
Systems

SY33-8564-3
File No. S370-30

DOS/VS Access Method Services
Logic

Program Number 5745-SC-AMS

Release 34

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Fourth Edition (July 1976)

This edition, SY33-8564-3, with Technical Newsletter SN24-5550, applies to Release 34
of DOS/VS, and to all subsequent releases unless otherwise indicated in new editions
or technical newsletters. Changes are periodically made to the information contained
herein; before using this publication in connection with the operation of IBM systems,
consult the IBM System/370 Bibliography, GC20-0001, for the editions that are
applicable and current.

This edition, SY33-8i64-3, is a major revision of SY33-8564-2. Changes and additions
to the text and illustrations are indicated by a vertical line to the left of the change.

Summary of Amendments

For a list of changes, see page 15.

This publication has been photocomposed through ATMS (an IBM Program Product)
and TERMTEXT/Format (an IBM Installed User Program). For information regarding
those programs, contact your IBM representative or the IBM branch office in your
locality.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form
has been removed, comments may be addressed to IBM Programming Publications,
Dept. G60, P.O. Box 6, Endicott, New York 13760. Comments become the property
of IBM.

© Copyright International Business Machines Corporation 1973, 1975, 1976, 1977

PREFACE

This book describes the internal logic of the routines of Access Method
Services and provides diagnostic information. This information is directed to
maintenance personnel and development programmers who require an
in-depth knowledge of the program's design, organization, and data areas. It
is not required for effective use of Access Method Services.

You should be familiar with general programming techniques, DOS/VS
VSAM concepts and use, and System/370 before reading this book. If you
are unfamiliar with these concepts, read:

• DOS/VS Access Method Services User's Guide, GC33-5382, which
describes the general syntax of the Access Method Services language, the
commands of this processor, and how they are used.

• DOS/VS Data Management Guide, GC33-5372, which describes the use
ofVSAM.

Other books that may be helpful to you are:

• DOS/VS Serviceability Aids and Debugging Procedures, GC33..;5380,
which describes how to analyze a main storage dump from DOS/VS.

• DOS / VS LIOCS Volume 4, VSAM Logic, SY33-8562, which
describes the internal workings of VSAM. VSAM Catalog Management is
included in this book.

• Guide to PL/S II, GC28-6794, which helps interpret the microfiche
listings. The microfiche listings contain both the PL/S and assembly source
code.

This book is divided into six chapters:

• "Introduction" describes the design philosophy of this processor, and
defines terms used later in the book.

• "Method of Operation" describes how the program works. Emphasis is on
the flow of data and the technology that is used rather than on the
organization of modules.

• "Program Organization" shows how the processor is packaged into load
modules. Relationships between the Access Method Services processor and
the operating system are given.

• "Microfiche Directory" relates the information in this book to.the listings
found on microfiche.

• "Data Areas" describes the control blocks and other data areas that are
internal to this processor.

• "Diagnostic Aids" shows how to analyze a dump of the processor and find
specific modules and data areas.

Preface 3

CONTENTS

Preface .. 3

IDustrations .. , 11
Figures .. ' 11
Diagrams ... 11

Summary of Amendments .. 15
Release 33 ... 15

Catalog Recovery II (RESETCAT) 15
New LISTCAT Format .. 15
ALTER Error Checking ... 15
CBMM Removal .. 15
Error ~~1essage EnhanCements .. 15

Introduction ... 19
Requirements .. 19
The Access Method Services Processor ... 19
Naming Conventions .. 25

Character Code Dependencies ... 26

Method of Operation ... 27

Program Organization .. 287
Overall Organization .. 287

System Macros and Services ysed by Access Method Services 289
Services Provided by Access Method Services 291
Processor Invocation .. 293
Processor Condition Codes .. 295
User 110 Routines .. 295

Overall Control Flow ...• 296

Microfiche Directory ... 299

Data Areas .. 323
Buffer Pool Control Block - BUFS .. 324

Buifer Pool Control Block Description .. 324
Command Descriptor ... , 324

Verb Data Area .. 325
Positional Parameter Appendage ... 325
Default Parameter Appendage ... 326
Needed Parameters Appendage ... 326
Incompatible Parameters Appendage .. 326
Parameter Data Area .. , 327
No Constant Appendage ... 328
Constant Appendage ... 328
Default Data Appendage ... 328
ID Appendage ... 329
Keyword Appendage .. 329
Conflicting Parameters Appendage .. 329
Necessary Parameters Appendage .. 329
Prompt Appendage 330
Subparatneter Appendage ... 330

Command Descriptor Phase Table - IDCRIL T .. 331
CRA Parameter List ... 332

Access Method Servicesl Catalog Communication Table
(ACC) Description ... 332

Contents 5

CRA Access Translate Table (CIT) Description 332
CRA Volume Timestamp Table (CIT) Description 332

Dump List ... 333
Individual Field Entry 333
Array Header Entry ... 334
Dump List Terminator Entry 334

Dynamic Data LIST - DARGLIST .. 335
ERCNVT AB\ .. 337
Error Conversion Table I •• 337
Field Management Parameter List - FMPL I ... 338

Field Management Parameter List Description 338
Field Management Field List (FMFL) Description 338

Format List - FMTLIST ... 339
Spacing 339
Insert Data ... 340
Default Text ... 340
Block Format ... 341
Replication ... 342
Static Text .. 342

Function Data Table - FDT ... 343
Number Data Area ... 343
String Data Area .. 344
Data Set Name or Data Area ... 344
FDTs for Specific Commands .. 344
ALTER FDT .. 346

ALTER FDT Description .. 347
BLDINDEX FDT .. 351

BLDINDEX FDT Description ... 351
DEFINE FDT .. 352
DEFINE ALTERNATEINDEX .. 353
DEFINE CLUSTER .. 355
DEFINE MASTERCATALOG ... 359
DEFINE NONVSAM .. 360
DEFINE PATH ... 361
DEFINE SPACE .. 362
DEFINE USERCATALOG .. 363

DEFINE FDT Description .. 365
DELETE FDT 389

DELETE FDT Description .. 389
EXPORT FDT : ... 391

EXPORT FDT Description ... 391
EXPORTRA FDT ... 393

EXPORTRA FDT Description .. 393
IMPORT FDT .. 395

IMPORT FDT Description .. 395
IMPORTRA FDT .. 398

IMPORTRA Description ... 398
LIST CAT FDT .. 400

LISTCAT FDT Description ... 401
LISTCRA FDT .. 402

LISTCRA FDT Description .. 402
P ARM FDT .. 403

P ARM FDT Description .. 403
PRINT FDT ... 405

PRINT FDT Description , 406

6 DOS/VS Access Method Services Logic

REPRO FDT .. · .. · .. ····408
REPRO FDT Description .. 408

RESETCAT FDT .. 412
RESETCAT FDT Description ... 412

vnRIFY FDT .. 414
VERIFY FDT Description ... 414

Global Data Table - GDT .. 415
Global Data Table Description .. 415

Input Parameter Table - IPT ... 418
Input Parameter List Description ... ~ ... 418

I/O Adapter Historical Data Area - IODATA .. 419
I/O Adapter Historical Area Description .. 419

Input/Output Communications Structure - IOCSTR 420
Input/Output Communications Structure Description 420

IOCSTR Extension - IOCSEX .. 422
IOCSTR Extension Description ... 422

Inter-Module Trace Table .. 423
Inter-Module Trace Table Description .. 42J

Intra-Module Trace Table .. 424
Intra-Module Trace Table Description .. 424

Modal Verb and Keyword Symbol Table - IDCRIKT 425
Modal Verb and Keyword Symbol Table Description 425

Open Argument List - OPNAGL L 426
Open Argument List Description ... 426

Open Close Address Array - o CARRA Y ... 428
Open Close Address Array Description ... 428

Phase Table ... 428
Phase Table Description .. 42&

Positioning Argument List - OPRARG ... 429
Positioning Argument List Description .. 429

Print Control Argument List - PCARG , 430
Print Control Argument List Description .. 4~Q

Print Control Table - PCT ... 431
Print Control Table Description .. 431

Reader/Interpreter Communjcation Area - COMMA~EA " .. ""."""." 433
Reader/Interpreter Communication Area Description 433

Reader/Interpreter Historical Area - HDAREA 434
Reader/Interpreter Historical Area Description 434

System A~apter Historical Area - SAHIST .. 435
System Adapter Historical Area Description 43 S

TEST Option Data Area ... 436
TEST Option Data Area Description .. 436

Text Structure ... 438
Text Structure Description ... 4~&
Text Entry Description .. 439

UGPOOL Area ... 440
UGPOOL Area Description .. ·440

UGSPACE Area .. 440
UGSP ACE Area Description .. 440

UIOINFO - Option Byte and Return Area .. 441
UIOINFO Option Byte Description .. 441
UIOINFO Return Area Description .. 441

Contents 7

UREST Arguments ... 443
PCRST - Change Subtitle Lines .. 443
PCRL WS - Change Line Width .. 443
PCRPDS - Change Page Depth .. 443
PCRFfS - Change Footing Lines ... 443
PCROSCS - Change Default Spacing Character 443
PCRPCS - Change Translate Table .. 444
PCRINP - Change Initial Page Number ... 444

Diagnostic Aids .. 445
Trace Tables ... 445

Inter-Module Trace Table .. 445
Intra-Module Trace Table .. 446

Dump Points ... ,................. 446
Dumping Selected Areas of Virtual Storage .. 447

Test Option ... 447
TEST Keyword .. 447

How to Use the Test OptIon .. 449
Trace and Dump Points to Module Cross Reference , 450
Module to Dump Points Cross Reference .. 473

ABORT Codes ... 485
Reading a Dump ... 487

How to Find Processor Phases ... 487
How to Find the Module and Registers at Time of the Dump 487
How to Find the GDT .. 493
How to Find Save Areas .. 495
How to Find the Trace Tables ... 495
How to Find the FDT .. 495
How to Find Automatic Storage Areas .. 496
How to Find Dynamic Storage Areas ... 498
UGPOOL ID List ... 499
Sample Dump ... 503

Debugging a Catalog Problem .. 503
Obtaining a Dump for a Catalog Problem .. 504
How to Find Catalog Management Argument Lists 510

Debugging a Formatting Problem ... 513
Obtaining a Dump for a Text Processor Problem 524
How to find Text Processor Argument List ... 524

Debugging an I/O Problem .. 526
Obtaining a Dump for an I/O Problem .. 527
How to Find I/O Argument Lists .. 527
Open Argument Lists ... 528
UGET and UPUT Argument Lists ... 529

Messages ... 532

Appendix A: Portable Data Sets Created by the EXPORT Command 565
Control Records 566

Control Record Containing Time Stamp Information 566
Control Records Containing Dictionary Information 567

Data Records 569
Data Records Containing Catalog Work Area 569
Data Records Containing Data Records From the Data Component ... 569

8 DOS/VS Access Method Services Logic

Appendix B: Portable Data Sets Created by the EXPORTRA Command 571
Control Records ... 572

Control Record Containing the Logical Record Length 572
Control Record Containing Time Stamp Information 572
Control Records Containing Dictionary Information 574

Data Records .. 576
Data Records Containing Catalog Work Area 576
Data Records Containing Data Records From the Cata Component 576
Associated Objects for User Catalog Pointers, NonVSAMs, and

GDGs ... 577

Index ... 579

Contents 9

ILLUSTRATIONS

Figures
Figure 1. The Structure of the Access Method Services Processor 20
Figure 2. Initialization of Access Method Services 21
Figure 3. Reading and Parsing a Command ... 22
Figure 4. Performing a FunctioJ1 .. 24
Figure 5. Argument List for Processor Invocation '294
Figure 6. Arguments Passed to and from User I/O Routine 296
Figure 7. Flow of Control Through Main Functions 297
Figure 8. Flow of Control Through Services .. 298
Figure 9. FDT (Function Data Table) 345
Figure 10. Example of Test Option Output .. 449
Figure 11. Sample Dump .. 489
Figure 12. How to Find the GDT ... 494
Figure 13. Format of AUTOTBL ... 497
Figure 14. Example of an Automatic Storage Area 498
Figure 15. UGPOOL Area Chain .. 499
Figure 16. How to Find the CTGPL .. 511
Figure 17. Catalog Argument Lists in Storage Area of DEFINE FSR 512
Figure 18. Text Processor Format Structure Queue 525
Figure 19. Text Processor Print Buffer 526
Figure 20. 10CSTR Chain ... 528
Figure21. I/O Control Blocks Before OPEN ... 529
Figure 22. Input to UPUT Macro ... 530
Figure23. Output from UGET Macro ... 531
Figure 24. Layout of Control Records in the and Data Records

Portable Data Set 565
Figure25. General Format of Control Records 566
Figure 26. Control Record Containing Time Stamp Information 566
Figure27. Control Record Containing Dictionary Information 567
Figure28. Data Record Containing Catalog Work area 569
Figure 29. Relationship of Dictionary and Catalog Work area

Information ... 569
Figure 30. Special Record at Beginning of Data Records from the

Data Component .. 570
Figure31. Layout of Control Records and Data Records in the

Recovery Portable Data Set 572
Figure 32. General Format of Control Records 572
Figure33. Control Record Containing the Logical Record Length 573
Figure 34. Control Record Containing Time Stamp Information 573
Figure 35. Control Record Containing Dictionary Information 574
Figure 36. Data Record Containing Catalog Work Area 576
Figure37. Relationship of Dictionary and Catalog Work Area

Information .. 577
Figure 38. Special Record at Beginning of Data Records from the

Data Component .. 577

Diagrams
Access Method Services Visual Table of Contents '........................ 29
Access Method Services Overview ... 30

Illustrations 11

Initialization Visual Table of Contents ... 31
Diagram 1.0 Access Method Services Initialization Overview 32
Diagram 1.1 System Adapter Initialization 34
Diagram 1.2 I/O Adapter Initialization - UIOINIT Macro 36

Reader/Interpreter Visual Table of Contents .. 39
Diagram 2.0 Reader/Interpreter Overview 40
Diagram 2.1 Reader/Interpreter Initialization 42
Diagram 2.2 Reader/Interpreter Get Next Command 44
Diagram 2.2.1 Reader /Interpreter IF-THEN Modal Command 46
Diagram 2.2.2 Reader/Interpreter ELSE Modal Command 48
Diagram 2.2.3 Reader /Interpreter SET Modal Command 50
Diagram 2.2.4 Reader/Interpreter DO Modal Command 52
Diagram 2.2.5 Reader/Interpreter END Modal Command 54
Diagram 2.3 Reader/Interpreter Prepare To Scan Command 56
Diagram 2.4 Reader/Interpreter Scan Command 58
Diagram 2.4.1 Reader /Interpreter Syntax Check Parameter 60
Diagram 2.4.2 Reader /Interpreter Build FDT 62
Diagram 2.5 Reader/Interpreter Termination 64

Function Support Routine (FSR) Visual Table of Contents 67
Diagram 3.1 ALTER FSR ... 68
Diagram 3.2 DEFINE FSR .. 72
Diagram 3.2.1 DEFINE FSR - DEFINE MASTERCATALOG 74
Diagram 3.2.2 DEFINE FSR - DEFINE USERCATALOG 78
Diagram 3.2.3 DEFINE FSR - DEFINE NONVSAM 82
Diagram 3.2.4 DEFINE FSR - DEFINE SPACE 84
Diagram 3.2.5 DEFINE FSR - DEFINE CLUSTER 86
Diagram 3.2.6 DEFINE FSR - DEFINE ALTERNATE INDEX 90
Diagram 3.2.7 DEFINE FSR - DEFINE PATH 94
Diagram 3.3 DELETE FSR ... 96
Diagram 3.4 EXPORT FSR .. 98
Diagram 3.4.1 EXPORT FSR - CLUSTER1 00
Diagram 3.5 IMPORT FSR ... 104
Diagram 3.5.1 IMPORT FSR - CLUSTER 106
Diagram 3.6 LISTCAT FSR .. 110
Diagram 3.6.1 LISTCAT FSR - Gets Information..... 114
Diagram 3.7 PARM FSR ... 116
Diagram 3.8 PRINT FSR ... 118
Diagram 3.9 REPRO FSR ... 120
Diagram 3.9.1 REPRO FSR - Catalog Reload 122
Diagram 3.10 VERIFY FSR 124
Diagram 3.11 BLDINDEX FSR 126
Diagram 3.11.1 BLDINDEX FSR - Get Information and Verify 130
Diagram 3.11.2 BLDINDEX FSR - Obtain Resources and Sort

Initialization ... 132
Diagram 3.11.3 BLDINDEX PSR - Sort-Merge and Build Alternate

Index .. 134
Diagram 3.12 LISTCRA FSR .. 138
Diagram 3.12.1 LISTCRA FSR - Process CRA 140
Diagram 3.13 EXPORTRA FSR ... 142
Diagram 3.13.1 EXPORTRA FSR - Field Management 144
Diagram 3.13.2 EXPORTRA FSR - EXPORTRA Driver 146
Diagram 3.13.2.1 EXPORTRA FSR - Export VSAM Data Set 148
Diagram 3.13.2.2 EXPORTRA FSR - Export NonVSAM 150
Diagram 3.14 IMPORTRA FSR .. 152

; 2 DOS/VS Access Method Services Logic

Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

3.14.1
3.14.2
3.14.3
3.14.4
3.15
3.15.1
3.15.2
3.15.3
3.15.3.1
3.15.4
3.15.5
3.15.6
3.15.7

IMPORTRA FSR - Cluster or Alternate Index 154
IMPORTRA FSR - User Catalog 156
IMPORTRA FSR - Non VSAM 158
IMPORTRA FSR - GDG Base 160
RESETCAT FSR162
RESETCA T FSR - Initialization 164
RESETCAT FSR - Copy Catalog to Work File 166
RESETCAT FSR - Merge CRAs to Work File 168
RESETCAT FSR ! - DADSM Functions 170
RESETCA T FSR - Reassign CI numbers 172
RESETCAT FSR - Check Associations 174,
RESETCAT FSR - Update the Catalog 176
RESETCAT FSR - Update the CRA178

Termination Visual Table of Contents 181
utagram 4.1
Diagram 4.2
Diagram 4.2.1

Execuiive ConiroHed Termination 182
Processor Termination 184
I/O Adapter Termination - UIOTERM Macro 186

System Adapter Visual Table of Contents 189
Diagram 5.0
Diagram 5.1.1
Diagram 5.2.1
Diagram 5.2.2
Diagram 5.3.1
Diagram 5.3.2
Diagram 5.3.3
Diagram 5.4.1
Diagram 5.4.2
Diagram 5.4.3
Diagram 5.4.4
Diagram 5.4.5
Diagram 5.4.6
Diagram 5.5.1
Diagram 5.6.1
Diagram 5.6.2
Diagram 5.7.1
Diagram 5.7.2

System Adapter Overview ... 190
UCATLG Macro ... 192
UABORT Macro ... 194
US NAP Macro 196
UCALL Macro .. 198
ULOAD Macro ... 200
UDELETE Macro ... 202
UGSP ACE Macro ... 204
UFSPACE Macro .. 206
UGPOOL Macro ... 208
UFPOOL Macro ... 210
PROLOG Macro ... 212
VEPIL Macro 214
UTIME Macro........... 216
ULISTLN Macro 218
USA VERC Macro ... 220
UENQ Macro 222
UDEQ Macro .. 224

I/O Adapter Visual Table of Contents .. 227
Diagram 6.0 I/O Adapter Overview .. 228
Diagram 6.1 UOPEN Macro 230
Diagram 6.1.1 UOPEN Macro - Build 10CSTR 232
Diagram 6.1.2 UOPEN Macro - Build Control Blocks 236
Diagram 6.1.3 UOPEN Macro - Check Open 238
Diagram 6.2 UCLOSE Macro .. 240
Diagram 6.3 UPOSIT Macro ... 242
Diagram 6.4 UGET Macro .. 244
Diagram 6.5 UPUT Macr9 ... 246
Diagram 6.6 UCOPY Macro .. 250
Diagram 6.7 UVERIFY Macro .. 252
Diagram 6.8 UIOINFO Macro ... 254

Text Processor Visual Table of Contents ... 257
Diagram 7.0 Text Processor Overview ... 258
Diagram 7.1 VESTS Macro ... 260
Diagram 7.2 VESTA Macro .. 262
Diagram 7.3 UREST Macro ... 264

Illustrations 13

Diagram 7.4
Diagram 7.5
Diagram 7.5.1
Diagram 7.5.2
Diagram 7.6

URESET Macro .. 266
UPRINT Macro ... 268
UPRINT Macro - CONVERT 270
UPRINT Macro - PRINT ... 272
UERROR Macro .. 274

Debugging Aids Visual Table of Contents ... 277
Diagram 8.0 Debugging Aids Overview ... 278
Diagram 8.1 UTRACE Macro ... 280
Diagram 8.2 UDUMP Macro ... 282
Diagram 8.2.1 UDUMP Macro - Dump Fields 284

14 DOS/VS Access Method Services Logic

DOS/VS Release 34

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Summary of Amendments

This revision reflects the availability of DOS/VS Release 34 and includes:

• Tape Processing Improvements

• Page Length Improvements

• User-Supplied Print Chain/Train Support

In addition, the manual has been updated to reflect maintenance-type
corrections and clarifications.

Tape Processing Improvements

Page Length Improvements

Options to process unlabeled tapes or to suppress rewind or to rewind/unload
tapes for an OPEN, CLOSE, and EOV condition have been added to the tape
processing commands.

Note for IMPORTRA and EXPORTRA: Prior to Release 34, IMPORTRA
and EXPORTRA were the only tape processing commands that rewound a
tape on an OPEN, CLOSE, and EOV condition. Starting with Release 34,
IMPORTRA and EXPORTRA are consistent with the other tape processing
commands.

The user can now specify any value (between 30 and 99) for the number of
lines to be printed on each page of SYSLST.

User-Supplied Print Chain/Train Support

DOS/VS Release 33

Support for previously nonsupported print chains/trains (such as the
KAT AKANA print chain/train) is now provided.

This revision reflects the availibility of DOS/VS Release 33 and includes
support for:

• Catalog Recovery II (RESETCA T)

• New LISTCAT Format

• ALTER Error Checking

• CBMM Removal

• Error Message Enhancements

Each of these affects one or all of the sections in the manual: method of
operation, microfiche directory, data areas, and diagnostic aids (in particular,
trace and dump points, error codes and message-to-module cross reference).

In addition, the manual has been updated to reflect maintenance-type
corrections and clarifications.

Summary of Amendments 15

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Catalog Recovery II (RESETCAT)

New LISTCAT Format

ALTER E"or Checking

CBMM Removal

A new Access Method Services command, RESETCA T, can be used to
recover catalogs. It allows a user to synchronize a catalog to the level of its
owned volumes.

LISTCAT output is now printed in a new tabular format to improve
readability.

Additional error checking is performed by ALTER to detect imcompatibilities
between the object to be altered and the attributes specified in the command.

Control block manipulation macros for generating, modifying, testing and
displaying the ACB, RPL, and EXLST control blocks are no longer used
during OPEN/CLOSE processing. (Their use in GET/PUT and POINT
operations was removed in the previous release.) Access Method Services
now processes these VSAM control blocks directly.

Error Message Enhancements

DOS/VS Release 31

Catalog errors were previously reported to the user through a message which
contained a return code and a reason code which the user was obliged to look
up in a manual. This improvement provides the user with prose messages to
explain error codes from VSAM catalog management.

This revision reflects the availability of DOS/VS Release 31 and includes
support for:

• Alternate Indexes

• Relative Record Files

• Spanned Records

• User Catalogs

• Catalog Recovery

• Reusable Files

• Miscellaneous Enhancements

Each of these affects one or all of the sections in the manual: method of
operation, microfiche directory, data areas (mostly for new or changed
Function Data Table-FDTs), and diagnostic aids (in particular, trace and
dump points, error codes, and message-to-module cross reference).

16 DOS/VS Access Method Services Logic

Altemate Indexes

Relative-Record Files

Spanned Records

User Catalogs

Catalog Recovery

Reusable Files

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Alternate indexes have been added for key-sequenced and entry-sequenced
files to provide alternate paths through which to gain access to data. They
change the method of operation diagrams for DEFINE CLUSTER~ AL TER~
DELETE, EXPORT, IMPORT and LISTCAT and add diagrams for the new
commands, DEFINE ALTERNATEINDEX, DEFINE PATH, and
BLDINDEX.

The relative-record file brings to three the number of VSAM files. It changes
the method of operation diagram for DEFINE CLUSTER, PRINT, REPRO
and 110 Adapter.

A record in a key-sequenced or entry-sequenced file is no longer limited by
control-interval size, but can span control intervals. Spanned records change
the method of operation diagram for DEFINE CLUSTER.

User catalogs have been added for increased data integrity and for volume
portability between systems. They have added a method of operation diagram
for the new command, DEFINE USERCATALOG.

The user can specify when he defines a catalog that a catalog recovery area
(CRA) is to be built for it. A CRA contains information that can be used to
recover a damaged catalog. Catalog recovery changes the method of
operation diagrams for DEFINE MASTERCATALOG and DEFINE
USERCATALOG. It adds diagrams for the new commands, LISTCRA,
EXPORTRA, and IMPORTRA.

Files defined as reusable can be reused without deleting and redefining them.
They change the method of operation diagram for DEFINE CLUSTER.

Miscellaneous Enhancements

Relatively minor changes have been incorporated into several Access Method
Services functions. DEFINE includes default key and record size values and
supports an exception exit. REPRO permits copy operations into nonempty
key-sequenced files. IMPORT supports import operations into empty files.
EXPORT allows a variable blocksize for portable files.

Summary of Amendments 17

18 DOS/VS Access Method Services Logic

INTRODUCTION

Requirements

Access Method Services is that part of the operating system that performs the
utility-like functions required to establish and manage VSAM (Virtual Storage
Access Method) data sets. (The terms "data set" and "file" are equivalent.
We have used "data set" in this book.) Access Method Services allows you to
define, print, delete, or copy VSAM data sets, build alternate indexes, recover
data and catalog entries in the event of a catalog failure, convert ISAM or
SAM data sets into VSAM data sets, alter or list the entries in a VSAM
catalog, and create portable (or backup) copies. Features of its logic are:

• The processor is organized into executable and non-executable modules.
An executable module contains instructions that can be performed by the
computer. A non-executabie moduie contains nothing that can be
performed by the computer. In Access Method Services all descriptive
information-such as, command descriptors-and static text- such as,
messages-are centralized in non-executable modules. (In Access Method
Services, there is generally a one to one correspondence between modules
and phases. Consequently, this publication generally discusses modules.
One exception is IDCAMS. For more information on IDCAMS, see
"Program Organization.")

• All external interfaces to Access Method Services are isolated in a small set
of modules. Changing these modules allows this processor to run with
another operating system or with access methods other than those
supported by this release of Access Method Services.

• Each module serves just one purpose and is coded to most efficiently
accomplish that purpose.

This book does not discuss VSAM, its concepts, or its data areas. For a
discussion of VSAM, see the publication DOS/VS LIOCS Volume 4,
VSAM Logic.

The Access Method Services processor accepts commands and sometimes
input data sets or catalogs. It produces output data sets and/or printed
reports. Details of the commands and the use of Access Method Services are
found in DOS / VS Access Method Services User's Guide.

This processor requires DOS/VS as its operating system. The processor
executes as a problem program. Virtual storage requirements for the
processor are found in DOS/VS System Generation, GC33-5377.

The Access Method Services Processor
Figure 1 describes the structure of the processor. Figures 2 through 4 describe
in general how the processor functions.

Figure 1 shows the executable elements of the Access Method Services
processor as they form a structure within the operating system. As shown
here, six of the elements form a "substructure" that supports the remaining
elements, which form a "superstructure."

Introduction 19

FunctiorvSupport Routines
(FSRs)

Operating System

1. The superstructure consists of the FSRs (Function Support Routines). There is one FSR
for each command verb of Access Method Services. Any system interface or I/O
function that is required by one of the FSRs is supplied through the substructure. The
superstructure is thus insulated from the operating system by the substructure.

2. The substructure consists of the Executive, the Reader/Interpreter, the System Adapter,
the I/O Adapter, the Text Processor, and the Debugging Aids. The Executive routes
control between the other components of Access Method Services-specifically,
between the Reader/Interpreter and the FSRs. The Reader/Interpreter translates the
commands for Access Method Services into an internal form, called the FDT (Function
Data Table). The System Adapter similarly provides all system interfaces for the
processor. The I/O adapter issues all I/O operations at the behest of any other routine
in Access Method Services. The Text Processor prepares all printed materials, whether
simple messages or listings, that are required to fulfill a command. The Debugging Aids
writes diagnostic information when requested.

3. The operating system supports the Access Method Services processor, just as the
substructure supports the superstructure (the FSRs). However, the FSRs execute in total
independence of the actual operating system in which Access Method Services is
running. All requests for system services or I/O are made to the substructure, which
receives the request and issues the appropriate request to the operating system. Thus
additional access methods can be easily supported by Access Method Services, by
merely augmenting the I/O Adapter appropriately. Access Method Services can be run
in a different host operating system by changing the System Adapter and the I/O
Adapter to match the new host.

Figure 1. The Structure of the Access Method Services Processor

Following the flow of logic reveals more of the processor than the structure of
executable modules. Figure 2 and the two which follow show the sequence in
which modules execute, important internal tables, and how non-executable
modules are used.

20 DOS/VS Access Method Services Logic

Enter Protessor
(Subroutine Call)

System Adapter

Executive

See Figure 3

(Job Control
Statement)

System Adapter

I/O Adapter

Text Processor

Historical
Data Areas

Figure 2. Initialization of Access Method Services

The System Adapter is the external entry and exit point for Access Method
Services. At entry time, the GDT (Global Data Table) is built by the System
Adapter. The GDT is always passed as a parameter when any internal module
is called, and through the GDT can be found the entry point for any service
supplied by the substructure. The GDT contains the addresses for the various
services provided by the System Adapter, the I/O Adapter, and the Text
Processor. The GDT also points to historical data areas that are built and
maintained by various processor substructure modules.

Control passes from the initialization effected by the System Adapter to the
Executive. Figure 3 shows this transfer of control, and details the parsing
operation of the processor.

Introduction 21

Input
Commands

Command
Descriptor

,----,
I Enter Processor , /

-~--
,----, -----

I Enter Processor <.:-:-:.:-:.:~
, <_Sub_rou_tine_Cal_1) " -:.:-:-:.:-:-:-:. I

I

II
II

I/O Adapter
I I

II

System Adapter
I

I
L

System Adapter

Executive

(Job Control
Statement)

1- ..., => g I ,- - - - - -

T I - - ~ System Adapter

I L

1 I
1_ .J

Text Processor

r

I/O Adapter

Text Processor

+------------+- - - -I I I ~ t-----------I- e
~~---------~---~ ~------~~------_1

Program
Library

II
II
I I Text

Structure

_ I(E ~apter

-I
II

Messages

Figure 3 (Part 1 of 2). Reading and Parsing a Command

22 DOS/VS Access Method Services Logic

I. The Executive calls the Reader/Interpreter, which reads a command from the input
stream. The I/O Adapter performs the actual read at the behest of the
Reader/Interpreter; the address for the "get" service is found in the GDT.

2. To parse the command, the Reader/Interpreter compares it against a special table
called a Command Descriptor. This Command Descriptor forms a non-executab!e
phase, and is loaded from the core image library by a service of the System Adapter.
There is a Command Descriptor for each possible verb to be recognized by Access
Method Services. This Command Descriptor specifies each possible keyword, its
permitted range of values, and any other information that is needed to parse and
interpret the command.

3. As a command is parsed, certain messages may be issued. To format these messages,
the Text Processor is invoked (again through the GDT). The Text Processor determines
the format of printed material and the text of fixed messages by using Text Structures.
These Text Structures are also non-executable phases (loaded by the System Adapter
when needed), and they describe page layout, static portions of the text, headings,
footings, and other details of the printed page. Once a line of message is formatted, the
I/O Adapter writes the line to the print file.

4. As a command is parsed, the Reader/Interpreter builds an FDT (Function Data Table)
from the values that it finds. The FDT is an encoded representation of the user's
command. The FDT is passed back to the executive as the results of the parse. The
Executive in turn passes the FDT to the appropriate FSR for processing.

5. Control returns to the Executive, along with the FDT and the name of the FSR needed
to process this command. Figure 4 depicts the FSR in action.

Figure 3 (Part 2 of 2). Reading and Parsing a Command

Introduction 23

,. - - - - ,
, Enter Processor I

'-£&--'
,., ;';te;:-P,:es:;',' '4::::::::::~ - -

(Subroutine Call)
" - - _ _ ", 'System Adapter

I

l

Reader/
Interpreter

L

Executive

,
J

(Job Control
Statement)

r- -,
_ >1 G ,
-... 0

1 T t"

L

I

r
1
1
1
r

~I System Adapter ,

1- ..J

~I I/O Adapter

,-
.,

...... , Text Processor I
I 1- ____ _

,.-------1- - - - - - -+----1
F
o
T

FSR
(Function Support
Routine)

r-------t- - -System - - -f---~

o

II
I I

Processor
II

Adapter

1. The command at this point in time is described in the FDT. The FDT is an internal
encoding of the original cQlIlmand, in a rigorous format with the values for all possible
parameters in a prescribed order.

2. Any data sets or user catalogs required for this particular function are accessed through
the I/O Adapter. The address of this service is found in the GDT.

3. Any printed output is prepared by the Text Processor, whose addresses are also found
in the GDT. Static text and page layout instructions are found in the Text Structures,
which are loaded by the System Adapter.

4. Finally, all output is produced by another of the services of the I/O Adapter.
5. Control returns to the Executive. If more commands remain, the Reader/Interpreter

repeats its procedure, followed by the appropriate FSR. Control is routed back and
forth between the Reader/Interpreter and the FSRs by the Executive in this fashion
until all commands have been processed.

Figure 4. Performing a Function

24 DOS/VS Access Method Services Logic

Naming Conventions
The Access Method Services processor is named IDCAMS. The names of all
modules that form this processor are seven or eight characters long, and begin
with the characters IDC. The remaining characters of the name relate to its
use. Executable modules and Command Descriptors have seven-character
names, while Text Structures have eight-character names.

The modules of the processor are grouped by their functional relationship.
Each of these relationships is indicated by a two-character mnemonic
identifier, which appears as characters 4 and 5 of the module name. These
identifiers are listed in the following table:

AL ALTERFSR PM PARMFSR
BI BLDINDEX FSR PR PRINT FSR
CD Command Descriptor RC EXPORTRA FSR
DB Debugging Facility RI Reader/Interpreter
DE DEFINEFSR RM IMPORTRA FSR
DI NonVSAM Access RP REPROFSR

Method macros RS RESETCAT FSR
DL DELETEFSR SA System Adapter
EX Executive TP Text Processor
10 I/O Adapter TS Text Structure
LC LISTCATFSR Vy VERIFYFSR
LR LISTCRAFSR XP EXPORTFSR
MP IMPORTFSR

The remaining characters of a module name indicate the function of that
module. Two numeric digits are used for the name of a module and the entry
point of a single-entry module. Two alphabetic characters indicate an entry
point in a multiple-entry module. Thus the name "IDCPRO 1" is the name of
the first module for the PRINT FSR, and "IDCPROl" is the only entry point
to that module. "IDCSA02" is the second module for the System Adapter,
and "IDCSAGS" is the entry point in that module for the "get space" service.

The last two characters of a Command Descriptor are the mnemonic identifier
for the FSR for that Command Descriptor. Similarly, Text Structure names
end with the FSR mnemonic identifier and a single digit (to allow for multiple
Text Structures per FSR). For example the three modules for PRINT are:

IDCPROI PRINT FSR module
IDCCDPR PRINT Command Descriptor
IDCTSPRO First Text Structure for PRINT

Names for processor-wide data structures and fields are six characters long.
The first three characters identify the structure. The last three characters
indicate the function of the field. (In this publication, the data areas are often
referred to by the first three characters.) Values for a field (for example, a bit
in a flag field) have names that are eight characters long. The last two
characters of a value indicate the meaning of that value. For example,
"IOCDSO" is a field of the 110 Communications Structure that defines the
data set organization. One of its bits is named "IOCDSOAM," which means
that this bit signifies a VSAM organization.

Local names used internally by only one subcomponent follow no
processor-wide conventions.

Introduction 25

Clulracter Code Depe"de"cks

Most of the character dependencies of this processor are isolated in the
Command Descriptor modules and the Text Structure modules. For example,
all input text is translated by referring to the Command Descriptor modules,
and all output text is controlled by the Text Structure modules and a
parameter defining the output graphics.

Most of the executable modules of the processor have no character
dependencies. However, some modules of the Reader/Interpreter and the
Text Processor have character dependencies. Such character dependencies are
identified in the prolo~e of each module.

The character set used at execution time must be equivalent to that used
during assembly of the character-dependent modules. The mM -supplied
version of these modules assumes EBCDIC character representations. If a
different character representation is to be used during execution, then the
character-dependent modules must be re-assembled.

26 DOS/VS Access Method Services Logic

METHOD OF OPERATION

This chapter contains method of operation diagrams for each element within
the substructure and superstructure of Access Method Services. Following
each diagram is an extended description of the processing steps and the name
of the modules and procedures used to perform each step within the diagram.
Using these names, you can go either to the chapter "Microfiche Directory"
or to the microfiche itself for more information.

The following legend explains the symbols used throughout this chapter.

Data flow

Flow of control, entry and exit points

"""" zfp> Data flow when existing data has been altered

~. On page connector

-D Off page connector

Pointer to more information

Method of Operation 27

~
CD
;.
&.
g,
o
'R a o·
::s
N
\0

Access Method Services Visual Table of Contents

1 1.0 I 2.0

Initialization Reader/ J
Interpreter

I I

I 5.0 J
System I/O
Adapter Adapter

General
Overview

J
I 3.0 I

FSRs Termination

I I
I
I

I 7.0 I 8.0

Text Debugging
Processor Aids

-

~ o
C o
til

< til

~
gJ

:::
;.
&.
til
n
~
(i'
n
til

~
~.

Access Method Services Overview

INPUT
ister

Commands

EJ
Input Data Sets and
VSAM Catalogs

From Access Method Service~ Invoker

PROCESSING

I. Initializes. ~
See Diagram ---V

2. Reads and interprets commands.

See Diagram -----8
3. Processes commands. [{D' 1

See Diagrams--- To
3.14

4. Terminates. ~
See Diagram ---V

Function Data Tahle (FDT)

OUTPUT

Output Data Set~
and VSAM Catalog~

Message~ and
Reports

D
Modified Invoker\
Parameter List

Register 15

3::
('t

;.
&.
S
o
~
i o·
o
~

Initialization Visual Table of Contents

I
System Adaptl

Initialization

1.0

Initialization
Overview

1
I ---

I/O Adapter
Initialization

UIOINIT Macro

~
N

o
o
CIl
........
<
CIl

~ o
(D
CIl
CIl

~
(D

;.
o
c..
CIl
(D

~ n·
(D
CIl

t"'"
o

(JQ

n·

Diagram 1.0. Access Method Services Initialization Overview

INPUT
Register I

t Options

t DD Name

t Page Number

t I/O List

From Access Method
Services Invoker

PROCESSING

1. Initializes System Adapter ~

See Diagram ---LJ

2. Initializes I/O Adapter. ~
See Diagram U

3. Initializes text lines.

4. Establishes page length.

5. Initializes page controls.

OUTPUT

GDT

D
System Adapter

istorical Data Area

10DATA

D
peT

D

CC:;:O'"
'< ~ III

-l :::.~
z~o
rc..
C/l;l>C/l z-o -<
N""~
~:::.:~

0. NOo
Vl-,oVl

Vl' '" o-+--
-,0'
-.l~
-.l

~
(1)

&
o
0.

a
o
'e
(1) ...,
a o·
;:l

!,,;.)
!,,;.)

Extended Description Diagram t.O
IDCSAOI

Procedure: IDCSAOI

The System Adapter receives control from the invoker
from either an EXEC statement or from a program.
The System Adapter sets up the GOT, trace tables,
and the System Adapter Historical Data Area. The
System Adapter obtains storage for modules that are
continuously used such as the System Adapter and the
I/O Adapter. Diagram 1.1 shows System Adapter
initialization in detail.

IDCEX02

Procedure: IDCEX02

2 IDCEX02 issues the VIOINIT macro to cause the I/O
Adapter to initialize. The I/O Adapter initializes its
Historical Data Area. IDCIOIT saves the addresses of
alternate DO name list if supplied by the invoker.
Diagram 1.2 shows I/O Adapter initialization in
detail.

IOCEX02

Procedure: IDCEX02

3 IDCEX02 issues a VESTS macro instruction to set up
the Print Control Table, PCT. The address for the
Text Processor Historical Data Area is in the
GDTTPH field of the GOT. Since GDTTPH contains
zero, the text processor builds the primary PCT.

IDCEX02

Procedure: IDCEX02

4 IDCEX02 issues a COMRG macro instruction to get
the address of the partition communication region. It
then extracts the value of "SYSLST lines per page"
from displacement 78 and uses this value in a UREST
macro instruction to establish the SYSLST page depth.

IOCEX02

Procedures: IDCEX02, SCANP ARM

5 If the invoker supplied a starting page number in the
parameters, IDCEX02 issues a UREST macro
instruction to set the page number. Control is given to
the R/I to process the input as well as any parameters
supplied on the EXEC statement that invoked Access
Method Services.

~ :x,..~
'< (1) Pl
....,:::.~
ZrJ o ro.-
CZl>CZl
Z'e::
N2:~ tNOo
VI \0 VI
VI ~ 0\
o-~

\0'
-....I!,,;.)

-....I

"£. Diagram 1.1. System Adapter Initialization
o
o
en
"-< en
> (l
(l
~
til
til

::
~

;.
o
Q.

en
~

~ o·
~
til

t"'"'
o

(JQ o·

List

Options

DD Name

Page Number

I/O List

1. Obtains storage.

GDT

2. Initializes the G DT.

3. Initializes storage table.

4. Initializes trace tables.

5. Initializes Historical Data Area.

6. Establishes save area.
Save Area

a::
(11

So
8-
o -o
'R ..,
~ o·
=
~
I..A

Extended Description for Diagram 1.1

IDCSAOI

Proced .. e: IDCSAOI

1 IDCSAOI issues a GETVIS instruction to obtain space
for the following tables:

• Global Data Table, GDT
• Inter-Module-Trace Table
• Intra-Module-Trace Table
• System Adapter Historical

Data Area
• Storage Table, AUTOTBL

If the initial GETVIS fails, IDCSAOI issues an ABOR
and returns to the invoker of Access Method Services.

IDCSAOI

Proced.-e: IDCSAO 1

1 IDCSAOI puts the chatacters 'GDTb' in the first four
bytes of the GDT. It puts the address of the invoker's
parameter list, which is in Register 1, in the GDTPRM
field of the GDT. IDCSAOI puts the address of the
System Adapter Historical Data Area in GDTSAH. It
also puts the address of the Inter-Module-Trace Table
in GDTIR 1 and the address of the
Intra-Module-Trace Table in GDTIR2. IDCSAOI puts
the address of the System Adapter save area in
GDT ABH. Additionally it puts addresses for the
processor-defined macro instructions, called
V-macros, in the GDT. All remaining fields of the
GDT contain zeros.

IOCSAOl

Proced .. e: IDCSAOI

3 Rather than obtaining new storage each time
IDCSA02, IDCSA03, IDCTPOl, or IDCIOOI is called,
the System Adapter issues one GETVIS macro for
each module and saves the storage address in the
Storage Table, AUTOTBL. When one of the modules
is called, it calls the PROLOG routine that returns the
address of the storage obtained for the module during
System Adapter initialization. The storage address for
IDCSA03, however, is kept in the GDTSPR field of
the GDT because IDCSA03 contains the PROLOG
routine code and needs to get its storage without using
the PROLOG routine .

IDCSAOI

Procelll.-e: IDCSAOI

4 IDCSAOI initializes the Inter- and Intra-Module-Trace
tables to blanks. It places the characters 'biNTERbb'
and 'biNTRAbb' before the respective tables. It also
puts the characters 'SAOI' in the Inter-Module-Trace
Ta.ble and in the save area provided by the Access
M4~thod Services invoker.

IOCSAOl

Proced .. e: IDCSAO 1

5 IDCSAOI sets the first VGPOOL storage area pointer
in the System Adapter Historical Data Area to zero. It
selts the last VGPOOL storage area pointer to the
address of the first VGPOOL area pointer.

IOCSAOI

Procedure: IDCSAOI

6 The System Adapter saves the current values of its
re:gisters in a save area pointed to by the GDTABH
fie:ld in the GDT. The VABORT routine uses the
re;gister values to establish addressability before
processing. Control goes to Diagram 1.0, step 2.

•

~ Diagram 1.2. I/O Adapter Initialization - UIOINIT Macro
o From System Adapter Initialization

o
til

< til

>
~
rI)

~

Er
&.
CIl
n

S.
R
rI)

b
CIQ
(;.

Register I

GDT

0

..

3:
('I)

;.
o
00
o
o
'0
('I)
'"I a o·
::l

~
'I

Extended Description for Diagram 1.2

IDCIOOI

Procedure: IDCIOIT

The I/O Adapter issues a UGPOOL to obtain storage
for its Historical Data Area-IODAT A. IDCIOIT
puts the 10DAT A address in the GDTIOH field in the
GDT. If storage is not obtained from either
UGPOOL, the I/O Adapter issues a UABORT to
terminate the processor.

IDCIOOI

Procedure: IDCIOIT

2 The I/O Adapter initializes IODAT A. If the Access
Method Services invoker supplied filenames for the
system data sets, IDCIOIT puts the address of those
filenames in the IODADD field of IODATA (this
code is for compatibility with OS/VS; alternate
filenames for system data sets cannot be used in
DOS/VS). If the invoker supplied the address a list of
his own I/O programs, IDCIOIT puts that address in
10DXTN. IDCIOIT puts the address of the Access
Method Services End-of-Data routine in 10DEOD. It
puts the address for a synad routine for nonVSAM
input data sets in IODOSS and the address for a synad
routine for nonVSAM output data sets in 10DSO. It
also puts the address of the End-of-Data routine for
VSAM data sets in 10DAEI.

IDCIOOI

Procedure: IDCIOIT

3 IDCIOIT initializes the IODSID to the characters
'1000'. The I/O Adapter uses this identifier to keep
track of data sets. UOPEN gives the first data set the
1/ 0 Adapter is required to open the identification of
1001, the second 1002, and so on. The identification
appears at the beginning of the storage area for each
data set. IDCIOIT puts a return code of zero in
Register 15 and gives control to Diagram 1.0, step 3.

....,
('!)

~
:::0
('!)
~
j;l

~
Q..

o
::s
-<

o::l:;tl"tl
'<('1)$:1)

-l5.~
Z~o rOo
cn:>Vl
Z"O -<
N'"I~
f":=':~
Vl NOO
VI 1.0 VI
VI ~ 0'1
o-f"
~~
-...J

38 DOS/VS Access Method Services Logic

3:
~
::r
o
Q.

a
o
~
('D

~ o·
::s
VJ
\0

Reader/interpreter Visual Table of Contents

I 2.1

Initialization

I 2.2.1

IF-THEN
Modal

Command

2.2

Get NextJ
Command

2.2.2

ELSE
Modal

Command

2.0
Reader/

Interpreter
Overview

2.3 I 2.4 I 2.5

Prepare Scan
To Scan

Command
Termination

Command

I
I 2.4.1 I 2.4.2

Syntax
Check Build FDT

Parameter

2.2.3 I 2.2.4 I 2.2.5

SET DO END
Modal Modal Modal

Command Command Command

~ Diagram 2.0. Reader/Interpreter Overview
o
o
en
.........
~ en

~
~
til
til

~
~

Er o p.
en
~

3.
()
~
til

b
(JQ

(i'

Register 1

(
+GDT

+ FDT UGPOOL ID

• MAXCC

• LASTCC

~
IDCRILT
IDCRIKT

..... ~

r=J
~

......

Command
Descriptor

..... ~

From Executive Controlled

...
1. If entering from first command,

continue to Step 2: if entering
after first command, go to Step 3.

"-., 2. Initializes. -0 v/
See Diagram

3. Gets next command_-0
See Diagram 2.2

> 4. Prepares to scan command. v

See Diagram -0
s. Scans command.

-0
See Diagram

6. Terminates. -0---See Diagram 2.5

L---

GOT

.... ~

v-'
I

(GDTRIH

HOAREA

ICIDCRILT
IDCRIKT

e

0

0

e

OUTPUT

Input e Statements

D eo
LASTCC c------
MAXCC

(e Register 15

I
Register I

• GOT
• FOT Address

• FDT UGPOOL ID

• MAXCC I
• LASTCC 1

• FSR Name J

!:

[
S
o
'g
i o·
::s
~

Extended Description for Diagram 1.0

IDCRIOI

ProcM.e: RIINIT

1 If entrance is from Initialization, processing continues
with step 2. If entrance is from Executive Controlled
Termination, processing continues with step 3.

2 RIINIT initializes the Reader/Interpreter Historical
Data Area, HDAREA. RIINIT loads the command
descriptor name table, IDCRIL T, and the modal
command name table, IDCRIKT. RIINIT opens the
input data set, SYSIPT, and RIINIT prepares the
parameters from the EXEC statement for scanning, if
they exist. Diagram 2.1 shows the initialization
procedure in detail.

IDCRIOI

ProcNwes: GETNEXT, MODALSET, MODALIF,
MODLELSE

] GETNEXT reads and processes modal commands
until a functional command is encountered. The
execution of the functional command depends on the
results from the modal commands. However, every
command is completely checked for syntax errors
whether or not it is executed. Diagram 2.2 shows
obtaining a command in detail.

IDCRlOl

ProcetIwe: IDCRI02

4 IDCRI02 loads the command descriptor for the
functional command to be scanned. IDCRI02
initializes the Function Data Table, FDT. Diagram 2.3
shows the preparation for command scanning in
detail.

IDCRlOI

Procedm'es: SCANCMD, KWDPARM, PCSPARM,
INREPEAT, BUILDFDT, CONVERT, GETSPACE,
DSIDCHK, ERRORl, ERROR2

5 SCANCMD and BUILDFDT check the functional
command for correctness. If the command is
incorrect, ERROR 1 or ERROR2 writes an error
message. BUILDFDT and INREPEAT complete the
FDT for correct commands. Diagram 2.4 shows the
command scanning in detail.

IDCRJIO]

Procedure: IDCRI03

6 IDCRI03 deletes the work tables and temporary
storage. If the command is to be executed, control is
given to Executive Controlled Termination which
gives control to the Function Support Routine, FSR,
that executes the command. If the command is not to
be executed due to syntax errors or due to the results
of a modal expression, control returns to step 3 to get
the: next command. If the error is severe, control
returns to Executive Controlled Termination,
Diagram 4.0, with an indication that the processor
cannot continue. Diagram 2.5 shows termination
processing in detail.

t; Diagram 2.1 Reader/Interpreter Initialization
o
o
til
.........
<:
til

[
{Il

~
n ;.
&.
til
n
S.
~
{Il

b
OQ

t:;"

INPUT

Register I

EXEC Parameters

t GOT

t FDT UGPQOL ID

t MAXCC

t LASTCC

~
........

IDCRILT
IOCRIKT

"'-.. --'

From Diagram 2.0

PROCESSING

1. Obtains storage for and initializes
HDAREA.

2. Loads IDCRIL T.

3. Loads IDCRIKT.

4. Opens input data set.

s. Checks parameter options.

6. Prepares to scan parameters.

OUTPUT

GOT

GOTRIH

HOAREA
LEITMGN

RIGHTMGN

LOAOTPTR

KWOTPTR

MOOLFLGS

IDCRIKT

IDCRILT

D
Verb Name 'PARM'

Parameter Options

a::
(II

;.
&.
S
o
"g ..,
~ o·
=
~
y.)

Extended Description for Diagram 2.1

IOCRIOI

Procedure: RIINIT

RIINIT obtains storage for HDAREA and sets the left
margin field to 2 and the right margin field to 72. A
user changes the margins using a P ARM command.
RIINIT initializes the res(of HDAREA to zero. If
RIINIT cannot obtain storage, control is given to
Reader/Interpreter Termination, Diagram 2.5, with
an indication that causes the processor to end.

IOCRIOI

Procedure: RIINIT

2 RIINIT loads the command name table, IDCRIL T,
and places the address of IDCRIL T in the
LOADTPTR field in HDAREA. IDCRIL T contains
the name of each verb and corresponding command
descriptor.

IOCRIOI

Procedure: RIINIT

3 RIINIT loads the modal name table, IDCRIKT and
places the address of IDCRIKT in the KWDTPTR
field in HDAREA. IDCRIKT contains modal
command keyword and verb name symbols, plus the
length of each symbol.

IOCRIOI

Procedure: RIINIT

4 RIINIT opens the input data set which has a default
filename of SYSIPT. If SYSIPT cannot be opened,
control is given to Reader/Interpreter termination,
Diagram 2.5, with an indication that causes the
processor to end.

IOCRIOI

Procedure: RIINIT

5 The Reader/Interpreter checks for parameters
supplied before SYSIPT is read. The invoker may
supply parameters by putting them in the EXEC job
control statement. Parameters may also be supplied
through the data the user provides to the processor at
the time the user's program invokes Access Method
Services. If parameters are supplied, the GDTPRM
field of the GDT contains the address of a fullword
that contains the address of the parameters. The first 2

bytes of the parameters is the total length of the
parameters. If no parameters are supplied, the length
fic~ld is zero.

IOCIUOI

Proc.~dure: RIINIT

6 The parameters are printed on SYSLST and are
tr'eated as the parameters for a PARM command. The
symbol for PARM in IDCRIKT is supplied as the verb
name and the options are scanned by the
R,eader /Interpreter just as though a P ARM command
had been encountered in SYSIPT. After the pseudo
PARM command is executed by the P ARM FSR,
Executive Controlled Termination gives
R,eader/Interpreter controlto read the first command.
Control goes to Diagram 2.2 to get the first command.

t Diagram 2.2. Reader/Interpreter Get Next Command
o
o
(I)
........
<:
(I)

~
CD
fIJ
fIJ

3:
~
0' o
Co
(I)
CD
:;!
~.
fIJ

b
OQ

n·

IDCRIKT

t:J
Register 1

~ EXEC Parameters

[tGDT

I t FDT Space ID

I tMAXCC r tLASTCC

(MAXCC

LASTCC

\

.".

"> v 1. Extracts next command.

'-., 2. Processes modal command. v"

~ See Diagrams to
2.2.5

3. Prepares to interpret functional
commands.

Input Records ">

D
v

MAXCC

">
I I

I LASTCC

'"
.....

I I
HDAREA

MODFLGS
A

~

"> HDAREA
....

MODFLGS

I

a::
n
;.
&.
o
o
~ a o·
o
~
v.

Extended Description for Diagram 2.2

IOCRIOl

Procedures: GETNEXT, GETRECRD, NXTFIELD,
NEXTCHAR

1 GETRECRD reads SYSIPT to get an input record and
writes each input record on SYSLST. GETNEXT
locates the verb on the input record and checks it
against the symbols for the modal verbs IF, ELSE,
SET, DO, and END in IDCRIKT. If a match is found,
the verb is a correct modal verb and processing
continues to step 2. If a match is not found, the verb is
assumed to be a functional verb and processing goes to
step 3.

IOCRIOl

Procedures: GETNEXT, MODALIF, MODLELSE,
MODALSET

2 GETNEXT sets condition codes and the MODLFLGS
field in HDAREA depending on the modal command.
Control returns to step 1 to get the next command.
The modal commands are shown in detail in the
following diagrams:

IF-THEN, Diagram 2.2.1

ELSE, Diagram 2.2.2
SET, Diagram 2.2.3
DO, Diagram 2.2.4
END, Diagram 2.2.5

IOCRlOl

Procedure: GETNEXT

3 GETNEXT checks the MODLFLGS field in
HDAREA to determine if the function command
should be executed. If the functional command is not
to be executed, GETNEXT sets a flag. Every
command is completely checked for syntax errors
whether or not it is to be executed. If the functional
command finishes an IF-THEN command,
GETNEXT subtracts 1 from the number of nested
IF-THEN commands and sets MODLFLGS for the

finished IF-THEN command to zero. The functional
commands are shown in detail in the following
dia.grams:

ALTER, Diagram 3.1
BLDINDEX, Diagram 3.11
DEFINE, Diagram 3.2
DELETE, Diagram 3.3
EXPORT, Diagram 3.4
EXPORTRA, Diagram 3.13
IMPORT, Diagram 3.5
IMPORTRA, Diagram 3.14
LISTCAT, Diagram 3.6
LISTCRA, Diagram 3.12
PARM, Diagram 3.7
PRINT, Diagram 3.8
REPRO, Diagram 3.9
RESETCAT, Diagram 3.15
VERIFY, Diagram 3.10

Control goes to Diagram 2.4 to scan the command.

~ Diagram 2.2.1. Reader/Interpreter IF-THEN Modal Command
o
o
CIl
.........
<::
CIl

~ n o
CIJ
CIJ

~
~
::r
o
Q.

CIl
o
~
ri·
o
CIJ

b
(JQ

ri·

INPUT

HDAREA

.From Dia~ram 2.2

... PROCESSING

'> v

NESTLVL

MODLFLGS

IDCRIKT -r-~

::> LASTCC

I I
MAXCC

I I
~

OUTPUT

== g.
&.
S
o
'g

~ c)"
::s
~

Extended Description for Diagram 2.2.1

IOCRIOl

Procedure: MODALIF

t The value in the NESTL VL field of HDAREA is used
as an index to the MODLFLGS field for the current
IF-THEN command and the THEN and ELSE
clauses that belong to the IF-THEN. MODALIF
adds 1 to the number of nested IF commands in
NESTL VL. There is one set of modal flags in
HDAREA for each level of IF-THEN commands.
The new level of MODLFLGS is initialized to zero.
To see if too many IF-THEN commands are nested,
MODALIF compares the number of nested
IF-THEN commands to the number permitted, 10.

When a syntax error is detected, MODALIF sets
LASTCC to 16, and control is given to
Reader/Interpreter termination, Diagram 2.5, to
cause the Executive to terminate the processor.

IOCRIOt

Procedures: MODALIF, PACKCVB, NXTFIELD,
NEXTCHAR

1 MODALIF compares the characters following the IF
with the symbols for LASTCC and MAXCC in
IDCRIKT. MODALIF compares the operator with all
possible operators (LT, GT, EQ, NE, GE, LE, =,
..,=,>, <, >=, <=). PACKCVB converts the decimal
value following the operator to binary. If any errors
are detected, the syntax error procedure in step 1 is
followed.

IOCRIOt

Proced.e: MODALIF

3 MODALIF sets the THENFLAG to 1 to indicate that
the THEN clause of the IF-THEN command is being
processed. MODALIF compares the value of
LASTCC or MAXCC with the number in the
IF-THEN command and evaluates it for true or false
depending upon the operator. If the result is false,
MODALIF sets the SKIPFLAG in HDAREA to 1,
indicating that commands in the THEN clause of the
IF-THEN command are to be skipped-that is, the
Reader/Interpreter is to check only the syntax of the
commands in the THEN clause.

IOCRIO't

Procedllft: MODALIF

4 MODALIF compares the characters following the
relational expression with the symbol for THEN in
IDCRIKT. An error occurs if THEN does riot follow
IF, cLDd the syntax error procedure in step 1 is
followed. If a terminator follows the THEN keyword,
there is a null THEN clause in the current IF-THEN
command. Control returns to Diagram 2.2 to obtain
the next command.

~ Diagram 2.2.2. Reader/Interpreter ELSE Modal Command
v
o
en
-........
<: en
:> n
n
('II
!Jl
!Jl

~
('II

S-o
0.
en
('II

::;J
n'
('II
!Jl

r'
o

(JQ

n'

HDAREA

MODLFLGS

....
~ 1. Validates ELSE command.

.....

2. Determines if commands following
ELSE are to be executed.

3. Checks for completion of IF-THEN
command.

HDAREA

~
MODLFLGS

:> NESTLVL

Extended Diagram for Diagram 2.2.2

IDCRIOI

Procedure: MODLELSE

1 MODLELSE sets the ELSEFLAG in HDAREA for
the current IF-THEN command to 1, indicating that
the ELSE clause of the IF-THEN command is being
processed. The THENFLAG is turned off. An error is
caused by an ELSE without a prior IF-THEN, and
the syntax error procedure in step 1, Diagram 2.2.1, is
followed.

IDCRIOI

Procedure: MODLELSE

2 SKIP FLAG indicates whether the commands in the
ELSE clause of the IF-THEN command should be
executed or only checked for syntax errors. If
SKIPFLAG is zero, the THEN clause of the
IF-THEN command was executed; the ELSE clause
should not be executed, and MODLELSE sets
SKIPFLAG to 1. If SKIPFLAG is 1, the THEN clause
of the IF-THEN command was not executed; the
ELSE clause should be executed, and MODLELSE
sets SKIPFLAG to zero. However, if the entire
IF-THEN-ELSE command is nested within another
THEN or ELSE clause that is not being executed,
neither the THEN clause or the ELSE clause of the
nested IF-THEN-ELSE command is executed.

IDCRIOI

Procedures: MODLELSE, NXTFIELD, NEXTCHAR

3 If a terminator immediately follows ELSE, there are
no commands in the ELSE clause of the current
IF-THEN command. MODLELSE subtracts 1 from
NESTL VL since the IF command is completed.
Control is given to Diagram 2.2 to obtain the next
command whether or not a terminator follows the
ELSE.

~ Diagram 2.2.3. Reader/Interpreter SET Modal Command
o
o
tI)
........
<:
tI)

r
III
III

~

[
~ s.
~
III

b
1!9. n

IDCRIKT

MAXCC

I

HDAREA

MODLFLGS

NESTLVL

... -~-- _ -
'Y I 0 1. Validates SET command.

v

I 2. Sets LASTCC or MAXCC.

3. Checks IF-THEN command
completion.

- - -

LASTCC

I I
~

MAXCC ..
I I

HDAREA

...b.. MODLFLGS .. NESTLVL

a::
(D

Er
&.
S
o
~
'"1

a o·
::3
V\

Extended Description for Diagram 2.2.3

IOCRIOI

Procedures: MODALSET, PACKCVB, NXTFIELD,
NEXTCHAR

1 MODALSET compares the characters following SET
with the symbols for LASTCC and MAXCC in
IDCRIKT. MODALSET compares the operator with
the symbols EQ and =. PACKCVB converts the
decimal value following the operator to binary. If a
syntax error is encountered, the processing in Diagram
2.2.1, step 1 is followed.

IOCRIOI

Procedure: MODALSET

2 MODALSET obtains MAXCC or LASTCC and
changes its value to the value specified in the SET
command. If the command is SET LASTCC,
MODALSET compares MAXCC and LASTCC, and
the larger value is put into MAXCC. If the SET
command is only being checked for syntax errors,
neither MAXCC nor LASTCC is changed.

IOCRIOI

Procedure: MODALSET

3 MODALSET determines that the current IF command
is finished by checking that the SET command follows
an ELSE keyword and that the SET command is not
within a DO group. If both of these conditions are
met, MODALSET subtracts 1 from NESTLVL in
HDAREA, and returns control to Diagram 2.2 to
obtfiin the next command.

VI
tv

t1
o
tI.l
.........
<::
tI.l

~
(')
o
VJ
VJ

~ o
;.
o
Q..

tI.l
o
~ (i0
o
VJ

t'"'
o

00 (i0

Diagram 2.2.4. Reader/Interpreter DO Modal Command

~

HDAREA

~ v 1. Determines if DO is part of an

NESTLVL IF-THEN command.

NULL DO

MODLFLGS

2. Processes DO command within
IF-THEN command.

a. Immediately following THEN or
ELSE.

b. Not immediately following THEN
or ELSE.

- - ~

HDAREA

~ v

NESTLVL

NULLDO

MODLFLGS

~
R

ET-o
Q.

a
o
'g

~ o·
::s
VI
VJ

Extended Description for Diagram 2.2.4

IDCRIOI

Procedures: GETNEXT, NXTFIELD, NEXTCHAR

1 If a DO command is not part of an IF-THEN
command, control returns to Diagram 2.2 to obtain
the next command. If a DO command is part of an
IF-THEN command, processing continues to step 2.

IDCRIOI

Procedures: MODALIF, MODELSE, NXTFIELD,
NEXTCHAR,GETNEXT

2 a. If a DO command is part of an IF-THEN
command and immediately follows a THEN or
ELSE keyword, MODALIF or MODLELSE sets
DOFLAG to 1. Control returns to Diagram 2.2 for
the first command of the DO group.

b. If a DO command is part of an IF-THEN
command, but it does not immediately follow a
THEN or ELSE keyword, the DO command is
unnecessary. GETNEXT increases the NULLDO
field 'in HDAREA by 1, and control returns to
Diagram 2.2 for the first command of the
unnecessary DO group.

~ Diagram 2.2.5. Reader /Interpreter END Modal Command
o
o
(Il
........
<:
(Il

~
~

~ ;.
8-
(Il
n
<
~.
en

b
(JQ

(:i'

~

- . -

HDAREA

MODLFLGS

NULLDO

..... ...
.... 1. Determines if END is part of an :>

IF-THEN command.

2. Processes END command within
IF-THEN command:

a. When paired with an unneccessary
DO command.

b. When paired with a necessary DO
command.

HDAREA

~ ...
MODLFLGS

NULLDO

....-....

3: o

[
S
O
~
i o·
='
v.
v.

Extended Description for Diagram 2.2.5

IDCRIOI

Procedure: GETNEXT

1 GETNEXT checks the NESTLVL field in HDAREA;
if NESTL VL contains a zero, no IF-THEN
command is being processed and control returns to
Diagram 2.2 to obtain the next command. If
NESTL VL contains a value other than zero,
processing continues with step 2

IDCRIOI

Procedure: GETNEXT

2 An END encountered during the processing of an
IF-THEN command must be paired with a DO
command. If a DO command has not been found in
the current IF-THEN command, the END is
processed as a syntax error as in Diagram 2.2.1, step 1.

a. If the END command is paired with an
unnecessary DO command, GETNEXT subtracts 1
from the count in the NULLDO field in HDAREA.
Control returns to Diagram 2.2 to obtain the next
command.

b. If an END is paired with a necessary DO
command, GETNEXT sets the DOFLAG for the
current IF-THEN command to zero. An
IF-THEN command is completed if the END is
paired with a necessary DO that followed an
ELSE. GETNEXT subtracts 1 from the count of
nested IF-THEN commands in NESTLVL.
Control returns to Diagram 2.2 to obtain the next
command.

~ Diagram 2 .3 Reader/Interpreter Prepare to Scan Command
o
o
til
<
til

r
~

== tD ;.
&.
til
tD

~
~.
{II

b
lB.
C'l

INPUT

IDCRILT

Command Verb Name

[EXOO -:J

From Diagram 2.0

ESSING

1. Validates verb.

2. Gets command descriptor.

3. Builds PARMINFO table.

4. Gets FSR name.

5. Initializes FDT.

OUTPUT

PARMINFO Table

Command Descriptor

COMMAREA

FSR Load
Module Name

r---------...,
I I

.. ----------1
I EXOO

~I Verb Name

s::
(1)

go
8-
sa.
o
~
""I

~ o·
t:3
VI
.....;j

Extended Description for Diagram 2.3

IDCRI02
IDCRIOI

Procedures: IDCRI02, ERROR2

1 Reader/Interpreter Initialization, Diagram 2. 1, gives
control to this section only if parameters were present
before SYSIPT was read. Otherwise, control comes
from Diagram 2.2. IDCRI02 compares the verb name
with the valid functional verb names in IDCRILT. If a
match is found, IDCRI02 obtains the name of the
verb's command descriptor from the table. If a match
is not found, the verb is invalid, and ERROR2 prints a
message on SYSLST. The remainder of the command
is ignored, and control is given to Reader/Interpreter
termination, Diagram 2.5

IDCRI02

Procedure: IDCRI02

2 IDCRI02 uses the command descriptor name to load
the command descriptor. A command descriptor is a
load module describing all the parameters the
command may have. Access Method Services defines
a parameter as:

• Positional data-positional parameters cannot have
subparameters.

• Keyword with or without data-keyword parameters
may have subparameters.

Data is a constant or list of constants.

Some examples of parameters are:

• entryname . . . in DELETE is a positional
parameter.

• VOLUMES (111111) is one parameter with a
keyword VOLUMES and data of "111111".

• VOLUMES (111111, 222222) is one parameter with
keyword VOLUMES and data of "111111" and
"222222". (111111, 222222) is a list of constants.
Each constant is the same thing-that is a volume
serial number.

• KEYS (5, 40) is three parameters-KEYS, length
with value 5, and offset with value 40. KEYS is a
keyword while length and offset are each positional
parameters. (length, offset) is not a list of constants
because the second item, offset, is different from the
first, length. length and offset are subparameters of
KEYS.

• KEYRANGES «5, 40), (50, 60), (70, 80» is three
parameters-KEYRANGES, lowkey, and highkey.
The subparameters of KEYRANGES, lowkey and
highkey, are repeated. In Access Method Services
each repetition of a parameter must be enclosed in
parentheses. Since lowkey and highkey are
positional parameters, they must always be in the
same relative position. They are repeated as a pair to
maintain their position.

IDCRI02
IDCRIOI

Procedures: IDCRI02, SETFLAG

3 The command descriptor contains an identification
number for each parameter the command is permitted
to have. Since the sections of the command descriptor
that describe the parameters are in no set order,
IDCRI02 builds the PARMINFO Table to access
information in the order of the parameter
identification number. The PARMINFO Table
consists of several sections. In the Descriptor Pointer
section the first pointer in the array points to the
Command Descriptor section that describes parameter
with identification number 1. The second pointer
points to the Command Descriptor section that
des(:ribes parameter with identification number 2, and
so on. The PARMFLAG section contains one entry
for leach parameter identification possible in the
command. PARMFLAG is used to keep track of
whkh parameters have been found. When a
parameter is found, SETFLAG sets the indicator for
the parameter in P ARMFLAG.

In Access Method Services, a subparameter is a
parameter that modifies another parameter. For
example, in DEFINE SPACE (VOL ...), VOL is a
sublParameter of SPACE. In this document the
parameter that the subparameter modifies is called its
sup.erparameter. In this example, SPACE is the
superparameter of VOL. A superparameter, then, is a
parameter that is modified by other parameters. For
each subparameter, IDCRI02 puts the number of its
suplerparameter in the P ARMINFO Table in the
Superparameter 10 section that the R/I uses to
det€~rmine the relationship among parameters.

IDCRI02

ProcedllD'e: IDCRI02

4 IDCRI02 obtains the FSR load module name from the
command descriptor and places the name in the

FSRLNAME field in COMMAREA. The Executive
uses the FSR load module name to load: the FSR that
execut,es the command.

IDCRI02

Procedure: IDCRI02

S IDCRl!02 obtains storage for the Function Data Table,
FDT. The verb uses 8 bytes of storage, and each
parameter uses 4 additional bytes. IDCRI02 obtains
more storage for the FDT if any parameter is
repeat1ed. The amount of storage for repeated
parameters is calculated from the command
descriptor. Because IDCRI02 uses a UGPOOL macro
instruction to obtain storage, the identifier EXOO
precedes the FDT. IDCRI02 initializes the FDT to
zero and places the verb name in the first 8 bytes. The
FDT contains the information from the command that
an FSR needs to execute the command. The FDT is
the intlerface between the R/I and the FSRs and
consists of a primary array of addresses, one
secondary array of addresses for each n~peated
parameter, and encoded data from the ,;ommand.

~ Diagram 2.4 Reader/Interpreter Scan Command
o
o
CI'.l
........
<:
CI'.l

~
~
(II
(II

:::
~ ::r o
Q.

CI'.l
~

< (=i.
~
(II

b
~.
o r=J

PARMINFO

0

·1 end of eter untl h param .. n Interprets eac d of nested repetltlo , mmand or en
co to Step 2. then goes

a. . ameter. Obtams par

b. Checks for errors'----8
See Diagram

data items c. Puts parameter ~
in FDT. 2.4.2

See Diagram

2. Supplies defaults an d checks for
errors.

I

0

s:
n ;.
&.
a
o
~
"'1

~ o·
=
VI
\0

Extended Description for Diagram 2.4

IDCRIOI

Procedures: BUILDFDT, CONVERT, DSIDCHK,
NAMESCAN, SCANCMD, KWDPARM, POSPARM,
INREPEAT, GETDATA, GETSIMPL, GETQUOTD,
ERRORl, ERROR2, NXTFIELD, NEXTCHAR,
GFTRECRD

If the Reader/Interpreter is processing a specified
parameter, processing continues with step lao If the
Reader/Interpreter is processing the end of a
command or the end of a repeated parameter,
processing continues with step 2. A parameter set is a
parameter repeated as a group. Each repeated
parameter set is treated separately from the command
and from other repeated parameter sets. PARMFLAG
for the parameters in a repetition is reset to zero for
each group of repeated parameters in order to start the
processing again for the new repeated group of
parameters.

a. SCANCMD extracts a parameter from the input
record in storage. If the entire parameter is not in
storage, GETRECRD reads SYSIPT until all the
parameter is in storage.

b. SCANCMD checks the parameter for syntax errors
based upon the information for the parameter in
the command descriptor. If errors are found,
ERRORl or ERROR2 writes a message to SYSLST
and sets LASTCC to 12. The rest of the command
is skipped, and control is passed to R/I
termination.

c. As SCANCMD scans the command, BUILDFDT
tncodes the command into the FDT in order to
describe the command to the FSR that will execute
it. The data items are checked for additional errors
(errors are processed as described in step l.b).
Parameter scanning continues one parameter at a
time until the end of a repeated parameter list is
reached or until the command terminator is found.
For positional parameters and data belonging to
keywords, BUILDFDT checks to ensure that a
string does not exceed the allowed length, that a
number is not out of range, and that there are not
too many elements in a list.

IDCRIOI

Procedures: DEFAULTS, SETDELT, NEEDNOTS

1 The PARMINFO Table is used to access the
description of each parameter. If a repeated group of

parameters or a command is incomplete, default
values are supplied to the FDT. The defaults, which
are in the command descriptor, are always supplied
whcmever an input parameter is omitted, unless the
defaults conflict with the input parameters.
DEFAULTS and SETDFLT check to ensure that the
combination of defaults supplied for the command is
meaningful, that is, no parameters that are
syntactically correct but logically incorrect.
PARMFLAG and the command descriptor are used to
make inter-parameter checks for missing keywords
and mutually exclusive keywords. If command
scanning is not complete, control returns to step 1 to
obtain the next parameter.

~ Diagram 2.4.1 Reader/Interpreter Syntax Check Parameter
o o
en
........
<:
en
> (')
(')
(I>
til
til

~
(I>

S-
o
0-
en
(I>

~
r;"
(I>
til

b
(JQ

r;"

Command

I I
Command Descriptor

D
..,.

~ 1. Gets parameter number. ./ ..

2. Indicates parameter is found.

3. Checks constant for errors.

4. Prepares to scan subparameters.

I Parameter Numher
~ I I 1

~I PARMINFO Tahk

~ I I

I
--y

FDTTBL

'" D;

~
o ;.
o p..

S
O
~
""I

~ o·
::3

0'\ -

Extended Description for Diagram 2.4.1

IDCRIOt

Procedures: SCANCMD, KWDPARM

t The identification number is found differently for
positional and keyword parameters. For a positional
parameter, SCANCMD obtains the number of the
parameter from the subparameter 10 number list in
the current superparameter's descriptor. For a
keyword parameter, KWDPARM compares the
keyword to every possible keyword permitted in the
current level of parameter processing. When a match
is found, KWDPARM saves the 10 number of the
keyword.

IDCRIOt

Procedure: SETFLAG

2 SETFLAG uses the 10 number of the parameter as an
index to the FDT. SETFLAG puts the address of the
FDT field in the same FDT field-the FDT field
points to itself-to indicate that the parameter has
been found. If the parameter has data, the FDT field
will be changed later to the address of the data. Also,
SETFLAG sets the P ARMFLAG value to 1 for this
parameter to indicate the parameter has been found in
the command.

IDCRIOt

Procedures: GETDAT A, CONVERT, PACKCVB,
DSIDCHK, ERROR2

3 If the parameter is a constant in the case of positional
parameters, or if a constant is associated with the
parameter in the case of a keyword parameter,
GETDAT A checks the constant for syntax errors. If
an error is encountered, ERROR2 issues a message on
SYSLST and sets LASTCC to 12. In Access Method
Services, a constant is one of the following:

• dsname/password
• dsname(membername) / password
• dname/password
• 'character string'
• character string
• X'hexadecimal digits'
• decimal digits
• B'binary digits'

A list of constants is several constants in the same
format following each other. A constant or a list of
constants may belong to one parameter.

IOCRIIOt

Procedure: SCANCMD

4 If the keyword parameter has subparameters
associated with it, SCANCMD processes the
subparameters next. For example, if the following
command is specified:

VERB A(x) B(C(p q) D(r s E(x))) F G(x)

A, B, C, 0, E, F, and G are keyword parameters. p, q,
r, and s are positional parameters. x represents data.

The command has the following structure for
sCl:mning:

Verb

I
I
A B

I r ------~ ---I
c o

I

1
F

~ r 1
p q r s E

The structure is in levels of parameter dependency.
The verb is on level zero. Parameters A, B, F, and G
are on level one. When the R/I scans level one and
finds parameter B, the scanning begins one level lower
with parameters C and 0 on level two. When
parameter C is found, the scan again moves one level
lower to scan the C subparameters. At the end of the
C subparameters, the scan returns to level two to scan
thle next parameter on level two. At the end of the 0
subparameters, there are no more parameters on level
two, and the scan returns to level one for parameter F.
In other words, the parameters are processed in the
same order that they appear on the input statement.
R/I keeps the level number of the parameter being
scanned in P ARML VL. R/I keeps the 10 number of
th,e superparameter for the level being scanned in
SUPERID. R/I keeps the 10 number of the parameter
being scanned in PARMID.

I
G

~ Diagram 2.4.2 Reader/Interpreter Build FDT
o
o
CIl

~
CIl

[
::
S-o
Q.

CIl
n
3.
~
rIl

b
GO r;o.

INPUT .•

Fmm Diagram 2.4

PROCESSING ...
Command Descriptor ""T""----....,'.>f 1. Determines type of parameter:

~ ...
FDT

JCCb d ~ist of addresse;(:::;::: =r

Joo. v

• Non-repeated parameter. Step 2.

• Repeated parameter. Step 3.

2. Puts address in FDT primary
vector for non-repeated parameter.

....
:;;>

... 3. Puts address in FDT array for
repeated parameter.

--~-------------------c>

Ol'TPliT

nn

FDTTHL

Vl'rh

IAt---~
Data Ilr Cllllllt and Data

•
;\ITa\" Ilf ;\dJ ·"l',

(~.'"'''' and I)a'a

== ~ s-o
Co

S
o
'g
"'" a o·
=
0'1
I".J

Extended Description for Diagram 2.4.2

IOCRIOI

Procedures: PACKCVB, CONVERT, GETSPACE,
MORESPACE

1 The parameter type determines how it is encoded into
the FDT. If the parameter cannot be repeated,
processing continues with step 2; if the parameter can
be repeated, processing continues with step 3. Refer to
Diagram 2.3 for a definition of parameter.

2 A non-repeated parameter is one of the following:

• A keyword with no data and no repeated
subparameters

• A keyword with no data and repeated subparameters

• A positional or keyword parameter with a single
constant as data

• A positional or keyword parameter with a list of
constants as data

Each category is encoded differently into the FDT as
follows in the same order as above:

• The address in the FDT points to itself

• The address in the FDT points to a fullword
containing the number of subparameter repetitions

• The address in the FDT points to the single constant

• The address in the FDT points to a halfword
containing the number of constants and immediately
preceding the list of constants

Character string constants are not changed, but
PACKCVB and CONVERT convert numbers and
hexadecimal strings to binary before the address is put
in the FDT. If a list of constants is found, GETSPACE
obtains space for the list when the first constant is
processed. MORESPACE obtains additional space, if
necessary. In the R/I listings, the word scaler is
interchangable with the word constant. Control returns
to Diagram 2.4 for the next parameter.

IOCRIOI

Procedures: SCANMD, INREPEAT, DEFAULTS,
NEEDNOTS

3 Each repeated parameter-positional or keyword- is
one of two repetition types.

Repetition Type 1

The repeated parameter is not embedded in another
repeated parameter. The objectname parameter in
the IMPORT command has type 1 repetition.

R4!petition Type 2
The repeated parameter is embedded within another
repeated parameter. The lowkey parameter in the
][MPORT command has type 2 repetition.

The maximum number of repetitions for a parameter
is in the command descriptor for the parameter. The
R/I uses the repetition type to insert the addresses of
the data associated with the parameter in a secondary
FDT array of addresses. The address of the array is
put in the primary FDT. For each repetition type the
FDT array is different.

Rc!petition Type 1
The array is one-dimensional and contains one
address for each possible occurrence of the
parameter.

Rc!petition Type 2
The array is two-dimensional. There is one row for
c!ach possible occurrence of the type 1 or outer
parameter. There is one column for each possible
occurrence of the type 2 or inner parameter.

Consider a command in the following format:

VERB A« B(C D«x y) ... » E) ...) F

The type 1 parameters are B, C, D, and E because the
entire parameter (B(C D((x y) ... » E) can be
repeated, but it is not embedded in another repeated
parameter.

The type 2 parameters are x and y because (x y) can
be repeated, and it is embedded in another repeated
pa,rameter. A one dimensional array is built for each
type 1 parameter, B, C, D, and E, but a two
dimensional array is built for each type 2 parameter, x
andy.

The data from each repetition of a parameter is
tn!ated as in step 2, but instead of putting the data
ad.dress in the primary FDT array, R/I puts the
ad.dress in the secondary array of addresses for the
pa.rameter. In the R/I listings, repetition type is called
repeatedness nesting. Refer to the examples of FDT in
the Data Areas chapter. Control returns to Diagram
2.4 for the next parameter.

~ Diagram 2.5 Reader/Interpreter Termination
o
o
til
<:
til

> n
~
tI2
tI2

s::
~ ;.
&.
til
~

~
n'
~
tI2

b
(JQ

n'

INPUT

HDAREA

LOADTPTR

KWDTPTR

COMMAREA

LASTCC

EOFFLAG

DESCNAME

From Diagram 2,0

PROCESSING OUTPlJT

1. Deletes tables.

Register 15

2. Updates condition code. c- 1

3. Determines if command is to be executed.

GDT

FDT Auure""

rDT UGPOOL ID

MAXCC

LASTCC
FSR Name

s::
n
;.
&.
a
o
-g
~ o·
::I
0"
VI

Extended Description for Diagram 1.S

IOCRI03

Proced.-e: IDCRI03

I IDCRI03 deletes the command descriptor table for the
current command and temporary storage. If
end-of-file or a severe error is encountered, IDCRI03
deletes the command name table (IDCRIL T), the
modal name table (IDCRIKT), and HDAREA.

IOCRI03

Proced.e: IDCRIOl, IDCRI03

2 If end-of-file is encountered on SYSIPT, IDCRI03 sets
a flag in COMMAREA and IDCRIOI puts a nonzero
value in register 15, indicating that the Executive is
not to call the R/I again. If end-of -file has not been
encountered and no severe errors were found,
IDCRIO 1 sets register 15 to zero. If an error causes the
R/I to terminate all processing, IDCRI03 prints an
error message on SYSLST. IDCRI03 sets MAXCC to
16 which indicates that the Executive is not to call the
R/I again.

IOCRI03
IOCRIOI

Proced.e: IDCRI03, IDCRIOI

3 If the command had errors or was being scanned only
for syntax errors due to a modal expression, IDCRI03
releases the PDT and gives control to Diagram 2.2 to
get the next command from SYSIPT. If the command
is to be executed or severe errors were encountered,
IDCRIOI gives control to Executive Controlled
Termination Diagram 4.1.

a::
;.
&.
S
o
'g

~ o·
::I

~

Function Support Routine (FSR) Visual Table of Contents

I 3.1 I 3.3 3.5 I 3.7

ALTER D~LETE IMPORT [:RM

3.2 3.4 3.6

DEFINE EXPORT LlSTCAT PRINT

3.2.1 3.2.2 3.5.1

MASTER- USER- Catalog
I-~ CLUSTER CATALOG CATALOG Reload

3.2.3 3.4.1 3.6.1

NONVSAM ~ CLUSTER Gets
Information

3.2.4 3.2.5

SPACE -~ CLUSTER

3.2.6 3.2.7

ALTERNATE-
~ ... PATH

INDEX

3.9 3.11 3.13 I 3.15

REPRO BLDINDEX EXPORTRAJ RESETCAT ~

~ Initialization

3.8 3.10 3.12 3.i4

VERIFY LlSTCRA [IMPORTRA 3.15.2

- Copy Catalog I
to Work File

3.9.1 3.11.1 3.12.1 3.14.1 3.15.3
i

Get Information _ CLUSTER or Merge CRAs
~ Process CRA - ALTERNATE -and Verify to Work File

INDEX

3.15.4

3.11.2 3.13.1 3.14.2 ~
Reassign
CI numbers

Obtain Resources
Field USER-and Sort I-
Management - ~

CATALOG Initialization 3.1S.!

Check - Associations

3.11.3 3.13.2 3.14.3

Sort-Merge and 3.1H
Build Alternate ~ Driver i-o i-o NONVSAM
Index Update the

~ Catalog

3.13.2.1 3.13.2.2 3.14.4 3.15:

Export VSAM Export ... GOG BASE -- Update the
Data Set NonVSAM CRA

'--- "--

~ Diagram 3.1. ALTER FSR
o o
VJ
........
<:
VJ

:> g
o
en
en

=::
o go
8-
VJ o
~ o·
o
en

b
(JQ

o·

~

t

Register 1

+GDT

+ FDT

0

~
~ .--

VSAM
Catalog

...... ...,.

From Executive

...
1. Opens user catalog.

2. Obtains information from
catalog. <

3. Verifies new values are compatible.

4. Verifies entry type is valid for Alter;
operation.

5. Builds catalog parameter lists.

6. Changes catalog entry. <

7. Writes message.

L.-.

OUTPUT

CTGPL

... CTGFLs
" ~ .. --'" ..I -

I'"

LOCTABLE

.. "I I
I [

I

.... CTGPL

e
.... I ...

./

l CTGFV
""'I

GMessage

D
\-.. I CTGFL,

+GDT

+ FDT

....

~>e

">G

~
o ;.
8-
S
O
't)
o

~ o·
=
$

Extended Description for Diagram 3.1

IDCALOt

Procedure: IDCALOI

t First, IDCALOI gets storage for the catalog parameter
list. If a VSAM catalog is specified on the ALTER
command, IDCALOI builds an OPNAGL and issues a
UOPEN to open the catalog. UOPEN returns the
address of the catalog ACB. If the open is not
successful, the ALTER command is terminated, and
control goes to Step 7. If the return code from
UOPEN is zero, IDCALOI compares the data set
name returned from UOPEN (in 10CDSN) to that
specified in the CATALOG parameter. If the compare
is unequal, a message is written, the command is
terminated and control goes to Step 7.

IDCALOt

Procedure: LOCA TPRC

2 Due to the arrangement of information in a VSAM
catalog, in order to change part of a field the entire
field must be retrieved and changed. If only
NEWNAME, OWNER I NULLIFY OWNER,
TO I FOR I NULLIFY RETENTION, BUFFERSIZE,
EXCEPTIONEXIT I NULLIFY EXCEPTIONEXIT,
NOUPGRADE I UPDATE I NOUPDATE, or
ADDVOLUMES I REMOVEVOLUMES is specified,
control goes to Step 5. LOCATPRC builds a CTGPL
and CTGFLs which reference the PASSWALl,.,
DSATTR, AMDSBCAT, RGATTR, NAMEDS,
HURBADS, ENTYPE and CAT ACB catalog fields.
This initial locate performed in LOCA TPRC is termed
the primary locate.

A test is built to limit the number of associations
returned for NAMEDS to a maximum of five. Refer to
the list in Step 5 for the contents of the catalog fields
obtained with a particular CTGFL. LOCATPRC issues a
UCATLG macro to retrieve the information from the
catalog. If the return code is zero, LOCA TPRC uses the
returned information to build a table, LOCT ABLE. If the
return code is 40, the work area for VSAM is too small.
LOCA TPRC increases the work area and reissues the
UCATLG. If the return code is any other non-zero
number, the ALTER command is terminated and control
goes to Step 7.

IDCAI..ot

Procedure: CHECKPRC

3 Folliowing the primary locate, IDCALOI will invoke
CHECKPRC if any of the following parameters were
spe:cified: UPGRADE, KEYS, RECORD SIZE,
UNIQUEKEY. CHECKPRC will perform further
verification of these parameters which will, in most
cases, require additional locates (called 'secondary'
locates). Password processing for the primary and
sec:ondary locates and for the Alter function itself is
handled as follows:

If KEYS and/or RECORDSIZE are not specified:

a. On the primary locate, if a password is supplied,
reference it from the CPL. Set the verify master
password bit.

b. If UPGRADE is specified, a secondary locate for
the data HURBADS is required. If a password is
supplied, reference it from the CPL. Turn off the
verify master password bit. The passYlhrd (which· is
that of the cluster level) will be verified as being
read level or higher.

c. On the Alter, if a password is supplied, reference it
from the CPL. Turn off the verify master password
bit. Password verification will be as in prior release
(master password of catalog or entry being
altered).

If KEYS and/or RECORDSIZE are specified:

a. On the primary locate, if a password is supplied,
reference it from the CPL. Set the verify master
password bit.

b. On the secondary locates, if a password is supplied,
reference it from the CPL. Turn off the verify
master password bit. Turn on the bypass
verification bit. No verification will take place and
the requested information will be returned.

c. On the Alter, processing is as described in b above.

If UPGRADE was specified, CHECKPRC will verify
that the ENTYPE is a G (alternate index). If
UPGRADE was specified, CHECKPRC will verify
that the high-used RBA is zero. This latter check will
require a locate of the data HURBADS. If
UNIQUEKEY was specified when the attribute was
previously NONUNIQUEKEY, CHECKPRC will
verify that the high-used RBA of the data object is
zero and that the data object is associated with an
alternate index. If any of these error checks fail, a
message is printed and processing is terminated.

The major portion of the new CHECKPRC procedure
will perform the validity checking required to alter the
KEYS and/or RECORD SIZE values of an empty data
set. This checking will require the following secondary
locat1es, based on the ENTYPE returned from the
primary locate:

ENTYPE Locates Fields Requested

NAMEDS (a maximum
of three

D l-C or G
association

2-1 association
CorG

associations)

AMDSBCAT

C I-D association AMDSBCAT, HURBADS,
NAMEDS, ENTYPE,
DSA TTR, PASSWALL

2-1 association AMDSBCAT

G I-D association AMDSBCAT, HURBADS,

R

2-1 association

I-D association
of AIX or
cluster

2-1 association
·of AIX or
cluster

NAMEDS, ENTYPE,
DSA TTR, PASSWALL

AMDSBCAT

AMDSBCAT, HURBADS,
NAMEDS, ENTYPE,
DSATTR, PASSWALL

AMDSBCAT

If tht~ ENTYPE is none of the above, CHECKPRC
will return to IDCALOI with a terminating condition
code. The LOCATE for the index AMDSBCA T will
be issued only for a KSDS. CHECKPRC will also
verify that the HURBADS is zero. If not,
CHECKPRC will return to IDCALOI with a
terminating condition code. If the object being altered
is a relative record data set, CHECKPRC will verify
that the average and maximum record size specified
are equal and, if not, will return to IDCALOI with a
terminating condition code. If the ENTYPE returned
in the primary locate is C, G or R, CHECKPRC will
save the control interval number of the data
component which is to be altered.

After retrieval of the appropriate AMDSBCA Ts, the
following check will be made of the new average and
maximum recordsizes and/or new key values.

a. Data Object

AMDRKP + AMDKEYLN ~ AMDLRECL

or, if the object has the spanned attribute,

-...J o
o
o rn
~ rn
>
~
{II

== ~

So
&.
rn
~

:!
~.

b
(JQ o·

AMDRKP + AMDKEYLN S AMDCINV -
D.H.R.S

b. DATA object

AMDCINV ~ AMDRKP + AMDKEYLN +
D.R.H.S & AMDCIPCA * (AMDCINV -
D.R.H.S) ~ AMDLRECL

c. Index AMDCINV ~ max (x,y) where:

X - I.R.H.S + (2 * (AMDKEYLN + 2» + (3 *
AMDCIPCA) + D.R.H.S

Y - I.R.H.S + (8 * AMDCIPCA) + (2 * SQRT
(AMDCIPCA» + D.R.H.S.

I.R.H.S - index record header size - 24

D.R.H.S - data record header size - 7 if
non-spanned

D.R.H.S - data record header size - 10 if spanned

If any of these relationships do not hold, CHECKPRC
will return to IDCALO 1 with a terminating condition
code.

If thIs is an alteration of an ESDS the index validity
check will not be performed. If this is an alteration of
an alternate index, the AMDRKP is a fixed value of
X'OS'. If relative key position is specified, it applies to
the position of the alternate key within the base cluster
record.

If the object being altered is a alternate index and the
KEYS parameter was specified, a further check must
be made which requires retrieving the AMDSB of the

base cluster's data component. The table below shows
the locates which CHECKPRC will issue based on the
ENTYPE returned from the primary locate.

ENTYPE Locates Fields Requested

D l-C association NAMEDS (the first
of G retrieved association)

G

in secondary
locate

2-D association
ofC

l-C association
retrieved in
primary locate

2-D association
ofC

AMDSBCAT (the
first association)

NAMEDS

AMDSBCAT

R I-D association AMDSBCAT
of base cluster
retrieved in
primary locate

Using the base cluster's data AMDSB, CHECKPRC will
verify the following:

AIX AMDAXRKP + AIX AMDKEYLN S base cluster
AMDLRECL

or, if the base cluster has the spanned attribute,

AIX AMDAXRKP + AIX AMDKEYLN S base cluster
AMDCINV-D.R.H.S

where D.R.H.S - 10

If either of these conditions are not true, CHECKPRC
will return to IDCALOI with a terminating error.

Assuming no terminating errors have been found~
CHECKPRC will now set the appropriate return code to
IDCALOI indicating what situation was encountered. The
return code will eventually be passed back to the caller,

and a message written. The table below shows the return
code value which will be set:

Previous KEYS
KEYS and/or
RECORDSIZE
values were
default values

New values
are equal
to previous
values

4

Previous KEYS 4
and/or RECORDSIZE
values were not
default values

New values
are not equal
to previous
values

o

12

If the return code is 0, the alter will be performed. If
the return code is 4, KEYS and RECORDSIZE will
not be altered but alters will be performed for any
other parameters .specified. A return code of 12 is
treated as a terminating condition code. If the
verification of the new values fails, the return code
is 12.

Control is returned to IDCALOI.

IDCALOI

Procedures: PARAMCHK

4 If only NEWNAME, OWNER I NULLIFY
(OWNER), TO I FOR I NULLIFY (RETENTION),
EXCEPTIONEXIT, NOUPGRADE,
UPDATE I NOUPDATE, or BUFFERSPACE is
specified, control goes to step 5. Otherwise, IDCALOI
passes control to the internal procedure PARAMCHK.
PARAMCHK verifies that the parameters specified on
the ALTER command are valid for the entry type of
the object to be altered. The
WRITECHECK I NOWRITECHECK,
INHIBIT I NOINHIBIT, and SHAREOPTIONS
parameters are only allowed for data or index objects.
The ERASEINOERASE, FREESPACE and
UNIQUEKEVINONUNIQUEKEY parameters are
only allowed for data objects. If PARAMCHK detects
an error, control goes to step 7, otherwise, control
goes to step S.

IDCALOI

Procedure: AL TERPRC

5 ALTERPRC uses the data from the ALTER command
in the FDT and LOCT ABLE. AL TERPRC builds a

3:

l
S
o
'g

I·
~ -

CTGPL, a CTGFV, and several CTGFLs in order to
change information in the catalog. Only fields that are
specified in the ALTER command are changed in the
catalog. If information in a field is not being changed,
the CTGFL for the field is not built. The following
table lists the data areas that pass information to
VSAM and the keywords whose data is passed.

Data Area Keyword Data
CTGPL NEWNAME address

FILE address
ADDVOLUMES address
REMOVEVOLUMES
address

BUFSIZE CTGFL BUFFERSPACE

DESTEXDT CTGFL TO I FOR
NULLIFY RETENTION

DSA TTR CTGFL ERASE I NOERASE
SHAREOPTIONS
UNINHIBIT I INHIBIT

OWNERID CTGFL OWNER
NULLIFY OWNER

PASSWALL CTGFL MASTERPW
CONTROLPW
UPDATEPW
READPW
CODE
ATTEMPTS
AUTHORIZATION
NULLIFY for any keywords
just listed

AMDSBCAT CTGFL FREESPACE
WRITECHECK I
NOWRITECHECK
KEYS
RECORD SIZE-maximum
UNIQUEKEYI
NONUNIQUEKEY

EXCPEXIT CTGFL EXCEPTIONEXIT
NULI,.IFY
EXCEPTIONEXIT

RGATTRCTGFL UPGRADE I NOUPGRADE
UPDATE I NOUPDATE

LRECL CTGFL RECORD SIZE-average

If KEYS or RECORD SIZE was specified,
CHECKPRC has saved the control interval number of
the data component being altered. This number is
moved to the CPL and is used instead of the data
component name for faster access.

Prior to IDCALOI issuing the UCATLG macro the
CTGFVTYP field will be set to G if
UPGRADE/NOUPGRADE is specified.

CTGFVTYP will be set to R if
UPDATE/NOUPDATE is specified.

IDeALOt

ProcE!.II .. e: IDCALOI

6 IDCALOI issues a UCATLG macro to change the
catalog entry. If the return code from UCATLG is
nonzero, an error conversion table is built and a call is
made to UERROR. UERROR will handle printing of
the error message. If KEYS is specified for a KSDS or
an alternate index, a second UCATLG macro is issued
to change the catalog entry of the associated index
object. If the return code is nonzero, it builds an error
conversion table and calls UERROR. UERROR will
handle the printing of the error message.

IDeALOt

Proc.,dure: IDCALOI

7 ICDALOI also writes a message with LASTCC to
SYSLST. If IDCALOI opened a VSAM catalog, it
closes the catalog with a UCLOSE macro. Control
goes to Executive Controlled Termination.

tj Diagram 3.2. DEFINE FSR
o
o
v.l

< v.l

~
.~
rI.I
rI.I

~
B ;.
8.-
v.l
B

<
~.

b
(JQ c;.

INPUT

Register I

E
tGDT

t FDT

E
~

VSAM

Catalog

~ ~

"

~

From Executive
Controlled Termination

PROCESSING

1. Initializes catalog parameter lists.

2. Opens catalog, if specified.

3. Determines object being defined:

• MASTERCATAL~
See Diagram 3.2.1

• USERCATALOG~
See Diagram 3.2.2

• NONVSAM ~
See Diagram-- 3.2.3

• SPACE ~
See Diagram-- 3.2.4

• CLUSTER ~
Sec Diagram_ 3.2.5

• ALTERNATEIND~
See Diagram 3.2.6

• PATH --9
See Diagram 3.2.7

4. Performs validity checking.

5. Invokes VSAM catalog
management.

6. Writes message.

CTGPL--" --.-----,;>11 I '\ CTG FVs

~

G::
-----.. ..

I r--

I
~_ .1

........,

~

OUTPUT

........ --
VSAM

Catalo!!
.......... ~

--~ D
Re!!i..,tcr I

,~---t GDT

It FD·I _

\LASTCC

~
~ s-
o c..
a
o
"0
~ ..,
a o·
::s
-...J
U.J

Extended Description for Diagram 3.2

IDCDEOI

Procedure: IDCDE01

IDCDE01 issues a UGPOOL macro to obtain core for
a CTGPL, four CTGFVs and two work areas. One
work area is used by catalog management during its
processing. The second is used by catalog management
to return the volume serial of the recovery volume for
the object defined if the catalog is recoverable. The
CTGPL, CTGFVs and CTGFLs are used to pass
information to VSAM catalog management. The
CTGFVs are found through the CTGPL, and the
CTGFLs are found through the CTGFVs. Refer to the
DOS/VS LIOCS Volume 4: VSAM Logic, SY33-8562,
for more information on the CTGPL, CTGFV, and
CTGFL. Refer to the Diagnostic Aids chapter for an
illustration of the DEFINE FSR work area. The
characters CA TPLIST preceed the CTGPL. A call is
made to IECDE02 to establish addressability for
IDCDE02 to declarations common to all DEFINE
modules. If a catname is supplied with a CATALOG
parameter, IDCDE01 puts the address of the catname
and the password in the CTGPL.

IDCDEOI

Procedure: IDCDE01

2 If the CATALOG parameter specifies a dna me,
IDCDE01 opens the catalog with a UOPEN macro. If
the return code from UOPEN is zero, IDCDE01
compares the data set name returned from UOPEN
(in IOCDSN) to that specified in the CATALOG
parameter. If the compare is unequal, a message is
written and control goes to Step 6. The I/O Adapter
returns the address of the ACB for the catalog in the
IOCSTR. IDCDE01 puts the address of the ACB in
the CTGPL. IDCDE01 puts the address of the catalog
ACB in the same CTGPL field where the address of
the catname was placed. The ACB is used instead of
the name for faster catalog access by VSAM catalog
management. If the return code from the UOPEN is
non-zero, a message is written with a UPRINT macro
and control goes to step 6. Otherwise, IDCDE01 calls
IDCDE03 to format the catalog parameter list.

IDCDE03

Procedure: IDCDE03

3 IDCDE01 determines the type of DEFINE by testing
for the following keywords: CLUSTER,

MASTERCATALOG,USERCATALOG,
NONVSAM, SPACE, ALTERNATEINDEX, PATH.
The types of DEFINE are shown in detail in the
following diagrams:

MASTER CAT ALOG see Diagram 3.2.1
USERCAT ALOG see Diagram 3.2.2
SPACE see Diagram 3.2.3
NONVSAM see Diagram 3.2.4
CLUSTER see Diagram 3.2.5
ALTERNATEINDEX see Diagram 3.2.6.
PATH see Diagram 3.2.7.

IDCDEOI

Procedure: INTGCHK

4 INTGCHK performs validity checking to insure:

KSnS, ESDS, RRDS, and AIX

Space parameters have been properly specified.

• Volumes have been specified in both DATA and
INDEX FVTs.

• If KEYLENGTH and KEY POSITION (in Data
AMDSB) have not been specified supply defaults:
l,ength=64, relative key position=O.

• If average and maximum recordsize have not been
specified, specify defaults: average for
non-spanned=4089, average for spanned=4086,
maximum for non-spanned=4089, maximum for
spanned=32,600

• If UNIQUE is specified insure CTGFVIND has
been set and build null volume FVT.

• If an ESDS, KSDS or AIX has the REUSABLE
attribute make sure it is not unique nor have
KEYRANGES been specified.

• If AMDRRDS indicates an RRDS, insure that the
average and maximum LRECL are equal.

• If the data AMDSB indicates an RRDS, insure that
it does not also indicate spanned.

• If record size is greater than 32,761 (maximum CI
size), insure that it has the spanned attribute.

• If KEYRANGES is specified, ensure key values do
not exceed maximum key length.

SPACE

Space parameters have been properly specified .

IDCDEOI

Procedure: IDCDE01

5 IDCDE01 invokes VSAM catalog manag4;!ment by
issuing a UCATLG macro. If a list of names or a list
of volume serial numbers is returned, the list is written
with a UPRINT macro. If the return code from
UCATLG is non-zero, IDCDE01 builds an error
conversion table and invokes UERROR. OERROR
will handle printing of the error message.

If a recovery volume serial is returned, it is printed
with a UPRINT macro.

IDCDEOI

Procedures: IDCDE01

6 If a catallog was opened in step 2, IDCDEOI closes the
catalog with a UCLOSE macro. A message with
LASTCC is written with a UPRINT macro. IDCDEOI
calls FREESTG to free all automatic storage for
CSECT IDCDE02. IDCDEOI issues a UFPOOL to
free all the storage obtained for the DEFINE FSR.
Control goes to Executive Controlled Termination.

c:c:;:tl""O
'<~Pl

-l :::.~
Z~o rc..
CIl~Vl
Zoo -<
N"'VJ
~::VJ
~NOo
VI \.0 VI
VI' 0'1
o-f"
~VJ
-...J

-...J
~

o
o
c;n

'< c;n

f
~
n
S-o
Q.

c;n
n

~.
{IJ

b
(JQ
(=).

Diagram 3.2.1. DEFINE FSR - DEFINE MASTERCATALOG

From Diagram 3.2

INPUT PROCESSING

o 1. Builds cluster CTGFV.

2. Builds volume CTGFV.

3. Builds data CTGFV.

4. Builds index CTGFV.

5. Chel:ks volume information.

CTGPL
r---

OUTPUT

Clustcr
CTGFV

Volulllc
CT(iI:V

Data
CHiI·V

Illde\
CHilV

I Data J

CTGFb

o
CHil·L,

o
(Diltil . I

o

s:
~

g-
o
0..

a
o
"0
~
""I a o·
::l

'-I
u.

Extended Description for Diagram 3.2.1

IDCDE02, IDCDE03

Procedures: CTLGPROC, ALLCPROC, NAMEPROC,
PROTPROC

In the DEFINE MASTERCATALOG command, you
specify information under three main keywords:
MASTERCATALOG, DATA, and INDEX. The
DEFINE FSR builds a CTGFV to describe the cluster,
data and index components of the mastercatalog as
well as building a volume CTGFV. Information
specified under MASTERCA l' ALOG goes in the
CLUSTER and VOLUME CTGFVs; information
under DATA goes in the DATA CTGFV; and
information under INDEX goes in the INDEX
CTGFV. If not enough information is specified under
DATA or INDEX to build the DATA or INDEX
CTGFV, information from MASTERCATALOG
completes the DATA or INDEX CTGFV. If
information is duplicated under DATA or INDEX and
under MASTERCA l' ALOG-like
WRITECHECK-information from DATA or
INDEX overrides the information from
MASTERCATALOG in the DATA or INDEX
CTGFV. The exception is space information from
TRACKS, CYLINDERS, or RECORDS. Space
information is never copied from
MASTER CATALOG to the DATA and INDEX
CTGFVs. CTLGPROC sets the identification of
CLSTRFVT in the 8 bytes before the CLUSTER
CTGFV. An "M" is set in the CTGTYPE field in the
CTGPL to indicate that a master catalog is being
defined. CTI:GPROC puts the address of the
objectname from NAME in the CLUSTER CTGFV.
ALLCPROC builds a SPACPARM CTGFL with the
primary and secondary space information from
TRACKS, CYLINDERS, or RECORDS. ALLCPROC
sets the address of the recovery volume serial work
area in the CTGFVWKA field of the cluster FVT.
NAMEPROC issues a UTIME macro to get the
creation date which is put in a DSETCRDT CTGFL.
NAMEPROC also builds a DSETEXDT CTGFL with
the information from TO I FOR. PROTPROC builds a
PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds a
OWNERID CTGFL with information from OWNER.

-CLSTRFVT I

~TERCA T ALOG CLUSTER
CTGFV E

IDCDE02, IDCDE03

Procedwres: CTLGPROC, ALLCPROC

2 The DEFINE FSR builds a VOLUME CTGFV with
information specified under MASTERCATALOG.
CTLGPROC sets the identification of VOLUMFVT in
the 8 bytes preceding the VOLUME CTGFV.
ALLCPROC builds a SPACPARM CTGFL with the
primary and secondary space information from
TRACKS, or CYLINDERS, or RECORDS.
ALLCPROC puts the address of vo/ser from
VOLUME and the address of dname from FILE in the
VOLUME CTGFV.

VOLUMFYTI

iTERCAT ALOG - VOLUME
CTGFV E

IDCDE02, IDCDE03

Procedw·es: CTLGPROC, NAMEPROC, KEYPROC,
ALLCPROC

3 CTLGPROC sets the identification of DA l' AFVT in
the 8 bytes preceding the DATA CTGFV. The
DEHNE FSR builds the DATA CTGFV with
information specified under MASTERCA l' ALOG and
under DATA. If information is duplicated under
MASTERCA l' ALOG and under DATA, the
information in DATA overrides information from
MASTERCATALOG. The DEFINE FSR first puts
the information from MASTERCA l' ALOG in the

DATA CTGFV; second, information from DATA is
put in the DATA CTGFV overriding anything already
in the DATA CTGFV.

First, the information under MASTERCAT ALOG is
put in the DATA CTGFV as follows:

NAMEPROC issues a UTIME macro to get the
creation date which is put in a DSETCRDT CTGFL.
KEYPROC builds a AMDSBCAT CTGFL, but no
information is put in yet. ALLCPROC puts the
address of the vo/ser from VOLUME and the address
of dname from FILE in the DATA CTGFV.
WRITECHECK I NOWRITECHECK is put in the
AMDSBCA l' CTGFL. ALLCPROC builds a
BUFSIZE CTGFL with information from
BUFFERSPACE. ALLCPROC builds a DSATTR
CTGFL for data set attributes and, in addiltion, sets
the Recoverable or Not Recoverable indica.tor in
DSA TTR. In the listings this is called the implicit pass.

Second, the information under DATA is put in the
DATA CTGFV as follows:

ALLCPROC builds a SPACPARM CTGFL for
primary and secondary space information from
TRACKS, CYLINDERS, or RECORDS. ALLCPROC
initializes the Recoverable/Not Recoverable flag in
the DSATTR CTGFL. If
WRITECHECK I NOWRITECHECK is specified
under DATA, it is overridden in the AMDSBCA l'
CTGFL. If BUFFERSPACE is specified under
DAT A, ALLCPROC builds a BUFSIZE CTGFL or
modifies the existing one. In the listings this is called
the explicit pass.

IMASTERCA T ALOG

[ATA ,

;nATf~

DATA
CTGFV

eo ~:"'tl
'< ~ ~
-l $.~
Z~o roo..
CZl>CZl
Z"O -<
N""IV-l

f"=-=If
u. NOO
u.\Ou.
u. ~ 0\
o-f"

~V-l
'-I

76 DOS/VS Access Method Services Logic

3::
(11

S-
o
0-
0 ...,
0
~
(11 ..,
~ o·
::;)

-...l
-...l

IDCDE02, IDCDE03

Procedures; CTLGPROC, NAMEPROC, KEYPROC,
ALLCPROC

4 CTLGPROC sets the identification of INDEXFVT in
the 8 bytes preceding the INDEX CTGFV. The
DEFINE FSR builds the INDEX CTGFV with
information specified under MASTERCA T ALOG and
under INDEX. If information is duplicated under
MASTERCATALOG and under INDEX, the
information in INDEX overrides information from
MASTERCATALOG. The DEFINE FSR first puts
the information form MASTERCAT ALOG in the
INDEX CTGFV; second, information from INDEX is
put in the INDEX CTGFV overriding anything
already in the INDEX CTGFV. First, the information
under MASTERCAT ALOG is put in the INDEX
CTGFV as follows:

NAMEPROC issues a UTIME macro to get the
creation date which is put in a DSETCRDT CTGFL.
KEYPROC builds a AMDSBCA T CTGFL, but no
information is put in yet. ALLCPROC puts the
address of the volser from VOLUME and the address
of dname from FILE in the INDEX CTG FV.
WRITECHECK I NOWRITECHECK is put in the
AMDSBCAT CTGFL. ALLCPROC builds a
DSATTR CTGFL for data set attributes. In the
listings this is called the implicit pass.

Second, the information under INDEX is put in the
INDEX CTGFV as follows:

ALLCPROC builds a SPACPARM CTGFL for
primary and secondary space information from
TRACKS, CYLINDERS, or RECORDS.
WRITECHECK I NOWRITECHECK is overridden in
the AMDSBCAT CTGFL. ALLCPROC initializes the
Recoverable/Not Recoverable flag in the DSATTR
CTGFL. In the listings this is called the explicit pass.

I MASTERCA T ALOG

[INDEX

IDCDEOI

Procedure: INTGCHK

~NDEXFVT ~

INDEX
CTGFV

5 For MASTERCATALOG four CTGFVs have been
built: one for cluster information, data information,
ind~:x information, and volume information. A
SPACPARM CTGFL must be specified on the
CTGFV for volume information. In addition,
INTGCHK checks the other three CTGFVs for a
SPACPARM CTGFV. The following table shows the
possible CTGFVs where a SPACPARM CTGFL may
hav~e been built (in addition to the VOLUME CTGFV)
and the action INTGCHK takes.

SPACPARM CTGFL

Cluster

X

x

X

X

none

Data Index

X X

X

X

none none

Action

IDCD EO 1 erases the
SPACPARM CTGFL
from the CLUSTER
CTGFV.

IDCDEOI erases the
SPACPARM CTGFL
from the CLUSTER
CTGFV.

This is an error;
IDCDEOI terminates the
DEFINE.

OK; no action.

This is an error;
IDCDEOI terminates the
DEFINE.

The SPACPARM CTGFL is checked for a dname from
FILE. Control goes to Diagram 3.2, step 4. If an error
occurs, INTGCHK writes a message and control goes to
step 6.

'-I
00

o o
til

< til

§
c;n
c;n

s::
n
Erg.
til
n
~
~.
c;n

b
(JQ

n'

Diagram 3.2.2. DEFI~E FSR - DEFINE USERCATALOG

From Diagram 3.2

INPUT PROCESSING

CTGPL

D
1. Builds cluster CTGFV.

2. Builds volume CTGFV.

3. Builds data CTGFV.

4. Builds index CTGFV.

5. Checks volume information.

MDTBL

[

MDTBL
[-~ 1

I\1DTBL

OUTPUT

Q
CTGPL Cluster

CTGFV
r--

/

Volulllc
CTGFV

Data
CTGFV

Indcx
CHJFV

[Data J

CTGFL"

[J]
CHiI·L ...

[J]
[Data

CHil·L ...

o

3:
('1)

;.
8-
o
o
"0
('1) ..,
a o·
I:)

......:I
\C

Extended Description for Diagram 3.2.2

IDCDE02, IDCDE03

Procedures: CTLGPROC, NAMEPROC, MODELPRC,
PROTPROC,ALLCPROC

In the DEFINE USERCAT ALOG command, you
specify information under three main keywords:
USERCATALOG, DATA, and INDEX. The
DEFINE FSR builds a CTGFV to describe the cluster,
data and index components of the usercatalog as well
as building a VOLUME CTGFV. Information
specified under USERCAT ALOG goes in the
CLUSTER and VOLUME CTGFVs; information
under DATA goes in the DATA CTGFV; and
information under INDEX goes in the INDEX
CTGFV. If not enough information is specified under
DATA or INDEX to build the DATA or INDEX
CTGFV, information from USERCATALOG
completes the DATA or INDEX CTGFV. If
information is duplicated under DATA or INDEX and
under USERCAT ALOG-like
WRITECHECK-information from OAT A or
INDEX overrides the information from
USERCATALOG in the DATA or INDEX CTGFV.
The exception is space information from TRACKS,
CYLINDERS, or RECORDS. Space information is
never copied from the cluster.

If a MODEL is specified, the information in the
command overrides the information in the MODEL.
The MODEL has one catalog entry to describe its
cluster, one entry for its data, and one entry for its
index. The information in the MODEL's cluster
catalog entry is used to build the CLUSTER CTGFV;
information in the MODEL's data catalog entry is
used to build the OAT A CTGFV; and information in
the MODEL's index entry is used to build the INDEX
CTGFV. The order of precedence when modeling is
shown below where 1 has the highest precedence:

CLUSTER CTGFV

1. USERCA T ALOG parameters
2. Cluster object of model

DATACTGFV

1. DATA parameters
2. USERCA T ALOG parameters
3. Data object of model

INDEXCTGFV

1. INDEX parameters
2. USERCAT ALOG parameters
3. Index object of model

CTLGPROC sets the identification of CLSTRFVT in
the 8 bytes before the CLUSTER CTGFY. A U is put
in the CTGTYPE field of the CTGPL to indicate that
a usc!r catalog is being defined. CTLGPROC puts the
address of the objectname from NAME in the
CLUSTER CTGFV. CTLGPROC checks for a
MODEL keyword. If MODEL is specified,
MODELPRC issues a UCATLG macro to retrieve
information from the modeled catalog. The
information from the cluster catalog entry of the
modeled catalog is put in a table, MOLT ABL, and the
Control Interval number for the data and index entries
of the modeled catalog are saved. MOLT ABL
contains an address and the length of each field of
information returned from the UCATLG. In building
the CLUSTER CTGFV, information is obtained from
MOLT ABL and is then overlaid by the information
specified in the USERCA T ALOG parameters.
NAMEPROC builds a DSETEXDT CTGFL with the
information from TO I FOR. PROTPROC builds a
PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds a
OWNERID CTGFL with ownerid from OWNER.
ALLCPROC builds a SPACP ARM CTGFL with the
primary and secondary space information from
TRACKS, CYLINDERS, and RECORDS.
NAMEPROC issues a UTIME macro to get the
creation date which is put in a DSETCRDT CTGFL.
ALLCPROC sets the address of the recovery volume
serhd work area in the CTGFVWKA field of the
cluster FVT.

"'CLSTRFYT I

[-CLUSTER LUSTER r- USERCATALOG CTGFY Irt of Model

IDCDE02, IDCDE03

Procedures: CTLGPROC, ALLCPROC

2 The DEFINE FSR builds a VOLUME CTGFV with
information specified under USERCATALOG. No
information is taken from a MODEL for the
VOLUME CTGFV. CTLGPROC sets the
identification of VOLUMFVT in the 8 bytes preceding
the VOLUME CTGFV. ALLCPROC builds a
SP ACP ARM CTGFL with the primary and secondary

space information from TRACKS, CYLINDERS, or
RECORDS. ALLCPROC puts the address of volser
from VOLUMES and the address of dname from
FILE in the VOLUME CTGFV.

VOLUMFYTI

E :ATALOG vOlumel -- CTGFV i

IDCDEOl, I[)CDE03

Procedures: CTLGPPROC, NAMEPROC, KEYPROC,
ALLCPROC, MODELPRC

3 CTLGPROC sets the identification of OAT AFVT in
the 8 byt<:s preceding the DATA CTGFV. The
DEFINE FSR builds the DATA CTGFV with the
information specified in USERCA T ALOG
paramete:rs. This information is then overlaid by the
informatilon specified in the OAT A parameters.

Two passes are performed. On the first pass, called the
implicit pass, the following occurs:

If MODEL is not specified, the OAT A CTGFV is
built with information specified in the
USERCAT ALOG parameters.

If MODEL is specified, MODELPRC uSles the saved
Controll Interval number for the data entry of the
modeled catalog to get information from the data
entry. The information from the data entry of the
modeled catalog is put in MDLTABL. The DATA
CTGFV is built with information from MOLT ABL
and is then overlaid by the information specified in
USERCAT ALOG parameters.

NAMEPROC issues a UTIME macro to gC!t the
creation date which is put in a DSETCRDT CTGFL.
KEYPROC builds a AMDSBCAT CTGFL, but no
information is put in yet. ALLCPROC puts the
address of the volser from VOLUME and the address
of dname from FILE in the OAT A CTGFV.
WRITECHECK I NOWRITECHECK is put in the
AMDSBCAT CTGFL. ALLCPROC builds a
BUFSIZE CTGFL with information from
BUFFERSPACE. ALLCPROC builds a DSA TTR

,...;j
(l)

~
:::0
(l)

e;
§
IJtl
(l)

Clo

o
::3
-<

t:l:l:;;tl'1:l
'<('1)1\)

-J ;:S.~
Z~o rOo-
tZl;>tZl z"O -<
N"'~
t-:=':If
Vl NOCi
Vl\C Vl
Vl ~ 0'\
o-t-
~~
-....J

80 DOS/VS Access Method Services Logic

~
('1)

G-
o
0.
o
o
"'0
('1)
""I

a cr
:;3

00 -

On the second pass, called the explicit pass, the
information in the DATA CTGFV from the implicit
pass is overlaid by the information specified in the
DATA parameters.

If a DSETCRDT CTGFL does not exist,
NAMEPROC builds one. Normally, a DSETCRDT
CTGFL does exist. ALLCPROC builds a SPACPARM
CTGFL for primary and secondary space information
from TRACKS, CYLINDERS, or RECORDS. If
WRITECHECK I NOWRITECHECK is specified
undet DATA, it is overridden in the AMDSBCAT
CTGFL. If BUFFERSPACE is specified under
DATA, ALLCPROC builds a BUFSIZE CTGFL or
modifies the existing one. ALLCPROC initializes the
Recoverable/Not Recoverable flag in the DSATTR
CTGFL.

DATA Part
of MODEL

USERCATALOG IDAT AFVTb I ,

DATA

IOCDE02, IOCDE03

DATA
CTGFV

Procedures: CTLGPROC, NAMEPROC, KEYPROC,
ALLCPROC, MODELPRC

4 CTLGPROC sets the identification of INDEXFVT in
the 8 bytes preceding the INDEX CTGFV. The
DEFINE FSR builds the INDEX CTGFV with the
information specified in USERCAT ALOG
parameters which is overlaid by the information
specified in the INDEX parameters. Two passes are
performed. On the first pass, called the implicit pass,
the following occurs:

If MODEL is not specified, the INDEX CTGFV
is built with information specified in
USERCA T ALOG parameters.

If MODEL is specified, MODELPRC uses the
saved Control Interval number for the index
entry of the modeled catalog to get information
from the index entry. The information from
the index entry of the modeled catalog is put
in MDLT ABL. The INDEX CTGFV is built
with information from MDLT ABL and then
overlaid by the information ~pecified in the
USERCA T ALOG parameters.

NAMEPROC issues a UTIME macro to get the
cfl~ation date which is put in a DSETCRDT CTGFL.
KEYPROC builds a AMDSBCA T CTGFL, but no
information is put in yet. ALLCPROC puts the
address of the volser from VOLUME and the address
of dname from FILE in the INDEX CTGFV.
WRITECHECK I NOWRITECHECK is put in the
AlMDSBCA T CTGFL. ALLCPROC builds a
DSA TTR CTGFL for data set attributes.

On the second pass, called the explicit pass, the
information in the INDEX CTGFV from the implicit
pass is overlaid by the information specified in the
INDEX parameters.

ALLCPROCbuilds a SPACPARM CTGFL for
prilmary and secondary space information from
TRACKS, CYLINDERS, or RECORDS.
WRITECHECK NOWRITECHECK is over
ridden in the AMDSBCAT CTGFL.

~mExpart
LMODEL

IOCDEOt

USERCATALOG

INDEX

Proc«~dure: INTGCHK

IINDEXFVT~

INDEX
CTGFV

5 For USERCATALOG four CTGFVs have been built
one for cluster information, data information, index
information, and volume information. A SPACPARM
CTGFL must be specified on the CTGFV for volume
information. In addition, INTGCHK checks the other

three CTGFVs for a SPACPARM CTGFV. The
following table shows the possible ~TGFVs (in
addition to the VOLUME CTGFV) where a
SPACPARM CTGFL may have been built and the
action INTGCHK takes:

SPACEPARM CTGFL

Cluster Data Index Action

X X X IDCDEOl erases the
SPACPARM CTGFL
from the CLUSTER
CTGFV,

X X IDCDEOl erases the
SPACPARM CTGFL
from the CLUSTER
CTGFV,

X X This is an error;
IDCDEOl terminates the
DEFINE.

X OK; no action.

none none none This is an error;
IDCDEOl terminates the
DEFINE.

The SPACP ARM CTGFL is checked for a dname from
FILE. Control goes to Diagram 3.2, step 4. If an error
occurs, INTGCHK writes a message and control goes to
Diagram 3.2, step 5.

~ Diagram 3.2.3. DEFINE FSR-DEFINE NONVSAM
o o
en
'-<:
en

> n n
~
CIl
CIl

s::
~

ET-
o
0-
en
~

~
n'
~
CIl

r-'
o

(JQ

n'

r-____ ...:...IN_PUT

o

--

From Diagram 3,2

PROCESSING

1. Builds nonVSAM CTGFV,

OUTPLT

CTGPL ,...--

~

[
S
o
'g
i
g'
00
~

Extended Description for Diagram.3.1.3

IDCDEOl, IDCDE03

Proce4.-es: NVSAMPRC, ALLCPROC, PROTPROC,
NAMEPROC

1 NVSAMPRC sets the identification of NVSAMFVT in
the 8 bytes preceding the area that is usually used for a
CLUSTER CTGFV. NVSAMPRC puts the address of
the NONVSAM CTGFV in the CTGFVT field of the
CTGPL. NAMEPROC puts the address of objectname
from NAME in the NONVSAM CTGFV.
ALLCPROC puts the addreJS of yolser from
VOLUMES in the NONVSAM CTGFV. ALLCPROC
builds a DEVTYPE CTGFL for information from
DEVICETYPES. If FILESEQUENCENUMBERS is
specified, ALLCPROC puts the address of numbers
from FILESEQUENCENUMBERS in the
NONVSAM CTGFV. ALLCPROCsets the address of
the recovery volume serial work area in the
CTGFVWKA field. Control goes to Diagram 3.2, step
4.

r-NVSAMFYTI

NONVSAM - NONVSAM
CTGFV

00
~

o o
I:Il
<
I:Il

>
R
fa
(Il
(Il

;c
fa
;.
o
Q.

I:Il
fa

3.
o o
(Il

b
GO
(i'

Diagram 3.2.4. DEFINE FSR - DEFINE SPACE

IN

o

....-...

From Diagram 3.2

OUTPUT

1. Builds volume CTGFV.
CTGPL -

2. Checks volume information.

Extended Description for Diagram 3.2.4

IDCDE02, IDCDE03

Procedur~s: DSPACPRC, ALLCPROC

1 DSPACPRC sets the identification of VOLUMFVT in
the 8 bytes preceding the VOLUME CTGFV. The
address of the VOLUME CTGFV is put in the CTGPL
in the field named CTGFVT because the VOLUME
CTGFV is the only CTGFV for a DEFINE SPACE.
ALLCPROC puts the address of the volser from
VOLUMES and the address of dname from FILE in
the VOLUME CTGFV. ALLCPROC builds a
SPACPARM CTGFL with primary and secondary
space information from TRACKS, CYLINDERS, or
RECORDS. If RECORDS is specified, ALLCPROC
builds a LRECL CTGFL with information from
RECORDSIZE. ALLCPROC sets the address of the
recovery volume serial work area in the CTGFVWKA
field of the volume FVT.

VOLUMFVTI

SPACE
VOLUME -

CTGFV

IDCDEOI

Procedures: INTGCHK

2 For DEFINE SPACE only a VOLUME CTGFV is
built. INTGCHK checks the VOLUME CTGFV to be
sure a SPACPARM CTGFL is present. If the space is
in units of records, the VOLUME CTGFV must
contain the address of a LRECL CTGFL. INTGCHK
checks to be sure that a FILE keyword is encoded in
the VOLUME CTGFV. Control goes to Diagram 3.2,

=: step 4.
~

e-
o
Q.

o
o
~
~ ..,
a o·
::3

00
VI

~ Diagram 3.2.5. DEFINE FSR - DEFINE CLUSTER
o
o
c:Il

< c:Il

r
3:

[
c:Il
CD

3.
(')
CD
en

b
IJQ

ir

INPUT

CTGPL

D

.From Diagram 3.2

... PROCESSING -..-

~ 1. Builds cluster CTG FV.

2. Builds data CTGFV.

3. Builds index CTG FV.

4. Builds volume CTGFV if
UNIQUE is specified.

S. Checks volume information.

OUTPUT

MDTBL

I
I Data

CTGFLs

0
I

MDTBL

I
I Data

CTGFLs

0 MDTBL
Index I
CTGFV

CTGFLs

Volume 0
CTGFV

3:
~

e-
o
0-

S,
o
"0
~

"'" a o·
::l

00
-..J

Extended Description for Diagram 3.2.5

IDCDE01, IDCDEOJ

Procedures: DSETPROC, NAMEPROC, MODELPRC,
PROTPROC,ALLCPROC

In the DEFINE CLUSTER command, you specify
information under three main keywords: CLUSTER,
DATA, and INDEX. The DEFINE FSR builds a
CTGFV to describe the cluster, data, and index
components of the cluster as well as building a
VOLUME CTGFV if UNIQUE is specified.
Information specified under CLUSTER goes in the
CLUSTER CTGFV; information under DATA goes in
the DATA CTGFV; and information under INDEX
goes in the INDEX CTGFV. Nothing is put in the
VOLUME CTGFV. If not enough information is
specified under DATA or INDEX to build the DATA
or INDEX CTGFV, information from CLUSTER
completes the DATA or INDEX CTGFV. If
information is duplicated under DATA or INDEX and
under CLUSTER-like
WRITECHECK-information from DATA or
INDEX overrides the information from CLUSTER in
the DATA or INDEX CTGFV. The exception is space
information from TRACKS, CYLINDERS, or
RECORDS, or CANDIDATE. Space information is
never copied from CLUSTER.

If MODELs are specified, the information in the
command overrides the information in a MODEL. A
MODEL has one catalog entry to describe its cluster,
one entry for its data, and one entry for its index, if
the MODEL is a keyed sequence data set. The
information in a MODEL's cluster catalog entry is
used to build the CLUSTER CTGFV; information in a
MODEL's data entry is used to build the DATA
CTGFV; and information in the MODEL's index
entry is used to build the INDEX CTGFV. The order
of precedence when modeling is shown below where 1
takes the highest precedence:

CLUSTER CTGFV

1. CLUSTER parameters
2. Cluster object of CLUSTER model

DATACTGFV

1. DATA parameters
2. DATA model
3. CLUSTER parameters
4. Data object of CLUSTER model

INDEXCTGFV

1. INDEX parameters
2. INDEX model
3. CLUSTER parameters
4. Index object of CLUSTER model

If MODEL is specified, MODELPRC issues a
UCATLG to retreive information from the modeled
VSAM data set. The information from the cluster
catalog entry of the modeled data set is put in a table,
MDL T ABL, and the Control Interval number for the
data and index entries of the modeled data set are
saved. MDLTABL contains an address and the length
of each field of information returned from the
UCATLG. In building the CLUSTER CTGFV,
information is obtained from MDL T ABL is then
oVlerlaid by information specified in the CLUSTER
parameters.

DSETPROC sets the identification of CLSTRFVT in
th€~ 8 bytes before the CLUSTER CTGFV.
DSETPROC also sets the address of the recovery
volume serial work area in the CTGFVWKA field.
NAMEPROC issues a UTIME macro to get the
cn::ation date which is put in a DSETCRDT CTGFL.
NAMEPROC puts the address of objectname from
NAME in the CLUSTER CTGFV. NAMEPROC
builds a DSETEXDT CTGFL with the information
frOom TO I FOR. PROTPROC builds a PASSWALL
CTGFL with information from MASTERPW,
CONTROLPW, UPDATEPW, READPW, CODE,
ATTEMPTS, and AUTHORIZATION. PROTPROC
also builds a OWNERID CTGFL with information
frOom OWNER. ALLCPROC builds a SPACPARM
CTGFL with the primary and secondary space
information from TRACKS, CYLINDERS, or
RECORDS.

-CLSTRFVT I

::LUSTER Part
)f CLUSTER - CLUSTER CLUSTER
\1odcl CTGFV [

IDCDE02, IDCDEOJ

Procedures: DSETPROC, NAMEPROC, KEYPROC,
MODELPRC, ALLCPROC, PROTPROC

2 DSETPROC sets the identification of DATA FVT in
th(~ 8 bytes preceding the DATA CTGFV. The
DEFINE FSR builds the DATA CTGFV with the

information specified in CLUSTER parameters. This
information is then overlaid by the information
specified in the DATA parameters. Two passes are
performed. On the first pass, called the implicit pass,
the following occurs:

If MOIDEL is not specified, the DATA CTGFV is
built with information specified in the CLUSTER
parameters.

If MOIDEL is specified under CLUSTER and
MODEL is not specified under DATA,
MODELPRC uses the saved Control Interval
number for the data entry of the modeled data set to
get inJ[ormation from the data entry. The
information from the data entry of the modeled data
set is put in MDL T ABL. The DATA CTGFV is built
with information from MDL T ABL and is then
overlaid by the information specified in CLUSTER
parameters.

NAMEPROC issues a UTIME macro to get the
creation date which is put in a DSETCRDT CTGFL.
NAMEPROC also builds an EXCPEXIT CTGFL with
exception exit information. KEYPROC builds a
AMDSBCAT CTGFL, and ALLCPROC: builds a
DSATTR CTGFL, but no information is put in them
yet. KEYPROC puts the length and offset from KEYS
in the AMDSBCAT CTGFL. If no key values are
specified, KEYPROC sets up default values. In
addition, KEYPROC sets an indication in the AMDSB
if SPANNED has been specified. KEYPROC also puts
the address of (Iowkey highkey) ... from KEYRANGES
in the DATA CTGFV. If NUMBERED has been
specified, KEYPROC sets AMDRRDS in the AMDSB
field. This FPL is being built by KEYPROC.
ALLCF'ROC puts the address of dname from FILE
and the address of volser from VOLUMES in the
DATA CTGFV. ALLCPROC builds a SPACPARM
CTGFL with the primary and secondary space
information from TRACKS, CYLINDERS, or
RECORDS. ALLCPROC also builds a BUFSIZE
CTGFL with information from BUFFERSPACE. The
following is put in the AMDSBCAT CTGFL:

ORDERED I UNORDERED
cipercelllt and capercent from FREESPACE
size from CONTROLINTERVALSIZE
WRITECHECK I NOWRITECHECK
maximum from RECORDSIZE

PROTF'ROC puts ERASE I NO ERASE and
cross partition crosssystem from SHAREOPTIONS in
the DSA TTR CTGFL.

>-l
~

~
::0
~ e;
§

(Jtl
~
0..

o
~

-<

o:l:;tl'"l:l
'< ~ III
....,::::.~
Z~o
t""'0--
Vl>Vl
Z"O -<
N2:~ tNOo
VI \0 VI
VI ~ 0\

o-f'
~I.;.)
-..J

00
00

tj
o
t:n

..........
<::
t:n

:>
('l
('l
(\)
til
til

:=
(\)

;.
o
0-
t:n
(\)

~
n°
(\)
til

~
()Q

n°

Protection information is obtained only from the
MODEL via MDLTABL in order to provide different
protection at the CLUSTER and DATA. PROTPROC
builds a PASSWALL CTGFL with protection
information from the MODEL as well as an
OWNERID CTGFL with owner information from the
MODEL. PROTPROC sets the appropriate bit of the
A TTR 1 field of the DSA TTR field to indicate
REUSE I NOREUSE.

On the second pass, called the explicit pass, the
following occurs:

If MODEL is not specified under DATA the
information specified in the DATA parameters
overlays the information placed in the DATA
CTGFV on the implicit pass.

If MODEL is specified under DATA, MODELPRC
issues a UCATLG to get information from the data
catalog entry of the modeled data set. The
information from the data entry of the modeled data
set is put in MDLT ABL. The information in
MDL T ABL overlays the information placed in the
DATA CTGFV on the implicit pass. Finally, the
information in the DATA CTa :y is overlaid with
the information specified in the DATA parameters.

NAMEPROC puts the address of objectname from
NAME in the DATA CTGFV. Using a pointer to the
name of the EXCEPTIONEXIT routine,
NAMEPROC builds and initializes the EXCPEXIT
FPL and references it in the FVT field CTGFVEXT.
KEYPROC sets the AMDSPAN flag of AMDA TTR in
the AMDSB to indicate the
SPANNED I NONSPANNED option. KEYPROC
puts length and offset from KEYS in the
AMDSBCAT CTGFL. KEYPROC puts the address of
(Iowkey highkey) ... range list from KEYRANGES in
the DATA CTGFV. ALLCPROC puts the address of
dname I from FILE and the address of volser from
VOLUMES in the DATA CTGFV. Note: the volume
serial list is not merged with any other volume serial
list. ALLCPROC also builds or modifies the
SP ACP ARM CTGFL with primary and secondary
space information from TRACKS, CYLINDERS, or
RECORDS; the LRECL CTGFL with average from
RECORDSIZE; and the BUFSIZE CTGFL with size
from BUFFERSPACE. PROTPROC builds or
modifies the PASSWALL CTGFL with information
from MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and °

AUTHORIZATION. PROTPROC also builds or
modifies the OWNERID CTGFL with ownerid from

OWNER. The following is put in the AMDSBCAT
CTGFL:

ORDERED I UNORDERED
cipercent and capercent from FREESP ACE
size from CONTROLINTERV ALSIZE
WRITECHECK I NOWRITECHECK
maximum from RECORDSIZE

UNIQUE I SUBALLOCATION and
SPEED I RECOVERY are put in the DSA TTR
CTGFL. ERASE I NOERASE and cross partition
crosssystem from SHAREOPTIONS are put in the
DSA TTR CTGFL.

DATA Part of
CLUSTER MODEL
(not used if
MODEL specified
under DATAl

DATA Part of
DATA MODEL

IDCDEOl, IDCDE03

CLUSTER

DATA

~DATAFVTt, ~

DATA
CTGFV

Procedures: DSETPROC, NAMEPROC, KEYPROC,
ALLCPROC, MODELPROC, IXOPPROC, PROTPROC

3 An INDEX CTGFV is built if any of the following are
true:

INDEXED is specified
NONINDEXED or NUMBERED is not specified
The MODEL under CLUSTER is an indexed data set

In the listings an indexed data set is called a KSDS for
Key Sequence Data Set. A non-indexed data set is
called an ESDS for Entry Sequence Data Set.

DSETPROC sets the identification of INDEXFVT in
the 8 bytes preceding the INDEX CTGFV. The
DEFINE FSR builds the INDEX CTGFV with the
information specified in the CLUSTER parameters,
which is overlaid by the information specified in the
INDEX parameters. Two passes are performed. On
the first pass, called the implicit pass, the following
occurs:

If MODEL is not specified, the INDEX CTGFV is
built with information specified in CLUSTER
parameters.

If MODEL is specified under CLUSTER and
MODEL is not specified under INDEX,
MODELPRC uses the saved Control Interval
number for the index entry of the modeled data set
to get information from the index entry. The
information from the index entry of the modeled
data set is put in MDLTABL. The INDEX CTGFV
is built with information from MDLT ABL and is
then overlaid by the information specified in the
CLUSTER parameters.

NAMEPROC issues a UTIME macro to get the
creation date which is put in a DSETCRDT CTGFL.
NAMEPROC also puts the address of objectname
from NAME in the INDEX CTGFV. Using a pointer
to the name of the EXCEPTIONEXIT routine,
NAMEPROC builds and initializes the EXCPEXIT
FPL and references it in the FVT field CTGFVEXT.
KEYPROC builds a AMDSBCAT CTGFL, and
ALLCPROC builds a DSA TTR CTGFL, but no
information is put in them yet. IMBED I NOIMBED
in the AMDSBCAT CTGFL. ALLCPROC puts the
address of dname from FILE and the address of volser
from VOLUMES in the INDEX CTGFV.
ALLCPROC also builds a SPACP ARM CTGFL with
primary and secondary space information from
TRACKS, CYLINDERS, or RECORDS. The
following is put in the AMDSBCAT CTGFL:

ORDERED I UNORDERED
WRITECHECK I NOWRITECHECK
size from CONTROLINTERV ALSIZE

UNIQUE I SUBALLOCATION is put in the DSA TTR
CTGFL. Record size is not indicated because it is
always fixed length for the index of a VSAM data set.

Protection information is obtained only from the
MODEL via MDLTABL in order to provide different
protection at the CLUSTER and INDEX.
PROTPROC builds a PASSWALL CTGFL with
protection information from the MODEL as well as a
OWNERID CTGFL with owner information from the
MODEL. PROTPROC sets the appropriate bit of the
A TTR 1 field of the DSA TTR field to indicate
REUSE I NOREUSE.

~ ;.
&.
S
o
'g

i o·
=
00
\C

On the second pass, called the explicit pass, the
following occurs:

If MODEL is not specified under INDEX the
infonnation specified in the INDEX parameters
overlays the information placed in the INDEX
CfGFV on the implicit pass.

If MODEL is specified under INDEX,
MODELPRC issues a UCATLG·to get infonnation
from the index catalog entry of the modeled data
set. The infonnation from the index entry of the
modeled data set is put in MDLTABL. The
infonnation in MDLTABL overlays the
infonnation placed in the INDEX CTGFV on the
implicit pass. Finally, the infonnation in the
INDEX CTGFV is overlaid with the infonnation sp
specified in the INDEX parameters.

NAMEPROC puts the address of objectname from
NAME in the INDEX CTGFV. Using a pointer to the·
name of the EXCEPTIONEXIT routine,
NAMEPROC builds and initializes the EXCPEXIT
FPL if specified under INDEX. IXOPPROC puts
REPLICATE I NOREPLICATE and
IMBED I NOIMBED in the AMDSBCAT CTGFL.
ALLCPROC puts the address of dname from FILE
and the address of YOlser from VOLUMES in the
INDEX CTGFV. ALLCPROC also builds or modifies
the SPACPARM CTGFL with primary and secondary
space information from TRACKS, CYLINDERS, or
RECORDS. PROTPROC builds or modifies the
PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds or
modifies the OWNERID CTGFL with ownerid from
OWNER. The following is put in the AMDSBCA T
CTGFL:

ORDERED I UNORDERED
WRITECHECK I NOWRITECHECK
size from CONTROLINTERVALSIZE

The following is put in the DSA TTR CTGFL:

UNIQUE I SUBALLOCATION
ERASE I NOERASE
crossptrrtition crosssystem from SHAREOPTIONS

INDEX Part of
AL TERNATEINDEX
MODEL Inol
u...:d if MODEL
spedfiecl under
INDEX)

[INDEX p", of
INDEX MODEl

IIDCDE03

Al TERNATEINDEX

INDEX

PNDEXFVii

INDEX
CTGFV

Proced.-es: DSETPROC, IDCDEOI

4 If UNIQUE is specified, a null VOLUME CTGFV is
built. DSETPROC puts the identification
VOLUMFVT in the 8 bytes preceding the VOLUME
CTGFV. The VOLUME CTGFV is not initialized
because VSAM uses the VOLUME CTGFV for a work
area.

No Input

IOCDEOt

1 ProcedlB'e: INTGCHK

-.
I
I

I

~VOLUMFVT~

Volume
CTGFV

! For a VSAM data set two or thret= CTGFVs have been
built-one each for cluster, data, and index
information. If a VOLUME CTGFV has been built, it
does not have any information in it because VSAM

uses it for a work space. The following table shows the
possible places where a SPACPARM CTGFL may
have been built and the action INTGCHK takes.

For an INDEXED data set:

SPACPARM CTGFL

Cluster Data Index Action

X X X This is an error; IDCDEOI
terminates the DEFINE.

X X This is an error; IDCDEOI
terminates the DEFINE.

X X. This is an error; IDCDEOI
terminates the DEFINE.

X X OK; no action.

X OK; no action.

X OK; no action.

X This is an error; IDCDEOI
terminates the DEFINE.

none none none This is an error; IDCDEOI
terminates the DEFINE.

For an NONINDEXED data set:

SPACEPARM CTGFL

Cluster Data Action

X X This is an error; IDCDEOI
terminates the DEFINE.

X OK; no action.

X OK; no action.

none none This is an error; IDCDEOI
terminates the DEFINE.

INTGCHK checks the data CTGFV .to be sure: that
Logical Record Length is specified with a LRECL
CTGFLS. If not, one is built with a default avc~rage
recordsize. Control goes to Diagram 3.2, step 4.

8 Diagram 3.2.6. DEFINE FSR - DEFINE ALTERNATE INDEX
o
o
til
"-<:
til

> (")
(")
(1)
(I)
rn

~
(1)

;.
o
0.
til
(1)

~ o·
(1)
rn

~
(JQ o·

INPUT

CTGPL

D
,

...-....

• From Diagram 3.2

... PROCESSING r--T

:> 1. Builds alternate index CTGFV.

2. Builds data CTGFV.

3. Builds index CTGFV.

4. Builds volume CTGFV if
UNIQUE is specified.

5. Checks volume information .

1
....,\

<,;

..... I

<';1

<I

OUTPUT -
CTGPL ~ MDTBL

I J Q Alte",," Ind"
....

CTGFV

~IData I
=>

~~;~Fv~D => MDTBL

I J .-

~IData I J

~ CHiFLs

~o
~ MDTBL

I I Index
CTGFV

l--rl Data J
~ CTGFL~

Vol .. "," ~o
.....

CTGFV

~ ...

== ~ s-
o
C-
o
o
"0
~ ...,
a o·
:;:l

\0 -

Extended Description for Diagram 3.2.6

IDCDE02, IDCDE03

Procedures: AIXPROC, NAMEPROC, MODELPRC,
PROTPROC,ALLCPROC

t In the DEFINE AIX command, you specify
information under three main keywords: AIX, DATA,
and INDEX. The DEFINE FSR builds a CTGFV to
describe the alternate index, data, and index
components of the alternate index as well as building a
VOLUME CTGFV if UNIQUE is specified.
Information specified under AL TERNATEINDEX
goes in the ALTERNATEINDEX CTGFV;
information under DATA goes in the DATA CTGFV;
and information under INDEX goes in the INDEX
CTGFV. Nothing is put in the VOLUME CTGFV. If
not enough information is specified under DATA or
INDEX to build the DATA or INDEX CTGFV,
information from AL TERNATEINDEX completes
the DATA or INDEX CTGFV. If information is
duplicated under DATA or INDEX and under
AL TERNA TEIND EX-like
WRITECHECK-information from DATA or
INDEX overrides the information from
ALTERNATEINDEX in the DATA or INDEX
CTGFV. The exception is space information from
TRACKS, CYLINDERS, or RECORDS. Space
information is never copied from
AL TERNATEINDEX.

If MODELs are specified, the information in the
command overrides the information in a MODEL. A
MODEL has one catalog entry to describe its alternate
index, one entry for its data, and one entry for its
index. The information in a MODEL's alternate index
catalog entry is used to build the
ALTERNATEINDEX CTGFV; information in a
MODELS's data entry is used to build the DATA
CTGFV; and information in the MODEL's index
entry is used to build the INDEX CTGFV. The order
of precedence when modeling is shown below where 1
takes the highest precedence:

AL TERNATEINDEX CTGFV

1. AL TERNATEINDEX parameters
2. Cluster object of AL TERNATEINDEX

DATACTGFV

1. DATA parameters
2. DATA model
3. AL TERNATEINDEX parameters
4. Data object of AL TERNATEINDEX model

INDEX CTGFV

1. INDEX parameters
2. INDEX model
3. ALTERNATEINDEX parameters
4. Index object of AL TERNATEINDEX model.

AIXPROC sets the identification of AIXFVT in the 8
bytes before the AL TERNA TEIND EX CTGFV.
AIXPROC checks for a MODEL keyword under
ALTERNA TEINDEX. If MODEL is specified,
MODELPRC issues a UCATLG to retrieve
information from the modeled alternate index. The
information from the alternate index catalog entry of
the modeled data set is put in a table, MDL T ABL, and
the control interval number for the data and index
entries of the modeled data set are saved. MDL T ABL
contains an address and the length of each field of
information returned from the UCATLG. In building
the ALTERNATEINDEX CTGFV, information is
obtained from MDL T ABL and is then overlaid with
information specified in the AL TERNATEINDEX
parameters. NAMEPROC issues a UTIME macro to
get the creation date which is put in an DSETCRDT
CTGFL. NAMEPROC puts the address of objectname
from NAME in the CLUSTER CTGFV. The call to
NAMEPROC for initialization of the alternate index
levc~l sets up a pointer to the related name and its
password, if any, in the CTGFV. ALLCPROC will set
the address of the recovery volume serial work area in
the CTGFVWKA field of the alternate index (G)
FVT. NAMEPROC builds a DSETEXDT CTGFL
with the information from TO I FOR. PROTPROC
builds a PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds an
O\VNERID CTGFL with information from OWNER.
Thc~ call to PROTPROC in the initialization of the
AIX FVT includes an indication as to whether
UPGRADE or NOUPGRADE has been specified.
PROTPROC builds a RGA TTR FPL and initializes it
depending upon the information passed by
AIXPROC. If neither of these parameters was
specified, a default of UPGRADE is set in RGATTR.
ALLCPROC builds a SPACPARM CTGFL with the
primary and secondary space information from
TRACKS, CYLINDERS, or RECORDS.

r-·-AiXFVT -,

AL TERNATEINDEX
Part of I-- r- ALTERNA TEINDEX

ALTERNATEINDEX ALTERNATEINDEX CTGFV

Model

IDCDE02, IDCDE03

Procedures: AIXPROC, NAMEPROC, KEYlPROC,
MODELPRC, ALLCPROC, PROTPROC

2 AIXPROC sets the identification of DAT AFVT in the
8 bytes j:,receding the DATA CTGFV. The DEFINE
FSR buillds the DATA CTGFV with the information
specified in ALTERNATEINDEX parameters. This
information is then overlaid by the information
specified in the DATA parameters. Two passes are
performed. On the first pass, called the implicit pass,
the following occurs:

If MODEL is not specified, the DATA CTGFV is
built with the information specified in the
AL TERNATEINDEX parameters.

If MODEL is specified under ALTERNATEINDEX
and MODEL is not specified under DATA,
MODELPRC uses the saved control intlerval number
for the data entry of the modeled data slet to get
information from the data entry. The information
from the data entry of the modeled data. set is put in
MDLTABL.

The DATA CTGFV is built with information from
MDLTABL and is then overlaid by the information
specified in AL TERNATEINDEX parameters.

NAMEF'ROC issues a UTI ME macro to get the
creation date which is put in an DSETCRDT CTGFL.
The calls to NAMEPROC in the initializa.tion of the
DATA FVT for an alternate index includles a pointer
to the naLme of the EXCEPTIONEXIT routine;
NAMEF'ROC builds and initializes the EXCPEXIT
FPL and references it in the FVT field CTGFVEXT.
KEYPROC builds an AMDSBCAT CTGFL, and
ALLCPROC builds a DSATTR CTGFL, but no
information is put in them yet.

KEYPROC puts the length and offset from KEYS in
the AMDSBCA T CTGFL. If no key valuc~s have been
specified, KEYPROC sets up defaults. KEYPROC also
puts the address of (Iowkey highkey)... from
KEYRANGES in the DATA CTGFV. The calls to
KEYPROC in the construction of the DATA FVT of

...,
~

~
:;tl
~

~
Il>

~
~
0-

o
:;:l

-<

~ :;~:,..~
"<~lll

0-3 ::. ~
Z~o ro..
t:n>t:n
Z'"O -<:
N2;~
tNOo
VI \0 VI
VI ~ 0\
o-~
~~
-....J

\CI
N

o o
CZl
"'<
CZl

> ('l
('l
~
rJJ
rJJ

~
~

S-
o
0..
CZl
~

~
n'
~
rJJ

t""'
o

(JCj

n'

an AIX includes an indication of
UNIQUEKEY /NONUNIQUEKEY. KEYPROC
initializes the AMDUNQ flag in the AMDSB to
indicate the appropriate condition. KEYPROC sets
the AMDRKP field to a fixed value of X'05' and the
AMDAXRKP field to the value specified for relative
key position. KEYPROC sets the AMDSP AN flag in
the AMDSB since all alternate indexes have the
spanned attribute. The AMDSB FPL is built by
KEYPROC. ALLCPROC puts the address of dname
from FILE and the address of volser from VOLUMES
in the DATA CTGFV. ALLCPROC builds a
SPACPARM CTGFL with the primary and secondary
space information from TRACKS, CYLINDERS, or
RECORDS. ALLCPROC also builds a BUFSIZE
CTGFL with information from BUFFERSPACE. The
following is put in the AMDSBCAT CTGFL:

ORDERED I UNORDERED
cipercent and capercent from FREESPACE
size from CONTROLINTERV ALSIZE
WRITECHECK I NOWRITECHECK
maximum from RECORD SIZE

PROTPROC puts ERASE I NOERASE,
REUSE I NOREUSE cross partition crosssystem from
SHAREOPTIONS in the DSA TTR CTGFL.

Protection information is obtained only from the
MODEL via MDL T ABL in order to provide different
protection at the AL TERNATEINDEX and DATA.
PROTPROC builds a PASSWALL CTGFL with
protection information from the MODEL as well as a
OWNERID CTGFL with owner information from the
MODEL.

On the second pass, called the explicit pass, the
following occurs:

If MODEL is not specified under DATA, the
information specified in the DATA parameters
overlays the information placed in the DATA
CTGFV on the implicit pass.

If MODEL is specified under DATA, MODELPRC
issues a UCA TLG to get information from the data
catalog entry of the modeled alternate index. The
information from the data entry of the modeled
alternate index is put in MDLTABL. The
information in MDL T ABL overlays the information
placed in the DATA CTGFVon the implicit pass.
Finally, the information in the DATA CTGFV is
overlaid with the information specified in the DATA
parameters.

NAMEPROC puts the address of objectname from
NAME in the DATA CTGFV. KEYPROC puts length
and offset from KEYS in the AMDSBCAT CTGFL.
KEYPROC puts the address of (lowkey highkey) ...
from KEYRANGES in the DATA CTGFV.
ALLCRPOC puts the address of dname from FILE
and the address of volser from VOLUMES in the
DATA CTGFV. Note: the volume serial list is not
merged with any other volume serial list. ALLCPROC
also builds or modifies the SP ACP ARM CTGFL with
primary and secondary space information from
TRACKS, CYLINDERS, or RECORDS; the LRECL
CTGFL with average from RECORDSIZE; and the
BUFSIZE CTGFL with size from BUFFERSP ACE.
PROTPROC builds or modifies the PASSWALL
CTGFL with information from MASTERPW,
CONTROLPW, UPDATEPW, READPW, CODE,
ATTEMPTS, and AUTHORIZATION.

PROTPROC also builds or modifies the OWNERID
CTGFL with ownerid from OWNER. The following is
put in the AMDSBCAT CTGFL:

ORDERED I UNORDERED
cipercent and capercent from FREESP ACE
size from CONTROLINTERV ALSIZE
WRITECHECK I NOWRITECHECK
maximum from RECORDSIZE

UNIQUE I SUBALLOCATION and
SPEED I RECOVERY are put in the DSA TTR
CTGFL. ERASE I NOERASE, REUSE I NOREUSE,
and cross partition crosssystem from SHAREOPTIONS
are put in the DSA TTR CTGFL.

DATA Part of
ALTERNATEINDEX
MODEL (not used
if MODEL 1..11"\. 1 t1.1" y 1 u

specified under
DATA)

DATA
CTGFV

DATA Part of
DATA DATA MODEL

IDCDE02, IDCDE03

Procedures: AIXPROC, NAMEPROC, KEYPROC,
ALLCPROC, MODELPROC, IXOPPROC, PROTPROC

3 An INDEX CTGFV is always built for an alternate
index.

AIXPROC sets the identification of INDEXFVT in
the 8 bytes preceding the INDEX CTGFV. The
DEFINE FSR builds the INDEX CTGFV with the
information specified in AL TERNA TEINDEX
parameters, which is overlaid by the information
specified in the INDEX parameters. Two passes are
performed. On the first pass, called the implicit pass,
the following occurs:

If MODEL is not specified, the INDEX CTGFV is
built with the information specified in
AL TERNATEINDEX parameters.

If MODEL is specified under CLUSTER, and
MODEL is not specified under INDEX,
MODELPRC uses the saved control interval number
for the index entry of the modeled alternate index to
get information from the index entry. The
information from the index entry of the modeled
alternate index is put in MDL TABL. The INDEX
CTGFV is built with information from MDL T ABL
and then overlaid by the information specified in the
AL TERNA TEINDEX parameters.

NAMEPROC issues a UTIME macro to get the
creation date which is put in a DSETCRDT CTGFL.
The calls to NAMEPROC in the initialization of the
DATA and INDEX FVTs for an alternate index
includes a pointer to the name of the
EXCEPTIONEXIT routine; NAMEPROC builds and
initializes the EXCPEXIT FPL and references it in the
FVT field CTGFVEXT. KEYPROC builds an
AMDSBCAT CTGFL, and ALLCPROC builds a
DSA TTR CTGFL, but no information is put in them
yet. IXOPPROC puts REPLICATE I NOREPLICATE
and IMBED I NOIMBED in the AMDSBCA T
CTGFL. ALLCPROC puts the address of the dname
from FILE and the address of volser from VOLUMES
in the INDEX CTGFV. ALLCPROC also builds a
SPACPARM CTGFL with primary and secondary
space information from TRACKS, CYLINDERS, or
RECORDS. The following is put in the AMDSBCAT
CTGFL:

ORDERED I UNORDERED
WRITECHECK I NOWRITECHECK
size from CONTROLINTERVALSIZE

UNIQUE I SUBALLOCATION is put in the DSA TTR
CTGFL. Record size is not indicated because it is
always fixed length for the index of an alternate index.

Protection information is obtained only from the
MODEL via MDL T ABL in order to provide different
protection at the ALTERN A TEIND EX and INDEX.
PROTPROC builds a PASSWALL CTGFL with

a:
(II

s-
o
0-
o
o
"0
(II ..,
a o·
::l

\C
~

protection information from the MODEL as well as a
OWNERID CTGFL with owner information from the
MODEL.

On the second pass, called the explicit pass, the
following occurs:

If MODEL is not specified under INDEX, the
information specified in the INDEX parameters
overlays the information placed in the INDEX
CTGFV on the implicit pass.

If MODEL is specified under INDEX, MODELPRC
issues a UCATLG to get information from the index
catalog entry of the modeled alternate index. The
information from the index entry of the modeled
alternate index is put in MDL T ABL. The
information in MDL T ABL overlays the information
placed in the INDEX CTGFV on the implicit pass.
Finally, the information in the INDEX CTGFV is
overlaid with the information specified in the
INDEX parameters.

NAMEPROC puts the address of objectname from
NAME in the INDEX CTGFV. IXOPPROC puts
REPLICATE I NOREPLICATE and
IMBED I NOIMBED in the AMDSBCAT CTGFL.
ALLCPROC puts the address of dname from FILE
and the address of vo/ser from VOLUMES in the
INDEX CTGFV. ALLCPROC also builds or modifies
the SPACPARM CTGFL with primary and secondary
space information from TRACKS, CYLINDERS, or
RECORDS. PROTPROC builds or modifies the
P ASSW ALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds or
modifies the OWNERID CTGFL with ownerid from
OWNER. The following is put in the AMDSBCAT
CTGFL:

ORDERED I UNORDERED
WRITECHECK I NOWRITECHECK
size from CONTROLINTERVALSIZE

The following is put in the DSATTR CTGFL:

UNIQUE I SUBALLOCATION
ERASE I NOERASE
REUSE I NOREUSE
cross partition crosssystem from SHAREOPTIONS

INDEX Part of
CLUSTER MODEL
(nol used if
MODEL specified
under INDEX)

!.:EX Pari of

L.EX MODEL

IDCDE03

ProcedUlres: AIXPROC

CLUSTER

INDEX

~NDEXFVT !

INDEX
CTGFV

4 If U1~IQUE is specified, a null VOLUME CTGFV is
built. AIXPROC puts the identification VOLUMFVT
in th,e 8 bytes preceding the VOLUME CTGFV. The
VOLUME CTGFV is not initialized because VSAM
uses the VOLUME CTGFV for a work area.

No Input

-I

I
J

I

~VOLUMFVT!

Volume
CTGFV

IDCDEOI

Procedure: INTGCHK

5 For an alternate index two or three CTGFVs have
been built-one each for alternate indlex, data, and
index information. If a VOLUME CTGFV has been
built, it does not have any information in it because
VSAM uses it for a work space. The following table
shows the possible places where a SPACPARM
CTGFL may have been built and the .action
INTGCHK takes.

SPACPARM CTGFL

Alternate
Index

x

x

x

x

none

Data Index

x X

x

X

x X

X

X

none none

Action

This is an error;
IDCDEOI
tt:rminates the
DEFINE.

This is an error;
IDCDEOI
h:rminates the
DEFINE.

This is an error;
IDCDEOI
t€:rminates the
DEFINE.

OK; no action.

OK; no action.

OK; no action.

This is an error;
IlDCDEOl
tt:rminates the
DEFINE.

This is an error;
IlDCDEOl
tt:rminates the
DEFINE.

INTGCHK checks the data CTGFV to be sure that
logic:al record length is specified with a LRECL
CTGFL. If not, an LRECL CTGFL is built with the
default average recordsize. Control goes to Diagram
3.2, step 4.

..,
(1)

~
:;t1
(1)

~

::l
~
::l

(Jq
(1)

0..

0
::l

-<

tx:I~~
",<:(II~

..., :S.~
Z~o r-<O'
cn>cn
Z"O -<
N2:~ tNOo
VI\C VI
VI ~ 0'1
o-f"
~w
-....J

'f Diagram 3.2.7. DEFINE FSR - DEFINE PATH
o
o
en
.........
-< en
> C'l
C'l o
CIl
CIl

~
o
S-o
0-
en
o
:;!
(=i.
o
CIl

b
!JQ
(=i.

~uilds Path-eTC FY.

MDTBL CTGPL

Path
CTGFV

3:
a ::r
&.
S
o
~
'"1

~ o·
::s
\0
VI

Extended Description for Diagram 3.2.7

IDCDEOl, IDCDE03

Procedures: PATHPROC, NAMEPROC, MODELPRC
PROTPROC,ALLCPROC

1 In the DEFINE PATH command, you specify
information under one main keyword: PATH. The
DEFINE FSR builds a CTGFV to describe the path.
Information specified under PATH goes in the PATH
CTGFV.

If MODEL is specified, the information in the
command overrides the information in a model. A
model has one catalog entry to describe its path. The
information in a model's path catalog entry is used to
build the PATH CTGFV.

PATHPROC checks for a MODEL keyword under
PATH. If MODEL is specified, MODELPRC issues a
UCA TLG to retrieve information from the modeled
VSAM data set. The information from the path
catalog entry of the modeled data set is put in a table,
MDLTABL. MDLTABL contains an address and the
length of each field of information returned from the
UCATLG. In building the PATH PVT, information is
obtained from MDLTABL and is then overlaid by
information specified in the PATH parameters.

PA THPROC sets the identification of PA THFVT in
the 8 bytes before the PATH CTGFV. NAMEPROC
issues a UTI ME macro to get the creation date which
is put in a DSETCRDT CTGFL. NAMEPROC puts
the address of objectname from NAME in the PATH
CTGFV. NAMEPROC is supplied with the address
necessary to reference the PATHENTRY name and
places its address in CTGFVNAM. The password of
the PATHENTRY is referenced from CTGFVPWD.
NAMEPROC builds a DSETEXDT CTGFL with the
information from TO I FOR, PROTPROC builds a
PASSWALL CTGFL with information from
MASTERPW, CONTROLPW, UPDATEPW,
READPW, CODE, ATTEMPTS, and
AUTHORIZATION. PROTPROC also builds an
OWNERID CTGFL with information from OWNER.
The call to PROTPROC in the construction of the
PATH PVT includes the UPDATE I NOUPDATE
indication for a path. PROTPROC builds the
RGA TTR FPL and references it in the PATH PVT
field' CTGFVUPG. If neither of these parameters was
specified, a default of UPDATE is set in the
RGA TIR. ALLCPROC sets the address of the
recovery volume serial work area in the CTGFVWKA
field of the PATH PVT. The CTGFVTYP field of the
PATH PVT is set to R.

~ Diagram 3.3. DELETE FSR
o o
en
.........
<:
en

~ n
~
rJJ
rJJ

s:
~ ;.
o
Q.

en
~

~
()'
~
rJJ

r
o

!JO
()'

INPUT

.GDT

• FDT

o

NonVSAM Data Sets,
VSAM Data Space,
VSAM Unique Data Set

From Executive
Controlled Termination

PROCESSING

1. Initializes,

2. For each item to be deleted:

a. Gets entry type.

b. Builds CTG PL.

c. Deletes entry,

3. Writes message,

>l

CTGPL
r---

r---
CTGFL ..---

CTGPL

D

OUTPUT

1Yh:,agc

D
• (i DI

• lUI

~
a ::r
&.
s.
o
~ ..,
~ o·
::I
I.C
.....:a

Extended Description For Diagram 3.3

IDCDLOI

Procedure: CA TOPEN

1 If a CATALOG is specified, CA TOPEN builds an
OPNAGL and issues a UOPEN to open the catalog. If
the catalog does not open, CATOPEN prints an error
message and the DELETE command is terminated. If
the return code from UOPEN is zero, CATOPEN
compares the data set name returned by UOPEN (in
IOCDSN) to the name specified in the CATALOG
parameter. If the compare is unequal, a message is
written and the DELETE command is terminated.

IDCDLOI

Procedures: FINDTYPE, BUILDCPL, CATCALL,
MORESP, IDCDLOI

2 The following steps are performed for each entryname
to be deleted. Control goes to step 3 to terminate the
command when all entrynames have been deleted or a
serious error is encountered.

a. If the entry type is not specified in the command,
FINDTYPE builds a CTGPL and CTGFL in which
VSAM returns the entry type. FINDTYPE
initializes the CTGPL and CTGFL once for the
entire DELETE command, and they are used over

. and over for each entryname. FINDTYPE issues a
UCATLG macro to locate the entry type. If the
return code is non-zero, FINDTYPE builds an
error conversion table and invokes the UERROR
macro to print a message, but the rest of the
DELETE command is processed.

PARAMCHK checks for invalid or insufficient
parameters which were not checked by the
Reader/Interpreter. The Reader/Interpreter
cannot do all the necessary parameter checking if
the user has not specified the entry type or if the
entry type is NONVSAM. If there is an invalid
parameter, PARAMCHK writes an error message,
but the rest of the DELETE command is
processed.

b. BUILDCPL builds a CTGPL to delete the entry.
BUILDCPL initializes the CTGPL once for the
entire DELETE command, and it is used over and
over for each entryname. BUILDCPL puts the
following information in the CTGPL: the address
of the entryname, the address of the dname, type of
entry if specified on the command,
PURGE I NOPURGE, ERASE I NOERASE,

FORCE I NOFORCE,
SCRATCH I NOSCRATCH, address of a password
if specified, and the address of the catalog name or
ACB address if CATALOG is specified.
BUILDCPL also puts the address of a work area
needed by VSAM in the CTGPL. The work area
passed to catalog management is set initially to a
size large enough to contain twelve names.
BUILDCPL puts the address of the entry name and
the address of the entry password in the CTGPL. If
the entry type is non VSAM and neither SCRATCH
or NOSCRATCH is specified, BUILDCPL sets
SCRATCH in the CTGPL. If the entry was located
from the catalog, BUILDCPL puts the entry type
in the CTGPL.

c. CATCALL deletes the entryname by issuing a
UCATLG macro with the CTGPL built by
BUILDCPL. If the return code is zero, VSAM has
returned a list of deleted objects. CATCALL writes
the name of each deleted object in the entry with a
UPRINT macro. Control is given to step 2. If the
return code is 160, the entry type is SPACE and the
space was deleted, but the volume entry in the
catalog could not be removed because there are still
some VSAM data sets on the volume. This is not a
DELETE error so the condition code to the user is
zero, but CATCALL writes an explanatory
message.

A return code of 40 indicates that insufficient space
remains in the work area to contain the names
associated with the next structure segment to be
deleted (e.g. an alternate index with its associated
data, index and path names). Catalog management
services has placed in the work area the names of
those objects successfully deleted thus far, plus a
factor indicating the amount of space necessary for
the next structure. Should catalog give a return
code of 40, CATCALL calls MORESP. MORESP
sets the CTGOVRID bit to 1 and the CTGERASE
bit to 0 to prevent CMS from reerasing the object
being deleted. MORESP prints the names of those
lentries deleted thus far and calculates whether the
Icurrent work area size can contain the next
segment to be deleted. If enough space is available,
the work area is reset to zero; otherwise the current
work area is freed with a UGPOOL call (provided
that it is not PL/S automatic storage) and a large
lenough work area obtained with a UGPOOL call.
If the return from UGPOOL is nonzero, a message
is written and control returns to Step 2 for the next
lentry. Otherwise, MORESP reissues the UCATLG
macro with the same entry name. This process

continues until the entire structure has been deleted
or a tc!rminating error occurs. If the relturn code
from UCATLG is not 40 or 160 an error message is
printed by building an error conversion table and
invoking the UERROR macro.

IDCDLOI

Procedures: CLEANUP, IDCDLOI

3 If a catalog was opened by CATOPEN, CLEANUP
closes the catalog with a UCLOSE macro. IDCDLOI
prints a message with LASTCC. Control goes to
Executive Controlled Termination, Diagram 4.0.

~ Diagram 3.4. EXPORT FSR
o o
til
........
<:
til

>
~ n
~

s::
n g-
o
Co

til
n
~
~.
(I)

b
OQ

n·

INPUT

Register 1

~
tOOT

lFDT ,
0

From Executive
Controlled Termination

PROCESSING

Tests for type of expon.

a. Exports a VSAM user catalog:

b. Exports a cl~ter.~

See Diagram-LJ'

2. Writes message.

OUTPUT

o
Portable Data Set

D

Extended Description for Diagram 3.4

IOCXPOI

Procedures: IDCXPOl, DELTPROC, LOCPROC,
CTLGPROC, OPENPROC,PUTPROC, CLUSPROC

1 IDCXPOI tests the FDT for DISCONNECT in the
EXPORT command. Step l.a is done if
DISCONNECT is specified, or step 1.b is done if
DISCONNECT is not specified.

a. DELTPROC builds a CTGPL to delete the user
catalog entry in the VSAM catalog. DEL TPROC
issues a UGPOOL for a work area in which VSAM
puts deleted names. If a password is supplied,
LOCPROC puts it in the CTGPL. CTLGPROC
deletes the user catalog entry by issuing a
UCATLG macro with the CTGPL. If the return
code is 40, the work area addressed from the
CTGPL is too small. The former work area is
released with a UFPOOL, and the returned size of
the work area needed is used with a UGPOOL to
get another work area. If the new work area is
obtained, another UCATLG macro is issued. If the
return code from the first UCA TLG is non-zero
and not 40, or if the return code from the second
UCATLG is non-zero, an error message is written
by building an error conversion table and issuing
the UERROR macro.

b. LOCPROC gets catalog information about the
cluster or alternate index, data, index, and path
entries for the VSAM data set. OPENPROC opens
the portable data set for output. PUTPROC writes
catalog information and data records on the
portable data set. CLUSPROC closes the portable
data set and processes the disposition options,
TEMPORARY I PERMANENT. Refer to Appendix
A for a description of the portable data set.
Diagram 3.4.1 shows exporting a cluster or
alternate index in detail.

IOCXPOI

~ Proceaure: IDCXPOI

g- 2 IDCXPOI writes a message with LASTCC. Messages
Q. listing the exported catalog or VSAM data set are
So written. IDCXPOI closes any open data sets with the
o UCLOSE macro. Control goes to Executive
1i Controlled Termination, Diagram 4.0.
"1

a
cS"
= ::g

8 Diagram 3.4.1. EXPORT FSR - CLUSTER

o
o
{Jl ,
<:
{Jl

~ n
(1)
fIl
fIl

== (1)

S-o
Q.

{Jl
(1)

~
~.
fIl

t'"" o
OQ

n'

INPUT

VSAM
Data Set

Portable Data Set

....-...

From Diagram 3.4

PROCESSING

Obtains information for cluster
(base cluster or alternate index
cluster), data, and index.

2. Opens portable data set.

CTGPL
CTGFLs

3. Obtains information for associated
paths to the cluster. Writes it to the
portable data set. Writes catalog
information.

4. Writes data records.

S. Closes portable data set.

6. Processes disposition options.

CTGPL --

OUTPUT

Portable Data Set

VSAM
Data Set

~
(1)

ET-o
0-
o -o
"0
(1)
'"I a o·
:::

o -

Extended Description for Diagram 3.4.1

IDCXPOI

Procedures: LOCPROC, CTLGPROC, IDCXPOl,
CLUSPROC

For the cluster or alternate index entry of the VSAM
data set, LOCPROC builds a CTGPL and CTGFLs to
retrieve information from the VSAM catalog. One
CTGFL is built for each of the following pieces of
information:

Entry type
Entry name
Data set attributes
Data set owner
Data set creation date
Data set expiration date
Password
Password prompting
Password attempts
User module name
User module area
Space infomation
Buffer size
Logical record length
Low key on volume
High key on volume
AMDSB control block
Exception exit
Alternate index and path attributes
Type and name of associated objects
Catalog ACB

CTLGPROC issues a UCATLG with the CTGPL and
CTGFLs to retrieve the information from the catalog.
If the work area is too small, CTLGPROC will enlarge
it and reissue the UCATLG. If the LOCATE fails for
a reason other than the work area is too small, an
error message is written by building an error
conversion table and issuing the UERROR macro.
This processing occurs for all UCATLG requests
issued by CTLGPROC. CLUSPROC tests to be sure
that the type of catalog entry is a cluster or an
alternate index. If it is not, an error message is written
and the VSAM data set is not exported. Information is
requested on all the fields even if the information is
not available in the cluster or alternate index entry
because VSAM ignores requests for fields that do not
apply for this entry.

LOCPROC builds a CTGPL and CTGFLs for the data
entry of the VSAM data set. CTGFLs are built for
each piece of information in the above list except the
last two, type and name of data and index entry, and

Catalog ACB. The Control Interval of the data entry is
used to find the data entry. CTLGPROC issues a
UCATLG with the CTGPL and CTGFLs to retrieve
the information from the catalog. If the work area is
too small, CTLGPROC enlarges it and reissues the
UCATLG. The returned information is saved. After
the retrieval of the data and index information, the
data set attributes are examined to determine if either
of these objects has been flagged as not usable. If so,
an {:rror message is written and the VSAM data set is
not exported.

The: processing in the above paragraph is repeated for
the index entry.

CLUSPROC determines if the object being exported is
an alternate index. If so, LOCPROC builds a CTGPL
and CTGFLs for the base cluster associated with the
alternate index. CTFGLs are built for entry type and
entry name. CTLGPROC issues a UCA TLG to
retrieve this information. The entry name will be
written to the portable data set as the related name.

IDCXF'OI

Procedure: OPENPROC

2 OPENPROC builds an OPNAGL and issues a
UOPEN to open the portable data set for output. User
specified tape label and rewind options are placed in
the OPNAGL for UOPEN processing. If the return
code is non-zero, an error message is written and the
VSAM data set is not exported. Refer to Appendix A
for a description of the portable data set.

IDCXI»() 1

Procedures: CLUSPROC, PUTPROC, CONTRBL

3 CONTRBL constructs a dictionary for each CTGPL.
The CTGFLs contain information returned by VSAM.
If 3. fixed length field has no information, VSAM puts
all binary ones in the CTGFL where the information
would have been. If a variable length field has no
information, VSAM puts zeros in the two byte length
field that preceeds the field in the CTGFL where the
information would have been. If INHIBITT ARGET is
spe:cified, a flag is set in the portable data set so
IMPORT can process INHIBITTARGET. PUTPROC
writes the dictionary followed by the information from
the: CTGFLs. If the length of the dictionary or catalog
information is greater than the logical record length
for the portable data set, PUTPROC writes the
dictionary or catalog information in segments.
PUTPROC writes the records with a UPUT macro.

Refer to Appendix A for the format of the portable
data set. After the catalog information peltaining to
the cluste:r or alternate index and associah:d data and
index objects has been written to the portable data set,
CLUSPROC obtains information regarding all paths
which have been defined over the object being
exported. For the first path association LOCPROC
builds a CTGPL and CTGFLs to retrieve 1the
information from the VSAM catalog. CTGFLs are
built for the same pieces of information as for the data
and index objects. CTLGPROC issues a UCATLG to
retrieve the information which is then written to the
portable data set. In addition, the name of the cluster
or alternate index being exported and its password are
written to the portable data set as the P A THENTR Y
name and PATHENTRY password. CONTRBL is
called to construct the portability record. CLUSPROC
retrieves information for all the remaining path
associations and then writes it to the portable data set
using the same CTG PL and CTG FLs whi.:::h were set
up for the first path association. Prior to calling
CTLGPROC for each, the work area is deared and
the control interval number of the next associated path
is placed in the CTGPL.

IDCXPOI

Procedures: RECPROC, LOCPROC, OPENPROC

4 RECPROC opens the VSAM data set with a UOPEN
macro and issues a UCOPY to copy all thle records to
the portable data set. RECPROC issues a UCLOSE to
close the VSAM data set. Following a suc'cessful open,
RECPROC compares the data set name returned by
UOPEN to that specified by the caller as the entry
name in the EXPORT command. If the compare is
unequal, LOCPROC builds a CTGPL and CTGFLs to
perform a LOCATE on the name returned by
UOPEN. CTGFLs are built for ENTYPE and
NAMEDS. CTLGPROC issues a UCA TLG macro. If
the ENTYPE returned is not that of a path, an error
message is written and the command is terminated. If
the ENTYPE is that of a path, a second LOCATE is
performed using the control interval number of the
pathentry object. A CTGFL is built for ENTNAME
by LOCPROC and a UCA TLG macro issued by
CTLGPROC. If the name returned is not equal to the
entry name specified in the EXPORT command, a
message is written and the command terminated.

When exporting a relative record data set, the relative
record number of each record written to the portable
data set is placed by UCOPY in a 4-byte area
immediately preceding the record itself. OPENPROC

txl::tl"'t:l
'< (1) III
...,~.~
Z~o rO--
v:l>v:l
Z"O -<
N2:~ tNOo
VI \0 VI
VI ~ 0-
o-t
~~
-...l

102 DOS/VS Access Method Services Logic

triggers this processing by setting the Export/Import
flag in the OPNAGL of the input data set.

IDCXPOl

Procedure: CLUSPROC

S CLUSPROC issues a UCLOSE to close the portable
data set.

IDCXPOl

Procedures: DEL TPROC, CLUSPROC, CTLGPROC,
ALTRPROC, MORESP

6 If PERMANENT is specified, DELTPROC builds a
CTGPL. If ERASE or PURGE is specified
DEL TPROC sets up the proper flags in the CTGFL.
DELTPROC issues a UCATLG macro to delete the
VSAM data set from the VSAM catalog. If the
DELETE fails, an error message is written by building
an error conversion table and issuing the UERROR
macro. The names of all deleted entries are printed. If
the VSAM catalog return code is 40, MORESP is
called to get a larger work area and to finish deleting
the object.

If TEMPORARY is specified, the temporary export
field must be turned on in the catalog entry.
AL TRPROC modifies the existing CTGPLs, builds a
CTGFV, and modifies the existing CTGFLs for the
fields that need to be changed in the VSAM catalog.
The temporary export flag and, if INHIBITSOURCE
is specified, the inhibit update flag is set in the
DSA TTR CTGFL. An ENTNAME CTGFL for the
entryname is also built. AL TRPROC places the
address of the dname specified in the INFILE
parameter in the'CTGFV for catalog recovery
purposes.

CTLGPROC issues one UCATLG for the data entry
and one UCATLG for the index entry if it exists. The
data set attributes field does not appear at the cluster
or alternate index entry. Control returns to Diagram

s: 3.4, step 2.
n e-o
Q.

o

-o
1M

~
o
o
til

'" <:
til

~
~
{I}
{I}

E::
~ ;.
8-
til
~

~
~.
{I}

~
~.
(")

Diagram 3.S. IMPORT FSR

INPUT

tGDT

tFDT

o

Portable Data Set

From Executive
Controlled Termination

PROCESSING

1. Tests for IMPORT of user
catalog or VSAM cluster.

a. Imports user catalog.

b. ate index. 5 1
altern O· gra 3 ..

Imports cluster o~r

See la

2. Writes message.

OUTPUT

CTGPL
r---

Message

D
tGDT

t FDT

~
(1)
g-
o
c.
o
o
~ ..,
a o·
=
o
VI

Extended Description for Diagram 3.5

IDeMPOl

Procedures: OPENPROC, IDCMPOl, CLUSPROC,
FVTPROC,CPLPROC,CNCTPROC, LVLRPROC,
CTLGPROC,RECPROC,ALTRPROC

1 IDCMPOI tests the FDT for the CONNECT keyword
in the IMPORT command to determine if a VSAM
data set or a VSAM catalog is being imported. If
CAT ALOG is specified, it is not opened because the
catalog is assumed to be the job catalog or master
catalog and the operating system has opened it. If
CONNECT is specified, a VSAM user catalog is being
imported, and step l.a is done. If CONNECT is not
specified, a VSAM data set is being imported, and step
l.b is done.

a. The following is repeated for every objectname in
OBJECTS. (More than one user catalog can be
imported with one IMPORT command.)
CNCTPROC builds a CPL and an FVT for the
connect operation. L VLRPROC builds a
DEVTYPE CTGFL from the DEVICETYPES in
the command. L VLRPROC builds a volume list
from VOLUMES and puts the address of the
volume list in the CTGFV. CNCTPROC puts the
address of the objectname from OBJECTS in the
CTGFV. If no objectname is specified, an error
message is written, and the catalog is not imported.
The operation type field in the CTGFV is set to 'A'
to indicate a catalog connect. CNCTPROC issues a
UCATLG to connect the catalog. If the return code
is non-zero, an error message is written by building
an error conversion table and issuing the UERROR
macro. When all the catalogs have been connected,
control goes to step 2.

b. OPENPROC opens the portable data set.
CLUSPROC writes the time of export with a
UPRINT macro. CLUSPROC uses the catalog
information in the portable data set to "define" the
VSAM data set. OPENPROC opens the VSAM
data set and RECPROC copies the data records
from the portable data set to the VSAM data set. If
INHIBITT ARGET was specified when the VSAM
data set was exported, AL TRPROC alters the
catalog entry for the VSAM data set. Refer to
Appendix A for the format of the portable data set.

IDeMFOl

Procedure: IDCMPOI

2 IDCMPOI writes a message with LASTCC. Control
goes: to Executive Controlled Termination.

t:I:I,.,."
,<(1)~

~ !:.~
Z~o
t"""c.
cn:>tn
Z"O -<:
N::!.~
f"' - I

Vl NOO
VI~\()~
~-f"'

\()VJ
-..J
-..J

o Diagram 3.5.1. IMPORT FSR - CLUSTER
0'1

o
o
en
.........
< en
> n n o
til
til

a:
o
S-
o
Co
en
o
~
(=i'
o
til

r'
o

(JQ
(=i'

.pens portable data set.

Vrites time of export.

;uilds catalog parameter lists,

. Defines cluster or alternate
index.

. Defines any associated paths.

:opies data,

:loses portable data set.

'rocesses INHIBITTARGET,

"-.,
-v'" CTGPL

<

~ CTGPL

~
V

I

.....

Message

D ~
.,/

CTGFVs
J

J i'-....... CTGFLs

r--. __ '-t
~

1--""
P.

po.

fI"""
~ -~ (

VSAM
Catalog

(
..... ~

\~ ~ r-- __
"-;.> VSAM

Data Set ~

hCTGFV hCTGFL
I

~
(1)

S-o
0..
o -o
'0
(1) ..,
a o·
o

~

Extended Description for Diagram 3.S.1

IOCMPOt

Procedures: OPENPROC, IDCMPOI

t OPENPROC builds an OPNAGL and issues a
UOPEN to open the portable data set. User specified
tape label and rewind options are placed in the
OPNAGL for UOPEN processing. The portable data
set was created by an EXPO RT command and
contains catalog information and data records for the
VSAM data set that was exported. Refer to Appendix A
for the format of a portable data set. If the return code
is non-zero, IDCMPOI writes a message. If the
portable data set is open, IDCMPOI issues a UCLOSE
to close the data set, and the IMPORT command is
terminated.

IOCMPOt

Procedures: CLUSPROC, MSGPROC

2 CLUSPROC gets the first record of the portable data
set which contains the time the portable data set was
created by the EXPORT FSR. MSGPROC writes the
time with a UPRINT macro.

IOCMPOt

Procedures: CLUSPROC, CPLPROC, FVTPROC,
BFPLPROC, BPASPROC, IUNIQPRC, L VLRPROC,
RANGPROC

3 The information for catalog parameter lists comes
from three places, the portable data set's copy of the
previous catalog entry, the IMPORT command, and
both the portable data set and the IMPORT
command.

a. CLUSPROC via CPLPROC builds a CTGPL for a
define operation. CLUSPROC issues a UGET
macro to read the first catalog record in the
portable data set. The catalog record contains the
size of the data record that follows. PVTPROC
builds from 2 to 3 CTGFVs, one each for the
cluster or alternate index entry and its associated
data and index entries. BFPLPROC builds
CTGFLs with information from the portable data
set. The exception is the P ASSW ALL CTGFL
which is built by BPASPROC. If the exported
VSAM data set was UNIQUE, IUNIQPRC builds a
CTGFV for volume information. No data is put in
the volume CTGFV. If the object being imported is
an alternate index, the related name (given in the
RELATE parameter) is passed via the alternate

index (G) PVT. A work area for the return of the
catalog recovery volume serial number, if any, is
passed via the cluster or alternate index PVT.

b. CLUSPROC puts the address of the dname from
OUTFILE on the IMPORT command in the cluster
CTGFV. LVLRPROC puts the address of the
l'o/ser ... list from VOLUMES in the CTGFV for
the objectname in the OBJECTS parameter.
Information about VOLUMES is available in the
portable data set if not given in the OBJECTS
parameter.

c. If ORDERED I UNORDERED is specified for a
particular objectname, CLUSPROC changes the
AMDSBCA T CTGFL for the objectname. If
KEYRANGES is specified for the index object,
RANGPROC builds a list of key ranges and puts
the address of the key range list in the CTGFV. If
NEWNAME is specified for a particular object,
CLUSPROC puts the address of the new name in
the particular CTGFV. Data from the IMPORT
coOmmand overrides data from the portable data
S4~t.

IOCMPOt

Procedures: CTLGPROC, CPLPROC, CLUSPROC,
DELTPROC,DUPNPROC

4 a. CTLGPROC issues a UCATLG macro to define
the VSAM data set. If the return code is 40, the
work area for VSAM catalog management is
increased and the UCA TLG is reissued. If the
fC!turn code is 8, a duplicate cluster name exists on
the VSAM catalog. CPLPROC builds a CTGPL to
locate the catalog entry to determine if the
duplicate cluster had a temporary EXPORT done
against it or if it is an empty data set. DUPNPROC
builds DSATTR, HURBADS and AMDSBCA T
CTGFLs to obtain the data set attribute
information, the high-used RBA and the AMDSB
control block of the data component. If the
temporary export flag is not on in either the data or
index or the data set is not empty, the IMPORT is
not done. If the data set is empty, a check is made
to ensure that the data set organization, key length
and relative key position in the catalog entry are
the same as those which were exported. If any of
these factors are different, a message is written and
the IMPORT is not done. The maximum LRECL
of the cataloged entry is then compared to that of
the data set exported. Unless it is greater than or
equal to the maximum LRECL of the data set
exported, the IMPORT is terminated. Otherwise,

control goes to step 4.b. If the temporary export
flag is on, CPLPROC builds a CTGPL to delete the
duplicate VSAM data set. If ERASE I NO ERASE
or PURGE I NOPURGE is specified, CPLPROC
puts the information in the CTGPL so that VSAM
will take the appropriate action. DEL TPROC
issues a UCATLG macro to delete the object. Then
CTLGPROC reissues the UCATLG maLcro to
define the VSAM data set. If the return code from
the UCATLG macro is zero, control goes to step 5.
If a rewvery volume serial is returned for the
define" a UPRINT macro is issued to print it. If the
return code is non-zero CTLGPROC issues an
error message by building an error conversion table
and invoking the UERROR macro.

b. If the duster or alternate index exported had any
associated paths defined over it, the catalog entries
for these paths were also exported. CLUSPROC
processes the catalog information for each path in
a manner similar to that described in sh!p 3.a. The
PATHENTRY name and password, if a.ny, are
passed for the path (R) FVT. The only
subparameter of the OBJECTS parameter allowed
for path objects is NEWNAME. If any other
subparameter is specified, a new IMPORT message
is written and that path is not defined.
CTLGPROC issues a UCA TLG macro to define
each path. If the return code from UCATLG is
nonzero, a message is written by building an error
conversion table and invoking UERROR.
However, the IMPORT is not terminated.

IOCMPOt

Procedures: OPENPROC, RECPROC

5 OPENPROC builds an OPNAGL and issm:s a
UOPEN toO open the newly defined VSAM data set. If
a password is specified via the OUTFILE parameter,
this password is passed to UOPEN for use in building
the ACB. Otherwise, the exported master password, if
any, is use:d. RECPROC issues a UCOPY to copy the
data from the portable data set to the newly defined
VSAM data set.

When importing a relative record data set, the relative
record number of each record on the portable data set
is containc!d in a 4-byte area immediately preceding
the record itself. UCOPY processing uses this relative
record number in writing the records to the output
data set. OPENPROC sets the Export/ImpoOrt flag in
the OPNAGL of the output data set to indicate to
UCOPY that this is to be done.

t:I:l~"1:j
'< (1) ~

...,~.~
Z~o ro..
r.I»r.I)

Z'O -<
N"'Vol
f-:=:;I.f
Ul NOO
Ul\OUl
Ul ~ Cf\
o-f

~Vol
-...J

108 DOS/VS Access Method Services Logic

~
~ e-o
Q.

sa.
o
'g
g
o·
=
~

Following a successful open, RECPROC compares the
name specified via the OUTFILE parameter to the
name of the object exported. If the compare is
unequal, RECPROC builds a CTGPL and CTGFLs
and issues a UCA TLG macro to locate the entry type
and associations of the name specified via OUTFILE.
If the entry type returned is that of a path, RECPROC
builds a CTGPL and CTGFL and issues a UCATLG
macro to locate the entry name of the pathentry
association (alternate index or cluster) and compares
the name returned from the Locate to the name of the
object exported. If the verification fails, a message is
written and the IMPORT is not done.

IDeM PO I

Procedure: CLUSPROC

6 CLUSPROC issues a UCLOSE to close the portable
data set.

IDeMPOI

Procedures: AL TRPROC, CPLPROC

7 If INHIBITT ARGET was specified when the VSAM
data set was exported, the catalog entry must be
altered. AL TRPROC places the address of dname
specified in the OUTFILE parameter in the CTGFV
for catalog recovery purposes. AL TRPROC builds a
CTGFV and a DSA TTR CTGFL for the data set
attributes field with INHIBITT ARGET specified.
CPLPROC builds a CTGPL to alter the VSAM data
set. CTLGPROC issues a UCATLG macro to alter the
VSAM data set to inhibit the VSAM data set. If the
VSAM data set has an index component, the same
steps are repeated to alter the index component to
INHIBITT ARGET. Control goes to Diagram 3.5,
step 2.

o
o
o
til

~
til

~
~ en en

== n
S-
O
Co
til
n
S.
~
b

OQ

(;"

Diagram 3.6. LISTCAT FSR
From Executive
Controlled Termination

PROCESSING

2. Opens data sets.

3. I Initializes.

4. For each entry in the command
in the catalog:

a. Gets catalog information.

See Diagram----§

b. Writes catalog information.

message.

no
Catalog Information

D
Message

D

a:
~

;.
o
0..
o
o
"0
~ ...,
a o·
:;:)

Extended Description for Diagram 3.6

IDeLCOl, IDeLC02

Procedures: IDCLCOl, IDCLC02

1 Before processing the catalog entries, IDCLCOllinks
to IDCLC02. IDCLC02 establishes addressibility and
initializes an array of 4-byte pointers to point to
several different work areas. These work areas are
common work areas used by both IDCLCO 1 and
IDCLC02. They are used to store pointers and
variables and reside in IDCLC02's automatic storage.
The address of the array of pointers is passed back to
IDCLCO 1 in register 15.

IDeLCOl

Procedure: INITPROC

2 If OUTFILE is specified, INITPROC builds an
OPNAGL and issues a UOPEN to open the alternate
output data set. By opening the alternate file first, any
LISTCA T error messages appear on the alternate file.
If CATALOG is specified with dname as well as a
catname, INITPROC builds an OPNAGL and issues a
UOPEN for the catname and requests that the ACB be
returned. INITPROC compares the catalog name
returned by the UOPEN macro to the catname from
the CATALOG parameter in the LISTCA T
command. If the catalog names do not match, the
LISTCA T command terminates and control goes to
step 5. If a dname is not specified, but a catname is,
INITPROC puts the address of the catname in the
CTGPL to make VSAM open the catalog. If
CATALOG is not specified in the LISTCA T
command, INITPROC puts the address of 44 blanks in
the CTG PL to make VSAM find the catalog and open
it.

IDeLCOl

Procedure: INITPROC

3 INITPROC issues a UGPOOL macro to obtain
storage for the CTGPL, CTGFLs, work areas, and
DARGLIST. INITPROC puts the address of a work
area for VSAM in the CTGPL. The returned catalog
ACB from the UOPEN is put in the CTGPL. Also if
password is specified in CATALOG, the address of
the password is put in the CTGPL. INITPROC
determines the number of catalog fields to be obtained
for each catalog entry by the specification of NAME,
VOLUMES, ALLOCATION, or ALL. Catalog fields
are obtained by control blocks named CTGFLs. The

tabh: following this description shows the CTGFLs
that are used for each type of catalog entry.

If NAME is specified, INITPROC initializes CTGFLs
2 through 4. For VOLUMES, INITPROC initializes 2
through 10. For ALLOCATION, INITPROC
initializes 2 through 14. For ALL, INITPROC
initializes 2 through 28. INITPROC adds the
DSATTR to the end of the NAME, VOLUME, and
ALLOCATION list if NOTUSABLE is specified. If
mon~ than one entry type is being listed or if
NOTUSABLE is specified, INITPROC adds the
MUL TITYP CTGFL to the beginning of the list of
CTGFLs.

IDeLCOl, IDeLC02

Procedul"es: ENTPROC, LOCPROC, RTEPROC,
CDIPROC, AUPROC, VPROC, FPLPROC,
ANSVPROC

4 If ENTRIES is specified, catalog information is found
on each entryname in the command. If ENTRIES is
not specifed, catalog information is found for each
entry in the catalog.

a. LOCPROC issues a UCA TLG to locate the catalog
information for an entry. If a required password is
not supplied, VSAM returns the entry type and
entry name fields in a work area instead of through
the CTGFLs. The catalog ACB is returned the first
time information is successfully located in the
catalog. LOCPROC saves the catalog ACB and
rlemoves the CAT ACB CTGFL from the list of
CTGFLs to be used to locate information on other
catalog entries. Diagram 3.6.1 shows getting
catalog information in detail.

b. RTEPROC test the entry type of the catalog entry.
If the type is PATH, AL TERNATEINDEX,
CLUSTER, DATA, or INDEX, CDIPROC
formats the information and writes it with a
UPRINT macro. If the type is NONVSAM or
USERCATALOG, AUPROC formats the
information and writes it with a UPRINT macro. If
the type is SPACE, VPROC formats the
information and writes it with a UPRINT macro.

Note: Information written for a SPACE entry does
not come directly from the catalog because
LISTCA T has a special interface with VSAM for
all LISTCA T requests. VSAM manipulates
information in the catalog to provide the special
interface to LISTCA T. If the entry type is a cluster
or alternate index, RTEPROC determines whether
an association of the object-that is a data, index,

or path entry-is to be listed. If it is, FF'LPROC
reinitializes the CTGFLs. ANSVPROC retrieves
the information about the data, index, or path via
the control interval rather than by nam~!. Control
returns to 4a to locate information about the data,
index, or path. FPLPROC reinitializes the CTGFLs
for the next catalog entry. If the type is not valid,
RTEPROC writes a message. Control goes to step
4a for the next entry. Refer to DOS/VS Access
Method Services User's Guide a sample listing of
LISTCA T output.

IDeLCOl, IDCLC02

Procedure: IDCLCOl, FREESTG

5 IDCLCOI writes a summary of the entries listed and
suppressed due to incorrect passwords. If INITPROC
opened a VSAM catalog, IDCLCOI issues a UCLOSE
to close the VSAM catalog. If an alternate output file
was openc:d by INITPROC, IDCLCOI issm:s a
UCLOSE to close the file. Any storage obtained
during the: processing of the LISTCA T ALOG
command is released with a UFPOOL macro.
IDCLCOI then calls FREESTG (in IDCLC02) to free
the automatic storage acquired by IDCLC02.
IDCLCOI then writes a message containing LASTCC.
Control goes to Executive Controlled Termination,
Diagram 4.0.

t:I:I,o'"tl
,<~Sl)

--i !:. ~
Z~o
t'""0"
cn>Vl
Z"O 0-<:
N~::! tNOo
VI\C VI
VI ~ 0'1
o-~ ::SU-l
~

N CTGFLs VIM f. Each Type of Catalog Entry

o
o
til
........
<:
til

> (1
(1
~

~

a::
~ ;.
o
Q.

til
~

:! §.
en

b
00
n'

CTGFLName

I. MULTITYPE

2.ENTYPE

3. ENTNAME

4. NAMEDS

5. DSETEXDT

6. DSETCRDT

7.0WNERID

8. RELCRA

9. CATVOL

1O.VOLDVCHR

II. SPACPARM

12.HU~ADS

13. HARBADS

14. ENTVOL

15. VOLTSTMP

16. SYSEXTDS

Entry Type DATA
CLUSTER

X X

X X

X X

X X

X X

X X

X X

X

X

X

X

X

INDEX

X

X

X

X

X

X

X

X

X

X

X

X

NONVSAM USER SPACE ALTER PAm DataincrGFLs
CATALOG NATE

INDEX
--

Identifies multiple catalog
types to be listed.

--

X X X X X Entry type.

X X X X X Entry name.

X X CI number and entry type
of each association.

--

X X X Data set expiration date.

X X X Data set creation date.
--

X X X Data set owner.
--

X X X VSAM release and catalog
recovery information.

--

X X Volume information for
data set.

--

X Volume device character.
--

Primary and secondary
allocation.

--

High used RBA.
--

High allocated RBA.
--

Physical description of
data set.

--

X Volume time stamp.
--

X System allowed extents.

s::
(1)

;.
o
Q.

S
O
't:I
(1) ...,
~ o·
;,

--~

cron.. u" ,. F.-T"e of c.aa.. Emy. elM' 14

cron.N_ r.a,T"e DATA INDEX NONVSW
CLUSTER

17. NODSPACE

18. NODSET

19. SPACEHDR

20. DSDIRECf

21. DSPDSCRP

22. PASSWALL X X X

23. AMDSBCAT X X

24. DSATTR X X

25. BUFSIZE X X

26. LRECL X X

27. ROATTR

28. EXCPEXIT X X

29. CATACB

USER SPACE ALTER PATH Data ill CTGFLs
CATALOG NATE

INDEX

X Numb4~r of data space on
volumc~.

X Num~r of data sets on
volume:.

X Chara('1eristics and
statistics of data space.

X Data Set directory for a
data space.

X Physical description of
data space.

X X Password (security)
information.

AMDSB control block.

Data sc~t attributes.
I

I

Minimum buffer size.
I

Logicall record size.

X X AIX and PATH attributes.

Exception exit module
name.

Catalog ACB address.
. .. -

:;
o
o
til

" <:
til

~
{IJ
{IJ

~
~ go
8-
til
~

~ n·
~
{IJ

b
(JQ

n·

Diagram 3.6.1. LISTCAT FSR - Gets Information

---...

~
." r

CTGFLs l 1. Initializes:
CTGPL

I I .J
~

• ENTRIES.

i • No ENTRIES.

2. Locates information. ~ ./ r -1 ~

YSAM
Catalog

""- ...,.,.,.

3. Checks:

• ENTRIES.

• No ENTRIES.

.-

OUTPUT

CTGFLs CTGPL
..L => ..c:: ,..-

i r
A

<..;.
~

s::
S-o
Q.

S
o
'g
~ o·
::s

Vl

Extended Description for Diagram 3.6.1

IDeLCOl

Procedures: ENTPROC, GNXTPROC

1 If ENTRIES is specified, control goes to 1 a. If
ENTRIES is not specified, control goes to 1 b.

a. ENTPROC puts the address of the entryname in
the CTGPL. If only SPACE information is to be
listed, ENTPROC treats the entryname as a six
character volume serial number and extends it to
44 characters by padding on the right with binary
zeros. ENTPROC puts the address of the volume
serial number in the CTGPL. If password is
supplied with CATALOG, ENTPROC puts the
address of the password in the CTGPL. If there is
no password supplied with CATALOG, and·there
is a password specified with the entryname,
ENTPROC puts the address of the password in the
CTGPL. If there is no entryname to be listed,
control goes to Diagram 3.6, step 5.

b. GNXTPROC sets the CTGPL to indicate that each
catalog entry is to be located by the catalog index
rather than by a specific name. For the first entry,
GNXTPROC puts the address of 44 blanks in the
CTGPL as a starting key in the catalog search for
the first catalog entry. After the first entry,
GNXTPROC adds one to the key-which is the
previously retrieved entry name-to make the new
key higher in the collating sequence than the old
key.

IDeLC02

Procedure: LOCPROC

2 LOCPROC issues a UCATLG macro with the CTGPL
and CTGFLs to locate catalog information about the
entry.

IDLCLOl

Procedures: ENTPROC, GNXTPROC

3 If ENTRIES is specified, control goes to 3a. If
ENTRIES is not specified, control goes to 3b.

a. ENTPROC compares the type of entry information
returned to the type of information requested in
the LISTCA T command. If the entry type matches
the type requested in the command, or the entry is
a cluster or an alternate index, control goes to
Diagram 3.6, step 4b. If the entry type does not
match the type requested in the command and the

entry is not a cluster or an alternate index, or the
entry is a cluster or an alternate index and the type
specified is not data, index, or path, ENTPROC
writes a message, but does not list the entry. If
NOTUSABLE was requested and the retrieved
entry is a data or index entry, a check is made to
determine if the entry has been marked as
unusable. If the entry has been marked as
unusable, control goes to Diagram 3.6, step 4b;
otherwise, control goes to Diagram 3.6, step 4a for
the next entryname in the LISTCA T command. If
the UCA TLG return code is non-zero, ENTPROC
also writes a message. Control goes to Diagram
3.6, step 4a for the next entryname in the LISTCAT
command.

b. GNXTPROC saves the name of the retrieved entry
to use as a key in locating information for the next
entry in the catalog. If the return from the
UCA TLG macro is zero, control goes to Diagram
3.6, step 4b. If the return code from UCATLG
indicates password verification failure or lack of
workspace, GNXTPROC writes a message and
control goes to Diagram 3.6, step 4a for the next
entry in the catalog. GNXTPROC checks for
end-of-file and unrecoverable errors. When
end-of-file or an unrecoverable error is
encountered, control goes to Diagram 3.6, step 5 to
t,erminate the LISTCA T command.

;; Diagram 3.7. PARM FSR
o
o
CIl
.........

<
CIl

~
n
~
III
III

~
~

S-
o
Q.

CIl
~

:;! n·
~
III

b
flO
n'

INPUT

....-...

From Executive

J Controlled Termination

PROCESSING

:esses TEST options:

OFF.

TRACE, AREAS, and FULL.

:esses MARGINS option.

:esses GRAPHICS option.

ts message.

OUTPUT

TEST Options
Data Area

~ v

""'"
HDAREA

v/
LEFTMGN

RIGHTMGN

=> Message

D
v

Register I

C
tGDT

tFDT

(LASTCC

:::
n

[
a
o
'g
i o·
=
:::;

Extended Description for Diagram 3.7

IDCPMOI

Procedures: TESTPARM, TESTSA VE

1 If the address of the dump routine is in GDTDBG, a
TEST option is currently in effect. TESTPARM frees
the Debugging Aids Historical Data Area whose
address is in GDTDBH, and it sets GDTDBH to zero.

a. If the TEST keyword is followed by OFF,
TESTPARM deletes the dump routine, IDCDBOl,
whose address is in GDTDBG, and it sets
GDTDBG to zero. Control goes to step 2.

b. If the TEST keyword is followed by TRACE,
AREAS, or FULL, TESTPARM issues a
UGSPACE macro to obtain a new Test Option
Data Area. TESTSA VE puts the information from
the FDT in the new Test Option Data Area. If
GDTDBG is zero, TESTPARM issues the ULOAD
macro to load dump routine. TESTPARM puts the
address of the dump routine in GDTDBG.
Although the trace tables record execution since
Access Method Services invocation, the earliest
time a trace table or dump can be printed is in the
Executive prior to the second call to the
Reader/Interpreter. This is because the TEST
option is not on until the PARM command has
been completed.

IDCPMOI

Proced.-e: MARGPARM

1 MARGPARM checks the margins for validity_ The
left margin must be less than the right margin. If the
margins are invalid, MARGP ARM sets the left margin
to 2 and the right margin to 72, the Access Method
Services default margins. MARGPARM puts the
margin values in the first two halfwords of the
Reader/Interpreter Historical Data Area.

IDCPMOI

Proced ... e: GRPHPARM

3 GRPHPARM puts the GRAPHICS parameter
(CHAIN or TABLE) in a Text Processor Print Control
Argument list. GRPHPARM issues a UREST macro
for the Text Processor to use the new chain or table
with Access Method Services output. The CHAIN
parameter specifies one of several graphic character
sets available. However, the CHAIN parameter does
not specify a particular physical type chain. The

TABLE parameter specifies a module in the core
image library.

IDCPMOI

Procedure: IDCPMOI

4 IDCPMOI prints a message containing LASTCC.
Control goes to Executive Controlled Termination.

o::I~'"tI
'<nPl
--i :S. ~
Z~o
l'c.-
cn:>cn
Z"d ...:::
N"'y..)
~::.:w
~NcIo
VI \0 VI
VI~ 0'\
o-~

~y..)
-...J

~ Diagram 3.8. PRINT FSR
o o
Vl
-<
Vl

:>
()
()
(I)
Vl
Vl

s::
(I)

;.
o c..
Vl
(I)

~
(i'
(I)
Vl

t'"'
o

(JQ
(i'

Register I

(
t GDT

+ FDT

~
0

,..

~utPut Da~ "- .-'"

Input
Data Set Set (Optional)

'- J '- .-J

From Executive

...
~ ,../ 1. Opens data sets.

2. Finds starting point.

3. Sets up subtitle.

Records

D :'>
4. Gets and prints records until ending .>

~ v
point is reached.

Message

5. Writes message. :;, D '"

Register I

~

tGDT

t FDT

;LASTCC

::
(II

s-
o
0-

S,
o
'R ..,
~ o·
=
~

Extended Description for Diagram 3.8

IDCPROI

Procedure: IDCPROI

IDCPROI builds an OPNAOL for the input data set. If
the PRINT command specifies a FROMKEY or
TOKEY parameter, IDCPROI opens the data set for
key sequence record retrieval. If FROMADDRESS or
TOADDRESS is specified, IDCPROI opens the data
set for sequential record retrieval. If the PRINT
command specifies FROMNUMBER or
TONUMBER, IDCPROI opens the data set for keyed
sequential record retrieval. IDCPRO 1 puts any
ENVIRONMENT parameters in the OPNAOL. The
input data set can be a VSAM catalog. IDCPROI
issues a UOPEN macro to open the input data set. If
an output data set is specified with the OUTDDV AL
keyword, IDCPROI builds an OPNAOL and issues a
UOPEN for the output data set. If the return code
from a UOPEN macro is non-zero, IDCPROI writes a
message and terminates the PRINT command.

IDCPROI

Procedure: DELIMSET

2 DELIMSET performs additional validity checking to
verify that From/To parameters are consistent with
data set organization. If the parameter is invalid, an
error message is written. Checks are made for invalid
use of

FROMADDRESS I TOADDRESS with RRDS and
FROMNUM I TONUM with KSDS

If FROMNUMBER is specified, DELIMSET issues a
UPOSIT macro to position to the starting relative
record number. If SKIP is specified for a VSAM
relative record data set, DELIMSET issues a UPOSIT
to position to the next relative record number beyond
the skip count. A VSAM relative record data set is
printed in relative record number order.

If FROMKEY is specified, DELIMSET issues a
UPOSIT macro to position to the starting key. If
FROMADDRESS is specified, DELIMSET issues a
UPOSIT macro to position to the starting address. If
SKIP is specified, DELIMSET issues as many UOET
macros as there are records to skip. The way the data
set is opened determines how the records are skipped.
Any data set opened as an ESDS causes records to be
printed in chronological order. A keyed data set
opened as a KSDS causes records to be printed in
key-sequence order. If no starting point is specified,

thl~ starting point is the first record in the input data
sell.

IDCPROI

Procedure: TEXTPSET

3 TEXTPSET formats a subtitle line with static text and
thc! input data set name from t! _ IOCSTR.
TEXTPSET issues a UPRINT macro to get the static
text and insert it into the buffer in which the subtitle
line is being built. No printing is done with this
UPRINT macro. TEXTPSET issues a UEST A macro
to give the subtitle to the Text Processor.

IDCPIROI

Procedure: IDCPROI

4 The following steps are repeated until the ending point
in the input data set is found. If TOKEY is specified,
IDCPROI calculates the key location in the record
from information in the IOCSTR. Retreiving records
stops when the key in the input record is higher than
the:: value in TOKEY.1f TOADDRESS is specified,
printing stops when the Relative Byte Address
returned by the UOET macro equals the value
supplied by TOADDRESS. If COUNTY AL is
spc::cified, printing stops when the number of records
printed equals the number supplied by COUNTY AL.
If TONUMBER is specified, retrieving and printing
stops when the relative record number of the input
record is higher than the TONUMBER value. If
COUNT is specified for a VSAM relative record data
set, printing stops when the number of valid relative
record slots printed plus the number of invalid slots
bypassed exceeds the value supplied by COUNT. If no
ending point is specified, printing stops when the last
record of the input data set is printed.

a. IDCPROI issues a UOET to obtain a logical record.
If the return code from the UOET macro is
non-zero, IDCPROI checks the return code for a
recoverable error. The recoverable errors are
duplicate keys, records out of sequence, invalid
length records, and I/O errors in the data of a
VSAM data set. After a non-recoverable error or 4
recoverable errors, printing stops.

b. IDCPROI issues a UPRINT to print the logical
record just obtained. A minimum of 3 lines is
printed for each logical record from the input data
set. The first line printed contains the record
identification: key, address, sequence number
(non VSAM except ISAM) or relative record

number. The relative record number is printed for
a relative record data set and indicates the slot
number. Unused slots will be indicated by missing
numbers. The second line is blank. The third and
following lines contain the logical record from the
input data set. The format of the logical records
de::pends on whether HEX, CHARACTER, or
DUMP was specified in the command. If an output
data set is specified with the OUTDDV AL
ke::yword, IDCPRO I prints the records on that
output data set. If the return code from the
UPRINT macro is 12 or greater, IDCPROI will
terminate processing: there is no checking for
re,coverable errors.

IDCPROll

Procedure: IDCPROI

5 IDCP'ROI writes a message with LASTCC to SYSLST
IDCP'ROI issues a UCLOSE macro to close the input
data set and any output data set other than SYSLST
SYSLST is not closed. Control returns to Executive
Controlled Termination

~ Diagram 3.9. REPRO FSR

o o
tI}
........
<:
tn

> ()
()
(1)
(Il
(Il

a:
(1)

;.
o
0..
tI)
(1)

~
n'
(1)
(Il

t"""
o

(JQ

n'

INPUT

tGDT

t FDT

.-.

Input
Data Set

o

From Executive
Controlled Termination

PROCESSING

1. Opens data sets,

2. Processes catalogs,

a. Reloads a catalog, ~
See Diagram ~

3. Finds starting point,

4. Copies data set:

• With ending point.

• Without ending point.

5. Writes message.

CfGPL ---

Input
Data Set

Message

D
Register I

c----------'
tGDT

tFDT

(

~
o
;.
o
0..

sa,
o
"0
o
"1

~ o·
::s

~

Extended Description for Diagram 3.9

IDCRPOt

Procudures: IDCRPOI

IDCRPOI builds an OPNAGL for the input data set. If
FROMKEY or TOKEY is specified, IDCRPOI opens
the input data set for key sequence processing. If
FROMADDRESS or TOAD DRESS is specified,
IDCRPO 1 opens the input data set for sequential
record retrieval. If FROMNUMBER or TONUMBER
is specified, IDCRPOI opens the input data set for key
sequence processing. IDCRPO 1 also builds an
OPNAGL for the output data set, and it puts any
ENVIRONMENT parameters in the OPNAGL. If
REUSE or REPLACE is specified, IDCRPOI sets the
OPNAGL for the output data set to reflect these
parameters. UOPEN will open the output data set
with the reset option. IDCRPOI issues one UOPEN
macro that opens both the input and output data sets.
If the return code from the UOPEN macro is
non-zero, IDCRPOI writes a message on SYSLST an
terminates the REPRO command. Following the open
of both data sets, IDCRPOI checks for a
nonrelative-record input data set together with a
nonempty relative record output data set. If this error
condition is detected, a message is written on SYSLST
and the REPRO command is terminated.

IDCRPOJ

Procedures: VERIFYC, CATRELOD, TRUENAME,
CATRANS, CNVRTCI, CATCOMP

2 If neither the input nor the output are VSAM data
sets, processing continues with step 3. Each VSAM
data set is checked and verified to see if it is a catalog.
If the output data set is not a catalog, processing
continues with step 3. If the output data set is a
catalog, the catalog reload switch, CA TRELSW, is set
on. The REPRO command is checked to see if
beginning or ending delimiters were specified. If any
were specified, a message is issued, processing is set
for termination, and control goes to step 5. If no
delimiters were specified, a catalog reload function is
assumed, a message is issued, and the reload function
is initiated. See Diagram 3.9.1.

IDCRPOt

Procedure: DELIMSET

3 DELIMSET performs additional validity checking to
verify that From/To parameters are consistent with

input data set organization. If the parameter is invalid,
an error message is written. Checks are made for
invalid use of FROMADDRESS I TOADDRESS with
relative-record data set and FROMNUM I TONUM
with key-sequenced data set. If FROMKEY is
spl:!cifiect, DELIMSET issues a UPOSIT macro to
position to the starting key. If FROMADDRESS is
spl:!cified, DELIMSET issues a UPOSIT macro to
position to the starting address. If FROMNUMBER is
sp,ecified, DELIMSET issues a UPOSIT macro to
position to the starting relative record number. If
SKIP is specified for a VSAM relative-record data set,
D1ELIMSET issues a UPOSIT macro to position to the
next relative-record number beyond the skip count. If
SKIP is specified for a key-sequenced or
entry-sequenced data set, DELIMSET issues as many
UGET macros as there are records to skip. The way
the data set is opened determines how the records are
skipped. Any input data set opened as an ESDS causes
records to be read in chronological order. A keyed
data set opened as a KSDS causes records to be read
in key-sequence order. If no starting point is specified,
the starting point is the first record in the input data
set.

W'hen copying from a non-relative-record data set into
an empty relative-record data set, records are copied
into consecutive relative-record locations. When
copying from one relative-record data set to another,
records are placed in the same slot in the output data
set as they were in the input data set.

IDCRPOt

Proc.!dure: IDCRPO 1

4 a. If an ending point other than the end of the input
data set is specified by the TOKEY,
TOADDRESS, or COUNT keywords, the
following steps are repeated until the ending point
is found. If TOKEY is specified, IDCRPOI
calculates the key location in the record from
information in the IOCSTR. Retrieving records
stops when the key in the input record is higher
than the value in TOKEY. If TOADDRESS is
specified, copying stops when the Relative Byte
Address returned by the UGET macro equals the
value supplied by TOAD DRESS. If COUNTY AL
is specified, copying stops when the number of
records copied equals the number supplied by
COUNTY AL. If TONUMBER is specified,
copying stops when the relative-record number of
the input record is higher than the TONUMBER
value. If COUNT is specified for a VSAM

relative-record data set, copying stops when the
number of valid relative-record slots copied plus
the number of invalid slots bypassed exceeds the
value supplied by COUNT.

IDCRPOI issues a UGET macro to obtain a logical
record from the input data set. If the return code
from the UGET is non-zero, It also checks the
return code for a recoverable error. The
recoverable errors are duplicate keys, records out
of sequence, invalid length records, and I/O errors
in the data of a VSAM data set. After a
non-recoverable error or 4 recoverable errors,
copying stops.

IDCRPOI issues a UPUT to write the logical
re:cord to the output data set. If tht: return code
from the UPUT macro is non-zero, IDCRPOI
checks the return code for a recovt:rable error.
After a non-recoverable error or 4 recoverable
errors, copying stops.

b. If no ending point is specified in the REPRO
command, IDCRPOI issues a UCOPY macro to
copy the input data set to the last record.

IDCRPCH

Procedure: IDCRPO 1

5 IDCRPOI writes a message with LASTCC to SYSLST.
It also closes the input and output data sets with one
UCLOSE macro. Control returns to Executive
Controlled Termination.

~ Diagram 3.9.1 REPRO FSR - Catalog Reload
o
o
(I)
........
<::
(I)

~
~
~
n
So
&.
(I)
n

S.
R
(II

b
OQ
f)'

INPUT

~

From Diagram 3.9

PROCESSING

1. Issues starting message.

2. Compares the target catalog and
source data set.

3. Reads and copies thl: sourcl:
records into the target catalog.

4. Updates the target catalog's
control record (CCR):

s. Returns to Diagram 3.9,
step 5.

OUlPUT

Extended Description for Diagram 3.9.1

IDCRPOI

Procedure: IDCRPOI

1 The message says that catalog reload had begun.

IDCRPOI

Procedure: CATRELOD

2 Additional checks are made at this time by using data
from the first 10 records of the input and output data
sets. If the data set names do not match, a message is
issued, processing is set for termination, and further
checks are made. Termination also occurs if the input
data set record format does not match a VSAM.
catalog record format, if there is insufficient space in
the output data set, and if the volume serial numbers
or the device types do not match. Messages are issued
for the corresponding errors.

IDCRPOI

Procedures: CATRELOD, SORSREAD, T ARGREAD,
GETPAIR, DUMPIT, TRUENAME, CATRANS,
CONVRTCI, CATCOMP

3 When all the checks are satisfied, the unloaded catalog
is copied into the output data set. Each record is read
from the input data set and translated. It is then
compared to the target catalog.

• If a record existed on both backup and target
catalogs, the translated backup updates the target.

• If a record existed only on the backup, then this
record is inserted into the target catalog.

• If a record existed only on the target catalog, then it
is processed in one of two ways.

a.If the target record is a true name record, then it is
deleted.

b.If the target record is a low key range record, then
~ it is made a catalog free record and placed on the
;. free chain.

&. • In both cases where the keys are not equal,
s.. differences in true name entries between the backup
o and target catalogs are checked.
't:I
~ a.If a target name record exists without a
;. corresponding backup or vice versa, then a
g message is printed indicating this, provided that
- not more than 100 messages have been issued. A
~ warning return code of 4 is attached to the message

b.At the 101th discrepancy, a message is issued saying
that comparison is terminated. The only
discrepancies to be printed afterwards will be for
volume entries.

IDCRPOI

Procedure: CATRELOD

4 After both backup and target records have been
processed sequentially by key to the end-of-fiIe, one
more record needs to be updated.

• The catalog free chain pointers are counted and
updated. The RBA fields are cleared so they will be
correct for the next open of the catalog and the
updated record is written back.

The number of records copied is the number of
backup records read if catalog reload has taken place;
otherwise, it is the number of output records written.

5 Control passes to Step 5, Diagram 3.9, step 5, to print
final messages.

N Diagram 3.10. VERIFY FSR
~

o
o
til
.......
<:
til

~ o
(II
til
til

a::
(II

S-o
Q.

til
(II

~ §.
til

t"" o
OQ
o·

INPUT

Register 1

.,
tGDT

t FDT

~
0

From Executive
Controlled Termination

PROCESSING

1. Opens data set.

2. Verifies data set.

3. Closes data set.

4. Writes message.

OUTPUT

Message

VSAM
Data Set

D
Register I

~----
t GDT

t FDT ,

3::
~ s-o
C-
o -o
'g ..,
~ o·
::s

N
VI

Extended Description for Diagram 3.10

IDCVYOI

Procedures: OPENPROC, IDCVYOI

1 OPENPROC builds an OPNAGL to open the VSAM
data set specified by FILE for control interval update
processing. A UOPEN macro is issued to open the
data set. If the open was not successful, LASTCC is set
to 12 and control goes to step 4.

IDCVYOI

Procedure: IDCVYOI

2 IDCVYOI issues a UVERIFY macro to verify the data
set.

IDCVYOI

Procedure: TERMPROC

3 TERMPROC issues a UCLOSE macro to dose the
data set. If the close was not successful, LASTCC is 4.

IDCVYOI

Procedure: IDCVYOI

4 IDCVYOI prints a message containing LASTCC.
Control goes to Executive Controlled Termination,
Diagram 4.0.

-N
CI\

o
o
CIl
.........
<:
CIl

> o o
n
en en

3:
n
;.
o
0..
CIl n
~ o·
n
en

b
(JQ o·

Diagram 3.11. BLDINDEX FSR

iNPUT
Register I

c"--'-------'
t GOT

f BLDINOEX FOT

Return area
for LASTCC

~
VSAM
Catalog

'- ~

~
Base
Cluster

'-- ~

EJ
VSAMOata
Space for
External
Sort
(optional)

/
Job Control
Statements

Sort Work Files (optional)

....-...

..........
./

From Executive
Controlled Termination

t
PROCESSING

1. Opens base cluster; determines if
external sort job control is present.

2. Opens alternate index.

3. Performs verification and obtains
necessary information.

See Diagram -B
4. Initializes for sort phase.

a. Obtains virtual storage.
b. Defines and opens sort work

files (optional).

See Diagram -B
5. Reads base cluster and performs sort.

See Diagram -B
6. Builds alternate index.

7. Closes alternate index and sort work
files; determines if additional alternate
indexes are to be built.

8. Closes base cluster.

a. Deletes sort work files.
b. Frees virtual storage.

9. Writes message.

....
::;.:>

..
---.----~

CTGPL -

CTGPL ..--

r--....

t-...

OUTPUT

CTGFLs

~
VSAM
Catalog

I........ ~

CTGFVs

t-...
CTGFLs

>I I'

~

.... v

-----&GPL

D
Register 1 c--'"

.,--r'GOT

t FOT

1 LASTCC

~

~
(l)

s-
o
0-
o ...,
o
'0
(l) .,
~ o·
::l

N
-.I

Extended Description for Diagram 3.11

IOCBIOl

Procedures: OPNPROC, JCPROC

1 IDCBIOI calls OPENRPOC to build an OPNAGL and
issue a UOPEN to open the base cluster for input.
OPENPROC indicates the INFILE dname in the
OPNAGL. OPENPROC indicates input processing in
the OPNAGL. UOPEN processing determines if the
base cluster is a KSDS or an ESDS and sets a flag in
the IOCSTR returned to OPENPROC following the
open. This flag will be used by BLDINDEX to
determine if alternate index records are to contain
prime key pointers or RBA pointers. UOPEN also sets
the RPL to keyed sequential processing for a KSDS or
addressed sequential processing for an ESDS. If the
return code from UOPEN is nonzero, OPENPROC
returns to IDCBIOI with LASTCC set to 12 and the
BLDINDEX command is terminated.

OPENPROC checks the high-used RBA of the base
cluster returned in the IOCSTR. If the high-used RBA
is zero, OPENPROC issues a message returns to
IDCBIOI with LASTCC set to 12 and the BLDINDEX
command is terminated.

IDCBIOI calls JCPROC to determine if job control for
an external sort has been provided. BLDINDEX will
always perform an internal sort if enough virtual core
has been provided by the caller. Otherwise, if the
caller has provided appropriate job control,
BLDINDEX will perform an external sort using two
VSAM entry sequenced data sets. Job control consists
of DLBL/EXTENT cards with the following
specifications:

Filename As provided via the WORKFILES
parameter, or defaulted to IDCUTI
and IDCUT2

File-ID

Volume
Serial Numbers

AcceSs
Meth()d

Required

Required; must specify
volume(s) containing VSAM data
space accessable via a currently
available catalog.

'VSAM.' required

If the caller lIas specified the WORKFILES
parameter, JCPROC issues a UIOINFO specifying the
first dname of that parameter. Otherwise, the
UIOINFO specifies a default dname of IDCUTI. The
UIOINFO requests a return of the data set name and
volume serial number(s). If the return code from

UIOINFO is zero, JCPROC issues another UIOINFO
requesting the same information for the second dname
spedfied via WORKFILES or the default dname of
IDCUT2 if WORKFILES has not been specified. If
·both UIOINFOs are successful, JCPROC saves the
pointers to the information obtained.

IOCBIOl

Procedures: MAINPROC, OPENPROC

2 Steps 2 through 7 are performed for each alternate
indc!x specified in the OUTFILE parameter.

IDCBIOI calls MAINPROC to control the building of
the alternate index. MAINPROC calls OPENPROC to
build an OPNAGL and issue a UOPEN for the
alternate index. OPENPROC sets a flag in the
OPNAGL to indicate that only the alternate index is
to be opened. OPENPROC indicates the OUTFILE
dna.me in the OPNAGL. The OPNAGL specifies
keyed sequential output processing and specifies open
with reset. If the alternate index is nonempty and was
defined with the reusable attribute, VSAM OPEN will
res€~t it to an empty condition. If the return code is
nonzero OPENPROC sets LASTCC to 8 and returns
to MAINPROC where control is passed to Step 7.

(OCBIOl

Procedures: MAINPROC, LOCPROC

3 In order to accomplish validity checking and obtain
required information, MAINPROC calls LOCPROC
to issue VSAM catalog locates. See Diagram 3.11.1.

On· return from LOCPROC, the following information
has bee:n obtained to be used in subsequent processing:

Type of base cluster returned from UOPEN of
(KSDS or ESDS) base cluster; also in

data AMDSB.

Position and length
of prime key (if base
cluster is a KSDS)

Length of alternate
index record

Length of
alternate key

Position of
alternate key in
base clustt~r record

Unique or
nonuniqUt~ key
indicator

Number of records
in the base! cluster

(OCBIOl

in base cluster data
AMDSB control block.

in alternate index
data AMDSB.

in alternate index
data AMDSB control
block.

in alternate index
AMDSB control block.

in alternate index
AMDSB control block.

in base cluste r
AMDSB control block.

Procedure:~: MAINPROC, INITPROC

4 MAINPROC calls INITPROC to obtain resources for
building the alternate index. Resources consist of
virtual storage for buffers and work areas, virtual
storage! for the-sort and defined and opt:ned sort work
files if it is determined that such are required. See
Diagram 3.11.2.

(OCBlOt

Procedures: MAINPROC, CNTLPROC

5 MAINPROC calls CNTLPROC to read the base
cluster and control the sort-merge proce~ss. See
Diagram 3.11.3.

(DeBlOt

Procedures: CNTLPROC, BLDPROC, MERGPROC

6 If an internal sort was performed, CNTLPROC passes
each sOlll.recorGi to BLDPROC t.obuild and write the
alternate mdex records. OtherwIse, CNTLPROC calls
MERGPROC to perform the merge passes and build
the alt,ernate index. See Diagram 3.11.3, for
BLDPROC and MERGPROC processing.

3:
n ;.
o
0-

s..
o
"0
n ...,
~ o·
::s
N
\0

IDCBIOI

Procedure: FINPROC

7 IDCBIOI calls FINPROC to perform cleanup from the
alternate index just built. FINPROC tests for an
alternate index and sort work files and issues a
UCLOSE for any of those data sets which are open. If
BLDINDEX processing encounters any errors,
FINPROC issues an appropriate message. Catalog
error messages are issued by building an error
conversion table and invoking the UERROR macro.
FINPROC also issues a UFPOOL to free the sort core,
buffers and work areas used in building this alternate
index. A message indicating the success or failure of
the alternate index build is written. The setting of
LASTCC determines the message to be written. If
LASTCC from the current build is higher than the
maximum value from previous builds, it is saved.
LASTCC is cleared for subsequent builds. If the caller
of the BLDINDEX has specified multiple alternate
indexes, control returns to Step 2.

IDCBIOI

Procedures: TERMPROC, DEL TPROC

8 IDCBIOI calls TERMPROC to perform final cleanup.
TERMPROC issues a UCLOSE to close the base
cluster. If sort work files exist, DEL TPROC is called
to build a CTGPL to delete them.

A UCATLG macro is issued by DEL TPROC to delete
each sort work file. TERMPROC issues a UFPOOL to
free all remaining core obtained via UGPOOL.

IDCBIOI

Procedure: TERMPROC

9 TERMPROC writes a termination message with the
maximum LASTCC encountered. C~ntrol returns to
Executive controlled termination via 1DCBIOl.

~ Diagram 3.11.1. BLDINDEX FSR - Get Information and Verify o .

o o
c;n
"-< c;n

~ g
til
til

~
(11

;.
o
Q.
c;n
(11

~
(i"
(11
til

b
(JQ

(i"

INPUT

-

From Diagram 3.11

PROCESSING

1. Obtains information regarding the
base cluster.

2. Obtains information regarding the
alternate index.

3. Verifies the alternate index-base cluster
relationship.

OUTPUT

CTCPL

~
CD

[
S
O
'g

~. g -1M

Extended Description for Diagram 3.11.1

IociUOl

Proeed.-es: LOCPROC, CATPROC

1 The caller of BLDINDEX may specify the alternate
index and base cluster names or a path to either. The
diagram below shows the relationship of the various
objects involved:

D
2

R = Path
C = Cluster
G = Altemate Index
D = Data
I = Index

R
3

I
(if KSDS)

5
D

The number in each box indicates which of the locates
described below retrieves information for that object.
The purpose of this series of locates is:

a. to retrieve the data AMDSB control block of the
alternate index and base cluster, and

b. to verify that the alternate index specified by the
caller does indeed relate to the base cluster
specified.

If the caller specified a path over the alternate index
via OUTFILE, an additional locate will be required to
reach the G object will be required (Locate 4).

The building of the CTGPL and CTGPLs and the
issuance of the UCA TLG is actually done by
CATPROC. LOCPROC makes successive calls to
CA TPROC to perform these functions. On each entry
to CA TPROC, the CTGPL and CTGFLs are rebuilt
for the specific locate being processed. LOCPROC
calls C~TPROC for locates 1 and 2 only on the first
alternate index being built since these locates are
against the base cluster. Appropriate information is
saved.

Locate 1

Loc:ate 1 retrieves the associations of the name
spedfied via INFILE. CATPROC builds a· CTGPL for
a locate operation. CTGFLs are built for:

ENTYPE Entry Type

NAMEDS

CATACB

Type and control interval number
of the first three associations

CatalogACB

The entry name used in this locate is the file ID
spedfied by the caller in the job control pointed to by
the INFILE parameter. If the return code from catalog
is nonzero, LOCPROC sets a locate error condition,
sets LASTCC to 12 and returns control to
MAINPROC. MAINPROC returns to IDCEI01 where
con1trol is passed to Step 7 (Diagram 3.11). Note: This
same type of error processing follows all subsequent
locates except that LASTCC is set to 8 for locates 3, 4,
and 5.

If the Entry Type returned by catalog management is
an R (path), LOCPROC tests that the first association
is a C (base cluster). If the Entry Type is not an R, it
must be a C. Otherwise LOCPROC issues a message,
sets LASTCC to 12 and returns control to
MAINPROC.

Locate 2

CATPROC builds a CTGPL and CTGFLs to retrieve
the base cluster data AMDSB.

CTGPL:

CTGFL:

Entry "name" is the control interval
number of the base cluster's data
object (D) returned in Locate 1.

ENTYPE Entry Type

NAMEDS

AMDSBCAT

Type and
control interval
number of the
first three
objects
associated with
the data object

AMDSB
control block

The catalog ACB returned from Locate 1 is used in
this and all subsequent locates.

LOCPROC saves the first control interval number
retumed for NAMEDS which is the control interval
number of the base cluster object. LOCPROC also
movc~s the AMDSB control block to its own work area.

IOCBIOI

Procedure: LOCPROC, CA TPROC

2 Locate 3

Locate 3 is essentially the same as Locate 1 (minus the
catalog ACB address) except that the name specified
via OUTFILE is used. If the entry type returned by
catalog management is an R (path), LOCPROC tests
that the first association is a G (alternate index). If the
entry type is not an R, it must be a G. Otherwise,
LOCPROC issues a message, sets LASTCC to 8 and
returns: control to MAINPROC.

Locate 4

If the Entry Type from Locate 3 was an R. CA TPROC
builds a CTGPL and CTGFL to retriev€: the alternate
index associations.

CTGPL: Entry" name " used is the control interval
number of the alternate index: (G)
associated with the path (R) returned in
Locate 3.

ENTYJ>E: Entry type

CTGFL: NAMEDS-Type and control interval
number of the first three objc!cts associated
with the alternate index. The entry type
returned by catalog management must be a
G. Otherwise, LOCPROC issues a
message, sets LASTCC to 8, and returns
control to MAINPROC.

IOCBIOI

Procedures: LOCPROC, CA TPROC

3 LOCPROC must now verify that the altc:rnate index
specified by the caller is in fact related to the base
cluster specified. LOCPROC compares the control
interval number of the base cluster saved from Locate
2 of the control interval number of the third
association returned from Locate 3 or 4. This should
be, for an alternate index, the control interval number
of the n~lated base cluster. If the CI numbers are not
equal LOCPROC issues a message, sets lLASTCC to 8
and returns control to MAINPROC.

Locate 5

Locate 5 is the same as Locate 2 for the alternate
index data AMDSB control block.

Control returns to Diagram 3.11 where c:ontrol will be
passed to Step 4 or Step 7 depending on the setting of
LASTCC.

~ Diagram 3.11.2. BLDINDEX FSR - Obtain Resources and Sort Initialization
o o
I:Il
........
<
I:Il

r
fIl

~

t
~
3.
R
fIl

b
'!9.
(')

INPUT

Job control
statements

Sort Work Files (optional)

From Diagram 3.11

PROCESSING

Determines requirements for sort.

Obtains virtual storage.

Defines and opens sort work files
(optional).

OUTPUT

CTGPL

DtJ

s::
n ;.
o p.
o -o
~
g.
o
I:' -~
~

Extended Description for Diagram 3.11.2

IOCBIOl

Procedures: INITPROC

INITPROC issues a UGPOOL macro to obtain virtual
core for buffers and work areas, consisting of 1 2K
buffer (to be used for output if an external sort is
performed), the area required for the CPL/FVT /FPL
complex to define the sort work files and the alternate
index record output buffer. The first two areas are
obtained at this time, even though they may not be
used, so that if it is necessary to perform an external
sort it will not fail due to lack of virtual storage. If the
UGPOOL fails, INITPROC sets LASTCC to 8, issues
a message and returns control to IDCBI01, Step 7 (via
MAINPROC). .

INITPROC calculates the requirements for both an
internal sort and an external sort. If an external sort is
performed, the records being sorted are blocked into a
block 2048 bytes in length, using a logical record
length of 2041 bytes. Blocking and deblocking of sort
records within the 2041-byte logical record is
accomplished by BLDINDEX. The formulas used to
determine sort work size are:

Sort Record Size = Alternate Index Key
Length + Prime Key Length
(KSDS) or 4 (ESDS)

Number of Records = 2041
per Block Sort Record Size

Total number of =J!. ~ Records!! Base Cluster} +1
2K Blocks \# of Records per Blo~

During the first phase of either an internal or external
sort, the records being sorted are packed contiguously
into a record sort area (RSA). The RSA size is always
in increments of 2K so that it can be later used as an
input buffer area during the merge phase of an
external sort. The initial size of the RSA is calculated
as

Number of Records in Base Cluster * Sort Record
Size

and rounded up to the nearest multiple of 2K. This
size is then adjusted as follows:

a. If the RSA size is less than 4K, it is set at 4K. The
number of records in the base cluster is obtained
from a statistic maintained in the base cluster
AMDSB control block. If this statistic is in error
(which can happen if a system failure occurs during
a close), it may be necessary to go into an external

sort. In this case, space for two input buffers is
required.

b. If the EXTERNALSORT parameter has been
specified by the caller of BLDINDEX, the RSA
size is set at 32K-the minimum amount of storage
which will be used for an external sort during the
merge phase.

IOCBIIOI

Procedures: INITPROC

2 In addition to virtual storage for the RSA, virtual
storage for the table (called the "heap") which drives
th~~ first phase of the sort is required. This is a table of
4-byte pointers. The amount required is calculated as
follows:

RSA Capacity = RSA Size
Sort Record Size

Heap Size RSA Capacity * 4

INITPROC issues a UGPOOL for the RSA size plus
the: heap size. If the UGPOOL fails, the initially
calculated RSA size could not be obtained and it will
be necessary to perform an external sort. The
maximum amount of core used for an external sort is
lOOK, the minimum 32K. If the maximum amount
cannot be obtained, an attempt is made to obtain an
intlermediate RSA of 6OK. INITPROC sets the RSA
siz4! to the next lower plateau-lOOK, 6OK, 32K-and
loops back to the start of Step 2. If the UGPOOL fails
at the lowest plateau (32K), INITPROC sets LASTCC
to 8, issues a message and returns control to IDCBIOI,
Step 7 (via MAINPROC).

IOCBIOl

Procedures: INITPROC, DEFPROC, DEL TPROC,
OPENPROC

3 If virtual storage was successfully obtained but the
amount obtained for the RSA was less than the
originally calculated required amount, INITPROC
callls DEFPROC to define and open two sort.work files
to be used during the merge phase of an external sort.

DEFPROC checks to determine that the caller of
BLDINDEX did provide external sort job control. If
job control was not provided, DEFPROC sets
LASTCC to 8, issues a message, and returns to its
callier.

DEFPROC determines if large enough sort work files
exist from a previous sort and, if so, bypasses the
define process.

If external sort work files exist but are not large
enough, DEFPROC calls DELTPROC to build a
CTGPL to delete each sort work file (specifying the
PURGE option).

If sort work files are to be defined, DEFPROC builds a
CTGPL, a cluster CTGFV, a data CTGFV and the
required CTGFLs to define the first external sort work
file. DEFPROC issues a UTIME macro in order to
provide the creation date in the define operation. The
cluster FVT references the file-ID and the data FVT
references the volume serial numbers obtained via
UIOINFO from the sort work job control statements.
Space allocation is in records: primary, the number of
2K blocks calculated by INITPROC; secondary, 10%
of primary. The data set attributes specified are:
ESDS, nowritecheck, unordered, speed, suballocation,
noerase, n:use, default shareoptions, control interval
size of 2048, logical record length of 2041.

DEFPROC issues a UCATLG macro to define the
first work file, makes the necessary changes to the
FVTs and issues a UCATLG for the second work file.
DEFPROC next calls OPENPROC to build OPNAGL
and open the two data sets just defined. Th,e
OPNAGLs specify sequential output using l:ontrol
interval processing with user buffers. If the define or
open for either of the sort work files fails, DEFPROC
sets a define error condition, sets LASTCC to 8 and
returns control to INITPROC. If both sort work files
are successfully defined and opened, DEFPROC
returns to lINITPROC with a flag indicating that an
external sort is to be performed. INITPROC returns
control to Diagram 3.11 where control will be passed
to Step 5 or Step 7 depending on the setting of
LASTCC.

~ Diagram 3.11.3. BLDINDEX FSR - Sort-Merge and Build Alternate Index

o
o
til
........
<:
til

> (")
(")
C1I
CIl
III

s::
C1I

S-o
Co
til
C1I
::;;!
~.
III

b
00 o·

~ :)

Base
Cluster

.... ~

L:-. -;; ,-
VSAM Data
Sets for Sort
Work Files ~ ... -(optional)

- ---- -

- - -

I
~

...
1. Initializes for sort phase. ...

2. Reads base cluster, places records
in record sort area, internally sorts,
writes initial strings if record sort
area cannot con tain all records
(optional).

3. Performs merge passes (optional).

a. Initializes for each pass.

b. Merges strings.

4. Builds alternate index.

- -- -- -- ----

-c.
fI"
....... - --;> ... VSAM Data
Sets for Sort
Work Files ~,
(optional).

-,- -'" - .-"

Alternate
index

;> - -"" ...

-- --

Extended Description Diagram 3.11.3

IDCBIOI

Procedure: CNTLPROC

CNTLPROC initializes factors which will be used
during the sort-merge including pointers to the record
sort area (RSA), and the table of pointers which is
used during the sort. CNTLPROC also initializes the
output buffer with an ROF and CIOF in the event an
external sort is performed (the sort work files are
processed in control interval mode with user buffers).

IDCBIOI

Procedures: CNTLPROC, SORTPROC, BLDPROC,
SPILPROC, DEFPROC

2 In a loop CNTLPROC reads each base cluster record
and passes it to SORTPROC. SORTPROC performs
the function of building the sort records from the base
cluster record, placing each record in the RSA and
updating the table of pointers (called the'heap') to the
records in the RSA. The heap is sorted when the RSA
has reached capacity and/or when the last base cluster
record has been processed.

Each sort record is formed by concatenating the prime
key of the base cluster (KSDS) or its RBA (ESDS) to
the alternate key.

.Alternate Key
Prime Key (KSOS)
or
RBA (ESOS)

If the base cluster record is not long enough to contain
the alternate key, SORTPROC issues a warning
message and sets the current condition code to 4.

The heap sort consists of two phases. The first phase
builds the heap into a tree of nodes having a
parent-child relationship. Each parent node has two
child nodes and the parent represents a key higher
than either of the two children. At the end of the first
phase the node at the top of the tree represents the
highest key. The second phase removes the top node,
plac1;!s it at the bottom, reduces the heap by 1 and
adjusts the parent-child relationships of the remaining
nod(:s. This loop continues until the top of the heap
repn:!sents the lowest key.

If enough virtual core was available to contain all the
sort records, the sorting takes place after the last base
cluster record has been read, after which CNTLPROC
passes each record to BLDPROC to build and write
the alternate index records (see Step 4). Otherwise,
sorting takes place each time the RSA is filled. After
the heap is sorted, if the sort was caused by the RSA
reaching capacity before end-of-file on the base
cluster, SORTPROC calls SPILPROC to write out the
records in the RSA in a string of 2K blocks to the
external sort work file.

SPILPROC determines if sort work files have already
been defined and opened by INITPROC and, if not
calls DEFPROC to perform that function. Normally,
SPILPROC will find sort work files already defined
and opened. However, if the statistic contained in the
base cluster AMDSB control block as to the number of
records in the base cluster was erroneously low and
the calculated virtual storage for the sort was
obtained, INITPROC will not have initialized sort
·work files. SPILPROC blocks the sort records into the
2K output buffer and issues a UPUT macro to write it.
This is performed in a loop until all sort records in the
RSA have been written out.

CNTLPROC calls SORTPROC under the following
conditions:

After each base cluster record has been read. The
address of the record is contained in the IOCSTR
of the base cluster.

At end-of-file on the base cluster.

IDCBIOI

Procedures: CNTLPROC, MERGPROC, BLDPROC

3 After all base cluster records have been read, if the
RSA was not large enough to contain all sort records,
merge passes must be performed using the two
external sort work files. SPILPROC ha~; written out
the first strings during the sort phase. During this
phase the external sort work file is in cn:ate mode.
The data set was opened with MACRF==CNV, UBF.
OUT, SEQ. PUTs are issued with OPTCD=CNV.
~EQ, NUP. Control intervals are written in physical
sequence. At the end of the sort phase, CNTLPROC
issues a UCLOSE macro to close the output sort work
file followed by UOPEN to reopen it. This is necessary
to get out of create mode. The second open specifies
MACRF=CNV, UBF, DIR, UPD. Subsl:!quently all
PUTs will be issued with OPTCD=CNV, DIR, UPD.

CNTLPROC then calls MERGPROC to control the
merge passes. MERGPROC performs the function of
merging strings of sort records originally built by
SPILPROC using the two external sort work files. The
order of merge is normally 16 or less usi ng an area of
32K (the original RSA) for input buffers. In one case,
the ord,;!r of merge will be 2. That is, wh.:!n the statistic
of the number of records in the base cluster AMOSB
was so erroneously low that an RSA of 4K was
obtained.

In general, the merge is accomplished in the following
manner (assuming a 16-way merge) -

Reading the first 2K block of the first n strings to
be merged, where n is 16 if there are 16 or more
input strings or where n is the total number of
input strings if less than 16.

Using the first record of each string. build an array
in thle form of a tree. The tree is madt: of nodes
with a single node at the top. Each parent node has
two child nodes and the tree is built so that the
record represented by the parent node is lower in
value: than either child. As the tree-add loop starts.
the size of the tree is increased by I thus leaving an
empty slot at the bottom. The parent of the empty
slot is established and if the new record is higher

~
n ;.
8-
S
O
'R
~ o·
:;)

~
...:I

than the parent, it goes into the empty slot at the
bottom. However, if the new record is lower, the
parent is moved down leaving an empty slot. The
parent of the new empty slot is established and the
process continues until the new record is found to
be higher than the parent at which time it goes into
the empty child slot. If the parent is moved from
the top of the tree, the new record goes there and
the process stops.

• Output the lowest record on the tree. This output
will be to BLDPROC (see Step 4) if this is the last
or only merge pass or to the output string if this is
not the last merge pass.

• Update the tree filling the slot left empty from the
step above.

• Get the next record from the same string as the
previous lowest record. Output it if it is lower than
the current lowest, otherwise add it to the tree.

• Continue this process until all records in all input
strings currently being processed have been output.

• Loop until all input strings for this merge pass have
been output.

• If more merge passes are required, make the
previous output file the next input file and vice
versa and repeat the merge passes until the number
of input strings is equal to or less than the order of
merge.

IOCBIOI

Procedm-es: BLDPROC

4 BLDPROC is called either from CNTLPROC (if an
internal sort was 'performed) or MERGPROC (on the
last merge pass of an external sort). In either case,
BLDPROC is passed sorted records one at a time.

On the first entry to BLDPROC, the IOCSTR for the
alternate index is initialized as well as the static
portion of the alternate index record. On all
subsequent entries, the alternate key of the sort record
passed to BLDPROC is compared to the key of the
alternate index record being built. If these keys are
unequal, the alternate index record is to be written
out. BLDPROC determines if the record was too short
to contain all the prime key or RBA pointers and, if
so, issues a warning message containing the number of
excess pointers and sets the current condition code to
4. The record is written with a UPUT macro and the
buffer reset for the next record. Before moving the
prime key or RBA from the sort record to the

alternate index record, BLDPROC checks if the
alternate index was defined with the UNIQUEKEY
attribute. If so and if the new prime key or RBA is not
the fiirst for this alternate index record, BLDPROC
issues a warning message and sets the current
condition code to 4. Only the first prime key or RBA is
place:d in the alternate index record. BLDPROC also
checks that the record is long enough to contain the
new lPrime key or RBA and, if not, increments an
excess pointer counter. If all checks prove successful,
the new prime key or RBA is moved to the alternate
inde,c record.

After CNTLPROC passes the last sort record to
BLDPROC (internal sort) or receives control back
from MERGPROC (external sort), CNTLPROC calls
BLDPROC one more time to write out the last
alternate index record. Control is then returned to
IDCIJIOI via MAINPROC-Diagram 3.11, Step 7.

-Vl
00

o
o
CI.l

< en

> o o
~
foil
foil

3:
~

;.
o
0..

CI.l
~

~ §.
foil

b
(JQ

n'

Diagram 3.12. LISTCRA FSR

FDT

--

INPut

tGDT

tFDT

o

Encoded
Users
LlSTCRA
Command
Parameters

From Executive
Controlled Termination

PROCESSING

General initialization and open the
catalog if compare option specified.

2. For each volume in the command:

a. Opens the CRA.

b. Compares, groups, sorts and prints
the objects in the CRA.

See Diagram-B

c. Compares and prints any objects
not yet printed.

d. Closes the CRA and prints summary
count table.

3. Closes the catalog and writes
completion message.

OUTPUT

Catalog/CRA
Compare List

D
Register I

tGDT

tFDT

LASTCC

D

== a
:;,"
0
Q.

0 -0
~
('D
"1

!! o·
0 -\,oJ
1.0

Extended Description for Diagram 3.12

IDCLROI

Procedures: AATOPLR, INITLZE, CATOPEN, ERROR

1 Routine addresses, the UOPEN argument list and the
UIOINFO option byte are initialized in the work area.
If the COMPARE option was specified, a UOPEN is
issued for the catalog specified on the control cards. If
the OPEN is successful, a UVERIFY is issued and the
catalog name is obtained using Access Method
Services field management (IDCRC04) and compared
to the catalog named specified on the control cards. If
there is a match, the volume serial is obtained via'
IDCRC04 and the catalog is locked out from other
users of the system. If the COMPARE option was not
specified or the OPEN of the catalog failed, the no
compare indicator is set.

IDCLR01, IDCLR02, IDCRC04

Procedures: AATOPLR, CRAOPEN, PRTVOL,
INTSORT, MEMSORT, DOVSAM, PRTVSAM,
DOOTHR, PRTOTHR, PRTFIFO, GETPRT, PRTCMP,
CLENCRA, SUMIT

2 For each of the CRAs specified by a job control card,
the following is repeated:

a. The UOPEN parameter list is set up with the
dname and the master catalog password and the
UOPEN and UVERIFY are issued for the CRA. If
they are successful and there is a match on the
owning catalog name, the volume serial is obtained
from the CRA via IDCRC04 and a UREST is
issued to print a subtitle for this CRA. The entire
CRA is read to build the CI translate table (CTT)
in space gotten by UGPOOL.

b. The CRA volume record and its extensions are
optionally compared to the corresponding catalog
entry and printed by PRTVOL. The VSAM objects
are then sorted into alphabetical order, optionally

c.

compared to corresponding catalog entries and
printed byINTSORT, MEMSORT, DOVSAM,
and PRTVSAM. Next, the nonVSAM objects are
sorted, compared, and printed by INTSORT,
MEMSORT, DOOTHR, and PRTOTHR. See
Diagram 3.12.1.

If either sort fails for lack of memory (from b.
above), the objects are compared and/or printed in
the order they appear in the CRA by PRTFIFO.
Records already processed by the above procedures
are skipped. If the object is a VSAM object,

PRTVSAM is called and if it is a not, PRTOTHR is
called.

d. GETPRT is used to get the CRA copy of any other
records, and the catalog record, if compare. These
are printed and compared by PRTCMP. When all
objects have been processed, the CRA is closed by
CLENCRA and a summary is printed by SUMIT.

IDClLROl

Procedures: AATOPLR, CLEANUP

3 The UCLOSE macro is issued to close the catalog data
S4;:t and the UDEQ is issued to release the system
lockout from the catalog. The completion code
message is printed and the UFPOOL macro is issued
to free storage. Control is returned to the caller.

~ Diagram 3.12.1. LISTCRA FSR - Process eRA

o
o
til
........
<:
til

r
~

a:
n s-
o
Q.

til
n
~
~.
I:Il

b
(JQ

n·

INPUT

o
,::::

VSAM
Catalog

.......

.,.;'

L .)

o

From Diagram 3.12

PROCESSING

Prints optionally compares volume records. v
a. Reads eRA and catalog volume

records and extensions.

b. Prints volume record and time stamps.

2. Processes VSAM entries:

a. Alphabetizes VSAM entries.

b. Prints and optionally compares
each entry and associated records
and extensions.

3. Processes nonVSAM entries:

a. Alphabetizes nonVSAMs.

b. Prints and optionally compares
each entry and associated records
and extensions.

--

OUTPUT
Catalog/eRA
Compare List

D
o

........

s:
o
S-
O
Q..

g".

o
'&
'"1

~ o·
::3 -~

Extended Description for Diagram 3. t 2. t
IDCLROl, IDCLR02, IOCRC04 ..

Procedures: PRTVOL, SUMIT, GETPRT, VERTEXT,
INTVEXT, TCICTCR, BLDVEXT, PRTMCWD,
UPRINT, UIOINFO, PRTTIME

1 a. PRTVOL uses GETPRT to read the CRA volume
record and IDCRC04 to extract the identifying
fields and, if compare, the equivalent information
is gotten from the catalog in the same manner. If
compare is specified, information is compared and,
if not equal, the record is printed and the severest
miscompared field is identified by PRTMCWD. If
compare is not specified, all records are printed.
Horizontal extension records are processed and
vertical extension records are checked by
VERTEXT and handled in the same way.

b. The time stamps from the CRA volume record and
on the CRA volume and, if compare, in the catalog
records are printed by PRTTIME.

IOCLROl, IDCLR02, IOCRC04

Procedures: INTSORT, MEMSORT, DOVSAM,
PRTVSAM, GETPRT, VERTEXT, INTVEXT,
TCICTCR, BLDVEXT, ADDASOC, INTASOC,
PRTMCWD, UPRINT, PRTAAXV, PRTOJVL,
CKEYRNG, SUMIT

2 a. The sort of the VSAM entries is initialized by
INTSORT which scans the CTT counting the
number of VSAM entries, gets storage via
UGPOOL for a sort table, initializes dummy first
and last entries and then loops through the CTT
entries calling IDCRC04 to extract the entry names
.to be sorted. The MEMSORT procedure orders the
entries by adding forward and backward chain
pointers to alphabetize.

b. If compare was specified, the following procedure
is passed through twice, the first time comparing
only. When a miscompare is detected the
procedure is restarted printing everything. From
the entries in the sort table an association table is
built containing the control intervals of all
associated entries. Passing through this table all
associated records are printed. For base cluster's
AIX associations, only the entries' volumes are
printed (to assiSt in recovery). The horizontal
extension records are printed as are the vertical
extension records. Throughout, the names of
significant items are noted if they miscompared
and these are printed.

IOCLIROl, IOCLR02, IOCRC04

Procedures: INTSORT, MEMSORT, DOOTHR,
PRTOTHR, GETPRT, VERTEXT, INTVEXT,
TCICTCR, BLDVEXT, SUMIT, PRTMCWD, UPRINT,
PRTOJAL,INTASOC

3 a. The logic and procedures used here are the same as
are used in 2a with the exception that non VSAM
entries in the CTT are sorted.

b. The logic and procedures used here are the s>ame as
used in Step 2b except that non VSAM entries are
handled.

For all of the steps above, GETPRT uses UGET to read
the CRA record and the catalog record, if compare.
IDCRC04 is used to extract all necessary fields from the
records. These are printed and optionally compared by
PRTCMP and PRTDMP (if the dump format was
specified) and PRTDMPC (if compare was also
specified). PRTOJVL is used to print the objects' volume.

t3 Diagram 3.13 EXPORTRA FSR
o o
V)
........
<:
V)

> (")
(")
~
til
til

:::
~

g-
o
0-
V)
~

~
n'
~
til

t"'" o
(JQ
riO

INPUT

t GDT

t ruT

0

~
VSAM
Catalog

L ~

....-...

From Execu tive
Controlled Termination

PROCESSING

1. Initializes and builds the CR V.

a. Initialization.

b. Build the CR V.

2. For each CRA specified:

a. Opens the CRA.

b. Checks the name chain.

See DiagramB

c. Exports the name chain.

See Diagram-B

OUTPUT

q~~~EJ
D

GDT

FDT

f LASTCC

~
(I)

e-
o
0-
o,
o
"0
(I) ..,
a o·
::s
...... ...
~

Extended Description for Diagram 3.13

IDCRCOI

Procedure: INIT, SUBSP, BUILDCRV, BUILDNAM,
MESSAGE

1 a. SUBSP is called which issues a UGPOOL to obtain
storage for the blocks associated with the name
chain. This storage is allocated into small blocks to
be used later. Storage is then obtained for the
buffer pool VGO space, the CRY, the ACC and the
VTT.

b. Each CRA volume is read for the following
information: UIOINFO is used to obtain the
volume serial numbers and device types which are
placed in the CRY. BUILDNAM is called to build
the name chain. This procedure calls SUBSP to get
a block of storage to be anchored to the CR V. The
name pointer is placed in the block as it is read
from the CRA.

IDCRCOl, IDCRC02, IDCRC03, IDCRC04

Procedures: OPENCRA, OPEN, TIMESTMP,
SCANCRA, NAMETABL, DIRECT, EXTRACT,
ERRCK, MESSAGE, COMPNAME, CKCATNM,
CKNAMES, DUPNAMCK, SYNCH, OBJVOLCK,
CRAOPEN, EXPORTDR, OPENCRA, MESSAGE,
ERROR

2 a. OPENCRA initializes the buffer pool pointer
required by field managment (IDCRC04). It then
calls OPEN which opens the CRA for direct
processing and checks it for the correct owning
catalog. OPENCRA then issues the UIOINFO
macro to get the CRA volume timestamp and place
them into the VTT. It then calls SCANCRA to
build the catalog CI numbers and places them in
the CTT and calls NAMET ABL which places the
record type and name pointer in the name block. If
"entries were specified, the name block is marked if
a match is found with the input. OPENCRA then
calls DIRECT which calls EXTRACT which
interfaces with IDCRC04 to obtain the directory
information from tthe CRA record. ERRCK calls
MESSAGE if an error occurred in this procedure.
For IDCRC04 see Diagram 3.13.1 .

b. CKNAMES is called to gather the passwords for
the VSAM data sets using EXTRACT, collect the
association CI numbers for the VSAM data sets
using EXTRACT, determine the largest LRECL
for the data sets using EXTRACT, and flagging
any object names if they are invalid for this system.

DUPNAMCK is called to loop through all the
names in the chain checking for duplicates. If one
is found, it is marked so that it will not be
exported. A message is written indicating the
duplicate name. SYNCH is called which checks
each entry on the name chain for a CI number,
checks the VSAM data sets for a data entry and if
there is a data volume index, OBJVOLCK is called
which matches the volume serials in the VGOs and
VTT, matching the CI and timestamp. If at any
time there was an error, ERROR is called to write
a message and determine if the process can
continue.

c. EXPORTDR is called which closes the CRA as a
data set and opens it as a catalog, then calls
MESSAGE to write the "exporting CRA"
message. It checks the name chain for the CRA for
null entries and nonmatches and marks them not
exportable. It initializes the export table and calls
IDCRC02 to export the entries. ENVIRONMENT
parameters are obtained from the FDT and placed
in the export table. See Diagram 3.13.2 for a
description of IDCRC02. When the Export Driver
returns, then the completion or error message is
printed and processing continues with the next
CRA.

~;;O"'t:j
<..<:: (I) ~

-j $.~
Z~o
r-O-"'"
Ci'l;J>Ci'l
Zoo -<
N'" vJ
t'-:::':~
VI t-..J 00
VI'-OVt
Vt ~ 0\
o ~

'-0'
-...jVJ

-...j

t Diagram 3.13.1. EXPORTRA FSR - Field Management
o
o
t:I.l
"-
~

§
fIl
fIl

3:

[
t:I.l
(II

3.
~
fIl

b
C!!!.
C'l

INPUT

Register I
[- ---

FMPL

(
~----I

-..

"

FMFLs

FMWA

FM
Output
Arl'a

,.....".

"V'"

...
~

From Diagram 3.13

PROCESSING

1. Initializes module.

2. Converts alphabetic field names to
internal codes.

3. For each RELREPNO:

a. Handles any test fields to see
if information is as expected.

b. Places the field in the output area. "'" ">
~

OUTPUT

Register I

FMPL

A I

'-..' II

'-.

FMFLs

FMWA

FM
Output
Area

Register 15

I Return CC

3:
(11

;.
o
0-

S.
o
~ ..,
a o·
=
~
VI

Extended Description for Diagram 3.13.1

IDCRC04

Procedure: IDCRC04

IDCRC04 is a service routine used by EXPORTRA
and LISTCRA to compare and extract data from
catalog and CRA records. Upon entry from either
IDCRCOI or IDCLROI it sets up addressability to the
work area and initializes the current CI number in the
work area for the callers get routine (either IDCRC03
or IDCLR02).

IDCRC04

Procedures: PSCNC, PTRNS

2 PSCNC is called which loops through each field
management field list and calls PTRNS which
compresses the name into a 4-character 10 and places
it into the FMFT along with its corresponding
dictionary information and supplied group code. The
tables are chained according to like group code.

IDCRC04, IDCLR02, IDCRC03

Procedures: PSCNF, PTSTS, PGVAL, PGREC, PCKLC,
PEXPT, PLNRV, PTCMP, PLOC2, PGREP, PSHIN

3 PSCNF is called to process these field tables. It first
processes the test field and then the one it is looking
for so it may place the data in the output area.

a. The field lists are tested by looping through all the
CI numbers (PGV AL), interfacing with the callers
get record routine, either IDCRC03 or IDCLR02 to
obtain addressability to the block containing a CI
number (PGREC). It then locates the catalog fields
within a given record by insuring the requested
field actually exists in the group occurrence data
(PCKLC) then sets up the address and length of
extension pointers as requested via the
RELREPNO specified on entry (PEXPT) and
extracts the data from the found field and indicates
its length (PLNRV). After the data is found, it is
compared py PTCMP with the input data and a
match or mismatch is indicated.

b. PLOC2 is the highest-level procedure for placing
the data in the output area. This procedure is called
by PSCNF if the FMFT is not a test FMFT. It calls
PGREP to find the highest non-deleted
RELREPNO with the desired group code and saves
the address and length of the field which is checked
by PGREC. PSHIN checks for enough space in the

output area and, if there, moves the field to the
output area or moves Fs if non-existent. PGV AL
and its subprocedures described above are used to
find the fields requested and, after found, PSHIN
moves the data to the output area.

~ Diagram 3.13.2. EXPORTRA FSR - Driver
o
o
tI.I
........
< tI.I

~
~
a:: g.
8-
tI.I
~

~
~.
CIl

b
(JQ

r;'

INPUT
Register 1

) ~~::
'1 0

2.

From Diagram 3.13

PROCESSING

Tests for export of a VSAM or nonVSAM
object.

a. Exports a VSAM object.

See Diagram---8.,

b. Exports a nonVSAM object.

See Diagram ---8.2

Termination processing.

OUTPUT

D
OEJ
Portable Data Set

Register I

r GDT

r IPT

t LASTCC

s::
(l)

s-
o
0.
o -o
~
(l)
'"'I a o·
l:3

"'" -..,J

Extended Description for Diagram 3.13.2

IDCRC02

Procedures: OPENPROC, CLUSPROC, SA VEPROC,
RECPROC, PUTPROC, NVSMPROC, ADSPROC,
ALSPROC

1 IDCRC02 tests the input parameter list for export of a
VSAM or nonVSAM object. OPENPROC opens the
portable data set for output. ENVIRONMENT
parameters from the export table are placed in the
OPNAGL for UOPEN processing. If the object to be
exported is a VSAM object then step l.a is done; if it
is a nonVSAM object, then step l.b is done.

a. CLUSPROC gets catalog information for the
cluster, data, index and paths from the CRA.
SAVEPROC holds the control records containing
the catalog information until catalog processing is
completed, then writes them to the portable data
set. OPENPROC opens the cluster data for input.
RECPROC copies the data to the portable data set.
PUTPROC writes a software end-of-file to the
portable data set.

b. NVSMPROC gets catalo~ information for the
nonVSAM object from the CRA. ALSPROC gets
catalog information for any aliases connected with
the nonVSAM object. SAVEPROC holds the
control records containing catalog information
until catalog processing is completed, then writes
them to the portable data set.

IDCRC02

2 IDCRC02 tests return codes from CLUSPROC,
NVSMPROC, and GDGPROC. If any alias or path is
not exportable, a warning message is issued. The
portable data set is then closed if it is the last request
or if a severe error occurred.

t:D,o"'tl
,<(l)~

...,~.~
Z~o ro.-
Vl:>Vl
Z~ ><
N2;:::! tNOo
VI 1.0 VI
VI ~ 0'1
o-~

:=SYoI
-..,J

-it
o
o
til

~
til

[
:::
n ;.
&.
til
n
~
~r
{I}

~
OQ

ti"

Diagram 3. I 3.2. I. EXPORTRA FSR - Export VSAM Data Set

INPUT

Portable a,see

From Diagram 3.13.2

PROCESSING

1. Obtains information for cluster,
data, index, and paths from eRA.

2. Opens the input data set.

3. Writes catalog information.

4. Writes data records, closes input
data set.

5. Writes software end-of-file.

OUTPUT

CTGPL

'.I
..

Portable

Q"SEJ

== ~

S-
o
Q...

o
o
"0
~ .,
a o·
::l

~

Extended Description for Diagram 3.13.2.1

IDCRC02

Procedures: CTLGPROC, CLUSPROC, LOCPROC

t For the cluster entry of the VSAM data set,
LOCPROC builds a CTGPL and CTGFLs to retrieve
information from the CRA. A CTGFL is built for the
following catalog fields:

ENTYPE, ENTNAME, DSATTR, OWNERID,
DSETCRDT, DSETEXDT, BUFSIZE, LRECL,
SPACPARM, PASSWORD, PASSATMP,
USVRMDUL, USERAREC, LOKEYV, HIKEYV,
VOLSER, AMDSBCAT, EXCPEXIT, RCATTR,
NAMEDS and CAT ACB.

CTLGPROC issues a UCATLG with the CTGPL and
CTGFLs to retrieve the information from the CRA.
CLUSPROC validity checks the catalog entry type and
named fields. LOCPROC builds a CTGPL and CTGFLs
for the data and index components of the VSAM
cluster. CTLGPROC issues a UCATLG to obtain the
same catalog information as obtained for the cluster
except for the NAMEDS and CAT ACB fields. Path
associations, if present, are processed with the same
type of CTGPL and CTGFLs as used for data and
index.

IDCRC02

Procedure: OPENPROC

2 OPENPROC opens the VSAM data set for input and
verifies the open.

IDCRC02

Procedure: PUTPROC

3 Control records containing catalog information for the
cluster, data, index, and paths are written to the
portable data set after catalog processing for the
object to be exported has been completed.

IDCRC02

Procedure: RECPROC

4 RECPROC copies the data to the portable data set
and closes the input data set.

IDCC02

Proce,dure: CLUSPROC

5 CLUSPROC writes a software end-of-file on the
portable data set.

VI o
o o
r.n
.........
< r.n

> (')
(')
o
~
~

3:
o :;.
o
c..
r.n
o ...,
< riO
o
~

t"'"
o

(JQ
riO

Diagram 3.13.2.2. EXPORTRA FSR - Export NonVSAM

INPUT

Portahle otosCJ

From Diagram 3.13.2

PROCESSING

1. Ohtams catalog information for a
non VSA M or user catalog object.

2.

3.

Obtains catalog information for any
alias associa tions.

Writes catalog information to the
portable data set.

OUTPUT

Portabk OtO'D

3:
(1)

;.
o
C-
O -o

"0
(1)

~ o·
o -VI

Extended Description for Diagram 3.13.2.2

IDCRC02

Procedures: LOCPROC, CTLGPROC

1 LOCPROC builds a CTGPL and multiple CTGFLs for
anon VSAM or user catalog object to retrieve catalog
information. A CTGFL is built for each of the
following fields:

ENTVPE, ENTNAME, VOLSER, DEVTYP,
NAMEDS, CATACB

CTLGPROC issues a UCATLG with the CTGPL and
CTGFLs to retrieve the information from the catalog,
and to validity check the ENTYPE and NAMEDS
fields.

IDCRC02

Procedures: LOCPROC, CTLGPROC

2 LOCPROC builds a CTGPL and multiple CTGFLs for
any alias associations. A CTGFL is built for ENTYPE
and ENTNAME catalog fields. CTLGPROC issues a
UCA 1:LG to obtain the catalog information.

IDCRC02

Procedures: NVSMPROC, ALSPROC

3 NVSMPROC and ALSPROC write control records
containing the catalog information to the portable
data set after catalog processing is completed.

-VI
N

o
o
C/)
.........
<:
C/)

> n
~
(IJ
(IJ

~
o
S-
O
0..
C/)
o
:;J
o·
o
(IJ

b
(JQ o·

Diagram 3.14. IMPORTRA FSR
From Executive
Controlled Termination

INPUT PROCESSING

tGDT

tFDT

o

Portable Data Set

1. Opens portable data set.

2. Imports object.

a. VSAM cluster or
alternate index.

See Diagram ~
b. User catalog. ~

See Diagram .----v
c. NonVSAM. D.

See Diagram"!J

d. GDG Base. __ .D
See Diagram-o

CTGPL --
OUTPUT

VSAM
Cluster,
Alternate
Index, User
Catalog,
NonVSAM,
orGDG
Base

Rcgi.,tcr I

CJ
, t (iIJI

t IIJI

(

~
0
;.
0
0.
0,
0
"0
0
""1

a o·
= -VI
\;J

Extended Description for Diagram 3.14

IOCRMOI

Procedure: IDCRMOl, OPENPROC

1 IDCRMOI issues a UIOINFO to obtain the data set
name coded on the DLBL job control statement
associated with the INFILE parameter. OPENPROC
builds an OPNAGL and issues a UOPEN to open the
portable data set. User specified tape label and rewind
options are placed in the OPNAGL for UOPEN
processing. OPENPROC then issues a UGET to get
the first record of the portable data set, which contains
the record size of the data set. If the record size is
larger than the record size used to open the portable
data set, a special UCLOSE is issued which reallocates
sufficient space for the record size. An actual close of
the portable data set is not done.

IOCRMOI

Procedures: CLUSPROC, UCATPROC, NVSMPROC,
CLUSPROC, GDGPROC

2 For each item on the portable data set, IDCRMOI
reads a timestamp record and prints a message
indicating the time and data of the EXPORTRA
operation. On the basis of the timestamp record, one
of CLUSPROC, UCATPROC, NVSMPROC, or
GDGPROC is called to actually import the object. If
the read for a timestamp record should fail, IDCRMOI
assumes that an end-of-file has been found on the
portable data set and passes control to Executive
Controlled Termination.

t:J:l~"'C
'<01).)

....,:::.~
Z~o t""'Q.......,
CIl:>CIl
Z"O -<:

""1\;J N \;J

f"-' NCO
VI\C)VI
VI ~ 0'1

~~t
-...,J
-...,J

~ Diagram 3.14.1. IMPORTRA FSR - CLUSTER or ALTERNATE INDEX

o
o
Vl
.........
<
Vl

> n
~
CIl
CIl

a::
n
S-
o
0..

Vl
n
::;!
(i.
n
CIl

r
o

OQ
(i.

INPUT

Portable Data Set
J

From Diagram 3.14

PROCESSING OUTPUT

== n ;.
&.
S
o
~ ..,
~ o·
::s -Vl
Vl

Extended Description for Diagram 3.14.1

IOCRMOl

Procedures: CLUSPROC, CPLPROC, GETPROC,
FVTPROC, BFPLPROC, BPASPROC, IUNIQPRC

1 CLUSPROC via CPLPROC builds a CTGPL for a
define operation. CLUSPROC issues a UGET macro
to read the catalog control records and calls
GETPROC to read the catalog data records. Control
records are read for the cluster or alternate index and
their data and index, if any, components. CLUSPROC
then calls FVTPROC to build two or three FVTs.
FVTPROC in tum calls BFPLPROC to build FPLs for
the catalog information on the portable data set.
BPASPROC builds an FPL for security information. If
the data or index component was originally defined as
unique, IUNIQPRC builds a null volume FVT for each
unique component. The OBJECTS list is scanned for
volume information about the object to be defined; if
found, such information overrides that found on the
portable data set. The OBJECTS list is also scanned
for FILE information. If found, a pointer to the
dname is passed in the component's FVT.

IOCRMOl

Procedures: CTLGPROC, DEL TPROC

1 CTLGPROC issues a UCATLG macro to invoke
VSAM catalog management. If VSAM issues a return
code of 8, DELTPROC issues a UCATLG to delete
the object from the catalog. Should this operation fail
or should the original define fail with a return code
other than 8, an error conversion table is built for a
delete function. UERROR is called and control is
passed to IDCRMOI for the next object.

IOCRMOl

Procedure: AL TRPROC

3 AL TRPROC renames the VSAM object to be loaded
to the dummy name returned by the UIOINFO. A
UOPEN macro is issued to open the VSAM object,
and UCOPY is used to copy data records from the
portable data set to the VSAM object. UCLOSE closes
the VSAM object, and ALTRPROC alters the name of
the object just loaded back to that under which it was
defined. Processing returns to Diagram 3.14, step 2,
for the next item on the portable data set.

;:;; Diagram 3.14.2. IMPORTRA FSR - USERCATALOG
0'\

o o
CIl ,
<
CIl

~
~
f:l
:::
n ;.
o
c.
CIl
n
~ o·
n
en

b
OQ o·

From Diagram .. ~.14

INPUT .. PROCESSING
Portable Data Set

1. Imports user catalog.

2. Writes message.

CTGPL
r----

OUTPUT

VSAM
User Catalog

Message

D
GDT
FDT

=::
o
S-o
Q.

o ...
o
'& a s·
::s -V>
-.J

Extended Description for Diagram 3.14.2

(OCRMOt

Procedures: CPLPROC, UCATPROC, GETPROC,
LVLRPROC,NFVTPROC,CTLGPROC,CPLPROC,
DELTPROC

t CPLPROC builds a CPL to be used to connect the user
catalog pointer. UCATPROC then issues a UGET to
get the catalog control record and calls GETPROC to
obtain the catalog data record. L VLRPROC builds a
DEVTYPE FPL and a volume serial list on the basis of
information supplied on the portable data set or
furnished through the OBJECTS parameter.
NFVTPROC builds an FVT for the define.
CTLGPROC issues a UCATLG macro to connect the
user catalog. If the VSAM catalog return code is 8,
then CPLPROC builds a CPL to do a disconnect
operation, and DEL TPROC actually invokes catalog
to perform this operation. Should this succeed, a
second attempt is made to connect the user catalog.

(OCRMOt

Procedure: ALISPROC

2 For each alias item on the portable data set,
ALISPROC prints a message indicating that aliases
are not processed in DOS/VS. Control then returns to
Diagram 3.14, step 2, for the next item on the portable
data set.

~ Diagram 3.14.3. IMPORTRA FSR - NONVSAM
00

o
o
CIl
........
<:
CIl

~
n
(I)
(I)

a::
n
;.
o
Q.

CIl
n
~
c:;"
n
(I)

b
(JQ
(i'

hom Diagram 3.14

INPUT _ PROCESSING

VSAM
C<lt<llog

NonVSAM
Data Set

1. Imports nonVSAM data set.

2. Writes message.

CTGPL ,---

OUTPUT

D

3:
a ::r o
Q.

a
o
'g
~ o·
=' -VI
IC

Extended Description for Diagram 3.14.3

IOCRMOI

Procedures: CPLPROC, NVSMPROC, GETPROC,
LVLRPROC, NFVTPROC,CTLGPROC, CPLPROC,
DELTPROC

CPLPROC builds a CPL to be used to connect the user
catalog pointer. NVSMPROC then issues a UGET to
get the catalog control record and calls GETPROC to
obtain the catalog data record. LVLRPROC builds a
DEVTYPE FPL and a volume serial list on the basis of
information supplied on the portable data set or
furnished through the OBJECTS parameter.
NFVTPROC builds an FVT for the define.
CTLGPROC issues a UCATLG macro to define the
non VSAM data set. If the VSAM catalog return code
is 8, then CPLPROC builds a CPL to do a delete
operation, and DELTPROC actually invokes catalog
to perform this operation. Should this succeed, a
second attempt is made to define the non VSAM data
set.

IOCRMOI

Procedure: ALISPROC

2 For each alias item on the portable data set,
ALISPROC prints a message indicating that aliases
are not processed in DOS/VS. Control then returns to
Diagram 3.14, step 2, for the next item on the portable
data set.

-~
o
o
(Il
.........
<
(Il

§
~

:::
n ;.
o
Co
(Il
n
<
~.

b
(JQ o·

Diagram 3.14.4. IMPORTRA - GDG BASE

From Di'l~ram 3.14

INPUT PROCESSING OUTPUT
Pllrtabh: Data Sc:t

D
Register 1

=::
('1)

S-o
Q.

g,
o
~
('1)

~ o·
::l -0\

Extended Descripdon for Diagram 3.14.4

(DeRMOt

Procedures: GDGPROC

t GDGPROC issues a warning message indicating that
GDG bases cannot be defined in DOS/VS. It then
issues successive UGETs until an end-of-file indication
is found.

~ I Diagram 3.15 RESETCAT FSR

o
o
til
"'-<:
til

~
~
s::
n ;.
&.
til
n
:;! c;.
n
rIl

S'
~.
(')

INPUT

tGDT

tFDT

o

From Executive
Controlled Termination

PROCESSING

1. Does initialization for RESETCA T processing.

See Diagram I 3.15.1)

Steps 2, 3 and 4 are executed repeatedly until
enough control intervals exist in the catalog for
the catalog to be reset:

2. Copies catalog to work file.

See Diagram 3.15.2)

3. Merges the CRAs to the work file.

See Diagram

1
3.15.3)

4. Ensures there are enough control intervals for
reassignment. Extends catalog if enough control
intervals are not available. Returns control to
Step 2 if catalog is extended.

s. Reassigns control interval numbers as necessary.

See Diagram. I 3.15 . .)

6. Checks associations, control intervals and space.

See Diagram I 3.IS.?

7. Updates catalog
1 3•15 .6)

8. Updates CRA(s) if necessary.

See Diagram 8
9. Releases Resources.

OUTPUT

Register 1 .---

I tGDT
tFDT

I t LASTCC

3:
~
g-
o
Q.

sa,
o
~
~

~ o·
::s -0\
~

Extended Description for Diagram 3.15

IDCRSOI,IDCRS06

Procedure: INIT, DSOPEN, CATINIT, WFDEF

I INIT is the first procedure called by RESETCA T. It
uses the UGPOOL macro to obtain work areas
common to all of RESETCAT, and initializes them.
The catalog to be reset is opened, verified and validity
checked. Next, exclusive control over the catalog is
obtained via the UENQ macro. The catalog in which
the work file will be defined is also opened and then
the work file is defined and opened. An entry in the
RESVOL table is created for each CRA volume
identified by the CRAFILES parameter. Finally, INIT
builds the CIXL T table. The CIXL T table is used to
translate a catalog control interval number into a work
file relative record number.

The following three steps, Steps 2,3, and 4 form an
iterative loop. These three steps are executed
repeatedly until the catalog to be reset has enough
control intervals.

IDCRSOI, IDCRSOS, IDCRS06

Procedure: COPYCAT, BLDV:t.ST, SCNRLST,
DSCLOSE

2 COPYCAT performs the initial load of the work file
from the catalog to be reset. The CIXL T table built by
IN IT maps every catalog DATA control interval
number (CIN) to a relative record number (RRN) slot
in the work file. It also indicates whether the control
interval is for the low key range (LKR) or high key
range (HKR) portions of the catalog. LKR records
from the catalog are written to the work file as normal
RRDS records. HKR records are also written to the
work file, however, for each HKR record written, a
flag is set indicating that that control interval will later
be reassigned. Dummy records (formatted control
intervals with no data in them) are written to the work
file to represent that portion of the catalog which
extends from the first unformatted free control
interval to the LKR high allocated control interval. A
table (VOLSERTB) is built from all volume records
read from the catalog. Free records and records which
belong to a CRA specified for reset are maintained on
an "available" chain and an "available" count is kept
for these records. When processing is completed, the
work file is closed.

IDCRSOI, IDCRSOS, IDCRS06

Procedures: MERGECRA, DSOPEN, SCNRLST,
CKERR,PROCCRA,VOLCHK,DSCLOSE

3 MERGECRA merges each reset CRA into the work
file .. Each CRA is opened. The cluster record is read
and! the catalog name is verified. The PROCCRA
procedure is called to merge the CRA records into the
work file and the VOLCHK procedure is called to
perform the volume consistency check.

IDCRSOI, IDCRSOS, IDCRS06, IDCRS07

Procedures: ENSURECI, DSCLOSE, CA TEOV, CKERR,
DSOPEN, CATINIT

4 ENSURECI ensures that there are enough free control
inte:rvals for reassignment. If the number of control
inte:rvals to be reassigned are less than or equal to the
number of control intervals available, a flag,
RSENUFCI is set, indicating that enough control
inte:rvals are available for reassignment. However, if
the control intervals to be reassigned are greater than
the number available, ENSURECI forces the
extt~nsion of the catalog by performing the following:

Tht! catalog is closed by calling DSCLOSE. Next, all
storage obtained during COPYCAT processing is
fre€!d by issuing UFPOOL. The highest formatted
work file relative record number is saved in
RSWFHURR and CATEOV is called to extend the
catalog by writing free records into the catalog until
the catalog has been extended and sufficient control
inte:rvals are available for the reset operation. If
CA TEO V returns with an error condition, CKERR is
called to terminate RESETCA T processing.

After the catalog is successfully extended, DSOPEN is
called to re-open and verify the catalog. CA TINIT is
called to re-establish the catalog's geometry by
buillding the CI to RRN translate table (CIXL T).

IDCRSOI, IDCRSOS

Procedures: REASSIGN, ADDUPCR

S Tht! REASSIGN procedure performs control interval
(CIN) reassignment. The invalid and duplicate records
on 1the reassign chain are assigned to valid CINs from
the available chain. Each record on the reassign chain
is fC!ad and an "available" record from the available
chain is found. The reassign record is copied to the
"available" record buffer; the CIN is changed to
reflect the CIN of the "available" record. If there is a
pointer to a duplicate record (DUPPTR), it is copied
from the reassign record's processing field. The
"available" record is then updated to reflect the

reassigned record. The record whose DUPPTR points
to the reassigned record's relative record number is
found by following the duplicate record chain. The
DUPPTR of this record is changed to rdlect the
"available" record's CIN. This record is then updated.

IDCRS02,. IDCRS03

Procedures: ASSOC, PROCTYPE, VERDSDIR,
PROCVOL

6 The ASSOC procedure controls the che:cking of all
control interval numbers (CIN) in all records being
reset. This includes CINs in associations and data set
directories. ASSOC also controls the checking for any
space conflicts of VSAM data sets.

IDCRSOI, IDCRSOS, IDCRS07

Procedures: UPDCAT, CKERR, ADDUPCR,
ENTNMCK, SCNRLST, RENAMEP, UPDCCR,
CRAUPCHN, DELTN, ADDTN

7 UPDCA T updates the catalog from the work file. At
this point, any records in the work file which do not
match the catalog, must be written to the catalog.
Each valid work file record is read and if the "update
catalog" flag is on, the record is written to the catalog
low key range (LKR). True names are deleted from
and added to the catalog high key rangt! (HKR) as
necessary. If the "update CRA" flag is on, the control
interval of the work file record is placed on the CRA
update chain. The free record chain is rebuilt.

IDCRSOI" IDCRSOS, IDCRS06

Procedures: UPDCRA, SCNRLST, DSOPEN,
DSCLOSE,CKERR

8 UPDCRA updates CRAs from the work file. Each
entry in RESVOL (a table containing an entry for each
voluffil~ whose CRA is required in the n~set operation)
is obtained. If there are any updates to be made in the
CRA, it is opened, updated, and closed .. If any free
records are placed in the CRA, the CCR record is
update:d.

IDCRSOI~, IDCRSOS

Procedures: WRAPUP, CLEANUP, CKERR

9 If RESETCA T processing is successfully completed,
WRAPUP is the last procedure called. WRAPUP
ensure:s that all resources obtained by RESETCA Tare
freed, it prints the message that processing is complete
and then returns control to the system.

~ Diagram 3.15.1 RESETCAT FSR - Initialization
o
o
c:/)

"-< c:/)

:>
('l
('l
o
til
til

~
o
;.
o
0-
c:/)
o
~
(i'
o
til

r
o
~
(i'

tGDT

t FDT

VSAM
Catalog

INPUT

o

to be reset

From Diagram 3,15

PROCESSING

1. Gets space for and initializes work areas,

2. Opens the catalog to be reset. Opens the work
file catalog,

3. Defines and opens the work file.

4. Builds volume entries from CRAFILES
volumes.

, ""-

1

OUTPUT

I

RISI.TCAT
Work
Areas

Work file
lkfined,
Opened

RFSVOL
Table

I-
I-

=:
~

;.
o
0.
o ...,
o
"0
~ ..,
~ o·
::s

0-.
VI

Extended Description for Diagram 3.15.1

JDCRSOl

Procedures: INIT

1 INIT issues the UGPOOL macro to obtain storage for
the following work areas:

• CRA user buffer

• Record Management control blocks (GRAB,
BUFFER)

• IKQMDADS parameter list

• Control blocks for Catalog Management LOCATE
macro (CPLs and FPLs)

The FDT is checked to see if IGNORE is specified, if so,
a flag, (RSIGNORE) is set in RSWORK. After obtaining
the above storage, INIT formats the RESETCA T record
management control blocks. Control blocks (CPL and
FPL) of Catalog management are also formatted along
with certain portions of the main work area.

JDCRSOl, JDCRSOS, JDCRS06·

Procedures: INIT, DSOPEN, CKERR

2 DSOPEN is called to open the catalog to be reset.
Validity checks are made on the catalog to ensure that
it is recoverable. CKERR is called if these checks fail.

Exclusive use of the catalog is ensured by issuing the
UENQ macro to obtain exclusive use of the ENQ
name of the catalog (Rvolser). If it is determined that
the catalog is in use by someone else. CKERR is
called.

DSOPEN is called to perform a VERIFY operation on
the catalog, the high used RBA of the catalog is
adjusted if necessary.

UGPOOL is issued to obtain storage for the CIXL T
table.

JDCRSOl, JDCRSOS, JDCRS06

Procedures: INIT, RECMGMT, WFDEF, DSOPEN,
CKERR

3 RECMGMT is called (with the GETRCD option) to
get control interval zero (CI=O) from the catalog. The
high allocation data CI is computed (HARBADSj 512)
and saved in RSCAHACI.

The primary and secondary extents of the work file
are computed as follows:

Primary=no. of records currently allocated in the
catalog.

Secondary= (MAXCI * 2 ~ primary) + 125
126

where MAXCI = Largest CI number possible for a
c:atalog.

DSOPEN is called to open the catalog into which
the work file is to be defined.

Th~:! WFDEF procedure is called to define the work
file. If it is found that the work file is defined in the
catalog being reset, CKERR is called.

DSOPEN is now called to open the work file.

JDCRSOl, JDCRSOS, IDCRS06

Proce~lures: INIT, CKERR, CATINIT

4 Thl:! RESVOL table is constructed consisting of an
entry for each CRA volume supplied by the invoker of
RESETCA T with the CRAFILES parameter. Each
entry consists of fields for volume serial number,
device type and the file name of the DLBL statement.
A pointer, RSVOLALL points to the first entry in the
table and each entry is chained to the next. A flag
indicates the last 'ALL' entry which is followed by the
'NONE' entries.

If CRAFILES is specified, the volume serial number of
the CRA is obtained via the UIOINFO macro. The
volume serial number of the CRA is inserted in
RESVOL entry. If the catalog volume serial number is
specified, its RESVOL entry is positioned as the first
entry in the list.

If no CRA is specified, CKERR is called to flag an
error condition.

CATINIT is called to build the CIXL T table. The
CIXL T maps the catalog control intervals to the work
file relative record numbers. There is an entry in
CIXL T for each catalog extent.

~ Diagram 3.15.2 RESETCAT FSR - Copy catalog to work file.

o o
til

< til

[
a:
[
til
I'D

:!
~.
III

b
~.
()

INPUT

tGDT

tFDT

~

RESETCAT
Work
Areas

o

~t-

From Diagram 3.15

PROCESSING

I. Checks catalog extents.

2. Processes high key range extents.

3. Processes low key range extents - - formatted
records.

4. Processes unformatted records.

5. Closes the work file.

OUTPUT

8
~

Initial loading of work file.

3:
n s-
o
Q.

S.
o
'tS
n

~
c)"
::s

~

Extended Description for Diagram 3.15.2

IDCRSOI

Procedures: COPYCAT

1 The COPYCAT procedure obtains each entry from
CIXL T and examines it to see if the first control
interval number in the entry is greater than the catalog
low key range (LKR) high allocated control interval. If
so, it indicates COPYCAT processing is complete and
control returns to the main procedure, IDCRSO I.

Another test is made to see if all 127 entries have been
processed, if so, control returns to main line IDCRSOI
processing.

2 If the CIXL T entry represents a high key range (HKR)
extent, a flag is set indicating that this is an "invalid"
record in the work file. A dummy record is formatted
and written to the work file as follows:

• If the relative record number (RRN) is greater than
the high formatted relative record number in the·
work file, RECMGMT (ADDRCD) is called to add
the record to the work file.

• If the RRN is not greater, RECMGMT (UPDRCD)
is called to update the record in the work file.

l If the CIXL T entry represents a LKR extent, the
record is processed as a formatted record. If the CI of
the record is less than the next free unformatted
catalog CI, then GETRCD of the RECMGMT
procedure is called to read the record from the
catalog. The catalog record is moved to the work file
buffer. If the record happens to be a free record (not
currently used in the catalog), it is placed on the
available chain. The count of available records is
incremented. If it is not a free record and if it is a
volume record, then a VOLSERTB entry consisting of
volume serial number and CI number is formatted.
BLDVLST is called to add this entry to the
VOLSERTB table. In order to check to see if the
record is also on a CRA specified for reset, SCNRLST
is called. If it is a CRA record, a flag is set indicating
that the record is to be deleted. The record is placed
on the available chain and the available count is
incremented. LKR records are written to the work file
as follows:

• If the RRN is greater than the high formatted RRN,
ADDRCD is called to add the record to the work
file.

• if the RRN is not greater, then UPDRCD is called to
update the record in the work file.

4 If the CI of the record is equal to or greater than the
next free unformatted CI in the catalog, then the
"update catalog" flag is set in the work file processing
fielld and a dummy free record is formatted. The
dummy record is placed on the available chain and the
available count is incremented. If the CI of the record
is e:qual to or greater than the End of Volume
unformatted free CI, then the "invalid" flag is set in
the: work file processing field. A dummy record is
formatted. The unformatted dummy record is written
to the work file as follows:

• If the RRN is greater than the high formatted RRN,
then ADDRCD is called to add the record to the
work file.

• If the RRN is not greater, UPDRCD is called to
update the record in the work file.

IDCRSOl, IDCRS06

Procedures: COPYCAT, DSCLOSE

5 The "work file created" flag is tested, if it is off,
DSCLOSE is called to close the work file.

;: I Diagram 3.IS.3 RESETCAT FSR - Merge CRA(s) to the work file.
00

o
o
til
........
<:
til

~
~
~

~
('11

Erg.
til
('11

:;;!
(=i'
('11
rIl

b
OQ
(=i'

C"
~ -~ ,.

t--. .-'

CRA
~

Volumes ~
I."",. -' -

~ File

I
1

RESETCAT
Work Areas

1 ...
:> 1. Opens the work file.

Steps 2 through 5 are executed repeatedly for
each entry in the RESVOL Table.

2. Opens the CRA.

3. Merges CRA records into work file.

4. Closes the CRA.

5. Performs volume consistency check.

l-
~

U ~ ...

Work file with merged eRA n:cords.

I

~ ;.
&.
o -o
~
~ o·
::s -$

Extended Description of Diagram 3.15.3

IOCRSOl, IOCRS06

Procedures: MERGECRA, DSOPEN

1 The "work file open" flag is tested to see if the work
file is already open, if off, DSOPEN is called to open
the work file.

Steps 2 through 5 form an inerative loop. These four
steps are executed repeatedly for each entry in the
RESVOL table.

2 The SCNRLST procedure is called to obtain an entry
from the RESVOL table indicating the volume serial
number of a CRA specified for the reset operation. If
SCNRLST finds that all entries are processed and if
the "termination" flag is on, CKERR is called to print
an error message and terminate processing. If
SCNRLST successfully returns a CRA volume serial
number, DSOPEN is called to open this CRA. If open
fails, flags are set to terminate processing and to
bypass the volume consistency check. If the open is
successful, RECMGMT (with GETRCD option) is
called to read the CRA cluster record (CI==2). If the
CRA entry name is not for the catalog being reset,
then CKERR is called to print an error message. Hags
are set to terminate processing and to bypass the
volume consistency check.

IOCRSOI

Procedures: MERGECRA, PROCCRA

3 PROCCRA is called to merge CRA records into the
work file.

Beginning with the volume record, each CRA record is
read and merged. The CIN of the volume record is
updated/added to VOLSERTB, so that Volume records
may be located later. The work file record corresponding
to the catalog control interval (CA TCI) of each CRA
record (except CRA free records) is read. If the work file
record is free or available, the CRA record replaces it. If
the work file record has already been replaced or if the
work file record does not belong to a reset CRA, the CRA
record is written to the overflow area and maintained on
the duplicate chain for that CA TCI. Records written to
the overflow or "invalid" areas of the work file are placed
on the "reassign chain" and a "reassign count" is kept for
these records. Each time a free or available work file
record is replaced, the "available" count is decremented.

IOCRSOl, IDCRS06

Proc.~dures: MERGECRA, DSCLOSE

4 If the "CRA open" flag is set, DSCLOSE is called to
close the CRA. If close fails, flags are set to terminate
processing and to bypass the volume consistency
check.

IOCltSOl, IOCRS03

Proc.~dures: MERGECRA, VOLCHK, DADSM

5 If the flag to bypass the volume consistency check is
not on, VOLCHK is called to perform the volume
consistency check.

VOLCHK ensures that there is a one to one
correspondence between each VSAM data space on a
volume (format 1 DSCB in the VTOC) and each space
hc!ader in the volume record for that volume. This is
done by calling the DADSM procedure to read each
DSCB in the VTOC and then comparing the
VSAM-<>whed DSCB with the corresponding volume
re:cord space header. If a format 1 DSCB does not
have a corresponding space header, the format 1
DSCB is scratched by calling DADSM. If a space
hc!ader refers to a non-existent format 1 DSCB, the
space header is deleted. If the extents in a space
hc!ader are not identical to the extents in the
corresponding format 1 DSCB, the extents in the
space header are corrected.

:::i I Diagram 3.15.3.1 RESETCAT FSR - DADSM Functions
o
o o
til
.........
<:
til

i
(II
(II

:::
til ;.
o
Co
til
til

<
~.
(II

~
OQ c:;.

1

r-

"

Register 1
I

t
t

Name of function
to be performed

IKQMDADS
Parameter
List

T
~ ~ 1. Checks if DADSM module (IDCDI20) is ...

already loaded.

2. If not loaded, issues CDLOAD to load
IDCDI20.

3. Calls IDCDl20 to perform the required
DADSM function.

4. Returns.

IDC0I20
Loaded

....
> ,..

...
"> ..

Appropriate
DADSM function
performed

~
o
S-
O
0-

s..
o
~ o

~ o·
::3 --...I -

Extended Description (or Diagram 3.15.3.1

IDCRSOI,IDCDI20

Procedures: DADSM

I The DADSM procedure is called by RESETCA T
procedures to perform all DADSM functions.

2 If the module IDCDI20 is not already loaded,
CDLOAD is issued to load it. If CDLOAD fails,
processing is terminated via the UABORT macro.

3 Control is passed to IDCDI20 to perform the required
DADSM function. Input to IDCDI20 consists of the
IKQMDADS parameter list and the name of the
function desired. The IKQMDADS paramter list
contains the volume serial number and the logical unit
block (LUB) number of the volume being accessed.
Valid names of DADSM functions to be performed
are as follows:

ALLOO - Allocate data spaces

COVOO - Check for overlapping extents

POPOO - Build a DSCB

RDSOO - Read a DSCB

RENOO - Rename

SCROO - Scratch

VTCOO - OPEN/CLOSE the VTOC

WDSOO- Write a DSCB

For more information on the lKQMDADS parameter
list and the DOS DADSM routines which perform the
above functions, see DOS/VS LIOCS Volume 4:
VSAM Logic.

4 Control returns to the caller of DADSM.

~ I Diagram 3.15.4 RESETCAT FSR - Reassign CI numbers

o
o
til
<::
til

~
n
CD
CIl
CIl

~
CD ;.
o
0-
til
CD

~ o·
CD
CIl

b
!JQ o·

~ File

,.-
~ r--..

VSAM
Catalog
to be reset

..... .-'

r
J

RESETCAT
Work
Areas

.r-- l ... I
1. Reads a work file record to be reassigned. / ..
2. Finds an available record.

3. Updates available record and writes to work
file.

4. Processes duplicate chain.

-

r
-

I I I

~ ...-

~ File

CINs in work file reassigned

a::
o
;.
o
Q..

o
o
" o a o·
::s
:::i
~

Extended Description of Diagram 3.15.4

IDCRSOt, IDCRS06

Procedures: REASSIGN, RECMGMT

t Before it reassigns any records, the REASSIGN
procedure determines whether any records need to be
reassigned. If the reassign count is zero, it means no
records need to be reassigned. Control is returned to
mainline IDCRSOI processing. Control is also
returned if all records on the reassign chain have been
read.

RECMGMT (with GETRCD option) is called to read
the next record on the reassigning chain. The reassign
chain pointer is saved.

IDCRSOt, IDCRS06

Procedures: REASSIGN, RECMGMT

2 The next record on the available chain is read via
GETRCD. The available chain pointer is saved. If the
"replaced from CRA" flag is set, then this record
cannot be used, so the next record on the available
chain is read until an available record is found.

IDCRSOt, IDCRS06

Procedures: REASSIGN, ADDUPCR, RECMGMT

3 The reassign record is moved to the available record
buffer. The reassign DUPPTR is copied to the
available DUPPTR. Two flags, "replaced from CRA"
and "update catalog", are set. ADDUPCR procedure
is called to perform CRA update processing. A flag
indicating that the record is reassigned is set.

RECMGMT (with the UPDRCD option) is called to
write the update available record to the work file.

IDCRSOt, IDCRS06

Procedures: REASSIGN, RECMGMT

4 The relative record number (RRN) of the reassigned
record is saved. RECMGMT (GETRCD) is called to
read the record pointed to by the catalog control
interval of the reassigned record or the D UPPTR. If
the DUPPTR does not point to the RRN of the
reassigned record, then the next record on the
duplicate record chain is read. When the record is
found, the DUPPTR is updated to point to the CI of
the available record. RECMGMT (UPDRCD) is
called to write the record back to the work file.

:::::i I Diagram 3.15.5 RESETCAT FSR - Check Associations
~

o
o
~

'<
~

§
~

~
n ;.
o
Q.

~
n

S.
~
CIl

b
OQ
(:)"

~ File

J
J

RESETCAT
Work
Areas

~

r-"

...
~ 1. ..,; Processes all LKR records in the work file:
~

a. Reads a work file record.

b. Calls PROCTYPE for CRA records and
entry types C, B, A, U or X.

c. Verifies data set directories for D and 1
entry types.

2. Processes all reset volumes. For each reset
volume:

a. Reads the volum,e record from the work
file.

b. Calls PROCVOL to process the volume
record.

j,.

/ ~ File

3:
~ ;.
&.
o -o

"CI
~ ..,
~ o·
::s --..J
u.

Extended Description for Diagram 3.15.5

IDCRS02, IDCRS06

Procedures: ASSOC, RECMGMT, PROCTYPE,
VERDSDIR

la Each work file record is read sequentially up to the
high allocated catalog control interval. Each record is
checked to see if the .. associations checked" flag is on.
If it is, control goes to step 2.

b If the flag is not on and if the record is from a CRA
being reset, then for each C,B,A,U or X record, the
PROCTYPE procedure is called to process control
interval numbers.

For a given catalog. entry type, PROCTYPE controls
the process of scanning a catalog record for control
interval numbers. It determines which other records
which along with the given record are a part of a set of
records. It verifies all control interval numbers in the
entire set of records. Control interval numbers are also
corrected if necessary.

c VERDSDIR is called to check data set directories if
the entry type is D or I. The VERDSDIR procedure
verifies the data set directory entries for VSAM data
sets which are not on reset volumes. It specifically
looks for multivolume VSAM data sets where the
primary volume is not a reset volume but a secondary
volume is a reset volume. VERDSDIR changes work
file records to correct error conditions, namely it
marks a volume group occurrence (VGO) unusable
when no data set directory exists for that data set.

IDCRSOl,IDCRS06

Procedures: ASSOC, RECMGMT

2a For each reset volume, the volume record is read from
the work file via RECMGMT (GETRCD).

IDCRSOl, IDCRS06

Procedures: ASSOC, RECMGMT, PROCTYPE,
VERDSDIR

lb The PROCVOL procedure is called to process the
volume record.

PROCVOL controls the checking of space conflicts for
each volume record. PROCVOL calls PROCTYPE to
find and verify each control number in a volume
record and its extensions. PROCVOL verifies and. if
necessary, corrects the volume space bit map.

~ I Diagram 3.15.6 RESETCAT FSR - Update the Catalog
o o
til
........
<:
til

~
CD
{Il
{Il

~
CD

S-o
Q.

til
CD

~
~.
(Il

b
OQ o·

~ file

,..
::) "-

VSAM
Catalog
to be reset

...... -'

I
r

RESETCAT
Work
Areas

.".
...

1.. Reads a work file record. "=> --v

2. Reads a catalog record.

3. Writes a record to the catalog low key range
(LKR) and rebuilds the free chain.

4. Processes true names.

5. Writes a record to the work file.

6. Renames duplicate true names.

7. Updates catalog control record (CCR)

~

"'""

~ ..
-,.-
~ -

VSAM
Catalog
to be reset

..... .J

Records added and/or deleted from
the catalog.

~
(1)

;.
o
0..
o,
o

'"C:)
(1)
'"1

~ o·
~ -.....:I
.....:I

Extended Description for Diagram 3.1S.6

IDCRSOt, IDCRSOS, IDCRS06

Procedures: UPDCAT, CKERR, RECMGMT

t UPDCA T ensures that all CRAs required for updating
are available by checking the "update CRA
unavailable" flag (RSBADVOL). If the check shows
that a CRA is not available, the CKERR routine is
called to print a message and terminate RESETCA T
processing.

Each catalog extent in the work file is processed by
checking each entry in CIXL T. If the extent represents
a HKR, it is ignored. Only LKR extents are
considered. For each LKR extent, RECMGMT
(GETRCD) is called to read a work file LKR record.

IDCRSOt, IDCRS06

Procedures: UPDCAT, RECMGMT, ENTNMCK

2 For each work file record read the "update catalog"
flag (RSWUPCA T) is tested and if the flag indicates
the catalog should be updated, the corresponding
catalog record is read via the GETRCD routine.

IDCRSOt,IDCRS06

Procedures: UPDCAT, ADDUPCR, RECMGMT

3 After each catalog record is read, the "association
checked" flag (RSW ASSCK) is tested. If it is not on,
the ADDUPCR routine is called to prepare for update
CRA processing. The ENTNMCK procedure is called
to .determine if the catalog record has a true name; if
there is a true name, a flag is set and the true name is
saved. Next, ENTNMCK is called again to see if the
work file record has a true name. If it does, a flag is
set.

If the record is free or the "association checked" flag
is off, a deleted free work file record is formatted in
the catalog buffer and placed on the free chain,
otherwise the work file record is moved to the catalog
LKR buffer. If the control interval number of the
record is greater than or equal to the first unformatted
free control interval, RECMGMT (ADDRCD) is
called to add the record to the LKR. If the CIN is less
than the first unformatted free CIN, the UPDRCD
option of RECMGMT is called to update the catalog
record.

IDCRSOt, IDCRS05, IDCRS06

Procedures: UPDCAT, RECMGMT, DELTN, ADDTN

4 If the catalog record has a true name and the work file
record does not (or has a true name different from the
catalog), then the true name is deleted from the
catalog HKR by calling DELTN, provided the CIN is
correct.

If the work file record has a true name and the catalog
record does not (or has a true name different from the
work file), ADDTN is called to write a true name
record. If ADDTN indicates a duplicate record exists,
the work file record is placed on the true name chain
for a future rename operation (see Step 6). The "write
work file" (RSUCTWWF) flag is set.

IDCRSOl, IDCRS05, IDCRS06

Procedures: UPDAT, SCNLST, RECMGMT,
CRAUPCHN

5 UPDCAT checks to see if the "update CRA" flag
(RSUPCRA) is on. If it is, the SCNRLST routine is
called to scan the RESVOL table for the CRA volume
serial number. Next, the work file record is placed on
the CRA update chain for this CRA volume by the
CRAUPCHN procedure. The "write work file" flag is
set.

If the "write work file" flag (RSUCTWWF) is on,
UPDRCD is called to update the work file record with
the true name chain pointer and/ or the CRA update
pointer.

IDCRSOl, IDCRS06, IDCRS07

Procedures: UPDCAT, RECMGMT, RENAMEP,
ADDTN

6 After all the catalog LKR extents have been processed,
the true name chain is checked. If the chain is not
empty, the GETRCD routine of RECMGMT is called
to read a work file record on the true name chain. The
ADDTN routine is called to add the true name to the
catalog HKR. If a duplicate name is detected, then the
RENAMEP procedure is called to assign a new name
to the true name.

IDCRSOl,IDCRS06

Procedures: UPDCAT, RECMGMT, UPDCCR

7 Th(~ GETRCD routine of RECMGMT is called to read
the CCR (control interval number 3). The following
items in the CCR are updated by UPDCCR:

• First unformatted free record

• Count of deleted free records

• Control interval number of first deleted free record

• High RBA maintained in the CCR

After the! above items are changed, RECMGMT (with
UPDRCD option) is called to write the updated CCR
back to the catalog.

-~ Diagram 3.15.7 RESETCAT FSR - Updates the CRA

o o
(/)
.........
<::
(/)

:>
n
n
(1)
til
til

r

INPUT

I

RESETCAT
Work Areas
and Control
Blocks

8
~

1.

From Diagram 3.15

PROCESSING OUTPUT

Updates the eRA if necessary.

a. Opens the eRA.

b. Reads a work file record.

c. Writes a eRA record.

d. Closes the eRA.
eRA Volumes updated if necessary.

~
n s-o
Q.

S
o
'g
'"' a o·
::s --...J
'C

Extended Description for Diagram 3. t 5.7

IDCRSOI, IDCRSOS, IDCRS06

Proced.es: UPDCRA, SCNRLST, RECMGMT, CKERR

la The SCNRLST routine is called to obtain a CRA
volume serial number entry from the RESVOL table.
A check is made to see if this CRA needs to be
updated by checking if the CRA update chain is
empty. If the open is successful, the "CRA open" flag
is set, if not, the "termination" (lag is set.

Ib Each record in the CRA update chain is read from the
work file RECMGMT (GETRCD). The control
interval number of the next record in the chain is
saved. If the record just read happens to be a free
record, the CRA CCR record needs to be updated. If
the CCR has not been read already, RECMGMT
(GETRCD) is called to read it. The deleted free record
count in the CCR is incremented, and the record is
placed on the CRA free chain.

Ie The record read from the work file is moved to the
CRA buffer. Control interval information is inserted
and RECMGMT (UPDRCD) is called to write an
updated record in the CRA.

After all records in the CRA update chain have been
processed for a specific CRA, RECMGMT
(UPDRCD) is called to write the updated CCR record
back to the CRA.

Id DSCLOSE is called to close the CRA. If the close
fails, the "termination" flag is checked. If it is set,
CKERR is called to print an error message and
terminate RESETCA T processing. If the termination
flag is not set, control returns to the caller.

3:
S-o
Q.

sa.
o
'g
'"1 a o·
::s -00 -

Termination Visual Table of Contents

4.1

Executive
Controlled

Termination

4.2

Processor
Termination

4.2.1

I/O Adapter I
Termination
UIOTERM

Macro

-~ Diagram 4.1. Executive Controlled Termination
o
o
tn
<:
tn

>
§
rIl

~ e-o
Co
tn
CD

~
~.
rIl

b
OQ

o·

INPUT

MAXCC

Register I

~
• GOT

• FOT

• FOT ID

• MAXCC

• LASTCC
FSR Name

Register I c-------
• GOT

• FOT
• FSR Code

~

...........

vqzzzzzaz.

I'-....... v

.J"-....... v

--'------'~
v

'

From Reader/Interpreter (R/D or an FSR

PROCESSING
~-

~ 1. Updates MAXCC. /~

If entrance is from R/I, processing
continues with Step 2; if entrance
is from an FSR, processing
continues with Step 3.

2. Determines ifFSR is to be
called.

3. Releases FDT.

4. Sets defaults in Print Control
Tables.

MAXCC

.... s. Determines if processor is to be ~r-.-r--------_--J
terminated. ~

See Diagram --D

OUTPUT

Register I

~I~ t FOT

o

GDT

~ I ~ GOTTPH

~

a::
(II

g-
o c-
o -.
o
"0
(II ..,
~ o·
~ -00
U.)

Extended Description for Diagram 4. t

IDCEXOI

Procedure: MAIN

1 IDCEXOI compares the LASTCC code returned by
the FSR or the R/I with MAXCC and puts the greater
number in MAXCC. If control is from the R/I,
MAXCC has already been properly set by IDCRIOI. If
entrance is from the R/I, processing continues with
step 2; if entrance is from an FSR, processing
continues with step 3.

IDCEXOI

Procedure: MAIN

2 If MAXCC is less than 16 or an end-of-file has not
been reached on SYSIPT, IDCEXOI gives control to
an FSR. The R/I passes the FSR name to IDCEXOI. If
MAXCC is greater than or equal to 16 or an
end-of-file has been reached on SYSIPT, processing
continues with step 5.

IDCEXOI

Procedure: CALLFSR

3 IDCEXOI releases storage for the FDT using a
UFPOOL macro. The pool identification is EXOO, and
the FDT is the only data in the pool.

IDCEXOI

Procedure: CALLFSR

4 IDCEXOI sets the Print Control Table to Access
Method Services default values by issuing a URESET
macro instruction.

IDCEXOI

Procedure: MAIN

5 The processor has terminated if one of the following
conditions is met:

• The R/I has detected end-of-file on SYSIPT. In this
case, the R/I puts a non-zero value in Register 15.

• An error has occurred so that processing cannot
continue, and MAXCC contains a value greater
than or equal to 16 .

If one of these conditions is met, control is given to
Processor Termination, Diagram 4.2. If neither of the

two conditions is met, control is given to the R/I,
Diagram 2.0, to obtain the next command.

~ Diagram 4.2. Processor Termination
~

o
o
Vl

.........
<:
Vl

~ o o
(!)
!;Il
!;Il

~
(!)

;.
o
Q.

Vl
(!)

~
n'
(!)
!;Il

t"'"
o

00
n'

INPUT

MAXCC

GDT

;1GDTTPH

GDTDBH

Debugging Aids
Historical Data Area ,

,PCT 1 PCT 2

Jr

~ ,.........

=>

=>

SYSIPT SYSLST >

DO

f.
Fwm Diagram 4.1

~ ~~ ~ PROCESSING ...

1. Writes maximum processor
completion code.

2. Terminates TEST options.

3. Terminates Text Processor.

4. Terminates I/O Adapter. ~
See Diagram -----LY

5. Terminates System Adapter.

I'....
-V'"

_~ __ -..J~

--v

~

---,...--->

-----r---->

OUIPYT

Maximum Processor

D
GDT

GDTPRM

Invoker's
Parameter List

(page Numbe,
i

~YSLSj
Register 15 [--

a:
~

S-
o
Q..

o -o
'&
'"t

a o·
= -00
\J'o

Extended Description for Diagram 4.2

IDCEX03

Procedure: IDCEX03

I IDCEX03 prints a message of the maximum processor
condition code, MAXCC by using a UPRINT macro.

IDCEX03

Procedure: IDCEX03

2 If TEST options were specified on a P ARM command
or on the EXEC statement that invoked Access
Method Services, IDCPMOI has loaded the Debug
Module, IDCDBOt. IDCEX03 sets GDTDBG, the
address of the Debug Module, to zero after deleting
the Debug Module by issuing the UDELETE macro.
The address of the Debugging Aids Historical Data
Area is in GDTDBH. IDCEX03 frees the debugging
aids historical data area used by the UDUMP macro.
It also sets GDTDBH to zero after the area is freed.

IDCEX03

Procedures: IDCEX03, SCANPARM

3 IDCEX03 terminates the Text Processor by issuing a
URESET macro. If the invoker of Access Method
Services wants the last page number returned,
IDCEX03 passes the address of the invoker's page
number field to the URESET macro.

IDCEX03

Procedure: IDCEX03

4 IDCEX03 terminates the I/O Adapter by issuing a
UIOTERM macro. Diagram 4.2.1 shows I/O Adapter
termination in detail.

IDCSAOI

Procedure: IDCSAOI

5 IDCSAOI terminates the System Adapter by freeing
the storage for IDCSA02, IDCSA03, IDCTPOl, and
IDCIOOI. The Storage Table, AUTOTBL, contains
the storage addresses for IDCSA02, IDCTPOl, and
IDCIOOt. The GDT contains the storage address for
IDCSA03. IDCSAOI also frees the
Inter-Module-Trace Table, the Intra-Module-Trace
Table, the System Adapter Historical Data Area, and
the GDT. When the System Adapter receives control,
Register 15 contains MAXCC. IDCEXOI copied

MAXCC into Register 15 for the Access Method
Se:rvices invoker. Control returns to the invoker.

00
0\

o
o
til

..........

<
til

> o o
(II
{Il
{Il

s::
(II

g-
o
0-
til
(II

~
~.
{Il

t""'
o

(JQ

(=i'

Diagram 4.2.1. I/O Adapter Termination - UIOTERM Macro

from Diagram 4.2

INPUT --I"KUCESSING

Register I

{IGDT -~ :>f 1. Searches IOCSTR chain for
open data sets.

2. Tests for externally controlled

Q"EJ
data set.

3. Closes data sets.

• Processes error codes.
• Frees data set storage.

• Removes 10CSTR.

IODATA
4. Frees I/O Adapter storage.

I
l

IOCSTR

OUTPUT

Closed Data Sets

I OCARRAY ---------.-..> <:--

---L.---~O EJ
..
~ -v

Register 15 I -- -- - - I

is:
I'll
;.
o
0-

a
o
'0
I'll ..,
~ o·
::s

00
.....,J

Extended Description for Diagram 4.2.1

IOCIOOl

Procedure: IDCIOOI

1 IDCIOOI sets up a loop to close all open data sets, and
sets the close all option in OCARRA Y that permits
SYSIPT and SYSLST to be closed.

IOCIOO2

Procedure: CLOSERTN

2 CLOSERTN examines the 10CSTR chain for the
address of IOCSTRs to close. For a nonVSAM data
set, CLOSERTN sets the address of a SYNAD routine
in the DCB to zero and puts the address of a CLOSE
exit routine in the DCB. If the data set is not open,
IOCFLGOP = I, CLOSERTN determines if it is
externally controlled. If so, CLOSERTN passes
arguments to the external routine. This check is made
for up to the first four IOCSTRs in the 10CSTR chain.
Normally, only the SYSIPT and SYSLST IOCSTRs
are in the chain at termination.

IOCIOO2

Procedure: CLOSERTN

3 CLOSERTN issues a CLOSE macro with the address
of up to four DCBs or ACBs. If an ABEND occurs
during the closing of anon VSAM data set, the
operating system close routine gives control to a
CLOSE exit routine which sets a flag in 10CSTRN
that will cause the I/O Adapter to print an error
message. The message is written after control returns
from the CLOSE SVc. Closing continues with the
next data set. The following steps are performed for
each data set:

• For VSAM data sets, CLOSERTN issues a
SHOWCB macro to return the ACB error code. If
the ACB error code is not zero, BLDOCMSG
writes a message. However, since SYSLST is the
first data set closed, BLDOCMSG issues a
UABORT macro. No test is made for nonVSAM
data sets.

• For VSAM data sets, CLOSERTN checks the
10CSEX to see if there are any VSAM control
blocks to free. When any length of the ACB, RPL,
or EXLST is non-zero, ENVFREE issues a
FREEMAIN macro to release the control block.
For open nonVSAM data sets, ENVFREE issues a

FREEVIS to free any buffers obtained by the
operating system open routines.

• CLOSERTN saves the address of the closed data
set's IOCSTR and the address of the next IOCSTR
in the chain. CLOSERTN issues a UFPOOL macro
to free storage obtained for the closed data set.
CLOSERTN searches the 10CSTR chain until the
10CSTR that points to the 10CSTR of the closed
data set is found. CLOSERTN replaces the address
of the closed data set's 10CSTR with the address of
the next 10CSTR in the chain.

IOCIOOl

Procedure: IDCIOCL

4 Processing returns to step 1 until all data sets have
bec::n closed. When all data sets are closed, the
IOCSTR chain no longer exists. CLOSERTN issues a
UFPOOL macro to free storage obtained by the I/O
Adapter. The only storage remaining to be freed is
10lDAT A and the message area for VSAM data sets.
IDCIOCL puts a return code in Register 15. Control
then returns to the module that issued the UIOTERM
macro.

a:
o ;.
o
Q.

o
o
"0
o ..,
a o·
= -00
\0

System Adapter Visual Table of Contents I sy,;em Adapte.

5.0

5.1

Error
Handling

5.2

Processor
Control

Overview

---.-

5.3 5.4

Catalog
Management
(No Diagram) (No Diagram) (No Diagram)

Storage
Management
(No Diagram)

5.1.1

UCATLG

I 5.2.1 1 5.2.2

UABORT USNAP

UCALL

__ _5_.3_.2 I 5.3.3

ULOAD c:::::: ' 5.3.1

5.4.1 I 5.4.2 5.4.3

UGSPACE UFSPACE UGPOOL

Time of
Day

5.5

(No Diagram)

5.5.1

UTIME

5.6 1
Resource
Control

5.7

Parameter
Interrogation
(No Diagram) (No Diagram)

I
I 5.7.1 1 5.7.2

UENQ UDEQ

1 5.6.1 ~ 5.6.2

ULISTLN USAVERC I

5.4.4 5.4.5 5.4.6

UFPOOL PROLOG UEPIL

-~
o
o
til
........
<:
til

> (')

~
en en

~
o g-
o
Q.

til o
:(!
§.
en

b
OCI
O·

Diagram 5.0. System Adapter Overview

INPUT

From Module

1. Issues macro to perform request:

a.

b.

c.

d.

e.

f.

Catalog managem~~
See Diagram~

Error handling. ~
See DiagramS~

Processor ,~o~trol. -tR>.3.1
See Diagrams to

- 5.3.3

Storage management.
See Diagrams:----t

Time of day. ~
See Diagram L/'

Parameter, interrogation.
See Diagramsi-----t

S D· 5.7.1
g. Resource Control ~

ee tagrams 5.7.2

2. Sets return code.

Register 1

System Macro
Argument List

Register 15 c- -

~
n ;.
&.
a.
o
~ ...
e! s·
:::;, -\&) -

Extended Description for Diagram 5.0

IDCSAOl, IDCSA02, IDCSA03, IDCSAOS, IDCSAOS

Procedures: IDCSAOl, IDCSA02, IDCSA03, IDCSA05,
IDCSA08

1 The System Adapter and the I/O Adapter insulate the
rest of the processor from the operating system.
Whenever the processor wants a service that requires
an operating system dependent macro, like GETVIS,
the processor calls the System Adapter with a Umacro.
Different versions of the System Adapter and I/O
Adapter supply code for different operating systems.
Except for the System Adapter and the I/O Adapter,
the Access Method Services modules are oblivious tb
the operating system. System macros in the listings
indicate the operating system the listing represents.

Types of services provided by the System Adapter:

a. Whenever information is to be added, deleted, or
retrieved from the VSAM catalog, a UCA TLG
macro is issued. Although the VSAM CATLG"
macro has the same parameters in OS/VS and
DOS/VS, the general code is different. The VSAM
CA TLG macro must be in a program that is
assembled under the right operating system.
Diagram 5.1.1 shows the UCATLG macro in
detail.

b. Error handling is accomplished with UABORT and
USNAP. For errors, when processing cannot
continue, a UABORT is issued to print an error
message and a dump and return control to the
operating system. If the error condition is due to no
space available, only an error message is printed;
no dump is printed. For debugging information, a
USNAP is issued to print the partition and return
control to the Access Method Services module that
issued the USNAP. Diagrams 5.2.1 and 5.2.2 show
the UABORT and USNAP macros in detail.

c. Inter-processor module control is accomplished
with UCALL and ULOAD. UCALL loads a
module and gives control to it. It is used to transfer
control from one module to another within Access
Method Services. ULOAD just loads a module. It
is mainly used for non-executable modules like
static text structures. UDELETE does not take any
action in DOS. Diagrams 5.3.1 through 5.3.3 show
the UCALL, ULOAD, and UDELETE macros in
detail.

d. Storage management is performed with three types
of macros:

1. UGSPACE and UFSPACE, shown in Diagrams
5.4.1 and 5.4.2.

2. UGPOOL and UFPOOL, shown in Diagrams
5.4.3 and 5.4.4.

3. PROLOG and UEPIL, shown in Diagrams 5.4.5
and 5.4.6.

The first type is used to obtain large amounts of
storage. The caller must remember the address of
the storage, and must issue a UFSP ACE to release
the storage.

The second type is used for small amounts of
storage. The caller does not need to remember the
address of each piece because all the pieces can be
released with one UFPOOL at the end of the
program.

The third type is used to bypass PL/S-generated
GETMAIN and FREEMAIN macros. In a
Jre-entrant enviroment, PL/,~ generates a
GETMAIN macro for all data areas defined in the
program, but a GETMAIN doesn't work on DOS.
Each Access Method Services routine includes code
at the beginning of the routine to replace the
GETMAIN. This is the PROLOG code. Control is
ltransferred to the System Adapter that issues the
appropriate operating system macro to obtain
storage. Instead of issuing a PL/S return statement,
lthat uses FREEMAIN, all routines issue a UEPIL
macro. The UEPIL macro gives control to the
System Adapter. The System Adapter frees storage
and gives control to the routine that called the
JrOutine that issued the UEPIL. The
PL/S-generated code to free storage and to return
control is never executed.

e. The time of day is obtained with a UTIME macro,
shown in Diagram 5.5.1. Several data formats for
the time and date are allowed.

f. Parameter interrogation is performed by the
ULISTLN and the USA VERC macros, shown in
Diagrams 5.6.1 and 5.6.2.

g. Control of a resource is achieved with a UENQ
macro. The resource may be released with a
UDEQ macro. See Diagrams 5.7.1 and 5.7.2.

2 At the end of most Umacros, a return code is put in
register 15, and control returns to the module that
issued the Umacro. The exceptions are UABORT,
UCALL, and UEPIL.

~ Diagram 5.1.1. UCATLG Macro

o
o
C'J'.l
........
<:
C'J'.l

~
B
{Il
{Il

:::
B ;.
o
Q..

C'J'.l
B

~
~r
{Il

b
OQ

o·

INPUT

Register 1

t GDT

Catalog
Parameter List

From Diagram 5.0

P·ROCESSING

1. Issues CATLG macro instruction.

2. Returns.

OUTPUT

VSAM
Catalog

Register 15

r-

~ ;.
&.
a
o
~ o ..,
~ o·
::s -\C)
U.l

Extended Description for Diagram 5.1.1

IDCSA02

Procedure: IDCSA02

IDCSA02 passes the catalog parameter list to VSAM
with a CA TLG macro.

IDCSA02

Procedure: IDCSA02

2 IDCSA02 puts the return code from VSAM in register
15 and returns control to the module that issued the
UCATLG macro.

~ Diagram S.2.1. UABORT Macro
~

o
o
fJ'l

" <
fJ'l

>
i
~
to ;.
&.
fJ'l
to
~
~.

i n·

stablishes addressability.

rints message.

rints full partition dump.

loses all open data sets.

eturns to invoker of Access Method
~rvices.

... Message
,;>

D
Full Partition

~
Dump

D v

Register IS ... I I .) 16

~
~ ;.
o
C-
O -o
'g
'"I

a o·
= -\0
IJ\

. Extended Description for Diagram S.2.1

IDCSAOt

Procedure: IDCSAOI

t The UABORT routine uses the registers saved in the
save area pointed to by GOT ABH to establish
addressability. This is done so the UABORT routine
can access storage areas obtained by the System
Adapter and remain reentrant.

IDCSAOt

Procedure: IDCSAOI

2 UABORT issues an EXCP to write a message to the
programmer.

IDCSAOt

Procedure: IDCSAOI

3 The UABORT routine issues the PDUMP macro and
takes a full partition dump unless the UABORT code
indicates a no-space-available condition, in which case
no dump is issued. The partition beginning and ending
addresses for the PDUMP are obtained from the
partition boundary box. The UABORT code is in
register 15 in the dump.

IDCSAOt

Procedure: IDCSAOI

4 GDTIOH provides the address of the IODAT A. The
address of the IOCSTR chain is IODIOC. The
UABORT routine goes through the chain of IOCSTRs
and tests each one to determine if it is open. The DTF,
for nonVSAM data sets, or the ACB, for VSAM data
sets, is checked to determine if the data set is open or
closed. If the data set is open, IDCSAOI issues a
CLOSE macro to close the data set. The processing
continues until the end of the chain is reached.

IDCSAOt

Procedure: IDCSAOI

5 If Access Method Services was invoked through job
control, IDCSAOI issues a CANCEL macro to cancel
the job. If Access Method Services was invoked
through a subroutine call, IDCSAOI returns control to
the invoker with a code of 16 in register 15 to indicate
that a catastrophic error has occurred.

\0 Diagram 5.2.2 USNAP Macro
0\

o o
CIl
..........

<
CIl

:>
o o
~
en
en

3:
~

S-o
0.
CIl
~

~
r;'
~
en

b
00
r;'

INPUT

GDT

Identification

From Diagram 5.0

PROCESSING

1. Issues PDUMP macro instruction.

2. Returns.

OUTPUT

Full Partition Dump

Identification

3:
(I)

;.
o
0-
o
o
"0
(I) ..,
~ o·
:l

..a
-.J

Extended Description for Diagram 5.2.2

IDCSA02

Procedure: IDCSA02

IDCSA02 issues a COMRG macro to determine the
partition identification key (PIK). The partition
beginning and ending addresses for PDUMP are
obtained from the partition boundary box. IDCSAOI
then issues a PDUMP macro for a full partition dump.

IDCSA02

Procedure: IDCSA02

2 IDCSA02 returns control to the module that issued the
USNAP macro.

~ Diagram 5.3.1. UCALL Macro
o
o
til
........
<:
til

~
n
fI)
fI)

:::
n
S-
O
Q.

til
n
:!
~.
fI)

~
(JQ o·

INPUT

Register I

GOT

Addresses of data to be

From Diagram 5.0

PROCESSING

1. Issues CDLOAD macro.

2. Frees storage.

3. Rearranges arguments in calling
module.

4. Gives control to loaded module.

OUTPUT

Loaded Module

Register I

GOT
Addresses of data fro

Extended Description for Diagram 5.3.1

IDCSAOl

Procedure: IDCSA02

1 IDCSA02 loads the program named by the UCALL
macro with a CDLOAD macro.

IDCSAOl

Procedure: IDCSA02

2 IDCSA02 checks the AUTOTBL for the number of
outstanding storage requests for IDCSA02. The
number is in the STATUS section for IDCSA02. If the
number is greater than one, storage other than the
storage addressed in the AUTOBL has been obtained
for IDCSA02. The amount of storage is in the PL/S
generated variable @SIZDATD and the address is in
register 11. IDCSA02 issues a FREE VIS and the
number in STATUS is decreased by one. If the
number in STATUS is one, a FREEVIS is not issued
because the storage is saved for the next time
IDCSA02 is given control. The status is reduced by
one.

IBCSA8!

Procedure: IDCSA02

3 IDCSA02 copies the address of the GDT from the first
parameter in the calling program to the second
parameter in the calling program. IDCSA02 puts the
address of the second parameter in the calling
program, now the address of the GDT, in register 1.
Register one now points to a contiguous list of
parameters for the called program.

IDCSAOl

Procedure: IDCSA02

4 IDCSA02 puts the address of the called program into
register 15. IDCSA02 restores all registers, except 1

=: and 15. from the calling program's save area and gives
!l control to the called program. =- .
&.
So
o
'tJ o ..,
~ o·
::s

1.0
1.0

8 Diagram 5.3.2. ULOAD Macro

o o
CIl

'" <:
CIl

§
III
III

:::
~ er
8-
CIl
~

~ §.
III

b
<!s.
t")

INPUT

t GDT

Address of
Fullword

Name of
Module to Load

• rrom Diagram 5.0

... PROCESSING OUTPUT ... Loaded Module
t. Issues CDLOAD macro.

Register I

2. ~ Puts loaded program address in
parameter list.

tGDT

Address of
Loaded Module

Name of
Module to Load

3. Returns.

~
(II

So
8.
a.
o
'g ..,
~ o·
::s
IV ::

Extended Description for Diagram 5.3.2

IDCSA02

Procedure: IDCSA02

1 IDCSA02 issues a CDLOAD macro using the name of
the program given to the ULOAD macro.

IDCSA02

Procedure: IDCSA02

2 IDCSA02 puts the address of the loaded program in
the calling program at the address specified with the
third parameter.

IDCSA02

Procedure: IDCSA02

3 IDCSA02 returns control to the module that issued the
ULOAD macro.

~ Diagram 5.3.3. UDELETE Macro
N

o
o
til
.........
<:
til

~ o
~

~

=:
~

ET-o
Co
til
~

~
(:i'
~
(Il

b
()Q

o·

INPUT

Register I

• GDT

Name of
Modulc to Deletc

hom Diagram 5.0

PROCESSING OUTPUT

1. Deletes module.

2. Returns.

3:
n ;.
&.
S
o
'i
i
(S"
~

S

Extended Description for Diagram 5.3.3

IDCSA02

Precetlwe: IDCSA02

I IDCSA02 does not delete the module but lets the
system paging mechanism delete the module when
necessary.

locSA02

Precetlure: IDCSA02

1 IDCSA02 returns control to the module that issued the
UDELETE macro.

~ Diagram 5.4.1. UGSPACE Macro

o
o
til
........
<
til

> (')
(')
~

'" '"
3:
~

S-
o
Q.

til
~

~
n'
~

'" t
o

00
(::;'

INPUT

Register 1

Address of Fullword

Storage Initialization
Indicator

Bytes Needed

--

"

From Diagram 5.0

PROCESSING

2. Sets up UGSPACE area.

3. Puts address in calling program.

4. Initializes area, if necessary.

5. Returns.

OUTPUT

UGSPACE Area

Number of Bytes + 8

b

~
.-L. Storage T T

Register 1

GOT

Storage Initialization
Indicator

Storage Address

Bytes Needed

Register 15

[

3:
('l)

S-
o c-
o -.
o
"0
('l) ...,
!:? o·
:l

N o
VI

Extended Description for Diagram 5.4.1

IDCSA02

Procedure: IDCSA02

IDCSA02 issues a GETVIS for the number of bytes
requested plus 8 for the UGSPACE area that proceeds
each storage area. If the return code from the GETVIS
is nonzero, the address of the storage area is set to
zero and control is given to step 5. If the return code is
zero, control is given to step 2.

IDCSA02

Procedure: IDCSA02

2 IDCSA02 puts the number of bytes in the storage area
plus 8 in the first word of the UGSPACE area.
IDCSA02 sets the second word blank to distinguish a
UGSPACE area from a UGPOOL area.

IDCSA02

Procedure: IDCSA02

3 IDCSA02 puts the address of the storage area, not the
UGSPACE area, in the calling program at the address
specified by the third parameter.

IDCSA02

Procedure: IDCSA02

4 If SETZERO or SETBLANK was specified as the
fourth parameter, IDCSA02 sets the storage area to
zeros or blanks, respectively. If SETZERO or
SETBLANK was not specified, the storage area is not
changed.

IDCSA02

Procedure: IDCSA02

S IDCSA02 puts a return code in register 15 and returns
control to the module that issued the UGSPACE
macro.

~ Diagram 5.4.2. UFSPACE Macro

0

_ From D~'~:::ING 0
c;n
"-< INPUT OUTPUT
c;n

> g Register I 1. Checks for UGSPACE or UGPOOL ft
fit

area. If UGSPACE. continues to Step fit

~ 2: jf UGPOOL. goes to Step 3.
ft ;. tGDT &. 2. Calculates address.
~ s. 3. Calculates address and removes area
8 Address of Storage to Free from chain.
fit

b 4. Frees storage. GIl
IUGSPACE or UGPOdL Area fir

I Storage to Free :l 5. Returns.

T

s::
~ ;.
o
c.
S
O
'& ..,
~. o
::s

~

Extended Description for Diagram 5.4.2

IDCSA02

Procedure: IDCSA02

The address of the area to free is used by IDCSA02 to
determine if the area was obtained with a UGSPACE
or a UGPOOL. If the fullword at the address minus 4
contains blanks, the area was obtained with a
UGSPACE.

IDCSA02

Procedure: IDCSA02

2 If the storage area was obtained with UGSPACE, a
UGSPACE area preceeds the area. The length of the
area to free is at the first word in the UGSPACE area.
The address of the area to free is calculated by
subtracting 8 from the area address.

IDCSA02

Procedure: IDCSA02

3 If the storage area was obtained with a UGPOOL, a
UGPOOL area preceeds the storage. The length of the
area to free is at the third word of the UGPOOL area.
The address of the area to free is calculated by
subtracting 16 from the area address. The forward and
backward chains are updated to remove this area from
the chain. If this is the last area in the chain, the
address of the last area in the chain in GPLAST in the
System Adapter Historical Data area is updated by
IDCSA02.

IDCSA02

Procedure: IDCSA02

4 A FREE VIS macro is issued to release the storage plus
its UGSPACE or UGPOOL area.

IDCSA02

Procedure: IDCSA02

S IDCSA02 returns control to the module that issued the
UFSPACE macro.

~ Diagram S.4.3. UGPOOL Macro
o
o
Cf.l
........
<:
Cf.l

~
R
{II
{II

3:
n
S-
o
Co

Cf.l
n
:! §.
{II

b
(JQ

o·

INPUT
Rt.'gister I

t GDT

Address of
Fullword

I
From Diagram 5.0

_ _ PROCESSING

~ Obtains storage.

2. Sets up UGPOOL area.

3. Puts address of storage in calling
program.

4. Initializes area, if necessary.

5. Returns.

OUTPUT

UGPOOL Area

t Ne:-.:t Area

t Last Area

Number of Bytes + 16

Identification

~ Stora!!e 1 Arca T

tGDT

Bytes Needed

Register 15

[---~

L(;POOI. An:iJ

(2K Page houndary)

+Ne\t Area

t Last Area

24

Iden tifica tion

Addr. of storagc

Length of storagc

Stora!!c area
on 2K pagc
boundary

T J

s:: ;.
8-
S
o
~ a o·
::s
N

~

Extended Description for Diagram 5.4.3

IDCSA02

Procedure: IDCSA02

t If the UGPOOL storage identification specifies 'PG'
as the third and fourth characters, IDCSA02 issues a
GETVIS for the number of bytes requested starting on
a 2K page boundary. The address and length is saved.
A second GETVIS is issued by IDCSA02 for a 24-byte
area. The address and length of the first area obtained
are placed in the fifth and sixth words of the 24-byte
area. Otherwise, a GETVIS is issued for the number
of bytes requested plus 16 for the UGPOOL area. If
the return code from the GETVIS is nonzero, the
storage address in the calling program is set to zero
and control is given to step 5, unless the GETVIS was
for a 24-byte 'xxPG' storage area, in which case the
space obtained on a 2K page boundary must be freed.
A FREEVIS macro is issued to free the space and then
the storage address in the calling program is set to zero
and control is given to step 5. If the return code from
the GETVIS is zero, control is given to step 2.

IDCSA02

Procedure: IDCSA02

2 The new storage area is chained to the other storage
areas obtained with UGPOOL. The head of the chain
is in GPFIRST and the tail is in GPLAST in the
System Adapter Historical Data Area. The new
storage area is chained by IDCSA02 to the tail of the
list. IDCSA02 sets the forward chain pointer to zero.
The backward chain pointer contains the address of
the next to last area. The number of bytes in the
storage area is the number of bytes requested plus 16
for the UGPOOL area. The identification from the
calling module is put in the fourth word of the
UGPOOL area. GPLAST is set to the address of the
new storage area. The 24-byte area obtained for a
'xxPG' storage area is treated in the same manner as
all other UGPOOL areas and chained into the
UGPOOL storage area chain. The number of bytes is
24.

IDCSA02

Procedure: IDCSA02

3 IDCSA02 puts the address of the storage area, not the
UGPOOL area, in the calling program at the address
specified by the third parameter.

IDCSA02

Procedure: IDCSA02

4 If SETZERO or SETBLANK was specified as the fifth
parameter, IDCSA02 sets the storage area to zeros or
blanks, respectively. If neither SETZERO or
SETBLANK is specified, the storage is not changed.

IDCSA02

Proceldure: IDCSA02

5 IDCSA02 puts a return code in register 15 and returns
control to the module that issued the UGPOOL
macro.

~ Diagram 5.4.4. UFPOOL Macro
o
o o
CIl
........
<:
CIl

:> g
n
til
til

== n
;.
8-
CIl
n
~
~.
til

s-
00 n·

INPUT

GOT

(optional)

ALL

,

From Diagram 5.0

PROCESSING OUTPUT

Extended DeSCFiption for Diagram 5.4.4

IDCSA02

Procedure: IDCSA02

IDCSA02 examines the list of UGPOOL areas
addressed from GPFIRST to find a match between the
storage identifier supplied by the calling program and
the identifier in the UGPOOL area. If the calling
program specifies ALL as the third parameter, just the
first two bytes of the identifiers are compared so that
every storage area that matches is freed. If ALL is not
specified, IDCSA02 compares four bytes of the
identifiers to find the storage areas to be released.

IDCSA02

Procedure: IDCSA02

2 If a match is found, IDCSA02 removes the UGPOOL
area from the chain and releases the UGPOOL area
with its storage area with a FREEVIS macro. If the
storage identification is 'xxPG', the address and length
of the area to be freed is in the fifth and sixth words of
the area in the UGPOOL storage chain. IDCSA02
issues a FREEVIS for this area. The 24-byte area in
the UGPOOL chain is then freed in the normal
manner.

IOCSA02

Procedure: IDCSA02

3 If the end of the chain has not been reached, IDCSA02
compares the next UGPOOL area. The entire list is
searched for matching identifiers regardless of
whether ALL is specified or not. IDCSA02 returns
control to step 2 until the end. of the chain is reached.

IDCSA02

Procedure: IDCSA02

4 IDCSA02 returns control to the module that issued the
3: UFPOOL macro.
(D

;.
o
Q.

o -o
"0
(D

~ o·
=
~

~ Diagram 5.4.5 PROLOG Macro

o
o
til
<
til

~
n
(\)
til
til

::
(\)

S-
o
Q.

til
(\)

~
~.
til

b
(JO
(i'

INPUT

Re~i .. ter 1

~
It (llISIZDA TD

(~ Byte .. Needed

for Data Area ..

MODID

Re~ister 13

r1 Module As Savc Area

~ in Prcvious Module

AUTOTBL

D

"'-..
I, V

if=>

,.--

From Diagram 5.0

PROCESSING

1. Gets address of G DT.

2. Gets address of storage for
PROLOG.

3. Saves registers in work area.

4. Checks module identification 10

AUTOTBL.

a. If a match is not found, goes
to Step 5.

b. If a match is found, tests
count in AUTOTBL: if count is
I, goes to Step 5: if count is
0, goes to Step 6.

5. Obtains storage.

6. Updates Inter-Module Trace
Table.

7. Returns.

Systcm Adaptn
Work An:a

D
~

Ol'TPl'T

NU11lhcr 01
Bvte~

Module
ILkntifil:atioll

L- _ ~ L Stora!!e Area J
lntn-Module

~----------'Il -I'--J (Tral:c Tahle

Module Idclltifll:atiol

L----- ~ tR_c_'~~'i_,_tc_'r __ I ________ __

Previou .. M()dule'~
Work Area

Module A ..
Idcntifil:atioll

=::
('D

s-
o
Q..

a
o
'g ..,
~ o·
::s
N -~

Extended Description for Diagram 5.4.5

IDCSA03

Procedure: IDCSA03

t The address of the G DT is the first parameter in the
call to every Access Method Services module except
the call to PROLOG. As an example, let's assume
module A gives control to module B. The first thing
module B does is store registers in the save area in
module A. The second thing module B does is obtain
storage for the data in module B. PL/S generates a
GETMAIN macro instruction to obtain the storage.
But GETMAIN doesn't work on DOS. A call to the
PROLOG routine is substituted for the GETMAIN
when module B is compiled on VS. So, instead of
doing a GETMAIN, module B calls PROLOG to get
storage for module B's data areas. At the time module
B gets control, register 1 contains the address of a
parameter list. By convention within Access Method
Services, the first parameter in the parameter list is
always the address of the GDT. When PROLOG gets
control, register 13 contains the address of the save
area in module A. IDCSA03 uses this address to get
the address of the GDT.

IDCSA03

Procedure: IDCSA03

2 The address of the storage area PROLOG uses for its
data areas is in GDTSPR. IOCSA03 uses this address
to establish addressability to the data areas in
PROLOG.

IDCSA03

Procedure: IDCSA03

3 Module B's registers are saved in PROLOG because
module B doesn't have a save area yet. IDCSA03
chains together the save area in module A and the
save area used for module B's registers in PROLOG.

IDCSA03

Procedure: IDCSA03

4 IOCSA03 compares the module identifications in
AUTOTBL with the 4 character module identification
module B passes as the first parameter to PROLOG. If
IDCSA03 does not find a match, control goes to step
5. If a match is found, and module B is IDCSA02,
IDCIOO1, or IDCTP01, IOCSAOI may have already
obtained storage for it. AUTOTBL contains the

address of storage already obtained for IDCSA02,
IDCTP01, and IDCIOOI. IOCSA03 examines the
number of times module B has been called. If the
number is zero, module B is not using the storage
whose address is in AUTOTBL. IDCSA03 does not do
a GETVIS and IDCSA03 gives to module B the
storage from AUTOTBL for module B's data areas.
IDCSA03 adds one to the number of times the module
is called. If the count is greater than zero, the storage
in AUTOTBL is already in use so IOCSA03 must do a
GETVIS. One is added to the number of times the
module is called.

IDCSA03

Procedure: IOCSA03

5 If module B did not get storage from AUTOTBL,
IOCSA03 issues a GETVIS. for the number of bytes
neleded. PL/S-2 always puts the number of bytes in a
constant called @SIZOATO which is the second
parameter to PROLOG. IDCSA03 issues a GETVIS
for the number of bytes in @SIZDATD plus 8 for
header information. If the return code from GETVIS
is nonzero, IOCSA03 issues a UABORT macro.
IOCSA03 puts the total length of the storage area in
the: first word of the header. IOCSA03 puts Module
B's identification from MODID in the second word of
the: header.

IDCSA03

Procedure: IDCSA03

6 IOCSA03 adds module B's identification from
MOOID to the end of the Inter-Module-Trace table.
The first, oldest entry in the table is removed.

IDCSA03

Procedure: IOCSA03

7 IOCSA03 puts module B's module identification in the
first word of module A's save area. IOCSA03 restores
the: registers, with the exception of register one, from
the: work area in PROLOG to be as they were when
module B gave control to PROLOG. Register one
contains the address of the storage module B uses for
its data area. IDCSA03 returns control to module B.

~ Diagram 5.4.6. UEPIL Macro
~

o
o
{Il
........
<:
{Il

> ()

R
~

3:
(1)

;.
&.
{Il
(1)

~ o·
(1)
til

b
(JQ
(i'

Register I

~
It GDT

(optional)

Return Code

Module Identification

Register 13

~
Length

Module Identification

~ Storage Area -
:J

AUTOTBL
i i

I 1
IF

?

~ 1. Obtains storage.
v

~> 2. Checks AUTOTBL for module
identification.

3. Frees storage area.

IIlh:r-MoulIk
Tral:c Tahk

4. Updates Inter-Module Trace Table. "> \;'

MoulIk IUClllifil:alioll

> Rcgi'lcr 15
5. Returns. I I 1 v

3:
(t

;.
&.
S
O
'"g
i
c)"
~

~
VI

Extended Description for Diagram 5.4.6

IDCSA03

Procedure: IDCSA03

Let's assume module A gives control to module B.
Module B completes its processing and is ready to
return control to module A. When module B is
compiled on VS, PL/S generates a FREEMAIN for
exit code. Rather than having one version of all
modules for VS and another for DOS, each module -
with a very few exceptions - issues a UEPIL macro to
return control. See the chapter "Diagnostic Aids" for
an illustration of save areas. The UEPIL bypasses the
PL/S generated FREE MAIN and allows the same
module to operate on more than one operating system.
When module B is ready to return control to module
A, module B issues a UEPIL. UEPIL gets the address
of the storage it is to use for data areas from
GDTSPR. IDCSA03 saves the address of module B's
storage area which is in register 13. IDCSA03 saves
the address of module A's save area, which is obtained
from module B's save area, and IDCSA03 sets the
forward chain in module A's save area to zero.

IDCSA03

2 IDCSA03 compares module B's module identification
against the module identifications in AUTOTBL. If a
match is not found, control is given to step 3. If
IDCSA03 finds a match, the number of times the
module has been called is compared to one. If the
number is one, IDCSA03 will not issue a FREEVIS
but reduces, by one, the number of times the module
has been called. If the number is greater than one,
IDCSA03 has acquired storage other than storage
from the AUTOTBL and this storage must be
released. IDCSA03 subtracts one from the number of
times the module has been called.

IDCSA03

Procedure: IDCSA03

3 IDCSA03 subtracts eight from the address of module
B's storage area to get the address of the header
information. IDCSA03 issues a FREE VIS with the
length of the storage area as specified in the first word
of the header.

IDCSA03

Proce4.-e: IDCSA03
.. IDCSA03 puts the address of module A's save area in

n~gister 13. IDCSA03 removes the oldest module
identification entry in the Inter-Module-Trace table.
IDCSA03 adds module A's module identification to
the end of the Inter-Module-Trace table. IDCSA03
obtains module A's module identification from the
first word of the save area where module A saved
n:gisters when it was given control.

IDCSA03

Procledure: IDCSA03

5 IDCSA03 restores all registers, except register 15,
f .. om module A's save area. Register 15 contains the
rc~turn code from module B, if module B provides it, or
zlero. IDCSA03 returns control to module A.

~ Diagram 5.5.1. UTIME Macro
0\

o
o
til
<:
til

~
~
rIl
rIl

s::
~

S-o
Q.

til
~

~
~.
rIl

b
(J'Q
(i'

INPUT

tGDT

(optional)

(optional)

Data Format Indicator

Date
Variable

Time
Variable

f
From Diagram 5.0

PROCESSING

1. Does initialization.

2. Checks data format indicator.

3. Issues TIME macro.

4. Adjusts days per month.

s. Formats time and date, if specified.

6. Returns.

OUTPUT

Register I

E-· ~
tGOT •

Oate

Time

::
~ :;.
o
0.
o -o
"0
~

~ o·
::s
N

::::i

Extended Description for Diagram 5.5.1

IDCSA02

Procedure: IDCSA02

1 IDCSA02 calculates the number of arguments passed
to UTIME. IDCSA02 passes the input parameter list
and a variable containing the number of arguments to
IDCSA05.

IDCSA05

Procedure: IDSCA05

2 If the caller incorrectly specifies the data format
indicator, IDCSA05 issues a UABORT macro.

IDCSA05

Procedure: IDSCA05

3 If the caller specifies FORMAT, IDCSA05 specifies a
GETTIME macro. If CLOCK is specified, IDCSA05
issues a STCK instruction. If the caller does not
indicate the data format, IDCSA05 issues a COMRG
macro.

IDCSAOS

Procedure: IDCSA05

4 IDCSA05 adjusts the number-of-days-per-month table
for leap years. If the year returned by the GETTIME
macro is divisible by four, IDCSA05 sets the number
of days in February to 29.

IDCSAOS

Procedure: IDCSA05

5 If the caller specifies FORMAT, IDCSA05 formats the
time as HH:MM:SS, where HH is hours, MM is
minutes, and SS is seconds. The data is in decimal
digits. If the date was requested and format specified,
IDCSA05 formats the date as MM/DD/YY, where
MM is the month, DD is the day, and YY is the year.
The data is in decimal digits.

If CLOCK is specified, IDCSA05 returns the time
from the time-of-day clock in microseconds. If the
date is requested and no data format is indicated, or
CLOCK is specified, IDCSA05 returns the date in
packed-decimal format, OOYYDDDF, where YY is the
year, DDD is the day, and F is the sign digit.

IDCSA05,IDCSA02

Procedure: IDCSA05, IDCSA02

6 IDCSA05 moves the time and date to the calling
program at the addresses specified by parameters two
and three. IDCSA05 returns control to IDCSA02,
whil:h returns control to the module that issued the
UT1ME macro.

=~"tl
,<~I\l

0-1 ~.~
Z~o
r-'o.-
tI.I>tI.I
Z"O -<
N2.:~ tNOo
VI \0 VI
VI ~ 0"1
o-~
~w
-...J

~ Diagram 5.6.1. ULISTLN Macro

o
o
en
.........
<:
en
:>
(')

~
CIl
CIl

3::
(1)

S-
o
Q..

en
(1)

~ c:i.
(1)
CIl

t'""
o

(JQ
c:i.

INPUT

Register I

Argument List

T T

From Diagram 5.0

PROCESSING OUTPUT

1. Determines number of arguments. L1STPTR

L T
L1STLN

I Nu~ber of Arguments

a:
~ s-
o
0.
o
o
"0
~ ..,
a o·
:3

N

\0

Extended Description for Diagram 5.6.1

t Unlike most Umacros ULISTLN generates in-line
code that performs the function rather than a Branch
to another module. The code stores the address of the
parameter list in register 1 in a full word named
LISTPTR. The code seaches the argument list looking
for the end of the list. The last argument in the list has
a high order bit of one. The number of arguments in
the list.is put in a byte named LISTLN. If the end of
the argument list is not found after 255 arguments, the
search stops and LISTLN contains 255. Control
continues with the next instruction in the program.

~ Diagram 5.6.2. USA VERC Macro
o
o
o
CIl
.........

-<
CIl

> (")
(")
(l)
til
til

== (l)

Er-
o
0.
CIl
(l)

~ n·
(l)
til

t""'
o

(JQ

n·

I Register 15 1
I I

... --~--- ---
T 1 > 1. Copies contents of Register 15. > TESTRC

I I

I

I
I

I-.

~
~ e;-
o
Co

S
O
"0
~
"1 a o·
='

~

Extended Descriptio.n for Diagram 5.6.2

1 Unlike most Umacros USA VERC generates in-line
code that performs the function rather than generating
a Branch to another module. The code copies the
contents of register 15 which must be named
RTNREG to a halfword named TESTRC. Control
continues with the next instruction in the program.

~
o
~
~ rn

i
CIt

I
~
~
if
CIt

b
~. n

"'8111 5.7.1. UENQ Mae1!e

.........

Diapam 5.0

Checks validity of input parameters.

Issues USE macro with caller's parameters.

Returns.

~

f' a ::r
&.
So
o
~
~ cr ::s

~
1.1.1

Extended Description for Diagram 5.7.1

IOCSA08

Procedure: IDCSA08

t IDCSA08 verifies that the caller's input parameters
are valid. The second parameter may be either SHR or
EXCL, the third parameter, WAIT or NOW AlT. Any
other keyword results in a UABORT with a code of
40. The fourth parameter, if specified, is ignored.

IDCSA08

Procedure: IDCSA08

1 Depending on the above options required by the caller
(SHR EXCL, WAIT NOWAIT), the appropriate USE
macro is issued.

IDCSA08

Procedure: IDCSA08

3 IDCSA08 sets the return code to zero if the WAIT
option was specified by the caller; otherwise IDCSA08
sets the return code to that returned by the USE
macro. IDCSA08 returns control to the module that
issued the UENQ macro.

N
N
~

o
o
til
........
<:
til

~
(Il
(Il

~
(11

;.
o
Co
til
(11

~ §.
(Il

b
OQ o·

Diagram 5.7.2. UDEQ Macro

From Diagram 5.0

INPUT PROCESSING OUTPUT

1. Issues RELEASE macro.

GDT 2. Returns.

a::
o
S-
o
0-
o

Extended Description for Diagram 5.7.2

IOCSA08

Procedure: IDCSA08

IDCSA08 issues a RELEASE macro to release control
of the resource.

IOCSA08

Procedure: IDCSA08

2 IDCSA08 returns contol to the module that issued the
UDEQ macro.

l:
n ;.
o
Q..

o -o
'g
e o·
::s
N
tv ...a

I/O Adapter Visual Table of Contents

I 6.1.1

Build
IOCSTR

UOPEN
Overview

6.1

6.1.2

Build
Control
Blocks

1 6.2

UCLOSE

I 6.1.3

Check
Open

~ L:::

6.0

I/O Adapter
Overview

UGET

6.4 I
UPUT

6.7

~
6.S

UCOpy

r 6.6 I
UVERIFY

N
N
00

o
o
CIl
.........
<:
CIl

~
~
til
til

8:
n
S-
o
Q.

CIl
n
~ §.
til

t"'"
o

OQ
r;'

Diagram 6.0. I/O Adapter Overview

INPUT

Register I

ltGDT i I A,.ument Li,ts J

From Module

Performs function indicated by
macro:

• UOPEN. ~
See Diagram ···U

UCLOSE. _~
See Diagram-u

•

UPOSIT. ~
See Diagram-u

•

UGET. ~
See Diagram-u

•

UPUT. ~
See Diagram---u

•

UCOPY. ~
See Diagram---u

•

UVERIFY. ~
See Diagram---u

•

UIOINFO r:-:'\.
See Diagram-v

•

2. Returns.

OUTPUT

IOCSTR

Register 15

a::
n s-o
0-

s..
o

"CI n ..,
~ o·
::s
N
N
~

Extended Description for Diagram 6.0

IDCIOOI

Procedure: IDCIOOI

1 The type of I/O processing depends upon the Umacro
issued:

• The UOPEN macro opens from one to four data
sets.

• The UCLOSE macro closes from one to four data
sets that were opened by the I/O Adapter. SYSIPT
and SYSLST are not closed with this macro, but at
processor termination with the UIOTERM macro.
This is done to consolidate termination work.

• The UPOSIT macro is used to position to a record
in a data set on a direct access device. The type of
positioning depends upon the data set
organization:

For VSAM data sets, the positioning may be by
key, relative byte address (RBA), or relative record
number.

For ISAM data sets, the positioning is by key only.

• The UGET macro is used to obtain a record from a
data set opened with a UOPEN macro. If the data
set is being processed with keys - ISAM or indexed
VSAM - the key is returned with the record. If the
data set is being processed with control intervals -
VSAM with block processing - a control interval is
returned. If a relative-record data set (RRDS) is·
being processed, a relative record number is
returned. Only if the VSAM data set is opened for
update processing may the record be modified in
the buffer.· Data sets opened for update processing
must be processed with a UGET followed by a
UPUT on the same record just obtained. This is
true regardless of whether or not the record has
been changed. A UPUT must be issued after each
UGET, for UPDATE, even if it is the last UGET
before the data set is closed. Update processing is
used when the REPLACE option has been
specified for the REPRO function.

• The UPUT macro is used to write records to a data
set that was opened with the UOPEN macro.
Multiple records can be written with one UPUT. If
the data set is VSAM opened for block processing,
the record must be a control interval. A UPUT
must be issued for each UGET on a VSAM data set
opened for update.

• The UCOPY macro copies one data set to another
dalta set if both data sets have been opened with the
UOPEN macro. The input data set may be
positioned to a starting point with the UPOSIT
macro before the copy takes place. The UCOPY
copies all records from the input data set starting at
the beginning record and continuing until
end-of-file or a terminating error. If the output data
set has records before the UCOPY, the following
applies:

a. If the data set is VSAM with records in keyed
sequential or relative record format, the input
records are merged with the existing records.

b. If the data set is VSAM with entry sequential
record format, the input records are added after
the existing records.

c. If the data set is non VSAM, the input records
are written over the existing records. The
existing records are lost. ISAM data sets cannot
be used for output for UCOPY.

• The UVERIFY macro insures that the address for
the end-of-file for the VSAM data set in the VSAM
catalog is the same as the end-of-file address on the
I/O device. If the two addresses are not identical,
the VSAM catalog changes to match the I/O
device. The data set must be VSAM opened for
control interval output processing. A return code
from the UOPEN macro indicates that the data set
may need verification. The FSR should ignore the
return code form UOPEN and issue the UVERIFY
in all cases except where a zero 10CSTR address is
returned from UOPEN. At UOPEN, VSAM just
checks the VSAM catalog for information about
the data set; it does not check the physical data set.
If the UOPEN returns a code saying that there is
no data in the data set, the physical data set mayor
may not have data.

• The UIOINFO macro is used to obtain information
concerning a data set. The macro analyzes an
option byte passed by the caller to determine what
kind of information is required. The types of
information which may be requested are:

Data-set name
Volume serial list
Dlevice type
Time stamp

The caller may provide UIOINFO with a work area
into which the requested information should be
placed or he may provide an UGPOOL ID. In the

latter case UIOINFO obtains the required amount
of storage. (The caller is responsible for freeing this
storage.)

The data requested is formatted into the return
area and control is returned to the caller.

IDCIOOI

Procedure:]IDCIOOI

2 A return code is put in register 15. If the :return code is
nonzero, error messages are written. Control returns
to the module that issued the Umacro.

to.)
1M
o
o
o en
< en

[
~ ...
[
en ...
~
~.

b
Gel
fr

DiagFam 6.1. UOPEN Macro

INPUT

Addresses nf
I In 4 OPNAGLs

From Diagram 6.0

PROCESSING

1. Builds IOCSTR for each
OPNAGL. Issues LOCATE
if OPEN is for a ca~

See Diagram --0

2. Builds control block required
to open the data s~

See Diagram --0

3. Opens the data sets.

4. Checks for successful open.

Sec Diagram --B
5. Returns.

OCARRAY r-- ··IOCS··

IOCSTR

(OeSEX

File Idenlificalinn

Access Method
Module

OPNAGL

Register IS

[

~
(D

ET-
o
0-
o
o
"0
(D
""I

a o·
::s
N
w

Extended Description for Diagram 6.1

IDCIOOl, IDCIOO2

Procedures: IDCIOOP, OPENRTN, DSDATA

1 IDCIOOP builds an internal array (OCARRAY) to
describe the open to be performed. The rest of step 1
and all of step 2 are repeated for each open argument
list (OPNAGL) that the calling module give to the
UOPEN macro via register 1. OPENRTN increments
the identifier in 10DSID by 1 to form a unique
identifier for the data set. OPENRTN uses the
identifier in a UGPOOL macro to obtain storage for
an 10CSTR and 10CSEX for the data set and file
identification save area. OPENRTN puts the 10CSTR
into the chain of 10CSTRs addressed from 10DIOC in
the I/O Adapter Historical Data Area, 10DAT A.
DSDA T A loads the VSAM IKQVLAB routine with a
CDLOAD macro. The FILENAME and the address of
a work area are passed as arguments. IKQVLAB reads
the LABEL CYLINDER and returns information
about the file in the work area. DSDA T A saves the
FILE ID and file organization. If the OPNAGL
indicates that the open is for a catalog recovery area
(CRA), the DSDA T A routine generates a data set
name for the CRA, namely,
CAT ALOG.RECOVERY.AREA. VOL.xxxxxx where
xxxxxx is the volume serial number of the CRA's first
extent.

If the OPNAGL indicates that the open is for a
catalog, OPENRTN issues a catalog Locate requesting
the return of the catalog ACB address. Control is then
passed to step 5.

If the open is not for a catalog, control is passed to
Step 2.

IDCIOO2

Procedures: BUILDACB, BUILDDBK
2 If the data set organization is VSAM, BUILDACB

builds an EXLIST and an ACB control block.
BUILDACB puts the addresses and length of the
control blocks in the IOCSEX. If the data set
organization is nonVSAM, BUILDDBK loads
a module containing a DTF control block and the
Access Method Module required to process the data
set. BUILDDBK uses a table of module names and
data set characteristics to find the right module to
load. BUILDDBK updates the DTF with information
from the OPNAGL. BUILDDBK uses a UGPOOL
macro to obtain storage for subsequent GET/PUT

opt:rations. If the record format is spanned, one
storage area is obtained, otherwise, two storage areas
are obtained. The address of the ACB or DTF is put in
IOCCBA in the IOCSEX.

IDCI002

Procedure: OPENRTN

3 OPENRTN issues one OPEN macro for each ACB or
DTF built in step 2. There are no exit routines. If
OPEN detects an abend condition, OPEN abends.

IDCIO[)2

Procedlllres: OPENRTN, CKNONOP, BUILDRPL

4 OPENRTN and CKNONOP test each data set for a
successful open. If the data set is VSAM, OPENRTN
tests the results of the OPEN. If the data set is
sequential nonVSAM, CKNONOP checks the open
flags in the DTF. No checking is done on ISAM or
device independent data sets. If the data set opened
successfully, OPENRTN and CKNONOP set
IOCMSGOP in the 10CSTR and IOCFLGOP in the
10CSEX. If address or control interval processing is
not specified in the OPNAGL for a VSAM data set,
OPENRTN determines if the data set has an index. A
second test is performed to determine if the data set is
a Relative Record data set (RRDS). For all VSAM
data. set, OPENRTN obtains data set information and
BUILDRPL builds a RPL to process the VSAM data
set. For an ISAM data set, CKNONOP issues a SETL
macro to position to the first record. CKNONOP
obta.ins data set information from the ISAM DTF and
saves it in the IOCSTR.

IDCI002, IDCIOOI

Procedures: OPENRTN, DSDATA, BUILDACB,
BUILDRPL, CKNONOP, IDCIOOP

5 If any errors occurred, any of the procedures that
check for error conditions sets a nonzero return code
in register 15. IDCIOOP returns control to the module
that issued the UOPEN macro.

~ Diagram 6.1.1. UOPEN Macro - Build IOCSTR
N

o
o
fIl
<:
fIl

> o
~
III
III

a::
n
S-o
Q.

fIl
n
:;!
§.
III

b
(JQ

n·

INPUT

IODATA

~
\=ala ScI U,l

i

Label Cylinder

....
~

.....

~

From Diagram 6.1

PROCESSING

1. Checks if request is to open SYSIPT
or SYSLST.

2. Obtains storage for IOCSTR.

3. Calls external routine if data set
is externally controlled.

4. Obtains data set identification and
data set type.

s. Issues LOCATE if OPEN is for a
catalog.

OUTPUT

JJ~
]]

Data Identifier

"IOCS"

IOCSTR

IOCSEX

File Identification

~
CD
;.
o
0.

S
O
"'0
CD

~ o·
::s
N
~
~

Extended Description for Diagram 6.1.1

IDCIOOl

Procedure: OPENRTN

t OPENRTN tests the OPNAGL for an open request
for SYSIPT or SYSLST. SYSIPT is tested in two ways:

• SYSIPT is the Dname in the OPNAGL.

• OPNTYPSI flag in OPNAGL is on.

SYSLST is tested in two ways:

• SYSLST is the Dname in the OPNAGL.

• OPTYSO flag in OPNAGL is on.

If the file is SYSIPT, OPENRTN checks 10DICS for
an address of an 10CSTR already built for SYSIPT.1f
an 10CSTR is built, SYSIPT is already open (or an
open was attempted), and OPENRTN returns the
address of the 10CSTR for SYSIPT in the area
addressed by OPNIOC in the OPNAGL. No further
processing is done on SYSIPT. If the data set is
SYSLST, OPENRTN checks 10DOCS for an address
of an 10CSTR already built for SYSLST. If an
10CSTR is built, SYSLST is already open and
OPENRTN returns the address of the 10CSTR for
SYSLST in the adrea addressed by OPNIOC in the
OPNAGL. No further processing is done on SYSLST.

If the data set is not open, continue to Step 2.

IOCIOOl

Procedures: OPENRTN, PRINTMSG

2 OPENRTN increments by 1 the file identifier in
10DSID to form a unique identifier for the data set.
OPENRTN issues aUGPOOL macro with the file
identifier to obtain storage for the 10CSTR plus 4
bytes for the characters 'IOCS', the 10CSEX, and the
file id. file id is the name of the data set. Note: the
file identifier that the I/O Adapter creates is different
from the file id. If storage is not available,
PRINTMSG writes a message. OPENRTN chains the
new 10CSTR to the last 10CSTR in the chain. If the
data set is SYSIPT or SYSLST, OPENRTN saves the
address of the 10CSTR in the 10DATA. OPENRTN
checks the requested processing of the data set
specified in OPNOPT in OPNAGL for input, update,
or output, and copies it into the 10CSTR. Input is the
default. The OPNAGL is used to pass information to
the I/O Adapter in requesting a data set be opened.
Information from the OPNAGL is placed in the
10CSTR and 10CSEX which are then used by the I/O

Ad:apter to control processing of the data set once it is
ope:ned. The cross reference at the end of this
Extended Description shows how OPNAGL
information is transposed into the 10CSTR and
10CSEX.

IDCIOOl

Procedure: OPENRTN

3 If the invoker of Access Method Services supplied a
list of TLBL/DLBL names that he wants to control,
the address of the list is in 10DXTN. If a list exists,
OPENRTN compares each entry in the list with the
Dn:ame in OPNDDN in OPNAGL. If a match is
found, OPENRTN puts the address of the external
routine in 10CXAD. OPENRTN also builds a
parameter list for the external routine and puts the
address of the first parameter in the list in 10CXPM.
OPENRTN then gives control to the external routine
to clio the open. For lack of any information about the
extc~rnal data set, OPENRTN sets the 10CSTR to
indicate the data set is nonVSAM with variable length
records and logical record length of 32,760. This does
not restrict the type of data sets that can be externally
controlled. It is just to make the data set appear as
something to the FSR that requests the data set be
used. If a data set is not externally controlled, control
continues with step 4.

IDCIOIn

Procedures: DSDAT A, PRINTMSG

4 If the data set is not SYSIPT or SYSLST, information
must be obtained. DSDATA issues a CDLOAD macro
to load IKQVLAB, the VSAM Read Label Cylinder
module. If the return code from CDLOAD is
non-zero, DSDATA issues a UABORT macro. If the
return code is 12 (indicating insufficient storage),
DSDATA sets the UABORT code to 28, otherwise
DSDATA sets the UABORTcode to 64. DSDATA
givc::s control to IKQVLAB. If the return code is
nonzero, PRINTMSG writes a message and the
UOPEN for the data set terminates. If the return code
is zc~ro, IKQVLAB placed information about the data
set iin a work area. Data set organization and file id
are set in the 10CSTR and 10CSEX. For SYSIPT and
SYSLST the file id is assumed to be the FILENAME
and the data set organization is assumed to be physical
sequential with record size of 80 for SYSIPT and 121
for SYSLST. If the OPNAGL specifies device type of
2400, the data set is assumed to be a tape and the
information returned by IKQVLAB is from a TLBL

statement. If the device type is not 2400, DSDAT A
checks the DLBL for ISAM or VSAM. If neither
ISAM or VSAM is specified, the data s,et is assumed to
be physical sequential nonVSAM. For all data sets,
DSDA T A puts the file id in the file id,entification
area addressed from the IOCSTR. If the OPNAGL
indicates that a catalog recovery area is being opened,
DSDA T A sets VSAM data set organization in the
10CSTR. If the OPNAGL indicates that a catalog
recove:ry area is being opened, DSDATA generates a
data-set name for the CRA. The name generated is:
'CATALOG.RECOVERY.AREA.VOL.xxxxxx "
where xxxxxx is the volume serial number for the first
CRA c~xtent.

IDCIOin

Procedures: OPENRTN, PRINTMSG

5 If the data set to be opened is a VSAM catalog, as
indicated by IOCINFCT, a VSAM Locate is issued via
the System Adapater UCATLG macro .. OPENRTN
builds a CTGPL and one CTGFL. The name used in
the Locate (pointed to by CTGCAT and CTGENT) is
the name as returned from IKQVLAB :and contained
in LABDSN. CTGPSWD is set equal to OPNPW A if a
password has been specified via the OF'NPW A field.
The address of the catalog dname passc~d in OPNDDN
is placed in CTGDDUC. The CTGFL requests the
return of the catalog ACB address, CAT ACB. If the
return code is nonzero, PRINTMSG wtites a message.
For all VSAM catalogs, control passes Ito the final
phase of UOPEN for VSAM data sets.

~
;.
&.
So

~
i
0'
=
N
~

""

8PNAGL I8CSTa/IeCSEX Czoss RefereMe TaMe

8PNAGL

OPNOPTIN
OPNOPTOT
OPNOPTUP
OPNOPTBK
OPNOPTKS
OPNOPTCR
OPNOPTDR
OPNOPTSK.
OPNMODRS

OPNMODAX

IOCSTR/I6CSEX

IOCMACIN = '1'
IOCMACOT == '1'
IOCMACUP = '1'
IOCMACBK == '1'
IOCMACCR == '0'
IOCMACCR == '1'
IOCMACDR == '1'
IOCMACSK == '1'
Not required

Not required

Bescripdon

Input processing
Output processing
Update processing
Control Interval pro(:essing
Keyed processing
Addressed processinl~
Direct processing
Skip sequential procc:ssing
Open reusable data set
with reset
Open alternate index of
path only

OPNMODUB IOCMODUB == '1' User buffers
OPNMODRP IOCMODRP == '1' Replace processing
OPNTYPXM IOCMODXM == '1' Export/Import
OPNTYPCI IOCINFCT == '1' Open catalog
OPNTYPRA IOCRCVRA == '1' Open catalog recovery area
OPNTYPRV IOCRCVXM == 'I' Recovery bit forVSAM

If OPNOPTBK or OPNOPTKS is not specified, IOCMACCR is selt to '1',

IV
\.;J
0'1

o o
CIl
.........
-<
CIl

> (')
(')
~

~

~
~

S-o c.
CIl
~

~
(i'
~
til

r
o

OQ
(=i'

Diagram 6.1.2. UOPEN Macro - Build Control Blocks

'Y

OPNAGL 1. For VSAM data sets, continue to
Step 2; for nonVSAM data sets,
go to Step 4.

IOCSTR ~ 2. Obtains storage for control blocks. ...,/
Builds EXLST.

3. Builds ACB.

OPNAGL "> 4. Builds compare word and finds ...
device type data.

IOCSTR s. Checks for valid blocksize and

D
unsupported device.

.A

6. Loads DTF and Access Method
~ I

module.

7. Obtains storage for I/O areas.

8. Updates the DTF.
-~

....-....

EXLST

.... C :=> v

,

~ ACB
./

C
....

Compare Word

I I
~ .,,/ Device Type Data

I I

DTF
'" :=>

Access Method
Module

~
I/O Areas

./'

C
...

3:
(I)

s-
o
0..

a
o
"0
(I) ..,
~ o·
:l

N
t.j

-....J

Extended Description for Diagram 6.1.2

IDCIOO2

Procedure: BUILDACB

For VSAM data sets continue to step 2; for nonVSAM
data sets go to step 4.

IDCIOO2

Procedure: BUILDACB

2 BUILDACB issues a UGPOOL to obtain storage for
the three VSAM control blocks: EXLST, ACB, and
RPL. If OPNSTRNO is 0, BUILDACB obtains storage
for one RPL; otherwise the value of OPNSTRNO
determines the number of RPLs required. If the return
code from UGPOOL is non-zero, BUILDACB sets an
error condition and terminates UOPEN processing.

BUILDACB first builds an EXLST control block
issuing the EXLST macro. Only the EODAD exit will be
taken if GETVSAM encounters an end-of-file. LERAD
and SYNAD exits are specified, however, but they are set
inactive. BUILDACB puts the pointer to the EODAD
exit routine into the exit list. BUILDACB puts the address
and length of the EXLST control block in IOCEXA and
IOCEXL respectively.

IDCIOO2

Procedure: BUILDACB

3 BUILDACB builds an ACB control block by issuing
the ACB macro. The ACB macro generates IN, SEQ,
ADDR for the MACRF field. These attributes are
overriden with information contained in the
IOCSTR/IOCSEX or OPNAGL.

Bit Referenced

IOCMACOT = '1'
IOCMACUP = '1'
IOCMACBK = '1'
IOCMACCR = '0'
IOCMACDR = '1'
IOCMACSK = '1'
IOCMODUB = '1'
OPNMODAX = '1'
OPNMODRS == '1'

ACBMACRF =
OUT
OUT
CNV
KEY
DIR
SKP
UBF
AIX
RST

In DOS, the CATALOG OPEN option is never
specified since catalogs are opened as described in step
5, Diagram 6.1.1. .

BUILDACB requests address processing if the data set
organization (indexed or non-indexed) is not known.

If the type of processing is set in the OPNAGL,
BUILDACB uses it. The VSAM open routine will fill
in the correct organization, if the specified
organization is wrong. If the organization is not
specified, address is set as the default because VSAM
defaults to indexed and gives an error if the data set is
not indexed. BUILDACB puts each password in an
array of passwords to save the passwords until OPEN
time and puts a pointer to the password in the ACB.

If IOCRCVRA='I', BUILDACB specifies the
CRA=UCRA option for opening a catalog recovery
area. Also, if IOCRCVRA=' 1', the third parameter
passed to UOPEN is not an address of an OPNAGL;
rather it is an address passed by EXPORTRA. The
contents of this address must be inserted into the
ACBUAPTR field of the ACB.

If the value of OPNSTRNO is greater than 1, BUILDACB
moves the value of OPNSTRNO to the ACB. The address
and length of the ACB are put in IOCCBA and IOCCBL,
respectively. If OPNMODRC in the OPNAGL is 1,
BUILDACB puts the address of the ACB in IOCCBP.

IDCI002

Procedlllre: BUILDDBK

4 A noOn VSAM data set cannot be opened as a catalog or
opened for update. If either of these two conditions
exist, BUILDDBK does not build control blocks for
the dat'a set. BUILDDBK builds a compare word,
COMPWORD with data set organization, open
options and record format. It saves the blocksize,
record size, and the length of the required I/O areas.
The information is in the OPNAGL, IOCSTR, and
IOCSEX. The Access Method Module uses the I/O
areas. The length of the I/O area is the blocksize plus
8.

IDCI002

Procedure: BUILDDBK

5 BUILDDBK compares the device type specified in the
OPNAGL against the table of allowable devices,
DEVTABLE. When a match is found, the track
length, constants used to determine the number of
fixed length blocks per track, and the device code
defined inthe DTF are saved. If a device type is not
specified in the OPNAGL, '23140000' is used as a

default. The data set is not opened and an error
message is written if the following conditions are
found:

Blocksize in OPNAGL is less than 1.

Record size in OPNAGL is greater than 32,767.

Record format is fixed and blocksize is not a multiple
of recoOrdsize.

A non-supported device is specified.

IDClOO2

Procedur~!: BUILDDBK

6 BUILlDDBK compares COMPWORD against a table
of allowable data set characteristics and corresponding
load module names, DOSACC. When .a match is
found,. the length of the load module is used to obtain
storage for the load module with a UGSPACE macro.
BUILDDBK loads the module with a LOAD macro
that puts it in the storage just obtained. The load
modules are named IDCDIxx where xx is 01 through
15 and contain one or two DTFs along with the Access
Method Modules needed to processs th,e data set.

IDCIOO2

Procedures: BUILDDBK, PRINTMSG

7 BUILDDBK issues a UGPOOL macro to obtain
storage! for the'l/O areas. The Access Method Module
uses the I/O areas as buffers. BUILDDBK puts the
address of the storage in 10CWKA. If BUILDDBK
finds no match in DOSACC or cannot obtain storage,
the data set is not opened and PRINTMSG writes a
message. If BUILDDBK cannot obtain storage for the
load module, it issues a UABORT macro.

1 DC 1002

Procedure:: BUILDDBK

8 BUILDDBK updates the DTF with data set
characlteristics from the OPNAGL. Data set
characteristics are record format, record size,
blocksize, and device type. BUILDDBK updates the
CCWs with the length of the data to get or put and the
address of an I/O area.

N
V.)

00

o
o
{J')
...........
<:
{J')

> (')
(')
(11
{I}
{I}

a::
(11

;.
o
Q.

{J')
(11

~ o·
(11
{I}

t""
o

(JO o·

Diagram 6.1.3. UOPEN Macro - Check Open

:>r VSAM data sets, continue to
:ep 2; for nonVSAM data sets,
• to Step 6.

IOCSTR
:lecks for successful open.

TI
~termines type of processing.

TI RPL

btains data set information.

lilds an RPL.

Data Identifier

Work Area

DTF

btains ISAM data set characteristics
ld positions to first record.

IOCSTR

b.ecks for successful open.

:::
CD ;.
&.
S
O
'g
a
c)"
::s
N
~
'10

Extended Description for Diagram 6.1.3

IDCIOO2

Procedure: OPENRTN

1 For VSAM data sets continue to step 2; for nonVSAM
data sets go to step 6.

IDCIOO2

Procedure: OPENRTN

2 OPENRTN checks the ACBOPEN flag if the open
was successful. If the open was successful, OPENRTN
sets flags in the 10CSTR and 10CSEX to indicate that
the data set can be used and that it must be closed
when finished.

IDCIOO2

Procedures: OPENRTN

3 OPENRTN makes another check to determine if the
opened object is a path. If a path has been opened,
keyed processing is assumed. If REPLACE processing
has been specified for a path, PRINTMSG writes an
error message. If the open object is not a path, the
10CSTR does not specify control interval or address
processing, the type of processing is determined by
checking the index portion of the file. If there is an
index portion, keyed processing will be used. If there is
no index portion, the type of processing is set to
address processing. OPENRTN next checks the ACB to
see if the data set is RRDS, if so, OPENRTN sets
IOCMACCR='O' (keyed) and IOCMACRR='l'. Thus, for a

KSDS
ESDS
RRDS

IDCIOO2'

10CMACCR == 0,
10CMACCR == I,
10CMACCR == 0,

Procedures: OPENRTN, PRINTMSG

10CMACRR == 0
10CMACRR == 0
10CMACRR == 1

4 OPENRTN obtains the ACB error code, logical record
length or control interval, high-used RBA, key length,
and relative key position. If the data set did not open,
only the error code, not the data, is obtained, and
PRINTMSG writes a message. If the data set opened
successfully, OPENRTN moves the ACB information
to the 10CSTR.

IDCI()(]12

Procedllll'es: BUILDRPL, PRINTMSG, OPENRTN

S For any VSAM data set that is open, BUILDRPL
builds a request parameter list (RPL) by issuing the
RPL macro. Input work areas are required if the data
set is opened for input or update processing.
BUILDRPL issues a UGPOOL macro with the file
identification to obtain storage for the maximum
length record or one control interval for control
interval processing. If 10CMODUB=='I', the
BUILDRPL procedure of IDCI002 will not issue a
UGPOOL to obtain storage for an I/O area for input
or update processing. In subsequent UGET requests
the FSR will indicate his own buffers in 10CWORK.

If IOCMODXM== 'I' and 10CMACRR==' 1 " indicating
EXPORT/IMPORT and RRDS, BUILDRPL will get
an extra four bytes for the work area (IOCWKA) if
the data set is input (IOCMACIN == 'I '). This extra four
byte:s will be utilized in later UCOPY processing for
exporting a relative record data set. The work area
address specified for the RPL is the input work area
plus 4 (IOCWKA+4). If no space is available for
the work area, BUILDRPL sets an error return
code, PRINTMSG writes a message, and OPENRTN
turns off the open flag in the IOCSTR.

BU]lLDRPL generates an RPL via the RPL macro and
initializes the RPL with the address of the ACB,
options, work area address, and maximum length of a
data record. If 10CMACRR=='I', the OPTCD will
indicate 'KEY'. If the RRDS is to be processed for
output, 10CMACOT==' 1 , or 10CMACUP=='I',
OPTCD will indicate 'SKP'. This will cause output
RRDS to be processed in skip sequential mode.

The: RPL macro generates KEY, SEQ, NUP for the
OPTCD field. These attributes are overridden with
information indicated in 10CSTR/IOCSEX as
follows:

IOCSTR/IOCSEX
10CMACUP==' 1 ,
10CMACDR=='I'
10CMACSK==' I'
10CMACCR==' 1 ,
10CMACBK=='I'

RPLOPTCD==
UPD
DIR
SKP
ADR
CNV

The length of the RPL times ACBSTRNO is stored in
IOCRPL. If ACBSTRNO is greater than 1, the first
RPL is copied to each additional RPL area.

IDCIOO2

Procedures: CKNONOP, PRINTMSG

6 For ISAM data sets, CKNONOP obtains the true file
block ll~ngth, key length and relative key position from
the DTF after the file is open. If the tru~: block length
is greater than the block length in the OPNAGL,
PRINTMSG writes an error message, and CKNONOP
turns off the open flag in 10CSTR. This is an error
condition because ISAM open routines build their own
CCW with the real data set characteristics obtained
from the DSCB. If the I/O area for the data set is not
large enough for a physical block, the block will
overlay storage not belonging to the I/O Adapter. If
the trul~ block length is equal or less than the value in
the DTF, CKNONOP puts the values from the DTF in
the 10CSTR. CKNONOP issues a SETL macro to
position to the first record in the data set.

IDCIOO2

Procedure:: CKNONOP

7 CKNONOP checks the DTF open flags for sequential
data sets. There are no open flags for ISAM or device
independent data sets like SYSIPT and SYSLST. If the
open flags are set for a sequential data set or tape data
set, CKNONOP sets flags in the 10CSTR and
10CSEX. CKNONOP always sets open flags for
ISAM and device independent data sets" If the DTF
open flag is not set for a sequential data set,
PRINTMSG writes an error message, and CKNONOP
sets an error return code.

~
o o
m

~
i
~

rs:: o ;.
&.
m o
~ §.
rIJ

b
'B.
n

Diagram 6.2. UCLOSE Macro

INPUT

tGDT

Addresses of
1 to 4 IOCSTRs

Open Data Sets "'...J

From Diagram 6.0

1. Obtains IOCSTRs to close.

2. Builds list to close. (If the IOCRCVCL
----'"----'

flag is on in IOCSEX, skip to step 7.) ---r--"""

3. Closes data sets.

4. Checks for successful close (VSAM
data sets only.)

5. Frees module storage for non-
VSAM data sets.

6. Frees control blocks and work area
storage for each data set. Removes
IOCSTR from chain for each data
set.

7. Returns.

OCARRAY

IOCSTR Pointers

DTF / ACB Pointers

I

II 1

OUTPUT

DTF

D
Register 15

I

~ ~:,..O
,<(1)~

...., ::.~
z~o rc.
m;J;.m z-o -<
N2:~ tNOo
VI~VI
VI ~ 0-.
o-~
~~
-....J

s::
~

;.
o
c..
o -o
'e
~
'"1

a o·
=
N

~

Extended Description for Diagram 6.2

IOCIOOI

Procedure: IDCIOCL

1 IDCIOCL puts the addresses of IOCSTRs in
OCARRAY. Even if the address is zero it is put in
OCARRAY. The address will be zero if a UOPEN was
issued against a data set, but the IOCSTR could not be
built. IDCIOCL sets the type of operation to "Close"
in OCA TYP in OCARRA Y.

IOCIOO2

Procedure: CLOSERTN

2 Only a maximum of four data sets are closed with any
one UCLOSE macro. CLOSERTN examines
o CARRA Y for the addresses of IOCSTRs to close. If
the address of an IOCSTR is not zero and CLOSE
ALL is not requested, CLOSERTN checks the data set
for SYSIPT and SYSLST. If the data set is SYSIPT or
SYSLST, CLOSERTN does not close the data sets
because they are needed until processor termination.

If a UCLOSE macro is issued for tape processing and
the IOCRCVCL bit is on in IOCSEX, the work area
pointed to by IOCWKA is freed via UFSPACE. Next,
a work area whose size is specified in IOCTRN is
obtained via UGPOOL and the address is returned in
IOCWKA. Control then passes to step 7 (a data set
close is not done when the IOCRCVCL bit is on). This
allows reallocation of the record work area after the
file is opened. If I OCINFCT = '1', indicating a close of
a VSAM catalog, CLOSERTN merely frees up the
control blocks associated with this catalog that were
obtained by I/O Adapter. The issuer of the UCLOSE
macro is given an RCOK return code. For any other
nonzero IOCSTR, CLOSERTN saves the address.
And, if the DTF or ACB is opened, CLOSERTN saves
the address of the control block in preparation for
closing. If the data set is not open, IOCFLGOP=O,
CLOSERTN makes a check to determine if it is
externally controlled. If it is externally controlled,
CLOSERTN passes arguments to the external routine.
CLOSERTN continues the above checking until:

• IDCIOOI specifies CLOSE ALL in o CARRA Y
and CLOSERTN has checked all IOCSTR
addresses in OCARRAY. This happens during I/O
termination.

IDCIOOI does not specify CLOSE ALL in
OCARRA Y and CLOSERTN has checked all
IOCSTR addresses in OCARRA Y.

IDCI002

ProcedlllFe: CLOSERTN

3 For up to four open DTFs or ACBs, CLOSERTN
issues a CLOSE macro for each open DTF or ACB.
The return code from the CLOSE macro is saved. If
an abend occurs, no exits are taken; CLOSE abends.

IDCI002

ProcedlllFes: CLOSERTN, PRINTMSG

4 For VSAM data sets, CLOSERTN checks the ACB
error code. If the ACB error code is nonzero,
PRINTMSG writes a message. No tests are made for
non VSAM data sets or user catalogs.

IDCI002

Procedl.e: ENVFREE

5 For non VSAM data sets, ENVFREE issues a
FREEVIS macro to release the storage used for the
IDCDIxx module where xx is from 01 to 15. For
VSAM data sets the storage for the ACB, RPL, and
exit list is freed in step 6 along with the IOCSTR and
all other storage having the same IOCSID.

IDCI002

Procedure: CLOSERTN

6 CLOSERTN saves the address of the IOCSTR that
was closed and the address of the next IOCSTR in the
chain after the IOSTR for the closed data set.
CLOSERTN issues a UFPOOL to free all storage
obtained for the data set that is closed. CLOSERTN
passes the IOCSID field to UFPOOL which identifies
all storage obtained for the data set. CLOSERTN
seac:hes the IOCSTR chain until the IOCSTR is found
that points to the closed IOCSTR. CLOSERTN
replaces the address of the closed IOCSTR with the
addlress of the next IOCSTR in the chain.

IDCIOOI

Procedure: IDCIOCL

7 IDCIOCL puts a return code in register 15 and returns
control to the module that issued the UCLOSE.

t::O~"'tl
'<~~

~~.~
Z~o
t""c..-
Vl>Vl
Zoo -<
N'"1 W

f>'=':1.f
Vl NOO
VI 1.0 VI
VI ~ 0\
o-t
~w
.....:I

~ Diagram 6.3. UPOSIT Macro
tv

o o
til
"<:
til

~
n o
til
til

~ o g-
o
0-
til
o
:;!
(=i'
o
til

t"'"
o
!G,
n

leeks data set.

Isitions in VSAM data set.

tsitions in ISAM data set.

ites error message for non VSAM
d nonISAM data sets.

~turns, i

l

~
RPL

-y

:> DTF

:> Error Message

D
> Register 15

I I

s:: g.
8-
S
o

"I::S
(11

i o·
= N
01:>
w

Extended Description for Diagram 6.3

IDClOO3

Procedure: IDCI003

t If the IOCSTR address is zero or the data set is not
open (IOCMSGOP==O), IDCI003 issues a UABORT
macro. If the data set is open for processing
(IOCMSGOP== 1), and the data set is externally
controlled (IOCFLFEX== t), IDCI003 returns control,
with a return code of zero, to the module that issued
the UPOSIT. No provision is made for positioning in
externally controlled data sets.

IDClOO3

Procedures: PT AMDS, PRINTMSG

2 For VSAM data sets, PTAMDS inserts the POINT
argument in the RPL. VSAM uses the POINT
argument in the RPL to position to the requested
record. If the data set is open for adddress processing,
PT AMDS puts the address of the Relative Byte
Address (RBA) in the RPLARG field of the RPL. If
the data set is RRDS (IOCMACRR=='t '), the
RPLARG field is set to contain the address of the
relative record number which is contained in
IOCREL. If control interval processing is specified
(lOCMACBK='l '), the RPLARG field is
set to contain the address of the RBA which is
contained in IOCRBA. Otherwise, PT AMDS puts the
address of the key in IOCKY A into the RPLARG
field. If the length of the key of the requested record is
greater than the key length for the data set,
PRINTMSG writes an error message and PT AMDS
does not position to the requested record. PT AMDS
expands every key to 256 bytes by adding binary zeros
on the right. PT AMDS inactivates the end-of-data
routine in the EXLIST control block. This is done to
prevent the end-of-data routine from getting control if
the record positioned to is beyond the end of the data
set. If the end-of-data routine receives control, an
abend would occur. PTAMDS issues the POINT
macro to position to the record with the key or the
next higher key. PTAMDS re-activates the end-of-data
exit routine. If the return code from the POINT macro
is 12, an I/O error has occurred and a message is
written. PRINTMSG prints the error message. If the
return cod~ from the POINT macro is 8, a logic error
has occurred and PT AMDS checks the logical error. If
the results indicate that no record was found or
repositioning beyond end-of-file, PT AMDS sets a
return code of "no record found." For all other logic

errors, PRINTMSG writes a message containing the
return code unless the suppress message flag,
IOCMSGSM has been set by the caller.

IDCI003

Procedure: PTISDS

3 For an ISAM data set, PTISDS does not position the
rec:ord if the length of the key supplied is greater than
tht: key length for the data set. For valid key lengths,
PTISDS does the positioning. PTISDS expands the
key to 256 bytes by padding on the right with binary
zeros. PTISDS issues an ESETL macro because a
SETL was issued when the data set was opened.
PTISDS issues a SETL macro to position to the record
with the key or next higher key. If the postioning is
beyond the end of the data set, the SETL routine sets a
flag in the DTF. If this flag is on, PTISDS returns a
code of "no record found." If the flag is not on,
positioning was successful and PTISDS returns a code
of zero.

IDCI003

Proceldures: PRINTMSG, IDCI003

4 If the data set is nonVSAM and not ISAM,
PRINTMSG writes an error message. If an error is
detected, IDCI003 turns off the open for processing
idiciator, IOCMSGOP, so that no more I/O
operations except close are permitted against the file.

)DCIOOt

Procedure: IDCIOPO

5 IDCIOPO puts a return code in register 15 and returns
control to the module that issued the UPOSIT.

t Diagram 6.4. UGET Macro

o
o
CIl
........
<:
CIl

~
til
til

~
~ e-
o
Q.

CIl
~

:;!
(;.
~
til

b
(JQ
(;.

Register I

~
1+ GDT

~

~IOCSTR

Data Set

08

-~- ----

1.

/ 2.

3.

.... 4. ~

5.

...
If entrance is from any module
except UCOPY, control goes to Step 2;
if entrance is from UCOPY, control
goes to Step 3.

Checks data set.

Transfers control for externally
controlled data set.

IOCSTR
Gets record and puts its address in ./

IOCSTR.
..

• VSAM records . IOCDAD
Length of Record

• NonVSAM records . IOCALN

IOCKYA

IOCRSA

Record

.... Register 15
Returns. I I ..

-_ .. _- -- --------------

::::
~

S-
o
c.
o
o
"0
~ ...,
a o·
::I
N
.J;:.
VI

Extended Description for Diagram 6.4

1 If entrance is from any module except UCOPY,
control goes to step 2. If entrance is from UCOPY,
control goes to step 3.

IOClOOl

Procedure: IDCIOGT

2 If the address of the IOCSTR is zero or the file is not
open for processing, (IOCMSGOP=O), IDCIOGT
issues a UABORT macro to terminate processing. If
end-of-file has previously been encountered,
(IOCFLGEF= I), on an input data set, IDCIOGT
returns control to the module that issued the UGET.
This check allows more than one module to issues
UGETs on the same data set and both modules will
get end-of-file indications by a return code.

IOCIOOI

Procedure: GETEXT

3 If the data set is externally controlled, GETEXT
passes an argument list to the external routine so the
external routine can perform the I/O operation.
GET EXT tests the return code from the external
routine. If the return code is zero, GETEXT moves
the address and length of the data record just read to
the IOCSTR and GETEXT increments the count of
successful UGETs. If the return code is end-of-file,
GETEXT sets the end-of-file flag in the IOCSTR and
GETEXT sets the return code to end-of-file. If the
return code is 12, indicating that no more I/O
operations can be performed against the data set,
GETEXT turns off the open for processing flag
(IOCMSGOP). For any other return code, GETEXT
sets a return code of 4. IDCIOGT returns control to
the module that issued the UGET.

IDCIOOI

Procedures: GETVSAM, CHANGE, VSAMERR,
PRINTMSG, GETNONVS, IROSEOD, IRSISYN,
IRAMEOD

4 For VSAM data sets continue with 4.a, for nOilVSAM
data sets go to 4. b .
a. If any of the IOCSTR change processing flags are

set, indicating a change in processing modes, the
CHANGE procedure makes the appropriate
change in the RPL. The following IOCSTR settings
specified by the issuer of UGET are reflected in the
RPL:

IOCSTR

IOCCHPSQ
IOCCHPDR
IOCCHPSK
IOCCHPKS
IOCCHPCR
IOCCHPBK
IOCCHPKG
IOCCHPKE
IOCCHPUP
IOCCHPNU

RPLOPTCD =

SEQ
DIR
SKP
KEY
ADR
CNV
KGE
KEQ
UPD
NUP

The CHANGE procedure will set all change
processing flags to '0', and the IOCSTR will be
changed to reflect the new processing option.

If the data set is RRDS, (IOCMACRR=' 1 '),
RPLARG is set to the address of IOCREL so that
VSAM will return the relative record number to
UGET.

If user buffer is specified (IOCMODUB=' I '), the
caller has placed the address of the input work area
in IOCWORK. This address will be placed in the
RPL work area field.

For OPTCD=CNV or ADR with DIR or SKP, the
caller has placed an RBA in IOCRBA. The address
of IOCRBA will be placed in the RPLARG field. In
this situation, the RBA will not be moved to
IOCRBA following the GET.

For OPTCD=KEY with DIR or SKP, the caller has
placed the address of the key in IOCKY A and its
length in IOCKYL. RPLARG is set equal to
IOCKYA and RPLKEYLN is set equal to
IOCKYL.

GETVSAM issues a GET macro in the move
mode, specifing the address of the RPL built when
the data set was opened. If end-of-file is
encountered, the VSAM EODAD exit routine,
IRAMEOD, sets the end-of-file flag in the IOCSTR
and sets the return code to indicate end-of-file.
GETVSAM tests the return code from GET. If the
return code is nonzero, an error code has been
placed in the RPL. If the return code is zero, the
VSAM GET routine has read the record or control
interval. GETVSAM moves the record address,
record length, and RBA from the RPL to the
IOCSTR. If the data set is being processed by key,
GETVSAM places the address of the key in the
record just read in the IOCSTR. If the return code
from the GET is nonzero, VSAMERR obtains the
error code from the RPL and PRINTMSG writes
the message. The call to VSAMERR by UGET to

print logical error messages is bypassed if the
suppress messages flag, IOCMSGSM, has been set
by the UGET caller.

b. For nonVSAM data sets, GETNONVS issues a
GET specifying the DTF address. For spanned
records the address of the work area for the data
set which was obtained when the data set was
opened, is given the the GET macro. The GET
routine puts the complete record in the work area.
GETNONVS gets the length of variable length
records from the Record Descriptor Word (ROW).
If the input 10CSEX indicates a ,;;atalog recovery
area for import (IMPORTRA), the GETNONVS
routine strips off the 4-byte header record
prepended to it when the record was exported via
EXPORTRA (see UPUT Diagram 6.5). For
nonspanned records register 8 has been specified as
the IOREG in the DTF. For unddined records the
length is found in the RECLEN register defined in
the DTF. The GET routine puts the address of the
record in register 8.
For ISAM data sets with fixed unblocked records,
the key is returned preceeding the data; however,
register 8 has the address of the data. GETNONVS
subtracts the key length from the data address to
get the address of the key. If an error or end-of-file
occurs attempting an ISAM GET, the GET routine
sets flags in the DTF. GETNONVS tests the flags.
If end-of-file has occurred, GETNONVS sets a
return code. If an error has occurred, PRINTMSG
writes a message and GETNONVS sets a return
code. If no errors or no end-of-file has occurred,
GETNONVS assumes the GET is successful and
the record address and record length are set in
10CDAD and IOCDLN, respectively.
GETNONVS puts the address of the key in
10CKYA.
For non-ISAM data sets, if an error or end-of-file
occurs, the EO DAD exit routine, IROSEOD, or
SYNAD exit routine, IRSISYN, gets control. If
I:!nd-of-file occurs, IRSOEOD sets a return code. If
an error has occurred, PRINTMSG writes a
message and IRSISYN sets a return code. If no
I:!rrors or no end-of-file has occurred, GETNONVS
assumes the GET is successful and the record
address and record length are set in IOCDAD and
IOCDLN, respectively.

IOCIOOI

Procedure: IDCIOGT

5 IDCIOGT puts a return code in register 15 and returns
control to the module that issued the UGET .

* Diagram 6.S. UPUT Macro
o
o
Vl
"-<:
Vl

> ('l
('l
~
til
til

:::
~

S-
o
0-
Vl
~

~
(:;.
~
til

b
OCI
(:;.

INPUT

Register I

GOT

Type Identification

Length of Record

Number of Records

From Diagram 6.0

PROCESSING

1. If entrance is from any module
except UCOPY, conti~ue to Step 2; if
entrance is from UCOPY, go to
Step 3.

2. Checks for multiple requests.

3. Transfers control for externally
controlled data set.

4. Writes the record.

• VSAM records.

• Non VSAM records.

s. Returns.

~OR8
IOCSTR

IIOCRRN
Register 15

::
~

ET-
o
0-
o -.
o
"0
~ ..,
a o·
::I

N

~

Extended Description for Diagram 6.S

1 If entrance is from any module except UCOPY,
control goes to step 2. If entrance is from UCOPY,
control goes to step 3.

IDClOOl

Procedure: IDCIOPT

2 IDCIOPT uses the type identification to determine
whether or not the record is a message. An omitted
identification or an identification of zero indicates a
data record. A nonzero value indicates a message is to
be written. If the ~ddress for the IOCSTR is zero or
the open for processing flag, IOCMSGOP, is off,
IDCIOPT issues a UABORT macro. If IOCPNM is
zero, only one record is written with UPUT and the
length of the record is assumed to be in IOCDLN. If
IOCPNM is nonzero, one or more records are written
with this UPUT. IOCDLN contains the total length of
all the records, and each record is preceeded by a two
byte length field for that record. IDCIOPT sets
IOCPNM to one if it was initially zero. For multiple
records, IDCIOPT puts the length of the first record in
IOCDLN and IDCIOPT puts the address of the data
for the first record in IOCDAD.

IDCIOOl

Procedure: PUTEXT

3 If the data set is externally controlled, PUTEXT
constructs an arguments list. PUTEXT gives control to
the external routine addressed in IOCXDAD. If the
return code from the external routine is zero,
PUTEXT increments the number of successful
UPUTs. If the return code is 12, PUTEXT turns off
the open for processing flag (IOCMSGOP) so that no
processing can be done against this data set. PUTEXT
returns control to step 2 for the next record.

IDCIOOl

Procedures: PUTVSAM, CHANGE, VSAMERR,
PRINTMSG, PUTNONVS, IRSOSYN, PUTREP

4 For VSAM data sets continue with 4.a, for nonVSAM
data sets go to 4.b.

a. PUTVSAM checks to see if IOCMACER is set by
the caller of UPUT, if so, PUTVSAM issues the
ERASE macro with a pointer to the RPL. In this
case, a UGET for update must previously have
been issued by the caller. If IOCMACEN is set by

the UPUT caller, PUTVSAM issues the ENDREQ
macro with a pointer to the RPL.

If any IOCSTR flag indicating a change in
processing modes, has been set by the caller,
CHANGE makes the appropriate change in the
RPL. The following IOCSTR settings specified by
the issuer of UPUT are reflected in the RPL:

IOCSTR
IOCCHPSQ
IOCCHPDR
IOCCHPSK
IOCCHPCR
IOCCHPBK
IOCCHPKG
IOCCHPKE
IOCCHPUP
IOCCHPNU

RPLOPTCD=
SEQ
DIR
SKP
ADR
CNV
KGE
KEQ
UPD
NUP

CHANGE will set all change processing flags to '0',
and the IOCSTR will be changed to reflect the new
processing option.

PUTVSAM puts the record length and address in
the RPL.

If IOCMACRR=' 1', indicating a PUT to an RRDS,
the RPLARG field in the RPL is set to the address
of IOCREL. If OPTCD=CNV,DIR, RPLARG
field is set to the address of IOCRBA.

If user buffers are specified, (IOCMODUB= 1), the
output area address in the RPL is obtained from
IOCWORK rather than IOCDAD.

PUTVSAM issues a PUT macro to write the
record. The record may be a logical record or a
control interval. If the return code from the PUT is
zero, PUTVSAM increments the number of
successful UPUTs in IOCRRN. If the return code is
nonzero, VSAMERR obtains the error code from
the RPL. If the error code indicates a logic error,
VSAMERR determines if it is a duplicate record or
a record-out-of-sequence, PRINTMSG writes the
appropriate message. Otherwise, the error is
assumed to be an I/O error, and PRINTMSG
writes a message. The call to VSAMERR by UPUT to
print logical error messages is bypassed if the suppress
messages flag, IOCMSGSM, has been set by the UPUT
caller.

PUTVSAM will provide replace processing under
the following conditions:

• A return code from PUT indicating a logical error
(08)

• RPL feedback code indicating duplicate record.

• Replace processing specified by caller
(IOCMODRP= 1)

In the PUTREP routine, IOCWKA is checked to
determine if an input work area exists. If not, a
UGPOOL is issued to obtain an input work area.
The RPL is modified to permit updatc! processing.
A GET for update is issued followed by a PUT.
The IOCSTR for the PUT will reference the
address of the original PUT record in IOCDAD.
After the PUT, the RPL is reset for no update
proc,essing.

If thc! return code for an 1/0 error is greater than 4,
VSAMERR turns off the open for processing flag
(IOCMSGOP). PUTVSAM returns control to step
2 for the next record.

b. PUTNONVS checks the length of the record
against the IOCTRN to be sure that the record can
be written. If the length is too long, PRINTMSG
write:s an error message and control n~turns to step
2 for the next record. For the SYSLST data set,
PUTNONVS compares the record length to the
maximum and truncates the record if it is longer
than the maximum. The record is processed
according to the record format.

• For spanned records, PUTNONVS constructs a
Record Descriptor Word (RDW) in the first
four bytes of the work area. PUTNONVS
moves the record to the work area making one
spanned logical record. The address of the work
area will be specified in the PUT macro.

If the output IOCSEX indicates export of a
catalog recovery area (IOCRCVM='I'), a
4-byte header must be prepended to each record
of the portable data set. The headt:r consists of
4 bytes of binary zeros. However, If the
data-length (IOCDLN) and the data pointer
(IOCDAD) in the IOCSTR are both zero, then
the 4-byte "header" is written as a software
end-of-file and consist of X'OOOO8000'.

F()r variable blocked records, PUTNONVS
checks to be sure the block will fit in the 10
AREA beipg used as the buffer. If the block is
too long, PUTNONVS issues the TRUNC
macro to write the current buffer and to start
processing in the other 1/0 area.

For variable records, PUTNONVS: constructs a
RDW in the first four bytes of the area in the

~
n e-o
Q.

S
o
'0
n ..,
~ o·
::s
N

~

IDCIOOI

buffer and PUTNONVS moves the record
following the RDW.

PUTNONVS issues a PUT macro. The address
of the next area is returned by the PUT
macro-except for spanned records-and is
saved. If the records are variable blocked,
PUTNONVS saves the number of bytes
remaining in the current area. If an I/O error is
detected during the PUT macro, IRSOSYN sets
error data. PRINTMSG writes the message.
IRSOSYN turns off the open for processing
flag, IOCMSGOP. If there are no errors,
PUTNONVS increments the count of successful
UPUTs in 10CRRN. PUTNONVS can use
device independent, magnetic tape, or
sequential disk DTF processing. PUTNONVS
returns control to step 2 for the next record.

Procedure: IDCIOPT

5 When all the records have been written, IDCIOPT
puts a return code in register 15 and returns control to
the module that issued the UPUT macro.

N
VI o
o
o
t'-l
<
t'-l

~
~
In
In

== ~ g-
o
0-
t'-l
~

~
~.
In

b
(JO
(=i'

Diagram 6.6. UCOPY Macro

~ Bel

1.

2.

From Diagram 6.0

PROCESSING

Obtains input record.

Tests return code.

3. Puts record on output IOCSTR
and writes record.

4. Tests return code.

5. Returns to step 1 until an error
is encountered or end-of-file is
reached.

6. Returns.

Bel
Input Data Sct

U
Register 15

3:
" g.
8-
S
o
~
"" a o·
=
N
VI

Extended Descripti,!n for Diagram 6.6

IOCIOOt

Procedure: IDCIOCO

t IDCIOCO obtains a record from the input data set by
calling procedures used for a UGET macro. The
UGET procedure returns control to this point in the
UCOpy routine. Arguments to the UGET procedures
are set up just as though a UGET had been issued.

IOCIOOt

Procedures: IDCIOCO, PRINTMSG

2 IDCIOCO tests the return code from the UGET
procedures. If the return code is zero, the UGET
procedure read the record successfully. If the output
IOCSTR indicates RRDS (IOCMACRR==I) and the
input IOCSTR indicates nonRRDS (IOCMACRR==O),
an incremental counter is maintained. This counter is
incremented by one each time a record is successfully
retrieved from the nonRRDS. This count is placed in
the output IOCREL prior to UPUTing the record.

If the return code indicates end-of-file, control goes to
step 6. If the return code indicates an error, IDCIOCO
increments the number of errors for UCOPY. If the
UGET routine has set a message, PRINTMSG writes
it. Processing continues with the next input record if
the number of errors is less than four, and the open for
processing flag (IOCMSGOP) is on. If the number of
errors is 4 or IOCMSGOP is off, IDCIOCO turns off
IOCMSGOP and UCOPY quits.

IOCIOOt

Procedure: IDCIOCO

3 IOCIOCO moves the length and address of the record
just read from the input IOCSTR to the output
IOCSTR. If the input and output IOCSTR both
indicate RRDS, IOCREL is moved from the input
IOCSTR to the output IOCSTR before issuing the
UPUT. This will result in exact recreation of the
correlation between the relative record number in the
input and output RRDS.

If the input IOCSTR indicates IOCMACRR== 'I' and
the input IOCSEX indicates IOCMODXM=='1', this is
an EXPORT of an RRDS. It is required that the
relative record number be carried in the portable data
set. The relative record returned in IOCREL when the
record is retrieved is placed in the 4-byte field
immediately preceding the record. The RRDS record

plus the 4-byte field is then written to the portable data
set.

If the output IOCSTR indicates IOCMACRR==' 1 , and
the output IOCSEX indicates IOCMODXM=='I', this
is an IMPORT of an RRDS. Records retrieved from
the portable data set have the relative record number
prepended to the RRDS record. This relative record
number is moved to the output IOCREL. The address
of the beginning of the RRDS record is set to its
logical beginning (the address of the retrieved record
+4) and the length of the record to be written is
reduced by 4 bytes.

IDCIOCO writes the record by calling the same
proc;edures used for the UPUT macro. IDCIOCO sets
up the arguments to the procedures just as though a
UPUT macro has been issued. The UPUT procedure
returns control to this point in the UCOPY routine.

IOCIOOt

Procedure: IDCIOCO

4 IOCIOCO tests the return code from the UPUT
pro(:edures. If the return code is zero, the UPUT
pro(:edure wrote the record successfully. If the return
code indicates an error, IDCIOCO increments the
number of errors for the UCOPY.

IOCIOOt

Procedures: PRINTMSG, IDCIOCO

5 Control goes to step I for the next record. Processing
continues if the number of errors is less than four, and
IOCMSGOP is on. PRINTMSG writes a message if
the message has been formatted. If the number of
errors is 4, IDCIOCO truns off IOCMSGOP and
UCOPY quits.

IOCIO(1It

Procedlllle: IDCIOCO

6 IDCIOCO puts a return code in register 15, and
returns control to the module issuing the UCOPY.

~ Diagram 6.7. UVERIFY Macro
N

o
o
(I)
.........
<:
(I)

> o o
n
III
III

== a
::r
o
Co
(I)
n
~
ff
III

b
Otl
n'

INPUT

tGDT

From Diagram 6.0

PROCESSING

1. Checks data set.

2. Updates end-of-file indicator in
VSAM catalog.

3. Returns.

OUTPUT

Register 15 C __ n

a::
n
S-
o c-
o -o
'0
n

~ o·
I:)

N
VI
~

Extended Description for Diagram 6.7

IDCIOOI

Procedure: IDCIOVY

1 The second argument is assumed to be a valid
IOCSTR address. The UVERIFY does not continue if:

• The file is not VSAM.

• No RPL has been built for a VSAM file.

• The VSAM file is not open.

No error message is written for the last two conditions
because message have been written at open.

IDCIOOI

Procedure: IDCIOVY

2 IDCIOVY issues a VERIFY macro.

IDCIOOI

Procedures: VSAMERR, PRINTMSG, IDCIOVY

3 If the return code is not zero, VSAMERR obtains the
error code from the RPL. If the error is a logic error,
PRINTMSG writes a message. If the error is an I/O
error, PRINTMSG writes an error message. If the
error code returned in the RPL is not 4, which
indicates that the error occurred in the data,
VSAMERR turns off the open for processing flag
(IOCMSGOP). IDCIOVY puts a return code in
register 15 and returns control to the module that
issued the UVERIFY.

N
VI
~

o
o
CIl

"< CIl

>
~
fIl
fIl

a::
n ;.
8-
CIl
n
<
~.
fIl

b
(JQ
(i.

Diagram 6.8. UIOINFO Macro

INPUT
Register 1

Il GDT

11 Option byte

I t Return area pointer

11 Caller-supplied data

It UGPOOL storage ID

~ ::::
Direct
address

L ~

8

I

From Diagram 6.0

PROCESSING

1. Obtains information requested.

2. Obtains storage for return area if not
supplied by caller.

3. Formats requested information into
return area.

OUTPUT
Register 1

"" jGDT

I t Option byte

!t Return area pointer

t Caller-supplied data

t UGPOOL storage ID

8::
~ s-
o
Q.

o ...,
o
"0
~ ..,
~ ::;
::s
N
VI
VI

Extended Description for Diagram 6.8

IDCIOO3

Procedure: DSINFO

1 UIOINFO analyzes the option byte passed by the
caller and determines what kind of information is
required. Data set name, volume serial list and Logical
Unit Blocks (LUB) require that UIOINFO obtain job
control information. This is also true of device type.
UIOINFO issues CDLOAD to load IKQVLAB, the
VSAM read label cylinder module, and then gives
control to IKQVLAB. The work area passed to
IKQVLAB is that of the existing work area in
IDCI002's automatic storage. If the return code from
IKQVLAB is nonzero, UIOINFO sets a return code
and returns control to the calling procedure. If the
return code from CDLOAD was non-zero, DSINFO
issues a UABORT macro. If the return code is 12
(insufficient storage was available), DSINFO sets the
UABORT code to 28; otherwise, DSINFO sets the
UABORT code to 64.

If device type information is requested, UIOINFO
issues a CDLOAD macro for IKQVDTPE and passes
control to it providing a pointer to the label
information is returned from IKQVLAB.

If time stamp information is requested, UIOINFO
issues $$BJIBOO to bypass file protection. It then issues
EXCP to read the address of the VTOC and then the
Format 4 DSCB. When the time stamps are obtained
from the Format 4 DSCB, $$BJIBFF is issued to
enable file protection.

IDCIOO3

Procedure: DSINFO

2 All of the information that UIOINFO obtains in Step
1 is placed in IDCI002's automatic storage work area.
During this process UIOINFO calculates the actual
l~ngth of the data to be passed back to the caller. The
caller can either pass a return area to UIOINFO or
pass a UGPOOL ID. If the caller passes a return area,
UIOINFO determines if it is large enough (the length
is contained in bytes 0 and 1 of the return area). If not,
UIOINFO places the total size needed in bytes 2 and 3
of the return area, sets a return code, and passes
control back to the caller.

If the caller has passed a UGPOOL ID, UIOINFO
issues a UGPOOL macro for the required amount of
storage with the storage identification passed by the

caliler. In this case the caller is responsible for freeing
this storage.

IDCIOO3

Procedure: DSINFO

3 UIOINFO formats the requested information into the
return area and passes control back to the caller.

3:
~ ;.
8-
sa..
o
'g ..,
a o·
::I
N
VI

"

Text Processor Visual Table of Contents

7.0

Text Processor
Overview

I 7.1 I 7.2 7.3 I
VESTS VESTA VREST URESET

7.4 J 7.5 I 7. 6

UPRINT

I
UERROR]

1 7.5.1 I
CONVERT PRINT

-- -- -
, --- .

~ Diagram 7.0. Tex t Processor Overview
00

o __ From Module
o
CI.l

..........

<
CI.l

> o o
~
til
til

~
~

;.
o
Q.

CI.l
~

:;!
o·
~
til

b
(JQ

o·

--- __ a ... _

:>r page control continue to Step 2:
Ir line control, go to Step 3.

[anipulates peT based upon macro
lecified:

UESTS -t) See Diagram

UESTA -[V See Diagram

UREST -[) See Diagram

URESET

-0 See Diagram

ormats, converts, and prints lines:

UPRINT --0 See Diagram

ormats error messages:

UERROR --0 See Diagram

- - - ... _ ...

~ peT
./

I
I

I
Register l'i

I I

I

Printed Line",

-/

D
Register l'i

I I

--

Printed Lines

D
> ...

Register 15

I I
I

s::
CI)

;.
8-
o
o
"0
CI) ..,
a o·
o
N
Vl
-.0

Extended Description for Diagram 7.0

(OCTPOt

Procedure: IDCTPOI

t For page control continue with step 2; for line control
go to step 3.

2 The page control macros use the argument list to
change the Print Control Table, PCT. The page
control macros are:

VESTS, which establishes the PCT with data from
a static text module.

VEST A, which establishes the PCT with data from
storage.

VREST, which changes the PCT after a VESTS or
VEST A macro has been issued.

VRESET, which sets Access Method Services
defaults in the PCT.

Each page printed by Access Method Services has
three sections:

tOto 3 subtitles

2 Header line
Data line

3 0 to 3 footing lines

The title section contains the main title line and from
zero to three subtitle lines. All lines in the title section
are printed at the top of each page. The main title line
is the first line on each page followed by subtitle lines.
The header and data section contains any header and
data lines. The header lines are kept in static text
modules and are printed on page overflow conditions
The footing sections contains from zero to three lines
printed at the bottom of each page. At least one
vertical space precedes them. More vertical spaces can
appear depending upon the control characters in the
first footing line. A new page results from any of the
page control macros, a page eject on a line, or a
request to print a line that would cause more lines on a
page than specified. If there is not enough space on a
page for all the header lines and one data line, none
are printed. A page is ejected, and title and header
lines are printed on the next page. Footing lines are
always printed on each page. Vertical spacing is done
before the line is printed.

The page control macros give the facility to change the
following items in the PCT:

Item Default Limits

Main title line 1

Page number
location

Time-of-day
location

Date location

107

75

91

1 to line width minus
field length

1 to line width minus
8 for field length

1 to line width minus
8 for field length

Subtitle line

Footing line

Line width

Page depth

no subtitles 0 to 3 lines

no footing

120

54

Default vertical 1 vertical
space character space

Tnin!date table standard
for print chain tables

o to 3 lines

133 maximum

999 maximum

1, 2, 3, or vertical
spaces

3 The UPRINT macro formats data within a line,
convt:rts data to a printable form, and prints the line
or lines. IDCTPOI uses the PCT to format the line and
the page. The line to be printed is described by two
kinds of inrut: static text and dynamic text. Static text
is unc:hanging data and format structures that reside in
a module referred to as a static text module. Dynamic
text is any changing data and format structures that
residt: in storage. Format structures, FMTLIST,
describe how the line is to be formatted. The types of
formatting are:

V t:rtical spacing
Inserting data into a line
Extracting fields from a block of data in storage
Extracting data from a static text module
Ddining default data
Rt:peating any of the above actions

The types of conversion are:

Binary to hexadecimal
Binary to hexadecimal with apostroPhe
Binary to dump
Binary to decimal
Pa.cked decimal to unpacked decimal
EBCDIC, no translation

The types of vertical spacing are:

Absolute spacing

Tht: line is printed at a given line number on the
page. If data has been printed at that line
number, the page is ejected, and the line is
printed at the first data line number IOn the next
page. If the line number is within the: title
section or header lines, the line is printed at the
line number immediately following the header
lines. If the line number is within the footing
section, the page is ejected, and the line is
printed immediately following the ht:ader lines
on the next page.

Relative spacing

The: line is printed at a number of vertical
spa4;;es counted from the last printed line. If
there is not enough room on the pag4! to print
the line, the page is ejected, and the line is
printed after the title section and header lines
on the following page.

Eject

The: line is printed after the title section and
header lines on the following page.

4 The VERROR macro formulates prose messages for
the return and reason codes caused by catalog errors.
It instigate:s multilevel message requests to the
VPRINT macro. Formatting and printing of the
multilevel message is handled by the VPRINT macro.

;l
~
:;:0
(1)

e;
""I
~

~
(1)

0.-

o o
-<

~::jI:Pt;j
,<CI)~

~ ::.~
Z~o
t""'o.-.
CI.l:>CI.l

Z "O 00<:
..,~

N-'~
~-,
VlN~
Vl~O\
~-~ -.o~

-..l
.....:I

~ Diagram 7.1. VESTS Macro

o
o
tf.)
........
<
tf.)

~
(')
(9
fIl
fIl

~
(9

;.
&.
tf.)
(9

:!
~.
fIl

b
!JQ o·

INPUT

Register I

~'"--------'
+GDT

/1 + IOCSTR

I ~"--' ----'
Static Text
Identifier

Static Text ;CUle
......... --
--'

GDTTPH

...,

...
........
./ ...

From Diagram 7.0

PROCESSING

1. If entrance is from first UESTS
macro, continue to Step 2; if
entrance is after first UESTS
macro, go to Step 3.

2. Performs initial processing.

3. Prints existing lines.

4. Remakes secondary PCT.

5. Gets input from static text
module.

6. Initializes values in work table.

7. Puts data in PCTs.

8. Returns.

--r---V"

: >0

...
........

-v"

~r--T""----i

P04WT

r-......,
./

.r-......

...
........
./

--~----------------------~~ ./ v

OUTPUT

Stack Buffer

Printed Lines

D

"PCT I OPCT2

I 1.'1

Register 15

~
~ ;.
o
Co

9..
o
~
~ a o·
t:I

N
~

Extended Description for Diagram 7.1

IDCTP04, IDCTPOI

Procedures: ESTSCONT, INITPCT, STACKPUT

1 If entrance is from the first UESTS macro, processing
continues with step 2. If entrance is after the first
UESTS macro has been issued, processing continues
with step 3.

2 ESTSCONT passes control to INITPCT which tests
the GDTTPM to determine if this is the first UESTS
macro issued. If GDTTPH in the GOT is not zero, a
PCT already exists, and control is given to step 3. The
first time a UESTS macro is issueo the GDTTPH is
zero, which means that no PCT exists. When no PCT
exists, INITPCT obtains and initializes a PCT.
INITPCT issues a UGSP ACE macro for the primary
PCT. UGSPACE puts the address of the primary PCT
in GDTTPH. (The GOT refers to the PCT as the Text
Processor Historical Data Area.) The Text Processor
(TP) uses two Print Control Tables-a primary PCT
and a secondary PCT. Each PCT has the same fields.
The primary PCT contains default values. INITPCT
creates it during processor initialization, and deletes it
at processor termination. It exists throughout Access
Method Services processing. The secondary PCT
contains current values which are different from the
default values in the primary PCT. INITPCT creates it
and deletes it many times during Access Method
Services processing. The address of the secondary
PCT is in the primary PCT. When the Text Processor
uses a PCT, if the secondary PCT exists, it is used
instead of the primary PCT.

Rather than writing each line as it is completed, the
Text Processor saves time by putting completed lines
in an area of storage called the stack buffer. When the
stack buffer is full, ST ACKPUT writes it. ESTSCONT
issues a UGSPACE macro for storage for the stack
buffer and puts the address of the stack buffer in the
fields PCTBUF and PCTBNL in the primary PCT.
ESTSCONT opens the System output data set with a
UOPEN macro. Control is given to step 4.

IDCTP04

Procedure: ST ACKFL

3 Because controls governing the writing like page depth
and line width are changing, the lines formatted under
the current control values must be written before the
controls change. ST ACKFL writes the stack buffer
with a UPUT macro.

IDCTIJ04

Procedure: INITPCT

4 Prior to making any changes INITPCT gives control to
STACKFL to flush the stack buffer. If a secondary
PCT exists-that is PCTSPP in the primary PCT is not
zero-INITPCT releases the secondary PCT with a
UFPOOL macro. INITPCT copies some data from the
secondary PCT to the primary PCT before the
secondary PCT is freed. INITPCT issues a UGPOOL
macro for a secondary PCT. INITPCT sets the
identification, PCTIDN, in the secondary PCT to
'PCT2', and sets the PCTSPP field to zero.

IDCTI'OS

Procedure: IDCTP05

5 If a, static text module is used once, it is likely that it
will be used again on the next call to the Text
Processor. Rather than loading and deleting a static
text module each time it is used, the static text module
is kept in storage until a different static text module is
ne~:ded. The address of the static text module in
storage is kept in PCTSTM in the PCT. The static text
identification passed by the calling program to the
Text Processor as input is used to reference the
appropiate module. IDCTP05 concatenates the first
thr,ee bytes of the static text identification with
'IDCTS' to form the module name. IDCTP05
compares the module name to the name of the static
text module in storage in PCTSTM. If the names don't
match, IDCTP05 deletes the static text module in
storage with a UDELETE macro, and IDCTP05 loads
the requested static text module with a ULOAD
macro. IDCTP05 puts the name of the loaded module
in PCTSTM and the address of the module in the field
PCTSME in the PCT. If a secondary PCT exists, it is
used; otherwise the primary PCT is used.

IDCTP05 uses the low-order byte of the static text
identification as an index to obtain the correct static
text entry. IDCTP05 copies the entry from the static
text module into storage that IDCTP05 obtains with a
UGSPACE macro. This is done so the static text entry
is available if the static text module is deleted.

IDCTIt04

Procecllure: P04SETUP

6 P04SETUP puts data from the static text entry into a
work table. P04SETUP uses the work table to make
the input from UESTS, UEST A, and UREST into the
same format.

IDCTP04

Procedure: PCTSETUP

7 PCTSETUP forces a page overflow so the next line
will start on a new page. If no secondary PCT exists,
PCTSETUP initializes the primary peT with the
minimum values needed to control a page, which are:

• A translate table for a print chain
• A page number increment
• A hne number where the first line is printed
• A hne number where the last line is printed

For initializing either the primary PCT or the
secondary PCT, PCTSETUP verifies the input data
and puts it into the appropiate PCT.

IDCTP04

Procedure: ESTSCONT

8 ESTSCONT deletes the storage for the static text
entry with a UFSPACE macro. ESTSCONT puts a
return code in register 15, and control returns to the
module thatissued the UESTS macro.

~ Diagram 7.2. UESTA Macro
N

o
o
C"n
"-<
C"n

~
~

~

~
~

erg.
C"n
~

S.
R
fIl

b
~.

INPUT

'

From Diagram 7.0

PROCESSING

Its existing lines.

1akes secondary PCT.

alizes values in work area. =>

<
data in PCTs.

urns.

I

OllTPlJT

Printed Lines
"'-

D -v'"

1 1
P04WT

D peT 1

I L ~ Pcpspp I-.... PCT 2
-./

I

Register 15

~ -v"" I I

:::
n ;.
o
Q..

S
O
'g

~ o·
::s
N
0'\
~

Extended Description for Diagram 7.2

IDCTP04

Procedures: ESTACONT, INITPCT

1 EST ACONT determines if a primary PCT exists.
EST ACONT invokes INITPCT to get storage for the
PCT. EST ACONT then invokes P04SETUP to build
the work table; EST ACONT then invokes PCTSETUP
which initializes the PCT. Because controls governing
the writing (like page depth and line width) are
changing, the lines formatted under the current
control values must be written before the control
values change. INITPCT writes the stack buffer with a
UPUTmacro.

IDCTP04

Procedure: INITPCT

1 If a secondary PCT exists-that is PCTSPP in the
primary PCT is not zero-INITPCT releases the
secondary PCT with a UFPOOL macro. INITPCT
issues a UGPOOL macro for a new secondary PCT.
INITPCT sets the identification, PCTIDN, in the
secondary PCT to 'PCTI', and INITPCT sets the
PCTSPP field to zero. UGPOOL puts the address of
the new secondary PCT in the field PCTSPP in the
primary PCT. INITPCT copies all the data in the
primary PCT into the secondary PCT. INITPCT
copies some data from the secondary PCT to the
primary PCT before the secondary PCT is deleted.

IDCTP04

Procedure: P04SETUP

3 P04SETUP puts data from the input into a work table.
PCTSETUP uses the work table to make the input
from UESTS, UEST A, and UREST into the same
format.

IDCTP04

Procedure: PCTSETUP

4 PCTSETUP forces a page overflow so the next line
will start on a new page. If no secondary PCT exists,
PCTSETUP first initializes the primary PCT with the
minimum values needed to control a page which are:

• A translate table for a print chain
• A page number increment
• A first page number
• A line number where the first line is printed
• A line number where the last line is printed

For initializing either the primary PCT or the
se(;ondary PCT, PCTSETUP verifies the data in the
work table and puts it into the appropiate PCT.

IDCT1P04

Procedure: EST ACONT

S EST ACONT puts a return code into register 15, and
control returns to the module that issued the UEST A
macro.

~ Diagram 7,3, UREST Macro
o
o
CIl
........
-<
CIl

> n
n
(1j
(I)
(I)

a:
(1j

S-o
c.
CIl
(1j

~
(i'
(1j
(I)

r
o

(JQ

(i'

-- -

-ints existing lines.

itializes values in the work
'ea,

lts data in peT.

turns,

.. --..., P04WT
I <

I

-- -

.... Printed Line ... :>
"

D
I

~
peT I peT 2

l)
PCpspp

I
.~ Register 15

" I I

~
~

S-
o
0-

S,
o
"0
~ ..,
~ o·
::3

N
0\
V>

Extended Description for Diagram 7.3

IDCTP04

Procedures: RESTCONT, ST ACKFL

t A primary PCT must exist. If it does not, RESTCONT
issues a UABORT macro. Because controls governing
the writing (like page depth and line width) are
changing, the lines formatted under the current
control values must be written before the control
values change. ST ACKFL writes the stack buffer with
a UPUT macro.

IDCTP04

Procedure: P04SETUP

2 P04SETUP puts data from the input into a work table,
P04WT. PCTSETUP uses the work table to make the
input from UESTS, UEST A, and UREST into the
same format.

IDCTP04

Procedures: RESTCONT, PCTSETUP

3 The UREST macro allows the user to change any
combination of the following:

• Subtitle lines
Footing lines
Line width
Page depth
Default space character

• Translate table
Starting page number

A value of zero in any of the parameter lists causes the
item to be reset to the Access Method Services default.
RESTCONT evaluates the input parameter list. If the
secondary PCT exists, PCTSETUP modifies it.
Otherwise, PCTSETUP modifies the primary PCT.

IDCTP04

Procedure: RESTCONT

4 REST CO NT puts a return code into register 15, and
control returns to the module that issued the UREST
macro.

~ Diagram 7.4. URESET Macro

o o
I:Il
"-
~

r
~
n er
&.
I:Il
n
:!
~.

b
(JQ

n'

INPUT

Register I c-------
tGDT

t IOCSTR

\ I Page Number

\...GDT

GDTTPH

PCTSPP r-..rCT 2

From Diagram 7.0

PROCESSING OUTPUT

Printed Linc~

J. Prints existing lines. D
2. Returns last page number.

3. Frees secondary peT and subpool. t GDT

t IOCSTR

Page Number

Register 15

4. Returns.

a:
~ ;.
o
Co

sa.
o
'g

~. o
=
~

Extended Description for Diagram 7.4

IDCTP04

Procedures: RESETCON, STACKFL

I A primary PCT must exist. If it does not, RESETCON
issues a UABORT macro. If a secondary PCT exists,
RESETCON forces a page overflow so the next line
will begin on a new page. Because controls governing
the writing (like page depth and line width) are
changing, the lines formatted under the current
control values must be written before the control
values change. ST ACKFL writes the stack buffer with
a UPUT macro.

IECfP04

Procedure: RESETCON

2 If the invoker of Access Method Services requested
that the last page number be passed, RESETCON
converts the current page number to binary and places
it in the invoker's parameter list.

IDCTP04

Procedure: RESETCON

3 Before the secondary PCT is deleted, RESETCON
copies some data into the primary PCT. One
UFPOOL macro releases the secondary PCT, subtitle
lines, footing lines, and any static text entries
addressed from the secondary PCT in PCTSQP
because everything was obtained with subpool
identification 'TPOI '. RESETCON sets the address of
the secondary PCT to zero in the primary PCT in
PCTSPP. This resets all page control values to the
values contained in the primary PCT.

IDCTP04

Procedure: RESETCON

4 RESETCON puts a return code into register 15, and
control returns to the module that issued the URESET
macro.

~ Diagram 7.5. UPRINT Macro
00

o
o
til
.........
<:
til

~ o
~
{II
{II

~
~

S-
o
Q.

til
~

~
~r
{II

t'""
o

OQ

o·

INPUT

GDT

IOCSTR

Static Text
Module

From Diagram 7.0

PROCESSING

1. If entrance is from module issuing
UPRINT, continue to Step 2; if
entrance is from PRINT or
CONVERT, go to Step 3.

2. Locates format list.

3. Processes format list.

•

CONVERT ~
See Diagram ---u
PRINT~

See Diagram ---u
Space

• Static text

• Insert text

• Default

• Block

• Replication

• End of format list

4. Returns.

OllTPliT

f-ormat Li!-.t

Register 15 c--

a::
o
;.
o
0.
o -o
~ o
"1

a o·
::s
N
0'\
1.0

Extended Description for Diagram 7.5

t If entrance is from a module issuing a UPRINT
macro, continue with step 2; if entrance is from
PRINT, Diagram 7.S.2, or CONVERT, Diagram
7.S.1, go to step 3.

IDCTPOt, IDCTPOS

Procedures: IDCTPPR, IDCTPOS

2 The format list, FMTLIST, and Print Control Table,
(PCT), must be found. If a secondary PCT exists,
IDCTPPR uses it; otherwise, IDCTPPR uses the
primary PCT. The format list, FMTLIST, can be in
one of three locations:

• In the FSR
• In a list of static text entries chained from the PCT
• In a static text module

If the format list is in the FSR, DARGSTID in the
Dynamic Argument List, DARGLIST, is zero. The
calling program gives the address of the FMTLIST to
UPRINT as the fourth argument.

IDCTPPR compares the static text identification in
DARGSTID against the static text identification of
each entry addressed from the Print Control Table in
field PCTSQP. If a match is found, IDCTPRR uses
that FMTLIST in the static text entry as input to
UPRINT. If a match is not found, IDCTPRR must
obtain the FMTLIST from a static text module.

IDCTPOS concatenates the name of the static text
module in DARGSMOD with the characters 'IDCTS'
and compares it with the name of the static text
module-in storage. The name of the static text mQdule
currently in storage is kept in PCTSTM in the PCT. If
the names do not match, IDCTPOS deletes the module
named in PCTSTM with a UDELETE macro, and
IDCTPOSloads the module named in DARGSMOD
with a ULOAD macro. IDCTPOS puts the name and
address of the newly loaded module in the PCT.
IDCTPOS finds the particular static text entry by using
DARGSENT as an index to the static text module.
IDCTPOS copies everything in the static text entry
after the length field and puts the static text
identification and the address of the next entry in the
list at the beginning of each entry on the list. IDCTPOS
then chains the copy into the list of static text entries
addressed from PCTSQP so it will be readily available
when it is used again. See "Text Structure" in the
chapter "Diagnostic Aids" for a discussion of static
text entries.

IDCTPOll

Procedures: IDCTPPR, SPACE, STATIC, INSERT,
BLOCK" REDO

3 IDCTPPR takes action on the format list substructures
in FMTLIST depending upon the structure type. The
line buffer is a work area where each line is formatted.
IDCTPPR processes substructures in order of their
appearance in the FMTLIST. If the high order bit in
FMTFLGS is on, this substructure is the last in the
FMTLIST. If there is formatted data in the line buffer,
IDCTPPR calls LINEPRT to write the line. (See
diagram 7.S.2.) IDCTPPR sets a return code in
register IS, and control returns to the module that
issued the UPRINT macro.

Types of substructures:

• Space

If this is the first substructure in the FMTLIST,
SPACE saves the spacing type character from the
FMTLIST for LINEPRT, and control returns to
Step 2 for the next substructure. If the space
substructure is not the first substructure in the
FMTLIST, SPACE transfers control to PRINT.
After control returns from PRINT, the new spacing
type character is saved for the next line. (For more
information on PRINT, see diagram 7.S.2.)
Control returns to Step 2 for the next substructure.

• Static text

STATIC passes the address of the input data,
length of input data, type of conversion, position in
the output line, and length of output field to
IDCTPPR. (See diagram 7.S.1.)

• Insert data

INSERT compares the insert reference number in
FMTRFNO against every DARGINS field in the
Dynamic Data List. If the same number is found in
DARGINS, INSERT gives the following
information to CVPSTRM: the length in
DARGINL, the address in DARGDTM, the type
of conversion from FMTCNVF, the output field
length from FMTOLEN, and the position for the
field in the output line from FMTOCOL. (See
diagram 7.S.1.) If the same number is not found in
any DARGINS, INSERT ignores the insert-data
substructure, and control returns to Step 2 for the
next substructure. If the next substructure is a
d,efault-text substructure, INSERT processes the
ddault structure.

• Default text

If a default-text substructure does not immediately
folliQW an insert substructure that dOles not have a
matching reference number in DARGINS,
INSERT ignores the default-text substructure, and
control returns to Step 2 for the next substructure.
INSERT uses the default-text substructure instead
of a: matching DARGINS to describe input for an
inst:rt-data substructure. INSERT takes the values
for input and output from the default-text
substructure only. Nothing is taken from the insert
substructure. Control is given to IDCTPPR. (See
diagram 7.S.1.)

• Block format

BLOCK obtains input information from
DARGDBP and DARGILP. BLOCK adds the
offset count in FMTIOFF to the address in
DARGDBP to get the address of the: input data. If
the input length in FMTILEN is zero or 32,767,
BLOCK uses the input length in DARGILP. If the
length in FMTOLEN is zero or 32,767, the output
length is the length of the converted input data. All
this data is given to IDCTPPR. (See diagram
7.5.1.)

Replication

REDO compares the reference number in
FMTRFNO against every DARGREP field. If the
same number is not found, REDO ignores the
replication substructure and control returns to Step
2 for the next substructure. If the same number is
found in DARGREP, REDO uses the count in
DARGPCT for loop control to set up the number
of times the following substructures are repeated.
REDO obtains the number of substructures to
repeat from FMTRBC. At the end of each time
through the substructures REDO prints a line
because the output positions for each fieid are
unc:hanging. (See diagram 7.S.2.) REDO saves the
value in FMTRIO and adds to each address of
block data in the substructures being repeated.

IDCTPOt

Procedure: IDCTPPR

4 IDCTPPR puts a return code in register IS and returns
control to module that issued the UPRINT macro.

~ Diagram 7.5.1. UPRINT Macro - CONVERT
o
o
o
til
........
<:
til

> n
R en en

a::
CD ;.
o
Q.

til
CD
:;!
~.
en

b
OQ
(i'

Format List

Dynamic
Argument List "

Line Buffer

L-

...-....

... 1. ./

2.

3.

4.

~

.. _._---

I
..
Converts data according to type of
conversion.

• Binary to hexadecimal.

• Binary to hexadecimal with
apostrophe.

• Binary to dump.

• Binary to decimal.

• Packed decimal to unpacked
decimal.

• EBCDIC (no translation).

Line Buffer

1
Puts field in line buffer in correct ...
output column.

Prints line buffer, if fUl~

See Diagram 7.5.2

Returns.

-

:::
~

ET-
o
Q.

o -o
'e
~

~ o·
::l
N
-...J

Extended Description for Diagram 7.5.1

IOCTPOl

Procedures: CONVERT, BHCONV, BHDCONV,
BDCONV, PUPCONV, EBCDIC

CONVERT checks the conversion type from
FMTCNVT and converts the field accordingly. Output
fields can overlap. When a line of conversion is
finished, LlNEPRT prints the line. (See diagram
7.5.2.)

Control returns to the caller in diagram 7.5. (See
diagram 7.5.) Types of conversion:

Binary to hexadecimal

BHCONV converts bytes of binary data to their
equivalent printable hexadecimal. BHCONV
prints two characters for each byte. The
maximum input length is 32,767. If the length of
the converted data is greater than the length of
the output field, BHCONV truncates the data
on the right. If the length of the converted data
is less than the length of the output field,
BHCONV does not change the remaining fields
to the right. If the converted data extends
beyond one line, BHCONV continues the data
on the next line.

Binary to hexadecimal with apostrophe

BHCONV converts bytes of binary data to their
equivalent printable hexadecimal. BHCONV
prints two characters for each byte. The output
is preceded by a 'X' and followed by 'a'. The
maximum input length is ((line width - starting
position)/2) - 3. If the !t;ngth of the converted
data is greater than the length of the output
field, BHCONV truncates the data on the right.
If the length of the converted data is less than
the length of the output field, BHCONV does
not change remaining fields to the right of the
trailing apostrophe. If the converted data
extends beyond one line, BHCONV truncates
the data on the right.

Binary to dump
BHDCONV converts bytes of binary data to
their equivalent printable hexadecimal.
BHDCONV prints two characters for each byte.
This type of conversion forces the output to
begin on a new line. IDCTPPR is called to put
the current line in the stack buffer prior to
calling CONVERT (See diagram 7.5.2.)
BHDCONV formats the output line like a

standard ABEND dump with relative addresses
on the left of the page, eight segments in the
center, and a 32 byte EBCDIC translation with
non-printable characters replaced by periods on
the right of the page. The output starts in
column one and BHDCONV uses 32 bytes of
input per line. The maximum input length is
32,767.

Biinary to decimal

BDCONV converts bytes of binary data to their
equivalent packed decimal, then calls
PUPCONV for further conversion to unpacked
decimal. Sign suppression, leading zero
suppression and left alignment can be used. The
input length is one to four bytes, and the
maximum output length is 16 bytes including
the sign. If the length of the converted number
is greater than the length of the output field,
BDCONV truncates the number on the left. If
the converted number extends beyond one line,
PUPCONV truncates the number on the right.

Packed decimal to unpacked decimal

PUPCONV converts bytes of packed decimal
data to their equivalent printable unpacked
decimal. Sign suppression, leading zero
suppression and left alignment can be used.
Eight bytes is the maximum input length, and
16 bytes including sign is the maximum output
length. If the length of the converted number is
greater than the length of the output field,
PUPCONV truncates the number on the left. If
the converted number extends beyond one line,
PUPCONV truncates the number on the right.

EBCDIC, no translation

EBCDIC assumes the input is in printable
EBCDIC and no conversion is done. If align
right is specified, the EBCDIC character string
is aligned to the right in the print field. The
print column specified is added to the print field
length to determine the last printable position.
Unwanted blanks following a nonblank
character can be eliminated by specifying blank
suppression on the following field. If blank
suppression is specified on an EBCDIC field,
EBCDIC moves that field left into the prior
EBCDIC field so there is only one blank
between the two fields. Blank suppression can
be specified only on fields that immediately
follow EBCDIC fields. The maximum input

I DCTPO 1

kngth is 32,767. If the output extends beyond
one line, EBCDIC prints additional lines.

Procedure: CONVERT, BHCONV, BHICONV,
BDCONV, PUPCONV, EBCDIC

2 The conversion routines put the convertt:d data in the
correct column. FMTOCOL in the FMTLIST specifies
the output column. If blank suppression is on
(FMTCNVF=X'OOIO'), the output column is in
PCTAPC in the PCT, and FMTOCOL is an offset
from th,:;! output column in PCT APC. In this case, the
conversion routines find the output column by adding
the value in PCT APC to the value in FMTOCOL. The
output <;olumn for each field is calculated separately
from other fields. Output fields may overlap due to
specification of output columns in FMTOCOL.

IDCTPOI

Procedures:: CONVERT, BHCONV, BHDCONV,
PUPCONV, EBCDIC

3 When the line buffer is full or a new line is to start, the
conversion routines call LlNEPRT to print the line.
See Diagram 7.5.2.

I DC"" PO 1

Procedures:: CONVERT, BHCONV, BHDCONV,
PUPCONV, EBCDIC

4 When all the data specified by the FMTLIST
substru<;ture is converted, control returns to the caller
in Diagram 7.5.

~ Diagram 7.5.2. UPRINT :\tacro - PRINT
N

o
o
I"Il
<
I"Il

[
3:
(I

[
~
~
~.

f
t)'

....

I'CT I
r-

peTSPP

Line Buffer

Stad Buffer

....-....

pcr:! ~ v

" ...--,.:>

...
:>

.... -> ..

I.

2.

3.

4.

s.

6.

-- - - - - -- -- _
Returns data to I:aller. if requested.
otherwise. I:ontinues with step 2.

peT I peT ~

Ir
peTSPp

PCT:\IIP

Determines if line will fit on current
page.

Itcuder

Processes header and message. ".)
v r J

"- Printed Line' ;>

D
Translates line.

Prints slack buffer if full.

Clears line buffer and returns.

-- --

:::
('II

ET-o
Q.

o
o
"0
('II a o·
i:l

N
-...J
I.H

Extended Description for Diagram 7.5.2

IDCTPOI

Procedures: LINEPRT, LINERET

1 LINEPRT tests the return area pointer in the
argument list for zero. If it is not zero, procedure
LINERET places the formatted line in the return area
without checking for or setting page-related data such
as carriage control, headings, etc. Only as many
characters are returned as allowed by the return area
length.

IDCTPOI

Procedures: LINEPRT, ST ACKPUT

2 LINEPR T tests the print data set supplied with the
UPRINT macro to determine if it is a change from the
current print file. If the print data sets are changing,
ST ACKPUT writes the stack buffer with a UPUT
macro. Then LINEPRT puts the page number and
next line number for the new print data set in
PCTCPN and PCTNLI respectively. LINEPRT puts
the page number and next line number for the old
print data set in PCTSPN and PCTSNL for the
standard print data set or in PCT APN and PCT ANL
for an alternate print data set. LINEPRT compares
the current line number from PCTNLI with the
pagesize in PCTPPD to determine if the current line
with its spacing will fit on the current page. If the line
will not fit, LINEPRT ejects a page, and LINEPRT
prints all title lines on the new page. If the vertical
spacing is more than three lines, LINEPR T writes
blank lines until the line number is within three lines
of the line number where the line is to be written and
the spacing character can handle spacing.

IDCTPOI

Procedure: LINEPRT

3 LINEPR T tests the flags in the static text entry to
determine if this static text entry describes a header
line or a message.

8. If it is a header line, LINEPRT puts the address of
the translated header line in PCT AHP so it can be
written again when a page overflows as well as
when they are first given to the Text Processor.
Unless all header lines, spaces, and one data line
will fit on a page, a page overflow occurs, and
LINEPRT ejects a page. The number is in HSDP in
the static text entry. A UGPOOL is done for
storage for the kept header line. Once a header is

~:iven to UPRINT, it can only by removed by
another header, UESTS, UESTA, or URESET
macro.

b. If it is a message line, LINEPRT writes the stack
buffer with a UPUT macro.

IDCTPOI

Procedllre: LINEPRT

4 LINEPRT translates the formatted line using the
translate table supplied for the print chain and
addressed from PCTTRP. The CHAIN or TABLE
parameter of the P ARM command determines the
translate table. In Access Method Services translate
tablc::s, all non-printable bit combinations are changed
to pt::riods.

IDCTPOI

Proced1Hres: LINEPRT, STACKPUT

5 LINEPRT puts the translated line preceded by a two
byte length field in the stack buffer. When the stack
buUer is full, ST ACKPUT issues a UPUT against the
entire buffer. Lines in the stack buffer are in variable
format with as many trailing blanks removed as
possible. The minimum line size is 10 bytes. If the line
is a message, ST ACKPUT issues a UPUT against the
message alone. This is done because all messages go to
the standard SYSLST data set. ST ACKPUT passes an
identification number with the UPUT macro. The
identification number for all data lines is zero and for
messages is the message number. Therefore,
ST A.CKPUT must issue a separate UPUT for each
message. If an alternate data set is being processed,
there:: is no way to keep messages for the standard data
set until ready to print, because there is only one stack
buffe::r.

IDCTPOI

Procedure: LINEPRT

6 LIN1EPRT fills the line buffer with blanks and control
returns to the caller, FORMAT or CONVERT. ~~"tI

,<('II~

~ :S.~
Z~o
t""'c..
v.l>v.l
Z"'O -<:
N2:~
tNOo
VI \0 VI
VI ~ 0'1
o-f"

~I.H
......:I

~ Diagram 7.6 UERROR MACRO
o o
til
<
til

:>
~
til
til

~
(\)

S-
o
0.
til
(\)

~ §.
til

t""'
o

(JQ

ri·

_ .. ,.. --

Register 1

C Argument List
I

1 tGDT I
I t ERCNVTAB I

Static Text
Module

EJ

...

..
> ...

T

1. Determine type of error to be converted.

• Catalog Error

2 . Retrieve verbal text description of catalog
return code .

3. Initialize DARGLlST to print primary and
secondary message pair.

Printed Lines

... c=J 4. UPRINT. ~ ..

.. Register 15
5. Return to invoker. .> I I r

-

Extended Description for Diagram 7.6

IDCTP06

Procedure: IDCTP06

t The Error Conversion Table (ERCNVT AB) indicates
the type of error to be converted. The only allowable
error is a catalog error.

IDCTP06

Proced.e: CATERCNV

1 Retrieve the verbal text description from the
UERROR static text module (IDCTSTP6).
CA TERCNV uses the numeric catalog error code to
index the appropriate verbal text entry in the static
text module. The UPRINT macro is used to return the
verbal text.

IDCTP06

Procedure: CATERCNV

3 The DARGLIST is initialized to print the primary and
secondary message pair. In a batch environment, both
messages are issued to the SYSLST data set.

IDCTP06

Procedure: IDCTP06

" Print the message pair via the Text Processor UPRINT
macro.

IDCTP06

ProcetM-e: IDCTP06

S Control is returned to the issuer of the UERROR
macro.

~
S-o
Co

S
o
'&
;.
cs
::s
N
-.,J
-.,J

Debuainl Aids Visual Table of Contents

8.0

Debulling Aids
Overview

I
I 8.1

UTRACE Macro)UMP Macro

8.2.1

l[)ump Fields

!j
00

o
o
CIl
........
<:
CIl

>
~
en en

~
n ;.
&.
CIl
n
~
~r en

b
(JQ
(;.

Diagram 8.0. Debugging Aids Overview

Intra-Module
Trace Table

1.

Register I

(Argumenl LiS!

"'> 2. ..

-

From Procedure

-".

Intra-Module ... Trace Table
Updates Intra-Module Trace ..
Table.

---0 See Diagram

Dumps information based on options
specified:

See Diagram -[0

~
Trace Tables

• TRACE

D
....

T race Tables and
.... Selected Areas

• AREAS ~

D
..

Trace Tables and
.... Full Region Dump

• FULL ;::

D
..

~
o
ET-
o
p.
o
o
~ ..,
~ o·
=
N
-.J
\0

Extended Description for Diagram 8.0

IDCDBOI

Procedure: IDCDBOI

1 When a module issues a UTRACE macro instruction,
the PL/S compiler generates inline code that updates
the Intra-Module Trace Table. Diagram 8.1 shows the
UTRACE macro instruction in detail. Processing
continues with the statement following the UTRACE
macro.

2 The output of the UDUMP macro instruction depends
upon the TEST keyword options specified either in the
PARM command or from the EXEC statement.

• If TRACE is specified, UDUMP prints the Inter- and
Intra-Module Trace Tables each time a UDUMP

, macro is executed.

• If AREAS is specified, UDUMP prints the Inter- and
Intra-Module Trace Tables and items given to the
UDUMP macro only for the areas specified.

• If FULL is specified, UDUMP prints Inter- and
Intra-Module Trace Tables and a full region dump
only for the dump identifiers specified.

Diagram 8.2 shows the UDUMP macro instruction in
detail. Control returns to the module issuing the
UDUMP macro.

N
IX!
o
Cj
o
en
........
<:
en

> (")
(")
~
III
III

~
~

50
o
c.
en
~

:;!
(i0
~
III

b
(JQ
(i0

Diagram 8.1. UTRACE Macro

From Diagram 800

GDT '/1// "//////////////L.

~:> (GDTTR2

Intra-Module
Trace Table

New Identification

I I

l
S-

f. g
~
00 -

Extended Description for 8.1
IDCDBOI

Proce-': IDCDBOI

1 The inline code lenerated by the UTRACE macro lets
the address of the Intra-Module-Trace Table from the
GD1TR2 field in the GDT. The inline code shifts the
Intra-Module-Trace Table left so that the oldest
identifier at the beainninl of the table is lost.

2 The module provides the UTRACE macro with the
new identifier to add to the Trace Table. The
lenerated inline code puts the new identifier at the end
of the Trace Table. The new identifier is 4 bytes lonl;
the first two characters are characters 4 and S of the
module name; the last two characters are assianed by
the module. The identifier may either be four
characters in quotes or the address of four characters.
Control continues with the next instruction.

~ Diagram 8.2. UDUMP Macro
N

o
o
til
.........
<:
til

:>
(")
(")
(II
fIl
fIl

:::
(II

g.
8-
til
(II

~
~.
fIl

b'
~.

INPUT

Register I

~"""""--------

tt=
((rD~;i,st

Full Dump Identifier

GDT

GDTDBG

GDTDBH

Inter-Module
Trace Table

Intra-Module
Trace. Table

'

From Diagram 8.0

PROCESSING
r--- -

~-"->
v

~

I~

II
II

I I I I

I I I I

1. Checks for PARM command
with TEST options.

2. Initializes.

3. Dumps trace tables.

4. Dumps list of fiel~
See Diagram 8.2.1

s. Dumps region.

6. Terminates.

GDT
J'oo.......
L/'"

GDTDBG

GDTTRI

GDTTR2

I I :> I I

I I :> I I

I I :>

:>

OUTPUT

Trace Tables

D
Fields from
Selected Areas

D
Full Region

D
GDT

GDTDBG

GDTTRI

GDTTR2

I
S
O
1
~. g
N
00
W

Extended Description for Diagram 8.2

IDCPMOI

Procedure: IDCPMOI

1 The PARM command with the TEST keyword must
be specified in order for any dumping to take place, or
the TEST keyword must be specified in the P ARM
field of the EXEC statement. The PARM FSR,
IDCPM01, has loaded the dump routine, IDCDB01,
and has put the address of the dump routine in the
GDTDBG field in the GOT, if dumping is to take
place. If GDTDBG is nonzero, control goes to Step 2.
If GDTDBG is zero, the dump routine is not loaded
and no dumping takes place; control returns to the
module issuing the UDUMP macro.

IOCDBOI

Procedure: IDCDBOI

2 IDCDBOI obtains the calling module identifier from
the last entry in the Inter-Module Trace Table. It
issues a UTRACE macro to put the caller's module
identification in the Intra-Module Trace Table. Both
the Inter-Module and the Intra-Module Trace Tables
are saved so that the trace tables will not be updated
during the dumping operation and the information in
the trace tables at the time the UDUMP was issued is
preserved. IDCDBOI turns off the TEST options by
saving the address of the dump routine and setting
GDTDBG to zero. This prevents any dumps during
the processing of the current dump operation.
IDCDBOI also issues a ULISTLN macro to get the
number of arguments passed via the UDUMP macro.
If there are three arguments, IDCDBOI has received a
list of items to dump.

IOCDBOI

Procedure: IDCDBOI

3 IDCDBOI uses the Test Option Data Area, whose
address is in GDTDBH, to determine whether or not
to print the trace tables. The trace tables are printed if
anyone of the following conditions is present:

• TESTRACE contains a nonzero value, indicating
that the trace tables are to be printed each time
UDUMP is executed.

• IDCDBOI compares the calling module identifier
from the Inter-Module Trace Table with the module
identifiers in the AREANAME. If a match is found,
it prints the trace tables.

• IDCDBOI compares the full dump identifier
provided by the module issuing the UDUMP macro
with the full dump identifiers in FDUMPID. If a
match is found, it prints the trace tables.

IDCl[)BOl
IDC][)B02

Procedures: IDCDBOl, IDCDB02

4 If three arguments are given to the UDUMP macro,
the third is a list of areas to be dumped. IDCDB02
converts and prints each item in the list. If the calling
module identifier from the Inter-Module Trace Table
matches a name in AREANAME, IDCDBOI invokes
IDCDB02 to process the list. Otherwise, the list is
ignored. Diagram 8.2.1 shows dumping fields in detail.

IDCl[)BOl

Proc,edure: IDCDBOI

5 IDCDBOI compares the full dump identifier provided
by the module issuing the UDUMP macro with full
dump identifiers in FDUMPID. If no match is found,
processing continues with step 6. IDCDBOI adds 1 to
REALBEG and checks the number with FDUMPBEG
to determine if the current pass is within the dumping
range. If it is, IDCDBOI compares REALCNT with
FDUMPCNT to determine if all the dumps requested
have been given. If they have not, IDCDBOI adds 1 to
SNAPID and issues a USNAP macro to dump the
rc!gion. UPRINT writes a message stating the full
dump identifier (SNAPID).

IDCI[)BOI

Proc,edure: IDCDBOI

6 IDCDBOI puts the address of the trace tables in
GDTTRI and GDTTR2 and resets the TEST options
by placing the address of the dump routine in
GDTDBG. Control returns to the module that issued
the UDUMP macro.

~ Diagram 8.2.1. UDUMP Macro - Dump Fields
o o
til
..........
<:
til

> o o
~
(Il
(Il

:::
~ e;-
o
Q..

til
~

::;,!
o·
~
(Il

b
00 o·

Dump List
~ ...

.-

1.

2.

--

-'Y

Gets type of dump list entry:

a. Array Header

b. Individual Field

• Hexadecimal

• Bit String

• Character

• Fixed Binary

c. Dump List Terminator

Printed

?
Data Lines

Prints data lines.

D
...

~
CD
;.
o
Q.

S
O
"0
CD

~.
o
='
N
00
VI

Exteqded Description for Diagram 8.2.1

IDCDB02

Procedures: ARRA YHDR, IDCDB02, NAMEFLD,
ITEMDUMP, HCONVERT, BCONVERT,
CCONVERT, FCONVERT

1 IDCDB02 processes each entry in the Dump List until
the end of the list is reached.

a. If the type in the Dump List is 'A'. the entry is an
Array Header. If there is any formatted dump data
in the line, ARRA YHDR issues a UPRINT to print
the line. Each array begins on a new line, and an
Array Header cannot occur within the elements of
another array. If an Array Header does occur
within the elements of another array, UPRINT
prints an error message, the Array Header is
ignored, and the following field entries are
processed as though the Array Header had not
been in the Dump List. A UPRINT macro prints
the name of the array from the Dump List.
ARRA YHDR obtains the looping array control
from the Dump List. The number of bytes in each
input element of the array is used to address the
elements of the array.

b. If the type in the Dump List is H, B, C, or F,
NAMEFLD formats the name of each field in the
line. If the field is part of an array, NAMEFLD
adds a subscript of the element number to the field
name. NAMEFLD also checks the input data type
and converts and formats the data as follows:

• Type H
HCONVERT converts hexadecimal data to
printable form and prints 2 characters per byte
of input; each four bytes of input is converted
and followed by a blank.

• Type B
BCONVERT converts bit string data to
printable form and prints eight characters
followed by a blank per byte of input. The
printed output is enclosed in quotes.

• Type C
CCONVERT converts character input to
printable form and prints one character per byte
of input. The printed output is an unbroken
string of characters enclosed in quotes.

• Type F
FCONVERT converts fixed binary data to
printable decimal. Leading zeros are
suppressed. If the input is 2 or 4 bytes long,

FCONVERT prints a sign; no sign is printed if
the input is 1 or 3 bytes long.

c. If the first byte of the dump list entry is X'FF'.
IDCDB02 terminates processing of the list. Control
returns to the main dump routine, IDCDBOI.

IDCDIIW2

Procedure: ITEMDUMP

2 IDCDB02 logically divides the page into four columns.
A maximum of four different fields may be printed on
a line. Each printed field is preceded by its name from
the Dump List entry and an equal sign. As soon as one
linc~ of data is formatted, a UPRINT macro prints the
linl!.

This output belongs to: Jan Saindon The PruneYard
Dept. J58-Bldg. 048 Campbell, Ca. Ext. 151 - 7th Floor

PROGRAM ORGANIZATION

Overall Organization

This chapter describes the organization of the Access tvlethod Services
processor: the physical packaging of .routine"s into load modules.

The final authorities for any program are the compiler and assembly listings
for that program. This chapter complements those listings, and assumes that
they are at hand. You should have them available for any in-depth analysis.
This chapter directs you to a specific module of the processor; the listings for
that module provide further detail. The next chapter, "Microfiche Directory,"
can help you relate the listings to this book.

The processor consists of executable modules, organized into seven general
areas, and non-executable modules (Command Descriptors and Text
Structures). As described in the "Introduction," six of these areas form a
substructure that provides services and control for the remaining area. This
substructure is made up of the Executive, the System Adapter, the I/O
Adapter, the Text Processor, the Reader/Interpreter, and Debugging Aids.
The seventh area consists of the Function Support Routines (FSRs), of which
there are currently fifteen, one for each verb supported by the processor.

Several modules are link-edited together into one phase (named IDCAMS),
which is loaded when the processor is invoked.

This phase is the root phase and consists of:

IDCEXOI

IDCIOOI

IDCSAOI

IDCSA02

IDCSA03

IDCTPOI

IDCSA08

Executive main routine

I/O Adapter main routine

System Adapter initialization/termination routine

System Adapter services routine

System Adapter prologue/epilogue routine

Text Processor main routine

System Adapter services routine

The following phases are loaded when required using CDLOAD and remain
loaded until termination:

IDCEX02

IDCEX03

IDCI002

IDCI003

IDCSA05

IDCTP04

IDCTP05

IDCTP06

IDCDBOI

IDCDB02

Executive initialization, called by IDCEXOI

Executive termination, called by IDCEXOI

I/O Adapter Open/Close, called by IDGIOOI

I/O Adapter positioning and UIOINFO processing, called by IDCIOOI

System Adapter time routine, called by IDCSA02

Text Processor page control, called by IDCTPOI

Text Processor Text Structure loading, called by IDCTPOI or IDCTP04

Text Processor error message processor called by IDCTPOt

Dump routine, called by any routine

Symbolic dump, called by IDCDBOt

Program Organization 287

The following phases are loaded by the system when their services are
required:

IDCDIOI

IDCDI02

IDCDI03

IDCDI04

IDCDI05

IDCDI06

IDCDI07

IDCDI08

IDCDI09

IDCDIlO

IDCDIt}

IDCDIt2

IDCDI13

IDCDIt4

IDCDIt5

IDCDI20

SYSLST DTF and put phase

SYSIPT DTF and get phase

Fixed and fixed blocked sequential access method SDDTF and get phase

Fixed and fixed blocked sequential access method SDDTF and put phase

Variable and variable blocked sequential access method SDDTF and get
phase

Variable and variable blocked sequential access method SDDTF and put
phase

Undefined sequential access method SDDTF and get phase

Undefined sequential access method SDDTF and put phase

Spanned and spanned block sequential access method SDDTF and get
phase

Spanned and spanned block sequential access method SDDTF and put
phase

Fixed and fixed blocked sequential access method MTDTF and get/put
phase

Variable and variable blocked sequential access method MTDTF and
get/put phase

Spanned and spanned blocked sequential access method MTDTF and
get/put phase

Undefined sequential access method MTDTF and get/put phase

Fixed and fixed blocked indexed sequential access method ISDTF and
get phase

DADSM requests for RESETCAT.

The FSRs and the Reader/Interpreter are alternately called by the Executive
(IDCEXOl) to perform their duties. The Reader/Interpreter is entered at
IDCRIO 1 and loads IDCRIL T and IDCRIKT when needed. The FSRs are
named as follows:

IDCALOI
IDCBIOI
IDCDEOl
IDCDLOI
IDCXPOI
IDCMPOl
IDCLCOl
IDCLROI
IDCPMOl
IDCPROI
IDCRCOI
IDCRMOl
IDCRPOI
IDCRSOl
IDCVYOl

288 DOSjVS Access Method Services Logic

ALTER
BLDINDEX
DEFINE
DELETE
EXPORT
IMPORT
LISTCAT
LISTRCRA
PARM
PRINT
EXPORTRA
IMPORTRA
REPRO
RESETCAT
VERIFY

System Macros and Services Used by Access Method Services

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

All requests for services from the operating system are issued by either the
System Adapter or the I/O Adapter. The following lists all system and I/O
macros issued by the processor, along with the issuing module's name and the
label at the point of issue. These labels all begin with "L" contain a
mnemonic for the macro, and end with a single digit. Thus they are easy to
locate with the cross-reference table of the listing.

The adapters provide the services in the following list to the rest of the
processor. Non-system services are also provided by the adapters and by the
Text Processor. Services are represented in the listings by a call to the
appropriate service-module entry point.

System and I/O Macros Used by Access Method Services

Macro

CANCEL

CATLG

CCB

CDLOAD

CLOSE

COMRG

DIMOD

DTFDI

DTFIS

DTFMT

DTFSD

ENDREQ

EOJ

ERASE

EXCP

FREEVIS

GET

Module

IDCSAOI

IDCSA02

IDCSAOI
IDCIOO3

IDCIOO2,IDCIOO3
IDCSAOI
IDCSA02
IDCRS07

IDCIOO2,IDCSAOI

IDCSA05
IDCSA02
IDCSAOI
IDCEX02

IDCDI01, IDCDI02

IDCDI01,IDCDI02

IDCDIl5

IDCDIll
IDCDIl2
IDCDIl3
IDCDIl4

IDCDI03, IDCDI04
IDCDI05, IDCDI06
IDCDI07,IDCDI08
IDCDI09,IDCDIlO

IDCRPOI

IDCSAOI

IDCRPOI

IDCIOO3
IDCSAOI

IDCIOO2

IDCSA03
IDCSAOI

IDCSA02

IDCDI20

IDCIOOI

Label

LCANCEL1, LCANCEL2

LCATLGI

LCCB 1, LCCB2
LCCBl

LCD LOAD 1
LCDLDI
LCDLD2, LCDLD3

LCLOSEI

LCOMRG 1, LCOMRG2
LCOMRG3
LCOMRG4
LCOMRG5

LDTFDII

LDTFISI

LDTFMT1, LDTFMT2
LDTFMTI. LDTFMT2
LDTFMT1, LDTFMT2
LDTFMT1, LDTFMT2

LDTFSDI
LDTFSDI
LDTFSDI
LDTFSDI

LEOJI

LEXCP1, LEXCP2
LEXCP, LEXCP2, LEXCP3

LFREEV1, LFREEV2
LFREEV3, LFREEV4
LFREEV1, LFREEV2
LFREEV5, LFREEV6
LFREEV7, LFREEV8
LFREEV9
LFREEVll, LFREEV13
LFREEVI4, LFREEV15

LGET1, LGET2
LGET3, LGET4

Program Organization 289

System and I/O Macros Used by Access Method Senices

Macro Module Label

GETIME IDCSA05 LGETIME l, LGETIME2

GETVIS IDCSA03 LGETVI
IDCSAOl LGETV3, LGETVIO
IDCSA02 LGETV5, LGETV6

LGETV7, LGETV8
IDCI002 LGETVl
IDCDI20

ISMOD IDCDI15

LOAD IDCSA02 LLDD2, LLDD3
IDCI002 LLOADl

MTMOD IDCDItl,IDCDI12
IDCDI13,IDCDIt4

OPEN IDCI002 LOPENl

PDUMP IDCSA02 LPDUMPI
IDCSAOl LPDUMP2

POINT IDCI003 LPOINTl

PUT IDCIOOl LPUTl, LPUT2
LPUT3, LPUT4

RELEASE IDCSA08 LRLSEl

SDMODFI IDCDI03

SDMODFO IDCDI04

SDMODUI IDCDI07

SDMODUO IDCDI08

SDMODVI IDCDI05, IDCDI09

SDMODVO IDCDI06,IDCDItO

SETL IDCI002,IDCI003 LSETLI

TRUNC IDCIOOI LTRUNCl

USE IDCSA08 LUSEl, LUSE2, LUSE3, LUSE4

VERIFY IDCIOOI LVRFYl

WAIT IDCI003 LWAITl, LWAIT2
IDCSAOI LWAITl, LWAIT2, LWAIT3

The Global Data Table (GDT) contains a branch vector to the various entry
points in the adapters which provide these services. A routine obtains a
service by loading the appropriate entry points address into a register and
performing a BALR. Standard linkage is used: register 1 points to a list of
argument addresses, register 13 points to a save area, register 14 contains the
return address, and register 15 contains the entry point address. The
exception is the call to SAABT: register 1 is not used, register 13 contains the
address of a save area in the System Adapter, register 14 contains the address
of SAABT and register 15 contains an abort code.

290 DOS/VS Access Method Services Logic

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Services Provided for Processor Modules

The following is a list of the services provided by the adapters and the Text
Processor, the appropriate module name in each case, and the entry point
name. Calls to the services are generated by macros defined by Access
Method Services. The macros are collectively called Umacros. The listings
contain only the calling sequence and not the Umacro. This publication
discusses the Umacros in order to combine the calling sequence with the
service performed as a function. The rightmost column lists the arguments
that may be included with each of these Umacros. These arguments represent
the addresses of the named items. When the argument is preceded by the
symbol t, then it is the address of a fullword pointer to the named item.
Brackets ([]) indicate an optional argument.

Internal Services Provided for Processor Modules

Service

PROLOG

UABORT

UCALL

UCATLG

UCLOSE

UCOPY

UDELETE

UDEQ

UDUMP

UENQ

UEPIL

UERROR

UESTA

UESTS

Module Entry Point Description Arguments

IDCSA03 IDCSAPR Initialize a routine on entry; get storage. module identification
size of storage for module

IDCSAOI SAABT Handle unrecoverable error condition while UABORT code (in register
processing. 15)

IDCSA02 IDCSACL Load (if necessary) an executable module and GDT

IDCSA02 IDCSACA

IDCIOOI IDCIOCL

IDCIOOI IDCIOOI

IDCSA02 IDCSADE

IDCSA08 IDCSADQ

IDCDBOI IDCDBOI

IDCSA08 IDCSANQ

IDCSA03 IDCSAEP

IDCTP06 IDCTPER

IDCTPOI IDCTPEA

IDCTPOI IDCTPES

and pass control to it. entry point name
[list of arguments for
called module]

Catalog request.

Close one or more data sets.

Copy a data set.

No operation in DOS/VS.

Release control of a resource

Print diagnostic output and storage dump.

Gain control of a resource

Free storage on exit from a routine.

Verbalize catalog error messages.

Establish a PCT (print control table) from
information in storage.

Establish a PCT (print control table) from
information in Text Structures.

GDT
t catalog parameter list

GDT
OPNAGL[. ..]

GDT
t input IOCSTR
t output IOCSTR

GDT
module name

GDT
resource name

GDT
Dump Identifier
[t symbolic dump list]

GDT
'SHR' I 'EXCL'
'NOW AIT' I 'WAIT'
resource name

GDT
module identifier
[return code]

GDT
ERCNVTAB

GDT
alternate IOCSTR or
zero for SYSPRINT
PCARG

GDT
alternate IOCSTR or
zero for SYSPRINT
Text Structure identification

Program Organization 291

Internal Services Provided for Processor Modules

Service Module Entry Point Description Arguments

UFPOOL IDCSA02 IDCSAFP Release a named pool of storage. GDT
pool identification
["ALL"]

UFSPACE IDCSA02 IDCSAFS Release unnamed storage. GDT
address of storage to free

UGET IDCIOOl IDCIOGT Read a record. GDT
tlOCSTR

UGPOOL IDCSA02 IDCSAGP Allocate a named pool of storage and GDT
optionally initialize it. size of storage to obtain

return storage address
pool identification
["SETZERO" I "SETBLANK"]

UGSPACE IDCSA02 IDCSAGS Allocate unnamed storage, and optionally GDT
initialize it. size of storage to obtain

return storage address
["SETZERO" I "SETBLANK"]

UIOINFO IDCIOOl IDCIOSI Return file-ID, volume serial numbers, GDT
and/or device type information about a given option flags
filename. twork area

filename
[pool identification]

UIOINIT IDCrOOl IDCIOIT Initialize the I/O Adapter. GDT
[t zero]
[t external routine list]

UIOTERM IDCIOOl IDCIOTM Close all data sets that were opened with GDT
UOPEN and free all storage still used by
the I/O Adapter.

ULISTLN Inline None Copies the contents of register 1 into a
full word named LISTPTR and puts the
number of arguments addressed by register
1 in a byte named LISTLN.

ULOAD IDCSA02 IDCSALD Load (if necessary) a module; do not pass GDT
control to it. module name

returned loaded module address

UOPEN IDCIOOl IDCIOOP Open one or more data sets. GDT
OPNAGL[...]

UPOSIT IDCIOOl IDCIOPO Position to a logical record. GDT
tlOCSTR

UPRINT IDCTPOl IDCTPPR Format (and usually write) one or more GDT
lines. alternate 10CSTR or

zero for SYSPRINT
tDARGLIST
[tFMTLIST]

UPUT IDCIOOl IDCIOPT Write a record. GDT
tlOCSTR
[ID code]

URESET IDCTPOl IDCTPRE Re-initialize PCT (print control table) GDT
for the next function. alternate 10CSTR or

zero for SYSPRINT
invoker's page
number field

292 DOS/VS Access Method Services Logic

Text Rearranged Only
Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Internal Services Provided for Processor Modules

Service Module Entry Point Description

UREST IDCTPOI IDCTPRS Modify an existing PCT (print control
table).

Arguments

GDT
alternate IOCSTR or
zero for SYSPRINT
arg1

arg2
argn

USA VERC Inline None Copies the low order half of
register 15 into a halfword named
TESTRC.

USNAP

UTIME

UTRACE

code

IDCSA02 IDCSASN Call for a dump of the partition.

IDCSA02 IDCSATI Get date and time of day.

Inline None
code

Adds the current identification to
the Inter-Module Trace Table.

GDT
SNAP dump-ID number

GDT
field fOi ieturned time
[field for returned date]
["FORM" I "KLOK"]

UVERIFY IDCIOOI IDCIOVR Issue VSAM VERIFY macro. GDT
tlOCSTR

Processor Invocation
Invocation of the Access Method Services processor is via standard DOS/VS
job control (/ / EXEC IDCAMS, SIZE=AUTO), or via a subroutine call.
Entry and exit to the Access Method Services processor occurs through
IDCSAOl, a module of the System Adapter. For a subroutine call, you must
load phase IDCAMS which occupies 27,000 bytes and branch to the load
address plus six. Standard linkage is used; that is, register 1 points to the
argument list, register 13 points to a save area, register 14 contains the return
address, and register 15 contains the entry point address. On return from the
Access Method Services processor to a subroutine caller, all registers except
register 15 are restored. Register 15 contains the value of MAXCC (see the
section: "Processor Condition Codes" below.)

The argument list, as shown in Figure 5, can be a maximum of four fullword
addresses pointing to strings of data. The last address in the list contains a
"1" in the sign field. The first three possible strings of data begin with a
two-byte length field. A null element in the list can be indicated by either an
address of zeros or a length of zero.

Program Organization 293

-r-

t OPTIONS

t DNAMES

~ PAGE NUMBER

t IOLIST

n

t DNAME t

t IOROUTINE t

USER DATA t

•
•
•

~ DNAME n

~ IOROUTINEn

+ USER DATAn

-r-

n: Fullword which specifies the
number of groups of three fields
that follow. Each group consists
of a DNAME, an I/O routine,
and user data.

DNAME: Address of a to-byte
character string, the first two
characters of which are '00', the
next 8 characters are the ONAME

field value which may appear in the
FILE, INFILE, or OUTFILE

parameters of any Access Method
Services command. The appearance
of this name causes invocation of
the associated IOROUTINE for all
I/O operations on the data set
associated (normally via the OLBL

or TLBL statements) with ONAME.

IOROUTINE: Address of the
program which is to be invoked to
process I/O operations upon the
data set associated with ONAME.

This routine is invoked instead of a
system access method for all
operations against the data set.

USER DATA: Address ofa data area
that the user can use for any purpose.

Figure 5. Argument List for Processor Invocation

294 DOS/VS Access Method Services Logic

LENGTH OPTIEJ

LENGTH: Halfword which specifies the
number of bytes in the OPTIONS field.

OPTIONS: Character string which contains
system options from PARM field of EXEC

statement or options set up by the invoker.

LENGTH

Halfword, in DOS/VS, this value

LENGTH PAGE NUMBER

LENGTH: Halfword which specifies the number
of bytes in the PAGE NUMBER field.

PA~E NUMBER: 1-4 byte character string
whIch may specify the starting page number
of system output listing. This value is reset
to the current page number upon
completion of the present invocation of the
Access Method Services processor. The
number will be truncated to fit the space.

(IDCAMS)
'----_...-#

From and to Access Method
Services Invoker

••
I

IDCSAOI
Initiator/

Terminator

1
IDCEXOI
Main Line

IDCEX02
Executive
Initiator

IDCRIOI
Reader/

Interpreter

Function
Support Routine

IDCEX03
Executive

Terminator

IDCRI02
Setup

Descriptor

IDCRI03
Reader/

Interpreter
Terminator

Figure 7. Flow of Control Through Main Functions

Program Organization 297

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

I/O Services

I/O Main

mCSA03

Prologue
Epilogue

mCI002

Open/Close

mCIO03

Position

t
mCSA02

System
Adapter
Main

Figure 8. Flow of Control Through Services

Text Formatting
Services

Text
Processor
Main

mCTP04

.. -+--. Setup

mCTPOS
Get Text

-4--+-~

Structure

IDCTP06
Verbalize
Return Codes

Operating System Services

~ t
mCSAOl mCSA08

Abort Enqueue
Dequeue

IDCSAOS

Time

298 DOS/VS Access Method Services Logic

Debugging
Services

mCDBOl

Dump
Main

mCDB02
Symbolic

.............. Dump

C __ I_D_CA'r"'M_S ____)
From and to Access Method
Services Invoker

IDCSAOI
Initiator/

Terminator

I IDJXOI I
Main Line

IDCEX02
Executive
Initiator

IDCRIOI
Reader/

Interpreter

Function
Support Routine

IDCEX03
Executive

Terminator

IDCRI02
Setup

Descriptor

IDCRI03
Reader/

Interpreter
Terminator

Figure 7. Flow of Control Through Main Functions

Program Organization 297

I/O Main

IDCSA03

Prologue
Epilogue

IDClOO2

"""""''''·0 pen/Close

IDCI003

..... t-+ ... ·Position

t
IDCSA02

System
Adapter
Main

Figure 8. Flow of Control Through Services

298 DOS/VS Access Method Services Logic

Text
Processor
Main

I DCTP04

.... ~ ... ·Setup

IDCTP05

.... ~ ·Get Text
Structure

Operating System Services

1
IDCSA08

Enqueue
Dequeue

IDCSA05

- Time

IDCDBOI

Dump
Main

IDCDB02

.... t-+ ... Symbolic
Dump

MICROFICHE DIRECTORY

This chapter contains a directory to the microfiche listings for all modules of
the processor. This directory describes the contents of each module by
function and label, allowing you to quickly find any desired code.

The processor is written in PL/S, a high-level, IBM proprietary system
language. Listings that are produced for microfiche consist of the PL/S
source code, a cross-reference and attribute table, and the assembly code. See
the IBM publication Guide to PL/S II, GC28-6794, for a more detailed
explanation of PL/S and its listings.

Each module is designed with no explicit GOTOs or branches. All conditional
phrases are contained within IF-THEN-ELSE clauses and DO-WHILE
clauses of PL/S. All loops are controlled by DO statements. Extensive use of
closed subroutines (procedures) is made.

The microfiche for each module begins with the PL/S portion, which contains
all commentary and is the most readable form of the program. All major data
areas are defined at the beginning of the listing. IF-THEN-ELSE clauses and
DO-loops are indented to denote levels of logic. The cross-reference and
attribute table shows each use of each data area. The assembly listing is keyed
back to the PL/S source statement numbers.

The listings are extensively commented. Each module begins with a prologue
commentary that lists all standard information for that module. Throughout
the listing, additional comments are boxed and structurally indented to make
them easy to find. Each internal procedure has a small prologue to further
describe its function.

Note: The listings use CPL, FVT, and FPL instead of CTGPL, CTGFV, and
CTGFL, respectively. See DOS/VS LIOCS Volume 4, VSAM Logic for a
description of these data areas.

In the following tables, the module name appears in the first (leftmost)
column. The second column contains an entry-point label, the label of an
internal procedure (subroutine), or the label of data used externally-that is,
by another module. The third column differentiates between entry points
(EP), procedures (PR), and data used externally (DE).

Microfiche Directory 299

CSECT/Load
Module Name Label Use Description

IDCALOI AL TER FSR; modify an existing catalog entry.
Translate the encoded command parameters
into the necessary catalog parameter lists and
call IDCSACA for a catalog request (UCA TLG
macro).

IDCALOI EP Only entry point to this module.

LOCATPRC PR Locates catalog fields which must be altered in
context. Procedure only locates those fields
which contain multiple attributes. Thus, since
the user may wish to change only one of several
attributes, the original field must serve as the
basis for alteration.

ALTERPRC PR Builds the VSAM catalog management interface
for the alter request.

CHECKPRC PR Does validity checking on certain attributes to
ensure compatibility between old values and new
values.

INDEXPROC PR If KEYS has been specified on the AL TER
command, INDEXPRC builds the parameter list
to alter the associated index object.

PARAMCHK PR Verifies that parameters specified on th~
command are valid for the type of object to be
altered.

IDCAMS EP Root phase for Access Method Services; consists
of IDCSAOl, IDCSA02, IDCSA03, IDCEXOl,
IDCIOOl, and IDCTPOI. See the directory for
these modules for further description.

IDCBIOI BLDINDEX FSR; build one or more alternate
indexes over a defined, nonempty base cluster.

IDCBIOI EP Only entry point to this module.

OPENPROC PR Opens the data sets required by the BLDINDEX
FSR-base cluster, alternate index and,
optionally, sort work files-by issuing UOPEN.

JCPROC PR Issues the UIOINFO macro to determine if
caller supplied sort work job control; obtains
data set name and volume serial.

MAINPROC PR Controls the build process for one alternate
index by calli!lg OPENPROC, LOCPROC,
INITPROC, CNTLPROC.

FINPROC PR Closes alternate index, sort work files, and issues
alternate index final status message.

TERMPROC PR Closes base cluster, frees resources, and prints
termination message.

LOCPROC PR Controls sequence of catalog locates to obtain
information regarding base cluster and alternate
index; verifies relationship.

CATPROC PR Constructs CPL and FPLs for catalog locate and
calls VSAM catalog management via UCATLG.

DEFPROC PR Constructs CPL, FVTs and FPLs and calls
VSAM catalog management to define sort work
files; opens defined files.

DELTPROC PR Constructs CPL and calls VSAM catalog
management to delete sort work files.

300 DOS/VS Access Method Services Logic

CSECT/Load
Module Name Label Use Description

IDCBIOI INITPROC PR Determines resources required for building
(conti..1'lUed) alternate index and obtains core for \vork areas

and sorting.

CNTLPROC PR Controls actual build by reading base cluster and
calling SORTPROC and MERGPROC or
BLDPROC to perform sort-merge and write
alternate index records.

SORTPROC PR Constructs sort records; performs the entire
internal sort or the initial sort phase of an
external sort.

SPILPROC PR Writes out initial strings to first sort work file in
an external sort.

BLDPROC PR Builds and writes the alternate index records
from the sequenced sort records.

MERGPROC PR Performs the merge passes of an external sort.

IDCCDAL Command Descriptor for ALTER verb.

IDCCDBI Command Descriptor for BLDINDEX verb.

IDCCDDE Command Descriptor for DEFINE verb.

IDCCDDL Command Descriptor for DELETE verb.

IDCCDLC Command Descriptor for LISTCA T verb.

IDCCDLR Command Descriptor for LISTCRA verb.

IDCCDMP Command Descriptor for IMPORT verb.

IDCCDPM Command Descriptor for P ARM verb.

IDCCDPR Command Descriptor for PRINT verb.

IDCCDRC Command Descriptor for EXPORTRA verb.

IDCCDRM Command Descriptor for the IMPORTRA verb.

IDCCDRP Command Descriptor for the REPRO verb.

IDCCDRS Command Descriptor for the RESETCA T verb.

IDCCDVY Command Descriptor for VERIFY verb.

IDCCDXP Command Descriptor for EXPORT verb.

IDCDBOI Debug module (UDUMP macro).

IDCDBOI EP Only entry point to this module.

IDCDB02 Debug module (symbolic dump).

IDCDB02 EP Only entry point to this module.

ARRAYHDR PR Processes any array header elements
(TYPE=" A") occurring in the dump list.

ITEMDUMP PR Processes any individual dump list elements.

NAMEFLD PR Inserts the symbolic name of the dump element
into the proper position of the output line.

HCONVERT PR Converts the value of the current dump item to
hexadecimal representation.

BCONVERT PR Converts the value of the current dump item to
binary representation.

CCONVERT PR Converts the value of the current dump item to
character representation.

FCONVERT PR Converts the value of the current dump item to
fixed-integer representation.

Microfiche Directory 301

CSECT/Load
Module Name Label Use Description

IDCDEOI DEFINE FSR; define a new VSAM data set as a
cataloged object.

IDCDEOI EP Only entry point to this module.

INTGCHK PR Performs validity checking on completed catalog
parameter list.

IDCDE02 Common processing routines for all define
types.

IDCDE02 EP Initializes registers and obtains storage.

NAMEPROC EP Initializes the data set creation and expiration
dates in the CTGFL and the object name in the
CTGFV.

ALLCPROC EP Initializes several allocation and option related
parameters in the CTGFL and CTGFV.

KEYPROC EP Initializes the record management control block
and the key range "pseudo-field" in the CTGFL.

IXOPPROC EP Initializes index options.

PROTPROC EP Initializes the security combination and owner
identification fields and the SHAREOPTIONS
and ERASE I NOERASE flags in the CTGFL.

MODELPRC PR Handles the retrieval of model objects to be used
in defining components of VSAM user catalogs
and data sets.

FREESTG EP Frees automatic storage for IDCDE02 CSECT.

IDCDE03 Routes control to proper routine.

IDCDE03 EP Calls proper procedure to construct parameter
list for the different object types.

CTLGPROC PR Oversees the construction of the VSAM
CTGPL, CTGFV, and CTGFL for defining a
VSAM master or user catalog.

DSETPROC PR Oversees the construction of VSAM key
sequenced and entry sequenced data sets.

AIXPROC PR Oversees the construction of the VSAM catalog
interface for defining alternate index data sets.

PATHPROC PR Oversees the construction of the VSAM catalog
interface for defining paths.

DSPACPRC PR Oversees the construction of the VSAM catalog
interface for defining VSAM data spaces.

NVSAMPRC PR Oversees the construction of the VSAM catalog
interface for defining a nonVSAM data set into
a VSAM catalog.

IDCDIOI SYSLST DTF and put phase.

IDCDI02 SYSIPT DTF and get phase.

IOCDI03 Fixed and fixed blocked sequential access
method SO DTF and get phase.

IDCDI04 Fixed and fixed blocked sequential access
method SDDTF and put phase.

IDCDI05 Variable and variable blocked sequential access
method SDDTF and get phase.

IDCDI06 Variable and variable blocked sequential access
method SODTF and put phase.

302 DOS/VS Access Method Services Logic

CSECT/Load
Module Name Label Use Description

IDCDI07 Undefined seqeuntial access method SDDTF
~~,t ~~. _l.~~~
al1U 5~l plla;:)~.

IDCDI08 Undefined sequential access method SDDTF
and put phase.

IDCDI09 Spanned and spanned block sequential access
method SDDTF and get phase.

IDCDIlO Spanned and spanned block sequential access
method SDDTF and'put phase.

IDCDI1l Fixed and fixed blocked sequential access
method MTDTF and get/put phase.

IDCDI12 Variable and variable blocked sequential access
method MTDTF and get/put phase.

IDCDIl3 Spanned and spanned blocked sequential access
method MTDTF and get/put phase.

IDCDI14 Undefined sequential access method MTDTF
and get/put phase.

IDCDI15 Fixed and fixed blocked indexed sequential
access method DTF and get phase.

IDCDI20 DADSM requests for RESETCAT.

IDCDLOI DELETE FSR; delete a catalog entry from the
VSAM catalog.

IDCDLOl EP Only entry point to this module.

CATOPEN PR Opens the user catalog if .. equired.

FINDTYPE PR Locates the entry to be deleted in order to
determine its type when type is not specified in
command.

PARAMCHK PR Checks for invalid type specification and other
command parameter errors.

BUILDCPL PR Constructs the CTGPL from parameters
specified in the DELETE command and
indicated in the FDT.

CATCALL PR Calls VSAM catalog management to delete a
single catalog entry.

MORESP PR Obtains a larger catalog work area and
reinvokes catalog management.

CLEANUP PR Performs termination functions and closes the
user catalog, if required.

IDCEXOI Main-line for Executive; routes control through
processor.

IDCEXOI EP Only entry point to this module; entered from
IDCSAOI.

MAIN PR Flip-flop control between Reader/Interpreter
and FSR required for each command.

CALLRI PR Invoke Reader/Interpreter to parse the next
command.

CALLFSR PR Invoke FSR named by the result of parse by
Reader/Interpreter.

IDCEX02 Executive, initialize the processor.

IDCEX02 EP Only entry point to this module.

SCANPARM PR Scan processor invocation parameter list.

Microfiche Directory 303

CSECT/Load
Module Name Label Use Description

IDCEX03 Executive, terminate processing.

IDCEX03 EP Only entry point to this module.

SCANPARM PR Scan invoker's parameter list to return next
available page number.

IDCIOOl Supply all I/O services to the remainder of the
processor. At each of the following entry points,
IDCIOOl converts the service request to the
appropriate system macros and issues those
macros.

IDCIOIT EP First call to I/O Adapter: initialize the adapter
for subsequent calls.

IDCIOOP EP Open 1 to 4 data sets (UOPEN macro), by
calling IDCIOO2.

IDCIOTM EP Close any data sets still open (UIOTERM
macro).

IDCIOCL EP Close 1 to 4 data sets (UCLOSE macro), by
calling IDCIOO2.

IDCIOPO EP Position to a specific record in a data set
(UPOSIT macro), by calling IDCIOO3.

IDCIOSI EP Obtain various pieces of information about data
set.

IDCIOGT EP Read a record (UGET macro).

IDCIOPT EP Write a record (UPUT macro).

IDCIOVY EP Verify data set (UVERIFY macro).

IDCIOCO EP Copy a data set (UCOPY macro).

CHANGE PR Handles change of processing modes for RPL.

GETEXT PR Call an external routine to get a data record.

GETVSAM PR Get a logical record from a VSAM data set.

IRAMEOD PR End-of-data-set exit routine for VSAM data sets.

GETNONVS PR Get a logical record from a nonVSAM data set.

IROSEOD PR End-of-data-set exit routine for nonVSAM data
sets.

PUTEXT PR Call a user-supplied routine for output.

PUTVSAM PR Put a logical record to a VSAM data set.

PUTNONVS PR Put a logical record to anon VSAM data set.

PUTREP PR Handle PUT (Replace) processing.

VSAMERR PR Build VSAM error message argument list.

BLDAMSG PR Prepare an error message.

PRINTMSG PR Print a message.

IDCIOSI DE Amount of storage IDCIOOI needs. Used by
IDCSAOl.

IRSISYN PR Exit routine for I/O errors when attempting a
GET on a nonVSAM, nonISAM data set.

IRSOSYN PR Exit routine for I/O errors when attempting a
PUT on anon VSAM, nonISAM data set.

IDCIOO2 Open/Close routine This routine can open or
close 1 to 4 data sets with one call.

IDCIOO2 EP Only entry point to this module.

304 DOS/VS Access Method Services Logic

CSECT/Load
Module Name Label Use Description

IDCI002 OPENRTN PR Open a data set.
(continued)

CKNONOP PR Check that a non VSAM data set was opened
successfully.

CLOSERTN PR Close data sets that were opened by the I/O
Open routine.

ENVFREE PR Free storage used for a data set; system areas,
buffers, control blocks, DTF, and access load
module.

DSDATA PR Issue CDLOAD and read label cylinder.

BUILDRPL PR Build RPL for VSAM data set and get input
workareas for buffers.

BUILDACB PR Build ACB and EXLST for VSAM data set to be
opened.

BUILDDBK PR Load DTF and access module and modify DTF
for anon VSAM data set to be opened.

BLDOCMSG PR Set up an error message.

PRINTMSG PR Call Text Processor to print error message.

IDCI003 Perform POINT, SETL and UIOINFO
operations.

IDCI003 EP Only entry point to this module.

PTAMDS PR Point to VSAM logical record.

PTISDS PR SETL to ISAM logical record.

BLDAMSG PR Prepare error message.

PRNTMSG PR Print message.

DSINFO PR Find volume/data set information.

IDCLCOI LISTCA T FSR; produces a listing of all or part
of a VSAM catalog. This module initializes and
manages the routing of VSAM catalog entries.

IDCLCOI EP Only entry point to this module.

INITPROC PR Interrogates the FDT and initializes the catalog
and DADSM parameter lists and workareas.

GNXTPROC PR Manages the request for all or a specified subset
of the catalog entry types in alphameric
sequence.

ENTPROC PR Manages the request for specific entries from the
catalog.

RTEPROC PR Routes control to the appropriate formatting
procedure. Then routes control for formatting
the associated data sets in a cluster or alternate
index grouping.

IDCLC02 This module locates, formats, and lists the
VSAM catalog entries.

IDCLC02 EP This entry point is used to establish
addressability, acquire automatic storage and
initialize the common data area pointers.

FREESTG EP Issues a UEPIL umacro to free the automatic
storage acquired by IDCLC02.

FPLPROC EP Re-initializes the string of CTGFLs prior to each
catalog locate request, by using SA VEAREA
copy stored at the original CTGFL-build time.

Microfiche Directory 305

CSECT/Load
Module Name Label Use Description

IDCLC02 LISTPROC EP Issues the Text Processor macro UPRINT and
(continued) zeros out the Dynamic Data Area Argument

List upon exiting.

AUPROC EP Repetitively builds the Text Processor Dynamic
Data Argument List for formatting and listing
the VSAM catalog fields for nonVSAM or user
catalog entry. Repeatedly invokes LISTPROC to
print the data.

LOCPROC EP Issues VSAM catalog locate request and obtains
additional catalog work space if required. After
the first successful locate, sets the catalog ACB
information in the CTGPL and establishes the
LISTC subtitle with the catalog name.

CDIPROC EP Formats the VSAM catalog data for cluster,
alternate index, data, index, and path
associations. Issues the locate request to obtain
associated data set names for listing the
cluster-data set-index-path and alternate
index-data set-index-path associations. Builds
the Text Processor argument list and invokes
LISTPROC to print the data.

VPROC EP Repetitively builds the Text Processor Dynamic
Data Argument List for formatting and listing
the VSAM catalog fields for a volume record
entry. Repeatedly invokes LlSTPROC to print
the data.

ERRPROC EP Completes the Dynamic Data Argument List
with either an Access Method Services or
catalog return code, when required. Issues the
UPRINT macro to list the informational or error
messages. Issues UERROR macro to list VSAM
catalog (SVC26) error messages. Zeros out the
Dynamic Data Argument List upon return to the
caller.

ANSVPROC EP Retrieves the list of associated C.l. numbers and
types from the work area and creates a save area
copy.

IDCLROI AATOPLR EP Only ent~y point to this module-Top control
segment.

ADDASOC PR Add an association to association table.

BUFSHUF PR Moves record from last (general) buffer to
"home" buffer for this record type.

BLDVEXT PR Builds the vertical extension table.

CATOPEN PR Opens the catalog data set and ENQs on it.

CKEYRNG PR Checks the data object for key range. If yes,
prints high key.

CLEANUP PR Closes the catalog and DEQs from it and prints
condition codes.

CLENCRA PR Closes the CRA and frees storage associated.

CRAOPEN PR Opens the CRA and calls the procedure to build
the CTT.

CTTBLD PR Reads CRA control record, gets storage for
CTT, scans CRA, and builds CTT. Controls
sequential dump.

306 DOS/VS Access Method Services Logic

CSECT/Load
Module Name Label Use Description

IDCLROI DOOTHR PR Goes through SORTTBL forward chain
(Continued) containing nonVS/\M names and calls

PRTOTHR to print the objects.

DOVSAM PR Goes through SORTTBL forward chain
containing VSAM names and calls PRTVSAM
to print them.

ERROR PR Using entry subscript for error table, prints the
error message, continues or aborts according to
last condition code.

GETPRT PR Gets copy of CRA record, calls IDCRC04 to
obtain fields requested and, if COMPARE, gets
the catalog record.

INITLZE PR Initializes switches, adapter parameter list,
IDCRC04 parameter list, opens the alternate
output file, and gets table space.

INTASOC PR Initializes an association table for a base object.

INTSORT PR Gets storage for sort table, builds the entries in it
from the CTT for the object type specified.

INTVEXT PR Initializes VEXTTBL by calling IDCRC04
requesting extension pointers and places them in
the table.

MEMSORT PR Adds forward and backward pointers in sort
table.

PRTAAXV PR Prints associated AIXs volumes.

PRTCMP PR Prints and/or compares information in CRA for
one entry.

PRTDMP PR Prints unformatted CRA record. If compare,
calls PRTDMPC to print corresponding catalog
information and underscore miscompares.

PRTDMPC PR Prints unformatted catalog record corresponding
to CRA record being printed. The miscompares
are underscored.

PRTFIFO PR Print CRA without sorting using the same
procedures as if sorting.

PRTMCWD PR Prints miscompare message indicating most
severe fields in error.

PRTOJAL PR Print alias(s) associated with an object.

PRTOJVL PR Print volumes and high keys associated with an
object.

PRTOTHR PR Print and/or compare aU nonVSAM objects and
their extensions.

PRTTIME PR Print time stamps of volumes after converting
them to MM/DD/YY HH/MM/SS.

PRTVOL PR Print and/or compare volume record and its
extensions.

PRTVSAM PR Print and/or compare VSAM structures and
associated records.

SUMIT PR Sum or print number of objects processed.

TCICTCR PR Translate control interval from catalog to CRA.

VERTEXT PR Loops through the VERTEXT and extensions
and prints them.

Microfiche Directory 307

CSECT/Load
Module Name Label Use Description

IDCLR02 EP Formats the buffer pool and reads CRA and
catalog records.

IDCMPOI IMPORT FSR; reconstruct a VSAM cluster or
alternate index from a portable copy that was
created by IDCXPOI. Any associated. paths are
also recreated IDCSACA is called (UCATLG
macro) to add the necessary entries to the
VSAM catalog, and a UCOPY macro is issued to
copy the data set by logical records. When the
input data set is a catalog, no copy is performed;
instead the catalog is connected by a call to
IDCSACA.

IDCMPOI EP Only entry point to this module.

CLUSPROC PR Reads catalog and data records from the
portable volume. Uses catalog information plus
information from the command to perform a
catalog define for the cluster or alternate index.
Copies data into the object after successful
definition in the catalog.

CNCTPROC PR Connects one or more user catalogs.

DUPNPROC PR This procedure is called when a duplicate entry
name is found in the catalog when trying to
define the data set to be imported. A locate will
be performed to see if the entry has the
temporary export flag set in the attributes field.
If so, a delete is then performed so that the
imported data set may be defined.

CPLPROC PR Constructs a CTGPL to be used for a catalog
define, alter, delete, or locate operation.

IUNIQPRC PR Checks the DSATTR field in the CTGFV to see
if the cluster being defined is a unique data set.
If so, a null space (volume) CTGFV must be
supplied for catalog define.

ALTRPROC PR Constructs a CTGPL and CTGFV to be
employed by the catalog alter interface.

LVLRPROC PR Constructs CTGFL for DEVTYPE lists and
constructs list of volume serial numbers.

CTLGPROC PR Invokes the VSAM catalog management to
perform the operation indicated in the CTGPL.

DELTPROC PR Deletes any temporarily exported data sets
found by DUPNPROC.

OPENPROC PR Performs all opens required for opening a
VSAM object or user catalog for input or
opening the portable volume for output.

RANGPROC PR Processes all information dealing with key
ranges.

BFPLPROC PR Constructs a CTGFL from dictionary and
workarea information.

RECPROC PR Copies the data from the portable data set to the
VSAM object being imported. The VSAM
object is opened by OPENPROC. The UCOPY
macro is employed to perform the copy. The
UCLOSE macro is employed to close the object.

MVDAPROC PR Moves data from one location in virtual storage
to another as specified by input arguments.

308 DOS/VS Access Method Services Logic

CSECf/Load
Module Name Label Use Description

IDCMPOI MSGPROC PR Uses the Text Processor interface to list
(Continued) messages_

FVTPROC PR Constructs CTGFVs and CTGFLs from
information in the dictionary.

BPASPROC PR Constructs PASSWALL CTGFL and moves
information into P ASSW ALL.

GETPROC PR Gets a data record and moves it into a buffer.
Reconstructs the original record if it has been
segmented.

IDCPMOt P ARM FSR; establish or change the processor
parameters. Processor parameters (TEST,
MARGINS; and GRAPHICS) can be
established through the P ARM field of the
EXEC card. This FSR provides an alternate way
to set these options.

The results of changing TEST appear in the area
whose address is in GDTDBH. The results of
changing MARGINS appear as the first two
halfwords in the area whose address appears in
GDTRIH, and GRAPHICS is recorded in the
PCT.

IDCPMOI EP Only entry point to this module.

TESTPARM PR Resets the previous test option if necessary.
Processes new test option. Obtains and
initializes the Test Option Data Area.

TESTSAVE PR Extracts the specified test parameters from the
FDT and places them in the Test Option Data
Area to be used by the Access Method Services
dump routine.

MARGPARM PR Processes the input command source margins
specified. The left and right margin values are
placed into the Reader/Interpreter Historical
Data Area to be used by the Reader/Interpreter
when processing subsequent command input.

GRPHPARM PR Determine graphics option chosen and issue
UREST macro to establish the specified
translate table.

IDCPROt PRINT FSR; print the contents of a data set in
EBCDIC, hexadecimal, or dump format. Page
layout is established with a call to IDCTPEA
(UEST A macro) and lines of data are printed by
calling IDCTPPR (UPRINT macro).

IDCPROt EP Only entry point to this module.

TEXTPSET PR Communicates the page layout and record
layout for the listing to the Text Processor.

DELIMSET PR Establishes the boundaries for printing a subset
of the input data set.

IDCRCOt EP This is the highest level of control and the only
entrypoint to this module. The function loops
through the CRAs opening them, writes them
and their associated objects to the portability
data set and closes them.

BUILDCRV PR Obtains space for CRY, ACC, and V1T, obtains
volume and device type information on CRAs.,

Microfiche Directory 309

CSECT/Load
Mod1IIe Name Label Use Description

I OCRCO 1 and constructs the name chain for all entries in
(Continued) theCRAs

BUILDNAM PR Builds the name chain extension block of
storage.

CHKCATNM PR Reads a CRA record and checks the owning
catalog, then issues an ENQ on the owning
catalog.

CKNAMES PR Gathers passwords for VSAM data sets, collects
the association CI numbers and determines the
largest logical record length.

COMPNAME PR Compresses the blanks from the right of the
object name and places it in the space obtained
in the procedure SUBSP.

DIRECT PR Gets space and reads in the directory.

DUPNAMCK PR Scans the name chain for duplicate names and
prints message if one is found.

ERRCK PR If an error is considered severe, the catalog is
closed and the error message is printed.

EXPORTDR PR Prints start of export of CRA message, calls
IDCRC02 to export and prints completion
message.

EXTRACT PR Sets up the FMPL and calls IDCRC04 to extract
data fields from eRA records.

INIT PR Calls SUBSP to obtain storage and then
initializes the buffer pool.

MESSAGE PR Handles the printing of all messages.

NAMETABL PR Checks the name on the CRA record and if it is
a cluster, AIX, nonVSAM or catalog connector,
it builds the name into the name chain.

OBNOLCK PR Checks the time stamp and CIon the volumes
with that of the CRA for each object.

OPEN PR Builds the OPNAGL and issues the open for the
CRA. It then checks the owning catalog name
for the major owning catalog.

OPENCRA PR Calls procedures to open the CRA, get its time
stamp, build the name table and the directory
entry.

SCANCRA PR Reads the catalog record, gets storage for CTT
and loops all CRA records putting CI numbers
in the crr and calls NAMET ABL to build the
name table.

SUBSP PR Handles the obtaining and allocation of small
pieces of storage associated with the name table
from one large block.

SYNCH PR Checks the entire name chain for entries
specified in the input. It also checks for valid
associations, Cis, and volumes.

TERM PR Dequeues from owning catalog, closes the
portability data set, and releases storage.

TIMESTMP PR Reads the volume time stamp using UIOINFO
and places it in the volume timestamp table.

310 DOS/VS Access Method Services Logic

CSECT/Load
Module Name Label Use Description

IDCRC02 Creates a portable data set of VSAM clusters,
catalog information for nonVSAM, and
associated aliases.

IDCRC02 EP Only entry point to this module.

ALSPROC PR Obtains catalog information for alias
associations of non VSAM data sets.

ASOCPROC PR Obtains catalog information for generation data
sets associated with generation data groups.

CLUSPROC PR Obtains catalog information and data for VSAM
clusters.

CONTROL PR Builds control records containing catalog
:_&~---.:~-
1111 Vlll1d.UVII.

CTLGPROC PR Invokes catalog management with a CTGPL for
Locate.

LOCPROC PR Builds a CTGPL and multiple CTGFLs for
catalog locates.

MVDAPROC PR Moves data in storage from one location to
another and clears work area storage.

NVSMPROC PR Gets catalog information for nonVSAM data
sets.

OPENPROC PR Opens the VSAM cluster for input and the
portable data set for output.

PRNTPROC PR Prints messages for association errors.

PUTPROC PR Writes a control record containing catalog
information to the portable data set.

RECPROC PR Copies the data for a VSAM cluster'to the
portable data set.

SAVEPROC PR Saves control records containing catalog
information until processing for that object's
catalog information is complete and then writes
all records to the portable data set.

IDCRC03 EP Handles format of buffer pool and reading of
catalog or CRA records.

IDCRC04 EP This is the only entry point to this module.

PCKLC PR Insures the requested catalog field exists in a
group occurrence being processed.

PEXPT PR Sets up address and length of extension pointers
as per argument passed.

PGREC PR Obtains addressability to the desired CI block.

PGREP PR Finds highest non-deleted RELREPNO with
desired group code.

PGVAL PR Find the field and extract the requested data.

PLNRV PR Locate non-replicated values

PLOCZ PR Locate field and dictionary information.

PLVAL PR Locate fixed or variable length field in physical
record and group occurrence.

PSCNC PR Loops through all FMFLs to convert names to
internal notation.

PSCNF PR Moves requested data to area specified by caller.

PSHIN PR Inserts the data found into requested field.

Microfiche Directory 311

CSECT/Load
Module Name Label Use Description

IDCRC04 PTCMP PR Compares sub-fields between input data and
(Continued) "found" data.

PTRNS PR Format and build compressed name table, insure
group codes if special name obtained from
caller.

PTSTS PR Tests for existence of field and if there, places
dictionary information into work area.

IDCRIOI Consists of CSECTs IDCRIOI, IDCRI02, and
IDCRI03. IDCRIOI is the Reader/Interpreter
main-line routine. Its functions are:

I. On first entry only, load a table of Command
Descriptor phase names and a table of modal
command verbs, initialize the
Reader/Interpreter Historical Data Area, and
obtain P ARM options input if it exists in the
P ARM field of the EXEC statement.

2. Scan the input stream for a command verb.

3. Handle modal commands (IF, ELSE, DO,
END, and SET) to determine which
command to process next.

4. Having found a function command verb,
invoke IDCRI02 to find and load the
appropriate Command Descriptor module
and initialize the FDT.

5. Scan parameter set, using the Command
Descriptor, to check syntax and semantics
and to build FDT.

6. Invoke IDCRI03 for clean-up activity
following each function command, and return
to IDCEXO 1 if the function command is to be
executed-that is, if it contains no syntax or
semantic errors detectable by the
Reader/Interpreter.

IDCRIOI EP Only entry point to this module.

RIINIT PR Initialize Reader/Interpreter processing.

SCANCMD PR Control command scanning and FDT building.

GETNEXT PR Get next function command verb name and
pointer to its parameter set. Intepreter modal
commands.

MODALSET PR Process SET modal command.

MODALIF PR Process IF modal command.

MODLELSE PR Process ELSE modal command.

BYPASTRM PR Prepare to obtain next verb name.

KWDPARM PR Process a keyword after searching the Command
Descriptor for its match.

POSPARM PR Process a positional parameter.

GETDATA PR Set up to extract constant or list of constants.

GETSIMPL PR Extract an unquoted constant.

GETQUOTD PR Extract a constant from within apostrophes.

BUILDFDT PR Place constants into FDT (converting if needed).

312 DOS/VS Access Method Services Logic

CSECT/Load
Module Name Label Use Description

IDCRlOl CONVERT PR Convert EBCDIC to binary, decimal, or
(continued) hexadecimal.

DSIDCHK PR Check data set name item for adherence to
naming conventions.

GETSPACE PR Allocate space for an FDT element.

MORSPACE PR Allocate additional space for a list of constants
in an FDT element.

INREPEAT PR End of repetition of a subparameter list has
occurred; prepare for another of the
subparameter list repetitions.

DEFAULTS PR Add defaults to parameters explicitly specified.

ERR SETUP PR Make special preparations to print semantic
error message.

NEEDNOTS PR Check parameters to ensure that certain
semantic requirements have not been violated.
Check for mutually exclusive parameters, and
required parameters.

SKIPCMD PR Bypass remainder of current command.

SETFLAG PR Flag that a partiCUlar parameter was found in
the input or was implied by defaults.

PACKCVB PR Convert EBCDIC string to fullword binary
number.

NXTFIELD PR Extract next field from the input stream.

SCANSEP PR Scan past the next synfactic separator (comma,
blanks, and/or comments).

NEXTCHAR PR Extract the next character of the input stream.

GETRECRD PR Read the next input record and print it.

SCANENDS PR Find left and right scanning limits of command
text in the input record just read.

DSPLCALC PR Calculate offset into an array of pointers or
counts.

ERROR 1 PR Process an error whose message is static.

ERROR2 PR Process an error that requires variable data to be
inserted into the message.

IDCRI02 Search the table of Command-Descriptor phases
for the name of the phase that corresponds to
the current command, and then load that phase.
Initialize the FDT.

IDCRI02 EP Only entry point to this module.

IDCRI03 Reader/Interpreter function command
termination. Free working space and delete
unneeded phases.

IDCRI03 EP Only entry point to this module.

IDCRIKT Modal command verb and keyword table; used
by the Reader/Interpreter.

IDCRILT Load Module Name Table for Command
Descriptors Used by the Reader/Interpreter.

IDCRMOI EP Only entry point to this module.

ALISPROC PR Reads data records and checks for allowable
type in the DOS system.

Microfiche Directory 313

CSECf/Load
Module Name Label Use Description
.. W""IIt.,.,~ ,.. ..

ALTRPROC Pi<. Constructs the CPL and FVT to be used to alter llJ\...J\.MUl

(Continued) the names of the objects.

BFPLPROC PR Constructs the skeleton FPL or constructs the
FPL from the dictionary and work area
information passed by EXPORTRA on the
portable volume.

BPASPROC PR Constructs passwall FPL.

CLUSPROC PR Reads catalog and data records from the
portability volume and defines the object copy.

CPLPROC PR Constructs the catalog parameter list to be used
for UCATLG operations.

CTLGPROC PR Invokes VSAM catalog management to perform
operation indicated in CPL.

DELTPROC PR Performs all delete operations using catalog
management.

FVTPROC PR Constructs FVT and FPLs from information in
dictionary passed as an argument.

GETPROC PR Gets a data record via UGET, reconstructs it
and places it in the buffer.

GDGPROC PR If this procedure is called in DOS, it writes an
error message.

IUNIQPRC PR Checks to see if data set being defined is a
unique data set. Indicates that the unique data
set is being imported as suballocated.

LVLRPROC PR Constructs the FPL from the DEVICETYPES
parameter or LISTVOLS from the RANGES
parameter.

MVDAPROC PR Moves data from one location in storage to
another as specified by input arguments.

NFVTPROC PR Constructs the FVT and FPLs for nonVSAM
objects.

NVSMPROC PR Reads catalog and data records from the
portability data set and performs the define of
non VSAM entries.

OPENPROC PR Performs all opens of VSAM objects for output
or the portability data set for input.

RANGPROC PR Processes key range information building the
RANGES list.

RECPROC PR Copy data from portability data set to VSAM
cluster.

UCATPROC PR Reads catalog and data records from portable
volume and performs a define of user catalog
pointers and aliases.

IDCRPOI REPRO FSR; copy a SAM, ISAM, or VSAM
data set to a SAM or VSAM data set; unload or
reload catalogs. Data set types are determined at
open time, when IDCIOOP is called (UOPEN
macro).

When records are skipped at the beginning, a
series of UGETs is issued until the required
record is reached.

When records are skipped at the end, a series of
UGETs and UPUTs is issued.

314 DOS/VS Access Method Services Logic

CSEcr/Load
M Name Label Use Description

IDCRPOI When the copy is to the end of the data set, then
(continued) a single call is made to IDCIOCP (UCOPY

macro), which copies the data set from the first
record to be copied through the end of the data
set. The UPOSIT macro is employed to position
to a FROMKEY or FROMADDRESS starting
point.

IDCRPOI EP Only entry point to this module.

DELIMSET PR Establishes the boundaries for copying a subset
of the input data set.

CATRELOD PR Checks for sufficient space, matching names for
target and backup catalogs, and for agreement
with voiume seriai number and device types.

SORSREAD PR Reads a record from the backup catalog during a
catalog reload.

TARG~EAD PR Reads a record from the target catalog during a
catalog reload.

GETPAIR PR Reads a record from both the backup and target
catalogs for the initial checking performed
before a catalog reload begins.

DUMPIT PR Activated by the P ARM test function in order to
trace alI I/O for catalog record.

TRUENAME PR Maps the RBA boundaries of the backup
true name ranges.

CATRANS PR Locate and translate control interval numbers
from source catalog to target catalog.

CNVRTCI PR Converts control interval numbers from source
catalog values to target catalog values.

CATCOMP PR Indicates differences in truename entries
between backup and target catalogs.

VERIFYC PR Opens a data set for control interval processing
in order to compare the end-of ~ata-set and
end-of-key-range information stored in the
VSAM catalog with the true data in the data set.
Reopens the data set for normal keyed
processing.

IDCRSOI RESETCA T FSR; synchronize a catalog with
the CRA (s) of its owned volume.

IDCRSOI EP Only entry point to this module.

AERROR PR Exit if not enough storage is available to
establish automatic storage for RESETCA T
modules.

CATINIT PR Initialize RESETCA T' s description of the
catalog.

CLEANUP PR Ensure all resources are freed.

COPYCAT PR Copy the catalog to the workfile.

INIT PR Perform the main initializations of RESETCAT.

MERGECRA PR Merge and reset CRA into the workfile.

PROCCRA PR Process the records of the current CRA.

REASSIGN PR Perform control interval reassignment.

UPDCAT PR Update the catalog from the workfile.

Microfiche Directory 315

CSECT/Load
Module Name Label Use Description·

IDCRSOI UPDCRA PR Update the CRAs from the workfile.
(Continued)

WRAPUP PR Handle clean-up operations after successful
RESETCA T processing.

IDCRS02 Performs various checking functions.

ASSOC PR Does association checking.

CINALTER PR Alter control interval numbers in catalog
records.

LOCDIT PR Locates a specific control interval number in a
catalog record.

PROCCI PR Ensure that a control interval number is in the
list of control interval numbers for records being
processed.

PROCTYPE PR Scan a catalog record for control interval
numbers.

SCANCI PR Scan record for control intervals.

SETCI PR Update the workfile to reflect new control
interval numbers for reassigned CINs.

VERA PR Verify aliases for nonVSAM and GDG
associations.

VERC PR Verify associations for clusters.

VERDSDIR PR Verify initial space claims.

VERCI PR Verify associations on a set of records.

VERG PR Verify associations for alternate indexes.

VERR PR Verify associations for PATHs.

VERU PR Verify associations for users catalogs.

VERX PR Verify the alias chain.

IDCRS03 Contains procedures for controlling space.

CATRCDSU PR Establish base record offsets for catalog low key
range records.

CHKBITS PR Compare bits in the bit map.

CHKDSDIR PR Check a data set directory entry against a data
or index component.

CHKUNQ PR Check extents for unique data spaces.

GETFIT PR Get a free entry in tables for ASSOC procedure.

GETNEXTE PR Translate an index into a table into a virtual
address.

GETTAB PR Get and initialize a table for ASSOC procedure.

MARKUNUS PR Mark a volume group occurrence (VGO)
unusable.

PROCVOL PR Resolve space conflicts.

SETBMAP PR Check space conflicts for data or index type
catalog entries.

VERB PR Verify associations for GDG base records.

VLNRESET PR Verify space requested from objects being reset
against non-reset volumes.

VLRESET PR Verify space requested from objects being reset
against reset volumes.

316 DOS/VS Access Method Services Logic

CSECT/Load
Module Name Label Use Description

IDCRS03 VOLCHK PR Volume consistency routine.
(continued)

IDCRS04 Performs field management processing.

DELGO PR Delete a group occurrence.

FIND PR Locate requested information from a set of
catalog records.

MODGO PR Modify a group occurrence.

IDCRS05 Association processing.

ADDTN PR Add a true name to the catalog.

ADDUPCR PR Prepare for update CRA processing.

BLDRLST PR Add an entry to the reset volume table.

BLDVLST PR Add an entry to the volume serial table.

CKERR PR Print an error message.

CRAUPCHN PR Add a workfile record to a specific .. update
CRA" chain.

DELTN PR Delete a true name from the catalog.

ENTNMCK PR Determine if a catalog record has a valid entry
name.

GENNAME PR Generate a true name.

GETVIA PR Get a record by control interval number via a
specific CRA.

SCNRLST PR Obtain the next CRA volser entry.

SCNVLST PR Scan the list of volumes.

IDCRS06 Handles I/O functions; defines and deletes the
workfile.

DSCLOSE PR Glose a VSAM data set.

DSOPEN PR Open a VSAM data set.

RECMGMT PR Perform I/O requests.

WFDEF PR Define the workfile for RESETCA T processing.

WFDEL PR Delete the workfile.

IDCRS07 This module contains system dependent code
designed specifically for RESETCA T functions.

CATEOV PR Extend the catalog.

CNVTCCHH PR Convert CCHH to TTnn.

DADSM PR Process all DADSM functions.

ENSURECI PR Ensure that there are enough control intervals
for reassignment.

EOVPANCI .PR Format catalog free records until the catalog is
extended.

EOVPCCCR PR Update and write the CCR.

EOVPCHAC PR Get the high allocated control interval numbers
for the Low Key Range (LKR) and High Key
Range (HKR) of the catalog.

EOVPRBAP PR Build a table of high RBA field pointers for
record management control blocks.

EOVPRCCR PR Read the catalog control record (CCR) and
update the high allocated control intervals in the
record management control blocks.

Microfiche Directory 317

CSECT/Load
Module Name Label Use Description

IDCRS07 EOVPWFLR PR Write a deleted free record to the catalog.
(Continued)

EOVPXIO PR Perform I/O for the catalog.

RENAMEP PR Rename duplicate true name entries.

UPDCCR PR Update the catalog control record (CCR)'

IDCSAOI Entry and exit module for the Access Method
Services processor. Interface between the
operating system and the processor. Create the
GDT and caIlIDCEXOI.

IDCSAOI EP Entry point for DOS Job Control invocation.

IDCSASI EP Entry point for subroutine call invocation. It is
six bytes beyond I DCSAO I.

PRNTERR PR Print an error message using EXCP.

GETCORE PR Issue GETVIS to allocate storage.

IDCSA02 Supply all system services to the remainder of
the processor, except prologue and epilogue At
each of the following entry points, IDCSA02
converts the service request to the appropriate
system macros, and issues those macros.

IDCSACL EP Load an executable module and branch to it
(UCALL macro).

IDCSALD EP Load a module but do not branch to it (ULOAD
macro).

IDCSADE EP Not functional in DOS/VS.

IDCSAGS EP Get space, a request for non-pooled storage
(UGSPACE macro).

IDCSAFS EP Free space, release pooled or non-pooled storage
(UFSPACE macro).

IDCSAGP EP Get pool, a request for pooled storage
(UGPOOL macro).

IDCSAFP EP Free pool, release pooled storage (UFPOOL
macro).

IDCSATI EP Get date and time of day by calling IDCSA05
(UTIME macro).

IDCSACA EP Issue the VSAM CATLG macro (UCATLG
macro).

IDCSASN EP Provide core dump (USNAP macro).

COREINIT PR Initialize an area of storage to binary zeros or
blanks.

IDCSAS2 DE Amount of storage IDCSA02 needs Used by
IDCSAOI.

IDCSA03 Prologue and epilogue for all routines This
module is called at entry to and exit from all
other modules.

IDCSAPR EP Prologue entry point, acquire storage.

IDCSAEP EP Epilogue entry point (UEPIL macro), release
storage.

GETCORE PR Get requested amount of storage.

IDCSAS3 DE Amount of storage IDCSA03 needs Used by
IDCSAOI.

318 DOS/VS Access Method Services Logic

CSECT/Load
Module Name Label Use Description

IDCSA04 Phase table containing load status
information of other phases.
Used by the System Adapter.

IDCSA05 Get date and time of day (invoked by
IDCSA02).

IDCSA05 EP Only entry point to this module.

IDCSA08 Acquire control of a resource. Release control
of a resource.

IDCTPOI Text Processor: provide formatting for printed
output. Each of the following entry points
represents a service provided by the Text
Processor. This module includes all conversion
routines and controls the printing of each line of
output text.

IDCTPES EP Establish a PCT from static text (UESTS
macro).

IDCTPEA EP Establish a PCT from storage (UESTA macro).

IDCTPER EP Establish linkage to error message processor
(UERROR).

IDCTPRS EP Modify an existing PCT (UREST macro).

IDCTPRE EP Re-initialize Text Processor for the next function
(URESET macro).

IDCTPPR EP Print one or more lines (UPRINT macro).

SPACE PR Set up line spacing.

REDO PR Initiate replication.

STATIC PR Set up static text.

BLOCK PR Set up block data.

INSERT PR Routine to insert data into predefined format, or
use static text when an insert is missing and
default data is called for.

CONVERT PR Converts data and sets it into the print line.

BHCONV PR Convert binary data to hexadecimal characters
or hex-apostrophe representation.

BHDCONV PR Convert binary data to hex-dump format.

EBCDIC PR Sets up transfer of EBCDIC characters to a print
line.

PUPCONV PR Convert packed-decimal data to
unpacked-decimal characters.

BDCONV PR Convert binary data to packed-decimal data,
and call PUPCONV for conversion to
unpacked-decimal characters.

IDCTPSI DE Amount of storage IDCTPOI needs. Used by
IDCSAOI.

ERROR PR Process error condition.

STACKPUT PR Buffers data lines. Does a UPUT on the line
when the stack is full, a message is to be printed,
or the print file is changed.

LINERET PR Returns formatted lines to the caller.

LINEPRT PR Controls title lines, headings, spacing; translates
data lines; and calls STACKPUT.

Microfiche Directory 319

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

CSECf/Load
Module Name

TT""'\.'-''T'TV'\ ...
au~ a ~ v-.

IDCTP05

IDCTP06

IDCTSALO

IDCTSBIO

IDCTSDEO

IDCTSDLO

IDCTSEXO

IDCTSIOO

IDCTSLCO

IDCTSLCI

IDCTSLRO

IDCTSLRI

IDCTSMPO

IDCTSPRO

IDCTSRCO

IDCTSRIO

IDCTSRSO

IDCTSTPO

IDCTSTPI

IDCTSTP6

IDCTSUVO

IDCTSXPO

320 DOS/VS Access Method Services Logic

Label

IDCTP04

ESTSCONT

ESTACONT

P04SETUP

RESTCONT

PCTSETUP

RESETCON

INITPCT

STACKFL

IDCTP05

IDCTP06

Use

EP

PR

PR

PR

PR

PR

PR

Description

T_! .. !_I! ____ .J __ ..J!E __ n,....'T'. __ .. ____ 11 ___ _

Ull&.1CUl£\;; 411U lllVUll Y I ~ a , ;)\;;l U}J 411 }J4e>\;;

controls, define headings and footings, and
define format of page.

Only entry point to this module.

Get space for PCT and initialize it (UESTS
macro).

Get space for PCT and initialize it from storage
parameters (UEST A macro).

Set up working table for PCT initialization.

Initialize working table for modifying existing
PCT (UREST macro).

Verify and initialize elements of PCT.

Re-initialize Text Processor for next function,
return page number, and clear PCT.

PR Get and initialize PCT.

PR Print lines in stack buffer.

Read Text Structures into storage for use by
either IDCTPOI or IDCTP04.

EP Only entry point to this module.

Formats error messages for any FSR.

EP Only entry point to this module.

Text Structure for ALTER messages.

Text Structure for BLDINDEX message.

Text Structure for DEFINE messages.

Text Structure for DELETE messages.

Text Structure for Executive routines messages.

Text Structure for I/O Adapter routines
messages.

Text Structure for LISTCA T listing.

Text Structure for LISTCAT messages.

Text Structure for LISTCRA listing.

Text Structure for LISTCRA messages.

Text Structure for IMPORT and IMPORTRA
messages.

Text Structure for PRINT listings and
PRINT/REPRO messages.

Text Structure for EXPORTRA messages.

Text Structure for Reader/Interpreter routines
messages.

Text structure for RESETCAT messages.

Text Structure for Text Processor routines;
contains print chain definitions.

Text Structure for Text Processor routines
messages.

Text Structure for UERROR messages.

Text Structure for any routine (universal
messages).

Text Structure for EXPORT messages.

CSECT/Load
Module Name Label Use Description

IDCVYOI VERIFY FSR; check a VSAM data set against
its catalog entries and correct any discrepancies
that may be found, by calling IDCIOVR
(UVERIFY macro).

IDCVYOI EP Only entry point to this module.

OPENPROC PR Opens the VSAM data set to be verified.

TERMPROC PR Closes the VSAM data set that was verified.

IDCXPOI EXPORT FSR; create a portable copy of a
VSAM cluster or alternate index. Copy is done
by issuing a UCOPY macro. When the input
data set is a catalog, no copy is performed.
Instead, the catalog is disconnected by a call to
IDCSACA.

IDCXPOI EP Only entry point to this module.

CLUSPROC PR Gets catalog information and data for a cluster
object and calls CONTRBL to write all the
information to a portable volume. Processes the
disposition options. If it is a permanent option,
the cluster will be deleted. If it is a temporary
option, the temporary export flag is turned on
by issuing a catalog alter.

DSCTPROC PR Disconnects a user catalog.

LOCPROC PR Builds a CTGPL and multiple CTGFLs for use
by catalog locate. CTGFLs used to locate
catalog information to be exported.

CTLGPROC PR Invokes the VSAM catalog management to
perform the operation indicated in the CTGPL.

OPENPROC PR Performs all opens required for opening a
VSAM cluster for input or opening the portable
volume for output.

ALTRPROC PR Constructs the CTGPL and CTGFV for a
catalog alter operation so that the data set
attributes catalog field (DS.l' .. TTR) can be
modified.

DELTPROC PR Constructs a CTGPL for a catalog delete
operation so that a cluster or alternate index can
be deleted or a user catalog disconnected.
Invokes VSAM catalog management to delete
clusters or alternate indexes.

PUTPROC PR Writes a catalog record to the portable volume.

RECPROC PR Copies the data from the VSAM cluster to be
exported to the portable data set, record by
record.

MVDAPROC PR Copies data from one part of virtual storage to
another or, optionally, zeros olit part of virtual
storage.

CONTRBL PR Writes catalog information to a portable
volume.

MORESP PR Obtains a larger work area for VSAM catalog
management and reinvokes catalog.

Microfiche Directory 321

DATA AREAS

The data areas in this chapter are described in four columns, which are
interpreted as follows:

Offset: The numeric address of the field relative to the beginning of the area.
The first number is the offset in decimal, followed (in parentheses) by the
hexadecimal equivalent.

Bytes and Bit Pattern: The size (number of bytes) of the field and its
alignment relative to the fullword boundary. A v indicates variable length.

Examples:

4 A four-byte field beginning on a word boundary .

. . 3 A three-byte field beginning on a halfword boundary and
running into the next word.

This column also shows the bit patterns of a byte when they are significant
(as in a flag byte). When the column is used to show the state of the bits (0
or 1) in a flag byte, it is shown as follows:

x

1

0

.... .. xx

The eight bit positions (0-7) in a byte. For ease of scanning,
the high-order (leftmost) four bits are separated from the
low-order four bits.

A reference to bit O.

Bit 0 is on.

Bit 0 is off.

A reference to bits 6 and 7 .

Bit settings that are significant are shown and described. Bit settings that
are not shown are considered to be reserved and set to zero.

Field Name: A name that identifies the field and appears in the assembly
listings. A sub-field or value name is indented from the fieldts name. An *
indicates the field is not named.

Description: Content, Meaning, Use: A description of the use of the field.

Data Areas 323

Buffer Pool Control Block (BUFS)

buffers. It is passed from IDCRCOI through field management (lDCRC04)
to IDCRC03.

Created by

IDCRCOI

Modified by

IDCRC03

Used by

IDCRC03

Size

28

Buller Pool Control Block Description

Command Descriptor

Offset

0(0)

4 (4)

8 (8)

12 (C)

16 (10)

20 (14)

24 (8)

260A)

Bytes and
Bit Pattern

4

4

4

4

4

4

2

.2

1.

.xxx xxxx

xxxx xxxx

Field Name Description: Content, Meaning, Use

BUFPOOL Address of first buffer.

BUFPL Address of chain of buffers.

BUFIOCS Address of the IOCSTR.

BUFGDT Address of the GOT.

BUFCTT Address of the CTT

BUFWKARA Address of the work area.

BUFSIZE Size of buffer pool.

BUFSWS Indicator Flags.

BUFORMAT 1 =Buffer pool formatted

O=Buffer pool not formatted

* Reserved.

* Reserved.

There is a Command Descriptor for each verb supported by this processor.
The Command Descriptor is a load module that contains directions for
parsing the command, performing semantic checking, and building an FDT
from the commands. The name of the load module for each verb is found in a
directory, which is itself a load module named IDCRIL T. IDCRIL T is loaded
upon the first entry to IDCRIO 1.

The name of each load module and the corresponding verb, as supplied by
IBM, is as follows:

IDCCDAL
IDCCDBI
IDCCDDE
IDCCDDL
IDCCDXP

ALTER
BLDINDEX
DEFINE
DELETE
EXPORT

IDCCDRC
IDCCDMP
IDCCDRM
IDCCDLC
IDCCDLR

EXPORTRA
IMPORT
IMPORTRA
LISTCAT
LISTCRA

IDCCDPM
IDCCDPR
IDCCDRP
IDCCDRS
IDCCDVY

PARM
PRINT
REPRO
RESETCAT
VERIFY

Each Command Descriptor consists of a series of variable-length entries. The
first entry is always the verb-data entry, which names the FSR load module to
use. Subsequent entries define default values, syntactic and semantic
requirements, the structure of all possible parameters, and the structure of the
FDT to be built from this command.

Created by

IBM-Supplied

Modified by

None

Used by

IDCRIOI

Size

Variable

324 DOS/VS Access Method Services Logic

Verb Data Area

Positional Parameter Appendage

A Command Descriptor always begins with the Verb Data Area. This data
area names the FSR for this command, gives the total number of parameters,
and provides offsets to other data areas in the Command Descnptoi.

Offset

0(0)

4(4)

6(6)

6(6)

10(A)

12(C)

20(14)

21(15)

22(16)

23(17)

Bytes and
Bit Pattern

4

2

.. 2

2

.. 2

8

.1

.. I

... 1

Field Name

DESCID

PCLDSPLI

VDATALEN

PARMCNT

MAXID

LOAD NAME

POSDSPL

DGRPDSPL

VNGRPDSP

NTGRPDSP

Description: Content, Meaning, Use

Descriptor identification, contains the
last four letters of the Command
Descriptor module name. For
example, 'CDAL' for the Alter
Command Descriptor, IDCCDAL.

Not used in DOS/VS.

Number of halfwords in Verb Data
Area (used io compuie ihe address of
the first Parameter Data Area).

Number of Parameter Data Areas in
this Command Descriptor.

Largest parameter ID number that is
used in this Command Descriptor.

Load module name of FSR that
processes this command.

Number of halfwords from the
beginning of the Verb Data Area to
Positional Parameter appendage of the
Verb Data Area.

Number of halfwords from the
beginning of the Verb Data Area to
Default Parameter appendage of the
Verb Data Area.

Number of halfwords from the
beginning of the Verb Data Area to
Needed Parameters appendage of the
Verb Data Area.

Number of halfwords from the
beginning of the Verb Data Area to
Incompatible Parameters appendage
of the Verb Data Area.

This appendage contains the parameter ID number of each positional
parameter that is not a subparameter of other parameters. This appendage
may follow the Verb Data Area or any Verb Data Area appendage.

Offset

0(0)

2(2)

Bytes and
Bit Pattern

2

2xn

Field Name

VPOSCNT

VPOSIDn

Description: Content, Meaning, Use

Number, n, of ID numbers that follow:

List of ID numbers for positional
parameters.

Data Areas 325

Default Parameter Appendage

Needed Parameters Appendage

This appendage contains the parameter ID number of each default parameter.
The parameter IDs are grouped into arrays. The first parameter in each array
is the default if none of the parameters in that array is supplied in the
command. This appendage may follow the Verb Data area or any Verb Data
Area appendage.

Offset

0(0)

Bytes and
Bit Pattern

2

Each array contains:

2

2xn

Field Name

DGRPTOT

DGRPCNT

DGRPIDn

Description: Content, Meaning, Use

Number of arrays that follow.

Number, n, of 10 numbers that follow:

List of ID numbers.

This appendage contains the parameter ID number of any necessary
parameter that is not a 'subparameter of another parameter. The parameter
IDs are grouped into arrays. At least one of the parameters in each array must
be supplied through the command. This appendage may follow the Verb Data
Area or any Verb Data Area appendage.

Offset

0(0)

Bytes and
Bit Pattern

2

Each array contains:

2

2xn

Field Name

VNGRPTOT

VNGRPCNT

VNGRPIDn

Description: Content, Meaning, Use

Number of arrays that follow:

Number, n, of 10 numbers that follow:

List of ID numbers.

Incompatible Parameters Appendage

This appendage contains the parameter ID numbers for each parameter in
groups of incompatible parameters. The parameter IDs are grouped into
arrays. Only one parameter in each array may be supplied through the
command.

Offset

0(0)

Bytes and
Bit Pattern Field Name

2 NTGRPTOT

Each array contains:

2

2xn

326 DOS/VS Access Method Services Logic

NTGRPCNT

NTGRPIDn

Description: Content, Meaning, Use

Number of arrays that follow:

Number, n, of ID numbers that follow:

List of ID numbers.

Parameter Data Area

The Parameter Data Area follows the Verb Data Area, and describes the
syntax and subparameters of a parameter. Usually there is one Parameter.
Data A.-rea for each parameter. However, one Parameter Data 4

A...rea can
describe several parameters if the parameters have the same syntax and data.

Bytes and
Offset Bit Pattern

0(0)

1 (1) 3

4(4)

5(5)

6(6)

7(7)

8(8)

9(9)

10(A)

11(B)
1

.1.

.. 1

... 1.

.... 1. ..

..... 1..

...... 1.

.... ... x

Field Name

PDEFLEN

OCCURNUM

IDDSPL

KWDDSPL

NOTDSPL

NGRPDSPL

PDEDSPL

KWDGRPID

*
FLAGS
SCLRDATA

LEVELl

REPEATED

SCALAR

LIST

DEFAULT

SUB LIST

*

Description: Content, Meaning, Use

Number of halfwords in this
Parameter Data Area including
appendages.

Number of times this parameter can be
repeated in the command.

Number of halfwords from the
beginning of this Parameter Data Area
to the ID Appendage.

Number of halfwords from the
beginning of this Parameter Data area
to the Keyword Appendage.

Number of halfwords from the
beginning of this Parameter Data area
to the Conflicting Parameters
Appendage.

Number of halfwords from the
beginning of this Parameter Data area
to the Necessary Parameters
Appendage.

Number of haIfwords from the
beginning of this Parameter Data area
to the Prompt Appendage.

Not used in DOS/VS.

Reserved.

Hags:
Indicates the user supplies data with
this parameter.
Indicates this parameter is not a
subparameter.
Indicates the user may repeat the
subparameters of this parameter.
Indicates the user supplies a single
constant with this parameter.
Indicates the user may supply several
"like" constants with this parameter.
Indicates this parameter has a default
value.
Indicates this parameter has
subparameters.
Reserved .

Data Areas 327

No Constant Appendage

Constant Appendage

Default Data Appendage

This appendage follows the above section if the parameter has subparameters.
In other words, if SUBLIST = 1, this appendage immediately follows the
FLAGS field described above.

Offset

12(0

14(E)

15(F)

Bytes and
Bit Pattern

2

Field Name

PCLDSPL2

SUBDSPL

REPMAX

Description: Content, Meaning, Use

Not used in DOS/VS.

Number of halfwords from the
beginning of this Parameter Data Area
to the Subparameter Appendage.

Maximum times this parameter's
subparameters may be repeated in the
command.

This appendage follows the basic Parameter Data area if the parameter has
constants. In other words, if SCLRDAT A= 1 this appendage immediately
follows the FLAGS field described above.

Bytes and
Offset Bit Pattern

12(C) 4

16(10) 4

20(14)

21(15)

22(16)

23(17)
1.
.1.

.. 1.

... 1

.... 1. ..

..... 1..

...... 1.

....... x

Field Name

HIVALUE

LOWVALUE

MAXLNGTH

LISTMAX

*
CFLAG
NUMBER
ANYSTRNG

DSNAM

GENERIC
VOLID

USERID
PWORDOPT

*

Description: Content, Meaning, Use

The greatest value a number constant
may have.

The least value a number constant may
have.

The maximum length of the constant
after any conversion.

Maximum number of times this
constant may be repeated in a list of
subparameters.

Reserv.ed.

Flags:
Indicates the constant is a number.
Indicates the constant is a character
string.
Indicates the constant is a data set
name.
Not used in DOS/VS.
Indicates a volume serial number may
replace a data set name.
Not used in DOS/VS.
Indicates the character string or data
set name may be followed by a
password.
Reserved.

This appendage follows the Constant Appendage if the parameter data has a
def ault constant. In other words, if D EF A UL T = 1, this appendage
immediately follows the CFLAGS field described above.

Offset

24(18)

25(19)

Bytes and
Bit Pattern

v

Field Name

DEFLTLEN

DEFLTVAL

Description: Content, Meaning, Use

Length of following field.

Default constant as it would appear in
the command.

328 DOS/VS Access Method Services Logic

ID Appendage

Keyword Appendage

This appendage contains the offset from the beginning of the primary
Parameter Data List, PDL, to the Parameter Data Entry, PDE, for each
parameter this Parameter Data Area describes. This appendage may follow
any other Parameter Data appendage.

Offset

0(0)

Bytes"'"
Bit Pattem

2

Each set contains:

2

2

field Name

IDCOUNT

IDNUM

PDEOFSTI

Description: Content, Meaning, Use

Number of sets of two fields that
follow. There is a set of fields for each
parameter.

Parameter 10 number.

Not used in DOS/VS.

This appendage contains every keyword for each parameter this Parameter
Data Area describes. This appendage may follow any other Parameter Data
appendage.

Offset

0(0)

Bytes"'"
Bit Pattem

Each set contains:

0(0)

1(1) ,

Field Name

KWDCOUNT

KWDLEN

KWDITEM

Description: Content, Meaning, Use

Number of sets of fields that follow.
There is a set of two fields for each
keyword.

Length of the following keyword.

Keyword.

Conflicting Panmeters Appendage

This appendage contains the parameter ID of each parameter tha may not
appear with the parameters this Parameter Data Area describes. This
appendage may follow any Parameter Data appendage.

Offset

0(0)

2(2)

Necessary Panmeters Appendage

Bytes"'"
Bit Pattem

2

2xn

Field Name

NOTCOUNT

NOTIOn

Description: Content, Meaning, Use

Number n of parameter IDs that
follow.

List of IDs of conflicting parameters.

This appendage contains the parameter IDs of parameters that must appear
with the parameters this Parameter Data Area describes. The parameters are
grouped into arrays. One parameter in each array must appear. This
appendage may follow any other Parameter Data appendage.

Bytes
Offset BIt Pattem

0(0) 2

Each array contains:

0(0) 2

2xn

Field Name

NGRPTOT

NGRPCNT

NGRPIDn

Description: Content, Meaning, Use

Number of arrays that follow:

Number, n, of 10 numbers that follow.

List of parameter 10 numbers for
necessary parameters.

Data Areas 329

Prompt Appendage

Subparameter Appendage

This appendage although it can be present in DOS/VS, is not used. It
contains an offset from the beginning of the prompt PDL to the PDE for
prompting information needed by parameters this Parameter Data Area
describes. This appendage may follow any other Parameter Data appendage.

Offset

0(0)

Bytes and
Bit Pattern

2

Each set contains:

2

2

2

Field Name

PDECNT

PDEPRMID

PDEPCLID

PDEOFST2

Description: Content, Meaning, Use

Number of sets of fields that follow.

Not used.

Not used.

Not used.

This appendage contains all the subparameter IDs. This appendage may
follow any other Parameter Data appendage.

Offset

0(0)

Bytes and
Bit Pattern

2

Each set contains:

2

2

Field Name

SUBCOUNT

PARMTYPE

SUBID

Description: Content, Meaning, Use

Number of sets of fields that follow.
There is a set of two fields for each
subparameter.

Identifies this subparameter as
positional, 'P', or keyword, 'K'.

Subparameter ID.

330 DOS/VS Access Method Services Logic

Command Descriptor Phase Table--IDCRIL T
IDCRIL T contains a table of all verbs accepted by the processor and the
Command Descriptor phase names that are required to parse them.

Created by

IBM-Supplied

Offset

0(0)

2(2)

Modified by

None

Bytes and
Bit Pattern Field Name

2 LNAMECNT

16xn

8 TBIVERB

8 TBILNAME

Used by

IDCRI02

Size

258

Description: Content, Meaning, Use

Number of table entries.

n table entries.

Verb character string.

Corresponding Command Descriptor
phase name.

Data Areas 331

eRA Access Parameter List
The CRA Access Parameter List provides VSAM catalog management with
information necessary to access the CRA as a catalog. it is pointed to by the
ACB when the UCRA bit in the ACB is on for the OPEN of a CRA by
EXPORTRA. The CRA Access Parameter List consists of three control
blocks. The ACB points directly to the ACC (Access Method
Services/ Catalog Communication Table) which in turn points to the CIT
(CRA Access Translate Table) and the VTI (CRA Volume Timestamp
Table).

Created by

IDCRCOI

Modified by

None

Access Method Services/Catalog Communication Table (ACC)
Description

Bytes and
Offset Bit Pattern Field Name

0(0) 4 ACCTRANT

4 (4) *
5 (5) .3 ACCDSNCI

8 (8) 4 ACCVOLTT

CRA Access Translate Table (Crr) Description

Offset

0(0)

4 (4)

Bytes and
Bit Pattern Field Name

4 CTTENTNO

4xn CTTENTRY

CTTENTYP

.3 CTTCATCI

CRA Volume Timestamp Table (Crr) Description

Bytes and
Offset Bit Pattern Field Name

0(0) 4 VTTENTNO

4 (4) 14xn VTTENTRY

6 VTTVOLSR

...... 8 VTTTMSTP

332 DOS/VS Access Method Services Logic

Used by Size

VSAM Catalog Variable
Management

Description: Content, Meaning, Use

Address of the CRA Access Translate
Table (CTT).

Reserved.

Control Interval number used when
LOCATEs are performed via true
names.

Address of the Volume Timestamp
Table.

Description: Content, Meaning, Use

Number of entries in the table.

Variable number (n) of 4-byte entries.

Type of CRA record.

Catalog control interval number of the
CRA control interval for this entry.

Description: Content, Meaning, Use

Number of entries in the table.

Variable number (n) of 14-byte entries.

Volume serial number for the
timestamp of this entry.

The timestamp that is in the format
4 DSCB on this volume.

Dump List

Individual Field Entry

The Dump List tells the UDUMP macro which areas to dump. The Dump List
consists of entries that describe the individual fields. If one or more fields are
to be repeated, they can be described as an array where each group of iieids is
an element in the array. In such cases, the array is preceded by a Dump List
entry called an array header. The array header causes the fields to be
repeated. The end of the Dump List is indicated by an entry called the dump
list terminator.

Individual entries are printed as name=data. Each field in an array is printed
as name(n)=data. The array name is printed before the array elements. All
arrays start on a new line.

Created by Modified by

AU routines IDCDBOl

Bytes and
Offset Bit Pattern Field Name

0(0) 8 DMPIMNM

8 (8) 4 DMPITMPT

12 (C) 2 DMPITMLN

14 (E) . . 1. DMPITMTP

15 (F) . . . 1 *

Used by

IDCDB02

Size

Variable

Description: Content, Meaning, Use

Name to be printed with the field. The
name is aligned left and padded with
blanks.

Address of field to be dumped.

Number of bytes to dump. For
hexadecimal, bit, or character strings
the number is from 1 to 256. For fixed
binary, the number is from 1 to 4.

Type of data in field:

H Hexadecimal printed as two
characters per byte.

B Bit string printed as eight
characters per byte.

C Character printed as one
character per byte.

F Fixed binary printed as a
signed number for halfwords
or fullwords or as an unsigned
number for one or three bytes.
Leading zeros are suppressed.

Reserved .

Data Areas 333

Array Header Entry

Bytes and
Oifset iiii raiiem rleiU NIUIIC

...... ___I:_.a...!: ___ ,, __ ... __ • ". ___ 1-_ .1 __
~ipUUU. "'VU&~U~ , •• ~-" ...,~

0(0) 8 DMPARYNM Name to be printed at the start of the
array. The name is aligned left and
padded with blanks.

8 (8) 2 DMPARYSZ Number of bytes in each input element
of the array. The number can be from
1 to 32,767.

10 (A) .. 2 DMPARYIC Number of following individual items
that are in the array. The number can
be from 1 to 32,767.

12 (C) 2 DMPARYEX Number of times to repeat the
individual fields. The number can be
from 1 to 99.

14 (E) .. 1 . DMPARYTP Array header type-contains A.

15 (F) ... 1 * Reserved.

Dump List Terminator Entry

Bytes and
Offset Bit Pattern Field Name Desaiption: Content, Meaning, Use

0(0) DMPTRM End of dump list indicator-contn;ns
X'FF'.

334 DOS/VS Access Method Services Logic

Dynamic Data Ust-DARGLIST
The dynamic data argument list describes variable data to be printed. It is
always an argument for a print request (UPRINT macro).

Created by Modified by Used by Size

Calling routine None IDCTPOI Variable

Offset

0(0)

4 (4)

8 (8)

Bytes and
Bit Pattern

4

4

4

Each DARGSTID contains:

3

· .. 1

12 (C) 2

14 (E) .. 2

16 (10) 2

18 (12) · . 1

19 (13) · .. 1

20 (14) 8xn

2

.. 2

4

Field Name

DARGDBP

DARGRETP

DARGSTID

DARGSMOD

DARGSENT

DARGILP

DARGCNT

DARGRETL

DARGIND

*
DARGARY

DARGINS
DARGREP
DARGINL

DARGPCT

DARGDTM

Description: Content, Meaning, Use

Contains the address of block of data
referred to by format list or zero.

Zero if printing is to occur; nonzero if
no printing is to occur. If nonzero,
contains the address of the area in
which the formatted print lines are to
be returned from the Text Processor
(and not printed). Data will be
returned to the specified location. The
data is truncated to the length
(DARGRETL) of the provided area if
necessary. Spacing control characters
are not returned.

Zero if a format list is also passed as a
parameter. If nonzero, contains the
Text Structure identification (STID)
for static text element to be used as the
format list.

Last three characters of the
text-structure module name.

Static text entry.

Length of block whose address is in
DARGDBP.

Number of insert and replication
elements contained in DARGARY.

Length of the return-data area (that is,
DARGRETP).

Offset to add to the print column in
the format list (FMTOCOL).

Reserved.

Group array. The following fields are
repeated n times, where n n =
DARGCNT.

Insert reference number.
Replication reference number.
Input data length of the field pointed
to by DARGDTM.
Replication count, number of times to
replicate a series of format
substructures (FMTLIST).
Dynamic data pointer, address of field
to use for this insert. This field is not
used for replication structures.

Data Areas 335

ERCNVTAB

Error Conversion Table
The Error Conversion Table is passed whenever a UERROR macro is issued.
It contains the information necessary to convert numeric error codes into
prose messages.

Created by Modified by Used by Size

All routines None IDCTP06 32

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) ERTYPE Type of error code to be converted.

1. ERCATLG VSAM Catalog management error.

.1. EROSCAT OS/VS Catalog error. Not used in
DOS/VS.

1 (1) .1 EROPER VSAM Catalog operation being
performed when error occurred. Only
one operation type allowed per
UERROR invocation.

1 ERCATLC CMS Locate.

.1 ERCATDE CMS Define.

.. 1. ERCATDL CMSDelete.

... 1 ERCATAL CMS Alter .

2 (2) .. 1 EROSOPER OS/VS Catalog operation being
performed. Not used in DOS/VS.

3 (3) ... 1 Reserved .

4 (4) 4 Reserved.

8 (8) 4 Reserved.

12 (C) 4 ERDSNM Address of data set name or volume
serial number associated with the
Catalog Management request. The
data set name is contained in a 44 byte
field padded with blanks; the volume
serial number is contained in a 44 byte
field padded with binary zeros.

16 (0) 4 ERCATRC VSAM Catalog Management return
code.

20 (4) 4 ERCPLPT Address of Catalog Parameter List
(CTGPL) issued that resulted in error
condition.

24 (8) 4 Reserved.

280C) 4 Reserved.

Data Areas 337

Field Management Parameter List-FMPL
The Field Management Parameter List is passed whenever module IDCRC04 is called

within EXPORTRA and LISTCRA. It contains information and pointers which enable
IDCRC04 to extract data from records within the catalog or CRA.

Created by

IDCRCOI
IDCLROI

Modified by

IDCRC04

Field Management Parameter List Description

Offset

0(0)

1 (1)

4 (4)

8 (8)

12 (C)

16 (10)

17 (II)

18 (12)

20 (14)

24 (18)

Bytes and
Bit Pattern

.3

4

4

4

.1

.. 2

4

4xn

Field Management Field List (FMFL) Description

Offset

0(0)

1 (1)

2 (1)

3 (1)

4 (4)

8 (8)

12 (C)

16 (10)

338 DOS/VS Access Method Services Logic

Bytes and
Bit Pattern

.1

.. 1

... 1

xxxx xxx.

....... 1

4

4

4

8xn

4.

.4

Field Name

FMPLFLNO

FMPLBCIN

FMPLGRTN

FMPLWKAR

FMPLUPTR

FMPLRTCD

*
FMPLENTH

FMPLOAR

FMPLFMFL

Field Name

FMFLDLNO

FMFLTSTC

FMFLGRPC

FMFLINDS

*
FMFLSUCC

FMFLWKAR

FMFLDNAM

FMFLTCHN

FMFLDATA

FMFLENTH

FMFLADDR

Used by

IDCRC04

Size

Variable

Description: Content, Meaning, Use

Number of FMFL pointers.

Control interval number of the base
record.

Address of the GET routine.

Address of the field management work
area.

Value passed to user GET routine at
Input/Output processing time.

Return code from a call to IDCRC04.

Reserved.

Length of the output area provided by
caller.

Address or the output area.

Array of variable number (n) of 4-byte
FMFL pointers.

Description: Content, Meaning, Use

Number of length/data pairs passed by
caller.

Compare test condition code.

Field group codo supplied by caller.

FMFL indicator flags.

Reserved.

Bit indicating success of test. O=test is
successful. 1 =test is unsuccessful.

Work area for field management.

Pointer to 8-byte field name.

Address of next test FMFL.

Variable number (n) of Length/Data
pointer pairs.

4-byte length of supplied data.

4-byte address of supplied data.

Fonnat List---FMTLIST

Spacing

The format list defines the format of printed output. This list consists of
several substructures, each identified by its flag byte. Format lists exist in the
Text Structures, where they are referenced by STiD numbers (Static Text
Identifiers). Optionally, they may he passed as an argument of the UPRINT
macro, in which case the DARGLIST argument does not furnish a STID.

Created by

Calling routine

Offset

0(0)

Modified by

None

Bytes and
Bit Pattern

1 ••....•
.1
.. 1 ...••
... 1 ..•.
.... 1. ..
..... 1..
.... .. 1.
....... 1

Field Name

FMTFLGS
FMTEOLF
FMTSCF
FMTIDF
FMTBDF
FMTREPF
FMTSTF
FMTDFF
FMTHDF

Used by

IDCTP91

Size

Variable

Description: Content, Meaning, Use

Flags:
End of structure.
Space control.
Insert data.
Block data.
Replication .
Static text.
Default data .
Header line.

Interpretation of each substructure of the format list depends on the value of
FMTFLGS. Each of the possible substructures is shown below.

The spacing substructure of the format list specifies the line spacing or
carriage control to use while printing. The default spacing is used only when a
line is not immediately preceded by a spacing substructure. A spacing
substructure imbedded in an entry causes printing of the previously formatted
data and signals the start of a new line.

Bytes and
Offset Bit Pattern

0(0)

1(1) . 1

2 (2) .. 2

4 (4)

5 (5) . 1

Field Name

FMTFLGS

*
FMTSPF

FMTSPT

*

Description: Content, Meaning, Use

Flag byte: X'40'.

Reserved.

Space factor: if FMTSPT is equal to
"A", this is the absolute line number
to use for printing this line. If
FMTSPT is equal to "R", this is the
number of spaces to take before
printing. Page overflow results in
printing on the first line of the next
page.

Spacing type: "A" signifies absolute
line number in FMTSPF, and "R"
signifies relative line number. "E"
signifies page eject.

Reserved .

Data Areas 339

Insert Data

Default Text

The insert-data substructure refers to data defined in the dynamic data
argument structure, and identified by reference number. This represents
variable data to be inserted into the printed line.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) FMTFLGS Flag byte: X'20' or X'AO'. (X'AO' also
denotes end-of-structure.)

1 (1) . 1 * Reserved .

2 (2) .. 2 FMTRFNO Insert reference number: identification
number for dynamic data insert that
defines the input data to be used for
formatting.

4 (4) 2 * Reserved.

6 (6) .. 2 FMTOCOL Print line column for beginning of this
field, or (if FMTBS is equal to one) the
offset from the column indicated by
field PCT APC.

8 (8) 2 FMTOLEN Output field length. If FMTOLEN is
equal to zero or 32,767, then the full,
converted input length is used.

10 (A) · . t FMTCNVF Flags to define conversion and
formatting to be done:

1. FMTBH Byte to printable, hexadecimal
representation.

.1. FMTBHA Byte to hexadecimal, preceded by X'
and followed by a single quote.

.. t FMTBHD Standard dump format. FMTOCOL
and FMTOLEN are ignored.

... t FMTBD Binary to unpacked decimal
characters.

.... 1. .. FMTPU Packed to unpacked decimal
characters.

t t (B) · .. t FMTCNVF (cont.) Conversion flags (continued).

1. FMTZS Suppress leading zeros by replacing
with blanks.

· t FMTAL Aligned left; the high-order nonzero
digit is put in first print column as
specified by FMTCOL.

.. 1. FMTSS Suppress signs.

... 1 FMTBS Suppress all trailing blanks but one of
the preceding field; add the offset in
FMTOCOL to the value in PCT APC
for the print column.

.... 1. .. FMTAR Align EDCDIC character strings to the
right. The print column is added to the
print field length to determine the last
printable position.

The default-text substructure is only used when it immediately follows an
insert-data substructure. When examining the insert structure, the value in
DARGINS is compared to the value in FMTRFNO. If the values are not
equivalent, the next format structure is examined to determine whether it is a
default structure. If the flag FMTDFF is on in this next structure, the
structure is used. In all other cases, it is skipped over.

340 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) FMTFLGS Flag byte: X'02' or X'S2'. (X'S2' also
denotes end-of -structure.)

1(1) . 1 Reserved.

2 (2) .. 2 FMTILEN Length of the defal;llt text.

4 (4) 2 FMTIOFF Offset from the beginning of the
format structures to the default text
(which follows the format structures).

6 (6) .. 2 FMTOCOL Print line column, same as for insert
substructure.

S (S) 2 FMTOLEN Output field length, same as for insert
substructure.

10 (A) .. 2 FMTCNVF Conversion flags, same as for insert
substructure.

Block Format

The block format substructure of the format list defines a block of variable
data from which fields are extracted for printing.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) FMTFLGS Flag byte: X' 10' or X'90'. (X'90' also
denotes end-of -structure.)

1 (1) . 1 Reserved .

2 (2) .. 2 FMTILEN Length of the input field. If FMTILEN
is zero or if FMTILEN is greater than
DARGILP minus FMTIOFF, then the
input length in DARGILP is used.

4 (4) 2 FMTIOFF Offset from the beginning of the input
data block at which this field begins.
The beginning of the data block is in
DARGDBP.

6 (6) .. 2 FMTOCOL Print line column, same as for insert
substructure.

S (S) 2 FMTOLEN Output field length, same as for insert
substructure.

10 (A) .. 2 FMTCNVF Conversion flags, same as for insert
substructure.

Data Areas 341

Replication

Static Text

The replication substructure defines substructures of the format list that are to
be repeated. The replication substructure always precedes the first
substructure to be repeated.

Bytes and
Offset Bit Pattern Fleld Name Description: Content, Meaning, Use

0(0) FMTFLGS Flag byte: X'08'. (May not have
end-of -list flag on.)

1 (1) . 1 * Reserved.

2 (2) .. 2 FMTRFNO Reference number to identify the
dynamic argument that contains the
replication count.

4 (4) 2 FMTRBC Number of substructures that follow
that are to be replicated.

6 (6) .. 2 FMTRIO Offset to add to all offsets contained in
block-format substructures being
replicated, to access the input fields.
fields.

The static text substructure defines data from the Text Structures to be placed
in the printed line.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) FMTFLGS Flag byte: X'04' or X'84'.

1 (1) . 1 * Reserved.

2 (2) .. 2 FMTSTL Length of static text field.

4 (4) 2 FMTSTO Offset to static text which follows
format structures.

6 (6) .. 2 FMTOCOL Print line column, same as for insert
substructure.

8 (8) 2 FMTOLEN Output field length, same as for insert
substructure.

10 (A) .. 2 FMTCNVF Conversion flags, same as for insert
substructure.

342 DOS/VS Access Method Services Logic

Function Data Table-FDT

Number Data Area

The Function Data Table is an encoded representation of a command. The
Reader /Interpreter parses a command and constructs the FDT from
information found in that command. All defaults are resolved; no conflicts are
allowed among the values of an FDT.

The FDT is not one structure, but rather several small structures that are
pointed to by a primary vector of addresses, called the FDTTBL. For a
parameter that appears in a repeated subparameter list, a secondary vector
results. Figure 9 shows this vector and illustrates the various small structures
to which it points.

The FDT primary vector, FDTTBL, is variable in length. It consists of the
command's verb as an 8-byte EBCDIC string, followed by a variable number
of fullword pointers. The number of pointers depends on the specific
command. There is one pointer per parameter defined in the Command
Descriptor. If a pointer is reserved or is not used because the respective
parameter has not been specified, the pointer contains zero.

The FDTTBL points to data areas in one of three formats depending upon
the input provided by the parameter. If there is more than one data field, an
array of data fields is generated. The array is preceded by a count of the array
elements. The count is in a fullword for an array of Number Data Areas and
in a halfword for an array of any other data areas. The array consists of one
element for each data field supplied as input to the parameter. Every element
in the array has the same format--one of the three formats shown below. In
the following formats the last 3 characters of the field name are as shown.
The first characters may vary and are indicated by •.

Created by

IDCRIOI
IDCRI04

Offset

0(0)

Modified by

None

8ytesand
Bit Pattern Fie!d Na.-=e

4 *VAL

Used by

FSR

Size

Variable

Descliptlcn: Coatent, Meaning, Use

Contains the input number in
fixed-point binary.

Data Areas 343

String Data Area

For a character string or hexadecimal string with or without a password the
format is:

Offset

0(0)

1(1)

9(9)

10(A)

Bytes and
Bit Pattern

8

v

Fleld Name

*PLN

*PAS

*LEN

*VAL

Desaiption: Content, Me , Use

Number of characters in the following
password. This field does not exist if a
password is not allowed with the
string.

Password, if supplied, left-justified and
padded with blanks.

This field does not exist if a password
is not allowed with the string.

Number of characters in the following
field.

Character string left-justified and
padded with blanks. The string does
not contain delimiters. Double
apostrophes are converted to single
apostrophes and hexadecimal input is
converted to EBCDIC.

Data Set Name or Data Area

For a data set name or generic data set name all with or without a password
and member name, the format is:

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) *PLN Number of characters in the following
password.

HI) 8 *PAS Password, if supplied, left-justified and
padded with blanks.

9(9) *POS This byte is reserved in DOS/VS.

lO(A) 1 *FLG Flag byte:
1. *FUQ This flag is not used in DOS/VS.

I1(B) *MLN This byte is reserved in DOS/VS.

12(C) 8 *MEM This field is reserved in DOS/VS.

20(14) *LEN Number of characters in the following
field.

21(15) v *VAL Data set name or generic data set
name in EBCDIC.

The FDT primary vector is variable in length.

FDTs for Specific Commands

The FDT for each command is shown in two different ways in the following
sections. First, there is a table relating the pointers to the parameters in the
command. Any omitted fields in this table contain zero. Second there is the
FDT description as it is used by the FSR for the command.

344 DOS/VS Access Method Services Logic

FDTTBL contains one address for each
parameter in the command. Each parameter
consists of zero, one, or more data fields.

If a parameter
consists of no data
fields (such as
WRITECHECK), the
address in FDTTBL
points to itself.

If a parameter has
repeated
subparameters
(such as OBJECTS),
FDTTBL points to
the number of
sub parameters.

8-byte verb name

Figure 9. FDT (Function Data Table)

1
T

1

addresses
for repeated
parameter

addresses
for repeated
parameter

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Parameter consisting of one data field

single data field

count of J
data fields

'---------'--.A....--...L.-----'-----'

If a parameter can be repeated, FDTTBL
contains a pointer to a special list of addresses.
In the list is one address for each possible
parameter repetition.

Repeated parameter consisting of one data field

single data field

single data field

count of
data fields

count of
data fields

Data Areas 345

ALTERFDT
Offset Content

0(0) A L T E R b b b

8 (8) t entryname / password tCATALOG

16 (10) t catname / password tdname

24 (18) tNEWNAME tFILE

32 (20) 0 tMASTERPW

40 (28) tCONTROLPW tUPDATEPW

48 (30) tREADPW tCODE

56 (38) tATTEMPTS t AUTHORIZATION

64 (40) t entrypoint tstring

72 (48) 0 tTO

80 (50) tFOR tOWNER

88 (58) tERASE tNOERASE

96 (60) t SHAREOPTIONS 0

104 (68) tNULLIFY tMASTERPW

112 (70) tCONTROLPW tUPDATEPW

120 (78) tREADPW 0

128 (80) tFREESPACE tcipercent

136 (88) tcapercent t WRITECHECK

144 (90) t NOWRITECHECK t BUFFERSPACE

152 (98) t ADDVOLUMES t REMOVEVOLUMES

160 (AO) 0 tINHIBIT

168 (A8) tUNINHIBIT tOWNER

176 (BO) tCODE tRETENTION

184 (B8) t AUTHORIZATION tentrypoint

192 (CO) tSTRING t cross partition

200 (C8) t crosssystem 0

208 (DO) 0 0

216 (D8) 0 0

224 (EO) t EXCEPTIONEXIT tKEYS

346 DOS/VS Access Method Services Logic

Offset Content

232 (E8) tlength toffset

240 (FO) t RECORD SIZE taverage

248 (F8) tmaximum tUNIQUEKEY

256 (100) t NONUNIQUEKEY tUPGRADE

264 (108) tNOUPGRADE tUPDATE

272 (t 10) tNOUPDATE t EXCEPTIONEXIT

ALTER FDT Descripdon

Bytes_
Offset Bit Patten Fleld Name Description: Content, Meaning, Use

0(0) 8 FDTVERB Verb aligned left and padded with
blanks-ALTERt>t>t>.

8 (8) 4 ENTRY Address of information supplied
through the entryname/password
parameter.

12 (C) 4 CAT Address of this pointer itself if the
CATALOG parameter has been
supplied.

16 (10) 4 CATLG Address of information supplied
through the catname/password
subparameter of the CATALOG
parameter.

20 (14) 4 CATDN Address of the information supplied
through the dname suhparameter of
the CATALOG parameter.

24 (18) 4 NEWNM Address of information supplied
through the NEWNAME parameter.

28 (lC) 4 INPDD Address of information supplied
through the FILE parameter.

32 (20) 4 * Reserved~ontains zeros.

36 (24) 4 MASTR Address of information supplied
through the MASTERPW parameter.

40 (28) 4 CNTVL Address of information supplied
through the CONTROLPW
parameter.

44~2C) 4 UPDAT Address of information supplied
through the UPDATEPW parameter.

48 (30) 4 READ Address of information supplied
through the READPW parameter.

52 (34) 4 CODNM Address of information supplied
through the CODE parameter.

56 (38) 4 ATTP Address of information supplied
through the ATTEMPTS parameter.

60 (3C) 4 AUTH Address of this pointer itself if the
AUTHORIZATION parameter has
been supplied.

64 (40) 4 USVR Address of information (supplied
through the entry point subparameter
of the AUTHORIZATION parameter.

Data Areas 347

Bytes and
Offset Bit Pattern Field Name Description

,"0 'A A \ A T TC''' n A. ...J...J~ ____ £ ~ __ r _ _ ~~_ ... ~ ______ 1-_-.J

UO_, ... UJnl'\. nUUI\;33 VI llllVlllldllVll 3UPP"CU

through the siring subparameter of the
AUTHORIZATION parameter.

72 (48) 4 * Reserved--contains zeros.

76 (4C) 4 TO Address of information supplied
through the TO parameter.

80 (50) 4 FOR Address of information supplied
through the FOR parameter.

84 (54) 4 OWNER Address of information supplied
through the OWNER parameter.

88 (58) 4 ERASE Address of this pointer itself if the
ERASE parameter has been supplied.

92 (5C) 4 NERAS Address of "this pointer itself if the
NO ERASE parameter has been
supplied.

96 (60) 4 SHARE Address of this pointer itself if the
SHAREOPTIONS parameter has been
supplied.

100 (64) 4 * Reserved--contains zeros.

104 (68) 4 NULLF Address of this pointer itself if the
NULLIFY parameter has been
supplied.

108 (6C) 4 NMSTR Address of this pointer itself if the
MASTERPW subparameter of the
NULLIFY parameter has been
supplied.

112 (70) 4 NCNTV Address of this pointer itself if the
CONTROLPW subparameter of the
NULLIFY parameter has been
supplied.

116 (74) 4 NUPDT Address of this pointer itself if the
UPDATEPW subparameter of the
NULLIFY parameter has been
supplied.

120 (78) 4 NREAD Address of this pointer itself if the
READPW subparameter of the
NULLIFY parameter has been
supplied.

124 (7C) 4 * Reserved--contains zeros.

128 (80) 4 FSPAC Address of this pointer itself if the
FREESPACE parameter has been
supplied.

132 (84) 4 FSPCI Address of information supplied
through the cipercent subparameter of
the FREESPACE parameter.

136 (88) 4 FSPCA Address of information supplied
through the capercent subparameter of
the FREESPACE parameter.

140 (8C) 4 WRTCK Address of this pointer itself if the
WRITECHECK parameter has been
supplied.

144 (90) 4 NWTCK Address of this pointer itself if the
NOWRITECHECK 'parameter has
been supplied.

348 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description

148 (94) 4 BUFSZ Address of information supplied
through the BUFFERSPACE
parameter.

152 (98) 4 ADDVL Address of information supplied
through the ADDVOLUMES
parameter.

156 (9C) 4 REMVL Address of information supplied
through the REMOVEVOLUMES
parameter.

160 (AO) 4 * Reserved--contains zeros.

164 (A4) 4 INHIB Address of this pointer itself if the
INHIBIT parameter has been
supplied.

168 (A8) 4 UNHIB Address of this pointer itself if the
UNINHIBIT parameter has been
supplied.

172 (AC) 4 NOWNR Address of this pointer itself if the
OWNER subparameter of the
NULLIFY parameter has been
supplied.

176 (BO) 4 NCDNM Address of this pointer itself if the
CODE subparameter of the NULLIFY
parameter has been supplied.

180 (B4) 4 NRETN Address of this pointer itself if the
RETENTION subparameter of the
NULLIFY parameter has been
supplied.

184 (B8) 4 NAUTH Address of this pointer itself if the
AUTHORIZATION subparameter of
the NULLIFY parameter has been
supplied.

188 (BC) 4 NMDNM Address of this pointer itself if the
MODULE subparameter of the
AUTHORIZATION parameter has
been supplied.

192 (CO) 4 NSTRG Address of this pointer itself if the
STRING subparameter of the
AUTHORIZATION parameter has
been supplied.

196 (C4) 4 SHARI Address of information supplied
through the cross region subparameter
of the SHAREOPTIONS parameter.

200 (C8) 4 SHAR2 Address of information supplied
through the crosssystem subparameter
of the SHAREOPTIONS parameter.

204 (CF) 20 * Reserved-contains zeros.

224 (EO) 4 EEXT Address of information supplied
through the mname subparameter of
the EXCEPTIONEXIT parameter.

228 (E4) 4 KEY Address of this pointer itself if the
KEYS parameter has been supplied.

232 (E8) 4 KEYLN Address of information supplied
through the length subparameter of
the KEYS parameter.

Data Areas 349

Bytes and
Offset Bit Pattern Field Name Description

236 (EC) 4 KEYPS Address of information supplied
through the offset subparameter of
the KEYS parameter.

240 (FO) 4 RECSZ Address of this pointer itself if the
RECORDSIZE parameter has been
supplied.

244 (F4) 4 AREC Address of information supplied
through the average subparameter of
the RECORDSIZE parameter.

248 (F8) 4 MREC Address of information supplied
through the maximum subparameter
of the RECORDSIZE parameter.

252 (FC) 4 UNQK Address of this pointer itself if the
UNIQUEKEY parameter has been
supplied.

256 (100) 4 NUNQK Address of this pointer itself if the
NONUNIQUEKEY parameter has
been supplied.

260 (t04) 4 UPG Address of this pointer itself if the
UPGRADE parameter has been
supplied.

264 (t08) 4 NUPG Address of this pointer itself if the
NOUPGRADE parameter has been
supplied.

268 (tOC) 4 UPD Address of this pointer itself if the
UPDATE parameter has been
supplied.

272 (t 10) 4 NUPD Address of this pointer itself if the
NOUPDATE parameter has been
supplied.

276 (t 14) 4 NEEXT Address of this pointer itself if the
EXCEPTIONEXIT subparameter of
the NULLIFY parameter has been
supplied.

350 DOS/VS Access Method Services Logic

BLDINDEX EDT
Offset Content

0(0) B L D I N D E X

8 (8) tINFILE 0

16 (10) tOUTFILE 0

24 (18) tCATALOa tWORKFILES

32 (20) tdnamel tdname2

40 (28) t EXTERNALSORT t INTERNALSORT

BLDINDEX FDT Description

Bytes and
Offset Bit Pattern Flelcl Name Description"Content, Meaning, Use

0(0) 8 FDTVERB Verb-BLDINDEX

8 (8) 4 IFILE Address of informationsupplied
through the INFILE parameter.

12 (C) 4 * Reserved-contains zeros.

16 (10) 4 OFILE Address of information supplied
through the OUTFILE parameter.

20 (14) 4 * Reserved-contains zeros.

24 (18) 4 CAT Address of information supplied
through the catname/password
subparameter of the CAT ALOa
parameter.

28 (1C) 4 WFILE Address of this pointer itself if the
WORKFILES parameter has been
supplied.

32 (20) 4 WFLEI Address of information supplied
through the dname 1 subparameter of
the WORKFILES parameter.

36 (24) 4 WFLE2 Address of information supplied
through the dname2 subparameter of
the WORKFILES parameter.

40 (28) 4 ESORT Address of this pointer itself if the
EXTERNALSORT parameter has
been supplied.

44 (2C) 4 ISORT Address of this pointer itself if the
INTERNALSORT parameter has
been supplied.

Data Areas 351

DERNEFDT

There are seven illustrations relating the pointers of the FDT to the FSR
parameters in the following order: alternate index, cluster, master catalog,
non VSAM, path, space, and user catalog.

352 DOS/VS Access Method Services Logic

DEFINE ALTERNATEINDEX

Offset Content

10 (n) T I;. I n - ,-, - A0 .&oJ V v

8 (8) tCATALOG t catname / password

16 (10) tdname 0

56 (38) 0 t ALTERNATEINOEX

1352 (548) 0 tNAME

1360 (550) tMOOEL t entryname/ password

1368 (558) tcatname/password tdname

1376 (560) tMASTERPW tCONTROLPW

1384 (568) tUPOATEPW tREAOPW

1392 (570) tCOOE tATTEMPTS

1400 (578) t AUTHORIZATION t entry point

1408 (580) tstring tTO

1416 (588) tFOR tOWNER

1424 (590) t SHAREOPTIONS t cross partition

1432 (598) t crosssystem tERASE

1440 (5AO) tNOERASE tKEYS

1448 (5A8) tlength tot/set

1456 (5BO) tREPLICATE t NOREPLICATE

1464 (5B8) tIMBEO tNOIMBEO

1472 (5CO) tFILE tVOLUMES

1480 (5C8) tKEYRANGES tlowkey

1488 (500) thighkey tOROEREO

1~6 (508) tUNOROEREO t SUBALLOCATION

1504 (5EO) tUNIQUE tTRACKS

1512 (5E8) tprimary tsecondary

1520 (5FO) tCYLINOERS tprimary

1528 (5F8) tsecondary tRECOROS

1536(600) tprimary tsecondary

Data Areas 353

Offset Content

1544 (608) t RECORDSIZE 1-average

1552 (610) tmaximum t WRITECHECK

1560 (618) t NOWRITECHECK tSPEED

1568 (620) tRECOVERY tFREESPACE

1576 (628) tcipercent tcapercent

1584 (630) t BUFFERSPACE t CONTROLINTERVALSIZE

1592 (638) tRELATE t EXCEPTIONEXIT

1600 (640) tREUSE tNOREUSE

1608 (648) tUNIQUEKEY t NONUNIQUEKEY

1616 (650) tUNIQUEKEY t NONUNIQUEKEY

1624 (658) tUPGRADE tNOUPGRADE

354 DOS/VS Access Method Services Logic

DEFINE CLUSTER

Offset Content

10 (0\
v \VI ..., .oJ A

n - ~ . ~ - -T N

8 (8) tCATALOG t catname/password

16 (10) tdname 0

24 (18) 0 tCLUSTER

32 (20) 0 tDATA

40 (28) tINDEX 0

72 (48) tNAME 0

88 (58) 0 tNAME

96 (60) tNAME tINDEXED

104 (68) t NONINDEXED 0

112 (70) tMODEL t entryname / password

120 (78) t catname / password tdname

128 (80) tMODEL t entryname / password

136 (88) t catname/password tdname

144 (90) tMODEL t entryname / password

152 (98) tcatname/password tdn'ame

160 (AO) 0 tMASTERPW

168 (A8) tMASTERPW tMASTERPW

176 (BO) 0 tCONTROLPW

184 (B8) tCONTROLPW tCONTROLPW

192 (CO) 0 tUPDATEPW .
200 (C8) tUPDATEPW tUPDATEPW

208 (DO) 0 tREADPW

216 (D8) tREADPW tREADPW

224 (EO) 0 tCODE

232 (E8) tCODE tCODE

240 (FO) 0 tAITEMPTS

248 (F8) tAITEMPTS tAITEMPTS

256 (100) 0 t AUTHORIZATION

272 (110) t AUTHORIZATION t entrypo;nt

280 (118) tstring t AUTHORIZATION

Data Areas 355

Offset Content

200 \ iLUJ
I.

T emrypoim
I. Tsuing

296 (128) 0 tTO

304 (130) 0 tFOR

312(138) 0 tOWNER

320 (140) tOWNER tOWNER

328 (148) t SHAREOPTIONS t cross partition

336 (150) t crosssystem t SHAREOPTIONS

344 (158) t cross partition t crosssystem

352 (160) t SHAREOPTIONS t cross partition

360 (168) t crosssystem tERASE

368 (170) tNOERASE tERASE

376 (178) tNOERASE tKEYS

384 (180) tlength tollset

392 (l88) tKEYS tlength

400 (190) tposition tREPLICATE

408 (198) t NOREPLICATE tREPLICATE

416 (lAO) t NOREPLICATE tIMBED

424 (IA8) tNOIMBED tIMBED

432 (lBO) tNOIMBED 0

440 (lB8) tFILE 0

448 (lCO) tFILE tFILE

456 (lC8) 0 tVOLUMES

472 (108) tVOLUMES tVOLUMES

480 (lEO) tKEYRANGES tlowkey

488 (lE8) thighkey tKEYRANGES

496 (lFO) tlowkey thighkey

512 (200) tORDERED tUNORDERED

520 (208) tORDERED tUNORDERED

528 (210) tORDERED tUNORDERED

536 (218) t SUBALLOCATION t SUBALLOCATION

544 (220) t SUBALLOCATION tUNIQUE

552 (228) tUNIQUE tUNIQUE

356 DOS/VS Access Method Services Logic

Offset Content

560 (230) o tTRACKS

576 (240) tCYLINOERS o

584 (248) o tRECOROS

600 (258) o tTRACKS

608 (260) tCYLINOERS tRECOROS

616 (268) tprimary tsecondary

624 (270) tTRACKS tCYLINOERS

632 (278) tRECOROS tprimary

640 (280) tsecondary o

648 (288) t RECOROSIZE o

656 (290) tallerage tmaximum

664 (298) t RECOROSIZE tallerage

672 (2AO) tmaximum o

680 (2A8) t WRITECHECK o

688 (2BO) t NOWRITECHECK t WRITECHECK

696 (2B8) t NOWRITECHECK t WRITECHECK

704 (2CO) t NOWRITECHECK tSPEEO

712 (2C8) tRECOVERY tSPEEO

720 (200) tRECOVERY tFREESPACE

728 (208) tcipercent tcapercent

736 (2EO) tFREESPACE tciperceni

744 (2E8) tcapercent o

752 (2FO) t BUFFERSPACE t BUFFERSPACE

760 (2F8) + CONTROLINTERVALSIZE + CONTROLINTERVALSIZE

768 (300) + CONTROLINTERVALSIZE o

1024 (400) o + entrypoint

1032 (408) + string o

1048 (418) o + EXCEPTIONEXIT

1056 (420) + EXCEPTIONEXIT + EXCEPTIONEXIT

1064 (428) +NUMBEREO + REUSE

1072 (430) + REUSE + REUSE

1080 (438) + NOREUSE + NO REUSE

Oata Areas 357

Offset Content

11088 (440) 1 + NOREUSE I + SPANNED

1096 (448) + SPANNED + NONSPANNED

1104 (450) + NONSPANNED 0

1208 (4B8) 0 + primary

1216 (4CO) + secondary 0

1248 (4EO) 0 + primary

1256 (4E8) + secondary 0

1288 (508) 0 +primary

1296 (510) + secondary 0

1320 (528) 0 + primary

1328 (530) + secondary +primary

1336 (538) + secondary +primary

1344 (540) + secondary +primary

1352 (548) + secondary

358 DOS/VS Access Method Services Logic

DEFINE MASTERCATALOG

Offset Content

10 (0) D E F I N E

8 (8) + CATALOG +catname/password

16 (to) +dname + MASTERCAT ALOG

32 (20) 0 + DATA

40 (28) + INDEX 0

64 (40) 0 +NAME

88 (58) 0 +NAME

96 (60) +NAME 0

160 (AO) +MASTERPW 0

176 (BO) +CONTROLPW 0

192 (CO) +UPDATEPW 0

208 (DO) +READPW 0

224 (EO) tCODE 0

240 (FO) +ATIEMPTS 0

256 (100) t AUTHORIZATION 0

264 (108) + entry point tstring

296 (128) tTO 0

304 (130) tFOR 0

312(138) + OWNER 0

432 (lBO) 0 ..&.T":'TT r
TriLl:.

456 (IC8) + VOLUMES 0

560 (230) + TRACKS 0

568 (238) 0 + CYLINDERS

584 (248) tRECORDS 0

600 (258) 0 + TRACKS

608 (260) tCYLINDERS tRECORDS

616 (268) tprimary tsecondary

624 (270) tTRACKS + CYLINDERS

632 (278) tRECORDS +primary

640 (280) + secondary 0

672 (2AO) 0 t WRITECHECK

Data Areas 359

Offset Content

1680 (2A8) o I t NOWRITECHECK

688 (2BO) 0 t WRITECHECK

696 (2B8) t NOWRITECHECK t WRITECHECK

704 (2CO) t NOWRITECHECK 0

744 (2E8) 0 tBUFFERSPACE

752 (2Fo) 0 t BUFFERSPACE

1104 (450) 0 tRECOVERABLE

1112(458) 0 tRECOVERABLE

1120 (460) t NOTRECOVERABLE 0

1128 (468) t NOTRECOVERABLE 0

1200 (4BO) 0 tprimary

1208 (4B8) t secondary 0

1240 (408) 0 tprimary

1248 (4EO) t secondary 0

1280 (500) 0 tprimary

1288 (508) tsecondary 0

1320 (528) 0 t primary

1328 (530) tsecondary tprimary

1336 (538) tsecondary tprimary

1344 (540) tsecondary tprimary

1352 (548) tsecondary

DEFINE NONVSAM

Offset Content

0(0) D E F I N E b b

8 (8) tCATALOG t catname/password

16 (to) tdname 0

48 (30) tNONVSAM 0

80 (50) tNAME 0

464 (tOO) 0 tVOLUMES

504 (tF8) tOEVICETYPES t FILESEQUENCENUMBER

1128 (468) 0 tFILE

1352 (548) 0

360 OOS/VS Access Method Services Logic

DEFINE PATH

Offset Content

10 (0) D E F I N E

8 (8) tCATALOG t catname / password

16 (10) tdname 0

64 (40) tPATH 0

1640 (668) 0 tNAME

1648(570) tMODEL tentryname/password

1656 (578) tcatname/password tdname

1664 (680) tMASTERPW tCONTROLPW

1672 (688) tUPDATEPW tREADPW

1680 (690) tCODE tATTEMPTS

1688 (698) t AUTHORIZATION t entrypo;nt

1696 (6AO) tstring tTO

1704 (6A8) tFOR tOWNER

1712 (6BO) tFILE tUPDATE

1720 (6B8) tNOUPDATE tPATHENTRY

Data Areas 361

DEFINE SPACE

Offset Content

0(0) D E F I N E t> t>
8 (8) + CATALOG + catname/password

16 (to) +dname 0

40 (28) 0 + SPACE

440 (tB8) 0 + FILE

464 (tBE) + VOLUMES 0

568 (238) + TRACKS 0

576 (240) 0 + CYLINDERS

592 (250) + RECORDS 0

640 (280) 0 + CANDIDATE

648 (288) 0 + RECORDSIZE

1008 (3FO) + average + maximum

1216 (4CO) 0 +primary

1224 (4C8) + secondary 0

1272 (4F8) 0 + primary

1280 (500) + secondary 0

1296 (510) 0 +primary

1304 (518) + secondary 0

1352 (548) 0

362 DOS/VS Access Method Services Logic

DEFINE USERCATALOG

Offset Content

10 (0) D E F I N E

8 (8) . tCATALOG t catname / password

16 (10) tdname 0

24 (18) t USERCATALOG 0

32 (20) 0 tDATA

40 (28) tINDEX 0

104 (68) 0 tMODEL

600 (258) 0 tTRACKS

608 (260) tCYLINDERS tRECORDS

616 (268) tprimary tsecondary

624 (270) tTRACKS tCYLINDERS

632 (278) tRECORDS tprimary

640 (280) tsecondary 0

688 (2BO) 0 t WRITECHECK

696 (2B8) t NOWRITECHECK t WRITECHECK

704 (2CO) t NOWRITECHECK 0

752 (2FO) 0 t BUFFERSPACE

792(318) 0 tNAME

800 (320) tMASTERPW tCONTROLPW

808 (328) tUPDATEPW tREADPW

816 (330) tCODE tATTEMPTS

824 (338) t AUTHORIZATION t entrypoint

832 (340) tstring tTO

840 (348) tFOR tOWNER

848 (350) tFILE tVOLUMES

856 (358) tTRACKS tCYLINDERS

864 (360) tRECORDS 0

872 (368) 0 t WRITECHECK

880 (370) t NOWRITECHECK t BUFFERSPACE

1016 (3F8) t entrypoint t catname / password

1024 (400) tdname 0

Data Areas 363

Offset Content

11112 (458) I + RECOVERABLE I + RECOVERABLE

1120 (460) 0 + NOTRECOVERABLE

1128 (468) + NOTRECOVERABLE 0

1256 (4E8) 0 + primary

1264 (4FO) + secondary 0

1304(518) 0 + primary

1312 (520) + secondary 0

1320 (528) 0 +primary

1328 (530) + secondary +primary

1336 (538) + secondary +primary

1344 (540) + secondary +primary

1352 (548) + secondary

364 DOS/VS Access Method Services Logic

DEFINE FDT Description

Bytes and
Offset Bit Pattem Field Name Description: Content, Meaning, Use

0(0) 8 FDTVERB Verb aligned left and padded with
blanks-DEFINEbb.

8 (8) 4 CAT Address of this pointer itself if the
CAT ALOa parameter has been
supplied.

12 (C) 4 CATLa Address of information supplied
through the calname/password
subparameter of the CAT ALOa
parameter.

16 (10) 4 CATON Address of information supplied
through the dname subparameter of
the CAT ALOa parameter.

20 (14) 4 MCAT Address of this pointer itself if the
MASTERCAT ALOa parameter has
been supplied-that is, if you are
defining a master catalog.

24 (18) 4 UCAT Address of this pointer itself if the user
catalog parameter is supplied-that is,
if you are defining a user catalog.

28 (lC) 4 CLST Address of this pointer itself if the
CLUSTER parameter is
supplied-that is if you are defining a
cluster.

32 (20) 4 * Reserved-contains zeros.

36 (24) 4 DATAA Address of this pointer itself if the
DA l' A parameter is supplied.

40 (28) 4 INDEX Address of this pointer itself if the
INDEX parameter is supplied.

44 (2C) 4 SPACE Address of this pointer itself if the
SPACE parameter is supplied-that is,
if you are defining a VSAM data
space.

48 (30) 4 ALIEN Address of this pointer itself if the
NONVSAM parameter is
supplied-that is, if you are defining a
non VSAM data set.

52 (34) 8 * Reserved-contains zeros.

60 (3C) 4 AIX Address of this pointer itself is the
ALTERNATEINDEX parameter is
supplied-that is, if you are defining
an alternate index.

64 (40) 4 PATH Address of this pointer itself if the
PATH parameter is supplied-that is,
if you are defining a path.

68 (44) 4 METRY Address of information supplied
through the NAME parameter if
NAME is supplied under
MASTERCATALOa.

72 (48) 4 CETRY Address of information supplied
through the NAME parameter if
NAME is supplied under CLUSTER.

76 (4C) 4 • Reserved-contains zeros.

Data Areas 365

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

80 (50) 4 AETRY Address of information supplied
through the NAME parameter if
NAME is supplied under NONVSAM.
84 (54)8*Reserved--contains zeros.

92 (5C) 4 DETRY Address of information supplied
through the NAME parameter if
NAME is supplied under DATA.

96 (60) 4 IETRY Address of information supplied
through the NAME parameter if
NAME is supplied under INDEX.

100 (64) 4 CINDX Address of this pointer itself if
INDEXED is supplied under
CLUSTER.

104 (68) 4 CNIDX Address of this pointer itself if
NO INDEXED is supplied under
CLUSTER.

108 (6C) 4 UMODL Address of this pointer itself if
MODEL is supplied under
USERCATALOG.

112 (70) 4 CMODL Address of this pointer itself if the
MODEL parameter is supplied under
CLUSTER.

116 (74) 4 CENAM Address of information supplied
through the entryname/password
sub parameter of MODEL if MODEL
is supplied under CLUSTER.

120 (78) 4 CMDCT Address of information supplied
through the catname/password
subparameter of MODEL if MODEL
is supplied under CLUSTER.

124 (7C) 4 CMDNM Address of information supplied
through the dname subparameter of
MODEL if MODEL is supplied under
CLUSTER.

128 (80) 4 DMODL Address of this pointer itself if the
MODEL parameter is supplied under
DATA.

132 (84) 4 DENAM Address of information supplied
through the entryname/password
subparameter of MODEL if MODEL
is supplied under DATA.

136 (88) 4 DMDCT Address of information supplied
through the catname/password
subparameter of MODEL if MODEL
is supplied under DATA.

140 (8C) 4 DMDNM Address of information supplied
through the dname subparameter of
MODEL if MODEL is supplied under
DATA.

144 (90) 4 IMODL Address of this pointer itself if
MODEL is supplied under INDEX.

148 (94) 4 IENAM Address of information supplied
through the entryname/password
subparameter of MODEL if MODEL
is supplied under INDEX.

366 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

152 (98) 4 IMDCT Address of information supplied
through the cainume/passwora
subparameter of MODEL if MODEL
is supplied under INDEX.

156 (9C) 4 IMDNM Address of information supplied
through the dname subparameter of
MODEL if MODEL is supplied under
INDEX.

160 (AO) 4 MMSTR Address of information supplied
through the MASTERPW parameter if
MASTERPW is supplied under
MASTERCATALOG.

164 (A4) 4 CMSTR Address of information supplied
through the MASTERPW parameter if
MASTERPW is supplied under
CLUSTER.

168 (A8) 4 DMSTR Address of information supplied
through the MASTERPW parameter if
MASTERPW is supplied under
DATA.

172 (AC) 4 IMSTR Address of information supplied
through the MASTERPW parameter if
MASTERPW is supplied under
INDEX.

176 (BO) 4 MCINT Address of information supplied
through the CONTROLPW parameter
if CONTROLPW is supplied under
MASTERCATALOG.

180 (B4) 4 CCINT Address of information supplied
through the CONTROLPW parameter
if CONTROLPW is supplied under
CLUSTER.

184 (B8) 4 DCINT Address of information supplied
through the CONTROLPW parameter
if CONTROLPW is supplied under
DATA.

188 (BC) 4 ICINT Address of information supplied
through the CONTROLPW parameter
if CONTROLPW is supplied under
INDEX.

192 (CO) 4 MUPDT Address of information supplied
through the UPDA TEPW if
UPDATEPW is supplied under
MASTERCATALOG.

196 (C4) 4 CUPDT Address of information supplied
through the UPDA TEPW if
UPDA TEPW is supplied under
CLUSTER.

200 (C8) 4 DUPDT Address of information supplied
through the UPDATEPW if
UPDA TEPW is supplied under
DATA.

204 (CC) 4 IUPDT Address of information supplied
through the UPDA TEPW if
UPDA TEPW is supplied under
INDEX.

Data Areas 367

Bytes and
Offset Bit Pattem Field Name Description: Content, Me , Use

208 (DO) 4 MREAD Address of information supplied
through the READPW parameter if
READPW is supplied under
MASTERCATALOG.

212 (04) 4 CREAD Address of information supplied
through the READPW parameter if
READPW is supplied under
CLUSTER.

216 (08) 4 DREAD Address of information supplied
through the READPW parameter if
READPW is supplied under DATA.

220 (DC) 4 IREAD Address of information supplied
through the READPW parameter if
READPW· is supplied under INDEX.

224 (EO) 4 MCODE Address of information supplied
through the CODE parameter if
CODE is supplied under
MASTERCATALOG.

228 (E4) 4 CCODE Address of information supplied
through the CODE parameter if
CODE is supplied under CLUSTER.

232 (E8) 4 DCODE Address of information supplied
through the CODE parameter if
CODE is supplied under DATA.

236 (EC) 4 ICODE Address of information supplied
through the CODE parameter if
CODE is supplied under INDEX.

240 (FO) 4 MATTP Address of information supplied
through the ATTEMPTS parameter if
ATTEMPTS is supplied under
MASTERCATALOG.

244 (F4) 4 CATTP Address of information supplied
through the ATTEMPTS parameter if
ATTEMPTS is supplied under
CLUSTER.

248 (F8) 4 DATTP Address of information supplied
through the ATTEMPTS parameter if
ATTEMPTS is supplied under DATA.

252 (FC) 4 IATTP Address of information supplied
through the ATTEMPTS parameter if
ATTEMPTS is supplied under
INDEX.

256 (100) 4 MAUTH Address of this pointer itself if the
AUTHORIZATION parameter is
supplied under MASTERCAT ALOG.

260 (104) 4 CAUTH Address of this pointer itself if the
AUTHORIZATION parameter is
supplied under CLUSTER.

264 (108) 4 MEPNM Address of information supplied
through the entry point subparameter
of AUTHORIZATION if
AUTHORIZATION is supplied under
MASTERCATALOG.

368 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content. Meaning. Use

268 (tOC) 4 MSTRG Address of information supplied
through the string subparameter of

'" T""rT 11'""\" 1""'7 A "T"T"~T ~£
n.u I nV~lLn.IIVI"l II

AUTHORIZA TION is supplied under
MASTERCA T ALOG.

272 (t 10) 4 DAUTH Address of this pointer itself if the
AUTHORIZATION parameter is
supplied under DATA.

276 (114) 4 DEPNM Address of information supplied
through the entrypoint subparameter
of AUTHORIZATION if
AUTHORIZATION is supplied under
DATA.

280 (118) 4 DSTRG Address of information supplied
through the string subparameter of
AUTHORIZATION if
AUTHORIZATION is supplied under
DATA.

284 (11C) 4 IAUTH Address of this pointer itself if the
AUTHORIZATION parameter is
supplied under INDEX.

288 (120) 4 IEPNM Address of information supplied
through the entrypoint subparameter
of AUTHORIZATION if the
AUTHORIZATION parameter is
supplied under INDEX.

292 (124) 4 ISTRG Address of information supplied
through the string subparameter of
AUTHORIZATION if the
AUTHORIZATION parameter is
supplied under INDEX.

296 (128) 4 MTO Address of information supplied
through the TO parameter if TO is
supplied under MASTERCAT ALOG.

300 02C) 4 CTO Address of information supplied
through the TO parameter if TO is
supplied under CLUSTER.

304 (130) 4 MFOR Address of information supplied
through the FOR parameter if FO R is
supplied under MASTERCAT ALOG.

308 (134) 4 CFOR Address of information supplied
through the FOR parameter if FOR is
supplied under CLUSTER.

312(138) 4 MOWNR Address of information supplied
through the OWNER parameter if
OWNER is supplied under
MASTERCAT ALOG.

316 (13C) 4 COWNR Address of information supplied
through the OWNER parameter if
OWNER is supplied under CLUSTER.

320 (140) 4 DOWNR Address of information supplied
through the OWNER parameter if
OWNER is supplied under DATA.

Data Areas 369

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

324 (44) 4 iOWNR Address of informalion suppiied
through the OWNER parameter if
OWNER is supplied under INDEX.

328 (148) 4 CSHAR Address of this pointer itself if the
SHAREOPTIONS parameter is
supplied under CLUSTER.

332 (14C) 4 CSHRI Address of information supplied
through the crosspartition
subparameter of SHAREOPTIONS if
SHAREOPTIONS is supplied under
CLUSTER.

336 (150) 4 CSHR2 Address of information supplied
through the crosssystem subparameter
of SHAREOPTIONS if
SHAREOPTIONS is supplied under
CLUSTER.

340 (154) 4 DSHAR Address of this pointer itself if the
SHAREOPTIONS parameter is
supplied under DATA.

344 (158) 4 DSHRI Address of information supplied
through the crosspartition
subparameter of SHAREOPTIONS if
SHAREOPTIONS is supplied under
DATA.

348 (l5C) 4 DSHR2 Address of information supplied
through the crosssystem subparameter
of SHAREOPTIONS if
SHAREOPTIONS is supplied under
DATA.

352 (160) 4 ISHAR Address of this pointer itself if the
SHAREOPTIONS parameter is
supplied under INDEX.

356 (164) 4 ISHRI Address of information supplied
through the crosspartition
subparameter of SHAREOPTIONS if
SHAREOPTIONS is supplied under
INDEX.

360 (168) 4 ISHR2 Address of information supplied
through the crosssystem subparameter
of SHAREOPTIONS if
SHAREOPTIONS is supplied under
INDEX.

364 (16C) 4 CERAS Address of this pointer itself if the
ERASE parameter is supplied under
CLUSTER.

368 (170) 4 CNERS Address of this pointer itself if the
NOERASE parameter is supplied
under CLUSTER.

372 (174) 4 DERAS Address of this pointer itself if the
ERASE parameter is supplied under
DATA.

376 (178) 4 DNERS Address of this pointer itself if the
NOERASE parameter is supplied
under DATA.

370 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

380 (17C) 4 CKEY Address of this pointer itself if the
KEYS parameter is supplied under
CLUSTER.

384 (180) 4 CKYLN Address of information supplied
through the le1Jgth subparameter of
KEYS if KEYS is supplied under
CLUSTER.

388 (184) 4 CKYPS Address of information supplied
through the offset subparameter of
KEYS if KEYS is supplied under
CLUSTER.

392 (188) 4 DKEY Address of this pointer itself if the
KEYS parameter is suppiied under
DATA.

396 (18C) 4 DKYLN Address of information supplied
through the length subparameter of
KEYS if KEYS is supplied under
DATA.

400 (190) 4 DKYPS Address of information supplied
through the offset subparameter of
KEYS if KEYS is supplied under
DATA.

404 (194) 4 CREPL Address of this pointer itself if the
REPLICATE parameter is supplied
under CLUSTER.

408 (198) 4 CNREP Address of this pointer itself if the
NO REPLICATE parameter is
supplied under CLUSTER.

412 (19C) 4 IREPL Address of this pointer itself if the
REPLICATE parameter is supplied
under INDEX.

416 (1AO) 4 INREP Address of this pointer itself if the
NO REPLICATE parameter is
~'1'1 1:AA '111 ,1.:.,.,. T')JT'\CV
""'t't'.Iu."u UI..I\,"'''''.11 ~""".LJ.I~.

420 (1A4) 4 CIMBD Address of this pointer itself if the
IMBED parameter is supplied under
CLUSTER.

424 (1A8) 4 CNIBD Address of this pointer itself if the
NO IMBED parameter is supplied
under CLUSTER.

428 (1AC) 4 IIMBD Address of this pointer itself if the
IMBED parameter is supplied under
INDEX.

432 (1BO) 4 INIBD Address of this pointer itself if the
NOIMBED parameter is supplied
under INDEX.

436 (1B4) 4 MINDD Address of information supplied
through the FILE parameter if FILE is
supplied under MASTER CAT ALOG.

440 (lB8) 4 CINDD Address of information supplied
through the FILE parameter if FILE is
supplied under CLUSTER.

444 (lBC) 4 SINDD Address of information supplied
through the FILE parameter if FILE is
supplied under SPACE.

Data Areas 371

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

44M (leu) 4 UINUU Address ot IOtormatlon supphed
through the FILE parameter if FILE is
supplied under DATA.

452 (lC4) 4 IINDD Address of information supplied
through the FILE parameter if FILE is
supplied under INDEX.

456 (lC8) 4 MVSER Address of information supplied
through the VOLUMES parameter if
VOLUMES is supplied under
MASTERCAT ALOG.

460 (lCC) 4 CVSER Address of information supplied
through the VOLUMES parameter if
VOLUMES is supplied under
CLUSTER.

464 (100) 4 SVSER Address of information supplied
through the VOLUMES parameter if
VOLUMES is supplied under SPACE.

468 (104) 4 AVSER Address of information supplied
through the VOLUMES parameter if
VOLUMES is supplied under
NONVS,AM.

472 (108) 4 DVSER Address of information supplied
through the VOLUMES parameter if
VOLUMES is supplied under DATA.

476 (lDC) 4 IVSER Address of information supplied
through the VOLUMES parameter if
VOLUMES is supplied under INDEX.

480 (lEO) 4 CRANG Address of a count of subparameters
supplied through the KEYRANGES
parameter if KEYRANGES is supplied
under CLUSTER.

484 (lE4) 4 CRGLOPTR Address of information supplied
through the lowkey subparameter of
KEYRANGES if KEYRANGES is
supplied under CLUSTER.

488 (lE8) 4 CRGHIPTR Address of information supplied
through the highkey subparameter of
KEYRANGES if KEYRANGES is
supplied under CLUSTER.

492 (lEC) 4 ORANG Address of a count of subparameters
supplied through the KEYRANGES
parameter if KEYRANGES is supplied
under DATA.

496 (lFO) 4 DRGLOPTR Address of information supplied
through the lowkey subparameter of
KEYRANGES if KEYRANGES is
supplied under DATA.

500 (lF4) 4 DRGHIPTR Address of information supplied
through the highkey subparameter of
KEYRANGES if KEYRANGES is
supplied under DATA.

504 (lF8) 4 ADEVT Address of information supplied
through the DEVICETYPES
parameter if DEVICETYPES is
s';1pplied under NONVSAM.

372 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Fleld Name Description: Content, Meaning, Use

508 (IFC) 4 AFSNO Address of information supplied
through the
FILESEQUENCENUMBER
parameter if
FILESEQUENCENUMBER is
supplied under NONVSAM.

512 (200) 4 CORDR Address of this pointer itself if the
ORDERED parameter is supplied
under CLUSTER.

516 (204) 4 CUORD Address of this pointer itself if the
UNORDERED parameter is supplied
under CLUSTER.

520 (208) 4 DORDR Address of this pointer itself if the
ORDERED parameter is supplied
under DATA.

524 (20C) 4 DUORD Address of this pointer itself if the
UNORDERED parameter is supplied
under DATA.

528 (210) 4 IORDR Address of this pointer itself if the
ORDERED parameter is supplied
under INDEX.

532 (214) 4 IUORD Address of this pointer itself if the
UNORDERED parameter is supplied
under INDEX.

536 (218) 4 CSUBA Address of this pointer itself if the
SUBALLOCATION parameter is
supplied under CLUSTER.

540 (21C) 4 DSUBA Address of this pointer itself if the
SUBALLOCATION parameter is
supplied under DATA.

544 (220) 4 ISUBA Address of this pointer itself if the
SUBALLOCATION parameter is
supplied under INDEX.

~ AO ,"\"\ A\ 4 ClJNIQ Address of this pointer itseif if the "'"+0 \~~"+J

UNIQUE parameter is supplied under
CLUSTER.

552 (228) 4 DUNIQ Address of this pointer itself if the
UNIQUE parameter is supplied under
DATA.

556 (22C) 4 IUNIQ Address of this pointer itself if the
UNIQUE parameter is supplied under
INDEX.

560 (230) 4 MTRKS Address of this pointer itself if the
TRACKS parameter is supplied under
MASTERCATALOG.

564 (234) 4 CTRKS Address of this pointer itself if the
TRACKS parameter is supplied under
CLUSTER.

568 (238) 4 STRKS Address of this pointer itself if the
TRACKS parameter is supplied under
SPACE.

572 (23C) 4 MCYLD Address of this pointer itself if the
CYLINDERS parameter is supplied
under MASTERCAT ALOG.

Data Areas 373

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

576 (24U) .. CCYLD Auulc;~~ ui ihi~ vuiuic;(it:)di if the
CYLINDERS parameter is supplied
under CLUSTER.

580 (244) 4 SCYLD Address of this pointer itself if the
CYLINDERS parameter is supplied
under SPACE.

584 (248) 4 MRCDS Address of this pointer itself if the
RECORDS parameter is supplied
under MASTERCAT ALOG.

588 (24C) 4 CRCDS Address of this pointer itself if the
RECORDS parameter is supplied
under CLUSTER.

592 (250) 4 SRCDS Address of this pointer itself if the
RECORDS parameter is supplied
under SPACE.

596 (254) 8 * Reserved--contains zeros.

604 (25C) 4 DTRKS Address of this pointer itself if the
TRACKS parameter is supplied under
DATA.

608 (260) 4 DCYLD Address of this pointer itself if the
CYLINDERS parameter is supplied
under DATA.

612 (264) 4 DRCDS Address of this pointer itself if the
RECORDS parameter is supplied
under DATA.

616 (268) 4 DTKPR Address of information supplied
through the primary subparameter of
TRACKS if TRACKS is supplied
under DATA.

620 (26C) 4 DTKSC Address of information supplied
through the secondary subparameter
of TRACKS if TRACKS is supplied
under DATA.

624 (270) 4 ITRKS Address of this pointer itself if the
TRACKS parameter is supplied under
INDEX.

628 (274) 4 ICYLD Address of this pointer itself if the
CYLINDERS parameter is supplied
under INDEX.

632 (278) 4 IRCDS Address of this pointer itself if the
RECORDS parameter is supplied
under INDEX.

636 (27C) 4 ITKPR Address of information supplied
through the primary subparameter of
TRACKS if TRACKS is supplied
under INDEX.

640 (280) 4 ITKSC Address of information supplied
through the secondary subparameter
of TRACKS if TRACKS is supplied
under INDEX.

644 (284) 4 SCAND Address of this pointer itself if the
CANDIDATE parameter is supplied
under SPACE.

374 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

648 (288) 4 CRSIZ Address of this pointer itself if the
RECORD SIZE parameter is supplied
under CLUSTER.

652 (28C) 4 SRSIZ Address of this pointer itself if the
RECORD SIZE parameter is supplied
under SPACE.

656 (290) 4 CARSZ Address of information supplied
through the average subparameter of
RECORD SIZE if RECORDSIZE is
supplied under CLUSTER.

660(294) 4 CMRSZ Address of information supplied
through the maximum subparameter
of RECORDSIZE if RECORDSIZE is
supplied under CLUSTER.

664 (298) 4 DRSIZ Address of this pointer itself if the
RECORDSIZE parameter is supplied
under DATA.

668 (29C) 4 DARSZ Address of information supplied
through the average subparameter of
RECORD SIZE if RECORD SIZE is
supplied under DATA.

672 (2AO) 4 DMRSZ Address of information supplied
through the maximum subparameter
of RECORDSIZE if RECORD SIZE is
supplied under DATA.

676 (2A4) 4 MWCK Address of this pointer itself if the
WRITECHECK parameter is supplied
under MASTER CAT ALOG.

680 (2A8) 4 CWCK Address of this pointer itself if the
WRITECHECK parameter is supplied
under CLUSTER.

684 (2AC) 4 MNWCK Address of this pointer itself if the
NOWRITECHECK parameter is
supplied under MASTER CAT ALOG.

688 (2BO) 4 CNWCK Address of this pointer itself if the
NOWRITECHECK parameter is
supplied under CLUSTER.

692 (2B4) 4 DWCK Address of this pointer itself if the
WRITECHECK parameter is supplied
under DATA.

696 (2B8) 4 DNWCK Address of this pointer itself if the
NOWRITECHECK parameter is
supplied under DATA.

700 (2BC) 4 IWCK Address of this pointer itself if the
WRITECHECK parameter is supplied
under INDEX.

704 (2CO) 4 INWCK Address of this pointer itself if the
NOWRITECHECK parameter is
supplied under INDEX.

708 (2C4) 4 CSPED Address of this pointer itself if the
SPEED parameter is supplied under
CLUSTER.

712 (2C8) 4 CRECV Address of this pointer itself if the
RECOVERY parameter is supplied
under CLUSTER.

Data Areas 375

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

716 (2CC) 4 DSPED Address of this pointer itself if the
SPEED parameter is supplied under
DATA.

720 (2DO) 4 DRECV Address of this pointer itself if the
RECOVERY parameter is supplied
under DATA.

724 (2D4) 4 CFSPC Address of this pointer itself if the
FREESPACE parameter is supplied
under CLUSTER.

728 (2D8) 4 CCIFS Address of information supplied
through the cipercent subparameter of
FREESPACE if FREESPACE is
supplied under CLUSTER.

732 (2DC) 4 CCAFS Address of information supplied
through the capercent subparameter of
FREESPACE if FREESPACE is
supplied under CLUSTER.

736 (2EO) 4 DFSPC Address of this pointer itself if the
FREESPACE parameter is supplied
under DATA.

740 (2E4) 4 DCIFS Address of information supplied
through the cipercent subparameter of
FREESPACE if FREESPACE is
supplied under DATA.

744 (2E8) 4 DCAFS Address of information supplied
through the capercent subparameter of
FREESPACE if FREESPACE is
supplied under DATA.

748 (2EC) 4 MBFSZ Address of information supplied
through the BUFFERSPACE
parameter if BUFFERSP ACE is
supplied under MASTERCAT ALOG.

752 (2FO) 4 CBFSZ Address of information supplied
through the BUFFERSP ACE
parameter if BUFFERSP ACE is
supplied under CLUSTER.

756 (2F4) 4 DBFSZ Address of information supplied
through the BUFFERSPACE
parameter if BUFFERSP ACE is
supplied under DATA.

760 (2F8) 4 CCINV Address of information supplied
through the CONTROL-
INTER V ALSIZE parameter if
CONTROL- INTERVALSIZE is
supplied under CLUSTER.

764 (2FC) 4 DCINV Address of information supplied
through the CONTROL-
INTER V ALSIZE parameter if
CONTROL- INTERVALSIZE is
supplied under DATA.

768 (300) 4 ICINV Address of information supplied
through the CONTROL-
INTER V ALSIZE parameter if
CONTROL- INTERVALSIZE is
supplied under INDEX.

376 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

772 (302) 24 • Reserved--contains zeros .

796 (3IC) 4 UETRY Address of information supplied
through the NAME parameter if
NAME is supplied under
USERCATALOG.

800 (320) 4 UMSTR Address of information supplied
through the MASTERPW parameter if
MASTERPW is supplied under
USERCATALOG.

804 (324) 4 UCINT Address of information supplied
through the CONTROLPW parameter
if CONTROLPW is supplied under
USERCATALOG.

808 (328) 4 UUPDT Address of information supplied
through the UPDA TEPW parameter if
UPDATEPW is supplied under
USERCATALOG.

812 (32C) 4 UREAD Address of information supplied
through the READPW parameter if
READPW is supplied under.
USERCATALOG.

816 (330) 4 UCODE Address of information supplied
through the CODE parameter if
CODE is supplied under
USERCATALOG.

820 (334) 4 UATTP Address of information supplied
through the ATTEMPTS parameter if
ATTEMPTS is supplied under
USER CATALOG.

824 (338) 4 UAUTH Address of this pointer itself if the
AUTHORIZATION parameter is
supplied under USERCA T ALOG.

828 (33C) 4 UEPNM Address of information supplied
through the entry point subparameter
of AUTHORIZATION if
AUTHORIZATION is supplied under
USERCATALOG.

832 (340) 4 USTRG Address of information supplied
through the string subparameter of
AUTHORIZATION if
AUTHORIZATION is supplied under
USERCATALOG.

836 (344) 4 UTO Address of information supplied
through the TO parameter if TO is
supplied under USERCAT ALOG.

840 (348) 4 UFOR Address of information supplied
through the FOR parameter if FOR is
supplied under USERCA T ALOG.

844 (34C) 4 UOWNR Address of information supplied
through the OWNER parameter if
OWNER is supplied under
USERCATALOG.

848 (350) 4 UINDD Address of information supplied
through the FILE parameter if FILE is
supplied under USERCAT ALOG.

Data Areas 377

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

R"2 (354) 4 UVSER Address of information supplied
through the VOLUMES parameter if
VOLUMES is supplied under
USERCAT ALOG.

856 (358) 4 UTRKS Address of this pointer itself if the
TRACKS parameter is supplied under
USERCATALOG.

860 (35C) 4 UCYLD Address of this pointer itself if the
CYLINDERS parameter is supplied
under USERCAT ALOG.

864 (360) 4 URCDS Address of this pointer itself if the
RECORDS parameter is supplied
under USERCAT ALOG.

868 (364) 8 * Reserved-contains zeros.

876 (36C) 4 UWCK Address of this pointer itself if the
WRITECHECK parameter is supplied
under USERCATALOG.

880 (370) 4 UNWCK Address of this pointer itself if the
NOWRITECHECK parameter is
supplied under USERCAT ALOG.

884 (374) 4 UBFSZ Address of information supplied
through the BUFFERSPACE
parameter if BUFFERSPACE is
supplied under USERCA T ALOG.

888 (378) 120 * Reserved-contains zeros.

1008 (3FO) 4 SARSZ Address of information supplied
through the average subparameter of
RECORDSIZE if RECORDSIZE is
supplied under SPACE.

1012 (3F4) 4 SMRSZ Address of information supplied
through the maximum subparameter
of RECORDSIZE if RECORDSIZE is
supplied under SPACE.

1016 (3F8) 4 UENAM Address of information supplied
through the entrypo;nt subparameter
of MODEL if MODEL is supplied
under USERCATALOG.

1020 (3FC) 4 UMDCT Address of information supplied
through the catname/password
subparameter of MODEL if MODEL
is supplied under USERCATALOG.

1024 (400) 4 UMDNM Address of information supplied
through the dname subparameter of
MODEL if MODEL is supplied under
USERCAT ALOG.

1028 (404) 4 CEPNM Address of information supplied
through the entrypoint subparameter
of AUTHORIZATION if
AUTHORIZATION is supplied under
CLUSTER.

1032 (408) 4 CSTRG Address of information supplied
through the string subparameter of
AUTHORIZATION if
AUTHORIZATION is supplied under
CLUSTER.

378 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

1036 (4DC) 16 * Reserved-contains zeros.

1052 (41C) 4 CEEXT Address of information supplied
through the EXCEPTIO~~EXIT
parameter if EXCEPTIONEXIT is
supplied under CLUSTER.

1056 (420) 4 DEEXT Address of this pointer itself if the
EXCEPTIONEXIT parameter is
supplied under DATA.

1060 (424) 4 IEEXT Address of this pointer itself if the
EXCEPTIONEXIT parameter is
supplied under INDEX.

1064 (428) 4 CNUMD Address of information supplied
through the NUMBERED parameter
if NUMBERED is supplied under
CLUSTER.

1068 (42C) 4 CRUS Address of information supplied
through the REUSE parameter if
REUSE is supplied under CLUSTER.

1072 (430) 4 DRUS Address of this pointer itself if the
REUSE parameter is supplied under
DATA.

1076 (434) 4 IRUS Address of this pointer itself if the
REUSE parameter is supplied under
INDEX.

1080 (438) 4 CNRUS Address of information supplied
through the NOREUSE parameter if
NOREUSE is supplied under
CLUSTER.

1084 (43C) 4 DNRUS Address of this pointer itself if the
NOREUSE parameter is supplied
under DATA.

1088 (440) 4 INRUS Address of this pointer itself if the
NOREUSE parameter is supplied
under INDEX.

1092 (444) 4 CSPND Address of information supplied
through the SPANNED parameter if
SPANNED is supplied under
CLUSTER.

1096 (448) 4 DSPND Address of this pointer itself if the
SPANNED parameter is supplied
under DATA.

1100 (44C) 4 CNSPD Address of information supplied
through the NONSPANNED
parameter if NONSPANNED is
supplied under CLUSTER.

1104 (450) 4 DNSPD Address of this pointer itself if the
NONSPANNED parameter is
supplied under DATA.

1108 (454) 4 MRVBL Address of information supplied
through the RECOVERABLE
parameter if RECOVERABLE is
supplied under MASTERCATALOG.

Data Areas 379

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

1112 (458) 4 URVBL Address of information supplied
... t.... __ •• _L .. 1...._ nrt'""'r.."rn ADt t:'
llllVUOII 1I1\" .'L'-''-''' LI'-J ~LlL...L...

parameter if RECOVERABLE is
supplied under USERCATALOG.

1116 (45C) 4 DRVBL Address of this pointer itself if the
RECOVERABLE parameter is
supplied under DATA.

1120 (460) 4 MNRVL Address of information supplied
through the NOTRECOVERABLE
parameter if NOTRECOVERABLE is
supplied under MASTERCA T ALOG.

1124 (464) 4 UNRVL Address of information supplied
through the NOTRECOVERABLE
parameter if NOTRECOVERABLE is
supplied under USERCA T ALOG.

1128 (468) 4 ONRVL Address of this pointer itself if the
NOTRECOVERABLE parameter is
supplied under DATA.

1132 (46C) 4 AINDD Address of information supplied
through the dname subparameter of
FILE if FILE is supplied under
NONVSAM.

1136 (470) 68 * Reserved--contains zeros.

1204 (4B4) 4 MTKPR Address of information supplied
through the primary subparameter of
TRACKS if TRACKS is supplied
under MASTERCAT ALOG.

1208 (4B8) 4 MTKSC Address of information supplied
through the secondary subparameter
of TRACKS if TRACKS is supplied
under MASTERCAT ALOG.

1212 (4BC) 4 CTKPR Address of information supplied
through the primary subparameter of
TRACKS if TRACKS is supplied
under CLUSTER.

1216 (4CO) 4 CTKSC Address of information supplied
through the secondary subparameter
of TRACKS if TRACKS is supplied
under CLUSTER.

1220 (4C4) 4 STKPR Address of information supplied
through the primary subparameter of
TRACKS if TRACKS is supplied
under SPACE.

1224 (4C8) 4 STKSC Address of information supplied
through the secondary subparameter
of TRACKS if TRACKS is supplied
under SPACE.

1228 (4CC) 4 UTKPR Address of information supplied
through the primary subparameter of
TRACKS if TRACKS is supplied
under USERCATALOG.

1232 (400) 4 UTKSC Address of information supplied
through the secondary subparameter
of TRACKS if TRACKS is supplied
under USERCATALOG.

1236 (404) 8 * Reserved--contains zeros.

380 OOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

1244 (4DC) 4 MCLPR Address of information supplied
through the primary subparameter of
CYLINDERS if CYLINDERS is
supplied under MASTERCATALOG.

1248 (4EO) 4 MCLSC Address of information supplied
through the' secondary subparameter
of CYLIND ERS if CYLIND ERS is
supplied under MASTERCAT ALOG.

1252 (4E4) 4 CCLPR Address of information supplied
through the. primary subparameter of
CYLINDERS if CYLINDERS is
supplied under CLUSTER.

1256 (4E8) 4 ~~, CO~
~~L..~~ Address of informaiion suppiied

through the secondary subparameter
of CYLINDERS if CYLINDERS is
supplied under CLUSTER.

1260 (4EC) 4 UCLPR Address of information supplied
through the primary subparameter of
CYLINDERS if CYLINDERS is
supplied under USERCAT ALOG.

1264 (4FO) 4 UCLSC Address of information supplied
through the secondary subparameter
of CYLINDERS if CYLINDERS is
supplied under USERCA T ALOG.

1268 (4F4) 8 * Reserved-contains zeros.

1276 (4FC) 4 SCLPR Address of information supplied
through the primary subparameter of
CYLINDERS if CYLINDERS is
supplied under SPACE.

1280 (500) 4 SCLSC Address of information supplied
through the secondary subparameter
of CYLINDERS if CYLINDERS is
supplied under SPACE .

1284 (504) 4 MRCPR . ,c\ddress of information supplied
through the primary subparameter of
RECORDS if RECORDS is supplied
under MASTERCAT ALOG.

1288 (508) 4 MRCSC Address of information supplied
through the secondary subparameter
of RECORDS if RECORDS is
supplied under MASTERCATALOG.

1292 (50C) 4 CRCPR Address of information supplied
through the primary subparameter of
RECORDS if RECORDS is supplied
under CLUSTER.

1296 (510) 4 CRCSC Address of information supplied
through the secondary subparameter
of RECORDS if RECORDS is
supplied under CLUSTER.

1300 (514) 4 SRCPR Address of information supplied
through the primary subparameter of
RECORDS if RECORDS is supplied
under 1241.

Data Areas 381

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

1304 (518) 4 SRCSC Address of information supplied
through the secondary subparameter
of RECORDS if RECORDS is
supplied under 1241.

1308 (51C) 4 URCPR Address of information supplied
through the primary subparameter of
RECORDS if RECORDS is supplied
under USERCAT ALOG.

1312 (520) 4 URCSC Address of information supplied
through the secondary subparameter
of RECORDS if RECORDS is
supplied under USERCA T ALOG.

1316 (524) 8 * Reserved-<ontains zeros.

1324 (52C) 4 DCLPR Address of information supplied
through the primary subparameter of
CYLINDERS if CYLINDERS is
supplied under DATA.

1328 (530) 4 DCLSC Address of information supplied
through the secondary subparameter
of CYLINDERS if CYLINDERS is
supplied unde.r DATA.

1332 (534) 4 DRCPR Address of information supplied
through the primary subparameter of
RECORDS if RECORDS is supplied
under DATA.

1336 (538) 4 DRCSC Address of information supplied
through the secondary subparameter
of RECORDS if RECORDS is
supplied under DATA.

1340 (53C) 4 ICLPR Address of information supplied
through the primary subparameter of
CYLINDERS if CYLINDERS is
supplied under INDEX.

1344 (540) 4 ICLSC Address of information supplied
through the secondary subparameter
of CYLINDERS if CYLINDERS is
supplied under INDEX.

1348 (544) 4 IRCPR Address of information supplied
through the primary subparameter of
RECORDS if CYLINDERS is
supplied under INDEX.

1352 (548) 4 IRCSC Address of information supplied
through the secondary subparameter
of RECORDS if CYLINDER is
supplied under INDEX.

1356 (54C) 4 GETRY Address of information supplied
through the NAME parameter if
NAME is supplied under
ALTERNA TEINDEX.

1360 (550) 4 GMODL Address of this pointer itself if
MODEL is supplied under
ALTERNATEINDEX.

382 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Yaeld Name Description: Content, Meaning, Use

1364 (554) 4 GENAM Address of information supplied
through the entryname/password
subparameter of MODEL if MODEL
is supplied under
ALTERNATEINDEX.

1368 (558) 4 GMDCT Address of information supplied
through the CATNAME/password
subparameter of MODEL if MODEL
is supplied under
ALTERNATEINDEX.

1372 (55C) 4 GMDNM Address of information supplied
through the dname sub parameter of
MODEL if MODEL is supplied under
ALTERNATEINDEX.

1376 (560) 4 GMSTR Address of information supplied
through the MASTERPW parameter if
MASTERPW is supplied under
ALTERNATEINDEX.

1380 (564) 4 GCINT Address of information supplied
through the CONTROLPW parameter
if CONTROLPW is supplied under
ALTERNATEINDEX.

1384 (568) 4 GUPDT Address of information supplied
through the UPDATEPW parameter if
UPDATEPW is supplied under
ALTERNATEINDEX.

1388 (56C) 4 GREAD Address of information supplied
through the READPW parameter if
READPW is supplied under
ALTERNATEINDEX.

1392 (570) 4 GCODE Address of information supplied
through the CODE parameter if
CODE is supplied under
ALTERNATEINDEX.

1396 (574) 4 GATTP Address of information supplied
through the ATTEMPTS parameter if
ATTEMPTS is supplied under
ALTERNATEINDEX.

1400 (578) 4 GAUTH Address of this pointer itself if the
AUTHORIZATION parameter is
supplied under AL TERNA TEIND EX.

1404 (57C) 4 GEPNM Address of information supplied
through the entrypoint subparameter
of AUTHORIZATION if the
AUTHORIZATION parameter is
supplied under ALTERNATEINDEX.

1408 (580) 4 GSTRG Address of information supplied
through the string subparameter of
AUTHORIZATION if
AUTHORIZATION is supplied under
ALTERNATEINDEX.

1412 (584) 4 GTO Address of information supplied
through the TO parameter if TO is
supplied under AL TERNATEINDEX.

1416 (588) 4 GFOR Address of information supplied
through the FOR parameter if FOR is
supplied under AL TERNA TEIND EX.

Data Areas 383

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

1420 (58C) 4 GOWNR Address of information supplied
through the OWNER parameter
if OWNER is supplied under
ALTERNATEINDEX.

1424 (590) 4 GSHAR Address of this pointer itself if the
SHAREOPTIONS parameter is
supplied under AL TERNA TEIND EX.

1428 (594) 4 GSHRI Address of information supplied
through the crosspart;t;on
subparameter of SHAREOPTIONS if
SHAREOPTIONS is supplied under
ALTERNATEINDEX.

1432 (598) 4 GSHR2 Address of information supplied
through the crosssystem subparameter
of SHAREOPTIONS if
SHAREOPTIONS is supplied under
AL TERNATEINDEX.

1436 (59C) 4 GERAS Address of this pointer itself if the
ERASE parameter is supplied under
ALTERNATEINDEX.

1440 (5AO) 4 GNERS Address of this pointer itself if the
NOERASE parameter is supplied
under AL TERNATEINDEX.

1444 (5A4) 4 GKEY Address of this pointer itself if the
KEYS parameter is supplied under
ALTERNATEINDEX.

1448 (5A8) 4 GKYLN Address of information supplied
through the length subparameter of
KEYS if KEYS is supplied under
AL TERNATEINDEX.

1452 (5AC) 4 GKYPS Address of information supplied
through the offset subparameter of
KEYS if KEYS is supplied under
ALTERNATEINDEX.

1456 (5BO) 4 GREPL Address of this pointer itself if the
REPLICATE parameter is supplied
under ALTERNATEINDEX.

1460 (5B4) 4 RNREP Address of this pointer itself if the
NOREPLICATE parameter is
supplied under ALTERNATEINDEX.

1464 (5B8) 4 GIMBD Address of this pointer itself if the
IMBED parameter is supplied under
ALTERNATEINDEX.

1468 (5BC) 4 GNIBD Address of this pointer itself if the
NOIMBED parameter is supplied
under AL TERNATEINDEX.

1472 (5CO) 4 GINDD Address of information supplied
through the FILE parameter if FILE is
supplied under AL TERNA TEINDEX.

1476 (5C4) 4 GVSER Address of information supplied
through the VOLUMES parameter if
VOLUMES is supplied under
ALTERNATEINDEX.

384 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

1480 (5C8) 4 GRANG Address of a count of subparameters
supplied through the KEYRANGES
parameter if KEYRANGES is suppiied
under AL TERNATEINDEX.

1484 (5CC) 4 GRGLOPTR Address of information supplied
through the lowkey subparameter of
KEYRANGES if KEYRANGES is
supplied under AL TERNATEINDEX.

1488 (5DO) 4 GRGHIPTR Address of information supplied
through the highkey subparameter of
KEYRANGES if KEYRANGES is
supplied under ALTERNATEINDEX.

lAO") (CnA\
I."'T.J~ \.J.J...,I"", 4 GORDR Address of this pointer itself if the

ORDERED parameter is supplied
under AL TERNATEINDEX.

1496 (5D8) 4 GUORD Address of this pointer itself if the
UNORDERED parameter is supplied
under AL TERNATEINDEX.

1500 (5DC) 4 GSUBA Address of this pointer itself if the
SUBALLOCATION parameter is
supplied under ALTERNATEINDEX.

1504 (5EO) 4 GUNIQ Address of this pointer itself if the
UNIQUE parameter is supplied under
ALTERNATEINDEX.

1508 (5E4) 4 GTRKS Address of thi" pointer itself if the
TRACKS parameter is supplied under
ALTERNATEINDEX.

1512 (5E8) 4 GTKPR Address of information supplied
through the primary subparameter of
TRACKS if TRACKS is supplied
under AL TERNA TEIND EX.

1516 (5EC) 4 GTKSC Address of information supplied
through the secondary subparameter
of TRACKS if TRACKS is supplied
under AL TERNATEINDEX.

1520 (5FO) 4 GCYLD Address of this pointer itself if the
CYLINDERS parameter is supplied
under ALTERNATEINDEX.

1524 (5F4) 4 GCLPR Address of information supplied
through the primary subparameter of
CYLINDERS if CYLINDERS is
supplied under AL TERNATEINDEX.

1528 (5F8) 4 GCLSC Address of information supplied
through the secondary subparameter
of CYLINDERS if CYLINDERS is
supplied under AL TERNA TEIND EX.

1532 (5FC) 4 GRCDS Address of this pointer itself if the
RECORDS parameter is supplied
under AL TERNATEINDEX.

1536 (600) 4 GRCPR Address of information supplied
through the primary subparameter of
RECORDS if RECORDS is supplied
under AL TERNATEINDEX.

Data Areas 385

Bytes and
Offset Bit Pattern Fleld Name Description: Content, Meaning, Use

1540 (604) 4 GRCSC Address of information supplied
through the secondary subparameter
of RECORDS if RECORDS is
supplied under AL TERNATEINDEX.

1544 (608) 4 GRSIZ Address of this pointer itself if the
RECORD SIZE parameter is supplied
under ALTERNATEINDEX.

1548 (6OC) 4 GARSZ Address of information supplied
through the average subparameter of
RECORD SIZE if RECORDSIZE is
supplied under AL TERNATEINDEX.

1552 (610) 4 GMRSZ Address of information supplied
through the maximum subparameter
of RECORDSIZE if RECORD SIZE is
supplied under AL TERNATEINDEX.

1556 (614) 4 GWCK Address of this pointer itself if the
WRITECHECK parameter is supplied
under ALTERNATEINDEX.

1560 (618) 4 GNWCK Address of this pointer itself if the
NOWRITECHECK parameter is
supplied under AL TERNATEINDEX.

1564 (61C) 4 GSPED Address of this pointer itself if the
SPEED parameter is supplied under
ALTERNATEINDEX.

1568 (620) 4 GRECV Address of this pointer itself if the
RECOVERY parameter is supplied
under ALTERNATEINDEX.

1572 (624) 4 GFSPC Address of this pointer itself if the
FREESPACE parameter is supplied
under ALTERNATEINDEX.

1576 (628) 4 GCIFS Address of information supplied
through the cipercent subparameter of
FREESPACE if FREESPACE is
supplied under ALTERNATEINDEX.

1580 (62C) 4 GCAFS Address of information supplied
through the capercent subparameter of
FREESPACE if FREESPACE is
supplied under AL TERNATEINDEX.

1584 (630) 4 GBFSZ Address of information supplied
through the BUFFERSPACE
parameter if BUFFERSP ACE is
supplied under ALTERNATEINDEX.

1588 (634) 4 GCINV Address of information supplied
through the
CONTROLINTERVALSIZE
parameter if
CONTROLINTERVALSIZE is
supplied under AL TERNATEINDEX.

1592 (638) 4 GREL Address of information supplied
through the RELATE parameter if
RELATE is supplied under
AL TERNATEINDEX.

386 DOS/VS Access Method Services Logic

8ytesand
Offset Bit Pattem Field Name Description: Content, Meaning, Use

1596 (63C) 4 GEEXT Address of information supplied
through the EXCEPTIONEXIT
parameter if EXCEPTIONEXIT is
supplied under AL TERNATEINDEX.

1600 (640) 4 GRUS Address of information supplied
through the REUSE parameter if
REUSE is supplied under
ALTERNATEINDEX.

1604 (644) 4 GNRUS Address of information supplied
through the NO REUSE parameter if
NOREUSE is supplied under
ALTERNATEINDEX.

1 ,no ".40\ AI GtJNQK Address of iniormation supplied • vuO'''"''°l ..
through the UNIQUE KEY parameter
if UNIQUEKEY is supplied under
ALTERNATEINDEX.

1612 (64C) 4 GNUQK Address of information supplied
through the NONUNIQUEKEY
parameter if NONUNIQUEKEY is
supplied under ALTERNATEINDEX.

1616 (650) 4 DUNQK Address of information supplied
through the UUNIQUEKEY
parameter if UNIQUEKEY is supplied
under DATA.

1620 (654) 4 DNUQK Address of information supplied
through the NONUNIQUEKEY
parameter if NONUNIQUEKEY is
supplied under DATA.

1624 (658) 4 GUPG Address of information supplied
through the UPGRADE parameter if
UPGRADE is supplied under
ALTERNATEINDEX.

1628 (65C) 4 GNUPG Address of information supplied
through the NOUPGRADE parameter
if NOUPGRADE is supplied under
ALTERNATEINDEX.

1632 (660) 12 • Reserved-contains zeros.

1644 (66C) 4 RETRY Address of information supplied
through the NAME parameter if
NAME is supplied under PATH.

1648 (670) 4 RMODL Address of this pointer itself if the
MODEL parameter is supplied under
PATH.

1652 (674) 4 RENAM Address of information supplied
through the entryname/password
subparameter of MODEL if MODEL
is supplied under PATH.

1656 (678) 4 RMDCT Address of information supplied
through the catname/password
subparameter of MODEL if MODEL
is supplied under PATH.

1660 (67C) 4 RMDNM Address of information supplied
through the dname subparameter of
MODEL if MODEL is supplied under
PATH.

Data Areas 387

Bytes and
Offset Bit Pattern Field Name Description: Content; Meaning, Use

1664 (680) 4 RMSTR Address of information supplied
through the MASTERPW parameter if
MASTERPW is supplied under PATH.

1668 (684) 4 RCINT Address of information supplied
through the CONTROLPW parameter
if CONTROLPW is supplied under
PATH.

1672 (688) 4 RUPDT Address of information supplied
through the UPDATEPW parameter if
UPDATEPW is supplied under PATH.
1676 (68C)4RHEADAddress of
information supplied through the
READPW parameter if READPW is
supplied under PATH.

1680 (690) 4 RCODE Address of information supplied
through the CODE parameter if
CODE is supplied under PATH.

1684 (694) 4 RATTP Address of information supplied
through the ATTEMPTS parameter if
ATTEMPTS is supplied under PATH.

1688 (698) 4 RAUTH Address of information supplied
through the AUTHORIZATION
parameter if AUTHORIZATION is
supplied under PATH.

1692 (69C) 4 REPNM Address of information supplied
through the entrypo;nt subparameter
of AUTHORIZATION if
AUTHORIZATION is supplied under
PATH.

1696 (6AO) 4 RSTRG Address of information supplied
through the string subparameter of
AUTHORIZATION if
AUTHORIZATION is supplied under
PATH.

1700 (6A4) 4 RTO Address of information supplied
through the TO parameter if TO is
supplied under PATH.

1704 (6A8) 4 RFOR Address of information supplied
through the FOR parameter if FOR is
supplied under PATH.

1708 (6AC) 4 ROWNR Address of information supplied
through the OWNER parameter if
OWNER is supplied under PATH.

1712 (6BO) 4 RINDD Address of information supplied
through the FILE parameter if FILE is
supplied under PATH.

1716 (6B4) 4 RUPD Address of information supplied
through the UPDATE parameter if
UPDATE is supplied under PATH.

1720 (6B8) 4 RNUPD Address of information supplied
through the NOUPDA TE parameter if
NOUPDATE is supplied under PATH.

1724 (6BC) 4 RPENT Address of information supplied
through the PATHENTRY parameter
if PA THENTRY is s\lpplied under
PATH.

388 DOS/VS Access Method Services Logic

DELETEFDT
Offset Content

0(0) D E L E T E b b

8 (8) t entryname/ password tCATALOG

16 (10) t catname/password tcatdd

24 (18) tFILE tPURGE

32 (20) tNOPURGE tERASE

40 (28) tNOERASE 0

48 (30) tCLUSTER tSPACE

56 (38) t USERCA T ALOG t MASTERCAT ALOG

64 (40) tNONVSAM tSCRATCH

72 (48) tNOSCRATCH 0

80 (50) 0 0

88 (58) t ALTERNATEINDEX tPATH

96 (60) tFORCE tNOFORCE

DELETE FDT Description

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 8 FDTVERB Verb aligned left and padded with
blanks-DELETEbb.

8 (8) 4 NTRY Address of information supplied
through the entryname/password
parameter.

12 (C) 4 CATLG Address of this pointer itself if the
CATALOG parameter has been
supplied.

16 (10) 4 CAT Address of information supplied
through the catname/password
subparameter of the CATALOG
parameter.

20 (14) 4 CATDD Address of the ddname associated with
the catalog.

24 (18) 4 INDD Address of information supplied
through the FILE parameter.

28 (1C) 4 PURGE Address of this pointer itself if the
PURGE parameter has been supplied
or defaulted.

32 (20) 4 NOPUR Address of this pointer itself if the
NOPURGE parameter has been
supplied.

36 (24) 4 ERASE Address of this pointer itself if the
ERASE parameter has been supplied.

40 (28) 4 NOERA Address of this pointer itself if the
NOERASE parameter has been
supplied.

Data Areas 389

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

44 (2C) 4 * Reserved--contains zeros.

48 (30) 4 CLUST Address of this pointer itself if the
CLUSTER parameter has been
supplied.

52 (34) 4 SPACE Address of this pointer itself if the
SPACE parameter has been supplied.

56 (38) 4 UCAT Address of this pointer itself if the
USE RCA T ALOG parameter has been
supplied.

60 (3C) 4 MCAT Address of this pointer itself if the
MASTERCA T ALOG parameter has
been supplied.

64 (40) 4 ALIEN Address of this pointer itself if the
NONVSAM parameter has been
supplied.

68 (44) 4 SCR Address of this pointer itself if the
SCRATCH parameter has been
supplied.

72 (48) 4 NSCR Address of this pointer itself if the
NOSCRATCH parameter has been
supplied.

76 (4C) 12 * Reserved-contains zeros.

88 (58) 4 AIX Address of this pointer itself if the
ALTERNATE INDEX parameter has
been supplied.

92 (5C) 4 PATH Address of this pointer itself if the
PATH parameter has been supplied.

96 (60) 4 FRC Address of this pointer itself if the
FORCE parameter has been supplied.

100 (64) 4 NFRC Address of this pointer itself if the
NOFORCE parameter has been
supplied.

390 DOS/VS Access Method Services Logic

EXPORTFDT
Offset

I n In\
v \VI £J ~a. .&

y p

8 (8) t entryname / password

16 (10) tOUTFILE

24 (18) t ENVIRONMENT

32 (20) tPERMANENT

40 (28) t INHIBITT ARGET

48 (30) tNOERASE

56 (38) tNOPURGE

64 (40) t NOINHIBITSOURCE

72 (48) 0

80 (50) 0

88 (58) tBLOCKSIZE

96 (60) tNOLABEL

104 (68) tREWIND

EXPORT FDT Description

Bytes and
Offset Bit Pattern Field Name

0(0) 8 FDTVERB

8 (8) 4 ENT

12 (C) 4 INDD

16 (10) 4 OUT

20 (14) 4 OUTDD

24 (I 8) 4 ENVIR

28 (IC) 4 TEMP

32 (20) 4 PERM

36 (24) 4 INHBS

Page of SY33-8564-3
Revised Apri129, 1977
By TNL SN24-5550

Content

" .&~ ~ ~ ~
n I T

tINFILE

tdname

tTEMPORARY

t INHIBITSOURCE

tERASE

tPURGE

t DISCONNECT

t NOINHIBITT ARGET

0

t PRIMEDAT ADEVICE

tSTDLABEL

tNOREWIND

tUNLOAD

Description: Content, Meaning, Use

Verb aligned left and padded with
blanks-EXPORTbb.

Address of information supplied
through the entryname/password
parameter.

Address of information supplied
through the INFILE parameter.

Address of this pointer itself if the
OUTFILE parameter has been
supplied.

Address of information supplied
through the dname subparameter of
the OVfFILE parameter.

Address of this pointer itself if the
ENVIRONMENT parameter has been
supplied.

Address of this pointer itself if the
TEMPORARY parameter has been
supplied.

Address of this pointer itself if the
PERMANENT parameter has been
supplied.

Address of this pointer itself if the
INHIBITSOURCE parameter has
been supplied.

Data Areas 391

Page of ~ Page of SY33-8564-3
Revised, Revised April 29, 1977
ByTNL By TNL SN24-5550

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning,

40 (28) 4 IFILEPTR Address of an array of pointer
pointer points to the dname
subparameter of the INFILE
subparameter, i.e., the dname
used for a CRA if ALL was sp
for that CRA.

44 (2C) 4 MRPW Address of information supplil
through the password subparru
the MASTERPW parameter.

48 (30) 4 ENVIR Address of this pointer itself if
ENVIRONMENT parameter 1
supplied.

52 (34) 4 PDEV Address of information supplil
through the PRIMED AT ADE
subparameter of the
ENVIRONMENT parameter.

56 (38) 4 OUTDO Address of information supplil
through the dname subparam<:
the OUTFILE parameter.

60 (3C) 4 ENTNMPTR Address of an array of pointer
pointer points to the entrynaml
subparameter of the ENTRIE1
subparameter, i.e., all of the el
names in each CRA specified.

64 (40) 4 ENTDNPTR Address of an array of pointer
pointer points to the dname
subparameter of the ENTRIE1
subparameter to be used to ex)
associated entry name in
ENTNMPTR.

68(44) 4 BLKSZ Address of information supplil
through the BLOCKSIZE
subparameter of the
ENVIRONMENT parameter.

72 (48) 4 OSLBL Address of this pointer itself if
STDLABEL subparameter of
ENVIRONMENT parameter I
supplied (or defaulted.)

76 (4C) 4 ONLBL Address of this pointer itself if
NOLABEL subparameter of tl
ENVIRONMENT parameter I
supplied.

80 (50) 4 ONREW Address of this pointer itself if
NOREWIND subparameter 01
ENVIRONMENT parameter I
supplied (or defaulted.)

84 (54) 4 OREW Address of this pointer itself if
REWIND subparameter of th€
ENVIRONMENT parameter I
been supplied.

88 (58) 4 OUNLD Address of this pointer itself if
UNLOAD subparameter of th
ENVIRONMENT parameter]
supplied.

392 DOS 394 DOS/VS Access Method Services Logic

IMPORTFDT
Offset

I 0(0)

8 (8)

16 (10)

24 (18)

32 (20)

40 (28)

48 (30)

56 (38)

64 (40)

72 (48)

80 (50)

88 (58)

96 (60)

104 (68)

112 (70)

120 (78)

128 (80)

136 (88)

IMPORT FDT Description

Offset

0(0)

8 (8)

12 (C)

16 (10)

20 (14)

24 (18)

28 (1C)

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Content

I M p o I R T

tINFILE tOUTFILE

tOBJECTS t objectname

tNEWNAME tFILE

tVOLUMES tKEYRANGES

t DEVICETYPE tORDERED

tUNORDERED tlowkey

thighkey tCONNECT

tdname t ENVIRONMENT

tPURGE tNOPURGE

tERASE tNOERASE

tBLOCKSIZE t PRIMEDATADEVICE

t RECORD SIZE 0

0 tSTDLABEL

tNOLABEL tNOREWIND

tREWIND tUNLOAD

0 0

tCATALOG

Bytes and
Bit Pattern Field Name Description: Content, Meaning, Use

8 FDTVERB Verb aligned left and padded with
blanks-IMPORT!>!>.

4 IN Address of this pointer itself if the
INFILE parameter has been supplied.

4 OUTDD Address of information supplied
through the OUTFILE parameter.

4 OBJTS Address of the count of objects
supplied through the OBJECTS
parameter.

4 OBJNMPTR Address of information supplied
through the objectname subparameter
of the OBJECTS parameter.

4 NEWNMPTR Address of information supplied
through the NEWNAME
subparameter of the OBJECTS
parameter.

4 OBJFLPTR Address of information supplied
through the FILE subparameter of the
OBJECTS parameter.

Data Areas 395

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

32 (20) 4 LISTVPTR Address of information supplied
through the VOLUMES subparameter
of the OBJECTS parameter.

36 (24) 4 RANGEPTR Address of the count of keyranges
supplied through the KEYRANGES
subparameter of the OBJECTS
parameter.

40 (28) 4 DEVTPTR Address of the information supplied
through the DEVICETYPE
subparameter of the OBJECTS
parameter.

44 (2C) 4 ORDPTR Address of information supplied
through the ORDERED subparameter
of the OBJECTS parameter.

48 (30) 4 UNORDPTR Address of information supplied
through the UNORDERED
subparameter of the OBJECTS
parameter.

52 (34) 4 LOWKYPTR Address of information supplied
through the lowkey subparameter of
the KEYRANGES parameter.

56 (38) 4 HIKEYPTR Address of information supplied
through the highkey subparameter of
the KEYRANGES parameter.

60 (3C) 4 CON Address of this pointer itself if the
CONNECT parameter has been
supplied.

64 (40) 4 INDD Address of information supplied
through the dname subparameter of
the INFILE parameter.

68 (44) 4 ENV Address of information supplied
through the ENVIRONMENT
parameter.

72 (48) 4 PRG Address of this pointer itself if the
PURGE parameter has been supplied.

76 (4C) 4 NPRG Address of this pointer itself if the
NOPURGE parameter has been
supplied.

80 (50) 4 ERAS Address of this pointer itself if the
ERASE parameter has been supplied.

84 (54) 4 NERAS Address of this pointer itself if the
NOERASE parameter has been
supplied.

88 (58) 4 BLKSZ Address of information supplied
through the BLOCKSIZE
subparameter of the
ENVIRONMENT parameter.

92 (5C) 4 PDEV Address of information supplied
through the PRIMEDAT ADEVICE
subparameter of the
ENVIRONMENT parameter.

96 (60) 4 RCSZE Address of information supplied
through the RECORDSIZE
subparameter of the
ENVIRONMENT parameter.

396 DOS/VS Access Method Services Logic

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Bytes and
Offset Bit Pattern F1eld Name Description: Content, Meaning, Use

100 (64) 36 * Reserved~ontains zeros.

108 (6C) 4 ISLBL Address of this pointer itself if the
STDLABEL subparameter of the
ENVIRONMENT parameter has been
supplied (or defaulted).

112 (70) 4 INLBL Address of this pointer itself if the
NOLABEL subparameter of the
ENVIRONMENT parameter has been
supplied.

116 (74) 4 INREW Address of this pointer itself if the
NO REWIND subparameter of the
ENVIRONMENT parameter has been
supplied (or defaulted.)

120 (78) 4 IREW Address of this pointer itself if the
REWIND subparameter of the
ENVIRONMENT parameter has been
supplied.

124 (7C) 4 IUNLD Address of this pointer itself if the
UNLOAD subparameter of the
ENVIRONMENT parameter has been
supplied.

136 (88) 4 CAT Address of information supplied
through the CATALOG parameter.

Data Areas 397

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

IMPORTRA. FDT

IMPORTRA FDT Description

Offset

0(0)

8 (8)

16 (10)

24 (18)

32 (20)

40 (28)

48 (30)

56 (38)

64 (40)

72 (48)

80 (50)

88 (58)

96 (60)

104 (68)

112 (70)

120 (78)

128 (80)

136 (88)

Offset

0(0)

8 (8)

12 (C)

16 (10)

20 (I4)

24 (I8)

28 (IC)

32 (20)

398 DOS/VS Access Method Services Logic

I M P

+INFILE

+ OBJECTS

+ FILE

+ VOLUMES

+DEVICETYPE

0

0

+dname

0

0

+BLOCKSIZE

0

0

+ NOLABEL

+ REWIND

0

+ CATALOG

Bytes and
Bit Pattern Field Name

8 FDTVERB

4 IN

4 OUTDD

4 OBJTS

4 OBJNMPTR

4 OBJFLPTR

4 *
4 LlSTVPTR

Content

0 R T R A

+OUTFILE

+ object name

0

0

0

0

0

+ ENVIRONMENT

0

0

+ PRIMEDAT ADEVICE

0

+STDLABEL

+ NO REWIND

+ UNLOAD

0

Description: Content, Meaning, Use

Verb-IMPORTRA.

Address of this pointer itself if the
INFILE parameter has been supplied.

Address of information supplied
through the OUTFILE parameter.

Address of the count of objects
supplied through the OBJECTS
parameter.

Address of information supplied
through the name subparameter of the
OBJECTS parameter.

Address of information supplied
through the FILE subparameter of the
OBJECTS parameter.

Reserved--contains zeros.

Address of information supplied
through the VOLUMES subparameter
of the OBJECTS parameter.

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

36 (24) 4 * Reserved~ontains zeros.

40 (28) 4 DEVTPTR Address of information supplied
,,1 ___ 1_ ... 1 __ ~~'TT'-'~~'TnT""'l
lIlruugll 1I1~ LlI:. V 1\""1:. 1 I rl:.

subparameter of the OBJECTS
parameter.

44 (2C) 20 * Reserved~ontain zeros.

64 (40) 4 INDD Address of information supplied
through the dname subparameter of
the INFILE parameter.

68 (44) 4 ENV Address of information supplied
through the ENVIRONMENT
parameter.

i2 (48) i6 * Reserved--contains zeros.

88 (58) 4 BLKSZ Address of information supplied
through the BLOCKSIZE
sub parameter of the
ENVIRONMENT parameter.

92 (5C) 4 PDEV Address of information supplied
through the PRIMEDA T ADEVICE
subparameter of the
ENVIRONMENT parameter.

96 (60) 40 * Reserved~ontains zeros.

108 (6C) 4 ISLBL Address of this pointer itself if the
STDLABEL subparameter of the
ENVIRONMENT parameter has been
supplied (or defaulted.)

112 (70) 4 INLBL Address of this pointer itself if the
NOLABEL sub parameter of the
ENVIRONMENT parameter has been
supplied.

116 (74) 4 INREW Address of this pointer itself if the
NO REWIND subparameter of the
ENVIRONMENT parameter has been
supplied (or defaulted.)

120 (78) 4 IREW Address of this pointer itself if the
REWIND subparameter of the
ENVIRONMENT parameter has been
supplied.

124 (7C) 4 IUNLD Address of this pointer itself if the
UNLOAD sub parameter of the
ENVIRONMENT parameter has been
supplied.

136 (88) 4 CAT Address of information supplied
through the CAT ALOa parameter.

Data Areas 399

LISTCATFDT
Offset Content

0(0) L I S T C A T t>

8 (8) tCATALOG tOUTFILE

16 (10) tENTRIES 0

24 (18) tCLUSTER tDATA

32 (20) tINDEX tSPACE

40 (28) tNONVSAM t USERCATALOG

48 (30) t catname/password tdname

56 (38) 0 tNAME

64 (40) tALL tVOLUME

72 (48) t ALLOCATION 0

80 (50) 0 0

88 (58) 0 t ALTERNATEINDEX

96 (60) tPATH tNOTUSABLE

400 DOS/VS Access Method Services Logic

LISTCAT FDT Description

Bytes and
Offset Bit Pattern field Name Description: Content, Meaning, Use

0(0) 8 FDTVERB Verb aligned left and padded with
blanks-LISTCA Tb.

8 (8) 4 CAT Address of this pointer itself if the
CATALOG parameter has been
supplied.

12 (C) 4 OUTDD Reserved-contains zeros.

16 (to) 4 ENT Address of information supplied
through the ENTRIES parameter.

20 (t4) 4 * Reserved-contains zeros.

24 (t8) 4 CLUST Address of this pointer itself if the
CLUSTER parameter has been
supplied.

28 (tC) 4 DATUM Address of this pointer itself if the
DATA parameter has been supplied.

32 (20) 4 INDEX Address of this pointer itself if the
INDEX parameter has been supplied.

36 (24) 4 SPACE Address of this pointer itself if the
SPACE parameter has been supplied.

40 (28) 4 ALIEN Address of this pointer itself if the
NONVSAM parameter has been
supplied.

44 (2C) 4 UCAT Address of this pointer itself if the
USER CAT ALOG parameter has been
supplied.

48 (30) 4 CATNM Address of information supplied
through the catname/ password
subparameter of the CATALOG
parameter.

52 (34) 4 CATDD Address of information supplied
through the dname subparameter of
the CAT ALOa parameter.

56 (38) 4 * Reserved-contains zeros.

60 (3C) 4 NAME Address of this pointer itself if the
NAME parameter has been supplied.

64 (40) 4 FALL Address of this pointer itself if the
ALL parameter has been supplied.

68 (44) 4 VOL Address of this pointer itself if the
VOLUME parameter has been
supplied.

72 (48) 4 ALLOC Address of this pointer itself if the
ALLOCATION parameter has been
supplied.

76 (4C) 16 * Reserved-contain zeros.

92 (5C) 4 AIX Address of this pointer itself if the
AL TERNATEINDEX parameter has
been supplied.

96 (60) 4 PATH Address of this pointer itself if the
PATH parameter has been supplied.

100 (64) 4 NUSE Address of this pointer itself if the
NOTUSABLE parameter has been
supplied.

Data Areas 401

USTCRAFDT
Offset Content

0(0) L I S T C R A b

8 (8) tINFILE tCOMPARE

16 (10) tNOCOMPARE tDUMP

24 (18) tNAME tCATALOG

32 (20) t catname/password tdname

40 (28) tMASTEKPW

LISTCRA FDT Description

8ytesand
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 8 FDTVERB Verb aligned left and padded with
blanks-LISTCRA b.

8 (8) 4 IFILE Address of information supplied
through the dname subparameter of
the INFILE parameter.

12 (C) 4 CMPR Address of this pointer itself if the
COMPARE parameter has been
supplied.

16 (10) 4 NCMPR Address of this pointer itself if the
NOCOMPARE parameter has been
supplied.

20 (14) 4 DUMP Address of this pointer itself if the
DUMP parameter has been supplied.

24 (18) 4 NAME Address of this pointer itself if the
NAME parameter has been supplied.

28 (tC) 4 CAT Address of this pointer itself if the
CATALOG parameter has been
supplied.

32 (20) 4 CATNM Address of information supplied
through the catname/password
subparameter of the CAT ALOG
parameter.

36 (24) 4 CATDN Address of information supplied
through the dname subparameter of
the CATALOG parameter.

40 (28) 4 MRPW Address of information supplied
through the password subparameter of
the MASTERPW parameter.

402 DOS/VS Access Method Services Logic

PARMFDT
Offset

0(0) P A

8 (8) tTEST

16 (10) tTRACE

24 (18) tFULL

32 (20) tcountl

40 (28) tGRAPHICS

48 (30) tTABLE

56 (38) t leftmargin

64 (40) tAN

72 (48) tPN

80 (50) tRN

88 (58) tTN

P ARM FDT Description

Bytes and
Offset Bit Pattern

0(0) 8

8 (8) 4

12 (C) 4

16 (10) 4

20 (14) 4

24 (18) 4

28 (1C) 4

32 (20) 4

36 (24) 4

Content

R M

Field Name

FDTVERB

TEST

TOFF

TRACE

AREA

FULL

FIDPTR

BEGINPTR

COUNTPTR

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

b b b b

tOFF

tAREAS

tdumpid

tcount2

tCHAIN

tMARGINS

t rightmargin

tHN

tQN

tSN

Description: Content, Meaning, Use

Verb aligned left and padded with
blanks-PARMbbbb.

Address of this pointer itself if the
TEST parameter has been supplied.

Address of this pointer itself if the
OFF parameter has been supplied.

Address of this pointer itself if the
TRACE parameter has been supplied.

Address of information supplied
through the AREAS parameter.

Address of information supplied
through the FULL parameter.

Address of information supplied
through the dumpid subparameter of
the FULL parameter.

Address of information supplied
through the countl subparameter of
the FULL parameter.

Address of information supplied
through the count2 subparameter of
the FULL parameter.

Data Areas 403

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

40 (28) 4 GRAPH Address of this pointer itself if the
GRAPHICS parameter has been
supplied.

44 (2C) 4 CHAIN Address of information supplied
through the CHAIN parameter.

48 (30) 4 TABLE Address of information supplied
through the TABLE parameter.

52 (34) 4 MARG Address of this pointer itself if the
MARGINS parameter has been
supplied.

56 (38) 4 LMARG Address of information supplied
through the left margin subparameter
of the MARGINS parameter.

60 (3C) 4 RMARG Address of information supplied
through the right margin subparameter
of the MARGINS parameter.

64 (40) 4 CHNAN Address of information supplied
through the AN subparameter of the
CHAIN parameter.

68 (44) 4 CHNHN Address of information supplied
through the HN subparameter of the
CHAIN parameter.

72 (48) 4 CHNPN Address of information supplied
through the PN subparameter of the
CHAIN parameter.

76 (4C) 4 CHNQN Address of information supplied
through the QN subparameter of the
CHAIN parameter.

80 (50) 4 CHNRN Address of information supplied
through the RN subparameter of the
CHAIN parameter.

84 (54) 4 CHNSN Address of information supplied
through the SN subparameter of the
CHAIN parameter.

88 (58) 4 CHNTN Address of information supplied
through the TN subparameter of the
CHAIN parameter.

404 DOS/VS Access Method Services Logic

PRINTFDT
Offset

10(0) p R I

8 (8) tINFILE

16 (10) tFROMKEY

24 (18) tSKIP

32 (20) tTOADDRESS

40 (28) tdname/password

48 (30) 0

56 (38) + CHARACTER

64 (40) 0

72 (48) t RECORDFORMAT

80 (50) t RECORD SIZE

88 (58) t HINDEXDEVICE

96 (60) tFIXUNB

104 (68) tVARUNB

112 (70) tSPNUNB

120 (78) tUNDEF

128 (80) tTONUMBER

136 (88) tNOLABEL

128 (80) tREWIND

Content

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

NIT
0

t FROMADDRESS

tTOKEY

tCOUNT

0

tHEX

+OUMP

t ENVIRONMENT

tBLOCKSIZE

0

t PRIMEDAT ADEVICE

tFIXBLK

tVARBLK

tSPNBLK

t FROMNUMBER

tSTDLABEL

tNOREWIND

tUNLOAD

Data Areas 405

PRINT FDT Description

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 8 FDTVERB Verb aligned left and padded with
blanks-PRINTbbb.

8 (8) 4 INDN Address of this pointer itself if the
INFILE parameter has been supplied.

12 (C) 4 OUTDD Reserved~ontains zeros.

16 (10) 4 FMKYC Address of information supplied
through the FROMKEY parameter.

20 (14) 4 FMRBA Address of information supplied
through the FROMADDRESS
parameter.

24 (18) 4 SKIP Address of information supplied
through the SKIP parameter.

28 (1C) 4 TOKYC Address of information supplied
through the TOKEYparameter.

32 (20) 4 TORBA Address of information supplied
through the TOADDRESS parameter.

36 (24) 4 COUNT Address of information supplied
through the COUNT parameter.

40 (28) 4 INPDD Address of information supplied
through the dname/password
subparameter of the INFILE
parameter.

44 (2C) 8 * Reserved~ontains zeros.

52 (34) 4 FHEX Address of this pointer itself if the
HEX parameter has been supplied.

56 (38) 4 FCHAR Address of this pointer itself if the
CHARACTER parameter has been
supplied.

60 (3C) 4 FDUMP Address of this pointer itself if the
DUMP parameter has been supplied.

64 (40) 4 * Reserved~ontains zeros.

68 (44) 4 IENV Address of this pointer itself if the
ENVIRONMENT parameter has been
specified.

72 (48) 4 IRFMT Address of this pointer itself if the
RECORD FORMAT subparameter of
the ENVIRONMENT parameter has
been supplied.

76 (4C) 4 IBKSZ Address of information supplied
through the BLOCKSIZE
sub parameter of the
ENVIRONMENT parameter.

80 (50) 4 IRCSZ Address of information supplied
through the RECORD SIZE
subparameter of the
ENVIRONMENT parameter.

84 (54) 4 * Reserved~ontains zeros.

88 (58) 4 IHDEV Address of information supplied
through the HINDEXDEVICE
subparameter of the
ENVIRONMENT parameter.

406 DOS/VS Access Method Services Logic

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

92 (5C) 4 IPDEV Address of information supplied
through the PRIMEDATADEVICE
subparameter of the
ENVIRONMENT parameter.

96 (60) 4 IFUNB Address of this pointer itself if the
FIXUNB subparameter of the
ENVIRONMENT parameter has been
supplied.

100 (64) 4 IFBLK Address of this pointer itself if the
FIXBLK subparameter of the
ENVIRONMENT parameter has been
supplied.

104 (68) 4 IVUNB Address of this pointer itself if the
V ARUNB subparameter of the
ENVIRONMENT parameter has been
supplied.

108 (6C) 4 IVBLK Address of this pointer itself if the
V ARBLK subparameter of the
ENVIRONMENT parameter has been
supplied.

112 (70) 4 ISUNB Address of this pointer itself if the
SPNUNB subparameter of the
ENVIRONMENT parameter has been
supplied.

116 (74) 4 ISBLK Address of this pointer itself if the
SPNBLK subparameter of the
ENVIRONMENT parameter has been
supplied.

120 (78) 4 IUNDF Address of this pointer itself if the
UNDEF subparameter of the
ENVIRONMENT parameter has been
supplied.

124 (7C) 4 FMNUM Address of information supplied
through the FROMNUMBER
parameter.

128 (80) 4 TONUM Address of information supplied
through the TONUMBER parameter.

132 (84) 4 ISLBL Address of this pointer itself if the
STDLABEL subparameter of the
ENVIRONMENT parameter has been
supplied (or defaulted.)

136 (88) 4 INLBL Address of this pointer itself if the
NOLABEL subparameter of the
ENVIRONMENT parameter has been
supplied.

140 (8C) 4 INREW Address of this pointer itself if the
NO REWIND subparameter of the
ENVIRONMENT parameter has been
supplied (or defaulted.)

144 (90) 4 IREW Address of this pointer itself if the
REWIND subparameter of the
ENVIRONMENT parameter has been
supplied.

148 (94) 4 IUNLD Address of this pointer itself if the
UNLOAD subparameter of the
ENVIRONMENT parameter has been
supplied.

Data Areas 407

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

REPROFDT

REPRO FDT Description

Offset

0(0)

8 (8)

16(10)

24 (I8)

32 (20)

40 (28)

48 (30)

56 (38)

64 (40)

72 (48)

80 (50)

88 (58)

96 (60)

104 (68)

112 (70)

120 (78)

128 (80)

136 (88)

144 (90)

152 (98)

160 (AO)

168 (A8)

176 (BO)

184 (B8)

192 (CO)

200 (C8)

208 (DO)

216 (D8)

224 (EO)

232 (E8)

240 (FO)

248 (F8)

Offset

0(0)

8 (8)

408 DOS/VS Access Method Services Logic

Content

R E P

tINFILE

tFROMKEY

tSKIP

tTOADDRESS

t dname / password

0

t FROMNUMBER

0

t RECORD FORMAT

t RECORD SIZE

t HINDEXDEVICE

tFIXUNB

tVARUNB

tSPNUNB

tUNDEF

0

t RECORDFORMAT

t RECORD SIZE

t HINDEXDEVICE

tFIXUNB

tVARUNB

tSPNUNB

tUNDEF

0

tREPLACE

tREUSE

tSTDLABEL

tNOREWIND

tUNLOAD

tNOLABEL

tREWIND

Bytes and
Bit Pattern Field Name

8 FDTVERB

4 INDN

R 0 b b

tOUTFILE

t FROMADDRESS

tTOKEY

tCOUNT

t dname /password

0

tTONUMBER

t ENVIRONMENT

tBLOCKSIZE

0

t PRIMEDA T ADEVICE

tFIXBLK

tVARBLK

tSPNBLK

0

t ENVIRONMENT

tBLOCKSIZE

0

t PRIMEDAT ADEVICE

tFIXBLK

tVARBLK

tSPNBLK

0

0

tNOREPLACE

tNOREUSE

tNOLABEL

tREWIND

tSTDLABEL

tNOREWIND

tUNLOAD

Description: Content, Meaning, Use

Verb aligned left and padded with
blanks-REPRObbb.

Address of this pointer itself if the INFILE
parameter has been supplied.

b

Page of SY33-8564-3
Text Rearranged Only Revised April 29, 1977

By TNL SN24-5550

Bytes and
orfset Bit Pattern Field Name Description: Content, Meaning, Use

12 (C) 4 OUTDN Address of this pointer itself if the OUTFILE
parameter has been supplied.

16 (10) 4 FMKYC Address of information supplied through the
FROMKEY parameter.

20 (14) 4 FMRBA Address of information supplied through the
FROMADDRESS parameter.

24 (18) 4 SKIP Address of information supplied through the
SKIP parameter.

28 (1C) 4 TOKYC Address of information supplied through the
TOKEY parameter.

32 (20) 4 TORBA Address of informatioq supplied through the
TOADDRESS parameter.

36 (24) 4 COuNT Address of informaiion suppiied through the
COUNT parameter.

40 (28) 4 INPDD Address of information supplied through the
dname/password subparameter of the INFILE
parameter.

44 (2C) 4 OUTDD Address of information supplied through the
dname/password subparameter of the
OUTFILE parameter.

48 (30) 8 * Reserved-contains zeros.

56 (38) 4 FMNUM Address of this pointer itself if the
FROMNUMBER parameter has been
supplied.

60 (3C) 4 TONUM Address of this pointer itself if the
TONUMBER parameter has been supplied.

64 (40) 4 * Reserved-contains zeros.

68 (44) 4 IENV Address of this pointer itself if the
ENVIRONMENT subparameter of the
INFILE parameter has been supplied.

72 (48) 4 IRFMT Address of this pointer itself if the
RECORD FORMAT subparameter of the
ENVIRONMENT parameter has been
supplied for the input data set.

76 (4C) 4 IBKSZ Address of information supplied through the
BLOCKSIZE subparameter of the
ENVIRONMENT parameter for the input
data set.

80 (50) 4 IRCSZ Address of information supplied through the
RECORDSIZE subparameter of the
ENVIRONMENT parameter for the input
data set.

84 (54) 4 * Reserved-contains zeros.

88 (58) 4 IHDEV Address of information supplied through the
HINDEXDEVICE subparameter of the
ENVIRONMENT parameter for the input
data set.

92 (5C) 4 IPDEV Address of information supplied through the
PRIMEDAT ADEVICE subparameter of the
ENVIRONMENT parameter for the input
data set.

96 (60) 4 IFUNB Address of this pointer itself if the FIXUNB
subparameter of the ENVIRONMENT
parameter has been supplied for the input data
set.

Data Areas 409

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

100 (64) 4 IFBLK Address of this pointer itself if the FIXBLK
subparameter of the ENVIRONMENT
parameter has been supplied for the input data
set.

104 (68) 4 IVUNB Address of this pointer itself if the VARUNB
subparameter of the ENVIRONMENT
parameter has been supplied for the input data
set.

108 (6C) 4 IVBLK Address of this pointer itself if the V ARBLK
subparameter of the ENVIRONMENT
parameter has been supplied for the input data
set.

112 (70) 4 ISUNB Address of this pointer itself if the SPNUNB
subparameter of the ENVIRONMENT
parameter has been supplied for the input data
set.

116 (74) 4 ISBLK Address of this pointer itself if the SPNBLK
subparameter of the ENVIRONMENT
parameter has been supplied for the input data
set.

120 (78) 4 IUNDF Address of this pointer itself if the UNDEF
subparameter of the ENVIRONMENT
parameter has been supplied for the input data
set.

124 (7C) 8 * Reserved--contains zeros.

132 (84) 4 OENV Address of this pointer itself if the
ENVIRONMENT subparameter of the
OUTFILE parameter has been supplied.

136 (88) 4 ORFMT Address of this pointer itself if the
RECORD FORMA T subparameter of the
ENVIRONMENT parameter has been
supplied for the output data set.

140 (8C) 4 OBKSZ Address of information supplied through the
BLOCKSIZE subparameter of the
ENVIRONMENT parameter for the output
data set.

144 (90) 4 ORCSZ Address of information supplied through the
RECORDSIZE subparameter of the
ENVIRONMENT parameter for the output
data set.

148 (94) 4 * Reserved--contains zeros.

152 (98) 4 OHDEV Address of information supplied through the
HINDEXDEVICE subparameter of the
ENVIRONMENT parameter for the output
data set.

156 (9C) 4 OPDEV Address of information supplied through the
PRIMEDAT ADEVICE subparameter of the
ENVIRONMENT parameter for the output
data set.

160 (AO) 4 OFUNB Address of this pointer itself if the FIXUNB
subparameter of the ENVIRONMENT
parameter has been supplied for the output
data set.

164 (A4) 4 OFBLK Address of this pointer itself if the FIXBLK
subparameter of the ENVIRONMENT
parameter has been supplied for the output
data set.

168 (A8) 4 OVUNB Address of this pointer itself if the VARUNB
subparameter of the ENVIRONMENT
parameter has been supplied for the output
data set.

410 DOS/VS Access Method Services Logic

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

172 (AC) 4 OVBLK Address of this pointer itself if the V ARBLK
subparameter of the ENVIRONMENT
parameter has been supplied for the output
data set.

176 (BO) 4 OSUNB Address of this pointer itself if the SPNUNB
subparameter of the ENVIRONMENT
parameter has been supplied for the output
data set.

180 (B4) 4 OSBLK Address of this pointer itself if the SPNBLK
subparameter of the ENVIRONMENT
parameter has been supplied for the output
data set.

184 (B8) 4 OUNDF Address of this pointer itself if the UNDEF
subparameter of the ENVIRONMENT
parameter has been supplied for the output
data set.

188 (BC) 8 * Reserved-contains zeros.

196 (C4) 4 IDUMY Reserved-contains zeros.

200 (C8) 4 REP Address of this pointer itself if the REPLACE
parameter has been supplied.

204 (CC) 4 NREP Address of this pointer itself if the
NOREPLACE parameter has been supplied.

208 (DO) 4 RUS Address of this pointer itself if the REUSE
parameter has been supplied.

212 (D4) 4 NRUS Address of this pointer itself if the NOREUSE
parameter has been supplied.

216 (D8) 4 ISLBL Address of this pointer itself if the
STDLABEL subparameter of the INFILE
parameter has been supplied (or defaulted.)

220 (DC) 4 INLBL Address of this pointer itself if the NOLABEL
subparameter of the INFILE parameter has
been supplied.

224 (EO) 4 INREW Address of this pointer itself if the
NO REWIND sub parameter of the INFILE
parameter has been supplied (or defaulted.)

228 (E4) 4 IREW Address of this pointer itself if the REWIND
subparameter of the INFILE parameter has
been supplied.

232 (E8) 4 IUNLD Address of this pointer itself if the UNLOAD
subparameter of the INFILE parameter has
been supplied.

236 (EC) 4 OSLBL Address of this pointer itself if the
STDLABEL subparameter of the OUTFILE
parameter has been supplied (or defaulted.)

240 (FO) 4 ONLBL Address of this pointer itself if the NOLABEL
subparameter of the OUTFILE parameter has
been supplied.

244 (F4) 4 ONREW Address of this pointer itself if the
NO REWIND subparameter of the OUTFILE
parameter has been supplied (or defaulted.)

248 (F8) 4 OREW Address of this pointer itself if the REWIND
subparameter of the OUTFILE parameter has
been supplied.

252 (FC) 4 OUNLD Address of this pointer itself if the UNLOAD
subparameter of the OUTFILE parameter has

been supplied.

Data Areas 411

RESETCAT FDT
Offset Content

0(0) R E S E T C A T

8 (8) tCATALOG t catname / password

16 (10) tdname tMASTERPW

24 (18) tWORKFILE tWORKCAT

32 (20) tIGNORE tNOIGNORE

40 (28) t CRAFILES count tdname

48 (30) tALL tNONE

56 (38) tRESERVED tRESERVED

64 (40) tRESERVED t dname /password

72 (48) t wcatname/password tWCAT dname

RESETCAT FDT Description

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 8 FDTVERB Verb - RESETCAT

8 (8) 4 CAT Address of this parameter itself if the
CATALOG parameter has been
supplied.

12 (C) 4 CATNM Address of the information supplied
through the catname/password
sub parameter of the CATALOG
parameter.

16 (10) 4 CATDN Address of information supplied
through the dname subparameter of
the CATALOG parameter.

20 (14) 4 MRPW Address of information supplied
through the password subparameter of
the MASTERPW parameter.

24 (18) 4 WFDN Address of this parameter itself if the
WORKFILE parameter is supplied.

28 (lC) 4 WCATP Address of this parameter itself if the
WORKCAT parameter is supplied.

32 (20) 4 IGN Address of this parameter itself if the
IGNORE parameter is supplied.

36 (24) 4 NIGN Address of this parameter itself if the
NOIGNORE parameter is supplied.

40 (28) 4 CFILE Count of the number of CRAs that are
specified through the CRAFILES
parameter.

44 (2C) 4 CRADNPTR Address of an array of pointers. Each
pointer points at a dname for the CRA
it relates to in the order that they
appear in the CRAFILES parameter.

412 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

48 (30) 4 ALLPPTR Address of an array of pointers. Each
pointer points to itself if ALL was
specified for the related CRA in the
CRAFILES parameter.

52 (34) 4 NONEPTR Address of an array of pointers. Each
pointer points to itself if NONE was
specified for the related CRA in the
CRAFILES parameter.

56 (38) 4 * Reserved.

60 (3C) 4 * Reserved.

64 (40) 4 * Reserved.

68 (44) 4 WFiLE Address of the informaiion suppiied
by the dname/password subparameter
of the WORKFILE parameter.

72 (48) 4 WCAT Address of the information supplied
by the catname/password
subparameter of the WORKCA T
parameter.

76 (4C) 4 WCATD Address of information supplied
through the dname subparameter of
the WORKCAT parameter.

Data Areas 413

YERIFYFDT
Offset Content

E R I F y

VERIFY FDT Description

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 8 FDTVERB Verb aligned left and padded with
blanks-VERIFYM,.

8 (8) 4 IN Address of information supplied
through the FILE parameter.

414 DOS/VS Access Method Services Logic

Global Data Table-GOT

Global Data Table Description

The GDT is the directory for the services and data areas of the processor. It
contains a branch vector for the services provided by the System Adapter, the
I/O Adapter, and the Text Processor. It also points to the invoker's
parameter list, trace tables, and historical tables. The GDT is always the first
parameter passed to any routine. The GDT is contained in the storage
associated with module IDCSAO 1.

Created by

IDCSAOI

Offset

0(0)

4 (4)

8 (8)

12 (C)

16 (10)

20 (14)

24 (8)

280C)

32 (20)

36 (24)

40 (28)

44 (2C)

48 (30)

52 (34)

56 (38)

60 (3C)

64 (40)

68 (44)

72 (48)

Modified by

All service
routines

Bytes and
Bit Pattern

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

Used by

All routines

Fieid Name

GDTHDR

GDTPRM

GDTTRI

GDTTR2

GDTDBH

GDTSTH

GDTRIH

GDTTPH

GDTSAH

GDTIOH

GDTDBG

GDTSTC

GDTPRT

GDTESS

GDTESA

GDTRST

GDTRES

GDTCAL

GDTGSP

Size

188

Description; Content, Meaning, Use

Global Data Table header; contains
'GDTh'.

Address of parameter list from invoker
of the processor. (See "Processor
Invocation" in "Program
Organization" for details.)

Address of Inter-Module Trace Table.

Address of Intra-Module Trace Table.

Address of Debugging-Aids historical
area. (See also "TEST Option data
area."

Reserved.

Address of Reader/Interpreter
historical area.

Address of Text Processor historical
area, the primary Print Control Table
(PCT).

Address of System Adapter historical
area.

Address of I/O Adapter historical
area.

Address of entry point for dump
routine, IDCDBOl, (VDVMP macro).

Reserved.

Address of entry point to print,
IDCIOPR, (VPRINT macro).

Address of entry point to establish
PCT from Text Structure, IDCTPES,
(VESTS macro).

Address of entry point to establish
PCT from storage, IDCTPEA,
(VESTA macro).

Address of entry point to modify PCT,
IDCTPRS, (VREST macro).

Address of entry point to reset PCT,
IDCTPRE, (VRESET macro).

Address of entry point to call,
IDCSACL, (VCALL macro).

Address of entry point

Data Areas 415

Bytes and
Offset Bit Patten FleIdN ... Descriptioa: Content, Me , Use

76 (4C) 4 GDTFSP Address of entry point to free storage,
IDCSAFS, (UFSPACE macro).

80 (50) 4 GDTGPL Address of entry point to get storage,
IDCSAGP, (UGPOOL macro).

84 (54) 4 GDTFPL Address of entry point to free storage,
IDCSAFP, (UFPOOL macro).

88 (58) 4 GDTLOD Address of entry point to load module,
IDCSALD, (ULOAD macro).

92 (5C) 4 GDTDEL Address of entry point to delete
module, IDCSADE, (UDELETE
macro).

96 (60) 4 GDTPRL Address of entry point for prologue,
IDCSAPR.

100 (64) 4 GDTEPL Address of entry point for epilogue,
IDCSAEP, (UEPIL macro).

104 (68) 4 GDITIM Address of entry point for time,
IDCSATI, (UTIME macro).

108 (6C) 4 GDTHO Address of entry point for I/O
initialization, IDCIOIT, (UIOINIT
macro).

112 (70) 4 GDITIO Address of entry point for I/O
termination, IDCIOTM, (UIOTERM
macro).

116 (74) 4 GDTRIP Reader/Interpreter name pointer.

120 (78) 4 GDITOH I/O Adapter data pointer.

124 (7C) 4 GDTOPN Address of entry point to open data
sets, IDCIOOP, (UOPEN macro).

128 (80) 4 GDTCLS Address of entry point to close data
sets, IDCIOCL, (UCLOSE macro).

130 (84) 4 GDTGET Address of entry point to get a logical
record, IDCIOGT, (UGET macro).

134 (88) 4 GDTPUT Address of entry point to put a logical
record, IDCIOPT, (UPUT macro).

140 (8C) 4 GDTPOS Address of entry point to position to a
logical record, IDCIOPO, (UPOSIT
macro).

144 (90) 4 GDTCPY Address of entry point to copy logical
records, IDCIOCO, (UCOPY macro).

148 (94) 4 GDTCAT Address of entry point for
manipulating VSAM catalog,
IDCSACA, (UCATLG macro).

152 (98) 4 GDTABT Address to abort, SAABT in
IDCSA02, (UABORT macro).

156 (9C) 4 GDTABH Address of UABORT register save
area.

160 (AO) 4 • Reserved .

164 (A4) 4 GDTSNP Address of entry point to snap dump,
IDCSASN, (USNAP macro).

168 (A8) 4 GDTSPR Address of IDCSA03's storage.

416 DOS/VS Access Method Services Logic

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

172 (AC) 4 GDTVFY Address of entry point to VERIFY
data set, IDCIOVY (UVERIFY
macro).

176 (BO) 4 GDTENQ Address of entry point to UENQ
macro.

180 (B4) 4 GDTDEQ Address of entry point to DEQ macro.

184 (B8) 4 GDTIFO Address of entry point to UIOINFO
macro.

188 (BC) 4 GDTERR Address of entry point to UERROR
macro.

Data Areas 417

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Input Parameter Table-IPT
The Input Parameter Table is a parameter list passed by IDCRCOI to
IDCRC02 within EXPORTRA. It is an array of five pointers. Each object
pointed to is described after the IPT pointers.

Created by

IDCRCOI

Modified by

IDCRC02

Used by

IDCRC02

Size

20

Input Parameter Table Description

Offset

0(0)

4 (4)

8 (8)

12 (C)

16 (to)

Bytes and
Bit Pattern

4

4

4

4

4

Field Name Description: Content, Meaning Use

Address of control block describing
the object to be exported.

Address of control block describing
the output (portable) data set.

Address of the input data set name.

Address of the output data set name.

Address of the environment
parameter.

Description of control block describing object to be exported.

0(0) OBJTYP Type of object.

1 (1) 3 OBJVAL The catalog control interval number of
the entrys.

4 (4) 4 RESINP Reserved

8 (8) OBJPLN Password length.

9 (9) 8 OBJPAS Password

Description of control block describing output (portable) data set.

0(0) 4 OUTLEN Maximum record length of data
component.

4 (4) 4 SAVOIOCS Pointer to output IOCS.

8 (8) 4 USBKSZ User supplied output blocksize.

12 (C) 4 RESOUTP Reserved.

16 (10) OUTFLGS Status of output data set.

1. OPNFLG This flag is on if output data set is
open.

.1 ENDFLG This flag is on if this is the last request.

.. 1. EMPTYDS This flag is on if the object contains no
data records.

... x xxx x * Reserved.

17(11) ENVOPTNS Output label and rewind options from
the ENVIRONMENT parameter.

1. STDLABEL Standard label option.

.1. NOLABEL No label option.

.. 1. NO REWIND No rewind option.

... 1 UNLOAD Unload option.

.... xxxx Reserved .

The third pointer in the IPT points to an 8-byte input dname.

The fourth pointer in the IPT points to an 8-byte output dname.

The fifth pointer in the IPT points to an 8-byte field describing the prime data device
(PDEV subparameter).

418 DOS/VS Access Method Services Logic

I/O Adapter Historical Area-IODATA
The I/O Adapter historical area is pointed to by GDTIOH. It is built on the
first call to the I/O Adapter (UIOINIT macro), and contains information that
is common to all modules of the if 0 Adapter.

Created by

IDCIOOI

I/O Adapter Historical Area Description

Offset

0(0)

4 (4)

8 (8)

12 (C)

16 (10)

20 (14)

32 (20)

36 (24)

40 (28)

44 (2C)

48 (30)

52 (34)

56 (38)

60 (3C)

64 (40)

Modified by

IDCIOOI

Bytes and
Bit Pattern Field Name

4 10DIOC

4 10DMSG

4 10DADD

4 10DXTN

4 10DSID

2 .. 10DMID

.. 2 10DINC

12 *
4 10DEOD

4 10DOSS

4 10DOSO

4 10DICS

4 10DOCS

4 *
4 *
4 10DAEI

4 *

Used by

IDCIOOI
IDCI002

Size

68

Description: Content, Meaning, Use

First 10CSTR in chain.

Reserved-contains zeros.

Address of the alternate DD list.

Address of the external 110 routine
list.

Identifier:

Module identifier.

Pool identifier .

Reserved.

Address of end-of-data routine for
non VSAM data sets.

Non VSAM input SYNAD routine
address.

NonVSAM output SYNAD routine
address.

Address of Access Method Services
system-input 10CSTR.

Address of the Access Method
Services system-output 10CSTR.

Reserved.

Reserved.

Address of VSAM EODAD routine.

Reserved.

Data Areas 419

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Input/Output Communications Structure-IOCSTR
An 10CSTR exists for each open data set, or for any on which an open has
been attempted. It -contains all information about the data set that may be
required by the processor. An 10CSTR is built at open time, and a pointer to
the 10CSTR is returned to the requester of the open, in the OPNIOC field of
the OPNAGL. A UGPOOL area immediately precedes the 10CSTR. The
UGPOOL area contains the identifier assigned to the data set by the I/O
Adapter. All other requests for I/O service include this IOCSTR as one of
the parameters for the request.

Created by Modified by Used by Size

IDCI002 All routines

Input/ Output Communications Structure Description

Offset

-4 (-4)

0(0)

4 (4)

8 (8)

12 (C)

13 (D)

16 (10)

17 (11)

18 (12)

19 (13)

420 DOS/VS Access Method Services Logic

Bytes and
Bit Pattern Field Name

4 *
4 IOCDAD

4 IOCDLN

4 IOCTRN

1 IOCKYL

3 IOCRKP

1
.1.
.. 1.
... 1

. 1

1.
.1.
.. 1.
... 1
.... 1 .. .

... 1

1.
.1.
.. 1.
... 0
... 1
.... 0 .. .
.... 1. ..
.... . 0 ..
.... . 1..

... 1
1.
.1

.. 1.

... 1

.... 1. ..

..... 1..

...... 1.

.. 1

IOCDSO

IOCDSOAM
IOCDSOPS
IOCDSOIS
IOCDSOPO

IOCRFM

IOCRFMFX
IOCRFMVR
IOCRFMUN
IOCRFMSF
IOCRFMBK

IOCMAC

IOCMACIN
IOCMACOT
IOCMACUP
IOCMACCR

IOCMACBK

IOCMACDR

IOCMAC2
IOCMACSK
IOCMACAS

IOCMACRR
IOCMACCP
IOCMACEN
IOCMACPA
IOCMACER

*

All routines 68

Description: Content, Meaning, Use

Always contains 'IOCS'.

Address of data area.

Length of data record.

Transmission length: LRECL for
logical processing or control interval
for block processing.

Key length in bytes.

Relative key position, value assumes
VSAM or ISAM meaning.

Data set organization:

VSAM data set.
NonVSAM sequential data set.
Indexed sequential (ISAM) data set.
Partitioned data set.

Non VSAM record format:

Fixed-length records.
Variable-length records, not spanned.
Undefined-length records .
Spanned records .
Blocked records .

Macro form used:

Input processing.
Output processing.
Update processing .
Keyed sequence.
Entry sequence .
Logical records.
Blocks or control intervals .
Sequential processing.
Direct processing .

Skip sequential processing.
Asynchronous processing (OS/VS
only).
Relative record processing.
Change processing.
PUT -ENDREQ processing.
Reprocessing flag.
PUT-ERASE processing
Reserved .

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

20 (4) 1 IOCCHP Change processing modes.
1. IOCCHPSQ Change to sequential.

1 Tr'\""""TTn~n
,.-,1- ____ 4._ -1.! ___ .a.

.1. ••••• Iv~~nru~ ~lli111~C LV Ull C\"L.

.. 1. IOCCHPSK Change to skip sequential.

... 1 IOCCHPKS Change to keyed.

.... 1. .. IOCCHPCR Change to addressed.

..... 1.. IOCCHPBK Change to control interval.

.... .. 1. IOCCHPUP Change to update .

....... 1 IOCCHPNU Change to no update.

21 (5) . 1 IOCMSG Message flags:
1. IOCHPKE Change to key equal.
.1. IOCHPKG Change to greater than or equal.
.. 1. IOCMSGOP Data set is open.
... 1 IOCMSGOE VSAM OPEN error.
.... 1. .. IOCMSGCE VSAM CLOSE error .
.... . 1.. IOCMSGAE VSAM action error .
...... 1. IOCMSGSM Suppress logical error messages.

22 (6) 6 IOCVOLSR Volume serial number of opened data
set.

280C) 4 IOCHURBA High-used RBA.

32 (20) 4 IOCDSN Address of data set name.

The data set name usually follows the IOCSTR extension.

36 (24) 4 IOCCBP Control block address.

40 (28) 4 IOCRBA Record RBA (VSAM).

44 (2C) 4 IOCKYA Address of key.

48 (30) 2 IOCPTL Length of key supplied for position
request.

50 (32) .. 2 IOCPNM Number of stacked puts.

52 (34) 4 IOCRRN Relative record number.

56 (38) 4 IOCWORK Address of input work area.

60 (3C) 4 IOCREL Relative record number.

64 (40) 4 TOCEXT TOCSTR extension address.

Data Areas 421

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

IOCSTR Extension-IOCSEX

IOCSTR Extension Description

The IOCSTR Extension is built immediately after the IOCSTR. However, for
flexibility and to make the IOCSTR easily extensible, field IOCEXT points to
the IOCSEX.

Created by Modified by

IDCI002 IDCIOOI

Bytes and
Offset Bit Pattern Field Name

0(0) 4 IOCCBA

4 (4) 4 IOCRPL

8 (8) 2 IOCCBL

10 (A) .. 2 IOCLRP

12 (C) 4 IOCWKA

Used by Size

IDCIOOI 45

Description: Content, Meaning, Use

Address of ACB or DTF.

Address of VSAM RPL.

Length of ACB or DTF.

Length of RPL.

Address of input work area.

At decimal displacements 16 and 20, one of the two following sets of fields appears:

16 (10) 4 IOCXAD External routine address.

16 (10) 4 IOCEXA VSAM exit list address.

20 (14) 4 IOCXPM External routine parameter address.

20 (14) 2 IOCEXL VSAM exit list length.

22 (16) .. 2 Reserved .

The data area then continues as follows.

24 (18) 4 IOCNIO Address of next IOCSTR in chain.

28 (lC) 4 IOCSID Storage pool identifier.

32 (20) IOCFLG Extension flags:

1. IOCFLGEX Externally controlled data set.
.1. IOCFLGDF Data set is defined.
.. 1. IOCFLGEF End-of-file on external data set.
... 1 IOCFLGIO SYSLST or SYSIPT.
.... 1 ... IOCFLGOP Data set is open.
..... 1.. IOCFLGOE Reserved.
...... 1. IOCFLGSP Access Method Services system-print

data set.

33 (21) . 1 IOCDEV Device type flags:

1. IOCDEVDA Direct access.
.1 IOCDEVMT Magnetic tape.
.. 1. IOCDEVUR Reserved.

34 (22) .. 1 IOCINF Information flags:

1. IOCINFPT Reserved.
.1 IOCINFAE Reserved.
.. x IOCINFND Reserved.
... x IOCINFQX Reserved.
.... 1 ... IOCINFAC ANSI control character.
..... 1 .. IOCINFDO DOS/VS data set.
...... 1. IOCINFCT Opened as a catalog.
....... x IOCINFRI Reserved.

422 DOS/VS Access Method Services Logic

Offset

35 (23)

36 (24)

40 (28)

42 (2A)

44 (2C)

Inter-Module Trace Table

Bytes and
Bit Pattern

... 1

1.
. i.
.... 1. ..
..... 1..
.... .. 1.
....... 1

1.
.1.

.. 1.

... x xxxx

Field Name

IOCMOD

IOCMODPD
IOCMODRR
IOCMODUB
IOCMODXM
IOCMODRP
IOCMODEX

IOCDLM

IOCDNM

IOCVLN

IOCRCV

IOCRCVXM
IOCRCVRA

IOCRCVCL

*

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Description: Content, Meaning, Use

Additional information flags:

Reserved--contains zero.
Return RPL address .
User buffering.
Export/import.
Replace processing .
Exclusive control.

Address of DOS/VS load module.

Module length.

Length of DOS/VS variable blocked
remainder.

Flags for recovery.

Recovery bit for VSAM.
OpenCRA.

Skip close .

Reserved--contains zero.

The Inter-Module Trace Table contains information on the flow of control
between modules. The table is pointed to by GDTTRI. The oldest identifier
is at the beginning of the table. The latest identifier is at the end of the table.
Each time a UPROL or UEPIL macro is issued the oldest identifier is
removed and the new identifier is added at the end. A UPROL adds the
identifier of the current module. A UEPIL adds the identifier of the module
to which control is being returned. The UDUMP macro prints the table on
SYSLST.

Created by

IDCSAOI

Inter-Module Trace Table Description

Offset

-6 (-6)

0(0)

Modified by

UEPIL
UPROL macros

Bytes and
Bit Pattern Field Name

6

100

*
*

Each entry contains the following:

4 *

*

Used by

IDCDBOI

Size

100

Description: Content, Meaning, Use

Table identification 'INTERb'.

Inter-Module Trace Table with 20
entries.

Identifier provided by module issuing
UEPIL or UPROL macros. The
identifier is the last four characters of
the module name.

Blank 'b'.

Data Areas 423

Intra-Module Trace Table
The Intra-Module Trace Table contains information on the flow of control
within modules. The table is pointed to by GDTTR2. The oldest identifier is
at the beginning of the table. The latest identifier is at the end of the table.

Created by

IDCSAOI

Intra-Module Trace Table Description

Offset

-6 (-6)

0(0)

Modified by

UTRACE macro

Bytes and
Bit Pattern

6

100

Field Name

*
*

Each entry contains the following:

4 *

*

424 DOS/VS Access Method Services Logic

Used by

IDCDBOI

Size

100

Description: Content, Meaning, Use

Table identification 'INTRA b'.

Intra-Module Trace Table with 20
entries.

Identifier provided by module issuing
UTRACE. The first two characters
are the mnemonic identifier which are
characters 4 and 5 of the module
name. For example, EX refers to the
Executive.

Blank 'b'.

e
Modal Verb and Keyword Symbol Table-IDCRIKT

Load module IDCRIKT contains the Modal Verb and Keyword Symbol
Table, which acts as the "Command Descriptor" for the modal commands.

ereated by Modified by Used by Size

IBM-Supplied

Modal Verb and Keyword Symbol Table Description

None

Bytes_
Offset Bit Pattelll

0(0)

1(1) .9

10 (A) · . 1

Ii (13) ... 9

20 (I4) 1

21 (IS) .9

30 (IE) · . 1

31 (IF) ... 9

40 (28)

41 (29) .9

50 (32) · . 1

51 (33) ... 9

60 (3C) 1

61 (30) .9

70 (46) · . 1

71 (47) ... 9

80 (50)

81 (51) .9

IDCRIOI 90

Field Name Description: Content, Meaning, Use

PARMSMLN Length of PARM character string.

PARMSYM P ARM character string.

SETSMLN Length of SET character string.

SETSYM SET character string.

IFSMLN Length of IF character string.

IFSYM If character string.

THENSMLN Length of THEN character string.

THENSYM THEN character string.

ELSESMLN Length of ELSE character string.

ELSESYM ELSE character string.

DOSMLN Length of DO character string.

DOSYM DO character string.

ENDSMLN Length of END character string.

ENDSYM END cha,racter string.

LSTCCLN Length of LASTCC character string.

LSTCCSYM LASTCC character string.

MAXCCLN Length of MAXCC character string.

MAXCCSYM MAXCC character string.

Data Areas 425

~

Open Argument List-OPNAGL

Open Argument List Description

The OPNAGL defines a request to open a data set. The address of the
OPNAGL is passed as a parameter to the I/O Adapter from any routine that
requires the open function.

Created by

Routine that
requests an open

Offset

0(0)

1 (1)

2 (2)

3 (3)

4 (4)

Modified by

IDCI002

Bytes and
Bit Pattern Field Name

OPNOPT

1. OPNOPTIN
.1. OPNOPTOT
.. 1. OPNOPTUP
... 1 OPNOPTBK
.... 1. .. OPNOPTKS
.... . 1.. OPNOPTCR
...... 1. OPNOPTDR
....... 1 OPNOPTSK

· 1 OPNRFM

1. OPNRFMFX

.1. OPNRFMVR

.. 1. OPNRFMUN

... 1 OPNRFMSF

.... 1. .. OPNRFMBK

· . 1 OPNTYP

1. OPNTYPSI

.1. OPNTYPSO

.. 1. OPNTYPCI

... 1 OPNTYPXM

.... 1. .. OPNTYPRA

..... 1 .. OPNTYPEX

.... .. 1. OPNTYPRV

....... 1 OPNTYPSY

· .. 1 OPNMOD

1. OPNMODPD
. 1. OPNMODAC
.. 1. OPNMODRC
... 1 OPNMODRR
.... 1. .. OPNMODAX
.... . 1.. OPNMODRS
.... .. 1. OPNMODUB
.... ... 1 OPNMODRP

4 OPNIOC

Used by

IDCI002

Size

48

Description: Content, Meaning, Use

Open options (determine data set
usage).

Input data set.
Output data set.
Update mode of processing.
Block processing .
Keyed processing.
Addressed processing .
Direct processing.
Skip sequential processing.

NonVSAM output record format
Required.

Fixed.

Variable.

Undefined.

Spanned .

Blocked .

Data set type:

System input (SYSIPT) is to be
opened. OPNIOC is the only other
required field.
System output (SYSLST) is to be
opened. OPNIOC is the only other
required field.
Catalog to be opened.
Export/import.
Catalog recovery area.
Exclusive control.
VSAM recovery processing .
Reserved. Not used in DOS/VS

Open modifiers.

Reserved--contains zero.
Reserved--contains zero .
Return control block address .
Return RPL address .
Open alternate index .
Open with reset .
User buffering .
Replace processing .

Address of pointer of IOCSTR. This
field is always present. After a
successful open, the pointer contains
the address of the IOCSTR built by the
I/O Adapter.

426 DOS/VS Access Method Services Logic

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

8 (8) 4 OPNDDN Address of eight-byte D name (not
present when SYSIPT or SYSLST is
being opened but required at all other
times). The D name is the
TLBL/DLBL name with one blank on
the right.

12 (C) 4 OPNPWA Address of an optional eight-byte
password, used only with VSAM data
sets.

16 (10) 4 OPNDSN Reserved--contains zeros.

20 (14) 4 OPNCBP Reserved--contains zeros.

24 (18) 4 OPNDEVDT Address of device that non VSAM data
set resides on.

28 (1C) 4 OPNDEVIX Address of device that ISAM index
data set resides on.

32 (20) 4 OPNREC Logical record length, optional.

36 (24) 4 OPNBLK Block size, optional.

40 (28) OPNKYL Reserved.

41 (29) · 1 OPNDSO Data set organization.
1. OPNDSOAM VSAM data set.
.1. OPNDSOPS Non VSAM data set.
.. 1. OPNDSOIS ISAM data set.
... 1 OPNDSOPO Partitioned data set.

42 (2A) · . 1 OPNOPT2 Second option byte.
1. OPNOPTAS Asynchronous processing (OS/VS

only).
. xx Reserved .

... 0 OPNOPTRW Rewind option.

... 1 No rewind option .

.... 0 ... OPNOPTUL No unload option.

.... 1. .. Unload option .

..... 0 .. OPNOPTSL No label option.

.... . 1.. Standard label option .

43 (2B) · .. 1 OPNSTRNO Number of strings.

44 (2C) 4 OPNVOL Pointer to volume serial number.

Data Areas 427

Open Close Address Array-OCARRA Y
The Open Close Address Array is used to pass the address of the OPNAGL
or 10CS for up to four data sets at once from IDCIOO 1 to IDCI002. It is
used within the I/O Adapter.

Created by

IDClOOl

Modified by

None

Used by Size

IDClOO2 20

Open Close Address Array Description

Phase Table

Phase Table Description

Offset

0(0)

1 (1)

2 (2)

4 (4)

8 (8)

12 (C)

16 (10)

Bytes and
Bit Pattern

· 1
1.

· . 1
· .. 1

4

4

4

4

Field Name Description: Content, Meaning, Use

OCATYP Type of operation: 1 - open, 2 - close.

OCAOPT Options:
OCAOPTCA Close all open data sets.

OCANUM Number of data sets to open.

* Reserved.

OCADDR(1) Address of OPNAGL for open or
address of IOCSTR for close.

OCADDR(2) Address of OPNAGL for open or
address of IOCSTR for close.

OCADDR(3) Address of OPNAGL for open or
address of IOCSTR for close.

OCADDR(4) Address of OPNAGL for open or
address of IOCSTR for close.

The Phase Table is a phase (IDCSA04) loaded by IDCSAO 1 at initialization
time. This phase contains an entry for each of the other phases within the
Access Method Services system, excluding phase IDCAMS, IDCSA04, and
the DTFs. Each entry contains phase status information that is needed for
loading the particular phase during Access Method Services execution; only if
the CDLOAD anchor table is full. One such entry is described below; the
total size of all entries is 768.

Created by Modified by Used by Size

IBM-Supplied IDCSA02 IDCSA02 768
IDCSA03 IDCSA03

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 8 PLANAME Name of phase this entry describes.

8 (8) 4 PLAADDR Address of phase or 0 if not loaded via
phase table.

12 (C) PLAUSE Number of requests to load this phase.

13 (E) 3 PLALN Phase size in hex.

428 DOS/VS Access Method Services Logic

Positioning Argument List-OPRARG
OPRARG contains the address of the 10CSTR defining the data set to be
positioned. It is used within the I/O Adapter.

Created by Modified by Used by Size

IDCIOOI None IDCI003 12

Positioning Argument List Description

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) OPRTYP Type of operation: 1 indicates POINT
or SETL and 3 indicates UIOINFO.

1 (1) OPRPNO Total number of parameters passed to
UIOINFO.

2 (2) .2 * Reserved.

4 (4) 4 OPRICS Address of input IOCSTR (the data set
to be positioned).

8 (8) 4 OPROCS Address of output IOCSTR.

Data Areas 429

Print Control Argument List-PCARG
The Print Control Argument List is used to build a PCT (Print Control
Table). This list is an argument of the VESTS macro or the VESTA macro,
used to establish a PCT. The list is in a static text module or in storage.

Created by

Calling Routine

Print Control Argument List Description

Offset

0(0)

4 (4)

8 (8)

12 (C)

16 (10)

18 (12)

20 (14)

22 (16)

24 (I8)

26 (tA)

28 (IC)

30 (IE)

32 (20)

430 DOS/VS Access Method Services Logic

Modified by

None

Bytes and
Bit Pattern

4

4

4

4

2

.. 2

2

.. 2

2

.. 2

2

.. 2

Field Name

PCMTLP

PCSTLP

PCFLP

PCPCP

PCPNL

PCPTL

PCPDL

PCMTLC

PCSTLC

PCFLC

PCLW

PCPD

PCDSC

Used by

IDCTP04

Size

33

Description: Content, Meaning, Use

If PCARG is in a static text module,
this is an offset from the beginning of
the PCARG to a main title line,
fully-formatted. If PCARG is in
storage, this is the address of a main
title line, fully-formatted.

If PCARG is in a static text module,
this is an offset from the beginning of
the PCARG to one, two, or three
contiguous, fully-formatted lines for
the subtitle. If PCARG is in storage,
this is the address of subtitle lines. The
first byte of each line contains the
spacing character (0, 1,2, or 3), and
the number of lines is found in
PCSTLC.

If PCARG is in a static text module.
this is an offset from the beginning of
the PCARG to one, two, or three
contiguous, fully-formatted footing
lines. If PCARG is in storage, this is
the address of footing lines. The first
byte of each line contains the spacing
character (0, 1,2, or 3), and the
number of lines is found in PCFLC.

If PCARG is in a static text module,
this is an offset from the beginning of
the PCARG to a 256-byte print chain
translate table. If PCARG is in
storage, this is the address of a
256-byte print chain translate table.

Print column number where the page
number field begins.

Time field location.

Date field location.

Number of lines at PCMTLP.

Number of lines at PCSTLP.

Number of lines at PCFLP.

Print line width.

Page depth .

Default space charaCter, used when
space character is not given; invalid, or
on overflow. Valid values are 1,2, or
3.

Print Control Table-PCT

Print Control Table Description

The Print Control Table contains the current page specifications for printing:
page width and depth, pointers to heading and footing lines, etc. One PCT,
called the primary PCT, contains the default values established at processor
initialization time. An optional PCT, called the secondary PCT, contains page
specifications that are unique to a particular FSR, and is cleared between
commands. Both PCTs have the same format.

Created by

IDCTP04

Offset

0(0)

4 (4)

8 (8)

12 (C)

16 (10)

18 (12)

20 (14)

24 (18)

26 (lA)

28 (lC)

32 (20)

34 (22)

36 (24)

44 (2C)

Modified by

IDCTP05
IDCTPOI

Bytes and
Bit Pattern Field Name

PCTIDN 4

4
1.

.1.

.. 1.

... 1 .•••

.... 1. ..

4

4

2

.. 2

4

2

.. 2

4

2

.. 2

8

4

PCTFLG
PCTHIF

PCTH2F

PCTHAF

PCTLLM
PCTAPF

PCTSPP

PCTIOC

PCTCPN

PCTNLI

PCTIOS

PCTSPN

PCTSNL

PCTIOP

PCTAPN

PCTANL

PCTSTM

PCTSME

Used by

IDCTPOI

Size

108

Description: Content, Meaning, Use

Identification field: the primary PCT
contains "PCTI" in this field; the
secondary PCT contains "PCT2".

Action flags:
A new header is being entered. This
bit is set by IDCTP05 and reset by
IDCTPOI as soon as the first header
line is printed.
More than one header line is to be
saved. This bit is set when the first line
is printed by IDCTPOI and reset when
the last line has been printed. The
count in PCTHLC controls this bit.
A header has been set up. This bit is
set by IDCTP03.
Last line was a message.
Alternate print file flag.

Address of secondary PCT. This field
is ignored in the secondary PCT.

Address of IOCSTR to be used with
UPUTmacro.

set.

Next absolute line number on the
current page of active data set.

Address of IOCSTR for SYSLST.

Current page number on standard data
set.

Next absolute line number on the
current page of standard data set.

Address of IOCSTR for alternate print
data set.

Current page number on alternate data
set.

Next absolute line number on the
current page of alternate data set.

Name of the Static Text module
presently in virtual storage.

Entry point for Static Text module
presently in virtual storage.

Data Areas 431

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

48 (30) 4 PCTSQP Address of queue of format structures
that are retained until the completion
of the function or the issuance of a
URESET.

52 (34) 4 PCTAHP Address of the last header line that
was used, needed on an overflow.

56 (38) 4 PCTMLP Address of main title lines, already
fully formatted.

60 (3C) 4 PCTSLP Address of subtitle lines, already fully
formatted.

64 (40) 4 PCTTRP Address of translate table.

68 (44) 4 PCTPLW Print line width for the output device.

72 (48) 2 PCTMLC Number of main title li~es.

74 (4A) .. 2 PCTSLC Number of subtitle lines.

76 (4C) 4 PCTFLP Address of footing lines, already fully
formatted.

80 (50) 2 PCTFLC Number of footing lines.

82 (52) .. 1 PCTHLC Number of heading lines.

83 (53) ... 1 PCTHSC Total number of lines consumed by the
currently active header and the first
data line.

84 (54) 2 PCTPNL Page number location in the main title
line.

86 (56) .. 2 PCTPMN Signals that this is a message. Before
writing a message it contains -1.
During writing a message it contains
the message number.

88 (58) 2 PCTAPC "Floating" print column number, used
with blank suppression.

90 (5A) .. 2 PCTPPD Total number of lines and spaces that
may be printed on one page.

92 (5C) 2 PCTDSC Default space count, used for overflow
or in place of an invalid spacing
request.

94 (5E) 2 PCTPNI Page number increment, added to
PCTCPN at each page eject.

96 (60) 2 PCTFDL Absolute line number for the first data
line on each page.

98 (62) .. 2 PCTLDL Absolute line number of the last data
line.

100 (64) 2 PCTFLN Absolute line number for the first
footing line.

102 (66) .. 2 PCTLNM Lines in print stack.

104 (68) 4 PCTBUF Buffer address.

108 (6C) 4 PCTBNL Address in buffer for next line.

432 DOS/VS Access Method Services Logic

Reader /Interpreter Communication
Area-COMMAREA

The COMMAREA is only used within the Reader /Tnterpreter to pass
information between the phases of the Reader/Interpreter.

Created by

IDCRIOI

Modified by

IDCRIOI
IDCRI02
IDCRI03

Reader/Interpreter Communication Area Description

Bytes and
Offset Bit Pattern Field Name

0(0) 4 RECRDPTR

4 (4) 4 FDTADDR

8 (8) 4 DESCPTR

12 (C) 4 WORKPTR

16 (10) 2 RISTATUS

18 (12) 2 SCANINDX

20 (14) 2 SCNLlMIT

22 (16) 2 LASTCC

24 (18) 2 MAXCC

26 (IA) 8 FSRLNAME

34 (22) 4 POOLID

38 (26) 8 VERBNAME

46 (2E) 8 DESCNAME

54 (36) 1 *
1. GOODCMD

.1. EOFOK

.. 1. OPTSFLAG

... 1 SCANONLY

.... 1. .. SKIPPAST

Used by

IDCRIOI
IDCRI02
IDCRI03

Size

55

Description: Content, Meaning, Use

.A~ddress of the beginning of the record
currently being scanned.

Address of the primary pointer vector
for the FDT.

Address of the Command Descriptor
currently being used.

Address of local work area.

Internal error code for the
Reader/Interpreter; set to nonzero if
an error is discovered.

Offset into the current record of the
last character that was extracted.

Location of the final character in the
current record that may be scanned.

Last processor condition code.

Maximum processor condition code.

FSR phase name to be invoked if this
command is executed.

Storage area identification code for all
space used for the FDT.

Verb from the current input command.

Module name for the current
Command Descriptor.

Miscellaneous flags:
Current command is valid; have
Executive invoke the FSR.
End of input stream may legitimately
occur.
Current command came from
parameter options specified by the
invoker of Access Method Services.
Current command is being scanned
only for syntax errors.
Current command has just been
bypassed.

Data Areas 433

Reader /Interpreter Historical Area-HDAREA
The Reader/Interpreter Historical Area is created and initialized on the first
call to the Reader/Interpreter. It contains information that must be saved
across commands, such as input source margins and table locations.

Created by

IDCRIOI

Reader/interpreter Historical Area Description

Offset

0(0)

2 (2)

4 (4)

8 (8)

12 (C)

16 (10)

17 (11)

Modified by

IDCRIOI
IDCRI02
IDCPMOI

Bytes and
Bit Pattern Field Name

LEFTMGN 2

.. 2

4

4

4

.2xn

RIGHTMGN

LOADTPTR

KWTBLPTR

ADDRIOCS

NESTLVL

MODLFLGsn

Each set contains the following:

NULLDO

.1 *
1 DOFLAG

.1. THENFLAG

.. 1 ELSEFLAG

... 1 SKIPFLAG

434 DOS/VS Access Method Services Logic

Used by

IDCRIOI
IDCRI02

Size

46

Description: Content, Meaning, Use

Leftmost column to use in the input
statement. Default to column 2.

Rightmost column to use in the input
statement. Default to column 72.

Address of the Command Descriptor
module table, IDCRIL T.

Address of modal command verb
table,IDCRIKT.

Address of IOCSTR for input data set.

IF-THEN nesting level where current
command appears.

Modal flags. A set of modal flags is
used for each level of IF-THEN
nesting. n is the number in NESTL VL.

Number of unneeded "DO"
commands for which no matching
"END" commands have been
encountered at the current NESTL VL.

Flags:

Current command is part of a "DO"
group.
Current commands are associated with
a true "IF" condition.
Current commands are associated with
a false "IF" condition.
Current commands are to be only
checked for proper syntax.

System Adapter Historical Area-SAIDST
The System Adapter's historical area is pointed to by the field GDTSAH. It
contains information that is shared between System Adapter modules.

Created by Modified by Used by Size

IDCSAOI IDCSA02 IDCSA02 16
IDCSA03 IDCSA03

System Adapter Historical Area Description

Bytesud
. Offset Bit Pattern Field Name Description: ConteDa, Me......, Use

0(0) 4 GPFIRST First UGPOOL storage area pointer.

4 (4) 4 GPLAST Last UGPOOL storage area pointer.

8 (8) 4 AUTOPTR Address of AUTOTBL.

12 (C) 4 PLAPTR Address of phase table.

Data Areas 435

TEST Option Data Area
The TEST Option Data Area is used to gather debugging information
requested by a P ARM command with TRACE, AREAS, or FULL options.
The TEST Options Data Area is three tables. The first table, TESTDAT A, is
present if any P ARM command with TRACE, AREAS, or FULL has been
executed. The address of TESTDAT A is in GDTDBH.

The second table, AREADAT A, exists if a P ARM command with an AREAS
option has been executed. If AREADAT A exists, it immediately follows
TESTDATA.

The third table, FULLDAT A, exists if a P ARM command with a FULL
option has been executed. If FULLDAT A exists, it immediately follows
AREADATA, or if AREADAT A does not exist, FULLDATA immediately
follows TESTDAT A.

Created by

IDCPMOI

Modified by

IDCPMOI
IDCDBOI

Used by

IDCPMOI
IDCDBOI

Size

Variable

TEST Option Data Area Description

Offset

TESTAREA:

0(0)

4 (4)

8 (8)

10 (A)

AREADATA:

0(0)

4 (4)

Bytes and
Bit Pattern

4

4

2 ..

.. 2

4

2xj

Field Name

AREAPTR

FULLPTR

SNAPID

TESTRACE

AREAINDX

AREADUMP

Each entry contains the following:

2 AREANAME

436 DOS/VS Access Method Services Logic

Description: Content, Meaning, Use

Address of areas identifier table,
AREADAT A. Zero indicates the table
does not exist.

Address of full dump table
FULLDAT A. Zero indicates the table
does not exist.

Number of last full region dump.

A nonzero value means print the trace
tables each time a UDUMP macro is
issued. A zero value means print the
trace tables only for modules specified
in AREAS and FULL options.

Number of entries in areas
identification table. One entry exists
for each area identifier specified in the
PARM command.

Areas identifier table containing j
entries.

Two character module identifier where
information is gathered. If there is an
odd number of area names, two bytes
are added to the end of the table.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

FULLDATA:

0(0) 4 FULLINDX Number of entries in Full Region
Dump Table. One entry exists for
each full dump.

4 (4) 12xk FULLDUMP Full Region Dump Table containing k
entries.

Each entry contains the following:

4 FDUMPID Four character module identifier
where dump is taken.

2 .. FDUMPBEG Number of the pass through the dump
point when dumping is to
begin-between 1 and 32,767.

.. 2 FDUMPCNT Number of dumps to take- between 1
and 32,767.

2 .. REALBEG Current number of passes through this
dump point.

.. 2 REALCNT Number of dumps already taken at this
dump point.

Data Areas 437

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Text Structure

Text Structure Description

Text Structures are load modules that contain text (messages and static text
items) and format information to use while preparing printed output. This
information can be default page dimensions or layout, message text, headings
for listings, and similar directions that are used by the Text Processor. There
are 18 Text Structure modules, as named in the following table along with the
function associated with each. Some FSRs use Text Structures from other
FSRs.

IDCTSALO ALTER IDCTSMPO IMPORT /IMPORTRA
IDCTSBIO BLDINDEX IDCTSPRO PRINT /REPRO
IDCTSDEO DEFINE IDCTSRCO EXPORTRA
IDCTSDLO DELETE IDCTSRIO Reader/Interpreter
IDCTSEXO Executive IDCTSRSO RESETCAT
IDCTSIOO I/O Adapter IDCTSTPO Text Processor (print chains)
IDCTSLCO LISTCAT IDCTSTPI Text Processor (messages)

IDCTSTP6 UERROR
IDCTSLCI LISTCAT IDCTSUVO Universal (any module)

(messages) IDCTSXPO EXPORT
IDCTSLRO LISTCRA
IDCTSLRI LISTCRA

(messages)

A Text Structure consists of an index and text entries. The index is simply a
list of halfword displacements from the beginning of the Text Structure to the
beginning of the text entry being indexed. The Text Structure identification
number is used as the index number. A halfword count of the number of
entries precedes the index.

Note: An index entry of -1 indicates that the corresponding text entry is
nonexistent.

All text entries contain heading fields and one of the following:

• A format list as described under FMTLIST immediately followed by any
static text such as messages referenced by the format list.

• A print control argument list as described under PCARG immediately
followed by any static text such as title lines and translate tables referenced
by the print control argument list.

• Character code tables which support the GRAPHICS parameter of the
P ARM command.

Created by Modified by Used by Size

IBM-Supplied None IDCTPOI Variable
IDCTP05

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 2 INDEX Number (n) of entries in this index.

2 (2) 2xn INDEXn Offset to the appropriate text entry.

438 DOS/VS Access Method Services Logic

Text Entry Description

The following description shows only the header fields of each text entry. For
the remainder of the description, see FMTLIST or PCARG. The text entry
begins at offset 2 x n + 2 from the beginning of the Text Structure module.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 2 TXTo Length in bytes of the text entry that
follows (not including these header
fields).

2 (2) 2 FLGoA Flag byte:

I. Message entry.
. 1. Header entry .

.. 1. Secondary message entry.

The following two fields only exist if this is a text entry for a header line:

4 (4)

6 (6)

2

2

HOLlo

HOSpo

The number of printable header lines.

The number of page lines occupied by
header lines, intervening blank lines,
and the first line of printed data.'

Data Areas 439

UGPOOLArea

UGPOOL Area Description

UGSPACE Area

UGSPACE Area Description

When the UGPOOL Umacro is used, an area of storage is allocated to the
user and this area is linked into a chain with other areas allocated by
UGPOOL. Each such area is preceded by 16 bytes, as shown here.

Created by

IDCSA02

Offset

0(0)

4 (4)

s (S)

12 (C)

Modified by

None

Bytes and
Bit Pattern Field Name

4 GPFORWRD

4 GPBACK

4 GPLEN

4 GPID

Used by

IDCSA02

Size

16

Description: Content, Meaning, Use

Address of next UGPOOL area.

Address of last UGPOOL area.

Number of bytes requested plus 16.

Area identification code.

The storage area in the UGPOOL chain for an 'xxPG' storage identification has the
following, format:

0(0) 4 GPFORWRD Address of next UGPOOL area.

4 (4) 4 GPBACK Address of last UGPOOL area.

S (S) 4 GPLEN Length of this area = 24 (X'OOOOOOIS')

12 (C) 4 GPID Area identification code.

16 (10) 4 GPADRPG Address of 'xxPG' storage area.

20 (14) 4 GPLENPG Length of 'xxPG' storage area.

When the UGSPACE Umacro is used, an area of storage is allocated for the
user of the Umacro. Each such area is preceded by eight bytes of control
information, as shown here.

Created by

IDCSA02

Offset

0(0)

4 (4)

Modified by

None

Bytes and
Bit Pattern Field Name

4 GSLEN

4 GSID

Used by Size

IDCSA02 S

Description: Content, Meaning, Use

Number of bytes requested plus S.

bbbb for UGSPACE area.

440 DOS/VS Access Method Services Logic

UIOINFO-Option Byte and Return Area
The UIOINFO option byte is used by an FSR to indicate the type of data to
be retrieved by the U10INFO macro. The data retrieved is passed back by
U lOIN 1'0 in the return area.

UIOINFO Option Byte Description

Offset

0(0)

UIOINFO Return Area Description

Offset

0(0)

Bytes and
Bit Pattern

1
1.
.1.

.. 1.

... 1

.... 1. ..

..... 1..

Bytes and
Bit Pattern

4

Field Name

IOINFOPT
IOINFDVT
IOINFVOL

IOINFDSN
IOINFSUP
IOINFTMS
IOINFOPT

Field Name

Description: Content, Meaning, Use

Retrieve 8-byte device type.
Retrieve up to five volume serial
numbers.
Retrieve 44-byte data set name.
Suppress error message .
Retrieve format-4 time stamp.
Retrieve up to five Logical Unit
Blocks.

Description: Content, Meaning, Use

Header.

Bytes:

0-1 Length of entire area (including
header).

2-3 Length of all data returned
(including header).

Data returned for each type of information requested is placed consecutively
in the work area. The format for the different types of information is snown
below:

Bytes and
Bit Pattern

48

n

12

Field Name Description: Content, Meaning, Use

Data set name.

Bytes:

0-1 Identifier-X'OOOI '.
2-3 Length of data returned.
4-47 Data set name.

Volume serial number list
(variable).

Bytes:

0-1 Identifier-X'OOO2'.
2-3 Length of data returned.
4-9 First volume serial

number.

n+ I-n+6 Last volume serial
number.

Device type.

Bytes:

0-1 Identifier-X'OOO3'.
2-3 Length of data returned.
4-7 Device type code.
8-11 Maximum block size for device.

Data Areas 441

442 DOS/VS Access Method Services Logic

8ytesand
Bit Pattern

20

n

Field NIUDeDesaiption: Coatent, Me , Use

Time stamp:

Bytes:

0-1 Identifier-X'OOO4'.
2-3 Length of data returned.
4-11 New time stamp.
12-19 Old time stamp.

Logical Unit Block (LUB) List
(variable)

Bytes:

0-1 Identifier-X'OOO5'
2-3 Length of data returned.
4-5 First LUB

(n+ 1)-(n+2) Last LUB

UREST Arguments

PCRST -Change Subtitle Lines

PCRLWS-Cbange Line Width

PCRPDS--Change Page Depth

PCP-FfS Change Footing Lines

Any combination of the following structures can be passed to UREST as
arguments. The UREST macro changes default items in the Print Control
Tabie. Tne structures determine which items UREST will change.

Created by Modified by Used by Size

All routines None IDCTPOI Variable

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 2 PCRSST Structure identifier; contains 'ST'.

2 (2) .. 2 PCRSTLC Number of subtitle lines provided. The
maximum is three.

4 (4) 4 PCRSTLP Address of from one to three
contiguous, fully formatted subtitle
lines. The number of bytes in each line
is the line width plus one for the
spacing character. The spacing
character is first in each line and must
be 1,2, or 3.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 2 PCRLWT Structure identifier; contains 'LW'.

2 (2) .. 2 PCRLW New line width in decimal.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 2 PCRPDT Structure identifier; contains 'PD'.

2 (2) .. 2 PCRPD New page depth in decimal.

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 2 PCRFf Structure identifier; contains 'Ff'.

2 (7) .. 2 PCRFLC Number of footing lines provided. The
maximum is three.

4 (4) 4 PCRFLP Address of from one to three
contiguous, fully formatted footing
lines. The number of bytes in each line
is the line width plus one for the
spacing character. The spacing
character is first in each line and must
be 0, 1,2, or 3.

PCRDSCS--Change Default Spacing Character

Bytes and
Offset Bit Pattern Field Name Description: Content, Meaning, Use

0(0) 2 PCRDSCT Structure identifier; contains 'SC'.

2 (2) •. 1 PCRDSC New default space character. Must be
the character i, 2, or 3.

Data Areas 443

PCRPCS-Change Translate Table

Offset

0(0)

2 (2)

4 (4)

PCRINP-Change Initial Page Number

Offset

0(0)

2 (2)

4 (4)

444 DOS/VS Access Method Services Logic

Bytes and
Bit Pattern

2

.. 2

4

Bytes and
Bit Pattern

2

.. 2

4

Field Name

PCRPCT

PCRPCC

PCRPCP

Field Name

PCRPNT

*
PCRPNP

Description: Content, Meaning, Use

Structure identifier; contains 'PC'.

If the request is for a print chain
provided by Access Method Services,
this field contains the characters for
the print chain identification as in the
GRAPHICS parameter of the PARM
command. Otherwise, it contains zero.

Address of a load module name. The
load module consists solely of a
256-byte translate table. If the request
is for a standard print chain, this field
contains zero.

Description: Content, Meaning, Use

Structure identifier; contains 'PN'.

Reserved.

Address of page number field. The
first two bytes of the page number
field contain the number (from 1 to 4
in binary) of following bytes that
contain the page number. The page
number is one to four bytes in
EBCDIC.

DIAGNOSTIC AIDS

Trace Tables

Inter-Module Trace Table

This chapter explains the diagnostic aids provided for Access Method
Services, explains how to find key areas in a dump, and offers suggestions for
isolating different types of problems. Before attempting to diagnose a
problem with the aids in this chapter, you should be familiar with the
Debugging Guide pertinent to your operating system. This Guide and other
publications that may be helpful are listed in the preface to this book.

I Eour major diagnostic aids are provided by the processor:

• Trace tables, which provide a trace of the flow of control between phases
and CSECTs and within phases and CSECTs.

• Dump points, wl'-ich provide the facility to dlh-np selected areas of vh"tual
storage and take a full region dump.

• The Test option, which you can set to print out the trace tables or to obtain
dumps at selected points .

• ABORT codes and full partition dumps, which are produced when the
processor detects an unrecoverable condition.

The processor maintains two trace tables during each execution: the
Inter-Module Trace Table, which records the flow of control between phases
and CSECTs, and the Intra-Module Trace Table, which records the flow of
control within phases and CSECTs.

You can find the trace tables in any full partition dump, or you can print them
using the Test option. The section "Reading a Dump" in this chapter explains
how to find the tables in a dump; the section" Test Option" in this chapter
explains how to print them.

The Inter-Module Trace Table begins with the characters INTER and
contains the IDs of the last twenty phases and CSECTs that had control. The
IDs are the last four characters of the phase or CSECT name. For example, if
the trace looks like this:

INTER ... SA01 EX01 RI01 RI02

then you know that IDCRI02 had control at the time of the dump.

The Inter-Module Trace Table is updated by the System Adapter not only as
each phase or CSECT is entered, but also upon return from a phase or
CSECT. Thus, if RIOt calls TPOt which calls lOOt and then returns back to
RIOt, the trace table looks like this:

INTER ... RI01 TP01 1001 TP01 RI01

Diagnostic Aids 445

I"tra-Module Trace Table

Dump Points

The Intra-Module Trace Table begins with the characters INTRA and
contains the last twenty trace points encountered within phases and CSECTs.
Each phase and CSECT has trace points placed at key locations, for example,
at the start of procedures.

The IDs of the trace points consist of four characters: the first two characters
are the mnemonic identifier of the phase or CSECT being traced, and the last
two characters identify a specific point within the phase or CSECT. (The
mnemonic identifiers are listed in the section "Naming Conventions" in the
chapter "Introduction".)

The section "Trace and Dump Points to Module Cross Reference" in this
chapter contains a list of all the trace points, identifies the phase or CSECT
and procedure in which the trace point occurs, and explains the situation at
the trace point. For example, if the Intra-Module Trace Table looks like this:

INTRA ... SAGSIOOPSACLSAGP

by referring to this list, you would know that the last trace point encountered
was at the start of the routine in CSECT IDCSA02 that processes a
UGPOOL macro request.

For the period of time the Test option is set, the dumping routine (IDCDB01)
places dump points in the Intra-Module Trace Table; thus, the trace table
contains all the dump points encountered as well as the trace points. All the
dump points you may find in the Intra-Module Trace Table, in addition to the
trace points are explained in the section "Trace and Dump Points to Module
Cross Reference" in this chapter.

Trace points within a phase or CSECT can be found by examing the
microfiche listings for occurrences of the UTRACE macro; the UTRACE
macro sets the trace IDs into the trace table. The expansion of the UTRACE
macro for trace ID DLLC looks like this:

OLDERID2=NEWERID2;
NEWID2 = 'DLLC '

Each module has built-in dump points that invoke diagnostic dumping
routines if the Test option is in effect. The dump points, set up by the
UDUMP macro, have been placed at key locations in each module (for
example, around calls to other processor and non-processor modules). Each
dump point specifies the information that can be dumped at that point. Some
dump points allow symbolic dumping of selected areas of virtual storage (for
example, parameter lists or return codes); all dump points allow dumping of
the full region and printing of the trace tables.

Dump points can be found by examining microfiche listings for occurrences of
the UDUMP macro. The expansion of the UDUMP macro for the dump point
DL VL looks like this:

IF GDTDBG = NULLPTR
THEN;
ELSE

CALL IDCB010(GDTTBL, 'DLVL');

Only the trace tables and the full region can be dumped at this point because
only two parameters, the GDTTBL and the dump ID, are passed to the
dumping routine.

446 DOS/VS Access Method Services Logic

The section "Module to Dump Points Cross Reference" in this chapter
contains a list of all the dump points within each module, indicates what
information can be dumped and explains the situation at the dump point. The
section "Test Option" in this chapter explains how to take a full region dump.

Dump;"g ,Selected Areas of Virtlull Storage

Test Option

TEST Keyword

Certain Access Method Services modules have the dumping of selected areas
of virtual storage built in. Dumping of these selected areas occurs at a dump
point as described above. The areas dumped vary with each dump point and
are identified with descriptive codes. The list in the section "Module to Dump
Points Cross Reference" in this chapter indicates which modules contain
dumps of selected areas and the footnotes to that list describe the areas
dumped.

Dump points~ at which selected areas are printed can be found by examining
the microfiche listings for occurrences of the UDUMP macro. The expansion
is as described above for a full region dump except that the address of a
parameter list describing the areas to be dumped is passed to the dumping
routing as a third parameter.

Dumping of selected areas can occur with or without a full region dump in
addition, as described in the section "Test Option" in this chapter.

You can use the Test option to activate the printing of diagnostic output at
selected points within Access Method Services. The Test option is controlled
by the TEST keyword as explained in the following section "TEST
Keyword".

The Test option provides you with the ability to print:

• The Inter-Module and Intra-Module Trace Tables. The format and
interpretation of these tables are described in the section "Trace Tables" in
this chapter.

• Selected areas of virtual storage. The facility for dumping selected areas of
virtual storage is described in the section "Dump Points" in this chapter.

• Full region dump. The facility for taking a full region dump is described in
the section "Dump Points" in this chapter.

Each variation of the Text option provides an additional level of information.
The possible variations are: (1) print the trace tables only; (2) print the trace
tables and selected areas of virtual storage; (3) print the trace tables and
selected areas of virtual storage and take a full region dump.

You can enter the TEST keyword either in the P ARM field of the EXEC card
that invokes the processor, or on a P ARM command. By using the P ARM
command, you can turn the Test option on and off or change the Test option
for different function commands.

Diagnostic Aids 447

The format of the TEST keyword and its subparameters is:

PARM TEST(UTRACEI
AREAS(ID-list) ..•)1
IFULL« dumplist) ...)11
(OFF)})

where the subparameters are defined as follows:

TRACE specifies that the inter-module and intra-module trace tables are to
be printed at every dump point encountered.

AREAS names the modules for which selected areas are to be printed, in
addition to the trace tables. The trace tables are printed at each dump point
encountered within the named modules; if a dump point specifies selected
areas to be dumped, these areas are printed also. ID-Iist is a string of
two-character mnemonic identifiers separated by commands an~/ or blanks.
The mnemonic identifiers are listed in the section "Naming Conventions" in
the chapter "Introduction". The mnemonic identifier, however, for the dump
points within System Adapter dump points is ZZ. The maximum number of
identifiers is 10. For example, AREAS(EX,PR) specifies that selective
dumping is to occur in the Executive modules and the PRINT FSR.

FULL names the dump points at which full region dumps are to be produced,
in addition to the selected areas and the trace tables. The trace tables and
selected areas are produced each time the dump point is encountered; a full
region dump is produced as specified in dumplist. dumplistconsists of a string
qf triplets enclosed in parentheses. The maximum number of triplets is 10.
Each triplet is of the form:

(ident (begin (count I))

where the arguments of the triplet are defined as follows:

ident is a four-character dump point. The dump points are identified in
UDUMP macros and are listed in the module to Dump Points Cross
Reference list.

begin specifies the iteration through the named dump point at which you
wish the full region dump to be produced. For example, a begin value of 2
specifies that a full region dump is not to be produced until the second
encounter of the dump point. The default value is 1, and the maximum is
32,767.

count specifies the number of times the full region dump is to be produced,
once the value of begin has been satisfied. The default value is 1, and the
maximum is 32,767.

For example, FULL«EXIF,4,2),(ALOl) specifies that one full region dump
is to be produced the fourth time that point EXIF is encountered, another full
region dump is to be produced the fifth time the point is encountered, and one
full region dump is to be produced the first time that point ALO 1 is
encountered. Trace tables and any selected areas are to be printed each time
dump points EXIF and ALO 1 is encountered.

OFF turns off the Test option. No further dumping of trace tables, selected
areas, or region will occur until another P ARM command specifies one of the
other subparameters. This subparameter must occur alone; it may not be
coded with any other subparameter of the TEST keyword.

Each time a P ARM command is specified, the TEST parameters override the
TEST parameters in effect from the previous P ARM command.

,448 DOS/VS Access Method Services Logic

Figure 10 shows a section of the output from the command:

PARM TEST (FULL (LCTP,2,1)

The trace tables and the selected area, DARGLIST, are printed each time the
dump point LCTP is encountered. A full region dump is produced the second
time that dump point LCTP is encountered.

How to Use the Test Option

If a problem occurs and you have no idea which modules are involved, run the
job again with the TRACE keyword. From the Inter-Module Trace Table you
should be able to tell the modules involved. The TRACE keyword, however,
produces a large amount of output.

If you suspect ~lhich modules are involved, you can rerun the job \vith the
AREAS keyword and specify the identifiers of several suspected modules.
You will obtain trace output for only the specified modules.

0f:/C~/13 PAGE

PARM TEc:r (FUll (L(TP.2.1I I

10C~O(lll FU~CTIC'" C(MPlETEC. HIr,HEST C(NeITICN CCDE WAS ('

lI<;TCAT ENTIlY I MN01.CLOIl1040/ClMR I All

IOCOCl241 OU"P ROUTIIi:E TNV("KEO AT 'lCTP'

TNTFR-1II0IlULE TIUCF.: Ele01 SA02 Lr01 SAI)2 LCC1 <A1)2 LC01 ~Ae2 lce1 SA()2 lC01 SA(,2 leC1 SA(12 lC01 SA02 Lf01 SA02 LCC1 CAC1
TNTRA-IiInOlJlF TRACE: R137 RT"'N SAn RIT" SAFP PTCI<; SAr.E EX1F EXFS SACl LCIN SAGP 5AGP SAGP SAGP SAr,P SAGP SA~F SAGD lCTP

OARGL 1ST = fl)erC('Co "O(ll!f:C1C O~C~F~O C(ecrcc,: Cl ~r.O,:cC

IOCOq241 OUIIP RCUTI~I! I"'V(KEC AT 'lCTF'

lI'iT 06/05/B

GR 0-7 8C01!1"8C ('ICOA12F8 CI)~OOt.!O(' {lC11FFFF
GR 8-F 000q~A74 Oc~qqq'.iO fOOeO~'.iC 000EC70e
CII 0-1 C04CI){'FF 01ceF24C FFF"FI=FF FFFFFFFF
CII II-F OMOOOO~ t)Ol)eOOM OOOOot.!OC OOOCIlOOC

O(lO~OO OO(lOCOOO (OOOO{l{lO 011000001' 000000.,0
01'10020 07COCOOO 0000l!D9C 04000(,OC (lOOOSe'l2
0')01)40 ON!leet:1! OECOCC(,O 00010C58 ol)oeoooo
01)()(,60 040(11000 000008U IlOOC')OI)O 0000A090
COOC80 000{lC'.i40 ccorocOO CI)e20001 OC(2(1CI'1
OOooA(I 000000('0 CItInOOOOO 20('00060 000C02Ce
ceo(lce OOCtlCOOO --SA"E--
0004AO F(lF6t:lFO F561FIF3 180(,180r I)COO(O')C
0004CO (I{I098"FF 1)00eOo;l\~ 0001l'.i4QF 000000le
0004EC 3&32442& 44280000 31FC31!02 380A31!FO
000500 4A~1\0000 ~t0C31"C 31CC0010 OOCeOele
000"21) OOO(lCI)O'l 04AOIIEO ('0000'588 40400340
C0054C 0(,00l:2FO 000021F6 e88E084A eOOC3A!! A
000560 O(1011ROO 07005C9'" 001qO(l2C OM5OCOO
OC00;80 608Ce800 OOl)c(,e;o;e 000(lQQ1(, 00nCO;C6"
0005&0 00000000 000(,10;1'S 0000000(' OOOC"O"':
0005C(I 000(l'Oe;6 001)09F48 000007Q4 OOI)OOOOC
C{l05EC 0008101" {l0200CeO I'OO{lO(,(!C' MOOOIlOC
1)00600 OCOO~(,CO (lcrcecoo 0000000"i Il7F~OCt:'1
000,,2C 0('01'6431': {loooooon 000"0000 0007C7"F
(\00641) FFOO(lC45 OOCCOCOO r 1J6

Figure 10. Example of Test Option Output

Oe1J131Cf:0 oocl!oee;e
"(lC8HIo" COCE010P
C"OOO(lCO IlCC(lOCO('
c('oooccc oecooooe

OMOOOCIJ ("~OeCioAc
00000000 OCOOOO{lO
Ee;ee;HCC CIAf:2~3E
04C800CC 01)OOO~02
100E0810 OCOOOOOC
oocoocco cccecece

('~COCOCC ('cceocoe
OO17FFFc 0e;O;7CE02
F6FOF5Fl F'!FIF~H
O(I)I)OeeC OCCCCCOC
40lo04C4C 4CIoC4(OC
COOOlFE6 (00C4CFC
eOOC6F68 ceceoooc
OMCt:21f! COOCt:21C
0000C638 ('OI)OOOOC
OOCOCll'C cecce; O:7e
0('0001)00 (l000~ 246
COOCF240 OeOOE3lC
0000AC'54 oeccoeoe

51!C2C6

eOOOO010;
eoeeCHC
OOCCOOOC
(2CCCOOC

coecooce
01CC200C
CIoe(eeeo
C4ecoceo
oO'c('eoeo
COOC(CCE

03(~E2E3

At)OeCECO
COCC35E4
eoc('~ l1C
4(Ior404C
COeC5p.e;E
00ee89AC
CO 10eC 10
COCC422C
CCCC~3C;C
ceeoocce
COCCEI!~e
CCCleC~5
E

PAGE

t.!CC9flFFF
OCC el C56
oocooone
CCI)C02t)C

ccceooC'e
0000(196E
COOCOPF:E 2 •••••••••••••••
OCOt'Cfl38 •••••• NK ••••••••
oe(looo~c
O(OOocct:' -
4('4041'14C 06/(15/13 •• ••• : •• •••••••• L I ST
1)0C'5362B • e •• R •• K ••••• E ••
OCCOFE2(1 •••••••••••••• • e f:0~1 ~1 ~t: •• ·.U ••••
34E400CC•....... . ••••••••••••• U ••
4C4C4000
OOOCR~Fe ••• C ••• t: •••••••• C ••••••• e
00006268•.........
CeCC1C4C -
OOOOOOCC ••••••• 8 ••••••••
(CCC3~810 •• J •••••••••••••
oecooooo
OCCC6~OC •••••••••••• • 9 •• •• 2: •• T •••••••••
e14500((........... •• G •
4CC~02Ce

Diagnostic Aids 449

Once you know the procedure within a module that has caused the problem,
select the dump points at which uou would like a full dump (using the Module
to Dump Points Cross Reference list or by examining the microfiche for dump
points), and rerun the job with the FULL keyword. The AREAS and FULL
keywords can be used in combination to obtain trace tables and selected areas
throughout several modules, but a full region dump only at selected points.

Trace and Dump Points to Module Cross Reference

The following list contains all trace and dump points, identifies the containing
module and procedure and explains the situation at the trace or dump point.
When the test option is set, both the trace and dump points are placed in the
Intra-Module Trace Table. The trace tables are printed with all variations of
the Test option as explained in the section "TEST Keyword".

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

ALOI IDCALOI IDCALOI dump Before calling the catalog to alter
an object.

trace Start of ALTER FSR.

AL02 IDCALOI IDCALOI dump End of ALTER FSR.

AL03 IDCALOI LOCATPRC dump After calling the catalog to locate
an object.

AL04 IDCALOI IDCALOI dump Before issuing AL TER request for
index object if KEYS specified.

AL31 IDCALOI LOCATPRC trace Start of procedure that locates the
entry to be altered.

AL41 IDCALOI ALTERPRC trace Start of procedure that builds the
catalog parameter list.

AL51 IDCALOI CHECKPRC trace Entry to CHECKPRC.

dump After locating data component of
the alternate index for which
UPGRADE has been specified.

AL52 IDCALOI CHECKPRC dump After locating associate~ cluster
or alternate index of the data
object specified on ALTER
command.

AL53 IDCALOI CHECKPRC dump After locating associated index
component.

AL54 IDCALOI CHECKPRC dump After locating the data component
of the path's base cluster.

AL55 IDCALOI CHECKPRC dump After locating the cluster
component of the alternate
index's base cluster.

AL56 IDCALOI CHECKPRC dump After locating the data component
of the alternate index's base
cluster.

AL61 IDCALOI INDEXPRC dump On entry to INDEXPRC.

AL81 IDCALOI PARAMCHK trace On entry to PARAMCHK
procedure.

BIBI IDCBIOI BLDPROC trace First entry to procedure that
builds and writes the alternate
index records.

450 DOS/VS Access Method Services Logic

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

BICi iDCBiOi CNTLPROC trace Start of pioceduic that controls
reading base cluster, sorting and
writing alternate index.

BIC2 IDCBIOI CNTLPROC dump After completion of sort if an
internal sort; after completion of
sort phase and before merge
passes if an external sort.

BIDL IDCBIOt DELTPROC trace Start of procedure that deletes
sort work. files.

dump After return from UCA TLG to
delete each sort work file.

BIDt IDCBIOI DEFPROC trace Start of procedure that defines
sort work files.

BID2 IDCBIOt DEFPROC dump After return from UCA TLG to
define each sort work file.

BIFt IDCBIOt FINPROC trace Start of procedure that closes
alternate index and prints status
message.

BIIt IDCBIOI INITPROC trace Start of procedure that obtains
resources for building alternate
index.

BII2 IDCBIOt INITPROC dump After obtaining or failing to
obtain sort core.

BUt IDCBIOI JCPROC trace Start of procedure that issues
UIOINFO to obtain sort work file
job control data.

BU2 IDCBIOt JCPROC dump After return from each call to
UIOINFO.

BILt IDCBIOt LOCPROC trace Start of procedure that controls
catalog locates to obtain
information about the base cluster
and alternate index.

BIL2 IDCBIOt CATPROC dump After return from UCATLG for
each locate request.

BIMt IDCBIOt MERGPROC trace Start of procedure that performs
the merge passes of an external
sort.

BIM2 IDCBIOt MERGPROC trace Start of each merge pass of an
external sort.

BIM3 IDCBIOt MERGPROC dump After the tree of nodes has been
initialized for each merge pass of
an external sort.

BIM4 IDCBIOt MERGPROC dump After processing one set of strings
during the merge pass of an
external sort.

BIPt IDCBIOt OPENPROC trace Start of procedure that opens data
sets.

BIP2 IDCBIOt OPENPROC dump After return from UOPEN to
open a data set.

BISP IDCBIOt SPILPROC trace Start of procedure that writes out
a sorted string in the sort phase of
an external sort.

Diagnostic Aids 45t

Trace and Dump Points to Phase or CSECf Cross Reference

Trace or Dump Phase or
Point CSECf Procedure Type Situation at Dump or Trace Point

BISR IDCBlOt SORTPROC dump Before sorting the records in the
record sort area.

BlOt IDCBlOt IOCBlOt trace Start of BLOINOEX FSR.

BI02 IDCBlOt MAINPROC trace Start of procedure that controls
building of one alternate index.

BI03 IDCBlOt MAINPROC dump After return from procedure
which locates information about
the base cluster and alternate
index.

BI04 IOCBlOl MAINPROC dump After the alternate index has been
built; before close.

CPt4 IDCRPOt VERIFYC trace When either the source or target
catalog cannot be verified during
a reload.

DB2A IOCOB02 ARRAYHOR trace Start of procedure that processes
an array header dump element.

OB2B IOCDB02 BCONVERT trace Start of procedure the converts a
dump item to binary
representation.

OB2C IDCOB02 CCONVERT trace Start of procedure that converts a
dump item to character
representation.

DB2F IOCOB02 FCONVERT trace Start of procedure that converts a
dump item to fixed
representation.

DB2H IOCOB02 HCONVERT trace Start of procedure that converts a
dump item to hex representation.

OB2I IOCOB02 ITEMOUMP trace Start of procedure that processes
an individual dump list element.

OB2N IOCOB02 NAME FLO trace Start of procedure that processes
the dump element symbolic name.

OEOt IOCOEOI IOCOEOt dump Before calling the catalog to
define an object.

OE02 IOCOEot IOCOEOt dump End of DEFINE FSR, before
completion message is issued.

OE03 IDCDE02 MODELPRC dump After calling the catalog to locate
a model object.

DE04 IDCDE02 MODELPRC dump End of procedure that built the
model table.

DEtt IDCOEOt IDCDEOt trace Start of DEFINE FSR.

DE20 IDCDE03 IDCDE03 trace On entry to IDCDE02 module.

DE21 IDCOE03 CTLGPROC trace Start of procedure that defines a
master or user catalog.

DE22 IDCOE03 DSETPROC trace Start of procedure that defines a
VSAM data set.

DE23 IDCDE03 DSPACPRC trace Start of procedure that defines a
data space.

DE24 IOCOE03 NVSAMPRC trace Start of procedure that defines a
non VSAM data set.

452 OOS/VS Access Method Services Logic

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECf Procedure Type Situation at Dump or Trace Point

DE25 IDCDE03 AIXPROC trace Start of procedure that defines an
alternate index.

DE26 IDCDE03 PATHPROC trace Start of procedure that defines a
path.

DE30 IDCDE02 IDCDE02 trace Entry to IDCDE02.

DE31 IDCDE02 NAMEPROC trace Start of procedure that builds
CTGFLs with name and date
information.

DE32 IDCDE02 ALLCPROC trace Start of procedure that builds
CTGFLs for allocation
information.

DE33 IDCDE02 KEYPROC trace Stat of procedure that builds
CTGFLs for key range and
AMDSBCAT information.

DE34 IDCDE02 PROTPROC trace Start of procedure that builds
CTGFLs for protection
information.

DE35 IDCDE02 IXOPPROC trace Start of procedure that initializes
index fields in the AMDSBCA T.

DE36 IDCDE02 MODELPRC trace Start of procedure that locates the
model object entry.

DE37 IDCDE02 FREESTG dump End of DEFINE FSR.

DLBC IDCDLOI BUILDCPL trace Start of procedure that builds the
CTGPL for the delete request.

DLBG IDCDLOI IDCDLOI dump Start of DELETE FSR.

DLCL IDCDLOI CLEANUP trace Start of procedure that closes the
user catalog.

DLCT IDCDLOI CATCALL trace Start of procedure that calls the
catalog with a delete request.

DLLC IDCDLOI FINDTYPE trace Start of procedure that locates the
type of the entry to be deleted.

DLMS IDCDLOI MORESP trace Entry to MORESP.

DLND IDCDLOI IDCDLOI dump End of DELETE FSR, before
data sets are closed and the
completion message is issued.

DLOP IDCDLOI CATOPEN trace Start of procedure that opens the
user catalog.

DLPC IDCDLOI PARAMCHK trace Start of procedure that checks for
invalid parameters.

DLVL IDCDLOI FINDTYPE dump Before and after calling the
catalog to locate the entry type.

DLVS IDCDLOI CATCALL dump Before and after calling the
catalog to delete an entry.

DLVT IDCDLOI MORESP dump Either side of UCA TLG macro in
MORESP.

EXFS IDCEXOI CALLFSR dump Before each call to an FSR.

EXIF IDCEXOI CALLFSR trace Before each call to an FSR.

EXIM IDCEXOI MAIN trace Before calling the·
Reader/Interpreter for the first
time.

Diagnostic Aids 453

Trace and 0..... Points to Phase or CSEcr Cross Reference

Trace or Dump Phase or
Point CSEcr Proced_e Type SItuation at Dump or Trace PoIIIt

EXIR IDCEXOI CALLRI trace Before each call to the
Reader/Interpreter.

EXMN IDCEXOI IDCEXOI dump All Reader/Interpreter and FSR
processing is complete.

EXRI IDCEXOI CALLRI dump Before each call to the
Reader/Interpreter.

EX2X IDCEX02 SCANPARM trace Before processing the caller's
parameter list.

EX3S IDCEX03 SCANPARM trace Before processing the caller's
parameter list.

IOAC IDCIOO2 BUILDACB dump After ACB and EXLST have been
built, at end of procedure.

trace Start of procedure that builds the
ACB and EXLST.

IOCL IDCIOOI IDCIOCL trace Start of routine that closes data
set.

IOCP IDCIOOI IDCIOCO trace Start of routine that copies a data
set.

IODC IDCIOO2 BUILDDBK trace Start of procedure that builds a
DTF.

IIODS IDCIOO2 DSDATA dump After obtaining file information
from the label cylinder.

IOEG IDCIOOI GETEXT dump End of procedure that gets a
record from the user routine.

trace Start of procedure that gets a
record from the user routine.

IOEP IDCIOOI PUTEXT dump After control returns from an
external user routine.

trace Before record is passed to an
external user routine.

IOE2 IDClOOl GETNONVS trace Start of end-of-file routine for a
non VSAM data set.

IOGR IDClOOl PUTREP dump After the GET for update.

IOGT IDCIOOI IDCIOGT trace Beginning of routine that gets a
data record from a data set.

IOIF IDClOO3 DSINFO trace Entry to UIOINFO processing.

IOIT IDCIOOI IDCIOIT trace Start of initialization routine.

lOll IDCIOO3 DSINFO dump After return from IKQVDTPE.

lOOP IDCIOOI IDCIOOP trace Start of routine that opens data
sets.

lOOT IDClOO3 PTISDS trace Before SETL macro is issued.

IOPL IDClOOl PUTREP trace Entry to PUT (Replace) routine.

IOPO IDClOOl IDCIOPO trace Start of routine that positions to a
data record in an opened VSAM
or ISAM data set.

IDCIOO3 IDCIOO3 dump After positioning is complete,
before returning control to
IDCIOPO.

IOPR IDCIOOI PUTREP dump After the PUT for update.

454 DOS/VS Access Method Services Logic

Text Rearranged Only
Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

IOPT IDCIOOI IDCIOPT trace Start of routine that writes data
records to an opened data set.

10RP IDCI002 BUILDRPL dump After RPL is built, at end of
procedure.

IOS2 IDCI001 GETNONVS trace Start of SYNAD routine for
non VSAM read error.

IOS4 IDCI001 PUTNONVS trace Start of SYNAD routine for
nonVSAM put error.

10TM IDCIOOt IDCIOTM trace Start of termination routine that
closes all data sets and frees
space.

10UO IDCIOOt IDCIOSI trace Entry to UIOINFO entry
processing.

lOVE IDCIOOt GETVSAM trace Start of end-of-file exit routine for
a VSAM file.

10VG IDCIOOt GETVSAM dump End of procedure that gets a
record or control interval from a
VSAM data set.

trace Before the GET macro is issued
for a VSAM data set.

10VP IDCIOOt PUTVSAM dump End of procedure that writes a
VSAM record.

trace Before the PUT macro is issued
for a VSAM data set.

10VR IDCIOOt VSAMERR dump After detection of a VSAM I/O
error.

10VT IDCI003 PTAMDS trace Start of procedure that positions
to a VSAM record or control
interval.

10VY IDCIOOt IDCIOVY dump After VERIFY macro is issued.

trace After VERIFY macro is issued.

1002 IDCI003 DSINFO dump After formatting work area.

10tC IDCI002 CLOSERTN dump Before CLOSE macro is issued.

10tO IDCI002 OPENRTN dump Before OPEN macro is issued.

102C IDCI002 CLOSERTN dump At completion of all UCLOSE
processing.

102P IDCIOOt PUTNONVS dump After writing a spanned record.

trace After writing a spanned record.

1020 IDCI002 OPENRTN dump After OPEN macro is issued.

102t IDCI002 OPENRTN dump At completion of all UOPEN
processing.

LCAL IDCLC02 LOCPROC dump After calling the catalog to locate
an entry.

LCAU IDCLC02 AUPROC trace Start of procedure that formats
catalog fields for a nonVSAM or
user catalog entry.

LCBL IDCLC02 LOCPROC dump Before calling the catalog to
locate an entry.

Diagnostic Aids 455

Trace and Dump Points to Phase or CSECf Cross Reference

Trace or Dump Phase or
Point CSECf Procedure Type Situation at Dump or Trace Point

LCCL IDCLC02 CDIPROC trace Start of procedure that formats
catalog fields for a cluster, data,
or index entry.

LCEN IDCLCOI ENTPROC trace Before retrieving each entry in a
list of entries.

LCER IDCLC02 ERRPROC trace Start of procedure that issues
messages.

LCFP IDCLC02 FPLPROC trace Start of procedure that
reinitializes CTGFLs for each
locate request.

LCIN IDCLCOI INITPROC trace Start of procedure that initializes
the catalog parameter list and
work areas.

LCLT IDCLC02 LISTPROC trace Start of procedure that prints
catalog data.

LCMG IDCLC02 ERRPROC dump Before UPRINT macro is issued
to print a message.

LCNX IDCLCOI GNXTPROC trace Before retrieving each entry when
processing a full catalog.

LCRT IDCLCOI RTEPROC trace Start of procedure that directs the
retrieved entry to the proper
formatting procedure.

LCR2 IDCLCOI RTEPROC trace Start of section of procedure that
processes associations of a cluster,
orAIX

LCSA IDCLC02 ANSVPROC trace Start of procedure that retrieves
the list of types and CI numbers.

LCTP IDCLC02 LISTPROC dump Before UPRINT macro is issued
to print catalog data.

LCVL IDCLC02 VPROC trace Start of procedure that formats
catalog fields of a space entry.

LCWA IDCLC02 LOCPROC dump After calling the catalog to locate
an entry.

LC02 IDCLC02 IDCLC02 dump When IDCLC02 is called the first
time to establish address ability .

LC98 IDCLC02 FREESTG dump End of LISTCA T FSR, before
freeing storage in IDCLC02.

LC99 IDCLCOI IDCLCOI dump End of LISTCA T FSR, before
freeing storage in IDCLCOI.

LRAA IDCLROI AATOPLR dump Entry point for IDCLROI

LRAD IDCLROI ADDASOC dump Start of procedure that adds an
association to the association
table.

LRBL IDCLROI BLDVEXT dump Start of procedure that builds
virtual extension table.

LRBU IDCLROI BUFSHUF dump Start of procedure that moves a
record to its "home" buffer.

LRCA IDCLROI CATOPEN dump Start of procedure that prepares
to open the catalog.

LRCK IDCLROI CKEYRNG dump Start of procedure that checks for
keyrange.

4'6 DOS!VS Access Method Services Logic

Trace and Dump Points to Phase or CSECf Cross Reference

Trace or Dump Phase or
Point CSECf Procedure Type Situation at Dump or Trace Point

LRCR IDCLROl CRAOPEN dump Start of procedure that opens the
CRA.

LRCT IDCLROI CTTBLD dump Start of procedure that builds CI
translate table.

LRCI IDCLROI CLEANUP dump Start of procedure that cleans up
before exit.

LRC2 IDCLROI CLENCRA dump Start of procedure that closes the
CRA and prints the completion
message.

LRDO IDCLROI DOOTHR dump Start of procedure that controls
printing non VS.t~.M information.

LRDV IDCLROI DOVSAM dump Start of procedure that controls
printing VSAM information.

LRER IDCLROI ERROR dump Start of procedure that handles
errors.

LRGE IDCLROI GETPRT dump Start of procedure that gets and
print records.

LRIA IDCLROI INTASOC dump Start of procedure that initializes
association tables.

LRIN IDCLROI INITLZE dump Start of procedure that initializes
the FSR.

LRIS IDCLROI INTSORT dump Start of procedure that initializes
the sort table.

LRIV IDCLROI INTVEXT dump Start of procedure that initializes
the virtual extension table.

LRME IDCLROI MEMSORT dump Start of procedure that sorts the
entries in sort table.

LRPA IDCLROI PRTAAXV dump Start of procedure that prints
associated AIXs and volumes.

LRPC IDCLROI PRTCMP dump Start of procedure that prints and
compares information.

LRPD IDCLROI PRTDMP dump Start of procedure that prints
dump if specified.

LRPE IDCLROI PRTDMPC dump Start of procedure that prints
dump of catalog record and
underscores miscompares.

LRPF IDCLROI PRTFIFO dump Start of procedure that prints
CRA in order of CI number.

LRPJ IDCLROI PRTOJAL dump Start of procedure that prints an
object's aliases.

LRPK IDCLROI PRTOJVL dump Start of procedure that prints an
object's volumes.

LRPM IDCLROI PRTMCWD dump Start of procedure that prints
miscompare words.

LRPO IDCLROI PRTOTHR dump Start of procedure that prints
non VSAM objects.

LRPT IDCLROI PRTTIME dump Start of procedure that prints
timestamps.

LRPV IDCLROI PRTVSAM dump Start of procedure that prints
VSAM structures.

Diagnostic Aids 457

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

LRPW IDCLROI PRTVOL dump Start of procedure that prints
volume records.

LRSM IDCLROI SUMIT dump Start of procedure that prints
number of entries processed.

LRTC IDCLROI TCICTCR dump Start of procedure that translates
the catalog CI to the CRA.

LRVE IDCLROI VERTEXT dump Start of procedure that handles
vertical extension records.

LRZY IDCLROI ERROR dump After error message has been
printed.

LRZZ· IDCLROI ERROR dump After error that forced an
ABORT of this execution.

LR02 IDCLR02 IDCLR02 dump Entry point for module that gets a
record for Recovery Field
management routine.

MPBF IDCMPOI FPLPROC trace Start of procedure that constructs
aCTGFL.

MPBG IDCMPOI IDCMPOI trace Start of IMPORT FSR.

MPCP IDCMPOI CLUSPROC trace Start of procedure that imports a
cluster or alternate index.

MPCT IDCMPOI CLUSPROC trace Before processing information
from the portable data set to
define a cluster or alternate index.

MPDC IDCMPOI DELTPROC dump After the first UCATLG.

MPDD IDCMPOI DELTPROC dump After the second UCATLG.

MPDL IDCMPOI DELTPROC trace Entry to DELTPROC.

MPDN IDCMPOI DUPNPROC trace Start of procedure to process a
duplicate entry found in the
catalog.

MPFN IDCMPOI IDCMPOI dump End of IMPORT FSR, prior to
closing data sets.

MPFV IDCMPOI FVTPROC trace Start of procedure that constructs
a CTGFV and CTGFLs.

MPLV IDCMPOI LVLRPROC trace Start of procedure that constructs
CTGFLs for device and volume
information.

MPMG IDCMPOI MSGPROC trace Start of procedure that issues
messages.

MPOP IDCMPOI OPENPROC trace Start of procedure that opens
either the portable data set or the
newly defined data set.

MPPS IDCMPOI BPASPROC trace Start of procedure that constructs
the PASSWALL CTGFL for
protection information.

MPPT IDCMPOI CLUSPROC trace After imported cluster or
alternate index has been
successfully defined and the
contents of the portable data set
copied into the new cluster or
alternate index.

458 DOS/VS Access Method Services Logic

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

MPSP IDCMPOI CTLGPROC trace Start of procedure that calls the
catalog to locate, alter, or define
an entry.

MPUC IDCMPOI CNCTPROC trace Start of procedure that connects a
user catalog.

MPUQ IDCMPOl IUNIQPRC trace After a data or index has been
found to be unique.

MPZZ IDCMPOI CTLGPROC dump Before and after calling the
catalog to locate, alter, or define
an entry.

PMGP IDCPMOI GRPHPARM trace Start of procedure that processes
the graphics option.

PMMG IDCPMOI MARGPARM trace Start of procedure that processes
the margins option.

PMTP IDCPMOI TESTPARM trace Start of procedure that initializes
the TEST option.

PMTS IDCPMOI TESTSAVE trace Start of procedure that initializes
the Test Option Data Area.

PROI IDCPROI IDCPROI dump End of PRINT FSR.

PRll IDCPROI IDCPROI trace Start of PRINT FSR.

PRl8 IDCPROI IDCPROI trace Before termination processing.

PR21 IDCPROI TEXTPSET trace Start of procedure that sets up the
text processor interface.

PR3l IDCPROI DELIMSET trace Start of procedure that establishes
the beginning and ending
delimiters of the data set to be
printed.

RCOI IDCRC02 IDCRC02 trace Start of main procedure.

RC02 IDCRC02 IDCRC02 dump Start of main procedure.

RC03 !DCRC02 !DCRC02 trace Return in main pioceduie from
procedures which processed
catalog information for objects.
Start of termination processing.

RC04 IDCRC02 IDCRC02 dump Return in main procedure from
procedures which processed
catalog information for objects.
Start of termination processing.

RC05 IDCRC02 CLUSPROC trace Start of procedure which
processes VSAM objects.

RC06 IDCRC02 CLUSPROC dump Start of procedure which
processes VSAM objects.

RC07 IDCRC02 CLUSPROC trace Before routine which calls
LOCPROC for data and index
processing.

RC09 IDCRC02 CLUSPROC trace Start build of timestamp
information for portability data
set.

RCll IDCRC02 CLUSPROC trace Start of processing for path
associations for VSAM objects.

Diagnostic Aids 459

Trace and Dump Points to Phase or CSECT Cross Reference

T race or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

RCI3 IOCRC02 LOCPROC trace Start of procedure which builds
CPL and FPL's for catalog locate
functions.

RCI5 IDCRC02 CTLGPROC trace Start of procedure which issues
catalog locates.

RC16 IDCRC02 CTLGPROC dump Start of procedure which issues
catalog locates.

RC17 IDCRC02 OPENPROC trace Start of procedure to open input
and output data sets.

RC19 IDCRC02 PUTPROC trace Start of procedure which writes
control records to the output data
set.

RC21 IOCRC02 RECPROC trace Start of procedure which copies
the data from the input data set to
the output data set.

RC23 IOCRC02 MVDAPROC trace Start of procedure which moves
control record information in core
and clears work areas in core.

RC25 IOCRC02 CONTRBL trace Start of procedure which builds
control record information.

RC27 IOCRC02 NVSMPROC trace Start of procedure which
processes nonVSAM objects.

RC28 IDCRC02 NVSMPROC dump Start of procedure which
processes nonVSAM objects not
associated to GOG's.

RC29 IOCRC02 NVSMPROC trace Before timestamp processing for
nonVSAM objects not associated
to GOG's.

RC31 IOCRC02 SAVEPROC trace Start of procedure which saves
control record information and
writes control information to the
output data set.

RC33 IOCRC02 ALSPROC trace Start of procedure which
processes catalog information for
alias associations for nonVSAM
objects.

RC35 IOCRC02 GOGPROC trace Start of procedure which
processes catalog information for
GOG's.

RC36 IOCRC02 GOGPROC dump Start of procedure which
processes catalog information for
GOG's.

RC37 IOCRC02 GOGPROC trace Before build of timestamp
information for GOG's.

RC39 IOCRC02 ASOCPROC trace Start of procedure which
processes catalog information for
nonVSAM objects associated with
GOG's.

RC40 IOCRC02 ASOCPROC dump Start of procedure which
processes catalog information for
nonVSAM objects associated with
GOG's.

460 OOSjVS Access Method Services Logic

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

RC42 IDCRC02 PRNTPROC trace Start of procedure which prints
error messages for associations.

RC79 IDCRCOI TERM both Before special processing to
terminate request (closing output
data set).

RC80 IDCRCOI INIT both Before initializing to begin
processing.

RC81 IDCRCOI BUILDCRV both Before building the CRV.

RC82 IDCRCOI EXPORTDR both Before looping down name chain
to call IDCRC02 to export data
sets.

RC83 IDCRCOI SYNCH both Before scanning the name chain
for a CRA to check it.

RC84 IDCRCOI OBJVOLCK both Before checking synchronization·
of an entry across multiple
volumes.

RC85 IDCRCOI DUPNAMCK both Before checking the name chain
for duplicates.

RC86 IDCRCOI BUILDNAM both Before constructing a block for
the name chain.

RC87 IDCRCOI COMPNAME both Before compressing a name for
the name list.

RC88 IDCRCOI SUBSP both Before allocating space for the
name chain.

RC89 IDCRCOI MESSAGE both Before printing any message from
IDCRCOI.

RC90 IDCRCOI EXTRACT both Before using internal Field
Management to get information
fromCRA.

RC91 IDCRCOl OPENCRA both Before opening or closing or eRA
and doing all other work (e.g.
Build C1T).

RC92 IDCRCOI OPEN both Before the opening of the CRA.

RC93 IDCRCOI CKCATNM both Before checking owning catalog
name of CRA being opened.

RC94 IDCRCOI TIMESTMP both Before obtaining format 4
timestamp for CRA being opened.

RC95 IDCRCOI SCANCRA both Before scanning CRA to build the
C1T table.

RC96 IDCRCOI ERRCK both After opening a CRA.

RC97 IDCRCOI NAMETABL both Before marking or adding a name
to the name chain.

RC98 IDCRCOI DIRECT both Before obtaining the directory for
a volume.

RC99 IDCRCOI CKNAMES both Before gathering information on
name in name list from CRA.

RIBT IDCRIOI BYPASTRM dump Start of procedure that bypasses
the remainder of the current
modal or null command.

Diagnostic Aids 461

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedwe Type Situation at Dump or Trace Point

RICV IDCRIOI CONVERT dump Start of procedure that converts a
constant from EBCDIC to binary
or hexadecimal.

RIDC IDCRIOI DSPLCALC dump Start of procedure that calculates
the position within a secondary
FDT vector in which to place an
FDT pointer.

RIDF IDCRIOI DEFAULTS dump Start of procedure that adds
default parameters to the FDT.

RIEX IDCRIOI IDCRIOI dump Start of Reader/Interpreter .phase.

RIEl IDCRIOI ERRORI dump Start of procedure that issues a
message without inserted text.

RIE2 IDCRIOI ERROR2 dump Start of procedure that issues a
message with inserted text.

RIGN IDCRIOI GETNEXT dump Start of procedure that scans the
input command.

RIGQ IDCRIOI GETQUOTD dump Start of procedure that scans a
quoted constant.

RIGR IDCRIOI GETRECRD dump Start of procedure that obtains the
next input record.

RHD IDCRIOI DSIDCHK trace Check restrictions on a data set
name and place in FDT.

RHR IDCRIOI INREPEAT dump Start of procedure that scans a
repeated parameter set.

RIMC IDCRIOI MORSPACE dump Start of procedure that allocates
more FDT space for a list of
constants.

RIME IDCRIOI MODLELSE dump Start of procedure that scans an
ELSE modal command.

RIMI IDCRIOI MODALIF dump Start of procedure that scans an
IF modal command.

RIMS IDCRIOI MODALSET dump Start of procedure that scans a
SET modal command.

RINN IDCRIOI NEEDNOTS dump Start of procedure that checks the
input command for conflicting or
missing parameters.

RINS IDCRIOI NAMESCAN dump Start of procedure that checks
data set names.

RIPC IDCRIOI PACKCVB dump Start of procedure that converts a
decimal constant into a binary
fullword.

RIPP IDCRIOI POSPARM dump Start of procedure that scans a
positional parameter.

RISC IDCRIOI SCANCMD dump Start of procedure that scans the
input command parameters.

RISD IDCRI02 IDCRI02 dump Start of phase that prepares to
scan a command parameter set.

RISE IDCRIOI SCANENDS dump Start of procedure that checks the
input record for a continuation
delimiter and determines the
scanning limits of the record.

462 DOS/VS Access Method Services Logic

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

RISF IDCRIOI SETFLAG dump Start of procedure that notes the
occurrence of a parameter in the
FDT.

RISK IDCRIOI SKIPCMD dump Start of procedure that bypasses
the remainder of a function
command.

RIST IDCRIOI SETDFLT dump Start of procedure that puts
parameter defaults in the FDT.

RITM IDCRI03 IDCRI03 dump Start of phase that performs
command termination functions.

RIOt IDCRIOl SCANCMD trace Start of scanning for a parameter.

RI02 IDCRIOI SCANCMD trace Scanning a first-level parameter.

RI03 IDCRIOI SCANCMD trace Scanning a subparameter.

RI04 IDCRIOI GETNEXT trace Modal command other than
ELSE within an IF.

RI05 IDCRIOI GETNEXT trace Found a functional command.

RI09 IDCRIOI KWDPARM trace Found a keyword subparameter.

RIll IDCRIOI GETDATA trace Start of extracting a scalar value.

RIl2 IDCRIOI GETDATA trace Extract a character string.

RI16 IDCRI02 IDCRI02 trace Prior to loading the command
descriptor.

RI17 IDCRI02 IDCRI02 trace Beginning of the code sequence to
build the P ARM INFO table.

RI24 IDCRIOI CONVERT trace Start converting a binary number.
RI27 IDCRIOI CONVERT trace Start converting a hexadecimal

number.

RI30 IDCRIOI CONVERT trace Change converted digits into a
binary fullword.

nT"'~ TT""'Iit."nTn. .. INREPEAT trace Loop to reset parameter ~l"J lU'-'~lUI

occurrence flags for possible
parameters in the sublist.

RI36 IDCRIOI INREPEAT trace End of last repeated sublist.

RI44 IDCRIOI SETDFLT trace Found that default is allowable;
ready to put in FDT.

RI45 IDCRIOI SETDFLT trace Move a defaulted unquoted
constant to FDT.

RI49 IDCRIOI NXTFIELD trace Extract a filed from input (verb,
keyword, or scalar).

RI50 IDCRIOI NXTFIELD trace Extract a keyword field.

RI51 IDCRIOI NXTFIELD trace Extract a quoted scalar.

RI56 IDCRIOI NEXTCHAR trace End-of-file already found in input.

RI57 IDCRIOI NEXTCHAR trace Extract first character of a new
command.

RI59 IDCRIOI NEXTCHAR trace End-of-file found while looking
for next character.

RI60 IDCRIOI SCANENDS trace Skip leading blanks and
comments if preceding record
indicated continuation.

Diagnostic Aids 463

Trace and Dump Points to Phase or CSECf Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

RI61 IDCRIOI SCANENDS trace Bypass a leading comment.

RI62 IDCRIOI SCANENDS trace Bypass leading blanks.

RI66 IDCRIOI DSPLCALC trace Calculate displacement into the
FDT for a parameter in a
first-level repeated parameter list.

RI99 IDCRI03 IDCRI03 trace End of IDCRI03.

RMAL IDCRMOI ALISPROC trace Entry to ALISPROC.

RMAT IDCRMOI ALTRPROC trace Entry to AL TRPROC.

RMBF IDCRMOI BFPLPROC trace Entry to BFPLPROC.

RMBG IDCRMOI IDCRMOI trace Entry to IDCRMOI.

RMCE IDCRMOI CLUSPROC trace Exit from CLUSPROC.

RMCL IDCRMOI CPLPROC dump After the CPL has been built.

RMCP IDCRMOI CLUSPROC trace Entry to CLUSPROC.

RMCT IDCRMOI CLUSPROC trace Begin reading of cluster or
alternate index information from
the portable data set.

RMDC IDCRMOI DELTPROC dump After the first UCT ALG in
DELTPROC.

RMDD IDCRMOI DELTPROC dump After the second UCA TLG in
DELTPROC.

RMDL IDCRMOI DELTPROC trace Entry to DEL TPROC.

RMDN IDCRMOI NVSMPROC trace Duplicate nonVSAM entry found.

RMDU IDCRMOI UCATPROC trace Duplicate user catalog found.

RMDV IDCRMOI CLUSPROC trace A duplicate VSAM entry has been
found.

RMEL IDCRMOI IDCRMOI trace End of the loop for importing
objects.

RMEV IDCRMOI CLUSPROC trace End of cluster or alternate index
define sequence.

RMFN IDCRMOI IDCRMOI dump Termination of IDCRMOI.

RMFV IDCRMOI FVTPROC trace Entry to FVTPROC.

RMGD IDCRMOI GDGPROC trace Entry to GDGPROC.

RMLV IDCRMOI LVLRPROC trace Entry to LVLPROC.

RMOP IDCRMOI OPENPROC trace Entry to OPENPROC.

RMNF IDCRMOI NFVTPROC trace Entry to NFVTPROC.

RMNV IDCRMOI NVSMPROC trace Entry to NVSMPROC.

RMPL IDCRMOI CPLPROC trace Entry to CPLPROC.

RMPS IDCRMOI BPASPROC trace Entry to BPASPROC.

RMPT IDCRMOI CLUSPROC trace Beginning of path definition
sequence.

RMRG IDCRMOI RANGPRC trace Entry to RANGPROC.

RMSP IDCRMOI CTLGPROC trace Entry to CTLGPROC.

RMUC IDCRMOI UCATPROC trace Entry to UCATPROC.

RMUQ IDCRMOI IUNIQPRC trace A unique data or index
component has been detected.

464 DOS/VS Access Method Services Logic

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

RMZZ IDCRMOI CTLGPROC dump Before and after the UCl\ TLG in
CTLGPROC.

I RPCI IDCRPOI CNVRTCI dump On exit from procedure that
translates control interval
numbers on the backup catalog.

RPDl IDCRPOI CATRELOD dump At the end of all reload error
checking before any updates have
been done to the target catalog.

RPTU IDCRPOI TRUENAME dump On exit from procedure, having
built truename range table.

RPTI IDCRPOt CATRELOD trace Start of procedure that perfoiffis
catalog reload.

RPT2 IDCRPOI TRUENAME trace Start of procedure that maps the
RBA boundaries of the backup
true name ranges.

RPT3 IDCRPOI CATRANS trace On entry to procedure that locates
control interval numbers to be
translated.

RPT4 IDCRPOI CNVRTCI trace On entry to procedure that
converts control interval numbers
from the backup catalog.

RPT5 IDCRPOI CATCOMP trace On entry to procedure that
compares truename records.

RPT6 IDCRPOI VERIFYC trace On entry to procedure that issues
VERIFY against a catalog.

RPOI IDCRPOI IDCRPOI dump End of REPRO FSR.

RPIO IDCRPOI DUMPIT dump After read or write to backup or
target catalog.

RP12 IDCRPOI IDCRPOI trace After all data sets have not been
opened successfully.

RP13 Tr....,..nT"U"\ ..
iu\.;~rv. IDCRPOi trace Start of ioop that copies the data

set by issuing UGET and UPUT
macros.

RP18 IDCRPOI IDCRPOI trace After all records have been copied
to output data set.

RP21 IDCRPOI DELIMSET trace Start of procedure that sets up the
beginning and ending delimiters
of the input data set.

RSAD IDCRS05 ADDUPCR trace Upon entry to routine which
updates the CRA for a particular
record.

RSAE IDCRSOI AERROR trace On entry to routine that exists if
enough storage is not available to
establish automatic storage
required for RESETCA T
modules.

RSAS IDCRS02 ASSOC trace On entry to routine that initiates
association checking.

RSAT IDCRS05 ADDTN trace On entry to routine that adds a
true name to the catalog.

RSAI IDCRS02 ASSOC dump At end of procedure that initiates
association checking.

Diagnostic Aids 465

Trace and Dump Points to Phase or CSECf Cross Reference

Trace or Dump Phase or
Point CSECf Procedure Type Situation at Dump or Trace Point

RSA2 IDCRS05 ADDUPCR dump At end of procedure that prepares
for update CRA processing.

RSBR IDCRS05 BLDRLST trace On entry to routine that adds an
entry to the reset volume table.

RSBV IDCRS05 BLDVLST trace On entry to routine that adds an
entry to the volume serial table.

RSBI IDCRS05 BLDVLST dump End of procedure that adds an
entry to the volume serial table.

RSB2 IDCRS05 BLDRLST dump At end of procedure that adds an
entry to the reset table.

RSCA IDCRS02 CINALTER trace On entry to routine that alters
control interval numbers in
catalog records.

RSCC IDCRS07 CNVTCCHH trace On entry to routine that converts
CCHH to TInn.

RSCE IDCRS07 CATEOV trace On entry to routine that extends
the catalog.

RSCH IDCRS03 CHKDSDIR trace On entry to routine that checks a
data set directory entry against a
OAT A or INDEX component.

RSCI IOCRSOI CATINIT trace On entry to routine that initializes
RESETCATs description of the
catalog.

RSCK IDCRS05 CKERR trace On entry to routine that prints a
message if one is associated with
the error message given.

RSCL IDCRSOI CLEANUP trace On entry to routine that ensures
all RESETCAT resources are
free.

RSCO IDCRSOI COPYCAT trace On entry to procedure that copies
the catalog to the workfile.

RSCR IDCRS05 CRAUPCHN trace On entry to routine that adds a
workfile record to a specific
"update CRA" chain.

RSCU IDCRS03 CATRCDSU trace On entry to routine that
establishes base record offsets for
catalog low key range records.

RSCI IDCRSOI CATINIT dump End of procedure that builds CIN
to RRN table.

RSC2 IDCRSOI COPYCAT dump End of procedure that copies the
catalog to the workfile.

RSC3 IOCRSOI CLEANUP dump Before freeing the resources used
by RESETCAT.

RSC4 IDCRS05 CKERR dump Before RESETCAT FSR is
terminated due to an error.

RSC7 IDCRS07 CATEOV dump At conclusion of routine that
extends the catalog.

RSDA IDCRS07 DADSM trace On entry to routine that processes
all DADSM functions.

RSDC IDCRS06 DSCLOSE trace On entry to procedure that closes
a VSAM data set.

466 DOS/VS Access Method Services Logic

Trace and Dump Points to Phase or CSEcr Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

I RSDE IDCRS04 DELGO trace On entry to routine that deletes a
group occurrence.

RSDO IDCRS06 DSOPEN trace On entry to procedure that opens
VSAM data sets.

RSDT IDCRS05 DELTN trace On entry to procedure that deletes
a true name from the catalog.

RSDI IDCRS06 DSOPEN dump End of procedure that opens a
VSAM data set.

RSD2 IDCRS06 DSCLOSE dump End of procedure that closes a
VSAM data set.

RSD3 IDCRS04 DELGO dump End of procedure that deletes a
group occurrence.

RSD4 IDCRS07 DADSM dump At conclusion of routine that
processes all DADSM functions.

RSEN IDCRS05 ENTNMCK trace On entry to routine that
determines if a catalog record has
a valid entry name.

RSES IDCRSOI ENSURECI trace On entry to routine that ensures
there are enough free CIs for
reassignment.

RSEI IDCRS05 ENTNMCK dump End of procedure that determines
if a record has a true name.

RSE2 IDCRSOI ENSURECI dump A start of procedure prior to
ensuring enough free CIs.

RSFI IDCRS04 FIND trace On entry to routine that locates
requested information from a set
of catalog records.

RSFI IDCRS04 FIND dump End of routine that finds one or
all group occurrences.

RSGE IDCRS05 GENNAME trace On entry to routine that generates
a true name.

RSGF IDCRS03 GETFIT trace On entry to routine that gets a
free entry in tables for ASSOC.

RSGN IDCRS03 GETNEXTE trace On entry to routine that translates
an index into a table into a virtual
address.

RSGT IDCRS03 GETTAB trace On entry to routine that gets and
initializes a table for ASSOC.

RSGV IDCRS03 GETVIA trace On entry to routine that gets a
record by control interval number
via a specific CRA.

RSGI IDCRS03 GETVIA dump End of procedure that locates
records in the workfile.

RSIN IDCRSOI INIT trace On entry to routine which
performs the main initializations
for RESETCAT.

RSIl IDCRSOI INIR dump End of procedure that initializes
data areas and obtains resource.

RSME IDCRSOI MERGCRA trace On entry to routine that merges
each reset CRA into the workfile.

Diagnostic Aids 467

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

RSMO IDCRS04 MODGO trace On entry to procedure' that
modifies a group occurrence.

RSMU IDCRS03 MARKUNUS trace On entry to routine that marks a
Volume Group Occurrence
(VGO) unusable.

RSMI IDCRSOI MERGECRA dump End of procedure that merges and
resets CRA into the workfile.

RSM2 IDCRS04 MODGO dump End of procedure that modifies a
group occurrence.

RSPC IDCRS02 PROCTYPE trace On entry to routine that scans a
catalog record for CINs.

RSPI IDCRS02 PROCCI trace On entry to routine that ensures a
CIN is in the list of CINs for
records being processed.

RSPR IDCRSOI PROCCRA trace On entry to routine that processes
the records of the current CRA.

RSPV IDCRS03 PROCVOL trace On entry to routine that resolves
space conflicts.

RSPI IDCRSOI PROCCRA dump End of procedure that merges the
records of a reset CRA into the
workfile.

RSP2 IDCRS03 PROCVOL dump Before freeing resources used by
PROCVOL routine.

RSP3 IDCRS02 PROCTYPE dump After processing a set of records
for associations.

RSP4 IDCRS02 PROCCI dump End of procedure that ensures
that a CIN is in the list of CINs.

RSRC IDCRS06 RECMGMT trace On entry to routine that performs
allIlO operations for
RESETCAT.

RSRE IDCRSOI REASSIGN trace On entry to routine that performs
control interval reassignment.

RSRN IDCRS07 RENAMEP trace On entry to routine that renames
duplicate true name entries.

RSRI IDCRSOI REASSIGN dump End of procedure that assigns new
CINs to records on the reassign
chain.

RSR2 IDCRS06 RECMGMT dump End of procedure that performs
allIlO requests.

RSR4 IDCRS07 RENAMEP dump Before freeing resources used by
the RENAMEP procedure.

RSSB IDCRS03 SETBMAP trace On entry to routine that checks
space conflicts for D or I type
catalog entries.

RSSC IDCRS02 SCANCI trace On entry to routine that scans
records for control intervals.

RSSE IDCRS02 SETCI trace On entry to routine that updates
the workfile to reflect new CINs
for reassigned CINs.

468 DOS/VS Access Method Services Logic

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

RSSR IDCRS05 SCNRLST trace On entry to routine that obtains
the next CRA volser entry for
reset.

RSST IDCRS03 SETBITS trace On entry to routine that maps
extents to a bit map.

RSSV IDCRS05 SCNVLST trace On entry to routine that scans
through the list of volumes.

RSS2 IDCRS02 SETCI dump End of procedure that updates the
workfile records from the
associations tables.

RSS3 IDCRS03 SETBITS dump At end of procedure that sets up a
single bit map.

RSS5 IDCRS05 SCNVLST dump End of procedure that locates an
entry in the volume serial table.

RSS6 IDCRS05 SCNRLST dump End of procedure that locates an
entry in the reset volume table.

RSUA IDCRS03 UNALLOC trace On entry to routine which
unallocates suballocated space
from temporary space maps.

RSUC IDCRSOt UPDCRA trace On entry to routine which updates
the CRAs from the workfile.

RSUP IDCPSOI UPDCAT trace On entry to routine which updates
the catalog from the workfile.

RSUR IDCRS07 UPDCCR trace On entry to procedure which
updates the CCR for the catalog.

RSUI IDCRSOt UPDCAT dump End of procedure that updates the
catalog from the workfile.

RSU2 IDCRSOt UPDCRA dump End of procedure that updates the
CRAs from the workfile.

RSVB IDCRS03 VERB trace On entry to routine which verifies
associations for GOG base
records.

RSVC IDCRS02 VERC trace On entry to routine which verifies
associations for clusters.

RSVE IDCRS02 VERDSDIR trace On entry to routine which verifies
that data set directory entries for
VSAM data sets not on reset
volumes.

RSVG IDCRS02 VERG trace On entry to routine which verifies
associations for AIXs.

RSVN IDCRS03 VLNRESET trace On entry to routine which verifies
space requested from objects
being reset against non-reset
volumes.

RSVO IDCRSOt VOLCHK trace On entry to volume consistency
routine (VOLCHK).

RSVP IDCRS02 VERR trace Upon entry to routine which
verifies associations for PATHs.

RSVR IDCRS02 VERCI trace On entry to routine which checks
validity of each CIN found in a set
of records.

Diagnostic Aids 469

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

RSVS IDCRS03 VLRESET trace On entry to routine which verifies
space requested against reset
volumes.

RSVU IDCRS02 VERU trace On entry to routine which verifies
associations for user catalogs.

RSVX IDCRS02 VERX trace On entry to routine which verifies
alias associations.

RSVI IDCRS03 VOLCHK dump End of procedure that checks
Format I DSCBs against space
headers.

RSV2 IDCRS02 VERDSDIR dump After verifying initial space
claims.

RSV3 IDCRS02 VERCI dump After verifying associations on a
set of records.

RSV4 IDCRS03 VERB dump Before freeing resources used by
procedure which verifies GOG
data sets.

RSWF IDCRS06 WFDEF trace Upon entry to routine which
defines an RRDS as a workfile for
RESETCA T processing.

RSWL IDCRS06 WFDEL trace On entry to routine which deletes
the workfile.

RSWR IDCRSOI WRAPUP trace On entry to routine which handles
clean up operations after
successful RESETCA T
processing.

RSW2 IDCRS06 WFDEF dump Before the UCA TLG work area is
freed.

RSW3 IDCRS06 WFDEL dump End of procedure that deletes the
workfile.

RSOO IDCRSOI IDCRSOI dump End of RESETCAT FSR.

RSOI IDSCROI IDCRSOI trace Upon entry to main RESETCAT
module.

SAAB IDCSAOI SAABT dump In UABORT routine when a
dump is not to be printed for a
" no space available" condition.

SACA IDCSA02 IDCSA02 trace Start of routine that processes
UCATLG macro.

SACL IDCSA02 IDCSA02 trace Start of routine that processes
UCALL macro.

SADE IDCSA02 IDCSA02 trace Start of routine that processes
UDELETE macro.

SADQ IDCSA08 IDCSA08 trace Start of routine that processes
UDEQmacro.

SAEP IDCSAOI PRNTERR trace Entry to routine which prints an
error messag~ via EXCP.

SAFP IDCSA02 IDCSA02 trace Start of routine that processes
UFPOOL macro.

SAFS IDCSA02 IDCSA02 trace Start of routine that processes
UFSPACE macro.

470 DOS/VS Access Method Services Logic

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

SAGP IDCSA02 IDCSA02 trace Start of routine that processes
UGPOOL macro.

SAGS IDCSA02 IDCSA02 trace Start of routine that processes
UGSPACE macro.

SALD IDCSA02 IDCSA02 trace Start of routine that processes
ULOAD macro.

SANQ IDCSA08 IDCSA08 trace Start of routine that processes
UENQ macro.

SASN IDCSA02 IDCSA02 trace Start of routine that processes
USNAP macro.

SATI IDCSA02 IDCSA02 trace Start of routine that processes
VTIME macro.

SA05 IDCSA05 IDCSA05 trace Before the TIME macro is issued.

TPCC IDCTPOI IDCTPOI trace Before the call to the CONVERT
routine is issued.

TPEA IDCTP06 IDCTP06 dump Start of UERROR procedure.

TPEB IDCTP06 IDCTP06 dump Before a converted VERROR
message is printed.

TPER IDCTPOI ERROR dump Start of procedure that prints a
text processor error message.

TPEI IDCTP06 IDCTP06 trace Start of UERROR procedure.

TPE2 IDCTP06 CATERCNV trace Entry point to routine that
converts catalog error messages to
prose.

TPIN IDCTPOI IDCTPPR dump At end of phase; the format
structure for a UPRINT macro
has been processed.

TPSI IDCTPOI IDCTPPR dump After initialization of text
processor parameters.

TP2I IDCTPOI CONVERT dump Start of procedure that converts
data to a printable form.

TP2N IDCTPOI CONVERT dump End of procedure that converts
data to a printable form.

TP3I IDCTPOI LINEPRT dump Start of procedure that formats
pages and prints titles, headings,
footings, and other lines
requested.

TP3N IDCTPOI LINEPRT dump End of procedure that prints lines.

TP4A IDCTP04 ESTACONT dump End of procedure that processes
the VEST A macro.

TP4R IDCTP04 RESTCONT dump End of procedure that processes
VREST macro.

TP4S IDCTP04 ESTSCONT dump End of procedure that processes
VESTS macro.

I TP5E IDCTP05 IDCTP05 trace Start of procedure that gets a
static text module.

TP5I IDCTP05 IDCTP05 dump Start of phase that loads the static
text phase.

TP5N IDCTP05 IDCTP05 dump End of phase that loads the static
text phase.

Diagnostic Aids 471

Trace and Dump Points to Phase or CSECT Cross Reference

Trace or Dump Phase or
Point CSECT Procedure Type Situation at Dump or Trace Point

VYBG IDCVYOI IDCVYOI dump Start of VERIFY FSR.

VYCL IDCVYOI TERMPROC trace Start of procedure that closes the
data set that was verified.

VYND IDCVYOI IDCVYOI dump End of VERIFY FSR.

VYOP IDCVYOI OPENPROC trace Start of procedure that opens the
VSAM data set to be verified.

VYST IDCVYOI IDCVYOI trace Start of VERIFY FSR.

XPAO IDCXPOI CLUSPROC trace Before retrieving from the catalog
the entries associated whh the
cluster or alternate index being
exported.

XPAP IDCSPOI ALTRPROC trace Start of procedure that modifies
the CTGPL to set the temporary
export flag on.

XPBG IDCXPOI IDCXPOI trace Start of EXPORT FSR.

XPCP IDCXPOI CLUSPROC trace Before retrieving the catalog entry
for the object to be exported.

XPCR IDCXPOI CONTRBL trace Before constructing control
records for the portable data set.

XPCW IDCXPOI CONTRBL trace Before writing control records to
the portable data set.

XPDP IDCXPOI DELTPROC trace Start of procedure that sets up the
CTGPL to delete a cluster or
alternate index or disconnect a
user catalog.

XPED IDCXPOI IDCXPOI -trace End of EXPORT FSR.

XPFN IDCXPOI IDCXPOI dump End of EXPORT FSR, before
data sets are closed and space
freed.

XPL? IDCXPOI LOCPROC trace Start of procedure that builds the
CTGPL and CTGFLs for a locate
request.

XPMS IDCXPOI MORESP trace Entry to MORESP.

XPOP IDCXPOI OPENPROC trace Start of procedure that opens
either the portable data set or the
cluster or alternate index to be
exported.

XPPM IDCXPOI CLUSPROC trace Before processing the permanent
or temporary export option.

XPPP IDCXPOI PUTPROC trace Start of procedure that writes a
record to the portable data set.

XPRP IDCXPOI RECPROC trace Entry to RECPROC.

XPSP IDCXPOI CTLGPROC trace Start of procedure that calls the
catalog for a locate, alter, or
delete request.

XPTM IDCXPOI CLUSPROC trace Before calling the procedure to
alter the CTGPL to set the
temporary export flag.

XPUC IDCXPOI DSCTPROC trace Start of procedure that
disconnects a user catalog.

472 DOS/VS Access Method Services Logic

Trace and Damp Points to Phase or CSECf Cross Reference

Trace or Dump Phase or
Point CSECf Procedure Type Situation at Dump or Trace Point

XP\VC T~""'''1'V'\'' lU~.I\.rv. CLUSPROC trace Before writing the catalog
information to the portable data
set.

XPZX IDCXPOI MORESP dump Just after the UCATLG macro.

XPZY IDCXPOI DELTPROC dump Just after the UCA TLG macro.

XPZZ IDCXPOI CTLGPROC dump After calling the catalog to locate,
alter, or delete an entry.

XPOI IDCXPOI IDCXPOI dump Start of EXPORT FSR.

ZZCA IDCSA02 IDCSA02 dump Before and after CA TLG macro is
issued to invoke catalog
management routines.

Motblle to Dump Points Cross Reference

The dump points, set up by UDUMP macros, have been placed at key
locations in each phase and CSECT, for example, around calls to other
processor and non-processor phases or CSECTs. Each dump point specifies
the information that can be dumped at that point. Some dump points allow
symbolic dumping of selected fields, for example, parameter lists or return
codes; all dump points allow dumping of the full partition and printing of the
trace tables.

The following list contains the dump points within each phase or CSECT and
procedure, indicates what information can be dumped at each point (either a
full dump or selected areas), and explains the situation at the dump point. As
explained in the section, "TEST Keyword" in this chapter, full region dumps
are taken at all dump points in this list. Selected areas can be printed with
either the AREAS or FULL variation of the Test option. Details of the
selected areas are given in the footnotes following the list.

Phase 01' CSECf to Dump Points Cross Reference

CSECf

IDCALOI

Procedwe Dump Point Type

CHECKPRC AL51 dump

AL52 dump

AL53 dump

AL54 dump

AL55 dump

AL56 dump

IDCALOI ALOI dump

AL02 dump

Situation at Dump Point

After locating data component of
the alternate index for which
UPGRADE has been specified.

After locating associated cluster
or the alternate index of the data
object specified on ALTER
command.

After locating associated index
component.

After locating the data component
of the path's base cluster.

After locating the cluster
component of the alternate
index's base cluster.

After locating the data component
of the alternate index's base
cluster.

Before calling the catalog to alter
an object.

End of ALTER FSR.

Diagnostic Aids 473

Phase or CSECT to Dump Points Cross Reference

Phase or
CSECT Procedure Dump Point Type Situation at Dump Point

IOCALOl AL04 dump Before issuing ALTER request for
(Continued) index objects if KEYS specified.

INDEXPRC AL61 dump On entry to INDEXPRC.

LOCATPRC AL03 dump After calling the catalog to alter
an object.

IDCBIOI CATPROC BIL2 dump After return from UCA TLG for
each locate request.

CNTRLPRC BIC2 dump After completion of sort if an
internal sort. After completion of
sort phase and before merge
passes if an external sort.

IDCBIOI DEFPROC BID2 dump After return from UCATLG to
define each sort work file.

IDCBIOI DELTPROC BIDL dump After return from UCATLG to
delete each sort work file.

INITPROC BII2 dump After obtaining or failing to
obtain sort storage.

JCPROC BIJ2 dump After return from each call to
UIOINFO.

MAINPROC BI03 dump After return from procedure
which locates information about
the base cluster and alternate
index.

BI04 dump After the alternate index has been
built, before CLOSE.

MERGPROC BIM3 dump After the tree has been initialized
for each merge pass of an external
sort.

BIM4 dump After processing one set of strings
during the merge pass of an
external sort.

OPENPROC BIP2 dump After return from UOPEN to
open a data set.

SORTPROC BISR dump Before sorting the records in the
record sort area.

IDCDEOI IDCDEOt DEOt dump Before calling the catalog to
define an object.

DE02 dump End of DEFINE FSR, before
completion message is issued.

I IDCDE02 MODELPRC DE03 dump After calling the catalog to locate
a model object.

DE04 dump End of procedure that built the
model table.

FREESTG DE37 dump End of DEFINE FSR.

IDCDLOt CATCALL DLVS dump Before and after calling the
catalog to delete an entry.

FIND TYPE DLVL dump Before and after calling the
catalog to locate the entry type.

IDCDLOI DLBG dump Start of DELETE FSR.

474 DOS/VS Access Method Services Logic

Text Rearranged Only
Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

Phase or CSECf to Dump Points Cross Reference

Phase or
CSECf Procedure Dump Point Type Situation at Dump Point

Tn(""OT 1\1 DLND A .. ~_ V_A ~I OVT VTV veD 1..AI~~A
UJ'-'I.JJ.JVI UUI"P .L...tJJU VI,..L.J.I.J.L.t 1..&.oJ • ...,.1'-, U,-,"lVI",

(Continued) data sets are closed and the
completion message is issued.

MORESP DLVT dump Before and after the UCATLG
macro in MORESP.

IDCEXOI CALLFSR EXFS dump Before each call to an FSR.

CALLRI EXRI dump Before each call to the
Reader/Interpreter.

IDCEXOI IDCEXOI EXMN dump All Reader/Interpreter FSR
processing is complete.

IDCIOOl GETEXT 10EG dump End of procedure that gets a
record from the user routine.

GETVSAM 10VG dump End of procedure that gets a
record or control interval from a
VSAM data set.

IDCIOVY IOVY dump After VERIFY macro is issued.

PUTEXT IOEP dump After control returns from an
external user routine.

PUTREP IOGR dump After the GET for update.

10PR dump After the PUT for update.

PUTVSAM IOVP dump End of procedure that writes a
VSAM record.

VSAMERR 10VR dump After detection of a VSAM I/O
error.

IDCI002 BUILDACB IOAC dump After ACB and EXLST have been
built, at end of procedure.

BUILDRPL 10RP dump After RPL is built, at end of
procedure.

CLOSERTN IOIC dump Before CLOSE macro is issued.

102C dump At end of all UCLOSE
processing.

DSDATA 10DS dump After obtaining file information
from the label cylinder.

OPENRTN 1010 dump Before OPEN macro is issued.

1020 dump After OPEN macro is issued.

1021 dump At end of all UOPEN processing.

IDCI003 DSINFO lOll dump After return from IKQVDTPE.

1002 dump After formatting the work area.

IDCI003 10PO dump After positioning is complete,
before returning control to
IDCIOPO.

IDCLCOI IDCLCOI LC99 dump End of LISTCA T FSR, before
freeing storage in IDCLCOI.

IDCLC02 ERRPROC LCMG selected Before UPRINT macro is issued
areas 1 to print a message.

FREESTG LC98 dump End of LISTCAT FSR, before
freeing storage in IDCLC02.

Diagnostic Aids 475

Phase or CSECT to Dump Points Cross Reference

Phase or
CSECT Procedure Dump Point Type Situation at Dump Point

IDCLC02 IDCLC02 LC02 dump When IDCLC02 is called the first
(Continued) time to establish addressability.

LISTPROC LCTP selected Before UPRINT macro is issued
areas 2 to print catalog data.

LOCPROC LCAL selected After calling the catalog to locate
areas 3 an entry.

LCBL selected Before calling the catalog to
areas 4 locate an entry.

LCWA selected After calling the catalog to locate
areas 5 an entry.

IDCLROI AATOPLR LRAA dump Entry point for IDCLROI.

ADDASOC LRAD dump Start of procedure that adds an
association to the association
table.

BLDVEXT LRBL dump Start of procedure that builds
vertical extension tables.

BUFSHUF LRBU dump Start of procedure that moves a
record to its "home" buffer.

CATOPEN LCRA dump Start of procedure that prepares
to open the catalog.

CKEYRNG LRCK dump Start of procedure that checks for
keyrange.

CLEANUP LRCI dump Start of procedure that cleans up
before exit.

CLENCRA LRC2 dump Start of procedure that closes the
CRA and prints completion
message.

CRAOPEN LRCR dump Start of procedure that opens the
CRA.

CTTBLD LRCT dump Start of procedure that builds CI
translate table.

DOOTHR LRDO dump Start of procedure that controls
printing non VSAM information.

DOVSAM LRDV dump Start of procedure that controls
printing VSAM information.

ERROR LRER dump Start of procedure that handles
errors.

LRZY dump After error message has been
printed.

LRZZ dump After error that forced an
ABORT of this execution.

GETPRT LRGE dump Start of procedure that gets and
prints records.

INITLZE LRIN dump Start of procedure that initializes
the FSR.

INTASOC LRIA dump Start of procedure that initializes
association tables.

INTSORT LRIS dump Start of procedure that initializes
the sort table.

476 DOS/VS Access Method Services Logic

Phase or CSECf to Dump Points Cross Reference

Phase or
CSECf Procedure Dump Point Type Situation at Dump Point

INTVEXT LRIV dump Start of procedure that initializes
the vertical extension table.

MEMSORT LRME dump Start of procedure that sorts the
entries in sort table.

PRTAAXV LRPA dump Start of procedure that prints
associated AIXs and volumes.

PRTCMP LRPC dump Start of procedure that prints and
compares information.

PRTDMP LRPD dump Start of procedure that prints
dump if specified.

PRTDMPC LRPE dump Start of procedure that prints
dump of catalog record and
underscores miscompares.

PRTFIFO LRPF dump Start of procedure that prints
CRA in order of CI number.

PRTMCWD LRPM dump Start of procedure that prints
miscompare words.

PRTOJAL LRPJ dump Start of procedure that prints an
objects aliases.

PRTOJVL LRPK dump Start of procedure that prints an
object's volumes.

PROTHR LRPO dump Start of procedure that prints
non VSAM objects.

PRTTIME LRPT dump Start of procedure that prints
timestamps.

PRTVOL LRPW dump Start of procedure that prints
volume records.

PRTVSAM LRPV dump Start of procedure that prints
VSAM structures.

SUMIT LRSM dump Start of procedure that prints
number of entries processed.

TCICTCR LRTC dump Start of procedure that translates
the catalog CI to the CRA.

VERTEXT LRVE dump Start of procedure that handles
vertical extension records.

IDCLR02 IDCLR02 LR02 dump Entry point for module that gets a
record for Recovery Field
management routine.

IDCMPOt CTLGPROC MPZZ dump Before and after calling the
catalog to locate, alter, or define
an entry.

DELTPROC MPDC dump After the first UCATLG.

MPDD dump After the second UCATLG.

IDCMPOt MPFN dump End of IMPORT FSR, prior to
closing data sets.

IDCPROt IDCPROt PRot dump End of PRINT FSR.

IDCRCOt CKNAMES RC99 dump Before gathering information on
name in name list from CRA.

DIRECT RC98 dump Before obtaining a directory for a
volume.

Diagnostic Aids 477

Phase or CSECf to Dump Points Cross Reference

Phase or
CSECf Procedure Dump Point Type Situation at Dump Point

IDCRCOI NAMETABL RC97 dump Before marking or adding a name
(Continued) to the name chain.

ERRCK RC96 dump After opening a CRA.

SCANCRA RC95 dump Before scanning CRA to build the
ClTtable.

TIMESTMP RC94 dump Before obtaining format 4
timestamp for CRA being opened.

CKCATNM RC93 dump Before checking owning catalog
name of CRA being opened.

OPEN RC92 dump Before the opening of the CRA.

OPENCRA RC91 dump Before opening or closing a CRA
and doing all other work (e.g.
Build ClT).

EXTRACT RC90 dump Before using internal Field
Management to get information
fromCRA.

MESSAGE RC89 dump Before printing any message from
IOCRCOI.

SUBSP RC88 dump Before allocating space for the
name chain.

COMPNAME RC87 dump Before compressing a name for
the name list.

BUILONAM RC86 dump Before constructing a block for
the name chain.

OUPNAMCK RC8S dump Before checking the name chain
for duplicates.

OBJVOLCK RC84 dump Before checking Sync. of entry
across mUltiple volumes.

SYNCH RC83 dump Before scanning the name chain
for a CRA to check it.

EXPORTOR RC82 dump Before looping down name chain
to call IDCRC02 to export data
sets.

BUILOCRV RC8t dump Before building the CRV.

INIT RC80 dump Before initializing to begin
processing.

TERM RC79 dump Before special processing to
terminate request (closing output
data set.)

IOCRC02 ASOCPROC RC40 dump Start of procedure which
processes non VSAM objects
associated with GOG's

CLUSPROC RC06 dump Start of procedure which
processing VSAM objects.

CTLGPROC RC16 dump Start of procedure which issues
catalog locates.

GOGPROC RC36 dump Start of procedure which
processes GOG objects.

IOCRC02 RC02 dump Start of main prQcedure.

IOCRC02 RC04 dump Before termination processing.

478 OOS/VS Access Method Services Logic

Phase or CSECT to Dump Points Cross Reference

Phase or
CSECT Procedure Dump Point Type Situation at Dump Point

NVSMPROC RC28
A .. ~_

Start of procedure which \,IUlllP

processes nonVSAM objects not
associated with GDG's.

IDCRIOI BYPASTRM RIBT dump Start of procedure that bypasses
the remainder of the current
modal or null command.

CONVERT RICV dump Start of procedure that converts a
constant from EBCDIC to binary
or hexadecimal.

DEFAULTS RIDF dump Start of procedure that adds
default parameters to the FDT.

DSPLCALC RIDC dump Start of procedure that calculates
the position within a secondary
FDT vector in which to place an
FDT pointer.

ERRORI RIEl dump Start of procedure that issues a
message without inserted text.

ERROR2 RIE2 dump Start of procedure that issues a
message with inserted text.

GETNEXT RIGN dump Start of procedure that scans the
input command.

GETQUOTD RIGQ dump Start of procedure that scans a
quoted constant.

GETRECRD RIGR dump Start of procedure that obtains the
next input record.

IDCRIOI RIEX dump Start of Reader/Interpreter
module.

INREPEAT RIIR dump Start of procedure that scans a
repeated parameter set.

MODALIF RIMI dump Start of procedure that scans an
IF modal command.

MODALSET RIMS dump Start of procedure that scans a
SET modal command.

MODLELSE RIME dump Start of procedure that scans an
ELSE modal command.

MORSPACE RIMC dump Start of procedure that scans an
FDT space for a list of constants.

NAMESCAN RINS dump Start of procedure that checks
data set names.

NEEDNOTS RINN dump Start of procedure that checks the
input command for conflicting or
missing parameters.

PACKCVB RIPC dump Start of procedure that converts a
decimal constant into a binary
fullword.

POSPARM RIPP dump Start of procedure that scans a
positional parameter.

SCANCMD RISC dump Start of procedure that scans the
input command parameters.

Diagnostic Aids 479

Phase or CSECT to Dump Points Cross Reference

Phase or
CSECT Procedure Dump Point Type Situation at Dump Point

IDCRIOI SCANENDS RISE dump Start of procedure that checks the
(Continued) input record for a continuation

delimiter and determines the
scanning limits of the record.

SETDFLT RIST dump Start of procedure that puts P
defaults in the FDT.

SETFLAG RISF dump Start of procedure that notes the
occurrence of a parameter in the
FDT.

SKIPCMD RISK dump Start of procedure that bypasses
the remainder of a function
command.

IDCRI02 IDCRI02 RISD dump Start of module that prepares to
scan a command parameter set.

IDCRI03 IDCRI03 RITM dump Start of module that performs
command termination functions.

IDCRMOI CPLPROC RMCL dump After the CPL has been built.

CTLGPROC RMZZ dump Before and after the UCATLG in
CTLGPROC.

DELTPROC RMDC dump After the first UCATLG in
DELTPROC.

RMDD dump After the second UCA TLG in
DELTPROC.

IDCRMOI RMFN dump Termination of IDCRMOI.

IDCRPOI IDCRPOI RPOI dump End of REPRO FSR.

CATRELOD RPDl dump At the end of all reload error
checking before any updates have
been done to the target catalog.

CNVRTCI RPCI selected On exit from procedure that
areas 6 translates control interval

numbers on the backup catalog.

DUMPIT RPIO selected After read or write to backup or
areas 7 target catalog.

TRUENAME RPTU selected On exit from procedure having
areas 8 built true name range table.

IDCRSOI CATINIT RSCI dump , End of procedure that builds CIN
to RRN table.

COPYCAT RSC2 dump End of procedure that copies the
catalog to the workfile.

CLEANUP RSC3 dump Before freeing the resources used
by RESETCA T.

ENSURECI RSE2 dump At start of procedure prior to
ensuring enough free control
intervals

INIT RSIl dump End of procedure that initializes
data area and obtains resources.

MERGECRA RSMt dump End of procedure that merges and
resets CRA into the workfile.

PROCCRA RSPI dump End of procedure that merges the
records of a reset CRA into the
workfile.

480 DOS/VS Access Method Services Logic

Phase or CSECT to Dump Points Cross Reference

Phase or
CSECT Procedure Dump Point Type Situation at Dump Point

IDCRSOI REASSIGN RSRI dump End of procedure that assigns new
(continued) control interval numbers to

records on the reassign chain.

UPDCAT RSUI dump End of procedure that updates the
catalog from the workfile.

UPDCRA RSU2 dump End of procedure that updates the
CRA from the workfile.

IDSCROI RSOO dump End of RESETCA T FSR.

IDCRS02 ASSOC RSAI dump End of procedure that ititiates
association checking.

PROCTYPE RSP3 dump After processing a set of records
for associations.

PROCCI RSP4 dump End of procedure that ensures
that a contol interval number is in'
the list of control interval
numbers.

SETCI RSS2 dump End of procedure that updates the
workfile records from the
associations tables.

VERDSDIR RSV2 dump After verifying initial space
claims.

VERCI RSV3 dump After verifying associations on a
set of records.

IDCRS03 GETVIA RSGI dump End of procedure that locate~
records in the workfile.

PROCVOL RSP2 dump Before freeing resources used by
PROCVOL routine.

SETBITS RSS3 dump At end of procedure that sets up a
single bit map.

VOLCHK RSVI dump End of procedure that checks
FOimat 1 DSCBs against space
headers.

VERB RSV4 dump Before freeing resources used by
procedure which verifies GOG
data sets.

IDCRS04 DELGO RSD3 dump End of procedure that deletes a
group occurrence.

FIND RSFI dump End of routine that finds one or
all group occurrences.

MODGO RSM2 dump End of procedure that modifies a
group occurrence.

IDCRS05 ADDUPCR RSA2 dump End of procedure that prepares
for update CRA processing.

BLDVLST RSBI dump End of procedure that adds an
entry to the volume serial table.

BLDRLST RSB2 dump End of procedure that adds an
entry to the reset volume table.

~KERR RSC4 dump Before RESETCA T terminates
due to an error.

ENTNMCK RSEI dump End of procedure that determines
if a record has a true name.

Diagnostic Aids 481

Phase or CSECf to Dump Points Cross Reference

Phase or
CSECT Procedure Dump Point Type Situation at Dump Point

IDCRS05 SCNVLST RSS5 dump End of procedure that locates an
(Continued) entry in the volume serial table.

SCNRLST RSS6 dump End of procedure that locates an
entry in the reset volume table.

IDCRS06 DSOPEN RSDI dump End of procedure that opens a
VSAMfile.

DSCLOSE RSD2 dump End of procedure that closes a
VSAM file.

RECMGMT RSR2 dump End of procedure that performs-
allIlO requests.

WFDEF RSW2 dump Before the UCATLG work area is
freed.

WFDEL RSW3 dump End of procedure that deletes the
workfile.

IDCRS07 CATEOV RSC7 dump At conclusion of routine that
extends the catalog.

DADSM RSD4 dump At conclusion of routine that
processes all DADSM functions.

RENAMEP RSR4 dump Before freeing resources used by
the RENAMEP procedure.

IDCSAOI SAABT SAAB dump In UABORT routine, when a
dump is not to be printed for a
"no space available" condition.

IDCSA02 IDCSA02 ZZCA dump Before and after CA TLG macro is
issued to invoke catalog
management routines.

IDCTPOI CONVERT TP2I dump Start of procedure that converts
data to a printable form.

TP2N dump End of procedure that converts
data to a printable form.

ERROR TPER dump Start of procedure that prints a
text processor error message.

IDCTPPR TPSI dump After initialization of text
processor parameters.

TPIN dump At end of phase; the format
structure for a UPRINT macro
has been processed.

LINPRT TP3I dump Start of procedure that formats
pages and prints titles, headings,
footings, and other lines
requested.

TP3N dump End of procedure that prints lines.

IDCTP04 ESTACONT TP4A dump End of procedure that processes
the UEST A macro.

ESTSCONT TP4S dump End of procedure that processes
the UESTS macro.

RESTCONT TP4R dump End of procedure that processes
the UREST macro.

IDCTP06 IDCTP06 TPEA dump Start of UERROR procedure.

TPEB dump Before a converted UERROR
message is printe~.

482 DOS/VS Access Method Services Logic

Phase or CSECf to Dump Points Cross Reference

Phase or
CSECf Procedure Dump Point Type Situation at Dump Point

IDCTP05 IDCTP05 TP5i dump Start of phase that loads the static
text phase.

TP5N dump Start of phase that loads the static
text phase.

IDCVYOI IDCVYOI VYBG dump Start of VERIFY FSR.

VYND dump End of VERIFY FSR.

IDCXPOI IDCXPOI XPFN dump End of EXPORT FSR, before
data sets are closed and space
freed.

XPOI dump Start of EXPORT FSR.

CTLGPROC XPZZ dump After calling the catalog to locate,
alter, or delete an entry.

DELTPROC XPZY dump Just after the UCATLG macro.

MORESP XPZX dump Just after the UCATLG macro.

Selected Area Footnotes:

The following list describes the selected areas pointed at the specified dump points. On the
printed output, the area title precedes each area dumped.

Dump Point

1. LCMG

2. LCTP

3. LCAL

4. LCBL

5. LCWA

6. RPCI

Area TItle

ERRDARG

DARGLIST

CATRC

CTGENT

CTGPSWD

CTGPL

CTGFl., array
FPL (1)

FPL (nn)

MULTIFPL

Same as LCAL

Area Description

Text processor argument list (DARGLIST) used for
printing messages

Text processor argument list (DARGLIST) used for
printing the catalog area

VSAM catalog return code

VSAM locate key (either the entryname or the CI
number)

User supplied password

VSAM catalog parameter list

VS"A~M field parameter list.
Note: The number of FPLs
(nn) varies with the amount
of catalog information
requested (Le., NAME, HISTORY,
VOL, etc.)

VSAM field parameter list if a special function FPL is
required

CTGWKAPT Workarea address of VSAM returned cataloged fields

CTGWKA array VSAM returned catalog fields
WKA (1) Note: This workarea is dumped

as an array of 256 byte

WKAEND

OLDCI#

NEWCI#

blocks and the last block
less than 256 bytes is
indicated as WKAEND.

CI number of backup catalog record to be converted

Converted CI number in the target catalog (i.e., OLDCI#
converted to NEWCI#)

Diagnostic Aids 483

Dump Point Area Title Area Description

7. RPIO DLOUTREC A record in the high key range of the target catalog
which was deleted because it did not exist in the backup
catalog

FUPOTREC A record in the low key range of the target catalog which
was converted to a free record because it did not exist in
the backup catalog

INSOTREC A record which was inserted into the target catalog
because it existed in the backup catalog but not in the
target catalog

UPOUTREC A record which was used to update the target catalog
because the same record existed in both the backup and
the target catalogs

RDCCREC Catalog control record of the target catalog before it was
updated

UPCCREC Catalog control record of the target catalog after it was
updated with results of the reload operation

RDINPREC A record from the backup catalog before any action is
taken

RDOUTREC A record from the target catalog before any action is
taken

2ND-HALF The second half of the record printed just above

8. RPTU SORSTABL A table which maps the extents of the high key range of
the backup catalog. Each entry maps one extent and
contains:

Word 1 - High RBA of the extent

Word 2 - Number of CI's in the extent

The table is used to convert a CI number in the backup
catalog to the appropriate CI number for the target
catalog (see 'RPCI' above).

TARGTABL Same as SORST ABL for the target catalog

484 DOS/VS Access Method Services Logic

ABORT Codes
Whenever an unrecoverable error is detected by the processor, the routine
that detects the error issues a UABORT macro. The System Adapter then
issues message IDC4999i on SYSLST giving the ABORT code and, with the
exception of code 28 and code 68, produces a full partition PDUMP with the
ABORT code in register 15; the ABORT code indicates the type of error that
occurred.

The following list identifies the ABORT codes set by the processor and the
phase or CSECT and procedure that sets each ABORT code. The list also
explains the situation that caused the ABORT condition.

ABORT Codes

ABORT Phase or
£"'~ .. ~ £",C'..,£"'T
'-'UUI!: '-'~L'-'.1

24(18) IDCTPOt

IDCTP04

28(tC) IDCIOOt

IDCI002

IDCSAOt

IDCSA02

IDCSA02

IDCSA03

IDCTPOt

IDCTPOI

IDCTP05

IDCTP04

IDCTP04

IDCTP04

IDCTP04

32(20) IDCIOOt

n..~~~ ... ___
'-.U~I!:UWII:

IDCTPOt

IDCTP04

IDCIOIT

BLDOCMSG

BUILDDBK

GETCORE

IDCSA02

IDCSA02

GETCORE

LINEPRT

ERROR

IDCTP05

ESTSCONT

PCTSETUP

PCTSETUP

PCTSETUP

IDCIOGT

IDCIOPT

Situation that Caused ABORT

The pointer to the Print Control Table in the
GDT is not set.

The pointer to the Print Control Table in the
GDT is not set.

Storage was not available for the I/O Adapter
historical area and message area.

A message that sufficient storage was not
avilable could not be issued because the SYSLST
data set is not open.

Storage was not available to load the phase that
contains the DTF and access method routines
(IDCDlxx).

Storage was not available for the automatic
storage required for IDCSA02, IDCSA03,
IDCIOOt, or IDCTPOt.

The CDLOAD Anchor Table was full and
storage was not available to load the phase
requested by a UCALL or ULOAD macro.

The CDLOAD Anchor Table was not full but
storage was not available for CD LOAD to load
the phase.

Storage was not available for the automatic
storage required by a phase.

Storage not available for new header line.

Storage not available to save Conversion Table
(CVPSTRU).

Storage not available for static text entry.

Storage not available for Print Line Stack
Buffer.

Storage not available for Print Chain Translate
Table.

Storage not available for primary or secondary
Print Control Table.

Storage not available for sub-title line or footing
line change.

The pointer to the IOCSTR is zero, or the open
flag in the IOCSTR is not set, indicating that the
data set to be accessed has not been opened
successfully.

The pointer to the IOCSTR is zero, or the open
flag in the IOCSTR is not set, indicating that the
data set to be accessed has not been opened
successfully.

Diagnostic Aids 485

Page of SY33-8564-3
Revised April 29, 1977
By TNL SN24-5550

ABORT Codes

ABORT Phase or
Code CSEcr Procedure Situation that Caused ABORT

IDClOO3 IDCIOO3 The pointer to the IOCSTR is zero, or the open
flag in the IOCSTR is not set, indicating that the
data set to be accessed has not been opened
successfull y.

36(24) IDCIOO2 BLDOCMSG The SYSLST data set could not be opened, or
the SYSLST data set has already been closed
and a message cannot be issued.

IDCTP01 STACKPUT An attempt to write to the output data set has
failed.

40(28) IDCIOO1 IDCIOCL The length of the UCLOSE argument list is
invalid. The length must be greater than 1 and
less than 6.

IDCIOOP The length of the UOPEN argument list is
invalid. The length must be greater than t and
less than 6.

IDCIOPT The length of the UPUT argument list is invalid.
The length must be greater than 1 and less than
4.

IDCIOSI The length of the UIOINFO argument list is
invalid. The length must be greater than three
and less than 6.

IDCSA02 IDCSA02 The argument list of a UGSPACE, UGPOOL,
or UFPOOL macro is invalid.

IDCSA05 IDCSA05 The argument list for the UTIME macro is
invalid.

IDCSA08 IDCSA08 The argument list of a UENQ is invalid.

52(34) IDCSA02 IDCSA02 The phase to be loaded (because the COLOAD
Anchor Table is full) was not found in the Phase
Table.

64(40) IDCSAOt IDCSAOt The CDLOAD macro failed loading phase
IDCSA04 which contains the Phase Table.

IDCSA02 IDCSA02 The CDLOAD macro failed loading a phase,
and the reason is not that the CDLOAD Anchor
Table is full or that no storage was available for
CDLOAD to load the phase.

68(44) IDCSAOt IDCSAOI The initial GETVIS for IDCSAOl's automatic
storage failed.

72(48) IDCRS05 CKERR An internal RESETCA T error occurred. This
situation should not occur in a working
program.

You can find UABORT macros by examining the microfiche listings. The
expansion of a UABORT macro for an ABORT code of 60 looks like this:

RESPECIFY(REG13,REG14,REG15) RSTD;
REG15 60;
REG14 = GDTABT;
REG13 = GDTABH;
GEN(BR REG14);
RESPECIFY(REG13,REG14,REG15)UNRSTD;

486 OOS/VS Access Method Services Logic

Reading a Dump
This section describes how to find phases and data areas belonging to the
processor in a full partition dump, either a PDUMP or a system dump.

PDUMPs are produced by the processor on two different occasions. If the
Test option is set and the FULL keyword is specified, the processor produces
as many PDUMPs as requested, at the points requested. The processor prints
a message following each such PDUMP to identify the point at which the
dump was produced. If an ABORT condition occurs, the processor again
produces a PDUMP except in the case of ABORT conditions 28 and 68. An
ABORT PDUMP can be distinguished from a system dump because there is
no system error message and the ABORT dump is preceded by message
IDC4999I giving the ABORT condition code.

I All executable phases, CSECTs, and certain data areas belonging to the
processor are preceded by an EBCDIC character string to identify it. Phases
and CSECTs are preceded by their full name, for example, IDCTPOI b. (The
date of compilation, in character form, follows the name.) Data areas are
preceded by a four-byte identifier, either specific to the data area, or for the
storage area in which it is built. For example, the Global Data Table is
preceded by the characters GDTb. The FDT is built in storage owned by the
Executive, and it is found in the storage areas preceded by the characters
EXOO.

How to Find Processor Phases

The System Adapter normally loads phases using the CDLOAD macro. Thus,
you can use the Anchor Table to find where each phase has been loaded.

If, however, the Anchor Table is full, the System Adapter obtains storage for
the phase to be loaded using the GETVIS macro and loads the phase into this
area. You can find where these phases have been loaded from the Phase
Table. The fourth word of the System Adapter historical area points to the
Phase Table; however, the Phase Table normally follows the Global Data
Table and the trace tables in a dump. The section "Data Areas" shows the
format of the Phase Table.

Figure 11, Part 2, shows how the Phase Table appears in a dump. You can tell
that no phases have been loaded using the Phase Table because all the phase
addresses contain zeros.

How to Find the Module and Registen at Time 0/ the Dump

The best way to determine which phase or CSECT caused the dump and to
find the registers of that phase or CSECT varies according to the type of
dump you have.

In a system dump, standard methods explained in your operating system's
Debugging Guide should be used.

Diagnostic Aids 487

In a PDUMP caused by an ABORT condition, the last entry in the
Inter-Module Trace Table identifies the phase or CSECT that issued the
UABORT macro. Register 15 of the registers at the top of the dump contains
the ABORT code set in the UABORT macro. Once you know the ABORT
code and the phase or CSECT that issued the UABORT macro, you can use
Figure 11 to determine the internal procedure that issued the UABORT
macro and the situation that caused the procedure to issue the macro. The last
entry in the Intra-Module Trace Table may be a trace point within the phase
or CSECT that issued the UABORT macro.

The registers at the time that the UABORT macro was issued are not saved
by the processor and cannot be found in a dump.

If you have a PDUMP produced at a dump point, the trace tables printed
after the dump tell you at what point the dump occurred. The next to the last
ID in the Inter-Module Trace Table identifies the phase or CSECT that called
the dumping routine; the last ID in the Intra-Module Trace Table identifies
the exact dump point at which the dump was produced. You can use the trace
tables printed after the dump to trace the flow of control before the dump
point. These trace tables are better to use for this purpose than the trace
tables in the dump because the printed trace tables do not contain all the trace
points encountered while producing the dump. The trace tables in the dump
have been filled with dump-related trace points.

You can find the registers at the time the UDUMP macro was issued in the
save area where IDCDBOI saved the caller's registers. Register 13 at the top
of the dump points to IDCDBOl's save area. The first word of this save area
contains the characters DBOl; the word immediately preceding the previous
save area in the save area chain contains the ID of the phase or CSECT that
issued the UDUMP macro.

Figure 11, Part 1 illustrates how to find the phase or CSECT that caused the
dump and its registers in a PDUMP produced through the Test option. In this
example, module IDCSA02 called for a dump at the dump point 'ZZCA'.
Module IDCDBOI saved the registers of module IDCSA02 in the. latter's save
area.

488 DOS/VS Access Method Services Logic

(""OON'
0"0" ?C
cn or4r
croc 6C
rcorRC
oeOI'M'
noocrc
rcr46C
onO·rc
0004FC
C0(11::1"'I0
1'01' 0 20
1'1'0 0 41'
000"61"'
CO(\~ p~

COCo AC
0"0"0
MCoH
01'06((
CI)(lh ?r
0(0~4C

OCl'66C
OOO'."C
1'00'60
"'lOMr
1'00hFO
COC 7r O
00(,72C
cr0740
(,007hC
ooono
OC07AC
C"07(1)
0007FO
OOOArO
000A2C
CC004n
COCRhO
OOOA AO
CCC8A"
O"ORCO
0008 FO
(,CCQOO
0009Z"
OC0940
OOCQ~('

('009R(,
onCQAC
OOnqcn

Oq ec <r
Cq"'oao
CS"O?O
OqQC40
rqqr ~r·
oqsopo
C99C'AI'
OQgl'CO
Cq90EO
CgqlOC'
CSql20
('Q9140
Cqql ~O
C QQI PC
oqql AC
Cqgl co
C~91F0

09Q200
csenc
OQ974C
CQ940C
CQq42n
CQ94~('

C"'S46C
C"'9~AI'
Oqq4AO
CC94 F O
09q~00

CQ9521'
C 9Q'4e
rqq7EC
C"9800
Ce9A ZC
(QQA40
CSQA6C
"QqA PC
0998A('
cqgpCC
cQQQ~c

C9QQ6C
CeG98r
rQQqAC
a QSQC C
oa99FIl
C9qAOC
CQQA21'
CQQA4C
GqQAM'
CQ9A "0
r QQA An
CQqACO
OQQAFC
C"'9"('0
Ce9"2(

°cr o 0~r OCC'12'0 C00000rc COI'«cc
"'enq lJ. 74 n0"QQq~0 fnop;a6~r ('orcA l"'''C
C('4(' (lr=c r:'lOcr:?40

CCO"C"GO 1'''''COC00 C000000C nOrC"C'lC
01C r crCO rOOC9CqC ('40000 n C 000co o 02
OrCICUP Cpcccccr; COCI1C~0 "I)OCOO')O
04crO""0 ron(,OP66 Coorooor nOOC6C Q C
C"CCC<4" crocoorc 0%20007 OOO?OOOI
(I(loo(lcce I'rnrOOao 20000"M oooco?ec
C'lCI'CCnr --,A~E--

<.n<'61<r <~~, <j<~ 1000lROC OC000~0C
f"'IrOOQcc:c: ("Of"'\C:6f;~~ ('~O~C;4QF "'JCC'''CIC
~~~244?A 44?P0000 'l?I=(''l.Q02 ~~CP'~~I=C 

40C:POOt')t" =tf)c~?c::r ~1cror:lC 0')1')(,1"\01C 
nr~rC000 C4ACII<0 001)~'l080 404CO,4C 
oocr'7F~ "C(l0?7F~ C~RFOQ4A r)QCC'60A 
0"('11 0 01) C'?OO~cq< rrlcOI'\2( (!"Co('O~C 

URCC.CO (lrnaO<~F ~00rqq7C oorcoc~e 

COC(lro~c OCOI'1<;<o COrnoocc OoorOl'or 
"OC'':'A0,cf rCO(C<40 C00001"'4 f)OOCOCOC 
orc Q 1" I R CC 70noco COO~O"OC 00011'\0" C 
occ·"oacc nco(ocoO ccon000~ 1)7F"'00" I 
On()O'.'r (1001'0000 1'00')0('0(1 nl)r.?c 7<F 
F<('01)1'4 0 (lO(1CI)(I)O ,)00C(,<;C4 OOOC'a06 
Foc,rl<? n4<ccq02 roF~03CI E2C6<;('Cq 
4f)Cor;2r~ c'ir~rl'?'3 40'SOCQrZ C8FI::[4(~ 

(1("(l r 4 40<p<eet <<;ClnCl C440~e~p 

5"<;°CH~ Clr3Clr4 4'J5"~"CZ E5CIO,rl 
03Clr440 00<"r2E~ CIO,CI(4 4fl~05PC2 

~oC2<<;rl n"IC44C ~R5PC?F< Clr'nr4 
CIC440~0 0"r?E5CI 8,CIC440 ~B5PC2F5 
(3r4 r 2 FI) FZ4c~r~p <8CZ07C4 E4G4r740 
000AI)"1')0 "COOII)OO C000200(, 00000% 
(,(lOCCPCO A('008p o 2 41)00645C OCOC5pqE 
NF4 r <;46 CC0COCOO CI)OCOOOr OOOOOOOC 
OACA(,CI'\F OClP304~ 607Aq('Ap 0000ccnc 
O(l03CC.' OOnOrR, 0(831)1'83 OU'00.3 
O(l03CC~' 00.'OC8, COP300R' I)C~30003 
RGOZcor" C'O(lOoEA8 COOOOOOO 00000,CI)8 
O~Brc'"c --S6MF--
41 QPrOlF 41980')10 loF6q~03 (l5~~471C 

(,600C',A" ('60006PO 0~~C41". 001F06 P ( 
ql"41211 ~l1COPPO 41FO~2C7 Q46,3C'J6 
A00F440'1 Q57e0l1F GZCOO<;OF 9Z83Cnq 
06eOr~p" l'<oC06 00 C~oOOt>BC O~.O(1'RO 

q~FF~002 l'~"'1~41 4~40~OOZ RQ400C03 
400CI'7F7 48A004CF ~88000C3 4Ip.C~'P 
928~OA07 q4F<C5A2 (,7FQ4<;q(, PFF4gZ8~ 
01qlq~C(' 060F4700 eA8CAD~' D2ACG5aO 
CCl0C231 QOOOODI4 C2Z007qp 47S0CAI8 
C58~4?10 OAU4CAO C59A4AAC 0~IC02'JC 

qZ836"C" 58"CA004 IZ8R478(' A<ICql1F 

LlST C~/C51\' 

OOn"OOOI) OO"rn(,no (,OOI'OCOO OCOC(100C 
000Qe1f4 OO"COOOO ROOCIEOC O(,CO(,COC 
7<CeC'O~ CqC4C,r~ <7FCF240 "CC<0'1C 
OCn90700 (,C"CR7CC 7F0011~7 C9C4C3CQ 
CGC4C'E3 r?<rF~40 COI)AOCOe (10060C,)0 
COOAI4O(' ?FOC03C4 CQC~C'F3 EZE'C7 F O 
CI FOF~40 OO"A27AO 000A27S0 7<orc ;78 
7 F0050 AI) C QC 4C 10G r Q01 n4C 000 AQ 8.C 
CCOAqACO nOCA9600 7FCC~"5A rQC4C3<~ 
(Q(4C3DQ r9 FOF24C 01)CA"701' OI)OP7~C 
OCCA8 FOC ?FOCClIA CQC4(30Q CQFCF3~0 
D4 FOFJ4C r('CAr.COC rCCADnoC 7F(,CC~F1 

?FOOr4G2 r9C4('D F2E4E5F(, COO~E4"C 
CCCR04CO nC~A040C 7FOO~2CP CGC 4C'C 4 
CgenRE5 r3CIP4C 00CR34Q(1 00CP34CO 
OO(,OZAI)O 7FC062QE CQ0200E~ C607(~Q~ 
C'D3C6EZ 00C0860C (l00D"60(' 1FCCOC"P 
7FOOC4CA (Ql"Z08F5 C3C1F?C4 COCCC?8C 
OCeOCOAO (,COOCC~C 7 FOOC08C OOOCOO"C 
OOeOCOn(l --SA~F--
ol'csspeo 0CIIPFFF 00099~1F 001)QQ627 
FFFFFFFF FFC7FFFF FFI=FQ03F FFFfFFFF 

FF(,IF(FF FFFFFFFF FFFFF<FF FFFFFF<F 
07FFCFFf FFFOFFn E1)0()07FF FFFClFFC 
CCCCCIOI OIFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF --<A~E--
l=FFFI=I=FI= I=I=FI=FJ:FF FFFFFFFI= FFFFI=FFF 

OnOOFFFF fFFFFFFF FFFFFFFF FFFFFFF< 
F~FFFFFF FFFFFFFF FFFFFfF( 3FFFFFF8 
oceocooo --SA~E--

COI"I CS'l') FlCOC~Cl!;. rrcc;c;c;'So I)COPC:;4r:FI 
OC" It4< r(COAlrr CDCPUtC OCOPI0<6 
cr~ rrcc C(C~ (rCrOCCe ccccooec 
Q'.'~ 0 1 11)(1) OC(·CO 2f'C 

Address of last 
OO~OO save area COO oo~onOce 
CO~"C CCC CCCCOQ6F 
<6~IF30C r.lt'2~3E C4(Ccocr Qooon"FF 
r4CFcoec CCCCC OC2 (4crcece 0()rCOO~8 
11'I'~71'1r OCo('oco n occeccce Ocrco'lOC 
(,CCIJCr.cc occeoccc ec('cccCF ,)CCOOO"C 

rcoccace ocecoccc C'(SE2F' 4C4C4C4C 
"I' \1FC<F 'lC07UC? An~I'CFCO 'lOC~3AZP 

<UCFO<I PFIF'Ff COCC H E4 CCCCFF2C 
0000(''''10 OCCCO~()C C~OC'17C 34F4001'C 
~~4C4C4C 4C4C4COe 4C4C404C 4C4C40,)(, 
OOC"I<EA 0COCH<C OCO"oASE OOCCAQFP 
()nC n 6 < t 8 0 C ceoooc oocc eGAC 00e06 26 B 
COC('2I P OCeCf27C corccle CCCC704C 
nOOOC6'P OOCCOCCC cccr4??C eCCC00Ce 
OOO,)CI.( OeCCSo7C COCC'1GC (,00C"I384 
oocooccr CCGe'24f CCCCCCCC CCCC0CeC 
(,CCOF24C OC"CHII' rOCOFR18 00(,(,~3nC 

cr006C<4 cccccrcc UOCO,5 CI4'0(,CC 
OC0(,e?,)R C"'[2CRF O C4('C541) 4CCqDZOo 
CzeR<5C' CH,4C'S0 cQcn8E5 C4(3054( 
C~404('r.::p ~PC2(?r:r:: E?I=CF24(' '5fP )PC2E'5 
C?F<;Cjr, C\C44G5~ <PC?FOCI D~CIC44C 
C"C~P~P C2F5CIC, C\C4405~ 5PC2F~CI 

FOCIC'CI C44C~RO" r7F OCID? CIC440'P 
40~P<H2 E5rIC'CI C44~5P5P C2E5C 10, 
CIC?CIC4 4C5"5P(2 E5ClC?CI C44CCSC4 
oP5R(2(7 C4r4nC? 4CCCCCCC CCOCOOCC 
070CO(,(I' 000C8092 COC"C4AC OOOO(lcre 
ere PC 1CC ccooocce ('I'ccrccc CCCCOCCC 
(I(1~0?Z2C (,OOIOClC CI)CCCCCP CeC204n f 
CCOOOOCI' r(0,OC83 concoe, OC830083 
ceR'cre' OCF?CC.? CCPCCF3 cce300 0 3 
r~p~CCR, OCP3CCR' cocccrR1 0383A3ro 
0~P0C60c CtCUt"C ftPCC6pe 4POC07R~ 

OOF0459C C"'2447CO (SPCCtPC 06PC06AC 
Of OC41 0 " OCIA4°7C reFP'SeQC C~~44IFC 
4?ECACCI 5AECCH4 ~HOCCF ~7f'FQtOC 
q?00C5qQ 4<;6C8412 4ItOCq~E C7FF06AO 
<CPOCOCC F2CCCH(, IF IIC3C( CnE3Cr4 
5A40e564 IR6143A(, 40[74AAC 04FA581C 
4IEP(?CE ~2e,ecoO ~zccC5e5 Q20407GI 
A(1Cc 0 8SC ACC4~CCC 8030~ZCC AC3C920C 
00P~4?7C OHH210 C2,IOZ46 46q004F~ 
ICUACFC D2AC4'AI COl542AO 0~e5Q4CF 
04(FACCC "FQ'ACO(l 4(1GCCOH 41AAOIOC 
ACC44??C OAF~<;ICP AnCF4710 B31C5RAC 

OCOOoorc CC~OOCOC rccocoec OOOOOC('C 
CQC4C3E:? C IFOF4~C COcccPFC OCC"9RRC 
CCCqP3C' 7FCCClEQ C~C~C3E, C?<CF44C 
CHCF24C oc~<;(ce( (('c"'cceo 7FI)C27FO 
7F~OC4F4 C~C4f3E, E2coF?FC CCCAI48C 
OOOlCCO OC061COC 7FCnC~20 C9C4C3F2 
CCC4C>O< C"FCFI4( CC(A2CCC OCQAZCOO 
0"Q6SFoG 7FOOOI42 CQC~C3CG Cq~2E,4C 
P[qCqFC CCCAAAOC OCCUACC ?FCCOC62 
7<C~C~CO r C C4C'C3 C4C7C44C CCCARFCO 
COC6CARO OCC~CAAC 7FCCCoU C~C4C30? 
CGC4(3C4 UFC'F14C CCCHACC OC~ArAOC 
OrC6E'CC 7FCCC2~2 Cq(40C, C~C4'l34C 

C'FOFI4C COeBOCOO ('''('eccec ?F000E5C 
7FCIC?2P C"[20EF'S r C (44C4C Or"OZ800 
('cecepcc OCCOAeOC 7FC02AFC Cq02DP.E5 
CqC2CPE~ C'ClC24C COCCC2eC OCCrC2AC 
O(lCrC78C 7FOCcoP8 Cq02CPE5 O~ClE?U 
I'IOOOOOCO OCCCOCOC Cocccccr occcoccc 

OOCq~o,~ CCC~S~?q eCCCeee6 Cr.CeFFFF 
HFfFFFF FFEOOOIF FFFFFFFF FI'I7FAOFf 
FFFFFFFF FFFFFFFF FFFFFCeC COCCFeOc 
oeFecoce ocecccoc FCFFFCFF <FFFFFFC 
FFFFFFFF FHFFFFF FFFFFFFF FFFFFFFF 

FFHHFF FFFFFFFF FFFFFECC CCCCCCCF 
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFFFF FFCCCCC~ CCFFFE(C CCCCOCCC 

Occooccr CCCCCOCO c~eOC~O(\ ('oocoooc OOCOCOCC ('CCCCCCC CCCOCOCC Ccccooce 
C~E1FOFI oonQQeoC (l00Q~08P 400~1)33A 00081788 00IJQS080 COCSQ8H CCllCCrc 
CeC(CCCO CeOCC~3C FCOCCOl5 8cn~~CI5 crCQeFff C(~FZCCe 01618CC OCrqQQ~C 
00rQQ8(!(l 4C(l8I)C~A 00000001' OOOeOO'lC C"CeCCCr CCCCCCCC coccc('ec OCI)C(100(' 
CCOCC(I~O 800 PC 32~ COO(\~OOC On"",,"n, M'.r". n CC IICCOO ('CCCCOCC OC(lCO 5'C 
AOOrCOI~ AC(lrI)OI~ rocqeFFF ('I GOT I ~C099AFO COCSC8C'C 4e080C<;6 
OrOQQ AOF CC'lQQ HC c~OQQQ~C Co. • ccceococ Ccccccce ccccococ 

g~~g~~~g ~~~~~~~~ COOOC~OO oooeoooo C24C c,ceccce C(,CQS6Ce OOOqQP4 
00060qA8 oo""oono ('''OAq~08 000QC(a8 On,Q9AFC OCl'cB~"C coeceocc OC('OOO(lC 
r.(,CP'4~R (,CCP'44C C(10P3446 I'CCF3 4 4( CCCP3452 CCC806CE COC8C62C ~CCP('6U 
OOOA06~C 00"0063Z r0080~14 0C'OeC6IA OOCel?CE COCH,14 CCCRC63e "O('PIP\P 
OOOel~24 rcocoooC COCOOor.C OI)(lpIPlE 00001"2A 00CR18~f crCF18~( OeCP1P~C 
000PIA42 rI'O."63E OOO.O~QC OCCQQPOC cacocrco OCOPOt44 OCCQqFCC OCC81B4e 

CUC~1\3 •• •••••• 

..... • .... .... ........ .... .. r 

.... . ..... * ............ . 

••• 0 ••• 6 •••••••• ......•......... 
••••••• 8 •••••••• 

••••••••••••• <:; •• 
•••••••• •••••• Go 
•••••••••• NM •••• 
VlA,·~IKCVLA~F~1 

IKQVCAT ~ lKCVCC 
ALA') SSAVALAO U 
U8VALAO U8VAL~ 
LAO SSPVAl60 ss~ 

!8VALAD UOVAlAO 
AC S$PVAlAC SSRV 
CCB02 ~$SAOOU.O 

•••••••••• Co.!. 
.4 •••••••••••••• 

••••••••• 6 •••••• 

.~ ••••••• C. K •••• 

•• 7 •••••••••••• 
••••••••• "' ••• 1:.. 
•••• •• •• •• •• K ••• 
•• K ••••• K ••••••• 
••••••••••••• K. 

••• U •••••••••••• 
•••• IOCOC2 
•••••••••••• IDC I 
I')CTP"~ 
••••••• 010CTQPC 
A05 •••••••••••• 
•••• 10C.llT 
•••••••••••• 10Cl 
IOC·I(,2 
•••••••• 11JCR II'~ 
~Ol ••••••••••• 7 
•••• IOCTSUVC •• U. 
••••••••••• HIDCD 
IKCVCAl 
•••••••• IKQVCPH 
CLC~ •••••••••••• 
••• HIKCVlAS~ •• ~. 

••••• r. •••••••••• 

•••• ••• T •••••••• 

••••••••••• c ••• e 

F XOI ••••••••••• 

••••• c •••.•••••• 

4crQC~E' C5Cq4040 C4C2FOFl 40F2CIFO F24CC4C' FCFI4CC4 C2FCFI4C C40~FCFI INTEP ceel SAC 
4I'C4(2<0 FI40C401 FOFI4(1F2 CIFOFZ4C C4CZFCFI 4~E~C?F0 F14C OflOI nCI SAe2 
07FQF140 rQn6FCFI 40E107FC FI4CC4CZ FCC! ,..------.., POI Icel HOI CP 
F141'(4 r 7 fCC!40E2 IlFNZ4r 4CCGD~F3 C"'Cl I D8r.! SAOZ HT 
r~C34~F, n?F2CQ41' F~n7F?n~ 4CCQI)6n? E'4C ~---...",,..-~ CC TP21 TP2N ICP 
40E3C7F2 054C~ ~07 nc 340E? 07F 2r ~4C '--~-=---.... TP2N TPCC TP21 
('7 F 211540 F~nC?C3 40nr.7F? rq4CE~C7 P2'1 TOCC TP21 TP 
(leC968"0 EZCIFOF2 C'l020'~r rCeQAI"(' •••• SACZ •••••••• 
00(,",,80 ()COQQA08 COcoQQAC FZCIFOFI ••••••• O •••• SAOI 
CCCCCCCO --<A~E--

Figure 11 (Part 1 of 5). Sample Dump 

o AC E 

•••••• ~K •••••••• 

•••••••• LI 5T 
••••••• K ••••• F •• 
tO~1 ,156 ••• U •••• 
••••••••••••• U •• 

• •• ~ ••• O •• !. ••• R 

• oj ••••••••••••• 

•• 2 •• T ••••••••• 

•••• IKCVOCN IKC 
KCVOT t IKCVcr~ 
~ URCVS02 SHY 
e~ALAC UOVALH 
[ !HVALAC SHVA 
VALAC ssevaLac ! 

H8VALH UBVAL 
ALao s!PVAl~O 10 
S!eoc~pc .•••.•• 

••••••• C •• •••••• 
••••••••• 8 ••••• (1 

£ •••••• - •• L ••••• 

• ••••• to •••••••• 
••••• CK.K. K ••••• 
.. ...... K ................... .. 

Iccsa('4 
••••••• ZlCCHC4 
C('Z ••••••••••• 0 
•••• IOCTSEXO ••• ' 
•••••••••••• ICC S 
ICCP Ie I 
••••••• .rOCRHT 
~R 10 •••••••••••• 
•••• ICCCCP~ 
•••••••••••• ICCp 
ICCO~CI 
•• 1; ••••• IOCCC[L 
LC I •••••••••.•. 
•• F.IKCVPII 
••••••••••• 0IKCV 
IKCVlAe •• e ••• B. 
•• ( ••••• IKCVl~SF 

•••••••••••• C ••• 
• ••••••••• C ••• e. 
.8 •••••••••••••• 

................ 
•••••••••• ! ••••• 

••••••• ~ ••••••• £ 

GOT I::'::: 
y ...... ~::::: 

................ 
2 [LCI CE(l1 [Lei 
~i~~p~POI \ T,;-_____ -, 
Ra 1 I TPZ~ TP 

~P~~P~P~~C~P;~<~ ~-----... 

2~ SAS~ ICCI •••• 
TPCI •••••••••••• 

Diagnostic Aids 489 



('0'111110 
~qq,UO 

C'lq~, 
(,'1qe, 
rooe 
CC;'1r.20 
('qOC4~ 

0'1'1("60 
coot 110 
OqoC ao 
OqqC(C 
CC,!(fO 
0'1'1000 
CC; '10 2(1 
C'Io040 
O'loN.O 
0000~0 
CqqOAC 
0'1'10(0 
C'lqnfO 
(,'1OEOI'I 
C'lqq(, 
(I'IoF4(1 
oqqe 60 
Cqqf 8C 
OoqEao 
CllqF(lC 
Cqq" 20 
(''10''6(' 
011 'IF 80 
CoqF AO 
CoqF(C 
Coo"f(l 
OqAt'OI' 
r- ._--

1I 5T ObfO~1\ 3 

~:~~ g~g~~:~ ~g~g~g~~ ~g~~~~;g 
"34C Oooooooe 00(l~07<O 

Ph ... Table I 24C cnoeo~ot: eCC~Oq<(I 
240 000(10(100 OOOCO 700 

r'l(4000 (C;O~0~4e COOCCOCC OOOCOI"'O 
(0(4nn n7"c 0 440 oocol)oac ceocllqo 
('1(4('0 E2F4E5FC COOOOOCO 000e02AO 
CqC40n E2r5nFO rooool)OC 000C~400 
C'lC4C3f3 E2C30Fe OOOCOOO(' cooe liAe 
CII(4C3E3 f?C4n1 FO enoco(lOC 000005QO 
CqC40E3 f2f301FI cool'eooe OCCCOI<O 
CqC400 E2Cq06FC ('0000000 00CC010C 
C C;C 4C' f' F 2( 103FO COCOCCOC OOOCO I CO 
CqC4(30 C4r.40~40 OOOOOOCC OCO('O~?O 
rCl(4C'O r401C~40 00000001'1 COOC04~0 
CqC40C' C401044C 00000000 000C0210 
Cqe40C~ C4ElCHC 00000000 000~0~10 
C"C4DO C4E ~Ee40 OOOOOOOC OOOCO 1(10 
(1I(4nC4 C5FCFI4C Coocooce CC!'C470~ 
CqC40C4 0~Fco140 OOooO(lOC OCOCOERO 
C'lC4000 01FCFI40 Cooooooe OOOOOPOO 
CqC4004 n1F~0140 OOOOOOCC eOC01(10 
CqC4007 04FOF14~ 00000000 000001~0 
FOFOFOFO FOFOFOFC COOCOOOO OOOOOMC 
O(l(lOCCOO --SA"E--
OOCOOOCO 000E040R OOOOOOOC OCOOCO'C 
OCOOOOOO --SAIIIE--
OOOOOOOtl A0081444 OOOq~ACA OOe~~R~e 
000Cl~AE4 OOOIlAOSO 00000"C2 I'OOPIIII~ 
000'lA048 OCIIC;AOSO 000qA04P OCCC;AOSe 
oocorooo --5 fIlE--
OOCOOCOO OC(lCOOOO ~OOOOOCC (lOOCOOOO 
OC~OClOOO OOOO(1OCO ~OOOOC'CC Ooooocoe 

'il Save a,.a wh.e,. OB01 .. ved I~!~ ~~g;~~~i 
t c.a"e"sregtste,.ISA021; lCt> FCFi40~~ 
( reg.ste,. a,. those of CSECT lFI 40E'01"C 
( that called for dump 1<1080(10001" 

(oaOH' Q~08 000"164F COOl'OOCO 0001)1)000 
CoAI~O (4CHCFI CCCelAee COOEC4CA fCCeO"Ce 
C<lAI20 O(l~OOI)OO (lO~PI C60 0001l0811C ~OOC(lOI ~ 

C<lAlItC OCe'lAICO OCOel64F C'lOOOOOC OCCCt:'OOC 
~oAI6(1 00000(100 --~AMf--
C'lAlac 800eCIllA OOOOOOOC CCO(,00F4 (100<:611'8 
COAl(~ OOOq'l'l~O (lC"61(11 OOOPI20( OOCC;q<l~O 

CC;AIEC OCCC;'2 I10 ~O(lp.12Ce oooqC;q~(I 800ellq~ 

CC;A20C COCOCOOO --~IME--
OqAHC OOCIIC'loP OeOIlC~fe C(lOOCOOO (lO(lCOO'1C 
C<lA2H OOCOO,,'IO --S'"f--
CC;A7I1C CCeCeC(O cceccccc CCOOCCOCo OOOOOOOC 
OClA2AO 8001("18 OOOAF17f 800A8S7~ OCOII088C 
CC;A2CC 03Cc;rC;f3 0440E2CI (6C740C'" (C;FC;F'l4C 

LIST CUO~fl~ 

eGAOAO OOOOCOOO --S'ME--
C'lAFOC OCCOOOCO ccocccoe CCOOOOC(' IlCO~OOOO 
OqAf20 OOMnoc 110083206 C07QOOOC COI'ICOOOC 
Cf;AE4C accrcooo --S'~E--
~IlAE6C OOOO(lC'l(l ('oocooee eOoqnOA OOC~A 7EC 
cqAE 80 00000000 0000(1000 OOOOOOor OOOCOooO 
rllAEAC OOOOCOCO NlCCOCCC COOl'COOO OOCCOOOC 
CqAFeO ~CCOCOOO OC7C;OCCO COOOC~44 OOOCI)COC 
("lAEEO 00000000 (000001)0 00000000 COOOOOQC 
CClAF(lO 03C~4~C4 IJ~E~0~40 E~CIC~(I 40E"'EeC~ 

0"'.F20 40C4(3C2 040C4C3 (3F340C4 C3E~E24C 
0C;A"40 07F2Cq40 E31J7~211~ 40F~C7C3 C34Cf'~7 
OqA"60 0100(1100 8COt " "- ~I)C')C 

OCAFAO oooeocco oon( Seve a,.a where :000(, 
r'lAFIC OCCCCOOO --51 OL01 .. ved 
~::~~~ gg~g~~gg gggi EX01's registe,. ;b~~~ 
Oqp02C eceeccco --~~IIE--

rO(4('(~ PFCF240 cocoeooc CO(,002~(, 
C se 40e ~ OH e F 24C CCCOCOCC OeOC2qOO 
e<:C4C'C4 C20UI4C coeoooce CeOC04f( 
C"(40eS CC;FCFl4e CCCCCOCC OOOCSFCC 
Cer4p,,~ f~<CF~4C COCCCCCC OOOOO~AO 
(eC4C'ee (eC2E'4C cccceoec CCCeOCAC 
Cc;r.4nE~ OlFOFS4C rOOOCOOO OOOOOHO 
C~C4C'P E2C4C~FC eCCOCCCC CeCeC2~C 
C"C40P E2E301FO cooocceo OCOooIIOC 
CCC4C~E~ E2C3C'FI cc~ecccc 000004AC 
r"C4ne' F7F10HC CCCOCOOC 00CC02RC 
(ClC40 n f 2(1CIIFC CCCCCCCC (lCOC0460 
(eC40n E70cf c H eecoccee OCCCOC"O 
CIIC4C~P E2C4C~FC rllecceec OeCCCfOC 
CqC400 C4C4r~411 ("ocecl'eo 001'022Ce 
CC;C40C' (4CeC14C ececcccc OCaCOHC 
rIlC4(3e' (4rIC~4C crCOOOI:O I)I)n 006FO 
CCC4C~C~ C4C4ClIoC eCCOCCCO 00Ce042(, 
CqC40C ~ r4C~C'4C cecococo OOOCO 211C 
CC;C4C'n e3FCFI4e recoccec OCOC4'lOC 
CC;C40Cl 0C;FCF140 Ccccccce COOOOPAC 
C<:C4C3fl ClFCFI4C COCCCCCC CCOOOOC 
CC;C4C3C I 03FeF 140 OCCCCOCC OCOOlq60 
CC;e4e~E~ EeFCFI4C eccoecce CCCCC~EC 
OOI)OOOOC occooeoc C('C(lCOCO OOOCOOOO 

ocooeocc occcccec ceceeccc ('cccoooc 

OCC~CFAE cceccc~e CCee12C1 OOCell~e 
1'0CllqC;~0 ocoprHC OOCqC;FCe 400~1 ~4C 

ccoocne OrCOOC(l2 coeeeccc 00000000 

OCOqblEO occcecoc ccccccec CCCOIlOOO 
CCCOCCCC eCCCCCCC eCCCCOCO eonoococ 

C~CEC7CC OCCC;b1r.P C4C2FCFI 4('E2C IFC 
4CC4C2Fr FI4CC4n3 FCFI40E2 CI<OF740 
ClFOf\4C CeCHCFI 4CE'CHt:' FI4CC4f' 
014CC4(2 FCFI4COl' E2CIFCF2 CCOAOqqO 
OO,c;eFFF OCCell~~ COCc;cc;~C ~CCeOf~e 
OCO'lCOeC CCOOOOCO ('(lCOCOCC COOCOOOO 
CCCACAeC CCCccpPC COeqlEe cccooeee 
cOOc;eFFF ocoell~~ COcc~C;SO 7CCeC6~C 
cocccecc CCOCCCOO (lCCCCCCC CCOOOOCI; 

aCO~01~2 OCOCOCE4 cocececc CCC~OeqC 
6OCae6S0 OOCqbll"'l' OOQAlb4 F 000C;A284 
PCCG~2PE CCCb<?fl eCCcCl~2 ~CCSA2Ce 

cccnoccc ecccoecc CCCOCO(C ocrooooc 

cococec~ Ccocccoe ccccccco nOCeICE( 
I)OO"C8110 OeCOOCE4 rocOCOOO ooOOOCOO 
f2C1C4(" 4C(SElFI U4CC~E1 CH'4CE. 

"CCI)C.CCC OCOqq<;SO COCP32EC 8CCqAEFf 
oocoocee occeccoe cecococe OOOCoooe 

cecococc OCCCOC~C CCCOCOCC (lCooCI)(>C 
COOOOCCC OCCqFC~4 ea(AcHC occcoooe 
o"cqHee ccccccce c('cecccc ceoccol'lc 
CCCC;bHf CCCCOCCC creocccc ocoooccc 
CCCOOCCC oecocccc CCCCCCCC OCCCC 40~ 
Cl4eEC;E<; (~CI4CC4 C~ESC34C C4C~OJC~ 
E2C IC~C I 4eEC;E~C3 CI4CE~C1 C3C34CE3 
F?(q40E' [7F2C~4C CC;UC1E3 4CCCOCCC 
oeccoaco 001)00000 cccccoce OCOCOCII(' 
(eCHCCC CCCOOCCC Cccoccce ccccoc('c 

CCOCCOCO CCCCOCCC ccccceco CcooooC'e 
OOOOOOOC ocoeococ CCCOOOCC (lCCOOOOC 

CII!!n8(1 0000024F C~E7FOFI C40~ OFI CocGGpl)C CCORUPP 4CCEl~FE ece"cccc aoec;qPllc 
Oq80AO OCOq 1'10 OO"COOOO "000000(1 OOOCO~'1C pcooce I ~ Acocoe I ~ COCGeFFF OCCe2'lCP 
C'l8CCO OA I '= CCCSq'lSC CCOqe088 4CeetH4 OOCC;C;c~O ~cccoecc cocoecce OOCOOCI'C 
0'1110 COCcPllIC OOO~OI'CO CC081ASC COCCC~~C ecocoCl~ 
(G81 CAll>I -- • ··'le088 40CP17A4 CCCCOCCC 
011111 ocoeol c;e lAC CCCOOOOO OCOOOOOC 
Cq!!1 000'111 blECC c('cceccc eCC~'lePf 
(11181 ",~_~~"....,_.,..."..".".."...., _____ ..J 000001 L... ___ ...... --I OOOOC eoc~c;e80 000'181110 

Cq8180 OOOO(lCOO OOOOOO(ln 00000~3C 800CCCI~ e ~ OCCGeFFF ccce2cce Cb!61ecc 
CqAlIO 00000001) 000q8(18P 400817A4 OOCGqq~O OOO<:<:C;SO OOO"OPIC POc c l!2f2 00CC;A26C 
O"'BI(O 01)0qP.262 RO"'l82Cl oconOl)OC OCCCOOJC ("COOCCCO CC 0 CCCOOOCO eeooo~"c 
(,ClfllEe OOCOOOO(, _AS IIIE--
CC ll240 OO~(I('COO 0001:0000 COOOOOM OOtlcc:'ooe 
(1'111260 OOOOCOCO 0000000'1 Cq07074C OGCG~2r.6 
0118280 E2ClCn7 4CCqCIIFl F240 Cqcc F4F ~4CCq 
CClB2AC F4F4400Cl C qF 2C64C CqcqOSO~ loDE 2C 10 
CQ82(1) 40E2CIC4 C~40eOCq C40C40;! FCF 14COC 
C'lA2Ee ~COCCCOO --SA~E--
Cq8~Co 47FOF016 10~qC40 CSE7F('F2 404('40F7 
(:ClIIHO 58FI(l01)0 5e""0060 1'70041EC COlCOSIF 
Cc834/) oCI4~OAO ocoel80e C7C(leC~p IIOSPC20~ 

00!l~6(1 804A5010 RC4C4130 ReE8~0~C "~~e4nc 
oqA~eO B04CCHF 021)7"0~0 fll>A 5e AO "0411~OAO 

CC;(I~IO CC8AC?01 AISPC17C ~020e15c ~RAC"(!4P 
O'lIl'CO SOFoe054 q2~081)~4 ~eFnAO'lr 411ceC4C 
CQ8~EI' CI82~OFO IIC~C4IFO ~OF450"C 8054c;2ec 
Cq840(, qCEIoI)C(" ClC~C0020 ~RA0804~ se~CbCOC 

0118420 C17E11I33 ~O~O"OEP ~030"(,EC le2~~eAO 
OG844r 0~0,eOE8 AOf4';JPC A0044710 C 144~e2C 
01l!46(1 qeElcl)OC <:83COC2C C7FE47FC rJ44~eoc 
eq"48(1 ccoconE "O(lClI!4RC 000qP4A4 ooocoe(lc 
O'lIl4AC FOF20000 C~E7FCOI OOCOCOO(, OOOCOOOO 
rCl84(0 OCOOOCOO 1)0110000(\ (lOCOOOOO COOCCCCC 
C'lP4EC o4(20~0'5 02EqC5f)Q C6000000 00000000 
CC;8seo 00000168 CSE7FCF2 f31)7FOFl cccc.cee 
Oq8~20 0(,OqP"54 (101)01)000 OMQ"SF4 OOOCCS'C 

Figure 11 (Part 2 of 5). Sample Dump 

0~CcC4Cf 

f~C440E2 

aeccceec 

F34RFCFI FcrCGCEC COCCCSCC ~80CC IH 
000C;P4C;~ CCCC;P4C;C lePI~CCC 8CC4qeOI 
eC4elrc" IFAA4CAO PCF44~EC COE4SEAC 
peF.C~C3C 1I(~4S2eC ec~4S8FC AC6C411C 
P'l4C~.FC AO~44I1C Ilr4CC~EF 122241eC 
SOfOP!'4C 4IFCC\1C' SCFCeC~C ,\IFOBI~e 
C~EF4("FC "CF4~EAC "C4~SOle 1l04C41FC 
PCS4SRFC b(l64411C "04CC~EF 47F"C IS2 
C2SEI!~FC; 300SC2SE 3CClleCF'l C203~OSF 
bCC4lcb~ 41f('C\44 GHCAOCC 4710e144 
AOCe<:leC AC08471C CI44C2C~ HECACOC 
oCC4SPCC C\14IPIP 411100CO CAOAqllEC 
eOIJCCHC CCCCCCCC OlC~C~El F2E2C"El 
Oo~ocooe OCCOOOl'O eOCOCCOO OOOMOOO 
cceeccce cceeccce COCCCIC3 C3CfOfC~ 
OCOOC(lOO OOooocor eocceccc oeocoooc 
OOCC;GFCC 1CCqe~C;( eOCP344C OCCqqeeC 
8C~OCCI" PCCCOCI~ C(,CQFF" OCCe2CCe 

490 DOS/VS Access Method Services Logic 

Tnf 5AC" 
Iccon 
10CI((,~ ••••••• C 
locoec 2 ••••••• C 
IOCR 107 
TOCRlll 
IOCTP04 
IIJCl5U~0 •••••••• 
10CT SE xO •••••••• 
IOCT5lCO •••••••• 
10CT~IIPO •••••••• 
ICCT51PI •••••••• 
10CTSI(0 •••••••• 
10(T5AlO •••••••• 
I OCC COL 
10(CCPR 
I OCC OPII 
ICcrCXF 
10CCOVY 
IDCOEC I ••••••• e 
ICCOlCI 
10CRPCI 
10CMP(, I 
10CP~01 ••••••• & 
OOCOOCoo •••••••• 

•••••••••• • c •••• 
••• U ••• &. ••••••• 
••••••• & ••••••• & 

2 OlCI iJPOI ClCI 
CPC\ HO I ICC I 1 
('I TPr.'1 CROI lPO 

CPC I •••••••• - •• c 

•••• •••••• • 4 ••• Y 
••• &. •••••••••• & 
•••• ••••••• &. ••• 

••• c •••••••.••.. 

•••••• 1 ••••••••• 
.Rn~ 5AFP RI~c 

....... c ........ 

••••••••••• C •••• 

L( ClVL 5ACA llC 
CLI!C CLCT ClV5 

P21 T0 2'4 lO(C lP 

•••• EXCIClCI .... 

....... & ....... 

........... ~ .... 

...... & 
....... G ...... .. 

....... RIOP RISF 
5AGP Pl12 P14<: R 

44 RIS< RI~N ~AC 

SAOE .10CClOI 

.eC .. ICCEXQ2 1 

.1 ..... - ...... .. 

.. & ..... P ..... ~. 

.. & ...... V& .. t •• 

.... K .. &A ..... t. 
•• K ... A.&. .... .. 
&C ....... 0 ..... . 
A.&0.r..0.4&0 •••• 

~ ... & •• V&. .... .. 
K .. V ........ A ... 
........... OA ... 

02 .. EXC ......... 

M~LN~lERC ....... 
.... EXC2loC I •••• 
........... 4 .... 

IcrEXC2 ••••••• t 
ICC IC(l2 
ICfrp(,1 
ICCRIC I 
ICCR 103 
TCCRI~l 

10CTP(I" 
HCT5ClC ....... t 
loCT5TPC ....... . 
Ir05lCI ....... . 
ICCTSXPO ....... . 
ICC l5PRC ••••••• -
ICCTSRIC ....... . 
IC(lmEC ....... . 
IccceOE 
IrC(CPF 
ICCCCAl ....... a 
H(CrIlP 
Hccnc 
IrClCCI 
IrCPPOI 
ICCHCI 
100lOI 
ICrVY(l1 

....... t ... P •••• 

... t .......... . 

....... CCRCI 5.C 
CP(,I ClOI SIC2 

Fn I(CI HOI ce 
I CBC! .5A02 •• R. 
........... t- .• & 

........... 'f .... 

........... &. .. & 

....... l ....... . 
- •• & .......... .. 
....... f •• L .. .. 

....... U ........ 
5HE DIF EXF5 5 

....... & ....... 6 

•••••••••••••• CL 
A llCA ClVl ClFC 
SbO llCA lPc( T 
21 H2" leFT ... 

I(C ........... .. 

............... 1' 

... & .......... .. 

... & .......... . 

... ~ .......... .. 

... F ........... . ........... ~ ... . 

... &. .......... -

Rill RI12 RI4S 
101 ~ICF RP7 RI 
l PIlM 5AFP PIGq 

~.CIO ......... A. 
.......... t .... . 

..4 ... t: .. 
.. & ........ 0 .. .. 
... C .......... .. 
& •••• CA.&e.&.c •• 

0.4 .... & .... 0 
... 0 ......... 01. 
~ .. C; .. K .... 'l~ .. . 
...... A ........ . ........ ~.~ .... . 
.... A .......... . 
• •• - .... FNfX25EX 

.. ........ ALlFCR 

............... 1' 



lIS1 CUO~Il? 

O'lR540 OAl6180C OCOQ'I'I5C COCQ~~O~ 4C09"3lC 00099q~O OCC9q9~C 00C'IP4Q 8C09P5FC 
CC;IIS6C 
(QR~CC 

CCI\"2C 
C'II\I,4C 
('98MO 
098b@C 
OQ86AO 
C'IIIf>CO 
C'I86EC 
0'18700 
C'I1I720 
C'I~14(, 

0'11\76(' 
C'I878(, 
C'IP7AO 
O'lR7CO 
C'I@7EO 
C9R~00 
CC;PR20 
OQRR40 
0'18860 
C'IRII PC 
O'l8~At) 

O'lRRCO 

(QBO(lO 
CQR920 
0C;P'I4(1 
O'lB'I6( 
C<;1I9RO 
OOBIlAO 
OQ"Qro 
O<;BQEO 
COAA~O 

C'IBAlO 
O'leA40 
CC/AA60 
O'IBA 8(1 
C'IBAAC 
O'lIlACO 
C'l8AfO 
OIlA"OC 
OQB"20 
C'IBA40 
COll1l60 
!)C;SAIIO 
C'IeSAO 
OQ"RCO 
CCSREO 
C'I8COO 
CQ 8CZ" 
O'llle4~ 
('08e,,0 

OA0620 
0110640 
(\110660 
0llC680 
OBO"AC 
0"06CO 
01l06Er 
080700 
OR0720 
CRC7ltC 
0110760 
0"(78C 
CJ\07EC 
(lROPOO 
OROR2C 
0"0840 
OROR8C 
0808AO 
1'1801lCO 
0"08EC 
OAO'l60 
ORO'l80 
OIlO'lAO 
ORO'lCO 
OBO'lEO 
OPOAOO 
090A20 
CeOA40 
OBOA60 
080a80 
OROAAC 
CIIOHO 
OAOAEO 
080BCO 
CB0820 
0~OR4!' 

080860 
01101180 
C'IORAO 
OPOIICC 
ORO"EO 
0 11 0(0(1 
(,80C20 
OAOCItO 
ORCC 60 
08(,CIIO 
C80C AO 
Ollor CO 
MaCEO 
(,AOIlCO 
01101'121'1 
0"0040 
OA0060 
OIlOORO 

4r4n.I"'"""------,.04040 4C4C4C4( 4C404040 404C404C 

4040,1 UGPOOL 10 1.04C4C 4C4C404C 404040E2 ClUO?4C 

V 
r0000051. C'I060000 

')0 --~A"E-
O(C~FO~O OCO'l'lAFC 
C'I060002 ('COCCOOO 
00C'I FC'I4 (01)(0000 
CCCOCOCO --SA"E--
47F(F016 IOC'lC4C? 
SRCC"FCC ~8FIOOOO 
ACC4c~Cl IlCI4~CAC 
416(1COOI S@7CA2CO 
4700110411 Se70A04C 
BDRI84F 4C4CA?20 
A2744~EO "B41@4F 
404(A~20 Se704C4C 
70001277 4HOBCF4 
45EC-CPR If\4 F4040 
A27C~2~0 A27C5@FC 
40fOA3ZZ S8 FOAC4R 
5Rfl)A048 ~8FOFOOC 
8I'12~PFO 300RI2fF 
40C04"CO Q640400 2 
q~RCA21R ~eFC!)C1C 

~t)OO')OOO OCOOOOOC 
0000000(' OOC E2 3' ~-.=.-;;.......;..;.~ 

C(I(OCOOC CCCCCCCC 
COOR?CAE 000AA2'14 
COCCCCCC CCCCOCOC 

E307FI)F4 4C4C4CJ ;CEC COCCCSPC 41CCeFFF 
~RFF0060 070041' :7411 COC'lC6E~ 18AI~00C 
0008180A 07CCA2JL------...IICOO ~olonlP 5ClCA2CC 
'1180100C 4770RC6@ 4A1CPFe~ SC7CA2CC 4AfOpFe@ 4'1~ORFC;E 

0502700C IIfFC477C POoCS810 ACS45010 A214411C A2144~FC 
~R70A04C 05C21COC CCCC4710 RCPC5810 AO~4~C10 A274411C 
4040A32C 587CA(4( OS027I'CO C('(3477(, ecce45EO R43Cl84F 
C502100(, COO~4770 ~ICE4'1~0 ~F'l('477C eCF4~e1C AC545e7c 
'1640nEr 41FCIICFe Q4eFA3EO ~e~CH~4 ~r3CA274 4110A274 
1321)~@30 A0485030 621441FC cnC5CFC A2lE41FC A3ZC5CFC 
~064411C A27405 FF 41FCe330 9CHAC1C C2C3~O-8 IOOClPff 
~8fO~0IC 183~12F~ 4110~H( ~HCA?EO 41FCPH4 Q47FA3EC 
~25En24 FOOS025E Focon24 C20~Fr.SF CCCC~l@C A3EC471C 
4780el'l2 183F4SEO R09CQ@Q A3EC41EC P?2F4140 A3 R C012e 
41~030Cf ~t:'SC4C(l4 <;~404CC3 SP~CAC4P ~0~CA214 SC4CA21e 
411"'274 O~fF~8'50 

A324C2C3 FC5FCCIO ~OSOAZ74 41fCPfoe 
SRFC·C4J\ 411(11214 C5EFI84F 12444780 
9CQCC1FE 0203306C ?068~8S(' A04PS05C 
AZ7C41FO BFEC50FO A2R041FC A31C~OFC 
184fl244 47~01lZ18 18F4~RFC A07C'Ieoc 
B2RCIA~F SOEOFCOC ~RfOA31C S8ECFC04 
58EOFOCR 12EE478(1 ~2P.4UEf ~CFOFOC8 
50EOFocr 45F08'02 4~E086C4 IR4F404C 
SP30'048 SC~CA274 41FCCOl4 SC~CA27e 
'Olt8~030 '21441FO nlO~OF(' IZ18~eFO 
'180CAOP4 C7FE'l8EC A01C07FE 41FO~3CE 
58FOA048 ~AFOFOIC 18'1F5AEO AI04S0EC 
C/47F'3EO 'I180A?EO 4110~37( S8FnCI)8 
4SEOP.604 184 FltOitC A3Z2~A3C A048~R30 

41FO(010 SOFC'218 '12ACI27R ~8Fc~C2e 
AOOOC7FF <;~ECACC8 C7FE41FC P438'10EC 
30(101:201 A3'1A?01~ C203A3R8 3CC4()201 
020313q4 30(lC0201 e3A1I301C NClA3AA 
A3A(I~OlE IPFF43 FC '02040FC A'A2'1~EC 

SA307nlC 12334710 e4SC4lfO COI@~PFC 
5e307CIC ~e703C08 12714 7 80 R47418l1 
A3F85P70 AOS8507(, n~C581C A05C501C 
A40RS870 AO~~S01C A40C~870 AOH~C7C 
S85FA~F4 05Cl~COO PFEE4710 A4F2S840 
84F2C203 A3@E~004 02CIA~'1A 5(021)SOI 
1151(lC21)1 A3QCPF8" 41FOP.~H 02,)3A'Rr 
A~'1A4P41) 5cr2404C A~'1E1244 4171'~~3A 

4R405002 4040A3AO 12444110 A~·eC'Ol 

LIST 

040QOCI E30404C3 0E30007 ooceOOOB 
060P.IOCO 4(OCOOOO COCIOOOf C2070506 
OOOCOOOO (lOI'EOOC@ C009Q()OC IACeceo 1 
Oo;C 1E3C3 C BO?E2C3 ('100000S cooeoooc 
060810CO 40000000 00010011 (l20~0~1)~ 
oo('ercoo "OOEOOIO (0000000 OOO('(lOOC 
COCCCOCO --SA"E--

~CFOI27e 41fC3C6P ~OFC'27C 'lZROA21C 
P22P41FC OCIc~e~c AC4E~eEC 9c~e5@OC 
12744lf~ C(2@50FO A27A5P.FC ACPR50fC 
A2€4<;2EC Ate4~eFc ~C44411C A2740"EF 
ACP4C1FE ~8FCA'I~ ~8ECF()OC 12EE478C 
12EE47eC 8<AOIHF 5CECFOC4 5eFOA31C 
SOF~A310 .PECFCCC 12EE47H A2C~I'EF 
P22~A30 AC485830 ?C2E1233 47ECB?02 
'12eOA2H 58F(3C2e 411cn14 0~EF5P'3C 
304C4110 An40~EF 4e~CA?22 ~EFCAC1C 
QrEO('Ce C2C?6104 10COleFF 40FCA322 
A~ICI2FF 411CP?f4 'l6e03EO 47FCR3t.8 
12FF47e0 837C1P3F 45ECeC'l(, 4~EC8302 
3C2RI233 41EOP3eA 5P301()4P 5030A214 
4110214 C·EF4EFO A322~eEC ACC8Q80C 
cceC02'1 A?e4A3P4 5P?(I~3IC 0'C?A'84 
A?GA?rIP C2C3A3ec 3(,CR[2Cl A~'1C301A 
3012[2CI A3AC?CI4 C2CU?~E 3(IC02Cl 
COCCCHE 41Fr.e~cc 'INCH 14 5870A04e 
7c<;e~ecc 7C~CC1F~ <;41FA3EC S81CAC4e 
45EOPECE C12'lA384 A3P.4~P10· AC~4se7C 

A4CCSII10 AC~05C7C A4C4581C AC~4SC7C 

141C411C (lCCI47FO e~eCl€F1 P'PF00002 
SO~41244 4770P.4Ef C2ClA?<;A -Fe~41FC 
SOC('~FF~ 417CP'~1C ~B4C·C04 1244471C 
~0~4nCI A?~C"CC2 C~CI!CCC BFF2477C 
C2~U3GE eFCH~OI ~occeFF4 47108558 
A3aC~F~E C~Cl~CCC PFH471C P5164840 

OC'.lCCOCC CCCFOCIO CO llCOOC I PCOOC" I 
05ESE2Cl [4C~C~F5 E2CIC400 OC(l600ce 
CfOeCF15 4CCCCCCC COCtCCIC C207f2C3 
COC[COCE OCIIOCOI CCC~COCC I~CCOOOI 
E20C9Cl E3C3C~04 C5E2C3C'I OCO~(,OCB 
OOCOCOCC CCCCCCCC eccrcecc ccccoccc 

OOOllC@CO CCCP.OOOO C0000087 CSE1FCFC 
000804A4 000e04C4 000804E ,-------, 
ocoeC5CC OCO-06ce (,00P06? FDT for DELETE 
OCOCOOOO 00000000 00001)00 command 
OCCOOOOO --S AIIE--

ggg~~;~~ ~~~~~;gg ~gg~~g~~ ~~~;~g;~ 
OCOOOOOO OCOCOOOO COOOOOOC ooceoooc 
0000000(' --~J"E--
000P2~80 000e0800 COOOOOF4 C5E1fO F C 4C4C4CltC OCC0040S 
FOFI4~O O~FOF!)f 1 ~Of4f04C 404C4C4C 41'1404040 40404040 
4t)404040 40404040 404CI)CCO OCI'-;"";'-"";'..;;L....;..&;;;""''';'''';''''';'''';'-....,CCCC OO(lCOOOC 
('OCOOOOO --SAIIE--
00000000 (lOOOCOOO OOOOOCOC 001 COOC 000AFS8C 
00000110 OC/C'IFOF'I PClFOF2 001 C61A OCC'l'1P8C 
0(108('<;08 OCOO(!OOO COOOOOOC 00t~...,.-:'-"""""""-:~~""""-~-:-:-:-'1CI1 CeCA6CIA 
000A~C19 000Q'l'l5C C0080'lBP 4COCA'IC C"CC;C;'l~C H0F15e OCCC;C;9~C 8('('ACHE 
8(10ACFlJ! 00E'07 FO COIt(lC4('2 FOFI4CE3 07FOFl4C C~C<;FCFl 40C4C2fO Fl4COC;C~ 
fO~140E2 ClFCF240 C'IC'IFOF2 40C4C2FO FI4CC9C~ FCF24CE2 ClFCF240 C9C'I FCF' 
000Af~'10 f2400'lC'l fOF240E2 CIFU24C O'lC'lFCF2 4CC~CC;FC FI4Ce4C2 FCf14C09 
CqfO~lltl) C4C2fOfi 40nC7FZ C'I4(E~C1 ~?C'l40P C1F2C~ltO nC1F2C~ COOel)A7C 
C'I40E307 000PCP80 C7FIOS4C C<;C9E2CS 4(,C'IC'IFO FS4CE2CI O(lCCt::OCO OO(\OOOOC 
oocooeoo ocoonooO 00000000 ccoe('ooc C9CC;Fl F1 4CE 2C lC7 C140C9C<; FCF 14C:0~ 
CQFCF240 0C;C90107 40['1C'IE? C64CO'lC'I FIFI40('1 C'IF1F24C CqccF4F~ 4eE2Clr.1 
0740C'IC'I FIF2400Q C'IF4F'I4C Il<;C~FCF 1 4CC'lC9C4 C~4C[<;C<; F3F740C~ C'lF4F44C 
C'IC'IE2CI> 40C4C2F,) FI40C9C9 FCF240~2 Cl FOF24C r.~CC;Fef2 4CE2ClfC F24C09C<; 
0000C24A C4C2FOFI C'ICQFOF? 000PO'lA8 COC'I'IFCC FOFI40C'I C'IfOFI4C C4C2FCFl 
40C'IC'IFO f 14CE 2C 1 FOF2lt009 CQFCF 14C C4C2FOF 1 4CCC;C~FC F 14(e4C2 FCFl4CCC; 
C9FCfl40 C4C2~OFI 40E2Cl1l3 (44CF2Cl 000'l'l'150 8COACF13 POCACEI8 COC<;C/'lSC 
800ACEl~ FOF24009 (,001074C C'ICC;E2C6 4CC'IC9FI fI4Cr:'1CC/ FlF24CCQ C~F4FC;4C 

E2el(7C7 40C'IC'Ifl F24(1C'ICc F4F~400~ C9FOFl4C CC;C'lC4C~ 4CC;C<;F3 F14COC;C9 
000SC90C C'I~2C64C ['1C'IC5C5 40COOOOO OCOOOOOO CCOCOCOC CSE1FOCC CCOCOCOC 
OCrOO'.lOO --SAIIE--
00000000 000POC30 Oooooooe OOOI'OO,)C 
47fOFOl6 IOCQC4C3 C403fOFl 404040F1 
SRFU'O(\(\ S8fF0060 01004lEC CClCC51F 
OCI4~C~0 00C8181l11 C100~ICC 81()CC20P 
F005025E FCOOP.27~ C203F05f CC0258AC 
41FOCC02 SOFOPI04 'l280~IC4 58FCAC7.e 
8'10~310 41ACII2FO ~OAOe264 4140A2C8 
C2EAIR2F 5PAOIIC~e 4020AOOC 18AASe5c 
COOE~qaO ~0~C4710 rOOE~Qac 504C4110 
COEA c 41F B207.'147F P20~4IA(' 000147FO 
e234\8~3 Ql8CB21J2 4770CI3" 4lACII2H 
45~0C30A Ie2FI'I32 4780C132 1e3241FO 
R2024780 C 1~85eAO e04C511AO A04Cl2AA 
45EOC618 IB2fl·'132 41ROCl12 le324'l3C 

OOCOOOCO ccccocee cccccccc CCCBQ~Oe 
F34BFCF2 F31)090EC COOCC5CC SAOOCCC4 
CO~Pl~1E OCCeHEC Ip.PI5CeO JOC04'1@01 
B04~IOO~ 5eACp.C4@ 58F(lAOOC 025E827~ 
AC2812AA 4180COH 5RAOe048 SOACIIICC 
4110plCO C~EF~IAC e?IC~OAC P2~C01l3 
SIIAOe04C 58JOA(,14 l2AA~HC CCec45EC 
BC4C~C;AC SC3C4710 CCCE~'1AO 5C3~471C 
CoeE~9AO ~C?441eC COHHeC 1l20247fC 
C220S~JC B(,504PAO A00049AC CCA44111C 
·CIOPICC 411CP<04 5CJCP.IC<t 4110JlIOe 
CpAG?40 82C44'130 C(624180 C172 c IAC 
478CC112 41A('P2C4 ~IHOBlCC 411CBIDC 
cr1241"0 CIIC41AQ -Zfe~O'C ~IDC4IAO 

Figure 11 (Part 3 of 5). Sample Dump 

•••• ••• & •••• 

........... .!C .. 
10 •••••••••••••• 

.OO .. ICCTP04 1 

..... 1 ..... - .... 

...... t ..... P ... 

........ N ....... ...... ~ ... 
...... 11: ...... . 

....... 4 .... 0.8 
...... Eo 

....... 0 ........ 
C ••• 0 ••• 00 ••••• 

.C ••• OO.~ ••• C.~. 

... 0 ........... . 
.. & .. tt 

••••• Ot •••••••• t 
•• ~.O ••• tt ••• O •• 
.Ot ............ . 
.... ~ ...... t .. tt 
••• 0 •• tO ••• (' •• &0 
•••••••• • 4 •••••• 
.... &.0 .. 0 .... 0 • 
•• C ......... &.C. 
&.C .... K ... " .. 
•••• t •••• O •• &0 •• 
•• & •••• 0 •• &0 ••• 0 
............. C •• 
.0 ... CO ....... t. 
............. 0 .. 
••• "4 •• 
• O .. &c ....... C .. 
....... H ... C .. .. 
.. ~ ..... K ..... K • 
M ..... M ..... ~ ... 
....... 0 .. C ... . ......... ·.0 ... . 
• P. .... & ....... t. 
.... •• t ....... &. 
... 4N.& ...... 2. 
• 2~ ••• &.M ••• &.11:. 
•• ~ ...... O •• ~ ••• 

t. 
&. • ....... ~. 

"RCAl.IICAl ..... . 
.... ......... ~·C 

RAlO'. SCR ••••••• 
•••• •••••••• • NO 

............ EJCC 

....... O ... Y .... 

........... ·EXOr. 

........... 4EXOC 
01.CLOOIC41) 

•••• RI03SAC2 •••• 
••• 0 .......... 1· 
• •••••• & •••• 
..... TPO. ceel T 
01 SAC2 RIC2 cec 
•• S. 2 R 102 S ~O 2 
ICI ceCI lP21 1P 
I TP .... PIN RISE 

IC2 RIPP PISF RI 
F RIl2 P14~ RICl 
RISF Deal RIC2 S 
•••• CJlClRIC2 •••• 
PIal SA02 PICI 

101 ceci SILO SA 
.... 02 R.PP PISF 
SAGP PIl2 P14'l R 
.... ISF PINN ... 

:oo::iococ~i'''7 
.1 ..... - ....... . 
•• & ..... P ••••• ~ • 
('.K.O ••• K.O •• K •• 
.C.Kt( ." ... ~.(' .. 
....... 0& ..... C 
P ...... & ...... & 
.... t ....... & 
..... ~ ... L ..... ~ 
P ...... K •• J ... " 
•• c ....... A .... c 
.K .. A ....... . 
.. F ....... A .... . 

... t ... t ...... .. 

'!. I! 1 •.••••••••• 
• ••••• G ••• FY •• &. 
..M ..... t ... t ... 
.... t .... - ... - •• 
...... & ....... .. 
.......... t ... .. 
~ ........ f' ..... . 
... - ..... 4 .... .. 
........ t ...... . 
... C .. t~ ... O .. tO 
• C ...... ~ ...... . 
• •• - ••••• 0 •••••• 
e ... M.e ......... 
........... .. F. 

.. & .. tt .. t .. 
••• Ct .t( ••• C.I<.C. 
H ••• C •• &O •••••• 
• •• C •••••••••••• 
... C .. t( ... C .. &C 
••••••• Ot ••••••• 
..... C .... O ..... 
........ t.O •• C •• 
.C .... O ...... I' .. 

• •••• C •••••••••• 
••••••••• 0 •••••• . .. ~~ ....... ~ .. 
• •••••••••••• 0 •• 
............... K 
............ t ... 
....... C ..... ~ .. 
•• J: ••••••••• k ••• 
•••• K ..... K ••••• 
..K ..... ~ ..... K. 
..... C ........ .. 

.... F ......... &. 

..... -t ....... t • 
••••••• r ••• 7.0 •• 
t ........ K ...... O 
t .. C ..... t ... .. 
t.M ... &.~.& •• 2 .. 
~ ..... 1\:.& .. 4 •••• 
.... ~.t .. 6 ..... 

................ 
~VS'~.N~SA" ..... 
••••••••••••• sc 

SCRAlC".NSCR .... 

CELEH 

.... CL~R •• ~N 

.............. ~. 

....... & ....... . 

... t .. 7 .... & ... . 
~Ol ~IOI ceOl RI 
I R 102 SAC2 R IC2 
RI02 RICI ceCI R 
21 TF2~ lP211: .. .. 
RIC~ SA ...... .. 

PII1 SIGP RIC! R 
11 PIl2 R14C; SAG 

PICF RI?1 P14~ 
AC2 ~IC2 SI02 RI 
.... CI RICI CBeli 
C PC I R 10 1 eflO I R 
••• & ........... & 
RIll RIl2 R14~ 

lei ~ICF P 137 PI 
........ EJC ..... 

............... c 
~.C2~ •••••••••• 0 
.......... t ... .. 
......... C .. ~ .. . 
............ & .. . 
.. ........ & •• tF. 

.... t ....... t ... 

.... t .... w ••• ~.(' 
B .... & ........ .. 
t •••••• ~t •• 11 •••• 
A ••• 11 ...... J ... 
..A .... ~& ..... .. 
•••• ~ ..... & .... . 

Diagnostic Aids 491 



0111460 4HeC8S" S8AO~2t'>4 <l204A1)12 ~RAOOC4C 
0014@0 ACI2~PAO ~04r~8AO AOl412U 41Rorg7C 
('014AO 12AA41eO cpqz~eAO eU4~6ZC ACCI leU 
O.I4CO 4780CRIIO ~8A(,1\2~4 ~b02AOCI ~OAC"C4r 

01l14Ft: ACOI~8AO RC4r~.AO A02 P l2AA 47 0 0C8eC 
OOISO" F01447?0 C~"oSPEO "264Q602 EOOC"eFc 
Olll~?" 41FcrQ8 ~PAC.?311 41AOAOI~ '~lc0264 
O.IS40 CQ1C4RFO ACnCI2H 41A('C'nr 4\ACAOI)? 
(101<60 SI'FOAOI)C SIIF""C4C <QIOF()OO 4.FCI~"C 

O'I\~II(\ C''I7CS.A(I "2~40ZI. AOOC040e .8A('IIC4( 
081~A(I 'lZO(l.4IC soFc~n. 48FI'FCO( 4(FCCCAf 
OIlI~CO 41AC.41r ~8I(10Zt'>4 .OA(l11)04 47Frr~nP 
CIII~EO S810 FCOII ~E1CCC.8 41 UI(lOC SIIIo0264 
0811.0(' CAH~pP) 81H4eEC EOOD4CE(, CCAfseGO 
0~1~20 IClOC41A() (~It'>.FOO rcoC41H °OO".OAO 
0011.40 8neozoo ACI,FOOC SoEoon4r "PErFe4P 
Co 1"1>':1 A"(,1~8FC OOnCC7F[ 4HCCCIC COtr.!4r 
O.I"8C <OO('II21l n2n~FO.F C(FEr7~A P~2AP32p 

0811>AO S8AC.C48 ~OACBICO 41 F(,CeF2 .OFc o ln4 
OlllbC(' 1I048~OAO "IOC41FO .ZI>4S(,Fr 01~4'eFc 
ORI"F~ S8AOA0211 126647AC rAFCS.A(' PC4A.OAC 
C8111'(, A(,204111) IIII')OOSFF 48AI)onc 12AA41e0 
O.172C 1141C'030 A(,000201 fOOccr~f C20260"'e 
0111140 4130"210 snCACOC C2CIAOO( ((061)202 
O~\1bO ~I)ACPIOO 4nOC(II( "03CEI04 41~C"Z~0 
0111180 OSEF41F0 CBhClIl22 4.4(\"326 12U41~0 
OBI1A(' 1'I41S"40 PZ~C020Z AOOPCCC( 920lACOe 
O"I1CI' crC241~~ "2FF~CFO 601'04115 "2FF~~F~ 
C.PEC SAACP2~0 !'2(IACOC (CC2~.6C "C4q~OAO 
0111"00 BIO"~ZqO 1\11)"~eFO 603('411(' IIICCOSCF 
(\"1'120 9AO(PI~4 ('1FE~eH PI4r07FE 47FC((OZ 
0111.40 FCO~O?SE FCOO"Z1' 020FO~F C(F6~AFO 
0111860 4\3Ce21Q ~OlCI\IC4 ~2ROl\lfl4 S8FCAcec 
O.IA~C (\C('4~HI) "I040.0C PloC~7FF IOFF~eFo 

CRIAAC 0('C45EOO ccr41.le 41110~OO C6o~qeE( 
OR '"OOAI' FFFF~«A FFFFFFCC 
CII III 401 
0" ~C· 481 
0" 1001 )I)C 
('IPt :6M' 

De 1...-__ .,....~_.....I·0011...-_..",...~;;...-._.....I1~3 
0" \A 6C 
O·14R~ 
('.lA AO 
ORIAec 
('"1A 

o 0 
CCCCC4S0 C4I)lF:)FI F2ClFCF2 OOC~"C.P 
oooe C~8 00"'1'0000 1l0000I'I0(, (,OOPIChC 
C C oca~aS~C COOPI6.0 400F')(l( 

0" I" )I'('C00l10 
0" 1'1 ~ce"n AoO 
OIlIR OCC~IU4 

C"I" OO"PIC~. 
0.1. ':-~~~:----:-:----__ --' 0 A H 1 PU 
OBIIICO 01'l0elU4 nOOEICS( OOOCI)OO(' ('OOO('CO( 
OfllREC OCOIIIC~A OCCOOOCO COO(,COCI' OOap\(hC 
OIlIC(,C 06161Q(,r OOI)0lO~C COCIIIA.o 4CCRC(1( 

C6/0S!! ~ 

061ClO COOO~OO() --SA"E--
Oil IC 40 00000('00 COOCOnOO OOOOC 
Olllr~c oorccooc --~6"E--
C~ ICCC CCOOCCCO oeccoooo eoa('oooc 0 C 
('RlfEO C('OO('OOO 00('('0000 01)00000(' 000P1D7A 
CIIIOCC ~2C l(3C' 4~r~C~F~ C44CE2CI UC14CC~ 
0810(1) C6E240El r 1(30340 r403(2C1 40r40~U 
011\1')40 4rE~ESC3 CI4CE'l~9 ClCl40C4 C1E~C~4C 
OAI060 OIOOCOCO 002CCI00 1)0C~I<lI~ OCOCOOOC 
0"108() OCCCOOCO cocPleoo 180(,C~00 OI)OOOOOC 
('II Ifl4C CCOCr.CCO CO"I)OOOO 000110(,OC 000000110 
C.IOC(' OOCOOOOO --<A"E--
O"I~CC 0000C24A r4CZFCFl C(,COOOOC 00('e1A88 
CBIF2C oocecooo --SA"E--
01l1<4C 00000000 Ooncoooo COOOOOOO coccooec 
OBI~bC 800AI')E\1I OOOCOOOC 0('000000 OOOOCOOC 
::iRIFRC C(lCOOOOO --SA~E--

fl!\IFAO OCCBIC~C ('C('OOOOC coo('oroc C(,COOMO 
CIIIFCO COOOOOOO --SAO~E--

Oil I F FC OOOCCCCO oecp 2 PC cae COC CC (,crcccoc 
0020CO OOOOCHA C4ClFOFI E3C7FOFI OOOaAII)O 
0'12020 OCC~2IJSC oCCe20~4 COCACAOC 000PlC6C 
0112041' OOOa'lq~O OOO'lqqSO COOII 200R 60C AO 61C 
0112060 8COACFIB 80CR20E4 0040(4(7 F0F1400'l 
OR2080 FOF24009 C<;FCF340 C4C2FOfi 40C~(SFC 
OR2('AO OCC'lAIEC F34CCqC'l FOfl40CS E1~CFI4C 
01120(0 C"FOFI40 (4C?FOFI 40eaC9F4 Fq40~2C I 
OIl20FO F14c(aC9 000B223C C'lF1F14C 0'l(~~4~' 

01l21(,C 000!E104 40E2C'lC'l FO~140C<l C9C4(640 
0112120 CQOS0540 E2C!r3fl~ 40C9CoE3 044CE2CI 
1'112140 Ct'>40C~E1 (6E240E2 CIOC34C C4C'C2(1 
01l21M' F2CIOrt 40F2CIFI) F240C'lC'l F('F'4C(4 
Ofl218n FCF340E2 C IFCF 240 C9C9F(,F3 4CO'lCC;FO 
01l21AO 4(,E2rtFO F240C403 FOFI40C4 C2FCFI4C 
OR21CO CI~Cfl40 C4C2FOH 40(<lCoFO FI4CO'lCC; 
OR2HO C64CCC;Ca 051')54CE2 C 10034C O<;C~E31)4 

0112200 CSE1Flr:" 40C~E1C6 E24CElc\ OD34CC4 
C.2220 ES034C F 2 C IOCI4C EoEaC'ICl 40COPOCC 
0112240 OOCOOOOO --~A"E--
O.nRC COCCC"38 F2CIFCF~ COOOOnO(' OOO~A4At 
('82?60 OCCOOOCO --SAIIIE--
OP23!10 00(00000 ('OOCOOOO C0000338 COCCCCCC 
I)R23AC OCCCCOCO --SAME--
C024('!) 0('0('(2211 E301~CF5 E2CIF(F2 eCC~.4'C 
OR242C OCr p 2460 000"20E4 ('0t:oC008 00CAI60A 
01l244C CCC<;c~50 OCC~'lc~O COCII24CII tOCAOnC 
"11246'" OC090q~0 OCCAIl~6 e004112C 800E~~1A 
0112480 CSE1C"~2 40 F 2CIC3 D340C403 C2C140C4 
('1'124_0 OC 14CE'l F~C~C14C eoc~COCC rcocoooC 
OR24CO OC('O~OOO --SA"E--
C1I25~C COC"2P~O (,(,(,POOIO HFFFF46 OOOOOOOC 
Ofl?O;20 Cb40CqC9 osn540E2 CIC3D34C 09C'lE3"4 
OP2~40 (~E1FIC" 4CnnC6 E240E2C1 C3C~40C4 
002560 F~n40E? CIOCI4(\ E9F'lOCI 4('F2Clr~ 

Figure t t (Part 4 of 5). Sample Dump 

SOA06040 12AA4iE( (OUS860 "2b49zr I 
l)aaOr2~1. q2~~AC12 ~q!CPC4C -EeaCAC1C 
~P'CPC4C S~AOFC4' 47iC(epC ~~6CF04C 
~AACAC24 IZAA4i~O (QC~~"AO "U4<l~44 
~OAOAU4 OH4ACOI I.H~PF( 0C4C~~AC 

F~IOI9<A 41ECC~C4 41AOFOIb 50ACE(,C~ 

~(AOICCe ~PACAC4C COA(ACIC 126A47@( 
<PIOPU4 ~OACl"1P ~8frpU4 41'CB32E 
4~'Ccr~F 4iCC(~~7 C21 0 P4CC Ar~C47FC 

<0<0AC'4 12FF47e0 (aA'.(72A 'I4101141( 
cAAOAOep \EAF~F6C C(PPC20~ "4ICACOr. 
~~AOPI3P 4E6(ACOC 4(ACeCA6 SPF~"C4C 

SCAI)1('r4 IfH~eFC E2t.~qC FCH417C 
IIC4C cA'lC ~CC E411E ~OCCcI'IC rr AC4aAC 
<rleQAC A,e24i7C (AH~eAC p.2~4~eFC 
IZU471., (A4~q'CI FOCC4170 (A4MM!2 
'PACPC4E cpFCACCC C2~FP2P FCC~02'E 
C/Cte'2A rCAe~P6C AO,AI266 QeCC6A, 
'lZPCP!C4 S oF OAC2 0 41\C81CO C~EFSeAC 
• 0~441IC .ICCC~EF 40FConC <PAC.t:4P 
PHC41FO (F2~CFC PJ(4<?EC "1045.<C 
C"6A4<lAC CCAA4nc U2C5e~C 02~C413C 
CUC~2Cc ACCPlP22 .7F((~4C ~eACII2.C 

AOC8CCCF 'l20HOOP 4120000P. ~AACRe4p 
~C:CPICE ~2EC"IOe 58FCAC30 4!lCR!OC 
CHEleOA 4 PCCCCo( 8ECCC~ZC 5CCCCcrC 
4\30COCI 4nccoFp SAAl)e2~0 le5~4C5e 
ICC0411C (oC40,01 AaCCCUC 41FOCPCE 
PlC()41~C (CPC~eSo PJ(44\~C e25CSeSC 
4A~CCC~' 1<l3441CC CB~C\8FZ S8 F0814C 
aOECPI~4 5<ACPC4E ~eFeACCC C,~EA213 
PC4e5AFC FCI412FF 47eCeC70 5C.eIlIOC 
4110enC CCEFIF2F 122?41E0 ((1C4IFC 
AI~4~PC( 01~rC7FF ~"~rplq4 "1FE~'I)C 

C~OCC7FE reClCC02 (,CC4CeC~ Ce01000e 
FCFFFFr4 FHFHU COCCCOCO ccccecn 
C2(1(4(' (~C4(4r: C6[7C4(' C3C'C40~ 
E<F2C4(' r":c~(~ E:EP[1CS 41)40(4r3 
(,OCCC(,OC aOCCOCCC cccccccc ')cccococ 

r'CfUCC C4(2C~C~ (2E~CSC~ 06(10000C 

COC'ltlCC 1CI)PI6cP COCPC6:E OCOG'leAC 
cnO"Ce'lC PCCOOCI~ OOCceFH CCCe?Cee 
OCC~~~~C CCCPO"IC eOC<;p,62 cccco('ec 

~OCPCC.4 OCCOOCOC CCC~cRpC OeCPIC"E 
8eO(,001' OOeQ8FF< CnC"2Cee OAI61eOC 
cccelc~c CCCCCCCC crecccce coceoocc 
OO~(\('OCC ocreccoc COC~ lo~e 00C80PoC 
coceJ[~c OCOEIl.S 40CeCOC (lc(,p1c5c 
CC~OCOOC ACCPeCA2 CCCCCCOO CCC,aPAC 
O(\CACP~C SCOOCCI" OC(cEH< (CrE2CCE 
~C~OCC'CC OCCOOOOC Oocccooe OCOOOOOC 

)OOOCC CCCCOCCC OOCcc~~C OCCBICH 

.. ~t ............ . .............. ~. · ... ~ .......... . 
•• 1' ••••••••••••• ........ ...... ~. 
C ••• I •••••••••• 0 
.01. •••••••••••• 
I •• C •••••• I ••••• 
to ••• C •••• C •• o •• 
I. •••.•••.•••••• 
••••• 1' ••• cc •• r .. 
•••••••• to ••• O Ie 
• .C ••••••••••••• 

•••••••••••••• E
•• K ••• C ••••••••• 
•.•.•.•.• a •••••• 
C ••• K. C ••• p ••••• 

•••• £o ••• C.2tC.· 
•• L ••• O •• tC.".C 
•••••••••••••• to 

•• &. •• K ••••• ~ ••• 
•• " t ••• K ••••• ~. 

t ••••••• to ." ••• t 
••• 0 •••••••••••• 
••••• tK ••••••••• 
••• ~ •• tO ••••••• V 
••• tK •••• B •••• £0 
.C ••• 0.0 •••••••• 
•••• ••••••••• C •• 
O.K.C ••• K.~ •• f.C 
•••• t .......... C •• 

••••• r •.•.•••.•• 

••... I .. OLCUVCCL 
VLOLPCCLeCtLCTCL 
("I ............. . 

•••• •••••••••• AL 

••• &cLCI~6C2 •••• 

•••• ••• Eo ••• ••• 

.... *........ .. ......... 4 

· .......... ~ ... . 
..... 4 ..... * .............. .. 

............. * ............ .. 

CCCOCCCC ceccecoe CCC"IC~~ OC .. .,..1;--....;..;..;..;....., 
OOOI)OOCO CCC 10COO CCCaCOo'l Ca 
(CFSFS4C E2CIC<C< 40C~E1FI U TN ~AFP R 
fi4CC4C? r,~C~4CC4 C'E<C34C E? CLPG ct" 
C4C'(1(' 40C4('0 ('4CCCPC I...------.....IZCA OlVL 
CC~CCCC I OCCPHp4 C6CCeiCO 
0llCPOpS4 OCCPIUC CC C 
OCP.COCO OCOC( 10"(' 

COOS~FC€ CCCC(... .)OCO 

('{(CC~~C PCCPIEEE cccrcccc OCC~'l'l50 

oocecacc CCOCOCOC Of1eCCOCC CC('COOOC 

cCl)ocoec CCCCCCI)C COCCCCCC CCCCOOCC 

CCCOCCU CCCCOCOO COCCCCCC occe!C<;e 
00C'l9FOC 700AOCgC COC834~e OCCSQMC 
Ol)CElCEC BCOCCCI~ COC<;EHF CCCell<l~ 
O(,C'l~~~C 8CC811S3 eCCSA2PC OC(,a'l<;5C 
CGFnFl4C C4C<FeFI 4('CC;C'lfC FI40E2CI 
F340E2C1 FCF24eCa C9FCF340 E2CIFOF2 
C4C2FOfi 40C~E1FC Fl4CE2CI FCF24CC4 
C1C14eC~ CC;FlF24C C'lCOF4FS 4COCC~Fe 
4CCqC~E< (f4CCCC~ CCCCCOCC OOC'lAlEe 
Ca('lF3F7 40CSC~F4 F44CCSC~ E2U4cn~ 
eH14C(~ C~F9F94n E2ClC4C5 40CSE7FI 
4rC4C?0 C14CC40~ nC340C4 C3F~034C 
C2fOFl40 (CCC;FCP 4Cf2CIFO f24CO~CS 
FI4CC5E1 FCFI4CC4 C2F(,fI4C C5E7FCFI 
(4C1FCFl 4CC4C2FC FI4(,C4C: FCFI4CE2 
C4C640C'l C'lF3F14C C9(~F4F4 4CC~C~E2 
4CE2ClU C14CC,C, F9F<;40E2 CIC4C54C 
03(2(14(' C4C:C2C1 4~(4C3C3 C34CC403 
1)0(' E 2lC~ OCO CI)COO C5 P FCO A (,C6400(,C 

ooocoeoo ec('cocoe OaCteret e(lococce 

cccccocc occcccoc cccccecc CCCCCCOC 

COC'lQFOO 60CACFCC CCCPC62C I)CO~'leflO 

COOOOCC e OCCCOCOC OOCC;eFFF OCO<;4 e'lC 
OCO'Q~q5~ OCCe22~. OCCA~31A oCO<;48<lC 
E~C1FCFI C04CE.CI r4C540CS E7FlU4C 
I)'IC2(14n C4C,C3C~ 40C4C?ES 0~4CE2C I 
eCCCCCCC CCCOOCOC C"COCOCO (OCOOCOC 

OOCOCC(G C~F,F140 C~CcF4F4 4cr.GC~E' 

4C~2C leI. 014CC'lCa F'lF04CE 2 C IC4CS40 
C'(2C14C C.C~C<C? 4Cf4nC: C~4CC40? 
0'l400COO OOOOOCOO OCCOCCCC OCI;OOOtO 

•••••••••• C ••••• 

•••• CSCI •••••••• 

•.• * •••••••••.•• 

•••• IlRCllPCI •••• 
••• • ••• U ••••••• -
••• &..;& •••• - ••• 
••••••• U. OBCI P 
C2 RIC'3 CBOI RIO 
•••• 3 PIOI n(,1 
lC! 08CI R14~ SA 
I RI •••• 131 0144 
•• l~ SPICl RICf 
INN SACl RIH SA 
F EXFS S ACl Cl PG 
S4CA 5602 RIC: C 
C3 SA02 RI03 RIC 

SA02 (lCI CPOI 
~02 CBCI RIOI RI 
F PI~" SACl RIlM 
EXI~ EXFS SACL ( 
VL SAO ZZCA ••• 

.... SAC3 •••••••• 

•••• TPCSSAC2 •••• 
••• - ••• U ....... . 
••• t ••• t •••• - ••• 
••• & •••••••••••• 
EXFS SACl CLPG 0 
CA Z ZC A •••••••• 

f RINN SACl RIT" 
EX\F EXFS 5ACl C 
VL SAC A ZUA SAC 

492 DOS/VS Access Method Services Logic 

PlIiGf cc 

• ••• ~ •••••• A 

• •••• v •••••••••• 
.c ...• C ••• M ••• C 
•••••••• ~F •••••• 

••••••••••• 0 •••• 
C •••• • I ••• C. to •• 
t ••••••••••••••• 
• ••• t ••••• ••• C •• 
.C •••• I.K •••••• 0 
.C •••••• I. P ••••• 
• ••••••••• K ••••• 

••••••••••••• 0 •• 
&. ••••• C •• •• c ••• 

C •••••••••••••• 0 
••••••• AC ••••••• 
• •••• O •• K ••• C .K. •............... ...•. (' ......... . 

(\ ..... . 
••• 0.2tC.· ••••• O 
•••••••••.••• t •• 
••••••••• 0 •••• t 

••••• C. e ••• t ••• t 
••••• CK •••••• O •• 
••• t •• tt .... t.ttt 
• •••••••••• 2 •••• 
••••••••• O •• K ••• 
••• CC ••••••• &. •• 
• •••••••••••••• 0 

••• " ••• C •••••••• 
PG Cl ~OCL (~CL LC (L 
V5(lCL E"lVPE Cl 

LFCP'H"'KZERf ••• 

• •••••• Co ••••••• 
••••••••••••••• 1' 
••• £0 ••••••••••• 

••••••••••• M •••• 
............................... 

.." ........... ........... * 

••••••••••••••• 1' 

p~GE ICC 

••••••••••• & •••• 

................ 
••••••••••• R IN~ 
IC~ !ACE nlF D 
G (LlC CL VL SAO 
Ol~C DLeC •• C ••• 

., .t. .......... t 

• .. t. ..•••.••.. & 
ICI CPC! 0101 SA 

5AC2 RIC~ SAC2 
ceCI on SA02 C 
GO PIl2 R14C; PIC 

PI5F Pl. •••••• y 
P131 PI44 PI5F P 
FP R I~~ ~ACE EXI 

ClPG ClLC ClVL 
PO RI03 S602 PI 
I EXCI.OE"I EXCI 
ClOI C~CI CLCI S 
OF R131 PI44 PIS 

SAFP R I~'l SACE 
lBG [leG Cll( Cl 
• •• 1. ••• ExC ••••• 

••• t ........... . 
lPCI. SACE EXIF 
LeG CllC OlVl SA 

••• on7 ~144 0IS 
SAFP PI'l9 SAOE 

lH Cl~G rLlC (L 

L •••••••••••••• 



LIST 06/0~/13 

1181'EC 00000000 00('00000 COOOOOOO 00000000 00000000 CCCOOCOO OCCOOOOO CCOCOCOO 
119000 OOOOOOCO COOCOOOO eoooooco ccocceoo ooeooooo ccccccec cccococe ocoooooc 
i 7G02G 
l797EC 
119800 
l1<;A2e 
l1<11'EC 
lHOOO 
17Ae2e 
l7A1FO 
11 A80C 
11A820 
l7AFEO 
118000 
111!02C 
l71!7E0 
l788CO 
178A20 
11RI'EO 
l1COOO 
11 CO 20 
l1C1EC 

OOCCCQCC --SA~E--
ooooceoo coocoooc coeooocc (100COMe 
0(100(1000 00000000 (100(10000 OOOCOOOC 
OOCOOOOO --$ A"E--
oeeecceo cecooono oooooooc coecoooe 
00000000 00000000 00000000 oooooooc 
ooeooooo --S6"E--
00000000 Oooooooe cooooocc ('oocccoe 
00000000 oooeoooo 00000000 Oooooooe 
ececooco --S AME--
0000(1)00 ceocoooe COOCCOO(l oooeococ 
00000000 ('0000000 OOOOOOOC 00000000 
occccceo --SAME--
OOOOOOM OOOCOOOO 00000000 OCOOCOCC 
00000000 000t:'0000 0000000(1 oooonooo 
ocooeooo --S6ME-~ 
OCOOOOOO ('0000000 00000000 OOOOOO')C 
0<'000000 00000000 COO(lOOOO 00000000 
oooeoceo --SAIotE--
000(11)000 00000000 OOOOOOOC OCOCOOOC 

COCOOOOC Ol;COOOOO COOOOOOO OOMOOOO 
CCCCOOCC cceooeoe cccoooco OCOC(1COC 

ccooeoeo cecco COO ct:eocoec ococooce 
oooooeeo ('Cceocce coe('cocc ('cccoooc 

cccoeeco ccccocce ceeeeoco eccooooo 
ooooooec ccoeccce rocceecc eecooooc 

oo~ococe cceccecc c"coeoec ecooocoe 
00000000 cecoocor oococoeo oo('COOOO 

cceoccco ccceoeoe ccceccce coocoeoo 
OCCOCOOO COCOOCOO e(lCoeaCO ec~eoeoe 

ocoooccc ceccocec ccceccee eeccocoe 
OOOOOO/)o oeC(10ceo coeceoco oooooooc 

oocococc ccccccce cecccccc CCCCOOOO 
17CAOC 00000000 OOOCOOOC (01)001'00 OOI'COOCC crooocec OCCooOoo cocceooo cooooooc 
17C82C ooeocooo --SAME--
l1CFFC oeoooceo COOCOOOO cooooeo(' oeoooooo cocoeccc cecco coo ceeccoce occcococ 
170000 0000('1000 00000000 0000000(' ooococoo oocooooe (1CCOOOCO ooeoeooc OOOOOOOC 
11CC2C OC('('CO<'O --5 !"E--
1107FO 00000000 ('IO,,('ooco ooooeooo ooocl)ooe oococnec occccccc cocccocc ccecoooo 
1101100 ocoooooo ('100000(10 COOOOOOO OCCCOC(lC OOCCOOCC CCCCOCOC cccccoco CCOCOOOO 
11082C cCcceOO(1 --SA"E--
110FEO COCOOOCO ooocoecc ocoocooo ocoeoooc OCO(lOCCC OC(,COCOC OCCCCCOO ococceoc 
l1EOOC 00000000 00000000 OOO('lOCtOO ooonoooc OOOOOCCC OCCOOCOO COCOOOOO OCooOO(1C 
1 ?F02C OOCOOOOO --SA"E--
11E71OO 00000000 00000000 COOOOOCO OOOCOCOC coeoecce ccccoccc coccecco OCOe00(10 
l1E800 Ooooooon 00000000 00000000 OOOOOOOC OOcoorcc occcocec C(1CCCCCe ccecococ 
l1ER2C CCCCCOCO --S6ME--
11EFEO OOOOO"CO "CCCOOOO eoccoooo OCOCCOOC coooooeo eeeeecce eCCCCCOO oecooeoc 
l1FOOO 00000000 (10000MO eOOOOO(1(' ('COOOOOO ooeooooo oecoocee CO COCOOC OCOCOOOO 
11FO 2e oooceoeo --S ~M E--
l7F7EO 00000000 000('0000 eOOOOOOO oooeoooc CCooccce ccccccec ceeccccc OCCCOOOC 
l1F80C O('O('OCOO 00000000 000(1000C oooooooe oocooceo ooooococ occccoco occeoooc 
11F82C OOOOCOOO --SAIotE--

p~GE LIS 

l7FFEC OOCOOCOO ('0000000 ('OOCOOOO oooeOCl

1 

Iceee e~cecccc ccceoooc •••••••••• •••••• • ••••••••••••••• 

Dump point at 

~~;::=:~g~t~ ;::g~ ~:g~ ~~~~ ~!g~ ~~i~ ~~ ::,~i~~~~~:d ~~~~ ~~~~ ~:g ~i~! i:~~ ~t~~ ~~~~ gt~~ g~g~ ~t~~ A g~! 
Tr.C092~T SI';AP OUIotP 001 PRCCUCEC AT DU~P P(I~T ,y, I CSECT that I 

called for dump 
10C(,9241 CU"P RCUTtH INVCKE(') AT 'ZZO' 

INTER-I"OOUlE TRACE: SA02 ClOl CflCl ClCl C~CI ClCl S~02 ceel S~C2 CECI S!C2 ClOl reel ClOl CBCl OlOl SAeL ceel SAe2 Cetl 
INTRA-Iot{10UlE TRACE: RI99 S60E ElClF EXI'S SACl ClPG ClPG CllC ClVl SArA ZZCA llCA ClVl OlP( OlP.( ClCT ClVS S!CA lZCA ZlCA 

to(30ell VSAIf CAlAlCG PETURN-CCCE IS 5f 
10(05511 "'*E"TRY MNOl.ClCCI040 NCT DELETE!) 

10((10011 FU~CTIC" CClotPlETEC. HIGHEST CCNCITICI'; ernE WAS p 

Figure 11 (Part 5 of 5). Sample Dump 

How to Find the GDT 
The Global Data Table (GDT) is preceded by the identifier GDTh, (see 
Figure.ll, Part 1) so you may be able to find it by scanning down the right 
side of the dump. The GDT follows right after the first phase (IDCAMS) of 
the processor and the Anchor Table. A more systematic way of finding the 
GDT depends upon the type of dump you have. Figure 12 shows the two 
methods of finding the GDT and is referred to in the following paragraphs. 

In a PDUMP produced as the result of an ABORT condition, you must use 
Method 1 shown in Figure 12. The GDT is contained in the System Adap~er's 
(mCSAOl) automatic storage area. Register 11 of the registers at entry to 
PDUMP points to the automatic storage area of mCSAOl. The GDT is at 
location GDTTBL in the storage area; you must examine the microfiche 
listing for mCSAOl to find the offset of location GDTIBL. Add the offset of 
location GDTTBL to the contents of register 11 to obtain the address of the 
GDT. 

Diagnostic Aids 493 



Method I. 

Register II 
of registers 
at top of 
dump 

Reg II Automatic Storage 

I t------.-... of I DCSAO I ------1 1 
Global Data Table 

Location GDTTBL 

Method 2. 

IDCEX01 has saved registers 
passed by IDCSA01. Previous 
save area has identification of 
"SA01." 

Figure 12. How to Find the GDT 

Save Area Parameter List 

Previous Save Area ~ ______ -fr----...GIObal Data Table 

. ! lGDTb 1 
EXOI 

L :r 

In a system dump, if the dump occurred after the call to IDCSAOI but before 
mCSAO 1 calls IDCEXO 1, then you must again use Method 1. Add the 
contents of register 11 of the registers at the top of the dump to the offset of 
GOTTBL, to find the GOT. 

If the system dump occurred after IOCSAO 1 called IDCEXO 1, use Method 2 
shown in Figure 12. The address of the GOT was passed as a parameter from 
IDCSAOI to IDCEXOI. You must find the save area where IDCEXOI saved 
the registers belonging to IDCSAOI. The first word of this save area contains 
EXOI. Register 1 in this save area contains the address of a parameter list. 
The first word in the parameter list contains the address of the GOT. 

In a PDUMP produced as a result of the Test option, you can most easily find 
the GOT using Method 2. Find the save area where IDCEXOI saved the 
registers belonging to IDCSAO 1. Register 1 in this save area contains the 
address of a parameter list. The first word in the parameter list contains the 
address of the GOT. 

The GOT is the "anchor" for all areas of the processor. In the GOT are found 
pointers to the trace tables, to the historical areas, and to the entry points of 
the System Adapter, the I/O Adapter, and the Test Processor. 

Figure 11, Part 1 shows the GOT as it appears in a dump. 

494 DOS/VS Access Method Services Logic 



How to Find Save Areas 

The first word of the standard save area for processor phases and CSECTs 
contains the ID of the phase or CSECT that saved its caller's registers in that 
save area. (The ID is the last four characters of the phase Oi CSECT name.) 
For example, if the first word of the save area contains DE01, then you would 
know that IDCDE01 saved its caller's registers in this area. The remainder of 
the save area is set up following standard register saving conventions. Each 
module's save area is contained in the first 18 fullwords of the module's 
automatic storage area. 

Figure 11, part 2 shows a save area as it appears in a dump. The start of the 
save area chain is normally the psuedo save area built by the System Adapter. 
This is a three-word area which immediately follows the System Adapter 
Historical Data Area. The first word contains the identifier "SAO 1". The 
third word contains a pointer to the next save area. The forward chain is 
formed from the third word of each save area. 

How to Find the Trace Tables 

How to Find the FDT 

The trace tables can easily be found once you have found the GDT. The third 
word of the GDT (including the GDT identifier) points to the Inter-Module 
Trace Table; the fourth word of the GDT points to the Intra-Module Trace 
Table. 

Several areas in a dump may look as if they contain the trace tables; however, 
these areas may simply be areas used in constructing the trace tables. 

Figure 11, Part 1 shows how the trace tables appear in a dump. Note that the 
last (twentieth) trace point in the Intra-Module Trace Table is SASN. 1001 is 
not part of the trace table. Also note that if, in the Inter-Module Trace Table, 
the sequence SA02 SA02 occurs, the second SA02 is really the ID for 
IDCI002. 

You can find the Function Data Table (FDT) for an FSR after the FSR has 
received control by finding the save area in which the FSR saved the registers 
belonging to IDCEXO 1. The first word of this save area contains the ID of 
the FSR, for example, PR01 for the PRINT FSR. The previous save area in 
the save area chain contains EX01 in the first word. Register 1 in the save 
area where the FSR saved registers contains the address of a parameter list. 
The second word of that parameter list contains the address of the FDT. 

All FDTs are built by the Reader/Interpreter in a UGPOOL storage area 
obtained by the Executive; the UGPOOL area has an ID of EXOO. The first 
two words of the PDT contain the name of·the command. 

Figure 11, Part 3 shows how an PDT looks in a dump. Part 2 of Figure 11 
shows the register belonging to IDCEX01 and saved by IDCDL01. Register 1 
points to the parameter list. Part 4 of Figure 11 shows the parameter list and 
Part 3 shows the FDT. 

Diagnostic Aids 495 



How to Find Automatic Storage Areas 

The automatic storage area for a phase or CSECT is that storage area 
obtained whenever the phase or CSECT is entered; dynamic storage areas, on 
the other hand, are those storage areas obtained by the phase or CSECT as it 
is executing. All automatic storage areas, as well as dynamic storage areas, are 
obtained by the System Adapter. 

The automatic storage area for most processor phases and CSECTs is 
preceded by an eight-byte header. The first four bytes contain the number of 
bytes in the automatic storage area (including the eight-byte header), and the 
last four bytes contain the phase or CSECT ID. However, for commonly 
called CSECTs, namely, IDCIOOl, IDCSA02, IDCSA03, and IDCTPOl, no 
header precedes the storage area, unless the CSECT has been called 
recursively. On recursive calls (that is, the CSECT has been called again 
within the original call), the storage area that is obtained is preceded by an 
eight-byte header. 

The best way to find the automatic storage area for a phase or CSECT 
depends upon the phase or CSECT. 

The address of the automatic storage area for CSECT IDCSA03 is kept in the 
GDT. 

The addresses of the automatic storage areas for CSECTs IDCIOO 1, 
IDCSA02, and IDCTPOI are kept by the System Adapter in the AUTOTBL. 
Figure 13 shows the format of the AUTOTBL and how to find it. However, if 
one of these CSECTs has been called recursively, indicated by a use count in 
the AUTOTBL greater than one, another automatic storage area has been 
obtained. You must find the second and third storage areas using the 
CSECT's data register or save area register as explained in the next 
paragraphs. 

Figure 11, Part 1, shows how the System Adapter Historical Area and 
AUTOTBL appear in a dump. 

496 DOS/VS Access Method Services Logic 



GDT 

Field 

ID 

Use Count 

Size 

Address 

System Adapter 
Historical Area 

:L .?"I Y 8 (8) AUTOPTR 

?-

AUTOTBL 

ID 
Use 
Count Size Address 

~ I An entry exists for IDCIOOI, 
IDCSA02. and IDCTPOI. 

Number 
of Bytes Contents 

4 

2 

2 

4 

CSECT ID 

Number of automatic storage areas obtained for the CSECT: 

o - no storage area being used 
1 - the storage area whose address is in this table is the 

only storage area being used 
> 1 - another storage area has been obtained for the 

CSECT 

Number of bytes in automatic storage area 

Address of automatic storage area 

Figure 13. Format of AUTOTBL 

To find the automatic storage area for any phase or CSECT, you can examine 
the microfiche listings to find which register has been used by the compiler as 
the data register. This register points to the automatic storage area. 

For all processor phases and CSECTs, the first item in the automatic storage 
area is the save area. Thus, yo~ can also use register 13, which contains the 
address of the save area, to find the automatic storage area belonging to that 
phase or CSECT. Alternatively, you can follow the save area chain as 
explained in the section "How to Find Save Areas" 

Figure 14 shows the automatic storage area for mCEXOI. mCEXOI has 
called meDLO 1; therefore, mCDLO 1 has saved the registers belonging to 
mCEXOI in the save area. 

Figure 11, Part 4 shows an automatic storage area as seen in a dump. 

Diagnostic Aids 497 



Data Register of IDCEXOI 

Reg 13 of IDCEXOI 

EXOI 

Previous Save Area 

Next Save Area * 

T 
*When IDCDLOI returns to IDCEX01, 
this field will contain zeros. 

Automatic Storage 
Area of IDCEXOI 

Figure 14. Example of an Automatic Storage Area 

How to Find Dynamic Storage Areas 

A phase or CSECT obtains storage areas dynamically by issuing either a 
UGSPACE or a UGPOOL macro. 

To find a storage area obtained via a UGSP ACE macro, you must e;xamine 
the microfiche listings to see where the phase or CSECT has saved the 
address of that particular storage area. To find a storage area obtained via a 
UGPOOL macro, you can again examine the microfiche listings or you can 
follow the UGPOOL storage chain maintained by the System Adapter. 

Figure 15 shows how to find the chain of UGPOOL areas from the System 
Adapter's historical area. 

498 DOS/VS Access Method Services Logic 



o (0) GPFIRST 

4 (4) GPLAST 

Figure 15. UGPOOL Area Chain 

I UGPOOL ID List 

First 
UGPOOL Area 

0(0) 
~------------~ 

12 (C) GPID 
-L 
'C' 

0(0) 

Second 
UGPOOL Area 

~------------~ 

12 (C) GPID 

-L 
'C' 

Third (last) 
UGPOOL Area 

0(0) 0 

12 (C) GPID This field contains UGPOOL 
area identification. 

The following list contains the UGPOOL IDs used by different phases and 
CSECTs when they obtain storage. The list of UGPOOL areas also contains 
the name of the internal procedure that issues the UGPOOL macro, and the 
contents stored in the UGPOOL area. 

Figure 11 shows the UGPOOL chain as it appears in a dump. Part 1 of Figure 
11 shows the start of the chain in the GDT. Part 3 of Figure 11 shows a 
portion of the chain. 

Contents of UGPOOL Areas 

Phase or 
CSECT 

IDCALOt 

IDCBIOt 

UGPOOL 
ID Procedure 

ALOO ALTERPRC 

IDCALOt 

LOCATPRC 

INDEXPRC 

BlOt JCPROC 

BIPG INITPROC 

BIPG INITPROC 

Contents of UGPOOL Area 

One of the foliowing: PASSW ALL field or 
volume list. 

CTGPL, CTGFV, and CTGFLs. 

Catalog work area for locate requests. 

CTGPL, CTGFV, and CTGFL to alter index 
KEY field. 

Area obtained by UIOINFO to contain sort 
work file data set name and volume serial list; 
passed back to JCPROC. 

One 2048 byte buffer, followed by area for 
define CPL FVTs and FPLs, followed by 
alternate index record output buffer; area starts 
on page boundary. 
Record sort area followed by table which 
controls the sort. 

Diagnostic Aids 499 



Contents of UGPOOL Area 

Phase or UGPOOL 
CSECT ID Procedure Contents of UGPOOL Area 

IOCOEOI OEOO IOCOEOI CTGPL and CTGFVs. 

IDCOE02 DEOO ALLCPROC One of the following: volume list, file sequence 
list, device type list, OSA TTR, or CTGFLs. 

KEYPROC One of the following: MAOSBCAT CTGFL 
and IOAAMOSB field, or key range list. 

MOOELPROC One of the following: CTGPL and CTGFLs 
used to locate a model object, or catalog locate 
work area. 

NAMEPROC Creation and expiration date and 
EXCEPTION EXIT CTGFLs. 

PROTPROC PASSWALL CTGFL, OWNERIO CTGFL, 
PASSWALL field, RGATTR FPL, RGATTR, 
and User Authorization Record. 

IDCDL01 DL01 MORESP Larger VSAM catalog management services 
work area if necessary. 

IDCIOOI 1000 IDCIOIT I/O Adapter historical area. 

10nn PUTREP Work area where VSAM moves records during 
GET. The UGPOOL ID is the same as the 10 
for the associated IOCSTR. I IDCIOO2 10nn BUILDACB ACB, RPL and EXLST for a VSAM data set. 
The UGPOOL ID is the same 10 as the 
associated 10CSTR. 

BUILDDBK 10AREA for nonVSAM files. The UGPOOL 
10 is the same as the 10 for the associated 
IOCSTR. 

BUILDRPL Work area where VSAM moves records during 
GET. The UGPOOL ID is the same as the 10 
for the associated 10CSTR. 

CKNONOP Work area used to assemble anon VSAM 
spanned record. The UGPOOL ID is the same 
as the ID for the associated IOCSTR. 

10nn OPENRTN 10CSprefix, 10CSTR, 10CSEX, and file 10. 
Each data set that is opened is assigned a 
unique UGPOOL ID, starting with 1001; the 
next data set that is opened is assigned an ID of 
1002. All areas associated with this data set 
have the same UGPOOL IDs. 

IDCI003 DSINFO Area in which data set name, volume serial 
numbers, device type, and/or format-4 time 
stamp is returned to the caller if an area is not 
supplied by the caller. The UGPOOL ID is 
supplied by the caller. 

IDCLCO} LCOO INITPROC Main CTGPL used for all locate requests 
except when locating the entry names of 
associated entries. This area also contains a 
save area for the CTGPL. 

LCD} INITPROC All CTGFLs, followed by the CTGFL save 
area. 

LC02 INITPROC Catalog work area referenced by the main 
CTGPL. 

LC03 INITPROC CTGPL used to locate entry names of 
associated entries; this area also contains a 
save area for the CTGPL. 

500 DOS/VS Access Method Services Logic 



Page of SY33-8564-3 
Revised April 29, 1977 
By TNL SN24-5550 

Contents of UGPOOL Area 

Phase or UGPOOL 
CSECf ID Procedure Contents of UGPOOL Area 

IDCLCOI LC04 INITPROC Catalog work area referenced by the CTGPL 
( Continued) used to locate entry names of associated entries 

of cluster or alternate index. 

LC05 INITPROC String of control interval numbers and types of 
associated entries of a cluster or alternate 
index. 

LC06 INITPROC Text processor argument list. 

LC07 INITPROC Abbreviations used in catalog listing, loaded 
from static text phase. 

LCll INITPROC String of control interval numbers and types of 
associated entries of a data, index, or path. 

IDCLC02 LC08 LOCPROC Larger catalog work area. UGPOOL LC02 is 
released. 

LC09 ANSVPROC Larger area for string of control interval 
numbers and types of associated entries. 
UGPOOL LC05 or LCtl is released. 

IDCLROI LROI ADDASOC Association table extension area. 

BLDVEXT Vertical extension table extension area. 

INITLZE Space for ASSOCTBL, ASSOCTB2 and 
VEXTTBL. 

INTASOC Association table extension area. 

LR02 CTTBLD CI translate table (CIT). 

LR03 INITLZE Input/ output buffers. 

LR04 INSORT Sort table. 

IDCMPOI MPOI BFPLPROC Obtain one or two FPLs. 

BPASPROC PASSWALL CTGFL. 

CLUSPROC Buffer to read data records from the portable 
data set. 

CTLGPROC Larger catalog work area. 

DELTPROC Larger VSAM catalog management services 
work area if necessary. 

LVLRPROC One of the following: volume list for define, or 
DEVTYPESCTGFL. 

RANGPROC Range list. 

FVTPROC FVT and pointers to FPLs. 

IDCRCOI RC50 OPEN Storage for OPNAGL. 

RC5t SUPSP Name table storage. 

RC52 DIRECT Buffer for directory record. 

RC54 SCANCRA CRA translate table. 

IDCRC02 RC02 IDCRC02 Control record output buffer. 

ALSPROC Control record output buffer. 

ASOCPROC Control record output buffer. 

CLUSPROC Control record output buffer. 

CTLGPROC Catalog work area. 

GDGPROC Control record output buffer. 

LOCPROC CPL, FPL, and work area for catalog. 

Diagnostic Aids 501 



Contents of UGP<X>L Area 

Phase or UGP<X>L 
CSECT ID Procedure Contents of UGP<X>L Area 

IDCRC02 NVSMPROC Control record output buffer. 
( Continued) 

SAVEPROC Input record save area. 

IDCRIOt EXOO GETSPACE FDT -data substructures. 

MORSPACE FDT -data list substructures. 

SCANCMD FDT -secondary pointer vectors. 

RInn INREPEAT FDT -temporary space for secondary pointer 
vectors. nn is the ID of the parameter 
associated with the secondary pointer vector. 

IDCRI02 EXOO IDCRI02 Reader/Interpreter tables and FDT. 

RInn IDCRI02 FDT -temporary space for secondary pointer 
vectors. nn is the ID of the parameter 
associated with the secondary pointer vector. 

IDCRMOI RMOt ALISPROC Catalog data record buffer. 

BFPLPROC Obtain one or two FPLs. 

BPASPROC Contain PASSWALL field information. 

CLUSPROC Buffer area for data record containing catalog 
locate area. Also volume list. 

CPLPROC Catalog parameter list. 

CTLGPROC Larger catalog work area. 

DELTPROC Larger catalog work area. 

FVTPROC FVT and pointers to FPLs. 

LVLRPROC Volume serial list. DEVTYP FPL and 
associated device type lists. List of 
FILESEQUENCE numbers and associated 
FPL. 

NFVTPROC FVT and total number of FPLs. 

NVSMPROC Buffer for data record. 

RANGPROC Storage for range list. 

UCATPROC Storage for data record. 

IDCRSOI RSOI IDCRSOI Automatic storage modules IDCRSOI -
IDCRS07. 

RSOI INIT Work area used for Umacro parameter lists, 
record access blocks, IKQMDADS parameter 
list and control interval translate table. 

RS03 INIT Area obtained by UIOINFO for catalog data 
set information. 

RSPG INIT CRA user buffer. 

IDCRS03 RS03 VOLCHK UI 0 INFO return area and DSCB read in area. 

RSlO GETTAB Tables obtained as needed for association 
checking. 

RSll PROCVOL Work areas used for bit maps. 

RS12 VERB Work area used for GDG association checking. 

IDCRS04 RS04 NINIT Work area used for FIND processing. 

RS04 NXPND Extension to FIND work area. 

IDCRS05 RSOI BLDRLST RESVOL table. 

RS02 BLDVLST VOLSERTB table. 

502 DOS/VS Access Method Services Logic 



Sample Dump 

Contents of UGPOOL Area 

Phase or 
CSECf 

• iDCRS06 

IDCRS07 

IDCTPOI 

IDCTP04 

IDCTP05 

IDCXPOI 

UGPOOL 
ID Procedure 

RS03 WFDEF 

RS03 RENAMEP 

Contents of UGPOOL Area 

Work area used for UCATLG parameter list to 
define the workfile, area obtained by 
UIOINFO for workfile data set information. 

UIOINFO return area and work area. 

RENMBK UIOINFO return area and work area. 

RENMSETV DADSM work area for RENAME. 

TP03 

TPOI 

LINEPRT 

INITPROC 

PCTSETUP 

TPOI IDCTP05 

XPOI ALTRPROC 

CONTRBL 

CTLGPROC 

DELTPROC 

LOCPROC 

Header line. 

Secondary Print Control Table. 

One of the following: Print Control Table, 
sub-title lines, or footing lines. 

Entry from a static text format structure. 

CTGFV and CTGFLs for catalog alter request. 

Output buffer for control records. 

Larger catalog work area. 

CTGPL for catalog delete request. 

One of the following: CTGPL and CTGFLs for 
catalog locate request, or catalog work area for 
locate request. 

The dump in Figure 11 was obtained through the Test option at the ZZCA 
dump point. The commands that were specified are: 

PARM TEST( FULL( ZZCA,3,1 ) 

DELETE MN01.CL001040/CLMR 

Various fields within the dump are marked; these fields are discussed more 
fully in this chapter. 

Debugging a Catalog Problem 
There may be a problem within Catalog Management routines or within 
Access Method Services routines that invoke Catalog Management if one of 
the following situations occurs: a system error occurs within Catalog 
Management routines, the return code from the catalog indicates a non-user 
error, or the printed output from the catalog is incorrect. To determine 
whether the problem exists in Access Method Services or in Catalog 
Management, you must examine the argument lists passed between the 
processor and Catalog Management. 

This section explains how to obtain a dump that contains the Catalog 
Management argument lists and how to find the argument lists within the 
dump. 

To determine whether the argument lists passed between the processor and 
Catalog Management are correct, see the section "Method of Operation" in 
this book and the book DOS/VS LIOCS Volume 4: VSAM Logic which is 
listed in the preface to this book. The section "Method of Operation" 
explains what argument lists are passed to Catalog Management by each FSR; 
DOS/VS LIOCS Volume 4: VSAM Logic explains the contents of the 
argument lists and also explains the arguments that are returned by Catalog 
Management. 

Diagnostic Aids 503 



Obtaining a Dump For a Catalog Problem 

If you do not have a system dump within Catalog Management, you can use 
the Test option to obtain a dump within Access Method Services before and 
after the call to Catalog Management. 

The list of Phase or CSECT to Dump Cross Reference contains all the dump 
points within the processor; you can specify these dump points on the FULL 
option of the TEST keyword to obtain a full partition dump. Most FSRs that 
issue a UCATLG macro to call Catalog Management have dump points 
before and after the macro. In addition, the System Adapter routine that 
issues the CATLG macro has a dump point before and after the macro. 

Some FSRs have unique dump points around different types of calls to 
Catalog Management. For example, IDCDLOI has dump points DLVL 
around the call to locate the entry type and dump points DL VS around the 
call to delete the entry. Some FSRs have the same dump point around all calls 
to Catalog Management, for example, IDCMPOI. Some FSRs have dump 
points at which you can obtain selected fields in addition to a full partition 
dump, for example, dump points LCBL and LCAL in IDCLCOI. 

The System Adapter dump point ZZCA can always be used, for any FSR, to 
obtain dumps before and after a call to Catalog Management. 

To determine at which iterations of a dump point you wish a full region dump, 
you must determine how many calls to Catalog Management have been made 
by the FSR before the call that caused the problem. You can either use the 
following list or rerun the job with the AREAS option. 

Instead of using the Sequence of Catalog Calls Made by FSRs, you can rerun 
the job with the AREAS option of the TEST keyword to determine which 
iteration of a dump point you need to use. For example, if you wish to use 
dump point ZZCA to obtain a dump, rerun the job with the following Test 
option: 

PARM TEST( AREAS ( ZZ ) ) 

From the trace output you can see how many times dump point ZZCA was 
encountered before the problem occurred. 

The following list summarizes the sequence of calls each FSR makes to 
Catalog Management. For example, assume that the LISTCAT FSR, 
IDCLCOl, while listing all the information for a KSDS cluster entry, listed the 
cluster name under the index entry incorrectly. Referring to the list, you 
would know that the call to the catalog that retrieved that name was the 
seventh call the LISTCAT FSR made to Catalog Management. 

504 DOS/VS Access Method Services Logic 



Sequence of Catalog Calls Made by FSRs 

FSR 

IDCALOI 

Sequence of caDs to catalog management 

1. A call to open the catalog if the dname sub parameter of the 
CATALOG parameter was specified. 

2. A call to locate catalog fields if one of the following fields is being 
nullified or altered: MASTERPW, CONTROLPW, UPDATEPW, 
READPW, CODE, ATTEMPTS, AUTHORIZATION, 
ERASE I NOERASE, SHAREOPTIONS, FREESPACE, 
WRITECHECK I NOWRITECHECK, 
UNINHIBIT I INHIBIT,UPGRADE, UNIQUEKEY, 
NONUNIQUEKEY, KEYS, or RECORDSIZE. 

If UPGRADE was supplied: 

1. A call to locate the associated data component of the alternate index 
to verify that it is empty. 

2. A call to alter the alternate index entry. 

If RECORDSIZE was supplied for the data object: 

1. A call to locate the cluster or alternate index associated with the 
data object. 

2. A call to locate the index associated with the cluster or alternate 
index related to the data object. 

3. A call to alter the data entry. 

If RECORDSIZE was supplied for the cluster or alternate index object: 

1. A call to locate the associated data object. 

2. A call to locate the associated in,dex object. 

3. A call to alter the data entry. 

If RECORDSIZE was supplied for the path object: 

1. A call to locate the data object of the related alternate index or 
cluster. 

2. A call to locate the index object of the related alternate index 
cluster. or cluster. 

3. A call to alter the data entry. 

If KEYS was supplied for the data object: 

1. A call to locate the cluster or alternate index associated with the 
data object. 

2. A call to locate the index associated with the cluster or alternate 
index related to the data object. 

3. A call to locate the alternate index's base cluster, if the data object is 
associated with an alternate index. 

4. A call to locate the data object of the base cluster. 

5. A call to alter the data entry. 

6. A call to alter the related index object key values. 

If KEYS was supplied for the cluster object: 

1. A call to locate the associated data object. 

2. A call to locate the associated index object. 

3. A call to alter the data entry. 

4. A call to alter the related index object key values. 

Diagnostic Aids 505 



Sequence of Catalog Calls Made by FSRs 

FSR 

IDCBIOI 

IDCDEOI 

I IDCDE02 

IDCDLOI 

506 DOS/VS Access Method Services Logic 

Sequence of caDs to catalog management 

If KEYS was supplied for the alternate index object: 

1. A call to locate the associated data object. 

2. A call to locate the associated index object. 

3. A call to locate the base cluster object. 

4. A call to locate the base cluster's data object. 

5. A call to alter the data entry. 

6. A call to alter the related index object key values. 

If KEYS was supplied for the path object: 

1. A call to locate the data object of the related alternate index or 
cluster. 

2. A call to locate the index object of the related alternate index or 
cluster. 

3. A call to locate the base cluster's data object, if the path is related to 
an alternate index. 

4. A call to alter the related entr's data object. 

If KEYS was supplied: 

1. A call to alter the related index object's key values. 

1. A call to locate the catalog ACB, entry type and associations of the 
name specified for the base cluster-may be the base cluster itself or 
a path over the base cluster. 

2. A call to locate the AMDSB of the base cluster's data component. 

3. A call to locate the entry type and associations of the name specified 
for the alternate index-may be the alternate index itself or a path 
over the alternate index. 

4. If locate 3 returned a path over the alternate index, a call to locate 
the entry type and associations of the alternate index. 

5. A call to locate the AMDSB of the alternate index's data 
component. 

If an external sort is performed: 

1. 

2. 

1. 

2. 

1. 

2. 

Two calls to define each sort work file. 

Two calls to delete each sort work file. 

A call to open the catalog if the dname subparameter of the 
CATALOG parameter was specified. 

A call to define the entire entry. 

A call to open the catalog specified if the MODEL parameter was 
specified with the dname.subparameter. This call occurs prior to 
the first locate for cluster, data or index described in 3. 

One or more calls to locate each object that is modeled, as follows: 
threecalls if the MODEL keyword is specified in the cluster 
parameter list for a KSDS cluster; two calls if the MODEL keyword 
is specified in the cluster parameter list for an ESDS cluster or in 
both the data and index parameter lists; one call if the MODEL 
keyword is specified in a data parameter list or an index parameter 
list only. 

1. A call to open the catalog if the dname subparameter of the 
CATALOG parameter was specified. 



Sequence of Catalog Calls Made by FSRs 

FSR 

IDCLCOI 

Sequence of calls to catalog management 

For each entry: 

1. A call to locate the entry type, if the type was not specified on the 
command. 

2. A call to delete the entire entry. 

3. An iterative series of calls to delete any remaining parts of a 
structure as necessary. 

1. A call to open the catalog if the dname subparameter of the 
CATALOG parameter was specified. 

For each cluster entry: 

1. A call to locate the cluster entry. 

2. A call to locate the name of the data entry associated with the 
cluster entry. 

3. A calrto locate the name of the index entry associated with the 
cluster entry, only for KSDS clusters. 

4. Repetitive calls to locate the names of the alternate indexes and 
paths associated with the cluster entry (if any exist). 

5. A call to locate the data entry. 

6. A call to locate the name of the cluster entry associated with the 
data entry. 

7. A call to locate the index entry, only for KSDS clusters. 

8. A call to locate the name of the cluster entry associated with the 
index entry. 

9. Repetitive calls to locate the path entries (if any exist). 

10. Repetitive calls to locate the cluster, data, and index (for 
key-sequenced files) associated with the path entries. 

For each alternate index entry: 

1. A call to locate the alternate index entry. 

2. ...4. call to locate the name of the data entry associated \vith the 
alternate index entry. 

3. A call to locate the name of the index entry associated with the 
alternate index entry. 

4. A call to locate the name of the cluster entry associated with the 
alternate index entry. 

5. Repetitive calls to locate the names of the paths associated with the 
alternate index entry (if any exist). 

6. A call to locate the data entry. 

7. A call to locate the name of the alternate index entry associated 
with the data entry. 

8. A call to locate the index entry. 

9. A call to locate the name of the alternate index entry associated 
with the index entry. 

10. Repetitive calls to locate the path entries (if any exist). 

11. Repetitive calls to locate the alternate index, data and index (of 
alternate index), and data and mdex (of cluster) associated with the 
path entries. 

Diagnostic Aids 507 



Sequence of Catalog Calls Made by FSRs 

FSR 

IDCLROI 

IDCMPOI 

508 DOS/VS Access Method Services Logic 

Sequence of calls to catalog management 

For each data entry: 

1. A call to locate the data entry. 

2. A call to locate the name of the cluster or alternate index entry 
associated with the data entry. 

For each index entry: 

1. A call to locate the index entry. 

2. A call to locate the name of the cluster or alternate index entry 
associated with the index entry. 

For each path entry: 

1. A call to locate the path entry. 

2. For a path over a cluster, a call to locate the name of the cluster, 
and data and index (of cluster) associated with the path entry. 

3. For a path over an alternate index, a call to locate the name of the 
alternate index, data and index (of alternate index), and data and 
index (of cluster) associated with the path entry. 

For each non VSAM entry: 

1. A call to locate the non VSAM entry. 

For each space entry: 

1. A call to locate the space entry. 

2. One or more calls to locate each file ID in a space entry, for 
example, three calls if three data sets are defined in the data space. 

For each user catalog entry: 

1. A call to locate the user catalog entry. 

1. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

A call to open the catalog if the dname sUQparameter of the 
CATALOG parameter was specified. 

A call to define the cluster or alternate index. 

A call to locate the cluster entry, if the previous define failed 
bacause of a duplicate entry in the catalog .. 

A call to locate the data entry, only for a duplicate cluster entry. 

A call to locate the index entry, only for a duplicate KSDS cluster 
entry or alternate index entry and if the temporary export flag is not 
set in the data entry. 

A call to delete the entry, if there is a duplicate nonempty entry. 

An iteractive series of calls to delete any remaining parts of a 
structure as necessary. 

A call to define the cluster again, if there was a duplicate entry. 

A call to delete the defined entry, if an error occurred copying data 
into the defined entry. 

An iterative series of calls to delete any remaining parts of a 
structure as necessary. 

A call to alter the data entry, if the INHIBITT ARGET keyword was 
specified at export time. 

11. A call to alter the index entry, if the INHIBITT ARGET keyword 
was specified at export time for a KSDS cluster or an alternate 
index. 



Sequence of Catalog Calls Made by FSRs 

FSR 

IDCRCOt 

IDCRMOt 

IDCRPOt 

IDCRSOI 

IDCRS06 

IDCXPOI 

Sequence of calls to catalog management 

1. A call to locate the cluster entry. 

2. A call to locat~ the data entry. 

3. A call to locate the index entry only for a KSDS cluster or an 
alternate index. 

I. A call to define the object. 

2. A call to delete the object if a duplicate name is indicated following 
the first call to catalog. 

3. A series of calls to catalog to delete the remainder of the structure. 

4. A call to define the object if a duplicate name was found. 

5. A call to alter the name of the object if it is a VSAM entry to the 
dummy name specified on the OUTFILE ddcard. 

6. A call to alter the name of the object back to its original name if the 
previous call was exported. 

7. A call to delete the object defined if import fails after the define. 

8. A series of calls to catalog to delete the remainder of the structure. 

For VSAM data sets: 

I. A call to identify the INFILE data set type. 

2. A call to identify the OUTFILE data set type. 

I. A call to locate the catalog data set name. 

2. A call to locate the catalog volume serial number and timestamp. 

3. A call to locate the catalog ACB and data attributes. 

4. A call to locate the ACB of the catalog in which the workfile was 
defined. 

I. A call to define the workfile. 

2. A call to delete the workfile. 

1. A call to locate the cluster or alternate index entry. 

2. A call to locate the data entry. 

3. A call to locate the index entry, only for a KSDS cluster or an 
alternate index. 

4. A call to locate the related base cluster name if the object being 
exported is an alternate index. 

5. A series of iterative calls to locate catalog information about the 
path objects associated with the object. 

6. A call to alter the data entry, if TEMPORARY, INHIBITSOURCE, 
or INHIBITI ARGET was specified on the command. 

7. A call to alter the index entry, if TEMPORARY, 
INHIBITSOURCE, or INHIBITI ARGET was specified on the 
command, and the object is a KSDS cluster or an alternate index. 

8. A call to delete the entry if PERMANENT was specified on the 
command. 

9. A series of iterative calls to the delete any remaining parts of the 
structure. 

Diagnostic Aids 509 



How to Find Catalog Management Argument Lists 

The Catalog Parameter List (CTGPL) is the one argument list always passed 
between Access Method Services and Catalog Management. The CTGPL 
may point to a catalog work area, a CTGFV, or one or more CTGFLs. Thus, 
once you find the CTGPL, you can find all the Catalog Management 
argument lists. 

The best way to find the CTGPL in a dump depends upon the type of dump 
you have: a system dump within Catalog Management, a PDUMP taken at a 
dump point within an FSR, or a PDUMP taken at the ZZCA dump point in 
the System Adapter. 

In a system dump within Catalog Management, register 1 of the registers 
saved when Catalog Management was entered contains the address of the 
CTGPL. 

In a PDUMP taken at a dump point within an FSR, the address of the 
CTGPL is stored at location CTGPLPTR in the FSR's automatic storage 
area. You must examine the microfiche listings to determine the offset of 
location CTGPLPTR in the automatic storage area. 

In a PDUMP taken at dump point ZZCA within the System Adapter, the 
address of the CTGPL is again stored at location CTGPLPTR in the FSR's 
automatic storage area. However, the address of the CTGPL is also passed as 
an argument from the FSR to IDCSA02 when the UCA TLG macro is issued. 
Figure 16 shows how to find the address of the CTGPL using register 1 at 
entry to IDCSA02. Register 1 contains the address of a parameter list. The 
second word of the parameter list points to a full word that contains the 
address of the CTGPL. 

In addition to the CTGPL, Catalog Management returns to the processor a 
code in register 15 that indicates the result of the catalog request. The best 
way to find the return code in a dump again depends upon the type of dump 
you have: a PDUMP taken at a dump point within an FSR, or a PDUMP 
taken at dump point ZZCA. 

In a PDUMP taken at a dump point within an FSR, you must examine the 
microfiche listings to determine where the FSR has stored the return ~ode. 
However, any nonzero return code is always printed by the FSR in a 
subsequent message. 

In a PDUMP taken at a dump point within the System Adapter, the catalog 
return code is stored at location TESTRC in IDCSA02's automatic storage 
area. You must examine the microfiche listings to determine the offset of 
TESTRC in the automatic storage area. 

Some FSRs have headings before the storage areas that contain the Catalog 
Management argument lists. These headings may help you find the Catalog 
Management argument lists in a dump. Figure 17 shows the DEFINE FSR's 
storage area that contains the argument lists set up for a define request. 

510 DOS/VS Access Method Services Logic 



IDCSA02 has saved registers 
passed by FSR. 
Previous save area has 
FSR's identification. 

0(0) 
~------------~ 4 (4) Previous Save Area 

24 (18) 

T 

Figure 16. How to Find the CTGPL 

T T 

Diagnostic Aids 511 



CATPLIST 

CLSTRFVT 

VOLUMFVT 

INDEXFVT 

-,.... 

DATAFVTb 

-I.".. 

DEFINWKA 

T 

} UGPOOL Area Header 

1 
CTGFV for cluster information. For 
non VSAM data sets, the heading 
is NVSAMFVT. 

1 CTGFV for volume information. 

-....1 CTGFV for index information. 

1 CTGFV for data information. 

T 1 Catalog work area for generated names. 

If any of the above CTGFVs are not set up for a define request, 
the heading and CTGFV area contains zeros. 

Figure 17. Catalog Argument Lists in Storage Area of DEFINE FSR 

512 DOS/VS Access Method Services Logic 



Debugging a Formatting Problem 

Example I 

If data is misformatted, the problem may be in the parameters given to the 
UPRINT macro. The UPRINT parameters are: (1) the address of the GDT; 
(2) the address of an alternate IOCSTR or zero; (3) the address of and a 
DARGLIST data area in storage; and (4) the address of a FMTLIST data 
area, if it is in storage. If the FMTLIST is in a static text module, the fourth 
parameter is zero and the DARGLIST contains information to find the 
FMTLIST. The DARGLIST and the FMTLIST control the formatting of the 
data. The DARGLIST in general contains information about the input data 
within the FMTLIST. The FMTLIST controls the order of formatting by the 
placement of the substructures. Refer to the "Data Areas" chapter for a 
detailed description of the GDT, IOCSTR, DARGLIST, and FMTLIST. 
Problems are most likely to occur between the DARGLIST and the 
FtvITLIST. The examples show how the Text Processor uses the DARGLIST 
and FMTLIST to format the data. With each example is a flowchart with 
blocks keyed to the FMTLIST substructure. 

A module wants to space one line then print data starting in column 10. The 
data is in the module's storage rather than in a static text module. 

The output is: 

70 characters of data starting in column 10 

In the module's storage is: 

• the data to be printed 

• aDARGLIST 

• aFMTLIST 

The data is: 

Offset Name 

0 any, INFO for 
exampie 

The DARGLIST is: 

Offset 

0 

4 

8 

12 

14 

16 

Name 

DARGDBP 

DARGRETP 

DARGSTID 

DARGILP 

DARGCNT 

DARGRETL 

Contents 

70 characters of EBCDIC 
data 

Contents 

INFO 

0 

o 

70 

o 

o 

Comments 

Comments 

Address of the block of data to 
be printed. 

The line is to be printed rather 
than just formatted and 
returned to the module without 
printing. 

No static text module is 
used-the FMTLIST and data 
are in the module's storage. 

Number of characters to print. 

No insert or replication 
substructures occur in the 
FMTLIST. 

Since no data is returned, the 
length of the return area whose 
address. is in DARGRETP. 

Diagnostic Aids 513 



Offset Name 

18 DARGIND 

The FMTLIST is: 

Offset Name 

.0 FMTFLGS 

2 

4 

7 

8 

10 

12 

14 

16 

none 

FMTSPF 

FMTSPT 

none 

FMTFLGS 

none 

FMTILEN 

FMTIOFF 

FMTOCOL 

FMTOLEN 

FMTCNVF 

Contents 

o 

Contents 

X'40' 

o 

C'R' 

o 
X'90' 

o 
700rO 

o 

10 

70 

o 

Comments 

Indicates printing is to start in 
the column indicated in 
FMTLIST. No DARGARY is 
defined because no insert or 
replication substructures are 
used in the FMTLIST. 

Comments 

Identifies these 6 bytes as a 
spacing substructure. 

Unused. 

Space one line. 

Space the number of lines in 
FMTSPR relative to the last line 
printed. 

Unused. 

Identifies these 12 bytes as a 
block substructure and the end 
of the FMTLIST. 

Unused. 

If 70 is specified, it is used as the 
length of the data. If 0 is 
specified, the length of the 
converted data is used as the 
length to print. Since no 
conversion is being done in this 
example, the result is the same 
if 70 or 0 is specified. 

Get the data starting with the 
first byte. 

Place the data in output column 
10. 

Number of bytes to print. 0 
would give the same result since 
no conversion is being done. 

No conversion is being done on 
the data addressed by 
DARGDBP. 

Discussion: The spacing substructure causes one line to be spaced. 

The next substructure is identified as a block data substructure. The address 
of the block of data is in DARGDBP. No conversion is to be done on the 
data. The Text Processor moves the 70 bytes in the next line. 

514 DOS/VS Access Method Services Logic 



ExampleD 

• Space 1 
line 

Format 
block 
data 

A module wants to space 2 lines, print a header, space 2 more lines, and print 
all of a block of data no matter how many lines the block of data takes with 
single spacing between subsequent lines. The header is in static text module 
IDCTSALO at entry X'03'. The block of data is in the module. Also, if there 
is no record number for the header, the module wants to print the word 
UNKNOWN. 

The output is: 

(1 bi~nk iine) 
RECORD NUMBER 002 
(1 blank line) 
xxxxxxx converted data for as many lines as necessary 

The module has in its storage: 

• the data for the record number in the header, in this example X'02' 

• the block of data to convert and print 

• aDARGLIST 

Already existing in a static text module is: 

• aFMTLIST 

• text for the header, in this example the characters 'RECORDt;NUMBER' 

Diagnostic Aids SIS 



The data is: 

Offset Name Contents Comments 

0 any, RECNUM one byte with the 
for example value X'02' 

any, DUMPIT 2000 bytes of The binary data will be 
for example binary data converted to printable 

hexadecimal. 

The DARGLIST is: 

Offset Name Contents Comments 

0 DARGDBP DUMPIT Address of the block of data to 
convert. 

4 DARGRETP 0 The lines are to be printed 
rather than just formatted and 
returned to the module without 
printing. 

8 DARGSTID C'ALO', X'03' Static text identification to 
locate the FMTLIST -the 
FMTLIST IDCTSALO at entry 
3. 

12 DARGILP 2000 The length of DUMPIT. 

14 DARGCNT One insert data appears in 
DARGARY. 

16 DARGRETL 0 The length of the converted 
data is used as the number of 
bytes to print. 

18 DARGIND 0 Printing starts in the column 
indicated in FMTLIST. 

19 none 0 Unused. 

20 DARGARY none DARGARY is the name of the 
rest of DARGLIST. 

20 DARGINS 4 This number is matched with a 
insert substructure in 
FMTLIST. 

22 DARGINL The number X'02' occupies one 
byte. 

24 DARGDTM RECNUM Address of the number X'02' in 
the module. 

At entry X'03' in static text module IDCTSALO is: 

Offset Name Contents Comments 

0 TXT 71 Length of the FMTLIST and the 
data that follows the FMTLIST. 
2 FLGOThis static text entry is 
for data not a message or 
header. 

8 4 FMTFLGS X'40' Identifies these 6 bytes as a 
spacing substructure. 

5 none 0 Unused. 

6 FMTSPF 2 Space 2 lines. 

8 FMTSPT C'R' Space the lines relative to the 
last printed line. 

9 none 0 Unused 

516 DOS/VS Access Method Services Logic 



Offset Name Contents Comments 

810 FMTFLGS X'04' Identifies these 10 bytes as a 
static text substructure-the 
data is immediately after the 
FMTLIST. 

11 none 0 Unused. 

12 FMTSTL 13 Number of bytes in 
C'RECORDbNUMBER'. 

14 FMTSTO 54 Number of bytes the data 
C'RECORDbNUMBER' is 
from the first substructure in 
FMTLIST. 

16 FMTOCOL The data 
C'RECORDbNUMBER' is to 
be printed in column 1. 

18 FMTOLEN 0 o indicates the output length is 
the same as the input length for 
this data. 

8 20 FMTFLG X'20' Identifies these 12 bytes as an 
insert substructure. 

21 none 0 Unused. 

22 FMTRFNO 4 This number is matched with 
the number in DARGINS in 
order to get the address of the 
data X'02'. 

24 none 0 Unused. 

26 FMTOCOL 15 The data X'02' is printed in 
column 15. 

28 FMTOLEN 3 The converted data is to take up 
3 columns. 

30 FMTCNVF X'I000' The data X'02' is to be 
converted from byte to zoned 
decimal. 

6)32 FMTFLGS X'02' Identifies these 8 bytes as a 
default text substructure. 

33 none 0 Unused. 

34 FMTILEN 7 Number of bytes in the data 
C'UNKNOWN'. 

36 FMTIOFF 67 Number of bytes the data 
C'UNKNOWN' is from the first 
substructure in FMTLIST. 

38 FMTOCOL 15 The data C'UNKNOWN' is 
printed in column 15. 

040 FMTFLGS X'4O' Identifies these 6 bytes as a 
spacing substructure. 

41 none 0 Unused. 

42 FMTSPF 2 Space 2 lines. 

44 FMTSPT C'R' The 2 lines are spaced relative 
to the last printed line. 

45 none 0 Unused. 

846 FMTFLGS X'90' Identifies these 12 bytes as a 
block data substructure and the 
last substructure in FMTLIST. 

Diagnostic Aids 517 



Offset Name 

47 none 

48 FMTILEN 

50 FMTIOFF 

52 FMTOCOL 

54 FMTOLEN 

56 FMTCNVF 

58 any 

71 any 

DiscuBon: 

Contents 

o 
o 

o 

o 

X'8000' 

Comments 

Unused. 

Zero means use the length of 
the block data in DARGILP. 

Start at the first byte of the 
block data. 

Start the block of data in output 
column I. 

Zero means print the block data 
until the input is exhausted no 
matter how many lines it takes. 

Convert the block of data from 
binary to printable hexadecimal. 

C'RECORDbNUMBER' Data for the second 

C'UNKNOWN' 

substructure. 

Data for the default text 
substructure. 

The first spacing substructure causes 2 lines to be spaced. 

The static text 'RECORD b NUMBER' is put in the next line. 

The insert number in the insert substructure is matched with the inse~ 
number in DARGLIST. The number X'02' from the module is converted to 
zoned decimal and placed in column 15. 

The next spacing substructure causes 2 more lines to be spaced. 

The block data substructure causes the data addressed by DARGDBP to be 
converted to printable hexadecimal until all the bytes in DARGILP have been 
converted and printed. If the module wants to print the same lines again but 
with a different record number and different block data, only DARGDBP, 
and DARGDTM need to be changed. If there had not been a reference 
number 4 in DARGLIST the data C'UNKNOWN' will be printed instead of 
the record number '002'. This allows more freedom for the module to vary 
the output just by changing insert reference numbers in the DARGLIST. 

518 DOS/VS Access Method Services Logic 



• 

• 

Space 2 lines 

P"ut text 
RECORDbNUMBER 

in line 

Put text 
'UNKNOWN' 

in line 

Space 2 
lines 

Format all 

• data in 
block 

YES Put in 
X'02' • 

Diagnostic Aids 519 



Example III 

A module wants to space 3 lines then print repeating fields on different lines 
so the output would appear as: 

(2 blank lines) 
field A Field B X'field CI' 

X'field C2' 
field DI 
field D2 

field EI 
field E2 

The module has in storage: 

• all the data to be printed 

• a DARGLIST 

• a FMTLIST 

The data is: 

Offset Name 

0 A 

4 B 

8 Cl 

10 01 

12 El 

13 C2 

15 02 

17 E2 

The DARGLIST is: 

Offset 

0 

4 

8 

12 

14 

16 

19 

18 

20 

Name 

DARGDBP 

DARGRETP 

DARGSTID 

DARGILP 

DARGCNT 

DARGRETL 

none 

DARGIND 

DARGREP 

22 DARGPCT 

Offset Name 

80 FMTFLGS 

none 

Contents Comments 

four bytes of EBCDIC data 

four bytes of packed decimal data 

two bytes of binary data 

two bytes of binary data 

one byte of EBCDIC data 

two bytes of binary data 

two bytes of binary data 

one byte of EBCDIC data 

Contents 

A 

o 

o 
18 

o 

o 

o 

7 

2 

Contents 

X'40' 

o 

Comments 

The lines are to be printed 
rather than just formatted and 
returned to the module. 

No static text module is used. 

Number of bytes from field A 
through field E2. 

There is one repetition 
substructure in the FMTLIST. 

The length of the converted 
data is used as the number of 
bytes to print. 

Unused. 

Printing starts in column 
indicated in FMTLIST. 

Number that is matched with a 
repetition substructure in 
FMTLIST. 

The group of fields identified by 
repetition substructure 7 in 
FMTLIST is to be printed twice. 
The FMTLIST is: 

Comments 

Identifies these 6 bytes as a 
spacing substructure. 

Unused. 

520 DOS/VS Access Method Services Logic 



Offset NIUIIe Contents Comments 

2 FMTSPF 3 Space 3 lines. 

4 FMTSPT C'R' Space the lines relative to the 
last printed line. 

5 none 0 Unused. • 6 FMTFLGS X'IO' Identifies these 12 bytes as a 
block data substructure. 

7 none 0 Unused. 

8 FMTILEN 4 Number of bytes in field A. 

10 FMTIOFF 0 Field A begins zero bytes from 
the block of data whose address 
is in DARGDBP. 

12 FMTOCOL Print field A starting in column 
1. 

14 FMTOLEN 4 Number of bytes the converted 
field A occupies in the printe<! 
line. 

16 FMTCNVF 0 No conversion is done on field 
A . • 18 FMTFLGS X'IO' Identifies these 12 bytes as a 
block data substructure. 

19 none 0 Unused. 

20 FMTILEN 4 Number of bytes of storage field 
B occupies. 

22 FMTIOFF 4 Field B starts 4 bytes from the 
block of data whose adqress is 
inDARGDBP. 

24 FMTOCOL 10 Print field B starting in column 
10. 

26 FMTOLEN 10 Number of bytes the converted 
field B occupies in the printed 
line. 

28 FMTCNVF X'0880' Convert field B from packed 
decimal to unpacked decimal 
with zero suppression . • 30 FMTFLGS X'08' Identifies these 8 bytes as a 
replication substructure. 

31 none 0 Unused. 

32 FMTRENO 7 Matched with a number in 
DARGLIST to find the number 
of iterations. 

34 FMTRBC 3 The data identified in the next 3 
substructures is to be repeated. 

36 FMTRIO 5 The number of bytes from field 
C 1 to field C2 in storage. This 
number is added to the address 
of the first field each time the 
field is repeated . 

• 38 FMTFLGS X'10' Identifies these 12 bytes as a 
block data substructure for 
fields C 1 and C2. 

39 none 0 Unused. 

Diagnostic Aids 521 



Offset Name Contents Comments 

40 FMTILEN 2 Number of bytes fields C 1 and 
C2 each occupy in storage. 

42 FMTIOFF 8 Number of bytes from field A to 
field Cl. 

44 FMTOCOL 22 Print fields C 1 and C2 starting. 
in column 22. 

46 FMTOLEN 7 Number of bytes the converted 
fields C 1 and C2 each occupy in 
the printed line. 

48 FMTCNVF X'4000' Convert fields C 1 and C2 from 
binary to printable hexadecimal 
enclosed in X'data '. 

8 50 FMTFLGS X'to' Identifies these 12 bytes as a 
block data substructure for 
fields D 1 and D2. 

51 none 0 Unused. 

52 FMTILEN 2 Number of bytes fields D 1 and 
D2 'each occupy in storage. 

54 FMTIOFF 10 Number of bytes from field A to 
field Dl. 

56 FMTOCOL 31 Print fields D 1 and D2 starting 
in column 31. 

58 FMTOLEN 6 Number of bytes the converted 
fields D 1 and D2 each occupy in 
the printed line. 

60 FMTCNVF X'toOO' Convert fields D 1 and D2 from 
binary to printable decimal. 

862 FMTFLGS X'90' Identifies these 12 bytes as a 
block data substructure for 
fields Eland E2 and the last 
substructure in the FMTLIST 

63 none 0 Unused. 

64 FMTILEN Number of bytes fields Eland 
E2 each occupy in storage. 

66 FMTIOFF 12 Number of bytes from field A to 
field El. 

68 FMTOCOL 39 Print fields Eland E2 each 
starting in column 39. 

70 FMTOLEN Number of bytes the converted 
fields Eland E2 each occupy in 
the printed line. 

72 FMTCNVF X'OOOO' No conversion is done on fields 
El and E2. 

Discussion: 

The first spacing substructure causes 3 lines to be spaced. 

The block data substructures for fields A and B describe the location of A 
and B within the block addressed in DAAGDBP. Field A is not converted. 
Field B is converted from packed decimal to zoned decimal and leading zeros 
are replaced with blanks. 

522 DOS/VS Access Method Services Logic 



Space 3 lines 

e Format field A 

Format field B 
in same line 
as A 

End 

The replication substructure number is matched with an identification number 
in DARGREP. When a match is found, the DARGPCT immediately after 
DARGREP tells how many times to repeat the substructures. If the module 
wants to use the same FMTLIST and print another group of fields C, D, and 
E, only DARGPCT needs to be changed. The replication substructure tells 
how many substructures to repeat and an offset that is used to find the group 
of fields being repeated. On the first repetition the offset is not used, on the 
second it is added once; on the third repetition it is added twice. 

The next substructure describe C 1 and C2. On the first repetition the value in 
FMTIOFF is added to the value in DARGDBP to find field C 1. To find field 
C2, FMTIOFF and FMTRIO in the repetition substructure are added to 
DARGDBP. Each time a group of substructures is repeated a new line is 
printed because the output columns for each substructure do not change. For 
example, in order to print both C 1 and C2 in column 22, a new line must be 
printed. Both C 1 and C2 are converted to printable hexadecimal preceded by 
X' and followed by a single quote. 

Fields D 1 and D2 are described by the next substructure. D 1 and D2 are 
converted to printable decimal. 

The substructure for fields El and E2 is also the end of FMTLIST. El and 
E2 are converted. 

After E 1 is formatted, the three substructures following the repetition 
substructure are repeated. A new line is started because FMTOCOL keeps 
the output the columns the same each time a field is printed. Fields C2, D2, 
and E2 are put in the next line. The FMTLIST is finished after E2 is printed. 

On the first repetition, Cl, Bl, and El 
are formatted in the same line as A and B. 
On the second repetition, C2, 02 and E2 
are formatted in the next line. 
This is because the same block data 
substructure-therefore the same output 
column-is used for each repetition 
of a field. 

Format 
Cl or C2 

\ 

o 
Format 
01 or 02 

Format 
El or E2 

Diagnostic Aids 523 



Obtaining a Dump For a Text Processor Problem 

If you do not have an system dump within the Text Processor routines or an 
ABORT snap dump within the Text Processor, you can use the Test option to 
obtain a dump. You may want to obtain a dump within the routine that 
invoked the Text Processor or within the Text Processor itself. 

The Phase or CSECT to Dump Points Cross Reference contains all the dump 
points within the processor; you can specify these dump points on the FULL 
option of the TEST keyword to obtain a full partition dump. 

The Text Processor has dump points before and after it converts data to 
printable form. You should use these dump points if there is an error in 
converting the data. 

I How to Find Text Processor Argument Lists 

If you suspect a problem within the Text Processor, the two structures you 
should locate in a dump are the Print Control Table (PCT) and the Dynamic 
Data Argument List (DARGLIST). The PCT and the DARGLIST are 
described in the section "Data Areas" in this book. The eighth word of the 
GDT contains the address of the PCT; the address of the DARGLIST is the 
third parameter passed to IDCTP01 for a print request (UPRINT macro). 

Two other structures that you may find helpful to locate in a dump are the 
queue of format structures and the print buffer. 

Figure 18 shows the queue of format structures maintained by the Text 
Processor. There is an entry in the queue for each format structure that has 
been used by the current function. Each entry in the queue contains the 
four-byte text structure ID specified in the DARGLIST. The first three bytes 
contain the last three characters of the text-structure phase name; the fourth 
byte contains the entry number of the format structure within the 
text-structure phase. 

524 DOS/VS Access Method Services Logic 



PCT) 

8 (8) PCTSPP 

Secondary PCT 

PCT2 

48 (30) PCTSQP 

Chain of static text entries 
after 3 UPRINTs referring to 
different static text entries. 

UGPOOL ID ,- --
: T POI 
1- __ 

UGPOOL ID 
- --

I 
1 T POI 
1- __ 

Static Text Entry ~ 

Format List 

~""""----'-------I 

~ ______ ~~ ____ ~ ______ ~ __ F_o_rm_a_t_L_i_st __ .~ 
Static Text Entry 

Format Lis! t--, 
~""""----'------ft-J 

Static Text 
Identifier 

() Header 

Figure 18. Text Processor Format Structure Queue 

Figure 19 shows the print buffer maintained by the Text Processor. It 
contains the records, other than messages, that have not been printed. The 
records to be printed are kept in the print buffer until the buffer becomes full 
or a message must be printed. The primary and secondary peTs contain the 
address of the first record in the buffer and the address of the next empty 
space in the buffer. If both addresses are equal, the buffer is empty. 

Diagnostic Aids 525 



GDT 

1 Primary PCT 

~V CT 1 V .... Secondary PCT 

:- 818jQ~-P-C-T-S-P-P--------- ~P_C __ T_2 ________ ~ 
,... ?- 1(~~8)~PC_T_B_U_F ____ ...... 

108 (6C) 

Each record has the following format: 

~------------~I 

Records in buffer after 5 UPRINT macros 
have been issued. No messages are kept 
in buffer. 

~~, __ ~I~,~I _________ D_a_ta ____ ~~~ 
) \ 

Length of 
Entire Record 
(2 Bytes) 

Spacing 
Control 
Character 
(I Byte) 

Figure 19. Text Processor Print Buffer 

Debugging an I/O Problem 
There may be an 110 problem within system 110 routines or within Access 
Method Services if an ABORT condition occurs in the 1/0 Adapter or if a 
system error occurs within the system 110 routines. To determine whether the 
problem exists in the routines that invoke the 110 Adapter, in the 1/0 
Adapter itself, or in the system 110 routines, you must examine the argument 
lists passed between the 110 Adapter and the invoking routines, and the 110 
Adapter and the system 110 routines. 

This section explains how to obtain a dump that contains the 110 argument 
lists and how to find the argument lists in a dump. 

526 DOS/VS Access Method Services Logic 



, Obtaining a Dump for an I/O Problem 

If you do not have a system dump within system I/O routines or an ABORT 
PDUMP within the I/O Adapter, you can use the Test option to obtain a 
dump. Yau may want to obtain a dump within the routine that invoked the 
I/O Adapter or within the I/O Adapter itself. 

The Phase or CSECT to Dump Points Cross Reference contains all the dump 
points within the processor; you can specify these dump points on the FULL 
option of the TEST keyword to obtain a full p~rtition dump. 

The I/O Adapter has dump points before and after it issues the OPEN macro 
(dump points 1010 and 1020) and before it issues the CLOSE macro (dump 
point 101C). You should use these dump points if there is an error opening or 
closing data sets. The I/O Adapter has a dump point (IOVR) after issuing a 
VSA~\1 I/O request which returns a non-zero return code. You shouid use this 
dump point if you wish to obtain a dump in a VSAM I/O error situation. 

How to Find I/O Argument Lists 

The Input/Output Communications Structure (IOCSTR), which is 
constructed for each data set that has been opened, contains pointers to most 
of the control blocks used by the system I/O routines. The 10CSTR is also 
the argument list that is passed between the I/O Adapter and the routines 
that invoke the I/O Adapter, except for the initial open request. Thus, once 
you find the 10CSTR, you can find most of the other arguments passed 
between the I/O Adapter and other routines. The section "Data Areas" in 
this book explains the format of the 10CSTR. 

Figure 20 shows the chain of 10CSTRs constructed for all opened data sets; 
however, the data sets may not have been opened successfully. The I/O 
Adapter historical area contains a pointer to the start of the chain. 

Diagnostic Aids 527 



GOT 

36 (24) GDTIOH 

24 (18) 10CNIO 

File ID 

I/O Adapter 
Historical Area 

0(0) 10DIOC 

T 

- - - ., UGPOOL 10 - the last two numbers 
identify the data set. 

Second 
10CSTR 
rio;;, - - - - , 

IOCS 

o 

UGPOOL ID - the last two numbers 
identify the data set. 

o means this is 
the last IOCSTR. 

IOCSTR chain after two lJOPEN 
macros have been issued. 

Figure 20. IOCSTR Chain 

Open Argument Lists 

You can find the address of the 10CSTR for a particular I/O request by 
finding the parameter list passed to IDCIOOI by the invoking routine. 
Register 1 of the registers saved by IDCIOOI contains the address of a 
parameter list. The second word of the parameter list contains the address of 
the 10CSTR. The third, fourth, and fifth words may also contain addresses of 
additional 10CSTRs. 

Figure 21 shows how the I/O control blocks are connected before an OPEN 
macro is issued. The 10CSTR addresses can be found from the 10CSTR 
chain as shown in Figure 18. The IOCSBLT table, which contains pointers to 
the 10CSTRs for the data sets being opened, can be found at location 

528 DOS/VS Access Method Services Logic 



UGET and UPUT Argument Lists 

(OCSBlT 

10CSBLT in IDCIOOt's automatic storage area. The OPENLIST table, 
which contains pointers to the DTFs and ACBs for the data sets being 
opened, can be found at location OPENLIST in IDCIOOt's automatic storage 
area. 

In a system dump within the system open routine, register 0 points to a word 
that contains either the address of the ACB or the address of the DTF. 

This section contains some examples of input and output from the UGET and 
UPUT macros. These examples may be helpful in determining whether the 
10CSTR and records for a UPUT request have been passed correctly to the 
I/O Adapter, and whether the IOCSTR and records for a UGET request 
have been returned correctly by the I/O Adapter. 

Figure 22 shows the 10CSTRs and records passed to the I/O Adapter via a 
UPUT macro. 

Figure 23 shows the IOCSTRs and data returned by the I/O Adapter after a 
UGET macro is processed. 

T 
OPENLIST 

20 (14) (OCDSN 

/ 

Two data sets are to be opened, one 
VSAM and one non-VSAM data set. 

IOCEXT 

File ID 

Figure 21. I/O Control Blocks Before OPEN 

Access 
Module 

T 

Diagnostic Aids 529 



Example 1. VSAM or NonVSAM Data Set - Single Record Passed via UPUT 

0(0) 

4 (4) 

38 (16) 

IOCSTR 

IOCDAD 

Length 

IOCPNM 

~ 
I Data 

0 o indicates there are 
no records stacked. 

Example 2. VSAM or NonVSAM Data Set - Multiple Records Passed via UPUT 

IOCSTR 

0(0) IOCDAD 

4 (4) Length 

38 (16) IOCPNM 3 3 indicates there are 
...----------1 three records stacked. 

Figure 22. Input to UPUT Macro 

530 DOS/VS Access Method Services Logic 

.~ , 
.1 , 
The data may have an 
mbedded key. e 

The data may have I 
an embedded key. 



/ 

0(0) 

4 (4) 

28 (lei 

0(0) 

4 (4) 

~8 (lei 

Example 1. VSAM Data Set with Address Processing 

IOCSTR 

IOCDAD --- ............ 
Length r Logical Record 

.. or 

IOCRBA This field contains the Length 
relative byte address 
of 10 ical record. g 

Example 2. VSAM Data Set with Control Interval Processing 

IOCSTR 

iOCDAD i.o---- ......... 

) 

\; 
( 

) 

Length I Control Interval ~ 

.. 
This field contains the 

IOCRBA relative byte address 
of the control tnte rval. 

Example 3. VSAM Data Set with Keyed Processing 

IOCSTR 

\ 

or 

Length 

IOCDAD 0(0) 
~------------~ 

4(4) ~L_e_ng~t_h __________ ~ ~ __ ~~~ __ K_e_y ________ ~~ 

32 (20) IOCKYA Length 

0(0) 

4 (4) 

0(0) 

4 (4) 

32 (20) 

0(0) 

4 (4) 

32 (20) 

Example 4. NonVSAM, NonISAM Data Set 

IOCSTR 

IOCDAD - ........... 
Length I 

.. 
Logical Record 

or 

Length 

Example 5. ISAM Data Set with Fixed Record Formal 

IOCSTR 

IOCDAD ~ ........... 

Len~th 

/~ 
Key I Data 

or 
IOCKYA Length 

Example 6. ISAM Data Set with Fix-Blocked Record Format 

IOCSTR 

IOCDAD ~ 
Length ~ Key ~ Physical Block 

., 
IOCKYA Length 

Figure 23. Output from UGET Macro 

} 

" ( 

) \, 
l 

~ 
I 

The key may be 
in any position. 

All spanned records 
are reconstructed . 

The key may be 
in any position. 

The key must be before 
the physical block. 

Diagnostic Aids 531 



Messages 
The following list shows all the messages printed by the processor. For each 
message, the following information is listed: the text-structure identifier used 
internally by the processor to identify the message; the module that causes the 
message to be printed; the procedure within that module that detects the 
situation that causes the message to be printed; and the situation that causes 
the message to be printed. After the text is the entry within the text structure. 

Messages to Module Cross Reference 

Message STID Module Procedure 

IDCOOOII UVO-l IDCALOI IDCALOI 

IDCBIOI TERMPROC 

IDCDEOI IDCDEOI 

IDCDLOI IDCDLOI 

IDCLCOI IDCLCOI 

IDCLROI CLEANUP 

IDCMPOI IDCMPOI 

IDCPMOI IDCPMOI 

IDCPROI IDCPROI 

IDCRCOI EXITTHE 

IDCRMOI IDCRMOI 

IDCRPOI IDCRPOI 

IDCRSOI WRAPUP 

IDCVYOI IDCVYOI 

IDCXPOI IDCXPOI 

Situation That Caused Message 

Function was completed without a 
severe error. 

Function was completed without 
an error or without a severe error 
in processing the base cluster. 

Function was completed without a 
severe error. 

Function was completed without a 
severe error. 

Function was completed without a 
severe error. All or part of the 
desired'catalog listing was 
generated. 

Function was completed without a 
severe error. 

Function was completed without a 
severe error. 

Function was completed without a 
severe error. 

Function was completed without 
error, or (1) an end-of-file was 
reached in the input data set 
before the ending delimiter 
specified by the user, or (2) a 
recoverable I/O error occurred 
while retrieving or printing a 
record, or (3) an error occurred 
closing data sets. 

Function was completed without a 
severe error. 

Function was completed without a 
severe error. 

Function was completed without 
error, or (1) an end-of-file was 
reached in the input data set 
before the ending delimiter 
specified by the user, or (2) a 
recoverable I/O error occurred 
while copying a record, or (3) an 
error occurred closing data sets. 

Function was completed without 
a severe error. 

Function was completed without a 
severe error. 

Function was completed without a 
severe error. 

532 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDCOOO21 UV0-2 IDCEX03 IDCEX03 Access Method Services 
completed processing. 

IDCOOO51 UV0-5 IDCPROI IDCPROI Printing of records is completed. 

IDCRPOI IDCRPOI Copying of records is completed. 

IDC0204I RI0-5 IDCRI03 IDCRI03 The preceding command was 
scanned for syntax-checking 
purposes only. 

IDC0206I RI0-7 IDCRIOI SCANSEP An extra comma was found 
between parameters. 

IDC0222I RI0-23 IDCRIOI NXTFIELD A semicolon was found within a 
quoted constant. 

IDC0233I RI0-34 IDCRIOI SCANCMD Too many closing parentheses 
were found at the end of a 
command or subparameter list. 

IDC0234I RI0-35 IDCRIOI INREPEAT Too few parentheses were found 
at the end of a command. 

SCANCMD Too few parentheses were found 
at the end of a command. 

IDC0508I DE0-9 IDCDEOI IDCDEOI Define of the data set is 
completed. 

IDCMPOI CLUSPROC Define of the data set being 
imported is completed. 

IDCRMOI CLUSPROC Define of the data set is 
completed. 

IDC0509I DEO-IO IDCDEOI IDCDEOI Define of the data set is 
completed. 

IDCMPOI CLUSPROC Define of the data set being 
imported is completed. 

IDCRMOI CLUSPROC Define of the data set is 
completed. 

IOC051OI DEO-ll IOCOE01 IOCOE01 Define of the VSA~{ catalog is 
completed. 

IDC05111 DEO-12 IDCDEOI IDCDEOl Define of the data space is 
completed. 

IDC05121 DEO-13 IDCDEOl IDCDEOl Define of the data set is 
completed. 

IDC0520I DE0-2l IDCDEOl IDCDEOl The message identifies the 
recovery volume serial number. 

IDCMPOl CLUSPROC The message identifies the 
recovery volume serial number. 

IDCRMOl CLUSPROC The message identifies the 
recovery volume serial number. 

IDC0526I ALO-l IDCALOl IDCALOl Alter of the data object is 
completed. 

IDC0550I DLO-l IDCDLOl CATCALL The catalog returned the name 
MORESP and type of a successfully deleted 

entry in the catalog work area. 

IDCMPOI DELTPROC The object with the same name as 
the object being imported was 
deleted successfully from the 
catalog. 

Diagnostic Aids 533 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC0550I DELTPROC The object being imported was 
(Continued) deleted successfully from the 

catalog after an error occurred 
copying data into the object. 

IDCRMOI DELTPROC The object with the same name as 
the object being imported was 
deleted successfully from the 
catalog. 

DELTPROC The object being imported was 
deleted successfully from the 
catlog after an error occurred 
copying data into the object. 

IDCXPOI DELTPROC The object being exported was 
MORESP deleted successfully from the 

catalog. 

IDC05511 DL0-8 IDCDLOI IDCDLOI A catalog object was not deleted 
because of a catalog locate error, 
a command parameter error, or a 
catalog delete error. 

IDCXPOI DELTPROC The object being exported could 
MORESP not be deleted from the catalog. 

The catalog return code indicates 
the reason. 

IDC05551 DL0-5 IDCDLOI CATCALL The volume entry was not deleted 
although empty space on the 
volume was deleted successfully. 
The catalog return code was 160. 

IDC05711 PRO-19 IDCRPOI IDCRPOI Reloading of a catalog was 
initiated. 

IDC05941 XP0-5 IDCXPOI CLUSPROC The portable data set was created 
successfully. 

IDC06031 MPO-ll IDCMPOI CLUSPROC The user catalog was connected 
successfully. 

IDC06041 MPO-12 IDCMPOI CLUSPROC The first record of the portable 
data set contained the timestamp 
written at the time of export. 

IDCRMOI IDCRMOI The first record of a group of 
associated objects on the portable 
data set contained the timestamp 
written at the time of the export. 

IDC06111 MPO-2 IDCMPOI CLUSPROC The name of the object being 
imported already exists in the 
catalog. If NEWNAME is 
specified, an entry with that name 
already exists. 

IDC06261 MPO-26 IDCRMOI CLUSPROC The object named has been 
UCATPROC successfully imported. 
NVSMPROC 

IDC06521 BIO-13 IDCBIOI FINPROC The alternate was built with no 
errors. 

534 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC0665I LRI-16 IDCLROI CLENCRA Informational message stating the 
number of entries that did not 
compare. 

IDC0669I RCO-l4 IDCRCOI IDCRCOI Informational message stating the 
CRA from which the entries are 
processed. 

IDC0670I RCO-l5 IDCRCOI EXPORTDR Informational message stating 
that data set is on portability data 
set. 

IDC0672I RCO-l7 IDCRCOI CKCATNM Informational message stating the 
catalog name for which CRA's are 
being processed. 

IDC0674I RC0-20 IDCRCOI EXPORTDR Secondary message containing the 
object name for which the export 
driver was called. 

SYNCH Object named was invalid in the 
CRA in comparison with the data 
set. 

DUPNAMCK Object name appeared twice in 
the CRA. 

CKNAMES Object named was not of a type 
DOS supports. 

IDC0676I RC0-5 IDCRCOI TERM Informational message stating 
that the portability data set was 
created successfully. 

IDC0874I LRI-5 IDCLROI INTSORT Space could not be obtained for 
the sort table. The objects are 
printed first in, first out. 

IDC0877I LRl-8 IDCLROI CLENCRA Informational message stating the 
number of objects that did not 
compare. 

IDC0888I RC0-23 IDCRCOI EXPORTDR Informational message stating 
that the exported entry contained 
no data. 

IDC0922I EX0-5 IDCDB02 ITEMDUMP An invalid dump item was 
specified in the dump argument 
list. 

IDC0923I EX0-6 IDCDB02 ARRAYHDR Invalid array header parameters 
were specified in the dump 
argument list. 

IDC0924I EX0-7 IDCDBOI IDCDBOI The dump routine was invoked 
through a UDUMP macro. 

IDC0925I EX0-8 IDCDBOI IDCDBOI A dump was requested through a 
UDUMP macro. 

I IDCI502I DE0-5 IDCDE02 MODELPRC Security information was 
suppressed when a model object 
was retrieved from the catalog. 

IDCI543I ALO-I8 IDCALOI CHECKPRC New KEY /RECORDSIZE values 
equal to old default values. 

IDCI544I ALO-I9 IDCALOI CHECKPRC New KEY /RECORDSIZE values 
equal to old non-default values. 

Diagnostic Aids 535 



Messages to Module Cross Reference 

Message 

IDCl561I 

IDCl562I 

IDC1564I 

IDC1565I 

IDC15661 

536 DOS/VS Access Method Services Logic 

STID 

LCI-2 

LCI-3 

LCt-5 

LCl-6 

LCt-8 

Module Procedure 

IDCLC02 ANSVPROC 

LOCPROC 

IDCLCO} ENTPROC 

IDCLCOI RTEPROC 

IDCLCOI ENTPROC 

IDCLCOI ENTPROC 

GNXTPROC 

RTEPROC 

Situation That Caused Message 

The UGPOOL request for a larger 
catalog work area failed. More 
space was required to process 
cluster associations. 

The UGPOOL request for a larger 
catalog work area failed. A 
catalog entry required more 
space. 

Only space entries were 
requested; however, an entry in 
the entry list is greater than six 
characters. 

An entry retrieved from the 
catalog is not a type that can be 
listed. 

An entry retrieved from the 
catalog and specified in the user's 
entry list is not one of the types 
requested by the user. 

Either (1) the correct password 
was not supplied for a cluster 
entry and so the data and index 
association information could not 
be processed, or (2) the correct 
password was not supplied for an 
entry and the user requested more 
information than merely entry 
names, or (3) another type of 
catalog locate error occurred. 

Either the correct password was 
not supplied for an entry and the 
user requested more information 
than merely entry names, or 
another type of catalog locate 
error occurred. 

Either (1) the correct password 
was not supplied for a cluster 
entry, and, even though the user 
requested only entry names, the 
names of the data and index 
association were not returned by 
the catalog, or (2) the correct 
password was not supplied for a 
data or index entry associated 
with a cluster entry, and field 
information other than entry 
names was not returned by the 
catalog, or (3) a non-supported 
entry type was returned from the 
catalog. 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDCl567I LCI-9 IDCLCOI RTEPROC Retrieval of a data or index entry 
associated with a cluster entry was 
attempted, using the control 
interval number of the associated 
entry contained in the cluster 
entry. However, the entry could 
not be found in the catalog. 

IDCLC02 CDIPROC Retrieval I of a data or index entry 
associated with a cluster entry was 
attempted, using the control 
interval number of the associated 
entry contained in the cluster 
entry. However, the entry could 
__ 4- L_ & ....... _..J =_ .L ___ ... -.1 __ 
llUl ut; IUUllU 111 ll1t; ~(1LC:UU~. 

VPROC Retrieval of the data set names 
associated with a data space was 
attempted using the control 
interval number of the associated 
entry contained in the data space. 
However, the entry could not be 
found in the catalog. 

IDCl5741 PR0-22 IDCRPOI CATCOMP More than 1 ()() true name entries 
failed a comparison test during 
catalog reload. Processing 
continues but comparison does 
not. 

IDCl5751 PR0-23 IDCRPOI CATCOMP A true name record existed on a 
backup or target catalog without a 
corresponding record on the 
backup or target catalog. 

IDCl5951 XPO-6 IDCXPOI CLUSPROC Passwords were suppressed when 
the object to be exported was 
retrieved from the catalog. 

IDCl6231 MP0-23 This message is no longer 
supported. 

IDC 1 6441 BI0-5 IDCBIOI SORTPROC The base cluster record identified 
BIO-17 in the message was too short to 

contain the entire alternate key. 

IDCI6451 BI0-6 IDCBIOI BLDPROC Multiple occurrances of the same 
BI0-8 alternate key have been 

encountered in building an 
alternate index defined with the 
UNIQUEKEY attribute. 

IDCI6461 BI0-7 IDCBIOI BLDPROC The alternate index record 
identified in the message was too 
short to contain all the base 
cluster pointers. 

IDC16531 BIO-14 IDCBIOI FINPROC The alternate index was built but 
nonterminating errors were 
encountered. 

IDCI6611 RC0-6 IDCRCOI EXPORTDR Informational message stating 
that the data set exported was 
out-of-synch. 

IDC16621 RC0-7 IDCRCOI EXPORTDR Informational message stating 
that the data set was not exported 
and was out-of-synch. 

Diagnostic Aids 537 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDCl663I RC0-8 IDCRC02 CLUSPROC Catalog field could not be located 
for a path to a VSAM cluster. 

IDCI664I RC0-9 IDCRC02 NVSMPROC An OS/VS catalog has been 
connected to a DOS system and 
contains nonsupported objects. 

IDCl667I RCO-l2 IDCRCOI OBJVOLCK Volumes are out of synch because 
data set is not on both volumes. 

IDCl6781 RC0-2 IDCRCOI EXPORTDR An error occurred while 
processing an association for an 
object being exported. 

IDCl679I RC0-4 IDCRCOI The timestamps or CI of a 
multivolume data set were not 
equal. 

IDC1870I LRl-l IDCLROI GETPRT An I/O error occurred while 
reading the CRA. 

IDCLR02 IDCLR02 An I/O error occurred while 
reading the CRA. 

IDC18711 LRl-2 IDCLROI GETPRT An I/O error occurred while 
reading the catalog. 

IDCLR02 IDCLR02 An I/O error occurred while 
reading the catalog. 

IDC18751 LRl-15 IDCLROI TCICTCR The CI from the catalog record 
could not be found in the CTT 
table therefore it could not be 
translated. 

IDC18781 LRl-9 IDCLROI CATOPEN IDCRC04 encountered an error 
while searching for the catalog 
name in the cluster record of the 
catalog. 

CKEYRNG IDCRC04 encountered an error 
while searching for the high key 
value in a given CRA record. 

CRAOPEN IDCRC04 encountered an error 
while searching for either the 
owning catalog name or the 
volume serial in the CRA record. 

CTTBLD IDCRC04 encountered an error 
while searching for the entry type 
of the catalog CI in the CRA 
record. 

GETPRT IDCRC04 encountered an error 
while searching for the entry type 
or the entry name in the CRA 
record. 

INTASOC IDCRC04 encountered an error 
while searching for the associated 
entry type or entry name fields in 
the CRA records. 

INTSORT IDCRC04 encountered an error 
while searching for the name in a 
given CRA record. 

538 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

INTVEXT IDCRC04 encountered an error 
while searching for the extension 
pointer in a given CRA record. 

PRTCMP IDCRC04 encountered an error 
while searching for the used 
length field in a given CRA 
record. 

IDC1878I LRl-9 IDCLROI PRTDMP IDCRC04 encountered an error 
while searching for the used 
length field in a given CRA 
record. 

PRTOJVL IDCRC04 encountered an error 
whiie searching for the voiume 
information or high key value in a 
given CRA record. 

PRTVOL IDCRC04 encountered an error 
while searching for the volume 
timestamp information in a given 
catalog or CRA record. 

IDC1880I LRI-ll IDCLROI PRTVOL Timestamp for the format-4 
record could not be read for the 
CRAvolume. 

IDCl885I LRI-17 IDCLROI PRTMCWD IDCRC04 encountered an error 
while searching for mismatched 
fields in a given CRA record. The 
CRA record had previously been 
read and had indicated that 
mismatches existed. 

IDCl887I RC0-22 IDCRCOI SCANCRA I/O error encountered on a CRA 
record. 

TIMESTAMP Volume timestamp could not be 
obtained. 

IDCl927I EXO-l2 IDCPMOI MARGPARM Margin values specified are 
invalid. 

IDC20351 TP6-3 IDCTP06 IDCTP06 An error was detected in the 
information transmitted in the 
error conversion table when 
attempting to convert a numeric 
error code to a prose message. 

IDC2552I DL0-2 IDCDLOI PARAMCHK The type of the entry to be deleted 
was retrieved from the catalog, 
but the type is not one the user is 
allowed to delete. 

IDC2553I DL0-3 IDCDLOI PARAMCHK The type of the entry to be deleted 
was retrieved from the catalog, 
but. the type conflicts with the 
erase option. 

IDC25541 DL0-4 IDCDLOI PARAMCHK The entry to be deleted is a 
non VSAM entry and the scratch 
option is set by default; however, 
the user did not specify the FILE 
parameter. 

IDC2556I DL0-6, IDCDLOI MORESP No storage is available for a larger 
DL0-7 catalog work area. 

Diagnostic Aids 539 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IIDC25631 LCI-4 IDCLC02 AUPROC The allocation request conflicts 
with a nonVSAM or user catalog 
entry specified in the entry list. 

VPROC The allocation request conflicts 
with a space (volume) entry 
specified in the entry list. 

IDCLCOI INITPROC Either the allocation request 
conflicts with the type 
specification of cluster, alternate 
index, path space, nonVSAM, or 
user catalog, or the volume 
request conflicts with the type 
specification of cluster, alternate 
index or path. 

IDC26161 MPO-16 IDCMPOI CLUSPROC A path import operation failed. 

IDCRMOI CLUSPROC A path import operation failed. 

IDC26181 MPO-18 IDCMPOI CLUSPROC An invalid object's subparameter 
was found. 

IDC26201 MP0-20 IDCRMOI ALiSPROC A recovery portable data set being 
imported contains objects not 
definable in DOS/VS. 

GDGPROC A recovery portable data set being 
imported contains objects not 
definable in DOS/VS. 

IDC26211 MP0-21 IDCRMOI CLUSPROC The object named could not 
UCATPROC be imported. 
NVSMPROC 

IDC2640I BIO-I IDCBIOI LOCPROC The file identified via OUTFILE 
is not an alternate index. 

IDC26421 BIO-3 IDCBIOI LOCPROC The alternate index identified in 
the message is not related to the 
base cluster identified via 
INFILE. 

IDC2647I BI0-8 IDCBIOI INITPROC Storage was not available to . 
obtain buffers and work areas. 

IDC26481 BI0-9 IDCBIOI JCPROC DLBL statements for sort work 
FINPROC files are either missing or in error. 

IDC26491 BIO-lO IDCBIOI DEFPROC A sort Work area was obtained 
smaller than that required and job 
control for sort work files was 
missing or in error. 

IDC2650I BIO-11 IDCBIOI DEFPROC An internal sort could not be 
completed and job control for sort 
work files was missing or in error. 

IDC26511 BIO-12 IDCBIOI DEFPROC Define of sort work files failed. 

IDC26541 BIO-15 IDCBIOI FINPROC The alternate index was not built 
due to severe errors. 

IDC26551 BIO-16 IDCBIOI CATPROC Catalog information was not 
returned for a locate request. 

IDC26561 BIO-19 IDCBIOI CATPROC A VSAM catalog locate failed 
with a nonzero return code. 

540 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC2660I RC0-3 IDCRCOt CKNAMES The object named is from an 
OS!VS volume and is of a type 
that is not supported in DOS. 

IDCRC02 CLUSPROC The object named is from an 
OS/VS volume and contains 
associations not supported in 
DOS. 

GDGPROC An OS/VS catalog which contains 
generation data groups which are 
not supported in DOS has b~en 
connected to a DOS system. 

NVSMPROC The object named was not a 
non VSAM data set or a user 
catalog. 

IDC26661 RCO-tt IDCRCOt SYNCH The selected entry was not found 
in the selected CRA. 

IDC26681 RCO-13 IDCRCOt OBJVOLCK A required volume was not 
supplied in the CRA keyword. 

IDC267tI RCO-t6 IDCRCOt CKCATNM The CRA has a different name 
than the others being processed. 

IDC26731 RCO-t9 IDCRCOt BUILDCRV Required information about the 
volume could not be obtained. 

IDC26751 RC0-2t IDCRCOt CKNAMES The same name was found in 
more than one CRA. 

IDC2677I RCO-l IDCRCOI EXPORTDR The data set was not exported 
because of the error indicated if} 
previous messages. 

IDC28721 LRl-3 IDCLROt CRAOPEN The catalog specified in the input 
for compare was not the owning 
catalog found in the CRA. 

IDC28731 LRl-4 IDCLROt CATOPEN Catalog could not be opened, 
therefore the compare option was 
ignored. 

CRAOPEN The CRA opened belongs to a 
catalog other that the one 
specified in the compare. 

IDC28761 LRt-6 IDCLROt CRAOPEN A verify was issued after opening 
a CRA and it failed. 

IDC28791 LRt-tO IDCLROt CATOPEN IDCRC04 could not find the 
catalog name from the cluster 
record or the volume serial of the 
catalog so it could not lock out all 
other usage of the CRA while it is 
being listed. 

IDC28821 LRt-13 IDCLROI CTTBLD LISTCRA encountered an error 
reading the catalog control 
record. 

IDC28841 LRt-7 IDCLROI CATOPEN A verify was issued after opening 
a catalog and it failed. 

IDC28861 RCO-t8 IDCRCOI ERRCK CRA can not be opened because 
of some errors encountered. 

Diagnostic Aids 541 



Messaaes to Mod* Cross Reference 

Messaae STlD Module Proced .. e Situation That Caused Messaae 

IDC29501 TPI-I IDCTPOI IDCTPOI Either (I) no format list or static 
text identification was passed as 
input, or (2) no valid bits in 
FMTFLGS were turned on, or (3) 
the input or output length 
specified was less than I. 

IDC2951I TPI-2 IDCTPOI IDCTPOI The output column specified is 
not within the print line. 

IDC29521 TPI-3 IDCTPOI BDCONV For binary to decimal 
conversions, the input data length 
was more than 4 or the converted 
length was more than 16. 

PUPCONV For packed to unpacked 
conversions, the converted length 
was more than 15, or the input 
data length was more than 8. 

IDC29531 TPI-4 IDCTPOI REDO A REDO structure is nested. 

IDC29541 TPI-6 IDCTP05 IDCTP05 The requested static text entry 
was not in the specified module. 

IDC29551 TPI-7 IDCTPOI PUPCONV An invalid packea decimal field 
was passed by the caller. 

IDC30031 UV()"3 IDCALOI IDCALOI The VSAM catalog could not be 
opened, or another severe error 
occurred. 

IDCBIOI TERMPROC Either (1) a severe error was 
encountered in proce~sing the 
base cluster, or (2) the 
EXTERNALSORT parameter 
was specified but the job control 
for sort files was missing or in 
error. 

IDCDEOI IDCDEOI The VSAM catalog to contain the 
defined object could not be 
opened, or another severe error 
occurred. 

IDCDE02 MODELPRC The VSAM catalog containing the 
model project could not be 
opened. 

IDCDLOI CATOPEN The VSAM catalog could not be 
opened. 

IDCLCOI IDCLCOI A severe error occurred. Listing 
of the catalog was not attempted 
or terminated if begun. 

IDCMPOI IDCMPOI A severe error occurred. 

IDCPROI IDCPROI Either (1) an error occurred 
opening the input or alternate 
output data sets, or (2) a 
unrecoverable error occurred 
while retrieving or printing a 
record, or (3) more than three 
1/ 0 errors occurred while 
retrieving records. 

542 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC30031 TEXTPSET The static text subtitle line could 
I "'_ ..... +.;""A~' noi be retrieved. \ '"'vu "I.U W'"''''' I 

DELIMSET An incompatible use of delimiters 
was found during a data set print 
operation. 

IDCRCOI EXITTHE Function was not completed 
because a severe error was 
encountered. 

IDCRMOI IDCRMOt A severe error occurred. 

IDCRPOI IDCRPOI Either (I) an error occurred 
opening the input or output data 
sets, or (2) a unrecoverabie error 
occurred while copying the data 
set, (3) more than three I/O 
errors occurred while copying the 
data set, (4) an error occurred 
while attempting a catalog reload, 
or (5) a nonrelative record input 
data set did not have a non-empty 
relative record output data set. 

DELIMSET An incompatible use of delimiters 
was found during a data set copy 
operation. 

IDCRS05 CKERR A severe error occurred which 
prevented further processing. 

IDCVYOI IDCVYOt The VSAM data set to be verified 
could not be opener, or the verify 
was not successful. 

IDCXPOI IDCXPOI A severe error occurred. 

IDC30041 UV0-4 IDCALOt ALTERPRC Storage was not available for one 
of the following: the volume list 
or the P ASSW ALL field. 

!DCALOI Storage was not available for the 
CTGPL, CTGFV, and CTGFLs. 

INDEXPRC Storage was not available for the 
index parameter list if KEYS was 
specified. 

LOCATPRC Storage was not available for the 
catalog work area. 

Diagnostic Aids 543 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC30041 IDCDEOI IDCDEOI Storage was not available for the 
(Continued) CTGPL and CTGFV. 

IDCDE02 ALLCPROC Storage was not available for one 
of the following: CTGFLs, the 
volume list, the file sequence list, 
or the device type list. 

KEYPROC Storage was not available for one 
of the following: the AMDSBCA T 
CTGFL and the AMDSBCAT 
field, or the key range list. 

MODELPRC Storage was not available for the 
catalog parameter list or the 
catalog work area. 

NAMEPROC Storage was not available for the 
CTGFLs. 

PROTPROC Storage was not available for the 
CTGFLs needed to set up the 
protection attributes. 

IDCIOOI PUTREP Storage was not available for the 
input work area. 

IDCIOO2 BUILDACB Storage was not available for the 
ACB or the EXLST. 

BUILDDBK Storage was not available for the 
required I/O areas. 

BUILDRPL Storage was not available for the 
input work area or the RPL. 

CKNONOP No storage is available for the 
input work area required to 
process spanned, nonVSAM 
records. 

DSDATA No space available to read the 
Label Cylinder. 

OPENRTN Storage was not available for the 
IDCSTR. 

IDCLCOI INITPROC Storage was not available for one 
of the following: catalog 
parameter lists, catalog work 
areas, or the static text used in the 
catalog listing. 

IDCLROI ADDASOC Storage was not available for the 
association table extension. 

BLDVEXT Storage was not available for the 
VEXTTBL extension. 

CTTBLD Storage was not available for the 
CI translate table. 

544 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STIO Module Procedure Situation That Caused Message 

IDC30041 INITLZE Storage was not available for the 
( Continued) initial ASSOCTBL and 

VEXTTBL. 

INTASOC Storage was not available for the 
association table extension. 

IDCMPOI FPLPROC Storage was not available for 
CTGFLs. 

BPASPROC Storage was not available for the 
P ASSW ALL field. 

CLUSPROC Storage was not available for the 
catalog work area. 

CPLPROC Storage was not available for the 
CTGPL. 

CTLPROC Storage was not available for the 
catalog work area. 

DELTPROC Storage was not available for the 
catalog work area. 

FVTPROC Storage was not available for the 
CTGFV. 

LVLPROC Storage was not available for one 
of the following: the catalog work 
area, CTGFLs, or volume serial 
lists. 

IDCPMOI TESTPARM Storage was not available for the 
Test Option Data Area. 

IDCRCOI IDCRCOI Storage was not available for one 
of the tables required by 
EXPORTRA. 

IDCRC02 CLUSPROC Storage was not available for the 
control record output buffer. 

CTLGPROC Storage was not available for the 
catalog work area. 

IDCRC02 Storage was not available for the 
output buffer area. 

LOCPROC Storage was not available for the 
CPL, FPL and the catalog work 
area. 

NVSMPROC Storage was not available for the 
control record output buffer. 

SAVEPROC Storage was not available for the 
input record save area. 

IDCRIOI GETSPACE Storage was not available for The 
FDT. 

IDCRI02 Storage was not available for one 
of the following: work space or 
the FDT. 

INREPEAT Storage was not available for the 
FDT. 

RIINIT Storage was not available for the 
Reader/Interpreter Historical 
Data Area. 

SCANCMD Storage was not available for the 
FDT. 

Diagnostic Aids 545 



Page of SY33-8S64-3 
Revised April 29, 1977 
By TNL SN24-SSS0 

Mesages to M04We Cross Reference 

Message STID 

IDC3004I 
( Continued) 

S46 DOS/VS Access Method Services Logic 

Module 

IDCRMOt 

Procedure 

ALISPROC 

BFPLPROC 

BPASPROC 

CLUSPROC 

CPLPROC 

CTLGPROC 

DELTPROC 

FVTPROC 

LVLRPROC 

Situation That Caused Mesage 

Storage was not available 
for the catalog data record buffer. 

Storage was not available for the 
FPLs. 

Storage was not available for the 
P ASSW ALL information. 

Storage was not available for the 
buffer area or volume list. 

Storage was not available for the 
catalog parameter list. 

Storage was not available for the 
catalog parameter list. 

Storage was not available for the 
catalog work area. 

Storage was not available for the 
FVTor FPLs. 

Storage was not available for the 
volume serial list, the device types 
list, or the file sequence number 
list. 

NFVTPROC Storage was not available for the 
FVTorFPLs. 

NVSMPROC Storage was not available for the 
control record buffer. 

RANGPROC Storage was not available for the 
range list. 

UCA TPROC Storage was not available for the 
data record. 

IDCRSOt IDCRSOI Storage was not available for 
automatic storage for modules 
IDCRS02 - IDCRS07. 

INIT 

IDCRS03 GETT AB 

IDCRS03 PROCVOL 

IDCRS03 VERB 

IDCRS04 NINIT 

IDCRS04 NXPND 

Storage was not available for any 
one of the following: the record 
access buffers (RAB), the CRA 
user buffer, record management 
and umacro work area, catalog 
management work area, 
IKQMDADS parameter list, the 
CIXL T table, the UIOINFO 
return area. 

Storage was not available for the 
association work area. 

Storage was not available for the 
space bit map. 

Storage was not available for the 
GDG level difference string work 
area. 

Storage was not available for the 
FIND work area. 

Storage was not available to 
expand the FIND work area. 



Messages to Module Cross Reference 

Message sno Module Proc:ed.e Situation That Caused Message 

I IDC3004I IDCRS05 BLDRLST Storage was not available for the 
(continued) RESVOL table. 

IDCRS05 BLDVLST Storage was not available for the 
VOLSERTB. 

IDCRS06 WFDEF Storage was not available for the 
CPL, FPL, and DEFINE work 
area. 

IDCRS07 RENMSETV Storage was not available for the 
RENAME volume list. 

IDCXPOI ALTRPROC Storage was not available for the 
CTGFV. 

CLUSPROC Storage was not available for the 
control record output buffer. 

CTLGPROC Storage was not available for the 
second catalog work area 
obtained when the first work area 
was too small. 

DELTPROC Storage was not available for the 
CTGPL or the catalog work area. 

LOCPROC Storage was not available for the 
CTGPL or the catalog work area. 

MORESP Storage was not available for the 
catalog work area. 

IDC30061 UV0-6 IDCPROI DELIMSET Beginning positioning failed. 

IDCRPOI DELIMSET Beginning positioning failed. I IDC30071 (See note IDCALOI IDCALOI The catalog return code was 
at end nonzero for an alter request. 
of list) 

CHECKPRC The catalog return code was 
nonzero for a locate request. 

T ""'6o .,..nn,., 
Lv\....t1.Jrl\.\... The catalog return code was 

nonzero for a locate request. 

IDCBIOI FINPROC The catalog return code was 
nonzero for a locate request 
against the base cluster or 
alternate index, or for a define 
request for external sort work 
files. 

IDCDEOI IDCDEOI The catalog return code was 
nonzero for a define request. 

IDCDE02 MODELPRC The catalog return code was 
nonzero for a request to locate a 
model object. 

IDCDLOI CATCALL The catalog return code was 
nonzero for a delete request. This 
message is not issued for a return 
code of 160, however, because 160 
indicates a normal condition. 

FINDTYPE The catalog return code was 
nonzero for a locate request. 

MORESP The catalog return code was 
nonzero for a delete request. 

Diagnostic Aids 547 



Messages to Module Cross Reference 

Message STiO Module Procedure Situation That Caused Message 

IDC3007I IDCLC02 LOCPROC The catalog return code was 
(Continued) nonzero for a locate request. 

IDCMPOl CTLGPROC The catalog return code was 
nonzero. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

IDCRC02 CTLGPROC The catalog return code was 
nonzero for a locate request. 

IDCRMOl CTLGPROC The catalog return code was 
nonzero for a define or alter 
request. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

IDCRSOl INIT The catalog return code was 
non-zero for a locate request. 

IDCRS06 WFDEF The catalog return code was 
non-zero when defining the 
workfile. 

WFDEL The catalog return code was 
non-zero when deleting the 
workfile. 

IDCXPOl CTLGPROC The catalog return code was 
nonzero for a delete, alter, or 
locate request. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

MORESP The catalog return code was 
nonzero for a delete request. 

I 
IDC3009I (See note IDCALOl IDCALOI The catalog return code was 

at end nonzero for an alter request. 
of list) 

CHECKPRC The catalog return code was 
nonzero for a locate request. 

LOCATPRC The catalog return code was 
nonzero for a locate request. 

IDCBIOl FINPROC The catalog return code was 
nonzero for a locate request 
against the base cluster or 
alternate index, or for a define 
request for external sort work 
files. 

IDCDEOl IDCDEOI The catalog return code was 
nonzero for a define request. 

IDCDE02 MODELPRC The catalog return code was 
nonzero for a request to locate a 
model object. 

IDCDLOI CATCALL The catalog return was nonzero 
for a delete request. This message 
is not issued for a return code of 
160, however, because 160 
indicates a normal condition. 

FINDTYPE The catalog return code was 
nonzero for a locate request. 

548 DOS/VS Access Method Services Logic 



Page of SY33-8564-3 
Text Rearranged Only Revised April 29, 1977 

By TNL SN24-5550 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC30091 MORESP The catalog return code was 
nonzero for a delete request. 

LOCPROC The catalog return code was 
nonzero for a locate request. 

IDCLC02 LOCPROC The catalog return code was 
nonzero for a locate request. 

IDCMPOI CTLGPROC The catalog return code was 
nonzero. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

IDCRC02 CTLGPROC The catalog return code was 
nonzero for a locate request. 

IDCRMOI CTLGPROC The catalog return code was 
nonzero for a define or alter 
request. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

IDCRSOI INIT The catalog return code was 
non-zero for a locate request. 

IDCRS06 WFDEF The catalog return code was 
non-zero when defining the 
workfile. 

WFDEL The catalog return code was 
non-zero when deleting the 
workfile. 

IDCXPOl CTLGPROC The catalog return code was 
nonzero for a delete, alter, or 
locate request. 

DELTPROC The catalog return code was 
nonzero for a delete request. 

MORESP The catalog return code was 
nonzero for a delete request. 

IDC30101 UVO-ll IDCALOl IDCALOl The file identified in the DLBL 
statement does not match that 
given in the CATALOG 
parameter. 

IDCDEOl IDCDEOl The file identified in the DLBL 
IDCDE02 MODELPRC statement does not match that 

given in the CATALOG 
parameter. 

IDCDLOl CATOPEN The file identified in the DLBL 
statement does not match that 
given in the CATALOG 
parameter. 

IDCLCOl INITPROC The file identified in the DLBL 
statement does not match that 
given in the CATALOG 
parameter. 

IDC30101 IDCMPOl RECPROC The file identified in the 
OUTFILE parameter does not 
match the name given in the 
IMPORT command or any paths 
over it. 

Diagnostic Aids 549 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC3010l IDCXPOI RECPROC The file identified in the INFILE 
(Continued) parameter does not match that 

given in the EXPORT command 
or any paths over it. 

IDC30121 TP6-9 IDCTP06 CATERCNV Verbalization of catalog return 
code 8. The entry name supplied 
by the user is not in the specified 
catalog. 

IDC30I31 TP6-10 IDCTP06 CATERCNV Verbalization of catalog return 
code 8. The file name supplied by 
the user is already in the catalog. 

IDC30141 TP6-11 IDCTP06 CATERCNV An error occurred during a 
VSAM catalog operation. 

IDC3016I TP6-12 IDCTP06 CATERCNV Verbalization of catalog return 
code 4. An error occurred while a 
VSAM catalog was being opened 
or closed or the user catalog 
specified by the command cannot 
be found. 

IDC3017I TP6-13 IDCTP06 CATERCNV Verbalization of catalog return 
code 20. The catalog or the 
catalog recovery area (CRA) is 
full. 

IDC30181 TP6-14 IDCTP06 CATERCNV Verbalization of catalog return 
code 56. The maximum number 
of attempts to supply the correct 
password was exceeded by the 
operator, or the user-specified 
verification routine failed to 
authorize use of the file. 

IDC30191 TP6-15 IDCTP06 CATERCNV Verbalization of catalog return 
code 60. Invalid catalog action 
request for the entry named. 

IDC30201 TP6-16 IDCTP06 CATERCNV Verbalization of catalog return 
code 68. Either an attempt was 
made to extend a unique VSAM 
file, or a specified volume either 
cannot accommodate an initial 
allocation, or cannot be extended 
when required. 

IDC30211 TP6-17 IDCTP06 CATERCNV Verbalization of catalog return 
code 72. Either an illegal system 
symbolic unit was assigned or no 
system symbolic unit was 
assigned. 

IDC30221 TP6-18 IDCTP06 CATERCNV Verbalization of catalog return 
code 80. The object specified in 
the RELATE parameter of a 
DEFINE command does not 
exist, or is improper for the type 
of object being defined. 

IDC3023I TP6-19 IDCTP06 CATERCNV Verbalization of catalog return 
code 84. An attempt to delete an 
entry failed because its expiration 
date has not been reached, and 
the PURGE option was not 
specified. 

550 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC30241 TP6-2 I IDCTP06 CATERCNV Verbalization of catalog return 
code 148. A volume owned by 
another catalog was specified. 

IDC3025I TP6-22 IDCTP06 CATERCNV Verbalization of catalog return 
code 156. A volume does not 
contain a data space with 
sufficient room for allocation of 
another VSAM file. 

IDC3026I TP6-23 IDCTP06 CATERCNV Verbalization of catalog return 
code 172. A DEFINE operation 
specified the name of a file with 
the UNIQUE attribute, but there 
is already a file on the volume 
with the same name. 

IDC3027I TP6-24 IDCTP06 CATERCNV Verbalization of catalog return 
code 176. During the definition of 
a data space, an attempt was 
made to perform a VSAM 
allocate function, but there was 
no space in the VTOC for an 
additional DSCB. 

IDC3028I TP6-25 IDCTP06 CATERCNV Verbalization of catalog return 
code 184. The catalog is currently 
open and cannot be deleted. 

IDC3029I TP6-26 IDCTP06 CATERCNV Verbalization of catalog return 
code 192. The maximum logical 
record length specified is greater 
than 32,761 for a nonspanned file. 

IDC3030I TP6-27 IDCTP06 CATERCNV Verbalization of catalog return 
code 196, 200. The data 
component control interval size 
specified is greater than 32,767; or 
the index component control 
interval size is greater than the 
maximum biock size of the index 
device. 

IDC30311 TP6-28 IDCTP06 CATERCNV Verbalization of catalog return 
code 204. The KEY specification 
extends beyond the end of the 
maximum logical record. 

IDC3032I TP6-29 IDCTP06 CATERCNV Verbalization of catalog return 
code 208. The buffersize specified 
during a DEFINE operation is too 
small to contain the minimum 
number of control intervals for 
the VSAM file being defined. 

IDC3033I TP6-30 IDCTP06 CATERCNV Verbalization of catalog return 
code 248. This condition arises 
when a function requires a volume 
that is not owned by the 
referenced VSAM catalog. 

Diagnostic Aids 551 



Messages to Module Cross Reference 

Message STID Module Procedure Situation lbat Caused Message 

IDC30441 TP6-39 IDCTP06 CATERCNV Verbalization of catalog return 
code 16. The CYLINDER 
parameter was specified in the 
DEFINE command but the 
extents found on the 
corresponding DLBL/EXTENT 
statements do not start or end on 
a cylinder boundary. 

IDC30451 TP6-40 IDCTP06 CATERCNV Verbalization of catalog return 
code 152. An attempt was made 
to delete a non-empty VSAM 
catalog. 

IDC30461 TP6-41 IDCTP06 CATERCNV Verbalization of catalog return 
code 100. An attempt was made 
to define a unique file on a 
volume that does not contain a 
catalog recovery area (CRA). 

IDC30471 TP6-42 IDCTP06 CATERCNV Verbalization of catalog return 
code 216. A space allocation 
attempt failed because the new 
extent specified in a EXTENT 
statement overlapped the volume 
table of contents (VTOC), an 
existing file or other extents 
specified in the DLBL statement. 

IDC30481 TP6-43 IDCTP06 CATERCNV Verbalization of catalog return 
ocde 240. A DLBL or EXTENT 
statement is missil'\g or in error or 
a system logical unit error was 
detected. 

IDC31901 AL0-24 IDCALOI PARAMCHK One of the parameters specified 
on the command is invalid for the 
entry type. 

IDC32001 RIO-l IDCRIOI SCANCMD The number of positional 
parameters found (PPARMCNT) 
exceeds the number defined in the 
descriptor for the current 
subparameterlist (SUBCOUNT). 

IDC320I RI0-2 IDCRIOI BUILDFDT The input constant length 
(UNITINDX) exceeds the 
maximum length defined by the 
descriptor. 

CONVERT The input constant length 
(UNITINDX) exceeds the 
maximum length defined by the 
descriptor. 

NXTFIELD The input constant length 
(UNITINDX) exceeds the 
maximum length that the 
Reader/Interpreter can handle 
(UNITMAX). 

PACKCVB The input constant length 
(UNITINDX) exceeds the 
maximum length defined by the 
descriptor. 

552 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC32021 RI0-3 IDCRIOI ERRORI The remainder of a command was 
bypassed due to an error in it. 

ERROR2 The remainder of a command was 
bypassed due to an error in it. 

IDC3203I RI0-4 IDCRIOI DSIDCHK A data set name does not have the 
correct syntax. 

IDC32051 RI0-6 IDCRIOI SCANCMD The closing parentheses of a 
subparameter list was found 
before any parameters were found 
in the list or an opening 
parentheses was found before any 
keyword was found. 

IDC3207I RI0-8 IDCRIOI ERROR 1 A severe error occurred. The 
condition code is set to 16, and 
the Reader/Interpreter will 
terminate processing. 

ERROR2 A severe error occurred. The 
condition code is set to 16, and 
the Reader/Interpreter will 
terminate processing. 

IDC3208I RI0-9 IDCRIOI KWDPARM A keyword parameter, defined as 
having a subfield, does not have a 
left parentheses following the 
keyword. 

IDC32091 RIO-tO IDCRIOI KWDPARM A keyword's subfield does not 
have a closing parenthesis 
following it. 

POSPARM A list of constants is not delimited 
on the right by a closing 
parenthesis. 

IDC3210I RIO-ll IDCRIOI INREPEAT The next repetition of a repeated 
subparameter list does not begin 
with a left paienthesis. 

IDC3211I RIO-12 IDCRIOI KWDPARM The descriptor does not define the 
input keyword as part of the 
current parameter list. 

NXTFIELD An input keyword exceeds the 
maximum allowable length for a 
keyword. 

IDC3212I RIO-13 IDCRIOI POSPARM A positional parameter that is not 
defined as a list begins with a left 
parenthesis. 

IDC3213I RIO-14 IDCRIOI SETFLAG An internal table (PARMFLAG) 
indicates that the keyword just 
found was found previously in this 
command. 

IDC3214I RIO-15 IDCRIOI GETDATA A numeric constant begins with a 
B or X, but an apostrophe does 
not follow directly after this 
character. 

Diagnostic Aids 553 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC3216I RIO-t7 IDCRIOt ERRORt The remainder of a command, 
being scanned for syntax-checking 
purposes only, was bypassed due 
to an error in it. 

ERROR2 The remainder of a command, 
being scanned for syntax-checking 
purposes only, was bypassed due 
to an error in it. 

IDC32171 RIO-t8 IDCRIOt GETQUOTD A password-delimiting slash 
appears following a constant that 
does not allow a password. 

GETSIMPL A password-delimiting slash 
appears following a constant that 
does not allow a password. 

IDC32t8I RIO-t9 IDCRIOI INREPEAT The number of sub list repetitions 
(REPCOUNT) for the current 
repeated sublist exceeds the 
maximum repetitions allowed 
(REPMAX) for this parameter 
according to the descriptor. 

IDC3219I RI0-20 IDCRIOt IDCRI02 The input verb name does not 
match any name in IDCRILT. 

IDC3220I RI0-2t IDCRIOI CONVERT A numeric constant contains a 
invalid digit. 

PACKCVB A numeric constant contains an 
invalid digit. 

IDC3221I RI0-22 IDCRIOI CONVERT A numeric constant has a value 
outside the value range specified 
in the descriptor for this 
parameter. 

PACKCVB A numeric constant is too large to 
fit into a binary fullword. 

IDC32231 RI0-24 IDCRIOI BUILDFDT The number of constants found in 
a list (SCLRCNT) exceeds the 
number allowed (LISTMAX). 

IDC32251 RI0-26 IDCRIOI NEEDNOTS A parameter always required for 
this command is missing, or 
parameter required when another 
parameter is coded is missing. 

IDC3226I RI0-27 IDCRIOI NEEDNOTS An input parameter conflicts with 
some other input parameter. 

IDC33001 100-1 IDCI002 BLDOCMSG An error occurred during open of 
a data set. 

IDC33011 100-2 IDCIOO2 BLDOCMSG An error occurred during close of 
a data set. 

IDC33021 100-3 IDCIOOI BLDAMSG An error occurred while accessing 
a data set. 

IDCIOO3 BLDAMSG An error occurred while accessing 
a data set. 

IDCRS06 RECERR A logical I/O error occurred while 
processing a CRA, catalog or the 
work file. 

554 DOS/VS Access Method Services Logic 



Page of SY33-8564-3 
Revised April 29, 1977 
By TNL SN24-5550 

Messages to Module Cross Reference 

Message STIO Module Procedure Situation That Caused Message 

IDC33031 100-4 IDCI002 BUILDDBK The data set to be opened for 
update processing is 110t a VSAM 
data set. 

IDC33041 100-5 IDCI002 DSDATA A Job Control statement specified 
for file to OPEN was not found. 

IDC33051 100-6 IDCI002 DSDATA An attempt was made to open an 
ISAM data set for output. 

IDC3306I 100-7 IDCI002 BUILDDBK Cannot open an ISAM file for 
address processing. 

DSDATA The data set to be opened for 
physical sequential processing is 
an ISAM data set. 

IDC3307I 100-8 IDCI002 BUILDDBK The data set to be opened for 
keyed processing is not a VSAM 
or ISAM data set. 

IDC33081 100-10 IDCIOOI VSAMERR A record with the same key or 
relative record number as the 
input record already exists in the 
output data set. 

IDC33091 100-12 IDCIOOI PUTNONVS The length for a record to be 
written is invalid. 

PUTVSAM Length invalid for RRDS. 

IDC33101 100-13 IDCI003 PTAMDS The key provided is longer than 
the key length of the data set. 

PTISDS The key provided is longer than 
the key length of the data set. 

IDC33111 100-14 IDCI003 IDCI003 The data set to be positioned is 
not a VSAM or ISAM data set. 

IDC33121 100-15 IDCI002 CKNONOP The DTF OPEN flag was not set 
by the system OPEN routines for 
magnetic tape or for a sequential 
disk file. 

IDC33141 100-17 IDCIOOI VSAMERR The record to be written has a 
lower key than the last record in 
the data set. 

IDC33151 100-44 IDCI002 BUILDDBK The record length exceeds 32767. 

IDC33161 100-19 IDCI002 BUILDDBK The data set to be opened is not a 
VSAM catalog. 

IDC3317I 100-20 IDCIOOI VSAMERR Physical error detected in a 
VSAM file. 

IDCI002 DSDATA I/O attempting to read the Label 
Cylinder. 

IDCI003 PTAMDS Physical error detected by VSAM 
POINT routines. 

Diagnostic Aids 555 



Messages to ModWe Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC33181 100-21 IDCIOO2 BUILDDBK ( 1) Invalid environment or 
DLBL/TLBL parameters 
specified, (2) the blocksize is less 
than one, (3) the blocksize is 
invalid for a fixed length record 
format file, or (4) the blocksize is 
invalid for a variable length 
record format file. CKNONOP 
The blocksize specified for an 
ISAM file is less than the file's 
true blocksize. 

DSDATA Invalid parameters specified on 
the DLBL/TLBL statement. 

IDC3320I 100-23 IDCIOO2 BUILDDBK 1. Invalid device type specified 
for prime data. 

2. Invalid device type specified 
for high level index of an 
ISAM file. 

3. Tape device specified as the 
high level index of an ISAM 
file. 

IDC33211 100-24 IDCIOO2 CKNONOP An open ABEND error was 
detected. 

ENVFREE A close ABEND error was 
detected. 

IDC33221 100-25 IDCIOO} IDCIOVY The data set to be verified is not a 
VSAM data set. 

IDC33231 100-34 IDCIOO2 OPENCAT A user catalog open error 
occurred. 

IDC33241 100-36 IDCIOO2 OPENCAT A user catalog open error has 
occurred and problem 
determination information has 
been returned by catalog 
management. 

IDC33251 100-45 IDCIOO} IRSISYN The blocksize specified for the 
portable data set is different than 
that of the portable data set. 

IDC33261 100-46 IDCIOO2 OPENRTN The REPLACE option has been 
specified for output through a 
path. 

IDC3327I 100-47 IDCIOOI VSAMERR Duplicate record in the upgrade 
set. 

IDC3350I 100-1l IDCIOO3 PTAMDS An I/O error occurred during a 
VSAM POINT operation. 

IDCIOO} VSAMERR An I/O error occurred in the 
VSAM access method. 

SS6 DOS/VS Access Meth~d Services Logic 



Messages to Modale Cross Reference 

Message STID Module Procedure Situation That Caused M .... 

IDC33511 100-9 IDCIOOI VSAMERR An error was detected by a VSAM 
macro. The error was not a 
duplicate record or a record out of 
sequence. 

IDCIOO2 CLOSERTN The ACB was not closed 
successfully. 

OPENRTN The ACB was not opened 
successfull y . 

IDCIOO3 PTAMDS A logical error occurred during a 
VSAM point operation. 

IDCRS06 RECERR A logical I/O error occurred while 
processing a eRA, cataiog or the 
work file. 

IDC35001 DE0-3 IDCDEOI IDCDEOl The object parameter list supplied 
by the user is incorrect. 

IDC350l1 DE0-4 IDCDE02 MODELPRC The entry type of an model object 
is not the same as that of the 
object being defined, or the entry 
type of a model object conflicts 
with the specification of 
INDEXED, NONINDEXED or 
NUMBERED. 

IDC35031 DEO-I IDCDE02 ALLCPROC The number of elements in the 
volume list does not match the 
number of elements in the file 
sequence list. 

IDC35041 DE0-2 IDCDE02 KEYPROC The length of the key range list 
retrieved from a model exceeded 
the space allotted for the list by 
IDCDEOl. 

IDC35051 DE0-6 IDCDEOl IDCDEOI Space allocation was incorrectly 
specified for a VSAM catalog, 
data set, or data space. 

IDC35061 DE0-7 IDCDEOI IDCDEOI Volumes were not specified for a 
VSAM data set. 

IDC3507I DE0-8 IDCDEOI IDCDEOI The record size was required but 
not specified for a VSAM data set 
or data space. 

IDC35131 DEO-l4 IDCDEOI IDCDEOI A file name was not specified with 
the UNIQUE attribute. 

IDC35l41 DEO-l5 IDCDE02 KEYPROC The key ranges specified by the 
user overlap. 

IDCMPOI RANGPROC The key ranges specified by the 
user overlap. 

IDC35151 DEO-l6 IDCDE02 ALLCPROC The average record size exceeds 
the maximum record size. 

IDC35161 DEO-l7 IDCDEOI IDCDEOI Key length and position were not 
specified for a key sequenced data 
set. 

IDC35l7I DEO-l8 IDCDE02 ALLPROC Unequal record sizes were 
specified for a relative record data 
set. 

IDC35181 DEO-l9 IDCDEOI IDCDEOI REUSE cannot be specified with 
UNIQUE or KEYRANGES. 

Diagnostic Aids 557 



Page of SY33-8564-3 
Revised April 29, 1977 
By TNL SN24-5550 

Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC3519I DE0-20 IDCDE01 IDCDE01 A REUSE conflict exists between 
data and index. 

IDC35211 DEO-22 IDCDE01 IDCDE01 A RECORD SIZE greater than 
32761 was specified for a 
nonspanned data set. 

IDC35221 DE0-23 IDCDE01 IDCDE01 SP ANNED cannot be specified 
for a relative record data set. 

IDC35241 DEO-25 IDCDE01 INTGCHK Key range values are longer than 
key length. 

IDCDE02 KEYPROC Key ranges are not in ascending 
order. 

IDC3525I AL0-23 IDCALOI CHECKPRC The password supplied is 
insufficient to alter key values. 

IDC3527I AL0-3 IDCAL01 LOCATPRC The entry retrieved from the 
catalog was an invalid type for 
alter requests, or required fields 
could not be located. 

IDC3528I AL0-4 IDCALOI LOCATPRC Passwords were suppressed when 
the object ot be altered was 
retrieved from the catalog. 

IDC3537I ALO-I2 IDCALOI CHECKPRC UNIQUEKEY or UPGRADE was 
specified for a nonalternate index. 

IDC35381 ALO-I3 IDCALOI CHECKPRC UNIQUEKEY or UPGRADE was 
specified for a nonempty alternate 
index. 

IDC3539I ALO-I4 IDCALOI CHECKPRC KEYS or RECORDSIZE was 
specified for a nonempty object. 

IDC3540I ALO-I5 IDCALOI CHECKPRC A conflict between the control 
interval and KEYS or 
RECORDSIZE exists. 

IDC35411 ALO-I6 IDCALOI CHECKPRC A conflict exists between the 
alternate index and the base 
cluster. 

IDC3542I ALO-I7 IDCALOI CHECKPRC Unequal record sizes were 
specified for a relative record data 
set. 

IDC3545I AL0-20 IDCALOI CHECKPRC Invalid values were specified for 
KEYS or RECORDSIZE. 

IDC3546I AL0-2I IDCALOI CHECKPRC Invalid value specified for KEYS. 

IDC3547I AL0-22 IDCALOI CHECKPRC KEYS or RECORDSIZE is 
invalid with entry type. 

IDC35701 PRO-I 8 IDCRPOI IDCRPOI Delimiters were specified for a 
catalog reload. 

IDC3572I PR0-20 IDCRPOI CATRELOD Target catalog is too small to 
contain the backup catalog during 
catalog reload. 

IDC3573I PR0-2I IDCRPOI CATRELOD Either the catalog name, the 
volume serial number, or the 
device type did not match during 
a catalog reload. 

IDC3582I PRO-I4 IDCRP01 IDCRPOI The organization of the input data 
set is incompatible with that of 
the output data set. 

558 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC3583I PRO-l7 IDCRPOI DELIMSET Invalid delimiters were specified 
for a data set copy operation. 

IDCPROI DELIMSET Invalid delimiters were specified 
for a data set copy operation. 

IDC3590I XPO-l IDCXPOI CLUSPROC The INFILE parameter was not 
specified. 

IDC359lI XP0-2 IDCXPOI CLUSPROC The OUTFILE parameter was not 
specified. 

IDC3592I XP0-3 IDCXPOI CLUSPROC The object retrieved from the 
catalog for export is not a cluster 
or an alternate index. 

!DC35931 XP()"4 IDCXPOI CLUSPROC The catalog did not return the 
entry type, data component name, 
or LRECL when the object to be 
exported was located. 

IDCRCOI SYNCH No data association could be 
found. 

IDCRC02 CLUSPROC Either (t) the catalog did not 
return the entry type, data 
component name, or LRECL 
when the object to be exported 
was located, or (2) the entry type 
was not a cluster or alternate 
index. 

CONTRBL The catalog did not return the 
entry type, data component name 
or LRECL when the object to be 
exported was located. 

NVSMPROC The catalog did not return the 
entry type, or data component 
name when the object to be 
exported was located. 

IDC3596I XP0-7 IDCXPOI CLUSPROC The data set to be exported has 
been marked as not usable. 

IDC3600I MP0-3 IDCMPOt CLUSPROC The INFILE parameter was not 
specified. 

IDC360tI MP0-4 IDCMPOI CLUSPROC The OUTFILE parameter was not 
specified. 

IDC3602I MPO-9 IDCMPOI IDCMPOt Import of the data set failed after 
a successful define. 

IDCRMOI IDCRMOt Import of the data set failed after 
a successful define. 

IDC3606I MPO-t IDCMPOt CLUSPROC The portable data set's first record 
was not valid. 

IDCRMOt IDCRMOt Opens of the portable data set 
failed. 

ALISPROC A catalog control record for an 
alias entry was not read. 

CLUSPROC There was no volume list from the 
input area. 

NVSMPROC A catalog control record from the 
portable data set was not read. 

Diagnostic Aids 559 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IOC36061 OPENPROC Header flags were not set properly 
(Continued) in the first record. 

UCATPROC A catalog control record for a 
user catalog was not read. 

IOC36071 MPO-I3 IDCMPOI OUPNPROC The temporary flag is not set in 
the catalog entry with the same 
name as the object being 
imported. If NEWNAME is 
specified, the temporary flag is 
not set in the entry with the new 
name. 

IOC36081 MPO-IO IDCMPOI CNCTPROC The VSAM catalog could not 
connect the user catalog. 

IDC36091 MP0-5 IDCMPOI CLUSPROC The VOLUMES parameter was 
not specified. 

IDCRMOI CLUSPROC No volume information was 
available. 

IDC3610I MP0-6 IDCMP01 CNCTPROC The device list was not specified 
for connect of a user catalog. 

IDC36121 MP0-8 IDCMPOI DUPNPROC The catalog entry with the same 
name as the object being 
imported is not a cluster or 
alternate index. 

IDC3613I MPO-14 IDCMPOI CLUSPROC The open of the portable data set 
was not successful. 

IDCRM01 IDCRMOI The open of the portable data set 
was not successful. 

IDC36141 MP0-7 IDCMPOI CLUSPROC The object names specified by the 
user do not match the object 
names found in the portable data 
set. 

IDC36151 MPO-15 IDCMPOI RECPROC The data set name on the 
OUTFILE JCL statement does 
not agree with the name found in 
the portable data set or, if 
NEWNAME is specified, the new 
name for the data set, or the name 
specified is not the name of path 
over the object to be imported. 

IDC3617I MPO-17 IDCMPOI DUPNPROC The attributes of a predefined 
data set conflict with those of the 
data set to be imported. 

IDC36191 MPO-19 IDCRMOI ALTRPROC The catalog return code was 
nonzero when attempting to 
rename a catalog entry. 

IDC36241 MP0-24 IDCRMOI IDCRMOt The UIOINFO issued to obtain 
the output data set name failed. 

IDC36411 BI0-2 IDCBIOI LOCPROC The file identified in INFILE is 
not a base cluster. 

IDC36431 BI0-4 IDCBIOI OPENPROC The base cluster is empty. 

IDC38831 LRl-14 IDCLROI ERROR More than 50 errors occurred 
while trying to complete the 
LISTCRA. 

560 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC4227I RI0-28 IDCRIOI GETNEXT An ELSE command appears 
without a matching IF-THEN 
command (THENFLAG is not on 
with DOFLAG off). 

IDC4228I RI0-29 IDCRIOI GETNEXT An END command appears 
without a matching DO command 
(DOFLAG is off). 

IDC4229I RI0-30 IDCRIOI MODAIIF An IF command relational 
expression does not follow the 
required format. 

IDC42301 RI0-31 IDCRIOI MODALSET A SET command assignment 
expression does not follow the 
required format. 

IDC4232I RI0-33 IDCRIOI MODALIF A THEN keyword does not 
appear in an IF command. 

IDC4236I RI0-37 IDCRIOI IDCRI03 End-of-file occurred, but EOFOK 
flag is off, indicating that 
end-of -file occurred in the middle 
of a command. 

IDC4237I RI0-38 IDCRIOI MODALIF The current IF command nesting 
level (NESTL VL) exceeds the 
maximum level allowed 
(IFNSTMAX). 

IDC4999I IDCSAOI PRNTERR UABORT error message printed 
via EXCP. See "ABORT Codes " 
section for ABORT codes. 

IDCOl002I RS0-3 IDCRSOI INIT Informational message indicating 
the catalog to be reset and tbe 
timestamp on the volume. 

IDC01011I RSO-12 IDCRSOI PROCCRA Informational message indicating 
the CRA to be reset and the 
timestamp on the volume. 

IDCOI037I RS0-47 IDCRSOI UPDCAT Informational message indicating 
that RESETCA T processing has 
been completed for the indicated 
catalog. 

lOCI 10031 RS0-4 IDCRS06 RECMGMT IGNORE was specified and an 
I/O error was encountered. 

IDCII015I RSO-16 IDCRS06 RECMGMT IGNORE was specified and an 
I/O error was encountered. 

lOCI 10221 RS0-48 IDCRS06 PROCTYPE An object contains a dependency 
RS0-22 IDCRS02 PROCTYPE on a record that does not exist. 

IDCI1023I RS0-24 IDCRS02 VERA An entry is chained to a 
VERC record of a type different 
VERG than anticipated or the object 
VERR noted consists of an 

RS0-23 IDCRS02 VERC imcomplete set of records. 
VERG If the control interval number of 

the expected association is not 
given then no association for that 
object exists in the base record; an 
association for that type is 
required for the entry name 
noted. 

Diagnostic Aids 561 



Messages to Module Cross Reference 

Message STID Module Procedure Situation lbat Caused Message 

IDCII0291 RS0-31 IDCRS03 VLNRESET The suballocated data 
VLRESET space has been corrected to reflect 

what is on the volume. This 
correction occurs if entries are 
deleted by RESETCA T or space 
stated as suballocated is not 
suballocated (that is, the space 
map is incorrect on entry to 
RESETCAT). 

IDCl1031I RS0-33 IDCRS03 CHKUNQ The unique data or index 
component has less space 
described than the data space. 
Informational message to indicate 
that space exists which is not in 
use. 

IDCI1033I RS0-35 IDCRS03 CHKUNQ A unique file, on a 
VLNRESET volume not being reset has no 

corresponding DATA or INDEX 
component. 

IDCI1036I RS0-46 IDCRS03 CHKDSDIR The file named may have invalid 
space information. The extents 
occupied by the named file are 
not in conflict with any other 
VSAM file or with the system; 
however, a self-checking field 
failed to check. 

IDCI1040I RS0-38 IDCRS03 VOLCHK The VSAM Format 1 DSCB did 
not have a corresponding header 
in the volume record. Therefore, 
the catalog does not account for 
the space allocated to the file. 

IDCII0411 RS0-39 IDCRS03 VOLCHK The extents in the space header 
for the data space noted were not 
identical to the extents in the 
corresponding Format 1 DSCB. 

IDCII042I RSO-4O IDCRS03 VOLCHK The space header for the data 
space referred to a nonexistent 
Format 1 DSCB. 

IDCll043I RS0-41 IDCRS03 VOLCHK The timestamp for the volume 
record did not match the 
timestamp in the VTOC. 

IDCII044I RS0-42 IDCRS03 VOLCHK The attempt to scratch the file for 
the reason stated in message 
IDCII040I failed. 

IDC210091 RSO-I0 IDCRSOI INIT A "multivolume file 
IDCRS03 MARKUNUS existed on a volume prior to reset. 

IDC21020I RS0-21 IDCRS05 ADDUPCR A volume needed for the 
IDCRS07 RENMSETV reset was not specified in a 

CRAFILES parameter. 

IDC21024I RS0-25 IDCRS02 VERX The alias chain for a 
USERCATALOG or NONVSAM 
entry is invalid. 

IDC21025I RS0-26 IDCRS03 VERB The records associating the GDG 
file with the GDG base are in 
error. 

562 DOS/VS Access Method Services Logic 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC210261 RS0-27 IDCRS02 SETCI A previous message indicated an 
error which resulted in this entry 
being deleted from the catalog. 

IDC210271 RS0-28 IDCRS03 VLNRESET The CRA extents or catalog 
IDCRS03 VLRESET extents have no matching extents 

in any data space. 

IDC21030I RS0-32 IDCRS03 MARKUNUS The entry noted claims space on 
volume. That space is not 
allocated to that entry. 

IDC210321 RS0-34 IDCRS02 VERCI An object of the type 
IDCRS03 VERB specified was defined over the 

entry named as entryname. 
However, the records describing 
the object could not be found. 
Therefore, an object of the type 
specified was deleted from the 
given entryname's description. No 
name for the deleted object is 
given because the record with its 
name cannot be found. 

IDC210341 RS0-36 IDCRS03 VLNRESET The space map, which 
VLRESET indicates what space is available 

for suballocation on a volume, is 
not the correct length in the 
catalog. 

IDC210451 RS0-43 IDCRS07 RENAMEP An attempt was made to reset an 
object which bears the same name 
as some other object in the 
catalog. 

IDC210461 RS0-44 IDCRS07 RENAMEP An attempt was made to reset a 
unique object into a catalog which 
contains an object of the same 
name. 

IDC210471 RS0-45 IDCRS07 RENAMEP An attempt was made to reset a 
unique object into a catalog which 
contained an object of the same 
name. 

IDC310001 RSO-l IDCRSOI INIT The catalog specified for reset is 
not a recoverable catalog. 

IDC310041 RS0-5 IDCRS06 WFDEF DEFINE failed for the workfile. 

IDC310051 RS0-6 IDCRSOI INIT The workfile was defined in the 
catalog to be reset. 

IDC310061 RS0-7 IDCRS07 CATEOV A physical I/O error when 
accessing the catalog was 
encountered while the catalog was 
being extended. 

IDC31007I RS0-8 IDCRS07 CATEOV A logical I/O error was 
encountered while extending the 
catalog. 

IDC310081 RS0-9 IDCRSOI INIT An error was encountered when 
trying to access the file specified 
in the CATALOG parameter. 

IDC310101 RSO-ll IDCRSOI MERGECRA The CRA was specified for reset, 
but it belongs to a catalog other 
than the catalog to be reset. 

Diagnostic Aids 563 



Messages to Module Cross Reference 

Message STID Module Procedure Situation That Caused Message 

IDC310121 RSO-13 IDCRS06 RECMGMT The workfile relative record 
number limit has been exceeded. 

IDC310131 RSO-14 IDCRSOI MERGECRA A preceding message indicates 
that either Open failed for the 
CRA, Close failed for the CRA, 
or the CRA does not belong to the 
catalog to be reset. 

IDC31014I RSO-15 IDCRS06 WFDEL DELETE failed for the workfile. 

IDC31016I RSO-17 IDCRSOI INIT The CRAFILES parameter 
specified no CRA with the ALL 
option; therefore, no volume was 
specified for reset. 

IDC31017I RSO-18 IDCRSOI INIT Some other task is open to the 
catalog requested to be reset. 

IDC31018I RSO-19 IDCRSOI UPDCAT RESETCA T required a volume 
that could not be allocated. 

IDC31019I RS0-20 IDCRSOI INIT The CRAFILES parameter 
specified the same volume serial 
number more than once via 
dnames. 

IDC31035I RS0-37 IDCRSOI UPDCAT In a CRA, either the volume 
IDCRS03 VLNRESET record for the volser indicated 

does not exist or one of its 
secondary records does not exist. 

IDC31038I RS0-49 IDCRSOI UPDCRA Either Open or Close failed for 
the CRA. 

IDC31039I RS0-50 IDCRSOI INIT The DLBL job control 
IDCRS06 WFDEF statement named in a 

CATALOG, CRAFILES, 
WORKCAT, or WORKFILE 
parameter cannot be found. 

IDC31048I RS0-51 IDCRS03 VOLCHK Error accessing the VTOC. 

Note: The listed procedures call UERROR to issue the IDC3007I and IDC3009I messages. 
UERROR issues the messages as follows: 

Message STID Module Procedure 

IDC3007I TP6-1 IDCTP06 IDCTP06 

IDC3009I TP6-2 IDCTP06 IDCTP06 

564 DOS/VS Access Method Services Logic 



APPENDIX A: PORTABLE DATA SETS CREATED 
BYTHEEXPORTCO~ 

Control 
Record ,., 

( '( 
I 

Control 
Record ,., 

When a VSAM cluster or alternate index is exported via the Access Method 
Services EXPORT command, catalog information needed to define the 
VSAM data set plus all the records from the data component are written to a 
nonVSAM set called the portable data set. The following list shows the 
attributes of the portable data set. 

Attribute of Portable Data Sets 

Attribute 

LRECL 

BLKSIZE 

RECFM 

DSORG 

DEVTYPE 

Value 

The larger of: 
(a) Maximum VSAM data set record size +4 
(b) 264 (for nonRRDSs) or 268 (for RRDSs). 

As specified by the user. The default is 2048. 

VBS 

PS 

Tape or disk. 

The portable data set contains two major types of records: control records 
and data records. Control records contain one of two types of information: a 
time stamp or a dictionary. Data records also contain one of two types of 
information: a catalog work area or a data record from the data component of 
the cluster or alternate index exported. Figure 24 shows the general layout of 
control records and data records in the portable data set. The types of records 
and the types of information within those records are explained in this 
appendix. 

Data Control Data Control Data 
Record Record Record Record Record ,., 

" 
,., 

" 
,.. 

'( " 
,,. ,,; 

J I I 
I 

IOther Dictionary Information and 
Catalog Work Areas May appear here. 

Data Records from Data Set 

Figure 24. Layout of Control Records and Data Records in the Portable Data Set 

Appendix A: Portable Data Sets Created by the Export Command 565 

'I 



Control Records 
Control records all have the same general format as shown in Figure 25. The 
first four bytes of each control record contain header information. The next 
four bytes contain associated data. The remainder of the record contains the 
time stamp or dictionary information. 

COIItrol R«ord Co"ta;";,,, Time Stamp 1,,/oI'llUlRo" 

o 

The first record on every portable data set is a control record that contains 
time stamp information, as well as other fields. The format of this record is 
shown in Figure 26. 

The first two bytes of the header contain the length of this control record. 
The next two bytes indicate that this control record contains time stamp 
information. There is no associated data, and those four bytes are reserved. 

4 8 

Header Associated Data Variable Data-Time Stamp or l ~ 
Dictionary 

) , 
Figure 25. General Format of Control Records 

o 2 3 4 8 27 

OOIC X'FF' X'FF' Reserved Time Stamp and Other Information 

~~""""""~v""""""~~ ~~--------"~y~--------~~ ~~""""""~y~""""""~~ 

Header Associated Data Variable Data 

Figure 26. Control Record Containing Time Stamp Information 

566 DOS/VS Access Method Services Logic 



o 

The format of the time stamp information is: 

Displacement 1 Description 

8 (8) Number of cluster components and paths being exported. 

9 (9) Flags: 

10 (A) 

11 (B) 

12 (C) 

20 (14) 

Bit Meaning When Set 
o 1 indicates a unique data set 

o indicates a non-unique data set 
1 indicates an inhibited target 
o indicates a non-inhibited target 

2 1 indicates path associations are present. 
o indicates no paths are present. 

3 If bit 2 is 1: 

1 indicates that the base object has both data and index 
components. 
o indicates that the base object has only a data component. 

Access Method Services release number in EBCDIC 

Reserved 

Time of EXPORT in EBCDIC, in the form hh.mm.ss, where hh is the 
number of hours, mm the number of minutes, and ss the number of 
seconds. 

Date of EXPORT in EBCDIC, in the form mm/dd/yy, where mm is the 
month in digits, dd the day, and yy the year. 

1 The displacement is from the beginning of the control record. 

Control Records Containing Dictionary In/ormation 

2 3 . 

OOD4 X'FF' 

A control record containing dictionary information is written for the cluster or 
alternate index being exported and for each component within that cluster or 
alternate index. In addition, one control record is written for each path 
association of the object being exported. These records in essence describe 
the data record containing the catalog work area which follows. The format of 
control records containing dictionary information is shown in Figure 27. 

The first two bytes of the header contain the length of this control record. 
The next two bytes indicate that this record contains dictionary information 
and the type of component that the associated catalog work area information 
describes. The type of component is indicated by 'C' for cluster, 'D' for data, 
'I' for index, 'G' for alternate index, or 'R' for path. 

The associated data portion of the control record contains the length of the 
associated catalog work area (two bytes) and the number of records into 
which the associated catalog work area is broken (2 bytes). 

4 6 8 

Number of 

Type Length of Catalog Records for Dictionary and Other Information 
Wqrk Area Catalog 

Work Area 

~~------------~y------------~~ ~~----------~y~"--------~~ ~~----.. ----~v~ .. ----.... ~~ 
Header Associated Data Variable Data 

Figure 27. Control Record Containing Dictionary Information 

Appendix A: Portable Data Sets Created by the Export Command 567 



The variable data portion of the control record contains the dictionary 
information. This portion of the control record begins with a four-byte field 
that contains the number of entries in the dictionary. The entries themselves 
follow. Each entry consists of a pair of four-byte fields. The first four bytes 
contain the length of the associated catalog field in the catalog work area. 
(Remember, the catalog work area information is in a data record 
immediately following one of these control records.) The second four bytes 
contain the displacement of that field within the associated data record. If an 
associated catalog field contains no information, both four-byte fields in the 
dictionary entry fpntain zeros. The dictionary entries always point to the 
associated fields in the order shown in the following list. 

Order of Associated Catalog Fields 

Associated Field in 
Order Catalog Work area Description 

ENTYPE Component type. 

2 ENTNAME Component name. 

3 DSATTR Data set attributes. 

4 OWNERID Data set owner. 

5 DSETCRDT Data set creation date. 

6 DSETEXDT Data set expiration date. 

7 BUFSIZE Minimum buffer size. 

8 LRECL Logical record size. 

9 SPACEPARM Primary and secondary space. 

10 PASSWORD Four eight-character passwords. 

11 PASSPRMT Password prompting code name. 

12 PASSATMP Maximum number of attempts for password. 

13 USVRMDUL User security verification module. 

14 USERAREC User authorization record. 

15 LOKEYV Low key on volume. 

16 HIKEYV High key on volume. 

17 VOLSER Volume serial numbers. 

18 AMDSBCAT AMDSB, from which the remaining fields are 
taken. 

19 AMDATTR Attributes. 

20 AMDRKP Relative key position. 

21 AMDKEYLN Key length. 

22 AMDCINV Control interval size. 

23 AMDLRECL Maximum record size. 

24 AMDPCTCA Percent of free control intervals in control area. 

25 AMDPCTCI Percent of free bytes in control intervals. 

26 AMDATTR3 Attributes. 

27 AMDAXRKP Position of alternate key in base cluster record. 

28 EXCPEXIT Exception exit. 

29 RGATTR Alternate index or path attributes. 

30 RELATE I Alternate index related name or pathentry name. 
PATHENTRY 

31 PASSREL Master password of pathentry component. 

SIlR nos/vs Access Method Services Loe:ic 



Data Records 
Data records contain one of two types of information: the catalog work area 
or data records from the data component. 

Data Records Containing Catalog Work Area 

Following each control record that contains dictionary information there is a 
data record that contains the catalog work area for a given component. The 
format of these records is shown in Figure 28. 

The first two bytes of each record contain the total possible length of the 
catalog work area. The next two bytes contain the length of the work area 
used for this component. Following these first four bytes are the fields from 
the catalog work area. The order of these fields is basically as described in the 
preceding topic. If there is no information for one of the fieids, the fieid is 
completely omitted. 

Figure 29 shows the relationship of the dictionary and catalog work area 
information. 

Data Records Containing Data Records From the Data 
Component 

o 2 

Total 

Following all of the control records and data records that contain dictionary 
information is a special record which marks the beginning of the data records 
from the data component. This special record is eight bytes in length. The 
record always has the format shown in Figure 30. 

Following this special record are all of the data records from the data 
component being exported. 

4 

l~ 
Possibie Length for thIs Component Information from Catalog Work Area 

~ __ L_en_~_th __ ~ ____________________ ~ ________________________________________________ ~ ~ 

Figure 28. Data Record Containing Catalog Work Area 

Control Record Containing Dictionary Information 

r---......,...----r------.--.-----r----r---------.---r-----.-----.---,----,( ~'.....---...----.( ( 
Number I I 

0004 X'FF' Type Length of X'25' X'Ol' X'04' X'2C' I X'05' X'OO' X'OO' X'03' I X'3B' 
Records I I I 

L...------.J......----'--~_-L--~__L...-----J~~--L..-::.~--'--~ /L----+-----"( l 
Data Record Containing Catalog Work Area Information 

Total Possible Length 
Length for this 

Component 

Figure 29. Relationship of Dictionary and Catalog Work Area In!ormation 

AppenJix A: Portable Data Sets Created by the Export Command 569 



o 2 3 

X'OOOS' 01 Reserved 

Figure 30. Special Record at Beginning of Data Records from the Data Component 

\ 
" 

570 DOS/VS Access Method Services Logic 



APPENDIX B: PORTABLE DATA SETS CREATED 
BY THE EXPORTRA COMMAND 

When the EXPORTRA command of Access Method Services executes, it 
produces a portable data set which contains catalog information obtained 
from a CRA (Catalog Recovery Area) and data records for VSAM clusters 
and alternate indexes, and also catalog information for user catalog pointers. 
In addition, portable data sets created by EXPORTRA (referred to as 
recovery portable data sets in this appendix) on OS/VS systems may contain 
catalog information for non VSAM, alias, and generation data group (GDG) 
base objects. The following list shows the attributes of the portable' data set. 

Attribute 

LRECL 

BLKSIZE 

RECFM 

DSORG 

DEVTYPE 

Value 

The iarger of: 
(a) Maximum VSAM data set record size + 8 
(b) 268 (for nonRDs) or 272 (for RRDs) 

As specified by the user (the default is 2048) 

VBS 

PS 

(Tape or disk) 

Each record of the recovery portable data set has a special4-byte header 
added that precedes the record itself. Information for unrelated objects on the 
recovery portable data set is separated by one or more software ends of file. 
These ends of file are special records that consist only of the 4-byte header. 
Only Figure 31 indicates that this particular type of header precedes each 
data record; the other figures do not show it. 

The recovery portable data set contains two major types of records: control 
records and data records. Control records contain one of two types of 
information: a time stamp or a dictionary. Data records also contain one of 
two types of information: a catalog work area or a data record from the data 
component of the cluster exported. Figure 31 shows the general layout of 
control records and data records in the recovery portable data set. The types 
of records and the types of information within those records are explained in 
this appendix. 

Appendix B: Portable Data Sets Created by the EXPORTRA Command 571 



LRECL 

the Portable 
Data Set 

Control 
Record 

" 4..' 

Control Data 
Record Record 

" " 

Control 
Record 

,. 

Software 
••• End (s) 

of File 

" " 

Data Control 
Record Record 

" 
,.. 

...... , 

I 

Data Records from Data Set 

Figure 31. Layout of Control Records and Data Records in the Recovery Portable Data Set 

Control Records 
Control records all have the same general format as shown in Figure 32. The 
first four bytes of each control record contain header information. The next 
four bytes contain associated data. The remainder of the record contains the 
time stamp, dictionary information, or logical record length. 

Control Record Containing the Logical Record Length 

The first record of every recovery portable data set is a control record 
containing the logical record length of the portable data set itself. The format 
of this record is shown in Figure 33. 

Control Record Containing Time Stamp In/ormation 

The first record for each item on the recovery portable data set is a control 
record that contains time stamp information, as well as other fields. The 
format of this record is shown in Figure 34. 

Data 
Record 

" 

4 

Header 
Associated Data or 

Logical Record Length 

8 

Variable Data-Time Stamp or ~ ~ 
Dictionary 

:~ 
Figure 32. General Format of Control Records 

572 DOS/VS Access Method Services Logic 

"-



o 2 3 

OOIC X'PP' 

..... 
y 

Header 

0 2 3 4 

0008 I v.rF.1 I ~. I LRECL 

Figure 33. Control Record Containing the Logical Record Length 

The first two bytes of the header contain the length of this control record. 
The next two bytes indicate that this control record contains time stamp 
information. There is no associated data, and those four bytes are reserved. 

The format of the time stamp information is: 

Displacement 1 

8(8) 

9(9) 

10(A) 

I1(B) 

12(C) 

20(14) 

Description 

The maximum number of components associated with this item. 

Flags: 

Bit Meaning When Set 

o 1 indicates a unique data set 
o indicates a nonunique data set 
1 indicates an inhibited target 
o indicates a noninhibited target 

2 1 indicates path associations are present. 
o indicates no paths are present. 

3 If bit 2 is 1: 
1 indicates that the base object has both data and index 
components. 
o indicates that the base object has only a data component. 

4 1 always 1 for a recovery portable data set. 
5 1 indicates anon VSAM object. 

o indicates an object other than a nonVSAM. 
6 1 indicates a GDG base object. 

o indicates an object other than a GDG base. 
7 1 indicates a user catalog pointer. 

o indicates a pointer for an object other than a user catalog. 

.&-\ccess Method Services release number in EBCDIC 

Reserved 

Time of export in EBCDIC, in the form hh.mm.ss, where hh is the 
number of hours, mm the number of minutes, and ss the number of 
seconds. 

Date of export in EBCDIC, in the form mm/dd/yy, where mm is the 
month in digits, dd the day, and yy the year. 

1 The displacement is from the beJinning of the control record. 

4 8 

X'PP' Reserved Time Stamp and Other Information 

", 
"" y y 

Associated Data Variaole Data 

8 

27 

fI' 

Figure 34. Control Record Containing Time Stamp Information 

Appendix B: Portable Data Sets Created by the EXPORTRA Command 573 



Control Records Containing Dictionary In/ormation 

o 2 3 

A control record containing dictionary information is written for each object 
being exported and for each component associated with that object. These 
records in essence describe the data record containing the catalog work area 
which follows. The general format of control records containing dictionary 
information is shown in Figure 35. 

The first two bytes of the header contain the length of this control record. 
The next two bytes indicate that this record contains dictionary information 
and the type of component that the associated catalog work area information 
describes. The type of component is indicated by 'C' for cluster, 'D' for data, 
'I' for index, 'G' for alternate index, 'R' for path, 'A' for nonVSAM, 'B' for 
GDG base, 'X' for alias, or 'U' for user catalog pointer. 

The associated data portion of the control record contains the length of the 
associated catalog work area (2 bytes) and the number of records into which 
the associated catalog work area is broken (2 bytes). 

The variable data portion of the control record contains the dictionary 
information. This portion of the control record begins with a four-byte field 
that contains the number of entries in the dictionary. The entries themselves 
follow. Each entry consists of a pair of four-byte fields. The first four bytes 
contain the length of the associated catalog field in the catalog work area. 
(Remember, the catalog work area information is in a data record 
immediately following one of these control records.) The second four bytes 
contain the displacement of that field within the associated data record. If an 
associated catalog field contains no information, both four-byte fields in the 
dictionary entry contain zeros. 

The number of dictionary entries and their order depends upon the type of 
object being described. Dictionary formats are described for each possible 
'kind of item in the following list. 

Order of Associated Catalog Fields 

Cluster or Alternate Index 

Associated Field in 
Order Catalog Work Area Description 

ENTYPE Component type. 

2 ENTNAME Component name. 

3 DSATfR Data set attributes. 

·4 OWNERID Data set owner. 

5 DSETCRDT Data set creation date. 

6 DSETEXDT Data set expiration date. 

4 6 8 

Number of 

1 
( 

OOD4 X'FF' Type 
Length of Catalog Records for 

Dictionary and Other Informatio Work Area Catalog 
n 

Work Area 
1 
( 

~,~------------~~· .. --------~~~,~------.. ~v~~ ....... --.. ~~~,------------avv~----------~~ 
Header Associated Data Variable Data 

Figure 35. Control Record Containing Dictionary Information 

574 DOS/VS Access Method Services Logic 



7 BUFSIZE Minimum buffer size. 

8 LRECL Logical record size. 

9 SPACEPARM Primary and secondary space. 

10 PASSWORD Four eight-character passwords. 

11 PASSPRMT Pass\ll'lrd prompting code name. 

12 PASSATMP Maximum number of attempts for password. 

13 USVRMDUL User security verification module. 

14 USERAREC User authorization record. 

15 LOKEYV Low key on volume. 

16 HIKEYV High key on volume. 

17 VOLSER Volume serial numbers. 

18 AMDSBCAT AMDSB from which the next 9 fields are taken. 

J9 AMDATTR Attributes. 

20 AMDRKP Relative key position. 

21 AMDKEYLN Key length. 

22 AMDCINV Control interval size. 

23 AMDLRECL Maximum record size. 

24 AMDPCTCA Percent of free control intervals in control area. 

25 AMDPCTCI Percent of free bytes in control intervals. 

26 AMDATTR3 Attributes 

27 AMDAXRKP Position of alternate index key in base cluster 
record. 

28 EXCPEXIT Exception exit. 

29 RGATTR Alternate index or path attributes. 

30 RELATE I Alternate index related name or 
PATHENTRY path entry name. 

31 PASSREL Master password of path entry component. 

NonVSAM 

ENTYPE Entry type. 

2 ENTNAME Entry name. 

3 VOLSER Volume serial numbers. 

4 DEVTYP Device types. 

5 FILESEQ File sequence numbers. 

6 OWNERID Data set owner. 

7 DSETCRDT Data set creation date. 

8 DSETEXDT Data set expiration date. 

User Catalog Pointers 

ENTYPE Entry type. 

2 ENTNAME Entry name. 

3 VOLSER Volume serial numbers. 

4 DEVTYP Device types. 

ABases 

ENTYPE Entry type. 

2 ENTNAME Entry name. 

Appendix B: Portable·Data Sets Created by the EXPORTRA Command 575 



Data Records 

Order of Associated Catalog Fields 

Associated Field in 
Order Catalog Work Area Description 

GOG Bases 

ENTYPE Entry type. 

2 ENTNAME Entry name. 

3 GDGLIMIT GDG limit value. 

4 GDGATTR GDG attributes. 

5 OWNERID Data set owner. 

6 DSETCRDT Data set creation date. 

7 DSETEXDT Data set expiration date. 

Data records contain one of two types of information: the catalog work area 
or data records from the data component of a VSAM cluster. 

Data Records Conta;n;ng Catalog Work Area 

Following each control record that contains dictionary information there is a 
data record that contains the catalog work area for a given component. The 
format of these records is shown in Figure 36. 

The first two bytes of each record contain the total possible length of the 
catalog work area. The next two bytes contain the length of the work area 
used for this component. Following these first four bytes are the fields from 
the catalog work area. The order of these fields is basically as described in the 
preceding topic. If there is no information for one of the fields, the field is 
completely omitted. 

Figure 37 shows the relationship of the dictionary and catalog work area 
information. 

Data Records Containing Data Records From tlte Data 
Component 

For a VSAM cluster or alternate index, following all of the control records 
and data records that contain dictionary information is a special record which 
marks the beginning of the data records from the data component. This 
special record is eight bytes in length. The record always has the format 
shown in Figure 38. 

Following this special record are all of the data records from the data 
component being exported. 

024 

L--~----~~------~{()\J Total 
Possible Length for this Component Information from Catalog Work Area 
Length 

Figure 36. Data Record Containing Catalog Work Area 

576 DOS/VS Access Method Services Logic 



Control Record Containing Dictionary Infonnation 

Number 
OOD4 X'FF' Type Length of X'25' X'OI' X'04' X'2C' X'05' X'OO' X'OO' 

Records 

Data Record Containing Catalog Work Area InfolT.'\ation 

Total Possible Length 
Length for this 

Component 

Figure 37. Relationship of Dictionary and Catalog Work Area Information 

o 2 '3 

X'OOO8' 01 Reserved 

Figure 38. Special Record at Beginning of Data Records from the Data Component 

Associated Objects for User Catalog Pointers, Non VSAMs, and 
GDGs 

The aliases of a user catalog pointer or anon VSAM are exported as 
associated objects. Similarly, the nonVSAMs that belong to a GDG base are 
exported as associated objects of the GDG; these nonVSAMs may, in tum, 
have aliases. An item and its associated objects are preceded by one time 
stamp control record and followed by one software end of file. 

Appendix B: Portable Data Sets Created by the EXPORTRA Command 577 





INDEX 

ABORT codes 485 
Access Method Services 

functions 19 
introduction 19 
logic features 19 
overview 29 
requirements 19 
structure 20 
visual table of contents 29 

adapters 
input/output 227 
system 189 

ALTER 
FDT 346 
IDCALOI 300 
method of operation 68 

associated catalog fields 568,574 
associated objects 577 
attributes of portable data sets 565 
automatic storage areas, finding 496 
AUTOTBL 497 

B 
BLDINDEX 

PDT 351 
IDCBIOI 300 
method of operation 126 

get information and verify 130 
obtain resources and sort initialization 132 
overview 126 
sort-merge and build alternate index 134 

Buffer Pool Control Block (BUFS) 324 

c 
Catalog Field Parameter List (CTGFL) 112 
catalog management 

argument lists, finding 510 
sequence of calls made by FSRs 505 

debugging 503 
obtaining a dump 504 
order of associated catalog fields 568,574 

character code dependencies 26 
Command Descriptor 324 

areas 
Parameter Data Area 327 
Verb Data Area 325 

for ALTER (IDCCDAL) 300,324 
for BLDINDEX (IDCCDBI) 300,324 
for DEFINE (IDCCDDE) 300,324 
for DELETE (IDCCDDL) 300,324 
for EXPORT (IDCCDXP) 300,324 
for EXPORTRA (IDCCDRC) 300,324 
for IMPORT (IDCCDMP) 300,324 
for IMPORTRA (IDCCDRM) 300,324 
for LISTCAT (IDCCDLC) 300,324 
for LISTCRA (IDCCDLR) 300,324 
for P ARM (IDCCDPM) 300,324 
for PRINT (IDCCPPR) 300,324 
for REPRO (IDCCDRP) 300,324 

for VERIFY (IDCCDVY) 300,324 
format 325 
introduction 23 

Command Descriptor Phase Table (IDCRIL T) 331 
COMMAREA 433 
control flow 296 
control records 565,569 

containing dictionary information 566,569 
order of fields 567,569 

containing logical record length 569 
containing time stamp information 566,573 
general format 566,572 

CRA Access Parameter List 332 
CTGFL used for catalog entry 112 

D 
DARGLIST 335 
data areas 323 

AUTOTBL 497 
Command Descriptor 323 
Command Descriptor Phase Table (IDCRIL T) 331 
Dump List 332 
Dynamic Data List (DARGLIST) 335 
Format List (FMTLIST) 339 
Function Data Table (PDT) 343 

ALTER FDT 346 
BLDINDEX FDT 351 
DEFINE FDT 352 

AL TERNATEINDEX 353 
CLUSTER 355 
MASTERCATALOG 359 
NONVSAM 360 
PATH 361 
SPACE 362 
USERCAT ALOG 363 

DELETE 389 
EXPORT 39i 
EXPORTRA 393 
IMPORT 395 
IMPORTRA 398 
LISTCAT 400 
LISTCRA 402 
PARM 403 
PRINT 405 
REPRO 408 
RESETCAT 412 
VERIFY 414 

Global Data Table (GDT) 415 
IOCSTR Extension (IOCSEX) 422 
I/O Adapter Historical Area (IODATA) 419 
I/O Communication Structure (IOCSTR) 420 
Inter-Module Trace Table 423 
Intra-Module Trace Table 424 
Modal Verb and Keyword Symbol Table (IDCRIKT) 425 
Open Argument List (OPNAGL) 426 
Open Close Address Array (OCARRA Y) 428 
Phase Table 428 
Positioning Argument List (OPRARG) 429 
Print Control Argument List (PCARG) 430 
Print Control Table (PCT) 431 
Reader Interpreter Communication Area 

(COMMAREA) 433 

Index 579 



Reader Interpreter Historicai Area (HDAREA) 434 
System Adapter Historical Area (SAHIST) 435 
Test Option Data Area 436 
Text Structure 438 
UGPOOL Area 440 
UGSPACE Area 440 
UIOINFO Area 441 
UREST arguments 443 

data records 565,571 
containing catalog work area 565,571 
containing data records 565,571 
relationship to control record 565,572 

debugging aids 
introduction 19 
method of operation 277 

overview 278 
UDUMP 282 

dump fields 284 
UTRACE 280 
visual table of contents 277 

modules 
IDCDBOI 301 
IDCDB02 301 

DEFINE 
FDT 347 
IDCDEOI 302 
method of operation 72 

AL TERNA TEIND EX 90 
CLUSTER 86 
MASTERCATALOG 74 
NONVSAM 82 
overview 72 
PATH 94 
SPACE 84 
USERCA T ALOG 78 

DELETE 
FDT 389 
IDCDLOI 303 
method of operation 96 

Diagnostic Aids 445 
abort codes 485 
debugging a catalog problem 503 

ho~ to obtain a dump 504 
debugging a formatting problem 513 

how to obtain a dump 524 
debugging an I/O problem 526 

how to find I/O argument lists 527 
how to obtain a dump 527 
OPEN argument lists 528 
UGET and UPUT argument lists 529 

debugging a text processor problem 524 
how to find Text Processor Argument Lists 524 

dump, finding elements of 
automatic storage areas 496 
catalog management argument lists 510 
dynamic storage areas 498 
FDT 495 
GDT 493 
1/ 0 argument lists 527 
modules 487 
phases 487 
registers 487 
save areas 495 
trace tables 495 

dump points 446,473 
dump, sample 489 

<Qn n{)~/V~ A,.,. .. .,., U .. thnn ~ ... rvlr ... o;: T nOlI" 
--- ---, .. - ------- -.------- --- .---- _.-1iilI' 

message to module cross-reference 532 
phase or CSECT to dump points cross-reference 473 
TEST option 473 
trace and dump points to phase or CSECT 

cross-reference 446 
trace tables 

inter-module 423,445 
intra-module 424,412 

DO modal command 52 
Dump List 333 
dump, reading 487 

finding 
automatic storage areas 496 
catalog management argument lists 510 
dynamic storage areas 498 
FDT 495 
GDT 493 
I/O argument lists 527 
modules 487 
phases 487 
registers 487 
save areas 495 
trace tables 495 

points 446,473 
sample dump 489 

Dynamic Data List (DARGLIST) 335 
dynamic storage areas, finding 498 

E 
ELSE modal command 48 
END modal command 54 
ERCNVT AB 337 
Error Conversion Table (ERCNVT AB) 337 
executable load modules 

IDCALOI 300 
IDCBIOI 300 
IDCDBOI 301 
IDCDB02 301 
IDCDEOI 302 
IDCDE02 302 
IDCDIOI 302 
IDCDI02 302 
IDCDI03 302 
IDCDI04 302 
IDCDI05 302 
IDCDI06 302 
IDCDI07 303 
IDCDI08 303 
IDCDI09 303 
IDCDIlO 303 
IDCDIll 303 
IDCDIl2 303 
IDCDIl3 303 
IDCDIl4 303 
IDCDIl5 303 
IECDI20 303 
IDCDLOI 303 
IDCEXOI 303 
IDCEX02 303 
IDCEX03 304 
IDCIOOI 304 
IDCI002 304 
IDCI003 305 
IDCLCOI 305 
IDCLC02 305 
IDCLROI 306 



IDCLR02 308 
IDCMPOI 308 
IDCPMOI 309 
IDCPROI 309 
IDCRCOI 309 
iDCRC02 311 
IDCRC03 311 
IDCRC04 311 
IDCRIOI 312 
IDCRI02 313 
IDCRI03 313 
IDCRIKT 313 
IDCRIRT 313 
IDCRMOI 313 
IDCRPOI 314 
IDCRSOI 315 
IDCRS02 316 
iDCRS03 316 
IDCRS04 317 
IDCRS05 317 
IDCRS06 317 
IDCRS07 317 
IDCSAOI 318 
IDCSA02 318 
IDCSA03 318 
IDCSA04 319 
IDCSA05 319 
IDCSA08 319 
IDCTPOI 319 
IDCTP04 320 
IDCTP05 320 
IDCTP06 320 
IDCVYOI 321 
IDCXPOI 321 

Executive 
introduction 19,20 
modules 

IDCEXOI 303 
IDCEX02 303 
IDCEX03 303 

EXPORT 
FDT 391 
IDCXPOI 321 
method of operation 98 

CLUSTER 100 
portable data sets 565 

EXPORTRA 
FDT 393 
method of operation 148 

export non VSAM data set 150 
export VSAM data set 148 
EXPORTRA driver 146 
field management 144 
overview 142 

modules 
IDCRCOI 309 
IDCRC02 311 
IDCRC03 311 
IDCRC04 311 

portable data sets 571 
external entry point 293 
external exit point 293 

F 
FDT 343 

finding the 495 
introduction 23 

Field Management Parameter List (FMPL) 338 
finding 

automatic storage areas 496 
catalog management argument lists 510 
dynamic storage areas 498 
FDT 343,495 
GDT 415,493 
I/O argument lists 527 
modules 487 
phases 487 
registers 487 
save areas 495 
trace tables 495 

flow of control 296 
FMTLIST 339 
format, debugging a problem 513 
Format List 339 
FSRs 

introduction 19 
method of operation 67 

Function Data Table 343 
Data Set Name or Data Area 344 
Number Data Area 343 
String Data Area 344 

Function Support Routines 
ALTER 

FDT 346 
FDT description 347 
IDCALOI 300 
method of operation 68 

BLDINDEX 
FDT 351 
FDT description 351 
IDCBIOI 300 
method of operation 126 

get information and verify 130 
obtain resources and sort initiaiization 132 
overview 126 
sort-merge and build alternate index 134 

DEFINE 
FDT 352 
FDT description 365 
IDCDEOI 302 
method of operation 72 

ALTERNATEINDEX 90,352 
CLUSTER 86,355 
MASTERCATALOG 74,359 
NONVSAM 82,360 
overview 72 
PATH 94,361 
SPACE 84,362 
USER CAT ALOG 78,332 

DELETE 
FDT 389 
FDT description 389 
IDCDLOI 303 

Index 581 



method of operation 96 
EXPORT 

FDT 391 
FDT description 391 
IDCXPOI 321 
method of operation 98 

CLUSTER 100 
EXPORTRA 

FDT 393 
FDT description 393 
method of operation 144 

export non VSAM data set 150 
export VSAM data set 148 
EXPORTRA driver 146 
field management 144 
overview 142 

modules 
IDCRCOI 309 
IDCRC02 310 
IDCRC03 311 
IDCRC04 311 

IMPORT 
FDT 395 
FDT description 395 
IDCMPOI 308 
method of operation 104 

CLUSTER 106 
IMPORTRA 

FDT 398 
FDT description 398 
IDCRM01 313 
method of operation 152 

cluster or alternate index 154 
GDG base 160 
nonVSAM 158 
overview 152 
user catalog 156 

introduction 15 
LISTCAT 

FDT 400 
FDT description 401 
IDCLCOI 305 
method of operation 110 

gets information 110 
LISTCRA 

FDT 402 
FDT description 402 
method of operation 138 

process CRA 140 
modules 

IDCLROI 306 
IDCLR02 307 

PARM 
FDT 403 
FDT description 403 
IDCPM01 309 
method of operation 116 

PRINT 
FDT 405 
FDT description 406 
IDCPROI 309 
method of operation 118 

582 DOS/VS Access Method Services Logic 

G 

REPRO 
FDT 408 
FDT description 408 
IDCRPOI 314 
method of operation 120 

RESETCAT 
FDT 412 
FDT description 412 
IDCRSOI 315 
IDCRS02 316 
IDCRS03 316 
IDCRS04 317 
IDCRS05 317 
IDCRS06 317 
IDCRS07 317 
method of operation 162 

Initialization 164 
Copy catalog to workfile 166 
Merge CRA to the workfile 168 
DADSM function 170 
Reassign CI numbers 172 
Check Associations 174 
Update the catalog 176 
Update the CRA 178 

VERIFY 
FDT 414 
FDT description 414 
IDCVYOI 321 
method of operation 124 

GDT 415 
finding the 493 
introduction 19,21 

Global Data Table 415 
finding the 493 
introduction 19,21 

H 
HDAREA 434 
hierarchy of modules 287 

I 
IDCALOI 300 
IDCAMS 285,300 
IDCBIOI 300 
IDCCDAL 301,324 
IDCCDBI 301,324 
IDCCDDE 301,324 
IDCCDDL 301,324 
IDCCDLC 301,324 
IDCCDLR 301,324 
IDCCDMP 301,324 
IDCCDPM 301,324 
IDCCDPR 301,324 
IDCCDRC 301,324 
IDCCDRM 301,324 
IDCCDRP 301,324 
IDCCDVY 301,324 
IDCCDXP 301,324 
IDCDBOI 301 
IDCDB02 301 
IDCDEOI 302 
IDCDE02 302 



IDCDIOI 302 
IDCDI02 302 
IDCDI03 302 
IDCDI04 302 
IDCDI05 302 
IDCDI06 302 
IDCDI07 303 
IDCDI08 303 
IDCDI09 303 
IDCDIlO 303 
IDCDIlI 303 
IDCDIl2 303 
IDCDI13 303 
IDCDI14 303 
IDCDI15 303 
IDCDI20 303 
IDCDLOI 303 
IDCEXOI 303 
IDCEX02 303 
IDCEX03 304 
IDCIOOI 304 
IDCI002 304 
IDCI003 304 
IDCLC02 304 
IDCLCOI 304 
IDCLROI 306 
IDCLR02 308 
IDCMPOI 308 
IDCPMOI 309 
IDCPROI 309 
IDCRCOI 309 
IDCRC02 311 
IDCRC03 311 
IDCRC04 311 
IDCRIOI 312 
IDCRI02 313 
IDCRI03 313 
IDCRIKT 313 
IDCRILT 313 
IDCRMOI 313 
IDCRPOI 314 
IDCRSOI 315 
IDCRS02 316 
IDCRS03 316 
IDCRS04 317 
IDCRS05 317 
IDCRS06 317 
IDCRS07 317 
IDCSAOI 33,34,318 
IDCSA02 318 
IDCSA03 318 
IDCSA04 319 
IDCSA05 319 
IDCSA08 319 
IDCTPOI 319 
IDCTP04 320 
IDCTP05 320 
IDCTSALO 320,404 
IDCTSBIO 320,438 
IDCTSDEO 320,438 
IDCTSDLO 320 
IDCTSEXO 320 
IDCTSIOO 320 
IDCTSLCO 320 
IDCTSLCI 320 
IDCTSLRO 320,438 

IDCTSLRI 320,438 
IDCTSMPO 320 
IDCTSPRO 320 
IDCTSRCO 320,438 
IDCTSRIO 320 
IDCTSTPO 320 
IDCTSTPI 320 
IDCTSUVO 320 
IDCTSXPO 320,438 
IDCVYOI 321 
IDCXPOI 321 
IF-THEN modal command 46 
IMPORT 

IDCMPOI 308 
method of operation 104 

CLUSTER 106 
IMPORTRA 

FDT 398 
IDCRMOI 313 
method of operation 152 

cluster or alternate index 154 
GDG base 160 
nonVSAM 158 
overview 152 
user catalog 156 

initialization 
I/O adapter 34 
overview 30 
system adapter 32 
visual table of contents 29 

Input Parameter Table OPT) 418 
Inter-Module Trace Table 424,445 
internal services 291 
Intra-Module Trace Table 424,446 
invoking user I/O routine 295 

arguments passed 296 
I/O Adapter 

debugging 526 
introduction 19 
method of operation 227 

overview 228 
UCLOSE 240 
UCOPY 250 
UGET 244 
UIOINFO 254 
UOPEN 230 

build 10CSTR 232 
build control blocks 236 
check open 238 

UPOSIT 242 
UPUT 246 
UVERIFY 252 
visual table of contents 233 

modules 
IDCIOOI 304 
IDCI002 304 
IDCI003 305 

I/O Adapter Historical Area 419 
I/O argument lists, finding 527 
I/O Communication Structure 420 
I/O macros 289 
IOCSEX 422 
10CSTR 420 
10CSTR Extension 422 
IODATA 419 

Page of SY33-8564-3 
Revised April 29, 1977 
By TNL SN24-5550 

Index 583 



J 
job control 293 

L 
LASTCC 293 
LISTCAT 

PDT 400 
FDT description 40 1 
IDCLCOI 305 
IDCLC02 305 
method of operation 110 

gets information 114 
LISTCRA 

FDT 402 
FDT description 402 
method of operation 138 

process CRA 140 
modules 

M 

IDCLROI 306 
IDCLR02 308 

MAXCC 293 
macros used, system and 1/0 265 

CANCEL 289 
CATLG 289 
CDLOAD 289 
CLOSE 289 
COMRG 289 
DIMOD 289 
DTFDI 289 
DTFIS 289 
DTFMT 289 
DTFSD 289 
ENDREQ 289 
EOJ 289 
ERASE 289 
EXCP 289 
FREEVIS 289 
GENCB 289 
GET 289 
GETIME 290 
GETVIS 290 
ISMOD 290 
LOAD 290 
MODCB 290 
MTMOD 290 
OPEN 290 
PDUMP 290 
POINT 290 
PUT 290 
SDMODFI 290 
SDMODFO 290 
SDMODUI 290 
SDMODUO 290 
SDMODVI 290 
SDMODVO 290 
SETL 290 
SHOWCB 290 
TESTCB 290 
TRUNC 290 
VERIFY 290 
WAIT 290 

584 DOS/VS Access Method Services Logic 

message to module cross-reference 532 
method of operation 27 

ALTER 68 
BLDINDEX 126 
debugging aids 277 
DEFINE 72 
DELETE 96 
EXPORT 98 
EXPORTRA 142 
general overview 30 
IMPORT 104 
IMPORTRA 152 
Initialization 32 
I/O Adapter 227 
legend 25 
LISTCAT 110 
LISTCRA 138 
PARM 116 
PRINT 118 
Reader Interpreter 39 
REPRO 120 
RESETCAT 162 
System Adapter 189 
Termination 181 
Text Processing 257 
VERIFY 124 

Microfiche Directory 299 
modal commands 

DO 52 
ELSE 48 
END 54 
IF-THEN 46 
SET 50 

Model Verb and Keyword Symbol Table (IDCRIKT) 425 
modules, finding 487 

message to module cross-reference 532 

N 
naming conventions 

example 25 
for Command Descriptors 25 
for data areas 25 
for executable load modules 25 
for multiple entry-point modules 25 
for single entry-point modules 25 
for Text Structures 25 
mnemonic identifiers 25 

nonexecutable load modules 
command descriptors 324 

IDCCDAL 301,324 
IDCCDDE 301,324 
IDCCDDL 301,324 
IDCCDLC 301,324 
IDCCDMP 301,324 
IDCCDPM 301,324 
IDCCDPR 301,324 
IDCCDRP 301,324 
IDCCDVY 301,324 
IDCCDXP 301,324 
IDCRIKT 313,425 
IDCRILT 313,331 



o 

text structures 438 
IDCTSALO 320,438 
IDCTSBIO 320,438 
IDCTSDEO 320,438 
IDCTSDLO 320,438 
IDCTSEXO 320,438 
IDCTSlOO 320,438 
IDCTSLCO 320,438 
IDCTSLCI 320,438 
IDCTSLRO 320,438 
IDCTSLR I 320,438 
IDCTSMPO 320,438 
IDCTSPRO 320,438 
IDCTSRCO 320,438 
IDCTSRIO 320,438 
IDCTSTPO 320 
IDCTSTPI 320 
iDCTS1TvO 320 
IDCTSXPO 320,438 

OCARRAY 428 
Open Argument List (OPNAGL) 426 
Open Close Address Array (OCARRA Y) 428 
OPNAGL 426 
OPNAGL 10CSTR/IOCSEX Cross Reference Table 235 
OPRARG 429 
Order of Associated Catalog Fields 5'8,574 

p 
PARM 

PDT 403 
PDT description 403 
IDCPMOI 309 
method of operation 116 
TEST option 447 

parsing the command 23 
PCARG 430 
PCT 431 
phase table 428 
phases, finding 487 
phase or CSECT to dump points cross-reference 473 
portable data set (see also EXPORT, EXPORTRA, 

IMPORT) 
attributes of 565,571 
major types of records 565,571 

control 566,572 
data 569,576 

special record 570,577 
types of control information 565,571 

dictionary 567,574 
time stamp 566,572 

types of data information 565,571 
catalog work area 569,576 
data record 569,576 

Positioning Argument List (OPRARG) 429 
PRINT 

PDT 405 
PDT description 406 
IDCPROI 309 
method of operation 118 

Print Control Argument List (PCARG) 430 
Print Control Table (PCT) 431 
processor condition codes 293 

LASTCC 293 

MAXCC 293 
processor invocation 293 

arguments passed 294 
program organization 

introduction 287 
overall organization 287 
root phase 287 

PROLOG 212,291 

R 
Reader/Interpreter 

character code dependencies 26 
introduction 19,22 
method of operation 39 

build PDT 62 
DO modal command 52 
ELSE modal command 48 
END modal command 54 
get next command 44 
IF-THEN modal command 46 
initialization 42 
overview 40 
prepare to scan command 56 
scan command 58 
SET modal command 50 
syntax check parameter 60 
termination 64 
visual table of contents 39 

modules 
IDCRlOt 312 
IDCRI02 313 
IDCRI03 313 

Reader/Interpreter Communication Area 
(COMMAREA) 433 

Reader/Interpreter Historical Area (HDAREA) 434 
reading a dump 487 
register, finding 487 
REPRO 

FDT 408 
IDCRPOI 315 
method of operation 120 

requirements 
storage 19 
system 19 

return codes 295 
root pllase 287 

s 
SAHIST 435 
save areas, finding 495 
SET modal command 50 
storage requirements t 9 
substructure 19,20 

Executive 20 
I/O Adapter 20 
Reader/Interpreter 20,23 
System Adapter 20,2 t 
Text Processor 20 

superstructure ~ 9,20 
FSRs 20 

Index 585 



System Adapter 
introduction 20,21 
method of operation 189 

overview 190 
PROLOG 212,291 
UABORT 194,291 
UCALL 198,291 
UCATLG 192,291 
UDELETE 202,291 
UDEQ 224,291 
UENQ 222,291 
UEPIL 214,291 
UFPOOL 210,292 
UFSPACE 206,292 
UGPOOL 208,292 
UGSPACE 204,292 
ULISTLN 218,292 
ULOAD 200,292 
USA VERC 220,293 
USNAP 196,293 
UTIME 216,293 
visual table of contents 189 

modules 
IDCSAOI 318 
IDCSA02 318 
IDCSA03 318 
IDCSA04 319 
IDCSA05 319 
IDCSA08 319 

System Adapter Historical Area (SAHIST) 435 
system macros 289 
system requirements 19 

T 
termination 181 

IDCEXOI 303 
method of operation 181 

executive-controlled 182 
1/ 0 adapter 186 
processor 184 
visual table of contents 181 

Test Option Data Area 436 
TEST option 447 

how to use 449 
phase or CSECT to dump points cross reference 450 
TEST keyword 447 

Text Processor 
character code dependencies 26 
debugging 524 
How to find Argument List 524 
introduction 20,23 
Obtaining a dump 524 
method of operation 257 

overview 258 
UESTA 262 
UESTS 1 260 
UPRINT 268 

convert 270 
print 272 

URESET 266 
UREST 264 
visual table of contents 257 

modules 
IDCTPOI 319 
IDCTP04 320 
IDCTP05 320 

586 DUS/VS Access "Metnod Sefvi~es i..ogi\,; 

Text Structures 438 
for ALTER messages (IDCTSALO» 320,438 
for BLDINDEX messages (IDCTSBIO) 320,438 
for DEFINE messages (IDCTSDEO) 320,438 
for DELETE messages (IDCTSDLO) 320,438 
for Executive messages (IDCTSEXO) 320,438 
for EXPORT messages (IDCTSXPO) 320,438 
for EXPORTRA messages (IDCTSRCO) 320,438 
for I/O Adapter messages (IDCTSIOO) 320,438 
for LISTCAT listing (IDCTSLCO) 320,438 
for LISTCAT messages (IDCTSLCl) 320,438 
for LISTCRA listing (IDCTSLRO) 320,438 
for LISTCRA messages (IDCTSLRl) 320,438 
for IMPORT /IMPORTRA messages 

(IDCTSMPO) 320,438 
for PRINT listings (IDCTSPRO) 320,438 
for Reader/Interpreter messages (IDCTSRIO) 294,404 
for Text Processor (IDCTSTPO) 320,438 
for Text Processor messages 

(TDCTSTPt) 320,438 
for universal messages (IDCTSUYO) 320,438 
format 438 

time stamp information 567,573 
trace and dump points to phase or CSECT 

cross-reference 450 
trace tables 

u 

finding the 495 
Inter-Module 423,445 
Intra-Module 424,446 

UABORT 194,291 
UCALL 198,291 
UCATLG 192,291 
UCLOSE 240,291 
UCOpy 250,291 
UDELETE 202,291 
UDEQ 224,291 
UDUMP 282,291 
UENQ 222,291 
UEPIL 214,291 
UESTA 262,291 
UESTS 260,291 
UFPOOL 210,292 
UFSPACE 206,292 
UGET 244,292 
UGPOOL 208,292 
UGPOOL Area 440 

contents 499 
UGPOOL ID List 499 
UGSPACE 204,292 
UGSPACE area 440 
UIOINFO 254,292 
UIOINFO area 441 
UIOINIT 36,292 
UIOTERM 186,292 
ULISTLN 218,292 
ULOAD 200,292 
Umacros 

PROLOG 212,291 
UABORT 194,291 
UCALL 198,291 
UCATLG 192,291 
UCLOSE 240,291 
UCOpy 250,291 
UDELETE 202,291 



UDEQ 224,291 
UDUMP 282,291 
UENQ 222,291 
UEPIL 214,291 
UEST A 262,291 
UESTS 260,291 
UFPOOL 210,292 
UFSPACE 206,292 
UGET 244,292 
UGPOOL 208,292 
UGSPACE 204,292 
UIOINFO 254,292 
UIOINIT 36,292 
UIOTERM 186,292 
ULISTLN 218,292 
ULOAD 200,292 
UOPEN 230,292 
UPOSIT 242,292 
UPRINT 268,292 
UPUT 246,292 
URESET 266,292 
UREST 264,293 
USA VERC 220,293 
USNAP 196,293 
UTIME 216,293 
UTRACE 280,293 
UVERIFY 252,293 

UOPEN 230,292 
UPOSIT 242,292 
UPRINT 268,292 
UPUT 246,292 
URESET 266,292 
UREST 264,292 
UREST arguments 443 
USA VERC 220,293 
User I/O Routines 295 
USNAP 196,293 
UTIME 216,293 
UTRACE 280,293 
UVERIFY 252,293 

v 
VERIFY 

FDT 414 
FDT description 414 
IDCVYOI 321 
method of operation 124 

visual table of contents 
Access Method Services 29 
debugging aids 277 
Function Support Routines (FSRs) 67 
initialization 29 
1/ 0 adapter 227 
reader/interpreter 39 
system adapter 189 
termination 181 
text processor 277 

Index 587 



DOS/VS 
Access Method Services 
Logic 
SY33-8S64-3 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. This form may be used to communicate 
your views about this publication. They will be sent to the author's department for 
whatever review and action, if any, is deemed appropriate. Comments may be written 
in your own language; use of English is not required. 

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted 
information, in any form, for any and all purposes, without obligation of any kind to the 
submitter. Your interest is appreciated. 

Note: Copies of IBM publications are not stocked at the location to which this 
form is addressed. Please direct any requests for copies of publications, or for assistance 
in using your IBM system, to your IBM representative or to the IBM branch office 
serving your locality. 

• Does the publication meet your needs? 

Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is yout occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

0 

0 
0 
0 
0 
0 

o 
o 
o 

No 

0 

0 
0 
0 
0 
0 

As an instructor in class? 

As a student in ciass? 

As a reference manual? 

If you would like a reply, please supply your name and address on the reverse side of 
this form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments.) 

o 
o 
o 

READER'S 
COMMENT 
FORM 



SY33-8564-3 

Reader's Comment Form 

Fold and Tape Please Do Not Staple Fold and Tape I 
.................................................................................................................................................................. ·································1 

Fold 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

I nternational Business Machines Corporation 
Department G60 
P. O. Box 6 
Endicott, New York 13760 

Fold 

If you would like a reply, please print: 

First Class 
Permit 10 
Endicott 
New York 

Your Name ______________________________ _ 

Company Name _______________ _ Department _____ _ 
Street Address ____________________ _ 
City _____________________________ _ 

State ______________ Zip Code __________ _ 

IBM Branch Office serving you ______________________________________ _ -------- -- --------. _ ..... -- - ----
-~--------_.-

® 
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N. V. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N. V., U. S. A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 

o 
o 
CJ) -< 
CJ) 

» 
(') 
(') 
CD 
(I) 
(I) 

s: 
CD 
.-+ 
=r 
o 
a. 
CJ) 
CD ..., 
< 
~', .... 
CD 
(I) 

r 
o 
to 
0' 

:.n 
co 
z 
o 
CJ) 
W 
'-J 
o 

I 

W 
.9 

CJ) 

-< 
W 
W 

I 

00 
0'1 
0) 
~ 
I 

W 



DOS/VS Access Method Services Logic 

© IBM Corp. 1973, 1975, 1976 

This Newsletter No. SN24-5550 

Date April 29, 1977 

Base Publication No. 

File No. 

SY33-8564-3 

S/370-30 
(DOS/VS Release 33) 

Previous Newsletters None 

This Technical Newsletter, a part of Release 34 of DOS/VS, provides replacement 
pages for your publication. These pages remain in effect for subsequent DOS/VS releases 
unless specifically altered. Pages to be replaced are: 

Cover, 2 
15 - 18 
31 - 34 
37,38 
73 - 76 
79, 80 
87,88 
91 - 94 
101, 102 
105 - 108 
111,112 
117, 118 

143, 144 
147, 148 
153, 154 
217,218 
239 - 242 
259, 260 
273, 274 
289 - 294 
297,298 
319,320 
345, 346 
391 - 400 

403 - 412 
417 - 424 
427 - 428 
437,438 
455, 456 
475, 476 
485,486 
501, 502 
545, 546 
549, 550 
555 - 558 
583, 584 

A technical change to the text or to an illustration is indicated by a vertical line to the left of 
the change. 

Summary of Amendments 

This revision reflects the availability of DOS/VS Release 34 and includes: 

• Tape Processing Improvements 

• Page Length Improvements 

• User-Supplied Print Chain/Train Support 

In addition, the manual has been updated to reflect maintenance-type corrections and clarifica
tions. (See page 15 for additional detail of changes.) 

Note: Please insert this page in your publication to provide a record of changes. 

IBM Corporation, Programming Publications, Department G60, P.O. Box 6, Endicott, N.Y. 13760 

© IBM Corp. 1977 Printed in U.S.A. 



SY33-8564-3 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(I nternational) 

o o 
CJ) 

"< 
CJ) 

I 
s::: 
~ 
8. 
~ 
< 
~. 

r o 
CQ 

c;' 

!! 
CD 
Z 
o 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	573
	574
	575
	576
	577
	578
	579
	580
	581
	582
	583
	584
	585
	586
	587
	replyA
	replyB
	upd
	xBack

