


VSEI Advanced Functions 

Application Programming 
Macro User's Guide 

Program Number 5666-301 

Order Number SC33-6196-1 
File No. 5370/4300-30 



PREFACE 

This book is a guide for programmers using the VSE/Advanced 
Functions macro instructions (macros). Use of both input/output 
control system (IOCS) macros and the system control macros is 
described. 

After an introductory chapter on the types and use of macros, 
Chapter 2 gives a general description of how to define and process 
files with the Sequential Access Method (SAM). The subsequent 
chapters on file processing with SAM describe how to open, process, 
and close files on the different types of I/O devices, and also how 
to process device-independent system files. A chapter on system 
services includes discussions of such topics as virtual storage 
control, program linkage, and multitasking. 

The use of the Direct Access Method (DAM) and Physical laCS (PIOCS) 
is described in appendixes. (The Indexed Sequential Access Method, 
ISAt-l-, is no longer described in this manual.) Several other 
appendixes on a variety of topics, and an index complete the book. 

As this book is intended as a guide to macro usage, you should be 
familiar with others that introduce important prerequisite 
information on the nature and use of laCS and system control 
programs: 

• IBH System/370 Principles of Operation, GA22-7000, or 

• IBM 4300 Processors Principles of Operation, GA22-7070 

• VSE/Advanced Functions, System Management Guide, SC33-6191 

• VSE/Advanced Functions, Data Management Concepts, GC33-6192 

All the macros mentioned in this manual are described in detail in: 

• VSE/Advanced Functions Application Programming: Hacro Reference, 
SC33-6197, referred to as Macro Reference manual in this 
publication. 

You must be familiar with the assembler language as described in: 

• OS/VS-DOS/VSE-V~I/370 Assembler Language, GC33-4010. 

In addition, you should be familiar with the device manuals for 
those devices that you plan to use, such as: 

• Introduction to IBH 3375 Direct Access Storage, GC26-1666. 

Preface iii 



CONTENTS 

Chapter 1. Macro Types and Their Use 
IOCS Macros ..... ..... 
Control Program Macros 

DTF Macros ...... . 
Logical IOCS (LIOCS) 
Physical IOCS (PIOCS) 
DTF Table ..... 
Logical Units .... 

Logic Module Generation Macros 
Providing Logic Modules 
Subsetting/Supersetting of Logic Modules 
Logic Module Names . . . . 

IOCS Supplies the Name 
You Supply the Name 

Register Usage 
Macro Format 

Chapter 2. Defining Files and Processing with SAM 
Control Interval Format ...... . 

Defining the Characteristics of a File 
Name Specification 
File Type (TYPEFLE) 
Record Format (RECFORM) 
Record Size (RECSIZE) 
I/O Area Definition (IOAREA) 
Block Size (BLKSIZE) ....... . 
I/O Register Specification (IOREG) .... . 
Work Area Specification (WORKA) . . . . 
Error Handling (ERROPT, WLRERR, and ERREXT) 
End-of-File Exit Specification (EOFADDR) 
End-of-Extent Exit Specification (EOXPTR) 

Activating a File For Processing ... . 
Processing Data Files with SAM ........ . 

Obtaining a Record for Processing (GET) 
Filing a Record After Processing (PUT) 
Use of I/O Areas and Work Areas 
Selective Processing of Blocked Records 
Multivolume File Processing - Forcing End of Volume 
Processing Update Files ..... .... 

Processing Work Files with SAM . . . . 
Retaining and Deleting a Work File 
Opening a Work File ...... . 
Sequential Processing of Work Files 
Selective Processing of Work Files 

Deactivating a File After Processing 
Forcing End-Of-Volume . . . . . . . . . 
Closing a File ......... . 

1-1 
1-1 
1-3 
1-3 
1-3 
1-5 
1-7 
1-7 
1-8 
1-9 
1-9 

1-11 
1-11 
1-12 
1-12 
1-13 

2-1 
2-1 
2-2 
2-2 
2-3 
2-3 
2-4 
2-4 
2-5 
2-5 
2-6 
2-7 
2-8 
2-9 
2-9 

2-10 
2-10 
2-12 
2-14 
2-17 
2-18 
2-19 
2-20 
2-21 
2-21 
2-22 
2-23 
2-26 
2-26 
2-27 

Contents v 



2560 and 5424/5425 Card Device Codes 
2596 Card Read Punch Codes .... 
3504 and 3505 Card Readers and 3525 Card Punch Codes 
3525 Card Printing Codes . . . . . . 

GET/CNTRL/PUT Sequence for Associated Files 
Processing Printer Files 

Associated Files 
Printer Overflow 
Printer Control 

Printer Codes . . . . 
Error Handling . . . . 

Processing Console Files . . . . 
Programming Considerations .... 

Processing Magnetic Reader Files 
Characteristics of ~lagnetic Ink Character Reader 

MICR Document Buffer .... 
Stacker Selection Routine 

(MICR) 

Timings for Stacker Selection ........... . 
Programming Considerations for 1419 Stacker Selection 

Programming Considerations .... 
Processing Optical Reader Files 

Non-Data Device Operations 
1287 and 1288 Optical Reader Codes 
3886 Optical Character Reader Codes 
3881 Optical Mark Reader Codes 

Programming Considerations ..... 
Optical Readers/Sorters (IBM 1270, IBM 1275) 
Optical Reader (IBM 1287) and Optical Page Reader (IBM 

1288) ............. . 
Optical Character Reader (IBM 3886) 
Optical Mark Reader (IBM 3881) 

Chapter 7. Processing Device-I ndependent System Files with 
SAM ......... . . . . 

Record Size 
Error Handling 
End-Of-File Handling 

Chapter 8. Requesting Control Functions 
Program Loading 

FETCH Macro 
LOAD ~lacro 

CDLOAD Macro 
Shared Virtual Area Considerations for Program Load Macros 
Fast Loading of Frequently Used Phases 

Virtual Storage Control ...... . 
Fixing and Freeing Pages in Real Storage 
Determining the Execution Mode of a Program 
Extracting Partition-Related Information 
Influencing the Paging Mechanism 

Releasing Pages 
Forcing Page-Out ...... . 
Page-In in Advance ..... . 

Dynamic Allocation of Virtual Storage 

Contents 

6-14 
6-15 
6-15 
6-15 
6-16 
6-18 
6-18 
6-18 
6-19 
6-20 
6-22 
6-23 
6-23 
6-24 
6-24 
6-24 
6-25 
6-27 
6-27 
6-28 
6-32 
6-33 
6-33 
6-35 
6-37 
6-37 
6-37 

6-39 
6-45 
6-52 

7-1 
7-2 
7-3 
7-4 

8-1 
8-1 
8-1 
8-1 
8-1 
8-2 
8-2 
8-3 
8-4 
8-5 
8-6 
8-6 
8-6 
8-6 
8-6 
8-7 

vii 



Example 5: Assembling the DTFs and Logic Modules Separately 
Comparison of the Five Methods ............ . 
FBA DASD Example ................ . 

Appendix B. Direct Access Method (DAM) 
Defining Files with DAM .... . 

Record Types ......... . 
I/O Area Specification 

Format .... 
Contents 

Creating a File or Adding Records 
Locating Data: Reference Methods 

Track Reference . . . . 
Record Reference 

Locating Free Space 
Logic Modules for DAM 

Processing Files with DAM 
Initialization ..... 
Processing ..... . 

Loading and Processing a Direct Access File 
Reading Records . . . . . . . . 
Writing Records . . . . . . . . 
Completion of Read or Write Operations 
Non-Data Device Command 
Error Handling 

Termination .... 

Appendix C. Processing Files with PIOCS (Physical IOCS) 
Initialization .......... . . . . . 

Single Volume Mounted - Output . . . . . . . . . . 
Single Volume Mounted - Input 
All Volumes Mounted - Output 
All Volumes Mounted - Input 
Diskette Volumes - Output 
Diskette Volumes - Input 

Processing ........ . 
Processing Labels and Extents 
Forcing End-of-Volume .... . 

Termination ....... . . . . 
Programming Considerations . . . . . . . . . 

Situations Requiring LIOCS Functions in PIOCS Processing 
Command Chaining Retry ................ . 

Restrictions for the 3800 Printing Subsystem 
Channel Indirect Data Addressing . . . . . . 
Data Chaining .......... ... . 
CKD DASD Channel Programs .... ... . 
RPS (Rotational Position Sensing) 
Channel Programs for FBA Devices 
Diskette Channel Programs 
Console (Printer-Keyboard) Buffering 
Alternate Tape Switching ..... 
Bypassing Embedded Checkpoint Records on Magnetic Tape 

A-18 
A-21 
A-22 

B-1 
B-2 
B-2 
B-3 
B-3 
B-3 
B-5 
B-6 
B-7 

B-ll 
B-12 
B-13 
B-13 
B-13 
B-15 
B-15 
B-21 
B-24 
B-29 
B-29 
B-29 
B-38 

C-1 
C-l 
C-2 
C-3 
C-3 
C-4 
C-4 
C-5 
C-5 
C-7 
C-9 
C-9 

C-IO 
C-I0 
C-ll 
C-12 
C-12 
C-12 
C-13 
C-14 
C-14 
C-14 
C-15 
C-15 
C-16 

Contents ix 



FIGURES 

1-1. 
1-2. 
1-3. 
1-4. 
1-5. 
1-6. 

1-7. 
1-8. 
2-1. 
2-2. 
2-3. 
2-4. 
2-5. 
2-6. 
3-1. 
4-1. 
4-2. 
4-3. 
5-1. 
6-1. 
6-2. 
6-3. 
6-4. 
6-5. 
6-6. 
6-7. 
6-8. 
8-1. 
8-2. 
8-3. 
8-4. 
8-5. 
8-6. 
8-7. 
8-8. 
8-9. 

8-10. 
8-11. 
8-12. 
8-13. 
8-14. 
8-15. 
8-16. 
8-17. 
8-18. 
8-19. 
8-20. 

Schematic Example of Macro Processing 
Relationship Between Program, DTF, and 
IOCS Imperative Macros and DTFs 
Sample DTFMT Macro ...... . 
SAM DTF Macros ........ . 

Logic Module 

Relationship Between Source Program, DTF Table, and 
Job Control I/O Assignment . . . . . . . . 
Subset and Superset Module Example 
Model for a Subset/Superset Naming Chart 
GET Macro Processing Example 
Overlap of Processing and I/O ..... 
GET/PUT Sequence with and without a Work Area 
Combined Card File Example ......... . 
Example of POINTS Macro with Work File Processing 
Logic Modules for SAM ............. . 
DTFSD Error Options .... . 
Diskette Data Transfer on Input ... . 
Diskette Data Transfer on Output ... . 
Diskette Layout and Storage Capacity 
DTFHT Error Options ..... . 
OMR Coding Example ..... . 
CLOSE Card Movement for the 3525 
GET/CNTRL/PUT ~1acro Usage 
MICR Document Buffer 
MICR/OCR Document Processing 
Premium Notice Example 
Format Record Assembly Example 
Sample Data ... . 
LOAD Macro Example ..... . 
PFIX and PFREE Example ... . 
Partition Communication Region 
ASPL Coding Example ..... 
Example of Waiting for a Time Interval to Elapse 
Summary of Program Exit Conditions 
Example of Using the Interval Timer Exit 
Example of Multitask Linkage to a Common Exit Routine 
Example of an Exit Routine Processing a Program Check 
Linkage Registers ............. . 
Save Area Words and Contents in Calling Programs 
Use of CALL, SAVE, and RETURN Macros . . . . . 
Multitasking Sample Program .......... . 
Event Control Block (ECB) ...... . 
Waiting for Preferred and Secondary Events 
Use of the POST Macro . . . . . . . . . . . 
Resource Control Block (RCB) ...... . 
Sharing a Resource in a Common Subroutine 
Sharing a Resource Defined in One Task 
Sharing a Resource in Different Subroutines 

1-2 
1-2 
1-4 
1-6 
1-6 

1-7 
1-10 
1-11 

2-7 
2-15 
2-16 
2-20 
2-25 
2-29 

3-8 
4-3 
4-4 
4-4 

5-10 
6-6 

6-11 
6-17 
6-25 
6-30 
6-49 
6-50 
6-51 

8-3 
8-5 
8-8 

8-12 
8-14 
8-16 
8-17 
8-18 
8-20 
8-24 
8-26 
8-29 
8-32 
8-40 
8-42 
8-44 
8-46 
8-49 
8-50 
8-51 

Figures xi 



SUMMARY OF AMENDMENTS 

Version 2, Release 1 

This edition documents changes and additions resulting from the 
following new or changed functions: 

• Virtual addressability extension 

• New hardware support (IBM 3380) 

• GETVIS area subpooling 

• Device-independent full-track support 

• Larger block size for DTFCD 

• End-of-extent exit 

• Adaptation to new librarian 

• SAM tape file extension 

• User interface for tape OPEN, CLOSE, and EOV 

• Tape I/O module in the SVA 

• Dropped paper tape support 

• Performance improvement for PRT1/3800 printers 

• ANSI security checking 

APAR corrections and various editorial changes have also been 
included. 

Summary of Amendments xiii 



CHAPTER 1. MACRO TYPES AND THEIR USE 

The use of macros simplifies the coding of programs and reduces the 
possibility of programming errors. A macro is a single assembler 
language instruction that generates a sequence of machine or 
assembler language instructions. The assembler uses what is called 
the macro definition to generate the sequence of instructions 
requested. by the macro. 

A macro definition is a set of statements that defines the name and 
format of, and the conditions for, generating a sequence of 
assembler language instructions from a single macro instruction. 
Macro definitions are stored in a sublibrary. 

By its name, the source program macro indicates to the assembler 
which macro definition is to be called from the library. In the 
macro that you code in your program, you specify operands which the 
assembler uses, together with the called macro definition, to 
determine what instructions to generate. Figure I-Ion page 1-2 
shows a schematic example of a source program before and after a 
macro call. 

There are two different types of macros: Data management or IOCS 
(Input/Output Control System) macros and control program macros. 

IOCS Macros 

IOCS macros are divided into declarative and imperative macros. 

Declarative macros are of two related types - DTFxx macros and logic 
module generation (xxHOD) macros. The DTF macros define the files 
for the various access methods and I/O devices. The logic module 
generation macros define the logic modules that process the files. 
The purpose of the declarative macros is further discussed below. 

Imperative macros identify what I/O operation you want to perform. 
The GET macro, for example, indicates that you want to obtain a 
record. These macros are discussed throughout the manual. 

Figure 1-2 on page 1-2 shows the relationship between the program, 
the DTF, and the logic module. Imperative macros initiate the action 
to be performed by branching to the logic module entry point 
generated in the DTF table. CRD is the name of the file. IJCFAOZO is 
the name of the logic module. 

Linkage between the program, DTF, and logic module is accomplished 
by the assembler and the linkage editor. 

Chapter 1. Macro Types and Their Use 1-1 



Control Program Macros 

These macros, which are frequently called supervisor macros, enable 
you to make use of the system services provided by VSE/Advanced 
Functions, for example, the timer services or the multitasking 
functions. These macros are discussed in Chapter 8. 

DTF MACROS 

A DTF declarative macro must be coded for each logical file that 
your program wants to access by means of an imperative macro such as 
GET, PUT, READ, WRITE, CNTRL. The DTF macro describes the 
characteristics of the file, indicates the type of processing for 
the file, and specifies the virtual storage areas and routines to be 
used in processing the file. For example, if a GET macro is issued, 
the DTF macro supplies such information as: 

• Record type and length. 

• Logical unit name of the device from which the record is to be 
retrieved. 

• Address of the area in storage where the record is to be made 
available for processing by your program. 

Figure 1-3 on page 1-4 lists the imperative macros allowed for each 
DTF. 

Figure 1-4 on page 1-6 shows an example of a DTF macro. 

logical IOCS (lIOeS) 

The access methods SAM, DAM, and ISAM are collectively named LIOCS 
(Logical Input/Output Control System). LIOCS routines provide, on a 
logical level, all the functions needed to create, retrieve, and 
modify a data file. 

For LIOCS operations, the DTF macro used depends upon the type of 
device used and on the type of processing that is to be performed: 

• Processing with SAM: Applies to input/output with serial or 
diskette devices, or with direct access devices when records are 
to be processed sequentially. The DTF macros used for SAM 
processing are listed by device name in alphabetical order in 
Figure 1-5 on page 1-6. Processing files on the various types 
of devices by using SAM is described in Chapters 3 through 7. 

• Processing with DAM: Whenever a file on a direct access device 
is to be processed by DAM, the DTFDA macro must be used. 
Processing with DAM is described in Appendix B. 

Chapter 1. Macro Types and Their Use 1-3 



I I I I I 
DTF.. ICD ICN DA IDI IDR IDU 

I I I I I 
READ I I x I I x I 

I I I I I 
RELSE I I I I I 

I I I I I 
RESCN I I I I 

I I I I 
SEOV I I I I 

I I I I 
SETDEV I I I x I 

I I I I 
SETFL I I I I 

I I I I 
SETL I I I I 

I I I I 
TRUNC I I I I 

I I I I 
WAITF I x I I x I 

I I I I 
WRITE I X I I I 

I I I I 

1 Work files only 
2 Not for 2560 work files 
3 Data files only 

I 
lIS 
I 
I X 
I 

I X 
I 
I X 
I 

I X 
I 
I X 
I 

I 
IMR 
I 
I X 
I 

I X 
I 

I I I I 
I MT I OR I PH I PR 
I I I I 

I X I I I 
I I I I 
I I X I I 
I I I I 
I X I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I I I I 
I X I I I 
I I I I 
I I X I I 
I I I I 

I 
ISD 
I 

I X 
I 
I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I X I 
I I 
I I 
I I 

Figure 1-3 (Part 2 of 2). IOCS Imperative Macros and DTFs 

• Processing with ISAM: Whenever a file on a direct access device 
is to be organized or processed by ISAM, the DTFIS macro must be 
used. 

Since ISAM does not support such devices as the 3375 or 3380, it 
should not be used for new programs; instead, VSAM should be 
used. Programs written for processing ISAM files can be used in . 
a VSA~l environment through the ISAM Interface Program. For 
reference purposes, the DTFIS macro is still described in the 
Macro Reference manual. 

Physical IOCS (PIOCS) 

As opposed to LIOCS, PIOCS (Physical Input/Output Control System) 
handles I/O operations on a more physical level by allowing direct 
control of the actual transfer of records through channel programs. 

For PIOCS operations (EXCP, WAIT, etc.), the DTFPH macro is required 
if standard labels are to be checked or written on a file on a 
direct access device, magnetic tape or diskette, or if the file on a 
direct access device is file-protected. Processing with PIOCS is 
described in Appendix C. 

Chapter 1. ~lacro Types and Their Use 1-5 



DTF Table 

A DTFxx macro generates a DTF table that contains indicators and 
constants describing the file. Generally, there is no need for an 
application program to access a DTF table. Should.you need to 
reference a DTF table in your program (but only to test error 
information in the CCB or the labeled fields of the DTF expansion), 
you can reference this table by using the symbol filenamex, where x 
is a letter. When referencing the DTF table, you must ensure 
addressability through the use of an A-type constant, or through 
reference to a base register. 

Logical Units 

In most of the DTF macros you can specify· a logical unit name in the 
DEVADDR operand. This name is also used in the ASSGN job control 
statement to assign an actual I/O device address to the file. For 
files on diskettes or direct access devices, the logical unit name 
is supplied in the DEVADDR operand and/or with the EXTENT job 
control statement (if both are provided, the EXTENT specification 
overrides the DEVADDR specification). 

The logical unit name of a device is chosen from a fixed set of 
symbolic names. Programs are written considering only the device 
type (tape, card, etc.). At execution time, the actual physical 
device is determined and assigned to a given logical unit. For 
instance, a program that processes tape records can call the tape 
device SYSOoo. At execution time the operator (using ASSGN) assigns 
any available tape drive to SYSOOO. 

Figure 1-6 shows the relationship between the source program, the 
DTF table, and the job control I/O assignment. 

Source Program 

GET FILE1 
I 
I 

DTF Table 

FILE1 
I 
f 

DTFCD 

I Job Control 
I 
I ASSGN SYSOOO,OOC 
I I 
I I 
I I 

DEVADDR=SYSOOO~ 

Figure 1-6. Relationship Between Source Program, DTF Table, and 
Job Control I/O Assignment 

The fixed set of logical unit names that can be used with a DTF 
macro for a program in any partition is represented by SYSxxx. 
Logical units are divided into system logical units and programmer 
logical units. 

Chapter 1. Macro Types and Their Use 1-7 



Providing Logic Modules 

To process a file for which you need a logic module, you must code a 
logic module generation macro (determined by your DTF) and assemble 
it either in-line with your program or supply it at link-edit time 
(see also Appendix A). 

If the standard logic modules needed for your installation were 
assembled and cataloged at system generation time, you need not code 
them in your program. Instead, you can autolink the necessary 
modules from the library at link-edit time. 

You need not code logic modules for: 

• DTFSD, DTFDA, and DTFDI DASD files (except for ISAM files on 
DASDs without RPS) 

• DTFMT magnetic tape files 

• DTFPR, DTFDI when the actual device is a PRT1 or 3800 printer. 

The support for these devices includes preassembled logic modules 
which are automatically loaded into the SVA (system virtual area) at 
IPL time and linked to the problem program during OPEN processing 
for the DTF. 

Some of the module functions are provided on a selective basis, 
according to the operands specified in the xxMOD macro. If you code 
the xxMOD macro yourself, you have the option of selecting or 
omitting some of these functions according to the requirements of 
your program. If, as described above, you do not code the xxMOD 
macro yourself, IOCS automatically selects or omits the appropriate 
functions. In either case, the omission of unneeded functions saves 
storage space for a particular module. 

Note: If you issue an imperative macro, such as WRITE or 
PUT, to a DTF indicating a module that does not contain a 
desired function, then an invalid supervisor call is 
generated, the job is terminated, and a message is displayed. 

Subsetting/Supersetting of Logic Modules 

Some modules may be subset modules to a superset module. A superset 
module is one that performs all the functions of its subset or 
component modules, avoiding duplication and thereby saving storage 
space. The functions required by several similar DTFs (that is, 
several DTFCDs, or several DTFPRs, etc.) are thus available via a 
single xxMOD macro, even if the DTFs have different operands. An 
example is shown in Figure 1-7 on page 1-10. 

The supersetting/subsetting described below does not apply to DTFSD, 
DTFDA, or DTFDI DASD files or to DTFMT magnetic tape files. Any 

Chapter 1. Macro Types and Their Use 1-9 



Logic Module Names 

As mentioned above, you can have IOCS provide a name for the 
required logic module, or you can specify that name. Both methods 
are discussed below. 

IOCS Supplies the Name 

If you omit the MODNAME operand from the DTF macro, IOCS generates a 
standard module name as determined by the functions required by the 
DTF. 

Likewise, if you code your own logic module and omit the name from 
the name field, IOCS generates a standard module name matching that 
referenced in the DTF. 

Standard module names used by IOCS are given under "Standard xxMOD 
Names," following the discussion of the appropriate xxMOD macro in 
the Macro Reference manual. 

IDes performs subsetting/supersetting of modules with standard 
module names by including, in a single module, the services required 
by a program's DTFxx macros for the same type of file. 

If you are interested in seeing how IDes forms subset/superset 
names, charts showing the name-building conventions are given for 
the various logic modules under "Subset/Superset xxMOD Names," 
following the discussion of the appropriate module in the Macro 
Reference manual. Figure 1-8 shows a model for these charts. 

I J x 
.'~+++.'~ 

F B C W y 
U Z Y Z Z 
V + + 
WEN 

Z S 
Z 

I 

1 

1 

1 

1 

1 

1 

1 

1 

1 

------------------------------1 
+ Subsetting/supersetting permitted. 1 

* No subsetting/supersetting 1 

permitted. 1 
I 

Figure 1-8. Hodel for a Subset/Superset Naming Chart 

The letters indicate functions which can be performed by the logic 
module (these are fixed for a given module and are explained in the 
sections "Standard xxMOD Names" in the Macro Reference manual). If 
a module name were composed of letters from the top row exclusively, 

Chapter 1. Macro Types and Their Use 1-11 



registers may be used without restriction only for immediate 
computations. 

REGISTER 13: Control program subroutines, including logical IOCS, 
use this register as a pointer to a 72-byte, doubleword aligned save 
area. When using the CALL, SAVE, or RETURN macros, you can set the 
address of the save area at the beginning of each program phase, and 
leave it unchanged thereafter. However, when a reentrant (read-only) 
logic module is shared among tasks, each time that module is entered 
by another task, register 13 must contain the address of another 
72-byte save area to be used by that logic module. 

REGISTERS 14 AND 15: Logical IOCS uses these two registers for 
linkage. IOCS does not save the contents of these registers before 
using them. If you use these registers, either save their contents 
(and reload them later) or finish with them before IOCS uses them. 
Note also that not all logic modules use standard save area 
conventions. As a result, if you use a read-only logic module 
(supplying a module save area) in a subroutine, the save area 
back-chain pointer can be lost. 

MACRO FORMAT 

Macros, like assembler statements, have a name field, operation 
field, and operand field. Comments can also be included as in 
assembler statements. Macros require a comment to be preceded by a 
comma if they have no operand. Examples of these macros are CANCEL, 
DETACH, and GETIME. 

The name field in a macro may contain a symbolic name. Some macros 
require a name, for example, CCB, TECB, DTFxx. 

The operation field must contain the mnemonic operation code of the 
macro. 

The operands in the operand field are either of positional format, 
keyword format, or they are mixed. 

POSITIONAL OPERANDS: In this format, the operand values must be in 
the exact order shown in the individual macro discussion. Each 
operand, except the last, must be followed by a comma, and no 
embedded blanks are allowed. If an operand is to be omitted in the 
macro, and following operands are included, a comma must be inserted 
to indicate the omission. No commas need to be included after the 
last operand. Column 72 must contain a continuation character (any 
non-blank character) if the operands fill the operand field and 
overflow onto anott r line. 

For example, GET uses the positional format. A GET for a file named 
CDFILE using a work area named WORK is written: 

GET CDFILE,WORK 

Chapter 1. Macro Types and Their Use 1-13 



CHAPTER 2. DEFINING FILES AND PROCESSING WITH SAM 

You use the sequential access method (SAM) when your program 
requires that the records of a file are to be read as they are 
stored, one after the other, or that they are written to a file in 
the order in which they are built by that program. To process a 
file, SAM requires that you 

• Define the file's characteristics using the appropriate DTFxx 
macro. 

• Activate (open) the file. 

• Issue the appropriate I/O request macros at those points in your 
program where the requested function is to be executed. 

• Deactivate (close) the file after all of the file's records have 
been processed. 

In the discussion of SAM, however, the use of FBA devices requires 
some special considerations, which are discussed below. 

Control I nterval Format 

Control interval format is required by VSE/VSAM (Virtual Storage 
Access Method) and by FBA (Fixed Block Architecture) storage devices 
such as the IBM 3310. Since VSE/VSAM is not discussed in this 
manual, control interval format in this context refers to 
sequentially organized files that are stored on FBA devices. 

Data is stored on FBA devices in fixed-length data blocks called FBA 
blocks, whose length is device-dependent. A control interval is the 
unit of data transfer between an area in virtual storage called the 
CI buffer and an FBA device. The length of a CI is an integral 
multiple of the FBA block length and may be specified in the DTF 
macro when a file is defined. The CI size can also be redefined 
later at execution time by means of the DLBL job control statement. 

When CI format is not used, the unit of storage and of data transfer 
between virtual storage and an external storage device is the 
physical block, which is usually composed of several logical 
records. In its simplest form, with unblocked records such as for a 
work file, there is only one logical record in each physical block. 
When the CI format is used, the physical block is referred to as a 
logical block, to emphasize that it is not the unit of data storage 
and transfer. 

A control interval is composed of one or more logical blocks, 
control information, and usually some free space. The number of 

Chapter 2. Defining Files and Processing with SAM 2-1 



This name is used in the macros that activate (OPEN) or deactivate 
(CLOSE) the file and request I/O operations to be executed (GET, 
PUT) . 

File Type (TYPEFLE) 

SAM needs to know the type of file that is to be processed. Specify 
one of the following: 

TYPEFLE= I N PUT: The file is used for input via the GET macro. 

You can update a disk input file by specifying UPDATE=YES in 
addition to TYPEFLE=INPUT. In this case, records are read, 
processed, and then written back into the same record location from 
which they were read. For details, see "Processing Update Files" on 
page 2-19. 

TYPEFLE=OUTPUT: The file is used for output via the PUT macro. 

TYPEFLE=WORK: Specifies a magnetic tape or disk file that can 
be used as work file, that is, for both input and output. It can be 
used to pass intermediate results between successive phases or job 
steps or to be read and written within a single phase. Work files 
use unblocked records of fixed length or undefined records and can 
be processed with the READ/WRITE, NOTE/POINTx, and CHECK macros. 
For details, see "Processing Work Files with SAM" on page 2-20. 

TYPEFLE=CMBND: Files on card read-punch devices can be combined 
input and output files (like update and work files), that is, an 
updated record is punched into the same card from which it was read. 
For details, see "Processing Update Files" on page 2-19. 

Record Format (RECFORM) 

SAM needs to know the format of your records, that is, whether they 
are of fixed or variable length and whether they are blocked or 
unblocked. Enter one of the following: 

FIXUNB for fixed-length unblocked records 

FIXBLK for fixed-length blocked records 

VARUNB for variable-length unblocked records 

VARBLK for variable-length blocked records 

SPNUNB for spanned variable-length unblocked records 

SPNBLK for spanned variable-length blocked records 

Chapter 2. Defining Files and Processing with SAM 2-3 



If you do not specify an I/O area in your DTFSD macro, the system 
issues a GETVIS macro to obtain the area from the partition GETVIS 
area. 

Block Size (BLKSIZE) 

This operand specifies the length of the I/O area. If the record 
format is variable or undefined, enter the length of the largest 
block of records. Consult the discussions of the various devices in 
the later chapters of this manual for the permitted BLKSIZE ranges. 

For optimum use of the storage capacity of your DASD device you can 
specify BLKSIZE=MAX in the DTFSD for a sequential disk file. This 
sets the length of the I/O area equal to one full track of the 
device on which your file resides. 

For FBA devices, BLKSIZE=MAX sets the I/O area length equal to the 
maximum CISIZE (32K) minus seven bytes, e~cept for FIXBLK record 
format, where the length of the I/O area will be the highest even 
mUltiple of RECSIZE that is not larger than 32K minus seven. 

With BLKSIZE=MAX, the length of the I/O area depends on the DASD 
device type. After OPEN, the halfword labeled filenameB in the DTFSD 
contains the actual size of the block minus one byte for 
TYPEFLE=INPUT/OUTPUT, or it contains the actual size of the block 
for TYPEFLE=WORK. 

I/O Register Specification (IOREG) 

This operand specifies the register in which IOCS places the address 
of the logical record that is available for processing if: 

• Two I/O areas (and no work area) are used, or 

• No I/O area has been specified, or 

• Blocked records are processed in the I/O area, or 

• Undefined or variable-length magnetic tape records are read 
backwards. 

If you have omitted the IOAREA operand (to let OPEN issue a GETVIS 
request for an I/O area of the required length), OPEN returns the 
address of the acquired I/O area in the IOREG register. 

For output files, IOCS places, into the specified register, the 
address of the area where you can build a record. 

The register specified in the IOREG operand always contains the 
absolute address of the next available input record or of the record 
area where you can build the next output record. 

Chapter 2. Defining Files and Processing with SAM 2-5 



Name Operation Operand Column 72 

FNAME DTFMT X 
IOAREAl=Al, X 
IOAREA2=A2, X 
WORKA=YES, X 
BLKSIZE=500, x 
RECSIZE=lOO, X 

Al DS 500C 
A2 DS 50OC 

GET FNAME,A3 

A3 DS 100C 

Figure 2-1. GET Macro Processing Example 

Error Handling (ERROPT, WLRERR, and ERREXT) 

The macro operands that you may use for processing I/O and 
record-length errors are ERROPT, WLRERR, and ERREXT. Not all of 
these operands apply to all DTF files; for complete information, 
refer to the subsequent chapters or to the Macro Reference manual. 

The ERROPT operand is used when a read or write error is 
encountered. It has three parameters - IGNORE, SKIP, or the name of 
your error routine (for output files, only IGNORE and name are 
valid) : 

• IGNORE 
For input files, the error condition is ignored and the records 
are made available for processing by your main program. When 
reading spanned records, the entire spanned record or a block of 
spanned records is returned to you, rather than just the one 
physical record in which the error occurred. On output, the 
error fs ignored and the physical record containing the error is 
treated as a valid record. If possible, any remaining spanned 
record segments are written. 

Chapter 2. Defining Files and Processing with SA~1 2-7 



End-of-Extent Exit Specification (EOXPTR) 

This operand specifies the name of the pointer to your end-of-extent 
routine. IOCS branches to this routine when the last (or only) 
extent is reached during an output operation on an output or work 
file. 

ACTIVATING A FILE FOR PROCESSING 

To activate, or make ready a file for processing, use the 
initialization macro OPEN. 

In the OPEN macro, enter the symbolic name of the file to be opened 
(DTF filename). Alternatively, you can load the address of the DTF 
filename into a register and specify the register using ordinary 
register notation. You can activate up to 16 files with one OPEN by 
entering additional filenames. Before you open a file, you should 
make sure that the file is not already open. 

The OPEN macro, together with the ASSGN job control statement, 
associates the logical file declared in your program with a specific 
physical file on an I/O device. Thus an OPEN macro must be issued 
for any file declared in your program before processing is 
attempted; an exception is that an OPEN need not be issued for DTFCN 
files in a non-se1f-re10cating environment. The association of your 
logical file with a physical file remains in effect throughout your 
program until you issue a completion macro (see the section 
"Deactivating a File After Processing" on page 2-26). 

For an output file with two I/O areas or no I/O area specified, OPEN 
loads your IOREG register with the address of an I/O area. 

OPEN also checks or writes standard or non-standard DASD or magnetic 
tape labels. Whenever you open an input/output DASD or magnetic 
tape file to process user-standard labels (URL or UTL) or 
non-standard tape labels, you must provide the information for 
checking or building the labels. If this information is obtained 
from another input file, that file must be opened ahead of the DASD 
or tape file. To do this, specify the input file ahead of the DASD 
or tape file in the same OPEN, or issue a separate OPEN for the 
file. 

If OPEN attempts to activate a file whose device is unassigned, the 
job is terminated. 

Self-relocating programs must use OPENR for file activation. OPEN 
and OPENR perform essentially the same functions, except that when 
OPENR is specified, the symbolic addresses that are generated are 
self-relocating. Throughout the manual, the term OPEN refers also 
to OPENR, unless stated otherwise. 

Chapter 2. Defining Files and Processing with SAM 2-9 



last record that was transferred to virtual storage available for 
processing in the input area or work area. 

When blocked records are specified for DASD or magnetic tape with 
the DTF RECFORM operand, each individual record must be located for 
processing (that is, deblocked). Therefore, blocked records are 
handled as follows: 

1. The first GET macro transfers a block of records from DASD or 
tape to the input area or CI buffer. It also initializes the 
specified IOREG register to the address of the first data 
record, or it transfers the first record to the specified work 
area. 

2. Subsequent GETs either increment the register or move the proper 
record to the specified work area, until all records in the 
block are processed. 

3. Then, the next GET makes a new block of records available in 
virtual storage and either initializes the register or moves the 
first record. 

When spanned records are processed, the operands RECFORM=SPNUNB or 
SPNBLK and WORKA=YES must be included in the DTF. GET assembles 
spanned record segments into logical records in your work area. Null 
segments are recognized but are not assembled into logical records; 
they are skipped. The length of the logical record is passed to you 
in the register specified in the DTF RECSIZE operand. 

If you update logical records (UPDATE=YES), the pointer to the 
physical record in which a logical record starts is saved on each 
GET so that the device may be repositioned. The extent sequence 
number (in the DTF) is also saved in case the logical record spans 
disk extents. (A record cannot span volumes.) 

When undefined records are processed, the operand RECFORM=UNDEF must 
be included in the DTF macro. GET treats undefined records as 
unblocked, and you must locate (deblock) individual records and 
fields if you choose to put several logical records into one 
undefined record. If a RECSIZE register is specified, SAM stores in 
that register the length of the read record. SAM considers 
undefined records to be variable in length. No other 
characteristics of the record are known or assumed by SAM. 
Determining these characteristics is your responsibility. 

Issuing a GET macro after the last record of an input file has been 
accessed results in an end-of-file condition. The system also 
checks for end-of-volume conditions, and initiates automatic volume 
switching if an input file extends over more than one volume. When 
a file occupies more than one area on a DASD volume, automatic 
switching from one extent to the next is also performed. 

Chapter 2. Defining Files and Processing with SAM 2-11 



length of the output records from the length of the corresponding 
input records. 

When variable-length blocked records are built in a work area, the 
PUT routines check the length of each output record to determine if 
the record fits into the remaining portion of the output area or CI 
buffer. If the record fits, PUT immediately moves the record. If it 
does not fit, PUT causes the completed block to be written and then 
moves the record from the work area to the output area. 

However, if variable-length blocked records are built directly in 
the output area, the DTF VARBLD operand, the TRUNC macro, and 
additional programming are required. Your program must determine 
whether each record built will fit into the remaining portion of the 
output area. This must be known before record processing for the 
next record begins, so that the completed block can be written. 

The amount of space available in the output area at any time is 
supplied to your program in the register specified in the DTF VARBLD 
operand. (This register is in addition to the register specified in 
IOREG.) After each time a PUT macro has been executed, IOCS loads 
into the specified register the number of bytes remaining in the 
output area. You then compare the length of your next 
variable-length record with the available space to determine if the 
record fits in the area. If it does not fit, you must issue a TRUNC 
macro to transfer the completed block of records to the.output file 
or CI buffer. The entire output area is then available for building 
the next block. 

Note: When end of track or CI overflow occurs, the logic 
module truncates the last variable-length blocked record to 
fit on the track. The records that did not fit on the track 
are moved to the beginning of the I/O area. 

When PUT handles unblocked or blocked spanned records, the records 
in your work area are divided into spanned record segments according 
to the length specified in the BLKSIZE operand. For disk output, 
spanned records must not span volumes. If there is not enough space 
on the current volume to contain a spanned record, the logic module 
attempts to put the entire spanned record on the next volume. 

When undefined records are processed, PUT treats them as unblocked. 
You must provide any blocking desired. You must also determine the 
length of each record (in bytes) and load it in a register before 
issuing the PUT macro for that record. The register used for this 
purpose must be specified in the DTF RECSIZE operand. 

For update files, the logic module repositions the device to the 
first block of the logical record by using the pointer saved in GET 
processing. 

An update DASD record may be read, modified, and written back to the 
same DASD location from which it was read. This is possible with all 
DASD devices. A card record may, with some devices, be read and then 

Chapter 2. Defining Files and Processing with SAM 2-13 



Operating with GET and PUT without a separate work area provides 
faster performance, since there is no need for data transfer between 
the work area and the I/O areas. A combination of GET with a work 
area, and PUT without a work area can also be used. In this case, 
the workname operand of the GET macro specifies a register. The 
register contains a pointer, provided by the preceding PUT, to a 
location within the output area. 

I I I 
Record I Number of Separate I Amount of Maximum Achievable I 
Format I I/O Areas Work Area I Overlap I 

I I I 
I 10veriap of the device operation only I 
I Ifor buffered devices such as 1403, I 
I No 11443, 2540. No overlap of magnetic I 
I 1 Itape, disk or unbuffered unit record I 

Un- I I devices. I 
blocked I I I 

I Yes 10veriap processing of each record. I 
~I ------4-------+�----------------------~1 
I No 10veriap processing of each record. I 
I 2 1-----+-1 -------------1 
I Yes 10veriap processing of each record. I 
I I 1 
I No I No overlap. I 
I 1 I I 
I Yes 10veriap processing of first record ofl 

Blocked 1 I a block. I 
I I I 
I No 10verlap processing of full block. I 
I 2 I I 
\ Yes 10verlap processing of full block. I 
I I I 

INote 1: If UPDATE=YES is specified, no overlap occurs with DTFSD DASD I 
\ files. I 
\Note 2: The amount of effective overlap depends on the workload of thel 
\ system. \ 
I I 

Figure 2-2. Overlap of Processing and I/O 

Chapter 2. Defining Files and Processing with SAM 2-15 



Selective Processing of Blocked Records 

Mostly, a program will process a file starting with the first 
logical record and proceed until end of file. In these cases, 
pro~essing blocked records or unblocked records is equally suitable 
to the application, especially 'since blocking or deblocking is 
performed automatically with the GET and PUT macros. For some 
special situations, however, the use of blocked records offers 
possibilities that do not exist when records are unblocked. Also, 
blocked records allow a more effective use of I/O devices. 

When processing a logical record of a block, you can have the system 
ignore the remaining records of that block and obtain the first 
logical record of the next block. For output, you can skip the 
remainder of the current block and place the next logical record as 
the first of the next block. When you process blocked spanned 
records, you can bypass all subsequent records of the block being 
processed, and obtain the first segment of the next logical record 
in the new block. 

A case in which the application could benefit from these 
possibilities is, for example, a file that consists of several major 
groups of logical records. If each category started on a new block, 
it would be easy to locate any of the categories for selective 
processing. Only the first record of each block would have to be 
checked. To achieve this, you would use the RELSE (release) macro 
with input, and the TRUNC (truncate) macro with output. 

The RELSE macro causes the following GET to ignore any logical 
records remaining in the current block and to obtain the first 
logical record of the following block. When spanned records are 
processed, RELSE causes the following GET to skip any subsequent 
records of the current block and makes the first record of the next 
block available. 

The RELSE macro is used with blocked input records read from a DASD 
device, or with blocked spanned records read from, or updated on, a 
DASD device. This macro is also used with blocked input records read 
from magnetic tape. 

If RELSE immediately precedes a CNTRL macro with the codes FSL or 
BSL (tape spacing for spanned records), then the FSL or BSL logical 
record spacing is ignored. 

The TRUNC macro is used with blocked output records written on DASD 
or magnetic tape. It allows you to write a truncated block of 
records. Blocks do not include padding. The TRUNC macro causes the 
following PUT macro to regard the output area as full and, 
subsequently, the next logical record to be placed into the 
following block. Thus, the TRUNC macro can be used for a function 
similar to that of the RELSE macro for input records. That is, when 
the end of a category of records is reached, the current block can 
be written and the new category can be started at the beginning of a 
new block. The CLOSE macro truncates the last block of a file. 

Chapter 2. Defining Files and Processing with SAM 2-17 



The FEOVD macro forces the system to assume an end-of-volume 
condition on either an input or output DASD file, thereby causing 
automatic volume switching. The operation is the same as for the 
FEOV macro, except that trailer labels are also processed for input. 

The name of the file is required as an operand for both the FEOV and 
the FEOVD macros. 

Processing Update Files 

Files that are processed sequentially are normally either input or 
output files. With certain devices it is also possible to use the 
same file as both input and output file. In this case, you obtain a 
logical record from the file and, after processing, write the 
updated version of the record back into the original location of the 
file. 

The devices that can have input and output file combined are: 

• 

• 

• 

All types of DASD. Specify UPDATE=YES in the DTFSD macro. 

IBH 1442 Card Read Punch, IBM 2520 Card Read Punch, IBM 2540 
Card Read Punch equipped with the Punch-Feed-Read special 
feature. Specify TYPEFLE=CMBND in the DTFCD macro. 

IBM 2560 Multifunction Card Machine, IBM 3525 Card Punch 
equipped with the Card Read special feature, IBM 5424/5425 
Multifunction Card Unit. Specify the ASOCFLE and the FUNC 
operands in the DTFCD macro. 

GET obtains records from the file in the usual way. After the 
record has been processed, the next PUT causes the record to be 
returned to its original location in the file (DASD), or to be 
punched into the same card from which it was read. 

In the combined card file example of Figure 2-4 on page 2-20 
information from each card is read, processed, and then punched into 
t"he same card to produce an updated record. 

Processing is done in the input area. After processing, the records 
are returned from the input area. For card devices, the records are 
returned by PUT; for DASD, PUT sets an indicator which is used by 
the next GET (or CLOSE) to accomplish the transfer. The input area 
must not be modified between a PUT and the next GET. 

If a work area is used for the file, PUT returns the records from 
the work area to the input area and then from the input area to the 
file. (When control interval format is used, the CI buffer is the 
primary input area and any user-specified input area is bypassed 
when a work area is specified.) For spanned records, you must have 
a work area that is sufficiently large to hold the entire spanned 
record. 

Chapter 2. Defining Files and Processing with SAM 2-19 



• 

• 

• 

• 

• 

Automatic I/O area switching is not provided; your program must 
supply the address of your I/O area each time it issues a READ 
or WRITE macro. 

A work file must be contained on a single volume. You may not 
use magnetic tapes written in ASCII mode for work files. 

Both normal extents (type 1) an4 split extents (type 8) are 
supported for CKD disks, but only type 1 extents for FBA DASD. 

If you use CI format, the number of logical blocks per control 
interval is limited to 255. This means that an error condition 
may occur if you attempt to use a CI-format work file that was 
not created or modified by SAM. 

An existing work file may not be extended. 

Retaining and Deleting a Work File 

If you want to retain a DASD work file for later use, you must 
specify the DTFSD operand DELETFL=NO and make sure that the 
expiration date is not the current date. The CLOSE routines then do 
not delete the format-l file extent label created by the open 
routines, and the file can be saved until the expiration date is 
reached. 

To delete the file after use, do not specify the DELETFL=NO operand; 
the CLOSE routines will delete the format-1 label that was created 
when the file was opened. This allows another job requiring a work 
file to use the same extents and file name. 

Opening a Work File 

When a work file is opened, it is opened as an output file and the 
OPEN routines determine if standard labels are present. If the file 
is on DASD, file protection is ensured only if the labels are 
unexpired; you must supply label information with the Job or by 
means of standard labels. 

Because a work file is always opened as an output file, a DASD work 
file that is being reopened (for example, to pass information to a 
second job step) causes an overlapping-extent message to be printed 
to the operator. The operator can then delete the format-1 label, 
after which the open routines create a new label for the file, and 
the job continues. 

If the work file is on tape and declared as a standard labeled work 
file (DTF~lT FILABL=STD), the TLBL job control statement must be 
specified. OPEN/CLOSE reads/writes the standard header and trailer 
labels as for standard labeled data files. 

Chapter 2. Defining Files and Processing with SAM 2-21 



For fixed-length unblocked records, the number of characters to be 
written is specified in the BLKSIZE operand of your DTFxx macro. 
You can change this number (which is stored in the DTF table) at any 
time by referencing the ha1fword fi1enameL. 

The CHECK macro prevents data requested by a READ or a WRITE macro 
from being processed before its transfer is completed. In addition, 
it tests for errors and exceptional conditions that may have 
occurred during the data transfer. When necessary, control is passed 
to the appropriate exits (for error analysis and end-of-fi1e) 
specified in the DTFxx macro for the file. Use the CHECK macro after 
each READ or WRITE before you issue any other macro for the same 
file, or before the contents of the input or output area in virtual 
storage is altered. 

If the data transfer is completed without any error or other 
exceptional condition, CHECK returns control to the next 
instruction. If the operation results in a read error, CHECK 
processes the option specified in ERROPT. If CHECK finds an 
end-of-fi1e condition, control is passed to the routine specified in 
EOFADDR. 

Note, however, that an end-of-fi1e record is written only if the 
last operation before the CLOSE macro was a WRITE SQ; a CLOSE macro 
following a WRITE UPDATE protects the updated file by not writing an 
end-of-fi1e record. 

Both READ and WRITE operate in a strictly sequential manner, 
starting either at the beginning of a file or at a given point, to 
which the file can be positioned by one of the POINTx macros (see 
below) . 

Selective Processing of Work Files 

You can position a sequentially organized file to a specific block 
within the file and start sequential processing from this point. To 
do this you must use the NOTE and the POINTx macros. 

During processing you may issue the NOTE macro. It returns 
information about the position of the block just read or written. 

NOTE can be issued after a READ or a WRITE macro and after the I/O 
operation was checked for completion through use of a CHECK macro. 
It identifies a record on a CKD disk by its physical record number 
counted from the beginning of the track, and on FBA DASD by counting 
from the beginning of the file. For an output file on DASD, NOTE 
also returns the number of bytes of space left on the track or in 
the control interval. 

For magnetic tape, the last record read or written is identified by 
the number of physical records read or written in the specified file 
from the load point. The physical record number is returned in 

Chapter 2. Defining Files and Processing with SAM 2-23 



x 

y 

L 
WRITE 

CHECK 

BNZ 
POINTS 
READ 

CHECK 

BNZ 
EOJ 

12,LENGTH 
F,SQ,OUT,(12) 

F 

X 
F 
F,SQ,IN,S 

F 

y 

A Load the length of the record 
B Write a record 
C Process data unrelated to OUT 
D Wait until the record is written 
E Reposition to the beginning of the file 
F Read physical record 1 
G Wait until the record is read 

A 
B 

C 
D 

E 
F 

G 

Figure 2-5. Example of POINTS Macro with Work File Processing 

The POINTW macro is used to position the file to the block 
following the one specified. A block can then be written to that 
location by a subsequent WRITE macro. A series of WRITE macros 
following a POINTW will write blocks sequentially, starting at the 
location following the block specified in the POINTW macro. The 
address to be specified can be obtained from the result of a 
previously issued NOTE macro. 

For magnetic tape, POINTW repositions the file to read or write a 
record after the one previously identified by the NOTE. 

For disk, POINTW repositions the file to write at the record 
location that was read or written immediately before the last NOTE 
macro was issued. If a WRITE UPDATE is issued, the noted record is 
overwritten. If a WRITE SQ is issued, the record after the noted 
record is written and the remainder of the track or CI is erased. On 
FBA devices only, a SEOF is written immediately after the current 

Chapter 2. Defining Files and Processing with SAM 2-25 



specified, FEOV allows you to write trailer labels on the completed 
volume, and header labels on the new volume, if desired. 

When FEOVD is issued for an output file assigned to a CKD DASD, a 
short last block is written, if necessary, with an end-of-file 
record containing a data length of 0 (indicating end-of-volume). If 
the output file is assigned to an FBA device, SAM writes a Software 
End-Of-File (SEOF), which is a control interval containing only 
zeros. An end-of-extent condition is posted in the DTF. When the 
next PUT is issued for the file, all remaining extents on the 
current volume are bypassed. The first extent on the next volume is 
then opened, and normal processing continues on the new volume. 

If the FEOVD macro is followed immediately by the CLOSE macro, the 
end-of-volume marker is rewritten as an end-of-file marker, and the 
file is closed in the usual way. 

Closing a File 

You must issue a CLOSE macro to deactivate all files that were 
activated by an OPEN macro, with the exception of console (DTFCN) 
files. Up to 16 files may be deactivated with one CLOSE. 

After you have issued a CLOSE macro, no further commands can be 
issued to the file unless it is reopened. Sequential DASD files can 
only be successfully reopened for output if the DTFSD table is saved 
before the file is first opened and then restored between closing 
the file and reopening it again as an output file. 

A CLOSE normally deactivates an output file by writing an EOF record 
and output trailer labels, if any. CLOSE sets a bit in the format-l 
label to indicate the last volume of the file. 

Note that if you issue CLOSE to an unopened magnetic tape input 
file, the option specified in the DTF REWIND operand is performed. 
If you issue CLOSE to an unopened magnetic tape output file, no 
tapemark or labels are written, and no REWIND options are performed. 

As with an OPENR macro, you must use the CLOSER macro if your 
program is to be self-relocating. The CLOSE and the CLOSER macros 
are essentially the same, with the exception that when CLOSER is 
specified, the symbolic addresses that are generated from the 
parameter list are self-relocating. Throughout the manual the term 
CLOSE refers also to CLOSER, unless stated otherwise. 

Chapter 2. Defining Files and Processing with SAM 2-27 



Device Type 

Card, and 3881 Optical Hark Reader 

Console 

Device Independent 

3886 Optical Character Reader 

Diskette 

Magnetic Character Reader, 
Optical Character Reader 

Magnetic Tape 

Optical Reader, Optical Page Reader 

Printer 

Sequential DASD 

I 
xxMOD I 
Macro I 

I 
CDMOD I 

I 

DIt-IOD 1 I 
I 

DRMOD I 
DFR I 
DLINT I 

I I 
I DU~10DFx I 
I I 
I MRMOD I 
I I 
I I 
I I 
I I 
I ORMOD I 
I I 
I PRHOD 2

1 

I I 
I I 
I I 

I 
DTFxx I 
Macro I 

I 
DTFCD I 

I 
DTFCN I 

I 
DTFDI I 

I 
DTFDR I 

I 
I 
I 

DTFDU I 
I 

DTFMR I 
I 
I 

DTFMT I 
I 

DTFOR I 
I 

DTFPR I 
I 

DTFSD I 
I 

1 Not needed for DASD devices and PRT1 or 3800 
2 Not needed for PRT1 and 3800 printers. 

printers. I 
I 
I 

Figure 2-6. Logic Modules for SAM 

Chapter 2. Defining Files and Processing with SAt-I 2-29 



CHAPTER 3. PROCESSING DASD FILES WITH SAM 

This chapter briefly describes how to open and close a DASD file 
with SAM and how to write your error processing routines. The 
information is intended as an addition to the general information 
given in Chapter 2. Processing a DASD file with DAM is described in 
Appendix B. 

FBA (FIXED BLOCK ARCHITECTURE) DASD PROCESSING 

Most programs that use SAM (that is, non-EXCP) imperative macros to 
access data can run unchanged with FBA DASD. Exceptions are programs 
containing elements that are sensitive to I/O synchronization, such 
as error exits and logging. These programs will have to be 
re-evaluated and may require programming changes. 

In the discussions that follow, bear in mind that FBA DASDs use 
control intervals as the unit of data transfer, rather than the 
physical block. Since these need not be the same size as logical 
blocks, issuing a macro that usually causes a block transfer need 
not cause an actual CI transfer. 

For instance, issuing a WRITE macro to an FBA file transfers a 
logical record from the output area to the CI buffer. When the CI 
buffer is filled, it is transferred to the DASD asynchronously with 
the WRITE. For applications that require physical writes to be done 
when a formatted WRITE or PUT is issued, the force-write 
(PWRITE=YES) operand must be specified on the DTFSD macro. Note, 
however, that writing a whole CI buffer for each record can cause 
severe performance degradation. 

SA~1 automatically reformats CIs into logical blocks and vice versa, 
as it automatically blocks and deblocks. 

Proper selection of CISIZE for FBA devices can affect overall 
throughput. For example, if the CI size is such that only one 
logical block and attendant control information fits into the CI, 
the number of physical I/O operations required to access a file is 
essentially the same as is required for CKD devices. However, if 
the CI size is large enough to contain two or more logical blocks 
plus the needed control information, throughput is improved because 
fewer physical 1/0 operations are required to access the same file. 

Chapter 3. Processing DASD Files with SAM 3-1 



DASD Output 

When a multi-volume DASD file is created using SAM, only one extent 
is processed at a time. Therefore, only one pack need be mounted at 
a time. When processing on a volume is completed, message 

4n55A WRONG PACK, MOUNT nnnnnn 

is issued so that the next volume may be mounted. 

When a file is opened, OPEN checks the standard VOL1 label and the 
specified extents: 

1. The extents must not overlap each other. 

2. The first extent must be at least two tracks long (for CKD) if 
user standard labels are created. 

3. Only extent types 1 and 8 are valid. 

The data extents of a sequential CKD DASD file can be type 1, type 8 
or both. Type 8 extents are called split-cylinder extents and use 
only a portion of each cylinder in the extent. The portion of the 
cylinder used must be within the head limits of the cylinder and 
within the range of the defined extent limits. For example, two 
files can share three cylinders - one file occupying the first two 
tracks of each cylinder and the other file occupying the remaining 
tracks. In some applications, the use of split cylinder files 
reduces the access time. 

For an FBA DASD, only type 1 extents are valid. Split cylinder 
extents are not valid on FBA devices as the addressing scheme does 
not use cylinders. 

When a file is opened, the FBA control interval size is stored in 
the format-1 label when the file is created, and retrieved from it 
when the file is re-opened as an input file. 

OPEN checks all the labels in the VTOC to ensure that the file to be 
created does not destroy an existing file whose expiration date is 
still pending. It also checks to determine that the extents do not 
overlap existing extents. After having checked the VTOC, OPEN 
creates the standard label(s) for the file and writes the label(s) 
in the VTOC. 

If you wish to create your own user standard labels (UHL or UTL) for 
the file, include the DTFxx LABADDR operand. OPEN reserves the 
first track of the first extent or a sufficient number of FBA blocks 
for the user header and trailer labels. Then, your label routine is 
given control at the address specified in LABADDR. 

After the header labels are built, the first extent of the file is 
ready to be used. The extents are made available in the order of the 
sequence numbers on the actual EXTENT statements. When the last 

Chapter 3. Processing DASD Files with SAM 3-3 



represent the address of the DTF table, and the second four 
bytes the address of the physical record in error. Logic modules 
provide the error exit parameter list. You can make use of both 
addresses in your error routine, the first address to 
interrogate specific indicators in the CCB (the first 16 bytes 
of the DTF table), and the second address to access the record 
for error processing. (The content of the IOREG register or work 
area - if either is specified - is unpredictable and, therefore, 
should not be used for error processing.) When spanned records 
are processed, the address is that of the whole blocked or 
unblocked spanned record. 

• The data transfer bit (byte 2, bit 2) of the DTF table (CCB) 
should be tested to determine whether a non-recoverable I/O 
error has occurred. If the bit is on, the physical record in 
error has not been read or written. If the bit is off, data was 
transferred and your routine must address the physical record in 
error to determine the action to be taken. 

• At the conclusion of error processing, your routine must return 
control to LIOCS either: 

by the ERET macro. 

For an input file: 
The program skips the block in error and reads the next 
block with an ERET SKIP. 
Or it ignores the error with an ERET IGNORE. 
Or it makes another attempt to read the block with an ERET 
RETRY. 

For an output file: 
The program ignores the error condition with an ERET IGNORE 
or ERET SKIP. 
Or it attempts to write the block with an ERET RETRY. 

or by branching to the address in register 14. 

For a read error, IOCS skips the error block and makes the 
first record of the next block available for processing in 
your main program. 

Note: You cannot use the ERET RETRY option in your error 
routine when processing record length errors. For this 
condition, ERET RETRY results in job termination. 

Chapter 3. Processing DASD Files with SAM 3-5 



DEACTIVATING A SEQUENTIAL DASD FILE 

To force end-of-volume on a sequential DASD file means that your 
program has finished processing records on one volume, but that more 
records in the same logical file are to be processed on the 
following volume. Issuing the FEOVD macro allows you to force 
end-of-volume before it actually occurs. If extents are not 
available on the new volume, or if the format-l label is posted as 
the last volume of the file, control is passed to the EOF address 
specified in the DTF. 

When FEOVD is issued to an input file, an end-of-extent is posted in 
the DTF. When the next GET is issued for this file, any remaining 
extents on the current volume are bypassed, and the first extent on 
the next volume is opened. Normal processing is then continued on 
the new volume. 

When FEOVD is issued for an output file assigned to a CKD DASD, a 
short last block is written, if necessary, with a standard 
end-of-file record containing a data length of 0 (indicating end of 
volume). The end-of-volume indicator is not written on an FBA DASD, 
however, because an SEOF has already been written (if there was room 
for it) following the "last data CI. An end-of-extent condition is 
posted in the DTF. When the next PUT is issued for the file, all 
remaining extents on the current volume are bypassed. The first 
extent on the next volume is then opened, and normal processing 
continues on the new volume. The end-of-volume marker written by VSE 
when an FEOVD macro is issued is compatible with the end-of-volume 
marker that OS/VS writes when an EOV macro is issued. 

If the FEOVD macro is followed immediately by the CLOSE macro, the 
end-of-volume marker is rewritten as an end-of-file marker, and the 
file is Glosed in the usual way. 

A CLOSE normally deactivates an output file by writing an EOF record 
and output trailer labels, if any, after writing any outstanding 
data, for example, the last block. CLOSE sets a bit in the format-l 
label to indicate the last volume of the file. 

Because, for FBA DASD, the unit of data transfer is the control 
interval instead of the physical block, SAH will (if necessary) 
automatically write the last CI when a CLOSE is issued. The program 
must always issue a CLOSE, for both FBA and CKD devices, to ensure 
that all processing for the file has been completed. 

If there is no room in the last CI to hold an SEOF, the data set 
will be considered delimited by end-of-last-extent. 

After a CLOSE, no further commands can be issued for the file unless 
it is reopened. Sequential DASD files cannot be successfully 
reopened unless the DTFSD table is saved before the file is first 
opened, and restored between closing the file and reopening it 
again. 

Chapter 3. Processing DASD Files with SAM 3-7 



CHAPTER 4. PROCESSING DISKETTE FILES WITH SAM 

Before any processing can be done on a diskette file, it must be 
defined by a DTF macro. The DTFDU macro defines sequential 
processing for a diskette file. Alternatively, you may use DTFDI to 
provide device independence for system logical units. (See 
Chapter 7 for more information on device-independent files.) 
Finally, you must use DTFPH if you plan to process a diskette file 
with the PIOCS (Physical IOCS) macros (see Appendix C). 

There are two logic module generation macros associated with DTFDU: 
DUHODFI for input files, and DUMODFO for output files. 

Note that special records (deleted or sequential relocated records) 
on an input file are skipped, and not passed to the user. The DTFDU 
macro cannot be used when a card image diskette file is to be 
processed under VSE/POWER. 

OPENING A FILE 

Output 

When a multi-volume diskette file is created, feeding from diskette 
to diskette is automatically performed by IOCS. If the file was 
defined by a DTFDI macro, the last diskette is ejected automatically 
by IOCS. If the DTFDU macro was used, the ejection of the last 
diskette is controlled by the FEED operand of this macro. 

When a file is opened, OPEN checks the VTOC on the diskette and: 

• ensures that the file to be created does not have the same name 
as an existing unexpired file. 

• ensures there is at least one track available to be allocated. 

• checks that there is only one file open per device and only one 
extent specified per volume. 

• allocates space for the file, starting at the track following 
the last unexpired or write-protected file on the diskette. 

After this check, OPEN creates the format-1 label for the file and 
writes the label in the VTOC. Each time you determine that all 
processing for an extent is complete, you must make the next 
diskette available and then issue another OPEN for the file, to make 
the next extent available. CLOSE will automatically cause the last 
volume to be fed out. If the last extent of the file is completely 

Chapter 4. Processing Diskette Files with SAt-l 4-1 



processing. Therefore, command-chained records are handled as 
follows: 

• The first GET macro transfers a chain of records (2, 13, or 26 
records depending on the CMDCHN operand) from diskette to the 
input area. It also initializes the specified register to the 
absolute address of the first data record, or it transfers the 
first record to the specified work area. 

• Subsequent GET macros either add an indexing factor to the 
register or move the proper record to the specified work area 
until all records in the block are processed. 

• Then, the next GET makes a new chain of records available in 
virtual storage, and either initializes the register or moves 
the first record. 

So, for diskette files you can logically 'block' records in the 110 
areas by chaining I/O operations; however, each record on the 
diskette remains a physically separate entity. 

If, for example, you want to process 80-byte records, you could 
establish two 110 areas, each 160 bytes in length, and you could 
indicate chaining of two records. Then, when a record is requested 
for input, data transfer would occur as illustrated in Figure 4-1. 

1 

I 
I RECORDS AS ON DISKETTE 
I 
I R1 
I '--1 -----, 

R2 
1 

I I DATAl I' L-___ ----J 

I DATAl 
1 

I 
I 
I 
I 
I 
I 

1 I 

IR1 DATAIR2 DATAl 
I I 

I/O Area 1 

R3 R4 
1 1 

I DATAl 
1 

I DATAl 
1 

1 I 

IR3 DATAIR4 DATAl 
I I 

I/O Area 2 
L-__________________________________________________ ~ 

Figure 4-1. Diskette Data Transfer on Input 

Physically, the diskette records are always 128 bytes in length (see 
Figure 4-3 on page 4-4). Because only 80 bytes are desired, only 
the first 80 bytes of each physical record are placed in the I/O 
areas. 

For output, when an 110 area is full, records are written on the 
diskette as shown in Figure 4-2 on page 4-4. 

Chapter 4. Processing Diskette Files with SAM 4-3 



absolute address of the first data record, or it transfers the first 
record to the specified work area. Subsequent GET macros either add 
an indexing factor to the register or move the proper record to the 
specified work area, until all records in the block are processed. 
Then, the next GET makes a new chain of records available in virtual 
storage, and either initializes the register or moves the first 
record. 

The PUT macro accomplishes this data transfer for output in the same 
way. That is, when command-chained records are written on diskettes, 
the individually built records must be formed into a chain in the 
output area before they can be transferred to the output file. 

Command-chained records can be built directly in an output area or 
in a work area. Each PUT macro for these records either adds an 
indexing factor to the register (IOREG), or moves the completed 
record to the proper location in the output area. When an output 
chain of records is complete, a PUT macro causes the chain of 
records to be transferred to the output file and initializes the 
register, if one is used. 

CLOSING A FILE 

For diskette files, CLOSE sets the multivolume indicator in the HDR1 
label to indicate the last volume of the file. Then, it sets up the 
end-of-data address in the HDR1 label and feeds in the last 
diskette, determined by the FEED operand in the DTF macro. 

ERROR HANDLING 

By specifying the ERREXT and ERROPT operands in the DTFDU and logic 
module generation macros, LIOeS assists you in handling permanent 
I/O errors. 

Specifying ERREXT:::;YES in DTFDU and DUHODFx enables your ERROPT 
routine to return to DUMODFx with the ERET macro. It also enables 
permanent errors to be indicated to your program. For ERREXT 
facilities, the ERROPT operand must be specified. However, to take 
full advantage of this option, use the ERROPT:::;name operand. 

Specify the DTF ERROPT operand if you do not want a job to be 
terminated when a permanent error cannot be corrected in the 
diskette error routine. If attempts to reread a chain of records are 
unsuccessful, the job is terminated, unless the ERROPT entry is 
included. Specify either IGNORE, SKIP, or the name of an error 
routine. 

If ERREXT is not specified, register 1 contains the address of the 
first record in the error chain. When processing in the ERROPT 
routine, you reference records in the error chain by referring to 
the address supplied in register 1. The contents of the IOREG 
register or work area are variable and should not be used to process 

Chapter 4. Processing Diskette Files with SAM 4-5 



CHAPTER 5. PROCESSING MAGNETIC TAPE FILES WITH SAM 

This chapter describes how to process magnetic tape files with SAM. 
It discusses such topics as label processing, error handling, and 
~on-data device operations. The information is intended as an 
addition to the general information on processing with SAM, as 
described in Chapter 2. 

SECURITY (ACCESSIBILITY) CHECKING FOR ANSI STANDARD LABELS 

In accordance with the ANSI Standard, Level 3, VSE/Advanced 
Functions denies access to ASCII files if these are 
access-protected. 

To this purpose, a dummy installation phase in the SVA ($IJJTSEC) is 
delivered with your system. This phase checks the accessibility byte 
in the VOL1 and HDR1 labels. If this byte is not blank (X'40'), 
X'OO', or C'O', the job will be canceled. 

You can adapt this phase to your own installation requirements by 
changing the A-type macro IJJT$SEC. Reassemble the installation 
phase by preparing and executing the following job stream: 

II JOB IJJTSEC 
II OPTION CATAL,NODECK 
II EXEC ASSEHBLY 

1';'( 

COpy IJJT$SEC 
END 

II EXEC LNKEDT,PARH='HSHP' 
1& 

SAM TAPE FILE EXTENSION 

You can append additional data records to an already existing 
standard-labeled data file by 

• Defining the file with the parameters FILABL=STD and 
TYPEFLE=OUTPUT in the DTF~lT macro and 

• Specifying the II TLBL job control statement with the DISP= 
operand: 

II TLBL file-name, """,DISP=<OLDINEWIHOD> 

where 

DISP=OLD specifies that an existing file 

Chapter 5. Processing Magnetic Tape Files with SAM 5-1 



If the tape is not positioned at load point and the file-id 
specified in the II TLBL statement matches the file-id in 
the succeeding file. 

• When a file sequence number is specified in the II TLBL 
statement: 

If a file with this sequence number is on the volume set and 
the file-id of this file matches the file-id specified in 
the II TLBL statement. 

In any of the above cases, the file to be extended may span more 
than one volume. IOeS positions the tape to the end of the last data 
record in the file before extension starts. 

Processing Standard Labels 

• For DISP=NEW (and when DISP=HOD has been changed to DISP=NEW): 

As for standard labeled OUTPUT files when they are created. 

• For DISP=OLD (and when DISP=~lOD has been changed to DISP=OLD): 

1. For the file to be extended: 

2. 

All fields in the standard header label will be compared 
with the appropriate specifications in the II TLBL 
statement. 

Error messages will be printed when there are any 
discrepancies. 

Note: The standard header label (HDR1) of the file 
to be extended will not be changed. 

Originally, the creation date in the standard header 
label (HDR1) as well as in the standard trailer label 
(EOF1) reflects the date when the file was created. 

After the file has been extended, the creation date in 
the standard trailer label (EOF1) reflects the date 
when the file was extended. 

The expiration date in the standard trailer label 
(EOF1) will not be changed. 

For the file following the one to be extended: 

If it is a standard labeled file, the expiration date of 
this file will be checked and error message 4119D FILE 
UNEXPIRED will be given if the file has not expired. On 
reply=IGNORE, the file will be overwritten. 

Chapter 5. Processing Hagnetic Tape Files with SAM 5-3 



• Register 15: Entry point of $IJJTXIT 

On return from $IJJTXIT, registers 0-14 will be restored and 
register 15 has to contain one of the following return codes: 

• 0: Always returned except for end-of-volume (EOV) processing. 

• 0 (EOV processing): Normal alternate tape assignment processing 
is to be done. 

• 4 (EOV processing): Normal alternate tape assignment processing 
is to be skipped (indicating that the tape management code has 
made the alternate assignment and ensured that the correct 
volume is now mounted). 

USER LABEL PROCESSING 

You can issue an LBRET macro in your program when you have completed 
label processing and wish to return control to IOCS. LBRET is used 
for subroutines that write or check magnetic tape user-standard or 
nonstandard labels. The operand used (1 or 2 for tape labels) 
depends on the function to be performed. The functions and operands 
are explained below. 

Checking User Standard Tape Labels: IOCS reads and passes the labels 
to you one at a time until a tapemark is read, or until you indicate 
that you do not want any more labels. Use LBRET 2 if you want to 
process the next label. If IOCS reads a tapemark, label processing 
is automatically terminated. Use LBRET 1 if you want to bypass any 
remaining labels. 

Writing User Standard Tape Labels: Build the labels one at a time 
and return to IOCS, which writes the labels. When LBRET 2 is used, 
IOCS returns control to you (at the address specified in LABADDR) 
after writing the label. Use LBRET 1 to terminate the label set. 

Writing or Checking Non-Standard Tape Labels: You must process all 
your non-standard labels together. Use LBRET 2 after all label 
processing is completed and you want to return control to IOCS. 

BLOCK SIZE 

The BLKSIZE operand of the DTFMT macro specifies the number of bytes 
transferred between the I/O area and the tape. If a READ or WRITE 
macro specifies a length greater than the BLKSIZE value for work 
files, the record to be read or written is truncated to fit into the 
I/O area. The maximum block size is 32,767 bytes. The m~n~mum size 
of a physical tape record (gap to gap) is 12 bytes. A record of 
eleven bytes or less is treated as noise. 

For output processing of variable-length records, the m~n~mum 
physical record length is 18 bytes. If less than 18 bytes are 

Chapter 5. Processing Magnetic Tape Files with SAM 5-5 



non-standard labels are specified (FILABL=NSTD), FEOV allows you to 
check these labels as well. 

For an output tape, FEOV writes a: 

• Tapemark (two tapemarks for ASCII files). 

• Standard trailer label (and user-standard labels, if any). 

• Tapemark. 

If the volume is changed, FEOV then writes the header label(s) on 
the new volume (as specified in the DTFNT REWIND, FILABL, LABADDR 
operands, and the ASSGN statements). If non-standard labels are 
specified, FEOV allows you to write trailer labels on the completed 
volume and header labels on the new volume, if desired. 

PROGRAMMING YOUR ERROR PROCESSING ROUTINES 

IOCS branches to your error processing routine named in the 
ERROPT=name operand when 

• a non-recoverable I/O error is encountered (ERREXT=YES 
specified) 

• a tape read data check is encountered (ERREXT=YES not 
specified). 

You may perform any kind of error processing in your error routine; 
however, you must observe the following rules and restrictions: 

• In your error processing routine, you must not issue a GET to 
the file. 

• If your routine issues any other IOCS macros (excluding ERET 
when you have specified ERREXT=YES), the contents of register 13 
(with RDONLY) and register 14 must be saved before and restored 
after the macros are used. 

• If your routine issues J/O macros which use the same read-only 
module that caused control to pass to the error routine, you 
must provide another save area. One save area is used for the 
normal I/O operations and the second for I/O operations in the 
error routine itself. Before returning to the module that 
entered the error routine, register 13 must be set to the s.ave 
area address originally specified for the task. 

• If you have specified ERREXT=YES, register 1 contains the 
address of a 2-part parameter list when an error condition 
occurs. The first four bytes of the list contain the address of 
the DTF table, and the second four bytes the address of the 
physical record in error. You can make use of both addresses in 
your error routine: the first address to interrogate specific 

Chapter 5. Processing Magnetic Tape Files with SAM 5-7 



RECIZE operand. This permits reading of short blocks of logical 
records without a wrong-length record indication. 

For EBCDIC variable-length records (blocked and unblocked), the 
record length is considered incorrect if the length of the tape 
record is not the same as the block length specified in the 4-byte 
block length field. The residual count can be obtained by addressing 
the halfword in the DTF table at filename+98. 

For ASCII variable-length records (blocked and unblocked), a check 
on the physical record length is made if LENCHK=YES is specified. 
The physical record length is considered incorrect if the tape 
record is not the same as the block length specified in the 4-byte 
block prefix. In this case, the WLR bit (byte 5, bit 1) in the DTF 
table is set off. 

For undefined records, a wrong-length record is indicated if the 
record read is longer than the size specified in the BLKSIZE 
operand. 

Other Error Processing Considerations 

If a parity error is detected when a block of records is read, the 
tape is backspaced and reread a specified number of times (device 
ERP) before the block is considered an error block. 

Output parity errors are considered to be an error block if they 
exist after IOCS attempts to forward erase and write the tape output 
a specified number of times (device ERP). Under this condition, 
your error processing routine must treat the device as inoperative 
and must not attempt further processing on it. Any subsequent 
attempt to return to LIOCS results in job ter·mination. 

A sequence error may occur if LIOCS is searching for a first segment 
of a logical spanned record and fails to find it. If you have 
specified either WLRERR=name or ERROPT=name, the error recovery 
procedure is the same as for wrong-length record errors. If you have 
specified neither WLRERR=name nor ERROPT=name, LIOCS ignores the 
sequence error and searches for the next first segment. 

Figure 5-1 on page 5-10 summarizes the DTFMT error options for 
various combinations of error specifications and errors. 

Chapter 5. Processing Magnetic Tape Files with SAM 5-9 



BSL - Backward space logical record 

Writing a tapemark: 

WTM - Write tapemark 

Erasing a portion of the tape: 

ERG - Erase gap (writes blank tape) 

The tape rewind (REW and RUN) and tape movement (BSR, BSF, FSR, and 
FSF) functions can be used before a tape file is opened. This allows 
the tape to be positioned at the desired location for opening a 
file, so that: 

• The tape can be positioned to a file located in the middle of a 
multifile reel. 

• Rewinding of the tape can be performed even if NORWD was 
specified in the DTF REWIND operand. 

Note: If you are using a self-relocating program, you must 
open the file before issuing any commands for it. 

The tape movement functions (BSR, BSF, FSR, and FSF) apply only to 
input files, and the following should be considered: 

• The FSR (or BSR) function permits you to skip over a physical 
tape record (from one inter-record gap to the next). The record 
passes without being read into storage. The FSF (or BSF) 
function permits you to skip to the end of the file (identified 
by a tapemark). 

• The functions of FSR, FSF, BSR, and BSF always start at an 
inter-record gap. 

• If blocked input records are processed and if you do not want to 
process the remaining records in the block, nor one or more 
succeeding blocks, issue a RELSE macro before the CNTRL macro. 
The next GET then makes the first record of the new block 
available for processing. If the CNTRL macro (with FSR, for 
example) is issued without a preceding RELSE, the tape is 
advanced. The next GET makes the next record in the old block 
available for processing. 

• For any I/O area combination except one I/O area and no work 
area, IOCS always reads one tape block ahead of the one that is 
being processed. Thus, the next block after the current one is 
in storage ready for processing. Therefore, if a CNTRL FSR is 
given, the second block beyond the present one is passed without 
being read into storage. 

• If FSR or BSR is used, LIOCS does not update the block count . 
Furthermore, 10CS cannot sense tapemarks on an FSR or BSR 

Chapter 5. Processing Magnetic Tape Files with SAM 5-11 



CHAPTER 6. PROCESSING UNIT RECORD FILES WITH SAM 

Unit record files are, in general, characterized by utilizing a wide 
variety of storage media. These range from punched card through 
printer and console to the latest in magnetic ink (MICR) and machine 
readable printed (OCR) media. For some of these, each record is 
complete on one unit of information storage, such as a punched card 
or MICR-inscribed check. For other files, such as printer or console 
files, a unit is the line of print or display characters rather than 
a physical entity like a piece of paper. For yet others, as with 
paper tape or OCR journal tape, the nature of a unit is not so well 
defined. 

The result of this variety is that unit record programming is highly 
device-dependent, to the degree that different DTFs are needed to 
define files for different types of unit record I/O devices. This 
chapter discusses the following unit record files, based on device 
types: 

Punched Card Files 
Printer Files 
Console Files 
Magnetic Ink Character Reader Files 
Optical Reader Files 

PROCESSING PUNCHED CARD FILES 

Before punched card files can be processed, they must be defined by 
the DTFCD macro and the CDMOD logic module generation macro. DTFCD 
and CDMOD are also required to define 3881 Optical ~lark Reader 
files. See the section "Processing Optical Reader Files" on 
page 6-32 for more information on processing 3881 files. 

The range of punched card equipment provided by IBM allows you to 
select devices that best support your applications. Some of these 
devices perform only one function, for example reading or punching. 
Other types are able to perform different functions in separate card 
paths, while yet others can perform different functions in a single 
card path. 

The first part of this section ("Associated Files") provides hints 
to bear in mind when using the IBM 2560, 3525, or 5424/5425 to 
perform multiple functions on a file in one pass. 

The IBM 3504 and 3505 offer support for a different kind of 
application: these card readers can be equipped with the Optical 
Hark Reader special feature, which allows reading of up to 40 
columns of marked data. Hints for dealing with this OMR data are 
given under "OMR Data" on page 6-4. 

Chapter 6. Processing Unit Record Files with SAM 6-1 



Programming Considerations for Associated Files 

VSE does not provide any special macros to control the overlapping 
of reading with processing. For the IBM 2560 and the 5424/5425, 
however, the assembler language programmer who uses LIOCS can 
achieve improved performance through the use of dummy PUTs as 
described in the following text. The assembler language programmer 
who uses PIOCS can design his own overlapped processing. 

Note: When using associated files and ASSGN ... ,IGN, all 
logical units of the associated files must be assigned IGN. 

READ-PUNCH ASSOCIATED FILES: For RP associated files, the GET for 
the read file and the PUT for the punch file must both be issued for 
each card. If punching is not desired, the output area or the work 
area must be filled with blanks. LIOCS tests for blanks in the 
output area or work area and, if it finds them, suppresses the 
punching. When the operand CTLCHR=YES or ASA is specified in the 
DTFCD macro for the punch file, the control character must always be 
present in the first byte of the output area or work area; only the 
data portion following the control character may be filled with 
blanks. 

If the CNTRL macro is used, it must be issued before the PUT. As a 
result of the PUT, LIOCS will initiate the reading of the next card, 
and read it into a special buffer, which is part of the DTF table 
for the read file. The user need not, and cannot, set up this 
buffer, nor control its use. The next GET will obtain the data from 
this buffer and move it into the input area. Thus, by issuing the 
PUT as soon as possible after the GET, as much as possible of the 
next card will be read while the program is doing other processing. 

READ-PRINT ASSOCIATED FILES: For RW associated files, the GET for 
the read file must be issued for each card. The PUT for the print 
file needs to be issued only when actual printing is desired. But 
since the PUT initiates the reading of the next card, it is 
advisable to issue a PUT even if no printing is desired and to fill 
the output area or work area with blanks (as described for the RP 
files above). If no PUT is issued, overlapped processing cannot take 
place. 

READ-PUNCH-PRINT ASSOCIATED FILES: For RPW associated files, the GET 
for the read file and the PUT for the punch file must both be issued 
for each card. The PUT for the print file, however, needs to be 
issued only when actual printing is desired. Since it is this PUT 
that initiates the reading of the next card, it is advisable to 
issue the PUT for the print file even if no printing is desired and 
to fill the output area or work area with blanks (as described for 
the RP files above). If no PUT for the print file is issued, 
overlapped processing cannot take place. When the operand CTLCHR=YES 
or ASA is specified in the DTFCD macro for the punch file, the 
control character must always be present -in the first byte of the 
output area or work area; only the data portion following the 

Chapter 6. Processing Unit Record Files with SAM 6-3 



DATA CARD: The following rules apply to the coding of an input card 
to be read in OMR mode: 

• Mark characters (character to be read optically) must be 
separated by at least one column that contains neither marks nor 
punches. 'M' in the example indicates mark characters and 'b' 
indicates the blanks: 

MbMbMbbM 

• Mark characters must be separated from any columns containing 
punched holes (in the example indicated by 'H') by at least one 
column that contains neither marks nor punches: 

MbHbHHH 

• Mark characters in odd columns must be separated from mark 
characters in even columns by at least two columns that contain 
neither marks nor punches: 

MbMbbl'lbM 

OMR DATA RECORD: Although OMR data is physically located in 
alternating columns, the data in the I/O area is compressed into 
contiguous bytes. The relationship of the data on card columns to 
the location of the data in storage is as follows: 

1. If column n does not contain OMR data, the data content of 
column n+1 represents the contiguous byte in virtual storage 
which follows the column n data byte. 

2. If column n does contain OMR data, the data content of column 
n+2 represents the contiguous byte in virtual storage which 
follows the column n data byte. The data contents of column n+1 
is not placed in virtual storage. 

3. The data content of column 1 always represents the first data 
byte in virtual storage. 

Figure 6-1 on page 6-6 shows how these rules apply to the data card 
and its format descriptor card, and the record which results from 
reading the data card. 

When a weak mark or poor erasure is detected in a column, the 
column's data is replaced with a hexadecimal 3F (X'3F') when reading 
in EBCDIC mode, or two hexadecimal 3Fs (X'3F3F') when reading in 
column binary mode. Checking for this condition is your 
responsibility. 

If X'3F' is placed in the data, an X'3F' is also placed in byte 80 
of the I/O area when reading in EBCDIC mode, or in byte 160 when 
reading in column binary mode, to indicate an OMR reading error. You 
can then determine whether or not an OMR reading error occurred on 
the card by checking this byte. If, however, the I/O area length is 

Chapter 6. Processing Unit Record Files with SAM 6-5 



Updati ng Records 

A card record may, with some devices, be read and then have 
additional information punched back into the same card. This is 
possible with the 2560, 3525, and 5424/5425, and with the 1442, 
2520, and 2540 equipped with the special punch-feed-read feature. 

For the card devices, there are two ways of specifying in the DTFCD 
that such updating is desired; which way is used depends on the 
device type: 

• For the 1442, 2520, or 2540 equipped with the punch-feed-read 
feature, use a combined file by specifying TYPEFLE=CNBND in the 
DTFCD. An example of a combined card file is given in Figure 2-4 
on page 2-20. For the 2540 with the punch-feed-read feature, 
the file to be updated must be in the punch feed. 

• For the 2560, 3525, or 5424/5425, use associated files. 
Associated files are defined in the associated file declarations 
(DTFCD and DTFPR) by the ASOCFLE and FUNC operands. 

When updating a file, one I/O area can be specified (using the 
IOAREA1 operand) for both the input and output of a card record. If 
a second I/O area is required, it can be specified with the IOAREA2 
operand. For associated DTFCD files, however, two I/O areas are not 
allowed. 

A PUT for a combined card file must always be followed by a GET 
before another PUT is issued. The first PUT must, of course, also 
preceded by a GET. GETs can be issued as many times in succession 
as desired. The corresponding rules for an associated card file are 
given in the section "GET/CNTRL/PUT Sequence for Associated Files" 
on page 6-16. 

For a file using the 2540 with the punch-feed-read special feature, 
a PUT macro must be issued for each card. For a 1442 or 2520 file, 
however, a PUT macro may be omitted if a particular card does not 
require punching. The operator must run out the 2540 punch following 
a punch-feed-read job. 

In the combined card file example of Figure 2-4 on page 2-20 data is 
punched into the same card which was read. Information from each 
card is read, processed, and then punched into the same card to 
produce an updated record. 

End-of-File Handling 

The EOFADDR operand must be included for input and combined files 
and specifies the symbolic name of your end-of-file routine. IOCS 
automatically branches to this routine on an end-of-file condition. 
In your routine you can perform any operations required for the end 
of the file (you generally issue a CLOSE instruction for the file). 

Chapter 6. Processing Unit Record Files with SAM 6-7 



be a data card. If this card is in fact an end-of-file card, 
the end-of-file condition cannot be recognized. 

If an ERROPT routine issues I/O macros using the same read-only 
module that causes control to pass to the error routine, your 
program must provide another save area. One save area is used for 
the normal I/O operations, and the second for I/O operations in the 
ERROPT routine. Before returning to the module that entered the 
ERROPT routine, register 13 must contain the save area address 
originally specified for the task. 

Programming Considerations 

If OMR or RCE is specified for a 3505 card reader, or if RCE is 
specified for a 3525 card punch, OPEN retrieves the data from the 
first data card and analyzes this data to verify the presence of a 
format descriptor card. If a format descriptor card is found, OPEN 
builds an 80-byte record corresponding to the format descriptor 
card. If a format descriptor card is not found, a message is issued 
and the job is canceled. 

For a 2560, 3525, or 5424/5425 print-only file, OPEN will feed the 
first card to ensure that a card is at the print station. 

For 2560, 3525, or 5424/5425 associated files, all of the associated 
files must be opened before a GET or PUT is used for any of the 
files. 

When a 2540 is used for a card input file, each GET macro normally 
reads the record from a card in the read feed. However, if the 2540 
has the special punch-feed-read feature installed, and if 
TYPEFLE=CMBND is specified in the DTFCD macro, each GET reads the 
record from a card in the punch feed at the punch-feed-read station. 
This record can be updated with additional information that is then 
punched back into the same card when the card passes the punch 
station and a PUT macro is issued. 

2560 Printing 

The 2560 has a maximum of 6 print heads, one for each print line. 
For a description of how the print heads may be set, see the 
appropriate IBM 2560 Multi-Function Card Machine manuals. The 
output area can be as large as 384 bytes, the equivalent of 64 
characters per line. 

With one PUT macro, one logical line of up to 384 characters in 
length is printed. This logical line is split up into 6 physical 
lines. Thus a single PUT macro prints all the information for a 
card. The next PUT macro will cause printing for the next card. 

Chapter 6. Processing Unit Record Files with SAM 6-9 



Closing a File 

For the 2560, 3525, or 5424/5425, CLOSE must also be issued for any 
associated files without any intervening input/output operations. 
Reopening one associated file requires reopening the others. 

For 2560 or 5424/5425 read associated files, the last card must not 
be punched or printed. When a read file (single or associated) is 
closed, the last card read will be selected into the output stacker 
when 2560 'unit exception' has occurred - that is, when there is no 
following card. Two extra feed cycles are executed to perform this. 
When a punch or print file (without an associated read file) is 
closed, LIOCS performs one feed cycle to select the last card into 
the output stacker. When an associated punch-print file is closed, 
LIOCS performs one feed cycle to select the last card into the 
output stacker; if a print PUT was not specified for the last card, 
LIOCS executes the punch PUT before performing one feed cycle to 
select the card into the output stacker. 

When 0 or R has been included in the DTFCD MODE operand for a 3504, 
3505, or 3525 running batched jobs, a non-data card must follow the 
card which causes your program to close the file. 

For the 3525, Figure 6-2 shows the card movement caused by issuing 
CLOSE. 

File Type 

Read 
Punch 
Print 
Read/Print 
Read/Punch/Print 
Read/Punch 
Punch/Print 
Punch/Interpret 

Feed Caused by CLOSE for: 

Read* 
Punch 
Print 
Print* 
Print** 
Punch** 
Print 
Punch 

* A card feed is executed only if R has been specified in 
the DTFCD MODE operand. Programs using read-column
eliminate mode must detect an end-of-file condition them
selves. 

** Delimiter cards cannot be punched or printed in these 
files. CLOSE always issues a feed command. 

Figure 6-2. CLOSE Card Movement for the 3525 

Chapter 6. Processing Unit Record Files with SAM 6-11 



If a program using ASA control characters sends a space and/or skip 
command (without printing) to the printer, the output area must 
contain the first character forms control, and the remainder of the 
area must be blanks (X'40'). If RECFORM=UNDEF, the length of the 
record must be at least 2, if RECFORM=VARUNB, it must be at least 6. 

If a program using ASA control characters prints on the 3525, you 
must use a space 1 control, character (a blank) to print on the first 
line of a card. The particular character to be included in the 
record depends on the function to be performed. For example, if 
double spacing is to occur after a particular line is printed, the 
code for the double spacing must be the control character in the 
output line to be printed. The first character after the control 
character in the output data becomes the first character punched or 
printed. Appendix F gives a complete list of control characters. 

1442 and 2520 Card Read Punch Codes 

Cards fed in the 1442 and 2520 are normally directed to the stacker 
specified in the DTF SSELECT operand. If SSELECT is omitted, they go 
to stacker 1. The CNTRL macro can be used to temporarily override 
the normally selected stacker. 

INPUT FILE: CNTRL can be used only when one I/O area, with or 
without a work area, is specified for the file. To stack a 
particular card, the CNTRL macro should be issued after the GET for 
that card, and before the GET macro for the following card. When the 
next card is read, the previous card is stacked in the specified 
stacker. 

Note: If CNTRL is not issued after each GET, the same card 
remains at the read station. 

OUTPUT FILE: CNTRL can be used with any permissible combination of 
I/O areas and work areas. To stack a particular card, the CNTRL 
macro should be issued before the PUT for that card. After the card 
is punched, it is stacked immediately into the specified pocket. 

COMBINED FILE: CNTRL can be used with any permissible combination of 
I/O areas and work areas. If a particular card is to be selected, 
the CNTRL macro for the file should be issued after the GET and 
before the PUT for the card. When the next card is read, the 
previous card is stacked into the specified stacker. 

2540 Card Read Punch Codes 

Cards read or punched on the 2540 normally fall into the stacker 
specified in the DTF SSELECT operand (or the Rl or PI stacker if 
SSLECT is omitted). The CNTRL macro with code PS is used to select a 
card into a different stacker, which is specified by the third 
operand, nl. The possible selections are shown below. (These 

Chapter 6. Processing Unit Record Files with SAM 6-13 



• With the read file if the associated file is read/print. In 
this case, to stack a particular card, CNTRL must be issued 
after the GET and before any PUT for that card. If no PUT is 
issued for that card, then CNTRL must be issued after the GET 
for that card and before the GET for the next card. 

• With the punch file if the associated file is anything other 
than read/print. In this case, to stack a card, CNTRL must be 
issued before the PUT which punches that card. 

2596 Card Read Punch Codes 

Cards fed into the 2596 are normally directed to the stacker 
specified in the DTF SSELECT operand. If SSELECT is omitted, cards 
go to stacker 1 for read and stacker 3 for punch. The CNTRL macro 
can be used to temporarily override the normally selected stacker. 
The possible selections are shown in the Macro Reference manual. 
(These selections are also those which may be specified in the DTF 
SSELECT operand). 

INPUT FILE: CNTRL can be used only when one I/O area, with or 
without a work area, is specified for the file. To stack a 
particular card, the CNTRL macro should be issued after the GET for 
that card, and before the GET for the next card. When the next card 
is read, the previous card is stacked in the specified stacker. 

OUTPUT FILE: CNTRL can be used with any permissible combination of 
I/O areas and work area. To stack a particular card, the CNTRL macro 
should be issued before the PUT for that card. After the card is 
punched it is stacked immediately into the specified stacker. 

3504 and 3505 Card Readers and 3525 Card Punch Codes 

Cards read on the 3504 or 3505 or punched on the 3525 are normally 
directed to the stacker specified in the DTF SSELECT operand. If 
SSELECT is omitted and if no other CNTRL issuance in the program 
selects stacker 2 or 3, stacker 1 is assumed. If a CNTRL macro is 
issued elsewhere in the program, selecting stacker 2 or 3, then 
stacker 1 must be explicitly selected. The CNTRL macro overrides 
the stacker selection specified in the SSELECT operand or by 
default. For input files, CNTRL can be used only when one I/O area 
is specified for the file. 

3525 Card Printing Codes 

The CNTRL macro can control spacing and skipping to a specific line 
on a card for the 3525 card print feature. The command code SP is 
used to direct the 3525 to space one, two, or three lines on a card; 
SK is used to skip to a channel (1 through 12) on a card. 

Chapter 6. Processing Unit Record Files with SAM 6-15 



To: I Issue: I For file declared in: FUNC= 
I I 
I GET IDTFCD(read file) 
I ! 

READ/PUNCH I [CNTRL] ,'( !DTFCD(punch file) RP 
I I 
I PUT IDTFCD(punch file) 
I I 
I GET IDTFCD(read file) 
I I 
I [CNTRL] ,'e IDTFCD(punch file) 

READ/PUNCH/PRINT I I RPW 
I PUT IDTFCD(punch file) 
I I 
I [PUT] ,;b'~ IDTFPR 
I I 
I GET IDTFCD 
I I 

READ/PRINT I [CNTRL] ,;'~ IDTFCD RW 
I I 
I [PUT]';':';~ IDTFPR 
I I 
I [CNTRL] ,;': IDTFCD 
I I 

PUNCH/PRINT I PUT IDTFCD PW 
I I 
I [PUT]';':';': IDTFPR 
I I 

.. '~ Optional. If used, however, the sequence is as shown . 
** Optional, provided you do not want to print on the card. 

If used, however, the sequence is a~ shown. 

Figure 6-3. GET/CNTRL/PUT Nacro Usage. This macro sequence 
processes one card of an associated file. 

Chapter 6. Processing Unit Record Files with SAM 6-17 



On the 3525 card punch, a channel 9 test indicates print line 17. A 
channel 12 test indicates print line 23. An overflow condition from 
either of these channels causes: 

• 

• 

a transfer of control to the overflow routine specified in the 
PRTOV macro, or 

a skip to channel one to begin printing on the next card for 
print only files. 

When the PRTOV macro is used on a 3525 2-line printer, the result of 
the test is always negative since lines 17 and 23 are not available. 
The test is logically a no-operation. 

Printer Control 

Note: PRTOV without the routine name option is invalid for 
3525 associated files. A skip to channel one is valid only for 
3525 print only files. PRTOV is not allowed for the 2560 or 
5424/5425. 

Line spacing or skipping for a printer can be controlled either by 
specified control characters in the data records or by the CNTRL 
macro. Either method, but not both, may be used for a particular 
file. For use of the latter method, see "Printer Codes" on 
page 6-20. 

When control characters in data records are used, the DTF CTLCHR 
operand must be specified, and every record must contain a control 
character in the virtual-storage output area. This control character 
must be the first character of each fixed-length or undefined 
record, or the first character following the record-length field in 
a variable-length record. The BLKSIZE specification for the output 
area must include the byte for the control character. If undefined 
records are specified, the RECSIZE specification must also include 
this byte. For maximum and default output area sizes for different 
printers, see the DTFPR macro in the Macro Reference manual. 

When you issue a PUT macro for a printer file, this PUT causes the 
printer to space automatically by one line, provided the DTFPR macro 
for the file does not include the CTLCHR=code operand. Under these 
circumstances, there is no need to issue a CNTRL macro or to specify 
a control character in order to advance the paper on the printer by 
one line. 

Note: Printing without spacing can only be done with the 
CTLCHR=code operand. 

When a PUT macro is executed, the control character in the data 
record determines the command code (byte) of the CCW that IOCS 
establishes. The control character sent to the device is used as 
follows: 

Chapter 6. Processing Unit Record Files with SAM 6-19 



The SP and SK operations can be used in any sequence. However, two 
or more consecutive immediate skips (SK) to the same carriage 
channel on the same printer result in a single skip immediate. 
Likewise, two or more consecutive delayed spaces (SP) and/or skips 
(SK) to the same printer result in the last space or skip only. Any 
other combination of consecutive controls (SP and SK), such as 
immediate space followed by a delayed skip or immediate space 
followed by another immediate space, causes both specified 
operations to occur. 

PRINTER WITH THE UCS FEATURE: The CNTRL macro can be used before a 
PUT for a file to change the method of processing data checks. Data 
checks can be either processed with an indication given to the 
operator, or ignored with blanks printed in place of the unprintable 
characters. 

A data check occurs when a character (except null (X'OO') or blank 
(X'40')), sent to the printer does not match any of the characters 
in the UCS buffer (print train). On a 3800, a data check occurs when 
an attempt is made to merge a character with another character 
different from itself in the same print position, as well as when an 
unprintable character is transmitted. 

Before opening a file, the BLOCK parameter of the UCS job control 
command determines for a 1403 whether data check processing will 
take place. For any UCS printer, the NOCHK option of the SYSBUFLD 
program and the UCS parameter in the DTFPR has the same meaning. For 
a 3800, the DCHK parameter on the SETPRT job control statement (or 
SETPRT macro instruction) determines whether data checks are blocked 
or allowed. 

If several DTFPRs are assigned to the same physical unit, the UCS 
parameter of the DTF last opened determines whether data check 
processing takes place. If a DTFDI is opened for a UCS printer, it 
has the effect of a NOCHK option. This change is operated on the 
physical device and is valid for all DTFs assigned to this device. 

If the UCS form of the CNTRL macro is used for a printer (other than 
the 3800) without the UCS feature, the CNTRL macro is ignored. 

FOLD AND UNFOLD CODES: Except on a 1403, 3203, 3800, or 5203, the 
CNTRL macro can also be used before a PUT to control the printing of 
lower-case letters. Lower-case letters can either be printed or 
replaced by upper-case equivalents.: Prior to using a CNTRL macro, 
the printing of lower case letters is controlled by the UCB FOLD 
parameter of SYSBUFLD. If the FOLD parameter is specified, bits 0 
and 1 are considered ones for any character, and the upper-case 
equivalent of bits 2 to 7 is printed (for characters other than A 
through Z, there may not be an upper-case equivalent). If UNFOLD is 
specified, the character equivalent of the EBCDIC byte ~s printed. 

When you issue a PUT for a printer file, this PUT causes the 
pertinent printer to space automatically by one line, provided the 
DTFPR macro for the file does not include the CTLCHR=code operand. 

Chapter 6. Processing Unit Record Files with SAM 6-21 



is retried once. If the retry is unsuccessful, a message is issued 
and the job is canceled. 

IGNORE can be specified only for the 3525. IGNORE indicates that the 
error is to be ignored. The address of the record in error is put in 
register 1 and made available for processing. Byte 3, bit 3 of the 
CCB is also set on; you can check this bit and take the appropriate 
action to recover from the error. IGNORE must not be specified for 
files with two I/O areas or a work area. 

ERROPT=name can be specified only for a 3211-compatible printer 
(PRT1). If an equipment check with command retry is encountered, the 
command is retried once. If the retry is unsuccessful a message is 
issued and the job is canceled. With other types of errors an error 
message is issued, error information is placed in the CCB, and 
control is given to your error routine, where you may perform 
whatever actions are desired; however, you should not issue any 
imperative macro instruction for the file invoking the error exit. 
To continue processing at the end of the routine, return to IOCS by 
branching to the address in register 14. 

PROCESSING CONSOLE FILES 

DTFCN defines an input or output file that is processed on a 3210 or 
3215 console printer-keyboard, or a display operator console. DTFCN 
provides GET/PUT logic as well as PUTR logic for a file, and does 
not require a separate logic module macro to be coded. 

Programming Considerations 

Communication with the operator console uses GET or PUT logic, 
combined with a TYPEFLE=INPUT defintion for GET, and OUTPUT 
specification for PUT. In addition, you may use the PUTR (PUT with 
reply) macro to issue a message to the operator that requires 
operator action and which will not be deleted from the display 
screen until the operator has issued a reply. When you use the PUTR 
macro, do not use register 2 as base register. 

You may also use PUTR with the 3210 or 3215 console 
printer-keyboard, in which case PUTR functions in the same way as 
PUT followed by GET for these devices, but provides the message 
non-deletion code for the display operator console. Use of PUTR for 
the 3210 or 3215 is therefore recommended for compatibility if your 
program may at some time be run on the display operator console 
instead of the 3210 or 3215. 

Use PUTR for fixed unblocked records (messages). Issue PUTR after a 
record has been built. 

If PUTR is used in a program, TYPEFLE=C~IBND must be specified. 
DEVADDR=SYSLOG must be specified if your DTFCN macro includes 
TYPEFLE=CHBND. 

Chapter 6. Processing Unit Record Files with SAM 6-23 



- eginning of document buffer area (address specified in IOAREA1 

-Byte 0-5 buffer stotus indicators (address specified in IOREG and in register 7 for your stacker selection routine) 

- Batch numbering updates 

r--- Error indicator for MICR device 

- Pocket you selected 

• 
lrPOCket document .eleeted ;nt, 

Byte 6 - your additional work area 
r--- Byte xxx - document data area 

1\ I 

80 80 00 1 F 5F 5F Your work orea. Document records right-adjusted within 
Length is specified in AOOAREA this area. Length is specified in RECSIZE.-

-- -- -
II 

I~_~----------------Maximum Length is 256 Bytes---------------_ .. ...t\ 

D Indicates the normol condition (no errors - all fields read) when the document is being processed and the stocker selection is 
complete to pocket 5 and batch numbering update was performed (1419 model 1 or 3). 

m Number of buffers is limited only by the amount of storage available (see BUFFERS operand). 

Figure 6-4. MICR Document Buffer 

The MICR document buffer format is given in detail in the Macro 
Reference manual. 

Stacker Selection Routine 

Your stacker selection routine is in your program area and receives 
control whenever a document is ready to be stacker selected. This 
routine determines the pocket (stacker) selected to receive the 
document and whether batch numbering update is to be performed (1419 
only). The entry point is specified in the DTFMR operand 
EXTADDR=name. All registers are saved upon exiting from, and 
restored upon returning to, your program. The use of the general 
registers in this routine is as follows: 

Chapter 6. Processing Unit Record Files with SAM 6-25 



An invalid code placed in byte 4 puts the document into the reject 
pocket and posts bit 1 of byte 0 of the buffer. Byte 0, bit 2 of the 
next buffer is posted. 

Before returning to a 1419 external interrupt routine via the EXIT 
macro with the MR operand (required method), you can request a batch 
numbering update. You can do this only within your 1419 stacker 
selection routine by turning on byte 1, bit 0 in the current 
document buffer. The instruction 

01 1(7),X'SO' 

does this for you. 

For the 1419 (dual address), you cannot obtain batch numbering 
update on an auto-selected document (byte 2, bit 6 on). Such 
requests are ignored by the external interrupt routine. 

Timings for Stacker Selection 

Because a MICR reader continuously feeds documents while engaged, it 
is necessary to reinstruct the reader within a certain time limit 
after a read completion is signaled by an external interrupt. This 
period is generally called minimum stacker selection time. This 
available time depends on the reader model, the length of documents 
being read, single or dual address adapter (1419), and the fields to 
be read on the 1419 (dual address) only. Refer to the appropriate 
MICR publications listed in the latest IBM System/370 and 4300 
Processors Bibliography, for a more complete description of device 
timings. 

Failure to reinstruct the 1255, 1259, or 1419 (single address 
adapter) within the allotted time causes the document(s) processed 
after this time to be auto-selected into the reject pocket (late 
read condition). Failure to reinstruct the 1419 (dual address 
adapter) within the allotted time causes the document being 
processed to be auto-selected into the reject pocket (late 
stacker-select condition). 

Programming Considerations for 1419 Stacker Selection 

The stacker selection routine operates in the program state with the 
protection key of its program and with I/O and external interruption 
disabled. If your stacker selection routine fails to return to the 
supervisor (loops indefinitely), there is no possible recovery. If 
such looping occurs, the system must be re-IPLed to continue 
operation. It is therefore recommended that you thoroughly debug 
your stacker selection routi~e in a dedicated environment. 

In your stacker selection routine, no system macro other than EXIT 
MR can be used. The routine runs with an all zero program and system 

Chapter 6. Processing Unit Record Files with SAM 6-27 



including the six-byte buffer status indicators, any additional user 
work area, and the maximum document data area. You may specify any 
number of document buffers between 12 and 254; the actual maximum 
number depends on the amount of virtual storage available. 

Before any MICR document processing can be done, the file(s) must be 
opened. For MICR devices, OPEN sets the entire I/O area to binary 
zeros. 

The first time a GET (or READ) is executed, the supervisor engages 
the device for continuous reading. Each time thereafter, the GET (or 
READ) merely points (through IOREG) to the next sequential buffer 
within each document buffer area. When a buffer for a file becomes 
available, main line processing continues with the instruction after 
the GET (or READ, CHECK combination). 

When the GET macro detects anend-of-file condition, IOCS branches 
to your end-of-file routine (specified by EOFADDR). For MICR 
document processing, you do not regain control until either a buffer 
becomes filled with a stacker-selected document, or error conditions 
are posted in the buffer status indicators. 

If an unrecoverable I/O error occurs when a GET macro is executed, 
no more GETs can be issued for the file. If an unrecoverable I/O 
error occurs when using the READ, CHECK, WAITF combination or when 
document processing for that file is complete, you can effectively 
continue by closing the file. Further READ, CHECK, WAITFs treat this 
file as having no documents ready for processing; see byte 0, bits 5 
and 6 of the document buffer (under the CHECK macro in the Macro 
Reference manual). 

Each time an end-of-document condition occurs, the user's main line 
processing routine, or any other routine having control at that 
time, is interrupted by the supervisor's external interrupt routine. 
The external interrupt routine branches immediately to the user's 
stacker selection routine. After selecting a pocket, you exit from 
your stacker selection routine so that the supervisor can issue the 
stacker selection command. At this time, the MICR device should be 
reading document data into its respective document buffer area. The 
supervisor, in priority order, passes control to your main line 
processing routine, or to the routine that had been interrupted. 

Thus, document processing continues concurrently (see Figure 6-5 on 
page 6-30) within 

(1) your main line processing routine, 
(2) the supervisor's external interrupt routine, and 
(3) the user's stacker selection routine. 

The order for exiting from these routines is the reverse of the 
indicated order. Processing and monitor operations continue 
concurrently until the reader is disengaged, either normally or 
because of an error. 

Chapter 6. Processing Unit Record Files with SAM 6-29 



I/O error has occurred. If a second operand is not provided within 
the CHECK macro, control passes to the ERROPT routine address. 

The READ filename, MR macro makes the next sequential buffer 
available to you, but it does not verify that it is ready for 
processing (the CHECK macro is provided to make that test). If the 
buffer is not ready for processing, the next READ to that file 
points to the same buffer. Filename specifies the name of the file 
associated with the record. It is the same as that specified in the 
DTFMR header entry. Register notation may be used. MR signifies that 
the file is for a magnetic ink character reader (MICR). 

The CHECK macro examines the buffer status indicators. A READ macro 
must therefore have been issued to the file before a CHECK macro is 
issued. 

The CHECK macro determines whether the buffer contains data ready 
for processing, is waiting for data, contains a special non-data 
status, or the file (filename) is closed. If the buffer has data 
ready for processing, control passes to the next sequential 
instruction. If the buffer is waiting for data, or the file is 
closed, control passes to the address specified for control address, 
if present. If the buffer contains a special non-data status, 
control passes to the ERROPT routine for you to examine the posted 
error conditions before determining your action. (See byte 0, bits 
2, 3, and 4, of the document buffer.) Return from the ERROPT 
routine to the next sequential instruction via a branch on register 
14, or to the control address in register 0. 

If the buffer is waiting for data, or if the file is closed, and the 
control address is not present, control is given to you at the 
ERROPT address specified in the DTFMR macro. 

If an error, a closed file, or a waiting condition occurs (with no 
control-address specified) and no ERROPT address is present, control 
is given to you at the next sequential instruction. 

If the waiting condition occurred, byte 0, bit 5 of the buffer is 
set to 1. If the file was closed, byte 0, bits 5 and 6 of the buffer 
are set to 1. 

The WAITF (wait multiple) macro allows processing of programs in 
other partitions while waiting for document data. If any device 
within the WAITF macro list has records or error conditions ready to 
be processed, control remains in the partition and processing 
continues with the instruction following the WAITF macro. 

One WAITF macro must be issued after a set of READ-CHECK 
combinations before your program attempts to return to a previously 
issued combination. Thus, the WAITF macro must be issued between 
successive executions of a particular READ macro. 

The DISEN macro stops the feeding of documents through the magnetic 
character reader. The program proceeds to the next sequential 

Chapter 6. Processing Unit Record Files with SAM 6-31 



Non-Data Device Operations 

The CNTRL (control) macro provides commands that apply to physical 
non-data operations of an I/O unit and are specific to the unit 
involved. 

For optical readers, commands specify marking error lines, 
correcting a line for journal tapes, document stacker selecting, or 
ejecting and incrementing documents. The CNTRL macro does not wait 
for completion of the command before returning control to you~ 
except when certain mnemonic code~ are specified for optical 
readers. 

CNTRL usually requires two or three parameters. The first parameter 
must be the name of the file specified in the DTF header entry. It 
can be specified as a symbol or in register notation. 

The second parameter is the mnemonic code for the command to be 
performed. This must be one of a set of predetermined codes (see the 
CNTRL macro in the Macro Reference manual). 

The third parameter, n1, is required whenever a number is needed for 
stacker selection, immediate printer carriage control, or for line 
or page marking on the 3886. The fourth parameter, n2, applies to 
delayed spacing or skipping, or to timing m"ark check on the 3886. In 
the case of a printer file, the parameters n1 and n2 may be 
required. 

Whenever CNTRL is issued in your program, the DTF CONTROL operand 
must be included (except for DTFDR) and CTLCHR must be omitted. If 
control characters are used when CONTROL is specified, the control 
characters are ignored and treated as data. 

1287 and 1288 Optical Reader Codes 

The CNTRL macro for the 1287 and 1288 is used for the non-data 
functions of marking a journal tape line, incremeniing a document, 
and ejecting and/or stacker selecting a document. It is also used to 
read data from the 1287 keyboard when processing journal tapes. 

When the CNTRL macro is used with the READKB mnemonic, it allows a 
complete line to be read from the 1287 keyboard when processing 
journal tapes. This permits the operator to' key in a complete line 
on the keyboard if a 1287 read error makes this type of correction 
n~cessary. When IOCS exits to your COREXIT routine, you may issue 
the CNTRL macro to read from the keyboard. The 1287 display tube 
then displays the full line and the operator keys in the correct 
line from the keyboard, if possible. The line read from the keyboard 
is always read left-justified into the correct input area. The macro 
resets this area to binary zeros before the line is read. 

After CNTRL READKB is used, the contents of filename+80 are 
meaningful only for a wrong-length error indication (X'04'). 

Chapter 6. Processing Unit Record Files with SAM 6-33 



Document ejection and/or stacker selection and document increment 
functions can also be accomplished be including the appropriate 
CCW(s) within the CCW list addressed by the READ macro, rather than 
by using the CNTRL macro. This technique results in increased 
document throughput. 

Note: For processing documents in a multiprogramming 
environment where the partition containing 1287 support does 
not have highest priority, the eject and stacker select 
functions must be accomplished by a single command. However, 
when processing documents in a dedicated environment, the 
stacker select command can be executed separately. It must 
follow the eject command within 270 milliseconds if the 
document was incremented, or within 295 milliseconds if the 
document was not incremented. The eject and stacker select 
function must occur alternately. If the timing requirements 
are not met, a late stacker selection condition occurs. 

3886 Optical Character Reader Codes 

When you are using the 3886 Optical Character Reader, you can use 
the CNTRL macro to perform the following operations: 

• Page mark the current document 

• Line mark the current document 

• Eject and stacker select the current document 

• Perform timing mark check 

When the operation has been completed successfully, control is 
returned to the next instruction in your program. If the operation 
does not complete successfully, the COREXIT routine receives 
control. The end-of-file routine receives control when an operation 
is requested but no documents are available and the end-of-file key 
has been pressed. 

The contents of parameters n1 and n2 vary depending on the mnemonic 
operation code specified. Therefore, this discussion treats ea6h 
mnemonic code separately. 

DMK,N1: Specifies that the document currently being processed is to 
be marked when the next eject/stacker-select command is issued. The 
digits to be printed on the page are specified by the four low-order 
bits of the field indicated in parameter n1. The sum of the mark 
digits printed will equal the value specified in the four bits. The 
high-order four bits of the field are not used. You can specify the 
digits you wqnt printed in one of three ways: 

• name specifies the symbolic name of a one-byte field in your 
program in which the low-order four digits indicate the 
combination of digits to be printed. 

Chapter 6. Processing Unit Record Files with SAM 6-35 



3881 Optical Mark Reader Codes 

Documents read by the 3881 are directed to the stacker specified in 
the CNTRL macro or to the stacker specified on the format control 
sheet. Stacker 1 is the normal stacker and stacker 2,is the select 
stacker. If you use both the CNTRL macro and the format control 
sheet to control stacker selection and either specifies stacker 2, 
data documents are stacked in stacker 2. The DTF SSELECT operand is 
not valid for the 3881. 

Programming Considerations 

There are four parts to this section; they apply to: 

• IBM 1270, 1275 Optical Readers/Sorters 

• IBM 1287 Optical Reader and IBM 1288 Optical Page Reader 

• IBM 3886 Optical Character Reader 

• IB'M 3881 Optical Hark Reader. 

Optical Readers/Sorters (IBH 1270, IBM 1275) 

Optical Character Reader/Sorter (OCR) devices can be operated in any 
partition. The user is supplied with an extension to the supervisor 
which monitors, by means of external interrupts, the reading of 
documents into a user-supplied I/O area (document buffer area). 

The user must access all OCR documents through logical IOCS macros. 
Upon request, LIOCS gives a next sequential document and 
automatically engages and disengages the devices to provide a 
continuous stream of input. Detected error conditions and 
information about errors are passed to the user in each document 
buffer. Documents are read at a rate dictated by the device rather 
than by the program. To allow time for necessary processing 
(including the determination of pocket selection), the device 
generates an external interruption at the completion of each read 
operation for each document. The supervisor gives absolute priority 
to external interrupt processing. 

In problem programs, these devices can be controlled by assembler 
language only, at the LIOCS GET level if one device is attached, or 
at the LIOCS READ/CHECK/WAIT level if multiple OCR devices are 
attached. In the latter case, you are allowed to continue processing 
as long as one file has documents ready for processing. 

The DTFHR and the MR~10D macros are used to describe the file. For 
any type of processing you need a document buffer area with a 
special buffer format. A document buffer must not exceed 256 bytes, 
including the six-byte buffer status indicators, any additional user 
work area, and the maximum document data area. You may specify any 

Chapter 6. Processing Unit Record Files with SAM 6-37 



The bit configuration for the pocket light switch area is shown 
under the LITE macro in the Macro Reference manual. The pocket 
lights that are turned on should have their indicator bits set to 1. 
If an error occurs during the execution of the pocket lighting I/O 
commands, bit 7 in byte 1 is set to 1. This error condition normally 
indicates that the pocket light operation was unsuccessful. 

The GET and the READ macro perform the same functions. The GET, 
however, waits while the document buffer fills, whereas the READ 
posts an indicator in the buffer for you to examine with the CHECK 
macro. If this indicator bit is on, the buffer is not ready for 
processing, and a branch is made to the second operand address of 
the CHECK macro. Your routine at this operand address can then READ 
and CHECK another file for document availability. If this buffer is 
ready for processing, control passes to the next instruction. If a 
special non-data status exists, you should analyze the conditions in 
your ERROPT routine and issue a READ to obtain a document unless an 
I/O error has occurred. If a second operand is not provided within 
the CHECK macro, control passes to the ERROPT routine address. 

At least one WAITF macro must be issued between two successive 
executions of anyone READ to the same file. The multiple WAITF 
tests device operation availability or buffer processing 
availability. If work can be done on any specified file, control 
remains in the partition. If not, control passes to a 
lower-priority partition until this partition is ready for 
processing. 

Optical Reader (IBM 1287) and Optical Page Reader (IBM 1288) 

The IBM 1287 and 1288 can be operated in any partition. You must 
access all operations through LIOCS macros or through PIOCS. In your 
program, these devices are controlled by means of the assembler 
language: for 1287 journal tape processing at the LIOCS GET level, 
for 1287 and 1288 document processing at the READ/WAITF level. You 
use the DTFOR macro to describe the input file; the MRMOD macro 
generates the logic module to process the file. The non-data 
functions are performed by the CNTRL macro, which is used to 
increment, eject, and stacker select documents on the 1287 and 1288, 
as well as to mark error lines and to read keyboard information when 
reading journal tapes on the 1287. 

You supply the name of your own COREXIT correction routine in the 
DTFOR macro. If an error condition occurs after a GET, WAITF, or 
CNTRL macro has been executed, COREXIT provides an exit to your 
error correction routine. In this routine you can reset a number of 
error conditions and take appropriate actions. 

When processing journal tapes on the 1287, the RDLNE macro provides 
online correction; it causes the reader to read a line in online 
correction mode while processing in offline correction mode. When 
processing documents on the 1287 or 1288, you can use the RESCN 
macro to selectively reread a field on a document when a read error 

Chapter 6. Processing Unit Record Files with SAM 6-39 



When the RESeN macro is used in the COREXIT routine, the address of 
the load format cew is obtained by subtracting 8 from the 3-byte 
address that is right-justified in the fullword location beginning 
in filename+32. (The high-order fourth byte of this fullword should 
be ignored.) If the RESCN macro is not used in the eOREXIT routine, 
you must determine the load format ecw address. 

When using the RESCN macro, you must ensure that the load format eew 
(giving the document's coordinates for the field to be read) is 
command chained to the eew used to read that field. 

If the reread of the field results in a wrong-length record, 
incomplete read, or an unreadable character, it is indicated in 
filename+80. 

The DSPLY macro displays the document field on the 1287 display 
scope. A complete field may be keyboard-entered if a 1287 read error 
makes this type of correction necessary. An unreadable character may 
be replaced by the reject character either by the operator (if 
processing in the on-line correction mode) or by the device (if 
processing in the off-line correction mode). You may then use the 
DSPLY macro to display the field error. 

The 1287 display tube displays the full field and the operator keys 
in the correct field from the keyboard, if possible. The field read 
from the keyboard is always read into the area (normally within 
IOAREA1) that was originally intended for this field as specified in 
the eew. The macro first resets this area to binary zeros. At 
completion of the operation, the data is left-justified in the area. 

When the DSPLY macro is used in the eOREXIT routine, the address of 
the load format cew can be obtained by subtracting 8 from the 3-byte 
address that is right-justified in the fu1lword location beginning 
at filename+32. (The high-order fourth byte of this full word should 
be ignored.) If the DSPLY macro is not used in the COREXIT routine, 
you must determine the load format cew address. The third parameter 
specifies a general-purpose register (2 through 12) into which you 
place the address of the load format ecw giving the coordinates of 
the reference mark associated with the displayed field. 

The contents of filename+80 are meaningful only for X'40' (1287 
scanner cannot locate the reference mark) and X'04' (wrong-length 
record) after the DSPLY macro is issued. Therefore, you must 
determine whether the operator was able to recognize the unreadable 
line of data. 

Note: When using the DSPLY macro, you must ensure that the 
load format CCW is command chained to the ecw used to read 
that field. This provides the document coordinates for the 
field to be displayed. 

The RDLNE macro provides selective on-line correction when 
processing journal tapes on the 1287 optical reader. This macro 
reads a line in the on-line correction mode while processing in the 

Chapter 6. Processing Unit Record Files with SAM 6-41 



4 X'04' A wrong-length record condition has occurred (for 
journal tapes, five read attempts were made; for 
documents, three read attempt were made). Not 
applicable for undefined records. 

8 X'08' An equipment check resulted in an incomplete read (ten 
read attempts were made for journal tapes or three for 
documents). 

If an equipment check occurs on the first character in 
the record, when processing undefined journal tape 
records, the RECSIZE register contains zero, and the 
IOREG (if used) points to the rightmost position of 
the record in the I/O area. You should test the 
RECSIZE register before moving records from the work 
area or the I/O area. 

16 X'10' A non-recoverable error occurred. 

64 X'40' The l287D scanner was unable to locate the reference 
mark (for journal tapes, ten read attempts were made; 
for documents, three read attempts were made). 

The byte filename+80 can be interrogated to determine the reason for 
entering the error correction routine. Choice of action in your 
error correction routine is determined by the type of application. 

If you issue an I/O macro to any device other than the 1287 and/or 
1288 in the COREXIT routine, you must save registers 0, 1, 14, and 
15 upon entering the routine, and restore these registers before 
exiting. Furthermore, if I/O macros (other than the GET, WAITF, 
and/or READ, which cannot be used in COREXIT) are issued to the 1287 
and/or 1288 in this routine, you must also save and later restore 
registers 14 and 15 before exiting. All exits from COREXIT should be 
to the address specified in register 14. This provides a return to 
the point from which the branch to COREXIT occurred. If the command 
chain bit is on in the READ CCW for which the error occurred, IOCS 
completes the chain upon return from the COREXIT routine. 

Note: Do not issue a GET, READ, OPEN, or WAITF macro to the 
1287 or 1288 in the error correction routine. Do not process 
records in the error correction routine. The record that 
caused the exit to the error routine is available for 
processing upon return to the mainline program. Any processing 
included in the error routine would be duplicated after return 
to the mainline program. 

When processing journal tapes, a non-recovery error (torn tape, tape 
jam, etc.) normally requires that the tape be completely 
reprocessed. In this case, your routine must not branch to the 
address in register 14 from the COREXIT routine, or a program loop 
will occur. Instead, the routine should ignore any output resulting 
from the document. Following an unrecoverable error: 

Chapter 6. Processing Unit Record Files with SAM 6-43 



1288 scanner to locate a reference mark (when processing 
documents only). 

All previous counters contain binary zeros at the start of each job 
step. You may list the contents of these counters for analysis at 
end of file, or at end of job, or you may ignore the counters. The 
binary contents of the counters should be converted to a printable 
format. 

Optical Character Reader (IBM 3886) 

The IBM 3886 Optical Character Reader can be operated in any 
partition. You must access all operations through LIoes macros or 
PIOCS. In problem programs, the device is controlled by means of the 
assembler language only, at the LIOeS READ/WAITF level. 

Two steps are required to use the 3886 as an input device. In one 
assembly, you must define the documents to be read. Then, in the 
problem program, you issue the instructions to process the 
documents. You use the DTFDR macro to define the characteristics of 
the 3886 file in your problem program, to describe the format record 
to be loaded into the 3886 when the file is opened, and to specify 
the storage areas and routines to be used. The DRMOD macro generates 
the logic module to process the file. 

DEFINING DOCUMENTS: Two macros are provided for defining documents. 
One, the DFR macro, defines attributes common to a group of line 
types. The other, the DLINT macro, defines specific attributes of an 
individual line type. As many as 27 DLINT macros can be associated 
with one DFR macro as long as the number of line types plus the 
number of fields is less than or equal to 53. 

The DFR and associated DLINT macros are used in one assembly to 
build a format record. Only one DFR with its associated DLINT macros 
may be specified in each assembly. The DFR is link-edited into the 
core image library so that it can be loaded into the 3886 when the 
field is to be processed. A format record contains information 
about the documents being read, each individual line on the 
document, and each field in the line. This information is used to 
read the line and edit the data before it is passed to the problem 
program. 

When opening a 3886 optical reader file, OPEN loads the appropriate 
format records (as specified in the DTFDR) into the 3886 control 
unit. 

DOCUMENT CONTROL AND MARKING: 3886 support also provides for 

• changing format records 

• ejecting and stacker selecting documents 

• performing timing and mark checks 

Chapter 6. Processing Unit Record Files with SAM 6-45 



operation is then tested for errors. If no errors are detected, 
control is returned to the next instruction in your program. 

ERROR HANDLING: If an error occurs during the I/O operatioIl, control 
is passed to the eOREXIT routine. If an I/O operation is requested, 
no more documents are available, and the end-of-file key has been 
pressed, control is given to the end-of-file routine.: LIOeS 
branches to the eOREXIT routine whenever an error is indicated in 
the EXITIND byte. The eOREXIT routine and EXITIND are both specified 
by operands in the DTFDR macro. 

EXITIND=name specifies the symbolic name of the I-byte area in which 
the completion code is returned to the COREXIT routine for error 
handling from an I/O operation. 

The completion c'odes are: 

Code Meaning 

Dec Hex 

240 

241 

242 

243 

244 

249 

X'FO' 

X'F1 ' 

X'F2' 

X'F3' 

X'F4' 

X'F9' 

No errors occurred. (This code should not be present 
when the eOREXIT routine receives control.) 

Line mark station timing mark check error. 

Non-recovery error. Do not issue the eNTRL macro to 
eject the document from the machine. Have the operator 
remove the document. 

Incomplete scan. 

Line mark station timing mark check and equipment 
check. 

Permanent error. 

Note: If any of these errors occur while the file is being 
opened, the eOREXIT routine does not receive control and the 
job is canceled. 

You can attempt to recover from various errors that occur on the 
3886 through the COREXIT routine you provide. Your COREXIT routine 
receives control whenever one of the following conditions occurs: 

• Incomplete scan 

• Line mark station timing mark check error 

• Non-recovery error 

• Permanent error. 

Chapter 6. Processing Unit Record Files with SAl'! 6-47 



ST ANDARDACME LIFE 
INSURANCE COMPANY 

DuE ('An 
MO DAV ¥R 

Ob 23 72 

DALE E. STUEMKE 

ANNIV 
MONIH 

07 

1363 SE 10TH AVE. 

ROCHESTER, MINN 

INSURED DAWN STUEMKE 

01$1 
NO 

45 

NOTICE OF PAYMENT DUE 

PREMIUM 

249.75 

58395404 249.75 
POliCY NUMBER $ AMOUNT DUE 

H 

1 

Compuy, Plelle mike check 0' mon" o,de, p.,abl. 1o • 
Slandard.om. lit. Ind p,nul wilh nolice I. ,ou, 

II your Idd, ... il olher Ihln Ihown. pl.lI. nOlily Ih'L r---------------t

l Company R,p,nenlilive or I.. . _ II 1 .... 1 : .... 1..-1 
PLEASE RETURN WITH YOUR PAYMENT FOR COMPANY USE ONLY 

Figure 6-6. Premium Notice Example 

To process documents like that in Figure 6-6, one format record 
used. The format record must be created in a separate assembly. 
coding necessary to create the format record is shown in Figure 
on page 6-50. The numbers at the right of the coding form 
correspond to those in the following text: 

is 
The 

6-7 

1. The job control statements indicate that the job is an assembly. 
The output of the assembly is to be cataloged as phase FOR~1AT. 

2. The DFR macro specifies the characteristics common to all lines 
on the document: 

FONT=ANA1: The alphameric OCR-A font is used for reading any 
fields that do not have another font specified in the DLINT 
macro field entries. 

REJECT=@: The commercial @ sign is substituted for any reject 
characters encountered. 

EDCHAR=(t, t ,.): The comma and period are removed from one or 
more fields as indicated in DLINT entries (line 2, field 3). 

3. The DLINT macro describes one line type in a format record 
described by the DFR macro. 

~ The following information is provided about the first line: 

Chapter 6. Processing Unit Record Files with SAM 6-49 



Line 1: 

Header Record: 
(20 Bytes) 
Data Record: 
(130 Bytes) 

Line 2: 

Header Record: 
(20 Bytes) 
Data Record: 
(130 Bytes) 

Line 3: 

Header Record: 
(20 Bytes) 
Data Record: 
(130 Bytes) 

01011000000000000000 

DALEbE. bSTUEMKEb b b b b b ... b 
" ~~ -----------,,~--------- ~ 

Policyholder 
Field 

02021000000000000000 

Pad to 
130 Bytes 

ROCHESTER, b MINN b t> t> t> b 583954040249750 b ... t> 

Address Policy Amount ,~ 130 Bytes 
Field Number Due [Code 

03031000000000000000 

0000000 t> ... b 
~ 

Amount Pad to 
Paid 130 Bytes 

Figure 6-8. Sample Data 

4. The second line on the document is described as follows: 

LFR=2,LINBEG=4: The second line of the document has a line 
format record number of 2. The first field read begins four 
tenths of an inch (10.16 mm) from the left edge of the document. 
The data record is in standard mode; editing is performed on all 
fields on the line. 

FLD1=(30,20,NCRIT),EDIT1=HLBLOF: The first field on the line 
ends 3.0 inches (76.2 mm) from the left edge of the document, 
the edited data is placed in a 20-byte field. The field is not 
considered critical. All leading and trailing blanks are 
removed, the data is left-justified, and the fi~ld is padded to 
the right with blanks. 

Chapter 6. Processing Unit Record Files with SAM 6-51 



• 7 bytes of serial number and batch number data if the serial 
number feature is being used. 

The BLKSIZE operand for the 3881 cannot exceed 900. If specified 
greater than 900, BLKSIZE defaults to 900. If the BLKSIZE operand is 
omitted, 900 is assumed. 

A device address (DEVADDR operand) of SYSIPT, SYSPCH, or SYSRDR must 
not be specified. 

Use of a work area (WORKA=YES) is not permitted with the 3881. 

Only fixed, unblocked, input records are valid for the 3881. 

Chapter 6. Processing Unit Record Files with SAM 6-53 



CHAPTER 7. PROCESSING DEVICE-INDEPENDENT SYSTEM FILES WITH SAM 

Device independence allows you to program as if a certain device 
were always available. When the program is actually run and the 
device happens not to be available, the symbolic device name can be 
assigned easily to some other device. In some cases, the other 
device may even be of' a different type. 

The DTFDI macro provides device independence for system logical 
units. If several DTFDI macros are assembled within one program and 
all of them have the same RDONLY condition, only one logic module 
(DIMOD) is required. Therefore, DTFDI processing requires less 
storage than device-dependent LIOCS macros. 

If you are using a DASD device or a PRT1 or 3800 printer, you do not 
need to specify DIMOD. Support for these devices includes 
pre-assembled logic modules that are automatically loaded into the 
SVA (system virtual area) at IPL time and are linked to the problem 
program when the assigned file is opened. To maintain device 
independence, however, you may choose to include a DIMOD 
specification in your program if, when you write the program, you 
are not certain which device will be assigned to the file at 
execution time. When the file is opened, the OPEN routines for DASD 
devices and for PRT1 or 3800 printers will override the DIMOD 
linkage if the file is assigned to such a device. 

The DTFDI macro should always be used to read SYSIPT data if the 
program might be invoked by a cataloged procedure, because in that 
case the input data might be part of the procedure. 

The restrictions on DTFDI processing are: 

• 

• 

• 

• 

• 

• 

Only fixed unblocked records are supported. 

Only forward reading is allowed. 

In a multivolume diskette file, new volumes are fed 
automatically. 

The last volume of a multivolume diskette output file will be 
ejected automatically, but the last volume of a multivolume 
diskette input file will not. 

If DTFDI is used with diskettes, special records (deleted or 
sequentially relocated records) on input files are skipped and 
not passed to the user. 

Rewind options are not provided, that is, no repositioning is 
done at OPEN and CLOSE time. 

Chapter 7. Processing Device-Independent System Files with SAM 7-1 



80 bytes for SYSIPT. 
80 bytes for SYSRDR. 
81 bytes for SYSPCH. 
121 bytes for SYSLST. 

ERROR HANDLING 

By means of two DTFDI operands, ERROPT and WLRERR, IOCS assists you 
in processing I/O and record-length errors. The WLRERR operand 
applies only to input files on devices other than diskette units. It 
specifies the name of your routine to which IOCS branches if a 
wrong-length record is read on a tape or disk device. 

Because only fixed-length records are allowed, a wrong-length record 
error condition results when the length of the record read is not 
equal to that specified in the RECSIZE operand. If the length of 
the record is less then that specified in the RECSIZE operand, the 
first two bytes of the CCB (first 16 bytes of the DTF) contain the 
number of bytes left to be read (residual count). If the length of 
the record to be read is larger than that specified in the RECSIZE 
operand, the residual count is set to zero and there is no way to 
compute its size. The number of bytes transferred is equal to the 
value of the RECSIZE operand, and the remainder of the record is 
truncated. 

The address of the record is supplied in register 1. In your 
routine, you can perform any operation except issuing another GET 
for this file. Also if you use any other 10CS macros in your 
routine for a file assigned to a DASD, you must save the contents of 
register 14. If RDONLY=YES, you must save the contents of register 
13 as well. For a file assigned to a DASD, use of a LIOCS macro 
other than ERET will cause the task to be terminated (for the file 
in error). 

At the end of the routine, you must return to IOCS by branching to 
the address in register 14. When control returns to your program, 
the next record is made available~ If this operand is omitted but a 
wrong-length record is detected by IOCS, the action depends on 
whether the ERROPT operand is included: 

• If the ERROPT operand (always assumed for DASD) is included, the 
wrong-l~ngth error record is treated as an error record and 
handled according to the ERROPT operand. 

• If the ERROPT operand is omitted, IOCS ignores wrong-length 
errors and the record is made available to you. If, in addition 
to a wrong-length record error, an unrecoverable parity error 
occurs, the job is terminated. 

The ERROPT operand does not apply to output files. For output files 
for most devices, the job is automatically terminated after IOCS has 
attempted to retry writing the record; for 2560 or 5424/5425 output 
files, normal error recovery procedures are followed. 

Chapter 7. Processing Device-Independent System Files with SAM 7-3 



If the system logical units SYSIPT and SYSRDR are assigned to a 
5424/5425, IOCS requires that the /* card, indicating end-of-file, 
be followed by a b~ank card. An error condition results if the 
records are allowed to run out without a /* card (and without a /& 
card, if end-of-job). IOCS detects the end-of-file condition on 
diskette units by recognizing that end-of-data has been reached on 
the current volume and that there are no more volumes available. 

Chapter 7. Processing Device-Independent System Files with SAM 7-5 



CHAPTER 8. REQUESTING CONTROL FUNCTIONS 

PROGRAM LOADING 

FETCH Macro 

LOAD Macro 

Phases are normally loaded by the supervisor in response to the job 
control statement II EXEC phasename. However, through the use of a 
FETCH, LOAD, or CDLOAD macro, an executing phase can load another 
phase. The phase to be loaded may be in the system sublibrary, or a 
private sublibrary, or it may be in the SVA (shared virtual area). 
The FETCH macro gives control to the phase just loaded. With the 
LOAD or CDLOAD macro, control remains with the phase that issued the 
macro. The load and entry point for the requested phase varies as 
described below for each of the three macros. 

The load point and the entry point of the requested phase are the 
addresses determined when the phase was link-edited. A different 
entry point may be specified in the FETCH macro. The load point must 
be in the same partition as the requesting phase. The FETCH macro 
may not load self-relocating phases. 

The load point and entry point of the requested phase may be the 
addresses determined when the phase was link-edited. The entry point 
is returned to you in register 1, and it is up to you to transfer 
control to the newly loaded phase. The LOAD macro permits you to 
override the link-edited load point of the subject phase. When you 
override the link edit load point, the entry point address is also 
relocated. For non-relocatable or self-relocating phases no other 
addresses will be relocated by the supervisor. A relocatable phase, 
however, will have all addresses relocated to reflect the current 
load point of the phase. 

CDLOAD Macro 

The CDLOAD macro requests a phase to be loaded into the partition's 
GETVIS area, an area available in the partition for dynamic 
allocation of storage. For more information about the partition 
GETVIS area, see VSE/Advanced Functions, System Management Guide. 

CDLOAD determines the size of the phase, acquires the appropriate 
amount of GETVIS storage, and loads the phase. The entrypoint 
address of that phase is returned to you in register 1. The entry 

Chapter 8. Requesting Control Functions 8-1 



NOLOAD 

LOAD 
LR 
TM 
BO 
TM 
BO 
LA 
LOAD 
EQU 

XXXXXXX, LIST=GENLIST, TXT=NO 
2,0 GET PTR TO DIRECTORY ENTRY 
16(2),X'06' PHASE FOUND? 
NOTFOUND NO 
16(2),X'10' PHASE IN SVA? 
NOLOAD YES, BRANCH AROUND LOAD 
O,LOADPT 
(2), (O),DE=YES 

RFG.l POINTS TO ENTRY POINT 

GENLIST GENL XXXXXXX, .... 

LOADPT DS OD LOAD POINT OF OVERLAY PHASE 

Figure 8-1. LOAD l-lacro Example 

VIRTUAL STORAGE CONTROL 

The macros designed for use by virtual-mode programs, which are 
discussed in this section, perform the following services: 

• fix pages in real storage (PFIX macro) and later free the same 
pages for normal paging (PFREE macro). 

• determine the mode of execution of a program (RUNt-lODE macro). 

• extract partition-related information, such as partition 
boundaries. 

• influence the paging mechanism in order to reduce the number of 
page faults, ffi1n1m1ze the page I/O activity, and control the 
page traffic within a specific partition. 

• allocate and release virtual storage dynamically. 

The discussion of the available virtual storage control macros in 
this section assumes that you are familiar with the virtual storage 
concept implemented in VSE and described in VSE/Advanced Functions, 
System Management Guide. 

Chapter 8. Requesting Control Functions 8-3 



) 

FIXER 

HERE 

ARTN 

ARTNEND 
NOPAGES 

CANCL 
WAIT 
END 
OPCCB 
OPCCW 
MSG 

, 
I 
I 
I 

PFIX ARTN,ARTNEND+2 FIX ARTN IN STORAGE I 
B *+4(15) BRANCH ACCORDING TO RETURN CODE I 
B HERE CONTINUE IF OK I 
B NOPAGES GO TO CANCEL IF PART TOO SMALL I 
B WAIT GO TO WAIT UNTIL PAGES FREED I 
B CANCL GO TO CANCEL IF PFIX ADDRESSES INVALID I 
BAL 14,ARTN GO TO ARTN I 
PFREE ARTN,ARTNEND+2 FREE ROUTINE AFTER EXECUTION I 

(time dependent processing which cannot be I 
paged out during execution) I 
BR R14 RETURN I 
LA R1,OPCCB I 
EXCP (1) WRITE MESSAGE TO OPERATOR I 
WAIT (1) WAIT FOR COMPLETION I 
CANCEL ALL I 

(routine to 
EOJ 

free other pages) 

CCB 
CCW 
DC 
DC 

SYSLOG,OPCCW 
X'Og' ,MSG,X'20',61 
CL32'AM CANCELING PLEASE ENLARGE REAL' 
CL29'PARTITION AND RESTART THE JOB' 

I 
I 
I 
I 
I 
I 
I 
I 
I 

.1 

Figure 8-2. PFIX and PFREE Example 

8 Insufficient free page frames were available. 

12 You specified invalid addresses in your macros. 

Note in the example how the return code can be used to establish a 
branch to parts of the program that handle these specific 
conditions. 

Determining the Execution Mode of a Program 

You may have a program that must do different processing depending 
upon what its execution mode is. It may be impractical to have two 
separate programs cataloged in the system sublibrary, one program 
for real mode and another program for virtual mode. The RUNMODE 
macro can be issued during the execution of the program to inquire 
which mQde of execution is being used. A return code is issued to 
the program in register 1. 

Chapter 8. Requesting Control Functions 8-5 



the specified pages are already in real storage when the macro is 
issued, they are given the lowest priority for page-out. 

Dynamic Allocation of Virtual Storage 

With the GETVIS and FREEVIS macros, a program can dynamically 
acquire and release blocks of storage in the GETVIS area of the 
partition in which the program is running. 

A minimum GETVIS area is always reserved in a partition as long as a 
job in that partition runs in virtual mode. The minimum can be 
enlarged by the SIZE command. For a discussion of the SIZE command, 
refer to the VSE/Advanced Functions, System Management Guide. 

For any partition, the SIZE operand may be specified in the EXEC job 
control statement: it overrides a permanent value (minimum or set by 
the SIZE command) and sets aside GETVIS storage for the duration of 
the job step. The SVA (Shared Virtual Area) contains a GETVIS area, 
too. However, that GETVIS area is reserved for system use. 

PROGRAM COMMUNICATION 

For each partition, the supervisor contains a storage area called 
the communication region. Through the available macro support, your 
program can read information that is stored in that area and modify 
one specific field, the user area, of the communication region. 

Figure 8-3 on page 8-8 shows the portion of the communication region 
that may be of interest to you., This information is described below. 

Field 
Name 

JOBDATE 

COMUSCR 

UPSI 

Length Information 
(bytes) 

8 Calendar date. Supplied from the system date 
whenever the JOB statement is encountered. 
Depending on the system default or the 
specification in the STDOPT command, the format of 
the date is either mm/dd/yy or dd/mm/yy where mm 
is month, dd is day, yy is year. This date can be 
temporarily overridden by a DATE statement. 

4 Reserved 

11 

1 

User area for communication within a job step or 
between job steps. All 11 bytes are set to zero 
whenever a JOB or end-of-job statement for a job 
is encountered. 

UPSI (user program switch indicators). Set to 
binary zero when a JOB or end-of-job statement for 
the job is encountered. Initialized by the UPSI 
job control statement. 

Chapter 8. Requesting Control Functions 8-7 



bytes from the symbolic location DATA into bytes 16 through 18 of 
the communication region: 

MVCOM 16,3,DATA 

The JOBCOM macro makes communication possible between jobs or job 
steps of a partition. Information being communicated is stored in a 
256-byte area. The system provides such an area for each partition. 
Through the JOBCOM macro, a program either moves information into 
that area or retrieves information that had previously been stored 
there by another program. The area remains unaltered from one job 
(or job step) to the next. Unless it is modified through execution 
of the JOBCOM macro, the contents of the area remain unchanged over 
any number of jobs. The program that issues the JOBCOM macro must 
provide a register save area 18 fullwords long. Prior to execution 
of the macro, register 13 has to point to that save area. 

The following example shows how 8 bytes of information are stored 
into the first 8 bytes of the system-supplied area. The other 248 
bytes of that area remain unchanged. 

LA 13,JCOMSAVE 
JOBCOM FUNCT=PUTCOM, X 

JCOMSAVE DS 
JCOMINFO DC 

AREA=JCOMINFO,LENGTH=8 

18F 
C'ABCDEFGH' 

ASSIGNING AND RELEASING I/O UNITS 

Programmer logical units can be released from within a program by 
the RELEASE macro. RELEASE may be used only for units that are 
assigned to the partition in which the macro is issued. 

The macro unassigns any specified programmer logical units, unless 
they are assigned permanently. For more information about logical 
unit assignment, see VSE/Advanced Functions, System Management 
Guide. 

Be sure your program informs the system operator via a message that 
the assignment was released. 

A magnetic tape, disk or unit record device that is not tied up to 
one of the system's partitions by a previous assignment of a logical 
unit can be made available to the program dynamically by using the 
ASSIGN macro. This macro is also used for dynamic release of the 

Chapter 8. Requesting Control Functions 8-9 



If ASPL DSECT=NO (default) has been specified, the following is 
generated: 

name DS 
ASGFUNCT DS 

OXLS 
XL1 User has to provide 

function code 

The following function codes can be specified: 

ASGDPT EQU X'SO' Temp. progr. unit - disk 
ASGDST EQU X'S4' Temp. system unit - disk 
ASGDSP EQU X'SC' Perm. system unit - disk 
ASGTPT EQU X'40' Temp. progr. unit - tape 
ASGTPD EQU X'42' Temp. progr. unit: 

specific tape 
ASGUAP EQU X'2S' Unassign progr. unit 
ASGUAS EQU X'2C Unassign system unit 
ASGCHG EQU X'10' Change temp. to perm. 
ASGURT EQU X'02' Device other than temp. 

disk/tape progr. unit 
ASGLUNO DS OXL2 Logical unit number 
ASGCLASS DS XL1 Logical unit class 
ASGPROG EQU X'Ol' Programmer class 
ASGSYST EQU X'OO' System class 
ASGLUNDX DS XL1 Logical unit index 
ASGCUU DS XL2 Physical unit number 
ASGLNG EQU -.': - ASGFUNCT Length of ASPL 

Chapter S. Requesting Control Functions S-ll 



TIMER SERVICES AND EXIT CONTROL 

Timer Services 

VSE provides the following timing facilities: 

• Time-of-day clock 

• Interval timer 

• Task timer 

Time-of-Day Clock 

The time-of-day (TOD) clock is a standard high-resolution hardware 
feature. Any program executing under VSE can obtain the time of the 
day by issuing the GETIME macro. This causes VSE to present to your 
program the time of day in accordance with your specification in the 
macro in one of the following formats: 

• As a packed decimal number in the form hhmmss (where hh = hours, 
mm = minutes, ss = seconds). 

• As a binary number in seconds. 

• As a binary number in 1/300 seconds. 

• In microseconds. 

Interval Timer 

Any program (or task) can set a real time interval, in seconds, or 
1/300 of a second, by using a SETIME macro. The maximum valid 
interval is 55924 (equivalent to 15 hours, 32 minutes, 4 seconds), 
or 8388607 (equivalent to 7 hours, 46 minutes, 2 seconds, 
approximately), if expressed in 1/300 of a second. Expiration of 
the specified interval causes an external interrupt. 

When the interrupt occurs and the program has established linkage to 
a timer exit routine via a STXIT IT macro, the program is 
interrupted and control is transferred to the timer exit routine. 

At the end of the timer exit routine (statement EXIT IT), control is 
transferred to the point of interruption. 

Note: This support is independent of the time-of-day clock; 
the use of the interval timer and of GETIME have no effect on 
one another. 

Chapter 8. Requesting Control Functions 8-13 



Task Timer 

The task timer support can be generated only for the main task of a 
specific partition. 

The main task sets the desired time interval by specifying it, in 
milliseconds, in the operand of the SETT macro; or by putting the 
desired interval, in milliseconds (in binary), in the register 
specified in the SETT macro. The maximum valid interval is 
21,474,836 milliseconds. The time interval is decremented only when 
the main task is executing. 

When the specified time interval has elapsed, the task timer routine 
supplied in the STXIT TT macro is entered. If a routine was not 
supplied to the supervisor by the time the interrrupt occurs, the 
interrupt is ignored. 

When a program is restarted from a checkpoint, the timer interval 
set by the SETT macro is not restarted. 

OBTAINING OR CANCELING THE TIt-IE REMAINING: The task using the task 
timer can issue a TESTT macro to test how much time remains in the 
time interval set by an associated SETT macro. The time rema~n~ng in 
the interval is returned, in hundredths of milliseconds (in binary), 
in register o. 

The time remaining in the interval can be canceled by specifying 
CANCEL in the TESTT macro. This prevents the task timer exit routine 
from being entered. 

Linkages to User Exit Routines 

Linkage to a user exit routine can be established through the STXIT 
macro. The STXIT macro specifies the condition under which control 
is to be passed to the user-written exit routine named in the macro. 
Figure 8-6 on page 8-16 shows the conditions that you can request to 
cause control to be transferred, the requesting code you provide as 
the first operand, and the type of user exit routine normally 
associated with the exit condition. To return from a user exit 
routine, always use the EXIT macro. 

Chapter 8. Requesting Control Functions 8-15 



TIMECHK START Xt 78 t 
BALR R9,0 

BASEADDR EQU * 
USING BASEADDR,R9 Establish addressabi1ity 
STXIT IT,TIMINTR,TIMSA. Set up link to timer routine 
SETIME 1800 Timer interrupt every 30 min. 

PROCESS EQU * 

(perform normal processing) 

B PROCESS 

* * TIMER INTERRUPT ROUTINE 

* I 
TIMINTR EQU "i'r I 

BALR R9,0 I 
L R9 ,ABASE _"it: (R9) Establish addressabi1ity I 

I I 
I I 
I (perform IT exit processing) I 
I I 
I I 
I SETIME 1800 Set up next interval I 
I EXIT IT Return to interrupted point I 
I * I 
I * CONSTANTS I I 

I .. t: I 
I ABASE DC A (BASEADDR) I 
I TIMSA DS OCL72 IT exit routine save area I 
I SAPSW DS D Interrupt status information I 
I SAOO DS 9F Registers o to 8 I 
I SA09 DS 7F Registers 9 to 15 I 
I * I 
I R9 EQU 9 I 
I END I 
I I 
I I 

Figure 8-7. Example of Using the Interval Timer Exit 

MULTITASK~NG CONSIDERATIONS: The main task or any subtask in a 
partition or both may issue a SETI~lE macro. Each may also issue a 
STXIT macro to establish linkage to a common user exit routine 
provided that this routine is reenterab1e and that each task has its 
own unique save area. Figure 8-8 on page 8-18 illustrates this 
approach. 

Chapter 8. Requesting Control Functions 8-17 



After the appropriate action is taken, your abnormal termination 
routine may either resume processing using the EXIT AB macro (main 
task only) or terminate the task with CANCEL, DETACH, DUMP, JDUMP, 
EOJ, or RETURN (if RETURN=YES in the ATTACH macro). 

For a main task, the whole job is terminated if OPTION=DUMP has been 
specified explicitly or by default. Only the current job step is 
terminated if OPTION=NODUMP and the termination macro used was 
either DUMP or EOJ. 

If OPTION=EARLY is specified in the STXIT AB macro, the abnormal 
termination routine will be invoked for any type of termination 
(normal or abnormal) and, for a main task, before its subtasks are 
terminated. 

Program-Check User Exit 

The linkage established by the STXIT PC macro instruction provides 
entry to a user exit routine for handling any program check 
interrupt that is not caused by a page fault. The routine can 
analyze the interrupt status information and the contents of the 
general registers stored in the user's save area. 

If an error condition caused the interrupt, your exit routine can 
correct the error or decide to ignore it, depending on the severity 
of the error. Your routine can either return control to the 
interrupted program or request termination of'the program. 

Having a user's program check routine can be useful when it is known 
that one or more programs may be checked by processing errors that 
are insignificant to the results, or can be corrected easily. 
Figure 8-9 on page 8-20 shows an exit routine for recovering from a 
program check caused by attempting to divide by zero. In this 
example, any other errors causing a program check result in the user 
save area being dumped before the job is terminated. 

Operator-Communication User Exit 

A direct communications link between the operator and a program can 
be established by issuing an STXIT OC macro instruction. It may be 
issued only by the main task in any partition. 

To initiate communication, the operator enters tlSG followed by the 
partition identifier (such as BG or F2), which sets the linkage to 
the user's operator-communication exit routine, which may perform 
any processing. 

Since an operator communication exit routine is performed 
asynchronously with the main routine of your program, be careful 
when using the same resources (such as data and instructions) in 

Chapter 8. Requesting Control Functions 8-19 



;' 

Task-Timer User. Exit 

Task timer support may be generated via the FOPT generation macro. 

The time interval for the task timer is specified in the SETT macro. 
When the interval has elapsed, the exit routine specified in the 
STXIT TT macro is entered. The linkage to the exit routine must have 
been established before an interrupt occurs; otherwise, the 
interrupt will be ignored. The macro can be issued only by the 
partition owning the task timer. 

The task timer exit routine returns control to the supervisor by 
issuing an EXIT TT macro. When the EXIT TT macro is processed, the 
interrupt status information and the content of the registers are 
restored from the save area. It is important, therefore, that the 
content of the save area specified in the associated STXIT TT macro 
is not destroyed. 

REQUESTING STORAGE DUMPS 

Whenever a program is to be terminated by the system for a reason 
other than a normal end-of-job condition, and especially after a 
program check interrupt, a printout of all or part of the storage 
area occupied or used by the program at that moment is a useful aid 
for tracing the cause. For guidance on reading and interpreting the 
printout, see VSE/Advanced Functions Diagnosis: Service Aids. 

VSE provides several macros to request such a printout. These 
macros may be used, for example, at the end of a user's exit routine 
for handling an abnormal termination condition. 

The following is a summary of the functions of macros that request 
storage dumps: 

DUMP 

JDUMP 

The macro dumps, in hexadecimal format, the contents of 
the supervisor area, or the contents of some supervisor 
control blocks, depending on the parameters specified in 
the STDOPT job control command or on the II OPTION job 
control statement in a specific job step. (For details 
about the dump options you can specify in the STDOPT 
command or on the II OPTION statement, refer to 
VSE/Advanced Functions, System Control Statements). In 
addition, the DUMP macro dumps the storage contents of the 
partition, and all registers. The job step is terminated 
if the macro is issued by the main task; but if issued by 
a subtask, then only that subtask is detached. 

This macro causes the same areas to be dumped as for a 
DU~1P macro, but terminates the entire job (if issued by a 
subtask, then only that subtask is terminated). 

Chapter 8. Requesting Control Functions 8-21 



'\ 
/ 

is not terminated as was the case with an EOJ issued in the main 
task. 

Program- Requested Abnormal Ends 

To terminate a task under abnormal conditions, you may use either 
the DUMP or JDUMP macro or the CANCEL macro. 

The macros DUMP and JDUMP were discussed in the section "Requesting 
Storage Dumps" on page 8-21. When issued by the main task, the DUMP 
macro causes the job step, and the JDUMP macro the entire job, to be 
terminated. If one of these macros is issued by a subtask, only 
this subtask gets detached. 

The CANCEL macro provides another way of terminating abnormally. As 
with DUMP or JDUMP, A CANCEL issued in the main task terminates 
processing of all tasks within the partition. A CANCEL issued in a 
subtask detaches only the subtask, unless ALL was specified in the 
CANCEL macro; a CANCEL ALL in a subtask causes all processing in the 
partition to terminate. 

Using the EXIT Macro 

EXIT is another macro used to end a portion of your program. 
However, it should not be confused with the task-terminating macros 
EOJ, DETACH, DUMP, JDUMP, or CANCEL. Via the EXIT macro, a user exit 
routine (discussed in the section "Timer Services and Exit Control" 
on page 8-13) causes control to return to the point of interruption 
within the main-line routine; thus the task continues processing. 

For an AB exit routine, control is returned to the instruction 
following the EXIT AB macro. 

PROGRAM LINKAGE 

A program may consist of several phases or routines produced by 
language translators and combined by the linkage editor. The CALL, 
SAVE, and RETURN macros are used for linkage between routines in 
storage and within the same or different phases. These macros, with 
conventional register and save area usage, allow branching from one 
routine to another or from one phase to another and also allow 
passing parameters. 

Passing control from one routine to another within the same phase is 
referred to as direct linkage. Linkage can proceed through as many 
levels as necessary, and each routine may be called from any level. 
The routine given control during the job step is initially a called 
program. During execution of a program, the services of another 
routine may be required, at which time the current program becomes a 
calling program. 

Chapter 8. Requesting Control Functions 8-23 



Save Areas 

A called program should save and restore the contents of the linkage 
registers, as well as the contents of any register that it uses. 
The registers are stored in a save area that the higher (calling) 
level program provided. This procedure conserves storage because 
the instruction to save and restore registers need not be repeated 
in each calling sequence. 

Any calling program must provide a save area and place its address 
in register 13 before it executes a direct linkage. This address is 
then passed to the called routine. A save area occupies nine 
doublewords and is aligned on a doubleword boundary plus one 
additional word at the end if your program uses double buffering for 
a 2501. For programs to save registers in a uniform manner, the 
save area has a standard format shown in Figure 8-11 on page 8-26 
and described below. 

Chapter 8. Requesting Control Functions 8-25 



13 48 (The contents of) register 7. 

14 52 (The contents of) register 8. 

15 56 (The contents of) register 9. 

16 60 (The contents of) register 10. 

17 64 (The contents of) register 11. 

18 68 (The contents of) register 12. 

19 72 CCE switch for double CCE 
support. 

Figure 8-11 (Part 2 of 2). Save Area Words and Contents in Calling 
Programs 

• 

• 

• 

• 

• 

• 

Word 1: An indicator byte followed by three bytes that contain 
the length of allocated storage. Use of these fields is 
optional, except in programs written in the PL/I language. 

Word 2: A pointer to word 1 of the save area of the calling 
program. The address is passed to the called routine in 
register 13. The contents of register 13 must be stored by a 
calling program before it loads register 13 with the address of 
the current save area that is passed to a lower level routine. 

Word 3: A pointer to word 1 of the save area of the next lower 
level program, unless this called program is at the lowest level 
and does not have a save area. (The called program required a 
save area only if it is also a calling program.) Thus, the 
called program, if it contains a save area, stores the save area 
address in this word. 

Word 4: The return address, which is register 14, when control 
is given to the called program. The called program may save the 
return address in this word. 

Word 5: The address of the entry point of the called program. 
This address is in register 15 when control is given to the 
called program. The called program stores the entry-point 
address in this word. 

Words 6 through 18: The contents of registers 0 through 12, in 
that order. The called program stores the register contents in 
these words if it is programmed to modify these registers. 

Chapter 8. Requesting Control Functions 8-27 



Code in calling routine: 
LA 13,SAVAREA1 

CALL SUBROUT,(PAR1,PAR2) 
C 12,ZERO 

SAVAREA1 DS 9D 

PAR 1 DC C'ABCDEF' 
PAR2 DS F 
ZERO DC F'O' 

Code in called routine: 
SUBROUT SAVE 

BALR 
USING 
ST 
LA 

processing 

L 
RETURN 

SAVAREA2 DS 

(14,11) 

13,SAVAREA2+4 
13,SAVAREA2 

13, SAVAREA2+4 
(14,11) 
9D 

A Points to save area in calling program. 
B Passes parameters PARI, PAR2. 
C Saves registers of calling program. 
D Establishes addressability. 
E Provides a backpointer to the calling 

program's save area. 
F Points to new save area (for tracing 

purposes.) 
G Restores calling program's save area 

register. 
H Restores the specified registers and 

returns control to instruction at J. 
I May be smaller if no other program is 

called. 
J The called program passed the processing 

result to the calling program in 
register 12. 

Figure 8-12. Use of CALL, SAVE, and RETURN Macros 

A 

B 
J 

C 
D 
D 
E 
F 

G 
H 
I 

program. Specifying register 15 preceded by a LOAD macro is 
most useful when the same program is called several times during 

Chapter 8. Requesting Control Functions 8-29 



you have to make sure that only one subtask is issuing an 
I/O request at a time and that only one I/O area is 
specified in the DTF. 

• With the extended buffering support for 3800/3200 printers, no 
I/O should be attempted out of an asynchronous user exit, since 
termination of the task may occur. 

Subtask Initiation 

The maximum possible number of subtasks that can be initiated at any 
one time in the system is 208. Up to 31 subtasks can run 
concurrently within a partition, provided the overall limitation of 
208 is not exceeded. 

The part of the subtask containing the entry point must be in 
storage before the subtask can be successfully attached. The block 
of program instructions that makes up the subtask can be part of one 
large CSECT program section which, possibly, includes also the main 
task. The subtask can also be a separate phase, in which case the 
phase must first be read into storage with the LOAD or CDLOAD macro 
before the ATTACH macro is issued. 

Figure 8-13 on page 8-32 includes an example of attaching a subtask. 

Chapter 8. Requesting Control Functions 8-31 



* REGISTER EQUIVALENTS 
EJECT 

RO EQU 0 
Rl EQU 1 
R2 EQU 2 
R3 EQU 3 
R4 EQU 4 
R5 EQU 5 
R6 EQU 6 
R7 EQU 7 
R8 EQU 8 
R9 EQU 9 
RIO EQU 10 
Rll EQU 11 
R12 EQU 12 
R13 EQU 13 
R14 EQU 14 
R15 EQU 15 

SPACE 2 

* DEFINITION AREA FOR MAINTASK 
MSGEND DC CLSO'MAIN NORMAL ENDED' 
MSGABM DC CL80'MAIN ABNORMAL ENDED' 

DS OD 
MTSAVE 
MTABSV 
MTECB2 
STIECBM 

DS 16D MAINTASK SAVE AREA 
DS 9D 
DC F'O' 
DC F'O' 

MAINTASK ABNORMAL END SAVE AREA 
MAINTASK ECB FOR POST FROM SUBTASK2 
SUBTASKI ECB FOR POST FROM MAINTASK 

SPACE 2 

* FILE DEFINITION AREA 
CONSIOA DTFCN 

DEVADDR=SYSLOG, 
IOAREAl=CONINOUT, 
BLKSIZE=SO, 
INPSIZE=SO, 
TYPEFLE=CMBND, 
RECFOR~l=FIXUNB , 
WORKA=YES 

CONINOUT DC CLSO" 

* OUTPUT ON CONSOLE ALPHANUMERIC 
PUTCONS EQU * 

PUT CONSIOA,(R5) 
BR RIO 
EJECT 

Figure S-13 (Part 2 of 7). Multitasking Sample Program 

Chapter S. Requesting Control Functions S-33 



EQU .. ~ 
MVC ST2SAVE(B),ST2NAME PROVIDE SUBTASK NAME IN ST-SAVE AREA 
ATTACH SUBTASK2,ECB=ST2ECB,SAVE=ST2SAVE,ABSAVE=ST2ABSV 
LTR 1,1 TEST IF ATTACH IS SUCCESSFUL 
BNM ATTST20 BRANCH IF SUCCESSFUL 
WAIT (1) WAIT TO RETRY ATTACH 
B ATTST2 BRANCH TO RETRY 

ATTST20 BCTR RO,RO GET END OF SAVE AREA SUBTASK2 AND 
ST RO,ST2SVEND STORE THE END ADDRESS 
BR RIO BRANCH AND LINK RETURN VIA REGISTER 10 

ST2SAVE DC 16D'0' SAVE AREA SUBTASK2 WITH FLOAT REGS 
ST2ABSV DC 9D'O' AB SAVE AREA SUBTASK2 
ST2ECB DC F'O' ECB SUBTASK2 
ST2SVEND DC F'O' END ADDRESS SUBTASK2 SAVE AREA 
ST2NAHE DC CLB'SUBTASK2' NAME OF SUBTASK2 

EJECT 
* ESTABLISH ABNORMAL END EXIT 
ABXITM EQU * 

STXIT AB,ABEXIT,MTABSV,OPTION=DUMP 
BR RIO 

.. ~ ABNORMAL EXIT ROUTINE REFERENCED BY STXIT MACRO 
ABEXIT EQU * 

BALR R12,0 
USING ~", R12 
L R12,ABASE 

ESTABLISH ADDRESSABILITY TO ABASE PTR 

USING BASEADDR,R12 ESTABLISH ADDRESSABILITY TO BASE ADDR 
USING ABSAVE,Rl 
STC RO,ABCODE STORE LAST BYTE OF RO ==> ABEND-CODE (SEE *5) 

STORES THE ABNORMAL END CODE FOR LATER USE. THIS ROUTINE IS SHARED 
BY THE MAINTASK AND THE SUBTASKS. 

C Rl,=A(STlABSV) SUBTASKI ABNORMALLY ENDED? 
BE STIABEND IF YES GO TO STIABEND 
C Rl,=A(ST2ABSV) SUBTASK2 ABNORMALLY ENDED? 
BE ST2ABEND IF YES GO TO ST2ABEND 
EXIT AB MUST BE MAINTASK 
B ABMAIN CONTINUE MAINTASK PROCESSING 

STIABEND EQU i'~ 

POST ST2ECB 
JDUMP 
SPACE 2 

Figure B-13 (Part 4 of 7). Multitasking Sample Program 

Chapter B. Requesting Control Functions 8-35 



CNOP 0,4 
SUBTASK1 EQU * 

BALR R3,0 
USING 'i't, R3 

SUBTASKl = ENTRY POINT GIVEN BY ATTACH MACRO 
(SEE *6) 

(SEE *6) 

*6 THE MAINTASK AND THE SUBTASK MAY USE DIFFERENT BASE REGISTERS. 
*6 THIS IS NOT NECESSARY IF ADDRESSABILITY IS ENSURED BY 
*6 THE MAINTASK'S BASE REGISTER (R12 IN THIS EXAMPLE). 

LA 
BAL 
WAIT 
MVI 
POST 

R5,MSG101 
R10,PUTCONS 
ST1ECBM 
ST1ECBM+2,X'OO' 
ST2ECB 

WAIT ST1ECB20 
LA R5,MSG102 
BAL R10,PUTCONS 
DETACH 
SPACE 

ADDRESS OF ATTACH MESSAGE ==> R5 
OUTPUT OF MESSAGE TO CONSOLE 
WAIT TO BE POSTED FROM MAINTASK 
RESET ST1ECBM IN WAIT STATE 
RELEASE WAIT STATE OF SUBTASK2 ECB10 

WAIT TO BE POSTED FROM SUBTASK2 
ADDRESS OF SUBTASK1 END MESSAGE ==> R5 
OUTPUT OF END MESSAGE ON CONSOLE 
SUBTASK1 DETACHES ITSELF AND POSTS ST1ECB 

DS OF SET FULLWORD BOUNDARY 
ST1ECB20 DC F'O' ECB TO BE POSTED IN SUBTASK1 
ESUB1 DC X'OO' END OF SUBTASK1 INDICATOR 
MSG101 DC CLBO'SUBTASKl ATTACHED' 
MSG102 DC CLBO'END OF SUBTASKl REACHED' 

EJECT 

Figure B-13 (Part 6 of 7). Multitasking Sample Program 

Chapter B. Requesting Control Functions 8-37 



Required Save Areas 

The system provides a save area for the main task. The attaching 
task must provide a save area for the subtask it attaches. This save 
area is specified in the SAVE=savearea operand of the ATTACH macro. 
When, later on during its execution, the subtask receives an 
interrupt, the supervisor saves in that area the subtask's interrupt 
status information, the contents of the general registers, and the 
floating-point registers. 

The first 8 bytes are reserved for the subtask name. The attaching 
task should fill in the subtask's name before attaching it. The 
name is used to identify the subtask in an abnormal termination 
message. 

A second save area (ABSAVE=absavearea) is needed if the attached 
task is using the attaching task's abnormal termination routine. 
The save area of the attaching task is then reserved for the 
abnormal termination of only the attaching task. 

Testing for Successful Subtask Attachment 

The attempt to attach a subtask may not be successful. This happens 
when the maximum possible number of subtasks is already attached. 
In this case, the main task will keep control and register 1 (main 
task) will contain the address of an ECB within the supervisor that 
will be posted when the system can initiate another subtask. 
Register 1 will also have the high order bit 0 on to aid the main 
task in testing for an unsuccessful ATTACH. 

Specifying an Event Control Block 

In the ATTACH macro, the name of an event control block (ECB) can be 
specified (ECB=ecbname). The ECB is a ful1word whose format is 
shown in Figure 8-14 on page 8-40. The ECB operand is required if 
other tasks can be affected by the subtask's termination, or if 
resources are controlled by ENQ and DEQ macros within the subtask. 

Note: Do not post (with the POST macro) the ECB specified by 
the ATTACH macro, because any task which is waiting on this 
ECB for subtask termination will be set ready-to-run, although 
the subtask has not yet terminated. For inter-task 
synchronization introduce a second ECB which can then be used 
by the POST macro. 

Chapter 8. Requesting Control Functions 8-39 



\ 
I 

J 

I ntertask Communication 

Tasks communicate with each other through the event control blocks 
(ECBs) described above. A task sets itself into the wait state by 
issuing a WAIT macro with an ECB specified. To release that task 
from the wait state, another task issues a POST macro with the same 
ECB specified. 

The task that issues the WAIT macro remains in the wait state until 
the designated ECB gets posted by the POST macro, that is: bit 0 of 
byte 2 is set to 1. Blocks that can be used as ECBs are CCBs and 
TECBs. However, a task never regains control if it is waiting for a 
CCB to be posted by another task's I/O completion. 

A MICR CCB gets posted only when the device stops, not when reading 
a record is complete. Furthermore, telecommunication ECBs and all 
RCBs must not be waited for because bit 0 of byte 2 of these blocks 
would never be posted. 

When control returns to a task that was waiting for one of a number 
of events to occur (WAITM), register 1 points to the posted ECB. 
This allows the task to test which event removed it from the wait 
state. 

A task that issues the WAITM macro should ensure that the waiting 
task allows an eventual outlet if an event might not occur. (Such a 
condition could occur if, for example, a task that is to post an 
event is terminated abnormally.) 

In Figure 8-15 on page 8-42, the WAITM macro specifies a preferred 
event (ECBPREF) as the first operand and a secondary event (ECBSEC) 
as the second operand. The preferred event is the successful 
completion of SUBTASK1, which is indicated by POST ECBPREF. If the 
subtask is terminated before it can finish its processing, the 
supervisor posts the ECB defined via ATTACH ... ,ECB=ECBSEC, which is 
the secondary event. With either event, the address of the posted 
ECB is in register 1 after the WAITM macro has been issued. With 
this address you can, for example, select a problem program routine. 

In this particular example, a branch instruction points to a table 
that contains a list of ECBs with corresponding branch instructions 
to the routine that is to receive control when the pertinent ECB was 
posted. The table can easily be expanded to include a maximum of 16 
ECBs. 

Whenever a task posts an ECB, any task waiting on this ECB to be 
posted is removed from the wait state. 

You can code your application to have just one task or all tasks 
waiting on a particular event removed from the wait state. To have 
all tasks removed, simply issue a POST macro with the ECB name 
specified as the only operand. Example: 

POST ST1ECB 

Chapter 8. Requesting Control Functions 8-41 



Be careful with this technique when the ECB to be posted is the ECB 
specified in the ATTACH macro and the ENQ/DEQ macros are used, 
because the DEQ macro also removes from the wait state all tasks 
waiting for the protected resource. To avoid such problems, you are 
advised to use two different ECBs; you are responsible for resetting 
the traffic bit (bit 0 of byte 2) in the second ECB using the 
instruction MVI STIECB+2,X'OO' so that tasks testing that ECB can be 
reset into the wait state. 

Figure 8-16 on page 8-44 illustrates the use of the POST macro. The 
example shows three subtasks: SUBTASK1, SUBTASK2, and SUBTASK3. 
SUBTASKl depends on input which can be supplied by SUBTASK2 or 
SUBTASK3 and, therefore, issues a WAITM macro on the ECBs for those 
subtasks. 

Initially, SUBTASKl is placed into the wait state by the WAITM 
macro. Control then passes to SUBTASK2 and then to SUBTASK3. When 
either of the two subtasks has the necessary data for SUBTASK1, it 
posts its ECB that removes SUBTASKl from the wait state. When 
SUBTASKl finishes processing, it posts its ECB, thus causing the 
main task to be taken out of the wait state. The main task can then 
detach SUBTASK1. 

Chapter 8. Requesting Control Functions 8-43 



\ 

SUBTASK2 EQU ,tr 

ST2A EQU ,tr 

POST ST2ECB POST ECB for subtask 1 

B ST2A 

SUBTASK3 EQU ,'r 

ST3A EQU ... 'r 

POST ST3ECB Post ECB for subtask 1 

B ST3A 

MTSVADRl DC F'O' Save area address for 
main task 

ECB1A DC F'O' Dummy ECB for subtask 1 
ST1ECB DC F'O' ECB for subtask 1 
ST2ECB DC F'O' ECB for subtask 2 
ST3ECB DC F'O' ECB for subtask 3 

Figure 8-16 (Part 2 of 2). Use of the POST Macro 

Subtask Termination 

A subtask is normally terminated via the DETACH macro issued by the 
main task or by the subtask itself. 

A subtask can further detach itself by issuing the CANCEL, EOJ, DUMP 
or JDUMP macro, or the RETURN macro if RETURN=YES is specified in 
the ATTACH macro. When a subtask is detached, all pending I/O 
operations are completed and any tracks held by this subtask are 
freed. 

If a subtask being detached has an ECB, that ECB is posted and any 
tasks waiting on the ECB are removed from the wait state. The task 
with the highest priority then gains control. The supervisor ECB 

Chapter 8. Requesting Control Functions 8-45 



A task requesting the use of a resource is either enqueued and 
executed or put into the wait state if the resource has alre~dy been 
enqueued by another task. If an ENQ macro is issued for an already 
enqueued resource, the system indicates this in the RCB and stores 
the address of the current resource owner's ECB in register 1 of the 
task that is placed into the wait state. 

A task releases a resource by issuing the DEQ macro. If other tasks 
are enqueued on the same RCB, the DEQ macro frees from their wait 
condition all other tasks that were waiting for that resource. 
Once a resource has been enqueued, only the current owner of the 
resource can dequeue it. The task with the highest priority obtains 
control. If no other tasks are waiting for the RCB, control returns 
to the dequeueing task. 

The following figures show examples of the use of the ENQ, DEQ, and 
RCB macros and the resource control block. 

Figure 8-18 on page 8-49 shows a main task with two subtasks sharing 
the same resource and protecting it from simultaneous access. The 
subtasks use the same file in a common subroutine. The subroutine 
is not reentrant, and the file cannot use track hold. Each subtask 
must, therefore, enqueue the RCB associated with the resource and 
dequeue it when the resource can be released. 

In Figure 8-19 on page 8-50, two subtasks share a common processing 
routine that is defined in the first subtask. The common routine, 
called TOTAL, is protected in subtask 1 by the RCB named RCBA. The 
protection is effective only if ev~ry segment of code within the 
partition that refers to TOTAL issues the ENQ macro before executing 
TOTAL and subsequently dequeues that resource with the DEQ macro. 
This is effectively accomplished by branching to the same code in 
subtask 1. 

The common code need not be reentrant. You should, however, ensure 
that the values for constants associated with the subroutine do not 
have to be retained from one reference to the next, whenever the 
resource is used. If the values must be retained, you should save 
them in the appropriate subtask and restore them when required. 

In Figure 8-20 on page 8-51, the subtasks again share the use of the 
same resource, but they use different subroutines for processing 
that resource. The resource, called RESRCA, may be a data area or a 
file defined by a DTF macro. In either case, RESRCA is protected 
from being used by subtask 2 while subtask 1 is operating on it. 
Thus, if all tasks enqueue and dequeue each reference to RESRCA, 
RESRCA is protected during the time it takes to process instructions 
from that task's ENQ to its DEQ macro. This is readily apparent if 
RESRCA is in storage. However, if it is a file, the record being 
operated upon is protected while in storage, but it is not 
necessarily pxotected on the external storage device. If the file 
is on DASD, the track hold facility should, if possible, be used. 

Chapter 8. Requesting Control Functions 8-47 



MAINTASK BALR 12,0 
USING of" 12 

SUBTASK1 EQU .,,, 

SBTASK1A ENQ RCB1 Protect resource 
BAL 4,WRITEDTA Write a record 
DEQ RCB1 Release resource 

B SBTASK1A 

SUBTASK2 EQU * 

SBTASK2A ENQ RCB1 Protect resource 
BAL 4,WRITEDTA Write a record 
DEQ RCB1 Release resource 

B SBTASK2A 

RCB1 RCB Resource control block for WRITEDTA 

Figure 8-18. Sharing a Resource in a Common Subroutine 

Chapter 8. Requesting Control Functions 8-49 



MAINTASK START 0 

SUBTASKl 

.. 'r Update 

SUBTASK2 

~~ Update 

RCBA 
RESRCA 

ATTACH SUBTASK1,SAVE=ST1SAVE,ECB=STIECB 

ATTACH SUBTASK2,SAVE=ST2SAVE,ECB=ST2ECB 

EQU 

ENQ 

RESRCA 

DEQ 

EQU 

ENQ 

RESRCA 

DEQ 

RCB 
DS or 

i', 

RCBA 

RCBA 

-;': 

RCBA 

RCBA 

DTF 

Protect resource RESRCA 

Release resource RESRCA 

Protect resource RESRCA 

Process using RESRCA 

Release resource RESRCA 

RCB for resource RESRCA 
Shared resource 

Figure 8-20. Sharing a Resource in Different Subroutines 

Resource-Share Control 

Another set of macros protect a resource against concurrent use by 
different tasks (in the same or in different partitions) while 
permitting controlled sharing of the resource. The macros: 

• define a protected resource: DTL, GENDTL, MODDTL 

• control resource sharing: LOCK, UNLOCK. 

Chapter 8. Requesting Control Functions 8-51 



The MODDTL macro modifies a lock control block at the time of 
program execution. This is its normal function. In addition, it is 
also used to lower the lock control level of a locked resource. 
When its CHANGE operand is specified as ON, the MODDTL macro causes 
a subsequent issuance of the UNLOCK macro to keep the resource 
locked, but with a lower locking level, rather than release the 
resource. The resource continues to be held; however, another task 
waiting for this resource can be dispatched again. This method of 
reducing the lock level can be employed only when the lock level is 
defined with the most stringent values possible; that is, CONTROL=E 
(exclusive) and LOCKOPT=l. 

Figure 8-21 on page 8-54 illustrates the two occurrences of the 
UNLOCK macro. 

DASD Record Protection (Track Hold) 

When a record is being modified by one task, it must be prevented 
from being accessed by another task. For a CKD device, the data 
transm~ssion unit is one block; for an FBA device, this unit is an 
integral number of blocks. For ease of reading, this unit is 
frequently referred to as "track". VSE includes the DASD record 
protection support (frequently called "track hold function") to 
ensure the required data integrity as indicated above. This support 
is available for use with both CKD and FBA devices. 

Within a partition, record protection can be accomplished for a 
particular DASD by the resource protection macros or the intertask 
communication macros. With the resource protection macros, an RCB 
can be enqueued before each reference to the DASD. With the 
intertask communication macros, a subtask can wait for an ECB to be 
posted before each reference to the DASD. 

The hold function obtains DASD record protection for programs that 
define files by means of the DTFSD or DTFDA macros. In these cases, 
DASD record protection can be obtained within the entire system if 
the TRKHLD operand of the FOPT macro is specified at system 
generation time, and if every task specifies the HOLD=YES operand of 
the DTFxx macro. 

The hold function can be used in three specific situations: 

1. Updating DTFSD data files. 

2. Updating DTFSD work files. 

3. Processing DTFDA files. 

In the first and second situation, the track or block range being 
held is freed automatically by the system. More specifically, the 
next GET issued to a new track for the file frees the previous hold, 
and your program should not issue the FREE macro. If a FREE macro is 

Chapter 8. Requesting Control Functions 8-53 



For DTFDA files using WRITE or WRITE AFTER, LIDCS initially places 'a 
hold on the track. However, a WRITE AFTER issued to a track that has 
the maximum number of holds already in effect cancels the task (or 
partition). 

When a READ ID or READ KEY macro is issued, LIDCS holds the track 
but does not free it automatically. This must be done in the user 
program by the FREE macro. 

The maximum number of DASD track protection holds that can be in 
effect within a system is specified at the time of system 
generation. This can be any number up to 255, with a system default 
option of 10. If a task attempts to exceed the limit, the task is 
placed in the wait state until a previous hold is lifted. 

The same track can be held more than once without an intervening 
FREE if the hold requests are from the same task. The same number of 
FREEs must be issued before the track is completely freed. However a 
task is terminated if more than 16 hold requests from it are 
recorded without an intervening FREE, or if the task issues FREE for 
a file that does not have a hold request for that track. 

If a task requests a track that is being held by another task, that 
task is placed into the wait state at the GET (or WAITF) macro 
associated with the I/O request. The request is fulfilled after the 
track is freed and when control returns to the requesting task. 

If more than one track is being held, it is possible for your 
program to inadvertently put the entire system in the wait state. 
This occurs if each task is waiting for a track that is already held 
by another task. A way to prevent this is to FREE each track held by 
a task before this task places (or attempts to place) a hold on 
another track. 

Chapter 8. Requesting Control Functions 8-55 



MAINTASK START 0 

ATTACH SUBTASK1,SAVE=ST1SAVE,ECB=ST1ECB 

ATTACH SUBTASK2,SAVE=ST2SAVE,ECB=ST2ECB 

SUBTASK1 OPEN DAFILE1 OPEN DA master file 

LA 13,DASAVE1 Initialize register 13 
with DA save area 

READ DAFILE1,KEY Read and hold record 

WAITF DAFILE1 

WRITE DAFILE1,KEY Write updated record 
WAITF DAFILE1 
FREE DAFILE1 Release track 

DAFILE1 DTFDA HOLD=YES,RDONLY=YES, ... 

SUBTASK2 OPEN DAFILE2 OPEN DA master file 

LA 13,DASAVE2 Initialize register 13 
with DA save area 

READ DAFILE2,KEY Read and hold record 
WAITF DAFILE2 from DA master file 

Figure 8-22 (Part 1 of 2). Using the Track Hold Facility 

Chapter 8. Requesting Control Functions 8-57 



tasks may attempt to use a single non-entrant module. When this 
occurs, the results are unpredictable because values for the first 
task using the module are modified by the second task. To prevent 
this undesirable situation, several methods can be used. 

One method is to assemble a module with a different module name 
each task that could attempt to use the module simultaneously. 
method requires that you specify the appropriate module name in 
DTF macro operand MODNAME. 

for 
This 
the 

Another method is to link-edit DTF and module separately for each 
task that could simultaneously attempt to use the same module. Then, 
before a task attempts to reference a device through that module, 
the DTF and module can be fetched or loaded into storage. 

Either of these methods prevents the linkage editor from resolving 
linkage to one module. Thus, separate modules can be provided to 
perform each function. 

If several tasks are to share processing or to reference data on the 
same file, not only should reentrant modules be employed but each 
task must contain its own DTF table for that file (unless you use 
the ENQ and DEQ macros). Each task can either open its own DTF, or 
the main task in the partition can open all files for the subtasks. 

There are two methods that can be used for a shared file. You can 
either supply a separate set of label statements (DLBL and EXTENT, 
etc.) for each corresponding DTF filename, or you can assemble each 
DTF and program (subtask) separately with the same filename and one 
set of label statements. In the latter case, each separately 
assembled program must open its DTF. 

LOADING A FORMS CONTROL BUFFER 

An application may require a change of forms one or more times 
during its execution. VSE provides the LFCB macro for that purpose. 

The LFCB macro loads a phase that is cataloged in a sublibrary into 
the printer's forms control buffer (FCB). 

The phase contains the forms spacing layout that you wish to load 
into the printer's FCB. For information on the contents and format 
of an FCB phase, see the section "System Control Buffer Load 
(SYSBUFLD)" in VSE/Advanced Functions, System Control Statements. 

An FCB whose contents has been changed by means of this macro 
retains its new contents until one of the following occurs: 

• another LFCB macro is issued for the printer; 

• an LFCB command is issued for the printer; 

• the SYSBUFLD program is executed to reload the printer's FCB; 

Chapter 8. Requesting Control Functions 8-59 



LFCB 
LTR 
BZ 
CH 
BE 
PDUMP 
B 

TRYAGAIN LFCB 
LTR 
BZ 
B 

CONTINUE . 

EOJ 

SYSLST,FCB5203,LPI=8 
15,15 
CONTINUE 
15,=H'4' 
TRYAGAIN 
INAREA,OUTAREA 
CONTINUE (or B CANCL) 
SYSLST,FCBPRT1 
15,15 
CONTINUE 
CANCL 

CANCL CANCEL ALL 

Figure 8-23. Example for Loading an Alternate FCB 

This would cause a branch to the LFCB at the label TRYAGAIN. The 
second LFCB loads the phase FCBPRT1, which has been coded 
appropriately for the PRT1 printer. 

REQUESTING SYSTEM INFORMATION 

You can make inquiries about the current supervisor by using the 
SUBSID INQUIRY macro. The macro retrieves a byte string, which can 
be interpreted using the mapping DSECT generated by the MAPSSID 
macro (for details, see the Macro Reference manual). Thus, you can 
for instance check whether your 'current supervisor has been 
generated for ECPS:VSE mode or for 370 mode, or whether it contains 
DASD sharing support. 

Chapter 8. Requesting Control Functions 8-61 



APPENDIX A. LINK-EDITING LOGICAL IOCS PROGRAMS 

You have the option of assembling your DTFs, and any logic modules 
which you code yourself, either with your main program or separately 
for later link-editing with the main program. These possibilities 
are discussed below. 

PROGRAM, DTF, AND LOGIC MODULE ASSEMBLED TOGETHER 

If you assemble DTFs and logic modules with the main program, the 
linkage editor searches the input stream and resolves the symbolic 
linkages between tables and modules. This is accomplished by 
external-reference information (V-type address constants generated 
in DTF tables) and the control section definition information (CSECT 
definitions in logic modules. 

PROGRAM, DTF, AND LOGIC MODULE ASSEMBLED SEPARATELY 

Specify the operand SEPASHB=YES in the DTF macro or xxMOD macro 
which is to be assembled separately. For DTFs which are assembled 
separately there are some symbolic linkages which you must define 
yourself in the form of EXTRN and ENTRY symbols. 

Supplying the SEPASHB=YES operand in a DTF macro causes a CATALOG 
command with the filename to be punched ahead of the object deck and 
defines the filename as an ENTRY point in the assembly. Specifying 
the SEPASMB=YES operand in an xxHOD macro causes a CATALOG command 
with the module name to be punched ahead of the object deck and 
defines the module name as an ENTRY point in the assembly. In 
either case, a START card must not be used in a separate assembly. 

Cataloging DTFs and Modules 

Considerable coding effort is saved if logic modules are cataloged 
in a sublibrary. The same applies to DTFs. Using cataloged DTFs 
requires that you name the DTFs, and then use these names in all 
references your program makes to the DTFs. If you name the modules 
yourself, instead of letting IOCS do it, then make sure that you 
refer to precisely those modules in your DTFs by using their exact 
names. The linkage editor can perform an autolink only if there is 
an exact match of module names specified in the DTF and the names of 
the modules themselves. 

If, during installation of your system, a standard set of logic 
modules needed by the installation has been generated, autolinking 
the appropriate modules to your DTFs presents no problem. This is 

Appendix A. Link-Editing Logical IOCS Programs A-l 



Each dotted arrow 

••••• > 

represents a direct linkage. Components are represented by the 
small rectangles. Assemblies are represented by the larger bordered 
areas. 

Some of the coding examples have numbers in parentheses on specific 
instructions. These are provided as reference points in the 
discussion of subsequent examples. 

The examples are followed by a comparison of the five methods. 

Finally, an FBA DASD example is shown with a DTF assembled together 
with the program and a pre-assembled logic module. 

Appendix A. Link-Editing Logical IOCS Programs A-3 



v 
I 
R 
T 
U 
A 
L 

S 
T 
o 
R 
A 
G 
E 

G 
E 
T 
V 
I 
S 

S 
V-< 
A 

You r Program · · • · 
DTF's 

OPEN CARDS,DISK ----.-•••• ---.---•••• - •••• -.-.------•••• DISK 

GET 
• · · · 

CARDS,(2) i----CARDS : : ,...-----------.... 
,.---.-.-.. CARDS DTFCD DISK DTFSD 

· • DEV ADDR=SYS004 BLKSIZE=408 r------··--------··-- .----.. --.. EOFADDR=EOFCD IOAREA1=A2 --- ------ ---.. 

A 1 (Buffer Area) 

..... IOAREA1=A1 
WORKA=YES 

t 

111111111111111111111111111-- --------

t 
EOrCD (End-of-File Processing) 

· · 
r-----
I , 

CDMOD 

_______ .J 

(Logic for a Card File) · · · · · · 

.... ------ IOAREA2=A3 
: IOREG=(2) 
• : LABADDR=MYLABEL~-, 

: RECFORM=FIXBLK : 
: RECSIZE=80 : 
: TYPFLE=OUTPUT : 

,----•• --•• --.-:.------- CCW String : 
I I • 

: : Logic Module -- ---1--: .'- .. 
I --------------. 

: : Channel Program in DTF i 
: : NOT USED : 
: : 
• • I • I MYLABELS 

(Your Routine) _---- • .l · · · 
A2 (Buffer Area) i 

111111111111111111111111111"" .u: 
A3 (Buffer Area) 

L. ____________ 111111111111111111111111111 

-----------------------------------------------~ · . I • 

• • 
DTF Extension --.- •• ---.-•••••••••• ----.--.: : 

Channel Program ------ --------------·-----------·-------1 CCW String : 

SSR Module .------- ---

,-__ I SAM Service Routine I I Logic Modules 
-, Loaded at IPL Loaded at IPL 

Figure A-I. Assembling Your Programs, DTFs, and Logic Modules Together 
(Example 1) 

Appendix A. Link-Editing Logical lOCS Programs A-5 



V 
I 
R 
T 
U 
A 
L 

S 
T 
o 
R 
A 
G 
E 

You r Program · · · DTF'. 

OPEN CARDS,DISK ••••••••••••••••••••••••••••••••••••••• _DISK 

GET · · · : 
CARDS,(2) ..... CARDS . . ~--------------------~ ~ ••••••••• ; CARDS DTFCO 

DEV ADDR-SYS004 
, •••••••••••••••••••• • ••••••••• EOFADDR-EOFCO 

•• IOAREA1-A1 
WORKA-YES 

• 

DISK DTFSD 

BLKSIZE-40a 
IOAR EA 1-A2 •••• •• •• • •• Of 

t.·····.· IOAREA2-A3 
: IOREG-(2) 
: LABADDR-MYLABELS •• , 
: RECFORM-FIXBLK : 
: RECSIZE-aO : 
: TYPFLE-OUTPUT : 

······10·· ... ··t········ CCW String : 
: Logic Module •• -...... ..t ... 

A1 (Buffer Area) 

111111111111111111111111111... .. ..... f 

.. , 
EOFCD (End-of-File Processing) · · : · 
r----------- .... · , 

CDMOD (Separately Assembled) 

(Logic for a Card File) · · · · · · 

f----~-------------- : 
Channel Program in DTF : 

NOT USED : 

MYLABELS 

, , , 
• • • • 

(Your Routine) -. •••••• ~ · · · 
A2 (Buffer Area) 

111111111111111111111111111"· ... 

A3 (Buffer Area 

••• .. 111111111111111111111111111 

• 

r ~-----------------------:-----------------------~-~ DTF Extension ~ ••••••••••••••••••••••••••• ! 
T -< Channel Program ... ... • ................................ ..J CCW String I 
V 
I 
S 

S 
V-< 
A 

SSR Module ••••••••••••• 

~~ ........ ----........ ----.... ~ .... --.................... ----.................... ----............ --................ --.... --~~ 
1"£ ~ 
"I"' 

..... 

.... ,J SAM Service Routine I I Logic Modules 
·1 Loaded at IPL Loaded at IPL 

.•.•..•..•.....• -.. --~ 

,-------------------------------------------------------------------------------
Figure A-2. Logic Modules Assembled Separately (Example 2) 

Appendix A. Link-Editing Logical IOeS Programs A-7 

• 



Column 72 

DISK DTFSD X 
BLKSIZE=408, X 
SEPASMB=YES, X 
I OAREA1=A2, X 
IOAREA2=A3, X 
IOREG=(2), X 
LABADDR=MYLABELS, X 
RECFORM=FIXBLK, X 
RECSIZE=80, X 
DEVICE=3330, X 
TYPEFLE=OUTPUT 

MYLABELS BALR 10,0 
USING *,10 

LBRET 2 
A2 DS 408C (4) 
A3 DS 408C (5) 

END 

In the card-file and the disk-file assemblies, a USING statement was 
added because certain routines are separated from the main program 
and moved into the DTF assembly. 

When your routines, such as error, label processing, or EOF 
routines, are separated from the main program, it is necessary to 
establish addressability for these routines. You can provide this 
addressability by assigning and initializing a base register. In 
the special case of the EOF routine, the addressability is 
esta~lished by logical IOCS in register 14. For error exits and 
label-processing routines, however, this addressability is not 
supplied by logical IOCS. Therefore, if you separate your error 
routines, it is your responsibility to establish addressability for 
them. 

Figure A-4 on page A-12 contains the printer output to show how the 
coding for Example 3 would look when assembled. 

In Figure A-4 on page A-12, the standard name was generated for the 
logic module: V(IJ~FZIWO) for DTFCD (see statement 13). The module 
name appears in the External Symbol Dictionary of the logic module 
assembly. 

A DTF assembly generates a table that contains no executable code. 
Each of the two DTF tables is preceded by the appropriate CATALOG 
command. The two object decks can be cataloged ,together with the 
logic modules, as follows into a sublibrary 

Appendix A. Link-Editing Logical IOCS Programs A-9 



V 
I 
R 
T 
U 
A 
L 

S 
T 
o 
R 
A 
G 
E 

Your Program I 
OTF's (Assembled Separately) 

OPEN CARDS,DISK-Q - - - - - - - - - - - - "OISK 

GET CARDS,(2) r-~~CAROS 
t I I~------------------~ L--o-' CARDS DTFCD 

DEV AOOR=SYSOO4 
. ••• ••••••••••••••• ••••••••••• EOFADOR=EOFCO 

i 

t 

· · · · · · · A 1 (Buffer Area) : 

111111111111111111111111111+·· ....... ! 

EOFCD (End·of·File Processing) 

••• IOAREA1=A1 
WORKA=YES 
SEPASMB=YES 

I 

r-------------I , 
CDMOD (Separately Assembled) 

(Logic for a Card File) 

p._.· · · 

OISK DTFSD 

BLKSIZE=40B 
IOAR EA 1 =A2 ••••••••• • •• 

r······· .IOAR EA2-A3 
: LABADDR=MYLABELS·-
: RECFORM-FIXBLK 
: RECSIZE=80 

· · 
TYPEFLE=OUTPUT 
SEPASMB-YES 

••••••• ~ ••••••• - CCW String 
: Logic Module-- ..... ····10 ...... " f------------------ : 

Channel Program in DTF : 

NOT USED : 

· · · · MYLABELS : 

(Your Routine) •••••• .: 

A2 (Buffer Area) 

111111111111111111111111111+· ...... 

• A3 (Buffer Area) 

:........ . ... ,11111111111111111111111111 

. 

· : • · . · . 
G r-------------------------:--- ... ---------·------------+-
E DTF Extension ~ ••••••••••••••••••••••••••• .: 
~ -< Channel Program ...... .. ................................ ..) CCW String I 
I 
S 

S 
V-<' 
A 

SSR Module ••••••••••.•••• 

. 
I._I SAM Service Routine I I Logic Modules 

"I Loaded at IPL Loaded at IPL I .. ····················· 

Figure A-3. Logic Modules and DTFs Assembled Separately (Example 3) 

Appendix A. Link-Editing Logical IOCS Programs A-11 



SYMBOL 

C4RDSC 
C4RDS 
IJCFZIWJ 
DIS,", 

TYPE IP 4DDR L~NGTH LD ID 

SD OL 000000 000040 
LD 000000 01 
ER 02 
ER 03 

Section definition. '. Gene'ated by specifying SEPASMB=YES in DTFCD macro. 
Label definition (entry point). 
External referen .. e. Corresponds to V -type address constant generated in DTFCD. 
External 'eference. Defined by EXTRN statement. 

EXAMPLE 3 

PAGE 1. 

LOC OBJECT CODE 4DDR1 ADDR2 STMT SOURCE STATEMENT 

000000 

000000 
000000 000080000000 
000006 01 
000007 04 
000008 00000020 
OOOOOC 00000000 
000010 00 
0000:Ll. 000000 
0000J.4 02 
0000J.5 OJ. 
0000J.6 02 
0000J.7 02 
0000J.8 0000004C 
OOOOJ.C 00 
OOOOJ.D 00000034 
000020 0200004C20000050 
000028 4700 0000 00000 
00002C D24F DOOO EOOO 00000 00000 
000032 
000032 

000032 0700 
000034 
000034 4J.J.0 E06E OOOAO 
000038 J.BFF 
00003A 0700 
00003C 4500 EOJ.6 00048 
000040 00000000 
000044 00000000 
000048 OA02 

00004A OAOE 

00004C 

OOOOAO 5B5BC2C3D3D3D6E2C5 

Figure A-4 (Part 2 of 4). 

J. CARDS DTFCD DEVADDR=SYS004, x 
SEPASMB=YES, 
EOFADDR=EOFCD, x 
IOAREAJ.=AJ., x 
WORKA=YES 

2+* laCS AND DEVICE INDEPENDENT 1/0 - DTFCD -
3+ PUNCH' CATALR CARDS,4.0' 4-0 
4+CARDSC CSECT 
5+ ENTRY CARDS 
6+ DC OD'O' 
7+CARDS DC X'000080000000' RES. COUNT,COM. BYTES,STATUS BTS 
8+ DC ALJ.(J.) LOGICAL UNIT CLASS 
9+ DC ALJ.(4) LOGICAL UNIT 

10+ DC 4(IJCXOOOJ.) CCW ADDRESS 
1J.+ DC 4X'OO' CCB-ST BYTE,CSW CCW ADDR. 
12+ DC 4LJ.(0) SWITCH 3 4-0 
J.3+ DC VL3(IJCFZIWO) ADDRESS OF LOGIC MODULE 3-3 
J.4+ DC X'02' DTF TYPE (READER) 
J.5+ DC ALJ.(J.) SWITCHES 
J.6+ DC ALJ.(2) NORMAL COMM.CODE 
J.7+ DC ALJ.(2) CNTROL COMM.CODE 
J.8+ DC A(AJ.) ADDR. OF IOAREAJ. 
19+ DC ALJ.(O) JJ 
20+ DC AL)(EOFCD) EOF ADDRESS JJ 
2J.+IJCXOOOJ. CCW 2,AJ.,X'20',80 
22+ NOP 0 LOAD USER POINTER REG. 
23+ MVC 0(80,~3),0(J.4) MOVE IOAREA TO WORKA 
24+IJJZOOOJ. EQU * 
25 USING *,J.4 ESTABLISH ADDRESSABILITY 
26 * CLOSE THE FILE 
27 EOFCD CLOSE CARDS,DISK END OF FILE 4DDRESS FOR CARD READER 
28+* IOCS - CLOSE -
29· CNOP 0,4 
30+EOFCD DC OF'O' 
3L· LA ],,=C'$$BCLOSE' 
32+ SR J.5,J.5 ZERO R J.5 FOR ERROR RETURN 5-0 
33+ NOPR 0 WORD ALIGNMENT 5-0 
34+IJJC0002 BAL 0,*+4+4*(3-J.) 
35+ DC A(CARDS) 
36+ DC A(DISK) 
37+ SVC 2 
38 EOJ 
39+* SUpvR COMMN MACROS - EOJ -
40+ SVC J.4 
4]' EXTRN DISK 
42 AJ. DS 80C CARD 1/0 AREA 
43 END 
44 =C'$$BCLOSE' 

Separate Assemblies (Example 3) 

Appendix A. Link-Editing Logical IOCS Programs A-13 



~--------------------------------------------------------------------------
DTFSD (Continued) 

LOC 
00 
000080 
000088 
000090 
000098 
OO(jO.~O 

OOOOAO 
0000A2 

OBJECT COIlE ADDRJ. ADDR2 

J.Il00023COOOOOJ.98 
3:1.00003C40000005 
0800008800000000 
J.E0000983000000J. 

C!;AO 

0000A2 OA09 
OOOOA4 
00023C 

EXAMPLE 3 

STMT SOURCE STATEMENT 

49+ 
50+ 
5J.+ 
52+ 
53+IJJZOOOJ. 
54 MYLABELS 
55 
56 • 
51 * 
58 
59+* IOCS -
60+ 
6J. A2 
62 A3 
63 

CCW 
CCW 
CCW 
CCW 
EQU 

BALR 
USING 

X'J.Il',A3,0,400+8 WRITE COUNT KEY ANIl DATA 
X'3J.' ,DISKS+2,64,5 SEARCH ID EQUAL 
8,*-8,0,0 TIC 
30,.,48,J. VERIFY 
• 

300,0 
.,J.O 

LBRET 2 

INITIALIZE BASE REGISTER 
ESTABLI'H AIlIlRESSABILITY 
USER'S LABEL 
PROCESSING ROUTINE 
RETURN TO LIOCS 

LBRET -
SVC 9 

DS 
DS 
END 

BRANCH BACK 
408C 
408C 

TO 10CS 
FIRST IlrSK 1/0 AREA 
SECOND DISK 1/0 AREA 

PAGE 

---------------------------------------------------------------------------
CDMOD ASSEMBLY 

EXTERNAL SYMBOL DICTIONARY 
SYMBOL TYPE ID AIlDR LENGTH LD ID 

IJCFZlwO SD OJ. 000000 000060 Section definition. CSECT name generated by CDMOD macro. 

LOC OBJECT CODE ADDR1 ADDR2 STMT 

73 

EXAMPLE 3 

SOURCE STATEMENT 

PRINT NOGEN 
CDMOD 

END 

DEVICE=2540, 
SEPASMB=YES, 
TYP':FLE=INPUT, 
WORKA=YES 

x 
X 
X 
X 

[-~--------------------------~-------~-~----------------------------------~ 
Figure A-4 (Part 4 of 4). Separate Assemblies (Example 3) 

Appendix A. Link-Editing Logical IOCS Programs A-1S 



V 
I 
R 
T 
U 
A 
L 

S 
T 
o 
R 
A 
G 
E 

I Your Program · · · DTF's (Assembled Separately) 

OPEN CARDS,DISK_Q- - - - - __ - - ____ ,.DISK 

GET CARDS,(2) · · : · · 
Ie - - {)- - "'~,..C_A_R_D_S _______ _ 

CARDS DTFCD 

DEVADDR=SYS004 
p----- -----------------....... ---- EOFADDR=EOFCD 

roO- IOAREA1=A1 
I WORKA=YES 
I SEPASMB=YES 
I . 

I 
I 

A 1 (Buffer Area) I 
~-·O 
A2 (Buffer Area) 

11111111II111I1111111111I111f. - . - 0- -
A3 (Buffer Area) 

11111111111111111II111111"1~-~ w 0-

I 

I 

I 

- .-
I 

EO~CD (End-of-File Processing) 

__ L 
I 

I 

I 

I 

I 

I 

I 

· · · · 
r------------· . 
i 

CDMOD 

(Lo~iC for a Card File) 

· · · · · 

DISK DTFSD 

BLKSIZE=40B 
.... .~ - - 0- IOAREA1=.6.2 
I r - -0- - -IOAREA2=A3 
II IOREG=2 

,.-•• -··LABADDR=MYLABELS 
I I : RECFORM=FIXBLK 
I I : R ECSIZE=BO 

I 

II : TYPEFLE=OUTPUT 
II : SEPASMB=YES 

r ····--of---.. • CCW String 
II 

: ~ __ ~ __ .h~i'!.. ~~I!... =--':;'-.: ... :.:" ~ 1 
I I : Channel Program in DTF : 

J I : NOT USED : 
I 

I 

- I 

I, 
I 
I 
I · I 
I 
I 
I 
I • • • 

; 
I 
I 
I 
I 
I 
I 
I •..... ,.. 

MYLABELS 

(Your Routine) · · · 

r
~-----------------------------t-----------------~· 

G DTF Extension ~. __ ••••••••••••••••••••• _________ •• _ •• _J ________ ... 
i -< Channel Prograrr .• ·--.oo ~.oo.-••••••• oo ••• oo •• - ••••• oooo.oo ••••••••••• -~ CCW String I 
V 
I 
S 

S 
V~ 

A 

SSR Module - •••••••••••• , 
• • 

~~--------------------~:----------------------------------------------------------~ I 

I 
I 

: 
• I 
I 

!. •• SAM Service Routine 
Loaded at I P L I I Logie Modules 

Loaded at IPL 

~~------------------------------------------------------------------------~ 

Figure A-5. Logic Modules and DTFs Assembled Separately, I/O Areas with Main 
Program (Example 4) 

Appendix A. Link-Editing Logical IOCS Programs A-17 



The file definitions are separately assembled: 

CARDS 

DISK 

DTFCD DEVADDR=SYSOO4, 
WORKA=YES, 
EOFADDR=EOFCD, 
SEPASMB=YES, 
IOAREAl=Al 

EXTRN EOFCD,Al 
DTISD BLKSIZE=408, 

TYPEFLE=OUTPUT, 
SEPASMB=YES, 

IOAREAl=A2, 
IOAREA2=A3 

EXTRN A2,A3,MYLABELS 
END 

Column 72 

X 
X 
X 
X 

X 
X 
X 

X 

The separate assembly of logic modules is identical to Example 3 and 
Example 4. 

Appendix A. Link-Editing Logical IOCS Programs A-19 



Comparison of ,the Five Methods 

Example 1: Requires the most assembly time and the least link-edit 
time. Because the linkage editor is substantially faster than the 
assembler, frequent reassembly of the program requires more total 
time for program preparation than Examples 2 through 5. 

Example 2: Separates the IOCS logic modules from the remainder of 
the program. Because these modules are generalized, they can serve 
several different applications. Thus, they are normally retained in 
a sublibrary for ease of access and maintenance. 

When a system pack is generated or when it requires maintenance, the 
IOCS logic modules that are required for all applications should be 
identified and generated onto it. Each such module requires a 
separate assembly and a separate catalog operation, as shown in 
Examples 2 through 5. Many assemblies, however, can be batched 
together as can many catalog operations. 

Object programs produced by COBOL, PL/I, and RPG require one or more 
IOCS logic modules in each executable program. These modules are 
usually assembled (as in Example 2) during generation of a system 
pack and are permanently cataloged into a sublibrary. 

Example 3: Shows how a standardized IOCS package can be separated 
almost totally from a main program. Only the imperative IOCS 
macros, OPEN, CLOSE, GET, and PUT remain. All file parameters, 
label processing, other IOCS exits, and buffer areas are 
preassembled. If there are few IOCS changes in an application, 
compared to other changes, this method reduces to a minimum the 
total development and maintenance time. This approach also serves 
to standardize file descriptions so that they can be shared among 
several different applications. This reduces the chance of one 
program creating a file that is improperly accessed by subsequent 
programs. In Example 3, you need only be concerned with the record 
format and the general register pointing to the record. You can 
virtually ignore the operands BLKSIZE, LABADDR, etc. in your 
program, although you must ultimately consider their effect on 
virtual storage, job control cards, etc. 

In Example 4, a slight variant of example 3, the I/O buffer areas 
are moved into the main program rather than being assembled with the 
DTFs. 

In Example 5, the label processing and exit functions are also moved 
into the main program. 

Examples 4 and 5: Show how buffers and IOCS facilities can be moved 
between main program and separately assembled modules. If user 
label processing is standard throughout an installation, label exits 
should be assembled together with the DTFs. If each application 
requires special label processing, label exits should be assembled 
into the main' program. 

Appendix A. Link-Editing Logical IOCS Programs A-21 



V 
I 
R 
T 
U 
A 
L 

S 
T 
o 
R 
A 
G 
E 

S 

V 

A 

G 
E 

0< 
I 
S 

Your Program 
• • • • • • 

OPEN FI LEA,FBAFI LE,F' LEB .. 
GET FBAFI LE ••• :.· •••••••••••••••••••••••••••••••• 1............. FBAFI LE OTFSO 

• • • • • • I 
· · ........ · · .. · ................... · · · · 

A 1 (Buffer Area) :: ••••••••••••••••••••••• 1 •••••••••• 

""1"11111111 ... · .... : ~ 
A2 IBuffer Arool I i 
1111111111111111·i······· : I ....................... 

BLKS'ZE-408 
'OAREA1-A1 
'OAREA2-A2 
'OREG:a(2) 
TYPEFLE=OUTPUT 
RECFORM- FIXBLK 
RECSIZE=80 
EOFADDR=EOFDSK 
CCW String 
Logic Module ••••••••••••• 

"'"----- ---- ----
~:--------------------~ 

Channel Program in DTF 
NOT USED , 

EOFDSK (End-of-File Processing) 
• • • • • • 

,--- - - .... - - - - - - - - - - - - - - - - - - - - - - - - - - --

DTF Extension 
I'" ....................... . FBA CCW String I 

F BA Channel Program ••••••••••••••••••••• , •••••••••••••• 

I 
Control I nterval Buffer ••• '.'" •••••••• : Control I nterval Buffer 

FBA SSR Module ......... , ...... : : ............................. 111111111111111111111111111 

----------------------------------------------------:---

FBA Logic Modules ~ •••••••••••••••••••••••••••••••••••••• 
loaded at IPL 

FBA SAM Service Routine 
loaded at IPL 

Figure A-7. DTFs and Logic Modules Assembled Jointly With FBA DASD Support 
Included (Example 6) 

Appendix A. Link-Editing Logical IOeS Programs A-23 



APPENDIX B. DIRECT ACCESS METHOD (DAM) 

The Direct Access Method is a flexible access method provided 
specifically for use with CKD direct access storage devices. Some 
of the features of these devices are: 

• Flexible record referencing, either to physical track and record 
address (record ID) or to record key (control field of the 
physical block). 

• Ability to search sequentially through an area for a physical 
block using a minimum of central processing unit time. 

With the Direct Access Method you can process records in random 
order. The records may be read, written, updated or replaced. 

DAM supports the following DASD equipment: 

IBM 2311 Disk Storage Drive 
IBM 2314 Direct Access Storage Facility 
IBM 2319 Disk Storage 
IBM 3330 Disk Storage 
IBM 3340 Disk Storage 
IBM 3344 Direct Access Storage 
IBM 3350 Direct Access Storage 
IBM 3375 Direct Access Storage 
IBM 3380 Direct Access Storage 

For programming purposes, the 3344 can be regarded as being 
identical to the 3340. The 3350 can be regarded as either a 3350 
(operating in "native" mode) or a 3330 (in "3330-compatible" mode). 
For information about the device characteristics of all the DASDs 
listed above, see the appropriate component description manuals. 

DAM can be applied to all record formats of VSE. When record 
spanning is used, the segmentation of the logical records and their 
reassembly is performed by LIOeS routines whenever necessary. 

DAM uses one I/O area for a file. To determine the size of the I/O 
area, the length of the data area and the use of the count and key 
areas as well as the control information must be taken into account. 

With DA~l you can process DASD records in random order. You specify 
the address of the record to Ioes and issue a READ or WRITE macro to 
transfer the specified record. 

Variations in the parameters of the READ or WRITE macros permit 
records to be read, written, updated, or replaced in a file. 

Appendix B. Direct Access Method (DAM) B-1 



register (specified by the DTFDA RECSIZE operand) before issuing the 
WRITE macro for that record. 

1/0 Area Specification 

Format 

Contents 

The DTFDA IOAREA1 operand defines an area of virtual storage in 
which records are read on input or built on output. 

The format of the I/O area is determined at assembly time by the 
following DTFDA operands: AFTER, KEYLEN, READID, WRITEID, READKEY, 
and WRITEKY. Figure B-1 on page B-4 shows the DTFDA macro entries 
and the I/O areas that they define. The information in this figure 
should be used to determine the length of the I/O area specified in 
the BLKSIZE operand. The I/O area must be large enough to contain 
the largest record in the file. If the DTF used requires it, the 
I/O area. must include room for an 8-byte count field. The count is 
provided by IOCS. 

Figure B-1 on page B-4 and Figure B-2 on page B-4 give a summary of 
what the contents of IOAREA1 are for the various types of DTFDA 
macros. These contents are provided by, or to, IOCS when an 
imperative macro is issued. When you build a record, you must place 
the contents shown in these figures in the appropriate field of the 
I/O area. For example, if the DTF used for the file resulted in the 
uppermost format shown in Figure B-1 on page B-4, the data would be 
located to the right of the count or key area. 

As opposed to fixed unblocked and undefined records, the IOAR~A1 for 
variable length and spanned unblocked records is independent of the 
DTFDA macro entries. If you specify the KEYLEN operand of the DTFDA 
macro, the key is transmitted to or from the field you specified in 
the KEYARG operand. The count field, if desired, is taken from an 
area reserved automatically by logical IOCS. 

The control fields are built by logical IOCS except for the case 
when you create your file or add records to it by using the WRITE 
AFTER macro. In that case you must insert the data length of the 
record (plus four) into the 5th and 6th bytes of the control fields. 
When you read a variable length or spanned unblocked record, these 
bytes will contain the length of the record. When updating records, 
you should not change any parts of the control fields. 

The maximum length of a logical record plus its key and control 
fields, if any, is shown in Figure B-3 on page B-S. 

Appendix B. Direct Access Method (DAM) B-3 



RECFORM 
I 

Device FIXUNB I 
VARUNB I SPNUNB 
UNDEF I 

I 
2311 3625 I 32767 

I 
2314,2319 7294 I 32767 

I 
3330/3333 13,030 I 32767 

I 
3340 8,535 I 32767 

I 
3350 19,069 I 32767 

I 
3375 35,616 I 32767 
3380 47,476 I 32767 

I 

Figure B-3. Maximum Length of DTFDA Records Including Key and 
Control Fields 

Creating a File or Adding Records 

Your program can preformat a file or an extension to an existing 
file in one of two ways depending on the type of processing to be 
done. If the WRITE AFTER macro is used exclusively, the WRITE RZERO 
macro is enough for preformatting the tracks. If non-formatting 
functions of the WRITE macro are used, the tracks$hould be 
preformatted with the IBM-supplied Clear Disk utility program. The 
Clear Disk utility also resets the capacity record to reflect an 
empty track. 

In addition to reading, writing, and updating records randomly, DAM 
permits you to create a file or write new records on a file. When 
this is done, all three areas of a DASD record are written: the 
count area, the key area (if present), and the data area. The new 
record is written after the last record previously written on a 
specified track. The remainder of the track is erased. This method 
is specified in a WRITE macro by the parameter AFTER. 

IOCS ensures that each record fits on the track specified for it. If 
the record fits, IOCS writes the record. If it does not fit, IOCS 
sets a no-room-found indication in your error/status byte specified 
by the DTFDA ERRBYTE operand. If WRITE AFTER is specified, IOCS also 
determines (from the capacity record) the location where the record 
is to be written. 

Appendix B. Direct Access Method (DAM) B-5 



IOCS seeks the specified track, searches it for the individual 
record, and reads or writes the record as indicated by the macro. 
If a specified record is not found, IOCS sets a no-record-found 
indication in your error/status byte specified by the DTFDA ERRBYTE 
operand. This indication can be tested and appropriate action can be 
taken to suit your requirements. 

Multiple tracks can be searched for a record specified by key 
(SRCHM). If a record is not found after an entire cylinder (or the 
remainder of a cylinder) is searched, an end-of-cylinder bit is 
turned on instead of the no-record-found bit in ERRBYTE. 

When an I/O operation is started, control returns immediately to 
your program. Therefore, when the program is ready to process the 
input record, or build the succeeding output record for the same 
file, a test must be made to ensure that the previous transfer of 
data is complete. Do this by issuing a WAITF macro. 

After a READ or WRITE macro for a specified record has been 
executed, IOCS can make the ID of the next record available to your 
program. The WAITF macro should be issued to assure that the data 
transfer is complete. You must set up a field (in which IOCS can 
store the ID) to request that IOCS supply the ID. You must also 
specify the symbolic address of this field in the DTFDA IDLOC 
operand. 

When record reference is by key and multiple tracks are searched, 
the ID of the specified record (rather than the next record) is 
supplied. The function of supplying the ID is useful for a random 
updating operation, or for the processing of successive DASD . 
records. If you are processing consecutively on the basis of the 
next ID and do not have an end-of-file record, you can check the ID 
supplied by IOCS against your file limits to determine when the end 
of the file has been reached. 

Track Reference 

To provide IOCS with the track reference, you set up a track 
reference field in virtual storage, assign a name in the DTFDA 
SEEKADR operand, and determine by DTFDA operand specifications which 
type of addressing to use. Before issuing any READ or WRITE macro 
for a record, you must store the proper track identifier in either 
the first seven hexadecimal bytes (mbbcchh), or the first three 
hexadecimal bytes (ttt) , or the first eight zoned decimal (tttttttt) 
bytes of this field. The latter two track references, along with 
the DSKXTNT and RELTYPE operands, indicate that relative addressing 
is to be performed. Thus, instead of providing the exact physical 
track location (mbbcch), only the track number relative to the 
starting track of the file need be provided. If these operands are 
omitted, the physical track location is assumed. 

The fields for each of these track reference methods are shown in 
Figure B-5 on page B-9. For reference to records by record number, 

Appendix B. Direct Access Method (DAM) B-7 



location to another. In such cases the relative addressing 
scheme remains the same, and the actual addresses are 
automatically converted by IOCS. 

Bytes 1 Decimal 1 Contents in 
1 Identifier I Zoned Decimal 
1 I 

0-7 Itttttttt 10-16,777,215 
1 1 

8-9 Irr 10-99 
I I 
1 I 

1 I 

1 I 

ByteslHexadecimallContents in 
IIdentifier IHexadecimal 
1 1 

0-2 Ittt 10-FFFFFF 
I I 

3 Ir 10-FF 
1 I 

1 I 

I I 
I I 

Bytes I Physical IContents in 
IIdentifier IHexadecimal 

I 
o m OO-FF 

I Information 
I 
I 
ITrack number relative to 
Ithe first track of the file. 
IRecord number relative to 
Ithe first record on the 
I track. If reference is by 
Ikey, rr should be zero. 
I 
I Information 
I 
I 
ITrack number relative to 
Ithe first track of the file. 
IRecord number relative to 
Ithe first record on the 
I track. If reference is by 
Ikey, r should be zero. 
I 
I Information 
I 
I 
Number of the volume on 
which the record is located. 
Volumes and their symbolic 
units for a file 
must be numbered 
consecutively. The first 
volume number for each file 
must be zero, but the first 
symbolic unit may be any 
SYSnnn number. The system 
references the volume by 
adding its number to the 

I first symbolic unit number. 
I Example: The first extent 
Istatement II EXTENT SYS005, 
I ... and m=O result in the 
Isystem referencing SYS005. 

Figure B-5 (Part 1 of 2). Types of Track Reference Fields 

Appendix B. Direct Access Method (DAM) B-9 



ttt or tttttttt represents the track number relative to the 
beginning of the file. 

r or rr represents the record number on the track. 

Please note that the addressing techniques described above are used 
by the system, and can be applied in assembler language. Addressing 
in a high-level programming language, such as COBOL or PLII, may be 
different. Information about DASD addressing in a high-level 
programming language should be obtained from the appropriate 
language reference manuals. 

For certain types of operations, you can request the system to 
return the actual record address (ID) of the block read or written, 
or of the block following the one just read or written. This 
returned ID can be used to either read or write a new record, or to 
update the one just read and write the updated record back to the 
same location. 

The format of the returned ID is the same as the format of the DASD 
address used for locating data, namely mbbcchhr, tttr, or 
ttttttttrr. 

Record Reference 

DAM allows records to be specified by either record key or record 
identifier. 

KEY REFERENCE: If records contain key areas, the records on a 
particular track can be randomly searched by their keys. This 
allows you to refer to records by the logical control information 
associated with the records, such as an employee number, a part 
number, a customer number, etc. 

For this type of reference you must specify the name of a key field 
in virtual storage in the DTFDA KEYARG operand. You then store each 
desired key in this field. 

IDENTIFIER (ID) REFERENCE: Records on a particular track can be 
randomly searched by their position on the track, rather than by 
control information (key). To do this, use the record identifier. 
The physical record identifier, which is part of the count area of 
the DASD record, consists of five bytes (cchhr). The first four 
bytes (cylinder and head) refer to the location of the track, and 
the fifth byte (record) uniquely identifies the particular record on 
the track. You may, however, use the relative track notation instead 
of cylinder and head notation if specified in the DSKXTNT and 
RELTYPE operands. When records are specified by ID, they should be 
numbered in succession (without missing numbers) on each track. The 
first data record on a track should be record number 1, the second 
number 2, etc. 

Appendix B. Direct Access Method (DAM) B-11 



the ID returned to write the new record with the new key into the 
same location. 

Logic Modules for DAM 

Four preassembled superset logic modules, supplied by IBM and loaded 
into the SVA during IPL, will be linked to the DTF when the file is 
opened. These logic modules are fully reentrant so that one copy of 
a logic module can be used by all requesters having the type of file 
for which the logic module was generated. Any other logic module 
referenced by the DTF will be ignored. 

PROCESSING FILES WITH DAM 

Initialization 

After the DAM files are defined with the DTFDA macro, the imperative 
macros are used to operate on the files. These macros are divided 
into three groups: those for initialization, processing, and 
termination. 

The OPEN macro must be used to activate a DAM file for processing. 
The OPEN macro associates the logical file declared in your program 
with a specific physical file on a DASD. This association remains in 
effect throughout processing of the file until you issue a CLOSE 
macro. 

If Open attempts to activate a file whose device is unassigned, the 
job is terminated. If the device is assigned IGN, Open does not 
activate the file but turns on DTF byte 16, bit 2, to indicate the 
file is not activated. No input/output operations should be 
performed for the file, as unpredictable results may occur. 

Whenever an input/output DASD file is opened and you plan to process 
user standard header labels (URL only), you must provide the 
information for checking or building the labels. If this information 
is obtained from another input file, that file must be opened, if 
necessary, ahead of the DASD file. To do this, specify the input 
file ahead of the DASD file in the same OPEN or issue a separate 
OPEN preceding the OPEN for the file. 

If the XTNTXIT operand is specified, OPEN stores the address of a 
14-byteextent information area in register 1 and gives control to 
your extent routine. You can save this information for use in 
specifying record addresses. Then the next volume is opened (on an 
input file, only after the requested user labels are written). When 
all volumes are open, the file is ready for processing. If the DASD 
device is file-protected, all extents specified in EXTENT statements 
are available for use. 

Appendix B. Direct Access Hethod (DAM) B-13 



Processing 

Once DAM files have been readied for processing with the 
initialization macros, the READ, WRITE, WAITF, and CNTRL macros may 
be used. 

Loading and Processing a Direct Access File 

The only difference between loading (creating) a direct access file 
and processing it (updating or retrieving records) is the file's 
initial status. In both cases, the same conversion algorithm is used 
for locating data blocks, and the entire file must be online. 

Note: Multivolume direct access files on a 3340 cannot extend over 
different types of data modules. 

Before creating a file, however, you must make sure that the disk 
storage area is cleared of any data that may have been stored 
previously. IBM provides two system utility programs to clear disk 
storage areas: 

Device Support Facilities 

This system utility program operates on complete volumes. It 
writes a preformatted VTOC and clears the entire volume. 
Afterwards each track contains a home address and a record zero 
describing the entire track as free space. The preformatted VTOC 
contains empty file labels. Although the Device Support 
Facilities program cannot clear a portion of a volume, you can 
do this by writing a complete file consisting of erased tracks 
(preceded by record zero) with the desired contents. 

Clear Disk 

This s-ystem utility program operates on logical files. It is 
used to preformat a disk storage area with dummy blocks of 
fixed-length format. It can be used either on a new pack after 
it has been initialized, or on a used pack to clear data areas 
for a new file. Preformatting by means of the Clear Disk program 
is necessary for files of fixed-length records. 

PROCESSING RECORDS WITH A KEY AREA: If records are written with a 
key, certain functions which you must otherwise control yourself can 
be performed by the device. In the following text, a distinction is 
made between fixed-length and variable-length data blocks. 

Fixed-Length Blocks With a Key Area: The file should be 
preformatted by means of the Clear Disk utility program. The file 
will then contain dummy records of fixed length. If you place th~ 
same contents into dummy records and deleted records, you can use 
the same procedure for both creating and updating the file. 

Appendix B. Direct Access Method (DAM) B-1S 



Variable-Length Blocks With a Key Area: The file should not be 
preformatted with the Clear Disk utility program. The Device Support 
Facilities program can be used to clear a complete volume. To clear 
a particular area on a volume, you must write erased tracks with the 
appropriate contents in each record zero. 

On each track of a file that contains variable-length blocks, record 
zero contains a count field (capacity record) that states the amount 
of free space at the end of that track. Space that is "free" because 
a record has been deleted is not taken into account. Unlike· 
fixed-length blocks, deleted variable-length blocks cannot be 
re-used for other data records. 

You should always establish a randomizing algorithm that delivers a 
cylinder and a track address. The system checks the contents of the 
capacity record to determine whether or not the track can 
accommodate the new block. If it can, the new block is written after 
the last block on that track. If there is not enough space left in 
the prime data area, you are notified. You can perform the inquiry 
in the overflow area in exactly the same way, track by track, until 
a track is found that can accommodate the new record. 

It is useful to provide cylinder overflow areas as well as a 
separate independent overflow area. When a prime data track 
overflows, try first to store the record in the cylinder overflow 
area. If this is not possible, store the record in the independent 
overflow area. 

A record stored in the cylinder overflow area can later be retrieved 
automatically if the search-multiple-tracks option is specified by 
the retrieving program. For records that are stored in the 
independent overflow area, you must make a search if you want to 
retrieve them later. 

Since records cannot be stored in the space occupied by deleted 
records, the cylinder overflow areas themselves may also overflow. 
To maintain processing efficiency, reorganization of t~e entire file 
will then soon be necessary. It can be done by reading the file 
track after track, clearing each track separately and then restoring 
each current data block as if it were new. Since deleted records are 
not restored, free space will be concentrated again at the end of 
the tracks. After the prime data tracks have been reorganized, the 
overflow area may then be processed, and an attempt will be made to 
write overflow records to the prime data area. Overflow records that 
cannot be moved to the prime data area are moved back into the 
overflow tracks. Deleted records are omitted. 

Retrieving Records With a Key Area: Records can be retrieved by a 
search on key. If the option for a search on multiple tracks is 
specified, a record can be found on a cylinder, as long as you 
specify the start of the search at, or before, the record address. 
The same conversion algorithm that is applied for writing a record 
can be used for retrieving it. 

Appendix B. Direct Access Method (DAM) B-17 



PRIME DATA AREA 

Figure B-6. Prime Data Record and Related Overflow Records 

the prime data block to its original location on disk and 
write the new record as the first overflow record. 

c. If the block does contain current data and the overflow 
pointer indicates the presence of synonyms: save the address 
in the overflow pointer (this is the address of the first 
synonym in the overflow chain). Establish the address of a 

Appendix B. Direct Access Method (DAM) B-19 



written into overflow block 3, which is the first 'free' block, and 
added to the overflow chain that already exists. The center diagram 
in Figure B-7 on page B-22 shows the situation after the new record 
has been added. Note that the new record becomes the first overflow 
block in the overflow chain, and that block 1 in the overflow area 
now points to block 5 as the first 'free' overflow block. 
When a block must be deleted from the overflow area, you must locate 
it properly following the overflow chain. The deleted record becomes 
the first 'free' overflow block. The bottom diagram in Figure B-7 
shows the situation after deleting block 6 from the overflow area. 

A result of this method may be that a chain of records must be 
searched before the desired record is found. A requirement of this 
method is that the pointers must be adjusted when a record is 
deleted. 

There is an alternative method that can be used for fixed-length 
records without a key. In this method, the randomizing algorithm 
calculates a cylinder and track address only. You must then check to 
see whether the track can accommodate the new record. This means 
that a record-by-record scan must be performed until a record is 
found that contains no current data. Most likely, more than one 
block will have to be read before the right one is retrieved, and 
the overflow area must be used if the track is full. Since overflow 
records are now chained by track, the overflow chains may be much 
longer than when randomizing down to a record address. As a result, 
this procedure will be rather time-consuming, and is therefore not 
very attractive. For variable-length blocks this method is not 
practical; it may impose serious retrieval problems. 

A summary of the randomizing techniques discussed here is presented 
in Figure B-8 on page B-23. 

Reading Records 

The READ macro transfers a record from DASD to an input area in 
virtual storage. The input area must be specified in the DTFDA 
IOAREA1 operand, and the WAITF macro must be used. 

The READ macro returns control to the problem program after 
requesting PIOeS to execute a CCW chain. You can perform processing 
unrelated to that block of data and then issue a WAITF macro to 
check for the completion of the read operation. 

The READ macro is written in either of two forms depending on the 
type of reference used to search for the record. Both forms may be 
used for records in anyone DTFDA-specified file if the file has 
keys. 

This macro always requires two parameters. The first parameter 
specifies the name of the file from which the record is to be 
retrieved. This name is the same as that specified in the DTFDA 
header entry for the file and can be specified either asa symbol or 

Appendix B. Direct Access Method (DAM) B-21 



I 
I 

LOADING AND PROCESSING DIRECT ACCESS FILES I 
------------------~---------------------------I 
RECORDS WITH A KEY I 

I 
Fixed-Length Blocks I 
Loading: The file is preformatted by the Clear Disk program. I 

Randomize to a track or a cylinder address, which
ever method is used for the file. A record 
becomes an overflow record if the search for a 
dummy record is unsuccessful. 

Processing: Randomize to the track or the cylinder address, 
whichever method is used for the file. 

Variable-Length Blocks 
Loading: Randomize to a track address. The file is not pre

formatted; record zero (capacity record) indicates 
how much space is left on the track. A record 
becomes an overflow record if the space left is not 
large enough. 

Processing: Randomize to the track address. 

RECORDS WITHOUT A KEY 

Fixed-length blocks 
Loading: The file is preformatted by the Clear Disk program. 

Randomize to a record address. Each synonym 
becomes an overflow record to be inserted logically 
in an overflow chain. 

Processing: Randomize to the record address. Read the record 
and check whether it is the one desired. If it is 
not, search the overflow chain. 

, I 
I 
I 
I 
I 

Figure B-8. Summary of Randomizing Methods 

in register notation. The second parameter specifies the type of 
reference used for searching the records in the file. 

If records are undefined (RECFORM=UNDEF), DAM supplies the data 
length of each record in the designated register in the DTF RECSIZE 
operand. 

I 

Record Reference by Key: If the record reference is by key (control 
information in the key area of the DASD record), the second 
parameter in the READ macro must be the word KEY, and the READKEY 
operand must be specified in the DTFDA: 

READ filename,KEY 

Appendix B. Direct Access Method (DAM) B-23 



To perform the various write operations the WRITE macro is issued, 
but in different formats. In all cases, the WRITE macro returns 
control to the problem program after requesting services from PIOeS. 
You can perform processing unrelated to the block of data to be 
written. You must issue a WAITF macro to check for the completion of 
the write operation. 

Adding New Records: This is done with the WRITE macro in the 
format: 

WRITE filename,AFTER[,EOF] 

The program must supply the track address. The system examines the 
capacity record in record zero to determine the location and the 
amount of space available for the record. 

If the rema1n1ng space is large enough, the count area, the key area 
(if any), and the data area are written to the location immediately 
following the last record on that track. IDes updates the capacity 
record. 

If the space rema1n1ng on the track is not large enough, the problem 
program is notified. 

This format of the WRITE macro cannot return an ID. 

EOF is optional and applies only to the WRITE filename, AFTER form 
of the macro. This form writes an end-of-file record (a record with 
a length of zero) on a specified track after the last record on a 
track. 

Overwriting Existing Records: If reference is by ID, the macro 
format is: 

WRITE filename,ID 

The program must supply the track address and the record number of 
the record to be written. The system searches for this ID and starts 
writing the key (if any) and the data. If an ID was requested, the 
ID returned will be the one of the next record in the file. 

If reference is by key, the macro format is: 

WRITE filename,KEY 

The program must supply the key of the record to be located, and the 
address of the track on which the record resides. The system then 
searches that track or, if the search-multiple-tracks option is 
specified in the DTFDA macro, searches through the cylinder starting 
with the track specified. When the key is found, the data is written 
without the key. 

If the DTFDA macro specifies that an ID must be returned, this ID 
will be the ID of the record following the one written; if the 

Appendix B. Direct Access Method (DAM) B-25 



parameter of the WRITE macro. Also the WRlTEKY operand must be 
included in the DTFDA. 

Whenever this me·thod of reference is used, your program must supply 
the key of the desired record to IOCS before the WRITE is issued. 
The key must be stored in the key field (specified by the DTFDA 
KEYARG operand). When the WRITE is executed, IOCS searches the 
previously specified track (stored in the track-reference field) for 
the desired key. When a DASD record containing the specified key is 
found, the data in the output area is transferred to the data area 
of the DASD record. This replaces the information previously 
recorded in the data area. The DASD count field of the original 
record controls the writing of the new record. If a record is 
shorter than the original record, it is padded with zeros. A record 
longer than the original record is written only to the extent of the 
area indicated in the count field on the track, and any excess bytes 
are lost. IOCS turns on the wrong-length-record bit in the 
error-status field if any short or long records occur. 

Only the specified track is searched unless you request that 
multiple tracks be searched on each WRITE macro. Searching multiple 
tracks is specified by including the SRCHM operand in the DTFDA. In 
this case, the specified track and all following tracks are searched 
until the desired record is found or until the end of the cylinder 
is reached. The search of mUltiple tracks continues through the 
cylinder even though part of the cylinder may be assigned to a 
different file. 

Record Reference by ID: If the DASD location for writing records is 
determined by the record ID (identifier in the count area of 
records), ID must be entered as the second parameter of the WRITE 
macro and the WRITEID operand must be included in the DTFDA. 

Whenever this method of reference is used, your program must supply 
both the track information and the record number in the 
track-reference field. When the WRITE is executed, IOCS searches the 
specified track for the particular record~ When the DASD record 
containing the specified ID is found, the information in the output 
area is transferred to the key area (if present and specified in 
DTFDA KEYLEN) and to the data area of the DASD record. 

If FIXUNB or UNDEF is specified in the RECFORM operand, the key must 
precede your data in the IOAREAl area, otherwise you must load the 
key into the key field (specified by the KEYARG operand) before you 
issue the WRITE macro. This replaces the key and data previously 
recorded. 

IOCS uses the count field of the original record to control the 
writing of the new record. A record longer than the original record 
is written only to the extent of the area indicated in the count 
field on the track, and any excess bytes are lost. IOCS turns on the 
wrong-length-record bit in the error/status field if any long 
records occur. If an updated record is shorter than the original 

Appendix B. Direct Access Method (DAM) B-27 



Completion of Read or Write Operations 

You must issue a WAITF macro to check if a read o'r write operation 
has been completed. This macro tests for errors and exceptional 
conditions. Any exceptional condition discovered is passed to a 
special two-byte field, the name of which is specified in the DTFDA 
macro. This field must be defined in the problem program. 

The WAITF macro makes sure that the transfer of a record is 
complete. It requires only one parameter: the name of the file 
containing the record. The parameter can be specified either as a 
symbol or in register notation. 

This macro must be issued before your program attempts to process an 
input record which has been read, or to build another output record 
for the file concerned. The program does not regain control until 
the data transfer is complete. Thus, the WAITF macro must be issued 
after any READ or WRITE macro for a file, and before the succeeding 
READ or WRITE macro for the same file. The WAITF macro makes 
error/status information, if any, available to your program in the 
field specified by the DTFDA ERRBYTE operand. 

Non-Data Device Command 

By issuing a CNTRL macro with a filename,SEEK specified, you can 
cause access movement to begin for the next read or write operation. 
While the arm is moving for a SEEK, you can process data and/or 
request I/O operations on other devices. 

laCS seeks the track that contains the next block for that file 
without your having to supply a track address. If the CNTRL macro is 
not used, laCS performs the seek or restore operations when a READ, 
WRITE, GET, or PUT macro is issued. 

Issuing a CNTRL macro to seek a track address might not result in an 
improvement of throughput if the volume containing your file is 
being shared with files that are accessed by another program or task 
active at the same time. A condition such as this is even more 
likely to arise if your file is stored on a physical volume that 
represents two or more logical volumes of another device (a 3344, 
for example, which represents four logical 3348 70M data modules per 
spindle and access mechanism). 

Error Handling 

When you specify ERRBYTE=name in the DTFDA macro and ERREXT=YES in 
DTFDA, DAM will return to you I/O error condition codes in the 
two-byte field whose name is specified with ERRBYTE. 

The ERRBYTE codes are available for testing by your program after 
the attempted transfer of a record is complete. You must issue the 
WAITF macro before you interrogate the error status information. 

Appendix B. Direct Access Method (DAM) B-29 



Byte 

o 

BitlError/Status Code I Explanation 
I Indication I 
I I 

1 IWrong-length re- - A WRITE ID is issued, and the re-
Icord (continued) cord length is greater than spe-
I cified in the count field in the 
I DASD record on disk. The original 
I record positions are filled, and 
I the remainder of the updated re-
I cord is truncated and lost. 
I Note: If an updated record is 

I 
I 
I 

shorter than the original 
record, it is padded with 
binary zeros to the length 
of the original record. The 
wrong-length record bit is 
not set on. 

Undefined-Length Records: This bit 
is set on when: 
- A READ KEY or WRITE KEY is issued, 

and the keylength differs from the 
length as specified by KEYLEN=n. 
No data is transferred. 

I- A READ KEY is issued, and the data 
I length is greater than the maximum 
I data size (BLKSIZE minus KEYLEN, or 
I BLKSIZE minus KEYLEN plus 8 if AF-
I TER=YES was specified). IOCS supp-
I lies the actual data length of the 
I record read in the RECSIZE regis
Iter. 
I 
I-
I 
I 
I 
I 
I 
I 
I 
I 

A READ ID is issued, and the length 
of the record (including key if 
KEYLEN was specified) is greater 
than the maximum record length 
(BLKSIZE, or BLKSIZE minus 8 if 
AFTER=YES was specified). IOCS 
supplies the actual data length of 
the record read in the RECSIZE re-
gister. 

Figure B-9 (Part 2 of 8). ERRBYTE Error Status Indication Bits 

Appendix B. Direct Access Method (DAM) B-31 



By tel Bit I Error/Status Code 

o 

I I Indication 
I I 
11 IWrong-length re-
I Icord (continued) 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Explanation 

- A non-formatting WRITE is 

I 
I 
I
I 
I 
I 
I 
I 

issued and the record is larger 
than the physical record on the 
device. The record is written 
with the low-order bytes trun
cated. The indicator is also set 
on if the record is shorter than 
the physical record, but the low
order bytes of the physical record 
are padded with binary zeros. 

A formatting WRITE is issued 
and the LL count (1) is greater than 
the maximum specified block size. 
The record is written with the 
low-order bytes truncated. 

I Spanned Records: This bit is set on 
I when: 
I- A READ is issued and the logi-
I cal record size is larger than the 
I value specified by BLKSIZE minus 
I 8. Only the number of bytes speci
I fied is read. 
I 
I- A non-formatting WRITE is 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

issued and the record length is not I 
the same as that of the record being I 
processed. If the length specified, I 
is longer than the record being pro-I 
cessed, the low-order bytes are ig- I 
nored. If the length specified is I 
less than the record being pro- I 
cessed, it is padded with bina- I 

I ry zeros. I 
I 

(1) The LL count is contained in the first twp bytes of the blockl 
descriptor and counts the length of the physical block including I 
all control information. I 

I 
I 

Figure B-9 (Part 4 of 8). ERRBYTE Error Status Indication Bits 

Appendix B. Direct Access Method (DAM) B-33 



By te1 Bit I Error/Status Codel Explanation 
I I Indication I 
I I I 

o 15 INot applicable INot applicable 
I I 

o 16 Not applicable INot applicable 
I I 

o 17 Reference outside I The relative address given is out-
I extents ISide the extent area of the file. 
I INo,I/O activity has been started 
I land the remaining bits should be off. 
I IIf IDLOC is specified, its value is 
I Iset to 9s for a zoned decimal ID or 
I Ito Fs for a hexadecimal ID. 
I I 

1 10 Data check in IThis is an unrecoverable error. 
I count area I 
I I 

1 11 Track overrun IThe number of bytes on the track 
I lexceeds the theoretical capacity. 
I I I 

1 12 lEnd of cylinder IThis indication bit is set on when 
I I ISRCHM is specified for READ or WRITE 
I I IKEY and the end-of-cylinder is rea-
I I Iched before the record is found. 
I I IThis bit is also turned on if 
I I IIDLOC=name has been specified and 
I I Ithe record to be read or written is 
I I Ithe last record of the cylinder. 
I I I However, the address returned is 
I I Ithat of the first record of the 
I I Inext cylinder. 
I I I 

1 13 IData check when IThis is an unrecoverable error. 
I I reading key or I 
I I data I 

Figure B-9 (Part 6 of 8). ERRBYTE Error Status Indication Bits 

Appendix B. Direct Access Method (DAM) B-35 



I 

By tel Bit I Error/Status Codel Explanation 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 

1 

I I Indication I 
I I I 
16 lEnd of volume IThis indication is given in con-
I I I junction with the end-of-cylinder 
I I I indication. This bit is set on if 
I I I the next record ID (n+ 1,0, 1) that 
I I lis returned on the end of the cy-
I I Ilinder is higher than the volume 
I I laddress limit. The volume address 
I I I limit is: 
I I Ifor 2311: cylinder 199, head 9 
I I Ifor 2314 or 2319: cylinder 199, 
I I Ihead 19 
I I Ifor 3330-1,3330-2 or 3333: cylin-
I I I der 403, head 18 
I I Ifor 3330-11: cylinder 807, head 18 
I I Ifor 3340 with 3348 Model 35: cy-
I I Ilinder 347, head 11 
I I I for 3340 with 3348 Model 70: cy-
I I Ilinder 695, head 11 
I I Ifor 3350: cylinder 554, head 29 
I I I for 3375: cylinder 945, head 11 
I I Ifor 3380: cylinder 884, head 14 
I I I These limits allow for the reserved 
I I I alternate track area. 
I I 
I I 

IIf both the end of cylinder and EOV I 

I I 
I I 
17 INot applicable 

lindicators are set on, the ID returned I 
lin IDLOC is FFFF or, in the case of I 
I RELTYPE=DEC , zoned decimal 9's. I 
INot applicable I 

I 
I 

Figure B-9 (Part 8 of 8). ERRBYTE Error Status Indication Bits 

Appendix B. Direct Access Method (DAM) B-37 



\ 
! 

/ 

APPENDIX C. PROCESSING FILES WITH PIOCS (PHYSICAL IOCS) 

When your program processes magnetic tape, DASD, or diskette files 
by means of the PIOCS macros (such as EXCP and WAIT), the files must 
first be defined by the DTFPH macro. No logic module generation 
macro is needed. The DTFPH macro must also be used for a checkpoint 
file on disk. 

In physical IOCS, the logical unit name is specified in the CCB or 
IORB and in the DTFPH macro. Instead, or additionally, it is 
specified with the EXTENT job control statement. (If more than one 
of these is used to provide the specification, an EXTENT 
specification overrides a DTFPH specification and a CCB 
specification overrides an EXTENT and/or a DTFPH specification.) 

Figure C-l shows the relationship between the source program and the 
job control I/O assignment. 

Source Program CCB Job Control 

EXCP ccbname ccbname CCB SYSOOI ASSGN SYSOOl,181 
I I I I 
I~------------~I ~I ________________ ~, 

Figure C-l. Relationship Between Source Program and Job Control 
I/O Assignment 

After the files are defined by the DTFPH macro, the imperative 
macros can be used to operate on the files. The imperative macros 
are divided into three groups: those for initialization, processing, 
and termination. 

IN ITIALIZATION 

The OPEN macro activates files processed with the DTFPH macro. The 
macro associates the logical file declared in your program with.a 
specific physical file on a DASD. The association remains in effect 
throughout your processing of the file until you issue a CLOSE 
macJ:o. 

If OPEN attempts to activate a logical IOCS file (DTF) whose device 
is unassigned, the job is terminated. If the device is assigned IGN, 

Appendix C. Processing Files with PIOCS (Physical IOCS) C-l 



reserves the first track of the first extent for these labels and 
gives control to your label routine. After this, the first extent of 
the file can be used. Each time you determine that all processing 
for an extent is completed, issue another OPEN for the file to make 
the next extent available. When the last extent on the last volume 
of the file is processed, OPEN issues a message. The system 
operator has the option of canceling the job, or typing in an extent 
on the printer-keyboard and continuing the job. If the system 
provides DASD file protection, only the extents opened for the 
mounted volume are available to you. 

Single Volume Mounted - Input 

When processing input files with physical IOCS, OPEN is used only if 
you want to check standard labels. 

All Volumes Mounted - Output 

If all output volumes are mounted when an output file is created 
with physical IOCS, each volume is opened before the file is 
processed. OPEN is used only if standard labels are checked or 
written. 

For each volume, OPEN checks the standard VOLl label and checks the 
extents specified in the EXTENT job control statements: 

1. The extents must not overlap each other. 

2. Only type-1 extents can be used. 

3. If user standard header labels are created, the first extent 
must be at least two tracks long. 

4. For 3340, all data modules must be of the same type. 

OPEN checks all the labels in the VTOC to ensure that the created 
file does not write over an existing file with an expiration date 
still pending. After this check, OPEN creates the standard label(s) 
for the file and writes the label(s) in the VTOC. 

When the mounted volume is opened for the first time, OPEN checks 
the extents specified in the EXTENT statements (for example, it 
checks that the extent limit address for the device being opened is 
valid). OPEN also checks the standard VOLl label and the file 
label(s) in the VTOC. If the system provides DASD file protection, 
only the extents opened for the mounted volume are available for 
use. 

If LABADDR is specified,OPEN makes the user standard header labels 
(URL) available to you one at a time for checking. Then, OPEN makes 
the first extent available for processing. 

Appendix C. Processing Files with PIOCS (Physical IOCS) C-3 



After this check, OPEN creates the format-1 label for the file and 
writes the label in the VTOC. Each time you determine that all 
processing for an extent is complete, you must feed to make the next 
diskette available and then issue another OPEN for the file to make 
the next extent available. Close will automatically cause the last 
volume to be fed out. If the last extent of the file is completely 
processed before a CLOSE is issued, OPEN assumes an error condition 
and the job is canceled. 

Diskette Volumes - Input 

When processing input files on diskettes with physical IOCS, OPEN is 
used to check standard labels. 

When the first volume is opened, OPEN checks the VTOC on the 
diskette and determines the extent limits of the file from the file 
label. 

After the label is checked, OPEN makes the first extent available 
for processing. Each time you determine that all processing for a 
diskette is complete, you must feed to make the next diskette 
available, and then issue another OPEN for the file, to make the 
next extent available. If another extent is not available, OPEN 
stores the character F (for EOF) in byte 31 of the DTFPH table. You 
can determine the end of file by checking the byte at filename+30. 

For a programmer logical unit, the last diskette will always be fed 
out; for a system logical unit, the last diskette will not be fed 
out. 

PROCESSING 

In order to process a file by means of physical IOCS, you must 
provide either a Command Control Block (CCB) or an I/O Request Block 
(IORB) for each I/O device. These control blocks are used to 
maintain communications between your program and PIOCS about such 
things as determining the status of the device in use and specifying 
the operations that you want performed. 

Using the operands that you specify, the CCB macro generates a 
Command Control Block of either 16 or 24 bytes. See the Macro 
Reference manual for the format and contents of the CCB. Similarly, 
the IORB and GENIORB macros generate an I/O Request Block, which is 
the same as a CCB except that, in the IORB, bytes 6-12 and 16-23 are 
reserved for use by PIOCS. Using the IORB or GENIORB macros instead 
of the CCB macro allows you additional options, such as specifying 
areas to be page-fixed. This frees the system from having to 
determine which areas are to be fixed. 

The macros differ from one another further in that issuing a CCB or 
IORB macro generates the block when the program is assembled, while 

Appendix C. Processing Files with PIOCS (Physical IOCS) C-5 



I completely written. A problem program can wait for the completion of 
an I/O operation by issuing a WAIT macro that refers to a CCB or 
IORB. The reference can be made in either way described above for 
the EXCP macro. The effect of a WAIT macro is another SVC 
instruction which checks, in the interrupt routine, the status of 
the I/O operation in the process. 

When WAIT is executed, the supervisor gives control to another 
program until the traffic bit (byte 2, bit 0) of the related CCB or 
IORB is turned on. 

The relationship between the three PIOCS macros CCB, EXCP, and WAIT 
is shown in Figure C-2 on page C-S. 

Note that in this figure the assembler instruction CCW is 
illustrated as well. The CCW instruction is not a macro. It is 
included in the figure only for clarification. Note also that an 
IORB or GENIORB macro may be substituted for the CCB, in some cases. 

The EXTRACT ID=PUB macro retrieves partition-related device 
information, that is, for a given logical unit, PUB information can 
be obtained. The PUB information retrieved can be interpreted using 
the mapping DSECT generated by the IJBPUB macro. 

The SECTVAL macro calculates the sector value of the address of the 
requested record on the track of a disk storage device when RPS is 
used. The macro returns this value in register O. 

The sector value is calculated from data length, key length, and 
record number information. Values are calculated for fixed or 
variable length and for keyed and non-keyed records. 

The LBRET macro is issued in your subroutines when processing is 
completed and you wish to return control to IOCS. LBRET applies to 
subroutines that write or check tape nonstandard labels, or check 
DASD extents. The operand used depends on the function to be 
performed, which is discussed in the following section. 

Processing Labels and Extents 

CHECKING USER STANDARD DASD LABELS: IOCS passes labels to you one at 
a time until the maximum allowable number is read and updated, or 
until you signify you want no more. Use LBRET 3 in your label 
routine if you want IOCS to update (rewrite) the label read and pass 
you the next label. Use LBRET 2 if you want IOCS to read and pass 
you the next label. If an end-of-file record'is read when LBRET 2 or 
LBRET 3 is used, label checking is automatically ended. If you want 
to eliminate the checking of one or more remaining labels, use 
LBRET 1. 

WRITING USER STANDARD DASD LABELS: Build the labels, one at a time, 
and use LBRET to return to IOCS to write the labels. Use LBRET 2 if 
you wish to regain control after IOCS wrote the label. If however, 

Appendix C. Processing Files with PIOCS (Physical IOCS) C-7 



WRITING OR CHECKING NONSTANDARD TAPE LABELS: You must process all 
your nonstandard labels at once. LBRET 2 is used after all label 
processing is completed and you want to return control to IOCS. 

Forcing End-of-Volume 

The FEOV (forced end-of-volume) macro is used for files on magnetic 
tape (programmer logical units only) to force an end-of-volume 
condition before sensing a reflective marker. This indicates that 
processing of records on one volume is considered finished, but that 
more records for the same logical file are to be read from, or 
written on, the following volume. 

When physical IOCS macros are used and DTFPH is specified for 
standard label processing, FEOV may be issued for output files only. 
In this case, FEOV writes a tapemark, the standard trailer label, 
and any user-standard trailer labels if DTFPH LABADDR is specified. 
When the new volume is mounted and ready for writing, IOCS writes 
the standard header label and user-standard header labels, if any. 

The SEOV (system end-of-volume) macro must only be used with 
physical IOCS to automatically switch volumes if SYSLST or SYSPCH 
are assigned to a tape output file. SEOV writes a tapemark, rewinds 
and unloads the tape, and checks for an alternate tape. If none is 
found, a message is issued to ·the operator who can mount a new tape 
on the same drive and continue. If an alternate unit is assigned, 
the macro fetches the alternate switching routine to promote the 
alternate unit, opens the new tape, and makes it ready for 
processing. When using this macro, you must check for the 
end-of-volume condition in the CCB. 

TERMINATION 

The CLOSE macro is used to deactivate any file that was previously 
opened. Console files, however, cannot be closed. The macro ends the 
association of the logical file declared in your program with a 
specific physical file on an I/O device. A file may be closed at any 
time by issuing this macro. No further commands can be issued for 
the file unless it is opened. 

A maximum of 16 files may be closed by one macro by entering 
additional filename parameters as operands. Alternatively, you. can 
load the address of the filename in a register by using ordinary 
register notation. The address of the filename may be pre loaded into 
register 0 or any of the registers 2 through 15. The high-order 
eight bits of this register must be zeros. 

Appendix C. Processing Files with PIOCS (Physical IOCS) C-9 



filename DTFPH (parameters, among others SYSxxx and ccbname) 

OPEN filename 

Exep filename 
WAIT filename 

CLOSE filename 

ccbname eeB SYSxxx, ccwname, optional operands 

ccwname eew cc,data-addr, flags ,count 
eew cc,data-addr, flags ,count 

etc. 

Figure C-3. Relationship Between DTFPH and Other PIoes Macros 

Operation or to the IBM 4300 Processors Principles of Operation, as 
listed in the Preface. 

Command Chaining Retry 

If a system has been generated to support command chaining retry, 
you can use this option for your Ploes channel programs by setting 
the command chaining retry bit in the eeB on. If an error that 
involves retry occurs, the retry will then begin with the last eew 
executed. If this bit is off, the entire channel program will be 
re-executed. 

When the command chaining retry bit is on, you must move the address 
of the first eew in the channel program to bytes 9-11 of the eeB 
before an EXep is issued. This ensures that the eeB always contains 
the correct eew address; bytes 9-11 are modified by PIOeS for a 
retry after an error with the address of the eew to be re-executed, 
and is not reset to its original value. 

If a command chain is broken by some exceptional condition (for 
example, wrong-length record, or unit exception) that does not 
result in device error recovery by laCS, you can determine the 
address of the last eew executed and, if necessary, restart the 
channel program at that point. To obtain the address of the last CCW 
executed, subtract 8 from the address in bytes 13-15 of the eCB. On 
a 1403 printer, a command chain is broken after sensing channel 9 or 

Appendix C. Processing Files with PIoes (Physical laCS) e-ll 



CKD DASD Channel Programs 

The user should begin a DASD channel program with a full seek 
(command code X'07'); if the channel program contains embedded 
seeks, they should be full seeks as well. 

If embedded full seeks are used, a program cannot run under DASD 
file protection, nor can it take full advantage of the seek 
separation feature. With DASD file protection, an embedded full seek 
causes cancelation of the program in error. 

The seek separation feature initiates a seek and separates it from 
the channel program chain. Thus, the channel is available for other 
input or output operations on the same channel. The seek separation 
feature, however, applies only to the first seek in a channel 
command chain. 

When executing a channel program (Figure C-4), the supervisor sets 
up a channel program with three commands: 

1. A Seek that is identical to the user's seek. 

2. A Set File Mask that prevents other X'07' seeks from being 
executed. 

3. A Transfer in Channel (TIC) command that transfers control to 
the command following the user's seek. 

l 
SUPERVISOR 

Problem 
program 

1 
Channel program 
written by the 
user (CCW 
instructions) 

r---. SIO 

~ 
SEEK 

Set File Mask 
TIC 

CCBJ 

EXCP 

LCCW 
CCW 
CCW 

SEEK 
SEARCH ID 
nC*-8 

Channel program set up 
by the Supervisor to 
protect the DASD device 

CCW WRITE Count. Key and Data 

Figure C-4. Example of Channel Programming a File~Protected CDK 
DASD File 

Appendix C. Processing Files with PIOCS (Physical IOCS) C-13 



Following the define operation should be a seek (command code 
X'07'). 

Following the seek should be the read or write CCWs. You Cqn chain 
1, 2, 13, or 26 read/writes. You have to check however, where your 
chaining begins. With 26 chained records, for instance, you have to 
start chaining on a track boundary. Record length can be chose~ 
freely up to 128 bytes. If write operations are being performed, a 
NOP command should be chained to the last write command to ensure 
that any errors occurring on this channel program are returned. 

Console (Printer-Keyboard) Buffering 

If the console buffering option is specified at system generation 
and if the printer-keyboard is assigned to SYSLOG, throughput on 
output under PIOCS can be increased for physical blocks that do not 
exceed 80 characters. This is accomplished by starting the I/O 
command and returning to the problem program before the output is 
completed. 

Blocks are always printed in a FIFO (first-in-first-out) order, 
regardless of whether the output blocks are buffered (queued on an 
I/O completion basis). 

Console buffering is performed on output only if the following 
conditions are maintained: 

The actual block to be written must not exceed 80 
characters. 

No data chaining or command chaining must be performed. 

The acceptance of unrecoverable I/O errors, of posting at 
device end, or of user error routines must not be indicated 
in the CCB associated with the operation. 

Sense information must not be requested by the CCB. 

Alternate Tape Switching 

Alternate tape drives cannot be used on (input) processed by 
(PIOCS). 

On output, automatic alternate tape drive switching can be done 
through the DTFPH and FEOV macros. The FEOV (Force End of Volume) 
macro writes the trailer label sets (standard labels and any desired 
user labels), and deactivates the current volume. The next volume is 
then mounted on the alternate tape drive, and IOCS writes the header 
label sets (standard labels and any desired user labels) on the new 
volume. 

Appendix C. Processing File;~ with PIOCS (Physical IOCS) C-15 



APPENDIX D. USING SYSTEM CONTROL MACROS IN REENTERABLE PROGRAMS 

A reenterable program can be entered and used concurrently by 
several tasks without sacrificing the integrity of its instructions 
or data areas. 

Data areas that may be modified by a reenter able program must be 
unique to each task executing that program. Examples of such areas 
are: save areas, 1/,0 areas, control blocks. Consider a program 
containing the ATTACH macro: 

ATTACH SUBTASK 
SAVE=LOCSAV, 
ECB=LOCECB, 
ABSAVE=LOCSAVAB 

WAIT LOCECB 

LOCSAV DS 16D 
LOCSAVAB DS 9D 
LOCECB DC F'O' 

Column 72 

x 
X 
X 

A task that executes the above ATTACH macro initializes the save 
area (LOCSAV) for the subtask to be attached. After the attached 
subtask has started processing, it can be interrupted. While the 
subtask remains in the wait state, another task may be dispatched 
and execute the macro. Because only one subtask save area exists, 
this task, in initializing the save area, would destroy whatever was 
saved there when the interrupt occurred. As coded above, the ATTACH 
macro is not reenterable because data areas are not unique to the 
tasks executing the macro. 

A commonly used method of isolating data areas for individual tasks 
is to establish them outside the program's boundaries. Through the 
GETVIS macro, a task may dynamically acquire storage which it will 
use asa data area; this data area may be kept unique to the task 
that requires it. 

Appendix D. Using System Control Macros in Reenterable Programs D-l 



macro and are modified via statements at (A) and (B). In the 
context of reentrancy, they belong in the same category as save 
areas, I/O areas, or control blocks. A program containing a macro 
as written above is not reenterable. 

For system control macros with the MFG operand (such as ATTACH, 
FETCH, GETIME, etc.), VSE builds a parameter list outside the macro 
expansion. The MFG operand points to this list. The list is a 
64-byte area which the program provides for the macro's execution. 

To make the program reenterable the parameter list must be unique to 
any task executing the macro. Again, a convenient method of 
establishing that uniqueness is to make the parameter list part of a 
dynamically obtained storage area. The ATTACH macro would then look 
as follows: 

Column 72 

ATTACH SUBTASK, X 
SAVE=(7) ,ECB=(8) ,ABSAVE=(9) X 
MFG=(10) 

Note: MFG stands for 'Macro Format: Generate', bearing some 
resemblance to the MF=(G, ... ) parameter in VSAM macros. 

The macro expansion shows that the parameter list is no longer 
stored into the generated code; instead, the parameter list is only 
referenced (using register 10 in this example): 

L O,=A(SUBTASK) 
ST 0,0+0(10) 
ST 8,0+4+0(10) 
ST 9,0+8+0(10) 
LR 0,7 
LA 1,0(10) 
SVC 38 

Register notation, as used in the preceding example, may be costly 
because each operand uses up a register, and, in addition, each 
register has to be pre loaded with the address of the pertinent 
field. 

Where indicated in the macro format (refer to the Macro Reference 
manual), the operand may be specified in (S,address) notation 
instead of register notation. The ATTACH macro is one of the macros 
that allows this alternative: 

ATTACH SUBTASK, 
SAVE=(S,DYNSAV) 
ECB=(S,DYNECB) 
ABSAVE=(S,DYNSAVAB) 
MFG=(S,DYNPARM) 

Column 72 

X 
X 
X 
X 

Appendix D. Using System Control Macros in Reenterable Programs D-3 



APPENDIX E. WRITING SELF-RELOCATING PROGRAMS 

A self-relocating program is one that can be loaded for execution at 
any location in virtual storage. While having this distinct 
advantage, self-relocating programs are slightly more time consuming 
to write and they usually require slightly more storage. And, they 
may only be written in Assembler language. For these reasons you 
may want to make use of the relocating loader instead. The 
relocating loader, standard in VSE (available as a system generation 
option in DOS/VS), accomplishes the same thing as writing 
self-relocating programs, but without any of these disadvantages. 

However, prior to the availability of a relocating loader, some 
users coded self-relocating programs to gain the advantage of 
running them in anyone of the available partitions without their 
having to be link-edited again. When the program was link-edited, 
OPTION CATAL and a PHASE statement such as 

PHASE phasename,+O 

were used. This caused the linkage editor to assume that the 
program was loaded at storage location zero, and to compute all 
absolute addresses from the beginning of the phase. The job control 
EXEC function recognized a zero phase address to compensate for the 
current partition boundary save area. Control was then given to the 
updated entry address of the phase. Programs that were written 
using self-relocating techniques could be cataloged as either 
self-relocating or non-self-relocating phases. 

If you have to perform maintenance on such a program, you must write 
this program in Assembler language according to the same rules under 
which the program was originally written. 

RULES FOR WRITING SELF-RELOCATING PROGRAMS 

In general, if a problem program is written to be self-relocating, 
the rules below must be followed. Rules 1 through 5 apply to any 
program that is to be self-relocating. Rules 6 through 8 apply only 
to those self-relocating programs which consist of two or more 
control sections. 

1. The PHASE card must specify an origin of +0. 

2. The program must relocate all address constants used in the 
program. Whenever possible, use the LA instruction to load an 
address in a register instead of using an A-type address 
constant. For example, instead of writing: 

Appendix E. Writing Self-Relocating Programs E-1 



~I 

RCARDIN 
RPRTOUT 
RWORK 

EQU 
EQU 
EQU 
LA 
LA 
LA 
OPENR 

4 
5 
6 
RCARDIN,CARDIN 
RPRTOUT,PRTOUT 
RWORK,WORK 
(RCARDIN),(RPRTOUT) 

GET (RCARDIN),(RWORK) 

Note: Since the DTF name can be a maximum of seven 
characters, an R can be prefixed to this name to identify 
the file. Thus, RCARDIN in this example can immediately 
be associated with the corresponding DTF name CARDIN. 

6. The relocation factor should be calculated and stored in a 
register for future use. For register economy, the base 
register can hold the relocation factor. For example: 

USING 
BALR 
LA 
BCTR 
BCTR 

*,12 
12,0 
12,0(12) 
12,0 
12,0 

Register 12 now contains the relocation factor and the program 
base. 

7. When branching to an external address, use one of the following 
techniques: 

L 
BAL 

L 
AR 
BALR 

15,=V(EXTERNAL) 
14,0(12,15) 

OR 
15,=V(EXTERNAL) 
15,12 
14,15 

where register 12 is the base register. 

8. The calling program is responsible for relocating all address 
constants in the calling list(s). 

See Figure E-1 on page E-4 for an example of the calling program 
relocating the address constants in a calling list. 

Appendix E. Writing Self-Relocating Programs E-3 



Programming Techniques 

A self-relocating program is capable of proper execution regardless 
of where it is loaded. DTFDI should be used to resolve the problem 
of device differences between partitions. A self-relocating program 
must also adjust all its own absolute addresses to point to the 
proper address. This must be done after the program is loaded, and 
before the absolute addresses are used. 

Within these self-relocating programs, some macros generate 
self-relocating code. For example, the OPENR and CLOSER macros, 
which can be used in place of OPEN and CLOSE, adjust all of the 
address constants in the DTFs opened and closed. OPENR and CLOSER 
can be used in any program because the OPENR macro computes the 
amount of relocation. If relocation is 0, the standard Open is 
executed. In addition, all of the module generation (xxMOD) macros 
generate self-relocating code. 

The addresses of all address constants containing relocatable values 
are listed in the relocation dictionary in the assembly listing. 
This dictionary includes both those address constants that are 
modified by self-relocating macros,and those that are not. The 
address constants not modified by self-relocating macros must be 
modified by some other technique. After the program has been 
link-edited with a phase origin of +0, the contents of each a4dress 
constant is the displacement from the beginning of the phase to the 
address pointed to by that address constant. 

The following techniques place relocated absolute addresses in 
address constants. These techniques are required only when the LA 
instruction cannot be used. 

Techniqu'e 1 : Code named A-type address constants: 

LA 4,ADCONAME 
ST ADCON 

ADCON DC A (ADCONAME) 

Technique 2: Place A-type address constants in the literal pool: 

LA 3,=A(ADCONAME) 
LA 4,ADCONAME 
ST 4,0(3) 

LTORG =A(ADCONAME) 

Appendix E. Writing Self-Relocating Programs E-5 



Technique 4: Use named V-type or A-type address constants: 

LA 3,ADCONAST Determine 
S 3,ADCONAST relocation 

factor 
L 4,ADCON 
AR 4,3 Add relocation 
ST 4,ADCON factor 

ADCONAST DC A(*) 
ADCON DC V (NAME) 

The load point of the phase is not synonymous with the relocation 
factor as developed in register 3 (technique 4). If the load point 
of the phase is taken from register 0 (or calculated by a BALR and 
subtracting 2) immediately after the phase is loaded, correct 
results are obtained if the phase is link-edited with an origin of 
+0. If a phase is link-edited with an origin of * or S, incorrect 
results will follow because the linkage editor and the program have 
both added the load point to all address constants. Figure E-2 on 
page E-8 shows an example of a self-relocating program. 

Appendix E. Writing Self-Relocating Programs E-7 



CHECK 

CHA12 

EOFTAPE 

PRINTCCB 
TAPECCB 
PRINTCCW 
TAPECCW 
OUTAREA 
INAREA 
SLI 
READ 
PRINT 
SKIPT01 

TM 
BCR 
BR 
MVI 
EXCP 
WAIT 
MVI 
BR 
EOJ 
CNOP 
CCB 
CCB 
CCW 
CCB 
DC 
DC 
EQU 
EQU 
EQU 
EQU 
END 

4(1),1 
1,10 
14 
PRINTCCW,SKIPT01 
(1) 
(1) 
PRINTCCW,PRINT 
14 

CHECK FOR UNIT EXEC IN CCB, 
YES-GO TO PROPER ROUTINE 
NO-RETURN TO MAINLINE 
SET SEEK TO CHAN 1 OP CODE 
SEEK TO CHAN 1 IMMEDIATELY 
WAIT FOR I/O COMPLETION 
SET PRINTER OP CODE TO WRITE 
RETURN TO MAINLINE 
END OF JOB 

0,4 ALIGN CCBs TO FULLWORD 
SYS004,PRINTCCW,X'0400' 
SYS001,TAPECCW 
PRINT,OUTAREA,SLI,L'OUTAREA 
READ,INAREA,SLI,L'INAREA 
CL110' , 
CL100' , 
X'20' 
2 
9 
X'SB' 
PROGRAM 

Figure E-2 (Part 2 of 2). Self-Relocating Sample Program 

Appendix E. Writing Self-Relocating Programs E-9 



APPENDIX F. CONTROL CHARACTER CODES 

CTLCHR=ASA 

If the ASA option is chosen, a control character must appear in each 
record. If the control character for the printer is not valid, a 
message is given and the job is canceled. If the control character 
for card devices other than the 2560, 5424, and 5425 is not V or W, 
the card is selected into stacker 1. The codes are listed in 
Figure F-l on page F-2, the stacker selection codes in Figure F-2 on 
page F-3. 

Appendix F. Control Character Codes F-l 



Hexadecimal I Punch Function 
Code I Combination 

=========--============================================================ 
Stacker selection on 1442 and 2596: 

81 
C1 

12,0,1 
12,1 

Stacker selection on 2520: 

01 
41 

12,9,1 
12,0,9,1 

Stacker selection on 2540: 

01 
41 
81 
13 
23 
33 
43 
53 

93 
A3 
B3 
C3 
D3 

12,9,1 
12,0,9,1 
12,0,1 
11,3,9 
0,3,9 
3,9 
12,0,3,9 
12,11,3,9 

12,11,3 
11,0,3 
12,11,0,3 
12,3 
11,3 

Select into stacker 1 
Select into stacker 2 

Select into stacker 1 
Select into stacker 2 

Select into stacker 1 
Select into stacker 2 
Select into stacker 3 
Primary hopper: select into stacker 1 
Primary hopper: select into stacker 2 
Primary hopper: select into stacker 3 
Primary hopper: select into stacker 4 
Primary hopper: select into stacker 5 
(2560 only) 
Secondary hopper: select into stacker 1 
Secondary hopper: select into stacker 2 
Secondary hopper: select into stacker 3 
Secondary hopper: select into stacker 4 
Secondary hopper: select into stacker 5 
(2560 only) 

Stacker selection on 3504, 3505, and 3525: 

01 
41 

12,9,1 
12,0,9,1 

Select into stacker 1 
Select into stacker 2 

Figure F-2. Stacker Selection Codes 

CTLCHR=YES 

The control character for this option is the command-code portion of 
the CCW used in printing a line or spacing the forms. The control 
characters are listed in Figure F-3 on page F-4. 

Appendix F. Control Character Codes F-3 



Hexadecimal I Punch Function 
Code I Combination 

========--=========--==========---= 
Printer control for 3525 with Print Feature: 

------------T-------------T-------------------
OD I 12,5,8,9 I Print on line 1 
15 I 11,5,9 I Print on line 2 
1D I 11,5,8,9 I Print on line 3 
25 I 0,5,9 I Print on line 4 
2D I 0,5,8,9 I Print on line 5 
35 I 5,9 I Print on line 6 
3D I 5,8,9 I Print on line 7 
45 I 12,0,5,9 I Print on line 8 
4D I 12,5,8 I Print on line 9 
55 I 12,11,5,9 I Print on line 10 
5D I 11,5,8 I Print on line 11 
65 I 11,0,5~9 I Print on line 12 
6D I 0,5,8 ' I Print on line 13 
75 I 12,11,0,5,9 I Print on line 14 
7D I 5,8 I Print on line 15 
85 I 12,0,5 I Print on line 16 
8D I 12,0,5~8 I Print on line 17 
95 I 12,11,5 I Print on line 18 
9D I 12,11,5,8 I Print on line 19 
A5 I 11,0,5 I Print on line 20 
AD I 11,0,5,8 I Print on line 21 
B5 I 12,11,0,5 I Print on line 22 
BD I 12,11,0,5,8 I Print on line 23 
C5 I 12,5 I Print on line 24 
CD I 12,0,5,8,9 I Print on line 25 

Figure F-3 (Part 2 of 2). Printer Control Codes 

Appendix F. Control Character Codes F-S 



INDEX 

r--1 
I A I 
L-----I 

A-type address constants E-5 
abnormal end (STXIT macro) 8-18 
abnormal end of task, subtask 8-23 
abnormal termination (STXIT 
macro) 8-18 

abnormal termination user exit 8-18 
access methods 1-3 
activating 

a DAM file B-13 
a DASD file 3-2 
a SAM file 2-9 

adding new records to a DAM file B-5, 
B-25 

address constants in self-relocating 
programs E-1 

advanced page-in 8-6 
Alternate Tape Switching C-15 
ANSI security checking 5-1 
ASA option for control character 

codes F-1 
assembling a format record 

(3886) 6-48, 6-50 
assembling DTFs and logic modules A-1 
assembly examples A-2 
ASSIGN macro 8-9 
assigning and releasing I/O units 8-9 
associated files 

card 6-2 
GET/CNTRL/PUT sequence 6-16 
printer 6-18 
programming considerations for card 
files 6-3 

ATTACH macro 8-31, 8-39, 8-40 
in reenterable programs D~l 

attaching a subtask 8-31 

r--1 
I B I 
L-----I 

BLKSIZE=MAX specification (in 
DTFSD) 2-5 

block 

FBA 2-1 
logical 2-1 
physical 2-1 

block size 2-5 
block size, magnetic tape file 5-5 
block size, maximum 2-5 
blocked records (SAM) 2-3, 2-11, 2-12 

selective processing of 2-17 
blocking diskette files 4-3 
branching between phases 8-23 
buffer 

control interval (CI) 2-1 
forms control (FCB) 8-59 

r--1 
I C I 
L-----I 

CALL macro 8-23, 8-28 
called program 8-23 
calling program 8-23 
CANCEL macro 8-23 
capacity record, DAM B-5, B-12 
card device control 6-12 
card files 

end-of-file handling 6-7 
error handling 6-8 
processing 6-1 

CATALOG command A-1, A-6 
CCB (Command Control Block) C-5 
CCB macro C-5 
CDLOAD macro 8-1 
CDMOD macro 6-1 
channel program example C-13 
channel programs 

for CKD devices C-13 
for diskettes C-14 
for FBA devices C-14 

CHAP macro 8-40 
CHECK macro 

for work file processing 2-20, 
2-22 

MICR 6-28, 6-31 
CI (control interval) 2-1, 3-1 

buffer 2-1, 3-1 
format 2-1 

CISIZE 3-1 

Index X-1 



DTFCD macro 6-1 
DTFCN macro 6-23 
DTFDA macro B-3, B-13 
DTFDI macro 7-1 
DTFDR macro 6-45 
DTFDR macro (3886) 6-32 
DTFDU macro 4-1 
DTFMR macro 6-24, 6-28 
DTFMT macro 5-9 
DTFOR macro 6-32 
DTFPH macro C-1 
DTFPR macro 6-2, 6-18 
DTFs, assembling A-1 
DTFSD macro 2-28, 2-29, 3-1, 3-6 

. DTL (Define The Lock) macro 8-52 
DUMP macro 8-21, 8-23 
dumps, requesting storage 8-21 
dynamic allocation of virtual 
storage 8-7 

dynamic storage area D-2 

r--l 
I E I 
L--J 

ECB (event control block) 8-39 
end-of-extent exit specification (in 

DTFSD) 2-9 
end-of-file handling 

card files 6-7 
device-independent system 
files 7-4 

disk files 2-8 
ending a 

job 8-22 
subtask 8-22 
task 8-22 

ENQ macro 8-39, 8-46 
enqueueing a resource 8-46 
EOJ macro 8-22 
EOXPTR (end-of-extent exit) 
specification in DTFSD 2-9 

ERET macro 2-8, 3-4, 3-6, 5-7 
ERRBYTE error status bits (DA~f) B-30 
error handling 

card files 6-8 
DAM B-29 
device-independent system 
files 7-3 

diskette files 4-5 
magnetic tape files 5-7 
printer files 6-22 
SAM, on DAsD 3-4 

3886 6-47 
error status bits (for ERRBYTE on 

DAM) B-30 
event control block (ECB) 8-39 
EXCP macro C-6 
execution mode, determining the 8-5 
EXIT macro 8-15, 8-23 
extending a tape file 5-1 
extension of tape files 5-1 
extent checking 

on DASD 3-2 
with PIOeS C-8 

,-, 
I F I 
L---1 

fast loading of phases 8-2 
FBA (Fixed Block Architecture) 2-1 

block size 2-5 
blocks 2-1 
channel programs C-14 
DASD processing ·3-1 
data transfer 2-2 

FCB (Forms Control Buffer), loading 
an 8-22, 8-59 

FCEPGOUT macro 8-6 
FEOV macro 2-18, 2-26, 5-6 

PIOCS C-9, C-15 
FEOVD macro 2-19, 2-27 

SAM, on DASD 3-7 
FETCH macro 8-1 
file extension (tape) 5-1 
file-protected DASD file~ C-10 
Fixed Block Architecture 

See FBA 
fixing pages in real storage 8-4 
forcing end-of-volume 2-18, 2-26 

magnetic tape 5-6 
PIOCS C-9, C-15 
SAM 2-18 
SAM on DASD 3-7 

forcing page-in 8-6 
forcing page-out 8-6 
format record, assembling a 

(3886) 6-48, 6-50 
format, macro 1-13 
forms control buffer (FCB), loading 
a 8-22, 8-59 

FREE macro 8-55 
freeing pages in real storage 8-4 
FREEVIS macro 8-7 

Index X-3 



LOAD macro 8-1 
loading a DAM file B-15 
loading a phase 8-1 
loading an FCB (Forms Control 
Buffer) 8-59 

locating data (DAM) B-6 
locating free space (DAM) B-12 
lock control block 8-52 
LOCK macro 8-52 
lock request count 8-52 
LOCKOPT (resource sharing) 8-53 
logic module generation macros 1-1 
logic modules 

assembling A-1 
DAM B-13 
preassembled 1-9 
providing 1-9 
standard module names 
supplying the names for 

1-11 
1-12 

logical block (FBA) 2-1 
logical units 1-7 

r--l 
I M I 
L-.J 

macro 1-1 
macro definition 1-1 
macro format 1-13 
macro format: generate 
macro instruction 1-1 
macro types 1-1 
macros 

control program 1-3 
declarative 1-1 
imperative 1-1 
IOCS 1-1 

(MFG) 

relationship between 1-1 
supervisor 1-3 

Magnetic Ink Character Re·ader 
(MICR) 6-24 

magnetic reader files, 
processing 6-24 

magnetic tape 
label processing 5-5 
reading backwards 5-6 

MICR 
document buffer 6-24 
document processing 6-30 
programming considerations 
stacker selection routine 
stacker selection timing 

D-3 

6-28 
6-25 

6-27 

MICR (Magnetic Ink Character 
Reader) 6-24 

mixed format (macro operands) 1-14 
MODDTL macro 8-53 
module names 1-11 
MRMOD macro 6-24, 6-28 
multitasking 8-30 

linkage example 8-18 
sample program 8-32 
save areas required 8-39 
subtask initiation 8-31 
subtask termination 8-45 

multi~91urile file processing 2-18 
MVCOM macro 8-8 

r-. 
I N I 
L-.J 

non-data device operations 
DAM B-29 
magnetic tape 
optical readers 
SAM 2-28 

5-10 
6-33 

non-standard labels (PIOCS) C-9 
non-standard tape labels 5-5 
normal end 

of main task 8-22 
of subtask 8-22 

NOTE macro (for work files) 2-23 

r-. 
I 0 I 
L-.J 

obtaining a record (SAM) 
OCR document processing 
OMR coding example 6-6 
OMR data 6-4 

data card 6-5 
data record 6-5 
format descriptor card 

OPEN macro 
DAM B-13 
DASD 3-2 
PIOCS C-1 
SAM 2-9 
1287/1288 6-40 

opening a file 
DAM B-13 
DASD 3-2 
diskette 4-1 

2-10 
6-30 

6-4 

Index X-5 



r---1 
I R I 
L--J 

randomizing ,(DAM) B-16, B-23 
RCB (Resource Control Block) 8-46 
RCB macro 8-46 
RDLNE macro (1287/1288) 6-39 
READ macro 

MICR 6-28, 6-31 
with 1270/1275 6-38 
with 1287/1288 6-40 
with 3886 6-46 

~ead-only module 8-58 
reading a tape backwards 5-6 
real storage 

fixing pages in 8-4 
freeing pages in 8-4 

record format (SAM) 2-3 
record identifier (ID), DAM B-6 
record key (DAM) B-1 
record reference 

by AFTER B-28 
by ID B-11, B-24, B-27 
by key B-11, B-23, B-26 

record size 
device-independent system 
files 7-2 

SAM 2-4 
record types (DAM) B-2 
record zero (RO), DAM B-17 
reenterable programs D-1 
reentrant modules 8-59 
reference methods (DAM) B-6 
register usage 1-12 
registers, linkage 8-24 
relative track address (DA~1) B-6, B-8 
RELEASE macro 8-9 
releasing I/O units 8-9 
releasing pages 8-6 
relocating address constants E-4 
relocating loader E-1 
RELPAG macro 8-6 
RELSE macro (SAM) 2-17 
requesting control functions 8-1 
requesting storage dumps 8-21 
RESCN macro (1287/1288) 6-40 
resource control block (RCB) 8-46 
resource control macros 8-51 
resource definition macros 8-52 
resource protection 8-46, 8-52 
resource sharing 8-51 
RETURN macro 8-23, 8-28, 8-30 
RPS (PIOCS) C-14 

RUNMODE macro 8-5 

SAM 

II 
I S I 
L--J 

activating (opening) a file 2-9 
combined files 2-3, 2-19, 2~20 
control interval format 2-1 
deactivating (closing) a file 2-27 
declarative macros 2-29 
extension of tape files 5-1 
forcing end-of-volume 2-18 
GET macro 2-7, 2-10 
I/O area specification 2-4, 2-14 
logic modules 2-28 
multivolume file processing 2-18 
non-data device operations 2-28 
processing data files 2-10 
processing update files 2-19 
processing work files 2-20 
PUT macro 2-12 
record format 2-3 
record size 2-4 
tape file extension 5-1 
work area specification 2-6, 2-14 
work files 2-20 

s ave. areas 8 - 25 
required for multitasking 8-39 

SAVE macro 8-23, 8-28, 8-30 
SDL (Systems Directory List) 8-2 
SECTVAL macro C-7 
seek, with DA~1 B-26 
selective processing 

of blocked records (SAM) 2-17 
of work files (SA~1) 2-23 

self-relocating programs E-1 
SEOF macro (FBA) 2-27 
Sequential Access Method 

See SAM 
sequential processing 

of SAM work files 2-22 
SETDEV macro 6-46 
SETIME macro 8-13 
shareable resource 8-52 
shared files 8-58 
shared modules 8-58 
shared resources 8-51 
Shared Virtual Area (SVA) 8-1, 8-2 
sharing a resource among 
subtasks 8-46, 8-49 

sharing a resource among tasks 8-51 

Index X-7 



II 
I v I 
L-J 

V-type address constants 
virtual storage control 
virtual storage dynamic 
allocation 8-7 

II 
I W I 
L-J 

WAIT macro 8-14, 8-40 
WAIT macro (PIOeS) C-7 
WAITF macro 

DAM B-29 
MICR 6-31 
with 1270/1275 6-39 
with 1287/1288 6-40 
with 3886 6-46 

E-7 
8-3 

waiting for a time interval to 
elapse 8-14 

WAITM macro 8-40 
work area (SAM) 2-6, 2-10, 2-14 

-work file (SAM) 
selective processing 2-23 
sequential processing 2-22 

work file processing (with SA~l) 
WRITE macro 

DAM B-25 
SAM work files 2-22 

WRITE SQ (formatting write) 2-24 
WRITE UPDATE (non-formatting 
write) 2-24 

2-20 

write verification with DAM B-26 
writing blocks of data (DA~1) B-24 
writing self-relocating programs E-1 
writing user standard tape labels 5-5 

Numerics 

1255 
processing 6-24 

1259 
processing 6-24 

1270 
programming considerations 6-37 

1275 
programming considerations 6-37 

1287/1288 
CNTRL macro 6-33 
optical reader codes 6-33 
programming considerations 

1419 
processing 6-24 
stacker selection 6-25 

1442 
card read punch codes 
stacker selection codes 
updating records 6-7 

2520 
card read punch codes 
stacker selection codes 
updating records 6-7 

2540 
card read punch codes 
stacker selection codes 
updating records 6-7 

2560 
card device codes 6-14 
printing 6-9 
updating records 6-7 

2596 

6-13 
F-3 

6-13 
F-3 

6-13 
F-3 

card read punch codes 6-15 
3210/3215 

programming considerations 
3504/3505 

card read codes 6-15 
O~IR data 6-4 
stacker selection codes F-3 

3525 
card printing codes 6-15 
card punch codes 6-15 
printing 6-10 
updating records 6-7 

3881 
CNTRL macro 6-37 

6-39 

6-23 

optical mark reader codes 
programming considerations 

6-37 
6-52 

3886 
assembling a format record 6-48, 

6-50 
CNTRL macro 6-35 
document control 6-45 
document marking 6-45 
error handling 6-47 
optical reader codes 6-35 
programming considerations 6-45 

5424/5425 
card device codes 6-14 
printing 6-10 
updating records 6-7 

Index X-9 



VSEj Advanced· Functions 
Application Programming 
Macro User's Guide 
Order No. SC33-6196-1 

nCl'\ucn·~ 

COMMENT 
FORM 

This form may be used to communicate your views about this publication. They will be sent to 
the author's department for whatever review and action, if any, is deemed appropriate. 
Comments may be written in your own language; use of English is not required. 

IBM may use or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation whatever. You may, of course, continue to use the 
information you supply. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 
Possible topics for comments are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name and mailing address: 

What is your occupation? 

Number of latest Newsletter associated with this pUblication: 

Thank you for your cooperation. No postage stamp is necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you may 
mail directly to the address in the Edition Notice on the back of the title page). 



5C33-6196-1 


