Systems

S$Y33-8567-1

- DOS/VSE Assembler Logic

Program Number 5745-SC-ASM

Second Edition (March 1979)

This is a major revision of, and obsoletes, SY33-8567-0 and all subsequent TNLs.
Changes to the text and to illustrations are indicated by a vertical line to the left of
the change.

This edition applies to DOS/VSE and to all other releases until otherwise indicated in
new editions or Technical Newsletters.

Changes are continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370
Bibliography, Order No. GC20-0001 for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader’s comments. If the form
has been removed, comments may be addressed to IBM Nordic Laboratory, Product
Communications, Box 962, S-181 09 Lidingé 9, Sweden. IBM may use or distribute
any of the information you supply in any way it believes appropriate without

incurring any obligation whatever. You may, of course, continue to use the information

you supply.
© Copyright International Business Machines 1973, 1979 '

ii

Preface

Purpose of the Manual

The purpose of the manual is to aid Programming Systems Representatives
locate and circumvent faults in the DOS/VSE Assembler, and to assist
system programmers with fixing or altering the program design. The
manual describes the logic, structure, and operation of the assembler
and is to be used as a complement to the program listings.

HOW THE MANUAL IS ORGANIZED

The manual is divided as follows:
e Part 1 - describes the logic of the DOS/VSE Assembler.
e Part 2 - describes the logic of the ESERV (De-edit) program.

Each part of the manual is divided into sections and appendixes as shown
belcw:

Note: Part 2 of the manual has no Directory section.

The following is a brief description of the various sections.
"Introduction" contains a summary of general information about the
program, such as size, purpose, environmental characteristics, physical

considerations, and operational considerations.

"Method of Operation* describes the logical functions of the program.

iii

Diagrams are used to show input, processing, and output of the functions
and subfunctions; each diagram is accompanied by an extended description
and cross-references to the program listings.

"Program Organization" describes how the program is divided up into ;
units. This section contains a phase/control section/object module e
directory, a summary of the functions of each phase, control and data
flow, allocation of main storage for the phases, main storage layouts of
the phases, and the common data area for the assembler.

"Directory" contains cross-references between the program's control
sections, entry points, routine names, module names, and
method-of-operation diagrams.

"Data Areas" contains detailed layouts of the program's data areas.
It also describes table and dictionary formats.

"Diagnostic Aids" contains information on debugging the assembler,
1/0 activity and workfile formats for each phase, and register usage.

“Appendixes® includes information on error messages, macro and COPY
code usage, reverse Polish notation element formats, pseudo operation
codes, internal character set, edited text flags, edited statement
formats, statements modifying data areas, and APAR documentation.

USING THE MANUAL FOR THE FIRST TIME

Read through the sections in the following order:

e Read the Introduction.

e Read the introductory material for the "Method of Operation"™ section 1
in order to get a good idea of how to read the method-of-operation N~
diagrams and extended descriptions; then study the main functional
flow of the program through the diagrams and descriptions.

e Study the figures in the "Program Organization®™ section to learn how
the program is physically structured.

e Continue reading the remaining sections in order to orient yourself
for quick reference to the pertinent information on the manual.

PREREQUISITE READING

Effective use of this manual requires the reader to have an
understanding of the material in the following publications:

IBM System/370 Principles of Operation, Order No. GA22-7000, which
contains information on IBM System/370 machine operations, storage and
register addressing, and the functions and formats of machine language
instructions.

0S/VS-DOS/VSE-VM/370 Assembler Language, Order No. GC33-4010, which
contains information on the functions and formats of assembler language
instructions, and the coding of macro definitions and instructions.

Guide to the DOS/VSE Asserbler, Order No. GC33-4024, which contains

information on the assembler options, program listings, complete —
descriptions of the input and output, and shows how to execute the 1
assembler. N

iv

Part 1: DOS/VSE Assembler Logic

Organization of Part 1

Introduction

Method of Operation
Program Organization
Directory

Data Areas
Diagnostic Aids
Appendixes

&

INTRODUCTION . . . e o o e o o o e
Size of the Assembler .« o . o
Purpose and Function of the Assembler
Environmental Characteristics
System Configuration . . .
Device Needs . . « . « .
System Interfaces . . .
Physical Considerations . .
Operational Considerations
Input . ¢ ¢ ¢ ¢ o 4 o .
Output
Control Informatlon for the Assembler
Special Feature of the Assembler
Macro Library and COPY Library
ESERV (De-edit) Program . . « « « « . .

] . o LI

. ¢ o

[e s . ¢

e & & o o

e 6 & o 0
. LI . ¢ 0 L . .
. [LI [] LI [s 0 .
L . [¢ o 0 ¢ o 0]
[. . o o (] e 0 L] LI . o o .
. [. [] [* o . ¢ 0 . . (] .

METHOD OF OPERATION . 2 « « o o o o @ o o @ .
Purpose of the Section +« « « . « . .
How the Section Is Organized
How to Read the Diagrams and Descriptions .
Translate Source Code into Object Code

Expand Macro Instructions and Do Conditional Assem

Local EAit .« ¢ ¢ ¢ o ¢ o o o o o o o o o o o o
Compress and Edit o o .
Edit Macro Definitions and Cond1t10nal Assembly
Convert Pre-Assembly to Reverse Polish Notation
Resolve Sequence Symbol References
Punch Edited Macro Definitions
Global Edit ¢« & & ¢ ¢« o« & o o &
Build Global Vector
Collect and Insert Attrlbutes .
Generate . . ¢ o <« o o o . .
Build Macro Dictionary Block -
Evaluate Reverse Polish Notation
Assemble . . . - o o o .
Edit for Assembler and Machlne Instruct1
Edlt . - - - L - - L] - - - - - - - L] -
Convert Assembly Expressions to Reverse
Handle Literals . . . e« o o o e o o o
Collect Symbol Deflnltlons e o o o o
Build Symbol Table
Build External Symbol chtlonary Table
Resolve Symbol References
Build Object Code 1 . . « « « « «
Process Machine Instructions . .
Process USING and DROP
Process Address Constants and CCWs .
Print/Punch the External Symbol Dictiona
Build Object Code 2 . . & ¢« ¢ o« « o «
Output . . . e o o

Process Edlted Text . o
Post Process . .
Print/Punch the Relocatlon Dictionary

o o
e e
e e
o e
* o
.

® & 5 & s
L] . (] . L] .

ol * 0 . [. .

n

. e o . L]

oocotccloglomucooaoo
e

-
- -
e e o
- -

.

Yy

e e e o e

. ¢ 8 e o o ¢ o L] . . . L Nne o o . L] . * 0 .

[. . . o 0 [] [[. (] . . .

o & 8 o 0 e 6 0 0 s s s o s Yo

vii

. . . s 8 L[] s [e o . [. [
e & 6 o 8 5 & 06 0 s o s o ¢ o
[[] o 8 . * o ¢ o 0 .
s & & 6 8 s 0 0 0 0 s 6 0 s o
. . [. [] [e 0 . . [. . . .
o 6 & o & 0 6 o & s 0 o 0 0 s

¢ o o o s s T o 0 s

[- R S Y
s 6 & & s 0 s 0 e o s »
e & o & s 8 4 s 0 s o e

=2
g..-...........
o+

De o o 6 ¢ s s 0 e

. . ¢ o . [] [e o 3] s 8 o o e s o ¢ 0 . [. o o

Q

. L o o [¢ o [] . [[. * 0 [o o ¢ 0 . * .

e & 8 ¢ 8 0 & 8 2 s & s 0
® & 8 0 8 5 0 6 0 4 o 8 0 2 0 2 O 0 B 0 2 2 b 0 O 6 4 2 & 2 B 4 s 0

¢ & & 6 & o 6 8 8 4+ 6 0 4 & o
ouooaooocoooooogcco.oco.o

Contents

¢ o . e L[] s o . o o
. [¢ o 0 . * 9 . LI]] . . .
O 6 o 0 s 6 0 s 6 s 0o s s s
. . . LI) L[] e 0 ¢ o 0 . . L] .
[} . . e o . e 0 ¢ o o . LI .

¢ @ [. . . . [. * 0 .

. s & o ¢ 0] s 0 s & ¢ & o] o ¢ o 0 . . . ¢ o o L] e o .« . e ® [

. . . e o [[. * & 0 ¢ 0 ¢ o e o . o [[. . . ¢ o 2

L] e & o @ [[. ¢ & o 0 [* o o . e o o o . . s o e & .) * o
&
o

L[] ¢ & o o o [. . L] o o o ¢ & o 2 . o s 8 . [[L] * o [[.

L] . . [. [[. ¢ . ¢ 0 ¢ 0 . . . []

counmnnnunwm WWWWWNNNN = o -

Sort and Print the Cross-Reference Dictionary .

Diagnostics and Statistics . .

Initializ
ABEND . .

e

.
.

e @ © ®o ® @© e e e © e e o e o e e

e @ e e o o e e e ®© @ e e e © o e

PROGRAM ORGANIZATION ¢ o « o o o o o o o o o =
Purpose of the Section . . - « e e e e e
Phase/Control Sectlon/Object Module Directory .
Summary of the Functions of Each Phase
Control and Data Flow Between Phases
BAllocation of Main Storage for the Phases . . .
Main Storage Layouts of the Phases
Common Data Area for the Assembler

DIRECTORY

e o e @ o o e ®© e e ®© e e e o

Purpose of the Sectlon e o e e e o o ‘e ‘e o o o

DATA AREAS
Purpose of the Section « <« ¢« & . « .+ .
Data Area Field Cross—-Reference

« e e e ® ®© e @ e ® e e ® e e e o

DIAGNOSTIC AIDS v v o e o o o o s o o « o o o« =
Purpose of the Section « ¢ & ¢ & < o &
Debugging Aids e e o ® e e o e e o
Wrong Assembler Output « o e e e o e o o o
Program CheCK =« &« o o o o o o o o o« o o« o
Program Identification
I/0 Activity and Workfile Layouts « e e e e .
Register Usage for the Assembler

APPENDIXE

APPENDIX

S

A:

e ®© @ @ @ @ ®© ®© e e © e e e e e a

DIAGNOSTIC MESSAGE NUMBER/MODULE/DIAGRAM

CROSS-REFERENCE « &+ 2 o ¢ o o o o o o o o « =

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

INDEX . .

Table of Contents for Method of Operation Diagrams
(see Part 11 page 51)

B:

L] ® . .

-

MODULE/ENTRY SYMBOL/EXTRN SYMBOL CROSS-REFERENCE

MACRO AND COPY CODE USAGE
ELEMENT FORMATS . ¢ « ¢ o « o « =
PSEUDO (INTERNAL) OPERATION CODES
INTERNAL CHARACTER SET
EDITED TEXT FLAGS .« <« « « « o o .
EDITED STATEMENT FORMATS

STATEMENTS MODIFYING DATA AREAS .

-

APAR DOCUMENTATION FOR THE ASSEMBLER

e o e o e e o o e e e & e © e e e

viii

-

.238
.243
<245
.259
.267
.269
.27
.273
.283
.315
. 317

J

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
1.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

38.

39.

40.
41.
42,
u3.
4y,
us5.

46.

Figures

Phase/Control Section/Object Module Directory (1 of 2) .
Summary of the Functions of Each Phase
Control and Data Flow Between Phases
Allocation of Main Storage for the Phases
ASSECA Main Storage Layout . . . ¢ o ¢ « o« o o o o « o =
ASSEDA Main Storage Layout . . .« « o o & o « o o o o o
ASSEEA Main Storage Layout . . « ¢« «¢ o ¢ « o o « o o« o«
ASSEGA Main Storage Layout . . . ¢ &« o ¢ & o o o o o o =
ASSEFA Main Storage Layout . . « ¢« «v ¢ « o o o o o o « =
ASSEHA Main Storage Layout . . . ¢ ¢ ¢ ¢ o o o o o o o
ASSEIA Main Storage Layout . . . ¢ ¢ ¢ ¢ ¢ o o « o o « .
ASSEJA Main Storage Layout . .« . < ¢ ¢ ¢ ¢ ¢ o o o o o
ASSEKA Main Storage Layout
ASSELA Main Storage Layout ¢ & ¢ ¢ o « o o =
ASSEMA Main Storage Layout . . . ¢ ¢ o ¢ ¢ ¢ o o o o o
ASSEOA Main Storage Layout« « « o o o o o o« o o« =
ASSEQA Main Storage Layout . . . « ¢ o ¢ ¢« ¢ o o o« o o .
ASSERA Main Storage Layout . e o o ® s e s e e e e e .
ASSERB and ASSERC Main Storage Layouts
ASSESA Main Storage Layout . . . ¢ ¢ o « ¢ ¢ ¢ o o o o @
I/0 Activity for ASSECA .+ v ¢ ¢ o o o o o o « o o o o =
I/0 Activity for ASSEDA . ¢ ¢ ¢ ¢ o o o o o o o o o« « @
I/0 Activity for ASSEEA . . & ¢ ¢ ¢ ¢ o o o o« o o o o« =
I/0 Activity for ASSEGA . . ¢ ¢ v ¢ ¢ o« o o o o o o o @
I/0 Activity foOr ASSEFA .« . v « o o o o o o o o o o o «
I/0 Activity for ASSEHA . . ¢ «¢ ¢ o o o o « o o o o o «
I/0 Activity for ASSEIA . ¢ ¢ ¢ ¢ ¢ o o o o o o o o o =
I1/0 Activity fOr ASSEJA . v ¢ o o o o o o o o o o o o
I/0 Activity for ASSEKA . . ¢ ¢ ¢ v ¢ o o o o o o o o =
I/0 Activity for ASSELA . . ¢ v o« o o o o o o o o o o =
I/0 Activity for ASSEMA . . . ¢ ¢ ¢« ¢ 4 e e e e o o o
I/0 Activity for ASSEOA . . ¢ ¢ 4« o o o o o o o o o o =
I/0 Activity for ASSEQA . . v v ¢ o o o o o o o o o o =
I/0 Activity for ASSERA, ASSERB, ASSERC« . .
I/0 Activity for ASSESA . . ¢ ¢ ¢ ¢ o o o o« o o o o o
Register USAge « « v o o« o o o « o o o o o o« o o o o =
Registers Changed by Interface-Routine Operation
Diagnostic Message Number/Module/Diagram Cross- Reference

(1 of 95) e e e o s o e e e o a4 o o o @ e o o o o o o
Module/Entry Symbol/EXTRN Symbol Cross-Reference

(1 Of 2) & 4 6 6 & 4 4 6 e o o o o o o o o o« o o o o =
Macro Usage (1 of 10) . . o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o
COPY Code Usage (1 of 3) . . ¢ ¢ ¢ ¢ o o ¢ o o o o o =
Element Formats: Part 1. Operands (1 of 2)
Element Formats: Part 2. Operators (1 of 4) e e e e e
Pseudo (Internal) Operation Codes (1 of 2)
Internal Character Set . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o« o o o o &

.

.

Table of Contents for Method of Operation Diagrams

(see Part 11 page 51)

ix

.236
.238

.243
. 245
.255
.260
.263
.267
.269

AN

. \\‘(\ﬁ/

.

;7,

Introduction

The DOS/VSE Assembler is the system control program assemkler language
translator for DOS/VSE. The language processed is a subset of the
language supported by System/370 OS Assemblers and is documented in
0S/VS - DOS/VSE - VM/370 Assembler Language. All System/370
instructions are supported by the DOS/VSE Assembler.

Size of the Assembler

The minimum virtual partition size required by the DOS/VS Assembler is
24K.

Purpose and Function of the Assembler

The purpose of the DOS/VSE Assembler is to translate source programs
written in the DOS assembler language into object modules suitable for
processing by the DOS Linkage Editor. The assembler performs three
majcr functicns in processing source programs: (1) expansion of macro
definitions called by macro instructions, {2) assembly of machine
instructions into object code, and {(3) processing of assembler
instructions.

The assembler also produces edited macro definitions suitable for
cataloging on a source statement library.

Environmental Characteristics

SYSTEM CONFIGURATION

The minimum configuration required by the assembler is the same as that
for the DOS control program: one disk drive, one card reader/punch, and
a printer. The following data sets are used by the assembler:

SYSRES Disk

SYSIPT Card, Tape, or Disk
SYSSLB {optional) Disk

SYSLST (optional) Printer, Tape, or Disk
SYSPCH (optional) Card, Tape, or Disk
SYSLNK (optional) Disk

SYs001, Sys002, SYs003 Disk

DEVICE NEEDS

The assembler requires devices for SYSRES, SYSIPT, and the three
workfiles SYS001, SYS002, and SYS003. Other devices are needed only if
the data sets are specified by their corresponding assembler option.

Introduction 1

SYSTEM INTERFACES

System-dependent functions and operations of the assembler (interfaces
between the assembler and the system) are centralized in interface
modules to allow relative ease of modification for new features of the
Disk Operating System. The names and functions of these interface
modules are listed below.

IPKAA Basic system interface routines (workfile I/0
and subroutine call routines), common data area
(COMMON)

IPKAB SYSSIPT, SYSSLB input routines

IPKAC SYSPCH routine for EDECK output

IPKAD SYSSLB logic module (DTFSL)

IPKAE SYSSLB routines for reading edited macros from SYSSLB

IPKAF SYSPCH/SYSLNK output routines

IPKAG SYSIPT logic module (CPMOD)

IPKAH SYSPCH/SYSLNK/SYSLST logic module (CPMOD)

IPKAI SYSLST output routine

Interface macros used by the assembler to provide service functlons
and to call for functions from interface modules are described in

Appendix C, "Macro Usage."

Physical Considerations

The assembler is made up of 19 phases residing on a core image library.
See "Program Organization®™ for a table showing the phases, control
sections, and object modules of the assembler.

Operational Considerations

INPUT

Input to the assembler is as follows:
Source code SYSIPT

COPY code (sublibrary A on a SYSRES/SYSSLB
source statement library)

Edited macro definitions SYSRES/SYSSLB
(sublibrary E on a source
statement library)

Sublibraries A and E are optional. One private library may be used in
addition to the system library. For a complete description of the input
see Guide to the DOS/VSE Assembler.

OUTPUT

Assembler output is as follows:
Object modules SYSLNK/SYSPCH

Source macro definitions (in SYSPCH
edited format)

Program listing SYSLST

The output is controlled by specifying assembler options. For a
complete description of the output see Guide to the DOS/VSE Assembler.

CONTROL INFORMATION FOR THE ASSEMBLER

The user specifies options for the assembler in the OPTION job control
statement. For a description of the assembler options see Guide to_the
DOS/VSE Asserbler.

Special Features of the Assembler

MACRO LIBRARY AND COPY LIBRARY

The DOS/VSE Assembler uses two sublibraries of the source statement
library: (1) the macro library, containing macro definitions in an
edited format, and (2) the COPY library, containing sequences of
assembler language instructions and/or macro definitions in source
format. Because the macro definitions in the macro library are edited,
the assembler is relieved from editing and syntax checking the macro
definitions when they are called by macro instructions from an assembler
program.

ESERV (DE-EDIT) PROGRAM

The ESERV program translates edited macros back into their source
format. This "de-editing®™ may be optionally combined with an update of
the macro. The logic of the ESERV program is described in Part 2 of
this manual. For a complete description of how to use the program see
Guide to the DOS/VSE Assenmbler.

Introduction 3

Method of Operation

Purpose of the Section

The purpose of this section is to give a functional description of the
assembler and to provide a cross-reference from any given diagram to
other parts of the manual and the program listings.

HOW THE SECTION IS ORGANIZED

This section consists of diagrams showing the functions and sub-
functions of the assembler. These diagrams are arranged in a hierarchy
as illustrated in the foldout, Figure 46, at the back of the manual.
(Please open Figure 46 and use it as a guide to the diagrams.) With each diagram is an
"Extended Description" containing detailed information about the
function or subfunction.

HOW TO READ THE DIAGRAMS AND DESCRIPTIONS

Each diagram illustrates:

o Input - showing what the data is and where it is from

o Process - describing how the data is processed by the assembler
o Output - showing where the data goes

Data areas are identified on the diagrams in two ways: main-storage
address (upper case, parenthesis), and by DSECT name (upper case,
underlined) . Data areas as shown on the diagrams are highly schematic.
For complete and accurate data area layouts see "Data Areas".

The extended descriptions are related to the diagrams by numbered
process steps. In addition, the extended descriptions give the names
of the module and routine(s) which perform the function.

Many of the data areas and routines are mentioned in two or more
diagrams. For a cross-reference of these data areas, the diagrams in
this section, and the program listings use the "Directory". The
Directory also cross-references the appropriate microfiche card if you
wish to go directly to the listings.

Method of Operation 5

Start reading the process block and refer to the input and out:put as

you proceed through the diagram.

require more detailed information.

Use the extended descriptions if you

EDIT
INPUT PROCESS OUTPUT
AREA 1
————————1 L — OUTPUT A
2
AREA 2 OUTPUT B
l : |
- —

EXT. DESCRIPTION MODULE ROUTINE

The following symbols are used in the diagrams.

—
—>

(MNAENT)

bata flow =~ T T T 7T

Pointer [:::]

Main storage
address

PSTRINGS
Control flow

> Data reference

Reference to
another diagram

DSECT name

Method of Operation

7

Translate Source Code into Object Code

INPUT

SOURCE STATEMENTS
SOURCE MACRO DEFINITIONS

(SYSIPT)

COPY CODE
EDITED MACRO DEFINITIONS

PROCESS

_I_J

(SOURCE STATEMENT
LIBRARY)

A /—”%
W

OUTPUT

(EDECK OPTION ONLY)
1 EXPAND MACRO INSTRUCTIONS

AND DO CONDITIONAL ASSEMBLY k‘)

2 ASSEMBLE OBJECT CODE FROM

MACHINE AND ASSEMBLER
INSTRUCTIONS

EDITED MACRO DEFINITIONS

(SYSPCH)
OBJECT MODULE
(SYSLNK OR SYSPCH)
LISTING
(SYSLST)

AT

EXTENDED DESCRIPTION

Source statements are read and macro instructions expanded. Conditional assembly in
open code is performed. If the EDECK option has been specified, edited macro
definitions can be obtained on SYSPCH.

After all macro instructions have been expanded, the assembler and machine instructions
are assembled into object code.

0T

Expand Macro Instructions and Do Conditional Assembly

INPUT PROCESS OUTPUT
ASSEMBLER AND
(SYSIPT, SYSSLB) MiscﬂlNE
SOURCE CODE INSTRUCTIONS
EDITED TEXT 3 GLOBAL EDIT

EDITED MACRO

DEFINITIONS (SYSSLB)

1 LOCAL EDIT

D

EDITED MACRO
DEFINITIONS

EDITED.-MACRO
DEFINITIONS

2 PUNCH EDITED

MACRO
DEFINITIONS

o/

4 COLLECT AND
INSERT
ATTRIBUTES

5 GENERATE

| -

T

EXTENDED DESCRIPTION

Because the assembler accepts edited macros, editing proceeds in two stages: local editing and
global editing. Local editing involves only local variable symbols. Global editing involves global
variable symbols and therefore cannot be done until edited macro definitions have been read in

(if they are called). After both local and global editing have been done, the macro instructions

can be expanded according to their definitions; conditional assembly in open code is also performed.

1.

Source code is read and macro definitions and instructions edited locally. Some editing of
machine and assembler instructions is also done.

If the EDECK option has been specified, locally edited source macro definitions are
punched.

Edited macro definitions are read in from the macro library and global editing done.

Attributes needed for conditional assembly are collected. The edited text is now ready
for macro expansion and conditional assembly.

Macro instructions are expanded and conditional assembly is performed. The output is
now ready for the assembler phases.

ZT

Local Edit

1.1

INPUT _ PROCESS

OUTPUT

SOURCE
CODE (SYSIPT)

——) |
1 comeress AND:> 2 CONDITIONAL

EDIT

ASSEMBLY
AND MACRO
DEFINITIONS
SOURCE
CODE (SYSSLB)

T || W &

—
—>

If no conditional

assembly or macros

3 RESOLVE
SEQUENCE
SYMBOL
REFERENCE

LOCALLY EDITED
TEXT

€T

1 1 EXTENDED DESCRIPTION
]

1. In the first pass over the text file, macro instructions and prototypes are edited,
opcodes inserted in all records, and all records are compressed. Some editing
of macro definitions is also done (see Diagram 1.1.1).

2. In the second pass, macro definitions are edited (see Diagram 1.1.2). Expressions
involving conditional assembly are transiated to reverse Polish notation (see Diagram
1.1.2.1).

3. o the third pass, sequence symboi references are resolved (replaced by addresses) and
the edited text separated from the compressed source records (see Diagram 1.1.3).

MODULE
IPKCC
IPKCA

IPKCC

IPKEA

ROUTINE

MIROUT

PROROUT

T

111

Source
macro
definitions

Open code

INPUT

Compress and Edit

PROCESS

SOURCE TEXT

MACRO

MEND
MACRO

ME.ND
MACRO

MEND

MACRO

MEND
MACRO

MEND

BEGIN

MAC1 &A,&B,&C=C

(SYSIPT,SYSSLB) |

AV

MAC1 XY

=
L

MACT U,V

.
.
.

END

IPKCA
1 READ SOURCE

2 COMPRESS ALL RECORDS

3 inserT o coDESs.
1

-
.-

.

¢ OPCODE TABLE (/PKCB)
o

\

4 EDIT MACRO
PROTOTYPES

5 epiT macro
INSTRUCTIONS

6 BUILD MACRO NAME ARRAY

OO

OUTPUT
TEXT FILE (WORKFILE 2) f
Edited prototype records .
Edited
EDPMI source
Rest of macro definition definitions
(compressed) PCSR *
- Compressed source
statements PCSR
': > Edited macro instructions
EDPM/|
Compressed source Open
code
:> Edited macro instruction
Compressed source
Y
MACRO NAME ARRAY (WORKFILE 3)
Index Name Name | MNAENT
length
D
IPKDA

ST

1 1 1 EXTENDED DESCRIPTION
L] []
1.

Source statements are read from the system input device (SYSIPT) and from the source
statement library. SYSIPT contains source macro definitions and “open code” (in that
order) and may contain COPY statements which cause library COPY books to be brought
in from sublibrary A on the source statement library.

2. All records are compressed. Normally the whole statement is contained in one compressed
source record.

3. At the same time as compression is done, pseudo opcodes are inserted in the record (see
Appendix E for the pseudo opcodes).

4. Editing of source macro definitions is begun. At least two edited statements are created for
each macro type: a header and a text record. The edited prototype records contain the
macro name, positional and keyword parameters, and a number of "items’’.

5. Macro instructions both in open code and within source macro definitions are partially
edited; operands needing substitution are not completely processed until the next text pass
(see Diagram 1.1.2).

6. As macro instructions are edited, a macro name array is built for open code only (inner
macro instructions are handled in Global Edit -- Diagram 1.3). The macro name array is
built in main storage in blocks whose size is determined by initialization; the blocks are
written on workfile 3 when filled. Before a macro is entered it is checked for previous entry.

MODULE

IPKCA

IPKCB

IPKCC

IPKCC

IPKCC

ROUTINE

DRIVER

PROROUT
MIROUT

MIROUT

9T

11.2

INPUT
TEXT FILE (WORKFILE 3)
EDPMI
PCSR
Edited macro
definitions
Open code PCSR
S
— |

Edit Macro Definitions and Conditional Assembly

PROCESS

IPKDA

1 BUILD MACRO HEADER AND KEYWORD TABLE

3 EDIT CONDITIONAL
ASSEMBLY AND
MODEL STATEMENTS

2 PROCESS VARIABLE SYMBOLS

VARIABLE SYMBOL DICTIONARY

Type

Index number

Dimension

A

4 coviecr
SEQUENCE
SYMBOL
DEFINITIONS

)

5 BUILD MACRO
INFORMATION.

BLOCK

Symbol Offset

MACRO INFORMATION BLOCK

N/P to SSD

Attribute switch

Global switch

Inner macro switch

Error switch
Site of local
work areas

Globals

(VSDADDR)
vsD

SEQUENCE SYMBOL DICTIONARY

(SSDADDR)
ss0

M18)

IPKEA

OUTPUT

TEXT FILE (WORKFILE 1)

Macro header

Keyword table

Global array

Edited conditional
and model statements

|

Open code header

—ocsTMH

Open code

Macro information
block

Variable symboi
dictionary

Sequence symbol
dictionary

Macro information
block

|

Open code information
block

Open code dictionaries

Open code

LT

~ -

N

1 1 2 EXTENDED DESCRIPTION
s s
1.

The macro header contains an index number for the macro definition and the N/P
address of the definition’s macro information block (see step 5).

The keyword table, consisting of keyword names and their default values, is built
from the edited prototype statements for the definition.

2. Variable symbols (local, global, and macro parameters) are entered in the variable
symbol dictionary (one dictionary for each definition, and one for open code).
Global definitions are also entered in a global array for the definition. The global
array will later be used in global processing (see Diagram 1.3).

The variable symbol dictionary is used in editing the conditional assembly and model
statements in the macro definition (step 3). It is also written on workfile 3 for use
by the ESERV program if required.

3. Editing consists of two main functions: all variable symbol references (except
sequence symbols -- see step 4) are replaced by their index numbers and all conditional
assembly expressions are translated into reverse Polish notation (see Diagram 1.1.2.1).
At this point macro instructions requiring substitution in their operand fields are fully
edited.

4. Sequence symbols, together with the offset in bytes from the end of the global array
to the statement with the symbol in its name field, are collected in the sequence
symbol dictionary. References to sequence symbols will be replaced by the offsets in
the next text pass (see Diagram 1.1.3). At the end of the macro definition or open
code, the dictionary is written on workfile 3 and its position noted in the macro
information block or open code information block.

5. A macro information block is built and written on workfile 3 at the conclusion of
processing for a macro definition.

MODULE

IPKDA

IPKDA

IPKDA

IPKDA

IPKDA

ROUTINE

NEWST

VSDLKP

INTERPR

SSDENT

1

Convert Pre-Assembly to Reverse Polish Notation

121

INPUT v

Operand of
SETx or AIF

PROCESS

OUTPUT

statement

* Operator Priorities

W 0O N A& WN=0

- e
- O

-
N

13
15

generate, (
AIF, AGO, SETx, ACTR
OR
AND
NOT
GT, LT, EQ, NE, LE, GE
+I.
% ./
unary minus
attributes
of q d strings

concatentation, substrings

binary or character parameter, conversion
(arithmetic-character, binary character,
character-arithmetic, binary-arithmetic)
index, subscript, suboperand

)

~

1 SCAN EXPRESSION

2 PASS OPERANDS DIRECTLY
TO OUTPUT STRING

*
3 SEND OPERATORS TO STACK.
MOVE TO OUTPUT AS OPERATOR
PRIORITY DICTATES

Expression in
reverse Polish
notation

6T

- .

1 1 2 1 EXTENDED DESCRIPTION
L] a |]

Conditional assembly expressions are translated into reverse Polish notation. This is a
form which makes it easier for the assembler to evaluate the expression.

¢

1. Expressions are scanned.

2. Operands are assigned identifying flags and are inserted immediately in the output
string. Variable symbols are processed as described in Diagram 1.1.2 and pointers
to generation-time value areas (dictionaries) entered.

3. Operators are put into a stack according to their priority. The higher the priority,
the sooner the operator is inserted into the output string. The first operator
encountered is always entered into the stack. All succeeding operators are entered
in the stack after a comparision to the previous entered operator. If the priority
is lower than the previous entry, the operator is placed in the stack and the next
operator is compared. If the priority is higher than or equal to that of the previous
entry, the previous operator is removed and placed in the output string; the
comparision is then continued with the next operator in the stack.

"’Start character mode’’ and "“end character mode’’ operators are placed immediately
into the string.

There are several exceptions to the processing method:

Unary plus. Not entered in the stack.

Unary minus. Before entering in the stack, the previous stack operator is checked.
If it is & unary minus, both operators are discarded. Otherwise, the unary minus
is entered as normal.

Left parenthesis. Placed in the stack without comparison of priority.

Right parenthesis. Causes the stack to be emptied until a left parenthesis is found

in the stack. The left parenthesis is also removed.

For evaluation of reverse Polish notation, see Appendix D and Diagram 1.5.2.
For examples of expressions in reverse Polish, see Diagnostic Aids.
For flags, see Appendix G.

MODULE

IPKDA

ROUTINE

INTERPR

0¢

-

11.3

Resolve Sequence Symbol References

INPUT PROCESS OUTPUT
IPKEA
(WORKFILE 1) (WORKFILE 2)
> 1 FORMAT MACRO DEFINITIONS Macro header
Macro header OCSTMH Keyword table
Keyword table KTA8 2 Global array
GARD (-_:> RESOLVE SEQUENCE SYMBOL Edited text
Global array REFERENCES
Edited MEND record
Edited conditional
assembly and :
model statements :
— \/Ww
: (WORKFILE 3)
. Macro information block
Variable symbol
\W dictionary
Sequence symbol dictionary
WORKFILE 3,
{) | Macro information block
Macro information block | e/
Variable symbol VsSD .
dictionary -
g:‘f““ symbol —) 3 separaTE comprEsSED SOURCE Compressed source records
fonary AND EDITED TEXT FOR SOURCE
SSD. MACROS .
: e~ — e~
. SOURCE MACRO TABLE(WORKFILE 1)
(SMTADDR)
SMTENT
4 BUILD SOURCE MACRO TABLE Name L Flags I N/Ptodefin. | —
M\/"*’

v

\—-./W

IPKGA

IPKFA

12

1 1 5 EXTENDED DESCRIPTION
[] e
1.

The edited macro definitions are put in a form suitable for global editing and/or
EDECK output. This involves adding flags (attribute collection required, inner
macro instructions present, keyword parameters present, global variables present)
and the size of the local value areas to the macro header. The information is
obtained from the macro information block(s) on workfile 3. An edited MEND
record is also added to the macro definition.

2. Sequence symbol references are resolved by reading the macro definition together
with the sequence symbol dictionary. References are replaced by the byte offset
from the beginning of the edited definition.

3. At this point compressed source records, which have been mixed with the edited
records on workfile 1, are separated from the edited text for later printing on the
listing. They are written on workfile 3 directly after the macro information blocks,
variable symbol dictionaries, and sequence symbol dictionaries for all the macro
definitions.

4. A source macro table is built for use by Global Edit (and EDECK) (see Diagrams
1.3 and 1.2). It contains the names of all source macro definitions and their N/P
addresses.

Note: The macro information block is kept on workfile 3, but is no longer needed
after step 1. The variable symbol and sequence symbol dictionaries are kept for possible
use in punching edited macro definitions (EDECK).

MODULE

IPKEA

IPKEA

IPKEA

IPKEA

ROUTINE

SSDLKP

MOVEPUT

SMTENTR

(A4

1.2

Punch Edited Macro Definitions

_PROCESS o

T

OUTPUT

' 11 l
INPUT
SOURCE MACRO
TABLE (WORKFILE 1)
‘ — -— — -
Name N/P SMTENT
/
/
MACRO /

DEFINITIONS (WORKFILE2) /

N/P to SSD and VSD

R S
DICTIONARIES

AND COMPRESSED
SOURCE _ (WORKFILE 3)

Variable symbol

VSD
dictionary _

Sequence symbol

dictionary SsD

I

IPKGA

1 GET N/P ADDRESS OF
DEFINITION, VARIABLE
SYMBOL DICTIONARY, AND
SEQUENCE SYMBOL
DICTIONARY

2 PUNCH CATALS AND BKEND
CARDS

3 runch DEFINITION

4 PUNCH POSITIONAL
PARAMETERS AND LCLx
DEFINITIONS FROM
VARIABLE SYMBOL

DICTIONARY @___:>

9 PUNCH SEQUENCE sYmBOL
DICTIONARY

6 puncH BKEND cARDS ®:>

IO

CLx definitions

Sequence symbol
dictionary

Positional
parameters

Edited definition

CATALS

O=

DIAGNOSTIC INFORMATION (WORKFILE 3)

7 WRITE DIAGNOSTIC INFORMATION

»

P

iﬂ

IPKFA

€cC

1 2 EXTENDED DESCRIPTION MODULE ROUTINE
a

Immediately after resolution of sequence symbol references, the macro definition is ready
to be punched and cataloged, if so desired. (In other words, at this stage it is “pre-edited.”’)

1. When the EDECK option of the assembler is in effect, macro definitions without IPKGA STSMTGET
editing errors are punched in their edited form. The source macro table is used to
locate the definition and its corresponding variable symbol and sequence symbol

dictionaries.
2. A CATALS and a BKEND card are punched so that the resulting deck can be IPKGA CATALBKE
submitted directly for cataloging in the macro library.
3. The edited definition is copied from workfile 2. IPKGA MPUNCH
STGET
4. Immediately after the definition, positional parameters and local variable symbol IPKGA MPUNCH
declarations are punched from the variable symbol dictionary. These are needed so STGET

that the macro definition can be reconstructed, if necessary, by the ESERV program,

5. The sequence symbol dictionary is also punched for the same reasons as above. IPKGA MPUNCH
STGET

6. A BKEND card is punched. IPKGA

7. Diagnostic information (macro name and number of cards punched) is written IPKGA STDIAG

on workfile 3.

&4

1.3

« . TABLE

INPUT _
MACRO NAME
ARRAY __ (WORKFILE 3)
MNAENT)]

SOURCE MACRO

EDITED MACRO

Header MACHEAD

Keyword table

Global array GARD, GARENT

-~ -

(WORKFILE 1)

DEFINITIONS (WORKFILE 2)

Edited text
Edited MEND

fe— Definition —»]

~—— e

Library directory

EDITED MACRO DEFINITIONS

Header

Keyword table

Global array

Edited text
Edited MEND

le— Definition —>

Global Edit

SMTENT
/
/
/
/
— /I
/ OR
’ —
/
/
/
4
(SYSSLB)
—

PROCESS OUTPUT
IPKFA MACRO NAME
DICTIONARY (MNABUFAD) MACRO NAMES (WORKFILE 3)
1 READ MACRO P n
ame ame
NAME ARRAY length MNAENT PETR
INTO MACRO
NAME DICTIONARY -
—N\ N
v)]
~ — g
1 2 SEARCH FOR MACRO DEFINITIONS - —
/ EDITED MACRO
GLOBAL SYMBOL DEFINITIONS (WORKFILE 1)
3 DICTIONARY Head
BUILD GLOBAL (GSDBUFAD) eader

VECTOR

4 COPY MACRO DEFINITION; MAKE ENTRY
IN MACRO ADDRESS VECTOR

GSDENTRY ~ “j—

Keyword table

Global vector

Edited text

5 ENTER INNER MACROS IN MACRO
NAME DICTIONARY; INSERT INDEX;
GO TO STEP 2

6 wriTE MACRO NAMES :>®

> Edited MEND

Header

Global vector for open code

/\/‘\/\/\/\/J

|€ Sdef —fc—— Definition —>|

MACRO ADDRESS VECTOR (WORKFILE 1)

Off-
set

Off-
set

Off-
set

Off-
set

Off-
set

Off-|
set

PMAV

v IPKHA

N

¥4

-~ ~

1 3 EXTENDED DESCRIPTION MODULE ROUTINE
]

The two main functions of global edit are

e Build a global vector for each macro definition and open code
o Build the macro address vector

The global vector is a series of indexes used by Generate (ASSEIA) to compute the address of the
global symbol’s value in the generation-time global symbol value area (see Diagram 1.3.1).
The macro address vector is a series of offsets used by Generate (ASSEIA) to find a macro definition,

1. A workarea -- the macro name dictionary -- is used to account for all macro instructions used in
the source program. lnitially the macro name dictionary is identical to the macro name array IPKFA GEINIT
built during the first pass (see Diagram 1.1.1). Thus at first it contains only names of those
macro instructions in open code and not the names of those occuring within macro definitions
("inner” macros).

2. The macro name dictionary is scanned and the corresponding macro definition looked for, first IPKFA SMTSRCH
in the source macro table (which contains pointers to source definitions) and then in SYSSLB. MLIBSRCH
3. The global array of each macro definiton is used to build the global vector (see Diagram 1.3.1). IPKFA FINDGS
GSDENT
GVENT
CHECKGS

4. The global vector is then written, along with the macro definition, onto workfile 1. The N/P
address (in byte-offset form) of the macro definiton is entered in the macro address-vector. IPKFA MAVENTRY
The macro address vector is later used to locate the edited macro definition for expansion
(see Diagram 1.5).

5. If a macro instruction is present within a macro definition, its name is entered at the end of IPKFA MNDENT
the macro name dictionary (if not already there). Processing then continues from step 2. MNDSRCH
Inner macro instructions are given some editing and are assigned index numbers.

6. All names in the macro name dictionary are written on workfile 3. They will be printed later IPKFA GEFIN
(see Diagram 2.8.3).

92

1 3 EXTENDED DESCRIPTION (continued)
L]

Overflow and search techniques

The following techniques are used when there is not enough space in the partition for the macro name dictionary, the source macro table, and
the global symbol dictionary.

Macro Name Dictionary (MND)

The MND is operated on in three ways:
1. MNDGET reads macro names from the MND sequentially.
2. MNDSRCH searches the MND for the names of inner macro instructions.
3. MNDENT makes new entries in the MND.

MNDGET reads macro names from MND blocks (overflow blocks on workfile 2). When it has taken all the entries from a block, it reads in
the next block.

MNDSRCH searches the MND blocks as follows: if MNDGET is reading block C and the MND is made up of blocks A,B,C, and D, MNDSRCH
searches C, reads and searches A, reads and searches B, reads and searches C, reads and searches D. If the name is found, MNDSRCH inserts the
index to the macro instruction in the edited text and returns control to the main program. If the name is not found, MNDSRCH calls MNDENT.

MNDENT will always have the last MND block in main storage at MNDENT start. If there is space on this block, MNDENT makes the new
entry. |f the MND buffer is full, MNDENT writes the last block, creates a new block where it places the new entry, and writes the new block.
If necessary, MNDENT then reads into main storage the block that MNDGET was reading.

Source Macro Table (SMT)

The assembler reads the first block of the SMT into main storage at ASSEFA initialization. The SMTSRCH routine searches the block for a

macro name corresponding to the entry taken from the MND. If the name is not found, SMTSRCH reads the next block of the SMT and continues
the search until the name is found or all the blocks have been read. For example, if SMT block C is in main storage and the SMT is made up of
blocks A, B, C, and D, SMTSRCH searches C, reads and searches D, reads and searches A, and reads and searches B. If the macro name is found,
SMTSRCH returns to the main program with a pointer to the SMT entry. If the macro name is not found, SMTSRCH returns to the main program
with the pointer set to zero.

Global Symbol Dictionary (GSD)

The GSD is handled in almost the same way as the MND except that there is no counterpart to MNDGET for the GSD. Therefore, it is not
necessary to read back the block that was in main storage at the beginning of the search.

Lz

- ~

1 3 EXTENDED DESCRIPTION (continued)
]

Macro Address Vector (MAV)

MAYV blocks are written on workfile 2 among the MND and GSD blocks. At the end of ASSEFA, the blocks are copied from workfile 2 to
workifile 1 in order to make them contiguous.

Note: It is necessary to have a hote/point table for the MND, GSD, and MAYV in order to keep track of the blocks.

8¢

INPUT

1.3.1

(WORKFILE 2 OR SYSSLB)
EDITED MACRO
DEFINITIONS

.
.

Header

Keyword table

Type | Index | Name | Dim.

fGlobal
array

e ettt —

GARENT

Edited text
Edited MEND

Header

Keyword table

Global array
Edited text
Edited MEND

NW
W

Global array

Open code

Build Global Vector

PROCESS

OUTPUT

T
3,

Global array

==

GSDENTRY
(GSDBUFAD)

GLOBAL SYMBOL DICTIONARY

Type | Index | Name | Dim.

SYMBOL
DICTIONARY

1 BUlLDGLOBAL:>

sz
2 BUILD GLOBAL

GLOBAL VECTOR (WORKFILE 1)

VECTOR FOR

) Index | Index | index | Index

DEFINITION

3 GO TO@,S’TEPQ

PGVHEAD

™

6¢

~ -~

1 5 1 EXTENDED DESCRIPTION MODULE
[] L]

Each macro definition with GBLx declarations (and open code, if it contains global symbols) has a global
vector (GV). The relation among global symbol references, global vectors, and the global value area is
shown below:

Edited definition 1

V///I 1st (&A) i////3

}7// 2nd (&B) ////Nv : Global val

W 3rd (&C) Zz 1 &A value

2 &B value

Global vector for definition 1

e 3 &C value

Edited definition 2
V/// 15t (&C) [/ / / 4 &D value

: 3 1 4
/,
Global vector for definition 2

W//A 3rd (&D) ﬁ

1. The global symbol dictionary, a workarea used to assign index numbers (positions in the global dictionary),
is first built from the global array of the macro definition being edited. For each new declaration a check

for type and dimension is made if the symbol is already present. Contradictory information gives an error
message.

2. The global vector is then built from the index numbers assigned in the global symbol dictionary. The IPKFA
position in the global vector reflects the order of occurrence of the symbol in the definition (and thus the

index number in the reference). The value at that position in the vector gives the index of the symbol’s

value in the global value area. There is a separate series of indexes for GBLA, GBLB, and GBLC symbols.

A global vector for open code is built from the open code global array. IPKFA

ROUTINE

FINDGS
GSENT
CHECKGS
GEERR

GVENT

GEOC

0¢

Collect and Insert Attributes

OUTPUT

ATTRIBUTE TABLE

TABENT
(TABSTART)

Symbol

Attributes

14
1P
INPUT KFA PROCESS
IPKHA
PASS 1: COLLECTION
1 INSERT SYMBOLS REQUIRING ATTRIBUTES
IN ATTRIBUTE TABLES
PCSR
PSTRINGS

(PASS 1: WORKFILE 1)
EDITED TEXT(PASS 2: WORKFILE 2)

2 COMPUTE ALL ATTRIBUTES POSSIBLE

> ' //
Vv -

/

Y

/
/

AND INSERT IN TABLE

PASS 2: INSERTION

3 COMPUTE ATTRIBUTES AND INSERT IN TABLE

EDITED TEXT

(WORKFILE 1)

4 INSERT ATTRIBUTES IN TEXT

IPKIA

PCSR
PSTRINGS

1 4 EXTENDED DESCRIPTION
[]

1. In the first pass over the edited text file, ordinary symbols are collected from operands
of macro instructions and conditional assembly statements with attribute references
in open code, and placed in the attribute table.

2. Attributes of those symbols defined after the macro instruction or conditional assembly
statements are collected and placed in the table.

3. In the second pass, attributes of symbols defined before the macro instruction or
conditional assembly statement are placed in the table.

4. Attributes are inserted into the macro instruction or conditional assembly statement
with the help of the attribute table.

Overflow technique: If the attribute table overflows, no more symbols are collected in either
of the passes. The attributes for all symbols in the table are computed and then inserted into
the macro instructions and conditional assembly statements where required. A new attribute
table can now be built up from text, starting where the old table overflowed. Two more
text passes are needed for each overflow.

Workfile usage: Pass 1: read file 1, write file 2
Pass 2: read file 2, write file 1

MODULE

IPKHA

IPKHA

IPKHA

ROUTINE

MACINS
CAED

NAMSCAN

ATSCAN

INSERT1
INSERT2

143

1.5

INPUT

Generate

v 1P
l MACRO ADDRESS
VECTOR (WORKFILE 1)

AV

SIZE OF GLOBAL VALUE AREA

Dt

(PGBLSIZ) <4-

(WORKFILE 1)
OPEN CODE GLOBAL VECTOR

PGVHEAD | __

|

EDITED TEXT (WORKFILE 2)

Edi

d macro instr

|

Lo— e~
MACRO
DEFINITIONS (WORKFILE 1)

Macro definition

KHA
PROCESS
IPKIA
(ICEND}
1 Reab macro ADDRESs :>
VECTOR Macro address vector
~ 2 BUILD GLOBAL VALUE AREA Global val
AREA lobal value area
*
Open code dictionary DIB
information block -
3 suiLp opeN cope —_—>< Local value areas
DICTIONARY BLOCK
Global vector
¥
Macro dictionary DIB

information block

4 READ EDITED TEXT;

BUILD MACRO Parameter table
DICTIONARY
BLOCK(S) FOR

MACRO < Parameter pointer vector

Local value area

95 ExpanD MACRO.
PERFORM CONDITIONAL Global vector
ASSEMBLY (ALSO FOR
OPEN CODE)

—

KKK

OUTPUT

-

Register RD/BBASE points: %%% here if inner macro is
% here if in open code; being expanded
%% here if outer macro is being
expanded;

(WORKFILE 3)
GENERATED
TEXT

Compressed
source
records

Statements
generated
from
macro

Compressed
source
records

€€

1 5 EXTENDED DESCRIPTION
L]

1. The phase is initialized by loading in a number of reference elements and workareas.
The macro address vector is read from workfile 1.

2. The global value area is built (this is @ workarea used to hold the values of global
symbols during generation).

3. The open code dictionary block, consisting of a header, local variable symbol areas,
and the global vector for open code, is built directly under the global value area.

4. Text is read from workfile 2, starting at open code. Compressed source records are
passed directly to the generated text file (workfile 3). When a macro instruction is
encountered, a macro dictionary block (a work and reference area for expansion
of the macro) is built (see Diagram 1.5.1).

5. The macro definition is processed instruction by instruction and the expanded
instruction written on workfile 3. Conditional assembly and substitution are performed
as necessary (see Diagram 1.5.2). Conditional assembly and substitution are also
done for open code as necessary.

Dynamic allocation of SETC variables

For SETC variables the value areas do not contain the values directly. Instead each SETC value
area has an associated String Storage Area (SSA), where space is allocated dynamically to the
values. The value area then contains for each variable its length and its offset in the SSA.

The SSA grow and shrink dynamically during macro processing as dictated by the SETC
statements executed. The initial size of each SSA is zero.

The global SSA is located at the top of the dictionary area and expands downwards. Each
local area is located at the top of the corresponding dictionary block and expands upwards.

Thus, overflow is possible during macro expansion. This is handled in a manner similar to
that used for overflow when building the dictionary block.

MODULE

IPKIA

IPKIA

IPKIA

IPKIA
IPKIA

ROUTINE

INIT

DRIVER

IMIEDIT

DRIVER
CAEVAL

ve

Dictionary Block Overflow

Overflow in parameter table (outer macro)

Error message IPK101 "DICTIONARY SPACE FOR VARIABLES EXHAUSTED”

end of dictionary area*_.

LCLX value area|

dictionary start OCDIB open
. code Open code dictionary block contains information necessary for PARTBL build and
: dictionary cannot be written on workfile until PARTBL is completed.
outer macro block The macro must be abandoned.
MAC1 MDIB
end of dictionary area*$ PARTBL
Overflow_after parameter table complete**louter macro) WORKFILE 2 dictionary dictionary
start start
dictionary start —» ocDIB MAC1 MDIB ocDiB
ocDIB . PARTBL .
3 : PARPTV .
® LCLX value area
outer macro
MAC1 MDIB M
PARTBL i . . .
Open code dictionary block written on workfile 2. When MEND for MAC1 is encountered, open code
PARPTV Outer macro is moved to dictionary start dictionary block is read into dictionary
and processing continues. start and processing continues.

dictionary start

ocpiB

outer macro

MAC1 MDIB

inner macro —»

end of dictionary area"_:_,

MAC2 MDIB

PARTBL

Overflow in parameter table (inner macro)

WORKEFILE 2 dictionary dictionary
ocDIB start MAC1 MDIB start OCDIB
[[]
° ° °
. ° .
L]
MAC2 MDIB
PARTBL
L]
L
L]

At MEND to MAC2, MAC1 is read into dictionary
start. When MEND for MAC1 is encountered, open
code dictionary block is read into dictionary start
and processing continues.

Open code dictionary block written on workfile 2.
Outer macro is moved to dictionary start.

MACT1 dictionary block contains information
necessary for MAC2 PARTBL build.

% or the last entry in the Keyword Name Array
* xoverflow in PARPTV, LCLX value area, and Global Vector is treated in a similar way

A
A

Overflow after parameter table complete* *{inner macro) WORKFILE 2 dictionary dictionary
dictionary start OCDIB start MAC3 MDIB start ocDIB
ocDIB 4 PARTBL :
: i PARPTV ®
outer macro ° MAC1 MDIB °
MAC1 MDIB : °

[) []

i to MAC1 .

inner macro to . MAC2 MDIB

outer macro to MAC2 MAC2 MDIB .
. .
L]
L]

inner m;
acro MAC3 MDIB . When MEND for MAC3 is encountered, MAC2 is
PARTBL Open code dictionary block, MAC1 and MAC2 read into dictionary start. At MEND to MAC2,
dictionary blocks written on workfile 2. MAC3 MACH1 is read into dictionary start. When MEI\;D
end of dictionary area PARPTV is moved to dictionary start and processing to MAC1 is encountered, open cod.e dictionary
continues. block is read into dictionarystart and processing
continues.

*¥Overflow in PARPTV, LCLX value area, and Global Vector is treated in a similar way.
| Overflow in the String Storage Area during macro expansion is also treated in a similar way.

9¢

1.

5.1

INPUT

OPEN CODE

EDITED TEXT (WORKFILE 2)

Macro instruction header

Index

Pos.
parm.
Key-
word

XYz Attr.

Kw2 Attr,

Keyword

LEMON | parameter

Attr.

MACRO ADDRESS
VECTOR (WORKFILE 1)

PMAV

EDITED MACRO
DEFINITIONS (WORKFILE 1)

Macro definition header ¢ — -

15

KW1 keyword

SAM defaulit Keyword
table

KTAB

KW2 keyword

ORANGE default

Global vector

PGVHEAD
Text

MEND

L —— e Y

Ty

—— - = - -

Build Macro Dictionary Block

PROCESS

1 ENTER POSITIONAL OPERANDS
IN PARAMETER TABLE; OFFSET
IN PARAMETER POINTER VECTOR

00~

ENTER KEYWORD OPERANDS

IN PARAMETER TABLE;
OFFSET AND KEYWORD IN
KEYWORD NAME ARRAY

(=

T

L=3 4 LEMON

KEYWORD NAME ARRAY
Kw2

(KNAPT) PKNA

READ KEYWORD TABLE,

SEARCH FOR KEYWORD IN

KEYWORD NAME ARRAY. NOT
FOUND, ENTER DEFAULT AND

OFFSET

FOUND, MOVE OFFSET

(=

FIND VALUE AREA SIZES AND

RESERVE SPACE %

READ GLOBAL VECTOR

OUTPUT

MACRO DICTIONARY
BLOCK (RDIBBASE)
Macro dictionary

information block

XYZ entry
Parameter
LEMON entry > table
EPAR
SAM entry
XYZ's offset Parameter
pointer
SAM's offset 1 vector %
PARPTV
-LEMON's offset
LCLA value area
LCLB value area
LCLC value area
Global vector
*Built in (PARPTVBA)

T°9¢

5

1 5 1 EXTENDED DESCRIPTION MODULE
] |]

The macro dictionary block is an in-storage workarea used in expanding macros and performing
conditional assembly. It consists of:

e Header (the macro dictionary information block)

® Parameter table (contains values and attributes of keyword and positional parameters
used in the definition, as well as name field parameters and the current values of SYSNDX
and SYSECT).

e Parameter pointer vector (contains offsets of the parameter entries in the parameter
table. The parameter pointer vector is analogous to the global vector in that it is a
table of pointers to another table containing the actual values).

° Local variable symbol value areas.

® Global vector.

In the following description it is assumed that the macro definition prototype is
MAC1 &PP,&KW1=SAM,&KW2=ORANGE

and that the macro instruction being expanded is
MAC1 XYZ,KW2=LEMON

Thus the prototype has one positional parameter and two keyword parameters; the first keyword
parameter operand has been omitted in the instruction.

1. The edited macro instruction is read and the positional parameter operand (XYZ) placed in IPKIA
the parameter table. The offset of the positional parameter is placed in the parameter pointer

vector. (Positional parameters come first in the table, directly after SYSNDX, SYSECT, and

the macro name field parameter. Then come the keyword parameters.)

2. Keyword parameters are then read in from the edited macro instruction and entered in the IPKIA
parameter table. At this point only “"LEMON" is entered, since the first keyword
parameter has been omitted. The offset is not entered in the parameter pointer vector, but
in the keyword name array, along with the keyword’s name and the length of the parameter.

ROUTINE

MAIN10

MAINK

Z°9¢

1 51 EXTENDED DESCRIPTION (continued) MODULE
L] a

(The keyword name array is used to keep track of which lkeyword parameters have been
omitted in the macro instruction so that default values can be inserted if necessary.)

3. The keyword table of the macro definition is then read. Each keyword in the table is IPKIA
searched for in the keyword name array. If the keyword (in this case KW1) is not present,
a default value (SAM) is placed in the parameter table.

If found (as is the case with KW2), its offset in the parameter table, which had been kept
in the keyword name array, is moved to the parameter pointer vector. Thus the offsets of
the keyword parameters have the same order as they do in the prototype.

During steps 1-3 the keyword name array is built in high-address storage while the
parameter table is built in low-address storage, towards it. The parameter pointer vector
was built elsewhere in main storage. The parameter pointer vector is now written over the
keyword name array, directly under the parameter table.

4. The sizes of the local value areas are obtained from the macro definition header and space IPKIA
reserved for them.

5. The global vector is read into main storage directly under the local value areas. IPKIA

A=
N A

N

ROUTINE

MAIN30

IMIEDIT

IMIEDIT

queTq 3397 ATTeuoT3uUS3UT 2bed sSTYL

37

8¢

1,5,2 Evaluate Reverse Polish Notation

INPUT v PROCESS

SOURCE: &LA2SETA&P + &GA3

OUTPUT

LCLA VALUE
AREA

REVERSE POLISH NOTATION: ’ STACK
ia| 2| | 5|8r|ga| 3|+ |SETA 1 enteremst |, | » L4
ELEMENT IN
IRIFEBIEE I RR) §
5z £s @ o83 -~ /3
2 o8 o o .
g GLOBAL { VECTOR 2 Reap seconp addre.
- S l l l ! ’ ELEMENT; fa | 2|L=a|pp | *GDF
LOCATE
ADDRESS OF & P
PARAMETER 4 POINTER VECTOR
3 susstitute _ ~
> VALUEOFap | /2| 2|L=¢| %4 7|t
LCLA VALUE | PARAMETER GLOBAL VALUE 4 ocatesca | i | 2|i~t|ba| 7 |Lo6] s L=4
AREA TABLE]| | AREA
BP=7 31 ‘j:_‘:>| S aoparm _ _
- ToaGA3(31); | @ | Z|Lé| 4| ¥ L
PUT VALUE IN
LOCAL VALUE
AREA
_ N

6¢

~ ~

1 5 2 EXTENDED DESCRIPTION
L] []

Expressions in reverse Polish notation are sent to a routine for evaluation. The expression
elements (operands and operators) are scanned from left to right. Operands are placed in
stack with a length byte on top. Operators are one-byte elements acting on from zero to
three stack elements and give a result element in the stack or an exit from the evaluating
routine.

Actions taken by the evaluating routine when it encounters different operators and operands
is summarized in Appendix D.

In the example in the diagram, the statement being evaluated is

&LA2 SETA &P + &GA3
where &LA2 is a local arithmetic variable symbol (the second defined in the macro definition);
&P is a positional parameter (the fifth in the macro definition, with a value of 7); and &GA3

is a global variable symbol (the third declared in the definition). In the reverse Polish record,
"la"”, "pp”, etc., stand for flags (see Diagram 1.1.2.1 and Appendix D).

MODULE

IPKIA

ROUTINE

CAEVAL

(037

INPUT

Assemble

PROCESS

ASSEMBLER AND
MACHINE INSTRUCTIONS

6 POST PROCESS

EDIT FOR ASSEMBLY

SYMBOL TABLE

COLLECT)
SYMBOL

DEFINITIONS

b

4
4

Ve
4

s
RESOLVE SYMBOL REFERENCES

BUILD OBJECT
CODE

OUTPUT OBJECT CODE AND ESD

OUTPUT
LISTING
OBJECT DECK (SYSPCH) (ESD) (SYSLST)
RLD, XREF, XREF,
DIAGNOSTICS (SYsPcH) DIAGNOSTICS (SYSLST)

W

¥

1874

2 EXTENDED DESCRIPTION

At this stage the edited text is free from macro instructions and conditional assembly
statements (that is, it consists only of machine and assembler instructions). The second
main function of the assembler is to translate these statements into object code and to
produce a listing and other related information.

1. Editing of statements is done (see Diagram 2.1).

2. Symbol definitions are collected and stored in a symbol table (see Diagram 2.2).
3. References to symbols are resolved with the help of the symbol table (see Diagram 2.3).
4. Object code is generated for the different instruction types (see Diagram 2.4 and 2.6).
5. Object code is put out, together with a listing and the external symbol dictionary

(see Diagrams 2.5 and 2.7).

6. In the post-process phases, the relocation dicitionary, cross-reference dictionary, and
diagnostic information is put out (see Diagram 2.8).

MODULE

IPKIC
IPKGA

IPKKA
IPKLA

IPKNA
IPKOA

IPKMA
IPKPA

IPKQA
IPKRA-RC
IPKSA-SB

474

2 1 ' Edit for Assembler and Machine Instructions

INPUT PROCESS

_ OUTPUT

IPKJA
SOURCE TEXT (WORKFILE 3)

EDITED TEXT _ (WORKFILE 2)
PCSR PETR
1 probuce epiTeD TEXT v N > <b
2 PRoCESS PUNCH AND
REPRO RECORDS
LITERAL POOL (WORKFILE 1)
LITTBL
PROCESS LITERALS -
3 process Lire :>® @:3 END
LTORG
e
PUNCH AND
REPRO RECORDS (WORKFILE 1)
e ~———

IPKKA

)
5

7T

194

2 1 EXTENDED DESCRIPTION
]

1. Editing consists of checking, converting the record into a suitable format for later processing,
collecting symbols into "'symbol buckets”” and converting expressions into reverse Polish
notation (see Diagram 2.1.1).

2. PUNCH and REPRO records found before the first control section are processed and written
on workfile 1. See Diagram 2.5 for later processing.

3. Literals are put into a literal pool and processed when an END or LTORG expression is
encountered (see Diagram 2.1.2).

MODULE

IPKJA

IPKJA

IPKJA

ROUTINE

PUNCHR
REPROEDR

LITERAL
LTORGR
LITDRV
LITMN
LITSRCE

vy

2.1.1

INPUT

(SEE APPENDIX H)

SOURCE TEXT _ (WORKFILE 3)

Edit

PROCESS

%

PCSR

PSTRINGS

1 CHECK NAME FIELD AND SYNTAX OF OPERAND
2 COLLECT SYMBOLS IN SYMBOL BUCKETS

3 CONVERT EXPRESSIONS TO REVERSE

POLISH NOTATION v

OUTPUT

EDITED TEXT (WORKFILE 2)

(SEE APPENDIX H)

PETR
PETFLDS

21 1 EXTENDED DESCRIPTION
EEn

Records which have been partially edited at an earlier stage (see Diagram 1.1.1) are more fuily
edited for assembly. The length attribute, ESDID, and location counter fields are created but
not filled until symbol resolution (see Diagram 2.3).

1. The name field and operand syntax are checiked.

2. Al symbols are placed in “symbol buckets” in the edited text. Symbols in expressions are
replaced by flags referring to the buckets; the buckets appear in the same order as the symbois
in the expressions. |f the same symbol appears more than once in an expression, there will

be more than one bucket for it (see "'Diagnostic Aids"’ for examples of symbol buckets).

3. Expressions are converted to reverse Polish notation (see Diagram 2.1.1.1).

MODULE

IPKJA

IPKJA

IPKJA

ROUTINE

CHKNAME

OPERAND

POLIFY

A4

2111

INPUT

Convert Assembly Expressions to Reverse Polish Notation

PROCESS - OUTPUT

Expression

1 scan expression Expression in

reverse Polish
notation

2 PASS OPERANDS DIRECTLY TO
OUTPUT STRING

3 SEND OPERATORS TO STACK;
MOVE TO OUTPUT AS
OPERATORS PRIORITY

l DICTATES

LY

[] [] |]
l.

2.

Expressions are scanned from left to right.

Operands are assigned identifying flags and are inserted immediately into the output
string (see Appendix G for the flags).

Operators are put in a stack according to their priority. The higher the priority, the
sooner the operator is inserted into the output string. The first operator encountered
is always entered into the stack. For all other operators, the operator’s priority is
compared to that of the previous operator entered in the stack. If the priority is lower
than that of the previous entry, the operator is placed in the stack. If the priority is
higher than or equal to that of the previous entry, the previous operator is removed
from the stack and placed in the output string. The operator’s priority is then compared
with that of the next operator in the stack, and so on.

There are two exceptions to this processing method:

Left parenthesis: placed in the stack without comparision of priority

Right parenthesis: causes the stack to be emptied until a left parenthesis is found. The
left parenthesis is also removed.

Operator priorities:

2 + —

3 /%

For examples of expressions in reverse Polish, see "’Diagnostic Aids’’.

MODULE

IPKJA

ROUTINE

POLIFY

87

2.1.2

INPUT

Handle Literals

PROCESS

SOURCE TEXT (WORKFILE 3)
PCSR

1 CHECK THAT LITERAL IS VALID

4
-
-
-

2 SEARCH LITERAL POOL FOR EQUALS ~

3 IF NO DUPLICATE ENTRY, _——'—'—h_"

OUTPUT

LITERAL POOL (WORKFILE 1)

LITTBL

L - P

ASSIGN PSEUDONAME AND
ENTER IN POOL

4 REPLACE LITERAL WITH
PSEUDONAME IN EDITED

TEXT

END OR LTORG

Chain | g | | | Pseudo-| |Literal
ptr. symbol

L |Symbol|

EDITED TEXT (WORKFILE 2)

PETR,
PETFLDS
e

5 WHEN END OR LTORG ENCOUNTERED,

GENERATE LITERAL RECORD

6 CREATE DCL RECORD

6V

~ |)

f

2 1 2 EXTENDED DESCRIPTION
e s

A literal pool contains all literals occuring from the start of the first control section or the
previous LTORG. The entries are in chains according to the length required in main storage
when assembled (8, 4, 2, or 1 bytes). The literals are assigned symbolic names so that they can
be handled as DC instructions: when a LTORG or END statement is encountered, literal DC
instructions are generated for each entry so that the literals can later be handied as regular DC
instructions during symbol resolution.

1. The literal is checked for validity (using the same routine as for DCs).
2. The literal pool (in main storage and on workfile 1) is searched for equals.

3. If not already entered in the literal pool, the literal is assigned a symbolic name* and
: entered in its appropriate chain.

4. The literal is replaced by its symbolic name in the edited text.

5. When a LTORG or END statement is encountered, the literal pool is read and literals
retrieved from the 8-, 4-, 2-, and 1-byte literal chains; a literal record (in the form of a
compressed source record) is constructed for each and written on workfile 2 for the listing.

6. A DCL instruction is generated for each literal and written on workfile 2.

* A symbolic name for literals is generated with

e an identification byte (internal code = 1) in the first byte

o five characters copied from the literal definition in bytes 2-6

e & sequence number for generated names in bytes 7-8
When a location counter reference is made in & literal, a name is generated for the statement if
it has not already got a name field. The name generated is similar to that for literals with

e an identification byte (internal code = 8) in the first byte

o five blank characters

e a sequence number for generated name in byte 7-8

MODULE

IPKJA

IPKJA

IPKJA

IPKJA

IPKJA

IPKJA

ROUTINE

DCR

DCR

LITERAL

LITMN

LITSRCE

DCR
FIXUP
DRIVER

0S

2.2

INPUT

(WORKFILE 2 OR 1)¥
EDITED TEXT

PETR, PETFLDS

* Depending on number of
symbol-table overflows

Collect Symbol Definitions

IPKJA PROCESS
IPKKA

1 BUILD SYMBOL TABLE —

OUTPUT

(SYMTABL)
HASH TABLE SYMBOL TABLE (SYMADDR)

PHYR

XREF RECORDS (WORKFILE 3)

XREFREC

2 CREATE CROSS-REFERENCE

RECORDS

ESD TABLE (WORKFILE 3)

ESDENTRY

D

3 BUILD ESD TABLE @

EDITED TEXT (WORKFILE 1 OR 21*

PETR
PETFLDS

4 PUT OUT EDITED TEXT

AND ERROR RECORDS

IPKLA

PDCEDIT

IS

2 2 EXTENDED DESCRIPTION
[]

1. Symbol definitions are collected in a symbol table for later use in resolving symbol
references.

Overflow technique: If the symbol table overflows, the substitution phase (ASSELA) is called
in to process the currently built symbol table segment. The substitution phase will resolve all
references to symbols in the symbol table. When this is done, IPKKA will be called back in
and will start processing the text where it left off when the overflow occurred. It will discard
the old symbol table and start building a new one. This process will continue until the text is
all processed or the symbol table overflows again. If it does, the substitution phase will be
called and that segment processed, and so on.

2. Cross-reference records are created for both symbol definitions and references (and
duplicates). These will later be put out by the post-processor { see Diagram 2.8).

3. The external symbol dictionary table is built (see Diagram 2.2.2).
4. The text is edited: expressions in the operands of CNOP, ORG, EQU, and END

statements are evaluated and length and duplication factors calculated for DC, DS,
and DCL instructions.

MODULE ROUTINE
IPKKA

IPKKA CROSSREF
IPKKA

IPKKA

4

2.21

INPUT

Build Symbol Table

(WORKFILE 2 OR 1)%
EDITED TEXT

PETR
PETFLDS

* Depending on number of
symbol-table overflows

PROCESS OUTPUT
HASH TABLE (PSYMTABL)
1 rrocess STATEMENTS ACCORDING - b
TO TYPE: .
V: /
cNoP ALIGN ON / /
MACHINE HALFWORD / 1
INSTRUCTION | BOUNDARY I
I
1 | SYMBOL TABLE (SYMADDR)
DC/DS |
ALIGN ACCORDING | PHYR
LITERAL DC TO TYPE | \ —_
ccw
I Y Hash Length
F
T ALIGN ON 1 (> ptr. lags [& |ESDID| Value |Length(Symbol
LTORG DOUBLEWORD
BOUNDARY !
S
CNOP |
ORG EVALUATE :
EQU EXPRESSION I
DC/DS

LITERAL DC J

DC/DS
LITERAL DC
ccw

MACHINE
INSTRUCTION

CNOP

> COMPUTE LENGTH

7

2 ENTER SYMBOL VALUE IN - -
SYMBOL TABLE

3 UPDATE LOCATION COUNTER

-

LOCATION COUNTER

(LOCCNTR)

(All three in main storage.)

€9

2 2 1 EXTENDED DESCRIPTION
L] |]

Symbol definitions are collected in the symbol table. In order to define a symbol, the
corresponding value of the location counter must be computed. This value, in turn, depends
on the lengths of the instructions and their alignment in main storage when assembled.

1. Instructions are processed according to type. They are aligned, expressions are
evaluated, and their lengths computed. The routine names for the instructions given
below are shown in the column to the right:

Machine instructions
EQU

CNOP

ORG

DC

DS

DCL

CCw

LTORG

END

2. Symbols are entered in the symbol table, together with their values, length attributes,
and ESDID.

3. The location counter is updated for those instructions requiring it.

MODULE

IPKKA

IPKKA

IPKKA

ROUTINE

MACHINOP
EQUR
CNOPR
ORGPROC
DCR

DCR

DCR

CCWR
LTORGR
ENDR

14°]

2.2.2

INPUT

Build External Symbol Dictionary Table

EDITE
TEXT

D
(WORKFILE 2)

CSECT
DSECT
com

START

ENTRY
EXTRN
WXTRN
V-CON

PROCESS

PETR

PETFLDS

1 CLOSE ENTRY FOR

PREVIOUS conmo:.
SECTION

2 SEARCH ESD TABLE FOR NAME

-
-

—_— -

e
-
-~

CURRENT LOCATION

COUNTER

{LOCCNTR)

3a Founb: uPDATE LOCATION
COUNTER FROM ESD

TABLE (RENEWED
CSECT) @::)

HIGH LOCATION
COUNTER

3b NOT FOUND: SET LOCATION

COUNTER TO ZERO (NEW,
CSECT)){ : }

4 wmAKE NEW ENTRY IN ESD TABLE:>@

(LOCCNTHI)

OUTPUT
g
ESD TABLE (WORKFILE 3) ESDENTRY
-
1 Curr. | High
Type | ESDID | loc. loc. | Symbol
1 ctr. ctr.
Curr. | High
Type | ESDID | loc. loc. Symbol
ctr. ctr.
A
B High
) Type | ESDID 1] loc. Symbol
ctr.
/\/\/\/_\J

,

SS

2 2 2 EXTENDED DESCRIPTION
[] a

The external symbol dictionary table saves external symbols which will later be printed out
in the ESD output; the table is also a control for CSECTs.

1. A CSECT, DSECT, COM, or START instruction means the beginning of a control section.
The previous control section’s entry in the ESD table is closed by retrieving the current and
high location counter values from COMMON and inserting them in the entry. (The “current”
location counter value is simply the value of the location counter; the “high’’ location
counter value is the highest value that occurred during processing of the control section -- this
value may later have been lowered by an ORG statement.) The high value is used to compute
the size of the control section.

The eitry for the last control section will be updated when the END statement is read. If
there are literals after the END statement, the first control section will be updated after them.

2. The label associated with the CSECT, DSECT, COM, or START instruction is looked for in
the ESD table.

3 a. If found, the symbol has been entered before, and the CSECT is a resumed CSECT. The
current location counter value is retrieved from the entry (ESDLCTR) and inserted in the
current location counter value (LOCCNTR).

3 b. If not found, the location counter is set to zero (or to the address specified in the START
operand) to begin a new control section.

4. An ENTRY, EXTRN, WXTRN, or V-type address constant causes an entry to be made in
the ESD table. The current location counter value is the same as the high location counter
value -- both are the actual value of the location counter. The current location counter
value for ENTRY is the value at which the symbol is defined, not the value for the ENTRY
statement itself.

MODULE

IPKKA

IPKKA

IPKKA

IPKKA

ROUTINE

CSECTR
DSECTR
COMR

STARTR

PEEX

9%

92 3 Resolve Symbol References

INPUT IPKKA PROCESS OUTPUT

IPKLA

*
EDITED TEXT (WORKFILE 1 OR 2)

PETR, PETFLDS 1 READ EDITED TEXT

2 REPLACE ALL SYMBOL REFERENCES

WITH SYMBOL TABLE VALUES
HASH TABLE (PSYMTABL)

3a svmeoL TaBLE OVERFLOW XREF RECORDS (WORKFILE 3)
MAKE XREF ENTRIES :>
3b nO sYMBOL TABLE OVERFLOW XREFREC
SYMBOL TABLE (SYMADDR) IPKKA

EVALUATE EXPRESSIONS
PHYR

4 IF MACHINE INSTRUCTIONS,
ADDRESS CONSTANTS, USING,
DROP, OR CCW, GO TO

(WORKFILE 1 OR 2)*
EDITED TEXT

5 WRITE EDITED TEXT

* Depending on number of symbol-table overflows IPKMA

> PETR,PETFLDS

~

2,
1.

3a.

3 EXTENDED DESCRIPTION

Edited text containing unresolved symbol references is read from workfile 1 (or from
workfile 2, depending on symbol table overflow).

Symbol references are resolved by hashing the symbol and finding its value in the
symbol table.

If there has been symbol table overflow

3b.

ESD entries are made from those symbol references which are resolved before they are
read by IPKKA.

If there has been no symbol table overflow or if this is the last time IPKLA has been called

Expressions involving symbols can now be evaluated (expressions involving CNOP, ORG,
END, and EQU, in addition to duplication and length modifiers in DC and DS instructions,
have already been evaluated (see Diagram 2.2.1)).

If the instruction is a machine instruction, address constant, USING, DROP, or CCW,
IPKNA is called.

Otherwise the edited text is written on workfile 1 or 2.

MODULE

IPKLA

IPKKA

IPKKA

ROUTINE

CROSSREF

EVALUATE

89S

24

INPUT

EDITED RECORDS

USING TABLE (NUSTAS.

(WORKFILE 1 OR 2)*

PETR,
PETFLDS

PDCEDIT

* Depending on overflow

Build Object Code 1

IPKLA PROCESS

IPKNA

MACHINE INSTRUCTIONS

USING, DROP

IPKNB,IPKNA

ADDRESS CONSTANTS AND CCW .

DETERMINE RECORD TYPE, PROCESS ACCORDINGLY: 1

OUTPUT

|l
1

1

IPKLA

EDITED TEXT (WORKFILE 20R 1)

RLD TABLE

(WORKFILE 3)

RLDENTRY

MW\

5/

69

2 4 EXTENDED DESCRIPTION
[]

Input: edited records from IPKLA

Output: object code and edited records on workfile 2 (or 1, depending on symbol table overfiow).

Processing proceeds according to record type. The following records are processed:

Machine Instructions (Diagram 2.4.1)

Each instruction is processed according to its length and type code (included in the pseudo-
opcode). Implicit addresses are resolved by means of the using table.

USING, DROP (Diagram 2.4.2)

These instructions, which influence the using table, are procéssed. ,

Address Constants and CCW (Diagram 2.4.3)

Address constants and CCW instructions are processed at this stage. Implicit addresses are
resolved by means of the using table.

MODULE

IPKNA

IPKNA

IPKNA
IPKNB

ROUTINE

NMACHOP

NUSING
NDROP

NSADDR

09

241

INPUT

Process Machine Instructions

PROCESS

OUTPUT

EDITED RECORDS FROM /PKLA

PETR, PETFLDS

OPERAND RESTRICTION

TABLE (NPARTAB)
7
&
USING TABLE (NUSTAB) A
/
K

1 GET RECORD AND ENTRY TO OPERAND
RESTRICTION TABLE

ERROR
TABLE (NERRSTCK)

2 CHECK VALUE OF NTABFMT

OPERANDS; IF ERROR >

3 CHANGE IMPLICIT ADDRESSES TO
BASE-DISPLACEMENT FORM

4 BUILD EDITED TEXT OUTPUT RECORD

5 WRITE OUTPUT TEXT AND ERROR

RECORDS

(WORKFILE 2 OR 1)
EDITED TEXT

PETR, PETFLDS

.*‘\,

19

2.

4 1 EXTENDED DESCRIPTION
a

The length of the instructions and the type code are used to determine which routine
will handle the instruction and also to find an entry in the operand restriction table.
The table contains information about the type of operand, allowed values, and where
the value should be stored.

The values of the operands are checked; if an error is detected, the error number
and operand number are stored in an error table.

Implicit addresses are decomposed to base-displacement form by means of the using
table. The table is searched for the register giving the smallest displacement among
those available. If two registers give the same displacement, the higher-numbered
register is used.

Object code for the instruction is built together with listing information and inserted
in the edited text.

The edited text record is written onto workfile 2, followed by error records, if any.

MODULE

IPKNA

IPKNA

IPKNA

IPKNA

IPKNA

ROUTINE

NMACHOP

NTESTST1
NTESTST2

NADDRSPL

NMACHEND

NMACHEND

29

24.2

INPUT

USING
DROP

EDITED RECORDS FROM /PKLA

PETR
PETFLDS

Process Using and Drop

PROCESS

OUTPUT

1 UPDATE THE USING TABLE

2 BUILD EDITED TEXT OUTPUT
RECORD

3 WRITE OUTPUT TEXT

USING TABLE (NUSTAB)

ESDID

Base address Switch

EDITED TEXT

.
.

USING

.
.

DROP

\/\/‘\/\

.
.

{WORKFILE 2 0R 1)

PETR
PETFLDS

€9

2 4 2 EXTENDED DESCRIPTION
L] L

The using table has 17 entries. There is one entry each for registers 1-15 and two for

register 0 (this is necessary because the absolute and relocatable case can occur simultaneously
for register 0). Each entry consists of the ESDID, base address, and a switch indicating if

the entry is used or not.

USING. The operands are checked and the ESDID and the base address stored in the table.
DROP. The operands are checked and the corresponding switches in the table are set to

indicate that the registers are no longer used as base registers. If there are no operands, all
entries are indicated to be free.

MODULE

IPKNA

IPKNA

ROUTINE

NUSING

NDROP

12°)

2_4.5 Process Address Constants and CCWs

INPUT v PROCESS OUTPUT
| |
EDITED RECORDS FROM /PKLA
PETR, PETFLDS B 1 cHeck opeErAND
/
V
7/
/7
/7
, 2 iF DC OR CCW, GENERATE CODE
/
7/
, RLD TABLE (WORKFILE 3
/7
) / IRLDENTRY)|
—ee | —
P 3 MAKE RLD ENTRY (ALL EXCEPT STYPE) >
USING TABLE (NUSTAB) ,
4 LoG erroRs
*
EDITED TEXT FILE (WORKFILE 1 OR 2)
PETR
PETFLDS
5 WRITE OUTPUT TEXT AND ERROR -
RECORDS
v * Depending on overflow
R { -

P

N <

S9

2 4 5 EXTENDED DESCRIPTION
] L]
1.

In the case of an implicit address, the using table is used to split the address into base-
displacement form; otherwise, the validity of the register and displacement are checked.

2. If the record is a DC or CCW, object code for the output edited record is generated.

ccw
S-type address constant.
Other address constant.
3. An RLD entry is made for all instructions except S-type address constants.

4. Errors are logged.

5. Output records and error records are written.

MODULE

IPKNA
IPKNB

IPKNB
IPKNA
IPKNB
IPKNB
IPKOA

IPKOA
IPKNA

ROUTINE

NSADDR
DCPROC

CCWPROC

DCPROC

WRITERLD

ERRLOG

ERRPUT

99

9 5 Print/Punch the External Symbol Dictionary

INPUT IPKLA PROCESS OUTPUT

PUNCH AND
REPRO RECORDS (WOHKFILE 1)

ESD TABLE (WORKFILE 3)

ESDENTRY

IPKMA

(SYSPCH)
PUNCH, REPRO, AND ESD CARDS

1 PUNCH PRE-OBJECT PUNCH AND
REPRO CARDS

2 PUNCH ESD OBJECT CARDS

3 PRINT ESD

ESD AND DSECT
DICTIONARY (SYSLST)

4 PRINT DSECT DICTIONARY

g

v IPKOA

N

L9

2 5 EXTENDED DESCRIPTION
[]

1.

PUNCH and REPRO records previously written on workfile 1 (see Diagram 2.1)
are punched.

2, 3. The ESD tabie is translated, punched, and printed.

4.

The DSECT dictionary is printed after the external symbol dictionary.

MODULE

IPKMA

IPKMA

IPKMA

ROUTINE

ESDROUT

DSROUT

89

2.6

INPUT

Build Object Code 2

IPKMA PROCESS

EDITED TEXT (WORKFILE 2)

PETR

PETFLDS -

IPKOA

1 PROCESS ACCORDING TO TYPE:

[oc. uiteraLbc |

OUTPUT

OBJECT CODE, ERROR RECORDS

GENERATE OBJECT CODE

Y

[os !

CHECK OPERAND

2 DETECT AND LOG ERRORS

5 PASS ON OTHER*STATEMENTS

*Those processed in w

(Passed to JPKPA)

IPKPA

§ N

69

2 6 EXTENDED DESCRIPTION
[]

1.

Object code is built for DC and DS instructions

[pc, LITERAL DC |

Object code is generated.

Operands are checked.

Errors are logged and put out after the statement in error.

MODULE

IPKOA

IPKOA

IPKOA

ROUTINE

DCPROC

DCPROC

ERRLOG
ERRPUT

oL

9.7 Output

INPUT IPKOA PROCESS OUTPUT
IPKPA
COMPRESSED SOURCE AND
; OBJECT CODE (SYSPCH,
ERROR RECORDS (WORKFILE 3))

v 1 ReaD compresseD SOURCE QD_—_:>
PCSR

2 process coRRESPONDING
] EDITED TEXT

3 runch anp PRINT °
EDITED TEXT AND OBJECT CODE

ERROR RECORDS (FROM /PKOA)
PETR
| PETFLDS

4 process LisTING o |
_r__J CONTROL RECORDS
8 processmnoTE
ERROR
RECORDS (WORKFILE 1)
PUNCH AND REPRO o O

PERR
| 4 1
6 PROCESS ERROR RECORDS j>

v IPKQA

LISTING (SYSLST)

L

2.

2.

7 EXTENDED DESCRIPTION
Compressed source records are read from workfile 3.

The compressed source records are checked against the last edited text record read and passed from
IPKOA. If there is no corresponding edited text record (for example, if the compressed source record
is for an erroneous machine instruction), the record is printed and the next one read.

When there is edited text for the record, it is processed as shown on Diagram 2.7.1.

The code developed in the previous step (Diagram 2.7.1) is printed for the listing and punched
for the object deck.

Listing control statements are processed according to type:
TITLE. The heading is replaced and the page eject control character is set.* The symbol name is
inserted if it appears on the first title statement.

EJECT. The page eject control character is set.*

SPACE. The control character for spacing®* is set according to the number of lines indicated by

the operand. When the space operand exceeds two, blank lines are printed until fewer than three

spaces remain before the next print line.

PRINT: The print switches that control the printing of all statements, generated statements, and

object code, are updated when a PRINT statement is encountered. The PRINT statement itself is always
printed regardless of the status of the print switches.

Errors in List Control Statements. An error record is built and written on workfile 1. The statement in
error is printed. The requested operation is performed if the error is a minor one.

MNOTE. The message is printed on SYSLST and an error message written on workfile 1.
PUNCH, REPRO. The statement(s) is printed on SYSLST and the card(s) punched on SYSPCH. These
cards are intermixed with object deck cards.

The text ***ERROR*¥¥* is printed on a separate line after each statement that contains one or more
errors. An error record containing the statement number is built for the diagnostic phase and written on
workfile 1.

* When the page eject control character is set, a page ejeét will first be performed before the next line is

printed.

**The next printed line will be preceeded by one or two extra blank lines.

MODULE

IPKPA

IPKPA

IPKPA

IPKPA

IPKPA

IPKPA

ROUTINE

GETSRC

EDTEXT

PUNCHOUT
DUMP
PRINTER

TITLEOP

EJECTOP
SPACEOP

PRINTOP

WRTERROR

MNOTEOP
PUNCHOP
REPROOP

COPERROR

L

2,711

INPUT

Process Edited Text

PROCESS

A

EDITED RECORDS

PROCESS BY TYPE:

| MACHINE INSTRUCTIONS |

PETR
PETFLDS

INSERT LOCATION COUNTER, OBJECT CODE,
ADDRESS FIELDS IN PRINT LINE.
PUNCH OBJECT CODE

INSERT LOCATION COUNTER AND OBJECT CODE
FIELDS. APPLY DUPLICATION FACTOR IF
PRESENT. (LITERALS PROCESSED SIMILARLY)

| CSECT, DSECT, START, COM, LTORG*DS |

LOCATION FIELD ONLY :>@
LOCATION AND ADDR2 FIELDS ::'>®
ADDR2 FIELD ONLY :>®

LOCATION AND OBJECT CODE FIELDS :>®

ADDR2 FIELD, IF PRESENT
*PROCESS LITERALS IF PRESENT :>@

A

N

Eessenssss———

OUTPUT

PRINT LINE (SYSLST)(PRNTLINE)

OBJECT CODE

(SYSPCH)
(TXTCARD)

—

iy,

>

€L

2 7 1 EXTENDED DESCRIPTION
[] L]

MACHINE INSTRUCTIONS

The location counter value, object code, and address fields are inserted in the print line.
Object code is punched.

ALL OTHER INSTRUCTION TYPES

All other instructions are handled by type according to a branching table. Literals are
formatted for the listing.

Object code is punched for some instructions.

MODULE

IPKOA

IPKPA

IPKOA
IPKOA

IPKPA

ROUTINE

MACHOPS

DUMP

PSEUTBL
LITCOPE

DUMP

L

2.8

INPUT

Post Process
PROCESS

RLD TABLE (WORKFILE 3

RLDENTRY

XREF RECORDS (WORKFILE 3)
XREFREC

=—__I\

~——— T~ —

LITERAL POOL (WORKFILE 1)
LITTBL

N

ERROR RECORDS (WORKFILE 1)

PETR
PETFLDS

L ~—

IPKQA
IPKRA
IPKSA

1 PUT OUT RELOCATION DICTIONARY

2 SORT AND PRINT CROSS-REFERENCE
DICTIONARY

3 PROCESS ERROR MESSAGES

A
(2]

OUTPUT

O=

LISTING (SYSLST)

OBJECT DECK

(SYSPCH)

"ty

SL

2 8 EXTENDED DESCRIPTION
|]

1. The relocation dictionary is printed and punched (see Diagram 2.8.1).

2. The literal pool and cross reference records are merged; they are then sorted and printed
on SYSLST (see Diagram 2.8.2).

3. Error messages are processed and printed (see Diagram 2.8.3).

MODULE

IPKQA

IPKRA

IPKSA

ROUTINE

RLDROUT

DECODE
PRINTER

9L

2.8.1

INPUT
RLD TABLE (WORKFILE 3)
Addr.| Ref.
con. | sym.| Flag Addr. RLDENTRY
1D ID

B EEN

Print/Punch the Relocation Dictionary

PROCESS

IPKQA

END INFORMATION

(PENDID)
(PENDAD)

1 PRINT RELOCATION DICTIONARY

OUTPUT

RELOCATION DICTIONARY (SYSLST) .

2 PUNCH RELOCATION
DICTIONARY

>

END CARD (SYSPCH)

RELOCATION
DICTIONARY
(SYSPCH)

(=

>' 3 runcH enp carp j::‘_‘:::)’

LL

2 8 1 EXTENDED DESCRIPTION
|] L]

1. The RLD information is translated to output format and printed two columns per page.
2. The RLD object cards are punched.

3. An END card is punched. If there was a name in the operand field of the END statement,
its ID and address is punched.

MODULE ROUTINE
IPKQA RLDROUT
IPKQA RLDPCH
IPKQA

8L

2.8.2

RECORDS (WORKFILE

LITERAL

POOL (WORKFILE 1)
LITTAB

XREF

n

XRFENTRY

IPKQA

PROCESS

Sort and Print the Cross-Reference Dictionary

IPKRA-RC

NO

5

2 READ RECORDS
INTO STORAGE AREA

3 SORT RECORDS —

6 PRINT RECORDS

1 OPTIMIZE PARAMETERS

RECORD STO!
AREA

RAGE
(SRTINIT, RSA)

I
-

-
-

MORE

/

OUTPUT

~a

)

INDENTRY
MORE RECORDS INDEX TABLE {DIREND]
RECORDS . { 7 ;
WRITE SUBSTRING(S) | 2
AND DIRECTORY(S)
IF NECESSARY
DIRENTRY
DIRECTORY {DIRADDR]
[Add- N
fess|Offset [N/P | Key

MERGE SUBSTRINGS

BY GETTING WINNERS

VIA DIRECTORY

i

XREF

SUBSTRINGS (WORKFILE 2)

OVERFLOWED

DIRECTORIES (WORKFILE 1)

PRINTED
RECORDS

(SYSLST)
(PRNTLINE)

g IPK.

’if‘r\y
b

6L

2 8 2 EXTENDED DESCRIPTION MODULE
L] L}

The cross-reference sort is done in two phases. In the first phase, one or more sorted substrings are
built. If there is more than one string, they are written on workfile 2. A directory entry is created
for each substring, containing the physical disk address and the lowest key number in the string. |If
the directory overflows, an entry is made in the index table, consisting of the lowest key in the
directory and the physical disk address for the directory.

In the second phase, ’M"” blocks are read and the records retrieved in ascending order using the
directory, which is then updated according to ascending keys. When necessary, the next directory
is read into main storage and merged with the first one. If there is only one string, the print module
is fetched and the records passed to the print buffer one by one.

1. The total number of bytes to be sorted is checked against available storage to determine if an
"in-storage’’ sort is possible. If it is not, the internal sort block size "’'B’" and merge order ""M" IPKRA
are calculated with the respect to the number of strings to be sorted. Finally, all addresses to
the 1/0 buffers, directories, index table, and record storage are initialized.

2. Since the literal cross-reference records are generated with a pseudoname instead of a symbol name, IPKRA
the literal pool is read and the corresponding pseudoname is built and concatenated with each actual
literal.
3. The internal sort technique used is Shell’s sort. IPKRA
4. If the sort is not an "' in-storage’’ sort, the Conner merge technique is used. Each sorted substring is IPKRA

written and a directory entry containing the lowest key of the substring and its physical address on
disk is created. If the directory overflows, it is written on workfile 1 and a new directory built. Each
time the directory overflows, an entry is made in the index table. The entries in the directory are in
ascending order according to key number.

5. Phase 2 is now loaded and “’M”" blocks read into storage together with the first (or only) directory IPKRB
block. The winner pointed to by the first directory entry is passed to the print routine and the
directory is updated according to the next key. If the new winner is not in storage, the
corresponding block will be read and the winner put out. If a winner record is not pointed to by
a directory entry in main storage, the next directory block will be read by using the index table
and the two directories merged.

6. The records are put out. IPKRA, RB
. or RC

ROUTINE

SRTINIT

SRTLIT

SRTRSA

SRTOUT
SRTDIR

MRGMAIN

MRGDIR

MRGPRT

08

2.8.3

INPUT -

Diagnostics and Statistics

ERROR RECORDS (WORKFILE 1)

String . ﬂ
No- | tength | Stina | PETFLDS
]
s T
/—‘\
_——/—\
EDECK info. ‘
Macro names J
COMMON PCOMMON
Options size

PROCESS OUTPUT
IPKSA-SB
1 READ ERROR RECORDS
2 BUILD OFFSET TABLE (ERRTABJ
MESSAGES :
ENCODED MESSAGES (MSGLI/B)
10| 0052 | 0073 | o025
4 /
GLOSSARY (GLOSSARY)
0025 OPERANDS
0052 TOO
LISTING (SYSLST)
0073 MANY
3 PRINT MESSAGE 5 IPK006 TOO MANY
OPERANDS
EDECK names, no.
4 erint sTaTisTICS Macro
Options
M—
5N
L

I8

2.8.3

EXTENDED DESCRIPTION

Error records are read from workfile 1.

The message is built up in the following way: the error record contains a number which corresponds
to an entry in the offset table. This entry points to a corresponding "encoded message’”’. The messages
are coded so that each word in the message is represented by a two-byte code; this code is the offset

of the actual English word in a ""glossary’’, where all the different words are kept in EBCDIC code,

each word preceded by one byte that contains its length in bytes.

Error records that contain strings are handled by inserting the string into a special area in the glossary.

it (the string) is then handled like an ordinary glossary entry.

The messages are printed on SYSLST immediately after the statement in error.

Statistics are printed. A summary of errors found in the assembly is printed from workfilé 1, the macro

name and number of cards punched for the EDECK option are printed from workfile 1. The names of
macros called is printed from workfile 1. Assembler options in effect and the partition size are printed

from COMMON.

MODULE

IPKSA

IPKSA
IPKSB

IPKSA

IPKSB

ROUTINE

DECODE

PRINTER

Initialize

INPUT PROCESS . OUTPUT

Z8

(PDECK)
OPTION SWITCHES® () /o)

(PXREF)

IPKBA

DOS SUPERVISOR

(PLINK)
COMREG - 1 set oprion switcHEs > (PALIGN)
- (PEDECK)
: (PDF)
N (PRLD)
3 DTFSD* (PSYSPARM)

< [\

LiIBs

2 (1JSYS01)
> CHECK FILE ASSIGNMENTS (1JSYS02)

-
B \ AND PARTITION SIZE (1JSYS03)

N2

PUBs \) in |PKAA

3 open svsoo1,2.3, svsier
\ BUFFER sIZEs¥*

(PBUFFLENT1)
\ (PBUFFLEN2)

4 COMPUTE BUFFER SIZES > (PBUFFLEN3)
(PMNABSIZ)

(PVSDSIZE)
(SMTSIZE)
(PB1FISIZ)

(PB12S1Z)

SYSIPT

’ 5 READ A RECORD

FILE CONTROL BLOCKS ¥

(PBFILE)
(PBFILET)
> (PBFILE2)
(PBFILE3)
PFCB

6 INITIALIZE BUFFER AND WORK AREA

#%in COMMON

€8

3 EXTENDED DESCRIPTION

1. The assembler options, which have been passed to the communications region of the DOS supervisor
from ASSGN cards and from the options chosen at system generation, are used to set option
switches in COMMON.

2. File assignments and partition size are checked and used to set values in the DTFSD. Errors cause
an ABEND.

3. The workfiles and the input files are opened.

4. Buffer sizes are computed from information in the DOS supervisor communication region, the
DTFSD, and from the overlay switches.

5. The first record is read from SYSIPT.

6. The buffer and work area addresses are initialized for the first three phases.

MODULE

IPKBA

ROUTINE

INOPT

INFILE
INPARSIZ

INOPEN

INBUFSZ

INREC

INITCDE

ro3 anssi v
A S3TANHOM 38010 m
sd1a
A LNdNI HSNTd N
1SISAS

A 39VSSIN LM | — H_

DOTISAS (OaN3gvd) 30D anN3av
VLI

indino S$S3004d L1NdNI

aN3gy v

84

S8

EXTENDED DESCRIPTION

=~

The ABEND function is called when any of the following have been detected:

e Workfile /O error

o End of workfile extent

o Too many macros or global symbols for the partition

e 1/0 unit required but not assigned

e Incorrect workfile unit type

e Too small a partition

1. The ABEND routine writes the appropriate error message on SYSLST and SYSLOG
before terminating the job.

2. Further input is flushed.
3. All workfiles are closed.

4. An end-of-job command is issued.

MODULE

IPKTA

IPKTA

ROUTINE

BADASGN

MESSROUT

R

Program Organization

Purpose of the Section

The purpose of this section is to describe the
structure of the assembler: how it is divided
into phases, the order in which these phases are
loaded into main storage and given control, and
how control and data are passed from one phase
to another.

This section contains:

¢ Phase/control section/object module directory
e Summary of the functions of each phase

e Control and data flow between phases

e Allocation of main storage for the phases

e Main storage layouts

e Common data area for the assembler

Program Organization

87

Phase/Control Section/Object Module Directory

Phase Control Object | Description of the object module
section module
ASSEMBLY IPKADOOO IPKAD SYSSLB logic module (DTFSL)
IPKAJO000 IPKAJ | Assembler identifier
IPKBAQOO IPKBA Initializer
IPKABOOO IPKAB SYSIPT and SYSSLB input
IPKAGO00O IPKAG SYSIPT logic module (CPMOD)
IPKAAOOO IPKAA | Basic interface routines and common
data area
IPKAAQO2 IPKAA | Workfile logic module
ASSECA IPKCAQO1 IPKCA Input for assembler
IPKCBO00O IPKCB Op-code table and op-code look-up
IPKCC000 IPKCC Macro instruction and macro
prototype editor -
IPRCDO0O1 IPKCD Overlay for TITLE, 1SEQ, COPY, BKEND,
and EOF on SYSSLB -
ASSEDA IPKDAQOO IPKDA | Conditional assembly. editor
IPKDBO00O IPKDB | Variable symbol declaration processor
ASSEEA IPKEA000 IPKEA | Sequence symbol resolution
ASSEGA IPKGAO00O IPKGA EDECK output
IPKACO000 IPKAC Punch routine : :
IPKAHO000 IPKAH SYSPCH logic module (CPMOD)
ASSEFA IPKFAQ000 IPKFA Global edit
IPKAEO0O IPKAE SYSSLB input routines
IPKADOOO IPKAD SYSSLB logic module (DTFSL)
Figure 1. Phase/Control Section/Object Module Directory. This figure

88

shows how the phases are divided into control sections and

object modules.
(Part 1 of 2)

Phase Control Object | Description of the object module
section module
ASSEHA IPKHAO000 IPKHA Attribute collection
ASSEIA IPKIAO000 IPKIA Generate
IPKAAOO1 IPKAA POINT with byte offset routine
IPKAAQOO3 IPKAA POINT with byte offset routine for FBA
IPKCBO00O IPKCB Op-code table and op-code look-up
IPKICO000 IPKIC Op-code substitution
ASSEJA IPKJA000 IPKJA Assembler pre-processor and literal
processor
ASSEKA IPKKAOO1 IPKKA | Assignment initializer
IPKKA000 IPKKA | Assignment
ASSELA IPKLAOOO IPKLA Substitution
IPKNAOOO IPKNA Build code 1 for machine instructions
and S-type constants
IPKNBO0O0O IPKNA Build code 1 for address constants (A,V,
and ¥Y) and CCWs
ASSEMA IPKMAOOO IPRMA External symbol dictionary output (ESD)
IPKAF000 IPKAF Punch routine
IPKAIOO0 IPKAI Print routine
IPKAHO00 IPKAH SYSPCH/SYSLST/SYSLNK logic module (CPMOD)
ASSEOA IPKOAO00O IPKOA Build code 2 for constants
(except A, V, Y, and S-type)
IPKPAOOO IPKPA Text output
ASSEQA IPKQA000 IPKQA | Relocation dictionary output (RLD)
ASSERA IPKRAOOO IPKRA Cross-reference sort and print (XREF)
ASSERB IPKRB00O IPKRB Cross-reference merge and print (XREF)
ASSERC IPKRC000 IPKRC Cross-reference print (XREF)
ASSESA IPKSA000 IPKSA Diagnostics output
IPKSB000 IPKSB Diagnostics and statistics output
ASSETA IPKTAO000 IPKTA ABEND routine
Figure 1. Phase/Control Section/Object Module Directory.

(Part 2 of 2)

Program Organization 89

Summary of the Functions of Each Phase

The following figure lists the functions accomplished in each phase of

the assembler.
subfunctions.

Operation®.

Some of these functions are broken down into ‘
For a description of how the phases work see “"Method of

Phase

Diagram

Function

ASSEMBLY

none

o & 0 0

Check file assignments
Open workfiles and SYSIPT
Compute buffer sizes
Perform I1I/0

ASSECA

Read all source and compress text
Look up operation codes

Build macro name array (MNA)

Edit macro instructions and prototypes

ASSEDA

1.1.2

Process variable symbol declarations
Edit conditional assembly statements
Collect sequence symbol declarations
Complete macro instruction editing

ASSEEA

1. 1.3

Resolve all sequence symbol references
Set up source macro header and tables
Separate compressed source records (CSR)
and edit text for source macros

Build source macro table (SMT)

ASSEGA

Punch source macros in edited format

ASSEFA

Build a global vector (GV)
Build the macro address vector (MaV)

ASSEHA

1.4

Look up attributes for all parameters
and all symbols with attribute references
in open code

ASSEIA

1.5

Expand macro instructions

Evaluate conditional assembly expressions
Perform conditional assembly

Perform substitution ‘

ASSEJA

Edit all machine and assembler instructions
Build literal pools after each LTORG and END
Output cross-reference records for all literals
Write on workfile 1 any PUNCH and REPRO records
found before first control section

ASSEKA

e 60 0

Assign values to all symbols

Build symbol table

Build external symbol dictionary (ESD) table
Evaluate length of EQU,CNOP,ORG, and END
expressions

Output cross-reference records for all symbol

definitions, references, and duplicates

Figure 2.

90

Summary
(Part 1

of the Functions of Each Phase.
of 2)

Phase

Diagram

Function

ASSELA

2.3

Substitute values for each symbol

Evaluate all expressions

Handle USING and DROP statements

Convert implicit addresses into base-displacement
form

Build all object output for machine instructions
and S-type constants

Collect relocation dictionary (RLD)

information for RLD output

Build all object output for address constants
(A, V, and Y) and CCwWs

ASSEMA

2.5

Output cards for PUNCH and REPRO records found
before first control section
Output ESD cards, ESD, and DSECT listing

ASSEOA

Build object output for all constants (except
A, V, Y and S-type)

Merge source and edited text

Output text listing

Output text cards

ASSEQA

Output RLD cards and listing
Output END card

ASSERA-RC

2.8.2

Sort cross-reference (XREF) records and print
XREF listing

ASSESA

2.8.3

Output error messages and statistics

Figure 2.

Summary
(Part 2

of the Functions of Each Phase.
of 2)

Program Organization 91

26

Control and Data Flow Between Phases

INPUT

SYSIPT

N

INITIALIZE

Macro
Library

INPUT

SYSSLB

<>

If no macros or conditional-

assembly in open code
1 & & ¥ & B _J ;B _§} N _§} ./}

edited records

v [

ASSECA

Edit macro
instructions

WF2 +

WF3 1

Source Macro

Open Code

Source

Open Code

- [

Source

WF1 g

Source macro

WFI Source & Lib. Mac

Keyword table
global vector
edited text

:

Macro address
vector

OC Global Vector 7

Open code
attribute table

WF1
ASSEDA

Source Macro 3

Edit macro def.
KT, GAR, [4——— and conditional
source and assembl
edited records Y
Open Code
GAR,
source and ASSEEA

L »

Resolve sequence
symbol references

Macro name
array

o

WF3

i Source Macro

Mac.info.block
variable sym. dict.
sequence sym. dict.

Open Code

OC info. block
variabie sym. dict.
sequence sym. dict.

WF3

table | b]

Source Macro

Source and
error records

Source Macro

Macro header
KT, GAR,
edited records

P

v

ASSEFA

Global edit

Open Code

OC header, GAR,

source and
edited records

——

ASSEHA

Collect
attributes

ASSEIA

Generate

()
()

1 EDECK
I diagnostics

3

WF3

>

Global edit
errors

WF3

Generated
source text and

error records

ol

€6

|

‘@ WF2

WF1 ASSEIL
OUTPUT Eabis fow r
G W TS A S - -l — PUNCH & REPRO assernisdy Edited text
before first —P m arror WF3
PUNCH file ! CSECT Pl o
Pre-ESD PUNCH |g L | senords
& REPRO,] ASSEKA i |
ESD records I Literal pool Collect ‘__i ESD table
- symbol ¢ =1
PRINT file defintions | s
ESD records 1 - :
: * * XREF defisitians
Object file i WF1 XREF references
l;:'eF-‘EE%% (F)’UNCH < i ASSELA rE — 9| XREF duplicates
ESD records | Edited text : Resolve symbo! | WF2 .
and error | references and > Edited text
I records build code 1 and error
/" PUNCH file 1 records
Post-ESD PUNCH ‘_|_
& REPRO, l
text records 1 p| ASSEMA
PRINT file I External symbol
Assembled source I dictionary output
program)
Object file ASSEOA —
Post-ESD PUNCH | Build sode 2
& REPRO, ﬂ—l—'
text records i Error records |@———— and text ° WF3
/ output
PUNCH file I | RLD
RLD records, I TSSIEQA information
END record <
l Relocation
PRINT file dictionary G
RLD records l output
i WE1 | WF2
Object file I XREF ASSERA
Ell\l-g recor?‘s, I directory —D Cross-reference D XREF strings
recor l output to be merged
PRINT file
XREF listing I J ASSIES
A
- l Diagnostic and
PRINT file = statistics output

Figure 3.

Control and Data Flow Between Phases

* |f symbol table overflow occurred, workfiies
(WF1 and WF2) may be in the opposite order.
%%O0nly if symbol table overflow occurred.

== == indicates optional information.

ve

Allocation of Main Storage for the Phases

The vertical axis of the diagram below represents the amount of main storage available to the partition. The horizontial axis
represents time (the order in which the phases are loaded and executed in main storage). Certain parts of the ASSEMBLY
phase, (for example, basic interface routines and the workfile logic module) are in main storage throughout execution.

Certain parts of the ASSEMA phase (the print routine and the SYSPCH/SYSLST/SYSLNK logic module (CPMOD)) are loaded
into storage by ASSEMA and remain in storage to the end of execution. The shaded portion of the diagram represents the
area of the partition occupied by the work areas, buffers, dictionaries, tables, etc., of the phases; the size of this part of
storage is variable depending upon the size of the partition.

4K

© 0 N O O A W N =2 O

~-g——————————— Main Storage
=3 - - -
W N = ©°

ASSEEA
2K

Time

Figure 4. Allocation of Main Storage for the

1.1K

Low address
of partition

Main Storage Layouts of the Phases

The following figures illustrate the contents and layouts of the phases
as they are loaded into main storage. For a cross-reference to the
order in which they are loaded and their various sizes, see Figure 4.
The contents of the COMMON interface phase "ASSEMBLY" are shown in
Figure 1. Workareas, buffers, etc., generally begin at the high storage
address and work downwards using only as much of the available storage
as they require.

COMMON
interface

IPKCB
code

IPKCC
code

IPKCD
code

))
t
3y)

(

BLKADDR >

Macro name array (MNA) buffer

PWAADDR2—p

Work area for workfile 2

BUFADDR2 —p

Buffer for workfile 2

Figure 5. ASSECA Main Storage Layout.

Program Organization 95

VSDADDR

SSDADDR
(only in IPKDA)

PWAADDR1

BUFADDR1

PWAADDR2

BUFADDR2

COMMON
interface

IPKDA
code

IPKDB
code

/-L ~
™~ ™
—»
Variable symbol dictionary
(VSD)
Sequence symbol dictionary
(SSD)
Work area for workfile 1
—>
Buffer for workfile 1
—>
Work area for workfile 2
—

Buffer for workfile 2

* This area is overlaid by the VSD in module IPKDB

Figure 6.

96

ASSEDA Main Storage Layout.

e

(COMMON

interface
| IPKEA
! code
|
\
|
| A A~
Lt e P

SSDADDR —p

Sequence symbol dictionary

i (SSD) buffer
1 SMTADDR —p
|
Source macro table
(SMT) buffer
(PWAADDR1 —P
Work area for workfile 1
|
! BUFADDR1 —P
Buffer for workfile 1
PWAADDR2 —p
Work area for workfile 2
BUFADDR2 —3p
Buffer for workfile 2
PWAADDR3 —p
Work area for workfile 3
BUFADDR3 —P

Buffer for workfile 3

Figure 7. ASSEEA Main Storage Layout.

Program Organization 97

COMMON
interface

IPKAC
code

IPKGA
code

SMTADDR —4p

Source macro table buffer

SSVSDAD —p

Sequence symbol dictionary and
variable symbol dictionary

buffer
Jv A e
P o P
PWAADDR2 —P
; Work area for workfile 2
BUFADDR2 —P
Buffer for workfile 2

PWAADDR3 —p

Work area for workfile 3

BUFADDR3 —P

Buffer for workfile 3

Figure 8. ASSEGA Main Storage Layout.

98

COMMON
interface

IPKFA
code

IPKAC

IPKAH
code

la

—

P

1
GSDBUFAD —p

SMTADDR —§p

Global symbol dictionary (GSD) buffer

(only if there are
source macros)

MNABUFAD —P

Source macro table buffer

Macro name dictionary

(MND) buffer

BUFADDR1 —P

PWAADDR1 —

Buffer for workfile 1

Work area for workfiles 1 and 2

BUFADDR2 —>

PWAADDR3 — p

BUFADDR3 —p

Buffer for workfile 2

Work area for workfile 3

* This area is overlaid by GSD buffer if there are no source macros.

Figure 9. ASSEFA Main Storage Layout.

Buffer for workfile 3

Program Organization

99

COMMON
interface

IPKHA
code

Hash table (HASHTABL)

TABSTART —¥

Attribute table

(ATTABLE)

BUFADDR2 —§

Buffer for workfile 2

PWAADDR2 >

Work area for workfiles 2 and 3

BUFADDR3 -»

Buffer for workfile 3

Figure 10. ASSEHA Main Storage Layout.

100

COMMON
interface
IPKIA
code
IPKAA
code
IPKCB
code
IPKIC
code
AMAV —>
Macro address vector (MAV)
GAVAPT
Value area for global set symbols
RDIBBASE —P
Open code dictionary block
RDIBBASE —pp
Macro dictionary block
.’ —~N
DAFSEND —p
Global SSA
PWAADDR1 —¥
Work area for workfile 1
BUFADDR1 —
Buffer for workfile 1
PWAADDR2 —¥
Work area for workfile 2
BUFADDR2 —P
Buffer for workfile 2
PWAADDR3
Work area for workfile 3
BUFADDR3 —®

Figure 11.

Buffer for workfile 3

ASSEIA Main Storage Layout.

Program Organization

101

COMMON
interface
IPKJA
code
LITTABLS —p 3
PWAADDR1
+ %
Work area for workfile 1
BUFADDR1
Buffer for workfile 1
PWAADDR2 ——p J
Work area for workfile 2
BUFADDR2
Buffer for workfile 2
PWAADDR3
Work area for workfile 3
BUFADDR3
Buffer for workfile 3

% If there are PUNCH and/or REPRO records before the first control section, this area is first used by
workfile 1, as shown here, and then overlaid by the Literal pool. If there are no PUNCH or REPRO
records before the first control section, workfile 1 is not used and this area is only used by the
Litera! pool.

Figure 12. ASSEJA Main Storage Layout.

102

COMMON
interface

IPKKA
code

ADESDTAB —P
External symbol dictionary

table buffer
4— ESDEND
Hash table (HASHTABL)
STABEND —Pp
(end of symbol
table)
Symbol table
XREFPTR —p 4— SYMADDR
(start of symbol table)
Cross-reference buffer
BUFADDR2 —b 4— XRAREND

Buffer for workfile 2

PWAADDR1(2—p

Work area for workfiles 1 and 2

BUFADDR1T —p

Buffer for workfile 1

PHICORE —>

Figure 13. ASSEKA Main Storage Layout.

Program Organization 103

STABEND — p
(end of symbol table)

XREFPTR —P

Symbol table overflow

BUFADDR2 —P

PWAADDR1(2)—P

Buffer for workfile 2

—>

Work area for
workfiles 1 and 2

BUFADDR1

Buffer for workfile 1

COMMON
interface
IPKLA
code
IPKNA
code
STABEND —p
(end of symbol
table)
Symbol table
< SYMADDR >
(Start of symbol table)
Cross-reference buffer
4—XRAREND

Figure 14.

104

ASSELA Main Storage Layout.

No symbol table overflow

COMMON
interface

IPKLA
code

IPKNA
code

Symbol table

Work area for workfile 2

4—p\wAADDR2

Buffer for workfile 2

4— BUFADDR2

Work area for workfile 1

4— PWAADDR1

Buffer for workfile 1

4— BUrADDR1

(' COMMON
interface

IPKMA
code

‘ IPKAF
| code

IPKAI

IPKAH
code

PARTAB »
External symbol dictionary
buffer

y)

External symbol dictionary
buffer

))
(
3
- (

PWAADDR1 e

Work area for workfile 1

BUFADDR1 >

Buffer for workfile 1

PHICORE —p

* The maximum number of ESD buffers is seven.

Figure 15. ASSEMA Main Storage Layout.

Program Organization 105

COMMON
interface

IPKOA
code

IPKPA
code

el Pad
P ™
PWAADDR3 —P
Work area for workfile 3
BUFADDR3 »
Buffer for workfile 3
PWAADDR2 —p
Work area for workfile 2
BUFADDR2 —Pp
Buffer for workfile 2
PWAADDR1T —P
Work area for workfile 1
BUFADDR1 —P

Figure 16.

106

Buffer for workfile 1

ASSEOA Main Storage Layout.

COMMON
interface

IPKQA
code

BUFPOINT —P

Relocation dictionary (RLD)
buffer

PRSAVE (saved RLDs)*

ENDSAVE —P

) L
C(

% Maximum number of RLDs saved = maximum number of lines.

Figure 17. ASSEQA Main Storage Layout.

Program Organization

107

ASSERB

ASSERA ASSERA ASSERC
"In-storage’’ sort Sort not “in-storage’’
com|
9OMMON .0 MON COMMON COMMON
interface interface i X
interface interface
Print routine Print routine
CSECT = IPKRA CSECT = IPKRAO001
IPKRA IPKRA (0o1) ()
code code
IPKRC code
IPKRB
<4-SRTINIT® code A A
Initialization ‘ T’ T
routine
*

Print routine
(CSECT = IPKRAO001)

XREF directory

XREF index table

Record storage area

N
{0

(RSA)
Record storage area
(RSA)
Output buffer
Input buffer Input buffer

XREF sort block 1

XREF sort.block 2

\

XREF sort block “"M"

XREF directory

XREF directory

Record storage area

*1f the record storage area starts at label SRTINIT,
then both the initialization and print routines are
overlaid by the RSA and the output printing is

handled by ASSERC.

Figure 18. ASSERA Main Storage

Layout.

108

A A~
~ L
XREF index table XREF index table
% The number of XREF sort blocks is 2<M <19,
Figure 19. ASSERB and ASSERC Main
Storage Layout. A
N

(COMMON

interface
|
|
\
IPKSA
} code
|
IPKSB
code
|
[A~
Vs e P

PWAADDR1 —>

Work area for workfile 1

BUFADDR1 —p

Buffer for workfile 1

Figure 20. ASSESA Main Storage Layout.

Program Organization 109

Common Data Area for the Assembler

The interface phase ASSEMBLY contains the common data area COMMON.
This data area is included in all other modules in the DSECT *PCOMMON®.
PCOMMON is divided up into seven parts, each part a COPY book, as
follows:

IBRTAB Branch table (branches to interface routines)

PCOM1 Equates and data areas used by the assembler

PCOM2,3,5,6,7 Data areas used by the phases of the assembler
at different times during execution

The different modules COPY those parts of COMMON that they need.
PCOM1,2,3,5,6,7 overlay each other by means of ORGs. For example:

PCOM2 starts with ORG7 EQU *
then

PCOM3 starts with ORG ORG7

See "Data Areas”™ for a complete description of the DSECT PCOMMON.

110

i

Directory

Purpose of the Section

The purpose of this section is to assist you in
getting from the information in the manual to
the pertinent code in the program listings
and/or from the listings to the relevant
information in the manual. The directory
relates each module, entry point, and control
section name in the program to the corresponding
microfiche card.

Directory 111

P

e

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPT1ON: NAME AND USE REF#*+ DSECT MCROFCH
(fﬂ REC DSECT NAME; SOURCE AND OBJECT TEXT OUTPUT BEC IPKPA
CAED | COL.MODE AND OVERFLOW ?, ATTRIBUTE PHASE 1.4 IPKHAOOO | IPKHA
CAEDIT DSECT NAME; ATTRIBUTE PHASE CAEDIT IPKHA
CAEVAL SAVE REGISTERS, PHKGEN 1.5,1.5.2 | IPKIAO0O | IPKIA
CATALBKE| EDECK OUTPUT 1.2 I1PKGA00O | IPKGA
CCWCODE | DSECT NAME; CCW OUTPUT, CONSTANT AND CCW CCWCODE | ADDRES
CODE BUILD
CCWCODE | DSECT NAME; CCW OUTPUT, ADDRESS CONSTANT CCWCODE | IPKNA
AND CCW CODE BUILD
CCWR STORE LENGTH OF CCW, ASSIGNMENT PHASE 2.2.1 IPKKAOOO | IPKKA
CHECKGS | GLOBAL EDIT 1.3,1.3.1 | IPKFA000 | IPKFA
CHKNAME | PRE-PROCESSOR PHASE TO THE ASSEMBLER PHASES 2.1.1 IPKJA000 | IPKJA
CNOPR PUT VALUES IN SYMBOL BUCKETS, ASSIGNMENT 2.2.1 IPKKAOOO | IPKKA
PHASE
‘ CODE DSECT NAME; EXTERNAL SYMBOL DICTIONARY CODE
| COMR GIVE IT A NAME, ASSIGNMENT PHASE 2.2.2 IPKKAOOO | IPKKA
COMREG DSECT NAME; ONE TIME INITIALIZER COMREG IPKBA
CONXXXX | DSECT NAME; ONE TIME INITIALIZER CONXXXX | IPKBA
| COPERROR| SOURCE AND OBJECT TEXT OUTPUT 2.7 IPKPAOOO | IPKPA
e CROSSREF| XREF LISTING ?, ASSIGNMENT PHASE 2.3,2.2 IPKKAOOO | IPKKA
(7 CROSSREF| XREF LISTING ?, SUBSTITUTION PHASE 2.3 IPKLAOOO | IPKLA
i CSECTR INDICATE THAT IN CSECT, ASSIGNMENT FHASE 2.2.2 IPKKAOOO | IPKKA
| DCEDIT DSECT NAME; *** THIS DSECT, ASSIGNMENT PHASE DCEDIT IPKKA
! DCPROC DC AND DS CODE BUILD 2.6 IPKOAOOO | IPKOA
DCR ZEROS TO PCPNUMB IN OUTPUT RCD, 2.1.2 IPKJA000 | IPKJA
PRE-PROCESSOR PHASE TO THE ASSEMBLER PHASES
DCR ASSIGNMENT PHASE 2.2.1 IPKKAOOO | IPKKA
‘ DIB DSECT NAME; OC OR MACRO DIB, PHKGEN 1.5.1,1.5 | DIB IPKIA
DICTINFO| DSECT NAME; EXTERNAL SYMBOL DICTIONARY DICTINFO
DIRADDR | ADDRESS TO DIRECTORY BUFFER, POST 2.8.2 PCOMMON | IPKRA

PROCESSOR; XREF SORTING AND PRINTING

DIREND END OF DIRECTORY, POST PROCESSOR; XREF 2.8.2 PCOMMON IPKRA
SORTING AND PRINTING

*#DIRENTRY| DSECT NAME; DESCRIBES ONE ENTRY IN THE, 2.8.2 DIRENTRY | IPKRA
POST PROCESSOR; XREF SORTING AND PRINTING

: *DIRENTRY| DSECT NAME; DESCRIBES ONE ENTRY IN THE, DIRENTRY | IPKRB
\ POST PROCESSOR; XREF SORTING

DRIVER OP-CODE LOOKUP AND STMT COMPRESS 4 IPKCAR001| IPKCA

*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.
*#+EXPLANATION OF PLM NUMBERED REFERENCES:
. A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
‘:;- 'F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

Directory 113

SYMBOLIC PLM CSECT/ MODULE/
NAME DESCRIPTION: NAME AND USE REF** DSECT MCROFCH
DRIVER PHKGEN 1.5 1IPKIAQOOO | IPKIA
DRIVER GET POINTER TO OUTPUT AREA, PRE-PROCESSOR 2.1.2° IPKJA000 | IPKJA
PHASE TO THE ASSEMBLER PHASES
DSECTR WAS THERE A NAME ?, ASSIGNMENT PHASE 2.2.2 IPKKAOOO | IPKKA
DSROUT SAVE RETURN REG, ESD INTERLUDE PHASE 2.5 IPKMAOOO | IPKMA
DUMP SAVE, SOURCE AND OBJECT TEXT OUTPUT 2.7,2.7.1 IPKPAOOO | IPKPA
*EDPMI DSECT NAME; EDITED PROTOTYPE AND M-I, EDPMI
EXTERNAL SYMBOL DICTIONARY
*EDPM1 DSECT NAME; EDITED PROTOTYPE AND M-I, M-I EDPMI IPKCC
AND PROTOTYPE EDITOR
*EDPMI DSECT NAME; EDITED PROTOTYPE AND M-I, EDPMI IPKDB
VARIABLE SYMBOL DECLARATION PROCESSOR
*EDPMI DSECT NAME; EDITED PROTOTYPE AND M-I, EDPMI IPKFA
GLOBAL EDIT
*EDPMI DSECT NAME; EDITED PROTOTYPE AND M-I, EDPMI IPKHA
ATTRIBUTE PHASE
*EDPMI DSECT NAME; EDITED PROTOTYPE AND M-I, PHKGEN EDPMI IPKIA
EDTEXT ENTRY POINT; SOURCE AND OBJECT TEXT OUTPUT 2.7 IPKPAOOO | IPKPA
EINFO DSECT NAME; ERROR ITEM DESCRIPTOR, EXTERNAL EINFO
SYMBOL DICTIONARY
EJECTOP SOURCE AND OBJECT TEXT OUTPUT 2.7 IPKPAOOO | IPKPA
ENDCARD DSECT NAME; ##**, RLD OUTPUT PHASE ENDCARD IPKQA
“ENDR PUT VALUES IN SYMBOL BUCKETS, ASSIGNMENT 2.2.1 IPKKAOOO | IPKKA
PHASE
*EPAR DSECT NAME; ENTRY IN PARAMETER TABLE, PHKGEN 1.5.1 EPAR IPKIA
EQUR EQUR (3705) aDpL29301, ASSIGNMENT PHASE 2.2.1 PCOMMON IPKKA
ERRBYTES | DSECT NAME; **#* THIS DSECT, ASSIGNMENT PHASE ERRBYTES | IPKKA
ERRBYTES | DSECT NAME; #*#* THIS DSECT, SUBSTITUTION FRRBYTES | IPKLA
PHASE '
ERRCALL DSECT NAME; SOURCE AND OBJECT TEXT OUTPUT ERRCALL IPKPA
*ERRENT DSECT NAME; ,ENTRY IN ERROR STACK, EXTERNAL ERRENT
SYMBOL DICTIONARY
*ERRENT DSECT NAME; ENTRY IN ERROR STACK, VARIABLE ERRENT IPKDB
SYMBOL DECLARATION PROCESSOR
ERRLOG DC AND DS CODE BUILD 2.4.3,2.6 IPKOA0OO | IPKOA
FRRPUT ENTRY POINT; DC AND DS CODE BUILD 2.6,2.4.3 IPKOAOOO | IPKOA
ERSTACKM | DSECT NAME; PRE-PROCESSOR PHASE TO THE ERSTACKM | IPKJA

*DATA AREA.

ASSEMBLER PHASES

SEE DATA AREA SECTION FOR DETAILED LAYOUT.

**EXPLANATION OF PLM NUMBERED REFERENCES:

A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

IFO'

114

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF*#* DSECT MCROFCH

ESDCOL17 | DSECT NAME; #*#%, ESC INTERLUDE PHASE ESDCOL17 | IPKMA

*ESDENTRY | DSECT NAME; THIS DSECT DESCRIBES AN ENTRY, 2.2,2.2.2 ESDENTRY | 1PKKA
ASSIGNMENT PHASE

ESDENTRY | DSECT NAME; ##*, ESD INTERLUDE PHASE 2.5 ESDENTRY | IPKMA

ESDLCTR *# CURRENT LOCCNTR OF CONT. SEC, ASSIGNMENT 2.2.2 ESDENTRY | II’KKA
PHASE

ESDROUT ESD INTERLUDE PHASE 2.5 IPKMAOOO | IPKMA

ESDTAB DSECT NAME; *#*#*, ESD INTERLUDE PHASE ESDTAB IPKMA

*EVALSTCK | DSECT NAME; ENTRY IN THE EVAL ROUT STACK, EVALSTCK | IPKKA
ASSIGNMENT PHASE

#EVALSTCK | DSECT NAME; ENTRY IN THE EVAL ROUT STACK, FVALSTCK | IPKLA
SUBSTITUTION PHASE

EVALUATE | SAVE RETURN REGISTER, ASSIGNMENT PHASE 2.3 IPKKAOOO | IPKKA

EVALUATE | SUBSTITUTION PHASE 2.3 IPKLAOOO | IPKLA

FINDGS GLOBAL EDIT 1.3.1,1.3 IPKFAO000 | IPKFA

F1XUP INSERT END OF OPERAND FLAG, PRE-PROCESSOR 2.1.2 IPKJA000 | IPKJA
PHASE TO THE ASSEMELER PHASES

*GARD DSECT NsME; GLOBAL ARRAY RECORD DSECT, GARD IPKDB
VARIABLE SYMBOL DECLARATION PROCESSOR

*GARD DSECT NAME; GLOBAL ARKAY RECORD DSECT, GARD IPKFA
GLOBAL EDIT

*GARENT DSFCT NAME; GLOBAL ARRAY ENTRY DSECT, GARENT IPKDB
VARIABLE SYMBOL DECLARATION PROCESSOR

*GARENT DSECT NAME; GLOBAL ARRAY ENTRY DSECT, 1.3.1 GARENT IPKFA
GLORAL EDIT

GEERR GLOBAL EDIT 1.3.1 IPKFAQ000 | IPKFA

GEFIN GLOBAL EDIT 1.3 IPKFAQOO0 | IPKFA

GEINIT GLOBAL EDIT 1.3 IPKFAO000 | IPKFA

GEOC GLOBAL EDIT 1.3.1 IPKFRO000 | IPKFA

GETSRC GET A SOURCE RECORD, SOURCE AND OBJECT TEXT 2.7 IPKPAOOO | IPKPA
OUTPUT

GSLBUFAD | ADDRESS OF GSD BUFFER, GLOBAL EDIT 1.3,1.3.1 IPKFA000 | IPKFA

GSDENT GLOBAL EDIT 1.3.1,1.3 IPKFAO00O | IPKFA

#GSDENTRY | DSECT NAME; GSD ENTRY DSECT, GLOBAL EDIT 1.3.1,1.3 GSDENTRY | IPKFA

GSDNPDST | DSECT NAME; DSECT FOR GSD N/P TABLE, GLOBAL GSDNPDS?1 | IPKFA
EDIT

GVENT GLOBAL EDIT 1.3,1.3.1 IPKFA000 | IPKFA

ICEND ALIAS FOR IPKIC999. PHKGEN 1.5 IPKIAOOO | IPKIA

IELEM DSECT NAME; INPUT ELEMENT FORMAT, PHKGEN IELEM IPKIA

IJJICPDV2 | CSECT NAME; SYSIPT LOGIC MODULE IJJCPDV2 | IPKAG

*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.

*#+EXPLANATION OF PLM NUMBERED REFERENCES:
A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
‘F*, FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

Directory 115

SYMBOLIC PLM CSECT/ MODULE/
NAME DESCRIPTION: NAME AND USE REF** DSECT MCROFCH
I1JJCPDO CSECT NAME; SYSPCH/SYSLNK/SYSLST LOGIC 1JJCPDO IPKAH
' MODULE
IJJCPDIN | CSECT NAME; EXTERNAL SYMBOL DICTIONARY IJJCPD1N
I1JJCPD2 CSECT NAME; 3-3, SYSIPT LOGIC MODULE 1JJCPD2 IPKAG
*IJJCPTAB | DSECT NAME; EXTERNAL SYMBOL DICTIONARY IJJCPTAB
*IJJCPTAB | DSECT NAME; SYSIPT LOGIC MODULE IJJCPTAB | IPKAG
*1JJCPTAB | DSECT NAME; SYSPCH/SYSLNK/SYSLST LOGIC IJJCPTAB | IPKAH
MODULE
I1JSYS01 BASIC INTERFACE ROUTINES AND PCOMMON 1.1 IPKAAOOO | IPKAA
I1JSYS02 BASIC INTERFACE ROUTINES AND PCOMMON 1.1 IPKAAOOO | IPKAA
IJSYS03 BASIC INTERFACE ROUTINES AND PCOMMON 1.1 IPKAAOOO | IPKAA
IJ2M0074 | CSECT NAME; 3-3, EXTERNAL SYMBOL DICTIONARY 1J2M0074
IJ2T0074 | DSECT NAME; EXTERNAL SYMBOL DICTIONARY 1J2T0074
IMIEDIT EDITED M-I, PHKGEN 1.5.1,1.5 IPKIAO00 | IPKIA
INBUFS2Z ONE TIME INITIALIZER 3 IPKBAOOO [IPKBA
*INDENTRY | DSECT NAME; ENTRY IN INDEX TABLE, POST 2.8.2 INDENTRY | IPKRA
PROCESSOR; XREF SORTING AND PRINTING
*INDENTRY | DSECT NAME; DESCRIBES ENTRY IN INDEX TABLE, INDENTRY | IPKRB
POST PROCESSOR; XREF SORTING
INFILE ONE TIME INITIALIZER 3 IPKBAOOO | IPKBA
INIT PHKGEN 1.5 IPKIAO00 | IPKIA
INITCDE ONE TIME INITIALIZER 3 IPKBAOOO | IPKBA
INOPEN ONE TIME INITIALIZER 3 IPKBAGOO | IPKBA
INOPT ONE TIME INITIALIZER 3 IPKBAOOO | IPKBA
INPARSIZ | ONE TIME INITIALIZER 3 IPKBAOOO | IPKBA
INREC ONE TIME INITIALIZER 3 IPKBAOOO | IPKBA
INSERT 1 SAVE RETURN REG, ATTRIBUTE PHASE 1.4 IPKHAOOO | IPKHA
INSERT2 ATTRIBUTE PHASE 1.4 IPKHAOOO | IPKHA
IPKAAOOO | CSECT NAME; BASIC INTERFACE ROUTINES AND IPKAAOOO | IPKAA
PCOMMON
IPKAAOO1T | CSECT NAME; INTERFACE ROUTINE FOR MACRO IPKAAOO1 | IPKAA
PROCESSING
IPKAAOO2 | CSECT NAME; BASIC INTERFACE ROUTINES AND IPKAAOO2 | IPKAA
SDMODW
IPKAAOO3 j CSECT NAME; INTERFACE ROUTINE FOR MACRO IPKAAOO3 } IPKAA
PROCESSING (FBA VERSION)
IPKABOOO | CSECT NAME; SYSIPT AND SYSSLB ROUTINES IPKABOOO | IPKAB
IPKACO00 | CSECT NAME; PUNCH ROUTINE FOR EDECK IPKACO000 | IPKAC
IPKADOOO [CSECT NAME; DTFSL IPKADOOO | IPKAD
*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.

** EXPLANATION OF PLM NUMBERED REFERENCES:

A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

lFl'

116

N

e

SYMBOLIC PLM CSECT/ MOCULE/

NAME DESCRIPTION: NAME AND USE REF** DSECT MCROFCH
IPKAD100 | CSECT NAME; DTFSL IPKAD100 | IPKAD
IPKAEOOO | CSECT NAME; SYSSLB ROUTINES FOR GLOBAL EDIT ‘ IPKAEOOO | IPKAE
IPKAF000 | CSECT NAME; SYSPCH/SYSLNK OUTPUT IPKAF000 | IPKAF
IPKAGOOO | CSECT NAME; SYSIPT LOGIC MODULE IPKAGOOO | IPKAG
IPKAHO00 | CSECT NAME; SYSPCH/SYSLNK/SYSLST LOGIC IPKAHOOO | IPKAH
MODULE
IPKAIOOO | CSECT NAME; PRINT ROUTINE IPKAIOOO | IPKAI
IPKAJOOO | CSECT NAME; EMBEDDED IDENTIFIER IPKAJO0O | IPKAJ
IPKBAOOO | CSECT NAME; ONE TIME INITIALIZER IPKBAOOO | IPKBA
IPKCAO001 | CSECT NAME; OP-CODE LOOKUP AND STMT COMPRESS IPKCA0O01| IPKCA
IPKCB000 | CSECT NAME; EXTERNAL SYMBOL DICTIONARY IPKCB00O
IPKCCO00 | CSECT NAME; M-I AND PROTOTYPE EDITOR IPKCC000 | IPKCC
IPKCDOO1 | CSECT NAME; OVERLAY FOR IPKCDOO1| IPKCD
ICTL,1SEQ,TITLE,COPY,BKEND, EOF
IPKDAOOO | CSECT NAME; EXTERNAL SYMBOL DICTIONARY IPKDAOOO
IPKDBO0O | CSECT NAME; VARIABLE SYMBOL DECLARATION IPKDBO0O | IPKDB
PROCESSOR
IPKEAOOO | CSECT NAME; SEQ SYM REFERENCE PROCESSOR IPKEAOOO | IPKEA
IPKFA000 | CSECT NAME; GLOBAL EDIT IPKFAQ000 | IPKFA
IPKGA0OO | CSECT NAME; EDECK OUTPUT IPKGAOOO | IPKGA
IPKHAO0O00 | CSECT NAME; ATTRIBUTE PHASE IPKHAO000 | IPKHA
IPKIAOOO { CSECT NAME; PHKGEN IPKIA000| IPKIA
IPKICO000 | CSECT NAME; LOOKUP AND CHECK OF GENERATED IPKIC000 | IPKIC
OPCODES
IPKJA0O00 | CSECT NAME; PRE-PROCESSOR PHASE TO THE IPKJAOOO0 | IPKJA
ASSEMBLER PHASES
IPKKAOOO | CSECT NAME; ASSIGNMENT PHASE IPKKAOOO | IPKKA
IPKKAOO1 | CSECT NAME; ASSIGNMENT PHASE IPKKAOO1| IPKKA
IPKLAOOO | CSECT NAME; SUBSTITUTION PHASE IPKLAOOO | IPKLA
IPKMAOOO | CSECT NAME; ESD INTERLUDE PHASE IPKMAOOO [IPKMA
IPKNAOOO | CSECT NAME; USING,DROP,MACHIN OP AND IPKNAOOO | IPKNA
S-CONST CODE BUILD
IPKNBOOO | CSECT NAME; ADDRESS CONSTANT AND CCW CODE IPKNB0OO | IPKNA
BUILD
IPKOA0OO | CSECT NAME; DC AND DS CODE BUILD IPKOAOOO | IPKOA
IPKPAOOO | CSECT NAME; SOURCE AND OBJECT TEXT OUTPUT IPKPAOOO | IPKPA
IPKQAOOO | CSECT NAME; RLD OUTPUT PHASE IPKQAO0O | IPKQA

#*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.

**EXPLANATION OF PLM NUMBERED REFERENCES:
A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
'F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

Directory 117

' SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF** DSECT MCROFCH
IPKRAOOO | CSECT NAME; POST PROCESSOR; XREF SORTING IPRRAOOO IPKRA
AND PRINTING
IPKRAOO1| CSECT NAME; POST PROCESSOR; XREF SORTING IPKRAQOO1 | IPKRA
AND PRINTING
IPKRB00O | CSECT NAME; POST PROCESSOR; XREF SORTING IPKRB00O | IPKRB
IPKRC000 | CSECT NAME; POST PROCESSOR; XREF PRINTING IPKRC000 | IPKRC
IPKSA000 | CSECT NAME; EXTERNAL SYMBOL DICTIONARY IPKSA000
IPKSB000 | CSECT NAME; EXTERNAL SYMBOL DICTIONARY IPKSB000
IPKTA000 | CSECT NAME; EXTERNAL SYMBOL DICTIONARY IPKTA000
*KEYTAB DSECT NAME; KEYWORD TABLE DSECT, VARIABLE 1.1.2 KEYTAB IPKDB
SYMBOL DECLARATION PROCESSOR
*KEYTAB DSECT NAME; KEYWORD TABLE DSECT, GLOBAL EDIT KEYTAB IPKFA
*KEYTAB DSECT NAME; KEYWORD TABLE DSECT, PHKGEN KEYTAB IPKIA
KNAPT -> ENTRY IN KNA, PHKGEN 1.5.1 IPKIAQ00 | IPKIA
LBUF DSECT NAME; DESCRIBES EDECK CARD IMAGE, LBUF IPKFA
GLOBAL EDIT
LITCOPE ENTRY POINT; SOURCE AND OBJECT TEXT OUTPUT 2.7.1 IPKPA0OO | IPKPA
LITDRV PICK UP ACTUAL LIT BLK ADDR, PRE-PROCESSOR 2.1 IPKJA000 | IPKJA

PHASE TO THE ASSEMBLER PHASES
LITERAL PRE-PROCESSOR PHASE TO THE ASSEMBLER PHASES 2.1.2,2.1 IPKJA000 | IPKJA

LITMN LOAD OFFSET TO 8-CHAIN, PRE-PROCESSOR PHASE 2.1.2,2.1 IPKJA000 | IPKJA
TO THE ASSEMBLER PHASES

LITSRCE PRE-PROCESSOR PHASE TO THE ASSEMBLER PHASES 2.1,2.1.2 IPKJA000 | IPKJA

*LITTAB DSECT NAME; THIS DESCRIBES AN ENTRY IN, 2.8.2 LITTAB IPKRA
POST PROCESSOR; XREF SORTING AND PRINTING

*LITTBL DSECT NAME; ENTRY IN LITERAL TABLE, 2.1.2,2.1 LITTBL IPKJA
PRE-PROCESSOR PHASE TO THE ASSEMBLER PHASES

LOCCNTHI| HIGHEST LOCCNTR OF THIS SEC., ASSIGNMENT 2.2.2 PCOMMON IPKKA
PHASE '

LOCCNTR LOCATION COUNTER, ASSIGNMENT PHASE 2.2.2 PCOMMON IPKKA

LTORG LTORG, PRE-PROCESSOR PHASE TO THE ASSEMBLER 2.1 PCOMMON IPKJA
PHASES

LTORGR ENTRY POINT; PRE-PROCESSOR PHASE TO THE 2.1 IPRJA000 | IPKJA
ASSEMBLER PHASES

LTORGR INSERT LENGTH ATTRIBUTE, ASSIGNMENT PHASE 2.2.1 IPKKAQOOO | IPKKA

LUB DSECT NAME; LOGICAL UNIT BLKS FOR LUB IPKAD

PARTITION, DTFSL

*MACHEAD DSECT NAME; MACRO HEADER RECORD OUT, SEQ MACHEAD IPKEA
SYM REFERENCE PROCESSOR

*MACHEAD DSECT NAME; MACRO HEADER DSECT, GLOBAL EDIT MACHEAD IPKFA

*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.

*+*EXPLANATION OF PLM NUMBERED REFERENCES:
A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
*F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

118

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF*# DSECT MCROFCH
(i‘ *MACHEAD DSECT NAME; MACRO HEADER DSECT, EDECK OUTPUT MACHEAD IPKGA
*MACHEAD DSECT NAME; MACRO HEADER DSECT, PHKGEN MACHEAD IPKIA
MACHINOP | PUT RIGHT VALUES, ASSIGNMENT PHASE 2.2.1 IPKKAOOO | IPKKA
MACHOPS ENTRY POINT; DC AND DS CODE BUILD 2.7.1 IPKOA0O0O | IPKOA
j MACINS TEST IF COLLECTION MODE, ATTRIBUTE PHASE 1.4 IPKHAQO0O | IPKHA
; MAINK PHKGEN 1.5.1 IPKIAOOO | IPKIA
MAIN10 GET OPERAND RECORD, PHKGEN 1.5.1 IPKIAO000| IPKIA
MAIN30 READ KT RECORD, PHKGEN 1.5.1 IPKIAQO00 | IPKIA
: MAVENTRY | GLOBAL EDIT 1.3 IPKFA000 | IPKFA
| MESSAGE DSECT NAME; MESSAGE LAYOUT IN POOL, MESSAGE
EXTERNAL SYMBOL DICTIONARY
MIB VARIABLE SYMBOL DECLARATION PROCESSOR 1.1.2 PCOMMON IPKDB
MIROUT SAVE MNEMONIC OP-CODE, M-1 AND PROTOTYPE 1.1,4 IPKCCO000 | IPKCC
EDITOR
MLIBSRCH| GLOBAL EDIT 1.3 IPKFAQ00 | IPKFA
i MNABUFAD | ADDRESS OF MND BUFFER, GLOBAL EDIT 1.3 IPKFAQ00 | IPKFA
| *MNAENT DSECT NAME; MACRO NAME ARRAY ENTRY, OP-CODE 4 MNAENT IPKCA
‘ LOOKUP AND STMT COMPRESS
3 *MNAENT DSECT NAME; MACRO NAME ARRAY OR MACRO NAME, MNAENT IPKCC
P M-I AND PROTOTYPE EDITOR
(*MNAENT DSECT NAME; MACRO NAME ARRAY, OVERLAY FOR MNAENT IPKCD
ICTL,ISEQ,TITLE,COPY,BKEND, EOF
| *MNAENT DSECT NAME; MACRO NAME ARRAY OR MACRO NAME, 1.3 MNAENT IPKFA
‘ GLOBAL EDIT
MNDENT GLOBAL EDIT 1.3 IPKFAQ00 | IPKFA
MNDNPDST | DSECT NAME; DSECT FOR MND N/P TABLE, GLOBAL MNDNPDST | IPKFA
EDIT
MNDSRCH GLOBAL EDIT 1.3 IPKFA000 | IPKFA
1 MNOTEOP SOURCE AND OBJECT TEXf OUTPUT 2.7 IPKPAOOO | IPKPA
MOVEPUT FROM FIELD, SEQ SYM REFERENCE PROCESSOR 1.1.3 IPKEA00O | IPKEA
MPUNCH SAVE RETURN ADDRESS, EDECK OUTPUT 1.2 IPKGR000 | IPKGA
‘ MRGDIR POST PROCESSOR; XREF SORTING 2.8.2 IPKRBO0O | IPKRB
i MRGMAIN POST PROCESSOR; XREF SORTING 2.8.2 IPKRBO0OO | IPKRB
| MRGPRT ENTRY POINT, POST PROCESSOR; XREF SORTING 2.8.2 IPKRAOO1| IPKRA
1 AND PRINTING
‘ NADDRSPL | USING,DROP,MACHIN OP AND S-CONST CODE BUILLC 2.4.1 IPKNAOOO | IPKNA
NAMSCAN CLEAR WORK REGISTER, ATTRIBUTE PHASE 1.4 IPKHAO000 | IPKHA
NDROP USING,DROP,MACHIN OP AND S-CONST CODE BUILD 2.4,2.4.2 IPKNAOOO | IPKNA

*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.
. ** EXPLANATION OF PLM NUMBERED REFERENCES:
: A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
% ‘F*', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

Directory 119

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF*#* DSECT MCROFCH

NERRSTCK | ERROR NUMBER STACK, USING,DROP,MACHIN OP 2.4.1 IPKNAOOO | 'IPKNA
AND S-CONST CODE BUILD

NMACHEND | TOO MANY OPERANDS, USING,DROP,MACHIN OP 2.4.1 IPKNAOOO | IPKNA
AND S=CONST CODE BUILD

NMACHOP INITIATE GENERATED CODE, USING,DROP,MACHIN 2.4,2.4.9 IPKNAOOO | IPKNA
OP AND S-CONST CODE BUILD

NPARTAB HERE, USING,DROP,MACHIN OP AND S-CONST CODE 2.4.1 IPKNAQOO | IPKNA
BUILD

NSADDR INDICATE S-TYPE CONSTANT, USING,DROP,MACHIN 2.4,2.4.3 IPKNAOOO | IPKNA
OP AND S~CONST CODE BUILD

*NTABFMT DSECT NAME; USING,DROP,MACHIN OP AND 2.4.1 NTABFMT IPKNA
S-CONST CODE BUILD

NTESTST1 | ENTRY POINT; USING,DROP,MACHIN OP AND 2.4.1 IPKNAOOO | IPKNA
S-CONST CODE BUILD

NTESTST2 | ENTRY POINT; USING,DROP,MACHIN OP AND 2.4.1 IPKNAOOO | IPRNA
S-CONST CODE BUILD

NUSING SET LOOP COUNTER, USING,DROP,MACHIN OP AND 2.4,2.4.2 IPKNAOOO | IPKNA
S-CONST CODE BUILD

NUSTAB USING TABLE, USING,DROP,MACHIN OP AND 2.4.3 IPKNAOOO AIPKNA
S-CONST CODE BUILD

*OCSTMH DSECT NAME; OC START AND MACRO HEADER REC, 1.1.2 0OCSTMH IPKDB
VARIABLE SYMBOL DECLARATION PROCESSOR

*0OCSTMH DSECT NAME; OC START AND MACRO HDR REC 1IN, 1.1.3 OCSTMH IPKEA
SEQ SYM REFERENCE PROCESSOR

OPENTRY DSECT NAME; EXTERNAL SYMBOL DICTIONARY . OPENTRY

OPERAND PRE-PROCESSOR PHASE TO THE ASSEMBLER PHASES 2.1.1 IPKJAO00 | IPKJA

OPERANDS | ZERO WORKREGISTER, SUBSTITUTION PHASE 2.3 IPKLAOOO | IPKLA

OPSTACKM | DSECT NAME; PRE-PROCESSOR PHASE TO THE OPSTACKM| IPKJA
ASSEMBLER PHASES

ORGPROC INSERT CUR VALUES IN STMT, ASSIGNMENT PHASE 2.2.1 IPKKAOOO | IPKKA

PALIGN ALIAS FOR BIT1. ONE TIME INITIALIZER 1.1 PCOMMON IPKBA

PARM DSECT NAME; DESCRIBES PREAD/PWRITE PARM, PARM IPKAA
BASIC INTERFACE ROUTINES AND PCOMMON

PARPTV DSECT NAME; PARAMETER POINTER VECTOR DSECT, 1.5.1 PARPTV IPKIA
PHKGEN

PBUFLEN1 | BUFFER LENGTH, ONE TIME INITIALIZER 1.1 PCOMMON IPKBA

PBUFLEN2 | BUFFER LENGTH, ONE TIME INITIALIZER 1.1 PCOMMON IPKBA

PBUFLEN3 | BUFFER LENGTH, ONE TIME INITIALIZER 1.1 PCOMMON IPKBA

PB1FIS1Z | WF1 BUFSIZE IN F AND I, ONE TIME INITIALIZER 3 PCOMMON IPKBA

PB12S51%2 WF1,WF2 BUFSIZ, ONE TIME INITIALIZER 1.1 PCOMMON IPKBA

*PCOMMON DSECT NAME; EXTERNAL SYMBOL DICTIONARY PCOMMON

*PCOMMON DSECT NAME; SYSIPT AND SYSSLB ROUTINES PCOMMON IPKAB

*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.

**EXPLANATION OF PLM NUMBERED REFERENCES:
A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
'F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

120

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF** DSECT MCROFCH
*PCOMMON DSECT NAME; PUNCH ROUTINE FOR EDECK PCOMMON IPKAC
*PCOMMON DSECT NAME; SYSSLB ROUTINES FOR GLOBAL EDIT PCOMMON IPKAE
*PCOMMON DSECT NAME; SYSPCH/SYSLNK OUTPUT PCOMMON IPKAF
*PCOMMON DSECT NAME; PRINT ROUTINE PCOMMON IPKAI
*PCOMMON DSECT NAME; ONE TIME INITIALIZER PCOMMON IPKBA
*PCOMMON DSECT NAME; OP-CODE LOOKUP AND STMT COMPRESS PCOMMON IPKCA
*PCOMMON DSECT NAME; M-I AND PROTOTYPE EDITOR PCOMMON IPKCC
*PCOMMON DSECT NAME; OVERLAY FOR PCOMMON IPKCD
I1CTL,ISEQ,TITLE,COPY,BKEND, EOF

*PCOMMON DSECT NAME; VARIABLE SYMBOL DECLARATION PCOMMON IPKDB
PROCESSOR

*PCOMMON DSECT NAME; SEQ SYM REFERENCE PROCESSOR PCOMMON IPKEA

*PCOMMON DSECT NAME; GLOBAL EDIT PCOMMON IPKFA

*PCOMMON DSECT NAME; EDECK OUTPUT PCOMMON IPKGA

*PCOMMON DSECT NAME; ATTRIBUTE PHASE PCOMMON IPKHA

*PCOMMON DSECT NAME; PHKGEN PCOMMON IPKIA

*PCOMMON DSECT NAME; LOOKUP AND CHECK OF GENERATED PCOMMON IPKIC
OPCODES

*PCOMMON DSECT NAME; PRE-PROCESSOR PHASE TO THE PCOMMON IPKJA
ASSEMBLER PHASES

*PCOMMON DSECT NAME; ASSIGNMENT PHASE PCOMMON IPKKA

*PCOMMON DSECT NAME; SUBSTITUTION PHASE PCOMMON IPKLA

*PCOMMON DSECT NAME; ESD INTERLUDE PHASE PCOMMON IPKMA

*PCOMMON DSECT NAME; USING,DROP,MACHIN OP AND PCOMMON IPKNA
S-CONST CODE BUILD

*PCOMMON DSECT NAME; DC AND DS CODE BUILD PCOMMON IPKOA

*PCOMMON DSECT NAME; SOURCE AND OBJECT TEXT OUTPUT PCOMMON IPKPA

*PCOMMON DSECT NAME; RLD OUTPUT PHASE PCOMMON IPKQA

*PCOMMON DSECT NAME; POST PROCESSOR; XREF SORTING PCOMMON IPKRA
AND PRINTING

*PCOMMON DSECT NAME; POST PROCESSOR; XREF SORTING PCOMMON IPKRB

*PCOMMON DSECT NAME; POST PROCESSOR; XREF PRINTING PCOMMON IPKRC

*PCSR DSECT NAME; EXTERNAL SYMBOL DICTIONARY PCSR

*PCSR DSECT NAME; OP-CODE LOOKUP AND STMT COMPRESS 4 PCSR IPKCA

*PCSR DSECT NAME; M-I AND PROTOTYPE EDITOR PCSR IPKCC

*PCSR DSECT NAME; OVERLAY FOR PCSR IPKCD

ICTL,1SEQ,TITLE,COPY,BKENT, EOF

*pDATA AREA. SEE DATA AREA SECTION FOR DETAILELC LAYOUT.

**EXPLANATION OF PLM NUMBERED REFERENCES:
A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
*F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

Directory 121

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF** DSECT MCROFCH

*PCSR DSECT NAME; VARIABLE SYMBOL DECLARATION PCSR IPKDB
PROCESSOR

*PCSR DSECT NAME; SEQ SYM REFERENCE PROCESSOR PCSR IPKEA

*PCSR DSECT NAME; GLOBAL EDIT PCSR IPXFA

*PCSR DSECT NAME; EDECK OUTPUT PCSR IPKGA

*PCSR DSECT NAME; ATTRIBUTE PHASE PCSR IPKHA

*PCSR DSECT NAME; PHKGEN PCSR IPKIA

*PCSR DSECT NAME; LOOKUP AND CHECK OF GENFRATED PCSR IPKIC
OPCODES

*PCSR DSECT NAME; PRE-PROCESSOR PHASE TO THE 2.1.2,2.1 PCSR IPKJA
ASSEMBLER PHASES

*PCSR DSECT NAME; ASSIGNMENT PHASE PCSR IPKRA

*PCSR DSECT NAME; SUBSTITUTION PHASE PCSR IPKLA

*PCSR DSECT NAME; SOURCE AND OBJECT TEXT OUTPUT 2.7 PCSR IPKPA

*PDCEDIT DSECT NAME; EDITED RECORD FOR DC AND DS, PDCEDPIT IPKJA
PRE-PROCESSOR PHASE TO THE ASSEMBLER PHASES

*PDCEDIT DSECT NAME; EDITED RECORD FOR DC AND DS, 2.2 PDCEDIT IPKKA
ASSIGNMENT PHASE

*PDCEDIT DSECT NAME; EDITED RECORD FOR DC AND DS, PDCEDIT IPKLA
SUBSTITUTION PHASE

*PDCEDIT DSECT NAME; EDITED RECORD FOR DC AND DS, 2.4 PDCEDIT IPKNA
USING,DROP,MACHIN OP AND S-CONST CODE BUILD

*PDCEDIT DSECT NAME; EDITED RECORD FOR DC AN DS, PDCEDIT IPKOA
DC AND DS CODE BUILD

*PDCEDIT DSECT NAME; EDITED RECORD FOR DC AND DS, PDCEDIT IPKPA
SOURCE AND OBJECT TEXT OUTPUT

*PDCOUT DSECT NAME; DC OUTPUT, CONSTANT AND CCW PDCOUT ADDRES
CODE BUILD

*pDCOUT DSECT NAME; DC OUTPUT, ADDRESS CONSTANT PDCOUT IPKNA
AND CCw CODE BUILD

*pPDCOUT DSECT NAME; DC OUTPUT, DC AND DS CODE BUILD PDCOUT IPKOA

PDECK ALIAS FOR BIT3. ONE TIME INITIALIZER 1.1 PCOMMON IPKBA

PEDECK ALIAS FOR BIT2. ONE TIME INITIALIZER 3 PCOMMON IPKBA

PEEX ZERO WORK REGISTER, ASSIGNMENT PHASE 2.2.2 IPKKAOOO | IPKKA

PENDAD ADDRESS OF END OPERAND, RLD OUTPUT PHASE 2.8.1 PCOMMON IPKQA

PENDID OF END OPERAND, RLD OUTPUT PHASE 2.8.1 PCOMMON IPKQA

*PERR DSECT NAME; SOURCE AND OBJECT TEXT OUTPUT 2.7 PERR IPKPA

*PETFLDS DSECT NAME; EXTERNAL SYMBOL DICTIONARY PETFLDS

*PETFLDS DSECT NAME; OP-CODE LOOKUP AND STMT COMPRESS PETFLDS IPKCA

*PETFLDS DSECT NAME; M-I AND PROTOTYPE EDITOR PETFLDS IPKCC

*DATA AREA.

**EXPLANATION OF PLM NUMBERED REFERENCES:

A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.

SEE DATA AREA SECTION FOR DETAILED LAYOUT.

'F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

122

SYMBOLIC PLM CSECT/ MODULE/
NAME DESCRIPTION: NAME AND USE REF*#* DSECT MCROFCH
*PETFLDS DSECT NAME; OVERLAY FOR PETFLDS IPKCD
ICTL,ISEQ,TITLE,COPY, BKEND, EOF
*PETFLDS DSECT NAME; VARIABLE SYMBOL DECLARATION PETFLDS IPKDRB
PROCESSOR
| *PETFLDS DSECT NAME; SEQ SYM REFERENCE PROCESSOR PETFLDS IPKEA
| *PETFLDS DSECT NAME; GLOBAL EDIT PETFLDS IPKFA
1 *PETFLDS DSECT NAME; EDECK OUTPUT PETFLDS IPKGA
! *PETFLDS DSECT NAME; PHKGEN PETFLDS IPKIA
‘ *PETFLDS DSECT NAME; PRE-PROCESSOR PHASE TO THE 2.1.1 PETFLDS IPKJA
‘ ASSEMBLER PHASES
|
% *PETFLDS DSECT NAME; ASSIGNMENT PHASE 2.2,2.2.2 PETFLDS IPKKA
j *PETFLDS DSECT NAME; SUBSTITUTION PHASE 2.3 PETFLDS IPKLA
i *PETFLDS DSECT NAME; USING,DROP,MACHIN OP AND 2.4.3,2.4 PETFLDS IPKNA
! S-CONST CODE BUILD
| *PETFLDS DSECT NAME; DC AND DS CODE BUILD 2.6,2.7.1 PETFLDS IPKOA
‘ *PETFLDS DSECT NAME; SOURCE AND OBJECT TEXT OUTPUT 2.7 PETFLDS IPKPA
|
*PETR DSECT NAME; EXTERNAL SYMBOL DICTIONARY PETR
*PETR DSECT NAME; OP-CODE LOOKUP AND STMT COMPRESS PETR IPKCA
L *PETR DSECT NAME; M-I AND PROTOTYPE EDITOR PETR IPKCC
*PETR DSECT NAME; OVERLAY FOR PETR IPKCD
ICTL,ISEQ,TITLE,COPY,BKEND, EOF
*PETR DSECT NAME; VARIABLE SYMBOL DECLARATION PETR IPKDB
PROCESSOR
*PETR DSECT NAME; SEQ SYM REFERENCE PROCESSOR PETR IPKEA
*PETR DSECT NAME; GLOBAL EDIT 1.3 PETR IPKFA
*PETR DSECT NAME; EDECK OUTPUT PETR IPKGA
*PETR DSECT NAME; PHKGEN PETR IPKIA
T *PETR DSECT NAME; PRE-PROCESSOR PHASE TO THE 2.1.2,2.1 PETR IPKJA
ASSEMBLER PHASES
*PETR DSECT NAME; ASSIGNMENT PHASE 2.2,2.2.1 PETR IPKKA
*PETR DSECT NAME; SUBSTITUTION PHASE 2.3 " PETR IPKLA
*PETR DSECT NAME; USING,DROP,MACHIN OP AND 2.4.2,2.4 PETR IPKNA
S-CONST CODE BUILD
*PETR DSECT NAME; DC AND DS CODE BUILD 2.7.1,2.6 PETR IPKOA
I *PETR DSECT NAME; SOURCE AND OBJECT TEXT OUTPUT 2.7 PETR IPKPA
PEVOPND DSECT NAME; AFTER EVALUATION THE EDITED PEVOPND IPKLA
TEXT CONSISTS, SUBSTITUTION PHASE
*PFCB DSECT NAME; EXTERNAL SYMBOL DICTIONARY PFCB

*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.
**EXPLANATION OF PLM NUMBERED REFERENCES:
e A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
: *F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

Directory 123

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF** DSECT MCROFCH

*PFCB DSECT NAME; BASIC INTERFACE ROUTINES AND 1.1 PFCB IPKAA
PCOMMON

*PFCB DSECT NAME; ONE TIME INITIALIZER PFCB IPKBA

*PFCB DSECT NAME; OP-CODE LOOKUP AND STMT COMPRESS PFCB IPKCA

*PFCB DSECT NAME; M-I AND PROTOTYPE EDITOR PFCB IPKCC

*PFCB DSECT NAME; OVERLAY FOR PFCB IPKCD
ICTL,ISEQ,TITLE,COPY,BKEND, EOF

*PFCB DSECT NAME; VARIABLE SYMBOL DECLARATION PFCB IPKDB
PROCESSOR

*PFCB DSECT NAME; SEQ SYM REFERENCE PROCESSOR PFCB IPKEA

*PFCB DSECT NAME; GLOBAL EDIT PFCB IPKFA

*PFCB DSECT NAME; EDECK OUTPUT PFCB IPKGA

*PFCB DSECT NAME; ATTRIBUTE PHASE PFCB IPKHA

*PFCB DSECT NAME; PHKGEN PFCB IPKIA

*PFCB DSECT NAME; LOOKUP AND CHECK OF GENERATED PFCB IPKIC
OPCODES

*PFCB DSECT NAME; PRE-PROCESSOR PHASE TO THE PFCB IPKJA
ASSEMBLER PHASES

*PFCB DSECT NAME; ASSIGNMENT PHASE PFCB IPKKA

*PFCB DSECT NAME; SUBSTITUTION PHASE PFCB IPKLA

*PFCB DSECT NAME; ESD INTERLUDE PHASE PFCB IPKMA

*PFCB DSECT NAME; USING,DROP,MACHIN OP AND PFCB IPKNA
S-CONST CODE BUILD

*PFCB DSECT NAME; DC AND DS CODE BUILD PFCB IPKOA

*PFCB DSECT NAME; SOURCE AND OBJECT TEXT OUTPUT PFCB IPKPA

*PFCB DSECT NAME; RLD OUTPUT PHASE PFCB IPKQA

*PFCB DSECT NAME; POST PROCESSOR; XREF SORTING PFCB IPKRA
AND PRINTING

*PFCB DSECT NAME; POST PROCESSOR; XREF SORTING PFCB IPKRB

*PFCB DSECT NAME; POST PROCESSOR; XREF PRINTING PFCB IPKRC

PFILE1 FILE CONTROL BLOCK FOR FILE 1, ONE TIME 1.1 PCOMMON IPKBA
INITIALIZER

PFILE2 FILE CONTROL BLOCK FOR FILE 2, ONE TIME 1.1 PCOMMON IPKBA
INITIALIZER

PFILE3 FILE CONTROL BLOCK FOR FILE 3, ONE TIME 1.1 PCOMMON IPKBA
INITIALIZER

PGBLSI1Z SIZE OF GLOBAL WORK AREAS, PHKGEN 1.5 PCOMMON IPKIA

*PGVHEAD DSECT NAME; GLOBAL VECTOR HEADER DSECT, 1.3.1 PGVHEAD IPKFA
GLOBAL EDIT

*PGVHEAD DSECT NAME; GLOBAL VECTOR HEADER DSECT, 1.5.1,1.5 PGVHEAD IPKIA
PHKGEN

*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.

**EXPLANATION OF PLM NUMBERED REFERENCES:
A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
'F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

124

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF** DSECT MCROFCH

*+PHYR DSECT NAME; ASSIGNMENT PHASE 2.2.1,2.2 | PHYR IPKKA

+PHYR DSECT NAME; SUBSTITUTION PHASE PHYR IPKLA

*PKNA DSECT NAME; KEYWORD NAME ARRAY DSECT, PHKGEN | 1.5.1 PKNA 1PKIA

PLINK ALIAS FOR BIT4. ONE TIME INITIALIZER 1.1 PCOMMON | IPKBA

PLINKBFR | DSECT NAME; SYSPCH/SYSLNK OUTPUT ! PLINKBFR | IPKAF

PLIST ALIAS FOR BIT5. ONE TIME INITIALIZER 1.1 PCOMMON | IPKBA

*PMAV DSECT NAME; MACRO ADDRESS VECTOR DSECT, 1.5.1,1.5 | PMAV IPKIA
PHKGEN

PMNABSIZ | LENGTH OF MNA BLOCK, ONE TIME INITIALIZER 1.1 PCOMMON | IPKBA

PNPVAL DSECT NAME; DESCRIBES N/P VALUE, BASIC PNPVAL IPKAA
INTERFACE ROUTINES AND PCOMMON

POINTBCK | DSECT NAME; BASIC INTERFACE ROUTINES AND POINTBCK | IPKAA
PCOMMON

POLEXP DSECT NAME; ATTRIBUTE PHASE POLEXP 1PKHA

POLIFY SAVE RETURN REGISTER, PRE-PROCESSOR PHASE 2.1.1 IPKJAQ00 | IPKJA
TO THE ASSEMBLER PHASES

PPCARD DSECT NAME; SYSPCH/SYSLNK OUTPUT PPCARD IPKAF

PPCHBUF | DSECT NAME; DESCRIBES PUNCH BUFFER, PUNCH PPCHBUF | IPKAC
ROUTINE FOR EDECK

PRINTER | SOURCE AND OBJECT TEXT OUTPUT 2.7 IPKPAOOO | IPKPA

PRINTOP | SOURCE AND OBJECT TEXT OUTPUT 2.7 IPKPAOOO | IPKPA

PRLINE DSECT NAME; #*##%, RLD OUTPUT PHASE PRLINE 1PKQA

PRNTLINE | PRINT BUFFER FOR XREF DATA, POST PROCESSOR; 2.8.2 IPKRAOO1 | IPKRA
XREF SORTING AND PRINTING

PROROUT | SAVE OP-CODE MNEMONIC, M-I AND PROTOTYPE 1.1,4 IPKCCO00 | IPKCC
EDITOR

PSEUTBL | SOURCE AND OBJECT TEXT OUTPUT 2.7.1 IPKPAOOO | IPKPA

*PSTRINGS | DSECT NAME; EXTERNAL SYMBOL DICTIONARY PSTRINGS

*PSTRINGS | DSECT NAME; OP-CODE LOOKUP AND STMT COMPRESS PSTRINGS | IPKCA

*PSTRINGS | DSECT NAME; M-I AND PROTOTYPE EDITOR PSTRINGS | IPKCC

*PSTRINGS | DSECT NAME; OVERLAY FOR PSTRINGS | IPKCD
ICTL,ISEQ, TITLE,COPY, BKEND, EOF

*PSTRINGS | DSECT NAME; VARIABLE SYMBOL DECLARATION PSTRINGS | IPKDB
PROCESSOR

*PSTRINGS | DSECT NAME; SEQ SYM REFERENCE PROCESSOR PSTRINGS | IPKEA

*PSTRINGS | DSECT NAME; GLOBAL EDIT | PSTRINGS | IPKFA

*PSTRINGS | DSECT NAME; EDECK OUTPUT PSTRINGS | IPKGA

*PSTRINGS | DSECT NAME; ATTRIBUTE PHASE 1.4 PSTRINGS | IPKHA

*PSTRINGS | DSECT NAME; PHKGEN PSTRINGS | IPKIA

*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.

**EXPLANATION OF PLM NUMBERED REFERENCES:
A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
'F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

Directory 125

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF*#* DSECT MCROFCH

*PSTRINGS | DSECT NAME; LOOKUP AND CHECK OF GENERATED PSTRINGS | IPKIC
OPCODES

#PSTRINGS | DSECT NAME; PRE-PROCESSOR PHASE TO THE PSTRINGS | IPKJA
ASSEMBLER PHASES

*PSTRINGS | DSECT NAME; ASSIGNMENT PHASE PSTRINGS | IPKKA

*PSTRINGS | DSECT NAME; SUBSTITUTION PHASE PSTRINGS | IPKLA

#PSTRINGS | DSECT NAME; SOURCE AND OBJECT TEXT OUTPUT PSTRINGS | IPKPA

PSYMTABL | START OF HASH TABLE, ASSIGNMENT PHASE 2.2.1 PCOMMON IPKKA

PSYMTABL | START OF HASH TABLE, SUBSTITUTION PHASE 2.3 PCOMMON IPKLA

PSYSPARM| ONE TIME INITIALIZER 1.1 PCOMMON IPKBA

PUNCHOP SOURCE AND OBJECT TEXT OUTPUT 2.7 IPKPAOOO | IPKPA

PUNCHOUT | SOURCE AND OBJECT TEXT OUTPUT 2.7 IPKPAOOO | IPKPA

PUNCHR ALIAS FOR REPROEDR. PRE-PROCESSOR PHASE 2.1 IPKJAQ00 | IPKJA
TO THE ASSEMBLER PHASES

PVSDSIZE| VSDSIZE, ONE TIME INITIALIZER 1.1 PCOMMON IPKBA

PXREF ALIAS FOR BIT6. ONE TIME INITIALIZER 1.1 PCOMMON IPKBA

RDIBBASE| ALIAS FOR R15. -> CURRENT DICTIONARY BLOCK, 1.5.1 IPKIAOO0O | IPKIA
PHKGEN

REPROEDR | BR IF PRIVATE CODE HAS STARTED, 2.1 IPKJAQOO | IPKJA
PRE-PROCESSOR PHASE TO THE ASSEMBLER PHASES

REPROOP SOURCE AND OBJECT TEXT OUTPUT 2.7 IPKPAOOO | IPKPA

RLDCOL17 | DSECT NAME; *#*#*, RLD OUTPUT PHASE RLDCOL17 | IPKQA

*RLDENTRY | DSECT NAME; ONE RLD ENTRY, CONSTANT AND RLDENTRY | ADDRES
CCwW CODE BUILD

*RLDENTRY | DSECT NAME; ONE RLD ENTRY, ADDRESS CONSTANT RLDENTRY | IPKNA
AND CCW CODE BUILD

*#RLDENTRY| DSECT NAME; *#**, RLD OUTPUT PHASE 2.8.1,2.8 RLDENTRY | IPKQA

RLDPCH SAVE RETURN REG, RLD OUTPUT PHASE 2.8.1 IPKQAOOO | IPKQA

RLDROUT SAVE RETURN VALUE, RLD OUTPUT PHASE 2.8,2.8.1 IPKQAQOO | IPKQA

RLDTAB DSECT NAME; *#*, RLD OUTPUT PHASE RLDTAB IPKQA

RSA POST PROCESSOR; XREF SORTING AND PRINTING 2.8.2 IPKRAOO1 | IPKRA

RTBL ALIAS FOR R2. =-> NEXT ENTRY IN PARTBL, 1.5.1 IPKIAQO0O | IPKIA
PHKGEN

SEQENT DSECT NAME; SEQ SYM REFERENCE PROCESSOR SEQENT IPKEA

SMTADDR ADDR OF SMT, SEQ SYM REFERENCE PROCESSOR 1.1.3 IPKEAOOO | IPKEA

*SMTENT DSECT NAME; SOURCE MACRO TABLE ENTRY, SEQ 1.1.3 SMTENT IPKEA
SYM REFERENCE PROCESSOR

*SMTENT DSECT NAME; SOURCE MACRO TABLE ENTRY DSECT, 1.3 SMTENT IPKFA
GLOBAL EDIT

*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.

*+EXPLANATION OF PLM NUMBERED REFERENCES:
A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
'F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

126

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF** DSECT MCROFCH
(*SMTENT DSECT NAME; SOURCE MACRO TABLE ENTRY DSECT, SMTENT IPKGA
- EDECK OUTPUT
SMTENTR SEQ SYM REFERENCE PROCESSOR 1.1.3 IPKEAOOO | IPKEA
SMTSIZE SIZE OF SMT BLOCK, ONE TIME INITIALIZER 1.1 PCOMMON IPKBA
? SMTSRCH GLOBAL EDIT 1.3 IPKFAOOO | IPKFA
‘ SPACEOP SOURCE AND OBJECT TEXT OUTPUT 2.7 IPKPAOOO | IPKPA
i SRTDIR POST PROCESSOR; XREF SORTING AND PRINTING 2.8.2 IPKRAOOO | IPKRA
|
i SRTINIT ENTRY POINT; POST PROCESSOR; XREF SORTING 2.8.2 IPKRAOOO | IPKRA
3 AND PRINTING
l SRTLIT ENTRY POINT, POST PROCESSOR; XREF SORTING 2.8.2 IPKRAOOO | IPKRA
i AND PRINTING
} SRTOUT ENTRY POINT, POST PROCESSOR; XREF SORTING 2.8.2 IPKRAOOO | IPKRA
AND PRINTING
SRTRSA POST PROCESSOR; XREF SORTING AND PRINTING 2.8.2 IPKRAOOO | IPKRA
| *SSD DSECT NAME; EXTERNAL SYMBOL DICTIONARY SSD
| *SSD DSECT NAME; SEQUENCE SYMBOL DICTIONARY, 1.1.2 SSD IPKDB
| VARIABLE SYMBOL DECLARATION PROCESSOR
*SSD DSECT NAME; SEQ SYM REFERENCE PROCESSOR 1.1.3 SSD IPKEA
*SSD DSECT NAME; DSECT FOR SSD ITEM, EDECK OUTPUT SSD IPKGA
SSDADDR DA ADDR OF SSD, VARIABLE SYMBOL DECLARATION 1.1.2 PCOMMON IPKDB
(’ PROCESSOR
SSDLKP SEQ SYM REFERENCE PROCESSOR 1.1.3 IPKEAOOO | IPKEA
STACKEL DSECT NAME; STACK ELEMENT FORMAT, PHKGEN STACKEL IPKIA
STACKENT | DSECT NAME; STACK ENTRY, EXTERNAL SYMBOL STACKENT
DICTIONARY
STARTR SAVE INPUT POINTER, ASSIGNMENT PHASE 2.2.2 IPKKAOOO | IPKKA
STDIAG EDECK OUTPUT 1.2 IPKGAOOO | IPKGA
STGET EDECK OUTPUT 1.2 IPKGAOOO | IPKGA
STSMTGET | EDECK OUTPUT 1.2 IPKGAOOO | IPKGA
SYMADDR POINTER TO START OF SYMBOL TAB, ASSIGNMENT 2.2.1 PCOMMON IPKKA
PHASE
SYMADDR POINTER TO START OF SYMBOL TAB, 2.3 PCOMMON IPKLA
SUBSTITUTION PHASE
TABENT DSECT NAME; ATTRIBUTE PHASE 1.4 TABENT IPKHA
TABOP DSECT NAME; INTERPRETER TABLE, EXTERNAL TABOP

SYMBOL DICTIONARY

TABSTART | START OF ATTRIBUTE TABLE, ATTRIBUTE PHASE 1.4 IPKHAOO0O | IPKHA
TITLEOP SOURCE AND OBJECT TEXT OUTPUT 2.7 IPKPAQOO | IPKPA
TXTCARD SOURCE AND OBJECT TEXT OUTPUT 2.7.1 IPKPAOOO | IPKPA

*DATA AREA. SEE DATA AREA SECTION FOR DETAILED LAYOUT.

**EXPLANATION OF PLM NUMBERED REFERENCES:
B A SINGLE NUMERAL REFERS TO AN OPERATIONS DIAGRAM IN THE METHOD OF OPERATIONS SECTION.
‘ 'F', FOLLOWED BY A NUMERAL, REFERS TO A FIGURE IN THE PROGRAM ORGANIZATION SECTION.

Directory 127

SYMBOLIC PLM CSECT/ MODULE/

NAME DESCRIPTION: NAME AND USE REF** DSECT MCROFCH

VASIZE DSECT NAME; VALUE AREA SIZE DSECT, PHKGEN VASIZE IPKIA

*VSD DSECT NAME; EXTERNAL SYMBOL DICTIONARY VSD

*VSD DSECT NAME; VARIABLE SYMBOL DECLARATION VSD IPKDB
PROCESSOR

*VSD DSECT NAME; DSECT FOR VSD ITEM, EDECK OUTPUT VSD IPKGA

VSDADDR DA ADDR OF VSD IN CORE, VARIABLE SYMBOL 1.1.2 PCOMMON IPKDB
DECLARATION PROCESSOR

WORKAREA | DSECT NAME; WORKAREA WHERE ED.TXT IS BUILT, WORKAREA | IPKJA
PRE-PROCESSOR PHASE TO THE ASSEMBLER PHASES

*WORKDTF DSECT NAME; DTFSD DSECT FOR OI LOGIC, BASIC WORKDTF IPKAA
INTERFACE ROUTINES AND PCOMMON

*WORKDTF DSECT NAME; DTFSD DSECT FOR OI LOGIC, ONE WORKDTF IPKBA
TIME INITIALIZER

WRTERROR | SOURCE AND OBJECT TEXT OUTPUT 2.7 1PKPAQOO | IPKPA

*XREFREC DSECT NAME; THIS IS A DSECT TO DESCRIBE, 2.2 XREFREC IPKKA
ASSIGNMENT PHASE

*XREFREC DSECT NAME; THIS IS A DSECT TO DESCRIBE, 2.3 XREFREC IPKLA
SUBSTITUTION PHASE

*XRFENTRY | DSECT NAME; XREF RECORD DESCRIPTION, POST XRFENTRY | IPKRA
PROCESSOR; XREF SORTING AND PRINTING

*XRFENTRY | DSECT NAME; ENTRY IN BLOCK, POST PROCESSOR; XRFENTRY | IPKRB
XREF SORTING

*XRFENTRY | DSECT NAME; ENTRY IN BLOCK, POST PROCESSOR; XRFENTRY | IPKRC
XREF PRINTING

XRFTAB DSECT NAME; XREF BLOCK IDENTIFIERS, POST. XRFTAB IPKRA

128

PROCESSOR; XREF SORTING AND PRINTING

Data Areas

Purpose of the Section

The purpose of this section is to assist you in
interpreting data areas in a storage dump. The
entries are listed in alphabetical order and
after each entry is a cross-reference of the
various fields and their displacements in the
data area.

The section contains those data areas referenced
by two or more modules of the assembler plus any
others which appear in "Method of Operation".
The method-of-operation diagrams show how the
data areas are used by the assembler.

Imnmediately following the data areas is a cross-
reference listing of all the fields referred to
in this section, the name of the DSECT in which
they are located, and their displacement within
the DSECT.

Data Areas

129

DATA AREA:

SI1ZE: 2

CREATED BY:

UPDATED BY:

CODE

IPKSA,IPKSB

130

FUNCTION: Description of an entry in the error message table.
DISPLMNT FIELD DESCRIPTION: CONTENTS,
DEC (HEX) SIZE NAME MEANING/USE
0 (0) 2 CODEHWD THE TWO-BYTE CODE CONTAINS
FOUR FLAG BITS PLUS A
12-BIT OFFSET IN GLOSSARY:
0 0) 1 CODESW FOUR FLAG BITS + FOUR OFFSET BITS
Teee eeaase SFLAG 1=S MODIFIER
elee caee COMMAFLG 1=COMMA MODIFIER
eele ee<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>