
:/ ",

G D D
Performance Guide

--------- -------- - ---- - - ----------- ' -

Front Cover Pattern: Electronic Sunflower

The pattern on the front cover was produced by a
GDDM program. The program to produce this
pattern, and many variations of the pattern, is
published in:

• GDDM Application Programming Guide
• GDDM Base Programming Reference

G

8C33-0324-0
File No. 8370/4300·34

D D
Performance Guide

Program Numbers
GDDM/MV8 5665-356
GDDM/VM 5664-200
GDDM/V8E 5666-328
GDDM/Interactive Map Definition 5668-801
GDDM·PGF 5668-812

Version 2 Release 1

. Licensed Programs

---------- ----= == === ---------------,-

First Edition (September 1986)

This edition applies to Version 2, Release 1, Modification 0 of the
following members of the IBM GDDM Series of licensed programs:

GDDM/MVS 5665-356
GDDM/VM 5664-200
GDDM/VSE 5666-328
GDDM Interactive Map Definition 5668-801
GDDM-PGF 5668-812

Changes are made periodically to the information herein; before using
this publication in connection with the operation of IBM systems,
consult the latest IBM System/370, 30xx, and 4300 Processors
Bibliography, GC20-000I, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or services
do not imply that IBM intends to make these available in all countries
in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's
licensed program may be used. Any functionally equivalent program
may be used instead.

Publications are not stocked at the addresses given below. Requests
for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed either to:

International Business Machines Corporation, Department 6R 1 H,
180 Kost Road, Mechanicsburg, Pa. 17055, U.S.A.

or to:

IBM United Kingdom Laboratories Limited, Information Development,
Mail Point 095, Hursley Park, Winchester, Hampshire, England S021 2JN

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.

This Performance Guide contains sample code. Permission is hereby
granted to copy and store the sample code into a data processing
machine and to use the stored code for study and instruction only.
No permission is granted to use the sample code for any other
purpose.

No other part of this manual may be reproduced in any form or by
any means, including storing in a data processing machine, without
permission in writing from IBM.

\0 Copyright International Business Machines Corporation 1980, 1981,
1983, 1984, 1986

Preface

What this book is about

This book provides infonnation about perfonnance aspects of Version 2 Release 1 of
GDDM, the Graphical Data Display Manager. It will help you understand the
background to GDDM perfonnance, and show you how to run GDDM in the most
efficient way.

Who this book is for

This book is for:

System designers and programmers

Application designers and programmers.

What you need to know

Some of the chapters of this book require familiarity with the subsystem under which the
application programs are to run. For example:

CICS/VS

IMS/VS

TSO

VM/SP.

Other chapters require some experience of computer applications.

How to use this book

You can read this book sequentially, or just read the chapters that concern you. An
overview of the book structure is shown on page viii and detailed in the table of contents.
You can use the index at the back of the book for reference.

Preface iii

Bibliography

GDDM library

Introduction
General Information

GBOF-OOSS·

Release Guide

GC33-0320

General
Installation and
System Management
for MVS
SC33-0321

Installation and
System Management
forVM
SC33-0323

Installation and
System Management
forVSE
SC33-0322

Performance Guide

SC33-0324

IM-
• SC33·0325

Diagnosis and Problem
Datarminatlon Guide

SC33·0326

iv GDDM Performance Guide

"Includes the GDDM brochures.
For the General Information manual
onlv. use order number GC33-0319

Programming User's Guides
Application Guide for Usera
Programming Guide

(Two volumes) SC33-0327

SC33-0337 Interactive Chan Utility
(ICU)

Base Programming
Reference

SC33-0328

(Two volumes) Image Symbol editor

SC33-0332 SC33-0329

GDDM-PGF
Programming Reference

Vector Symbol editor

SC33·0333 SC33·0330

Base Programming Interactive Map Definition
Summary (Booklet) (GDDM·IMD)

SX33·6053 SC33·0338

GDDM·PGF Programming
Summary (Booklet)

SX33-6054

Books from related Ubrarles

APL

CICS

IMS/VS

MVS

SMP/E(SMP)

TSO

VM

In addition to the GDDM library, you may need to refer to some of the following
manuals:

VS APL for CMS: Terminal Users Guide, S820-9067
APL21nstaiiation and Customization under CMS, S820-9221.

CICS/VS Version I Release 6 Resource Definition Guide, SC33-0149
CICS/VS Version I Release 6 IBM 3270/8775 Guide, SC33-0096
CICS/OS/VS Version I Release 6 Modification I Installation and Operations Guide,
SC3l-0172
CICS/DOS/VS Version I Release 6 Installation and Operations Guide, 8C33-0070
VS APLfor CICS/VS: Terminal User's Guide, 8820-9167.

IMS/VS Installation Guide, S820-9081
IMS/VS Messages and Codes Reference Manual, S820-9030
IMS/VS Utilities Reference Manual, S82O-9029.

OS/VS2 MVS Initialization and Tuning Guide, GC28-0681
OS/VS2 MVS Performance Notebook, GC28-0886.

OS/VS SMP System Programmers Guide, GC28-0673
SMP/E Terminal Users Guide, SC28-H09
SMP/E User's Guide, SC28-1302.

VS APLfor TSO: Terminal User's Guide, S82O-9180
APL2 Installalion and Customization under TSO, S820-9222
JES/328X Print FacUity - Version 2 Program Offering, Program Description and
Operator's Manual, SBII-6444.

VM/SP Installation Guide, SC24-S237
VM/SP Planning Guide and Reference, 8C19-6201
VM/SP Operators Guide, SC19-6202
VM/SP System Programmers Guide. SCI9-6203
VM/VCNA General Information. GC27-0S01
VM/VCNA Installation, Operation and Terminal Use. SC27-0S02.

Preface V

VSE

3179-G

3270-Family Devices

VSE Advanced Function: MSHP Reference, SC33-6199
VSE Advanced Function System Control Statements, SC33-6198
VSEISP Installation, SC33-6178.

3179-G Color Graphics Display Station Description, GA18-2261.

3270 Information Display System Configurator, GA27-2849
3270 Information Display System Data Stream Programmer's Reference, GA23-0059
8775 Display Terminal: Component Description, GA33-3044.

3270-PC/G and 3270-PC/GX Work Stations

3274

Image Devices

Introducing the IBM 3270 Personal Computer/G and IGX Ranges of Work Stations,
GA33-3157
3270-PC/G Personal ComputerlG and IGX Ranges of Work Stations; Planning Guide,
GA33-3158
3270-PC/G Guide to Operations, GA33·3140
3270-PCIGX Guide to Operations, GA33·3139
Graphics Control Program User's Guide, (supplied with program).

3274 Control Unit Description and Programmer's Guide, GA23·0061
3274 Control Unit Planning, Setup and Customization Guide, GA23·2827.

4224 Printer
Printer Product and Programming Description Manual, GC31-2551
Operating Instructions, GC31-2546
Guide to Operations, GC31-3621.

3117 Scanner
IBM 3117 Scanner and IBM 3117 PC Adapter Guide to Operations, GA18-2477
IBM 3117 Scanner and Extension Unit Guide to Operations, GAIS·247S
IBM 3117 Scanner Hardware Maintenance and Service, SYIS-2159
IBM 3117 Scanner Technical Reference, SCI8-2105.

3118 Scanner
Scanner Guide to Operations, GAIS-247S
High Speed Adapter Guide to Operations, GAIS·2476
IBM 3118 Scanner Hardware Maintenance and Service, SYI8·21SS
High Speed Adapter Hardware Maintenance and Service, SY18·2167
Scanner Technical Reference, SC18-2104
High Speed Adapter Technical Reference, SCI8·21I7.

3193 Display station
Description, GA lS-2364

vi GDDM Performance Guide

Other printers

5550 Multistation

Setup Instruction, GAIS-2366
Operator's Guide, GAIS-2365
Problem Solving Quick Check. Guide, GAIS-2443
Problem Solving Guide, GAIS-2444.

4234 Printer (supported in alphanumeric mode only)
Operation Instructions for Modell, GC31-2556.

(Available in Japanese only)

5550 Japanese 3270-PC User's Guide, N:SCIS-2059
How To Use 5550 Japanese 3270-PC, N:SCIS-2060
5550 Japanese 3270-PC/G User's Guide, N:SCIS-2071
How To Use 5550 Japanese 3270-PC/G, N:SClS-2072
5550 Small Cluster User's Guide, N:SClS-2092
How To Use 5550 Small Cluster, N:SClS-2091
5550 Small Cluster/Graphics User's Guide, N:SCIS-2107
How To Use 5550 Small Cluster/Graphics, N:SCI8-210S
55503270 Kmtji Emulation Description, N:SCI8-2020
55503270 Karifi Emulation Operator's Guide, N:SCIS-2021.

GDDM/graPHIGS manuals

Networking

Installing GDDM/graPHIGS, SC33-S101
Licensed Program Specifications, GH23-0001
Introducing graPH/GS, SC33-S100
Understanding graPH/GS, SC33-S102
Writing Applications with graPH/GS, SC33-8103
Programmer's Reference for graPH/GS, SC33-S104
Messages and Error Codes for graPH/GS, SC33-S105
Programmer's Pocket Reference for graPHIGS, SC33-S107
Problem Diagnosisfor graPH/GS, SC33-SlOS.

Network Program Products Samples: VM SNA, SC30-3309.

Preface vii

Book structure

Performance background ••• pages 1 through 39
Describes the device types that GDDM supports, explains how GDDM works, and
the resources required. It goes on to explain the perfonnance implications of using
GDDM, and introduces the techniques for managing GDDM resource usage.

Tuning and customizing by subsystem .•. pages 41 through 60
Tells system designers and programmers how to customize GDDM and its
supporting subsystems to improve perfonnance and minimize resource usage.

Storage requirements and capacity planning ••• pages 61 through 92
Tells system designers and programmers how to estimate the various system
resources their GDDM users will require.

Repackaging for performance ••• pages 93 through 114
Helps system designers and programmers to understand the reasons for repackaging
GDDM.

Application programming for performance ••• pages 115 through 125
Tells application designers and programmers how to reduce the resources that a
GDDM program uses.

Glossary ••• pages 127 through 141

Index ••• page 143 onward.

viii GDDM Performance Guide

Contents

Chapter t. Performance background•...•..••.....•.•..•.••.•.••.... I
What governs GDDM resource usage 1
GDDM hardware - how it works ; 2

Order-driven devices .. 3
Programmable devices ... 3
Nonprogrammable devices 5

Image devices ... 8
Character devices .. 9
Composed-page printers .. 10

How GDDM draws pictures ... 11
What happens in a GDDM program 12

GDDM resource usage in picture production 16
Data-stream size .. 16

Programmable order-driven devices 16
Nonprogrammable order-driven devices 19
Image devices .. 19
Character devices ... 21
Composed-page printers .. 22

Processor titne requirement .. 23
Programmable order-driven devices 23
Nonprogrammable order-driven devices 24
Image devices .. 24
Character devices ... 25
Composed-page printers .. 26

Processor-storage requirement 27
Virtual-storage requirement 27
Special considerations for composed-page printing 29
The reference set .. 29
The working set .. 30

Understanding and managing GDDM performance 31
Smoothing out the peaks ofresource usage 31

The hold up at the bank - a fable 32
Finding the optitnum loading and packaging combinations 35

Recommendations for loading and packaging combinations 38

~hapter 2. Tuning and customizing by SUbsystem•..•...•..••.•.•..•.. 41
Hints and tips on efficient usage for all subsystems 41
CICS tuning - background information 44

Loading .. 44
Packaging .. 44
Controlling the data stream .. 45
The program processing table 45

Contents ix

performance background

Chapter 1. Performance background

This chapter explains how GDDM works, :lond what the performance implications are. It
should give you sufficient background to help you make informed judgments about the
subsystem-dependent customizing suggestions discussed in Chapter 2.

What governs GDDM resource usage

Two major factors influence the amount of system resources that GDDM requires to
display a picture on a graphics device or an image device.

1. The type of device

When GDDM produces a picture containing graphics for printing on a 4250
composed-page printer, it may require ten times or more host-processor resource than
when it displays the same picture on a 7372 plotter. Similarly, the 3279 picture data
stream generated by GDDM may be two to five times as large as that for a
3270-PC/G. Graphics hardware has a significant influence on the resource
requirements of GDDM. We will examine this in more detail later.

Similarly, the host processor and data stream requirements of a picture containing an
image will be different for an image device and a non-image device, because image
devices Cat! perform several image processing tasks that have to be carried out by the
host for non-image devices.

2. Picture complexity

For graphics, we can make a start by saying that picture complexity is related to the
number of elements (lines, arcs, areas, and so on) that defme the picture. Clearly,
GDDM is going to do more work to draw six lines than it is to draw one.

For images, complexity is related to the total number of pixels in the picture, how
many are on or ofT, and how often they alternate between the two states.

Complexity is also related to the device on which the picture is displayed. Graphics
pictures that appear fairly modest to GDDM when it is producing them for a 3287
may well appear very complex when the device is a plotter. The resource
relationships mentioned earlier apply to specific pictures and will vary considerably.

It is well worth spending some time understanding how the GDDM-supported graphics
devices and image devices work.

Chapter 1. Performance background 1

Controlling GDDM in the processor 46
CICS tuning - things you can do 46

IMS/VS tuning - background information 48
Output of GDDM data streams 48
Cross-domain considerations 51
Use of nonrecoverable transactions 51
Message Processing Region (MPR) priority 51
Message queue and Communications I/O Pool sizes 5 I
The Interactive Chart Utility and symbol editors under IMS/VS 52
IMS/VS tuning - things you can do 53

TSO tuning - background information 55
Controlling the data stream .. 55
Swapping ... 56
TSO performance groups ... 57
TSO tuning - things you can do 57

VM/SP tuning - background information 59
Discontiguous saved segment (DCSS) 59
Tune-outs for 3179-G, 3270-PC/G and /GX, 4224, and 5550 devices 60

Chapter 3. Storage requirements an~ capacity pJanning ••.•••.•..•••••..•..• 61
GDDM objects and use of DASD space 61
Virtual storage requirement of GDDM 64
3270-PC/G and /GX segment storage requirement for GDDM 67
Capacity planning - ftrst-pass method 68

Applications and devices covered 69
Overview of the "ftrst-pass" method 69
The method you use ... 70
Obtaining the results ... 74
How to get processor utilization values 74
How to get link utilization values 75
How to get 3274 controller utilization values 75

Capacity planning - detailed method 76
Overview of detailed method 76
Step l:-Identify interactions, classify them, and estimate Jiourly rate 77
Step 2: Calculate resource cost for "average" member of each group 78
Step 3: Quantify resources used by the ICU 86
Step 4: Find total use made of resources 90
Processor utilization ... 91
Link utilization ... 91
3274 Controller utilization ... 92

Chapter 4. Repackaging for performance ••••......••••••..••.•...••.•... 93
Background to repackaging .. 93

How to repackage ... 96
Provisos about packaging ... 96

Re-link-editing and possible future releases 96
Retaining original libraries for service 96
Special considerations for repackaging modules on MVS/XA 96

Repackaging the GDDM executable code on its own 97
Levels of packaging stubs 99
The contents of packaging stubs 99
Which stubs to use ... 103

Repackaging executable code with a utility or application program 104

X GDDM Performance Guide

Special requirements for utilities•...... 104
Special requirements for application programs 105
Eliminating dynamic loading completely 105

Repackaging an application or utility with a special defaults module 106
Repackaging for multiple subsystems 106
Special requirements for various subsystems 107

Special requirements for CICS 107
Special requirements for IMS/VS 107
Special requirements for VM/CMS 107
Special requirements for MVS/XA 107

Instructions for repackaging ... 109
Examples of repackaging ... 110

Repackaging executable code for IMS/VS 110
Repackaging ICU with executable code on TSO III
Repackaging GDDM/VSE with the initially loaded modules 112
Repackaging executable code for subsystems on MVS/XA 113
Repackaging application program with executable code on VM/CMS 114
Overriding saved segment defaults module on VM/CMS 114

Chapter S. Application programming for performance ..•••.•••••.•••••••••• tIS
ADMUFO - the user fast option 115
Getting the most from your terminal 116

Graphics .. 116
Processing graphics segments on IBM 3270-PC/G and /GX Work Stations .. 117

Alphanumerics .. 119
Procedural ... 119
Mapping .. 119
Procedural alphanumerics performance hints 120

Image ... 121
Image processing on image devices 121
Image processing on graphics devices 123

Partitions .. 123
How you can help the end user 123

Performance and the Interactive Chart Utility .•...................... 124
Application programming under CICS 124

GDDM glossary ... 127

Index ... 143

Contents xi

Figures

1. Reverse clipping ... 7
2. Character graphics in action ;. 9
3. The structure of GDDM 11
4. Acceptable combinations of format and compression 20
5. Response time versus processor utilization 32
6. Data flow through a non-SNA system 33
7. Data flow through an SNA system 34
8. Loading options - keep ODDM in shared area 36
9. Loading options - keep GDDM in normal disk storage 36

10. Packaging options: Big package, small packages, or with applications 37
11. Loading and packaging options 37
12. GDDM object contents and size table 62
13. GDDM single user minimum virtual storage requirement (in bytes) 64
14. GDDM virtual storage requirement (in bytes) 66
15. GDDM estimating table (part I) - alphanumerics 71
16. GDDM estimating table (part 2) - graphics and the ICU for 3279 and 3287 ... 72
17. GDDM estimating table (part 3) for resource calculation 73
18. Table of divisors for different processors 74
19. Table of divisors for 3174 and 3274 controllers 75
20. Table 1. Interaction types and rates 77
21. Table 2. Procedural alphanumerics resource estimation 81
22. Example of filling in a table 82
23. Table 3. Mapped alphanumerics resource estimation 83
24. Table 4. 3279/3287 graphics resource estimation 84
25. Table 5. 3270-PC/G and IGX graphics resource estimation 85
26. Table 6. ICU user categori7..ation table 87
27. Table 7. ICU alphanumerics estimating table 87
28. Table 8. ICU graphics (3279) estimating table 88
29. Table 9. ICU graphics (3270-PC/G and lOX) estimating table 88
30. ICU fmal estimating table 89
31. Master table for resource calculation 90
32. Table of divisors for different processors 91
33. Table of divisors for 3174 and 3274 controllers 92
34. The default order of loading during GDDM utilities and programs 94
35. Possible loading combinations 95
36. How packaging stubs are used to repackage the executable code 97
37. Names of initially -loaded modules 98
38. GDDM first-level packaging stubs 99
39. Full Screen Manager second-level packaging stubs· 102
40. ICU second-level packaging stubs ... :............................ 103
41. Intemallink-edit names of GDDM utilities 105

Figures xiii

GDDM hardware - how it works

A device can work in one of two ways to produce graphics or image. These are known
as the raster-scan and random-scan technologies.

For the raster-scan devices, the picture area is defmed as a series of regularly spaced dots.
The drawing implement (like an electron beam or the print head of a matrix printer)
moves along each row, marking those dots that form the picture.

For random-scan devices (plotters) the path of the pen that actually draws the picture
moves along the lines that make up the picture.

All the devices that GDDM supports rely on one of those two basic technologies to
produce graphics or images. These technologies in themselves have implications for
GDDM performance, but there are other device characteristics, the prime one being
device programmability, which play an even larger role.

In terms of performance you can consider GDDM devices as belonging to one of six
classes:

• Order-driven devices - programmable

• Order-driven devices - nonprogrammable with random scan

• Order-driven devices - nonprogrammable with raster scan

• Image devices

• Character-driven devices

• Composed-page printers.

These six classes comprise all the devices that GDDM supports. However, no two
devices are exactly alike. Devices in different classes may have similar characteristics, but
each class has its own unique hardware features that govern GDDM's picture display
resource requirements.

Generally speaking, the device classes, as listed above, reflect the programmable capacity
that is in the device itself. This reflects the resource that GDDM uses to display pictures.
Programmable order-driven devices require least, composed-page devices most.

Of the six classes, only the nonprogrammable order-driven devices use the random-scan
technique to produce pictures. All the others use raster-scan technology.

2 GDDM Performance Guide

performance background

Order-driven devices

All GDDM graphics calls that a program issues eventually get translated to commands
like "draw a line from A to B" or "future items will be colored blue." The order-driven
devices obey just such orders. All GDDM has to do is encode the program caUs into the
language that the device recognizes and to send them.

At the device, the orders are decoded and the drawing is made.

Programmable devices

The 3270-PC/G and IGX family (including the AT versions), the 5550 family, andthe
5080 graphics system are the programmable order-driven devices that GDDM supports.
One of the key features of these devices is that the work of activating the do~s that
represent the picture is done in the tenninal itself. We caU that process vector-to-raster
conversion. Besides converting lines or vectors to dots, the devices can also do other
things like fill areas.

GDDM has two modes of operation for communicating with the 3270-PC/G and
3270-PC/GX work stations. These modes are known as retained and non-retained
modes.

In retained mode the vector definition of the picture is written to segment storage as the
terminal starts the vector-to-raster process onto an all-points-addrcssable (APA) bit map
of the screen. In non-retained mode, each vector is drawn on the bit map as it is received
and then discarded.

You can see that in non-retained mode it is possible to display very complex pictures,
regardless of the number of vector definitions that they contain. The 5550 family
supports non-retained mode only.

Retained mode has important implications. We will look at these now.

Besides being able to do the vector-to-raster conversion itself, the 3270-PCfG and IGX
can perfonn other tasks. This gives them distinct perfonnance advantages over other
devices that GDDM supports.

Work-station features that GDDM takes advantage of include:

• Segment manipUlation

The work stations can perform certain actions on pieces of a picture. These pieces of
the picture are properly known as segments and are dermed by the graphics
application. The application program or work-station user can impose meaning on a
picture by ensuring that each segment contains logically connected elements of the
picture. For example, in a picture of a nut and bolt it would make sense to put aU
the lines defining the nut into one segment and all the lines derIDing the bolt into
another. The two objects could then be manipUlated separately.

Chapter 1. Performance background 3

.1

J

Work-station functions perfonned on segments include:

Dragging

The ability to move a segment around the screen under graphics cursor control.
Its new position can be signalled back to the host.

Picture update

Specific segments can be deleted by sending a "delete segment" order to the work
station. When adding a segment to a picture, only the new segment has to be
sent, not the entire picture. Similarly, highlighting and visibility changes can be
made by sending a small amount of data.

• Character expansion

Besides containing things like lines, arcs and areas, many pictures also contain
graphics characters. These can vary in size; they can be angled or sheared and can be
in different styles.

The work station contains a set of graphics character definitions, more properly
known as a symbol set or font. When a picture is sent from the host, it contains
references to characters in the symbol set. The work station will take the required
character definitions from the set, perfonn any scale, shear, or rotation necessary and
add them to the picture definition.

Besides the default fonts, GDDM supplies other fonts as image or vector symbol sets.
lfthese fonts are not to your liking, you can deftne your own using the GDDM
Image Symbol Editor or Vector Symbol Editor.

(For the 5550 family, default single-byte character set (SBCS) and double-byte
character set (DBCS) vector symbol sets are supported by the Japanese 3270 PC/G
program, version 6.0.)

If you use any of the non-default symbol sets, GDDM can send them to the work
station before sending the picture. They will then get treated in exactly the same way
as the default sets.

• Punning and zooming

Under user control, the work stations can locally scroll pictures up and down or left
and right (panning), or enlarge pictures (zooming). (For other graphics displays, and
for the work stations if the local capability is not activated, GDDM perfonns the
panning and zooming in the host.) This avoids the necessity of sending a new picture
for every new viewing operation. See 17 for more details.

• Clipping

Those areas of a picture that lie outside the graphics field are not displayed. On
devices like the 3270-PC/G and /GX, the terminal clips the picture to the visible area.
When the page window is changed, or the operator changes the page window, the
picture does not have to be resent. On the 5550 terminal, the picture is clipped to the
segment viewing limits.

4 GDDM Performance Guide

performance background

All the above functions depend on the ability of the work station to hold the vector
deftnition of the picture, and the fonts associated with it, in segment storage in the work
station. Segment storage is allocated to host sessions at work-station customization time.
Chapter 3, "Storage requirements and capacity planning" on page 61 gives guidance on
how much you will need to allocate to your host session for GDDM to take advantage of
the work-station functions described above.

Nonprogrammable devices

IBM 3179 Color Display Models G1 and G2 (3179-G): In many ways, the 3179-G is
equivalent to the 3270-PC/G and /GX in non-retained mode with no segment storage.
Like 3270-PC/G and /GX, GDDM sends the vector defmitions to the 3179-G, and the
work of activating the pixels that represent the picture (the vector-to-raster conversion) is
done in the tenninal itself.

The 3179-G, however, has only one default vector-symbol set and has only four image
symbol sets.

It also has no local clipping capability, so GDDM may have to do extra clipping in the
host, for example, when a page is scrolled or an operator window is sized.

Arcs are split into short vectors, that are sent to the 3179-G to be drawn. (This is also
true of the 3270-PC/G and /GX when used with the LCLMODE,NO processing option.)

The 3179-G does not store graphic data, and so cannot oftload any manipulation
function from GDDM. In particular, with user control, each new viewing operation
means that the data has to be regenerated.

4224 printers: These dot-matrix printt'fS are also in the nonprogrammable device
category. The vector-to-raster conversion process is performed in the printer, and so a
4224 printer generally requires less host-processor resource than, for example, a 3287
printer.

Because the paper moves through the printer in only one direction, all the GDDM data
that describes the picture must be sent to the printer before the rastering process can
begin. 4224 printers therefore have their own storage to contain the data. Models 101
and 102 have 64K bytes, of which 35K bytes is available for picture data. Models 1E2
and IC2 have 5l2K bytes, of which 448K bytes is available for picture data.

Alphanumeric and image data are printed on a row-by-row basis, from the top to the
bottom of the page. About 5K bytes of the available storage is needed for processing
these data. The remainder can hold the graphics data and, for models lC2 and lE2 up to
six alphanumeric symbol sets.

The 4224 has no resident vector symbol sets, so all graphics text referencing such symbol
sets must be expanded into its constituent lines and arcs by GDDM.

GDDM does not send arcs to the device. They are split into short vectors, resulting in
more host processing and longer data streams.

The size of the picture data that GDDM sends to the 4224 is increased when stored in
the printer. This is because printer specific information is associated with each primitive
received. The effect of this is to reduce the amount of available storage for GDDM data,

Chapter l.Performance background 5

and, for the 64K byte models in particular, you should be careful of the nature of pictures
that you send.

GDDM pre-calculates whether all the picture data will fit in the available storage. If an
overflow would occur, GDDM issues a warning message, and sends to the printer only
that amount of data that can be stored without causing an overflow. You can use the
GDDM call FSCHEK in your program to fmd out whether a picture will be too
complex for the printer.

Considering GDDM's use of the printer to support graphics data in isolation, the
printer-dependent data appended to each drawing order significantly increases the storage
requirements for a GDDM picture - typically by a factor of 2 to 3.

Plotters: Also in the nonprogrammable order-driven class are the 737x and 6180
plotters. Reverse clipping, which is described here, applies only to GDDM support of
these plotters.

They are similar to the programmable devices in that they can translate orders into
pictures. However, the set of orders that they can draw is limited:

• Area fill is done by sending vector definitions of each of the lines that make up the
shading pattern.

• Arcs are drawn as several very short vectors. Each vector is drawn by moving the
pen by no less than half a pen width.

• Symbol sets are expanded into vectors in the host.

The other main feature of these devices is that, as they are basically moving a drawing
implement around, anything that gets drawn stays drawn. This is not so with raster
devices.

Raster devices operate by ORing and ANDing into a bit plane so that things that are
drawn frrst can get erased by subsequent objects that overlay them. This is known as
overpaint mode. Objects can be overpainted (and therefore obscured) by putting other
objects on top of them.

This can be very useful. Suppose you want to draw a picture of a square overlapping a
circle. Look at Figure I on page 7.

6 GDDM Performance Guide

1

2

3

4

Figure 1. Reverse clipping

I
I ..
I
I
I

1. You could start by drawing a circle and a square.

2. Then you could put the square in front of the circle.

performance background

What we haven't mentioned is that when you drew the square you filled it with
background color, which is just like any other color except you cannot see it. When
you're sitting at a raster device, the background color in the square will obscure bits
of the circle automatically if you are in overpaint mode.

3. The square would not obscure the circle on a pen plotters, because there is no
built-in eraser. So, to draw the picture properly on a plotter, you would have to
make sure that the lines you cannot see do not get drawn. You can do this yourself,
which might be quite a time-Consuming job, or you can leave it to GDDM.

4. GDDM will work out which lines have to be removed to produce the same picture
on a plotter as you see at your raster device. This process is known as reverse
dipping.

Chapter 1. Performance background 7

Image devices

The 3117 and 3118 scanners and 3193 display station are desk-top devi~s that cater
specifically for image processing - the electronic capture, storage, and display of
documents - often called the "paperless office." Graphics devices not specifically
designed for image processing, such as the 3179-G, the 3279, the 5550 family, and the
3270-PC/G and /GX family, support it by emulation, using GDDM's grapbics facilities.

GDDM provides a set of calls to read and store images from the 3117 and 3118 scanners,
manipulate those images if required, and output them to 3193 display stations and other
displays and graphics printers.

An image is a picture, for example a photograph or a legal document, held as an array of
dots, called pixels. GDDM supports bi-Ievel images. These are images consisting of
pixels that are either on or off. When uncompressed images are stored or transmitted
electronically, each pixel is represented by one bit. The 3117 and 3118 scanners, which
attach to a 3193 display station, will convert a document into image data, at a resolution
of either 120 or 240 pixels to the inch, horizontally and vertically. It will convert the
image into compressed fonnat using a compression algorithm that is particularly suited to
text and line art, and may reduce the size of the image by as much as a factor of 20.

The 3193 display station is a raster-scan device that displays images on a screen at 100
pixels to the inch and can perfonn a certain amount of image processing without
reference to the host. For example, the 3193 can decompress an image that has been
compressed using the modified modified read (MMR) compression algorithm. (This is
the compression algorithm supported by the IBM Scanmaster scanner, and available
when transferring images.) The 3193 can also do certain transfonns, so offioading
processing from the host (host offload) during transfer operations that have a 3193 as
their target. When IMAPTx calls are used to send data to a 3193, host oflload allows
direct transmission. Host offload and direct transmission are further described later in this
chapter. The various conditions that have to be satisfied to achieve direct transmission
are described in "Image devices" on page 24.

8 GDDM Performance Guide

performance background
-----------------------.. ----------------------

Character devices

We mentioned earlier that the 3270-PC/G and /GX have an APA bit buffer, which is a
representation of the screen. Character-oriented devices are different. Although the
picture is still made up of a series of dots, it has to be decomposed into character-size
units and the dot pattern of each has to be defined. The character defmitions are then
placed in the appropriate positions on the screen to make the picture. Figure 2 shows
this. Notice that a character dermition can be used in more than one screen position.

Display Terminal

/
I
I I

Character-Definition Store

Figure 2. Character graphics in action

\

.. ...
.........

..

I I I ~

AU the work to produce the dot patterns that make up the character defmitions is done
by GDDM in the host.

The 3278,3279,3290, and 8775 display terminals and the 3268 and 3287 matrix printers
are all character-oriented devices.

It's worth understanding a major difference between character devices and vector devices
at this point. This relates to the length of the data stream that each device needs to
display a picture.

For vector devices, data stream is related to the number of graphics primitives (lines, arcs,
and so on) in the picture. The more there are, the longer it gets. The relationship is not
so dc-ect for character devices. Here, data stream depends on the number of program
symbol defmitions used. Each program symbol (PS) definition can contain the
representation of one or many vectors. Character devices tend to have longer data
streams than vector devices for simple pictures like business charts, but as the number of
giaphics primitives in the picture increases, the vector data streams become longer.

Chapter 1. Performance background 9

You should know, however, that there are a finite number of PS definition slots in the
3279 which limits the data stream to a maximum size of around SOK bytes. Very
complex pictures cannot be shown properly as they cause PS overflow.

There is a much higher limit to the number of PS definitions that can be used to print a
picture on the 3287. There are fewer PS stores in the device, but GDDM constructs the
picture using up to 32 "logical" PS stores. The picture is printed in pieces, one logical PS
store at a time, the character definitions overwriting those in the device's programmable
store that were sent for the previous piece. In this way it is possible to print pictures that
would cause PS overflow when shown on a display terminal.

One fmal point about PS defmitions. Because they are basically image definitions, they
are suitable candidates for compression. GDDM can do this; the result is that the
data-stream length for the picture is generally halved. There are costs associated with
compression, so it is recommended only for remotely-attached devices.

Composed-page printers

Composed-page printers have two important characteristics:

1. For the 3800 and 3820 printers the resolutions are 120 or 240 pixels to the linear
inch. The 42S0 printer has 600 pixels to the linear inch. For a U.S. standard 8.S x
11.0 inches piece of paper, or a European standard 210 x 297 millimeters A4 piece of
paper (8.3 x 11.7 inches), that's more than 31 million pixels on a piece of paper. As
you can imagine, looking after that number of pixels can be very costly.

2. GDDM does not communicate directly with these devices. It creates a print me in
disk storage that is later processed by another program to produce the printed output.
(For example, for the 4250, this is done by the Composed Document Print Facility
(CDPF), and for the 3800-3, 3800-8, and 3820, by the Print Services Facility (PSF).)

GDDM's support of these devices is very similar to character devices, but with special
considerations because of the high resolution. GDDM rasters the vectors onto an APA
bit map, which is broken up into logical cells that are 32 ... 32 pixels. Cells that are empty
are either not put into the me (3800 and 3820 operation), or are subjected to compression
(4250 operation).

10 GDDM Performance Guide

performance background

How GDDM draws Ilictures

CiDDM is made up of several layers of function. Some of the layers use other layers.
The Interactive Chart Utility, for example, uses the Presentation Graphics Routines
(known as the PG Routines). If you draw a picture using the Interactive Chart Utility,
the panel options that you select are translated into GDDM PG Routine calls, like
CIIPIF to produce a pie chart. The pc; Routine calls themselves get colwerted into
GDDM Base calls, such as GSLINE to draw a line, or GSARC to produce an arc.

The GDDM Base calls are converted into the device-dependent data stream necessary to
display the picture. foor devices such as the 3270-PCjG and /GX, little work is necessary
to do this. Devices like the 4250, on the other hand, require a very significant amount of
eff0l1 from GUDM.

GDDM operates on several subsystems: CICS, VM/SP, TSO, and IMS;VS. The way it
produces graphics is the same in all of them. Therefore, most of the CiDDM code is
independent of the subsystem that it runs under. All requests for subsystem services
(such as device reads), are channelled through an environmental layer that is different for
each subsystem.

Figure 3 shows the structure of GDDM.

~
I

Figure J. The structure ofGDDivl

Chapter I. l'erfilJ'lIl<lnCe background I I

What happens in a GDDM program

Understanding the sequence of events in a GDDM program will help to identify some of
the areas where performance problems can occur.

1. The fint GDDM call must be FSINIT. The primary purpose of this call is to
establish the environment in which GDDM will operate. It starts GDDM processing
by:

a. Initializing GDDM default values.

b. Resolving routine addresses.

GDDM consists of many hundreds of routines, which, for convenience, are
packaged together into several dozen load modules. As GDDM processes each
call, it determines which routines are needed and checks if the routine entry-point
addresses are known. The addresses ate kept in a table and are resolved by
finding the routines in shared storage or by loading the modules containing them
into the application address space. There are various options open to you as to
which GDDM modules get loaded, and when. These have important
performance implications and will be discussed later.

2. The next calls concern the picture that you are about to draw, for example:

• Which device you want it drawn on

• The device characteristics

• Which part of the display area you are going to use to draw on

• What coordinate system you are going to use.

One of the important things that happens now is that GDDM fmds out about the
device that you are going to draw the picture on. This happens through an
application call, DSOPEN. At this time, GDDM may explicitly &}uery the device and
get information back, or it may use values obtained from the program or from
auxiliary files, for example, a nickname file.

The things that DSOPEN can tell GDDM that have a bearing on performance
include:

• Whether user control functions are available

• Whether GDDM is to send high-precision vectors to the 3270-PC/G or IGX for
panning and zooming under user control

• The number of swathes (or horizontal slices) that control processing of the
picture for the 4250, 3800, and 3820 printers

• What level of ICU defaults is to be used

• Whether GDDM is to use draft draw or full draw picture update mode for
3270-PC/G and /GX, 3179-G, and 55S0 family displays

12 GDDM Performance Guide

performance background

• Whether GDDM is to operate in retained or non-retained mode for the
3270-PC/G or /GX.

FSQURY, the call that queries device characteristics, will tell an image application
whether the device being used supports the offload of certain image functions.

3. For graphics, further calls, which describe the picture, are translated into instructions
that define the picture in terms of the elements that it is made of: lines, arcs, or areas.
These elements are kept in a table in main storage in graphics data format (GDF).

Note that these calls do not cause the picture to be sent to the device.

GODM constructs two versions of the GOF me, either of which can be accessed by
the application program:

a. Floating point GOF

• Corresponds almost directly with the API calls issued.
• Is kept in short floating-point notation corresponding to user-defined

coordinates
• Has not had any transformations applied. These are kept separately in a

transformation matrix.
• Is device-independent.

b. Fixed point GOF

This form is device-dependent. It takes its name from the fact that the
coordinates are held in fixed point form. They have also been converted to a
GDDM-defined coordinate system that is device-related.

The advantages of using floating-point GOF, rather than fixed point GOF, as the
method for storing pictures are discussed in the GDDM Application Programming
Guide.

For image, direct transmission does not store the image if the entire projection is
within the capabilities of the 3193, and projections are perfonned by the device.
Where the device does not support direct transmission, the images are held in a
GDDM-intemal format in dynamic storage.

4. The picture is drawn and sent to the device when an input/output call is issued, for
example, FSFRCE, ASREAO, GSREAO, MSREAO, or WSIO.

For graphics, these calls cause the device-dependent data stream to be generated from
the fixed point GDF ftle that was created by earlier calls.

In all cases except direct transmission on the 3193, images are converted from a
GODM-intemal format to uncompressed format.

On all devices, overlapping partitions and operator windows are clipped/merged.
Different things happen for the different device classes.

Chapter 1. Performance background 13

a. Programmable order-driven devices

Generally speaking, the GDF to be sent will have already been generated.
However, a regeneration of some of the data may be necessary in the following
cases:

• Applying any segment transforms
• Sending any referenced symbol sets that are not currently in the work station
and, for 5550 terminals,
• Clipping the picture to the segment viewing limits
• Expanding characters from symbol sets that could not be stored in the device.

Having created the picture, if GDDM finds that it or the associated symbol sets
are too large to fit into the available segment storage iii the work station it will
degrade into non-retained mode. This degradation is a multistage process.
GDDM will switch back through the stages if a subsequent picture display within
the session is small enough to permit it. The stages are:

1) Everything is held in the work station.

2) Only symbol sets are held.

3) Nothing is held.

When multiple partitions or operator windows are used, all device resource, such
as symbol-set storage is allocated based on window priority. When more than
one graphics field is defined, segments are not stored in the device.

The advantage of the second step (active segment + symbol sets) is that it
permits local dragging of a segment even if there is insufficient storage to hold the
entire picture.

If GDDM is in non-retained mode, then on a 3270-PC/G, area boundaries have
to be sent separately from the defmition of the area.

b. Nonprogrammable order-driven devices

GDDM has to prepare the data stream under the device limitations discussed
earlier; regeneration as discussed for order-drivcm devices may occur.

For plotters, area-fill patterns are expanded into simple vectors, and reverse
clipping is carried out to remove objects that will be obscured by opaque areas.

For 3179-G, in some cases characters are expanded into simple vectors or images.

c. Image devices

In some cases (direct transmission, for example) the data may have been sent to
the device as part of the transfer operation, before the AS READ.

In other cases, GDDM holds the image data and sends it to the device when the
ASREAD or similar call is issued.

14 GDDM Performance Guide

performance background

d. Character devices

For graphics, GDDM converts each graphics primitive in the GDF me (line, arc,
and so on) into dots and assigns the dots to character deftnitions. Some checking
is carried out to eliminate most of the identical definitions to reduce the data
stream.

When operator windows are used, device resources are fIrSt allocated to the
highest priority window. Remaining resources (if any) are allocated to lower
priority windows.

For image, the image data is rastered by GDDM into programmed symbols.

Doing this work takes 60 to 80% of the total GDDM processing time used to
display a picture on a character device.

e. Composed-page printers

GDDM converts each graphic primitive in the GDF ftle into pixels. These pixels
are stored in the relevant cells. Cell data is reworked into the format required by
the printer that is to print the picture. This formatted data is stored as an
ADMIMG ftle. If color separation has been requested, several ftles are produced,
each one corresponding to one of the color masters.

5. The complete picture is transmitted to the device by a series of calls to the subsystem.
The device could be a display terminal, a printer, or disk storage for a saved picture
or print data set.

Each call transmits a piece of the picture. Each piece is by default 1536 bytes (the
default transmission buffer size).

You can change the default transmission buffer size by specifying the ADMMDFT
IOBFSZ defaults, which are described in the GDDM Installation and System
Management manual appropriate to the system that you are running under.

Data stream compression, which can be specifted for character devices like the 3279,
happens as the character definitions are moved into the GDDM output buffer.

The flow of GDDM terminal transmissions through the subsystem is discussed later.

For direct transmission of image data to the 3193 terminal, each buffer of image data
is transmitted to the 3193 as it is passed to GDDM.

6. The final call in a GDDM program is FSTERM. This destroys the GDDM
environment by releasing all the storage that GDDM has acquired for the application
and deleting all the loaded modules.

Chapter 1. Performance background 15

GDDM resource usage in picture production

By now, you should understand that GDDM's resource requirements for picture display
depend on two main things:

I. The characteristics of the display device

2. Picture complexity.

In this section we are going to try to defme, approximately, what these resource
requirements are. You should be aware, however, that whatever numbers we come up
with are likely to be vague. If you want some numbers that have more substance to
them you should see "Capacity planning - first-pass method" on page 68.

The main areas of resource usage in picture production are:

I. Network time needed to handle the data stream.

We will also include 3270-PC/G or IGX segment storage in this category, and the
amount of disk space required for composed-page printer picture generation. Both
are related to data-stream size.

2. Host-processor time.

3. Host-processor storage required (a) for referenced code and (b) for temporary storage
to hold infonnation relating to the current transaction.

Where there is insufficient real storage in the host processor to meet these
requirements, paging will take place. This will increase the host-processor time and
cause 1/0 operations to storage.

Data-stream size

Programmable order-driven devices

The main determining factor of data-stream size for these devices is the number of
graphic primitives in the picture definition. The following table suggeSts data-stream
ranges for "typical" pictures in various graphics application areas.

GDDM picture Data-stream •

Business charts I-10K bytes

General graphics I-10K bytes

Scientific and engineering S-30K bytes

Data-driven pictures 2O-IOOK bytes

Images 20-100K bytes

16 GDDM Perfonnance Guide

performance backgr~und

"Data-driven" pictures include any that are generated automatically from some sort of
data-collection process; there are many graphics elements in the picture by implication.
Typically, this class would include such areas as seismology, cartographies, and civil
engineering.

All numbers assume retained-mode operation and exclude any character fonts that may
be required. Retained-mode operation is the default, if there is sufficient segment storage
allocated to the host session in the work station.

There is no limit to the complexity of pictures that can be displayed. Unlike the 3279,
PS overflow cannot occur on programmable order-driven devices. GDDM and the work
station may have to operate in non-retained mode to display very complex pictures.

Items that affect data-stream length, in order of importance, include:

• Picture complexity, that is, the number of graphics elements (lines, arcs, areas) or
image size and content

• Number of different font styles used
• Use of retained mode
• Use of high-precision coordinates for pan/zoom
• Number of segments in the picture.

Customizing the work-station session with .Jfficient storage to enable applications to run
in retained mode can give significant performance improvements for reduced data streams
even for output-only applications. There are two reasons for this:

~. Areas

For the 3270-PC/G only, the work station has to make two passes of the area
deftnition. First to draw the fill, and second to draw the boundary. In non-retained
mode, the work station discards each vector when it is processed, so it cannot make a
second pass to draw the boundary. So, to draw it properly, GDDM has to send the
area deftnition twice, thus doubling the data-stream length.

2. Non-default character fonts

If there is sufficient symbol-set storage, GDDM will send fonts to the storage in the
work station before sending the picture data str~am. The picture data stream will
contain references to the characters within the fonts. The fonts will remain in storage
in the work station to be used by subsequent picture displays in this GDDM session.
Typical GDDM-supplied fonts are 10K bytes each.

If there is no room in segment storage for the font, GDDM will expand character
definitions in the host and include them in the picture data stream. For mode 3
(vector) characters, this adds 50 to 100 bytes to the data stream for every character in
the picture. Typical business charts will contain 50 to 200 characters from two fonts.

See "3270-PC/G and /GX segment storage requirement for GDDM" on page 67 for
some suggested ftgures for segment storage allocation.

The GDDM LCLMODE processing option, specified either explicitly with the DSOPEN
call or through nicknames, offioads some of the panning and zooming function of user
control to the work station. The overall total data stream for a user session should
reduce if local panning/zooming is used rather than relying on GDDM to perform the

Chapter 1. Performance background 17

operation in the host. However, this may cause individual picture data streams to
increase.

In non-LCLMODE operation, the vector defInitions that GDDM sends down to the
device use pixel coordinates. This means that the locations defined by the x and y
coordinates correspond directly with dot positions on the screen. This has performance
advantages over using a coordinate system that doesn't correspond to pixels:

1. GDDM is able to convert more ofthe x,y pairs into "relative" definitions. A relative
coordinate occupies one byte rather than two and can be used if it defines a point on
the screen that is within plus or minus 128 units (in both x and y) from the current
position. For example, the 3270-PC/G has a screen size of 720 x 512 pixels. Thus,
many vectors will be relative if pixel coordinates are used.

2. GDDM does not send any very short vectors which do not activate any new pixels in
the device.

A coordinate system of greater precision is needed if the picture is to be zoomed.
Typically, GDDM uses a coordinate range that is 16 times the number of pixels on the
screen.

With this system, few relative vectors will occur, and more vectors will be sent, even those
that are currently too small to be seen. Data-stream size will therefore increase. For
complicated pictures made up largely of lines, the "zoomable" data stream is likely to be
twice as large as the "nonzoomable" one.

This increase in data stream can be offset when the picture is panned or zoomed locally.
If the operation was performed by GDDM in the host, a new picture defInition would
have to be computed and sent to the work station for each new view.

When you make changes to a picture displayed on a 3270-PC/G or IGX, the work
station may draw just the update, or it may need to redraw the entire picture. This can
be controlled by setting the update mode which can be set to draft-draw mode or
full-draw mode, either:

• By the user in user control

• By a system or application programmer in a nickname file

• By an application programmer using a procopt to DSOPEN in a program

• By an application programmer using the call FSUPDM.

In draft-draw mode, you can avoid complete redraws. Faster updates can be obtained in
most cases, because GDDM updates only the changed segments. There is a cost in
possible drawing inaccuracies, where primitives overlap either before or after the update,
because GDDM degrades the color mixing. Overlapped sections might therefore be
missing or in the wrong colors.

In full-draw mode, additions to the picture generally cause partial redraw. Deleting
segments or changing segment attributes (visibility, priority, and so on) require a total
picture redraw; deleting an object may make other objects visible, for example. The

18 GDDM Performance Guide

performance background

entire picture is redrawn to make them appear correctly. It may therefore be sensible to
"batch up" operations that need total picture redraw.

For retained mode, full draw does not mean that the entire picture is being retransmitted
by GDDM; only the changes are sent. The work station incorporates these into the
picture definition that it is holding in segment storage.

Nonprogrammable order-driven devices

Image devices

3179-G: Data streams are always sent in pixel coordinates. Data streams will be greater
than for the 3270-PC/G or /GX because:

• Characters from non-default fonts are expanded to vectors in the host, adding 20 to
50 bytes per character.

For example, the 3179-G has storage for four image symbol sets, but no vector
symbol sets (other than the default). This means that, where a non-default vector
symbol set is used, as in the ICU quality defaults, GDDM has to expand the vector
characters into primitives before sending them to the terminal. Typically, an ICU
chart will have 50 to 200 characters, which must each be expanded to 20 to 50 bytes
of data stream. So 3179-G data streams can be from lK to 10K bytes longer than
equivalent data streams for the 3270-PC/G and /GX. This could have a significant
effect on remote terminals.

• Arcs are represented by several very short vectors.

• As the 3179-G has no segment storage, interactive-graphics data streams are generally
greater than on a 3270-PC/G and /GX, because the entire picture has to be
retransmitted for any redraw. Draft draw mode, see above, can significantly reduce
the amount of data sent when segments are changed or deleted.

4124 printers: Like the 3179-G, the 4224 has no segment storage.

Plotters: As well as the reasons quoted above for the 3179-G, plotter data streams will
be longer because:

• Relative vectors are not used, so the more complex pictures will be twice as large as
for the 3270-PC/G or /GX.

• These devices do not "fill" areas. Any shading pattern has to be broken into vectors
in the host. For a picture consisting totally of shaded areas this can increase the data
stream by a factor of 10 over the 3270-PC/G or /GX.

If you consider, for example, the kind of newspaper photograph that is made up of dots,
and consider the total number of dots there are, you will appreciate the number of bits
that can be involved in image data streams. As another example, a u.s. standard 8.5 x
11.0 inches document is around 670K bytes at 240 pixels per inch (Ppi), or 168K bytes at
120 ppi, of uncompressed data. A European standard 210 x 297 millimeters A4
document (8.3 x 11.7 inches) is around 700K bytes at 240 pixels per inch (ppi), or 175K
bytes at 120 ppi, of uncompressed data. Factors affecting the size of image datastreams
are:

Chapter I. Performance background 19

• Compression
• Size
• Resolution

Compression can significantly reduce the amount of image data. For example, if an 8.5 x
11.0 inches document scanned by an image scanner contains text, MMR compression
could reduce it by a factor of around 20. It would then require around 20K to 30K
bytes. That's about the size of a fairly large ADMGDF file. Equivalent ADMIMG files·
may be 60K to 150K bytes. You can use either uncompressed data, or data that has
been compressed using one of the following algorithms:

• Modified modified read (MMR)
• 4250
• 3800.

The above compression types use different algorithms to compress the data.
Consequently certain compression methods are suited to certain types of image data. For
example, MMR compression gives good results for regular data such as text and line art,
but may actually expand an irregular image such as a photographic image. Image
compression uses a lot of host-processor time. Sending compressed images will also
increase the time taken by the device to display the image, as it has to uncompress the
data ftrst. See Figure 4 for details of the supported compression algorithms.

You can reduce the size of an image by excluding the data that is irrelevant or not
required. For example, you might need only the signature from a letter. You could
extract it when the document is scanned, or later, either by just extracting the sub-image
containing the signature or by trimming off the irrelevant data so that only the signature
remains.

If an image is only going to be displayed at a terminal or on a low-resolution printer, it
need only be stored or sent at low resolution.

A feature of the 3193 that allows reduced data stream is that it can decompress image
data.

Only certain combinations of format and compression can be used on IMAGTx and
IMAPTx calls. Acceptable combinations are shown by a Yes in Figure 4. Acceptable
combinations that allow direct transmission are shown by Yes - direct.

Unformatted 3193 CPDS
data stream

Uncompressed Yes Yes-direct No

MMR Yes Yes-direct Yes

4250 No No Yes

3800 No No Yes

Figure 4. Acceptable combinations of format and compression

20 GDDM Performance Guide

Character devices

performance background

For details of application programming techniques for image performance, see "Image"
on page 121. For full details of GDDM image support, see the image processing
chapters ofthe GDDM Application Programming Guide, Volume I.

It is important to remember that the main factor influencing data stream size for these
devices is the number of unique program symbol definitions used, not the number of
graphics elements in the picture.

Because of the fmite size of the Program Symbol store, the maximum data stream size for
a 3279 picture is around SOK bytes. This can be compressed, typically for remote
transmission. Compression usually halves data-stream length.

The following table suggests uncompressed data-stream ranges for "typical" pictures in
various graphics application areas.

GDDM picture

Business charts

General graphics

Scientific and engineering

Data-driven pictures

Images

Data-stream size

10 - 25K bytes

5-30K bytes

10 - 40K bytes

20 - 50K bytes

20- 50K bytes

Factors affecting data-stream length, in order of importance, include:

• Picture area
• Number of graphics primitives used
• Use of different colors
• Amount of area shading
• Length of lines and arcs.

Data streams for the 3287 printer are usually similar to those of the 3279 display terminal.
However, they may be shorter, because the 3287 supports only four colors.

Data-stream compression: GDDM can compress the character defmitions before it
transmits them to remote terminals. This can be a significant advantage when the
transmission speed of the link is low. For example, a 9 600-bit per second link takes 20
seconds to send a 24K byte picture. This can be reduced to about 10 seconds by using
data-stream compression.

Data-stream compression can occur if the 3274 controller is configured for
decompression. GDDM will normally generate compressed PS load data streams if the
3274 can decompress them. This is discovered from the "query device" request. GDDM
will not compress if it can determine that the device is local, either from the subsystem
(on VM) or from GDDM external default settings (the ADMMDFT AM3270 default).

Compression will generally halve data-stream length although there are some costs
associated with it.

Chapter 1. Performance background 21

• Host-processor time to compress is significant, although it is partially offset by the
reduction in terminal access method overhead because of the smaller data stream.

• The 3274 time needed to decompress the data stream causes a significant reduction in
the rate at which the 3274 can process the data.

There is a restriction, in the remote non-SNA environment, concerning the size of the
block that can be sent to the 3274 when character defmitions are present in the
transmission. In this environment, you should not change the GDDM default
transmission size, the ADMMDFT IOBFSZ default.

Compression/decompression is recommended for devices attached to teleprocessing lines
where the line speed is less than the rate at which the 3274 can decompress and process
the data stream. Typically, data compression is an advantage at line speeds of 19 200 bits
per second or less. Using compression does not affect the amount of main storage space
used while the picture is being created.

Composed-page printers

GDDM does not generate a data stream for these devices, but stores the picture data in a
ftle. It is the responsibility of other programs to cause the ftle to be printed.

22 GDDM Performance Guide

performance background

Processor time requirement

All numbers quoted in this section are in seconds of 4341-2 host-processing time. You
should be aware that the elapsed time in the host processor depends on, among other
things, how busy the processor is, and relative job priorities. Elapsed time will be at least
twice as long as processing time.

Usually, the factors influencing host-processor requirements are the same as those that
affect data-stream size. Only variations will be discussed here.

You should bear in mind that the non-GDDM part of an application can add
considerably to the host-processor requirement. This is particularly true where
processor-bound jobs such as data sorting or regression analysis are involved.

Programmable order-driven devices

The following table suggests the amount of processing time required by a 4341-2
Processor to display a typical picture in various application areas:

GDDM picture Processing time

Business charts 0.5-2.0 seconds

General graphics 0.2 - 3.0 seconds

Scientific and engineering 0.2 - 5.0 seconds

Data-driven pictures 5 - 20.0 seconds

Image (stored as MMR-compressed) 5 - 40.0 seconds

Besides the factors that influence data-stream size, an influence on the host-processor time
required for these devices is the switch from retained to non-retained mode. This
happens if, when GDDM has constructed the picture, it fmds that it is too large to fit
into the segment storage in the work station. Here GDDM will switch to non-retained
mode. For the 3270-PC/G, this means that it will then have to rebuild the picture,
inserting area boundaries as separate defmitions. If a picture contains many areas, the
processor time required may increase by as much as 50%.

GDDM will automatically switch back to retained mode should a subsequent picture in
the session be small enough to fit into segment storage. If every other picture is too large
to fit into segment storage, GDDM has to alternate between retained and non-retained
modes. If these pictures also contain many areas, the total processor time required may
increase by approximately 25%.

To prevent this happening, you can:

1. Allocate more segment storage to your host session

2. Run in non-retained mode from the beginning

a. Using the SEGSTORE processing option, specified with the DSOPEN call or in
GDDM external defaults

Chapter 1. Performance background 23

b. By selecting output-only mode for the session during work station customization.

Nonprogrammable order-driven devices

Image devices

For the nonprogrammable device class in general, the ;>rocessor requirement is similar to
the programmable device class. Exceptions are plotters, where area fill is used, and
reverse clipping has to be done.

For the ICU, the chart defaults available use non-default vector symbol sets, to improve
the visual appearance of charts. However, this can significantly increase both the data
stream and host-processor requirements for this class of device. You can choose to avoid
this overhead by using a nickname to select the Version 1 Release 4 defaults. This is
described in ICHints and tips on efficient usage for all subsystems" on page 41.

When you use the 3179-G for ICU business charts, GDDM processor utilization is up to
10% greater than the 3270 PC;G and /GX requirement for the Version 1 Release 4
defaults.

The cost of reverse clipping is related to the number of opaque areas that overlap other
objects, the number of vectors that defme the areas, and the objects that are overlapped.

Although reverse clipping costs will usually be quite small, it is possible for some pictures
for host processor costs to be more than 10 times greater than 3179-G requirement.

The 3193 can lighten the load on the host by performing some local image processing.
GDDM takes advantage of these features to save on processor usage. The following
transforms are done by the 3193, if they are within the capabilities of the device:

• Extraction/placing

• Rotation/reflection/negation

• Scaling

• Resolution conversion.

The biggest factor affecting CPU requirement for the 3193 is whether GDDM can use
direct transmission on a PUT operation (IMAPTx calls). When direct transmission is
used, a GDDM application passes a buffer of image data (either uncompressed or MMR
compressed) to GDDM, and the buffer is sent to the device, preceded by any transforms.

Direct transmission to the 3193 is used by default, if the data is in 3193 data-stream
format, if the 3193 can perform the entire projection, and ifGDDM does not otherwise
need to perform the projection itself (for example, to maintain a read-write image field).
If the preceding conditions are satisfied, GDDM sends the data directly to the 3193
without keeping a copy of the entire image.

If the 3193 cannot do the entire projection, GDDM performs the functions in the host as
necessary. GDDM compresses each buffer of the PUT sequence into a GDDM-intemal
format, and stores the entire image. This can take from 4 to 20 seconds. The transforms
that the 3193 cannot do are applied in the host. When an input/output command is

24 GDDM Performance Guide

Character devices

performance background

issued, the data is converted into a device-acceptable fonnat (either MMR or
uncompressed) and sent to the device. This can take a further 5 to 30 seconds for
transfonns like extract and scale. More complex transfonns, such as orientate, can take
up to 70 seconds of processor time. The figures assume resolution conversion is set on.
Setting resolution conversion off, or displaying data at the correct resolution, significantly
reduces the figures.

For direct transmission, the host-processor requirement depends on the size of buffer
passed through GDDM. The smaller the buffer, the more GDDM caUs are required and
the higher the host-processor requirement. However, storage requirements may be less.
The following table gives some typical figures for host-processor time taken by direct
transmission to a 3193 of MMR compressed text or line art:

Buffer size Processing time

400 bytes 1.0 - 2.0 seconds

2K bytes 0.2 - 0.5 seconds

4K bytes 0.1 - 0.2 seconds

For details of application programming techniques for image perfonnance, see "Image"
on page 121 in Chapter 5, "Application programming for perfonnance." For full details
of GDDM image support, see the image processing chapters ofthe GDDM Application
Programming Guide.

For simple pictures, like business charts, the processor requirement for picture generation
is related to the length of the data stream produced. This is not true when the picture
becomes more complex and the data stream approaches the maximum size.

The following table suggests the amount of processing time required by a 4341-2
Processor to display a typical picture in various application areas:

GDDM picture Processing time

Business charts 1.5 - 5.0 seconds

General graphics 1.0 - 10.0 seconds

Scientific and engineering 1.0 - 15.0 seconds

Data-driven pictures 10.0 - 50.0 seconds

Images 10.0- 50.0 seconds

One of the major factors affecting processor requirement that does not affect the data
stream is the number of vector (mode 3) characters used.

For user control, the host processor requirement for each new viewing operation is
effectively the cost of regenerating the screen.

Chapter 1. Performance background 25

Composed-page printers

There is no easy guide here, because the picture generation process depends on a
significant number of variables, such as the fmal picture size, the number of vectors
making up character text, the amount of storage space available, the swathing option, the
spill file option, and device resolution. The range can be expected to be from 5 seconds
to 5 minutes. The average time for a 6 x 4 inches (IS x 10 centimeters) picture of
medium complexity is between 30 seconds and I minute.

26 GDDM Performance Guide

performance background

Processor-storage requirement

There are various terms used to describe processor-storage requirements and it is as well
to understand what each of them means. This section discusses processor storage under
three headings:

• Virtual-storage requirement

• Reference set

• Working set.

Virtual-storage requirement

The virtual-storage requirement can be divided into two discrete pieces:

1. The amount of virtual storage required to load the GDDM code and objects
necessary for program execution. This is usually known as the code size.

2. The amount of virtual storage required to satisfy GDDM's storage requests. This is
sometimes called the "user dynamic storage requirement".

The two added together are sometimes known as the "main storage requirement." Let's
look at code size frrst.

There are two factors under your control that influence the GDDM code virtual-storage
requirement:

1. Where GDDM is kept.

You have the choice between:

a. Keeping one copy of GDDM in a shareable area, like the VM Discontiguous
Saved Segment (DCSS) or as Pageable Link Pack Area (PLPA), which can be
executed by many users simultaneously.

b. Letting users have individual copies of the code in their own address spaces or
virtual machines.

All but around 10K bytes of GDDM code (mainly entry point addresses) will go in a
shareable area. Keeping it there reduces the GDDM virtual-storage requirement if
you have more than one concurrently active user. lbere are other performance
implications associated with each choice, and these are discussed further in "Finding
the optimum loading and packaging combinations" on page 35.

2. What GDDM code is loaded.

The total size of aU GDDM code is over 3 megabytes, but it is unlikely that
applications in your environment will need to execute all of it. For example, you
may not want the code for Program Symbol generation if you have 3270-PC/Gs
rather than 3279s. There are two ways that you can prevent unnecessary code getting
loaded into main storage:

a. You can leave GDDM to load modules on an "as-needed" basis.

Chapter 1. Performance background 27

b. You can select the GDDM functions that you want and choose when to load
them.

There are advantages and disadvantages in both approaches. These are discussed
further in "Finding the optimum loading and packaging combinations" on page 35.

The other contributor to virtual storage use is the "user dynamic storage" requirement.

GDDM keeps all the information about what you are doing in an area of storage special
to you. It will dynamically acquire and release storage to meet your needs, so the size of
the area varies.

The sort of things that GDDM keeps in user dynamic storage are:

• Control blocks

• The definition of the picture being created. This is held in various forms:

1. Graphics Data Format in both

Floating-point form, and
Fixed-point form.

2. Data stream

Program symbol defmitions for character devices
Device-dependent GDF ftles (expanded arcs, area fill, and so on).

Because of the additional functions in GDDM Version 2 Release I, applications that use
the functions may require more user dynamic storage than Version 1 Release 4. For
example, when using operator window support, the user dynamic storage requirement will
be significantly increased because GDDM needs to monitor such things as window size,
priority, and overlapping areas. Also, functions such as chart-by-example, and non-direct
transmission of image data, will use large amounts of dynamic storage. See Figure 14 on
page 66 for figures. If you are changing to Version 2 Release I from Version I Release 4,
or from an earlier release, you should consider this.

Users of order-driven devices will always have a smaller requirement than those on
character devices. The difference, again, depends on the type of picture being displayed.
For simple business charts the requirement will be halved, whereas for very complex
cartographies the reduction may be as little as 5%.

The following factors. also contribute to the user dynamic storage requirement:

• Use of multiple graphics pages
• For character devices, the size of the graphics field
• Use of PG Routines/ICU.

Use of multiple graphics pages can cause significant increases as the GDF ftle and data
stream are held for each graphics page. The storage overhead is reduced if the application
deletes the graphics field for non-current pages, and redefmes it where necessary.

28 GDDM Performance Guide

perfonnance background

The size of the virtual machine/address-space/partition needed to execute a GOOM
program is determined by the user's dynamic-storage requirement and the virtual-storage
size of that part of the program that is not in a shared area.

The virtual-storage requirements (code and dynamic storage per user) of the major
GODM functions are shown in Chapter 3, "Storage requirements and capacity
planning" on page 61.

As an example, the optimum virtual-storage requirement of the Interactive Chart Utility
is approximately 1100K bytes for the code plus 30K to 50K bytes of dynamic storage per
3270-PC/G or IGX user, and 60K to 90K bytes per 3279 user. These numbers assume
that GDDM is allowed to load code as required. All but about 10K bytes of code could
be placed in a shared area.

One fmal point, for MVS/XA users. Most of the GDDM code can be placed above the
16-megabyte line. Some user dynamic storage, however, is still obtained from below the
line.

Special considerations for composed-page printing

ne reference set

The amount of dynamic storage needed for composed-page printing depends on the size
and complexity of the picture. It can be several megabytes.

You can use two methods to reduce storage requirements at the expense of increased
processing time:

1. Break up the picture generation into several horizontal slices, or swathes. GDDM
then needs to hold picture data as swathes, instead of as entire pictures. Swathe
storage can be reused for subsequent swathes. Processor time increases because the
coded picture defmition, the GOP, is interpreted from start to finish for each swathe,
to determine which vectors appear within the current swathe. Swathing is controlled
by the HRISW A Til processing option.

2. Cause the GOP orders to be held in a spill me rather than in main storage. The
GDF me that becomes the input to the image-generation process is held in its
expanded form. This means, for example, that arcs have been expanded into a series
of line orders, vector symbols have been expanded into a series of line orders, and
that line orders, where necessary, have been expanded into area definitions. So,
expanded GOF for composed-page printers can become large, and it becomes useful
to be able to store it away on disk. Processor time increases because of the additional
input/output activity need to write and read the GOF orders to and from the disk.
Spilling is controlled by the HRISPILL processing option.

The reference set is the amount of storage that will be referenced or changed during the
execution of an application, and is generally much smaller than the virtual-storage
requirement. It is smaller because the GDOM code that gets loaded contains routines
that will not necessarily be used during the invocation of a particular program. These
routines may be things like error handlers or calls that are not being used by this
program.

So, the GOOM reference set in a typical graphics program is probably around 50% to
70% of the code size.

Chapter 1. Performance background 29

The working set

The reference set may contain some code that is used infrequently. GDDM
initialization/termination routines, for example, are only executed once by each
application.

Code that is seldom used, like the initialization routines, is part of the reference set but is
not present in real storage most of the time. Another measure - the working set - is
used in assessing how much real storage is actually required for satisfactory program
execution.

The working set is the amount of real storage that has to be available to enable the
application to run without excessive paging. The definition of "excessive" cannot be
precise. It might well be that no page faults are desirable, in which case working set
would equal reference set. In general tenns, the working set of an application that uses
GDDM is probably around 50% to 70% of the reference set.

30 GDDM Performance Guide

performance background

Understanding and managing GDDM performance

The preceding discussion shows that there are two significant factors that affect GDDM
perfonnance. The flfSt is the potential for high peaks of resource usage caused by the
generation of graphics. The second is the size of GDDM. By understanding these, you
can minimize their effect both on GDDM users and on other users of the system.

The next two sections give you the necessary background infonnation to manage them.

Smoothing out the peaks of resource usage

When GDDM displays a picture, it can use a lot of system resources. It all depends on
the type of picture and the type of device that is being used to display it. The use of a lot
of system resources has two implications for perfonnance:

I. Increased use. As more system resources are used, transaction response times tend to
get longer. This is particularly true for transactions that have a low priority in the
system. There comes a point when even small increases in resources used cause very
large jumps in response times. Figure 5 on page 32 illustrates this clearly. The
chapter on capacity planning will help you estimate whether you are going to exceed
your resource-utilization threshold by installing GDDM.

2. Peaks of resource use. lbe average resources required by a GDDM application may
be no greater than for any of your other non-graphics applications and you may be
well below the utilization threshold. Ilowever, while your other applications make
small but frequent requests, GDDM may make large, but generally infrequent, use of
resources. People who display pictures are likely to want to look at them for a long
time.

Chapter 1. Performance background 31

Response
time

Response Time versus Utilization

Response time
threshold

Processor Utilization

Figure S. Response time versus processor utilization

De hold up at the bank - a fable

100%

Demands for large amounts of resource cause problems that are best illustrated by
thinking about a "typical" bank. When you walk in to make a transaction, you might
have to join a queue or you might get served straight away. If you join a queue, how
long you are kept waiting depends on what the people in front of you are doing. You
will probably get served quicker if there are ten people in front of you making simple
withdrawals than if, say, the owner of a chain of 21 shops is paying in the takings from all
the shops. It doesn't happen very often, but when it does, everyone behind that person
has to wait.

There are several ways that your delay in the bank could be minimized. There might be
a special queue for people who want to make lengthy transactions, or the teller might .
occasionally interrupt the lengthy transaction to deal with smaller transactions.

Exactly the same sort of procedure takes place in a processor. We can specify that
transactions have priorities, so that those needing a good response time get processed fll'St.
Most of the subsystems also operate a time-slicing technique so that transactions that
consume large amounts of processor time at a gulp get interrupted, and other people have
a bite. We can usually decide the size of the slice that we want each user to have~ CICS
systems do not practice time-sharing in this way, but GDDM hands back control to
CICS periodically so that transactions with a higher priority can be dispatched.

32 GDDM Performance Guide

performance background
------. ----------.---

The same problem - how to stop large infrequent resource requirements affecting other
users - exists in remote communications networks.

We can see a partial solution by looking at the flow of the GDDM-produced data stream
through the different terminal access methods. In practice, there are only two to consider,
SNA and non-SNA. As a starting point, remember that GDDM breaks the data stream
into separate transmissions. The GDDM default buffer size for each transmission is 1536
bytes. Except for IMS/VS, which puts all the transmissions back together, all the
subsystems treat each GDDM transmission as a separate, independent message.

Non-SNA: The GDDM transmission gets passed to the terminal in one SEND
regardless of size. For IMS/VS, this means the entire data stream. Figure 6 shows what
happens.

GDDM

msg •

msg •

msg •

Subsystem
CICS etc.

msg

msg

msg

•

•

•

Access
Method

Figure 6. Data flow through a non-SNA system

SNA: The GDDM IOBFSZ defines the amount of data sent for each definite response.
So IOBFSZ should he set to a high value, say 4K. When sent across the network, the
data will be segmented into chained request units (RUs). The RU size can be individually
defmed for each terminal.

By manipUlating the GDDM IOBFSZ size for non-SNA, or the IOBFSZ and the RU
for SNA, we can generally prevent large messages causing problems in the remote
network. Some sort of balancing act will always be necessary to reach a compromise
between the GDDM users and the other users of the network. Figure 7 on page 34
shows what happens.

Otapter 1. Performance background 33

GDDM Subsystem Access
CICS etc. Method

msg ~ G
0 First in chain

~

0 Middle in chain ~

• • •
0 Last in chain

~

Figure 7. Data flow through an SNA system

By manipulating either the GDDM transmission buffer size (for non-SNA), or the
subsystem buffer size (for SNA), we can generally prevent large messages causing
problems in the remote network, although we have to perform some sort of balancing act
because each message, regardless of size, has processor and link overheads associated with
it.

Large messages are not such a problem for channel-attached terminals, so you should
change the default to a large size (such as 4K bytes) to minimize terminal-access-method
processing costs. You can do this by specifying the ADMMDFT IOBFSZ default.

The considerations that apply to IMS/VS non-SNA are special, and are discussed in
"IMS/VS tuning - background information" on page 48.

Let's go back to the bank. The owner of the chain of shops realized that getting the teller
to count all the money causes problems. So next time, the owner took all the shop
managers to the bank with their respective takings. Have you ever waited behind 21
people paying in shop takings? It takes a long time to get served.

GDDM has the same problem. The data stream can be broken up into small messages
by use of GDDM and subsystem buffer sizes, but because GDDM is producing them in
rapid succession, when they get into the network it is just like the 21 shop managers.
Each one takes only a short time to get served, but when they all arrive at the teller's
window together, everyone behind them has to wait.

Then, the head teller had a great idea. He took the owner of the shops and the shop
managers over to the waiting area. Then he told the owner of the shops to send the shop
managers, one at a time, to the teller. Each shop manager would join the back of the
queue only after the previous one had been served and had returned to the waiting area.
Of course it took longer for all the shop managers to get served, but it pleased all the

34 GDDM Performance Guide

performance background

Of course it took longer for all the shop managers to get served, but it pleased all the
other customers because it meant that there was never more than one shop manager
waiting in front of them in the queue. .

We can adopt a similar approach to the problem of many GDDM messages arriving
together at a node in the network that has a slow service time, such as a remote
teleprocessing line.

In SNA networks, the solution is to usc the SNA PACING and VPACING parameters.
These can prevent GDDM from sending further messages until the ftrst has been
processed by the network. VPACING is not supported in the SNA TSO environment,
but another, similar, mechanism exists. This is discussed in the TSO-specific performance
section.

In the two non-SNA environments where the problem is likely to occur, CICS and TSO,
GDDM offers a solution. A GDDM default signilles whether synchronized terminal I/O
is to be performed in these two subsystems. This can be changed by specifying the
ADMMDFT 10SYNCH = YES default. Like VPACING, this mechanism prevents
GDDM from clogging the network; it achieves this by delaying acceptance of a second
message for a user until the ftrst has been handled by the network. The use of
synchronized terminal I/O is discussed further in the subsystem-specific sections of
Chapter 2, "Tuning and customizing by subsystem" on page 41.

Finding the optimum loading and packaging combinations

Which pieces of GDDM to load, and when and where to load them in processor main
storage, are probably the most important performance decisions a system programmer has
to face. You will have to choose a combination of loading and packaging options that
suit both GDDM users and other users of your system.

GDDM consists of many hundreds of routines that are packaged together into several
dozen family groups or load modules. Each load module manages one major GDDM
function, like alphanumerics support or data stream processing. At execution time,
GDDM resolves the addresses of the routines needed to process the calls issued by the
application program. It does this in one of two ways:

I. Finding the routine already in storage because it has been previously loaded into the
VM discontiguous shared segment (DCSS), OS pageable link pack area (PLPA), or
the CICS partition/address space.

2. Loading the relevant GDDM load module into the application address
space/partition/virtual machine.

It is possible to make a compromise, having some of the more commonly used GDDM
code in a shared area with the others loaded as needed at execution time.

Whichever method is used, three options affect the timing of address resolution. The
options are:

1. GDDM is loaded with the application. All addresses can be resolved on the ftrst
GDDM call.

OIapter 1. Performance background 35


~~~--------- -

2. GDDM is loaded at the first GDDM call in one big package. All addresses can be 
resolved on the first GDDM call. 

3. GDDM is loaded in several packages as calls are processed. Only the addresses of 
routines required to manage a particular call are resolved as the call is processed. 

The loading and packaging options are illustrated in Figure 8, Figure 9, and Figure 10 
on page 37. 

0;I:GDD:M;:SHA'R-ED~"AR:'EA:I;{~:; 
· .... ~.i:-:;::.:;:-::c .. :-::,::~:t·::z·:;,.:·:: ':::.,. ',.f.' '.\: '·:·:·,-;.:.':·:i::t·~?:·:':~ .;: ,:,~·);'.:··';::~'::fZ:::~~:~3:.7;::.~.:·£·::···0:.';:::;:::::.::::':i':-:~ "';'::".:: ':.::; .. ~~. 

GDDM can be loaded from a shared area where everyone can easily 
get at it, but where it takes up valuable space when not in use. 

Figure 8. Loading options - keep GDDM in shared area 

, 
..... ' ~f.v.«-: . 

.. ~ 

~ ". 

cP 

GDDM can be loaded from disk storage where there is 
plenty of room, but getting it takes time. 

Figure 9. Loading options - keep GDDM in normal disk storage 

36 GDDM Performance Guide 



performance background 
----------------~-------

GDDM 

GDDM packaged in a 
big piece. It only 
needs to be accessed 
once but it takes up 
a lot of room. 

GDDM 

GDDM packaged in small 
pieces. Not much room 
needed but it takes a 
long time to pick up 
the bits. 

G D D M packaged with 
application. Only 
loaded once but it 
takes a lot of 
room. 

Figure 10. Packaging options: Big package. small packages. or with applications 

To configure GDDM into a large package requires some action on your part. The 
appropriate GDDM subsystem initialization module (ADMEOOOx) (where "x" is C for 
CICS, I for IMS/VS, 0 for TSO, or V fllr VM) has to be link-edited with one or more 
GDDM packaging stubs. These stubs refer to the major functions in GDDM, so by 
doing this you are constructing a single GDDM load module that refers to all the 
GDDM routines that you think the application is going to need. Do not worry if you 
miss one out; the function \vill get dynamically loaded when required, but you may pay a 
performance penalty for doing this. It is probably reasonable to omit things like the leU 
I Iclp panels which might or might not be required at run time. 

The following table summarizes the options you have for loading and packaging GDDM: 

Loading options Applicable packaging options 

GDDM preloaded No packaging 
into shared storage 

I ,ink-edit GDDM modules together 
using packaging stubs 

GDDM loaded at No packaging 
execution time 

I,ink-edit GODM modules together 
using packaging stubs 

Link-edit GDDM modules with the application 
using packaging stubs 

Figure II. Loading and packaging options 

Chapter 4, "Repackaging for performance" on page 93 describes how the packaging 
stubs work and which ones to usc, and shows you how to go about producing composite 
GDDM modules for different purposes. 

Chapter I. Performance background 37 



Recommendations for loading and packaging combinations 

This list gives the advantages and disadvantages of the possible combinations and makes a 
suggestion for each subsystem. Additional subsystem-dependent points will be discussed 
later in the performance information for individual subsystems. 

1. GDDM preloaded into shared storage. not packaged at execution time: 
recommended for VM/SP environments. 

Advantages 

• One copy of the code can be shared by many users, thus saving on virtual storage 
requirements and potential page faults. 

• Because code is preloaded there is little disk fetch overhead at execution time. 

Disadvantages 

• The code occupies virtual storage even when no application is using GDDM. 

• The cost of rmding the code in the shared area may be expensive in some 
environments. 

• If there are few GDDM users. the code may have to be paged in at execution 
time, causing problems in systems that are short of real storage. 

2. GDDM preloaded into shared storage. packaged at execution time: recommended for 
TSO and IMS/VS environments that have many GDDM users. 

Advantages 

• One copy of the code can be shared by many users thus saving on virtual storage 
requirements and potential page faults. 

• Because code is preloaded. there is little disk fetch overhead at execution time. 

• The cost of rmding the code in the shared area is reduced because only one load 
is issued. 

Disadvantages 

• The code occupies virtual storage even when no application is using GDDM. 

• [fthere are few GDDM users. the code may have to be paged in at execution 
time, causing problems in systems that are short of real storage. 

3. GDDM loaded at execution time, module by module: recommended for CICS 
envirorunents with frequent GDDM use. 

Advantages 

• GDDM does not occupy virtual storage while applications that execute it are not 
being used. 

38 GDDM Performance Guide 



performance background 

• Only the GDDM code required for the specific application may be loaded at 
execution time, again saving virtual storage. 

Disadvantages 

• There are potentially more page faults and greater use of virtual storage in 
environments where several copies of GDDM exist. 

• Issuing multiple loads may severely degrade program execution time. 

4. GDDM loaded at execution time, packaged into one module: recommended for 
TSO, IMS/VS and CICS environments that have little GDDM usage. 

Advantages 

• GDDM does not occupy virtual storage while applications that execute it are not 
being used. 

• Only a single load operation takes place so response times are not severely 
degraded. 

Disadvantages 

• There are potentially more page faults and greater use of virtual storage in 
environments where several copies of GDDM exist. 

• Unnecessary code might get loaded. 

5. GDDM packaged with application. 

Another option that is open to you is to link-edit GDDM with your application 
program so that they both get loaded together. This might be a useful move if you 
had only one or two programs that used GDDM and you did not want to keep 
GDDM on-line. But, usually, this technique does not have a great deal in its favor. 

Chapter I. Performance background 39 



tuning and customizing 
----------------_._-._ ..... _._._-_.--_._-------------------

Chapter 2. Tuning and customizing by subsystem 

This chapter describes what you, a system programmer, can do to tune GDDM. 
Chapter 1 described why you should do it. Scanning Chapter 1 should help you make 
sensible decisions about the suggestions that follow. To use this chapter for tuning you 
should look at the hints and tips for all subsystems, because you may be able to apply 
this information to ensure that GDDM is used efficiently in your installation. Then you 
should look at the particular subsystem or subsystems that you are interested in. 

Hints and tips on efficient usage for all subsystems 

When it comes to performance, computer systems arc like automobiles. Simple design 
and regular tuning will help keep fuel consumption down, but if you want to get that 
extra 5% you have to drive thoughtfully. Such things as stepping your foot hard down 
on the gas when the lights tum green arc out. 

Details of application programming techniques arc documented in 
Chapter 5, "Application programming for pcrfonnance" on page 115. The following is 
a list of hints and tips that you might want to think about: 

• Customize your 3270-PC/G and IGX work stations with sufficient segment storage 
for GDDM to run in retained mode. Even for output-only type applications, this 
may give significant performance advantages. Retained mode usually means shorter 
data streams and, therefore, less use of the terminal access methods like VT AM. See 
the table under "3270-PC/G and IGX segment storage requirement for GDDM" on 
page 67 for suggested values for different types of applications. 

~ Very complex pictures may take quite some time to draw in the work station. This 
can cause problems. While drawing, the work station does not communicate with 
the host operating system, and to the host it may seem that the terminal has gone out 
of service, and so it disconnects it. 

You can avoid this happening by resetting "timeout" values in your operating system. 
The "Things You Can Do" section for each subsystem later in this chapter tells you 
how to go about it. 

• There are various GDDM default values that can affect performance. Here is a 
summary: 

Chapter 2. Tuning and customizing by subsystem 41 



Default Meaning 

AM3270 Indicates how your 3270 tenninals are attached. You can give 
GDDM a (small) helping hand by letting it know that you only have 
local SNA devices for example. 

ICUFMDF Determines the ICU defaults. 

ICUFMSS Determines the ICU symbol sets. 

IMSUMAX (IMS only) Specifies the maximum number of concurrent 
conversations to be supported. 

10BFSZ Determines the GDDM transmission buffer size. 

10COMPR Indicates whether GDDM is to create compressed PS loads for 
character devices. 

IOSYNCH Indicates whether GDDM is to perform synchronized tenninal 1/0 . 

. MAPGSTG Dermes the mapgroup storage threshold for GDDM run-time 
alphanumeric mapping. 

SAVBFSZ Dermes the FSSAVE transmission buffer size for saved pictures. 

• Processing option values can also be specified using GDDM defaults or in a 
DSOPEN parameter list. Those which can influence performance include: 

Procopt Meaning 

FASTUPD Indicates the picture update mode to be used for 3270-PC/G and 
IGX, 3179-G, and 5550 family displays. You can shorten data 
streams by specifying (FASTUPD,YES). 

HRISPILL Dermes whether a spill ftle will be used to hold expanded GDF for 
composed-page print file generation. You can trade off 
host-processor time against storage by specifying (HRISPILL,YES). 

HRISW ATH Dermes the number of slices (swathes) that the picture is divided into 
for composed-page print file generation. You can again trade off 
host-processor time against virtual storage. The larger the number of 
swathes, the less virtual storage is needed. 

For 3800 or 3820 print ftle generation, the largest useful swathe count 
is the picture depth in inches multiplied by 8. For 4250 print ftle 
generation, the largest' useful swathe count is the picture depth in 
inches multiplied by 19. 

SEGSTORE Dermes whether GDDM operates in retained or non-retained mode 
for the 3270-PC/G and IGX. Local interactions are only possible if 
(SEGSTORE,YES) is specified or implied by default. 

42 GDDM Performance Guide 



tuning and customizing 

CTLMODE Dermes whether user control is available to the user. The default is 
(CTLMODE,YES). If user control is not to be used, specifying 
(CTLMODE,NO) causes a small decrease in dynamic storage 
requirement. 

LCLMODE Dermes whether GDDM is to use a higher precision in the vectors 
that it sends to the 3270-PC/G and /GX work stations. Only specify 
if panning/zooming is to be used in user control. 

Suggested settings for some of these are given in the "Things you can do" section for 
each subsystem later in this chapter. 

A more detailed explanation of each default, whether it applies to your specific 
subsystem, and how to change defaults is in "GDDM Defaults and Nicknames" in 
the GDDM Installallon and System Management manual appropriate to your 
subsystem. 

Chapter 2. Tuning and customizing by subsystem 43 



CICS tuning - background information 

Loading 

Packaging 

CICS operates in a fundamentally different way from that of most of the other 
subsystems that GDDM runs under. AU users execute programs in the same address 
space/partition. If these programs are reentrant, like GDDM, the same copy can be used 
by other transactions. Putting GDDM in the shared virtual area or a link-pack area gives 
no advantage unless you have more than one CICS region running GDDM transactions. 

Program load under CICS can occur at two different times: 

1. At system initialization, if RES = YES in the PPT entry 

2. At program execution otherwise. 

Resident programs stay pennanently in the CICS address space/partition. Most programs 
that are nonresident are not deleted from the CICS address space/partition until a 
short-on-storage condition arises. Frequently used programs are therefore likely to be in 
main storage if they have been used previously, even if they are nonresident. 

If a nonresident program has been deleted from main storage, it has to be reloaded from a 
library on DASD before it can be executed. This may increase transaction-response time. 
Declaring GDDM programs as resident will avoid this but will cause short-on-storage 
conditions to occur more often. 

Under CICS 1.6.1, on MVS/XA most GDDM modules can be loaded above the 
16-megabyte line. CICS does not delete such modules when they are loaded whether or 
not RES = YES is specified. 

In most CICS environments other than MVS/XA, there is little point in packaging 
GDDM modules together to fonn large composite CICS programs. In fact, there are two 
positive disadvantages: 

1. No CICS program can be greater than Sl2K bytes. Some ofthe composite GDDM 
modules that you can create will exceed this. 

2. At load time, sufficient real storage to contain the program has to be acquired. This 
may give paging problems where large programs are loaded in storage-constrained 
environments. 

CICS will keep programs that are frequently used in main storage, even if they are 
nonresident, so packaging is unlikely to reduce loading delays. 

These disadvantages do not apply on MVS/XA. 

44 GDDM Performance Guide 



tuning and customizing 

ControUing the data stream 

The 1/0 synchronization option (the ADMMDFT IOSYNCH default) determines 
whether the WAIT option is put on the EXEC CICS SEND calls that GDDM issues to 
send data streams to the device. 

This is useful for controlling teleprocessor-attached terminals in a non-SNA environment. 
It prevents a GDDM application from issuing a SEND until the response from a 
previous SEND has been returned from the access method to CICS. This technique 
helps to avoid increasing the response times for non-GDDM users on the same 
teleprocessing line in the non-SNA environment. 

In an SNA environment, PACING and VPACING should be used to avoid increasing 
the response times for non-GDDM users on the same control unit. 

The size of the GDDM SEND transmission is determined by specifying the ADMMDFT 
IOBFSZ default. 

The size of each transmission from CICS to the terminal access method is governed by 
the BUFFER parameter in the CICS TCT. For SNA, the maximum size is 1536 bytesj 
so if GDDM SENDs a message that is larger than this, segmentation occurs. For 
non-SNA, the BUFFER parameter is automatically set to the size of the GDDM SEND, 
so messages are not segmented. 

The program processing table 

The number of entries in the program processing table (ppn influences the performance 
of all transactions, because this table has to be scanned each time a transaction executes a 
program. IBM supplies four lists of GDDM PPT entries. One of these, the national 
languages list ADMUNPPT, consists of messages, menus, and help panels in each of the 
national languages other than US-English. You can delete the national language entries 
that you do not require. The following list shows the module suffix for each of the 
languages: 

S'4fj1X 
ADM .... B 
ADM .... D 
ADM .... F 
ADM .... G 
ADM .... H 
ADM ... .I 
ADM .... K 
ADM .... N 
ADM ..•. S 
ADM .... V 

Language 
Brazilian 
Danish 
French 
German 
Korean (Hangeul) 
Italian 
Japanese (Kanji) 
Norwegian 
Spanish 
Swedish 

Chapter 2. Tuning and customizing by subsystem 45 



Controlling GDDM in the processor 

GDDM will periodically give back control to CICS to allow any transaction with a 
higher priority to be dispatched. For GDDM transactions, you should specify low 
TRNPRTY values in the DFHPCT entries; for non-GDDM transactions, specify high 
ones. This will prevent GDDM from increasing the response times of non-GDDM 
transactions. There might well be an adverse effect on the GDDM response times, 
however. 

CICS tuning - things you can do 

Here are some suggestions and comments about some of the things you can do to tune 
CICS. 

1. Declare GDDM programs as nonresident in the PPT. 

2. There is little advantage to be gained in packaging GDDM in most CICS 
environments. 

3. There is no advantage in putting GDDM in the VSE shared virtual area or in a 
link-pack area unless you have more than one CICS region executing GDDM 
transactions. 

4. If you do package GDDM, remember that composite GDDM programs must not be 
greater than 512K bytes. 

5. Do not put entries for the national language routines into the PPT if you are not 
going to use them. 

6. Configure the 3274 to support data-stream decompression if it is TP attached and the 
line speed is 19 200 bits per second or less. 

7. The size of the GDDM transmission buffer should be increased to 4K bytes for all 
local and SNA remote users by specifying the ADMMDFT IOBFSZ default. 

8. For remote non-SNA GDDM users, consider specifying the GDDM transmission 
buffer size (the ADMMDFT IOBFSZ default). Do not make it larger than the 
normal value, which is 1 536. For remote SNA users, changing the BUFFER 
parameter in the CICS TCT table has the same effect. 

A large size means: 

• The response times of other remotely attached users will be degraded. 

• The response times for remotely attached GDDM users will be better. 

• There will be fewer calls to the terminal access method. Therefore, there will be 
lower processor utilization. 

A small size means: 

• Less impact on response times of other remotely attached users. 

46 GDDM Performance Guide 



tuning and customizing 

• Worse response times for remotely attached GDDM users. 

• More calls to the tenninal access method. Therefore, there will be higher 
processor utilization. 

9. Control data streams in remote networks by using: 

a. EXEC CICS SEND WAIT for non-SNA, specified by the ADMMDFT 
IOSYNCH = YES default. 

b. PACING/VPACING and PASLIM for SNA. 

10. Prevent GDDM from impacting non-GDDM transactions in the processor by use of 
low TRNPRTY values in DFHPCT. 

II. If your graphics terminals are attached to a 3274-1 D controller: 

a. For CICS/OS/VS: the Prepare To Read feature should be specified in the OS 
System Generation I/O device macro for each terminal. 

b. For CICS/DOS/VS: the mode parameter should be set to "05" in each terminal 
ADD statement in the IPL procedure. 

12. See "Application programming under CICS" on page 124 for details of CICS 
pseudoconversational mode. 

Chapter 2. Tuning and customizing by subsystem 47 



IMS/VS tuning - background information 

The way that GDDM behaves is slightly different in an IMS/VS environment from the 
way it behaves under other subsystems. The principal differences are: 

1. GDDM accesses a user data base, the SYSDEF data base, when it needs to 
determine the characteristics of devices used by an application. This is done because 
GDDM is not in direct communication with the display device and cannot, unlike 
other subsystem environments, issue a "query device. II The information on the 
SYSDEF data base is referenced by using the logical terminal (LTERM) name ofthe 
device. 

2. GDDM sends the data stream for the picture it has created by doing inserts (ISRTs) 
to the IMS/VS message queue. Under other subsystems, each of the GDDM output 
requests is treated as a separate message and is sent to the device as soon as possible 
by the subsystem. Under IMS/VS, they are treated as segments of a single message 
which is not sent to the device until GDDM has passed the complete data stream to 
IMS/VS and issued a PURGE. This difference has important performance 
implications. 

3. Under IMS/VS, application programs cannot use the GDDM Device Input call 
AS READ to read input from the display device. This means that GDDM or 
GDDM Presentation Graphics Facility (PGF) application programs cannot be 
interactive. 

Under IMS/VS, execution of a message processing program (MPP) is not bound to a 
specific L TERM. When an MPP associated with a specific transaction is executing, 
it must (if it is conversational) accept input from any terminal that can input the 
transaction. IMS/VS transactions can be written to be conversational by using a 
scratch pad area (SPA) to preserve the status of a conversational transaction for one 
LTERM. The nature of the architecture of GDDM, however, means that the status 
of a conversation is reflected in the contents of many tables and control blocks 
throughout the Message Processing Region (MPR), and this cannot be simply put 
into the SPA. Therefore, an application can use GDDM only in non-conversational 
mode. The interactive utilities are implemented under IMS/VS in a way that avoids 
this restriction. The mechanism is described later. 

Output of GDDM data streams 

The way that GDDM and IMS/VS interact during the transmission of GDDM-produced 
data streams has important performance implications. There are three separate operations 
involved: 

1. GDDM sends the data stream to the message queue 

GDDM ISRTs the data stream as segments of a multi segment message to the output 
message queue. The following points should be noted: 

a. The size of the ISRT is controlled by the GDDM transmission buffer size 
(specified by the ADMMDFT IOBFSZ default). 

48 GDDM Performance Guide 



tuning and customizing 

b. With remote non-SNA transmission, the 3274 Model C has a restriction that no 
more than 3K bytes of uncompressed character defmitions may be received in 
one transmission. Only GDDM knows where the data stream may be segmented 
to avoid this restriction, so it puts no more than 3K bytes of character defmitions 
into a transmission buffer before an ISRT is made. For remote non-SNA, 
IMS/VS sends each ISRT as a separate transmission. 

It should be noted that only BTAM may be used for remote non-SNA. 

c. It is advantageous to increase the GDDM transmission buffer size, to 4K bytes 
by specifying the ADMMDFT IOBFSZ default. From the preceding 
information it can be seen that this change will not be used to full advantage in 
the remote non-SNA environment. 

d. Some tuning of the ADMMDFT IOBFSZ default to the long message queue 
length should be considered. This is because a message-queue element cannot be 
shared between segments of different messages. It is possible for a GDDM ISRT 
to span more than one message-queue element. To avoid wasting space in the 
message queue, make the GDDM transmission buffer size (the ADMMDFT 
IOBFSZ default) equal to, or a multiple of, the long message-queue 
logical-record length. 

The arithmetic for this must allow the space for the 4-byte "LLZZ" added by 
GDDM, and the space for appropriate headers in the message queue. See the 
description of the RECLNG parameter in the MSGQUEUE macro in the 
IMS/VS Installation Guide. 

2. IMS/VS moves the message to buffer(s) in Communications I/O Pool 

The GDDM output data stream is held in the message queues until it is completed, 
when GDDM issues a PURGE call. It is then considered sendable, and a 
device-dependent module will be scheduled to convert the data stream into a 
device-specific form in the Communications 1/0 Pool (ClOP) OUTBUF buffers. 
For GDDM, Message Format Services (MFS) is bypassed. The transfer to the ClOP 
will occur when the device is available. The following points should be noted: 

a. Except with BT AM remote attachment, the blocking of the output data stream 
sent by IMS/VS is governed by the OUTBUF buffer size. The choice of the 
OUTBUF size is severely constrained by the protocol of attachment of the 
output device. 

b. For local non-SNA there can be only one OUTBUF buffer. This must be large 
enough to hold an entire output message, but must not be more than 32K bytes 
long. This means that there are GDDM graphic pictures that cannot be shown 
in the local non-SNA environment. 

ClIapter 2. Tuning and customizing by subsystem 49 



Unless there is some strong reason against, it is recommended that the maximum 
value (32K bytes) is used in the non-SNA environment. Violation of the 
maximum value causes the following messages to be displayed on the IMS/VS 
master console: 

DFS0089I OUTPUT EXCEEDS BUFFER SIZE 

LTERM xxxxxxxx NODE yyyyyyyy 

DFS99891 VTAM NODE yyyyyyyy IS INOPERABLE 

and causes the IMS/VS user terminal to be made inoperable. (Descriptions for 
the above messages are in the IMS/VS Messages and Codes Reference Manual.) 

If this occurs. and the device token being used specifies COM PRES = NO, a way 
of reducing the length of the data stream is to use a different device token, which 
allows data stream compression (assuming the controller is configured for PS 
compression), that is, COMPRES = YES. See "Device Characteristics Tokens" 
in the GDDM Installation and System Management for MVS manual. 

c. For BTAM remote attachment of GDDM devices. the value of OUTBUF is not 
used. In this case. IMS/VS uses the ISRT sizes as block sizes to avoid the 3K 
bytes restriction for the 3274 Model C described earlier. 

3. IMS/VS uses the access method to send the message to the device 

This is a regular function of IMS/VS. All that is unusual about it with GDDM is the 
occurrence of large data streams. You should consider the following: 

a. With local non-SNA support, the entire GDDM data stream is put into one IMS 
OUTBUF buffer in the ClOP. When this is transmitted. it is done with one call 
to the access method (for example, one VT AM SEND). This can cause delays 
for other users of the channel if large data streams are sent. The channel is held 
busy while the control unit processes the entire GDDM data stream. 

b. With BT AM remote support. IMS/VS does not communicate with any other 
devices on a BTAM line group during the transmission of a complete GDDM 
picture. In scheduling the device-dependent module. IMS/VS uses the concept of 
a communications IT ASK. in controlling output to different devices. IMS/VS 
considers a complete BT AM line group as a resource for the communication task 
scheduling. This means that when a GDDM picture is being transmitted to one 
device of a line group, the other devices are locked out during the transmission of 
the entire picture. 

As an example, for an average 6K bytes (compressed) GDDM graphic data 
stream, sent on a 4 800 bits per second line, the lockout would last approximately 
10 seconds. For a complex 17K byte (compressed) data stream it would last 
approximately 30 seconds. If data-stream compression is not used, these times 
will double. 

Note: This will seriously affect the performance of all terminals on the same 
BT AM linegroup. 

50 GDDM Performance Guide 



tuning and customizing 
-------------_._----------------

Cross-domain considerations 

The IMS/VS parameter OUTBUF defines the largest request unit (RU) that can flow 
from IMS/VS into the network. For IMS/VS-GDDM local non-SNA terminals, a value 
of 32K is recommended for OUTBUF. -

In a cross-domain environment, the R U is sent through a 3705. The MAXDAT A 
parameter on the network control program (NCP) must be big enough to handle the 
largest RU that can enter the network; in this case it is 32K bytes. 

The product of two other NCP parameters (MAXBFRU • UNITSZ), should be greater 
than MAXDAT A. When MAX DATA = 32 000, for example on local non-SNA 
terminals, this will lead to increased storage requirements in the host computer. 

Use of nonrecoverable transactions 

If GDDM transactions are inquiry-only, it is an advantage to make them nonrecoverable. 
This is done by specifying 

INQ = (YES,NORECOVER) 

as a parameter to the TRANSACT macro. If this is done, performance will be improved, 
because: 

• The output data stream is not logged. 

• In SNA transmission, the message-queue clements and ClOP buffers do not have to 
be held until the picture display at the device is completed. This can be important, 
particularly for remote attaclunent. 

Message Processing Region (MPR) priority 

Care must be taken with the class scheduling and resource management to ensure that 
GDDM applications are run in Message Processing Regions (MPRs) of a suitable 
priority. For example: 

• In a processor-constrained system, it would be advisable to run GDDM applications 
in a low-priority MPR to avoid impacting the response times of other transactions. 

• In a storage-constrained system, it may be better to run GDDM applications in 
medium- or high-priority MPRs to minimize the time for which storage is required. 

Message queue and Communications 1/0 Pool sizes 

GDDM data streams are large. This will increase the message queue and the ClOP space 
requirements. The following points should be considered: 

• The message queues will be the bottleneck if there are delays in outputting messages 
to terminals, because the ClOP buffers will be allocated only when the 
communication path to the device is available. 

Otapter 2. Tuning and customizing by subsystem 51 



• It may be prudent to use the terminals in RESPONSE mode to help regulate the 
flow of output. 

• With local non-SNA terminals, the use of large 32K byte OUTBUFs for GDDM 
output will affect the ClOP utili7.ation. Non-GDDM transactions that use MFS, 
however, will not cause the large OUTBUFs to be allocated. 

• Message-queue and ClOP utilizations should be carefully monitored during the 
introduction of GDDM to an installation, and periodically thereafter. 

The Interactive Chart Utility and symbol editors under IMS/VS 

GDDM applications cannot be run as conversational transactions, because the 
architecture of GDDM makes it impossible to preserve the status of one conversation 
between inputs for that conversation. The Interactive Chart Utility and the symbol 
editors, however, must work in a conversational mode. To solve the problem of 
preserving status, the following technique is used: 

• A utility scheduler program, ADMUTIL, is provided that runs in "wait for input" 
mode. A user who wants to use the Interactive Chart Utility, or one of the symbol 
editors, must enter the transaction code for the utility scheduler, with the name of the 
specific utility as a parameter. 

• ADMUTIL then schedules a new "instance" of the utility which will be a subtask of 
the scheduler. Unique GETMAINed working storage will be obtained for the 
subtask, and the appropriate GDDM code will be loaded, or located in the LPA. 

• Only one copy of the GD~M code will be used by all users. 

• DL/I calls cannot be made from within a subtask, so the scheduler issues DL/I calls 
for the subtask. 

• The code of the subtask is executed until a response from the terminal operator is 
required. It will pass control back to the scheduler, where a GU will be reissued. 
The next message is read from the message queue, and the L TERM is checked to see 
if it is either a request for a new instance of a utility, or a response from a terminal 
operator for an existing instance of a utility. 

If the input message is a response for an existing instance of a utility, the scheduler 
passes control to the correct instance of the utility. Otherwise, a new instance of a 
utility will be scheduled. 

The following points affecting performance should be noted: 

• The GETMAINed storage associated with an "instance" of a utility cannot be 
shared. This means that only a finite number of parallel conversations can be 
supported, before the storage capacity of the MPR is exceeded. 

• All transactions for the utilities are routed through one MPR. The IMS/VS class 
scheduling cannot be used to balance the load on the MPRs, which may result in 
large variations in response time if there are many users of the interactive utilities. 
You can control the number of concurrent users with the ADMMDFT IMSUMAX 
default. 

52 GDDM Performance Guide 



tuning and customizing 

• In light use, the MPR is still occupied, because ADMUTIL runs in "wait for input" 
mode. 

• It has been observed that the measurement of processor time by the IMS/VS 
Monitor program is affected by the tasking structure of the utility scheduler. The 
processor time recorded appears to be only that associated with the utility scheduler. 
The processor time for the "instances" of the utilities, which are attached as subtasks, 
is not counted. 

IMS/VS tuning - things you can do 

Here are nme suggestions and comments about some of the things you can do to tune 
IMS/VS. 

1. Put GDDM into a link-pack area if you have many potential GDDM users or if you 
are not short of real storage. Be aware that the overhead of finding modules there is 
governed by the number of user STEPLIBS that are accessed. 

2. Package GDDM into a single load module to significantly reduce loading costs, even 
if the code is in a link-pack area. 

3. Configure the 3274 to support data~stream decompression if it is 
tcleprocessor-attached, and the line speed is 19 200 bits per second or less. 

4. Carefully consider the performance implications of managing large output data 
streams in non~SNA environments, before installing GDDM in such environments. 

5. Increase the size of the GDDM transmission buffer to 4K bytes, except for remote 
non~SNA environments, by specifying the ADMMDFT IOBFSZ default. 

6. Tune the long message record size to the GDDM transmission/save buffer sizes. 

7. Consider message~queue and ClOP space before GDDM is installed, and monitor 
after installation. 

8. Consider running terminals in response mode to regulate the data flow. 

9. Use resource-management and class-scheduling facilities to control processor usage by 
GDDM applications under IMS/VS. 

10. Use nonrecoverable transactions when appropriate. 

11. Review the teleprocessor-access-method parameters that can affect performance: 

• Choice of buffer sizes and R U sizes 

• PACING/VPACING and PASLIM parameters in SNA. 

Chapter 2. Tuning and customizing by subsystem 53 



12. The use of a utility scheduler has enabled the GDDM interactive utilities to run 
under IMS/VS. However: 

• A dedicated Hwait for input" MPR is required. 

• It has been observed that the measurement of processor time by the IMS/VS 
Monitor program is wrong for the MPR when the ADMUTIL scheduler is run. 

13. Review the number of concurrent users that may be expected for the interactive 
utilities, in light of the performance constraints of the implementation. The number 
of concurrent users will be limited by: 

a. The storage space within the MPR. This depends on which utilities are used. 
The GDDM code is shared between instances of the utilities, so only one copy is 
required. There is also a dynamic storage requirement for each user. 

b. The response time for the MPR running ADMUTIL. This depends on many 
factors, such as the 10ading of the system, the re1ative priority of the MPR, and 
the hardware used. 

14. Vary the ADMMDFT IMSUMAX default to overcome variable response times for 
the GDDM utilities which run under the ADMUTIL scheduler. IMSUMAX defines 
the maximum number of concurrent conversations with the schedu1er. Its default 
value is S. 

IS. If your graphics terminals are attached to a 3274-ID controller, the Prepare To Read 
feature should be specified in the OS System Generation 1/0 device macro. 

54 GDDM Performance Guide 



tuning and customizing 

TSO tuning - background information 

This section contains several tenns used in MVS/TSO tuning. If you need an 
explanation, further infonnation is given in the MVS Initialization and Tuning Guide. 

Controlling the data stream 

The I/O synchronization option (the ADMMDFT IOSYNCH default) determines which 
of two types of TPUT is to be perfonned: 

• TPUT NonOLD (no synchroni7..ation of tenninal I/O) 

• TPUT HOLD (wait for a response from the terminal before sending any more data; 
that is, synchronize the I/O). 

The TPUT HOLD option therefore regulates the data flow into the network from the 
GDDM application. 

If the HOLD option is selected for a particular user, every TPUT issued will cause the 
address space to incur an OUTPUT WAIT SWAP until a response has been received 
from the terminal, when the address space will be swapped back in. 

Another method of controlling the data stream is to use the MVS/TSO system options. 
The size of the TSO output buffer is set by the MAXRU parameter in the LOGMODE 
table for SNA (maximum 1536 bytes); for non-SNA it is the same size as the application 
TPUT, that is, no segmenting of data occurs. 

111e number of buffers available to manage TSO terminal output is defmed on a global 
basis in TSOKEYOO for VI'AM; this is a member in SYSI.PARMLIB. The philosophy 
of output-buffer handling for VT AM is to specify a maximum amount of buffer space 
that can be in use for output by an address space. This is defmed by HIBFREXT, which 
is the amount of buffer space. When. this level is reached, MVS puts the address space 
into an OUTPUT WAIT SWAI', until the amount of buffer space builds up to a 
minimum level (LOBFREXT), when a new TSO transaction is started in the fIrst period. 
Buffer space is returned to the free buffer pool as the positive responses are received from 
the terminal on receipt of the output. 

For example: 

Assume: TSO output buffer size = I 024 bytes 
HIBFREXT = 4K bytes 
LOBFREXT = 2K bytes 

The ADMMDFT IOBFSZ default buffer size = I 024 bytes. 

If GDDM does four TPUTs in succession, 4K bytes of output buffers will be used, and 
the high buffer extent will be reached. The address space will be swapped out until 2K 
bytes of buffers have been freed by the receipt of two positive responses. 

This mechanism may therefore come into effect if large amounts of data are being given 
to the access method. It would probably not be seen with locally-attached tenninals, 
because responses would be returned rapidly, but may come into play in the remote 

Chapter 2. Tuning and customizing by subsystem 55 



Swapping 

environment if the TPUT NOHOLD option is used. Therefore, you can use it to control 
the amount of output data entering the network from one user, and to produce less 
swapping than the TPUT HOLD option. However, great caution should be exercised if 
this type of control is imposed on a TSO system, because the size of output buffers and 
the high/low extents are global. Other terminal output will be subject to the same 
constraints, so the high and low buffer extents should be chosen to allow other TSO users 
to run without incurring excess swapping. 

The I/O synchronization option offered by GDDM can be applied to individual users by 
giving each an External Defaults File. It is likely that these users will incur more SWAP 
activity than would be the case using the HI/LOBFREXT technique, although total 
system swap! should be fewer. 

For remote GDDM terminals not on dedicated lines it is probably advisable to use the 
TPUT HOLD option if you want to prevent response times increasing unduly for 
non-GDDM users. 

SWAP activity may become significant to the total system utilization, particularly if the 
GDDM output buffer size (the ADMMDFT IOBFSZ default) is small and the graphics 
output is complex. This will cause swap instruction processing greater than would 
usually take place in TSO, as follows: 

SWAP OUT/IN PAIR = APPROX. 83K INSTRUCTIONS 

(This assumes a swap page rate of 12, and 3 pages per START I/O. 
See the MVS Performance Notebook, for details.) 

For a sample benchmark data stream: 

Total compressed data-stream length 
GDDM/TSO output buffer sizes 
Number of transmissions 

= 6 718 bytes 
= 1024 bytes 
= 7 

TOTAL ADDITIONAL SWAP INSTRUCTIONS/PICTURE = 581K 

The increased swapping wilt produce contention both for processor cycles and for the 
DASD subsystem which, depending on the existing workload, may be critical. 

This swapping can theoretically be reduced by use of logical swapping; however, in a 
heavily loaded system, most swaps wilt be physical. 

If an address space incurs an "output wait swap" because of buffer utilization, a new 
transaction will be initiated when processing resumes. The statistics on the number of 
transactions will therefore be distorted, and there will be greater contention for the MPL 
in the first period. 

56 GDDM Performance Guide 



tuning and customizing 

TSO performance groups 

The addition of GDDM transactions to an existing TSO system should lead you to 
reevaluate the IPS, particularly if more than one or two graphics terminals are going to be 
running concurrently with other TSO users. GDDM transactions are not insignificant, 
and will increase contention in the system, particularly for the active-address-space limits 
specified in the MPL. Swapping will increase, particularly if TPUT HOLD is specified or 
if the maximum amount of buffer space is used. This will affect the total processor 
utilization and the response time. Paging activity may also increase; the contention for 
real storage may increase the swap and page data-set response. 

Two alternatives are available to minimize the impact of graphics on the system: 

• Increase the MPL 
• Run GDDM in a different PGN and DOMAIN. 

The second alternative has several advantages. It allows increases in the number of 
graphics terminals to be absorbed by the system with minimal impact on other users; the 
IPS for the GDDM PGN can be tuned separately; and the typical graphics transaction 
for an installation can be monitored. Both alternatives may have real-storage 
implications; increasing the MPL to allow more resident TSO transactions may cause the 
paging rate to increase to unacceptable levels. 

TSO tuning - things you can do 

Here are some suggestions and comments about some of the things you can do to tune 
TSO. 

I. Put GDDM into a link-pack area if you have many potential GDDM users or if you 
are not short of real storage. Be aware that the overhead of fmding modules there is 
governed by the number of user STEPLIBs that are accessed. 

2. Package GDDM into a single load module, because this significantly reduces loading 
costs even if the code is in a link-pack area. 

3. Configure the 3274 to support data stream decompression if it is 
teleprocessor-attached, and the line speed is 19 200 bits per second or less. 

4. Increase the size of the GDDM transmission buffer, the ADMMDFT IOBFSZ 
default, to 4K bytes for all local and SNA remote users. 

5. For remote non-SNA GDDM users, consider changing the GDDM transmission 
buffer size, the ADMMDFT IOBFSZ default. Do not make it larger than the 
normal value which is I 536. For remote SNA users, changing the MAXRU 
parameter in the LOGMODE table has the same effect. 

A large size means: 

• The response times of other remotely attached users will be degraded. 

• The response times for remotely attached GDDM users will be better. 

Chapter 2. Tuning and customizing by subsystem 57 



• There will be fewer calls to the terminal-access method, so lower processor 
utilization. 

A small size means: 

• Less impact on the response times of other remotely attached users 

• Worse response times for remotely attached GDDM users 

• More calls to the terminal-access-method, so higher processor utilization. 

6. Control the data streams in remote networks by using either: 

a. TPUT HOLD, specified by the ADMMDFT IOSYNCH = YES default, which 
can apply to individual users, or 

b. HI/LOBFREXT mechanism, which is system-wide. 

7. Control GDDM in the processor by either: 

a. Increasing the MPL, or 

h. Running GDDM in a different PGN and DOMAIN. 

8. If your graphics terminals are attached to a 3274-ID controller, the Prepare To Read 
feature should be specified in the OS System Generation 1/0 device macro. 

58 GDDM Performance Guide 



tuning and customizing 

VM/SP tllning - background information 

Discontiguous saved segment (DCSS) 

The largest potential performance improvement in a VM/SP environment is obtained by 
putting GDDM into a discontiguous saved segment (DCSS). It has been observed that 
response times for the initial GDDM display in an application can be reduced by several 
tens of seconds when a DCSS is used. This is discussed in the previous chapter. See 
"Recommendations for loading and packaging combinations" on page 38. 

There are several reasons GDDM code in a DCSS might not be used even if you intend 
it to be: 

1. lbe name of the saved segment may be wrong. The GDDM Version 2 Release I 
names are: 

GDDM-Base ADMBA210 
GDDM-PGF ADMPG210 
GDDM-IMD ADMIM210 

or 

GDDM-Base ADMASSOO 
GDDM-PGF ADMPGOOO 
GDDM-IMD ADMIMOOO 

lbese are different from the Version I Release 4 name ADMASSOO, the Version 1 
Release 3 name ADMASS30, and the Version I Release 2 name ADMASSSV. 

2. The starting address of the DCSS may overlap with addresses in the user's virtual 
machine. This could well occur if virtual machine storage size gets increased for any 
reason. 

3. Explicitly including the GDDM packaging stub ADMUXOOV when loading the 
application prohibits the use of most of the GDDM code in the DCSS. 

4. This applies to 43xx Processors only. 

When a DCSS is protected (the default) the VM Command Processor (CP) must 
scan through all pages of the DCSS each time a virtual machine using it stops being 
dispatched. This is done to check if the change bit is on in a page. You can avoid 
this by coding PROTECT = OFF on the NAMESYS. 

You should only use this technique if your applications have all been thoroughly tested. 
If not, you may find that the saved segment gets corrupted by someone doing wild 
stores. 

On 308x and 3090 machines, CP uses the segment protect hardware rather than the 
scanning approach. 

Chapter 2. Tuning and customizing by subsystem 59 



Time-outs for 3179-G, 3270-PC/G and /GX, 4224, and 5550 devices 

While 3179-0 color display stations, 3270-PC/O and lOX work stations, or 4224 printers 
are drawing they have no contact with the host. Although picture draw time is usually 
very short, for very complex pictures it can take several tens of seconds. Here. VM may 
act as if the terminal has gone out of service and disconnect it. You can vary the length 
of time that VM will wait before disconnecting the terminal with the 

CP SET MITIME GRAF time 

command. This specifies the number of seconds that VM will wait after a "missing 
interrupt to before disconnecting the terminal. 

The default setting is 30 seconds. If you are drawing very complex pictures. particularly 
on the 3179-0 or 3270-PC/G, which take longer to draw pictures than the 3270-PC/OX, 
then you should increase this. A figure of 90 seconds is suggested as a good starting 
point. 

60 GDDM Performance Guide 



capacity planning 

Chapter 3. Storage requirements and capacity planning 

This chapter tells you how to estimate how much of the various system resources your 
GDDM users will require. Read it to fmd out how to calculate: 

• The amount of DASD space required for GDDM objects. 

• The amount of virtual storage required by the various GDDM functions in the 
different subsystem environments. 

• How much segment storage to allocate to the GDDM host session running in the 
3270-PC/G or IGX. 

• The processor/link/3274 utilizations caused by GDDM for: 

Mapped and procedural alphanumerics applications. 
Graphics applications executed on 3179-G, 3279, 3287, 3270-PC/G and IGX, or 
5550 family. 

Information on how much DASD space is needed for the GDDM libraries is contained 
in the installation section for each operating system. 

GDDM objects and use of DASD space. 

GDDM users can produce several objects (such as saved charts) from application 
programs that use GDDM or from the GDDM interactive utilities. These objects require 
direct-access storage, and you may fmd it necessary to produce a system to manage them 
and to prevent unauthorized access to them. The objects that.can be produced are: 

• ADMGDF ftles 
• Alphanumeric maps in various forms 
• Chart data ftles 
• Chart definition ftles 
• Chart format ftles 
• Composed-page printer ftles 
• Image data mes 
• Projection defmition files 
• Saved picture (ADM SA VE) ftles 
• Symbol sets. 

Figure 12 on page 62 shows their contents, the features of GDDM with which they are 
associated, how many you may expect your users to produce, and their likely size. As 

Chapter 3. Storage requirements and capacity planning 61 



you can imagine, the last three of these can vary enormously according to the use made 
of GDDM, and are therefore necessarily approximate, but they should give you a figure 
that you can use for estimating. 

Object Contents Produced How Many Average 
type by Size of 

each object 

ICU 
Chart Data values for GDDM-PGF Many: 20 4+400-byte 
data ICU Charts ICU per user records 

Chart Formats for ICU GDDM-PGF Many: 15 4+400-byte 
format charts ICU per user records 

ICU data Data extraction GDDM-PGF Many: 5 3+400-byte 
defmition rules ICU per user records 

Symbol 
sets 
Image Dot-pattern GDDM Base Not many: 10+400-byte 

symbols for Image 0.5 records 
logos & special Symbol per user 
characters Editor 
(See Note 1) 

Vector Line symbols for GDDM-PGF Not many: 20+400-byte 
logos & special Vector 0.5 records 
characters Symbol per user 
(See Note 1) Editor 

Saved GDDM pictures GDDM Not many 40+400-byte 
picture held in Base 0.5 records 
(ADMSAVE device-dependent programs per user 
files) data-stream 

format 

Saved GDF GDDM pictures GDDM Many: 20+400-byte 
(ADMGDF) held in Base 10 records 
files) device-independent programs per user 

Graphic Data and ICU 
Format 

Composed- GDDM pictures GDDM Not many: 500+137-
page held in Base 0.5 byte records 
print files device-dependent programs per user (3800/3820) 

data stream 
format 100+2000-

byte records 
(4250) 

Figure 12 (Part I of 2). GDDM object contents and size table 

62 GDDM Performance Guide 



capacity planning 

Object Contents Produced How Many Average 
type by Size of 

each object 

Maps 
8·256-byte MSL Library of maps GDDM-IMD Not many: 

in a form for 1 per IMD records 
editing user +2 or per map 

3 common. 
Many maps 
per MSL 

Generated Maps in usable GDDM-IMD Not many: 4·400-byte 
mapgroups form for 1+ per records 

execution mapping 
program 

Generated Data structures GDDM-IMD Not many: 50· SO-byte 
ADS that correspond 5 per records 

to maps mapping 
program 

Image 

Projections Projection GDDM Not many: (2-5)·400-
(ADMPROJ) Information programs 0.5 byte records 

per user 
Data Image Information GDDM Many: (150-350)·400-
(ADMIMG) programs 10 byte records 

per user for documents 

Note I. This applies to user-defined symbol sets only. 

Figure 12 (Part 2 of 2). GDDM object contents and size table 

Chapter 3. Storage requirements and capacity planning 63 



Virtual storage requirement of GDDM 

The GDDM virtual storage requirement consists of two elements: 

I. The GDDM code size 
2. The dynamic storage requirement for each GDDM user. 

The code requirement is dependent on the functions that your applications use and the 
devices on which they execute. Device type also influences the user dynamic storage 
requirement, although picture content is a more critical factor. 

There are ways of reducing the code storage requirements by selectively loading parts of 
GDDM. Chapter I, "Performance background" on page I gives you an overview of the 
techniques available. Chapter 4, "Repackaging for performance" on page 93 gives a 
detailed explanation of how to go about it with a more precise sizing of each of the 
GDDM functional areas. 

Figure 13 gives you approximate minimum sizes for a single user, in an address 
space/partition, performing various functions under GDDM. Treat it with some caution 
(particularly the User Dynamic Storage requirement) as usage varies enormously in 
different installations. We do not guarantee the figures. 

You can reduce your use of virtual storage by putting GDDM in a shared area like a 
discontiguous shared segment in VM/SP or a pageable link-pack area in as. In this case, 
the virtual storage requirement of the GDDM code determines the size of the shareable 
area that GDDM will occupy. 

In the MVS/XA environment, most of the GDDM code and some dynamic storage can 
be placed above the 16 megabyte line. 

GDDM Base programming 1 700K + 60K per additional user 

GDDM-PGF Programming I 900K + 80K per additional user 

ICU 2200K + 90K per additional user 

GDDM-IMD I 200K + 60K per additional user 

Image Symbol Editor I 500K + 60K per additional user 

Vector Symbol Editor 1 700K + 60K per additional user 

Calculating the size you will need 
To calculate the size of the address space, region, or virtual machine you will need, 
subtract any items held in shared storage such as the VM/CMS shared segment, and 
add storage for other system requirements. 

Method used to arrive at these figures 
These figures were calculated using the table in the next figure and adding 10%. 
You should understand that the User Storage is dependent on picture content and 
can vary considerably. Numbers quoted here are our best guess for "typical" 
GDDM usage. 

There are various ways of reducing the code requirement. Read Chapter Chapter I 
for more information. 

Figure 13. GDDM single user minimum virtual storage requirement (in bytes) 

64 GDDM Performance Guide 



capacity planning 

Figure 14 shows a more detailed version of virtual storage requirements. The figures in 
the table apply to all environments that support GDDM unless otherwise shown in the 
following notes. 

If one copy of GDDM is shared among multiple environments in one processor, for 
example, between TSO and IMS/VS, 60K bytes should be added to the code storage 
requirement for the second and each subsequent environment supported. 

Of necessity, all figures are approximate and are for guidance only. 

Chapter 3. Storage requirements and capacity planning 65 



GDDM Function Code Size Dynamic Dynamic Dynamic 
Storage Storage Storage 

per user per user per user 

3279/3287 3179-G, 4224 3193 
3270PC/G, /GX 
5550 

a. Base GDDM 8S0K 20-30K 20-30K 20-30K 
Alphanumerics 

b. Base GDDM 6S0K + a Typically 40-90K. 20-60K. Not applicable 
graphics (See note 1) Likely maximum Likely maximum 

2S0-3S0K 200-300K 
c. Base GDDM 70K + a Typically Typically SO-60K direct 
image ISO-200K. ISO-200K. transmission, 

Likely maximum Likely maximum ISO-200K indirect 
300K 300K transmission. 

d. Presentation 220K + a + b 60-100K 4O-60K Not applicable 
Graphics (See note 2) (See note 2) 
Routines 

e. The 390K + a + b lOO-ISOK 60-80K Not applicable 
Interactive Chart +d (See note 2) (See note 2) 
Utility (See note 3) 
f. The Vector 2lOK + a + b 
Symbol Editor 

40-60K 30-S0K Not applicable 

g. The Image 130K + a + b 40-60K 40-60K Not applicable 
Symbol Editor 

h. The Print 10K + a + b 40-80K 40-80K Not applicable 
Utility (See note 2) (See note 2) 
i. Run-time SSK + a 20-40K 20-40K Not applicable 
Mapping 

j. Interactive 37SK + a + h 40-S0K 40-S0K Not applicable 
Map Definition 

Example. To calculate the size of Presentation Graphics Routines add: Presentation Graphics Routines 
220K, + Base GDDM with Alphanumerics 8S0K (a), + GDDM Graphics 6S0K (b) = 1720K total. 
(Note that each item is only included once.) 

Note 1. 6S0K is obtained using first level packaging stubs. Using second level packaging stubs to omit 
unwanted items like high resolution printing, can reduce this value. Letting GDDM load dynamically 
reduces the figure further. For example, for an output-only graphics application on a display terminal 
the size can be reduced to around 490K. 

The packaging stubs are described in the appropriate GDDM: Installation and System Management 
Guide for your system. 

Note 2. User storage size depends on picture type; in particular on how many graphics primitives (lines, 
arcs and so on) are used. Typical values are quoted. Maxima can be much higher see item (b). In 
particular enabling quality defaults in the ICU, enabling user control, and use of step-by-step charts in 
the ICU will increase storage requirements. 

Note 3. Add 3S0K if ICU US English Help panels are packaged with GDDM. 

Figure 14. GDDM virtual storage requirement (in bytes) 

66 GDDM Performance Guide 



capacity planning 
--~-.--------.--. 

3270-PC/G and /GX segment storage requirement for GDDM 

To fully exploit the capabilities of the 3270-PC/G and /GX work stations, GDDM must 
be able to operate in retained mode to these devices. This is the default case, if sufficient 
segment storage has been allocated to the GDDM host session in the work station. 

Besides the increased function that retained mode operation offers, there are also potential 
performance advantages, particularly in the area of data-stream reduction. 

The following table should be used as a starting point for 3270-PC/G and /GX segment 
storage allocation: 

GDDM pict.ure type 

Business charts 

General graphics 

Scientific and engineering 

Data-driven pictures 

Images 

Note J. 

Segment storage she 
(see Notes) 

5-15K 

10K 

S-30K 

30-60K 

200-350K 

The above figures do not include the costs of characters from any nondefault GDDM 
symbol sets that might be used in the picture. Allow 10K bytes for each 
GDDM-supplied symbol set. User-dermed symbol sets may need more than this. 

Note 2. 

The range quoted for data-driven pictures (for example, complex cartographic or 
seismological applications) is thought to be reasonable. You should be aware, however, 
that there is no limit to the size of picture that GDDM can create for display on these 
work stations, excepting those imposed by the processing power and storage available in 
the mainframe host processor. 

Note 3. 

When using operator windows, the highest priority operator window has first choice of 
the symbol set storage. Any other operator windows get the remaining storage, in order 
of viewing priority. 

Chapter 3. Storage requirements and capacity planning 67 



Capacity planning - rll'st-pass method 

This section shows you a simple way of estimating how much your system resources will 
be used by GDDM and its associated applications. 

You should already have decided how much resource you have available to devote to 
GDDM applications in terms of processor, link, and 3274 controller use. 

The technique is intended to provide a "fU'st pass" assessment of the impact of GDDM 
on these resources. If it shows that the proposed GDDM applications will take more 
than 50% of the available resources, you should investigate further using the more 
detailed approach outlined in "Capacity planning - detailed method" on page 76. 
Neither of the methods is intended to be an overall system performance estimating 
technique. 

The aim of the process is to help you estimate the use, by GDDM and associated 
applications, of the following resources: 

• The host processor 

• The communications link: 

The 3274 for local terminals 

lbe 3274 and teleprocessing line for remote terminals. 

Because of the wide variety of ways of using GDDM, it is emphasized that any answers 
obtained will only be approximate for two reasons: 

• The approximate nature of the data and estimating techniques. 

• The difficulty of defming the nature of screen output, particularly pictures. 

Disclaimer 

IBM does not guarantee that any of the results obtained by the methods described below 
will accurately match a real situation. 

The data in the tables are for use in determining the approximate use of resources by 
transactions involving GDDM. They do not necessarily reflect the relative perfomance of 
the different controllers or processors for any other transaction type. 

68 GDDM Performance Guide 



capacity planning 

Applications and devices covered 

The scope of this capacity planning exercise is limited to four major GDDM functions. 
These are: 

Procedural alphanumeric output 
Mapped alphanumeric input and output 
Graphic output 
Interactive Chart Utility. 

The devices that can be associated with these functions, for this discussion, are: 

For mapped and procedural alphanumerics: all members of the 3270 and 3270-PC 
families. 
For graphics and the ICU: 3279 and 3287 (with PS support), 3179-G, and 
3270-PC/G and /GX work stations. 

Overview of the "first-pass" method 

The main steps necessary to make the estimate are: 

1. Analyze the interactions between terminal and computer in each GDDM application 
except the ICU, as follows: 

a. Divide the interactions into different types, for example, simple alphanumeric, 
complex graphic, and so on. 

b. For each class of interaction, estimate the number of interactions per hour. 

2. Decide how many concurrently active ICU users there are likely to be. 

3. Use the table provided to work out the resource usage of each of the interaction types 
in hypothetical processing units. 

4. Calculate the actual resource usage by converting the figures arrived at into processing 
units for the real system components that interest you. 

Chapter 3. Storage requirements and capacity planning 69 



The method you use 

The estimating technique revolves around identifying the GDDM-associated interactions 
between terminal user and the computer system. 

An interaction is an input into the host computer by a terminal user to which the host 
computer responds. Pressing the ENTER key to send a transaction name, and then 
receiving a message back from the liost, is an example of an interaction. Typing in the 
transaction name without pressing ENTER is not; no communication between terminal 
and host is involved in this. Pressing PF5 in the Interactive Chart Utility and the 
subsequent picture display is another example of an interaction. 

Several interactions can be generated by a single application program or transaction. 

The actual steps of the method are: 

1. Decide which elements of your system you want to examine, processor, links, or 
3274s. If you are interested in one particular link or 3274 control unit, you should 
identify GDDM applications that use that particular resource. 

2. Examine the GDDM applications that you are interested in and calculate the number 
of interactions between terminal and computer that they contain. You can ignore 
interactions generated by interactive Chart Utility usage for the moment. 

3. Divide the interactions into four groups: 

a. Alphanumerics 
b. Local (uncompressed) 3279/3287 graphics 
c. Remote (compressed) 3279/3287 graphics 
d. 3270-PC/G and IGX graphics. 

For each group, use the relevant table, Figure 15 on page 71 for alphanumerics, 
Figure 16 on page 72 for 3279/3287 graphics or Figure 17 on page 73 for 
3270-PC/G or IGX graphics, to divide the interactions into classes. 

4. Calculate the total number of hourly interactions for each class and put the figure 
into column I in the estimating table against the relevant interaction type. 

5. Calculate how many concurrently active ICU users will be on the system and which 
graphics devices they will be using. Again, for 3279s and 3287s, subdivide the users 
into two groups, local (uncompressed graphics data streams) and remote (compressed 
graphics data streams). Put the answers in column I of the relevant estimating table 
against interaction type 10. 

70 GDDM Performance Guide 



capacity planning 

GDDM estimating table (part I) - alphanumerics 

Class of Processor Link 3274 
interaction 

Rate Multi- Hourly Multi- Hourly Multi- Hourly 
plier value plier value plier value 

(1) (2) (3) (4) (5) (6) (7) 

1. Very simple 
procedural .. . 5.0 · .. 1.5 · .. 1.5 · .. 
alpha to to to 
less than 10 6.0 4.0 4.0 
fields out/in 

2. Very simple 
mapped alpha · .. 6.0 · .. 1.5 · .. 1.5 · .. 
less than 10 to to 
fields out/in 4.0 4.0 

3. Simple 
or average · .. 8.0 · .. 8.0 · .. 8.0 · .. 
procedural alpha · .. to · .. to · .. to · .. 
10-50 14.0 10.0 10.0 
fields out/in 

4. Simple 
or average · .. 6.0 · .. 4.0 · .. 4.0 · .. 
mapped alpha to to to 
10-50 7.0 10.0 10.0 

fields out/in 

5. Complex 
procedural · .. 14.0 · .. 10.0 . .. 10.0 · .. 
alpha to to to 
50-200 30.0 15.0 15.0 
fields out/in 

6. Complex 
mapped alpha · .. 7.0 · .. 10.0 · .. 10.0 · .. 
50-200 to to to 
fields out/in 8.0 IS.O 15.0 

Totals xxx :xxx · .. :xxx · .. xxx · .. 
Figure IS. GDDM estimating table (part 1) - alphanumerics 

Instructions: Fill in the spaces marked" ..... (Column 1 is the hourly interaction rate 
and comes from your observations. Columns 2, 4, and 6 contain ranges of values for 
processor, link, and 3274 associated with each of the interaction classes described. Pick a 
value from each range depending on where your interaction fits in relation to the 
interaction description. Columns 3, 5, and 7 are ftlled in from the values you picked from 
the preceding columns multiplied by the hourly rate from column 1.) 

Finally calculate the totals ( ... ) in the bottom row of the table. 

Chapter 3. Storage requirements and capacity planning 71 



GDDM estimating table (part 2) 
- Graphics and the leu for 3279 and 3287 

Class of Processor Link 3274 
Interaction 

Rate Multi- Hourly Multi- Hourly Multi- Hourly 
plier value plier value plier value 

(I) (2) (3) (4) (5) (6) (7) 

7. Simple graphics Uncon pressed 
Simple base .. . 120 · .. 60 .. . 85 · .. 
GDDM pictures, 
charts with ComJ: essed 
< 20 points 130 · .. 27 · .. 180 · .. 

8. Medium graphics Uncon pressed 
Medium base · .. 270 · .. 150 · .. 210 · .. 
GDDM pictures, 
charts with Comp essed 
20 - 50 points. .. . 290 · .. 70 . .. 450 · .. 

9. Complex graphics Uncon pressed 
Complex base · .. 480 · .. 250 ... 350 · .. 
GDDM pictures, 
charts with Comp essed 
> 50 points. .. . 510 · .. 110 ... 750 · .. 

10. Very complex Uncon pressed 
graphics, for example, .. . 500 to · .. 500 . .. 600 · .. 
cartographics, 5000 
engineering drawings 
that have Comp essed 
2000 - 20000 lines. · .. 530 to · .. 350 .. . 1000 · .. 

5300 

11. lCU - Uncon pressed 
Enter number · .. 10000 · .. 5000 · .. 6000 · .. 
of ICU users, 
not the rate Comp ressed 
of interaction 10200 · .. 3500 · .. 10000 · .. 
TOTALS xxx xxx · .. xxx · .. xxx · .. 

Figure 16. GDDM estimating table (part 2) - graphics and the leu for 3279 and 3287 

Instructions: Fill in the spaces marked II ••• " (Column I is the hourly interaction rate 
and should come from your observations. Differentiate between compressed and 
uncompressed graphics interactions, because each has different resource requirements. 
Columns 2, 4, and 6 contain values for processor, link, and 3274 associated with each of 
the interaction classes described. Columns 3, 5, and 7 are fdled in from the values from 
the preceding columns mUltiplied by the hourly rate from column 1.) 

Finally calculate the totals ( ... ) in the bottom row of the table. 

72 GDDM Performance Guide 



capacity planning 

GDDM estimating table (part 3) for resource calculation 
- Graphics and the ICU for 3270-PC/G and /GX, and 3179 G 

Class of Processor Link 3274 
interaction 

Rate Multi- Hourly Multi- Hourly Multi- Hourly 
plier value plier value plier value 

(I) (2) (3) (4) (5) (6) (7) 

7. Simple graphics 
Simple base 
GDDM pictures, .. . 60 · .. 20 .. . 20 ... 
charts with 
< 20 points 

8. Medium graphics 
Medium base 
GDDM pictures, .. . 110 . .. 50 ... 50 
charts with 
20 - 50 points. 

9. Complex graphics 
Complex base 
GDDM pictures, .. . 200 · .. 100 · .. 100 
charts with 
> 50 points. 

10. Very complex 
graphics for example, 
cartographics, 200 100 100 
engineering drawings .. . to · .. to .. . to ... 
that have 2000 1000 1000 
2000 - 20000 lines. 

11.ICU -
Enter number ... 6000 . .. 2500 · " 2500 ... 
of ICU users, 
not the rate 
of interaction 

TOTALS xxx xxx .. . xxx · .. xxx ... 

Figure 17. GDDM estimating table (part 3) for resource calculation 

Instructions: Fill in the spaces marked" ... II (Column I is the hourly interaction rate 
and should come from your observations. Columns 2, 4, and 6 contain values for 
processor, link, and 3274 associated with each of the interaction classes described. 
Columns 3, 5, and 7 are fllled in from the values from the preceding columns multiplied 
by the hourly rate from column 1.) 

Finally, calculate the totals ( ... ) in the bottom row of the table. 

Chapter 3. Storage requirements and capacity planning 73 



Obtaining the results 

When you have filled in the estimating tables above, you will have found the total 
processor, link, and 3274 costs for the GDDM applications in which you are interested. 
Add together the respective values for processor, link, and 3274 that you have obtained 
from using each part of the estimating table. 

The next step is to convert these totals into resource usages that apply to your particular 
computer system. 

How to get processor utilization values 

GDDM processor costs are higher in some subsystems than others. The processor total 
you have obtained should be modified accordingly: 

• Under CICS, GDDM has to give up control voluntarily. Add 10% to the processor 
total to allow for this. 

• In TSO, output wait swaps will occur after screen output. This will add to processor 
costs. A rough estimate of the extra cost is: 

( LINK total) • 0.67 

Add this value to the processor total. 

To obtain processor use divide the numher you have by the relevant processor factor 
from the following table: 

Processor Divisor Processor Divisor 
type type 

4321-1 780 3031-AP 7300 
4331 780 3032 9900 
4331-11 1 300 3083-S 10 700 
4331-G2 I 500 3083-E 13 800 
4341-9 I 900 3033-EX 14700 
4341-10 2700 3033-N 15100 
4341 3100 3033-U 17900 
4341-11 4000 3033-B 19900 
4341-G2 5000 3033-BX 21200 
4341-12 5700 3033-J 25600 
4361-4 3400 3033-JX 27300 
4361-5 4300 3033-AP 31 800 
4381-1 10 400 3033-MP 31 800 

3081-D 33100 
3081-G 37000 
3081-GX 39900 
3081-K 45900 
3081-KX 50500 
3084 87200 
3084-QX 94200 
3090-2 101000 
3090-4 170000 

Figure 18. Table of divisors for different processors 

74 GDDM Performance Guide 



capacity planning 

You should now have a number between 0 and 100. This is the percentage processor use 
caused by GOOM. If this number is greater than 50% of the spare processor capacity 
that you have available for GODM, use the detailed capacity-planning technique in 
"Capacity planning - detailed method" on page 76 to analyze your applications in more 
depth. 

How to get link utilization values 

Take the fmal total in column 5 of the Estimating Table and divide it by (linkspeed ·36) 
where linkspeed is the speed of your communications link in bytes per second. 

Multiply the result by 100. You should now have a number between 0 and 100. This is 
the percentage communications link use caused by GDOM. 

If this number is greater than 50% of the spare link use that you have available for 
GDOM then use the detailed capacity-planning technique in "Capacity planning -
detailed method" on page 76 to analyze your applications in more depth. 

How to get 3274 controller utilization values 

Take the fmal total in column 7 of the Estimating Table and divide it by the relevant 
number from the following table: 

3x74 type Divisor 

3274-1A 3600 
3274-10 4000 
3274-31A 4300 
3274-310 5000 
3274-41A 7200 
3274-410 7200 
3174-1L 8400 

Figure 19. Table of divisors for 3174 and 3274 controllers 

You should now have a number between 0 and 100. This is the percentage 3274 
controUer use caused by GODM. If the number is greater than 50% of the spare 
controller capacity that you have available for GDDM, use the detailed capacity-planning 
technique in "Capacity planning -- detailed method" on page 76 to analyze your 
applications in more depth. 

Note: The figures in these tables are for use in estimating GDDM performance only. 
They have not been validated by measurement. IBM cannot vouch for their accuracy, or 
for the validity of the results. They are given in the belief that some help is better than 
none. 

Chapter 3. Storage requirements and capacity planning 75 



Capacity planning - detailed method 

This section shows you how to estimate the resource utilizations of your 
GDDM-associated applications. It is a more detailed description of the method shown in 
Chapter 3, "Storage requirements and capacity planning" on page 61. Like the 
"frrst-pass" method, it is not intended to be an overall system performance estimating 
technique. The aim of the method, and the applications and devices covered, are the 
same as for the "first-pass method." 

Overview of detailed method 

The main steps necessary to make the estimate are: 

1. Analyze the interactions between terminal and computer in each GDDM application 
except the ICU: 

a. Divide the interactions into different types, including the terminal type for the 
graphic ones. For example, your interaction types could be divided into three 
groups: 

• Simple alphanumerics 

• Simple 3279 graphics 

• Complex.3270-PC/G graphics. 

h. For each class of interaction, estimate the number of interactions per hour. 

2. Decide on a typical interaction in each class and use the tables provided to work out 
its resource usage. Fill in the values in the master table. 

3. Decide how much resource each user of the Interactive Chart Utility needs from the 
tables provided. Fill in the values in the master table. 

4. From the values in the master table, calculate the actual resource usage by relating 
the figures arrived at to real processing units. 

76 GDDM Performance Guide 



capacity planning 

Step 1: Identify interactions, classify them, and estimate hourly rate 

The estimating technique revolves around identifying the GDDM-associated interactions 
between terminal user and the computer system. Several interactions can be generated by 
a single application program or transaction. 

1. Examine the GDDM applications that you are interested in and calculate the number 
of interactions between terminal and computer that they contain. 

2. Estimate how many times each interaction will occur per hour. 
3. Divide the interactions into the classes shown in the table. 
4. From the above, calculate the total number of hourly interactions for each class and 

put the answer into Figure 20. 
5. Interactive Chart Utility interactions can be ignored because the ICU is treated 

separately. 

Table I - Interaction types and rates 

Interaction types Hourly 
total 

1. Very simple procedural alpha, less than 10 fields out and in 

2. Very simple mapped alpha, less than 10 fields out and in 

3. Simple procedural alpha, less than 30 fields out and in 

4. Simple mapped alpha, less than 50 fields out and in 

5. Complex procedural alpha, greater than 50 fields out and in 

6. Complex mapped alpha, greater than 50 fields out and in 

7. Simple graphics 

a. 3279/3287 
b. 3270-PC/G and /GX line, bar, and 2-D pie charts created 
using Presentation Graphics Routines. Not much shading, not 
many lines. 

8. Medium/complex graphics 

a. 3279/3287 
b. 3270-PC/G and IGX surface charts, histograms, 3-D pies 
created using PG Routines; most pictures created by base 
GDDM calls. 

9. Very complex graphics 

a. 3279/3287 
b. 3270-PC/G and IGX pictures that contain more than 5000 
lines, for example cartographics, complex shaded engineering 
drawings, anything that causes PS overflow on a 3279. 

Figure 20. Table 1. Interaction types and rates 

Chapter 3. Storage requirements and capacity planning 77 



Step 2: Calculate resource cost for "average" member of each group 

The next stage is to calculate the resource cost for a typical interaction in each of the 
groups in Figure 20 using the tables that follow. 

1. Decide on your typical interaction in each group. The one that is most commonly 
used is a sensible method of choosing this. 

It might be that there are several commonly used interactions. In this case it makes 
sense to identify subgroups within each group and estimate an hourly rate for each. 
Graphics interactions will almost certainly need this approach. Use Figure 20 on 
page 77 to note these subgroups. 

2. Procedural Alphanumerics 

Use Figure 21 on page 81 to calculate the resource cost of each of your typical 
procedural alphanumeric interactions. When you have the processor,link, and 3274 
controller values write them in the master table, Figure 31 on page 90. 

See the example in Figure 22 on page 82 to learn how to use the tables. 

3. Mapped Alphanumerics 

Use Figure 23 on page 83 to calculate the resource cost of your typical mapped 
alphanumeric interactions. When you have the processor, link, and 3274 controller 
values write them in the master table, Figure 31 on page 90. 

4. Graphics 

To calculate the costs of your graphics interactions you need to know something 
about the pictures being displayed. The easiest thing to measure or estimate is data 
stream length. There are two ways of doing this: 

a. Measure representative pictures using the facilities of the GDDM trace, or by 
using a subsystem trace. 

b. Estimate the data stream based on the following descriptions. 

For business charts, data streams are related approximately to the number of data 
points plotted and the chart type. The following list of chart types is arranged in 
data-stream order, least first. 

• Table chart 
• Line graph 
• Surface chart 
• Histogram 
• Bar chart 
• 2-D pie 

• Polar chart 
• 3-D pie 
• Tower chart. 

78 GDDM Performance Guide 



capacity planning 

The business chart figures that follow are based on bar charts. If your 
applications are producing line graphs, estimate up to 30% lower; for tower 
charts up to 30% higher. 

1) Business charts: less than 20 data points plotted: 

3279/3287 data stream = to 000 bytes uncompressed 
= 4 500 bytes compressed 

3270-PCjG or /GX data stream = 1 500 bytes 

2) Business charts: 50 data points plotted: 

3279/3287 data stream = 20 000 bytes uncompressed 
= 9 000 bytes compressed 

3270-PCjG or /GX data stream = 3 000 bytes 

3) Business charts: 200 data points plotted: 

3279/3287 data stream = 30 000 bytes uncompressed 
= 13 500 bytes compressed 

3270-PCjG or /GX data stream = 5 000 bytes 

4) Simple base GDDM pictures, for example, block diagrams: less than 500 
lines in the picture: 

3279/3287 data stream = 6 000 bytes uncompressed 
= 2 750 bytes compressed 

3270-PC/G or IGX data stream = I 500 bytes 

5) Average base GDDM pictures, for example, engineering drawings: 2 000 
lines in the picture: 

3279/3287 data stream = IS 000 bytes uncompressed 
= 6 750 bytes compressed 

3270-PCjG or /GX data stream = 5 000 bytes 

6) Complex base GDDM pictures, for example, cartographics: 5 000 lines, 
large amounts of area shading: 

3279/3287 data stream = 30 000 bytes uncompressed 
= 13 500 bytes compressed 

3270-PCjG or /GX data stream = 20 000 bytes 

7) Very complex base GDDM pictures, for example, cartographies, seismology, 
civil engineering: 10 000 lines in the picture: 

3279/3287 data stream = 50 000 bytes uncompressed 
= 22 500 bytes compressed 

3270-PC/G or /GX data stream = 35 000 bytes 

For complex pictures, the 3270-PCjG or /GX data stream is approximately three 
times the number of lines in the picture. The number of lines can be estimated by 
reference to any or all of: 

Chapter 3. Storage requirements and capacity planning 79 



• Length of the floating point Graphics Data File divided by 10 

• Length of the fixed point Graphics Data File divided by 3 

• Number of GSLINE calls 

• Number of (x,y) points in the arrays used by GSPLNE, GSVECM. 

Now you can use the Graphics Estimator Tables (Figure 24 on page 84 for 
3279/3287 or Figure 25 on page 85 for 3270-PC/G and IGX) to calculate the costs 
of a single interaction in this group. 

80 GDDM Performance Guide 



capacity planning 

Table 2 - Procedural alphanumerics resource estimation 

Processor Link 3274 

Number Multi- Multi- Multi-
plier plier plier 

(I) (2) (3) (4) (5) (6) (7) 

a. Number of fields on screen ... 1.82 . .. xxx xxx xxx xxx 

b. Number of modified fields .. . 1.2 ... xxx xxx xxx xxx 

c. Average modified field length ... xxx xxx xxx xxx xxx xxx 

d. Input data-stream .. . xxx xxx I .. . I ... 
length = (b + c) 

e. Number of output fields ... xxx xxx xxx xxx xxx xxx 

f. Average field length ... xxx xxx xxx xxx xxx xxx 

g. Output data-stream .. . xxx xxx I .. . I ... 
length = (e + f) 

h. Average number of ... xxx xxx xxx xxx xxx xxx 
interactions/transactions 

i. GDDM initialization cost .. . 100 .. . 250 .. . 300 ... 
(1/ h) 

j. Constant xxx xxx 6 xxx xxx xxx xxx 

GDDM SUBTOTAL xxx xxx xxx xxx 
k. The GDDM or subsystem ... xxx xxx xxx xxx xxx xxx 

transmission buffer size 
(default 1536) 

1. Number of transmissions .. . 20 . .. 20 .. . 20 ... 
= ceiling (g / k) + I 

m. TSO swapping. If you use .. . 85 ... xxx xxx xxx xxx 
TSO, use the value 
obtained for Item l. 

n. CICS overheads. If you use .. . 0.1 ... xxx xxx xxx . xxx 
CICS, use the GDDM 
processor subtotal 

FINAL TOTALS xxx xxx xxx xxx 

Figure 21. Table 2. Procedural alphanumerics resource estimatJon 

Instructions: Fill in the spaces marked II ••• " (Columns 3, 5, and 7 are calculated from column I by using 
the multiplier in the preceding column. For example, column 5 is calculated by multiplying the value in 
column I by the multiplier in column 4.) Finally, add up the values in columns 3, 5, and 7. An example of 
a completed table is shown on the next page. 

Chapter 3. Storage requirements and capacity planning 81 



Table 2 - Procedural alphanumerics resource estimation 
Processor Link 3274 

Number Multi- Multi- Multi-
plier plier plier 

(1) (2) (3) (4) (5) (6) (7) 

a. Number of fields on screen 10. 1.82 19.-2 xxx xxx xxx xxx 

b. Number of modified fields 5 1.2 .~. xxx xxx xxx xxx 

c. Average modified field length 2.Q. xxx xxx xxx xxx xxx xxx 

d. Input data-stream '9<> xxx xxx I 100 I '00 
length = (b * c) 

e. Number of output fields 10 xxx xxx xxx xxx xxx xxx 

f. Average field length ;2.s" xxx xxx xxx xxx xxx xxx 

g. Output data-stream 2.~p xxx xxx I 2.'$0 1 250 
length = (e * 1) 

h. Average number of 5 xxx xxx xxx xxx xxx xxx ... 
interactions/transactions 

I. GDDM initialization cost y? 100 20 250 ~ 300 ~ 
(l/h) 

j. Constant xxx xxx 6 xxx xxx xxx xxx 

GDDM SUBTOTAL xxx xxx 50-2 xxx ~60 xxx ~O 
k. The GDDM or subsystem .~~ xxx xxx xxx xxx xxx xxx 

transmission buffer size 
(default 1536) 

1. Number of transmissions .2 20 ~ 20 l:t-:o 20 I:t-P 
= ceiling (g/k) + 1 

m. TSO swapping. If you use .Z. 85 1.79 xxx xxx xxx xxx 
TSO, use the value 
obtained for Item 1. 

n. CICS overheads. If you use - 0.1 - xxx xxx xxx xxx ... . .. 
CICS, use the GDDM 
processor subtotal. 

FINAL TOTALS xxx lCxx 2f:fr2 xxx 420 xxx L,.'Y) 

Figure 22. Example of filling in a table 

82 GDDM Performance Guide 



capacity planning 

Table 3 - Mapped alphanumerics rcsource estimation 

Processor Link 3274 

Number Multi- Multi- Multi-
plier plier plier 

(1) (2) (3) (4) (5) (6) (7) 

a. Number of constant fields · .. 0.1 · .. xxx. xxx. xxx. xxx. 

b. Number of variable fields · .. 0.8 · .. xxx. xxx. xxx xxx. 

c. Number of modified fields · .. 0.2 · .. xxx. xxx. xxx. xxx 

d. Average modified field length · .. xxx xxx xxx. xxx. xxx. xxx. 

e. Average output field length · .. xxx xxx xxx xxx. xxx. xxx. 

f. Input data-stream · .. xxx xxx I · .. 1 · .. 
length = (c + d) 

g. Output data-stream · .. xxx xxx 1 · .. 1 · .. 
length = «a + b) • e) 

h. Constant xxx. xxx 8.9 xxx xxx xxx. xxx 

i. Retrieve MAP from DASD · .. 20 · .. xxx. xxx. xxx xxx. 
(estimate probability 
between 0 and I) 

j. Average number of interactions/ · .. xxx xxx. xxx. xxx. xxx xxx 
transaction 

k. GDDM initialization · .. 100 · .. 250 · .. 300 · .. 
cost = (I / j) 

GDDM SUBTOTAL xxx xxx xxx XXX 

l. The GDDM or subsystem 
transmission buffer size · .. xxx xxx xxx xxx xxx xxx. 
(default 1536) 

m. Number of transmissions · .. 20 · .. 20 · .. 20 · .. 
= ceiling (g / I) + 1 

n. TSO swapping. Use the value · .. 85 · .. xxx xxx. xxx. xxx. 
obtained for item (m) if you use TSO 

o. CICS Overheads. Use the GDDM · .. 0.1 · .. xxx. xxx. xxx. XXX 

Processor subtotal if you use CICS 

FINAL TOTALS xxx. xxx. XXX xxx. 

Figure 23. Table 3. Mapped alphanumerics resource estimation 

Instructions: Fill in the spaces marked " ..... (Columns 3, S, and 7 are calculated from column 1 by using 
the mUltiplier in the preceding column. For example, column 5 is calculated by multiplying the value in 
column 1 by the multiplier in column 4.) Finally, add up the values in columns 3, 5, and 7. 

Chapter 3. Storage requirements and capacity planning 83 



Table 4 - 3279/3287 graphics resource estimation 

Processor Link 3274 

Number Multi- Multi- Multi-
plier plier plier 

(1) (2) (3) (4) (5) (6) (7) 

For pictures that have 
uncompressed data streams: 
Category 7. Simple pictures 

Data-stream length · .. 0.11 · .. 1 · .. 1.4 · .. 
Constant (delete if none) xxx xxx 485 xxx xxx xxx xxx 

Category 8. Medium pictures 
Data-stream length · .. 0.18 · .. 1 · .. 1.4 · .. 
Constant (delete if none) xxx xxx 425 xxx xxx xxx xxx 

Category 9. Complex pictures 
Data-stream length · .. 2.2 · .. 1 · .. 1.4 · .. 
Constant (delete if none) xxx xxx 2700 xxx xxx xxx xxx 

For pictures that have 
compressed data streams: 
Category 7. Simple pictures 

Data-stream length · .. 0.26 · .. 1 · .. 6.7 · .. 
Constant (delete if none) xxx xxx 485 xxx xxx xxx xxx 

Category 8. Medium pictures 
Data-stream length · .. 0.43 · .. 1 · .. 6.7 · .. 
Constant (delete if none) xxx xxx 425 xxx xxx xxx xxx 

Category 9. Complex pictures 
Data-stream length · .. 2.4 · .. 1 · .. 6.7 · .. 
Constant (delete if none) xxx xxx 2700 xxx xxx xxx xxx 

a. Average number of · .. xxx xxx xxx xxx xxx xxx 
interactions/transaction 

b. GDDM initialization cost = (I/a) .. . 100 · .. 250 · .. 300 · .. 
GDDM SUBTOTAL xxx xxx xxx xxx 
c. The GDDM or subsystem output 
buffer size (default 1536) 

· .. xxx xxx xxx xxx xxx xxx 

. 
d. Number of transmissions · .. 20 · .. 20 · .. 20 · .. 
= ceiling «column 5subtotal)/c) + 1 

e. TSO swapping. Use the value · .. 85 · .. xxx xxx xxx xxx 
obtained for Item (d) if you use TSO 

f. CICS Overheads. Use the GDDM · .. 0.1 · .. xxx xxx xxx xxx 
processor subtotal if you use CICS 

FINAL TOTALS xxx xxx xxx xxx 

Figure 24. Table 4. 3279/3287 graphics resource estimation 

Instructions: Fill in the spaces marked" ... " for one category of picture. (Columns 3, 5, and 7 are 
calculated from column I using the multiplier in the preceding column. For example, column 5 is calculated 
by multiplying the value in column I by the multiplier in column 4.) Finally add up the values in columns 
3, 5, and 7. You should only add in the "Constant" part for the category you have chosen. 

84 GDDM Performance Guide 



capacity planning 

Table S - 327O-PC/G and /GX graphics resource estimation 

Processor Link 3274 

Number Multi- Multi- Multi-
plier plier plier 

(1) (2) (3) (4) (5) (6) (7) 

Category 7. Simple pictures 
Data-stream length .. . 0.1 ... I . .. I . .. 

Category 8. Medium pictures 
Data-stream length ... 0.09 . .. I . .. I . .. 

Category 9. Complex pictures 
Data-stream length ... 0.08 . .. I . .. I . .. 

a. Average number of ... xxx xxx xxx xxx xxx xxx 
interactions/transaction 

b. Number of nondefault ... xxx xxx xxx xxx xxx xxx 
fonts used by application 

c. Average font cost = (b / a) .. . 40 .. . 6000 . .. 6000 ... 

d. GDDM initialization cost = (1/ a) .. . 100 ... 500 . .. 500 . .. 

GDDM SUBTOTAL xxx xxx xxx xxx 

e. The GDDM or subsystem output ... xxx xxx xxx xxx xxx xxx 
buffer size (default 1536) 

f. Number of transmissions = ceiling .. . 20 ... 20 .. . 20 . .. 
«GDDM column 5 subtotal) I e) + I 

g. TSO swapping. If you use TSO, ... 85 . .. xxx xxx xxx xxx 
use the value obtained for Item f. 

h. CICS Overheads. Use the GDDM .. . 0.1 ... xxx xxx xxx xxx 
processor subtotal if you use CICS 

FINAL TOTALS xxx xxx xxx xxx 

Figure 2S. Table S. 3270-PCjG and IGX graphics resource estimation 

Instructions: Fill in the spaces marked II ••• " for one category of picture. (Columns 3, 5, and 7 are 
calculated from column 1 by using the multiplier in the preceding column. For example, column 5 is 
calculated by multiplying the value in column I by the multiplier in column 4.) Finally add up the values in 
columns 3, 5, and 7. 

<ltapter 3. Storage requirements and capacity planning 85 



Step 3: Quantify resources used by the leu 
For ICU estimation categorize your users according to the complexity of what they 
display and the rate at which they display them. 

Five items are involved: 

• The type of terminal (3279 or 3270-PC/G or IGX work station) that is being used 
• Frequency of display of chart 
• Complexity of chart displayed 
• Rate at which alphanumeric panels are displayed 
• Complexity of the various panels displayed. 

This is what you must do to make the estimation: 

1. List your ICU users in Figure 26 on page 87. 

2. Fill in the type of terminal that each person is using. 

3. Fill in their frequency of chart display. 12 per hour is slow, 26 per hour is average, 
40 per hour is fast. Decide on rates by observation, tracing, or by informed 
guesswork. 

What people are doing affects frequency of display. For example, entering lots of 
data will clearly slow down the display rate; using chart notes usually encourages 
people to display pictures more frequently. Familiarity with the ICU and keyboards 
generally will also affect display rates. 

4. Fill in complexity of chart: 

Simple Less than 20 data points to be plotted 
Average 20 to 50 data points to be plotted 
Complex More than 50 data points to be plotted. 

5. Fill in rate at which alphanumeric panels are used: 

2 per minute Slow 
3 per minute Average 
4 per minute Fast. 

Decide on rates by observation, or by informed guesswork. (Use the same category 
as you chose for graphics if you are guessing.) 

6. Fill in complexity of alphanumeric panel use: 

Simple 

Average 

Complex 

86 GDDM Performance Guide 

Mainly retrieving pictures and displaying them and making 
minor modifications to chart layouts. Little use of the "data" 
panels, (2.1. 2.2, 2.6). 
Building charts from scratch; average use of the "data" panels; 
general usage of most of the alpha panels to set up the chart. 
Building charts from scratch; modifying existing charts; much 
use of the "data" panels (2.1,2.2,2.6). 



capacity planning 

7. Now use the ICU alphanumerics estimating table and the relevant ICU graphics 
estimating table to get resource costs for each user. 

Put the numbers obtained from each into the ICU fmal estimating table. 

Table 6 - ICU user categorization table 

Alphanumeric Graphics 

User Terminal Rate Complexity Rate Complexity 

A N Other 3279 Slow Average Slow Complex 

Figure 26. Table 6. ICU user categorization table 

Instructions: Fill in the values of the matrix for each user. Sl = Slow, A = Average, 
F = Fast, Si = Simple, A = Average, C = Complex. The top line is filled in as an example. 

Table 7 - ICU alphanumerics estimating table 

Menu Complexity - > Simple Average Complex 

Slow Display Rate Host 14400 28800 43200 
Link 108000 162000 216000 
3274 108000 162000 216000 

Average Display Rate Host 28800 43200 57600 
Link 108000 252000 324000 
3274 180000 252000 324000 

Fast Display Rate Host 43200 57600 72000 
Link 252000 360000 468000 
3274 252000 360000 468000 

Figure 27. Table 7. ICU alphanumerics estimating table 

Instructions: Find the component values in the matrix for each user and enter them in the 
ICU fmal estimating table. 

Chapter 3. Storage requirements and capacity planning 87 



Table 8 - ICU graphics (3279) estimating table 

Menu Complexity - > Simple Average Complex 

Data Stream - > Uncmp Compr Uncmp Compr Uncmp Compr 

Slow Display Rate Host 18000 20000 25000 27500 32000 35500 
Link 79000 35500 122000 55000 173000 78000 
3274 113000 237000 173000 367000 246000 520000 

Average Display Rate Host 43000 47500 57500 63000 72000 79000 
Link 173000 78000 270000 121500 371000 167000 
3274 246000 520000 383000 810000 526500 1113600 

Fast Display Rate Host 72000 79000 86500 95000 108000 119000 
Link 263000 118000 410000 184500 569000 256000 
3274 373000 789000 587000 1231000 813000 1708000 

Figure 28. Table 8. ICU graphics (3279) estimating table 

Instructions: Establish whether the user is displaying pictures that have compressed or 
uncompressed data streams. Channel-attached users should be using uncompressed data 
streams and link-attached users compressed ones. Now fmd the component values in the 
matrix for that user and enter them in the ICU fmal estimating table. 

Table 9 - ICU graphics (3270-PC/G and /GX) estimating table 

Menu Complexity - > Simple Average Complex 

Slow Display Rate Host 7200 10000 12800 
Link 15800 24400 34600 
3274 8000 12000 17000 

Average Display Rate Host 17200 23000 28800 
Link 35600 54000 74200 
3274 18000 27000 37000 

Fast Display Rate Host 28800 34600 43200 
Link 52600 82000 113800 
3274 26000 41000 67000 

Figure 29. Table 9. ICU graphics (3270-PC/G and /GX) estimating table 

Instructions: Find the component values in the matrix for the user and enter them in the 
ICU fmal estimating table. 

88 GDDM Performance Guide 



capacity planning 

Table 10 - leu final estimating table 

Processor Link 3274 
(1) (2) (3) 

User 1. ICU Graphics 
ICU Alphanumerics 

User 2. ICU Graphics 
ICU Alphanumerics 

User 3. ICU Graphics 
ICU Alphanumerics 

User 4. leu Graphics 
ICU Alphanumerics 

User 5. ICU Graphics 
ICU Alphanumerics 

User 6. ICU Graphics 
ICU Alphanumerics 

User 7. ICU Graphics 
ICU Alphanumerics 

User 8. ICU Graphics 
ICU Alphanumerics 

User 9. ICU Graphics 
ICU Alphanumerics 

ICU Subtotal 

TSO swapping overhead = xxx xxx 
0.05"'ICU Link subtotal 
(if applicable) 

CICS overheads = xxx xxx 
0.1 "'ICU Processor subtotal 
(if applicable) 

FINAL TOTALS 

Figure 30. leu final estimating table 

Chapter 3. Storage requirements and capacity planning 89 



Step 4: Find total use made of resources 

By now you should have worked through the estimating table for each of the interaction 
groups that you entered into the master table. You now have total processor, link, and 
3274 costs for a single interaction from each of the groups that you identified. Transfer 
these totals to the master table, Figure 31, if you have not done so already. 

Now multiply columns 2, 4, and 6 by the hourly rates in Figure 20 on page 77. Enter 
the answers in columns 3, 5, and 7. When you have done this for all the interaction 
groups, add up the values that you have in each of columns 3, 5, and 7. These are the 
total processor, link, and 3274 costs of the GDDM applications that you are interested in. 

The next step is to convert these totals into resource utilizations that apply to your 
particular computer system. 

Master table for resource calculation 

Processor Link 3274 

Class of Hourly Value- Hourly Value Hourly Value Hourly 
interaction rate from value from value from value 
(See Table 1) (mult) table table table 

(1) (2) (3) (4) (5) (6) (7) 

1 .. . · .. ... · .. · .. . .. · .. 
2 .. . · .. .. . · .. · .. .. . · .. 
3 · .. .. . . . . · .. · .. ... · .. 
4 · .. · .. .. . ... · .. · .. · .. 
5 · .. · .. .. . .. . .. . · .. · .. 
6 · .. · .. .. . · .. .. . · .. · .. 
7 .. . .. . .. . .. . . .. · .. · .. 
8 · .. .. . .. . .. . .. . · .. · .. 
9 · .. .. . .. . .. . · .. · .. ... 
ICU xxx xxx ... xxx · .. xxx · .. 
TOTALS xxx xxx .. . xxx · .. xxx · .. 

Figure 31. Master table for resource calculation 

Instructions: Fill in the spaces marked II ••• " (Column I comes from table 1 and is used 
as a multiplier. Columns 2, 4, and 6 should be filled in with the results from the other 
tables. Columns 3, 5, and 7 are filled in from the values in the preceding columns 
multiplied by the hourly rate from column 1.) 

Finally calculate the totals in the bottom row of the table. 

90 GDDM Performance Guide 



capacity planning 

Disclaimer 

The data in the following tables are for use in determining the approximate use of 
resources by transactions involving GDDM. They do not necessarily renect the relative 
performance of the different controllers or processors for any other transaction type. 

Processor utilization 

Link utilization 

Take the fmal total in column 3 of the master table and divide it by the relevant processor 
factor from the following table. 

Processor Divisor Processor Divisor 
type type 

4321-1 780 3031-AP 7300 
4331 780 3032 9900 
4331-11 1 300 30S3-S 10700 
4331-G2 1 500 3083-E 13 800 
4341-9 1 900 3033-EX 14700 
4341-10 2700 3033-N 15 100 
4341 3 100 3033-U 17900 
4341-11 4000 3033-B 19900 
4341-G2 5000 3033-BX 21 200 
4341-12 5700 3033-J 25600 
4361-4 3400 3033-JX 27300 
4361-5 4300 3033-AP 31 800 
4381-1 10 400 3033-MP 31 800 

3081-0 33 100 
3081-G 37000 
30SI-GX 39900 
3081-K 45900 
3081-KX 50500 
3084 87200 
30S4-QX 94200 
3090-2 101 000 
3090-4 170000 

Ii'igure 32. Table of divisors for different processors 

You should now have a number between 0 and 100. This is the percentage processor 
utilization caused by GOOM. 

If aU GOOM users are attached over the same communications link then take the fmal 
total in column 5 of the master table and divide it by (linkspeed*36) where linkspeed is 
the speed of your communications link in bytes per second. 

You should now have a number between 0 and 100. This is the percentage 
communications-link utilization caused by GOOM. 

If the GDDM users are attached to a variety of communications links and you are 
interested in individual link utilizations, create a separate master table for each link, 
identifying the GDDM interactions that occur on it and their hourly rates. 

Olapter 3. Storage requirements and capacity planning 91 



3274 Controller utiUzation 

If all GOOM users are attached to the same 3274 controller, take the final total in 
column 7 ofthe master table and divide it by '1000. Now divide it by the relevant 
number from the following table: 

3x74 type Divisor 
3274-IA 360 
3274-10 400 
3274-31A 430 
3274-310 500 
3274-41A 720 
3274-41D 720 
3174-1L 840 

Figure 33. Table of divisors for 3174 and 3274 controllers 

You should now have a number between 0 and 100. This is the percentage 3274 
controller utilization caused by GOOM. 

If the GOOM users are attached to several controllers and you are interested in individual 
3274 utilizations, create a separate master table for each, identifying the GDDM 
interactions that occur on it· and their hourly rates. 

Note: The figures in these tables are for use in estimating GODM performance only. 
They have not been validated by measurement. IBM cannot vouch for their accuracy, or 
for the validity of the results. They are given in the belief that some help is better than 
none. 

92 GDDM Performance Guide 



repackaging 

Chapter 4. Repackaging for performance 

Use this chapter to: 

• Repackage the GDDM executable code to reduce dynamic loading. (The advantages 
and disadvantages of doing this are discussed in "Finding the optimum loading and 
packaging combinations" on page 35.) 

• Repackage a GDDM utility or GDDM application program so that dynamic loading 
is eliminated or reduced. (Again·, as discussed in "Finding the optimum loading and 
packaging combinations" on page 35.) 

• Run multiple versions of GDDM with different defaults modules, or override shared 
defaults modules such as those in a VM saved segment. 

Background to repackaging 

GDDM executable code modules are, by default, loaded dynamically as needed. They 
can be repackaged so that some or all of them are to be loaded during program 
initialization. They can also be repackaged with a GDDM utility or application program 
so that everything is loaded together, eliminating dynamic loading entirely. 

To understand this, and the similar techniques used to run with different defaults 
modules, you must understand how dynamic loading takes place. 

If no packaging is done, the following series of loads takes place when a GDDM 
application program or GDDM utility is executed. 

1. The GDDM utility or application program is loaded. 

2. The GDDM initially-loaded modules are loaded. These are: 

a. The application interface controller 
b. The external defaults module 
c. The subsystem initializer. 

3. Subsequently, other GDDM modules are loaded as needed by the GDDM subsystem 
initializer, unless they are on a Dess. 

lbis process is shown in Figure 34 on page 94. 

Chapter 4. Repackaging for performance 93 



Initialization 

GDDM 

Application 
Program 

DDDDD 
DDDDD 

Initially 
Loaded 

As needed 
modules 

Figure 34. The default order of loading during GDDM utilities and programs 

You can reduce the number of loads by packaging the items together. This can be done 
in several ways, the most important of which are: 

1. Repackaging the GDDM executable code so that "as needed" modules are loaded 
with the subsystem initializer 

2. Repackaging a utility or application program with all or part of the GDDM 
executable code 

3. Repackaging a utility or application program with a version of the GDDM external 
defaults module. 

These options are shown in Figure 35 on page 95. Note that any module that is not 
repackaged will be loaded dynamically as needed. GDDM will still work regardless of 
what you put in or leave out of the repackaged modules. 

94 . GDDM Performance Guide 



DDDDD 
DDDDD 

GDDM 

D D 
DDDDD 
DDDDD 
DDDDD 

GDDM 

D D 
DDDDD 
DDDDD 
DDDDD 

Figure 35. Possible loading combinations 

Initially 
Loaded 

As needed 
modules 

Initially 
Loaded 

As needed 
modules 

Initiallv 
. Loadad 

As needed 
modules 

repackaging 

'As needed' modules 
packaged with 
initializer 

Application program 
or utility packaged 
with GDDM executable 
code 

® Application program 
or utility packaged 
with GDDM environment 
defaults module 

Chapter 4. Repackaging for performance 95 



How to repackage 

In this chapter, the term link-editing refers to the use of the LOAD and INCLUDE 
commands followed by the GENMOD command to create program modules; 
nonrelocatable files whose external references have been resolved. These files have a file 
type of MODULE. 

You repackage GDDM using the linkage editor (or equivalent loading program). 
However, the linking of the GDDM modules that are "loaded as needed" has to be done 
in a special manner. 

GDDM supplies modules known as packaging stubs that contain references (V -cons) to 
groups of associated modules. These packaging stubs must be linked with the subsystem 
initialization module to "drag in" the associated modules. This is shown in Figure 36 on 
page 97. 

Provisos about packaging 

Before you consider packaging you should be aware of the following consequences. 

Re-link-editing and possible future releases 

GDDM releases from Version I Release 3 have been designed with the intention that 
application programs will not have to be re-link-edited as a matter of course for any 
subsequent releases of GDDM. 

If packaging options that involve link-editing the application are used, the application will 
have to be re-link-edited for any subsequent release of GDDM. 

Retaining original libraries for service 

IBM service procedures (PTF Tapes) assume that the GDDM libraries have not been 
repackaged. This may cause problems if one of the modules that has been repackaged 
needs to be changed by service. 

Repackaged GDDM routines should therefore be placed in libraries other than the 
original installation libraries. 

The original libraries should be retained and service applied to these libraries. Packaged 
application programs or repackaged GDDM routines should be regenerated to include the 
serviced modules. 

Special considerations for repackaging modules on MVS/XA 

Some of the modules and utilities in GDDM have the attribute RMODE(24). If you 
include any of these in a repackaged load module, the entire load module will be assigned 
the attribute RMODE(24), and as a result, you will not be able to place it in a link pack 
area with a virtual address above 16M bytes. 

If you wish to repackage GDDM on MVS/XA, you should note the "Special 
requirements for MVS/XA" on page 107. 

96 GDDM Performance Guide 



repackaging 

Repackaging the GDDM executable code on its own 

GDDM executable code is repackaged using the subsystem initialization module and 
packaging stubs. The subsystem initialization module is always loaded at the start of a 
program. Figure 37 shows that it is called ADMEOOOx, where "x" varies according to the 
subsystem you are using. 

To repackage the executable code, link-edit the appropriate ADMEOOOx module with. one 
or more packaging stubs. The packaging stubs "drag in" other routines to form a load 
module that contains all the modules referenced in the packaging stubs. The composite 
module is given the same name as the ADMEOOOx module. Note that this can only be 
done with the ADMEOOOx modules, and that these modules can tell if they have been 
linked with executable code only if this has been done through packaging stubs. 

The effect of repackaging the GDDM executable code is shown in Figure 36. 

ADM EOOOx 
Subsystem Initialization 

D 
Packaging 
Stubs 

D 
D 
D 

D 

Ordinary Modules 

DODD 
DODD 
DODD 

DODD 
Before 

ADMEOOOx 
Subsystem Initialization 

Packaging 
Stubs 

D DODD 
After 

Figure 36. How packaging stubs are used to repackage the executable code 

Chapter 4. Repackaging for performance 97 



Figure 37 shows the name of the subsystem initialization module for each subsystem. 

Names of initially -loaded modules 

Subsystem Application External Subsystem 
interface defaults initialization 
initialization modules modules 
module 

CICS ADMACIN ADMADFC ADMEOOOC 
IMS/VS ADMACIN ADMADFI ADMEOOOI 
TSO ADMACIN ADMADFT ADMEOOOO 
TSO Print Utility (VT AM) ADMACIN ADMADFT ADMEOOOO 
VM/CMS ADMACIN ADMADFV ADMEOOOV 

Figure 37. Names of initially -loaded modules 

98 GDDM Performance Guide 



repackaging 

levels of packaging stubs 

Two levels of packaging stub are provided to give you more control of the modules you 
repackage. The full screen manager and the ICU can both be subdivided by use of 
second level packaging stubs. (The full screen manager carries out most of the graphic 
and alphanumeric processing within GDDM.) 

The contents of packaging stubs 

Figure 38 shows the contents of the first level packaging stubs. Figure 39 and Figure 40 
show the contents of the second level packaging stubs for the full screen manager and the 
ICU respectively. Note that the use of a first level stub automatically includes all the 
associated second level stubs. 

GDDM first-level packaging stubs 

Name Contents Size 
(in 
bytes) 

GDDM Base 
Subsystem-adapter routines 

ADMUXOOO Common (used on all subsystems) 62K 
ADMUXOOx Subsystem-dependent 
ADMUXOOC CICS 12K 
ADMUXOOI IMS/VS 17K 
ADMUXOOO OS/VT AM (see note) 90K 
ADMUXOOT OS/TSO 89K 
ADMUXOOV VM/CMS 84K 

Application-adapter routines 
ADMUXAOO - Common 202K 
ADMUXAOx Messages 
ADMUXAOA US-English 40K 
ADMUXAOB Brazilian 40K 
ADMUXAOD Danish 40K 
ADMUXAOF French 40K 
ADMUXAOG German 35K 
ADMUXAOH Korean (Hangeul) 40K 
ADMUXAOI Italian 40K 
ADMUXAOK Japanese (Kanji) 38K 
ADMUXAON Norwegian 34K 
ADMUXAOS Spanish 38K 
ADMUXAOV Swedish 40K 

ADMUXDOO Full-Screen Manager routines 1165K 
See later figure second-level split 

ADMUXIOO Image Symbol Editor subroutines 130K 

ADMUXOOO Print Utility subroutines 8K 

ADMUX300 Image subroutines 261K 

Figure 38 ()'art I of 3). GDDM first-level packaging stubs 

Chapter 4. Repackaging for performance 99 



GDDM first-level packaging stubs 

GDDM-PGF 
Presentation Graphics Routines 

ADMUXBOO Common (processing routines) 196K 
ADMUXBOx Date/day routines 
ADMUXBOA US-English O.9K 
ADMUXBOB Brazilian O.9K 
ADMUXBOD Danish O.9K 
ADMUXBOF French O.9K 
ADMUXBOG Gennan O.9K 
ADMUXBOH Korean (Hangeul) O.9K 
ADMUXBOI Italian O.9K 
ADMUXBOK Japanese (Kanji) O.9K 
ADMUXBON Norwegian O.9K 
ADMUXBOS Spanish O.9K 
ADMUXBOV Swedish O.9K 

GDDM-PGF and ICU 
ADMUXPAx Messages 
ADMUXPAA US-English 19K 
ADMUXPAB Brazilian 19K 
ADMUXPAD Danish 19K 
ADMUXPAF French 19K 
ADMUXPAG Gennan 19K 
ADMUXPAH Korean (Hangeul) 19K 
ADMUXPAI Italian 19K 
ADMUXPAK Japanese (Kanji) 19K 
ADMUXPAN Norwegian 19K 
ADMUXPAS Spanish 19K 
ADMUXPAV Swedish 19K 

ICU Subroutines 
See later figure second-level split 

ADMUXPOO Common (processing routines) 324K 
ADMUXPOx Menus and HELP 
ADMUXPOA US-English 405K 
ADMUXPOB Brazilian 405K 
ADMUXPOD Danish 405K 
ADMUXPOF French 406K 
ADMUXPOG Gennan 405K 
ADMUXPOH Korean (Hangeul) 405K 
ADMUXPOI Italian 405K 
ADMUXPOK Japanese (Kanji) 405K 
ADMUXPON Norwegian 405K 
ADMUXPOS Spanish 400K 
ADMUXPOV Swedish 405K 

ADMUXVOO Vector Symbol Editor subroutines 206K 

Figure 38 (Part 2 of 3). GDDM first-level packaging stubs 

100 GDDM Performance Guide 



repackaging 

GDDM first-level packaging stubs 

GDDM-IMD 
Interactive mapping routines 

ADMUXIOO GDDM-IMD subroutines 343K 
ADMUXlOA GDDM-IMD messages 19K 

Note The OS/VTAM Subsystem-Adapter routines are used by the TSO Print Utility 
on VTAM. 

Code sizes quoted arc approximate and for guidance only. 

Figure 38 (Part 3 of 3). GDDM first-level packaging stubs 

Chapter 4. Repackaging for performance 101 



Full Screen Manager second-level packaging stubs 

Name Contents Size 
(in 
bytes) 

Alphanumeric stubs 

For alphanumeric-only support use all the following 

ADMUXDAO Alphanumerics 35K 
ADMUXDBO Partitions 6K 
ADMUXDCO Common device processor 34K 
ADMUXDEO Partition sets 7K 
ADMUXDPO Direct printer support 39K 
ADMUXDSO Supervisor lOOK 
ADMUXDWO Data stream generator 230K 

Total 45lK 

Graphic stubs 

For basic graphics support use all the alpha stubs plus 

ADMUXDGO Graphics device processor 442K 

and for 3279 add 

ADMUXDHO Graphics generator 4lK 

Mapping stubs 

For runtime mapping support use all the alpha stubs plus 

ADMUXDMO Mapping processor 56K 

Image stubs 

For runtime image support use all the alpha stubs plus 

ADMUXD30 Image processor 66K 

Miscellaneous stubs 

Miscellaneous individual stubs that can be added 
as needed 

ADMUXDIO Queued printer support (input) 13K 
ADMUXDJO Composed-page printers 33K 
ADMUXDKO IPDS printers 21K 
ADMUXDLO System printers 5K 
ADMUXDOO Queued printer support (output) 14K 
ADMUXDTO Plotters 73K 

Total 160K 

Code sizes quoted are approximate and for guidance only. 

Figure 39. Full Screen Manager second-level packaging stubs 

102 GDDM Performance Guide 



Which stubs to use 

repackaging 

ICU second-level packaging stubs 

Name Contents Size 
(in 
Bytes) 

For menu panels 

ADMUXPMx Menus, messages: choose from list 
ADMUXPMA US-English 62K 
ADMUXPMB Brazilian 62K 
ADMUXPMD Danish 62K 
ADMUXPMF French 66K 
ADMUXPMG German 62K 
ADMUXPMH Korean (Hangeul) 62K 
ADMUXPMI Italian 62K 
ADMUXPMK Japanese (Kanji) 62K 
ADMUXPMN Norwegian 62K 
ADMUXPMS Spanish 64K 
ADMUXPMV Swedish 62K 

For HELP panels 

ADMUXPHx Help panels: choose from list 
ADMUXPHA US-English 340K 
ADMUXPIIB Brazilian 340K 
ADMUXPHD Danish 340K 
ADMUXPHF French 34lK 
ADMUXPHG German 340K 
ADMUXPHH Korean (Hangeul) 340K 
ADMUXPHI Italian 340K 
ADMUXPHK Japanese (Kanji) 340K 
ADMUXPIIN Norwegian 340K 
ADMUXPHS Spanish 33SK 
ADMUXPHV Swedish 340K 

Code sizes quoted are approximate and for guidance only. 

Figure 40. leu second-level packaging stubs 

You should include only those packaging stubs that are of interest to you. This means 
that you will exclude any subsystem adapter routine that you are not interested in (for 
instance, exclude VM, CICS, and so on, if you use only TSO), and any message routines 
that are in languages that you do not use (for instance, exclude French, English, and so 
on if you use only German). 

When you have excluded these obvious stubs, you should consider the processing code. 

The main processing for all graphics in both GDDM and PG Routines is in fact done by 
the Full Screen Manager, and major savings can be made by including this in any 
repackaging. 

For the Full Screen Manager and the ICU, second levels of packaging stubs are supplied, 
to enable their functions to be subdivided. 

Chapter 4. Repackaging for performance 103 



You may consider excluding the utility subroutines from the package and repackaging 
them separately. If you are doing this, the Image Symbol and Vector Symbol Editor 
stubs are candidates for exclusion, as is the print utility stub. Note that for 
GDDM-IMD, the frame defmitions are held as GDDM objects, and cannot therefore be 
packaged with GDDM-IMD. 

Before you exclude the leu stub, you should remember that the leu can be called by an 
application program. Also with the leu you should remember that the leu uses the 
PG Routines, which in tum use the Full Screen Manager. 

Rather than using ADMUXDOO, which gives the whole of the Full Screen Manager, 
individual functions can be packaged. Figure 39 on page 102 shows the stubs required 
to do this. You might include only the first set of these stubs if, for example, you used 
GDDM only for its alphanumeric support. 

Rather than using ADMUXPOx, which gives aU the leu frames, you can separate the 
HELP panels from the menu panels. Figure 40 on page 103 shows the stubs required to 
do this. You could use these stubs, for example, to repackage only the working code, and 
have the HELP panels loaded as needed. 

Repackaging executable code with a utility or application program 

When you repackage GDDM executable code with an application program or the 
invoking routine for a GDDM utility, you use the linkage editor (or equivalent) to link 
the program and the subsystem-initialization module. This, in tum, is linked with the 
executable code. In practice this means packaging: 

• The application program or the invoking routine for a GDDM utility 

• The subsystem-initialization module 

• Any packaging stubs that are relevant. 

Special requirements for utilities 

When repackaging the invoking routine for a GDDM utility, the internal link-edit name 
of the utility invoking routine must be used. These names are shown in Figure 41 on 
page 105. If utilities are not listed in this figure, they cannot be repackaged. 

104 GDDM Performance Guide 



repackaging 

Internal Link-edit names of invoking routines for GDDM utilities 

Subsystem Image Vector. Chart Print GDDM-IMD 
Symbol Symbol Utility Utility 
Editor Editor 

CICS ADMISSEC ADMVSSEC ADMPS1'BC ADMOPUC ADMlIMDC 
I MS/VS ADMKSCHI ADMKSCHI ADMKSCHI ADMOPUI -
OS/VTAM - - - ADMOPUT& -

ADMOPST 
OS/1'SO ADMISSET ADMVSSET ADMPSTBT - ADMlIMDT 
VM/CMS ADMISSEV ADMVSSEV ADMPSTBV ADMOPUV ADMlIMDV 

Notes: 
Any link-editing of the CICS utility invoking routines must also include DFHEAI at offset 0 and 
DFHEAIO. 
(They are the CICS EXEC Interface stubs.) 

Any link-editing of the IMS/VS utility invoking routines must also include ASMTDLI, the IMS/VS 
Application Interface stub. 

On MVS/XA, the above routines have these RMODE attributes: 
For IMS/VS, OS/VTAM, OS/TSO: RMODE(24) 
For CICS/VS: RMODE(ANY) 

Figure 41. Internal link-edit names of GDDM utilities 

Special requirements for application programs 

As described in the GDDM Base Programming Reference manual, applications have to be 
linked with a GDDM interface module (for example, ADMASLC on CICS). This can 
be done either automatically through using a special form of FSINIT within the program, 
or explicitly through linkage editor statements. 

Exactly the same rules apply when including packaged GDDM executable code. 

Eliminating dynamic loading completely 

If you want to eliminate dynamic loading completely, you must include in the repackaged 
module the initially-loaded modules and all the modules that would otherwise be loaded 
as needed. 

All the initially-loaded modules can be included by using packaging stubs. The common 
adapter stub (ADMUXOOO) will automatically include the application interface controller. 
lbe subsystem adapter stub (ADMUXOOx) will automatically include the corresponding 
external defaults module and subsystem-initialization module. 

There is no need to eliminate dynamic loading completely. Any modules that are needed, 
but are not included in the package, will be loaded dynamically when required. 

Chapter 4. Repackaging for performance 105 



-----------.. 

Repackaging an application or utility with a special defaults module 

It is possible to override a shared defaults module by packaging an application program 
or GDDM utility invoking routine with a special external defaults module. This is done 
by linking the application or utility invoking routine with the external defaults module. 
Normal linkage editor (or equivalent) methods are used to link the application or utility 
invoking routine and the required version of the defaults module. 

The same method can be used if you want to use two sets of defaults in an installation; 
for example, if you wanted to use the ICU in both French and English. Assuming 
English was specified in the normal defaults module, you would link a copy of the ICU 
invoking routine with a defaults module that specified French, and make the resulting 
load module available with a different name. Prench users would use this version. 

The name of the defaults module varies according to the subsystem as shown in 
Figure 37 on page 98. You will have to assemble a suitable version of the defaults 
module before doing the packaging. 

If you are repackaging with an application program you will have to follow the normal 
linking methods as described in "Special requirements for application programs" on 
page 105. 

If you are repackaging with a utility invoking routine, you will have to use the internal 
linkage-editor name for the utility invoking routine as shown in Figure 41 on page 105. 

This use of a defaults module is in addition to other methods of specifying user defaults, 
which are described in the GDDM Base Programming Reference manual. 

Repackaging for multiple subsystems 

If you use GDDM in more than one OS-based subsystem you can repackage the 
executable code and place it in shareable storage available to all the subsystems. 

The packaging stubs required for all of the subsystems that you intend to use should be 
included in such a composite routine. A linkage-editor NAME and ENTRY statement 
should be specified for one of the subsystem-initialization routines, and linkage-editor 
ALIAS statements should be specified for the others. 

Application programs and utility invoking routines can be included in the composite 
module, but only for one subsystem. This limitation arises from the link-editing 
mechanisms used by GDDM. 

106 GDDM Performance Guide 



repackaging 
----_ .. _-_._-_._-----_._.--------------------------------

Special requirements for various subsystems 

Special requirements for CICS 

Except on MVS/XA, CICS has a limit of 512K hytes on the size of anyone load 
module. Therefore, any repackaging of GDDM and PGP modules for use in the 
non-MVS/XA CICS environment should be such that this limit is not exceeded. 

Composite modules including utility invoking routines or the subsystem initialization 
module for use under CICS must include DFHEAI and DFIIEAIO. DFHEAIO must be 
at offset 0 in the composite load module. 

Special requirements for IMS/VS 

Under IMS/VS the utility invoking routines must be linked with the ASMTDLI, the 
IMS/VS application interface stub. 

Special requirements for VM/CMS 

Under VM/CMS the packaging facilities are used in the construction and operation of a 
discontiguous saved segment (DCSS). This is more fully described in the GDDM 
In.rtallalion and System Management [or VM. 

If the packaging stub ADMUXOOV is loaded with an application program, it will 
suppress use of the saved segment. 

Special requirements for MVS/XA 

On subsystems operating under MVS/XA (that is, CICS/VS, IMS/VS, and OS/TSO), 
some of the modules and utility invoking routines in GDDM have the attribute 
RMODE(24). (Usually. these are routines containing RMODE-sensitive application or 
subsystem interfaces.) If you include any of these in a repackaged load module, the entire 
load module will be assigned the attribute RMODE(24). and, as a result, you will not be 
able to place it in a link pack area above a virtual address of 16M bytes. 

In particular, the subsystem adapter packaging stubs (ADMUXOOx) for these subsystems 
all include at least one module with RMODE(24). This means that if you follow the 
normal procedures for repackaging described above, you will not be able to locate the 
resultant load module above 16M bytes. 

If you wish to repackage GDDM code on MVS/XA, such that most of the code can be 
retained above 16M bytes, you should generate two composite routines, as follows: 

o Package only the subsystem adapter packaging stub (ADMUXOOx) with the 
corresponding subsystem-initialization module. The resultant composite routine will 
have RMODE(24), and can be located in shareable storage below 16M bytes if 
desired. 

• Package any other required packaging stubs with the GDDM Application Interface 
Initialization module (ADMACIN). The common adapter packaging stub 
(ADMlJXOOO) will automatically include this routine. The resultant composite 

Chapter 4. Repackaging for performance 107 



routine will have RMODE(ANY), and can be located in shareable storage above 
16M bytes if desired. 

• Application code or the invoking routine for a GDDM utility cannot be packaged 
with the GDDM Application Interface Initialization module (ADMACIN). 
Application code or the invoking routine for a GDDM utility can be packaged with 
the subsystem-initialization module, but any resultant composite routine will acquire 
RMODE(24). 

The "Examples of repackaging" later in this chapter include an example for MVS/XA 
systems. 

108 GDDM Performance Guide 



repackaging 

Instructions for repackaging 

The list below is a suggested order for tackling repackaging: 

1. Decide the type of repackaging you are trying to do. 

This is discussed earlier in this chapter and in more broader terms in 
Chapter I, "Performance background" on page 1 and Chapter 2, "Tuning and 
customizing by subsystem" on page 41. 

2. If you are using CICS, IMS/VS, VM/CMS, or MVS/XA see "Special requirements 
for various subsystems" on page 107. If you are repackaging the defaults module, go 
to item 5. 

3. Look at "The contents of packaging stubs" on page 99 and decide which packaging 
stubs to include. 

4. Find the name of your subsystem initialization module in Figure 37 on page 98. 

5. If you are changing the defaults module: 

a. Find the name from Figure 37 on page 98. 

b. Change the defaults module as required. Look up "GDDM Defaults and 
Nicknames" in the Installation and System Management manual appropriate to 
your subsystem for details. 

c. Reassemble the defaults module. 

6. If you are linking with a GDDM utility invoking routine, fmd its intemallink-edit 
name from Figure 41 on page 105. 

7. Use the linkage editor or equivalent to create a module containing the required 
elements and having the correct name. 

The examples that follow can be used as models. Further information on link-editing 
with GDDM can be found in the GDDM Base Programming Reference manual. 

Chapter 4. Repackaging for performance 109 



Examples of repackaging 

Repackaging executable code for IMS/VS 

The following example shows the statements required to repackage GDDM executable 
code. The newly packaged load module contains all the GDDM and PGF routines 
required for execution of PGF Presentation Graphics Routines (excluding the leU) using 
American-English. 

The packaging shown in this example does not eliminate the dynamic loading of 
initially-loaded routines, ADMADFI and ADMACIN. 

//LINK EXEC PGM=IEHL,PARM='RENT,REFR,REUS,SIZE=C256K,64K)', 
// REGION=512K 
//SYSUTI DD UNIT=SYSDA,SPACE=CCYL,C5,1» 
//SYSLIB DD DSN=gddm-executable-load-library,DISP=SHR 
//SYSLMOD DD DSN=new-packaged-gddm-load-library,DISP=OLD 
//SYSPRINT DD SYSOUT=A 
//SYSLIN DD * 

INCLUDE SYSLIBCADMEOOOI) 
INCLUDE SYSLIBCADMUXOOO) 
INCLUDE SYSLIBCADMUXOOI) 
INCLUDE SYSLIBCADMUXAOO) 
INCLUDE SYSLIBCADMUXAOA) 
INCLUDE SYSLIBCADMUXDOO) 
INCLUDE SYSLIBCADMUXBOO) 
INCLUDE SYSLIBCADMUXBOA) 
INCLUDE SYSLIBCADMUXPAA) 
ORDER ADMEOOOI 
ENTRY ADMEOOOI 
NAME ADMEOOOICR) 

/)( 

IMS/VS subsystem initializer 
Common subsystem adapter 
IMS/VS subsystem adapter 
Common Application adapter routines 
US-English messages 
Full screen manager 
PGF common processing routines 
PGF US-English date text routine 
PGF US-English messages 

Execution of the example will generate a packaged version of the routine ADMEOOOI, 
and will store this version in a new GDDM load module library. 

110 GDDM Performance Guide 



repackaging 

Repackaging leu with executable code on TSO 

lbe following example shows the statements required to generate a version of the ICU to 
be used on TSO. It contains all the required routines for execution using US-English. 
Such repackaging would speed execution of the ICU because no dynamic loading would 
be required during its execution. 

The ICU is a special GDDM application program using the GDDM System Programmer 
Interface (SPI). Similar statements are required to package a user application program. 

//LINK EXEC PGM=IEWL~PARM='RENT~REFR~REUS~SIZE=C256K~64K)'. 
// REGION=512K 
//SYSUTI DD UNIT=SYSDA~SPACE=CCYL~CS.I» 
//SYSLIB DD DSN=gddm-executable-load-library~DISP=SHR 
//SYSLMOD DD DSN=newly-packaged-gddm-load-library~DISP=OLD 
//SYSPRINT DD SYSOUT=A 
//SYSLIN DD ~ 

INCLUDE SYSLIBCADMPSTBT) 
INCLUDE SYSLIBCADMASPT) 
INCLUDE SYSLIB(ADMUXOOO) 
INCLUDE SYSLIB(ADMUXOOT) 
INCLUDE SYSLIBCADMUXAOO) 
INCLUDE SYSLIBCADMUXAOA) 
INCLUDE SYSLIBCADMUXDOO) 
INCLUDE SYSLIBCADMUXBOO) 
INCLUDE SYSLIB(ADMUXBOA) 
INCLUDE SYSLIBCADMUXPAA) 
INCLUDE SYSLIBCADMUXPOO) 
INCLUDE SYSLIB(ADMUXPOA) 
ORDER ADMPSTBT 
ENTRY ADMPSTBT 
ALIAS ADMCHART 
NAME ADMPSTBTCR) 

/JE 

ICU invoking routine link-edit name 
GDDM/TSO interface stub 
Common subsystem adapter 
TSO subsystem adapter 
Common Application adapter routines 
US-English messages 
Full screen manager 
PGR common processing routines 
PGR US-English date-text routine 
PGR US-English messages 
ICU common processing routines 
ICU US-English messages 

Alias name of the ICU 

Execution of the example will generate a packaged version of the routine ADMPSTBT, 
and will store this version in a new GDUM load module library. 

ADMCHART is an alias name for ADMPSTBT, through which the utility may be 
invoked. 

Chapter 4. Repackaging for performance 111 



Repackaging GDDM/VSE with the initially loaded modules 

The following example shows the statements required to generate a version of a VSE 
PL/I application program using the reentrant interface to GDDM. The program is 
packaged with the initially loaded modules. 

See GDDM Base: Programming Reference for a description of the interface modules 
ADMASRB and ADMASLC. 

// OPTION CATAL 
PHASE phase-name, ~ 
INCLUDE DFHPLlI 
INCLUDE PL/I-relocatable-module 
INCLUDE ADMASRB 
INCLUDE ADMASLC 
INCLUDE ADMUXOOO 
INCLUDE ADMUXOOC 

/ / EXEC LNKEDT 
/& 

112 GDDM Performance Guide 

CICS PL/I EXEC interface stub 
The application program 
GDDM entry points (reentrant) 
GDDM CICS interface 
Common subsystem adapter 
CICS sUbsystem adapter 



repackaging 
-------- ._---------_._--- ._---------------

Repackaging executable code for subsystems on MVS/XA 

The following example shows the statements required to repackage all GDDM executable 
code (including GDDM-PGF and GDDM-IMD subroutines) for CICS, IMS/VS, and 
TSO on MVS/XA. The newly-packaged load modules contain ail the required 
GDDM/MVS, GDDM-PGF, and GDDM-IMD routines for execution using 
US-English, but do NOT include the GDDM utility invoking routines listed in Figure 41 
on page 105. The packaging shown in this example does not eliminate the dynamic 
loading of initially-loaded routine, ADMADFx. 

//LINK 
// 
//SYSUTl 
//SYSLIB 
//SYSLMOD 
//SYSPRINT 
//SYSLIN 

EXEC PGM=IEWL,PARM='RENT,REFR,REUS,SIZE=CZ56K,64K)', 
REGION=51ZK 

/3E 

DD UNIT=SYSDA,SPACE=CCYL,C5,1» 
DD DSN=gddm-executable-load-library,DISP=SHR 
DD DSN=new-packaged-gddm-load-library,DISP=OLD 
DD SYSOUT=A 
DD 3E 

INCLUDE SYSLIBCADMEOOOC) 
INCLUDE SYSLIBCADMUXOOC) 
ORDER DFHEAI 
ORDER ADMEOOOC 
ENTRY ADMEOOOC 
NAME ADMEOOOCCR) 

INCLUDE SYSLIBCADMEOOOI) 
INCLUDE SYSLIBCADMUXOOI) 
ORDER ADMEOOOI 
ENTRY ADMEOOOI 
NAME ADMEOOOICR) 

INCLUDE SYSLIBCADMEOOOO) 
INCLUDE SYSLIBCADMUXOOO) 
INCLUDE SYSLIBCADMUXOOT) 
ORDER ADMEOOOO 
ENTRY ADMEOOOO 
NAME ADMEOOOOCR) 

INCLUDE SYSLIBCADMUXOOO) 
INCLUDE SYSLIBCADMUXAOO) 
INCLUDE SYSLIBCADMUXAOA) 
INCLUDE SYSLIBCADMUXDOO) 
INCLUDE SYSLIBCADMUXBOO) 
INCLUDE SYSLIBCADMUXBOA) 
INCLUDE SYSLIBCADMUXPAA) 
INCLUDE SYSLIBCADMUXPOO) 
INCLUDE SYSLIBCADMUXPOA) 
INCLUDE SYSLIBCADMUXIOO) 
INCLUDE SYSLIBCADMUXOOO) 
INCLUDE SYSLIBCADMUXVOO) 
INCLUDE SYSLIBCADMUXIOO) 
INCLUDE SYSLIBCADMUXIOA) 
ORDER ADMACIN 
NAME ADMACINCR) 

CICS/VS subsystem initializer 
CICS/VS subsystem adapter 

IMS/VS subsystem initializer 
IMS/VS subsystem adapter 

TSO subsystem initializer 
VTAM subsystem adapter 
TSO subsystem adapter 

Common subsystem adapter 
Common Application adapter routines 
US-English messages 
Full screen manager 
PGF common processing routines 
PGF US-English date text routine 
PGF US-English messages 
ICU common processing subroutines 
ICU US-English panels 
Image Symbol Editor subroutines 
Print Utility subroutines 
Vector Symbol Editor subroutines 
GDDM-IMD subroutines 
GDDM-IMD messages 

Execution of the example will generate packaged versions of the routines ADMEOOOC 
(for CICS), ADMEOOOI (for IMS/VS), ADMEOOOO (for TSO and TSO Print Utility), 
and ADMACIN (common to all subsystems), and will store these versions in a new 
GDDM load module library. 

Chapter 4. Repackaging for performance 113 



Repackaging application program with executable code on VM/CMS 

The following example shows the VM/CMS commands entered to create a composite 
load module for an application program and to execute the composite module. All 
GDDM routines other than those required for the production of language-dependent 
error messages are included in the composite module. The language-dependent routines 
would be dynamically loaded should the application program require the generation of an 
error message. 

The commands shown suppress the use of any copy of GDDM and PGF installed into a 
discontiguous saved segment (DCSS): 

GLOBAL TXTLIB ADMPLIB ADMRLIB ADMGLIB PLILIB 
LOAD appln-name ADMUXOOO ADMUXOOV ADMUXAOO ADMUXDOO (START 

Loaded items are: the application, common subsystem adapter routine (ADMUXOOO), 
VM subsystem adapter routine (ADMUXOOV), common application adapter routine 
(ADMUXAOO), and the full screen manager (ADMUXDOO). 

Overriding saved segment defaults module on VM/CMS 

A shared segment is frequently used in VM/CMS to reduce the dynamic loading that 
.would otherwise be done for each separate virtual machine. Sometimes it is necessary to 
override the use of the defaults module for a particular program. A typical example is to 
use the trace facilities on the ICU, or to have the ICU panels appear in a language other 
than the default provided for your installation. 

The following example shows the VM/CMS commands entered to invoke a GDDM 
application program on VM/CMS, using a GDDM Environment Defaults Module other 
than that available in a discontiguous saved segment (DCSS). 

The commands shown would permit the use of any other GDDM and PGP routines that 
were present in a discontiguous saved segment (DCSS). 

• Create a suitably modified defaults module and generate it, as described in the GDDM 
Installation and System Management manual for your system. 

• Make sure it is present either as a ftle of type TEXT, or in a TXTLIB of name 
DFTLIB. 

• Issue the commands: 

GLOBAL TXTLIB DFTLIB ADMRLIB PLILIB 
LOAD appl-name ADMADFV (START 

Loaded items are: the application, and the VM environment defaults module 
(ADMADFV). 

114 GDDM Performance Guide 



application programming 

Chapter 5. Application programming for performance 

nlis chapter contains information for application programmers on how to write their 
GDDM programs to provide improved performance. The topics it covers are: 

1. The ADMUFO CSECT, for checking the validity of parameters in GDDM calls 

2. Hints for getting the most from your terminal when handling: 

a. Graphics data 

b. Alphanumeric data, through procedural calls and mapping 

c. Image data 

d. Windows 

e. Partitions. 

3. How you can help end users 

4. Some information specific to programming under CICS. 

ADMUFO - the user fast option 

Whenever a program makes a GDDM call, all the parameters attached to the call are 
checked for validity. The cost of doing this can be quite substantial. GDDM allows you 
to omit this parameter checking and so save processor resource. The way to do this is to 
define an external control section (CSnCT) named ADMUFO to be link-edited with the 
application program and the GDDM interface module. The contents of the CSECT do 
not have to be defined. 

The ADMUFO CSECT can be defined using standard assembler language facilities, thus: 

ADMUFO CSEC.T 
END 

Alternatively. high-level language constructs can be used. where such are available. In 
PLjI. the CSECT could be generated by a declaration of the form: 

DECLARE ADMUFO STATIC EXTERNAL; 

Chapter 5. Application programming for performance 115 



ADM UFO will give most benefit where the cost of parameter checking is a significant 
proportion of the total cost of the calls made. Programs that use GDDM procedural 
alphanumeric calls are likely to show up to 15% reduction in the processor cost 
attributable to GDDM. The saving for programs that display graphics on the 3279 is 
more likely to be up to 3%. The saving on 3270-PC/G and 3270-PC/GX work stations 
is likely to be up to 20%. 

The important point to make about ADMUFO is that it should not be included in a 
program until that program has been found to be free of error. ADM UFO will mask any 
error caused through having invalid parameters on a call. You could spend much time 
identifying problems that would otherwise have been diagnosed quickly for you by 
GDDM's checking of the parameters on each call. 

On MVS/XA, the fast bypass will not be invoked if the application addressing mode 
requires a mode change (that is, ifthe application call is in 24-bit mode). In this instance, 
it is necessary to generate a parameter-list copy, with the top bytes of each address word 
cleared. 

This generally means that the User Fast Option functions on MVS/XA only for 31-bit 
mode applications. An application program executing in AMODE(24) will execute, but 
with the fast path disabled. 

(ADM UFO is described in the GDDM Base Programming Reference manual.) 

Getting the most from your terminal 

Graphics 

As we saw in Chapter 1, "Performance background," GDDM supports a wide range of 
device classes, some of them possessing varying degrees of processing power. For the 
more intelligent devices, this section tells you things you can do in your application to 
take advantage of that power, and so use less host resource. For the less-intelligent 
devices, this section tells you ways that you can cut your host-performance costs. 

As a general observation, it is possible to make significant savings in graphics 
performance, on a device such as the 3279, only by reducing the quality of the picture to 
be displayed. 

1. Reducing the size of the displayed picture will reduce data stream and processor 
requirements. 

2. Pictures that use only a single color have significantly shorter data streams and use 
slightly less processor resource. 

3. Use of mode-l text rather than mode-2 or -3 also reduces data stream and processor 
requirements. 

Other points to note are: 

116 GDDM Performance GuJde 



application programming 

• The cost of initialization and tennination of a GDDM program is significant. One 
program that displays several pictures is more economic than several programs that 
each display a single picture. 

• There are small savings to be made by using GSVECM or GSPLINE calls to draw 
multiple lines rather than a series of GSLINE calls. 

• There are two methods of saving and displaying pictures: 

Graphics Data Format (GDF) - the picture is held as a series of line, arc, and 
area defmitions that are device-independent. Processing has to be done to 
convert the picture to a device-dependent form before it can be redisplayed. 
Little processing work has to be done to redisplay it on 3270-PC/G and IGX 
work stations; a substantial amount of processing work is required for a 3279. 

FSSAVE/FSSHOW format - the picture is held in a device-dependent format. 

• On the 3179-G, using non-default vector symbol sets will increase host-processor and 
data-stream requirements. 

• Panning and zooming at a device like a 3279 is performed in the host by GDDM. If 
the user is doing a lot of panning and zooming, the interaction between the host and 
the terminal will be intensive, increasing both processor time and the frequency of 
data-stream transmission. 

• On the 5080 graphics system, images use up a lot of storage because each pixel is 
represented by a byte. 

All mode-2 symbol sets apart from the default are expanded into images and therefore 
occupy more storage. 

All mode-3 symbol sets (including the default) are expanded into vectors, increasing 
processing time. 

• For 4250, 3800, and 3820 printer picture production, you can trade host cycles 
against dynamic storage use by setting the swathe count in the HRISW A TH 
processing option, and by directing expanded GDF to a spill fde in the HRISPILL 
processing option. See also "Special considerations for composed-page printing" on 
page 29, and Chapter 2, "Tuning and customizing by subsystem" on page 41. 

Processing graphics segments on IBM 327O-PC/G and /GX Work Stations 

3270-PC/G and 3270-PC/GX work stations can be used in two modes: retained mode 
and non-retained mode. Both modes can provide performance advantages for interactive 
graphics applications over those provided in previously supported displays. 

By default, both 3270-PC/G and IGX work stations are opened as family-! devices in 
retained mode. This means that retained primitives are stored in the work stations' 
segment buffers and can be used to refresh the picture after it has been modified. This is 
an efficient way of using the work station, provided the application program makes good 
use of graphics segments to break the picture into parts that can be handled easily. Also, 
retained mode retransmits shorter data streams for graphics areas. 

Chapter S. Application programming for performance 117 



However, storage in these work stations is restricted, and some pictures might be too 
complicated to store as a whole in the work stations' segment buffers. In such a case, the 
application program should use the work station in non-retained mode. (GDDM 
switches into non-retained mode, but with a significant cost in host processing.) 

An application program can explicitly set non-retained mode if the picture is expected to 
be too large to fit into segment storage by specifying a DSOPEN call with the value of 
fullword 2 set to 1 in processing option group 17, SEGSTORE. See the description of 
DSOPEN in the GDDM Base Programming Reference manual for full details. 

In non-retained mode, GDDM transmits the picture to the work station as vectors; the 
work station discards them after they have been processed. GDDM has to retransmit the 
entire picture (including the graphics area and its boundary) to the work station every 
time the application program updates it. 

For interactive graphics, non-retained mode is, therefore, not as efficient as retained 
mode, but the performance should be satisfactory for simple output graphics, compared 
with a 3279 display. 

Loading symbol sets: Unlike on the 3279, the GSLSS call loads the symbol set into the 
work station. This happens even if tile symbol set has already been loaded. Code 
containing such redundant GSLSS calls can significantly increase the data-stream size for 
a 3270-PC/GX, and would actually perform better on a device like a 3279, that cannot 
have symbol sets downloaded to it. 

If you are writing an application that uses several symbol sets, you should therefore 
ensure either that your program does not contain redundant GSLSS calls, or that it keeps 
track of which symbol sets are loaded. You can do this by keeping a record within your 
program of symbol set names as they are loaded, or by using the call GSQSS before the 
GSLSS, to check with GDDM what has been loaded so far. 

Panning and zooming at a work station: The work stations can locally perform the 
panning and zooming functions of user control. You can take advantage of this using the 
LCLMODE processing option. It causes the initial data stream that is sent to the device 
to be increased, but savings occur if the terminal user actually uses panning and zooming 
frequently. 

Redrawing pictures on a 3179-G or 3270-PC/G or /GX: Use of picture segments gives 
significant performance advantages where the application is making changes to a single 
picture rather than displaying different pictures. Segments do cause an overhead in the 
data stream and work station, so don't overdo things. 

When you make changes to a picture displayed on a 3179-G, or 3270-PC/G or /GX, the 
work station may draw just the update or it may need to redraw the entire picture. 

You can control whether redraw occurs, by specifying that picture updates are optimized 
so that only changed segments are updated. The operator can select draft-draw mode, 
using user control. You specify it by the value that you set either in fullword 2 of 
processing option group 26 (FASTUPD) of the DSOPEN call, or in the single parameter 
to the FSUPDM call. The value has the following effect for both calls: 

118 GDDM Performance Guide 



Alphanumerics 

Procedural 

Mapping 

application programming 

o Total redraw will occur if necessary (the default). Additions to the picture 
will generally cause a partial redraw. Deleting segments (because deleting one 
may make other segments visible) or changing segment attributes (for 
example, visibility or priority) or transforms requires a total picture redraw. 
The work station needs to redraw the entire picture to make them appear 
correctly. It may therefore be best to batch operations that cause a total 
picture redraw. 

For retained mode, total redraw does not mean that the entire picture is 
retransmitted by GDDM. Only the changes are sent, and the work station 
incorporates these into the picture deftnition that it holds in segment storage. 

Picture to be optimiz.ed by a method chosen by GDDM as being the most 
suitable for the device. 

There are two different methods of producing alphanumeric displays using GDDM: 
procedural calls or mapping. 

This method is based on a set of GDDM calls that: 

• Defme alphanumeric ftelds, their length, position, and attributes 

• Initialize them with data 

• Display them 

• Read in any user-modified ftelds. 

Using the procedural technique, the alphanumeric display has to be recreated every time 
it is needed. A way to avoid this will be discussed later. 

The performance implications of dynamically creating displays are important. Much 
amount of work has to be done to defme the fields, initialize them, and do such things as 
checking that each fteld has a unique identifier or does not overlap with any other field. 
Mapping avoids these costs during the display process. 

This method of displaying alphanumerics revolves around the one-time deftnition of an 
alphanumeric screen or map. This can be displayed later by other programs. The map 
deftnition is done interactively using GDDM-IMD, the GDDM-Interactive Map 
Defmition program product. The advantage of this method is that once the map has 
been defined, the user program has only to retrieve and display it; there is no error 
checking to be done at run time. 

There are advantages and disadvantages for both procedural and mapped alphanumerics. 
Procedural alphanumerics have the advantage of being completely flexible; displays that 
are created on a one-time basis are ideal candidates for this technique. Mapping is ideal 
for programs that display predefmed menus. Mapped alphanumerics generally have 

Chapter 5. Application programming for performance 119 



significant perfonnance advantages over procedural calls, particularly when 20 or more 
fields are displayed on the screen. Savings of 60 to 80% of the processor cost are likely if 
mapped displays are used in preference to procedural alphanumeric calls. 

The mapping perfonnance advantage does, however, depend on the system overhead to 
retrieve the map from DASD. This can be a one-time cost for the application, the map 
being kept in storage for later reuse. This implies an increase in the dynamic storage 
requirement for the user, but the associated paging almost certainly costs less than 
retrieving the map from DASD a second time. GDDM automatically maintains 
recently-used mapgroups in storage in case the application uses them again. The amount 
of storage that GDDM will use to hold such recently-used mapgroups (and hence the 
number of mapgroups retained in storage) is controlled by the ADMMDFT MAPGSTG 
external default. Specification of this option is covered fully under "GDDM Defaults, 
Exits, and Nicknames" in the Base Programming Reference manual. 

Procedural alphanumerics performance hints 

There are two basic rules to follow for minimizing processor usage when using GDDM 
procedural alphanumerics: 

1. Perfonn operations on the alphanumeric fields in screen order. 

2. The field identifier should be related to the screen position of the field. 

In other words, if you want to defme fields, for instance, do it sequentially. Start at 
the top row, defme the fields from left to right, and then do the same for each 
successive row until you reach the right-hand end of the bottom row. The field 
identifier should increase as you work down the screen. Experiments have shown. 
that using this technique can reduce processor costs by up to 40% compared with 
assigning unrelated field identifiers and accessing fields in random order. 

Other miscellaneous points to bear in mind when programming with procedural calls: 

• ASDFMT is slightly cheaper than ASDFLD when defining fields, although this gain 
is probably offset by use of ADMUFO. 

• Using unnecessary parameters on ASDFMT and ASRFMT calls requires additional 
processor resource. 

• Deep fields are slightly cheaper than having a field on every line of the display. If the 
data on each line is of varying length, the data stream of the deep field will be longer 
as padding is inserted on each line. 

• A void defining long fields in which only the first few bytes contain data. Although 
the rest of the field will get padded with nulls or blanks, there is a processing cost 
involved in compressing the padding bytes when the data stream is transmitted to the 
terminal. 

• Use of attributes such as highlighting, color, or reverse video, on a character rather 
than a field basis, involves extra work in the processor. These should be used 
sparingly from the human factors point of view also, if they are to have an effect. 

120 GDDM Performance Guide 



Image 

application programming 

Earlier, it was mentioned that it is possible to avoid recreating an alphanumeric screen 
before redisplaying it within an application. This can be achieved by defining mUltiple 
pages using FSPCRT; alphanumeric panels that are going to be displayed several times 
within the application should each be dermed on a separate page. To redisplay a 
particular panel, reselect that page using FSPSEL and issue the ASREAD to do the 
display. You must use a unique page for every alphanumeric panel that you want to 
keep in this way. The following example shows how to do it. 

· CALL FSPCRTC1000,0,0,2); /~ Define a page with an id of 1000 
CALL FSPSELUOOO) ; /~ Make it the current page 
CALL ASDFLDC1,2,5,1,16,2); /~ Define an alphanumeric field 

/~ on the current page 
CALL ASCPUTCI,16,'THIS IS SCREEN I'); /~ Initialize it 
CALL ASREADCATT,ATTM,COUNT);/~ Display the current page 

· CALL FSPCRTC100l,0,0,2); /~ Define a page with an id of 1001 
CALL FSPSEU 1001); /~ Make it the current page 
CALL ASDFLDCl,2,5,1,16,2); /~ Define an alphanumeric field 

on the current page 
CALL ASCPUTCI,16,'THIS IS SCREEN 2'); /~ Initialize it 
CALL ASREADCATT,ATTM,COUNT);/~ Display the current page 

· CALL FSPSEU 1000) /~ Reselect page 1000 
CALL ASREADCATT,ATTM,COUNT);/~ Display it 

~/ 

~/ 

~/ 

~/ 

~/ 

~/ 

~/ 

~/ 

~/ 

J(/ 
~/ 

~/ 

~ 

Keeping the pages will increase the amount of dynamic storage that the application uses, 
but the technique is unlikely to add much to application overheads. Processor costs for 
the second and subsequent displays of a panel are likely to be 30 to 40% of the original 
creation and display cost. 

Image processing involves the capture, storage, transmission, manipulation, and display of 
very large amounts of data. Anything that you can do to reduce the sheer volume of data 
will improve the performance of image applications. This section explains how to do 
this, and also tells you how to take advantage of the processing power available on image 
devices. 

Image processing on image devices 

You can reduce the amount of image data to be processed by excluding any information 
that is not required. For example. if your application involves the processing of several 
standard forms that have a certain amount of common information, there is little point in 
capturing, transmitting, or storing that common information. It makes more sense to 
keep just the parts of the form that differ. You can do this by derIDing sub-images to be 
extracted, using: 

• IMREX or IMREXR calls in a transfer operation 

• IMA TRM call to trim an image, without transferring it 

You can also use the IMRSCL call to reduce the size of an image, if appropriate. 

Chapter S. Application programming for performance 121 



If an image is only intended for display at a terminal, or on a low-resolution printer, there 
is no point in creating, keeping or sending it at a high resolution. The resolution of an 
image is specified when it is created, using call IMACRT, or changed using IMARES. 

The application has control over compression only on IMAPTx calls. Compressing 
image data shortens image data streams and results in faster transmission between the 
host and the device. This could be a benefit for remotely-connected devices. However, 
you should also consider the time taken for the host and the device to compress or 
decompress the data. The MMR compression algorithm is not suited to images 
containing photographs or half-tone pictures, where the pixels alternate frequently 
between the on and off states. In many cases, MMR compression can actually expand 
the data. 

The 3193 can perform transfer operations in the device itself. That is, it can apply a 
projection to image data. This is called host omoad, and has the benefit of improved 
performance for the end-user, and uses less system storage. 

The factors affecting host offload are: 

• The capabilities of the device 

• The level of quality specified as acceptable in your program 

• Whether the data is to be used after transmission. 

If you are sending image data from your program to a 3193, using IMAPTx caUs, any 
associated projection may be performed in the device, instead of by GDDM in the host, 
as long as the 3193 can cope with the projection, and depending on the level of quality 
that you specify as acceptable, using the ISCTL call. ISCTL is fully described in the 
GDDM Application Programming Guide. 

Not all transform elements are within the 3193's capabilities. For example, the 3193 is 
capable of scaling by factors of 0.25, 0.33, 0.5, 0.66, 0.75, 1.0, 1.33, 1.5, 2.0, 3.0, and 4.0. 
If an application requires an image to be scaled by 2.4 on output, then GDDM has to do 
it in the host, unless you specify that a certain level of approximation is acceptable. You 
can do this with the quality parameter in the call ISCTL. If you specify a low value in 
this parameter, for example, GDDM will allow the device to approximate 2.4 to the 
device scaling of 2.0. (a value of 2.5 would be approximated to 3.0). If you specify a high 
value, you are saying that the device's approximation would be unacceptable to you, and 
the scaling of 2.4 would be performed in the host. 

You can use the ISFLD call to control whether an image is to be write-only or 
read-write. If you do not require the image data to be read subsequently, you should 
specify "write-only." GDDM can then offload processing to devices, such as the 3193, 
which support image processing in write-only mode. If you do require the image data to 
be read subsequently, you should specify read-write. Host offload will then not occur, 
and GDDM will emulate the processing in the host. 

Host offload is a prerequisite for direct transmission. Direct transmission only occurs 
with IMAPTx transfer operations that have the 3193 as their target. 

122 GDDM Performance Guide 



application programming 

Projections associated with transfers from image - 1 to image 0 can be carried out in the 
device. This saves processor utilization and usually means that GDDM doesn't need to 
keep a copy of the transformed image, so saving virtual storage as well. 

Image processing on graphics devices 

Partitions 

Image processing is emulated by GDDM on graphics devices such as, for example, the 
3179-G. So an image application will use more host and communications resource when 
running on a graphics device than it will on an image device. 

The 4224 printer supports image data without emulation. 

When you use overlapping partitions in an application, GDDM monitors changes to the 
partitions and minimizes data stream generation. This improves the front-of-screen 
appearance, by avoiding unnecessary redrawing of the data, but increases processor usage. 
As an example, a map in an overlapped partition may use significantly more processor 
time than a map in a non-overlapped partition. 

Using GDDM's partitions to organize your data can improve the performance and the 
end-user interface of your application. For example, on the 3179-G, when a redraw is 
required in a partition because a segment has been deleted, only that screen area is 
refreshed. 

How you can help the end user 

For a device such as the 3279, the number of PS cell definitions that must be transmitted 
to the terminal to create a picture depends on the picture's complexity. For example, a 
multicolored symbol requires three times as many bits for its definition as does the same 
symbol in monochrome. A complex chart with many lines, shaded areas, colors, and 
vector text needs much more PS information than a simple one using two or three colors 
and hardware text characters. Because the more complex picture requires more dynamic 
storage and takes longer to appear on the screen, the application programmer will 
generally need to achieve some balance between picture requirements and the operating 
environment. 

Depending on system use, picture complexity, and other factors, several seconds may be 
required to complete a graphics display on the terminal. In designing interactive:' 
application programs that generate pictorial displays, the programmer should attempt to 
provide some response to the user as soon as possible after the last user action. For 
example, if the application program must search a large data base or perform extensive 
calculations before the picture can be constructed, a message might be displayed, 
indicating that work is in progress. As another example, if data is readily available and 
the user expects to see the picture, the program should force some information (such as 
chart axes or a title) onto the screen as soon as possible. The information presented 
should be something the user would like to see early in the picture generation. However, 
it should be noted that excessive forcing of partial graphics information can increase the 
total time needed to send the picture to the terminal, by increasing the number of 
transmissions. 

Chapter 5. Application programming for performance 123 



Performance and the Interactive Chart Utility 

Certain calls in the PGF application programming interface let you use parts or all of the 
ICU as the end-user interface for your own application. You should be aware that there 
are various techniques for using the ICU efficiently. You could pass these techniques on 
to users of your application, in the user documentation of your application (for example, 
help panels): 

• PF.12 takes you directly to the Home panel. Use it in preference to PF3, which 
might get you there indirectly. 

• It is not necessary to press ENTER to get GDDM to take data on panels like Data 
Entry. This automatically occurs when you leave the panel. 

• When drawing line graphs or surface charts, do not use very high values for the 
curve-smoothing option until the picture is ready for fmal display. 

• You can go to most panels (for example, 4.4.1) directly from the Home panel, 
without displaying any of the intermediate routing panels. 

• In preview mode, accessible from panel M (Menu Control), you can display a small 
version of the chart on the panels. The chart is updated if any option is changed. 
Use of preview mode may reduce resource requirements by reducing the number of 
full screen picture displays that the user requests. However. if you use preview mode 
and don't reduce the number of times you request full screen picture displays, you 
will increase rather than decrease the sYstem resource requirements. 

• Extensive use of the ready-made chart function of the chart-by-example panels 
increases system-resource requirements. This is because the ICU ftrst displays 
examples of the different chart types, then when you have chosen a chart type, 
displays several examples of variations of that chart type, from which you choose the 
one best suited to your needs. The displaying of choices increases resource usage. In 
fact, displaying seven small chart examples on one page uses similar amounts of 
host-processor and data-stream resource to displaying seven separate pages with a 
chart on each page. However. the user can use the PF6 key to suppress the display 
of the small charts. 

Application programming under CICS 

Under the CICS subsystem, you can specify that the terminal on which a GDDM 
transaction is running be handled in pseudoconversatlonal mode. In this mode, you 
"divide" the transaction into several GDDM instances. Once output has been sent to the 
terminal, GDDM frees all its host resources. GDDM is only reinitialized when CICS 
reinvokes the transaction to handle the next input from the terminal, and the transaction 
picks up where it left off, using the same mode. The beneftt of using this mode is that 
host resources are not tied up while the end user considers his or her next action. 

Pseudoconversational mode is available for the following: 

• CICS under MVS or VSE 

124 GDDM Performance Guide 



application programming 

• Default family-l display device 

• Mapped alphanumeric data 

• Output-only graphics data that is not to be updated. 

The mode is invoked by a processing option to DSOPEN after the ftrst FSINIT in a 
GDDM transaction. Each subsequent instance of GDDM in the transaction continues 
the mode by further FSINITs and DSOPENs. It is the responsibility of the transaction 
to maintain continuity between the initial instance of GDDM and subsequent instances 
within the transaction. This involves several calls in each instance - for example, to 
maintain the output to the screen, and to save, at the end of each instance, information 
that is required by subsequent instances. The need to issue these calls inevitably increases 
the processor usage, typically to twice that used by "ordinary" conversational mode. You 
must therefore make a trade-off between system resource savings through releasing 
GDDM resources between each instance, and the increase in processor usage because of 
the greater number of GDDM calls in each instance. 

The GDDM functions that can be used in pseudoconversational mode are restricted. See 
the Base Programming Reference manual for full details of use of the mode, and the calls 
that are restricted. 

Chapler S. Application programming for performance 125 



GDDM glossary 

This glossary defines various terms used in the 
documentation of GDDM. 

This glossary includes terms and definitions from the 
IBM Vocabulary for Data Processing. 
Telecommunications. and Office Products, GC20-1699. 

AAB. Application anchor block. 

absolute data. In GDDM-PGF, the actual y values to 
be ploued. Contrast with relative data. 

active partition. The partition containing the cursor. 
Contrast with current partition. 

adjunct. In mapped alphanumerics, one of a set of 
optional subfields in an application data structure that 
specifies some attribute of a data field, for example, that 
it is highlighted. An adjunct enables the attribute to be 
varied at run time. 

ADS. Application data structure. 

Ale. Application interface component. 

AID. Attention identifier. 

alphanumeric character attributes. In GDDM, 
comprise the highlighting, color, and symbol set to be 
used. 

alphanumeric cursor. A physical indicator on a display. 
It may be moved from one hardware cell to another. 

alphanumeric field. A field (area of a screen or printer 
page) that can contain alphabetic, numeric, or special 
characters. In GDDM, contrast with graphics field. 

alphanumeric field attributes. In GDDM, comprise 
intensity, highlighting, color, symbol set to be used, field 
type, field end output conversion, input conversion, 
translate table assignment. transparency. field outlining, 
and mixed-string fields. 

glossary 

alphanumeric lahel. In GDDM-PGF or the ICU, a 
user-specified alphanumeric string used to annotate an 
x-axis or y-axis scale mark. Contrast with numeric label. 

alternate device. In GDDM, a device to which copies 
are sent of the primary device's output Usually the 
alternate device is a printer or plotter. See also primary 
device. 

annotation. An added descriptive comment or 
explanatory note. 

aperture. See pick aperture. 

API. Application program interface. 

API.. One of the programming languages supported by 
GDDM. 

application data structure (ADS). A structure created 
by IMD that contains an entry for each variable field 
within a map. The data to be displayed in a mapped 
field is placed into the application data structure by the 
user's program. 

application image. In GDDM, an image contained in 
GDDM main storage, and independent of any device or 
GDDM page. Contrast with device image. 

application program interface (API). The formally 
defined programming-language interface between an 
IBM system control program or licensed program and 
its user. 

area. In GDDM, a graphics area is a shaded shape, 
such as a solid rectangle. It is created by opening the 
area, defining its outline, and closing the area. 

&'ipect ratio. The width-to-height ratio of an area, 
symbol, or shape. 

attention identifier. A number indicating which button 
the operator pressed to satisfy a read operation. For 
example,O (returned from GDDM to the application 
program) means that the operator pressed the ENTER 
key. 

GDDM glossary 127 



attribute byte. The screen position that precedes an 
alphanumeric field on a 3270-family device and holds 
the attribute information. See also trailing attribute byte. 

attribute table. In GDDM-PGF. a set of values for one 
particular attribute (for example. shading pattern). that 
are used in sequence to display the components of a 
business chart. 

attributes. Characteristics or properties that can be 
controlled. usually to obtain a required appearance; for 
example. the color of a line. See also alphanumeric 
character attributes, alphanumeric field attributes, and 
graphics attributes. 

autoranging. In GDDM-PGF, the process in which the 
axis ranges are determined by the extremes of the data 
values passed by the application. Synonymous with 
autoscaling. 

autoscaling. Synonym for autoranging. 

axis. In a chart. a line that is drawn to indicate units of 
measurement against which items in the chart can be 
viewed. GDDM-PGF charts have an x, y, and (in the 
case of tower charts) z axis. 

axis label. In GDDM-PGF. text appearing at or 
between axis major scale marks on a business chart. 
Such labels may be numeric or alphanumeric. Contrast 
with data label. 

axis title. In GDDM-PGF, a text string describing 
what an axis represents. 

background color. Black on a display, white on a 
printer. The initial color of the display medium. Contrast 
with neutral color. 

bar chart. A chart consisting of several bars of equal 
width. The value of the dependent variable is indicated 
by the height of each bar. Synonymous with column 
chart. 

BASIC. One of the programming languages supported 
by GDDM. 

BDAM. Basic Direct Access Method. 

bi-Ievel image. An image in which each pixel is either 
black or white (value 0 or 1). Contrast with gray-scale 
image and halftone image. 

blank character. An empty character represented by 
X'40' in the EBCDIC code. In GDDM-PGF, such a 

128 GDDM Performance Guide 

character occupies one position in a label or a key and 
may be used for positioning purposes. Contrast with null 
character. 

BMS. Basic Mapping Support (CICS/yS). 

BP AM. Basic Partitioned Access Method. 

business graphics. The methods and techniques for 
presenting commercial and administrative information in 
chart form. For example, the creation and display of a 
sales bar chart. Contrast with general graphics. 

CCW. Channel command word. 

CDPF. Composed Document Print Facility. 

cell. See character cell. 

channel-attached. Pertaining to devices that are 
attached directly to a computer by means of data (I/O) 
channels. Synonymous with local. Contrast with 
link-attached. 

character. A letter, digit, or other symbol. 

character attributes. See alphanumeric character 
attributes. See also graphics text attributes. 

character box. In GDDM, the rectangle or (for sheared 
characters) the parallelogram boundaries that govern the 
size, orientation. spacing, and italicizing of individual 
symbols or characters to be shown on a display screen 
or printer page. 

The box width. height, and if required, shear, are 
specified in worlc;l coordinates and may be 
program-controlled. See also character mode. Contrast 
with character cell. 

character cell. The physical, rectangular space in which 
any single character or symbol is displayed on a screen 
or printer device. The size and position of a character 
cell are fixed. Size is usually specified in pixels on a 
given device, for example, 9 by 12 on an IBM 3279 
Model 3 display. Position is addressed by row and 
column coordinates. Synonymous with hardware cell 
and symbol cell. Contrast with character box. 

character code. The means of addressing a symbol in a 
symbol set, sometimes called code point. 

The particular form and range of codes depends on the 
GDDM context, for example: 



• For the Image Symbol Editor, a hexadecimal 
constant in the range X'41' - X'FE', or its EBCDIC 
character equivalent. 

• For the Vector Symbol Editor, a hexadecimal 
constant in the range X'OO' - X'FF' or its EBCDIC 
character equivalent. 

• For the GDDM API, a decimal constant in the 
range 0 through 239, or subsets of this range (for 
example, a marker symbol code range of I through 
8). 

character grid. A notional grid that covers the chart 
area. The size of the grid determines the basic size of 
the characters in all text constructed by PG routines. It 
is the fundamental measurement in chart layout, 
governing the spacing of mode-2 characters and the size 
of mode-3 characters. It also governs the size of the 
chart margins and thus the plotting area. 

character matrix. Synonym for dot matrix. 

character mode. In GDDM, the type of characters to 
be used. There are three modes: 

• Mode-l characters are load able into PS and are of 
device-dependent fixed size, spacing, and 
orientation, as are hardware characters. 

• Mode-2 characters are image (ISS) characters. Size 
and orientation are fixed. Spacing is variable by 
program. 

• Mode-3 characters are vector (VSS) characters_ Box 
size, position, spacing, orientation, and shear of 
individual characters are variable by program. 

chart. In GDDM, usually means business chart, for 
example, a bar chart. 

chart annotation. Annotative text added to a business 
chart. In GDDM-PGF, referred to as chart notes. 

chart area. In GDDM-PGF, the part of the picture 
space in which a business chart is to be drawn. 

chart attributes. In GDDM-PGF, define how each part 
of the chart will appear - for example, the font to be 
used for the chart heading. 

chart data. An leU chart is saved in two distinct parts, 
the data and the format. lbe chart data consists of the x 
and y values, the data labels, the data group names, and 
the chart heading. 

chart data attributes. In GDDM-PGF, define the 
appearance of the data representation. For example, the 
color of the lines on a line graph or the shading patterns 
used for the sectors of a pie chart. 

glossary 

chart format. An leu chart is saved in two distinct 
parts, the data and the format. The chart format consists 
of the chart type, the chart attributes, the axis 
characteristics, the chart layout, and the chart notes. 

chart notes. In GDDM-PGF, additional text to 
annotate a business chart. May be used in isolation to 
create alphanumeric presentation material (using the 
leu interactive notes facility). 

chart type. In GDDM-PGF, specifies whether the 
business chart shOUld be a line graph, surface chart, 
histogram, bar chart, pie chart, Venn diagram, polar 
chart, table chart, or tower chart. 

choice device. A logical input device that enables the 
application program to identify keys pressed by the 
terminal operator. 

CICS/VS. Customer Information Control 
System/Virtual Storage. A subsystem of MVS or VSE 
under which GDDM can be used. 

clipping. In computer graphics, removing parts of a 
display image that lie outside a viewport. Synonymous 
with scissoring. 

eMS. Conversational Monitor System. A time-sharing 
subsystem that runs under VM/SP. 

COBOL. One of the programming languages 
supported by GDDM. 

code page. Defines the relationship between a set of 
code points and graphic characters. This relationship 
covers both the standard alphanumeric characters and 
the national language variations. GDDM supports a set 
of code pages used in conjunction with typographic fonts 
for the IBM 4250 printer. 

code point. Synonym for character code. 

column chart. See bar chart. 

compass keys. In the GDDM Vector and Image 
Symbol Editors, a set of PF keys predefined to draw a 
line in vector symbols or add a dot in image symbols, in 
directions corresponding to points of the compass. 

component (data). In GDDM-PGF, synonym for data 
group. One line on a line graph, for example, or one set 
of bars on a bar chart. 

composed page printer. A printer, such as the IBM 
4250 or IBM 3800 Model 3, to which the host computer 
transmits data in the form of a succession of formatted 
pages. Such devices will print pictorial data as well as 
text, and will position all output to pixel accuracy_ The 
density of pixels and the general print quality are often 
high enough for the output to be used as camera-ready 
copy for publications. 

GDDM glossary 129 



composite bar chart. In GDDM-PGf, a bar chart in 
which multiple y values for the same x value or x label 
are stacked one on top of another. Contrast with 
mUltiple bar chart. See also Ooating bar chart. 

compressed data stream. A data stream that has been 
made more compact by use of a data-compression 
algorithm. 

constant data. In GDDM, data that is defined in a 
map and need not be known to the application 
program. 

constant outline. In GDDM-PGF, the ability to specify 
that all data on the chart (the bars in a bar. chart, for 
example) is outlined in the same color and line type. 

correlation. The translation (by GDDM) of a screen 
position into a part of the user's picture. The action 
following a pick operation. 

current partition. The partition selected for processing 
by the application program. Contrast with active 
partition. 

current position. In GDDM, the end of the previously 
drawn primitive. Unless a "move" is performed, this 
position will also be the start of the next primitive. 

current vector. In the GDDM Vector Symbol Editor, 
the vector (displayed in red) that is currently being 
addressed. 

current + I vector. In the GDDM Vector Symbol 
Editor, the vector (displayed in blue) that follows the 
current vector. 

cursor. A physical indicator that may be moved around 
a display screen. See alphanumeric cursor and graphics 
cursor. 

curve construction line. In the GDDM Vector Symbol 
Editor, one of a series of vectors that is used in the 
construction of a curve. 

curve fitting. The construction of a smooth curve 
through a sequence of plot points, as opposed to their 
connection by straight lines. In GDDM-PGf or the 
ICU, curve fitting may be requested for line graphs or 
polar charts. 

data group. In GDDM-PGf, one set ofy values 
corresponding to a given set of x values (for example, 
the data values for one line on a line graph). 
Synonymous with component. 

130 GDDM Performance Guide 

data indexing. In ICU, the display of y values relative 
to other y values in the same chart, rather than as 
originally specified. for example, all bars might be 
displayed as a percentage of the set of bars at X = 1979. 

data label. In ICU, text specified on the data entry 
panel rather than on the x-axis label panel. If the chart 
has axes, the label is displayed on a tick mark that is 
close to the matching numeric x value. Data labels are 
attached to the sectors on a pie chart and to the circles 
and overlap area of a Venn diagram. Contrast with axis 
label. 

data-stream compatibility (DSq. In 8100 systems, the 
facility that provides access to System/370 applications 
that communicate with 3270 Information Display 
System terminals. 

data-stream compression. The shortening of an I/O 
data stream for the purpose of more efficient 
transmission between link-attached units. 

data values. In GDDM-PGf, the x and y values that 
are plotted on a business charL 

datum line. In GDDM-PGf, a line drawn parallel to a 
chart axis, through a specified value along the other 
axis. See also datum reference line. 

datum reference line. In GDDM-PGF, a datum line 
that also acts as a shading boundary for the first 
component of a surface chart, histogram or composite 
bar chart, or for all the components of a polar chart or 
multiple bar chart. If no datum reference line is present, 
such components are shaded from the x axis. 

data set. The major unit of data storage and retrieval, 
consisting of a collection of data in one of several 
prescribed arrangements and described by control 
information to which the system has access. 

ORCS. Double-byte character set. 

ncr. Destination control table (CICS/VS). 

default value. A value chosen by GDDM when no 
value is explicitly specified by the user. for example, 
the default line type is a solid line. 

designator character. The first byte of a 
Iight-pen-detectable field that indicates whether or not 
the field has been selected. 

device class. In IMD, a classification that groups 
devices according to the size of their presentation areas 
(rows and columns). 

device echo. A visual identification of the position of the 
graphics cursor. The form of the device echo is defined 
by the application program. 



device family. In GDDM, a device classification that 
governs the general way in which I/O will be processed. 
See also processing options. For example: 

• Family I: 3270 display or printer 

• Family 2: queued printer 

• Family 3: system printer (alphanumerics only) 

• family 4: high-resolution printer 

device image. In GDDM, an image contained in a 
device or GDDM page. Contrast with application 
image. 

device suffix. In IMD. a suffix to a mapgroup name 
that indicates the device class. 

device token. In GDDM. an 8-byte code giving entry to 
a table of pre-established device hardware characteristics 
that are required when the device is opened (initialized). 

digital image. A two-dimensional array of picture 
elements (pixels) representing a picture. A digital image 
can be stored and processed by a computer. using bits 
to represent pixels. In GDDM. pixels have the value 
black or white. Often called simply image. 

direct transmission. In GDDM image processing, the 
transfer of image data direct from a source outside 
GDDM to an image device, including manipulation by 
a projection in the device, and without GDDM 
maintaining a copy or buffer of the data. 

display device. Any output unit that gives a visual 
representation of data. For example. a screen or printer. 
More commonly. the term is used to mean a screen as 
oppo!;ed to a printer. 

display point. Synonym for pixel. 

display-point matrix. Synonym for dot matrix. 

display terminal. An input/output unit by which a user 
communicates with a data-processing system or 
subsystem. Usually includes a keyboard and always 
provides a visual presentation of data. For example, an 
IBM 3179 display. 

DL/I. Data language 1. A language for data-base 
processing operations. 

dot matrix. In computer graphics, a two-dimensional 
pattern of dots used for constructing a display image. 
This type of matrix can be used to represent characters 
by dots. Synonymous with character matrix and 
display-point matrix. 

double-byte character set (DOCS). A set of characters 
in which each character occupies two byte positions in 

glossary 

internal storage and in display buffers. Used for oriental 
languages. 

DPCX. Distributed Processing Control Executive. An 
8100 system control program. 

DPPX. Distributed Processing Programming Executive. 
An 8100 system control program. 

DSC. Data-stream compatibility. 

dual characters. In GDDM, characters that each 
occupy two bytes in internal storage and in display 
buffers. l1tey are used to display Kanji or Hangeul 
symbols. 

dummy device. An output destination for which 
GDDM does all the normal processing but for which no 
actual output is generated. Used, for example, to test 
programming for an unavailable output device. 

echo. In interactive graphics. the visible form of the 
locator or other logical input device. 

ECSA. Extended character set adapter. 

edit. To enter, modify, or delete data. 

editing grid. In the GDDM Image and Vector Symbol 
Editors, a grid used as a guide for editing a symbol. In 
the Image Symbol Editor, it is a dot matrix. In the 
Vector Symbol Editor, it is a grid of lines. 

exploded pie chart. A pie chart in which one or more 
sectors have been moved outward from the center of the 
pie, to have a greater impact on the eye. 

extended data stream. For 3179, 3278, 3279, and 3287 
devices, input/output data formatted and encoded in 
support of color, programmed symbols, and extended 
highlighting. These features extend the 3270 
data-stream architecture. 

extended highlighting. The emphasizing of a displayed 
character's appearance by blinking, underscore. or 
reverse video. 

external defaults. GDDM-supplied values that users 
can change to suit their own needs. 

extracted image. In GDDM, an image on which 
transform element calls operate. It may imply the whole 
source image or just a part of it, depending on whether 
or not a define sub-image transform element has been 
applied in its derivation. 

GDDM glossary 131 



FCf. File control table (CICSfVS). 

field. An area on the screen or the printed or plotted 
page. See alphanumeric field, graphics field, and mapped 
field. 

field attributes. See alphanumeric field attributes. 

fillet. A curve that is tangential to the end points of two 
adjoining lines. 

flat file. A file that contains only data. that is. a file that 
is not part of a hierarchical data structure. A flat file 
can contain fixed or variable length records. 

floating area. The part of a page reserved for floating 
maps. 

floating bar chart. In GDDM-PGF. a special type of 
composite bar chart in which the first data group is not 
displayed. The stacks of bars representing the remaining 
data groups therefore appear to "float". 

floating map. A map whose absolute position on the 
GDDM page is not fixed. During execution. a floating 
map takes the next available space that satisfies its 
specification. 

floating-point feature. A processing unit feature that 
provides four 64-bit floating-point registers to perform 
floating-point arithmetic calculations. 

foil. A transparency for overhead projection. 

font. A particular style of typeface (for example. Gothic 
English). In GDDM, a font may exist as a 
programmed symbol set. 

FORTRAN. One of the programming languages 
supported by GDDM. 

four-button cursor. A hand-held device, with cross-hair 
sight. for indicating positions on the surface of a tablet. 
Synonymous with puck. 

frame. In IMD. synonym for panel. 

free data. In GDDM-PGF, data that has a separate set 
of x points for each component. Formerly known as 
paired data. Contrast with tied data. 

full-screen alphanumeric operation. Full-screen 
processing operations on alphanumeric fields. 

full-screen mode. A form of screen presentation in 
which the contents of an entire terminal screen can be 
displayed at once .. Full-screen mode is often used for 

132 GDDM Performance Guide 

fill-the-blanks prompting, and is an alternative to 
line-by-Iine 1/0. 

full-screen processor. A host software component that, 
together with display terminal functions. supports display 
terminal input/output in full-screen mode. 

GDDM. Graphical Data Display Manager. 

GDDM storage. The portion of host computer main 
storage used by GDDM. 

GDF. Graphics data format. 

general graphics. The methods and techniques for 
converting data to or from graphics display in 
mathematical, scientific, or engineering applications; that 
is, any application other than business graphics. See 
also business graphics. 

generated mapgroup. The output produced when a 
source IMD mapgroup is generated. It contains the 
information needed by GDDM at execution to position 
the mapped fields on the GDDM page. 

graphics. A picture defined in terms of graphics 
primitives and graphics attributes. 

graphics area. Part of a mapped field that is reserved 
for later insertion of graphics. 

graphics attributes. In GDDM, comprise color 
selection. color mix. line type. line width. graphics text 
attributes. marker symbol. and shading pallern 
definition. 

graphics cursor. A physical indicator that can be 
moved (often with a joystick, mouse, or stylus) to any 
position on the screen. 

graphics data format (GDF). A picture definition in an 
encoded order format used internally by GDDM and, 
optionally. providing the user with a lower-level 
programming interface than the GDDM API. 

graphics data stream. '[be data stream that produces 
graphics on the screen, printer. or plotter. 

graphics field. A rectangular area of a screen or printer 
page. used for graphics. Contrast with alphanumeric 
field. 

graphics input queue. A queue associated with the 
graphics field onto which elements arrive from logical 
input devices. The program may remove elements from 
the queue by issuing a graphics read. 



graphics primitive. A single item of drawn graphics, 
such as a line, arc, or graphics text string. See also 
graphics segment. 

graphics read. A form of read that solicits graphics 
input or removes existing elements from the graphics 
input queue. 

graphics segment. A group of graphics primitives (lines, 
arcs, and text) that have a common window and a 
common viewport and associated attributes. Graphics 
segments allow a group of primitives to be subject to 
various operations. See also graphics primitive. 

graphics text attributes. In GDDM, comprise symbol 
(character) set to be used, character box size, character 
angle, character mode, character shear angle, and 
character direction. 

gray-level. A digitally encoded shade of gray, normally 
(and always in GDDM) in a range 0 through 255. See 
also gray-scale image. 

gray-scale image. An image in which the gradations 
between black and white are represented by discrete 
gray-levels. Each pixel of the image therefore has a 
value in the range 0 through 255. Contrast with bi-Ievel 
image and halftone image. 

grid coordinates. In the GDDM-PGF Vector Symbol 
Editor and GDDM Image Symbol Editor, the x and y 
coordinates of a point on the editing grid. 

grid lines. In GDDM-PGF, lines drawn parallel to one 
axis and through the major scale marks of the other 
axis. 

halftone image. A bi-Ievel image in which intermediate 
shades of grey are simulated by patterns of adjacent 
black and white pixels. Contrast with gray-scale image. 

hardware cell. Synonym for character cell. 

hardware characters. Synonym for hardware symbols. 

hardware symbols. The characters that are supplied 
with the device. The term is loosely used also for 
GDDM mode-l symbols that are loaded into a PS store 
for subsequent display. Synonymous with hardware 
characters. 

help panel. A panel presenting tutorial text to assist the 
terminal user. All the GDDM interactive utilities 
possess comprehensive help panels. 

hidden bars. See overlapping bar chart. 

glossary 

high-resolution image file. An intermediate form, 
residing on disk, of a picture destined for a 
high-resolution printer. 

high-resolution printer. A printer, such as the 4250 or 
3800-3, that has a high density of pixels to the ineh and 
therefore produces output of good quality. 

histogram. A chart in which each value of the 
dependent variable corresponds to a range of values of 
the independent variable (represented by the width of the 
associated bar). Such a chart might display the number 
of persons in various age ranges, for example. 

home panel. The first panel that is displayed by the 
ICU. It is the starting point for access to the other 
panels. 

ICU. Interactive Chart Utility. 

identity projection. In GDDM image processing, a null 
projection, that is, one which results in no ehange to the 
image. 

image. synonym for digital image. 

image field~ A rectangular area of a screen or printer 
page, used for image. Contrast with alphanumeric field 
and graphics field. 

image symbol. A character or symbol defined as a dot 
pattern. 

Image Symbol Editor (ISE). A GDDM-supplied 
interactive editor that lets users create or modify their 
own image symbol sets (ISS). 

image symbol set (ISS). A set of symbols each of which 
was created as a pattern of dots. Contrast with vector 
symbol set (VSS). 

IMD. Interactive Map Definition. 

IMS/VS. Information Management SystemjVirtual 
Storage. A subsystem of MVS under whieh GDDM 
ean be used. 

include member. A collection of source statements 
stored as a library member for later inclusion in a 
compilation. 

indexing. In ICU, see data indexing. 

input queue. See graphics input queue. 

integer. A Whole number (for example, ·2, 3, 457). 

GDDM glossary 133 



Interactive Chart Utility (leu). A GDDM-PGF 
menu-driven program that allows business charts to be 
created interactively by nonprogrammers. 

interactive graphics. In GDDM, those graphics that 
can be moved or manipulated by a user at a terminal. 

Interactive Map Definition. A member of the GDDM 
family of program products. It enables users to create 
alphanumeric layouts at the terminal. The operator 
defines the position of each field within the layout and 
may assign attributes, default data, and associated 
variable names to each field .. The resultant map may be 
tested from within the utility. 

interactive mode. A mode of application operation in 
which each entry receives a response from a system or 
program, as in an inquiry system or an airline 
reservation system. An interactive system may also be 
conversational, implying a continuous dialog between 
the user and the system. 

interactive subsystem. (I) One or more terminals, 
printers, and any associated local controllers capable of 
operation in interactive mode. (2) Qne or more system 
programs or program products that enable user 
applications to operate in interactive mode. For 
example, CICS/VS. 

intercept. In a chart, a method of describing the 
position of one axis relative to another. For example, 
the x axis can be specified so that it intercepts (crosses) 
the y axis at the bottom, middle, or top of the plotting 
area of a chart. 

inter-device copy. The ability to copy a page or the 
graphics field from the current primary device to 
another device. The target device is known as the 
alternate device. 

ISE. Image Symbol Editor. 

ISS. Image~ymbol set. 

JCL. Job Control Language. 

joystick. A lever that can pivot in all directions, used as 
a locator device. 

134 GDDM Performance Guide 

Kanji. A character set of symbols used in Japanese 
ideographic alphabets. 

key. In a legend, a symbol and an associated data 
group name. A key might, for example, indicate that the 
pink line on a graph represents "Predicted Profit". See 
also legend. 

key symbol. A small part of a line (from a line graph) 
or an area (from a shaded chart) used in a legend to 
identify the various data groups. 

legend. A set of symbolic keys used to identify the data 
groups in a business chart 

line attributes. In GDDM, color,line type, and line 
width. 

line graph. In GDDM-PGF, a chart in which the 
plotted points (each optionally represented by a marker) 
are joined by straight or curved lines. If only the 
markers are displayed, the chart is known as a scatter 
plot. 

link-attached. Pertaining to devices that are connected 
to a controlling unit by a data link. Synonymous with 
remote. Contrast with channel-attached. 

link edit. To create a load able computer program by 
means of a linkage editor. 

load module. A program unit that is suitable for loading 
into main storage for execution; it is usually the output 
of a linkage editor. 

local. Synonym for channel-attached. 

local character set identifier. A hexadecimal value 
stored with a GDDM symbol set, which may be used by 
symbol-set-Ioading means other than GDDM in the 
context of local copy on a printer. 

locator. A logical input device used to indicate a 
position on the screen. Its physical form may be the 
alphanumeric cursor or a graphics cursor moved by a 
joystick. 

logarithmic axis_ In GDDM-PGF, an axis on which 
ascending powers of 10 are equally spaced. 

logical input device. A concept that allows application 
programs to be written in a device independent manner. 
The logical input devices to which the program refers 



may be subsequently associated with different physical 
parts of a terminal, depending on which device is used 
at run-time. 

LTERM. In IMSjVS, logical terminal. 

Manhattan chart. Synonym for tower chart. 

map. A predefined alphanumeric layout, defining the 
position, attributes, and default data for each constituent 
alphanumeric field. 

map specification library (MSL). The data set in which 
maps are held in their source form. 

mapgroup. A data item that contains a number of maps 
and information about the device on which those maps 
will be used. All maps on a GDDM page must come 
from the same mapgroup. 

mapped alphanumerics. The creation of alphanumeric 
displays via predefined maps. Contrast with procedural 
alphanumerics. 

mapped field. An area of a page whose layout is defined 
by a map. 

mapped graphics. Graphics placed in a graphics area 
within a mapped field. 

mapped page. A GDDM page whose content is defined 
by maps in a mapgroup. 

mapping. The use of a map to produce a panel from an 
output record, or an input record from a panel. 

marker. In GDDM, a symbol centered on a point. 
Line graphs and polar charts may use markers to 
indicate the plotted points. 

MDT. Modified data tag. 

menu. A displayed list of logically grouped functions 
from which the operator may make a selection. 

menu-driven. Describes a program that is driven by an 
operator responding to one or more displayed menus. 

MFS. Message format service. 

missing values. In GDDM-PGF or the ICU, x or y 
values that are omitted from a chart. For example, one 
line on a graph might represent a sales forecast and 
extend to the end of the year on the x axis, while a 
second line might represent actual sales and extend only 
to the current month. 

glossary 

mixed character string. A string containing a mixture of 
Latin (one-byte) and Kanji (two-byte) characters. 

mixed chart. In GDDM-PGF or the ICU, the 
combination of more than one chart type in a business 
graph. For example, the overlaying of a line graph on 
top of a bar chart. 

mode 1/2/3 characters. See character mode. 

mountain shading. A method of shading surface charts 
where each component is shaded separately from the 
base line, instead of being shaded from the data line of 
the previous component. 

mouse. A hand-held device (the IBM 5277 Mouse) that 
is moved around a locator pad to position the graphics 
cursor on the screen. 

MSHP. Maintain system history program. 

MSL. Map specification library. 

multicomponent chart. In GDDM-PGF, a chart 
presenting more than one data group. 

multiple axis chart. In GDDM-PGF, a chart in which 
more than one x axis or y axis, or both, is used. See 
also secondary axis. 

mUltiple bar chart. In GDDM-PGF, a form of bar 
chart in which the bars at a given x value or label are 
placed side by side. Contrast with composite bar chart. 

mUltiple charts. Two or more charts appearing together 
on the display screen or page. Multiple charts can be of 
the same type or different types, and can be derived 
from one or more sets of data. 

National Language (NL) feature. The translations of 
the ICU panels and GDDM messages into a variety of 
languages other than English. 

negate. In bi-Ievel image data, setting zero bits to one 
and one bits to zero. 

neutral color. White on a display, black on a printer. 
Contrast with background color. 

nickname. In GDDM, a quick and easy means of 
referring to a device, the characteristics and identity of 
which have been predefined. 

non-paired data.. See tied data. 

null character. An empty character represented by 
X'OO'in the EBCDIC code. In GDDM-PGF, such a 

GDDM glossary 135 



character does not occupy a screen position. The trailing 
positions of short keys or labels may be filled with nulls. 
Contrast with blank character. 

numeric label. In GDDM-PGF. an axis major scale 
mark label derived directly from the data value at that 
scale mark. Contrast with alphanumeric label. 

object code. Output from a compiler or assembler that 
is in itself executable machine code or is suitable for 
processing to produce executable machine code. 

object deck. Synonym for object module. 

object libraries. An area on a direct access storage 
device used to store object programs and routines. 

object module. A module that is the output of an 
assembler or a compiler and is input to a linkage editor. 

off-point. A pixel that has been turned off by the user of 
the Image Symbol Editor. 

on-point. A pixel that has been turned on by the user of 
the Image Symbol Editor. 

operator reply mode. In GDDM, the mode of 
interaction available to the operator (display terminal 
user) with respect to the modification (or not) of 
alphanumeric character attributes for an input field. 

outbound structured field. An element in 3270 data 
streams from host to terminal with formatting that 
permits variable·length and multiple-field data to be 
sequentially translated by the receiver into its component 
fields without having to examine every byte. 

overlapping bar chart. A form of business chart where 
adjacent bars partly overlap each other. Overlapping 
bars are sometimes called hidden bars. 

page. In GDDM. the main unit of output and input. 
All specified alphanumerics and graphics are added to 
the current page. An output statement always sends the 
current page to the device, and an input statement 
always receives the current page from the device. 

pageable (main storage). In a virtual storage system. 
fued·length blocks that have virtual addresses and that 
can be transferred between real (main) storage and 
auxiliary storage. 

136 GDDM Performance Guide 

paired data. See free data. 

panel. A predefined display that defines the locations 
and characteristics of alphanumeric fields on a display 
terminal. When the panel offers the operator a selection 
of alternatives it may be called a menu. Synonymous 
with frame. 

partition. Part of the display screen's surface on which 
a page ofGDDM output can be shown. Two or more 
partitions can be created. each displaying a page of 
output. 

partition set. A grouping of partitions that are intended 
for simultaneous display on a screen. 

partitioned data set (PDS). A data set in direct access 
storage that is divided into partitions. called members, 
each of which can contain a program. part of a 
program, or data. Synonymous with program library. 

PCB. Program communication block (IMS;VS). 

PCT. Program control table (CICS;VS). 

PDS. In OS{fSO, a partitioned data set. 

pel. Synonym for pixel. 

PGF. Presentation Graphics Facility. 

pick. The action of the operator selecting part of a 
graphics display by placing the graphics cursor over it. 

pick aperture. A rectangular or square box that is 
moved across the screen by the graphics cursor. An item 
must lie at least partially within the pick aperture before 
it can be picked. 

pick device. A logical input device that allows the 
application to determine which part of the picture was 
selected (or picked) by the operator. 

picture element. Synonym for pixel. 

picture interchange format (PIF) file. In graphics 
systems, the type of file, containing picture data, that can 
be transferred between GDDM and a 3270-PCjG or 
3270-PC/GX work station. 

picture space. In GDDM. an area of specified aspect 
ratio that lies within the graphics field. It is centered on 
the graphics field and defines the part of the graphics 
field in which graphics will be drawn. 

pie chart. A chart that takes the form of one or more 
circles divided into sectors, the angles of which represent 
the contributions of each data value to the group total. 

PIF. Picture interchange format (PIF) file. 



pixel. The smallest area of a display screen capable of 
being addressed and switched between visible and 
invisible states. Synonymous with display point, pel, and 
picture element. 

PL/I. One of the programming languages supported by 
GDDM. 

plotter. An output device that uses pens to draw its 
output on paper or transparency foils. 

polar chart. A form of business chart where the x axis 
is circular and the y axis is radial. 

polylillet. In GDDM, a curve based on a sequence of 
lines. It is tangential to the end points of the first and 
last lines; and tangential also to the midpoints of all 
other lines. 

polyline. A sequence of adjoining lines. 

PPT. Processing program control table (CICS/VS). 

presentation graphics. Computer graphics products or 
systems, the functions of which are primarily concerned 
with graphics output presentation. For example, the 
display of business planning bar charts. 

Presentation Graphics Facility (PGF). A member of the 
GDDM family of program products. It is concerned 
with business graphics, as opposed to general graphics. 

preview chart. A small version of the current chart that 
may be displayed on ICU panels. 

primary device. In GDDM, the main destination device 
for the application program's output, usually a display 
terminal. The default primary device is the user console. 
See also alternate device. 

primitive. See graphics primitive. 

primitive attribute. A specifiable characteristic of a 
graphics primitive. See graphics attributes and graphics 
text attributes. 

print utility. A subsystem-dependent utility that sends 
print files from various origins to a queued printer. 

procedural alphanumerics. The creation of 
alphanumeric displays using the GDDM alphanumeric 
API. Contrast with mapped alphanumerics. 

processing options. Describe how a device's I/O will be 
processed. lbese device-family-dependent and 
subsystem-dependent options are specified when the 
device is opened. An example is the choice between 
CMS attention-handling protocols. 

program Iibrary_ (1) A coUection of available computer 
programs and routines. (2) An organized collection of 

glossary 

computer programs. (3) Synonym for partitioned data 
set. 

programmed symbols (PS). Dot patterns loaded by 
GDDM into the PS stores of an output device. 

projection. In GDDM image processing, an 
application-defined function which specifies operations 
to be performed on data extracted from a source image. 
Consists of one or more transforms, which see. See also 
transform element. 

PS. Programmed symbols. 

PS overflow. A condition where the graphics cannol be 
displayed in its entirety because the picture is too 
complex to be contained in the device's PS stores. 

PSB. In IMS/VS, a program specification block. 

puck. Synonym for four-button cursor. 

QSAM. Queued sequential access method. 

QTAM. Queued telecommunications access method. 

queued printer. A printer belonging to the subsystem 
under which GDDM runs,lo which output is sent 
indirectly by means of the GDDM Print Utility 
program. In some subsystems, this may aUow the 
printer to be shared between multiple users. Contrast 
with system printer. 

RAS. Reliability, availability, serviceability. 

raster device. A device with a display area consisting of 
dots. Contrast with vector device. 

ra.~tering. The transforming of graphics primitives into 
a dot pattern for line-by-line sequential use. In GDOM 
PS devices, this is done by transforming the primitives 
into a series of programmed symbols (PS). 

Rep. Request control parameter. 

reentrant. The attribute of a program or routine that 
allows the same copy of the program or routine to be 
used concurrently by two or more tasks. 

reference line. See datum reference line. 

(iDOM glossary 137 



reference symbol. In the GDDM Image and Vector 
Symbol Editors, a previously defined symbol displayed 
with the symbol currently being edited, for the purpose 
of achieving consistent symbol sizes and shapes within a 
given symbol set. 

regression line. In ICU, the conversion of a set ofy 
values into other values that form a straight line most 
closely resembling the original values. 

relative data. In GDDM-PGF, real y-data values that 
are to be presented in a stacked chart-type. The actual 
points to be plotted for a particular component are 
obtained by adding the y data of that component to the 
y data of the previous components. Contrast with 
absolute data. 

remote. Synonym for link-attached. 

reply mode. See operator re~ly mode. 

resolution. In graphics and image processing, the 
number of pixels per unit of measure (inch or meter). 

reverse clipping. Where one graphics primitive overlaps 
another, removing any parts of the underlying primitive 
that are overpainted by the overlying primitive. 

reverse video. A form of alphanumeric highlighting for 
a character, field, or cursor, in which its color is 
exchanged with that of its background. For example, 
changing a red character on a black background to a 
black character on a red background. 

scalable markers. In GDDM-PGf, (vector) markers 
on a line graph or polar chart that may be varied in 
si7.c. 

scale marks. In GDDM-PGf, markings spaced at 
equal intervals along an axis. Each pair of "major scale 
marks" may have one or more "minor scale marks" in 
between. Synonymous with tick marks. 

scanner. A device that produces a digital image from a 
document. 

scatter plot. In GDDM-PGF, a variety of line graph in 
which only the marked points, and not their joining 
lines, are drawn. 

scissoring. Synonym for clipping. 

scrolling. In computer graphics, moving a display 
image vertically or horizontally in a manner such that 
new data appears at one edge as existing data 
disappears at the opposite edge. 

138 GDDM Performance Guide 

SCS. SNA character string. 

secondary axis. In GDDM-PGF, an x- or y-axis line 
drawn parallel to the primary axis and capable of 
having scale marks, labels and title different from those 
of the primary axis. Permits the combination of two 
business charts. 

segment. See graphics segment. 

segment attributes. Attributes that apply to the segment 
as an entity, rather than to the individual primitives 
within the segment. For example, the visibility, 
transformability, or detectability of a segment. 

segment library. The portion of auxiliary storage where 
segment definitions are held. These definitions are 
GDDM objects in graphics data format (GDF) and are 
managed by means of GDDM API calls. GDDM 
handles the file accesses to and from auxiliary storage. 

segment priority. The order in which segments will be 
drawn, also the order in which they will be detected. 

segment transform. The means to rotate, scale, and 
reposition segments without re-creating them. 

selector adjunct. A subfield of an application data 
structure that qualifies a data field. 

shear. The action of tilting graphics text so that each 
character leans to the left or right while retaining a 
hori7.ontal baseline. 

skyscraper chart. Synonym for tower chart. 

SMF. System management facilities. 

SMP. System management program. 

SNA. Systems network architecture 

source image. An image that is the data input to image 
processing or transfer. 

SPI. System programmer interface. 

SPIB. System programmer interface block. 

spider labels. In GDDM-PGF, labels that annotate 
pie-chart sectors. Each label is joined to its associated 
sector by a line, giving the resulting chart a spider-like 
appearance. 

stacked chart type. A surface chart, composite bar 
chart, or histogram where the data components are 
stacked one on top of another. The data value of a 
particular component is indicated by the depth of the 
band at that point. See also relative data. 



glossary 
---------_ •. _------------

stand-alone (mode). Operation that is independent of 
another device, program, or system. 

state-I. In G DDM-PGF, the state of a business 
graphics program, before the first plot has been made. 

state-2. In GDDM-PGF, the state of a business 
graphics program after the first plot has been made, 
thereby constructing the axes. 

string device. A logical input device that enables an 
application program to process character data entered 
by the terminal operator. 

stroke device. A logical input device that enables an 
application program to process a sequence of x,y 
coordinate data entered by the terminal operator. 

stylus. A pen-like pointer for indicating positions on 
the surface of a tablet. 

surface chart. A chart similar to a line graph, except 
that no markers appear and the areas between 
successive lines are shaded. 

swathe. A horizontal slice of printer output, forming 
part of a complete picture. lligh-resolution printer 
images are often constructed in swathes to reduce the 
amount of storage required. 

symbol. Synonymous with character. For example, the 
following terms all have the same meaning: vector 
symbols, vector characters, vector text. 

symbol cell. Synonym for character cell. 

symbol matrix. Synonym for dot matrix. 

symbol set. A collection of symbols, usually but not 
necessarily forming a font. GDDM applications may 
use the hardware device's own symbol set. 
Alternatively, they can use image or vector symbol sel~, 
which the user may have created. 

symbol liet identifier. In GDDM, an integer (or the 
equivalent EDCDIC character) by which the 
programmer refers to a loaded symbol set. 

system printer. A printer belonging to the subsystem 
under which GDDM runs, to which output is sent 
indirectly by means of system spooling facilities. 
Contrast with queued printer. 

table chart. In GDDM-PGF, a chart in which the data 
is presented as numbers arranged in rows and columns. 

tablet. (I) A locator device with a Oat surface and a 
mechanism that converts indicated positions on the 
surface into coordinate data. (2) The IBM 5083 Tablet 
Model 2, which, with a four-button cursor or stylus, 
allows positions on the screen to be addressed and the 
graphics cursor to be moved without use of the 
keyboard. 

tag. In interactive graphics, an identifier associated with 
one or more primitives that is returned to the program if 
such primitives are subsequently picked. 

target image. An image which is the destination of 
processed or transferred data. 

target position. In the GDDM Vector Symbol Editor, 
the grid coordinates of a point on the editing grid to 
which a vector is to be drawn. 

TCf. Terminal control table (CICSfVS). 

temporary graphics. Graphics created outside a 
segment. 

terminal. A device, usually equipped with a keyboard 
and a display unit, capable of sending and receiving 
information over a link. See also display terminal. 

test symhol. In the GDDM Image and Vector Symbol 
Editors, an area on the Symbol Edit panel in which the 
currently chosen symbol is displayed. 

text. Characters or symbols sent to the device. 
GDOM provides alphanumeric text and graphics text. 

text attributes. See graphics text attributes. 

tick marks. In GDDM-PGF, synonym for scale marks. 

tied data. In GDDM-PGF, data that shares the same 
set of x points for each component. This is the most 
common form of data. It was formerly known as 
non-paired data. Contrast with free data. 

tilted pie chart. A pie chart drawn in three dimensions, 
which has been tilted away from full face to reveal its 
three-dimensional properties. 

tower chart. A form of business chart in which rows of 
towers stand on a two-dimensional base. Synonymous 
with Manhattan chart and skyscraper chart. 

trailing attrihute byte. The screen position following an 
alphanumeric field. This attribute byte may specify, for 

GDDM glossary 139 



example, that the cursor should auto-skip to the next 
field when the current field is filled. 

transfer operation. In GDDM image processing, an 
operation in which a projection is applied to a source 
image, and the result placed in a target image. The 
source and target images can be device or application 
images in any combination, or one or other of them (but 
not both) can be image data within the application 
program. 

transform. (1) lbe action of modifying a picture for 
display; for example, by scaling, rotating, shearing, or 
displacing. (2) The object that performs or defines such 
a modification; also referred to as a transformation. 
(3) In GDDM image processing, a definition of three 
aspects of the data manipulation to be done by a 
projection: 

1. a transform element or sequence of transform 
elements, and 

2. a resolution conversion or scaling algorithm, and 
3. a location within the target image for the result. 

Only the last item is mandatory. 

See also projection and transform element. 

transform element. In GDDM image processing, a 
specific function in a transform, which may be one of 
the following: define sub-image, scale, orient, reflect, 
negate, define place in target image. 

A given transform element may be used only once in a 
transform, which see. 

transformable. A segment must be defined as 
transformable if it will subsequently be moved, scaled, or 
rotated. 

transparency. (1) A document on transparent material 
suitable for overhead projection. (2) An alphanumeric 
attribute that allows underlying graphics to show. 

TSO. TIme sharing option. A subsystem of OSjVS 
under which GDDM can be used. 

TWA. Transaction work area. 

UDS. User default specification. 

UDSL. A list of user default specifications (UDSs). 

unformatted data. In GDDM image processing. 
compressed or uncompressed binary image data that 
has no headers, trailers, or embedded control fields 

140 GDDM Performance Guide 

other than any defined by the compression algorithm, if 
applicable. The data is in row major order, beginning 
with the top left of the picture. 

user control. A GDDM function that allows the 
terminal operator to perform some actions without the 
need for application programming. The actions include 
panning and zooming graphics, manipulating windows, 
and printing, plotting. and saving pictures. 

user default specification (UDS). The means of 
changing a GDDM default value. The default values 
that a UDS can change are those of the GDDM or 
subsystem environment, GDDM user exits, and device 
definitions. 

user exit. A point in GDDM execution where a user 
routine will gain control if such has been requested. 

variable cell size. In most devices, the hardware cell 
size is fixed. But the 3290 Information Panel has a cell 
size that can be varied. This in turn causes the number 
of rows or columns on the device to alter. 

VCNA. VfAM communications network application. 

vector. (1) In computer graphics, a directed line 
segment. (2) In the GDDM-PGF Vector Symbol 
Editor, a straight line between two points. 

vector device. A device capable of displaying lines and 
curves directly. Contrast with raster device. 

vector symbol. A character or shape made up of a 
series of lines or curves. 

Vector Symbol Editor. A program supplied with 
GDDM-PGF, the function of which is to create and edit 
vector symbol sets (VSS). 

vector symbol set (VSS). A set of symbols each of 
which was originally created as a series of lines and 
curves. 

Venn diagram. A form of business chart in which two 
popUlations and their intersection are represented by two 
overlapping circles. 

viewport. A subdivision of the picture space, most often 
used when two separate pictures are to be displayed 
together. 

VM/SP CMS. IBM Virtual Machine/System Product 
Conversational Monitor System. A system under which 
GDDM can be used. 



VSE. Virtual storage extended. An operating system 
consisting of VSE/Advanced Functions and other IBM 
programs. In GDDM. the abbreviation VSE has 
sometimes been used to refer to the Vector Symbol 
Editor, but to avoid confusion. this usage is deprecated. 

VSS. Vector symbol set. 

VT AM. Virtual Telecommunications Access Method 

window. (I) In GDDM. a defined section of world 
coordinates. The window can be regarded as a set of 
coordinates that are overlaid on the viewport. (2) In 
GDDM. the "graphics window" is the set of coordinates 
used for defining the primitives that make up a graphics 
display. By default. both x and y coordinates run from 0 

glossary 

through 100. (3) In GDDM. an "operator window" is 
an independent rectangular subdivision of the screen. 
Several can exist at the same time. and each can receive 
output from. and send input to. either a separate 
GDDM program or a separate function of a single 
GDDM program. (4) In GDDM. the "page window" 
defines which part of a deep or wide page should 
currently be displayed. 

work station. A display screen together with 
attachments such as a local copy device or a tablet. 

world coordinates. The user application'oriented 
coordinates used for drawing graphics. See also window. 

wrap-around field. An alphanumeric field that extends 
to the right-hand edge of the page and continues at the 
start of the next row. 

WTI). Write·to-programmer. 

GDDM glossary 141 

.I 



Index 

access method 
BTAM SO 
IMS/VS uses SO 

address space requirements 64 
ADMISSEx,image symbol editor link-edit names 
ADMKSCHI, utility link-edit name on IMS/VS 
ADMMDFT 

10 ..... 
10BFSZ, transmission buffer size 15,46 
10COMPR, compressed PS loads 21 
10SYNCH, synchronized 1/0 47 

SAVBFSZ, FSSAVE buffer size IS 
ADMOPUx, print utility link-edit names 
ADMPSTBx, ICU link-edit names 
ADMS ... 

ADMSAVE files 
space requirements 61 

ADMU ... 
Al>MUTIL, IMS/VS 54 

ADMUFO, user fast option 
ADMUXxxx, packaging stubs 
ADMVSSEx, vector symbol editor link-edit names 
ADMIIMDx, GDDM-IMD link-edit names 
alphanumerics application programming 119 
application programming 

alphanumerics 119 
CICS 124 
graphics 116 
ICU 124 
image 121 

bibliography iv 
books, list of vii 
BTAM SO 
BUFFER parameter ofTCf 46 
buffer sizes 

main discussion 15 

calculating 
system utilization 68 

capacity planning 61 
calculating system utilization 68 
detailed method 76 
main discussion 61 
virtual storage requirement 64 

chart 
See also ICU 
data and format files 

space requirements 61 
CICS 

pseudoconversational mode 124 
CICS/DOS/VS 

repackaging 
recommendations 38 
special considerations 107 

tuning 44 
controlling data stream 45 
controlling GDDM in processor 46 
loading 44 
packaging 44 
program processing table 45 

CICS/OS/VS 
repackaging 

recommendations 38 
special considerations 107 

tuning 44 
controlling data stream 45 
controlling GDDM in processor 46 
loading 44 
packaging 44 
program processing table 45 

ClOP 
IMS/VS 49 

code, repackaging GDDM executable 
compression 

data stream 20, 21 
cross-domain 

tuning 51 
CfLMODE processing option 43 
customizing 41 

DASD requirements 
GDDM objects 61 

data stream 
compression 8, 14, 15, 21 
controlling 45, 55 
size 16 

DCSS (dis contiguous saved segment) 59 
defaults module 

overriding shared module 106 
use of 2 or more versions 106 

DFH ... CICS names beginning with DFH 
DFHPPT 

tuning 45 
direct transmission, image 8, 13, 15,24 

acceptable combinations of format and 
compression 20 

GDDM resource 16 

Index 143 



discontiguous saved segment 59 
DOMAIN 57 
dynamic loading, eliminating 105 

efficient usage, tips on 41 
eliminating dynamic loading 105 
environment defaults module 

overriding shared module 106 
use of 2 or more versions 106 

error checking, bypassing for performance 115 
executable code 

repackaging 97 
export files, GDDM-IMD 

space requirements 61 

fast-path processing (ADMUFO) 115 
FASTUPD processing option 18,42, 118 
FSSA VE buffer size 15 
FSUPDM (set update mode) 118 

GDDM 
module repackaging 93 
objects 

space requirements 61 
performance management 31 
resource costs 16 
storage requirements 64 

GDDM-IMD 
link-edit names 105 
maps, space requirements 61 
repackaging 105 

GDF (see Graphics Data Format) 
generated mapgroups 

space requirements 61 
graphics 

application programming 116 
how hardware works 2 

Graphics Data Format (GDF) object 
space requirements 61 

graphics segments 117 
groups 

TSO performance 57 

144 GDDM Performance Guide 

hardware 
how graphics works 2 

HIBFREXT 55 
host-processor time requirement 23 
HRISPILL processing option 29, 42, 117 
HRISWATH processing option 29,42,117 

I/O synchronization 
CICS 45 
general discussion 35 
TSO 55 

ICU 
defaults 42 
IMS/VS 52 
link-edit names 105 
repackaging III 
resource used by 86, 124 
saved charts space requirements 61 

IKJPRMOO 55 
image 

application programming 121 
compression 20 
data stream 19 
devices 1, 2, 8 
direct transmission 8, 13, 15,24 
processing time 23, 25 

Image Symbol Editor 
ClOP sizes 51 
I MS/VS 52 
link-edit names 105 
repackaging 105 

image symbol sets 
space requirements 61 

import/export files, GDDM-IMD 
space requirements 61 

I MS/VS 
repackaging 107 

recommendations 38 
tUning 48 

ClOP 49 
cross-domain considerations 51 
GDDM sends data stream to message 

queue 48 
ICU and symbol editors 52 
message queue and ClOP sizes 51 
MPR priority 51 
output of GDDM data streams 48 
use of nonrecoverable transactions. 51 

IPS (installation performance specification) 57 
ISRTs 

data stream to message queue 48 
ITASK 50 



LCLMODE processing option 17,43, lIS 
library 

repacking GDDM libraries 96 
loading 

optimum loading/packaging 35 
reducing by repackaging 93 

LOBFREXT 55 

manuals, list of iv 
mapping 

improving performance 119 
maps 

map space requirements 61 
mapgroup space requirements 61 

MAXRU 57 
message queue 

ClOP sizes 51 
GDDM ISRTs 48 

minimum storage requirements table 64 
module 

packaging facilities 93 
MPL (multiprogramming level) 57 
MPR priority 51 
multiple 

defaults modules 106 
environments, repackaging for 106 
subsystems, repackaging for 106 

MVS/XA 
application interface 

user fast option 116 
packaging 96 

non-retained/retained mode, 3270-PC/G and /GX work 
stations 117 

nonrecoverable transactions, IMS/VS 51 
NORECOVER 51 

objects 
GDDM objects 61 

optimum 
loading/packaging combinations 35 

OUTBUF 49 

overlapping partitions 123 
overriding 

defaults module 93 
saved segment 93 

OWAITHI 55 

PACING 54 
packaging stubs 97,99 
packaging, see repackaging 
panning and zooming 4,12, 17, 1I8 
partitions, overlapping 123 
PASLIM 54 
peaks of resource usage 31 
performance 

general principles 1 
subsystem specific information 41 
TSO performance groups 57 

PGN (performance group number) 57 
pictures 

GDDM's drawing method 11 
PL/I 

example of repackaging 112 
planning 

capacity planning 
detailed method 76 
main discussion and quick method 68 

PPT (DFHPPT) 
tuning 45 

prepare to read feature 47 
priority 

MPR SI 
processing options 

CTLMODE 43 
FASTUPD 18,42,118 
HRISPILL 29,42, 117 
HRISWATH 29. 42, 1I7 
LCLMODE 17,43, liS 
PSCNVCTL 12S 
SEGSTORE 23,42, 1I8 

processor storage 
minimum requirements table 64 
reference set 29 
start general discussion 27 
virtual storage requirement 27 
working set 30 

production programs, improving performance for liS 
program processing table see PPT 
PS overflow 10, 17 
PSCNVCTL processing option 125 
pseudoconversational mode, CI CS 124 
PTF 

applying to repackaged modules 96 
publications, list of vii 

Index 145· 



re-link -editing 
repackaging considerations 96 

recommendations 
loading and packaging combinations 38 

recoverable transactions. IMSjVS 51 
redrawing pictures 18. 118 
reference set 29 
region size requirements 64 
repackaging 

discussions of principle 35 
how to do it 93 
provisos about 96 
recommendations 38 
serviceability considerations 96 

requirements 
host-processor 23 
processor storage 27 
virtual storage 27 

resource 
data stream size 16 
host-processor time requirement 23 
in picture production 16 
processor storage requirement 27 

retained/non-retained mode. 3270-PC/G and /GX work 
stations 117 

saved charts 
space requirements 61 

saved pictures 
space requirements 61 

saved segment 
overriding by repackaging 114 

segment. saved see saved segment 
SEGSTORE processing option 23.42.118 
serviceability 

repackaging considerations 96 
sct 

reference 29 
working 30 

storage 
DASD 

GDDM objects use of 61 
processor 

general discussion 27 
reference set 29 
virtual storage requirement 27 
working set 30 

processor storage 
minimum requirements table 64 

storage factors 123 
stubs. packaging 97 
subsystems. hints on efficient usage 4] 
swapping, TSO performance 56 

146 GDDM Performance Guide 

symbol editors 
see Image Symbol Editor and Vector Symbol Editor 

symbol sets 
space requirements 61 

system 
calculating utilization 68 

time outs 
VM/CMS 60 

transmission buffer size 15 
TRNPRlY 
TSO 

repackaging 
recommendations 38 

tuning 55 
performance groups 57 
swapping 56 

TSOKEYOO 55 
tuning 41 

user control 4,5.12,17,18.25.118 
user fast option, ADMUFO 115 
utility 

ICU under IMSjVS 52 
link -edit names 105 
repackaging example 111 

utilization 
system -68 

Vector Symbol Editor 
ClOP sizes 51 
I MSjVS 52 
Iink-edit names 105 

vector symbol sets 
space requirements 61 

virtual machine size requirements 64 
virtual storage requirement 27 
VM 

repackaging 
recommendations 38 

YM/CMS 
overriding saved segment defaults module on 114 
repackaging 

special considerations 107 
tuning 59 

YPACING 54 
VSE, see CICS/DOSjVS 



WAIT 47 
working set 30 

I Numerics I 
3117 and 3118 scanners 8 
3179-G display station 5, 8, 12 

redrawing pictures 118 
3193 display station 8, 13, IS, 20, 24, 66, ) 22 
3270-PCfG 18 
3270-PC/G and /GX 

retained/non-retained mode , 13 
3270-PCfG and /GX work stations 3, 12,66 

clipping 4 
image support 8 
panning and zooming 118 
redrawing pictures 18, 118 
retained/non-retained mode 117 
segment storage requirement 67 

3279 display 66 
3279 terminal 1,8,9,10,15,17,21,27,29 
4224 printer 5, 19, 66, 123 
4250 high-resolution printer 11 
5080 graphics system 3, 117 
5279 and 5379 displays (see 3270-PC/G and /GX work 
stations) 

S550-family multistations 3,4, 8, 12, 14 
clipping 4 

Index 147 



GDDM Performance Guide 

Order No. SC33-0324-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators ofmM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that mM may use or 
distribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you. Your comments will be sent to the author's department for whatever review and 
action, if any, are deemed appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to your 
IBM representative or to the IBM branch office serving your locality. 

Number of your latest Technical Newsletter for this publication ... 

If you want an acknowledgement, give your name and address below. 

Name ............................................................ . 

Job Title ............................ Company ...................... . 

Address ............................................... " .......... . 

. " .................................................... Zip ....... . 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
mM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



SC33-0324-0 

Reader's Comment Form 

Fold and tapa Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 6R1 H, 
180 Kost Road, 
Mechanicsburg, PA 17055, USA 

Fold and tapa 

==-..~::® .. -=-=--~--- - ---- -- -----------,-

Please Do Not Staple 

IIIIII 
Fold Bnd tapa 

NO POSTAGE 

NECESSARY 

IF MAILED 

INTHE 

UNITED STATES 

Fold 8nd tapa 



SC33-0324-0 
Version 2 Release 1 

----® 
=~-=-= - - ---- - - -----------_ . -

SC33-0324-00 


	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	0010
	0011
	0013
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	143
	144
	145
	146
	147
	replyA
	replyB
	xback

