. 

COMPUTATIONAL-3 to COMPUTATIONAL: 

To Move Data: Moves COMPUTATIONAL-3 data 
to a work area and then converts 
COMPUTATIONAL-3 data to COMPUTATIONAL data. 

To Compare Data: Converts COMPUTATIONAL 
data to COMPUTATIONAL-3 or vice versa, 
depending on the size of the field. 

To Perform Arithmetic Operations: Converts 
COMPUTATIONAL data to COMPUTATIONAL-3 or 
vice versa, depending on the size of the 
field. 

COKPUTATIONAL to COMPUTATIONAL-3: 

To Move Data: Converts COMPUTATIONAL data 
to COMPUTATIONAL-3 data in a work area, and 
then moves the work area. 

To Compare Data: Converts COMPUTATIONAL to 
COMPUTATIONAL-3 data or vice versa, 
depending on the size of the field. 

To Perform Arithmetic Operations: Converts 
COMPUTATIONAL to COMPUTATIONAL-3 data or 
vice versa, depending on the size of the 
field. 

Programminq Techniques 199 



COMPUTATIONAL to Numeric DISPLAY: 

To Move Data: Converts COMPUTATIONAL data 
to COMPUTATIONAL-3 data and then to DISPLAY 
data. 

To Compare Data: Converts DISPLAY to 
COMPUTATIONAL or both COMPUTATIONAL and 
DISPLAY data to COMPUTATIONAL-3 data, 
depending on the size of the field. 

To Perform Arithmetic Operations: 
Depending on the size of the field, 
converts DISPLAY data to COMPUTATIONAL 
data, or both DISPLAY and COMPUTATIONAL 
data to COMPUTATIONAL-3 data in which case 
the result is generated in a 
COMPUTATIONAL-3 work area and then 
converted and moved to the DISPLAY result 
field. 

COMPUTATIONAL-3 to Numeric DISPLAY: 

To Move Data: Converts COMPUTATIONAL-3 
data to DISPLAY data. 

To Compare Data: Converts DISPLAY data to 
COMPUTATIONAL-3 data. The result is 
generated in a COMPUTATIONAL-3 work area 
and is then converted and moved to the 
DISPLAY result field. 

Numeric DISPLAY to Numeric DISPLAY: 

To Perform Arithmetic Operations: Converts 
all DISPLAY data to COMPUTATIONAL-3 data. 
The result is generated in a 
COMPUTATIONAL-3 work area and is then 
converted to DISPLAY and moved to the 
DISPLAY result field. 

Internal Floating-point to Any Other: When 
an item described as COMPUTATIONAL-lor 
COMPUTATIONAL-2 (internal floating-point) 
is used in an operation with another data 
format, the item in the other data format 
is always converted to internal floating
point. If necessary, the internal 
floating-point result is then converted to 
the format of the other data item. 

SYNCHRONIZED Clause 

As illustrated in Table 31, 
COMPUTATIONAL, COMPUTATIONAL-1 and 
COMPUTATIONAL-2 items have specific 
boundary alignment requirements. To ensure 
correct alignment, either the programmer or 
the compiler may have to insert slack bytes 
or the compiler must generate extra 
instructions to move the item to a 
correctly aligned work area when reference 
is made to the item. 

200 

The SYNCHRONIZED clause may be used at 
the elementary level to specify the 
automatic alignment of elementary items on 
their proper boundaries, or at the 01 level 
to synchronize all elementary items within 
the group. For COMPUTATIONAL items, if the 
PICTURE is in the range of S9 through 
S9(4), the item is aligned on a halfword 
boundary. If the PICTURE is in the range 
of S9(5) through S9(18), the item is 
aligned on a fullword boundary. For 
COMPUTATIONAL-l items, the item is aligned 
on a fullword boundary. For 
COMPUTATIONAL-2 items, the item is aligned 
on a doubleword boundary. The SYNCHRONIZED 
clause and slack bytes are fully discussed 
in the publication IBM System/360 Disk 
Operating System: Full American National 
Standard COBOL. 

Special Considerations for DISPLAY and 
COMPUTATIONAL Fields 

NUMERIC DISPLAY FIELDS: Zeros are not 
inserted into numeric DISPLAY fields by the 
instruction set. When numeric DISPLAY data 
is moved, the compiler generates 
instructions that insert any necessary 
zeros into the DISPLAY fields. When 
numeric DISPLAY data is compared, and one 
field is smaller than the other, the 
compiler generates instructions to move the 
smaller item to a work area where zeros are 
inserted. 

COMPUTATIONAL FIELDS: COMPUTATIONAL fields 
can be aligned on either a halfword or 
fullword boundary_ If an operation 
involves COMPUTATIONAL fields of different 
lengths, the halfword field is 
automatically expanded to a fullword field. 
Therefore, mixed halfword and fullword 
fields require no additional operations. 

COMPUTATIONAL-l AND COMPUTATIONAL-2 FIELDS: 
If an arithmetic operation involves a 
mixture of short-precision and 
long-precision fields, the compiler 
generates instructions to expand the 
short-precision field to a long-precision 
field before the operation is executed. 

COMPUTATIONAL-3 FIELDS: The compiler does 
not have to generate instructions to insert 
high-order zeros for ADD and SUBTRACT 
statements that involve COMPUTATIONAL-3 
data. The zeros are inserted by the 
instruction set. 

Data Formats in the Computer 

The folloWing examples illustrate how 
the various COBOL data formats appear in 
the computer in EBCDIC (Extended 



Binary-Coded-Decimal Interchange Code) 
format. More detailed information about 
these data formats appear in the 
publication IBM System(370 principles of 
Q£eration. 

Numeric DISPLAY (External Decimal) : 
Suppose the value of an item is -1234, and 
its PICTURE and USAGE clauses are: 

PICTURE 9999 DISPLAY. 

or 

PICTURE 59999 DISPLAY. 

The item appears in the computer in the 
following forms, respectively: 

F1 F2 F3 I F4 
I I 

Byte 

F1 F2 F3 I D4 I 
I , 

Byte 

Hexadecimal F is treated arithmetically as 
positive; hexadecimal D represents a minus 
sign. 

COMPUTATIONAL-3 (Internal Decimal) : 
Suppose the value of an item is +1234, and 
its PICTURE and USAGE clauses are: 

PICTURE 9999 COMPUTATIONAL-3. 

or 

PICTURE 59999 COMPUTATIONAL-3. 

The item appears internally in the 
following forms, respectively: 

01 23 I 4F I 

Byte 

01 23 I 4C I 

Byte 

Hexadecimal F is treated arithmetically as 
positive; hexadecimal C represents a plus 
sign. 

Note: Since the low-order byte of an 
internal decimal number always contains a 
sign field, an item with an odd number of 
digits can be stored more efficiently than 
an item with an even number of digits. 

Note that a leading zero is inserted in the 
above example. 

COMPUTATIONAL (Binary): Suppose the value 
of an item is 1234, and its PICTURE and 
USAGE clauses are: 

PICTURE 59999 COMPUTATIONAL. 

The item appears internally in the 
following form: 

0000 0100 1101 0010 

'I 
Sign 

Position 

A 0 in the sign position indicates that 
the number is positive. Negative numbers 
are represented in two's complement form; 
thus, the sign position of a negative 
number will always contain a 1. 

For example -1234 would appear as 
follows: 

1111 1011 0010 1110 

.1 
S~gn 

Position 

Binary Item Manipulation: A binary item is 
allocated storage ranging from one halfword 
to two fullwords, depending on the number 
of 9's in its PICTURE. Table 32 is an 
illustration of how the compiler allocates 
this storage. Note that it is possible for 
a value larger than that implied by the 
PICTURE clause to be stored in the item. 
For example, PICTURE S9(4} implies a 
maximum value of 9,999, although it could 
actually hold the number 32,767. 

Because most binary items are 
manipulated according to their allotted 
storage capacity, the programmer can ignore 
this situation. For the following reasons, 
however, he must be careful of his data: 

1. When the ON SIZE ERROR option is used, 
the size test is made on the basis of 
the maximum value allowed by the 
picture of the result field. If a 
size error condition exists, the value 
of the result field is not altered and 
control is given to the imperative
statements specified by the error 
option. 

Programming Techniques 201 



Table 32. Relationship of PICTURE to Storage Allocation 

1 PICTURE Maximum Working Value Assigned Storage 
I 
IS9 through S9(4} 
I 

32,767 One half word 

IS9(5) through S9(9) 2,147,483,647 One fullword 
1 
IS9(10) through S9(18) 9,223,372,036,854,775,807 Two full words 

Note: If TRUNC option is used and data is moved to decimal receiving field, then 
maximum working value for S9(10) through S9(18) PICTU~E is 2,147,483,647,999,999,999. 

2. When a binary item is displayed or 
exhibited, the value used is a 
function of the number of 9's 
specified in the PICTURE clause. 

3. When the actual value of a positive 
number is significantly larger than 
its picture value, a value of 1 could 
appear in the sign position of the 
item, causing the item to be treated 
as a negative number in subsequent 
operations. 

Figure 58 illustrates three binary 
manipulations. In each case, the result 
field is an item described as PICTURE S9 
COMPUTATIONAL. One halfword of storage has 
been allocated, and no ON SIZE ERROR option 
is involved. Note that if the ON SIZE 
ERROR option had been specified, it would 
have been executed for cases Band C. 

COMPUTATIONAL-lor COMPUTATIONAL-2 
(Floating-point): Suppose the value of an 
item is +1234 and that its USAGE is 
COMPUTATIONAL-l, the item appears 
internally in the following form: 

101100 001110100 1101 0010 0000 0000 00001 
I I 

S 1 7 8 31 

S is the sign position of the number. 

r 
1 
1 , 
1 
I 
I 
I 
I 

o in the sign position indicates that 
the sign is plus. 

1 in the sign position indicates that 
the sign is minus. 

Hexadecimal Result of Decimal 
Case Binary Calculation Equivalent 

A 0008 8 

B OOOA 10 

C C350 50000 

Bits 1 through 7 are the exponent 
(characteristic) of the number. 

Bits 8 through 31 are the fraction 
(mantissa) of the number. 

This form of data is referred to as 
floating point. The example illustrates 
short-precision floating-point data 
(COMPUTATIONAL-l). In long-precision 
(COMPUTATIONAL-2), the fraction length is 
56 bits. (For a detailed explanation of 
floating-point representation, see the 
publication IBM System/370 Principles of 
Operation.) 

PROCEDURE DIVISION 

The Procedure Division of a program can 
often be made more efficient or easier to 
debug by using some of the techniques 
described below. 

MODOLARIZING THE PROCEDURE DIVISION 

Modularization involves organizing the 
Procedure Division into at least three 
functional levels: a main-line routine, 
processing subroutines, and input/output 
subroutines. When the Procedure Division 
is modularized, programs are easier to 
maintain and document. In addition, 
modularization makes it simple to break 
down a program using the segmentation 
feature, resulting in a more efficient 
segmented program. Virtual storage 
implications should be taken into 

Actual Decimal Value 
in Halfword of storage 

+8 

+10 

-15536 

DISPLAY or 
EXHIBIT Value 

8 

o 

6 

Figure 58. Treatment of Varying Values in a Data Item of PICTURE 59 

202 



consideration when rearranging the 
procedure Division. The COUNT option is 
useful in determining a rearrangement 
scheme. 

Main-Line Routine 

The main-line routine should be short 
and simple, and should contain all the 
major logical decisions of the program. 
This routine controls the order in which 
second-level subroutines are executed. All 
second-level subroutines should be invoked 
from the main-line routine by PERFORM 
statements. 

Processing Subroutines 

Processing subroutines should be broken 
down into as many functional levels as 
necessary, depending on the complexity of 
the program. These must be completely 
closed subroutines, with one entry point 
and one exit point. The entry point should 
be the first statement of the subroutine. 
The exit point should be the EXIT 
statement. Processing subroutines can 
PERFORM only lower level subroutines; 
return to the higher level subroutine 
(processing subroutine) must be 
accomplished by a GO TO statement that 
references the EXIT statement. 

Input/Output Subroutines 

The input/output subroutines should be 
the lowest level subroutines, since all 
higher level subroutines have access to 
them. There should be one OPEN subroutine 
and one CLOSE subroutine for the program, 
and only one functional (READ or WRITE) 
subroutine for each file. Having one READ 
or WRITE subroutine per file has several 
advantages: 

1. Coding can be added to count records 
on a file, transform blanks into 
zeros, check for 9' s padding" etc. 

2. Input and output files can be 
reformatted without changing the logic 
of the program. 

3. DEBUG statements can be added during 
testing to create input or to DISPLAY 
formatted output, instead of having to 
create a test file. 

OVERALL CONSIDERATIONS 

OPTIMIZE Option 

If the OPTIMIZE option is in effect. the 
number of procedure blocks in a program 
cannot exceed 255. A procedure block is 
equivalent to approximately 4096 bytes of 
Procedure Division code. 

If the COUNT option is in effect, the 
number of verb blocks in a program cannot 
exceed 32,767. A verb block consists of a 
set of verbs in which any verb (excluding 
ABEND) in the block is executed if and only 
if all verbs in the block are executed. 
The average program Procedure Division 
contains approximately three verbs per verb 
block. 

INTERMEDIATE RESULTS 

The compiler treats arithmetic 
statements as a succession of operations 
and sets up intermediate result fields to 
contain the results of these operations. 
Examples of such statements are the 
arithmetic statements and statements 
containing arithmetic expressions. See the 
appendix "Intermediate Results" in the 
publication IBM DOS Full American National 
Standard COBOL for a description of the 
algorithms used by the compiler to 
determine the number of places reserved for 
intermediate result fields,. 

Intermediate Results and Binary Data Items 

If an operation involving binary 
operands requires an intermediate result 
greater than 18 digits, the compiler 
converts the operands to internal decimal 
before performing the operation. If the 
result field is binary, the result will be 
converted from internal decimal to binary. 

If an intermediate result will not be 
greater than nine digits, the operation is 
performed most efficiently on binary data 
fields. 

Intermediate Results and COBOL Library 
Subroutines 

If a decimal multiplication operation 
requires an intermediate result greater 
than 30 digits, a COBOL library subroutine 

Programming Techniques 203 



is used to perform the multiplication. The 
result of this multiplication is then 
truncated to 30 digits. 

A COBOL library subroutine is used to 
perform division if: 

1. The divisor is equal to or greater 
than 15 digits. 

2. The length of the divisor plus the 
length of the dividend is greater than 
16 bytes. 

3. The scaled dividend is greater than 30 
digits. (A scaled dividend is a 
number that has been ITultiplied by a 
power of ten in order to obtain the 
desired number of decimal places in 
the quotient.) 

Intermediate Results Greater Than 30 Digits 

Whenever the number of digits in a 
decimal intermediate result is greater than 
30, the field is truncated to 30 digits. A 
warning message will be generated during 
compilation, and program flow will not be 
interrupted at execution time. This 
truncation may cause a result to be 
incorrect. 

If binary or internal decimal data is in 
agreement with its data description, no 
interrupt can occur because of an overflow 
condition in an intermediate result. This 
is due to the truncation described in the 
preceding paragraph. 

If the possibility exists that an 
intermediate result field may exceed 30 
digits, truncation can be avoided by the 
specification of floating-point operands 
(COMPUTATIONAL-lor COMPUTATIONAL-2); 
however, accuracy may not be maintained. 

Intermediate Results and Floating-point 
Data Items 

If a floating-point operand has an 
intermediate result field in which exponent 
overflow occurs, the job will be abnormally 
terminated. 

Regardless of how Band C are defined in 
the following statement, if A is a 
floating-point data item, no decimal places 
will be calculated in the intermediate 
result. 

204 

COMPUTE A B / C 

Intermediate Results and the ON SIZE ERROR 
Option 

The ON SIZE ERROR option applies only to 
the final calculated results and not to 
intermediate result fields. 

EXPONENTIATION 

When the exponent is not a i1teral, one 
of the following three subroutines is 
invoked, depending on the base and the 
exponent: 

1. If the base is not a floating-point 
item and the exponent is an integer 
item, a call to the subroutine 
ILBDxPRO is generated and the 
exponentiation is executed in packed 
decimal arithmetic. 

2. If the base is a floating-point iterr 
and the exponent is an integer item, a 
call to the subroutine ILBDGPWO is 
generated and the exponentiation is 
executed in floating-point arithmetic. 

3. If the exponent is a floating-point 
item or has a PCITURE specifying 
decimal places, a call to the 
subroutine ILEDFPWO is generated and 
the exponentiation is executed in 
floating-point arithmetic. 

When the exponent is an integer literal, 
one of the following applies: 

1. If the base is a floating-point item, 
a call to the subroutine ILBDGPWO is 
genera~ed and the exponentiation is 
executed in floating-point arithmetic. 

2. If the base is not a floating-point 
item, an in-line loop is generated to 
perform the exponentiation unless the 
maximum possible result exceeds 30 
digits, in which case a call to the 
subroutine ILBDXPRO is generated. In 
either case, the exponentiation is 
executed in packed decimal arithmetic. 

Optimization Based on Execution Freguency 

Additional optimization techniques may 
be us~d based on execution frequency 
statistics. These techniques are discussed 
in the chapter entitled "Execution 
Statistics n • 



PROCEDURE DIVISION STATEMENTS 

COMPUTE Statement 

The use of the COMPUTE statement 
generates more efficient code than does the 
nse of individual arithmetic statements, 
since the compiler can keep track of 
internal work areas and does not have to 
store the results of intermediate 
calculations. It is the programmer·s 
responsibility, however, to ensure that the 
data is defined with the level of 
significance required in the answer. 

Programming Techniques 204.1 





IF statement 

Nested and comoound IF statements should 
be avoided as the· logic is difficult to 
debug. 

MOVE Statement 

Performing a move operation for an item 
longer than 256 bytes requires the 
generation of more instructions than are 
required for a move operation for an item 
of 256 bytes or less. 

For fields longer than 512 bytes, a MOVE 
LONG (MVCL} instruction is generated unless 
the first byte of the receiving field is 
used as a byte of the sending field. In 
this case, the object-time subroutine 
ILEDVMOO is called to perform the move. 

When a MOVE statement with the 
CORRESPONDING option is executed, data 
items are considered as "corresponding" 
only if their respective data-names are the 
same, including all implied qualification 
up to, but not including, the data-names 
used in the MOVE statement itself. 

For example: 

01 AA 
05 BB 

10 CC 
10 DD 

05 FE 
10 FF 

01 XX 
05 BB 

10 CC 
10 DD 

05 YY 
10 FF 

The statement MOVE CORRESPONDING AA TO XX 
will result in moving CC, and DD, but not 
FF, since FF of BE does not correspond to 
FF of IY. 

The compiler assumes that the data being 
moved conforms to PICTURE and USAGE 
specifications. If it does not, dissimilar 
results will occasionally occur because of 
the different code generated for various 
sending and receiving fields. This fact is 
most apparent when the sending field is 
COMPUTATIONAL, the value in the item 
exceeds the number of digits specified in 
the PICTURE clause, and the option NOTRUNC 
is in effect. 

~: The other rules for MOVE 
CORRESPONDING, of course, must still be 
satisfied. 

NOTE Statement 

When the NOTE statement is the first 
statement in a paragraph, it will cause the 

whole paragraph to be treated as part of 
the NOTE. Programmer errors can be avoided 
by using the asterisk (*) in place of the 
NOTE statement. 

PERFORM Statement 

PERFORM is a useful statement if the 
programmer adheres to the following rules: 

1. Always execute the last statement of a 
series of routines being operated on 
by a PERFORM statement. When 
branching out of the routine, make 
sure control will eventually return to 
the last statement of the routine, 
which should be an EXIT statement. 
Although no code is generated, the 
EXIT statement allows a programmer to 
immediately recognize the extent of a 
series of routines within the range of 
a PERFORM statement. 

2. Always either PERFORM routine-name 
TERU routine-name-exit, or PERFORM 
section-name. A PERFORM 
paragraph-name can create problems for 
the programmer trying to maintain the 
program. For example, if one 
paragraph must be broken into two 
paragraphs, the programmer must 
examine every statement to determine 
whether this paragraph is within the 
ranqe of the PERFORM statement. As a 
result, all statements referencing the 
paragraph-name must be changed to 
PERFORM THRU statements. 

3. A PERFORM statement containing 
embedded PERFORMs or PERFORM VARYING 
with one or more AFTER options causes 
the compiler to generate complex code. 
If a series of simple PERFORM 
statements can accomplish the same 
function, the programmer would be wise 
to substitute these since more 
efficient code is generated. 

READ INTO AND WRITE FROM OPTIONS 

Always use READ INTO and WRITE FROM, and 
process all files in the Working-Storage 
Section for the following reasons: 

1. Debugging is much simpler. 
Working-Storage areas are easier to 
locate in a dump than are buffer 
areas. And, if files are blocked, it 
is much easier to determine which 
record in a block was being processed 
when the abnormal termination 
occurred. 

Programming Techniques 205 



2. Trying to access a record-area after 
the AT END condition has occurred (for 
example, AT END !OVE HIGH-VALUE TO 
INPUT-RECORD) can cause problems if 
the record area is defined only in the 
File Section. 

Note: The programmer should be aware that 
additional time is used to execute the move 
operation involved in each READ INTO or 
WRITE FRO! instruction. 

When a READ INTO statement is used for a 
V-mode or O-mode file, the size of the 

206 

longest record for that file is used in the 
!OVE statement. All other rules of the 
MOVE statement apply_ 

TRANSFORM Statement 

The TRANSFORM statement generates more 
efficient code than the EXAMINE REPLACING 
BY statement when only one character is 
being transformed. The TRANSFORM 
statement, however, uses a 256-byte table. 



To use the Sort Feature, statements are 
written in the COBOL source program. These 
statements are described in IBM DOS Full 
Affierican National Standard COBOL. The 
Sort/Merge publications listed in the 
Preface of this manual contain information 
on the Sort/Merge feature. 

When a SORT or MERGE statement is used 
in a program, the compiler generates 
linkages between the program, modules in 
the subroutine library, and the Sort/Merge 
program. The name of Sort/Merge called by 
COBOL is "SORT" and the user must include 
the proper one on the option. 

Depending on the features specified and 
devices to be used by Sort/Merge, different 
Sort/Merge products should be used: 

Feature 
VSAM 
MERGE 
ASCII-Collated Sort 
Numeric Sort keys with 

Sign in the form of 
leading overpunch or 
separate character. 

3330/3333 Sort Work 
files 

3340 Sort Work files 
3400 Sort Work files 
2311 Sort work files 

Product 
Reguirement 
5746-SM1 
5746-SM1 
5743-SM1,5746-SM1 
5743-SM1,5746-SM1 

5743-SM1,5746-SMl 

5746-SMl 
5743-SM1,5746-SMl 
SM-483,5743-SMl 

The program product DOS/vS Sort/Merge, 
5746-SM1, is designed specifically for use 
with DOS/VS. 

Otherwise, IBM DOS Tape and Disk 
Sort/Merge, 360N-SM-483, can be used. 

Additional job control statements must 
be included in the execution step of the 
job to describe the files used by the sort 
program. These statements are described 
below i'n "Sort Job Control Requirements." 

Note: The Checkpoint/Restart Feature can 
be activated during a sorting operation by 
specifying the RERUN statement. 

SORT/MERGE JOB CONTROL,REQUIREMENTS 

Three types of files can be defined for 
the Sort program in the execution job step: 
input, output, and work. Two types of 
files can be defined for the Merge program 
in the execution job step: input and 
output. 

USING THE SORT/MERGE FEATURE 

SORT INPUT AND OUTPUT CONTROL STAT~lENTS 

When the USING and/or GIVING options are 
specifiedw the compiler generates dummy 
Input and/or Output Procedures. Hence, the 
job control requirements for files named as 
operands of USING and GIVING are the same 
as those for files used as input to or 
output from the sorting operation in these 
procedures. 

The following job control statements are 
required for files used as input to or 
output from the sorting operation: 

ASSGN 

or 

or 

or 

followed by 

VOL 
TPLAB 

VOL 
DLAB 
XTENT 

DLBL 
EXTENT 

TLBL 

The symbolic unit to which each sort 
input or output file is assigned in the 
source language ASSIGN clause is specified. 
in an ASSGN control statement. 

Note: ASSGN control statements are 
required only if the input/output devices 
used in an application have not been 
previously assigned the appropriate 
symbolic names. 

If an input file contains standard 
labels, a TLBL or DLBL (or VOL and TPLAB or 
VOL and DLAB) statement(s) is required. 
The symbolic name of the device from which 
the input file is to be read must also be 
included on this statement. 

One EXTENT control statement is required 
to define the limits of each area of a mass 
storage device from which an input file 

Using the Sort/Merge Feature 207 



will be read. EXTENT statements must 
include the symbolic unit name of the 
device containing the extent. 

If the output file is to use standard 
labels, a TLBL or DLBL statement is 
required. 

One EXTENT control statement must be 
used to define the limits of each area of a 
mass storage device onto which the output 
file is written. The symbolic name of the 
output unit must appear on this card. 

Note: Because the USING and GIVING options 
generate dummy input and/or Output 
procedures, the rules on pooling of files 
in the Sort/Merge Programmer's Guide 
referenced above do not apply. No pooling 
of Sort input, output, and work files is 
allowed. 

SORT WORK FILE CONTROL STATEMENTS 

The Sort program requires at least one 
mass storage unit or three tape units as an 
intermediate sort work file. The symbolic 
units to which this file is assigned are 
normally consecutively numbered beginning 
with SYS001. Intermediate storage may be 
assigned on the following devices: 

• IBM 2400 Series Magnetic Tape Units 

• IBM 3400 Series Magnetic Tape Units 1 

• IBM 2311 Direct-Access Storage Device 

• IBM 2314/2319 Direct-Access storage 
Facility 

• IBM 3330/3333 Direct-Access Storage 
Facility1. 

• IBM 3340 Direct-Access storage 
Facility 1 

Note: When variable-length or 
redefined-length records are being sorted, 
sort work files must not be assigned to 
7-track tapes. 7-track tape work files can 
only be used to sort records whose keys are 
packed decimal or binary. 

Device types may not be mixed; i.e., 
work units for a particular sort operation 
must all be of the same type. 

If spanned records are being sorted and 
mass storage devices are being used as sort 

10nly supported by the DOS Sort/Merge 
Program Product" Program Number 5743-SMl 
or the DOS/VS Sort/Merge Program Product" 
Program Number 5146-SMl (see above). 

... ,,,, 
-,vO 

work files, it is the programrr,er's 
responsibility to assign these work files 
to devices whose track sizes are larger 
than the logical record sizes of the 
records being sorted. A spanned record 
that is larger than the available track 
size can be sorted by assigning the work 
files to magnetic tape. 

If a work unit is to use standard 
labels, a TLBL or DLBL control statement is 
required. The filename entry on these 
statements must be SORTWKl through SORTWKn. 
The symbolic unit names assigned to the 
work areas to be allocated (SYS001, SYS002, 
etc.) must appear on these cards. 

One EXTENT control statement must be 
included to define each work area on a mass 
storage device. The total work area 
required may be divided into as many as 
eight extents, which would require eight 
EXTENT control statements. when code SD is 
specified on the DLBL card, symbolic unit 
names on these statements must be in 
consecutive order (SYS001, SYS002, etc.). 
If SORT-OPTION is specified, the symbolic 
unit names must be in the same order as 
specified on SORTWK. 

Amount of Intermediate storage Required 

When intermediate storage is assigned on 
a mass storage unit. at least twice the 
amount required to hold all input records 
should be assigned. This area may consist 
of from one to eight extents, and the 
extents may be assigned on no more than 
eight devices. 

If tape intermediate storage is used, at 
least the minimum number of units (three) 
must be assigned. The input file can be as 
large as the number of records that can be 
written on one full reel of tape. 
Assigning more than three intermediate 
storage tape drives does not increase the 
maximum input file size, but does improve 
performance. 

Improving Performance 

Performance increases significantly if 
50K of real storage is available for 
execution of the Sort program. At the lOOK 
level, the performance is very high. If 
insufficient virtual storage is available, 
the Sort/Merge program will issue a 
message: 

7054A "INSUFFICIENT CORE" 



SORT-OPTION Clause 

The "SORT-OPTION" clause is a means of 
specifying the options that have been 
selected for the associated sort/merge 
operation that cannot be specified via the 
SORT special registers. The format of the 
contents of the data-name is shown in 
Figure 58.1. This corresponds to the 
SORT/MERGE option statement. For more 
details on specific options for SORT, see 
IBM DOS/VS Sort/Merge Programmer's Guide, 
Order No. SC33-4028. 

Note: The COBOL-SORT interface does not 
allow any preceding blanks in front of the 
"SORT-OPTION II clause. One and only one 
blank must follow the option KEyvJORD. 

r-----------------------------------------, 
OPTION I 

[

PRINT ] 
PRINT=NONE 
PRINT=ALL 
PRINT=CRITICAL 

~, LABEL= ( , , WORK) ] 

[ • STORAGE= ~ ~~. VIRT) {J 
( (nK,VIRT)~ 

[,ALTWKJ [,ERASE] 

[
, ROUTE=LST] 
, ROUTE=LOG 

I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

[
, SORTWK=work ] I 
,SORTWK=(work1 ,··.work) J L _________________________________________ J 

Figure 58.1. OPTION Control Statement to 
SORT/MERGE 

PRINT Option 

[

PRINT ] 
PRINT=NONE 
PRINT=ALL 
PRINT=CRITICAL 

PRINT and PRINT=ALL specify that all 
messages are to be printed by the 
sort/merge program. This includes error 
and end-of-job messages~ control card 
information, various size calculations, and 
other informative messages. 

PRINT=NONE specifies that no messages 
are to be printed by the sort/merge 
program. This parameter is useful if you 
have no alternate message device and do not 
want messages listed with other printed 
output. A message device need not be 
assigned. 

PRINT=CRITICAL specifies that only 
messages critical to the sort/rr.erge 
program's operation are to be printed. 
These are error messages resulting from 
conditions that can cause program 
termination. For more details cn these 
conditions and messages, refer to IBM 
DOS/vS Sort/Merge Programmer's Guide; Order 
No. SC33-4028. 

Note: PRINT=ALL is assumed until the 
OPTION statement is read, therefore, if 
PRINT=NONE or PRINT=CRITICAL will be used, 
the OPTION statement should precede all 
others. 

LABEL Option 

[LAEEL= (, ,work)] 

This operand specifies the type of 
labels associated with the work files. The 
two label types are: 

S - standard labels 
U - unlabeled 

The default is S, standard labels. 

Work must be replaced by S or U. This 
operand is required if the OPTION statement 
is specified, and unlabeled work files are 
used. If the operand is omitted, standard 
labels are assumed for all files. 

When standard labels are used, the 
sort/merge program uses the DOS/vS system 
facilities to process these labels. 
Unlabeled tape files are processed by the 
sort/merge program. No user programming is 
required. 

STORAGE Option 

[ , STORAGE={~~' VIRT) {J (nK,VIRT)~ 
This option is required to specify to 

the sort/merge program how much storage to 
use and whether it can fix pages. 

[
STORAGE=n ] 
STORAGE=(n,VIRT) 

n specifies the amount of storage to be 
made available to sort/merge (together with 
its user routines). n can be specified 
either as a decimal number of bytes, or as 
a decimal number of K (1024 bytes). 

Using the Sort/Merge Feature 208.1 



The default is the value of the SIZE 
parameter on the EXEC job control 
statement. If both SIZE and STORAGE are 
specified, the lower value is taken. If 
neither is specified, the default is the 
partition size or the required size 
calculated by sort/merge (but at least 
64K), whichever is smaller. The sort/mergE 
program terminates if n is less than 16K 
bytes. If n is greater than the partition 
size, it is ignored. 

If the sort/merge prograrr. is invoked 
from another program, the defaults are 
calculated in a similar way, but the value 
of the SIZE parameter and the partition 
size are adjusted downwards by the 
difference between the address of the 
sort/merge load point and the beginning 
address of the partition. 

VIRT 

If VIRT is specified, the sort/merge 
program will not attempt to fix pages when 
running in virtual mode. It may be 
necessary to specify VIRT to prevent 
interference with other jobs running 
simultaneously, or to allow a user-written 
routine to fix pages. VIRT should be 
avoided wherever possible since it has an 
unfavorable effect on sort/merge 
performance. VIRT is ignored when the 
sort/merge program is running in real mode. 
The value in SORT-CORE-SIZE will be ignored 
if the OPTION clause is specified. 

ALTWK Option 

ALTWK specifies an alternate work drive 
(tape only) in a sorting job. This doubles 
the maximum input file size allowed. The 
address of the alternate device must be 
different from the address of all other 
devices used in the job. 

ERASE Option 

ERASE specifies that work data sets used 
during a sorting operation are to be erased 
at the end of the job. It is ignored if 
2400-series tapes are used for work areas. 
If the sort operation terminates 
abnormally, 

• ERASE will be performed unless the 
checkpoint facility has been specified; 

• if ERASE is performed, and if a 
workfile has been pooled with output, 
the output file will also be erased. 

208.2 

Note that the sort program does not close 
work data sets, even when terminating 
normally. 

ROUTE Option 

[
,ROUTE=LST] 
, ROUTE=LOG 

,ROUTE=LST specifies that messages are 
to be routed to the SYSLST file by the 
sort/merge program. Messages requiring 
operator intervention will also be printed 
on SYSLOG if allocated to a DOS/VS 
supported console device. 

,ROUTE=LOG specified that messages are 
to be routed to the console. 

Note: The default is assumed until the 
OPTION card has been read. 

SORTWK Option 

[
,SORTWK=work ] 
,SORTWK=(work1 ,.·.work) 

This operand specifies the logical unit 
numbers associated with the work files. 
The param~ters within parentheses must be 
replaced by symbolic unit numbers of a 
maximum of three significant digits from 1 
to 221, or by a comma. When a comma is 
coded, or if the operand is orritted, the 
sort program will use the default 
assignment. 

At least one blank must follow the last 
operand. 

SORT-OPTION Clause Examples 

SORT-OPTION is SRTOPTN where SRTOPTN is 
defined in working-storage section. At 
entry to SORT/MERGE, the contents of 
SRTOPTN is as follows. 

Example 1: 

OPTION PRINT=ALL,STORAGE=26384,LABEL=("U) 

All messages are requested, the virtual 
storage available to the sort/merge program 
is 26,384 bytes, and the work volume is 
unlabeled. 



Example 2: 

OPTION STORAGE=32K,ERASE,ROUTE=LST, 
SORTWK=(005,006) 

The PRINT option is not specified, so 
all messages will be printed by default. 
The storage available to the sort/merge 
program is 32K bytes. Standard labels, by 
default, are assumed for all files. The 
data sets used by sort are to be erased on 
completion of the sort operation. All 
messages are to be routed to the printer. 
The logical numbers of the work files are 
SYS005 and SYS006. 

Examole 3: 

OPTION SORTWK=(O 10,11,12,,14,15),ALTWK 

1. Assume work=3 (specified on the SELECT 
statement associated with the SD 
file): then, using M from Figure 58.2 
(M=3) since, in this example. no 
overide for the alternate work unit is 
specified, allocate as follows: 

SYS010, SYS011 and SYS012 are the 
logical unit numbers of the work 
files. SYS004 is the logical unit for 
the alternate work device by default. 
SYS(M+1)=SYS(3+1)=SYS004. 

SYS014 and SYS015 are not used in 
this application since WORK=3. 

This example shows how the values 
interact. The example may be 
understood as showing a sort operation 
which was set up to run with five work 
files, but which for this particular 
run, has only three work files. (Note 
the assumption that work=3.) 

2. Assume WORK=5, then 

SYS010, SYSOll. SYS012, SYS004, and 
SYS014 are the logical unit numbers of 
the work files. SYS015 is the logical 
unit for the alternate device. 

Example 4: 

A convenient way to specify the OPTION 
card at execution time is to use the card 
as a data card on SYSIPT and in the program 
specify 

SORT-OPTION IS EXEC-SORT 

ACCE~T EXEC-SORT FROM SYSIPT. 

.OUTPUT FILE STATEMENTS 

The TLBL or DLBL statement file-name 
must be SORTOUT. Multivolume and/or 
multi extent output on disk is accomplished 
by using DOS/VS standards: one DLBL card 
is supplied for the entire file followed by 
one EXTENT card for each separate extent 
that the file occupies on the disk pack or 
packs. Where the cutput file is a 
direct-access multiextent file, only the 
first EXTENT statement need contain the 
specified or defaulted symbolic unit name 
for the output file. Other EXTENT 
statements may specify any valid symbolic 
unit name. Figure 58.2 gives the 
file-names and default symbolic unit names 
in the sort/merge program. 

r-------------T--------T------------------, 
IUse of Device I Filename I Symbolic Unit Name I 
r-------------+--------+------------------1 
I Work ISORTWK1 I SYS001 I 
I I I I 
I I I I 
I I I I 
I ISORTWK9 I SYS(M) I 
r-------------+--------+------------------~ 
I ALTWK ISORTALT I SYS(M+1) I 
~-------------i--------i------------------i 
!M=the number of work files, as specified ! 
I in the SELECT statement for the SD ! 
I file. I 
l _________________________________________ J 

Figure 58.2. File Name and Default 
Symbolic Unit Names 

Using the Sort/Merge Feature 208.3 



r-----------T------------------------------------T--------------------------------------, 
I Statement I Operands I comments I 
~-----------+------------------------------------+--------------------------------------~ 
I OPTION I PRINT={ALLINONE)CRITICAL} or PRINT I Default=ALL I 
I ~------------------------------------+--------------------------------------~ 
I I STORAGE=nl (n,VIRT) I (nK, •••• ) I Default. See discussion. I 
I ~------------------------------------+--------------------------------------~ 
I I LABEL=("work) I Default=standard labels I 
I ~------------------------------------+--------------------------------------1 
J J ALTWK J I 
I ~------------------------------------+--------------------------------------~ 
I I ERASE I I 
I ~------------------------------------+--------------------------------------~ 
I I ROUTE={LSTILOG} I Default PhO msg on printer and I 
I I I console and Phl-3 on console. I 
I ~------------------------------------t--------------------------------------~ 
i i {'WOrk 1. '} i I I I SORTWK= I Default=(1,2, ••• m) I 
I I (work1.,. ••• work ) I I L ___________ ~ ____________________________________ ~ ______________________________________ J 

Figure 58.3. SUMMARY OF SORT-OPTION Operands 

2Q8~U 



SORT DIAGNOSTIC MESSAGES 

The messages generated by the sort/Merge 
Feature are listed in the sort publications 
referenced in the preface. 

LINKAGE WITH THE SORT/MERGE FEATURE 

To initiate a sort or merge operation, 
the COBOL object program includes the 
object time subroutines ILBDSRTO and 
ILBDMRGO and transfers control to them. 

If the INPUT PROCEDURE option of the 
SORT statement is specified in the source 
program, exit E15 of the sort~erge program 
is used. At this exit, the record released 
by the programmer is passed to the 
Sort/Merge program. Since a dummy Input 
Procedure will be generated by the compiler 
when the USING option is specified, records 
in the USING file are also passed to the 
Sort/Merge program at exit E15. Records in 
the USING file of a Merge operation are 
passed at exit E32. 

If the OUTPUT PROCEDURE option of the 
SORT statement is specified, exit E35 of 
thE sort/Merge program is used. At this 
exit, the record returned by the sort/Merge 
program is passed to the programmer. Since 
a dummy Output Procedure is generated by 
the compiler when the GIVING option is 
specified, records are also returned at 
exit E35 and written on this file. Exit 
E32 is used for the output procedure option 
of the MERGE statement. 

Completion Codes 

The Sort/Merge program returns a 
completion code upon termination and this 
code is stored in the COBOL special 
register SORT-RETURN. The codes are: 

o -- Successful completion of 
sort/Merge 

02 Invalid OPEN -- USING file 

04 Permanent I/O error -- USING file 

06 Invalid OPEN -- GIVING file 

08 Permanent I/O error 
file 

GIVING 

10 Boundary violation -- GIVING file 

12 Duplicate or out of seguence key 
-- GIVING file 

16 -- Unsuccessful completion of 
Sort/Merge 

successful Completion: When a sort/Merge 
application has been successfully executed, 
a completion code of zero is returned and 
the sort operation terminates. 

Unsuccessful Completion: If the Sort 
program encounters an error during 
execution that will not allow it to 
complete successfully, it returns a 
completion code of 16 and terminates. (A 
possible error is an uncorrectable 
input/output error.) The sort publications 
contain a detailed description of the 
conditions under which this termination 
will occur. 

The user may test the SORT-RETURN 
register for successful termination of the 
sort operation, as shown in the following 
example: 

SORT SALES-RECORDS ON ASCENDING KEY, 
CUSTOMER-NUMBER, DESCENDING KEY DATE, 
USING FN-l, GIVING FN-2. 

IF SORT-RETURN NOT EQUAL TO ZERO, DISPLAY 
"SORT UNSUCCESSFUL" UPON CONSOLE, STOP 
RUN. 

Cataloging a Sort Program 

When the CATAL option is used to catalog 
a sort program, the following should be 
observed: 

• To avoid duplicate names when selecting 
a catalog name for his program, the 
programmer must be aware of the naming 
convention used by the compiler to 
generate the name of the dummy phase 
into which the phases of the Sort/~erge 
program will subsequently be loaded. 

Naminq Convention: The compiler generates 
the phase card for the dummy phase using 
the following convention: 

• If the PROGRAM-ID name is 6, 7, or 8 
characters in length, the dummy phase 
name consists of the first 6 characters 
plus 2 zero characters. 

• If the PROGRAM-ID name is less than 6 
characters in length, the name is 
padded with zeros to 8 characters. 

Using the Sort/Merge Feature 209 



• Since the system expects the first 
character of PROGRAM-ID to be 
alphabetic, the first character, if 
numeric, is converted as follows: 

o -> J 
1-9 -> A-I 

The hyphen is converted to zero if it 
appears as the second through eighth 
character. 

CHECKPOINT/RESTART DURING A SORT 

"l.'ne Checkpoint/Restart Feature is 
available to the programmer using the COBOL 
SORT statement. The programmer uses the 
RERUN clause to specify that checkpoints 
should be taken during program execution. 
The control statement requirements for 
taking a checkpoint are discussed in the 
section entitled "Program Checkout." 
Checkpoint/Restart is not available during 
a merge operation. 

The system-name specified in the RERUN 
clause as the sort checkpoint device must 
not be the same as any system-name used in 

2iO 

the source language ASSIGN clause, bu~ 
follows the same rules of formation. 

The RERUN clause is fully described in 
the publication IBM DOS Full American 
National Standard COBOL. 

USING SORT IN A MULTIPHASE ENVIRONMENT 

When the Sort program is invoked in a 
multiphase environment, the following 
should be noted: 

1. It is the programmer's responsibility 
to ensure that the COBOL program 
containing the SORT statement is the 
highest phase in storage. 

2. If two programs are compiled, link 
edited, and executed together, only 
one program may use the Sort feature. 
If both programs require Sort, the 
programs can be compiled separately 
and then the decks must be organized 
so that the dummy phase cards for Sort 
are both together at the end of the 
deck before they are link edited and 
executed. 



REPORT Clause in a File Description (FD) 
Entry 

A given report-name may appear in a 
maximum of two file description entries. 
The file description entries need not have 
the same characteristics, but both must be 
standard sequential. If the same 
report-name is specified in two file 
description entries, the report will be 
written on both files. For example: 

ENVIRONMENT DIVISION. 
SELECT FILE-l ASSIGN SYS005-UR-1403-S. 
SELECT FILE-2 ASSIGN SYS001-UT-2400-S. 

DATA DIVISION. 
FD FILE-l RECORDING MODE F 

RECORD CONTAINS 121 CHARACTERS 
REPORT IS REPORT-A. 

FD FILE-2 RECORDING MODE V 
RECORD CONTAINS 101 CHARACTERS 
REPORT IS REPORT-A. 

For each GENERATE statement, the records 
for REPORT-A will be written on FILE-l and 
FILE-2, respectively. ~he records on 
FILE-2 will not contain columns 102 through 
121 of the corresponding records on FILE-l. 

Summing Technigues 

Execution time of an object program can 
be decreased by keeping in mind that Report 
Writer source coding is treated as though 
the programmer had written the program in 
COBOL without the Report Writer feature. 
Therefore, a complex source statement or 
series of statements will generally be 
executed faster than simple statements that 
perform the same function. The following 
example shows two coding techniques for the 
Report section of the Data Division. 
Method 2 uses the more complex statements. 

RD ••• CONTROLS ARE YEAR MONTH WEEK DAY. 

USING THE REPORT WRITER FEATURE 

Method 1: 

01 TYPE CONTROL FOOTING YEAR. 
02 SUM COST. 

01 TYPE CONTROL FOOTING MONTH. 
02 SUM COST. 

01 TYPE CONTROL FOOTING WEEK. 
02 SUM COST. 

01 TYPE CONTROL FOOTING ADAY. 
02 SUM COST. 

Method 2: 

01 TYPE CONTROL FOOTING YEAR. 
02 SUM A. 

01 TYPE CONTROL FOOTING MONTH. 
02 A SUM B. 

01 TYPE CONTROL FOOTING WEEK. 
02 B SUM C. 

01 TYPE CONTROL FOOTING ADAY. 
02 C SUM COST. 

Method 2 will execute faster. One t· . 
addition will be performed for each day, 
one more for each week, and one for each 
month. In Method 1, four additions will be 
performed for each day. 

Use of SUM 

Unless each identifier is the name of a 
SUM counter in a TYPE CONTROL FOOTING 
report group at an equal or lower pOSition 
in the control hierarchy, the identifier 
must be defined in the File, Working
Storage., or Linkage Sections as well as in 
a TYPE DETAIL report group as a source item 
or no summing will occur. A SUM counter is 
algebraically incremented just before 
presentation of the TYPE DETAIL report 
group in .which the item being summed 
appears as a source item or the item being 
summed appeared in a SUM clause that 
contained an UPON option for this DETAIL 
report group. This is known as SOURCE-SUM 
correlation. In the following example, 
SUBTOTAL is incremented only·when DETAIL-l 
is generated. 

Using the Report Writer Feature 211 



FILE SECTION. 

02 NO-PURCHASES PICTU~E 99. 

REPORT SECTION. 
01 DETAIL-l TYPE DETAIL. 

02 COLUMN 30 PICTURE 99 SOURCE 
NO-PURCHASES. 

01 DETAIL-2 TYPE DETAIL. 

01 ADAY TYPE CONTROL FOOTING 
LINE PLUS 2. 

02 SUBTOTAL COLUMN 30 PICTURE 999 
SUM NO-PURCHASES. 

01 MONTH TYPE CONTROL FOOTING 
LINE PLUS 2 NEXT GROUP 
NEXT PAGE. 

SU.M Routines 

A SUM routine is generated by the Report 
Writer for each DETAIL report group of the 
report. The operands included for summing 
are determined as follows: 

1. The SUM operand(s) also appears in a 
SOURCE clause(s) for the DETAIL report 
group. 

2. The UPON detail-name option was 
specified in the SUM clause. In this 
case, all the operands are included in 
the SUM routine for only that DETAIL 
report group., even if the operand 
appears in a SOURCE clause in other 
DETAIL report groups. 

When a GENERATE detail-name statement is 
executed, the SUM routine for that DETAIL 
report group is executed in its logical 
sequence. When GENERATE report-name 
statement is executed and the report 
contains more than one DETAIL report group. 
the SUM routine is executed for each one. 
The SUM routines are executed in the 

212 

sequence in which the DETAIL report groups 
are specified. 

The following two examples show the SUM 
routines that are generated by the Report 
Writer. Example 1 illustrates how operands 
are selected for inclusion in the routine 
on the basis of simple SOURCE-SUM 
correlation. Example 2 illustrates how 
operands are selected when the UPON 
detail-name option is specified. 

Example 1: The following statements are 
coded in the Report Section: 

01 DETAIL-l TYPE DE 
02 ••• SOURCE A. 

01 DETAIL-2 TYPE DE 
02 ••• SOURCE B. 
02 ••• SOURCE C. 

01 DETAIL-3 TYPE DE 
02 ••• SOURCE B. 

01 TYPE CF ••• 
02 SUM-CTR-1 ••• SUM A, B~ C. 

01 TYPE CF ••• 
02 SUM-CT~-2 ••• SUM B. 

A SUM routine is generated for each 
DETAIL report group., as follows: 

SUM-ROUTINE FOR DETAIL-1 

REPORT-SAVE 
ADD A TO SUM-CTR-1. 

REPORT-RETURN 

SUM-ROUTINE FOR DETAIL-2 

REPORT-SAVE 
ADD B TO SUM-CTR-l. 
ADD C TO SUM-CTR-1. 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 

SUM-ROUTINE FOR DETAIL-3 

REPORT-SAVE 
ADD B TO SUM-CTR-1. 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 



Example 2: This example uses the same 
coding as Example 1, with one exception: 
the UPON detail-name option is used for 
SUM-CTR-l, as follows: 

01 TYPE CF ••• 
02 SUM-CTR-l ••• SUM A, B, C 

UPON DETAIL-2. 

The following SUM routines would then be 
generated instead of those shown in the 
previous example: 

SUM Routine for DETAIL-1 

REPORT-SAVE 
REPORT-RETURN 

SUM Routine for DETAIL-2 

REPORT-SAVE 
ADD A TO SUM-CTR-l. 
ADD B TO SUM-CTR-1. 
ADD C TO SUM-CTR-l. 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 

SUM Routine for DETAIL-3 

REPORT-SAVE 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 

Output Line Overlay 

The Report Writer output line is created 
using an internal REDEFINES specification, 
indexed by integer-1. No check is made to 
prevent overlay on any line. For example: 

02 COLUMN 10 PICTURE X(23) 
VALUE "MONTHLY SUPPLIES REPORT". 

02 COLUMN 12 PICTURE X(9) 
SOURCE CURRENT-MONTH. 

A length of 27 in column 10, followed by a 
specification for column 12, will cause 
field overlay when this line is printed. 

Page Breaks 

The Report Writer page break routine 
operates independently of the routines that 
are executed after any control breaks 
(except that a page break will occur as the 
result of a LINE NEXT PAGE clause). Thus, 
the programmer should be aware of the 
following facts: 

1. A Control Heading is not printed after 
a Page Heading except for first 
generation. If the programmer wishes 
to have the equivalent of a Control 

Heading at the top of each page, he 
must include the information and data 
to be printed as part of the Page 
Heading. Since only one Page Heading 
may be specified for each report, he 
should be selective in considering his 
Control Heading because it will be the 
same for each page, and may be printed 
at inappropriate times (see "Control 
Footings and Page Format" in this 
chapter) • 

2. GROUP INDICATE items are printed after 
page and control breaks. Figure 56 
contains a GROUP INDICATE clause and 
illustrates the execution output. 

REPORT SECTION. 

. 
01: DETAIL-LINE TYPt IS DETAIL LINE 

NUMBER IS PLUS 1. 
02 COLUMN IS 2 GROUP INDICATE 

PICTURE IS A(9) SOURCE IS 
MONTHNAME OF RECORD-AREA (MONTH). 

(Execution 
I 

Output) 

IJANUARY 
I 
I 
IPURCHASES 
I 
IJANUARY 
I 

Figure 59. 

15 AOO ••• 
A02 ••• 

AND COST ••• 

21 A03 ••• 
A03 ••• 

Sample of GROUP INDICATE Clause 
and Resultant Execution Output 

WITH CODE Clause 

When more than one report is being 
written on a file and the reports are to be 
selectively written, a unique 1-character 
code must be given for each report. A 
mnemonic-name is specified in the RD-Ievel 
entry for each report and is associated 
with the code in the Special-Names 
paragraph of the Environment Division. 

Note: If a report is written with the CODE 
option, the report should not be written 
directly on a printer device. 

This code will be written as the first 
character of each record that is written on 
the file. When the programmer wishes to 
write a report from this file, he needs 

Using the Report writer Feature 



only to read a record, check the first 
character for the desired code, and have it 
printed if the desired code is found. The 
record should be printed starting from the 
third character, as illustrated in Figure 
60. 

I 
ICode 

1 

I 1:-1 I Control I 
! Character ! Record 2 
2 3 n 

Figure 60. Format of a Report Record When 
the CODE Clause is Specified 

The following example shows how to 
create and print a report with a code of A. 
A Report Writer program contains the 
following statements: 

ENVIRONMENT DIVISION. 

SPECIAL-NAMES. "A" IS CODE-CHR-A 
"B" IS CODE-CHR-B. 

DATA DIVISION. 

RFPORT SECTION. 
RD REP-FILE-A CODE CODE-CHR-A ••• 

RD REP-FILE-B CODE CODE-CHR-B ••• 

A second program could then be used to 
print only the report with the code of A, 
as follows: 

DATA DIVISION. 
FD BP'r-IN-FILE 

RECORD CONTAINS 122 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS RPT-RCD. 

01 RPT-RCD. 
05 CODE-CHR PICTURE X. 
05 PRINT-PART. 

10 CTL-CHR PICTURE X. 
10 RECORD-PART PICTURE X(120). 

FD PRINT-FILE 

2i4 

RECORD CONTAINS 121 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS PRINT-REC. 

01 PRINT-REC. 
05 FILLER 

PROCEDURE DIVISION. 

PICTURE X(121). 

LOOP. READ RPT-IN-FILE AT END 
GO TO CONTINUE. 

CONTINUE. 

IF CODE-CHR = "A" 
WRITE PRINT-REC FROM PRINT-PART 
AFTER POSITIONING CTL-CHR LINES. 
GO TO LOOP. 

Control Footings and Page Format 

Depending on the number and size of 
Control Footings (as well as the page depth 
of the report), all of the specified 
Control Footings may not be printed on the 
same page if a control break occurs for a 
high-level control. When a page condition 
is detected before all required Control 
Footings are printed, the Report Writer 
will print the Page Footing (if specified), 
skip to the next page, print the Page 
Heading (if specified) and then continue to 
print Control Footings. 

If the programmer wishes all of his 
Control Footings to be printed on the same 
page, he must format his page in the 
RD-Ievel entry for the report (by setting 
the LAST DETAIL integer to a sufficiently 
low line number) to allow for the necessary 
space. 

NEXT GROUP Clause 

Each time a CONTROL FOOTING report group 
with a NEXT GROUP clause is printed, the 
clause is activated only if the report 
group is associated with the control that 
causes the break. This is illustrated in 
Figure 61. 



PD EXPENSE-REPORT CONTROLS ARE FINAL, 
MONTH, ADAY 

01 TYPE CONTROL FOOTING DAY 
LINE PLUS 1 NEXT GROUP 
NEXT PAGE. 

01 TYPE CONTROL FOOTING MONTH 
LINE PLUS 1 NEXT GROUP 
NEXT PAGE. 

(Execution Output) 

EXPENSE REPORT 

January 31 ••••••••• 29.30 
(Output for CF ADAY) 

January total ••••• 131.40 
(Output for CF MONTH) 

igure 61. Activating the NEXT GROUP 
Clause 

Note: The NEXT GROUP NEXT PAGE clause for 
theControl Footing DAY is not activated. 

Floating First Detail 

The first presentation of a body group 
(PH, PF, CH, CF, DE) that contains a 

relative line as its first line will' have 
its relative line spacing suppressed; the 
first line will be printed on either the 
value of FIRST DETAIL or INTEGER PLUS 1 of 
a NEXT GROUP clause from the preceding 
page. For example: 

1. If the following body group was the 
last to be printed on a page 

01 TYPE CF NEXT GROUP NEXT PAGE 

then this next body group 

01 TYPE DE LINE PLUS 5 

would be printed on value of FIRST 
DETAIL (in PAGE clause) • 

2. If the following body group was the 
last to be printed on a page 

01 TYPE CF NEXT GROUP LINE 12 

and after printing, line-counter 40, 
then this next body group 

01 TYPE DETAIL LINE PLUS 5 

would be printed on line 12 + 1 (i.e., 
line 13). 

Report Writer Routines 

At the end of the analysis of a report 
description (RD) entry, the Report Writer 
routines are generated, based on the 
contents of the RD. Each routine 
references the compiler-generated card 
number of its respective RD. 

Using the Report Writer Feature 215 





Subscripts 

If a subscript is represented by a 
constant and if the subscripted item is of 
fixed length, the location of the 
subscripted data item within the table or 
list is resolved during compilation. 

If a subscript is represented by a 
data-name, the location is resolved at 
execution time. The most efficient format 
in this case is COMPUTATIONAL, with a 
PICTURE size less than five integers. 

The value contained in a subscript is an 
integer which represents an occurrence 
number within a table. Every time a 
subscripted data-name is referenced in a 
program, the compiler generates up to 16 
instructions to calculate the correct 
displacement. Therefore, if a subscripted 
data-name is to be processed extensively, 
move the subscripted item to an 
unsubscripted work area, do all necessary 
processing, and then move the item back 
into the table. Even when subscripts are 
described as COMPUTATIONAL, subscripting 
takes time and storage. 

Index-names 

Index-names are compiler-generated 
items, one fullword in length, assigned 
storage in the TGT (Task Global Table). An 
index-name is defined by the INDEXED BY 
clause. The value in an index-name 
represents an actual displacement from the 
beginning of the table that corresponds to 
an occurrence number in the table. Address 
calculation for a direct index requires a 
maximum of four instructions; address 
calculation for a relative index requires a 
few more. Therefore, the use of 
index-names in referencing tables is more 
efficient than the use of subscripts. The 
use of direct indexes is faster than the 
use of relative indexes. 

Index-names can only be referenced in 
the. PERFORM, SEARCH, and SET statements. 

Index Data Items 

Index data items are compiler-generated 
storage positions, one fullword in length, 

TABLE HANDLING CONSIDERATIONS 

that are assigned storage wittin the COBOL 
program area. An index data item is 
defined by the USAGE IS INDEX clause. The 
programmer can use index data items to save 
values of index-names for later reference. 

Great care must be taken when setting 
values of index data items. Since an index 
data item is not part of any table, the 
compiler is unable to change any 
displacement value contained in an 
index-name when an index data item is set 
to the value of an index-name or another 
index data item. See the SET statement 
examples later in this chapter. 

Index data items can only be referenced 
in SEARCH and SET statements. 

OCCURS Clause 

If indexing is to be used to reference a 
table element and the Format 2 (SEARCH ALL) 
statement is also used, the KEY option must 
be specified in the OCCURS clause. A table 
element is represented by the subject of an 
OCCURS clause, and is equivalent to one 
level of a table. The table element must 
then be ordered upon the keyes) and 
data-name(s) specified. 

DEPENDING ON Option 

If a data item described by an OCCURS 
clause with the DEPENDING ON data-name 
option is followed by nonsubordinate data 
items, a change in the value of data-name 
during the course of program execution will 
have the following effects: 

1. The size of any group described by or 
containing the related OCCURS clause 
will reflect the new value of 
data-name. 

2. Whenever a MOVE to a field containing 
an OCCURS clause with the DEPE~DING ON 
option is executed, the MOVE is done 
on the basis of the current contents 
of the object of the DEPENDING ON 
option. 

3. The location of any nonsubordinate 
items following the item described 
with the OCCURS clause will be 
affected by the new value of 

Table Handling Considerations 217 



data-name. If the programmer wishes 
to preserve the contents of these 
items, the following procedure can be 
used: prior to the change in 
data-name, move all nonsubordinate 
items following the variable item to a 
work area; after the change in 
data-name, move all the items back. 

Note: The value of data-name may change 
because a move is made to it or to the 
group in which it is contained; or the 
value of data-name may change because the 
group in which it is contained is a record 
area that has been changed by execution of 
a READ statement. 

For example, assume that the Data 
Division of a program contains the 
following coding: 

01 ANYRECORD. 
05 A PICTURE S999 COMPUTATIONAL-3. 
05 TABLEA PICTURE S999 OCCURS 100 

TIMES DEPENDING ON A. 
05 GROUPB. 

Subordinate data items. 
End of record. 

GROUPB items are not subordinate to TABLEA, 
which is described by the OCCURS clause. 
Assuming that WORKB is a work area with the 
same data structure as GROUPB, the 
following procedural coding could be used: 

MOVE GROUPB TO WORKB 

Calculate a new value of A 

MOVE WORKB TO GROUPB 

The preceding statements can be avoided 
by placing the OCCURS clause with the 
DEPENDING ON option at the end of the 
record. 

Note: data-name can also change because of 
a change in the value of an item that 
redefines or renames it. In this case, the 
group size and the location of 
nonsubordinate items as described in the 
two preceding paragraphs cannot be 
determined. 

OCCURS CLAUSE WITH THE DEPENDING ON OPTION 

If a record description contains an 
OCCURS clause with the DEPENDING ON option, 
the record length is variable. This is 
true for records described in an FD as well 
as in the Working-Storage section. A 
previous chapter discussed four different 
record formats of non-VSAM files. Three of 
them, V-mode, U-mode, and S-mode, as well 

218 

as VSAM files, may contain one or more 
OCCURS clauses with the DEPENDING ON 
option. 

This section discusses some factors that 
affect the manipulation of records 
containing OCCURS clauses with the 
DEPENDING ON option. The text indicates 
whether the factors apply to the File or 
Working-Storage sections, or both. 

The compiler calculates the length of 
V-mode records containing the OCCURS clause 
with the DEPENDING ON option at three 
different times, as follows (the first and 
third applies to FD entries only; the 
second to both FD and Working-Storage 
entries)~ 

1. When a file is read and the object of 
the DEPENDING ON option is within the 
record. 

2. When the object of the DEPENDING ON 
option is changed as a result of a 
move to it or any item within its 
group. (The length is not calculated 
when a move is made to an item which 
redefines or renames it.) 

For instance before a group item 
vTi th an OCCURS DEPENDING ON clause 
in it can be moved from an I/O 
area to working storage, the 
object of the DEPENDING ON clause 
must be moved separately from the 
I/O area to the corresponding 
area in working storage to force 
initial calculation of the 
receiving field's length. 

3. For an output file, after the record 
is written, the lenqth is set to 
maximum to enable a-full meve of the 
next record to the buffer. 
Immediately after the move, the 
correct length is recalculated as in 
item 2. 

Consider the following examrle: 

WORKING-STORAGE SECTION. 

77 CONTROL-1 
77 WORKAREA-1 

PIC 99. 
PIC 9(6)V99. 

01 SALAHY-HISTORY. 
05 SALARY OCCURS 0 TO 10 TIMES 

DEPENDING ON 
CONTROL-1 PIC 9(6)V99. 

The Procedure Division staterrent MOVE 5 
TO CONTROL-l will cause a recalculation of 
thp length of SALARY~HISTORY. MOVE 
SALARY (5) TO WORKAREA-l will not cause the 
length to be recalculated. 



The compiler permits the occurrence of 
more than one level-01 record, containing 
the OCCURS clause with the DEPENDING ON 
option, in the same FD entry (see Figure 
62). For non-VSAM files, if the BLOCK 
CONTAINS clause is omitted, the buffer size 
is calculated from the longest level-01 
record description entry. In Figure 62, 
the buffer size is determined by the 
description of RECORD-1 (RECORD-1 need not 
be the first record description under the 
FD). 

During the execution of a READ 
statement, the length of each level-Ol 
record description entry in the FD will be 
calculated (see Figure 62). The length of 
the variable portion of each record will be 
the product of the numeric value contained 
in the object of the DEPENDING ON option 
and the length of the subject of the OCCURS 
clause. In Figure 62, the length of 
FIELD-l is calculated by multiplying the 
contents of CONTROL-l by the length of 
FIELD-l; the length of FIELD-2, by the 
product of the contents of CONTROL-2 and 
the length of FIELD-2; the length of 
FIELD-3 by the contents of CONTROL-3 and 
the length of FIELD-3. 

Since the execution of a READ statement 
makes available only one record type (i.e., 
RECORD-l type, RECORD-2 type. or RECORD-3 
type), two of the three record descriptions 
in Figure 62 will be inappropriate. In 
such cases, if the contents of the object 
of the DEPENDING ON option does not conform 
to its pictureo the. length of the 
corresponding record will be unpredictable. 
For the contents of an item to conform to 
its picture: 

• An item described as USAGE DISPLAY must 
contain external decimal data. 

• An item described as USAGE 
COMPUTATIONAL-3 must contain internal 
decimal data. 

• An item described as USAGE 
COMPUTATIONAL must contain binary data. 

• An item described as signed must 
contain signed data. 

• An item described as unsigned must 
contain unsigned data. 

The following example illustrates the 
length calculations made by the system when 
a READ statement is executed: 

PD 

01 RECORD-l. 
05 A PIC 99. 
05 B PIC 99. 
05 C PIC 99 OCCURS 5 TIMES 

DEPENDING ON A. 

01 RECORD-2. 
05 D PIC XX. 
05 EPIC 99. 
05 F PIC 99. 
05 G PIC 99 OCCURS 5 TIMES 

DEPENDING ON F. 

WORKING-STORAGE SECTION. 

01 TABLE-3. 
05 H PIC99 OCCURS 10 TIMES DEPENDING 

ON B. 

01 TABLE-4. 
05 I PIC99 OCCURS 10 TIMES DEPENDING 

ON E. 

When a record is read, lengths are 
determined as follows: 

1. The length of C is calculated using 
the contents of field A. The length 
of RECORD-l=A+B+C. 

2. The length of G is calculated using 
the contents of field F. The length 
of RECORD-2=D+E+F+G. 

3. The length of TABLE-3 is calculated 
using the contents of field B. 

4. The length of TABLE-4 is calculated 
using the contents of field E. 

The programmer should be aware of 
several characteristics of the previously 
cited length calculations. The following 
example illustrates a group item (i.e., 
REC-1) whose subordinate items contain an 
OCCURS clause with the DEPENDING ON option 
and the object of that DEPENDING ON option. 

Table Handling Considerations 219 



r---------------------------------------------------------------------------------------, 
I FD INPUT-FILE I 
I I 
I I 
I DATA RECORDS ARE RECORD-l RECORD-2 RECORD-3. I 
I I 
I 01 RECORD-i. I 
I 05 CONTROL-1 PIC 99. I 
I as FIELD-l OCCURS 0 TO 10 TIMES DEPENDING ON CONTROL-1 PIC 9(5). I 
I I 
I 01 RECORD-2. I 
I 05 CONTROL-2 PIC 99. I 
I as FIELD-2 OCCURS 1 TO 5 TIMES DEPENDING ON CONTROL-2 PIC 9(4). I 
I I 
I 01 RECORD-3. I 
I 05 FILLER PIC xx. I 
I 05 CONTROL-3 PIC 99. I 
I as FIELD-3 OCCURS 0 TO 10 TIMES DEPENDING ON CONTROL-3 PIC X(4). ! l _______________________________________________________________________________________ J 

Figure 62. Calculating Record Lengths When Using the OCCURS Clause with the DEPENDING ON 
Option 

WORKING-STORAGE SECTION. 
01 REC-1. 

05 FIELD-1 PIC 9. 
as FIELD-2 OCCURS 5 TIMES DEPENDING ON 

FIELD-1 PIC X(5). 

01 REC-2. 
05 REC-2-DATA PIC X(50). 

The results of executing a MOVE to the 
group item REC-l will be affected by the 
following: 

• The length of REC-1 may have been 
calculated at some time prior to the 
execution of this MOVE statement. 

• The length of REC-1 may never have been 
calculated at all. 

• After the move, since the contents of 
FIELD-1 have been changed, an attempt 
will be made to recalculate the length 
of REC-1. Correct recalculation, 
however, will only be made if the new 
contents of FIELD-1 conform to its 
picture (i.e., USAGE DISPLAY must 
contain an external decimal item, USAGE 
COMPUTATIONAL-3 must contain an 
internal decimal item and USAGE 
COMPUTATIONAL must contain a binary 
item. An item described as signed must 
contain signed data, and an item 
described as unsigned must contain 
unsigned data). In the preceding 
example, if FIELD-1 does not contain an 
external decimal item, the length of 
REC-1 will be unpredictable. 

Note: According to the COBOL description, 
FIELD-2 can occur a maximum of five times. 
If, however, FIELD-1 contains an external 
decimal item whose value exceeds five, rhR 

220 

length of REC-1 will still be calculated. 
One possible consequence of this invalid 
calculation will be encountered if the 
programmer attempts to initialize REC-1 by 
moving zeros or spaces to it. This 
initialization would inadvertently delete 
part of the adjacent data stored in REC-2. 

The following discussion applies to 
updating a record containing an OCCURS 
clause with the DEPENDIN"G ON option and at 
least one other subsequent entry. In this 
case, the subsequent entry is another item 
containing an OCCURS clause with the 
DEPENDING ON option. 

WORKING-STORAGE SECTION. 
01 VARIABLE-REe. 

05 FIELD-A PIC X(10). 
05 CONTROL-1 PIC 99. 
05 CONTROL-2 PIC 99. 
05 VARY-FIELD-1 OCCURS 10 TIMES 

DEPENDING eN CONTROL-1 PIC X(5). 
05 TEMP. 

06 VARY-FIELD-2 OCCURS 
10 TIMES DEPENDING ON 
CONTROL-2 PIC X(9). 

01 STORE-VARY-FIELD-2. 
05 VARY-FLD-2 OCCURS 10 TIMES 

DEPENDING ON CONTROL-2 PIC X(9). 

Assume that CONTROL-l contains the value 
5 and VARY-FIELD-1 contains 5 entries. 

In order to add a sixth field to 
VARY-FIELD-1 the following steps are 
required: 

MOVE TEHP TO STORE-VARY-FIELD-2. 
ADD 1 TO CONTROL-i. 
MOVE 'additional field' TO VARY-FIELD-l 

(CONTROL-i). 
MOVE STORE-VL\~Y-FIELD-2 TO '!'EM.P. 



SET Statement 

The SET statement is used to assign 
values to index-names and to index data 
items. 

When an index-name is set to the value 
of a literal, identifier, or an index-name 
from another table element, it is set to an 
actual displacement from the beginning of 
the table that corresponds to the 
occurrence number indicated by the second 
operand in the statement. The compiler 
performs the necessary calculations. If an 
index-name is set to another index-name for 
the same table, the compiler need make no 
conversion of the actual displacement value 
contained in the second operand. 

However, when an index data item is set 
to another index data item or to an 
index-name, or when an index-name is set to 
an index data item, the compiler is unable 
to change any displacement value it finds, 
since an index data item is not part of any 
table. Thus, no conversion of values can 
take place. Remember this to avoid making 
programming errors. 

For example, suppose that a table has 
been defined as: 

B (1) 

A 

B (2) 

~cc (1, 1) 

( (1. 2) 

~ cC (2, 1) 

l (2. 2) 

(1, 1, 1) 

(1, 1, 2) 

(1, 1, 3) 

(1, 2, 1) 

(1, 2, 2) 

(1, 2, 3) 

(2, 1, 1) 

(2, 1, 2) 

(2, 1, 3) 

(2, 2, 1) 

(2, 2, 2) 

(2, 2, 3) 

Figure 63. Table structure in Virtual Storage 

01 A. 
05 B OCCURS 2 INDEXED BY 11, 15. 

10 C OCCURS 2 INDEXED BY 12, 16. 
15 D OCCURS 3 INDEXED BY 13, 14. 

20 EPIC X(20). 
20 F PIC 9(5}. 

The table appears in storage as shown in 
Figure 63. 

Suppose that a reference to D (2, 2, 3) 
is necessary. The following rrethod is 
incorrect: 

SET 13 TO 2 .. 
SET INDX-DATA-I~M TO 13. 
SET 13 UP BY 1. 
SET 12, 11 TO INDX-DATA-ITM. 
MOVE D (11, 12, 13) TO WORKAREA. 

The value contained in 13 after the first 
SET statement is 25, which represents the 
beginning pOint of the second occurrence of 
D. When the second SET statement is 
executed, the value 25 is placed in 
INDX-DATA-ITM, and the fourth SET statement 
moves the value 25 into 12 and 11.. The 
third SET statement increases the value in 
13 to 50. The calculation for the address 
D (11, 12, 13) would then be as follows: 

(address of D (1, 1, 1» + 25 + 25 + 50 
= (adoress of D (1, 1, 1» + 100 

This is not the address of D (2, 2, 3) ,. 

i 

, E F I 
I~------------------+-~ 
I E F I 
I , 
I E F I 
I~-----------------+-~ 
I E F I 
I , 
I E F I 
1~-----------------+----1 
I E F I 
I , 
I E F I 
I , 
I E F I 
I i 
I E F I 
I , 
I E F I 
I I 
I E F I 
I I 
, E F , 

Byte 
o 

25 

50 

75 

100 

125 

150 

175 

200 

225 

250 

275 

300 

Table Handling Considerations 221 



The following method will find the 
correct address: 

SET 13 TO 2. 
SET 12, Ii TO 13. 
SET 13 UP BY 1. 

In this case, the first SET statement 
places the value 25 in 13. Since the 
compiler is able to calculate the lengths 
of Band C, the second SET statement places 
the value 75 in 12, and the value 150 in 
Ii. The third SET statement places the 
value 50 in 13. The correct address 
calculation will be: 

222 

(address of D (lr 1, 1» + 150 + 75 + 50 
= (address of D (1, 1, 1» + 275 

The rules for the SET staterrent are 
shown in Table 33. 

Use care when setting the value of 
index-names associated with tables 
described as OCCURS DEPENDING ON. If the 
table entry length is changed, the value 
contained within the index-name will become 
invalid unless a new SET statement corrects 
it. 



Table 33. Rules for the SET Statement 
------------------T----------------------T---------------------T-----------------------, 

I Sending I I I I 
I Receiving I Index-name I Index data item I Identifier or Literal I 
~----------------- ----------------------+---------------------+-----------------------1 
I Index-name I set to value I Move without I Set to value corre- I 
I I corresponding to I conversion I sponding to occurrence I 
I , occurrence number1 I I number I 
r------------------+----------------------+---------------------+-----------------------~ 
'Index data item 'Move without , Move without I Illegal , 
, I conversion , conversion I , 
r------------------+----------------------+---------------------+-----------------------~ 
I Identifier I Set to occurrence I Illegal I Illegal , 
, , number represented I I I 
I I by index-name I I I 
r------------------i----------------------i---------------------i-----------------------1 
11If index-names refer to the same table element, move without conversion. , L _______________________________________________________________________________________ J 

Table Handling Considerations 223 



SEARCH statement 

Only one level of a table (a table 
element) can be referenced with one SEARCH 
statement. Note that SEARCH statements 
cannot be nested, since an imperative
statement must follow the WHEN condition, 
and the SEARCH statement is itself 
conditional. 

To write a series of statements that 
will search the 3-dimensional table defined 
in the discussion of the SET statement, the 
programmer could write: 

77 COMPARANDl PIC XeS). 
77 COMPARAND2 PIC 9(S}. 

01 A. 
02 B OCCURS 2 INDEXED BY 11 IS. 

03 C OCCURS 2 INDEXED BY 12 16. 
04 D OCCURS 3 INDEXED BY 13 14. 

05 EPIC XCS). 
OS F PIC 9(5). 

(Initialize COMPARANDl and COMPARAND2) 

PERFORM SEARCH-TESTl THRU SEARCH-EXITl 
VARYING 11 FROM 1 BY 1 UNTIL 12 IS 
GREATER THAN 2. 

ENTRY-NOENTRY1. 
GO TO ERROR-RECOVERY1. 

SEARCH-TEST1. 
SET 13 TO 1. 
SEARCH D WHEN E (11, 12, 13) 

COMPARANDl AND F (11, 12, 13) 
COMPARAND2 

SET IS TO 11 
SET 16 TO 12 
SET 12 TO 3 
SET 11 TO 3 
ALTER ENTRY-NOENTRYl TO PROCEED 

TO ENTRY-PROCESSING1. 
SEARCH-EXIT1. EXIT. 

ERROR-RECOVERY1. 

ENTRY-PROCESSING1. 

224 

MOVE E (15, 16, 13) TO OUTAREA1. 
MOVE F (IS, 16, 13) TO OUTAREA2. 

The PERFORM statement varies the indexes 
(11 and 12) associated with table elements 
Band C; the SEARCH statement varies index 
13 associated with table element D. 

The values of 11 and 12 that satisfy the 
WHEN conditions of the SEARCH statement are 
saved in IS and 16. 11 and 12 are then 
both set to 3, so that upon return from the 
SEARCH statement, control will fall through 
the PERFORM statement to the GO TO 
statement. 

Subsequent references to the desired 
occurrence of table elements E and F make 
use of the index-names IS and 16 in which 
the correct value was saved. 

Format 1 SEARCH statements perform a 
serial search of a table. If it is certain 
that the "found" condition is beyond some 
intermediate point in the table, the 
index-names can be set at that point and 
only that part of the table be searched; 
this speeds up execution. If the table is 
large and must be searched from the first 
occurrence to the last, Format 2 (SEARCH 
ALL) is more efficient than Format 1, since 
it uses a binary search technique; however, 
the table must then be ordered. 

In Format 1, the VARYING option allows 
the programmer to: 

• Vary an index-name other than the first 
index-name stated for this table 
element. Thus, with two SEARCH 
statements, each using a different 
index-name, more than one value can be 
referenced in the same table element 
for comparisons, etc. 

• Vary an index-name fro~ another table 
element. In this case, the first 
index-name specified for this table is 
used for the SEARCH, and the index-name 
specified in the VARYING option is 
incremented at the same time. Thus, 
the progra~mer can search two table 
elements at once. 

In Format 1, the WHEN condition can be 
any relation condition and there can be 
more than one. If multiple WHEN conditions 
are stated, the implied logical connective 
is OR -- that is, if anyone of the WHEN 
conditions is satisfied, the imperative
statement following the WHEN condition is 
executed. If all conditions are to be 
satisfied before-exiting from the SEARCH, 
the compound WHEN condition with AND as the 
logical connective must be written. 



SEARCH ALL Statement 

The SEARCH ALL statement is used to 
search an entire table for an item without 
having to write a loop procedure. For 
example, a programmer-defined table may be 
the following: 

01 TABLE. 
05 ENTRY-IN-TABLE OCCURS 90 TIMES 

ASCENDING KEY-l.KEY-2 
DESCENDING KEY-3 
INDEXED BY INDEX-l. 
10 PART-l PICTURE 9(2). 
10 KEY-l PICTURE 9(5). 
10 PART-2 PICTURE 9(6). 
10 KEY-2 PICTURE 9(4}. 
10 PART-3 PICTURE 9(33}. 
10 KEY-3 PICTURE 9(5). 

A search of the entire table can be 
initiated with the following instruction: 

SEARCH ALL ENTRY-IN-TABLE AT END GO TO 
NOENTRY WHEN KEY-l (INDEX-l) = VALUE-l 
AND KEY-2 (INDEX-l) = VALUE-2 AND KEY-3 
(INDEX-l) = VALUE-3 MOVE PART-l 
(INDEX-l) TO OUTPUT-AREA. 

The preceding instructions will execute 
a search on the given array TABLE, which 
contains 90 elements of 55 bytes and 3 

keys. The primary and secondary keys 
(KEY-l and KEY-2) are in ascending order 
whereas the least significant key (KEY-3) 
is in descending order. If an entry is 
found in which the three keys are equal to 
the given values (i.e., VALUE-l, VALUE-2, 
VALUE-3), PART-l of that entry will be 
moved to OUTPUT-AREA. If matching keys are 
not found in any of the entries in TABLE, 
the NOENTRY routine is entered. 

If a match is found between a table 
entry and the given values, the index 
(INDEX-l) is set to a value corresponding 
to the relative position within the table 
of the matching entry. If no match is 
found, the index remains at the setting it 
had when execution of the SEARCH ALL 
statement began. 

Note: It is more efficient to test keys in 
order of significance (i.e., KEY-l should 
be specified before KEY-2 in the WHEN 
statement). The WHEN statement can only 
test for equality, and only one side of the 
equation may be a key. 

In Format 2, the SEARCH ALL statement, 
the table must be ordered on the keyes) 
specified in the OCCURS clause. Any key 
may be specified in the WHEN condition, but 
all preceding data-names in the KEY option 

Table Handling Considerations 224.1 





must also be tested. The test must be an 
"equal to" (=) condition, and the KEY 
data-name must be either the subject or 
object of the condition, or the name of a 
conditional variable with which the tested 
condition-name is associated. The WHEN 
condition can also be a compound condition, 
formed from one of the simple conditions 
listed above, with AND as the only logical 
connective. The KEY data item and the item 
with which it is compared must be 
compatible, as given in the rules of the 
relation test. 

Compilation is faster if keys are tested 
in the SEARCH statement in the same order 
as they appear in the KEY option. 

Note that if KEY entries within the 
table do not contain valid values, then the 
results of the binary search will be 
unpredictable. 

Building Tables 

When reading in data to build an 
internal table: 

1. Check to make sure the data does not 
exceed the space allocated for the 
table. 

2. If the data must be in sequence, check 
the sequence. 

3. If the data contains the subscript 
that determines its position in the 
table, check the subscript for a valid 
range. 

When testing for the end of a table, use 
a named value giving the item count, rather 
than using a literal. Then, if the table 
must be expanded, only one value need be 
changed, instead of all references to a 
literal. 

Table Handling Considerations 225 





PART IV 

LISTER FEATURE ------------------------------------------------. 

SYMBOLIC DEBUGGING FEATURES ------------------------------------+~ 

PROGRAM CHECKOUT ----------------------------------------------.. ~ 

EXECUTION STATISTICS------------------------------------------~ 

227 





This chapter describes the lister 
feature" a major new facility for 
optionally producing reformatted source 
listings with expanded, embedded cross 
referencing information to increase 
intelligibility and conserve space. Topics 
discussed in this chapter include: 

• Overall operation of the lister feature 

• The output source listing 

• The output summary listing 

• The optional reformatted output deck 

• Using the lister feature 

Features of the new source listing 
include: 

• Standard indentation for all Data 
Division level numbers to show group 
structure, and for all IF statements 
and the like in the Procedure Division 
to show program logic. 

• Alignment of PICTURE and VALUE clauses 
to highlight OCCURS and REDEFINES 
clauses. 

• Two-way, embedded cross-references to 
eliminate indirect "lookups" (via a 
separate conventional SXREF listing). 

• Reference letters to show the type of 
reference# indicate overall usage of a 
program item, and reduce the need to 
look up each reference. 

• Footnotes on Procedure Division pages 
to show the definition of referenced 
data items, thereby eliminating more 
"lookups". 

• Two-column Procedure Division pages to 
compact the listing and further reduce 
page turning. 

• Cross-reference summary to show how. 
and how much. FD's and Procedure 
Division section's reference each 
other. 

• optional reformatted and renumbered 
source deck for manual use or for 
updating the BASIS library. 

LISTER FEATURE 

OVERALL OPERATION OF THE LISTER 

The lister accepts source programs 
written in American National Standard COBOL 
and analyzes the source staterrents to 
establish inter-statement references, as 
well as the type of action resulting from 
the reference such as redefinition# 
interrogation, open/close, etc. After 
scanning the source statements, the lister 
performs all information transfers 
necessary for cross-referencing. Finally, 
the lister composes and prints the 
reformatted source code. 

This reformatted source output follows 
indenting conventions imposed by the lister 
to increase readability, and contains cross 
references between data items and Procedure 
Division statements" between PERFORM 
statements and paragraph names, etc. 
Optionally., the lister produces a new 
source deck that matches the output listing 
except that the embedded cross-reference 
information is omitted. 

Thus, the lister can be used to process 
source decks for uniformity of indenting 
and for highlighting of IFs, GO TOs, etc. " 
or it can be used simply to obtain a 
cross-referenced source listing as 
permanent documentation of a production 
program, or as an aid in program analysis 
and debugging. Various options permit 
printing the Procedure Division listing in 
two columns to conserve space., and 
inclusion of BASIS and COpy statements. 

The Listing 

The reformatted output listing is 
divided into four parts: 

i. A one-page introduction which 
describes briefly lister codes. 
conventions, uses 

2. The Identification and Environment 
divisions 

3. Detailed., cross-referenced" 
reformatted Data and Procedure 
divisions 

4. The summary listing 

These are described briefly below, and 
in greater detail in subsequent sections. 

Lister Feature 228.1 



The Output Deck 

The deck produced optionally by the 
lister may be saved either in card form or 
in a BASIS library. This output reflects 
tbe output listing, except that 
cross-reference information is omitted, and 
that card numbers replace statement 
numbers. The output deck is described in 
detail in a subsequent section of this 
chapter. 

Reformatting of Identification and 
Environment Divisions 

The lister reformats the Identification 
Division statements only by imposing 
indenting conventions. Statements are 
indented two spaces. Statements with 
continuations are indented four spaces. 

Environment Division statements are 
reformatted by imposing indenting 
conventions and by appending 
cross-reference information to SELECT 
statements in the FILE CONTROL section. 
Thus, in reading the FILE CONTROL section, 
you receive direct references to the FILE 
DESCRIPTION statements in the Data 
Division. 

Data Division Reformatting 

The lister reformats the Data Division 
statements principally by imposing
indenting conventions on them. In 
addition, it aligns PICTURE, VALUE, and 
other clauses vertically to improve 
readability and facilitate visual checking. 
This alignment generally highlights 
REDEFINES and OCCURS clauses, for example. 
All indenting is with respect to the left 
margin, which contains the statement 
number. The indenting conventions are: 

• FDs are not indented 

• For LEVEL 01 items, the indent is two 
spaces 

• For LEVEL 02 items, indent is four 
spaces 

Level 03 and lower items are each 
indented two from the last higher level 
item. Using this conventi.on, the overall 
structure of each file and group item is 
immediately apparent when reading the 
listing. Level 77 items are not indented. 

228.2 

The most striking change in the 
appearance of the Data Division listing is 
the addition, at the right of each 
statement, of cross references that 
identify the statement number of each Data 
Division or Procedure Division statement 
that redefines, changes, reads, tests, or 
otherwise refers to the data item. When 
the number of such references is too great 
to fit on the line, the lister prints as 
many on the li~e as there is space for, and 
prints the remainder as a footnote at the 
bottom of the page. 

Procedure Division Reformatting 

The lister reformats the Procedure 
Division by applying indenting conventions 
to nested IFS, GO TOs, etce, and by 
appending cross references to sections and 
paragraphs, where appropriate., to indicate 
that the procedure is PERFORMed by another 
or similar action. It also appends 
references to the Data Division so that the 
data item being acted upon can be found 
quickly. Six codes are used in the 
Procedure Division: 

A ALTER 
B (ALTER) to PROCEED TO 
E INPUT or OUTPUT procedure for 

Sort/Merge 
G GO TO 
P PERFORM 
T (PERFORM) THRU 

Summary Listing 

The summary listing provides an overall 
view of the relationship among FDs, RDs, 
and SDs in the program. The entry for each 
of these major parts of the program 
consists of a title line showing the 
statement number and the name of the file, 
record" or section and a series of counts 
(by reference type) for each of the 
categories "intra", "from", and "to". 
Intra references are those within the 
section, file. or record, such as REDEFINES 
and PERFORM operations. 



THE SOURCE LISTING 

General Appearance 

In looking at the source listing of the 
Identification, Environment, or Data 
Divisi"ons, you will find that the pages may 
be considered as having three "columns". 
The leftmost contains a statement number, 
or is blank if the line is either a comment 
or a continuation of the preceding 
statement or line. The second column 
contains the reformatted COBOL statements. 
The third (not present in the Procedure 
Division) contains references to or from 
other statements in the source program. 
Thus, each line of the output listing 
contains a numbered source statement or its 
continuation, and a reference or series of 
references to all other statements in the 
source program that refer to it. If the 
series of references is too long to file on 
the line, the lister prints as many as will 
fit, followed by a letter indicating a 
footnote. The footnote contains the 
remainder of the references. 

The source listing of the Procedure 
Division is normally printed in 
double-column format, with each column 
divided as described above. This format 
also approximately doubles the span of 
logic that can be seen on one page or one 
facing-page spread. 

Another characteristic of the source 
listing is that regardless of whether the 
source code follows indentation 
conventions, the lister indents statements 
according to their type, and according to 
hierarchy, where applicable. This feature 
of the lister makes file and record 
structure immediately visible, and also 
helps to identify groups of related 
statements such as IF/ELSE and nesting of 
IFs. 

Format Conventions 

New statements are indented from the 
left margin, which contains the statement 
number. The lister treats as new 
statements 

• Division headers 

• Section headers 

• Paragraph names 

• Level numbers 

• Verbs 

• ELSE statements 

• OTHERWISE statements 

• AT END statements (only when following 
S~.RCH statements) 

Indentation of the new statement is made 
according to the following rules: 

1. Data Division 

• FDs and Level 77 items are not 
indented 

• Level 01 items are indented two 
spaces in the FILE SECTION or REPORT 
SECTION and are not indented in the 
LINKAGE or WORKING-STORAGE sections 

• Each subsequent lower level within 
an 01 item is indented two spaces 
more than the preceding higher level 

2. Procedure Division 

• Section names are not indented 

• Paragraph names are indented two 
spaces 

• Unconditionally-executed verbs are 
indented four spaces 

• Verbs executed under a single 
condition such as IF or AT END are 
indented six spaces 

• The first IF statement in a nest of 
IF statements is indented two 
spaces; subsequent nested IF 
statements are indented an 
additional two spaces at each level 

• ELSE statements are indented to the 
same position as the IF statement to 
which they refer 

3. Continuation lines (in all divisions) 
are indented six spaces with respect 
to the first line of the continued 
statement 

Word spacing within a statement and on 
continuation lines is usually one space. 
within the Data Division, however, PICTURE 
and VALUE clauses are aligned as nearly as 
possible into columns so that they may be 
found and compared easily. 

Words are not split at the end of a 
statement or continuation line unless the 
word to be split is a nonnumeric literal 
that will not fit on a single continuation 
line. 

Lister Feature 228.3 



References appear to the right of the 
statement or continuation line. References 
following paragraph names appear 
immediately to the right of the name, 
separated by a blank. References following 
other types of statements appear as far to 
the right as possible depending on the 
number of blanks available on the line. 
Each reference consists of a statement 
number and a type indicator. References in 
series are separated by commas, and are in 
ascending order. 

Within the Data Division, a reference 
may also be an alphabetic £ootnote 
indicator. The footnote contains a series 
of references to REDEFINES and Procedure 
Division statements that refer to that data 
item. 

Within the Procedure Division, the 
reference may also be a footnote indicator, 
btlt the footnote is different in 
dppearance. In the Procedure Division, the 
footnote is actually an on-page replica of 
the Data Division statement referred to by 
the footnoted statement. This replica is 
complete with all other references to the 
data item from other portions of the 
program. To conserve space in the listing, 
the lister does not repeat a footnote if it 
appears at the bottom of either of the two 
preceding pages. 

Type Indicators 

As mentioned above. a reference consists 
of a statement number and a type indicator. 
The type indicator provides immediate 
information as to what is being done by the 
statement referred to. 

Two sets of type indicators are used by 
the lister, one for the Data Division, and 
one for the Procedure Division. Within the 
Data Division, the type indicators are: 

228.4 

U Data item unchanged (used as a 
source field) 

C Data item changed (such as ADD or 
MOVE) 

E Data item referred to by Environment 
Division statement <SELECT) or by 
Procedure Division input/output 
operation (READ. WRITE) 

D Data item REDEFINED or RENAMEd 

Q Queried by IF, WHEN. or UNTIL 

R Referred to by a READ statement 

W Referred to by a WRITE, GENERATE. 
DISPLAY., or similar statement 

X Used as an index, subscript., or 
object of a DEPENDING ON statement 

Within the Procedure Division. the type 
indicators are: 

A ALTER 
B (ALTER) TO PROCEED TO 
E INPUT or OUTPUT procedure (Sort or 

Merge feature) 
G GO TO 
P PERFORM 
T (PERFORM) THRU 

THE SUMMARY LISTING 

The summary listing is useful both as an 
analysis and as a troubleshooting aid. 
Using the summary listing, the data areas 
most referred to, the procedures that 
reference them most often and the nature of 
those references can be ascertained 
quickly. The number of references to 
undefined symbols and the number of 
incorrectly coded COBOL words can also be 
ascertained. 

General Appearance 

Each division or section header~ and 
each FD, RD, or SD begins a new entry in 
the summary listing. The entry consists of 
the header line and" beginning on the next 
line, the total number of each kind of 
reference to that section from within 
itself (INTRA), and from outside itself 
(FROM). These references are followed by 
similar information for references the 
section makes to others outside itself 
(TO). 

THE OUTPUT DECK 

By specifying the DECK option on the LST 
card, a new COBOL source deck can be 
produced that reflects the reformatted 
source listing. This deck may be saved in 
a BASIS library (used directly as input to 
the compiler) or punched onto cards. 
Because of reformatting, the new deck may 
contain more cards than the original, but 
the difference is not great enough to cause 
any appreciable increase in compilation 
time. The output deck differs from the 
listing as follows: 



1. References, footnotes, and blank lines 
are omitted. 

2. Literals will be repositioned, if 
needed, to assure proper continuation. 

3. Statement numbers are converted to 
card numbers. 

a. The statement number is multiplied 
by 10, and leading zeros are added 
as necessary to fill columns 1 
through 6. 

b. Comment and continuation cards are 
numbered one higher than the 
preceding card. 

c. Statement-beginning cards are 
given the higher of the two 
numbers produced by the first two 
rules. 

The new deck will permanently process 
all the BASIS INSERT aIidDELETE cards,,, and 
thus can be used to permanently update the 
Source Statement Library. This avoids 
having to resequence the update cards after 
they have been tested" and avoids the 
errors incurred during that resequencing 
process. 

USING THE LISTER 

Options 

The format and contents of the listings 
and deck produced by the lister are 
determined by the options specified on the 
LST card. The LIST card may be placed 
anywhere between the EXEC statement and the 
first statement of the COBOL program. It 
may be placed between any other compiler 
option cards. 

Two format options determine the 
dimensions and layout of the source and 
summary listings. 

PROC=lcol 
2col 
specifies that the source listing of 
the Procedure Division will be printed 
in either single or double column 
format. At least 132 print positions 
are required for double column format. 

Three options pertain to the output 
deck: 

DECK 
NODECK 

indicates whether an updated source 
deck is to be produced as a result of 

the lister reformatting and/or the 
update basis library. 

COPYPCH 
NOCOPYPCH 

will punch updated and reformatted • 
copy libraries as a permanent part of 
the source when DECK is specified, and • 
will punch out an updated and 
reformatted copy library when no 
updated source deck is requested. 

LSTONLY 
LSTCOMP 

The LSTONLY option will give a 
reformatted listing and a deck, if 
DECK was specified, but will not 
compile the program. LISTCOMP will" 
in addition to listing the source" 
also compile the program as part of 
the job step. 

PROGRAMMING CONSIDERATIONS 

The lister is designed to operate most 
efficiently on syntactically correct COBOL 
source, and does not have the expanded 
error handling of the full compiler. It is 
therefore highly recommended that the user 
programs first be compiled using the SYNTAX 
option, and syntax errors corrected before 
invoking the lister feature. If the lister 
function is used and there are syntactical 
errors, the formatting may be 
unpredictable, and performance can be 
significantly impacted. 

Further notes: Since Lister reformats the 
users COBOL program, compilation of the 
program, if LSTCOMP is in effect,. will be 
different from a non-li$ter compilation of 
the same program. For example: 

1. Lister s~quence numbers may be 
different 

2. SKIP/EJECT cards ~ill have no 
functional value with LIS'IER 

3. BASIS card will be dropped from the 
Lister listings 

4. FIPS messages will be based on the 
reformatted Lister listings. 

5. Suppress option of COpy will have no 
effect 

6. Sequence checking will not take place 
for a Lister sum. 

7. The Insert card indicator for BASIS 
will not be indicated on a lister 
listing. 

Lister Feature 228.5 





A programmer using IBM DOS/vS COBOL 
under the DOS/vS System, has several 
methods available to him for testing and 
debugging his programs. Use of the 
symbolic debugging features is the easiest 
and most efficient method for testing and 
debugging and is described in detail in 
this chapter. 

The chapter entitled "Program Checkout" 
contains information useful for testing and 
debugging programs run without the symbolic 
debugging features. It also contains 
information on compile-time debugging 
features, linkage editor and execution-time 
diagnostics as well as a description of 
taking checkpoints and restarting programs. 

The chapter entitled "Execution 
Statistics" also contains information 
helpful in testing and debugging programs 
run both with and without the symbolic 
debugging features. 

USE OF THE SYMBOLIC DEBUGGING FEATURES 

There are three symbolic debugging 
options available to the programmer for 
object-time debugging: the statement 
number option, the flow trace option, and 
the symbolic debugging option. None of 
these features require source language 
coding; rather they are requested via the 
CBL card at compile time. Operation of the 
symbolic debug option is dependent upon 
execution-time control cards. Figure 9 
illustrates the output generated for each 
of these features. 

STATEMENT NUMBER OPTION 

The statement number option facilitates 
debugging by providing the programmer with 
information about the statement being 
executed at the time of an abnormal 
termination of a job. It identifies the 
program containing the statement and 
provides the number of the statement and of 
the verb being executed. 

This feature is requested at compile 
time via the STATE option of the CBL card. 
Note that STATE and STXIT, STATE and 
SYMDMP, and STATE and OPT are mutually 
exclusive options at compile-time and STATE 
and STXIT are mutually exclusive in an 

SYMBOLIC DEBUGGING FEATURES 

execution-time run unit. The CBL card is 
discussed in detail in the chapter 
"Preparing COBOL Programs for processing." 

FLOW TRACE OPTION 

The flow trace option provides the 
programmer with the facility for receiving 
a formatted trace (i.e., a list containing 
the program identification and statement 
numbers> corresponding to a variable number 
of procedures executed prior to an abnormal 
termination. The number of procedures to 
be traced is specified by the programmer. 
If the FLOw option is specified and the 
number of procedures is not specified, a 
trace of 99 procedures is provided. 

A flow trace is printed only in the 
event of an abnormal termination. It is 
requested at compile time via the FLOW 
option of the CBL card. In a subprogram 
structure, once a FLOW specification has 
been made on a program, the subprograms for 
which a trace is desired should specify 
FLOW=O. The FLOW=O specification enables 
subprograms to utilize the table space 
reserved previously for the trace; 
additional table space need not be 
allocated. 

FLOW and STXIT, and FLOW and OPT are 
mutually exclusive options at compile-time 
and FLOW and STXIT are mutually exclusive 
in an execution-time run unit. The CBL 
card is discussed in the chapter "Preparing 
COBOL Programs for Processing." 

SYMBOLIC DEBUG OPTION 

The symbolic debug option produces a 
symbolic formatted dump of the object 
program's data area when the program 
abnormally terminates. It also enables the 
programmer to request dynamic dumps of 
specific data-names at strategic points 
during program execution. If two or more 
COBOL programs are link edited together and 
one of them terminates abnormally, the 
program causing termination and any callers 
compiled with the symbolic debug option, up 
to and including the main program, will be 
given a formatted dump. If any called 
program contains the SYMDMP option, the 
main program must be an ANS COBOL program. 

Symbolic Debugging Features 229 



Another feature of SYMDMP is that a 
check is made for a subscript which points 
out of the program area and for the length 
of a variable-length move out of the data 
area. If these address limits are reached, 
message C170I is issued and an abend dump 
is given. 

The abnormal termination dump consists 
of the following parts: 

1. Abnormal termination message, 
including the number of the statement 
and of the verb being executed at the 
time of an abnormal termination. 

2. Selected areas in the Task Global 
Table. 

3. Formatted dump of the Data Division 
including: 

(a) for an SD, the statement number, 
the sort-file-name, the type, and 
the sort record. 

(b) for an FD, the statement number, 
the file-name, the type, SYSnnn, 
DTF status, the contents of the 
Pre-DTF and DTF in hexadecimal, 
and the fields of the record. 

for a VSAM file, the file-name, 
whether the file is open or 
closed, file organization, type of 
access, type of last input-output 
statement, the current contents of 
the FILE STATUS word, as well as 
the record fields. 

(c) for an RD, the statement number, 
the report-name~ the type, the 
report line, and the contents of 
PAGE-COUNTER and LINE-COUNTER if 
present. 

(d) for an index-name, the name, the 
type, and the occurrence number in 
decimal. 

Note: For DTFDA when ACCESS IS 
RANDOM, the actual key is not provided 
in the Pre-DTF. 

The symbolic debug option is requested 
at compile time via the SYMDMP option of 
the CBL card. Note that SYMDMP and STXIT, 
SYMDMP and STATE, and SYMDMP and OPT are 
mutually exclusive options at compile time 
and SYMDMP and STATE and STXIT are mutually 
exclusive in a single execution-time run 
unit. The CBL card is discussed in the 
chapter "Preparing COBOL Programs for 
Processing." 

Operation of the symbolic debug option 
is dependent on object-time control cards 

230 

placed in the input stream. These cards 
are discussed below. 

Object-Time Control Cards 

The operation of the symbolic debug 
option is determined by two types of 
control cards: 

Program-control card -- required if 
abnormal termination and/or dyna~ic 
dumps are requested. 

Line-control card -- required only if 
dynamic dumps are requested. 

Syntax Rules: The fields of both the 
program-control card and the line-control 
card must conform to the following rules: 

1. Control cards are essentially free 
form, i.e., parameters coded on these 
cards can start in any column. 
However, parameters may not extend 
beyond column 71. 

2. Each parameter except the last must be 
immediately followed by a corrma. 

3. No commas are needed to account for 
optional parameters that are not 
specified. 

4. All upper-case letters represent 
specifications that are to appear in 
the actual statement exactly as shown. 

5. All lower-case letters represent 
generic terms that are to be replaced 
in the actual statement. 

6. Brackets -are used to indicate that a 
specification is optional and is not 
always required in the statement. 

7. Brackets enclosing stacked items 
indicate that a choice of one item 
may, but need not, be made by the 
programmer. 

8. Braces enclosing stacked items 
indicate that a choice of one item 
must be made by the prograrrrner. 

9. All punctuation marks and special 
characters shown in the statement 
formats other than hyphens, brackets, 
braces, and underscores, must be 
punched exactly as shown. This 
includes commas, parentheses, and the 
equal sign. 

10. Underscoring indicates the default 
case. 



Continuation Cards: To continue either the 
program-control card or the line-control 
card, a nonblank character must be coded in 
column 72 of the continued card. 

Symbolic Debugging Features 230.1 





Individual keywords and data-names cannot 
be split between cards. 

Control Statement Placement: The placement 
of the control cards in the input stream 
must be as follows: 

1. If a main program is compiled with the 
SYMDMP option, the control cards must 
precede the programmer's data, if any, 
in the input stream: 

II EXEC 

1* 

1* 
1& 

{Control Cards} 

{Programmer's Data} 

2. If the main program is a non-COBOL 
program or a COBOL program compiled 
without the SYMDMP option, but at 
least one subprogram called by this 
main program is a COBOL program 
compiled with the SYMDMP option, the 
control cards rrust follow the 
programmer's data for the main 
program, if any: 

II EXEC 

1* 

1* 
1& 

{Programmer's Data for Main 
Program} 

{Control Cards} 

Proqram-Control Cards: A program-control 
card must be present at execution time for 
any program requesting a SYMDMP service. 
Program-control cards have the following 
format: 

program-id,nnn 

,SD[=filename] 
,MT[=filename] 

,ENTRY 
, NOENTRY 

,(HEX) 
, (NOHEX) 

program-id 

nnn 

is a one through eight character COBOL 
program-name. This program-name must 
be the name of a COBOL program 
compiled with the SYMDMP option. This 
parameter is required and must appear 
first on the program-control card. 

is a 3-digit integer representing the 
programmer logical unit assigned to 
the dictionary file produced at 
compile time (i.e., the SYS005 file.) 
This parameter is required and must 
follow the "program-idn • This value 
must be the same as the one specified 
in the ASSGN control statement for the 
dictionary file at execution time. 

SD[=filename] 
MT[=filenameJ 

SD must be specified if the symbolic 
unit indicated by "nnn" is a disk 
file; MT must be specified if it is a 
tape file. "filename" is the name of 
the dictionary file produced at 
compile time. For a tape file, the 
"filename" parameter is ignored. For 
a disk file, if "filename" is not 
specified, IJSYS05 will be used. 
"filename" may be from one to seven 
characters in length. If "filename" 
is specified on the CBL card for a 
disk file, "filename" must also be 
specified on the program-control card 
and these names must be identical. 

ENTRY 
NOENTRY 

ENTRY is used to provide a trace of a 
program-name when several programs are 
link edited together. Each time the 
program whose PROGRAM-ID rratches the 
"program-ida parameter is entered, its 
name is displayed. 

(HEX) 
(NOHEX) 
-----refers to the format· of the Data 

Division area provided in the abnorroal 
termination dump. If,HEX is 
specified, level-01 items are provided 
in hexadecimal. Items subordinate to 
level-01 items are printed in EBCDIC, 
if possible. Level-77 ite~s are 
provided both in EBCDIC and 
hexadecimal. If HEX is not specified, 
items subordinate to level-01 items 
and level-77 items are provided in 
EBCDIC. If unprintable, hexadecimal 
notation is provided. 

Note: Parentheses are required. 

Line-Control Cards: Line-control cards 
have the following format: 

line-num [,(verb-num)] [,ON n][,m][,k] 

l [: ~~~~~X) ] ' ALL ~ 
{[

' (HEX) ] } 
, (NOHEX) ,name1 [THRU name2] ••• 

line-num 
corresponds to the generated card 
number prior to which the dump is 
desired. The dump is given before the 
first or only verb on that line. This 
parameter is required and must be the 
first on the line-control card. 

Symbolic Debugging Features 231 



verb-num 
indicates the position of the verb on 
the specified statement before whose 
execution a dynamic dump is given. 
When "verb-num" is not specified, 1 is 
assumed; when specified, "verb-num" 
must follow line-num and may not 
exceed 15. 

ON n [,m] [,k] 
is equivalent to the COBOL statement 
ON n AND EVERY m UNTIL k. This option 
limits the requested dynamic dumps to 
specified times. For example, "ON n" 
would result in one dump, given the 
nth time "line-num" is reached during 
execution. "ON n,m" would result in a 
dump the first time at the nth 
execution of "line-num" and thereafter 
at every mth execution until 
end-of-job. 

(HEX) 
(NOHEX) 
-----refers to the format of the Data 

Division areas provided in the dynamic 
dump. If HEX is specified, level-01 
items are provided in hexadecimal. 
Items subordinate to level-01 items 
are printed in EBCDIC, if possible. 
Level-77 items are printed both in 
EBCDIC and hexadecimal. If HEX is not 
specified, items subordinate to 
level-01 items and level-77 items are 
provided in EBCDIC. If unprintable, 
hexadecimal notation is provided. 
Note that if "namel" is specified and 
it represents a group item and HEX has 
not been specified, neither the group 
nor the elementary items in the group 
will be provided in hexadecimal. 

name1 [THRU name2] 

232 

represents selected areas of the Data 
Division to be dumped. With the THRU 
option, a range of data-names 
appearing consecutively in the Data 
Division is dumped. "name1" and 
"name2" may be qualified but not 
subscripted. If the programmer wishes 
to see a subscripted item, specifying 
the name of the item without the 
subscript results in a dump of of 
every occurrence of that item. 

results in a dump of everything that 
would be dumped in the event of an 
abnormal termination. The purpose of 
ALL is to allow the programmer to 
receive a formatted dump at normal 
end-of-job. To do this, the generated 
statement number of the line on which 
a STOP RUN, EXIT PROGRAM, or GOBACK 
statement appears must be specified as 
the "line-num" parameter. 

OVERALL CONSIDERATIONS 

The end-of-file control card, slash 
asterisk C/*) must end the symbolic debug 
control card data set. If a run unit 
includes one or more programs that have 
been compiled with the SYMDMP option and no 
symbolic dump is required at execution 
time, the input data set must nevertheless 
be provided, although in this case it 
consists only of the end-of-file (/*) card. 

If no executable output is produced as a 
result of the compilation (NOLINK, NODECK), 
any symbolic debugging options specified 
are suppressed. 

SAMPLE PROGRAM -- TESTRUN 

Figure 64 is an illustration of a 
program that utilizes the symbolic 
debugging features. In the following 
description of the program and its output, 
letters identifying the text correspond to 
letters in the program listing. 

Because the SYMDMP option is requested 
on the CBL card, the logical unit 
SYS005 must be assigned at compile 
time. 

@ The CBL card specifications indicate 
that an alphabetically ordered 
cross-reference dictionary, a flow 
trace of 10 procedures, and the 
symbolic debug option are being 
requested. 

An alphabetically ordered 
cross-reference dictionary of 
data-names and procedure-names is 
produced by the compiler as a result 
of the SXREF specification on the CBL 
card. 

The file assigned at compile time to 
SYS005 to store SYMDMP information is 
assigned to SYS009 at execution time. 

The SYMDMP control cards placed in the 
input stream at execution time are 
printed along with any diagnostics. 

The first card is the 
program-control card where: 

Ca) TESTRUN is the PROGRAM-ID. 
Cb) 9 is the logical unit to which 

the SYMDMP file is assigned. 
Cc) MT indicates that the SYMDMP 

file is on tape. 
Cd) (HEX) indicates the format of 

the abnormal termination dump. 



® 

® 

® 

The second card is a line-control 
card which requests a (HEX) 
formatted dynamic dump of KOUNT, 
NAME-FIELD, NO-OF-DEPENDENTS, and 
RECORD-NO prior to the first and 
every fourth execution of 
generated card number 71. 

The third card is also a 
line-control card which requests a 
(HEX) formatted dynamic dump of 
WORK-RECORD and B prior to the 
execution of generated card number 
80. 

The type code combinations used to 
identify data-names in abnormal 
termination and dynamic dumps are 
defined. Individual codes are 
illustrated in Table 34. 

The dynamic dumps requested by the 
first line-control card. 

The dynamic dumps requested by the 
second line-control card. 

Program interrupt information is 
provided by the system when a program 
terminates abnormally. 

The statement number information 
indicates the number of the verb and 
of the statement being executed at the 
time of the abnormal termination. The 
name of the program containing the 
statement is also provided. 

A flow trace of the last 10 procedures 
executed is provided because FLOW=10 
was specified on the CBL card. 

Selected areas of the Task Global 
Table are provided as part of the 
abnormal termination dump. 

For each file-name, the generated card 
number, the file type, SYSnnn, the DTF 
status, and the fields of the Pre-DTF 
and DTF in hexadecimal are provided. 

The fields of records associated with 
each FD are provided in the format 
requested on the program-control card. 

The contents of ~he fields of the 
Working-Storage Section are provided 
in the format requested on the 
program-control card. 

The value associated with each of the 
possible subscripts are provided for 
data items described with an OCCURS 
clause. 

® Asterisks appearing within the EBCDIC 
representation of the value of a given 
field indicate that the type and the 
actual content of the field conflict. 

Note: When using the SYMDMP option, level 
numbers appear "normalized" in the symbolic 
dump produced. For example, a group of 
data items described as: 

01 RECORDA. 
05 FIELD-A. 

10 FIELD-Ai PIC X. 
10 FIELD-A2 PIC X. 

will appear as follows in SYMDMP output: 

01 RECORDA ••• 
02 FIELD-A ••• 
03 FIELD-Ai ••• 
03 FIELD-A2 ••• 

Debugging TESTRUN 

1. 

2. 

3. 

4. 

Referring to~e statement number 
information ~ provided by the 
symbolic debug option, it is learned 
that the abend occurred during the 
execution of the first verb on card 
80. 

Generated card number 80 contains the 
statement COMPUTE E = B + 1. 

Verifying the contents of B at the 
t~' e of the abnormal termination 

R it can be seen that the usage of 
B numeric packed) conflicts with the 
value contained in the data area 
reserved for B (numeric display). 

The abnormal termination occurred 
while trying to perform an addition on 
a display item. 

More complex errors may require the use 
of dynamic dumps to isolate the problem 
area. Line-control cards are included in 
TESTRUN merely to illustrate how they are 
used and the output they produce. 

Symbolic Debugging Features 233 



Table 34. Individual Type Codes Used in 
SYMDMP Output 

r----------T------------------------------, 
I Code I Meaning ] 
t----------+------------------------------~ 

A Alphabetic I 
B Binary J 
D Display I 
E Edited I 
* Subscripted Item I 
F Floating point I 
N Numeric I 
P Packed Decimal I 
S Signed I 
OT Overpunch Sign Trailing ] 
OL Overpunch Sign Leading I 
SL Separate Sign Leading J 
ST Separate Sign Trailing I __________ ~ ______________________________ J 

234 



// JOB DEBUGL 
/1 OP'IION NODECK,LINK,LIST,LISTX,SYM,ERRS 
II ASSGN SYS005,X'QS3' 
// EXEC FCOBOL ~ 

1 IBM OOS VS COBOL REL 1.0 PP NO. 5746-CBl 07.52.05 10/~2/73 

CEl SXREF,FLCW=10,SY~DMP,QUOTE,SEQ ~ 
COOOl 000010 IDENTIFICATION DIVISICN. 
OC002 000020 PROGRAl~-ID. TESTRUN. 
C0003 000030 AUTHOR. PROG~MER NAME. 
COOOq INSTALLATION. NEW YORK DEVELOPMENT CENTER. 
C0005 DATE-WRITTEN. SEPTEMBER 26,1973. 
CC006 DATE-COMPILED. 10/02/73 
00007 RE~~RKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FCR 
C0008 COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK 
CC009 AS INPUT. 

ENVIRCNMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-3~0-H50. 
OBJFCT-COMPUTER. IBM-370. 
INPUT-CUTPUT SECTION. 
FILE-CONTROL. 

C0010 000100 
00011 000110 
C0012 000120 
C0013 000130 
C0014 000140 
COC15 000150 
CC016 000160 
C0017 000170 
C0018 000180 
C0019 000190 
C0020 000200 
00021 . 000210 
C0022 \ 000220 
OC023 1000230 
C0Q2Q0002qO 
C0025 000250 
COC26 000255 
00027 000260 
C0028 000270 01 
00029 
C0030 
CC031 
C0032 
C0033 
C0034 
C0035 
(OC36 
C0037 

000290 
000300 
000310 
000320 
000330 
0003QO 
000350 

SELECT FILE-l ASSIGN TO SYS008-UT-2QOO-S. 
SELECT FILE-2 ASSIGN TO ~YS008-UT-2QOO-S. 

DATA DIVISION. 
FILE S.E;CTION. 
FD FILE-l 

LABEL RECORDS ARE OMITTED 
BLOCK CONTAINS 5 RECC~DS 
RECORDING MODE IS F 
RECORD CONTAINS 20 CHARACTERS 
DATA RECORD IS RECCRD-l. 
RECORD-l. 
05 FIELD-A PIC X(20). 

FD FILE-2 
LABEL RECORDS ARE OMITTED 
-BLOCK CONTAINS 5 RECORDS 
RECCRD CONTAINS 20 CHARACTERS 
RECORDING MODE IS F 
DATA RECORD IS RECCRD-2. 

01 RECORD-2. 
05 FIELD-A PIC X(20). 

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN (Part 1 of 
12) 

Symbolic Debugging Features 235 



C0038 
C0039 
C0040 
00041 
00042 
CC043 
C0044 
C0045 
C0046 
00047 
C0048 
00049 
C0050 
COG51 
C0052 

C0053 
C0054 
C0055 
C0056 
00057 
C0058 
COO 59 
00C60 
COG61 
COC62 
C0063 
C0064 
C0065 
C0066 
C0067 
C0068 
C0069 
C0070 
ce071 
C0072 
C0073 
COC74 
C0075 
C0076 
COC77 
C0078 
C0079 
C0080 
C0081 
C0082 
C0083 
00C84 
C0085 

IBM 005 VS COBOL REL 1.0 PP NO. 5746-CB1 

000370 
000380 

000420 

000450 
000460 
000470 
000480 
000490 

000510 

wORKING-S70RAGE SEC~ICN. 
01 FILLER. 

02 KOUNT FIC S99 COMP SYNC. 
02 ALPHAEET PIC X (26) VALUE ·AECDEFGHIJKLhNCP'..i~STUVWXYZ". 
02 ALPHA REDEFINES ALPHABET PIC X OCCURS 26 TU.ES. 
02 NUMBR PIC S99 COMF SYNC. 
02 DEPENDENTS PIC X(26) VALUE ·01234012340123401234012340". 
02 DEPEND REDEFINES DEPENDEN~S PIC X OCCURS 26 TIMES. 

01 WORK-RECORD. 
05 (lAME-FIELD PIC X. 
05 FILLER FIC X. 
05 RECORD-NC PIC 9999. 
05 FILLER PIC X VALUE IS SPACE. 
05 LOCATION PIC AAA VALUE IS "NYC·. 
05 FILLER FIC X VALUE IS SFACE. 

000520 05 NO-OF-DEPENDEN~S PIC XX. 
05 FILLER PIC X(7) VALUE IS SPACES. 

01 RECCRDA. 
02 A PICTURE S9(4) VALUE 1234. 
02 E RELEFINES A PICTURE S9(7) CC~3PUTA'lIONAL-3. 

000550 PROCEDURE DIVISION. 
BEGlN. 

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FIll:. 
TO EE CREATED AND INITIALIZES THE COUNTERS. 

STEP-I. OPEN OUTPUT FILE-I. i>10VE ZERO 'i0 KOUL'lT, L~Ufi'ER. 
Non. THAT THE FOLLOWING C~EATES I~TERNALLY THl:. 
RECCRDS TO EE CONTAINED IN THE FILE, WRITES 7HEM 
ON 7APE, AND DISPLAYS THEN ON THE CONSOLE. 

STEP-2. ADD 1 TO ROUNT, NUMBR. ~OVE ALPHA (KOUNT) Te 
NAME-FIELD. 
YOVE DEPEND (KOUN7) TO NO-OF-DEFENDErns. 

000660 MOVE NU~ER TO RECORD-NO. 
STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. 

WRITE RECORD-1 FROM WORK-RECORD. 
ST£P-4. PERFOrlM STEP-2 TaRU STEP-3 

UNTIL KOUNT IS EQUAL TO 26. 
NOTE THAT THE FOLLOWING CLOSES TH~ OUTPUT FILE 
AND REOPENS IT AS INPUT. 

000720 STEP-5. CLOSE FlLE-l. OPEN INFUT FllE.-2. 
N01L THAT THE FOLLOWING READS BACK THE FILE 
AND SINGLES OUT EMPLOYEES wITH NO LEPENDEN7S. 

STEP-6. READ FILE-2 R~CCRD INTO wORK-RECORD AT EN~ GO TO STEP-8. 
COMPU7E B = B + 1. 

STE~-7. IF NO-CF-DEPENDEN~S IS EQUAL 10 ·0· MOVE ·Z· TO 
NO-OF-DEPENDEi~'IS. EXHIBIT NAI>:ED ViORK-RECORD. 
GO TO STEP-6. 

000780 STEP-8. CLOSE FlLE-2. 
000790 STOP RUN. 

07.52.05 10/02/73 

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 2 of 12) 

236 



IBM DOS VS COBOL REL 1.0 PP NO. 5746-CB1 07.52.05 10/02/73 

IN'l'RNL ~AME 

DN[~=1-148 

DN~=1-179 
DNM=1-20C 
DtijM=1-2l7 
DNM=1-248 
DNM=1-269 
DNM=1-289 
DN!~=1-308 
DNM=1-323 
DNM=1-34l 
DNl-j=1-359 
DNM=1-374 
DNM=1-394 
DNf.:=1-4lC 
DNl-;=1-434 
DNM=1-454 
DNM=1-473 
DNM=1-492 
D~fi.=2-000 
DNZ,;=2-018 
DNl'i=2-037 
DNIvl=2-063 
DNM=2-082 
DNl-,=2-l02 
DNI'1=2-1l3 

"Figure 64. 

LVL SOURCE NAME tiASE u.LSFL INTRNL NAt/,f: DEFldl'IION USAGE. r< 0 

FD F'ILE-l DTF=Ol DNt-;=1-148 D'IFly;T 
01 RECORD-l BL=l 000 DN~=1-119 DS OCL20 GROUP 
02 FIEL1:-A bL=l 000 m~M=1-200 DS 2('C DISP 
FD FILE-2 D·H=02 DNM=1-2l1 C'IF~.T 

01 RECORD-2 BL=2 000 DNN=1-248 DS OCL2C GROD? 
02 FIELJ:-A BL=2 000 DNfiol=1-26'J DS 2UC DISI' 
01 FILLER bL=3 000 DUl'.=1-289 DS OCL56 GROUP 
02 KOUNT ~L=3 000 DNt-:=1-308 DS lH COllP 
02 ALPHABET BL=3 002 DNl-:=1-323 DS 2bC CISi' 
02 ALPHA BL=3 002 DNM=1-34l DS lC ;;ISP R ;] 

02 NUMER l:IL=3 01C DN~=1-359 1:S lH CC:·,1' 
02 DEPENDENTS ElL=3 (jlE DllM=1-374 DS 2bC DIS? 
02 DEPEND BL=3 OLE DN1-l=1-394 DS lC ['lS? 1-: a 
01 WORK-RECORD BL=3 (j38 DNl·:=1-410 DS OC1.20 GROUP 
02 NAl-1E-FIELD BL=3 038 DNN=1-434 DS 1C DISP 
02 FILLER BL=3 039 DNM=I-454 DS lC DISl' 
02 RECORD-NO BL=3 03A DNM=1-413 DS 4C DISP-Ni'" 
02 FILL~R BL=3 03E DNM=1-492 DS lC DI5I' 
02 LOCA'IION BL=3 03F DNt-;=2-000 DS 3C DISP 
02 FILLER BL=3 042 DN~=2-018 DS lC DISP 
02 NO-OF-DEPENDEN'IS BL=3 043 DNr.:=2-C37 DS 2C DISP 
02 FILLER BL=3 045 DNl-;=2-G63 DS 1C DISP 
01 RECCRDA BL~3· 050 Imr.;=2-G82 DS OCL4 GROUP 
02 A BL=3 esc DNl-J=2-l02 DS 4C iJISP-Nt·j 
02 B BL=3 050 DNM=2-113 r:;s 4P CC~}-3 R 

Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 3 of 12) 

C; M 

F 

F 

fI 

Symbolic Debugging Features 237 



IBM DOS VS COBOL 

MEMCRY MAP 

'IG'l 

SAVE ARE.A 
SWITCH 
'IALLY 
SOR'I SAVE 
ENTRY-SAVE 
SORT CORE SIZE 
NSTD-REELS 
SORT RE'l 
WORKING CELLS 
SOR'I FIl.E SIZE 
SORT MCDE SIZE 
PGT-VN 'lBL 
TGT-VN TBL 
SOR'lAB ADDRESS 
LENGTH CF VN 'IEL 
LNG'IH OF SOR'lAE 
PGM ID 
A(INIT1) 
UPSI SWITCHES 
DEBUG 'lABLE P'lR 
CURRENT PRIORI'lY 
TA LENG'IH 
PROCE.DURE BLOCR1 PTR 
UNUSED 
RESERVED 
VSAM SAVE AREA ADDRESS 
UNUSED 
RESERVED 
OVERFLCW CELLS 
BL CELLS 
DTFADR CELLS 
FIB CELl.S 
'lEMP STCRAGE 
TEl-1P S'IORAGE- 2 
TEMP STCRAGE-3 
TEMP S'lORAGE-4 
BLL CEl.LS 
VLC CELLS 
SBL CEl.l.S 
INDEX CELLS 
SUBADR CELLS 
ONe'lL CELLS 
PF!fJCTL CELLS 
PFMSAV CELLS 
VN CELLS 
SAVE AREA =2 
XSASW CELLS 
XSA CElLS 
PARAM CELLS 
RPTSAV AREA 
CHECRP'I C'lR 
IOPTR CELLS 
DEBUG 'IABLE 

REL 1.0 

00400 

00400 
00448 
0044C 
00450 
00454 
00458 
0045C 
0045E 
00460 
00590 
00594 
00598 
0059C 
005AO 
005A4 
005A6 
005A8 
005EO 
005E4 
005EC 
005CO 
00SC1 
00SC4 
005C8 
OOSCC 
005CO 
005C4 
005DC 
00SF4 
OOSF4 
00600 
00608 
00608 
00610 
00610 
00610 
00610 
00614 
00614 
00614 
00614 
0061C 
0061C 
C061C 
00620 
00624 
00624 
00624 
00624 
00628 
00628 
00628 
00628 

pp NO. 5746-CBl 07.52.05 10/02/73 

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 4 of 12) 

238 



IBM DOS VS COBOL REL 1.0 PP NO. 5746-CB1 07.52.05 10/02/73 

LI~ERAL PCOL (HEX) 

00690 (LIT+O) 
CC6A8 (LIT+24) 

00000001 001A1C5E 5BC2~6D7 C5D5405B 5BC2C3D3 D6E2C55E 
5BC2C6C3 D4E4D300 COOOOOOO 

DISPLAY LITERALS (BCD) 

006B4 (LTL+36) 'WCRK-RECORD' 

FG~ 

DEBUG LINKAGE AREA 
OVERFLOW CELLS 
VIRTUAL CELLS 
PROCEDURE NAME CELLS 
GENERATED NAME CELLS 
SUBD~F ADDRESS CELLS 
VNI CELLS 
LITERALS 
DISPLAY LITERALS 
PROCEDURE BLOCK CELLS 

REGISTER ASSIGNMEN~ 

REG 6 
RE.G 7 
REG 8 

BL =3 
BL =1 
BL =2 

00638 

00638 
00640 
00640 
00664 
00674 
00688 
00688 
00690 
006E4 
006CO 

WORKING-STORAGE STAR~S AT LOCA~ION 00100 FOR A LENGTH OF 00058. 

o 
59 

62 

62 

0006CO 
0006CO 
0006C4 
0006C6 
0006CA 
0006CC 

0006CE 
0006D2 
00C6D4 
OC06D8 
0006DA 

0006DC 
0006EO 
0006E2 
0006E6 
0006EA 
0006EE 
0006FO 
OC06F2 
0006F4 

58 FO 
05 EF 
58 FO 
05 lF 
003B 

58 FO 
05 EF 
58 FO 
05 lF 
003E 

58 FO 
05 EF 
56 20 
41 10 
58 00 
18 40 
07 00 
05 FO 
50 00 

S~ART EI./U * 
C 018 L 15,018(0,12) 

BALR 14,15 
C 01C L 15,OlC(0,12) 

BALR 1,15 
DC X'003E' 

C 018 L 15,018(0,12) 
BALR 14,15 

C 01C L 15,01C(0,12) 
EALR 1,15 
DC X'003E' 

C 018 L 15,018(0,12) 
BALR 14,15 

D lF4 L 2,lF4(0,13) 
C 05F LA 1,OSF(C,12) 
D 200 L 0,200(0,13) 

LR 4,0 
BCR 0,0 
EALR 15,li 

F 008 S1 O,OCS(0,15) 

V (ILB~tBG 4 ) 

V (ILE~FLW1) 

V (ILEDtBG4) 

V (ILEI:FLW1) 

V(ILE~LBG4) 

EL =1 
LIT+7 
D'IF=l 

*STATISTICS* 
*S'IA~ISTICS* 

*OPTIONS IN EfFECT* 
*CFTICNS IN EFFEC'l* 
*OF'IIONS IN EFFEC'l'* 
*CF'IICNS IN EFFECT* 

SOURCE RECORDS 85 ~A'IA I'IEMS = 25 NC CF VEl<ES = 29 

Figure 64. 

PAR'II'IION SIZE 65517b LINE COUN'I = 56 BUFFER SIZE = 512 
PIiJAP RELOC ADR NONE SPACING 1 FLOW 10 

LIS'IX QUO'IE SYM NOCA'IALR LIS'I LINK NCb'IXl'l 
NOCLIS~ FLAGw ZWE NOSUPMAP NOXRJ:F ERRS SXRt.F 
NOS'IATE TRUNe SEQ S-XMDMF tmDECK NOVERL lWSYi~'IFX 

Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 5 of 12) 

l''1CLIl: 
hCOP'! 
,.crVL 

Symbolic Debugging Features 239 



IBM DOS VS COBOL 

CD 
DATA NAl'-J.t.S 

A 
ALPHA 
AIPHABLT 
B 
DEFEND 
.t:EPENDENTS 
FI.HD-A 
FIELD-A 
FIlE-1 
EIlE-2 
KCUNT 
ICCATIOil 
NAl':E-FIELD 
NC-OF-DEPENDENTS 
NUMER 
RECORL-,~O 

RECCRD-1 
flECORD-2 
~ECORDA 

wORK-RECOi<D 
BEGlt>: 
S'I.EP-1 
STEP-2 
STEP-3 
STEP-4 
STEP-5 
STEP-6 
STEP-7 
S'IEP-8 

CAkD ERROR MESSAGE 

DEFN 

000056 
000042 
000041 
000057 
000045 
000044 
000029 
000037 
000017 
000018 
000040 
000051 
000047 
000053 
000043 
000049 
000028 
000036 
000055 
000046 
000059 
000062 
000066 
000070 
000072 
000076 
000079 
000081 
000084 

REL 1. 0 PP NO. 5746-CB1 

CROSS-REFERENCE DICTICNARY 

REFERENCE 

000066 

000080 
000068 

000062 000071 000076 
000076 000079 000084 
000062 000066 000068 000072 

000066 
000068 000081 
000062 000066 000069 
000069 
000071 
000079 

000070 000071 0(0079 000082 

000072 
000072 

oe0083 

000079 

0005b 
ce066 
C006b 

ILA2190I-W 
ILA5011I-W 
ILA5011I-W 

PICTURE CLAUS:;:: IS SIGNED, VALUE CLAUSE UNSIGNED. ASSUME..., PCSITIVE. 
HIGH ORDER TRUNCATION MIGBT OCCUR. 
HIGH ORDER TRUNCATION l'jIGHT OCCUR. 

II EXEC LNKEDT 

JCE DEBUGL 

ACTICN 
LIST 
LIST 
LIST 
LIST 
LIST 
lIST 
LIST 
LIS'! 
lIST 
lIST 
lIST 
lIST 

TAKEN MAP REI 
AUTOLINK IJFFEZZN 
AUTOLINK ILBDADRO 
AUTOLINK ILBDDBGO 
INCLU:CE IJJCPDV 
AUTOLINK IIEDDSPO 
AUTOIINK ILEDDSSO 

INCLUDE IJJCPDV 
AUTOLINK ILBDFLWO 
AUTOLINK ILEDIMLO 
AU'IOLINK ILBDMNSO 
AUTOLINK IIEDSAEO 
E,'lTRY 

DOS LINKAGE EDITOR DIAGNOSTIC OF IuPUT 

07.52.05 10/02/73 

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 6 of 12) 

",,1'\ ,,"tv 



IBM DOS VS COBOL 

PHASE XFR-AD LOCORE BICCRE DSK-AD 

PHASE... 07D878 07D878 0803EF 05F OF 

* UNREFERENCED SYMEOLS 

003 UNRBSOLVED ADDRESS CONS'IAl~'IS 

II ASSGN SYS008,X'482' _ (;\0 
II AS3GN SYS009,X'483' ~ 
II EX.i:.C 

REL 1. 0 PP NO. 5746-CB1 07.52.05 10/02/73 

ESD TYPE LABEL LOADED REL-FR 

CSEC'I 'lES'llWN 07D878 07D878 RHOCA'IABLl:. 

CSECT IJFFEZZN 07E368 07l:368 
ENTRY IJ"I'FZZZN 07E368 

• ENTRY IJHEZZZ 07E368 

• ENTRY IJFFZZZZ 07E368 

CSEC'I ILE0SAEO 080268 Otl02b8 
ENTRY ILEDSAEl 0802BO 

CSEC'I ILEDMNSO 080260 080260 

CSEC'I ILBDDEGO 07EACO 07EACO 
EN'l"RY ILBDDPG5 07EFA2 
ENTRY ILEDDFG4 07F014 
Ei:l'IRY ILBDDBG7 07F038 
ENTRY ILBDDBG2 07ED8A 
ENTRY ILBDDEGl 07EC1C 
ENTRY ILBDDBG3 07FOOA 

• EN'I"RY lLEDDEGb 07F024 
EN'IRY S'IXI'IPSw 07FODO 

* ENTRY SOR'IBP 07F270 

CSEC'I ILBDFLWO 07FD70 07FD70 
ENTRY ILBDFLWl 07FE30 
EN'l'RY ILBDFLW2 07FfOC 

CSECT ILBDHf:LO 080208 080208 

CSEC'I ILBDADRO 01£718 On718 

* ENTRY ILBDADRl 07E724 

CSEC'I ILBDDSPO 07F518 07F518 
ENTRY lLBDDSPl 07F918 

CSEC'I IJJCPDV 071::878 07E878 
ENTRY IJJCPDVl OH878 
ENTRY IJJCPDV2 07E878 

CSECT lLBDDSSO 07FA48 C7FA48 
ENTRY ILBDDSSl C7FCA8 
EN'I"RY lLBDDSS2 C7FCAO 
ENTRY ILBDDSS3 07FD60 
ENTRY ILBDDSS4 07FA6F 
ENTRY lLBDDSS5 07iE1A 
ENTRY ILBDDSS6 07tB7A 
ENTRY ILBDDSS7 07FB44 
ENTRY ILBDDSS8 07 FA 9..:: 

WX'lRN ILBDS'INO 
WXTRN ILBDSR'IO 
WX'IRN ILBLTEF3 

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 7 of 12) 

Symbolic Debugging Features 241 



IBM DOS VS COBOL REL 1. 0 PP NO. 5746-CBl 

S~r-:Dr.:P CONTlWI CARDS 

CD 'lhS'IRUN, 009 ,~T, (HEX) 

CD 71,ON 1,4, (HhX) ,KOUN'I,NAME-FIELD,;W-CF-r::E.t'ENDEN'IS,RECORIJ-NC 

080, (HE:X) ,WOI<K-RECORD,B 

NO ERRORS FOUND IN COl\'IPCL CARDS 

CD 
'IYPE CODES USBD IN SYr-;DMP OUTPU'I 

CODE MEANING 

CD 
TESTRUN AT CARD 000071 

ICC CARD LV NA~E 

07~978 000040 02 KOUNT 

07r::9BO 000047 02 NAME-FIELr:: 

A 
AN 
ANE 
D 
DE 
F 
FD 
NB 
NE-S 
ND 
ND-OL 
ND-OT 
ND-SL 
ND-ST 
NE 
NP 
NP-S 

* 

07r9EE 000053 02 NO-OF-DEPENDENTS 

07D9B2 000049 02 RECORD-NO 

TESTRUN AT CARD 000071 
LCC CARD LV NAMh 

07[;978 000040 02 KCUNT 

07r::9BO 000047 02 NAME-FIELD 

07C9EE 000053 02 NO-OF-DEPENDENTS 

07D9B2 000049 02 RECCRD-NO 

TESTRUN AT CARD 000071 
LCC CARD LV NAME 

07D978 000040 02 KOUNT 

07D9BO 000047 02 NAME-FIELC 

07I:9EE 000053 02 NO-OF-DEPENDENTS 

07D9B2 000049 02 RECORD-NO 

ALPHABE'IIC 
ALFBAl~UME'<IC 

ALPHANuz,:ERIC EDIThD 
DISPlAY (STERLING NONREPOR'l) 
DISPLAY EDITED (STERLING REPORT) 
FLOA'IING PCINT (C')MP-l/COl':P-2) 
FLOA'IING :t'OINT DISl'LAY (EX'IERNAL FLCATING PCIl'>'I) 
NUMERIC BINARY UNSIGNED (CCMP) 
NUMERIC BINARY SIGNED 
NUMERIC DISPLAY UNSIGNED (EXTERNAL DECIMAL) 
NUMERIC DISPLAY OVERPUiiCH SIGN LEADING 
NUMERIC DISPLAY OVERPUNCH SIGN TRAILINu 
NUMERIC DISPLAY SEPARATE SIGN LEADING 
NUMERIC DISPLAY SEPARATE SIGN TRAILING 
NUMERIC EDITED 
NUMERIC PACKED DECIMAL UNSIGNED {CC~F-3} 
NUMERIC FACKED DECIMAL SIGNED 
SUBSCRIPTED 

'IYPE VALUi;:; 

NB-S +01 
(HE.lO 0001 

AN A 

AN 0 

ND 0001 

TYPE VALUE. 

NB-S +05 
(HEX) 0005 

AN E 

AN 4 

1'<1:: 0005 

TYPE VALUE 

NB-S +09 
(HEX) 0009 

AN I 

AN 

NO OOOq 

07.52.05 10/02/73 

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 8 of 12) 



IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 07.52.05 

'IES'IRUt' AT CARD 000071 
Lec CARD LV NAME. TYPE VALUE 

07t978 000040 02 KOUNT t'B-S +13 
(hEX) OOuD 

07D9EO 000047 02 NAME-FIELD AN N 

07C9El' COOOS3 02 NC-OF-DEPEN~ENTS AN 2 

07D9E2 000049 02 RECCRD-NO ND 0013 

TESTRUt\ AT CARD 000071 
LCC CARD LV NAME TYPE VALUl:. 

07D978 000040 02 KOUNT NB-S +17 
(HEX) 0011 

07t9BO COO047 02 NAtw:E-FIEL[; AN Q 

07r:9EE 000053 02 NO-OF-DEPENDENTS AN 1 

07[;9B2 000049 02 RECCRD-NO ND 0017 

TiSTRUN AT CARD 000071 
Lce CARD LV NAr-;E 'IYFE VALUE 

07[;978 000040 02 KCUNT NE-S +21 
(HEX) 0015 

07L9EO 000047 02 NAME-FIELD AN U 

07[;9EE 000053 02 NO-CF-DEPENDENTS iH~ 0 

07D9B2 000049 02 RECCRD-NO ND 0021 

TESTRUN AT CARD 000071 
LCC CARD LV NAME TYPE VALUE 

07I:978 000040 02 KOUN'I NE-S +25 
(hEX) 0019 

07C9EO 000047 02 NAME-FIELD AN 'i 

07D9EB 000053 02 NC-CF-DEPENDEN'IS AN 4 

07D9B2 000049 02 RECORD-NO ND 002S 

® 
TES'IRUN AT CARD 000080 

LCC CARD LV NAME TYPE VALUE 

000046 01 wORK-RECORD 
07D9BO (HEX) C107FUFO FOF140D5 ESC340FO 40404040 4U404040 
07D9EQ 000047 02 NAME-FIELD AN A 
07[;9B1 000048 02 FILLER AN * 
07r:9B2 000049 02 RECORD-NO ND 0001 
07[;9B6 000050 02 FILLER AN 
07C9E7 000051 02 LOCATION A NYC 
07D9BA 000052 02 FILLER AN 
07D9EE 000053 02 NO-OF-DEPENDENTS AN 0 
07D98D 000054 02 FILLER AN 

07D9C8 000057 02 B NP-S *1*2*3* 
(HEX) FlF2F3C4 

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 9 of 12) 

10/02/73 

Symbolic Debugging Features 243 



IBM DOS VS COBOL 
REL 1.0 PP NO. 5746-CBl 07.52.05 10/02/73 

COBOL ABEND DIAGNOS~IC AIDS 

INTERRUPl CODE 7 LAS'I PSW ADDR BEFORE ABEND D007t.1Af 

PRCGRA~ TES'IRUN 

Ol.} CD LAS~ CARD NUMBER/VERB NUMBER EXECU'IED -- CARD NU~BER COOO&O/VEHB NUMBER 

FLOW TRACE (;\ 
'IES~RU~ 000066 000070 000066 000070 0000b6 000070 000066 000070 000076 000079 ~ 

DA'IA DIVISIO.I DU~P Or' TES~RUN 

CD 
~ASi< GLOBAL 'IABLE LOC VALUE 

..;,nV.L .ft.£\,c,i'1. 07iX78 OOOliF233 1B009101 00080168 8007E18:':; 0007:E1A8 4007E1AA OOC7IJMC O(;07D.c.AS 
07DC98 0000001A 0OO7I:A60 50071::29A 0007D978 0007DAEC 0007:::'RA8 0007£<:b4 0007D878 
07DCB8 4007E1A1:. 0007DEBO 

SlIiI'ICH 07DCCO 3CI0004E 
~ALLY 07DCC4 00000000 
SCR'I-SAVE 07DCC6 00000000 
EN'IRY-SAVE; 07DCCC 0007DF38 
SCR'I-CORE-SIZE 07DCr;0 00000000 
NS'IC-rlEELS 07DCD4 0000 
SCR'I-RETURN 07l)Cr;6 0000 
wORhING CELLS 070CD8 00070A60 0007DB40 0000001A 0007DAbC 5007E29A U6E902:;) F21290LC 40E9071'C 

070CF8 FOF2F640 C5E8C340 .r'0404040 40404040 40404(;40 404C4040 40404(J40 40404040 
07DD18 1104040110 4011011040 IIC404040 404011011(; 401104(;110 4040404C 40401104(; 4040404(; 
07DIJ38 --SMl.E--
07DD58 110404040 40404040 4011040110 4040404C 401104040 40400000 OOOOOOOl. 00C7hu82 
07DD7S 000uOO1A 01000000 0007'::070 00uU51S 0007D9AF 0OO7E.0811 00000011-\ OuOOOu1A 
070098 0007D9AF S007E29A 00070978 OC07DAD8 0007DEA8 0007£264 0007D87b 4007J:."bA 
070DES 00070EBO 55EOF 088 4780F030 18Fi,05EF 18FII9SEII F06S4BOG 00024620 00071:.0&2 
070DD8 0007FA48 0007EC84 0007F518 4A50F060 4A20FObO 183G47FC F0361i200 5000200C 
07DCF8 00000000 00000000 07070607 07070707 

SCR'I-FILE-SIU 07DE08 00000000 
SCR~-M(;DE-SIZE 07DEOC 00000000 
FG'I-VN TBL 07DElC E2CI04D7 
'I(''I-VN TBL 070E14 D3C54040 
SOR'IAB ADDR 07DE1S 0007D878 
'\iN ~BL LENGTH 07DE1C 0000 
SOR'IAB LENG'IH 070E1E 0000 
FRCGRAM-ID 07DE20 TES~RUN 

A CINIT1) 070E28 0007D878 
UPSI-SWITCHES 07DE2C C9D3C2C4 C6E2E8FO 
'IG'I-DBG TAELE 07DE34 00000228 
CURRENT PRICRITY 07DE38 00 
'IRANSIENT AREA LENG'IH 07DE39 689120 
FRCCEDURE-BLCCK 070E3C EOO04780 
UNUSED 070E40 F0325810 
RESJ:.RV.t::D 07DEII4 F0789101 
VSAM SJ',VE AREA 070E48 100011710 
UNUSED 07DE4C F0329601 00000000 
RESEl<VEO 070E54 00000000 F0549110 000002EO 00000100 000002A8 D4C5E3CS 
CVERFLCW CELLS (NONE> 
EL CELLS 070E6C 00070AEC 0007DBA8 0007D978 
I:'IFAOR CELLS 070E78 0007D9E8 0007DA60 
FIE CELLS (NONE) 
'IE~P S'IORAGE 070E80 00000000 0000026C 
ELL CELLS 070E88 00000000 
'\iLC CELLS (NONE) 
SEL CELLS (NONE) 
INDEX CELLS (NONE) 
C~HER (SEE MEMORY MAP) 07DE8C 00070993 0007D9AF 0007~OAC 0007EOAC 07C5DS40 OAOOOA68 00GOO9D2 5C29Foce 

07DEAC 00OO06F8 

Figure 64. Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 10 of 12) 

244 



IBM DOS VS COBOL REL 1. 0 PP NO. 5746-CB1 07.52.05 10/02/73 

lCC CARD 

000017 

071:9DO 
07r9E8 
07DA08 
07r::A28 
07r::A48 

000028 
07DAEC 
07J:AEC 000029 

000018 

07r::A48 
071:A60 
07DA80 
071:1\AO 
07DACO 

000036 
071:BA8 
OnSA8 000037 

000039 
on978 
07D990 
07r::9A8 
07D978 000040 
07I:97A 000041 

000042 

07D97A 
07I:97E 
07r::97C 
07I:97D 
07D97E 
07I:97F 
071:980 
07L981 
07£982 
07I:983 
07L984 
071:985 
071:986 
07I:987 
07D988 
071:989 
071:98A 

Figure 64. 

LV NA..."lE 

FD FILE-1 ® 
PRE-D'IF 

D'IFl-"'I 

01 RECORD-1 ® 
02 FIELD-A 

FD FILE-2 ® 
PRE-D'IF 

D'IFMT 

01 RECORD-2 ® 
02 FIh:LD-A 

01 FILLER 0 
02 KCUNT 
02 ALPHABE'I 
02 ALPHA 

® (SUBD 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

DA'IA DIVl.slOl'~ DU~,? OF 'IES'IRU~ 

'IYPE VALUE 

S'IANDARD S1QULN'IIAL ASSIGhED 'IC ;:;YSOO8, CLOSL0 

01010014 00000000 00000000 00000000 6COOOOOO 00000000 
00009200 OCOO0108 0007DA20 0007D)l,28 OCG7U68 116012E8 E2FOP(;F8 
00000000 00000000 00000000 86BCl' 018 41E0EO(;1 58201044 0107lJAD8 
00071;}340 0007DB40 00000014 00071)BA3 OU640063 00000000 00000000 
01010014 00000000 00000000 00000000 6COOOOOO 00000000 00008200 

(HEX) D807FOFO F1F740D5 E8C340F1 40404040 40404040 
AN <;:;*0017 NYC 1 

S'IhNDARD SEQUr.NTIAL ASSIGNED 'IO SYS008, OPf.N IilPUT 

01010014 
00008200 
10000000 
0007DBA8 
00000000 

(HEX) 
AN 

00000000 00000000 00000000 6COOOOOO 00000000 
OCOO0108 0007DA98 0007DAAO OC07E368 11E8J::2E8 E2FO:HF8 
2407F1A2 COOOOO01 86BCF018 41EOE001 58201044 02071:C1U 
0007DBA8 00000014 0007DCOB 00640063 00000000 000802BO 
00000000 00000000 00000000 00000000 00000000 E.907FOFli 

C107FOFO FOF140D5 E8C340FO 40404040 40404040 
A*OOOl NYC 0 

40400162 
200000f4 
40080208 
OCOO0108 

40400272 
00000064 
00080208 
121'640D5 

(HEX) 001AC1C2 C3C4C5C6 C7C8C9D1 L2D3D4D5 06D7D8D9 L2h3E4h~ 
h6E7E8E9 001AFOF1 F2F3F4FO F1F2F3F4 FOF1F2F3 F4:EOE1F2 
F3f41'OF1 F2F3F4FO 

NB-S 
Ai. 

*AN 

+26 
ABCDEFGHIJKLMNOPQrtSTUVWXYZ 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
o 
p 
Q 

Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 11 of 12) 

Symbolic Debugging Features 245 



IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 07.52.05 

Lec CARD 

07D98B 
07r:98C 
07D98D 
07r:98E 
07D98F 
07r:990 
07C991 
07r:992 
07D993 
07r:994 000043 
07[;996 000044 

000045 

071:996 
07[;997 
07r:998 
07D999 
07r:99A 
07[;99B 
07r:99C 
07[;99D 
07r:99.E. 
07[;99,F 
07r:9AO 
07D9111 
07r:9A2 
07D9A3 
07r:9114 
07[;9A5 
07I:9A6 
07[;9A7 
07I:9A8 
07[;9A9 
07r:911A 
07D9AE 
07[;911C 
07D9AD 
07r:9AE 
07C9AF 

000046 
07D9BO 
07r:9BG 000047 
07D9Bl 000048 
07I:9B2 000049 
07[;9B6 000050 
07[;9E7 000051 
07[;9BA 000052 
07D9EE 000053 

ICC CARD 

07I:9B[; 000054 

000055 
07[;9C8 
07I:9C8 000056 
07D9C8 Ou0057 

Figure 64. 

246 

D1\'111 DIVISION DUMP OF '1ES'IRUN 

LV NAME TYPE VALUE 

18 R 
19 S 
20 '1 
21 U 
22 V 
23 W 
24 X 
25 Y 
26 Z 

02 NUMER NB-S +26 
02 DEPENDENTS AN 01234012340123401234012340 
02 DEP.END *AN 

® (SU~1) 
0 

2 1 
3 2 
4 3 
5 .. 
6 0 
7 1 
8 2 
9 3 

10 4 
11 0 
12 1 
13 2 
14 3 
15 4 
16 0 
17 1 
18 2 
19 3 
20 4 
21 0 
22 1 
23 2 
24 3 
25 4 
26 0 

01 WORK-RECORD 0 (HEX) Cl07FOFO FOF140D5 i;SC340FO 40404040 40404040 
02 NAME-FIELD AN A 
02 FIlLER AN * 
02 RECORD-NO ND 0001 
02 FIllER AN 
02 LOCA'IION A NYC 
02 FILLER AN 
02 NC-OF-DEPENDENTS liN 0 

DA'IA r:IVISIO~ DU~P OF TES'IRUN 

LV NAME TYPE VALUE 

02 FILLER AN 

01 RECORDA 0 
(dEX) F1F2F3C4 

02 A 
02 E 

(;\ ND-O'I +1234 
~NP-S *1*2*3* 

END OF CCBOL DIAGNC~'IIC AIDS 

Using the Symbolic Debugging Features to Debug the Program TESTRUN 
(Part 12 of 12) 

10/02/73 



A programmer using the DOS/vS COBOL 
Compiler and Library has several methods 
available to him for testing and debugging 
his programs. Use of the symbolic 
debugging features is the easiest anj most 
efficient method for testing and debugging 
and is described in detail in the chapter 
"Symbolic Debugging Features." Using the 
execution statistics feature is another 
method for testing, debugging and 
optimizing a program, and is described in 
the chapter "Execution Statistics". 

This chapter contains information useful 
for testing and debugging prograws run 
without the symbolic debugging features. 
It also contains information on linkage 
editor and execution-time diagnostics as 
well as a description of taking checkpoints 
and restarting programs. 

SYNTAX-CHECKING CmjPILATION 

The compiler checks the source text for 
syntax errors and then generates the 
appropriate error messages. with the 
syntax-checking feature, the programmer can 
request a compilation either conditionally, 
with object code produced only if no 
messages or just W- or C-Ievel messages are 
generated, or unconditionally, with no 
object code produced regardless of message 
level. 

Selected test cases run with the 
syntax-checking feature have resulted in a 
compilation-time saving of as much as 70%, 
For a discussion of the syntax-checking 
options, SYNTAX and CSYNTAX, see the 
section "CBL Statement -- COBOL Option 
Control Card." 

IDENTIFICATION OF PROGRAM VERSIONS 

One problem a programmer may have during 
checkout is associating a particular 
compilation listing with the object deck 
from that compilation and the output and/or 
dump from a particular run. To aid in 
this, the following facilities can be used: 

1. Specify a DATE-COMPILED paragraph as 
part of the Environment Division. 
This is replaced by the actual date of 
compilation on the source listing 
(OPTION LIST). 

PROGRAM CHECKOUT 

2. The date and time of compilation are 
given in the header line of the 
compilation listing. 

3. The date and time of compilation are 
punched into the object deck and will 
be found beginning at relative 
location X'EC' in the dump of the 
object module. 

4. By woving the special register 
WHEN-COMPILED to an output record, the 
user may flag his output to identify 
it with a particular compilation. 
WHEN-COMPILED is described more fully 
in IBM DOS Full American National 
Standard COBOL. 

DEBUG LANGUAGE 

The COBOL debugging language is designed 
to assist the COBOL programmer in producing 
an error-free program in the shortest 
possible time. The following sections 
discuss the use of the debug language and 
other methods of program checkout. 

The three debug language statements are 
TRACE, EXHIBIT, and ON. Anyone of these 
statements can be used as often as 
necessary. They can be interspersed 
throughout a CCBOL source program, or they 
can be contained in a packet in the input 
stream to the compiler. 

program checkout may not be desired 
after testing is completed. A debug packet 
can be removed after testing to eliminate 
the extra object program coding generated 
for the debug statements. 

The output produced by the TRACE and 
EXHIBIT statements is listed on the system 
logical output device (SYSLST). 

The following discussions describe 
methods of using the debug language. 

FLOW OF CONTROL 

The READY TRACE statement causes the 
compiler-generated card numbers for each 
section-name and paragraph-name to be 
displayed. These card numbers are listed 
on SYSLST at execution time when control 
passes to these sections and paragraphs. 

Program Checkout 247 



Hence, the output of the READY TRACE 
statement appears as a list of card 
numbers. If VERB is specified, the actual 
paragraph-names and names of the verbs will 
be listed. 

To reduce the length of the list and the 
time taken to generate it, a trace can be 
stopped with a RESET TRACE statement. The 
READY TRACE/RESET TRACE combination is 
helpful in examining a particular area of 
the program where the flow of control is 
difficult to determine, e.g., code consists 
of a series of PERFORM statements or nested 
conditional statements. The READY TRACE 
statement can be coded so that the trace 
begins before control passes to that area. 
The RESET TRACE statement can be coded so 
that the trace stops when the program has 
passed beyond the area. 

Use of the ON statement with the TRACE 
statement allows conditional control of the 
tracing. When the COBOL compiler 
encounters an ON statement, it creates a 
counter which is incremented during 
execution, whenever control passes through 
that ON statement. For example, if an 
error occurs when a specific record is 
processed, the ON statement can be used to 
isolate the problem record. The statement 
should be placed where control passes 
through it only once for each record that 
is read. When the contents of the counter 
equal the number of the record (as 
specified in the ON statement), a trace can 
be taken on that record. The following 
example shows a method in which the 200th 
record could be selected for a TRACE 
statement. 

Col. 
1 Area A 

RD-REC. 

DEBUG RD-REC 
PARA-NM-l. ON 200 READY TRACE. 

ON 201 RESET TRACE. 

If the TRACE statement were used without 
the ON statement, every record would be 
traced. 

An example of a common program error is 
failing to break a loop or unintentionally 
creating a loop in the program. If many 
iterations of the loop are required before 
it can be determined that a program error 
exists, the ON statement can be used to 
initiate a trace after the expected number 
of iterations has been completed. 

248 

Note: If an error occurs during 
compilation of an ON statement, the 
diagnostic message may refer to the 
previous statement number. 

DISPLAYING DATA VALUES DURING EXECUTION 

A programmer can display the value of a 
data item during program execution by using 
the EXHIBIT statement. The EXHIBIT 
statement has three options: 

1. EXHIBIT NAMED -- Displays the names 
and values of the data-names listed in 
the statement. 

2. EXHIBIT CHANGED -- Displays the value 
of the data-names listed in the 
statement only if the value has 
changed since the last execution of 
the statement. 

3. EXHIBIT CHANGED NAMED -- Displays the 
names and the values of the data-names 
only if the values have changed since 
the last execution of the statement. 

Data values can be used to check the 
accuracy of the program. For example, 
using EXHIBIT NAMED, the prograrrmer can 
display specified fields from records, 
compute the calculations himself, and 
compare his calculations with the output 
from his program. The coding for a payroll 
problem might be: 

Col. 
1 Area A 

DEBUG 

GROSS-PAY-CALC. 
COMPUTE GROSS-PAY 
RATE-PER-HOUR * (HRSWKD 
+ 1.5 * OVERTIMEHRS). 

NET-PAY-CALC. 

NE'J:'-PAY-CALC 
SAMPLE-1. ON 10 AND 

EVERY 10 EXHIBIT NAMED 
RATE-PER-HOUR, HRSWKD, 
OVERTIMEHRS, GROSS-PAY. 

This coding will cause the values of the 
four fields to be listed for every tenth 
data record before net pay calculations are 
made. The output could appear as: 

RATE-PER-HOUR = 4.00 HRSWKD = 40.0 
OVERTIMEHRS = O~O GROSS-PAY = 160.00 

RATE-PER-HOUR = 4.10 HRSWKD = 40.0 
OVERTIMEHRS = 1.5 GROSS-PAY = 173.23 



RATE-PER-HOUR = 3.35 HRSWKD = 40.0 
OVERTIMEHRS = 0.0 GROSS-PAY = 134.00 

Note: Decimal points are included in this 
example for clarity, but actual printouts 
depend on the data description in the 
program. 

Program Checkout 248.1 





The preceding was an example of checking 
at regular intervals (every tenth record) • 
A check of any unusual conditions can be 
made by using various combinations of COBOL 
statements in the debug packet. For 
example: 

IF OVERTIMEHRS GREATER THAN 2.0 
EXHIBIT NAMED PAYRCDHRS ••• 

In connection with the previous example, 
this statement could cause the entire pay 
record to be displayed whenever an unusual 
condition (overtime exceeding two hours) is 
encountered. 

The EXHIEIT statement with the CHANGED 
option also can be used to monitor 
conditions that do not occur at regular 
intervals. The values of data-names are 
listed only if the value has changed since 
the last execution of the statement. For 
example, suppose the program calculates 
posta~e rates to various cities. The flow 
of the program might be: 

STATE = 01 CITY 01 RAIL 10 BUS 

CITY 02 

CITY 03 bUS = 06 AIR = 15 

CI'l'Y 04 RAIL = 30 BUS = 25 TRUCK 

STA'IE = 02 CITY 01 TRUCK 25 

CITY O~ TRUCK 20 AlB = 30 

L 

14 TRUCK 

28 AIR 

r- I 

!READ INPUT I 
1 DATA FOR 1<-- B 
1 CITY 1 
L--. 

I 
I 
V 

r-
I CALCULATE 
1 RATE FOR 
I CITY 
I 

I 

I 
I 
V 

EXHIBIT 
CHANGED 

I 
I 
V 

NO 
~B 

I 
1 
I 
V 

12 AIR 20 

34 

Figure 65. Sample Output of EXHIBIT Statement With the CHANGED NAMED Option 

Program Checkout 249 



The EXHIBIT statement with the CHANGED 
option in the program might be: 

EXHIBIT CHANGED STATE CITY RATE 

The output from the EXHIBIT statement 
with the CHANGED option could appear as: 

01 01 10 
02 15 
03 
04 10 

02 01 
02 20 
03 15 
04 

03 01 10 

The first column contains the code for a 
state, the second column contains the code 
for a city, and the third column contains 
the code for the postage rate. The value 
of a data-name is listed only if it has 
changed since the previous execution. For 
example, since the postage rate to city 02 
and city 03 in state 01 are the same, the 
rate is not printed for city 03. 

The EXHIBIT statement with the CHANGED 
NAMED option lists the data-name if the 
value has changed. For example, the 
program might calculate the cost of various 
methods of shipping to different cities. 
After the calculations are made, the 
following statement could appear in the 
program: 

EXHIBIT CHANGED NAMED STATE CITY RAIL 
BUS TRUCK AIR 

The output from this statement could appear 
as shown in Figure 65. Note that a 
data-name and its value are listed only if 
the value has changed since the previous 
execution. 

TESTING A PROGRAM SELECTIVELY 

A debug packet allows the programmer to 
select a portion of the program for 
testing. The packet can include test data 
and can specify operations the programmer 
wants to be performed. When the testing is 
completed, the packet can be removed. The 
flow of control can be selectively altered 
by/the inclusion of debug packets, as 
illustrated in the following example of 
selective testing of B: 

'250 

r , , , 

START 

A 

I 
V 

STOP 
RUN 

I 
V 

r , DEBUG 
I PACKET 
I FOR A 

In this program, A creates data, B 
processes it, and C prints it. The debug 
packet for A simulates test data. It is 
first in the program to be executed. In 
the packet, the last statement is GO TO B, 
which permits A to be bypassed. After B is 
executed with the test data, control passes 
to the debug packet for C, which contains a 
GO TO statement that transfer~ control to 
the end of the program, bypass'ing c. 

TESTING CHANGES AND ADDITIONS TO PROGRAMS 

If a program runs correctly, and changes 
or additions might improve its efficiency, 
a debug packet can be used to test changes 
without modifying the original source 
program. 

If the changes to be incorporated are in 
the middle of a paragraph, the entire 



paragraph with the changes included must be 
written in the debug packet. The last 
statement in the packet should be a GO TO 
statement that transfers control to the 
next procedure to be executed. 

There are usually several ways to 
perform an operation. Alternative methods 
can be tested by putting them in debug 
packets. 

The source program library facility can 
be used for program checkout by placing a 
source program in a library (see the 
chapter "Librarian Functions"). Changes or 
additions to the program can be tested by 
using the BASIS card and any number of 
INSERT and DELETE cards. Such changes or 
additions remain in effect only for the 
duration of the run. 

A debug packet can also be used in 
conjunction with the BASIS card to debug a 
program or to test deletions or additions 
to it. The debug packet is inserted in the 
input stream immediately following the 
BASIS card and any INSERT or DELETE cards. 

If a serious error occurs during 
execution of the problem program, the job 
is abnormally terminated; any remaining 
steps are bypassed; and a program phase 
dump is generated. The programmer can use 
the dump for program checkout. (However, 
any pending transfers to an external device 
may not be completed. For example, if a 
READY TRACE statement is in effect when the 
job is abnormally terminated, the last card 
number may not appear on the external 
device.) In cases where a serious error 
occurs in other than the problem program 
(e.g., Supervisor), a dump is not produced. 

Note that program phase dumps can be 
suppressed if the NODUMP option of the 
OPTION control statement has been specified 
for the job, or if NODUMP was specified at 
system generation time and is not 
overridden by the DUMP option for the 
current job. 

HOW TO USE A DUMP 

When a job is abnormally terminated due 
to a serious error in the problem program, 
a message is written on SYSLST which 
indicates the: 

1. Type of interrupt (e.g., program 
check) 

2. Hexadecimal address of the instruction 
that caused the interrupt 

3. Condition code 

4. Reason for the interrupt (e.g., data 
exception) 

The instruction address can be compared 
to the Procedure Division map. The 
contents of LISTX provide a relative 
address for each statement. The load 
address of the module (which can be 
obtained from the map of virtual storage 
generated by the Linkage Editor) must be 
subtracted from the instruction address to 
obtain the relative instruction address as 
shown in the Procedure Division map. The 
PMAP=nnnnnn CBL option can be used to 
relocate LISTX addresses so that this 
calculation need not be done. If the 
interrupt occurred within the COBOL 
program, the programmer can use the error 
address and LISTXto locate the specific 
statement in the program which caused a 
dump to be taken. Examination of the 
statement and the fields associated with it 
may produce information as to the specific 
nature of the error. 

Figure 64 is a sample dump which was 
caused by a data exception. Invalid data 
(i.e., data which did not correspond to its 
usage) was placed in the numeric field B as 
a result of redefinition. The following 
discussion illustrates the method of 
finding the specific statement in the 
program which caused the dump. Letters 
identifying the text correspond to letters 
in the program listing. 

The program interrupt occurred at HEX 
LOCATION 07DFDC. This is indicated in 
the SYSLST message printed just before 
the dump. 

The linkage editor map indicates that 
the program was loaded into address 
7D878. This is determined by 
examining the load point of the 
control section TESTRUN. TESTRUN is 
the name assigned to the program 
module by the source coding: 

PROGRAM-ID. TESTRUN. 

The specific instruction which caused 
the dump is located by subtracting the 
load address from the interrupt 
address (i.e., subtracting 7D878 from 
7DFDC). The result, 764, is the 
relative interrupt address and can be 
found in the object code listing. In 
this case the instruction in question 
is an AP (add decimal) • 

Program Checkout 251 



The left-hand column of the object 
code listing gives the compiler
generated card number associated with 
the instruction. It is card 66. As 
seen in the source listing, card 66 
contains the COMPOTE statement. 

Additional details about reading a dump 
are found in the chapter "Interpreting 
Output." 

ERRORS THAT CAN CAUSE A DUMP 

A dump can be caused by one of many 
errors. Several of these errors may occur 
at the COBOL language level while others 
can occur at the job control level. 

The following are examples of COBOL 
language errors that can cause a dump: 

1. A GO TO statement with no 
procedure-name following it may have 
been improperly initialized with an 
ALTER statement. The execution of 
this statement will cause an invalid 
branch to be taken and results will be 
unpredictable. 

2. Moves of or arithmetic calculations 
using numeric fields that have not 
been properly initialized. 

For example, neglecting to initialize 
the object of an OCCURS clause with 
the DEPENDING ON option, or 
referencing data fields prior to the 
first READ statement may cause a 
program interrupt and a dump. 

3. Invalid data placed in a numeric field 
as a result of redefinition. 

4. Input/output errors that are 
nonrecoverable. 

5. Items with subscripts whose values 
exceed the defined maximum value can 
destroy machine instructions when 
moved. 

6. Attempting to execute an invalid 
operation code through a system or 
program error. 

7. Generating an invalid address for an 
area that has address protection. 

8. Subprogram linkage declarations that 
are not defined exactly as they are 
stated in the calling program. 

9. Data or instructions can be modified 
by entering a subprogram and 
manipulating data incorrectly. A 

252 

COBOL subprogram can acquire invalid 
information from the ma~n program, 
e.g., a CALL statemen~ using a 
procedure-name and an ENTRY statement 
using a data-name. 

10. An input file contains invalid data 
such as a blank numeric field or data 
incorrectly specified by its data 
description. 

The compiler does not generate a test 
to check the sign position for a valid 
configuration before the item is used 
as an operand. The programmer can 
test for valid data by means of the 
numeric class test and r by using the 
TRANSFORM statement, convert it to 
valid data under certain conditions. 

Por example, if the units position of 
a numeric data item described a~ OSAGE 
IS DISPLAY contained a blank, the 
blank could be transformed to a zero, 
thus forcing a valid sign. 

11. Division by zero without an ON SIZE 
ERROR clause will cause a data 
exception. 

LOCATING A DTF 

One or more DTP's are generated by the 
compiler for each file opened in the COBOL 
program. All information about that file 
is found within the DTF or in the fields 
preceding the DTF. See the chapter 
"Detailed Processing Capabilities" for the 
type of information available and its 
location. 

A particular DTF may be located in an 
execution-time dump as follows: 

1. Determine the order of the DTF address 
cells in the TGT from the DTP numbers 
shown for each file-name in the 
glossary. 

Note: Since the order is the same as 
~FD's in the Data Division, the 
order can be determined from the 
source program if the SYM option was 
not used (i.e., no glossary was 
printed) • 

2. find the relative starting address of 
the block of DTF cells from the TGT 
listing in the Memory Map. 

3. Calculate the absolute starting 
address of the block by adding the 
hexadecimal relocation factor for the 
beginning of the object module as 
given in the linkage editor MAP. 



4. Allowing one fullword per DTF cell, 
count off the cells from the starting 
address found in step 3, using the 
order determined in step 1 to locate 
the desired DTF cell. 

S. If more than one DTF is generated for 
a file, the above procedure should be 
followed using the PGT and the SUBDTF 
cells rather than the TGT and the 
DTFADR cells. The order of multiple 
DTF's in storage is dependent on the 
OPEN option as follows: 

a. Il\JPUT 

b. OUTPUT 

c. 1-0 or INPUT REVERSED 

The following discussion illustrates the 
method of finding the DTF'S in the sample 
program in Figure 66. Letters identifying 
the text refer to letters in the program 
listing. 

(!) The DTF for FILE-l precedes the DTF 
for FILE-2. 

DTFADR CELLS begin at relative 
location 600. 

Since the relocation factor is 7D878, 
the DTFADR CELLS begin at location 
7DE78 in the dump. 

The DTF for FILE-l begins at location 
7D9E8, and the DTF for FILE-2 begins 
at location 7DA60. 

LOCATING DATA 

The location assigned to a given 
data-name may similarly be found by using 
the BL number and displacement given for 
that entry in the glossary, and then 
locating the appropriate one fullword BL 
cell in the TGT. The hexadecimal sum of 
the glossary displacement 'and the contents 
of the cell should give the relative 
address of the desired area. This can then 
be converted to an absolute address as 
described above. 

Since the problem program in Figure 66 
interrupted because of a data exception, 

the programrr,er should locate the contents 
of field B at the time of the interrupt. 
This can be done as follows: 

Locate data-name B in the glossary. 
It appears under the column headed 
SOURCE-NAME. Source-name B has been 
assigned to base locator 3 (i.e., 
BL =3) with a displacement of OSO. 
The sum of the value of base locator 3 
and the displacement value SO is the 
address of data-name B. 

The Register Assignment table lists 
the registers assigned to each base 
locator. Register 6 has been assigned 
to BL =3. 

The contents of the 16 general 
registers at the time of the interrupt 
are displayed at the beginning of the 
dump. Register 6 contains the address 
0007D978. 

The location of data-name B can now be 
determined by adding the contents of 
register 6 and the displacement value 
SO. The result, 7D9C8, is the address 
of the leftmost byte of the 4-byte 
field B. 

Note: Field B contains F1F2F3C4. 
This is external decimal 
representation and does not correspond 
to the USAGE COMPUTATIONAL-3 defined 
in the source listing. 

The location assigned to a given 
data-name may also be found by using 
the BL CELLS pointer in the TGT Memory 
Map. Figure 64 indicates that the BL 
cells begin at location 7DE6C (add SF4 
to the load point address, 7D878, of 
the object module). The first four 
bytes are the first BL cell, the 
second four bytes are the second BL 
cell, etc. Note that the third BL 
cell contains the value 7D978. This 
is the same value as that contained in 
register 6. 

Note: Some program errors may destroy 
the contents of the general registers 
or the BL cells. In such cases. 
alternate methods of locating the 
DTF's are useful. 

Program Checkout 2S3 



II JOE DATACHK 
II OP'IIOH NODECK,LINK,LIS'I,LISTX,SYM,ERRS 
II EXEC FCOEOL 

1 IBM DOS VS COBOL REL 1. () 

CEL QUOT:E.,SEQ 
C0001 
(0002 
00003 
CC004 
C0005 
C0006 
C0010 
eOOl1 
C0012 
C0013 
C0014 
00015 
eOCH 
C0017 
C0018 
C0019 
C0020 
C0021 
00022 
C0023 
C0024 
C0025 
C0026 
00027 
00028 
C0029 
00030 
C0031 
00032 
C0033 
00C34 
00035 

IDENTIFICA'IION DIVISION. 
PROGRAM-ID. TESTRUN. 

AUTHOR. PROGRAMMER NAME. 
INSTALLATION. NEW YORK PROGRAMMING 
DATB-WRITTEN. SEPTEMBER 25,1973 

DATE-CO~PILED. 10/02/73 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-370. 
OBJECT-CONPUTER. IBM-370. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

CE.NTER. 

SELECT FILE-l .f100..L\:tl'4 TO SYSQ08-UT-2400-S. 
SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S. 

DATA DIVISION. 
FILE SECTION. 
FD FILE-1 

LABEL RECORDS ARE OMITTED 
BLOCK CONTAINS 5 RECORDS 
RECORDING MODE IS F 
RECORD CONTAINS 20 CHARACTERS 
DATA RhCORD IS RECORD-1. 

01 RECORD-1. 
05 FIELD-A PIC X(20). If' 

FD FILE.-2 ~ 
LABEL RECORDS ARE OMITTED 
BLOCK CONTAINS 5 RECORDS 
RECCRD CONTAINS 20 CHARACTERS 
RECORDING MODE IS F 
DATA RECORD IS RECORD-2. 

01 RECORD-2. 
05 FIELD-A PIC XC20}. 

PP NO. 5746-CB1 07.35.08 10/02/73 

Fiaure 66. sample Dump Resulting from Abnormal Termination (Part 1 of 6) 

254 



C0036 
00037 
00038 
C0039 
C0040 
C0041 
C0042 
C0043 
00044 
00045 
C0046 
00047 
00048 
00049 
C0050 
COOSl 
00052 
00G53 
CCC54 
CCCSS 
COC56 
C0057 
C0058 
COOS9 
C0060 
C0061 
CC062 
OCC63 
CCC64 
C0065 
COC66 
00C67 
COG68 
C0069 
C0070 
C0071 
C0072 
C0073 
00074 
C0075 
00076 
00077 
C0078 
00079 
C0080 
C0081 

IBM DOS VS COBOL 

wORKING-STORAGE SEC'TICi~. 

01 FILLER. 
02 KOUNT PIC S99 COMP SYNC. 

REL 1.0 PP NO. 5746...cBl 

02 ALPHABET PIC X (26) Vl'-.LUE IS R AECD~FGHIJKLr-:I~OPQRST'UVWXYZ" . 
02 ALPHA REDhFINES ALPHAEET 1'IC X CCCUrlb 26 'III'JES. 
02 NUMBR PIC S99 COMP SYNC. 
02 DEPENDENTS PIC X(26) VAL0E "01234012340123401234012340 R

• 

02 DEPEND f{EDEFINES DEPENDENTS PIC X OCCURS 26 'IIJ:.,:':'S. 
01 WORK-RECORD. 

05 t-;AME-FIELD PIC X. 
05 FILLER PIC X. 
05 RECORD-NO PIC 9999. 
05 FILLER PIC X VALUE IS SPACE. 
05 LOCATION PIC AAA VALUE IS n "YC" • 
05 FILLER PIC X VALUE IS SPACE. 
05 NO-OF-DEPENDENTS PIC XX. 
05 FILLER FIC X (7) VALUE, IS SPACES. 

01 RECORDA. 
02 A PICTURE S9(4) VALUE, 1234. 
02 E REDhFINES A PICTURE S9(7) COMFUTATIONAL-3. 

PROCEDURE DIVISION. 
BEC,IN. READY 'IF-ACE. 

NC'I'E THAT 'HiE FOLLO>UNG Ci?ENS THE OUTPUT FILE TO BE. CREhTED 
AND INITIALIZES THE COUNTERS. 

STEP-l. OPEN OUTPUT FILE-l. MOVE Z.l!.RO '10 KOUNT, NUi"oR. 
NOTE TtiAT THE FOLLOWING CREATES I:~'IERNALLY 'lH£ :i<ECORDS TO Bl. 
CCNTAINED IN THE FILE, WRITES TEbJIC ON TAPE, ArlD DISPLF.YS 
THEM ON THE CONSOLE. 

ST:t:P-2. ADD 1 '10 KOUj~T, NUMBR. MOVi:: ALPrtA (KOUNT) TO 
NA~E-FIE.LD. (;\ 

CO~PUTE B = B + 1. ~ 
MOVE DE,PEND (KOUNT) TO NO-OF-L~PENDENTS. 
MOVE :WMBR TO RECO-'~D-I~O. 

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE • .-IRIT£ RECORD-1 FROi"l 
WORK-RECORe. 

STEP-4. PERF ORr<, STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 26. 
NOTE. THA'l 'lHE FOLLOWING CLOSES ThE. OUT<,UT :nLE. AND REOPENS 
IT AS INPUT. 

STEl'-5. CLOSE ,FILE-l. OPEN INPUT F ILE- 2. 
NOTE THAT 'lHE FOLLOWING READ':; BACK THE FIL~ Ai~D SINGLES 
OUT EMPLOYEES WITH NO DEPENDENTS. 

STEP-6. READ FILE-2 RECORD IN'IO ~ORK-RECORD AT END GO TO STEP-8. 
STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO "0" MOV!:. "Z" 'l'0 

NO-OF-iJEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO S'I'EP-6. 
STEP-8. CLOSE FILE-2. 

STOP RUN. 

07.35.08 10/02/73 

Figure 66. Sample Dump Resulting from Abnormal Termination (Part 2 of 6) 

Program Checkout 255 



IBM DOS VS COBOL 

INTRNL NAME 

DN1Yj=1-148 
DNM=1-179 
DNM=1-200 
DNM=1-217 
D,'1M=1-248 
DNM=1-269 
DWI.i=1-289 
DNM=1-308 
DNM=1-323 
DNM=1-341 
DNN=1-3S9 
DNM=1-374 
DNM=1-394 
Di~M=1-410 

DNM=1-434 
DNl'J=1-4S4 
DNM=1-473 
DN:~c:1-492 

D~~fI=2-000 
DNfli=2-018 
DNM=2-037 
DNl':=2-063 
DNM:2-082 
DNM=2-102 
DNI'J=2-113 

LVL SOURCE NAME 

FD FILE-1 
01 RECOhD-l 
02 FIELL-A 
Ff. FILE-2 
01 RECORD-2 
02 FU.LD-A 
01 FILLER 
02 KOUN'I 
C2 ALPHABET 
02 ALPHA 
02 NUMER 
02 DEPENDENTS 
02 DEPEND 
01 WORK-RECORD 
02 NAME-FlELL) 
02 FILLl.R 
02 RECORD-NO 
02 FILLI:.R 
02 LOCA'IION 
02 FILLER 
02 NO-OF-DEPENDENTS 
n~ PILLER 
01 RECORDA 
02 A 
()2 B ----cD 

MEMORY MAP 

'IG'I 

SAVl:; AREA 
SWITCH 
'IALLY 
SOR'I' SAVE 
ENTRY-SAVE 
SOR'I ceRE Sl ZE 
NSTD-REELS 
SORT R:t.T 
WORHNG CELLS 
SORT FILE SIZE 
SOR'I MODE SIZE 
PG'l'-VN TBL 
'IGT-Vll 'IBL 
SORTAE ADDRESS 
LENGTH OF VN 'IhL 
LNGTH CF SOR'IAE 
PGM ID 
AUNITl) 
UPSI SwITCHES 
DEBUG TABU': PTR 
CURREN'I PRIORI'IY 
TA LENGTH 
PROCEDURE BLOCK1 P'IR 
UNUSED 
RESERVED 
VSAfi SAVE AREA ADDRESS 
UNUSED 
RESl:.RVl:.D 
OVERFLOw CLLLS (;\ 
8L CELLS ~ 
DTFADR CELLS 
FIB CEllS 
'IEMP S'ICRAGE 
TEMP S'ICRAGE-2 
'IEMP S'IORAGE-3 
TEMP S'ICRAGE-4 
BLL CELLS 
VLC CEllS 
SBL CELLS 
INDEX CELLS 
SUBADR CELLS 
ONCTL CELLS 
PFl>lC'IL CELLS 
PFMSAV CELLS 
VN CELLS 
SAVE AREA =2 
XSASI-; CELLS 
XSA CELLS 
PARAM CELLS 
RP'ISAV AREA 
CHECKPT CTR 
IOP'lR CElLS 

REL 

00400 

00400 
00448 
0044C 
00450 
00454 
00458 
0045C 
004SE. 
00400 
00590 
00S94 
00S98 
00S9C 
0()5AO 
00SA4 
005A6 
OOSAS 
OOSEO 
005B4 
OOSEC 
OOSco 
005C1 
00SC4 
005e8 
oosec 
005DO 
005D4 
oosr;c 
00SF4 

1.0 

BASE 

DTF=Ol 
B:1..=l 
8L=1 

DTF=02 
BL=2 
BL=2 
BL=3 
rlL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
i3L=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
8L=3 

005F4. {;'\F 
00600 ~ 
00608 
00608 
00610 
00610 
00610 
00610 
00614 
00614 
00614 
00614 
0061C 
0061C 
0061C 
00620 
00624 
00624 
00624 
00624 
00628 
00628 
00628 

PP NO. 5746-CB1 07.35.08 10/02/73 

DISFL IN'l'RNL NA£;iI:. DEFINI'IION USAGE R 0 Q 

DNM=1-148 D'IF~T 

000 DNIv~=1-179 DS OCL20 GROUP 
000 DNN=1-200 DS 2ec DISP 

DNM=1-217 D'IFIv,T 
COO DNi'r.=1-248 DS oeL20 GROUP 
000 DNM=1-269 DS 20C DISP 
000 DN~=1-289 DS OCLS6 GROUP 
000 DNf.~=1-308 DS 1H COi:1P 
002 DNM=1-323 DS 26C VISP 
002 D~M=1-341 DS IC DISP !{ 0 
01C DNl-j=1-3S9 DS 1H COL'iP 
OlE DNM=1-374 DS 26C DISP 
OlE DNM=1-394 DS 1C DISF R 0 
038 DNM=1-410 DS OCL20 GROUP 
038 DNM=1-434 DS 1c DISP 
039 DNM=1-454 DS 1C DISP 
03A DN:t-l=1-473 DS 4C DISP-NM 
03E DNM=1-Ll92 DS 1C DISP 
03F DNM=2-000 DS 3C DIS l' 
042 DNM=2-018 DS 1C DISP 
043 DNM=2-037 DS 2C DIS l' 
045 DN.M=2-u63 DS 7C DISP 
OSO DNflJ=2-082 DS OCLLI GROUP 
050 DNM=2-102 DS 4C DISP-Ni1 
050 DNM=2-113 DS 4P CO~P-3 R 

Figure 66. Sample Dump Resulting from Abnormal Termination (Part 3 of 6) 

256 

M 

F 

F 



IBM OOS VS COBOL REL 1.0. 

REGISTER ASSIGNMENT 

64 

REG 6 
REG 7 
REG 8 

BL =3 .--@ 
BL =1 
BL =2 

000.708 
QQQ7QC 
0.00710. 

48 
4A 
4E 

30 C 03A 
30. 6 0.0.0. 
30. D 208 

000.714 D7 0.5 D 208 D 20.8 
CC071A 94 CF D 2CE 
CC071E 4F 30 D 20.8 
00.0.722 40. 30 6 00.0. 
0.0.0726 48 30. C C3A 
CQC72A 4A 30. 6 C1C 
COC72E 4E 30 D 20.8 
0.0.0.732 D7 0.5 D 20.8 D 20.8 
0.0.0.738 94 CF D 2CE 
00C73C 4F 30 D 208 
0.00.740 40 30---6 01C 

64 
0.00744 41 40 6 002 
0.00.748 48 20 6 000. 
o.o.074C 4e 20. C 03A 
00.0.150. lA 42 
0.00752 5B 40. C 038 
0.0.0.756 50. 40. D 214 
o.CC75A 58 EO. D 214 
CCC75E D2 0.0. 6 0.38 E 000 

66 
0.00.764 FA 30 6 0.50 C o.3C 

67 

II EXEC LNI<EDT 

PHASE XFR-AD LOCORE HICORE DSK-1),D 

PdASE*** o.7D878 C7D878 C7F2AF o.5F CF 

* UNREFERENCED SYMBOLS 

00.2 UNRESOLVED ADDRESS CONS'IAUTS 

LH 
AH 
CVD 
XC 
NI 
C\iB 
STH 
LH 
AH 
cVD 
XC 
NI 
CVE 
STH 

LA 
Lrl 
MH 
AR 
S 
ST 
L 
MVC 

@--AP 

ESD TYPE 

II C8ECT 

CSECT 
ENTRY 

* EN'lRY 
* ENTRY 

CSEC'1 
ENTRY 

CSECT 

CSECT 
ENTRY 

CSEC'1 

CSECT 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENTRY 
ENT-RY 
ENTRY 

CS~C'1 

ENTRY 
ENTRY 

WXTRN 
WX'1RN 

PP NO. 5746-CB1 0.7.35.0.8 10./0.2/73 

3,0.31',(0,12) L1.T+2 
3,0.00<0,6) DNN=1-308 
3,208(0.,13) 1S=C1 
208(6,13),208(13) '1S=Q1 '18=01 
20E(13),X'OF' '1S=01+6 
3,208(0.,13) '18=0.1 
3,000.(0,6) DISM=1-308 
3,C3A(Q,12) L1T+2 
3,01C(C,6) Dt.1-l=1-359 
3,208(0.,13) '18=01 
208(6,13),208(13) TS=C1 TS=u1 
20E(13),X'OF' '15=0.1+6 
3,208(0,13) '1S=Ol 
3,01C(0,6) DNM=1-359 

4,002(0,6) Dl\M=1-341 
2,000.(0,6) f:dM=1-3o.8 
2,03A(o.,12) L1T+2 
4,2 
4,038(0,12) L1'1+o. 
4,214(0,13) SES=l 
14,214(0.,13) SBS=l 
038(1,6),00.0.(14) DNM=1-434 DIW=1-341 

050(4,6),03C(1,12) m~M=2-113 L1'1+4 

LABEL LOAD.t.D REL-FR 

TEST RUN o.7D878 C7DS78 iU.LOCATAEL.';!; --® 
IJFi"BZZN o.7E278 07E278 
IJFFZZZN 071::278 
1JFFBZZZ 07E278 
1JFFZZZZ o.7E278 

lLEDSAl:.O o.7F128 o.1F128 
ILEDSAEl C1F170 

ILEDMNSo. 07F120 07F120 

ILBDDSFO o.7E628 0.71::628 
ILBJDSP1 C7EA28 

1LBDIMLo. o.7FCC8 o.7Fo.C8 

ILBDDSSO o.1EDAo. o.7£DAO 
ILBDDSSl o.7Fo.o.o. 
lLBDDSS2 o.7EFF8 
ILBDDSS3 01Fo.B8 
ILBDDSS4 o.7EDC6 
ILBDDSS5 07.t:E72 
ILBDDSS6 01EED2 
ILEDDSS1 01EE9C 
ILBDDSS8 o.7EDFb 

IJJCPDV 07EB58 o.7Eb58 
IJJCPDVl 07EB58 
IJJCPDV2 C7:£E58 

S'IXITPSW 
ILBDDBG2 

Figure 66. Sample Dump Resulting from Abnormal Termination (Part 4 of 6) 

Program Checkout 257 



OS03I PROGRAM CHECK Ii~TERRUPTION - HEX LOCATION 07DFDC - CONDITION CODE 2 - DATA eXCEFTION CD OSOOI JOB DATACHK CANCELED 

DATACHK CD 
GR O-F 0007DE78 0007DF80 00000001 00000001 0007D97A 5007E22C 0007D978 0007Db40 

0007DBA8 0007E1FC 0007D878 0007D878 0007DEAO 00070C78 0007D97A 0007:i::628 
FP REG 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 
CR O-F 004000FF 0100DOOO FFFFFFFF FFFFFFFF 00000000 00000000 00000000 00000000 

00000000 00000000 00000000 00000000 00000000 00000000 C4000000 00000200 
COl·mEG BG AD DR IS 000360 

OCOOOO 00000000 00000000 00000000 00000000 00000000 00000360 00000000 00000000 
COO020 070DOOOO 000076CE 04000000 000074DA 00000000 OOOOOOOU 070C2000 0000071E 
000040 0000DE68 08000000 0000DE58 00000000 EFFCC798 012A88EA U40COOOO 000009B1. 
COO060 040COOOO 0000097A OOOCOOOO 0000980C 04080000 0000C09E 040COOOO 000008F8 
COO080 00000400 00000000 00020007 00020001 1207F003 00000000 00000000 00000000 
OOOOAO 00000000 00000000 00000000 000002CO 00000000 00000000 OOOOOCOE 00000000 
COOOCO 00000000 --SA~E--
000360 F1F061FU F261F7F3 FOOOFOOO 00000000 00000000 00000000 C4C1E3C1 C3C8D240 
C0038U 0011D7FF 0007F2AF 0007F2AF 00000010 0017D7FF F97F5CL3 A8A07CDO 00A63891 
C003AO 38983D4A 3D4BOOOO 374C3750 375438F1 FOFOF2F7 F3F2F7F5 00003544 OOOOUOOO 
C003CO 3EFOOOOO 363C36EC 372CC010 00000010 000070EC 00000000 OC0030DC 34440000 
C003EO 00000000 036010EO 00000448 COC00340 4040404C, 40404000 40404040 40404000 
000400 0000528C 00002742 063E05FA 00003A40 00001F42 00004058 OU004F5E 000073D8 
000420 OOOOFOOO 0300505E 0014002C 00030000 00005F78 00000000 000072F5 00005204 
000440 40800000 0000070E 00008350 00005100 000051B4 0000520C 00100010 00000000 
000460 00000000 000065F8 00000000 000030DO 000004FO 000070F5 0OO03C5A 00000000 
C00480 00009812 000088C8 00000544 00000000 0000BC88 00007F50 000032FC 00003314 
C004AO 00081018 00200000 00000000 00000000 00000000 000031A6 00000000 00000000 
C004CO 00000000 00000000 00000005 03C10401 ooooenoo OOOOCDEO 0000D5FO 00005378 
0004EO 000053B8 00000000 00000000 0007D7FF FF010174 015502AO FFOOO045 0000c6EO 
000500 OOOOCOAO 00003868 000CA1E8 00000000 000.l1,0000 00001000 00002000 00003000 
000520 070DOOOO 000076C4 00000360 00000000 80007501. 900075CO 400053C8 00004F'5E 
000540 00080700 OCOOOOOO 00000000 00000000 04FC0552 00000000 00000000 00000000 
000560 0000318C 0000DEE8 00000008 00020406 08 011 OCO:':' 00183048 6078901\8 00000000 
000580 00000000 00830083 00830083 00830083 00830083 00830083 00830083 00830083 
0005AO 00830083 --SlIl<,E--
C005CC 00830083 OG830063 000e0083 83838300 80020000 00007888 00000000 0000BBJl5 
0005EO 06B006BO 06E006EO 06E006BO 4EE005611 06B006EO 06B006BO 06B006BO 06E006BO 
000600 ObB006EO 06B006BO 06B006BO 068006BO 41EBOOLf 41BB0010 18F69503 04454770 
C00620 06604590 06D447FO 066006BO 06E006E(; 06E00680 06B006BO 06B041BB OGlF06BO 
000640 06B041EE. OC1B4570 06A85890 041441FG 92161211 47700660 41F09314 94633006 
C00660 42B01\001 58B00514 960Cl\OOF 07FF960C AOOF4400 E528077E 920003CF 92830SC9 

Figure 66. Sample Dump Resulting from Abnormal Termination (Part 5 of 6) 

258 



DATACHK 

07r:800 D7C8ClE2 C55C5C5C 0007DFE2 0007ElFC 0007D878 0007r:878 00071::£AO 
07C820 00071::C78 0007D97A 0007r:E78 0007r:F80 00000001 00000001 0007iJ97A 
07r:840 5007E22C 0007D978 0007DBA8 0000844B E56753BE 00000000 00000000 
07r:S60 00000000 00000000 00000000 000(;0000 00000000 05F00700 900EFOOA 
07r:SSO 47FOFOS2 0007D87S 0011D7FF OOOOI:SE6 00OODB64 SOOOOO15 SOOOOO15 
07r:8AO 0011D7FF 00071'8C8 00000000 1821'07F1 0007DS78 D7CSC1E2 C55C5C5C 
07r:SCO 00000000 00000000 00000000 00000000 00000000 (J007D978 0007DAD8 
07I:8EO 00071::BAS 0007E1FC 0007D878 0007r:EAO 0007DC78 00000000 58COEGC6 
07r:900 58EOCOOO 58D01'OCA 47701'OA2 9610D048 92FFEOOO 471'OFOAC 98CEf03A 
071:920 90ECDOOC 185D989F D0480719 07FF0700 0007£1FC 0OO7r:878 0007D878 
07L940 0007CEAG 0007DC78 0007E1E2 C3D6C2C6 F3i'OFOFO £3C%2E3 D9E4£;540 
071:960 00000000 FlF061FO 10604780 0001C1C2 C3C4C5C6 
07r:980 C7C8C9Dl D2D3r:4D5 0001FOFl F21'31'4FO F1F2f3F4 
071:9AO 1'01'1F2F3 F41'OF1F2 000040D5 E8C34000 00404040 ,., C 4 404 4 0000000 00000000 00000000 00000000 
071:9EO 6COOOOOO 0000000 OOGOOOOO 0007E278 1160E2E8 
07r:AGO E2F01'01'8 40400162 86BCF018 41EOE001 58201044 
071:A20 01071::AD8 20000064 0007DBA3 00640063 00000000 

07r:A40 00000000 40071'128 01010014 00000000 00000000 00000000 00000000 00000000 
071:A60 ~Q008200 000001081. 0007DA98 00000000 0007E278 1168E2E8 E2F01'OF8 40400272 
07r:}:180 00000000 20000000 00000000 86BCF018 41£OE001 58201044 02G7r:BA8 00000064 
07I:AAO 0007DC10 00000000 00000014 00000000 00640063 00000000 0(;07F170 0007F128 
07I:ACO 00000000 --SAME--
OnBOO 00000000 00000000 00008000 00000107 0007r:B90 00000000 0007];,450 02050202 
071:E20 0007r:C1'8 00000000 0207DD10 20000014 4120EOOO 47000000 OOOOFFFF FFFFHFF 
07r:B40 1'FFFF1'FF FFFFFFFF FFFFI:BE1 20000082 4710F132 47FOF15E. 91084015 00000000 

fI 
071:E60 00008000 00000107 0007r:BE8 00000000 0007E3E8 02050202 0007CCEO 00000000 
071:B80 0207DD38 20000050 4120£000 47000000 0000FOC4 18£44BEO f'24C430E. 00008900 
07I:EAO 00198800 00190600 12004780 F074420E 00009601 F232471'O F0464800 1'230471'0 
onBCO Fl4C9108 40154710 f"0949180 40154710 FOE84100 0008471'0 FOC418E4 4BEOF 24£ 
07I:EEO 430EOO01 89000019 88000019 43EEOOOO 89EOOO19 88.<:00019 19E04780 1'08C4100 
07DCOO 0014471'0 FOC44100 000C1B40 58E40000 1A4041£E 000012£E 4780il32 50EOF1F2 
071:C20 58140038 5010F20A 41101'20A 50101'202 D201F200 40069108 40154780 1'11C18£4 
On:;C40 4BE01'250 D20lF 210 EOO05810 1'2420AOO 91801002 4710F114 OA079108 40204710 
07r:C60 F1A85820 F20A4122 000058EO F23E58FO F1F207FF 47FOF104 00001'233 1B009101 
07r:C80 F2324780 F1444800 F22E9400 1'2325820 F23A58EO F23£581'4 00100A09 41EOjO"l1C 
071:CAO 47F01'16E 4lEOF14C 9101F233 4780F16E 0010004E 00000000 00000000 00000000 
07~CCO 70100048 00000000 00000000 0007I::1'08 00000000 00000000 0007D9E8 0007DB40 
071:CEO 0000D8E6 0007D9E8 5007E22C F16E9025 1'21290BC 40404040 40404040 40404040 
07I:r:OO 40404040 --SAME--
071:C60 40404040 40404040 40404040 40400000 00000000 0007DF78 OOG7DB40 01000000 
on~80 4007D1'54 0007E62S 0007I:n8 0007D1'80 0007I:840 0000D8L6 0007L9E8 5L07E22C 
07r:CAO 0007D978 0007r:B40 0007DBA8 0007ElFC 0007C878 0007D878 ocon;:CAO 0007D1'80 
07I:DCO 0007E628 0007DE78 0007FOOO 0007r:B40 00014720 0007DF78 0007EDAO 4001£88E 
07I:r:EO 50002000 4A501'060 4A201'060 183047FO F036C200 50002000 00000000 00000000 
07r:EOO 07070607 07070707 00000000 00000000 E2C1D4C7 D3C54040 0007D878 00000000 
onE20 £3C5E2E3 D9E4D540 0007D878 C9D3C2C4 D6E2I8FO F3F09002 r:0689120 1:.0004780 

-® N 07CE40 F'0325810 F0789101 10004710 1'0329601 OOCOOOOO 00000000 F0549110 000002£0 
07I:E60 00000100 000002A8 D4C5E3C ~OO7DB40 00 07CBA81 0007D97.81 ~007I:9E8 0007r:Aool 
071:;E80 00000000 0000001C 00000000 0007r:97A 9802D068 47FE0002 0007E05E D7C5£;540 
07J:EAO 0007F120 0007E628 00071'OC8 0007DF70 0007E05E 0007E100 0007E14C 0007E.1A4 
OnECO 0007E07E 0007E092 0007E146 0007E174 0007E05E 400B11'88 00000001 1COOOOlA 
07I:EEO 5b5BC2D6 D7C5D540 5B5BC2C3 D3D6E2C5 585BC2C6 C3D4E4D3 COOOOOOO E6r6D9D2 
07DFOO 60D9C5C3 D6D9C4BE 58FOC004 05lFOO01 40041'51'7 404040L2 9040D048 581'OC004 
071:1'20 05lFOO01 40041'6FO 40404076 5820D1F4 4110C040 5800D200 184005FO 5000j;o'008 
07I:F40 4500FOOC 0007D9E8 OA024100 D200581'O C00805EF 5810D200 96101020 5020C)1F4 
07I:F60 5870DlF4 D2016000 C038D201 601CC038 581'OC004 0511'0001 40041'6F4 40404004 
07r:F80 4830C03A 4A306000 4E30D208 D705r:208 C208940F D20E4F30 D2084030 60004830 
071:1'AO C03A4A30 601C4£30 D208D705 D208D208 9401'L20E 4F30D208 4030601C 41406002 
07r:FCO 48206000 4C20C03A 1A425B40 C0385040 D21458EO D214D200 6038bOOO j;o'A306050 
071: FE 0 C03C4140 601E4820 60004C20 C03A1A42 5B40C038 5040D218 58EGr:218 D2000043 
07EOOO EOOO9240 60444830 601C4E30 D208F331 603AL20h 96F0603D 58FOC004 051F0001 
07E020 4004F61'9 404040FO 58FOC004 051F0002 00000014 ODOO01FC 0038F1'1'F D2137GOO 
07£040 60385810 D2001841 581'01010 45E01'OOC 5020C11'4 5870D11'4 5810D220 07F158FO 
07E060 C004051F 00014004 F7F14040 400F5800 D220500C D21C5800 C0205000 L2204830 
07E080 60004930 C03E58FO C024078F 5810COOC 07F15800 D21C5000 D22058FO C004051f 
07EOAO 00014004 F71'44040 40585810 D20094EF 10201801 18404110 C04805FO 5000F008 
07£OCO 4500FOOC 00000000 OA025800 D2004110 C0500A02 4110C040 5800D204 1840051'0 
07EOEO 5000£008 45001'OOC 00000000 OAC24100 D20458FO C00805EF 5810L204 96101020 
07.El00 58FOC004 051F0001 40041'7F7 40404040 5810D204 58FOC028 91201010 0711'1841 
07£120 41F0C028 D2021025 FOO158FO 101045EO F008~020 D1F85S80 D1F8C213 60388000 
07£140 58FOC018 07FF5810 C01C07F1 581'OC004 051£0001 4004F71'8 404040S0 5820C02C 

Figure 66u Sample Dump Resulting from Abnormal Termination (Part 6 of 6) 

Program Checkout 259 



EXECUTION STATISTICS 

The DOS/VS COBOL ~ompiler provides 
several methods for testing, debugging" and 
optimizing programs. Use of the symbolic 
debugging features is an efficient method 
for testing and debugging a program" and is 
described in the chapter "Symbolic 
Debugging Features". The chapter entitled 
"Program Checkout" contains information 
useful for testing and debugging programs 
without the symbolic debugging features. 
The OPT option, described in the chapter 
"Preparing COBOL Programs for Processing", 
is an efficient method for automatically 
optimizing a program. 

This chapter describes execution 
statistics -- how they may be obtained, 
some sample output, and some uses of the 
output. 

OBTAINING EXECUTION STATISTICS 

Execution statistics are invoked via the 
CBL card at compile time. No source 
language coding changes are required. The 
execution frequency statistics option, 
COUNT, facilitates testing, debugging, and 
optimizing by providing the programmer with 
verb counts at the following times. 

• STOP RUN 

• GOBACK in the main program 

• Abnormal termination of a job 

When COUNT is specified, the following 
items should be taken into account: 

1. If COUNT and STXIT are desired, either 
STIXIT must be requested in the 
program unit requesting COUNT, or, the 
program unit requesting COUNT must be 
entered before the program unit 
requesting STIXIT. 

2. When COUNT is specified, the compiler 
divides the program into blocks of 
verbs. When the statistics are 
printed, the last block of verbs 
executed in each program unit is 
indicated. If the program abnormally 
terminates, the statement causing the 
abnormal termination can be determined 
(by using the symbolic debugging 
features, for example). The 
programmer should then subtract one 
from the verb count for each verb 
flagged which follows the abending 
verb .. 

260 

3. To obtain execution statistics if 
COUNT is requested for one of many 
program units, either all programs 
must be compiled by at least DOS/vS 
Release 2 compiler, or the program 
must terminate in a program unit 
compiled on at least a DOS/VS COBOL 
Release 2 compiler" or the program 
must terminate in at least a DOS/vS 
COBOL library Release 2 subroutine. 

4. If COUNT is requested, the user must 
specify the SIZE parameter on his load 
module EXEC card. The dynamic space 
required for COU~T is approximately 
512 bytes plus 80 bytes per program 
unit being monitored, and four bytes 
per count block (see the compiler 
output statistics). The requirements 
for each program unit are rounded to 
the next 128-byte boundary. 

5. The OTHERWISE verb is treated as if 
the user coded the ELSE verb. 

Debugging and Testing 

The execution statistics clearly 
identify the following areas of the 
program: 

• Untested and weakly tested areas of the 
program 

• The last blocks entered and executed 

• Possible sources of unnecessary code 

• The most heavily used parts of the 
program: that is, those parts most 
susceptible to changes. 

OPTIMIZATION METHODS 

Based on execution frequency and timer 
statistics, the following types of 
optimization can be implemented by the 
user: 



• Resequencing the program 

• Insight into SYMDMP 

• Common expression elimination 

• Backward movement 

• Unrolling 

• Jamming 

• Unswitching 

• Incorporating procedures inline 

• Tabling 

• Efficiency guidelines 

Note, however, that each optimization 
technique can result in more inefficient 
code if the statistics used in optimizing 
the program are not representative of the 
normal program flow. In addition, it is 
recommended that any optimization methods 
implemented be documented in the program. 

Resequencing the Program 

The COBOL Procedure Division should be 
organized as follows: 

1. All frequently-used paragraphs or 
sections should be located near the 
routines that use them. 

2. All infrequently-used paragraphs or 
sections should be grouped together 
and apart from frequently-used 
routines. 

3. The most frequently-referenced data 
items should be placed in the 
beginning of the Working-Storage 
Sections. 

Insight into SYMDMP Output 

The area where dynamic symbolic dumps 
are to be used can be pOinted to by the 
execution statistics. Knowledge of what 
area of code is executed and how often it 
is executed should give the user 
information on what sections should be 
further investigated. 

Common Expression Elimination 

This technique is designed to eliminate 
unnecessary arithmetic calculations. An 
arithmetic expression calculation is 
considered unnecessary if it represents a 
value calculated elsewhere that will always 
be used without modification. One such 
example would be an arithmetic expression 
whose operands are not redefined or 
reevaluated, but the expression is 
recalculated. 

Backward Movement 

This technique facilitates rooving 
calculations and other operations from an 
area of code frequently executed to an area 
less frequently executed. For example, an 
expression calculated within a PERFORMed 
procedure (using a Format 2, 3, or 4 
PERFORM statement) which always yields the 
same value for that PERFORM statement could 
be calculated in-line or in another 
procedure which would be PERFORMed just 
prior to the regularly PERFORMed procedure. 
Another example might be an expression 
which is calculated in many procedures 
which are often PERFORMed in succession. 
This expression could be removed from all 
the procedures and calculated just once 
prior to the procedures. 

Unrolling 

Procedures which are frequently executed 
may be expanded so that the statements 
within the procedure are repeated., with 
slight modification, to reduce the 
procedure overhead. For example, 

PERFORM YEARLY-GROSS-CALC VARYING 
WEEK-NO 
FROM 1 BY 1 UNTIL WEEK-NO 
GREATER THAN 52. 

YEARLY-GROSS-CALC. 
ADD GROSS-SALARY (WEEK-NO) TO 
YEARLY-GROSS 

could be replaced by 

PERFORM YEARLY-GROSS-CALC VARYING 
WEEK-NO 
FROM 1 BY 4 UNTIL WEEK-NO 
GREATER THAN 52. 

YEARLY-GROSS-CALC. 

ADD GROSS-SALARY (WEEK-NO), 
GROSS-SALARY (WEEK-NO+1) , 

Execution statistics 260.1 



GROSS-SALARY (WEEK-NO+2), GROSS 
SALARY (WEEK-NO+3) 
YEARLY-GROSS. 

In addition, indexing might be useful in 
this example. 

Jamming 

In some instances, two procedures can be 
merged into one procedure, thereby saving 
some procedure overhead. An example of 
this might be replacing 

by 

MOVE 0 TO WEEK-NUM. 
PERFORM YEARLY-GROSS-CAL 52 TIMES. 
MOVE 0 TO WEEK-NUM. 
PERFORM YEARLY-NET-CAL 52 TIMES. 

YEARLY-GROSS-CAL. 
ADD 1 TO WEEK-NUM. 
ADD GROSS-SALARY (WEEK-NUM) to 
YEARLY-GROSS. 

YEARLY-NET-CAL. 
ADD 1 TO WEEK-NUM. 
ADD NET-SALARY (WEEK-NUM) TO 
YEARLY-NET. 

MOVE 0 TO WEEK-NUM. 
PERFORM YEARLY-CAL 52 TIMES. 

YEARLY-CAL. 
ADD 1 TO WEEK-NUM. 
ADD GROSS-SALARY (WEEK-NUM) to 
YEARLY-GROSS. 
ADD NET-SALARY (WEEK-NUM) TO 
YEARLY-NET. 

Unswitching 

Procedu~es may contain tests that result 
in the same action for any set of 
executions of that procedure. In such a 
case I the test can be removed from the 
procedure and the procedure duplicated. 
For example, if "SWITCH" is not changed 
within the loop, replace 

COUNT=O 
PERFORM JOBS-TOTAL-CAL JOB-NUM 
TIMES. 

JOB-TO'I'AL-CAL. 
ADD 1 TO CuUNT. 

260.2 

by 

ADD JOB-COST (COUNT) TO 
TOTAL-JOB-COST. 
IF SWITCH = 0 ADD JOB-EXPENSE 
(COUNT) TO ~OTAL-EXPENSES ELSE 

ADD JOB-EXPENSE (COUNT) OVERHEAD TO 
TOTAL-EXPENSES. 
ADD JOB-INCOME (COUNT) TO 
TOTAL-INCOME. 
IF SWITCH = 0 ADD JOB-PROFIT (COUNT) 
TO TOTAL-PROFITS. ELSE 
COMPUTE TOTAL-PROFITS = 
TOTAL-PROFITS + JOB-INCOME (COUNT) 
- JOB-COST (COUNT) - JOB-EXPENSE 
(COUNT) - OVERHEAD. 

COUNT = 0 
IF SWITCH = 0 

PERFORM JOB-TOTAL-CAL-O JOB-NUM 
TIMES ELSE 
PERFORM JOB-TOTAL-CAL-l JOB-NUM 
TIMES. 

JOB-TOTAL-CAL-O. 
ADD 1 TO COUNT. 
ADD JOB-COST (COUNT) TO 
TOTAL-JOB-COST. 
ADD JOB-EXPENSE (COUNT) TO 
TOTAL-EXPENSES. 
ADD JOB-INCOME (COUNT) TO 
TOTAL-INCOME. 
ADD JOB-PROFIT (COUNT) TO 
TOTAL-PROFITS. 

JOB-TOTAL-CAL-l. 
ADD 1 TO COUNT 
ADD JOB-COST (COUNT) TO 
TOTAL-JOB-COST 
ADD JOB-EXPENSE (COUNT), OVERHEAD TO 
TOTAL-EXPENSE 
ADD JOB-INCOME (COUNT) TO 
TOTAL-INCOME 
COMPUTE TOTAL-PROFITS = 
TOTAL-PROFITS + JOB-INCOME (COUNT) 
- JOB-COST (COUNT) - JOB-EXPENSE 
(COUNT) - OVERHEAD. 

Incorporating Procedures Inline 

Based on module size, number of 
repetitions, modification activities, 
future expansion considerations, and 
frequency statistics, small procedures can 
be moved in-line to minimize overhead 
requirements. 

Tabling 

This technique is designed to replace 
~any IF statements by one table look-up 



statement, or by one computed GO TO 
statement. For example, if the same 
data-item is tested in many successive IF 
statements to set the value of another 
data-item to some constant, and the range 
of tested values of the original data-item 
is limited, then a predetermined table of 
values could be used to assign the value of 
the second data-item. Similarly, many 
consecutive statements of the form 

IF data-item-l=some-constant GO TO 
some-procedure 

could be replaced by one computed GO TO 
statement. 

Efficiency Guidelines 

Based on execution frequency statistics, 
the following types of coding 
inefficiencies may be removed. 

1. Unaligned decimal places in arithmetic 
or numeric comparison operands. 

2. Different size operands in moves, 
comparisons, or arithmetic operations. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Mixed usage in arithmetic or numeric 
comparison operands. 

Display usage in arithmetic operands 
or one numeric operand and one display 
operand in a comparison. 

SYNC missing for COMP or COMP-l, -2, 
or -4 items. 

Inefficient COMP type picture; that 
is, no sign or more than 9 digits in a 
COMP item and no sign, even number of 
digits~ or more than 16 digits in 
COMP-3 items. 

certain calls to object-time 
subroutines. 

Indexing instead of subscripting and 
vice versa. 

Noncomputational subscripts. 

DIAGNOSTIC MESSAGES 

Diagnostic messages are generated by the 
compiler and listed on SYSLST when errors 
are found in the source program. 

Note: Diagnostic messages (except FIPS 
diagnostic messages) are suppressed when 
the NOERRS option is in effect. 

WORKING WITH DIAGNOSTIC MESSAGES 

1. Approach the diagnostic messages in 
the order in which they a~pear on the 
source listing. It is possible to get 
compound diagnostic messages. 
Frequently~ an earlier diagnostic 
message indicates the reason for a 
later diagnostic message. For 
example, a missing quotation mark for 
an alphabetic or alphanumeric literal 
could involve the inclusion of some 
clauses not intended for that 
particular literal. This could cause 
an apparently valid clause to be 
diagnosed as invalid because it is not 
complete, or because it is in conflict 
with something that preceded it. 

2. Check for missing or superfluous 
punctuation, or other errors of this 
type. 

3. Frequently, a seemingly meaningless 
message is clarified when the valid 
syntax or format of the clause or 
statement in question is referenced. 

4. Statement numbers are generated when a 
verb or procedure-name is encountered. 

GENERATION OF DIAGNOSTIC MESSAGES 

The compiler scans the statement, 
element by element" to determine whether 
the words are combined in a meaningful 
manner. Based upon the elements that have 
already been scanned, there are only 
certain words or elements that can be 
correctly encountered. 

If the anticipated elements are not 
encountered, a diagnostic message is 
produced. Some errors may not be uncovered 
until information from various sections of 
the program is combined and the 
inconsistency is noted. Errors uncovered 
in this manner can produce a slightly 
different messaqe format than those 
uncovered when the actual source text is 
still available.. . The message that is made 
unique through that particular error may 
not contain, for example, the actual source 
statement that produced the error. 

Errors that appear to be identical are 
diagnosed in a slightly different manner, 
depending on where they were encountered by 
the compiler and how they fit within the 
context of valid syntax. For example, a 
period missing from the end of the 
Working-Storage section header is diagnosed 
specifically as a period required. There 
is no other information that can appear at 

Execution Statistics 260.3 



that point. However, if at the end of a 
data item description entry, an element is 
encountered that is not valid at that 
point, such as the digits 02, it is 
diagnosed as invalid. Any clauses 
associated with the 02 entry which conflict 
with the clauses in the previous entry (the 
one that contained the missing period>, are 
diagnosed. Thus, a missing period produces 
a different type of diagnostic message in 
one situation than in the other. 

If an error occurs during compilation of 
an ON statement, the diagnostic message may 
ref~r to the previous statement number. 

Notes: 

• If an E-level diagnostic is generated, 
the LINK option is cancelled, and any 
linkage editor control statements in 
the job stream are invalid. For this 
reason, the following message is issued 
by the Job Control Processor following 
the first linkage editor control 
statement encountered: 

260.4 

lSln D STATEMENT OUT OF SEQUENCE. 
I 

• If a D-Ievel diagnostic is generated 
and the error is a compiler error, the 
job will terminate via the CANCEL macro 
and produce a dump. 

• The following messages will not be 
issued during a SYNTAX-only compilation 
or during a CSYNTAX compilation if a 
C-Ievel error in the diagnostic number 
ILAOxxx to ILA4xxx range was 
encountered: 

lLA5001I COMPILER ERROR. COMPILATION 
ABANDONED. 

ILA5002I COMPILER ERROR. COMPILATION 
ABANDONED. 

ILA5003I DIVISOR IS ZERO. RESULT WILL BE 
ALL 9'S. 

ILA5004I ALPHANUMERIC SENDING FIELD TOO 
BIG. 18 LOW ORDER BYTES USED. 



ILA500SI COMPILER ERROR. COMPILATION 
ABANDONED. 

ILA5006: COMPILER ERROR. COMPILATION 
ABANDONED. 

ILA5007I COMPILER ERROR. COMPILATION 
ABANDONED. 

ILA5008I COMPILER ERROR. COMPILATION 
ABANDONED. 

ILA50091 COMPILER ERROR. COMPILATION 
A:&ANDONBD. 

I1A50101 HIGH ORDFF TRUNCATION OF THE 
CONSTANT DID OCCUR. 

ILA5011I hIGH OFDER TRUNCATION MIGHT 
OCCUR. 

ILA50121 LOST INTERMEDIATE RESULT 
ATTRIBUTES IN 'XINTR' TABLE. 
CO~P1LATION ABANDONED. 

ILA50131 ILLEGAL COMPARISON OF TWO NUMERIC 
LITERALS. STATEMENT DISCARDED. 

ILA5014I KEY IN SEARCE ALL AT INVALID 
OFFSET. STATEMENT DISCARDED. 

ILA5015I INVALID USE OF SPECIAL REGISTER. 
SUBSTITUTING-TALLY. 

ILA50161 MORE THAN 255 SUBSCRIPT ADDRESS 
CELLS USED. PROGRAM CANNOT 
EXECUTE CORRECTLY. 

ILA5017I INVALID ADVANCIN' OPTION FOR A 
DTFCD FILE. USING STACKFR1. 

ILA50181 INTEGER IN POSITIONING OPTION NOT 
BETwEEN 0 AND 3. 1 ASSUMED. 

ILA5019I PUNCH STACKER SELECT SPECIFIED 
FOR A DTFPR FILE. USING 'SKIP 
TO CHANNEL 1'. 

ILA5020I IDENTIFIER NAME(S) IN EXHIBIT 
EXCEEDS MAXIMUM. TRUNCATED TO 
120 CHARAC'lERS. 

ILA5021I INTF'ER IN ADVANCING OR 
POSITIONING OPTION NOT 
POSITIVE. POSITIVE ASSUMED. 

ILA50~21 MORE ThAN 2-DIGIT INTEGER IN 
ADVANCING OPTION. USING 
INTEGER 1. 

1LA50231 EOP IN~ALID FOR DOUBLE-BUFFERED 
FILE. IGNORED. 

ILA50241 END-OF-PAGE OPTION REQUESTED FOR 
NON-DTFPR FILE. IGNORED. 

ILA50251 ADVANCING OR POSITIONING OPTION 
ILLEGAL FOR NON-SEQUENTIAL 
FILE. IGNORED. 

ILA50261 EXHIBIT OPERAND GREATER THAN 256 
BYTES. LENGTH OF 256 ASSUMED. 

ILA5027I NEGATIVE OR ZERO SUBSCRIPT 
INVALID. CHANGED TO POSITIVE 
1. 

ILA5028I RESULT FIELD WILL HAVE POSITIVE 
SIGN. 

ILA5029I STOP RUN GENERATED AFTER LAST 
STATEMENT. 

ILA5030I INSTEAD OF AN MVCL INSTRUCTION, 
AN MVC OR A CALL TO AN 
OBJECT-TIME SUBROUTINE HAS BEEN 
GENERATED EECAUSE TP.E FIELDS 
OVERLAP DESCRUCTIVELY. 

ILA5031I AN MVCL INSTRUCTION HAS BEEN 
GENERATED FOR A MOVE INVOLVINGt 
AT LEAST ONE LINKAGE SECTION 
DATA-NAME. IF THE FIELDS 
OVERLAP DESTRUCTIVELY THE MOVE • 
WILL NOT BE PERFORMED. 

In addition, no message of the form 
ILA6xxx will be issued. 

LINKAGE EDITOR OUTPUT 

The Linkage Editor produces diagnostic 
messages, console messages, and a storage 
map. For a complete description of output 
and error messages from the Linkage Editor, 
see the publication DOSIVS System control 
Statements. Output resulting from the link 
editing of a COBOL program is discussed in 
the chapter "Interpreting Output." 

EXECUTION TIME ~ESSAGES 

When an error condition that is 
recognized by compiler-generated code 
occurs during execution, an error message 
is written on SYSLST and often SYSLOG. 

Messages that normally appear on SYSLOG 
are provided with a code indicating from 
which partition the message originated. 

A complete list of execution-time 
messages can be found in "Appendix I: 
Diagnostic Messages." 

Program Checkout 261 



RECORDING PROGRAM STATUS 

When a program is expected to run for an 
extended period of time, provision should 
be made for taking checkpoint information 
periodically during the run. A checkpoint 
is the recording of the status of a problem 
program and storage (including input/output 
status and the contents of the general 
registers). Thus, it provides a' means of 
restarting the job at an intermediate 
checkpoint position rather than at the 
beginning, if for any reason processing is 
terminated before the normal end of the 
program. For example, a job of higher 
priority may require immediate processing, 
or some malfUnction (such as a.power 
failure) may occur and cause an 
interruption. Checkpoints are taken using 
the COBOL RERUN clause. 

Restart is a means of resuming the 
execution of the program from one of the 
checkpoints rather than from the beginning 
of the job. The ability to restart is 
provided through the RSTRT job control 
statement. Full details on using this 
statement are in DOS/VS System Control 
Statements. 

RERUN CLAUSE 

The presence of the RERUN clause in the 
source program causes the CHKPT macro 
instruction to be issued at the specified 
interval. When the CHKPT macro instruction 
is issued, the following information is 
saved: 

1. Information for the Restart and other 
supervisor or job control routines. 

2. The general registers. 

3. Bytes 8 through 10, and 12 through 45 
of the Communication Region. 

4. The problem program area. 

5. All file protection extents for files 
assigned to mass storage devices if 
the extents are attached to logical 
units contained in the program for 
which checkpoints are taken. 

Since the COBOL RERUN clause provides a 
linkage to the system CHKPT macro 
instruction, any warnings and restrictions 
on the use of this macro instruction also 
apply to the USE of the RERUN clause. See 
the publication DOS/VS Supervisor and I/O 
Ma££Q§ for a complete description of the 
CHKPT macro instruction. 

TAKING A CHECKPOINT 

In order to take a checkpoint, the 
programmer must specify the source language 
RERUN clause and must define the file upon 
which checkpoint records are to be written 
(e.g., ASSGN, EXTENT, etc.) Checkpoint 
information must be written on a 2311, 
2314, 2319, 3330, or 3340 mass storage 
device or on a magnetic tape -- either 7-
or 9-track. Checkpoint records cannot be 
imbedded in one of the problem program's 
output files, i.e., the program must 
establish a separate file exclusively for 
checkpoint records. Checkpoints cannot be 
written on VSAM files. 

In designing a program for which 
checkpoints are to be taken, the programmer 
should consider the fact that, upon 
restarting, the program must be able to 
continue as though it had just reached that 
point in the program at which termination 
occurred. Hence, the programmer should 
ensure that: 

1. File handling is such as to permit 
easy reconstruction of the status of 
the system as it existed at the time 
of checkpoint was taken. For example, 
when multifile reels are used, the 
operator should be informed (by 
message) as to which file is in use at 
the time a checkpoint is to be taken. 
He requires this information at 
restart time. 

2. The contents of files are not altered 
between the time of the checkpoint and 
the time of the restart. ·For 
sequential files, all records written 
on the file at the time the checkpoint 
is taken should be unaltered at 
restart time. For nonseguential 
files, care must be taken to design 
the program so that a restart will not 
duplicate work that has been completed 
between checkpoint time and restart 
time. For example, suppose that 
checkpoint 5 is taken. By adding an 
amount representing the interest due, 
account XYZ is updated on a 
direct-access file that was opened 
with the 1-0 option. If the program 
is restarted from checkpoint 5 and if 
the interest is recalculated and again 
added to account XYZ, incorrect 
results will be produced. 

If the program is modular in design, 
RERUN statements must be included in all 
modules that handle files for which 
checkpoints are to be taken. (When an 
entry point of a module containing a RERUN 
statement is encountered, a COBOL 
subroutine, ILBDCKPO, is called. ILBDCKPO 
enters the files of the module into the 



list of files to be repositioned.) 
Repositioning to the proper record will not 
occur for any files that were defined in 
modules other than those containing RERUN 
statements. Moreover, a restart from any 
given checkpoint may not reposition other 
tapes on which checkpoints are stored. 
Note, too, that only one disk checkpoint 
file can be used. 

RESTARTING A PROGRAM 

If the programmer requests checkpoints 
in his job by means of the COBOL RERUN 
clause, the following message is given each 
time a checkpoint is taken: 

nnnn 

OC001 CHKPT nnnn HAS BEEN TAKEN ON 
SYSxxx 

is the 4-character identification of 
the checkpoint record. 

To restart a job from a checkpoint, the 
following steps are required: 

1. Replace the // EXEC statement with a 
/1 RSTRT statement. The format of the 
RSTRT statement is discussed in the 

2. 

3. 

4. 

5. 

chapter "Preparing COBOL Programs For 
Processing." All other job control 
statements applicable to the job step 
should be the same as when the job was 
originally run. If necessary, the 
channel and unit addresses for the II 
ASSGN control statements may be 
changed. 

Rewind all tapes used by the program 
being restarted, and mount them on 
devices assigned to the symbolic units 
required by the program. If 
multivolume files are used, mount (on 
the primary unit) the reel being used 
at the time that the checkpoint was 
taken, and rewind it. If multifile 
volumes are used, position the reel to 
the start of the file referenced at 
the time the checkpoint is being 
taken. 

Reposition any card file so that only 
cards not yet read when the checkpoint 
was taken are in the card reader. fI 
Execute the job. 

A checkpointed program can be 
restarted only in the same partition. 
The virtual partition must start at 
the same location as when the program 
was checkpointed and its end address 
must not be lower than at that time. 

Program Checkout 263 





The following is a sample ,COBOL program 
and the output listing resulting from its 
compilation, link editing, and execution. 
The program creates a blocked, unlabeled, 
standard sequential file, writes it out on 
tape, and then reads it back in. It also 
does a check on the field called 
NO-OF-DEPENDENTS. All data records in the 
file are displayed. Those with a zero in 
the'NO-OF-DEPENDENTS field are displayed 
with the special character Z. The records 

I I JOE SAI~PLE 
II OPTION i.~ODECK,LINK,LIST,LISTX,8YM,ERRS 
II EXEC FCOBOL 

1 IBM DOS VS COBOL 

CBL QUOTE,OPT,SXREF,LVL=A 
00001 000010 IDENTIFICATION DIVISION. 
C0002 000020 PROGRAM-ID. TES~RUN. 

R~L 1.0 

APPENDIX A: SAMPLE PROGRAM OUTPUT 

of the file are not altered from the time 
of creation, despite the fact that the 
NO-OF-DEPENDENTS field is changed for 
display purposes. The individual records 
of the file are created using the 
subscripting technique. 

The output formats illustrated in the 
listing are described in the chapter 
"Interpreting Output." 

PP NO. 5746-CBl 08.11.32 10/02/73 

C0003 AUTHOR. PROGRAMMER NAME. 
C0004 INSTALLATION. NEW YORK DEV~LOPf.;ENT CEN~t:R 
cooe5 DATE-wRITTEN. APRIL 18,1973 
00006 DATE-COMPILED. 10/02/73 
00007 REMARKS. THIS PROGRAM HAS BEEN WRIlTEN AS A SAMPLL PROGRAM ~OR 
00008 COBOL USERS. IT CREATES AN OU~PU~ F'IL'£: AND READS IT BACK 
00009 AS INPU~. 
C0010 000100 
C0011 000110 ENVIRON~£NT DIVISION. 
00012 000120 CONFIGURATION SECTION. 
00013 000130 SOURCE-COMPUTER. IBM-360-H50. 
00014 000140 OBJECT-COMPUTER. IBM-370. 
00015 000150 INPUT-OUTPUT SECTION. 
00016 000160 FILE-CONTROL. 
00C17 000170 SELECT FILE-1 ASSIGN TO SYS008-UT-2400-S. 
00018 000180 SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S. 
00019 000190 
00020 000200 DATA DIVISION. 
00021 000210 FILE SECTION. 
00022 000220 FD FILE-1 
00023 000230 LABEL RECORDS ARE OMITTED 
00024 000240 BLOCK CONTAINS 5 RECORDS 
00025 000250 RECORDING MODE IS F 
00026 000255 RECORD CONTAINS 20 CHARACTERS 
00027 000260 DA~A RECORD IS RECORD-1. 
00028 000210 01 RECORD-1. 
00029 as FIELD-A PIC X(2C). 
00030 000290 FD FILE-2 
00031 000300 LABEL RECORDS ARE OMITTED 
00032 000310 BLOCK CONTAINS 5 RECORDS 
C0033 000320 RECORD CONTAINS 20 CHARACTERS 
00034 000330 RECORDING MODE IS F 
00035 000340 DATA RECORD IS RECORD-2. 
C0036 000350 01 RECORD-2. 
00037 05 FIELD-A PIC X(20). 

Appendix A: Sample Program Output 265 



00038 
00039 
00040 
00041 
00042 
00043 
00044 
00045 
00046 
00047 
00048 
00049 
00050 
00051 
00052 
00053 
00054 
00055 
00056 
C0057 
00058 
00059 
00060 
00061 
C0062 
C0063 
00064 
00065 
00066 
00067 
00068 
00069 
00070 
00071 
COO72 
00073 
00074 
00075 
C0076 
00077 
00078 
00079 
00080 

266 

IBM DOS VS COBOL REL 1.0 PP NO. 5746-CB1 

000370 
000380 

000400 
000410 
000420 
000430 
000440 
000450 
000460 
000470 
000480 
000490 
000500 
000510 
000520 
000530 
000540 
000550 

000570 
000580 
000590 
000600 
000610 
000620 
000630 
000640 
000650 
000660 
000670 
000680 
000690 
000700 
000710 
000720 
000730 
000740 
000750 
000760 
000770 
000780 
000790 

WORKING-STORAGE SECTION. 
01 FILLER. 

02 KOUNT PIC S99 COMP SYNC. 
02 ALPHABET PIC X (26) VALUE IS nABCDEFGHIJRLMJOPQRS'I'UVv;XYZ". 
02 AL~HA REDEFINES ALPHABET PIC X OCCURS 26 TIMES. 
02 NUMBR PIC S99 COMP SYNC. 
02 DEPENDENTS PIC X(26) VALUE; n01234012340123401234012340 n . 
02 DEPEND REDEFINES DEPENDE'N'lS PIC X OCCURS 26 'lIMES. 

01 WORK-RECORD. 
05 N~,E-FIELD PIC x. 
05 FILLER PIC X VALUE IS SPACE. 
05 RECORD-NO PIC 9999. 
05 FILLER PIC X VALUE IS SPACE. 
05 LOCATION PIC AAA VALU£ IS RNYC R• 
as FILLER PIC X VALUE IS SPACE. 
05 NO-OF-DEPENDENTS PIC XX. 
05 FILLER PIC X(7) VALUE IS SPACES. 

PROCEDURE DIVISION. 
BEGIN. 

NOTE THAT 'IRE FOLLOWING OPENS THE OuTPUT FILE. TO EF CRhl;.TED 
AND INITIALIZES COUNTERS. 

::;'l'EP-i. OPEN OUTPUT FILE-l. MOVE ZERO TO KOUNT, ;ml';BR. 
NOTE THAT 'THE FOLLOWING CREATES INTERNALLY THE RECORDS TO ri.l:. 
CONTAINED IN THE FILE, WRITE8 TBEM ON TAPE, AND DISPLAYS 
'IHEM ON 'IHE CONSOLE. 

STEP-2. ADD 1 'IO KOUNT, NUMBR. "MOVE ALPHA (KOUNT) TO 
NAME-FIELD. 
MOVE DEPEND (KOUNT) TO NO-OF-DEPENDhN'IS 
MOVE NUMBR TO RECORD-NO. 

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. wRITE; R1::CORD-1 FROM 
WORK-RECORD. 

STEP-4. PERFORM STEP-2 TrlRU STEP-3 UNTIL KOUN'l IS EQUAL TO 26. 
NO'IE THAT THE FOLLOWING CLOSES THE OUTPUT FILE AND REOPENS 
IT AS INPUT. 

STEP-5. CLOSE FILE-1. OPEN INPUT FILE-2. 
NO'IE THAT 'IHE FOLLOWING READS BACK THE FILE AND SHlGLES 
OUT EMPLOYEES WITH NO DEPENDENTS. 

STEP-6. READ FILE-2 RECORD,IN'IO wORK-RECORD AT BND GO TO STEP-So 
STEP-7. IF NO-Of-DEPENDENTS IS EQUAL '10 "0" MOVE "Z· TO 

NO-OF-DEPENDENTS. EXHIBI'I NAMED WORK-RECORD. GO TC STEP-6. 
STEP-8. CLOSE FILE-2. 

STep RUN. 

08.17.32 10/02/73 



IBM DOS VS COBOL REL 1.0 pp NO. 5746-CB1 08.17.32 10/02/73 

INTRNL NAME LVL SOURCE NAME BASE DISPL I N'IRi'lL NAME DEFVUTION lJSAGE i{ ;) Q M 

DNM=1-148 FD FILE-l DTF=Ol DN1']=1-148 DTFI-_T F 
DNM=1-179 01 RECORD-1 BL=l 000 DNM=1-179 DS OCL20 GROUP 
DNl·J=1-200 02 FIELr;-A BL=l 000 DNM=1-200 DS 20C DISP 
DNM=1-217 FD FILE-2 DTF=02 DNM=1-217 D'lFl',T F 
DNM=1-248 01 RECORD-2 BL=2 000 DNM=1-248 DS OCL20 GROUP 
DNM=1-269 02 FIELD-A BL=2 000 DNM=1-269 DS 20C DISP 
DNJ:.l=1-289 01 FILLER BL=3 000 DNl-l=1-289 DS OCL56 uROUP 
DNM=1-308 02 KOUNT BL=3 000 DNM=1-308 DS hi COi'<JP 
DNM=1-323 02 ALPHABET BL=3 002 DNM=1-323 DS 26C DISP 
DNM=1-341 02 ALPHA BL=3 002 DNl'i=1-341 DS lC DISP P- O 
DNM=1-359 02 NUMBR BL=3 01C DNM=1-359 DS 1H COLVI? 
DNM=1-374 02 DEPENGENTS BL=3 OlE DNM=1-374 DS 26C iJISP 
DNM=1-394 02 DEPEND BL=3 OlE DNM=1-394 DS lC DIS? R J 
DNM=1-410 01 WORK-RECORD BL=3 038 DNM=1-410 DS OCL20 GROUt> 
DNI".l=1-434 02 i~AME-FIELD BL=3 038 DNM=1-434 GS lC DISP 
DNM=1-454 02 FILLER BL=3 039 DNM=1-454 DS 1C DISP 
DNM=1-473 02 RECORD-NO BL=3 03A DNM=1-473 DS 4C DISP-NI1 
DNl'j=1-492 02 FILLER BL=3 03E DNM=1-492 DS 1C DISP 
D Nfl·, = 2- 000 02 LOCATION BL=3 03F DNM;::2-000 DS 3C DISP 
DNM=2-018 02 FILLER BL=3 042 DNM=2-018 DS 1C DISP 
DNM=2-037 02 NO-Of-DEPENDENTS BL=3 043 DNlv1=2-037 DS 2C DISP 
DNJ:.'i=2-063 02 FILLER BL=3 045 DNM=2-063 DS 7C DISP 

Appendix A: Sample Program Output 267 



IBM DOS VS COBOL 

268 

TGT 

SAVE AREA 
SWITCH 
TALLY 
SORT SAVE 
ENTRY-SAVE 

MEMORY MAP 

SORT caRE SI ZE 
NSTD-REELS 
SORT RET 
WORKING CELLS 
SORT FILE SIZE 
SORT MODE SIZE 
PGT-VN TBL 
TGT-VN TBL 
SORTAB ADDRESS 
LENGTH OF VN TBL 
LNGTH OF SORTAB 
PGM ID 
ACINI'll) 
UPSI SwITCHES 
DEBUG TABLE PTR 
CURRENT PRIORITY 
TA LENGTH 
PRBLl CELL PTR 
UNUSED 
RESERVED 
VSAM SAVE AREA ADDRESS 
UNUSED 
RESERVED 
OVERFLOW CELLS 
BL CELLS 
DTFADR CELLS 
FIB CELLS 
TEMP STORAGE 
TEMP STORAGE-2 
TEMP STORAGE-3 
TEMP STORAGE-4 
BLL CELLS 
VLC CELLS 
SBL CELLS 
INDEX CELLS 
SUBADR CELLS 
ONCTL CELLS 
PFMCTL CELLS 
PFMSAV CELLS 
VN CELLS 
SAVE AREA =2 
XSASW CELLS 
XSA CELis 
PARAM CELLS 
RPTSAV AREA 
CHECKPT CTl< 
IOP'IR CELLS 
DEBUG TABLE 

003F8 

003F8 
00440 
00444 
00448 
0044C 
00q50 
00QS4 
004S6 
00Q58 
00S88 
00S8C 
00S90 
00S94 
00S98 
00S9C 
00S9E 
OOSAO 
00SA8 
005AC 
OOSBQ 
OOSES 
00SB9 
OOSBC 
OOSCO 
00SC4 
005C8 
OOSCC 
005D4 
OOSEC 
005EC 
005F8 
00600 
00608 
00610 
00610 
00610 
00610 
00614 
00614 
00614 
0061Q 
0061C 
0061C 
0061C 
00620 
00624 
00624 
00624 
0062Q 
00628 
00628 
00628 
00628 

REL l.0 PP NO. 5746-CB1 08.17.32 10/02/73 



IBM DOS VS COBOL REL 1.0 PP NO. 5746-CB1 

LITERAL POOL (HEX) 

00640 (LIT+O) 
00658 (LIT+24) 

00000001 001A5B5B C2D6D7C5 D5405B5B C2C3D3~6 L2CS5ESB 
C2C6C3D4 E4D35B5B COOOOOOO 

DISPLAY LITERALS (BCD) 

00664 (LTL+36) 'WORK-RECORD' 

PGT 

DEBUG LINKAGE AREA 
OVERFLOW CELLS 
VIR'IUAL CELLS 
PROCEDURE NAME CELLS 
GEdERATED NAME CELLS 
SUBDTF ADDRESS CELLS 
VNI CELLS 
LITERALS 
DISPLAY LITERALS 
PROCEDURE BLOCK CELLS 

REGISTER ASSIGNMENT 

REG 6 
REG 7 
REG 8 

BL =3 
BL =1 
BL =2 

00628 

00628 
00628 
0062C 
00638 
00638 
0063C 
0063C 
00640 
00664 
00670 

WORKING-STORAGE STARTS AT LOCATION 00100 FOR A LENGTH OF 00050. 

PROCEDURE BLOCK ASSIGNMENT 

PBL = REG 11 

PBL =1 STARTS AT LOCATION 000674 STATEMENT 60 

08.17.32 10/02/73 

Appendix A: Sample Program Output 269 



IBM DOS VS COBOL REL 1. 0 PP NO. 5746-CB1 08.17.32 10/02/73 

0 
57 

000674 PN=02 EQU * 
60 

000674 PN=03 EQU * 
60 

000674 8'IART EQU * 000674 58 BO C 048 L 11,048(0,12) PEL=l 
000678 58 20 D 1F4 L 2,11"4 (0,13) BL =1 
00067C 41 10 C OlE LA 1,01E{O,12) L1T+6 
000680 58 00 0 200 L 0,200(0,13) D'1F=l 
000684 18 40 LR 4,0 
000686 05 FO BALR 15,0 
000688 50 00 F 008 8T 0,008(0,15) 
00068C 45 00 F OOC BAL 0,00C(O,15) 
000690 00000000 DC X'OOOOOOOO' 
000694 01.. 02 8VC 2 
000696 41 00 D 200 LA 0,200(0,13) D'1F=l 
Ou069A 58 FO C 008 L 15,008(0,12) V (ILED1l-JLO) 
00069E 05 EF BALR 14,15 
00061..0 58 10 D 200 L 1,200(0,13) DTF=l 
00061..4 96 10 1 020 01 020(1) ,X'10' 
0006A8 SO 20 D 1F4 8T 2,lF4(0,13) BL =1 
0006AC 58 70 D 1F4 L 7,lF4(0,13) B1.. =1 

bO 
0006BO D2 01 6 000 C 018 MVC 000(2,6),018 (12) DNM=1-308 L1'1+0 
000686 D2 01 6 01C C 018 MVC 01C(2,6) ,018 (12) DNM=1-359 L1'l+O 

64 
0006BC PN=04 E~U * 

64 
0006BC 48 30 C 01A LH 3,01A(0,12) L1T+2 
0006CO 4A 30 6 000 AH 3,000{O,6) D,jillj=1-308 
0006C4 4E 30 D 210 CVD 3,210(0,13) 'I8=01 
0006C8 D7 05 D 210 D 210 xc 210(6,13),210(13) 'I8=01 T8=li1 
0006CE 94 OF D 216 N1 216(13),X'OF' '18=01+6 
0006D2 4F 30 D 210 CVB 3,210(0,13) T8=01 
0006D6 40 30 6 000 8TH 3,000(0,6} DNM=1-308 
0006DA 48 30 C 01A LH 3,011..(0,12) .L1T+2 
0006DE 4A 30 6 01C AH 3,01C(0,b) DNM=1-359 
0006E2 4E 30 D 210 CVD 3,210(0,13) '18=01 
0006E6 D7 05 D 210 D 210 XC 210(6,13),210(13) T8=01 T8=01 
0006EC 94 OF D 216 N1 216(13),X'OF' 'I8=01+6 
0006FO 4F 30 D 210 CVB 3,210{O,13) T8=01 
0006F4 40 30 6 01C 8TH 3,01C(0,6} Dt-IM=1-359 

64 
0006F8 41 40 6 002 LA 4,002(0,6) DNI'l=1-341 
0006FC 48 20 6 000 LH 2,000{O,6) DNM=1-308 
000700 4C 20 C 011.. MH 2,01A{O,12) L1T+2 
000704 1A 42 Art 4,2 
000706 5E 40 C 018 S 4,018(0,12) L1T+O 
00070A 50 40 D 21C 8T 4,21C{O,13) SE8=1 
00070E 58 EO D 21C L 14,21C(0,13} 8E8=1 
000712 D2 00 6 038 E 000 MVC 036(1,6),000(14) DNM=1-434 DNM=1-341 
000718 41 40 6 OlE LA 4, OlE CO", 6) DNM=1-394 
00071C 48 20 6 000 LtI 2,000(0,6) DNM=1-308 
000720 4C 20 C 01A MH 2,01A(0,12) L1T+2 
000724 11\ 42 AR 4,2 
000726 5B 40 C 018 8 4,018(0,12) L1T+O 
00072A 50 40 D 220 8T 4,220(0,13) 8ES=2 
00072E 58 FO D 220 L 15,220(0,13) SB8=2 
000732 II2 00 6 043 F 000 MVC 043 (1, 6) ,000 (15) DNM=2-37 DNM=1-394 
000738 92 40 6 044 MV1 044(6),X'40' DNM=2-37+1 

67 
00073C 48 30 6 01C LH 3,01C(0,6) DNM=1-359 
000740 4E 30 D 210 CVD 3,210(0,13) '1S=Ol 
000144 F3 31 6 03A D 216 UNPK 031..(4,6),216(2,13) DNM=1-473 T8=07 
00014A 96 FO 6 03D 01 03D(6),X'FO' DNM=1-413+3 

270 



IBM DOS VS COBOL REL 1.0 PP NO. 5746-CB1 08.17.32 10/02/73 

68 
OC0711E PN=05 E~U * 

68 
000711E 58 FO C OOC L 15, OOC ( 0 , 12) V <ILEJ:DSPO) 
000752 as IF BALR 1,15 
000754 0002 DC X'OO02' 
00C756 00 DC X'OO' 
000757 0000111 DC X'OOOO14' 
00075A ODOO01FC DC X'ODOO01FC' BL =3 
00075E 0038 DC X'0038' 
000760 FFFF DC X'FiFF' 

68 
000762 D2 13 7 000 6 038 MVC 000(20,7),038(6) DNM==1-179 Dloil':=1-1I10 
000768 58 10 D 200 L 1,200(0,13) D'IF=l 
00076C 18 41 LR 11,1 
00076E 58 FO 1 010 L 15,010(0,1) 
000772 45 EO F OOC BAL 111,OOC(O,15) 
000776 50 20 D lF4 ST 2,lFII(O,13) BL ==1 
00077A 58 70 D 1FII L 7,lF"4(0,13) BL =1 
00077E 58 10 D 228 L 1,228(0,13) VI~==Ol 

000782 07 F1 BCR 15,1 
70 

0007811 PN=06 EQU * 
7C 

0007811 D2 03 D 2211 D 228 IWC 2211(11,13),228(13) PSV:::1 Vrl=G1 
00078A 111 00 B llE LA o , lIE ( 0, 11) GN:::01 
00078E 50 00 D 228 ST 0,228(0,13) VN=Ol 
000792 GN:::01 EQU * 
000792 118 30 6 000 LH 3,000(0,6) DNM=1-308 
000796 49 30 C 01C Cd 3,OlC(0,12) Li'I+4 
00079A 47 80 B 12E BC 8,12E(0,11) GN=02 
00079E 117 FO B 0118 Be 15,0118(0,11) PN=04 
0007A2 GN=02 EQU * 0007A2 D2 03 D 228 D 2211 MVC 228(11,13),2211(13) VN=Ol P~V=l 

73 
0007A8 PN:::07 E~U * 

73 
0007A8 58 10 D 200 L 1,200(0,13) D'IF=l 
0007AC 94 EF 1 020 NI 020(1),X'EF' 
0007BO 18 01 LR 0,1 
0007B2 18 110 LR 4,0 
0007B4 111 10 C 026 LA 1,026(0,12) LI'I+111 
0007B8 07 00 BCR C,O 
0007BA 05 Fa BALR 15,0 
0007BC 50 00 F 008 ST 0,008(0,15) 
0007CO 45 00 F OOC BAL 0,OOC(O,15) 
0007CII 00000000 DC X'OOCOOOOO' 
0007C8 OA 02 SVC 2 
0007CA 58 00 D 200 L 0,200(0,13) D'IF=l 
0007CE 111 10 C 02E LA 1,02E(0,12) LIT+22 
0007D2 OA 02 SVC 2 

73 
0007D4 !II 10 C OlE LA 1,01E(O,12) LIT+6 
0007D8 58 00 D 2011 L 0,204(0,13) D'IF=2 
0007DC 18 110 LR 4,0 
0007DE as FO BALR 15,0 
0007EO 50 00 F 008 ST 0,Ou8(O,15) 
0007EII 115 00 '£ OOC BAL Oi OOC (O,15) 
0007E8 00000000 DC X'OOOOOOOO' 
0007EC OA 02 SVC 2 
0007EE 111 00 D 204 LA 0,2011(0,13) D'IF=2 
0007F2 58 FO C 008 L 15,008(0,12) v <ILBDH1LO) 
0007F6 05 EF BALR 111,15 
0007F8 58 10 D 2011 L 1,2011(0,13) D'IF=2 
0007FC 96 10 1 020 01 020 (1) ,)C'IO' 

Appendix A: Sample Program Output 211 



IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 08.17.32 10/02/73 

76 
000800 FN=08 E~U 

,.. 
76 

000800 58 10 D 204 L 1,204(0,13) D'lF=2 
000804 91 20 1 010 TM C10 (1) ,X' 20' 
000808 47 10 B lEE BC 1, 1BI:;( 0,11) GN=03 
00080C 18 41 LR 4,1 
00080l!. 41 FO C 010 LA 15,u10CO,12) GN=03 
000812 D2 02 1 025 F OC1 MVC 025(3,1> ,001(15) 
000818 58 FO 1 010 L 15,010(0,U 
00081C 45 EO F 006 SAL 14,008CO,15) 
000820 50 20 D 1F8 ST 2,H8(0,13) BL =2 
000824 58 80 D IF8 L 8,11"8 (0,13) EL =2 
000828 D2 13 6 038 8· 000 MVC G38(20,6),000(8) DNM=1-410 Dm'.=1-248 
00082E 47 FO B 1C2 Be 15,lC2(0,11> GN=04 
000832 GN=03 EQU ,.. 

76 
000832 47 FO B 208 BC 15,208(0,11) PN=010 
000836 GN=04 EUU ,.. 

77 
000836 PN=09 EQU * 

77 
000836 n:: ru 6 043 CLI 043(6),X'FO' DNM=2-37 3J 

00083A 47 70 B IDA BC 7, llJA (0, 1U GN=05 
00083E 95 40 6 044 CLI 044 (6) ,X' 40' D~!=2-37+1 

77 000842 47 70 B IDA BC 7 , llJA ( 0 , 1U GN=05 
000846 92 E9 6 043 MVI 043C6},X'E9' C,~=2-37 

00084A 92 40 6 044 MVI 044(6),)1.'40' DNM=2-37+1 
00084E GN=05 EQU * 

78 
00084E 58 10 C 038 L 1,038(0,12) LIT+32 
000852 50 10 D 22C ST 1,22C(O,13} i?~~=1 

000856 41 20 D 22C LA 2,22C(0,13) PRM=l 
0008SA 58 FO C OOC L 15,00C(0,12) v (lLBDDSPO) 
00085E 05 1F BALR 1,15 
000860 8001 DC X'8001' 
000862 10 DC X'10' 
000863 OOOOOE DC X'cOOOOB' 
000866 OCOOO03C DC X'OCOOO03C' Ll'l+36 
00086A 0000 DC X'OOOO' 
00086C 00 DC X'OO' 
00086D 000014 DC X'000014' 
000870 ODOOOlFC DC X'ODOO01FC' EL =3 
000874 0038 DC X'0038' 
000876 FfFF DC X'FI'FF' 

78 
000878 47 FO B 18C BC 15,18C(0,11> FN=08 

79 
00087C PN=010 EQU * 

79 
00087C 58 10 D 204 L 1,204(0,13) C'lF=2 
000880 94 EF 1 020 NI 020(1) ,X'EF' 
000884 18 01 LR 0,1 
000886 18 40 LR 4,0 
000888 41 10 C 026 LA 1,026(0,12) LI'I+14 
00088C 07 00 BCR 0,0 
00088E 05 FO BALR 15,0 
000890 50 00 F 008 ST 0,008(0,15) 
000894 45 00 F OOC BAL 0,00C(0,15) 
000898 00000000 DC .l!.'00000000' 
00089C OA 02 SVC 2 
00089E 58 00 D 204 L 0,204(0,13) DTF=2 
0008A2 41 10 C 02E LA 1,02B(0,12) LIT+22 
0008A6 OA 02 SVC 2 

80 
0008A8 OA OE SVC 14 

272 



IBM DOS VS COBOL REL 1.0 PP NO. 5746-CB1 08.17.32 10/02/73 

OOOSAA 50 DO 5 OOS HlI'I2 ST 13,008(0,5} 
OOOSAE 50 50 D 004 ST 5,004(0,13} 
0008B2 5S 20 C 004 L 2,OO4(0,12} VIR=l 
000SB6 95 00 2 000 CLI OOO(2),X'00' 
0008BA 07 79 BCR 7,9 
0008BC 92 FF 2 000 ~jVI 000(2),X'FF' 
0008CO 96 10 D 048 01 048(13),X'10' SWT+O 
0008C4 50 EO D 054 INI'I3 ST 14,054(0,13} 
OOOSCS 05 FO BALR 15,0 
OOOSCA 91 20 D 048 TM 04S(13},X'20' SW'I+O 
OOOSCE 47 EO F 016 BC 14,016(0,15) 
000SD2 58 00 B 048 L 0,04S(0,11) 
000SD6 9S 2D B 050 LM 2,13,050(11) 
OOOSDA 58 EO D 054 L 14,054(0,13) 
OOOSDE 07 FE BCR 15,14 
0008EO 96 20 D 04S 01 04S(13),X'20' SWT+O 
0008E4 41 60 0 004 LA 6,004(0,0) 
000SE8 41 10 C 000 LA 1,000CO,12) 
OOOSEC 41 70 C 003 LA 7,OO3(0,12} VIR=1-1 
0008FO 05 50 BALR 5,0 
000SF2 5S 40 1 000 L 4,000(0,1> 
0008F6 1E 4£ ALR 4,11 
000SF8 50 40 1 000 ST 4,000(0,1> 
0008FC 87 16 5 000 BXLE 1,6,000(5) 
000900 41 10 C 010 LA 1,010(0,12) PN=Ol 
000904 41 70 C 017 LA 7,017(0,12) LI'I+0-1 
000908 05 50 BALR 5,0 
00090A 58 40 1 000 L 4,000(0,1) 
00090E 1E 4B ALR 4,11 
000910 50 40 1 000 ST 4,000(0,1> 
000914 S7 16 5 000 BXLE 1,6,000(5) 
000918 41 SO D 1F4 LA 8,lF4(O,13) O"F=l 
00091C 41 70 D 20F LA 7,20F(0,13} TS=Ol-l 
000920 as 10 BALR 1,0 
000922 58 00 8 000 L O,OOO(O,S) 
000926 1E OB ALR 0,11 
00('92S 50 00 8 000 ST O,OCO(O,S) 
00092C 87 86 1 000 £XLE 8,6,000(1) 
000930 5S 60 D 1FC L o,lFC(0,13) BL =3 
000934 58 70 D lF4 L 7,lF4(O,13} ilL =1 
000938 5S 80 D 1F8 L 8,HS(O,13) BL =2 
00093C D2 03 D 228 C 014 r-WC 228(4,13},O14(12) VN=Ol VNl.;l 
000942 58 EO D 1BO L 14,lBO(O,13} 
000946 90 6D E 060 S'l!» 6,13,060(14) 
00094A 58 EO D 054 L 14,054(0,13) 
00094E 07 FE ECR 15,14 
000000 05 Fa IN1'Il BALR 15,0 
000002 07 00 BCR 0,0 
000004 90 OE F OOA STJ.vJ 0,14,OOA(15) 
0000C8 47 FO F 082 BC 15,082(0,15) 
OOOOOL 00000000 DC 30F'O' 
000084 58 co F OC6 L 12,OC6(0,15) 
000088 58 EO C 004 L 14,004(0,12) VIR=l 
0OO08C S8 DO F OCA L 13,OeldO,15) 
000090 95 00 E 000 CLI 000C14} ,X' 00' 
000094 47 70 F OA2 BC 7,UA2(0,15} 
000098 96 10 D 048 or 048<13},X'10' SW'I" + 0 
0OOO9C 92 FF E 000 MVI OOO(14),X'FF' 
OOOOAO 47 FO F OAC Be 15, CAC (0, 1:,) 

Appendix A: Sample Program Output 273 



IBM DOS VS COBOL REL 1. 0 PP NO. 5746-CB1 08.17.32 10/02/~ 

OOOOM 98 CE F 03A LM 12,14,03A(1S) 
000OA8 90 EC D OOC STM 14,12,OOC(13) 
OOOOAC 18 5D LR 5,13 
OOOOAE 98 9F F OBA LM 9,1::>,OEA(1S) 
0000B2 91 10 D 048 n; 048(13) ,X'10' SWT+O 
0000B6 07 19 BCl:( 1,9 
0000B8 07 FF BCR 15,15 
OOOOBA 07 00 BCR 0,0 
OOOOBC 000008C4 ADCON L4(INI'I3) 
OOOOCO 00000000 ADCON L4(INI'Il) 
0000C4 00000000 ADCON L4 (INIT!) 
00OOC8 00000628 ADCON L4(PGT) 
OOOOCC 000003F8 ADCON L4('IGT) 
OOOODO 00000674 ADCON L4 (S'lART) 
0000D4 000008AA ADCON L4 (lHI'I2) 
000008 C3D6C2D6F3FOFOFO DC X'C3D6C2D6F3FOFOFO' 
OOOOEO E3C5E2~3D9E4D540 DC X'E3C5E2E3D9E4DS40' 
0000E8 00000000 DC X'OOUOOOOO' 
OOOOEC F1F061FOF261F7F3 DC X'FIF061FOF261F7}3' 
OOOOF4 FOF84BF1F74BF3F2 DC X' FO.F84BF1F7 4BF3.l:'2' 

*S'IATlSTICS* SOuRCE RECORDS 80 DA'IA ITENS 22 NO at" VZHES 28 
*S'IA'IISTICS* PA.!{'IITION SIZE 655176 LIrIE COUNT S6 BUFF;:;.< SHE :'12 
*OP'IIO~S IN EFFECT* Fr-1AP RELOC ADR NONE S~ACING 1 E'LOW NON.i:. 
*OFTIONS IN EFF~C'I* LIS'IX QUO'IE SY!'; llJChTALR LIST LLJi\ NO.:i1Xl'l iiOLID 
*OPTIONS IN EFFEC'I* NOCLIS'I FLAGW ZWB NOSUPMAP XH';:;F ERRS t;XRLF Ot''I 
*OP'IIOllS IN EFFECT* NOS'IA'IE 'IRUNC SiQ NOSYMD1<lF i~ODECK .. OVERh dOSf.;aAX LVL.::A 

274 



IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 08.17.32 10/02/73 

DA'IA NAi'l,ES 

ALPHA 
ALPHABET 
DEPEND 
DEPENDE."TS 
FIELD-A 
FIELD-A 
FILE-l 
FILE-2 
KCUNT 
LOCA'IION 
NAME-FIELD 
NC-OF-DEPENDENTS 
NUMBi{ 
RECORD-NO 
RECORD-1 
RECORD-2 
WORK-RECORD 

PROCl:.DUR£ NAMES 

BEGIN 
S'IEP-1 
S'IEP-2 
S'IEP-3 
S'IEP-4 
S'IEP-5 
S'IEP-6 
S'IEP-7 
S'IEP-8 

CA~D ErtROi{ M£SSAGE 

00064 iLA5011I-W 
00064 ILA5011I-W 

LINE 

00006 
00C25 
00034 
00054 
00060 
00062 
C0062 
C0064 
00064 
00068 
00068 
00068 
C0070 
00076 
00078 

NUl-mER 

ILA8003I-W 
ILA8002I-W 
ILA8002I-W 
ILA8003I-W 
ILA8003I-W 
ILA8003I-W 
ILA8003I-W 
ILA8003I-W 
ILA8003I-W 
ILA8003I-W 
ILA8002I-W 
ILA8003I-W 
ILA8003I-W 
lLA8003I-W 
ILA800iI-W 

~N~ OF CO~PILATION 

CROSS-REFERE l~CE 

DEFN REFERENCE 

000042 000064 
000041 
000045 000066 
000044 
000029 
000037 
000017 000060 000068 
000018 000073 000076 
000040 000060 000064 
000051 
000047 000064 
000053 000066 000077 
000043 000060 000064 
000049 000067 
000028 000068 
000036 000076 
000046 000068 000076 

DEFN REFERENCE 

000057 
000060 
000064 000070 
000068 000010 
000070 
000073 
000076 000078 
000077 
000079 000076 

rlIGH ORDER TRUNCATION MIGHT OCCUR. 
HIGH ORDER TRUNCATION MIGHl OCCUR. 

DICTIONARY 

000073 
000079 
000066 000070 

000067 

000078 

FEDERlI.L INFORMATION PRCCESS1NG STANDARDS (FIPS) DIAGNOSTIC Iv,ESSl-,('l S 

MESSAGE 

DATE-COMPILED PARAGRAPH IS AN EX1ENSION TO FIPS LEVEL A. 
RE,CORDING MODE IS CLAUSE IS AN EXTENSION TO ALL FIPS LEVELS. 
RECORDING MODE IS CLAUSE IS AN hXTENSION TO ALL FIPS LEVhLS. 
SPACES IS AN EX'IENSION TO FIPS LEVEL ~. 

COMMA OR SEMICOLON AS PUNCTUATION IS AN EXTE,~SION TO FI.i?S L;;;VEL A. 
COMMA OR SEMICOLON AS PUNC'IUA~ION IS AN ~XT~NSION TO FIPS LLVEL A. 
COMI-m OR SEMICOLON AS PJNCTUATION IS AN EXTl.NSI01'i TO FIPS Lt:VEL A. 
COMI-1A 01-< SEMICOLON AS PUNCTUATION IS AN EXT::.NSION TO FIPS Ll,VEL A. 
MULTIPLE RESULTS IN ADD STATEMENT IS AN l,XTENSION TO FUS LEVEL A. 
UPON OPTION OF DISPLAY S'IA'IEMEN1 IS AN EXTE~SICN TO FIPS LEVEL A. 
UPON CONSOLE OP'IION Oli" .:lISPLAY STATEMENT IS AN EXTENSIOt-i 'Ie AIL L£VELS. 
FROI-i OPTION OF WRITE S'IATE~J:.N'I If be'l EXTENSION TO FIFS LEVEL A. 
UNTIL OPTION OF PERFORM S1ATE~E!~T IS AN :LXTd~SION TO FIPS LhVEL A. 
INTO OPTION OF READ S'lATEMEN'I IS AN EX'IZNSION TO FIPS L.LVEL A. 
l:.XHIBI'I STATE¥.ENT IS AN EXTENSION TO ALL FIPS LEVELS. 

PAGt 

Appendix A: Sample Program Output 275 

1 



IBM DOS VS COBOL REL 1.0 PP NO. 5746-CBl 

II EXEC LNKEDT 

JOE SAMPLE ::lOS LINKl'IG.t:. EDITOR 8IllGNOS'I'IC Of L~PU'I 

AC'IION 
LIST 
LIST 
LIS'I 
LIST 
LIST 
LIST 
LlST 
LIS'I 
LIS'I 

'lAKEN MAP 
AUTOLINK 
AUTOLINK 
AUTOLINK 
AUTOLINK 

REL 
IJFFBZZ:i 
ILBDDSPC 
IJJCPDV 
ILEDDSSO 

INCLUDE 
AUTOLINK 
AUTOLINK 
AU'IOLINK 

IJJCPDV 
ILBDIMLO 
ILBDMNSO 
ILBDSAEO 

ENTRY 

10102/73 PHASE XFR-AD LOCORE 

PHASE··· 07D878 07D278 

* UNREFERENCED SYMBOLS 

002 UNaESOLVED ADDRESS CONSTANTS 

276 

HICOR.E. DSK-AI; 

07FlFF 05F OF 4 

ESD TYPE LAB:i:;L LOADED REL-FH 

CSECT 'l'ESTRUN 07D878 07D878 

CSEC'I IJFFBZZN 07E1C8 C7i:.1C8 
ENTRY IJFFZZZN 07E1C8 

• ENTRY I~1FFBZZZ 07E1C8 
ENTRY IJFFZZZZ 07E1Cfi 

CSECT ILBl.iSAEO 07F078 07E'078 
ENTRY ILBDSAE1 07FOCO 

CSECT ILBDMNSO 07F070 07F070 

CSE-C'I ILBDIMLO 07F018 07E'018 

CSl.CT lLBDDSPO 07E578 07E578 
EN'I'RY ILBDDSP1 07E978 

CS.E.C'I ILBDI;SSO 07ECFO On:CFO 
EN'I'RY ILBDDSS1 07EF50 
ENTRY ILBDDSS2 07EF48 
ENTRY ILBIJDSS3 071·'008 
ENTRY ILBDDSS4 07ED16 
ENTRY ILBDDSS5 07EDC2 
ENTRY lLBDDSS6 07E:E22 
ENTRY ILBDDSS7 07EDEC 
ENTRY ILBI:DSS8 07ED4b 

CSECT IJJCPDV 07EAA8 07,t,AA8 
ENTRY IJJCPDVl 07EAAB 

• ENTRY IJJCPDV2 07EAA8 

WXTRN STXITPSW 
WXTRN ILBDDBG2 

08.17.32 10/02/7 

RLLJCATJl.bL.t:. 



IBM DOS VS COBOL 

II ASSGN SYS008,X'483' 
II l:.Xi.C 

wORI<-R:t:CCl{D = A OOUl NYC Z 
WOHK-l<E.CORD B 0002 NYC 1 
WORK-RECORD = C 0003 NYC 2 
wORK-RECORD = D 0004 NYC 3 
WORK-l<.E.CORD = E 0005 NYC 4 
WORK-RJ:;CORD = F 0006 NYC Z 
wORl": - RECORD G 0007 NYC 1 
WCRK-RECORD H 0008 NYC 2 
WORK-RECORD I 0009 NYC 3 
WCRK-RECORD oJ 0010 NYC 4 
WORK-RECORD K 0011 NYC Z 
WORR-RECORD L 0012 NYC 1 
WORK-RECORD M 0013 NYC 2 
wORK-RECORD = N 0014 NYC 3 
WORK-RBCORD 0 0015 HYC 4 
WORK-RECORD P 0016 NYC Z 
WORR-RECORD Q 0017 iiYC 1 
wOR1<-RECORD R 0018 NYC 2 
wORK-RECORD S 0019 NYC 3 
WONK-RECORD = 'I' 0020 NYC 4 
WORK-RECORD U 0021 r~YC Z 
wORK-RECORD V 0022 NYC 1 
WORK-RECORD W 0023 NYC 2 
WORK-RECORD X 0024 NYC 3 
WORK-RECORD Y 0025 NYC 4 
WORK-RECORD Z 0026 NYC Z 

ECoJ SAMPLE 

BG 
BG A 0001 NYC 0 
BG B 0002 NYC 1 
BG C 0003 NYC 2 
BG 0 0004 NYC 3 
BG E 0005 NYC 4 
BG F 0006 NYC 0 
BG G 0007 NYC 1 
BG H 0008 NYC 2 
BG I 0009 NYC 3 
BG J 0010 NYC 4 
BG K 0011 NYC 0 
BG L 0012 NYC 1 
BG M 0013 NYC 2 (!) 
BG N 0014 NYC 3 
BG 0 0015 NYC 4 
BG P 0016 NYC 0 
BG Q 0017 NYC 1 
BG R 0018 NYC 2 
BG S 0019 NYC 3 
BG T 0020 NYC 4 
BG U 0021 NYC 0 
BG V 0022 NYC 1 
BG W 0023 NYC 2 
BG X 0024 NYC 3 
BG Y 0025 NYC 4 
BG Z 0026 NYC 0 
BG EOJ SAMPLE 

00.56.19,DURATION 00.03.42 

REL 1.0 PP NO. 5746-CB1 08.17.32 10/02/73 

Appendix 1: Sample Program Output 277 





FII. 
Label 

Field NunMr 

Fil. Identifier 

APPENDIX B: STANDARD TAPE FILE LABELS 

9 

ExphatiClft 
Date 

1011 12 

The standard tape file label format and contents are as follows: 

Field Name and Length 

1. LABEL IDENTIFIER 
3 bytes, EBCDIC 

2. FILE LABEL NUMBER 
1 byte, EBCDIC 

3. FILE IDENTIFIER 
11 bytes, EBCDIC 

4. FILE SERIAL NUaBER 
6 bytes, EBCDIC 

5. VOLU!E SEQUENCE 
NUMBER 
4 bytes 

6. FILE SEQUENCE 
4 bytes 

1. GENERATION TIME 
4 bytes 

8. VERSION NUMBER OF 
GENERATION 
2 bytes 

Description 

Identifies. the type of label. 
HDR Header (beginning of a data file) 
EOF End-of-file (end of a set of data) 
EOV End-of-volume (end of the physical reel) 

Always a 1. 

Uniquely identifies the entire file, may contain 
only printable characters. Some other systems 
will not accept embedded blanks in the file 
identifier. 

Uniquely identifies a file/volume relationship. 
This field is identical to the volume serial 
number in the volume label of the first or only 
volume of a multivolume file or a multifile set. 
This field will normally be numeric (000001 to 
999999), but may contain any six alphanumeric 
characters. 

Indicates the order of a volume in a given file or 
multifile set. The first must be numbered 0001, 
and subsequent numbers must be in proper numeric 
sequence. 

Assigns numeric sequence to a file within a multi
file set. The first must be numbered 0001. 

Uniquely identifies the various editions of the 
file. May be from 0001 to 9999 in proper numeric 
sequence. 

Indicates the version of a generation of a file. 

Appendix B: Standard Tape File Labels 279 



Field Name and Length 

9. CREATION DATE 
6 bytes 

10. 

11. 

12. 

13. 

14. 

280 

EXPIRATION DATE 
6 bytes 

FILE SECURITY 
1 byte 

BLOCK COUNT 
6 bytes 

SYSTE!! CODE 
13 bytes 

RESERVED 
7 bytes 

Description 

Indicates the year and the day of the year that th 
file was created. 

position 
1 
2-3 
4-6 

Code 
blank 
00-99 
001-366 

Meaning 
none 
year 
day of year 

(e.g., January 31, 1973 would be entered as 
13031) • 

Indicates the year and the day of the year when th 
file may become a scratch tape. The format of 
this field is identical to field 9. On a 
multifile reel processed sequentially~ all files 
are considered to expire on the same day. 

Indicates security status of the file. 

o = No security protection. 

1 Security protection. Additional 
identification of the file is required beforE 
it can be processed. 

Indicates the number of data blocks written in the 
file from the last header label to the first 
trailer label, exclusive of tapemarks. Count 
does not include checkpoint records. This field 
is used in trailer labels. 

Uniquely identifies the operating system. 

Reserved. Should be recorded as blanks. 



Option Record Kq 
Codes Lqth -1.oc:ation -1 -j' "I 

R_rved 
For Future File Secondary 

U .. ~llocation 
Type 

I I Iii I~ '11~ 0000 ::l~ ~~ PD~ o:~l~ :~III: 
Re.rved .J 
For Future RJord ~ock KJ LData Set 
Use Format Length Length Indicators 

APPENDIX C: STANDARD MASS STORAGE DEVICE LABELS 

Space 
Remoining -i 

Lost Used 
Track & 
Record On 
That Track 

~I III§! 21~ ~~ 

First Extent 

Lower Upper 
Limit Limit 

2111= =III=~ 
eJ L Extent 

Extent Type Sequence 
Indical~1r Number 

Extents 

Additional Extent Additional Extent 

Pointer 

I Il 11 l;g~ II I III~ III i~ 

Format 1: This format is common to all data files on disk. 

~ Name and Length 

1. FILE NAME 
44 bytes, alphanumeric EBCDIC 

Description 

This field serves as the key portion of the file 
label. It can consist of three .sections: 

1. File ID is an alphanumeric field assigned by 
the programmer and identifies the file. It 
can be 1 through 35 bytes in length if 
generation and version numbers are used, or 1 
through 44 bytes in length if they are not 
used. 

2. Generation Number. If used, this field is 
separated from File ID by a period. It has 
the format Gnnnn, where G identifies the 
field as the generation number and nnnn (in 
decimal) identifies the generation of the 
file. 

3. Version Number of Generation. If used, this 
section immediately follows the generation 
number and has the format Vnn, where V 
identifies the field as the version of 
generation number and nn (in decimal) 
identifies the version of generation of the 
file. 

Note: IBM DOSjVS System compares the entire field 
against the filename given in the DLBL card. The 
generation and version numbers are treated 
differently by the IBM OSjVS System. 

Appendix C: Standard Mass Storage Device Labels 281 



Fields 2 through 33 constitute the DATA portion of the file label. 

Field Name and Length 

2. 

3. 

4. 

5. 

6. 

7a. 

7b. 

7c. 

8. 

9. 

10. 

282 

FORMAT IDENTIFIER 
1 byte, EBCDIC numeric 

FILE SERIAL NUMBER 
6 bytes, alphanumeric EBCDIC 

VOLUME SEQUENCE NUMBER 
2 bytes, binary 

CREATION DATE 
3 bytes, discontinuous binary 

EXPIRATION DATE 
3 bytes, discontinuous binary 

EXTEN T COUNT 
1 byte, binary 

BYTES USED IN LAST BLOCK 
OF DIRECTORY 
1 byte, binary 

SPARE 
1 byte 

SYSTEM CODE 
13 bytes 

RESERVED 
7 bytes 

FILE TYPE 
2 bytes 

1 format 1 

Uniquely identifies a file/volume relationship. It 
is identical to the volume serial number of the 
first or only volume of a multivolume file. 

Indicates the order of a volume relative to the 
first volume on which the data file resides. 

Indicates the year and the day of the year the file 
was created. It is of the form YDD, where Y 
signifies the year (0-99) and DD the day of the 
year (1-366). 

Indicates the year and the day of the year the file 
may be deleted. The form of this field is 
identical to that of field 5. 

Contains a count of the number of extents for this 
file on this volume. If user labels are used, 
the count includes the user label track as a 
separate extent. This field is maintained by the 
Disk Operating System. 

Used by IBM Operating System Virtual Storage only 
for partitioned (library structure) data sets. 
Not used by the Disk Operating System Virtual 
Storage. 

Reserved for future use. 

Uniquely identifies the operating system. 

Reserved for future use. 

The contents of this field uniquely identify the 
type of data file. 

Hex 
Code 
4000 

2000 

8000 

0200 

0000 

Meaning 
Sequential organization 

Direct organization 

Indexed organization 

Library organization 

organization not defined in the file 
label 



Field Name and Length 

11. RECORD FOR~AT 
1 byte 

12. 

'13. 

14. 

15. 

16. 

OPTION CODES 
1 byte 

BLOCK LENGTH 
2 bytes, binary 

RECORD LENGTH 
2 bytes, binary 

KEY LENGTH 
1 byte, binary 

KEY LOCATION 
2 bytes, binary 

Description 

The contents of this field indicate the type of 
records contained in the file. 

Bit 
Position 
o and 1 

2 

3 

4 

5 and 6 

7 

Content ~inq 
----0-1-- Variable-length records 

10 Fixed-length records 

11 Undefined format 

o No track overflow 

1 File is organized using track 
overflow (IBM OSjVS only) 

o Unblocked records 

1 Blocked records 

o No truncated records 

1 Truncated records in file 

01 Control character ASA code 

10 Control character machine code 

00 Control character not stated 

o Records are written without 
keys 

1 Records are written with keys 

Bits within this field are used to indicate various 
options used in building the file. 

Bit 
position 

o 

1-7 

Meanina 
If on, indicates data file was created 

using write validity check. 

Unused. 

Indicates the block length for fixed-length 
records, or maximum block size for variable
length blocks. 

Indicates the record length for fixEd-length 
records, or the maximum record length for 
variable-length records. 

Indicates the length of the key portion of the data 
records in the file. 

Indicates the high-order position of the data 
record. 

Appendix C: Standard Mass Storage Device Labels 283 



Field Name and Length 

17. DATA SET INDICATORS 
1 byte 

18. 

19. 

20. 

21. 

284 

SECONDARY ALLOCATION 
4 bytes, binary 

LAST USED TRACK AND 
RECORD ON THAT TRACK 
5 bytes, discontinuous binary 

AMOUNT OF SPACE REMAINING ON 
LAST TRACK USED 
2 bytes, binary 

EXTENT TYPE INDICATOR 
1 byte 

Description 

Bits within this field are used to indicate the 
following: 

Bit 
position --0--

1 

2 

3 

Meaning 
If on, indicates that this is the la~1 

volume on which this file normally 
resides. This bit is used by the 
DOS/VS DTFSR routine only. None of 
the other bits in this byte are usee 
by the DOS/VS. 

If on, indicate~ that the data set 
described by this file must remain 
in the sallie absolute location on the 
direct-access device. 

If on, indicates that block length 
must always be a multiple of eight 
bytes. 

If on, indicates that this data file 
is security protected; a password 
must be provided in order to acces~ 
it. 

4-7 Space. Reserved for future use. 

Indicates the amount of storage to b€ reguested for 
this data file at end-of-extent. This field is 
used by IBM OS/VS only. It is not used by DOS/VS 
routines. 

Indicates the last occupied track in a consecutive 
file organization data file. This field has the 
format CCHHR. It is all binary zeros if the last 
track in a consecutive data file i~ not on this 
volume, or if it is not consecutive organization. 

A count of the number of bytes of available space 
remaining on the last track used by this data 
file on this volume. 

Indicates the type of extent with which the 
following fields are associated: 

Hex 
Code 
00 

01 

02 

04 

40 

80 

Meaning 
Next three fields do not indicate any 

extent. 

Prime area (indexed) or consecutive 
area, etc., (i.e., the extent 
containing the user's data records). 

Overflow area of an indexed file. 

Cylinder index or master index area of 
an indexed file. 

User label track area. 

Shared cylinder indicator. 



~ Name and Length 

22. EXTENT SEQUENCE NUftBEh 
1 byte, binary 

23. LOWER LlftIT 
4 bytes, discontinuous binary 

24. UPPER LIftIT 
4 bytes 

25-28. ADDITIONAL EXTENT 
10 bytes 

29-32. ADDITIONAL EXTENT 
10 bytes 

33. POINTER TO NEXT FILE LABEL 
WITHIN THIS LABEL SET 
5 bytes, discontinuous binary 

Description 

Indicates the extent sequence in a multi-extent 
file. 

The cylinder and the track address specifying the 
starting point (lover limit) of this extent 
component. This field has the format CCRE. 

The cylinder and the track address specifying the 
end point (upper limit) of this extent component. 
This field has the format CCRH. 

These fields have the same format as the fields 
21 through 24, above. 

These fields have the same format as fields 21 
through 24, above. 

The disk address (format CCERR) of a continuation 
label is needed to further describe the file. If 
field 9 indicates indexed organization, this 
~ield will point to a Format 2 file label within 
this label set. Otherwise, it points to a Format 
3 file label, and then only if the file contains 
more than three extent segments. If no 
additional file label is pointed to, this field 
contains all binary zeros. 

Appendix C: Standard ftass Storage Device Labels 285 





APPENDIX D: TRACK FORMATS FOR DIRECT-ACCESS STORAGE DEVICES 

The track format for the 2311, 2314, 
2319, 2321, 3330, and 3340 direct-access 
storage devices is illustrated in Fiqure 
67. The names of the fields are given in 
the following discussion. 

Index Marker: All tracks start with an 
index marker. It is a signal to the 
hardware that indicates beginning of the 
track. 

Home Address: The home address, preceded 
by a gap, follows the index marker. The 
home address uniquely identifies each track 
by specifying the cylinder and head number. 

Track Descriptor Record (Reco~: Record 
o consists of two parts: a count portion 
and a data portion. The £Q£lii-PQrtion is 
the same as it is for any other record (see 
the following description of count for 
record 1. The a-byte data portion is used 
to record information used by LIOCS. The 
information in the data portion depends on 
the data organization (direct or indexed) 
that is being used. 

For direct organization, this portion in 
the form of CCHHR contains the address of 
the last record on the track and the number 
of bytes remaining on the track. This 
information is used to determine whether 
there is space for another record on the 
track. For indexed organization, the data 
portion contains the address of the last 
record in the cylinder overflow area and 
the number of tracks remaining in the 
cylinder overflow area. Record 0 is then 
used as the cylinder overflow control 
record. 

Address Marker: All records after record 0 
will be preceded by a 2-byte address 
marker. The address marker is a signal to 
the hardware that a record is starting. 

Data Records: Data records can consist of 
a count and data portion for sequential 
organization, or a count, key, and data 

portion for direct and indexed 
organizations. 

1. Count Portion. The count portion 
contains the identification of each 
record, the key length, and the data 
length. 

a. Identification. E:ach record is 
identified with its cylinder 
number, head number, or record 
number. The cylinder and head 
numbers will be the same as those 
of the home address. The record 
number will indicate a particular 
record on the track. That is, the 
first record after record 0 will 
be record 1, followed by record 2, 
etc. This 5-byte binary field in 
the form of CCHHR is often 
referred to as the record ID. 

h. Key Length. The key length is 
specified in an 8-bit byte; its 
length can range from 0 to 25~. 
This field will contain a zero if 
there is no key. 

c. Data Lenqth. The data length is 
specified in the 16 bits of the 
next two bytes. 

Note: It is the count portion 
that identifies the presence ~r 
absence of a key, in addition to 
indicating the data length. In 
this way, each record is unique 
and self formatting. 

2. Key Portion. The key portion of the 
record is normally used to store the 
control field of the data record such 
as a man number. Direct and indexed 
files must have a key portion. 

3. Data Portion. The data portion of the 
record contains the data record. 

Appendix D: Track Formats for Direct-Access Storage Devices 287 



Note that all records, including the 
data record, terminate with a 2-byte cyclic 
check. The hardware uses this cyclic check 
to ensure that is correctly reread what it 
had written. The cyclic check is 
cumulative and is appended to each record 
when it is written. Upon reading the 
record, the cyclic check is again 
accumulated and then compared with the 
appended cyclic check. If they do not 
agree, a data check is initiated. 

The first byte of the count portion of 
each record and the home address is 
reserved for a flag byte. If a track 

becomes defective, a utility program may be 
used to transfer the data to an alternate 
track. (Cylinders 200 through 202 are 
reserved for alternate tracks on the 2321. 
Strips 6 through 9 of subcell 19 of each 
cell are reserved for alternate tracks on 
the 2321.) In this case, a flag bit within 
the byte is set 2.!!. to indicate that this is 
a defective track and the address of an 
alternate track will be placed in the 
record ID of record O. Subsequent 
references to this defective track will 
result in the Supervisor accessing record 0 
for the address of the "alternate track. 

G CiJG ~G 0G w GC4JGJ Rl-Count I GI Rl-K_eY_'_G_'_R_l_-_Do_t0---JlG[!JG@ 

I I~I T 
Index Home I Address First Data 

Mark.r Address! D.!:~' Marl<., ··<lord 

G= Gap Record 

G IF,C,C,H,H,C ,C, .F,C,CIH,H.R,KL.DLJDL,C.C, A 

FI! '--...,JI ~l FI! Y'HJ1 IKe) Y~ p 

! 
Number I Number Length I Check 

Cylinder Cyclic Cylinder Record Data 
Number Check Number Number Length 

Bits , O. 0 10 10 I 0 lOt I 

o Good Track}~J 
1 Defective 

o Original} 
1 Alternate --~ 

~ 

~~ ~ 
Key o Optional o Variable 

length 

,F , C , C , H , H , R ,K L IDL t Dli C, c, 

I~III 
Flag Record Key Data Cyclic 

G 
A 
P 

,C,C I HIHIR~ ,c,c, 

I---' By;es Remaining 
After "Initialize Disk" 

10 length length Check 

Figure 67. Track Format 

288 

G 

: l!..jUC'CI 

Data o Variab/. 
length 



The IBM DOS/VS COBOL Object-Time 
Subroutine Library, Program Number 
5746-LM4, is packaged with the DOS/vS COBOL 
Compiler and also available as a separate 
product. It provides subroutines to be 
link edited with object modules produced by 
DOS/VS COBOL Compiler. It also provides 
subroutines that can be dynamically fetched 
during problem program execution. 

There are several major categories of 
COBOL library subroutines: 

• Input/output verb routines 

• ASCII support routines 

• Conversion routines 

• Arithmetic verb routines 

• Sort/Merge Feature interface routines 

• Checkpoint (RERUN) routines 

• segmentation Feature routines 

• Other verb routines 

• Object-time debugging routines 

• Object-time execution statistics 
routines 

• Optimizer routines 

• Transient routines 

The following sections describe some of 
the more commonly used subroutines. 

INPUT/OUTPUT SUBROUTINES 

The input/output subroutines are used 
for the COBOL verbs DISPLAY (TRACE and 
EXHIBIT), ACCEPT, STOP (literal), READ, 
WRITE, REWRITE, OPEN, CLOSE, DELETE, and 
START printer spacing, printer overflow, 
input/output errors, disk formatting and 
extent handling, and tape and sequential 
disk labels. 

APPENDIX E: COBOL LIBRARY SUBROUTINES 

Printer Spacing 

The ILBDSPAO subroutine is used to 
control printer spacing when the WRITE 
statement with the BEFORE/AFTER ADVANCING 
or POSITIONING option is specified in the 
source program. 

Tape and Sequential Disk Labels 

The ILBDUSLO and ILBDNSLO subroutines 
are used when user or nonstandard labels, 
respectively, are to be processed (LABEL 
RECORDS ARE data-name). 

CLOSE WITH LOCK Subroutine 

The ILBDCLKO subroutine is given control 
on an OPEN if the file is ever closed with 
lock in the program. It checks whether the 
OPEN statement is used to open a file 
previously closed with lock. If the file 
was previously closed with lock, it issues 
an object-time message and terminates the 
current job. 

WRITE Statement Subroutines 

The ILBDVBLO subroutine is used to write 
variable-length blocked records. 

The ILBDDIOO s~broutine is used for 
writing files with direct organization 
(DTFDA). 

The ILBDISMO subroutine is used for 
writing files with indexed organization. 

READ Statement Subroutines 

The ILBDDSRO subroutine is used to read 
sequentially the records of a directly 
organized file. 

The ILBDDIOO subroutine is used to read 
randomly the records of a directly 
organized file. 

Appendix E: COBOL Library Subroutines 289 



The ILBDISMO subroutine is used to read 
an indexed file. 

REWRITE Statement Subroutines 

The ILBDDIOO subroutine is used to 
update records on a directly organized 
file. 

The ILBDISMO subroutine is used to 
update an indexed file. 

DISPLAY (EXHIBIT and TRACE) Subroutines 

The ILBDDSPO subroutine formats one or 
more operands into printed lines, 
performing conversions as needed. 

The ILBDOSYO and ILBDASYO subroutines 
open SYSLST and/or SYSPCH and/or SYSIPT if 
there are DISPLAY or ACCEPT statements in a 
label declarative. 

ACCEPT and STOP (literal) Statement 
Subroutines 

The ILBDACPO subroutine is used to 
handle ACCEPT statements for both SYSIPT 
and the console, as well as the STOP 
(literal) statement. The ILBDACPO 
subroutine does not format or convert 
operands. For operands greater than 80 
characters in length, any remainder in 
excess of the nearest mUltiple of 80 is 
ignored when accepting data from SYSIPT. 

CLOSE Subroutine 

The ILBDCRDO subroutine is given control 
when a CLOSE UNIT statement is issued for a 
sequential input file with direct 
organization. 

Multiple File Tape Subroutine 

The ILBDMFTO subroutine is given control 
when a reel contains more than one file and 
there are no standard labels. 

Tape Pointer Subroutine 

The ILBDIMLO subroutine locates ~he 
pointer to the physical tape drive 
associated with the logical unit for a 
particular tape file. 

290 

Input/Output Error Subroutines 

The ILBDSAEO subroutine is used for 
processing input/output errors that occur 
on tape and sequential disk. 

The ILBDDAEO subroutine is used for 
processing input/output errors that occur 
on directly organized files. 

The ILBDISEO subroutine is called 
whenever an input/output error occurs 
during the. processing an indexed file. 

The ILBDABXO subroutine is used to issue 
a STXIT macro instruction causing control 
to be passed to it if there is an error on 
a unit-record device. 

Disk Extent Subroutines 

The ILBDFMTO subroutine writes record 0 
(RO) on each track of each extent of a 
directly organized file opened as output, 
and writes an end-of-file (EOF) record as 
the last" record in the file. This 
subroutine is called after the file has 
been opened. 

The ILBDXTNO subroutine stores for 
subsequent use the extent information for 
directly organized files. 

3886 OCR Subroutine 

The ILBDOCRO subroutine is used to 
perform I/O operations for the 3886 Optical 
Character Reader. 

VSAM Subroutines 

The ILBDINTO subroutine does 
initialization for VSAM processing. 

The ILBDVOCO performs VSAM open and 
close functions. 

The ILBDVIOO performs all action 
requests for VSAM files (for example, READ, 
WRITE, rtEWRITE, START, DELETE). 

These routines may call the Checkpoint 
subroutine and $$BCOBRl discussed later in 
this chapter. 



Auxiliarv Subroutines 

Certain input/output subroutines use 
auxiliary subroutines as follows: 

Auxiliary 
Routine 
ILBDMOVO 

ILBDIDAO 

Used £y 
ILBDSPAO, ILBDNSLO, 

ILBDVBLO' 

ILBDFMTO, ILBDDSRO 

ASCII SUPPORT SUBROUTINES 

The subroutine described below handles 
functions necessary for files written in 
ASCII. Other functions are handled by code 
generated by the compiler or by the 
subroutine ILBDSPAO. 

Separat~Signed Numeric Subroutine 

The ILBDSSNO subroutine is called to 
check the validity of signs described as 
TRAILING SEPARATE CHARACTER or LEADING 
SEPARATE CHARACTER. 

CONVERSION SUBROUTINES 

Eight numeric data formats are permitted 
in COBOL: five external (for input and 

output) and three internal (for internal 
processing) • 

The five external formats are: 

• External or zoned decimal 

• External floating-point 

• Sterling display 

• Numeric edited 

• Sterling report 

The three internal formats are: 

• Internal or packed decimal 

• Binary 

• Internal floating-point 

The conversions from internal decimal to 
external decimal, from external decimal to 
internal decimal, and from internal decimal 
to numeric edited are performed in-line. 
The other conversions are performed by the 
COBOL library subroutines shown in Table 
35. 

Appendix E: COBOL Library Subroutines 291 



Table 35. Functions of COBOL Library Conversion Subroutines 
r---------------
I I 
I , 
I Subroutine Name I 
I and Entry Points I 
~ I 
I 1LbDEFL2 I 
I I 
I ILEDEFLl I 
I I 
I 1LBDEFLO I 
rl------------------___t_ 
I ILBDB1DOl I 
I I 
I !LBDBID11 I 
I I 
! ILbDbID2 1 

I I 
I ILEDBIEOI I 
I I 
I ILBDBIE11 I 
I I 
I IL8D31E2 1 I 
I I 
I ILBDB1I02 I 
I I 
I ILBDB1I12 I 
I I 
I ILB~TEF02 I 
I I 
I 1LBDTEF12 I 
I I 
I 1LBDTEF2 I 
I I 
I IFBDTEF3 I 
I- I 
I 1LBDIDBO I 
I I 
I ILBDIDFl I 
I I 
I ILBDDCll I 
I I 
I 1LBDDC10 I 
I I 
I ILBDIFDO I 
I I 
I ILBDIFD1 I 

Conversion 

From 

External floating-point 

External floating-point 

External floating-point 

Binary 

Binary 

Binary 

Binary 

Internal decimal 

Internal floating-point 

Internal decimal 

External decimal 

Internal decimal 

External decimal 

Internal floating-point 

Internal floating-point 

To 

Internal decimal 

Binary 

Internal floating-point 

Internal decimal 

External decimal 

Internal floating-point 

External floating-point 

External floating-point 

External floating-point 

Binary 

Einary 

Internal floating-point 

Internal floating-point 

Internal decimal 

External decimal 
rl-----------------------+-------------------------------~--------------------·----------_i 
I ILBDIF31 I Internal floating-point 
J I 
I I 
I ILBDIFB23 I 
I I 
I ILBDIFB03 I Internal floating-point 
I I 
I ILBDIDRO I Internal decimal 
I I 
I ILBDIDTO I Internal decimal 
I I 
I ILBDSTIO I Sterling non-report 

Binary integer and a power 
of 10 exponent 

Binary 

Sterling report 

Sterling non-report 

Internal decimal 
~----------------------~----------------------------~----------------------------~ 
11The entry points used depend on whether the double-precision number is in registers 0 
I and 1, 2 and 3, or 4 and 5, respectively. 
12The entry points are for single-precision binary and double-precision binary, 
I respectively. 
13 This entry point is used for calls from other COBOL library subroutines. 
I 

292 



ARITHMETIC VERB SUBROUTINES 

Most arithmetic operations are performed 
in-line. However, involved calculations 
with very large numbers, such as decimal 
multiplication of two 30-digit numbers, are 
performed by COBOL library arithmetic 
subroutines. These subroutine names and 
their functions are shown in Table 36. 

SORT/MERGE FEATURE INTERFACE ROUTINE 

Communication between the Sort/Merge 
program and the COBOL program is maintained 
by ILBDSRTO and ILBDMRGO. 

CHECKPOINT (RERUN) SUBROUTINE 

The ILBDCKPO subroutine issues the 
checkpoint macro instruction, which will 
write checkpoint records on a programmer
specified tape or disk checkpoint device. 
There are two calling sequences to this 
subroutine. The first, ILBDCKP1, is 
activated during initialization when the 
addresses of all files in the program are 
entered in a table. The second, ILBDCKP2, 
is required to take checkpoints during a 
sorting operation. 

If RERUN is requested during a sorting 
operation, ILBDSRTO must gather a list of 
physical Ioes files in use by the Sort 
program every time Sort exits at "Ell, E21, 
and E31. ILBDSRTO then calls the 
checkpoint subroutine which will take a 
checkpoint of all active files. 

SEGMENTATION FEATURE SUBROUTINE 

The segmentation Feature requires an 
object time subroutine, ILBDSEMO. The 
ILBDSEMO subroutine performs the following 
functions when segments are needed: 

1. Loads and initializes independent 
segmen~s not in storage. 

2. Loads overlayable segments not in 
storage. 

3. Initializes independent segments if 
the segment is in storage. 

4. Branches to desired entry points. 

OTHER VERB ROUTINES 

There are also COBOL library subroutines 
for comparisons, the verbs MOVE and 
TRANSFORM, and other features of the COBOL 
language. 

Compare Subroutines 

The ILBDVCOO subroutine compares two 
operands, one or both of which is variable 
in length. Each may exceed 256 bytes. 

The ILBDIVLO subroutine is used in 
comparisons involving the figurative 
constant ALL 'literal', where literal is 
greater than one character. 

Table 36. Functions of COBOL Library Arithmetic Subroutines 
r---------------T-----------------------------------------------------------------------, I Subroutine Name l Function I 
~---------------+-----------------------------------------------------------------------~ 
IILBDXMUO I Internal decimal multiplication (30 digits * 30 digits = 60 digits) I 
~---------------+-----------------------------------------------------------------------~ 
IILBDXDIO 1 Internal decimal division (60 digits/30 digits = 30 digits) I 
~---------------+-----------------------------------------------------------------------~ 
IILBDXPRO I Decimal fixed-point exponentiation I 
~---------------+-----------------------------------------------------------------------~ I ILBD~"PWO 1 Floating-point exponentiation I 
~---------------+-----------------------------------------------------------------------~ 
IILBDGPWO~ I Floating-point exponentiation I 
~---------------~-----------------------------------------------------------------------~ 
l~The ILBDGPWO entry point is used if the exponent has a PICTURE clause specifying an I 
I integer. The ILBDFPWO entry point is used in all other cases. I L _______________________________________________________________________________________ J 

Appendix E: COBOL Library Subroutines 293 



MOVE Subroutines 

The ILBDVMOO subroutine is used when one 
or both operands is variable in length and 
in-line instructions cannot be generated 
(for example, fields overlap, etc). Each 
may exceed 256 bytes. The subroutine has 
two entry points, depending on the type of 
MOVE: ILBDVMOO (left-justified) and 
ILBDVMOl (right-just;.fied). 

The ILBDANFO subroutine is used to move 
the figurative constant ALL 'literal', 
where literal is greater than one 
character. 

The ILBDANEO subroutine is used to 
perform a right-or left-justified 
alphanumeric edited move. 

The ILBDSMVO subroutine handles moves to 
right-justified receiving fields either 
greater than 512 bytes in length or 
variable in length. 

TRANSFORM Subroutine 

The ILBDVTRO subroutine transforms 
variable-length items using the ILBDTRNO 
transform table. 

Class Test Subroutine 

The ILBDCLSO subroutine is used to 
perform class tests for variable-length 
items and those fixed-length items longer 
than 256 bytes. 

Note: The following tables are placed in 
the libr~ry for use by the in-line coding 
generated by the compiler and the 
subroutines called for by both the class 
test and TRANSFORM: 

ILBDATBO Alphabetic class test 
ILBDETBO External decimal class test 
ILBDITBO Internal decimal class test 
ILBDUTBO Unsigned internal decimal 
ILBDWTBO Unsigned external decimal 

SEARCH Subroutine 

The ILBDSCHO subroutine processes each 
search argument key according to type. 

294 

Main Program or Subprogram Subroutine 

The ILBDMNSO subroutine is a 1-byte 
switch tested in the code generated for 
EXIT PROGRAM, GOBACK. INIT1, and INIT2. 

The ILBDSETO subroutine must be called 
by a non-American National Standard COBOL 
program prior to any call to an American 
National Standard COBOL program. When 
calling ILBDSETO, standard linkage 
conventions must be observed; there are no 
parameters to be passed. The ILBDSETO 
subroutine sets the 1-byte switch 
(ILBDMNSO) to X'FF'. This switch is tested 
in the American National Standard COBOL 
program to determine whether it is a main 
or a called program. The name of this 
subroutine can be changed to any name 
desired by the COBOL user. 

OBJECT-TIME DEBUGGING SUBROUTINES 

Three options are available for 
object-time debugging. These are the 
statement number option (STATE), the flow 
trace option (FLOW), and the symbolic debug 
option (SYMDMP). The subroutines for the 
first two options provide debugging 
information when a program terminates 
abnormally; the subroutines for the third 
option provide debugging inforrration either 
at abnormal termination or dynamically 
during execution of a program. All of the 
subroutines are under the control of and 
are serviced by the Debug Control 
Subroutine (ILBDDBGO). This section 
discusses (1) the Debug Control Subroutine, 
and (2) the subroutines that are called in 
response to each of the three debugging 
options. 

Debug Control Subroutine 

The ILBDDBGO subroutine is included in
the load module whenever the CBL control 
card for a program contains at least one of 
the debugging options, or when the CBL 
control card for a program requests 
execution statistics. 

Statement Number Subroutine 

The ILBDSTNO subroutine provides the 
number of the statement and the number of 
the verb being executed when abnormal 
termination occurs. If abnormal 
termination occurs during execution of an 
instruction outside of the COBOL program, 
the statement number that is provided is 
that of the last COBOL instruction 
executed. 



Flow Trace Subroutine 

Space is allocated at compile time for a 
flow trace table using the programmer
specified number in the FLOW option of the 
CBL card. (If FLOW=O was specified for a 
subprogram, no space is allocated; rather 
the subprogram shares the table space 
reserved by that program preceding it in 
the calling sequence for which a FLOW 
specification was made.) 

Each time the flow trace subroutine 
ILBDFLWO receives control from the COBOL 
program, it inserts the executing program's 
identification as well as the card number 
of the current procedure into the next 
available position in the table. When the 
end of the table is reached. subsequent 
entries overlay the first set of entries. 
The procedure is repeated until the end of 
the program or until abnormal termination. 
If abnormal termination occurs, the 
subroutine produces a list of each entry of 
the table, beginning with the earliest 
entry. 

Symbolic Debug Subroutines 

The symbolic debug subroutines provide a 
formatted symbolic dump, either dynamically 
at execution time, or at abnormal 
termination. 

The following subroutines perform 
initialization and process debug control 
cards: 

ILBDMP10, ILBDMP11, ILBDMP12, ILBDMP13, 
ILBDMP14, and either ILBDMPOl or 
ILBDMP02. 

To provide a dump at abnormal 
termination, the following subroutines are 
used: 

ILBDMP20, ILBDMP21, ILBDMP22, ILBDMP23, 
ILBDMP24, ILBDMP25 an~ ILBDMPOl or 
ILBDMP02. These subroutines are not 
included in the load module at link edit 
time; they are loaded dynamically during 
program execution. 

The ILBDADRO subroutine tests the 
validity of an address calculated for a 
subscripted identifier or the validity of 
the starting and ending addresses of a 
variable-length identifier used as the 
receiving field in a MOVE statement. 

OBJECT-TIME EXECUTION STATISTICS 
SUBROUTINES 

The object-time execution statistics 
subroutines enable the printing of 
execution statistics when a program 
terminates normally (via STOP RUN or GOBACK 
in the main program) and when a program 
terminates abnormally. In addition, when 
COUNT is requested, the debug control 
subroutine (described above) is also 
included in the load module. 

COUNT Initialization Subroutine 

~he ILBDTCOO subroutine is called from 
the debug control subroutine to get space 
for an initialize the table and chains 
which service the COUNT options. 

COUNT Freguency Subroutine 

The ILBDCT10 subroutine maintains the 
execution frequency statistics. 

COUNT Termination Subroutine 

The ILBDTC20 subroutine is included in 
all COBOL load modules. It determines if 
execution frequency statistics were 
requested. 

COUNT Print Subroutine 

The ILBDTC30 subroutine formats and 
prints the execution frequency statistics. 

OPTIMIZER SUBROUTINES 

GO TO ••• DEPENDING ON Subroutine 

The ILBDGDOO subroutine is called only 
when the optimization option (OPT) has been 
specified. It is used to more efficiently 
process GO TO statements with the DEPENDING 
ON option in both segmented and 
ncnsegmented programs. 

Appendix E: COBOL Library Subroutines 295 



Optimizer DISPLAY Subroutine 

The ILBDDSSO subroutine is used to print 
or type certain data types on SYSLST or the 
console, respectively. 

TRANSIENT SUBROUTINES 

The IBM DOS/VS COBOL Object-Time 
Subroutine Library includes routines that 
are dynamically fetched during program 
execution. These routines are as follow8~ 

Symbolic Debug Subroutines 

With the exception of ILBDDBGO, the 
symbolic debug subroutines described 
previously are transient routines. 

SYMDMP Error Message Subroutine 

The $$BCOBEM subroutine prepares SYMDMP 
error messages. 

296 

Error ~1essage Subroutine 

The $$BCOBER subroutine prepares 
input/output error messages. 

Error Message Print Subroutine 

The $$BCOBRl subroutine prints the error 
messages prepared by $$BCOBER and provides 
a dump if the DUMP option is in effect. 

Reposition Tape Subroutine 

The $$BFCMUL subroutine resets the PUB 
pointer for a particular {SYSnnn) device to 
the same as that saved earlier by the 
subroutine ILBDIMLO. 

Note: If dynamically fetched subroutines 
are required during problem program 
execution, the Subroutine Library must be 
installed on the object machine. If 
dynamically fetched subroutines are not 
required during problem program execution, 
the object-time subroutines can be link 
edited on the source machine; the 
Subroutine Library must in this case be 
installed on the source machine. 



This appendix contains information 
concerning system and size requirements for 
the DOS/VS COBOL compiler, execution time 
considerations, and the Sort/Merge Feature. 
Additional information used in estimating 
the virtual and auxiliary storage 
requirements is contained in the 
publication IBM DOS/VS COBOL Compiler and 
Library, Installation Reference Material. 

MINIMUM MACHINE REQUIREMENTS FOR THE 
COMPILER 

1. A System/370 supported by DOS/VS. A 
minimum of 60K bytes of virtual 
storage is required. 

2. Five work files. The system logical 
unit SYSLNK must be assigned to a 
single area (extent) on a 2314, 2319, 
3330, or 3340 mass storage device. 
Four programmer logical units (SYS001 
through SYS004) must reside on 2400, 
3410, 3420 tape units, or on 2314, 
2319, 3330, or 3340 mass storage 
devices. At least one programmer 
logical unit as well as the operating 
system must reside on a mass storage 
device (that is, a 2311, 2314, 2319, 
3330, or 3340). If the three 
remaining logical units reside on 
tape, there must be a separate tape 
unit for each file. If they reside on 
mass storage devices, there must be 
enough space on those devices. An 
additional logical unit, SYS005, must 
be assigned if the symbolic debug 
option (SYMDMP) is being used. 
Logical unit SYS006 must be assigned 
for the FIPS flagger. 

Work file assignments must be made as 
follows: 

SYSLNK - mass storage device 
SYS001 - mass storage device 
SYS002 - mass storage device or tape 

unit 
SYS003 - mass storage device or tape 

unit 
SYS004 - mass storage device or tape 

unit 
SYS005 - mass storage device <;>r tape 

unit 
SYS006 - mass storage device unit 

Note that SYSLNK need only be assigned 
at compile time if the CATAL or LINK 
option is in effect. 

APPENDIX F: SYSTEM AND SIZE CONSIDERATIONS 

3. 

The filenames for SYSLNK and SYS001 
through SYS006 on the TLBL or DLBL 
statements are IJSYSLN, IJSYS01, 
IJSYS02, IJSYS03, IJSYS04, IJSYS05, 
and IJSYS06, respectively. If the 
"filename" parameter of the SY~~MP 
option is specified, this filename is 
used instead of IJSYS05 on DLBL 
statements. 

A device, such as a printer keyboard, 
for direct operator communication. 

4. A device, such as a card reader, for 
the job input stream. 

5. A device, such as a printer or tape 
unit, for system output files. 

6. The floating-point arithmetic feature, 
if floating-point literals or 
calculations are used. 

SOURCE PROGRAM SIZE CONSIDERATIONS 

Compiler Capacity 

This section contains inforrr.ation which 
must be considered in determining the 
limitations on the size of a COBOL source 
program in a specific virtual storage size. 
It also contains information to aid the 
programmer in determining how his source 
program affects usage of space at 
compilation time. 

The capacity of the COBOL compiler is 
limited by two general conditions: (1) the 
total table requirement may be greater than 
the space available and (2) the fact that 
an individual table (with the exception of 
the ADCON and cross-reference tables) fiiay 
need to be longer than 32,767 bytes. If 
either of these conditions are met during 
compilation, one of the following error 
wessages will be issued: 

ILA0001I-D NO MORE TABLE SPACE 
AVAILABLE. CONPILATION 
ABANDONED. 

ILA0003I-D A TABLE HAS EXCEEDED THE 
MAXIMUM SIZE. COMPILATION 
ABANDONED. 

ILA6007I-D TABLE HAS EXCEEDED MAXIMUM 
SIZE. LISTX, OBJECT MODULE, 
AND DECK WILL BE INCOMPLETE. 
INCREASE PARTITIO~. 

Appendix F: System and Size Considerations 291 



In each case. compilation is terminated. 
However, in the first and third cases, or 
in the case of overflow of the ADCON or 
cross-reference table, the program may be 
recompiled with a larger size parameter. 

The compiler will accept and compile a 1500 
card program in the minimum storage of 60K. 
In this configuration, the minimum size 
compiler input/output areas must be 
allocated. If both LINK and DECK are 
specified, more storage is required for 
buffer space, which reduces the space 
available to a given program. Within this 
configuration, the compiler will accept 
programs mu_ch larger than 1500 cards; the 
specific size limitation for any storage 
size depends entirely on the statement mix 
in that program, but the limiting factors 
are described in the next section. 

The overall critical limit using the 
minimum buffer specification may be 
expressed as follows: 

2 (number of pn's + gn's + literals + 
virtuals> + SA + S (L + 5D + 8V + 3P) ~ 
14336 + C 

where the number of virtuals is the number 
of calls to COBOL object-time subroutine 
entry points and subprograms specified in a 
CALL statement. and V is the number of 
unique such names; also 

A = number of entries in the ADCON table 
as defined below' 

S 1 if the Segmentation Feature is 
required and NOOPT is in effect; 
otherwise 0 

L 

D 

P 

C 

length of optimized literals 

number of segment discontiguities in 
the Procedure Division 

number of PERFORM exits and altered 
GO TO statements 

any storage over 60K assigned to the 
program 

It should be noted that the number of gn's 
is reduced when using OPT. 

Within this configuration, assuming no 
Report Section, the compiler will accept 
for example: 

300 procedure references assuming an 
average procedure-name length of 12 
characters 

25 OCCURS clauses with the DEPENDING ON 
option 

298 

10 files, assuming an average of 3 
subordinate record entries 

Effective Storage Considerations 

The performance of the compiler is 
affected by the amount of storage it is 
allocated. The compiler will take 
advantage of any extra storage it is 
assigned. Furthermore, the use of a BUF 
parameter tailored to the work file device 
type in use is recommended. The following 
eEL parameters positively affect 
compile-time performance: 

OPT 
SYNTAX (CSYNTAX> 
NOLIB 
BUF 

The amount of virtual storage within the 
compiler's partition and the lireitation on 
the size of an individual internal table 
are two factors that limit the capacity of 
the compiler. The limitation on the size 
of internal tables can, in some instances, 
be overcome by the spilling over of some 
tables onto external devices. However, 
spilling over may cause a severe 
degradation of performance. The storage 
limitation should not be reached by any 
reasonable use of the language. However, 
within a limited storage capacity excessive 
use of certain features and cowbination of 
features in the language could make 
cOIT.pilation impossible. Some of the 
features that significantly affect storage 
usage are: 

1. ADCON Table 

Each entry occupies 8 bytes. This 
table is not limited to the maximum 
size of 32,767 bytes. Entries are 
based on: 

• Number of 4096-byte segrrents in the 
Working-Storage Section 

• Number of 4096-byte segments in a 
file buffer area 

• Number of referenced procedure-nawes 

• Number of implicit procedure-name 
references such as those generated 
by IF. SEARCH, and GENERATE 
statements, ON SIZE ERROR, I~~ALID 

KEY, and AT END options, the OCCURS 
clause with the DEPENDING ON option, 
USE sentences, and the Segmentation 
Feature 

• Number of files 



The size of this table is 
significantly reduced when using OPT. 

2. Procedure-Name Table 

This table contains the number of 
definitions written in a section and 
unresolved procedure references. 
Procedure references are resolved at 
the end of a section if the definition 
of the procedure-name is in that 
section or a preceding section. 
Therefore, forward references beyond a 
section impact space. 

3. OCCURS DEPENDING ON Table 

This table contains an entry for each 
unique object of an OCCURS clause with 
the DEPENDING ON option. The size of 
an entry is (2 + length of name + 
length of each qualifier) bytes. 

4. Index Table 

An entry is made for each INDEXED BY 
clause consisting of 11 bytes for each 
index. 

5. File Table 

An entry is made for each file 
specified in the program. Each entry 
occupies 60 bytes of storage. 

6. Report writer Tables 

A considerable amount of information 
is maintained concerning each RD such 
as controls, sums. headings. footings. 
routines to be generated, etc. The 
contents of the table is increased by 
the existence of qualification and 
subscripting in the Report Section. 
Approximately 30 reports can be 
processed, without exceeding the limit 
of a table. 

7. Operand Table 

Entries are made depending on the 
number of operands in a statement. 
This table could reach its limits by 
the use of compound nested IF 
statements or GO TO DEPENDING ON 
statements with an excessive number of 
branch pOints. 

8. Dictionary Table 

An entry is made for each 
procedure-name and each data-name in 
the program. A procedure entry 
consists of (7 or 9 + length of name) 
bytes. A data entry consists of 
(length of name + n) bytes, where g is 
determined by the attributes of the 

data item. Some of the features that 
contribute to the value n are: 

• One byte for each character in a 
numeric edited or alphanumeric 
edited item PICTURE clause. 

• Five bytes for an elementary item 
with a sterling report PICTURE 
clause. 

• Three bytes for an item 
subordinate to an OCCURS clause. 

In the statistics output, an 
indication is given if spill of 
this table occurred. If spill 
occurred, increasing the partition 
size assigned to the compiler 
should increase performance. 

9. Literal Tables 

The total length of all literals 
(after optimization) may not exceed 
32511 bytes. No more than 16255 
literals may be specified. 

If the segmentation feature is used, 
an area corresponding to the total 
length of all optimized literals must 
be kept free during the time the ADCON 
table is being built. Therefore, a 
segmented program with literals may 
need more storage. 

10. Miscellaneous Tables 

The existence of the following items 
causes entries to be made into tables 
and impacts the total space required 
for compilation. 

• SAME (RECORD) AREA clause 
• Subscripting 
• Intermediate Arithmetic Results 
• Complex Arithmetic Expressions 
• Complex Logical Expressions 
• APPLY clauses 
• Special-Names 
• RERUN clauses 
• Error messages 
• XREF 
• Segmentation feature 
• VERBSUM/VERBREF 

EXECUTION TIME CONSIDERATIONS 

The amount of virtual storage must be 
sufficient to accomodate at least: 

• The selected control program 

• Support for the file processing 
techniques used 

Appendix F: System and' Size Considerations 299 



• Load module to be executed 

• Dynamic storage for VSAM, 3886 
processing, and COUNT. 

When the OPTIMIZE option is specified, 
the number of procedure blocks in the 
program cannot exceed 255. A procedure 
block is approximately 4096 bytes of 
Procedure Division code. 

COBOL programs compiled with any of the 
symbolic debugging options (STATE, FLOW, 
SYMDMP) have different requirements at 
execution time than similar programs 
compiled without these options. The 
following differences should be noted: 

• If the SYMDMP option is in effect, the 
work file required at compile time 
(SYS005) must be present at execution 
time. 

• The size of the load module will 
increase by about 3200 bytes if the 
SYMDMP option is in effect. In 
addition, since the object-time 
subroutine that provides SYMDMP output 
is invoked dynamically, the programmer 
must provide space in the partition 
amounting to S + V. When only an 
abnormal termination dump is required, 
S = 4000 and V = 0; that is, 4000 extra 
bytes must be available. When dynamic 
dumps are required, S = 11,000 and V is 
approximately 25 * number of line
control cards + 10 * the number of 
identifiers specified on these line
control cards. 

• The size of the load module will 
increase by 4500 + V bytes if the FLOW 
option is in effect. V is a variable 
factor that depends upon the number 
specified by the programmer on the CBL 
card. V is calculated using the 
formula: 

V = 92 + 4 * nn + 8 * P 

where "nn" is any number from 0 through 
99, and "p" is the number of 
procedure-names in the program. 

• The size of the load module will 
increase by 4600 + V bytes when the 
STATE option is in effect. V is 
approximately 5 * the number of COBOL 
statements in the program. 

• When both SYMDMP and FLOW are in 
effect, the size of the load module 
will increase by the amount it would 
for FLOW alone, and the size of the 
partition increases by the amount it 
would for SYMDMP alone. 

300 

• A SIZE parameter must be specified on 
the EXEC card for VSAM and 3886 
processing and if COUNT is requested on 
the CBL card. 

COBOL programs with the execution 
frequency option COUNT have the following 
additional requirements: 

• The size of the load module will 
increase by about 6000+V bytes (if any 
of the symbolic debugging options are 
in effect) to 8900+V bytes Cif the 
symbolic debugging options are not in 
effect). V is calculated using the 
formula: 

V=(54 * pgm)+(8*nvb)+C7*npr)+«4+sym) * 
vbl)+pnl 

where 

pgm is the number of COPOL prograro 
units being monitored by COUNT 

nvb is the number of verbs in the 
program units 

npr is the number of procedure-names 
plus inserted pror.edure-names in the 
program 

sym is zero unless SYMDMP is in 
effect, then it becomes two 

vbl is the number of verb blocks in 
the program (which can be estimated 
as 1/3 the number of verbs in the 
program) 

pnl is the sum of the lengths of the 
procedure-names. 

• The increase in dynamic storage in 
estimated using the formula 

D = 512+(72*pgm)+(4 * vbl) 

where 

pgm is the nurober of COBOL programs 
being monitored by COUNT 

vbl is the number of verb blocks in 
the program (which can be estimated 
as 1/3 the number of veros in the 
program). 

MULTIPROGRAMMING CONSIDERATIONS 

In a system which supports the batch-job 
foreground (NPARTS = 2 or more) and private 
core-image library options, the Linkage 
Editor can execute in any foreground 
partition (as well as the background 



partition) provided a m~n~mum of 14K or 64K 
of storage is assigned to the partition. 
When executing in a foreground partition, a 
private core image library must be 
assigned. 

In the multiprogramming environment 
described above, the COBOL compiler can be 
executed in any partition having a minimum 
of 64 bytes in the following manner: 

1. At system generation time, link edit 
the compiler in the background 
partition and place it in the system 
core image library. 

2. Link edit the compiler in each desired 
foreground partition and place the 
output in a private core image library 
assigned to that partition. 

3. When executing the compiler in a 
foreground partition, assign the 
appropriate private core image 
library. 

SORT FEATURE CONSIDERATIONS 

The DOS/VS SORT/MERGE Program Product, 
Program Number 5746-SM1, must be executed 
under control of DOS/VS. It requires the 
following minimum machine configuration: 

1. The DOS/VS SORT/MERGE Program Product 
uses 16K bytes; additional storage is 

needed for DOS/VS and for user-written 
routines. user-written routines, 
(that is, the COBOL program, etc). 

Note: Performance often increases 
significantly if 50K is available for 
operation of the Sort/Merge program. 
At the lOOK level, the performance 
could be even higher. 

2. Standard instruction set. 

3. At least one 2314, 2319, 3330, 3333, 
or 3340 work file. (System residence 
requirements may necessitate having an 
additional disk storage unit for 
sorting. ) 

4. One IBM 1403, 1443, or 3211 Printer, 
or one IBM operator communication 
device (for example, 3215). 

5. One IBM 1442, 2501, 2520, 2540, 3505, 
3525, or 2560 Card Reader, or one IBM 
2400 or 3400 Series Magnetic Tape Unit 
(7- or 9-track) assigned to SYSIPT and 
SYSRDR. 

6. Three IBM 2400 or 3400 Series Magnetic 
Tape Units for work files when tape 
units are to be used for intermediate 
storage. 

For specific size, device, and work file 
requirements of the other Sort/Merge 
products, see the respective programmer's 
Guides as noted in the preface. 

Appendix F: System and Size Considerations 300.1 





COMMUNICATION REGION 

The Communication Region is a 46-byte 
storage area in a unique area within the 
Supervisor for each partition used by the 
Supervisor and the COBOL compiler. The 
structure of the Communication Region is 
illustrated in Figure 68. 

Fields in the Communication Region are 
addressed relative to the first byte of the 
region. An asterisk (*) identifies the 
fields available to the COBOL programmer. 

Byte (s) 
0-7* 

Meaning 
Calendar date supplied during the 

IPL procedure or by the DATE 
control statement. This field 
can be used for dating printed 
output of the COBOL program via 
the special register 
CURRENT-DATE. The date can be 
in one of two forms: mm/dd/yy 

8,9 

10-13 

or dd/mm/yy where ~ is month, dd 
is day, and yy is year. The form 
is chosen by the installation at 
system generation time. 

Address of the background program 
label area. 

Reserved for control program use. 

14-22* User area for inter-program or 
intra-program communication. 

0 

• 

Date 

This field can be referenced in a 
COBOL program executing in the 
background via the special 
register COM-REG. All eleven 
bytes are initialized to binary 
zeros when a JOB control 
statement is encountered. 

C 
.f 

~ User Area 

~ 
SI ;;; 
.; .... 

Mo/Day/'fr 

} 
(Inter - or Introprogrom .2. 

Reserved Communicotion) 
~ Of 

~ i Day/MoIYr ·i 
.2 ~ :2 
G 1 } 
e i u:< 

7 8 9 10 13 1<4 22 23 2<4 

Address of first byte supplied in register 1 by COMRG 

APPENDIX G: COMMUNICATION REGION 

Byte(sL Meaning 

Note: When FIPS is in effect, the 
COBOL compiler uses byte 12. 

23* User program switch indicators 
(UPSI). The condition-name 
associated with the status of the 
UPSI switches can be specified in 
the COBOL program via the 
Special-Names paragraph of the 
Environment Division. UPSI byte 
switches are set by the UPSI 
control statement. The 
condition-name associated with 
each may be tested in the 
Procedure Division of the COBOL 
program. UPSI byte switches are 
initialized to binary zeros when 
a JOB control statement is 
encountered. 

24-31 Jobname for programs located in the 
operand field of the JOB control 
statement. 

32-35 Address of the uppermost byte of 
the program area. 

36-39 

40-43 

44,45 

Job Nome 

( Entered from 
Job Control) 

31 

Address of the uppermost byte of 
the last phase loaded into the 
program area. 

Address of the uppermost byte used 
in loading any phase of the 
program. 

Length of the program label area. 

~ E ~ 
a G 
III ] ::J5 c 0 =s E .3 It 
.§~ i c ~ 

~ ~ .5 It ~ ::> 

1 i .... V .... 
'0 '0 ~~ E 

1! G 
G 

>'1 ~~ 
::J5 

~~ ~ 0 £ 
~< ~iE ~-= '0 2 E 2 E 2'0 ..c ... e i.e is ~ l~ Q.!j' Q...c ! :;, .... :;,et :;, .... 

32 35 36 39 <40 04344 <45 

Figure 68. Communication Region in the Supervisor 

Appendix G: Communication Region 301 





This appendix illustrates the necessary 
job control statements and their sequence 
for five typical programs: 

1. Creating a Direct File 

2. Retrieving and Updating a Direct File 

3. Creating an Indexed File 

4. Retrieving and Updating an Indexed 
File 

5. Sorting an Unlabeled Tape File 

In all five programs the programmer has 
requested the following compiler options 
through the OPTION control statement: 

NODECK -- No punched card output for the 
object program is needed. 

LINK 

LIST 

LISTX 

SYM 

ERRS 

The object module is to be 
linkage edited. 

The COBOL source statements 
are to be printed on SYSLST. 

A Procedure Division map with 
global tables, literal pool, 
and register assignments is to 
be printed on SYSLST. 

A Data Division map is to be 
pr~nted on SYSLST. 

The diagnostic messages of the 
COBOL coropiler are to be 
printed on SYSLST. 

The EXEC FCOBOL statement calls for 
execution of the FCOBOL compiler. 

By using the CBL card, the programmer 
indicates that in this source program the 
quotation mark (") is used for nonnumeric 
literals. 

The ASSIGN clause in the COBOL source 
program specifies a system-name with the 
following fields: 

(Non-VSAM) 
SYSnnn-class-device-organization[-name] 

(VSAM) 
SYSnnn[-class] [-device] [-organization] 

[-name] 

The ASSGN control statement for a file 
must specify the same logical unit as the 
SYSnnn field of system-name. The ASSGN 

APPENDIX H: SAMPLE JOB DECKS 

statement assigns the logical unit to a 
specific hexadecimal address. The address 
specified must be associated with the 
device whose number is given in the device 
field of system-name. 

The DLBL control statememt for a labeled 
file on a mass storage device must contain 
the same ~ as system-name. This is the 
name by which the file is known to the 
control program. (The name field of 
system-name is optional:--If ~ is 
omitted, the DLBL statement must specify 
the logical unit (SYSnnn) as the 
file-name.) The code field of the DLBL 
statement must correspond to the class and 
orqanization fields of system-name-as
follows: 

DLBL I ASSIGN I ASSIGN 
"code" I "class" I "organization" 
--------+-----------+----------------

SD I DA or UT I S 

DA 

ISC 

ISE 

I I 
I I 
I I 
I I 
I I 
I I 
I DA I 
I I 
I DA I 
I I 
I DA I 

AS (entry
sequenced file) 

omitted (key
sequenced file) 

A or U, D or W 

I 

I 

The first EXTENT control statement for a 
file on a mass storage device must specify 
the same logical unit as the SYSnnn field 
of system-name. (Subsequent EXTENT 
statements for the same file, if they 
immediately follow the first, may o~it this 
field.) The type of the extent must be 
compatible with the organization field of 
system-name as follows: 

EXTENT 1 ASSIGN 
"type" I "organization" 

--T------------------t---------------
1 I (data area, no I S, A, U, I, D, W 

~ split cylinder) I 
1 I AS 
I I 

2 J (overflow area fori I 
I indexed file) I 
I I 

3 I (index area for I I 
1 indexed file) I 
! 1 

4 I (data area, split I S, A, U, I, D, W 
] cylinder) I 

Appendix H: Sample Job Decks 303 



DIRECT FILES 

The following two examples illustrate 
the job control statements necessary for 
programs that create and update a direct 
file. 

In the COBOL source programs, the 
programmer has written: 

SELECT DA-FILE ASSIGN TO 
SYS015-DA-2311-A-MASTER ••• 

SELECT CARD-FILE ASSIGN TO 
SYS007-UR-2540R-S ••• 

In the READFILE source program, the 
programmer has written: 

SELEC~ PRINT-FILE ASSIGN TO 
SYS008-UR-2403-S ••• 

(Note the relationship between the 
system-names in the source programs and the 
control statements.) 

The LBLTYP statement defines the amount 
of storage to be reserved to process labels 
for the DA file. The file has one extent. 

The EXEC LNKEDT statement causes the 
object program to be link edited. 

An ASSGN control statement assigns 
logical unit SYS007 to the hexadecimal 
address OOC -- a 2540R Card Reader. 

In the updating program, another ASSGN 
statement assigns logical unit SYS008 to 
the hexadecimal address ODE -- a 1403 
Printer. 

The next series of statements identify 
the direct file completely. 

The ASSGN statement identifies the file 
as residing on logical unit SYS015, which 
has the hexadecimal address of 192 -- a 
2311 Disk Drive. 

The DLBL statement specifies the 
filename as MASTER, with an expiration date 
of the 365th day of 1973, and that the file 
has direct organization (DA). 

The EXTENT statement specifies that the 
file residing on logical unit SYS015 has a 
serial number 111111, that the extent is a 
data area with no split cylinder and that 
this is the first (and only) extent for the 
file (type and seq~ence number 1,0), that 
the file beqins on relative track 1020 
(track 0 of-cylinder 102), and that the 
file occupies 100 tracks. 

30Ll 

(Note that in the EXTENT statement, the 
relative track number (1020) is not 
required for the input DA file of the 
updating program, since the system will use 
the file labels for this informatione) 

The EXEC statement begins execution of 
the problem program, and is followed by 
input dat~. 

The /* statements indicate end-of-data, 
the /& statement indicates end-of-job. 

Creating a Direct File 

// JOB CREATEDA 
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS 
// EXEC FCOBOL 

CBL QUOTE 

{COBOL source deck} 
/* 
// LBLTYP NSD(Ol) 
// EXEC LNKEDT 
// ASSGN SYS007,X'00C' 
// ASSGN SYS015,X'192' 
// DLBL MASTER,,74/365,DA 
// EXTENT SYS015,111111,l,O,1020,100 
// EXEC 

/* 
/& 

{input data cards} 

Retrieving and Updating a Direct File 

// JOB READFILE 
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS 
// EXEC FCOBOL 

CBL QUOTE 

{COBOL source deck} 
/* 
// LBLTYP NSD(Ol) 
// EXEC LNKEDT 
// ASSGN SYS007,X'00C' 
// ASSGN SYS008,X'00E' 
// ASSGN SYS015,X'192' 
// DLBL MASTER,,74/365,DA 
// EXTENT SYS015,111111,1,0,1020,100 
// EXEC 

/* 
/& 

{input data cards} 



INDEXED FILES 

The following two examples illustrate 
the job control statements necessary for 
programs that create and update an indexed 
file. 

In the CREATEIS source program, the 
programmer has written: 

SELECT IS-FILE ASSIGN TO 
SYS015-DA-2314-I-MASTER 

ACCESS IS SEQUENTIAL 
RECORD KEY IS RBC-ID. 

In the RANDISsource program, the 
programmer has written: 

SELECT IS-FILE ASSIGN TO 
SYS015-DA-2314-I-MASTER 

ACCESS IS RANDOM 
NOMINAL KEY IS KEY-ID 
RECORD KEY IS REC-ID. 

SELECT PRINT-FILE ASSIGN TO 
SYS008-UR-1403-S 

RESERVE NO ALTERNATE AREAS. 

In both source programs, he has written: 

SELECT CARD-FILE ASSIGN TO 
SYS007-UR-2540R-S. 

I-O-CONTROL. 
APPLY MASTER-INDEX TO 2311 ON IS-FILE. 

(Note the relationship between the 
source program statements and the job 
control statements.) 

The LBLTYP statement defines the amount 
of storage reserved to process labels for 
the indexed file. The file has three 
extents: a master index extent, a cylinder 
index extent, and a data extent. 

The EXEC LNKEDT statement causes the 
object module to be link edited. 

An ASSGN control statement assigns 
logical unit SYS007 to the hexadecimal 
address OOC -- a 2540R Card Reader. 

In the retrieval program, another ASSGN 
statement assigns logical unit SYS008 to 
the hexadecimal address OOE -- a 1403 
Printer. 

The next ASSGN statement assigns logical 
unit SYS015 to the hexadecimal address 193 

a 2314 Disk Drive. 

The DLBL statement names the file as 
MASTER, and indicates the expiration date 
as the 365th day of 1974. In the file 
creation program, the file label is indexed 
sequential using Load Create (code ISC); in 

the retrieval program, the file label is 
indexed sequential using Load Extension, 
Add or Retrieve (code ISE). 

The first EXTENT statement is identified 
as a master index (type and sequence 
numbers are 4,0), and the relative track is 
900 (the extent begins on cylinder 180 
track 0), and the extent is 20 tracks long. 

The second EXTENT statement is 
identified as a cylinder index (type and 
sequence number are 4,1), the relative 
track is 1820 (the extent begins on 
cylinder 91, track 0), and the extent is 20 
tracks long. 

(Note that the extents assigned to 
master and cylinder indexes must be 
contiguous, and that the master index must 
precede the cylinder index on the disk 
pack. Also note, that if a master index is 
not requested, the first extent is that for 
the cylinder index, which would be type 4, 
sequence number 1.) 

The third EXTENT statement is identified 
as a data area (type 1) and is the third 
extent named for this file. The relative 
track is 0020 (the extent begins on 
cylinder 1, track 0), and the extent is 
1760 tracks long. 

End-of-data is indicated with the 1* 
statement; end-of-job is indicated with the 
/& statement. 

Creating an Indexed File 

II JOB CREATEIS 
1/ OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS 
II EXEC FCOBOL 

CBL QUOTE 

{COBOL source deck} 
/* 
II LBLTYP NSD(03) 
II EXEC LNKEDT 
1/ ASSGN SYS007,X·00C· 
// ASSGN SYS015,X'193' 
// DLBL MASTER,,74/365,ISC 
// EXTENT SYS015,111111.,4,0,1800,20 
// EXTENT SYS015,111111,4,1,1820,20 
/1 EXTENT SYS015,111111,1,2,0020,1760 
/1 EXEC 

/* 
/& 

{input data card} 

Appendix H: Sample Job Decks 305 



Retrieving and Updating an Indexed File 

// JOB RANDIS 
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS 
// EXEC FCOBOL 

{COBOL source deck} 
// LBLTYP NSD(03) 
// EXEC LNKEDT 
// ASSGN SYS007,X'OOC' 
// ASSGN SYS008,X'OOE' 
// ASSGN SYS015,X'193' 
// DLBL MASTER,,73/365,ISE 
// EXTENT SYS015,111111,4,O,1800,20 
// EXTENT SYS015,111111,4,1.1820,20 
// EXTENT SYS015,111111.1,2.0020~1760 
// EXEC 

/* 
/& 

{input data cards} 

FILES USED IN A SORT OPERATION 

The following example illustrates the 
job control statements necessary for a 
program that sorts an unlabeled tape file. 

In the COBOL source program, the 
programmer has written: 

SELECT NET-FILE-IN ASSIGN TO 
SYS007-UT-2400-S. 

SELECT NET-FILE-OUT ASSIGN TO 
SYS008-UT-2400-S. 

SELEC'l NET-FILE ASSIGN TO 3 
SYSOOI-UT-2400-S. 

NET-FILE-IN is the input file; 
NET-FILE-OUT is the output file; NET-FILE 
is the sort work file, which utilizes three 
tape units. 

306 

(Note the relationship between the 
system-names in the COBOL source program 
and the control statements.) 

The EXEC LNKEDT statement causes the job 
to be link edited. 

The first two ASSGN control statements 
assign the logical unit SYS007 to 
hexadecimal address 181, and logical unit 
SYS008 to hexadecimal address 182. SYS007 
is the sort input file, and SYS008 is the 
sort output file. 

The last three ASSGN statements assign 
logical unit BYSOOl to hexadecimal address 
183, logical unit SYS002 to hexadecimal 
address 281, and logical unit SYS003 to 
hexadecimal address 282. SYS001, SYS002, 
and SYS003 are the logical units that must 
be used for sort work files. The sort work 
files must be assigned to 9-track tape 
units. At this installation, 9-track tape 
drives are associated with hexadecimal 
addresses 183, 281, and 282. 

Sorting an Unlabeled Tape File 

// JOB SORTCOB 
// OPTION NODECK,LINK,LIS'I,LIS'IX,SYM,ERRS 
// EXEC FCOBOL 

CBL QUOTE 

{COBOL source deck} 
// EXEC LNKEDT 
// ASSGN SYS007,X'181' 
// ASSGN SYS008,X'182' 
// ASSGN SYS001,X'183' 
// ASSGN SYS002,X'281' 
// ASSGN SYS003.,X' 282' 
// EXEC 
/& 



APPENDIX I: DIAGNOSTIC MESSAGES 

This appendix contains information on how to generate a listing of 
compile-time diagnostic messages. 

coaPILE-TIME MESSAGES 

The 'user can request a complete listing of the diagnostics generated 
by this compiler simply by compiling a program with a PROGRAM-ID of 
ERRMSG. For a description of the formats of compiler diagnostics and 
information about generating this listing, see the chapter entitled 
"Output" in this pUblication. 

OPERATOR MESSAGES 

\ 
This section lists the messages issued to SYSLOG by the IBM DOS/VS 

COBOL Compiler and Library. All of the messages listed are also issued 
on SYSLST. 

The following messages are issued during compilation on SYSLOG. They 
are also printed on SYSLST with the prefix ILA. 

C100I 

C101I 

PARTITION IS LESS THAN 60K 

Explanation: At least 60K is required to compile using DOS/VS 
COBOL. Probable user error. 

System Action: The compilation is terminated. 

Programmer Response: Not applicable. 

Operator Response: Use the ALLOC command to allocate at least 
60K to the partition. If the problem recurs, do the following 
to complete your problem determination action before calling 
IBM for programming support: 

1. Execute the MAP command and save the output. 

2. Have the source deck, control cards, output listing, and 
console sheet available. 

DEVICE NOT ASSIGNED - SYSnnn. 

Explanation: (nnn is either 001, 002, 003, or 004.) The 
specified logical unit is unassigned and must be assigned. 
Probable user error. 

System Action: The compilation is terminated. 

Programmer Response: Not applicable. 

Operator Response: Use the ASSGN command to assign a physical 
unit (magnetic tape or disk) to the file indicated. If the 
problem recurs, do the following to complete your problem 
determination action before calling IEM for programming 
support: 

Appendix I: Diagnostic Messages 307 



Cl02I 

C103I 

C10LJI 

308 

1. Execute the LISTIO command and save the output. 

2. Have the source deck, control cards, output listing, and 
console sheet available. 

UNSUPPORTED DEVICE TYPE - SYSnnn. 

Explanation: (nnn is either 001, 002, 003, or 004.) The 
specified file must be a tape or disk file for SYS002 through 
SYS004. SYSOOl should be assigned to disk; however, in small, 
simple programs that do not require dictionary spill, it is 
sometimes possible to compile with the spill file (SYS001) 
assigned to tape. If any spill does occur, an input/output 
error may occur. Compile-time statistics will say "DICTIONARY 
SPILL HAS OCCURRED". No mention is made of dictionary spill in 
the compile-time statistics if spill does not occur. Probable 
user er:rot'. 

System Action: The compilation is terminated. 

Programmer Response: Not applicable. 

Operator Resnonse: Use the ASSGN command to assign the 
appropriate physical unit to the file indicated -- SYSOOl 
should be assigned to a magnetic tape or disk unit. If the 
problem recurs, do the following to complete your problem 
determination action before calling IBM for programming 
support: 

1. Execute the LISTIO command and save the output. 

2. Have the source deck, control cards, output listing, and 
console sheet available. 

END OF FILE ON SISIPT. 

Explanation: End-of-file was encountered in the initialization 
phase; no source statements were found. Probable user error. 

System Action: The compilation is terminated. 

Programmer Response: Not applicable. 

Operator Response: Ensure that a /* card does not precede the 
source deck, or add the source deck to the job stream. If the 
problem recurs, do the following to complete your problem 
determination action before calling IBM for programming 
support: 

1. Execute the LISTIO command and save the output. 

2. Have the source deck, control cards, output listing, and 
console sheet available. 

SYSOOl FILE NOT ASSIGNED TO DISK 

Explanation: In small, simple programs that do not require 
dictionary spill, it is sometimes possible to compile with the 
spill file (SIS001) assigned to tape. However, if any spill 
does occur, an input/output error may occur. Any compilation 
which spills the dictionary will contain a message in 
compile-time statistics. User error. 

System Action: The compilation continues. 

Programmer Action: Not applicable. 



C105I 

C106I 

Operator Response: Use the ASSGN command to assign SYSOOl to a 
disk unit. If the problem recurs. do the following to complete 
your problem determination action before calling IBM for 
programming support: 

1. Execute the LISTIO command and save the output. 

2. Have the source1eck, control cards, output listing, and 
console sheet available. 

W-CANNOT OPEN SYS005 -- SYNDMP IGNORED. 

Explanation: The SYMDMP option has been specified. but the 
file needed for symbolic debug cannot be opened since SYS005 is 
unassigned. Probable user error. 

System Action: The SYMDMP option is canceled, and the 
compilation continues. 

Programmer Response: Not applicable. 

Operator Response: Use the ASSGN command to assign SYS005 to a 
physical unit. If the problem recurs, do the following to 
complete your problem determination before calling IBM for 
programming support: 

1. Execute the LISTIO command and save the output. 

2. Have the source deck. control cards. output listing. and 
console sheet available. 

SYS006 IS NOT A DISK. NOLVL ASSUMED. 

Explanation: The specified logical unit is not assigned to a 
disk. 

System Action: Compilation continues with NOLVL. 

Programmer Response: Not applicable. 

Operator Response: Use the ASSGN command to assign SYS006 to a 
disk unit. 

OBJECT-TIME MESSAGES 

The following messages are normally issued on SYSLOG. 

CllOA 

ClllA 

STOP literal 

Explanation: The programmer has issued a STOP literal 
statement in the COBOL source program. 

pystem Action: Awaits operator response. 

Programmer Response: Not applicable. 

Operator Response: Operator should respond with end-of-block. 
or with any character in order to proceed with the program. 

AWAITING REPLY 

Explanation: This message is issued in connection with the 
Full American National Standard COBOL ACCEPT statement. 

Appendix I: Diagnostic Messages 309 



system Action: Awaits operator response. 

Programmer Response: Provide the operator with instructions. 

operator Response: The operator should reply as specified by 
the prograromer. 

The following messages are issued on SYSLOG and SYSLST prior to 
cancellation of the job. If the DUMP option is specified, a partial 
dump is taken from the problem program origin to the highest storage 
location of the last phase loaded. When th~s occurs, the eight bytes 
immediately preceding the DTF are destroyed. The messages have the 
form: 

C125I 

310 

CmmmI SYSnnn filename DTFaddress text 

where: 

mmm 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 

text 
DATA CHECK 
wRONG LENGTH RBCORD 
PRIME DATA AREA FULL 
CYLINDER INDEX TOO SMALL 
MASTER INDEX TOO SMALL 
OVERFLOW AREA FULL 
DATA CHECK IN COUNT 
DATA CHECK IN KEY OR DATA 
NO ROOM FOUND 
DASD ERROR 
DASD ERROR WHILE ATTEMPTING TO WRITE 

RECORD ZERO 
123 FILE CANNOT BE OPENED AFTER CLOSE WITH LOCK 
124 CYLINDER AND MASTER INDEX TOO SMALL 

nnn is equal to 001 through 255 
filename is seven or less characters and is generated from the 

file-name specified in the SELECT sentence. 
address is the hexadecimal address of the file·s DTF table. 
mmm and text correspond as follows: 

Explanation: Condition indicated occurred on SYSnnn. 

System Action: The job is cancelled. 

Programmer Response: Rerun the job or add a user Declaractive 
Section to the Procedure Division of the source program to 
handle errors within the program. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck, control cards, 
compiler output, and console sheet available. 

operator Response: Not applicable. 

NO EXTENTS 

Explanation: During CLOSE UNIT processing, no extent is found 
for the next volume. 

System Response: The job is cancelled. 

Programmer Response: Rerun job with proper EXTENT eXTENT) 
statements. 



Operator Response: Not applicable. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck, control cards, 
compiler output, and console sheet available. 

The following message is issued on SYSLOG: 

C126D SYSnnn IS IT EOP? 

Where nnn is equal to 001 through 255 

Explanation: A tapemark was just read on an unlabeled tape 
file described at compilation time as having more than one 
reel. 

System Action: Awaits response from operator. 

Programmer Response: Not applicable. 

Operator Response: The operator must respond either with N if 
is end of volume, or with Y if it is end of file. 

The following messages are issued on SYSLOG and SYSLST: 

C127D 

C128D 

C1291 

NO EOP RECORD WRITTEN IN PRIME DATA AREA 

Explanation: During CLOSE processing of an ISAM file opened 
OUTPUT, no room was found to write EOP record. 

Programmer Response: Rerun the job with the proper EXTENT. 

If the problem recurs, do the following to complete your 
problem determination action before calling IBM for programming 
support. Have source deck, control cards, compiler output, and 
console sheet available. 

Operator Response: Not applicable. 

UNRECOVERABLE I/O ERROR 

Explanation: This is probably a hardware error on tape. 

Programmer Response: Not applicable. 

Operator Response: Rerun the job. 

If the problem recurs, do the following to complete your 
problem determination action before calling IBM for programming 
support. Have source deck, control cards, compiler output, and 
console sheet available. 

VSAM SUBROUTINE ERROR. CANCELING JOB. 

Explanation: The subroutine has encountered an unrecoverable 
error. This can occur when a VSAM OPEN, CLOSE or ACTION request 
(GET, PUT, etc.) returns an error code for which the subroutine 
has no means of recovering, or when one of the VSAM macros (SHOWCB, 
GENCB, etc.) returns a non-zero return code. All such conditions 
indicate an error in the subroutines and/or VSAM. 

Action: The program is canceled with a dump. 

Programmer Response: Submit an APAR with the dump. 

If the problem recurs. do the following before calling IBM 
for programming support: have source deck, control cards, and 
compiler output available. 

Appendix I: Diagnostic Messages 311 



C130I 

C131I 

C140I 

INPUT/OUTPUT ERROR. FILE STATUS SET TO xx NEAR REL LOC. 
xxxxxx. 

Explanation: An I/O error has occurred on the file being 
accessed by the COBOL statement at or near the relative 
location given in the message, and the user has no USE 
declarative for that file. 

Action: Control returns to COBOL at the statement following 
the COBOL request that caused the error. 

Programmer Response: If the error occurred on a READ 
operation, processing can continue. If the error occurred on a 
WRITE operation, there may be a loss of data. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck, control cards, and 
compiler output available. 

UNABLE TO OPEN FILE 'SYSnnn'. CANCELING. 

Explanation: The VSAM OPEN or CLOSE request gave a return code 
of X'68' or X'6C' because of invalid time stamps in the VSAM 
catalog or VSAM file. The VSAM catalog or file should be 
recreated. See DOS/VS Supervisor and 1/0 Macros for Dore 
detail on the OPEN/CLOSE return codes. 

ActiQll: The job is canceled. 

Programmer Response: Recreate the VSAM catalog and/or file. 

If the problem recurs, do the following before calling rBM 
for programming support: have source deck, control cards, and 
compiler output available. 

INVALID SEPARATE SIGN CONFIGURATION 

Explanation: During execution of a COBOL program, an invalid 
sign was detected for a separately signed item. 

ActiQn: The job is terminated. 

Programmer Response: Probable user error. Correct program's 
input data before reexecuting. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck, control cards, 
compiler output, and data available. 

The following messages (C150I-C170I) are listed on SYSLST. The 
messages have the form: 

{

prOgram-id } 
CmmmI 

card/verb number 
text 

Messages C1501 through C162I may appear interspersed among the SYMDMP 
control cards at the point at which the error is encountered. 
Program-id is provided for all messages except C1501 through C152I. For 
these, the card/verb number of the corresponding line-control card is 
given instead. The program-id associated with C150I through C152I can 
be determined from the nearest preceding program-control card. 

Messages C1531 through C155I may also appear in the midst of the dump 
output if the error condition is not recognized until dumping has 
started. 

C150I 

312 

IDENTIFIER NOT FOUND. 

Explanation: An identifier specified on the line-control card 
cannot be found in the program or is invalid. Level-66 and 



C151I 

C152I 

C153I 

level-88 items and items defined under an RD are invalid 
requests. 

Action: The dump request for this identifier is ignored. 

Programmer Response: Probable user error. Before reexecuting, 
ensure that no requests have been made on the line-control card 
for the dumping of identifiers that have not been defined or 
that are invalid. 

If the problem recurs, do the following before calling IBM 
for prograrrming support: have source deck. control cards, and 
compiler output available. 

CARD NUMBER NOT FOUND 

Explanation: The card number specified on the line-control 
card is not within range of the Procedure Division. 

Action: The line-control card which specifies the nonexistent 
card number is skipped. 

Programmer Response: Probable user error. Ensure that any 
card number specified on a line-control card is within range of 
numbers specified for source program before reexecuting. 

If the problem recurs. do the following before calling IBM 
for programming support: have source deck. control cards. and 
compiler output abailable. 

VERB NUMBER NOT FOUND 

Explanation: The verb number specified on a line-control card 
does not exist on the card specified. 

Action: The nearest verb number on the card specified is used. 

Programmer Response: Probable user error. Correct verb number 
specification before reexecuting. 

If the problem rec~rs, do the following before calling IBM 
for programming support: have source deck. control cards, and 
compiler output available. 

NO ROOM TO DUMP. 

Explanation: If this message immediately follows a 
program-control card, sufficient storage is not available for 
the debug subroutine or for the 72 bytes of data required for 
each program in the run unit. If this message follows an 
abnormal termination message, one or more of the following is 
not available in free storage or in the COBOL Procedure 
Division: a contiguous block of 4000 bytes, a contiguous block 
of 1800 bytes, or a contiguous block of 512 bytes. 

Action: No Data Division dump for the indicated program and, 
in some instances, no statement number information, is 
provided. 

Programmer Response: Probable user error. Increase the size 
of the partition before reexecuting. See "System 
Configuration" for information about storage requirements for 
symbolic debugging. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck. control cards, and 
compiler output available. 

Appendix I: Diagnostic Messages 313 



C154I 

C155I 

C156I 

C151I 

31 U 

I/O ERROR ON DEBUG FILE. 

Explanation: An input/output error has occurred on the debug 
file. Note that such an error may be the result of a file 
other than the debug file being mounted on the logical unit 
specified. 

Action: SYMDMP output is cancelled for the indicated program. 

Response: Hardware, operator, or useI JCL error. Before 
reexecuting, check logical unit number specified on 
program-control card against current mounting~ as well as the 
ASSGN, DLBL, and EXTENT cards of compilation. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck. control cards, and 
compiler output available. 

WRONG DEBUG FILE FOR PROGRAM. 

Explanation: The file corresponding to the filename and/or 
logical unit number provided on the program-control card is not 
the debug file created for this program at compile time. 

Action: SYMDMP output is cancelled for the indicated program. 

Programmer Response: Probable user error. Before reexecuting, 
ensure that the filename and/or logical unit specified on the 
program-control card corresponds to that of the debug file 
created at compile time. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck. control cards, and 
compiler output available. 

NO ROOM FOR DYNAMIC DUMP. 

Explanation: Sufficient storage is not available to store the 
line-control card information during execution. 

Action: Dynamic dumping is cancelled for the indicated 
program. 

Programmer Response: Probable user error. Increase size of 
partition or decrease number of line-control cards before 
reexecuting. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck. control cards, and 
compiler output available. 

INVALID FILENAME. 

Explanation: If the "filename" parameter is specified for a 
disk file on the CBL card at compile time, the same "filename" 
must also be specified on the program-control card. "Filename" 
may be from one to seven characters in length; the first 
character must be a letter. 

Action: All SYMDMP output is cancelled for the indicated 
program. 

Programmer Response: Probable user error. Correct "filename" 
specification on the program-control card before reexecuting. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck, control cards, and 
compiler output available. 



C1581 

C1591 

C1601 

C1611 

INVALID LOGICAL UNIT. 

Explanation: The logical unit parameter on the program-control 
card must be specified, must be an integer between 0 and 244, 
and must match the one specified in the ASSGN control staterr.ent 
for the debug at compile time. 

Action: All SYMDMP output is cancelled for the indicated 
program. 

Programmer Response: Probable user error. Correct loaical 
unit specification on program-control card before reexecuting. 

If the problem recurs, do the following before calling IBM 
for prograrr.ming support: have source deck, control cards, and 
compiler output available. 

MISSING PARAMETERS. 

Explanation: A non-continued line-control card ends with 
(HEX), OF, IN, or THRU. Possibly a continuation punch is 
missing in column 72. 

Action: A HEX or THRU option ending a card is ignored. When a 
card ends with OF or IN, the word is ignored and the identifier 
that is dumped is the first one encountered whose qualifiers 
match those preceding the word OF or IN. 

Proqrammer Response: Probable user error. Check line-control 
card for keypunch errors before reexecuting. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck, control cards, and 
compiler output avuilable. 

INVALID OPTION. 

Explanation: An element used as an optional parameter on a 
program-control card is not one of the legal program-control 
card options. 

Action: ~he element is ignored. 

Programmer Response: Probable user error. Correct syntax of 
program-control card before reexecuting. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck, control cards, and 
compiler output available. 

SUBSCRIPTING ILLEGAL. 

Explanation: The "name" parameter of the line-control card may 
not be subscripted. 

Action: The subscripts are ignored. Every occurrence of the 
identifier is dumped. 

Programmer Response: Probable user error. Specify the name of 
the item without the subscript before reexecuting. This will 
result in a dump of every occurrence of the item. 

If the problem recurs, do the following before calling IBM 
for prograrr.ming support: have source deck, control cards, and 
compiler output available. 

Appendix I: Diagnostic Messages 315 



C162I 

C163I 

C164I 

C165I 

316 

ON PARAMETER TOO BIG. 

Explanation: Neither the n, m, nor k parameter of the ON 
option may exceed 32767. 

Action: The number is reduced to 32767. 

Programmer Response: Probable user error. Correct invalid 
parameter before reexecuting. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck. control cards, and 
compiler output available. 

FLOW TRACE NON-CONTIGUOUS. MORE THAN 10 PROGRAMS ENCOUNTERED 

Explanation: A non-contiguous flow trace will result if FLOW 
option is effective in a subprogram structure of more than 10 
programs compiled with the FLOW option. 

Action: The FLOW trace is terminated upon encountering the 
eleventh PROGRAM-ID. Tracing resumes only upon returning to 
one of the original ten programs. 

Programmer Response: Probable user error. If trace is absent 
for a program where it is critical, recompile one or more of 
the programs where the flow is non-critical without the FLOW 
option and reexecute. 

If the problem recurs, do the following before calling IBM 
for prograrr.ming support: have source deck. control cards, and 
compiler output available. 

FLOW TRACE IN EFFECT BUT NO PROCEDURES TRACED. 

Explanation: Abnormal termination has taken place before any 
COBOL statement with a procedure-name has been traced. 

Action: No tracing is done. 

Programmer Response: Probable user error. If trace is 
desired, recompile the program after inserting additional 
procedure-names. 

If the problem recurs, do the following before calling IBM 
for progromming support: have source deck. control cards, and 
compiler output available. 

SYMDMP/STATE/FLOW/COUNT INTERNAL ERROR. EXECUTION CANCELLED. 

Explanation: Abnormal termination occurred during execution of 
one of the debugging subroutines. 

Action: The job is cancelled. 

Programmer Response: Internal logic error. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck. control cards, and 
compiler output available. 



C1691 

C1701 

C1711 

C1721 

C1731 

STATE OPTION CANCELLED. 

Explanation: compiler or logic error has occurred during STATE 
option processing. Under certain conditions, this error may 
result from other user errors. For example, a loop might 
destroy some of the information required by the STATE 
subroutines; an invalid branch might cause a non-existent 
priority-number to be stored in the TGT, etc. 

Action: STATE output is cancelled. 

Programmer Response: Probable user error. possible compiler 
error or user error. Correct other known errors (if any) 
before attempting reexecution. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck. control cards, and 
compiler output available. 

INVALID ADDRESS. 

Explanation: The address calculated for a subscripted 
identifier, or a starting or ending address of a 
variable-length identifier used as the receiving field in a 
MOVE statement is invalid. 

Action: A symbolic dump is produced. 

Programmer Response: Probable user error. Possible compiler 
error or user error. Correct other known errors (if any) 
before attempting reexecution. 

If the problem recurs, do the following before calling IBM 
for prograrrming support: have source deck. control cards, and 
compiler output available. 

SPACE NOT FOUND FOR THE COUNT CHAIN. CONTINUING. 

Explanation: A GETVIS macro was unsuccessful due to lack of 
space. 

Action: Execution continues. Execution statistics are not 
provided for the last indicated program unit. 

Programmer Response: Probable user error. Allocate more space 
on EXEC card before attempting reexecution. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck. control cards, and 
compiler output available. 

SPACE NOT FOUND FOR THE VERBSUM TABLE. CONTINUING. 

Explanation: A GETVIS macro was unsuccessful due to lack of 
space. 

Action: Execution continues. Verb summary statistics are not 
provided for the program. 

Programmer ResEonse: Probable user error. Allocate more space 
on EXEC card before attempting reexecution. 

FREEVIS FAILED. EXECUTION CANCELLED. 

Explanation: A FREEVIS macro was unsuccessful. 

Action: Execution is terminated. 

Appendix I: Diagnostic Messages 317 



C175I 

Programmer Response: Probable user error. Allocate more space 
on EXEC card before atternptina reexecution. 

If the problem recurs, do the following before calling IBM 
for prograrrming support: have source deck, control cards, and 
compiler output available. 

INVALID COUNT TABLE ENTRY. EXECUTION CANCELLED. 

Explanation: A count table entry in the object module is not 
one of the fOllowing: end-of-table indicator, procedure-id, or 
verb-ide 

Action: Execution is terminated. 

Proarammer Response: Probable user error. Possible compiler 
or user error. Check your program for routines that may have 
moved data into the count table area. Correct other known 
errors (if any) before attempting execution. 

If the problem recurs, do the following before calling IBM 
for programming support: have source deck6 control cards, and 
compiler output available. 

COBOL OBJECT PROGRAM UNNUMBERED MESSAGES 

318 

xxx ••• 

Explanation: This message is written on the console and is 
recognizable because it is not preceded by a message code and 
action indicator. It is issued by an object program originally 
coded in COBOL. The message text is supplied by the object 
program and may indicate alternative action to be taken. 

System Action: The job continues. 

Operator Response: Operator response, if any is needed, is 
determined by the message text. 



~A~P~P~EN~D~I~X~J~:~_~C~0~B~0~L~3~8.86 OPTICAL CHARACTER READER SUPPORT 

This appendix contains information on 
the 3886 Optical Character Reader, Model 1* 
(denoted as "the OCR"). Topics discussed' 
include: 

3886 OCR processing 
COBOL considerations for 3886 OCR 

processing. 
Status key values 
Sample program 

This discussion assumes familiarity with 
these IBM 3886 Optical Character Reader 
publications: 

IBM 3886 OCR General Information Manual, 
Order No. GA21-9146 -- for terminology, 
device capabilities, and the formats of 
the header and data records. 

IBM 3886 OCR Input Document Design and 
Specifications, Order No. GA21-9148 -
for document design considerations and 
detailed specifications. 

In addition, the applicable portions of the 
following manuals should be referenced: 

IBM DOSIVS Supervisor and I/O Macros, 
Order No. GC33-5373 -- for describing 
documents using the DFR and DLINT 
macros. 

IBM DOS/VS System Generation, Order 
No. GC33-5377 

IBM DOS/VS Data Management Guide, Order 
No. GC24-5062. 

IBM DOS/VS Program Planning Guide for 
the IBM 3886 Optical Character Reader, 
Model 1, Order No. GC21-5059 

3886 OCR PROCESSING 

The 3886 OCR, Kodel 1 is a general 
purpose online device that satisfies a 
broad range of data entry requirements. 
The OCR accepts documents sized from 3 
inches by 3 inches to 9 inches by 12 
inches. It can read machine-printed 

*This device should not be confused with 
the 3886, Model 2, an offline Optical 
Character Reader with output to tape. 
Information is included in this chapter on 
processing the tapes produced by the Model 
2. 

alphabetic characters, numeric characters, 
and certain special characters in a wide 
variety of fonts, as well as hand-printed 
numeric characters. 

The OCR reads documents one line at a 
time, under program control. Additional 
features, all under program control, 
include: 

• document marking 

• line marking 

• document eject (with stacker selection) 

• line reread (for the current line, and 
with a different format if desired) 

!ote: The OCR cannot read previous lines; 
reading can proceed from top to bottom on 
the document only. 

IMPLEMENTING AN OCR OPERATION 

Document Design 

The OCR form that will be used for input 
should be prepared independently of the 
COBOL program. Document design criteria 
are described in detail in IBM 3886 Optical 
Character Reader, Input Document Design 
Guide and Specifications. 

The most important aspects of document 
design are: 

1. The locations of lines which can be 
read. These lines are identified by 
"timing marks." Lines not associated 
with timing marks are always ignored 
by the OCR. Note that lines may be 
almost anywhere on the document, and 
need not be at regular intervals. 

2. The location of fields to be read. 
Fields, (strings of related 
characters) should be identified in 
document design. They should be 
described using the DFR and DLINT 
macros. (See section entitled 
"Document Description".) 

3. The form identifier. This field 
should be a pre-printed code at a 
common location on the first readable 
line of each format. This field can 
be ignored by programming or DLINIT 

Appendix J: COBOL 3886 Optical Character Reader Support 319 



specification if desired; it should, 
however, be included in the form 
design so as to allow for later form 
changes or intermixing of forms in 
batches without disruption of 
operations. 

Document Description 

Documents are described in the system 
with the Define Format Record (DFR) and 
Define Line Type (DLINT) macros. These 
macros should be coded independently of the 
COBOL program. 

The DFR macro identifies, by name, a 
collection of DLINT macros, and establishes 
various default field scanning options for 
them. Each different DFR grouping 
identifies a different document, or a 
largely different way of scanning the same 
document (for example, a document in a 
different font) • 

DFR and DLINT macros, after assembly and 
linkage editing, are preserved in loadable 
form until called for by the application 
program. 

Each DLINT macro describes the scanning 
of a line, by field, in terms of 

1. The starting and ending points of 
fields on a line (in tenths of an 
inch) • 

2. The field lengths (in characters) • 

3. The font code to be used (OCR-A, 
OCR-B, Gothic, or hand-printed 
numerics, all with various additional 
options) • 

4. Field editing (blank fill, blank 
suppression, zero fill, left or right 
justification, special character 
suppression) • 

5. Field character delimiters (a 
character to end a field scan) • 

Note that the DLINT macro may specify 
either standard mode or image mode. In 
standard mode, all DLINT options are valid, 
and the data record is of a fixed format, 
according to the field lengths in 
characters. In image mode, the field 
length and all EDIT keywords are invalid. 
The data record begins with 14 parameters, 
each two bytes long, indicating the length 
of the fields that follow. Because of this 
variable format in the data record, it is 
recommended that image mode be used only in 
applications for which standard mode is 
unsuitable. 

320 

COBOL Support 

COBOL supports the OCR with a subprogram 
(invoked by CALL ;tatements), Data Division 

COPY statement library material (to fully 
describe the parameter area required by the 
subprogram), and Procedure Division COpy 
statement library material (to provide 
procedures that simplify invocation of the 
subprogram) . 

File Description 

The ~11e is described by the Data 
Division COPY statement member. (See 
sample program for format.) All fields and 
codes are included, with descriptive names 
and default values. The programmer need 
only modify those fields that are not 
appropriate for the application. 

The file description ("OCR-FILE" in the 
COPY statement member) includes all fields 
that the programmer must provide to the 
subprogram, the OCR-STATUS-KEY returned by 
the subprogram, and fields that describe 
the header and data records returned by the 
device. Note that the file is described 
through data records rather than the usual 
COBOL FD. 

Note: The header and data records are not 
constructed under program control and are 
not altered after reading. Their contents 
are fully described in IBM 3886 Optical 
Character Reader General Information 
Manual. 

Record Description 

The COBOL record descriptions are based 
on the DLINT formats, either in image mode 
or in standard mode. 

If standard mode scanning is specified, 
the data record is returned in a fixed 
format according to the DLINT macro; that 
is, contiguous fields, from left to right, 
in the same order as in the DLINT macro, 
each with a specified length in bytes. If 
image mode scanning is specified, however, 
the field lengths are returned at the 
beginning 'of the data record. 

The programmer may describe the data 
records to be read by the application 
program by following the Data Division COpy 
statement request with statement(s) of the 
form: 

05 dataname RFDEFINES OCR-DATA-RECORD 



The structure of each record description 
should follow each such statement starting 
with a level number greater than 5. (See 
sample program for example.) 

Procedural Code 

The COBOL source statements control the 
file, read lines, and recover from errors. 
The subprogram CALL statement requirements 
are described in the Procedure Division 
COpy statement member. This member 
provides paragraphs which the COBOL 
programmer can PERFORM to set the proper 
operation code, CALL the subprogram, and 
pass control to a programmer-supplied 
exception routine if an exception occurs. 
The programmer should COpy these paragraphs 
into his program. 

The programmer must move parameter 
information to the file area 
(OCR-FILE-CONTROL-AREA), and then issue a 

PERFORM statement for the appropriate 
procedure. 

If an exception occurs, the COPY 
statement member passes control to the 
procedure-name OCR-EXCEPTION-ROUTINE. If 
operations are to be retried in this 
routine, the programmer should issue the 
appropriate CALL (not PERFORM) statement 
and test the OCR-STATUS-KEY value 
afterwards. 

Return from the OCR-EXCEPTION-ROUTINE 
would normally be to OCR-CALL-EXIT (after a 
successful retry or recovery). Control is 
then returned to the invoking PERFORM 
statement. 

JCL Considerations 

Programs using the IBM-supplied 3886 
processing subroutines must have a SIZE 
parameter specified on the EXEC card and 
cannot run in REAL mode. The user must 
specify the SIZE parameter equal to the 
size of his problem program to free the 
remainder of his partition for use as the 
page pool. Each opened 3886 file requires 
at least 2K bytes of the page pool. 

Subprogram Interface 

The IBM-supplied COpy members provide a 
data area ('OCR-FILE') and CALL statements 
using this area for parameter interface to 
the OCR subprogram. The data area has the 
following format: 

01 OCR-FILE. 
05 OCR-FILE-CONTROL-AREA 

10 OCR-FILE-ID PIC X(8} VALUE 
'SYSnnn'. 

(Unique file name; also, must 
agree with JCL ASSGN 
statement) 

10 OCR-FORMAT-RECORD-ID PIC X(8) 
VALUE "xxxxxxxx". 

(DFR phase name, used for 
'OPEN' or "SETDV") 

10 OCR-OPERATION PIC X(5}. 
("OPEN", "CLOSE", "READ", 

"READO", "WAIT", "SETDV", 
"MARKL", "MARKD", or "EJECT" 
(left justified). 

10 OCR-STATUS-KEY PIC 99. 
(also referred to as exception 

code.) 

10 OCR-LINE 

15 OCR-LINE-NUMBER PIC 99. 
(Line number (0-33) passed 

to "MARKL", "FEAD", or 
"EJECT") 

15 OCR-LINE-FORMAT PIC 99. 
(Line format number (0-63) 

passed to "READ") 

10 OCR-MARK PIC 99. 
(Mark option (1-1S) passed to 

"MARKL" or "MARKD".) 

10 OCR-STACKER PIC 9. 
(Pocket number (1-2) passed to 

"EJECT".) 

05 OCR-HEADER-RECORD PIC X (20) • 
(Header information returned from 

"READ" or "WAIT".) 

05 OCR-DATA-RECORD PIC X(130). 
(Data record returned from "READ" 

or "WAIT".) 

(For descriptions of these operations, see 
the section "Statements for Invoking 3886 
I/O Functions".) 

Note: If the CALL statement does not have 
one, and only one, parameter following the 
USING option, the subprogram will return 
control immediately to the user (with a 
value of 8 in register 15). No error 
indication will be available through COBOL. 

Table 37 contains OCR status key values 
and their meanings. Table 38 is a guide to 
which operations cause status key values 00 
through 99. Table 39 supplies the user 
responses to status key values. 

Appendix J: COBOL 3886 Optical Character Reader Support 321 



Table 31. OCR Status Key Values and User Actions 

status Key 
Code 

00 

10 

3x 

9y 

Meaning 

Successful completion 

End-of-file t 

I/O error or related error where: 2 
x :. 1 Mark Check 

2 Nonrecovery 
3 Incomplete Scan 
4 Mark Check and Equipment Check 
9 Permanent Error 

Other 
y :. 2 

3 

5 
9 

error where: 
logic error, that is, file not open (except OPEN), file already 
open (for OPEN), WAIT issued, bui no ~FAD~ pending, WAIT not 
issued for pendinq READO. 
insufficient storage available (OPEN) or failure in storage 
release (CLOSE) 
invalid parameter (other than operation code) 
unrecognizable operation code 

lThe end-of-file condition is raised after the listed I/O commands if: 
the operator has pressed the END-OF-FILE button, and 
no documents remain in the read station, and 
no errors are outstanding 

If // ASSGN SYSxxx,IGN has been specified, EOF is given only on READ and WAIT 
commands. While the end-of-file condition is active, commands (other than CLOSE) are 
only checked for validity. 

2If any 1-0 errors, or certain system errors occur during the OPEN operation, the job 
is canceled by the system. 

Table 38. Possible Status Key Values, By Operation 

I 
I , 
10CR-STATUS-KEY 
,Possible Value 
I , , , 

322 

00 

10 

31 

32 

33 

34 

39 

92 

93 

95 

99 

i 

OCR-OPERATION I I 
Value I I 

I I 
I I I 
,OPEN ICLOSEIREAD 
I I , 

X X X 

X 

X 

x 

X 

X X x 

x 

x x 

I 
I 
I 
I 
IREADO WAIT , 

X X 

X 

X x 

X 

X X 

X x 

x 

i 

I 
I 
I 

I I I 
IMARKLIMARKDIEJECT 
I I I 

x I X I X 
I I 

X IX IX 
I I 
I X 
I 

X I X X 

x 

x X X 

X X X 

x x X 

I 
I 
I 
I I 

SETDVlotherl 
I I 

x I I 
I , 

X I I 
I I 
I I 
I I 

X I I 
I I 
I I 
I I 
I 
I 

X I 
I 

X I 
I 
I 
I 
I 
I 
I X 



Table 39. User Responses to Status Key 

status Key Meaning Response 

00 

10 

31 

32 

33 

34 

39 

92 

93 

95 

99 

Successful (no EOP) IThe operation has completed properly. 

End-oi-file 

Mark Check 

Nonrecovery Error 

Incomplete Scan 

Mark Check and 
Equipment Check 

Permanent Error 

Logic error 

I 
IDa EOF processing and close the file, or have 
loperator ready 3886 and continue processing. See 
INote 1. 
I 
IAttempt to reread the line, or eject document and 
Iprepare to process next document. 
I 
IEject document and prepare to process next document. 
I 
IReread the line using a different DLINT, or using an 
limage-mode DPR. 
I 
ISee Note 2. 
I 
I 
ISee Note 2. One of the following has occurred: 
ICommand Reject, Bus Out Check, Equipment Check, 
tNon-Initialized, RCP error, or Invalid Format. 
I 
ISee Note 3. One of the following operation order 
terrors has occurred: 
I 
I 
I 
1 
I 
I 

OPEN issued on file already open 
file not open (all operations except OPEN) 
WAIT issued but no READO in progress 
READO not followed by WAIT 

Insufficient storagelSee Note 3. The GETVIS issued by the COBOL 

Invalid parameter 

Unrecognizable 
operation 

Isubroutine has failed. Check that the SIZE 
Iparameter is large enough. 
I 
ISee Note 3. A parameter required by the last 
loperation was invalid (too large, too small, or 
Icontained invalid characters). 
I 
ISee Note 3. The OCR-OPERATION parameter contained 
Ian illegal operation code. 

INotes: 
I-l-.--Seriolls 1-0 error conditions exist. No more I/O should be performed on the device 
I after any of these errors are encountered. The program should indicate the error, 
I perform error recovery, and issue a STOP RUN. 
t 
I 2. 
I 
I 
I 
I 3. 
I 
I 

A serious programming error has occurred, or there is a problem in the program 
environment. The program should indicate the error, perform clean-up, and issue a 
STOP RUN. 

WAIT and READ commands return data and header records only for the following 
codes: 00, 10, 31, and 33. For other codes, the contents of the header and data 
record areas are unpredictable. 

Appendix J: COBOL 3886 Optical Character Reader support 323 



STATEMENTS FOR INVOKING 3886 1/0 FUNCTIONS 

OPEN Function~uivalent to OPEN Macro) 

OP1N makes a logical file available to 
your urogram and loads the appropriate 
format record into the 3886. The statement 
format for OPEN is: 

PERFORM OCR-OPEN 

The subprogram requires these fields: 
OCR-FILE-ID, OCR-OPERATION ('OPEN') , 
OCR-FORMAT-RECORD-ID 

The sUbprogram will return: OCR-STATUS-KEY 

CLOSE Functioll-JEquivalent to DOS CLOSE 
Macro} 

CLOSE deactivates any 3886 files used by 
your program. These files must be closed 
before the program can be terminated. The 
statement format for CLOSE is: 

PERFORM OCR-CLOSE 

The sUbprogram requires these fields: 
OCR-FILE-ID, OCR-OPERATION ('CLOSE') 

The subprogram will return: OCR-STATUS-KEY 

READ Function (Equivalent to DOS READ and 
WA ITF Macros) 

READ allows one line of data to be read 
from the document. The statement format 
for READ is: 

PERFORM OCR-READ 

The sUbprogram requires these fields: 
OCR-FIL!-ID, OCR-OPERATION ('READ'), 
OCR-LINE-NUMBER, OCR-LINE-FORMAT 

The subprogram will return: 
OCR-STATUS-KEY, OCR-HEADER-RECORD, 
OCR-DATA-RECORD 

Not~: The READ function combines the 
functions of READO and WAIT. I/O overlap 
is not allowed within the issuing task. 

324 

READO Function (Equivalent to DOS READ 
Macro) 

READO (read overlapped) initiates the 
reading of one line of data from the 
document. WAIT must subsequently be issued 
to complete the request. The statement 
format for READO is: 

PERFORM-OCR-READ-OVERLAPPED 

The subprogram requires these fields: 
OCR-FILE-ID, OCR-OPERATION ('READO'), 
OCR-LINE-NUMBER, OCR-LINE-FORMAT 

The subprogram will return: OCR-STATUS-KE~ 

Note: A successful READO function must be 
followed by a WAIT request for that same 
OCR-FILE area. No intervening I/O 
operations for that file are allowed. 

WAIT Function (Equivalent to DOS WAITF 
Macro) 

WAIT completes the action of the 
preceding READ. The statement format for 
WAIT is: 

PERFORM OCR-READ 

The subprogram requires these fields: 
OCR-FILE-ID, OCR-OPERATION ('WAIT'), 

The subprogram will return: 
OCR-STATUS-KEY, OCR-READER-RECORD, 
OCR-DATA-RECORD 

The WAIT function causes the active task 
to be placed in the WAIT condition, if 
necessary, until the preceding READO 
operation is completed. It must be issued 
only after a successful READO, with no 
intervening commands for that file. 

MARKL Function (Equivalent to DOS CNTRL 
Macro with LMK Option) 

MARKL is used to mark a line on the 
document. The statement format for MARKL 
is: 

PERFORM OCR-MARK-LINE 

The subprogram requires these fields: 
OCR-FILE-ID, OCR-OPERATION ('KARKL'), 
OCR-LINE-NUMBER, OCR-MARK 

The subprogram will return: OCR-STATUS-KEY 



MARKD Function (Equivalent to DOS CNTRL 
Macro with DMK Option) 

MARKD is used to mark the document (in 
the Page Mark location). 

The statement format for MARKD is: 

PERFORM OCR-MARK-DOCUMENT 

The subprogram requires these fields: 
OCR-FILE-ID, OCR-OPERATION ('MARKD'), 
OCR-MARK 

The subprogram will return: OCR-STATUS-KEY 

EJECT Function (Equivalent to DOS CNTRL 
Macro, with ESP Option) 

EJECT is used to eject the document into 
a specified stacker, with optional 
validation of its total number of timing 
marks. The statement format for EJECT is: 

PERFORM OCR-EJECT 

The subprogram requires these fields: 
OCR-FILE-ID, OCR-OPERATION ('EJECT'), 
OCR-STACKER, OCR-LINE-NUMBER 

The subprogram will return: OCR-STATUS-KEY 

SETDV (Set Device by Loading a Format 
Record) Function (Equivalent to DOS SETDEV 
Macro) 

SETDV allows format records to be 
changed during execution of the program. 
The statement ~ormat for SETDV is: 

PERFORM OCR-SET-DEVICE 

The subprogram requires these fields: 
OCR-FILE-ID, OCR-OPERATION ('SETDV'), 
OCR-FORMAT-RECORD-ID 

The subprogram will return: OCR-STATUS-KEY 

COBOL 3886 Library Routine 

The COBOL 3886 library routine is 
invoked in response to the CALL statement. 
For the proper execution of this routine 
GETVIS=YES must be specified at system 
generation. An illegal SVC results if 
GETVIS=NO is specified. 

Table 40 contains a list of CALL 
state~ents used for invoking 3886 I/O 
~unct~ons (if the IBM-supplied COpy member 
~s not used) • 

All OCR CALL statements have the format 
CALL 'ILBDOCRO' USING OCR-FILE, where 
OCR-FILE is used as follows: 

Appendix J: COBOL 3886 Optical Character Reader Support 325 



Table 40. CALL statements for Invoking 3886 I/O Functions 
-., 

Function I 
(OCR-OPERATION) Set by User Subroutine I<eturns I , 

OPEN OCR-FILE-ID OCR-STATUS-KEY I 
OCR-OPERATION I 
OCR-FORMAT-RECORD-ID I , 

CLOSE OCR-FILE-ID OCR-STATUS-KEY I 
OCR-OPERATION I 

--f 
READ OCR-FILE-ID I 

OCR-OPERATION OCR-STATUS-KEY I 
OCR-LINE-NUMBER OCR-HEADER-RECORD I 
OCR-LINE-FORMAT OCR-DATA-RECORD I , 

READO OCR-FILE-ID i 
i OCR-OPERATION OCR-STATllS-KEY I 
I OCR-LINE-NUMBER I 
I OCR-LINE-FORMAT I 
I --I 
I WAIT OCR-PILE-ID OCR-STATUS-KEY I 
I OCR-OPERATION OCR-HEADER-RECORD I 
I OCR-DATA-RECORD I 
I I 
I MARKt OCR-PILE-ID I 
I OCR-OPERATION OCR-STATUS-KEY I 
I OCR-LINE-NUMBER I 
I OCR-MARK I 
l- I 
I MARKD OCR-FILE-ID I 
I OCR-OPERATION OCR-STATUS-KEY I 
I OCR-LINE-NUMBER I 
I OCR-MARK I 
I ~ 
I EJECT OCR-FILE-ID I 
I OCR-OPERATION OCR-STATUS-KEY I 
I OCR-LINE-NUMBER I 
I OCR-STACKER I 
l- I 
I SETDV OCR-FILE-ID I 
I OCR-FORMAT-RECORD-ID OCR-STATUS-KEY I 
I OCR-OPERATION 
I 

PROCESSING TAPES FROM THE OCR 3886, MODEL 2 

Tape records produced from the IBM 3886, 
Model 2 are almost identical in format to 
the header and data records returned by the 
Modell. The main differences between the 
records are: 

• Model 2 tapes contain a document 
trailer record after the line output 
records for each document. The content 
of this trailer record differs from 
that of line output records. 

• The codes used in certain fields of the 
header record differ between the two 
models. 

326 

I 

Because of the similarity, however, the 
Data Division COpy statement member defined 
for the Model 1 may be tailored to describe 
the Model 2 tape records. To do this, 
punch out the COpy statement member, modify 
it according to the installation 
requirements, and recatalog it. The COpy 
statement member may then be included as a 
data record, under an FD for the input tape 
file • 

Specific information on the formats and 
contents of the Model 2 tape records is 
contained in IBM 3886_0ptical Charact~ 
Reader r General Information Manual. 



CEL LIB 
OOCOl 
C0002 
00003 
OC004 
00005 
C0006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 
00039 
00040 C 

Figure 69. 

****************************************************************~ 'J~Jq7000 
********* SAM P LEe C R PRO G R A ~ *********91548000 
******************************************************************91549000 

IDENTIFICATION DIVISION 91550000 
PROGRru~-ID. SAMPLE 

****** THIS PROGRAM IS THE COEOL EgUIVALEN'I OF THE 
* ASSEMBLY LANGUAGE SAMPLE PFOGRAM 'DOCLIS~', 

* CONTAINED IN THE DOS/VS PROGRAM PLAN~ING GUIDE 
* FOR THE IBM 3886 OPTICAL CnARACTER READER, MODEL 1 
* (ORDER NO. GC21-5059) 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT PRINTER, ASSIGN TO SYS009-UR-1403-S. 
DATA DIVISION. 
FILE SECTION. 
FD PRINTER LABEL RECORDS ARE O~I'ITED. 

01 PRINT-RECORD. 
05 FILLER PIC X. 
05 PRINT-LINE PIC X(130). 

WORKING-STORAGE SECTION. 
77 PRINT-CONTROL 
77 MSG-PERMANENT-ERROR 

'PERMANENT ERROR 
77 MSG-MARK-CHECK 

PIC 9 
PIC X(24) 

OCCURRED' • 
PIC X(19) 

'MARK CHECK OCCURRED'. 

VALUE 1. 
VALUE 

VALUE 

77 MSG-~ARK-AND-EgUIP-CHECK PIC X(39) VALUE 
'MARK CHECK AND EgUIPMENT CHECK OCCURR£D'. 

77 MSG-INCGMPLETE-SCAN PIC X(24) VALUE 
'INCOMPLETE SCAN OCCURRED'. 

77 MSG-NONRECOVERY-ERROR PIC X(26) VALUE 
'NONRECOVERY ERROR OCCURRED'. 

77 Iv'iSG-BAD-DATA FIC X (50) VALUE 
'THE FOLLOWING LINE WAS MISREAD. THE LINE HEADER -, 

01 MSG-~ERMINA'IION. 

05 FILLER PIC X(44) VALUE 
'TERMINAL ERROR OCCURRED - OCR-STA'I'US-KEY 

05 MSG-TERM-STATUS-KEY PIC XX. 
01 OCR-FILE COPY ILEDOCRD. 

******** ILBDOCRD - OCR DA~'A DESCRIPTION ************************* 

Sample OCR Program (Part 1 of 5) 

91551200 
91~51400 

91551600 
91551800 
91551900 
91552000 
91552200 
91552400 
91552600 
91553000 
91553200 
91553400 
91553600 
91553800 
91553900 
91554000 
91554200 
91555000 
91556000 
91556100 
91556200 
91556600 
91556700 
91556800 
91556900 
91557000 
91557200 
91557400 
91557600 
91557/700 
91557800 
91558100 
91558300 
91558400 

Appendix J: COBOL 3886 Optical Character Reader Support 327 



00041 C 
00042 C 
00043 C 
00044 C 
00045 C 
00046 C 
00047 C 
00048 C 
00049 C 
00050 C 
00051 C 
00052 C 
00053 C 
00054 C 
00055 C 
00056 C 
00057 C 
00058 C 
00059 C 
00060 C 
00061 C 
00062 C 
00063 C 
00064 C 
00065 C 
00066 C 
00067 C 
00068 C 
00069 C 
00070 C 
00071 C 
00072 C 
00073 C 
00074 C 
00075 C 
00076 C 
00077 C 
00078 C 
00079 C 
00080 C 
00081 C 
00082 C 
00083 C 
00084 C 
00085 C 
00086 C 
00087 C 
00088 C 
00089 C 
00090 C 
00091 C 
00092 C 
00093 C 
00094 C 
00095 C 
00096 C 
00097 C 
00098 C 
00099 C 
00100 C 
00101 C 
00102 C 
00103 C 
00104 C 
00105 C 
00106 C 
00107 C 
00108 C 
00109 C 
00110 C 
00111 C 
00112 
00113 
00114 
00115 
00116 
00117 
00118 
00119 
00120 
00121 
00122 

******************************************************************90037000 
******** 0 C R 3 8 8 6 F I L E FOR ~ ~ T **********90047000 
******************************************************************90057000 

* 
* 
* 
* 
* 

01 CCR-FILE. 
05 OCR-FILE-CONTROL-AREA. 

10 
10 
10 

10 

10 

10 
10 

OCR-FILE-ID 
OCR-FORl"'lA'I-RECORD-ID 
OCR-OPERATION 
88 OCRO-CPEN 
88 OCRO-CLOSE 
88 aCRO-READ 
88 OCRO-READ-OVERLAPPED 
88 OCRO-WAIT 
88 OCRO-MARK-LINE 
88 OCRO-MARK-DOCUMENT 
88 OCRO-EJEC'l' 
88 OCRO-SETDEV 
OCR-STATUS-KEY 
88 OCRS-SUCCESSFUL 
88 OCRS-END-OF-FILE 
88 OCRS-IO-ERRORS 
88 OCRS-MISC-ERROR 
88 OCRS-MARK-CHECK 

PIC xeS) 
PIC xes) 
PIC X (5) 

PIC 99 

88 OCRS-NONRECOVERY-ERROR 
88 OCRS-INCOMPLETE-SCAN 
88 OCRS-MARK-AND-EQUIP-CHECK 
88 OCRS-PER~ANENT-ERROR 

88 OCRS-SPECIAL-ERRORS 
88 OCRS-LOGIC-ERROR 
88 OCRS-RESOURCE-UNAVAILAELE 
88 OCRS-INVALID-PARAMETER 
88 OCRS-INVALID-OFERATION 
OCR-LINE. 
15 OCR-LINE-NU~BER 

15 OCR-LINE-FORMAT 
OCR-MARK 
OCR-STACKER 

PIC 99 
PIC 99 
PIC 99 
PIC 9 

90067000 
900b9000 

VA~UB 'SYSOI0 '.90077COO 
VALUE 'FRLGCFR1'.90087000 
VALUF 'OPEN' 90097000 
VALUE 'OPEN '. 90107000 
VALUE ·CLOS~'. 90117000 
VALUE 'READ' 90127000 
VALUE 'RB~DO'. 90137000 
VALUE 'WAIT ' 
Vl1LUE 'MAR}\L'. 
VALUB ' MAi1KL ' • 
VALUE 'EJEC'I'. 
VALUE 'SETDV'. 
VALUb O. 
VALUE 00. 
VALUE 10. 
VALUE 30 THRU 
VALUE 30. 
VALUE 31. 
VALUE 32. 
VALUE 33. 
VALUE 34. 
VALUE 39. 
VALUE 90 'lHRU 
VALUE 92. 
VALUE 93. 
VALUE 95. 
VALUE 99. 

VALUE 1. 
VALUE 1. 
VALUE O. 
VALUE 1. 

90147000 
90157000 
90167000 
90177000 
90187000 
90197000 
90217000 
90227000 

39.90257000 
90267000 
90277000 
90287000 
90297000 
90307000 
90317000 

******* HEADER AND DATA RECORD AREAS ******* 
FILLED IN BY SUCCESSFUL 'READ' AND/OR 'WAIT'. 
(NOTE - 'READO' DOES NOT A'LTER THESE ARhAS) 

99.90317400 
90323000 
90325COO 
90326000 
90326200 
90327000 
90337000 
90347000 
90357000 
90367000 
90377000 
90387000 
90397000 
90407000 
90417000 
90427000 
90437000 
90447000 
90457000 
90467000 
90477000 
90487000 
90497000 
90507000 
90517000 
90527000 
90537000 
90547000 
90557000 
90567000 
90577000 
90587000 
90597000 
90607000 
90617000 
90627000 
90637000 
90647000 
906~-/OOU 

05 OCR-HEADER-RECORD 
10 OCRH-LINE-NUMBER 
10 OCRH-LINE-FOR~AT 

10 OCRH-LINE-SCAN-COUNT 
10 OCRH-LINE-STATUS 

88 OCRH-LINE-GOOQ 
88 OCRH-LINE-BLANK 

PIC 99. 
PIC 99. 
PIC 9. 
PIC 9. 

88 OCRH-LINE-GROUP-ERASE 
88 OCRH-LINE-CRITICAL-ERR 
88 OCRH-LINE-NON-CRITICAL-ERR 
88 OCRH-LINE-COMBINED-ERR 
88 OCRH-LINE-INVALID 
88 OCRH-END-OF-PAGE 

10 OCRH-FIELD-INFO. 

VALUE ZEROS. 

VALUE o. 
VALUE 1. 
VALUE 3. 
VALUE 2. 
VALUE 4. 
VALUE 
VALUE 
VALUE 

6. 
7. 
5. 

15 OCRH-FIELD-STATUS 
88 OCRH-FIELD-GCOD 

PIC 9 OCCURS 14. 

88 OCRH-FIELC-REJECT-CHARS 
88 OCRH-FIELD-WRONG-LENGTH 
88 OCRH-FIELD-CCMEINED-ERR 
88 OCRE-FIELD-BLANK 
88 OCRH-FIELD-BLA~K-SUP 

05 OCR-DATA-RECORD. 
10 OCR-STANDARD-MODE-RECORD 

15 OCR-STANDARD-FIELD-CHAR PIC X 
10 CCR-IMAGE-MODE-RECORD 

VALUE O. 
VALUE 2. 
VALUE 4. 
VALUE 6. 
VALUE 8. 
VALUE 4. 

OCCURS 130. 

REDEFINES OCR-STANDARD-MODE-RECORD. 
15 OCR-IMAGE-FIELD-LENGTH PIC 99 OCCURS 14. 
15 OCR-IMAGE-FIELD-CHAR PIC X OCCURS 102. 

********** END OF 3886 DATA DIVISION COpy MEMBER ************* 
05 NOTICE-OF-PAYMENT-DUE REDEFINES OCR-DATA-RECORD. 

90667000 
90677000 
90687000 
90697000 
90699000 
91561400 
91561600 
91561800 

10 LINE-1. 
15 L1-POLICYHOLDER-NA~E 

15 FILLER PIC X(15). 
10 LINh-2 REDEFI~S LINE-l. 

15 L2-CITY-AND-STATE 
15 L2-POLICY-NU~EER 

15 L2-AMOUNT-DUE 
15 L2-PAYMENT-VERIFY-CODE 

10 LINE-3 REDEFINES LINE-l. 

PIC X(20). 

PIC X(20). 
PIC X(8). 
PIC 9(4)V99. 
PIC 9. 

15 L3-AMOUNT-PAIL PIC 9(5)V99. 

91561900 
91562200 
91562400 
91562600 
91562700 
91562800 
91563100 

?igure 69. Sample OCR program (Part 2 of 5) 

328 



00123 
00124 
00125 
00126 
00127 
00128 
00129 
00130 
00131 
00132 
00133 
00134 
00135 
00136 
00137 
00138 
00139 
00140 
00141 
00142 
00143 
00144 
00H5 
00146 
00147 
00148 
00149 
00150 
00151 
00152 
00153 
OC154 
00155 
00156 
00157 
00158 
00159 
00160 
00161 
00162 
00163 
00164 
00165 
00166 
00167 
00168 
00169 
00170 
00171 
00172 
00173 
00174 
00175 
00176 
00177 
00178 
00179 
00180 
00181 
00182 
00183 
00184 
00185 
00186 
00187 
00188 
00189 
00190 
00191 
00192 

PROCEDURE DIVISION. 
S'IOP RUN. 

Pl0-START. 
MOVE 'SYS010' '10 OCR-FILE-ID. 
MOVE 'FORMAT' '10 OCR-FOR~A'I-RECORD-ID. 
PERFORM OCH-OPEN. 
OPEN OU'IPtJ'I' PRINTER. 

Pl0-HEAD. 
MOVE ALL '*' TO PRIN'I-LINE. 
PERFORM PRINT-ROUTINE. 
MOVE 1 '10 OCR-S'IACKER. 

Pl0-READ. 
PERFORM. OCR-READ. 
IF OCRS-NONRECOVERY-ERROR, GO TO Pl0-BOP-ERR. 
IF OCRH-LINE-GOOD, GO '10 Pl0-GOOD. 
IF OCRH-LINE-BLANK, GO TO Pl0-GOOD. 
IF CCRH-LINE-NON-CRITICAL-ERR, GO '10 Pl0-GOOD. 
IF OCRH-END-OF-PAGE, GO '10 Pl0-EOP. 

***** IF OCRH HAS ANY OTHER CODE, CONSIDER THE D1\'111 AS BAD **** 
Pl0-BAD. 

MOVE MSG-EAD-DATA TO PRINT-LINE. 
PERFORM PRINT-ROUTINE. 
MOVE 2 TO OCR-STACKER. 

Pl0-GOOD. 
MOVE OCR-LATA-RECORD TO PRIN'I-LINE. 
PERFORM PRINT-ROUTINE. 
MOVE 1 TO PRINT-CONTROL. 
ADD 1 TO OCR-LINE-NUMBER, OCR-LINE-FORF~T. 
IF OCRH-LINE-NUMBER IS LESS 'IRAN 3, GO TO Pl0-READ. 

Pl0-EOP. 
MOVE 3 TO OCR-LINE-NUMBER. 
PERFORlli OCR-EJECT. 

Pl0-EOP-ERR. 
gOVE 1 TO CCR-LINE-NUIvlEER, OCR-LINE-FO&lA T . 
IVlOVE 3 '10 PRINT-CONTROL. 
GO '10 Pl0-bEAD. 

********* EXCEPTION PROCESSING ROu'IINE *************** 
OCR-EXCEPTION-ROUTINE. 

IF OCRS-END-OF-FILE. GO Te P20-EOF. 
IF OCRS-MARK-CHECK, 

MOVE MSG-MARK-CHECK 'IO PRIN'I-LINE, 
GO TO P20-RETURN •. 

IF OCRS-NONRECCVERY-ERROR. 
MOVE MSG-NONRECOVERY-ERROR '10 PRINT-LINE, 
GO TO P20-RETURN. 

IF eCRS-INCOMPLETE-SCAN, 
MOVE MSG-INCOMPLETE-SCAN '10 PRINT-LINE, 
GO '10 P20-RETURN. 

IF OCRS-MARK-AND-EQUIP-CHECK, 
MOVE MSG-MARK-AND-EQUIP-CHECK TO OCR-LINE, 
GO TO P20-PRINT-EOF. 

IF OCRS-PER~ANENT-ERROR, 
MOVE MSG-PERMANENT-ERROR '10 PRIN'I-LINE. 
GO '10 P20-PRINT-EOF. 

***** IF NONE OF THE AEOVE ERRORS. GIVE TERJ.'UNATICN MESSAGE ***** 
MOVE OCR-STATUS-KEY TO MSG-TER~:-S'IATUS-KEY. 
MOVE MSG-TERMINATION '1'0 PRIN'I- LINE. 
GO TO P20-PRINT-EOF. 

P20-RETURN. 
PERFORM PRINT-ROUTINE. 
GO TO OCR-CALL-EXIT. 

P20-PRINT-EOF. 
PERFORM PRINT-ROU'I'INE. 

P20-EOF. 
PERFORM OCR-CLOSE. 
CLOSE PRIN'IER. 
STOP RUN. 

PRINT-ROUTINE. 
WRITE PRIN'I-RECORD AFTER ADVANCING PRINT-CONTROL. 

OCR-COPIED-PROCEDURES. COpy ILBLOCRP. 

Figure 69. Sample OCR Program (Part 3 of 5) 

91563400 
91563700 
91')64000 
91:>65000 
91566000 
91567000 
91568000 
91569000 
91570000 
91571000 
91572000 
91573000 
91574000 
91574200 
91575000 
91576000 
91579000 
91580000 
91581000 
91582000 
91583000 
91S84000 
91584200 
91585000 
91585200 
91585400 
91585600 
91585800 
91585900 
91586200 
91586300 
91586400 
91586600 
91586700 
91586800 
91587100 
91587300 
91587400 
91587600 
91587700 
91587800 
91587900 
91588100 
91588500 
91588700 
91588900 
91589100 
91589300 
91589500 
91589700 
91590000 
91591000 
91592000 
91593000 
91594000 
91595000 
91596000 
91597000 
91598000 
91598200 
91598400 
91600000 
91601000 
91602000 
91603000 
91604000 
91605000 
91607000 
91609000 
91610000 

Appendix J: COBOL 3886 Optical Character Reader Support 329 



J0193 C 
00194 C 
00195 C 
00196 C 
00197 C 
00198 C 
00199 C 
00200 C 
00201 C 
00202 C 
00203 C 
00204 C 
00205 C 
00206 C 
00207 C 
00208 C 
00209 C 
00210 C 
00211 C 
00212 C 
00213 C 
00214 C 
00215 C 
00216 C 
00217 C 
00218 C 
00219 C 
00220 C 
00221 C 
00222 C 
00223 C 
00224 C 
00225 C 
00226 C 
00227 C 
00228 C 
00229 C 
00230 C 
00231 C 
00232 C 
00233 C 
00234 C 
00235 C 
00236 C 
00237 C 
00238 C 
00239 C 
00240 C 
00241 C 
00242 C 
00243 C 
00244 C 
00245 C 
00246 C 

******* ILBDOCRP - OCR 3886 PROCEDURES 
******************************************************************90757000 
******** 0 C R 3 8 8 6 PRO C E D U RES *********90767000 
******************************************************************90777000 
* THE 3886 OCR SUBROUTINE USES OCR-FILE FIELDS AS FOLLOwS 90778000 
* 90779000 
* ALL OPERATIONS REQUIRE 90780000 
* OCR-FILE-ID = THE UNIQUE NA~E USED TO IDENTIFY THE FILE 90781000 
* TO THE SUBROUTINE AND TO THE SYSTE~ 90782000 
* OCR-OPERATION = THE CODE FOR THE REQUESTED OPERATION 90783000 
* ALL OPERATIONS RETURN 90784000 
* OCR-STA'IUS-KEY = RETURN CODE FOR VARIOUS OCCURRENCES 90785000 
* 90786000 
* OCR-OPEN ('OPEN ') ALSO REC;UIRES 90786200 
* OCR-FORMAT-RECORD-ID = LIBRARY NAME OF DFR TO LOAD 90786400 
* OCR-CLOSE ('CLOSE') REQUIRES NO ADDITIONAL PARAKETERS 90786600 
* OCR-READ ('READ ') ALSO REQUIRES 90786800 
* OCR-LINE-NUMEER (1-33) = LINE TO READ (ON DOCUMENT) 90786900 
* OCR-LINE-FORMAT (1-63) = DLINT NUMBER (IN CUHRENT DFR) 90787900 
* AND RETURNS (IF OCRS-SUCCESSFUL) 90788100 
* OCR-HEADER-RECORD = HEADER RECORD. AS RETURNED BY THE 3886 90788300 
* OCR-DA'IA-RECORD = DATA FRO~ DOCUMENT, FROM 3886 90788500 
* OCR-READ-OVERLAPPED ('READO') HAS SAME REQUIREMENTS AS OCR-READ90788800 
* OCR-WJ!.IT ('WAIT ') RETURNS SAME PARAMETERS AS OCR-READ 90789800 
* OCR-MARK-LINE ('MARKL') ALSO REC;UIRES 90790000 
* OCR-LINE-NUMBER (1-33) = LINE TO ~iliRK (ON DOCUMENT) 90790~00 
* OCR-MARK (1-15) = SUM OF DESIRED ~ARK COD£S (8421) 90790400 
* OCR-~~RK-DOCUMENT ('MARKD') ALSO REQUIRES 90790600 
* OCR-~iliRK (1-15) = SUM OF DESIRED MARK CODES (8421) 90790700 
* OCR-EJECT ('EJECT') ALSO REQUIRES 90791700 
* OCR-STACKER (1-2) = STACKER TO SELECT (A OR B) 90791900 
* OCR-LINE-NOMEER (0-33) = NUMBER OF LINES ON DOCUMENT 90792100 
* FOR VALIDATION (IF 0, NO VALIDATION wILL OCCUR) 90792500 
* OCR-SET-DEVICE (' SETDV') ALSO REQUIRES 90792600 
* OCR-FORMAT-RECORD-ID = LIBRARY NAr.~E OF DFR TO LOAD 90793600 
* 90793800 
*NOTES- 90794000 
* 1. THE TERMS DFR AND DLINT ARE USED TO REFER TO THE EXPAlmED 90794200 
* CODE, IN LOADABLE FORM, OF THE RESPECTIVE SYSTE~ MACROS. 90794400 
* 2. OCR-WAIT MAY BE REC;UESTED AFTER, AND ONLY AFTER, A 90795300 
* SUCCESSFUL OCR-READ-OVERLAPPED R~C;UEST. NO INTERVENING 90795500 
* I/O CO~~ANDS WILL BE ALLOWED ON THAT SAME FILE. 90795700 
* 3. THE PROCEDURES PROVIDED BELCW AUTOMATICALLY FILL IN 90795900 
* THE OCR-OPERATION FIELD, CALI. THE, SUEROUTINE, AND 'TEST 90796100 
* THE OCR-STATUS-KEY AFTER RETURN. IF ANY EXCEP'IIONAL 90796400 
* CONDITIONS OCCUR, THEY PASS CO~TROL TO THE ROUTINE 90796600 
* OCR-EXCEPTION-ROUTINE, WHICH THE PROGRAMMER MUST PRCVIDE. 90796700 
* THE PROGRAMMER l'IlAY AVOID EXCEPTION ROUTINE INVOCATION BY 90797900 
* ADDING THE FOLLOWING PHRASE TO THE COPY STATE~EN'I: 90798100 
* REPLACING OCR-EXCEP'IION-ROUTINE BY OCR-CALL-EXI'I 90798300 
* 4. ALTHOUGH OCR-STA'IUS-KEY MAY INDICATE THAT THE DESIRZD 
* OPERATION vJAS SUCCESSFUL, THE VALIDITY OF THE DATA CBTAINED 
* SHOULD BE DETERMINED BY TESTING CCRH-LINE-STATUS. 
******************************************************************90798700 

Figure 69. Sample OCR program (Part 4 of 5) 

330 



00247 C 
00248 C 
00249 C 
00250 C 
00251 C 
00252 C 
00253 C 
00254 C 
00255 C 
00256 C 
00257 C 
00258 C 
00259 C 
00260 C 
00261 C 
00262 C 
00263 C 
00264 C 
00265 C 
00266 C 
00267 C 
00268 C 
00269 C 
00270 C 
00271 C 
00272 C 
00273 C 
00274 C 
00275 C 
00276 C 
00277 C 
00278 C 
00279 C 
00280 C 

OCR-3886-PROCEDURES. 
OCR-OPEN. 

MOVE 'OPEN ' '1'0 OCR-OFERATION OF OCR-FILE. 
PERFORL'IIJ OCR-CALL THRU OCR-CALL-EXI'l. 

OCR-CLOSE. 
~OVE 'CLOS~' TO OCR-OPERATION OF OCR-FILE. 
PERFO~ OCR-CALL 'lHRU OCR-CALL-EXIT. 

OCR-REAl). 
MOVE 'READ ' TO OCR-OPERATION OF OCR-FILE. 
PERFOPR OCR-CALL THRU OCR-CALL-EXIT. 

OCR-READ-OVERLAPPED. 
~OVE 'READO' TO OCR-OPERATION OF OCR-FILE. 
PERFORM OCR-CALL THRU OCR-CALL-EXIT. 

OCR-wAIT. 
MOVE 'WAIT ' TO OCR-OPERATION OF OCR-FILE. 
PERFOID<j OC"R.-CALL T'HRU OCR-CALL - EXI'I' • 

OCR-MARK-LINE. 
MOVE 'MARKL' TO OCR-OPERATION OF OCR-FILE. 
PERFORM OCR-CALL THRU OCR-CALL-EXIT. 

OCR-MARK-DOCUMENT. 
MOVE 'MARKD' TO OCR-OPERATION OF OCR-FILE. 
PERFORM OCR-CALL THRU OCR-CALL-EXIT. 

OCR-EJECT. 
MOVE 'EJECT' TO OCR-OPERATION OF OCR-FILE. 
PERFORM OCR-CALL THRU OCR-CALL-EXIT. 

OCR-SET-DEVICE. 
MOVE 'SETDV' TO OCR-OPERATION OF OCR-FILE. 
PERFOR~~ OCR-CALL T'HRU OCR-CALL-EXIT. 

OCR-CALL. 
CALL 'ILEDOCRO' USING OCR-FILE. 
IF NOT OCRS-SUCCESSFUL OF OCR-FILE, 

GO TO OCR-EXCEPTION-ROUTINE. 
OCR-CALL-EXIT. EXIT. 

********** END OF 3886 PROCEDURE DIVISION COpy Ml!.f.t..i3:ER ********* 

Figure 69. Sample OCR Program (Part 5 of 5) 

90799700 
90800700 
90807000 
90817000 
90827000 
90837000 
90847000 
90857000 
90867000 
90877000 
90887000 
90897COO 
90907000 
90917000 
90927000 
90937000 
90947000 
90957000 
90967000 
90977COO 
90987COO 
90997000 
9100nOO 
91017000 
91027000 
91037000 
91047000 
91057000 
91067000 
9107700{) 
91087000 
91097000 
91107000 
91109000 

Appendix J: COBOL 3886 Optical Character Reader Support 331 





This index is supplemented with entries from the index of IBM DOS Full American National 
Standard COBOL. These entries are identified by an asterisk (*). 

(Where more than one page reference is given, the major reference appears £irst.) 

* 22,205,42 
* in arithmetic expressions* 

(see also asterisks, used in 
clause) * 

** 
/* 
/& 

in arithmetic expressions* 
15 
15 

{ (see braces)* 
[ (see brackets>* 

(see pound sign)* 
• (see period)* 
••• (see ellipsis)* 
< in relation conditions* 
( and ) in* 

arithmetic expressions* 
compound conditions* 
PICTURE clause* 
subscripting and indexing* 

+ (see plus syrnbol)* 

PICTURE 

$ (see currency symbol, dollar sign)* 
in Data Division and Procedure Division 

entries* 
(see also semicolon>* 
(see either hyphen, or minus symbol)* 

/ in 
arithmetic expressions* 
sterling report items* 

, (see cornrna)* 
> in relation conditions* 
" in 

COMPUTE statement* 
relation conditions* 

• or " in nonnumeric literals* 
(see also quotation mark) * 

A, in PICTURE clause* 
alphabetic items* 
alphabetic symbol* 
alphanumeric edited items* 
alphanumeric items* 

abbreviations* 
abnormal termination 251-253 
absolute* 

col umn number* 
line spacing in a report* 
values. in MOVE statement* 

ACCEPT statement 73,* 
subroutines 290 

Access Method Services 130 
ACCESS MODE and VSAM capabilities* 
ACCESS MODE clause* 
ACCESS MODE clause, VSAM* 

accessing a direct file 99-117,* 
randomly 101 
sequentially 100 

accessing an indexed file 118-122,* 
randomly 121-122 
sequentially 121 

accessing a sequential file 99,* 
acknowledgement* 
action request time file status values 

(VSAM) 138 
ACTION· statement 42 
actual decimal point* 
actual key 101-117 

actual track addressing 101-110, 
116-117 

considerations for specific 
devices 116-118 

sample program 106-110 
relative track addressing 101-106 

sample program 111-115 
structures 102 

ACTUAL KEY clause 101-102 
description and format 102,* 
READ statement* 
REWRITE statement* 
SEEK statement* 
WRITE statement* 

actual track addressing 101-110,116-117 
consideratioflsfor specific 
devices 116-118 

sample program 106-110 
ADCON table 298 
ADD statement (Librarian) 51,52 

description and formats 51,* 
adding a record to a prime track 120 
adding rec0rds to an indexed file 119-120, 
121~122 

adding source statements to a beok 51 
addition operator* 
addressing direct files 

actual track addressing 101-110. 
116-117 

sample program 106-110 
relative track addressing 101-106 

sample program 111-115 
addressing schemes 99-122,* 

direct 99-117.* 
indexed 118-122,* 
sequential 99,* 

advantage of S-mode records over V-mode 
records 186 

algebraic value in a sign condition* 
algorithrn* 
alignment of data items* 

comparisons* 

Index 333 



decimal point* 
editing* 
File section Items* 
JUSTIFIED clause* 
Linkage Section Items* 
PICTURE clause 196.* 
SYNCHRONIZED clause 200.* 
USING option* 
VALUE clause* 
working-Storage Items 194.* 

ALL literal figurative constant* 
description* 
MOVE statement* 
relation condition* 
STOP statement* 

alphabetic character* 
alphabetic class test* 
alphabetic collating sequence* 
alphabetic data items. 
alphabetized cross-reference listing 

(SXREF) 37.36.67,* 
alphanumeric character* 
alphanumeric collating sequence* 
alphanumeric data item* 

allowable symbols* 
class test* 
description* 
internal representation* 
JUSTIFIED clause* 
MOVE statement 205,* 
relation condition* 
USAGE clause 197.* 
VALUE clause* 

alphanumeric edited character* 
alphanumeric edited item* 
alphanumeric literals* 
ALT parameter of ASSGN job control 
statement 25,24 

ALTER statement 
in a called program 75 
in debug packets* 
description and format* 
effect on GO TO statement* 
segmentation* 
sort procedure* 

altering characters* 
altering execution sequence* 
altering usage of data items* 
alternative grouping of data* 

REDEFINES clause* 
RENAMES clause* 

amount of intermediate storage required for 
sort 208 

AND logical operator* 
APOST option 37 
apostrophe* 
application programs 12 
APPLY clause* 

CORE-INDEX option 101.99.* 
CYL-INDEX option 101,99,* 
CYL-OVERFLOWoption 101,99,* 
EXTENDED-SEARCH option 101,99* 
MASTER-INDEX option 101,99,* 
WRITE-ONLY option 100.99,183.192,* 
programming technique* 
WRITE-VERIFY option 99,* 

arabic numerals* 
Area A and Area B in reference format* 

334 

arguments 
passed to a called assembler language 

program 79 
passed to a called COBOL program 76,77 

arithmetic expressions* 
characters used* 
COMPUTE statement 204.* 
conditions* 
description* 
evaluation rules* 

arithmetic operators* 
arithmetic statements* 

ADD* 
COMPUTE 204.* 
CORRESPONDING option 205.* 
DIVIDE* 
GIVING option* 
intermediate results* 
MULTIPLY* 
overlapping operands* 
REMAINDER option* 
ROUNDED option* 
SIZE ERROR option* 
SUBTRACT * 

arithmetic subroutines 293 
ascending sequence* 

ASCII character set* 
EBCDIC character set* 
sort* 
table handling* 

ASCII considerations* 
ASCII subroutines 291 
ASCII tape files 171-178 
assembler language routine for 
accomplishing overlay 82 

assembler language subprograms 78-81 
assembler sublibrary of source statement 
library 48 

ASSGN control statement 24-25.20 
ASSIGN clause 24,19 

ASCII considerations* 
description and format 24,* 
NSTD-REELS special register 166.* 
sort* 

file in GIVING option* 
sort work units* 

system-name* 
ASSIGN clause, VSAM* 
assigning storage for compiler work file 
buffers 36 

assignment of input/output devices 19-20 
assumed* 

decimal point* 
description* 
numeric edited items* 
numeric items* 
sterling nonreport items* 

decimal scaling positions* 
pound and shilling separators* 

asterisk (*> 
arithmetic expressions* 
comments * 
in job deck 22 
in PHASE statement 42 
PICTURE clause* 

check protect symbol* 
numeric edited items* 



sterling report items* 
in source program 205 

AT END phrase* 
READ statement* 
RETURN statement* 
SEARCH statement* 

AUTHOR paragraph* 
AUTOLINK feature 43 
Automatic Library Look-Up (AUTOLINK) 43 

and ACTION control statement 42,43 
and PHASE control statement 41,43 

auxiliary subroutines 291 

B, in PICTURE clause* 
alphanumeric edited items* 
numeric ediied items* 
space symbol* 
sterling report items* 

background program 12 
label area 301 

BASIS card 57,48 
used for debugging 250 

batched-job mode 12 
BEFORE REPORTING declarative* 
binary collating sequence* 
binary data item 197-202,* 

in PICTURE clause 196,* 
description* 
intermediate results 203 
internal representation* 
MOVE statement 205,* 
relation condition* 
SYNCHRONIZED clause 200.* 
USAGE clause 197,* 

BKEND control statement 49 
BLANK WHEN ZERO clause* 
BLOCK CONTAINS clause 194 

ASCII considerations* 
VSAM* 

block descriptor field 183 
block-length field 

V-mode records 180 
block prefix 177 

and BLOCK CONTAINS clause 194 
blocked records 180,181,* 

APPLY WRITE~ONLY clause* 
BLOCK CONTAINS' clause 183,* 
inter-record slack bytes* 
recording mode* 

body print group* 
books in the source statement library 

cataloging 48-49 
retrieving 49 
updating 49-51 

boundary alignment* 
braces 22 
braces and brackets in formats* 
brackets 22,23 
BUF option 36 
buffer* 

allocation* 
ASCII considerations* 
combined function processing* 
offset 117 
truncation* 

buffer allocation VSAM* 
building tables 225 
bypassing label processing* 
byte, contents of* 

C. in sterling PICTURE* 
CALL statement 75-76 

boundary alignment in* 
in segmented program 90 
3886 OCR processing* 

Called program 75 
calli'ng an assembler language 

subprogram 78-82 
calling and called programs 75-87 
calling cataloged procedures 54 
calling program 75 
capacity records 99-100 
capitalized words in formats* 
carriage control character* 
CATAL option 33,45 
cataloged procedures, calling 54 
cataloging 

a book 48-49 
a module 46-4'7 
a program phase 45-46,40,41 
a segmented program 92 
a sort program 209 

CATALP control statement 53 
CATALR control statement 41-48 
CATALR option 39 
CATALS control statement 48-49 
CBL statement 36-39 
changing description of data items* 
changing installation defaults 39 
character set* 
character string* 
characters, significant for various 
options 39 

checking standard labels 162,174 
DLAB control statement 30 
DLBL control statement 28 
TLBL control statement 27 
TPLAB control statement 30 
VOL control statement 30 

check protect syrnbol* 
checkpoint/restart during a sort 210 
checkpoint subroutine 293 
checkpointing a CCBOL program 262-263 
checkpoints during a sort operation 210 

control statement requirements 263 
CHKPT macro instruction 262 
class test subroutine 294 
classes of data* 
CLIST option 37 
CLOSE control statement 26 

description and format 26,* 
OPEN REVERSED statement* 
random file optionS* 
sequential file options* 

CLOSE statement, VSAM* 
CLOSE UNIT subroutine 290 
CLOSE WITH LOCK subroutine 289 
COBOL execution output 72 
COBOL language usage with VSAM 141 
COBOL library subroutines 289-296 
COBOL option card (CBL card) 36-39 

'\ 

Index 335 



COBOL subliorary of source statement 
library 48 

COBOL support for 3886 Optical Character 
Reader 320 

COBOL VSz:,Jyi control blocks 145-149 
CODE clause* 
coding considerations for DOS/VS 191,* 
coding form, COBOL* 
collating sequence* 

ASCII* 
EbCDIC* 
for sort* 

COLU!1N clause* 
combined function processing* 
comma, exchanging with period* 
COIT\Ir:a* 

in editing* 
in statement formats 23 
PICTURE string* 
as punctuation* 

commands, job control 40 
comment control statement 22 
comments in job control statements 22 
comments on the phase map 71 
common exit point for procedures* 
common processing facilities, VSAI-'l* 

current record pointer* 
INTO/FROM identifier option* 
INVALID KEY condition* 
status key* 

Communication Region 301 
DATE control statement 26 

COMP items* 
COMP-1 items* 
COMP-2 items* 
COMP-3 it.ems* 
COMP-4 items* 
comparison* 
compare subroutines 293 
compilation 17 

foreground 300,12 
job steps 13 
of copied text* 
of debugging packet* 
options for 36-38,32-33 
work files required for 297 

compile and edit job 14 
compile, edit, and execute job 14 
compile-only job 14 
compile-time debugging packet* 
compiler capacity 297-298 
compiler diagnostic messages 67 

generation of 260,307 
working witn 260 

compiler directing statements* 
BASIS* 
COPy* 
DEBUG* 
description* 
DELETE* 
EJECT* 
ENTER* 
INSERT* 
list of* 
NOTE* 
SKIP* 

compiler-generated card number 
on diagnostic messages 67 

336 

on object code listing 66 
on source statements 59 

compiler machine requirements 297 
compiler messages 67,260,307 
compiler options 

CBL card 36-39,59 
current-date* 
OPTION control statement 32-33 
quotation mark* 
sequence checking* 
truncation of binary items* 

compiler output 59-69 
from a segmented program 91 

compiler statistics 66 
compiler work files 297 
completion codes from sort program 209 
computational items 

conversions involving 197-200 
internal representation of 200-202 
special considerations for 200 

COMPUTATIONAL usage* 
COMPUTATIONAL-1 items* 
COMPUTATIONAL-1 usage* 
COMPUTATIONAL-2 items* 
CO~PUTATIONAL-2 usage* 
COMPUTATIONAL-3 items* 
COMPUTATIONAL-3 usage* 
COMPUTATIONAL-4 items* 
COMPUTATIONAL-4 usage* 
COMPUTE statement 

programming technique 204 
subroutines 293 

computer-name* 
OBJECT-COMPUTER paragraph* 
SOURCE-COMPUTER paragraph* 
System/370 instruction* 

COM-REG 301 
condensed object listing 37 
condition-name* 
condition-name condition* 
conditional sentence, definition* 
conditional statement* 
conditional variable* 
conditions* 

compound conditions* 
PERFORM statement* 
SEARCH statement* 
test conditions* 

Configuration Section* 
copying* 
description and format* 
OBJECT-COMPUTER paragraph* 
SOURCE-COMPUTER paragraph* 
SPECIAL-NAMES paragraph* 
and System/370 instruction generation* 

considerations when using overlay 
structures 81 

CONSOLE* 
ACCEPT statement* 
DISPLAY statement* 
SPECIAL-NAMES paragraph* 

constant* 
continuation of 

job control statements 
DLAB control statement 30 
TPLAB control statement 30 

line-control cards 230 
program-control cards 230 



control blocks, COBOL VSAM 145-149 
control breaks* 
control bytes* 

BLOCK CONTAINS clause* 
inter-record slack bytes* 
S-mode and V-mode records* 

control card, COBOL option 36 
CONTROL clause* 
control fields 

S-mode records 183,184 
V-mode records 180-181 

control footings and page format 214 
control hierarchy* 
control program 11 
CONTROL report group* 

CONTROL clause* 
GENERATE statement* 
LINE clause* 
NEXT GROUP clause* 
PAGE LIMIT clause* 
report group description entry* 
summation* 
TYPE clause* 

controls in report writer* 
control sections 42 
control statement placement 

job control statements 23 
linkage editor control statements 41 
symbolic debug control 
statements 2.30-231 

UPDATE function 52 
conventional use of linkage registers 78 
conversion subroutines 291-292 
converting elementary data items 197-200 
converting non-VSAM files to VSAM 
files 144 

converting track addresses 
in a COBOL source program 

relative to actual 103,106 
in EXTENT control statement 

actual to relative 29 
relative to actual 29 

copy function of Librarian 45 
COPY statement 49 
copying* 
core image directory 45 
core image library 

private 55,18,32 
and Linkage Editor 40,300 

system 45-46 
and Linkage Editor 40,41 

CORE-INDEX option of the APPLY clause* 
correspondence of arguments and parameters 

assembler language subprograms 79 
COBOL subprograms 77 

CORRESPONDING option* 
counter updating* 
CR, in PICTURE clause* 
creating a direct file 101 

actual track addressing 101-110, 
116-111 

sample program 106-110 
relative track addressing 101-110 

sample program 111-115 
sample job decks 304,303 

creating an indexed file 121 
sample job deck 305,303 

creating a VSAM file 
examples of 141-144 
language statements required for 141 

creating standard mass storage file 
labels 115,174 

DLAB control statement 30 
DLBL control statement 28 
PARSTD option 33 
STDLABEL option 33 

creating standard tape file 
labels 162,163-166 

PARSTD option 33 
STDLABEL option 33 
TLBL control statement 27 
TPLAB control statement 30 

creating user labels 162,165,114,175 
USRLABEL option 33 

credit symbol* 
cross-footing* 
cross-reference dictionary 67 

alphabetically ordered 37 
source ordered 33 

CSYNTAX option 38 
CURRENCY-SIGN clause* 

description and format* 
international considerations* 
restriction* 

currency symbol in PICTURE clause* 
dollar sign* 

description* 
numeric edited items* 

pound sign* 
(see also CURRENCY SIGN clause)* 

CURRENT-DATE 301.26 
current record pointer, VSAM 134 
cyclic check 288 
cylinder index 119 
cylinder overflow area 119 
CYL-INDEX option, APPLY clause* 
CYL-OVERFLOW option, APPLY clause* 
COl through C12 function~names defined* 

D. in sterling PICTURE clause* 
D-mode records 177,180 
data, locating in a dump 253 
data access, VSAM 128 
data conversion 197-200,* 

DISPLAY statement 198..,199,* 
EXAMINE statement* 
first character of program-name* 
GIVING option* 
MOVE statement* 
TRANSFORM statement* 

data description clauses* 
BLANK WHEN ZERO 
data-name* 
FILLER* 
JUSTIFIED* 
OCCURS* 
PICTURE 196,* 
REDEFINES 194.* 
RENAMES* 
SYNCHRONIZED 200,* 
USAGE 191.* 
VALUE * 

data description entry* 

Index 337 



Data Division* 
considerations for 3540 Diskette unit 
files 124 

considerations for VSAM* 
data extents 

direct files 28,30 
indexed files 28,30 

data files 15 
data flow logic in a CALL structure 78 
data format conversion 197-200 
data formats in the computer 200-202 
data item* 
data item alionment* 
data iteIT description entry* 
data management 98,112 
data manipulation statements* 

EXAMI~~E* 

MOVE* 
TRANSFORIvi* 

data-name* 
data-name clause* 
data organization, VSAM 128,* 
DATA RECORDS clause* 
DATA RECORDS clause, VSAM 
data reference methods* 
data sets for symbolic debugging* 
data transformation* 
DATE-COMPILED 64 
DATE control statement 26 

and COIT@unication Region 301 
DATE-WrtITTEN paragraph* 
;JBDUG card* 
debug control subroutine 294 
debua packet 250 
debugging language 229-232,247-251 
debugging TESTRUN 233 
decimal point alignment 196,* 

~OVE statement 205,* 
period insertion character* 
rounding* 
size error* 

DEC LvlAL- POINT IS COI'1MA cIa use* 
DECK option 32 
declaratives* 

error processing* 
EXIT statement in* 
label handling* 
report writer* 
section* 

description and format* 
USE sentence* 

defaults* 

338 

ACCESS MODE clause* 
APPLY CYL/MASTER-INDEX clause* 
BLOCK CONTAINS clause* 
changing 39 
cylinder overflow area* 
name-field in system-name* 
page format in Report Writer* 
printer spacing* 
priority number* 
quotation mark character* 
record size* 
recording mode* 
segment limit* 
sequence checking* 
truncation of binary items* 
USAGE clause* 

DEFINE command 130-134 
defining a VSAM data space: DEFINE 

SPACE 132 
defining a VSAM file: DEFINE 

CLUSTER 133 
defining a VSAM master catalog: DEFINE 

MASTERCATALOG 131 
Define The File (DTF) 98 
DEL statement 51,52 
DELETE card 51-52 

used for copying 57,* 
used for debugging 250 

DELETE statement, VSAM 141,* 
deleting source statements 

for one run only 51 
from a book 48 

DEPENDING ON option of OCCURS clause 
and Table Handling Feature 217-223 
and variable-length records 218-220 

depth of a report page* 
descending sequence* 

in sort* 
in table handling* 

description and formats of job control 
statements 22-23 

DETAIL report group* 
description* 
GENERATE statement* 
LINE clause* 
NEXT GROUP clause* 
SU~ counters* 
TYPE clause* 

detailed file processing 
capabilities 145-176 

determining the location of the 
libraries 55 

determining the priority of the last 
segment loaded into the transient area 92 

device assignment 19-20 
duration of effect 24 

device support, VSAM 130 
diagnostic messages 

compiler 67,260,307 
execution-time 261 
Federal Information processing Standard 

(FIPS) 68 
generation of 260 
linkage editor 71,261 
object time 309-317,260-261 
operator 307-309,73,72 
sort 209 

direct data organization 97,* 
direct files 99-118,97 

accessing techniques 100.101,* 
ACTUAL KEY clause 101.* 
actual track addressing 101-110, 

116-117 
APPLY EXTENDED-SEARCH clause 101,* 
ASSIGN clause 100,101.* 
BLOCK CONTAINS clause* 
error processing 106,111.* 
initiating access 100,* 
invalid key condition* 
random access 101,* 
READ statement* 
recording mode* 
relative track addressing 101-106, 

111-115 



REWRITE statement* 
sample job decks 304,303 
sequential access 100,* 
user labels* 
WRITE statement* 

direct indexing* 
direct linkage 82 
direct organization (DTFDA) 99-118.97 
disk extent subroutines 290 
Diskette input/output unit (3540) 
processing 123-125 

DISPLAY i terns 
conversions involving 197-200 
internal format of 201 
special considerations for 200 

DISPLAY statement* 
DISPLAY usage* 

alignment* 
alphabetic items* 
alphanumeric items* 
ASCII considerations* 
description* 
edited items* 
numeric items* 
SYNCHRONIZED clause* 

DISPLAY-ST usage* 
DISPLAY statement subroutines 290 
displaying data values during 
execution 248 

DIVIDE statement* 
division, arithmetic operation* 
division by zero* 
division header* 
division--operator* 
division of a program, definition* 
division/remainder method of 

randomizing 103-106 
used to create a direct file 

actual track addressing 107-110 
relative track addressing 112-114 

DLAB control statement 30 
DLBL control statement 28 

identifying private libraries 55 
document description (OCR) 320 
document design (OCR) 319 
dollar sign* 
DOS/vS COBOL Unresolved External 

References 71 
double slash 22 
double spacing* 
doubleword* 
DTF 

creation of 98,150 
locating in a dump 252-253 

DTF tables 150-155 
dummy files* 
dummy segment 89 
DUMP option 32 
dumps 

errors that can cause 252 
how to use 251 
symbolic 229-245 
system 251-259 

duplication of names* 

E. in 
external floating-point items* 
floating-point numeric literals* 

EBCDIC collating sequence (Extended Binary 
Coded Decimal Interchange Code)* 

edit and execute job 14 
editing 17-18,40-42.* 
editing character* 
edit-only job 14 
editor, linkage 11 
effective storage considerations 298 
EJECT 59,191.325.* 
ellipsis 23 
ellipsis ( ••• ) in formats 23.* 
ELSE option* 

IF statement* 
nested IF statements* 
ON statement* 

END DECLARATIVES.* 
END statement 51.52 
end-of-data control statement 15 
end of file* 
end-of-job control statement 15 
end of page condition* 
end of volume positioning* 
ENTER statement* 
ENTRY control statement 42 
entry pOint in a called program 76,77 
entry-sequenced files 127 

considerations for READ statement 140 
considerations for REWRITE 
statement 139 

considerations for WRITE statement 139 
ENTRY statement 76 

in an overlay structure 83 
Environment Division* 

ASCII considerations* 
Configuration Section* 
Input-Output Section* 
international considerations* 
organization* 
segmentation considerations* 
sort considerations* 
System/370 card devices* 
System/370 instructions* 
3540 Diskette unit file 
considerations 123 

equal sign (=)* 
in COMPUTE statement* 
in relation condition* 

equal size operands in a relation 
condition* 

equivalents* 
reserved words and abbreviations* 
THROUGH and THRU* 

error bytes* 
error conditions, arithmetic operations* 
error handling (VSAM) 36 

file status values 
at OPEN 138 
at action request time 138 

status key 136,130 
error messages, diagnostic (see messages) 
error message subroutine 295 
ERROR procedures. VSAM* 
error processing declaratives* 

Index 339 



error recovery for non-VSAM files 155 
on unit-record devices 35 
using an assembler language 
routine 159-161 

using error declarative section 155-158 
using INVALID KEY 155,156 

errors that can cause a dump 252 
ERRS option 33 
evaluation rules* 
EXAMINE statement* 
EXCEPTION/ERROR procedure, VSAM* 

CLOSE statement* 
DELETE statement* 
description and format* 
OPEN statement* 
READ statement* 
REWRITE statement* 
START statement* 
WRITE statement* 

EXEC control statement 15 
EXEC FCOBOL statement 17,15 
EXEC LNKEDT statement 17,15 
execute-only job 14 
execution, order of* 
execution output 72-73 
execution time 

considerations 299-300 
machine requirements 297-298 
messages 261 

EXHIBIT statement 248-249,247 
subroutine 290 

exit point for procedures* 
EXIT PROGRAM statement 76 

symbolic debugging* 
EXIT statement* 

description and format* 
PERFORM statement* 
PROGRAM option* 
with sort procedures* 

explanatory comments* 
exponen,t* 

floating-point items* 
floating-point numeric literals* 

exponentiation 204 
Extended Binary Coded Decimal Interchange 

Code (EBCDIC)* 
collating sequence* 
nonnumeric literals* 

extended search 100 
EXTENDED-SEARCH option of the APPLY 
clause 100,* 

extended source program library 
facility 57 

EXTENT control statement 28-30 
external data* 
external decimal items* 
external floating-point items* 
external-name 76 

in ASSIGN clause* 
external reference 71 

unresolved 71 
weak 71 

F-mode records 179,* 
FCOBOL 17 

340 

Features of the DOS/VS Compiler 7 
FD* 
Federal Information Processing Standard 

(FIPS) 39, * 
figurative constants* 
file* 

and volume portability (VSAM) 130 
definition* 
disposition of* 

CLOSE statement* 
OPEN statement* 

entry-sequenced 127 
FILE-CONTROL paragraph* 
file description entry* 
inter-record slack bytes* 
I-a-CONTROL paragraph* 
key-sequenced 127 

file control block (FCB) 148 
FILE-CONTROL paragraph* 

ACCESS MODE clause* 
ACTUAL KEY clause* 
ASSIGN clause* 
copying* 
FILE-LIMIT clause* 
format* 
NOMINAL KEY clause* 
PROCESSING MODE clause* 
RECORD KEY clause* 
RESERVE clause* 
SELECT clause* 
sort considerations* 
TRACK-AREA clause* 

file description (OCR) 320 
file description entry* 

BLOCK CONTAINS clause* 
description and format* 
DATA RECORDS clause* 
LABEL RECORDS clause* 
RECORD CONTAINS clause* 
RECORDIL~G NODE clause* 
REPORT clause* 
report writer* 
sort* 
VALUE OF clause* 

file description entry, VSAM* 
file information area for OCR* 
file information block (FIB) 146 
file integrity 116 
FILE-LIMIT clause* 
file-name 

arguments 79 
definition* 

file organization 97-98 
direct 99-118,97 
indexed 118-122,97-98 
sequential 99,97 
VSAM 127 

file processing for 3540 Diskette unit 
files 123 

file processing technique* 
file retention 

on direct-access storage devices 28 
on taoe devices 27 

File section 194.* 
ASCII considerations* 
boundary aligriment* 
content* 
copying* 



file description entry* 
format* 
naming data* 
record description entry* 
report writer considerations* 
sort considerations* 

file size for sort* 
files sharing same storage area* 
FILE STATUS clause, VSAM 136,* 
file status values (VSAM) 

at OPEN 138 
at action request time 138 

file table 299 
FILLER* 

CORRESPONDING option* 
inter-record slack bytes* 
record description entry* 

FINAL control* 
CONTROL clause* 
TYPE clause* 

final phase of sort* 
FIPS diagnostic messages 68 
FIPS flagger description 39,* 
fixed insertion editing* 
fixed-length records 179 
fixed partitioned multiprogramming 12 
fixed point numeric item* 
fixed point numeric literal* 
fixed portion of a segmented program 89,* 
FLAGE option 36 
FLAGW option 36 
floating first detail 215 
floating insertion editing* 
floating-point data items and intermediate 
results 204 

floating-point numeric literal* 
flowchart* 
flow diagram of overlay logic 84 
FLOW option 

description 37,229 
restriction with OPT 229,37 
restriction with STXIT 38,229 

flow trace option (see FLOW option) 
flow trace subroutine 295 
footing report groups* 
foreground compilation 300,12 
foreground programs 12 
form overflow* 
format* 

DISPLAY statement output* 
EXHIBIT statement output* 
logical records* 
report page* 
statement 22 

format control of the source program 
listing* 

format F records 179 
format notation 

job control statements 22-23 
symbolic debug control statements 230 

format S records 183-188 
format U records 180 
format V records 180-183 
formats of blocked and unblocked 
records 118 

formulas for converting actual to relative 
track addresses 29 

formulas for converting relative to actual 
track addresses 29 

fractions, internal floating-point items* 
FROM identifier option, VSAM 
full FIPS flagging 39,* 
fullword* 
function-name* 
functional commands (VSAM) 130 
functions of COBOL library arithmetic 
subroutines 293 

GENERATE statement* 
generation of diagnostic messages 260 
generic terms 22 
GIVING option of error declarative 156-158 
global table 65 
glossary 64 
GOBACK statement 76 
GO TO ••• DEPENDING ON subroutine 295 
GO TO MORE-LABLES* 
GO TO statement* 
GOBACK statement* 
group* 

collating sequence for sort* 
contents* 
report* 

GROUP INDICATE clause* 
group item* 

halfword* 
halting execution* 
header labels* 
heading print groups* 
hierarchy* 
high-intermediate FIPS flagging 39,. * 
HIGH-VALUE (HIGH-VALUES) figurative 
constant* 

how to use a dump 251 
hyphen in statement formats 22 

1-0 files* 
I-O-CONTROL entry, VSAM* 
I-O-CONTROL paragraph* 
IBM sterling representation* 
IBM-supplied processing programs 12 
ID Division header* 
Identification Division* 
identification field of COBOL source 
statements 50 

identification of program versions 247 
identifier, definition* 
identifying records* 
IF statement 205 
IGN parameter of ASSGN job control 
statement 25,* 

ILBDCKPO subroutine 263,293 
ILBDDUMO 93 
ILBDMNSO 75,294 
ILBDSEMO subroutine 94,293 
ILBDSETO 75,294 
ILBDSRTO subroutine 209,293 
imperative statements* 
implementing an OCR operation 319 
improving efficiency 122 

Index 341 



improving performance (Sort) 208 
in-line parameter list 81 
INCLUDE control statement 42 
incrementing* 
indentation of level numbers* 
independent overflow area 119 
independent segment 89 
index data items 217 

MOVE statement* 
relation condition* 
USAGE clause description* 

index-names 217-223 
description 217.* 
modifying values in* 
MOVE statement* 
OCCURS clause* 
PERFORM statement 217.* 
relation condition* 
SEARCH statement 217.* 
SET statement 217.* 
value in 217,* 

INDEX option of the USAGE clause* 
index table 299 
INDEXED BY option of the OCCURS clause* 
indexed files 118-122 

adding records to 120-121 
sample job decks 303,305-306 

indexed organization CDTFIS) 97-98,118-122 
improving efficiency when using 122 

indexes 119 
indexing tables* 
indirect addressing 102-106 
individual type codes used in SYMDMP 
output 234 

initial loading of records into a file 
(VSAM) 137 

Initial Program Loader (IPL) 11 
initializing* 

index values* 
report writer special registers* 
sort special registers* 
values of data items* 

INITIATE statement* 
initiating* 

access to a mass storage file* 
file processing* 
report processing* 

in-line para~eter list 81 
Input 

compiler 17 
Job Control Processor 22 
Linkage Editor 17,40.41 

for a segmented program 92 
input files* 

APPLY EXTENDED-SEARCH* 
effect of close options* 
error handling* 
inter-record slack bytes* 
intra-record slack bytes* 
label handling* 
OPEN statement* 
READ statement* 
record size* 

input format for source programs* 
INPUT PROCEDURE option 209 
input/output areas (buffers)* 
input/output control statements for 
sort 207 

342 

Input/Output Control System (IOCS) 98 
input/output error subroutines 290 
input/output verb subroutines 289 
Input-Output Section* 

copying* 
description and format* 
File-Control paragraph* 
I-O-Control paragraph* 
sort considerations* 

input/output statements* 
ACCEPT* 
CLOSE* 
DISPLAY* 
OPEN* 
READ* 
REWRITE* 
SEEK* 
START * 
WRITE* 

input phase of sort 209,* 
INSERT card 51,52 

used for copying* 
used for debugging 250 

insertion* 
asterisks* 
commas* 
currency symbol* 
periods* 
sign control symbols* 
spaces* 
z.eros* 

insertion character, and item size* 
insertion editing* 
installation defaults. changing 39 
INSTALLATION paragraph* 
integer. description* 
inteoer literals* 
inter-record slack bytes* 
intermediate results 203-204 

arithmetic statements* 
compound conditions* 

intermediate storage required for sort 208 
internal data* 
internal decimal items* 

allowable characters* 
class test* 
collating sequence* 
description* 
internal representation* 
MOVE statement* 
relation condition* 
slack bytes* 
SYNCHRONIZED clause* 
USAGE clause* 

internal floating-point items* 
collating sequence* 
description* 
internal representation* 
MOVE statement* 
relation condition* 
USAGE clause* 

internal representation* 
alphabetic and alphanumeric items* 
external decimal items* 
numeric items* 
sterling items* 

international currency considerations* 
interpreting output 59-74 



interrupts, errors causing 252 
intra-record slack bytes* 
INVALID KEY condition 155 

direct organization 156.99 
indexed organization 156 
READ* 
REWRITE* 
SEEK* 
standard sequential organization 156,99 
START * 
WRITE* 

INVALID KEY condition, VSAM* 
DELETE statement* 
description* 
READ statement* 
REWRITE statement* 
START statement* 
WRITE statement* 

loes 98 
IPL (Initial Program Loader) 11 

job 13 
types 14 

job control commands 40 
job control considerations 

for accomplishing overlay 84 
for Optical Character Reader 321 
for sort program 207-208 
for symbolic debug option 230-231,232 

job control language for VSAM files 144 
Job Control Processor 11,22 

options 32-33 
job control requirements for 3540 Diskette 
unit files 124 

JOB control statement 15,16 
job control statements 22-36 

comments in 22 
definition 13 
format notation 22-23 
formation of 22 
overlay considerations 84 
sequence of 23 
sort considerations 207-208 
symbolic debug option 
considerations 230-231.232 

job deck 15,23 
job definition 13 
job definition statements 15 
job processing 17 
job step 13 
justification* 

and JUSTIFIED clause* 
and MOVE statement* 

JUSTIFIED clause* 

KEY clauses 121,* 
ACTUAL* 
NOMINAL 122,* 
RECORD 122,* 

KEY option* 
OCCURS cIa use* 
SEARCH ALL statement* 
SORT statement* 

key-sequenced files 127 
considerations for READ statement 140 
considerations for REWRITE 
sta tement lL~ 0 

considerations for WRITE statement 139 
key words* 
keys* 

for SORT statement* 
for START statement* 
for table SEARCH* 

label area, reserving storage for 30 
label definition 

DLAB control statement 
DLBL control statement 
TLBL control statement 
TPLAB control statement 

label handling* 
label processing 162-175 

30 
28 
27 

30 

mass storage file labels 174-175 
tape file labels 162-173 

label processing considerations 
mass storage file labels 174-175 
tape £ile labels 165-166 

label processing subroutines 289,290 
LABEL RECORDS clause* 
LABEL RECORDS clause, VSAM* 
language considerations 

for ASCII tape files 177 
for VSAM 1'41 
for 3540 Diskette unit files 123-124 

LBLTYP control statement 30 
leading zeros. suppression* 
left justification* 
length* 

binary items* 
BLOCK CONTAINS clause* 
data-name in APPLY CORE-INDEX* 
external decimal items* 
external floating-point items* 
internal decimal items* 
internal floating-point items* 
RECORD CONTAINS clause* 
and standard data format* 

level indicator* 
file description entry* 
reference format* 
report writer feature* 
sort feature* 
summary of* 

level numbers 193 
data description entry* 
indentation of* 
reference format* 
special* 

01 items* 
02-49 items* 
66 items* 
77 items* 
88 items* 

use* 
level number 
level number 
level number 
leve 1 number 
level number 
LIB option 
Librarian 
libraries 

39 
45-58 

core-image 45 
planning 45 

Index 343 



private 55 
procedure 53 
relocatable 46 
source statement 48 
systerr. 45 

library-name* 
library subroutines 289-296 
LINE clause* 
line-control cards 231-232 
LINE-COUNTER special register* 
line overlay (Report Writer) 213 
lines in a report* 
lines, spacing of* 

program output* 
report* 
source program* 

LINK option 32.40,~60 
linkage 75-77 

in a called program 76 
in a calling program 75-76 
correspondence of arguments and 
parameters 77 

entry points 76 
with the sort feature 209 

linkage conventions 90-93 

82 
argument list 79 
assembler subprogram 
overlay considerations 
in-line parameter list 
lowest level subprogram 
register use 78 
save area 79 

83 
81 

81 

linkage statements for subprograms* 
link editing 17-18,11 

a segmented program, example of 92 
in the foreground 306,12,32,41 
with overlay 83 
without overlay 77 

Linkage Editor 11 
linkaqe editor control statements 40-44 

fields of 40 
generated by compiler for 

segmentation 91,92 
overlay considerations 83 
placement of 41 

linkage editor diagnostic of input 71 
linkage editor input deck 18 

linkage editor input for a segmented 
program 92 

linkage editor messages 71,261 
linkage editor output 69-73,17-18 

from a segmented program 92-94 
linkage registers 78 
Linkage section* 

boundary alignment* 
content* 
copying* 
data item description entry* 
error declarative* 
format* 
intra-record slack bytes* 
record description entry* 
structure* 
use of FILLER* 
USING opt.ion of the CALL statement* 
VALUE clause* 

Linkage Section and OCR processing* 
linkage with the Sort Feature 209-210 

344 

LIOCS 98 
LIST option 32 
LISTIO control statement 31 
list of compiler features 7 
LISTX option 32 
literal* 

description* 
as a function-name* 
MOVE statement* 
nonnumeric* 
numeric* 
permissible comparisons* 
VALUE clause* 

literal pool 65 
literal tables 299 
Loader, Initial Program (IPL) 11 
loader. relocating 43 
locating a DTF 252-253 
locating data in a dump 253 
locating the Working-Storage Section in 

dumps 194 
location of the libraries, determining 55 
location of the system libraries 56 
location of slack bytes* 
LOG option 32 
logic module 114 
logic, overlay 84 
logical connectives in compound conditions* 
Logical Input/Output Control System 

(LIOCS> 98 
logical operators* 
logical record 98 

descriptio!!* 
redefining* 
renaming* 
size of* 
slack bytes in* 
spanning physical blocks 183-188 

long-precision internal floating point 
items* 

low FIPS flagging 39,* 
low-intermediate FIPS flagging 39,* 
LOW-VALUE (LOW-VALUES) figurative constant* 

in ACTUAL KEY clause* 
description* 
MOVE statement* 
track identifier* 
TRANSFORM* 

lower-case words in formats* 
lowest level program 81 
LVL option 39 

machine considerations 297,300 
magnetic tape* 
magnitude of floating-point items* 
main-line routine 203 
main program or subprogram subroutine 294 
MAINT, procedure library catalog 53 
maintenance function of Librarian 46-54 
major control break* 
mantissa* 

description* 
internal representation* 
PICTURE clause* 



mass storage devices 97 
error information* 
list of* 

mass storage files* 
CLOSE statement* 
OPEN statement* 
READ statement* 
REWRITE statement* 
SEEK statement* 
START statement* 
WRITE statement* 

mass storage file labels 281-285 
master index 119 
maximum length* 

arithmetic operands* 
binary items* 
data description entries* 
external decimal items* 
floating-point items* 
internal decimal items* 
items in EXHIBIT statement* 
keys in table handling* 
numeric edited items* 
PICTURE character string* 
record* 
table elements* 

maximum number* 
index-names * 
keys* 
procedure-names in GO TO statement* 

maximum size* 
maximum value* 

ACTUAL KEY track identifier* 
binary item and PICTURE clause* 
floating-point items* 
NSTD-REELS special register* 
ON statement integer* 
RERUN clause integer* 
RESERVE clause integer* 
subscript* 

MEMORY SIZE clause* 
MERGE Feature 207-210 
MERGE interface subroutine 293 
messages, diagnostic 

compiler 67.260,307 
execution-time 261 
Federal Information Processing Standard 

(FIPS) 68 
generation of 260 
linkage editor 71.261 
object-time 309-317,73,260-261 
operator 307-309,73,72 
sort 209 
VSAM 130 

methods of data reference* 
m~n~mum machine requirements for the 

compiler 297 
minimum value* 
minor control break* 
minus symbol* 

arithmetic expressions* 
collating sequence* 
external floating-point literals* 
indexing* 
PICTURE clause* 
SIGN clause* 
as unary operator* 

miscellaneous tables 299 

mnemonic-name* 
ACCEPT statement* 
assignment of* 
CODE clause* 
DISPLAY statement* 
SPECIAL-NAMES paragraph* 
WRITE statement* 

mode F records 179,* 
mode U records 180,* 
mode V records 180-183,* 
modification* 

library text* 
DELETE and INSERT cards 51.52,* 

sort records* 
after sorting* 
before sorting* 

modularizing 
the Data Division 194 
the Procedure Division 202-203 
when using the Segmentation Feature 89 

module 11 
input to Linkage Editor 40,41 

MOVE statement 205 
CORRESPONDING option* 
description and formats* 
permissible moves* 
sort special registers* 
sterling items* 

MOVE statement subroutines 294 
MTC control statement 31 
multifile volumes 

examples 
creating 166-167,170-171 
input processing 166,168-169 

TLBL control statement 27 
mUltiphase program 18,13,14 
MULTIPLE FILE TAPE clause* 
multiple file tape subroutine 290 
multiple phases 41 
multiple results* 

ADD statement* 
SUBTRACT statement* 

multiplication* 
multiplication operator* 
MULTIPLY statement* 
multiprogramming 12.300 
multivolumeprocessing* 

ASSIGN clause* 
CLOSE statement* 
NSTD-REELS special register* 
reading* 
writing* 

multivolume tape files 
example of creating 167.172-173 
with nonstandard labels 166 

mutually exclusive CBL options 39.37-38 

name* 
data item* 
description of* 
field in system-name* 
indexing of* 
job* 
procedure* 
qualification* 
record* 
subscripting of* 

Index 345 



naming conventions 
used by sort 209 
used by segmentation 91-92 

negative operand in a sign condition* 
negative value* 

DISPLAY statement* 
external floating point items* 
numeric edited items* 
PERFORM statement* 
SIGN clause* 
sign condition* 

nested* 
IF statements* 
OCCTJRS clauses* 
PERFORM statements* 
REDEFINES clauses* 

NEXT GROUP clause 214 
description and format* 
effect of PRINT-SWITCH* 

NOAUTO option 42,43 
NOC~TALR option 39 
NQCLIST option 37 
NODECK option 32 
NODUMP option 32 
NOERRS option 33 
NOLIB option 39 
NOLINK option 32 
NOLIST option 32 
NOLISTX option 32 
NOLOG option 32 
NOLVL option 39 
NOMAP option 18,43,42 
NOMINAL KEY clause 121,122 

description and format* 
indexed files* 
READ statement* 
REWRITE statement* 
START statement* 
WRITE statement* 

noncontiguous data items* 
nonnumeric literals* 

continuation of* 
description* 
EXAMINE statement* 
MOVE statement* 
relation condition* 
TRANSFORM statement* 
VALUE clause* 

nonnumeric operands* 
MOVE statement* 
relation condition* 

nonstandard labels 162,* 
declarative* 
GO TO MORE-LABELS* 
LABEL RECORDS clause* 
multiple reel files* 
NSTD-REELS special register* 
reversed reading* 
system procedures* 

nonstandard tape file labels 162 
multivolume file considerations 166 
restriction for ASCII files 177 

non-VSAM files, converting to VSAM 1~4 
NOOPTIMIZE (NOOPT) option 37 
NOREL option 42 
normalized level numbers 193 
NOSEQ option 36 
NOS TATE option 38 

346 

NOSTXIT option 37 
NOSUP~AP option 36 
NOSXREF option 37 
NOSYM option 33 
NOSYNTAX option 38 
NOT condition construction* 
NOT logical operator* 
NOTE statement 205 
NOTRUNC option 37 
NOVERB option 39 
NOXREF option 33 
NOZWB option 37 
NSTD-REELS 166 
null report group* 
numeric character* 

description* 
PICTURE clause* 

numeric class test* 
numeric data item* 

BLANK WHEN ZERO clause* 
class test* 
EXAMINE statement* 
fixed-point* 
floating-point* 
internal representation* 
MOVE statement* 
PICTURE clause* 
relation condition* 
VALUE clause* 

numeric edited items* 
BLANK WHEN ZERO clause* 
description* 
MOVE statement* 
relation condition* 
USAGE clause* 

numeric item, description* 
numeric literal* 

continuation* 
description* 
MOVE statement* 
relation condition* 
VALUE clause* 

numeric operands* 
ADD statement* 
COMPUTE statement* 
DISPLAY statement* 
DIVIDE statement* 
EXAMINE statement* 
MOVE statement* 
MULTIPLY statement* 
relation conditions* 
SUBTRACT statement* 

object code 
listing 66 
optimized 37 

OBJECT-COMPUTER paragraph* 
computer-name* 
copying* 
description and format* 
SEGMENT-LIMIT clause* 
Systern/370 instruct.ion generation* 

object module 69 
produced by the compiler for 

segmentation 91-92 



object of a condition* 
object program definition* 
object-time control cards for symbolic 

debugging feature 230 
object-time debugging subroutines 294-295 
object-time messages 309-317,260-261,73 
obtaining an ASCII collating sequence on a 
sort 178 

OCCURS clause 217-220 
DEPENDING ON option 217-218 
DEPENDING ON table 299 
description and formats* 
direct indexing* 
redefining restriction* 
relative indexing* 
renaming restriction* 
slack bytes* 
value restriction* 
with Table Handling Feature 217-220 

OCR processing 319,* 
OF qualifier connective* 

with indexes and subscripts* 
with name* 

OFF/ON STATUS clause* 
OMR (optical mark read) processing* 
ON statement 248,260 
ON/OFF STATUS clause* 
ON SIZE ERROR option and intermediate 
results 204 

OPEN statement* 
declaratives* 
description and format* 

OPEN statement. VSAM 
operands, overlapping* 
operand table 299 
operator communication 

ACCEPT statement 73 
job control commands 40 
PAUSE control statement 34 
STOP statement 72 

operator intervention between job steps 34 
operator messages 307-309,72 

ACCEPT statement 73 
STOP statement 72 

Optical Character Reader, 3886 
COBOL library subroutine for 290,325 
COBOL support 320 
document description 320 
document aesign 319 
file description 320 
JCL considerations 321 
procedural code 321 
processing 319 
processing tapes from the OCR 3886, 

Model 2 326 
record description 320 
sample program 327-331 
statements for invoking functions 

CLOSE function 324 
EJECT function 325 
MARKD function 325 
MARKL function 324 
OPEN function 324 
READ function 324 
READO function 324 
SETDV function 325 
WAIT function 324 

Status Key values 
by operation 322 
user actions 322 
user responses 323 

subprogram interface 321 
optical mark read processing* 
OPTIMIZE (OPT) option 

description 37 
restriction with FLOW 229,37 
restriction with NOLINK and NODECK 38 
restriction on number of procedure 
blocks 18 

optimized object code 38 
optimizer DISPLAY subroutine 295 
optimizer subroutines 295 
OPTION control statement 32-33 

duration of effect 33 
OPTIONAL (SELECT clause) 24 
optional words in formats* 
options available during link-editing 44 
options for compilation 

CBL card 36-39 
mutually exclusive 39.37-38 
OPTION control statereent 32-33 

OR logical operator in compound conditions* 
order of evaluation for compound 
conditions * 

order of execution* 
organization* 

COBOL program* 
data* 
Data Division* 
Data Division entries* 
Environment Division* 
field of system-name* 
Identification Division* 
Procedure Division* 

ORGANIZATION clause, VSAM 
organization of files 97-98 

direct 98-118,97 
indexed 118-122,97-98 
sequential 99,97 
VSAM 127 

origin point of phase 41 
output 

COBOL execution 72 
compiler 59-74,17 
complete sample program 265-278 
EXHIBIT statement 248-249 
from a segmented program 91-94 
linkage editor 69-72,17-18 
phase execution 72-73 
system 73 
TRACE statement 247 

output files* 
CLOSE options* 
error handling* 
inter-record slack bytes* 
intra-record slack bytes* 
label handling* 
OPEN statement* 
WRITE statement* 

output line overlay 213 
output phase of sort* 
OUTPUT PROChDURE option 209 
output source listinc format* 
overall ccnsideratio;s for symtolic 
debug?ing feature 232 

Index 347 



overall description of VSAM* 
overflow area 119-120 
overflow records* 
overlapping data groupings* 
overlapping operands* 

arithmetic statements* 
MOVE statement* 
TRANSFORM statement* 

overlay 14 
assembler language subroutine for 82 
using Segmentation Feature 89-94 
using subprogram linkage 81-87 

overlay logic 83 
overlay structures 81-87 

job control considerations 84 
linkage editor 83-84 
PHASE statement 41 
provided by Segmentation Feature 89-94 

overlayable fixed segment 89 
overlaying procedures* 

P, in PICTURE clauses* 
packed decimal format* 
padding in a physical record* 
page breaks 213 
page change in a report* 
page condition* 
PAGE-COUNTER special register* 
PAGE FOOTING report group* 
page format in Report Writer* 
PAGE HEADING report group* 
pairing* 

ELSE in nested IF statements* 
parentheses in arithmetic expressions* 
parentheses in subscripts and indexes* 
symbols in arithmetic expressions* 
symbols in compound conditions* 

paragraph* 
DATE-COMPILED * 
definition* 
FILE-CONTROL* 
I-O-CONTROL* 
OBJECT-COMPUTER* 
Procedure Division* 
PROGRAM-ID* 
SOURCE-COMPUTER * 
SPECIAL-NAMES* 

paragraph-name* 
qualification* 
reference format* 
rules for forming* 

parameters for OCR processing 
parameter list 76,77,79 
parentheses * 

arithmetic expressions* 
conditions* 
in statement formats 23 
PICTURE clause* 
punctuation rules* 
subscripting and indexing* 

parity checking* 
PARSTD option 33 
partial list of prime numbers 105 
PASSWORD clause, VSAM 130,134,* 
PAUSE control statement 34 

348 

PEL (pror.edure block locator) 66 
pence* 
PERFORM statement 205,* 

CALL statement* 
debug packets* 
declarative section* 
description and formats* 
flowcharts* 
in a segmented program 93,* 
sort procedures* 

period* 
and comma exchanged* 
data description entry* 
division header* 
END DECLARATIVES* 
fixed-point numeric literals* 
floating-point numeric literal$. 
in statement formats 23 
paragraph-name* 
PICTURE clause* 

permanent segment 89 
permissible 

comparisons* 
moves* 
speci£ications for the first eight bytes 
of the actual key 102 

symbol pairs* 
phase 

definition of 11 
origin point 41 

PHASE control statement 41 
generated by corr.piler for 

Segmentation 90,92,93 
using overlay 83 

phase execution 18 
output 72-73 

phase map 71 
Physical Input/Output Control System 

(PIOeS) 98 
physical file, definition* 
physical record* 

definition* 
size specification* 

PICTURE clause 196-197 
allowable symbols* 
ASCII considerations* 
categories of data* 
character string* 
classes of data* 
editing* 
precedence of symbols in* 
repetition of symbols* 

PIOCS 98 
planning the libraries 45 
plus symbol* 

arithmetic expressions* 
collating sequence* 
indexing* 
PICTURE clause 

description* 
external floating-point items* 
fixed insertion editing* 
floating insertion editing* 
numeric edited items* 
precedence in* 
sterling items* 

SIGN clause* 
unary operator* 



PMAP option 37 
pocket select characters* 
positioning a file* 
positive operand in sign condition* 
positive value* 
possible specifications for X'ss' in the 

ASSGN control statement 25 
pound-report-string* 
pound-separator-string* 
pound sign* 
pre-DTF switch 155 
prefixes 193 
preparing COBOL programs for processing 19 
prime area 118 
prime numbers 103,104,105 
print line size for report* 
PRINT-SWITCH* 
printer spacing subroutine 289 
priority numbers 89,90 

ALTER statement* 
called programs 90,* 
description 89,90,* 
information for use 89,90,* 
PERFORM statement 93,* 
section header* 
segment limit 91,* 

private core image library 55,18,32 
and Linkage Editor 40,300 

private libraries 55 
private relocatable library 42,43,55 
problem program area 18 
procedural code (OCR) 321 
procedure block 203 
procedure block locator (PBL) 66 
procedure branching statements* 

ALTER statement* 
EXIT statement* 
GO TO statement* 
PERFO~l statement* 
STOP statement* 

Procedure Division* 
consideration~ for VSAM* 
content* 
copying* 
definition* 
Diskette unit (3540) file 
considerations 124 

header 76 
modularizing 202 
organization* 
Report Writer considerations* 
Sort considerations* 
statement list* 
statements 204-205,* 
sterling considerations* 
structure* 
table handling considerations* 
USING option on the division header* 

procedure library 53 
procedure-name 

arguments 79 
definition* 
table 298 

procedures, Declarative* 
processing 3540 Diskette unit 
files 123-125 

processing 
capabilities summary, VSAM* 
COBOL files on mass storage devices 97 
direct files 100-101 
indexed files 121 
programs 11 
sequential files 99 

ASCII tape files 177-178 
tapes from the 3886 OCR, Model 2 326 

PROCESSING MODE clause* 
Processor, Job Control 11.22 

options 32-33 
program, control 11 
program-control cards 231 
Program Global Table (PGT) 66 
PROGRAM-ID paragraph 

and program linkage 75-76 
and Segmentation 91-92 

Program Loader. Initial (IPL) 11 
program-name* 
program status, recording 262 
program switches 35 

Communication Region 301 
program termination* 
program versions, identification 247 
programmer logical units 19,20 
programming techniques 191-206 

Data Division 193-202 
Environment Division 192 
general considerations 191 
Procedure Division 202-206 

programs 
application 12 
IBM-supplied 12 
processing 11 
system service 11 

PSERV, procedure library 54 
punctuation character* 

quadruple spacing of source program 
listing* 

qualification* 
condition-names* 
description* 
index-names* 
names* 
subscripts* 

qualifier connective, definition* 
qualifier. definition* 
quotation mark option* 

default* 
nonnumeric literals* 
program-name* 

QUOTE (QUOTES) figurative constant* 
QUOTE option 37 
quotient* 

random access* 
ACCESS MODE clause* 
CLOSE statement* 
definition* 

Index 349 



direct files 101,* 
error processing* 
indexed files 121-122,* 
READ statement* 
REWRITE statement* 
SEEK statement* 
WRITE statement* 

random file processing* 
effect of CLOSE options* 
function of a read* 

randomizing 
for the 2311 Disk Drive 116 
for the 2321 Data Cell Drive 117 

randomizing techniques 102-106 
sample programs 107-110,112-115 

range of a PERFORM statement* 
range of values* 

condition-name* 
priority numbers* 
sequence numbers on DELETE card* 

RCE (read column eliminate) processing* 
RD* 
READ INTO statement 205 
READ NEXT statement (VSAM) 140 
READ statement. 

description and format* 
error processing* 

READ statement. VSAM 140,* 
description anq formats* 
entry-sequenced file considerations 140 
key-sequenced file considerations 140 
processing capabilities* 

~EAD statement subroutines 289 
~ading backwards* 
~ding nonstandard labels* 

READY/RESET TRACE statement* 
READY TRACE statement 247-248 
receiving data item* 

justification. 
MOVE statement* 

record* 
description* 
level number* 
naming* 
slack bytes* 
RECORD CONTAINS clause 194 
description and format* 
Report Writer* 
Sort* 

RECORD CONTAINS clause. VSAM* 
record description (OCR) 320 
record description entry* 
record formats 179~188 

format F 179 
format S 183-188 
format U 180 
format V 180-183 
VSAM files 136 

RECORD KEY clause 122 
RECORD KEY clause, VSAM* 

description and format* 
START statement* 

record length for sort records* 
record size default* 

ACCEPT statement* 
DISPLAY statement* 

report writer* 
record zero (RO) 99 

recording capacities of mass storage 
devices 97 

recording mode* 
ASCII considerations* 
default* 
specification* 
types* 

RECORDING MODE clause 
description and format* 
ASCII considerations* 

RECORDING MODE clause invalid, VSAM* 
recording program status 262 
REDEFINES clause 194,* 

APPLY CORE-INDEX option* 
description and format* 
position when used* 
SYNCHRONIZED clause* 
VALUE clause* 

redefining subscripts 194 
reference format* 
references, unresolved external 71 
register assignment 66 
register use for linkage 78 
regrouping data items* 
relation character* 
relation conditions* 
relational-ooerators* 
relationship~of PICTURE to storage 
allocation 202 

relative indexing* 
relative LINE clause* 
RELEASE statement in sort* 
relocatamle library 46-47 

cataloging a module 46 
directory 46 
INCLUDE statement 42 
maintenance functions 46 
private 42,43,55 

relocating loader feature 43 
relocation factor 39 
remainder, definition* 
REMARKS paragraph* 
RENAMES clause* 
renaming * 

data items* 
logical records* 

REP statement 51,52 
repitition of symbols in PICTURE* 
replacing source statements in a book 51 
REPORT clause 211 
REPORT clause invalid, VSAM* 
report, description* 
report description entry* 
report file, definition* 
REPORT FOOTING report group* 
report group description entry* 
report groups. 
REPORT HEADING report group* 
report page format effect on 

LINE-COUNTER special register* 
PAGE-COUNTER special register* 
PAGE LIMIT clause* 

Report Section* 
content* 
COpy statement* 
formats * 
structure* 
VALUE clause* 



~eport Writer Feature 211-215 
Data ~ivision considerations* 
Procedure Division considerations* 

qeport Writer routines, generation of 215 
report-name* 
Report Writer tables 299 
reposition tape subroutine 296 
required words for formats* 
RERUN clause 

ASCII considerations* 
and RSTRT control staterrent 262-263,34 
and Sort Feature 210 
subroutine 293 

P.2SERVE clause 192 
RESET control statement 34-35,25 
RESET TRACE statement 248 
restarting a checkpointed 

program 262-263,34 
retrievins a book from the source statement 
library '49 

BASIS card 57 
COpy statement 49,57 
modifying using INSERT and DELETE 

cards 57,58 
retrievinq a direct file 100 

sample-joD deck 304 
retrieving an indexed file 121 

sample job deck 306 
retrieving a program phase 45-46 
retrieving a VSAM file 143 
return code* 

multi-volume files* 
sort* 

return from sort* 
input procedure* 
output procedure* 

RETURN statement in sort* 
reversed reading of a file* 
rewinding a tape file* 
REWRITE statement* 

description and format* 
error processing* 

REWRITE statement, VSAM 139,* 
description and format* 
entry-sequenced file considerations 139 
key-sequenced file considerations 140 
processing capabilities* 

REWRITE statement subroutines 289 
rewriting mass storage files* 
right justification* 
rolling counters forward* 
root phase 18 

in overlay structure 81 
root phase overlay 18 
root segment 90,91,92 

including subprograms in 90 
ROUNDED option in arithmetic statements* 

ADD* 
COMPUTE* 
description* 
DIVIDE* 
MULTIPLY* 
SUBTRACT* 

rounding* 
RSTRT control statement 34,262-263 
rules for the SET statement 223 
RO (record zero) 99 

S, in PICTURE clause* 
S-mode records 183-188 
SAME clause* 
SAME clause, VSAM* 
sample job decks 303-306 
sample label and file extent information 
for mass storage files 30 

sample linkage routines used with a calling 
subprogram 80 

sample linkage routines used with a lowest 
level subprogram 81 

sample logical unit assignments 20 
sample OCR program 321-331 
sample programs* 

creation of a direct file 106-115.* 
creation of an indexed file* 
OCR 327-331 
report writer* 
retrieval of a direct file* 
retrieval of an indexed file* 
sort* 
table handling* 

sample program output 265-278 
sample program with symbolic debugging 
features 235-246 

save area 79 
scaling, effect on rounding* 
scaling position character (p)* 
scientific decimal item* 
SEARCH ALL statement 221 
SEARCH statement 224-225 

subroutine 294 
section header* 
section-name* 
SEEK statement* 
segment classification 89,* 
segment descriptor field 184 
segment limit 91 
segmentation Feature 89-94 

ALTER statement* 
called programs 90.* 
classifying segments 89.* 
control of 89.* 
fixed portion 91.* 
GO TO statement* 
independent s~gments 89,90,* 
operation 90 
output from a segmented program 91 
overlayable fixed segments 89,* 
PERFORM statement 93,* 
permanent segments 89.* 
priority 'numbers 89.* 
program organization* 
restrictions on program flow* 
segment limit 89.* 
with sort 93 

segmentation subroutine 293 
segments 89-90 
SELECT clause 

ASSGN control statement 28 
COpy statement* 
DLBL control statement 28 
EXTENT control statement 28-30 
formats * 
GIVING option of SORT statement* 
programming technique 181 
TLBL control statement 27 
VOL control statement 30 

Index 351 



SELECT OPTIONAL clause 24 
semicolon* 

data description entry* 
source program* 

sentence* 
conditional* 
description* 
termination* 

SEPARATE CHARACTER option of SIGN clause* 
separately signed numeric subroutine 291 
separator* 
SEQ option 36 
sequence-check source statements 36 
sequence checking compilation default* 
sequence-number-field for copying* 
sequence number in a source program* 
sequence of job control statements 23 
sequential access 99.* 

ACCESS MODE clause 99,* 
ACTUAL KEY clause 101,* 
APPLY WRITE-ONLY clause* 
ASSIGN clause* 
description 99.* 
direct files 100,* 
indexed files 121,* 
NOMINAL KEY clause* 
recording mode* 
RECORDING MODE clause* 
RESERVE clause* 
sequential files 97,99,* 
size of records* 

sequential data organization 97.* 
sequential disk and tape labels 
subroutines 289 

sequential files 97,99,* 
sequential multivolume files 99,* 
sequential organization (DTFSD) 99,97 
serial search of a table* 
service function of Librarian 45 
service programs, system 11 
Services, Access Method 130 
SET command 26,59 
SET statement 221-222 

description and formats* 
rules for 223 
with index data items* 
with indexes* 

setting values for index-names* 
severity levels of diagnostic messages 67 
sharing storage between files* 
shilling representation* 
short-precision internal floating-point 

items* 
sign* 

class condition* 
internal representation* 
literals* 
MOVE statement* 
PICTURE clause* 
relation condition* 
SIGN clause* 
sign condition* 
sterling items* 
subscripts* 
unary operator* 

SIGN clause 196 

352 

ASCII considerations* 
class condition* 

description and format* 
sign condition* 
7-track tape, restriction when used as sort 
work files 208 

sign usage 196 
significant characters for various 
options 39 

simple insertion editing* 
single digit level number* 
single-program mode 12 
size considerations 297 
SIZE ERROR option in arithmetic statements* 
SKIP1 59,,191 
SKIP2 59,191 
SKIP3 59,191 
slack bytes* 
slash ampersand (/&) 15 
slash asterisk (/*) 15 
sort diaqnostic messages 209 
sort* 

ascending and descendin~ sequence* 
ASCII considerations 178.* 
checkpoints* 
collating sequence* 
control of orocedures* 
Data Division considerations* 
Environment Division considerations* 
file description entry* 
final phase* 
input phase* 
keys* 
modification of records* 
optimizing performance 208-209,* 
Procedure Division consijerations* 
sample program* 
special registers 209.* 
work units* 

Sort/Merge Feature 207-210 
intermediate storage required 208 
linkage 209 
machine requirements 300 
in a mUltiphase environment 210 
in a segmented ~rogram 93 
obtaining an ASCII collating 

sequence 178 
performance, im~roving /08-209 
products 207 

sort-file* 
COpy statement* 
description entry* 
SELECT clause* 

sort input/output control staterrents 207 
sort/merge interface subroutine 293 
sort/merge job control requirerrents 207 
sort/merge work files 208 
sort keys, restriction 207,178 
sorting an unlabeled tape file 306,303 

sample job deck 306 
SORT-RETURN 209 
sort special registers 209,* 
SORT statement* 

description and format* 
GIVING option 207,* 
INPUT PROCEDURE option* 
OUTPUT PROCEDURE option· 
RELEASE statement* 
RETURN statement* 
USING option 207 * 



SORTWK1, SORTWK2 in sort* 
SOURCE clause* 
SOURCE-COMPUTER paragraph* 
source program* 

definition* 
reference format* 
size considerations* 
structure* 

source program library facility 49,* 
COPY statement 49,* 
extended 57,* 

BASIS 57~* 
DELETE and INSERT 57,* 

source statement library 48-52 
cataloging a book 48 
directory 48 
maintenance functions 48 
updating books 50 

space allocation 
EXTENT control statement 28-29 
XTENT control statement 30 

SPACEn option 37 
space insertion* 
SPACE (SPACES) figurative constant* 
spacing of source program listing 191 
spanned records 183-188 

on directly organized files 187-188 
on sequentially organized files 185-186 
and Sort Feature 208 

special characters* 
CURRENCY-SIGN clause* 
in formats* 

special considerations when using overlay 
structures 81 

special insertion editing* 
special level numbers* 
special-names, definition* 
SPECIAL-NAMES paragraph* 
special registers* 

report writer* 
LINE-COUNTER* 
PAGE-COUNTER* 
PRINT-SWTICH* 

sort* 
SORT-CORE-SIZE* 
SORT-FILE-SIZE* 
SORT-MODE-SIZE* 
SORT-RETURN 209,* 

system* 
COM-REG 301,* 
CURRENT-DATE 301,* 
NSTD-REELS 166,* 
TALLY* 
TIME-OF-DAY* 

specifications for the first eight bytes of 
the actual key 102 

stacked items in formats* 
standard data format* 
standard file labels 

example of multiple volume 
creation 166,168-169 

mass storage 174-175 
format 1 281-286 

tape 162,163-164,279-280 
STANDARD option of the LABEL RECORDS 

clause* 
standard sequential file* 

APPLY WRITE-ONLY clause* 

ASSIGN clause* 
BLOCK CONTAINS clause* 
definition* 
effect of CLOSE options* 
error declarative capabilities* 
labels* 
reading* 
recording mode* 
RESERVE clause* 
writing* 

standard system procedures* 
error routines* 
label handling* 

START statement 122 
description and format* 
error processing* 
indexed files* 
NOMINAL KEY* 

START statement, VSAM 141,* 
description and format* 
processing capabilities* 

STATE option 
description 38,229 
restriction with OPT 38,37,229 
restriction with STXIT 38,37,229 
restriction with SYMDMP 38,229 

statement formats 
job control 22-23 
symbolic debug option 229 

statement number option (see S~ATE option) 
statement number subroutine 294 
statistics 66 
Status Key 

OCR 322,323 
VSAM 138-139,136.130 

STDLABEL option 33 
sterling currency* 
STOP RUN statement* 
STOP statement 72 

subroutines 290 
storage required for sort* 
structures of the actual key 102 
STXIT option 37 

restriction with SYMDMP 38,37 
restriction with STATE 38,37,229 

subordinate phases 18 
subprogram interface (OCR) 321 
subprogram linkage statements 75-77,* 

CALL 75,* 
ENTRY 76,* 
EXIT PROGRAM* 
GOBACK* 
STOP RUN* 
termination considerations* 
USING option* 

subprogram structures 75-87 
subroutines 289-296 
subscripts 217 

condition-name* 
description and formats* 
qualification* 
qualifier* 
redefining 194 
restrictions on use* 

substitution* 
comma for period* 
dollar sign* 

subtotalingin a report* 

Index 353 



SUBTRACT statement. 
CORRESPONDING option* 
description and formats. 
GIVING option. 
overlapping operands. 
ROUNDED option. 
SIZE ERROR option. 

subtraction operator. 
SUM clause. 
SUM counters 211 

definition· 
GENERATE statement. 
INITIATE statement. 
RESET clause. 
resetting to zero. 

SUM routines 212-213 
summary reporting. 
summation in a report. 
summing techniques 211 
Supervisor 11 
SUPMAP option 36 
suppress spacing. 
suppressing messages 

FLAGE option 36 
NOERRS option 33 

suppression of. 
library entry listing. 
report group printing. 
sequence checking. 
spacing in WRITE statement. 
zeros in PICTURE clause. 

suppression and replacement editing. 
suppression symbols. 
switch-status condition. 

description and format. 
system-names· 

SXREF option 
description 37 
example 67 
suppressing 37 

SYM option 33 
symbol pairs. 
symbolic debug option (see SY~illMP option) 
symbolic debugging features 229-246 

FLOW option 229 
STATE option 229 
SYMDMP option 229-232 

symbolic debugging subroutines 295 
symbolic names 

of input/output devices 19,20.21 
of phases 42 

symbolic portion of ACTUAL KEY. 
symbols. 

arithmetic expressions. 
floating-point literals. 
PICTURE clause. 
relation conditions. 
sterling currency formats. 
used to define compiler-generated 
information 66 

SYMDMP option 
description 229-230.38 
restriction with NOLINK and NODECK 38 
restriction with OPT 37.229 
restriction with STATE 38 
restriction with STXIT 37,38,229 

SYNCHRONIZED clause 200 
synonyms 116 

354 

syntax checking 191.247 
SYNTAX option 38 
syntax rules 

job control statements 22-23 
symbolic debug control staterrents 230 

SYSCLB 19,21,55 
SYSIN 19,21 
SYSIPT 19,21 
SYSLNK 19,21.40 
SYSLOG 19,21 
SYSLST 19,21.59 
SYSOUT 19,21,24 
SYSPCH 19,21 
SYSRDR 19,21 

on same device as SYSIPT 15,17,19 
SYSRES 19,21.55 
SYSRLB 19=21=55 
SYSSLB 19,21.55 
system closing conventions* 
system and size considerations 297-300 
system libraries, relative location 56 
system logical units 19 
system message identification codes 73 
system-name· 

ASSIGN clause* 
RERUN clause. 
Sort Feature. 

system-name restriction for RERUN on a sort 
file 210 

system output 73 
system service programs 11-12 
system special registers* 
SYSOOO through SYS221 19,21 
SYS005 38,232,297 

table element 217 
Taole Handling Feature 217-225 

ascending/descending sequence. 
Data Division considerations. 
indexing 217,. 
Procedure Division considerations* 
sample program. 
subscripting 217.* 

tables 298-299 
taking a checkpoint 262 
TALLY special register* 

ACCEPT statement* 
description* 
DISPLAY statement. 
EXAMINE statement* 
SOURCE clause* 
subscript. 
SUM clause* 

tape device, error information. 
tape file labels 279-280 
tape pointer subroutine 290 
table and sequential disk labels 
subroutines 289 

Task Global Table (TGT) 65 
TERMINATE'ststeroent 
termination of* 

execution* 
main prograrr.s* 
report processinq. 
sort proces~-;ing* 
sub'prog rarns * 



test conditions* 
testing a program selectively 250 
testing additions and changes to 

programs 250-251 
THEN 

used in IF statement* 
used in sentences* 

TBRU reserved word* 
and PERFORM statement* 
and THROUGH. equivalence of* 
and VALUE clause* 

TlME-OF-DAY special register* 
TLBL control statement 26 

standard tape file labels 163,164 
TPLAB control statement 30 
TRACE statement 241 
track 97 
track addresses. converting 

in a COBOL source program 
relative to actual 103,106 

in EXTENT control statement 
actual to relative 29 
relative to actual 29 

track addressing 99-100 
actual 101-110.116-117 

sample program 106-110 
relative 101-106 

sample program 111-115 
TRACK-AREA clause* 
track formats for direct-access storage 
devices 287-288 

track index 119 
trailer labels* 
transfer of control* 

ALTER statement* 
CALL statement* 
calling and called programs* 
DECLARATIVES* 
end of series of procedures* 
EXIT statement* 
GO TO statement* 
GO TO MORE LABELS* 
GO BACK statement* 
operating system* 
operator* 
PERFORM statement* 
RELEASE statement* 
RETURN statement* 
segments, among* 
SORT feature* 

TRANSFORM statement 206 
ASCII considerations* 
description and format* 
subroutine 294 

transient area 92 
transient subroutines 295-296 
translation from ASCII to EBCDIC 178 
transmission errors* 
triple spacing* 
TRUNC option 37 
truncation* 

alphabetic and alphanumeric items* 
arithmetic operations* 
of buffers* 
of Cor,lPUTATIONAL items 37 
floating insertion editing* 
MOVE statement* 
numeric items* 

TYPE clause* 
type codes used in SYMDMP output 234 
types of jobs 14 

U-mode records 180 
undefined records 180 
unique names* 

indexing* 
qualification* 
subscripting* 

unit, definition* 
in formats* 
in storage* 

unit record volume* 
CLOSE options* 
description* 
error information* 
list* 

unlabeled files 175 
example of multifile volume 
processing 166,168-169 

example of multivolume file 
creation 167.172-173 

sorting 306 
unnumbered messages, COBOL object-time 317 
unresolved external references 71 
unsigned numeric operands* 

considered oositive* 
relation condition* 
sign condition* 

unsigned items 196~197 
UPDATE function 50-53 

ADD statement 50,51.52 
control statement placement 52 
DEL statement 51 
END statement 51 
invalid operand defaults 52 
REP statement 51 
UPDATE statement 50-51 

UPDATE statement 50-52 
updating a book in the source statement 
library 50-52 

updating a direct file 101 
sample job deck 304 

updating an indexed file 120,121 
sample job deck 306 

upper-case letters in statement formats 22 
UPSI byte 37 
UPSI control statement 35 

Communication Region 301 
UPSI switches 301 
UPSI:-O through UPSI-7 35 
USAGE clause 197 

alteration by redefining* 
ASCII considerations* 
default* 
description and format* 
index data items* 
internal representations* 

use of coding form* 
use of symbolic debugging features 229 
USE statement* 

description and formats* 
error processing* 
label processing* 
report writer* 

Index 355 



use of SUM 211 
user-created libraries* 
user error procedures* 
user header label (UHL)* 
user labels 

mass storage files 174,175 
tape files 162,165 

user program status indicator bits* 
user program switch indicators 301 
user standard labels 162 
USING option 

of CALL statement 75 
of ENTRY statement 76 
on Procedure Division header 76 

using ISAM programs to process VSAM 
files 144 

using the Report writer feature 211-216 
using the segmentation feature nn 

O~ 

using the Sort/Merge feature 
using the START verb (VSAM) 
USRLABEL option 33 

207 
141 

utility data sets 
required by compiler 297 
required by sort program 

UTL (user trailer label)* 

v, in PICTURE clause* 
V-mode records 180-183 
valid mass storage devices* 
VALUE clause* 

condition-names * 
description and formats* 
example* 
report writer data items* 
sterling items* 

VALUE OF clause* 

300,208 

variable-length records 180-183 
variable length table* 
various options, significant characters 

for 39 
VERB option 39 
vertical positioning of a printed line* 
yirtual Storage Access Method (see VSAM) 
VSAM catalog 128 
VSAM messages 130 
VOL control statement 30 
volume and file portability (VSAM) 130 
volume labels 

mass storage 174 
tape 162 

volume positioning, CLOSE statement* 
volume switch* 

CLOSE options* 
label processing* 
READ statement* 
WRITE statement* 

VSAM (Virtual Storage Access 
Method) 127-144 

355 

Access Method Services 130 
DEFINE command 130-131 

defining a VSAM data space: 
DEFINE SPACE 132 

defining a VSAM file: 
DEFINE CLUSTER 133 

defining a VSAM master catalog: 
DEFINE MASTERCATALOG 131-132 

functional commands 130 

catalog 128 
COBOL lan~uage usage with VSAM 141 
COBOL VSAM control blocks 145 
converting non-VSAM files to VSAM 
files 144 

creating a VSAM file 141 
examples of 141-144 
language statements required for 14 

current record pointer 134 
data access 128 
Data Division considerations* 
data organization 128,129 
DEFINE corrmand 130-131 
DELETE statement 141 
device support 130 
entry-sequenced files 127-128 
error handling 136 

file status values 
at OPEN 138 
at action request time 138 

error processing 130 
status key 138-139.136,130 

file and volume portability 130 
file control block (FCB) 148 
FILE-CONTROL paragraph* 
file information block (FIE) 146 
file organization 127 
file processing techniques 134 
file status values 

at OPEN 138 
at action request time 138 

initial loading of records into a 
file 137 

I-O-CONTROL paragraph* 
job control language for a VSAM 
file 144 

key-sequenced files 127 
messages 130 
opening a VSAM file 137 
overall description* 
Procedure Division considerations* 
processing capabilities surrrr,ary* 
reading records on a VSAM file 140 

entry-sequenced file considerations 
for the READ statement 140 

key-sequenced file considerations for 
the READ statement 140 

READ NEXT statement 140 
READ statement 141 

record formats for VSAM files 136 
retrieving a VSAM file 143 
rewriting records on a VSAM 
£ile 139-140 

entry-sequenced file considerations 
for the REWRITE statement 139-140 

key-sequenced file considerations for 
the REWRITE statement 140 

security 130 
service programs (Access Method 
Services) 130 

status key 138-139,136,130 
subroutines 290 
using ISAM programs to process VSAM 
files 144 

using the START verb 141 
valid mass storage devices* 



writing records into a VSAM file 139 
entry-sequenced file considerations 
for the WRITE stateroent 139 

key-sequenced file considerations 
for the WRITE statement 139 

weak external reference 71 
WHEN-COMPILED special register 26,7,* 
WITH CODE clause 213-214 
word* 

characters used in* 
continuation of* 
definition* 
separators* 
types* 

word boundary* 
work files 

required by compiler 297,38 
required by sort program 300,208 

Working-Storage Section 194,* 
boundary alignment* 
condition-name entries* 
content* 
COpy statement* 
data item description entry* 
formats* 
level-numbers in* 
locating in a dump 194 
naming data* 
record description entry* 
renaming entries in* 
structure* 
used in error processing* 
use of FILLER* 
values of items* 

Working-Storage section and OCR processing* 
WRITE FRO~ statement 205 
WRITE-O~LY option of APPLY clause* 
WRITE statement* 

combined function processing* 
description and formats* 
error processing* 
multivolume sequential files* 
system-name organization field* 

~\RI'l'E statement, VShl1 139, * 
description and format* 
entry-sequenced file considerations 139 
key-sequenced file considerations 139 
processing capabilities* 

WRITE statement subroutines 289 
WRITE-VERIFY option of APPLY clause* 
writing user labels* 

x, in PICTURE clause* 
XREF dictionary 67 
XREF option 33 
X'ss' parameter of ASSGN job control 
statement 

possible specifications for 25 
XTENT control statement 30 

Z, in PICTURE clause* 
ZERO (ZEROES, ZEROS) figurative constant* 

description* 
MOVE statement* 
relation condition* 
replacing numeric literal* 
TRANSFORM statement* 

zero divisor* 
zero insertion* 
zero operand* 

DIVIDE statement* 
internal floating-point items* 
relation condition* 
sign condition* 

zero, simple insertion editing* 
zero suppression and replacement editing* 
zone bits, external decimal items* 
zoned decimal format* 
ZWE option 37 

01-49 level numbers* 
6, in sterling PICTURE clause* 
66 level number* 
7, in sterling PICTURE clause* 
77 level number* 
7-track tape, restriction when used as sort 

work files 208 
8, in sterling PICTURE clause* 
88 level number* 
9, in PICTURE clause* 

alphanumeric edited items* 
description* 
numeric edited items* 
numeric items* 
precedence* 
sterling items* 

2319, 3211, 3330, 3410, 3420. 3505, 3525 
support 7,* 

2560. 3504, 3881, 5425 support 7,* 
3203, 3340, 3540, 5203 processing 7,* 
3540 processing 123-125 
3886 processing (see Optical Character 
Reader) 

Index 357 





IBM DOS/VS COBOL Compiler and 
library Programmer's Guide 
SC28-6478-2 

Your comments about this publication will help us to improve it for you. 
Comment in the space below, giving specific page and paragraph references 
whenever possible. All comments become the property of IBM. 

Please do not use this form to ask technical questions about IBM systems and 
programs or to request copies of publications. Rather, direct such questions or 
requests to your local IBM representative. 

If you would like a reply, please provide your name, job title, and business 
address (including ZIP code). 

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 

Reader's 
Comment 
Form 



SC28-6478-2 

Fold and Staple 

Business Reply Mail 
No postage necessary if mailed in the U.S.A. 

Postage will be paid by: 

IBM Corporation 
P. O. Box 50020 
Programming Publishing 
San Jose, California 95150 

Fold and Staple 

International Business Machines Corporation 
Data Processing Division 
1.133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 

(I nternational) 

First Class Permit 
Number 6090 
San Jose, California 

to 
~ 
o 
o en 
<: 
en 
(") 
o 
to 
o 
r 
"tJ 

b 


