
G DD
Application Programming
Guide
Volume 1

--------- - ---- --- - ---- ------------- ' -

Front Cover Pattern: Electronic Sunflower

The pattern on the front and back cover
was produced using this GDDM program.

INTEGER TYPE, VAL, COUNT, N, M
REAL Al, A2, Kl, K2, Rl, R2, X, Y
REAL XCEN, YCEN, XS, YS
K1=5.3333
K2=1.1
R1=2
XCEN=50
YCEN=50
CALL FSINIT
CALL GSPS{l.O,l.O}
K2=1.1*SQRT{2.4/Kl}
A2=0
DO 40 M=l, 600

A2=A2+K1
R2=K2*{A2**.5}
XS=R2*COS{A2}+XCEN
YS=R2*SIN{A2}+YCEN
DO 30 N=O, 5

A1=2.*3.142*{FLOAT{N)/5.}+A2
X=Rl*COS{Al}+XS
Y=R1*SIN{A1)+YS
IF {N} 20,10,20

10 CALL GSMOVE{X,Y}
20 CALL GSLINE{X,Y}
30 CONTINUE
40 CONTINUE

CALL AS READ (TYPE,VAL,COUNT)
CALL FSTERM
END

G

8C33-0337-0
File No. 8370/4300-40

D D
Application Programming
Guide
Program Numbers
GDDM/MV8 5665-356
GDDM/VM 5664-200
GDDM/V8E 5666-328
GDDM-PGF 5668-812

Version 2 Release 1

Licensed Programs

Volume 1

--------- ---~ ---- -. ---- ---~-==-=~=

First Edition (September 1986)

This edition applies to Version 2, Release 1, Modification 0 of the following
members of the IBM GDDM Series of licensed programs:

GDDM/MVS 5665-356
GDDM/VM 5664-200
GDDM/VSE 6666-328
GDDM Interactive Map Definition 5668·801
GDDM·PGF 5668-812

Changes are made periodically to the information herein; before using this
publication in connection with the operation of mM systems, consult the latest
IBM System/Bra, BOx,;, and 4800 Processors Bibliography, GC20-0001, for the
editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which mM operates.
Any reference to an mM licensed program in this publication is not intended to
state or imply that only IBM's licensed program may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the addresses given below. Requests for copies of
IBM publications should be made to your mM representative or to the mM
branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the
form has been removed, comments may be addressed either to:

International Business Machines Corporation, Department 6R1H,
180 Kost Road, Mechanicsburg, PA. 17055, U.S.A.

or to:

mM United Kingdom Laboratories Limited,
Information Development and Release, Mail Point 095,
Hursley Park, Winchester, Hampshire, England S021 2JN

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

This Application Programming Guide contains sample programs. Permission is
hereby granted to copy and store the sample programs into a data processing
machine and to use the stored programs for study and instruction only. No
permission is granted to use the sample programs for any other purpose.

No other part of this manual may be reproduced in any form or by any means,
including storing in a data processing machine, without permission in writing from
mM.

© Copyright International Business Machines Corporation 1982, 1983, 1984, 1986

Preface

What this book is about

The GDDM Application Programming Guide introduces the application
programming interfaces of GDDM, the Graphical Data Display Manager.

Who this book is for

This book is for application designers and programmers who are experienced in the
following areas:

• Application programming in the language in which the GDDM programs are to
be written. For example:

COBOL
FORTRAN
PL/I
SYSTEM/370 Assembler

• The subsystem under which the GDDM programs are to run. For example:

CICS/VS
IMS/VS
MVS/TSO
CMS subsystem of VM/SP

• The information contained in GDDM General Information, GC33·0319

How to use this book

This Application Programming Guide is in two volumes.

This first volume introduces the Base application programming interface of GDDM.

The second volume introduces the Presentation Graphics Facility application
programming interface of GDDM.

You can read the chapters of each volume sequentially, or just read those chapters
that concern you. The structure of both volumes is shown on the following page,
and detailed in the table of contents of each volume. The last part of each volume
is devoted to complete example programs. There is an index at the back of each
volume, that you can use for reference.

Preface 111

The GDDM library

Introduction
General Information

GBOF-0058*

Release Guide

GC33-0320

General
Installation and
System Management
for MVS
SC33-0321

Installation and
System Management
forVM
SC33-0323

Installation and
System Management
for VSE
SC33-0322

Performance Guide

SC33-0324

Messages

SC33-0325

Diagnosis and Problem
Determination Guide

SC33-0326

·Includes the GDDM brochures.
For the General Information manual
only. use order number GC33-0319

Programming User's Guides
Application Guide for Users
Programming Guide

(Two volumes) SC33-0327

SC33-0337 Interactive Chart Utility
(ICU)

Base Programming SC33-0328

Reference

(Two volumes) Image Symbol Editor

SC33-0332 SC33-0329

GDDM-PGF Vector Symbol Editor
Programming Reference

SC33-0333 SC33-0330

Base Programming Interactive Map Definition
Summary (Booklet) (GDDM-IMD)

SX33-6053 SC33-0338

GDDM-PGF Programming
Summary (Booklet)

SX33-6054

IV GDDM Application Programming Guide Volume 1

Books from related libraries

The Graphics Control Program (GCP), which controls the 3270-PC/G and IGX work
stations, is described in:

GCP Work Station Programmer's Guide and Reference, SC33-020B.

The Composed Document Printing Facility (CDPF), a prerequisite IBM program
product if you use the IBM 4250 printer, is introduced in:

Composed Document Printing Facility General Information, GC33-6133.

Fonts and code pages for the IBM 4250 Printer are illustrated in:

IBM 4250 Printer Type Font Catalog, G520-0004.

The Print Services Facility (PSF), an IBM program product that directs output to
the IBM 3BOO Printing Subsystem Models 3 and 8, is introduced in:

IBM 3800 Printing Subsystem Model 3 Introduction, GA32-0049

Fonts for the 3800 Model 3 are illustrated in:

IBM 3800 Printing Subsystem Model 3 Font Catalog, SH35-0053

and for the 3800 Model 8 in:

IBM 3800 Printing Subsystem Model 8 Font Catalog, SH35-0054

The Document Composition Facility (DCF), which handles GDDM-created page
segments for composed page printers, is introduced in:

Document Composition Facility and Document Library Facility General
Information Manual, GH20-9158.

The DCF Script/VS language, and other DCF functions, such as the Font Library
Index Program, are described in:

Document Composition Facility Scriptl VS Language Reference, SH35-0070.

Preface V

Book structure

VOLUME 1. Base facilities (this volume)

Part 1. GDDM basics . • . pages 3 through 123
Describes basic graphics and alphanumeric functions and the GDDM
hierarchy of concepts. This part tells you how to write and run simple GDDM
programs, generally of the menu-driven output graphics type.

Part 2. Advanced graphics . • • pages 125 through 215
Describes advanced graphics functions, including interactive graphics. This
part tells you how to structure and store your graphics data, and how to use
logical input devices to make your graphics interactive, without making them
device-dependent.

Part 3. Advanced text ••. pages 217 through 302
Describes the remainder of the text functions. These include symbol sets,
advanced procedural alphanumerics, and mapping.

Part 4. Image processing • • • pages 303 through 364
Introduces the principles behind image hardware, image data, and image
processing. This part shows you, through simple example programs, how to
capture, manipulate, save, restore, display, and print images.

Part 5. Device support, printing, plotting and windowing . • • pages 365
through 485
Describes device support, printing, and plotting. This part also shows you
ways to split a terminal screen into a number of separate logical areas, how to
prioritize those areas, and how the end user can interact with those areas.

Part 6. Example programs ••• pages 487 through 504

Appendixes ••• pages 507 through 516

Glossary of GDDM terms •• • pages 517 through 529

Index to Volume 1 • • • page 531 onward.

VOLUME 2. Presentation Graphics Facility

Part 1. Business charts
Describes two ways of producing business charts from an application program.

Part 2. Example programs

Glossary of GDDM terms

Index to Volume 2

vi GDDM Application Programming Guide Volume 1

Contents

Volume 1. Base facilities 1

Part 1. GDDM basics 3

Chapter 1. Introduction ..••.............•.....••..........••• 5
What this volume describes 5
The GDDM application programming interface 5
Hardware and software ... 6

Chapter 2. Drawing a simple picture •.....•••....••...•••••..••• 7
How to compile and run a GDDM Program under CMS 11
How to compile, link-edit, and run a GDDM program under TSO 12
Error handling .. 12

Chapter 3. Basic input/output functions •...••••.••••••••........ 13
Send output and await reply using call ASREAD 13
Transmitting output using call FSFRCE 14
Checking picture complexity using call FSCHEK 15
Saving current page contents using call FSSA VE 16
Displaying a saved picture using call FSSHOR 16

Possible errors when showing saved pictures 17

Chapter 4. Graphics primitives•....••••••...••••..•••.. 19
Coordinate system ... 19
Drawing a straight line using call GSLINE 19
Changing the current position using GSMOVE 20
Drawing a sequence of lines using GSPLNE 20
Drawing a circular arc using call GSARC 22
Drawing an elliptic arc using call GSELPS 23
Drawing a graphics marker symbol using call GSMARK 24
Drawing several graphics marker symbols using call GSMRKS 24
Scaling a marker symbol using call GSMSC 24
Drawing a curved polyfillet using call GSPFLT 24
Drawing a graphics area using call GSAREA 26
Closure of area's outline ... 27
Changing attributes .. 27
The shading algorithm .. 27
GSMOVE inside an area ... 28
Drawing graphics images using calls GSIMG and GSIMGS 30
Querying the current position using call GSQCP 32
Querying the cursor position using call GSQCUR 32
Device variations .. 33

IBM 5080 Graphics System 33

Contents Vll

Chapter 5. Graphics attributes•.•.•• 35
Setting a new current color, using call GSCOL 85
Setting a new line type, using call GSLT 86
Setting a new line width, using calls GSFLW or GSLW 86
Setting the current marker symbol, using call GSMS 87
Setting the current pattern, using call GSPAT 38
The GDDM 64-color pattern set 40
Mixing foreground colors, using call GSMIX 42
Special treatment of the background color, using call GSMIX 44
Mixing background colors, using call GSBMIX 45
Transforming primitives, using call GSSCT 46
Changing attributes inside an area 46
Querying graphics attributes 46
Changing default attribute values 47
Pushing and popping graphics attributes, using calls GSAM and GSPOP ... 48
Device variations .. 49

mM 3270 family of terminals 49
mM 8270-PC/G and IGX work stations 49
mM 5080 Graphics System 50
5550-family multistations 50
Color-separation masters on printers 50
Plotters ... 51
4224 IPDS printers ... 51

Chapter 6. Displaying text 53
Graphics text ... 53
Procedural alphanumerics 53
Mapped alphanumerics .. 54

Chapter 7. Basic graphics text •••...........•..•••.•••.•.....• 55
Breaking lines of graphics text 55
The three modes of graphics text 56

Mode-l graphics text .. 57
Mode-2 graphics text .. 57
Mode-3 graphics text .. 58

Affecting the appearance of graphics text, using attributes 58
Setting the character box attribute, using call GSCB 58
Setting the character angle attribute, using call GSCA 61
Changing the character direction attribute, using call GSCD 62
Shearing characters attribute, using call GSCH 64
Setting the character-box spacing attribute, using call GSCBS 65
The text box .. 65

Setting the text alignment attribute, using call GSTA 67
Example using graphics text attributes 68
Device variations .. 70

Differences on the mM 3179-G Color Display Station 70
Differences on the mM 3270-PC/G and IGX work stations 70
Differences on the 5080 Graphics System 70
Differences on 5550-family multistations 71
Differences on composed-page printers 71
Differences on plotters .. 71

Advantages and disadvantages of each character mode 73
Mode-I: String positioning .. ' 73
Mode-2: Character positioning 73
Mode-3: Stroke positioning 73

V111 GDDM Application Programming Guide Volume 1

Chapter 8. Basic alphanumerics •....••••.••.•..•••••••••••••.. 75
Defining an alphanumeric field using call ASDFLD 75
Sending and Receiving alphanumeric data 76

Breaking lines of alphanumeric text 77
Clearing an alphanumeric field using call ASFCLR 77
Deleting an alphanumeric field 77
Positioning and querying the alphanumeric cursor 78
Attribute bytes on 3270 terminals 78
Alphanumeric attributes ... 79

Field attributes .. 79
Character attributes .. 81

Sample alphanumerics program 83
Mixing graphics and alphanumerics 85
Device variations .. 86

3179·G. 3270-PC/G and IGX family. and the 4224 printer 86
IBM 5080 graphics syst~m 87
5550-family multistations 87

Chapter 9. Hierarchy of GDDM concepts .•••••••..••..•••••••••• 89
The GDDM hierarchy ... 89
The device .. 90
The partition set and partition 91

Calls that operate on partitions and partition sets 92
The page and page window 93

Calls that operate on pages 94
The graphics field .. 96

Calls that operate on the graphics field 97
The picture space .. 97
The viewport .. 98
The graphics window .. 101

Uniform world coordinates 102
Putting origin of uniform coordinates at bottom left-hand corner 102
Inverting the graphics window 103

The graphics segment .. 105
Redefining objects in the hierarchy 105

Viewports and graphics windows 105
Picture space and graphics field 105
Other objects .. 105
Example program using GDDM hierarchy 106

Creating two pages of graphics 107
A typical two-device graphics hierarchy 108
Graphics clipping ... 110

Sample pan and zoom program using clipping 112

Chapter 10. Debugging aids ••••••••••••••.••••••••••••.••••• 117
GDDM error messages ... 117
Querying the last error record using call FSQERR 118
Specifying error exit and threshold using call FSEXIT 119
GDDM tracing ... 121

Format of trace output file 122
Other debugging aids .. 122

Returning error information in a control block 122
Information returned in register 15 122
Reentrant and system programmer interfaces 123

Contents IX

Part 2. Advanced graphics . 125

Chapter 11. Graphics segments 127
Creating segments .. 127
Deleting segments ... 129
Segment attributes .. 130
Transforming segments ... 131

How and when transformations take effect 135
Transforming text, markers, and graphics images 136
Moving a segment and its origin using call GSSPOS 136
Transforming segments using call GSSTFM 137
Querying transforms ... 139
Examples of transformations 139

Moving the origin of a segment 142
Transforming primitives within a segment 143
Copying segments ... 143
Including segments .. 145
Combining segments ... 146
Drawing chain and segment priority 147
Querying the order of all segments 148
Calling segments from other segments 148

Graphics attribute handling with called segments 152
Graphics not in named segments 153

Primitives outside segments 153
Unnamed segments .. 154

Chapter 12. Storing graphics•••...••••.....••........ 157
Saving graphics on external storage using call GSSA VE 157
Loading graphics from external storage using call GSLOAD 159
Type 1 load .. 162

Segment libraries ... 162
Panning and zooming .. 164

Type 2 load .. 166
Type 3 load .. 168

Chapter 13. Picture handling in graphics data format .••••.....••• 171
Inter·Release compatibility 172
GSGET and GSPUT ... 172
Device variations ... 175

Chapter 14. Interactive graphics•••.....••.....••........ 177
Overview of graphics input functions 177
Simple interactive graphics program 178
Locator input .. 181
Choice input ... 181

Effects of stroke and string devices 183
Choice devices as triggers 183
Input from the data keys 183

String input ... 184
Stroke input ... 185·

Creating stroke input .. 185
Querying stroke input .. 186
Simple polyline program 187

Enabling or disabling a logical input device 188
The GSREAD call and the input queue 189

Checking for further graphics input records using call GSQSIM 190
Handling the input queue 190

x GDDM Application Programming Guide Volume 1

Using ASREAD instead of GSREAD 192
Initializing a logical input device 192
Initializing a locator device 192

Specifying locator echo type and initial position using call GSILOC 192
Initializing a rubber-band locator 193
Initializing a rubber-box locator 194
Initializing a segment locator 194

Initializing a pick device 195
Specifying initial position of a pick device using call GSIPIK 195
Setting the pick aperture 195

Initializing a string device 195
Initializing a stroke device 196
Using a locator, pick, and stroke device together 197
When to issue GSENAB calls 197
Querying a logical input device 198
Segment picking example 198
Simple free-hand drawing program 201
Dragging segments .. 202
How the work station draws echoes 203
Local origin when dragging a segment 204
Local origin when transforming a segment 206
Panning and zooming .. 207
Retained and non-retained modes 207
Query primitives and segments in specified area using call GSCORR 208
Querying segment structure in specified area using call GSCORS 211
Interactive graphics with multiple partitions 212
Device variations ... 213

Interactive graphics on 3179-G terminals 213
Interactive graphics on ordinary 3270 terminals 213
Interactive graphics on the mM 5080 graphics system 214
5550-family multistation 215

Part 3. Advanced text 217

Chapter 15. Symbol sets ••••.••.•...••••.•.••••••••••••.•••. 219
Using symbol sets ... 220
Loading symbol sets ... 221

Symbol sets for alphanumerics 221
Symbol sets for graphics text 222
PS-stores for symbol sets and graphics 223

Specifying a symbol set for alphanumeric text 223
Field symbol-set attributes 223
Character symbol-set attributes 224
Input of character symbol-set attributes 225

Specifying a symbol set for graphics text 226
Multicolored symbols .. 228
Symbols for pounds, dollars, and cents 228
Device-dependent symbol-set suffixes 228
Manipulating symbol sets by program 228

Symbol sets and program variables 229
Loading symbol sets ... 229
Querying, reserving, and releasing PS-stores 230

Double-byte character set graphics text 230
GDDM default required for Kanji 232

Device variations ... 233
Differences on mM 3270-PC/G and /GX work stations 233
Differences on composed-page printers 234

Contents Xl

Differences on plotters 234

Chapter 16. Advanced procedural alphanumerics ..••••••••••••••• 235
Defining multiple fields using call ASRFMT 235
Define multiple fields, deleting all previous fields using call ASDFMT 236
Defining multiple field attributes using call ASRATT 237
Setting default field attributes using call ASDFLT 237
Querying modified fields using call ASQMOD 238
Alphanumeric field status 239
Alphanumeric menu sample program 240
How to use light-pen fields 243
Double-byte character set alphanumerics 245

mM 5550 multistation 245
Other terminals ... 248

Field outlining on the mM 5550 multistation 249

Chapter 17. Mapped alphanumerics •••••••••••••••••••.••••••• 251
Comparison with procedural alphanumerics 252
A simple mapping application 252

Creating the map ... 253
Description of the program : 253
Compilation and execution 256

Dialog with the terminal operator 256
Typical mapping cycle 258
Why you do not always need to call MSPUT 260

Steps in creating a mapping application 260
Changing existing maps 263

Multiple maps .. 263
Fixed maps .. 264
Floating maps .. 264

Querying changed maps .. 269
Input from multiple copies of a map 270
Device-independence ... 271

Attribute handling when mapgroup does not match device 272
Output-only displays ... 272
Mapping queries .. 272

Chapter 18. Variations on a map ••••••••••••••••••••••••••••• 273
Complex dialogs .. 273

Error message example using a selector adjunct 274
Write, rewrite, and reject 276
Selector adjuncts on input 277

Effect of reject operation 277
Uses of selector adjuncts 278
Alarm and keyboard locking 281

Effects of maps ... 281
Other considerations ... 281

Protecting fields from the terminal operator 282
Base attribute adjuncts ... 283
The cursor .. 284

Output ... 284
Input " 286

Null characters ... 287
Light pen and CURSR SEL key 287
Example of selection with cursor, light pen, and PF key 288
Alphanumeric input by PF key :....................... 292
Highlighting, color, and symbol sets 293

Xll GDDM Application Programming Guide Volume 1

Character attributes ... 295
Input character attributes 297

Folding and justification of input 297
Mapping and graphics ... 298

Example of graphics in a mapped display 299

Part 4. Image processing 303

Chapter 19. Image basics .••••.............••......•.....••. 305
Introduction ... 305
How to scan, display, and save an image 308

Scanner echoing .. 308
Creating an image .. 309
Loading the document into the scanner using call ISLDE 310
Transferring images using call IMXFER 310
Deleting images using call IMADEL 311
Synchronizing output and input 311
Saving images using call IMASA V 311
Loading an image, using call IMARST 312
Obtaining a new image identifier, using call IMAGID 313
Querying image attributes 313

Projections .. 313
Example code to define and save a projection 315
Creating a projection using call IMPCRT 316
Extracting a rectangular sub-image using call IMREXR 316
Changing the size of an extracted image using call IMRSCL 317
Positioning an extracted image in the target image using call IMRPLR . 317
Saving a projection using call IMPSA V 319
Deleting a projection, using call IMPDEL 320

How to apply a projection during a transfer operation 320
The remaining transform elements 323

Turning (reorienting) the image through multiples of 90 degrees 323
Reflecting the image about a chosen axis, using call IMRREF 323
Getting the negative of an image, using call IMRNEG 324

Defining the resolution conversion algorithm, using call IMRRAL 324
Putting transform calls in the right sequence 325

Order of evaluation in projections 326
Some other facilities ... 326

Gray-scale image manipulation 326
Applying a projection during image save and restore 326
Getting a new projection identifier, using call IMPGID 326

Changing the image resolution type, using call IMARF 327
Editing images without a transfer operation 327

Clearing a rectangle in an image, using call IMACLR 327
Trimming an image, using call IMATRM 327
Converting the resolution of an image, using call IMARES 328
Using IMXFER with target image the same as source image 328

Chapter 20. Advanced image functions••••...........•..... 331
Querying image devices .. 331
Converting gray-scale images to binary data 332

Defining brightness conversion definition, using call IMRBRI 333
Defining contrast conversion, using call IMRCON 333
Defining the conversion algorithm, using call IMRCVB 334
Ordering of brightness, contrast, and image type conversion calls 335

Querying image-related device characteristics 335
Querying formats supported by a device, using call ISQFOR 335

Contents XUl

Querying compressions supported by a device, using call ISQCOM 336
Querying resolutions supported by a device, using call ISQRES 337

Scaling an image to fit the display screen 338
Interactive image manipulation, using image cursors 340

Enabling or disabling device input, using call FSENAB 341
Enabling or disabling an image cursor, using call ISENAB 341
Querying the image locator cursor, using call ISQLOC 341
Querying the image box cursor, using call ISQBOX 342
Initializing the image cursors, using calls ISILOC and ISIBOX 342
Local operations on the 3193 display station 343
Interactive image manipulation example 344

Transferring images into and out of your program 347
Starting a PUT operation, using call IMAPTS 348
PUTTING data into an image, using call IMAPT 348
Ending a PUT operation, using call IMAPTE 349
Starting a GET operation, using call IMAGTS 349
GETTING data from an image, using call IMAGT 350
Ending a GET operation, using call IMAGTE 350

Controlling host offload by specifying image quality 351
Image size rounding ... 352
Scaling and resolution conversion 352
Scaling algorithm (also used in resolution conversion) 352
Multiple extraction and placing of rectangles 352
Controlling image quality, using call ISCTL or ISXCTL 353

Direct transmission .. 355
Direct transmission from a scanner 356
Direct echoing when scanning 356

Combining an image with text or graphics 356
Defining an image field, using call ISFLD 357
Querying the attributes of an image field, using call ISQFLD 357

Printing and plotting images 358
Printing an image on a 4224 printer 358
Printing an image on 4250 or 3800-3 359

Device variations ... 363
mM 3179-G, 3270-PC including /G and /GX, 3279, 3290, 5080, 5550 displays 364
mM 3268 and 3287 printers 364
Plotters ... 364

Part 5. Device support, printing, plotting, and windowing 365

Chapter 21. Device support ...••••.....••..••••.•...•••...•.• 367
Opening a device using call DSOPEN 367

Device processing options 370
Simple DSOPEN using nicknames 370

Specifying device usage using call DSUSE 371
Discontinuing use of a device, using call DSDROP 372
How to use more than one primary device 372
Example program: Using two primary devices 372
Closing a device using call DSCLS 375
Using a dummy device ... 376
Sample program: Using a dummy device to create a stored picture 376
Nicknames .. 378

Syntax•............................ 379
Unspecified or zero device family 379
Unspecified, null, *, or blank device name 379
Multipart names .. 380

XIV GDDM Application Programming Guide Volume I

Relative priorities of nickname statements and DSOPEN call 380
Defaults module and defaults file 380

How to use nickname statements ~ " 381
Simplifying DSOPEN .. 381
Defining devices at execution time 381
Multiple nickname statements 382

How to pass nickname statements to GDDM 384
Processing options for operator windows 386
Processing options for user control 386
Putting the terminal into user control, using call DSCMF 388
Processing options for the 3270-PC/G and IGX ...•..•............•... 388

Retained and non-retained modes ,.. 388
Panning and zooming , , .. , .. , , .. ,. 388
Default symbol sets for graphics text ." ,.. 389

Processing options for 3270-PC/G and IGX, 3179-G, and 5550 family displays 389
Processing option for the 5080 graphics system , .. ,.,....... 390
Querying the device , , .. ,., , .. ,. 391
Other device calls•.............. , .. , .. ,.,............... 391
Pseudoconversational programming under CICS 391

Chapter 22. Using printers 895
Overview ,......................... 395
Attached 3270 printer as a familY-1 primary device 396
Queued printer as a family-2 primary device ,.......... 397
System printer as a family-3 primary device 398
Composed-page printer as a family-4 primary device 399

Primary and secondary data stream ,............................ 402
Unformatted (canonical) output 402

Printer as an alternate device 402
Copying a page to a printer using call FSCOPY 403
Copying graphics to a printer using call GSCOPY 404
Sending a character string to a printer using call FSLOG 404
Sending a character string with control character to printer using call

FSLOGC ... 405
Example program: Copying screen output to a printer 405
Printing GDDM family-2 print files 407
Printing non-GDDM sequential files 408
Re-rastering when copying 409

Mixed graphics and alphanumerics 409
Colors and shading patterns on the IBM 3268 and 3287 printers 410
Using loadable symbol sets on family-S 3800 printer .. ,................ 411
Using typographic fonts on a family-4 4250 printer 411

Code pages .. 413
Example program: Using 4250 fonts 413

Color masters for publications 415
DSOPEN statement for color masters 418

Restrictions with composed-page printers 419
Using the IBM 4224 printer 420

Chapter 23. Using plotters 421
DSOPEN for plotters .. 421
Processing options for plotters 422

Setting up the plotter .. 425
Terminating a plot .. 426

Cells, pixels, and plotter units 426
A simple plotting program ,................ 427
Copying screen output to plotter 429

Contents XV

Plotting to scale .. 431
Using nicknames to direct and control the output 433
Special considerations for graphics on plotters 434

Colors .. 434
Color mixing ... 436
Graphics images and image symbols 437
Line types and widths .. 437
Shading patterns .. 438
Symbol sets .. 439
Optimum pen speed and force 440

Chapter 24. Windowing 441
Partitions ... 441
A simple partitioning example 442

Partition sets '..................... 444
Creating partitions .. 445
Current partition sets, partitions, and pages 445
Input/Output ... 446
Active and current partitions 447
Handling terminal-user errors 448

Some other things you can do with partitions 448
Visible and invisible partitions 449
Overlapping partitions 452
Prioritizing partitions .. 454
Querying the priority of overlapping partitions 457
Other calls that operate on partitions and partition sets 459

Large and small pages ... 459
Scrolling .. 459
Variable character size 461
Effects on graphics of scrolling and variable cell size 462

Partitioning with scrolling and variable cell size 463
Operator windows ... 467

Sample program using one operator window 469
Sample program using two operator windows 473
Modifying the attributes of an operator window, using call WSMOD 477
Prioritizing operator windows 478
Querying the priority of overlapping operator windows 479
Querying operator window attributes, using WSQRY 481
Task management ... 481
How FSSA VE and FSSHOW perform with operator windows 484
Allocation of resources to operator windows 484
How to free resources when a task terminates 485

Part 6. Example programs . 487

Example 1. The ADMUSP4 graphics editor sample program 489
What ADMUSP4 provides 489

Global actions .. 490
Drawing actions .. 490
Actions on drawn objects 490
Style selection ... 491

Invoking ADMUSP4 ... 491

Example 2. Assembler language example 493

Example 3. An APL2 example 495

XVI GDDM Application Programming Guide Volume 1

Example 4. BASIC example 497

Example 5. CICS pseudoconversational example •.••••••••••••••• 499

Appendixes . 505

Appendix A. Major types of supported device •••••••••••••••••••• 507
3179·G display station """""",.".,.".".,""',.,",.,'" 507
3270·PC/G and /GX work stations ,.".".,.".".,",. ,', . , , , , , , , " 507

Retained and non·retained modes "", ... , .. , .. ,"', ... ,', .. ,.,. 508
5550 family multistations with 3270 PC/G program. ., ... ".,"',', .. ,.. 509
5080 Graphics System ".,.,." .. , .. "., , .. ,"" ,. , , , , , .. , ., 509
3270·family terminals that use programmed symbols for graphics """',. 509

How graphics are created using programmed symbols ,.,""""',., 510
PS overflow - corruption of the display output ,.".,"',.,... 510

3270·family terminals without programmed symbols ".".,""',.. 511
3117 and 3118 scanners, and the 3193 display station "",.,.,', ,. 511
3270·family graphics printers .,', .. ,', ,', ," 511
3270·family alphanumeric printers , ,", ... , .. , .. ,., .. ". 511
System printers , , .. , ,', .. ,., ,." , 512
Composed.page printers , ".............. 512
Plotters•.................. 512
IPDS printer , ,......... 512

Appendix B. Device-independent programming tips ••••.•••••••••• 513
Introduction , , ' 513
Points to help you minimize device dependency in your programs ,.. 513

Graphics primitives ,"' .. '."' ,.,..... 514
Graphics attributes ,............................... 514
Displaying text , .. , .. ,............... 514
Text input ,.............. 515
Graphics hierarchy ,...................... 515
Storing and loading graphics ,..................... 515
Interactive graphics , ... ,.............................. 515
Symbol sets .. 515
Device support .. ,.. 516
Windowing , 516

GDDM glossary 517

Index ... 631

Contents XVll

Figures

1. "Sketch" sample graphics program 8
2. Output from "Sketch" sample graphics program 11
3. Sample TSO CLIST .. 12
4. Parameters returned by ASREAD 14
5. Drawing a polyline .. 21
6. Drawing a circular arc 22
7. Drawing an elliptic arc 23
8. Drawing a 2-part polyfillet 25
9. Drawing a 5-part polyfillet 26

10. A typical graphics area 27
11. Illustration of GDDM's shading algorithm 28
12. Two-part graphics area with the boundary not drawn 29
13. Output from GSIMG statements 31
14. GDDM line types and line widths 36
15. The 10 GDDM system markers 38
16. The 16 GDDM system shading patterns 39
17. GDDM geometric pattern set - ADMPATTC 40
18. GDDM 64-color pattern set - ADMCOLSD 41
19. The seven displayable colors 42
20. Color-mixing table .. 43
21. GSMIX table for mix mode on the 3270-PC/GX 50
22. Mode-1 and mode-2 graphics text 57
23. Effect of character-box attribute on the three text modes 59
24. Effects of proportional spacing 60
25. Effect of character-angle attribute on the three text modes 62
26. Effect of character-direction attribute on the three text modes 63
27. Effect of character-shear attribute on image and vector text 64
28. Using alphanumeric field and character attributes 81
29. "Bank Account" sample alphanumerics program 83
30. Output from "Bank Account" sample alphanumerics program 85
31. Part number sample alphanumerics program 85
32. PTNCRT - create a partition 92
33. FSPCRT - defining a page 93
34. GSFLD - defining a graphics field 96
35. GSPS - defining a picture space 98
36. GSVIEW - defining a viewport 99
37. Defining a complete graphics hierarchy (without partitioning) 101
38. Example of 2-device graphics hierarchy 109
39. The difference between a precise clip and a rough clip 111
40. The effect of segment viewing limits on displacement 112
41. First output from "Great Britain map" sample program 113
42. Second output from "Great Britain map" sample program 115
43. Error exit routine .. 120
44. Segments are collections of primitives 129
45. The four segment transformations 132
46. Shearing. .. 134

Figures XIX

47. Rotation ... 135
48. Effects of GSSPOS calls 137
49. Results of example transformations 140
50. The GSSORG call .. 142
51. Copying.. .. 145
52. Example program using called segments 149
53. Building plan produced by called segments 150
54. Table and chair segments with origin 151
55. Segments as saved .. 161
56. Segments as loaded ... 162
57. Type 2 load ... 167
58. Type 3 load ... 168
59. Handling GDF with GSGET and GSPUT 174
60. Graphics menu routine 179
61. Choice data returned by 3270-PC/G and IGX terminals 182
62. Program using polylocator stroke device 187
63. Segment picking example 200
64. Program for freehand drawing on the screen 201
65. Program for dragging segments 203
66. Local origin of echo segment 205
67. Correlation with rubber box 210
68. Choice data returned by non-PC 3270 terminals 214
69. Comparison of image and vector symbols 220
70. Overview of symbol set calls 221
71. Program using symbol sets for graphics text 227
72. Output from "Restaurant Menu" sample program 243
73. Source code of MAPEX01 253
74. Field deimitions for map used by MAPEX01 254
75. Initial display of MAPEX01 254
76. Source code of MAPEX02 257
77. Typical cycle of mapping operations 259
78. Positioning of fully floating maps 266
79. Source code of MAPEX04 267
80. Field definitions for map used by MAPEX04 268
81. Typical display by MAPEX04 268
82. Source code of MAPEX05 275
83. Source code of MAPEX08 290
84. Field definitions of map used by MAPEX08 291
85. Source code of MAPEX09 293
86. Source code of MAPEXll 299
87. Typical display by MAPEXll "............... 301
88. Field definitions of map used by MAPEXll 302
89. Image processing ... 306
90. Simple image program - scan, display, and save an image 308
91. Projection containing a transform 314
92. Projection containing two transforms 315
93. Resolution conversion 324
94. Acceptable combinations of format and compression 347
95. Vertical overlap ... 353
96. Horizontaloverlap ... 353
97. Overview of GDDM support for printers 395
98. Carriage-control codes for FSLOGC 405
99. Copying to printers ... 406
100. Output of 4250 font example 414
101. Example of using 4250 fonts 415
102. How a picture is changed into a number of color masters 416
103. ADMDHIPK, the GDDM sample symbol set for color masters 417

xx GDDM Application Programming Guide Volume 1

104. Creating color-separation masters 419
105. Plotting area .. 423
106. Program using plotter as primary device 428
107. Program using plotter as secondary device 430
108. Scale plotting program 432
109. Suggested color scheme for plotter pens 434
110. Color and pen numbers on plotters 436
111. The eight GDDM line types for plotters 438
112. The 16 GDDM shading patterns for plotters 439
113. Screen formatted by simple partitioning program 448
114. First panel using visible and invisible partitions 452
115. Second panel using visible and invisible partitions 452
116. Overlapping partitions 454
117. Output from sample partition prioritizing program 457
118. 3290 cell sizes ... 462
119. Program using scrollable partitions and two cell sizes 464
120. Screen with two cell sizes 466
121. Hierarchy of devices and windows in a single application 468
122. Task manager with several applications 482
123. The coordination exit routine 483
124. The menu displayed by the ADMUSP4 sample program 489

Figures XXI

Summary of amendments

Changes to this manual for Version 2 Release 1

Numerous changes in organization and scope have been made, particularly:

• The guide has been divided into two volumes. See "Book structure" on page vi.

• An appendix listing all GDDM calls has been removed. All the calls in the
Base API are listed and explained in the GDDM Base Programming Reference.
All the calls in the PGF API are listed and explained in the GDDM-PGF
Programming Reference. Also, all the calls that are covered in the guide are
listed in the index at the back of each volume.

The information in this volume has been changed to reflect the introduction of
Version 2 Release 1 of GDDM:

• Support for the following devices:

3193 Display Station and 3117 and 3118 Scanners
4224 Printer
5080 Graphics System
6180 Plotter.

• Withdrawn support for the 3277GA terminal.

• Extension of the Base application programming interface (API) to support the
input, output, storage, and manipUlation of images.

• A wide range of improvements to the Base graphics API.

• More flexible partition support.

• Support for operator windowing. Several applications can share a screen, each
one running in its own window. Also, a single application can use several
operator windows of its own.

• A call and processing options for handling user control.

• A trace facility for API calls and internal GDDM processing.

• Better operating characteristics on 5550 devices.

Summary of amendments XXlll

Compatibility of Version 2 Release 1 with earlier releases

Programs that were written for Version 1, Releases 1 or 2 will execute on Version
2, Release 1, but will need to be link-edited again if they were not link-edited under
Version 1, Releases 3 or 4. Programs written for Version 1, Releases 3 or 4 do not
need to be link-edited again. Data streams, chart formats and data, symbol sets,
and map groups created under earlier releases can be used with Version 2 Release
1.

Incompatibilities

• Programs that attempt to open a 3277GA terminal will fail because the 3277GA
is no longer supported.

• A parameter value of zero on the GSCB or GSMB call will cause the current
default value to be used. With previous releases, the dimension was reduced to
zero.

• Segment transformations are now honored on family-4 (composed-page) printers,
even when a spill file is used. With previous releases, they were ignored.

• NATLANG=K now means Kanji rather than Katakana. On terminals that do
not support double-byte character sets, US English will be used instead of
Kanji.

• The local mode of operation that was previously available on work stations has
been dropped. Its functions have been taken over by user control. If the
terminal user presses PA3, then user control will be offered by default instead
of local mode. The LCLMODE option now affects only the way panning and
zooming is implemented.

• The CHART call is no longer affected by preceding PG routine calls. The
exception is CHAREA, which you can use to define the area in which the ICU
constructs the chart.

• With the ICU, if the chart area is altered, the size of vector markers alters
proportionately. Previously, the size of markers was independent of the chart
area.

• The appearance of legends in charts created under the current release of PGF
differs from charts created under Version 1 Release 1.

• Print files from earlier releases cannot be processed by Version 2 Release 1
print utilities.

• Call format descriptor and APL request codes modules:

These modules can no longer be referred to and loaded by name. The only
method of accessing them is through the address obtained by a CALLINF
external defaults option in a SPINIT call. The meaning of the RCPPPGF flag
in the RCPPFLAG field of the call format descriptor has been changed. When
set on, it indicates that the call is not available in the GDDM Base programs,
instead of indicating that it is available in the Presentation Graphics Feature.
The name of the flag has been changed to RCPPOGP.

XXlV GDDM Application Programming Guide Volume 1

Changes to this manual for Version 1 Release 4

The guide was changed to reflect the introduction of the following facilities in
Version 1 Release 4 ofGDDM:

• Support for the following devices:
- mM 3179 Models G1 and G2 Color Graphics Display Station

mM 3270 Personal Computer/G and /GX (3270-PC/G and /GX) Work
Stations

- Plotters attached to the IEEE-488 port of a 3270-PC/G or /GX
- mM 3800-3 Printing Subsystem Models 3 and 8

mM 5550 Multistation (including support for Kanji alphanumerics).
• String and stroke graphics input devices
• Transformation, copying, and priority control of graphics segments
• Storing graphics segments on external storage and retrieving them
• Uniform graphics window coordinates
• Explicit correlation of graphics segments and primitives
• Kanji graphics text (as well as alphanumerics on the 5550)
• Nicknames to increase the flexibility of device support
• Copying to family-! and -3 devices (in addition to family-2)
• Fonts and codepages for the mM 4250 Printer
• Improved printer spooling
• Printing non-graphics data with the GDDM Print Utility
• Tower charts
• Polar charts
• Exploded and three-dimensional pie charts
• Bar charts with numeric axes, hidden bars, and extended bar labeling functions
• Support for missing values in charts
• More flexibility in chart labeling, markers, shading, and outlining.

In addition, numerous changes in organization and scope were made, particularly:

• The book was divided into six parts: a primer, followed by five parts devoted to
particular functional areas.

• A chapter giving a short overview of all the text facilities was added.
• A chapter introducing the graphics data format (GDF) was added.
• An appendix summarizing the major types of supported device was added.
• A heading indicating the devices covered was added to each page.

Compatibility of Version 1 Release 4 with earlier releases

Application programs written for use with earlier releases of GDDM and PGF will
run under Version 1 Release 4 without modification. They will need link-editing
again if they were link-edited under Version 1 Release 1 or 2, but not if they were
link-edited under Version Release 3. Data streams, chart formats and data, symbol
sets, and map groups created under earlier releases, can be used with Version 1
Release 4.

Print files from earlier releases cannot be processed by Version 1 Release 4 print
utilities. Data streams, chart formats and data, and vector symbol sets created
under Version 1 Release 4 cannot be used with earlier releases.

Summary of amendments xxv

Changes to this manual for Version 1 Release 3

The guide was changed to reflect the introduction of the following facilities in
Version 1 Release 3 of GDDM:

• Support for the following devices:
IBM 3277 Graphics Attachment RPQ (3277GA).

- IBM 3290 Information Panel.
- IBM 4250 Composed Page Printer.

• Alphanumeric mapping and the Interactive Map Definition utility
(GDDM-IMD)

• Partitioning the screen and scrolling
• Interactive graphics
• Segment attributes
• Primitives outside segments
• Support for color separation masters for in-house printing
• Proportionally spaced graphics text
• Scaled images (GSIMGS call)
• Vector symbol markers and scaling of them (GSMSC call)
• Fractional line widths (GSFLW call)
• Line-width table for PGF charts (CHLW call)
• A call (FSSHOR) that provides similar function to FSSHOW, but also returns

some input data
• New fields in the Interactive Chart Utility (lCU) call parameter to support new

ICU function
• New libraries of PL/I declarations.

In addition, numerous editorial improvements were made, particularly:

• A COBOL example was added.
• Constant parameters to GDDM calls were presented in a way that shows

whether they are rlXed or floating point.
• An appendix listing all GDDM calls was added.

Compatibility of Version 1 Release 3 with earlier releases

Application programs written for use with earlier releases of GDDM and PGF will
run under Version 1 Release 3 without modification, but they must be link-edited
again. Data streams, chart formats and data, and symbol sets created under earlier
releases can be used with Version 1 Release 3.

Print files from earlier releases cannot be processed by Version 1 Release 3 print
utilities. Data streams, chart formats and data, and vector symbol sets created
under Version 1 Release 3 cannot be used with earlier releases.

XXVl GDDM Application Programming Guide Volume 1

Volume 1. Base facilities

Volume 1. Base facilities 1

Part 1. GDDM basics

Part 1. GDDM basics 3

introduction

Chapter 1. Introduction

What this volume describes

GDDM is a family of ffiM program products that make it possible for application
programs to produce graphics, alphanumerics, and images on display devices,
printers, and plotters, and to read input from display devices. These general
graphics, alphanumerics, and image, or base facilities are introduced in Parts 1 to
4 of this volume. Part 3 of this volume also contains some guidance on the optional
GDDM Interactive Map Definition (GDDM-IMD) product, which you can use in
conjunction with some of the alphanumeric facilities of GDDM Base.

The Presentation Graphics Facility (PGF) is a product that you use to create
business graphics, for example, line graphs or pie charts. An important part of
PGF is the Interactive Chart Utility (lCU), which allows business charts to be
drawn on a display screen by people with no programming knowledge. The PGF
and leu are introduced in Volume 2 of this guide.

The GDDM application programming interface

All the base and PGF facilities are accessed by means of a call.type application
programming interface (API).

This guide is an introduction to GDDM, rather than a comprehensive reference
document. The GDDM Base Programming Reference, Volume 1 and GDDM-PGF
Programming Reference manuals have complete descriptions of all the calls and
their parameters.

Most of the examples given in the text are coded in PL/I, but the GDDM calls are
similar in the other supported languages - COBOL, FORTRAN, and System/370
Assembler. For example, these pairs of calls initialize GDDM and request a screen
read:

PL/I: CALL FSINITi
CALL ASREAD(TYPE,MOD,COUNT)i

FORTRAN: CALL FSINIT
CALL ASREAD (TYPE ,MOD,COUNT)

COBOL: CALL 'FSINIT' .
CALL 'ASREAD' USING TYPE, MOD, COUNT.

ASSEMBLER: CALL FSINIT, (0) ,VL
CALL ASREAD,(TYPE,MOD,COUNT),VL

Throughout this guide, floating-point constant parameters are shown with a
decimal point (for instance: 3.0), and fixed point without (for instance: 3).

Chapter 1. Introduction· 5

There is an Assembler example program in "Example 2. Assembler language
example" on page 493, and a COBOL example in Volume 2.

APL and BASIC programs can also call GDDM routines. However, the support is
provided by software associated with the languages, rather than by GDDM. There
is an APL example program in "Example 3. An APL2 example" on page 495, and a
BASIC one at "Example 4. BASIC example" on page 497. For further information,
you will need to refer to the manuals describing this language-related software.

The examples are intended to illustrate particular points about GDDM, not
necessarily to demonstrate good programming practice. For instance, a
well-written real application program might test the return codes from every
GDDM call and take special action to handle any errors. The examples do not in
general do this because it would obscure the main points.

All the examples use the GDDM non-reentrant interface. Two less commonly
used interfaces are available, the reentrant interface and the system
programmer interface. These are fully documented in the GDDM Base
Programming Reference manual.

Hardware and software

GDDM supports IBM 3179 Model G color display stations, mM 3270
terminal-attached display units, including the 3270-PC/G and /GX family of work
stations, 5550 family multistations, 5080 graphics systems, 3270 terminal-attached
printers, IPDS printers, system printers, composed-page printers, and plotters.
Overviews of the major types of device are given in Appendix A, "Major types of
supported device" on page 507.

The examples and descriptions in this guide typically apply equally to mM 3179
Model G color display stations (3179-G) or 3279 terminals running under the CMS
subsystem of VM/SP, unless otherwise stated or implied. Where appropriate,
device variations are listed at the end of chapters. Most of the examples would
require little or no change to execute on other terminals and under one of the
other supported subsystems, namely CICS/VS, IMS/VS, or TSO. Information about
running under these subsystems is given in the GDDM Base Programming
Reference manual.

All the color illustrations in both volumes of the GDDM Application Programming
Guide were produced by GDDM programs.

6 GDDM Application Programming Guide Volume 1

Chapter 2. Drawing a simple picture

This chapter tells you how to write a program that draws a simple picture on the
screen of any GDDM-supported graphics display terminal.

When drawing pictures, there are two main types of call to GDDM. One type
requests the addition of a graphics primitive, such as a line or arc, to the picture:

CALL GSLINE(20.0,65.0); /* Draw a line to (x=20,y=65) */

To address points on the screen, GDDM uses a coordinate system of 0 through 100
in each direction, with the origin in the bottom left-hand corner, unless you specify
a different system.

The other type of call changes the value of a graphics attribute such as color,
line type, or line width:

CALL GSCOL(6)i /* Change current color to yellow */

On color terminals this call causes all subsequently drawn primitives to appear in
yellow, until the color is changed again. (On monochrome devices, the call has no
effect.)

Figure 1 on page 8 shows a simple PL/I graphics program to draw a sketch of a
house, complete with a dimension. The output of the program is shown in Figure 2
on page 11. If you like, when you have read the explanation of the calls in the
program, you can copy it, and have a go at putting in the calls to draw some
windows.

The program introduces several important GDDM calls and concepts. These will
now be explained. The explanations refer to statements in the program that are
identified by letter. The identifications look like this in the program:

/*A*/

Chapter 2. Drawing a simple picture 7

applies to all graphics devices

SKETCH: PROC OPTIONS(MAIN);

DCL (TYPE,MOD,COUNT) FIXED BIN(3l); /* Parameters for ASREAD

CALL FSINIT; /* Initialize GDDM

CALL GSSEG(O); /* Create a graphics segment to
/* contain the lines and text that
/* make up the picture

CALL GSCOL(7) ; /* Set color to neutral (white)
CALL GSLW(2); /* Set line width to thick

/**************************/
/* DRAW OUTLINE OF HOUSE */
/**************************/

*/

*/ /*A*/

*/ /*B*/
*/
*/
*/ I*C*/
*/

CALL GSMOVE(20.0,70.0); /* Move current position to (X=20,Y=70)*/ /*D*/
CALL GSLINE(20.0,20.0); /* Draw line from current position to */

CALL GSLINE(80.0,20.0);
CALL GSLINE(80.0,70.0);
CALL GSLINE(20.0,70.0);

/* (X=20,Y=20) */

CALL GSMOVE(45.0,20.0); /* Move to begin drawing doorway */
CALL GSLINE(45.0,40.0);
CALL GSLINE(55.0,40.0);
CALL GSLINE(55.0,20.0);

/**************************/
/* NOW DRAW THE ROOF */
/**************************/

CALL GSCOL(2); /* Set color to red */
CALL GSAREA(l); /* Start an area - a shaded shape */
CALL GSMOVE(15.0,70.0); /* Move to begin drawing roof */
CALL GSLINE(35.0,95.0); /* Draw first edge of roof */
CALL GSLINE(65.0,95.0); /* and so on... */
CALL GSLINE(85.0,70.0);
CALL GSLINE(15.0,70.0);
CALL GSENDA; /* Area now complete, will be shaded */

Figure 1 (Part 1 of 2). "Sketch" sample graphics program

8 GDDM Application Programming Guide Volume 1

drawing a simple picture

/**************************/
/* ADD DIMENSIONS */
/**************************/

GSCOL(5); /*
GSLW(l); /*
GSMOVE(20.0,15.0); /*
GSLINE(47.0,15.0); /*
GSMOVE(22.0,13.0); /*
GSLINE(20.0,15.0);
GSLINE(22.0,17.0);

Set color to turquoise
Set line width to normal
Move to begin dimensioning
Draw first stroke of first
and so on ...

arrow

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

GSCHAR(49.0,14.0,2,'50'); /* 2 characters at (x=49,y=14)
GSMOVE(53.0,15.0); /* Begin second arrow
GSLINE(80.0,15.0); /* and so on ...
GSLINE(78.0,13.0);
GSMOVE(78.0,17.0);
GSLINE(80.0,lS.0);
GSCHAR(5.0,2.0,26,'All dimensions are in feet');

/* 26 characters at (x=5,y=2)
/**************************/
/* SEND PICTURE TO SCREEN */
/**************************/

*/
*/
*/
*/
*/

*/ /*E*/
*/
*/

*/

CALL ASREAD(TYPE,MOD,COUNT); /* Send the picture to the screen */ /*F*/
/* and await a response */

CALL FSTERM; /* Terminate GDDM */ /*G*/

%INCLUDE ADMUPINA;
%INCLUDE ADMUPINF;
%INCLUDE ADMUPING;

END SKETCH;

/* GDDM Entry declarations

Figure 1 (Part 2 of 2). "Sketch" sample graphics program

*/ /*H*/

Housekeeping: You are required or advised to put some housekeeping statements
into any GDDM graphics program:

• The FSINIT call /*A* / initializes GDDM and is compulsory. The FSTERM
call /*G* / at the end is advised, to free all the storage and other resources
acquired by GDDM. Its omission may cause subsequent programs (or reruns of
the same program) to fail through lack of storage.

• The GSSEG call /*B* / creates a graphics segment and is recommended
before any graphics primitives are drawn. A graphics segment is a logical
grouping of primitives and of the attributes that determine their appearance. If
you do not use GSSEG, for the 3179·G, 3270·PC/G and IGX family, and 5550
family, the primitives will be discarded after any local operation takes place at
the device (for example, if the screen is scrolled or if a system-issued message is
displayed).

• In PL/I, but not in other languages, each GDDM entry point (that is, each
GDDM call·name) used by your program should be declared. The declarations
should specify the data types of all parameters. A set of files is supplied with
GDDM that contains these entry declarations for you to include in your
programs. Each file has a name of the form ADMUPINx for the nonreentrant
entry points (or ADMUPffix for the reentrant entry points), and contains
declarations for all the entry points starting with "x". The declarations
necessary for the example are included at /*H* /. It is customary to include the
files at the end of the program because they affect the line numbers of all
subsequent statements.

Chapter 2. Drawing a simple picture 9

applies to all graphics devices

Under CMS, if you include several files, you may exceed the external names
limit. To avoid the problem, you can edit the files to remove names you do not
use. Some of the examples in this guide may not work if you leave all the files
unedited.

Default Attribute Values: All graphics attributes have default values initially, that
is, when a segment is opened. You need to set a particular attribute only if you
require a different value, as at I*c* I.

Current Position: An important notion when drawing graphics is the current
position. When you draw a line, for example, you do not specify the start point of
the line. It will be drawn from the current position to the specified end point. The
current position will normally be the end point of the previous primitive, but it can
be set explicitly by calling GSMOVE, as at I*D* I.

Graphics Text: GSCHAR at I*E* 1 produces graphics text. Such text is created
from lines, arcs, areas, and dot images like the rest of the graphics. It should not
be confused with alphanumerics (which is described in "Chapter 8. Basic
alphanumerics" on page 75).

Output of the Picture: The picture gradually being built by the program is held
inside GDDM. It is not transmitted to the screen until you issue a specific "send"
command, most commonly a call to ASREAD as at I*F* I. The new (or modified)
picture then appears on the display, and a screen "read" is issued. The terminal
operator can reply to the read by causing an interrupt on the screen, for example,
by pressing ENTER or a PF key. The three parameters of ASREAD will then be
set by GDDM to indicate the type of response. Control will return to the program
at the statement following the ASREAD. In the example, the type of response is
not relevant; the program will terminate.

Pages: The picture is built up and stored by GDDM in a logical entity called a
page. The example uses only one page, which GDDM created by default. A
program can explicitly create and use multiple pages, although only one page is
current at anyone time. Graphics calls always apply to the current page. When
the program executes an ASREAD call, the current page is sent to the terminal.

Data Types of GDDM Call Parameters: These are not necessarily apparent from
the program. The parameters were mostly constants. Often the parameters will be
variables and will have to be declared appropriately. These are the three PL/I data
types used in GDDM call statements:

• FLOAT DECIMAL(6). This is used for all graphics calls specifying positioning
of any sort. For example, the GSMOVE and GSLINE calls in the program had
float-decimal parameters. The COBOL equivalent is COMPUTATIONAL-I; in
FORTRAN it is REAL*4.

• FIXED BIN(3I). This is used for all integer attribute and parameter settings.
For example, the G8COL and GSLW settings were flXed binary, as were the
character string lengths. The COBOL equivalent is PICTURE 89(8); in
FORTRAN it is INTEGER*4.

• CHARACTER. The data for text output is obviously in character form. The
COBOL equivalent is PICTURE X(n); in FORTRAN, the equivalent is string
literals or a numeric data array initialized with string literals.

The GDDM Base Programming Reference, Volume 1 has a complete description of
all the GDDM base calls and their parameters.

10 GDDM Application Programming Guide Volume 1

drawing a simple picture

Figure 2. Output from "Sketch" sample graphics program

How to compile and run a GDDM Program under eMS

After creating a GDDM program, you will need to know what steps are required to
run it. As an example, these are typical commands required to compile and execute
a PL/I GDDM program under CMS:

CP LINK SYSTEM 2DD 2DD
ACCESS 2DD B

These two commands make the disk holding GDDM (2DD in the example) known to
your virtual machine.

GLOBAL MACLIB ADMLIB
PLIOPT POST (INCLUDE FLAG(I)

The PLIOPT command invokes the PL/I Optimizing Compiler to compile the
program. The INCLUDE option is required to pick up ADMUPINA, ADMUPINF,
and ADMUPING, the declarations of the GDDM entry points. The macro library
(ADMLIB) that contains these has been made known to CMS with a GLOBAL
MACLIB command. The FLAG(I) option is not essential, but it ensures that useful
messages about dummy variables are not suppressed. These are created when
parameter attributes do not match GDDM's requirements.

GLOBAL TXTLIB ADMNLIB ADMPLIB ADMGLIB PLILIB
LOAD POST
START *

The GLOBAL TXTLIB command tells CMS to use the text libraries containing
GDDM and PL/I. ADMGLIB must be the last GDDM text library listed. The
LOAD command loads the program into storage and the START command starts
execution. The picture of the house will appear on the screen that you use to
invoke the program.

Chapter 2. Drawing a simple picture 11

applies to all graphics devices

How to compile, link-edit, and run a GDDM program under TSO

Figure 3 shows a CLIST that you can use to compile, link-edit, and run a GDDM
program under TSO. The PLI command invokes the PL/I optimizing compiler to
compile the program.

/**/
/* TEST(INCLCARD) CONTAINS THE FOLLOWING RECORD: */
/* INCLUDE INCLIB(ADMASNT) */
/* FOR USE WITH THE GDDM NON-REENTRANT INTERFACE. */
/* */
/* REPLACE ADMASNT */
/* BY ADMASRT IF USING THE REENTRANT INTERFACE */
/* OR BY ADMASPT IF USING THE SYSTEM PROGRAMMER INTERFACE */
/* OR BY ADMASRT AND ADMASPT IF USING BOTH THE */
/* REENTRANT AND SYSTEM PROGRAMMER INTERFACES */
/**/
PROC 1 NAME
PLI TEST(POST) OBJECT(TEST(POST» +

LIB('GDDM.REL210.GDDMSAM') PRINT(*) INC FLAG(I)
ALLOC F(INCLIB) DA('GDDM.REL400.GDDMLOAD') REUSE SHR
LINK (TEST(POST), TEST(INCLCARD» +

LOAD(TEST(POST» LIST PLIBASE PRINT(*)
CALL TEST(POST)

Figure 3. Sample TSO CLIST

The GDDM Base Programming Reference manual describes the steps required on
other subsystems and using other languages.

Error handling

For reasons of clarity, the example does not test for errors in the GDDM calls. If
there is an error, GDDM issues two messages. The first names the call and gives
its location in main storage. The second describes the error. Execution then
continues with the next statement in the program.

Eventually execution will reach the output statement (ASREAD in the example).
This mayor may not produce recognizable graphics, depending on the errors. The
terminal operator will need to both clear the error messages from the screen and
satisfy the outstanding read. This may involve two interactions.

More information about error handling is given in "Chapter 10. Debugging aids"
on page 117.

12 GDDM Application Programming Guide Volume 1

Chapter 3. Basic input/output functions

This chapter discusses the following topics:

• The two basic output calls (ASREAD and FSFRCE)

• A call to check whether pictures are too complex to be displayed (FSCHEK)

• A device-dependent mechanism for saving pictures on auxiliary storage
(FSSA VE) and redisplaying them later (FSSHOR).

GDDM maintains a record of the contents of each page. The program may change
the contents, and so may the terminal operator, in ways to be described later.

Whenever the program issues an output call (ASREAD or FSFRCE), GDDM
updates the screen so that it displays the alphanumeric and graphics contents of
the current page. Some devices (the dual screen configuration of the 3270-PC/GX
work station, or 5080 Graphics System, for example) have two screens, one for the
graphics and the other for the alphanumerics. Whatever the type of screen, GDDM
does not necessarily send the whole page - it sends only those parts that have
been changed. When the target device is a printer, of course, the whole picture has
to be sent.

Send output and await reply using call ASREAD

This is the basic call for sending out the current page. Other input/output calls for
particular purposes will be introduced in later chapters. ASREAD requests a
write-and-read operation: the current picture is sent to the screen and a response
is awaited. The cursor is positioned in the top left-hand corner of the screen,
unless otherwise specified by an ASFCUR call or set by the terminal operator in a
previous interaction.

In other words, an ASREAD call requests that, after transmitting the data stream,
GDDM should wait for the operator to reply before returning control to the
program. This is the format of the call:

CALL ASREAD(TYPE,VALUE,COUNT); /* Send output to device */

The parameters are set by GDDM to indicate the type of interrupt that was
received. In the above example of an ASREAD call, the names of the parameters
have been chosen to reflect their function, namely the type of interrupt, a value
associated with the type, and the number of modified fields. Figure 4 on page 14
shows their possible values.

For interrupts of types 0-2, the last parameter indicates how many alphanumeric
fields have been modified by the operator. For a discussion on how these fields are
created and processed, see "Chapter 8. Basic alphanumerics" on page 75. The

Chapter 3. Basic input/output functions 13

applies to all graphics devices

handling of light-pen fields is covered in "Chapter 16. Advanced procedural
alphanumerics" on page 235.

A returned type of 7 indicates that the read was performed on an output-only
device such as a printer. In such circumstances, GDDM changes the write-and-read
into a write only.

Interrupt Type Value Count

ENTER key 0 number of modified fields

PFkey 1 PF key number number of modified fields

Light pen 2 number of modified
LP-fields

Badge reader 3 O(valid), l(not)

PAkey 4 PA key number

CLEAR key 5

Other 6

Output - only 7
device

Mouse or puck 10 Button number
button

Figure 4. Parameters returned by ASREAD

In the special case of CICS pseudoconversational mode, the first ASREAD in all
subsequent invocations of the pseudoconversation will perform only input - the
output is suppressed.

See "Pseudoconversational programming under CICS" on page 391 for a
description of this mode of programming, and the differences in effect of the
various GDDM calls.

Transmitting output using call FSFRCE

When you want to update the screen without waiting for a reply, you must use the
FSFRCE call instead of ASREAD. There are no parameters:

CALL FSFRCEi /* Send data stream to device and return to program */

This causes all changes made to the current page since the last FSFRCE or
ASREAD to be sent to the device.

The primary use of FSFRCE is to send output to a device that is output-only (such
as a printer). Another use is to send a sequence of pictures to a device (rather like
a slide show) where the timing of the displays is handled by the program in some
way.

As with ASREAD, the cursor is positioned in the top left-hand corner of the screen,
unless otherwise specified by an ASFCUR call.

Here is an example of how not to use FSFRCE:

14 GDDM Application Programming Guide Volume 1

basic input/output functions

CALL FSINITi
CALL GSSEG(O)j

/* Initialize GDDM */
/* Open segment */

CALL GSMOVE(25.0,60.0)j /* Start drawing the picture */

/********************************/
/* PICTURE SENT TO DEVICE.. */
/********************************/
CALL FSFRCEi /* Send out the picture */
/********************************/
/* .. BUT DISAPPEARS IMMEDIATELY */
/********************************/
CALL FSTERMj /* Terminate GDDM */

If this program is run on CMS, for example, the graphics will appear on the screen
for only a moment. Control will return to the program, the FSTERM will be
executed and the program will terminate, returning control to CMS. To hold the
picture on the screen, ASREAD must be used instead.

Checking picture complexity using call FSCHEK

Some pictures are too complex to be displayed at the terminal. The limits depend
on the type of terminal. On a 3279, for instance, it is set by the availability of
programmed symbol stores. On other types, it is set by the size of the buffer in
which the terminal stores the vectors that comprise the picture. The size of the
data stream may also limit picture complexity. More information is given in
Appendix A, "Major types of supported device" on page 507.

Except on a 3179-G, 3270-PC/G or /GX work station, 5550 family multistation, and a
5080 Graphics System, a call to FSCHEK allows the program to determine whether
the next output operation (typically an ASREAD or FSFRCE) would exceed any
such limits:

CALL FSCHEKi /* Determine whether overflow would occur */

This will return an error condition if the picture is too complex. To diagnose the
error condition, the program can issue an FSQERR call. This call is described in
"Chapter 10. Debugging aids" on page 117. For the moment, here is an example of
the code required:

DCL ERROR_PARM(2) FIXED BIN(31) ;

CALL FSCHEK;
CALL FSQERR(8,ERROR_PARM)i

/* Check picture complexity
/* Query the most recent error

*/
*/

/**A returned error code of 273 indicates overflow would occur **/

IF ERROR_PARM(2)=273 THEN DOi /* Overflow would occur on output */

END;

FSCHEK only checks the picture - it does not perform any output. A further call,
such as ASREAD or FSFRCE, must be issued to send out the data stream.

On a 3270-PC/G or /GX, too-complex pictures are degraded by GDDM, as explained
in "Retained and non-retained modes" on page 508. Therefore the FSCHEK call,
although not invalid, never returns an error condition with these terminals.

Chapter 3. Basic input/output functions 15

applies to all graphics devices

Saving current page contents using call FSSA VE

With this call you can save the alphanumerics and graphics contained in the
current page, or the alphanumerics and image contained in the current page. The
saved picture may subsequently be redisplayed using FSSHOR. The format of the
object saved is very similar to that of the eventual data stream. It is
device-dependent. Other, device-independent, ways of saving graphics are
described in "Chapter 11. Graphics segments" on page 127 and "Chapter 13.
Picture handling in graphics data format" on page 171. Unless you require to save
alphanumeric data (see "Chapter 6. Displaying text" on page 53) with your
picture, you are recommended to use these other methods. Not only do they
have the advantage of device-independence, but they allow you to manipulate, and
add to, the saved picture.

Here is an example of FSSA VE:

CALL FSSAVE('DEM08')i /* Save picture on auxiliary storage */

The parameter is the name to be assigned to the picture when written to auxiliary
storage. On CMS the full object name would become 'DEM08 ADMSAVE AI'. On
other subsystems, 'DEM08' would be a member name in a library assigned for
saved pictures.

If your picture is complex, you may get a diagnostic message saying that the object
is too big to be saved. In that case you must reduce the complexity or the size of
your picture, and then retry the FSSA VE.

The FSSA VE and FSSHOR calls are not supported when the picture has been
created for a 5080, or a plotter, or a family-4 printer (printer families are explained
in "Chapter 22. Using printers" on page 395).

Displaying a saved picture using call FSSHOR

With this call you can show a picture previously saved with an FSSA VE call.

CALL FSSHOR('DEM08',TYPE,VALUE)i /* Send saved picture to screen */

The saved picture will now appear on the display screen and remain there until the
operator causes an interrupt (by pressing ENTER or a PF key, for example).
Control will then return to the program, where normal processing of the current
page may continue.

GDDM returns codes giving information about the interrupt in the second and
third parameters. They have the same meanings as those returned in the first two
parameters of ASREAD, as shown in Figure 4 on page 14. Data typed by the
operator is not returned by FSSHOR.

The saved picture is not added to the previous graphics on the screen: it uses its
own page and replaces the previous display. After the operator acknowledges the
saved picture (by causing an interrupt), the program continues execution and the
next ASREAD, FSFRCE, or FSSHOR will determine the screen contents to replace
the saved picture.

If the picture was saved under Release 1 or 2 of GDDM, then the terminal operator
will not be able to enter any data. This is because the Release 1 and 2 version of
the FSSA VE call changed all unprotected fields to protected.

16 GDDM Application Programming Guide Volume 1

basic input/output functions

There is another call similar to FSSHOR, called FSSHOW. It differs in not
returning any information about the interrupt generated by the operator:

CALL FSSHOW('DEM08'); /* Send saved picture to screen */

Possible errors when showing saved pictures

• The FSSHOR device is not compatible with the device that was current when
the FSSAVE was performed.

• The 3274 controller was configured for compressed data streams when the
FSSAVE was performed, but is differently configured for the FSSHOR.

• Reference is made in the saved data stream to PS-stores that are either not
present on the target device or have been reserved by the program.

• In the case of 3270-PC/G or IGX work stations, the FSSAVE and FSSHOR
devices are compatible, but they have been customized differently - with
different screen sizes, for instance.

• The 5080 graphics system does not support FSSA VE and FSSHOR.

Chapter 3. Basic input/output functions 17

Chapter 4. Graphics primitives

This chapter describes the GDDM calls that add graphics primitives (lines and arcs,
for example) to your picture.

Coordinate system

You can define the (x,y) coordinate system that is used to address the drawing area.
The coordinate system is known as the graphics window. When adding a
primitive to your picture, you define locations such as the end of a line in terms of
graphics window coordinates, which are also known as world coordinates. They
are defined by this type of call:

CALL GSUWIN(0.0,200.0,0.0,100.0); /* Define coordinate system */
/* where x range is at least */
/* 0 to 200 (left to right) */
/* and y range is at least */
/* 0 to 100 (bottom to top) */

If you are going to specify a graphics window, you must do so before opening a
graphics segment or creating any graphics primitives.

If no window is explicitly defined, the default of exactly 0 through 100 in both
directions applies. In this case, however, the coordinates may not be uniform: one
x unit on the screen may not physically equal one y unit. This can lead to
unexpected results, such as circles appearing as ovals and squares as rectangles.
The GSUWIN call always creates a uniform set of coordinates. There is a full
discussion of graphics windows in "The graphics window" on page 101.

The starting point for all primitives consisting of lines or arcs is the current
position. The current position is the end point of the previous primitive, unless a
GSMOVE has been issued.

Drawing a straight line using call GSLINE

This call draws a line from the current position to a specified end point, for
example:

CALL GSLINE(25.0,90.0); /* Draw straight line to (X=25,Y=90) */

The line is to be drawn in the current color, using the current line width and the
current line type. The setting of such attributes is addressed in "Chapter 5.
Graphics attributes" on page 35:

After this call the current position is (25,90) - the end point of the line.

Chapter 4. Graphics primitives 19

see end of chapter for device variations

Changing the current position using GSMOVE

This call is used to move to the required starting point of a new primitive. The
format of the call is similar to that of GSLINE:

CALL GSMOVE(50.0,O.0); /* Change current position to (X=50,Y=0) */

The call is used whenever the end point of the previous primitive is not the
required starting point of the next primitive.

Drawing a sequence of lines using GSPLNE

Rather than issue a series of GSLINE calls, the programmer can place the line-end
coordinates in an array and issue a single call to draw the sequence of lines called
a polyline. This is the format of the call:

DCL X22(5) FLOAT DEC(6)

DCL Y22(5) FLOAT DEC(6)

CALL GSMOVE(20.0,20.0);
CALL GSPLNE(S,X22,Y22);

INIT(20.0,70.0,70.0,35.0,20.0);
/* x line-end coordinates

INIT(80.0,80.0,50.0,50.0,20.0);
/* y line-end coordinates

/* Set current position.
/* Draw S-part polyline.
/* The first line will run from
/* current position to (20,80),
/* from (20,80) to (70,80), and

*/

*/

*/
*/

the */
the second*/
so on */

As with most primitives, the flrst line of the polyline will start at the current
position. The current position after the polyline has been drawn is, as you would
expect, the end of the last line.

Figure 5 on page 21 shows the effect of the above GSPLNE call.

20 GDDM Application Programming Guide Volume 1

graphics primitives

~ ______ ---, C70, 50)

/ \\(35'50)
(20,20)

5- PART POLYLINE

DCL X22 (5) FLOAT DEC (b) INIT(20, 70, 70, 35, 20); It X- COORDS tl
DCL Y22 (5) FLOAT DEC (b) INIT(80, 80, 50, 50, 20); It Y-COORDS *1
CALL GSMOVE(20. 20); I' SET NEW CURRENT POSITION *1
CALL GSPLNE(S. X22. Y22); I' DRAW THE S-PART POLYLINE 11

Figure 5. Drawing a polyline

Chapter 4. Graphics primitives 21

see end of chapter for device varia tions

Drawing a circular arc using call GSARC

This is one of several statements to draw arcs. The arcs will not appear circular on
the screen unless you ensure that the window has uniform coordinates, as
described in "Coordinate system" on page 19. This is the format of the call:

CALL GSARC(25.0,60.0,90.0); / * Dr aw 90 degree ar c with
/* c e nter a t (25 ,60)

*/
*/

The arc's starting point is the current position. The first two parameters specify
the center of the arc and the third parameter gives its sweep in degrees. A positive
angle of sweep denotes a counterclockwise arc. A negative angle of sweep will
give a clockwise arc.

Note that the radius is not specified explicitly. It will be determined by the
distance between the arc's center and the current position before drawing.

Figure 6 shows the effect of two GSARC calls, one clockwise and the other
counterclockwise.

" ... (50. 50)

.. (50. 20)

COUNTER-CLOCKWISE ARC

CALL GSMOVE(80.50);
CALL GSARC(50. 50. 270);

Figure 6. Drawing a circular arc

CLOCKWISE ARC

CALL GSMOVE(80.50);
CALL GSARC(50.50. - 270);

It is easy enough to write GSARC calls for arcs of 90, 180, or 360 degrees. It is very
difficult, though, to determine which GSARC call will go from a known current
position to a required end position. Trial and error is hardly a satisfactory method.
You should either resort to graph paper, compass, and protractor to determine the
GSARC parameters, or use GSPFLT (polyfillet), a simpler call which is described in
"Drawing a curved polyfillet using call GSPFLT" on page 24.

22 GDDM Application Programming Guide Volume 1

graphics primitives

Drawing an elliptic arc using call GSELPS

This call draws an elliptic arc that starts at the current position and follows an
elliptic curve until it reaches the prescribed end point. This is a typical call:

CALL GSMOVE(60.0,7 0 .0); / * Se t starting point for curve */
CALL GSELPS(20. 0 , 10 . 0 , 45. 0 , 30.0,60.0);

/ * Dr aw an elliptic arc t hat has axes */
/ * of 20 & 10, that is ti l ted at 45 */
/ * de grees to the horizontal and that */
/ * r uns from the current position to */
/ * an end point of (X=30,Y=60) */

This call is best understood by looking at Figure 7, which shows the various
elements of the ellipse.

END-POINT

MAJOR AXIS
(LENGTH= 20)

(b0. 70) START-POINT

TIL ANGLE IS
45 DEGREES

CALL GSMOVECb0.70); II CURRENT POSITION BEFORE ELLIPSE II
CALL GSELPSC2B.19. 45. 38. be); II DRAW THE ELLIPSE II

Figure 7. Drawing an elliptic arc

In general there are four elliptic arcs that satisfy the five specified parameters.
GDDM will never draw an elliptic arc that is longer than half an ellipse. Of the
remaining two arcs, one is clockwise and the other is counterclockwise. If the two
axis parameters have the same sign (as in the example), GDDM will draw the
counterclockwise arc; otherwise it will draw the clockwise one.

Chapter 4. Graphics primitives 23

graphics primitives

Drawing an elliptic arc using call GSELPS

This call draws an elliptic arc that starts at the current position and follows an
elliptic curve until it reaches the prescribed end point. This is a typical call:

CALL GSMOVE(60.0,70.0); /* Set starting point for curve
CALL GSELPS(20.0,10.0,45.0,30.0,60.0);

/* Draw an elliptic arc that has
/* of 20 & 10, that is tilted at
/* degrees to the horizontal and
/* runs from the current position
/* an end point of (X=30,Y=60)

axes
45
that
to

This call is best understood by looking at Figure 7, which shows the various
elements of the ellipse.

END-POINT

MAJOR AXIS
(LENGTH=20)

(bO.70) START-POINT

TILT ANGLE IS
45 DEGREES

CALL GSMOVE(b0.70); II CURRENT POSITION BEFORE ELLIPSE il
CALL GSELPS (20.19.45.38. be); II DRAW THE ELLIPSE II

Figure 7. Drawing an elliptic arc

*/

*/
*/
*/
*/
*/

In general there are four elliptic arcs that satisfy the five specified parameters.
GDDM will never draw an elliptic arc that is longer than half an ellipse. Of the
remaining two arcs, one is clockwise and the other is counterclockwise. If the two
axis parameters have the same sign (as in the example), GDDM will draw the
counterclockwise arc; otherwise it will draw the clockwise one.

Chapter 4. Graphics primitives 23

see end of chapter for device variations

Drawing a graphics marker symbol using call GSMARK

This call draws a single graphics marker at a specified position. A graphics
marker is a symbol used to indicate a point on the screen. The symbol used
depends on the current setting of the marker attribute (see "Setting the current
marker symbol, using call GSMS" on page 37). The default is a cross. This is the
format of the call:

CALL GSMARK(50.0,43.0); /* Draw graphics marker at (X=50,Y=43) */

The marker is positioned so that its center lies at the specified position. The
current position is updated to that of the marker.

Drawing several graphics marker symbols using call GSMRKS

This call is a quick way to draw more than one marker. As with the GSPLNE call
seen earlier, the coordinates of the points at which the markers should appear are
stored in two arrays. Here is an example:

DCL X09(7) FLOAT DEC(6) INIT(40.0,50.0,75.0,75.0,80.0,45.0,45.0);
/* x coordinates */

DCL Y09(7) FLOAT DEC(6) INIT(20.0,20.0,35.0,55.0,20.0,20.0,50.0);
/* y coordinates */

CALL GSMRKS(7,X09,Y09); /* Draw 7 graphics markers, */
/* the first at (40,20), */
/* the second at (50,20) and so on */

After drawing the markers, the current position will be set to that of the last
marker in the series.

Scaling a marker symbol using call GSMSC

You can control the size of marker symbols, if they are from a vector symbol set
(see "Setting the current marker symbol, using call GSMS" on page 37 for more
information about markers and symbol sets). For instance:

CALL GSMSC(2.0);

makes subsequently drawn vector symbol markers twice their default size. The
default size of markers is such that their width is equal to the width of the default
character box (see "Chapter 7. Basic graphics text" on page 55).

The GSMSC call has no effect on image symbol markers. They are always
displayed at the size defined by the symbol itself.

Drawing a curved polyfUlet using call GSPFLT

This call is similar in format to GSPLNE. A series of points is passed to GDDM in
two arrays. The difference is that whereas GSPLNE results in a sequence of
straight lines, GSPFLT results in a smooth curve.

This is the format of a typical call:

24 GDDM Application Programming Guide Volume 1

graphics primitives

DCL X09(S) FLOAT DEC(6) INIT(20 . 0,70 . 0,70.0,3S . 0,20.0);
/* x coordinates */

DCL Y09(S) FLOAT DEC(6) INIT (8 0.0,80.0,SO.O,S O. O,20.0);

CALL GSMOVE(20.0 , 20.0);
CALL GSPFLT(S,X09,Y09);

/ * y coordinates */

/* Set current position */
/ * Draw S-part polyfillet. */
/ * The first "construction line" */
/ * will extend from the current */
/ * position to (20,80) . The second */
/* construction line will run from */
/* (20,80) to (70,80), and so on */

The easiest way to visualize the resultant curve is to consider the polyline that
would be drawn from the current position through the specified points. These line
segments may then be thought of as construction lines for the polyfillet. The
polyfillet will start at the current position and finish at the end of the last
construction line. On the way it will touch tangentially the midpoints of all the
intermediate construction lines. Figure 8, and Figure 9 on page 26 clarify the
algorithm. The curves are tangential to the end points of the first and last
construction lines, and tangential to the midpoints of all the others.

(20. 80):

~--I - _ _

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

:. (20.30)

--- - _ 00. 70)

THE CONSTRUCTION LINES

(20. 80)[

~--

--"' (70.70)

......... (20.30)

THE 2-PART POLYFILLET

DCL XBB(2) FLOAT DEC (b) INIT(20.70); II X-COORDINATES II
DCL YBB(2) FLOAT DEClb) INITC80.70); II Y-COORDINATES II
CALL GSMOVEC20 39)' II SET NEW CURRENT POSITION II
CALL GSPFLTl2.X88. ~88); II DRAW THE 2-PART POLYFILLET II

Figure 8. Drawing a 2·part polyfillet

Chapter 4. Graphics primitives 25

see end of chapter for device variations

(28,89J.
\ ___________________ ; (10.80)
, , , , , ,

, , , '
" I'

C20.20 Ji

, , ,
,

, , , , ,
. ____________ 1.. (10. 50)

,' \ .
" (35.50)

THE CONSTRUCTION LINES

(20. 80)!
j-------"'- - -.;;;,: , , , , , , , , , , , , , , , ,

C20.20)!

THE 5-PART POLYFILLET

DCL X09(5) FLOAT DEC(b) INIT(20. 10. 10.35.20); II X-COORDS II
DCL Y09(5) FLOAT DECCb) INITC80i80~50f.50.20)~ II Y-COORDS II
CALL GSHOVE(20 20)' I S~T NEW CUR~ENT POSITION II
CALL GSPFLT(5.X09. ~09); I ' DRAW THE 5-PART POLYFILLET I I

Figure 9. Drawing a 5-part polyfillet

Drawing a graphics area using call GSAREA

A gr aphics area is a shaded shape. It is defined by specifying its outline and then
requesting that it be shaded in. The outline may be constructed using any of the
primitives just described (except markers).

Here is an example of a graphics area specification:

CALL GSMOVE(70. 0 , lO . O) i / *
/ *

CALL GSAREA(l) i / *
/ *
1*

CALL GSLINE(60 . 0 , 70 . 0) ; / *
1*

CALL GSARC(SO . O,80 . 0 , 270.0) i

CALL GSLI NE (30. 0 , lO . O) i /*
CALL GSLINE(70 . 0 , lO . O) i / *

Move current pos i tion to the */
start of t he area ' s outline . */
Tell GDDM we are starting an ar e a . */
Parameter of 1 = draw boundary */
Parameter of 0 = suppres s boundary* /
The area 's outline */
begin s with a line , */
/ * continues with a circular arc , */
and two more lines */
complete the outline. */

CALL GSENDAi / * Te l l GDDM that the outline is */
/ * comp l ete and shou l d now be shade d . */
/ * Th e current co l or and shading */
/ * pattern will be used . */

The resultant shape will be that of a keyhole, as shown in Figure 10 on page 27.

26 GDDM Application Programming Guide Volume 1

graphics primitives

,' , --,\ (50. 80)
I , .•.

'. L . (bll. 71l)
I I
I I
I I
I I
I I
I I
I I
I I

... ~
I I

C30. 11l.J..L __ __ ___ \ m .10)

THE AREA'S OUTLINE THE SHADED AREA

Figure 10. A typical graphics area

Closure of area's outline

The area's outline must be closed. If the end of the last primitive in the area is not
the same as the current position at the start of the area, GDDM will add a closure
line. For example, if your area has only two lines in it (forming a "V"), GDDM will
add a third line to make it into a triangle. The current position after the GSENDA
call will be at the end of the added closure line.

Changing attributes

There are restrictions on changing attributes while drawing an area. They are
described in "Changing attributes inside an area" on page 46.

The shading algorithm

A region will be shaded if you need to cross an odd number of lines to move from
that region to outside the picture. If you need to cross an even number of lines to
leave the picture, the region will not be shaded. Figure 11 on page 28 illustrates
this algorithm.

Chapter 4. Graphics primitives 27

see end of chapter for device variations

" , , , , , , , , , , , , " , ~--------7-------- -~\- - - --- -:;
\. I\'I

\. I "
\. '\'I

\. , \ I
\ , , I

, I "

I':' Ii\.
I " I \

I , I \
I" I \

I \ I' I , "
I \.I \

! ____ ___ _ ~~---------L--------~ , ' , ' , ' , ' , ' , ' , ' ,,'

OUTLINE OF b-POINT STAR THE AREA WHEN SHADED

Figure 11. Illustration of GDDM's shading algorithm

If you look at the left-hand part of the figure you will see that all the points in the
central area of the star are two line-crossings from infmity. In whichever direction
you move, you will cross two lines before leaving the figure. The central part of
the star will therefore not be shaded. The six outermost parts of the star are all
either one or three line-crossings from infinity, depending on which direction you
take. These parts of the shape are therefore shaded. The right-hand part of the
figure shows the shaded area.

GSMOVE inside an area

It is permitted to include GSMOVEs inside an area specification. In that case the
outline drawn before the GSMOVE must be closed. If not, GDDM will add a
closure line before performing the move. The following example illustrates this.
The two-part area produced by these GDDM calls is shown in Figure 12 on
page 29.

28 GDDM Application Programming Guide Volume 1

graphics primitives

CALL GSPAT(3) ; / * Area to be shaded */
/ * with system pattern 3 . */

CALL GSMOVE(20.0,20.0); / * Move to area ' s start position . */

CALL GSAREA(O); / * Start area - do not show boundary . */
CALL GSLINE(40.0 , 40 . 0); / * Draw first line of boundary . */
CALL GSLINE(60.0,20.0) ; / * Draw second line of boundary . */

CALL GSMOVE(70 . 0,60.0); / * Previous part of outline was not */
/ * closed, GDDM wi ll add closure line */
/ * from (60 , 20) to the area's */
/ * s t ar t posit i on at (20,20) . */

CALL GSLINE(80.0 , 80.0); / * Dr aw second part o f area's outline. */
CALL GSLINE(30.0 , 90 . 0);
CALL GSENDA; / * Second part of outline was not */

/* closed, GDDM will a dd closure line */
/* from (30,90) to the start of the */
/ * second part at (70 , 60). */

CALL ASREAD(TYPE,MOD,COUNT); /* Send the 2 shaded triangles */
/ * to the screen . */

(39. 99)

(89,80)

(40,40)

(b0 , 20)

(20, 20)

TWO-PART GRAPHICS AREA

Figure 12. Two·part graphics area with the boundary not drawn

Chapter 4. Graphics primitives 29

see end of chapter for device variations

Drawing graphics images using calls GSIMG and GSIMGS

There are two graphics primitives remaining; they operate in a different way from
all the others, because they deal with graphics images. Full image processing
functions are dealt with in "Chapter 19. Image basics" on page 305 and "Chapter
20. Advanced image functions" on page 331 of this book. See those chapters for
GDDM support of image processing on image devices.

The GSIMG call allows you to declare a pattern of dots within the program and
then add the pattern to the current page's graphics. Each dot will be displayed as
one pixel (also occasionally referred to as a pel).

Because the size and aspect ratio of a pixel varies from one type of device to
another, the size and aspect ratio of the image may vary if the program is
transferred from one device to another. For instance, the pixel aspect ratios of the
3279 and 3270·PC/G are different.

This is an example of its use:

DCL SPIDER CHAR(198);
UNSPEC(SPIDER)::::

'OO'B
'OOOOOOOOOOOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOlOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOlOOOOOOOOOOlOOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOlOOOOOOOOOlOOOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOlOOOOOOOOlOOOOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOlOOOOOOOlOOOOOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOlOOOOOOlOOOOOOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOlOOOOOOlOOOOOOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOlOOOOOlOOOOOOllOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOlOOOOOlOOOOlllllOOOOOOOOOOOllOOOOO'B
'OOOOOOOOOOOOOOOlOOOOlOOOOlllllOOOOOOOOOOlOOOOOOO'B
'OOOOOOOOOOOOOOOlOOOOlOOOOlllllOOOOOOOOllOOOOOOOO'B
'lOOOOOOOOOOOOOOOlOOOlllllllllOOOOOOOOlOOOOOOOOOO'B
'OlllllllllOOOOOOlOllllllllOOOOOOOOOllOOOOOOOOOOO'B
'OOOOOOOOOOllOOOOlllllllllllOOOOOOOlOOOOOOOOOOOOO'B
'OOOOOOOOOOOOllOlllllllllllllllllllOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOlllllllllllllOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOllllllllllllOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOllllllllllllOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOlllllllllllllllllOlllOOOOOOOOOOOOOOOOOOO'B
'OOOOOOllOOOOOOOllllllllOOOOOOlllOOOOOOOOOOOOOOOO'B
'OOOOllOOOOOOOOOOlllllOlOOOOOOOOOllllllllllOOOOOO'B
'OlllOOOOOOOOOOOOOOlOOOOllOOOOOOOOOOOOOOOOOlOOOOO'B
'OOOOOOOOOOOOOOOOOOlOOOOOOlOOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOOOOOlOOOOOOOlOOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOOOOOOlOOOOOOOlOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOOOOOOlOOOOOOOlOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOOOOOOlOOOOOOOlOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOOOOOlOOOOOOOOlOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOOOOlOOOOOOOOOlOOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOOOlOOOOOOOOOOOlOOOOOOOOOOOOOOOOOOO'B
'OOOOOOOOOOOOOOOOlOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'B

CALL GSIMG(O,43,33,198,SPIDER);

Its parameters are as follows:

/* Send image of spider to */
/* the current position */

• The first parameter must always be set to zero.

30 GDDM Application Programming Guide Volume 1

graphics primitives

• The second parameter, 43, gives the width of the image in display points. This
may be any number less than 2040, but the image data must have each row
padded to a multiple of 8 bits.

In the GSIMG example above, the width is 43 and the data has been padded to
48 display points per row.

• The third parameter, 33, gives the depth of the image in display points.

• The fourth parameter, 198, gives the length of the image data in bytes,
including padding.

• The last parameter, SPIDER, gives the name of the character variable in which
the dot pattern has been stored.

The top left-hand corner of the image is placed at the current position. Any bits set
to 1 will cause the corresponding dot on the screen to be set on. The image will be
shown in the current color, but it is always monochrome. To obtain multicolor
images you must overlay images of different colors.

Figure 13 shows output from several GSIMG calls, similar to the one above. Note
that "black" images will show, when placed on a shaded background.

Figure 13_ Output from GSIMG statements

The GSIMGS call is similar to GSIMG, except that it allows the image to be scaled.
For example:

Chapter 4. Graphics primitives 31

see end of chapter for device variations

CALL GSIMGS(O,43,33,198,SPIDER,30.0,20.0);
/* Fit spider image into a */
/* box 30 world-coordinate */
/* units by 20 */

The first five parameters have the same meaning as in the GSIMG call. The last
two parameters define a box, called an image window, in world-coordinate units.
GDDM will fit the image into the image window by displaying each bit in the
character variable as a rectangular array of dots, rather than as a single dot. The
number of dots in the array is such that the image is the largest possible one that
will not overflow the image window. The top left-hand corner of the image window
will be at the current position.

Because the array need not be a square, the horizontal and vertical dimensions are
scaled separately. The mechanism allows only integral scaling, and does not allow
scaling down. If a scale factor of less than one would be required to fit the image
window, the image is displayed using a factor of one, and is allowed to overflow the
image window.

Another method of presenting images (using an image symbol set) is described in
"Chapter 7. Basic graphics text" on page 55.

Querying the current position using call GSQCP

At any stage in a graphics program you may query the current position. It will be
returned in world coordinates. This is the call:

DCL (X,Y) FLOAT DEC(6);/* Parameters for query current position */

CALL GSQCP(X,Y); /* Query the current position. */

On return from this call, GDDM will have set the current position into variables X
and Y. Here is an example of using this function to underline a graphics text
string:

CALL GSCHAR(20.0,34.0,26,'Figure 8. The Eye of a Fly');
/* Write text. */

CALL GSCOL(2); /* Change color to red. */
CALL GSQCP(X,Y); /* Determine position of right-hand end */

/* of text string. */
CALL GSMOVE(X,33.S); /* Move down by 0.5 Y window units. */
CALL GSLINE(20.0,33.S); /* Underline the text in red. */

Here, the y position was known (34). GSQCP was used to determine the x position
of the end of the string.

Querying the cursor position using call GSQCUR

To query the cursor position in terms of your world-coordinate system, you issue
this call at some stage after executing an ASREAD:

DCL INWIN FIXED BIN(31); /* Declare fullword parameter.
DCL (X,Y) FLOAT DEC(6); /* Declare 2 float parameters.

CALL GSQCUR(INWIN,X,Y); /* Query cursor position.

32 GDDM Application Programming Guide Volume 1

*/
*/

*/

graphics primitives

INWIN will be set to 1 if the cursor position was inside your graphics window, and
to 0 otherwise.

Parameters X and Y will be set to the x and y coordinates of the center of the cell
containing the cursor.

Another way of determining the cursor position is described in "Chapter 14.
Interactive graphics" on page 177.

Device variations

IBM 5080 Graphics System

Images created with the GSIMG call will require one byte of storage per pixel in
both the host and 5080.

You cannot produce multicolored images by overlaying graphics images created by
GSIMG. The whole of each successive image will blank out any underlying
graphics.

Chapter 4. Graphics primitives 33

Chapter 5. Graphics attributes

There are several attributes that affect the appearance of graphics primitives such
as lines .and arcs. Each of these attributes has a default setting initially. For
example, on a 3l79·G or 3279 terminal the default color is green and the line type
solid.

At any stage the program can change a particular attribute. All primitives drawn
subsequently will assume the new attribute value. In a program that uses
segments, the effect of the calls that change attributes is limited to the segments in
which they are issued. When a new segment is opened, the attributes return to
their default settings. In the following sections, the defaults quoted are those
initially supplied by GDDM at the start of a program. Note, however, that you can
change the default attribute settings in your program to defaults of your own
choosing. See "Changing default attribute values" on page 47 for details.

Setting a new current color, using call GSCOL

The current color affects the appearance of all graphics output - lines, arcs, areas,
graphics text, graphics images, and markers. It is set by this call:

CALL GSCOL(2)i /* Set the current color to red */

The parameter may take these values:

-2 White
-1 Black
a Default (initially green on color displays, black on printers)
1 Blue
2 Red
3 Pink (magenta)
4 Green
5 Turquoise (cyan)
6 Yellow
7 Neutral (white on display, black on printers)
8 Background (black on displays, white on printers).

Information about what happens if the device does not support the chosen color is
given in the GDDM Base Programming Reference manual. Information about the
l6-color version of the 3270-PC/GX is given in "IBM 3270-PC/G and IGX work
stations" on page 49.

The same codes (except - 2 and -I) are used in other calls for specifying colors. A
suggested mnemonic for the codes for blue through neutral is:

Boys Reading Politics Go To Yale Now

Chapter 5. Graphics attributes 35

see end of chapter for device variations

Setting a new line type, using call GSLT

There are a number of different line types (or styles).

This call sets a new current line type:

CALL GSLT (l) ; / * Set the current line type to dotted */

The parameter may take the value 0 through 8. The effect of these line types on a
3179-G terminal can be seen in Figure 14.

Figure 14. GDDM line types and line widths

Setting this attribute affects the appearance of all subsequently drawn primitives
such as lines, arcs, and ellipses. It also affects the boundaries of graphics areas.

Setting a new line width, using calls GSFLW or GSLW

You can vary the line width used for graphics with this call:

CALL GSFLW(O.66);/* Set current line width to two-thirds standard */

The parameter specifies a factor by which the standard line width for the current
device is to be multiplied.

Omitting the call or specifying a value of 1 gives a line of the standard width for
the device. On display devices the standard width is one pixel, and the only other
available thickness is two pixels. These two widths are shown in Figure 14.

On all devices, a value of zero gives the current drawing default. This is initially
the standard width for the device.

On high-resolution devices, such as the 4250 printer, a line one or two pixels wide
would be nearly invisible. Line widths of up to 600 pixels are allowed. The
standard width on a 4250 is six pixels. More information about standard and
maximum line widths is given in the GDDM Base Programming Reference manual.

36 GDDM Application Programming Guide Volume 1

graphics attributes

There is another call that is similar in effect to GSFLW, but requires a fixed-point,
and therefore integral, parameter:

CALL GSLW(2}; /* Set the current line width to twice standard */

Setting the current marker symbol, using call GSMS

As described in "Drawing a graphics marker symbol using call GSMARK" on
page 24, the primitive GSMARK puts out a graphics marker at a specified location.
There are several styles of marker and the GSMS call is used to change to a new
style.

CALL GSMS(3};

The parameter may take these values:

o
1
2
3
4
5
6
7
8
9
10
65 to 254

Default (initially a cross)
Cross
Plus-sign
Diamond
Square
Six-point star
Eight-point star
Shaded diamond
Shaded square
Dot
Small circle
User-defined markers.

/* Set marker type to diamond */

The markers numbered 1 through 10 are called system markers. They are
symbols contained in GDDM-supplied symbol sets. The markers are illustrated in
Figure 15 on page 38.

It is also possible for the users to create their own markers, using the GDDM
Image Symbol Editor or Vector Symbol Editor. These markers may be of any size.
They will still be positioned by GDDM such that the center of the marker symbol
lies at the specified position.

Information about the size of vector symbol markers is given in "Scaling a marker
symbol using call GSMSC" on page 24.

The following code will load a user marker set, and then display one of its markers.
The GSLSS call/* A * / is described in "Symbol sets for graphics text" on page 222.
The first parameter is set to 4 to indicate that the symbol set being loaded is a
marker set. The second parameter is the name of the symbol set. The third
parameter must be set to 0 in this instance. The GSMS call/*B* / identifies the
symbol by its position in the set. A marker symbol set may have markers at any or
all of the positions 65 through 254. If you specify a position where no marker has
been created (in other words, an empty position in the symbol set), no marker will
be drawn.

You are allowed only one user marker set at a time. You can then choose either a
marker from the user set, or one of the ten system markers. If you load a second
user marker set, it will replace the previously loaded one.

Chapter 5. Graphics attributes 37

see end of chapter for device variations

CALL GSLSS(4,'NEWMARKS' , 0) ; 1* Load user marker-set
1* called NEWMARKS

CALL GSMS (72) ; 1* Set marker type to that of
1* symbol 72 (X ' 48') in the
/* currently loaded user marker set

CALL GSMARK(50,50); /* Draw user marker 72 at X=50,Y=50

If the marker set is multicolored, you must set the current color to 7 (neutral)
before using any markers that need to be multicolored in the display.

Figure 15. The 10 GDDM system markers

Setting the current pattern, using call GSPAT

The scheme for shading patterns is similar to that for markers. There are 16
system patterns, and the user may also create his own patterns with the Image
Symbol Editor (but not the Vector Symbol Editor), and subsequently specify their
use. This is the call to select a new current shading pattern:

*/
*/

*/
*/
*/

*/

CALL GSPAT (11) ; / * Set current pattern to system-pattern 11 */

All subsequently drawn areas will be shaded in this pattern until a new shading
pattern is specified. The parameter may take these values:

o
1 to 16
65 to 254

Default (initially solid on displays, half-tone on printers)
GDDM system-defined patterns
User-defined patterns

The available system patterns for displays and 3287s are shown in Figure 16 on
page 39.

38 GDDM Application Programming Guide Volume 1

/*A*/

/ *B* /

graphics attributes

o II •• n
B ~~ q 0 •• i : IJIfil 10 § -]§~ LJ .0$', :. ,,~ 2

n ~~ 11 ~ _ f12]~ '--' ~,!'.: :.-~.: --
3

4 ill] Bill Bill 12 ~ - -~~
5 0 Lillill lliD 13 ~ -- ~~

b [J DO 14 ~ - - ~~

I~
-

0 --~DD DD 15
~ '" t o .

7

8 '1 ~ " . DO I " , " . lb II ••
-- -- - --,-------- - --_ .. _---_. --- --- -. ~--.--

Figure 16. The 16 GDDM system shading patterns

A user pattern set can be either a GDDM-supplied one or one that you have created
yourself using the GDDM Image Symbol Editor. Such pattern sets should be
designed to match the width and depth in pixels required by the device.

The following code will load a user pattern set, and then use one of its patterns.
The first parameter of the GSLSS call / * A * / is set to 3 to indicate that the symbol
set being loaded is a pattern set. The GSPAT call / *B* / identifies the pattern by
its position within the set. A pattern symbol set may have patterns at any or all of
the positions 65 through 254. If you specify a position at which no pattern has been
created (in other words, an empty position in the symbol set), subsequent areas will
be unshaded.

CALL GSLSS(3,'PRETTY' ,0); / * Load user pattern s e t */
/ * called PRETTY. */

CALL GSPAT (97); / * Set pattern to symbol 97 (X ' 61') */
/ * in the currently loaded us e r */
/ * pattern set. */

CALL GSMOVE (80.0,22. 4) ; / * Move t o start point of */
/ * graphics area. */

CALL GSAREA(1); / * Start a graphics area. */
CALL GSLINE (90.0,30 . 0) ; / * Draw first line of the outline, */

/ * and so on ... */

CALL GSENDA; / * End the area, and shade it with */
/ * pattern 97 from the user pattern */
1* set calle d PRETTY. */

You are allowed to load only one user pattern set at a time. You may then use
either a pattern from the loaded set or one of the 16 system patterns. You must set
the current color to 7 (neutral) before using a pattern from a multicolored set if
you want the pattern to be multicolored in the display.

Several sample user pattern sets are supplied with the GDDM package. One of
them, the geometric pattern set, is shown in Figure 17 on page 40.

Chapter 5. Graphics attributes 39

/ *A* /

/* B* /

see end of chapter for device variations

• 'f.:~~~=:~'~y..~

~ lj~@~j1tIj: - ~'~i.c~~·~~'~
--'._ .. _ ... __ . ~~~~~~~ ~

~ltmmt
11111111 11111111 ~P~P!l ~r--'~~ -11111111 11111111 ',h l! -

========
11111111 1 .. 11111 h~~ ~B ~:" ___ J~~ --- -

• mil 11111111 11111111 11111111 • • ---
• • :::::::::::::::: • ~ :::~:::::::::::: §.*~~ • ••••••• ~~~~~~~~
~~~~~~~~ ~~~~~~~~ •• = mum 111111111 11111111 
.t •••••• • ••••• t. 00000000 00000000 ........ ........ OOOODDDD 00000000 •••••••• 

DCCDCDCD 00000000 •••••••• 
11111 .. 1 ........ ........ tt ••• t. C ........ AAAAAAA" IHHHUlCQQ ... i ...... 

••••••• 0 ........ '0'$0"" ........ AAAAAAAA caoococc ........ 
11111111 ••••••• 0 ........ • •• ooote ........ A, AAA4AAJ. oaCCHIClIHI ........ 

• 0 •••• 0. . ....... \)00'0000 ........ AAAAAAAA :lIu:oaaac ........ ........ .... " ... ".".,,' ... .•...•...•...•.. ,.'",0,.'",'.1",0",'",'",( ................... AAAAAAAJ. .="=,,=.=.=,=.=.= .•...•.•.•.•.•.• 

Figure 17. GDDM geometric pattern set - ADMPATTC 

All the GDDM sample pattern sets are listed in the GDDM Base Programming 
Reference manual. 

The GDDM 64-color pattern set 

The GDDM-supplied symbol sets ADMCOLSD, ADMCOLSN, and ADMCOLSR 
allow you to shade your areas in any of 64 different colors. These colors are shown 
in Figure 18 on page 41. The three sets differ only in the size of the symbols. 

The chosen color is specified with a GSPAT call: 

CALL GSLSS(3,'ADMCOLSD' ,0); /* Load GDDM-supplied */ 
/* 64-color pattern set. */ 

CALL GSCOL(7); /* Set current color to neutral to */ 
/* permit use of multicolored */ 
/* pattern set . */ 

CALL GSPAT(93) ; /* Set pattern to orange, pattern 93* / 
/ * in the GDDM 64-color pattern set.*/ 

40 GDDM Application Programming Guide Volume 1 



graphics attributes 

Figure 18. GDDM 64·color pattern set· ADMCOLSD 

Pattern 93 in the image symbol set ADMCOLSD is a mixture of red and yellow 
points. When every cell (and part cell) inside a graphics area is loaded with this 
pattern, the area appears in orange. 

When you use a multicolored shading pattern in this way, the boundary line will be 
white (or black on a printer) unless you reset the color after opening the area. 
Here is how to draw a red outline around a multicolored area: 

CALL GSLSS(3, 'ADMCOLSD ' ,0 ) ; 
CALL GSPAT(83); 
CALL GSCOL(7) ; 

CALL GSAREA(l) ; 
CALL GSCOL(2); 

/ * Draw the area */ 

/ * Load 64 - color pattern 
/* Select blue pattern. 
/ * Set color to neutral 
/* for area fill . 

set. */ 
*/ 
*/ 
*/ 

/ * 
/ * 

Open area . */ 
Set color to red for outline . */ 

Or, instead, you can specify GSAREA(O) to suppress the drawing of the boundary. 

Chapter 5. Graphics attributes 41 



see end of chapter for device variations 

Mixing foreground colors, using call GSMIX 

By default, graphics primitives are drawn on top of the primitives drawn 
previously. If you draw a blue line and then a green line that crosses it, the 
crossing point will be shown in green. This form of foreground color mixing is 
called overpaint mode. The other foreground modes that can be set are mix 
mode, underpaint mode, and transparent mode. 

All the displayable colors are made up of one or more of the three primary colors, 
blue, red, and green. If you set mix mode, and then draw a blue line crossed by a 
green one, the point where they cross will be a mixture of blue and green, that is 
turquoise. Using all combinations of the three primary colors, seven colors can be 
created, as shown in Figure 19. 

Color No. Primaries Used 
Displayed 

Blue 1 Blue 

Red 2 Red 

Pink 3 Blue Red 

Green 4 Green 

Turquoise 5 Blue Green 

Yellow 6 Red Green 

White 7 Blue Red Green 

Figure 19. The seven displayable colors 

Mixing two colors results in combining their primaries. For example, red mixed 
with pink (blue and red) will give blue and red, that is, pink. Turquoise (blue and 
green) mixed with yellow (red and green) will give blue, red, and green, which is 
white. 

A color representation of the possible mixp.s is given in Figure 20 on page 43. 

The third form of color mixing is underpaint mode. Wherever two primitives cross, 
the displayed color will be that of the fIrst-drawn primitive. If you draw a blue 
line, then a green line crossing it, the crossing point will be shown in blue. Not all 
devices support underpaint mode (see "Device variations" on page 49). 

The fourth form of color mixing is called transparent mode. Primitives drawn in 
this mode will be transparent and will therefore not appear. Not all devices 
support transparent mode (see "Device variations" on page 49). 

42 GDDM Application Programming Guide Volume 1 



graphics attributes 

Figure 20. Color·mixing table 

The call that defines the mixing mode is a simple one: 

CALL GSMIX(l); / * Set current color-mixing rule to mix mode.* / 

The possible values of the parameter are as follows: 

o Current default 
1 Mix mode 
2 Overpaint mode (the initial default) 
3 Underpaint mode 
4 Overpaint mode 
5 Transparent mode. 

As for other graphics attributes, this setting will affect only primitives drawn 
subsequently. 

Chapter 5. Graphics attributes 43 



see end of chapter for device variations 

Special treatment of the background color, using call GSMIX 

One of the colors allowed on the GSCOL call is color 8, the background. This color 
shows as black on a display and white on a printer or plotter. When it is mixed 
with another color, it has the following special effects: 

• To erase graphics from a part of the screen, you can simply paint over the 
graphics with a background area, using the initial default color-mixing mode, 
overpaint. This technique may be used on, for instance, a 3279 terminal, to 
produce a cartoon effect. To show an owl blinking his eye, you would use this 
sequence of calls: 

CALL GSSEG(O)~ /* Open a graphics segment. */ 

Draw owl •.. 

CALL FSFRCE; /* Send picture of owl with two open eyes. */ 

CALL BLACK_EYE; /* Call subroutine to black out one eye. */ 

Draw closed eye in blacked-out area ... 

CALL FSFRCE; /* Send picture of owl with one eye closed.*/ 

CALL BLACK_EYE; /* Call subroutine to black out closed eye.*/ 

Redraw open eye ... 

CALL FSFRCE; /* Send picture of owl with two open eyes. */ 

BLACK_EYE: PROC; 
CALL GSPAT(16); 
CALL GSCOL(8); 
CALL GSMIX(2); 

CALL GSMOVE(53.4,70.0); 
CALL GSAREA(O); 

/* Solid shading pattern. */ 
/* Set current color to background.*/ 
/* Set mixing mode to overpaint. */ 

/* Move to bottom of eye. */ 
/* Open area. */ 

CALL GSARC(53.4,70.6,360.0)~ 
CALL GSENDA; 

/* Overpaint eye in background.*/ 

END BLACK_EYE; 

• Underpaint mode does not apply when the underlying color is background. The 
reason is that there is no such thing as a background color to take precedence. 
Background primitives are represented by switching off all the primary colors. 

• Background primitives make no impact on the previously drawn graphics if mix 
mode is in effect. Remember that the effect of mix mode is to add the primary 
components of the two colors together. Because "background" means having 
no primaries, there is nothing to be added - the original color stands. 

• The effect of reverse-video can be achieved by setting the current color to 
background and writing background graphics text on a colored area. The text 
may be mode-2 (image) or mode-3 (vector). (Text modes are explained in 
"Chapter 7. Basic graphics text" on page 55.) Except on a 3270-PC/G or /GX, 
this technique will not work with mode-1, because the characters occupy whole 
cells to the exclusion of the graphics. Background mode-1 text would be 
invisible. 

44 GDDM Application Programming Guide Volume 1 



graphics attributes 

Mixing background colors, using call GSBMIX 

We have seen how GDDM gives you control over the mixing of the foreground 
color of overlapping primitives. For certain primitives, you can also control how 
the background of the current primitive combines with any previously drawn 
primitives that it overlaps. By default, previously drawn primitives can be seen 
through the background of the current primitive. This form of background mixing 
is called transparent mode. The other background mix mode that you can set is 
opaque mode. In this mode, the background of the current primitive completely 
obscures any previously drawn primitives that it overlaps. The background will be 
black for a display, and white for a printer or plotter. 

The format of the call to set background mix mode is as follows: 

CALL GSBMIX(2); /* Set background mix mode to opaque.*/ 

The possible values of the parameter are as follows: 

o Current default 
2 Opaque mode 
5 Transparent mode (the initial default) 

The graphics primitives (and their backgrounds) for which you can set this 
attribute are: 

Graphics images 

Image markers 

Vector markers 

Areas 

Graphics text 

The background is every pixel that is not set within an 
image. 

The background is every pixel that is not set within the 
marker definition. 

The background is the complete marker box. 

The background is every pixel within the area that is not 
set by the shading pattern. For example, an area 
containing a shading pattern that is a grid of horizontal 
and vertical lines is drawn over some existing primitives. 
If the background mix mode is set to transparent, the 
underlying primitives will be seen through the square " 
holes" contained by the horizontal and vertical lines. If 
the background mix mode is set to opaque, the underlying 
primitives will be covered up by the holes, which will 
contain background color only. 

The effect of background mix depends on the mode of the 
text. For Mode-! and Mode-2 text, the background of a 
character is every pixel that is not set within the 
character definition. The effect of background mix on 
Mode-! text is also device-dependent. For more 
information, see ·"Device variations" on page 49. For 
Mode-3 text, the background is the complete character 
box. For more information, see "Chapter 7. Basic 
graphics text" on page 55. 

GSBMIX has no effect on lines. Background mix mode is valid for all devices when 
the foreground mix mode is overpaint. For details of which devices support which 
combinations of foreground and background mix modes, see "Device variations" on 
page 49. 

Chapter 5. Graphics attributes 45 



see end of chapter for device variations 

Transforming primitives, using call GSSCT 

You can set a current transform that will be applied to all the primitives that 
follow using the GSSCT call. Primitives can be transformed in four ways: 

Displaced Moved to another x,y location 

Scaled Made larger or smaller in the x,y direction, or in both 

Rotated Moved about a turning point in the x,y plane 

Sheared Sloped to one side 

Here is a typical call: 

/* Scaling 
CALL GSSCT( 1,1, 

Shearing Rotation 
0,1, 1,0, 

Displacement Type */ 
0,0, a )i 

Although the current transform is a primitive attribute, the call can only be issued 
within a currently open segment, and is processed in relation to the origin of the 
segment (the position x=O,y=O in world coordinates when the primitive is drawn). 
GSSCT is therefore covered more fully in "Transforming primitives within a 
segment" on page 143 in "Chapter 11. Graphics segments." 

Changing attributes inside an area 

It is not permitted to change, say, the shading pattern in the middle of defining an 
area. Only four attributes may be changed: the line type (CALL GSLT), the line 
width (CALL GSFLW or CALL GSLW), the color (CALL GSCOL), and the mixing 
mode (CALL GSMIX). Changes to these attributes will affect the drawing of 
subsequent parts of the area boundary, but not the area fill. The attributes of the 
fill are fixed when the GSAREA is executed. 

Querying graphics attributes 

All GDDM calls that set an attribute have a matching call to query the current 
attribute value. For example: GSQCOL, GSQCA, and GSQFLW query the 
attributes that can be set by GSCOL, GSCA, and GSFLW. 

One use of these calls is to permit a subroutine to maintain the environment at the 
time of its calling. For example, a subroutine that draws a thick red square at an 
x,y position passed to it might look like this: 

46 GDDM Application Programming Guide Volume 1 



graphics attributes 

/* Subroutine to draw red square centered on passed x,y position*/ 

RSQUARE: PROC(X,Y); 
DCL (X,Y) FLOAT DEC(6); 
DCL COL FIXED BIN(3l), 

LW FLOAT DEC(6); 

/**********************/ 
/* Query attributes */ 
/**********************/ 

/* Parameters passed to subroutine. */ 
/* Temporary variables. */ 

CALL GSQCOL(COL); /* Save current value of color attribute. */ 
CALL GSQFLW(LW); /* Save current value of line width attribute.*/ 

CALL GSCOL(2); 
CALL GSFLW(2.0); 
CALL GSMOVE(X-l.O,Y-l.O); 
CALL GSLINE(X+l.O,Y-l.O); 
CALL GSLINE(X+l.O,Y+l.O); 
CALL GSLINE(X-l.O,Y+l.O); 
CALL GSLINE(X-l.O,Y-l.O); 

/**********************/ 
/* Restore attributes */ 
/**********************/ 
CALL GSCOL(COL); 
CALL GSFLW(LW); 

END RSQUARE; 

/* Change current color to red. 
/* Change current line width to 
/* Move to start of r~~ square. 
/* Draw first line of square. 

*/ 
thick*/ 

*/ 
*/ 

/* Restore the color attribute. */ 
/* Restore the line-width attribute. */ 

So, this subroutine might be called from several different points in the main 
program. On each occasion the attributes in the main program would be left 
unchanged. 

Changing default attribute values 

When a primitive is processed, any attributes that relate to the primitive and that 
have not been explicitly set assume drawing default values supplied by GDDM. At 
any time in your program you can change the drawing defaults from the values 
supplied by GDDM to default values of your own choice - affecting color, line 
width, line type, shading patterns, graphics text, symbol sets, and many other 
attributes. 

You can achieve this by containing attribute calls withiil two calls, GSDEFS and 
GSDEFE, that respectively start and end a definition of drawing defaults. 

For example, to change the default value of the current marker symbol from a cross 
(the GDDM-supplied default) to a square, you would use these calls: 

CALL GSDEFS(l,l); 

CALL GSMS(4); 

CALL GSDEFEj 

/* Start new drawing defaults definition. */ 

/* Set current marker symbol to square. */ 

/* End new drawing defaults definition. */ 

For the above example, any past or subsequent occurrence in your program of 
GSMARK or GSMRKS for which the marker symbol has not been set (or is set to 0) 
will result in a square marker symbol. 

The first parameter of GSDEFS is always 1. The second parameter may take these 
values: 

Chapter 5. Graphics attributes 47 



see end of chapter for device variations 

1 Merge (the default). When merge is specified, the. defaults within the new 
default definition are merged in with those in the existing default definition. 
So the only existing defaults that are affected by the new definition are those 
specifically set within it. 

2 Override. When override is specified, the new default definition completely 
overrides any existing default definition. As with merge, any attribute 
default specifically set within the new definition changes the existing default 
attribute that it relates to. Unlike merge, any default that is not specifically 
set within the new definition will be reset to the GDDM default value. 

For both merge and override, the existing defaults can be either GDDM defaults, or 
defaults set by a previous default definition. 

In general, whenever you change a drawing default, any segment primitive drawn 
using the old default will be redrawn using the new one. For example, you could 
draw and display a segment primitive using the default color green. You could 
subsequently use several drawing default definitions to change the default color 
attribute to red, pink, yellow, or any of the colors supported by your display. Each 
time that you change the default color, the primitive will be redrawn in the new 
color. Primitives outside segments will be discarded when the redraw occurs. 

See "Chapter 12. Storing graphics" on page 157 for information on how default 
definitions can affect the storing and restoring of pictures. 

For the rules that apply to the use of GSDEFS and GSDEFE, and a complete list of 
the calls that you can use with them, refer to the GDDM Base Programming 
Reference manual. 

Pushing and popping graphics attributes, using calls GSAM and GSPOP 

Whenever you alter a primitive attribute to a new value, the old setting of the 
attribute is automatically saved (PUSHED) by GDDM onto a last-in/first-out stack, 
unless you specify otherwise. If you wish, your program can subsequently retrieve 
(POP) the stored attribute value from the stack and reuse the value. The following 
call controls the pushing: 

CALL GSAM(O); /* Preserve attributes */ 

The value of the parameter is: 

o Preserve the attributes (the default) 
1 Do not preserve the attributes 

You can save all the primitive attributes introduced in this chapter (for example, 
color, line type, current transform) and many others covered elsewhere in this 
guide. For the full list of the attributes that can be saved, see the coverage of 
GSAM in the GDDM Base Programming Reference manual. 

The following call controls the popping: 

CALL GSPOP(S); /* Restore the last five attributes saved.*/ 

The single parameter defines the number of attribute values to be restored, starting 
with the last value saved. 

For an example of the use of pushing and popping of attribute values, see 
"Graphics attribute handling with called segments" on page 152. 

48 GDDM Application Programming Guide Volume 1 



graphics attributes 

Device variations 

The preceding sections of this chapter refer primarily to the 3l79-G terminal. 
However, most of the function is device-independent, so most of the information 
applies to all graphics devices. The following sections describe functional 
variations on other types of device. 

IBM 3270 family of terminals 

This covers members of the the 3270 family that use programmed symbols for 
graphics, such as the 3279. 

GSBMIX call: Background mix is only supported when the foreground mix mode 
is overpaint. 

IBM 3270-PC/G and /GX work stations 

GSCOL call: If the work station is a 3270-PC/GX with a 5371 Model COl display 
unit, 16 colors are supported. Their values are as follows: 

-2 White 
-1 Black 
0 Default (green) 
1 Blue 
2 Red 
3 Pink (magenta) 
4 Green 
5 Turquoise (cyan) 
6 Yellow 
7 Neutral (white) 
8 Background (black) 
9 Dark blue 
10 Orange 
11 Purple 
12 Dark green 
13 Turquoise 
14 Mustard 
15 Gray 
16 Brown. 

GSMIX call: Mode 3 (underpaint) is not supported. It is treated as overpaint. 

The results for mix mode with the above colors are as indicated in the table in 
Figure 21 on page 50. 

Chapter 5. Graphics attributes 49 



device variations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 3 3 5 5 7 7 1 13 14 15 12 13 14 15 12 
2 3 2 3 6 7 6 7 2 9 11 11 13 13 15 15 9 
3 3 3 3 7 7 7 7 3 13 15 15 13 13 15 15 13 
4 5 6 7 4 5 6 7 4 11 10 11 14 15 14 15 10 
5 5 7 7 5 5 7 7 5 15 14 15 14 15 14 15 14 
6 7 6 7 6 7 6 7 6 11 11 11 15 15 15 15 11 
7 7 7 7 7 7 7 7 7 15 15 15 15 15 15 15 15 
8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
9 13 9 13 11 15 11 15 9 9 11 11 13 13 15 15 9 

10 14 11 15 10 14 11 15 10 11 10 11 14 15 14 15 10 
11 15 11 15 11 15 11 15 11 11 11 11 15 15 15 15 11 
12 12 13 13 14 14 15 15 12 13 14 15 12 13 14 15 12 
13 13 13 13 15 15 15 15 13 13 15 15 13 13 15 15 13 
14 14 15 15 14 14 15 15 14 15 14 15 14 15 14 15 14 
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 
16 12 9 13 10 14 11 15 16 9 10 11 12 13 14 15 16 

Figure 21. GSMIX table for mix mode on the 3270-PC/GX 

Pattern sets: There must be sufficient symbol set storage available in the work 
station for any specified pattern set, otherwise the default pattern will be used for 
shading. 

IBM 5080 Graphics System 

GSBMIX call: This call is not supported. 

GSCOL call: 16 colors are supported. Their values are the same as the values for 
the 3270-PC/G and /GX. 

GSL W call: Only one line width is supported. Any other specified line width 
defaults to this. 

GSMIX call: Only overpaint mode is supported. A warning message is issued if 
any other mode is specified. 

Pattern sets: Only the 16 GDDM-supplied pattern sets are available, in any of the 
16 supported colors. Any other specified pattern set results in pattern 16 (solid). 

5550-family multistations 

GSMIX call: Mode 3 (underpaint) is not supported. It is treated as overpaint. 

GSBMIX call: Opaque mode is not supported. It is treated as transparent. 

Color-separation masters on printers 

GSCOL call: If color separation is required on a family-4 device (see 
"Composed-page printer as a family-4 primary device" on page 399), the value of 
the GSCOL parameter can range from 0 to the number of entries in the selected 
color table. 

50 GDDM Application Programming Guide Volume 1 



Plotters 

graphics attributes 

GSMIX call: Mix mode is not supported. 

GSCOL call: The parameter to this call is the number of a pen holder on the 
plotter, rather than a color. The color that results depends on the color of the pen 
that the plotter operator puts into the holder. More information is given in 
"Colors" on page 434. 

Pattern sets: You cannot specify user pattern sets for plotters. 

GSBMIX call: Background mix is only supported when the foreground mix mode 
is overpaint. 

4224 IPDS printers 

GSMIX call: Only overpaint is supported. 

Pattern sets: Only the 16 GDDM-supplied system shading patterns are available. 
Any other specified pattern results in pattern 16 (solid). 

Chapter 5. Graphics attributes 51 



Chapter 6. Displaying text 

GDDM provides three different sets of functions for displaying characters and 
other symbols: graphics text, procedural alphanumerics, and mapped 
alphanumerics. This chapter briefly describes each one, to help you decide which 
to use for a particular purpose, and tells you where to find more information. 

Graphics text 

This is the simplest set of functions. The caption on the house in Figure 1 on 
page 8 is in graphics text. It was created simply by executing a GSCHAR call for 
each line. 

The primary purpose of graphics text is to annotate graphics displays. It is also 
used where maximum control over the appearance of the text is required - for 
instance, when preparing presentation material, such as overhead projection foils 
and slides. 

The location of the text is specified in world coordinates, and it can be positioned 
to pel accuracy. The application program can specify its size, angle, and direction. 
Characters can be proportionally spaced. Large and complex symbols can be 
displayed, as well as characters. 

On 3270-PC/G and /GX work stations, and on 5080 Graphics Systems, graphics text 
functions can be used for input, that is, for reading data from the terminal, but 
they are suitable for obtaining only small amounts of data. The input functions, 
like the output, are primarily intended for use in a graphics context - for instance, 
to allow the terminal user to enter parameters concerning a picture currently on 
display. On other types of terminal, graphics text is output only. 

Graphics text is supported on all devices except alphanumerics-only terminals and 
printers. 

For more information about writing graphics text, see "Chapter 7. Basic graphics 
text" on page 55. For input, see "Chapter 14. Interactive graphics" on page 177. 

Procedural alphanumerics 

The GDDM alphanumeric calls display one symbol per hardware cell, and exploit 
the 3270 family's alphanumeric field functions. Comprehensive support is provided 
for both output and input on 3270 devices. Alphanumeric functions are not 
supported on some devices, such as plotters or the 4250 printer. 

The procedural functions are so named because the alphanumeric fields are defined 
procedurally - that is, during execution of the program. There are calls first to 
define the fields' size, position, and other characteristics, then to put data into 

Chapter 6. Displaying text 53 



applies to all devices 

them. After an ASREAD, alphanumeric data entered by the terminal operator can 
be read from the fields. 

Alphanumeric fields do not generally mix well with graphics. Their positions are 
defined in terms of rows and columns rather than by the window coordinates used 
for graphics. They can be positioned only to cell accuracy, and their appearance 
cannot be controlled to the same extent as graphics text. 

Alphanumerics and graphics can be used together, but to be successful, they 
usually need to occupy separate areas of the display. 

The procedural alphanumeric calls are described in "Chapter 8. Basic 
alphanumerics" on page 75 and "Chapter 16. Advanced procedural alphanumerics" 
on page 235. 

Mapped alphanumerics 

Mapped alphanumerics, like procedural, exploit hardware cells and fields in the 
terminal. They are supported on a similar range of devices. Mapped 
alphanumerics differ from procedural in that the layout of a display is defined 
separately from the program before execution. 

The definition is done interactively, using the GDDM Interactive Map Definition 
product (GDDM.IMD). This generates a record of each layout, called a map, to be 
stored on disk and used by GDDM when the application program is executed. 

Compared with procedural alphanumerics, mapped alphanumerics are generally 
somewhat slower to implement as they require the initial map-definition step. But 
for displaying more than a small number of fields, particularly if their layout is 
crucial, mapping has considerable advantages: 

• You can define the positions and sizes of all the fields in a display by 
positioning the cursor on the screen. This is generally much easier than 
specifying row and column numbers, and it is the major advantage of mapping. 

• Execution time performance is likely to be better with mapping than with 
procedural alphanumerics. 

• You can change the layout of mapped fields more easily than procedural ones. 
In many cases, you do not need to recompile the program. 

Graphics can be added to mapped alphanumerics in a special graphics area, the size 
and position of which is specified during map definition. 

After sending the mapped output to the terminal, either using ASREAD or the 
special MSREAD call, an application program can read any alphanumeric input 
data entered by the operator. 

More information is given in "Chapter 17. Mapped alphanumerics" on page 251 
and "Chapter 18. Variations on a map" on page 273. 

54 GDDM Application Programming Guide Volume 1 



Chapter 7. Basic graphics text 

This chapter describes the output of graphics text. Input on 3270-PCjG and JGX 
work stations, and on 5080 Graphics Systems, is described in "String input" on 
page 184. 

To add graphics text to a display, there are two possible calls. One is GSCHAR: 

CALL GSCHAR(30.0,90.0,11,'TOTAL SALES'); 
/* Put 11 characters of graphic */ 
/* text in position (30,90) */ 

As with all graphics calls, the position is given in world coordinates rather than 
the rows and columns scheme used for alphanumerics. The text itself may be a 
character constant (as here) or a character variable. 

The second call, GSCHAP, is similar, but the string is located at the current 
position, instead of a specified position: 

CALL GSCHAP(11,'TOTAL SALES'); /* Send 11 characters of graphics*/ 
/* text to the current position. */ 

GSCHAR and GSCHAP leave the current position set to the end of the created text 
string. GSCHAP is most frequently used when concatenating text, for example: 

DCL PPP PIC'$$$$$9'; /* PL/I picture variable to edit data.*/ 
DCL PROFIT FIXED BIN(31); /* Variable holds the year's profit. */ 
PPP=PROFIT; /* Convert from numeric to character form */ 

CALL GSCHAR(30.0,45.0,25,'THE PROFIT THIS YEAR WAS '); 

CALL GSCHAP(6,PPP); 
CALL GSCHAP(13,' (BEFORE TAX) '); 

/* Concatenate actual profit.*/ 
/* Concatenate further text. */ 

If the profit was, say, $45300, the output from these calls would be: 

THE PROFIT THIS YEAR WAS $45300 (BEFORE TAX) 

Breaking lines of graphics text 

To request a line break, you must include the special character code X'15' in your 
text string. Because PLjI does not support hexadecimal constants, this is the code 
required: 

Chapter 7. Basic graphics text 55 



see end of chapter for device variations 

DCL CHARl CHAR(l) 1 
UNSPEC(CHAR1)='OOOlOlOl'B1 
/******************************/ 
/* Put out 2-line text string */ 
/******************************/ 

/* Declare temporary variable.*/ 
/* Assign X'lS' into variable.*/ 

CALL GSCHAR(20.0,20.0,22,'FIRST LINE' I ICHARll I 'SECOND LINE')1 

The output will appear as: 

FIRST LINE 
SECOND LINE 

The three modes of graphics text 

When creating graphics text, you can specify many attributes that will affect its 
appearance. The most important of these is the mode of the text, which can have 
the value 1, 2, or 3. You can specify the mode with the GSCM call: 

CALL GSCM(3)1 /* Set character mode to 3 - vector text.*/ 

The mode will apply to all subsequent GSCHAP and GSCHAR calls until the 
character mode is changed again. If it is not specified, the default is mode· I. If the 
program uses segments, opening a new segment resets the mode to the default. 

The character mode determines which type of symbol set is used. A symbol set is 
a collection of characters and other symbols; usually they are all a particular style, 
or font, such as Times Roman or Gothic. 

For the main description of symbol sets, see "Chapter 15. Symbol sets" on 
page 219. Briefly, there are two sorts: 

Image symbols These are defined in terms of pixels. They can be either built 
into the terminal, in which case they are called hardware 
symbols, or loaded into it from the host computer. 

Vector symbols These are defined in terms of straight and curved lines. They 
are loaded into the terminal from the host, except in the cases 
described in "Differences on the IBM 3270-PC/G and /GX work 
stations" on page 70. 

GDDM supplies a number of image and vector symbol sets. In addition, users can 
create their own. 

Mode-l and Mode-2 are highly device-dependent. This chapter describes their use 
primarily on the ordinary terminals in the 3270 family, such as the IBM 3279. 
Differences on other types of device are described at the end of the chapter. 

The relative advantages and disadvantages of the three modes on all types of 
terminal are discussed later, in "Advantages and disadvantages of each character 
mode" on page 73. 

56 GDDM Application Programming Guide Volume 1 



lif f::;: 1 
l' :~~~~ :i 
i· ~ .... : ... : .... : ... :." . : ... : .... : ...... i ...... : ... : .... : ... : .... : ... : .... : ...... i 

I· ~ : : : : . J ...... ·i 

: :. :.: 1, 
DISPLAY OF MODE-1 SYMBOLS 

(POSITIONED IN HARDWARE CELLS) 

basic graphics text 

, " .. i... ! . . ~ . . . . . 

:.1:. : 1 ~ ~ :.1.' 
. . ..... • . : . . . . . . .. . I··· .. ···································l····· ········ ........................... , : . . .. . . •. .. . . . . . .. : 
i' • . . . . . i 

II. ··j··· ,..1 
DISPLAY OF MODE-2 SYMBOLS 

(POSITIONED TO PEL ACCURACY) 

Figure 22. Mode-! and mode-2 graphics text 

Mode-l graphics text 

Mode-l is basically the same as GDDM alphanumerics output (see "Chapter 16. 
Advanced procedural alphanumerics" on page 235). The symbols occupy one 
hardware cell each. By default, the device's own hardware symbol set will be used, 
but the application program can load its own image symbol set (see "Symbol sets 
for graphics text" on page 222). Only image symbols that match the hardware cell 
size may be used. 

A mode-l symbol occupies its cell completely. Any graphics in the cell is 
obliterated. This can aid the readability of the text. 

A general name for mode-I , applicable to all types of terminal, is string-positioning 
mode, indicating that the application program can control the position of the start 
of the string only. 

Mode-2 graph ics t ext 

Mode-2 text is similar to mode-l in many respects. Like mode-I, it is composed of 
image symbols. GDDM will load a default image symbol set, or the application may 
load one explicitly (see "Symbol sets for graph ics text" on page 222). The symbols 
may be of any size, and they are positioned to pixel accuracy. 

Figure 22 shows how a mode-l character occupies a whole hardware cell, but a 
mode-2 character may occupy several cells. If a symbol set does match the 
hardware cell size, it may be used for either mode-lor mode-2. 

Chapter 7. Basic graphics text 57 



see end of chapter for device variations 

The pixels that make up a mode-2 text string are merged with those representing 
the requested graphics. They do not take precedence over the graphics. They are 
on an equal footing, and are subject to the same color-mixing rules (see "Mixing 
foreground colors, using call GSMIX" on page 42 and "Mixing background colors, 
using call GSBMIX" on page 45). 

The general name for mode-2 is character-positioning mode, indicating that the 
application program dictates the position of each character (or symbol) within the 
string. 

Mode-3 graphics text 

Mode-3 text is composed of vector symbols. GDDM will load a default vector 
symbol set, or the application may load one explicitly (see "Symbol sets for 
graphics text" on page 222). 

Because each symbol is created as a sequence of lines and arcs, GDDM can 
manipulate it into any required size, aspect ratio, angle, or shear (italicization). 
Each symbol is positioned in the display to the maximum accuracy allowed by the 
hardware (pixel accuracy on ordinary 3270 terminals). 

The lines and arcs that make up a mode-3 text string are merged with those 
representing the requested graphics. Like mode-2 text, they do not take precedence 
over the graphics, and they are subject to the same color-mixing rules as graphics 
primitives (see "Mixing foreground colors, using call GSMIX" on page 42 and 
"Mixing background colors, using call GSBMIX" on page 45). 

The general name for mode-3 is stroke-positioning mode, because the application 
program can control the drawing of every stroke of every symbol. 

Affecting the appearance of graphics text, using attributes 

There are several attributes that affect the appearance of graphics text. How much 
effect a particular attribute has on the character string depends on the mode of the 
text. The general situation is that all the attributes apply fully to mode-3 
(stroke-positioned) text. Some of them apply to mode-2 (character-positioned) text 
but hardly any affect mode-l (string-positioned) text. 

Each of the attributes will be described, together with its effect on each of the 
three modes. 

Setting the character box attribute, using call GSCB 

This affects the size and spacing of the characters within a text string. The call 
has two parameters: the width of the character box (expressed in x world 
coordinates) and the height of the character box (expressed in y world coordinates). 
This is a typical call: 

CALL GSCB(2.5,2.0); /* Set character box of size x=2.5, y=2.0 */ 

This would have the following effect on the three modes of text: 

Mode-l Hardware characters are placed in successive cells. The character-box 
attribute is therefore completely ignored. 

58 GDDM Application Programming Guide Volume 1 



Mode-2 

Mode-3 

basic graphics text 

Image symbols are used, and these are of fixed size - they cannot be 
expanded or contracted to fit the character box. The character-box 
setting therefore affects their spacing. Successive characters will be 
spaced 2.5 x units apart and the lines 2 y units apart. If you use a 
symbol set that is larger than this, and do not adjust the character 
box, then your symbols will overlap. If you use a symbol set that is 
smaller, there will be extra space around each symbol. 

Each character would be scaled to fill the character box of 2.5 by 2 in 
world coordinates, separate scale factors being used for the width and 
depth to fill the box in both directions. The space allocated to each 
character would be 2.5 x units wide (unless the symbol set is 
proportionally spaced - see "Using proportionally spaced characters" 
on page 60). Should a new-line character occur, the second line would 
be placed 2 y units below the first. 

The default character box is the hardware character cell. 

Figure 23 shows the effect of a GSCB call on text of the three different modes 
displayed on a color graphics display. If you want to set the character box to four 
times its normal size, you must first query the attribute's default value in window 
coordinates: 

CALL GSQCB(WIDTH,HEIGHT); / * Query character box. */ 
/ * (When this query is made */ 
/* before any GSCB call, */ 
/ * default value will be returned) */ 

CALL GSCB(WIDTH*4 . 0,HEIGHT*4.0); 
/* Set character box to */ 
/* 4 . 0 times default size . */ 

This pair of statements was used in the GDDM program that produced Figure 23. 

Figure 23. Effect of character-box attribute on the three text modes 

Chapter 7. Basic graphics text 59 



see end of chapter for device variations 

Using proportionally spaced characters: The maximum width of a mode-3 
symbol is the width of the character box. But symbols can be assigned individual 
widths less than this when the symbol set is created. 

Symbols that do have individual widths are said to be proportionally spaced. 
GDDM supplies a number of proportionally spaced vector symbol sets, (see the 
GDDM Base Programming Reference, Volume 2 for details), and you can create 
your own using the Vector Symbol Editor. In the latter case, you assign a width to 
each character, and the editor records, as part of the character's definition, the 
ratio between its assigned width and the maximum. Altering the width of a 
character does not alter the size of the character box. 

If a symbol set is not proportionally spaced, a narrow character like an "i" is 
allocated just as much space as a wide one like a "W". The result is empty space 
around narrow characters. The advantage of proportionally spaced characters is 
that GDDM displays them at a spacing that is in proportion to their individual 
widths. This gives a more pleasing appearance and more compact character 
strings. The difference is illustrated in Figure 24. 

GraphICS T ext 
ITlelxl t l 

The above text uses symbol-set 

ADMUVCRP, which IS NOT 

proportional ly-spaced. 

Graphics Text 
IGlrlalplhlilclsl ITlelxltl 

The above text uses symbol-set 

ADMUWCRP which IS 

proportionally-spaced. 

Figure 24. Effects of proportional spacing 

The spacing works as follows. After GSCHAR or GSCHAP has drawn a 
nonproportionally spaced character, the current position is moved along by an 
amount equal to the width of the character box. After drawing a proportionally 
spaced character, the movement is a fraction of the character box width. The 
fraction is equal to the ratio between the character's assigned width and the 
maximum, as recorded in the definition of the character. 

The amount of space occupied by a proportionally spaced character string can be 
determined by the GSQTB call (see "The text box" on page 65). 

60 GDDM Application Programming Guide Volume 1 



basic graphics text 

For mode-2 and mode-3 characters, you can also control the amount of space 
between character boxes, using the character box spacing attribute. See "Setting 
the character-box spacing attribute, using call GSCBS" on page 65. 

Setting the character angle attribute, using call GSCA 

This specifies the angle of an imaginary base line along which the characters will 
be written. The angle is specified as a ratio between the required x and y 
increments, dx and dy. This is a typical call: 

CALL GSCA(2.0,1.O); /* Set character angle of dx=2.0, dy=l.O */ 

The angle will be that obtained by moving 2 x units (measured in world 
coordinates) in the x direction and 1 y unit (again measured in world coordinates) 
in the y direction. 

When the graphics window has been chosen so that 1 x unit is physically equal to 1 
y unit (see discussion in "The graphics window" on page 101), the angle of the base 
line will be given by arctan(dy/dx). Or, to get an angle A, you should set the 
parameter dx = cos (A) and dy = sin (A). For some angles one or both of the 
parameters will be negative. 

Setting a character angle has a different effect on each of the three modes: 

Mode-l 

Mode-2 

Mode-3 

The attribute is ignored. 

The character boxes are placed side by side along the base-line, but the 
characters themselves are not rotated. As with character box, the 
attribute affects the positioning of mode-2 text but not its appearance. 
The lower left-hand corner of each mode·2 character will be placed at 
the lower left-hand corner of each (tilted) character box. 

Character boxes of the specified (or defaulted size) will be placed side 
by side along the base-line. The vector symbols will fill these (tilted) 
character boxes. In other words, each character will be rotated so that 
its base lies on the baseline. 

Chapter 7. Basic graphics text 61 



see end of chapter for devi ce variations 

Figure 25. Effect of character-angle attribute on the three text modes 

Figure 25 shows the effect of the above GSCA call on text of the three different 
modes. 

Changing the character direction attribute, using call GSCD 

This attribute provides support for languages that are not written in the European 
left-to-right fashion. This is a typical call: 

CALL GSCD(2 ) i / * Set character direction to downward. 

After this call, a GSCHAR of the string ABC would appear as: 

A 
B 
C 

This is the standard direction for Chinese text. It might also be used to annotate 
the y axis of a business chart. 

There are four possible values for the single parameter: 

1 Normal direction (left to right) 
2 Downward 
3 Right to left 
4 Upward. 

A new line is placed below the previous one for directions 1 and 3, and to the left 
for directions 2 and 4. 

Of course, this attribute does not act independently. It interacts with other 
attributes such as character box and angle. This is the effect of setting a 
downward direction for the three different modes: 

62 GDDM Application Programming Guide Volume 1 

*/ 



basic graphics text 

Mode-l The attribute is supported by using successive character positions 
running in the appropriate direction. This means that successive cells 
running in the appropriate direction are used. Note that the character 
angle is always ignored for mode-I. A GSCD downward request has 
the same effect whether the character angle is set to 0, 90, or 180 
degrees, or some sloping angle. 

Mode-2 The character boxes are placed as for mode-3. The image symbols are 
positioned at the bottom left of the character boxes, as always. 

Mode-3 The first character box is placed on the (possibly tilted) base line. The 
next character box is placed underneath it, with the top of the 
character box on the base line. Further character boxes are placed 
similarly. 

Figure 26. Effect of character-direction attribute on the three text modes 

Figure 26 shows the effect of the above GSCD call on text of the three different 
modes displayed on a color graphics display. 

Chapter 7. Basic graphics text 63 



see end of chapter for device variations 

Figure 27. Effect of character-shear attribute on image and vector text 

Shearing characters attribute, using call GSCH 

This attribute gives an italicizing effect on mode-3 symbols by shearing the top of 
each character box to the right or the left. The amount of shear is given in the 
same way as the character angle was specified - by stating a dx and a dy. If dx 
and dy are positive, the characters will slope forward. If dx is negative, they will 
slope backward. This is a typical call: 

CALL GSCH(1.O,3.0); /*Shear the characters right, dx=l.O, dy=3 . 0* / 

As with GSCA, the parameters express a ratio. They are in world coordinates (not 
absolute units) . 

This will be the effect of the call on the three different modes: 

Mode-l 

Mode-2 

Mode-3 

The attribute is ignored. 

The attribute has no effect on the appearance of individual characters 
nor on the positioning of characters in a single line of text. If image 
symbols are used, the characters will be placed in the bottom left of 
the character boxes, as usual. 

The attribute does have an effect on positioning when there is more 
than one line of text. The boxes of the second and subsequent rows 
will be placed so that their tops coincide with the bottoms of those in 
the previous row. A block of several equal-length lines of text will 
itself then form a parallelogram. 

The first line of character boxes is placed along the base-line specified 
by the character angle (if any). The tops of each box are now sheared 
(parallel to the base line) to form parallelograms. The mode-3 symbols 
are now transformed to fit accurately into these character boxes. If 
there are two or more lines of text, then, as explained for mode-2 text, 

64 GDDM Application Programming Guide Volume 1 



basic graphics text 

each line of character boxes will be offset from the previous one 
because of the alignment of the parallelogram character boxes. 

Figure 27 on page 64 shows the effect of character shear, both on the positioning 
of the character boxes and on the drawing of each character. 

Setting the character-box spacing attribute, using call GSCBS 

The text box 

This attribute gives you control over the spacing between character boxes in a text 
string. Once it has been set, it applies to all mode-2 and mode-3 text. For mode-! 
text, it is ignored. This is a typical call: 

CALL GSCBS(O_9,3_0)i /* ,Set character box spacing. * / 

The parameters are the width multiplier and the height multiplier. Both 
parameters are multipliers of the dimensions of the character box. A positive 
multiplier will put extra space between character boxes. A negative multiplier can 
be used to overlap character boxes. A value of zero in a multiplier gives standard 
spacing (the default). For any individual symbol set, whether proportionally or 
non-proportionally spaced, the dimensions of the character box are constant. 

The width multiplier is specified as a fraction of the width of the current character 
box, and affects the horizontal space between character boxes. 

The height multiplier is specified as a fraction of the height of the current 
character box, and affects the vertical space between character boxes. 

The effect of the multipliers depends on the direction of the text. See the GDDM 
Base Programming Reference manual for details. 

Characters in proportionally spaced vector symbol sets will still have their 
individual widths, but will be separated by the specified or defaulted character-box 
space. 

The set of character boxes in which the text string specified in a GSCHAR or 
GSCHAP call is drawn are conceptually enclosed within a rectangle or 
parallelogram called a text box. 

If you allow the character-box space to default, the set of character boxes will be 
contiguous. 

The dimensions of the text box for left-to-right text will therefore be: 

For a string containing no new-line characters, the height of the text box will 
be the same as the character-box height, and the width will be equal to an exact 
number of character-box widths. 

If there are new-line characters, the box will be equal in depth to the 
character-box height multiplied by the number of lines, and as wide as the 
longest line. 

If you use a non-default character-box space, or proportionally spaced vector 
symbols, the width of the text box will not be a simple multiple of the character box 
width. For example, with non-default character--box spacing, the dimensions of the 
text box have to take account of the appropriate number of character box spaces. 

Chapter 7. Basic graphics text 65 



see end of chapter for device variations 

You can use the GSQTB call to find out the positions of the corners of the box, and 
the current position after the characters have been drawn. You will be aware of a 
particular need for it if you use character-box spacing or proportionally spaced 
vector symbols. 

Here is an example: 

DCL XCOORDS(5) 
YCOORDS(5) 
/* Length 

CALL GSQTB(3, 

FLOAT DEC(6), 
FLOAT DEC(6); 

String Count 
'ABC', 5, 

Returned coordinates */ 
XCOORDS,YCOORDS); 

The first parameter is the length of the string, and the second, its contents. The 
last two parameters are arrays in which GDDM returns information about the text 
box. The third parameter specifies the number of elements in these arrays. 

The arrays can have up to five elements each. In the first four, GDDM returns the 
positions of the corners of the text box as offsets from the starting point of the 
string. Their order is: top left, bottom left, top right, bottom right. Precise 
definitions of these terms are given in GDDM Base Programming Reference 
manual. The fifth element of each array gives the offsets of the current position 
after the character string has been generated. This pair of offsets identifies where 
the next character would be drawn. 

You should note that all the offsets are always returned as if the starting point of 
the string is at 0,0. This means that you have to add the actual coordinates of the 
starting point of the string to the returned offsets to get the actual positions of the 
corners of the text box. For example, the following section of sample code adds the 
first four offsets to the actual position of the starting point, to draw a line around 
the string: 

DCL XC(5) FLOAT DEC(6), /* Declare arrays for */ 
YC(5) FLOAT DEC(6); /* GSQTB call */ 

DCL NEWLINE CHAR(l); /* Declare new line character */ 
UNSPEC(NEWLINE) = 'OOO10101'B; /* and initialize it. */ 

CALL GSCM(3); /* Specify mode-3 (vector text) */ 

/* Now write the string of characters and query their text box */ 
CALL GSCHAR (X,Y,19,'CURRENT'1 I NEWLINE I I 'EXPENDITURE'); 
CALL GSQTB (19, 'CURRENT' I I NEWLINE I I 'EXPENDITURE',5,XC,YC); 

CALL GSMOVE(X+XC(l),Y+YC(l»; /* 
CALL GSLINE(X+XC(3),Y+YC(3»; /* 
CALL GSLINE(X+XC(4),Y+YC(4»; /* 
CALL GSLINE(X+XC(2),Y+YC(2»; /* 
CALL GSLINE(X+XC(l),Y+YC(l»; /* 

Move to bottom left of text box*/ 
Draw around */ 

the .•• */ 
text box */ 

*/ 

CALL GSMOVE(X+XC(S)+10,Y+YC(5»;/* Move to 10 x units along from*/ 
/* what was current position */ 
/* after text was written. */ 

The primary application of the GSQTB calls is with proportionally spaced mode-3 
vector symbols. It can be used with mode-! and mode-2 text. 

In the case of mode-2 text, it is particularly important to remember that the call 
returns the coordinates of a box that encloses the character boxes within the 
string, not the symbols. Image symbols do not necessarily fill the character boxes, 
and can also extend outside them, as can be seen from Figure 27 on page 64. And 

66 GDDM Application Programming Guide Volume 1 



basic graphics text 

if the boxes are angled, their edges will be staircased. In all cases, the text box 
runs through the extremities of the character boxes. 

Setting the text alignment attribute, using call GSTA 

If you allow the text alignment attribute to default, text is aligned such that a 
point on the text box corresponds with either the position specified in the x and y 
coordinates in the GSCHAR parameters, or the current position before a GSCHAP 
call was issued. The character direction determines which point on the text box is 
used as the alignment point. For example, if you have a normal graphics window, 
the GDDM default character angle, direction, and shear, and the width and height 
of the character box are both positive values, the alignment point will be the 
bottom-left corner of the leftmost character box in the first row of text. Default 
alignment points for other character directions are given below. 

You can use the text alignment attribute call to alter the alignment point of a text 
box. This is a typical call: 

GSTA(3,2); /* Align center top of text box with current position*/ 

The call is valid for all three modes of graphics text. The first parameter 
horizontally aligns the text box. It has the following possible values: 

-1 Alignment according to character direction: 

Direction 
Left to right 
Downward 
Right to left 
Upward 

Alignment 
Left edge of first character 
Left edge of first character 
Right edge of first character 
Left edge of first character 

o The default (initially the same as -1). 

1 Alignment according to current character direction: 

Direction 
Left to right 
Downward 
Right to left 
Upward 

Alignment 
Left edge of text box 
Left edge of text box 
Right edge of text box 
Left edge of text box 

2 Left edge of text box 

3 Center (arithmetic mean of left and right edges of text box) 

4 Right edge of text box 

The second parameter vertically aligns the text box. It has the following possible 
values: 

-1 Alignment according to current character direction: 

Direction 
Left to right 
Downward 
Right to left 
Upward 

Alignment 
Bottom edge of first character 
Top edge of first character 
Bottom edge of first character 
Bottom edge of first character 

Chapter 7. Basic graphics text 67 



see end of chapter for device variations 

o The default (initially the same as -1) 

1 Alignment according to current character direction: 

Direction 
Left to right 
Downward 
Right to left 
Upward 

Alignment 
Bottom edge of text box 
Top edge of text box 
Bottom edge of text box 
Bottom edge of text box 

2 Top edge of text box 

3 Cap of character furthest towards top of text box (see note). 

4 Center (arithmetic mean of top and bottom edges of text box) 

5 Base of character furthest towards bottom of text box (see note). 

6 Bottom edge of text box 

Note: Vertical parameter values of 3 and 5 apply only to symbol sets where the 
positions of bases and caps are defined. GDDM-supplied symbol sets do not define 
these positions; parameter value 3 will therefore have the same effect as value 2, 
and value 5 will have the same effect as value 6. 

If you have a normal graphics window, the GDDM default character angle, 
direction, and shear, and the width and height of the character box are both 
positive values, the meanings of terms like "top-left" and "bottom-right" are 
obvious. The meanings are not so obvious when text is rotated or sheared. For 
example, the term "top-left" actually refers to the corner of the text box that is 
top-left when no rotation or shearing is applied. There is an illustration of this in 
the coverage of GSQTB in the GDDM Base Programming Reference manual. 

Also, if you change the direction of the graphics window so that, for example, low x 
values lie on the right-hand side of the display, the term "left" will apply to the side 
of the display corresponding to low x values. The same principle applies to 
changing the direction of the graphics window in the y direction. 

Example using graphics text attributes 

There are eight different attributes that affect the appearance of graphics text: 
character mode, character box, character angle, character direction, character 
shear, character box space, text alignment, and character symbol-set. Whenever 
some graphics text is written (with a GSCHAR or GSCHAP call), the current 
values of these eight attributes will apply, whether they have been explicitly set or 
defaulted. Here is an example using the first five attributes. The symbol set 
attribute is discussed in "Chapter 15. Symbol sets" on page 219. 

68 GDDM Application Programming Guide Volume 1 



basic graphics text 

CALL GSSEG(O); /* Open unnamed segment. */ 

CALL GSCHAR(4.0,8.0,3,'ABC');/* Mode-I, color green, default */ 
/* direction. */ 

CALL GSCA(l.O,l.O); /* Set character angle to dx=l.O, */ 
/* dy=l.O (45 degrees above */ 
/* horizontal, if */ 
/* 1 x unit = 1 Y unit) */ 

CALL GSCB(8.0,6.0); /* Set character box to */ 
/* 8 x units by 6 Y units. */ 

CALL GSCHAR(24.0,30,O,3,'GHI'); 
/* Mode-l, color green, default */ 
/* direction (still). */ 

CALL GSCM(3); /* Set mode to 3 - vector text. */ 
CALL GSCHAR(60.0,45.0,5,'PQRST'); 

/* Green vector characters. */ 
/* The string and each character */ 
/* tilted at 45 degrees, each */ 
/* character of size 8 by 6 */ 
/* in world coordinates. */ 

CALL GSCH(-1.O,5.0); /* Request backward shear. */ 
CALL GSCHAR(lO.O,15.0,2,'YZ'); 

/* Same as previous string except */ 
/* that the top of each character */ 
/* is sheared to the left. */ 

CALL GSCM(2); /* Set mode-2 - image characters. */ 
CALL GSCOL(6); /* Change color to yellow. */ 
CALL GSCHAR(50.0,50.0,4,'JKLM'); 

/* Yellow image characters. */ 
/* The string slopes at an */ 
/* angle of 45 degrees but the */ 
/* individual characters are */ 
/* not rotated or sheared. */ 

CALL GSCD(2); /* Set downward character direction*/ 
CALL GSCM(3); /* Revert to vector characters. */ 
CALL GSCHAR(20.0,90.0,2,'OP'); 

/* Yellow sheared vector characters*/ 
/* - each character is rotated 45 */ 
/* degrees and placed beneath the */ 
/* previous one. The text string */ 
/* is therefore at an angle of */ 
/* minus 45 degrees to horizontal. */ 

CALL ASREAD(TYPE,MOD,COUNT); /* Send out all the graphics text. */ 

It is the attribute values current at the time of the GSCHAR call that affect the 
appearance of the characters. The attribute values at the time of the ASREAD call 
have no particular significance. An exception to this is if GSCHAR uses the 
default value of any attributes (such as character mode). If such a default is 
subsequently changed (from mode-3 to mode-2, for example) the appearance at 
ASREAD will be affected. 

Chapter 7. Basic graphics text 69 



device variations 

Device variations 

The preceding sections of this chapter refer primarily to members of the 3270 family 
that use programmed symbols for graphics, such as the 3279. However, most 
function is device-independent, so most of the information applies to all graphics 
devices. The following sections describe functional variations on other types of 
device. 

Differences on the IBM 3179-G Color Display Station 

Mode-l text Graphics and text are presented on an equal footing: 
where they coincide, both are displayed. Mode-! does not 
have the advantage that the text is always the sole 
occupant of the text box. 

Differences on the IBM 3270-PC/G and /GX work stations 

Mode-l text 

Mode-2 and -3 text 

Graphics and text are presented on an equal footing: 
where they coincide, both are displayed. Mode-! does not 
have the advantage that the text is always the sole 
occupant of the text box. 

The symbols are not located in hardware-defined cells. 
They can be of any size. The start of the string is 
positioned to pixel accuracy. 

The work station has a hardware image and vector symbol 
set. These are used as the defaults for modes-2 and -3 
unless you specify that a GDDM symbol set is to be loaded 
and used instead (see "Default symbol sets for graphics 
text" on page 389). 

Default character box For all modes of text, the default character box is the 
hardware graphics cell size, which is different from the 
hardware alphanumerics cell size. 

Alphanumerics cells have a predefined size and predefined 
locations, in rows and columns, on the screen. Graphics 
cells have a predefined size, but not predefined locations. 

Differences on the 5080 Graphics System 

Mode-l text As for 3270-PC/G and /GX, above. 

Mode-2 text Other data in the cell is obscured by the text. 

Default character box For all modes of text, the default character box is the 
character size of the 5080 base-character set. 

70 GDDM Application Programming Guide Volume 1 



basic graphics text 

Differences on DDDO-family multistations 

Mode-l and -2 text 

Mode-3 text 

The same as for 3270-PC/G and /GX 

The same as for 3270-PC/G and /GX, if Japanese 3270-PC/G 
software from Version 6 and onward is used. 

Default character box The same as for 3270/PC/G and /GX. 

The 5550 family has no mode-3 hardware image symbol set if Japanese 3270-PC/G 
software before Version 6 is used. GDDM's default mode-3 symbol set is used if not 
loaded explicitly. For DBCS text, GDDM's DBCS symbol set is automatically 
loaded. 

Differences on composed-page printers 

This section describes how text on composed-page printers, such as the IBM 4250 
and the 3800 Models 3 and 8, differs from text on the ordinary members of the IBM 
3270 family, like the 3279: 

Mode-l text and graphics 

Effect of call GSCB 

Mode-l text 

Mode-2 text 

Default character box 

Differences on plotters 

Graphics and text are presented on an equal footing: 
where they coincide, both are displayed. Mode-I does not 
have the advantage that the text is always the sole 
occupant of the text box. 

The GSCB call has no effect. If image symbols are used, 
the character box is the same size as the symbols. If 
vector symbols are used, the character box is the default 
one, and the width and depth of the symbols are scaled 
separately to fill the box. 

The symbols come from either an image symbol set 
specified by you, in which case the effect of the character 
box is the same as on ordinary 3270 devices, or the default 
vector symbol set, in which case they are scaled to fill the 
box, as for mode-3. 

The default character box is such that letter heights 
approximating to 12 points (1/6 inch) are produced. The 
width is half the height. In terms of pixels, this means, for 
example, 100 pixels deep by 50 wide on a 4250, and 40 deep 
by 20 wide on a 3800. 

Some special considerations for plotters are described in "Symbol sets" on 
page 439. 

Mode-l text The start of the string is positioned to the maximum 
accuracy allowed by the hardware. 

Chapter 7. Basic graphics text 71 



device variations 

Mode-2 text The pixel spacing for image symbols is as described in 
"Cells, pixels, and plotter units" on page 426. 

If no image symbol set is loaded by the program, the 
default vector symbol set ADMDVSS is used. The 
characters are then scaled to fit the current character box 
as far as possible without distortion. 

Default character box This is the notional cell described in "Cells, pixels, and 
plotter units" on page 426. 

72 GDDM Application Programming Guide Volume 1 



basic graphics text 

Advantages and disadvantages of each character mode 

Each of the three character modes has its own advantages that will prove the best 
choice in particular situations. These are the main features of each mode: 

Mode-I: String positioning 

Advantages: This is the cheapest mode to use as very little processing is required 
by GDDM. Multicolored symbols are permitted, except on the IBM 5080 Graphics 
System. On devices in the IBM 3270 family (except the 3270-PC/G and /GX), the 
fact that mode-I text is the sole occupant of its cells aids its readability where text 
and graphics coincide. Other modes will merge the text with the graphics. 

Disadvantages: These are best considered individually for each type of supported 
device: 

• IBM 3270 devices (except the 3270-PC/G and /GX): The text can be positioned 
only to hardware cell accuracy. Its placement relative to the graphics will 
therefore vary from device to device. The size of each character in a symbol set 
has to match the cell size of the device. This prevents the use of large symbols 
and requires a separate version of the symbol set for each device of different 
cell-size. 

• Plotters, IBM 3270-PC/G and /GX, 5550: Although the text can be positioned to 
the maximum accuracy allowed by the hardware, the size, direction, and angle 
of the characters are fixed. 

• Composed-page printers: If vector symbols are used they are limited to one size 
- that of the default character box. The limitation can be overcome by using 
image symbols, which can be of any size. 

Mode-2: Character positioning 

Advantages: The limitations on character size and positioning mentioned for 
mode-I can be avoided. You can use image symbols. Multicolored symbols are 
again permitted, except on the IBM 5080 Graphics System. With image symbols, 
the dot representation of each character is always exactly the one that was defined 
when the symbol set was created. The characters do not therefore suffer from 
distortion, as vector characters may in some circumstances. 

Disadvantages: The characters cannot be rotated or otherwise manipulated. You 
can use image symbols to achieve a particular size of character, but the size is fixed 
when the symbol set is created; the characters may not be expanded or contracted 
by the application program. 

Mode-3: Stroke positioning 

Advantages: Because each character is originally created as a sequence of lines 
and curves, GDDM can manipulate the symbols when they are displayed. They 
may be shown at any size or aspect ratio (GSCB), rotated (GSCA), or sheared 
(GSCH). 

Chapter 7. Basic graphics text 73 



Disadvantages: The symbols are monochrome. On 3270 devices, rastering is 
subject to rounding errors. The end of each line in the symbol can be resolved only 
to the nearest pixel (screen position). This means that mode-3 characters displayed 
at a small size may be difficult to read. Mode-2 may therefore be preferable when 
small characters are required on these devices. 

On the 3270-PC/G and /GX family, and 5550 family, mode-3 text takes longer to 
draw than mode-! and -2. 

74 GDDM Application Programming Guide Volume 1 



Chapter 8. Basic alphanumerics 

This chapter introduces the facilities that GDDM provides for output and input of 
alphanumeric data. 

On the IBM 3270 family of devices, the display area (that is, the screen or printed 
page) is divided into cells. The cells are rectangular in shape, they are arranged in 
rows and columns, and each can display one character (or symbol, as the terms are 
synonymous). GDDM allows you to define contiguous blocks of cells to be 
alphanumeric fields. 

You can specify where on the display area the fields are to be located. 
Alphanumeric data may be transmitted to them, and a terminal operator may type 
input data into them. All the calls that process alphanumeric fields have the 
format CALL ASxxxx. 

The facilities provided by these calls are called procedural alphanumerics, to 
distinguish them from GDDM mapping. An introduction to mapping, and guidance 
on when to use it in preference to procedural alphanumerics, are given in "Chapter 
17. Mapped alphanumerics" on page 251. 

Logically, alphanumeric fields are stored, like graphics, in pages by GDDM. When 
an alphanumeric field is created, it is added to the current page. A page can 
therefore contain both graphics and alphanumeric fields. 

The way that they combine depends on the device. On the 3179·G, 3270·PC/G and 
/GX family, and 5550 family, you can control the precedence of alphanumerics over 
graphics. See "Device variations" on page 86. On a 3279, the alphanumerics take 
precedence; no graphics will appear in hardware cells that are part of an 
alphanumeric field. 

On some terminals (such as the dual-screen configuration of the 3270·PC/GX and 
the 5080 Graphics System), the graphics are displayed on one screen and the 
alphanumerics on another. See "IBM 5080 graphics system" on page 87 for details 
of alphanumerics on the 5080. 

Def"ming an alphanumeric field using call ASDFLD 

This is a typical call to define an alphanumeric field: 

/* Field-id 
CALL ASDFLD(3, 

Row 
14, 

Column 
5, 

The six parameters have these meanings: 

Depth 
1, 

Width 
21, 

Type 
2) ; 

*/ 

Chapter B. Basic alphanumerics 75 



does not apply to graphics·only devices such as plotters 

3 The field identifier. Any later call that refers to the new field will use this 
identifier (in other words, it is the name of the field). If a field with identifier 
3 already exists, the new field replaces the old one. 

14 The row in which the data of the alphanumeric field will start. The rows are 
numbered from the top. 

5 The column of the fIrst data position in the field. 

1 States that the field will have only 1 row. 

21 Gives the width. It will be 21 columns across. 

2 Specifies the type of the field - how it should be handled by the terminal. 
These are the possible settings: 

o Unprotected alphanumeric. "Unprotected" means that the operator 
may type data into the field. 

1 Alphanumeric output, numeric input. Also unprotected - but the field 
will accept numeric input only. If the terminal does not support this 
feature, this setting is equivalent to O. 

2 Protected alphanumeric. The keyboard will lock if the operator tries 
to type into the field. 

3-6 Various types of light-pen field. The field will be sensitive to the 
light-pen if the terminal has this feature. 

Note that whereas the position of GDDM graphics on a page is defined in terms of 
a device-independent user-chosen coordinate system (or the default coordinates of 
100 by 100), alphanumeric fields are positioned in row/column coordinates. 

Sending and Receiving alphanumeric data 

To use a field for output, you must assign data to it. A typical statement would be: 

CALL ASCPUT(3,21,'ENTER ACCOUNT NUMBER:'); 
/* Put data in field 3 */ 

This call requests GDDM to place 21 characters of data into the alphanumeric field 
with field identifier 3. 

When an unprotected field is sent to the screen (by issuing an ASREAD), the 
terminal operator may type data into it. This data will be transmitted to the 
program when the terminal operator presses ENTER (or causes any other 
interrupt). The program may then retrieve the data with a call such as: 

CALL ASCGET(4,S,ACCOUNT_NO); /* Retrieve data from field 4 */ 

This call requests GDDM to retrieve the data from field 4 and place the first 5 
characters (typically the complete field) into the program variable called 
ACCOUNT_NO. 

76 GDDM Application Programming Guide Volume 1 



basic alphanumerics 

Breaking lines of alphanumeric text 

Multiline fields can be created in two ways. You can define a field one line deep 
but long enough to extend beyond the edge of the page. GDDM will wrap the field 
around the screen and continue it on the next line, and on following lines if 
necessary. 

CALL ASDFLD(19,4,21,1,150,2)i /* Field continues on lines 5 & 6 */ 

Or you can define the field to be narrow enough to fit onto the page, but more than 
one line deep: 

CALL ASDFLD(20,4,21,2,7,2)i /* Field is 2 rows by 7 columns */ 

The data of such a multiline field is considered as one long string: 

CALL ASCPUT(20,14,'AccountProgram')i /* Put data in 2-row field */ 

Field 20 will have its top left-hand corner character in row 4, column 21, and will 
appear like this: 

Account 
Program 

Were this field an input field, its contents would be retrieved by a call such as: 

CALL ASCGET(20,14,INCHAR), 

where INCHAR is the name of a character variable 14 bytes long. 

Clearing an alphanumeric field using call ASFCLR 

To clear the data from a single alphanumeric field, you can issue this call: 

CALL ASCPUT(6,0,"); /* Assign null data to field 6 */ 

The previous content of field 6 will be replaced with null characters. 

When there are several fields to be cleared, you may issue one of these calls: 

CALL ASFCLR(O); 
CALL ASFCLR(l); 
CALL ASFCLR(2)i 

Deleting an alphanumeric field 

/* Clear all unprotected fields */ 
/* Clear all protected fields */ 
/* Clear all fields */ 

To delete a single alphanumeric field (as opposed to clearing its contents), you 
must redefine it with a row-position of zero. This is a typical call: 

/* Field-id 
CALL ASDFLD(3, 

Row 
0, 

Column 
0, 

After this call, field 3 will cease to exist. 

Depth 
0, 

Width 
0, 

Type 
0) i 

To delete all the alphanumeric fields in the page (and the graphics too), you must 
call FSPCLR (see "The page and page windoW;" on page 93). 

*/ 

Chapter 8. Basic alphanumerics 77 



does not apply to graphics·only devices such as plotters 

Positioning and querying the alphanumeric cursor 

You can set the position of the cursor with a call to ASFCUR. If the operator is 
expected to type some information, it will probably be helpful to position the cursor 
at the start of the ftrst input fteld: 

CALL ASFCUR(4,1,1); /* Position cursor at start of field 4 */ 

As you would expect, the ftrst parameter is the fteld identifter. The other two 
parameters specify the row and column position of the cursor within the field. 

Alternatively, if you specify a value of 0 for the ftrst parameter, the other two then 
refer to the row and column position of the cursor within the page. For example: 

CALL ASFCUR(0,20,1); /* Position cursor at start of row 20 */ 

You can query the cursor position, by using this call: 

CALL ASQCUR(CODE,F_IDENT,ROW,COLUMN); /* Query cursor position */ 

If you set the fIrst parameter (CODE) to 0, GDDM will set ROWand COLUMN to 
the page coordinates of the cursor, that is, its row and column numbers within the 
page. 

If you set CODE to 1, the cursor position will be returned in fteld coordinates. 
F _IDENT will be set to the alphanumeric fteld identifter and ROWand COLUMN 
will give the row and column position within the field. 

If fteld coordinates are requested but the cursor does not lie within a fteld, 
F_IDENT will be set to 0 and page coordinates will be returned. 

Where the above descriptions refer to the position of the cursor in the fteld, they 
mean the fteld on the screen, as opposed to your program's description of the fteld. 
In most cases, there is a one-for-one relationship between each character position 
of the fteld on the screen and each character position of the fteld in your program. 
An exception to this, and the use of ASFCUR and ASQCUR in that context, are 
described in "IBM 5550 multistation" on page 245. 

Attribute bytes on 3270 terminals 

The buffer in which a 3270-type terminal stores the data being displayed on the 
screen has one position for each screen cell. The data for each alphanumeric fteld 
is preceded in the buffer by a byte of information about the field's attributes. The 
screen position just before the actual data is therefore made inactive. 
Consequently, it is not good practice to deftne two alphanumeric ftelds that are 
horizontally adjacent. No error will result but the last byte of the fteld on the left 
will lose its data and appear blank. 

When the data position starts in the leftmost cell of a row, the attribute byte will 
occupy the last cell of the previous row, making that cell inactive. 

The representation in the buffer will include trailing attribute bytes to end each 
fteld. The default setting for this trailing attribute is auto-skip, meaning that the 
cursor will automatically jump to the next unprotected fteld when the current field 
is filled. It is permissible for the attribute byte of one field to share the same cell 
as the trailing attribute byte of the previous fteld. You need therefore allow only a 
I-column gap between your alphanumeric ftelds. 

78 GDDM Application Programming Guide Volume 1 



basic alphanumerics 

Alphanumeric attributes 

Field attributes 

There are two classes of GDDM alphanumeric attribute, field attributes that 
affect the whole of an alphanumeric field and character attributes that affect 
separately each character within a field. 

These attributes affect the way the terminal handles the fields, and also their 
appearance. There are a number of different attributes that you may set: 

• Type. This is the only attribute that has to be specified when the field is 
defined by an ASDFLD call (see "Defining an alphanumeric field using call 
ASDFLD" on page 75). It defines handling characteristics such as whether the 
field is to be protected, and whether it is a light-pen field. The type attributes 
can subsequently be altered by a call to ASFTYP. 

For example: 

CALL ASFTYP(21,2); /* Change field 21 to protected type */ 

These are the possible settings of the second parameter: 

-1 Leave type as it is 
o Unprotected alphanumeric 
1 Alphanumeric output, numeric input 
2 Protected alphanumeric 
3 Light-pen attention field 
4 Light-pen selection field 
5 Light-pen enter field 
6 General light-pen field. 

• Intensity. The intensity of a field may be set with this call: 

CALL ASFINT(39,2); /* Field 39 will become bright */ 

The second parameter may take these values: 

-1 Leave intensity as it is 
o Invisible 
1 Normal (the default) 
2 Bright. 

• Color. The color of a field is set with this call: 

CALL ASFCOL(77,1); /* Field 77 will become blue */ 

These are the possible settings: 

-1 Leave color as it is 
o Default 
1 Blue 
2 Red 
3 Pink 
4 Green 
5 Turquoise 
6 Yellow 
7 Neutral (white on displays, black on printers). 

Chapter 8. Basic alphanumerics 79 



does not apply to graphics-only devices such as plotters 

Codes 0 to 7 are used in other calls that refer to these colors. A suggested 
mnemonic for the codes for blue through neutral is: 

Boys Reading Politics Go To Yale Now 

If the field's symbol set is multicolored, the color must be set to 7 (neutral) (see 
"Multicolored symbols" on page 228 for more details). 

• Symbol set. The symbol set to be used may be specified by a call such as CALL 
ASFPSS(6,196). Field 6 would now be displayed using the symbols of symbol-set 
196 (see "Chapter 15. Symbol sets" on page 219 for more details). A symbol set 
is typically a font, that is, a character set in a particular style. 

• Highlight. This statement sets the highlighting of a field: 

CALL ASFHLT(3,4); /* Field 3 will be underscored */ 

The possible settings are: 

-1 Leave highlight as it is 
o Normal 
1 Blink 
2 Reverse-video (that is, neutral characters on a colored background) 
4 Underscore. 

• Field end attribute. Determines whether the next field should have the 
auto-skip attribute. This is a typical call: 

CALL ASFEND(B,O); /* Auto-skip after field B */ 

o is the default value. The alternative parameter value is 1, which specifies no 
auto-skip. 

• Output blank to null conversion. 

CALL ASFOUT(B,l) 

changes all the trailing blanks of field 8 to nulls on output. Trailing nulls 
allow the operator to use 3270 insert-mode on the field. 

A parameter setting of 0 would request no conversion (the default). 

This is an output function only, and does not affect field contents as returned 
by ASCGET. 

• Input null to blank conversion. 

CALL ASFIN(B,2) 

requests conversion of all nulls to blanks when field 8 is read from the screen. 
A parameter setting of 0 would request no conversion (the default). A setting 
of 1 would request conversion of all nulls except trailing ones. 

This takes place only when device input is received for this field. Otherwise, 
field contents remain as they are. 

• Translation tables. A call to ASFTRN assigns tables to a field so that GDDM 
can translate the character strings on input or output (or both). The 

80 GDDM Application Programming Guide Volume 1 



basic alphanumerics 

translation tables themselves are established by calling ASDTRN, as described 
in the GDDM Base Programming Reference manual. 

• Transparency. You can allow graphics on the screen to extend into the cells 
of alphanumeric characters using an ASFTRA call (see "Device variations" on 
page 86). 

• Mixed single- and double-byte characters. A call to ASFSEN allows a field 
to mix double-byte character codes with single byte by using shift control codes 
(SO and SI), as described in "Double-byte character set alphanumerics" on 
page 245. 

• Field outlining. An outline can be drawn around a field with an ASFBDY call 
(see "Field outlining on the IBM 5550 multistation" on page 249). 

The first three fields in Figure 28 illustrate the use of field attributes. 

Figure 28. Using alphanumeric field and character attributes 

Character attributes 

For some of the attributes, such as color, it may be desirable to have different 
values within an alphanumeric field. GDDM permits the setting of character 
attributes for color, symbol set, and highlighting. The last three fields in Figure 28 
show the effect of character attributes. 

There are three calls that set character attributes. They all use a parameter 
containing a string of attributes - one for every character position to be specified. 
For example: 

CALL ASCCOL(4 ,8, '2222 44 '); / * Set character color */ 
/ * attributes for field 4 */ 

The first four characters of field 4 would be set to color 2 (red). The next two 
would inherit the field color attribute: this is the meaning GDDM assigns to the 
blanks. The seventh and eighth characters would be set to color 4 (green). Should 

Chapter 8. Basic alphanumerics 81 



does not apply to graphics-only devices such as plotters 

the field be longer than 8 characters, the remaining positions will also inherit the 
field color attribute. 

Character attributes act on the field data rather than the field itself. They must 
therefore be set after the corresponding ASCPUT that assigns the data to the field. 
This rule does not apply to field attributes. They may be set at any time. 

The equivalent call for setting highlighting for each character position is: 

CALL ASCHLT(7,5,'444 I'); /* Set character highlight */ 
/* attributes for field 7 */ 

The possible attribute settings are similar to those for ASFHLT: 

.. tI 

1 
2 
4 

(Blank) states that the attribute should be inherited from the field highlight 
attribute. 
Blink 
Reverse-video 
Underscore. 

Note that a setting of 0 is not permitted when using character highlight attributes. 

The third of the character attribute statements (ASCSS) is described in "Chapter 
15. Symbol sets" on page 219. 

The terminal operator may set character attributes, if the device has the requisite 
keyboard. If the "red" button is pressed on the keyboard, all characters that are 
entered will have a character attribute of red until another color button is pressed. 

The input of character attributes has to be explicitly enabled by issuing a 

CALL ASMODE(2); 

statement in the program. Otherwise, any input character attributes will be 
ignored. 

The program can discover what character attributes were set by the terminal 
operator by issuing these three calls: 

CALL ASQCOL(S,6,INATR); /* Requests that GDDM place the first */ 
/* six color character attributes of */ 
/* field S into the variable INATR */ 

CALL ASQHLT(S,6,INATR); /* Similar request for the first six */ 
/* highlight character attributes. */ 

CALL ASQSS(S,6,INATR); /* Similar request for the first six */ 
/* symbol-set character attributes. */ 

(See ]Chapter 15. Symbol sets~ on page 219). 

If no color button is pressed, newly entered characters will appear in the color of 
the field color attribute. In other words, the original output character attributes 
will have no effect on the input to a field. 

82 GDDM Application Programming Guide Volume 1 



basic alphanumerics 

Sample alphanumerics program 

Figure 29 shows a simple alphanumeric program that gives details of a bank 
customer and his account balances in response to a typed-in account number. 
Sample output from this program is shown in Figure 30 on page 85. 

If the account number is invalid, an error message is issued. If an account is 
overdrawn, the balance is displayed in red. 

The program uses account and customer data stored in program variables declared 
at /*A* /. In a real-life program the account data would probably be held on a data 
base. A read to the data base would follow the entry of the account number. 

The three parameters returned by ASREAD /*D* / indicate the type of terminal 
interrupt caused by the operator. If the operator replies to the output by pressing 
the ENTER key, the parameter TYPE is set to zero. If TYPE is set to some other 
value, the operator must have pressed another key, such as a PF key; this is taken 
to mean that the program should terminate. 

The program illustrates a technique for improving the readability of programs: for 
parameters that are constants, a variable is declared with an appropriate name and 
initialized to the constant value. At /*B* / there is an example of such a 
declaration, and at /*c* / of the use of such a variable. 

The FSALRM call/*E* / does not cause the terminal alarm to sound immediately. 
It will sound on the next screen output. 

ALPHA: PROC OPTIONS(MAIN); 
DCL LIST_ACCOUNTS(4) CHAR(4) INIT('OOOl','0002','0005' ,'0007'); 
DCL DEPOSIT(4) FIXED BIN(15) INIT(l247,23,-57,641); 
DCL CURRENT(4) FIXED BIN(15) INIT(17,-121,340,-8); 

/*A*/ 
/*A*/ 
/*A*/ 

DCL ADDRESS(4,3) CHAR(25) INIT( /* Customer addresses 
'W.D.LANGHURST,','21 BLAKE COTTAGES, ','ASHGROVE. " 
'G.HUCKLE,','THE RISE, ','LITTLEHAMPTON. , , 

*/ /*A*/ 

'MRS. E.C.BOTERILL,','47 CURTIS ROAD,', 'SHERWOOD. " 
'L.M.FORRESTER,','6 VILLAGE ROAD,' , 'ROMSEY.'); 

DCL ACCOUNT_NO CHAR(4); /* Temporary variable. */ 
DCL PICMONEY PIC'-$$$$$9'; /* PL/I picture variable for */ 

/* arith to char conversion. */ 
DCL (AC,I) FIXED BIN(15); /* Temporary variables. */ 
DCL RED FIXED BIN(31) INIT(2); 
DCL GREEN FIXED BIN(31) INIT(4); 
DCL TURQ FIXED BIN(3l) INIT(5); 

/* Parameter constant. */ 

DCL YELLOW FIXED BIN(31) INIT(6); 
DCL (TYPE,MOD,COUNT) FIXED BIN(31); /* Parameters for AS READ 
CALL FSINIT; /* Initialize GDDM 
/*****************************/ 
/* Define alphanumeric field */ 
/*****************************/ 
/* Field_id, Row Column, Depth, Width, 
CALL ASDFLD(l, 4, 25, 1, 21, 
/*****************************/ 
/* Set field color attribute */ 

Type */ 
2) ; 

*/ 
*/ 

/*B*/ 

/*****************************/ 
CALL ASFCOL(l,GREEN); 
/*****************************/ 
/* Assign data to field 1 */ 
/*****************************/ 

/* Set field color to green */ /*e*/ 

CALL ASCPUT(1,21,'ENTER ACCOUNT NUMBER:'); 

Figure 29 (Part 1 of 2). "Bank Account" sample alphanumerics program 

Chapter 8. Basic alphanumerics 83 



does not apply to graphics-only devices such as plotters 

CALL ASDFLD(2,4,47,1,4,1); /* Define a numeric-input-only field.*/ 
CALL ASFCOL(2,YELLOW); /* Set field color to yellow. */ 
DO 1=1 TO 3; /* Define alpha fields to hold customer's address */ 
CALL ASDFLD(I+2,I*2+13,I*4+25,1,25,2); 
CALL ASFCOL(I+2,TURQ); /* Set field color to turquoise */ 
END; /* End of I-LOOP */ 
CALL ASDFLD{6,25,5,l,16,2); /* Define protected field. */ 
CALL ASCPUT(6,16,'CURRENT ACCOUNT:');/* Assign data to field. */ 
CALL ASDFLD(7,25,22,1,7,2); /* To hold current account balance */ 
CALL ASDFLD(B,25,45,1,16,2); /* Define protected field. */ 
CALL ASCPUT(B,16,'DEPOSIT ACCOUNT:');/* Assign data to field. */ 
CALL ASDFLD(9,25,62,1,7,2); /* To hold deposit account balance.*/ 
CALL ASDFLD(10,32,16,1,48,2); /* Define message field. */ 
CALL ASFCOL(10,RED); /* Messages to be in red. */ 

/*******************************************/ 
/* Top of loop to process account requests */ 
/*******************************************/ 

OUTPUT: ; 
/*****************************/ 
/* Position the cursor */ 
/*****************************/ 
CALL ASFCUR(2,1,1); /* position cursor in ACCOUNT NUMBER field. */ 
CALL ASREAD(TYPE,MOD,COUNT); /* Send output to screen and await */ 

/* a reply. */ /*D*/ 
IF TYPE~=O THEN GOTO ENDIT; /* End if interrupt not enter. */ 
/*****************************/ 
/* Retrieve data from field */ 
/*****************************/ 
CALL ASCGET(2,4,ACCOUNT_NO); /* Retrieve entered account number.*/ 

DO AC=l TO 4; /* See if requested account number is valid.*/ 
IF ACCOUNT NO=LIST ACCOUNTS(AC) THEN GOTO VALID ACCT; 
END; - - - /* END AC-LOOP */ 

/* Invalid or blank account number. Issue error message.*/ 
CALL ASCPUT(10,48,'INVALID OR BLANK ACCOUNT NUMBER. PLEASE RE-ENTER'); 
CALL FSALRM; /* Sound the alarm. */ /*E*/ 
GOTO OUTPUT; /* Branch to top of loop to send message to screen.*/ 
VALID_ACCT:; /* Requested account is valid.*/ 
CALL ASCPUT(10,23,'PRESS ANY PFKEY TO QUIT'); /* Reset message */ 

/* field. */ 
PICMONEY=CURRENT(AC); /* Convert balance to character form */ 

IF CURRENT(AC)<O THEN CALL 
ELSE CALL 

CALL ASCPUT(7,7,PICMONEY); 
PICMONEY=DEPOSIT(AC); 
IF DEPOSIT(AC)<O THEN CALL 

ELSE CALL 

ASFCOL(7,RED); /* Red, if debit. */ 
ASFCOL(7,GREEN); /* Green, if credit.*/ 
/* Put current balance into field 7 */ 

/* Convert balance to character form.*/ 
ASFCOL(9,RED); /* RED, IF DEBIT */ 
ASFCOL(9,GREEN); /* GREEN, IF CREDIT */ 

CALL ASCPUT(9,7,PICMONEY); /* Put deposit balance into field 9 */ 
DO 1=1 TO 3; /* Put customer's address into fields 3-5 */ 
CALL ASCPUT(I+2,25,ADDRESS(AC,I»; 
END; 
GOTO OUTPUT; 
ENDIT: CALL FSTERM; 
%INCLUDE ADMUPINA; /* 
%INCLUDE ADMUPINF; 
END ALPHA; 

/* End I-LOOP */ 
/* Branch to top of loop to send out data.*/ 

/* Terminate GDDM */ 
Include declarations of GDDM entry points */ 

Figure 29 (Part 2 of 2). "Bank Account" sample alphanumerics program 

84 GDDM Application Programming Guide Volume 1 



basic alphanumerics 

Figure 30. Output from "Bank Account" sample alphanumerics program 

Mixing graphics and alphanumerics 

You may freely mix GDDM calls that refer to alphanumerics with those that refer 
to graphics. The alphanumeric and the graphical data will be added to the current 
page, although GDDM will hold them separately. The creation of a graphics 
segment, for example, has no bearing on the definition of an alphanumeric field. 
They are separate things. 

When a screen transmission is requested (by calling ASREAD), GDDM will send 
first the graphics, then the alphanumerics. Those hardware cells that are part of 
alphanumeric fields will contain no graphics at all . only the alphanumerics will 
appear (except in the case described in "Device variations" on page 86). 

The program shown in Figure 31 is an example of mixing alphanumerics and 
graphics. 

/ ***************************************************/ 
/* This program accepts a typed-in part-number. */ 
/* It responds by sending a drawing of the part */ 
/ * to the display screen. */ 
/ ***************************************************/ 
SPARES: PROC OPTIONS(MAIN); 
DCL (TYPE,MODE,COUNT) FIXED BIN(31); / * Parameters for ASREAD. */ 
DCL PART NO CHAR(4) ; / * Temporary variable. */ 
CALL FSINIT; /* Initialize GDDM. */ 
/ * Field_id, Row, Column, Depth, Width, Type */ 
CALL ASDFLD(l, 2, 25, 1 20, 2); /* Define.. */ 
CALL ASDFLD ( 2, 2, 48, 1 , 4 , 1); /* .. alpha. . * / 
CALL ASDFLD(3, 30, 35, 1, 20, 2); /* .. fields */ 
CALL GSUWIN(O.0,100.0,0.O ~120.0); /* Define coordinate system*/ 
CALL ASCPUT(l,20, 'TYPE IN PART NUMBER: '); / * Prompt to operator */ 

Figure 31 (Part 1 of 2). Part number sample alphanumerics program 

Chapter 8. Basic alphanumerics 85 



does not apply to graphics·only devices such as plotters 

LOOP: ; 
CALL ASFCUR(2,1,1); 
CALL ASREAD(TYPE,MODE,COUNT); 
IF COUNT=O THEN GOTO LOOP; 

IF TYPE~=O THEN GOTO ENDIT; 

CALL GSCLR; 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* CALL ASCGET(2,4,PART_NO); 

IF PART_NO='OOOl' THEN CALL WRENCH; 

Put cursor on input field. */ 
Send out data stream. */ 
Try again if no part */ 
number typed. */ 
End run if PF key */ 
was pressed. */ 
Clear previous graphics. */ 
Retrieve part number. */ 

/* Draw part 0001, */ 
/* if required. */ 
/* Draw part 0002, */ ELSE IF PART_NO=' 0002 , THEN CALL HAMMER; 
/* if required. */ 

. 
ELSE GOTO LOOP; /* Part number was not valid. */ 

/***********************************/ 
/* This subroutine draws a wrench */ 
/***********************************/ 
WRENCH:PROC; /* Subroutine to draw wrench. */ 
CALL GSSEG(O); /* Create graphics segment. */ 
CALL ASCPUT(3,7,'WRENCH'); /* Display name below diagram.*/ 
CALL GSMOVE(20.0,9S.0); /* Move to top of wrench. */ 

. 
CALL GSSCLS; /* Close graphics segment. */ 
END WRENCH; /* End of subroutine. */ 
/***********************************/ 
/* This subroutine draws a hammer */ 
/***********************************/ 
HAMMER:PROC; /* Subroutine to draw hammer. */ 
CALL GSSEG(O); /* Create graphics segment. */ 
CALL ASCPUT(3,6, 'HAMMER') j /* Display name below diagram.*/ 
CALL GSMOVE(42.0,90.0); /* Move to top of hammer. */ 

/* Continue drawing hammer. */ 

. 
CALL GSSCLS; 
END HAMMERj 

ENDIT: j 

CALL FSTERMj 
%INCLUDE ADMUPINAj 
%INCLUDE ADMUPINFj 
%INCLUDE ADMUPINGj 
END SPARES; 

/* Close graphics segment. 
/* End of subroutine. 

/* Other subroutines to draw 
/* various spare parts. 

/* Terminate GDDM. 
/* Include GDDM entry points 

/* End of program. 

Figure 31 (Part 2 of 2). Part number sample alphanumerics program 

Device variations 

3179-G, 3270-PC/G and /GX family, and the 4224 printer 

*/ 
*/ 

*/ 
*/ 

*/ 
*/ 

*/ 

As explained in "Mixing graphics and alphanumerics" on page 85, hardware cells 
used for alphanumerics contain, by default, no graphics. On the 3270-PCjG and 
/GX work stations, 3179-G color display stations, and 4224 printers, you Can allow 
the cell background to become transparent. The alphanumeric characters will 
overpaint the graphics without blanking them out over the entire cell area. 

You make a field transparent with the ASFTRA call: 

CALL ASFTRA(19,1)j /* Make field 19 transparent */ 

86 GDDM Application Programming Guide Volume 1 



basic alphanumerics 

When printing the current page on the 4224 printer, the transparency or 
opaqueness of alphanumeric fields will also be honored. 

IBM 5080 graphics system 

Applications that use only the 3270 feature do not need GDDM/graPHIGS. 

To use the GDDM alphanumeric input and output calls on the 5080, either the 5080 
screen must be switched into 3270 mode by the user, or the 5080 must be associated 
with a 3270-family terminal to make up a dual-screen work station. Alphanumeric 
output goes only to the 3270 screen. For more information about the 5080, see 
"Processing option for the 5080 graphics system" on page 390 and "Interactive 
graphics on the mM 5080 graphics system" on page 214. 

5550-family multistations 

If Japanese 3270-PC/G software Version 5 or later is used with the display memory 
expansion card, hardware cells used for alphanumerics contain, by default, no 
graphics. If you define a field as transparent, only blank or null characters will be 
transparent. 

Chapter 8. Basic alphanumerics 87 



Chapter 9. Hierarchy of GDDM concepts 

You have already seen that you can code simple graphics programs with only a 
little knowledge of graphics concepts. This chapter looks at some of the concepts 
that you can use in more advanced programs, considering first just the physical 
subdivision of the screen (or the printer page). There is a hierarchy of objects, 
each fitting inside the previous one. 

The GDDM hierarchy 

These are the objects in the hierarchy: 

1. The device 
2. The partition set and partition 
3. The page 
4. The graphics field 
5. The picture space 
6. The viewport. 

The above hierarchy (except for the partition set and partition) is shown in 
Figure 37 on page 101. These hierarchical objects are present, even in the simplest 
of GDDM programs. Often, though, you do not need to specify many of them in 
your program. You can leave them to take the default values. 

Those objects that are specified explicitly must be defined in the appropriate order 
(that is, moving down the hierarchy). For example, you can define objects 2 and 4, 
or objects 1, 2, and 6. You cannot define object 6, then object 4. 

Independently of these objects you may define: 

7. The graphics window. This is the coordinate system to be used when specifying 
the graphics. 

When these seven have been defined or defaulted, you can open a: 

8. Graphics segment. 

This is a means of grouping together logically connected primitives and their 
attribute settings. It cannot be defaulted, but is not mandatory: primitives can 
be drawn outside segments. 

The above basic hierarchy essentially relates to graphics objects. There are a 
number of additional objects that you can use in GDDM programs. They are 
virtual devices and operator windows, alphanumeric fields, alphanumeric maps, and 
image fields. 

Chapter 9. Hierarchy of GDDM concepts 89 



applies to all graphics devices 

The device 

Virtual devices and operator windows are introduced under the following section 
"The device" on page 90 and that is the level at which they fit into the hierarchy. 

You can consider alphanumeric fields, alphanumeric maps, and image fields as all 
being at the same level as the graphics field, within a page. 

To understand which of all the objects in the entire hierarchy you need to define 
explicitly for a given program, it is necessary to explain the nature and purpose of 
each one. 

The device is the highest level in the hierarchy. Your program can select a device 
to be used as either the current primary device, or as the current alternate device. 
All commands will refer to the communication with that device until a different 
current primary or alternate device is selected. The call that opens a device is 
DSOPEN. The call that makes a device the current primary or alternate device is 
DSUSE. There is generally no need to issue these calls when you want the output 
to appear on the invoking device only. This is because the default primary device 
is the invoking terminal, so GDDM issues its own internal DSOPEN and DSUSE. 
However, if you want to communicate with devices other than the invoking 
terminal, or if you want a greater degree of control over any device, including the 
invoking terminal, then you can issue your own DSOPEN with different 
parameters. Another way is to use nicknames to modify the internal DSOPEN. 
Nicknames can also be used to modify your own DSOPEN calls. 

If you use the (WINDOW,YES) processing option, you can divide the screen of the 
display device into one or more operator windows. Operator windows are 
rectangular subdivisions of the screen that have a different virtual device 
appearing in each. 

Each virtual device can belong to a different instance of GDDM, and each instance 
of GDDM can belong to a different application program. You can therefore have a 
different GDDM application running in each operator window, sharing a display 
device concurrently. The first DSOPEN that specifies (WINDOW,YES) opens the 
real device. Subsequent DSOPENS for the same device will open virtual devices. 
Each application program then communicates with the terminal operator through 
an operator window conceptually situated in front of a virtual screen, and can 
behave as if it had sole control of a real screen. Therefore, the terminal user can 
communicate through several operator windows with several applications that are 
running at the same time. An important use of this function is in task manager 
programs. 

In addition, the terminal user can control the size, position, and viewing priority 
of operator windows at the screen, without interacting with any application 
program, by using the user control function. 

Operator windows can also be used within a single application program, to share 
out a real screen between several virtual devices, and to provide the various 
functions of the single application in separate and independent areas of the screen. 
Therefore, the terminal user can communicate through several operator windows 
with a single application. 

Real or virtual screens, viewed through operator windows, can themselves be 
subdivided into partitions. 

90 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

For more information about operator windows, see "Operator windows" on 
page 467. 

The principal calls are: 

DSOPEN Open a device 

DSUSE Specify device usage 

DSDROP Discontinue device usage 

DSCLS Close a device. 

These calls and the use of nicknames are described more fully in "Chapter 21. 
Device support" on page 367. 

The partition set and partition 

For a real or virtual device, you can create several alternative logical screens in 
an application. Each logical screen is called a partition set, and only one per 
virtual device can be shown to the terminal user at any time. 

A partition set can be divided into one or more independent rectangular partitions, 
which may overlap. It is possible for the terminal user to view and interact with 
an application through more than one partition within a partition set, at the same 
time. 

The partition set is created by the PTSCRT call. Its main purpose is to derme a 
grid of rows and columns to be used for specifying the sizes and positions of all the 
partitions in the partition set. A partition is created by the PTNCRT call. The 
default partition size is equal to the partition set grid. For details of the default 
partition-set grid size, see the description of the FSQURY call in the GDDM Base 
Programming Reference manual. An example use of partitions is to clearly define 
subsets of output from an application. 

For example: 

Partition 1 containing an alphanumeric menu of actions on a picture 

Partition 2 containing a graphics picture being changed 

Partition 3 containing graphics editing help information. 

In your program, you can change the attributes (size, position, order of viewing 
priority, and visibility) of partitions. 

If no PTSCRT call has been issued, no PTNCRT call can be issued: a default 
partition covering the complete screen is created. 

Figure 32 on page 92 illustrates a partitioned screen based on the default partition 
set grid. 

Partitioning is supported on all family-1 display devices including the 3179-G, the 
3270-PC/G and /GX family, and 3193 Display Station. The IBM 3290 Information 
Panel, 8775 Display Terminal, and 3193 Display Station each have a 
hardware-partitioning facility. On ordinary terminals in the 3270 family, such as 
the 3278 and 3279, and on 3179-G, 3270-PC/G and /GX work stations, and 5550-family 

Chapter 9. Hierarchy of GDDM concepts 91 



applies to a ll graphics devices 

multistations, GDDM emulates hardware partitioning. For all display devices, 
partitions are emulated when operator windows are used, or when partition overlap 
is specified, or when user control has been made available to the terminal user. 

PARTITION i PARTITION 2 

II ROW COL DEPTH WIDTH II 
DCL PARMi FIXED BIN (31) INIH1. 1. 32. 50); 
CALL PTNCRT(1.4.PARM1); II CREATE PARTITION 1 II 
DCL PARM2 FIXED BIN(3D INIHb. b0. 20. 20); 
CALL PTNCRT(2.4.PARM2); II CREATE PARTITION 2 II 

Figure 32. PTNCRT - create a partition 

Creating a partition set makes it current, and associates it with the primary device. 
Each partition set can have one or more partitions associated with it. A partition 
belongs to the partition set current at the time of creation. Each partition can 
have a set of pages associated with it. A page belongs to the partition current at 
the time of creation. 

Calls that operate on partitions and partition sets 

The following are the principal calls that operate on partitions and partition sets. 

PTSCRT Create a partition set 

PTSSEL Select a partition set 

PTNCRT Create a partition 

PTNSEL Select a partition 

PTNMOD Modify a partition. 

The above calls and other partition and partition set calls are described in 
"Partitions" on page 441. 

92 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

(EACH PARTITION HAS ITS OWN PAGES) 

PARTITION 1 PARTITION 2 
PAGE 1 PAGE 1 

DCl PARM1 FIXED BINC3l) INITC1. 1. 32. 50); 
CAll PTNCRT(l. 4. PARM1); II CREATE PARTITION 1 II 
CAll FSPCRT(1.32,59, 1J; I ' CREATE PAGE IN PTN 1 ' 1 
DCl PARM2 FIXED BINC31l INITCb. bOo 20. 20); 
CAll PTNCRT(2.4.PARM2); I I CREATE PARTITION 2 II 
CALL FSPCRT(1. 14.29.1J ; I ' CREATE PAGE IN PTN 2 I I 

Figure 33. FSPCRT - defining a page 

The page and page window 

A page is a rectangular area that can contain the program's alphanumeric, graphic, 
and image output, and any alphanumeric or graphic input entered by the terminal 
user. It is the basic unit of display. An ASREAD, GSREAD, MSREAD, or 
FSFRCE call sends the current page of each partition in the current partition set 
to the primary device, and (except in the case of FSFRCE) awaits the terminal 
user's input. For hardware partitions, the input can come from anyone partition. 
For emulated partitions, the input can come from more than one partition. In both 
cases, the cursor position determines the current partition. You can have more 
than one page belonging to each partition, but only the current page in each 
partition will be displayed. 

Usually the page size matches the partition (or the printer page), but when you 
create the page, you can request a size that is smaller than the partition (or printer 
page) or, on display devices, larger than the partition. You can control how much 
of the page is shown on a display device by setting the page window. At 
page-creation time, the page window is set to either the page or partition size, 
whichever is the smaller. A page window always lies within page and partition 
boundaries: the page window is positioned where you specify it on the page, and 
the top-left-hand corner of the page window coincides with the top-left-hand corner 
of the partition. For a page that is larger than its partition, the terminal user can 
view the page through the page window, by scrolling the page up and down, and 
from side to side, behind the page window. 

Chapter 9. Hierarchy of GDDM concepts 93 



applies to all graphics devices 

This is a typical page-create call: 

CALL FSPCRT(2,27,80,0); /* Create page 2 */ 

The parameters are as follows: 

2 The page identifier - its name. Any positive number may be chosen. 
Zero is reserved for the default page. 

27 and 80 Give the number of rows and columns in the page. If either (or both) 
of these parameters is zero, the whole partition (or printer page) width 
or depth (or both) will be used. ° The last parameter is not used by the current release of GDDM, but 
must be present and have a value of 0 through 3. 

A page may be subdivided into any or all of these: 

• a graphics field 

• an image field 

• procedural alphanumeric fields 

• mapped alphanumeric fields. 

A graphics field and an image field can exist on a page at the same time, but 
cannot overlap. Most devices cannot display both an image field and a graphics 
field. See "Combining an image with text or graphics" on page 356 for details. An 
alphanumeric field cannot overlap another alphanumeric field, but can overlap a 
graphics field or an image field. 

If the page is to be mapped, it must be created by an MSPCRT call, rather than an 
FSPCRT, as explained in "Dialog with the terminal operator" on page 256. For 
example: 

CALL MSPCRT(3,27,80,'MAP001D6'); /* Create page 3 */ 

The parameters are the same as for FSPCRT, except that the fourth one is the 
name of a mapgroup. 

Figure 33 on page 93 shows a page in each of two partitions on the screen (which 
is assumed to he 32 by 80 for the example). 

When a page is created or defaulted it becomes the current page. The size of a 
page cannot be altered after creation. 

If you do not explicitly define a page but nevertheless issue a call that needs a 
containing page (for example, define graphics field), GDDM will use the default 
page. This page is of the default size, namely the whole screen (or partition, where 
supported, or printer page). It has a page identifier of zero. 

Calls that operate on pages 

These are the calls that operate on pages: 

FSPCLR Delete the graphics field and any image, alphanumeric, or mapped 
fields within the current page. The page will then be empty, just as it 
was immediately after its creation (by FSPCRT). In particular, no 
picture space, viewport, or graphies window will remain. It also resets 

94 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

any previously created pan and zoom transform. A new graphics field, 
image field, and some new alphanumeric fields can then be created, if 
required. 

FSPDEL Delete a specified page. All associated storage is freed and the page 
identifier becomes unknown to GDDM. You may subsequently create 
another page using the same identifier as before. It is not possible to 
delete the default page. If the current page is deleted, the default page 
becomes the current page. 

Note the difference between clear and delete. When you clear a page 
(or a graphics field), it is still there and you may refill it. When you 
delete a page, it ceases to exist. 

FSPQRY Returns information about the page whose identifier was specified in 
the first parameter. 

FSPSEL Select a page. The named page becomes the current one. Any later 
alphanumeric or graphics statements will refer to the new current 
page. An output statement will send the new current page to the 
device. 

The previously selected page is left as it was. When it is reselected, 
processing may continue exactly as it would if you had not broken off 
to service another page. 

FSQCPG Returns the page identifier of the current page 

FSQUPG Returns a valid, currently unused page identifier. It allows a program 
to create a new page whose identifier will not conflict with an existing 
page, without the need to keep track of the page identifiers currently 
in use. 

A general discussion and example of using two pages is given in "Creating two 
pages of graphics" on page 107. 

The relationship between pages and page windows is described in "Large and small 
pages" on page 459. 

Chapter 9. Hierarchy of GDDM concepts 95 



applies to all graphics devices 

The graphics field 

One step below the page in the hierarchy is the graphics field. This is used when 
the graphics is to occupy only part of the current page - for example, when 
alphanumeric text will exclusively occupy the remainder. This is a typical call: 

CALL GSFLD(6,21,22,60); / * Define graphics field */ 

The parameters are in rows and columns: 

6 and 21 The row and column of the top left-hand corner of the required 
graphics field. If either is zero, this is taken as a request to delete the 
graphics field . 

22 and 60 The depth and width of the proposed graphics field, expressed in rows 
and columns. Again a zero value for either parameter requests 
deletion of the existing graphics field. 

Figure 34 shows the defined graphics field lying inside a page of 27 rows by 80 
columns. 

In this and later illustrations, the partition is not shown. A single partition 
occupying the complete screen is assumed. 

GRAPHICS FIELD IS 22 ROWS BY b0 COLUMNS 

CALL GSFLD(b.21.22.b0l; / t CREATE GRAPHICS FIELDt/ 

Figure 34. GSFLD - defining a graphics field 

If no graphics field is specified, but reference is made to some object lower in the 
hierarchy (such as a picture space), the default graphics field will apply. This 
covers the whole of the current page. 

Only one graphics field is permitted per page. Definition of a second causes the 
deletion of the first one and all its contents. 

96 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

On a dual-screen configuration of the 3270-PC/GX work station, a conceptual grid 
is imposed on the graphics screen for the purpose of interpreting the parameters of 
a GSFLD call. The grid has the same number of rows and columns as the 
alphanumeric screen - the numbers explicitly specified in a page-create call, or 
the default of 24 rows by 80 columns. The result is that the graphics field is of the 
same size and is in the same position as it would be in a single-screen 
configuration. 

Note that on ordinary terminals in the 3270 family, such as the 3278 and 3279, (but 
not on the 3179-G, 3270-PC/G and IGX family, 5550 family, or on printers), the 
bottom right-hand hardware cell usually contains an attribute byte and is therefore 
not available for graphics. If your graphics extend to the bottom right-hand corner 
of the graphics field (for example, if you have a frame round the edge), you may 
want to exclude the bottom row (or the rightmost column) of the screen from the 
GSFLD specification. Otherwise, there will be a permanent one-cell blank on this 
edge. 

On the 5080 graphics system, GSFLD parameters are handled in the same way as on 
a dual-screen 3270-PC/GX with graphics capabilities. 

You can query the current graphics field like this: 

DCL (ROW,COL,DEPTH,WIDTH) FIXED BINARY(31); 
CALL GSQFLD(ROW,COL,DEPTH,WIDTH); 

The fust two parameters return the row and column position of the top left-hand 
corner of the graphics field, and the last two parameters its size in rows and 
columns. 

Calls that operate on the graphics field 

In addition to GSFLD and GSQFLD, already described, there is: 

GSCLR Clears all the graphics from the current graphics field. 

The picture space 

This call is used when you require a particular aspect ratio for your drawing area. 
If, for example, you are making a diagram of a factory floor that is 50 m by 30 m, 
you will need a drawing area of the same ratio. 

The graphics field is specified in terms of physical rows and columns. The aspect 
ratio of the graphics field (that is, the ratio of the physical width and depth) is 
therefore device-dependent. If you want to ensure a particular ratio for your 
drawing area, you must specify a picture space: 

CALL GSPS(1.O,O.5);/*Define picture space where width ~ depth*2 */ 

The parameters specify the ratio of the width of the picture space to its depth. One 
parameter must be exactly 1, the other between 0 and 1. Subject to the requested 
ratio, GDDM will create as large a picture space as possible within the graphics 
field. Either the horizontal or the vertical boundaries will coincide with those of 
the graphics field. 

Figure 35 on page 98 shows the effect of three different picture-space definitions, 
each of which lies inside the graphics field that was defined in the previous section. 

Chapter 9. Hierarchy of GDDM concepts 97 



applies to all graphics devices 

The viewport 

CALL GSPS(1 . 0. 5) ; CALL GSPS(0 . 5. 1) ; 
r-r===========~-. 

CALL GSPS (1. 1) ; 

Figure 35. GSPS - defining a picture space 

The picture space will be defaulted to the whole graphics field if reference is made 
to any object lower in the hierarchy. 

Viewports are not required in a graphics program unless more than one picture 
(using the term in its everyday sense) is to be sent to the same graphics field. In 
that case, you may prefer to address separately the drawing area for each picture. 

When speaking about subdividing the physical screen area, the viewport lies at the 
bottom of the hierarchy. It is part of the picture space (or, by default, the whole of 
the picture space). It is the area of the screen to which the current graphics are to 
be sent. 

The call takes this form: 

CALL GSVIEW(O.O,O.7,O.25,O.5); / * Define the viewport */ 

All four parameters are expressed in picture space units. They cannot exceed the 
parameters specified (or defaulted) for the picture space: 

• The first two specify the left and right viewport boundaries. If the picture space 
was, say, ofratio 1:0.5 (width = l,depth = 0.5) then this viewport would lie in the 
leftmost seven·tenths of the picture space. 

• The last two parameters specify the lower and upper viewport boundaries. 
With the same picture space as was used before, the viewport would lie in the 
top half of the picture space. 

98 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

Figure 36 shows the positioning of the viewport within the (1:0.5) picture space. 

0. 5 ... ...... Jr-'~==-_____ """"''''''''' ....... ~.....,-------, 

VIEWPORT 

0. 2,~ " " " I'-___________ -----' 

PICTURE SPACE 

o. n ... ..... l----------------,,------~ 
0. 0 0. 7 1. 0 

CALL GSVIEW(O, 0. 7, 0. 25, 0.5); / 1 CREATE VIEWPORT 1 / 

Figure 36. GSVIEW - defining a viewport 

There are several points to note about viewports. 

• Querying the picture space. If the picture space was not explicitly specified, 
you will not know the picture space coordinates. They are device-dependent. 
To create a viewport it will be necessary to query the picture space coordinates 
at execution time. The viewport can then be expressed in terms of the 
parameters returned from the query. This is a common combination of calls: 

CALL GSQPS(WIDTH,HEIGHT); / * Ask GDDM what ratio */ 
/* the picture-space has.* / 

CALL GSVIEW(O.O,WIDTH*O.5,O.O,HEIGHT*O.5); 
/* Place the viewport */ 
/ * in the bottom-left */ 
/ * quarter of the */ 
/* picture-space. */ 

• Graphics window fits over the viewport. Graphics primitives are drawn in a 
coordinate system (called the graphics window) that defaults to 100 by 100, or 
may be chosen explicitly. 

This coordinate system fits over the viewport. The x range extends over the 
width of the viewport and the y range over the depth. 

In the very basic example programs shown earlier, it seemed that the 
coordinate system addressed the whole screen. That was only because the 
hierarchy of graphics objects had all been allowed to take the default value. 

Chapter 9. Hierarchy of GDDM concepts 99 



applies to all graphics devices 

This is often the case - the partition, the page, the graphics field, the picture 
space, and the viewport all then occupy the whole screen. 

• Clipping at graphics window. The graphics primitives may be clipped at the 
edges of the graphics window, as explained in "Graphics clipping" on page 110. 

• Using viewports to get multiple pictures. Use of viewports permits several 
different pictures to be combined in one graphics field. Only one viewport 
exists (per page) at a given time; but several can be created successively, each 
filled with graphics. Assume, for example, that STARS_AND_STRIPES is a 
subroutine of graphics calls that fills the viewport with a representation of the 
American flag. Then these instructions would fill the screen with four flags, 
one in each quarter of the screen. Note that the subroutine has to be 
reexecuted for each new viewport. 

CALL 

CALL 

CALL 
CALL 

CALL 
CALL 

CALL 
CALL 

GSQPS(WIDTH,HEIGHT)~ 
/* Ask GDDM what ratio the picture space has */ 

GSVIEW(O.O,WIDTH*O.5,O.O,HEIGHT*O.5)~ 
/*Viewport bottom left. */ 

STARS_AND_STRIPES ~ /* Draw flag. * / 
GSVIEW(O.O,WIDTH*O.5,HEIGHT*O.5,HEIGHT)~ 

/* Viewport top left. 
STARS_AND_STRIPES~ /* Draw flag. 
GSVIEW(WIDTH*O.5,WIDTH,O.O,HEIGHT*O.5)~ 

*/ 
*/ 

/*Viewport bottom right.*/ 
STARS_AND_STRIPES; /* Draw flag. * / 
GSVIEW(WIDTH*O.5,WIDTH,HEIGHT*O.5,HEIGHT)i 

CALL STARS_AND_STRIPES; 
/* Viewport top right. */ 
/* Draw flag. */ 
/*Send picture to device*/ CALL ASREAD(TYPE,MOD,COUNT)i 

/*** Subroutine to draw American flag ***/ 
STARS AND STRIPES: PROCi 
CALL GSSEG(O); 
CALL GSCOL(2); 

/* Open unnamed segment. */ 
/* Set current color to red. */ 

and so on. 
CALL GSSCLS; /* Close the current segment.*/ 
END STARS_AND_STRIPESi 

• Viewports can overlap. The following example uses two square viewports of 
height and depth equal to the depth of the screen. One is aligned against the 
left-hand edge of the screen, and the other against the right-hand edge. 
Because the screen width is less than twice the screen depth, the viewports 
overlap in the middle. 

CALL GSQPS(WIDTH,HEIGHT)i /* 
/* 

CALL GSVIEW(O.O,HEIGHT,O.O,HEIGHT)i /* 
/* */ 
/* */ 
/* Draw in left-hand viewport */ 
/* */ 
/* */ 

Ask GDDM what ratio */ 
the picture space has*/ 
Create l-h viewport */ 

CALL GSVIEW(WIDTH-HEIGHT,WIDTH,O.O,HEIGHT)i /* Create right-*/ 
/* hand viewport*/ /* */ 

/* */ 
/* Draw in right-hand viewport*/ 
/* */ 
/* */ 

100 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

I 
VI EWPORT 

I PAGE 

PICTURE SPACE 

GRAPHICS FIELD 

DEVICE 

CALL FSPCRTC2. 27.B0. 1); / 1 CREATE PAGE 1/ 
CALL GSFLDCb. 21.22.b0); / 1 CREATE GRAPHICS FIELDI/ 
CALL GSPSC1.0 . 5) ; /1 CREATE PICTURE SPACE ./ 
CALL GSVIEWC0. 0. 7. 0.25.0. 5) ; / 1 CREATE VIEWPORT 1/ 

..I 

Figure 37. Defining a complete graphics hierarchy (without partitioning) 

The graphics window 

The objects in the hierarchy considered above were all concerned with a physical 
subdivision of the display device's screen (or the printer page). The graphics 
window is completely different. It is the name given to the system of coordinates 
used to draw graphics on the viewport. It has a different meaning here from the 
"page window" used in a scrolling context. (The scrolling page window is explained 
in "Large and small pages" on page 459.) 

You may specify a coordinate system with this type of call: 

CALL GSWIN(O.O,80.0,-30.0,70.0); / *Define user coordinate system*/ 

• The fIrst two parameters state that the x range of the horizontal viewport 
boundary will run from 0 to 80. 

• The second two parameters specify a y range of -30 to 70 for the vertical 
viewport boundary. 

This is the coordinate system that will be used to draw the lines, arcs, and text 
strings for the graphics output. For example, to draw a line along the bottom of 
the viewport (or of the screen, if all the graphics objects have been defaulted), you 
would issue these two calls: 

CALL GSMOVE(O.O, - 30 . 0); 
CALL GSLINE(80.0,-30.0); 

/* Move to bottom-left corner, */ 
/ * draw a line along the bottom.* / 

Chapter 9. Hierarchy of GDDM concepts 101 



applies to all graphics devices 

If a graphics segment is opened before a graphics window has been specified, 
GDDM will use the default window. This is equivalent to the statement: 

CALL GSWIN(0.0,100.0,0.0,100.0); 

Uniform world coordinates 

You might expect these statements always to give a square on the screen: 

CALL GSMOVE( 0.0, 0.0); 
CALL GSLINE(10.0, 0.0); 
CALL GSLINE(10.0,10.0); 
CALL GSLINE( 0.0,10.0); 
CALL GSLINE( 0.0, 0.0); 

But in general, they will give a rectangle with one side 10 x·units long and the 
other 10 y-units long. A square will result only if one x-unit on the screen is 
physically equal to one y-unit. If this is the case, your program is said to be using 
uniform world coordinates. The commonest symptom of nonuniform coordinates 
is circles appearing oval. 

The simplest way to ensure uniform coordinates is to issue a GSUWIN call: 

CALL GSUWIN(0.0,SO.0,-30.0,70.0); 

This call has the same parameters as GSWIN and the same effect, except that 
GDDM ensures that the resulting world coordinates are uniform. The uniform set 
of coordinates is such that the specified x range and the specified y range are both 
contained within the viewport, and either the x range just fits the width of the 
viewport, or the y range just fits the height. 

In general, this will mean that one axis contains slack: if the x range fits the 
width, the y range will be less than the height, or if the y range fits the height, the 
x range will be less than the width. GDDM centers the slack axis in the viewport 
and extends its range in both directions to the edge of the viewport. Your program 
can therefore draw in the slack area. To discover the actual x and y ranges, you 
can execute a GSQWIN call: 

DECLARE (XMIN,XMAX,YMIN,YMAX) FLOAT DEC(6); 
CALL GSQWIN(XMIN,XMAX,YMIN,YMAX); 

An alternative to GSUWIN is to derme a viewport with a width-to-height ratio 
(that is, an aspect ratio) equal to the ratio of the x range to the y range. If, as is 
usual, the viewport is allowed to default to the picture space, then the picture 
space must be of the same aspect ratio as the world coordinates: 

CALL GSPS (O.S, 1.0); 
CALL GSWIN( 0.0,80.0, -30.0,70.0 ); 

Putting origin of uniform coordinates at bottom left-hand corner 

These calls will put the (0,0) position in the bottom left-hand corner of the picture 
space, which is at the bottom left-hand corner of the screen by default, and give 
uniform coordinates: 

DECLARE (HEIGHT,WIDTH) FLOAT DECIMAL(6); 

CALL GSQPS(WIDTH,HEIGHT); /* Query default picture space */ 
CALL GSWIN(0.0,100*WIDTH,0.O,100*HEIGHT); 

102 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

The longer dimension will have a coordinate range of 0 through 100, and the 
shorter, 0 through a value less than 100 (or 0 through 100 if the picture space is 
square). On most displays, the x range will be from 0 through 100, and the y range, 
o through less than 100. 

Inverting the graphics window 

It is permitted to define a coordinate system in this way: 

CALL GSWIN(O.O,lOO.O,lOO.O,O.O) 

where the top y value is less than the bottom y value. This call would turn any 
later graphics upside-down (compared with its.appearance under a default graphics 
window). Graphics text will be inverted only if it is mode-3. 

A common error when first using GDDM is to define a graphics window by using: 

CALL GSWIN(O.O,80.0,32.0,O.O) 

in an attempt to match the row and column coordinates. (Remember that rows are 
numbered from the top, whereas y-window coordinates are numbered from bottom 
to top). The programmer is then rather surprised that his mode-3 graphics appears 
upside-down! If you want to use mode-3 text with such a graphics window, you 
must set the y range to - 32 to 0, and make all the y coordinates negative. 

Similarly, you can interchange the two "x" GSWIN values. This program 
illustrates the possibilities: 

Chapter 9. Hierarchy of GDDM concepts 103 



applies to all graphics devices 

WTELL: PROC; 
CALL FSINIT; /* Initialize GDDM */ 
CALL GSWIN(O.O,200.0,O.O,120.0); 

/* Define a normal graphics window. */ 
CALL WILLIAM_TELL; /* Call user subroutine that draws picture*/ 

/* of William Tell (on the left) aiming */ 
/* crossbow at apple (on the right). */ 

CALL ASREAD(TYPE,MODE,COUNT); /* Send picture to screen and wait*/ 
/* for acknowledgement. */ 

CALL GSCLR; /* Clear all graphics. */ 
CALL GSWIN(200.0,O.O,O.O,120.0); 

/* Reverse x-boundary coordinates. */ 
CALL WILLIAM_TELL; /* Call the same subroutine under the */ 

/* influence of a window with its */ 
/* x-boundary coordinates reversed. */ 
/* William Tell will now be on the right, */ 
/* a~m~ng crossbow at apple on the left. */ 

CALL ASREAD(TYPE,MODE,COUNT); 

CALL GSCLR; 
CALL GSWIN(O.O,200.0,120.0,O.O); 

/* Reverse y-boundary coordinates instead.*/ 
CALL WILLIAM_TELL; /* Call the same subroutine, this time */ 

/* under the influence of a window with */ 
/* its y-boundary coordinates reversed. */ 
/* William Tell will still be on the left,*/ 
/* but he will be upside-down, aiming */ 
/* at an upside-down apple! */ 

CALL ASREAD(TYPE,MODE,COUNT); 

CALL GSCLR; 
CALL GSWIN(200.0,O.O,120.0,O.O); 

/* Both boundaries reversed. */ 
CALL WILLIAM_TELL; /* Call the same subroutine, this time */ 

/* with both window boundaries reversed. */ 
/* William Tell will be upside-down on */ 
/* the right-hand side of the picture. */ 

CALL ASREAD(TYPE,MODE,COUNT); 

CALL FSTERM; 

WILLIAM_TELL: PROC; 
CALL GSSEG(O); /* Open graphics segment. */ 
CALL GSMOVE(24.0,8.0);/* Move to start of left boot. */ 

and so on... /* Continue drawing W.Tell and the apple. */ 

CALL GSLINE(175.0,80.0);/* End outline of apple's stalk. 
CALL GSENDA; /* Close area (apple's stalk). 
CALL GSSCLS; /* Close the graphics segment. 
END WILLIAM_TELL; 

'INCLUDE ADMUPINA; 
'INCLUDE ADMUPINF; 
'INCLUDE ADMUPING; 
END WTELL; 

104 GDDM Application Programming Guide Volume 1 

*/ 
*/ 
*/ 



hierarchy of GDDM concepts 

The graphics segment 

A segment is a collection of primitives and their associated attributes. It is not a 
physical subdivision of the screen. You can put your complete picture into one 
segment, or you can divide it into several if that is more convenient. And you can 
draw primitives outside segments if you do not require GDDM to retain a record of 
them after they have been sent to the screen. 

Segments have attributes, such as whether they can be moved, and whether they 
are visible. These can be explicitly set with a GSSATI call, or allowed to default. 
The attributes of an existing segment can be changed with a GSSATS call. 
Segments can be stored in a library on external storage, and retrieved from it when 
required. 

Creating a graphics segment causes the defaulting of any of the items in the 
physical hierarchy that have not yet been defined, as does specifying one or more 
segment attributes with a GSSATI call. These actions also cause the default 
graphics window to be chosen if an explicit graphics window has not been 
specified. 

Segments have a chapter to themselves: "Chapter 11. Graphics segments" on 
page 127. It includes a section on primitives outside segments. 

Redefining objects in the hierarchy 

Viewports and graphics windows 

Mter creating some graphics and closing any open segment, it is permitted to 
redefme the viewport or the graphics window (still under the same higher objects 
in the hierarchy). This will define a new environment, and further graphics 
segments may be added to the overall picture. It is important to realize that 
changing a viewport or graphics window affects only subsequent graphics. It has 
no effect on graphics already specified in a previous environment. 

Picture space and graphics field 

Other objects 

It is possible to redefine a picture space if it contains no graphics. To clear 
existing graphics, you can execute a GSCLR call. It is not possible to define a 
second graphics field without destroying the first graphics field and all its contents. 

The higher-level objects (page, partition, partition set, and device) have their own 
identifiers. You cannot define a second object using an identifier already assigned 
to an existing object of the same type and belonging to the same higher-level 
object. For instance, if device 2 already has a page 3, it is an error to attempt to 
create a new page with an identifier of 3. However, a higher-level object can be 
deleted (or closed, in the case of a device), after which its identifier can be reused. 

Chapter 9. Hierarchy of GDDM concepts 105 



applies to all graphics devices 

Example program using GDDM hierarchy 

As an illustration of the GDDM hierarchy at work, here is an example that creates 
a hierarchy and then redefines the viewport and graphics window: 

CALL FSPCRT(1,1,20,80); /* Create page (leveI2), thereby */ 
/* causing the device (levell) to be defaulted */ 
/* to the device invoking the program */ 

CALL GSPS(1.0,1.0); 
/* Define picture space (leveI4), thereby */ 
/* causing the graphics field (leveI3) to be */ 
/* defaulted to the whole page. */ 

CALL GSSEG(O); /* Open unnamed segment, thereby causing the */ 
/* viewport (leveI5) and the window to be */ 
/* defaulted (to 'whole p-space' & 100 by 100) */ 

CALL GSMOVE(25.0,70.0)j /* Move to (X=25,Y=70) */ 
and so on. /* Draw first part of picture */ 
CALL GSSCLS; /* Close first segment */ 

CALL GSWIN(0.0,1000.0,0.0,2000.0)j 
/* Redefine the window. All other */ 

/* entities remain as before. All further */ 
/* graphics will be expressed in terms of the */ 
/* new window coordinates */ 

CALL GSSEG(O)j /* Open another segment */ 
CALL GSMOVE(900.0,1810.0)j /* Move to (X=900,Y=1810) */ 
and so on. /* Draw second part of picture */ 
CALL GSSCLSj /* Close second segment */ 

CALL GSVIEW(0.O,0.5,O.O,1.0)j/*Redefine viewport to cover left- */ 
/* hand half of picture space. The window of */ 
/* 0-1000, 0-2000 remains in operation */ 

CALL GSSEG(O); /* Open another segment */ 
CALL GSMOVE(730.0,1500.0)j /* Move to (X=730,Y=1500) */ 
and so on. /* Draw third part of picture */ 
CALL GSSCLSj /* Close third segment */ 
CALL ASREAD(TYPE,MOD,COUNT)j /* Send out all three */ 

/* parts of picture that has been constructed */ 

106 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

Creating two pages of graphics 

This example shows how you can create two pages of graphics (and alphanumerics, 
too) and move backward and forward between the two pages: 

TWOPAGE: PROC OPTIONS(MAIN); 

CALL FSINIT; 
CALL GSSEG(O); 

CALL GSLINE(60.0,60.0); 

/* 
/* 
/* 
/* 
/* 
/* 

/* Initialize GDDM */ 
Open segment, using default device */ 
and default page (page 0). */ 
The graphics field, the picture-space */ 
and the viewport all default to */ 
the whole screen. */ 
A 100 by 100 window will be used */ 

/* Draw one line on page 0 */ 

CALL ASREAD(TYPE,MODE,COUNT); /* Send output to page 0 */ 

CALL FSPCRT(2,0,0,1); /* Create a second page (page 2). This */ 
/* action causes the new page to become */ 
/* automatically selected. All further */ 
/* graphics and alphanumerics CALLS will */ 
/* refer to page 2 (the new page). */ 

CALL GSSEG(O); /* Open segment on second page, causing */ 
/* the graphics field, the picture space,*/ 
/* the viewport and the window to */ 
/* default again */ 

CALL GSCHAR(20.0,48.0,28,'GRAPHICS TEXT SENT TO PAGE 2'); 
/* Write text */ 

CALL GSSCLS; /* Close the graphics segment on page 2 */ 

CALL ASREAD(TYPE,MODE,COUNT); /* Send output from second page */ 

CALL FSPSEL(O); /* Reselect the first page. It is still */ 
/* exactly as it was when the program */ 
/* left it to create a second page. */ 
/* The segment is still open and it */ 
/* contains only one line. */ 

CALL GSLINE(80.0,90.0);/* This line is drawn from (60,60) - the */ 

CALL FSPSEL(2); 

CALL GSSEG(O); 

/* current position when the page was */ 
/* last selected. */ 

/* Reselect the second page. This has 
/* one (closed) segment in it, 
/* containing a graphics text string 

/* Open a new segment (unnamed). 

*/ 
*/ 
*/ 

*/ 

CALL GSLINE(40.0,SO.0);/* This line will be drawn from (0,0). */ 
/* When a new segment is opened, */ 
/* the current position */ 
/* is always set to (0,0). */ 

CALL ASREAD(TYPE,MODE,COUNT); /* Send output from second page. */ 
/* This output will consist of the two */ 
/* segments belonging to the page */ 
/* (the first containing one text string,*/ 
/* the second containing one line). */ 

Chapter 9. Hierarchy of GDDM concepts 107 



applies to all graphics devices 

CALL FSPSEL(O); /* Reselect first page */ 

CALL ASREAD(TYPE,MODE,COUNT)i /* Send output from first page. */ 
/* This output will consist of one */ 
/* segment containing two (joined) lines */ 

CALL FSTERM; 
%INCLUDE ADMUPINA; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPING; 
END TWOPAGE; 

So, these are the points to remember: 

• When you select another page for processing (or create another page, thereby 
causing it to be selected), the first page is left as it was. 

• You may leave the current segment open on the first page, ready for further 
graphics when you return. 

• When you reselect the first page, you may add further graphics immediately if 
you left the segment open. To open a new segment would be an error. You 
cannot open a new segment without previously closing any existing open 
segment. 

• If you want to start a new picture on a page that already has some old graphics 
(or alphanumerics, or both) on it, you can issue an FSPCLR to clear the page. 

An alternative but less efficient method would be to delete the page (FSPDEL) 
and then to create it again (FSPCRT). 

A typical two-device graphics hierarchy 

An example of the hierarchy that a program might address is given in Figure 38 on 
page 109. The figure shows that the program is communicating with two devices· 
device 12 and device 27. The first device has two pages, one with a graphics field 
and two alpha fields, the other with just a graphics field. The second device has 
only one page, containing a graphics field and three alpha fields. Neither device is 
partitioned. 

108 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

I DEVICE 12 I I DEVICE 27 I 

PAGE b PAGE 8 

GRAPHICS FIELD 

GRAPHICS FIELD 

GRAPHICS FIELD 

Figure 38. Example of 2-device graphics hierarchy 

While referring to the figure, note the following points: 

• Symbol sets are loaded per device. This is the case even if the device is 
partitioned, and even for graphics symbol sets that are used in main storage by 
GDDM and not really sent to the device. If you want to use, say, the Italian 
Gothic symbol set (ADMUVGIP) on both the target devices, you have to load it 
twice - once when device 12 is current and once when device 27 is current. 

• Alphanumeric fields and sets of default alphanumeric field attributes apply per 
page. You can use the same identifiers for alpha fields on one page as you do 
for those on another page. 

• One graphics field is allowed per page. That graphics field may then contain 
several graphics segments. Again the same identifiers can be used for the 
segments on one page as for those on another page. 

• All segment attributes apply per graphics field. When you create a graphics 
field, the segment attributes always start at their default values unless you 
have set them previously using a GSSATI call. 

• All logical input devices are associated with a graphics field. (Logical input 
devices are explained in "Chapter 14. Interactive graphics" on page 177.) If 
you redefine the graphics field after an input device has been enabled, or select 
another page, the device is disabled. 

• All primitive attributes apply per graphics segment. When you open a new 
segment the primitive attributes always start at their default values (except in 
the case of called segments). 

Chapter 9. Hierarchy of GDDM concepts 109 



applies to all graphics devices 

Graphics clipping 

If you are using, say, the default window coordinates of 0 to 100 in both directions, 
what happens if you draw a line to a point that is outside this range? You could 
issue this statement: 

CALL GSLINE(150.0,85.0); /* Draw a line to (x=lSO,y=85) */ 

The answer is that the call is valid, and the result depends on whether you have 
requested clipping, and what outer limits you have set. The limits are the data 
boundary and segment viewing limits. 

The data boundary sets the outer limits, in world coordinates, of primitive data to 
be retained by GDDM. You can use it to restrict the amount of data sent to a 
device. The data boundary cannot be set while a graphics segment is open. 

The format of the call is: 

CALL GSBND(O.O,lOO.O,O.O,lOO.O); /* Set data boundary */ 

The default data boundary is the graphics window. Setting the data boundary 
establishes a default graphics field if one has not already been created or defaulted. 

Clipping to the data boundary is controlled by the GSCLP call: 

CALL GSCLP(l); /* Enable precise clipping for the current page */ 

Note that clipping is enabled or disabled per page. The possible settings of the 
parameter, and its effects, are as follows: 

o Disables clipping (the default). The data boundary will have no effect. 
Clipping is initially disabled (switched off). This is because most programs 
do not create primitives that stray outside the graphics window, and when 
clipping is on it results in some extra processing by GDDM. 

1 Enables precise clipping to the data boundary. All primitives inside the 
boundary will be retained. If a primitive lies across the boundary, only the 
part of the primitive inside the boundary will be retained. Any primitive that 
lies completely outside the boundary will not be retained. 

2 Enables rough clipping to the data boundary. All primitives inside the 
boundary will be retained. If a primitive lies across the boundary, the whole 
primitive, including the part outside the boundary, will usually be retained. 
In general, any whole primitives that lie completely outside the boundary 
will not be retained. 

If you use rough clipping with a data boundary that is larger than the graphics 
window, it is more likely that the completeness of graphics segments overlapping 
the graphics window will be maintained when the segments are manipulated in and 
around the graphics window. See Figure 39 on page 111 for an illustration of this. 

110 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

•.•. No clip. .No clip •.• 

GSCLP(O)i o 
. . . . Data boundary. . · ... Data boundary. 

. Precise · Precise clip. • . . • 

GSCLP(l)i 

. . Data boundary. .• Data boundary .• 

BEFORE MOVE AFTER MOVE 

Rough clip. ott Rough clip .. 

GSCLP(2)i 

• Data boundary .. · ... Data boundary . 

Figure 39. The difference between a precise clip and a rough clip 

If clipping is disabled, primitives may extend to the boundary of the graphics field. 
They may therefore be drawn outside the graphics window if this does not fill the 
graphics field. 

For details of how graphics text is clipped, see the GDDM Base Programming 
Reference manual. 

Segment viewing limits are also specified in world coordinates, but only apply to 
how much of the current segment, and any segments it calls, is seen at the 
terminal. 

The format of the call is: 

CALL GSSVL(O.O,30.0,O.o,SO.O)i /* Set segment viewing limits */ 

The GDDM default segment viewing limits are the graphics field. 

Chapter 9. Hierarchy of GDDM concepts 111 



applies to all graphics devices 

Whether clipping to the data boundary is enabled or disabled, primitives are 
always clipped precisely to the specified or defaulted segment viewing limits. 

If segment viewing limits have been set and an object is moved around the screen, 
the object will only be partly or wholly visible when part or all of it lies within the 
limits. Figure 40 illustrates this effect. 

Before displacement 

o 
• .Graphics window. 

Before displacement 

. s vI. . . 

.Graphics window. 

After displacement 

o 
. .Graphics window. 

After displacement 

s v 1 

.Graphics window. 

Figure 40. The effect of segment viewing limits on displacement 

Sample pan and zoom program using clipping 

If you have some GDDM graphics calls that draw something (say a machine-room 
layout), then it is possible to execute those calls under the influence of any chosen 
GSWIN call. If clipping has been enabled, just a part of the machine room layout 
is displayed in the graphics window. In other words, it is possible to zoom in to 
part of the picture, by setting particular values for the graphics window before 
executing the GDDM calls that draw the complete picture. The next example 
program uses this technique. 

Other methods of panning and zooming are described in "Panning and zooming" on 
page 164 and in "Panning and zooming" on page 388. 

112 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

Figure 41. First output from "Great Britain map" sample program 

The program contains a subroutine that draws a map of Great Britain. The 
terminal user is prompted to specify which part of the map he would like to view. 

Output of the complete map is shown in Figure 41. A zoom in to part of the south 
coast is shown in Figure 42 on page 115. 

ZOOMMAP: PROC OPTIONS(MAIN); 
DCL (TYPE,MOD,CNT) BIN(3l); /* 
DCL (Wl,W2,Hl,H2) CHAR(4); /* 

Parameter s for ASREAD */ 
Parameters to receive the zoom */ 
area requ e sted by the operator */ 

DCL 
DCL 
DCL 
DCL 

WWl 
WW2 
HHl 
HH2 

FLOAT 
FLOAT 
FLOAT 
FLOAT 

DEC(6) 
DEC(6) 
DEC(6) 
DEC (6 ) 

/* 
I NIT(O) ; 
INIT(lOOO) ; 
INIT(O) ; 
INIT (2000) ; 

/* L-hand graphics window param*/ 
/* R- hand graphics window param*/ 
/ * Bot tom graphics window param*/ 
/* Top graphics window param */ 

CALL FSINIT; 
CALL FSPCRT(93,0,0,1); 
CA.LL ASDFLD (1,1,3,1,31,2) ; 

CALL ASCPUT(1,31, 'ENTER THE 

CALL ASDFLD(2,1,35,1 , 4,1); 
CALL ASFCOL(2,6); 
CALL ASDFLD(3,1,40,1,2,2); 
CALL ASCPUT(3,2,'TO'); 

/* Initialize GDDM */ 
/* Whole screen. 32 by 80 on a 3279 */ 
/* Define protected field that will */ 
/* prompt operator for input */ 
REQUIRED WIDTH RANGE: ' ) ; 

/* Field to receive 1st width parm */ 
/* Field color attribute = yellow */ 

Chapter 9. Hierarchy of GDDM concepts 113 



applies to all graphics devices 

CALL ASDFLD(4,1,43,1,4,1); /* Field to receive 2nd width parm */ 
CALL ASFCOL(4,6); /* Field color attribute = yellow */ 
CALL ASDFLD(5,1,48,1,17,2); /* Define protected prompt field */ 
CALL ASCPUT(5,17,'AND HEIGHT RANGE:'); 
CALL ASDFLD(6,1,66,1,4,1); /* Field to receive 1st height parm */ 
CALL ASFCOL(6,6); /* Field color attribute = yellow */ 
CALL ASDFLD(7,1,71,1,2,2); 
CALL ASCPUT(7,2,'TO'); 
CALL ASDFLD(8,1,75,1,4,1); /* Field to receive 2nd height parm */ 
CALL ASFCOL(8,6); /* Field color attribute = yellow */ 
CALL ASDFLD(9,32,10,1,58,2);/* Protected information field */ 
CALL ASCPUT(9,58, 

'FULL WIDTH IS 0 - 1000 MILES; FULL DEPTH IS 0 - 2000 MILES'); 

/********************/ 
/* SET CLIPPING ON */ 
/********************/ 
CALL GSCLP(l); /* Set clipping on, as coordinates may be outside*/ 

/* graphics window when a partial map is drawn */ 

LOOP: ; 
/*************************************************/ 
/* NOW REDEFINE THE GRAPHICS FIELD (TO PERMIT */ 
/* THE SETTING OF A NEW PICTURE SPACE). THIS */ 
/* HAS THE DESIRABLE SIDE EFFECT OF DELETING */ 
/* THE PREVIOUSLY DISPLAYED MAP SECTION. */ 
/*************************************************/ 
CALL GSFLD( 2,1,30,80); 

/* Leave out top & bottom rows of the screen.*/ 

/*************************************************/ 
/* NOW SET THE PICTURE SPACE (AND THEREFORE THE */ 
/* VIEWPORT) TO MATCH THE ASPECT RATIO OF THE */ 
/* PART OF THE MAP THAT IS TO BE DISPLAYED. */ 
/*************************************************/ 
IF (WW2-WW1) > (HH2-HH1) THEN 
CALL GSPS(1.0,(HH2-HH1)/(WW2-WW1»; /* Define the picture space */ 
ELSE CALL GSPS«WW2-WW1)/(HH2-HH1),1.0)i 

/*************************************************/ 
/* NOW SET THE WINDOW TO THE REQUESTED X RANGE */ 
/* AND Y RANGE. AS THE WINDOW OVERLAYS THE */ 
/* VIEWPORT, AND CLIPPING TAKES PLACE AT THE */ 
/* VIEWPORT BOUNDARY, ONLY REQUESTED PART OF */ 
/* THE MAP WILL BE DISPLAYED ON THE SCREEN. */ 
/*************************************************/ 
CALL GSWIN(WW1,WW2,HH1,HH2); 

/*************************************************/ 
/* NOW OPEN A GRAPHICS SEGMENT AND DRAW A */ 
/* THICK RED LINE ROUND THE VIEWPORT BOUNDARY */ 
/*************************************************/ 
CALL GSSEG(O)i /* Open a graphics segment */ 
CALL GSLW(2); /* Set line width to thick */ 
CALL GSCOL(2)i /* Set current color to red */ 
CALL GSMOVE(WW1,HH1); /* Move to bottom left of viewport */ 
CALL GSLINE(WW1,HH2)i /* Draw line to top left of viewport */ 
CALL GSLINE(WW2,HH2); /* And so on */ 
CALL GSLINE(WW2,HH1); 
CALL GSLINE(WW1,HH1); 

114 GDDM Application Programming Guide Volume 1 



hierarchy of GDDM concepts 

Figure 42. Second output from "Great Britain map" sample program 

/ ********************************************************** / 
/* NOW CALL SUBROUTINE THAT DRAWS THE GREAT BRITAIN MAP */ 
/**********************************************************/ 
CALL GBMAP; 
CALL ASFCUR(2,1,l); / * Position cursor in 1st input field*/ 
CALL ASREAD(TYPE,MOD,CNT); / * Send new map section, await reply */ 
IF TYPE~=O THEN GO TO EXIT; /* Exit if operator presses PF key */ 
CALL ASCGET(2,4,Wl); /* User has typed in new requested */ 
CALL ASCGET(4,4,W2); / * ranges, retrieve them from */ 
CALL ASCGET(6,4,Hl) ; /* associated fields */ 
CALL ASCGET(S,4,H2); 
WWl=Wl; / * Convert from character(4) to float decimal(6) */ 
WW2=W2; 
HH1=Hl; 
HH2=H2; 
GOTO LOOP; 

/***************** **** ** *** *********************** / 
/**** SUBROUTINE TO DRAW MAP OF GREAT BRITAIN **** / 
/ ************************************************* / 
GBMAP: PROC; 
CALL GSCOL(l); / * Set color of sea to blue */ 
CALL GSPAT(3); /* Set sea's shading pattern */ 
CALL GSAREA(O); / * Open graphics area (the sea) */ 
CALL GSLINE(O.O,2000.0); /* Draw round the whole-map boundary */ 
CALL GSLINE(lOOO.O,2000.0); 
CALL GSLINE(1000.0,O.O); 
CALL GSLINE(O.O,O.O); 

Chapter 9. Hierarchy of GDDM concepts 115 



applies to all graphics devices 

CALL GSMOVE(X01(1),Y01(1» /* 
CALL GSPLNE(2117,X01,YOl)i /* 

/* 
/* 
/* 
/* 

CALL GSMOVE(X02(1),Y02(1»i/* 
CALL GSPLNE( 8,X02,Y02)i /* 

/* 
/* 

CALL GSSCLSi 
END GBMAPi 

/* 
/* 
/* 

Move to start of mainland 
Call polyline to draw the 
coastline of the mainland, using 
the 2117 points in the arrays 
XOI & Y01. The interior of the 
mainland is then not shaded blue 
Move to start of 1st island 
Call polyline to draw 1st island 

.• and so on .• 

Close the graphics segment 
End of map-drawing subroutine 

EXIT: CALL FSTERMi /* Terminate GDDM 

/* Include declarations 
/* of GDDM entry points 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

*/ 
*/ 

%INCLUDE ADMUPINAi 
%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINGi 
END ZOOMMAPi /*************************************/ 

116 GDDM Application Programming Guide Volume 1 



Chapter 10. Debugging aids 

Almost every call made to GDDM may result in an error of some sort. The 
parameters you pass to GDDM may be incorrect or the resultant processing may 
meet a problem. 

GDDM provides several facilities to aid debugging: 

• Error messages and error records 

• FSQERR, a call that queries the most recent error message and returns an 
error record to your program for analysis 

• FSEXIT, a call that tells GDDM to pass control to an exit routine whenever an 
error occurs above a specified threshold 

• An external default option that lets you trace the flow of GDDM calls in your 
program, and output the values of the call parameters to a file. 

This chapter gives you some typical examples of how to use the above facilities. 
For a full description of each, you should read the GDDM Diagnosis and Problem 
Determination Guide. 

GDDM error messages 

When an error occurs, GDDMtypically sends a pair of error messages to the user 
terminal. Here is an example of such a pair of messages: 

ADMOOSS E DSUSE, AT '4E0202FE'X 
ADM0082 E DEVICE DOES NOT EXIST 

The first message gives the name of the erroneous call and its address in main 
storage, and the second describes the error. Each message consists of the error 
number, the error severity code, and the error message text (possibly including 
inserts). The severity code can be any of the following: 

I Informational 

W Warning 

E Error 

S Severe error 

U Unrecoverable error. 

Chapter 10. Debugging aids 117 



applies to all devices 

A full list and description of the error messages, and suggested programmer 
responses to them, are given in the GDDM Messages manual. 

After issuing the error messages, GDDM returns control to the application program 
and execution continues with the next statement. 

Querying the last error record using call FSQERR 

GDDM also builds an error record that can be accessed by the program. The error 
record contains the same sort of information as the error message. 

The FSQERR call returns to the program the error record that reflects the most 
recent error. Informational messages are not counted as errors, so the error will be 
of warning level or above. Here is the error record· layout, and a typical call: 

DCL 1 ERROR_RECORD, 
2 SEVERITY FIXED BIN(31), /* Severity code 014ISI14116*/ 
2 NUMBER FIXED BIN(31), /* Error number */ 
2 FUNCTION_NAME CHAR(S), /* Function name */ 
2 MSG_LENG FIXED BIN(31), /* Message length */ 
2 MSG_TEXT CHAR(SO), /* Message text */ 
2 FUNCTION_CODE FIXED BIN (31), /* Request Control paramete,r* / 
2 PARMLIST_PTR POINTER, /* Address of user's params */ 
2 RET_ADDR POINTER, /* Return address to program*/ 
2 ARITH_INSERTl FIXED BIN(31), /* First message insert */ 
2 ARITH_INSERT2 FIXED BIN(31), /* Second message insert */ 
2 CHAR_INSERT1 CHAR(20), /* Character message ins.ert */ 
2 CHAR_INSERT2 CHAR(20); /* Character message insert */ 

CALL FSQERR(160,ERROR_RECORD); /* Return whole error record for */ 
/* the most recent error */ 

The first parameter specifies the length of the second. This is a variable in which 
GDDM is to return all or part of the error record. The example returns the 
complete error record. It would be used by an advanced program that wanted to 
analyze errors, or perhaps to present its error messages in some unusual format. 
The program might possibly want to maintain a record of errors on auxiliary 
storage. 

More commonly, you may decide to test whether a particular GDDM call (or group 
of calls) executed successfully. You need request (and declare) only that part of the 
error record in which you are interested. 

The severity code in the error record is a numeric value of either 4, 8, 12, or 16 
corresponding exactly to the codes W, E, S, or U in the error message. If there has 
been no error of warning level or above (since initialization or a previous FSQERR 
call) GDDM returns a severity value of O. It is good practice to test the severity 
code field after all critical GDDM calls or groups of calls and invoke your own 
error-handling routines as required. DSOPEN calls, for instance, are usually 
critical. The examples in other chapters of this guide do not in general test the 
return codes because it would tend to obscure the main points they are designed to 
illustrate. 

As mentioned above, FSQERR returns the most recent error since initialization or 
since the previous FSQERR. It is therefore not enough, in general, to place an 
FSQERR after the call in question. You may be given an error record 
corresponding to a GDDM call made some time before. To ensure that the error 
record (if any) corresponds to the particular call that you want to verify, you must 

118 GDDM Application Programming Guide Volume 1 



debugging aids 

execute an FSQERR as the most recent GDDM call that occurred before the one 
you want to test (except in the case of the first GDDM call in the program). 

DCL 1 ERROR_RECORD, 
2 SEVERITY FIXED BIN(3l), 
2 ERROR_NUMBER FIXED BIN(3l)i 

/*******************************/ 
/* Clear error record (if any) */ 
/*******************************/ 
CALL FSQERR(8,ERROR_RECORD)i /* Clear previous error record */ 

/******************************/ 
/* Execute call to be checked */ 
/******************************/ 
CALL ASDFMT(7,8,DFMT_ATTRS)i /* Redefine page's alpha fields */ 

/**********************/ 
/* Query error */ 
/**********************/ 
CALL FSQERR(8,ERROR_RECORD}; /* See if ASDFMT resulted 

/* in an error 
*/ 
*/ 

IF SEVERITY> 4 THEN GOTO ABORT; /* If alpha redefine failed, */ 
/* then end run. */ 

Continue normal processing •.• 

Specifying error exit and threshold using call FSEXIT 

This call specifies a user routine that will gain control when an error of specified 
severity occurs. This is a typical call: 

CALL FSEXIT(DIAG66,8); /* Give control to routine DIAG66 if any */ 
/* error of severity 8 or higher occurs */ 

If an application program is using the nonreentrant interface, the named routine is 
passed just one parameter - the GDDM error record, described above. If the 
reentrant or system·programmer interface is used, the routine is passed two 
parameters. The first of these is the Application Anchor Block, previously passed 
by the application program to GDDM; the second is the GDDM error record. 

A few points you should note: 

• If no error exit is explicitly specified (by calling FSEXIT), the default error exit 
applies. This exit is called following all errors of severity 4 or higher (8 or 
higher on IMS). It merely presents the error message to the user console and 
returns control to the program. 

Chapter 10. Debugging aids 119 



applies to all devices 

• The default error exit can be specified in an FSEXIT call by setting the first 
parameter to zero. 

To ensure the correct data type for this parameter, the following call should be 
made in PL/I: 

CALL FSEXIT(BINARY(O,31),8)i /* Call default exit to present */ 
/* error messages if severity */ 
/* is 8 or more. */ 

This call would suppress messages of "warning" level. Only messages of higher 
severity would be sent to the user console. 

• When a new program is being tested, it may prove useful to call the default exit 
after every GDDM call. This will in effect send a trace to the user console of 
all the GDDM calls that have been executed. This is the statement needed: 

CALL FSEXIT(BINARY(O,31),O)i /* Call default exit after every */ 
/* call to trace the program flow */ 

• In PL/I programs, the name of the error exit routine must be declared as an 
external entry, otherwise GDDM is unable to pass the error record as a 
parameter. 

• User error exits cannot be specified when using COBOL, but you can still use 
FSEXIT to specify a threshold for invoking the default error exit. 

There are more details in the GDDM Base Programming Reference manual. 

There is an example of an error exit routine in Figure 43. 

DCL DERROR EXTERNAL ENTRY; 
CALL FSEXIT(DERROR,8); 

/* 
/* 
/* 

*/ 
*/ 
*/ 

DERROR: PROC(ERROR RECORD) OPTIONS(COBOL)i 
DCL DCODE FIXED BIN (31) EXTERNALi/* Communicate with program */ 
DCL 1 ERROR_RECORD, /* GDDM error record. */ 

2 SEVERITY FIXED BIN (31), /* Severity (range 0-16). */ 
2 NUMBER FIXED BIN (31), /* Error message number. */ 
2 FUNCTION CHAR(8), /* GDDM function giving error.*/ 
2 MSGLEN FIXED BIN (31), /* Length of message text. */ 
2 MSGTEXT CHAR (80) , /* Message text. * / 
2 RCP FIXED BIN (31), /* GDDM RCP. */ 
2 PLISTPTR FIXED BIN (31), /* Parameter list pointer. */ 
2 RETADDR FIXED BIN (31), /* Return address. */ 
2 AIl FIXED BIN (31), /* Message insert 1. */ 
2 AI2 FIXED BIN (31), /* Message insert 2. */ 
2 CI1 CHAR(20), /* Character message insert 1.*/ 
2 CI2 CHAR(20); /* Character message insert 2.*/ 

IF FUNCTION 'DSOPEN' /* DSOPEN has failed because */ 
& NUMBER = 97 THEN /* there is not a plotter. */ 

DCODE = 4; /* */ 
ELSE IF FUNCTION = 'GSLOAD' /* GSLOAD has failed with an */ 

& NUMBER = 303 THEN /* unrecognized file format. */ 
DCODE = 8; /* */ 

END DERRORi /******************************/ 

Figure 43. Error exit routine 

120 GDDM Application Programming Guide Volume 1 



debugging aids 

Instead of declaring the error routine to be an external entry, you may choose to 
execute an FSQERR call to obtain the error record: 

CALL FSEXIT(EERROR,8)i 

/* 
/* 
/* 

EERROR: PROC(DUMMY); 

*/ 
*/ 
*/ 

/* Specify error exit. */ 

/* */ 
/* Trap GDDM error. * / 

DCL DUMMY CHAR(*); 
DCL DCODE FIXED BIN (31) 
DCL 1 ERROR_RECORD, 

/* Not used for internal routine*/ 
EXTERNAL; /* Communicate with program. */ 

2 SEVERITY FIXED BIN (31), 

/* 
/* 
/* 

2 CI2 

*/ 
*/ 
*/ 

CHAR(20) i 

CALL FSQERR(160,ERROR_RECORD); 
IF FUNCTION = 'DSOPEN' THEN 

DCODE = 4; 
ELSE IF FUNCTION = 'GSLOAD' THEN 

DCODE = 8; 
END EERROR; 

GDDM tracing 

/* GDDM error record. */ 
/* Severity (range 0-16). */ 

/* Character message insert 2*/ 

/* Get error record structure*/ 
/* DSOPEN for plotter has */ 
/* failed. */ 
/* GSLOAD has failed. */ 

To produce a file containing trace output from your program, you have to specify 
some GDDM external defaults before executing your program. 

You do this using the GDDM defaults mechanism, which is similar to the 
nicknames mechanism described in "Nicknames" on page 378. The defaults can be 
passed to GDDM in any of the ways described in "How to pass nickname 
statements to GDDM" on page 384. If an ESSUDS or ESEUDS call is used, it 
should be executed immediately after the FSINIT. 

A major advantage of this method of tracing is that you do not have to change your 
program to use it. Here are some example tracing defaults: 

ADMMDFT TRCESTR='IF API THEN PARMSF' 
ADMMDFT CMSTRCE=(ADMOOOOI,ADMTRACE) 

Under VM/CMS, coding the above statements in your defaults file will produce a 
print file called ADMOOOOI ADMTRACE on your A disk. The first statement 
specifies that the parameter values of every GDDM call in your program are to be 
output to a trace print file. The second statement gives the filename of the print 
file. To direct the output direct to the system printer, the second statement would 
have to be: 

ADMMDFT CMSTRCE={,) 

You may not want to trace every call in a program. For example, you may want 
only to trace an individual call. The following statements trace the parameter 
values of a single ASREAD call: 

ADMMDFT TRCESTR='IF API THEN' 
ADMMDFT TRCESTR=' IF (1 GR+4)%%=X' 'CIOOOOO" THEN PARMSF' 
ADMMDFT CMSTRCE=(ADM00001,ADMTRACE) 

Chapter 10. Debugging aids 121 



applies to all devices 

The single call is checked for by checking the contents of a register for the 
hexadecimal value of the call's request control parameter (RCP) code, in this case, 
C100000 for ASREAD. The RCP codes of all GDDM Base and PGF calls, and full 
information about the defaults mechanism are given in the GDDM Base 
Programming Reference manual. 

Or, if you want to trace a call only every nth time that a particular set of 
conditions occurs, the following statements, for example, trace every fourth 
occurrence of ASREAD: 

ADMMDFT TRCESTR='IF API THEN 
ADMMDFT TRCESTR=' IF (1 GR+4)%%=X' 'C100000" THEN' 
ADMMDFT TRCESTR=' IF COUNT(4) THEN PARMSF 
ADMMDFT CMSTRCE=(ADM00001,ADMTRACE) 

Format of trace output file 

Here is a small extract from a trace file, showing the format of the information 
output for a single ASREAD call: 

00000415 01 CPNIN 
PTRACE 2 FIXED 
PTRACE 3 FIXED 
PTRACE 4 FIXED 
00000544 01 CPNOUT 
PTRACE 2 FIXED 
PTRACE 3 FIXED 
PTRACE 4 FIXED 

ASREAD ('OC100000'X) - READ 
---OUTPUT ONLY PARAMETER-----
---OUTPUT ONLY PARAMETER-----
---OUTPUT ONLY PARAMETER-----
AS READ ('OC100000'X) - READ 

o 
o 
o 

Full information about GDDM tracing under the various operating systems, and 
the format of the trace output file, are given in the GDDM Diagnosis and Problem 
Determination Guide. 

Other debugging aids 

Returning error information in a control block 

You can tell GDDM to return error information in a control block instead of 
sending messages to the terminal. You specify your requirement using the GDDM 
ERRFDBK external default. This can be done by means of a SPINIT call or an 
ESEUDS call, or in the GDDM defaults module. Details are given in the GDDM 
Base Programming Reference manual. 

Information returned in register 15 

If you are using a programming language that allows you access to registers, you 
can get error information from register 15. On return from a call to GDDM, the top 
half of this register contains the error severity code and the bottom half the error 
number. 

122 GDDM Application Programming Guide Volume 1 



debugging aids 

Reentrant and system programmer interfaces 

Error information, consisting of an error code and a severity code, is supplied by 
GDDM in the application anchor block (AAB). Details are given in the GDDM 
Base Programming Reference manual. 

Chapter 10. Debugging aids 123 



Part 2. Advanced graphics 

Part 2. Advanced graphics 125 



Chapter 11. Graphics segments 

A segment is a group of graphics primitives that can be handled as an entity, 
separate from other segments and primitives. This chapter describes the calls that 
create, delete, and copy segments, and those that change a segment's appearance by 
moving, rotating, rescaling, or shearing it. "Chapter 12. Storing graphics" on 
page 157 explains how to store segments on external storage. 

Segments can also call other segments. This means that you can organize your 
graphics segments into a structure or hierarchy. Well-structured data has similar 
advantages to well-structured programs, for example, increased clarity and ease of 
maintenance. You do not have to divide a picture into segments. The complete 
picture can be a single segment, or primitives can be drawn outside segments 
altogether. A segmentation scheme should be the most convenient and efficient 
implementation of the functions that the end user requires. 

Segments have major uses in interactive graphics applications. Such applications 
generally allow the terminal operator to manipulate parts of pictures. For 
instance, a program for designing the external appearance of a house might have 
the house outline, the doors, and the windows as separate segments. It would then 
be relatively simple to allow the terminal operator to position, rescale, and 
otherwise manipulate each of these items independently. 

"Chapter 14. Interactive graphics" on page 177 describes calls and techniques for 
making a graphics application interactive. 

Creating segments 

Segments are opened by executing a GSSEG call. They cap. be named: 

CALL GSSEG(24); /* Define named segment with identifier 24 */ 

or unnamed: 

CALL GSSEG(O); /* Define an unnamed segment (in other 
/* words, one with a zero identifier) 

Unnamed segments are not recommended if you are going to use GSSAVE, and 
GSLOAD. See "Loading graphics from external storage using call GSLOAD" on 
page 159. 

By default, created segments are appended by GDDM to a drawing chain, 
containing all the segments that you create in the order that you create them. 
Only the segment data held in the drawing chain will appear after a complete 
regeneration of the screen. 

Primitives belong to the currently open segment. This can be closed with a 
GSSCLS call: 

*/ 
*/ 

Chapter 11. Graphics segments 127 



applies to all graphics devices 

CALL GSSCLS; /* Close current segment */ 

Issuing this call means that you do not intend to add any further primitives to the 
segment. It does not delete the enclosed graphics. 

A segment must be closed before another one can be opened. It must also be closed 
before respecifying any object that is above it in the graphics hierarchy (as 
described in "Chapter 9. Hierarchy of GDDM concepts" on page 89). For example: 

CALL GSVIEW(O.O,l.O,O.O,O.5); /* Define first viewport */ 
CALL GSSEG(l)i /* Open a graphics segment */ 
CALL GSMOVE(20.0,30.0)i/*Start drawing picture in first viewport*/ 

CALL GSSCLSi /* Must close segment before defining new viewport 

CALL GSVIEW(O.O,1.O,O.5,l.O)i /* Define second viewport 

CALL GSSEG(2); /* Open a graphics segment 
CALL GSCOL(3)i /* Start drawing picture 

/* in second viewport 
/* and so on .•. 
/* 

You cannot reopen a named segment, once closed. But you can create as many 
unnamed segments as you may choose, as explained in "Unnamed segments" on 
page 154. 

You can still draw primitives when there is no segment open. The effects are 
described in "Primitives outside segments" on page 153. 

*/ 

*/ 

*/ 
*/ 
*/ 
*/ 
*/ 

Within a page you may have as many unnamed or named segments as you choose, 
but no more than one segment with a given nonzero identifier. For example, it 
would be an error to issue CALL GSSEG ( 24) if the current page already has a 
segment with that identifier. 

Graphics primitive attributes are associated with the segment that is current when 
they are dermed. If you issue CALL GSCOL ( 2) to change the current color to red, 
all later primitives in the segment (such as lines and arcs) will be drawn in red. If 
you then close the segment and open a new one, all the graphics attributes 
(including color) are usually reset to the defaults. A called segment, however, does 
not assume the default attributes on being opened. Instead, it inherits the current 
attributes. These remain current until changed within the called segment. See 
"Calling segments from other segments" on page 148. 

Once a primitive has been drawn with an explicitly defined attribute, as in the 
above GSCOL call, it cannot be altered. You cannot normally change, say, a line's 
color from red to blue, unless the line was drawn with the default color attribute. 
This can affect already-drawn pictures, as described in "Changing default attribute 
values" on page 47. 

It is important to remember that segments are collections of primitives, not areas of 
the screen. You could, for instance, create one segment comprised of some 
primitives in each corner of the screen, and another comprised of some other 
primitives in the middle. And you can overlap primitives from different segments. 
Figure 44 on page 129 is comprised of only three segments. For identification, all 
the primitives of each one are the same color. 

128 GDDM Application Programming Guide Volume 1 



I ~PLlr.ATIIJi I 

IOWLlr.ATIIJi I 

HOST 

I~PLlr.ATIIJi I 

graphics segments 

SEGMENT 0 
SEGMENT 1 
SEGMENT 2 
SEGMENT 3 

Figure 44. Segments are collections of primitives 

Deleting segments 

You may delete only a named segment - one with a nonzero identifier. This is the 
call: 

CALL GSSDEL(15); / * Delete segment 15 and all its contents */ 

A later ASREAD, GSREAD, MSREAD, or FSFRCE will cause the picture to appear 
without those primitives that belonged to segment 15. 

Having deleted segment 15, you may open a new segment with identifier 15. 

To delete all the segments in the graphics field, you can issue this call: 

CALL GSCLR; /* Clear the graphics field */ 

Chapter 11. Graphics segments 129 



applies to all graphics devices 

Segment attributes 

Every segment has a set of attributes. These should not be confused with the 
graphics attributes of the contained primitives. Segment attributes are properti¥ 
of the group of primitives as a whole. They determine such things as whether the 
segment can be transformed (that is, moved, scaled, or rotated) and whether it is 
visible or invisible. 

A segment acquires the attributes that are current when it is opened. A default set 
of segment attributes becomes current initially when a graphics field is defined or 
created by default. Opening a segment creates a default graphics field if none 
exists already. 

You set the current segment attributes with a GSSATI call. For instance, this call 
sets the current value of the visibility attribute to invisible. 

CALL GSSATI(2,O); /*Make subsequently opened segments invisible*/ 

The first parameter specifies the type of attribute that is being set, and the second 
the value it is being set to. The valid types and values are as follows: 

1 Detectability. This determines whether a segment can be selected by a pick 
graphics input device (described in "Chapter 14. Interactive graphics" on 
page 177). The second parameter means: 

o Segment cannot be picked. This is the default. 

1 Segment can be picked. 

2 Visibility. The second parameter means: 

o Segment is invisible. 

1 Segment is visible. This is the default. Only a visible segment can be 
selected by a pick device. 

3 Highlighting. The second parameter means: 

o Segment is not highlighted. This is the default. 

1 Segment is highlighted by being made white. 

4 Transformability. The second parameter enables you, for your own 
reference, to mark segments as transformable or nontransformable. It does 
not actually affect the transformability of segments - all segments can be 
transformed. 

1 Segment is marked as nontransformable. Segment is not to be moved, 
scaled, rotated, or sheared. This is the default. 

2 Segment is marked as transformable. The segment can be moved, 
scaled, rotated, or sheared. 

5 This type has no effect in the current release. It should always be set to 
either 0 or 1. 

130 GDDM Application Programming Guide Volume 1 



graphics segments 

6 Chained or nonchained attribute. This determines whether a segment is 
included in the drawing chain. By default, segments are added to the 
drawing chain when they are created. They are subsequently drawn in the 
order that they appear on the drawing chain, unless you change their 
priority (see "Drawing chain and segment priority" on page 147). An 
example of the use of the chaining attribute is to exclude called segments 
from the drawing chain until they are called. See "Calling segments from 
other segments" on page 148 for more details. The second parameter means: 

o The segment is excluded from the drawing chain. It will be included in 
the drawing chain only when called by another segment. 

1 The segment is included in the drawing chain. This is the default. 

You can change the attributes of the current segment or any other segment in the 
current graphics field by a aSSATS call. A typical call is: 

CALL GSSATS(7,2,O) /* Make segment 7 invisible */ 

The first parameter is the segment identifier. The second and third parameters can 
have the same values, with the same meanings, as the two parameters of aSSATL 

Transforming segments 

Segments can be transformed in four ways, as shown in Figure 45 on page 132: 

Displaced 
Scaled 
Rotated 
Sheared 

Moved to another x,y location 
Made larger or smaller in the x or y direction, or in both 

Sloped to one side. 

Chapter 11. Graphics segments 131 



applies to a ll graphics devices 

DISPLACEMENT SCALING 

CALL GSSAGA (2. 1. 1. e. 1. 1. 9. - 25. 5. e); CALL GSSAGA(2. 3. 0. 75. e.1.1. 0. 0. 0. 0); 

ROTATION SHEARING 

·····@ ........... t .... 
..... :,$0': .... 

: .... 1················ .. Wi:/ : 
. ..... :1L .... 

..../1 

.... / ~ 
CALL GSSAGA (2, 1. 1. O. 1. 1. 2, 0, 0, 0): CALL GSSAGA(2. 1. 1. 0. 5, 1, 1,0,0,0,0): 

Figure 45. The four segment transformations 

You can specify one or more transformations in a GSSAGA call. Or, instead, you 
may use a transformation matrix and a GSSTFM call (see "Transforming segments 
using call GSSTFM" on page 137). A transformation can also be applied when you 
call a segment (see "Calling segments from other segments" on page 148). 

Typical GSSAGA calls for single transformations are shown in Figure 45. In each 
case, the original, untransformed segment is shown in red. The segment origin 
(that is, the position x = O,y = ° in world coordinates when the segment was drawn), 
is at the center of the circle. 

You must always specify all the parameters of GSSAGA, including null 
specifications for those transformations you do not want to be performed. Here is a 
call with a complete set of null specifications: 

/ * Segment-id Scaling Shearing Rotation Displacement Type */ 
CALL GSSAGA( 7, 1,1, 0,1, 1,0 , 0,0, 1); 

The parameters of GSSAGA have the following meanings: 

• The first is the identifier of the segment to be transformed. 

• The next two are the scaling parameters. They are multipliers to be applied to 
the x and y coordinates, respectively. The segment is expanded or contracted, 
leaving its origin unchanged. You can specify a negative scaling parameter, to 
reflect primitives about the other axis. 

• The next two are the shearing parameters. GDDM shears the positive y axis 
of the segment to pass through the point defined by these parameters. The 
illustration in Figure 46 on page 134 shows the effect of shearing by dx and dy. 

132 GDDM Application Programming Guide Volume 1 



graphics segments 

The shearing is carried out about the segment origin, the position of which 
remains unchanged. 

If dx and dy have the same sign, the shear is rightward (clockwise), as shown. 
If they have different signs, the shear is leftward. 

If you know the angle of shear (call it S) in degrees or radians, and you have 
uniform window coordinates, you can specify a dx of sin(S) and a dy of cos(S). 

• The next two are the rotation parameters. GDDM rotates the positive x axis 
of the segment to pass through the point defined by these parameters. The 
illustration in Figure 47 on page 135 shows the effect of rotating by dx and dy. 
The rotation is carried out about the segment origin, the position of which 
remains unchanged. 

Notice that dx and dy define the position of the x axis. This means that a 
positive dx and dy define a counterclockwise rotation. 

Negative values of dx and dy are valid as well as positive, allowing rotations in 
the full range from 0 to 360 degrees. Some example rotations are: 

1,0 No rotation 
0,1 90 degrees counterclockwise 
1,1 45 degrees counterclockwise 
0,-1 90 degrees clockwise 
-1,0 180 degrees (clockwise or counterclockwise - same result) 

If you know the angle of rotation (call it R) and you have uniform window 
coordinates, you can specify a dx of cos(R) and a dy of sin(R). 

• The next two are the displacement parameters in world-coordinate units. 
They specify values that are to be added to, respectively, the x and y 
coordinates of all the primitives in the segment. So the segment is moved, but 
the position of its origin remains unchanged. 

• The last parameter specifies the type of transformation: 

a New. The specified transformations are applied to the original 
primitives; any previous GSSAGA or GSSTFM calls for this segment 
being nullified. 

1 Additive. Any previous transformations for this segment are applied 
first, and then the ones specified in this call are applied to the result. 

2 Preemptive. The transformations specified in this call are applied first, 
and then any previously specified ones are applied to the result. 

The transformations in a single GSSAGA call are applied in the order in which the 
parameters are coded: scaling, shearing, rotation, displacement. 

The order in which transformations are performed becomes important when 
displacement or scaling is combined with rotation or shearing. To understand why, 
imagine a picture of a standing human figure of normal proportions. If it were first 
scaled by 2 in the y direction, and then rotated by 90 degrees, the result would be a 
picture of a very tall person lying down. If, instead, it were first rotated by ,90 
degrees and then scaled by 2 in the y direction, it would become a picture of a very 
fat person lying down. 

Chapter 11. Graphics segments 133 



applies to all graphics devices 

To back out all previous transformations for a segment, allowing it to be displayed 
as originally drawn, you can execute a new-type call (last parameter 0) with all 
transformations set to null: 

/ * Segment- id Scal ing 
CALL GSSAGA( 7 , 1 , 1 , 

Shearing 
0 , 1 , 

Rotation 
1 , 0 , 

Displacement Typ e */ 
0 , 0 , 0) ; 

Another call you may use that has the same effect is described in "Transforming 
segments using call GSSTFM" on page 137. 

Notice that GSSAGA does not move the segment origin. All the transformations in 
Figure 45 on page 132 leave the segment origin at the point marked by the red 
cross. You can change the position of a segment's origin with a GSSORG call (see 
"Moving the origin of a segment" on page 142). 

Figure 46. Shearing 

134 GDDM Application Programming Guide Volume 1 



ROTATION 
ANGLE 

I 
dy 

graphics segments 

SEGMENT ~"' __ --L ______ =---
ORIGIN 

( dx ---~) 

Figure 47. Rotation 

How and when transformations take effect 

GDDM applies transformations when a page is sent to the terminal (by an ASREAD 
call, for instance), not when the transformation calls are executed. 

Each transformable segment has an object called a transform associated with it. 
This is a matrix that records the net result of all the transformation calls for the 
segment. Initially, when the segment is opened, the transform is set to identity, 
giving no transformations. Each later transformation call updates it. 

On output, the transform is applied to the segment's graphics primitives to create 
the display. Instead of the segment as originally drawn, the display contains the 
transformed version. GDDM's record of a segment's graphics primitives is never 
altered. While the segment exists, GDDM retains this record. 

A segment's transform, together with its graphics primitives, graphics attributes, 
and segment attributes, are held by GDDM as Graphics Data Format (GDF) orders 
(see "Chapter 13. Picture handling in graphics data format" on page 171). 

Chapter 11. Graphics segments 135 



applies to all graphics devices 

Transforming text, markers, and graphics images 

GDDM applies the transform to all vectors (straight lines and arcs) in the segment. 
For instance, to perform a displacement of 10,-20, GDDM adds 10 world-coordinate 
units to the x values of the start and end points of all lines in the segment, and 
subtracts 20 units from their y values. 

Graphics text is transformed by modifying its attributes - its character box size, 
character angle, and so on. This means that the range of possible transformations 
is limited. The limitations are the same as when setting the attributes with calls 
such as GSCB and GSCA. These are explained in "Chapter 7. Basic graphics text" 
on page 55. 

Briefly, for mode-3 text, all the transformations can be fully implemented; for 
mode-2, only the position of each character can be transformed; and for mode-I, 
only the position of the start of each string. Considering, for example, just 
displacement and rotation, this means: 

• A mode-! text string can be displaced but not rotated; 

• Individual mode-2 characters within a string can be displaced, and the base line 
of the string can be rotated about the segment origin; 

• Individual mode-3 characters can be displaced and individually rotated about 
the segment origin. 

Images created by the GSIMG or GSIMGS call behave like single characters of 
mode-2 text: they can be displaced, but not transformed in any other way. 

Markers behave like single characters of mode-3 text if they are vector symbols, or 
of mode-2 text if they are image symbols. 

Moving a segment and its origin using call GSSPOS 

This call moves a segment, in the same way as a displacement transformation using 
the GSSAGA call. The difference is that GSSPOS moves the segment origin, 
whereas GSSAGA leaves it unchanged. GSSPOS looks like this: 

/* Segment-id 
CALL GSSPOS(3, 

New position */ 
35.0,-15.0); 

The first parameter is the identifier of the segment to be moved, and the other two 
are the x and y coordinates of its new position. GDDM moves the segment so that 
its origin is in this position. The segment must have the transformable attribute. 

Suppose the segment contains a line that was drawn by executing these calls: 

CALL GSMOVE(-5.0,-S.0); 
CALL GSLINE(10.0,10.0); 

After the GSSPOS call, the line will extend from (30,-20) to (45,-5) as shown in 
Figure 48 on page 137. 

Note that the segment origin is the one that was in use when the segment was 
drawn - not the window origin at the time of the GSSPOS call. The difference is 
important if more than one GSSPOS is issued for a segment. For example, if the 
program that issued the previous GSSPOS example now executes this call: 

136 GDDM Application Programming Guide Volume 1 



graphics segments 

CALL GSSPOS(3,-20.0,20.0); 

the segment origin will move from (35,-15) to (-20,-20). The line will then extend 
from (-25,15) to (-10,30). 

You can query the results of GSSPOS calls with a GSQPOS call. However, the 
GSQORG call (see "Moving the origin of a segment" on page 142) is recommended 
in preference. It gives the same result, but is more versatile because it can be used 
to query both transformable and non transformable segments. 

, 
CALL GSSPDS(3. -20. 20) ; : , , 

Local origin: 

(-10.30) 

--- : ,·:"20:-2-0) 

(-25. 15) 

, . 

(-5. -5 ) 

Figure 48. Effects of GSSPOS calls 

Transforming segments using call GSSTFM 

(10. 10) 

(45. - 5) 

CALL GSSPDS(3. 35. -15) ; 

If you have a mathematical background or are an experienced graphics 
programmer, you may prefer to manipulate the transformation matrix directly. The 
display position of every point (x,y) in a segment is given by the matrix expression: 

abc x 
de f y 
001 1 

You can set the values in the matrix by the GSSTFM call: 

Chapter 11. Graphics segments 137 



applies to all graphics devices 

DCL MATRIX(6) FLOAT DEC; 

/* Set Values of Matrix in Row-Major Order */ 

MATRIX(l) · .. ; /* a */ 
MATRIX(2) · .. , /* b */ 
MATRIX(3) • •• I 1* c */ 
MATRIX(4) • •• I /* d */ 
MATRIX(3) • •• I /* e */ 
MATRIX (6) • •• I /* f */ 

/* Segment-id Elements Values Type */ 
CALL GSSTFM(3, 6, MATRIX, 0) ; 

The parameters mean the following: 

• The first one is the identifier of the segment whose transform is being defined. 

• The second is the number of elements being supplied. 

• The third is the array in which the elements of the matrix are specified. The 
order is row-major (a through f). 

• The fourth is a type parameter with the following possible values and 
meanings: 

o New. The specified matrix replaces the existing transform. 

1 Additive. The specified matrix is to premultiply the existing transform, 
with the effect that the specified transform is applied after the existing 
one. 

2 Preemptive. The specified matrix is to postmultiply the existing 
transform, with the effect that the specified transform is applied before 
the existing one. 

These type values have exactly similar effects to the type values in the 
GSSAGA call. 

The default values for the third parameter correspond to the identity matrix: 

100 
010 
001 

This matrix resets all the transformations for the specified segment. If the value of 
the second parameter of GSSTFM is less than nine, omitted elements are taken 
from the default matrix. The last three values, if specified, must always be the 
same as their defaults, so in practice you need never specify more than six values. 

If you specify zero elements in the second parameter, GDDM assumes the identity 
matrix. This allows the following simple means of setting the transformations to 
null, letting the segment be displayed as originally drawn: 

DCL DUMMY(l) FLOAT DEC; 
CALL GSSTFM(3,O,DUMMY,O);/*Reset transform for segment 3 to null*/ 

Notice that the last parameter specifies a new (O-type) transformation. Either of 
the other types (lor 2) would leave the segment's transform unchanged, because 
they would either premultiply or postmultiply it by the identity matrix. 

138 GDDM Application Programming Guide Volume 1 



graphics segments 

GSSTFM, GSSAGA, and GSSPOS all modify the segment's transform, and they can 
be mixed freely. 

Querying transforms 

There are two calls for querying the transform of a segment, corresponding to two 
of the transform-setting calls. This one corresponds to GSSAGA: 

DCL (SCAX,SCAY,SHEX,SHEY,ROTX,ROTY,DISX,DISY) FLOAT DEC(6); 

/* Segment-id 
CALL GSQAGA( 7, 

Scaling Shearing Rotation 
SCAX,SCAY, SHEX,SHEY, ROTX,ROTY, 

Displacement */ 
DISX,DISY) ; 

The flrst parameter identifies the segment whose transform is being queried. The 
other eight are variables in which GDDM returns values that would have to be 
specified in a new-type GSSAGA call to create the transform. Note, though, that 
GSSAGA has one more parameter than GSQAGA, namely the last one, which 
specifies the type of transformation required. The values returned by GSQAGA are 
not necessarily the same as any that may have been specified in earlier GSSAGA 
calls, but they will give the same results. 

This is the query call that corresponds with GSSTFM: 

DCL MATRIX(6) FLOAT DEC; 

/*Segment-id Elements Values */ 
CALL GSQTFM(3, 6, MATRIX); 

The flrst parameter is again the segment identifler. The second specifles how many 
elements of the transformation matrix are being requested, and the third is an 
array in which GDDM returns them. 

The elements are returned in row-major order, the same as is used in the GSSTFM 
call. A maximum of nine elements can be requested. The seventh, eighth, and 
ninth are always 0, 0, and 1. 

Examples of transformations 

To help you understand the GSSAGA call, Figure 49 on page 140 illustrates the 
effects of several transformations. 

The diagram labeled START shows the starting position for each of the seven 
transformation sequences that follow. 

The flrst transformation, diagram 1, is a simple displacement. The square moves 30 
units to the right and 30 units upward. 

Diagram 2 shows the effect of following this displacement with a rotation. The 
square does not rotate about its center; it rotates about the segment origin which is 
still in its default position of (0,0). The rotation therefore causes the square to 
change position. 

In diagram 3 the segment origin is set to the center of the square before the 
rotation is performed. The square therefore maintains its position when it is 
rotated. 

Diagram 4 shows the effect of scaling by 2 in the x direction. Because the scaling 
is about the segment origin at (0,0), the left-hand bottom corner of the box has its x 

Chapter 11. Graphics segments 139 



applies to all graphics devices 

coordinate increased from 10 to 20. So, in addition to becoming twice its original 
width, the box also changes position. 

Diagram 5 shows how you can scale the box without changing its position. You set 
the segment origin to the center of the box before performing the scaling operation. 

The first two transformations in diagram 6 displace the box by (30,30), then rotate 
the box about its center. The angle of rotation is that given by dx = 10,dy = 4. After 
the rotation, a scaling is applied in the x-direction. This distorts the original 
shape, giving the same effect as a shear operation. 

If you want to double the width of the box without the shearing effect, you must 
perform the scaling before you rotate it. Either apply the scaling GSSAGA first, 
or (as shown in diagram 7) set the last parameter of the scaling GSSAGA to 2. This 
will ensure that the scaling is done before all the other transformations. Note that 
the segment origin has to be reset to the original center of the box before the 
pre-scaling is performed. 

START. 

iii 
(Segment origin defaults to X=II. Y=II) 

2. 

pt 
1/ 

V 

CALL GSSAGA (1. 1.1. 0. 1. 01. 00. 311. 311. II ) ; 
CALL GSSAGACi. l . 1. 0.1. 10. 04. 011. 110.il ; 
(Move. then rotate about x=e. Y=II) 

1. 

CALL GSSAGA (1. 1.1. 0. 1. 01 . 00. 311.30, II ); 
(Move segment by X=30. Y=30) 

3. 

CALL GSSAGA (1.1. 1. II. 1. 111. 1111. 311. 30, 0); 
CALL GSSORG(511.511) ; 
CALL GSSAGA(l. l . l . 11.1. 111. 114. 1111. 1111. 1) ; 
(Move. then rotate about X=511. Y=511) 

Figure 49 (Part 1 of 2). Results of example transformations 

140 GDDM Application Programming Guide Volume 1 



4. 

CALL GSSAGA (1. 02. 01. 0. 1. 1. 0. II . II. 0) ; 
(Scale segment about X=0. Y=0 . Center 
moves from X=20. Y=211 to X=411 . Y=20 ) 

b. 

CALL GSSAGA (1.1. 1. 0. 1. 01. 00. 30. 30. II ) ; 
CALL GSSORG(1. 511 . 511 ); 
CALL GSSAGA (1. 1. 1. 0. 1. 111. 04. 00. 00. 1) ; 
CALL GSSAGA(l. 02. 01. 11.1.1. II. 00. 00. 1) ; 
(Move. rotate. then post -scale . The 
segment becomes sheared. 

graphics segments 

5. 

CALL GSSORG(20. 211) ; 
CALL GSSAGA (1. 112. 01. 0. 1. 1. 0. 0. II. II ) ; 
(Scale segment about X=20. Y=211) 

7. 

CALL GSSAGA(1. 1. 1. 0. 1. Ill. 00. 30. 311. 0) ; 
CALL GSSORG(1. 511. 511) ; 
CALL GSSAGA(1. 1. 1. 11. 1. 10.114. 00. 00. 1l ; 
CALL GSSORG(1. 20. 20) ; 
CALL GSSAGA(l . 02.111. 0. 1. 1. 0. 00. 00. 2l ; 
(Move. rotate •. then pre- scale) 

Figure 49 (Part 2 of 2). Results of example transformations 

Chapter 11. Graphics segments 141 



applies to all graphics devices 

Moving the origin of a segment 

The local origin of a segment is the origin of the world-coordinate system in which 
the segment was originally drawn. Transformation with the GSSAGA (or 
GSSTFM) call leaves the local origin unchanged. You can move the local origin 
with a GSSORG call: 

/ *Segment-id 
CALL GSSORG(S, 

New position for local origin */ 
20 _0,40_0 ) i 

The first parameter is the identifier of the segment, and the other two are the x and 
y coordinates of the new position for its local origin. The effects of GSSORG are 
illustrated in Figure 50. This shows the origin of the world-coordinate system, and 
the local origin of the segment before and after the GSSORG. 

, , 
: r-----------------~ 
I 
I 
I 
I 
I 
I , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CALL GSSORG(1.20_0.2B.0l; 

20.20 LOCAL ORIGIN 

+~iiR:-:I:-::GI~-N=-==-:-::-:::---=-~--=-- -- ---- --~- -- - -- ---8.0: 

Figure 50. The GSSORG call 

The GSSORG call does not move the segment. On its own it produces no visible 
change to the picture. Its effects are noticeable only if you subsequently specify 
scaling, rotation, or shearing transformations, or use the segment as a locator echo 
as explained in "Chapter 14. Interactive graphics" on page 177. The 
transformations take place about the new segment origin. Displacements are 
unaffected by changing the segment origin. 

You can query the location of a segment's origin with a GSQORG call: 

DCL (X,Y) FLOAT DEC(6) i 
/* Segment-id Local origin */ 

CALL GSQORG(S, X,Y ) i 

The segment is identified in the first parameter. In the second and third 
parameters, GDDM returns the position of its origin in world coordinates. 

142 GDDM Application Programming Guide Volume 1 



graphics segments 

Transforming primitives within a segment 

In the same way that you can apply a transform to a segment, the call GSSCT sets 
a current transform that is applied to all the primitives that follow the call. The 
current transform is a primitive attribute, but is covered in this chapter because 
the call can only be issued within a currently open segment, and is carried out in 
relation to the origin of the segment. Here is a typical call: 

/* Scaling 
CALL GSSCT( 1,1, 

Shearing Rotation 
0,1, 1,0, 

Displacement Type */ 
0,0, 0 ); 

The parameters are similar to those for the call GSSAGA, covered in 
"Transforming segments" on page 131. See that section for an illustration of the 
effect of transforms, and the meaning of the parameters. The last parameter 
specifies the type of transformation: 

o New. The specified transformations are applied to the original primitives; 
any previous GSSCT call for this segment is ignored. 

1 Additive. Any previous current transforms for this segment are applied 
first, and then the ones specified in this call are applied to the result. 

2 Preemptive. The transformations specified in this call are applied first, and 
then any previously specified current transforms are applied to the result. 

The transformations in a single GSSCT call are applied in the order in which the 
parameters are coded: scaling, shearing, rotation, displacement. 

If you want to save the old current transform that was in existence before a new 
GSSCT call, you can do so by initially ensuring that attribute mode is set to 
preserve attributes, by either using the GSAM call, or allowing GSAM to default if 
it has not been previously set. The old transform will then be stored when you call 
GSSCT, and can subsequently be restored using GSPOP. GSAM and GSPOP are 
covered in "Pushing and popping graphics attributes, using calls GSAM and 
GSPOP" on page 48. 

Copying segments 

You can copy any closed segment with a GSSCPY call: 

CALL GSSCPY(3); /* Copy segment 3 */ 

The local origin of the copy is placed at the current position. If the copied segment 
is transformable, its current transform is applied before copying. The primitives in 
the copied segment become part of the currently open segment, if there is one; 
otherwise, they become primitives outside segments. The current position and 
graphics attributes are not affected by copying. 

In effect, a call to GSSCPY is like a call to a subroutine that reexecutes the 
graphics calls that created the segment being copied. In addition, the following 
happen: 

1. Before copying, the current transform is applied (if the segment is 
transformable), and the primitives are displaced by an amount equal to the 
coordinates of the current position. 

Chapter 11. Graphics segments 143 



applies to all graphics devices 

2. After copying, the current position, and the current graphics attributes, are 
restored to what they were before the call. 

For example, the effects of the following calls are shown in Figure 51 on page 145: 

/****************************************************************/ 
/* SEGMENT 1 */ 
/****************************************************************/ 

CALL GSSEG ( 1) ; 
CALL GSAREA(O) ; 
CALL GSLINE(0.0,20.0); 
CALL GSLINE(20.0,20.0); 
CALL GSLINE(20.0,0.0); 
CALL GSLINE(O.O,O.O); 
CALL GSENDA; 
CALL GSCOL(7); 
CALL GSMARK(lO.O,lO.O); 

CALL GSSCLS; 

/* Open segment,current pos.= 0,0*/ 

/* Draw a square (in the default */ 
/* color, green). */ 
/* */ 
/* */ 

/* White ... */ 
/* ... marker at center of square*/ 

/* Close the segment. */ 

/****************************************************************/ 
/* SEGMENT 2 */ 
/***************************************************** *****w*****/ 

CALL GSSEG(2); 
CALL GSCOL(2); 

/* Open segment, current pos.; 0,0*/ 
/* Set current color. */ 

/* 
1* Segment-id 

CALL GSSAGA(l, 

Rotate square before copying 
Scale Shear Rotate Displace 

1.0,1.0, 0.0,1.0, 1.0,1.0, 0.0,0.0, 

CALL GSCHAR(0.0,60.0,2l,'GSLINE BEFORE GSSCPY '); 
CALL GSLINE(70.0,60.0); /* Draw first line 

CALL GSSCPY(l); /* Copy the rotated square 

CALL GSLINE(70.0,25.0); /* Draw second line 
CALL GSCHAP(19,'GSLINE AFTER GSSCPyl); 

CALL GSSCLS; /* Close the segment 

*/ 
Type */ 

0) ; 

*/ 

*/ 

*/ 

*/ 

/****************************************************************/ 
/* Undo rotation of original square */ 
/****************************************************************/ 

/* Segment-id 
CALL GSSAGA( 1, 

Scale 
1.0,1.0, 

Shear 
0.0,1.0, 

Rotate 
1.0,0.0, 

Displace 
0.0,0.0, 

CALL ASREAD(ATTYPE,ATTVAL,ATTCNT)i /* Send to terminal 

144 GDDM Application Programming Guide Volume 1 

Type */ 
0) ; 

*/ 



graphics segments 

(0. b0) 
····· .... GSLINE BEFORE GSSCPY ___ ____ ----;. ..... 

GSLINE AFTER GSSCPY 

(70. 25) . 

(0. 0) 

Figure 51. Copying 

The square changes color during copying. This is because no color was set before 
it was drawn in segment 1, whereas in segment 2, the color was set to 2 (red) before 
the GSSCPY call. The copied graphics primitives inherit this explicit graphics 
attribute. If the color had been set explicitly in segment 1, the copy would not 
inherit the value set in segment 2 - it would be in the same color as the original. 

Notice that the line drawn after copying, starts where the one drawn before 
copying ends. This illustrates that the current position is not affected by copying. 
Notice, too, that both lines are red - the line drawn after the copy is not affected 
by the color setting for the marker in segment 1. 

Including segments 

Including a segment with a GSSINC call creates a copy, as does GSSCPY: 

CALL GSSINC(5) i / * Include segment 5 */ 

but a GSSINC call behaves exactly like a call to a subroutine that reexecutes the 
segment-creation statements. GSSINC therefore differs from GSSCPY in these 
ways: 

1. The segment is not transformed before it is included. 

2. The segment is not moved to the current position: the copy is, in effect, drawn 
on top of the original (assuming the default mix mode of overpaint). 

Chapter 11. Graphics segments 145 



applies to all graphics devices 

3. The current position changes to the one that was in effect when the included 
segment was closed. 

4. The current attributes change to those that were in effect when the included 
segment was closed. 

A major use of GSSINC is to specify prepackaged graphics attributes. For 
instance: 

DCL BLU_SOL_SOL FIXED BIN(3l) INIT(lO); 
DCL RED_SOL_SOL FIXED BIN(3l) INIT(ll); 

DCL BLU_DOT_SOL FIXED BIN(3l) INIT(20); 

DCL BLU_DOT_DOT FIXED BIN(3l) INIT(30); 

CALL GSSEG(BLU_SOL_SOL); 
CALL GSCOL(l) i /* Blue 
CALL GSLT (7) i /* Solid line type 
CALL GSPAT(O)i /* Solid shading pattern 
CALL GSSCLSi 

CALL GSSEG(RED_SOL_SOL)i 
CALL GSCOL(l); /* Red 
CALL GSLT(7)i /* Solid line type 
CALL GSPAT(O); /* Solid shading pattern 
CALL GSSCLSi 

CALL GSSEG(BLU_DOT_SOL)i 
CALL GSCOL(l) i /* Blue 
CALL GSLT(2); /* Dotted line type 
CALL GSPAT(O)i /* Solid shading pattern 
CALL GSSCLSi 

CALL GSSEG(BLU_DOT_DOT)i 
CALL GSCOL(l)i /* Blue 
CALL GSLT(2)i /* Dotted line type 
CALL GSPAT(7)i /* Dotted shading pattern 
CALL GSSCLSi 

*/ 
*/ 
*/ 

*/ 
*/ 
*/ 

*/ 
*/ 
*/ 

*/ 
*/ 
*/ 

/* Create segment using one of the */ 
/* standard set of graphics attributes */ 

CALL GSSEG(lOO)i 
CALL GSSINC(BLU_DOT_SOL)i /* Include standard attributes */ 

/* Create the graphics primitives */ 
CALL GSSCLSi 

Combining segments 

You can combine two or more segments into a single one by opening a new 
segment, copying them into it using GSSINC, and then deleting the originals using 
GSSDEL. You can use this technique to combine all segments on a page into a 
single segment. Then you can transform and otherwise manipulate the picture as a 
whole. 

Segment 0 cannot be copied, so you must not use this identifier for any segment 
that might be combined. You should normally preserve segment priority by 
copying the segments in priority order. You can use the GSQPRI call to query all 
existing segments in priority order. 

146 GDDM Application Programming Guide Volume 1 



graphics segments 

Here is an example that combines all segments on a page. 

DECLARE (SEG,NEXT_SEG) FIXED BINARY(31) ; 

CALL GSSEG(100); 

CALL GSQPRI(O,SEG,-l); 

DO WHILE SEG..,=O; 
CALL GSSINC(SEG); 
CALL GSQPRI(SEG,NEXT_SEG,1); 

CALL GSSDEL(SEG)i 

SEG = NEXT_SEGi 
END; 

CALL GSSCLS; 

/* 100 is reserved id */ 
/* for combined segment.*/ 
/* Find lowest-priority */ 
/* segment. */ 

/* Include the segment. */ 
/* Find next-highest */ 
/* priority segment. */ 
/* Delete copied */ 
/* segment. */ 

/* Close segment 100 */ 

If you want the segments to have existing transformations applied when they are 
combined, you should use GSSCPY in place of GSSINC. 

Drawing chain and segment priority 

As mentioned earlier in this chapter, segments are normally added to the drawing 
chain when they are created, and subsequently drawn in the order that they appear 
on the drawing chain. Later segments are said to have higher priority than earlier 
ones. If you visualize segments as being drawn in layers, with one segment per 
layer, each new one overlays all the existing ones. Where primitives from different 
segments occupy the same location, the later one will obscure the earlier (assuming 
the default mix mode of overpaint). 

Graphics primitives within a segment follow the same rule: later primitives are 
drawn on top of earlier ones. When a segment is copied or included, its primitives 
are drawn on top of any existing primitives, and any later primitives are drawn on 
top of the copied or included ones. 

You can change the priorities of existing segments in the drawing chain with the 
GSSPRI call: 

/* Segment-id 
CALL GSSPRI(3, 
CALL GSSPRI(9, 

Ref-seg-id 
7, 
2, 

Order */ 
1); /* Put seg 3 after seg 7 */ 

-1); /* Put seg 9 before seg 2 */ 

The first parameter specifies the segment whose priority is to be changed. The 
second specifies another segment called the reference segment. The third 
parameter must be either 1, meaning the first segment is to become the next higher 
in priority to the reference segment, or -I, meaning the first segment is to become 
the next lower in priority to the reference segment. 

In addition to altering the drawing order, GSSPRI can affect which primitives are 
detected by a pick input device (see "Chapter 14. Interactive graphics" on 
page 177). 

You cannot change the priorities of graphics primitives within a segment, nor of 
primitives outside segments, nor of segment o. 

Chapter 11. Graphics segments 147 



applies to all graphics devices 

One use of the GSSPRI call is in three-dimensional applications, when it is used to 
ensure that hidden surfaces are not visible or detectable. Another is in drawing 
layered pictures such as microchip layouts. 

You can query segment priorities with the GSQPRI call: 

DCL NEXT_SEG FIXED BIN(31); 

Order */ /* Ref-seg-id 
CALL GSQPRI(3, 

Seg-id 
NEXT_SEG, 1); /* Which seg follows seg 3? */ 

In the second parameter, GDDM returns the segment next to the one specified in 
the first parameter - its successor if the last parameter is 1, or its predecessor if 
this is -1. If the last parameter is 1 and the specified segment is the latest one, 
GDDM returns 0 in the second parameter_ And GDDM similarly returns 0 if the 
last parameter is -1 and the specified segment is the earliest one. 

You cannot query the position of segment O. A value of 0 in the first parameter has 
a special meaning, which depends on the value of the last parameter. If this is 1, 
GDDM returns the identifier of the latest segment, or if it is -1, of the earliest 
segment. 

Querying the order of all segments 

You can use the GSQPRI call to query all segments existing on the current page in 
priority order: 

DECLARE SEG(100) FIXED BIN(31); 

CALL GSQPRI(O,SEG(l) ,-1); 
I = 1; 
DO WHILE (SEG(I)~=O) & (1<=99); 

CALL GSQPRI(SEG(I),SEG(I+1),1); 
I = 1+1; 

END; 

Calling segments from other segments 

/* Store up to 100 seg-ids 

/* Find segment with lowest 
/* priority 

/* Query next segment 
/* identifier 

You can call a segment from a segment, and apply a transform to the called 
segment, with a GSCALL call. This is a typical call: 

*/ 

*/ 
*/ 

*/ 
*/ 

/* Seg-id Flag Scaling 
CALL GSCALL(2, 0, 1,1, 

Shearing Rotation Displacement Type */ 
0,1, 1,0, 0,0, 1); 

The parameters are identical to those for GSSAGA, except for an extra parameter, 
the flag. For the current release of GDDM this should always be set to O. You can 
only issue a GSCALL from a segment, and the transform applies to the called 
segment only. When control returns from the called segment to the calling 
segment, the transform that was in operation before the GSCALL will apply. 

The concept of GSCALL is, like GSSCPY and GSSINC, similar to calling a 
subroutine. However, with GSCALL the calling segment contains only a call order 
at the point of invocation. Contrast this with GSSCPY and GSSINC, where the 
drawing orders of the copied or included segment are actually repeated in the 
segment that contains the copy or include call. 

148 GDDM Application Programming Guide Volume 1 



graphics segments 

BLDPROG: PROC OPTIONS(MAIN); 
DCL(TYPE,MOD,COUNT) FIXED BIN(31); 
CALL FSINIT; 
CALL GSUWIN(0.0,100.0,0.0,100.0); 

CALL GSSEG(l); /* * * * * * Open segment 1, 
CALL GSLW(2); /* the top segment 
CALL GSCOL(5); /* 
CALL GSLINE(0.0,100.0); /* Draw outline of 
CALL GSLINE(100.0,100.0); /* 
CALL GSLINE(100.0,0.0); /* . 
CALL GSLINE(O.O,O.O); /* . 
CALL GSCALL(2,0, 1,1, 0,1, 1,0, 0,80, 2 ) ; /* 
CALL GSCALL(2,0, 1,1, 0,1, 1,0, 20,80, 2 ) ; /* 
CALL GSCALL(2,0, 1,1, 0,1, 1,0, 40,80, 2 ) ; /* 
CALL GSCALL(2,0, 1,1, 0,1, 1,0, 60,80, 2 ) ; /* 
CALL GSCALL(2,0, 1,1, 0,1, 1,0, 80,80, 2 ) ; /* 
CALL GSCALL(3,O, 1,1, 0,1, 1,0, 0,0, 2 ) ; /* 
CALL GSCALL(3,0, -1,1, 0,1, 1,0, 100,0, 2 ) ; /* 
CALL GSSCLS; /* * * * * * * * * * * * * * 

the building, 
in the hierarchy 

building 

Call offices 

· 
· Call meeting-

rooms 
Close segment 1 

CALL GSSATI(6,0);/* Leave following segments off drawing chain 

CALL GSSEG(2); /* * * * * * 
CALL GSLINE(0.0,20.0); 
CALL GSLINE(20.0,20.0); 
CALL GSLINE(20.0,0.0); 
CALL GSLINE(16.0,2.0); 
CALL GSMOVE(15.0,0.0); 

* * * * * * * * 
/* 
/* 
/* 
/* 
/* 

Open segment 2 
Draw outline 
of office ... 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*//*A*/ 
*//*A*/ 
*//*A*/ 
*//*A*/ 
*//*A*/ 
*//*B*/ 
*//*B*/ 
*/ 

*//*C*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

CALL GSLINE(O.O,O.O); 
CALL GSCALL(4,0, 1,1, 0,1, 1,0, 
CALL GSCALL(5,0, 1,1, 0,1, 1,0, 
CALL GSSCLS; /* * * * * * * 

7,6, 2 
9,15, 
* * * 

) ; 
2) ; 
* * 

/* 
/* 
/* 

* * 

... containing a */ 
table (segment 4)*//*0*/ 
& chair (segt 5) *//*0*/ 
Close segment 2 */ 

CALL GSSEG(3); 1* * * * * * * * * * * 
CALL GSLINE(0.0,70.0); 
CALL GSLINE(40.0,70.0); 
CALL GSMOVE(41.0,68.0) ; 
CALL GSLINE(45.0,70.0) ; 
CALL GSLINE(45.0,O.0); 
CALL GSLINE(O.O,O.O); 
CALL GSCALL(4,O, 4,2, 0,1, 0,1, 29,19, 
CALL GSCALL(5,0, 1,1, 0,1, 0,1, 16,28, 
CALL GSCALL(5,0, 1,1, 0,1, 0,1, 16,40, 
CALL GSCALL(5,0, 1,1, 0,1, 0,-1, 30,31, 
CALL GSCALL(5,0, 1,1, 0,1, 0,-1, 30,43, 
CALL GSSCLS; /* * * * * * * * * * * 

CALL GSSEG(4); /* * 
CALL GSLINE(0.0,6.0)i 
CALL GSLINE(8.0,6.0); 
CALL GSLINE(8.0,0.0)i 
CALL GSLINE(O.O,O.O); 
CALL GSSCLS; /* * 

* * * * * * * * * 

* * * * * * * * * 

* * 

2) ; 
2) ; 
2) i 
2) i 
2) ; 
* * 

* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
* 

Open segment 3 
and draw a 
meeting room 

containing a 
table 
(segment 4) 
and four chairs 
(segment 5) 

· Close segment 3 

* * * Open segment 4, 
/* and draw a table 
/* 
/* 
/* 

* * * Close segment 4 

CALL GSSEG(5)i /* * * * * * * * 
CALL GSARC(1.5,0.0,-180); 
CALL GSLINE(O.O,O.O) ; 

* * * * * * Open segment 5, 
/* and draw a chair 
/* 

CALL GSSCLSi /* * * * * * * * * * * * * * Close segment 5 

CALL ASREAD(TYPE,MOD,COUNT); /* Send to screen 
CALL FSTERM; 
%INCLUDE ADMUPINAi 
%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINGi 
END BLDPROG; 

Figure 52. Example program using called segments 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*//*E*/ 
*//*F*/ 
*//*F*/ 
*//*F*/ 
*//*F*/ 
*/ 

*//*G*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*//*H*/ 
*/ 
*/ 
*/ 

*/ 

Chapter 11. Graphics segments 149 



applies to all graphics devices 

Figure 53. Building plan produced by called segments 

You can set up a structure for your segment data using GSCALL. For example, 
your application could produce a building plan like that in Figure 53, containing 
standard-size offices and meeting rooms, that themselves contain several 
standard-size desks, tables, and chairs. You need define each of these items only 
once in your application. That is, one office segment, one meeting room segment, 
one desk segment, one table segment, and one chair segment. You can then 
GSCALL each of these segments as many times as you like, and position them 
wherever you want them in your plan by applying a transform to each segment 
when you call it. The program that produced Figure 53 is listed in Figure 52 on 
page 149. 

The table and chair segments are created at / *G* / and / *H* / respectively, and 
result in segments with their local origins as shown in Figure 54 on page 151. 

150 GDDM Application Programming Guide Volume 1 



graphics segments 

,~ 
-----e;e1locAI-ORIGIN------------------------------

I 
I 
I 
I 
I 
I 
I 

Figure 54_ Table and chair segments with origin 

These are then positioned in an office segment by GSCALL statements that apply 
transformations containing only displacements, as the table and chair are already 
correctly oriented for use here. The offices, complete with table and chair, are then 
displaced by GSCALL statements at /*A* I into five different positions within the 
building. 

For the meeting-room segment definition, the table segment is called at I*E* I, 
where scaling and rotation are applied to the table. It is scaled by a factor of 4 in 
the x direction, and 2 in the y direction, and is rotated counterclockwise by 90 
degrees. Displacements are chosen to center the scaled, rotated table in the 
meeting room. Remember that scaling, shearing, rotation, and displacement are 
applied in that order (the order in which they are specified). 

The chair segment is called four times at I*F* I. Two of the chairs are rotated 
clockwise, and two counterclockwise, and displaced to positions either side of the 
table. 

Finally, in the building segment, the meeting room segment is called twice at 
I*B* I. The first instance, for the left-hand room, applies the identity 
transformation - no scaling, shearing, rotation, or displacement take place. This 
is because the meeting room segment, with its bottom-left-hand corner at its origin 
(0,0), is already in the required position. 

The right-hand meeting room, however, is reflected about the y-axis by applying an 
x scaling factor of -I, and then requires displacement to position it on the 
right-hand side of the building. Scaling, shearing, and rotation transforms are 
carried out with reference to the origin of the calling segment (the one containing 
the GSCALL) not with reference to the origin of the called segment. In the 

Chapter 11. Graphics segments 151 



applies to all graphics devices 

example program this is not important, as all the segments have their origins in the 
same position of (0,0). 

Following these calls in the building segment definition, the GSSATI call at /*c* / 
is needed to exclude the subsequently created segments from the drawing chain, so 
that they will only appear when called, and not ·"in-line." 

A particular point to note is that, in the example, all the GSCALL statements a 
type parameter value of 2. This ensures that the transformations are performed in 
order from the bottom of the segment structure to the top. In the example, this 
means that the furniture is arranged in the meeting room segment, before the 
meeting room is reflected and displaced to the right-hand side of the building. You 
have already seen the effect of GSSAGA call sequences and type parameters in 
Figure 49 on page 140. The type parameter on GSCALL controls the way that the 
the associated transformation combines with a preceding transformation in exactly 
the same way. 

You should bear in mind two points concerning practical applications of called 
segments: 

1. Your called segments could exist on a segment library containing standard 
items of furniture. Your program would have to restore them before calling 
them. This may mean you do not know the position of the origin of a restored 
and called segment. 

2. In an interactive graphics program, you can position the called segments with, 
for example, the graphics cursor. You can also interactively select the point 
about which scaling and rotation take place. These facilities make 
experimenting far quicker and simpler, and avoid the need to resort to squared 
paper and mental arithmetic to calculate transforms. 

If you attempt to produce a loop of called and calling segments, GDDM will detect 
it and issue an error message when you run the program. 

Graphics attribute handling with called segments 

A called segment does not assume the default graphics attributes normally assumed 
by a newly-created segment. Instead, it inherits the attributes that are current 
when it is called. By default, if you change an attribute (for example, line type, 
color, character box, current transform) to a new value within a called segment, 
GDDM automatically pushes the corresponding old primitive attribute onto a 
last-in first-out stack. When control returns to the calling segment, GDDM carries 
out an implicit GSPOP to recover the old attribute values of any attributes that 
were changed in the called segment. GDDM ensures, therefore, that no matter 
what changes are made to the' attribute values in the called segment, the attribute 
values in the calling segment are preserved. If you wish, you can suppress GDDM's 
automatic preservation of attribute values. The following section of example code 
illustrates the use of GSAM to control the preservation of attributes: 

152 GDDM Application Programming Guide Volume 1 



graphics segments 

CALL GSSEG (1) ; /* Open segment 1 */ 
CALL GSCOL(2); /* Set color to red */ 
CALL GSCALL(2,0, 1,1, 0,1, 1,0, 10,10, 0) ;/* Call segment 2 */ 

/* and preserve */ 
/* calling attributes*/ 

CALL GSMOVE(10.0,20.0); 
CALL GSLINE(15.0,22.5); /* Red line drawn */ 
CALL GSCOL(2); /* Set color to red */ 
CALL GSCALL(3,O, 1,1, 0,1, 1,0, 50,10, 0) ;/* Call segment 3 */ 

/* and don't preserve*/ 
/* calling attributes*/ 

CALL GSMOVE(30.0,15.0); 
CALL GSLINE(17.0,14.0); /* Green line drawn */ 
CALL GSSCLS; /* Close segment 1 */ 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * .* * * */ 
CALL GSSATI(6,O); /* Leave following segments off */ 

/* the drawing chain until called. */ 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 
CALL GSSEG(2); /* Open segment 2 */ 
CALL GSAM(O) ; /* Save attributes */ 

/* (this is default) */ 
CALL GSCOL(4); /* Set color to green*/ 
CALL GSMOVE(5.0,7.0); 
CALL GSLINE(lO.0,17.0); /* Green line drawn */ 
CALL GSSCLS; /* Close segment 2 *i 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ 
CALL GSSEG(3); /* Open segment 3 */ 
CALL GSAM( 1) ; /* Don't save */ 

1* attributes */ 
CALL GSCOL(4); /* Set color to green*/ 
CALL GSMOVE(15.0,5.0); 
CALL GSLINE(70.0,23.0); /* Green line drawn 
CALL GSSCLS; /* Close segment 3 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

The GSCOL call at /* A * / is not really needed, but is there for emphasis. 
Similarly, the GSAM call at /*B* / is only needed if a previous GSAM has 
suppressed the preservation of attributes. 

Graphics not in named segments 

* * 

Primitives do not have to be contained in named segments. They can be outside 
segments altogether, or in an unnamed segment - one created with a zero 
identifier. 

Primitives outside segments 

You can draw primitives before opening any segment on the current page, or 
between closing one segment and opening another, or after closing the last 
segment. 

*/ 
*/ 
*/ 

GDDM does not retain a record of primitives outside segments after the current 
page has been sent to the screen. This allows it to free the main storage occupied 
in recording the primitives. The saving is less with cell-based terminals, such as 
the 3279, than with other types. This is because GDDM must still retain a record 
of the contents of the PS stores, even though it discards the record of the 
primitives. 

The main uses of primitives outside segments, therefore, are in situations where 
you want to store graphics temporarily at the terminal, and not on the GDDM page 
in the host. They may be useful in animation applications. 

Chapter 11. Graphics segments 153 

/*A*/ 

/*B*/ 



applies to all graphics devices 

The main disadvantage of primitives outside segments is that they are deleted from 
the display if it is completely regenerated. The screen is not regenerated 
completely by GDDM at every ASREAD, GSREAD, MSREAD, or FSFRCE. When 
it is partially updated, the primitives outside segments are retained on the display. 

A complete regeneration is required if, for instance, a segment is deleted after it 
has been displayed. Various circumstances under which the screen is completely 
regenerated are given in the GDDM Base Programming Reference manual. 

Any manipulation of a segment generally results in a complete regeneration. For 
this reason, it is inadvisable to mix segments and primitives outside segments on 
the same GDDM page. If you are going to create even one segment, then you will 
probably need to put all the graphics into segments. Conversely, if you want to 
exploit the advantages of primitives outside segments, you will probably have to 
avoid creating any segments at all. 

Other disadvantages of primitives outside segments are that they cannot be picked 
by graphics input devices (see "Chapter 14. Interactive graphics" on page 177); 
they are not saved by the FSSA VE call; they are not printed by a GSCOPY or 
FSCOPY call (see "Printer as an alternate device" on page 402); and they cannot 
be plotted. 

Initially, when a page is explicitly or implicitly created, the primitives outside 
segments have the same attributes as the defaults that apply when a segment is 
opened. You can execute calls outside segments to change the current attributes. 
Changing the default values for attributes causes any primitives outside segments 
to be discarded. 

If you do open a segment, GDDM retains a record of the graphics attributes 
previously in force, and restores them when the segment is closed. If, for instance, 
you create a page, set the current color to red, then open and close a segment, red 
will again become the current color for any further primitives drawn outside a 
segment. 

If you draw a primitive before opening any segments on the current page, then any 
items in the physical hierarchy that are not yet defined will be defaulted. 

Unnamed segments 

If you do not need to manipulate groups of primitives, but nonetheless want to 
avoid the disadvantages of primitives outside segments, you can put the primitives 
into unnamed segments. 

You create an unnamed segment by specifying an identifier of zero in the GSSEG 
call. You can use as many unnamed segments as you need. You can mix unnamed 
segments with named ones and, if you choose, with primitives outside segments. 
This, for example, is a valid sequence: 

154 GDDM Application Programming Guide Volume 1 



graphics segments 

CALL GSSEG(l); /* Segment 1 */ 
/* */ 
/* */ 
CALL GSSCLS; 

CALL GSSEG(O); /* An unnamed segment */ 
/* */ 
/* */ 
CALL GSSCLS; 

CALL GSSEG(O)i /* Another unnamed segment */ 
/* */ 
/* */ 
CALL GSSCLSi 

CALL GSSEG(2); /* Segment 2 */ 
/* */ 
/* */ 
CALL GSSCLSj 

CALL GSSEG(O) ; /* Another unnamed segment */ 
/* */ 
/* */ 
CALL GSSCLSi 

Unnamed segments cannot be manipulated like named ones. They cannot be 
deleted, transformed, copied, or included. They cannot be detected by a pick' input 
device. Neither their priorities nor their origins can be changed. 

In many ways, using unnamed segments is like drawing primitives outside 
segments. The main difference is that unnamed segments are retained by GDDM, 
and they are redisplayed when the screen is regenerated. Another is that they can 
be highlighted or made invisible with a GSSATI call before the GSSEG(O) call 
(although the attributes cannot be changed with a GSSATS call after the segment 
has been created). 

Chapter 11. Graphics segments 155 



Chapter 12. Storing graphics 

This chapter tells you how to store complete pictures and segments on external 
storage using the GSSA VE call, and retrieve them using the GSLOAD call. 

Saving graphics on external storage using call GSSA VE 

This call stores all the segments on the current page in a file called PIC!: 

DCL DUMMY(l) FIXED BIN(31); 
/* Segments Filename Control 

CALL GSSAVE(O,DUMMY, 'PICl', O,DUMMY, 

and this one stores segments 7, 8, and 20: 

DCL SEG IDS(10) FIXED BIN(31); 
DCL DUMMY(I) FIXED BIN(31); 
SEG_IDS(I) = 20; 
SEG_IDS(2) = 7; 
SEG_IDS(3) = 8; 

/* Segments Filename Control 
CALL GSSAVE(3,SEG_IDS, 'SEGS3', 0, DUMMY, 

The parameters are as follows: 

Description */ 
16,'GSSAVE EXAMPLE I'); 

Description */ 
I6,'GSSAVE EXAMPLE 2'); 

• The flrst parameter is the number of elements in the second. If it is zero, 
GDDM stores all segments in the current page, in priority order. 

• The second parameter is an array of segment identiflers. GDDM reads the 
number of elements specifled in the flrst parameter from this array, and stores 
the segments that they identify. They are stored on the flle in the order in 
which they are specifled. Segment 0 cannot be specifled: GDDM stops reading 
the segment identiflers when it finds an element with a value of O. 

A 0 in the first element has the same value as a 0 in the first parameter: all 
segments (including segment 0) are stored. 

• The third parameter is the name of the flle on which the segments are to be 
stored. Naming conventions vary according to the subsystem. They are 
explained in the GDDM Base Programming Reference manual. On VM, GDDM 
creates a file on your A-disk with the specified value as the file name, and a file 
type of ADMGDF. So the example would create a file called: 

PICI ADMGDF Al 

GDDM manages the file creation and access entirely when you execute a 
GSSA VE: there is nothing else you need to do. 

• The fourth parameter specifies the number of elements in the fifth. 

Chapter 12. Storing graphics 157 



applies to all graphics devices 

• The fifth parameter is a one- or two-element array. The first element defines 
whether GDDM is to be permitted to overwrite an existing file with the same 
name: 

o Permit overwriting of an existing file. This is the default. 

1 Do not permit overwriting of an existing file. If such a file exists, GDDM 
issues an error message and saves nothing. 

The second element defines whether GDDM is to store floating-point or 
fixed-point coordinate data: 

2 Store two-byte fixed-point data. 

4 Store four-byte floating-point data. This is the default. 

If the fourth parameter is zero, as in the example, GDDM assumes the default 
values for both elements. 

Floating-point data is recommended. Fixed-point data can cause problems when 
retrieved. It is less accurate than floating-point, which means retrieved pictures 
may become distorted, especially if they are enlarged after retrieval. And the 
fixed-point data may be more severely clipped. This is because, in addition to 
any clipping that may occur at the time the primitives are drawn. fixed-point 
GDF is clipped at the boundary of the graphics field at the time of saving, 
whereas floating-point is not. The advantage of fixed-point data is that the files 
are usually shorter. 

• The last parameter is a character-string descriptor to be stored with the 
segments, and the second last, the descriptor's length. 

There must be no open segment when the GSSA VE call is executed. 

It is an error to specify a non-existent segment in the second parameter. You can 
discover the identifiers of all the named segments on the current page using the 
GSQPRI call (see "Querying the order of all segments" on page 148). 

GSSA VE is supported whatever the current device. with the restriction that 
fixed-point data cannot be generated with family-4 devices (see "Chapter 21. Device 
support" on page 367). 

The segments are stored in Graphics Data Format (GDF) (see "Chapter 13. Picture 
handling in graphics data format" on page 171). In addition to the primitives and 
their attributes, the file contains segment attributes, identifiers, and transforms; 
the names of the symbol sets used by any graphics text strings; any drawing default 
information; the descriptor text specified in the GSSA VE; and some control 
information. 

When a GSLOAD is executed, all the segments in the specified file are loaded. To 
save and load them individually, you must store only one segment per file. This 
means executing a GSSA VE for every segment that you add to the library, and a 
GSLOAD for every one you retrieve. 

158 GDDM Application Programming Guide Volume 1 



storing graphics 

Loading graphics from external storage using call GSLOAD 

This call retrieves all the segments stored in the file called PIC1, and adds them to 
the current page: 

DCL DUMMY(l) FIXED BIN(31)i 
DCL COUNT FIXED BIN(3l)i 
DCL DESC CHARACTER(20)i 

/* Filename Control 
CALL GSLOAD( 'PICl', ° ,DUMMY , 

No. of segments 
COUNT, 

Description */ 
20,DESC) i 

The GSLOAD is equivalent to opening a segment, reexecuting the calls that 
created the contents of the first of the specified saved segments, closing the opened 
segment, and so on for the next and later saved segments. There must be no open 
segment when the GSLOAD is executed. 

The parameters are as follows: 

• The first parameter is the name of the file on which the required segments are 
stored. The full name that GDDM searches for depends on the subsystem, as 
explained in GDDM Base Programming Reference manual. On VM, GDDM 
scans the accessed minidisks in the current search order for a file with the 
specified name and with a file type of ADMGDF. 

• The third parameter is a one·, two·, three-, or four·element array, and the 
second is a count of the number of elements in the array. A value of 0 in the 
second parameter, as in the example, causes GDDM to take default actions. 

The first element allows you to specify a series of new identifiers for the 
segments. GDDM will assign the value you specify to the first segment it loads 
from the file, and consecutive values to the subsequent segments. This control 
allows you to avoid conflicts with the identifiers of segments already existing 
on the page at the time of the load. For any call segment order from a segment 
within the GDF to a segment within the GDF, the segment identifier is changed 
to the new identifier given to that segment. A value of 0 tells GDDM to take 
the default action, which is to use the original, saved, segment identifiers. 

Note that unnamed segments are not renumbered. 

The second element specifies what type of transformation, if any, GDDM is to 
apply to the segment when it is loaded: 

1 No transformation. GDDM preserves the original world-coordinate values 
of the primitives in the segments. This is the default. Because 
fixed-point coordinates are device-dependent, this type of load is not 
recommended for files in fixed-point format. 

2 Make the segments as large as possible, without altering their aspect 
ratio. 

3 Make the segments the same physical size as when they were saved. 

The three types of load are illustrated in Figure 55 on page 161 and Figure 56 
on page 162. Figure 55 shows three segments (a yellow circle, a white square, 
and a set of blue triangles) as they were saved. Figure 56 shows them after 
each has been loaded with a different type of GSLOAD call. 

Chapter 12. Storing graphics 159 



applies to all graphics devices 

All three types of load are explained further in subsequent sections, including 
their positioning algorithms and their major uses. 

The third element specifies what type of action GDDM should take when an 
object containing drawing defaults definitions is loaded: 

1 Ignore drawing default definitions in the saved data. 

2 Use drawing default definitions in the saved data as the current defaults, 
if they have not been previously set. Do not change existing defaults if 
they are not in the saved data. 

3 Use drawing defaults in the saved data as the current defaults, regardless 
of whether they have been previously se~. Do not change existing 
defaults if they are not in the saved data. 

4 Use drawing defaults in the saved data as the current defaults, regardless 
of whether they have been previously set. Change existing defaults not 
in the saved data to the standard defaults. 

Types 2, 3, and 4 may affect existing primitives, if they were drawn using 
default attributes. 

5 Give the loaded data the same drawing defaults that it had when it was 
saved. Do not modify the current drawing defaults. This will not affect 
existing primitives. In the loaded data, segments that are called and 
chained will not inherit, from the caller, the attributes for which drawing 
default values were specified. The reloaded picture may therefore appear 
different from the saved picture. This is the default option. 

The fourth element specifies the action to be taken when loading a GDF object 
containing call segment orders to segments that do not exist in the object. The 
options are: 

a The default, the same as 1. 

1 Any call segment orders that cannot be resolved within the GDF object 
are ignored, and a warning message issued. 

2 Any call segment orders that cannot be resolved within the GDF object 
remain unresolved. It is the responsibility of the application to resolve 
them. 

• The fourth parameter is a variable in which GDDM returns the number of 
segments it has loaded. 

• The last two parameters are a variable in which GDDM returns the descriptor 
saved with the segments, preceded by the length of descriptor text you require, 
in bytes. If the actual descriptor is longer, a truncated version will be 
returned; if shorter, it will be padded with nulls. 

In general, segments are loaded in the order in which they were saved. The first 
segment saved on the file will therefore have the lowest priority (see "Drawing 
chain and segment priority" on page 147) and the last the highest. 

GSLOAD is supported whatever device is current when it is executed, and whatever 
device was current when the segments were saved. 

160 GDDM Application Programming Guide Volume 1 



storing graphics 

The segments are always loaded into the viewport that is current when the 
GSLOAD is executed. A graphics window, and any of the objects in the graphics 
hierarchy, will be set up with default values if they do not already exist when the 
GSLOAD call is executed. 

After loading the segments, GDDM automatically loads any symbol sets that were 
loaded at the time the segments were saved, whether they were used or not. It also 
loads them with the same identifiers, regardless of whether any symbol sets have 
already been loaded in your program. 

It is not possible to query, before a GDF is loaded, what symbol sets it uses. 

Figure 55. Segments as saved 

Chapter 12. Storing graphics 161 



applies to all graphics devices 

Type 1 load 

Figure 56. Segments as loaded 

The primitives in the loaded segment retain the same world-coordinate values as 
when they were saved. If the two graphics windows are the same, there will be no 
change in the appearance of the segment. If the physical sizes of the 
world-coordinate units differ, the segment will change size. If the two window 
origins are in different places, the position of the segment will change. 

The world-coordinate units in Figure 56 are physically smaller than those in 
Figure 55, so the yellow circle has shrunk. The origin is in the center of the 
screen in both figures, and the origin of the circle is at its center, so the circle 
remains in the center of the screen. 

The major use of type 1 loads is in building pictures with segments retrieved from 
segment libraries. Another use is panning (scrolling) and zooming (moving the 
display window sideways and vertically over the graphics, and changing the 
physical size at which they are displayed). Both uses are explained further in 
subsequent sections. 

Segment libraries 

Many types of application benefit from a library of picture components. For 
instance, an office layout program would store drawings of all available office 
furniture. Each file in the library would contain one piece of furniture, in one or 
more segments. A general drafting application would allow the end user to create 
segments as required, and store and retrieve them at will. 

The GSLOAD call always loads all the segments in a file. In many cases, a 
program needs to access segments one at a time. For instance, it might be required 
to let the operator select a segment from a menu and drag it around the screen. Or 
it might need to load different segments into different viewports. In such cases, the 
library must contain only one segment per file. The GSSA VE calls that create the 

162 GDDM Application Programming Guide Volume 1 



storing graphics 

files must therefore explicitly specify one segment identifier. Subsequent GSLOAD 
calls will then retrieve one file each. 

All the segments in a library should be drawn using the same metric unit. In other 
words, one world-coordinate unit should represent the same physical measurement 
in a real object in all cases. One world-coordinate unit could represent a micron, a 
millimeter, or a light-year - the only requirement being that all segments use the 
same unit. 

The picture built up from the segments using type 1 loads should employ the same 
metric unit as the segments. However, this is not to say that the picture must 
always be displayed at the same scale. You can define the window (with a GSWIN 
or GSUWIN call) to contain any suitable number of world-coordinate units, and 
thereby display the picture at any suitable scale. 

Even if the segments are symbols, such as flow chart components, rather than 
drawings of physical objects, a common metric unit is desirable. However, the unit 
is necessarily an arbitrary one. One solution is to create and store a segment 
containing a standard grid. This is always retrieved and displayed as the first step 
in creating a symbol. Then the user draws on top of the grid. 

It is usually desirable to ensure that the graphics primitives in a loaded segment 
fall within the current window, so that they appear in the display. GDDM puts the 
origin of the loaded segment at the origin of the current world coordinates. If the 
primitives are actually positioned well away from the origin of the world 
coordinates, or if this origin is outside the current window, no primitives may 
appear in the display. 

To ensure that at least some of the primitives appear in the display following a 
load, you must do two things: 

1. Before saving the segment, ensure that its origin is at a reasonably central 
point with respect to the primitives. If the primitives were not drawn centrally 
about the origin of the world-coordinate system, the segment origin can be 
moved before the GSLOAD: 

DCL SEG_ID(l) FIXED BIN(31); 
DCL DUMMY(l) FIXED BIN(31); 

CALL GSUWIN(O.O,lOO.O,O.O,lOO.O); 
CALL GSSEG(4); 
CALL GSMOVE(40.0,50.0); 
CALL GSARC(50.0,50.0,360.0); 
CALL GSSCLS; 

/* Define coordinate system. 

/* Draw circle centered 
/* at 50,50. 

*/ 

*/ 
*/ 

CALL GSSORG(4,50.0,50.0); /* Make center of circle the */ 
/* segment origin. */ 

/* Segments 
CALL GSSAVE(l,SEG_ID, 

Filename 
I SEG4 I, 

Control 
O,DUMMY, 

Description */ 
0,"); 

In practice, the application is likely to allow the terminal operator to choose 
the reference point of the segment before saving it, in a way similar to that 
recommended before transforming it. (see "Local origin when transforming a 
segment" on page 206). 

2. Mter loading, move the segment so that its origin is within the current window: 

Chapter 12. Storing graphics 163 



applies to all graphics devices 

DCL CNTRL(2) FIXED BIN(31); 
DCL COUNT FIXED BIN(31); 
DCL CHI CHARACTER(l);; 
DCL (X1,X2,Y1,Y2) FLOAT DEC(6); 

CALL GSUWIN(Xl,X2,Y1,Y2); 

CNTRL(l) 
CNTRL(2) = 

101; 
1; 

/* Filename 
CALL GSLOAD( 'SEG4', 

Control 
2,CNTRL, 

/* New segment identifier. 
/* Keep original 
/* world coordinates. 

No. of segments 
COUNT, 

Description 
o ,CHI) ; 

CALL GSSPOS(10l,(Xl+X2)/2,(Yl+Y2)/2); 

*/ 
*/ 
*/ 

*/ 

/* Move segment so that its */ 
/* origin is in middle of the */ 
/* current window. */ 

Clipping must be off (the default) at the time of the GSLOAD, otherwise any of 
the segment that falls outside the window will be lost. 

Panning and zooming 

If the window is altered, either to change the physical size of the picture (zooming) 
or to alter the portion of it that is actually displayed (panning or scrolling), then 
all the graphics must be redrawn. One way of doing this is to save the picture, 
clear the graphics field, alter the window, and load the picture. The GSLOAD is 
equivalent to reexecuting all the graphics primitive calls that created the picture. 
The following example shows how to use this technique. 

DCL (ATTYPE,ATTVAL,ATTCNT) FIXED BIN(31) INIT(O);/*ASREAD params*/ 
DCL (Xl,X2,Yl,Y2,XDISP,YDISP) FLOAT DEC(6); /* Window variables*/ 
DCL SEG_IDS(l) FIXED BIN(31); /* GSSAVE segment ids */ 
DCL COUNT FIXED BIN(31); /* GSSAVE parameter count */ 
DCL CNTRL(2) FIXED BIN(3l); /* GSSAVE parameters */ 
DCL CHAR CHAR(l); /* GSLOAD description dummy */ 
DCL DUMMY(l) FIXED BIN(3l); /* GSLOAD segment id dummy */ 
DCL SAVED BIT(l) INIT('O'B); /* Pan/zoom save flag */ 

/****************************************************************/ 
/* Draw the picture */ 
/****************************************************************/ 

SEND: 

CALL ASREAD(ATTYPE,ATTVAL,ATTCNT); /* Send to terminal */ 

/****************************************************************/ 
/* Panning and zooming code */ 
/****************************************************************/ 

164 GDDM Application Programming Guide Volume 1 



storing graphics 

IF ATTVAL=7 I ATTVAL=8 ATTVAL=9 /* If pan or zoom button, .. */ 
I ATTVAL=10 I ATTVAL=ll ATTVAL=12/* .. then .. */ 
THEN IF ~SAVED /* .. if picture not already */ 

THEN DOi /* saved. */ 
CALL GSSAVE(O,DUMMY,'ZOOMTEM',O,DUMMY,O,");/*Save picture*/ 
SAVED = 'l'B; /* Set save flag. */ 
/* SET UP CONTROL PARAMETERS FOR GSLOAD */ 
CNTRL(l) 0; /* Keep original segment ids*/ 
CNTRL(2) = 1; /* Preserve world coords */ 

END; 

IF ATTVAL = 7 /* PF7 key is pan up. */ 
THEN DO; 
CALL GSCLR; /* Clear graphics field. */ 
YDISP = (Y2-Y1)/2; 
Y1 = Yl + YDISP; /* Move window up by half */ 
Y2 = Y2 + YDISP; /* its height. */ 
CALL GSUWIN(X1,X2,Yl,Y2); 

/* Object-name Array-Count Array Seg-Count Description */ 
CALL GSLOAD( 'ZOOMTEM', 2, CNTRL, COUNT, O,CHAR); 
GO TO SEND; 

END; 

IF ATTVAL = 8 /* PF8 key is pan down. */ 
THEN DO; 
CALL GSCLR; /* Clear graphics field. */ 
YDISP = (Y2-Yl)/2; 
Y1 = Y1 - YDISP; /* Move window down by half */ 
Y2 = Y2 - YDISP; /* its height. */ 
CALL GSUWIN(X1,X2,Y1,Y2); 

/* Object-name Array-Count Array Seg-Count Description */ 
CALL GSLOAD( 'ZOOMTEM', 2, CNTRL, COUNT, 0 ,CHAR) ; 
GO TO SEND; 

END; 

IF ATTVAL = 9 
THEN DO; 
CALL GSCLRi 
XDISP = (X2-X1)/4j 
YDISP = (Y2-Y1)/4j 
Xl Xl + XDISP; 
X2 = X2 - XDISP; 
Y1 Y1 + YDISPi 
Y2 Y2 - YDISP; 
CALL GSUWIN(X1,X2,Yl,Y2); 

/* Object-name Array-Count 
CALL GSLOAD ( , ZOOMTEM' , 2 , 
GO TO SEND; 

END; 

IF ATTVAL = 10 
THEN DOi 
CALL GSCLR; 
XDISP = (X2-X1)/2i 
Xl =X1 - XDISP; 
X2 = X2 - XDISP; 
CALL GSUWIN(X1,X2,Y1,Y2); 

/* PF9 key is enlarge. */ 

/* Clear graphics field. */ 

/* Halve size of the window */ 
/* without altering x,y */ 
/* coordinates of center. */ 

Array Seg-Count Description */ 
CNTRL, COUNT, O,CHAR); 

/* PF10 key is pan left. */ 

/* Clear graphics field. */ 

/* Move window left by half */ 
/* its width. */ 

/* Object-name Array-Count Array Seg-Count Description */ 
CALL GSLOAD( 'ZOOMTEM', 2, CNTRL, COUNT, O,CHAR); 
GO TO SEND; 

END; 

Chapter 12. Storing graphics 165 



applies to all graphics devices 

Type 2 load 

IF ATTVAL = 11 
THEN DO; 
CALL GSCLR; 
XDISP = (X2-X1)/2; 
Xl = Xl + XDISP; 
X2 = X2 + XDISP; 

/* PF11 key is pan right. */ 

/* Clear graphics field. */ 

/* Move window right by half*/ 
/* its width. */ 

CALL GSUWIN(X1,X2,Y1,Y2); 

/* Object-name Array-Count Array Seg-Count Description */ 
CALL GSLOAD( 'ZOOMTEM', 2, CNTRL, COUNT, O,CHAR); 
GO TO SEND; 

END; 

IF ATTVAL = 12 /* PF12 key reduce picture */ 
THEN DO; 
CALL GSCLR; /* Clear graphics field. */ 
XDISP = (X2-X1)/2; 
YDISP = (Y2-Y1)/2; 
Xl = Xl - XDISP; /* Double the size of the */ 
X2 = X2 + XDISP; /* window without altering */ 
Yl = Yl - YDISP; /* the x,y coordinates */ 
Y2 = Y2 + YDISP; /* of the center. */ 
CALL GSUWIN(Xl,X2,Yl,Y2); 

/* Object-name Array-Count Array Seg-Count Description */ 
CALL GSLOAD( 'ZOOMTEM', 2, CNTRL, COUNT, O,CHAR); 
GO TO SEND; 

END; 

Notice that the picture is saved only once, and a flag is set to record the action. 
Repeated saving and loading will distort the picture eventually, because rounding 
errors in the coordinates will accumulate. 

The segment is loaded and then the coordinates of its primitives are transformed so 
that the segment is as large as possible. This is illustrated in Figure 57 on 
page 167, using the white square from Figure 56 on page 162. 

More precisely, the transformation is such that the picture space current at the 
time of the GSSAVE would fill the viewport current at the time of the GSLOAD. 
The aspect ratio is preserved. This means that, in general, the viewport is filled in 
one direction only - the width in the illustration. The positioning is such that the 
picture space would be centered in the other direction - vertically in the 
illustration. The segment's position can be altered after loading with a GSSPOS 
call, if it was created with the transformable attribute. 

The reason that GDDM maps the save-time picture space onto the load-time 
viewport, rather than mapping viewport to viewport, is that the latter mapping 
would not work when GSSAVE stores segments from multiple viewports. 

166 GDDM Application Programming Guide Volume 1 



storing graphics 

Figure 57 . Type 2 load 

The primary use for the type 2 load is in copying from one device to another, when 
the physical size of the graphics is not significant. Typically, it is used to create a 
hard copy of a screen display, making full use of the paper area of the printer or 
plotter. 

Here is some typical code to make a copy using a type 2 load. (It is necessary to 
use the DSOPEN and DSUSE calls, which are described in "Chapter 21. Device 
support" on page 367.) 

DCL P LIST(l) FIXED BIN(31); 
DCL N_LIST(l) CHAR(8); 
DCL CNTRL (2) FIXED BIN(31) ; 
DCL COUNT FIXED BIN(31); 
DCL DUMMY(l) FIXED BIN(31); 
DCL DESC CHAR(l); 
DCL (ATTYPE ,ATTVAL, ATTCNT) FIXED BIN (31); 

1* Draw the picture 

CALL ASREAD(ATTYPE,ATTVAL,ATTCNT); / * Send to terminal . 

*/ 

*/ 

IF ATTVAL = 4 
THEN DO; 
SEG_IDS(l) 0; 

/ * PF4 key, print the picture* / 

/ * 
CALL GSSAVE( 

Segments 
1 ,SEG_IDS, 

/ * Save the whole p icture. */ 

Name Options 
'TEMPIC', O,DUMMY, 

Description 
0, II ); 

*/ 

N_LIST = ' PI'; /* Printer name . */ 
CALL DSOPEN(1,2,'*' ,0,P_LIST,1, N_LIST) ; / * Open printer, make */ 
CALL DSUSE(l,l); / * it the primary device. */ 

Chapter 12. Storing graphics 167 



applies to all graphics devices 

Type 3 load 

CNTRL(l) 
CNTRL(2) 

0; 
2 ; 

/ * No need to change seg ids.*/ 
/ * Print as large as possible*/ 

/ * Obj-name Arr-cnt Array 
CALL GSLOAD( ' TEMPIC ', 2, CNTRL, 

Seg-cnt Descrip-len Descrip */ 

CALL FSFRCE; 
END; 

COUNT, 0, DESC); 

/* Send to printer 

After a segment is loaded, GDDM transforms the coordinates of its primitives to 
keep the size of the picture the same. All primitives will have the same physical 
size when displayed on the current device as they had on the device that was 
current when the segment was saved. 

*/ 

The position of the segment is such that the bottom left-hand corner of the picture 
space current at the time of the GSSA VE would be at the origin of the viewport 
current at the time of the GSLOAD. The segment's position can be altered after 
loading using a GSSPOS call. 

This positioning is illustrated in Figure 58, using the blue triangles from Figllre 56 
on page 162. The origin of the viewport is at the center of the display. 

The right-hand edge of the save-time picture space boundary has disappeared 
because it is beyond the edge of the graphics field. However, graphics are 
irretrievably lost only if clipping was on at the time of the GSLOAD. If clipping 
was not on (which is the default) , then the disappeared graphics could be displayed 
by panning the window, as described in "Panning and zooming" on page 164. 

Figure 58. Type 3 load 

Type 3 loads are mainly used in copying scale drawings from one device to another. 
Consider, for example, a geographical map that has been created with world 
coordinates such that, when plotted on a parti~ular plotter, it has a scale of one 
centimeter to the kilometer. 

168 GDDM Application Programming Guide Volume 1 



storing graphics 

The map can be saved, and subsequently retrieved using a type 3 load, on a 
different current device. This might be a different plotter, or a printer, or even a 
display unit. GSLOAD transforms the map's coordinates to ensure that when it is 
sent to the new device, its graphics primitives have the same physical size as on the 
original plotter. The new output therefore maintains the map's original scale of 
one centimeter to the kilometer. 

The example code in "Type 2 load" will perform in this way if 

CNTRL{2)=3; 

is coded in place of 

CNTRL ( 2 ) = 2 ; . 

Chapter 12. Storing graphics 169 



Chapter 13. Picture handling in graphics data 
format 

Graphics data format (GDF) is a way of storing pictures. GDDM uses it internally, 
and also makes it available to application programs. It consists of a set of orders 
with similar meanings to the GDDM graphics call statements. In many cases there 
is a one-for-one mapping between GDF orders and call statements. 

Here are some examples: 

CALL STATEMENT 

CALL GSLINE(3,7); 
CALL GSCOL(2); 
CALL GSCHAP(3,'ABC'); 
CALL GSSCLS; 

FUNCTION 

Draw line 
Set current color 
Write character string 
Close segment 

GDF ORDER 

X'810400030007' 
X'OA02' 
X'8303CIC2C3' 
X, 7100' 

A full list of all GDF orders is given in the GDDM Base Programming Reference 
manual. 

An application program can access GDF in the following ways: 

• By means of GSGET and GSPUT calls. 

GSGET copies GDDM's internal GDF that represents the contents of the 
current graphics field into a specified program variable. GSPUT does the 
reverse - adds the GDF contained in a specified variable to the current graphics 
field. 

More information is given in "GSGET and GSPUT" on page 172. 

• By means of ADMGDF-type files generated by GSSAVE calls. 

Normally these are retrieved for display by GSLOAD calls. GSSA VE and 
GSLOAD are described in "Chapter 12. Storing graphics" on page 157. The 
file attributes are listed in the GDDM Base Programming Reference manual. 

• By means of ADMGDF-type files generated by the Interactive Chart Utility 
(lCU). 

These files define charts created by the ICU. They are created by the ICU 
using internal GSSA VE calls. The GDDM-PGF Interactive Chart Utility 
introduces the functions that the terminal operator uses to generate them. 

• By converting picture interchange format (PIF) files. 

Chapter 13. Picture handling in graphics data format 171 



Bee end of chapter for device variations 

These store pictures in 3270-PC/G and IGX work stations, and can be 
interchanged between a work station and the host computer. PIF orders are 
similar to GDF. 

In a typical case, a PIF file is created at the work station, sent to the host, 
converted to an ADMGDF-type file and retrieved by a host application program 
using a GSLOAD. The reverse route can also be followed: a host-created GDF 
file can be converted to PIF and transmitted to the work station. 

Transmitting and converting these files is described in the GDDM Base 
Programming Reference manual. The same manual also describes the 
differences between GDF and PIF. 

GDDM guarantees picture fidelity for converted Base PIF files, as defined in 
IBM 3270 PCIG or IGX Supplementary Reference Information for PIF (Order 
number GC33-0421). 

Inter-Release compatibility 

GDF generated by earlier releases of GDDM will be correctly interpreted by the 
current release. However, GDF generated by the current release may not be 
interpreted correctly by an earlier release. There may be new orders and other 
changes that the earlier release cannot handle. In other words, GDF is compatible 
upward but not downward. 

GDDM does not make any guarantees about the orders that a picture will generate. 
For instance, mode-3 graphics may sometimes generate write-text orders, but at 
other times may be broken down into line and arc orders. The GDF for a 
particular picture may vary from release to release. 

GSGET and GSPUT 

GSGET obtains GDF from GDDM, and GSPUT supplies GDF to GDDM, in both 
cases by means of a program variable. You can write programs to interpret the 
GDF orders returned by GSGET, or to supply new or updated GDF orders to 
GDDM by means of GSPUT. Some uses for such programs are: 

• Changing pictures previously defined by the application using ordinary GDDM 
calls (GSSEG, GSCOL, GSLINE, and so on). This is the only way that you can 
change primitives and attributes after they have been defined. However, note 
the comments made in "Inter-Release compatibility" above. 

• Transferring pictures to and from devices not supported by GDDM, and 
converting pictures to and from other application programming interfaces. 

Retrieval of a picture in GDF form is initiated by a GSGETS call. This is followed 
by one or more GSGET calls, the number depending on the complexity of the 
picture, and hence the total size of the GDF orders in relation to the size of the 
specified program variable. The last GSGET must be followed by a GSGETE. 

Here is an example of a GSGETS: 

DECLARE GETSARRAY(3) 
GETSARRAY(1) = 1; 
GETSARRAY(2) = 4; 
GETSARRAY(3) = 0; 

FIXED BIN(31); 

CALL GSGETS(3,GETSARRAY); 

172 GDDM Application Programming Guide Volume 1 

/* Retrieve segment 1 */ 
/* Floating-point form */ 



graphics data format 

The call has two parameters: the second is an array of up to three elements, and 
the first is the number of elements in the array. The array elements specify: 

• The identifier of the segment to be retrieved. A 0 means all segments. 

• The form of numerical data in the GDF orders. A 0 or 2 means two-byte integer 
(fixed-point) form, and 4 means four-byte floating-point form. 

• Whether all the GDF held by GDDM is to be returned (including symbol-set 
names and a prolog to the whole picture), or just segment information and an 
initial comment order. A 2 means the full information, and a 0 or 1 just the 
comment order and segment information. The former is generally most suitable 
when a whole picture is being retrieved (with 0 in the first element of the 
array); the latter when a single segment has been specified. 

GSGETS cannot be executed when there is an open segment. After the GSGETS, 
the picture cannot be changed until the GSGETE has been executed. 

Here is an example of a GSGET: 

DECLARE GETBUFF CHAR(400) INIT (' '); 
DECLARE LEN FIXED BINARY(31); 
CALL GSGET(400,GETBUFF,LEN); 

The first parameter specifies the length of the buffer variable into which GDDM is 
to write the GDF. The second is the buffer variable itself. The third is a variable 
in which GDDM returns the actual length of the GDF data; it is set to 0 when all 
the data has been returned. Only complete GDF orders are returned. The program 
is in error if there is not sufficient space in the buffer variable for the next order. 
The longest order can be accommodated in 260 bytes. 

The GSGETE call is simple: 

CALL GSGETE; 

Here is an example of a GSPUT call to pass GDF to GDDM: 

DECLARE PUTBUFF CHARACTER(400); 
CALL GSPUT(4,400,PUTBUFF); 

The first parameter specifies the type of numeric data being passed: 1 means 
one-byte fixed-point integer, 2 means two-byte fixed-point integer, and 4 means 
four-byte floating-point. (One-byte integer data is accepted, although the current 
release of GDDM does not generate it.) The second parameter is the name of the 
variable containing the GDF, and the third is its length. 

The GDF is added to any that already exists for the current graphics field, whether 
this was supplied by a GSPUT or created by other GDDM calls. Similarly, more 
GDF can added after a GSPUT by other GDDM calls, and also by further GSPUTs. 

Figure 59 on page 174 shows how to use GSGETS, GSGET, GSGETE, and GSPUT. 
The program makes use of a comment order at the start of the GSGET data to set 
up the window before the GSPUT. The format of this, and all other orders, is 
explained in the GDDM Base Programming Reference manual. 

Chapter 13. Picture handling in graphics data format 173 



see end of chapter for device variations 

GETPUT: PROC OPTIONS (MAIN); 
*****************************************************************/ 
* DECLARATIONS */ 
*****************************************************************/ 
DCL ADDR BUILTIN; 
DCL GDFFILE RECORD SEQUENTIAL 

OUTPUT 
DCL GETARRAY(3) FIXED BIN(31); 
DCL GETCNT FIXED BIN(31); 

FILEj/* File to store GDF */ 

DCL BUFLEN FIXED BIN(31); 
DCL BUFDATA(10) CHAR(400); 
DCL GDFLEN(10) FIXED BIN(31); 
DCL (TYPE,MODE,COUNT) FIXED BIN(31); 
DCL P PTR; 
DCL 1 COMMENT BASED(P), 

2 OPCODE BIT(S), 
2 LEN BIT(S), 
2 FORMAT BIT(16), 
2 XLO FIXED BIN(15), 
2 XHI FIXED BIN(15), 
2 YLO FIXED BIN(15), 
2 YHI FIXED BIN(15)j 

DCL (XLOFL,XHIFL,YLOFL,YHIFL) FLOAT 

/* Parameter to GSGET */ 
/* Length of GETARRAY */ 
/* Data buffer length */ 
/* Save buffers allocated */ 
/* Data actual lengths */ 
/* Params for ASREAD */ 
/* To address first order */ 
/* Comment order structure */ 
/* Order OPCODE */ 
/* Data length in order */ 
/* Data format in order */ 
/* x coord low limit */ 
/* x coord high limit */ 
/* y coord low limit */ 
/* y coord high limit */ 

DEC(6); /* Call parameters*/ 

CALL FSINITj 
/****************************************************************/ 
/* Picture creation */ 
/****************************************************************/ 
/* */ 
/* */ 
/* . */ 
/****************************************************************/ 
/* Data capture into GDF buffers */ 
/****************************************************************/ 
CALL ASREAD(TYPE,MODE,COUNT); /* Output the picture */ 

/* DATA CAPTURE START */ 
GETCNT=3j /* 3 elements in GETARRAY */ 
GETARRAY(l)=Oj /* Capture all segments. */ 
GETARRAY(2)=2j /* Fixed point form. */ 
GETARRAY(3)=2; /* Full GDF */ 
CALL GSGETS(GETCNT,GETARRAY)j /* Start data capture. */ 
BUFLEN=400j /* 400-byte buffers. */ 
/****************************************************************/ 
/* Loop until all orders captured or no more buffers */ 
/****************************************************************/ 
DO J=l BY 1 UNTIL(GDFLEN(J)=O I J= 10); 

CALL GSGET(BUFLEN,BUFDATA(J),GDFLEN(J»; 
WRITE FILE(GDFFILE) FROM(BUFDATA(J»j /* Write data to file */ 

END; /* until all data captured.*/ 
CALL GSGETEj /* End data capture. */ 
/* DATA CAPTURE END */ 
JSAVE=Jj 
/****************************************************************/ 
/* Clear the displayed picture. */ 
/****************************************************************/ 
CALL GSCLRj 
/****************************************************************/ 
/* Data restore from GDF buffers. */ 
/****************************************************************/ 
/* Establish GDF-dictated graphics picture space and window. */ 
P=ADDR(BUFDATA(l»j /* Start of 1st order(comment)*/ 
XLOFL=XLOj /* Convert to floating point */ 
XHIFL=XHlj 
YLOFL=YLOj 
YHIFL=YHlj 
/* Establish GDF-dictated window coordinates */ 

Figure 59 (Part 1 of 2). Handling GDF with GSGET and GSPUT 

174 GDDM Application Programming Guide Volume 1 



CALL GSUWIN(XLOFL,XHIFL,YLOFL,YHIFL)i 
DO J=l TO JSAVE-li 

CALL GSPUT(2,GDFLEN(J),BUFDATA(J))i 
END; 
/* Output the restored picture 
CALL ASREAD(TYPE,MODE,COUNT); 
CALL FSTERM; 
%INCLUDE ADMUPINA; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPING; 
END GETPUT; 

graphics data format 

/* For all buffers used*/ 
/* Restore the picture */ 

*/ 

Figure 59 (Part 2 of 2). Handling GDF with GSGET and GSPUT 

Device variations 

Fixed-point GDF cannot be obtained by means of GSGET when the current device 
is a 3279, 5080, or a family-4 printer (printer families are explained in "Chapter 22. 
Using printers" on page 395). 

Chapter 13. Picture handling in graphics data format 175 



Chapter 14. Interactive graphics 

This chapter tells you how to make the screen of a display unit into a drawing pad. 
It describes GDDM calls and programming techniques that create and manipulate 
graphics primitives interactively, in response to the demands of the terminal 
operator. 

The GDDM facilities for creating graphics are basically the same in interactive 
graphics applications as in noninteractive ones. In other words, you define 
graphics attributes and create graphics primitives and segments using the calls 
introduced in "Chapter 2. Drawing a simple picture" on page 7. 

Interactive graphics applications differ in the calls they use for handling input 
from the terminal. These calls help you by letting GDDM do a lot of the work. 

The GDDM-supported terminals most suitable for interactive graphics are the 
3270-PC/G and /GX work stations. This chapter tells you primarily how to write 
programs for these. Differences on other types of terminal are described in "Device 
variations" on page 213. 

Overview of graphics input functions 

The type of input a host computer may receive depends on the type of terminal that 
sent it. To help programs be device-independent, the GDDM interactive graphics 
calls present all input as if it comes from logical input devices, rather than 
physical facilities of a terminal. 

There are five types of logical input device: 

• Choice devices, which correspond to the keys on the terminal that can cause 
an interrupt, such as the PF and ENTER keys. The ordinary alphanumeric 
data keys can also cause interrupts. Choice devices provide input as a code 
identifying which key was pressed. 

• A locator device, which corresponds to the graphics cursor, and provides input 
as an (x,y) screen position expressed in world coordinates. 

• A pick device, which also corresponds to the graphics cursor. It differs from a 
locator in providing input as the identifier of a graphics primitive that has been 
selected, or picked, by the operator. The identifier is called a tag. The 
identifier of the segment to which the picked primitive belongs is also returned. 
The work station creates the input by translating the (x,y) position of the 
cursor into a tag and a segment identifier, a process called correlation. 

• A string device, which consists of graphics text typed by the operator into an 
area of the graphics field defined by the application program. 

Chapter 14. Interactive graphics 177 



see end of chapter for device variations 

• A stroke device, which, like the locator, corresponds to the graphics cursor. 
It differs in providing a set of (x,y) coordinates sampled from the trajectory of a 
moving cursor. The sampling is either at intervals fixed by GDDM or at points 
indicated by the operator with the mouse or puck buttons or the stylus 
tip-switch. 

The work stations provide several ways of controlling the graphics cursor: a mouse; 
a tablet with either a puck (four-button cursor) or stylus; or, if neither a mouse nor 
a tablet is plugged in, the cursor keys. Any of these physical devices can provide 
locator, pick, and stroke input, except that the cursor keys cannot provide stroke 
input. The input data is completely independent of the physical device; the 
application cannot, in general, determine which was used. 

The operator has a separate alphanumeric cursor for typing into alphanumeric 
fields. It is positioned using the cursor keys. If the work station has neither a 
mouse, puck, nor stylus, these keys control the graphics cursor as well. The 
operator switches between alphanumeric and graphics cursor control by holding 
down the AL T key and pressing PF24. 

The graphics cursor is a type of device echo. In general, an echo is the immediate 
feedback that the work station provides for the operator. In the case of a pick, 
locator, or stroke device, the echo indicates the device's position. In the case of a 
string device, it indicates the characters that the operator has typed in. 

After positioning the graphics cursor for pick, locator, or stroke data, or after 
typing string data, the terminal operator must trigger the logical input device 
(that is, start the transmission to the host) by, for instance, pressing the ENTER 
key. 

Your program may need input from some logical devices but not others. All those 
from which it requires input must be enabled. GDDM discards input from devices 
that are not enabled. 

There is a special call, GSREAD, for interactive graphics I/O. It sends the current 
page to the terminal and waits for input, just like ASREAD. It differs from 
ASREAD in that it presents the input as if it came from one or more of the logical 
input devices. It adds elements to a graphics input queue - one element for each 
logical input device that has provided input. Your program accesses the queue by 
executing query calls, of which there is one for each type of logical device. 

GSREAD reads any data that the operator may have typed into alphanumeric 
fields, in addition to graphics data. 

Simple interactive graphics program 

The routine in Figure 60 on page 179 illustrates graphics input in general, and 
pick input in particular. It displays a menu of vector symbols and allows the 
terminal operator to select one of them. 

178 GDDM Application Programming Guide Volume 1 



interactive graphics 

MENU:PROC(SYMB_TAG); 

DECLARE SYMB TAG FIXED BINARY (31) , 
SEG NUM FIXED BINARY(31); 

DECLARE (DEV,DEVID) FIXED BINARY ( 31) ; 

CALL GSSATI(1,1); 1* Make segment detectable. *//*A*/ 

CALL GSSEG(S) ; /* Open segment with id=5. *//*B*/ 
CALL GSCM(3) ; /* Vector symbol mode. */ 
CALL GSCB(10.0,10.0); /* Set size of symbols */ 
CALL GSMOVE(1.0,1.0); 

CALL GSTAG( 1) ; /* Tag = 1 *//*C*/ 
CALL GSCHAP (1, , A ' ) ; /* Draw first symbol. */ 
CALL GSTAG(2); /* Tag = 2 *//*C*/ 
CALL GSCHAP (1, 'B' ) ; /* Draw second symbol */ 
CALL GSTAG(3); /* Tag = 3 *//*C*/ 
CALL GSCHAP(1, 'C'); /* Draw third symbol */ 

/* Repeat */ 
/* for remaining */ 
/* symbols */ 

CALL GSENAB ( 3 , 1, 1) i /* Enable pick device *//*E*/ 

CALL GSREAD(1,DEV,DEVID)i /* Send menu to terminal *//*F*/ 
/* and wait for input. */ 

CALL GSENAB(3,1,O)i /* Disable pick device. *//*G*/ 
CALL GSQPIK(SEG_NUM,SYMB_TAG)i /* Query selected symbol. *//*H*/ 

/*Tag of selected symbol returned to calling routine in SYMB_TAG*/ 

END MENU; 

Figure 60. Graphics menu routine 

The symbols can be created with the Vector Symbol Editor. They might be, for 
instance, diagrammatic representations of electrical components such as transistors 
and resistors, or plan views of office furniture, such as desks, chairs, and filing 
cabinets. The operator makes the selection by first positioning the cursor over a 
symbol and then triggering the pick. This is done by pressing ENTER or a PF key 
or, if no stroke device is enabled, by pressing a button on the mouse or puck, or by 
using the stylus tip·switch. If the data keys are enabled as a choice device and no 
string device has been enabled, any data key will trigger the pick, too. 

The MENU routine could be a subroutine of an application in which the operator 
picks the symbols from the menu and then positions them, for instance, on a circuit 
diagram or office plan. 

The program introduces several important calls and concepts. 

Tags: If a primitive is to be picked, it must have a tag. GDDM returns the tag to 
your program if the primitive is picked. The tag is assigned when a primitive is 
created. You specify tags in the GSTAG call. It has only one parameter: a 
fullword integer that is to become the current tag: 

CALL GSTAG(1S)i/* Assign tag of 15 to all subsequent primitives */ 

GDDM will assign this tag to all subsequently created primitives within the 
current segment until another GSTAG is issued. When a segment is opened, 
GDDM makes the drawing default tag current. 

To be detectable, a primitive must have a nonzero tag. The example assigns a tag 
to each symbol with the statements marked /*c* /. 

Chapter 14. Interactive graphics 179 



see end of chapter for device variations 

Pick aperture and echo: When a pick device is enabled, a square box is displayed 
that the operator can move with the mouse, puck, stylus, or cursor keys. This is 
the pick echo, and it shows the size and position of the pick aperture. A primitive 
is picked only if it passes within this aperture. Setting the size and initial position 
of the pick aperture is described in "Initializing a logical input device" on page 192 
and succeeding sections. 

If the primitive is a string of graphics text, it is picked if any part of any character 
box in the string lies within the aperture. If two or more primitives pass within the 
aperture, the latest (highest-priority) one will be picked. More information on 
priorities is given in "Drawing chain and segment priority" on page 147. 

Segment and segment attributes: A primitive that is to be picked must not only 
have a nonzero tag, it must also belong to a segment. The segment must have a 
nonzero identifier, and must be detectable and visible. Detectability and visibility 
are segment attributes, and are described in "Segment attributes" on page 130. 
The GSSATI call at /*A* / makes detectable a current segment attribute. Visible is 
a default attribute. 

The symbols used by the example all belong to one segment. It is opened at I*B* 1 
and given the identifier 5. It does not need to be closed. 

It is important to remember that segments are collections of primitives, not areas of 
the screen (see Figure 44 on page 129). To return pick data, the pick aperture 
must be positioned over a primitive, such as a line, a symbol, or a shaded area. 
Putting the aperture within a closed object (say in the middle of a circle) rather 
than actually over the outline, does not cause the object to be picked, unless it is 
an area. 

Enabling logical input devices: All logical input devices from which your program 
requires input must be enabled using the GSENAB call. More information is given 
in "Enabling or disabling a logical input device" on page 188. 

The example program uses only one type of input device, the pick type. It is 
enabled by the GSENAB at I*E* /, and disabled when no longer required, at 
I*G*I· 

Input/output: To make use of GDDM's interactive graphics input facilities, you 
must send the current page to the terminal using the GSREAD call, as at I*F* I. 
More information is given in "The GSREAD call and the input queue" on page 189. 
You should read that section before writing any programs that use more than one 
logical input device. 

Querying logical input: A program accesses the data from a logical input device by 
issuing a query call after the GSREAD. This call queries input from a pick device: 

CALL GSQPIK(SEGID,TAG); 

The call returns two values: the identifier of the segment to which the picked 
primitive belongs, and the primitive's tag. If no primitive belonging to a detectable 
segment passes through the pick aperture, hoth parameters are set to zero. 

The MENU routine queries the pick device at I*H* I. It is concerned only with the 
tag because all the primitives belong to the same segment. It returns the tag to its 
calling routine by means of the variable SYMB_TAG. 

A similar call to GSQPIK is GSQPKS. This call returns data for the picked 
primitive and its segment, and the segment that called that segment, and so on, 

180 GDDM Application Programming Guide Volume 1 



interactive graphics 

repeated up to and including the top segment in the hierarchy. See the GDDM 
Base Programming Reference manual for details. 

Locator input 

Choice input 

A locator logical input device provides the program with the (x,y) screen position, 
in world coordinates, of the graphics cursor. It can be triggered in the same ways 
as a pick device. 

The call that queries locator input is GSQLOC, which returns one integer and two 
floating-point values: 

CALL GSQLOC(INWIN,X,Y); 

The first parameter is set by GDDM to indicate whether the locator was within the 
graphics window: 1 means it was inside, and 0, outside. (The graphics window, and 
the associated concept of the viewport, is described in "Chapter 9. Hierarchy of 
GDDM concepts" on page 89). By default, the graphics window fills the screen, 
and so the cursor cannot be moved off the screen. In simple applications, therefore, 
the locator is always within the window. The second and third parameters are the 
locator coordinates. 

The following code enables a locator, obtains input from it, and draws a symbol at 
the position it returns. The code includes a call to the routine shown in Figure 60 
on page 179 to let the operator select the symbol. 

DECLARE SYMB ARRAY(lO) CHAR(l) 
- INITIAL ( I A' , 'B' , I C' , , D' , 'E' , 'F' , I G' , , H' , I I ' , I J I ) ; 

DECLARE SYMB NUM FIXED BINARY(31); 
DECLARE (DEV~DEVID,INWIN) FIXED BINARY(31); 
DECLARE (X,Y) FLOAT DEC(6); 

/* */ 
/* */ 

CALL MENU(SYMB_NUM)i /* Let operator select a symbol */ 

/* */ 
/* */ 

CALL GSENAB(2,l,l); 
CALL GSREAD(l,DEV,DEVID); 

/* 
/* 
/* 

CALL 
CALL 

GSQLOC(INWIN,X,Y)j /* 
GSCHAR(X,Y,l,SYMB_ARRAY(SYMB_NUM»j/* 

Enable locator. */ 
Transmit current page*/ 
and wait for input. */ 
Query locator input. */ 
Draw char at (x,y) */ 

Instead of the graphics cursor, the locator can be echoed by a rubber band, rubber, 
box, or a specified segment. More information is given in "Initializing a logical 
input device" on page 192 and succeeding sections. 

Choice devices are associated with work-station facilities that can cause interrupts 
at the host, such as the PF or PA keys, or the mouse or puck buttons or stylus 
tip-switch. 

The data keys can also be enabled as choice devices, in which case anyone of them 
will cause an interrupt when pressed (provided a string device has not been 
enabled). The data keys are those that the operator uses for typing letters and 

Chapter 14. Interactive graphics 181 



see end of chapter for device variations 

Work station 
facility 

ENTER key 
PFkey 
PAkey 
CLEAR key 
Data key 

numerals, brackets, currency signs, and so on, including the space bar. On the 
work-station keyboards, they are colored differently from the other keys. 

The data keys also include many of the keys you might normally use for 
alphanumeric editing, for instance the cursor keys and ERASE EOF. 

Choice devices have no echo. 

You should avoid using as a choice device any key that may have a special 
subsystem or GDDM function. This generally means avoiding some or all of the 
PA keys and possibly the CLEAR key. However, you can use GDDM processing 
options to control the handling of these keys by the subsystem and GDDM (see the 
GDDM Base Programming Reference manual). On the 5550, and 3270-PC/G and GX, 
PA3 cannot be a choice device, as it is not returned to the application. On other 
devices, PA3 is the default key to enter user control. 

Choice input tells your program which key the operator has pressed. GDDM 
returns the information in two calls, GSREAD and GSQCHO: 

CALL GSREAD(l,DEV_TYPE,DEV_ID)i 
CALL GSQCHO(NUMBER)i 

The second parameter of GSREAD is set by GDDM to indicate the type of device, 
whether choice, locator, pick, string, or stroke. If it is a choice device, the third 
parameter is set by GDDM to indicate the type of key that was pressed. (Further 
information about all the parameters is given in "The GSREAD call and the input 
queue" on page 189.) The single parameter of the GSQCHO call returns a fullword 
integer identifying the particular key. The meanings of this parameter and the 
third parameter of GSREAD are summarized in Figure 61. 

Parameter values 

GSREAD(l,DEV TYP,DEV ID) GSQCHO(NUMBER) 

1 0 0 
1 1 Number of key (1-24) 
1 4 Number of key (1-2) 
1 5 0 
1 8 Character code (1-255), 

Mouse button or 1 10 Button number (1-2 or 
puck button or 1-3 or 
stylus switch 1) 

Figure 61. Choice data returned by 3270-PC/G and /GX terminals 

The following code shows how GSREAD and GSQCHO can be used. Functions 
have been defined for three PF keys: PF1 enlarges a previously selected symbol, 
PF2 reduces it, and PF3 ends the program. There are subroutines to change the 
size of the symbols, called ENLARGE and REDUCE: 

182 GDDM Application Programming Guide Volume 1 



interactive graphics 

DECLARE (DEV_TYPE,DEV_ID) FIXED BINARY(31); 
DECLARE PFKEY FIXED BINARY(31); 
CALL GSENAB(l,l,l); 

CALL GSREAD(l,DEV_TYPE,DEV_ID); 
CALL GSQCHO(PFKEY); 
IF PFKEY=l 

THEN CALL ENLARGE; 
ELSE IF PFKEY=2 

THEN CALL REDUCE; 
ELSE IF PFKEY=3 

THEN GO TO FINISH; 
ELSE GO TO PROCESS_ERROR; 

/* Enable PF keys as choice */ 
/* devices. */ 
/* Issue graphics read. */ 
/* Query choice input. */ 
/* If operator pressed PF1 .. */ 
/* .. perform enlarge function.*/ 
/* If operator pressed PF2.. */ 
/* .. perform reduce function. */ 
/* If operator pressed PF3 .. */ 
/* go to end of the program. */ 
/* Only PF1, 2, & 3 accepted. */ 

Multiple-choice devices can be enabled concurrently - the PF keys, the ENTER 
key, and the data keys, say. 

Effects of stroke and string devices 

If a stroke device has been enabled, then enabling the puck, mouse, or stylus as a 
choice device has no effect. Their use with stroke input overrides their use as a 
choice device, and they will not return choice data. Similarly, enabling a string 
device overrides the effects of enabling the data keys as a choice device - they will 
return string, not choice, data. 

Choice devices as triggers 

The PF keys and the ENTER key can trigger input for all five types of logical 
input device: choice, locator, pick, string, and stroke. GDDM discards the choice 
data if the appropriate choice device is not enabled, but still passes on locator, 
pick, string, and stroke data to the program if these devices are enabled. 

The puck, mouse, and stylus behave like the ENTER and PF keys but only when a 
locator or pick has been enabled and a stroke has not, as a stroke device assigns a 
special meaning to these keys. Button 4 on the puck and button 3 on the mouse, 
though, are not available - they never send input to the host. 

If the data keys are enabled as a choice device, then they, too, will trigger all 
enabled devices - when a string device has not been enabled. 

The PA and CLEAR keys provide choice data only. They never trigger any other 
type of input. 

Input from the data keys 

When the data keys are enabled as a choice device, pressing anyone of them 
generates an item of choice data. For instance, when the operator presses the A 
key, the terminal interrupts the host and transmits the letter A to it, which GDDM 
puts on the input queue. 

For an· alphanumeric key, the value that the GSQCHO call reads from the input 
queue derives from the EBCDIC code for the key's character. This is treated as a 
hexadecimal number. For instance, the EBCDIC code for uppercase A is C1, and 
hexadecimal 'C1' is decimal 193; so the A key returns the value 193. 

For nonalphanumeric keys like the cursor keys and ERASE EOF, refer to the 
Graphics Control Program Work Station Programmer's Guide and Reference. This 
provides a list of all the keyboard buttons that can provide input, together with the 
codes they return. 

Chapter 14. Interactive graphics 183 



see end of chapter for device variations 

String input 

You need to know when you code your program whether it should accept uppercase 
or lowercase characters, or both, so that you can test for the appropriate codes. If 
you are expecting input from the numeric data keys, you should remember that the 
codes are in the range 240 through 249 (corresponding to hexadecimal 'FO' through 
'F9'), not 0 through 9. 

A string device has a similar function to an unprotected alphanumeric field· 
reading alphanumeric characters typed in by the operator. The characters are 
displayed on the screen in the same way as for ordinary data entry: they are the 
string device's echo. 

The input is queried by a GSQSTR call: 

DCL STR IN CHARACTER(25); 
DCL CURPOS FIXED BINARY(3l); 

/* Length Input data 
CALL GSQSTR( 25, STR_IN, 

Cursor position */ 
CURPOS ); 

The first parameter of GSQSTR is the length of data requested, and the second is a 
character variable in which GDDM returns it. 

The third parameter is the position of the cursor when the input was triggered. If 
the operator entered no data (and did not move the cursor), it has the value 1. If 
one character was entered (and the cursor was not then moved), it has the value 2, 
and so on. If the field was filled, the cursor remains under the last character. The 
parameter then returns the same value as if all except the last position was filled. 
In the case of the example, entering either 24 or 25 characters (and not then 
moving the cursor) returns a value of 25. 

Here is an example of using a string device: 

DECLARE (DEV_TYPE,DEV_ID) FIXED BIN(3l); 
DECLARE NAME IN CHARACTER(S); 
DECLARE CURPOS FIXED BINARY(3l); 

CALL GSSEG ( l) ; 
CALL GSCHAR(lO,97,l2,'< ENTER NAME'); /* Operator prompt 
CALL GSSCLS; 

*/ 

CALL GSENAB(4,l,l); 
CALL GSREAD(l,DEV_TYPE,DEV_ID); 
CALL GSQSTR(S,NAME_IN,CURPOS); 

/* Enable string device. */ 
/* Send to terminal. */ 
/* Read string data */ 
/* from queue. */ 

You can have only one string input area at a time. By default it occupies eight 
bytes at the top left of the graphics field. You can specify its length and position, 
and also any data that it is to display initially, with the GSISTR call (see 
"Initializing a string device" on page 195). That section also tells you how to 
specify the initial cursor position, using call GSIDVI. 

As well as entering characters using the data keys, the terminal operator can edit 
the string with the backspace and left and right cursor keys. The other editing 
keys, like ERASE EOF, are not available for use on string input. 

184 GDDM Application Programming Guide Volume 1 



interactive graphics 

Stroke input 

Creating stroke input 

A stroke device is like a locator, but instead of returning one (x,y) position, it 
returns a series. The operator has two ways of creating the input. 

One way is by using the puck, mouse, or stylus to draw a line that is sampled at 
fixed intervals. This is called stream sampling. The movement of the mouse, puck 
or stylus is echoed by a continuous line on the screen. 

The other way is by indicating the (x,y) locations one at at time by positioning the 
cursor and then pressing a puck or mouse button, or the stylus tip-switch. This is 
called polylocator sampling. The operator's actions are echoed by either a 
polyline or a polymarker. The polyline joins all the indicated (x,y) positions. 
The polymarker echo is a GDDM cross-marker symbol at each indicated position. 

You select the sampling method and echo in your program, as explained in 
"Initializing a stroke device" on page 196. The default mode is polyline. 

Stream sampling can be used to support freehand drawing with a stylus, and 
digitizing an existing picture by tracing over the outlines with a puck. 

Poly lines are suitable for drawing pictures that are comprised of straight lines, 
using a mouse, puck, or stylus. 

Polymarkers are useful for allowing the terminal operator to select several items at 
once - say several primitives or several menu items. Your program can identify 
the selected items using GSCORR calls (see "Query primitives and segments in 
specified area using call GSCORR" on page 208). 

When the program has enabled a stroke device and issued a GSREAD, GDDM 
places a highlighted X marker on the screen coincident with the graphics cursor, to 
indicate that a stroke device is available. The terminal operator must then move 
the cursor to the first (x,y) position that is to be recorded, and activate the stroke 
device. This is done by pressing one of the mouse or puck buttons or the stylus 
tip-switch. The X marker disappears when the device is activated. 

In stream mode, activation initiates sampling at distance~based intervals. If the 
device is moved less than a minimum distance during a sampling interval, sampling 
is suspended until the distance moved reaches the minimum. This prevents a large 
number of equal (x,y) values being returned if the operator stops moving the device. 
The sampling interval varies with the load on work-station resources. A string 
device, in particular, may adversely affect the sampling interval. 

Pressing a mouse or puck button or stylus switch a second time deactivates the 
device and suspends stream sampling. Pressing it a third time reactivates the 
device and restarts sampling, and so on. In this way the operator can draw a set of 
disconnected lines. 

With polylocator sampling, the operator presses the mouse, puck, or stylus switch 
once for each (x,y) position. 

In all cases, the (x,y) positions are stored in a buffer at the work station. The 
number of (x,y) positions that can be held in the buffer depends on two things: the 
storage available at the work station and a program-defined maximum. The 

Chapter 14. Interactive graphics 185 



see end of chapter for device variations 

operator cannot store any more (x,y) values when the lesser of these two limits is 
reached. Your program can define its maximum in the GSISTK call (see 
"Initializing a stroke device" on page 196). The default is 64. If the storage at the 
work station is less than the program-defined maximum, a warning message is 
issued at the terminal. 

When the limit is reached, the X marker reappears at the last recorded point and 
the alarm sounds. The operator must then trigger the device with the ENTER or a 
PF key, or, if the data keys are enabled as a choice device, with a data key. This 
causes the contents of the buffer to be sent to your program. 

The operator can, instead, choose to trigger input to the program by pressing the 
ENTER or a PF key before the buffer is full. With stream sampling, the device 
must be deactivated using a mouse or puck button or stylus switch before the 
trigger (ENTER, PF, or data key) is pressed. No input can be sent to the host 
while a stream-mode stroke device is active. 

Querying stroke input 

You query the stroke data with a GSQSTK call: 

DECLARE DFLAGS(200) FIXED BINARY(31); 
DECLARE (XARRAY(200),YARRAY(200» FLOAT DECIMAL(6); 
DECLARE NUM FIXED BINARY(31); 

/* Max_ no. values 
CALL GSQSTK(200, 

Draw flags Values Actual no_ values */ 
DFLAGS, XARRAY , YARRAY , NUM ); 

The pairs ofx and y values are returned in XARRAY and YARRAY. 

In the first parameter, you must specify the maximum number of values that your 
program can accept. Typically, this equals the size of the arrays. This, in turn, 
typically equals the work-station buffer maximum - either the explicit maximum 
specified in a GSISTK call or the default of 64. 

GDDM sets NUM to the actual number returned by the work station. This is 
always equal to or less than the buffer maximum. If the actual number returned in 
NUM is greater than the number specified in the first parameter, the excess x and 
y values are discarded. If it is smaller, any excess array positions are left 
unchanged. 

GDDM sets each element of the second parameter, DFLAGS, to indicate the 
operator action that generated the corresponding x and y values, as follows: 

• With polylocator sampling: 

1, 2, or 3 if mouse or puck was used. The number indicates which button 
was pressed. 

1 if the stylus tip-switch was used. 

-1 if no values have been returned in the corresponding x- and y-value 
arrays (XARRA Y and Y ARRAY in the example). GDDM sets the trailing 
elements to this value when the actual number of points returned (NUM in 
the example) is less than the specified maximum (200 in the example). 

• With stream sampling: 

186 GDDM Application Programming Guide Volume 1 



interactive graphics 

1 when the operator pressed a mouse or puck button or the stylus tip switch 
to activate the device and initiate sampling. In other words, 1 means a new 
line was started. 

o when the corresponding x and y values represent a point sampled from the 
trajectory of a moving cursor - a point within or at the end of a line. 

-1 when no corresponding x and y values have been returned (as for 
polyline and polymarker modes). 

The first position in the arrays is not necessarily the same as the initial position of 
the cursor. The work station starts recording (x,y) data when the operator 
activates the device using a mouse or puck button or stylus tip-switch. The 
operator can move the cursor from its initial position before doing this. 

Simple polyline program 

The program in Figure 62 uses a stroke device of the default type, namely polyline. 

After reading the stroke input, the program redraws the line created by the 
operator. Most programs that use stroke input for line drawing need to do this, 
because the echo line disappears from the screen when the next terminal 1/0 
occurs. The example redraws the line in red. 

A second GSREAD sends the redrawn line to the work station. Before this call is 
executed, stroke input is disabled, and the ENTER key enabled as a choice device. 
When the operator presses ENTER after the line changes to red, the program ends. 

PLSTK:PROCEDURE OPTIONS(MAIN); 

DCL (DEVTYPE,DEVID) FIXED BIN(31); 
DCL DFLAGS(64) FIXED BIN(31); 
DCL (XARRAY,YARRAY) (64) FLOAT DEC(6); 
DCL NUM FIXED BIN(31)i 

CALL FSINIT; 

CALL GSENAB(5,1,1); /* Enable tablet or mouse for stroke */ 

CALL GSREAD(l,DEVTYPE,DEVID); /* Read and wait */ 

CALL GSQSTK(64,DFLAGS,XARRAY,YARRAY,NUM); /* Obtain stroke data.*/ 

/* Now redraw the polyline from the returned arrays of points */ 

CALL GSSEG(l); /* Begin new segment. */ 
CALL GSCOL(2)i /* Set color to red. */ 
CALL GSMOVE(XARRAY(l),YARRAY(l»; /* Make start of line the */ 

/* current position. */ 
CALL GSPLNE(NUM,XARRAY,YARRAY); /* Draw the polyline. */ 
CALL GSSCLS; 

CALL GSENAB(5,1,O); 
CALL GSENAB(l,O,l); 

CALL GSREAD(l,DEVTYPE,DEVID); 

CALL FSTERMi 

%INCLUDE ADMUPINFi 
%INCLUDE ADMUPING; 
END PLSTKj 

/* Disable stroke device. 
/* Enable enter key as 
/* choice device. 
/* Display polyline in red. 

*/ 
*/ 
*/ 
*/ 

Figure 62. Program using polylocator stroke device 

Chapter 14. Interactive graphics 187 



see end of chapter for device variations 

Enabling or disabling a logical input device 

GSENAB enables a logical input device, thereby requesting GDDM to pass input 
from that device to your program. If a device is not enabled, GDDM discards all 
input from it. 

You can have any or all of the five basic types of logical input device enabled at 
anyone time. And you can enable as many different types of choice device as you 
require. However, it makes your program simpler if you enable only those that 
provide useful data, and let GDDM discard any input from the others. 

The way in which GDDM presents input when more than one device is enabled is 
described in "The GSREAD call and the input queue" on page 189. 

A typical GSENAB call is: 

/* Device_type 
CALL GSENAB(l, 

The parameters are as follows: 

Control */ 
l}; /* Enable PF keys */ 

• The first is the type of logical input device being enabled. There are five types: 

1 Choice device. Several terminal facilities can be associated with a 
choice device: the ENTER key, PF keys, PA keys, the CLEAR key, the 
data keys, and the mouse and puck buttons and stylus tip-switch. One of 
them is selected using the second parameter. 

2 Locator device. This is associated with the mouse, puck, stylus, or 
cursor keys. The position of the locator is sent to the host when the 
operator triggers a transmission in one of the ways described in "Choice 
devices as triggers" on page 183. The program can discover which 
terminal facility acted as the trigger only if it was enabled as a choice 
device. 

3 Pick device. Physically, this device is the same as the locator, that is, 
the mouse, puck, stylus, or cursor keys. The difference lies in the 
information that GDDM passes to your program on input. Instead of x,y 
coordinates, GDDM identifies the primitive over which the pick device 
was positioned, and the segment to which that primitive belongs. 

4 String device. This device is represented by a string of characters typed 
by the operator into a program-defined area of the screen. They are 
mode-1 graphics text characters of default size. 

5 Stroke device. This device is similar to the locator: it can be the 
mouse, puck, or stylus, though not the cursor keys. Instead of a single 
pair of x,y coordinates, GDDM passes an array of pairs that trace the 
path of the cursor as it was moved by the operator. 

• If the first parameter did not specify a choice device, the second parameter 
must be set to: 

1 The only permitted value for non-choice devices. 

• If the first parameter did specify a choice device, this parameter further 
identifies it. The valid values are then: 

188 GDDM Application Programming Guide Volume 1 



interactive graphics 

o The ENTER key 
1 The PF keys 
4 The PA keys 
5 The CLEAR key 
8 The data keys 
10 The mouse or puck buttons or the stylus tip-switch. 

• The last parameter allows you to disable logical input devices, and also to 
enable them. A value of 0 tells GDDM to disable the device, and 1 to enable it. 

Some further advice about using GSENAB is given in "When to issue GSENAB 
calls" on page 197. You can query whether a logical input device is enabled, as 
explained in "Querying a logical input device" on page 198. 

The GSREAD call and the input queue 

A single action by the terminal operator can generate up to five types of input, 
depending on which logical devices are enabled. For instance, pressing a PF key 
could create: 

• Choice input consisting of a code representing the key. 

• Locator input consisting of the position of the cursor. 

• Pick input consisting of the identities of the primitive and segment over which 
the cursor is positioned. 

• String input consisting of a character string typed by the operator. 

• Stroke input consisting of the preceding track of the cursor. 

GDDM presents the input to your program as a queue, with one element, or record, 
for each enabled type of logical input device. Making the records on the queue 
available to your program is a second function of the GSREAD call, in addition to 
its I/O function. This is how it works: 

• If the input queue is empty, then, unless you specify otherwise, a GSREAD call 
sends the data to the terminal, waits for input, and when the input is received, 
adds one or more records to the input queue. It then removes the top record 
from the queue, and makes it available for your program to query. 

• If the input queue is not empty, a GSREAD call simply removes the next record 
from the queue and makes it available for querying. It does not do any I/O. 

In addition, GSREAD reads any alphanumeric data that the operator may have 
typed in. 

A typical GSREAD call is: 

/* Delay Device_type 
CALL GSREAD(l, D_TYPE, 

Device_id */ 
D_IDl i 

The first parameter is normally set to 1, meaning that GDDM is to perform an 1/0 
operation if the queue is empty. By setting it to 0, you can examine the input 
queue without doing any I/O with the terminal. GSREAD will simply examine the 
queue, and if it is not empty, remove the topmost record and make it available. If 

Chapter 14. Interactive graphics 189 



see end of chapter for device variations 

the queue is empty, GDDM sets the second and third parameters to zero, and 
returns control to your program. 

The second parameter is set by GDDM to indicate the type of logical input device 
that generated the record currently being made available. 1 means a choice device, 
2 a locator, 3 a pick, 4 a string device, and 5 a stroke device. 

The third parameter is of interest only for choice devices, where it identifies the 
type of key that was pressed. Its possible values are listed in Figure 61 on 
page 182. For input from other devices, it is always set to 1. 

The codes returned in the second and third parameters are the same as the ones 
you set in the first two parameters of GSENAB. 

When GSREAD has made a record available, you may inspect it by issuing a query 
call, namely GSQCHO, GSQLOC, GSQPIK, GSQSTR, or GSQSTK. Your program 
is in error if the query is not the appropriate one for the currently available record. 
The order of the records is undefined, so if you have more than one logical input 
device enabled, it is essential to test the second parameter of GSREAD before 
issuing a query. 

It is important to remember that GSREAD does no I/O unless the queue is empty. 
In other words, GSREAD will not update the screen while there are any records on 
the queue. To avoid problems, the recommended technique is to empty the queue 
immediately after it has been created, as shown in "Handling the input queue." 

GDDM ensures that a GSREAD call issued when the input queue is empty always 
results in at least one input record being created. If the operator causes an 
interrupt that does not create an input record, GDDM will reject it. No input 
record is created if, for instance, the operator presses the CLEAR key when this 
has not been enabled as a choice device. In such cases, GDDM sounds the terminal 
alarm and waits for another interrupt. 

Checking for further graphics input records using call GSQSIM 

The GSQSIM call tells you whether the queue is empty: 

CALL GSQSIM(MORE)i 

GDDM sets the parameter to 0 if the queue is empty or 1 if there are more records. 
A value of 1 therefore means that the next GSREAD will not perform an I/O 
operation and 0 means that it will (unless the first parameter of the GSREAD is 0, 
in which case it will never perform any I/O). 

Handling the input queue 

If you are using multiple logical input devices, the order of records in the input 
queue is undefined. Processing them as they come off the queue may therefore 
require complex logic. That is why you are recommended to empty the input 
queue, as shown in the next example, before attempting to process any of the data. 
Furthermore, this technique allows you to be sure whether the next GSREAD will 
update the screen. As already mentioned, GSREAD will not update the screen if 
there are records still on the input queue. 

190 GDDM Application Programming Guide Volume 1 



interactive graphics 

DECLARE (CHOICE,LOCATOR,PICK,STRING,STROKE,PFKEY,ENTER,MORE) 
FIXED BINARY(31); 

DECLARE (DEV_TYPE,DEV_ID) FIXED BINARY(31); 
DECLARE (KEY TYPE,KEY,INWIN,SEGID,TAG,TXTCT,CURPOS,STKCT) 

FIXED BINARY(31); 
DECLARE (X,Y) FLOAT DEC(6); 
DECLARE (STKX(500),STKY(500» FLOAT DEC(6); 
DECLARE DRFL(500) FIXED BINARY(31); 
DECLARE TXT CHAR(100); 

CHOICE = 1; /* Initialize */ 
LOCATOR = 2; /* */ 
PICK = 3; /* */ 
STRING = 4; /* mnemonic */ 
STROKE = 5; /* */ 
PFKEY = 1; /* */ 
ENTER = 0; /* variables */ 
MORE = 1; /* */ 

CALL GSENAB(CHOICE,PFKEY,1); /* Enable */ 
CALL GSENAB(CHOICE,ENTER,1); /* */ 
CALL GSENAB(LOCATOR,1,1); /* */ 
CALL GSENAB(PICK,1,1); /* required */ 
CALL GSENAB(STRING,1,1); /* */ 
CALL GSENAB(STROKE,1,1); /* devices */ 

KEY_TYPE,KEY,INWIN,SEGID,TAG, 
STKCT,DRFL(1),STKX(1),STKY(1) = 999; 
TXT = '999'; 

/* Assign dummy values to */ 
/* variables that may be */ 
/* set when input queried.*/ 

GET RECORD: 
CALL GSREAD(1,DEV_TYPE,DEV_ID); 

/* Create input queue and */ 
/* remove records from it.*/ 

IF DEV_TYPE=CHOICE /* Next record is of choice type */ 
THEN DO; /* */ 
KEY_TYPE = DEV_ID; /* Store type of key code. */ 
CALL GSQCHO(KEY); /* Which key did operator press ? */ 

END; /* Choice type. */ 

IF DEV TYPE=LOCATOR /* Next record is of locator type.*/ 
THEN CALL GSQLOC(INWIN,X,Y);/* Query & store locator position.*/ 

IF DEV_TYPE=PICK /* Next record is of pick type. */ 
THEN CALL GSQPIK(SEGID,TAG);/* Store segment id. and type. */ 

IF DEV_TYPE=STRING /* Next record is of string type. */ 
THEN CALL GSQSTR(TXTCT,TXT,CURPOS); 

/* Store length and text. */ 

IF DEV TYPE=STROKE /* Next record is of stroke type. */ 
THEN CALL GSQSTK(500,DRFL,STKX,STKY,STKCT); 

CALL GSQSIM(MORE) ; 
IF MORE=1 

THEN GO TO GET_RECORD; 

/* Store arrays of draw flags & *r 
/* x,y pairs, & count of x,y pairs*/ 

/* Any ,ore elements on the queue?*/ 
/* Go back to read the next record*/ 
/* if the queue is not yet empty */ 

/****************************************************************/ 
/* Now process data in KEY_TYPE, KEY, INWIN, X, Y, SEGID, TAG, */ 
/* TXTCT, TXT, STKCT, DRFL, STKX, AND STKY. */ 
/* Value of 999 means no data received from corresponding device*/ 
/****************************************************************/ 

Chapter 14. Interactive graphics 191 



see end of chapter for device variations 

Using AS READ instead of GSREAD 

You can use the FSENAB call to enable ASREAD for graphics input. When 
enabled for graphics input, ASREAD sends the current page to the terminal, waits 
for input, and when the input is received, adds one or more records to the input 
queue. Unlike GSREAD, it performs the above 1/0 even if there are records on the 
input queue, and does not remove the top record from the queue. You can use a 
GSREAD call with a value of 0 in the first parameter to remove records from the 
queue. 

Initializing a logical input device 

Initializing a logical input device means defining its characteristics. For a locator, 
for instance, you can specify its echo type and its initial position on the screen, and 
for a pick device, the pick aperture. There are no variable characteristics of choice 
devices, so these cannot be initialized. 

The initialization values are taken from three sources: 

• The parameters of optional initialization calls, namely GSILOC for the locator, 
GSIPIK for the pick device, GSISTR for the string device, and GSISTK for the 
stroke device. 

• One or two more optional calls, namely GSIDVF (initial data value, float) and 
GSIDVI (initial data value, integer). The purpose of these calls is to specify 
some less frequently used initialization parameters. 

• GDDM-defined defaults. 

The complete set of characteristics is determined from these three sources when a 
device is enabled. All the required initialization and data-record calls must 
therefore be issued before the GSENAB call. Your program is in error if it issues 
any of them for an enabled device. 

You can reinitialize a logical input device at any time by disabling it and then 
reenabling it. 

You can issue as many initialization calls (GSILOC, GSIPIK, GSISTR, GSISTK, 
GSIDVF, and GSIDVI) as you choose while the device is not enabled. This means 
that you can specify a characteristic and later delete or respecify it, if the device 
has not yet been enabled, or has been enabled and is now disabled again. 
Information about undoing the effects of the initialization calls is given in their 
descriptions in GDDM Base Programming Reference manual. 

Initializing a locator device 

Specifying locator echo type and initial position using call GSILOC 

The call has the following form: 

/* Echo-type Initial position */ 
CALL GSILOC( 1, 0, 20.0 , 30.0); 

The first parameter must always be 1. 

192 GDDM Application Programming Guide Volume 1 



interactive graphics 

The last two parameters specify the required initial position of the locator in world 
coordinates. The default, applied if no GSILOG call is issued, is the center of the 
screen. If the locator device is a puck or stylus, the echo will jump to the puck or 
stylus position immediately, unless it is out of contact with the tablet. With these 
devices, therefore, initial positioning may be of no value. 

The second parameter is a code specifying the echo-type. The permissible values 
and their meanings are: 

o Default. The same as 2. 

1 Null (invisible) echo. 

2 The terminal's graphics cursor. 

3 Small tracking cross. 

4 Rubber band. This means a line with one end fixed and the other at the 
current locator position. Its length and orientation change as the operator 
moves the locator device (mouse, puck, stylus, or cursor keys). You can 
specify the position of the fixed end using the GSIDVF call, which is 
described in "Initializing a rubber·band locator." That section also describes 
the initial appearance of the line. 

5 Rubber box. This means a box made of two lines parallel to the x axis and 
two parallel to the y axis, with one corner fixed and the other at the current 
locator position. Its width and depth change as the operator moves the 
locator device. You can specify the position of the fixed corner using the 
GSIDVF call. "Initializing a rubber·box locator" on page 194 tells you how 
to use this call, and describes the initial appearance of the box. An example 
of using a rubber box is given in Figure 67 on page 210. 

6 Segment. This makes the locator device drag a segment around the screen. 
You specify the segment in a GSIDVI call, as described in "Initializing a 
segment locator" on page 194. By default, the segment will be positioned so 
that its origin is at the current locator position. For instance, if the segment 
is a rectangle that was drawn with its bottom left-hand corner at (0,0), then, 
if the origin has not been moved with a GSSORG call, this corner indicates 
the position of the locator on the screen. "Initializing a segment locator" 
gives further information, and explains how to us.e the GSIDVF call to make 
a different point in the segment indicate the locator position. 

Initializing a rubber-band locator 

This call specifies a rubber-band echo with the movable end initially positioned at 
the initial locator position of (20,30): 

CALL GSILOC{1,4,20.0,30.0); 

and these fix the other end at (50,0): 

CALL GSIDVF(2,1,1,50.0); 
CALL GSIDVF(2,1,2,O.O); 

In both these GSIDVF calls, the first parameter is the device-type (2 means that 
they refer to a locator device). The second parameter must always be 1. The third 
parameter indicates whether the x or y coordinate is being specified: 1 means x and 
2 means y. The last parameter is the value of the coordinate. 

Chapter 14. Interactive graphics 193 



see end of chapter for device variations 

If you omit one of the GSIDVF calls, GDDM will use a default value, namely, the 
value of the corresponding coordinate of the initial locator position - 20.0 or 30.0 
in this case. The line will then be either vertical or horizontal when it fIrst 
appears on the screen. If you omit both calls, the fIxed end of the line will be at 
the locator's initial position, (20,30). Because the fIxed and movable ends then 
coincide, the line initially appears as a point. 

Initializing a rubber-box locator 

This call specifIes a rubber-box echo with the movable corner initially positioned at 
the initial locator position of (20,30): 

CALL GSILOC(1,S,20.0,30.0); 

and these calls fIx the opposite corner at (10,20): 

CALL GSIDVF(2,1,1,lO.O); 
CALL GSIDVF(2,1,2,20.0); 

The parameters have similar meanings to when they are used for a rubber-band 
echo. 

If you omit one of the GSIDVF calls, GDDM will use a default value, namely, the 
value of the corresponding coordinate of the initial locator position - 20.0 or 30.0 
in this case. The box will then be either a vertical or horizontal line when it fIrst 
appears on the screen. If you omit both calls, the fIxed corner of the box will be at 
the locator's initial position, (20,30). Because the fIxed and movable corners then 
coincide, the box initially appears as a point. 

Initializing a segment locator 

This call specifIes that a segment is to be used as the echo, initially positioned at 
(20,30): 

CALL GSILOC(1,6,20.0,30.0); 

and this call specifIes that it is to be segment 5: 

CALL GSIDVI(2,1,l,S); 

The fIrst parameter must be 2 for a locator device. The second parameter is always 
1. The value 1 in the third parameter specifIes that the segment identifIed by the 
fourth parameter is to be the locator echo. 

By default, the origin of the segment coincides with the locator position. For 
instance, if the segment is a circle drawn with its center at (50,-20), the center will 
be + 50 x units and -20 y units from the locator position. If you want a different 
spatial relationship, you can specify x and y offsets using GSIDVF calls. In this 
instance, to make the center of the circle coincide with the locator, the segment 
must be offset from its default position relative to the locator by -50 x units and 
+ 20 y units. You would specify this as follows: 

CALL GSIDVF(2,1,1,-SO); 
CALL GSIDVF(2,l,2,20); 

In both these GSIDVF calls, the fIrst parameter, 2, means that they refer to the 
locator device. The second parameter must always be 1. The third parameter 
indicates whether the x or y offset is being specifIed: 1 means x and 2 means y. 
And the fourth parameter is the offset. 

194 GDDM Application Programming Guide Volume 1 



interactive graphics 

An alternative method is to move the segment origin to the center of the circle 
with a GSSORG call (see "Local origin when dragging a segment" on page 204). 

Initializing a pick device 

The only initial values you can specify for a pick device are its initial position and 
the size of the pick aperture. The pick echo is always the aperture square. 

Specifying initial position of a pick device using call GSIPIK 

You can specify a primitive over which GDDM is to initially position the pick as 
follows: 

CALL GSIPIK(l,O,SEGID,TAG); 

The flrst parameter must be 1 and the second zero. The third and fourth 
parameters specify the segment to which the primitive belongs and its tag. The 
segment should be visible and detectable (see "Segment attributes" on page 130). 

If no GSIPIK is issued, or if the segment identifler or tag is zero, or if the segment 
is invisible or nondetectable, the pick is placed at the default initial position, which 
is the center of the screen. 

Setting the pick aperture 

You can set the pick aperture using the GSIDVF call: 

CALL GSIDVF(3,1,1,1.6); /*Make aperture 1.6 times default size*/ 

The value of 3 in the flrst parameter indicates that the call refers to the initial data 
record for the pick device. The second parameter must be 1, and, when the fust 
parameter has a value of 3, so must the third. The fourth parameter is the size of 
the pick aperture as a ratio to the default, which is a square equal in dimensions to 
the height of the default character box. 

Initializing a string device 

You can specify the size and position of the string input area, and supply initial 
data, and make the area invisible, with the GSISTR call: 

/* Device-id Echo 
CALL GSISTR(l, 1, 

position 
0.0,25.0, 

The parameters are as follows: 

• The flrst must always be 1. 

Size Initial text */ 
30, 'OVERTYPE THIS WITH YOUR INPUT'); 

• The second specifles whether the characters typed by the operator are to be 
echoed on the screen. A 1 means they are. A 2 means they are not - there is 
to be no visible indication of what the operator types. The 2 value is intended 
for confldential input, such as passwords. 

• The next two parameters specify the position of the input area in world 
coordinates. 

• The flfth parameter specifies the number of characters in the sixth. 

Chapter 14. Interactive graphics 195 



see end of chapter for device variations 

• The last parameter is the text that is to be displayed initially. 

If the string device is not initialized, it consists of eight characters in the top left of 
the graphics area, initialized to nulls, with a visible echo of the text typed by the 
operator. 

You can use the call GSIDVI to specify the field position under which the cursor is 
to be placed in the string input area: 

/* Device-type Device-id Element-no 
CALL GSIDVI( 4, 1, 1, 

Integer-value */ 
4) ; 

The first parameter must be 4 for a string device. The second parameter is always 
1. The third parameter can be 1 or O. A value of 1 specifies that the value in the 
fourth parameter is the field position of the cursor. A value of 0 in the fourth 
parameter is treated as a 1. A value of 0 in the third parameter specifies that any 
field position previously set by element-number 1 should be reset to O. 

Initializing a stroke device 

If you initialize a stroke device, you can specify its mode, the maximum number of 
points to be returned, and the initial position of the cursor. Here is a typical call: 

/* Echo 
CALL GSISTK(l, 1, 

Sampling 
2, 

Initial position 
20.0,10.0, 

Number of points */ 
800 ); 

The first parameter must always be 1. The second parameter defines the echo type 
and the third the sampling method. Together they define the stroke device's mode 
of operation. 

The fourth and frl'th parameters are the initial position for the cursor, in 
world-coordinate units. If the locator device is a puck or stylus, the echo will jump 
to the puck or stylus position immediately, unless it is out of contact with the 
tablet. With these devices, therefore, the main effect of the initial position 
parameters is to determine where the initial X marker is placed. 

The last parameter specifies the maximum number of points that can be returned 
by a single GSREAD call. 

The possible echo-type values in the second parameter are: 

o The same as 1. This is the default. 
1 The echo is to be a line joining the sampled points. 
2 The echo is to be a marker at each sampled point. 

The possible sampling-method values in the third parameter are: 

o The same as 1. This is the default. 
1 The cursor position is to be sampled once each time the operator activates 

the device. This means a polylocator mode - whether polyline or 
polymarker depends on the value of the second parameter. 

2 Sampling is to be continuous while the device is active (stream mode). 

All combinations are valid, except for an echo·type of 2 (marker) with a sampling 
method of 2 (stream mode). 

Here are examples of how to specify polyline, polymarker, and stream modes: 

196 GDDM Application Programming Guide Volume 1 



interactive graphics 

/* Polyline mode Initial position Number of points */ 
CALL GSISTK(l, 1,1, 50.0,50.0, 50 ) i 

/* Po1ymarker mode Initial positiqn Number of points */ 
CALL GSISTK(l, 2,1, 10.0,90.0, 50 ) i 

/* Stream mode Initial position Number of points */ 
CALL GSISTK(l, 1,2, 0.0,0.0, 100 ) i 

Using a locator, pick, and stroke device together 

You can enable a locator, a pick, and a stroke device, or any two of them, in 
separate GSENAB calls. However, there is no means of displaying and moving 
them. The box representing the pick aperture will be superimposed on the locator 
echo, and the locator echo will show the current position of the stroke device, 
except when the stroke device is active in stream mode. 

In stream mode, the locator echo and pick aperture box will not move while the 
movement of the mouse, puck or stylus is echoed by a line being drawn on the 
screen. They remain stationary, at the start of the line. When the stroke device is 
deactivated, the locator echo and pick box jump to the end of the line, and then 
follow the movements of the mouse, puck, or stylus. 

When a stroke device is enabled, the pick and locator data returned to your 
program are determined by their position when the trigger key (pF, ENTER, or 
data key) was pressed. For the locator, the input data mayor may not be the same 
as the last pair of stroke values - it depends on whether the operator moved the 
locator from the final stroke position before pressing the trigger key. The pick 
data will comprise the identifiers of the highest-priority primitive and segment 
within the pick aperture centered on the locator position. 

The specified or defaulted initial position of the stroke device overrides that of the 
locator device, if different, which in turn overrides that of the pick device. 

To obtain the maximum sampling rate, and hence record the finest detail, it is 
advisable to disable all other logical input devices when a stream mode input 
device is in use. 

When to issue GSENAB calls 

You should consider carefully where in your program to issue GSENAB calls. It is 
often simplest to enable the required devices immediately before a GSREAD and 
disable them immediately after it. You should bear in mind these points: 

• All initialization calls for a device must precede the GSENAB. 

• The enabled devices must be associated with the graphics field that is about to 
be sent to the terminal (see "The graphics field" on page 96). Each page on 
which graphics is used has one graphics field (often created by default), and 
each graphics field has its own set of logical input devices. If an existing 
graphics field is explicitly redefined, or if a new page is created, the new 
graphics field will have no enabled input devices. 

• In some circumstances it is bad practice to disable the locator after a GSREAD. 
This is because on the next GSREAD the echo will be displayed in its specified 
or default initial position, whereas the application may be easier to use if the 
echo remains where the operator put it. 

Chapter 14. Interactive graphics 197 



see end of chapter for device variations 

Querying a logical input device 

You can query a logical device using the GSQLID call. GDDM will indicate 
whether the device is enabled, what the current echo type is, and what other types 
of echo are valid. Here is an example: 

DECLARE LIDLIST(3) FIXED BINARY(31)i 
1* Device-type Device-id Count 

GSQLID( 2, 1, 3, 
List *1 

LIDLIST ); 

The fIrst parameter is the type of logical input device being queried. The possible 
values and their meanings are the same as for the fIrst parameter of GSENAB (see 
"Enabling or disabling a logical input device" on page 188). The example specifIes 
type 2, meaning a locator device. 

The second parameter is the device identifIer, using the same values as the second 
parameter of GSENAB. For all device types except choice, this must be 1. 

GDDM returns the information in the last parameter, which is an array. The third 
parameter specifies how many elements are to be returned. The maximum is three, 
and their values and meanings are as follows: 

• whether the specifIed device is enabled: 

1 Enabled. 
o Not enabled. 
-1 The current primary device (the terminal) does not support this type of 

logical input device. 

• the current echo type, using the same numbers as in the initialization calls. 

• The highest numbered echo type that is supported, again using the same 
numbers as the initialization calls. All echo types with a lower or equal 
number are supported. If the specifIed logical input device is not supported, -1 
is returned. If the specified logical input device is supported but has no echo 
(as is the case with choice devices), 0 is returned. 

Segment picking example 

The program in Figure 60 on page 179 used vector symbols to draw the pictures on 
the screen. Each symbol was a graphics primitive, and the routine returned the tag 
of the picked primitive. 

Many applications require the terminal operator to pick segments rather than 
primitives. The program in Figure 63 on page 200 illustrates this. It draws several 
squares using GSLINE calls, each square being a separate segment. The operator 
can then select and delete any square. 

To ensure that the squares really are square, the program executes a GSUWIN call 
at I*A* I. To allow them to be picked, the detectable attribute is set on at I*B* I. 
The squares are drawn by the subroutine DRAW_SQUARE, called at I*C*I. Each 
invocation draws one square. 

A segment for each square is opened at I*F* I, and closed at I*H* I. Because there 
is one square per segment, the segment identifiers uniquely identify the squares. 
To be detectable, all primitives must be tagged. However, in this example there is 

198 GDDM Application Programming Guide Volume 1 



interactive graphics 

no need to identify the individual primitives, so they are all given the same tag, 1, 
at I*G*I. 

The pick device is enabled at I*D* I. The operator has to use a choice-type key, 
such as a mouse button, to send the pick input to the host. However, choice data is 
not required by the program, so no choice devices are enabled. 

The program deletes the returned segment at I*E* 1 with a GSSDEL call, thereby 
removing the selected square from the current page. Control then returns to the 
top of the DO UNTIL loop for another GSREAD. This updates the display and 
waits for the next input. 

The program ends when the operator causes an interrupt without positioning the 
pick over a primitive. GDDM sets both parameters of GSREAD to zero in this case. 
The first parameter, SEL, controls the DO UNTIL loop. When it is zero, looping 
stops and the program ends. 

Chapter 14. Interactive graphics 199 



see end of chapter for device variations 

DELSQ: PROCEDURE OPTIONS (MAIN); 

DCL NAMES(l) CHAR(S); /* Device names. */ 
DCL (SEL,SEG,DEVICE_TYPE,DEVICE_ID,TAG) FIXED BIN(31); 
DCL (X,Y) FLOAT DEC(6); /* Temporary variables */ 

CALL FSINIT; 

CALL GSUWIN(O.O,lOO.O,O.O,lOO.O); 

SEG=li 
CALL GSSATI(l,l)i 
DO X=l TO 51 BY 10; 

DO Y=l TO 51 BY 10; 
CALL DRAW_SQUARE; 
SEG=SEG+1; 

END; 
END; 

/* Initialize GDDM */ 

/* Ensure correct aspect *//*A*/ 
/* ratio. */ 
/* Initialize segment id. */ 
/* Make squares detectable*//*B*/ 
/* Draw an array of 36 */ 
/* squares. Each will be */ 
/* in its own segment. *//*C*/ 
/* Increment segment id */ 
/* Y loop */ 
/* X loop */ 

CALL GSENAB(3,1,1); /* Enable a pick device. *//*D*/ 
*/ DO UNTIL (SEL=O); /* Update the screen and 

CALL GSREAD(l,DEVICE_TYPE,DEVICE_ID); /*accept selections 
/* until a null selection 
/* is made. This will 
/* happen when a key 
/* is pressed but the 
/* pick is not over any 
/* line in a square. 

CALL GSQPIK(SEL,TAG); /* Get the se~ent id and 
/* tag. SEL w111 be zero 
/* for a null selection. 
/* Because all parts of 
/* squares were drawn 
/* with same tag, tag 
/* can be ignored. 

IF SEL~=O THEN CALL GSSDEL(SEL); /* Delete the selected 
/* segment. 

ENDi 

CALL FSTERM; 

DRAW_SQUARE: PROCEDUREi 
CALL GSSEG(SEG); 
CALL GSTAG (1) ; 

CALL GSMOVE(X,Y); 
CALL GSLINE(X+S.O,Y); 
CALL GSLINE(X+S.O,Y+S.O)i 
CALL GSLINE(X,Y+S.O); 
CALL GSLINE(X,Y); 
CALL GSSCLS; 

END DRAW_SQUARE; 

%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINGi 

END DELSQi 

Figure 63. Segment picking example 

200 GDDM Application Programming Guide Volume 1 

/* Finished with GDDM 

/* Create segment. 
/* Must have non-zero 
/* tag to permit detect
/* ability. All lines 
/* will have same tag. 
/* Starting point. 
/* Draw 
/* sides 
/* of 
/* square. 
/* Close segment. 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*//*E*/ 
*/ 

*/ 

*//*F*/ 
*//*G*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*//*H*/ 



interactive graphics 

Simple free-hand drawing program 

The program in Figure 64 enables the terminal operator to draw on the screen. It 
will capture original drawings, for which the operator would typically use a tablet 
and stylus. It can equally well be used for digitizing existing drawings, which the 
operator would typically trace over using a tablet and puck. 

After initializing and enabling a stream-mode stroke device, the program executes 
three GSREAD calls in a loop. Each read allows the terminal operator to record 
the maximum number of points that GDDM allows, namely 1024. If the operator 
does not move the cursor between GSREADs, one continuous line can be drawn. 
Alternatively, one or more lines can be drawn for each GSREAD, depending on the 
use made of the mouse or puck buttons or stylus tip switch. 

After each read, the program queries the stroke data and redraws the line or lines 
just created by the operator. If the program did not do this, the lines would 
disappear from the screen at the next GSREAD. 

After the third GSREAD, the program disables the stroke device and enables the 
ENTER key as a choice device. A fourth GSREAD is executed to display the latest 
redrawn lines. When the operator then presses ENTER, the program ends. 

STROKE2 : PROCEDURE OPTIONS(MAIN)i 

DCL DFLAGS(1024) FIXED BIN(31) i 
DCL (XARRAY,YARRAY)(1024) FLOAT DEC(6)i 
DCL (DEVTYPE,DEVID) FIXED BIN(31)i 
DCL NUM FIXED BIN(31); 

CALL FSINITi 
/* Initialize stroke device:- */ 
/* Stream mode Initial position Max. no. points */ 

CALL GSISTK(1, 1,2, 0.0,0.0, 1024)i 

CALL GSENAB(S,1,1)i 

CALL GSSEG(1)i 

/* Enable stroke device */ 

/* Open a segment */ 

DO I:::: 1 TO 3i 

CALL GSREAD(1,DEVTYPE,DEVID)i 
CALL GSQSTK(1024,DFLAGS,XARRAY,YARRAY,NUM)i 

/* Preserve the polyline image by drawing it from the 
/* returned arrays of x,y pairs 
DO J::::1 TO NUMi 

IF DFLAGS(J)::::l THEN 
CALL GSMOVE(XARRAY(J),YARRAY(J»i 

IF DFLAGS(J)=O THEN 
CALL GSLINE(XARRAY(J),YARRAY(J»i 

ENDi 
END; 

CALL GSSCLSi /* Close the segment. 

*/ 
*/ 

*/ 

CALL GSENAB(S,1,0)i 
CALL GSENAB(l,O,l)i 

/* Disable stroke device.*/ 
/* Enable enter key. */ 

CALL GSREAD(l,DEVTYPE,DEVID)i 

CALL FSTERMi 

%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINGi 

END STROKE2; 

Figure 64. Program for freehand drawing on the screen 

Chapter 14. Interactive graphics 201 



see end of chapter for device variations 

Dragging segments 

If a segment is to be repositioned, you can often help the operator by allowing a 
copy of it to be dragged around the screen before its final position is determined. 
You do this by making the segment the locator echo. The program in Figure 65 on 
page 203 shows you how. 

The locator is initialized at 1* A * I with a type 6 echo, that is, a segment. The 
segment is a square. 

The last parameter of the GSIDVI call, I*B* I, specifies that the segment 
containing the square, namely segment 9, is the one to be used as the echo. 

The GSIDVF calls at I*C* I and I*D* I offset the echo from the locator position by 
0.2 window units in the x and y directions. The reason is explained in "How the 
work station draws echoes" on page 203. 

The GSREAD, I*E* I, displays the square onto the screen. The operator can then 
drag a copy of it around with the mouse, puck, stylus, or cursor keys. 

The GSREAD waits for an interrupt from the terminal. Any locator-trigger key 
can be used to send this interrupt; a mouse or puck button or the stylus tip-sWitch 
will probably be the most convenient. When the interrupt is received, execution of 
the program resumes. The position of the locator is queried and a GSSPOS issued 
to move the segment to that position. 

This example shows a very simple case. In less straightforward cases, you may get 
unexpected results if you do not pay particular attention to the segment origin. 
More information is given in "Local origin when dragging a segment" on page 204. 

202 GDDM Application Programming Guide Volume 1 



DRAGl: PROCEDURE OPTIONS (MAIN); 
DCL (DEVICE_ID,DEVICE_TYPE) FIXED 
DCL INWIN FIXED BIN(3l); 
DCL (X,Y) FLOAT DEC (6); 
DCL (YES,NO,STOP) FIXED BIN(l5); 
YES=l; NO=O; 

CALL FSINIT; 

CALL GSUWIN(O.O,lOO.O,O.O,lOO.O); 

CALL GSSATI(4,2) ; 

CALL GSSEG(9); 
CALL GSMOVE(O.O,O.O); 
CALL GSLINE(lO.O,O.O); 
CALL GSLINE(lO.O,lO.O); 
CALL GSLINE(O.O,lO.O); 
CALL GSLINE(O.O,O.O); 
CALL GSSCLS; 

CALL GSILOC(l,6,0.0,0.0); 
CALL GSIDVI(2,l,l,9); 

CALL GSIDVF(2,l,l,0.2); 
CALL GSIDVF(2,l,2,0.2); 
CALL GSENAB(2,l,l); 

STOP=NO; 
DO WHILE (STOP=NO); 

interactive graphics 

BIN(3l) ; 

/* Flags 
/* Values for flags 

/* Initialize GDDM 

*/ 
*/ 

*/ 

/* Uniform window coords.*/ 

/* Make transformable a */ 
/* current segment attr. */ 
/* so square can be moved*/ 
/* Open numbered segment */ 
/* Start square */ 
/* Draw */ 
/* sides */ 
/* of */ 
/* square */ 
/* Close segment */ 

/* Set up locator (say, 
/* a mouse) to drag 
/* segment 9. 
/* Offset echo from 
/* original segment 
/* Enable the locator. 

/* Initialize flag 

*//*A*/ 
*//*B*/ 
*/ 
*//*C*/ 
*//*D*/ 
*/ 

*/ 

CALL GSREAD(l,DEVICE_TYPE,DEVICE_ID);/* 
/* 
/* 
/* 
/* 

Display the square *//*E*/ 
Square will move as */ 
cursor is moved. */ 
When trigger key is */ 
pressed, control will */ 

CALL GSQLOC(INWIN,X,Y); 
CALL GSSPOS(9,X,Y); 
IF X < 10.0 THEN STOP=YES; 

END; 
CALL FSTERM; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPING; 
END DRAGl; 

/* 
/* 
/* 
/* 
/* 

return to program. */ 
Get the location */ 
Move the square */ 
Stop when locator near*/ 
l.hand edge of screen */ 

/* Terminate GDDM */ 

Figure 65. Program for dragging segments 

If you want to return to the default cursor as the locator echo after dragging a 
segment, you must disable and then reinitialize the locator before reenabling it: 

CALL GSENAB(2,1,0); 
CALL GSILOC(I,2,X,Y); 
CALL GSENAB(2,1,1); 

How the work station draws echoes 

/* Disable the locator */ 
/* Reinitialize with cursor as echo */ 
/* Reenable */ 

Many echoes are drawn by the work station in exclusive-OR mode. The effect of 
this is. that if a primitive in the echo overlaps another primitive on the screen, both 
may become invisible or change color where they intersect. 

Although the echo conceptually overlies the rest of the picture, it does not 
overpaint or underpaint the primitives that conceptually underlie it. Instead, the 
echo color is combined with the underlying color using an exclusive-OR operation. 
Where the two are the same color, the result is invisible. 

Chapter 14. Interactive graphics 203 



see end of chapter for device variations 

A noticeable effect of this algorithm is that if a segment echo is drawn on top of 
the original segment, both the original and the echo are invisible. However, as 
soon as the echo is moved slightly by the operator, both become visible. 

There are several ways of preventing the segment and echo initially being invisible. 
The simplest is shown in the program in Figure 65. 

The GSIDVF calls, /*c* / and /*D*, slightly offset the echo from the original 
segment. They set the position of the segment echo to 0.2 world coordinates from 
the current locator position in both directions - just enough to ensure that it uses 
adjacent pixels to the original segment. This prevents the echo from exactly 
coinciding with the original segment, both initially and following a segment move. 

Another method is to make the original segment invisible using a GSSATS call. 
The echo will not inherit the invisible attribute. There will then only be one copy 
of the segment on the screen - the echo. Changing a segment's visibility attribute 
from visible to invisible causes the whole screen to be redrawn, which may be a 
disadvantage. 

Local origin when dragging a segment 

In Figure 65, the segment's origin is at the origin of the current world coordinate 
system. It is located at an obvious place within the segment, namely, the bottom 
left-hand corner. 

Such simple conditions do not usually apply in a real application program. For a 
more typical situation, consider the following amended code from the example: 

CALL GSSEG(9) 1 /* Open numbered segment */ 
CALL GSMOVE(20.0,20.0)1 /* Start square */ 
CALL GSLINE(30.0,20.0), /* Draw */ 
CALL GSLINE(30.0,30.0), /* sides */ 
CALL GSLINE(20.0,30.0), /* of */ 
CALL GSLINE(20.0,20.0), /* square */ 
CALL GSSCLS, /* Close segment */ 

CALL GSSPOS(9,40.0,40.0); /* Move segment */ 

CALL GSENAB(2,1,1)1 /* Enable default locator*/ 
CALL GSSEG(lO); /* Display instructions */ 
CALL GSCHAR(O.O,O_O,24,'INDICATE REFERENCE POINT'); 
CALL GSSCLS; 
CALL GSREAD(l,DEVICE_TYPE,DEVICE_ID) 1/* Display the square */ 
CALL GSSDEL(lO); /* Delete instructions */ 
CALL GSENAB(2,1,O); /* Disable default loc'r */ 
CALL GSQLOC(INWIN,X,Y); /* Get indicated ref PT */ 

CALL GSSORG(9,X,Y); /* Move segment origin */ 
CALL GSILOC(1,6,X,Y); /* Set up locator .. */ 
CALL GSIDVI(2,1,1,9); /* .. to drag segment 9 */ 
CALL GSIDVF(2,1,1,O.2); /* Offset .. */ 
CALL GSIDVF(2,1,2,O_2); /* .. echo */ 
CALL GSENAB(2,1,1); /* Enable the locator. */ 

The following changes have been made to the way the square is drawn: 

1. The statements /* J* / to /*K* / now draw the square with its bottom left-hand 
corner at (20,20) instead of (0,0). 

2. The statement /*L* / moves the segment so that its origin is at (40,40). 

204 GDDM Application Programming Guide Volume 1 

/*J*/ 

/*K*/ 

/*L*/ 

/*M*/ 

/*N*/ 

/*0*/ 
/*P*/ 



interactive graphics 

The most obvious result of these changes is that the original segment is displayed 
with its bottom left-hand corner at (60,60) instead of (0,0), as illustrated in 
Figure 66. 

Figure 66. Local origin of echo segment 

Less obviously, the first change would prevent the operator dragging the square 
any nearer the bottom or left-hand edge of the screen than 20 world-coordinate 
units. This is because the origin cannot be dragged off the screen, and the origin is 
20 units leftward and downward from the bottom left-hand corner of the square. 
The operator can still end the program because the GSQLOC returns the position 
of the origin, not the bottom left-hand corner of the square. 

The second change would cause the echo to initially appear 40 units leftward and 
downward from the original segment. This is because the GSSPOS call puts the 
segment's origin at (40,40), whereas the echo's origin is initially placed at (0,0). 
This is because the GSILOC call in the example specifies (0,0) as the initial position 
for the echo. When the echo is a segment, it is the segment origin that is put at 
the specified initial position. 

These pitfalls can be avoided by defining a reference point within the segment. 
This is, conceptually, the point at which the dragging mechanism is attached to the 
segment. Often it is best to allow the terminal operator to select a reference point 
before dragging or transforming a segment. The statements /*M* / to / *N* / do 
this. 

Then, to avoid the first pitfall, you should make the reference point into the 
segment origin using a GSSORG call. This is done at 1*0* / . And to avoid the 
second, you should specify the reference point as the initial position of the locator. 
This is done at /*p* / . 

If the operator has to pick the segment before it is dragged, it may help to enable a 
locator as well as the pick. The (x,y) position of the combined pick/locator when 
the operator makes the selection can then be used as the reference point for 
dragging. Here is an example: 

Chapter 14. Interactive graphics 205 



see end of chapter for device variations 

DCL (INWIN,DEVICE_ID,DEVICE_TYPE,MORE,SEG,TAG) FIXED BIN(3l); 
DCL (X,Y) FLOAT DEC (6); 

/* 
/* 
/* 

CREATE THE SEGMENTS */ 
*/ 
*/ 

CALL GSENAB(2,l,l); 
CALL GSENAB(3,l,l); 

REREAD: 

/* Enable default locator*/ 
/* Enable pick */ 

CALL GSREAD(l,DEVICE_TYPE,DEVICE_ID); /* Read pick & locator */ 

IF DEVICE TYPE = 2 
THEN CALL GSQLOC(INWIN,X,Y); 

IF DEVICE TYPE = 3 
THEN CALL GSQPIK(SEG,TAG); 

CALL GSQSIM(MORE); 
IF MORE=l THEN GO TO REREAD; 
IF SEG=O THEN GO TO REREAD; 

CALL GSENAB(2,l,O); 
CALL GSENAB(3,l,O); 

CALL GSSORG(SEG,X,Y); 
CALL GSILOC(l,6,X,Y); 
CALL GSIDVI(2,l,l,SEG); 
CALL GSIDVF(2,l,l,O.2); 
CALL GSIDVF(2,l,2,O.2); 
CALL GSENAB(2,1,1); 
CALL GSREAD(l,DEVICE_TYPE,DEVICE_ID)i 
CALL GSQLOC(INWIN,X,Y)i 

/* 
/* 
/* 

Local origin when transforming a segment 

/* If next input is loc'r*/ 
/* get indicated ref PT */ 
1* If next input is pick */ 
/* get segment id & tag */ 
/* Another input record? */ 
/* If yes, read it */ 
/* No segment picked */ 

/* Disable default loc'r */ 
/* Disable pick */ 

/* Move segment origin */ 
/* Set up locator .• */ 
/* .. to drag picked seg */ 
/* Offset •. */ 
/* .. echo */ 
/* Enable the locator. */ 
/* Op. can now drag seg */ 
/* Get the new location */ 

*/ 
*/ 
*/ 

Any transformation involves a reference point. It is the point about which 
rotation, scaling, or shearing takes place, or the one that is displaced to a specified 
new position. 

In a simple shape there may be an obvious location for it - the center of a circle 
or a corner of a polygon, for instance. But in general, there is no obvious point 
definable by a program. So to ensure that the results on the screen are as required, 
an application can ask the operator to indicate the reference point. The method 
would be similar to the one described in "Local origin when dragging a segment" 
on page 204. 

The transformation calls (GSSAGA, GSSTFM, and GSSPOS) treat the origin of the 
segment as the reference point. Before executing a transformation call, therefore, 
the program can execute a GSSORG call to move the segment origin to the point 
indicated by the operator. 

The following example shows how to perform the technique for a rotation. 

206 GDDM Application Programming Guide Volume 1 



interactive graphics 

DECLARE (Xl,X2,Yl,Y2) FLOAT DEC(6); 
DECLARE (INWIN,DEVICE_TYPE,DEVICE_ID) FIXED BINARY(3l); 

/* 
/* 
/* 

CREATE SEGMENT 99 

CALL GSENAB(2,l,l); 

*/ 
*/ 
*/ 

/* Enable default cursor */ 

CALL GSREAD(l,DEVICE TYPE,DEVICE ID); /* Read reference point */ 
CALL GSQLOC(INWIN,Xl~Yl); - /* Get location */ 

/* Move local origin */ CALL GSSORG(99,Xl,Yl); 

CALL GSENAB(2,l,O); 
CALL GSILOC(l,4,Xl,Yl); 
CALL GSENAB(2,l,l); 

/* Disable default cursor */ 
/* Initialize rubber band */ 
/* Enable rubber band */ 

CALL GSREAD(l,DEVICE_TYPE,DEVICE_ID); /* Read location for angle*/ 
CALL GSQLOC(INWIN,X2,Y2); /* Get location */ 

CALL GSSAGA(99,l.O,l.O,O.O,l.O,X2-Xl,Y2-Yl,O.O,O.O,O); 
/* Rotate segment */ 

CALL GSREAD(l,DEVICE_TYPE,DEVICE_ID); /* Redisplay segment */ 

Panning and zooming 

Panning applies to pictures that are bigger than the screen. It means changing the 
section of the picture that is displayed - in effect, treating the screen like a 
window and moving it up and down and from side to side. Scrolling is another 
term for it. 

Zooming means displaying more or less of the picture by shrinking or enlarging the 
graphics - in effect moving the window closer to or further from the picture. 

This guide describes three methods of panning and zooming. You should refer to 
the indicated sections for more information. 

• Setting new window coordinates with a GSWIN or GSUWIN call, and 
redrawing the picture - see "Sample pan and zoom program using clipping" on 
page 112. 

• Saving the picture with a GSSA VE, altering the window with a GSWIN or 
GSUWIN, and restoring the picture with a GSLOAD - see "Panning and 
zooming" on page 164. 

• Allowing the operator to use the user-control facility for panning and zooming 
- see "Panning and zooming" on page 388. 

Retained and non.:retained modes 

The work station has two modes of operation: retained, in which the graphics 
orders that define the segments are stored by the work station; and non-retained, in 
which they are not. Retained is the normal mode of operation, but if there is 
insufficient segment storage available at the work station, non-retained mode must 
be used. This can be selected either by GDDM or by you, using a processing 
option. More information is given in "Retained and non-retained modes" on 
page 508. 

Chapter 14. Interactive graphics 207 



see end of chapter for device variations 

Query primitives and segments in specified area using call GSCORR 

A pick logical input device returns the tag and segment identifier of a primitive 
selected by the terminal operator. The GSCORR call performs a similar correlation 
function without using a pick device. Your program specifies a rectangular area, 
and GDDM returns the tags of all the primitives completely or partly contained 
within it, together with the identifiers of their segments. 

Here is a typical call: 

DECLARE SIZE(l) FLOAT DEC(6); 
DECLARE SEGS(10) FLOAT DEC(6); 
DECLARE TAGS(10) FLOAT DEC(6); 
DECLARE NUMHITS FIXED BINARY (31); 

SIZE(l) = 5; 

1* CORR-TYPE 
CALL GSCORR(l, 

POSITION 
30.0,40.0, 

The parameters are as follows: 

SIZE-TYPE SIZE HITS NUMBER */ 
1, 1,SIZE, 10,SEGS,TAGS, NUMHITS); 

• The first indicates the type of correlation to be performed: 0 means correlate 
only visible and detectable segments. 1 means correlate segments whatever 
their attributes. 

• The next two specify the position in world coordinates of the center of the 
correlation area. 

• The fourth indicates how the size of the area is being specified: 1 means in 
terms of the default pick aperture (see "Initializing a pick device" on page 195). 
2 means in world-coordinate units. 

• The next two parameters specify the size of the area, in terms defined by the 
preceding parameter. The second one of the two is an array, and the frrst is the 
number of parameter elements it contains. 

If the value of the fourth parameter is 1, as in the example, a single-element 
array is required, containing a scaling factor to be applied to the default pick 
aperture. 

If the value of the fourth parameter is 2, a two-element array is required, 
containing the width and depth in world-coordinate units. 

• The next parameter specifies the maximum number of hits (that is, unique 
primitive/segment identifier pairs) to be returned, and the two succeeding 
parameters are arrays to contain the returned identifiers and tags. For each 
tag returned in the tag array, the identifier of the segment that the primitive is 
in will appear in the corresponding element of the segment array. Therefore, 
where there are several tag numbers in a segment, the identifier of that 
segment will appear several times in the segment array. 

• The last parameter is a variable in which GDDM returns the number of hits. 

Primitives with a tag of zero, primitives outside segments, and primitives in 
segment 0 are ignored - they can never be hits. The tags and segment identifiers 
are returned in priority order, from highest to lowest (see "Drawing chain and 
segment priority" on page 147). Two or more primitives with the same tag within a 
segment count as a single hit; only the first instance is returned. 

208 GDDM Application Programming Guide Volume 1 



interactive graphics 

Correlation with GSCORR differs from selection with a pick device in several ways: 

• GSCORR does not require action by the terminal operator. It is usually used in 
an interactive context, but it need not be. 

• GSCORR returns all the hits within the specified area. A pick device returns 
only the one with the highest priority. 

• A pick device correlates only visible and detectable segments. If the first 
parameter of GSCORR is 0, it does the same, but if the first parameter is 1, it 
correlates all types of segment. 

• Correlation can be done without altering the pick device. If, for instance, the 
application uses the pick for menu selection, this function can be retained 
while correlation with GSCORR is being done. 

The program in Figure 67 on page 210 shows how to use GSCORR in an 
interactive context. 

It displays an array of crosses. The terminal operator indicates the size and 
position of the correlation area using two pointings with the locator. The first 
pointing is with the default cursor. For the second pointing a rubber box is 
provided. After the second pointing, all crosses within the rubber box are made 
invisible. 

Further pairs of pointings can be made at the operator's choice. The program ends 
when the operator indicates an area of zero width or depth. 

The crosses are drawn in the loop at I*A* I. Each has its own segment, opened at 
I*B* I. The default cursor is enabled for the first time at I*C* I. 

The position of the fixed corner of the rubber box is read at I*D* I. At I*E* I, the 
default cursor is disabled so that the rubber box can be initialized, at I*F* I, and 
enabled, at I*G*I. One corner of the box is fixed at the position indicated by the 
locator input (Xl,Yl). The movable corner is attached to the locator. When the 
second locator input (X2,Y2) is obtained at I*H* I, the area enclosed by the rubber 
box is made the correlation area. 

The rubber box is disabled at 1*1* I. The default cursor is reenabled at I*K* I 
ready for the next pair of pointings, after being initialized at 1* J* I to the last 
location indicated by the operator. 

At I*L* I, the size and position parameters for the GSCORR at I*N* I are 
calculated, in world-coordinate units. 

The code at I*M* I checks for the end condition. 

Chapter 14. Interactive graphics 209 



see end of chapter for device variations 

CORR1:PROCEDURE OPTIONS (MAIN); 
DCL (DEVICE_ID,DEVICE_TYPE) FIXED BIN(31); 
DCL INWIN FIXED BIN(3l); 
DCL (X1,Yl,X2,Y2) FLOAT DEC (6); 
DCL (XPOS,YPOS) FLOAT DEC(6); 
DCL SIZE(2) FLOAT DEC(6); 
DCL SEGNUMS(100) FIXED BIN(3l); 
DCL TAGS(lOO) FIXED BIN(3l); 
DCL HITS FIXED BIN(3l); 

CALL FSINIT; /* Initialize GDDM */ 
CALL GSUWIN(0.0,100.0,0.0,lOO.0); /* Uniform window coordinates */ 

N=l; 
DO 1=2.5 TO 92.5 BY 10; 

DO J=2.5 TO 92.5 BY 10; 
CALL GSSEG (N) ; 
CALL GSTAG(l); 
CALL GSMOVE(I,J); 
CALL GSLINE(I+l,J+1); 
CALL GSMOVE(I,J+l); 
CALL GSLINE(I+l,J); 
CALL GSSCLS; 
N = N+l; 

END; 
END; 

CALL GSENAB(2,l,l); 

DO WHILE (DO) ; 

/* Draw array of crosses *//*A*/ 

/* Open segment for each cross*//*B*/ 
/* Tags must be nonzero */ 
/* Draw cross */ 

/* Close segment */ 

/* Enable default cursor *//*C*/ 

CALL GSREAD(l,DEVICE_TYPE,DEVICE_ID); /*Read first corner 
CALL GSQLOC(INWIN,Xl,Yl); 

*//*0*/ 

CALL GSENAB(2,l,0); 
CALL GSILOC(l,5,Xl,Yl); 
CALL GSIDVF(2,l,1,Xl); 
CALL GSIDVF(2,1,2,Yl); 
CALL GSENAB(2,1,1); 

/* Disable default cursor 
/* Initialize .. 
/* rubber .. 
/* box 
/* Enable rubber box cursor 

*//*E*/ 
*//*F*/ 
*/ 
*/ 
*//*G*/ 

CALL 
CALL 
CALL 
CALL 
CALL 

GSREAD(l,DEVICE_TYPE,DEVICE_ID); /* Read second corner *//*H*/ 
GSQLOC(INWIN,X2,Y2); 
GSENAB(2,1,0); 
GSILOC(1,0,X2,Y2); 
GSENAB(2,l,l); 

XPOS = (X2+Xl)/2; 
YPOS = (Y2+Yl)/2; 
SIZE(l) = ABS(X2-Xl); 
SIZE(2) = ABS(Y2-Yl); 

IF SIZE(l) = 0 I SIZE(2) 
THEN GO TO FIN; 

0 

/* Disable locator *//*1*/ 
/* Leave position unchanged & *//*J*/ 
/* reenable as default cursor *//*K*/ 

/* position of .. 
/* .. center of area 
/* Absolute size .. 
/* .. of area 

/* End when no area defined 

*//*L*/ 
*/ 
*/ 

*/ 

*//*M*/ 

/* TYPE POSITION SIZE PRIMITIVES&SEGS HIT NO.*/ 
CALL GSCORR(l, XPOS,YPOS, 2,2,SIZE, lOO,SEGNUMS,TAGS, HITS); 

/*N*/ 
DO 1=1 TO HITS; 

CALL GSSATS(SEGNUMS(I),2,0); /* Make segment invisible */ 
END; 

END; 

FIN: 
CALL FSTERM; 
%INCLUDE ADMUPIND; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPING; 
END CORRl; 

Figure 67. Correlation with rubber box 

210 GDDM Application Programming Guide Volume 1 

/* Terminate GDDM */ 



interactive graphics 

Querying segment structure in specified area using call GSCORS 

GSCORS is specifically used to correlate segments structured by using GSCALL, 
covered in "Calling segments from other segments" on page 148. You will need to 
understand that call before you use GSCORS. 

GSCORS is a more sophisticated version of GSCORR. Your program specifies a 
rectangular area, and GDDM returns tag and segment identifier pairs for each 
segment completely or partly contained within it, together with one tag and 
segment identifier pair for any segment calling that segment, then any segment 
calling that segment, and so on, repeated until the root segment is reached. The 
returned data for each calling segment is the segment identifier, and the tag of the 
primitive that immediately precedes the GSCALL to the called segment. The 
calling segments do not have to be completely or partly contained within the 
specified area. 

Here is a typical call: 

DECLARE SZ(1) FLOAT DEC(6)i 
DECLARE SGS(50) FLOAT DEC(6)i 
DECLARE TGS(50) FLOAT DEC(6)i 
DECLARE NUMHITS FIXED BINARY (31)i 

SZ(l) = 5i 

/* CORR-TYPE 
CALL GSCORS( 1, 

POSITION TYPE 
20.0,30.0, 1, 

The parameters are as follows: 

SIZE HITS 
1, SZ, 10, 

DEPTH NUMBER */ 
5, SGS,TGS, NUMHITS)i 

• The first indicates the type of correlation to be performed: 0 means correlate 
only visible and detectable segments, and 1 means correlate segments whatever 
their attributes. 

• The next two parameters specify the position in world coordinates of the center 
of the correlation area. 

• The fourth indicates how the size of the area is being specified: 1 means in 
terms of the default pick aperture (see "Initializing a pick device" on page 195), 
and 2 means in world·coordinate units. 

• The next two parameters specify the size of the area, in one of the terms defined 
by the preceding parameter. The second one of the two is an array, and the 
first is the number of parameter elements it contains. 

If the value of the fourth parameter is 1, as in the example, a single-element 
array is required, containing a scaling factor to be applied to the default pick 
aperture. 

If the value of the fourth parameter is 2, a two·element array is required, 
containing the width and depth in world·coordinate units. 

• The next parameter specifies the maximum number of hits (that is, unique 
primitive/segment identifier pairs) to be returned, and therefore has the same 
value as one of the dimensions of the segment and tag arrays. 

• The eighth parameter, depth, has the same value as the other dimension of the 
segment and tag arrays. It specifies the extent to which GDDM traces the 
segment structure, starting with and including the correlated segments. 

Chapter 14. Interactive graphics 211 



see end of chapter for device variations 

• The two succeeding parameters are arrays to contain the returned segment 
identifiers and tags. For each tag returned in the tag array, the identifier of 
the segment that the primitive is in will appear in the corresponding element of 
the segment array. Therefore, where there are several tag numbers in a 
segment, the identifier of the segment will appear several times in the segment 
array. 

• The last parameter is a variable in which GDDM returns the number of hits. 

As an example of a use of GSCORS, let's imagine, as we did in "Calling segments 
from other segments" on page 148, a structure consisting of a building segment, 
containing office segments, that themselves contain furniture segments. 

If we have an interactive application that allows the user to interactively 
reposition items within the building plan, using a pick device, then the user could 
be allowed to pick all or part of a desk, but then proceed to drag not just the desk, 
but also the office that contains it, around the building plan. This would be 
possible because the program using GSCORS would have not only the segment 
identifier of the picked desk segment, but also the segment identifier of the office 
segment that called it. 

For a full description of GSCORS, see the GDDM Base Programming Reference 
manual. 

Interactive graphics with multiple partitions 

The calls for defining logical input devices described in this chapter apply to the 
current page. When multiple partitions are used, each page can have its own set of 
logical input devices. The user can interact with all of the partitions that have 
logical input devices enabled. 

For example, if two partitions exist, with enabled locator and pick devices, the user 
can select objects from either partition. The partition from which the selection is 
made becomes the current partition. 

On a work station that supports a number of different echoes (such as the 
3270-PC/G) the echoes shown on the screen are those defined for the current 
partition. The user can still move the locator to a different partition, but the 
locator echo changes to the default when its position goes outside the current 
partition's graphics field. 

212 GDDM Application Programming Guide Volume 1 



interactive graphics 

Device variations 

The preceding sections of this chapter refer primarily to the 3270-PCjG and jGX. 
The following sections describe functional variations on other types of device. 

Interactive graphics on 3179-G terminals 

The main differences affecting interactive graphics are that the following are not 
supported: 

• No tablet 

• String and stroke devices 

• Locator echoes 

• Rubber-band locators 

• Rubber-box locators. 

Interactive graphics on ordinary 3270 terminals 

Ordinary members of the IBM 3270 family that use programmed symbols for 
graphics, such as the 3279, have less graphics capability than the 3270-PCjG and 
jGX family of work stations. The main differences affecting interactive graphics 
are: 

• The ordinary 3270 terminals have fewer processing capabilities than the 
3270-PCjG and jGX family. Many operations, such as vector-to-raster 
conversion, have to be done in the host instead of in the terminal. Others, such 
as segment dragging, are not supported at all. 

• The ordinary 3270 terminals have no purely graphics input device (mouse, puck, 
or stylus). The alphanumerics cursor serves as the graphics cursor, under the 
control of the cursor keys. Its accuracy is restricted to character cells. 

• On ordinary 3270 terminals, the keys that can trigger input or act as choice 
devices are different from those on a 3270-PC/G or /GX. 

More information about devices is given in Appendix B, "Device-independent 
programming tips" on page 513. 

Enabling logical input devices: A typical GSENAB call is: 

/* DEVICE_TYPE 
CALL GSENAB(l, 

CONTROL */ 
1); /* Enable PF keys */ 

/* as choice devices */ 

The valid parameter values for an ordinary 3270 terminal, such as the 3279, are as 
follows. 

• For the first parameter, which specifies the type of logical input device being 
enabled, there are three valid values: 

1 Choice 
2 Locator 
3 Pick. 

Chapter 14. Interactive graphics 213 



device variations 

String and stroke devices are not supported. 

• The second parameter, which further describes choice devices, can have one of 
these values: 

o ENTER key 
1 PF keys 
2 Alphanumeric light pen 
4 PA keys 
5 CLEAR key. 

The data keys cannot be choice devices. 

• As with other types of terminal, the last parameter allows you to disable logical 
input devices, as well as enable them. A value of 0 tells GDDM to disable the 
device, and 1 to enable it. 

Choice devices: The choice data returned by GDDM is shown in Figure 68. 

Terminal facility Parameter values 

GSREAD(l,D T,DEV ID) GSQCHO(NUMBER) 

ENTER key 0 0 
PFkey 1 Number of key (1-24) 
Alphanumeric light penl 2 0 
PAkey 4 Number of key (1-2) 
CLEAR key 5 0 
1 Or CURSR SEL key 

Figure 68. Choice data returned by non-PC 3270 terminals 

Locator devices: The locator echo is always the alphanumeric cursor. No other 
type of echo can be enabled. You can set its initial position with a GSILOC call. 
The ENTER key, a PF key, or the light pen will trigger the locator, whether or not 
they are enabled as choices. 

Pick devices: The alphanumeric cursor echoes the pick device. No indication of 
the size of the pick aperture is given on the screen. The default aperture size is the 
height of a hardware cell. You can set the initial position with the GSIPIK call, 
and change the size with a GSIDVF call. 

Interactive graphics on the IBM 5080 graphics system 

The IBM 5080 Graphics System is designed for polyline CAD/CAM applications. 

GDDM/MVS, GDDM/VM, and GDDM-PGF communicate with the 5080 through 
GDDM/graPHIGS, a separate IBM licensed program. This support allows graphics 
applications written for other devices to be run on a 5080. Interactive graphics 
applications written for other types of display will run on the 5080 but will not take 
advantage of its full capabilities. 

The 5080, with or without the 3270 feature, has interactive graphics capabilities 
that can be programmed like those of a 3270-PC/G or /GX. 

The main differences are: 

• The 5080 must be explicitly opened by a DSOPEN call. See "Processing option 
for the 5080 graphics system" on page 390 

214 GDDM Application Programming Guide Volume 1 



interactive graphics 

• The 5080 does not have a mouse input device. 

• Valid choice devices are: 

Enter 

PFkey 

PA key or CLEAR, by switching to 3270 during read operation 

Puck/stylus. 

• Valid locator echoes are: 

a Small cross 

1 Small cross 

2 Crosshair 

3 Tracking cross 

4 Rubber band 

5 Rubber box 

6 Draggable segment. The whole of the segment appears white. 

• When using rubber band and rubber box echo types, if the position of the fixed 
end or corner is not visible at the time of a GSREAD call, GDDM does not 
ensure that the initial position and type of the locator echo are correct. 

5550-family multistation 

Support is the same as for 3270-PC/G, described in this chapter, with the following 
exceptions: 

• Segment dragging is not supported 

• String and stroke devices are not supported 

• A mouse is supported as the choice, locator, and pick devices. Neither a puck 
nor a stylus are supported. 

• For a locator device, GSILOC echo types 3 through 5 are not supported. 

Chapter 14. Interactive graphics 215 



Part 3. Advanced text 

Part 3. Advanced text 217 



Chapter 15. Symbol sets 

Most of this chapter applies to devices with programmed symbols. For device 
variations, including the 3270-PC/G and IGX, see "Device variations" on page 233. 
GDDM has two different types of symbols or characters: image symbols and vector 
symbols. Printer fonts, which are not part of GDDM but which GDDM programs 
can use, are described in "Chapter 22. Using printers" on page 395. 

Image symbols are patterns of dots, each dot corresponding to one screen position 
or pixel. These symbols are therefore of fixed size. GDDM supplies an interactive 
Image Symbol Editor to allow the user to create his own image symbol sets. This 
editor is described in the GDDM Image Symbol Editor. When a symbol set has 
been created, it is stored on disk and is available for use by any GDDM program. 

The other type, vector symbols, are defined as a sequence of straight and curved 
lines. When vector symbols are displayed, GDDM is able to manipulate the lines 
that make up the symbols, and therefore display the symbols at any required size, 
angle, shear (italicization) or aspect ratio. GDDM supplies an interactive Vector 
Symbol Editor to allow the user to create his own vector symbol sets. This editor 
is described in the GDDM-PGF Vector Symbol Editor. Once created, both image 
and vector symbol sets are saved on disk for subsequent use by GDDM programs. 

Figure 69 on page 220 illustrates the difference between image symbols and vector 
symbols. 

A symbol set consists of a number of symbols (up to 256 in a vector symbol set or 
190 in an image symbol set), and each symbol is associated with a position in the 
symbol set known as a character code. A character code may be expressed either 
as a hexadecimal number (in the range X'OO' to X'FF' for vector symbols or X' 41' to 
X'FE' for image symbols), or as the EBCDIC character normally occupying that 
position. Most symbol sets contain representations of a font, that is, the alphabet, 
numerals, and special characters all in a single style such as italic or Gothic. 
When the program sends the string ABC to the terminal using such a symbol set, 
the letters A, B, and C appear in the particular style of that symbol set. 

The symbol set need not represent a font, however. The user may create an image 
symbol set (using the Image Symbol Editor) which has, say, a multicolored 
company logo at position • A' (X'C1'). When the program issues a 

CALL GSCHAR(X,Y,l,'A'}; 

using this symbol set, the company logo is added to the graphics that appear on the 
device. 

GDDM supplies some font symbol sets of both image and vector types for use with 
the product. They are described in the GDDM Base Programming Reference 
manual, and illustrated in the user's guides for their respective symbol editors. 

Chapter 15. Symbol sets 219 



sec end of chapter for device variations 

CREATION OF IMAGE SYMBOL 
(SYMBOL CONSISTS OF 21 DOTS) 

i ..... ........ .... .. .. . .......... .. ..... .. . .... .. ............................ ..... : 

CREATION OF VECTOR SYMBOL 
(SYMBOL CONSISTS OF 4 LINES) 

Figure 69. Comparison of image and vector symbols 

U sing symbol sets 

You do not need to specify a symbol set for either graphics or alphanumeric text: 
GDDM will always supply a default. If you want to use a nondefault symbol set, 
there are two operations that your program must perform. 

The first is to load the required symbol set into main storage. Several symbol sets 
can be loaded and stored concurrently, so the second operation is to specify which 
one is to be used for a given piece of text. 

The operations are steps 1 and 3 in Figure 70 on page 221, which shows them in 
the context of the other major text output calls. Subsequent sections describe the 
calls used in these two steps. 

220 GDDM Application Programming Guide Volume 1 



ALPHANUMERICS 

1. Load the symbol set 
CALL PSLSS(O,'ADMITALC',199); 

2. Define the field 
CALL ASDFLD(33,10,20,2,8,O); 

3. Specify which loaded 
symbol set to use 
CALL ASFPSS(33,199); 

4. Write the characters 
onto the page 
CALL ASCPUT(33,4,'TEXT'); 

5. Send the page to the 
terminal 
CALL ASREAD(TYPE,NUM,COUNT); 

Figure 70. Overview of symbol set calls 

Loading symbol sets 

symbol sets 

GRAPHICS TEXT 

1. Load the symbol set 
CALL GSLSS(l,'ADMITALC' ,199); 

or 
CALL PSLSS(O, 'ADMITALC',199)j 

2. Set the character mode 
CALL GSCM ( 2) j 

3. Specify which loaded 
symbol set to use 
CALL GSCS(199); 

4. Write the characters 
onto the page 
CALL GSCHAR(40.0,5.0,4,'TEXT'); 

5. Send the page to the 
terminal 
CALL ASREAD(TYPE,NUM,COUNT)i 

Each symbol set has a name of up to eight characters. On most subsystems this 
will be a member name in a library devoted to symbol sets. Under CMS, the 
scheme is slightly different. The symbol set 'SCRIPT55', for example, might exist 
on any disk in the current search order. If it was on the user's A-disk, its full name 
would be 'SCRIPT55 ADMSYMBL A'. 

Within a GDDM program, symbol sets are referred to by name only at the time they 
are loaded. After that they are referred to by their identifier, which is a number 
that is allocated at load time. 

Symbol sets for alphanumerics 

Only image symbols are allowed with the alphanumerics API, and they should be 
the same size as the hardware cells of the current device. 

This is a typical statement to load a symbol set from auxiliary storage. When the 
current page is sent to the terminal (typically, when the next ASREAD is 
executed), GDDM will load the symbol set into a PS-store at the terminal. 

CALL PSLSS(3,'SCRIPT55',193);/* Load symbol set into PS-store 3 */ 

The three parameters have these meanings: 

• 3 designates which of the device's PS stores should be used to hold the symbol 
set. A common setting of this parameter is 0, which tells GDDM to choose a PS 
store itself. 

• SCRIPT55 specifies the name of the symbol set to be loaded from auxiliary 
storage. Remember that this symbol set must be of the type that matches the 
hardware cell size (if the alphanumerics will appear on a 3279, for example, the 
symbol set must be 9 pixels by 12). 

Chapter 15. Symbol sets 221 



see end of chapter for device variations 

• 193 is the number by which future reference will be made to this loaded symbol 
set. It is known as the symbol-set identifier and must lie in the range 65 
through 223. 

Information aBout using the symbol set you have loaded is given in "Specifying a 
symbol set for alphanumeric text" on page 223. 

Symbol sets for graphics text 

For mode-2, any image symbol set can be used, and for mode-3, any vector symbol 
set. This call loads a symbol set from auxiliary storage into main storage for use in 
mode-2 or -3 graphics text: 

CALL GSLSS(1,'ADMITALC' ,194);/* Load image symbol set ADMITALC */ 
/* from auxiliary storage, and */ 
/* give it an identifier of 194 */ 

The three parameters to GSLSS are as follows: 

• The first parameter indicates the type of symbol set being loaded: 

1 Indicates that an image symbol set is being loaded. 
2 Denotes a vector symbol set. 
3 A pattern set. This is a special type of image symbol set. Its use is 

described in "Setting the current pattern, using call GSPAT" on page 38. 
4 A marker set. This is a special type of image or vector symbol set. Its 

use is described in "Setting the current marker symbol, using call GSMS" 
on page 37. 

5 A printer font. These are described in "Chapter 22. Using printers" on 
page 395. 

• ADMIT ALC is the 8-character name of the symbol set, as it was, for example, 
on PSLSS. 

• 194 is the symbol set identifier. 

The GSLSS call loads the symbol-set definitions into main storage for use by 
GDDM. It does not load the symbol set into the device as PSLSS would (except on 
the terminals described in "Differences on IBM 3270-PC/G and IGX work stations" 
on page 233). 

Imagine, for example, that a subsequent request is made to send the characters 
XYZ to the screen of an IBM 3279 terminal using this mode-2 italic symbol set. 
Then GDDM will retrieve from the symbol set the dot patterns at positions X, Y, 
and Z. It will then merge these pixels (in the current color) with the pixels 
representing the rest of the specified graphics. All this processing takes place in 
the host, not at the device. 

For mode-l graphics text, only image symbol sets are allowed. The character size 
must exactly match that of the device on which the text is to be displayed. Such a 
symbol set can be loaded into one of a device's programmed symbol buffers (also 
known as PS-stores). You must load the symbol set with a PSLSS call. If you 
intend to use a symbol set that matches the hardware cell size for mode-2 graphics 
text, you could load it using either PSLSS or GSLSS. 

You can query a loaded symbol set with a GSQSSD call. Briefly, you specify a 
symbol set type and identifier, and GDDM returns its size (for image symbol sets) 

222 GDDM Application Programming Guide Volume 1 



symbol sets 

or aspect ratio (for vector symbol sets). For full details, see the GDDM Base 
Programming Reference manual. 

GSQSSD offers a way of ensuring that the aspect ratio of the character box 
matches that of a vector symbol set: 

DCL ARRAY{l) FLOAT DEC(6); 
DCL (WIDTH,HEIGHT) FLOAT DEC(6); 

/*TYPE:2=VECTOR S-SET 
CALL GSQSSD(2, 

HEIGHT:: 10; 

WIDTH:: ARRAY(l} * HEIGHT; 
CALL GSCB(WIDTH,HEIGHT); 

S-SET ID ARRAY ELEMENTS 
65, 1, 

ASPECT RATIO*/ 
ARRAY} ; 

/* Set height of character box in */ 
/* world coordinate units .... */ 
/* ... and then its width */ 
/* Aspect ratio of character box now */ 
/* matches that of vector symbol set */ 

GDDM sets the first (and, in this case, only) element of ARRAY to the width of the 
symbols as a proportion of their height. The proportion was defined when the 
symbol set was created. The GSCB call will ensure that the character box has the 
same proportions. 

Information about using the symbol set you have loaded is given in "Specifying a 
symbol set for graphics text" on page 226. 

PS-stores for symbol sets and graphics 

On the 3279 and most other types of 3270 device, the PS stores used for holding 
symbol sets are the same as those used by GDDM for its graphics. (Variations on 
other devices are described at the end of the chapter.) 

It would therefore not be sound practice to try to load a symbol set into PS-store 4 
if some graphics had previously been output. GDDM might currently be using 
PS-store 4 to hold some of the dot patterns making up the graphics. There are 
several ways round this problem: (1) PS store 4 can be reserved for this usage by 
issuing a CALL PSRSV(1,4) statement before any graphics is performed, or (2) the 
PSLSS statement itself can be issued before any graphics is performed, or (3) the 
first PSLSS parameter may be set to 0 to ask GDDM to choose a PS store not 
currently in use. 

Specifying a symbol set for alphanumeric text 

This section explains how to use a symbol set for alphanumerics after you have 
loaded it, as described in "Symbol sets for alphanumerics" on page 221. To use a 
loaded symbol set for graphics text, see "Specifying a symbol set for graphics text" 
on page 226. 

To use a symbol set, you specify it as an alphanumeric attribute. 

Field symbol-set attributes 

The ASFPSS call sets the field symbol-set attribute: 

CALL ASFPSS(8,l93); /* Set field symbol-set attribute */ 

This call specifies that all subsequent output to alphanumeric field 8 should use the 
loaded symbol set that was given the identifier 193. Should the field have been 

Chapter 15. Symbol sets 223 



see end of chapter for device variations 

defined to accept input, any characters entered into the field will appear on the 
screen as symbols from the same loaded symbol set. 

Most commonly the symbol set loaded into the PS store will be a font of some sort. 
H it is, say, a Gothic font, the effect of the ASFPSS and a CALL 
ASCPUT(8,6,' ABC123') will be to send a Gothic version of' ABC123' to the screen. 
Any input to the field will also appear in Gothic characters immediately it is typed. 

Setting the symbol set attribute to 0 requests the hardware non-Ioadable symbol set 
(in other words, the standard character set of the device). This symbol set is also 
the one used if no ASFPSS call is executed for a field. 

Character symbol-set attributes 

When it is required to use different symbol-set attributes within a single 
alphanumeric field, character symbol-set attributes must be used: 

CALL ASCSS(S,6,'AAAA ');/* Set character symbol-set attributes */ 

This call must be issued after the data is put into the field by an ASCPUT. 

To specify the symbol set for the field attribute, a fullword parameter was used' (set 
to 193 in the example given). This is not a suitable method for character attributes. 
The symbol-set identifiers are therefore converted to I-byte hexadecimal numbers. 
For coding purposes it is most convenient to use numbers that correspond to an 
EBCDIC letter. The letter A, for example, corresponds to X'C1' which is 193 in 
decimal. 

The above ASCSS statement therefore requests that the first 4 characters of field 8 
should be displayed using the symbol set with identifier 193. The 5th and 6th 
characters will use whichever symbol set was specified in the field attribute (the 
ASFPSS call, if any); this is the meaning of the blanks here. Should the field have 
more than 6 characters in it, the remainder will also take their attribute from the 
field-attribute specification. 

All character-attribute specifications must follow the corresponding ASCPUT 
statement for that field. They act on the data in the field rather than on the field 
itself. 

The effect of typical ASFPSS and ASCSS calls may be seen in Figure 28 on 
page 81. 

224 GDDM Application Programming Guide Volume 1 



symbol sets 

Here is an example of how to use symbol sets: 

CALL FSPCRT(1,32,80,2); /* Create page that allows char attrs. */ 
CALL PSLSS(3,'GOTHIC2',194); /* Load Gothic s-set with id = 194 */ 
CALL PSLSS(O,'ADMITALC',195);/* Load italic s-set with id = 195 */ 
CALL ASDFLD(1,14,56,1,7,O); /*Define field 1, 7 characters long*/ 
CALL ASDFLD(2,18,40,1,5,O); /*Define field 2, 5 characters long*/ 

CALL ASFPSS(1,195); /* Set field 1,s s-set attribute to italic*/ 
CALL ASCPUT(1,7,'ABCDEFG'); /* Assign data to field 1 */ 
CALL ASCPUT(2,5,'PQRST'); /* Assign data to field 2 */ 
CALL ASREAD(TYPE,MOD,COUNT); /* Send 1st output to screen */ 

/*************************************************/ 
/* */ 
/* FIELD 1: ABCDEFG will all appear in italic */ 
/* FIELD 2: PQRST will all appear in the default */ 
/* (hardware) symbol set */ 
/* */ 
/*************************************************/ 

CALL ASFPSS(2,194); /* Set field 2's s-set attribute to Gothic */ 
CALL ASCSS(1,4,' BBB'); /* Chars 2-4 will use */ 

/* s-set 'B' (X'C2', 194) */ 
CALL ASREAD(TYPE,MOD,COUNT); /* Send 2nd output to screen */ 

/*************************************************/ 
/* */ 
/* FIELD 1: A ... EFG will appear in italic */ 
/* .BCD ... will appear in Gothic */ 
/* FIELD 2: PQRST will all appear in Gothic. */ 
/* */ 
/*************************************************/ 

CALL ASCPUT(1,7,'HIJKJLM'); /* Assign new data to field 1,*/ 
/* thereby canceling the */ 
/* character s-set attributes.*/ 

CALL ASCSS(2,3,'CCC'); /* Chars 1-3 will use */ 
/* s-set 'C' ( X' C3', 195) * / 

CALL ASFPSS(2,O); /* Reset field 2 to the */ 
/* hardware non-loadable set */ 

CALL ASREAD(TYPE,MOD,COUNT)i /* Send 3rd output to screen */ 
/*************************************************/ 
/* */ 
/* FIELD 1: HIJKLMN will all appear in italic */ 
/* FIELD 2: PQR .. will appear in italic */ 
/* ... ST will appear in the default */ 
/* (hardware) symbol set */ 
/* */ 
/*************************************************/ 

Changing a field attribute will alter the appearance of the data in that field next 
time a screen output is performed. This applies even if the data of the field was first 
sent out on a previous screen output. The same is true of character attributes. The 
new attributes will be applied to the current field contents - even if new data has 
been typed into the field by the terminal operator. 

Input of character symbol-set attributes 

If the display device has a keyboard that permits input of character attributes, 
there will be buttons on it marked PSA, PSB ... PSF. These correspond to 
PS-stores 2 through 7. 

In the preceding example, the PSLSS for the Gothic symbol set explicitly requested 
PS-store 3. If the terminal operator presses the PSB button, all subsequent typed 

Chapter 15. Symbol sets 225 



see end of chapter for device variations 

characters will appear on the screen in Gothic. A character attribute of PS-store 3 
will be returned to GDDM for all such characters. You may query the input 
symbol-set character-attributes by issuing an ASQSS call: 

CALL ASQSS(1,7,CHAR7);/* Place s-set character attrs in 'char7' */ 

This call returns the first seven symbol-set character attributes of field 1 into the 
variable CHAR7. By the time the attributes arrive in the variable, they will be in 
the same form as in a corresponding ASCSS calL In other words, there will be a B 
(X'C2', decimal 194) for all positions where the character attribute was set to PSB 
(the location of the Gothic font). 

Specifying a symbol set for graphics text 

This section tells you how to use a symbol set for graphics text after you have 
loaded it as described in "Symbol sets for graphics text" on page 222. Using a 
loaded symbol set for alphanumerics is described in "Specifying a symbol set for 
alphanumeric text" on page 223. 

This is the call that specifies which symbol set should be used: 

CALL GSCS (194) ; /* Set symbol set attribute to 194 */ 

The actual symbol set used depends on both this parameter and the character mode. 
It is possible to load three symbol sets (a hardware set, an image set, and a vector 
set), each with a symbol-set identifier of 194. On most types of terminal, the chosen 
character mode then determines which of these sets is used. However, this is not 
always the case on 3270-PC/G and IGX work stations - the selection depends on 
other factors and is not readily predictable. To ensure device-independence, 
duplicate identifiers should therefore be avoided in all programs. 

If no GSCS call is made, GDDM will use the default symbol set for the current 
character mode. The defaults are: 

• For mode-1 characters, the hardware symbol set of the device in use. 

• For mode-2 the set named ADMDHIIx, where x is a code letter that depends on 
the device being used (see "Device-dependent symbol-set suffixes" on page 228). 

• For mode-3, the set ADMDVSS. 

The example program in Figure 71 on page 227 uses three symbol sets. Two of 
them are vector symbol sets: one for the heading (part of which is displayed larger 
than the rest, highlighting the word MAZE), and the other for the subheading and 
annotations. 

The third symbol set is an image symbol set. Only one symbol is used. It is a large 
and complex one, comprising a multicolored maze. It has a character code of X'C1', 
which corresponds to the letter A in EBCDIC. As explained in "Multicolored 
symbols" on page 228, to display a multicolored symbol, the current color must be 
set to 7 (neutral). 

226 GDDM Application Programming Guide Volume 1 



symbol sets 

MAZE: PROC OPTIONS(MAIN); 

DCL (TYPE,NUM,COUNT) FIXED BIN(31); 

CALL FSINIT; 

CALL GSWIN(O.O,130.0,O.O,130.0) ;/* Set up the coordinate system */ 

/****************************************************************/ 
/* WRITE THE HEADING */ 
/****************************************************************/ 

CALL GSLSS(2,'ADMUWCRP',65); 
CALL GSLSS(2,'ADMUWCSP',66); 
CALL GSLSS(1,'GGMAZE',67); 

CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 

GSCM(3) ; 
GSCS(65); 
GSCB ( 5 . 0 , 7 . 0) ; 
GSCOL(6); 
GSCHAR(18.0,115.0,5,'THE 
GSCB(9.0,16.0); 
GSCOL(3); 
GSCHAP(4,'MAZE'); 
GSCB(5.0,7.0); 
GSCOL (6) ; 
GSCHAP(17,'ING COMPUTER 

/* Load symbol set for heading */ 
/* Load symbol set for annotation */ 
/* Load the maze symbol */ 

/* Set text mode to vector 
/* Make heading symbol set 
/* Set size and ... 

symbol */ 
current*/ 

/* ..• color of heading 
A'); /* First part of heading 
/* Make character size larger 
/* Change color 
/* Next part of heading 
/* Reset size and ... 
/* ... color 

GAME'); /* Last part of heading 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/****************************************************************/ 
/* WRITE THE SUBHEADING */ 
/****************************************************************/ 

CALL GSCS(66)i /* Make symbol set current 
CALL GSCB(4.0,5.0); /* Set size and ... 
CALL GSCOL(4)i /* •.. color 
CALL GSCHAR(20.0,105.0,39,'CAN YOU GET THE CURSOR OUT OF 

*/ 
*/ 
*/ 

THE MAZE?'); 

/****************************************************************/ 
/* WRITE THE ANNOTATIONS */ 
/****************************************************************/ 

CALL GSCOL(2); /* Set the color */ 
CALL GSCHAR(58.0,45.0,lO,'START HERE'); 
CALL GSCHAR(46.0,85.0,8,'END HERE'); 

/****************************************************************/ 
/* DRAW THE MAZE */ 
/****************************************************************/ 

CALL GSMIX(3); 
CALL GSCM(2)i 
CALL GSCS(67); 
CALL GSCOL(7); 
CALL GSCHAR(42.2,O.O,1,'A'); 

/* Maze to underpaint annotation */ 
/* Set text mode to image symbol */ 
/* Make maze symbol set current */ 
/* Set color to neutral */ 
/* Write the maze symbol */ 

CALL ASREAD(TYPE,NUM,COUNT); /* Send to terminal 

CALL FSTERM; 

*/, 

%INCLUDE ADMUPINA; 
%INCLUDE ADMUP1NFi 
%INCLUDE ADMUPING; 

END MAZEi 

Figure 71. Program using symbol sets for graphics text 

Chapter 15. Symbol sets 227 



see end of chapter for device variations 

Multicolored symbols 

When image symbol sets are created, it is possible to make them multicolored. The 
dots making up the symbols may each be any of the 7 colors available. When you 
use multicolored image symbols, whether for alphanumerics, or for mode-lor 
mode-2 graphics text, the color must be set to 7 (neutral). If any other color is 
specified (or defaulted), the dots in each symbol will all be in that color. 

Symbols for pounds, dollars, and cents 

Some EBCDIC character codes are reserved for "national use" characters. The 
appearance of these characters on the screen vartes from country to country. This 
is achieved by configuring the controller appropriately and modifying the display 
unit. When such character codes are displayed using GDDM-supplied symbol sets, 
apparent conflicts may occur. 

In the U.S., for example, character codes X'5B' and X'4A' represent dollar and cent 
signs respectively. The GDDM-supplied symbol sets therefore reflect this. A 
British keyboard (and terminal) uses these codes to represent pound and dollar 
signs, respectively. Suppose that you code on a British terminal: 

CALL ASCPUT(F_ID,3,'$85'); 
or 
CALL GSCHAR(X,Y,3,'$85'); 

Character code' 4A' will be used, as the terminal will associate the $ symbol with 
this character code. With the default symbol set, the ASCPUT would cause the 
string to appear as $85, and so would the GSCHAR if mode-l (hardware characters) 
were in use. 

This problem may be solved with load able symbol sets by using the GDDM symbol 
editors to set all their national-use characters to the desired values. 

Device-dependent symbol-set suffixes 

To allow programs to run against different devices, symbol-set names may be 
specified that end in a substitution character. This is coded as a period, for 
example: CALL GSLSS(4,'SCRIPT5.',l93). 

When GDDM comes to load the symbol set, it will replace the substitution 
character with one from a set of device-dependent one-character suffixes. 

A list of suffixes is given in the GDDM Base Programming Reference manual. 

Manipulating symbol sets by program 

You may need to manipulate GDDM symbol sets in your application programs. 
This section summarizes some useful calls. For full descriptions of them, see the 
GDDM Base Programming Reference manual. 

228 GDDM Application Programming Guide Volume 1 



symbol sets 

Symbol sets and program variables 

This call reads a symbol set from auxiliary storage into a program variable: 

CALL SSREAD('ADMITALC',1200,CHAR1200); /* Read the symbol set */ 
/* from auxiliary storage*/ 
/* into the user's */ 
/* program storage */ 

The symbol set is called ADMITALC. The variable is 1200 bytes long and is called 
CHAR1200. If the length is insufficient, an error message is issued. The symbol set 
may be of any mode. After reading in the symbol set, the program might, for 
example, set a special character into one of the character codes. 

This call would write the same symbol set back to auxiliary storage: 

CALL SSWRT('ADMITALC',1200,CHAR1200); /* Write the symbol set */ 
/* to auxiliary storage */ 
/* from the user's */ 
/* program storage */ 

Loading symbol sets 

The GSDSS call is similar to GSLSS in that it loads a symbol set into GDDM's 
storage ready for transmission to the terminal, but it loads from a program variable 
rather than auxiliary storage: 

/* IMAGE SET NAME S-SET ID VARIABLE LENGTH 
CALL GSDSS(1, 'ADMITALC', 194, 1200, 

VARIABLE */ 
CHAR1200) i 

The name serves only to help identify the symbol set within the program. You can 
choose any helpful name or leave it blank. It does not refer to any symbol set on 
auxiliary storage. 

The PSDSS call is the equivalent of the PSLSS call. It loads a hardware image 
symbol set from a program variable into a specified PS-store at the terminal. The 
load will take place at the next ASREAD call. 

CALL PSDSS(3,'SCRIPT55',194,1200,CHAR1200); 

This call loads into PS-store 3 the symbol set held in the 1200-byte-Iong variable 
CHAR1200. The name of the symbol set is 'SCRIPT55' and its identifier is 194. The 
name can be left blank. 

The PSLSSC call is similar to PSLSS, but is a conditional load: 

CALL PSLSSC(3,'SCRIPT55' ,194); 

If PS-store 3 already contains a symbol set with identifier 194, the load will not be 
performed. This scheme may be used even when the PS-store was loaded by a 
different instance of GDDM. 

Chapter 15. Symbol sets 229 



see end of chapter for device variations 

Querying, reserving, and releasing PS-stores 

The following PSQSS call queries the first 5 PS-stores and returns information into 
the four arrays specified as parameters. 

CALL PSQSS(5,TYPES,STATES,SYMBOL_SET_NAMES,SYMBOL_SET_IDS); 

The following call releases the symbol set with identifier 194 from the PS-store 
containing it: 

CALL PSRSS(194); 

The following call reserves PS-store 5 for later use by the application program. 
The first parameter may also be set to 0 to indicate that the store is to be freed. 

CALL PSRSV(1,5); 

Double-byte character set graphics text 

You can use all three modes of graphics text to display the double-byte character 
set (DBCS) characters used in some Asian countries. (On the IBM 5550 
Multistation, you can display DBCS characters in alphanumeric fields, and receive 
DBCS alphanumeric input, as explained in "Double-byte character set 
alphanumerics" on page 245.) 

Each DBCS character is represented by a two-byte code instead of the single-byte 
EBCDIC-type code used for Latin characters. You must specify the hexadecimal 
codes in a GSCHAR or GSCHAP call. The length you specify in these calls must 
be the number of bytes - twice the number of DBCS characters. 

GDDM supplies two special multi-page symbol sets for Kanji text - an image 
symbol set for mode-2 and a vector symbol set for mode-3. To indicate that you 
require a double-byte symbol set, you can specify a special symbol-set identifier of 8 
in a GSCS call. An example is given in the code below. 

Here is an example of program source code: 

230 GDDM Application Programming Guide Volume 1 



symbol sets 

/****************************************************************/ 
/* FIRST SET UP HEX CODES IN AN ARRAY */ 
/****************************************************************/ 
DCL KC(65:254) CHAR(l); /* Array to hold hexadecimal numbers */ 
DCL INDEX FIXED BIN(15); /* Local variable */ 
DCL BIT16 BIT(16); /* Local variable */ 

array with hex'41' through 'FE'*/ DO INDEX=65 TO 254;/* Initialize 
BIT16=UNSPEC(INDEX); 
UNSPEC(KC(INDEX»=SUBSTR(BIT16,9,S); 

END; 

/* Convert to bit */ 
/* Extract last S bits */ 

/****************************************************************/ 
/* NOW WRITE THE KANJI CHARACTERS */ 
/****************************************************************/ 
CALL GSCM(3); /* Vector symbol mode */ 
CALL GSCS(S); /* Special Kanji symbol set */ 

DECLARE KANJI_DATA5 CHARACTER ( 10) ; /* String for 5 */ 
/* Kanji characters */ 

KANJI_DATAS=KC(65) II KC(192) II /* Assign */ 
KC ( ... ) II KC ( ... ) II /* five */ 
KC( .•. ) II KC( ... ) II /* two-byte */ 
KC ( ••. ) II KC( ... ) II /* Kanji */ 
KC ( .•. ) II KC ( ... ) ; /* characters */ 

CALL GSCHAR(S,S,10,KANJI_DATAS); 1* Write the Kanji */ 

Another method, which allows ordinary single-byte and double-byte characters to 
be mixed in a single string, is to use the special shift-out (SO) and shift-in (S1) 
characters. The data between these two special characters is interpreted by GDDM 
as double-byte. Other characters are interpreted as single-byte. With this method, 
you do not need a GSCS(8) call. 

The SO code is X'OE' and the SI is X'OF'. You must allow one byte for each of 
these and two bytes for each Kanji character. Within any string, only SOISI pairs 
are allowed, in that order. 

Chapter 15. Symbol sets 231 



see end of chapter for device variations 

Here is an example: 

/****************************************************************/ 
/* SET UP SO/SI CHARACTERS */ 
/****************************************************************/ 
DCL (SO,SI) CHAR(l)i /* Shift-out & shift-in */ 
UNSPEC(SO)='OOOOll10 ' Bi /* Set shift-out codepoint */ 
UNSPEC(SI)='OOOOIIII IBi /* Set shift-in codepoint */ 

/****************************************************************/ 
/* WRITE MIXED KANJI AND LATIN DATA */ 
/****************************************************************/ 
CALL GSCM(2)i /* Image symbol mode */ 

DECLARE MIXED_DATA28 CHARACTER(28)i/*St~ing for mixed characters*/ 
/* bytes*/ 
/* 5 Latin characters 5 */ 
/* Shift-out 1 */ 
/* 3 Kanji characters 6 */ 

MIXED_DATA28= I LATINI I I 

CALL GSSEN(2)i 

SO II 
KC(65) I I 
KC ( ... ) I I 
KC( ... ) II 
SI II 

KC (192) I I 
KC ( ... ) II 
KC ( ... ) II 

I LATIN AGAIN I I I 
SO II 
KC ( . • .) I I KC ( • . • ) II 
SIi 

CALL GSCHAR(8,1,28,MIXED_DATA28)i 

/* 
/* 
/* 
/* 
/* 
/* 

Shift-in 1 */ 
11 Latin characters 11 */ 
Shift-out 1 */ 
1 Kanji character 2' */ 
Shift-in 1 */ 

Total bytes 28 */ 

If you left out the GSSEN call from the above code, the character positions used by 
the SO and S1 codes would be output to the display as blanks. GSSEN applies to 
the current page, and its one parameter can have the following values: 

o Default, the same as value 1 

1 SO/S1 codes are displayed as blanks between the single-byte and double-byte 
characters 

2 No blanks are displayed between the single-byte and double-byte characters. 

Before executing such a program, you need to specify a GDDM external default. 

GDDM default required for Kanji 

If you use the SO/SI method, you must tell GDDM to check for the shift codes in 
graphics text strings. You do this using the GDDM defaults mechanism, which is 
similar to the nicknames mechanism described in "Nicknames" on page 378. This 
statement specifies the required default: 

ADMMDFT MIXSOSI=YES 

It can be passed to GDDM in any of the ways described in "How to pass nickname 
statements to GDDM" on page 384. If an ESSUDS or ESEUDS call is used, it 
should be executed immediately after the FS1NIT. Full information about the 
defaults mechanism is given in the GDDM Base Programming Reference manual. 

232 GDDM Application Programming Guide Volume 1 



symbol sets 

Device variations 

The preceding sections of this chapter refer primarily to members of the 3270 family 
that use programmed symbols for graphics, such as the 3279. However, most 
functions are device-independent, so most of the information applies to all graphics 
devices. The following sections describe functional variations on other types of 
device. 

Differences on IBM 3270-PC/G and /GX work stations 

The PSLSS call: As with a 3279, PSLSS loads image-symbol definitions into the 
device's PS storage. The symbols should be the same size, in pixels, as the 
alphanumerics hardware cells. 

The number of PS stores available to the PSLSS call depends on what features the 
work station has and how it has been set up. The maximum is two. You can 
discover the actual number by executing an FSQURY call: 

/* Query number of available PS stores */ 
/* And save number in num_PS_stores */ 

DCL ARRAY(lO) FIXED BIN(31); 
DCL NUM_PS_STORES FIXED BIN(31); 

CALL FSQURY(O,lO,ARRAY); 
NUM_PS_STORES = ARRAY(lO); 

The PS stores are monochrome, so multicolored image symbols are displayed in 
monochrome, using the current color. 

The 3270-PC/G and /GX do not use PS stores to draw such graphics primitives as 
straight lines and arcs. The section "PS-stores for symbol sets and graphics" on 
page 223 therefore does not apply. 

If a program is transferred between a 3270-PC work station and an ordinary 3270 
terminal such as the 3279, the aspect ratio of image symbols change because the 
aspect ratios of the display units' pixels are different. This is the case whether the 
symbol sets are loaded by a PSLSS or a GSLSS call. 

The GSLSS call: The GSLSS call uses the same work-station storage as graphics 
orders. Unlike on the 3279, the GSLSS call generally loads the symbol sets into the 
work station. They are held in the same storage as is used for graphics orders. It 
is therefore advisable to release symbol sets when they are no longer required, 
using QSRSS calls, so that the storage can be reused. 

The cell size is different from that of symbols loaded with a PSLSS. GSLSS uses 
the graphics cell size, whereas PSLSS uses the alphanumerics cell size. The 
graphics cell size is the default character-box size. 

Chapter 15. Symbol sets 233 



device variations 

Graphics text 

Mode-I: The symbols do not have to match the hardware cells: they can be of any 
size. Their horizontal and vertical spacing are equal to their width and depth. 

The symbol sets can be loaded by a GSLSS call, or, if the symbols are the same size 
as the graphics cell, by a PSLSS. Unlike on a 3279, you should not use the same 
symbol-set identifier in a PSLSS as in a GSLSS because it is unpredictable which 
will be made current when the identifier is specified in a GSeS call. It might also 
cause the PSLSS-loaded set to be erroneously selected for mode-2 text. 

Default symbol set: The work stations have built-in image and vector symbol sets. 
For mode-! and -2, the work-station image symbols are used by default. Their size 
equals that of the hardware graphics cell. For mode-3, hardware vector symbols 
scaled to fit the current character box are used by default. The default character 
box is the same size as the graphics cell. 

For mode-2 and -3, you can specify that a GDDM set be used as the default instead 
of the hardware set. You do so with a processing option (see "Default symbol sets 
for graphics text" on page 389). In this case, the default symbol sets are the same 
as on a 3279 (see "Specifying a symbol set for graphics text" on page 226), except 
for device-dependent suffixes. 

Differences on composed-page printers 

This section describes mode-! and -2 text on composed-page printers such as the 
mM 4250 and 3800 Models 3 and 8. In particular, it describes the differences 
between these devices and ordinary members of the mM 3270 family, such as the 
3279. There are no differences with mode-3 text. 

Alphanumerics: Alphanumerics are not supported on these devices. 

Graphics text 

Mode-I: Mode-! symbols are taken from the default symbol set. The symbols are 
scaled to fit within the default character box (see "Differences on composed-page 
printers" on page 71). 

Mode-2: You can specify an image symbol set, but this is not recommended. Each 
dot in each symbol is printed as one pixel. On a high-resolution device such as the 
4250, the pixels are very close together. To be distinguishable, symbols therefore 
need to be very large. Vector symbol sets can be specified for mode-2 instead of 
image symbol sets. 

Default symbol set: The default for all modes, if none is specified using a GSeS 
call, is the vector symbol set ADMUWARP for the 4250 or ADMUVSRP for the 
3800. 

Differences on plotters 

Graphics text support for plotters is similar to that for 3270 terminals such as the 
3279. The default symbol set for all text modes is the vector set ADMDVSS. Some 
further information is given in "Symbol sets" on page 439. 

Plotters do not support alphanumerics. 

234 GDDM Application Programming Guide Volume 1 



Chapter 16. Advanced procedural alphanumerics 

Several of the simpler alphanumeric calls were discussed in "Chapter 8. Basic 
alphanumerics" on page 75. This chapter covers the rest of the alphanumerics 
API, dealing with these topics: 

• Defining multiple fields 
• Specifying default field attributes 
• Querying modified fields 
• Using light-pen fields. 

Defining multiple fields using call ASRFMT 

This call defines several alphanumeric fields at the same time. When a number of 
fields are logically connected, it is useful for the definitions to be grouped together 
in this way. 

The call also permits the field attributes to be set (unlike ASDFLD - define single 
field). This is an example of the call: 

DCL ASR_ARRAY(36) FIXED BIN(31) INIT( 
4, 12, 50, 1, 14, 2, 1, 6, 194, /* Parameters for field 4 */ 
7, 12, 68, 1, 4, 0, 1, 4, 0, /* Parameters for field 7 */ 
8, 23, 1, 2, 8, 2, 2, 4, 0, /* Parameters for field 8 */ 

19, 14, 60, 6, 10, 2, 1, 2, 195 ) ; /* Parameters for field 19 */ 

CALL ASRFMT(4,9,ASR_ARRAY); /* Define four alphanumeric fields */ 

The call has these three parameters: 

4 The number of fields to be defined. 

9 The number of attributes that will be provided per field. It must be 
at least 5 and not more than 17. 

ASR_ARRAY An array of fullwords containing the attributes for the fields 
concerned. The number of elements in the array will be the product 
of the first two parameters (in this case, 36). As the example shows, 
the parameters for one field precede the parameters for the next 
field. 

You may specify the following parameters for each field. Any not specified, or 
given a value of zero, take their default values. 

1. Field identifier 

Chapter 16. Advanced procedural alphanumerics 235 



does not apply to graphics.only devices such as plotters 

2. Row - a zero value here will request deletion of the field (if it already exists) 

3. Column 

4. Depth 

5. Width 

6. Type - protected, unprotected, and so on, as normally specified by ASFTYP or 
the last parameter of ASDFLD 

7. Intensity - as for ASFINT 

8. Color - as for ASFCOL 

9. Symbol set - as for ASFPSS 

10. Highlight - as for ASFHLT 

11. Field end attribute - as for ASFEND 

12. Blank to null conversion - as for ASFOUT 

13. Null to blank conversion - as for ASFIN 

14. Translation table number - as for ASFTRN 

15. Transparency - as for ASFTRA 

16. SO/SI shift control codes - as for ASFSEN 

17. Field outlining - as for ASFBDY. 

The above example specified that field 4 should have its top left cell at row 12 
column 50. The field should be 1 row deep and 14 columns across. The type should 
be 2 (protected) and the intensity 1 (normal). The color should be 6 (yellow) and 
the symbol set used should be that with identifier 194. Unspecified attributes such 
as the highlighting would be set to default. 

If any of the field identifiers match those of existing fields, the existing fields will 
be replaced by the new ones. 

Define multiple fields, deleting all previous fields using call ASDFMT 

This call has exactly the same format as the call to ASRFMT. The only difference 
is that ASDFMT causes the deletion of all existing alphanumeric fields (in the 
current page) before creating the new ones. 

DCL ASD_ARRAY(21) FIXED BIN(31) 
4, 12, 50, I, 14, 2, I, 
8, 23, I, 2, 8, 2, 2, 

19, 14, 60, 6, 10, 2, 1 ); 

INIT( 
/* Parameters for field 4 */ 
/* Parameters for field 8 */ 
/* Parameters for field 19 */ 

CALL ASDFMT(3,7,ASD_ARRAY); /* Delete all existing alphanumeric */ 
/* fields and create three new ones */ 

236 GDDM Application Programming Guide Volume 1 



advanced procedural alphanumerics 

Defining multiple field attributes using call ASRATT 

This is the third of three calls with an identical format. The purpose here is to 
redefine the attributes of one or more existing fields. 

DCL ATT_ARRAY(50) FIXED BIN(31) INIT( 
4,12,50,1,14,2,1,6,194,2, 
7, 12, 68, 1, 4, 0, 1, 4, 0, 2, 
8, 23, 1, 2, 8, 2, 2, 4, 0, 1, 

/* Attribs for field 4 */ 
/* Attribs for field 7 */ 
/* Attribs for field 8 */ 
/* Attribs for field 12 */ 
/* Attribs for field 19 */ 

12, 20, 1, 1, 17, 2, 1, 5, 194, 1, 
19, 14,60,6, 10,2,1,2,195,2); 

CALL ASRATT(5,10,ATT_ARRAY); /* Redefine the attributes of */ 
/* fields 4, 7, 8, 12, and 19 */ 

The first attribute for each field gives the field identifier. The next four attributes 
(row, column, depth, and width) are ignored, because changing these four attributes 
would cause a redefining of the field, which is not the purpose of this statement. 
The remaining attributes (representing type, intensity, and so on) may be set to the 
values permitted for ASRFMT. 

It is an error if an identifier is given for which no field exists. 

Setting default field attributes using call ASDFLT 

If you do not specify an attribute such as the color of an alphanumeric field, then a 
default attribute value will be taken. In the case of color, for example, the default 
will be green on a color display and black on a printer. 

You may wish to change the default value for some of the attributes. If most of 
your fields are to be blue, say, then setting a default color of blue would save you 
several calls to ASFCOL. This is a typical call: 

DCL DEFAULT_ATTRS(5) 
2, 
1, 
1, 
0, 
4 ); 

FIXED BIN(31) INIT( 
/* Type ~ protected */ 
/* Brightness ~ normal */ 
/* Color = blue */ 
/* Symbol set = default */ 
/* Highlight ~ underscore */ 

CALL ASDFLT(5,DEFAULT_ATTRS); /* Define new default values for */ 
/* the first five attributes */ 

All fields subsequently defined will be subject to the new defaults. Note that the 
new defaults apply only to the current page. 

The first parameter, 5, gives the number of elements in the attribute array. It must 
be a nUmber from 1 through 12. The twelve parameters that may be specified are 
the same as the last twelve (that is, from type onward) of those listed in "Defining 
mUltiple fields using call ASRFMT" on page 235. 

To set just the fifth parameter, you must also set the first four (they can be set to·1 
if the existing default is satisfactory). The remainder of the attributes (6·12, in this 
case), will resume their normal default. 

Chapter 16. Advanced procedural alphanumerics 237 



does not apply to graphics·only devices such as plotters 

Querying modified fields using call ASQMOD 

Your application program may offer the terminal operator several alphanumeric 
fields for input and may then need to know which fields the operator has modified. 
The ASQMOD call returns details of all fields modified since the previous 
ASQMOD call. This is the format of the call: 

DCL FIELD_IDS (6) FIXED BIN(31); /* Array to hold field ids */ 
DCL LENGTHS (6) FIXED BIN(31); /* Array to hold field lengths */ 
DCL I_LENGTHS (6) FIXED BIN(31); /* Array to hold input lengths */ 

CALL ASQMOD(6,FIELD_IDS,LENGTHS,I_LENGTHS); /* Query the first */ 
/* six modified fields */ 

This will return information on up to six modified fields. If, say, only four fields 
have been modified, then the first four elements of each of the three arrays will be 
set on return. The identifiers of the fifth and sixth fields would be set to zero. 

The parameters of the call are: 

6 The maximum number of fields to be queried. Obviously this 
number must not exceed the dimension of any of the three receiving 
arrays. 

If more than six fields have been modified, information on only the 
first six will be returned. These six fields will then be set to 
unmodified status. A subsequent ASQMOD call would be issued to 
retrieve information on the remaining modified fields. 

FIELD_IDS A fullword array to receive the identifiers of the fields that have 
been modified. 

LENGTHS A fullword array to receive the total defined length of the fields in 
question. 

I_LENGTHS A fullword array to receive the input lengths. For example, a field 
may be of length 5 but the operator may type only ABC into it. The 
input length for that field would then be 3. 

For the 5550 family, the input length of the string includes SOISI 
codes inserted by GDDM. 

You can discover how many modified fields there are on the current page by 
executing an ASQNMF call: 

DCL COUNT FIXED BIN(31); 
CALL ASQNMF(COUNT); 

The number will be returned in COUNT. 

238 GDDM Application Programming Guide Volume 1 



advanced procedural alphanumerics 

Alphanumeric field status 

The status of an alphanumeric field is set to modified whenever the operator of the 
display screen types data into the field or selects it with the light-pen. The field 
may also be set to modified status by issuing an ASFMOD call, for example: 

CALL ASFMOD(23,1); /* Mark field 23 as modified */ 

The first parameter is the field identifier. The second is set to 1 to set the status to 
modified. 

Fields return to unmodified status in one of two ways. An ASQMOD call can 
return information on them, leaving them marked as unmodified, or an ASFMOD 
call can be issued with the second parameter set to O. 

ASQMOD and ASQNMF do not return information just on the fields that were 
modified as a result of the most recent ASREAD. They return all fields (in the 
current page) that are marked as modified, whether they came in on the most 
recent ASREAD or some previous one. 

This is a typical sequence: 

CALL ASREAD(TYPE,MOD,COUNT); /* Issue read to the device */ 

/*The operator types into, say, 6 fields*/ 

CALL ASQMOD(4,F_IDS,LENGS,ILENGS); /* Query first four */ 
/* modified fields */ 

/*The 4 queried fields will now be marked unmodified, */ 
/*leaving just 2 fields marked as modified. */ 

CALL ASREAD(TYPE,MOD,COUNT); /* Issue second read */ 

/*The operator now types into N fields - one of which was */ 
/*already marked as modified. There are now N+l modified fields*/ 

CALL ASFMOD(13,O); /* Program requests field 13 */ 
/ * be m.arked unmodif ied * / 

/* Field 13 was one of the fields into which the operator */ 
/* typed. It is now marked unmodified, leaving N modified */ 
/* fields. */ 

CALL ASQMOD(4,F_IDS,LENGS,ILENGS); /* Query first four */ 
/* modified fields */ 

/* The 4 queried fields will now be marked unmodified, */ 
/* leaving N-4 fields marked as modified. */ 

CALL ASQNMF(NUM); 

/* The variable NUM is set to the number of modified */ 
/* fields that remain, namely N-4 */ 

Chapter 16. Advanced procedural alphanumerics 239 



does not apply to graphics-only devices such as plotters 

DO 1=1 TO (NUM+3)/4i 

CALL ASQMOD(4,F_IDS,LENGS,ILENGS)i /* Query next four */ 
/* modified fields */ 

/* Details of the rest of the modified fields are 
/* returned, 4 at a time 

*/ 
*/ 

END; 

One of the uses of ASQMOD is in applications that use a menu. Some fields in a 
menu are protected, acting as prompts to the operator. Others are unprotected, and 
the operator may type into them_ The program must determine which fields have 
been entered before it can process them appropriately. 

Alphanumeric menu sample program 

Here is a program that manipulates alphanumeric fields with the help of an 
ASQMOD call. 

Sample output from the program is shown in Figure 72 on page 243. 

MENU: PROC OPTIONS(MAIN)i 
DCL (TYPE,MOD,COUNT) FIXED BIN(31)i 
DCL (FIELD_IDS(3),LENG(3) ,I_LENG(3» 

/* Parameters for AS READ */ 
FIXED BIN(31)i 

DCL 
/* ASQMOD params 

COSTS(3,3) FIXED BIN(IS) INIT(180,230,220,980,10S0,7S0,17S, 
240,17S); 

*/ 

DCL 
DCL 
DCL 
DCL 

/* Costs per dish (in cents) */ 
BILLPIC PIC'$99.99'i /* PL/I picture variable for editing */ 
CHARI CHAR{I); /* Temporary variable */ 
(BILL,WINE) FIXED BIN(lS)i /* Temporary variable */ 
BOTTLE (4) CHAR(30) INIT{'CHATEAU TALBOT 1977 AT $11.80', 

CALL FSINIT; 

CALL GSFLD{I,1,31,80); 
CALL GSSEG{O)i 
CALL GSCOL(6)i 
CALL GSMOVE(O.O,O.O); 
CALL GSLINE(0.0,100.0); 
CALL GSLINE(100.0,100.0); 
CALL GSLINE(lOO.O,O.O); 
CALL GSLINE(O.O,O.O); 
CALL GSLSS(2,'GEP',194)i 
CALL GSCS(194); 
CALL GSCM(3); 
CALL GSCB(3.S,8.0)i 

240 GDDM Application Programming Guide Volume 1 

'MEURSAULT 1980 AC AT $IS.7S', 
'COTE DE BEAUNE 1979 AT $12.20', 
'BOLLINGER CHAMPAGNE AT $23.60' )i 

/***************************/ 
/* Initialize GDDM */ 
/* */ 
/* Define graphics field */ 
/* Open segment */ 
/* Set color to yellow */ 
/* Move to bottom left */ 
/***************************/ 
/* Draw yellow frame */ 
/* around the screen */ 
/***************************/ 
/* Load Gothic vector set */ 
/* Set symbol set attribute*/ 
/* Set char mode to vector */ 
/* Set character box (size)*/ 



advanced procedural alphanumerics 

CALL GSCOL(5); 
CALL GSCHAR(15.0,90.0,21,'RESTAURANT 
CALL ASDFLD(1,6,15,1,14,2); 
CALL ASCPUT(1,14,'FIRST COURSE:'); 
CALL ASDFLD(2,12,15,1,14,2); 
CALL ASCPUT(2,14,'SECOND COURSE:'); 
CALL ASDFLD(3,18,15,1,14,2); 
CALL ASCPUT(3,14,'THIRD COURSE:'); 
CALL PSLSS(O,'ADMITALC' ,193); 

DO 1=1 TO 3; 
CALL ASFCOL(I,2); 
CALL ASFPSS(I,193); 
END; 

CALL ASDFLD(11,6,30,1,1,0); 
CALL ASDFLD(12,12,30,1,1,0); 
CALL ASDFLD(13,18,30,1,1,0); 
DCL ASR_ATTS(81) FIXED BIN(31) INIT( 

101, 6,35,1,25,2,1,0,193, 
102, 7,35,1,25,2,1,0,193, 
103, 8,35,1,25,2,1,0,193, 
104,12,35,1,25,2,1,0,193, 
105,13,35,1,25,2,1,0,193, 
106,14,35,1,25,2,1,0,193, 
107,18,35,1,25,2,1,0,193, 
108,19,35,1,25,2,1,0,193, 
109,20,35,1,25,2,1,0,193); 

/* Set color to turquoise */ 
LA CORNICE');/*Main heading*/ 
/* Protected alpha field */ 
/* Assign prompt data */ 
/* Protected alpha field */ 
/* Assign prompt data */ 
/* Protected alpha field */ 
/* Assign prompt data */ 
/* Load Italic symbol set */ 
/* into hardware PS-store */ 
/***************************/ 
/* First 3 fields are to be*/ 
/* red and in Italic style */ 
/***************************/ 

/***************************/ 
/* Define 3 input fields */ 
/***************************/ 

/***************************/ 
/* Attributes for multiple */ 
/* definition of 9 fields */ 
/***************************/ 

CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 

ASRFMT(9,9,ASR_ATTS); /*Define 9 protected fields*/ 
ASCPUT(101,25,'(1) PRAWN COCKTAIL $1.80'); /***************/ 
ASCPUT(102,25,'(2) FISH SOUP $2.30'); /* */ 
ASCPUT(103,25,'(3) GAME PATE $2.20'); /* Assign data */ 
ASCPUT(104,25,'(1) T-BONE STEAK $9.80'); /* */ 
ASCPUT(105,25,'(2) SOLE MEUNIERE $10.50'); /* */ 
ASCPUT(106,25,'(3) JUGGED HARE $7.50'); /* */ 
ASCPUT(107,25,'(1) FRESH PINEAPPLE $1.75'); /* */ 
ASCPUT(108,25,'(2) PROFITEROLES $2.40'); /* */ 
ASCPUT(109,25,'(3) DESSERT TROLLEY $1.75'); /***************/ 
ASDFLD(50,24,14,1,42,2); 
ASFPSS(50,193); /* Italic symbol set */ 
ASCPUT(50,42,'THE BILL FOR YOUR SELECTED MENU WOULD BE:-'); 
ASDFLD(51,24,58,1,6,2); 
ASFCOL(51,6); 
ASFPSS(51,193); 
ASDFLD(52,30,17,1,42,2); 

/* Bill total in yellow 
/* Italic symbol set 

ASCPUT(52,42,'SELECT ANOTHER MENU OR PRESS PFKEY TO EXIT'); 
ASDFLD(53,26,10,1,60,2); 

*/ 
*/ 

ASFCOL(53,5); /* Wine recommendation in turquoise */ 
ASFPSS(53,193); /* Italic symbol set */ 

/*******************************************/ 
/* TOP OF LOOP TO PROCESS MENU REQUESTS */ 
/*******************************************/ 

OUTPUT: ; 
CALL ASFCUR(11,1,1); /* Position cursor in first-course field */ 
DO 1=11 TO 13; 
CALL ASCPUT ( I , 1,' '); /* Reset menu selections to blank */ 
END; 
CALL ASREAD(TYPE,MOD,COUNT); /* 
IF TYPE~=O THEN GOTO ENDIT; /* 
IF COUNT=O THEN GOTO OUTPUT; 

Output to screen & await reply */ 
End run if interrupt not enter */ 

/* No fields entered */ 
/*****************************/ 
/* Reset all dishes to green */ 
/*****************************/ 

DO 1=101 TO 109; 
CALL ASFCOL(I,4); 
END; 

Chapter 16. Advanced procedural alphanumerics 241 



does not apply to graphics.only devices such as plotters 

BILL=O; /* Initialize amount of bill to 0 */ 
main dish is chosen */ WINE=4; /* Select champagne unless a 

/*************************/ 
/* QUERY MODIFIED FIELDS */ 
/*************************/ 
CALL ASQMOD(3,FIELD_IDS,LENG,I_LENG); /* 
DO I=1 TO 3; 

IF FIELD_IDS(I)=Q 

Query modified fields */ 
/* Process the order */ 
/* a course at a time */ 
/* < 3 dishes ordered */ 

THEN GOTO ORDER COMPLETE; 
CALL ASCGET(FIELD:IDS(I),I,CHARl); /* Retrieve dish selection */ 
IF (CHARl='I')I (CHARI='2') I (CHARI='3') /* Valid entry */ 

THEN DO; 
BILL=BILL+COSTS(FIELD_IDS(I)-IO,CHARI); /* Add dish cost to bill*/ 
CALL ASFCOL(100+CHARI+3*(FIELD_IDS(I)-II),6); 

IF FIELD_IDS(I)=12 
THEN WINE=CHARI; 

END; /* VALID ENTRY */ 
END; /* I-LOOP */ 

/*Chosen item to yellow */ 

/* Wine to match main course */ 

ORDER COMPLETE:; 
CALL ASCPUT(S3,60,'MAY WE RECOMMEND A BOTTLE OF 'I I BOTTLE (WINE) I I'?') 
BILLPIC=BILL; /* Convert amount of bill to character form */ 
CALL ASCPUT(51,6,BILLPIC); /* Assign total bill to alpha field */ 
GOTO OUTPUT; /* Branch back to AS READ call */ 
ENDIT: CALL FSTERM /* Terminate GDDM */ 
%INCLUDE ADMUPINA; /* Include declarations */ 
%INCLUDE ADMUPINF; /* of GDDM entry points */ 
%INCLUDE ADMUPING; 
%INCLUDE ADMUPINP; 
END MENU; 

Note the following points about the program: 

• Discovering how many fields were modified. The logic of the program 
allows for the operator having entered no fields at all or up to three fields. 
There are two techniques used to discover how many fields were entered. The 
simplest one is to inspect the COUNT variable returned by the call to 
ASREAD. Immediately after the ASREAD call, the program tests to see if 
COUNT is zero. If so, it reissues the ASREAD. 

If there are fewer modified fields than the number requested on the ASQMOD 
call, the remaining entries in the passed arrays will be set to zero by GDDM. 
The program loop that processes the meal order makes use of this fact. If it 
finds that a returned field identifier is zero, it knows that the meal order has 
been completed. 

• Choosing field identifiers to advantage. The identifiers of related 
alphanumeric fields are often chosen to be sequential so the fields may be 
processed in a loop. 

242 GDDM Application Programming Guide Volume 1 



advanced procedural alphanumerics 

Figure 72. Output from "Restaurant Menu" sample program 

How to use light-pen fields 

Light-pen fields are alphanumeric fields that may be selected by the operator with 
the selector pen feature. In this case, "select" means "mark as modified." 

Descriptive data may be assigned to light-pen fields (using ASCPUT), but the fields 
are always protected on the screen so that no data may be entered. The first data 
position of each row of a light-pen field contains a designator character. This is a 
visible indication of whether a field has been selected. 

There are four different types of light-pen field: 

• Light-pen select fields have initially a ? in the first data position of every 
row. The? designator characters are inserted by GDDM and replace the first 
data byte. So, if you want a prompt of, say, TOTAL PROFITS, you must issue: 

CALL ASCPUT(8,14,' TOTAL PROFITS ' ); 

The field will then appear on the screen as ?TOTAL PROFITS. When the 
operator selects such a field with the light-pen, the? changes into a > but no 
interrupt is caused. 

Several such fields may be selected (and data may be typed into non-light-pen 
fields) before the operator causes an interrupt, for instance, by pressing 
ENTER. All modified and selected fields will now be returned to GDDM. See 
"Querying modified fields using call ASQMOD" on page 238 for information on 
how to process the returned fields. 

As selection of this type of field does not cause an interrupt (thereby 
completing a screen read), they are known as deferred light-pen fields . 

Chapter 16. Advanced procedural alphanumerics 243 



does not apply to graphics-only devices such as plotters 

• Light-pen enter fields have initially an & in the first data position of every 
row (again set by GDDM). When one such field is selected, an interrupt is 
caused immediately. The ASREAD that is satisfied by this interrupt will return 
with its first parameter (the type of interrupt) set to o. In other words, the 
same type of interrupt as when the ENTER key is pressed. Such fields are 
known as pen-enterable fields. 

• Light-pen attention fields have initially a blank character in the first data 
position of each row (set by GDDM). They are similar to pen-enterable fields 
except that a different type of interrupt is caused when they are selected (type 2 
= light-pen attention). 

Warning: Selection of a light-pen attention field destroys the 
data of all unprotected fields on the screen. 

Light-pen attention fields should therefore not be mixed with alphanumeric 
data-entry fields. 

• General light-pen fields may be set to anyone of the previous three types by 
setting the designator character appropriately (for each row of the field). In 
other words, the program sets the designator character as part of the fieldis 
data (using ASCPUT), rather than defining the type of light-pen field explicitly 
and letting GDDM insert the designator characters. For example: 

CALL ASCPUT(1,14,'?TOTAL PROFITS'). 

Alphanumeric fields may be specified as being any of the above four types by 
setting the last parameter of the ASDFLD call: 

/* FIELD_ID, ROW, COLUMN, DEPTH, WIDTH, TYPE */ 
CALL ASDFLD(l, 3, 4, 1, 7, 3)i/*Define lightpen*/ 

/*attention field*/ 

The type parameter may be set as follows: 

3 Light-pen attention field 
4 Light-pen selection field 
5 Light-pen enter field 
6 General light-pen field. 

The same parameter settings may be used to change the type of a field, using the 
ASFTYP call. (See "Field attributes" on page 79.) 

There are a few points to note on light-pen fields in general: 

• Where a field has more than one row, the whole field becomes selected 
whichever row is addressed by the light-pen. 

• The hardware imposes several restrictions on the positioning of light-pen fields: 

All light-pen fields must be at least 3 characters long. 

No light-pen field may begin in column 1. 

If there is another field to the left of the light-pen field, there must be a 
separation of at least four columns. 

244 GDDM Application Programming Guide Volume 1 



advanced procedural alphanumerics 

Following a screen read, the processing of light-pen fields is similar to that shown 
in "Alphanumeric menu sample program" on page 240. Selected fields will be 
marked as modified and may be determined by a call to ASQMOD. 

Double-byte character set alphanumerics 

The IBM 5550 multistation is a special member of the 3270 family that will display 
and print, in alphanumeric fields, the double-byte character set (DBCS) characters 
used in some Asian countries. Each nBCS character is represented in the data 
stream by a two-byte code, instead of the single-byte EBCDIC code used for Latin 
characters. Both input and output of DBCS characters is supported by GDDM. 

GDDM supports input and output of the double-byte character codes on other 
terminals, but these cannot display alphanumeric DBCS characters. However, 
DBCS text can be displayed on terminals that support graphics, as explained in 
"Double-byte character set graphics text" on page 230. 

IBM 5550 multistation 

To display a DBCS string in an alphanumeric field, you can specify the hardware 
double-byte character set in an ASFPSS call. It has the special identifier 248 
(X'F8'). Then you must supply the hexadecimal codes for the required DBCS 
characters as data in an ASCPUT call. The length you specify must be the actual 
length in bytes of the data - twice the number of DBCS characters. The field size, 
as defined in an ASDFLD call, must be big enough to accommodate this number of 
bytes. Here is an example: 

/****************************************************************/ 
/* FIRST SET UP HEX CODES IN AN ARRAY */ 
/****************************************************************/ 
DCL KC(65:254) CHAR(l): /* Array to hold hexadecimal numbers */ 
DCL INDEX FIXED BIN(15); /* Local variable */ 
DCL BIT16 BIT(16); /* Local variable */ 

DO INDEX=65 TO 254:/* Initialize 
BIT16=UNSPEC(INDEX): 

array with hex'41' through 'FE'*/ 

UNSPEC(KC(INDEX»=SUBSTR(BIT16,9,8); 
END; 

/* Convert to bit */ 
/* Extract last 8 bits */ 

/****************************************************************/ 
/* NOW CREATE FIELD CONTAINING KANJI DATA */ 
/****************************************************************/ 

/* FIELD-ID ROW COLUMN DEPTH WIDTH TYPE */ 
CALL ASDFLD(77, 7, 7, 1, 10, 0); /*lO-byte field*/ 

CALL ASFPSS(77,248); /* Specify Kanji character set */ 

DECLARE KANJI_DATA5 CHARACTER(10) ; /* String for 5 Kanji chars */ 
KANJI_DATAS=KC(6S) II KC(192) II /* Assign */ 

KC ( _ .. ) II KC ( ... ) II /* five */ 
KC ( ... ) II KC ( ___ ) II /* two-byte */ 
KC ( ... ) II KC( ... ) II /* Kanji */ 
KC ( ... ) II KC ( ... ) ; /* characters */ 

CALL ASCPUT{77,10,KANJI_DATA5); /* Put characters into field*/ 

Input data returned by an ASCGET call will contain the double-byte 
representations of the DBCS characters entered by the operator. 

If you want to mix SBCS and DBCS strings in a single field, you must use another 
method, where you define a mixed field in your program. 

Chapter 16. Advanced procedural alphanumerics 245 



applies to 5550 devices only 

For input, the initial mode of the 5550 is SBCS mode, and the terminal operator can 
enter SBCS characters. To enter DBCS characters, the terminal operator fIrst 
presses the DBCS key (Alt + SBCS) to force the input mode of the fIeld to DBCS. 
DBCS characters can then be entered. After entering the DBCS string, pressing 
the SBCS key returns the terminal operator to SBCS mode, so further single-byte 
characters can be entered. The terminal operator can check the current input 
mode by looking at the width of the cursor (in DBCS mode, the cursor appears 
twice as long as in SBCS mode), or looking at the shift status fIeld in the operator 
information area at the bottom of the screen. 

If you want the application to accept mixed SBCS and DBCS input, you should use 
the ASFSEN call to specify a mixed field. Here is an example: 

CALL ASFSEN(16,1)i /* Specify mixed strings for field 16 */ 

The fIrst parameter is the field identifier. 

The second parameter is used to specify whether the fIeld can contain a mixed 
string. It can have the following values: 

-1 Leave the mixed status of the field as it is 

a Nonmixed (the default) 

1 Mixed with position. 

For input, when the terminal operator changes input mode between SBCS 
and DBCS, enters one or more DBCS characters, and changes back to SBCS, 
shift-out (SO) and shift-in (SI) control characters are inserted by the terminal 
at the boundaries between SBCS and DBCS characters, or between the field 
boundary and DBCS characters. (If no DBCS characters are entered, no 
SO/SI codes are inserted.) The data between these two special characters is 
interpreted by the terminal as double-byte. Other characters are interpreted 
as single-byte. 

For output, you specify SO/SI codes in the definition of the fIeld contents in 
your program. 

For input and output, the SO/SI codes occupy a character position each, that 
is displayed as a blank. 

2 Mixed without position. 

For input, the terminal user changes the input mode between SBCS and 
DBCS, as for mixed-with-position fields. However, no blanks appear between 
the SBCS and DBCS characters. Instead, GDDM interprets the changes in 
the symbol set character attribute, and inserts delimiting SO/SI codes around 
the DBCS portions of a string. 

For output, you specify SO/SI codes in the definition of the field in your 
program. GDDM interprets the SO/SI control codes, and generates the 
necessary DBCS character attributes when the mixed field is sent to the 
device. So again, no blanks appear between the single-byte and double-byte 
characters. 

If the field is defined as mixed, you cannot use an ASFPSS call to set the field to 
DBCS, but you must still supply the hexadecimal codes for the required DBCS 
characters, as shown in the previous example. 

246 GDDM Application Programming Guide Volume 1 



advanced procedural alphanumerics 

The SO code is X'OE' and the SI is X'OF'. In the definitions of the fields in your 
program, you must allow one byte for each of these and two bytes for each DBCS 
character. Within any field, only SO/SI pairs are allowed, in that order. 

Here is an example of output using mixed without position. You can easily change 
it to mixed with position by changing the second parameter of ASFSEN to a 1. 

/****************************************************************/ 
/* SET UP SO/SI CHARACTERS */ 
/****************************************************************/ 
DCL (SO,SI) CHAR(1); /* Shift-out & shift-in */ 
UNSPEC(SO)='00001110'B; /* Set shift-out codepoint */ 
UNSPEC(SI)='00001111'B; /* Set shift-in codepoint */ 

/****************************************************************/ 
/* CREATE FIELD FOR MIXED KANJI AND LATIN DATA */ 
/****************************************************************/ 

/* FIELD-ID ROW COLUMN DEPTH WIDTH TYPE */ 
CALL ASDFLD(81, 8, 1, 1, 24, 0) ;/* 24-byte field*/ 
CALL ASFSEN(81,2); /* String attribute of mixed without position*/ 

DECLARE MIXED_DATA28 CHARACTER(28); /* String for mixed chars */ 
/* bytes*/ 

MIXED_DATA28= 'LATIN , I I /* 5 Latin characters 5 */ 
SO II /* Shift-out 1 */ 
KC(65) II KC(192) II /* 3 Kanji characters 6 */ 
KC{ ... ) II KC ( ... ) II 
KC ( ... ) II KC ( ... ) II 
SI II /* Shift-in 1 */ 
'LATIN AGAIN' II /* 11 Latin characters 11 */ 
SO II /* Shift-out 1 */ 
KC ( ... ) II KC ( ... ) II /* 1 Kanji character 2 */ 
SI; /* Shift-in 1 */ 

1* total bytes 28 */ 

CALL ASCPUT(81,28,MIXED_DATA28); 

If you use the mixed-string attribute of "mixed without position," then: 

• For output, the non-null length of the string as displayed on the device may be 
less than the length of the field as defined in your program. The difference is 
equal to the number of SO/SI codes that you have in the field declaration. The 
end of the string on the display is padded with nulls. 

For calls ASCCOL, ASCHLT, ASCSS, the character attributes corresponding to 
SO/SI control codes have no effect. 

• For input, if you use the mixed-string attribute of "mixed without position," the 
non-null length of the string as displayed on the device may be less than the 
length of the field as returned to your program. The difference is equal to the 
number of SO and SI codes that GDDM inserts around the DBCS portions of 
the string. When retrieving data from an input field using calls ASCGET, 
ASQCOL, ASQHLT, or ASQSS, you must therefore allow for the generated 
SO/SI codes. 

For the last reason, it is good practice to issue an ASQLEN call before issuing an 
ASCGET call, so that your program will know how much storage is needed to hold 
the returned data. Here is a typical call: 

CALL ASQLEN{81,FIELD_LENGTH,INPUT_LENGTH,SCREEN_LENGTH); 

The parameters are as follows: 

Chapter 16. Advanced procedural alphanumerics 247 



applies to 5560 devices only 

Other terminals 

The flrst parameter is the fleld identifler. 

In the next three parameters, GDDM returns the following values: 

• The length in bytes of the input fleld as specifled in ASDFLD. 

• The length of the string (excluding trailing nulls) as held by GDDM, that is, 
including SO/SI codes inserted by GDDM 

• The length of the string (excluding trailing nulls) as it appears to the terminal 
user, that is excluding SO/SI codes inserted by GDDM 

If you use the mixed-string attribute of "mixed with position" then on input, 
ASCGET returns data of a similar structure to the output. It contains SO 
characters wherever the operator shifted out of single-byte mode and SI characters 
where there was a shift back in. There are DBCS codes between these shifts, and 
ordinary single-byte codes elsewhere. 

Cursor position with mixed-without-position fields: For mixed flelds that are 
mixed-without-position, you may want to position the cursor in terms of the byte 
position in the fleld contents in your program, as opposed to the column position in 
the fleld on the screen. Here is an example of ASFCUR that places the cursor at 
byte 14, the start of the SBCS string "LATIN AGAIN" in the example code on 
page 247: 

CALL ASFCUR(81,-1,14); /* SET CURSOR AT BYTE 14 IN FIELD 81/* 

On the screen, the cursor would appear under column 12 of the mixed fleld, because 
the two bytes containing the SO/SI codes do not appear. 

A value of -1 in the second parameter of ASFCUR specifies that the value in the 
third parameter refers to the byte position of the fleld contents in your program. 
Any other value in the second parameter specifles that the value in the third 
parameter is the column position of the field on the screen. 

Similarly, you can use ASQCUR to query the position of the cursor in terms of the 
byte position in the field in your program: 

CALL ASQCUR(2,81,ROW,COLUMN); /* QUERY POSITION OF CURSOR */ 

Specifying a value of 2 in the flrst parameter will return a value of -1 in ROW. The 
second parameter is the field identifier. The value returned in COLUMN will be 
the byte position of the cursor in terms of the contents of field 81 as described in 
your program. 

Even on devices that will not display DBCS characters in alphanumeric fields, the 
application program can send and receive DBCS codes. The fields must be defined 
as mixed using the ASFSEN call - this applies for both input and output. And the 
MIXSOSI GDDM default parameter must be specified (see "GDDM default required 
for Kanji" on page 232). The pJ;ogramming is then the same as for the 5550. 

On output, the program must precede a string of DBCS double-byte codes with an 
SO character and follow it with an S1. The terminal will display the double-byte 
codes in hexadecimal. 

248 GDDM Application Programming Guide Volume 1 



advanced procedural alphanumerics 

On input, the operator can shift into and out of double-byte mode by entering a 
special emulation character - by default, the double quote character ("). While in 
double-byte mode, the operator must enter a string of double-byte hexadecimal 
codes. GDDM returns these codes preceded by an SO code and followed by an SI in 
place of the emulation character. You can change the emulation character with 
the SOSIEMC GDDM default parameter (see the GDDM Base Programming 
Reference manual). 

For output, you can use DBCS graphics text (see "Double-byte character set 
graphics text" on page 230) as an alternative to the alphanumeric output functions 
described here. The text is displayed in DBCS characters, rather than hexadecimal 
codes. The operator could specify DBCS text using hexadecimal alphanumeric 
input, and the application could then display it in DBCS characters using graphics 
text. 

Field outlining on the IBM 5550 multistation 

The 5550 will draw a partial or complete outline around a field. You specify 
outlining with the ASFBDY call: 

CALL ASFBDY(33/15)~/*Type 15 outline (complete box) for field 33*/ 

You specify the type of outlining in the second parameter. Possible values are: 

-1 Leave outline attribute for this field unchanged 

o None (the default) 

1 Underline 

2 Vertical line on right 

3 Underline and vertical line on right 

4 Overline 

5 Overline and underline 

6 Overline and vertical line on right 

7 Over line, underline, and vertical line on right 

8 Vertical line on left 

9 Underline and vertical line on left 

10 Vertical lines on left and right 

11 Underline and vertical lines on left and right 

12 Overline and vertical line on left 

13 Overline, underline, and vertical line on left 

14 Overline and vertical lines on left and right 

15 Complete box 

Chapter 16. Advanced procedural alphanumerics 249 



The purpose of partial field outlining is to allow you to build up outlines around 
rectangular blocks of fields. 

250 GDDM Application Programming Guide Volume 1 



Chapter 17. Mapped alphanumerics 

If you create a display that includes alphanumeric data, you must format it. In 
other words, you must define the positions and attributes of all the alphanumeric 
fields on the screen or printer page. Mapping is an alternative technique for doing 
this. Essentially, it means you define the format of a display before its execution, 
instead of doing it dynamically in your application program. 

The predefined format is called a map. It is most convenient to create maps 
interactively. GDDM provides a product for this, called Interactive Map Definition 
(GDDM-IMD). Using GDDM-IMD, you can indicate on a screen where all the 
alphanumeric fields in a display are to start and end, and you can enter codes to 
define their attributes, such as their color and whether they are protected. 

Information about how to use GDDM-IMD is provided in two places: within 
GDDM-IMD itself and in the GDDM Interactive Map Definition. Initially you 
should refer to the User's Guide. 

In addition to the position of a field and its attributes, you can define its content to 
GDDM-IMD and arrange that neither the application program nor the terminal 
operator can alter it. Such fields are called constant data fields. Fields that can 
be altered are called variable data fields. 

GDDM-IMD generates a coded form of the maps you create, to be used by GDDM 
when your program sends data to, and receives it from, the terminal. On output, 
GDDM builds the display you require by merging variable data supplied by your 
program with the formatting information and constant data contained in the map. 
On input, GDDM separates the variable data from the rest of the input, and passes 
it to your program; the variable data will contain any input typed in by the 
operator. 

A simple mapping program is shown in Figure 73 on page 253 and its associated 
display in Figure 75 on page 254. 

The means by which the variable data is passed to and from the application by 
GDDM is a program variable called an application data structure (ADS). There 
is an example at /* A * / in Figure 73. You specify to GDDM-IMD which fields are 
to appear in the ADS, and thus define them to be variable data fields. The ADS is 
the only means by which the program can alter fields, so those not represented in it 
are constant data fields. 

The ADS in the example contains only data, and no details of its presentation to 
the end user. It demonstrates the major advantage of GDDM mapping - that you 
concentrate on data processing when you write your program, and leave the 
presentation entirely to GDDM. 

The facilities described in "Chapter 8. Basic alphanumerics" and "Chapter 16. 
Advanced procedural alphanumerics" are sometimes known as procedural 

Chapter 17. Mapped alphanumerics 251 



does not apply to graphics·only devices such as plotters 

alphanumerics, to distinguish them from the mapping facilities. As for procedural 
alphanumerics, GDDM mapping uses hardware cells and fields. Mapping is 
therefore restricted to display units and printers of the IBM 3270 family, and to 
system printers. In a dual·screen configuration of the IBM 3270.PC/GX work 
station, mapped data appears on the alphanumerics screen. On the 5080 graphics 
system, it appears on the 3270 screen. 

Full GDDM mapping support is limited to programs written in PL/I, COBOL, and 
System/370 Assembler, because only these languages allow application data 
structures to be used. FORTRAN programmers, however, can use maps. They can 
transmit the constant data, and are not precluded from supplying variable data by 
means other than GDDM·IMD created structures. 

GDDM·IMD provides default values for many of the items that it asks you to 
specify. The maps used in the examples in this guide were created using the 
GDDM·IMD defaults, except where stated otherwise. 

Comparison with procedural alphanumerics 

Both procedural alphanumerics and mapping provide an alphanumeric input/output 
service. When should you use each one? 

Procedural alphanumerics are likely to be best for simple data displayed in a small 
number of fields. In such cases, the overhead of a separate map definition 
operation may not be justified. And you may find procedural alphanumerics best if 
you need to alter the layout of the display during execution. Otherwise, you will 
probably find it well worthwhile creating a map for the following reasons: 

• It is much easier to define a display format with GDDM·IMD than with 
procedural alphanumeric calls. The calls require field locations to be defined in 
terms of rows and columns, whereas GDDM·IMD allows you to physically 
indicate locations on a screen. 

• Mapping uses the system's resources more efficiently. Some of the processing 
required to create output data streams and interpret input data streams can be 
done when the map is generated. It is therefore done only once, instead of 
every time the program is executed. 

• Your application will be easier to change. If you need to alter the display 
format, say to take advantage of a new device, you can in many cases use 
GDDM-IMD to just alter the map. You would not need to alter or even 
recompile (or reassemble) your program. 

A simple mapping application 

The application, called MAPEXOl, is for order entry. Initially it displays the fields 
shown in Figure 75 on page 254. 

The terminal operator is required to enter a customer number and an invoice 
number. The program checks that they are numeric. If so, the program does some 
further processing (not shown here, but it could be, for instance, to display another 
map for the operator to enter some more information.) If they are not both 
numeric, the program puts a message on the screen so that the operator can correct 
the error. The position of the message (the line below the heading) was defined 
when the map was created. 

252 GDDM Application Programming Guide Volume 1 



mapped alphanumerics 

Creating the map 

GDDM-IMD provides a quick-path tutorial to introduce you to its facilities. The 
tutorial tells you how to create a simple map, called ORDER!. The MAPEXOI 
program uses this map. Its field definitions are shown in Figure 74 on page 254. 

The GDDM Interactive Map Definition tells you how to invoke GDDM-IMD, and 
how to use the quick-path tutorial. You can work through the tutorial either 
before or after reading the following description of the MAPEXOI program. 

An overview tying together map creation and program development is given in 
"Steps in creating a mapping application" on page 260. 

Description of the program 

The source code of the program is shown in Figure 73. It illustrates several basic 
concepts of GDDM mapping. 

MAPEX01: PROC OPTIONS (MAIN); 

DECLARE 1 CUSTINV, 1* Application Data Structure *1 I*A*I 

10 MESSAGE 
10 CUSTNO 
10 INVNO 
ORDER1_ASLENGTH 

CHAR(78) , 
CHAR(S) , 
CHAR(4), 
FIXED BIN(31,0) 
INIT(87); 

STATIC 

I*A*I 
I*A*I 
I*A*I 
I*A*I 

DECLARE (ATTYPE,ATVAL) FIXED 

CALL FSINIT; 

BINARY(31,0); 

CUSTINV 

LOOP: 

= ". , 

CALL MSREAD('ACMEOOD6', 
'ORDER1' , 
ORDER 1 ASLENGTH, 
CUSTINV, 
ATTYPE, 
ATVAL) ; 

1* Initialize GDDM. 

1* Clear the ADS 

1* Use MSREAD to display the 
1* map, and wait for input. 
1* Mapgroup 
1* Map 
1* Specify length of ADS 
1* Specify name of ADS 
1* Set to attention type 
1* ... and value by GDDM 

*1 
*1 I*B*I 

*1 
*1 
*1 I*C*I 
*1 
*1 
*1 
*1 
*1 

IF ATTYPE=l & (ATVAL=3 
THEN GO TO FIN; 

ATVAL=15) 1* Operator pressed end keY?*1 

IF VERIFY (CUSTNO, '0123456789') = 0 1* Are CUSTNO and *1 
& VERIFY(INVNO,'0123456789') :::: 0 1* INVNO numeric? *1 

THEN DO; 
1* *1 1* Process CUSTNO and INVNO *1 
1* *1 
1* . *1 

MESSAGE = , , . 1* Clear any existing message *1 , 
END; 
ELSE MESSAGE 'Invalid Number'; /* If CUSTNO or INVNO not *1 

GO TO LOOP; 
FIN: 

CALL FSTERM; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPINM; 
END MAPEXOl; 

Figure 73. Source code of MAPEXOI 

1* numeric, set up message_*1 

1* Redisplay the map and data *1 

1* Terminate GDDM. 
1* GDDM entry declarations 

*1 
*1 

Chapter 17. Mapped alphanumerics 253 

I*D*I 
I*D*I 

I*E*I 

I*F*I 
I*G*I 



does not apply to graphics·only devices such as plotters 

1 2 3 4 5 6 7 8 
----+----0----+----0----+----0----+----0----+----0----+----0----+----0--- -+----0 

I #ACME ORDER ENTRY I 
1- #1 
I I 
I CUSTOMER INVOI CE I 
+ NUMBER:- # NUMB ER: - # + 
I I 
I I 
I I 
I I 

10 ENTE R CUSTOMER NUMBER (#PF3#OR#PF15#TO RETURN ) 10 
----+----1----+----2----+---- 3--- - +----4----+----5---- +- ---6----+----7----+----8 

o 0 0 0 0 0 0 0 

Figure 74. Field definitions for map used by MAPEXOl 

Figure 75. Initial display of MAPEXOl 

Application data structure: When the map was created using GDDM-IMD, three 
variable data fields were defined: two unprotected, for the customer and invoice 
numbers; and one, protected, for the error message. 

The program accesses these fields using the application data structure, /*A* / . 
You will not have to code declarations of ADSs in your programs: they are 
generated by GDDM-IMD. This example, and all the others in this chapter and 
"Chapter 18. Variations on a map," show the ADS declarations in full to make the 
programs easier to follow. All you will need to do is declare a name for the 
structure, and then include the generated declaration for the fields. Instead of the 
lines marked / * A * / , you would code, in PL/I: 

DECLAHE 1 CUSTINV , / * Application Data Struct ure */ 

%INCLUDE OHDERl ; 

The name under which the generated declarations are stored is the same as the 
map name, in this case ORDERl. In PL/I, the source code generated by 
GDDM-IMD contains a variable whose value is the length of the ADS. In the 
example, it is called ORDERl_ASLENGTH. 

254 GDDM Application Programming Guide Volume 1 



mapped alphanumerics 

In this application, all the variable data fields must be blank when the map is 
displayed for the first time. The whole ADS is therefore initially cleared, at I*B * I. 

Output and input: The GDDM call that handles mapped 1/0 is MSREAD, shown at 
I*c* I. It sends the map to the terminal, and then waits for the operator to cause 
an interrupt, for instance by pressing ENTER. In other words, MSREAD both 
transmits output to the terminal and reads input from it. 

MSREAD has six parameters: 

• The first, ACMEOOD6, is the name of the mapgroup to which the map belongs. 
Every map belongs to a mapgroup. When you create a map with GDDM-IMD, 
you must specify the name of its mapgroup. 

• The second parameter is the name of the map, ORDER1 in the example. 

• The third parameter is the length of the ADS. Here, the GDDM-IMD generated 
variable, ORDER1_ASLENGTH, is specified. 

• The fourth parameter is the name declared for the ADS, CUSTINV in this 
example. 

• The fifth and sixth parameters have the same meanings as the first two 
parameters of ASREAD. They are set by GDDM to indicate the type of 
interrupt received from the terminal. Full details of the possible values are 
given in "Send output and await reply using call ASREAD" on page 13. 

The MSREAD merges the variable data from the ADS with the map created by 
GDDM-IMD, and sends the result to the terminal. In the example, the variable 
data is all-blank, so the initial display consists of only the constant data fields of 
the map. Figure 75 on page 254 shows this initial display. When a reply is 
received from the terminal, GDDM copies any data entered by the operator into the 
ADS. 

The program ends when the fifth and sixth parameters of MSREAD indicate that 
the operator has pressed PF3 or PF15. 

Checking input data: In statement I*D* I, the program checks the fields CUSTNO 
and INVNO to verify that they contain all-numeric data. If they do, the example 
does nothing, but a real production program would have statements at I*E* I to 
process them. 

At I*G* I, the example handles invalid input. It puts text into the error message 
field. The program does not alter the contents of the CUSTNO and INVNO fields, 
so the next execution of the MSREAD returns them to the operator exactly as 
entered. The only change the operator sees is the appearance of the error message. 
The operator can correct the error and resubmit the input to the application. 

The error message field is cleared at I*F* I, to ensure that no message is displayed 
when the next input is solicited. 

Chapter 17. Mapped alphanumerics 255 



does not apply to graphics·only devices such as plotters 

Compilation and execution 

After you have created an ADS using GDDM-IMD, you must store it in a library. 
More information is given in "Steps in creating a mapping application" on 
page 260 and in the GDDM Interactive Map Definition. To compile a mapping 
program like the one in Figure 73 on page 253, you must make the library 
available to the compiler. Under CMS, the following commands will make the ADS 
available (together with the GDDM entry point declarations in ADMLIB), and then 
compile the program: 

GLOBAL MACLIB ACMEADS ADMLIB 
PLIOPT MAPEXOl (INCLUDE 

ACMEADS is the name of the macro library in which the ADS for the map 
ORDERl is stored. 

The commands to execute the program are the same as described in "How to 
compile and run a GDDM Program under CMS" on page 11. 

Dialog with the terminal operator 

MSREAD is limited to simple output and input of single maps. For more 
complicated dialogs, such as ones that require more than one map in a display, the 
various functions of MSREAD must be done separately, using a different call for 
each function. For comparison, Figure 76 on page 257 shows how the program in 
Figure 73 on page 253 would be coded using these individual calls. 

The functions and calls are: 

1. Create a GDDM page to contain one or more maps. 

CALL MSPCRT(1,-1,-1,'ACMEOOD6'); 

The first parameter is the page identifier. 

The last parameter is the name of a map group. All maps used on this page must 
belong to this mapgroup. 

The second and third parameters are the page depth and width. A -1 means use 
the dimension specified to GDDM-IMD when the mapgroup was created. 

Procedural alphanumerics can be used on a page created with MSPCRT, 
provided the procedural fields do not overlap with any mapped field, as defined 
below. Maps cannot be used on any page created with FSPCRT. 

2. Format an area of the page by putting a map onto it. 

CALL MSDFLD(1,-1,-1,'ORDER1'); 

The first parameter is the identifier of the area being mapped, to be used in 
later references to it. 

The last parameter is the name of the map. 

The second and third parameters define the location of the map on the page. 
They specify the row and column position of its top left-hand corner. A-1 
means use the position specified to GDDM-IMD when the map was created. A 
value of 0 for either parameter means delete the map from the page. 

256 GDDM Application Programming Guide Volume 1 



mapped alphanumerics 

A mapped area of a page is similar in many respects to a procedural 
alphanumeric field, and is known as a mapped field. However, it is commonly 
called simply a map, except when this would cause confusion with the format 
definition created by GDDM-IMD. 

3. Copy data from the ADS into the variable data alphanumeric fields contained 
in the mapped field. 

CALL MSPUT(1,0,ORDER1_ASLENGTH,CUSTINV); 

The first parameter is the identifier, as specified by an MSDFLD call, of the 
mapped field into which the data is to be copied. 

The second parameter is an operation code that specifies which fields are to be 
updated with data from the ADS. A 0 means update all fields; this is called a 
write operation. A 1 or 2 means update certain fields only; the operations are 
called rewrite and reject. The meanings of rewrite and reject are further 
explained in "Write, rewrite, and reject" on page 276. In the example in 
Figure 76, the operation code has been put into a mnemonic variable at /* A * /. 

The third operand is the length of the ADS, and the last its name. 

4. Send the page to the terminal and wait for input from it. 

CALL ASREAD(ATTYPE,ATVAL,COUNT); 

This is the same call as is used to send procedural alphanumerics to the 
terminal. It is described in "Send output and await reply using call ASREAD" 
on page 13. The parameters have the same meanings, except that the last one 
gives the number of maps changed by the operator, not the number of 
alphanumeric fields. In the case of a page with only one map on it, this 
parameter will always have a value of 0 or 1. You can also send a mapped page 
to the terminal with an FSFRCE or a GSREAD call. 

5. Extract data from the mapped field and put it into the ADS. 

CALL MSGET(1,O,ORDER1_ASLENGTH,CUSTINV); 

The first parameter is the identifier, as specified by an MSDFLD call, of the 
mapped field from which the data is to be extracted. 

The second parameter is nearly always zero. Its meaning, and the other values, 
are explained in "Character attributes" on page 295. 

The third parameter is the length of the ADS, and the last its name. 

MAPEX02: PROC OPTIONS (MAIN); 
DECLARE 1 CUSTINV, 

10 MESSAGE 
10 CUSTNO 
10 INVNO 
ORDER1_ASLENGTH 

/* Application Data Structure */ 
CHAR ( 78) , 
CHAR(S), 
CHAR(4) , 
FIXED BIN(3l,0) STATIC 
INIT(87); 

DECLARE (ATTYPE,ATVAL,COUNT) FIXED BIN(31); 
DECLARE WRITE FIXED BIN(31) INIT(O); /* MSPUT write operation */ /*A*/ 

Figure 76 (Part 1 of 2). Source code of MAPEX02 

Chapter 17. Mapped alphanumerics 257 



does not apply to graphics-only devices such as plotters 

CALL FSINIT; 
CUSTINV = "; 
CALL MSPCRT(I, 

-1, 
-1, 
'ACMEOOD6'); 

CALL MSDFLD(I, 
-1, 
-1, 
'ORDERl') ; 

LOOP: 

CALL MSPUT(I, 
WRITE, 
ORDERl_ASLENGTH, 
CUSTINV) ; 

CALL ASREAD(ATTYPE, 
ATVAL, 
COUNT) ; 

/* 
/* 
/* 
/* 
/* 
/* 

/* 
/* 
/* 
/* 

/* 
/* 
/* 
/* 

/* 
/* 

Initialize GDDM. */ 
Clear the ADS */ 
Create page with id = 1. */ 
Use mapgroup-defined page */ 
Width and depth. */ 
Specify name of mapgroup. */ 

Format an area of the page.*/ 
Use the map-defined row */ 
and column positions. */ 
Specify name of map. */ 

Put ADS data into map. */ 
Use all ADS data (write=O).*/ 
Specify length of ADS. */ 
Specify name of ADS. */ 

Output the current page, & */ 
wait for operator input. */ 

IF ATTYPE=1 & (ATVAL=3 
THEN GO TO FIN; 

ATVAL=15)/* Operator pressed end key?*/ 

CALL MSGET(I,O, 
ORDER1_ASLENGTH, 
CUSTINV) ; 

IF VERIFY (CUSTNO, '0123456789') 
& VERIFY(INVNO,'0123456789') 

THEN DO; 
/* */ 
/* */ 
/* . */ 

MESSAGE = ' '; 
END; 

/* 
/* 
/* 

= 0 
= 0 

/* 

/* 

Get variable data from map. */ 
Specify length of ADS. */ 
Specify name of ADS. ~/ 

/* Are CUSTNO and */ 
/* INVNO numeric? */ 

Process CUSTNO and INVNO */ 

Clear any existing message */ 

/*B*/ 

/*C*/ 

/*0*/ 

/*F*/ 

ELSE MESSAGE 

GO TO LOOP; 

FIN: 

'INVALID NUMBER';/* If CUSTNO or INVNO not */ /*G*/ 
/* numeric, set up message.*/ 

CALL FSTERM; 
%INCLUDE ADMUPINA; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPINM; 
END MAPEX02; 

/* Redisplay the map and data */ 

/* Terminate GDDM. 
/* GDDM entry declarations 

*/ 
*/ 

Figure 76 (Part 2 of 2). Source code ofMAPEX02 

Typical mapping cycle 

The diagram in Figure 77 shows some of the major steps that a typical mapping 
program goes through. 

258 GDDM Application Programming Guide Volume 1 



mapped alphanumerics 

ADS99 

J SMITH • 
12345 • 

MSPUT 
Page 4 

MAPGRPD6 
created by 

Screen MSPCRT 

MAP99 NAME: I11III. NAME: 
MSDFLD J SMITH ... J SMITH 

NAME: _ ... 
bbbbbbbb SALARY: II1II. ASREAD 

SALARY: ... 
12345 12345 .- .. 

SALARY: 

~ 
.... XXXXXXXX bbbbbb XXXXXXXX 

MAP100 

ERROR IN 
bbbbbbbb 
FIELD Terminal 

operator 
MSDFLD updates 

salary 
MAP101 field 

XXXXXXXX 
I ~ , 

Page 4 Screen 

NAME: NAME: 
J SMITH Terminal J SMITH 

operator 
SALARY: hits SALARY: 
13333 ENTER 13333 

XXXXXXXX XXXXXXXX 

MSGET 

ADS99 

J SMITH 

13333 

Figure 77. Typical cycle of mapping operations 

First, the application executes an MSPCRT call to create a mapped page. The page 
is given the identifier 4, and is associated with a mapgroup called MAPGRPD6. 
The mapgroup has three maps in it, called MAP99, MAP100, and MAP101. 

An MSDFLD call puts the map called MAP99 onto the page. MAP99 contains two 
constant data fields, the values of which are NAME: and SALARY:, and two 
variable data fields. The program puts the variable data "J SMITH" and "12345" 
into this map's ADS, called ADS99, and then executes an MSPUT call to copy the 
data into the variable fields on the page. A second MSDFLD call puts a second 
map, MAP101, onto the page. This contains just the constant data "*********,, 

Chapter 17. Mapped alphanumerics 259 



does not apply to graphics.only devices such as plotters 

The third map in the mapgroup, MAPIOO, is not used in this execution of the 
program. 

An ASREAD call sends the page to the terminal, and waits for operator input. 
When this arrives, GDDM updates the page. The application accesses the input by 
executing an MSGET call to copy the variable data from the page into the ADS. 

Why you do not always need to call MSPUT 

An MSPUT call transfers data from the ADS to the mapped field. Sometimes, this 
step is not required. It is, in fact, unnecessary in the program shown in Figure 76. 

When the map was created, no initial character string value was explicitly assigned 
to any of the variable data fields, so GDDM-IMD assigned default initial values of 
a11 blanks. The MSDFLD call at I*C* I initializes the variable data fields to their 
default values, in addition to mapping an area of the page. 

The program clears fields in the ADS at I*B* I, and copies them into the variable 
data fields by the MSPUT at I*D* I. Because the MSDFLD call had already 
initialized the fields to blanks, the MSPUT is unnecessary. 

In general terms, an MSPUT call is unnecessary when all the variable data fields 
are initially to contain their default values. 

Steps in creating a mapping application 

This is a step-by-step summary of the major operations required to implement a 
mapping application. To understand it fully, you need familiarity with GDDM-IMD 
to at least the level provided by the quick-path tutorial. 

1. If you are using GDDM-IMD under TSO, allocate the files required to hold the 
ADSs and the generated mapgroups. More information is given later in this 
section, and full details of the files are given in the GDDM Interactive Map 
Definition. 

If you are using GDDM-IMD under CMS or CICS/VS, ignore this step. 

2. Create the required maps using GDDM-IMD: 

a. Create the map group using the mapgroup editor. 

A simple application such as MAPEXOI requires only one mapgroup, 
containing only one map. But often you will need several maps in a 
mapgroup, as explained in "Multiple maps" on page 263. And you may 
need several mapgroups to provide an application with several different 
basic types of presentation. 

When creating a mapgroup, you supply information that applies to the 
presentation as a whole, such as a device class specifying the type of 
device on which it will appear, and the presentation area, in rows and 
columns, that it will occupy. 

For instance, if your application is to run on an mM 3279 Model 3B 
terminal, you would probably use a device class of D6. The D tells 
GDDM-IMD that the device is a display unit, and the 6 that you require a 
presentation area of 32 rows by 80 columns. This presentation area will 

260 GDDM Application Programming Guide Volume 1 



mapped alphanumerics 

occupy the whole of the screen. A full list of device classes is given in the 
GDDM Interactive Map Definition. 

b. Create one or more maps using the map editor. For each map: 

1) Define the map characteristics, such as its size and its default position 
within the presentation area. 

2) Define the position of each field in the map. At this stage you can also 
type character string values into the fields. If you type nothing into a 
field, GDDM-IMD will assign an all-blank character string value to it. 
The typed-in value or the GDDM-IMD assigned string of blanks is 
known as the field's default or initial data. 

3) Define the attributes of each field in the map. 

At this stage, you can use the TEST command to display the map and 
check the position, attributes, and default data of the fields. 

4) Name the variable data fields. The names you supply will be used in 
the application data structure. In GDDM-IMD, the naming is called 
linking. If you do not link a field by giving it a name, then neither the 
application program nor the terminal operator will be able to alter its 
value. It is not advisable to have unlinked variable data fields in your 
maps. 

5) Review the application data structure. In this step, GDDM-IMD 
displays information about the application data structure that it will 
generate, and allows you to amend it. 

c. Generate the mapgroup. 

In this process, GDDM-IMD generates a coded representation of the 
mapgroup, for GDDM to use during execution. At the same time, 
GDDM-IMD generates an application data structure for each map in the 
mapgroup, for you to include in your source code. The name of the 
generated mapgroup includes a device-dependent two-character suffix, as 
explained in "Device-independence" on page 271. 

GDDM-IMD allows you to display and review the maps in the mapgroup by 
performing a test generation. The test is particularly useful for multimap 
mapgroups: you can check the complete presentation, as GDDM-IMD 
combines specified maps into a single display in their correct positions on 
the screen. After a satisfactory test generation, you need to do the real 
mapgroup generation. 

During the real generation, the ADSs and mapgroups are written to files by 
GDDM-IMD, in ways that depend on the subsystem under which 
GDDM-IMD is running. The list below is a summary; more information is 
given in the GDDM Interactive Map Definition. 

• Under eMS, the ADSs go to files with file names the same as the names 
of the maps they represent, and with a default file type of COPY. The 
generated mapgroup goes to a file with a file name comprising the 
mapgroup name plus the suffix, and with a default file type of 
ADMGGMAP. GDDM-IMD will create these files. 

Chapter 17. Mapped alphanumerics 261 



does not apply to graphics-only devices such as plotters 

• Under TSO, the ADSs go to a partitioned data set for which 
GDDM-IMD uses a default ddname of ADMGNADS, and member names 
the same as the names of the maps they represent. The generated 
mapgroup goes to a partitioned data set for which GDDM-IMD uses a 
default ddname of ADMGGMAP, and a member name comprising the 
mapgroup name plus the suffix. 

You must ensure that commands allocating the two ddnames to suitable 
partitioned data sets are executed before GDDM-IMD is invoked. The 
required data-set characteristics are given in the GDDM Interactive 
Map Definition. 

• Under CICS/VS, the ADSs go to a transient data queue with the default 
name of ADMG. The queue must have a destination defined for it in 
the CICS/VS Destination Control Table (OCT); this is usually done 
when GDDM is installed. The output to the queue is in a form that 
makes it suitable for transferring to a partitioned data set using the 
IEBUPDTE program for CICS/OS/VS, or to a library using the MAINT 
program for CICS/DOS/VS. The members of the partitioned data set or 
the books in the library will have the same names as the maps that the 
ADSs represent. 

The generated mapgroup goes to a file. The file must be defined in the 
CICS/VS File Control Table (FCT), the default FCT name being ADMF. 
This definition is usually done when GDDM is installed. 

3. Put the ADSs into your source code. 

You are recommended to use %INCLUDE statements (in PL/I) or COpy 
statements (in COBOL and Assembler) in your source code to do this. 

You could, instead, copy the ADSs directly into your program using the editing 
facilities that you employ to create the source code. But this would mean 
re-editing the source whenever the ADS changed. 

In theory, you could make yet another choice, to code the ADSs yourself as 
part of the source code. But unless you use only the most basic functions of 
mapping, this is more difficult than it might seem, and it is not advised. The 
reason is that many functions require rather complex ADSs that would be 
difficult to code without errors. These ADSs, and the functions they support, 
are described in "Chapter 18. Variations on a map" on page 273. 

4. Compile or assemble the program. 

ADSs that are to be included in the program with %INCLUDE or COpy 
statements must, like any secondary source code, be in a source library before 
compilation. The actions you need to take are subsystem-dependent: 

• Under CMS, you need to transfer the ADSs from the file into which 
GDDM-IMD puts them to a macro library defined by YQU. Before 
compilation, you must execute a GLOBAL MACLIB command to make the 
macro library available to the compiler or assembler. 

• Under TSO, GDDM-IMD puts ADSs into a suitable partitioned data set 
when you generate them, and all you need to do is make this available to 
the compiler or assembler. You do so in the same way as for any other 
secondary source code - typically by an ALLOCATE command. 

262 GDDM Application Programming Guide Volume 1 



mapped alphanumerics 

• For CICS/VS applications, you need to execute the IEBUPDTE program 
(CICS/OS/VS) or MAINT program (CICS/DOS/VS) to transfer the ADSs to a 
partitioned data set or library defined by you. Before compilation, you 
must make the partitioned data set or library available to the compiler or 
assembler. You do so in the same way as for any other secondary source 
code. Typical ways are with a suitable DD statement (CICS/OS/VS) or 
ASSGN statement (CICS/DOS/VS) if you compile in batch mode, or a 
suitable ALLOCATE or GLOBAL MACLm command if you compile under 
TSO or CMS. 

5. Execute the program. 

GDDM will find the generated mapgroups required by the program with no 
further action by you (except under IMS, when you must import the generated 
mapgroups, as explained in the GDDM Installation and System Management 
manual). 

The various GDDM mapping calls that a typical program may need to execute 
are summarized in "Dialog with the terminal operator" on page 256. 

Changing existing maps 

The preceding list is intended to help you create maps. When you alter an existing 
map, you can use the list to check that you do not omit any essential operations. 
You should take particular care to remember: 

• To regenerate the mapgroup after altering a map. 

• If you use GDDM-IMD under CMS or CICSjVS, to update the secondary source 
library with any new or changed ADSs. 

• If the ADS has changed, to recompile (or reassemble) the program. 

Multiple maps 

In many circumstances it is convenient to format the display using two or more 
maps. For instance, you might want to use one map to allow the terminal operator 
to ask a question, and then a second to give the answer. You would probably want 
the first map to remain on the screen while the second one is displayed. 

GDDM allows you to put many maps into a page if there is space, and provided 
they do not overlap with other maps. The section "Fixed maps" on page 264 gives 
further information. 

In some types of display, you will need to repeat a set of fields several times. For a 
data-entry application, for instance, you might need to fill the screen with many 
copies of a single set of input fields, each set being one or a few lines deep. You 
can do this by having several copies of the same map. 

For such applications, GDDM-IMD allows you to define floating maps. You do 
not have to calculate where to put these on the page. GDDM will position a 
floating map at the next available location, rather than at a location specified 
either to GDDM-IMD, or to GDDM by the program. 

An example of using floating maps is given in "Floating maps" on page 264. 

Chapter 17. Mapped alphanumerics 263 



does not apply to graphics·only devices such as plotters 

Fixed m~ps 

Floating maps 

The GDDM-IMD operations necessary to create two or more fixed maps are the 
same as for a single map, except that you go through the map editor steps twice. 
You do not generate the mapgroup until you have defined all of the maps in it. To 
put several maps onto a page (or several instances of the same map), your program 
simply executes an MSDFLD for each one. 

When you define a map's characteristics you must take care, when specifying its 
size and position, that it does not overlap any other map that will be displayed at 
the same time. It is not an error to define overlapping maps, but you must not try 
to display them together. Your application program would be in error if it 
executed an MSDFLD call specifying a map that overlapped one specified in an 
earlier MSDFLD call. 

The mapgroup test facility of the GDDM-IMD mapgroup generation step is 
particularly useful for multimap mapgroups. It diagnoses inadvertently overlapped 
maps, and lets you check the spacing between maps, and the alignments between 
fields in different maps. 

When you test the mapgroup, you must specify which maps are to be put into the 
test display, and the order in which they are to be processed. The order is more 
important with floating maps, though it may affect some aspects of a display 
containing only fixed maps, such as where the cursor appears initially. It is 
advisable, therefore, to specify the maps in the order in which you expect to refer 
to them in MSDFLD calls in your application program. 

At execution time, your program can override the specified position of any fixed 
map by giving an explicit row and column number in the MSDFLD call that puts it 
onto the GDDM page. 

The program in Figure 79 on page 267 could be part of an order-entry application. 
It displays information about as many orders as the screen can accommodate. A 
typical display is shown in Figure 81 on page 268. It uses one fixed and one 
floating map. Their formats are shown in Figure 80 on page 268. 

It is an output-only application. For handling input data from floating maps, see 
"Input from multiple copies of a map" on page 270. 

Creating floating maps: Creating a floating map differs from creating a fixed one 
only in the values you put into two fields in the Map Characteristics frame of the 
map editor. The fields are those in which you specify the position of the map's top 
left-hand corner. Instead of a number, you enter the value SAME in one of the 
fields. Maps with the value SAME for the column number are called vertically 
floating, and for the line number, horizontally floating. Either type can be fully 
floating or semifloating. To make a map fully floating, you specify SAME in one of 
the fields and NEXT in the other one. To make it semifloating, you specify SAME 
in one and a number in the other, this being a row or column number in relation to 
the start of the presentation area. 

All floating maps are positioned by GDDM within the floating area, which is a 
subdivision of the presentation area. You specify its size and position on the 
Mapgroup Characteristics frame of the mapgroup editor. The default floating area 
is the whole of the default presentation area, in other words, the whole screen or 
printer page. 

264 GDDM Application Programming Guide Volume 1 



mapped alphanumerics 

The floating maps in a floating area must be either all vertically floating or all 
horizontally floating. 

GDDM always puts the first fully floating map at the top left of the floating area. 
Succeeding ones are positioned underneath the previous one if they are vertically 
floating, or to the right if they are horizontally floating. A fully floating map is 
positioned in the next available row or column - in other words, it is contiguous 
with the preceding map. 

When there is insufficient space beneath a stack of vertically floating maps, a new 
stack is started to the right of it. Similarly, when there is insufficient space to the 
right of a row of horizontally floating maps, a new row is started underneath. 

Positioning of fully floating maps is summarized in Figure 78 on page 266. Most 
applications do not use maps of such varied size as those illustrated. The sizes have 
been chosen to illustrate GDDM's positioning algorithm, in particular where the 
second and subsequent horizontal and vertical stacks are positioned. 

Semifloating maps are always positioned in the specified row or column in relation 
to the start of the presentation area (not of the floating area). The other 
coordinate (the one specified as SAME) will be the same as for the previous map. If 
the semifloating map is the first floating map on the page, it will be put into the 
first column or row in the floating area. 

The main use of semifloating maps is to force the map to always appear at the head 
of a column or start of a row (by specifying a row or column of 1), or the bottom of 
a column or end of a row (by specifying a row or column close to that of the bottom 
or right-hand edge of the floating area). 

If you use fixed and floating maps on the same page, you can allow fixed maps to 
intrude into the floating area, but it is your responsibility to ensure that no fixed 
and floating maps overlap. 

If you want to fix the position of a floating map instead of allowing GDDM to do it, 
you can give an explicit row and column number in the MSDFLD call that puts the 
map onto the GDDM page. 

Chapter 17. Mapped alphanumerics 265 



does not apply to graphics-only devices such as plotters 

Vertically floating maps 

1 2 3 

b=========£:iliBoundary of floating area 
Horizontally floating maps 

Figure 78. Positioning of fully floating maps 

266 GDDM Application Programming Guide Volume 1 



MAPEX04: PROC; 

DCL 1 HEADER, 

10 FILLER PAD 
HEADER_ASLENGTH 

DCL 1 FLOATER, 

10 PART NUM 
10 DESCRIPTION 
10 QUANTITY 
10 UNIT_PRICE 
10 TOTAL PRICE 
FLOATER_AS LENGTH 

mapped alphanumerics 

/* ADS for heading map */ /*A*/ 

CHAR(1), 
FIXED BIN(31,0) STATIC 
nUT(I); 

/* ADS for floating map */ 

CHAR(7), 
CHAR ( 11), 
CHAR (3) , 
CHAR(6), 
CHAR ( 9) , 
FIXED BIN(31,0) STATIC 
INIT(36); 

DCL (ATTYPE ,ATVAL ,COUNT) FIXED BIN(31);/* AS READ arguments */ 
DCL WRITE FIXED BIN(31) INIT(O); /* MSPUT write operation */ 
DCL NUMBER FIXED BIN(31); /* Number of orders */ 
DCL PID FIXED BIN(31); /* Page identifier */ 
DCL MID FIXED BIN(31); /* Mapped field identifier */ 

CALL FSQUPG(PID); 

CALL MSPCRT(PID, 
-1, 
-1, 
IFLOATD6 ' ); 

CALL MSDFLD(I, 
-1, 
-1, 
'HEADER') ; 

/* Get unique page identifier */ /*B*/ 

/* Create new page */ /*C*/ 
/* with GDDM-IMD defined page */ 
/* width and depth, */ 
/* for mapgroup FLOATD6. */ 

/* Format header area of page 
/* at GDDM-IMD defined row 
/* and column position, 
/* using map header 

*/ /*D*/ 
*/ 
*/ 
*/ 

CALL MSQFIT('FLOATER',NUMBER); /* How many maps to fill page?*/ /*E*/ 

DO MID = 2 TO NUMBER+l; 

CALL MSDFLD(MID, 
-1, 
-1, 
'FLOATER'); 

CALL ORDERS(FLOATER); 

CALL MSPUT{MID, 

END; 

WRITE, 
FLOATER_ASLENGTH, 
FLOATER) ; 

CALL ASREAD(ATTYPE, 
ATVAL, 
COUNT) ; 

CALL FSPDEL(PID); 

%INCLUDE ADMUPINA; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPINM; 

END MAPEX04; 

Figure 79. Source code of MAPEX04 

/* Put number copier of 
/* floating map on page. 
/* Format an area 
/* at floating row 
/* and column position, 
/* using map floater. 

/* Assign data to ADS 

*/ 
*/ 
*/ /*F*/ 
*/ 
*/ 
*/ 

*/ /*G*/ 

/* Move data to page from ADS */ 
/* with write operation, */ 
/* specifying length */ 
/* and name of ADS */ 

/* Display page, 
/* and wait for operator 
/* input. 

/* Delete page before exit. 

/* GDDM entry declarations 

*/ 
*/ 
*/ 

*/ 

*/ 

Chapter 17. Mapped alphanumerics 267 



does not apply to graphics·only devices such as plotters 

1 2 4 5 6 8 
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0 

1 #ORDER REVIEII# 1 
1 Part No. Description Quant ity Unit Price Total Price #1 
1 1 
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 

o 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0 

1 1 
1- # - # - ., # # 1 
1 1 
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 

o 0 0 0 0 0 0 0 

Figure 80. Field definitions for map used by MAPEX04 

Figure 81. Typical display by MAPEX04 

Description of the program: The program in Figure 79 on page 267 displays a 
heading using a fIxed map called HEADER, and formats each line of data with a 
floating map called FLOATER The two ADSs have the same names as the maps, 
and are declared at /*A* /. 

The data for each order is put into the ADS named FLOATER by a subroutine, 
called at /*G* /. 

The example introduces several new programming techniques and facilities of 
GDDM. 

Unique page identifier: The program is a subroutine within a larger application, so 
it must ensure that the identifier of the page it creates has not already been used. 
It obtains a unique identifier by issuing an FSQUPG call at /*B* /. This call is 
described in "Calls that operate on pages" on page 94. The unique identifier is 
returned by GDDM in the variable PID, and this is specified as the page identifier 
in statement /*C* /, which creates the page to be mapped. 

268 GDDM Application Programming Guide Volume 1 



mapped alphanumerics 

Positioning of floating maps: When a map has been specified to GDDM-IMD as 
floating, the value -1 for the row and column in an MSDFLD call means that 
GDDM is to choose the map's location. All floating maps are positioned within the 
floating area. You define this area when you create the mapgroup. In the example, 
-1 is specified in the MSDFLD callj*F*j for the map FLOATER. In the case of the 
mapgroup FLOATD6, to which FLOATER belongs, the floating area was defined as 
the whole page, apart from the lines occupied by the fixed map HEADER. 
FLOATER was defined to be vertically floating, so successive instances of it are 
positioned one beneath the other within the floating area. 

Number of floating maps: The floating area is just filled with copies of the floating 
map. The program determines how many copies can be displayed by executing an 
MSQFIT call, at I*E* I. The first parameter is the name of the map. In the second 
parameter, NUMBER, GDDM returns the number of instances that the floating 
area can accommodate. MSQFIT assumes default positioning for the map, as 
specified to GDDM-IMD. In other words, it assumes that you will specify -1 as the 
second and third parameters of the MSDFLD calls. You can specify a fixed map as 
the first parameter of MSQFIT. In this case, GDDM returns either 1 or, if the 
default position of the map is occupied, O. 

The number of orders for which the example displays data is always equal to 
NUMBER. A real program would include code to handle both fewer and more 
orders than this, of course. 

Unique map identifiers: The fixed map is given an identifier of 1, at I*D* I. Each 
instance of the floating map is identified by a number from 2 through to 
NUMBER+l, at I*F*I. 

Querying changed maps 

You can discover how many maps have been changed by testing the value that 
GDDM returns in the last parameter of the ASREAD call: 

CALL ASREAD(ATTYPE,ATVAL,COUNT); 

If the current page is a mapped one, COUNT is set to the number of maps changed 
by the operator. (If the page is not mapped, COUNT is set to the number of 
changed alphanumeric fields.) 

If there is only one map on the page, the value of COUNT. indicates whether or not 
it was modified. A 1 means that it was, and a 0 that it was not. 

You can discover which maps on a multimap page were changed using the 
MSQMOD call: 

CALL MSQMOD(lO,IDS,LENGTHS); 

The last two parameters are fullword arrays. They must both have the same size, 
which is specified in the first parameter. 

IDS returns the identifiers of the maps that were changed by the terminal operator 
during the last ASREAD. Their order is the same as that in which the 
corresponding MSDFLD calls were executed. LENGTHS returns, in the same 
order, the lengths of the maps' application-data structures. 

If the number of changed maps is less than the number of elements, the unused 
elements in both arrays are set to O. If the number of elements is less than the 

Chapter 17. Mapped alphanumerics 269 



does not apply to graphics·only devices such as plotters 

number of changed maps, you can use one or more further MSQMOD calls to 
obtain further identifiers and ADS lengths. 

The last parameter of ASREAD and the second one of MSQMOD can be used 
together: 

CALL ASREAD(ATTYPE,ATVAL,COUNT)i 

IF COUNT>O 
THEN DOi 

CALL MSQMOD(ARRAY_SIZE,IDS,LENGTHS)i 
DO 1=1 TO COUNTi 

SELECT(IDS(I»; 
WHEN(l) DO; /* If map 1 was modified */ 

END; 
WHEN(2) DO; /* If map 2 was modified */ 

END; 
WHEN(3) DOi /* If map 3 was modified */ 

ENDi 

ENDi 
ENDi 

END; 
/* End select group 
/* End DO-loop 

Input from multiple copies of a map 

*/ 
*/ 

To get input data from a display having more than one copy of a map, you can 
reuse the map's ADS any number of times. For instance, if the operator were 
allowed to alter the data displayed by the program in Figure 79 on page 267, the 
following code would reuse the ADS for FLOATER once per changed map: 

CALL ASREAD(ATTYPE,ATVAL,COUNT)i 

DECLARE ID ( 1 ) 
DECLARE LENGTH(l) 

DO 1=1 TO COUNT; 

FIXED BINARY(31); 
FIXED BINARY(31); 

CALL MSQMOD(l,ID,LENGTH);/*Get id & length of next changed map*/ 

CALL MSGET(ID(l),O,LENGTH(l),FLOATER)i/*Retrieve amended order*/ 

/* 
/* 
/* 

END; 

*/ 
*/ 
*/ 

/* Process amended order data in ADS */ 

Another way is to declare an array of ADSs, and read all the input data into the 
array before processing any of it: 

270 GDDM Application Programming Guide Volume 1 



mapped alphanumerics 

CALL ASREAD(ATTYPE,ATVAL,COUNT) ; 

DECLARE 1 FLOATER_INPUT(2:41) 
%INCLUDE FLOATER; 

/* Max. no. copies on screen */ 
/* Assumed to be 40. */ 

DO MID=2 TO NUMBER+li 
CALL MSGET(MID,O,FLOATER_ASLENGTH,FLOATER_INPUT(MID»i 

END; 

The subscript of each ADS in the array FLOATER_INPUT is the same as the 
identifier of the floating map from which its data came. 

Device-independence 

One of the advantages of mapping is that it allows your application programs a 
measure of device-independence. Terminals vary in the sizes of their display areas 
and in their features, but GDDM provides a way of ensuring that a program will 
run without change on several different types of terminal. 

When you create a mapgroup, you must specify a device class to indicate to 
GDDM-IMD the type of terminal on which the mapgroup will be used. 
Subsequently, you can specify additional device classes, and then generate different 
versions of the mapgroup for any or all of the specified classes. 

Each generated mapgroup has a two-character suffix appended to the mapgroup 
name you specify to GDDM-IMD. The suffix is the same as the GDDM-IMD device 
class. A list of suffixes and their meanings is given in the GDDM Interactive Map 
Definition. All the mapgroup names in the preceding examples have a suffix of DS, 
which means a display unit with 32 rows and 80 columns. 

If your program is likely to run on several different types of terminal, you can 
leave the choice of suffix to GDDM. Instead of an explicit suffix on the mapgroup 
name in the MSPCRT call, you can code one or two dots, for example: 

CALL MSPCRT(l,-l,-l,'MAPGRP •• ')i 

or 

CALL MSPCRT(l,-l,-l,'MAPGRPD.'); 

GDDM replaces the dot or dots and creates the most suitable suffix for the current 
device. You must ensure that a generated mapgroup with the fully-suffixed name is 
available to GDDM. 

In summary, you need to remember that GDDM uses the full name of the generated 
mapgroup, which is the name you assigned plus the device sufflx. Your source 
code must either specify this name in full, or use the dot notation. 

If you. specify the name in full, the mapgroup need not match the device on which it 
will be displayed. A mapgroup with an explicit suffix of DS, for instance, could be 
specified for a printer, or for a device with a display area that is not 32 rows by 80 
columns. 

If the mapgroup has been defined for a display area larger than the device 
possesses, some of the data may not be displayed. However, it is not removed from 
the GDDM page. If the page is too wide or too deep for the screen, it may still be 
displayable by hardware or software scrolling (as described in "Large and small 
pages" on page 459). 

Chapter 17. Mapped alphanumerics 271 



does not apply to graphics'only devices such as plotters 

If you know that your program will run solely or mainly on a particular type of 
terminal, it is advisable to generate a mapgroup for it, and to include the 
corresponding suffix explicitly in the map group name in the MSPCRT call. This is 
to save GDDM searching the library for a suitable mapgroup every time the 
MSPCRT call is executed. 

Attribute handling when mapgroup does not match device 

GDDM may produce unexpected results if the size of presentation area in a 
mapgroup is different from the display area of the device on which your program is 
executing, or if the map is being displayed in an emulated partition or an operator 
window. 

One way to avoid problems is to ensure that the presentation area matches the 
device's display area. If this is not possible, the best solution is to terminate every 
field, on the same row on which it was started, with a protected or protected with 
autoskip field attribute. 

Mismatches between the presentation area and the device's display area have the 
additional disadvantage that they cause extra processing by GDDM at execution 
time. 

Output-only displays 

You can use maps to format displays that do not require operator input. Such 
displays can be sent to screens or printers. 

If the device is output-only, the program does not wait for input following an 
ASREAD or MSREAD. For devices that do have input capabilities, you can use 
FSFRCE if you want your program to continue without waiting for the operator to 
cause an interrupt (by pressing ENTER, say). 

Mapping queries 

GDDM provides a number of calls for enquiring about maps and associated matters. 
One of them is described in "Querying changed maps" on page 269. In addition to 
changed maps, you can query, for instance, a mapgroup's or map's characteristics, 
or the position of a map on a page and its size. The calls all start with MSQ, and 
are described in the GDDM Base Programming Reference manual. 

272 GDDM Application Programming Guide Volume 1 



Chapter 18. Variations on a map 

"Chapter 17. Mapped alphanumerics" describes how to use maps to supply the 
basic framework of a dialog with the terminal operator. This chapter introduces 
further GDDM and GDDM-IMD facilities that help you with the details. Mainly, it 
describes how your program can vary the format defined by the map. There is also 
a section that tells you how to add graphics to maps. 

The facilities for varying the format may seem complicated if you are new to the 
techniques of mapping. But they are designed to simplify the programming of 
complex dialogs, by allowing GDDM to do more of the work. They are not 
essential, but are intended to help you. If you prefer, you can get similar results in 
most cases with the facilities described in "Chapter 17. Mapped alphanumerics." 

Complex dialogs 

A map may contain fields that you intend to use in some circumstances and not in 
others. For example, a data-entry map might include column headings, some of 
which are not always required. GDDM lets your program decide at execution time 
which fields are to display data. 

The facility works as follows. When you define the map, you specify default data 
for the fields in question. During execution, your program chooses, for each I/O 
operation and each field, either to use the default data, or to use data from the 
ADS, or to leave the data already present in the field as it is. In a column heading 
field, for instance, the default data could be the heading text. Before sending the 
page to the terminal, your program might either put the default data into the field, 
or put blanks into it from the ADS, or leave it unchanged from previous operations. 

A field that is to be treated in this way must have an extra element, called a 
selector adjunct, associated with it in the ADS. You must tell GDDM-IMD when 
you create a map which fields are to have selector adjuncts. You do so on the 
Field Naming or Application Data Structure Review frame of the GDDM-IMD map 
editor. 

In your program, you put a code into the selector adjunct. The code is interpreted 
when you execute an MSPUT call. It tells GDDM whether MSPUT is to update 
the field, and if so, whether default data or data from the ADS is to be used. 

The ADS in Figure 82 on page 275 has a selector adjunct at /*A* /. GDDM-IMD 
gives selector adjuncts the same names as the associated fields, with "_SEL" 
appended in PL/I, "-SEL" in COBOL, and "S" in Assembler. Selector adjuncts are 
one byte long. 

There are several types of adjunct in addition to selector adjuncts. They are a 
general control mechanism used for several different purposes. Their uses include: 
setting field attributes; positioning the cursor; extended highlighting; setting the 

Chapter 18. Variations on a map 273 



does not apply to graphics·only devices such as plotters 

color of fields; and programmed symbol selection. Most types are introduced in this 
chapter; a full list is given in the GDDM Base Programming Reference manual. 

Error message example using a selector adjunct 

The program in Figure 82 uses a selector adjunct to control an error message field. 
The output of the program is the same as for MAPEX01, as shown in Figure 75 on 
page 254. 

Although their output is similar, the maps used by the two programs differ. In 
addition to having a selector adjunct, the one used by MAPEX05 has the message 
text as default data in the message field, whereas the one used by MAPEXOl has 
blanks. 

The selector adjunct is declared at I*A* I. The complete ADS is cleared at I*B* I. 
The selector adjunct for the message field is set to 1 at I*C* I. This value means 
that the write-type MSPUT call, I*D* I, updates the field with data from the ADS. 
Initially, then, all the fields, including the message field, will be blank. 

If the terminal operator makes an error, the message field selector adjunct is reset 
to 2 at I*E* I. This value means that the MSPUT, I*D* I, updates the message 
field with default data. The default data is the error message, as defined to 
GDDM-IMD when the map was created. 

274 GDDM Application Programming Guide Volume 1 



variations on a map 

MAPEXOS: PROC OPTIONS (MAIN)~ 

DECLARE 1 CUSTINV, /* Included ADS */ 

10 MESSAGE SEL CHAR(I), /*A*/ 
10 MESSAGE- CHAR(78), 
10 CUSTNO CHAR(S), 
10 INVNO CHAR(4), 
ORDERl_ASLENGTH FIXED BIN(31,0) STATIC 

INIT(88) ~ 
DECLARE (ATTYPE,ATVAL,COUNT) FIXED BIN(31)~/* ASREAD arguments*/ 
DECLARE WRITE FIXED BIN(31) INIT(O)~ /* MSPUT write operation */ 
DECLARE VALID BIT(I) INIT('I'B)~/* on until invalid data found*/ 

CALL FSINIT~ 

CUSTINV = "~ 

MESSAGE_SEL = '1'~ 

CALL MSPCRT(I, 
-1, 
-1, 
'ACMEOOD6')~ 

CALL MSDFLD(I, 
-1, 
-1, 
'ORDERl')~ 

LOOP: 
CALL MSPUT(I, 

WRITE, 
ORDER 1 ASLENGTH, 
CUSTINV) ; 

CALL ASREAD(ATTYPE, 
ATVAL, 
COUNT) ; 

/* 

1* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

/* 
/* 
/* 
/* 

/* 
/* 
/* 
/* 
/* 
/* 

Initialize GDDM. */ 

Clear the ADS, so that map-*/ 
defined values are taken. */ 
Set message selector to */ 
put out blank message. */ 
Create page. */ 
Use mapgroup-defined page */ 
depth and width */ 
for mapgroup 'ACMEOOD6' . */ 

Map an area of page, */ 
using the map-defined row */ 
and column positions */ 
and map ORDERI. */ 

Put data into map on page, */ 
with write operation, */ 
specifying the ADS length, */ 
and the data length. */ 
Output the current page, & */ 
wait for operator input. */ 

IF ATTYPE=1 & (ATVAL=3 ATVAL=l5) /*Operator pressed end key?*/ 
THEN GO TO FIN; 

IF COUNT > 0 THEN DO~ 
CALL MSGET(I,O, 

ORDERI ASLENGTH, 
CUSTINV) ~ 

/* Data entered, so check it. */ 
/* Get data from map */ 
/* into the ADS. */ 

IF VERIFY (CUSTNO, '0123456789') = 
& VERIFY(INVNO,'0123456789') 

o /* Are CUSTNO and 
o /* INVNO numeric? 

*/ 
*/ 

THEN DO~ 
/* */ /* Process CUSTNO and INVNO 
/* */ 

*/ 

/* */ 
MESSAGE = , '; /* Clear any existing message */ 
END~ 
ELSE VALID = 'O'B; /* Indicate error. */ 

END; 
ELSE VALID = 'O'B~ /* No data entered, so */ 

/* indicate error. */ 

Figure 82 (Part 1 of 2). Source code of MAPEX05 

/*B*/ 

/*C*/ 

/*D*/ 

Chapter 18. Variations on a map 275 



does not apply to graphics·only devices such as plotters 

IF ~VALID THEN DO; 
VALID = 'l'B; 
MESSAGE SEL = '2'· 

END; - , 
GO TO LOOP; 

FIN: 

CALL FSTERM; 
'INCLUDE ADMUPINA; 
'INCLUDE ADMUPINF; 
'INCLUDE ADMUPINM; 

END MAPEX05; 

/* Error found, 50 redisplay 
/* the map. 
/* Set selector, 50 that map 
/* message will appear. 

/* Terminate GDDM. 
/* GDDM entry declarations. 

*/ 
*/ 
*/ /*E*/ 
*/ 

*/ 
*/ 

Figure 82 (Part 2 of 2). Source code of MAPEX05 

Write, rewrite, and reject 

The MSPUT call updates the alphanumeric fields contained in a mapped field. In 
the simple case of an ADS without selector adjuncts, this means it moves the data 
from the ADS into the variable data fields. 

When the ADS contains selector adjuncts, what happens depends on two things: 
the codes in the adjuncts, and the type of MSPUT operation. 

There are three types of MSPUT operation. They are called write, rewrite, and 
reject. The operation is specified by the second parameter of the MSPUT. A 0 
means write, 1 rewrite, and 2 reject. 

In a write operation, MSPUT: 

1. Sets all variable data fields to their initial values. If you specified no initial 
data for a field when you created the map, it is set to blanks: blanks are the 
default initial data. 

2. Inspects the selector adjunct of each field, and makes changes according to its 
value: 

A" " (A blank character) 

A 1 character 

A 2 character 

A 3 character 

No further change to the field. 

Update the field with variable data from the 
ADS. 

Update the field with default data from the 
map (or with blanks if you specified no 
default data). For a write operation, a 2 has 
the same effect as a " ", as the field already 
has default data in it. 

Means the same as a 1 character. 

In a rewrite operation, MSPUT does the same as in a write, except that it omits the 
first step. The fields are not set to their defaults before the selector adjuncts are 
processed. In a rewrite, a 2 character is not the same as " ", as the field does not 
necessarily contain default data. 

276 GDDM Application Programming Guide Volume 1 



variations on a map 

In a reject operation, MSPUT does the same as in a rewrite. The difference 
between rewrite and reject becomes apparent.only on iJ}put. It is explained in 
"Effect of reject operation" on page 277. 

The differing applications of a write operation, compared with a rewrite (or reject), 
can be summarized as follows. You should use a write when you create a new 
display from scratch. You should use a rewrite (or reject) when you update some of 
the fields of an existing display; you indicate which fields are to be updated by 
setting their selector adjunct to a 1 or 2 character. 

Selector adjuncts on input 

Selector adjuncts are used on input, as well as output. When you execute an 
MSGET call, GDDM puts a code into the adjunct to indicate whether the field has 
been modified. 

You may well find that input codes are the most useful aspect of adjuncts. They 
provide a simple means of discovering which fields have been changed by the 
operator. Without them, your program might have to store the old values of all the 
updatable fields, and compare them with the new values in the ADS after the 
MSGET. 

The code indicates the state of the field as it exists on the current page, as follows: 

A" " (A blank character) 

A 1 character 

A 2 character 

A 3 character 

Effect of reject operation 

The field has no value. Either it has not had 
any data in it since the start of execution, or 
your program has emptied it and no data has 
been put into it since. You empty a field by 
clearing it to blanks or nulls, setting its selector 
adjunct to " ", and executing a write-type 
MSPUT call. 

The field has a new value set by the terminal 
operator. Except when the preceding MSPUT 
was a reject type, it indicates that the field was 
updated during the last ASREAD (or MSREAD). 
The precise meaning in the reject case is 
explained in "Effect of reject operation." 

Not used on input. 

The field has an old value. In other words, it 
contains a value that was put into it either by 
the application program, or by the operator 
during an ASREAD (or MSREAD) other than 
the last one. 

In some circumstances, it is necessary to repeatedly send a map back to the 
terminal. For instance, the operator may need several attempts to supply 
completely valid data. 

You can send a map back to the terminal by a reject-type MSPUT operation 
followed by an ASREAD. Then, for each field changed by the operator, MSGET 
returns a code of 1, the same as after a write or rewrite. A reject results in a 
different setting only if you resend such fields to the terminal, and the operator 

Chapter 18. Variations on a map 277 



does not apply to graphics-only devices such as plotters 

leaves them unchanged. On the next input, MSGET would return a 1 character 
instead of a 3. A 1 still indicates new data supplied by the operator, but it was not 
necessarily supplied during the most recent ASREAD. 

In hardware terms, a reject does not reset the modified data tags (MDTs) of the 
previously modified fields, whereas write and rewrite do. The possibly different 
value of the selector adjunct on input is the only way in which this difference is 
apparent to your program. 

The reject facility allows you to accumulate the changes made by the operator over 
a number of ASREADs, without having to store the data in your program. 

Uses of selector adjuncts 

The following outline of a program illustrates the most important uses of selector 
adjuncts on both output and input. 

Initially the program creates the following display: 

DEPT DOLLARS 

**** 

WEEK 

(---- Space for error message 

(---- Constant data headings 

(---- Operator input line 

The operator should enter a four-character department code, an expenditure figure 
of up to ten digits, and a week number of two digits. The three input data fields 
have constant data headings of DEPT, DOLLARS, and WEEK. The department 
code field has map-defined default data of four asterisks; the expenditure and week 
number fields have no default data. A field at the top of the display is used for 
error messages; it has no default data. The department code, expenditure, week 
number, and message fields have selector adjuncts. 

This is the ADS: 

1 DEPEXP 
10 MSG_SEL 
10 MSG 
10 DCODE_SEL 
10 DCODE 
10 EXP_SEL 
10 EXP 
10 WEEK_SEL 
10 WEEK 

CHARACTER(l), 
CHARACTER ( 30) , 
CHARACTER(l), 
CHARACTER (4) , 
CHARACTER(l), 
CHARACTER ( 10) , 
CHARACTER(l), 
CHARACTER(2), 

The program created the display by setting the ADS to all-blanks. The four blank 
selectors cause the ASREAD to send the default data to the screen, which is 
asterisks in the department code field, and blanks in the other three (because these 
have no default data specified in the map). 

The operator updated the display, as follows, and pressed ENTER: 

278 GDDM Application Programming Guide Volume 1 



variations on a map 

DEPT DOLLARS WEEK 

*876 HABY 

The program executed an MSGET, which puts the following values into the ADS: 

DCODE_SEL DCODE EXP_SEL EXP 

Blank Blank 1 *876 1 HABY Blank Blank 

This MSGET is contained in a loop that checks, fIrstly, that none of the three 
input data fIelds has a blank selector code, and secondly, that the department code 
fIeld is alphabetic and the other two input fIelds are numeric. If either check fails, 
it puts the text of an error message into the message fIeld, sets the error message 
selector to a 1 character, and executes a reject.type MSPUT followed by an 
ASREAD. Because the error message selector fIeld is set to 1, the ASREAD will 
send the message text to the terminal. In this case, the ADS had the following 
values, before the MSPUT: 

1 

DCODE_SEL DCODE 

Message 1 
text 

*876 

EXP_SEL EXP 

1 HABY Blank Blank 

The program executed an ASREAD after the MSPUT, putting this display on the 
screen: 

WEEK NUMBER MISSING 

DEPT DOLLARS WEEK 

*876 HABY 

The operator then updated the display as follows: 

WEEK NUMBER MISSING 

DEPT 

*876 

DOLLARS 

HABY 

WEEK 

22 

In the program, control returned to the MSGET at the top of the loop, resulting in 
the ADS being updated as follows: 

Chapter 18. Variations on a map 279 



does not apply to graphics-only devices such as plotters 

DCODE_SEL DCODE 

3 Message 1 
text 

*876 

EXP_SEL EXP 

1 HABY 1 22 

The program found that all the selectors in the input fields were set, but that the 
department code and expenditure were invalid. It therefore set the message 
selector to a 1 character again, and put the text of another message into the 
message field. After the reject and ASREAD, the screen looked like this: 

ERROR(S) IN DEPT, DOLLARS 

DEPT 

*876 

DOLLARS 

HABY 

WEEK 

22 

The operator corrected the input as follows: 

ERROR(S) IN DEPT, DOLLARS 

DEPT 

HABY 

DOLLARS 

876 

WEEK 

22 

After the MSGET, the ADS this time had the following data in it: 

3 

DCODE_SEL DCODE 

Message 1 
text 

HABY 

EXP_SEL EXP 

1 876 

Because all the fields are now valid, control drops out of the loop. 

1 22 

After the program had processed the input data, it redisplayed the page for the 
operator to provide the next input. All the program has to do is change the 
message field selector to a 2 character, to remove the message from the screen, and 
execute a rewrite-type MSPUT and an ASREAD. It therefore changed the ADS to: 

2 

DCODE_SEL DCODE 

Message 1 
text 

HABY 

EXP_SEL EXP 

1 876 

After the ASREAD, the screen looked like this: 

DEPT 

HABY 

DOLLARS 

876 

WEEK 

22 

The operator amended the screen to: 

280 GDDM Application Programming Guide Volume 1 

1 22 



variations on a map 

DEPT DOLLARS WEEK 

HABY 1234 23 

After an MSGET, the ADS will be as follows: 

EXP_SEL EXP 

Blank Blank 3 HABY 1 1234 1 

Because the department code field had a selector character of 3, meaning that it 
contains old data, there was no need for the program to check it. 

23 

Alarm and keyboard locking 

Effects of maps 

GDDM-IMD allows you to specify for each map whether the alarm is to be sounded 
when it is sent to the terminal, and whether the keyboard is to be locked or freed. 
When the keyboard is locked, the terminal operator has to press RESET before the 
terminal will accept any more input. 

When you create a map, you can specify to GDDM-IMD different options for each 
type of MSPUT operation. If your program updates any map on the current page 
using an operation for which the alarm has been specified, the alarm will be 
sounded; and similarly if keyboard locking has been specified. Otherwise, no 
action will be taken. 

The GDDM-IMD defaults are that GDDM should sound the alarm and lock the 
keyboard only after a reject. If these defaults apply to all maps on the page, the 
keyboard will be locked and the alarm sounded if any of the maps is updated by a 
reject-type MSPUT. 

Other considerations 

The FSALRM call (see "Sample alphanumerics program" on page 83) sounds the 
alarm when the page current at the time of its execution is sent to the terminal. It 
happens irrespective of the map specification and type of MSPUT operation. 

You can use the DSOPEN call (see "Chapter 21. Device support" on page 367) to 
tell GDDM to unlock the keyboard after every output operation. This overrides the 
effect of maps. If there is no overriding DSOPEN specification, the keyboard is 
always locked after an FSFRCE, and may be locked or unlocked after an ASREAD, 
MSREAD, or GSREAD, as described in "Effects of maps." 

Chapter 18. Variations on a map 281 



does not apply to graphics·only devices such as plotters 

Protecting fields from the terminal operator 

The 3270 display unit allows you to protect fields from change by the operator. It 
does so by either locking the keyboard if the operator tries to type into it, or by 
making the cursor skip over it if the operator tries to move the cursor into it. The 
former type of field is called protected, and the latter autoskip. Fields that the 
operator is allowed to type into are called unprotected. 

It might seem that variable data fields should always be unprotected. This is not 
the case, however, because "variable" means capable of being changed by the 
operator or by the program. If your application uses fields that may be changed by 
the program but need to be protected from change by the operator, you would make 
them variable but give them the protected or autoskip attribute. 

You can specify which of the three protection attributes a field is to have on the 
Field Attribute Definition frame of GDDM-IMD's map editor. At execution time, 
you can override the map-defined attribute by using a base attribute adjunct. As 
with selector adjuncts, you specify which fields are to have base attribute adjuncts 
on the Field Naming or Application Data Structure Review frame of GDDM-IMD's 
map editor. Like selector adjuncts, they appear to the application as extra 
elements in the ADS. 

Base attribute adjuncts consist of two elements, each one byte long. There is an 
example in "Base attribute adjuncts" on page 283. The second byte indicates what 
the program-defined attributes are to be. The first contains a code that indicates 
whether GDDM should use these attributes, use the ones in the map, or leave the 
field's attributes unchanged. 

You may notice that this discussion refers to attributes in the plural. This is 
because the second byte is used to define several types of attribute, not just the one 
concerned with protecting the field from operator input. The other types are listed 
in "Base attribute adjuncts" on page 283. 

The effect of an MSPUT calion the base attributes is analogous to its effect on the 
data. It depends on the type of operation and the code in the first byte of the base 
attribute adjunct. A write operation first resets all base attributes in the mapped 
field to the values specified in the map, or, where none were specified, to 
GDDM-IMD defined defaults. The GDDM-IMD defaults are listed in "Base 
attribute adjuncts." 

The write-type MSPUT call then sets each field's base attributes according to the 
first byte of the adjunct, as follows: 

A" .. (A blank character) 

A 1 character 

A 2 character 

Leave the base attributes unchanged. 

Set the attributes to those specified in the 
second byte of the adjunct. 

Apply the map·defined (or GDDM-IMD default) 
attributes . 

A 3 character . The same as a 1 character. 

For rewrite and reject operations, MSPUT sets the base attributes according to the 
code in the first byte of the adjunct, without first resetting them to the map-defined 
(or GDDM-IMD default) values. 

282 GDDM Application Programming Guide Volume 1 



variations on a map 

Base attribute adjuncts 

The second byte of the base attribute adjunct is used to define all the attributes 
that the 3270 hardware stores in the attribute byte. They are called the base 
attributes, and consist of: 

• Protection attribute, which, as already explained, can be set to one of these 
values: 

Protected 

Unprotected 

Autoskip. 

If you do not specify a value when you derme a field, GDDM-IMD generates a 
default of autoskip for a constant field, or unprotected for a variable field. 

• Intensity attribute, which can be set to one of these values: 

Normal. 

Intensified. This value also makes the field light-pen detectable. 

Non-display. 

The GDDM-IMD generated default is normal. 

• Light-pen attribute, which can be set to detectable or nondetectable. The 
GDDM-IMD generated default is nondetectable. 

• MDT bit, which can be either on or off. The setting of the MDT bit in the base 
attribute adjunct overrides the settings made by GDDM in response to the 
write, rewrite, and reject operations of MSPUT. The GDDM-IMD generated 
default is MDT off. 

• Data-type attribute, which can be set to alphanumeric or numeric. The 
GDDM-IMD generated default is alphanumeric. 

The second byte of the adjunct must be set to the bit pattern representing the 
required 3270 attribute byte. The bit patterns are described in the GDDM Base 
Programming Reference manual. 

GDDM supplies sets of special variables for inclusion in your programs to help 
with setting base-attribute and other adjuncts. The names of these sets of variables 
are: 

ADMUPIMC - for PL/I 
ADMUCIMC - for COBOL 
ADMUAIMC - for Assembler. 

They are stored in the library called ADMLIB on VM/CMS, or in the sample 
library (GDDMSAM) on OS/TSO or CICSNS. (ADMLIB and GDDMSAM also hold 
the PL/I declarations of the GDDM entry-points.) You will need to make the 
library available to your program, as outlined in "How to compile and run a GDDM 
Program under CMS" on page 11. They contain mnemonically named variables for 
every base attribute, and for combinations of attributes. The variables are 
initialized to the bit patterns required in the 3270 attribute byte. 

Chapter 18. Variations on a map 283 



does not apply to graphics·only devices such as plotters 

The cursor 

Output 

Here are an ADS containing a base attribute adjunct, and statements to protect 
and brighten the field called CUSTNUM. 

DCL 1 CUSTN, 

10 MESSAGE_FIELD 
10 CUSTNUM_ATTR_SEL 
10 CUSTNUM_ATTR 
10 CUSTNUM 
CUSTNMAP_ASLENGTH 

CHAR(78), 
CHAR(l), 
CHAR(l), 
CHAR(S), 
FIXED BIN(31,0) STATIC 
INIT(8S) ; 

CUSTNUM_ATTR_SEL = '1'; /* Tell GDDM to use adjunct- */ 
/* defined base attributes. */ 

CUSTNUM_ATTR = PROTECT_BRIGHT; /* Use variable from ADMUPIMC */ 
/* to define base attributes. */ 

CALL MSPUT(l,O,CUSTNMAP_ASLENGTH,CUSTN); 

%INCLUDE ADMUPIMC; /* INCLUDE GDDM-supplied base */ 
/* attribute variables */ 

You can control the position of the c.ursor on output, and find out where the 
operator placed it on input. In both cases you can use the cursor adjunct. The 
cursor adjunct is a one-byte field. As for all adjuncts, you need to tell GDDM-IMD 
which fields are to have them, using the Field Naming or Application Data 
Structure Review frame of GDDM-IMD's map editor. 

You can often improve the usability of your displays by putting the cursor where 
the terminal operator is most likely to start entering data. There are three ways in 
which GDDM determines the cursor position on output: 

L Your program can specify the position dynamically, using cursor adjuncts and 
cursor-positioning calls. 

2. If the program does not specify a dynamic position, then GDDM will use a 
static position specified during map definition. 

3. If your program does not specify a dynamic position, and no map on the page 
has a specified static position, GDDM will use a default position. 

Dynamic Positioning: Your program can position the cursor dynamically using 
cursor adjuncts, possibly in conjunction with the MSCPOS calL If the program 
specifies more than one dynamic position, GDDM ignores all except the latest. 

You use the cursor adjuncts by setting one of them to a 1 character and the others 
to blank before executing an MSPUT. This causes the cursor to be placed under 
the first character of the field with the 1 character in its cursor adjunct. 

To position the cursor under a character other than the first one in a field, you can 
execute an MSCPOS call before the MSPUT. An example is: 

CALL MSCPOS(10); 

which would put it under the tenth character. 

284 GDDM Application Programming Guide Volume 1 



variations on a map 

The MSCPOS call is put into effect at the next MSPUT. After that it has no effect, 
and you must call MSCPOS again if you want to control the position at any later 
MSPUT. 

MSCPOS will affect only a field with a cursor adjunct character of 1. It will have 
no effect if you have no cursor adjuncts or if they are all set to blank. 

Static positioning: You specify a static position using the ATTRmUTE CURSOR 
command on the Field Attribute Definition frame of GDDM-IMD's map editor. The 
static specification is put in effect by an MSDFLD call or a write-type MSPUT call, 
as follows: 

• For a new page, a static cursor position is established by the first MSDFLD 
that refers to a map that has a static specification. 

• After an ASREAD (or other I/O operation), a static position is reestablished by 
the first MSDFLD or write-type MSPUT that refers to such a map. 

Rewrite- and reject-type MSPUT calls have no effect on the static cursor position. 

Default position: When a page is fll'st sent to the terminal, GDDM's default 
action is to put the cursor in the top left-hand corner of the screen. Subsequently, 
the default action is to leave the position of the cursor unchanged. 

Simple example using cursor adiuncts on output: 

For this example, CUSTNUM and INVOICE are both input fields. Cursor adjuncts 
have been defined for both. If an error is found in one of them, its cursor adjunct 
is set to 1 and that of the other is set to blank. A reject-type MSPUT call is then 
executed. 

DCL 1 CUSTNO, 

10 MESSAGE_FIELD 
10 CUSTNUM_CURSOR 
10 CUSTNUM 
10 INVOICE_CURSOR 
10 INVOICE 
CUSTNO_ASLENGTH 

/* . */ 
/* . */ 

CHAR(78), 
CHAR(I), 
CHAR(S), 
CHAR(I), 
CHAR(4), 
FIXED BIN(31,0) STATIC 
INIT(89); 

IF CUST_INVALID 
THEN DO; 
MESSAGE_FIELD 
CUSTNUM_CURSOR 
INVOICE_CURSOR = 

'ERROR IN CUSTOMER NUMBER FIELD'; 
, I' ; 

END; 

IF INV_INVALID 
THEN DO; 
MESSAGE_FIELD 
CUSTNUM_CURSOR = 
INVOICE_CURSOR 

END; 

, '. , 

'ERROR IN INVOICE NUMBER FIELD'; 
, '. , 
'1' ; 

CALL MSPUT(I,2,CUSTNO_ASLENGTH,CUSTNO); 

Chapter 18. Variations on a map 285 



does not apply to graphics·only devices such as plotters 

Input 

A typical cursor-positioning sequence: A typical application might use two 
maps, one to solicit a request from the operator, and a second one, displayed 
beneath or beside the first, to provide the response. It is assumed that both maps 
have had static cursor positions defined with ATTRIBUTE CURSOR commands, 
and have cursor adjuncts on their variable data fields. 

The first map might be displayed using an MSDFLD call followed by an ASREAD, 
without any variable data being added - in other words, without an MSPUT call 
being executed: 

CALL MSPCRT(l,-l,-l,'MAPGRPl'); 
CALL MSDFLD(l,-l,-l,'MAPl'); 
CALL ASREAD(l,TYPE,VALUE); 

/* Create new mapped page. */ 
/* Put first map onto page.*/ 

The cursor would be displayed in the static position defined by MAP!. 

The ASREAD would be followed by an MSDFLD call to add the second map to the 
page. One or two write-type MSPUT calls might then be executed to add variable 
data to one or both maps: 

CALL MSDFLD(2,-l,-l,'MAP2'); /* Put MAP2 onto the page.*/ 
CALL MSPUT(l,l,MAPl_ASLENGTH,MAPl_ADS); /* Write-type operation */ 

/* for MAPl */ 
CALL MSPUT(2,l,MAP2_ASLENGTH,MAP2_ADS); /* Write-type operation */ 

/* for MAP2 */ 
CALL ASREAD(l,TYPE,VALUE); 

Assuming that no cursor adjuncts had been set to 1 characters, the MSDFLD would 
cause the cursor to be displayed in the static position defined by the second map. 
A cursor adjunct character of 1 in the ADS for MAP1 would override the static 
positioning, and one in the ADS for MAP2 would override one in the ADS for 
MAP!. 

If the MSPUT for the first map preceded the MSDFLD for the second, like this: 

CALL MSPUT(l,l,MAPl_ASLENGTH,MAPl_ADS); /* Write-type operation 
/* for MAPl 

CALL MSDFLD(2,-1,-l,'MAP2'); /* Put MAP2 onto page 
CALL MSPUT(2,l,MAP2_ASLENGTH,MAP2_ADS); /* Write-type operation 

/* for MAP2 
CALL ASREAD(l,TYPE,VALUE); 

then the cursor would be replaced in the static position defined by the first map, 
assuming no cursor adjuncts had been set in either ADS. 

*/ 
*/ 
*/ 
*/ 
*/ 

You discover in which field the operator left the cursor by inspecting the cursor 
adjuncts after an MSGET. This call sets the adjunct of the field that contains the 
cursor to 1, and all the other fields to " ". With this facility, you can create menus 
from which the terminal operator makes a selection using the cursor. 

You can discover the position of the cursor within a field by executing an MSQPOS 
call, for example: 

286 GDDM Application Programming Guide Volume 1 



variations on a map 

CALL MSQPOS(POSN); 

The call returns the position of the cursor within the field that had its adjunct set 
to 1 by the last MSGET. To determine the exact cursor position, your program 
would execute an MSGET, inspect the adjuncts, and if one of them is set to 1, 
execute an MSQPOS. 

If the cursor was outside the map, or within a field that does not have a cursor 
adjunct, MSQPOS returns the value of-1. 

In some applications, the terminal operator positions the cursor under a field 
without typing data into it, for example to select from a menu. In such cases, the 
map must be designated a cursor receiver. You make the designation on the Map 
Characteristics frame of the map editor. 

Null characters 

GDDM-IMD pads default data with blanks to fill the field. If you specify no default 
data, GDDM-IMD fills the complete field with blanks. If you want to pad with 
nulls, perhaps to allow the operator to use the insert key, you must provide the 
field with a length adjunct. 

Here is an ADS containing two fields, the first of which has a length adjunct: 

DCL 1 CUSTOMER, 

10 CUSTNUM_LENGTH 
10 CUSTNUM 
10 INVOICE 
CUSTOMER_AS LENGTH 

FIXED BIN ( 15) , 
CHAR(S) , 
CHAR ( 4) , 
FIXED BIN(31,O) STATIC 
INIT(ll); 

On output, your program sets the adjunct to the length of data in the field, and 
GDDM pads the remainder of the field with nulls. If the operator modifies the 
field, then on input, GDDM sets the adjunct to the new length of the data. 

Light pen and CURSR SEL key 

If the terminal has a light pen, you can arrange for the operator to use it to select 
fields in a mapped display. Some terminals have a CURSR SEL key. This provides 
an equivalent function to the light pen. Instead of positioning the pen over a field 
and pressing it, the operator moves the cursor to the field and presses CURSR SEL. 

To allQw the operator to use the light pen (or CURSR SEL key) on a field, you 
must first give it the detectable attribute. This is a base attribute, and can be 
given to the field using the Field Attribute Definition frame of the GDDM-IMD map 
editor. Another way is for you to give the field a base attribute adjunct which your 
program can make detectable at execution time, as outlined in "Base attribute 
adjuncts" on page 283. 

You must specify that GDDM-IMD is to create selector adjuncts for detectable 
fields, because GDDM uses this adjunct to indicate which fields have been selected. 
You specify that adjuncts are required using the Field Naming or Application Data 
Structure Review frame of the map editor. 

Chapter 18. Variations on a map 287 



does not apply to graphics-only devices such as plotters 

In addition to making the fields detectable, you must put a designator character 
in the first position. These characters indicate the precise action that the terminal 
must take when a field is selected. A full description is given in GDDM Base 
Programming Reference manual. Here is a summary: 

? 

" " 

& 

Delayed detection. Nothing is transmitted to your program until the 
operator takes some other action that causes an interrupt, such as pressing 
ENTER, or selecting an immediate detection field. On selection, the? 
changes to a >. The operator can cancel this action by reselecting the field; 
the > then changes back to a ? 

Immediate detection without data. Selection causes an immediate 
transmission to your program, but without any data. 

Immediate detection with data. When the field is selected, the data in all the 
fields in the display is transmitted, as if the operator had pressed ENTER. 

The designator characters appear in the first character positions of the fields. You 
can put them into the fields as default data from the map, or variable data from the 
ADS. 

The operator may overtype the designator character if the field is unprotected. 
You could set the protection attribute on for all detectable fields. However, this 
would mean that the cursor could not be moved into the field using a tabbing key, 
which would inhibit the use of the CURSR SEL key. The solution to this problem 
is to make the field unprotected but ensure that the program writes the designator 
character into it at each ASREAD (or MSREAD). 

On input, the selector adjunct codes have the same meanings after light-pen 
detection as when the operator types in data. The MSGET call sets the selector 
adjuncts of any newly selected fields to 1 characters. For a field selected earlier, 
the code is a 3 character; and for a field that has not been selected or had data put 
into it, the code is " ". The 1 character is retained over a series of reject 
operations, as described in "Effect of reject operation" on page 277. 

If an immediate light-pen field contains the cursor when it is selected, its cursor 
adjunct, if it has one, will be set to a 1 character. 

Example of selection with cursor, light pen, and PF key 

The program in Figure 83 on page 290 creates a display from which the terminal 
operator must select one of four options. The format of the map it uses is shown in 
Figure 84 on page 291. All the text is constant data. 

There are three methods of selection: 

• With one of the four specified PF keys 

• Positioning the cursor under the selected option and pressing ENTER 

• With the light pen (or CURSR SEL key). The first character of each selectable 
field is a blank, which means immediate selection with no data. 

The map was designated a cursor receiver on the GDDM-IMD Map Characteristics 
frame. GDDM-IMD allows you to group similar fields into arrays, using the Field 
Naming frame of the map editor. This feature has been used for the four option 
fields in this example. Selector and cursor adjuncts were specified on the 

288 GDDM Application Programming Guide Volume 1 



variations on a map 

Application Data Structure Review frame, and these are shown in the ADS at 
I*A* I and I*B* I. An initial position was specified for the cursor, namely, under 
the one-byte field called DUMMY. 

The main loop of the program is executed once each time the operator makes a 
selection. The first statement of the loop, I*C* I, clears the ADS. This removes 
any message outstanding from a previous iteration, and sets the selector and cursor 
adjuncts to blank. This means that GDDM will use the map-defined cursor position 
and the default data for all the option fields. 

If the last input was incorrect, the error message is then copied into the ADS. 

The MSPUT, I*D* I, updates the page with all the changes resulting from I*C* I, 
and with the error message, if this is required. It specifies a write-type operation, 
so the blank designator characters specified in the map are put into the selectable 
fields before every execution of the ASREAD. This prevents any problems arising 
from the operator overtyping these characters. 

The SELECT statement, I*E* I, discovers which selection method the operator 
used, by testing the first ASREAD parameter, ATTYPE. If the value 0 is found at 
I*F* I, meaning that ENTER was pressed, the group of statements starting at 
I*G* I is executed. These find which of the cursor adjuncts contains a character 1. 
The program calls a subroutine to perform the requested function, or sets a flag if 
terminate was requested. If no option was selected, the error flag is set. 

If the value 1 for ATTYPE is detected at I*H* I, the second ASREAD parameter, 
called ATVAL, is tested by the group of statements at 1*1*1, to discover which PF 
key was pressed. 

If the value 2 for ATTYPE is found at 1* J* I, meaning that the light pen (or 
CURSR SEL key) was used, the selected field is discovered in the statements at 
I*K*I· 

If ATTYPE has some value other than 0,1, or 2, the operator must have pressed an 
invalid key, so the error flag is set at I*L* I. 

Chapter 18. Variations on a map 289 



does not apply to graphics-only devices such as plotters 

MAPEX08: PROC OPTIONS (MAIN); 

DCL 1 INITSEL, 

10 MESSAGE FIELD 
10 DUMMY -
10 OPTION ARRAY(4), 

15 OPTION SEL 
15 OPTION-CURSOR 
15 OPTION-

INITSEL_ASLENGTH 

/* Application Data Structure */ 

CHAR(78), 
CHAR ( 1), 

CHAR ( 1), 
CHAR(l), 
CHAR(30), 
FIXED BIN(31,O) 
INIT(207); 

STATIC 

/*A*/ 
/*B*/ 

DCL (ATTYPE,ATVAL,COUNT) FIXED BIN(31);/* AS READ arguments. */ 
DCL WRITE FIXED BIN(31) INIT(O); /* MSPUT write operation.*/ 
DCL PROCESS BIT(l) INIT('l'B); /* On until terminate chosen. */ 
DCL INVALID BIT(l) INIT('O'B); /* On if invalid option chosen*/ 

CALL FSINIT; 

CALL MSPCRT(l, 
-1, 
-1, 
'ACMEOOD6'); 

CALL MSDFLD(l, 
-1, 
-1, 
, INITSEL' ) ; 

DO WHILE (PROCESS); 

INITSEL = "; 
IF INVALID THEN DO; 

INVALID = 'O'B; 
MESSAGE_FIELD 

/* Initialize GDDM. 

/* Create mapped page 1, 
/* with GDDM-IMD specified 
/* page width and depth, 
/* for mapgroup ACMEOOD6. 

*/ 

*/ 
*/ 
*/ 
*/ 

/* Format an area of the 
/* at GDDM-IMD specified 
/* and column position, 
/* using map INITSEL. 

page,*/ 
row */ 

*/ 
*/ 

/* Until end option chosen. 

/* Clear the message field 
/* adjuncts. 
/* Error noted. 

*/ 

*/ /*C*/ 
*/ 
*/ 

'INVALID SELECTION' ; 
CALL FSALRM; 

END; 
CALL MSPUT(l, 

WRITE, 
INITSEL ASLENGTH, 
INITSEL); 

CALL ASREAD(ATTYPE, 
ATVAL' 
COUNT) ; 

CALL MSGET(l,O, 
INITSEL ASLENGTH, 
INITSEL); 

/* Sound the alarm. 

/* Add ADS data to map on 
/* with write operation, 
/* specifying ADS length 
/* and data area. 

/* Send mapped page to 
/* terminal and wait for 
/* operator input. 

/* Get response into ADS. 

Figure 83 (Part 1 of 2). Source code of MAPEX08 

290 GDDM Application Programming Guide Volume 1 

*/ 

page*/ /*D*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 

*/ 



variations on a map 

SELECT (ATTYPE)i 
WHEN (0) DOi 

IF OPTION CURSOR(l) = 'I' 
THEN CALL CPROCi 

ELSE IF OPTION CURSOR(2) 
THEN CALL DPROCi 

ELSE IF OPTION CURSOR(3) 
THEN CALL PPROC; 

/* Analyze interrupt type -
/* enter key, so inspect 
/* the cursor adjuncts 
/* to see which field 

*/ /*E*/ 
*/ /*F*/ 
*/ /*G*/ 
*/ 

'I' 

'I' 

ELSE IF OPTION CURSOR(4) 'I' 

/* (if any) the cursor 
/* was in. 

*/ 
*/ 

THEN PROCESS = 'O'B; 
INVALID = 'l'Bi ELSE 

ENDi 
WHEN (1) 

/* Not in a valid field. */ 
/* End cursor inspection.*/ 
/* PF key interrupt, so */ 

SELECT (ATVAL) i /* analyze the value */ 
WHEN (10) CALL CPROCi 
WHEN (11) CALL DPROCi 
WHEN (12) CALL PPROCi 
WHEN (3) PROCESS = 'O'Bi 
OTHERWISE INVALID = 'l'Bi 

/* returned in ATVAL. */ 

ENDi 
WHEN (2) DOi 

IF OPTION SEL(l) 'I' 
THEN CALL CPROCi 

ELSE IF OPTION SEL(2) = 'I' 
THEN CALL DPROCi 

ELSE IF OPTION SEL(3) = 'I' 

/* Invalid PF key chosen.*/ 
/* End PF key inspection.*/ 
/* Light pen, so analyze */ 
/* the selector adjuncts */ 
/* to see which field */ 
/* was selected. */ 

THEN CALL PPROCi 
PROCESS = 'O'Bi ELSE 

ENDi 
OTHERWISE 

ENDi 

/* End I-pen inspection. 
INVALID = 'l'Bi 

ENDi 

CALL FSTERMi 

%INCLUDE ADMUPINAi 
%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINMi 

END MAPEX08i 

/* 

/* 

/* Invalid interrupt. 
/* End select group. 
/* End DO WHILE loop. 

Terminate GDDM. 

GDDM entry declarations 

Figure 83 (Part 2 of 2). Source code of MAPEX08 

1 2 3 4 5 6 7 8 
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0 

I (lA C M E 0 R D ERE N T R Y(I I 
1- (II 
I I 
I SELECTION IS MADE BY : I 
+ + 
I - USING THE INDICATED PROGRAM FUNCTION KEY (PFKN) I 
I - POSITIONING THE CURSOR, THEN PRESSING ENTER I 
I - USING THE LIGHT PEN (OR 'CURSR SEL' KEY) I 
I I 

10 SELECT FROM : - (I 10 
I I 
I - PFK10 = ORDER PROCESSING (I I 
I - PFK11 = DISPLAY CUSTOMER FILE(I I 
I - PFK12 = PRINT CUSTOMER FILE (I I 
+ - PFK3 = TERMINATE PROGRAM (I + 
----+~---1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 

a 0 0 0 0 0 0 0 

Figure 84. Field definitions of map used by MAPEX08 

*/ 
*/ 
*/ 
*/ 

*/ 

*/ 

Chapter 18. Variations on a map 291 

/*H*/ 
/*1*/ 

/*J*/ 
/*K*/ 

/*L*/ 



does not apply to graphics-only devices such as plotters 

Alphanumeric input by PF key 

The terminal operator's input is sometimes one of a number of predetermined 
character strings. GDDM provides a facility to save the operator having to type 
such strings. It is called AID translation. Its effect is to put a character string 
into a field when a PF key, or any other interrupt-generating key, such as a PA or 
the ENTER key, is pressed. In other words, GDDM translates an attention 
identifier (AID) into a character string. 

You do all the necessary work when you define the map_ Full details are given in 
GDDM Interactive Map Definition. Briefly, you first define one or more tables that 
associate character-string values with selected PF keys. You do this using the 
GDDM-IMD table editor. Then, using the Application Data Structure Review 
frame of the map editor, you specify a table or tables to be associated with one or 
more fields in the map. 

The receiving field for an AID translation string need not appear on the screen. 
You can simply add it to the ADS using GDDM-IMD's ADS Review frame. 

When the map is displayed on the screen, and the operator presses a PF key, 
GDDM looks up each table specified for the map, to check if a character string has 
been specified for that PF key. Each field for which such a table has been specified 
has the associated character string inserted into it by GDDM. 

The result is the same as if the operator had typed the character strings into the 
fields. The application has no way of telling that AID translation was used. Any 
selectors, and the parameters of ASREAD, return the same values as if the operator 
had typed the data into the field. 

If your program needs to discover which PF key was pressed, it should inspect the 
values returned in the parameters of ASREAD. Whether or not AID translation 
was in use, these indicate which key caused the interrupt that satisfied the 
ASREAD. More information is given in "Send output and await reply using call 
ASREAD" on page 13. 

In addition to PF keys, you can set up AID translation for any terminal facility 
that causes an interrupt, such as the CLEAR key or a magnetic card reader. The 
method is the same as for PF keys. 

An example of using AID translation is shown in Figure 85 on page 293. It is the 
same program as the one shown in Figure 73 on page 253, except that after 
receiving correct input, it redisplays the map, instead of terminating. 

To terminate, the operator presses PF3 or PF15. An AID table was set up using the 
GDDM-IMD table editor, in which the character-string value END was associated 
with PF3 and PF15. Using the ADS Review frame of the map editor, this table was 
associated with the field called USER_FIELD. The result is that either PF3 or 
PF15 will put the character string END in this field. No field corresponding to 
USER_FIELD appears on the screen. 

292 GDDM Application Programming Guide Volume 1 



MAPEX09: PROC OPTIONS (MAIN); 

DECLARE 1 CUSTINV, 

10 USER FIELD 
10 MESSAGE 
10 CUSTNO 
10 INVNO 
ORDER1_ASLENGTH 

variations on a map 

/* Application Data Structure */ 

CHAR(3) , 
CHAR ( 78), 
CHAR ( 5) , 
CHAR(4), 
FIXED BIN(31,O) STATIC 
INIT(90) ; 

DECLARE (ATTYPE,ATVAL) FIXED BINARY(31,O); 

CALL FSINIT; 

CUSTINV 

LOOP: 

" . I 

CALL MSREAD('ACMEOlD6', 
'ORDERl' , 
ORDER1_ASLENGTH, 
CUSTINV, 
ATTYPE, 
ATVAL) ; 

IF USER FIELD='END' 
THEN GO TO FINi 

INIT(90); 
/* Initialize GDDM. 

/* Clear the ADS 

/* Use MSREAD to display the 
/* map, and wait for input. 
/* Mapgroup. 
/* Map. 
/* Specify length of ADS. 
/* Specify name of ADS. 
/* Set to attention type ... 
/* ... and value by GDDM 

/* If PF key 3 or 15 pressed, 
/* end the program. 

*/ 

*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 

IF VERIFY(CUSTNO,'Ol23456789') = 0 /* Are CUSTNO and 
& VERIFY(INVNO,'0123456789') = 0 /* INVNO numeric? 

*/ 
*/ 

THEN DO; 

/* 
/* 
/* 

*/ 
*/ 
*/ 

/* Process CUSTNO and INVNO */ 

MESSAGE = , 'i /* Clear any existing message */ 
END; 
ELSE MESSAGE = 'INVALID NUMBER'; /* If CUSTNO or INVNO not */ 

/* numeric, set up message.*/ 

GO TO LOOP; 

FIN: 

CALL FSTERMi 

%INCLUDE ADMUPINF; 
%INCLUDE ADMUPINMi 

END MAPEX09i 

Figure 85. Source code of MAPEX09 

Highlighting, color, and symbol sets 

/* Redisplay the map and data.*/ 

/* Terminate GDDM. 

/* GDDM entry declarations. 

*/ 

*/ 

Often, and particularly when the operator has made a mistake, it is desirable to 
highlight a field or change its color. You can create adjuncts that will allow your 
application to do this. As for other adjuncts, you create them using the Field 
Naming or Application Data Structure Review frame of GDDM-IMD's map editor. 
You can also create adjuncts to control the programmed-symbol set that fields use. 

You can brighten a field by setting its intensity attribute, using the base attribute 
adjunct, as outlined in "Base attribute adjuncts" on page 283. You can make it 
blink, or display reverse video or underscored characters, by the extended 

Chapter 18. Variations on a map 293 



does not apply to graphics·only devices such as plotters 

highlighting adjunct. You can change its color by the color adjunct. You can 
change its symbol set by the programmed symbol set adjunct, commonly called the 
PS adjunct. 

In some circumstances, you may get undesirable visual effects with reverse video or 
underscored fields. Large areas of the screen may appear in reverse video or be 
underscored while the display is being built up. The remedy is to use character 
attributes (see "Character attributes" on page 295), instead of the field attributes 
described here. 

All three types of adjunct are two bytes long, and you use them in the same way as 
the base attribute adjunct. The codes you can put into the first byte are the same 
as for the base attribute adjunct, as described in "Protecting fields from the 
terminal operator" on page 282. Briefly,"" (a blank character) or a 3 character 
means leave the attribute unchanged; a 1 character means use the attribute defined 
in the second byte; and a 2 character means use the map-defined attribute, or, if 
none was specified, the GDDM-IMD defined default. 

The difference between a write operation and a rewrite (or reject) is the same as for 
the base attributes. A write resets the extended highlighting, color, and PS for all 
alphanumeric fields in the mapped field, before the adjuncts are interpreted. It 
resets the attributes to their map-defined values, or the GDDM-IMD defined 
defaults where none were specified in the map. Rewrite and reject do not reset the 
attributes before the adjuncts are interpreted. 

You set the second byte of the extended highlighting attribute to one of these 
values: 

" " 
1 
2 
4 

(Blank character) or hexadecimal '00' - no extended highlighting 
Blinking 
Reverse video 
Underscore. 

The possible values for the second byte of the color adjunct are as follows: 

o Default (green on color displays, black on printers) 
1 Blue 
2 Red 
3 Pink 
4 Green 
5 Turquoise 
6 Yellow 
7 Neutral (white on display, black on printers). 

The values are the same as for the ASFCOL call. Notice, though, that in ASFCOL 
the parameter is a fullword integer, whereas the adjunct is a character. 

You set the second byte of the PS adjunct to the identifier of the required symbol 
set. This must contain image symbols of the same size as the device's hardware 
cells. 

The symbol-set identifier can be assigned using the PS Management frame of the 
GDDM-IMD map group editor. The symbol sets specified on this frame are loaded 
by GDDM when you execute an MSPCRT call specifying the mapgroup. Or you 
can load a symbol set dynamically and assign the symbol-set identifier, using the 
PSLSS call, which is described in "Symbol sets for. alphanumerics" on page 221. 
The information given in that section about loading symbol sets, device suffixes, 

294 GDDM Application Programming Guide Volume 1 



variations on a map 

and the use of PS stores for graphics applies to mapping, as well as to procedural 
alphanumerics. 

On input, the selector bytes of all three types of adjunct are set to 3. 

Here is an example of using a color adjunct to draw the operator's attention to 
invalid input. At the same time, a message is put out. The input is in the field 
called OPTION. 

DCL 1 SELN, 

10 MESSAGE_FIELD SEL 
10 MESSAGE_FIELD 
10 OPTION_SEL 
10 OPTION_COL_SEL 
10 OPTION_COL 
10 OPTION 
SELN_ASLENGTH 

DCL RED CHAR(l) INIT('2'): 

/* . */ 
/* . */ 

= '1': 

CHAR (1) , 
CHAR(78) , 
CHAR(l), 
CHAR(l), 
CHAR(l), 
CHAR(l), 
FIXED BIN(31,0) STATIC 
INIT(83): 

MESSAGE_FIELD_SEL 
MESSAGE_FIELD 
OPTION_COL_SEL 
OPTION_COL 

= 'INVALID OPTION - PLEASE CORRECT': 
= '1': 
= RED: 

CALL MSPUT(l,l,SELN_ASLENGTH,SELN): 

Character attributes 

In addition to setting the attributes for a field as a whole, you can set the color, 
highlighting, and symbol-set attributes for individual characters within the field. 

First, you create one copy of the ADS for each type of attribute, in addition to the 
one that holds the variable data. To control just the colors of individual 
characters, for instance, you would need one additional copy of the ADS. To 
control all possible character attributes, you would need three. 

In each field of each of these ADSs, you can put a string of attribute characters. 
The string has the same form as the third parameter of the ASCHLT, ASCCOL, and 
ASCSS calls, used to set character attributes in procedural alphanumeric calls. 
These "are described in "Character attributes" on page 81. Each attribute 
character specifies the attribute that the data character in the corresponding 
position of the field is to have. A blank attribute character means use the field 
attribute. Here is an example: 

DATA. YEAR = '1982'; 
COLOR.YEAR =' 22'; 

DATA is the name of the ADS that holds the variable data, and COLOR of the one 
that holds the color character attributes. The ADSs are identical, apart from these 
names. The two statements will put the characters 1982 into the display. 19 will 
have the color defined by the field attribute, and 82 the color 2, which, on a 3279 
display, is red. 

Chapter 18. Variations on a map 295 



does not apply to graphics-only devices such as plotters 

Suppose there is a further ADS, called HIGHL, that holds the highlighting 
attributes. Then the following statement will assign type 1 highlighting to the 
character 2, that is, make it blink: 

HIGHL.YEAR =' 1'; 

Mter assigning the character attribute string to an ADS, you must execute an 
MSPUT call to update the page. The second parameter of MSPUT indicates which 
type of attribute the ADS contains: a 3 character means highlighting, a 4 means 
color, and a 5 means PS. Typical calls would be: 

CALL MSPUT(l,O,DATA_ASLENGTH,DATA); /*Add variable data to map.*/ 
CALL MSPUT(1,3,DATA_ASLENGTH,HIGHL); /*Add highlight char. attr.*/ 
CALL MSPUT(1,4,DATA_ASLENGTH,COLOR); /*Add color character attr.*/ 

The data-assigning MSPUT (type 0, 1, or 2) clears all character attributes. It must 
therefore be executed before any attribute-setting MSPUT calls (type 3, 4, or 5). 

You can simplify the declarations of the ADSs by putting them all into an array of 
structures (in PL/I terms). For instance: 

DCL 1 EXAMPADS(4), 
\INCLUDE EXAMPMAP; 

YEAR(1) = '1982' ; 
CALL MSPUT(1,O,EXAMPMAP_ASLENGTH,YEAR(1»; 

YEAR(2) = , I' ; 
CALL MSPUT(1,3,EXAMPMAP_ASLENGTH,YEAR(2»; 

YEAR(3) = , 22' ; 
CALL MSPUT(1,4,EXAMPMAP_ASLENGTH,YEAR(3»; 

/* Add data 
/* to page_ 

/* Make last 
/* character blink. 

/* Change last two 
/* characters to red 

The fourth structure would be used for PS character attributes. 

You do not need separate copies of the ADS for the character attributes. You 
could reuse the one used for the variable data, like this: 

DCL 1 EXAMPADS, 
\INCLUDE EXAMPMAP; 

YEAR = '1982'; 
CALL MSPUT(1,O,EXAMPMAP_ASLENGTH,YEAR); 

YEAR =' 1'; 
CALL MSPUT(1,3,EXAMPMAP_ASLENGTH,YEAR); 

YEAR =' 22'; 
CALL MSPUT(1,4,EXAMPMAP_ASLENGTH,YEAR); 

*/ 
*/ 

*/ 
*/ 

*/ 
*/ 

The ADSs that you use for character attributes can contain adjuncts of all types. 
Selector adjuncts control the fields' character attributes. The codes are similar to 
those that you put into the ADS containing the data. They are: 

A " " (a blank character) 

A 1 character 

A 2 character 

296 GDDM Application Programming Guide Volume 1 

Ignore the character-attribute string; in other 
words, leave the character attributes unchanged. 

Take the character attributes from the ADS. 

Use all-blank character-attribute characters. 
This will cause the field attributes to apply to 
all characters. 



variations on a map 

Type 3, 4, and 5 MSPUT calls act in a similar way to a type 1 (rewrite) call: there is 
no resetting of character attributes before the selector adjuncts are interpreted. 

Other adjuncts have exactly the same effects as in a rewrite operation. Base 
attribute adjuncts control the base field attributes, cursor adjuncts control the 
position of the cursor, and so on. 

Input character attributes 

Character attributes can be changed by the operator. To get information about 
these changes, you must first enable the input of character attributes to the 
current page by executing a CALL ASMODE(2) statement. You can then set the 
second parameter of the MSGET call to tell GDDM to return information about 
character attributes in the ADS. The permissible values of this parameter and their 
meanings are: 

A 0 character 

A 3 character 

A 4 character 

A 5 character 

Supply information about the data. All the 
previous examples of MSGET calls in this guide 
use this value. 

Supply information about highlighting character 
attributes. 

Supply information about color character 
attributes. 

Supply information about PS character 
attributes. 

A type 3, 4, or 5 MSGET call will update the specified ADS with the current 
character attributes of all variable data characters. It will also set adjuncts in the 
same way as a type 0 MSGET. The meanings of selector adjunct codes on input 
are, for each type of attribute: 

A " " (a blank character) 

A 1 character 

A 3 character 

Folding and justification of input 

No character attributes of this type have been 
set for this field. 

The field has character attributes of this type 
that were set by the ope:t;ator in the last 
ASREAD. 

The field has character attributes of this type, 
and they were set either in an earlier ASREAD 
or by the program. 

Your programs will be simplified if you can assume that a field contains only 
uppercase letters, and has no leading blanks or no trailing blanks. 

When you define a field to GDDM-IMD, you can specify that GDDM is to fold 
lowercase letters to uppercase on input. Similarly you can specify that the data in 
the field is to be either left- or right-justified. Left-justification removes leading 
blanks, and right-justification the trailing ones. 

You specify folding and justification on the Field Naming or Application Data 
Structure Review frame of GDDM-IMD's map editor. 

Chapter 18. Variations on a map 297 



does not apply to graphics·only devices such as plotters 

Mapping and graphics 

You can display mapped data and graphics together, and you can use GDDM's 
interactive graphics facilities on mapped pages. There are two ways of putting 
graphics onto mapped pages. 

One way is simply to define a graphics field on a mapped page using the GSFLD 
call (see "The graphics field" on page 96). If you use this method, it is inadvisable 
to let any graphics overlap a mapped area of the page, because the results are 
unpredictable. 

The other way is to specify to GDDM-IMD an area for graphics within a map, 
called a graphic area. After an MSDFLD call spe'cifying such a map, the graphic 
area becomes the graphics field. 

You define the graphic area on the Field Definition frame of GDDM-IMD's map 
editor. You enter an AREA command, specifying the graphic area's size and 
position in rows and columns. GDDM·IMD will show the graphic area by filling it 
with % signs, or some other specified symbol. 

Whatever the method of creation, GDDM will never allow more than one graphics 
field on a page. 

There will always be a column of blank spaces one character wide down the 
left-hand edge of a graphics area. This is because each row of the graphics area 
starts with an attribute byte, to prevent the attributes of any preceding 
alphanumeric fields from interfering with the graphics. It has the effect of making 
the width of the graphics field one character less than that specified to 
GDDM-IMD. 

In a dual-screen configuration of the IBM 3270-PC/GX work station, the graphics 
appear on the graphics screen, and the maps appear on the alphanumerics screen. 
The graphics occupy the same part of the screen as they would in a single-screen 
configuration. On the IBM 5080 graphics system, the graphics field fills the 
graphics monitor, and the maps appear on the 3270 screen. 

Remember that the depth and width of the graphic area are specified in rows and 
columns, not physical dimensions. An equal number of rows and columns will not 
give a square graphic area. This may lead to your graphics having unexpected 
proportions: circles appearing as ovals and squares as rectangles. One solution is 
to create a uniform set of world coordinates by issuing a GSUWIN call before 
opening any graphics segment: 

CALL GSUWIN(-lOO.O,lOO.O,-lOO.O,lOO.O); 

More information is given in "Coordinate system" on page 19 and "Chapter 9. 
Hierarchy of GDDM concepts" on page 89. 

Graphics cannot be used with MSREAD, because this call creates, transmits, and 
discards a page without providing an opportunity for the program to create 
graphics on it. 

298 GDDM Application Programming Guide Volume 1 



variations on a map 

Example of graphics in a mapped display 

The program shown in Figure 86 provides the terminal operator with a menu from 
which a shape and a color can be selected. The program draws the chosen shape in 
the chosen color. The format of the map it uses is shown in Figure 88 on page 302. 
A typical display is shown in Figure 87 on page 301. 

The program uses several calls, marked /*A* /, that refer to the graphics concepts 
of segment and picture space. The concepts are described in "Chapter 9. 
Hierarchy of GDDM concepts" on page 89. 

MAPEXll: PROC OPTIONS (MAIN)i 

DCL 1 DRAW, 

10 MESSAGE_FIELD_SEL 
10 MESSAGE FIELD 

/* Application Data Structure */ 

CHAR (1), 

10 SHAPE ARRAY(3), 
15 SHAPE SEL 
15 SHAPE-

10 COLOR ARRAY(?), 
15 COLOR SEL 
15 COLOR

DRAW_AS LENGTH 

DCL (ATTYPE,ATVAL,COUNT) FIXED BIN(31)i 
DCL OPERATION FIXED BIN(31)i /* 
DCL WRITE FIXED BIN(31) INIT(O)i /* 
DCL REJECT FIXED BIN(31) INIT(2)i /* 
DCL SHAPE_CHOSEN FIXED BIN(31)i /* 
DCL COLOR_CHOSEN FIXED BIN(31)i /* 
DCL ERROR FIXED BIN(15) INIT(O)i /* 
DCL 1 MSG(4) CHAR(30) INIT( /* 

'NO SELECTIONS MADE - RETRY', 
'CONFLICTING SELECTIONS - RETRY', 

'SHAPE NOT CHOSEN - RETRY', 
'COLOR NOT CHOSEN - RETRY')i 

DCL (I,J) FIXED BIN(15)i /* 

CHAR (30), 

CHAR(I), 
CHAR(ll) , 

CHAR(I), 
CHAR(12)i 
FIXED BIN(31,O) STATIC 
INIT (158) i 

/* ASREAD arguments */ 
Type of output required */ 
MSPUT write operation */ 
MSPUT reject operation */ 
Identifies chosen shape */ 
Identifies chosen color */ 
Indicates type of error */ 
Error messages */ 

Work variables 

CALL FSINITi 

CALL MSPCRT(l, 
-1, 

/* Initialize GDDM 

/* Create page using 

*/ 

*/ 

*/ 
*/ 
*/ 
*/ 

-1, 
'DRAWD6')i 

CALL MSDFLD(I, 
-1, 
-1, 
'DRAW') i 

DRAW = "i 
OPERATION = WRITEi 

.CALL GSPS(l,l) i 

CALL GSSEG(l)i 

PUT MAP: 
CALL MSPUT(I, 

OPERATION, 
DRAW_ASLENGTH, 
DRAW) i 

/* GDDM-IMD defined page 
/* width and depth 
/* for mapgroup DRAWD6. 

/* Format an area of the */ 
1* page at GDDM-IMD defined*/ 
/* row and column */ 
/* for map draw. */ 

/* Clear ADS. */ 
/* Initially use write. */ 

/* Set picture space aspect*/ 
/* Ratio to 1:1 */ 
/* Define graphics segment.*/ 

/* Add data to map */ 
/* with preset operation, */ 
/* specifying the ADS */ 
/* length & the data area. */ 

Figure 86 (Part 1 of 3). Source code of MAPEXll 

Chapter 18. Variations on a map 299 

/*A*/ 

/*A*/ 



does not apply to graphics-only devices such as plotters 

CALL ASREAD(ATTYPE, 
ATVAL, 
COUNT) ; 

IF ATTYPE = 1 
& (ATVAL = 3 I ATVAL = 15) 

THEN GO TO EXIT; 

CALL GSCLR; 
CALL GSSEG(l); 

IF COUNT = Q THEN DO; 
ERROR = 1; 
GO TO REJECT MAP; 

END; -
CALL MSGET(l,Q, 

DRAW_ASLENGTH, 
DRAW) ; 

MESSAGE_FIELD SEL 

DO I = 1 TO 3; 

, '. , 

IF SHAPE SEL(I) 'I' THEN 
DO J =-1+1 TO 3; 

IF SHAPE SEL(J) = 'I' 
ERROR ~ 2; 
GO TO REJECT MAP; 

END; -
END; 
SHAPE CHOSEN = I; 
GO TO-CHECK_COLOR; 

END; 
END; 
ERROR = 3; 
GO TO REJECT_MAP; 

CHECK COLOR: 

DO; 

THEN 

/* Send page to terminal & */ 
/* wait for operator input.*/ 

/* PF key 3 or 15 pressed, */ 
/* so terminate. */ 

/* Clear the segment. */ 
/* Define graphics segment.*/ 

/* No data input - error. */ 

/* Get data from map. */ 
/* Length of data area. */ 
/* Data area. */ 

/* Remove any error message*/ 

/* Check if shape chosen. */ 
/* Shape has been chosen. */ 
/* Is it unique? */ 

DO; /* No, so indicate error. */ 

/* Store chosen shape. */ 

/* No shape chosen. */ 

DO I ~ 1 TO 7' /* 
IF COLOR SEL(I) = 'I' THEN DO; /* 

Check if color chosen. 
Color has been chosen. 
Is it unique? 

*/ 
*/ 
*/ 
*/ 

DO J =-I+1 TO 7; /* 
IF COLOR SEL(J) = 'I' THEN DO; /* 

ERROR ~ 2; 
No, so indicate error. 

GO TO REJECT MAP; 
END; -

END; 
COLOR CHOSEN = I; 
GO TO-PUT GRAPHICS; 

END; -
END; 
ERROR = 4; 
REJECT MAP: 
MESSAGE FIELD SEL = 'I'; 
MESSAGE-FIELD-= MSG(ERROR); 
ERROR =-0; 
OPERATION = REJECT; 
DO I = 1 TO 3; 

IF SHAPE SEL(I) ~= 'I' 
THEN SHAPE SEL(I) = '2'; 

END; -
DO I = 1 TO 7; 

IF COLOR SEL(I) ~= 'I' 
THEN COLOR SEL(I) = '2'; 

END; -
GO TO PUT_MAP; 

/* Store chosen color. */ 

/* No color chosen. */ 
/* Set up reject of map. */ 
/* Set selector adjunct. */ 
/* Move in message. */ 
/* Clear indicator. */ 
/* Specify reject operation*/ 
/* Set the selector */ 
/* adjuncts to take */ 
/* map-defined values. */ 

/* Set the selector 
/* adjuncts to take 
/* map-defined values. 

*/ 
*/ 
*/ 

Figure 86 (Part 2 of 3). Source code of MAPEXll 

300 GDDM Application Programming Guide Volume 1 

/*A*/ 
/*A*/ 



PUT GRAPHICS: 
CALL GSCOL(COLOR CHOSEN); 
CALL GSAREA(O); -
IF SHAPE CHOSEN = 1 THEN DO; 

CALL GSMOVE(2 ,S O) ; 
CALL GSARC(SO , SO,360); 

END ; 
ELSE IF SHAPE CHOSEN = 2 

CALL GSMOVETO , O); 
CALL GSLINE(lOO,O); 
CALL GSLINE(lOO , lOO) ; 
CALL GSLINE(O , lOO); 
CALL GSLINE(O,O); 

END; 
ELSE DO; 

CALL GSMOVE(O,O); 
CALL GSLINE(lOO,O); 
CALL GSLINE(SO,lOO); 
CALL GSLINE(O , O); 

END; 
CALL GSENDA; 
OPERATION = WRITE; 
SHAPE_SEL = I '; 

COLOR_SEL = I '; 

GO TO PUT_MAP; 
EXIT: 
CALL FSTERM ; 
%INCLUDE ADMUPINA; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPING; 
%INCLUDE ADMUPINM; 
END MAPEXll; 

THEN DO; 

variations on a map 

/* Create chosen shape . */ 
/* Set color. */ 
/* Start an area. */ 
/* Circle selected . */ 
/* Move to center. */ 
/* Draw arc. */ 

1* Square selected. */ 
1* Move to initial position*/ 
1* Draw */ 
/* sides */ 
/* of */ 
/* square. */ 

/* Triangle selected . */ 
/* Move to initial position*/ 
1* Draw */ 
/* three */ 
/* lines . */ 

/ * Close the area . */ 
/ * Specify write operation.*/ 
/* Clear selector */ 
/* adjuncts. */ 
/* Redisplay the panel. */ 

/* GDDM entry declarations . */ 

Figure 86 (Part 3 of 3). Source code of MAPEXll 

Figure 87. Typical display by MAPEXll 

Chapter 18. Variations on a map 301 



does not apply to graphics·only devices such as plotters 

1 2 3 4 5 6 7 8 
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0 

I--------------------------'Mapping with Graphics Area#--------------------------I 
1-' 1 

1 Select the shape to be drawn and 1 
1 the color It Is to be drawn In using 1 
+ the LIGHT PEN (or CURSR SEL key). + 
1 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 
1 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZIZZIZIIZIZIIIIII 
I'Shape :# IZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
1 IIIIIIIIIZZIZZZIZZZZZZZZZZZZZZZZZZZZZZZZZIZZZ 

10 -7 Circle # IIIIZZZZZZZZZZIZZZIZIIZZZIIIZZZIIIZIIZZZZIZZZ 
1 -7 Square # ZZZZIIIIIIIIZIIIIIZZZZIIZZZZIIIZZZZIIIZIIIIIZ 
I -7 Triangle' ZZZZZZZZIIIZZZZZZZZZZZZZZZZZZZZZZZZZZZZZIIIZZ 
1 ZZZZZZZZZIIZZZZZZZZZZZZZZZZZZZZZZIZZZZZZZZZZZ 
1 ZZZIZZZZIIIZZIZZZIZZZIIIIZZZIIZZZZZIIIZIIIZIZ 
+'Color :, ZZZZZZIZZIIIIIIIIIZZZZIIIZZIIIIZZZZIZZZZZIZZZ 
1 ZZIIZZZZZZZZIIIIIZZZZZIZZZIIIZZZZIIIZZZIIIIZI 
1 -7 Blue IZIIZZZIIZIIIIZIIZZZIZZIIZIIIZZIZIZZIIIIZIZZZ 
1 -7 Red ZIZZZZZZZZZZZZIZZZZZIZZZZZIZZZZIZIZZZZZZIZZZI 
1 -7 Pink IZZZIIIIZIIIIIIIZIZIIIIIIIZIIZIZIZIIIZIZZZZZZ 

20 -7 Green ZIIIIIIIIIIIIIIIZIIIIIIIIIIIIZIIZIIZIIIIIIIII 
1 -7 Turquoise IIIIIZZIIIZIIIIZIIIZZIZZIIIIZZIIIIIIIIIIIIIII 
1 -7 Yellow IIIZZIIZIIZZZIIIIZZIZZIZZZIIIIZZZZIZZIZZIIZII 
1 -7 White IZIZZIIIZZZZIZZZZZZIIZZZIIIZZZIZZZZZZZZZZIZZZ 
1 ZZZZZIZZZZZZZZZZZZZZZZZZlzzzzizzzzzzZZZZZZZZZ 
+ IIZIIZZIIZZZZZIZZIIZIIZZIZIIIIIIZIIIIIIIZZIIZ 
IUse PF3/15 to End IIIIZZZZIIIIIIZZIIIIIIIIZIIIIIIZZIZIIIIIIZIZZ 
1 ZZIZIZZZZZZIZZZZZZIZZZZIIZZZZZIZZZZZZZZZZZZZZ 
1 ZZZZZZIIZZZZIZZZZZZZZIZZIIIIZIIZZIIIIZZZZZZIZ 
I IIIIIIIZIIIIZZIIIIZIIIZIIIIIIIIIIIIIIZIZZZZIZ 

30 ZZIIIZIZZZIZZIZIZZZZZIZIZZZIIZZZIZZZZIIZZZZZI 
1 
1 1 
----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8 

o 0 0 0 0 0 0 0 

Figure 88. Field definitions of map used by MAPEXll 

302 GDDM Application Programming Guide Volume 1 



Part 4. Image processing 

Part 4. Image processing 303 



Chapter 19. Image basics 

Introduction 

This chapter introduces the basic concepts of GDDM image processing and 
illustrates them with small sections of sample code. 

The main use of GDDM image processing is in electronic document handling, often 
called the "paperless office." The document could be, for example, an office form of 
printed text complete with handwritten signature and annotation, a monochrome 
photograph, a service manual page, or an engineering drawing. 

Three devices that cater specifically for image processing are the IBM 3117 and 
3118 Scanners and the IBM 3193 Display Station: 

• The 3117 is a flat-bed scanner. The 3118 has a roller-feed mechanism. Both 
devices scan a document and convert it into electronic image data. They can 
each be attached to the 3193 terminal. 

• The 3193 terminal not only displays image data on a screen, but can also carry 
out some image processing itself, taking some of the load off the host processor. 

In this chapter and the next, the 3118 is the scanner assumed as the input device, 
and the 3193 the output device, except where stated otherwise. 

Another device primarily for image processing is the IBM 4224 Printer, which can 
print image data in addition to alphanumerics and graphics. 

GDDM also supports image functions on a range of other devices. These are 
covered in "Device variations" on page 363. 

Chapter 19. Image basics 305 



Bee end of next chapter for device variations 

GDDM/Device 
Storage 

Device 
ima'f-e=----":L-----. 

Your 
Program 

Device 
image 

Program 
storage 

<r--_---!.1.---__ > 

Figure 89. Image processing 

Application 
image 

Stored 
GDDM 
image 

Non-GDDM 
image 

The diagram in Figure 89 introduces images and transfer operations: 

GDDM 
Storage 

Auxiliary 
Storage 

Images are pictures made up of two-dimensional arrays of dots called pixels. 
GDDM supports images comprising monochrome pixels that are either on or off. 
These are bi-Ievel images. in which each pixel is represented by a single bit. which 
is set to 0 for" black" and 1 for "white." 

There are three kinds of images in GDDM - device images, application images, 
and stored images: 

Device images are those image arrays associated with an image scanner 
(input), or display, or printer (output). They are usually held in main storage. 
but can also exist in the 3193's own storage, or in the 3117 or 3118. 

Application images are intermediate image arrays in main storage, 
independent of any device. An application image can be a copy of some 

306 GDDM Application Programming Guide Volume 1 



image basics 

processed (for example, scaled) form of the device image captured by a scanner, 
or it may have been created or accessed by a program without reference to a 
scanner device. It may be an image in preparation for eventual display or 
printing. 

Stored (GDDM) images are the result of transferring image data from either a 
device or application image to disk storage. Once you have stored image data, 
you must restore it to a device or application image before you can manipulate 
it. Stored images are sometimes referred to as GDDM image objects. 

Device and application images are identified by fullword integers. The calls in the 
image application programming interface refer to images using these identifiers. In 
between capturing your image data, and displaying or storing it, you do most of 
your image processing using application images. Stored images are identified by 
8-character names. 

You can also hold images in your own non-GDDM image file format. You can read 
these files into your program using methods that are dependent on your 
programming language and subsystem. You can then use the image calls to 
transfer the image data from your program into a device or application image, and 
then, if you want, into a stored GDDM image. You could also do the revel1le 
operation, transferring image data from a device or application image into your 
program, using image calls, and writing it to files in your own format. 

Transfer operations, as illustrated in Figure 89 on page 306, are the copying of 
GDDM image data from: 

1. A device image to an application image, or the converse 

2. A device image to another device image 

3. An application image to another application image 

4. Auxiliary storage to a device or application image, or the converse 

5. A device or application image to storage arrays in your program, or the 
converse. 

The image from which data is fetched is called the source image, and the image to 
which data is sent is called the target image. 

The first four operations in the above list are described in this chapter. The fifth 
operation is described in "Transferring images into and out of your program" on 
page 347 in the next chapter. 

In the course of a transfer operation, a projection is applied to the transferred 
image by GDDM. A projection is an image manipulation procedure that you 
specify by one or more transforms. Transforms are the edit operations applied to 
the image data during the transfer. Specifying the identity projection simply tells 
GDDM that no editing is to take place, and so a simple copy operation results. 
Projections can be saved and restored. 

When a projection is applied in a transfer operation, the source image is 
unchanged, unless the target and source are the same image. Later sections in this 
chapter describe projections and transforms in more detail. 

Chapter 19. Image basics 307 



see end of next chapter for device variations 

How to scan, display, and save an image 

The following sample program scans a 6-inch by 4-inch document on a 3118, to 
produce a scanner-device image. It then transfers the captured data to an 
application image, using the identity projection. During the transfer operation, the 
captured image is displayed on a 3193 so that an operator can view it. If the image 
on the display looks all right to the operator, it is saved on auxiliary storage. 

The program is written with the assumption that the document to be scanned is in 
the feed tray of the scanner and there are no conditions to prevent a scan from 
taking place. "Querying image devices" on page 331, describes some of the scanner 
error conditions that can arise, and what you can do about them. 

IMPROG1: PROC OPTIONS(MAIN); 
DCL (ATTYPE,ATTVAL,COUNT) FIXED BIN(31); 
CALL FSINIT; 
CALL ISESCA(l)i 1* Echo scanner image on display screen*II*A*1 

1* image-id 
CALL IMACRT( -1, 

CALL ISLDE (-1) i 

h-pixels 
1440, 

1* 
1* 
1* 
1* 
1* 

v-pixels type res unit h-res v-res 
960, 0, 1, 0, 240.0,240.0)i 

... Creates a 1440 by 960 pixel image 
with defined resolution of 
240 pixels per inch, 
giving a 6 by 4 inches picture 
Load scanner paper 

1* source-id target-id projection-id 
CALL IMXFER( -1, 12, 0); 

1* Scan the image and transfer it to 
1* application image 12 
1* (echoing it on display screen) 

CALL IMADEL(-l)i 1* Delete scanner image & eject paper 
CALL ASREAD(ATTYPE,ATTVAL,COUNT); 1* Read input from keyboard 
IF ATTYPE;1 THENi 1* Exit if any PF key pressed 

ELSE 1* Save the scanned image 
DOi 

*1 
I*B*I 

*1 
*1 
*1 
*1 
*II*C*I 

*/ 
/*D*I 

*/ 
*/ 
*/ 
*/I*E*I 
*//*F*I 
*/ 
*/ 

1* im-id proj-id name count description protect*/ 
CALL IMASAV(12, 0, 'MYIMAGE', 16, 'CLIENT SIGNATURE', 1); I*G*/ 

1* Save image 12 in file 'MYIMAGE', *1 
1* with protected write operation */ 

CALL IMADEL(12)i 1* Delete image 12 *II*H*/ 
END; 

CALL FSTERMi 
%INCLUDE ADMUPINAi 
%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINIi 
END IMPROG1i 

Figure 90. Simple image program - scan, display, and save an image 

The example introduces some of the image processing calls. The next eight 
sections describe them in more detail, and at the same time introduce some more of 
th!e concepts of image processing. 

Scanner echoing 

The ISESCA call at 1* A * I switches on scanner echoing. This means that 
whenever a transfer operation from a scanner takes place, an echo (copy) of the 
target image will be produced at the display device. Such a transfer operation 
takes place at I*D* I. An ISESCA parameter value of 1 enables echoing; a value of 
o disables it. Whenever possible, echoing will be done by the 3193, and so will 
require no host processing. 

308 GDDM Application Programming Guide Volume 1 



image basics 

Creating an image 

You can use the IMACRT call to create a device or application image. In the 
example, the IMACRT at /*B* / creates a scanner device image that will receive 
the image data from the scan of the document. This scanner image will be the 
source of the impending transfer operation. 

The parameters have the following meanings: 

• The first parameter is the identifier of the image. You use image identifiers 
when creating images, and when transferring data between images. You 
always use the identifier -1 for a scanner device image. You use positive 
values for application images. The display device image (identifier 0) cannot be 
created using this call, but you can use the ISFLD call (define an image field) 
to create an image with identifier O. 

• The second and third parameters specify the horizontal and vertical size of the 
image, in pixels. The example is written assuming that documents to be 
scanned are 6 inches horizontally, and 4 inches vertically. You have a choice 
of three pairs of defined resolutions on the 3117 and 3118 scanners. These are 
as follows, all in pixels per inch units: 

1. 120 horizontally and 120 vertically 
2. 240 horizontally and 120 vertically 
3. 240 horizontally and 240 vertically. 

The program uses 240/240, so the size of the image in pixels is always going to 
be 6 x 240 = 1440 horizontally, and 4 x 240 = 960 vertically. 

• The fourth parameter, 0, indicates default image type, meaning this is a bi-Ievel 
image. A value of 1 has the same effect. No other values are valid. 

• The fifth parameter indicates whether the image has a defined resolution. 

Permitted values are: 

o Undefined resolution. This is used for raw image data, for example as in 
a computer-generated array of pixels, of no particular physical size. 

1 Defined resolution, as specified by the next three parameters. 

• The sixth parameter indicates the units of resolution of the last two 
parameters: 

o Inches 
1 Meters. 

• The last two parameters specify horizontal and vertical resolution, in this case 
both 240 pixels per inch. 

So, now that the program has created the scanner device image, it is ready to scan. 
the document. 

Chapter 19. Image basics 309 



see end of next chapter for device variations 

Loading the document into the scanner using call ISLDE 

For the 3118, the ISLDE call at I*c* 1 feeds the document. from the feed tray into 
the scanner. If there is a document already present inside the scanner, it is 
ejected, and the document in the feed tray is fed in. The call has only one 
parameter, the identifier of the scanner device image. A scanner device image must 
have been created before this call can be used. 

The 3118 will align the top edge of the paper with the top of the (empty) created 
scanner device image, and will center the paper laterally. 

For the 3117, the ISLDE call resets the scanner so that it is ready to scan from the 
top of the paper. 

The paper size does not have to match that implied by the IMACRT parameters. 
For example, the program creates a scanner device image that is 6 inches 
horizontally by 4 inches vertically. If a document that is 8 inches horizontally by 5 
inches vertically is fed top-first into the scanner, the program captures the middle 6 
inches of the document horizontally, and the top 4 inches vertically. 

Transferring images using call IMXFER 

You can use the IMXFER call for transfer operations from: 

• A device image to an application image, or the converse 

• A device image to a device image 

• An application image to an application image. 

In the example, the IMXFER call at I*D* / causes the scanner to scan the 
document into the scanner device image. It then transfers the data from that image 
to an application image that it implicitly creates. 

Here is the call again: 

CALL IMXFER(-1,12,O); 

The parameters are as follows: 

• The first parameter is the identifier of the source of the transfer. In the 
example it is -1, meaning the scanner device image. 

• The second parameter identifies the target image. The target can be either an 
image that already exists, or an image that does not yet exist. If it does not yet 
exist, as in the example, IMXFER creates a target image of sufficient size in 
GDDM storage, and gives it the identifier in this parameter. (12 is arbitrarily 
chosen.) In the example, the target image will be created with the same 
resolution as the source. 

• The third parameter tells GDDM the identifier of a projection to be applied 
during the transfer. Projection 0 is the identity projection. This simply means 
that a copy takes place. 

Do not worry about projections at this stage. They are described later in this 
chapter. 

310 GDDM Application Programming Guide Volume 1 



image basics 

The ISESCA at the beginning of the program sets scanner echoing on. In the 
example, it takes effect when IMXFER is called, and has the same effect as if a 

1* SCANNER-IMAGE-ID DISPLAY-IMAGE-ID PROJECTION-ID *1 
CALL IMXFER( -1, 0, 0); 

was processed simultaneously to the IMXFER that is already there. Image 
identifier 0 is always used for the display device image. 

Scanner echoing gives you a copy at the screen of the target of the transfer 
operation from the scanner. The resolution of the 3193 display screen is 100 pixels 
per inch. In the example, GDDM implicitly creates a target with the same 
resolution as the source - 240 pixels per inch - but the 3193 performs the 
resolution conversion necessary to display the echo at the same size as the target. 
Therefore, because the identity projection is applied, a copy takes place, and the 
image echoed on the screen is the same physical size as the original document - 6 
inches horizontally and 4 inches vertically. 

Deleting images using call IMADEL 

You can use the IMADEL call to delete an image. Its one parameter is the image 
identifier of the image that you want to delete. In the example, there are two 
IMADEL calls. The call at I*E* I has the scanner device image identifier of -1 as 
its parameter. When this is specified, for a 3118, the call not only deletes the 
scanner image but also ejects the document from the scanner. 

You can use this call at any time after the scanner image transfer operation call; 
you can use it when you have completely finished scanning, or when you come to 
the end of scanning a particular type of document, when you want to create a new, 
different scanner image. 

Or, if you required the same image size and resolution parameters to be used for 
further input documents, you could use ISLDE(-l) again, without having to 
explicitly delete or recreate the image. 

The !MADEL call at I*H* I deletes the application image. Because of the large 
amounts of data involved in image processing, it is good practice always to delete 
an image as soon as you no longer need it. After you have deleted an image, you 
can reuse its identifier for another image. 

Synchronizing output and input 

The ASREAD call at I*F* I is still required, as with graphics, to handle the 
interaction with the operator. In the example, this is alphanumeric input 
consisting simply of ENTER or PF key use. 

Saving images using call IMASA V 

You can use the IMASAV call, as at I*G* I, to copy image data from a device or 
application image to auxiliary storage. It is another of the calls used for transfer 
operations. Here is the call again: 

CALL lMASAV(12,O,'MYlMAGE',16,'CLIENT SIGNATURE',l); 

The parameters are as follows: 

• The first parameter specifies the source image identifier. 

Chapter 19. Image basics 311 



see end of next chapter for device variations 

• The second specifies the projection identifier, in this case 0 again for the 
identity projection. 

• The third is the filename. Naming conventions vary according to the 
subsystem. They are explained in the GDDM Base Programming Reference 
manual. On VM, GDDM creates a file on your A-disk with the specified name 
as the file name, and a file type of ADMIMG. So the example would create a 
file called: 

MYlMAGE ADMIMG Al 

• The fourth parameter specifies the length of the character string following. 

• The next parameter gives a description of the file. The description is saved 
with the file, and can be restored when the file is restored. 

• The last parameter, 1, specifies the action to be taken if a file already exists 
with an identical filename to that specified in the third parameter. A value of 0 
means that the existing file is to be overwritten. A value of 1 specifies that an 
existing file with the same filename is to be protected. If you try to save to a 
protected file, GDDM issues an error message telling you that the file already 
exists. 

Loading an image, using call IMARST 

The image saved by the IMASA V example in the previous section can be loaded 
from auxiliary storage to a device or application image, using the IMARST call. 
Here is an example: 

DCL DESCR CHAR(30); /* File description 
CALL lMARST(O,O,'MYlMAGE',30,DESCR); 

The parameters are as follows: 

*/ 

• The first parameter is the identifier of the image into which the saved image is 
to be restored. A value of 0 restores the image to the display device. 
Alternatively, you can restore an image to an application image. 

• The second parameter is the identifier of the projection. Once again, to 
simplify matters, the call applies the identity projection, but could have 
specified the identifier of any existing projection. 

• The third parameter specifies the name of the file to be restored. The same 
remarks apply as for the equivalent parameter of the IMASA V call, described 
above. 

• The fourth parameter gives a count of description characters to be used. 

• The fifth is the variable name, DESeR, into which GDDM returns the 
description of the image. 

Saving and restoring are transfer operations. You can, therefore, apply a 
projection during either or both of the operations. 

That completes the description of the calls used in the first example, but, before 
you learn more about projections, here are two calls that were not used in the 
example: 

312 GDDM Application Programming Guide Volume 1 



image basics 

Obtaining a new image identifier, using call IMAGID 

When you create a device image, -1 is the only image identifier that you can use. 
A value of 0 cannot be used with IMACRT. It is reserved for the current display or 
printer device image, and can only be used in certain transfer operations that are 
described later in this chapter. 

When you create an application image, you can use any unused integer value, in 
the range 1 through 230 -1, as its identifier. 

Another way is to use the IMAGID call to reserve a valid unused and unreserved 
identifier in the range 230 through 231 -1. The format of the call is: 

CALL IMAGID(ID)i 

The identifier value is returned in ID, which must as usual be declared to be a 
fullword integer variable. You should use values in this range only if they have 
been returned by IMAGID, as GDDM internally uses some of the values in this 
range. 

Querying image attributes 

Projections 

You can use the IMAQRY call to query device image or application image 
attributes. The most common use of this would be to check the attributes of a 
target image following a transfer operation. 

Here is an example: 

CALL IMAQRY(ID,H_PIXELS,V_PIXELS,IM_TYPE, 
RES_TYPE,RES_UNIT,H_RES,V_RES)i 

The parameter list matches that of the IMACRT call. ID and RES_UNIT are 
specified by the caller; the remaining parameters are returned by GDDM. 

A projection is a sequence of changes to the image, defined by your program, that 
can be applied during any transfer operation. GDDM lets you define a projection 
in advance of its use, and independently of the image that it is to act upon. A 
projection can also be saved and restored. 

You can use a projection to perform editing operations on an image during a 
transfer operation. For example, if you are processing a particular type of legal 
document, you know that each has some information in common with the rest, say, 
several paragraphs of legal jargon. They also contain information that is unique to 
each document, such as names, addresses, and signatures. You are interested only 
in extracting the unique information, as there is no point in keeping lots of copies 
of the same thing. You can use a projection to extract just the information you 
want, maybe from different parts of the document, and exclude the rest. For 
example, you can then rotate, reposition, or change the size of the extracted 
information in the target of the transfer operation. 

Each individual operation in a projection is known as a transform. A projection 
containing a transform is illustrated in Figure 91. A projection can contain more 
than one transform. This is illustrated in Figure 92 on page 315. 

Chapter 19. Image basics 313 



see end of next chapter for device variations 

A transform is a composite editing function, consisting of several transform 
elements. GDDM applies the function to the source image, and creates a 
temporary intermediate image to hold the result of each transform element. The 
final result is subsequently placed in the target image. The temporary intermediate 
image is called the extracted image. 

Source 
__ ACME 
==ESTATES 

== f··,··------;--------! 
--. oUCJ4I • --i· j -- .............. -------_.1 

~·i-I -sca-:-Ie-

iCJ i 
1 l •• ________________ •••• .1 

TRANSFORM 

Target 

~
r8il---------l 
: DO: 
: c:J : L ... ___ .J 

Figure 91. Projection containing a transform 

Transform elements can define any or all of the following: 

Extraction 

Scaling 

Rotation 

Reflection 

Negation 

Defining a rectangular sub-image to be extracted from the source 
image 

Changing the size of the extracted image 

Reorienting the extracted image 

Flipping over the extracted image 

Converting the extracted image to its "photographic negative." 

(There are also three transform elements that specifically relate to scanning_ 
These are covered in "Converting gray-scale images to binary data" on page 332.) 

314 GDDM Application Programming Guide Volume 1 



image basics 

Apart from any transform elements, a transform must contain: 

1. A definition of the location in the target image where the extracted image is to 
be placed. This definition also specifies how the extracted image is to merge 
with the target image. 

And can contain: 

2. A specification of the pixel generation/deletion algorithm to be used: 

• When the size of an extracted image is altered by a scaling operation 

• When image data is copied between two images whose resolutions differ. 

Transform elements operate on the extracted image in isolation, independent of the 
target image. Items 1 and 2 above are not called transform elements, because they 
both affect the way that the extracted image combines with the target image. 

Figure 92. Projection containing two transforms 

Example code to defme and save a projection 

Although you can define a projection in the program that uses it, in practice you 
would probably build up a library of projections for standard documents, and 
restore them as needed. Here is a piece of code that defines and stores the 
projection shown in Figure 91 on page 314. The projection contains one 
transform. The effect of the transform is to extract a 5 inches x 5 inches 
rectangular sub-image, alter its size, and position it in the top-left-hand corner of 
the target. Later on, another example program will restore and use the projection. 

Chapter 19. Image basics 315 



see end of next chapter for device variations 

CALL IMPCRT ( 15) ; /* Create projection with id of 15 */ 

/* proj-id 
CALL IMREXR(15, 

coord-type 
0, 

I-edge r-edge 
3.0, 8.0, 

top-edge bot-edge */ 

/* proj-id 
CALL IMRSCL(15, 

/* proj-id 
CALL IMRPLR(15, 

2.0, 7.0); 

h-sca1e v-scale 
0.5, 0.5); 

coord-type 
0, 

horiz-posn vert-posn mix-mode 
0) ; 0.0, 0.0, 

*/ 

*/ 

/* proj-id name count description protect */ 
CALL IMPSAV(15, , EXTRACT' , 57 , 

'Extract a 5 x 5 sub-image & convert it to 2.5 x 2.5 image'); 

CALL IMPDEL ( 15) ; /* Delete projection 15 */ 

The calls perform the following tasks. 

Creating a projection using call IMPCRT 

The IMP CRT call begins a projection definition, so it must always be the first call 
in a projection def'mition. The single parameter specifies the projection identifier, 
by which you refer to the definition as you add transforms to it, and by which you 
will identify it when applying it in a transfer operation, or saving it. All IMPxxx 
calls and all transform calls have the projection identifier as their first parameter. 

Do not confuse projection identifiers with image identifiers; they are independent, 
so you could also use 15 as an image identifier in the same program. 

See "Getting a new projection identifier, using call IMPGID" on page 326 for how 
to obtain an unused value from GDDM. 

Extracting a rectangular sub-image using call IMREXR 

You can use the IMREXR call to define a rectangular sub·image that will be 
extracted from the source image. The left and right edges of the sub.image are 
defined in terms of their distance from the left edge of the source image. The top 
and bottom edges of the sub· image are defined in terms of their distance from the 
top edge of the source image. 

The parameters are as follows: 

• The first parameter, 15, is again the projection identifier. 

• The second parameter specifies the coordinate type of the third, fourth, fifth, 
and sixth parameters: 

o Inches 
1 Meters. 
2 Fractional. You specify at what fraction of the pixel dimensions the 

edges are to be, by values in the range 0.0 to 1.0. 

• The last four parameters specify, respectively, the left edge, right edge, top 
edge, and bottom edge values in the stated coordinate type. So, in the above 
example: 

The left edge of the sub·image is 3 inches from the left edge of the source 
image. 

316 GDDM Application Programming Guide Volume 1 



image basics 

The right edge of the sub-image is 8 inches from the left edge of the source 
image. 

The top edge of the sub-image is 2 inches from the top edge of the source 
image. 

The bottom edge of the sub-image is 7 inches from the top edge of the 
source image. 

There is another call that you can use instead of IMREXR. The call IMREX allows 
you to specify the sub-image boundary in pixel coordinates: Here is an example of 
its use: 

CALL IMREX(24,O,499,20,249)i 

The parameter list is as follows: 

• The first parameter, 24, is the projection identifier. 

• The next two parameters, 0 and 499, are the left edge and right edge of the 
required image, in pixel coordinates. (0 is the left hand edge of the source 
image). 

• The last two parameters, 20 and 249, are the top edge and bottom edge of the 
required image, in pixel coordinates. 

You can use either IMREX or IMREXR in a transform; you cannot use both. If you 
use one of them, it must be the first call of the transform. If you do not have either 
an IMREX or IMREXR call in a projection, or if you use the identity projection, 
the whole of the source image will be extracted. 

If the specified rectangle in a IMREX or IMREXR call lies wholly or partly outside 
the SOurce image, the part outside the source image is filled with zeros. This is not 
an error condition. 

Changing the size of an extracted image using call IMRSCL 

You can use the IMRSCL call to alter the size of an image. 

The parameters are as follows: 

• The first parameter is again the projection identifier. 

• The second and third parameters specify the x- and y-scaling factors 
respectively, x being horizontal and y being vertical. 

Positioning an extracted image in the target image using call IMRPLR 

You can use the IMRPLR call to position the result of your image processing 
within the target image space. The parameters are as follows: 

• The first parameter, 15, is the projection identifier. 

• The next parameter, 0, specifies coordinate type: 

o Inches, as used here 
1 Meters 
2 Fractional. 

Chapter 19. Image basics 317 



see end of next chapter for device variations 

• The next two parameters are the required offsets in the specified coordinate 
type. In the example, 0.0,0.0 places the extracted image in the top-left-hand 
corner of the target image. 

• The last parameter specifies the mixing mode - the mode for mixing the pixels 
of the transformed image into those of the target image. 

o is the default value, the same as 1, which specifies overpaint mode. 

2 specifies merge mode, in which a "logical OR" operation is performed on the 
extracted image pixels and the target image pixels. 

Other settings for this parameter are fully described in the GDDM Base 
Programming Reference, Volume 1. 

Instead of IMRPLR, you can use IMRPL to position the extracted image in the 
target image. IMRPL defines the position in pixel coordinates: 

CALL IMRPL(lS,O,O,O); /* Position image in pixel coordinates */ 

The parameter list is as follows: 

• The first parameter is again the projection identifier. 

• The next two parameters define where the top left corner of the transformed 
image is to go in the target image. 0,0 simply aligns the top left corners of the 
transformed image and the target image. 

This position, together with the horizontal and vertical size of the transformed 
image, defines a rectangle within the target image. 

• The last parameter, 0, is mixing mode, as for IMRPLR. 

The IMRPLR call ends a transform. Either this call, or an IMRPL call, must 
always be used to complete the transform. That is, it is mandatory for a 
transform to contain one or other of these calls. No other transform call is 
mandatory. Until a transform has been completed with one of these calls, it is not 
available for use in a transfer operation. 

If the rectangle specified in an IMRPL or IMRPLR call extends outside the target 
image, the transformed image is clipped to the target rectangle boundaries. 

If the target image does not exist before the transfer operation, it is created. For 
an IMRPL or IMRPLR call to other than the (0,0) pixel position, a target is created 
consisting initially of zero-value pixels, of the minimum size necessary to contain 
all the rectangles at the positions specified, without clipping. Remember that a 
projection can contain more than one transform, so there may be more than one 
sub-image rectangle. 

For a description of how to define a projection comprising more than one transform 
See "Putting transform calls in the right sequence" on page 325. 

318 GDDM Application Programming Guide Volume 1 



image basics 

Saving a projection using call IMPSA V 

Having defined a projection, you may want to save it. It could then be invoked 
later by a different program to that in which it was defined. In a way similar to 
images, projections can be saved on disk, using IMPSAV. 

Here is the example call again: 

CALL IMPSAV(lS,'EXTRACT',20,'CREATE SxS SUB-lMAGE',O)i 

The parameters are as follows: 

• The first parameter specifies the projection identifier. 

• The second parameter specifies the filename. Naming conventions vary 
according to the subsystem. They are explained in the GDDM Base 
Programming Reference manual. On VM, GDDM creates a file with the 
specified name as the file name, and a file type of ADMPROJ. So the example 
would create a file called 

EXTRACT ADMPROJ Al 

• The third specifies the length of the character string following. 

• The next parameter gives a file description that is saved with the file. 

• The last parameter specifies whether existing files with the same filename are 
to be protected. It has the same effect as the last parameter on the IMASA V 
call; 0 to allow overwrite, 1 to protect an existing file. 

Projections are restored with the IMPRST call: 

DCL DESCR CHAR(20)i /* For file description 
CALL IMPRST(lOl,'EXTRACT' ,20,DESCR)i 

The parameters are as follows: 

• The first specifies the projection identifier to be associated with the restored 
projection. 

You do not have to use the projection identifier that applied when the 
projection was saved. 

• The second specifies the filename. The same remarks apply as for the 
equivalent parameter of the IMPSA V call, described above. 

• The third gives a count of description characters to be used 

• The fourth is the variable name, DESeR, to receive the string. 

*/ 

Chapter 19. Image basics 319 



see end of next chapter for device variations 

Deleting a projection, using call IMPDEL 

The IMPDEL call deletes a projection from GDDM storage. It has one parameter, 
the identifier of the projection that you want to delete. The example deletes 
projection 15, because it has been stored away for later use. The projection 
identifier 15 can now be reused. It is good practice to delete projections that you 
no longer need. 

How to apply a projection during a transfer operation 

There are a few projection and transform calls that you have not yet seen. They 
are described after the next example. 

The first program example in this chapter contained a transfer operation, during 
which the identity projection was applied. Applying the identity projection means 
that image data from the whole of the source image is used and is not changed 
during the transfer operation. 

The following example is a more complicated version of the earlier program. The 
most important difference is that this time the program restores the projection 
defined in "Example code to define and save a projection" on page 315. It contains 
a transform that specifies the extraction of a 5 x 5 inches rectangular sub-image 
from the captured 6 x 4 inches document. The projection is then applied during 
the transfer operation from the scanner device image to the application image. 

Once again, the program is written assuming that there are no physical scanner 
conditions to prevent scanning of the document. See "Querying image devices" on 
page 331 for how you can check for those conditions. 

Here is the second example program: 

320 GDDM Application Programming Guide Volume 1 



image basics 

IMPROG2: PROC OPTIONS(MAIN); 

DCL P_WIDTH FLOAT DEC(6); /* Scanner paper width */ 
DCL P_DEPTH FLOAT DEC(6); /* Scanner paper depth */ 
DCL HOR_RES FLOAT DEC(6); /* Scanner horizontal resolution */ 
DCL VER_RES FLOAT DEC(6); /* Scanner vertical resolution */ 
DCL APPL_ID FIXED BIN(31); /* Application image identifier */ 
DCL DEVICE DEPTH FIXED BIN(31); /* Device depth in rows */ 
DCL DEVICE:WIDTH FIXED BIN(31); /* Device width in columns */ 
DCL ARRAY(2) FIXED BIN(31); /* Array for device queries */ 
DCL IMAGE_FIELD_DEPTH FIXED BIN(31);/* Image field depth */ 
DCL IMAGE_FIELD_ROW FIXED BIN(31); /* Image field top row */ 
DCL TGIMNAME CHAR(S); /* Saved image name */ 
DCL TGIMDSC CHAR(20)i /* Saved image description */ 
DCL PROTECT_FLAG FIXED BIN(31) INIT(O);/* Allow over-write of */ 

/* existing image or projection*/ 
DCL SAVE_FLAG BIT(l); /* On to save image */ 
DCL PROJ_ID FIXED BIN(31); /* Projection id */ 
DCL PROJ_NAME CHAR(S); /* Projection name */ 
DCL PROJ_DSCR CHAR(60); /* Projection description */ 

CALL FSINIT; /* Initialize GDDM 

/* Format the display 
/* Call A/N routine 1 
CALL ANR1; 

screen for alphanumerics and image 
to create alphanumeric fields 

/* Fit an image field to the 
CALL FSQURY(O,3,2,ARRAY); 

/* 
remainder of the screen 

/* Query device default page 
/* depth and width 

DEVICE_DEPTH=ARRAY(l); /* Depth in rows 
DEVICE_WIDTH=ARRAY(2); /* Width in columns 
IMAGE_FIELD_DEPTH=DEVICE_DEPTH-2;/* For 2 alpha rows 
IMAGE_FIELD_ROW=2+1; /* For 2 alpha rows 
CALL ISFLD(IMAGE_FIELD_ROW,l, /* Create image field 

IMAGE_FIELD_DEPTH,DEVICE_WIDTH,l); 

*/ 

*/ 
*/ 
*//*A*/ 
*/ 
*//*B*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*//*C*/ 

*/ /* Scanner parameters 
CALL ISESCA(l); /* Echo scanned image on 

scanner resolutions /* Set up scan paper size and 
P_WIDTH=6.0; /* Paper width in inches 

/* Paper depth in inches 
/* Horizontal and ... 

screen*/ 
*//*D*/ 
*/ 

P_DEPTH=4.0; 
HOR_RES=240.0; 
VER_RES=240.0; /* vertical resolution (pixels per inch) 

*/ 
*/ 
*/ 

/* Create the scanner image */ 
CALL IMACRT(-l,P_WIDTH*HOR_RES, 

P_DEPTH*VER_RES, 
0,1,0, 
HOR_RES,VER_RES); 

CALL ISLDE(-l); /* Load sheet of paper 

/* Scan the image, and 
/* application image, 
CALL IMAGID(APPL ID); 
CALL IMPGID(PROJ=ID); 

transfer to an implicitly created 
using a restored projection 

/* Get a new image identifier 

CALL IMPRST(PROJ_ID,'EXTRACT',20,PROJ_DSCR); 
CALL IMXFER(-l, APPL_ID,PROJ_ID);/* Transfer operation 

/* Call A/N routine 2 to get name and description of image 
CALL ANR2i 

*/ 

*/ 
*/ 
*/ 

/*E*/ 

*//*F*/ 

*/ 
/*G*/ 

Chapter 19. Image basics 321 



see end of next chapter for device variations 

1* Save the application image if user wants to 
IF SAVE_FLAG='l'B THEN 1* Save the image 

CALL IMASAV(APPL_ID,O,TGIMNAME,20,TGIMDSC,PROTECT_FLAG)i 

*1 
*1 

I*H*I 

CALL lMADEL(APPL ID); 
CALL IMPDEL(PROJ-ID)i 
1* Eject the scanner paper 
CALL IMADEL(-l)i 

1* Delete the application image *1 
1* Delete the projection *1 

*1 

CALL FSTERMi 

%INCLUDE ADMUPINAi 
%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINIi 

END IMPROG2i 

1* Terminate GDDM *1 

At I*A* I, an application subroutine ANRI is called, but the coding of this is not 
shown because it is concerned solely with alphanumerics. It is required to create, 
on the default GDDM page, four alphanumeric fields, two being for output 
prompting messages, and the other two for alphanumeric input. You can create 
these using procedural alphanumerics GDDM calls, for example ASRFMT, or by 
mapped alphanumerics, whichever is preferred. See the appropriate alphanumerics 
chapter of this manual for examples and details of these calls. 

The rest of the code in IMPROG2 assumes that the ANRI routine has created the 
necessary alphanumerics fields using only the top two rows of the screen. The code 
from I*B* 1 through I*C* 1 then creates an image field, using the remainder of the 
screen, however many rows that implies on the display device used. This is an 
example of device-independent coding, and is good practice. 

The FSQURY call, used at I*B* I, is used to query the default page depth and 
width for the device. The depth and width are then used to set the size of the 
image field so that it fills the screen space that is not used by the alphanumeric 
fields. Other uses of the FSQURY call, in image processing, are discussed in the 
next chapter - see "Querying image devices" on page 331. 

The ISFLD call, used at I*c* I, is also discussed in the next chapter - see 
"Combining an image with text or graphics" on page 356. 

At I*D* I, the scanner image size and resolutions specified are the same as in the 
previous program, but they have been assigned to variables that are then used in 
parameter expressions in the subsequent IMACRT statement. The resulting image 
is the same as before. 

At I*E* I, the IMPGID call is used. This is described in "Getting a new projection 
identifier, using call IMPGID" on page 326, and is similar to IMAGID, already met. 

At I*F* I, IMXFER transfers the scanner image to a target application image 
implicitly created by GDDM, applying the projection just restored. 

The earlier ISESCA call ensures that the extracted images are echoed on the 
display screen. 

The application image is used as the source image of the subsequent IMASA V at 
I*H* I. Remember that image save and restore are transfer operations. 

Some further remarks on transfer operations follow: 

• It is an error to invoke a projection without first having created it. 

322 GDDM Application Programming Guide Volume 1 



image basics 

• If the target image exists before a transfer operation, its attributes override 
those of the transformed image. Here it does not previously exist, with the 
effects noted under the first example program ("Transferring images using call 
IMXFER" on page 310) - it is created with the same attributes as the 
transformed image. 

At /*G* /, another alphanumerics routine, ANR2, also not shown, is called. This 
routine is required, by use of procedural or mapped alphanumerics, to allow the 
terminal user to key the file name, and optionally a file description, under which 
the image is to saved. These are to be supplied in the variables TGIMNAME and 
TGIMDSC respectively. For example, you can use the ASCPUT, ASREAD, and 
ASCGET procedural alphanumerics calls for this purpose. 

The routine ANR2 is also required to set a program flag, SAVE_FLAG, on when 
the currently displayed image is to be saved, or off when it is not. Again, the 
alphanumerics chapters of this manual illustrate the use of ENTER and PF keys 
for this kind of end-user choice. 

The remaining transform elements 

In addition to the transform elements already covered in the example projection, 
there are three more that you can use. 

Turning (reorienting) the image through multiples of 90 degrees 

The IMRORN call is the transform element call for reorienting images. 

An example of this call is: 

CALL IMRORN(9,2); 

The parameters are as follows: 

• The first parameter, 9, is the projection identifier. 

• The second parameter specifies the change in orientation of the extracted 
image: 

o No rotation 
1 90 degrees clockwise rotation 
2 180 degrees rotation 
3 270 degrees clockwise rotation (90 degrees counterclockwise). 

Reflecting the image about a chosen axis, using call IMRREF 

You can use the transform element call IMRREF to reflect an extracted image 
about a chosen axis. Here is an example: 

CALL IMRREF(99,1); 

The parameters are as follows: 

• The first parameter, 99, is the projection identifier. 

• The second parameter specifies how the extracted image will be reflected: 

1 Horizontal reflection (left to right) 

Chapter 19. Image basics 323 



see end of next chapter for device variations 

2 Vertical reflection (top to bottom). 

Some other settings of this parameter are permitted and are defined in the 
GDDM Base Programming Reference, Volume 1. 

Getting the negative of an image, using call IMRNEG 

Here is an example of the IMRNEG transform element call, that you use to get the 
"photographic" negative of an extracted image: 

CALL IMRNEG(2)i 

This negates each pixel in the extracted image so that "black" pixels become 
"white," and conversely. 

Defining the resolution conversion algorithm, using call IMRRAL 

A transform can contain not only transform elements and a definition of the 
position in the target image for the extracted image, but also an algorithm to be 
used where the size or resolution of an image are altered. 

Figure 93 diagrammatically shows the pixels making up the top-left-hand corner of 
a black square displayed at: 

• Same size, but different resolution 

• Same resolution, different size. 

The diagram is not to scale. It simply shows that, if you change the size of an 
image at constant resolution, or change the resolution at constant size, new pixels 
must be generated, or existing ones deleted. 

For a size or resolution increase, pixels must be generated, and may simply be 
replications. However, for a size or resolution reduction, pixels must be deleted. 
There will then be different effects according to whether" black" or "white" pixels 
are deleted when they are adjacent. 

Different size images Same size images at 
at same resolution different resolutions 

~ --
contain different g contain different 
numbers of pixels numbers of pixels 

< > < > H--+-+-+ 

.. 
Figure 93. Resolution conversion 

If the extracted image and target image in a transfer operation have different 
defined resolutions, GDDM automatically converts the data from the extracted 
image resolution to the target image resolution and applies the algorithm. 

If the source or target image has undefined resolution, image manipulations are 
done using pixel to pixel mapping. 

324 GDDM Application Programming Guide Volume 1 



image basics 

You can use the IMRRAL call, always within a projection definition, to set the 
resolution/scaling algorithm of a transform, before the transform is completed by 
an IMRPL or IMRPLR call. Here is a typical call: 

CALL IMRRAL(101,2)i 

The parameters are as follows: 

• The first parameter, 101, is the projection identifier. 

• The second parameter specifies one of the following algorithms, that are further 
defined in the GDDM Base Programming Reference, Volume 1: 

o The default algorithm, the same as 1. 
1 Pixel replication when scaling up, deletion when scaling down. 
2 Pixel replication when scaling up, black pixel retention when scaling 

down. This is an improvement on the default algorithm, for images 
containing black on white text or graphics. 

3 Pixel replication when scaling up, white pixel retention when scaling 
down. This is an improvement on the default algorithm, for images 
containing white on black text or graphics. 

Putting transform calls in the right sequence 

Remember that: 

• A projection definition must begin with the IMPCRT call 

• A projection definition can contain one or more transform sequences, each of 
which must contain as a minimum an IMRPL or IMRPLR call, and can contain 
other transform calls. 

• If an IMREX or IMREXR call is used, it must be the first call in a transform 
sequence. 

• An IMRPL or IMRPLR call must be the last call in a transform sequence. 

This then is an example of a valid projection definition: 

CALL IMPCRT( .•. )i /* Begin projection definition 
CALL IMREX( ..• )i /* Transform 1: extract sub-image 1 
CALL IMRPL ( ..• ) i /* Transform 1: place sub-image 1 in target 
CALL IMREX ( ... ) i /* Transform 2: extract sub-image 2 
CALL IMRSCL( ... )i /* Transform 2: scale sub-image 2 
CALL IMRORN( .•• )i /* Transform 2: reorient sub-image 2 
CALL IMRPLR( ... )i /* Transform 2: place sub-image 2 in target 

/* (end of projection, or further transforms 
/* can follow) 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

Note that although a projection cannot be changed once it has been defined, it can 
be added to. 

Chapter 19. Image basics 325 



see end of next chapter for device variations 

Order of evaluation in projections 

When a projection is invoked. the operations specified within it are evaluated. The 
order of evaluation is as follows: 

1. The transforms that comprise the projection are evaluated in turn, in the order 
in which they were specified. Evaluation of a transform involves evaluation of 
the transform elements that it contains, in the order in which these were 
specified. 

2. If the target of the transfer operation already exists, there may be implied 
global operations, such as "convert to target resolution," that are needed for 
the transformed image to be merged with the target. These implicit operations 
are performed at this stage for each transform independently. 

3. The result of each transform is merged into the target, in the order in which 
the transforms were specified. 

Some other facilities 

Gray-scale image manipulation 

See "Converting gray-scale images to binary data" on page 332 for calls that allow 
you to control the brightness and contrast processing and the conversion of image 
type. The associated calls are IMRBRI, IMRCON, and IMRCVB respectively. 

Applying a projection during image save and restore 

The previous program example invoked a projection in the IMXFER call statement. 
You can also invoke a projection when using the IMASA V or IMARST calls, for 
example: 

CALL lMASAV(-l,lOl, 'OOClMAGE',12, 'SCALED lMAGE',O)i 

to modify the scanner image by projection 101 before saving it. 

Getting a new projection identifier, using call IMPGID 

When you create a projection, you can use any unused integer value, in the range 0 
through 230 -1, as a projection identifier. 

Another way is to use the IMPGID call to reserve a valid, unreserved projection 
identifier in the range 230 through 231 -1. The format of the call is: 

CALL IMPGID(ID)i 

The identifier value is returned in ID. You should use values in this range only by 
calling IMPGID, as GDDM internally uses other values in this range. 

326 GDDM Application Programming Guide Volume 1 



image basics 

Changing the image resolution type, using call IMARF 

You have seen that the fifth parameter of the IMACRT call specifies an image as 
having defined or undefined resolution. You can put resolution values in the 
IMACRT call, and specify in the fifth parameter that the resolution is undefined. 
Those resolution values will not then be used unless you use the IMARF call to 
change this image attribute. Suppose you have previously created image 12 with 
undefined resolution. Then 

CALL lMARF(12,1); 

would change it to having defined resolution. A value of 0 in the second parameter 
would do the reverse. You can use IMAQRY to query the existing image 
attributes. 

Editing images without a transfer operation 

There are three calls not involving a transfer operation, that you can use to alter 
an image" in-place." The calls are known as in-place transforms, and are 
evaluated immediately. That is, they are not coded within projections. 

Clearing a rectangle in an image, using call IMACLR 

Here is a typical call: 

CALL lMACLR(7,110,500,O,325); 

The above example would clear, within image 7, the rectangle extending from pixel 
column 110 through column 500, and from pixel row 0 through row 325, inclusive. 

• The first parameter, 7, is the image identifier. 

• The second and third parameters, 110 and 500, are the left edge and right edge 
of the rectangle to be cleared, in pixel coordinates. 

• The last two parameters, 0 and 325, are the top edge and bottom edge of the 
same rectangle, in pixel coordinates. 

Trimming an image, using call IMATRM 

Here is a typical call: 

CALL lMATRM(12,55,700,10,156); 

• The first parameter, 12, is the image identifier. 

• The next two parameters, 55 and 700, are the left and right edges of the 
required image, in pixel coordinates. 

• The last two parameters, 10 and 156, are the top and bottom edges of the 
required image, in pixel coordinates. 

This call is useful for reducing the amount of data to be processed and stored. 

Chapter 19. Image basics 327 



see end of next chapter for device variations 

Converting the resolution of an image, using call IMARES 

You will recall that the IMACRT call specifies whether or not an image has 
defined resolution, and if so, what are the resolution values. You can use IMARES 
to change the resolution of an image. Here is a typical call: 

CALL lMARES(51,O,300,180,3); 

• The first parameter, 51, is the image identifier. 

-1 can be coded to specify the image scanner, in which case you can only 
specify scanner-supported resolutions in the third and fourth parameters (see 
below). You can use the ISQRES call to query the scanner-supported 
resolutions. See "Querying image-related device characteristics" on page 335. 

• The second parameter, 0, specifies the unit of measure for the next two 
parameters: 

° Inches 
1 Meters. 

• The third parameter, 300, is the horizontal resolution in the chosen unit. 

• The fourth parameter, 180, is the vertical resolution in the same unit. 

• The fifth parameter, 3, specifies algorithm 3 for the resolution conversion 
process. 

The permitted values and their meanings are as follows: 

° The default, same as 1 
1 Pixel replication 
2 Black pixel retention 
3 White pixel retention 

The meanings of the above values, the same as for the IMRRAL call described 
earlier (see "Defining the resolution conversion algorithm, using call IMRRAL" 
on page 324), are more fully defined in the GDDM Base Programming 
Reference, Volume 1. 

The effect of IMARES depends on whether the image was created with defined or 
undefined resolution, or subsequently changed to defined or undefined resolution 
by the IMARF call. 

If the image has undefined resolution, the image data itself is not changed, but the 
resolution returned by a subsequent IMAQRY call will reflect the new values. 

If the image has defined resolution, the image data is converted to the new 
resolution. 

Using IMXFER with target image the same as source image 

This is a permitted use of the IMXFER call. Suppose you have an application 
image 12 and want to operate on it using projection 3, for example, to derive its 
negative image (by use of the IMRNEG call within the projection). Then if you 
code 

CALL IMXFER(12,12,3); 

328 GDDM Application Programming Guide Volume 1 



image basics 

the image as processed by projection 3 will replace the source image in application 
image 12. 

This is true if the projection specifies overpaint mixing mode. Otherwise, the 
source and target images will be merged according to the mixing mode specified (in 
IMRPL or IMRPLR). 

Chapter 19. Image basics 329 



Chapter 20. Advanced image functions 

This chapter covers the following topics: 

• Querying image devices 

• Converting a gray-scale image to binary data 

• Querying image-related device characteristics 

• Scaling an image to fit the display screen 

• Interactive manipulation of an image 

• Transferring an image into or out of your program 

• Controlling host offload by specifying image quality 

• Direct transmission from a scanner, and to a 3193 

• Combining an image with text or graphics 

• Printing and plotting an image 

• Device variations. 

Querying image devices 

The scanner current status, such as whether it is switched on, ready, or jammed, 
can be queried using the ISQSCA call. However, the status is detected and set for 
querying by GDDM at the time it implicitly opens the scanner, and at each transfer 
operation that has the scanner as its source, not dynamically at the time the 
ISQSCA call is issued. It can be used therefore as a check on the scanner status 
after such transfer operations. 

The ISQSCA call and its parameter settings for various error states are fully 
covered in the GDDM Base Programming Reference, Volume 1. 

Some scanner error conditions, such as power off, cause a GDDM error message 
such as 

ADM3477 E SCANNER NOT READY, MAY BE POWERED OFF 

to be issued as a result of transfer operations that have the scanner device image as 
their source. Such error messages can be detected using the general GDDM 
error-handling technique described in "Querying the last error record using call 

Chapter 20. Advanced image functions 331 



see end of chapter for device variations 

FSQERR" on page 118. Error recovery is then possible by instructing the terminal 
user to correct the scanner error, and restarting the program. 

Some scanner configuration and basic characteristics, such as whether a scanner is 
attached, the maximum scan area in pixels, and scanner type (flat bed or roller 
feed), can be queried using the FSQURY call. 

Here is an example of its use: 

DCL ARRAY(l) FIXED BIN(31); /* Array for returned 

CALL FSQURY(S,l,l,ARRAY); 
IF ARRAY(l)=l 

characteristics 
/* Query scanner (Code=S) 

THEN DO; /* Scanner is attached 
..• (scanner initialization) 

END; 
ELSE /* Scanner is not attached 

..• (notify end user) 

*/ 
*/ 

*/ 

*/ 

You can also use FSQURY to query several scanner or 3193 device characteristics. 
The call and its parameters are fully described in the GDDM Base Programming 
Reference. Volume 1. 

Converting gray-scale images to binary data 

The previous chapter described projections, and introduced most of the image 
transform calls, that have the format IMRxxx. They are used to define image 
transform sequences that can be invoked in image transfer operations. 

The three remaining transform functions and their calls control the following: 

• Brightness conversion algorithm definition 

• Contrast conversion algorithm definition 

• Image type conversion algorithm definition. 

Before doing this, you define gray-scale and halftone (monochrome) images. 

A gray-scale image is one in which the gradations between black and white are 
represented by discrete gray-levels, commonly coded 0 through 255. This is a 
representation amenable to digital image processing. Each pixel therefore has a 
value in the range 0 through 255. 

A halftone or bi-Ievel image is one in which each pixel is simply either black or 
white (value 0 or 1), and the intermediate shades of gray are achieved by pixel 
groups of mixed black and white - in effect shading patterns. 

In GDDM, the only permitted gray-scale images are those on paper, at input to the 
scanner. The range 0 - 255, although not fully supported by GDDM, is used below 
merely to illustrate the workings of the algorithms. 

332 GDDM Application Programming Guide Volume 1 



advanced image functions 

Defining brightness conversion definition, using call IMRBRI 

You can use the IMRBRI call to lighten or darken gray-level images only. It has 
no effect on bi-Ievel images. Here is an example call to darken a 3118 scanner 
image: 

DCL ARRAY(l) FLOAT DEC(6); 
ARRAY(l)=-O.l; 
CALL IMRBRI(20,0,1,ARRAY); 

The parameters are as follows: 

/* Array of conversion factors */ 

/* Define brightness conversion */ 

• The first parameter, 20, is the projection identifier. 

• The second, 0, specifies that the default algorithm is to be used. This is 
device-dependent. For 3117 and 3118 scanners it is the same as specifying 1, 
which selects a simple linear brightness conversion algorithm, explained below. 

• The third parameter, 1, is a count value, specifying the number of elements in 
the array parameter that follows. 

• The last parameter is the name of the array of conversion algorithm factors. 

The linear brightness algorithm defines the new gray-level of any pixel in terms of 
the old value of that same pixel as: 

new = old + (ARRAY(1) * white) 

where white is the maximum gray-level, for example 255. ARRAY(I) values specify 
the required brightness level as a number in the range -1 to + 1, where -1 is 
totally dark, 0 no change, and + 1 is totally light. 

For example, consider a pixel with an old gray-level value 150. The new value, for 
the call above, will be: 

150 + (-0.1 * 255) = 125 

Negative values for the conversion factor reduce the gray-level, so darken the 
image, and positive values do the opposite. 

The 3117 and 3118 scanners provide three brightness levels only; which one is used 
depends on the value of ARRA Y(I) as follows: 

-1.0 through - 0.5 
> - 0.5 through < 0.5 
0.5 through 1.0 

Darken the image (use for light original). 
No change (use for normal original) 
Lighten the image (use for dark original) 

Defining contrast conversion, using call IMRCON 

You can use the IMRCON call to change the contrast of gray-scale images only. It 
has no effect on bi-Ievel images. Here is an example call to increase the contrast of 
a scanner image: 

DCL ARRAY(l) FLOAT DEC(6); /* Array of conversion factors */ 
ARRAY(1)=2; 
CALL IMRCON(15,1,1,ARRAY); 

The parameters are as follows: 

Chapter 20. Advanced image functions 333 



see end of chapter for device variations 

• The fIrst parameter, 15, is the projection identifIer. 

• The second parameter, 1, specifIes a linear contrast conversion algorithm, 
explained below. For the 3117 and 3118 scanners, this is also the default, which 
could have been specified by coding 0 instead of 1. 

• The next parameter, 1, is a count value, giving the number of elements used in 
the following array parameter. 

• The last parameter specifies the name of the array giving the conversion 
algorithm factors. 

The linear contrast conversion algorithm is: 

new = «old - mean) * ARRAY(l» + mean 

where old and new are the old and new gray-level values of a given pixel, and mean 
is the mid-point between black and white. For the example range 0 through 255, 
the value of mean is therefore 128. 

So for an old gray-level value of 90, the new value, for the call as coded above, will 
be 

« 90 - 128) * 2) + 128 -76 + 128 
52 

The 3117 and 3118 scanners provide three contrast values only; which one is used 
depends on the value of ARRA Y(l} as follows: 

o through 0.5 
> 0.5 through < 2.0 
~2.0 

Decrease the contrast 
No change 
Increase the contrast 

Deiming the conversion algorithm, using call IMRCVB 

You can use IMRCVB to specify a particular conversion process between gray-scale 
and bi-Ievel (halftone) images. Here is an example, specifying that conversion 
algorithm 10, which is halftoning type A, is to be used: 

DCL ARRAY(l) FLOAT DEC(6); 
CALL IMRCVB(3,10,O,ARRAY); 

The parameters are as follows: 

/* Array for conversion factors */ 
/* Define conversion to bi-level */ 

• The mst parameter, 3, is, as usual, the projection identifIer. 

• The second parameter, 10, specifIes half toning type A. This is best for intricate 
pictures. 

Other possible values are: 

° Device-dependent (the default). For the 3117 and 3118 this is the same as 
L 

1 Threshold. A threshold is defined for comparison with each source pixel. 
Pixels above the threshold gray-level specifIed in ARRA Y(l) become 
white and below it become black. 

11 Halftoning type B. best when gray-levels vary gradually. 

334 GDDM Application Programming Guide Volume 1 



advanced image functions 

• The next parameter is a count, specifying the number of elements in the array 
parameter following. You are recommended to use a value of 0 if you are 
specifying the default algorithm in the second parameter. 

• The last parameter is the array of factors, if any, for the specified algorithm. 

For algorithm 1, ARRA Y(l) specifies the required threshold level as a number 
in the range 0 through 1, where 0 is black and 1 is white. The default threshold 
is 0.5. 

The 3117 and 3118 scanners provide three threshold levels only, depending on 
ARRA Y(l) values as follows: 

o through 0.25 
> 0.25 through < 0.75 
0.75 through 1.0 

Dark original 
Normal original 
Light original. 

For algorithm 10 or 11, the fourth parameter is not used. 

Ordering of brightness, contrast, and image type conversion calls 

The order of IMRBRI, IMRCON, and IMRCVB calls is significant. An IMRBRI or 
IMRCON call following an IMRCVB call has no effect, as it is applied to the 
bi-Ievel image resulting from the IMRCVB call. So, if you do need brightness or 
contrast conversion, code the IMRBRI or IMRCON call before the IMRCVB call. 

Querying image-related device characteristics 

You have met the FSQURY call for general device queries, and the ISQSCA call for 
querying image scanner readiness status. Now you will meet three more query 
calls, for determining the image data formats, compression algorithms, and 
resolution values supported by scanner, display, printer, or plotter devices. 

Firstly on data formats and compressions - these are of particular concern in 
image processing, because of the frequently large volumes of the data compared 
with alphanumerics or graphics data streams. But note that when sending or 
receiving data in a device-supported format and compression, the formatting is 
performed by the device, not by GDDM. If the data is in a format not supported by 
the device, GDDM converts the data automatically in the host. 

Querying formats supported by a device, using call ISQFOR 

You can use the ISQFOR call to query the format(s) supported by a 
display-attached scanner. You can use values other than the supported ones, but 
this will incur a performance overhead in the host, as GDDM automatically 
converts to/from the format you specify. 

Chapter 20. Advanced image functions 335 



see end of chapter for device variations 

DCL ARRAY(3) FIXED BIN(31); 
CALL FSQURY(S,8,1,ARRAY); /* Query number of formats */ 

/* Supported by image scanner */ 
/* (for image display use */ 
/* FSQURY(4,4, ... and so on) */ 

COUNT=ARRAY(l); 
CALL ISQFOR(-l,COUNT,ARRAY); /* Query formats 
DO 1=1 TO COUNT; 

IF ARRAY(I)=l 
THEN ... unformatted data is supported 
ELSE IF ..• and so on. 

END; 

The parameters of the ISQFOR call are as follows: 

• The first parameter, -1, specifies the device to be the scanner. 

*/ 

• The second parameter is a count specifying the number of elements required to 
be returned in the following array parameter. 

• The last parameter is the array in which GDDM is to return the supported 
format codes, that can have the following values: 

1 Unformatted data 
2 3193 data-stream structures 
3 CPDS structures. 

The image format(s) thus determined could then be used in a routine sending or 
retrieving an image data object. This topic is dealt with below - see "Transferring 
images into and out of your program" on page 347. 

Querying compressions supported by a device, using call ISQCOM 

You can use the ISQCOM call to query the compression algorithm(s) supported by 
the current primary output device (display, printer, or plotter). You can use values 
other than the supported ones, but this will incur a performance overhead in the 
host, as GDDM automatically converts to/from the compression you specify. 

DCL ARRAY(4) FIXED BIN(31); 
CALL FSQURY(4,3,1,ARRAY); 

COUNT=ARRAY(l); 
CALL ISQCOM(O,COUNT,ARRAY); 
DO I = 1 TO COUNT; 

IF ARRAY(I)=l 

/* Query number of compressions*/ 
/* Supported by image display */ 
/* (for image scanner use */ 
/* FSQURY(S,7, ...• and so on) */ 

THEN uncompressed data is supported 
ELSE IF ... and so on. 

END; 

The parameters are as follows: 

• The first parameter, 0, specifies the display, printer or plotter device (whichever 
is the current primary device ). 

Alternatively, -1 would specify the display-attached scanner. 

• The second parameter, COUNT, specifies the number of elements in the 
following array parameter. 

336 GDDM Application Programming Guide Volume 1 



advanced image functions 

• The third parameter is the array in which GDDM is to return the codes for the 
compressions supported. 

1 Uncompressed 
2 MMR 
3 4250 
4 3800. 

Querying resolutions supported by a device, using call ISQRES 

ISQRES has a complex parameter list. Here is an example of its use, to query the 
scanner resolutions, if any, that are nearest to, and greater than or equal to the 
values 100 p.p.i. (pixels per inch) horizontally and 150 p.p.i. vertically: 

DCL (H_RES,V_RESl FLOAT DEC(6li 
DCL INFO FIXED BIN(31li 
CALL ISQRES(-1,O,1,100,1,150,H_RES,V_RES,INFOli 

The parameters are as follows: 

• The first parameter specifies the device: -1 for a scanner and 0 for the current 
primary device (display, printer, or plotter). 

• The next parameter, 0, specifies inch units for the resolution values in later 
parameters. 1 would specify meters. 

• The next two pairs of parameters (1, 100 and 1, 150) each specify a relation and 
a reference value, for horizontal and vertical resolutions respectively. The first 
number, 1, in each pair, requests return of a value that is nearest to and 
greater than or equal to the reference value that follows (100 for the horizontal 
and 150 for the vertical). 

Other possible values and meanings for the relation parameter are: 

- 2 Nearest to and less than 
-1 Nearest to and less than or equal to 
o Nearest to 
2 Nearest to and greater than. 

• The next two parameters, H_RES and V_RES, are the variables in which 
GDDM returns the horizontal and vertical resolution values meeting the 
specified relationships with the reference values. 

If for example, the scanner being queried by the example call had a choice of 
pairs of horizontal and vertical resolutions of (120,120), (240,240), and (240,120), 
all in pixels per inch units, the returned values in H_RES and V_RES would be 
240 and 240 respectively. 

• The last parameter, INFO, returns further information about the values 
returned in H_RES and V_RES, as follows: 

o The returned values are a specific pair of supported resolutions. 
1 Any resolution is supported, in which case the returned resolution values 

would be equal to the reference values specified in the earlier 
parameters. 

If no supported resolution meets the requirement specified, a value of 0 is returned 
in H_RES, or V_RES, or both, as appropriate. 

Chapter 20. Advanced image functions 337 



see end of chapter for device variations 

It would, therefore, be normal to follow the ISQRES call with statements such as: 

IF (H_RES=O) I (V_RES=O) 
THEN DO; 

••.••.• error handling 
END; 

You could go on to initialize the scanner with the returned values, for a specified 
paper size (say 8 inches wide by 11 inches deep), using the IMACRT call met 
earlier, as follows: 

Scaling an image to fit the display screen 

1£ an image is scanned, saved, restored, and displayed using identity projections 
throughout, it is displayed at real size, that is, at the same size as the original 
image on paper. It is also displayed with the top left corner of the original image 
aligned with the top left corner of the image field, and truncated if necessary at the 
bottom and right edges. 

This may not be what you require. You may want to scale the original image up or 
down to just fill the display screen or, more generally, the image field, in either the 
horizontal or vertical dimension as appropriate, while maintaining the correct 
aspect ratio. 

The following example program shows you how to do this: 

338 GDDM Application Programming Guide Volume 1 



IMPROG4: PROC OPTIONS(MAIN)i 
DCL MIN BUILTINi 
DCL APPL_ID FIXED BIN(31)i 
DCL PROJ ID FIXED BIN(31)i 
DCL H_PIXELS FIXED BIN(31)i 

DCL V_PIXELS FIXED BIN(31)i 

DCL DH_PIXELS FIXED BIN(31)i 

DCL DV_PIXELS FIXED BIN(31)i 

DCL 1M_TYPE FIXED BIN(3l)i 
DCL RES FIXED BIN(3l); 
DCL RES UNIT FIXED BIN(3l) 

- INIT(O)i 
DCL H_RES FLOAT DEC(6)i 

DCL V_RES FLOAT DEC(6); 

DCL DH_RES FLOAT DEC(6); 

DCL DV_RES FLOAT DEC(6)i 

DCL H_SIZE FLOAT DEC(6)i 
DCL V_SIZE FLOAT DEC(6); 
DCL DH_SIZE FLOAT DEC(6)i 
DCL DV SIZE FLOAT DEC(6)i 
DCL H RATIO FLOAT DEC(6); 
DCL V:RATIO FLOAT DEC(6); 

DCL SCALE FLOAT DEC(6)i 
DCL (ATTYPE,ATTVAL,COUNT) 

FIXED BIN(3l); 
DCL DESCR CHAR(30); 

CALL FSINITi 
CALL IMAGID(APPL_ID); 

advanced image functions 

/* Application image identifier */ 
/* Projection identifier */ 
/* Application image horizontal */ 
/* size in pixels */ 
/* Application image vertical */ 
/* size in pixels */ 
/* Display image horizontal */ 
/* size in pixels */ 
/* Display image vertical */ 
/* size in pixels */ 
/* Image type */ 
/* Defined/undefined resolutn. */ 
/* Resolution */ 
/* Units to be inches */ 
/* Application image horizontal */ 
/* resolution (pixels per inch) */ 
/* Application image vertical */ 
/* resolution (pixels per inch) */ 
/* Display image horizontal */ 
/* resolution (pixels per inch) */ 
/* Display image vertical */ 
/* resolution (pixels per inch) */ 
/* Application image hor. size */ 
/* Application image ver. size */ 
/* Display image horiz. size */ 
/* Display image vert. size */ 
/* Horizontal and vertical */ 
/* size ratios of display */ 
/* image to appln. image */ 
/* Scale factor */ 
/* ASREAD parameters */ 

/* IMARST parameter */ 

CALL IMARST(APPL_ID,O, 'IMAGNAME',30,DESCR) i/*Restore saved 
/* image to application image 

*//*A*/ 
*/ 

/* Query the application image 
CALL IMAQRY(APPL_ID,H_PIXELS,V_PIXELS,IM_TYPE, 

RES,RES_UNIT,H_RES,V_RES); 

*/ 
/*B*/ 

/* Query the display image 
CALL IMAQRY(O,DH_PIXELS,DV_PIXELS,IM_TYPE, 

RES,RES_UNIT,DH_RES,DV_RES); 

*/ 
/*C*/ 

H_SIZE=H_PIXELS/H_RES; 
V_SIZE=V_PIXELS/V_RES; 
DH_SIZE=DH_PIXELS/DH_RES; 
DV_SIZE=DV_PIXELS/DV_RES; 
H_RATIO=DH_SIZE/H_SIZE; 
V_RATIO=DV_SIZE/V_SIZE; 
SCALE=MIN(H_RATIO,V_RATIO); 

/* Application image size inches*/ 
/* (horizontal and vertical) */ 
/*Display image size in inches */ 
/*(horizontal and vertical) */ 
/* Size ratios of display */ 
/* image to application image */ 
/* Required scale factor *//*D*/ 

Chapter 20. Advanced image functions 339 



see end of chapter for device variations 

CALL 1MPG1D(PROJ 1D) 1 /* Get a projection identifier */ 
CALL IMPCRT(PROJ:ID) 1 /* Create a new projection */ 
CALL IMRSCL (PROJ_ID,SCALE ,SCALE) 1/* Scale the image to suit */ 
CALL IMRPLR(PROJ_ID,O,O.O,O.O,O)I/*End of projection definition*/ 
CALL IMXFER(APPL_ID,O,PROJ_ID)1 /* Transfer to display screen *//*E*/ 
CALL ASREAD(ATTYPE,ATTVAL,COUNT)i 
CALL FSTERMi 
%INCLUDE ADMUPINAi 
%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINli 
END IMPROG4i 

In the above program, at /*A* /, a previously saved image IMAGENAME is 
restored using the identity projection. 

At /*B* /, the application image attributes are queried, to obtain sizes in pixels, 
and resolutions. 

At /*C* /, attributes of the image field on the current GDDM page are similarly 
queried. By default, this image field occupies the entire display screen. 

At /*D* /, the lesser of the horizontal and vertical size ratios (of display image to 
application image) is assigned to SCALE, that is subsequently used as the 
horizontal and vertical scale factor in a projection definition. This calculation 
works only for images with defined resolution. 

At /*E* /, this projection is applied to the restored image as it is transferred to the 
display screen. 

Interactive image manipulation, using image cursors 

This section consists of the following subsections: 

• The FSENAB, ISENAB, ISQLOC, and ISQBOX calls 

• Initializing the image cursors, using calls ISILOC and ISIBOX 

• Local operations on the 3193 display station 

• Interactive image manipulation example. 

The 3193 provides three cursors; one alphanumeric cursor and two image cursors -
an image cross cursor and an image rectangle (box) cursor. 

The image Cross cursor is used to inform a host program of an operator-selected 
point on the screen. In GDDM terms it is a locator cursor. 

The image box cursor is used to inform a host program of an operator-selected 
rectangular area of the screen. 

Image cursors must be enabled before they can be used. The normal technique is to 
enable whichever of the two image cursors you decide to use, and not both 
(although this is permitted). In GDDM image processing, unlike graphics, there is 
no concept of an image input queue. 

340 GDDM Application Programming Guide Volume 1 



advanced image functions 

Enabling or disabling device input, using call FSENAB 

This is not an image-specific call, but is required for the use of image cursors. 
Here is an example of its use in this context: 

CALL FSENAB(3,1); /* Enable device input 

• The first parameter specifies the input type, 3 for image. 

• The second parameter is 0 for disable, 1 for enable. 

Enabling or disabling an image cursor, using call ISENAB 

*/ 

This call is required to enable or disable a specific image cursor, that is, either the 
cross cursor or the box cursor. Here is an example call that enables the image 
cross cursor: 

CALL ISENAB(l,l); /* Enable image cross cursor */ 

The first parameter specifies the type of image cursor: 1 for the cross cursor, 2 for 
the box cursor. 

The second parameter is 0 for disable, 1 for enable. 

Enabling a cursor makes it appear on the display screen, and it can be moved 
around the screen under control of the terminal user. The call would normally be 
followed by an ASREAD, GSREAD, or MSREAD call, to wait for operator 
repositioning of the cursor, after which you can query the cursor position by use of 
an ISQLOC or ISQBOX call. Disabling a cursor makes it disappear from the 
screen. 

Querying the image locator cursor, using call ISQLOC 

Here is an example of how the ISQLOC call would be used: 

/* Reserved parameter DCL (ECHO, 
H_POS,V_POS, /* Horizontal and vertical position 

/* pixels 
IN_IMAGE, 
STATUS) 

/* In/out of image indicator 
/* Enabled/disabled indicator 

FIXED BINARY(3l); 
DCL (TYPE,MOD,COUNT) 

FIXED BINARY(3l); 
/* ASREAD parameters 

CALL FSENAB(3,l); /* Enable image input 
CALL ISENAB(l,l); /* Enable cross cursor 
CALL ASREAD(TYPE,MOD,COUNT); /* Output and wait 
CALL ISQLOC(ECHO,H_POS,V_POS,IN_IMAGE,STATUS); 

CALL ISENAB(l,O); 
/* Query cursor position 
/* Disable cross cursor 

The ISQLOC parameters are as follows: 

• The first parameter always returns a value of O. 

for input 

*/ 
in */ 

*/ 
*/ 
*/ 

*/ 

*/ 
*/ 
*/ 

*/ 
*/ 

• The next two parameters return the horizontal and vertical position, in pixels, 
of the cross cursor. 

• The next parameter returns a value of 0 if the cursor is outside the image, or 1 
if it is within the image, on the current GDDM page. 

Chapter 20. Advanced image functions 341 



see end of chapter for device variations 

• The last parameter returns a value 0 if the cursor is disabled, or 1 if it is 
enabled. (You can use the ISQLOC call with the cursor disabled.) 

Querying the image box cursor, using call ISQBOX 

This call is used similarly to the ISQLOC call, for querying the position, size, and 
status of the image box cursor. Here is an example of its use: 

DCL (ECHO, /* Reserved parameter */ 
LEFT_EDGE, /* Left edge of the rectangle in pixels */ 
RIGHT_EDGE, /* Right , , , , , , , , , , , , */ 
TOP_EDGE, /* Top , , , , , , , , , , , , */ 
BOTTOM_EDGE, /* Bottom , , , , , , , , , , , , */ 
IN_IMAGE, /* In / out of image indicator */ 
STATUS) /* Enabled/disabled status indicator */ 

FIXED BINARY(31)i 
CALL ISQBOX(ECHO,LEFT_EDGE,RIGHT_EDGE,TOP_EDGE,BOTTOM_EDGE, 

IN_IMAGE,STATUS); 

The parameters are as follows: 

• The first parameter always returns the value O. 

• The next four parameters are self-explanatory. 

• The next parameter, IN_IMAGE, indicates whether all four corners of the box 
cursor are within the image on the current GDDM page: 

o All four corners of the box are outside the image, and none of the image 
is inside the box. 

1 All four corners of the box are within the image. 
2 One or more corners of the box are outside the image, and part or all of 

the image is inside the box. 

Coordinates that are outside the image on the current GDDM page are given 
appropriate values, extrapolated from the pixel coordinate range of the image 
on the current GDDM page, that is, of the image field. 

• The last parameter, STATUS, returns the value 0 if the box cursor is disabled, 
or 1 if it is enabled. (You can use the ISQBOX call with the cursor disabled.) 

Initializing the image cursors, using calls ISILOC and ISIBOX 

There are calls for defining the echo type and initial position of the image cursors. 
Image cursors can be initialized when disabled or when enabled. Initializing does 
not change the disabled or enabled state. 

You can use the ISILOC call to initialize the image locator cursor. Here is a 
typical example: 

CALL ISILOC(O,150,25)i 

The parameters are as follows: 

• The first parameter must be set to O. It specifies that the default locator echo, 
a small cross, is to be used. 

• The next two parameters specify the initial position of the cross cursor, in 
pixels, horizontally and vertically respectively. 

342 GDDM Application Programming Guide Volume 1 



advanced image functions 

You can use the ISIBOX call to initialize the image box cursor. By default, the 
image box cursor is of device cell size and is positioned at the center of the image 
field. Here is a typical call: 

CALL ISIBOX(O,15,45,200,250); 

The parameters are as follows: 

• The first parameter must be set to O. It specifies that the default echo, a box, is 
to be used. 

• The next four parameters specify respectively the left, right, top, and bottom 
edges of the box, in pixel coordinates. 

Local operations on the 3193 display station 

The local operations that can be performed by the end user on the 3193 are: 

• Cursor type selection 

• Cursor movement 

• Box cursor size or shape change. 

Cursor type selection is required if either or both of the image cursors are 
enabled. In this case, either two or three cursors (the alphanumeric cursor, and 
one or two image cursors) are displayed, at their initial position. 

The cursor mode key on the 3193 keyboard switches cyclically between the three 
cursors if both image cursors are enabled, or alternates between the two if only one 
image cursor is enabled. If no image cursor is enabled, pressing this key has no 
effect. (There is no immediate screen feedback of cursor selection, but whichever 
has been selected will respond to cursor move key use.) 

Cursor movement is done by the same up, down, left, and right keys as are used 
for moving the alphanumeric cursor. The currently selected cursor, as determined 
by use of the cursor mode key, is moved appropriately by these keys. 

For the image cursors, one key press moves the cursor by two pixels. Sustained 
pressure results in accelerating cursor movement. Use of two keys (for example, 
down and left) at the same time causes the cursor to move diagonally. 

Movement off the edge of the screen is prevented. 

Box cursor size or shape change is obtained by using the cursor move keys in 
upper shift. Their operation is effectively on the bottom right corner of the 
rectangle, while the top left corner remains fixed. 

Thus, pressing the cursor downward movement key deepens the rectangle by 
moving down the bottom edge. If this key is kept pressed, the rectangle bottom 
edge moves until it reaches the bottom edge of the viewport and then it stops. 
Pressing the cursor left key reduces the width of the rectangle by moving the right 
edge to the left. If this key is kept pressed, the rectangle right edge moves until the 
rectangle becomes just a vertical line, and then it stops. And so on. 

Chapter 20. Advanced image functions 343 



see end of chapter for device variations 

Interactive image manipulation example 

In the next two examples, the end user uses the box cursor to indicate the 
boundaries to which a displayed image is subsequently trimmed. 

The fIrst example restores the image from a saved GDDM image object to the 
default image fIeld, which implies a full screen image fIeld. The box cursor can 
therefore never be positioned outside this fIeld. 

The second example shows how a part-screen image fIeld can be used. 

Here is the fIrst example: 

IMPROGS : PROC OPTIONS(MAIN); 
DCL H_PIXELS FIXED BIN(31); 

DCL V_PIXELS FIXED BIN(31); 

DCL 1M TYPE FIXED BIN(31); 
DCL RES FIXED BIN(31); 
DCL RES UNIT FIXED BIN(31) 

- INIT(O); 
DCL H_RES FLOAT DEC(6); 

DCL V_RES FLOAT DEC(6); 

DCL (ATTYPE,ATTVAL,COUNT) 
FIXED BIN(31); 

DCL BOX ECHO FIXED BIN(31); 
DCL BOX:LEFT FIXED BIN(31); 

DCL BOX_RIGHT FIXED BIN(31); 

DCL BOX_TOP FIXED BIN(31); 

DCL BOX_BOTTOM FIXED BIN(31); 

DCL BOX_IN_IMAGE FIXED BIN(31); 
DCL BOX_STATUS FIXED BIN(31); 
DCL DESCR CHAR (30) ; 

FSINIT; . 

/* Display image horizontal */ 
/* size in pixels */ 
/* Display image vertical */ 
/* size in pixels */ 
/* Display device image type */ 
/* Defined/undefined resolutn.*/ 
/* Display device resolution */ 
/* units to be inches */ 
/* Display image horizontal· */ 
/* resn. in pixels per inch */ 
/* Display image vertical */ 
/* resn. in pixels per inch */ 
/* AS READ parameters */ 

/* ISQBOX parameter */ 
/* Box left edge position */ 
/* in pixels */ 
/* Box right edge position */ 
/* in pixels */ 
/* Box top edge position */ 
/* in pixels */ 
/* Box bottom edge position */ 
/* in pixels */ 
/* Box within image */ 
/* Box status (enabled or not)*/ 
/* Imarst parameter */ 

CALL 
CALL 

CALL 

IMARST(O,O,'IMAGNAME' ,30,DESCR); /* Restore saved image 
/* to display screen 

IMAQRY(O,H_PIXELS,V_PIXELS,IM_TYPE, 
RES,RES_UNIT,H_RES,V_RES); 

*//*A*/ 
*/ 

/*B*/ 

CALL 
/* Query the display image 

ISIBOX(O,P_2S*H_PIXELS,O_7S*H_PIXELS, 
Q.2S*V_PIXELS,O.7S*V_PIXELS); 

CALL FSENAB(3,1); 
CALL ISENAB(2,1); 

344 GDDM Application Programming Guide Volume 1 

/* Initialize box cursor 
/* Enable image input 
/* Enable box cursor 

*/ 
/*C*/ 

*/ 
*//*D*/ 
*//*E*/ 



advanced image functions 

LOOP: 
DO WHILE(l=l); 1* Cursor process loop 

CALL ASREAD(ATTYPE,ATTVAL,COUNT); 
IF ATTYPE=l THEN 

IF ATTVAL=3 THEN LEAVE LOOP; 1* Exit if PF3 key pressed 
ELSE 

IF ATTVAL=12 THEN 1* Restore original image 
CALL IMARST(O,O,'IMAGNAME' ,30,DESCR);I* If PF12 pressed 

ELSEi 1* Ignore other PF keys 
ELSE DOi 1* Trim image to box size 

CALL ISQBOX(BOX_ECHO, 1* Query box curSOr 
BOX_LEFT,BOX_RIGHT, 
BOX_TOP,BOX_BOTTOM, 
BOX IN IMAGE,BOX STATUS); 

CALL lMATRM(O,BOX_LEFT,BOX_RIGHT, 1* Trim the display image 
BOX TOP,BOX BOTTOM); 

END; - 1* Trim image to box size 
END LOOP; 1* Cursor process loop 

CALL ISENAB(2,O); 

CALL FSTERM; 

%INCLUDE ADMUPINAi 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPINI; 

END IMPROGSi 

1* Disable box cursor 

In the above program, at I*A* I, a previously saved image with the file name 
IMAGNAME is restored to the display screen. The image field defaults to full 
screen size. 

*1 

*II*F*I 

*1 
*II*G*I 
*1 
*1 
*II*H*I 

*II*J*I 

*1 
*1 

*II*K*I 

At I*B* I, the size of the display device image (the image field) is queried. This is 
used, at I*c* I, to set the box cursor size to half of this size, and to position it 
centrally. 

At I*D* I and I*E* I, image input is enabled. You must code both of these 
statements. The first enables image input as the input type, and the second 
specifically enables the box cursor. 

The loop following these statements allows the terminal user to reposition and 
change the size of the box cursor, and press ENTER, after which the displayed 
image is trimmed to the box; all of this can be repeated as many times as required. 

At I*F* I, the user can exit from the loop by pressing PF3. 

At I*G* I, the user is able to restore the original, untrimmed image by pressing 
PF12. 

At I*H* I, the box cursor is queried, and in this simple example the returned values 
are used directly, at I*J* I, to trim the displayed image to the box size. 

At I*K* I, the box cursor is disabled before terminating GDDM. In a real 
application, other functions might precede the GDDM termination, and it is good 
practice to disable the image cursor once the associated processing is completed. 

Here is an extension of the above example to show you how to handle an image 
field that occupies only part of the screen. In this case, the box cursor can lie 
partly or completely outside the image field. 

Chapter 20. Advanced image functions 345 



see end of chapter for device variations 

IMPROG6 : PROC OPTIONS(MAIN); 

/* Declarations as in previous 
DCL ERROR BIT(l); 

example, plus: */ 
/* On for error in box position*/ 

DCL NO BIT(l) INIT('O'B); 
DCL YES BIT(l) INIT('l'B); 

CALL FSINIT; 

CALL 
CALL 

CALL 

CALL 

ISFLD(lO,lS,20,SO,O); /* 20 row by 50 col field 
IMARST(0,0,'IMAGNAME',30,DESCR); /* Restore saved image 

/* to display screen 
IMAQRY (O,H_PIXELS,V_PIXELS, IM_TYPE, 

RES,RES_UNIT,H_RES,V_RES); 
/* Query the display image 

ISIBOX(O,0.2S*H_PIXELS,O.7S*H_PIXELS, 
0.2S*V_PIXELS,O.7S*V_PIXELS); 

CALL FSENAB(3,l); 
CALL ISENAB(2,l); 
LOOP: 

/* Initialize box cursor 
/* Enable image input 
/* Enable box cursor 

DO WHILE(l=l); /* Cursor process loop 
CALL ASREAD(ATTYPE,ATTVAL,COUNT) ; 
IF ATTYPE=l THEN 

IF ATTVAL=3 THEN LEAVE LOOP; /* Exit if PF3 key pressed 
ELSE 

*//*A*/ 
*/ 
*/ 

*/ 

*/ 
*/ 
*/ 

*/ 

*/ 

IF ATTVAL=l2 THEN /* Restore original image */ 
CALL IMARST(O,O,'IMAGNAME' ,30,DESCR);/* If PFl2 pressed */ 

ELSE; /* Ignore other PF keys */ 
ELSE DO; /* Trim image to box size */ 

CALL ISQBOX(BOX_ECHO, /* Query box cursor */ 
BOX_LEFT,BOX_RIGHT, 
BOX_TOP,BOX_BOTTOM, 
BOX_IN_IMAGE,BOX_STATUS); 

IF BOX_IN_IMAGE=O THEN ERROR=YES;/* Box is completely outside*//*B*/ 
/* image */ 

ELSE 
IF BOX_IN_IMAGE=l THEN 

ELSE 
DO; 

ERROR=NO; 

ERROR=NOi/* Box is fully within 
/* image 

/* Box is partly outside 
/* Sub-box process 

IF BOX_LEFT < 0 THEN BOX_LEFT = 0; 
IF BOX_TOP < 0 THEN BOX_TOP = 0; 

*//*C*/ 
*/ 

image*/ 
*//*D*/ 

IF BOX_RIGHT> H_PIXELS-l THEN BOX_RIGHT = H_PIXELS-l; 
IF BOX_BOTTOM> V_PIXELS-l THEN BOX_BOTTOM = V_PIXELS-l; 

END; /* Sub-box process */ 
IF ~ERROR THEN /*E*/ 

CALL IMATRM(O,BOX_LEFT,BOX_RIGHT,/* Trim the display image */ 
BOX_TOP,BOX_BOTTOM); 

END LOOP; 

CALL ISENAB(2,O); 

CALL FSTERM; 

%INCLUDE ADMUPINA; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPINI; 

END IMPROG6; 

END; /* Trim image to box size 
/* Cursor process loop 

/* Disable box cursor 

*/ 
*/ 

*/ 

In the above program, at /*A* /, an image field 20 rows deep by 50 columns wide is 
created. 

346 GDDM Application Programming Guide Volume 1 



advanced image functions 

At I*B* I, the error switch is set if the box cursor has been positioned completely 
outside the image field. In a real program, an alphanumeric prompting message 
might be provided, telling the end user to reposition the cursor. 

At I*c* I, when the box is fully within the image field, the switch setting ensures 
that the processing is the same as in the previous example. 

At I*D* I, the box that is partly outside the image field is redefined, to force it to 
be entirely within the image field boundaries. If this were not done, an IMATRM 
error condition would occur. 

At I*E* I, the actual image trimming takes place, and is precluded if the box cursor 
is completely outside the image field. 

Transferring images into and out of your program 

If you need to transfer image data to or from devices not supported by GDDM, or if 
you need to convert images to or from other application programming interfaces, 
then you require some means of transferring image data between your application 
program and GDDM. 

There are two groups of image calls that allow you to do this, subject to specific 
requirements on the format and compression of the image data. 

A "PUT" operation, using the call group IMAPTS, IMAPT, and IMAPTE, permits 
the entry of image data into GDDM, if it is held in one of several standard formats, 
or it consists of unformatted data. In addition, several different compression types 
are permitted, but only in specific combinations with formats. 

Likewise a "GET" operation, using the call group IMAGTS, IMAGT, and IMAGTE, 
permits the retrieval of image objects from GDDM to your program, again with 
specific format/compression rules. 

The supported combinations of format and compression types are shown by an Yes 
in the following table. Yes - direct signifies that the format/compression 
combination permits direct transmission, discussed under "Direct transmission" 
on page 355. Note that the values indicated by Yes-direct are those returned by 
the ISQFOR and ISQCOM calls. 

Unformatted 3193 CPDS 
data stream 

Uncompressed Yes Yes-direct No 

MMR Yes Yes-direct Yes 

4250 No No Yes 

3800 No No Yes 

Figure 94. Acceptable combinations of format and compression 

For further information see the GDDM Base Programming Reference manual. 

The "PUT" and "GET" operations are transfer operations, so they can invoke a 
projection to transform the data as it is transferred. 

Chapter 20. Advanced image functions 347 



see end of chapter for device variations 

Starting a PUT operation, using call IMAPTS 

Here is an example of IMAPTS, to start transfer of an unformatted, uncompressed 
image from your application program to the image on the current GDDM page: 

CALL IMAPTS(O,O,l,l); 

The parameters are as follows: 

• The first parameter specifies the target image identifier. 0 means the image on 
the current GDDM page. -1 is invalid. 

• The second parameter identifies a projection to be applied to formatted data 
(only). If specifying unformatted and uncompressed data (in the next two 
parameters), this must be 0, for the identity projection. 

• The next parameter defines the format of the source image; 1 means 
unformatted. Other possible values are: 

o Default (same as 2) 
-1 Unformatted (reversed polarity) 
2 3193 data-stream structures 
-2 3193 data-stream structures (reversed polarity) 
3 CPDS structures 
- 3 CPDS structures (reversed polarity). 

Normally, for GDDM images, 0 is black and 1 is white. Reversed polarity 
implies that 0 is white and 1 is black. 

• The last parameter specifies the compression type of the source image. Possible 
values are: 

o For unformatted data, this is the same as 1. For formatted data, the 
compression is to be determined by inspection of the data. 

1 Uncompressed 
2 MMR 
3 4250 
4 3800. 

Here is another example of IMAPTS, that starts transfer to the image on the 
current GDDM page, of a CPDS formatted image with 4250 compression. In 
addition it invokes projection 17: 

CALL IMAPTS(O,17,3,3); 

Note that only the formats marked by Yes-direct in Figure 94 on page 347 give 
direct transmission, if the projection can be offioaded to the device. See 
"Controlling host offioad by specifying image quality" on page 351 and "Direct 
transmission" on page 355 for more details. 

PUTTING data into an image, using call IMAPT 

Here is an example to transfer the contents of a 400-byte buffer area named 
BUFFER: 

DCL BUFFER CHAR(400); 
CALL IMAPT(O,400,BUFFER); 

The parameters are as follows: 

348 GDDM Application Programming Guide Volume 1 



advanced image functions 

• The first parameter is as usual the image identifier. Again, 0 specifies the 
image on the current GDDM page. 

• The second parameter specifies the data length, in the buffer named in the 
following parameter, to be transferred. 

• The third parameter names the source image data buffer in your program. 

Ending a PUT operation, using call IMAPTE 

Here is an example call: 

CALL IMAPTE(O)i 

where the only parameter is the image identifier. 

Here is an example showing how the IMAPTx calls are combined. This time you 
can assume that the source image is contained in an array of buffers, with a second 
array specifying the image data length in each buffer. 

The code to transfer all of this data to the current GDDM page could be as follows: 

DCL BUFDATA(100) CHAR(400)i/* Application program image buffers */ 
DCL BUFLEN(100) FIXED BINARY(31)i/* Data lengths in each BUFDATA 

/* buffer */ 
DCL (BUFCOUNT, /* Count of used buffers */ 

FORMAT, /* Format code */ 
COMPN) /* Compression code */ 

FIXED BINARY(31)i 

BUFCOUNT=55i /* Number of used buffers - say 55 */ 
FORMAT=li /* Unformatted data */ 
COMPN=li /* Uncompressed data */ 
CALL lMAPTS(O,O,FORMAT,COMPN)i 
DO 1=1 TO BUFCOUNT; 

CALL IMAPT(O,BUFLEN(I),BUFDATA(I))i 
ENDi 
CALL IMAPTE(O)i 

Starting a GET operation, using call IMAGTS 

Here is an example of IMAGTS, to start transfer of a formatted, compressed image 
from a scanner device image to your application program: 

CALL lMAGTS(-1,105,O,2)i 

The parameters are as follows: 

• The first parameter is an image identifier. As usual, -1 specifies the 
display-attached scanner. 0 would specify the image on the current GDDM 
page. 

• The second parameter specifies projection identifier 105. 

The "GET" function is always a transfer operation, so a projection identifier 
other than 0 can be used, if the associated projection has been created or 
accessed by your program. 

Chapter 20. Advanced image functions 349 



see end of chapter for device variations 

• The third parameter, 0, specifies the format as the default format, the same as if 
2 had been coded, meaning that 3193 data-stream structures are used. The 
permitted values and their meanings are the same as for the format parameter 
of the IMAPTS call. 

• The last parameter, 2, specifies MMR compression. ° would specify the default, 
the same as 1, which is uncompressed data. The values 3 and 4 are also 
permitted, with the same meanings as for the compression parameter of the 
IMAPTS call. 

Note that only the formats marked by Yes-direct in Figure 94 on page 347 give 
direct transmission, if the projection can be offloaded to the device. See 
"Controlling host offload by specifying image quality" on page 351 and "Direct 
transmission" on page 355 for more details. 

GETTING data from an image, using call IMAGT 

Here is an example of this call: 

DCL BUFFER CHAR(800); 
DCL (BUFLEN, /* Data area length 

DATALEN) /* Data actual length 
FIXED BINARY(31)i 

BUFLEN=800i 
CALL IMAGT(-l,BUFLEN,BUFFER,DATALEN); 

The parameters are as follows: 

• The first parameter is the image identifier, -1 for the scanner. 

• The next parameter is the available buffer length. 

• The third parameter is the name of the data area to receive the image data. 

*/ 
*/ 

• The last parameter is the length of image data placed in the data area (buffer) 
by GDDM. If it is 0, all the image data has been returned. 

Ending a GET operation, using call IMAGTE 

Here is an example call: 

CALL IMAGTE(-l); 

The single parameter specifies the image identifier. 

Here is an example of the three IMAGTx calls used together to retrieve several 
buffers of image data: 

350 GDDM Application Programming Guide Volume 1 



advanced image functions 

DCL DATABUF(100) CHAR(800)i/* Array of data buffers to receive */ 
/* image data */ 

DCL DATALEN(100) FIXED BINARY(31)i/* Array of data length values*/ 
/* to be returned */ 

DCL BUFLEN FIXED BINARY(31)i 
BUFLEN=800i 
CALL lMAGTS(-1,lOS,O,2)i /* Start data retrieval, parameters */ 

/* as before */ 
DO 1=1 BY 1 UNTIL(DATALEN(I)=O)i 

/* Continue till no more data */ 
CALL lMAGT(-l,BUFLEN,DATABUF(I),DATALEN(I»i 

/* Retrieve scanner image data */ 
ENDi 
CALL lMAGTE(-l)i /* End data retrieval from scanner 

For unformatted or 3193 data-stream format, all buffers, except possibly the last, 
are filled. For CPDS format, all buffers are partly filled. 

Controlling host offload by specifying image quality 

You have already met projections and the transform calls that they can contain. 
Using these calls you can define a projection to do the following, for example: 

• Extract one or more rectangular sub-image(s) from the source image 

• Apply a scaling factor to the extracted image 

• Choose the scaling/resolution conversion algorithm 

• Place one or more extracted images within the target image. 

As mentioned earlier, defining a projection does not specify the source or target 
image on which it is to act, nor where the operations are to be performed. 

*/ 

For example, in a transfer operation that has a 3193 device image as its target, 
some or all of the projection transforms can be performed in the device itself, if the 
transforms are within the capability of the 3193. The processing by the device 
offloads processing from the host, and is known as host offload. 

The flrst requirement for host offload of image transforms is offload of the target 
image itself. If GDDM determines that the image can be kept by the device, GDDM 
does not keep a copy. The conditions for this are: 

1. The image field is write-only. 

2. User control has not been made available (the default). 

3. Real partitions are specified, if partitions are required. 

Because image data cannot be retrieved from the 3193, the specification of a 
read-write image field forces GDDM to keep a copy of the target image, and to 
perform all transforms on it within GDDM. The result is then available within 
GDDM, and can be used as the source of any subsequent transfer operation. See 
"Defining an image field, using call ISFLD" on page 357. 

Generally, GDDM in the host has more precise image processing ability than image 
devices. However, GDDM processing by the host carries a performance penalty 
(increased response times, processing, and storage), that you can avoid by choosing 

Chapter 20. Advanced image functions 351 



see end of chapter for device variations 

to accept the lower quality function offered by the devices. This can be 
particularly useful in a system environment of multiple concurrent users. 

The two calls, ISCTL and ISXCTL, described below, give you some control over the 
trade-off between quality of function and performance, by controlling whether 
particular transform calls are performed in the host or in the image device. 
Accepting lower quality allows GDDM to approximate the precise requirements of 
your program to those supported by the device, depending on the factors stated 
below under each function subheading. 

Here are the descriptions of the variable operation conditions. 

Image size rounding 

The 3117 and 3118 scanners can scan only an area of the paper that is a multiple of 
8 pixels wide. Also, the left edge of the scanned area must be a multiple of 8 pixels 
from the left edge of the scanner detector. If you do not mind about image-size 
rounding, GDDM may round the scanner image size, or extracted image size, to suit 
the scanner limitations. If, on the other hand, you do not want your image sizes to 
be rounded, GDDM processes the scanned images to ensure that the effects of the 
rounding are not noticeable by the application. 

Scaling and resolution conversion 

The 3193 device supports scaling factors of 1/4, 1/3, 1/2, 2/3, 3/4, 1, 4/3, 3/2, 2, 3, and 
4 only. If you specify a non 3193-supported scaling factor, say 0.1 or 1.25, and 
specify that the factor must be applied precisely, GDDM, not the 3193, must do the 
scaling. Or, it could be acceptable for the scale factor to be, say, within the range 
0.9 times the specified value through 1.11 times the specified value. The values, 0.9 
and 1.11, define a range for the scale factor multiplier. If you insist on precise 
scaling, this can be stated as needing a scale factor multiplier value of 1.00. 

Scaling algorithm (also used in resolution conversion) 

You may not mind whether the target image device supports a specific scaling 
algorithm called for in your projection, or uses another. Instead, you may require 
rigid adherence to the algorithm specified, even if GDDM has to perform it. 

The 3193 supports pixel replication. GDDM can perform the black pixel retention 
or white pixel retention algorithm; see the description of the IMRRAL call under 
"Defining the resolution conversion algorithm, using call IMRRAL" on page 324. 

Multiple extraction and placing of rectangles 

The 3193 can handle four or fewer transforms per projection. For a projection, any 
more than four transforms involve extra overhead for GDDM in the host. If you do 
not mind this extra overhead, you can specify this to GDDM. Or, if you want to 
avoid the overhead, you can ask GDDM to limit the number of extractions to four. 

352 GDDM Application Programming Guide Volume 1 



advanced image functions 

v = Vertical overlap 

t 
V 

t 

Figure 95. Vertical overlap 

H = Horizontal overlap 

Figure 96. Horizontal overlap 

Even within this limit, it may give incorrect results in any overlapped areas. This 
depends on the image-mixing modes defined in the IMRPL or IMRPLR calls 
described in the previous chapter. If you do not mind whether one or more 
transforms are in error where they overlap in the target image, you can specify this 
to GDDM. Or, you can request GDDM to avoid incorrect overlap, which it does 
either by performing the transform in the host, or by sending the transform 
separately to the device, which means GDDM sends the image more than once. 

Note: Unexpected overlaps can occur because of scale factor modification already 
described under "Scaling and resolution conversion" on page 352. 

Controlling image quality, using call ISCTL or ISXCTL 

You can use call ISCTL or ISXCTL in your application to control the above four 
variable operations by specifying the image quality that is acceptable for the 
current page or scanner device. 

Here is an example of the ISCTL call required to specify that all extracts are to be 
processed, that the scale factor multiplier is to be constrained to the range 0.9 
through 1.11, the specified scaling algorithm is to be honored, incorrect results in 

Chapter 20. Advanced image functions 353 



see end of chapter for device variations 

placing overlapped rectangles are to be avoided, and image size rounding is to be 
avoided: 

CALL ISCTL(O,4)i 

The parameters are as follows: 

• The fIrst parameter is a device image identifIer: 

o The current page 
-1 The scanner 

• The second parameter is a value n in the range 0 through 5, specifying the 
required quality. 0 is the default, which is the same as 3. 1 through 5 have the 
following meaning: 

(1 = low quality, 5 = high quality) 

Process Scale Honor Avoid Avoid 
n all factor scaling overlapped image size 

extracts multiplier algorithm rectangles rounding 

1 Don't care Any - any Don't care Don't care Don't care 

2 Don't care 0.4 - 2.5 Don't care Don't care Don't care 

3 Yes 0.8 - 1.25 Don't care Don't care Don't care 

4 Yes 0.9 - 1.11 Yes Yes Yes 

5 Yes 1.0 - 1.0 Yes Yes Yes 

Or, you can use the ISXCTL call for more selective control of the 
function/performance trade-off. Here is an example specifying that on the current 
page all extracted rectangles are to be processed, you do not mind whether the 
specified scaling algorithm is used, and the overlapped rectangle treatment is to be 
unchanged from its previous setting. Further, the scaling/resolution conversion 
limits to be applied are as follows. The lower scaling limit is to be the exact value, 
and the upper scaling limit is to be 1.3. This means that any specifIed scale factor 
can be modifled by a multiplier within the range 1.0 and 1.3. 

Here is the call and its declaration and assignment statements: 

DCL ARRAY1(3) FIXED BINARY(31)i 
ARRAY1(1)=li /* Process all extractions */ 
ARRAY1(2)=Oi /* Scaling algorithm may be varied */ 
ARRAY1(3)=-li /* Leave unchanged rectangle 

specification */ 
DCL ARRAY2(2) FLOAT DEClMAL(6); 
ARRAY2(1)=1.0; /* Lower scaling limit exact (1.0) */ 
ARRAY2(2)=1.3; /* Upper scaling limit 1.3 */ 
CALL ISXCTL(O,3,ARRAY1,2,ARRAY2)i 

The parameters are as follows: 

• The fIrst parameter, 0, is a device image identifIer specifying the current page; 
-1 would specify the scanner. 

• The second parameter, 3, is a count of the number of elements specifIed in the 
array parameter following. 

354 GDDM Application Programming Guide Volume 1 



advanced image functions 

• The third parameter is an array of up to four elements that specify respectively 
whether GDDM is to process all extractions, honor the scaling algorithm 
specified, avoid overlapping rectangles, and avoid image-size rounding. 

The setting for anyone of these four array elements can be one of the 
following, with the meanings indicated: 

-1 Unchanged. This is the default if the element is not included (see note 
below). 

o Don't care. 
1 Yes. 

• The fourth parameter is a count of the number of elements in the further array 
parameter following. 

• The final parameter is an array of up to two elements specifying respectively 
the lower and upper scaling limits. Each of these elements can have one of the 
following values, with the meanings indicated: 

-1 Unchanged. This is the default ifthe element is not included (see note 
below). 

1 Exact. 

Alternatively, the lower scaling limit can have a value in the range 0 through 
1.0, and the upper scaling limit can have any value greater than 1.0. 

Note: "Unchanged" means unchanged from a previous setting, if any, by ISCTL or 
ISXCTL, or if this is not done, the ISCTL default parameter settings apply. 

Direct transmission 

Because the 3193 supports host offload of transforms, image data passed to GDDM 
by IMAPT calls may be sent directly to the device, so GDDM does not have to 
accumulate the entire image. This is known as direct transmission. 

Direct transmission has the following advantages for an application: 

• It minimizes storage usage, thereby improving system performance. 

• It improves usability by showing the first part of an image sooner. 

• It allows the operator to start making decisions earlier, thereby improving 
throughput. 

Direct transmission to the 3193 is used by default, if the data is in 3193 data-stream 
format, if the 3193 can perform the entire projection, and if GDDM does not 
otherwise need to perform the projection itself (for example, to maintain a 
read-write image field). GDDM sends the data directly to the 3193 without keeping 
a copy of the entire image. 

If the 3193 cannot perform the entire projection, GDDM performs the functions in 
the host where necessary. GDDM may need to construct a copy of the entire image 
from the buffer contents to do this. This also happens for devices other than the 
3193. 

As described in "Controlling host offload by specifying image quality" on page 351, 
the application can specify, by the ISFLD call, whether the image on the current 

Chapter 20. Advanced image functions 355 



see end of chapter for device variations 

GDDM page must be read-write. If it is specified as read-write but the device has 
write-only function, GDDM buffers the entire image, and direct transmission is not 
used. 

Direct transmission from a scanner 

When using the IMAGTx calls, direct transmission from a scanner can take place, 
if all the following restrictions are met: 

1. The current ISCTL values for the scanner must specify that you don't care 
about avoiding image size rounding. 

2. The projection must contain only one transform. 

3. The transform must not contain IMRSCL, IMRREF, or IMRORN. 

4. The scanner can only supply image data in the negated format (that is, where 1 
= black) so the IMAGTS call must specify a format of + 2 if the transform 
contains a negate element, or - 2 if it doesn't. 

5. Compression must be either uncompressed or MMR. 

6. When echoing is required, it must be possible for the device to perform the 
echoing. See "Direct echoing when scanning." 

If the above restrictions are not met, GDDM scans the data into a temporary image, 
and performs the projection as part of the IMAGTS processing. The subsequent 
IMAGT calls use data from the temporary image. 

Direct echoing when scanning 

Usually, echoing can be performed by the 3193 to which the scanner is attached, 
saving host processing, if the following restrictions are met: 

1. OfTIoad of the target image (see "Controlling host ofTIoad by specifying image 
quality" on page 351). 

2. The projection can be performed by the 3193, within the quality requirements 
specified by the ISCTL or ISXCTL call. 

Combining an image with text or graphics 

"Chapter 9. Hierarchy of GDDM concepts" on page 89 introduced the concept of 
an image field similar to a graphics field. In addition, several sections in this 
chapter the previous one mention the use of image identifier 0 to refer to the image 
field on the current GDDM page, assuming this field to exist. 

Only one image field can exist per page, and as for a graphics field, it can be 
created explicitly or by default. Usually you let GDDM create the image field for 
you. If, however, you want the image field to extend over only part of the page, 
you must create one explicitly. The most likely reason for doing this is to share 
the page between image and alphanumerics or graphics. 

Like alphanumeric and graphics fields, an image field is defined in page row and 
column coordinates. 

356 GDDM Application Programming Guide Volume 1 



advanced image functions 

The image field and alphanumeric field(s) can overlap, just as graphics and 
alphanumerics can overlap. However, image and graphics fields can coexist on the 
same page only if they do not overlap. 

Where a device does not accept image data streams, GDDM supports image 
processing by internally using graphics calls (emulation), and this can be done only 
if there are no graphics on the same page. If there is a graphics field on the page, 
GDDM will display or print its contents in preference to those of the image field. 

You can, however, display a graphics field and an image field at the same time, on 
family-I display devices other than the 3193, by placing the fields in separate 
partitions. 

Defining an image field, using call ISFLD 

Here is an example of the ISFLD call used to create an image field that begins on 
row 5, at column 10, and is 15 rows deep and 50 columns wide: 

CALL ISFLD(S,10,lS,SO,O); 

The parameters are just as for the GSFLD call, except for an additional parameter 
at the end: 

• The first two parameters specify respectively the row and column of the top left 
corner of the image field. 

• The next two parameters specify respectively the depth and width of the image 
field, in row and column units. 

• The last parameter specifies a control value. 

o specifies the default control action, the same as value 1, that means the image 
is to be a write-only image. A value of 2 specifies read-write. 

As for GSFLD, if any of the first four parameters is given the value zero, the field 
is deleted. 

As an example of the need to use read-write for a display image, consider an 
application that displays an image on a 3193. A terminal user may want to select 
parts of this image, using the image box cursor, compose an image using those 
parts, and save away the result. 

To do this, GDDM must be told to buffer the entire image by initially defining the 
image field as read-write. This impairs performance, because GDDM keeps a copy 
of the image. 

Querying the attributes of an image field, using call ISQFLD 

This is an example of the use of this query call: 

DCL (ROW, /* Starting row 
COL, /* Starting column 
DEPTH, /* Depth in rows 
WIDTH, /* Width in rows 
CONTROL) /* Control parameter 

FIXED BINARY(31); 
CALL ISQFLD(ROW,COL,DEPTH,WIDTH,CONTROL); 

*/ 
*/ 
*/ 
*/ 
*/ 

Chapter 20. Advanced image functions 357 



see end of chapter for device variations 

Apart from being returned by GDDM rather than set by the caller, the parameters 
are the same as for ISFLD, with the exception that a control parameter returned 
value of 0 means no image field exists. 

Printing and plotting images 

The most convenient printer for image is the 4224, which is a desk-top device able 
to print graphics, alphanumerics, and image at a resolution of 144 pixels per inch. 

Printing an image on a 4224 printer 

4224 as the primary output device: So far, you have implicitly selected the 
display screen as the output device. GDDM has opened it for you, automatically. 

Here is an example program that uses DSOPEN to establish the 4224 as the 
primary output device. You will meet the DSOPEN (open) and DSCLS (close) 
device calls in "Chapter 21. Device support" on page 367. 

IMPROGS : PROC OPTIONS(MAIN); 

DCL PLIST(l) FIXED BIN(3l); 
DCL NLIST(l) CHAR(S); 
DCL DESCR CHAR(30) ; 

CALL FSINIT; 
NLIST(l)='cuu'; 

1* DSOPEN PROCOPT list 
1* DSOPEN name list 
1* For file description 

CALL 
CALL 
CALL 

DSOPEN(4224,l,'X4224SS' ,O,PLIST,l,NLIST); 
DSUSE(l,4224); 1* As primary device 
IMARST(O,O,'IMAGNAME',30,DESCR); 1* Restore filed image 

CALL FSFRCE; 
CALL DSCLS(4224,O); 
CALL FSTERM; 

%INCLUDE ADMUPIND; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPINI; 

END IMPROGS; 

1* to the GDDM page 
1* Output the current page 
1* Close the printer 

*1 
*1 
*1 

I*A*I 
I*B*I 

.*1 
*1 
*1 
*1 
*1 

At I*A* I, in the above program, cuu is a CMS device address, just as an example. 
This will need to be changed appropriately for your subsystem and installation. 

At I*B* I, the value 4224 is used just by choice - any unused device identifier 
could be used. The values 0 and 1 should be avoided. The device token 'X4224SS' 
is an example. This will need to be changed appropriately for your installation. 

Another topic introduced in the device support chapter is the use of nicknames. 
By using nickname statements in a file external to your program, you can change 
the p~ary .device used without changing your program. Thus you can avoid 
using the DSOPEN and DSCLS calls. The use of nickname statements and their 
syntax is all dealt with under "Nicknames" on page 378. 

4224 as the secondary output device: "Chapter 22. Using printers" on page 395 
explains how you can specify that a device such as a printer or plotter can be used 
as a secondary (alternate) device, while your program still uses the display screen 
for primary output. You can then issue the FSCOPY call: 

CALL FSCOPY; 

358 GDDM Application Programming Guide Volume 1 



advanced image functions 

to copy the displayed output to the printer or plotter. 

Usually it is preferable to use the 4224 as the primary device, as described in the 
previous section. This is because secondary device use has the following 
implication. 

Image and alphanumeric fields are copied in their correct row and column 
positions; the cells of the primary output device are mapped to the cells of the 
alternate device. 

Because the primary and secondary device cells usually differ in aspect ratio, the 
aspect ratio of the image field will change, and so will the physical positioning of 
the image relative to text strings displayed as alphanumerics. However, the aspect 
ratio of the image will be preserved by resolution conversion. 

Printing an image on 4250 or 3800-3 

The following steps are required: 

• Scan the image or restore it from auxiliary storage, to establish it as a GDDM 
application image. 

• Transfer the image to one that has a size and resolution to suit the printer 
used. This is done either by maintaining the real size of the original image, or 
scaling it to fit the printer image size. 

Remember that in-place resolution conversion can be done using the IMARES 
call. 

• Get the image from GDDM into your own application program storage, using a 
format of 3 or - 3 as appropriate. Remember that, during this step, a projection 
can be applied. 

• Write the image out to a file, in CPDS "page segment" format. It is then 
known as a PSEG file. See notes following the code below, on file-naming 
conventions. 

• Use this file as a "secondary data stream" for input to other mM program 
products, as described in the later chapter on use of printers (see 
"Composed-page printer as a family-4 primary device" on page 399). 

The example program below shows you how to build the PSEG file, in this case 
from a restored GDDM image object called IMAGNAME. The program builds and 
writes out the necessary "Begin Page Segment" and "End Page Segment" CPDS 
orders at the start and end respectively. 

Here is the code for printing a restored image on 4250, and the notes that follow 
explain the small changes required for printing on 3800-3. 

Chapter 20. Advanced image functions 359 



see end of chapter for device variations 

IMPRGlO: PROC OPTIONS(MAIN)i 
1* Declarations *1 
DCL SUBSTR BUILTIN; 1* Substring builtin function *1 

1* Minimum builtin function *1 DCL MIN BUILTINi 
DCL APPL 10 FIXED BIN(3l)i 
DCL NEW APPL 10 FIXED BIN(3l)i 
DCL PROJ 10 FIXED BIN(3l)i 

1* Restored image 10 *1 
1* Target image ID *1 

DCL DESCR CHAR(30)i 
1* Projection ID *1 
1* For image description *1 

DCL TYPE FIXED BIN(3l)i 1* Program control: *1 

DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 
DCL 

DCL 
DCL 
DCL 
DCL 
DCL 

1* set to 1 for 'real size' *1 
1* set to 2 for scale-to-fit */ 

HC H SIZE FLOAT DEC(6)i 1* Hard copy image size in */ 
HC-V-SIZE FLOAT DEC(6)i 1* inches *1 
HC-H-RES FLOAT DEC(6)i 1* Printer resolution */ 
HC-V-RES FLOAT DEC(6)i 1* in pixels per inch */ 
HC-H-PIXELS FIXED BIN(3l)i 1* Hard copy image size in */ 
HC-V-PIXELS FIXED BIN(3l); 1* pixels */ 
HC-H-POS FLOAT DEC(6); 1* Hard copy image position *1 
HC-V-POS FLOAT DEC(6); 1* relative to top lh corner */ 
SOURCE H SIZE FLOAT DEC(6); 1* Source image size in */ 
SOURCE-V-SIZE FLOAT DEC(6); 1* inches */ 
SOURCE:H:RES FLOAT DEC(6); 1* Source image resolution *1 
SOURCE_V_RES FLOAT DEC(6); 1* in pixels per inch *1 
SOURCE_H_PIXELS FIXED BIN(31);I* Source image size in *1 
SOURCE_V_PIXELS FIXED BIN(31);I* pixels *1 
COMPN FIXED BIN(3l); 1* 4250 or 3800 compression */ 
1M_TYPE FIXED BIN(3l); 1* Image type *1 
BI_LEVEL FIXED BIN(3l) INIT(l);I*" "is BI-level *1 
SOURCE_RES FIXED BIN(3l); 1* Defined/undefined resolution*1 
DEFINED FIXED BIN(3l) INIT(l);I*Defined resolution *1 
INCHES FIXED BIN(3l) INIT(O);I* Inch units *1 
OVERPAINT FIXED BIN(3l) INIT(O);I* Overpaint mix mode *1 
(H_RATIO,V_RATIO) FLOAT DEC(6);I* Size ratios *1 
SCALE FLOAT DEC(6); 1* Scale factor *1 
IMAGFIL FILE RECORD OUTPUT ENV(V RECSIZE(404»; I*A*I 

1* recsize 4 bytes more than buffer*1 
DATABUF CHAR(400); 1* For image transfer to file *1 
DATASUB CHAR(400) VARYING; 1* For short records *1 
DATALEN FIXED BIN(3l); 1* Length of data in databuf *1 
BUFLEN FIXED BIN(31) INIT(400);I* Length of databuf *1 
1 SF UNALIGNED, 1* Structured field *I/*B*I 
2 SF_LENGTH FIXED BIN(15) 1* Structured field length, *1 

INIT(16), 1* always 16 here *1 

2 SF RESERVED BIT(8) 
- INIT('llOl0011'B), 

2 SF CODE BIT(l6), 
2 SF-FLAG BIT(8) 

- INIT('OOOOOOOO'B), 
2 SF_SEQUENCE FIXED BIN(l5) 

INIT(O), 
2 SF NAME CHAR(8) 

- INIT('OOOOOOOO'); 

1* (does not include sf_cc) *1 
1* Reserved - set to X'D3' *1 

1* Set to required order code */ 
1* Flag - always X'OO' */ 

1* Sequence field, not used *1 
1* so set to 0 *1 
1* Name field set to 00000000 *1 

DCL BPS BIT(l6) 
INIT('lOlOlOOOOlOlllll'B); 

DCL EPS BIT(16) 
INIT('lOlOlOOlOlOlllll'B); 

1* Begin page segment order, 
1* X'A85F' 
1* End page segment order, 
1* X'A95F' 

*1 
*1 
*1 
*1 

360 GDDM Application Programming Guide Volume 1 



advanced image functions 

CALL FSINITj 
/* Restore the image to be printed 
CALL IMAGID(APPL_ID)j /* Get a new identifier 
CALL IMARST(APPL_ID,O,'IMAGNAME' ,30,DESCR)j 

/* restore GDDM image 
/* Choose 'real size' (type=l) or 'scale-to-fit' (type=2) 
TYPE=2j /* Set as you wish 
/* Choose size of image to be printed 
HC_H_SIZE= 5.0; /* 5 inches wide (say) 
HC_V_SIZE= 7.0; /* 7 inches deep (say) 
/* Set up 4250 or 3800-3 parameters 
COMPN=3j /* 
HC_H_RES=600; /* 
HC_V_RES=600j /* 
/* Create a printer image to suit 
HC_H_PIXELS=HC_H_SIZE * HC_H_RESj 
HC_V_PIXELS=HC_V_SIZE * HC_V_RES; 

(Use COMPN=4 for 3800-3) 
P.P.I. resolution 
for 3800-3 or 4250 

CALL IMAGID(NEW_APPL_ID)i /* Get an identifier 
CALL IMACRT(NEW_APPL_ID, /* Create the new image 

HC_H_PIXELS,HC_V_PIXELS,BI_LEVEL,DEFINED, 
INCHES,HC_H_RES,HC_V_RES); 

/* Negate the image 
CALL IMPGID(PROJ ID)j /* Get an identifier 
CALL IMPCRT(PROJ=ID)j /* Create a projection 
CALL IMRNEG(PROJ_ID); /* Negate (invert) the image 
CALL IMRPLR(PROJ_ID,INCHES,O,O,OVERPAINT)j/* End of projection 
CALL IMXFER(NEW_APPL_ID,NEW_APPL_ID,PROJ_ID)i/* Apply the 

/* projection 
CALL IMPDEL(PROJ_ID); /* Delete the projection 
/* We now have an all-white-pixels image matching the 
/* 4250 or 3800-3 printer characteristics. 

*/ 
*/ 

*/ 
*/ 
*//*C*/ 
*/ 
*/ 
*/ 
*/ 
*//*D*/ 
*//*E*/ 
*/ 
*/ 

*/ 
*/ 

*//*F*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/* Now we can process the original, restored image according 
/* whether we have chosen 'real size' or 'scale-to-fit' 

to*/ 

/* processing. 
IF TYPE=l THEN /* 'Real size' required 

CALL IMXFER(APPL_ID,NEW_APPL_ID,O)i 
ELSE IF TYPE=2 THEN 

*/ 
*/ 
*//*G*/ 

DOi /* 'Scale to fit' required *//*H*/ 
CALL lMAQRY(APPL_ID, 

SOURCE_H_PIXELS,SOURCE_V_PIXELS, 
IM_TYPE,SOURCE_RES, 
INCHES,SOURCE_H_RES,SOURCE_V_RES)i 

SOURCE_H_SIZE=SOURCE_H_PIXELS/SOURCE_H_RESj 
/* Source image width - inches*/ 

SOURCE_V_SIZE=SOURCE_V_PIXELS/SOURCE_V_RESj 
/* Source image depth - inches*/ 

H_RATIO=HC_H_SIZE/SOURCE_H_SIZEj/* Size ratios of hard copy*/ 
V_RATIO=HC_V_SIZE/SOURCE_V_SIZE;/* Image to source image */ 
SCALE=MIN(H_RATIO,V_RATIO)i /* Required scale factor */ 
CALL IMPGID(PROJ_ID)i /* Get an identifier */ 
CALL IMPCRT(PROJ_ID)i /* Create another projection */ 
CALL IMRSCL(PROJ_ID,SCALE,SCALE)i /* Scale the image to fit*/ 
/* Now position the image centrally */ 
HC_H_POS=(HC_H_SIZE-(SCALE*SOURCE_H_SIZE»/2i 
HC_V_POS=(HC_V_SIZE-(SCALE*SOURCE_V_SIZE»/2i 
CALL IMRPLR(PROJ_ID,INCHES,HC_H_POS,HC_V_POS,OVERPAINT)j 

/*End of projection definition*/ 
CALL IMXFER(APPL_ID,NEW_APPL_ID,PROJ_ID)j/*Apply projection*/ 

ENDj /* Scale to fit */ 
ELSE GO TO FINISHj /* Exit for type not =1 or 2 */ 

/* We now have the required image within GDDM, and can access */ 
/* it, convert it to 'page segment' file format, and write it */ 
/* out as a page segment file */ 

OPEN FILE(IMAGFIL)j 
SF_CODE=BPSj 

/* Open the output file 
/* Set BPS order in SF 

*/ 
*/ 

Chapter 20. Advanced image functions 361 



see end of chapter for device variations 

WRITE FILE(IMAGFIL) FROM(SF); /* Write structured field 

CALL IMAGTS(NEW_APPL_ID,O,-3,COMPN); /* Negated, CPDS format, 
/* chosen compression 

DO 1=1 BY 1 UNTIL(DATALEN=O); /* Image get-write loop 

*/ 

*//*J*/ 
*/ 
*/ 

CALL IMAGT(NEW_APPL_ID,BUFLEN,DATABUF,DATALEN); 
/* Get image into 

IF DATALEN=BUFLEN 
THEN 

/* data buffer 
/* Full buff er 

application * / 
*/ 
*/ 

WRITE FILE(IMAGFIL) 
ELSE 

IF DATALEN>O THEN 

FROM(DATABUF); 

DO; /* Buffer part full */ 
DATASUB=SUBSTR(DATABUF,l,DATALEN); /* Keep only the data */ 
WRITE FILE (IMAGFIL) FROM(DATASUB); 

END; /* Buffer part full */ 
ELSE; /* End of data (DATALEN=O) */ 

/* write it out to file */ 
END; /* Image get-write loop */ 

SF_CODE=EPSi 
WRITE FILE(IMAGFIL) FROM(SF); 

CLOSE FILE(IMAGFIL); 
FINISH: i 
CALL FSTERMi 

%INCLUDE ADMUPINAi 
%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINIi 

END IMPRG10; 

/* Terminate get process 

/* Set EPS order in SF 
/* Write structured field 

/* Close the output file 

*/ 

*/ 
*/ 

*/ 

In the above program, at / * A * /, the file records are declared to be of variable 
length, up to a maximum value of 404 bytes to correspond with the 400 byte length 
of DATABUF. (Variable length records have a 4-byte record descriptor word before 
the data itself.) 

You are recommended to use a buffer length of at least 400 bytes; depending on the 
image data format, GDDM may use up to this value. Buffers other than the last 
may be only part-filled. 

At program run time, the declared file name IMAGFIL must be associated with an 
external file name in a subsystem-dependent way. For example, on VM/CMS, 
before running the program you must issue the CMS command: 

filedef imagfil disk fn ft fm 

where "fn" is a file name of your choice, "ft" is PSEG4250 for a 4250 PSEG file, or 
PSEG38PP for a 3800-3 PSEG file, and" fm." is file mode (AI for example). 

At /*B* /, the declared structure is required for Begin Page Segment (BPS) header 
and End Page Segment (EPS) trailer records. These are in accordance with CPDS 
(Composed Page Data Stream) formats. For further information see "Chapter 22. 
Using printers" on page 395. In particular see "Composed-page printer as a 
family-4 primary device" on page 399. 

This format, as coded, is required for 4250. For 3800-3 only, the BPS and EPS 
records must be prefixed with a one-byte control character, value X'5A'. For 

362 GDDM Application Programming Guide Volume 1 



advanced image functions 

programming convenience this can be added as the first element of the data 
structure SF, merely by adding to the declaration at I*B* I the following line: 

2 SF_CC BIT(S) INIT('OlOllOlO'B), 

and leaving the SF_LENGTH field unchanged. (This is because this byte is not 
strictly a part of the structured field). 

For 3800-3 therefore, you should modify the declaration for SF in this way. 

At I*C* I, scale-to-fit processing has been chosen, although you could, instead, 
select real size processing. 

At I*D* I, COMPN value 3 selects 4250 compression. For 3800-3, change this 
variable to value 4. 

At I*E* I, the 4250 resolution of 600 p.p.i. has been set. For 3800-3, resolution must 
be set to either 120 p.p.i. or 240 p.p.i.. 

At I*F* I, it is necessary to negate the newly created image because GDDM sets 
this to all black pixels, whereas we require all white pixels, to give a white 
background to the image. 

At I*G* I, real size processing means that the identity projection must be used, as 
it is in the following IMXFER call. 

At I*H* I, scale· to-fit processing begins. This is similar to that given in an earlier 
example. Note that this code requires that the source image (that is, the image 
that is restored) has dermed resolution. You could extend the code to cater for the 
undefined resolution case, indicated by SOURCE_RES on return from the IMAQRY 
call, by deriving scale factors based on the pixels size ratios rather than on actual 
size ratios as done here, and omitting the central positioning code; zero offsets 
could be used instead, in the IMRPLR call. 

At I*J* I, negated (inverted) CPDS format must be used, for the image to print 
correctly, that is, as originally saved. This is true for both 4250 and 3800-3 output. 

Instead of creating a page segment (PSEG4250 or PSEG38PP) file as in the example 
above, your program can build a " document" (LIST4250 or LIST38PP) file. This 
requires additional structured fields to be embedded, as the record sequence is a 
little more complex. 

For reasons for doing this and for more information, see the CDPF and PSF 
publications listed under "Books from related libraries" on page v. 

Device variations 

The following notes are on differences in the use of devices other than the 
principal image processing devices covered in the preceding sections of this chapter 
and the previous one. 

Chapter 20. Advanced image functions 363 



device variations 

IBM 3179-G, 3270-PC including /G and /GX, 3279, 3290, 5080, 5550 displays 

(That is, on all the GDDM device family-I displays that support graphics except the 
3193) 

Image transforms and output are done entirely by emulation, with some associated 
performance overheads. Because GDDM uses graphics (GSIMG) for this, there 
must be no graphics on the same page as the image output. 

The image locator cursor echo, normally a cross symbol, is the same as the 
alphanumeric cursor. On 3279 and 3290 displays (as on 3277 and 3278), cursor 
positioning is only to the nearest cell, not to the nearest pixel. 

The image box cursor is not supported, and an error message is given if any 
attempt is made to enable it. 

Image input to GDDM: For display terminals other than the 3193, 3117 or 3118 
scanner attachment is not possible. Image data input for display or printing must 
therefore be done using either an ADMIMG file, restored from auxiliary storage by 
use of the IMARST call, or an appropriately formatted image transferred from your 
application to GDDM by use of the IMAPTS/lMAPT/lMAPTE calls (see 
"Transferring images into and out of your program" on page 347 for admissible 
formats). The image can then be transferred to the GDDM page in the usual way. 

IBM 3268 and 3287 printers 

Plotters 

(These are both device family-I printers) 

Image transforms and output are done by emulation, with some associated 
performance overheads. Because GDDM uses graphics (GSIMG) for this, there 
must be no graphics on the same page as the image output. 

The plotting of images is supported, but not recommended. Image transforms and 
output are done by emulation, as above. Each pixel is drawn as a very short vector 
and resolution is determined by the pen width. Images other than small images 
take a long time to be plotted, and subject the pens to greater than usual wear. 

364 GDDM Application Programming Guide Volume 1 



Part 5. Device support, printing, plotting, and 
windowing 

Part 5. Device support, printing, plotting, and windowing 365 



Chapter 21. Device support 

Many programs can be written without a knowledge of device support. But you 
may need to understand it to perform any of the following tasks: 

• Defining a device's characteristics to GDDM 

• Sending output to a device other than the invoking device 

• Printing or plotting copies of the main display output 

• Communicating with more than one device 

• Saving data streams suitable for a device that has not yet been installed 

• Specifying device-dependent or subsystem-dependent processing options. 

There is generally no need for explicit device control when the output is to appear 
on the invoking terminal. The current device defaults to the invoking device - . 
called the user console. 

A real device, or a virtual device, or both, can be opened with a DSOPEN call. For 
the default device, GDDM issues an internal DSOPEN. If you want to use a device 
other than the invoking terminal, you must either explicitly open it using a 
DSOPEN call, or modify the internal DSOPEN with a nickname statement (see 
"Nicknames" on page 378). 

Before any output is created, a device must be made current using a DSUSE call. 
All later alphanumerics and graphics statements will apply to that device until a 
new device is made current. The scheme is the same as that for pages: you may 
open several devices, but at any time only one of them is current. For the user 
console, GDDM issues an internal DSUSE. 

Opening a d~vice using call DSOPEN 

DSOPEN is GDDM's most complex call, with many device-dependent and 
subsystem-dependent parameters. For a full description, refer to the GDDM Base 
Programming Reference manual. It is possible to remove most of the complexities 
from your program if you or your installation sets up nickname files. You can then 
use simplified DSOPEN calls, as described in "Simple DSOPEN using nicknames" 
on page 370. 

This is a typical call where nicknames are not used: 

Chapter 21. Device support 367 



covers all types of device 

DCL PROCOPT_LIST(10) FIXED BIN(31)i /* Processing options list */ 
DCL NAME_LIST(1) CHAR(8)i /* Device-control name list */ 

PROCOPT_LIST(1)=2i /* Option code 2 denotes an */ 
/* Output-only option group */ 

PROCOPT_LIST(2)=1i /* Option value 1 requests */ 
/* Device to be output-only */ 

NAME_LIST(1)='062'i /* CMS device address */ 

/******************/ 
/* OPEN DEVICE 11 */ 
/******************/ 
/* DEVICE-ID FAMILY TOKEN PROCESSING-OPTIONS PHYSICAL-DEVICE*/ 

1, NAME_LIST) i CALL DSOPEN(11, 1, 'L79A3', 2,PROCOPT_LIST, 

This is the meaning of the seven parameters: 

11 

1 

L79A3 

The device identifier. All future references to the device will 
use this identifier. 

The device family code, specifying the type of device. 

These are the permitted settings: 

1 3270 family device (display or printer), 8775 display, 4224 
printer, plotters, 5080 (with processing option). 

2 Queued printer device 
3 System printer device 
4 High-resolution image files for composed-page printers. 

The device-token, telling GDDM the properties of the device. 
The token L79A3 states that the device is a local 3279 (Model 3) 
with a screen size of 32 by 80. There are three sets of device 
tokens supplied with GDDM, called device deimition tables. 
They are listed in the GDDM Base Programming Reference 
manual. (ADMLSYSl is the table for family-l and family-2 
devices, ADMLSYS3 is the table for family-3 devices, and 
ADMLSYS4 is the table for family-4 devices. See GDDM 
Installation and System Management for details of their formats 
and how to change them.) 

A token parameter of * tells GDDM to get the information itself 
- usually by querying the device. This is the most common 
setting of the parameter. 

2 The number of full words in the processing options list that is 
passed in the next (the fifth) parameter. 

PROCOPT_LIST The name of an array of fullwords containing the processing 
options list. This may contain one or more option groups -
each a request for a particular processing option. Some of these 
options are dependent on the device family, others are valid only 
in a particular subsystem. 

The present example contains just one option group - an 
output-only option group. The first fullword in a group identifies 
the option type - here 2 indicates "output-only group." The 

368 GDDM Application Programming Guide Volume 1 



1 

device support 

remaining full words give the setting of the option. For this 
option type there is just one full word following. It is set to 1 to 
request that the newly-opened device be placed in output-only 
mode. A setting of 0 would have set "not-output-only" mode, the 
default. 

You can place several option groups in the processing options 
list, each with an option code in its first word. A brief list of the 
possible option groups is given in "Device processing options" on 
page 370. 

The number of 8-byte names in the seventh and last parameter. 

An array of 8-byte names, identifying which physical device 
should be opened. The naming scheme used in the name list is 
dependent on the device family and the subsystem being used. 

In most cases the name list can have only one element in it. The 
exceptions are: 

1. Family-4 printers under TSO. 

2. Family-2, -3, and -4 devices under CMS, in which case second 
and third elements can be used to specify a file type and a 
file mode. 

3. Auxiliary family-1 devices (usually plotters) under any 
subsystem, which have two part names, the first of which is 
the name of the family-1 terminal to which they are attached. 

More information is given in "Chapter 22. Using printers" on 
page 395 and "Chapter 23. Using plotters" on page 421. 

Here (on CMS), the single name in the name list has been set to 
'062'. This name is known to the subsystem. It is the virtual 
address of the device in question. On IMS/VS the single name 
may be set to an "LTERM name." On all the other subsystems 
(CICSjVS, and TSO), it is not permitted to open any display 
device other than the user's console (this restriction does not 
apply to printers). 

On all subsystems the device name may be allowed to default to 
the user console. There are two ways of specifying this action. 
You may omit the name list (by giving a length of 0), or you may 
set the name to *. A further possibility is to request a dummy 
device. (See "Using a dummy device" on page 376.) 

In the example, the call to DSOPEN made known to GDDM the family-1 device 
with a subsystem name of 062. It told GDDM that the device is a local 3279 (Model 
3) with a screen size of 32 by BO, and it assigned an identifier of 11 to the device for 
future reference. It requested that the device be processed in output-only mode. 

Chapter 21. Device support 369 



covers all types of device 

Device processing options 

The processing options available on the DSOPEN call are described in the GDDM 
Base Programming Reference manual. 

Without going into details, some examples are listed here: 

1. You can choose the CMS P A1/P A2 protocol and the method of attention 
handling. 

2. On CMS you can spool and tag print files, and automatically invoke the GDDM 
Print Utility. 

3. On TSO you can select the CLEAR/P A1 and reshow protocols. 

4. On CICS you can select pseudoconversational mode. See 
"Pseudoconversational programming under CICS" on page 391 for details. 

5. For a queued or alternate printer device, you can specify a set of print control 
parameters (see "Chapter 22. Using printers" on page 395). 

6. For a family-4 printer, you can specify a set of print control parameters (see 
"Composed-page printer as a family-4 primary device" on page 399). 

7. For plotters, you can specify a set of physical plotting parameters (see 
"Processing options for plotters" on page 422). 

8. For 3270-PC/G and /GX work stations, you can enable local operations, specify 
how graphics data is to be stored, and change the default symbol sets for 
graphics text (see "Processing options for the 3270-PC/G and IGX" on page 388). 

9. For family-1 and -2 printers and plotters, you can tell GDDM to add the user 
identifier, date, and time to the output. 

10. You can associate a 5080 with a 3270. 

11. You can request that the device operates in output-only mode. Control will 
return to the program immediately after an ASREAD. 

12. You can specify that the keyboard should always be unlocked, even after an 
FSFRCE. 

Simple DSOPEN using nicknames 

The more complex parameters of DSOPEN can be specified in nickname files, 
rather than on the DSOPEN call. It is possible for an installation to set up 
system-wide nickname files containing standard device definitions. Or, instead, 
under CMS and TSO you can set up your own. 

A typical DSOPEN would then specify simply a device-id, the device family, and a 
device name, with default or null values for the other parameters: 

DCL PROCOPT LIST(l) FIXED BIN(31); 
DCL NAME_LIST(l) CHAR(8); 
NAME_LIST(l) = 'COLPRT3'; 

/* DEVICE-ID FAMILY TOKEN 
CALL DSOPEN(4, 2, '* , 

370 GDDM Application Programming Guide Volume 1 

PROCESSING-OPTIONS 
a,PROCOPT_LIST, 

DEVICE-NAME*/ 
1, NAME_LIST) ; 



device support 

When this call is executed, GDDM searches the nickname files for any further 
definition of a family-2 device with the name COLPRT3. The files would typically 
supply a device token and a set of processing options. They can also supply a 
different device name, and change the device family. For more information, see 
"Nicknames" on page 378. 

If your installation has system-wide nicknames, you will need to get information 
about the available device definitions from a system programmer in your 
installation. 

Specifying device usage using call DSUSE 

It is possible to open (by using DSOPEN) several different devices. This action will 
have no effect on the program until GDDM is informed that the program requires 
to use a particular device. 

DSUSE indicates that a particular device should be used for future output. DSUSE 
also performs an implicit DSDROP (see next section). This is the format for 
DSUSE: 

CALL DSUSE(I,II)i /* Use device 11 as the primary device */ 

• The first parameter states whether the device should be used as a primary 
device or an alternate device. 

The primary device is usually a display screen; it is the main target device for 
the program's output. It is possible to request "snapshots" or copies of the 
primary device to be made. In that case the copies will be sent to an alternate 
device, usually a printer. The means by which these copies are made will be 
addressed in the next chapter. 

So, the first parameter is set to 1 if the device is to be used as a primary device. 
It is set to 2 to request usage as an alternate device. 

• The second parameter is the device identifier - the number assigned to the 
device when DSOPEN was issued. 

At anyone time you will have one current primary device and (optionally) one 
current alternate device. 

Chapter 21. Device support 371 



covers all types of device 

Discontinuing use of a device, using call DSDROP 

Issuing a DSUSE call for one primary device implicitly discontinues the usage of 
the previous primary device (if any). The same applies for alternate devices. You 
may not have more than one currently active device in each category. If you want 
to explicitly discontinue the use of a currently active device, this is the format of 
the call: 

CALL DSDROP(l,ll); /* Discontinue primary usage of device 11 */ 

The parameters are as for DSUSE: 1 denotes primary usage (2 would be alternate 
usage). and 11 is the device identifier. 

Note that the device is not closed. All its pages and their contained output are 
maintained. When you issue a DSUSE call to the device again. it will be just as 
you left it - you can even leave a segment open, if you choose. 

How to use more than one primary device 

When you do not issue an explicit DSOPEN for any device, but start drawing 
graphics immediately. GDDM issues an internal DSOPEN for the default device -
the user console. It then requests, by means of an internal DSUSE, that this be 
treated as the primary device. 

GDDM uses the device identifier 0 for the default primary device. You should 
therefore be very careful about using this identifier yourself. It may be used only if 
you are sure that you will at no stage use the default device. The same goes for 
identifier 1, which may be used as the default alternate device. 

If you send some output to the user console (allowing the device to default), and 
then want to send some output elsewhere, you must issue a DSDROP to device 0 
before using the new terminal. 

As explained in "Chapter 9. Hierarchy of GDDM concepts" on page 89, the device 
is at the top of the hierarchy. All the other graphics objects belong to the device. 
You cannot create some graphics and then decide to which terminal to send it. 
When you issue a graphics or alphanumerics command of any sort (creating a page, 
defining an alphanumeric field, or opening a segment, for example), it will be 
associated with the device current at that time. If there is none, GDDM will 
assume the default device, namely the user console, and associate the new graphics 
with it. 

To send the same picture to two different primary devices, you must execute the 
graphics calls twice - once with the first device as the current primary and once 
with the other. A better way might be to make one device an alternate one, in 
which case a simple copy call may do what is required. 

Example program: Using two primary devices 

This section contains an example program to illustrate using two devices. It draws 
a picture of a grapefruit on two different screens, and then redraws it on the first 
screen at a smaller size. There are several points to note about the program: 

372 GDDM Application Programming Guide Volume 1 



device support 

• Duplicate identifiers. The statements marked 1* A * 1 both define fields with 
an identifier of 2. This is not an error or conflict of any sort, because the fields 
belong to different pages (and also to different devices). 

The device is at the head of the hierarchy. Each device has its own set of 
pages, each with their own graphics and alphanumerics. 

The rules about not using the same identifier twice apply only within the next 
higher element in the hierarchy. For example, your first device can have a 
page with identifier 5 - so can your second device. One of a device's pages 
may have an alphanumeric field with identifier 32; so may another such page. 

• Viewport matching window. To ensure that the grapefruit is circular, the 
aspect ratio of the window must match that of the viewport. This is done in the 
statements marked I*B * 1 by setting a square picture space (and therefore a 
square viewport), and by using a window of 20 units in each direction. 

• Default primary device. Just after the DSDROP of device 15, GDDM meets 
an ASCPUT call 1*0* I. As there is no current primary device at that time, 
GDDM assumes that the default device should be used (as it did at the start of 
the program). The user console is already open, so GDDM issues just an 
internal DSUSE to make the user console the current primary device again. 

• Scope of symbol sets. The scope of a symbol set is the device. This means 
that the application program must load a separate symbol set for each device, 
even if the loads are of the GSLSS type. In the example, the 64-color pattern 
set has to be loaded twice (once for each device) at I*c* I. 

You may load a vector symbol set, say, for one device and give it an identifier 
of 194. You may then load a different vector symbol set for another device and 
give it the same identifier of 194. There is no ambiguity. 

• Enlarging window to shrink the graphics. The subroutine GRAPE_FRUIT 
draws the fruit within the coordinate ranges x:O through 20 , y:O through 20. 
When the window itself has these ranges, the subroutine's output will fill the 
viewport. If the subroutine is reexecuted under a larger window as defined at 
I*E* I, the output will fill correspondingly less of the viewport. In the last 
section of the program, the grapefruit is redrawn in the central quarter of the 
viewport. 

SCREEN2: PROC OPTIONS(MAIN); 
DCL (TYPE,MOD,COUNT) FIXED BIN(31); 
DCL PROCOPT_LIST(10) FIXED BIN(31); 
DCL NAME_LIST(l) CHAR(8); 

NAME_LIST(1)='061'; 

CALL FSINIT; 

1******************1 
1* OPEN DEVICE 15 *1 
1******************1 

1* AS READ parameters *1 
1* Processing options list *1 
1* Device-control name list *1 

1* CMS device address *1 

CALL DSOPEN(15,1,'*',O,PROCOPT_LIST,1,NAME_LIST);I*Open device 15*1 

Chapter 21. Device support 373 



covers all types of device 

CALL ASDFLD(2,3,8,1,29,2); 1* Device 15 has been opened, but not*1 I*A*I 
1* yet specified for any usage. This *1 
1* ASDFLD will therefore cause an *1 
1* internal DSOPEN of the user console *1 
1* (and a matching DSUSE), not device *1 
1* 061. Alphanumerics and graphics will *1 
1* be associated with the user-console's *1 
1* default page *1 

CALL ASCPUT(2,29,'SAMPLE OUTPUT TO USER-CONSOLE'); 

CALL GSFLD(4,1,28,80); 

CALL GSPS(1.0,1.0); 

1* Define 28-row graphics field 
1* For the user-console 
1* Ensure square drawing area 

*1 
*1 
*1 I*B*I 

CALL GSWIN(0.0,20.0,0.0,20.0);I* Choose ~oordinate system *1 I*B*I 

CALL GSLSS(3,'ADMCOLSD',0); 

CALL GRAPE_FRUIT; 

CALL ASREAD(TYPE,MOD,COUNT); 

1*********************1 
1* DROP USER-CONSOLE *1 
1*********************1 
CALL DSDROP(1,0); 

1* Load GDDM 64-color pattern set *1 I*C*I 

1* Call user subroutine to draw *1 
1* a picture of a grapefruit *1 
1* Send output to user-console *1 

1* Drop the user-console from *1 
1* primary usage, preparatory to *1 
1* sending output to device 15. *1 

1*************************************1 
1* MAKE DEVICE 15 THE CURRENT DEVICE *1 
1*************************************1 
CALL DSUSE(1,15); 1* Use device 15 as the primary *1 

CALL ASDFLD(2,3,8,1,38,2); 1* This alpha field will be 
1* assigned to the default page 
1* of device 15 

CALL ASCPUT(2,38,'SAMPLE OUTPUT TO DEVICE AT ADDRESS 061'); 

CALL GSFLD(6,1,17,80); 

CALL GSPS(1.0,1.0); 

1* Define 17-row graphics field 
1* for device 15 
1* Ensure square drawing area 

CALL GSWIN(0.0,20.0,0.0,20.0);I* Choose coordinate system 

*1 I*A*I 
*1 
*1 

*1 
*1 
*1 I*B*I 

*1 I*B*I 

CALL GSLSS(3,'ADMCOLSD',0); 1* Load GDDM 64-color pattern set *1 I*C*I 

CALL GRAPE_FRUIT; 

CALL ASREAD(TYPE,MOD,COUNT) 

1******************1 
1* DROP DEVICE 15 *1 
1******************1 
CALL DSDROP(1,15); 

374 GDDM Application Programming Guide Volume 1 

1* Reexecute subroutine to draw 
1* a picture of a grapefruit 
1* Send output to device 15 

1* Temporarily drop device 15 

*1 
*1 
*1 

*1 



device support 

/****************************************************/ 
/* USER-CONSOLE AUTOMATICALLY MADE CURRENT DEVICE */ 
/****************************************************/ 
CALL ASCPUT(2,29,'SECOND OUTPUT TO USER-CONSOLE'); 
CALL GSCLR; /* Clear previous graphics -

/* remove the large grapefruit 
CALL GSWIN(-10.0,30.0,-10.0,30.0); 

*/ 
*/ 

/*D*/ 

/* Redefine the window */ /*E*/ 

CALL GRAPE_FRUIT; 

CALL ASREAD(TYPE,MOD,COUNT); 

CALL FSTERM; 

GRAPE FRUIT: PROC; 
GSSEG(O); CALL 

CALL GSCOL(7); 

CALL GSPAT(121); 
CALL GSMOVE(10.0,4.0); 
CALL GSAREA(O); 
CALL GSARC(10.0,10.0,360.0); 
CALL GSENDA; 

CALL GSPAT(O); 
CALL GSCOL(6); 
CALL GSMOVE(14.0,10.5); 
CALL GSAREA( 1) ; 
CALL GSARC(14.0,14.0,91.67); 
CALL GSLINE(18.0,13.0); 
CALL GSARC(14.0,14.0,-91.67); 
CALL GSENDA; 
CALL GSSCLS; 

END GRAPE FRUIT; 
%INCLUDE(ADMUPINA); 
%INCLUDE(ADMUPIND); 
%INCLUDE(ADMUPINF); 
%INCLUDE(ADMUPING); 
END SCREEN2; 

Closing a device using call DSCLS 

/* Draw much smaller grapefruit 
/* in the center of the screen 
/* Send output to user-console 

/* Terminate GDDM 

/* Open graphics segment 
/* Set color to neutral to enable 
/* use of GDDM 64-color set 
/* Grapefruit color 
/* Move to start of graphics area 
/* Open a graphics area 
/* Draw outline of the grapefruit 
/* Close the graphics area 

/* Reset shading pattern to solid 
/* Set color to yellow for stalk 
/* Move to start of stalk 
/* Start area with drawn boundary 
/* One edge of the stalk 
/* End of the stalk 
/* Other edge of the stalk 
/* End area representing stalk 
/* Close graphics segment 

/* End user subroutine 
/* Include DCLs of GDDM entries 

When a device will not be reused, it should be explicitly closed to release the 
associated resources. This is the format of the close call: 

*/ 
*/ 
*/ 

*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 

CALL DSCLS(15,O); /* Close device 15 and erase the screen */ 

All page contents and symbol sets for this device are now released. GDDM will 
retain no memory of the device. Should a new device be opened with identifier 15, 
it need bear no relationship to the device now being closed. 

The first parameter is the device identifier. The second is an option that may be 
set to the values shown below. 

• For a family-l display device, the options have the following meaning: 

o Erase the screen. (If in eICS pseudoconversational mode, unlock the 
keyboard, and save any device data that has changed.) 

Chapter 21. Device support 375 



covers all types of device 

1 Do not erase the screen. (If in CICS pseudoconversational mode, unlock 
the keyboard, and save any device data that has changed.) 

2 Erase the screen, and unlock the keyboard. (If in CICS 
pseudoconversational mode, erase the device data.) 

3 Do not erase the screen, but unlock the keyboard. (If in CICS 
pseudoconversational mode, erase the device data.) 

• For a non-family-l printer, 0 cancels the print file, - 1 requests printing. 

The effect of these options is subsystem-dependent. See the GDDM Base 
Programming Reference manual for more details. 

Using a dummy device 

When developing and testing a new program it may be convenient to do so without 
attaching it to the eventual target device. This is possible by requesting a dummy 
device at DSOPEN time. The "name" of the device must be set to' '(blank). 

/* Set blank name to indicate dummy device */ 

/* DEVICE-ID 
CALL DSOPEN(ll, 

FAMILY 
1, 

DEV_TOKEN OPTIONS 
'L79A3', a,PROCOPT_LIST, 

WHICH DEVICE */ 
I,NAME_LIST ); 

No output will be sent to such a device. It is merely a convenience that would 
allow, say, the development of a 3279 program at a 3277 (non-PS) screen. 

You must specify a device-token for a dummy device. You may recall that a 
device-token of * asks GDDM to determine the device characteristics itself (usually 
by querying the device). The only way GDDM can know the device characteristics 
of a dummy device is by the DSOPEN passing a device-token. An explicit 
device-token is therefore compulsory. 

Sample program: Using a dummy device to create a stored picture 

Dummy devices are frequently used in combination with FSSA VE (see "Saving 
current page contents using call FSSA VE" on page 16). This enables pictures to be 
saved on auxiliary storage that are suitable for later transmission to a particular 
type of device. 

This example, which could be run without a user console in batch mode, illustrates 
the situation. It will create two saved representations of the architect's design -
one for later display on a 3279, one for later display on a 3278. 

SAVE2: PROC OPTIONS(MAIN); 
CALL FSINITi 

/* Set blank name to indicate dummy device */ 

/**************************/ 
/* OPEN DUMMY DEVICE WITH */ 
/* 3279 CHARACTERISTICS */ 
/**************************/ 
/* DEVICE-ID FAMILY DEV_TOKEN OPTIONS 
CALL DSOPEN (11, 1, 'L 79A3 " a, PROCOPT_LIST, 

376 GDDM Application Programming Guide Volume 1 

WHICH DEVICE */ 
I,NAME_LIST ); 



device support 

/**************************/ 
/* MAKE DUMMY DEVICE THE */ 
/* CURRENT DEVICE */ 
/**************************/ 
CALL DSUSE(l,ll)i /* Use dummy device with */ 

/* 3279 characteristics */ 
A_DRAWING; /* Call subroutine to create architect's drawing*/ CALL 

/* (on the default page of device 11) */ 

CALL FSSAVE('DIAG3279')i /* Save diagram for later FSSHOR-ing */ 
/* on a 3279 display screen */ 

/**************************/ 
/* OPEN DUMMY DEVICE WITH */ 
/* 3278 CHARACTERISTICS */ 
/**************************/ 
/* DEVICE-ID FAMILY DEV_TOKEN OPTIONS 

O,PROCOPT_LIST, 
WHICH DEVICE */ 

1, NAME_LIST ) j CALL DSOPEN(12, 1, 'R78A4' , 

/*************************/ 
/* DROP DUMMY 3279 */ 
/*************************/ 
CALL DSDROP(l,ll)j 

/*************************/ 
/* MAKE DUMMY 3278 * / 
/* THE CURRENT DEVICE */ 
/*************************/ 
CALL DSUSE(1,12); 

/* Must drop one primary device */ 
/* before using another */ 

/* Use dummy device with */ 
/* 43-line 3278 characteristics */ 

CALL A_DRAWING; /* Call subroutine to create architect's drawing*/ 
/* (on the default page of device 12) */ 

CALL FSSAVE('DIAG3278'); /* Save diagram for later FSSHOR-ing */ 
/* on a 43-line 3278 display screen */ 

CALL FSTERMj 

A_DRAWING: PROCj 
CALL GSPS(1.O,44.5/117.0)j 
CALL GSWIN(O.O,117.0,O.O,44.5); 
CALL GSSEG(O)j 
CALL GSCOL(l)i 
CALL GSMOVE(102.4,35.0)i 

and so on. 
CALL GSSCLSi 

CALL ASDFLD(1,1,lO,1,70)i 
and so on. 

END A_DRAWING; 

%INCLUDE(ADMUPIND)i 
%INCLUDE(ADMUPINF); 
%INCLUDE(ADMUPING)i 

END SAVE2i 

/* Terminate GDDM */ 

/* Match aspect ratio of plan */ 
/* Window in meter units */ 
/* Create graphics segment */ 
/* Set color to blue */ 
/* Start drawing diagram */ 
/* Continue drawing */ 
/* Finish drawing */ 

/* Add alphanumeric data */ 

/* End of subroutine */ 

/* Include GDDM entry-points */ 

Chapter 21. Device support 377 



covers all types of device 

Nicknames 

You can code a nickname in the name list parameter of a DSOPEN call, and 
thereby identify a device definition supplied elsewhere. The "elsewhere" is 
typically either the GDDM external defaults module or a defaults file. 

Nicknames have two principal uses: 

• Simplifying DSOPEN calls. An installation can supply a set of standard device 
definitions by means of the external defaults module, and so relieve application 
programmers of the complexities of DSOPEN. 

• Deferring the definition of a device until execution time. A major application 
of this is to allow each run of a program to use a different device without 
having to change and recompile the program. For instance, you can 
change the destination of a program's output from a printer to a plotter simply 
by changing a nickname file. 

Nicknames are part of GDDM's generalized default and exit facilities, which are 
described in full in the GDDM Base Programming Reference manual. 

To understand how to use nicknames, consider this DSOPEN call: 

NAME_LIST(l) = 'COLPRT3'; 
/* DEVICE-ID FAMILY TOKEN 

CALL DSOPEN ( 4 , 2 , , * , 
PROCESSING-OPTIONS 

O,PROCOPT_LIST, 
DEVICE-NAME */ 
1 , NAME_LIST) ; 

When the DSOPEN is executed, GDDM searches for matching nickname 
statements, that is, ones that refer to the same device family and device name. If 
no match is found, the DSOPEN applies unchanged. Here is a nickname statement 
that matches this DSOPEN: 

ADMMNICK FAM=2,NAME=COLPRT3, 
TOFAM= , TONAME= , 
DEVTOK=L87, 
PROCOPT=«INVKOPUV,YES» 

The F AM and NAME parameters specify the device family and device name to 
which the statement applies. This nickname statement will add a device token and 
a processing option to the parameters supplied in the above DSOPEN call, as 
follows: 

• The device token, supplied in the DEVTOK parameter, is L87. 

• The processing option, supplied in the PROCOPT parameter, is INVKOPUV; it 
is equivalent to option group 1004 in DSOPEN, and it automatically invokes 
the function of the CMS version of the GDDM print utility, ADMOPUV. 

A list of all the nickname processing options and their DSOPEN option group 
equivalents is given in the GDDM Base Programming Reference manual. 

The TOF AM and TONAME parameters are used to change the device family and 
device name. No values have been given, so the family and name remain as 
specified in the DSOPEN call. 

378 GDDM Application Programming Guide Volume 1 



Syntax 

device support 

You can code the parameters of a nickname statement in any order. When you do 
not need to supply a value, you can omit the parameter entirely. Or you can code 
the keyword but omit the value, as in TOFAM and DEVTOK here: 

ADMMNICK FAM=1,NAME=ADEV,TOFAM=,TONAME=SCR99,DEVTOK= 

Each processing option following the PROCOPT keyword must be enclosed in 
brackets, with the elements of each option separated by commas. The processing 
options must be separated by commas, and the complete list of options must be 
enclosed in another set of brackets. For example: 

ADMMNICK FAM=2, 
PROCOPT=«PRINTCTL,O,1,32,O,O,O,80,O),(INVKOPUV,YES» 

A multipart name (as of a CMS file) must be enclosed in brackets and the parts 
separated by commas: 

ADMMNICK NAME=(OUT1,ADMPRINT,A),TONAME=(PRTFIL,ADMPRINT,G) 

You can omit name-parts, as described in "Multipart names" on page 380. 

A name-part in the NAME parameter can have a ? as the first or last character or 
both, meaning "match any characters in this position." For example: 

PRINT? 
?3 
?DEV? 

matches any name-part starting with PRINT 
matches any name-part ending with 3 
matches any name-part containing DEV 

Unspecified or zero device family 

If you specify F AM = 0 on a nickname statement, the statement will match any 
family. This statement will change the device name whatever the family specified 
on the DSOPEN: 

ADMMNICK FAM=O,NAME=061,TONAME=063 

Omitting the family value or omitting the F AM parameter completely are 
equivalent to specifying F AM = O. These statements are both equivalent to the 
previous one: 

ADMMNICK FAM=,NAME=061,TONAME=063 
ADMMNICK NAME=061,TONAME=063 

Unspecified, null, *, or blank device name 

If you specify a null device name on a nickname statement by coding "NAME=," 
then the statement will match any name. This statement will change the device 
family whatever the name specified on the DSOPEN: 

ADMMNICK NAME=,FAM=2,TOFAM=1 

Omitting the NAME parameter is equivalent to specifying a null name. 

A name * will match only an explicit *. Similarly, a blank device name will match 
only a blank. You can specify a blank device name like this: 

ADMMNICK FAM=O,NAME=(),TONAME=063 

Chapter 21. Device support 379 



covers all types of device 

This statement would direct output originally intended for any device with a blank 
name. that is, any dummy device, to a real device. 

Multipart names 

In a multipart name specification, parts can be omitted or specified as *. Here is a 
rather extreme case: 

ADMMNICK NAME=(,*,C),TONAME=063 

This will match a name with a blank as the first part, * as the second, and C as the 
third. ' 

The general rules about matching multipart names are similar to those for a 
single-part name. For instance, 

ADMMNICK NAME=PRINTER2, ..• 
or 

ADMMNICK NAME=(PRINTER2,*), ... 

will match: 

or 
or 

but not: 

PRINTER2 
PRINTER2 * 
PRINTER2 * * 

PRINTER2 ADMPRINT 
nor PRINTER2 ADMPRINT Al 

Conversely, this statement would match any of them: 

ADMMNICK NAME=(PRINTER2,?,?), .•. 

Relative priorities of nickname statements and DSOPEN call 

The processing options and device token in a nickname statement are, in effect. 
default values. Any explicit value on the DSOPEN call will override them. (* is 
not an explicit device token.) 

The reverse is true of the device family and name: the values in the TOF AM and 
TONAME parameters of a nickname statement override the values in the DSOPEN 
call. 

Defaults module and defaults file 

The most common ways of passing nicknames to GDDM are by the external 
defaults module, which applies to all users in the system, or (under CMS and TSO 
only) by an external defaults file that applies only to those users with access to it. 
Information about these and other methods of passing nickname statements to 
GDDM is given in "How to pass nickname statements to GDDM" on page 384. 

A defaults file has priority over the defaults module. Typically, a system 
programmer would set up the defaults module, and application programmers would 
set up their own files, where necessary, to supplement or override the module. 
Under CMS, you can put a defaults file on any disk you have accessed, such as 
your A-disk. Under TSO it can be a data set that you have allocated. 

380 GDDM Application Programming Guide Volume 1 



device support 

How to use nickname statements 

This section contains some more examples of nickname statements. For examples 
of directing output to plotters, see "Using nicknames to direct and control the 
output" on page 433. For examples of spooling output to RSCS (the Remote 
Spooling Communication System of CMS), see "Chapter 22. Using printers" on 
page 395. 

Simplifying DSOPEN 

Setting up default processing options and device tokens: This statement sets 
up a default device token and processing option for a family-2 printer named A3287: 

ADMMNICK FAMo 2,NAME=A3287,DEVTOK=L87, 
PROCOPT=«PRINTCTL,0,1,72,0,0,0,100,O» 

The device token and processing option can be overridden by a DSOPEN call 
(except that a device token of * on the DSOPEN would not override the one 
specified in the nickname statement). 

Omitting the NAME parameter would make the defaults applicable to all family·2 
devices. 

Identifying devices by name alone: The next statement shows how to relieve 
application programmers of the need to specify a real device family on DSOPEN. 
Output for any printer named as PRTl, whatever family was specified, will be 
directed to a family-4 printer named P3800M3. The statement also supplies a device 
token, and processing options could be added. 

ADMMNICK NAMEoPRT1,TOFAM=4,TONAME=P3800M3,DEVTOK=IMG240 

It is not necessary for a real device with the name PRTl to exist. By using 
nickname statements such as this one, a set of unique names for all devices of all 
families can be set up. The DSOPEN calls can then identify the devices by these 
names alone. A dummy device family value (0, say) could even be coded in all 
DSOPEN calls in this format: 

DCL NAME LIST(l) CHAR(8); 
NAME_LIST(l) 0 'PRTl'; 

/* DEVICE-ID FAMILY 
CALL DSOPEN(4, 0, 

Defining devices at execution time 

TOKEN 
'* , 

PROCESSING-OPTIONS 
O,PROCOPT_LIST, 

DEVICE-NAME */ 
1, NAME_LIST) ; 

Changing device name: This statement simply converts a program to use a 
different familY-l device from the one specified in a DSOPEN call: 

ADMMNICK FAM=l,NAME=061,TONAME=063 

The processing options and device token are left unchanged. The statement would, 
for instance, make the "Example program: Using two primary devices" on page 372 
use the device at address 063 rather than the one at 061. 

Changing device family: This statement converts a program from using a 
familY-l device to family-2: 

ADMMNICK FAM=1,NAMEo 061,TOFAM=2,TONAME=PRT3287,DEVTOK=L87 

Chapter 21. Device support 381 



covers all types of device 

The device token of 'L87' will override a device token of *, but not an explicit one. 
Processing options can be added to this nickname statement, if required. 

Adding processing options: This statement adds the local mode processing 
option to the definition of all family-l devices: 

ADMMNICK FAM=l,PROCOPT=«LCLMODE,YES» 

Processing options that do not apply to the device being opened are ignored. For 
instance, the LCLMODE option in the above example applies only to 3270-PC/G 
and /GX work stations. It will be ignored for any other terminals. 

If any option specified in this way conflicts with another specified in the DSOPEN 
call, the DSOPEN value will take precedence. 

Two options are mergeable - PRINTCTL and STAGE2ID. They accept variable 
numbers of parameters, and those on a nickname statement will be merged with 
those on the DSOPEN. If a parameter is specified in both, the DSOPEN value 
takes precedence. 

Adding a device token: A real (non-*) device token on a DSOPEN cannot be' 
changed by a nickname statement, but * can be replaced by a real token. This 
statement changes a device token of * to an explicit one, namely IMG85, for all 
family-4 devices: 

ADMMNICK FAM=4,DEVTOK=IMG85 

Multiple nickname statements 

Device token and processing options: These statements show how GDDM 
accumulates information from more than one nickname statement: 

ADMMNICK NAME=PRT1,FAM=4,PROCOPT=«HRISPILL,YES» 
ADMMNICK NAME=PRT1,FAM=4,PROCOPT=«HRISWATH,lO), 

(HRIFORMT,BITMAP» 
ADMMNICK NAME=PRT1,FAM=4,DEVTOK=IMG85 
ADMMNICK NAME=PRT1,FAM=4,DEVTOK=IMG240 
ADMMNICK NAME=PRT1,FAM=4,DEVTOK=*, 

PROCOPT=«HRISWATH,20» 

GDDM accumulates information from the DEVTOK and PROCOPT parameters as 
it scans the statements. Where there is more than one DEVTOK parameter, the 
latest value applies. Where two PROCOPT values conflict, the later one applies. 
The above statements are hence equivalent to the single statement: 

ADMMNICK NAME=PRT1,FAM=4,DEVTOK=*, 
PROCOPT=«HRISPILL,YES), 

(HRIFORMT,BITMAP), 
(HRISWATH,20» 

At the end of nickname processing, any processing options that do not apply to the 
real device are ignored. The device token that results from nickname processing 
will only override a device token of * on the DSOPEN. A non-* device token 
cannot be overridden. 

382 GDDM Application Programming Guide Volume 1 



device support 

TOFAM and TONAME parameters: GDDM accumulates TOFAM and TONAME 
values during the scan. These statements: 

ADMMNICK NAME=DEV99,FAM=1,TOFAM=4,TONAME=P3800M3,DEVTOK=IMG240, 
PROCOPT=«HRISPILL,YES» 

ADMMNICK NAME=DEV99,FAM=1,TOFAM=3,TONAME=SYSPRT2,DEVTOK=S1403N8, 
ADMMNICK NAME=DEV99,FAM=1,TOFAM=2,TONAME=A3287PS,DEVTOK=L87, 

PROCOPT=«PRINTCTL,1,8» 

are equivalent to: 

ADMMNICK NAME=DEV99,FAM=1,TOFAM=2,TONAME=A3287PS,DEVTOK=L87, 
PROCOPT=«HRISPILL,YES),(PRINTCTL,1,8» 

At the end of the scan, GDDM updates the DSOPEN parameter list with the latest 
TOF AM and TONAME values (in additiion to the latest DEVTOK and PROCOPT 
values), and then starts a new scan of all the nickname statements, excluding any 
already matched. Notice that the parameter list is not updated during a scan: no 
change is made until all the nickname statements have been scanned, and then the 
latest values are taken. 

REPLACE and APPEND parameters: These parameters control the effects of 
second and subsequent matching nickname statements found during a single scan. 
REPLACE causes all earlier statements found during the current scan to be 
ignored. APPEND is the default and causes the parameters to be merged with 
those of any earlier matching statements. If a statement with APPEND specified or 
defaulted has a parameter value that conflicts with an earlier value within the 
current scan, then the later one overrides the earlier. 

For example: 

ADMMNICK NAME=Dl,FAM=1,TOFAM=2,DEVTOK=TOK2, 
PROCOPT=«LOADDSYM,YES),(LCLMODE,YES» 

ADMMNICK NAME=Dl,FAM=1,TONAME=D2,DEVTOK=*, 
PROCOPT=«LCLMODE,NO),(SEGSTORE,NO», 
REPLACE 

are equivalent to: 

ADMMNICK NAME=Dl,FAM=1,TONAME=D2,DEVTOK=*, 
PROCOPT=«LCLMODE,NO),(SEGSTORE,NO» 

whereas: 

ADMMNICK NAME=Dl,FAM=1,TOFAM=2,DEVTOK=TOK2, 
PROCOPT=«LOADDSYM,YES),(LCLMODE,YES» 

ADMMNICK NAME=Dl,FAM=1,TONAME=D2,DEVTOK=*, 
PROCOPT=«LCLMODE,NO),(SEGSTORE,NO», 
APPEND 

are equivalent to: 

ADMMNICK NAME=Dl,FAM=1,TONAME=D2,TOFAM=2,DEVTOK=*, 
PROCOPT=«LOADDSYM,YES), 
(LCLMODE,NO),(SEGSTORE,NO» 

Chapter 21. Device support 383 



covers all types of device 

Rescanning: A change of device family or name causes a rescan of all nickname 
statements not already matched. During the res can, GDDM searches for nickname 
statements that match the new device family and device name values. It 
accumulates data from matching statements in the same way as during the first 
scan; and the latest values still override any conflicting values found earlier in the 
rescan. 

At the end of the rescan, the DSOPEN parameter list is updated again. A 
DEVTOK or a PROCOPT value that conflicts with a value established during the 
earlier scan is ignored; in other words, the value established during the earlier 
scan takes priority. Notice that the rule here is different from the one that applies 
to conflicting options within a scan: in that case, the later one applies. 

GDDM performs further rescans of the nickname statements while matching 
statements continue to be found. Nickname processing ends when there is a 
complete rescan without a match. 

How to pass nickname statements to GDDM 

There are four ways of passing nicknames to GDDM. In order of increasing 
priority, they are: 

1. The GDDM external defaults module. A file of nickname statements can be 
assembled using a set of GDDM-supplied macros. For more information, see the 
GDDM Installation and System Management, and the GDDM Base 
Programming Reference manuals. 

2. A user-created external defaults file. 

All you need to do is put nickname statements like the ones shown in this 
chapter into a suitable file. 

Under CMS, the file must be on a currently accessed disk and have the 
filename PROFILE and filetype ADMDEFS. 

Under TSO the file must have a ddname of ADMDEFS. 

The format of the file is not critical, but fixed length 80-byte records are 
recommended. (Full details are given in the GDDM Base Programming 
Reference manual, together with a full description of the statement's syntax, 
including information about labeling and adding comments.) 

3. The control block called the SPill that is passed to GDDM by the 
system-programmer interface initialization call, SPINIT. For more information, 
see the GDDM Base Programming Reference manual. 

4. Calls in the application program. You can supply one nickname statement at a 
time by use of the ESSUDS call. For example: 

CALL ESSUDS(56, 
'NICKNAME FAM~1,TOFAM=4,NAME=A4250,PROCOPT=((COLORMAS,lOO)) '); 

The first parameter is the length of the nickname statement. 

GDDM scans first the external defaults module, then the external defaults file if 
there is one, then, if the system programmer interface is being used, the SPIB. In 
each case, the statements are scanned in the order in which they are stored. 

384 GDDM Application Programming Guide Volume 1 



device support 

Finally, GDDM scans the statements derived from any application program calls 
executed before the DSOPEN, in the order in which they were executed. 

The examples in this chapter are in source format. There is an alternative 
encoded format. Supplying the nickname statements in encoded format saves 
processing resources. You can create them in encoded format, or, for the defaults 
module, create them in source format and assemble them into encoded format. If 
they are to be assembled, the source statements must conform to Assembler 
language syntax rules. 

The defaults module must always be supplied in encoded format. Normally it is 
created in source format and then assembled. The defaults file must always be 
supplied in source format. A set of statements intended to form a defaults module 
can be created as a source-format defaults file for test purposes, and then assembled 
into a defaults module. 

Nickname statements passed by the SPIB must be in encoded format. 

To supply encoded format statements by means of application program calls, you 
must use the ESEUDS call instead of ESSUDS. They must be created directly in 
encoded format. The performance gain is likely to be significant only if you make 
extensive use of nicknames. You can pass several nickname statements in one 
ESEUDS call. 

Full information about the encoded format is given in the GDDM Base 
Programming Reference manual. 

Chapter 21. Device support 385 



covers all types of device 

Processing options for operator windows 

Some examples of windowing programs are given in "Operator windows" on 
page 467. You can make operator windows available to the user, using a 
processing option, either on a DSOPEN call: 

DECLARE NAME(l) CHARACTER(S); 
DECLARE PROCOPT_LIST(2) FIXED BINARY(31): 

PROCOPT_LIST(l) = 24; 
PROCOPT_LIST(2) = 1; 

/* Operator window mode */ 
/* 1 yes, 0 = no (default) */ 

CALL DSOPEN(O,l,'*', 2,PROCOPT_LIST, O,NAMEl; 

or in a nickname statement: 

ADMMNICK FAM=l,PROCOPT=«WINDOW,YES» 

GDDM does not allow real partitions when operator windows are used. Instead, 
GDDM gives you emulated partitions. 

When you use a DSOPEN, with its own list of processing options, to open a virtual 
device, the following options are ignored, and taken instead from the processIng 
options for the real device: 

AUNLOCK 
CMSATTN 
CMSINTRP 
CTLKEY 
CTLMODE 
PSCNVCTL 
TSOINTRP 
TSORESHW 

Always unlock keyboard mode. 
CMS attention handling. 
CMS P Al/P A2 protocol. 
User control key 
User control 
CICS pseudoconversational mode 
OS/TSO CLEAR/PAl protocol 
TSO reshow protocol 

Processing options for user control 

User control from the terminal user's point of view is described in the GDDM 
Guide for Users. This section describes the controls that a program can use. 

You can make user control available to the user, either on a DSOPEN call for the 
terminal: 

DECLARE NAME(l) CHARACTER(S); 
DECLARE PROCOPT_LIST(2) FIXED BINARY(31): 

PROCOPT LIST(l) = 2S; 
PROCOPT=LIST(2) = 1; 

/* User control 
/* 1 = yes, 2 no 

CALL DSOPEN(O,l,'*', 2,PROCOPT_LIST, o ,NAME) ; 

or in a nickname statement: 

ADMMNICK FAM=l,PROCOPT=«CTLMODE,YES» 

(CTLMODE,YES) is the default for non-partitioned devices. 

*/ 
*/ 

Whenever your program is waiting for input, as a result of ASREAD, GSREAD, 
MSREAD, or WSIO, the terminal user can invoke user control. The user must exit 
from user control before responding to the read. 

386 GDDM Application Programming Guide Volume 1 



device support 

The PAa key is the default key for invoking user control. If the terminal does not 
have a PAa key, you can specify, for example, the PF1 key, using the control-key 
processing option, either on a DSOPEN call for the terminal: 

DECLARE NAME(l) CHARACTER (8) ; 
DECLARE PROCOPT_LIST(3) FIXED BINARY(31): 

PROCOPT_LIST(l) 29; 
PROCOPT_LIST(2) = 1; 
PROCOPT_LIST(3) = 1; 

/* Control-mode key processing option */ 
/* 1 = PF key, 4 = PA key */ 
/* PFl key */ 

CALL DSOPEN(O,1,'*', 3,PROCOPT_LIST, ° ,NAME) ; 

or in a nickname statement: 

ADMMNICK FAM=l,PROCOPT=«CTLKEY,l,l» 

As an further example, the following nickname statement specifies the P A2 key: 

ADMMNICK FAM=1,PROCOPT=«CTLKEY,4,2» 

The first number (1 and 4 in the above examples) specifies whether it is a PF or PA 
key. It uses the same codes as the second parameter of ASREAD. The second 
number (1 and 2 in the examples) is the key number. 

On 5550-family multistations, if you do not make user control available, or if you 
make user control available but you specify a key other than PAa for user control, 
the PAa key can be used to refresh the screen. If you make user control available 
but do not specify a key other than PAa for user control, PAa activates user 
control, and the screen will be refreshed on exit, at least. PAa is not passed to 
your application under any circumstance. 

You can use the CTLF AST processing option to specify that your program should 
use fast path mode for User Control functions that require pointings (MOVE, SIZE, 
POINT, CENTER, ZOOM-IN, ZOOM-OUT). Here is the nickname statement: 

ADMMNICK FAM=l,PROCOPT=«CTLFAST,YES» 

When (CTLFAST,YES) is specified and a User Control function that requires 
pointing is selected by a PF key, it is assumed that the user has already positioned 
the cursor at the first pointing. 

The default is (CTLFAST,NO). 

You can use two other processing options, CTLPRINT and CTLSA VE, to specify 
whether print/plot and save functions are available in user control. Here are the 
nickname statements: 

ADMMNICK FAM=l,PROCOPT=«CTLSAVE,YES» 
ADMMNICK FAM=l,PROCOPT=«CTLPRINT,YES» 

By default, on all terminals, printing and plotting are allowed; saving is 
subsystem-dependent. See the GDDM Base Programming Reference manual for 
details. 

Chapter 21. Device support 387 



covers all types of device 

Putting the terminal into user control, using call DSCMF 

Instead of allowing the terminal user to press a key to enter user control, you can 
use the DSCMF call in your program: 

CALL DSCMF(1) 1 /* Invoke user control at read call */ 

Following the above call, any GDDM read call (ASREAD, GSREAD, MSREAD, or 
WSIO) puts the terminal into user control. The user still has to exit from user 
control before responding to the read call. 

The call has no effect if user control has been disabled by processing option. 

A value of 0 in DSCMF's single parameter resets your program so that read calls 
no longer automatically invoke user control. Your program can query the current 
state using the DSQCMF call. DSQCMF returns a 1 value for on, and a 0 for off. 

Processing options for the 3270-PC/G and /GX 

Retained and non-retained modes 

The work station can either retain graphics orders in its storage after the picture 
has been generated or the picture can be generated without the orders being 
retained. You can control the mode of operation with a processing option, either 
on a DSOPEN call or a nickname statement. More information is given in 
"Retained and non-retained modes" on page 508. 

Panning and zooming 

Panning and zooming are available on all graphics displays, as part of the user 
control function. By default, new picture definitions are sent to the terminals 
when required. 

For 3270-PC/G and /GX work stations, you can specify that, rather than sending 
new picture definitions, GDDM should perform panning and zooming by sending 
new transforms to the work station. The transforms are then processed at the work 
station, rather than by GDDM. 

To enable this local function, you must set the local mode processing option on, 
either on a DSOPEN statement for the terminal: 

DECLARE NAME(1) CHARACTER(8); 
DECLARE PROCOPT_LIST(2) FIXED BINARY(31); 

PROCOPT_LIST(1) = 21; /*Local mode pan and zoom processing option*/ 
PROCOPT_LIST(2) = 1; /* 1 = on; ° = off (default) */ 

CALL DSOPEN(O,1,'*', 2,PROCOPT_LIST, O,NAME) i 

or in a nickname statement: 

ADMMNICK FAM=1,PROCOPT=«LCLMODE,YES)) 

Enabling local mode results in less host processing and shorter data streams for 
panning and zooming. Transforms for zooming operations are only sent to the 
device when the zooming is witih certain device- and page-related limits (usually 
allowing the picture to be zoomed by a factor of up to 16). Above these limits, 

388 GDDM Application Programming Guide Volume 1 



device support 

panning and zooming is performed in the host, and continues to be until the user 
selects "reset" from the graphics menu. Although using the LCLMODE procopt 
reduces the host processing overheads while panning and zooming take place, it 
may introduce overheads during the normal output processing. See GDDM 
Performance Guide for details. 

Default symbol sets for graphics text 

As explained in "Differences on IBM 3270-PC/G and /GX work stations" on 
page 233, the default symbol sets for mode-2 and -3 graphics text are the image and 
vector sets held by the work station. You can specify that GDDM symbol sets 
should be used instead, by means of an option. This can be coded either on a 
DSOPEN call: 

DECLARE NAME(1) CHARACTER(S); 
DECLARE PROCOPT_LIST(2) FIXED BINARY(31); 

PROCOPT_LIST(1) = 19;/* Default symbol set processing option */ 
PROCOPT_LIST(2) = 1; /* 0 = hardware set (default); 1 = GDDM set*/ 

CALL DSOPEN(1,1,'*', 2,PROCOPT_LIST, o ,NAME) ; 

or in a nickname statement: 

ADMMNICK FAM=1,PROCOPT=«LOADDSYM,YES» 

Processing options for 3270-PC/G and IGX, 3179-G, and 5550 family displays 

There are two modes of picture update on 3270-PC/G and /GX, 3179-G, and 5550 
displays: 

• Full draw mode gives an accurate picture. This is the default. 

• Draft draw mode, gives you the option of avoiding redraws when graphics data 
is changed. Faster updates can be obtained in many cases, because GDDM only 
updates the changed segments. There is a cost in possible drawing 
inaccuracies, where primitives overlap either before or after the update, 
because GDDM degrades the color-mixing. Overlapped sections might therefore 
be missing or in the wrong colors. Also, when overlapping partitions are 
deleted, the data in the partition that was overlapped may have an inaccuracy. 

The modes can be set in user control, or in your program. Your program could, for 
example, set draft-draw mode while the user is editing the picture, but set full-draw 
mode, with no consequent inaccuracies, for displaying or plotting the final version. 
In your program, it can be coded either on a DSOPEN call: ' 

DECLARE NAME(l) CHARACTER(S); 
DECLARE PROCOPT_LIST(2) FIXED BINARY(3l); 

PROCOPT_LIST(l) = 26;/* Update mode processing option */ 
PROCOPT_LIST(2) = 1; /* 1 = draft draw, 0 = full draw (default) */ 

CALL DSOPEN(1,l,'*', 2,PROCOPT_LIST, o ,NAME) ; 

or in a nickname statement: 

ADMMNICK FAM=l,PROCOPT=«FASTUPD,YES» 

or with the call FSUPDM. Here is an example: 

Chapter 21. Device support 389 



covers all types of device 

CALL FSUPDM(l); /* Set update mode to draft draw */ 

Each setting of the update mode overrides any previous setting, regardless of the 
method used to set it. 

Processing option for the 5080 graphics system 

The 5080 is supported under TSO and VM, but not under CICS or IMS. The 5080 is 
used as a family-1 device. Under VM, it must be attached to your virtual machine 
as a virtual device. Under TSO, the 5080 must be online to the MVS system. 

The 5080 uses two logically separate screens for graphics and alphanumerics. 

If the 5080 has the 3270 feature, the 5080 physical screen is used for both logically 
separate screens, but only one can be seen at a time. 

If the 5080 does not have the 3270 feature, the 5080 is associated with a physically 
separate 3270 terminal (screen and keyboard). In this case, the 5080 displays 
graphics and the 3270 displays alphanumerics. 

The 5080 is either associated with the 3270 feature or the physically separate 3270 
by a processing option. The 3270 is the primary device. 

With the 3270 feature, the 5080 keyboard is used in either graphics or 
alphanumerics mode; without this feature, both the 5080 and 3270 keyboards are 
used. The protocol for the use of the 5080 and 3270 keyboards together is described 
in GDDM Guide for Users. 

These are the steps required to run GDDM applications on a particular 5081 
display unit: 

1. Log on to your VM or TSO subsystem using either the 5080 in 3270 mode or a 
separate 3270 terminal. For VM systems, also IPL CMS. Under VM, ensure 
that the 5081 is attached to your virtual machine. You may need to ask the 
system operator to attach it. Then, either using the 5081 in 3270 mode, or the 
separate 3270 terminal: 

2. To define a ddname for the 5081: 

Under VM, enter the following command: 

FILEDEF ddname GRAF cuu 

Under TSO, enter the following: 

GABALOC FILE (ddname) UNIT(cuu) 

In both cases, cuu is the address of the 5085 control unit for the 5081 display 
unit 

3. The processing option for the 5080 must either be set in your program: 

or using a nickname: 

ADMMNICK FAM=l PROCOPT=«SPECDEV,IBM5080,ddname» 

4. Invoke your GDDM application program. 

390 GDDM Application Programming Guide Volume 1 



device support 

Querying the device 

You can query the effects of a DSOPEN call with a DSQDEV call. The information 
returned includes the device family, the device name, the device token, and the 
processing options actually used for the DSOPEN, that is, the values after any 
nickname processing. 

You can query the characteristics of the primary device (but not an alternate 
device) with an FSQURY call. This returns the device family, and some 
information about the device hardware, such as cell size, pixel density, and number 
of programmed symbol stores. It does not return DSOPEN information - the 
device name, the device token, or the processing options. 

For 5080, it returns information about the 5080 and the associated 3270. 

For full details of the DSQDEV and FSQURY calls, see the GDDM Base 
Programming Reference manual. 

Other device calls 

• DSRNIT - reinitializes a device. Any usage of the device is discontinued, 
resources (for example symbol sets) allocated to it are released, and the device 
is returned to the state it was in when first opened. 

• DSQUID(device-id) - returns a valid, currently unused device identifier. 

For full details of the above calls, see the GDDM Base Programming Reference 
manual. 

Pseudoconversational programming under CICS 

Applications that are initiated from a terminal and consist of a continuous dialogue 
with the terminal user (for example, a system editor such as ISPF on TSO, or 
XEDIT on VM) can be described as conversational applications. The logical flow 
of such programs can be summarized as follows: 

1. Start the application. 

2. Perform initialization. 

3. Converse with the terminal user (typically, display the first panel and wait for 
input). 

4. Do while finish not requested. 

a. Process the terminal input. 

b. Converse with the terminal user (typically, display the requested panel and 
wait for input). 

5. End. 

6. End the application. 

You can see from the above summary that the program conducts a conversation 
with the terminal user. 

Chapter 21. Device support 391 



covers all types of device 

GDDM provides three calls to perform the conversation: 

ASREAD Output the current page and await alphanumeric input 
GSREAD Output the current page and await graphics input 
MSREAD Output the current map and await mapped input. 

A conversational program of the type summarized above can be run on the CICS 
subsystem, where it is known as a conversational transaction. 

However, one disadvantage of a conversational program under CICS is that the 
application holds onto system resources for the duration of the wait for terminal 
input. If the application is widely used, this could have adverse implications on the 
overall system performance. 

For this reason, CICS provides pseudoconversational support, in which a series 
of non conversational transactions gives the appearance to the terminal user of a 
single conversational transaction. 

The pseudoconversational version of the above application is as follows: 

1. Start the application. 

2. Perform initialization. 

3. Send data to the terminal user (typically, display the first panel). 

4. End 

Return to CICS requesting a following transaction. 

5. Start transaction requested by previous return. 

6. Receive the terminal input. 

7. Process the input. 

8. Send the data to the terminal user (typically, display next panel). 

9. End 

Return to CICS either requesting a following transaction or not. 

10. Repeat steps 5 through 9 while a following transaction has been requested. 

As you can see, the conversation is implemented as discrete send and receive 
calls, and while terminal input is being awaited, no transaction exists. CICS takes 
care of reading the input when the user enters it, and then starts a transaction to 
process it. 

There are a number of considerations affecting the choice of conversational or 
pseudoconversational programming for a particular application - the amount of 
usage, and file integrity across transactions being examples. 

Information about these and other considerations affecting application design 
under CICS can be found in the CICS Application Programming Primer manual. 

GDDM provides the ability for a GDDM application to use CICS 
pseudoconversational programming using the following calls: 

392 GDDM Application Programming Guide Volume 1 



device support 

DSOPEN The PSCNVCTL processing option specifies to GDDM whether 
pseudoconversational mode is in use. PSCNVCTL,ST ART specifies that 
the use is starting. PSCNVCTL,CONTINUE specifies that it is 
continuing. 

The procopt tells GDDM to obtain device query information from the 
device itself, or from previously saved data in temporary storage. 

ASREAD When the application is in CONTINUE pseudoconversational mode, the 
first ASREAD issued by the application causes no output to be sent to 
the terminal, and only the input part of the ASREAD is performed. 

DSCLS If pseudoconversational mode is in use, DSCLS unlocks the device 
keyboard. In addition, two options are provided that are used by 
pseudoconversational applications to end the pseudoconversational mode. 

These options tell GDDM to either save device query information in 
temporary storage, or to erase the temporary storage queue. 

Only the frrst ASREAD in CONTINUE pseudoconversational mode performs as a 
RECEIVE; subsequent ASREADs work as normal, that is they output, wait, and 
receive input. 

Note that there is no pseudoconversational support for the GSREAD and MSREAD 
calls. 

The following list illustrates the order of the GDDM calls for pseudoconversational 
mode in a mapping application: 

• On the initial invocation of the transaction: 

1. FSINIT 

2. DSOPEN (Start pseudoconversational mode) 

3. Create mapped alphanumeric data for the first screen using MSPCRT, 
MSDFLD,and MSPUT 

4. Create any graphics output 

5. FSFRCE 

6. DSCLS (Option 1 - do not erase the screen) 

7. FSTERM 

8. EXEC CICS RETURN TRANSID(Tname) COMMAREA(Carea) 

'Carea' should contain any information required to continue the 
transaction processing; in particular, it should contain the Application 
Data Structures used for output of the mapped data. 

• On subsequent invocations of the transaction: 

1. FSINIT 

2. DSOPEN (Continue pseudoconversational Mode) 

Chapter 21. Device support 393 



covers all types of device 

3. Create mapped alphanumeric data for 'previous' screen, using the identical 
set of MSPCRT, MSDFLD, and MSPUT calls used the last time, and also 
using the same Application Data Structures (as saved in 'Carea') 

4. Do not issue any graphics calls 

5. ASREAD 

6. Process mapped input using MSGET as normal 

7. Create mapped alphanumeric data for the next screen using MSPCRT, 
MSDFLD,and MSPUT 

8. Create any graphics output 

9. FSFRCE 

10. DSCLS (Option 1 - do not erase the screen) 

11. FSTERM 

12. EXEC CICS RETURN TRANSID(Tname) COMMAREA(Carea) 
LENGTH(Clen) 

'Carea' should contain any information required to continue the 
transaction processing; in particular, it should contain the ADSs used for 
output of the Mapped data. 

• Use DSCLS with option 2 or 3 to terminate the pseudoconversation. 

There is an example of the application outlined above in "Example 5. CICS 
pseudoconversational example" on page 499. 

394 GDDM Application Programming Guide Volume 1 



Chapter 22. Using printers 

Overview 

There are four distinct methods of sending output to a printer. They are 
summarized in Figure 97. 

Device Device 
Family Usage 
(DSOPEN) (DSUSE) 

1 Primary 

Alternate 

2 Primary 

Alternate 

3 Primary 

Alternate 

4 Primary 

Valid 
Output 
Calls 

Intermediate Print Typical 
File Type Program Printers 

ASREAD, J FSFRCE 
r-------------------------~ 

FSCOPY,GSCOPY, 
FSLOG,FSLOGC 

None 
3287 

ASREAD,FSFRCE}- EJ ADMOPUx 
IADMPRINT ----- 3287 

FSCOPY,GSCOPY, ~--------~ 
FSLOG,FSLOGC 

-
AS READ , FSFRCE ~ L Subsystem 

ADMLIST Ir-----------~ 
spooling 

FSCOPY,FSLOG, ~----------------------~ 

3800-1 
3211 
1403 

FSLOGC program ~----~ 
-

ASREAD,FSFRCE 

CDPF 

PSF 
3800-3 
3800-8 
3820 

Figure 97. Overview of GDDM support for printers 

The device-family parameter of the DSOPEN call defines the method, as follows: 

• Family-l means a printer attached to your program. This is possible only under 
the CMS, CICS/VS, and IMS/VS subsystems. 

• Family-2 means a queued printer, that is, a printer belonging to the subsystem 
and shared between several users. Your application program sends its output 

Chapter 22. Using printers 395 



covers all types of printer 

to a GDDM-created print file. The file is then printed by the GDDM Print 
Utility Program, ADMOPUx (where "x" depends on the subsystem), which is 
described in "Printing GDDM family-2 print files" on page 407. 

• Family-3 means a system printer driven by a subsystem spooling program. 
Your program's output can be stored on a GDDM-created file before being 
passed to the spooling program. 

• Family-4 means a composed-page printer (sometimes called a 
high-resolution printer) capable of printing both text and graphics. The 
quality of their output is generally high enough to be used for the masters from 
which publications are printed. Composed-page printers are not attached 
directly to application programs. The data from a program is saved in a 
GDDM-created file which is then printed using one of the IBM utility 
programs: Composed Document Printing Facility (CDPF), Print Services 
Facility (PSF), or Document Composition Facility (DCF). Before printing, a 
number of text and graphics files may be combined in a page composition 
process. 

A family-l, -2, or -3 printer can be a primary or an alternate device. A family-4 
printer must be a primary device. 

More information about using each device family is given in the following sections. 

Attached 3270 printer as a family-l primary device 

You can treat a printer as an ordinary family-l device, ifit is directly attached to 
your program. You can use exactly the same source code to create your graphics 
and alphanumerics as for a display device. The DSOPEN will determine the 
destination of the ASREAD and FSFRCE output. In a CMS environment, the 
program would be like the example below. 

DCL PROCOPT_LIST(10) FIXED BIN(31); /* Processing options list */ 
DCL NAME_LIST(l) CHAR(8); /* Device-control name list */ 

NAME_LIST(1)='061'; 

/* DEVICE-ID 
CALL DSOPEN(19, 

CALL DSUSE(1,19)i 

FAMILY 
1, 

CALL GSFLD(1,l,30,70)i 

CALL GSSEG(O) i 

CALL GSMOVE(24.0,70.0); 
and so on ... 

CALL FSFRCEi 

/* CMS device address of 
/* 3287 4-color printer 

*/ 
*/ 

OPTIONS WHICH DEVICE*/ 
O,PROCOPT_LIST, 1,NAME_LIST)i 
/* Open real printer at */ 
/* address X'061', using */ 
/* all the default values. */ 

/* Use printer as primary */ 

/* Define graphics field */ 
/* 30 rows by 70 columns */ 

/* Start to draw graphics */ 

/* Send 1st output to printer */ 

Before the program is executed, the printer will be attached to the user's VM 
machine at virtual address '061'. If, instead, a display is attached at address '061', 
the program will work equally well, if it has at least 30 rows and 70 columns. 

When the primary device is a printer, the page may be any size such that: 

396 GDDM Application Programming Guide Volume 1 



printers 

number of rows x number of columns ~ 16000 

The default page size is determined by the device token. The default token for a 
printer gives a default page size of 80 rows by 132 columns. Only the leftmost 120 
columns will appear in color on the IBM 3287 printer. As always, the graphics field 
will default to the page size. 

Under CMS, you will need exclusive control of a directly attached family-1 device. 
You can avoid this by spooling the output to RSCS (the Remote Spooling 
Communication System) Networking. You will need to specify two processing 
options; the nicknames facility is generally the simplest way of doing this. Here is 
a suitable DSOPEN call: 

NAME_LIST(l) = 'RSCSPRT1'; 
/* ID DEV-FAMILY DEV-TOKEN PROCESSING OPTIONS DEV-NAME */ 

O,PROCOPT_LIST, 1,NAME_LIST); CALL DSOPEN(S, 1, '*' 

and the required nickname statement: 

ADMMNICK FAM=1,NAME=RSCSPRT1,TONAME=PUNCH,DEVTOK=L87, 
PROCOPT=«CPSPOOL,TO,RSCS),(CPTAG,REMPRT7,PRT=GRAF» 

The TONAME parameter sends the output to the virtual punch. The two 
processing options first spool the punch file to RSCS, and then tag it with the real 
printer name (REMPRT7) and an option indicating that the file is a GDDM 
graphics one. A device token for the real printer must be supplied in the DEVTOK 
parameter if there is not one on the DSOPEN. More information about nicknames 
is given in "Chapter 21. Device support" on page 367 and in GDDM Installation 
and System Management. 

Queued printer as a family-2 primary device 

The output to a queued printer is first passed to the GDDM Print Utility and then 
to a printer. The exact, mechanism varies according to the subsystem (see "Printing 
GDDM family-2 print files" on page 407). 

When a queued printer is opened, various parameters may be set. They form a 
print-control option group within the processing options list (see "Device 
processing options" on page 370). 

Here is an example of code to open a queued printer: 

DCL PROCOPT LIST(10) FIXED BIN(31);/* processing options list */ 
DCL NAME_LIST(l) CHAR(8); /* Device-control name list */ 

PROCOPT_LIST(1)=4; 

PROCOPT_LIST(2)=8; 

PROCOPT LIST(3)=0; 
PROCOPT=LIST(4)=2; 
PROCOPT_LIST(S) =10; 

PROCOPT LIST(6)=3; 
PROCOPT-LIST(7)=S; 
PROCOPT=LIST(8)=0; 
PROCOPT_LIST(9) =80; 
PROCOPT_LIST(10)=0; 

/* Print control option code */ 
/* (See note 3 for discussion*/ 
/* of the following options) */ 
/* No. of fullwords following*/ 
/* in this option group */ 
/* Do not print heading page */ 
/* No. of copies required */ 
/* Maximum depth for FSLOG */ 
/* (FSLOG is described later)*/ 
/* Depth of top margin */ 
/* Width of left margin */ 
/* Depth of bottom margin */ 
/* Maximum width for FSLOG */ 
/* Default translation */ 

Chapter 22. Using printers 397 



covers all types of printer 

NAME_LIST(1)='PRINT65'~ /* CMS file name (See note 1)*/ 

/* DEVICE-ID 
CALL DSOPEN(31, 

FAMILY 
2, 

DEV_TOKEN OPTIONS WHICH DEVICE */ 
'*' 10,PROCOPT_LIST, 1,NAME_LIST)~ 

/* Open queued-printer device*/ 

The call requires some explanation: 

1. The name of the queued printer device is subsystem-dependent. Briefly, it is a 
terminal name on CICS/VS, an LTERM name on IMS/VS, a VTAM LUname on 
TSO, or a file name on CMS (or, of course, a nickname on any of these 
subsystems). 

2. On CMS, you can specify a file type and file mode as the second and third 
elements of the name list. The example supplies only the file name, in which 
case GDDM supplies a default file type of ADMPRINT and file mode of AI. 

3. The most commonly used print control option is probably the number of copies. 

Some other parameters in the list require further mention: 

• The printer may be receiving output from several different users by m!3ans 
of the GDDM Print Utility. It may therefore be convenient for each user's 
output to be preceded by a heading page, giving the user's identification 
and the time the print file was created. The third word of the options group 
is set to 1 to request a heading page (the default), or to 0 to suppress it. 

• The fifth, eighth, and ninth words are applicable only to FSLOG and 
FSLOGC output. These are calls that permit alphanumeric logging data to 
be inserted between the copies of the primary device's output. They are 
described in "Sending a character string to a printer using call FSLOG" on 
page 404 and "Sending a character string with control character to printer 
using call FSLOGC" on page 405. 

• The tenth word is a rarely-used parameter affecting device-type translation. 

Having opened a queued printer, you can use it like any other primary device. You 
issue: 

CALL DSUSE(1,31); /* Use device 31 (a queued printer) */ 
/* as the primary device */ 

Then, any further statements (such as page-create or create graphics field) will 
refer to the queued printer. 

System printer as a family-3 primary device 

GDDM supports alphanumerics-only output to these IBM system printers: 1403, 
3211, and 3800. All the alphanumerics calls may be used with these devices with 
the exception of symbol-set functions. 

This example sends alphanumeric output to a system printer: 

398 GDDM Application Programming Guide Volume 1 



DCL PROCOPT LIST(10) FIXED BIN(31); 
DCL NAME_LIST(1) CHAR(8); 

printers 

/* DEVICE ID FAMILY 
CALL DSOPEN(17, 3, 

DEV_TOKEN PROCESSING OPTIONS DEVICE*/ 

CALL DSUSE(1,17); 
'S1403N8', O,PROCOPT_LIST, O,NAME_LIST); 
/* Use system printer as primary device */ 

CALL ASDFLD(1,3,14,1,25,2); /* Define alphanumeric field */ 
CALL ASCPUT(1,25,'SALES REPORT, AUGUST 1982'); 

and so on 
CALL FSFRCE; /* Send output to system printer */ 

• In this example the name of the device was defaulted. Under eMS, this would 
result in the output being sent to the virtual printer (device 'OOE' by default). 

The name parameter is subsystem-dependent. Briefly, it is a transient data 
destination on CICS/VS, an LTERM name on IMS/VS, a SYSOUT DDNAME 
on TSO, and a filename on CMS (the file type and file mode defaulting to 
ADMLIST and AI). 

• The device-token in the example, 'SI403N8', specifies a 1403 printer with page 
size of 88 lines by 85 columns and line spacing of 8 lines to the inch. 

Composed-page printer as a family-4 primary device 

GDDM supports the 4250, 3800 Models 3 and 8, and 3820 composed-page printers. 
They will print monochrome versions of any graphics that could be displayed on a 
screen. In addition, they will produce sets of color-separation masters, from which 
printing plates for color illustrations in publications can be prepared (see "Color 
masters for publications" on page 415 for further information). 

They do not support alphanumerics: only the graphics will be printed. Other 
restrictions are listed in "Restrictions with composed-page printers" on page 419. 

The output goes to a high-resolution, binary-image file, which may be: 

• Spooled as a printer data stream directly to a printer. It is then called a 
primary data stream. 

• Included as part of some other printer data stream. It is then called a 
secondary data stream. 

• A bit-for-pixel image array suitable for processing by another program. This is 
called an unformatted or canonical data stream. 

The following code shows a typical DSOPEN for an mM 4250, together with its 
parameter values and the necessary DSUSE call. The only change required to use 
a different composed-page printer would be to select a suitable device token. (For a 
list, see the GDDM Installation and System Management for your system.) 

Chapter 22. Using printers 399 



covers all types of printer 

DCL PROCOPT(6) FIXED BIN(31); 

PROCOPT(l) 7; /* Swathing */ 
PROCOPT(2) 10; /* 10 swathes */ 

PROCOPT(3) = 8; /* Page size */ 
PROCOPT(4) = 85; /* 8.5 inches wide */ 
PROCOPT(S) = 110; /* 11 inches deep */ 
PROCOPT(6) = 0; /* 1/10 inch units */ 

DCL NAMELIST(l) CHAR(8); 

NAMELIST(l) 'SALES83'; /* File name */ 

/* DEVICE_ID FAMILY TOKEN PROC_OPTIONS NAME LIST */ 
CALL DSOPEN (12, 4, 'FINE600', 6,PROCOPT, 1,NAMELIST) ; 

CALL DSUSE (1,12) i /* Make it the primary device */ 

CALL FSPCRT(1,110,8S,1)i /* Create 1/10 inch grid */ 
CALL GSFLD(11,11,90,6S); /* Put top left corner of */ 

/* graphics field at 11,11 */ 
/* and make it 90 rows deep */ 
/* by 65 columns wide */ 

High-resolution image file: For printing, your application must write its output to 
a high-resolution image file, which later becomes the input to another mM 
program product - either the Composed Document Printing Facility (CDPF) for the 
4250 or the Print Services Facility (PSF) for the 3800 Models 3 and 8 and the 3820. 
These pass the output on to the printer. 

You specify the name of the file in the name-list parameter of the DSOPEN call, as 
shown at /*c* / in the example. If there is no file with the specified name, GDDM 
creates one. An ASREAD or FSFRCE call sends the output to the file, rather than 
to a terminal device. 

On CMS, you can specify a filetype and filemode as the second and third elements 
of the name-list. The example supplies only the filename, in which case GDDM 
supplies a default filetype of ADMIMAGE and filemode of AI. More information 
about names under CMS and other subsystems is given in the GDDM Base 
Programming Reference manual. 

Paper size: You can specify on the DSOPEN call the physical size (in tenths of an 
inch or in millimeters), of the paper area on which the page is to be printed. Or 
you can omit the specification and include a device token from which GDDM can 
obtain it. Device tokens are described in GDDM Installation and System 
Management. 

The size is specified in a processing option. It should not exceed the values in the 
device token. In the example, the size is specified at /*B* /. The option code is 8. 
The next fullword after the code specifies the width, and the one after that the 
depth. The last fullword of the group specifies the units: 0 means 1/10 inches, 1 
means millimeters. The example specifies a size of 8.5 inches by 11 inches. 

Rows and columns: The composed-page printers are not cell-based devices. 
However, GDDM still uses a specified or defaulted set of rows and columns on the 
current page; they form a conceptual grid on which your program can specify the 
position and size of the graphics field. The horizontal spacing of the grid is: 

(width of paper area) / (number of columns) 

400 GDDM Application Programming Guide Volume 1 

/*A*/ 
/*A*/ 

/*B*/ 
/*B*/ 
/*B*/ 
/*B*/ 

/*C*/ 

/*D*/ 
/*E*/ 



printers 

and the vertical: 

(depth of paper area) 1 (number of rows). 

The example creates a page with 110 rows and 85 columns, at I*D* I. Because the 
page is 8.5 inches wide and 11 inches deep, its conceptual grid will have elements 
1/10 inch square. 

Positioning the graphics field: The graphics field created at I*E* 1 will be 65 
columns wide by 90 rows deep, that is, 6.5 inches by 9 inches. Its top left-hand 
corner will be 10 rows down from the top of the paper and 10 columns in from the 
edge. The graphics area will therefore be surrounded by a one-inch margin, 
assuming that the printer is physically loaded with paper of the size specified in the 
DSOPEN call. 

If you omit the GSFLD call, the graphics field will cover the whole page, and will 
therefore fill the whole of the physical area of paper defined implicitly by the 
device token, or explicitly by the FSPCRT. 

Spill file: GDpM keeps a record of the graphics created by your API calls in 
graphics data format (GDF) (see "Chapter 13. Picture handling in graphics data 
format" on page 171). GDF is an intermediate form between the API and the 
rastered images required by terminal devices. 

When the primary device is a composed-page printer, all lines have to be stored as 
areas, not just vectors, because they can vary in width, and be many pixels wide. 
This expansion of lines into area definitions can make the GDF relatively large. 
To reduce main storage requirements, GDDM will, by default, hold the GDF for 
composed-page printers on external storage, in a spill file. You can specify, in a 
processing option, that the GDF is to be held in main storage instead. The option 
code is 6, and the fullword containing this code must be followed by one other 
containing the value I, meaning no spill file should be used. 

Using a spill file saves main storage, but increases processing time because of the 
additional external storage I/O. 

Swathing: The rastered image for a composed·page printer may contain a very 
large amount of data, because of the high pixel density. To avoid keeping it all in 
main storage, GDDM will write it to the high-resolution image file in sections or 
swathes. The swathes are equal-sized horizontal slices of the picture, and GDDM 
processes each one completely and writes it to the file before starting on the next 
one. 

Swathing saves main storage but increases processing time, because the whole 
picture (as held in GDF) must be scanned for each swathe. 

You specify the number of swathes with option code 7. The example specifies 10 
swathes at I*A* I. The default is 1, which means no swathing - the picture is 
processed in a single GDF scan. 

Chapter 22. Using printers 401 



covers all types of printer 

Primary and secondary data stream 

Input to CDPF or PSF that comprises a complete document is said to be a primary 
data stream. GDDM creates a primary data stream by default. 

You can specify in a processing option (option group 5) that GDDM is to create 
only part of a document. In this case, the GDDM output is known as a secondary 
data stream. A file containing a secondary data stream must be merged by CDPF 
or PSF with one or more other files to create a complete document. 

You would need to create a secondary data stream if your application prepares the 
illustrations for a publication, while the text is prepared by another means, such as 
the IBM Document Composition Facility. CDPF or PSF would then merge the 
illustrations and text to create a complete document. During preparation of an 
illustration, you might need to print it without the text, for checking. In this case, 
you would specify that GDDM is to create a primary data stream for the 
illustration. 

If a picture contains text that uses the 4250 fonts (see "Using typographic fonts on 
a familY-4 4250 printer" on page 411) in addition to graphics, you would normally 
need to create a secondary data stream. This is to avoid exliausting CDPF program 
storage. 

The option code for the data-stream type is 5. Its associated value can be either 0, 
meaning a primary data stream (the default), or 1, meaning a secondary data 
stream. An example is included in Figure 104 on page 419. 

Unformatted (canonical) output 

Instead of output in a form suitable for CDPF or PSF, you can specify that GDDM 
is to create an unformatted data stream. This is simply an uncompressed bit 
pattern representing the image. Its format is device-independent. 

You select formatted or unformatted output with option code 9. An associated 
value of 0 means unformatted, and 1 means formatted (the default). 

Printer as an alternate device 

GDDM allows you to send copies of the primary device's output to an alternate 
device. You can use a family-I, -2, or -3 printer as an alternate device and so, for 
instance, obtain a hard copy of the output to a display terminal. A program for 
doing this is shown in "Example program: Copying screen output to a printer" on 
page 405. 

The DSOPEN calls described in the earlier sections of this chapter apply equally to 
alternate devices and primary ones. 

The print control processing options described in "Queued printer as a family-2 
primary device" on page 397 can be applied to family-I, -2 or -3 printers when they 
are being used as alternate devices. Their main use is to set the margins around 
the printed area. The number-of-copies option (the fourth one in the list) will be 
honored for family-2 devices only. 

After opening, you make the printer the alternate device using a DSUSE call: 

402 GDDM Application Programming Guide Volume 1 



printers 

CALL DSUSE(2,31); /* Use device 31 
/* as an alternate device, to 
/* receive copies of the primary 
/* device's output. 

*/ 
*/ 
*/ 
*/ 

You can have only one alternate device in use at a time. A DSUSE call for a new 
alternate device implicitly drops the alternate device that was in use before the 
DSUSE. 

Four calls, FSCOPY, GSCOPY, FSLOG, and FSLOGC, send output to the alternate 
device. They will now be described. 

Copying a page to a printer using call FSCOPY 

This call copies the current page to the current alternate device. If the alternate 
device is a family-! or -2 printer, the alphanumerics, graphics, and image data are 
copied. If the alternate device is a family-3 printer, only the alphanumerics are 
copied. 

The output to a family-! or -2 printer is subject to the considerations outlined in 
"Mixed graphics and alphanumerics" on page 409. Unsatisfactory results may 
occur when you try to copy mixtures of alphanumeric and graphics output, because 
the relative positions of the two types of data will be subject to change. See also 
"Printing and plotting images" on page 358. 

The principal use of FSCOPY is to copy pages of alphanumeric data. The format of 
the call is simply: 

CALL FSCOPY; /* Send copy of page (alpha & graphics) */ 
/* to the printer */ 

These factors apply to FSCOPY: 

• The size of the printed-copy page will be the same (in printer hardware cells) as 
that of the current page (in hardware cells of the primary device). 

• By default, the aspect ratio of the graphics is maintained. The aspect ratio of 
the page is not, however, as the aspect ratio of a single cell varies from device 
to device. Therefore the graphics will occupy a different portion of the page 
(compared with that on the primary device), and consequently will be 
positioned differently in relation to any alphanumeric fields. More information 
is given in "Mixed graphics and alphanumerics" on page 409. 

• Alphanumeric field and character attributes are retained on the printed copy 
whenever possible. Underscore is retained, for example, but blinking is not. 

• Wherever symbol sets were used to create the original picture, they will be used 
again to create the copy. This applies equally to pattern sets and marker sets. If 
a substitution character was used on the original symbol-set load (see "Symbol 
sets for alphanumerics" on page 221), GDDM will load the appropriate version 
of that symbol set for the printer. 

• If the original picture uses proportionally spaced symbols, you should ensure 
that: 

- either: 

Chapter 22. Using printers 403 



covers all types of printer 

The same symbol set is available when printing takes place. This applies 
particularly when copying to family-2. The symbol sets for the printer are 
accessed when the print file is processed, not during execution of your 
program. 

or: 

If your program uses a different symbol set for printing (by, for instance, 
employing a substitution character), this has the same spacing for all 
characters as the set used for the original display. 

If these conditions are not met, the length of the printed string will be different 
from that of the original. 

• Graphics primitives outside segments are not copied. 

You can obtain multiple copies of a page by issuing mUltiple FSCOPY calls. On a 
family-2 device you can, instead, use the number-of-copies parameter of the 
print-control processing option. 

Copying graphics to a printer using call GSCOPY 

This call copies the contents of the current page's picture space to the current 
alternate device if it is family-lor -2. It does not copy alphanumerics or image 
data. It permits you to specify how large the copy should be. This is the format of 
the call: 

CALL GSCOPY(60,120l;/* Copy graphics to queued printer, using a */ 
/* printer page-size of 60 rows by 120 eols */ 

By default, the aspect ratio of the graphics is maintained. If you draw a square 
picture on the primary device, for example, and then issue a CALL GSCOPY(5,120), 
you will not get an elongated version of the picture stretching right across the 
page. You will get a square picture, 5 rows deep, centered on the boundary of 
columns 60 and 61. In some cases it may be more important to fill the area 
specified in the GSCOPY than to preserve the aspect ratio of the graphics. This 
call will make that happen: 

CALL GSARCC(ll; /* Do not preserve aspect ratio */ 

GSCOPY treats symbol sets in the same way as FSCOPY. 

Graphics primitives outside segments are not copied. 

You can obtain multiple copies of the graphics on a page by issuing multiple 
GSCOPY calls. On a family-2 device you can, instead, use the number-of-copies 
parameter of the print control processing option. 

Sending a character string to a printer using call FSLOG 

This call enables you to send character strings to the printer in between FSCOPY 
or GSCOPY calls, or in between both. 

The first FSLOG call after a copy call moves the printer to a new page. Batches of 
FSLOG data appear on the same page. This is the format of the call: 

404 GDDM Application Programming Guide Volume 1 



printers 

CALL FSLOG(47,'NEXT PAGE SHOWS ILLUSTRATION FOR COMPANY REPORT'); 

The fIrst parameter gives the length of the text. The second gives the text itself. 

The maximum depth and width of the log data is determined by the processing 
options you specify when you open the printer (see "Queued printer as a family-2 
primary device" on page 397). 

Sending a character string with control character to printer using call FSLOGC 

This call is similar to FSLOG, but GDDM interprets the first character in the 
string as a carriage-control character: 

CALL FSLOGC(l4,'-END OF REPORT'); /*Skip 3 lines before printing*/ 

The fIrst parameter of the call is the length of the character string including the 
carriage-control character. The valid control characters are shown in Figure 98. 
The hexadecimal codes are the same as the CTLASA and CTL360 codes. 

FSLOGC has the same purposes as FSLOG, and some additional ones, including: 

• Printing existing sequential files that contain carriage-control characters. 

• Printing alphanumeric text layouts when the facilities offered by the more 
complicated alphanumerics API are not required. 

Spacing action Relation between spacing action and printing 
Spacing Spacing Spacing 
before after without 

printing printing printing 

Space 1 line blank X'09' X'OB' 

Space 2 line 0 X'll' X'13' 

Space 3 line - X'19' X'IB' 

Skip to new page 1 X'89' X'8B' 

None (print unspaced) + X'OI' X'03' 

Figure 98. Carriage-control codes for FSLOGC 

Example program: Copying screen output to a printer 

The example program in Figure 99 on page 406 illustrates the use of a primary 
device and two queued printers: 

Chapter 22. Using printers 405 



covers all types of printer 

GUIDE: PROC OPTIONS(MAIN); 
DCL PROCOPT LIST(10) FIXED BIN(31); /* Processing options list */ 
DCL NAME_LIST(1) CHAR(S); /* Device-control name list */ 

CALL FSINIT; 

CALL GSSEG(O); /* 
/* 

CALL GSCOL(2); /* 
CALL GSPLNE(116,XA1,YA1); /* 

CALL GSCHAR(45.0,62.0,30,'Wishing 
CALL ASREAD(TYPE,MODE,COUNT); 

CALL FSPCRT(2,0,O,1); 

Open graphics segment for 
default page of user-console 
Start drawing map of deer 
Estate 

well (XVlllth century)'); 
/* Send map to user-console 

/* Open a 2nd page 
/* Define alpha field 
/* Define alpha field 

*/ 
*/ 
*/ 
*/ 

*/ 

*/ 
*/ 
*/ 

/*A*/ 

CALL ASDFLD(7,1,15,1,50,2); 
CALL ASDFLD(S,4,1,16,6S,2); 
CALL ASCPUT(7,50,'This pamphlet 
CALL ASCPUT(S,10SS, 

describes the Hiltingbury Deer Park.'); 

, In 1675, the 4th Duke of Exeter married his second cousin, a ' I I 
'famous society beauty named Elizabeth Powys. Their first son died in'l I 

'not forget to visit the recently restored summer house by the lake. ' ) ; 

CALL ASREAD(TYPE,MODE,COUNT); 

PROCOPT_LIST(l) =4; 
PROCOPT_LIST(2)=2; 

/* Send guide text to console 

/* Print control option code 
/* No. of fullwords following 
/* in this option group 

*/ 

*/ 
*/ 

PROCOPT_LIST(3) =0; 
PROCOPT_LIST(4)=50; 

NAME_LIST(1)='GUIDE'; 

/* DEVICE-ID FAMILY 
CALL DSOPEN(11, 2, 

PROCOPT_LIST(4)=35; 
NAME_LIST(1)='ONLYMAP'; 

CALL DSOPEN(12, 2, 

CALL DSUSE(2,11); 
CALL FSCOPY; 
CALL FSPSEL(O); 
CALL GSCOPY(40,SO); 
CALL DSCLS(11,1); 

CALL DSUSE(2,12); 

CALL GSCOPY(70,120); 
CALL DSCLS(12,l); 

CALL FSTERM; 
%INCLUDE(ADMUPINA); 
%INCLUDE(ADMUPIND); 
%INCLUDE(ADMUPINF); 
%INCLUDE(ADMUPING); 
END GUIDE; 

Figure 99. Copying to printers 

/* Do not print heading page 
/* Number of copies required 

/* CMS file name 

DEV TOKEN OPTIONS WHICH DEVICE 
'*', 4,PROCOPT_LIST, 1,NAME_LIST 

/* Open queued-printer device to print 
/* SO copies of guide (text + map) 

/* Number of copies required 
/* CMS file name 

'* , , 4,PROCOPT_LIST, 1,NAME_LIST 
/* Open queued-printer device to print 
/* 35 enlarged copies of just the map 

/* Use guide queued printer first 
/* Copy alphanumeric text from page 2 
/* Reselect default page (with map) 
/* Copy DEERPARK map to 40 by SO area 
/* Close queued printer 

/* Use onlymap queued printer now 

*/ 
*/ 
*/ 

*/ 

*/ 
) ; 
*/ 
*/ 

*/ 
*/ 

) ; 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 

*/ 

/* Copy DEERPARK map to 70 by 120 area */ 
/* Close queued printer */ 

/* Terminate GDDM */ 
/*Include GDDM entry-point declarations*/ 

406 GDDM Application Programming Guide Volume 1 

/*B*/ 

/*C*/ 



printel'S 

Notes: 

1. Copy operates on the current page contents. The copy part of the program 
would work equally well without the ASREAD I*A* I to the primary device. All 
copy commands reflect the current page contents, whether or not they have been 
transmitted to the primary device. 

2. Suppressing print-file creation. The second DSCLS parameter, 1, in 
statement I*B* I, indicates that the creation of the print file should proceed. In 
other circumstances a program might detect an error condition and need to cancel 
the print-file creation. In that case a parameter setting of 0 would be made. 

If a queued printer is not explicitly closed with a DSCLS, GDDM will close it 
(and proceed with creating the print file) when it executes the FSTERM. 

3. DSCLS implies a DSDROP. Normally the DSUSE I*c* I would be preceded 
by a DSDROP(2,11) to drop the previous alternate device. It is not necessary here 
because the DSCLS of device 11 drops the device. 

Under CMS, this program will create two print files on the user's A-disk. The user 
would normally invoke the GDDM Print Utility to print the two files. For other 
subsystems the alternate device's DSOPEN would be slightly different and the print 
files would be sent straight to the print utility. 

Printing GDDM family-2 print files 

If the DSOPEN statement for a printer specifies device-family-2, the GDDM output 
calls create files that must be processed by the GDDM Print Utility. This section 
gives an overview of the utility. Full details are given in the GDDM Base 
Programming Reference manual. 

On subsytems other than CMS, there may be several printers under the control of 
the print utility; the name you provide in the name-list parameter of DSOPEN 
determines which printer is to be used. The queued printer output of several 
different users may appear on one printer; the sets of output will be separated by 
header pages (unless suppressed on the DSOPEN). 

There is a different version of the utility for each subsystem. 

On CICS/VS, IMS/VS, and OS/TSO, print files are sent to the print utility when the 
program issues a DSCLS for the queued printer device. 

Under CMS, you can arrange a similar facility by spooling the print file to RSCS. 
This requires two sets of DSOPEN processing options, one to invoke the print 
utility, and the other to spool the print utility's output to RSCS. The nicknames 
facility is generally the simplest way of specifying these options. Here is a suitable 
DSOPEN call: 

NAME_LIST(l) 'RSCSPRT1'; 
1* 10 OEV-FAMILY OEV-TOKEN 

CALL OSOPEN(7, 2, '*' 
PROCESSING OPTIONS OEV-NAME*/ 
O,PROCOPT_LIST, 1,NAME_LIST); 

and here are the required nickname statements to send it to a printer called 
REMPRT7: 

Chapter 22. Using printers 407 



covers all types of printer 

ADMMNICK FAM=2,NAME=RSCSPRTl,DEVTOK=4224SE, 
PROCOPT=«INVKOPUV,YES» 

ADMMNICK FAM=1,NAME=RSCSPRTl,TONAME=PUNCH,DEVTOK=X4224SE, 
PROCOPT=«CPSPOOL,TO,RSCS), 

(CPTAG,REMPRT7,PRT=GRAF» 

The INVKOPUV processing option on the first nickname statement automatically 
invokes the function of the CMS version of the print utility, ADMOPUV. The 
second statement applies to the output from the print utility. It is similar to the 
one described in "Attached 3270 printer as a family-l primary device" on page 396. 
The TONAME parameter sends the output to the virtual punch. The two 
processing options spool the punch file to RSCS and tag it. 

Under CMS you can, instead, attach a printer to your own VM machine (using the 
CP MOUNT command) and invoke the print utility yourself. This is the statement 
required: 

ADMOPUV fname ON 063 (DEV device-token 

• fname is the name of the print file. 

• ON 063 gives the virtual address of the printer. This option may be omitted, in 
which case a default address of 061 is used. . 

• (DEV device-token supplies a device token for the printer. It is required only 
when the printer is attached to the PUNCH address. 

Another option under CMS is to create an EXEC procedure to process the file 
automatically, by, for instance, transferring it to another virtual machine for 
printing. If you name the procedure ADMQPOST EXEC, GDDM will invoke it 
whenever your program completes the creation of a print file. For more 
information about this technique, see GDDM Installation and System Management. 

Printing non-GDDM sequential files 

Under CMS and TSO, you can use GDDM utilities to print ordinary sequential files 
on printers belonging to GDDM family-I, such as the 3287 and the 4224. 

Under CMS, you would use the GDDM Print Utility for this purpose. This is the 
command: 

ADMOPUV fname ftype fmode ON 063 (NOCC DEV device-token 

It has the same parameters as previously described, with the addition of the NOCC 
option. Both ftype and fmode can be omitted, as can the options delimited by the 
bracket, except that the DEV device-token option is required if the printer address 
following the ON keyword is PUNCH. If ftype is not specified, ADM PRINT is 
assumed, and if fmode is not specified, '*' is assumed, with the usual CMS meaning. 

The NOCC option means that the records do not have carriage-control characters 
in the first byte; the default assumption is that they do. In the default case, the 
first byte of each record is interpreted according to Figure 98 on page 405. You 
can specify a device token (see "Opening a device using call DSOPEN" on 
page 367) after the DEV option; the default is '*'. 

Under TSO, you would use the GDDM Sequential File Print Program. Its program 
name is ADMOPRT, and it is invoked like this: 

408 GDDM Application Programming Guide Volume 1 



printers 

CALL 'dsname(ADMOPRT), 'filename ON printername (NOCC' 

The dsname is the data set in which ADMOPRT has been installed; filename is the 
ddname of the data set to be printed or, if there is no such ddname, the data-set 
name, and printername is the device on which it is to be printed. The (NOCC 
option means that the file is to be printed on the assumption that it contains no 
carriage-control characters. If you omit this option, GDDM treats the first byte 
according to the carriage-control specification in the DCB for the file. 

ADMOPRT converts the sequential file into a GDDM print file, which it queues for 
ADMOPUT, the TSO version of the GDDM Print Utility. This utility must be run 
to produce the output; the GDDM Base Programming Reference manual describes 
how to do this. 

Re-rastering when copying 

For primary devices that use hardware cells to display graphics, such as the IBM 
3279 terminal, GDDM creates the picture by rastering the graphics requests in your 
program. In other words, it converts the graphics primitives into programmed 
symbols that are subsequently loaded into the PS-stores of the primary device. 

When the same picture is copied to an alternate device, GDDM cannot simply copy 
the same programmed symbols to the new device, because the new device may have 
cells of a different size. For instance, the 3279 display unit has cells of 9 pixels by 
12; a typical alternate device, the 3287 printer, has cells of 10 by 8. All the 
graphics, therefore, has to be re-rastered. 

Every call such as GSLINE and GSCHAR must be reprocessed to obtain a copy of 
the picture on the alternate device. That is why access is required to the symbol 
sets involved (or their equivalents, if substitution characters were used). 

The re-rastering is performed by the GDDM Print Utility. The print file that is 
passed to the utility contains the various primitives expressed in Graphics Data 
Format (GDF) (which is introduced in "Chapter 13. Picture handling in graphics 
data format" on page 171). 

Mixed graphics and alphanumerics 

Even if a graphics program is eventually to run against a printer, you may find it 
convenient to run against a 3279 when developing the program. In that case you 
should be aware that the appearance of a picture may vary considerably (and 
sometimes unexpectedly) from one device to another. 

The most tricky situation arises when the output contains both graphics and 
alphanumerics. The relative positioning of alphanumerics and graphics may 
change. 

When the printer is the primary device, these are the factors to bear in mind: 

• Whether or not the graphics field is explicitly defined, its aspect ratio will 
change from device to device. On a printer, 32 rows by 80 columns, for example, 
gives a different aspect ratio from that on a 3279 display unit. 

• If the aspect ratio is explicitly set (by calling GSPS), the position of the picture 
space within the graphics field will vary from device to device. This is no 
problem unless alphanumeric fields are present. The relative position of 
alphanumerics and graphics will then be affected. 

Chapter 22. Using printers 409 



covers all types of printer 

• The default page size varies from device to device. On a 3279 it is 32 by 80; on a 
printer it is 80 by 132. The output from programs that use the default page-size 
will therefore differ from device to device. 

• Graphics primitives are positioned using window coordinates applied to the 
picture space (or the viewport, if specified); alphanumeric fields are positioned 
by hardware cell position. When you send the same picture to two different 
types of device in succession, the relative positioning of alphanumeric and 
graphic data is bound to change, unless special steps are taken. 

These are the necessary steps: 

The same graphics field must be (explicitly) specified for each device. 

No GSPS or GSVIEW call may be made. 

Provided these precautions are taken, the alphanumerics and graphics will 
maintain their relative positioning. The aspect ratio of the graphics will 
change, though. It is not possible to maintain both factors. 

• If the program uses mode-3 graphics text rather than alphanumerics, there will 
be no problem over relative positioning, when the character box (the character 
size) is explicitly set. 

For example, you may have a section of graphics calls that draws a 
geographical map. These calls will be a mixture of GSLINEs, GSAREAs, and 
mode-3 GSCHARs. Assume that the map has been produced and tested using a 
3279. When you are satisfied with the output, you may decide to run the same 
section of code against a printer device, setting a much larger page-size. When 
the character box is allowed to default in both cases (to the hardware cell size), 
the text will be too small relative to the graphics when run against the printer. 
If the character box is explicitly set (in terms of window coordinates, as usual), 
the same proportion will be maintained. 

When the printer is an alternate device, you can choose between keeping the 
aspect ratio of your graphics the same as on the primary device, or preserving the 
relative positions of the graphics and the alphanumerics, using a GSARCC call: 

CALL GSARCC(l); /* Preserve graphics/alphanumerics relationship */ 

A parameter value of 1 means that the relative positions of the alphanumeric fields 
and the graphics will be preserved, but the aspect ratio of the graphics will change. 
A value of 0 (the default) means the reverse. The call must be executed for each 
page being copied before the FSCOPY call. 

Colors and shading patterns on the IBM 3268 and 3287 printers 

The 3268 and 3287 printers have only four colors (blue, red, green, and black), 
instead of the seven supported by the 3279 display unit. Graphics destined for the 
printer should therefore avoid using pink, turquoise, and yellow - they will all 
default to black. Remember, also, that neutral (color 7) is white on the display 
screen, and black on the printer. Color - 2 is explicit white, which means 
background on a printer. Color -1 is explicit black, which means background on a 
screen. 

Strange effects will occur with shaded areas if the cell-size of the pattern image 
symbol set does not match that of the printer. Only part of each cell will be 

410 GDDM Application Programming Guide Volume 1 



printers 

shaded. To avoid this, you must use either a symbol set of the correct cell size (see 
"Symbol sets for alphanumerics" on page 221), or the system-defined patterns (see 
"Setting the current pattern, using call GSPAT" on page 38). 

When using multicolored pattern sets, remember that every pink, turquoise, yellow, 
or white pixel in a pattern will appear as black on the printer. 

Using loadable symbol sets on family-8 8800 printer 

The 3800 printers permit loading of symbol sets. This loading is controlled by JCL 
when the printer is initiated. The symbol sets involved have no connection with 
GDDM symbol sets - they are associated with the hardware. It is possible to load up 
to 4 such hardware symbol sets (they are numbered 0, I, 2, and 3). 

These symbol sets may not be loaded by use of GDDM calls. They have predefined 
values (0, 1,2,3) within GDDM, and it is the user's responsibility to ensure that 
the printer is loaded with appropriate fonts corresponding to these numbers. 

Access to these symbol sets is provided by using the ASFPSS and ASCSS calls (see 
"Specifying a symbol set for alphanumeric text" on page 223). 

These are typical calls: 

CALL ASFPSS(22,3); /* Field 22 will be displayed in the font of */ 
/* the fourth loadable 3800 symbol set */ 

DCL CHAR1 CHAR(1); 
UNSPEC(CHAR1)='00000010'B; /* Put X'02' into char variable */ 

CALL ASCSS(17,4,CHAR11 I' 'I ICHAR1);/* 1st and 4th characters of*/ 
/* field 17 will use the */ 
/* third loadable symbol set*/ 

Note the following points: 

• The symbol-set parameter of the ASFPSS call can be set to 0, I, 2, or 3 to 
indicate usage of the 1st, 2nd, 3rd, or 4th loadable symbol set respectively. The 
last parameter of ASCSS can specify hexadecimal values of '01', '02', or '03' to 
access the second, third, or fourth fonts. 

• As with all character-attribute calls, ASCSS requires its attributes as a string 
of I-byte character values. PL/I does not support hexadecimal constants, so the 
value X'02' had to be assigned into a temporary variable CHARI. 

• A value of" " (= blank) in ASCSS means "inherit the field attribute set by 
ASFPSS." 

U sing typographic fonts on a family-4 4250 printer 

You cen use the 4250 printer's fonts for mode-l and -2 graphics text, as a 
high-quality alternative to GDDM image and vector symbol sets. 

You access these fonts by specifying 5 as the symbol-set type in a GSLSS call. The 
second parameter of the GSLSS call is the name of the file holding the 4250 font. 
The symbol set identifier in the third parameter must be different from any type 1 
symbol set already loaded, and also from any other type 5 symbol set. 

Chapter 22. Using printers 411 



covers all types of printer 

Then you set the character mode to either 1 or 2 with a GSCM call (or allow it to 
default to 1). Finally, you write the text with GSCHAR or GSCHAP calls. 

Mode-I and ·2 differ in the amount of control you have over the appearance of the 
text, as explained in "Affecting the appearance of graphics text, using attributes" 
on page 58. They also differ in character and line spacing. In mode-I, the spacings 
will follow the width and depth definitions contained within the fonts. This means 
the text will be proportionally spaced along the lines. In mode-2, the characters 
will be spaced at the width and depth of the current character box, which means 
the spacing along the lines will be constant. 

Here is an example that uses two different 4250 fonts: 

/* TYPE NAME IDENTIFIER */ 
CALL GSLSS( 5, 'AFT10025', 98); /* Load 4250 font AFT10025 */ 
CALL GSLSS( 5, 'AFT06008', 99); /* Load 4250 font AFT06008 */ 

CALL GSCM ( 1) ; 
CALL GSCS(98); /* 
CALL GSCHAR(1.0,10.0,42,'Example 
CALL GSCS(99)i /* 
CALL GSCHAR(1.0,15.0,44,'Example 
CALL FSFRCEi /* 

Notes: 

/* Set mode to 1 */ 
Make AFT10025 current (note 2) */ 
of 14 point Univers Bold Condensed')i 
Make AFT06008 current (note 3) */ 
of 10 point Monotype Times New Roman')i 
Send text to 4250 image file */ 

1. As supplied on your IBM system, as opposed to by GDDM, fonts have file names 
of the form AFTxxxxx, but these names can be changed by a user after 
installation. Under CMS, the font files have a file type of FONT4250. 

2. Font AFTlO025 is 14 point Univers Bold Condensed. 1 

3. Font AFT06008 is 10 point Monotype Times New Roman.2 

The fonts are illustrated in IBM 4250 printer type font Catalog. You can obtain a 
listing of the fonts available on your system and their AFTxxxxx numbers by 
running an IBM program, the DCF Font Library Index Program (see the Document 
Composition Facility: Script/VS Language Reference manual, order number 
SH35-0070). 

When the Composed Document Printing Facility (CDPF) prints a primary data 
stream containing both typographic font data and rastered graphics data (either 
directly, or indirectly within any included secondary data streams), it issues a 
warning message (BFU629W) stating that structured fields were identified. This 
warning does not affect the appearance of the output, which will be correct. 

Univers is a trademark licensed to IBM by Allied Corporation. 

2 Monotype Times New Roman is a trademark licensed to IBM by The Monotype 
Corporation, Limited. 

412 GDDM Application Programming Guide Volume 1 



Code pages 

printers 

For most types of application, you need not be concerned with this topic. However, 
you may need to understand it if you use 4250 fonts to print a number of different 
national languages, or to print special symbols such as scientific ones or those used 
in APL. 

A code page associates a set of symbols with a set of two-digit hexadecimal 
numbers (code points), each symbol being represented by a number. Code pages are 
variations on the standard set of EBCDIC associations. Most are designed for 
printing particular national languages. In most code pages, the basic alphabet and 
the numerals have the same code points as in EBCDIC - X'CI', X'C2', X'C3' for A, 
B, C, and X'FI', X'F2', X'F3' for 1, 2, 3, and so on. 

The variations generally occur with the special symbols. For instance, the code 
page designed for U.K. English has X'4B' as the code point for the pound sign; in 
the U.S. and Canada English set X' 4B' is the dollar sign; and in the Brazil set it is 
a C with a cedilla. 

Code pages have a similar naming scheme to fonts. They have file names of the 
form AFTCxxxx, and, under CMS, a file type of FONT4250. The file names can be 
varied after installation. 

You make a code page current by executing a GSCPG call: 

CALL GSCPG(S,'AFTC038S'); 
/*AFTC0385 (Canada French) current codepage*/ 

The first parameter is the type of code page: it must be 5. 

Ordering of font and code page calls: When a 4250 font is loaded using a GSLSS 
call, it is associated with the 4250 code page that is current. Therefore, to 
associate a particular code page with a particular font, you must issue the GSCPG 
call before the GSLSS that loads the font. 

The symbols for all code points in every code page are illustrated in IBM 4250 
printer type font Catalog. 

The GDDM default code page is AFTC0395 (U.S. and Canada English). However, 
your installation may override this, and make another code page the default. 
Instructions for overriding the GDDM default are given in the GDDM Installation 
and System Management manual. 

Example program: Using 4250 fonts 

An example of how to use 4250 fonts is given in Figure 101 on page 415, with the 
output in Figure 100 on page 414. 

Chapter 22. Using printers 413 



covers all types of printer 

H e vet c a 1 2 P t 

Times New Roman - 12pt - centered 

Figure 100. Output of 4250 font example 

414 GDDM Application Programming Guide Volume 1 



FONT: PROC OPTIONS (MAIN) ; 

DCL PLIST(S) FIXED BIN(31); 
DCL NLIST(3) CHAR(S); 
DCL XA(5) FLOAT DEC(6) INIT (1.0,99.0,99.0,1.0,0.0); 
DCL YA(5) FLOAT DEC(6) INIT (99.0,99.0,1.0,1.0,0.0); 

CALL FSINIT; /* Initialize GDDM 

PLIST(l) 9; 
PLIST(2) = 1; /* Formatted output 
PLIST(3) 5; 
PLIST(4) = 0; /* Primary data stream 
PLIST(5) S; 
PLIST(6) 60; /* Width 
PLIST(7) = 40; /* Depth 
PLIST(S) = 0; /* In tenths of inches 

NLIST(l) = 'FONT' ; 
NLIST(2) = 'SAMPLE' ; /* Output file-id 
NLIST(3) 'A1' ; 

CALL DSOPEN(11,4,'IMG600X',S,PLIST,3,NLIST); 

printers 

*/ 

*/ 

*/ 

*/ 
*/ 
*/ 

*/ 

CALL DSUSE (1,11); /* Make 4250 primary device */ 
CALL GSUWIN(0.O,100.0,0.0,100.0); /* Define uniform window */ 

CALL GSCPG (5,'AFTC0394'); /* Select U.K.-English code page */ 
CALL GSLSS (5,'AFTOS004',77); /* Load Helvetica 12pt MED */ 
CALL GSCS (77); 
CALL GSCM (2); /* Spacing controlled by GSCB */ 
CALL GSCB (5.0,10.0); 
CALL GSCHAR(1.0,SO.0,16,'Helvetica - 12pt'); 

CALL GSMOVE(30.0,50.0) ; 
CALL GSARC (50.0,50.0,360.0); /* Include some ordinary graphics*/ 
CALL GSMOVE(1.0,1.0); 
CALL GSPLNE(4,XA,YA); 

CALL GSLSS (S,'AFTOS008',66); /* Load Times New Roman 12pt MED */ 
CALL GSCS ( 66) ; 
CALL GSCM (1); /* Spacing controlled by font */ 
CALL GSQTB (33, 'Times New Roman - 12pt - centered' ,3,XA,YA)j 
CALL GSCHAR«100-XA(3))/2,20.0,33,'Times New Roman - 12pt - centered'); 

CALL FSFRCE; 
CALL FSTERM; 

%INCLUDE ADMUPINDj 
%INCLUDE ADMUPINFj 
%INCLUDE ADMUPING; 
END; 

Figure 101. Example of using 4250 fonts 

Color masters for publications 

/* Generate output file 
/* Terminate GDDM 

*/ 
*/ 

You can use the family-4 (composed-page) printers to create color-separation 
masters for printing text and graphics in full color in publications. There is 
normally one monochrome master for each of three subtractive primary colors 
(yellow, magenta, and cyan), and a fourth for black. Each master records where 
ink of the color that it represents has to be deposited, as illustrated by Figure 102 
on page 416. The images on the masters have to be transferred photographically to 
the printing plates. 

Chapter 22. Using printers 415 



covers all types of printer 

• I 
I I I I 

• []][I 0 
YELLOW MASTER MAGENTA MASTER CYAN MASTER BLACK MASTER 

Figure 102. How a picture is changed into a number of color masters 

In GDDM programs, you specify color attributes by numbers: 1 means blue, 2 
means red, and so on. The numbers are listed in full in "Setting a new current 
color, using call GSCOL" on page 35. For example, 4 in a GSCOL call means 
green, so if you draw a line after executing this statement: 

CALL GSCOL (4)i 

it will appear in the publication as green. For this to happen, the line should be 
present on the yellow and cyan masters, but not on the magenta or black ones. 

The method of defining how much of each color is on each of the plates is as 
follows. For each of GDDM's colors, a certain density will be required on each 
plate. The amount is specified by means of a shading pattern and a color-master 
table entry. The pattern defines the density of the color. The table defines, for 
each master, which pattern will be used to print each color. 

The patterns belong to a pattern set created using the Image Symbol Editor. The 
patterns must be 32 pixels square, this being the notional cell size that GDDM uses 
for family-4 devices. Each pattern represents the density at which one of the four 
printing process colors should be printed so that it depicts a particular GDDM 
numbered color correctly. For instance, to print the correct shade of GDDM color 
4, green, you may require a pattern for the yellow master in which 33% of the 
pixels are present, and another for the cyan master in which 50% of the pixels are 
present. 

The GDDM-supplied symbol set, ADMDHIPK (see Figure 103 on page 417), gives 
an indication of what such a pattern set might be like. 

416 GDDM Application Programming Guide Volume 1 



printers 

ADMDHIPK 

! Pel 
Density 

X'41' X'42' X'43' X'44' X'45' X'46' X'47' X'48' 

o 100 50 50 25 25 25 25 

Figure 103. ADMDHIPK, the GDDM sample symbol set for color masters 

To tell GDDM which patterns it must use on each master for each GDDM color, 
you code and assemble a macro, ADMMCOLT. The macro creates a color-master 
table. The macro must be assembled into a load module with the name 
ADMDJCOL. ADMMCOLT is described in the GDDM Base Programming 
Reference manual. Here is an example: 

ADMDJCOL CSECT 
ADMMCOLT START,SETS=l 

ADMOOOO1 ADMMCOLT PATTERN=ADMDHIPK,COLORS=10 ,MASTERS=4,SETID=ADMOOOO1 
* 
* YEL MAG CYN BLK 
* 
DEFAULT ADMMCOLT ( 4 1, 41, 41, 42) 
BLUE ADMMCOLT ( 41, 43, 44, 41) 
RED ADMMCOLT ( 43 , 44, 41, 41) 
PINK ADMMCOLT ( 41, 42, 41, 41) 
GREEN ADMMCOLT ( 43, 41, 44 , 41) 
TURQSE ADMMCOLT ( 41, 41, 42, 41) 
YELLOW ADMMCOLT ( 42, 41 , 41, 41) 
NEUTRAL ADMMCOLT ( 41, 41, 41, 42) 
BACKGRD ADMMCOLT ( 41 , 41, 41 , 41) 
ALLBLK ADMMCOLT ( 42 , 42 , 42 , 42) 

ADMMCOLT END 
END 

In the fIrst line of this macro, the number of sets being defined is specified. In the 
s.econd, the pattern set from which the patterns are to be selected is specifIed as the 
GDDM-supplied one, ADMDHIPK. The number of GDDM colors is specifIed as 10. 
The number of masters is specifIed as four. The name of the color-master table is 
specified as ADMOOOOl. Names have the form ADMnnnnn, where n is numeric. 

The remaining lines specify the hexadecimal numbers of the patterns to be used. 
Each line represents a GDDM color and each column a master. The fIrst line gives 
the four patterns for GDDM color 0, the second for color 1, and so on. For 
user-created patterns the numbers must be in the range 65 to 239 (X'41' to X'EF') in 

Chapter 22. Using printers 417 



covers all types of printer 

the same way as for user-defined patterns in the GSPAT call, which is described in 
"Setting the current pattern, using call GSPAT" on page 38. 

The example specifies that, for instance, color 4 (green) is to generate pattern X' 43' 
for the first master, X'41' (that is, nothing) for the second, X'44' for the third, and 
X' 41' (nothing again) for the fourth. Patterns X' 43' and X' 44' in ADMDHIPK have 
a pixel density of 50%. The pixels are arranged so that they do not overprint. The 
first master will be used to make the yellow printing plate, the second for the 
magenta, the third for the cyan, and the fourth for the black. 

The required patterns will vary from one printing establishment to another, 
because of variations in inks, papers, printing technology, and so on. To obtain the 
required shade of green, for instance, you might need a 60% pattern for yellow, a 
40% for cyan, and a 10% for black. Patterns can be determined only by trial and 
error. However, for many applications, such as printing business charts, it is not 
necessary to obtain precise shades, and the amount of experimentation required 
may be small. 

GDDM supplies a number of sample color-master tables, based on the pattern set 
ADMDHIPK. GDDM also supplies some sample color-toning tables, based on 
another GDDM-supplied pattern-set ADMDHIPL. These are designed to show each 
input color as a different shade of gray. The definition and use of the color-toning 
tables are the same as for the color master tables, except that only 1 color master 
output file is created. The tables are contained in a GDDM-supplied module called 
ADMDJCOL. 

When the program that creates the masters is executed, you must ensure that the 
file containing ADMDHIPK, or whatever pattern set you have specified, is 
available. Under CMS, for instance, you must ensure that a disk containing the 
pattern set has been accessed. 

DSOPEN statement for color masters 

You tell GDDM to create color-separation or color-toning masters in a processing 
option on the DSOPEN call. The option code is 3000. There is an example in 
Figure 104 on page 419. The fullword following the code must contain a number 
comprising one to five digits, corresponding to the numerical part of the required 
color table name. The full name of a color table has the form ADMnnnnn. GDDM 
expands the number in the option list to five digits, if necessary, by adding leading 
zeros, and adds "ADM" to the front, before searching for the color table. A 
parameter of 0 has the special meaning that monochrome output is required. 

Each color master is created as a high-resolution image file of its own. Under 
CMS, GDDM will use the specified file name, and assign a different file type to 
each master, of the form ADMCOLn, where n is a digit that ranges from 1 to the 
number of masters specified in the referenced color table. The GDDM Base 
Programming Reference manual explains what to do under other subsystems. 

418 GDDM Application Programming Guide Volume 1 



printers 

DCL PROCOPT ( 12 ) FIXED BIN(31); 

PROCOPT(l) S; /* Data-stream type */ 
PROCOPT(2) 0; /* primary */ 

PROCOPT(3) 9; /* Formatting */ 
PROCOPT(4) 1; /* Yes */ 

PROCOPT(S) 7; /* Swathing */ 
PROCOPT(6) 10; /* 10 swathes */ 

PROCOPT(7) 8; /* Page size */ 
PROCOPT(8) = 8S; /* 8.S inch wide */ 
PROCOPT(9) 110; /* 11 inch deep */ 
PROCOPT(10) = 0; /* 1/10 inch measures */ 

PROCOPT(ll) 3000; /* Color masters */ 
PROCOPT(12) = 1; /* Color-table ident */ 

DCL NAMELIST(l) CHAR(8) ; 

NAMELIST(l) = 'COLMAST' ; /* File name */ 

/* DEVICE_ID FAMILY TOKEN PROC OPTIONS FILENAME */ 
CALL DSOPEN (11, 4, 'IMG8S' , 12,PROCOPT, 1,NAMELIST) ; 

CALL DSUSE (1,1l) ; 

CALL FSPCRT(1,8S,110,1); 
CALL GSFLD(10,10,6S,90); 

Figure 104. Creating color-separation masters 

Restrictions with composed-page printers 

This is a summary of the restrictions that apply when you use a composed-page 
printer: 

• The composed-page printer must be the primary device. 

• A familY-4 printer cannot be an alternate device. If you want to view a picture 
before printing it, you can either use the technique described in "How to use 
more than one primary device" on page 372, or make the printer the primary 
device and copy to the screen. 

• The GDDM pages must not be mapped; in other words, the MSPCRT call is not 
allowed. 

• Only graphics can be printed. This implies that: 

Alphanumerics calls are ignored. 

Calls that refer to PS stores are invalid. 

The only part of the current page that goes to the printer (by way of the 
image file) is the graphics field. 

Chapter 22. Using printers 419 



covers all types of printer 

U sing the IBM 4224 printer 

This is a summary of restrictions that apply when you use a 4224: 

• GDDM requires the printer pitch to be set to 10 characters per inch, and the 
number of lines per inch to 8. You can set these parameters using the 4224 
operator panel. 

• Alphanumeric data are printed in Near Letter Quality (NLQ) mode, except for 
APL characters, which are printed in Data Processing (DP) mode. 

• GDDM cannot load user-pattern sets to the 4224 printer, and will issue a 
warning message if a pattern from such a set is referenced by the application. 
The 4224 uses its internal default shading pattern (solid) instead. 

• The 4224 will not print a marker selected from the system marker set if any 
part of the enclosing marker box falls outside the graphics field. Markers 
selected from a user-defined marker set are not subject to this restriction. 

• The 4224 supports a graphics mix mode of overpaint only. GDDM issues a 
warning message if the application requests any other form of mix mode. 

• Symbol sets referenced by alphanumeric fields will only be loaded into extended 
storage models of the 4224. GDDM issues an error message if the application 
uses loadable symbol sets when the printer does not have extended storage. 
Affected characters will be printed using the 4224 resident default font. 

• Using the 4224 extended storage (512K bytes) model considerably reduces the 
possibility of graphics output causing printer storage overflow. If overflow is 
unavoidable, GDDM issues a warning message and sends only that amount of 
picture data that will fit in the available printer storage. 

420 GDDM Application Programming Guide Volume 1 



Chapter 23. Using plotters 

You can send graphics output to a plotter attached to a 3179-G, any of the 
3270-PC/G or /GX family (except under 1MS), and any of the 5550 family. A typical 
use is for making hard copies of screen graphics. 

Only the graphics field is sent to the plotter. Alphanumerics are not supported. 
When a plotter is the current device, alphanumeric calls are invalid. Graphics 
primitives outside segments are not plotted. 

Plotters are family-1 devices. You tell GDDM that you intend to use a plotter by 
issuing a suitable DSOPEN call. It can be the primary or alternate device. 

Nicknames can be used to send output originally created for a different device (say 
a family-2 printer) to a plotter. 

DSOPEN for plotters 

A DSOPEN call for a plotter requires a two-part name, identifying the work station 
in the first part and the plotter in the second. Here is a simple example: 

DECLARE PROCOPT_LIST(l) 
DECLARE NAME_LIST (2) 

NAME_LIST(l) = '*'i 
NAME_LIST(2) = 'ADMPLOT'i 

FIXED BINARY(31)i 
CHARACTER(8)i 

/* DEVICE-ID FAMILY 
CALL DSOPEN(99, 1, 

DEVICE-TOKEN OPTIONS 
'*' 0, PROCOPT_LIST , 

The two parts of the name are as follows: 

NAME */ 
2 ,NAME_LIST) i 

• The * in the first element means the plotter is attached to the work station 
from which the program was invoked. On CMS, you can send the output to a 
plotter on a different work station by specifying the work-station's address. 

• A work station can have more than one plotter attached to it. All the plotters 
are given names when the work station is customized. You can specify the 
name of a particular plotter in the second element of the name. The example 
uses the reserved name ADMPLOT. This tells GDDM to use the first (or only) 
plotter, "first" meaning the top one in the 1EEE488 Channel Customization . 
display panel. 

GDDM can query the plotter, so you can specify a device token of * rather than an 
explicit token name. 

Chapter 23. Using plotters 421 



covers all terminal·attached plotters 

Processing options for plotters 

A number of the physical characteristics of the plotter, such as the pen pressure 
and the plotting area, can be varied. Some can be set by the application program 
using processing options on the DSOPEN, some by the operator, and some by both. 

Here is an example of a DSOPEN call for a plotter that includes a set of processing 
options: 

DECLARE PROCOPT_LIST(7) 
DECLARE NAME_LIST(2) 

PROCOPT LIST(l) 11; 
PROCOPT:LIST(2) 50; 

PROCOPT_LIST(3) = 14; 
PROCOPT_LIST(4) = 20; 
PROCOPT_LIST(s) = 70; 
PROCOPT_LIST(6) = 10; 
PROCOPT_LIST(7) = 90; 

NAME_LIST(l) = 1*1; 

NAME_LIST(2) = 'ADMPLOT ' ; 

FIXED BINARY(31); 
CHARACTER(S); 

/* Option group 11 = pen velocity */ 
/* Set velocity to 50 em/second */ 

/* Option group 14 = plotting area */ 
/* x axis to run from 20% through */ 
/* 70% of paper width */ 
/* y axis to run from 10% through */ 
/* 90% of paper depth */ 

/* DEVICE-ID 
CALL DSOPEN(3, 

FAMILY 
1, 

DEVICE-TOKEN OPTIONS 
7,PROCOPT_LIST, 

NAME */ 
1 * 1 2, NAME_LIST) ; 

Here is a summary of all the processing options for plotters: 

• Pen velocity 

Specifies the speed of the pens (see "Optimum pen speed and force" on 
page 440). 

1st fullword - option group code: 
11 

2nd full word - the pen velocity option 
o -use hardware setting (the default) 
1 through 255 - the velocity in centimeters per second. 

If 0 is specified or allowed to default, the pen velocity that is set on the plotter 
takes effect. If a value in the range 1 through 255 is specified, this overrides the 
setting on the plotter. If the value is more than the plotter's maximum, the 
maximum is used. 

• Pen width 

Specifies the width of the pens in tenths of a millimeter. The width actually 
used for plotting depends on which pens have been loaded into the plotter's pen 
holders, and is therefore outside the control of GDDM. GDDM uses the 
specified (or defaulted) value for shading areas, drawing double-width lines, 
drawing lines in the background color, and drawing images and image symbols. 
If these primitives are to be plotted correctly, the plotter operator must ensure 
that pens of the specified (or defaulted) width are loaded. 

1st fullword - option group code: 
12 

422 GDDM Application Programming Guide Volume 1 



2nd fullword - the pen width option: 
0-0.3 millimeters (the default) 
1 through 10 - pen width of 0.1 through 1.0 millimeters. 

• Pen pressure 

plotters 

Specifies the force of the pen onto the paper (see "Optimum pen speed and 
force" on page 440). Some types of plotter do not have variable pen pressure, 
in which case the processing option is ignored. 

1st fullword - option group code: 
13 

2nd full word - the pen pressure option: 
o -use the hardware setting (the default) 
1 through 255 - pen pressure in grams. 

If 0 is specified or allowed to default, the pen pressure that is set on the plotter 
takes effect. If a value in the range 1 through 255 is specified, this overrides the 
setting on the plotter. If the value is more than the plotter's maximum, then 
the maximum is used. 

r--------------------, 
~ • ._------xmax--------+_!----------------------~~ 

~ • ._------xmin------_t .. ~ ---r-Ed,. of plott'o, .~.--. --" 

yrnin ymax 

~ ~ 
L-----------------------------Edgeof paper-----------------------------J 

Figure 105. Plotting area 

• Plotting area 

Specifies on which part of the paper the picture is to be plotted, as shown in 
Figure 105. The plotting area is equivalent to the screen of a display device. 
The left- and right-hand edges are specified as percentages of the paper width, 
and the top and bottom edges as percentages of the paper depth. The DSOPEN 
example earlier in this section shows how to specify a plotting area. 

Chapter 23. Using plotters 423 



covers all terminal-attached plotters 

1st fullword . option group code: 
14 

2nd fullword· the minimum x value (XMIN in Figure 105) 
o through 100 

3rd full word . the maximum x value (XMAX. in Figure 105) 
o through 100 

4th full word . the minimum y value (YMIN in Figure 105) 
o through 100 

5th fullword . the maximum y value (YMAX in Figure 105) 
o through 100. 

The default values are 0, 100, 0, and 100, meaning the whole of the paper. If 
0,0,0,0 is specified, the value set on the plotter by the operator is used. 

Either the maximum x or maximum y values, or both, can be less than the 
corresponding minimum, in which case the picture will be reflected about the x 
or the y axis, or both. 

• Paper size 

Specifies the size of paper to be loaded into the plotter. There are two sets of 
sizes· the International Organization for Standardization (ISO) series A4, A3, 
A2, AI, and AO, and the American National Standards Institute (ANSI) series 
A, B, C, D, and E. The third fullword of the group specifies which series is to 
be used, and the second fullword, which member of that series. 

1st fullword . option group code: 
15 

2nd fullword· the paper size code: 
O· actual paper size in plotter (the default) 
1· A4 or A 
2· A3 or B 
3-A2orC 
4· Al or.D 
5· AO or E 

3rd fullword . the size type code: 
o . same as 1 (the default) 
1· ISO sizes 
2 . ANSI si?;es. 

GDDM derives the plotting area it will use from the paper size, the default 
plotting area being the whole paper area. 

Some types of plotter can detect the size of paper with which they are loaded. 
Others require the operator to indicate it by setting switches. If both the paper 
size and the size type are set or defaulted to 0 in the processing option, GDDM 
queries the hardware for the paper size. If either is nonzero, GDDM takes the 
size from the processing option. 

If a paper size or size type processing option is specified, GDDM assumes the 
specified value, irrespective of the actual paper size. 

424 GDDM Application Programming Guide Volume 1 



plotters 

Some types of plotter have paper size switches. These must be set to match the 
actual paper size. 

• Picture orientation 

Allows you to rotate the picture by 90 degrees. 

If a plotting area has been specified with option group 14, then by default 
GDDM plots the x axis parallel to the longer side of the paper (sometimes 
called landscape format). Using the orientation option, you can make the x 
axis parallel to the shorter side (portrait format). 

If a plotting area of 0,0,0,0 has been specified, picture orientation, as also the 
plotting area, depend on the plotter's hardware settings. The default 
orientation is the hardware default. Whether this means that the x axis is 
parallel to the longer or the shorter side of the paper depends on the type of 
plotter and the paper size. The plotter operator's manuals give details. 
Pressing the rotate button will make the x axis parallel to the alternative side. 

So the rule is: the plotting area and the picture orientation are set using either 
processing options for both or buttons on the plotter for both. 

1st fullword . option group code: 
16 

2nd fullword . the orientation option: 
o . same as 1 (the default) 
1 . no rotation 
2 . rotates the picture through 90 degrees. 

Setting up the plotter 

The plotter operator can affect the appearance of a plot in a number of ways that 
GDDM cannot detect. 

Some or all of the following characteristics (depending on the plotter model) are 
under operator control if your program does not set them with processing options: 

• Pen velocity 

• Pen pressure 

• Plotting area 

• Picture orientation. 

The following characteristics are always under operator control even though you 
can specify them in processing options: 

• Pen width 

• Paper size. 

The reason you can specify them in processing options is that GDDM needs to 
know their values to generate the correct picture. 

The color of the pen in each of the plotter's pen holders depends on the operator· 
GDDM cannot control the colors or determine what they are. In the normal case, 

Chapter 23. Using plotters 425 



covers all terminal·attached plotters 

the operator should ensure that they correspond as closely as possible to GDDM's 
color numbering scheme (see "Colors" on page 434). 

So there is considerable scope for wrong pictures resulting from a plotter set up 
with different characteristics from those which you assumed when you wrote your 
program. For any plotter application, therefore, you should consider displaying 
setup instructions on the screen of the work station. After displaying the 
instructions, your program should wait for a response from the operator confirming 
that setup is complete before sending the picture to the plotter. 

Terminating a plot 

To terminate the plotting of a picture before it is complete, the operator can press 
the CLEAR key on the keyboard of the work station to which the plotter is 
attached. 

Cells, pixels, and plotter units 

Some GDDM graphics functions require the current device to have cells (character 
boxes) and pixels. The GSFLD call and mode·1 graphics text, for instance, require 
a cell size, and images and image symbols require a pixel size. For devices such as 
plotters that do not have real cells and pixels, GDDM assumes notional ones. 

The notional cell for a plotter is such that a GDDM·defined number of rows and 
columns can be fitted into the plotting area. The plotting area is analogous to the 
screen of a display device, and the GDDM·defined rows and columns are analogous 
to the rows and columns of hardware cells on a screen. 

The numbers depend on the paper size. For American A and metric A4 paper, 32 
rows of cells and 80 columns would fill the plotting area. Full details for all paper 
sizes are given in the GDDM Base Programming Reference manual. Because the 
rows and columns are defined as fitting the plotting area, changing the area's 
dimensions will change the notional cell size. This is a simple way of changing the 
size of a plot. 

You can discover the notional cell density of the current device using a DSQDEV 
call. The last parameter is an array. In the third and fourth elements of this array 
GDDM returns the default number of cell rows and columns in the plotting area. 
Here is an example: 

DECLARE D TOKEN CHARACTER(S); 
DECLARE P=LIST(!) FIXED BINARY(3l); 
DECLARE N_LIST(l) CHARACTER(S); 
DECLARE QDEV(4) FIXED BINARY(3!); 

DECLARE (ROWS,COLUMNS) FIXED BINARY(3l); 

/* DEVICE-ID 
CALL DSQDEV( 11, 

TOKEN PROC. OPTIONS 
D_TOKEN, O,P_LIST, 

ROWS 
COLUMNS 

QDEV( 3) ; 
= QDEV(4); 

NAME CHARACTERISTICS */ 
O,N_LIST, 4,QDEV); 

The notional pixels are dots spaced at the width of the pen. GDDM detects the pen 
width from the processing options, or assumes 0.3 millimeters if no pen width is 
specified. 

Plotter units are smaller than pixels. They are the smallest possible displacement 
of a pen. They represent the maximum accuracy of the plotter - its resolution. 

426 GDDM Application Programming Guide Volume 1 



plotters 

You can query the plotter units using the last parameter of DSQDEV. In the fifth 
and sixth elements, GDDM returns the depth and width of each cell in plotter 
units. In the seventh and eighth elements, it returns the number of plotter units 
per meter vertically and horizontally. Here is an example: 

DECLARE QDEV(S) FIXED BINARY(31); 
DECLARE D_TOKEN CHARACTER(S); 
DECLARE P_LIST(l) FIXED BINARY(31); 
DECLARE N_LIST(l) CHARACTER(S); 

DECLARE (CELL_DEPTH,CELL_HEIGHT,VERTL_RES,HORTL_RES) FIXED BINARY(31); 

/* DEVICE-ID TOKEN PROC. OPTIONS 
CALL DSQDEV( 12, D_TOKEN, O,P_LIST, 

CELL_DEPTH 
CELL_WIDTH 
VERTL_RES 
HORTL_RES 

QDEV( 5) ; 
QDEV(6); 
QDEV( 7) ; 

= QDEV(S); 

A simple plotting program 

NAME CHARACTERISTICS */ 
O,N_LIST, 8,QDEV); 

The program in Figure 106 on page 428 uses the plotter as the primary device. It 
plots a picture created by another program and stored on a segment library. The 
picture, called SAVEP, is retrieved with a GSLOAD call. The program could, 
instead, have drawn a picture using the ordinary primitive and attribute calls such 
as GSLINE, GSMOVE, GSAREA, GSCOL, and so on. 

No processing options have been specified, so they will all take their default 
values. The operator must ensure that the pen holders are loaded with pens of 0.3 
millimeter width (for instance, the standard fiber-tipped pens), with the correct 
color in each holder. On all plotters, the plotting area will be the whole paper. 
The pen velocity and pen pressure will be as set by the operator (or the fixed 
hardware values on plotters that do not allow the operator to vary them). 

The GDDM page size and graphics field are allowed to default. This means that 
they will fill the plot area. When a plotter is used as the primary device, a page 
size or graphics field (or both) can be specified in terms of the notional cells 
described in "Cells, pixels, and plotter units" on page 426. 

The program displays setup instructions for the IBM 7375 plotter, which can detect 
the size of paper loaded, and has variable pen velocity and pressure. 

Chapter 23. Using plotters 427 



covers all terminal-attached plotters 

PLOTl: PROC OPTIONS(MAIN); 

DECLARE (ATYPE,AVAL,ACOUNT) FIXED BINARY(3l); 

DECLARE PROCOPT_LIST(l) FIXED BIN(3l)j 
DECLARE NAME_LIST(2) CHAR(8); 

DECLARE CNTRL(2) FIXED BIN(3l)j 
DECLARE COUNT FIXED BIN(3l); 
DECLARE DESC CHAR(50)j 

CALL FSINITj 

/*******************************************************************/ 
/* DISPLAY PLOTTER SETUP INSTRUCTIONS */ 
/*******************************************************************/ 

CALL GSSEG(O)j 
CALL GSCM(3); 
CALL GSCOL(6); 
CALL GSCHAR(25.0,95.0,40,' HOW TO SET UP THE IBM 7375 PLOTTER ')i 
CALL GSCOL(l); 
CALL GSCHAR(25.0,90.0,40,'CHECK THERE IS A FIBER-TIPPED PEN IN ')j 
CALL GSCHAR(25.0,85.0,40,'EACH HOLDER WITH THE FOLLOWING COLOR: '); 
CALL GSCOL(6); 
CALL GSCHAR(25.0,80.0,40,' PEN HOLDER COLOR '); 
CALL GSCOL ( l) ; 
CALL GSCHAR(25.0,75.0,40,' 1 BLUE '); 
CALL GSCHAR(25.0,70.0,40,' 2 RED '); 
CALL GSCHAR(25.0,65.0,40,' 3 PINK '); 
CALL GSCHAR(25.0,60.0,40,' 4 GREEN '); 
CALL GSCHAR(25.0,55.0,40,' 5 TURQUOISE '); 
CALL GSCHAR(25.0,50.0,40,' 6 YELLOW '); 
CALL GSCHAR(25.0,45.0,40,' 7 BLACK '); 
CALL GSCHAR(25.0,40.0,40,' 8 GREEN ')j 
CALL GSCHAR(25.0,35.0,40,'SET THE PEN SPEED AND FORCE TO SUITABLE '); 
CALL GSCHAR(25.0,30.0,40,'VALUES (SEE PLOTTER OPERATING MANUAL). '); 
CALL GSCHAR(25.0,20.0,40,'LOAD THE PLOTTER WITH PAPER OF THE SIZE '); 
CALL GSCHAR(25.0,15.0,40,'YOU REQUIRE. '); 
CALL GSCOL(7)i 
CALL GSCHAR(25.0, 3.0,40,' PRESS ENTER WHEN READY TO PLOT '); 
CALL GSSCLS; 

CALL ASREAD(ATYPE,AVAL,ACOUNT)j /* Send instructions to screen */ 

IF ATYPE~=O THEN GO TO FIN; 

CALL DSDROP(l,O); 

/* Plot only if enter pressed 

/* Drop screen as primary device 

Figure 106 (Part 1 of 2). Program using plotter as primary device 

428 GDDM Application Programming Guide Volume 1 

*/ 

*/ 



plotters 

1*******************************************************************1 
/* OPEN THE PLOTTER *1 
1*******************************************************************1 

NAME_LIST(l)='*'; 
NAME_LIST(2)='ADMPLOT'; 

1* Is attached to invoking terminal*1 
1* Special GDDM-defined name *1 

1* DEV ID FAMILY DEV TOKEN PROCESSING OPTIONS DEV NAME *1 
CALL DSOPEN( 101, 1, '*' O,PROCOPT_LIST, 2,NAME_LIST); 
CALL DSUSE(1,101); 1* Use as primary device *1 

1***************************************************** **************/ 
1* LOAD A PICTURE *1 
1*******************************************************************1 

CNTRL(l) = 0; 
CNTRL(2) = 2; 

1* Keep original segment ids 
1* Make as big as possible 

*1 
*1 

1* OBJECT-NAME ARRAY-CNT ARRAY SEG-CNT DESCRIP-LEN DESCRIP *1 
CALL GSLOAD( 'SAVEP', 2, CNTRL, COUNT, 50, DESC); 

1*******************************************************************1 
1* SEND PICTURE TO PLOTTER */ 
/***************************************************** **************1 

CALL FSFRCE; 

FIN: 

CALL FSTERMj 

%INCLUDE ADMUPINA; 
%INCLUDE ADMUPIND; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPING; 

END PLOT1j 

Figure 106 (Part 2 of 2). Program using plotter as primary device 

Copying screen output to plotter 

The program in Figure 107 on page 430 first creates a picture on the screen, then 
copies it to the plotter. 

The picture is actually created by the operator using a stroke device, in the block 
of code at I*A* I. It could be created in any of the other usual ways, including 
primitive calls like GSLINE and GSCOL, or loading with a GSLOAD. 

For the instructions to the plotter operator, a new GDDM page is created at I*B* I. 

The plotter is opened at I*C* I, and its use as the alternate device is specified at 
1*0* I. The original page (the default one, page 0) is reselected at I*F* I for the 
GSCOPY call, I*G* I, to send the picture to the plotter. This call requires the 
number of notional cells in each row and column of the plot area. These are 
queried at I*E* I. 

Unless you specify otherwise with a GSARCC call, GDDM maintains the aspect 
ratio of the graphics when copying to the plotter: the picture fills as much of the 
area specified on the GSCOPY as possible without distortion. The bottom left-hand 
corner of the graphics field is placed at the bottom left of the plotting area. 

Chapter 23. Using plotters 429 



covers all terminal-attached plotters 

PLOT2: PROC OPTIONS(MAIN); 

DCL PROCOPTS(l) FIXED BIN(31); 
DCL NAME LIST(2) CHAR(8); 
DCL DEV TOKEN CHAR(8); 
DCL QDEV(4) FIXED BINARY(31); 
DCL (ROWS, COLUMNS) FIXED BIN(31); 
DCL CNTRL(2) FIXED BIN(31); 
DCL DESC CHAR(50); 
DCL COUNT FIXED BIN(31); 
DCL (ATYPE,AVAL,ACOUNT) FIXED BIN(31); 
DCL (DEVTYPE,DEVID) FIXED BIN(31); 
DCL DFLAGS(100) FIXED BIN(31); 
DCL (XARRAY,YARRAY) (100) FLOAT DEC(6); 
DCL NUM FIXED BIN(31); 

CALL FSINIT; 

/***************************************************************/ 
/* CREATE A PICTURE */ /*A*/ 
/***************************************************************/ 

CALL GSENAB(5,1,1); 

CALL GSREAD(l,DEVTYPE,DEVID); 
CALL GSENAB(5,1,0); 

/* Enable tablet or mouse as 
/* polyline stroke device 
/* Read and wait 
/* Disable stroke device 

*/ 
*/ 
*/ 
*/ 

CALL GSQSTK(100,DFLAGS,XARRAY,YARRAY,NUM);/* Obtain stroke data*/ 
IF NUM=O THEN GO TO FIN; /* if nothing to plot */ 

/* Now draw the polyline from the returned arrays of points */ 

CALL GSSEG(l); /* Begin new segment */ 
CALL GSMOVE(XARRAY(l),YARRAY(l)); /* Move to start of line */ 
DO 1=2 TO NUM; /* Draw the polyline */ 

CALL GSLINE(XARRAY(I),YARRAY(I)); 
END; 
CALL GSSCLS; 

/***************************************************************/ 
/* DISPLAY PLOTTER SETUP INSTRUCTIONS */ 
/***************************************************************/ 

CALL FSPCRT(l,O,O,O); /* Create a new page */ 

CALL GSSEG(O); 
CALL GSCM(3); 
CALL GSCOL(6); 
CALL GSCHAR(25.0,95.0,40,' HOW TO SET UP THE IBM 7375 PLOTTER 
/* */ 
/* */ 
/* */ 
CALL GSCHAR(25.0, 3.0,40, , PRESS ENTER WHEN READY TO PLOT 
CALL GSSCLS; 

CALL ASREAD(ATYPE,AVAL,ACOUNT); /* Send instructions */ 

IF ATYPE~=O THEN GO TO FIN; /* Plot only if enter pressed*/ 

/***************************************************************/ 
/* OPEN THE PLOTTER */ 
/***************************************************************/ 

NAME_LIST(l)='*'; 
NAME_LIST(2)='ADMPLOT'; 

/* Is attached to invoking term.*/ 
/* Special GDDM-defined name */ 

/*B*/ 

' ) ; 

' ) ; 

/* DEV ID FAM 
CALL DSOPEN( 202, 1, 
CALL DSUSE(2,202); 

DEV TOK 
, *' 

PROCESSING OPT DEV NAME */ 
a,PROCOPTS, 2,NAME_LIST); /*C*/ 
/* Use as secondary device */ /*D*/ 

Figure 107 (Part 1 of 2). Program using plotter as secondary device 

430 GDDM Application Programming Guide Volume 1 



plotters 

1***************************************************************1 
1* QUERY ROWS AND COLUMNS *1 
1***************************************************************1 

CALL DSQDEV(202,DEV_TOKEN,O,PROCOPTS,O,NAME_LIST,4,QDEV); 
ROWS = QDEV(3); 
COLUMNS = QDEV(4); 

1***************************************************************1 
1* SEND PICTURE TO PLOTTER *1 
1***************************************************************1 

I*E*I 

CALL FSPSEL(O); 
CALL GSCOPY(ROWS,COLUMNS); 

1* Select page with picture *1 I*F*I 
I*G*I 

FIN: 

CALL FSTERM; 

%INCLUDE ADMUPINA; 
%INCLUDE ADMUPIND; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPINGi 

END PLOT2i 

Figure 107 (Part 2 of 2). Program using plotter as secondary device 

Plotting to scale 

Plotter output often needs to be of a particular physical size. You can do this by 
making each window (world-coordinate) unit represent a particular physical 
measurement in the plotted output. The example program in Figure 108 on 
page 432 makes one window unit plot as one millimeter, and then draws a 
100-millimeter square. 

To define the window units as required, you need to query three things: the 
number of rows and columns of notional cells in the current graphics field, the 
number of plotter units per cell in each direction, and the density of plotter units 
(or resolution) in both directions. This information is obtained at I*C* 1 and 
I*E*I· 

The subsequent statements show how to calculate the number of window units to 
make one unit equal to one millimeter when plotted. The calculations multiply the 
number of rows and columns by the depth and width of a cell in plotter units to 
obtain the depth and width of the graphics field in plotter units. This value is 
divided by the number of plotter units per meter, and multiplied by 1000 to convert 
meters to millimeters. 

Before the device can be queried, it must be opened, as at /*A*/. It is then made 
current, at I*B* I. Before the graphics field can be queried, it must be created. 
The example forces the creation of a default graphics field by issuing a graphics 
primitive call- the GSMOVE at I*D* I. Another way that the program could 
create the same graphics field is by explicitly using a GSFLD call, specifying the 
page size as returned in QDEV(3) and QDEV(4). These statements would replace 
I*D* 1 and I*E* I: 

ROWS == QDEV(3); 
COLS = QDEV(4); 
CALL GSFLD(l,l,ROWS,COLS); 

Chapter 23. Using plotters 431 



covers all terminal-attached plotters 

After the required graphics window has been created at /*F* /. a square of 100 
window units is drawn_ When plotted following the FSFRCE at /*G* /. it will be 
IOO-millimeters square_ 

PLOT3: PROC OPTIONS(MAIN); 

DCL PROCOPT_LIST(1) FIXED BIN(31); 
DCL NAME LIST(2) CHAR(S); 
DCL DEV_TOKEN CHAR(S); 
DCL QDEV(S) FIXED BIN(31); 
DCL (ROW_POS,COL_POS,ROWS,COLS) FIXED BINARY(3l); 
DCL (CELL_WIDTH, CELL_DEPTH, VERTCL_RESLN, HORZTL_RESLN, 

WINDOW_DEPTH,WINDOW_WIDTH) FLOAT DEC(6); 

CALL FSINIT; 

/**************************************************************/ 
/* OPEN THE PLOTTER */ 
/**************************************************************/ 

NAME_LIST(l)='*'; /* Is attached to invoking term.*/ 
NAME_LIST(2)='ADMPLOT'; /* special GDDM-defined name */ 

/* DEV ID FAMILY TOKEN OPTIONS NAME */ 
CALL DSOPEN(303, 1, '* , O,PROCOPT_LIST, 2,NAME_LIST); 

CALL DSUSE(1,303); /* Use as primary device *j 

/**************************************************************/ 
/* SET UP WINDOW TO GIVE 1 WINDOW UNIT = 1 MILLIMETER */ 
/**************************************************************/ 

/*A*/ 

/*B*/ 

CALL DSQDEV(303,DEV_TOKEN,O,PROCOPT_LIST,O,NAME_LIST,S,QDEV); 

CALL GSMOVE(O.O,O.O); /* Force creation of default 
/* graphics field 

/*C*/ 

*/ /*D*/ 
*/ 

CALL GSQFLD(ROW_POS,COL_POS,ROWS,COLS); 

CELL DEPTH = QDEV(S); 
CELL-WIDTH = QDEV(6); 
VERTCL RESLN = QDEV(7); 
HORZTL-RESLN = QDEV(S); 
WINDOW-DEPTH = 

/* Cell depth in plotter units */ 
/* Cell width in plotter units */ 

/* Plotter units/meter vertically*/ 
/* Plotter units/meter horizontally*/ 

(CELL_DEPTH*ROWS/VERTCL_RESLN)*1000;/*Calculate required X .. */ 
WINDOW WIDTH = 

(CELL_WIDTH*COLS/HORZTL_RESLN)*lOOO;/* .. and Y window units */ 

CALL GSUWIN(O.O,WINDOW_WIDTH,O.O,WINDOW_DEPTH); 

Figure 108 (Part 1 of 2). Scale plotting program 

432 GDDM Application Programming Guide Volume 1 

/*E*/ 

/*F*/ 



plotters 

/**************************************************************/ 
/* DRAW A SEGMENT (A SQUARE) * / 
/**************************************************************/ 

CALL GSSEG(2); 
CALL GSLINE(lOO.O,O.O); 
CALL GSLINE(lOO.O,lOO.O); 
CALL GSLINE(O.O,lOO.O); 
CALL GSLINE(O.O,O.O); 
CALL GSSCLS; 

CALL FSFRCE; 

CALL FSTERM; 

%INCLUDE ADMUPINA; 
%INCLUDE ADMUPINDj 
%INCLUDE ADMUPINFj 
%INCLUDE ADMUPINGj 

END PLOT3j 

/* Current position = 0,0 

/* Send to plotter 

Figure 108 (Part 2 of 2). Scale plotting program 

Using nicknames to direct and control the output 

*/ 

*/ /*G*/ 

If you have a program that currently sends graphics to a printer, you can have the 
output sent to a plotter instead by creating a suitable nickname file (see 
"Nicknames" on page 378). Here are three nickname statements that will divert 
output from printers to a plotter: 

ADMMNICK FAM=1,NAME=061, 
TOFAM=l,TONAME=(*,ADMPLOT) 

ADMMNICK FAM=2,NAME=PR2, 
TOFAM=l,TONAME=(*,ADMPLOT) 

ADMMNICK FAM=4,NAME=PR4, 
TOFAM=l,TONAME=(*,ADMPLOT) 

The NAME parameters specify the printer device names supplied in DSOPEN calls. 
These three statements will redirect any output for family-I, -2, and -4 printers 
named as 061, PR2, and PR4, respectively. The output will go to the first plotter 
attached to the invoking terminal instead of the named printer. No example has 
been given for family-3 printers because these devices support alphanumerics and 
not graphics, whereas plotters support graphics and not alphanumerics. 

You can also make the reverse change (diverting output from a plotter to a printer) 
using nicknames. For instance, this statement will send the output to a family-2 
print file called PR2, instead of a plotter: 

ADMMNICK FAM=l,NAME=(*,ADMPLOT), 
TOFAM=2,TONAME=PR2 

You can set up a single nickname statement to ensure that all output for a device 
with a particular name goes to a plotter. The following statement will send all 
output for any device called PLOTTER, of whatever family, to a plotter attached to 
the invoking terminal. 

ADMMNICK NAME=PLOTTER, 
TOFAM=l,TONAME=(*,ADMPLOT) 

Chapter 23. Using plotters 433 



covers all terminal·attached plotters 

Such a statement could be used to plot charts created by the GDDM Interactive 
Chart Utility (lCU). The ICU allows the user to send charts to a printer, and to 
specify the name of the printer. The ICU issues a DSOPEN call for a family-2 
device with that name. If the user specified a name of PLOTTER, the above 
nickname statement would send the output to the terminal's first (or only) plotter. 

In all cases, you can supply processing options for the plotter or printer by adding 
a PROCOPT parameter to the nickname statement. A full list of the parameters is 
given in GDDM Base Programming Reference manual. Here is an example of a 
nickname statement that specifies two processing options. The first is a pen 
pressure of 20 grams, and the second a zero plot area, which allows the operator to 
define the area using the plotter controls: 

ADMMNICK FAM=1,NAME=(*,PLOTTER5), 
PROCOPT=«PLTPENP,20),(PLTAREA,O,O,O,O» 

In any case where a processing option in a DSOPEN call conflicts with an option 
in a nickname statement, the DSOPEN specification takes precedence. 

Special considerations for graphics on plotters 

Colors 

The numbers you specify for colors in calls such as GSCOL become pen numbers 
when the output goes to a plotter. On a display unit, this call: 

CALL GSCOL(l)i 

means that subsequent primitives are to be displayed in blue. On a plotter, it 
means the primitives are to be plotted with pen number 1. Whether this is blue or 
some other color depends on what pen has been loaded into the pen holder in 
position 1. It is the plotter operator's responsibility to ensure that each pen-holder 
position has a pen of the required color. A suggested scheme is shown in 
Figure 109. 

Pen Suggested color 
number 

2-pen 6-pen 8-pen 
plotter plotter plotter 

1 Black Blue Blue 
2 Red Red Red 
3 Magenta Magenta 
4 Green Green 
5 Cyan Cyan 
6 Black Orange 
7 Black 
8 Green 

Figure 109. Suggested color scheme for plotter pens 

Complications arise because GDDM cannot determine the colors of pens in the 
holder, and because the number of pens varies from one type of plotter to another. 
GDDM's actions are summarized in Figure 110 on page 436. In more detail, this is 
what happens. 

• For the default number, 0, GDDM always uses the highest-numbered pen. 

434 GDDM Application Programming Guide Volume 1 



plotters 

• For color 8, which is defined as the background color, GDDM uses no pen. It 
imitates a primitive drawn in the background color - the color of the paper. 
Such a primitive would be invisible, except where .drawn on top of a primitive 
of a different color. Where this happens, GDDM clips the underlying primitive 
to leave a clear line or area representing the overlying primitive. In the case of 
overlying lines, the width of the clipped area is equal to the pen width as 
specified in the processing options, or 0.3 millimeters by default (see 
"Processing options for plotters" on page 422). 

To use pen 8, you can specify color 0 or 16, or allow the color to default. 

• For color -2, defined as white, GDDM takes the same action as for color 8; this 
means, on all plotters, using the background. For color -1, defined as black, 
GDDM takes the same action as for color 7; if the suggested color scheme for 
the pens is followed, the black pen will be used. 

• If the color number is higher than the highest pen number, GDDM wraps 
around the set of numbers after the lowest power of 2 that is equal to or greater 
than the highest pen number. This means after 8 for a six-pen plotter or after 2 
for a two-pen plotter. Numbers between the highest pen number and the next 
power of 2 use the highest pen number. So on a six-pen plotter, color 7, and 
also color 6, will use pen 6 (color 8 is exceptional - it always has the special 
meaning of "background"); color 9 uses pen 1, color 10 pen 2, and so on. And 
on a two-pen plotter, color 3 will use pen 1, color 4 pen 2, color 5 pen 1, and so 
on. 

• Color 7, which is defined as neutral and displayed as white on a color screen, 
uses a pen (unlike color 8). GDDM selects pen 7 on eight-pen plotters, and 
follows the wrapping algorithm on the other plotters. 

Chapter 23. Using plotters 435 



covers all terminal·attached plotters 

Color mixing 

Color Meaning Color on Pen number (and suggested color) 
number screen* 

2-pen 6-pen 8-pen 
plotter plotter plotter 

-2 White White No pen No pen No pen 
-1 Black Black 1 (black) 6 (black) 7 (black) 
0 Default Green 2 (red) 6 (black) 8 (green) 
1 Blue Blue 1 (black) 1 (blue) 1 (blue) 
2 Red Red 2 (red) 2 (red) 2 (red) 
3 Magenta Magenta 1 (black) 3 (magenta) 3 (magenta) 
4 Green Green 2 (red) 4 (green) 4 (green) 
5 Cyan Cyan 1 (black) 5 (cyan) 5 (cyan) 
6 Yellow Yellow 2 (red) 6 (black) 6 (orange) 
7 Neutral White 1 (black) 6 (black) 7 (black) 
8 Background Black No pen No pen No pen 
9 Dark blue Dark blue 1 (black) 1 (blue) 1 (blue) 

10 Orange Orange 2 (red) 2 (red) 2 (red) 
11 Purple Purple 1 (black) 3 (magenta) 3 (magenta) 
12 Dark green Dark green 2 (red) 4 (green) 4 (green) 
13 Turquoise Turquoise 1 (black) 5 (cyan) 5 (cyan) 
14 Mustard Mustard 2 (red) 6 (black) 6 (orange) 
15 Gray Gray 1 (black) 6 (black) 7 (black) 
16 Brown Brown 2 (red) 6 (black) 8 (green) 

Figure 110. Color and pen numbers on plotters 

* On 3270·PCjGX work station. For a 3179-G, 3270-PCjG, 3279, and the 5550 family, 
only eight colors are available, and numbers in the range 9 through 15 wrap around 
to the colors blue through neutral (white), and 16 to the default color of green. 

When designing an application in which plotter output is important, it is advisable 
to experiment with the colors. A usable and pleasing picture on the screen may not 
be so if it is plotted unchanged. 

With two exceptions, overlying primitives are plotted on top of underlying ones. 
The resulting colors depend on the physical and chemical interactions of the inks. 

The exceptions apply in underpaint or overpaint mode only. They are: 

• Any primitive, other than an image or image symbol, that underlies a solid 
shaded area is clipped at the edge of the area. 

• If the overlying primitive is: 

- in background color or explicit white (colors 8 and -2), 

- and is a line (or arc), a vector symbol (or marker), or a solid-shaded area, 

then any underlying primitives, other than images and image symbols, are 
clipped to allow background to show through, as explained in the section 
"Colors" on page 434. 

In summary, underlying primitives other than images and image symbols are 
clipped at the boundaries of all overlying solid-shaded areas. They are also clipped 
at overlying background-color vectors. 

436 GDDM Application Programming Guide Volume 1 

I 
, 



plotters 

There is no such clipping in mix mode. 

If you use underpaint mode for a picture that is displayed on the screen of a 
3270-PC/G or /GX work station that is also being plotted, the results will differ. 
Underpaint mode is not supported on these displays; it is implemented as overpaint. 

Performance considerations: Reverse clipping to give white graphics can use a 
lot of processing time in the host computer, depending on the complexity of the 
picture. The following actions will minimize the processing: 

• Keep the number of lines and characters in colors -2 and 7 to a minimum. 

• Avoid drawing lines, characters, or solid-shaded areas (especially complex ones) 
in colors -2 and 7, on top of solid shaded areas. 

Graphics images and image symbols 

These are always plotted, unless in background color, in which case they are, in 
effect, ignored. 

They are clipped at the edge of the plot area. On a screen, they are clipped at the 
edge of the graphics field, so they may extend over a bigger area on the plot than 
on the screen. 

Line types and widths 

The line types for plotters are shown in the two available widths in Figure 111 o~ 
page 438. The line type (1 through 8) is specified in the GSLT call, and the line 
width (lor 2) in the GSLW or GSFLW call. Double-width lines are achieved by the 
plotter drawing two single-width lines next to each other. On long double-width 
non-solid lines, the two lines can get out of synchronization. If this is a problem, 
you could specify a single-width line, and a particular color for these lines, but put 
a thicker pen in the plotter-pen stall for that color. 

Chapter 23. Using plotters 437 



covers all terminal-attached plotters 

GDGi FLOTTER LINE TYPES 

CJSH1G ij_ 3i:I': PEN) 

o - SOLID (DEFAULT) 
1 - DOTTED 
2 - SHORT DASH 
3 - DASH DOT 
4 - WIDE SPACED DOTTED 
5 - LONG DASHED 
b - DASH DOUBLE DOT 
7 - SOLID 

SINGLE WIDTH DOUBLE WIDTH 

B - INVISIBLE 

.~J 
Figure 111. The eight GDDM line types for plotters 

Shading patterns 

There are sixteen special GDDM-defined shading patterns for plotters. They are 
illustrated in Figure 112 on page 439. The numbers are the ones that you would 
specify in a GSPAT call. No user-defined patterns can be specified for a plotter. 

Shading can take a relatively long time on plotters. The single-hatched patterns (9 
through 14) are quicker to plot than the cross-hatched ones (1 through 8). The 
solid pattern (0 or 16) is the slowest. 

The separation of the shading lines depends on the pen width, as specified in the 
processing options, or as defaulted (see "Processing options for plotters" on 
page 422). If the specified or defaulted width differs from the actual width of the 
pen, the shading pattern may not be satisfactory. For instance, if the pen is 
actually narrower than specified, the "solid" pattern will not be solid: there will be 
gaps between the shading lines. 

438 GDDM Application Programming Guide Volume 1 



Symbol sets 

GDDM PLOTTER PATTERNS 

a • • • • • 

1 . B 111111111. 111 9 111111 IIiWIL III flI lIII 
2 ml!l l!l lml l!l lml l!l 10 ~1§Hj§~§~~ 
3 e llUlle e llHII 11 rzl rzl rzl rzl rzl rzl rzl 
4 ~~~~~~~ 12 ~~~[~~zH~J~~ 
5 wwwmwmw 13 ~~~~~~~ 
b ~~~~~~~ 14 ~~~~~~~ 
7 mmmmmmm 15 DDDDDDD 
8 ~~~!gH8iHgl~ 1b • • • • • 

Figure 112. The 16 GDDM shading patterns for plotters 

plotters 

The functions described in "Chapter 15. Symbol sets" on page 219 apply to plotters 
as well as terminals. The symbols are drawn using the calls described in "Chapter 
7. Basic graphics text" on page 55. 

Both image and vector symbols are supported on plotters. The image symbols are 
drawn using the notional pixels described in "Cells, pixels, and plotter units" on 
page 426. The size therefore depends on the specified or defaulted pen size. 

Plotting pixels is relatively slow, and it quickly wears the pens. To alleviate these 
problems, GDDM plots all sets of contiguous pixels in the x direction as lines. 
Nevertheless, extensive use of image symbols is not advised on plotters. 

The GDDM default symbol set for all modes of graphics text is the vector set 
ADMDVSS. To use an image set for mode·1 or -2, you must load it using a GSLSS 
call. 

Chapter 23. Using plotters 439 



covers all terminal·attached plotters 

Optimum pen speed and force 

The most suitable speed and force depend on the type of pen and the medium 
(paper, transparency foils, and so on) on which you are plotting. 

In general, roller ball pens are the best at the highest speeds, and they may need 
the maximum force. Felt tips should ideally be used at somewhat below the highest 
speed and force. And drafting pens require a low speed and force. More detailed 
recommendations are given in the GDDM Base Programming Reference manual and 
in the plotter operating manuals. 

440 GDDM Application Programming Guide Volume 1 



Chapter 24. Windowing 

Partitions 

This chapter tells you about the GDDM calls that organize the screen of a display 
device into rectangular areas, using the following different types of presentation 
structure: 

• Partitions (application windows) 

• Operator windows 

Partitions and operator windows were first introduced in "Chapter 9. Hierarchy of 
GDDM concepts" on page 89. See that chapter for a brief description of the 
difference between them. Partitions are fully described in the first part of this 
chapter. Operator windows are fully described in "Operator windows" on page 467 
in the second part of this chapter. 

This section tells you how to create and use partitions. Partitions can be real or 
emulated. The IBM 3290 Information Panel, 8775 Display Terminal, and 3193 
Display Station have hardware facilities that allow application programs to create 
real partitions. Alternatively, GDDM will emulate partitions on all family-1 
displays. A GDDM application program can create, position, size, scroll, and 
present partitions in a specified order with specified visibility. Some typical 
examples of the use of partitions are: 

• A single GDDM application will let the terminal user enter a set of data in a 
real partition while it processes another set previously entered in another 
partition. 

Real or emulated partitions can also be used to present different functions of 
your application on the one screen, or split the screen into two or more 
partitions so that you can compare related files - say, a source file in one 
partition and a compiler listing in another. 

Real partitions can be used to avoid screen redraws. For example, you could 
have an alphanumeric menu in one partition, and some graphics in another. 
Interactions between the terminal user and the application through the 
alphanumeric menu, that do not mean any changes to the graphics, can take 
place without the graphics partition being redrawn. 

Unlike operator windows, partitions cannot be manipulated by the 
terminal user, and cannot be used to run several independent 
applications 

• To reserve an area of the screen, say, for PF key information to be displayed at 
the bottom of the screen all the time that an application is running 

Chapter 24. Windowing 441 



some of this information is specific to the 3290 and 8775 

• Depending on terminal-user interaction, the application could " pop up" a 
partition to overlap part of whatever is currently on the screen. The partition 
could contain, for example, help information, or a picture, or a panel 
containing input fields. 

To split the screen, you must tell GDDM the size and position of each partition. 
Partitions need not be contiguous (you can leave empty space between them as in 
the example). In addition, you can overlap emulated partitions. 

A simple partitioning example 

Here is a data-entry program that divides the screen into two equal parts. If real 
partitions are available, the terminal user types data into one part of the screen 
while the application program processes data that was previously typed in the 
other. A screen formatted by the program is shown in Figure 113 on page 448. 

PARTEXl: PROC OPTIONS(MAIN); 

DCL PTS ARRAY(3) FIXED BIN(31); 
DCL PTN-ARRAY(4) FIXED BIN(31); 
DCL (CUR_PTN(I),BAD_PTN) FIXED BIN(31); 
DCL CHAR936 CHAR(936); 
DCL FILE NO CHAR(3); 
DCL ERROR_FLAG CHAR(I) INIT('O'); 
DCL I PIC'ZZ9'; 
DCL (TYPE,ATVAL,COUNT) FIXED BIN(31); 

CALL FSINIT; 

/* Define partition set grid 
PTS_ARRAY(1)=5; /* 5 rows 
PTS_ARRAY(2)=I; /* 1 col 

*/ 
in partition set */ 
in partition set */ 

PTS_ARRAY(3)=O; /* Real partitions if possible*/ 
/* P-SET ID 
CALL PTSCRT(I, 

/* Create partition 
PTN_ARRAY(I) =1; 
PTN_ARRAY(2)=I; 
PTN_ARRAY(3)=2; 
PTN_ARRAY(4) =1; 
/* PTN ID 
CALL PTNCRT(l, 

NO. OF PARMS PARAMETER ARRAY 
3, PTS_ARRAY) ; 

at top of screen 
/* Starts in row 1 (of 5-row 
/* Starts in col 1 (of I-col 

/* Depth is 2 rows 
/* Width is 1 column 

NO. OF PARMS PARAMETER ARRAY 
4, PTN_ARRAY); 

/* Create display in top partition 
CALL CREATE_FIELDS; 
CALL ASCPUT(1,32,'DATA ENTRY PROGRAM_ PARTITION I'); 

442 GDDM Application Programming Guide Volume 1 

*/ 

*/ 
PTN-SET) */ 
PTN-SET) */ 

*/ 
*/ 
*/ 

*/ 

/*A*/ 
/*A*/ 
/*A*/ 

/*B*/ 

/*C*/ 
/*C*/ 
/*C*/ 
/*C*/ 

/*0*/ 



windowing 

/* Create partition in bottom of screen */ 
PTN ARRAY(1)=4; /* Starts in row 4 (of 5-row PTN-SET) */ /*E*/ 
CALL PTNCRT(2, 4, PTN_ARRAY); /*F*/ 
/* Create display in bottom partition */ 
CALL CREATE FIELDS; 
CALL ASCPUT(1,32,'DATA ENTRY PROGRAM. PARTITION 2'); 

/* Dialog with operator */ 
DO 1=1 TO 999 UNTIL (ATVAL=3); 

RETRY: ; 
CALL ASFCUR(4,1,1); 
CALL ASREAD(TYPE,ATVAL,COUNT);/* Read from 'active' partn. */ /*G*/ 
CALL PTNQRY(l,l,CUR_PTN); /* Which partn. was 'active'? */ /*H*/ 

/* If input not from partn. that was bad, re-prompt operator*/ 
IF (ERROR FLAG='l')&(CUR PTN(l)~=BAD PTN) THEN DO; /*J*/ 

CALL PTNSEL(BAD_PTN); - /* Make bad partition current */ /*K*/ 
CALL ASCPUT(2,46, 

'PLEASE CORRECT INPUT FROM THIS PARTITION FIRST'); 
GO TO RETRY; 

END; 

/* Check input 
ERROR_FLAG='O'; 
CALL INPUT_PROCESS; 

*/ 

DO; /* Input was faulty */ 
/*M*/ 

IF ERROR_FLAG=' l' THEN 
BAD_PTN=CUR_PTN(l); 
CALL ASCPUT(2,48, 

'INPUT FAULTY 

/* Record ide of faulty partn.*/ /*N*/ 

FROM THIS PARTITION. PLEASE CORRECT'); 
CALL PTNSEL(-l); /* Force current partition to be active */ /*0*/ 

END; 
ELSE CALL ASCPUT(2,34,'INPUT 'I III I' PROCESSED SATISFACTORILY'); 

END; 
CALL FSTERM; 

/* Subroutine to create the input menu for each partition */ 

CREATE_FIELDS: PROC; 
CALL FSPCRT(1,20,110,O); 
CALL GSPAT(l); 
CALL GSAREA ( 1) ; 
CALL GSLINE(lOO.O,O.O); 
CALL GSLINE(100.0,lOO.O); 
CALL GSLINE(O.O,lOO.O); 
CALL GSENDA; 

CALL ASDFLD(1,1,34,1,32,2); 
CALL ASFCOL(l,l); 
CALL ASDFLD(2,3,26,1,48,2); 
CALL ASFCOL(2,2); 
CALL ASDFLD(3,5,20,1,15,2); 
CALL ASCPUT(3,15,'FILE NUMBER 
CALL ASDFLD(4,5,36,1,3,O); 
CALL ASDFLD(5,7,17,12,78,O); 
END CREATE_FIELDS; 

/* Protected 32-char field */ 
/* .. with a color of blue */ 
/* Protected 48-char blue fld.*/ 
/* Message field is red */ 

IS='); 

/* Unprotected field 12 X 78 */ 

Chapter 24. Windowing 443 



some of this information is specific to the 3290 and 8775 

Partition sets 

1* Subroutine to check and process operator input 

INPUT_PROCESS: PROCi 
CALL ASCGET(4,3,FILE_NO)i 
IF (FILE_NO<'200') I (FILE_NO>'490') THEN ERROR_FLAG='l'; 
ELSE DOi 

CALL ASCGET(5,936,CHAR936)i 

1* 
1* 
1* 

Code to copy 
operator's input 
data to disk file 

*1 

*1 
*1 
*1 

CALL ASCPUT(4,3,' 
ENDi 

, ) i 1* Reset file number to empty *1 

END INPUT_PROCESSi 

%INCLUDE ADMUPINAi 
%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINGi 
%INCLUDE ADMUPINPi 

END PARTEXli 

The program illustrates some of the concepts of partitioning: 

Your application can create several alternative logical screens on a device. Each 
logical screen is called a partition set, and only one can be shown to the terminal 
user at any time. 

All the partitions must belong to a partition set. You create a partition set with 
the PTSCRT call and then define the partitions within it using the PTNCRT call. 

The example creates a partition set at I*B* I. The main purpose of the PTSCRT 
call is to fit a conceptual grid over the screen. You use this grid in the PTNCRT 
call to define the position and size of each partition. This conceptual grid is used, 
rather than a grid defined by the hardware rows and columns, because the cell size 
has not yet, in general, been determined. 

The first parameter of the PTSCRT call is the partition set identifier. It must be 
greater than 0, which is reserved for the default partition set created by GDDM 
when you issue no PTSCRT call. The last parameter is an array with zero through 
four elements, the number of elements being given in the second parameter. 

The program sets the values of the array elements in the statements marked 1* A * I. 
The first element is the number of rows in the partition set grid, and the second the 
number of columns. The third element of the array defines the type of partitioning: 

o Use hardware partitioning if the device has it, otherwise use GDDM software 
emulation 

1 Use emulated partitioning in any case 

2 The program will not create any partitions. 

The fourth element defines whether the partitions can overlap: 

o They cannot (as in the example) 

1 They can. 

444 GDDM Application Programming Guide Volume 1 



windowing 

The sample program creates a partition set grid with five rows and one column, 
specifies that GDDM is to use real hardware partitioning if the device has it, 
otherwise to use emulation, and that the partitions are not to overlap. If the 
partitions had overlapped, GDDM would emulate the partitions, because real 
partitions cannot overlap. 

Creating partitions 

The first partition is created at I*D* I. The PTNCRT call has three parameters, 
similar to those of PTSCRT. The first one is the partition identifier; the third is an 
array of data containing elements in the range four through six; and the second 
specifies the number of elements in this array. 

The sample program uses a four-element array, setting the values of its elements in 
the statements marked I*c* I. The first two elements are the row and column 
position, on the partition set grid, of the top left-hand corner of the partition. The 
other two are its depth and width, in partition set grid units. For information 
about the fifth parameter, see the GDDM Base Programming Reference manual. 
The sixth parameter defines the visibility of the partition. A 0 means invisible, and 
a 1 means visible (the default). A use of the visibility parameter is examined later 
in this chapter. 

The program places the top left-hand corner of the first partition in the top 
left-hand corner of the screen, and makes the partition as wide as the screen and 
two-fifths of its depth. 

The second partition is created at I*F* I. It uses the same array of values as 
I*D* I, except that the top of the partition is positioned three-fifths of the way 
down the screen. The statement I*E* 1 alters the first element of the array 
parameter to specify this. 

Once a partition has been created, you can treat it like the complete screen in a 
non-partition application because a GDDM page occupies a complete partition. 

Current partition sets, partitions, and pages 

Sometimes you may need to create more than one partition set. If you do, the 
latest one becomes current when you create it. But you can make any partition set 
current with the PTSSEL call, for example: 

CALL PTSSEL(2); /* Make partition set 2 current *1 

A partition belongs to the partition set that is current at the time of its creation. 

As with partition sets, a partition is made current when it is created. 
Subsequently, the current partition can be changed, by device input, or by using 
the PTNSEL call. You can make current any existing partition within the current 
set, using PTNSEL: 

CALL PTNSEL(3); 1* Make partition 3 current *1 

There is an example in the program at I*K* I. 

When you explicitly or implicitly create a GDDM page, it becomes associated with 
the partition then current. The example explicitly creates one page in each 
partition. A page becomes current when created. You can use FSPSEL to make a 
different page current within the partition. 

Chapter 24. Windowing 445 



some of this information is specific to the 3290 and 8775 

Input/Output 

When the screen is partitioned, it is particularly important to understand how the 
GDDM input/output calls such as ASREAD work. 

When an input/output call is executed, GDDM sends the changes from the current 
pages in all the partitions in the current partition set to the terminal. It then 
waits. When the terminal user responds (for instance, by pressing ENTER), GDDM 
receives an interrupt together with input data. The wait is thereby satisfied and 
GDDM allows the application program to resume execution. 

With hardware partitioning, the keyboard does not lock after the terminal user has 
responded. The terminal prevents the user from typing further data into the 
partition that the cursor was in when the user responded, but it allows typing in 
another partition. This means that you can enter data in one partition at the same 
time that the application is processing data entered in another. 

In the typical case, the terminal user would complete the entry of data into one 
partition, press ENTER, and then start typing into the other partition. But 
although data entry can continue, nothing can be read in until the application 
executes a further ASREAD. GDDM ensures synchronization between the 
application program and the terminal user's actions by enforcing this sequence: 

Program calls ASREAD and waits 
Operator generates interrupt 

Then, normally, the program processes the input 
while the terminal user enters more data. 

Program calls ASREAD and waits 
Operator generates interrupt 

Then the program processes the new input 
while the terminal user enters more data. 

Program calls ASREAD and waits 
Operator generates interrupt 

If partitioning is being emulated, the keyboard is locked after each input 
transmission. You cannot therefore enter data until the application has finished 
processing your last input. 

A GDDM input/output call updates all partitions in the display. The call to 
ASREAD at /*G* / will create two partitions on the screen, with a data-entry 
display in each one. But GDDM updates screens rather than rewriting them 
completely, so later executions of the ASREAD will change only the data altered by 
the program. The rest of the screen will remain unchanged. In the sample 
program, each ASREAD reinitializes the partition from which the last error-free 
input was received by transmitting an empty menu. 

For interactive graphics applications, logical input devices must be enabled for 
each p~rtition. 

446 GDDM Application Programming Guide Volume 1 



windowing 

Active and current partitions 

When partitions are displayed on the screen of a device that supports real 
partitions, the one containing the cursor is said to be active. The terminal user 
can make a different partition active by moving the cursor into it. When real 
partitions are used (on the 3290, 8775, or 3193) this means using the partition-jump 
key. 

When the terminal user causes an interrupt when using real partitions, the 
program receives data only from the active partition. When GDDM receives the 
input, it makes the partition from which it was received current. So if, for 
instance, the cursor was in partition 2 when the terminal user pressed ENTER, this 
will be the current partition after the ASREAD, even if partition 1 was current 
before the ASREAD. 

You can discover which is the current partition at any time, and its size and 
position, by a PTNQRY call, like the one at /*H* /. In the first and second 
parameters, you tell GDDM which of five possible values are to be returned: the 
first parameter specifies which is the first value to be returned, and the second, 
how many are to be returned. The five possible values are: the identifier of the 
current partition; the row and column positions on the partition set grid of the 
current partition's top left-hand corner; and the depth and width of the current 
partition in partition-set grid units. The third parameter is an array in which 
GDDM returns the specified values. Statement /*H* / queries just the partition 
identifier. 

Unless you force a different action, an ASREAD does not make the current 
partition become the active one. This would cause the cursor to jump to the 
current partition, which could inconvenience the terminal user, who might be 
typing into another partition. GDDM will allow the partition with the cursor in it 
to remain active. 

There are two ways of forcing a different action. Firstly, if you execute a PTNSEL 
call to select a partition other than the one that was current after the previous 
ASREAD, the new current partition will become the active one at the next 
ASREAD: 

CALL PTNSEL(3); /* Make partition 3 current and force it to be */ 
/* active at next ASREAD */ 

In other words, if you change the current partition between ASREADs, GDDM will 
make the new current one become the new active one. 

Secondly, you can force the partition that was current after the previous ASREAD 
to become the active one. This is a useful way of drawing the user's attention to 
faulty input. In this case, you should issue this specialized form of the PTNSEL 
call: 

CALL PTNSEL(-l); /* At next ASREAD, force partition current at */ 
/* that time to become active. */ 

In summary, partitions are recorded as current by GDDM, and as active by the 
terminal hardware. The terminal user can make a partition active just by moving 
the cursor into it, but GDDM only discovers which one is active when there is an 
interrupt. The active and current partitions are therefore not typically the same. 

You should avoid assuming that a partition that was inactive at the time of the last 
ASREAD can be updated by your program. It may contain data entered by the 

Chapter 24. Windowing 447 



some of t his information is specific to the 3290 and 8775 

terminal user either before or after that ASREAD. This input would be lost if your 
program overwrote it. 

Handling terminal-user errors 

After the ASREAD at I *G* I, the program queries which partition was active and 
is therefore now current, at I *H* I . It then tests a flag to determine whether input 
to correct an earlier error was expected, and if so, whether the latest input is from 
the partition that contained the error. These tests are carried out by statement 
I*J* I · 

If corrective input is expected, but the input in fact came from the other partition, 
then the bad partition is selected at I*J* I, and an error message is put into it. 
Because this statement causes a different partition" to become current, GDDM will 
cause this partition to become the active one at the next ASREAD. 

If corrective input is not expected, the program calls a subroutine at I*M* 1 to 
check and process the input. If this subroutine finds an error, it sets the error flag. 
In this case, the program records which is the bad partition, at I *N* I, puts an 
error message into it, and, at 1*0* I , forces it to be active after the next ASREAD . 

• m ' N " "pu" 
........ ~ .. ' " 
".,... ~ • :'-P 
;:~: :'. ;1;;: • 
.. !~ l < " •• I 

'4"~ • I'~'I. .... •• If". ..... •• 1·"" 
It'" • htlth1 

Figure 113. Screen formatted by simple partitioning program 

Some other things you can do with partitions 

The following two subsections cover some things that you can do with emulated 
partitions: 

• Change their visibility 

• Overlap them, and alter their viewing priority. 

448 GDDM Application Programming Guide Volume 1 



windowing 

Visible and invisible partitions 

The following example code is a skeleton program that illustrates how you can use 
visible and invisible partitions to organize screen layout, for example, for the 
data-entry panel for an ICU-like program. 

PARTVIS: PROC OPTIONS(MAIN)i 

DCL (TYPE,MOD,COUNT) FIXED BIN(31); 

/* Partition set parameters - rows columns control overlap */ 
DCL SET_ARRAY(4) FIXED BIN(31) INIT(10, 16, 1, 1); 

/* Partition parameters 
DCL P1(6) FIXED BIN(31) 
DCL P2(6) FIXED BIN(31) 
DCL P3(6) FIXED BIN(31) 
DCL P4(6) FIXED BIN(31) 
DCL P5(6) FIXED BIN(31) 
DCL P6(6) FIXED BIN(31) 
DCL P7(6) FIXED BIN(31) 
DCL P8(6) FIXED BIN(31) 
DCL P9(6) FIXED BIN(31) 

CALL FSINIT; 

row 
INIT(l, 
INIT(9, 
INIT(3, 
INIT(3, 
INIT(3, 
INIT(3, 
INIT(3, 
INIT(3, 
INIT(3, 

column 
1, 
1, 
1, 
5, 
9, 

13, 
1, 
1, 
1, 

depth 
2, 
2, 
6, 
6, 
6, 
6, 
6, 
6, 
6, 

width 
16, 
16, 
4, 
4, 
4, 
4, 
4, 
4, 
4, 

dev visibility */ 
-1, 1) ; 
-1, 1) ; 
-1, 1) ; 
-1, 1); 
-1, 1); 
-1, 1); 
-1, 0) ; 
-1, 0); 
-1, 0); 

CALL PTSCRT(1,4,SET_ARRAY); /*A*/ 

CALL PTNCRT(1,6,P1); /* Partition 1 - heading & message area *//*B*/ 
/* 
/* 
CALL PTNCRT(2,6,P2); /* Partition 2 - PF key area *//*B*/ 
/* 
/* 
CALL PTNCRT(3,6,P3); /* Partition 3 - command area *//*B*/ 
/* 
/* 
CALL PTNCRT(4,6,P4); /* Partition 4 - X values *//*B*/ 
/* 
/* 
CALL PTNCRT(S,6,PS) ; /* Partition 5 - Yl data *//*B*/ 
/* 
/* 
CALL PTNCRT(6,6,P6); /* Partition 6 - Y2 data *//*B*/ 
/* 
/* 
CALL PTNCRT(7,6,P7): /* Partition 7 - Y3 data *//*B*/ 
/* 
/* 
CALL PTNCRT(S,6,PS); /* Partition 8 - Y4 data *//*B*/ 
/* 
/* 
CALL PTNCRT(9,6,P9); /* Partition 9 - YS data *//*B*/ 
/* 
/* 

CALL ASREAD(TYPE,MOD,COUNT)i /* Display first panel *//*C*/ 

Chapter 24. Windowing 449 



some of this information is specific to the 3290 and 8775 

CALL PTNSEL(3); 
P3(6) = 0; 
CALL PTNMOD(6,1,P3); 

CALL PTNSEL(4); 
P4 (2) = 1; 
CALL PTNMOD{6,I,P4)j 

CALL PTNSEL{S)j 
PS(6) = OJ 
CALL PTNMOD(6,I,PS); 

CALL PTNSEL(6)j 
P6(6) = OJ 
CALL PTNMOD(6,I,P6); 

CALL PTNSEL(7)j 
P7 (2) = 5; 
P7 (6) = 1; 
CALL PTNMOD{6,I,P7); 

CALL PTNSEL(8)j 
P8(2) = 9; 
P8 (6) = 1; 
CALL PTNMOD(6,I,P8); 

CALL PTNSEL(9); 
P9 (2) = 13; 
P9(6) = 1; 
CALL PTNMOD(6,I,P9); 

CALL ASREAD{TYPE,MOD,COUNT); 

%1NCLUDE ADMUP1NA; 
%1NCLUDE ADMUP1NF; 
%1NCLUDE ADMUP1NG; 
%1NCLUDE ADMUP1NP; 
CALL FSTERM; 
END; 

/* 
/* 
/* 

/* 
/* 
/* 

/* 
/* 
/* 

/* 
/* 
/* 

/* 
/* 
/* 
/* 

/* 
/* 
/* 
/* 

/* 
/* 
/* 
/* 

/* 

Select partition 3 *//*D*/ 
Set to invisible *//*D*/ 
Modify partition *//*D*/ 

Select partition 4 *//*E*/ 
New column position */ /*E*/ 
Modify partition *//*E*/ 

Select partition 5 *//*F*/ 
Set to invisible *//*F*/ 
Modify partition *//*F*/ 

Select partition 6 *//*G*/ 
Set to invisible *//*G*/ 
Modify partition *//*G*/ 

Select partition 7 *//*H*/ 
New column position *//*H*/ 
Set to visible *//*H*/ 
Modify partition *//*H*/ 

Select partition 8 *//*1*/ 
New column position *//*1*/ 
Set to visible *//*1*/ 
Modify partition *//*1*/ 

Select partition 9 *//*J*/ 
New column position *//*J*/ 
Set to visible *//*J*/ 
Modify partition *//*J*/ 

Display other panel *//*K*/ 

A program based on the above skeleton program produced the panels in Figure 114 
on page 452 and Figure 115 on page 452. All we added to the skeleton program to 
produce the screen layouts in the two figures was the code to label each partition, 
and to draw a line around its border. In practice, for an ICU-like program, the 
partitions would hold procedural or mapped alphanumerics. 

The skeleton program creates nine partitions to each hold a logical area of the 
screen. Only five of the nine are initially defined as visible, and are used to 
produce the first panel. The visibility of some of the nine partitions is then altered, 
and the results displayed as the second panel. 

The PTSCRT call at /* A * / defines the partition-set grid as being 10 rows by 16 
columns, using the parameters in SET_ARRA Y. The fourth parameter of the array 
specifies that the partitions in the partition set can overlap. However, you will not 
see any overlapping partitions in the output displayed by the program. This is 
because, where partitions overlap, we have specified only one of them as visible. 

At the PTNCRT calls marked /*B* /, the program creates nine partitions for a 
heading and message area, a PF key area, a command area, an x data area, and five 
y-data entry areas. The PTNCRT calls use the parameters in arrays PI through P9. 
The sixth parameter of each array specifies the initial visibility of each partition. 
A value of 1 makes it visible, while a value of 0 makes it invisible. Partitions 1 
through 6 are initially defined as visible, while partitions 7 through 9 are initially 

450 GDDM Application Programming Guide Volume 1 



windowing 

invisible. This is because partitions 1 through 6 are the only ones that we want to 
be seen in the first panel that we display using the ASREAD at I*C* I. 

In the second panel, we want to display partitions 1, 2, 4, 7, 8, and 9. We do not 
have to do anything to partitions 1 and 2 for them to b~ displayed again. 

At 1*0* I, as we no longer want partition 3 to be shown, we must first make it 
current, using the PTNSEL call, and set its visibility parameter to 0 (invisible). We 
then modify the current partition using a PTNMOD call. The call has three 
parameters: 

• The number of the first element in the third parameter. It must be in the range 
1 through 6. 

• The number of elements in the third parameter. 

• An array of up to six elements, containing the attributes for the current 
partition. In the example, we have used the array that we originally used to 
create the partition. 

Using PTNSEL and PTNMOD, we alter the attributes of the remaining partitions 
as follows: 

Partition 4 is to be displayed in the second panel, but with its top-left-hand 
corner in column 1. 

Partitions 5 and 6 are not to appear in the second panel, so we set their 
visibility attribute to O. 

Partitions 7, 8, and 9 were originally defined as invisible, with their 
top-left-hand corners in row 3 and column 1. ~t I*H* I, I*I* I, and I*J* 1 we 
alter their positions to 5, 9, and 13 respectively, and make them visible. 

The advantages of constructing panels using visible and invisible partitions are: 

• You can easily produce several variations of the same panel 

• You can take advantage of the whole screen area. 

Chapter 24. Windowing 451 



some of this information is specific to the 3290 and 8775 

Figure 114. First panel using visible and invisible partitions 

Figure 115. Second panel using visible and invisible partitions 

Overlapping partitions 

You can overlap partitions. Partitions are opaque, so the part of a partition that is 
overlapped by another partition will be completely obscured by the top partition. 

The next sample program contains the skeleton code to produce a partition that 
overlaps another partition: 

452 GDDM Application Programming Guide Volume 1 



windowing 

PARTLAP: PROC OPTIONS(MAIN)i 

DCL (TYPE,MOD,COUNT) FIXED BIN(31); 

/* Partition set parameters - rows columns control overlap */ 
DCL SET_ARRAY(4) FIXED BIN(31) INIT(10, 16, 1, l)i 

/* Partition parameters - row column depth width dev visibility */ 
DCL Pl(6) FIXED BIN(31) INIT(l, 1, 10, 16, -I, 1); 

DCL P2(6) FIXED BIN(3l) INIT(S, 

CALL FSINITi 

CALL PTSCRT(I,4,SET_ARRAY); 

CALL PTNCRT(l,6,Pl)i 

CALL PTNCRT(2,6,P2)i 

CALL ASREAD(TYPE,MOD,COUNT); 

%INCLUDE ADMUPINAj 
%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINGi 
%INCLUDE ADMUPINPi 
CALL FSTERMi 
END PARTLAPj 

3, 6, 11, -1, 1) i 

A program based on the above skeleton program produced the screen output shown 
in Figure 116 on page 454. All that we added to the program was the 
alphanumeric code for the panel in partition 1, the graphics calls to produce the 
chart in partition 2, and the code to draw a line around the border of each 
partition. 

The PTSCRT call at /*A* / defines the partition-set grid, using the parameters in 
SET_ARRAY. 

The PTNCRT call at /*B* / creates partition 1, using the parameters in 
PCARRA Y. This partition fills the screen. 

The PTNCRT call at /*c* / creates partition 2, using the parameters in 
PI_ARRAY. These parameters place the top-left-hand corner of partition 2 in row 5 
and column 3. 

The advantages of overlapping partitions are: 

• You can show a number of partitions on the screen, at the same time, but 
highlight one or more partitions by placing them on top of the others. 

• You can show more of the underlying partitions than is possible with 
nonoverlapping partitions. 

An example of the use of overlapping partitions is to associate each partition with 
each logical function of your program. The program would change the viewing 
order to let the terminal user access the partition associated with the function that 

Chapter 24. Windowing 453 

/*A*/ 

/*B*/ 



some of this information is specifi c to the 3290 and 8775 

is wanted. The next section tells you how your program can alter the viewing 
order. 

If you specify on the PTSCRT call that partitions can overlap, you will always get 
emulated partitions (even when the partitions do not actually overlap) on all 
devices including those that support real partitions. 

Partitions are also always emulated when user control or operator windows are 
available. 

Figure 116. Overlappi.ng parti.ti.ons 

Prioritizing partitions 

When you first create a number of overlapping partitions, the viewing order 
depends on the order in which you create the partitions. The partition that you 
create first is at the bottom of the viewing order, and the partition that you create 
last is at the top. On the display screen, each partition appears on top of the 
partitions that are below it in the viewing order. Some partitions may be hidden 
behind other partitions, or may have their visibility attribute set to invisible, but 
they are still present in the viewing order. 

You can change the priority of some or all of the partitions in the viewing order, 
using the call PTSSPP. This call lets you specify an array of identifiers of 
partitions whose priorities are to be adjusted by placing them as neighbors to onE 
of the other partitions in the viewing order. 

For example, say a partition set has the following seven partitions in descending 
order: 

TOP 7,6,5,4,3,2,1 BOTTOM 

If you wanted to take partitions 7, 2, and 1, and change their order of viewing so 
that they are after partition 5 and before partition 4, like this: 

TOP 6, 5,1,7,2,4, 3 BOTTOM 

454 GDDM Applicati.on Programmi.ng Guide Volume 1 



windowing 

you would issue the following call: 

DCL PRI_ARRAY (3) FIXED BIN(31) INIT(2,7,1); 

CALL PTSSPP(1,4,3,PRI_ARRAY); /* Change partition viewing order */ 

The parameters are as follows: 

• The first parameter specifies whether the partitions in the array in the final 
parameter are to be placed in descending or ascending order from the reference 
partition. (The reference partition is the reference point in the viewing order 
about which the reordering of the partitions is to take place. It is specified in 
the second parameter. In the example, it is partition 4.) 

The first parameter can have these values: 

-1 Descending order. The partitions in the array are placed behind the 
reference partition. 

1 Ascending order (as in the example). The partitions in the array are 
placed in front of the reference partition. 

• The second parameter contains the identifier of the reference partition relative 
to which the reordering is to take place. It can have a value of -1, the effect 
of which depends on whether you set the first parameter to ascending or 
descending order: 

Descending The first partition in the array will become the top partition in the 
viewing order, and the rest of the partitions in the array are placed 
behind it. 

Ascending The first partition in the array will become the bottom partition in 
the viewing order, and the rest of the partitions in the array are 
placed in front of it. 

• The third parameter contains the number of elements in the array in the final 
parameter 

• The final parameter is an array of identifiers of partitions whose priorities are 
to be adjusted relative to the reference partition. Any element of the array can 
contain a value of -1, which causes all further elements to be ignored. 

The reordering process takes the first partition in the array and places it above or 
below the reference partition in the viewing order, depending on the order specified 
in the first parameter. It then takes the second partition in the array and places it 
above or below the first partition, and so on, until all the elements of the array 
parameter have been processed, or until a value of -1 is found in the array. 

The following sample program creates five overlapping partitions. Each partition 
is filled with a shading pattern, and some alphanumerics. The initial output 
displayed by the program is shown in Figure 117 on page 457. Initially, the cursor 
is displayed in partition 5. Partition 5 overlaps partition 4, partition 4 overlaps 
partition 3, and so on. If the terminal user moves the cursor into the visible part 
of, for example, partition 3, and presses ENTER (or some other interrupt-generating 
key) the program uses the PTSSPP call to bring that partition to the top of the 
viewing order. If the user then moves the cursor into, for example, partition 5, and 
presses ENTER, partition 3 is replaced behind partition 2 and in front of partition 

Chapter 24. Windowing 455 



some of this information is specific to the 3290 and 8775 

4, and partition 5 is brought to the top. Pressing the PF12 key terminates the 
application. 

FOLDERS: PROC OPTIONS(MAIN); 
DCL PARMS(4) FIXED BIN(31) IN IT (0,0,1,1); 
DCL PARMS1(4) FIXED BIN(31) INIT (1,1,15,40); 
DCL PRIORITY(5j FIXED BIN(31) INIT(5,4,3,2,1); 
DCL (TYPE,MOD,COUNT) FIXED BIN(31); 
DCL COLOR FIXED BIN(3l) INIT(O); 
DCL PATTERN FIXED BIN (31) INIT(O); 
CALL FSINIT; 
CALL PTSCRT(1,4,PARMS); /* Emulate partitions - they overlap */ 
CALL PTNCRT(1,4,PARMS1); /* Top left partition */ 
COLOR=l; 
PATTERN=1; 
CALL COLOR FOLDER; 
CALL ASCPUT(1,8,'Folder 1'); 
CALL ASCPUT(2,79,(79)'A'); 

PARMS1(1)=5; 
PARMS1 (2) =11; 
CALL PTNCRT(2,4,PARMS1); 
COLOR=2; 
PATTERN=2; 
CALL COLOR FOLDER; 
CALL ASCPUT(1,8,'Folder 2'); 
CALL ASCPUT(2,79,(79)'B'); 

PARMS1(1)=9; 
PARMS1(2)=21; 
CALL PTNCRT(3,4,PARMS1); 
COLOR=3; 
PATTERN=3; 
CALL COLOR FOLDER; 
CALL ASCPUT(1,8,'Folder 3'); 
CALL ASCPUT(2,79,(79)'C'); 

PARMS1 (1) =13; 
PARMS1(2)=3l; 
CALL PTNCRT(4,4,PARMS1); 
COLOR=4; 
PATTERN=4; 
CALL COLOR FOLDER; 
CALL ASCPUT(1,8,'Folder 4'); 
CALL ASCPUT(2,79,(79)'D'); 

PARMS1 (1) =17; 
PARMS1(2)=41; 
CALL PTNCRT(5,4,PARMS1); /* Bottom right partition */ 
COLOR=5; 
PATTERN=5; 
CALL COLOR FOLDER; 
CALL ASCPUT(l,8,'Folder 5'); 
CALL ASCPUT(2,79,(79)'E'); 

DO 1=1 TO 99; 
CALL ASREAD(TYPE,MOD,COUNT); 
CALL PTNQRY(l,l,PARMS); 
IF MOD>11 THEN GOTO ENDIT; 
CALL PTSSPP(-1,-1,5,PRIORITY); /* Restore original order */ 
CALL PTSSPP(-1,-1,1,PARMS); /* Put selected partition at top*/ 
END; 

456 GDDM Application Programming Guide Volume 1 



COLOR FOLDER: PROC; 
CALL ASDFLD(1,1,2,1,8,O); 
CALL ASDFLD(2,3,2,2,39,O); 
CALL GSSEG(O) ; 
CALL GSCOL(COLOR) ; 
CALL GSPAT(PATTERN) ; 
CALL GSMOVE(O , O) ; 
CALL GSAREA(l) ; 
CALL GSLINE(O,lOO); 
CALL GSLINE(lOO,lOO); 
CALL GSLINE(lOO,O); 
CALL GSLINE(O,O); 
CALL GSENDA; 
END COLOR_FOLDER ; 

ENDIT: ; 
CALL FSTERM; 
%INCLUDE ADMUPINA; 
%INCLUDE ADMUPINP; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPING; 

END FOLDERS; 

windowing 

Figure 117. Output from sample partition prioritizing program 

Querying the priority of overlapping partitions 

There are two calls that you can use to query the priority of partitions in the 
current partition set. 

In the last section, the PTSSPP call was used to change the viewing priority of a 
specified array of partition identifiers relative to a specified reference partition 
identifier. The corresponding query call PTSQPP returns an array of partition 
identifiers relative to a specified reference partition identifier. For example, here is 
a typical call, that returns the identifiers of the three partitions that are above 
partition 5 in the viewing order: 

Chapter 24. Windowing 457 



some of this information is specific to the 3290 and 8775 

DCL PRI_ARRAY (3) FIXED BIN(31); 

CALL PTSQPP(1,5,3,PRI_ARRAY); /* Query partition viewing order */ 

The parameters are as follows: 

• The first parameter specifies whether the array in the final parameter is to 
return the identifiers of partitions in descending or ascending order from the 
reference partition. The possible values are: 

-1 Descending order 

1 Ascending order. 

• The second parameter specifies the identifier'of the reference partition that the 
query relates to. It can have a value of -1, the effect of which depends on 
whether you set the first parameter to ascending or descending order: 

Descending The first partition in the array will be the top partition in the 
viewing order, and the rest of the partitions in the array will be 
those that are behind it. 

Ascending The first partition in the array will be the bottom partition in· the 
viewing order, and the rest of the partitions in the array will be 
those that are in front of it. 

• The third parameter contains the number of elements to be returned in the 
array in the final parameter. 

• The final parameter is an array that holds the returned identifiers of partitions 
that descend or ascend from the reference partition. 

There is another query call, PTSQPI, that returns the identifiers of either all 
partitions in the current partition set, or just the invisible ones. Here is a typical 
call: 

DCL PRI_ARRAY (7) FIXED BIN(31); 

CALL PTSQPI(1,7,PRI_ARRAY); /* Query all partition identifiers */ 

The parameters are as follows: 

• The first parameter specifies the type of partition that you want information 
returned about: 

1 All partitions 

2 All invisible partitions. 

• The second parameter specifies the number of elements in the array in the final 
parameter. 

• The third parameter is the name of an array in which GDDM will return the 
requested information. 

458 GDDM Application Programming Guide Volume 1 



windowing 

Other calls that operate on partitions and partition sets 

PTSDEL 

PTSQPN 

PTSQRY 

PTSQUN 

PTNDEL 

PTNMOD 

PTNQRY 

PTNQUN 

Deletes a specified partition set. 

Returns the total number of partitions (all or just the 
invisible ones). 

Queries the attributes of the current partition set. 

Returns a unique unused partition set identifier. 

Deletes a partition 

Modifies the attributes of the current partition. 

Queries the attributes of the current partition. 

Returns a unique unused partition identifier for use 
with a subsequent PTNCRT. 

For more details of the above calls see the GDDM Base Programming Reference 
manual. 

Large and small pages 

Scrolling 

This section tells you how to display amounts of data that are larger than the 
screen, and how to fill up the screen with small amounts of data. Some of the 
techniques it describes need hardware function that is available only on specific 
types of terminal, but others can be used on all terminals. 

If you create a page that is too deep to be displayed all at once, scrolling may help. 
This technique treats the screen, or a rectangular area of the screen, like a window 
that moves up and down, or from side to side, in front of the page. (Or, as the 
screen does not actually move, it may help you to think of the page as moving up 
and down, or from side to side, behind the screen.) Data that falls within this page 
window is displayed, and other data can be displayed by repositioning the page 
window. 

Another possible solution, applicable for alphanumeric data when the page is too 
wide or too deep, is to use smaller characters than normal. This is a possibility 
only on the 3290, because this is the only supported terminal with a variable cell 
size. 

If you have the converse problem of displaying only a small amount of data, you 
can increase the cell size on the 3290 to help fill the screen. 

Some types of terminal have their own scrolling function. Your program can send 
a large page to the terminal, and the user can use special scrolling keys to select . 
the part to be displayed. The page can contain alphanumeric and graphics data. 
The amount of data on the page is limited by the storage capacity of the terminal, 
rather than the size of the screen. 

In addition, GDDM provides a software scrolling function that lets your program 
select which part of the current page is to be displayed. This is supported on all 
types of display terminal. 

Chapter 24. Windowing 459 



some of this information is specific to the 3290 and 8775 

The 3193 display station has vertical and horizontal hardware scrolling. The other 
terminals with their own scrolling function allow vertical scrolling only. GDDM 
software scrolling, however, allows both vertical and horizontal scrolling: the page 
window can be moved up and down and from side to side. 

Your program positions the page window with the FSPWIN call. For example: 

CALL FSPWIN(20,1,-1,-1); /* Put row 20 at top of page window */ 

The FSPWIN call has two functions, of which scrolling is one. The other is to set 
the depth and width of the page window, and is explained in "Variable character 
size" on page 461. The parameters are: 

• The row that GDDM is to position at the top of the page window - row 20 in the 
example. 

• The column that is to be at the left-hand edge of the page window - column 1 
in the example. 

• The depth and width of the page window. When scrolling, these are both set to 
-1. 

You can use FSPWIN to provide scrolling on terminals that do not have it as a 
hardware function. In a typical application, specific user actions, usually the 
pressing of PF keys, are defined as commands that mean scroll up or down or from 
side to side by a certain amount, or scroll to the top, bottom, or side of the page. 
The application would use FSPWIN to implement these commands. 

Another use for FSPWIN is to place the window in a particular position over the 
page, independently of any action by the terminal user. For instance, the 
application might need to draw the user's attention to a particular line by putting 
it at the top of the page window. FSPWIN is useful for this purpose on terminals 
with hardware scrolling, and on those without. 

If the terminal user uses the hardware scrolling function, the position of the page 
window will change without any indication being given to your program. Suppose 
that your program sends a page to the terminal after positioning the window at line 
1. This line will appear at the top of the page window. Suppose, then, that the 
user moves line 20 to the top of the page window with the hardware scrolling keys, 
and presses ENTER to send the page back to your program. Because the program 
is not notified of the change, to it the position of the page window is still line 1. If 
it resends the page to the terminal, line 1 and not line 20 will be at the top of the 
page window. 

Putting a specified row at the top of the page window would sometimes result in 
the bottom row of the page being above the bottom of the page window. The page 
window space below the last row of the page would then be wasted. In these cases, 
the hardware (or if scrolling is being emulated, GDDM), positions the page window 
to use this space. Usually, this means arranging for the bottom row of the page to 
be on the bottom line of the page window. The row that you specified in the first 
parameter of FSPWIN will then be displayed some way down the page window 
rather than on the top line. 

Similarly, if you try to put the top line of the page some way down the page 
window using hardware scrolling, the hardware will actually position it at the top 
of the page window. 

460 GDDM Application Programming Guide Volume 1 



windowing 

The alphanumeric cursor must always be within the page window. If you move the 
page window to a position that leaves the cursor outside, GDDM will move the 
cursor to within the window. Conversely, if you move the cursor to outside the 
window, GDDM will reposition the window to re-include it. In these cases, GDDM 
generally arranges for the cursor to appear on the top line of the page window. 

Variable character size 

GDDM will vary the cell size on the IBM 3290 Information Panel according to the 
number of rows and columns to be displayed. Within limits, it will select the cell 
width that best fits the number of columns to the screen width, and the cell depth 
that best fits the number of rows to the screen depth. 

You can specify the number of rows and columns in a page in the FSPCRT or 
MSPCRT call, as explained in "The page and page window" on page 93. For 
example: 

CALL FSPCRT(1,60,80,0); 

creates a page 60 rows deep by 80 columns wide. For MSPCRT, GDDM will take 
the page size from the mapgroup if you do not specify it explicitly. 

GDDM will try to fit the page onto the screen, by choosing the largest cell depth 
that allows 60 rows to be displayed and the largest cell width that allows 80 
columns to be displayed, unless you specify a page window of smaller size than the 
page. 

While the page is still empty, you can execute an FSPWIN call that specifies one or 
both of the window depth and width sizes in the third and fourth parameters. If 
you do, then GDDM will choose the cell size that best fits the window, rather than 
the complete page, to the screen. For instance, this call: 

/* Row Column Depth Width */ 
CALL FSPWIN(l, 1, 30, -1); 

will cause GDDM to select the cell depth that best fits 30 rows onto the screen, 
while leaving the cell width unchanged. The first two parameters still specify the 
page window position, so in this example, the window is positioned at row 1. 

If the two example calls were executed one after the other, GDDM would create a 
page 60 rows deep and 80 columns wide, and a window that displays 30 of the rows, 
and all the columns, and is initially positioned over the top half of the page. 

As hardware scrolling is being used on a 3290, there is no lateral scrolling, so the 
width of the window must be not less than the width of the page. For the same 
reason, the number of columns to be displayed must be no greater than what would 
all fit onto the screen if the smallest cell width were used. This restriction applies 
whether the number of columns is the width of the page, as defined by FSPCRT (or 
MSPCRT), or the width of the page window, as defined by FSPWIN. 

Once the cell size for a page has been fixed, it cannot be altered. It is fixed in one 
of two ways: by executing an FSPWIN call that specifies the page depth or width 
or both, or by putting some data into the page. 

If you put some data into a page without executing an FSPWIN call, GDDM 
attempts to fit the complete page onto the screen, using as large a cell size as 
possible. If it cannot display the complete page, it selects the minimum cell size, 

Chapter 24. Windowing 461 



some of this information is specific to the 3290 and 8775 

and displays as many rows as possible, using a page window positioned at row 1 of 
the page. 

If you do not specify the number of rows or columns in a page, or both, GDDM will 
assume device-dependent numbers. These are such that if you do not specify a page 
window depth or width, the resulting cell size width or depth, or both, will be the 
default for the device. This means that if you specify neither a page size nor a page 
window size, GDDM uses the default cell size for the device. 

You can still execute FSPWIN calls after the cell size has been fixed, but the page 
depth and width must both be specified as -1. The call's function then is just 
scrolling. 

Cell sizes of the 3290: The minimum, default, and maximum width and depth of 
cells on the 3290 are shown in Figure 118. The table also shows the loadable cell 
size, that is, the size that the terminal uses for programmed symbols. 

Minimum 
Default 
Loadable 
Maximum 

Figure 118. 

Cell Size in Pels 
Width Depth 

6 12 
6 12 
9 16 

16 31 

3290 cell sizes 

The terminal will scale its own hardware characters to fit cells whose width and 
depth are no less than the minimum size and no more than the loadable size. Cells 
that are wider or deeper, or both, than the loadable cell size will contain characters 
that are 9 pixels deep or 16 pixels wide, or both, with the rest of the cell empty. 

Image symbol sets of any size up to 9 pixels by 16 may be loaded into a 3290, using 
the PSLSS call. However, if the screen cell size is less than the symbol size, only 
part of each symbol will be visible. 

If your program uses graphics on a 3290, the cell size must not exceed 9 pixels by 
16. Therefore, cell sizes that are between 9 pixels by 16 and 16 pixels by 31 are for 
the use of alphanumerics programs only. 

The largest cell size that you can get on an IBM 3290 with an FSPCRT call is the 
loadable size. To get a cell size between this and the maximum, you will need to 
create a window with FSPWIN. 

You may be wondering how to ensure that your program uses cells of a valid size. 
The answer is to use the FSQURY command, as described in the GDDM Base 
Programming Reference manual. This supplies much information about the device, 
including the depth and width of the screen in pixels, and the number of rows and 
columns it can display at the minimum and maximum cell sizes. 

Effects on graphics of scrolling and variable cell size 

When a page is scrolled by the terminal user with the terminal's hardware facility, 
any graphics will be scrolled along with the alphanumerics. The GDDM software 
function scrolls graphics similarly on all terminals. 

462 GDDM Application Programming Guide Volume 1 



windowing 

Partitioning with scrolling and variable cell size 

The program shown in Figure 119 on page 464 combines partitioning with some of 
the functions described in "Large and small pages." It is intended to run on the 
IBM 3290 Information Panel. It creates two partitions, both scroll able, with a 
different cell size in each. The considerations described in "Variable character 
size" on page 461 apply to each partition. 

It is intended to display two data sets, one containing a program's source code as 
entered by the programmer, and the other a compiler listing of the program. It will 
handle a total of 80 lines of source code and 35 lines of listing, using a 25-line 
scrollable page window for each. Typical output is shown in Figure 120 on 
page 466. 

The partition set is created at /*A* I, with a grid one column wide and nine rows 
deep. The top four rows are used for the source file partition, and the bottom four 
for the listing file partition. The two partitions are created at I*B* I and /*G* I. 

The page for the source file display is created at I*C* I, with 83 rows and 82 
columns. A window 25 rows deep is placed over this page at I*D* /. GDDM will 
select a cell width and depth that best fills the window. 

The page for the listing file display is created at /*H* I, with 38 rows and 123 
columns. A 25-row window is placed over this page at I*I* I. GDDM will again 
select a cell width and depth to best fill the window. 

The user can use the IBM 3290 Information Panel's hardware scrolling facility to 
move the two page windows. No provision is made for software scrolling. 

Up to 80 source records are read in statements I*E* I to /*F* I and stored on the 
GDDM page corresponding to the first partition. Up to 35 listing records are read 
in statements I*J* I to I*K* I and stored on the page corresponding to the second 
partition. Both partitions are sent to the terminal at I*L* I. 

Chapter 24. Windowing 463 



some of this information is specific to the 3290 and 8775 

PARTEX2: PROC OPTIONS(MAIN); 

DCL PTS ARRAY(3) FIXED BIN(31); /* Partition-set parameters */ 
DCL PTN=ARRAY(4) FIXED BIN(31); /* Partition parameters */ 
DCL (TYPE,ATVAL,COUNT,LINE_COUNT) FIXED BIN(31); 
DCL SOURCE FILE RECORD INPUT; /* Program source file */ 
DCL LISTING FILE RECORD INPUT; /* Program listing file */ 
DCL END01 BIT(l); /* End-of-file flag */ 
DCL BLOCK80 CHAR(80); /* Input rec. from source file*/ 
DCL BLOCK121 CHAR(121); /* Input rec. from listing file*/ 

CALL FSINIT; 
/* Define partition-set 
PTS_ARRAY(1)=9; 
PTS ARRAY(2)=1; 
PTS=ARRAY(3) =0; 

grid 

/* P-SET ID NO. OF PARMS 
CALL PTSCRT(l, 3, 

/* 
/* 
/* 

9 rows in partition set 
1 column in partition set 
Use real partitions 

PARAMETER ARRAY 
PTS_ARRAY) ; 

*/ 
*/ 
*/ 
*/ 
*/ 

/* Create partition in top four-ninths of screen */ 
PTN ARRAY(l)=l; /* Starts in row 1 (of the 9-row PTN-SET) */ 
PTN-ARRAY(2)=1; /* Starts in col 1 (of the 1-col PTN-SET) */ 
PTN=ARRAY(3)=4; /* Depth is 4 rows */ 
PTN_ARRAY(4)=1; /* Width is 1 column */ 
/* PTN ID NO. OF PARMS PARAMETER ARRAY */ 
CALL PTNCRT(l, 4, PTN_ARRAY); 
CALL FSPCRT(1,83,82,0); /* Create scrollable page 83 rows deep*/ 
CALL FSPWIN(1,1,25,82); /* •. of which 25 rows show at a time */ 
CALL ASDFLD(1000,1,34,1,14,2); 
CALL ASCPUT(1000,14,'PROGRAM SOURCE'); 

/*A*/ 

/*B*/ 
/*C*/ 
/*D*/ 

OPEN FILE(SOURCE)i 
ON ENDFILE(SOURCE) 
END01='O'B; 
LINE_COUNT=O; 

/* Open file holding program source 
END01='l'B; /* Set flag at end-of-file 

*/ /*E*/ 
*/ 

/* Initialize the flag */ 
/* Initialize the line count */ 

READ FILE(SOURCE) INTO (BLOCK80);/* Read first source record */ 
DO WHILE (END01='O'B); /* Read up to 80 source recs. */ 

LINE_COUNT=LINE_COUNT+1; /* Bump line count */ 
IF LINE_COUNT>80 THEN DO; /* Set limit of 80 lines */ 

CALL ASDFLD(1001,2,18,1,44,2); 
CALL ASCPUT(1001,44, 

'SOURCE FILE TOO BIG. 1ST 80 LINES DISPLAYED'); 
GOTO PART2j /* Go to process listing file */ 

END; /* End of '>80' DO-group */ 

READ FILE(SOURCE) INTO (BLOCK80); /* Next source record */ 
CALL ASDFLD(LINE_COUNT,LINE_COUNT+2,2,1,80,2); 
CALL ASCPUT(LINE COUNT,80,BLOCK80); 

END; - /* End of source records DO-loop */ /*F*/ 

Figure 119 (Part 1 of 2). Program using scrollable partitions and two cell sizes 

464 GDDM Application Programming Guide Volume 1 



windowing 

PART2: /* Create second partition for listing file 
PTN_ARRAY(l) =6; /* PTN starts in row 6 (of the 9-row 
/* PTN ID NO. OF PARMS PARAMETER ARRAY 

*/ 
PTN-set) */ 

*/ 
CALL PTNCRT (2, 4, PTN_ARRAY) ; 
CALL FSPCRT(1,38,l23,O); /* Create page 123 cols by 35 rows 
CALL FSPWIN(1,l,25,123)i /* .. of which 25 show at a time 
CALL ASDFLD(1000,l,54,1,15,2); /* Alpha field for title 

/*G*/ 
*/ /*H*/ 
*/ /*1*/ 
*/ 

CALL ASCPUT(1000,15,'PROGRAM LISTING'); 

OPEN FILE(LISTING); /* Open file holding program listing */ 
ON ENDFILE(LISTING) END01='l'Bi /* Set flag at end-of-file */ 
END01='O'Bi /* Initialize the flag */ 
LINE_COUNT=Oi /* Initialize the line count */ 
BLOCK121=' 'i /* Clear record */ 
READ FILE(LISTING) INTO (BLOCK121)i /* Read 1st listing record*/ 
DO WHILE (END01='O'B); /*Read up to 35 listing recs.*/ 

LINE_COUNT=LINE_COUNT+1; /* Bump line count */ 
IF LINE_COUNT>35 THEN DO; /* Set limit of 35 lines */ 

CALL ASDFLD(1001,2,38,1,45,2)i 
CALL ASCPUT(1001,45, 

'LISTING FILE TOO BIG. 1ST 35 LINES DISPLAYED'); 
GOTO ENDITi /* Send output to display */ 

END; /* End of '>35' DO-group */ 
CALL ASDFLD(LINE COUNT,LINE COUNT+2,2,1,121,2); 
CALL ASCPUT(LINE-COUNT,121,BLOCK121); 
BLOCK121=' I; /* Clear record 
READ FILE(LISTING) INTO (BLOCK121)i /* Next listing record 

*/ 
*/ 

/*J*/ 

END; /* End of listing DO-loop */ /*K*/ 

ENDIT: 

CALL ASREAD(TYPE,ATVAL,COUNT);/* Send 2 partitions to display */ /*L*/ 

CALL FSTERM; 

%INCLUDE ADMUPINAi 
%INCLUDE ADMUPIND; 
%INCLUDE ADMUPINFi 
%INCLUDE ADMUPINGi 
%INCLUDE ADMUPINPi 

END PARTEX2i 

Figure 119 (Part 2 of 2). Program using scrollable partitions and two cell sizes 

Chapter 24. Windowing 465 



some of this information is specific to the 3290 and 8775 

Figure 120. Screen with two cell sizes 

466 GDDM Application Programming Guide Volume 1 



windowing 

Qperator windows 

A task manager is a program that controls the initiation, termination, and 
execution priority of several applications that are running concurrently on the 
same display device, and it usually has an end-user dialog for this purpose. 

Under TSO and CMS, and on all GDDM-supported display devices except the 5080, 
a task manager can use a GDDM instance to allow the terminal user to run several 
GDDM applications concurrently. (In this context, a GDDM application means any 
program that uses GDDM to handle its terminal input/output.) 

Typically, the terminal user accesses each application, and the end-user dialog with 
the task manager, through rectangular subdivisions of the display device screen 
called operator windows. The terminal user always interacts with the highest 
priority window, which is called the active operator window. GDDM highlights 
the active operator window with a special border, and always ensures that it is 
visually the topmost. 

In a task manager, when the user satisfies the read outstanding in the active 
operator window, the application associated with the window will run until it 
either executes another input/output call or terminates. Meanwhile, the 
applications in all the other windows wait, because they have unsatisfied reads 
outstanding. In this way, the GDDM windowing functions support concurrent 
execution of several different GDDM applications. They do not support windowing 
of programs that use non-GDDM function for terminal input/output. Such 
non-GDDM programs would take over the whole screen until they terminated. 

The GDDM instance controls the concurrent sharing of the device by several 
applications, using a coordination exit routine. Task management is described 
more fully in "Task management" on page 481. 

In a subset of the function, available under CICS as well as TSO and CMS, a single 
GDDM application can use windowing support in its dialog with the terminal user, 
to present the separate functions of the single application, each in an operator 
window. In this case, you do not need a coordination exit. This is described in 
"Sample program using one operator window" on page 469. 

Whether a GDDM instance is being used by a task manager, or by a single 
application, the basics of a windowing program are the same: 

• The first DSOPEN in a GDDM program opens the real display device with the 
(WINDOW,YES) processing option. This automatically creates a default 
operator window, and associates the real display device with it. 

• You then divide the screen of the real display device into one or more operator 
windows. 

• Subsequent DSOPEN calls open one or more virtual display devices and 
associate each with an operator window. (Under a task manager, the 
subsequent DSOPENs would be in each application.) See "Processing options 
for operator windows" on page 386 for a list of the processing options for a 
virtual device that are overidden by the processing options for the real device. 

• Each application (under a task manager) or each function (under a single 
application) then communicates with the terminal user through an operator 
window conceptually situated in front of a virtual screen, and can behave as if 
it had complete control of a real screen. 

Chapter 24. Windowing 467 



A virtual device can itself be opened with the (WINDOW,YES) processing option. 
Operator windows created for this virtual device are further subdivisions of the 
real screen. So, although you can conceptually define hierarchies of operator 
windows, they do not appear inside each other. Rather, they are displayed as 
peers, according to their priorities. 

A real or virtual device that is opened for windowing is called a coordinating 
device to denote that it coordinates the sharing of the device. 

The association of the real device, operator windows and virtual devices in a single 
application is shown in Figure 121. 

GDDM 
Single Application Operator 

window 0 

I 
Real 
device 0 SOPEN 

I I I 

Operator 
WSCRT 

Operator 
W window 1 window 2 SCRT 

Operator 
window n WSCRT 

I I 1 
Virtual 

DSOPEN 
Virtual 

device device 0 
Virtual 
device SOPEN DSOPEN 

I I I 
Function Function Function 

1 ___________________________________________________________ _ 

Figure 121. Hierarchy of devices and windows in a single application 

You can use GDDM calls in your program to set or change the size, position, and 
viewing priority of operator windows, which can overlap. 

In addition, whenever the application or function in the active operator window is 
waiting for input, the terminal user can select a different operator window to have 
top priority in the viewing order, and therefore become the active operator window, 
or change the size and position of operator windows, using the GDDM user control 
functions. All of the above manipulations of the operator window by the user can 
be done without interaction with the application program. 

A virtual. screen can be larger than an operator window, and larger than the real 
screen; user control provides horizontal and vertical scrolling. GDDM user control 
functions for the terminal user are covered in GDDM Guide for Users. 

You should not confuse operator windows with partitions. Partitions (sometimes 
called application windows) can only be controlled by the application to which they 
belong. Partitions cannot be controlled by the terminal user, or used to run 
several application programs. When you use both types of presentation structure 

468 GDDM Application Programming Guide Volume 1 



windowing 

at the same time, partitions appear as subdivisions of the real or virtual screen, 
viewed through an operator window. 

Sample program using one operator window 

The following sample program is an example of how a single GDDM application 
can use an operator window and an associated virtual device in its dialog with the 
terminal user: 

OPWINl: PROC OPTIONS(MAIN); 
DCL (TYPE,MOD,COUNT) FIXED BIN(3l); 
DCL (VALID,FINISH) BIT(l) INIT('O'B); 
DCL PROCOPTS(7) FIXED BIN(3l) INIT(24,l,28,l,29,l,l); 
DCL NAMES(l) CHAR(8), 1* DSOPEN dummy namelist *1 

START INIT(O), 1* Parameter to SHOWGDF *1 
READ INIT(l), 1* Parameter to SHOWGDF *1 
WINDOW, 1* Window to run next *1 
WSARR(lO) INIT«10)O) 1* WSCRT parameter array *1 
FIXED BINARY(3l); 

1****************************************************************1 
1* Open real device for windowing *1 
1****************************************************************1 

CALL FSINIT; 
CALL DSOPEN(9,1,'*' ,7,PROCOPTS,0,NAMES); 1* Open real device 
CALL DSUSE(I,9); 1* Use real device 

*II*A*I 
*1 

1****************************************************************1 
1* Create window for virtual device *1 
1****************************************************************1 

WSARR(3) = 32; 1* 32 row virtual screen *1 
WSARR(4) = 80; 1* 80 column virtual screen *1 
CALL WSCRT(I,4,WSARR,8,'WINDOW 1');1* Create window 1 *II*B*I 
CALL SHOWGDF(START); 1* Initialize window 1 *II*C*I 

1****************************************************************1 
1* Perform 1/0 on virtual device *1 
1****************************************************************1 

DO UNTIL (FINISH = 'l'B); 
DO UNTIL (VALID = 'l'B); 

CALL SHOWGDF(READ); 1* Process transaction *II*D*I 
END; 
VALID = 'O'B; 

END; 
CALL WSDEL(l); 
CALL FSTERM; 
RETURN; 

1* Delete window 1 and close virtual device *II*E*I 

Chapter 24. Windowing 469 



/****************************************************************/ 
/* Transaction processing routine */ 
/****************************************************************/ 
SHOWGDF: PROC(ACTION); 

DCL (ACTION, SEG_COUNT, OPT_ARRAY (2) INIT(O,2» FIXED BIN (31), 
NAME CHAR(8), DESCRIPTION CHAR(l); 

SELECT (ACTION) ; 

/****************************************************************/ 
/* Initialization of screen */ 
/****************************************************************/ 

WHEN (START) 
DO; 

CALL DSOPEN(l,l,'*',O,PROCOPTS,O,NAMES);/*Open virtual device*//*F*/ 
CALL DSUSE(l,l); /*Use virtual device */ 
CALL GSFLD(1,1,30,80); 
CALL ASDFLD(1,31,2,1,44,2); 
CALL ASFCOL(l,l); 
CALL ASCPUT(1,44,'Enter the name of a picture to be displayed:'); 
CALL ASDFLD(2,31,47,1,8,0); 
CALL ASFCOL(2,4); 
CALL ASDFLD(3,32,2,1,35,2); 
CALL ASFCOL(3,1); 
CALL ASCPUT(3,35,'PF1=User Control 2=Show 3=End'); 
CALL ASFCUR(2,1,1); 

END; 

/****************************************************************/ 
/* Input transaction - validate */ 
/****************************************************************/ 

WHEN (READ) 
DO; 

CALL ASREAD(TYPE,MODE,COUNT); 
CALL ASFCUR(2,1,1); 
IF TYPE = 1 & «MOD = 2) 

& (COUNT> 0» 
I MOD = 3 THEN 
DO; 

VALID = 'l'B; 
IF MOD = 2 THEN 

DO; 
CALL GSCLR; 
CALL ASCGET(2,8,NAME); 

/* If (PF key 2 pressed */ 
/* and a picture name entered)*/ 
/* or (PF key 3 pressed) */ 
/* then perform action */ 

CALL GSLOAD(NAME,2,OPT_ARRAY,SEG_COUNT,0,DESCRIPTION); 
END; 

IF MOD = 3 THEN 
FINISH = 'l'B; 

END; 
ELSE 

CALL FSALRM; 
END; 

OTHERWISE; 
END; 
RETURN; 

END SHOWGDF; 
%INCLUDE ADMUPINA; 
%INCLUDE ADMUPIND; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPING; 
%INCLUDE ADMUPINW; 
END OPWIN1; 

470 GDDM Application Programming Guide Volume 1 



windowing 

The sample program, OPWIN1, creates an operator window, associates a virtual 
device with it, and displays it. The window contains some procedural 
alphanumerics prompting the terminal user to enter in an input field the name of a 
picture to be displayed. The picture must be of the ADMGDF format, having 
previously been saved by a GSSA VE call. (See "Chapter 12. Storing graphics" on 
page 157 and "Chapter 13. Picture handling in graphics data format" on page 171 
for details.) After the terminal user has entered the name of a picture, PF keys 1 
through 3 have the following effect: 

PF key 1 takes the user into user control. 

PF key 2 causes the program to load and display the requested picture. 

PF key 3 ends the application. 

The program illustrates how to convert a real device into a virtual device. A useful 
function of the program is that it opens a virtual device with screen dimensions of 
32 rows by 80 columns regardless of the screen size of the real device. The program 
forms the basis of OPWIN2 which shows how to write a transaction processor for 
two virtual devices. 

The DSOPEN at /* A * / opens the real device, and specifies that the device is to be 
windowed, that user control is available, and that the PFI key invokes user 
control. It does this using the processing option groups 24, 28, and 29, respectively, 
in PROCOPTS. Another way is to use nicknames. See "Processing options for 
operator windows" on page 386 and "Processing options for user control" on 
page 386. 

Specifying that a device is to be windowed creates a default operator window, with 
an identifier of 0, and associates the device with the window. You do not have to 
use this window. Instead, you may prefer to use only windows that you explicitly 
create, as in the sample program. 

The WSCRT call at /*B* / creates an operator window. Creating an operator 
window, either explicitly or by default, makes it the current operator window. 
For any GDDM device, you can create several operator windows, but only one of 
them can be the current operator window. The current operator window is the one 
whose attributes can be modified by a WSMOD call, described in "Modifying the 
attributes of an operator window, using call WSMOD" on page 477. An operator 
window can be made current by creating it using call WSCRT, or selecting it using 
call WSSEL, or by an input/output call WSIO. WSSEL and WSIO are described in 
the next section. The operator window made current by the most recently executed 
WSCRT, WSSEL, or WSIO call, is also the candidate operator window. The 
candidate operator window is the window with which the next virtual device to be 
opened will be associated. There is only one candidate operator window, no matter 
how many devices or applications there may be. This is further explained in the 
next section. 

As only one operator window is explicitly created in the sample program, it is also 
the active operator window. 

The WSCRT call has the following parameters: 

• The identifier of the new operator window. 

• The number of elements of the array in the third parameter. 

Chapter 24. Windowing 471 



• An array containing the attributes for the new operator window. If any 
attribute is not specified, or is specified as 0, the default attribute value is used. 
The ten attributes corresponding to the elements are as follows: 

1. The coordination address exit address. The default value is zero. 

2. An exit token to be passed to the coordination exit. The default value is 
zero. 

The previous two elements are used when the windowing application is being 
used by a task manager that is running several applications. Their use is 
covered in "Task management" on page 481. 

3. The number of rows in the virtual screen of the virtual device opened in 
any subsequent DSOPEN. The default is the real screen depth. 

4. The number of columns in the virtual screen of the virtual device opened in 
any subsequent DSOPEN. The default is the real screen width. 

5. The row position of the top-left-hand corner of the operator window on the 
real screen. The default position is row 1. 

6. The column position of the top-left-hand corner of the operator window on 
the real screen. The default position is column 1. 

The above row and column attributes relate to the position of the top-left-hand 
corner of the window contents, not the position of the top-left-hand corner of 
the window frame. 

7. The number of rows in the operator window. This does not include any 
rows occupied by the window frame. 

8. The number of columns in the operator window. This does not include any 
columns occupied by the window frame. 

9. The row position of the top-left-hand corner of the operator window on the 
virtual screen. 

10. The column position of the top-left-hand corner of the operator window on 
the virtual screen. 

• The length in bytes of the string in the final parameter. 

• A string containing the title to be incorporated into the frame of the operator 
window. 

The call at I*e* I calls the routine SHOWGDF to initialize the window with the 
procedural alphanumerics. The DSOPEN call at I*F* I opens a virtual device. 
When the DSOPEN is executed, GDDM automatically associates the virtual device 
with the candidate operator window that was created at I*E* I. 

The call to SHOWGDF at 1*0* I shows the requested picture. 

When the program ends, the WSDEL call at I*E* I deletes the operator window, 
and also closes the virtual device associated with it. 

472 GDDM Application Programming Guide Volume 1 



windowing 

Sample program using two operator windows 

The following program extends OPWINI to create and display two operator 
windows, each with its own virtual device. A picture can be displayed in each 
window, so that they can be visually compared. 

Whenever the function in the active operator window is waiting for input, the 
terminal user can select another operator window to have top priority in"the 
viewing order, and therefore to be active. This can be done with the implicit user 
control function by either moving the graphics cursor (if displayed) into the 
required window, and selecting it using any of the following: 

• ENTER 

• Button 1 on a mouse or puck 

• Stylus tip. 

or, if the graphics cursor is not displayed, the window can be selected by moving 
the alphanumeric cursor into the required window and pressing ENTER. The 
terminal user can, instead, press the PFI key to explicitly enter user control mode. 
Using this function, the size, position, and viewing priority of operator windows 
can subsequently be changed. All of the above manipulations of the operator 
window by the user can be carried out without interaction with the application 
program. 

Chapter 24. Windowing 473 



OPWIN2: PROC OPTIONS(MAIN); 
DCL (TYPE,MOD,COUNT) FIXED BIN(31); 
DCL (VALID,FINISH) BIT(l) INIT('O'B); 
DCL PROCOPTS(7) FIXED BIN(31) INIT(24,l,28,l,29,l,l); 
DCL NAMES(l) CHAR(8), /* DSOPEN dummy namelist */ 
( START INIT(O), /* Parameter to SHOWGDF */ 

READ INIT(l), /* Parameter to SHOWGDF */ 
WINDOW, /* Window to run next */ 
WSARR(10) INIT«10)0) /* WSCRT parameter array */ 
FIXED BINARY(31) ; 

/****************************************************************/ 
/* Open real device for windowing */ 
/****************************************************************/ 

CALL FSINIT; 
CALL DSOPEN(9,l,'*',7,PROCOPTS,O,NAMES);/* Open real device *//*A*/ 
CALL DSUSE(1,9); . /* Use real device */ 

/****************************************************************/ 
/* Create two operator windows */ 
/****************************************************************/ 

WSARR(3) 32; /* 32 row virtual screen */ 
WSARR(4) 80; /* 80 column virtual screen */ 
WSARR(5) 2; /* Top-left corner row window on glass */ 
WSARR(6) 3; /* Top-left corner column window on glass */ 
WSARR(7) 20; /* # Rows of window on glass */ 
WSARR(8) 60; /* # cols of window on glass */ 
WSARR(9) 13;/* Top-left corner row window on virtual screen */ 
WSARR(10) 0 1;/* Top-left corner col window on virtual screen */ 
CALL WSCRT(2,10,WSARR,30,'GDDM Sample Program - Window 2'); /*B*/ 

/* Create window 2 */ 

WSARR(3) 0 32; /* 32 row virtual screen 
WSARR(4) 0 80; /* 80 column virtual screen 
WSARR(5) 0 10; /* Top-left corner row window on glass 
WSARR(6) 20; /* Top-left corner col window on glass 
WSARR(7) 20; /* Rows of window on glass 
WSARR(8) 59; /* Cols of window on glass 
WSARR(9) 13; /* Top-left corner row window on virtual screen 
WSARR(10) o 1; /* Top-left corner col window on virtual screen 
CALL WSCRT(l,10,WSARR,30,'GDDM 

WINDOWo 1; 
CALL SHOWGDF(START); 
CALL DSUSE(1,9); 
CALL WSSEL(2); 
WINDOWo 2; 
CALL SHOWGDF(START); 

Sample Program - Window 1'); 
/* Create window 1 

/* Initialize window 1 
/* Reuse real device 
/* Select operator window 2 

/* Initialize window 2 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/*C*/ 
*/ 

*//*0*/ 
*/ 
*//*E*/ 

*//*F*/ 

/****************************************************************/ 
/* Perform real i/o and select transaction processor */ 
/****************************************************************/ 

DO UNTIL (FINISH = 'l'B); 
DO UNTIL (VALID = 'l'B); 

CALL DSUSE(1,9); 
CALL WSIO(WINDOW); 
CALL SHOWGDF(READ); 

END; 
VALID = 'O'B; 

END; 

/* Reuse real device 
/* Real I/O 
/* Process transaction 

*//*G*/ 
*//*H*/ 
*//*1*/ 

/* Reuse real device *//*G*/ CALL DSUSE(1,9); 
CALL WSDEL(l); 
CALL WSDEL(2); 
CALL FSTERM; 
RETURN; 

/* Delete window 1, close its virtual device */ 
/* Delete window 2, close its virtual device */ 

474 GDDM Application Programming Guide Volume 1 



windowing 

/****************************************************************/ 
/* Transaction processing routine */ 
/****************************************************************/ 
SHOWGDF: PROC(action); 

DCL (ACTION,SEG_COUNT,OPT_ARRAY(2) INIT(O,2» FIXED BINARY(3l), 
NAME CHAR(8), DESCRIPTION CHAR(l); 

SELECT(ACTION); 
WHEN (START) /* Initialization of screen */ 

DO; 
CALL DSOPEN(WINDOW,l,'*',O,PROCOPTS,O,NAMES); /*J*/ 

*/ 

CALL 
CALL 
CALL 
CALL 
CALL 

DSUSE(l,WINDOW); 
GSFLD(1,1,30,80); 
ASDFLD(1,31,2,1,44,2); 
ASFCOL(l,l) ; 

/* Open a virtual device 
/* Device id = window id 
/* for simplicity 
/* Use virtual device 

*/ 
*/ 
*//*K*/ 

ASCPUT(1,44,'Enter the name of a picture to be displayed: '); 
CALL ASDFLD(2,3l,47,1,8,1); 
CALL ASFCOL(2,4); 
CALL ASDFLD(3,32,2,1,3S,2); 
CALL ASFCOL(3,1); 
CALL ASCPUT(3,35,'PF1=User Control 2=Show 
CALL ASFCUR(2,1,1); 

3;:::End' ) ; 

END; 

/****************************************************************/ 
/* Input transaction - validate */ 
/****************************************************************/ 

WHEN (READ) 
DO; 

CALL DSUSE(l,WINDOW); 
CALL ASREAD(TYPE,MOD,COUNT); 
CALL ASFCUR(2,1,1); 
IF TYPE = 1 & «MOD = 2) 

& (COUNT > 0» 
I MOD ::; 3 THEN 
DO; 

VALID::; 'l'B; 
IF MOD ::; 2 THEN 

/* Use virtual device *//*L*/ 
/*M*/ 

/* If (PF key 2 pressed */ 
/* and a picture name entered)*/ 
/* OR (PF key 3 pressed */ 
/* then perform action */ 

/**/ 
/**/ 
/**/ DO; 

CALL 
CALL 
CALL 

GSCLR; /**/ 
ASCGET(2,8,name); /**/ 
GSLOAD(NAME,2,OPT_ARRAY,SEG_COUNT,O,DESCRIPTION);/**/ 

END; 
IF MOD 

FINISH 
END; 

ELSE 

3 THEN 
'l'B; 

CALL FSALRMi 
END; 

OTHERWISE; 
END; 
RETURN; 
END SHOWGDF; 
%INCLUDE ADMUPINA; 
%INCLUDE ADMUPIND; 
%INCLUDE ADMUPINF; 
%INCLUDE ADMUPINGi 
%INCLUDE ADMUPINW; 
END OPWIN2; 

/* else .•. 
/* sound alarm 

/**/ 
/**/ 
/**/ 
/**/ 

*/ 
*/ 

Chapter 24. Windowing 475 



The above program illustrates a "transaction processing" type of input design. 
This kind of design could form the basis of a window management program that did 
not use a coordination exit. 

The program is essentially similar to OPWINl. The DSOPEN call at I*A* I opens 
the real device for windowing. This time two operator windows are created, by the 
calls to WSCRT at I*B* I and I*c* I. When you first create a number of 
overlapping operator windows in an application, the viewing order depends on the 
order that you create the operator windows in. The operator window that you 
create first is at the bottom of the viewing order, and the operator window that you 
create last is at the top. On the display screen, each operator window appears in 
front of the operator windows that are below it in the viewing order. The topmost 
window (operator window 1 in the example) is the active operator window. Your 
program can change the viewing order, as described in "Prioritizing operator 
windows" on page 478. 

As mentioned in the previous section, the current operator window is the one 
whose attributes can be modified by a WSMOD call. The candidate operator 
window is the window with which the next virtual device to be opened will be 
associated. In a single application like the example, not running under a task 
manager, the current operator window is always the candidate operator window. 
So, when is the current operator window not the candidate operator window? 
Remember, when you have several applications running concurrently under a task 
manager, only one of those applications is actually executing, while the others are 
waiting because they have unsatisfied reads outstanding. Each of the applications 
can have a current operator window. But no matter how many devices or 
applications there may be, only the operator window made current by the most 
recently executed WSCRT, WSSEL, or WSIO call is the candidate operator 
window with which the next virtual device to be opened will be associated. 

After the WSCRT call at I*C* I, operator window 1 is the current and candidate 
operator window. At I*D* I the program calls SHOWGDF(START) to open and use 
a virtual device for operator window 1 and to initialize the window with procedural 
alphanumerics. Following the call to SHOWGDF(START), the program issues a 
call to DSUSE to reuse the real device, because SHOWGDF(START) contains a 
DSUSE to a virtual device. 

The WSSEL call at I*E* I selects operator window 2 to be the candidate operator 
window. WSSEL also makes the operator window current. Making an operator 
window current has no effect on the viewing order. At I*F* I the program calls 
SHOWGDF(START) to open a virtual device for the operator window 2 and to 
initialize the window with procedural alphanumerics. 

To keep the program as simple as possible, it calls the routine SHOWGDF for both 
operator windows. You could easily alter the program to call a different routine 
for each window. The DSOPEN call at I*J* I opens a virtual device and gives it 
the same identifier as the operator window with which it is associated. This has 
been done because SHOWGDF is called for two windows, and therefore two 
separate virtual devices will be opened. It also makes it clear which virtual device 
is associated with which operator window. In practice you could give the virtual 
device any valid identifier, if it differs from any other device identifier within the 
same instance of GDDM. GDDM automatically associates each virtual device with 
its respective operator window. 

The "do loop" that follows performs the I/O for the real device and, for the active 
operator window, calls SHOWGDF(READ) to restore and display a picture. Where 
there are several operator windows in an application, as in the example, the 

476 GDDM Application Programming Guide Volume 1 



windowing 

operator window that is the highest in the viewing order immediately before the 
input/output call (WSIO in the example) will be the active operator window. The 
fIrst time through the do loop operator window 1 is the topmost operator window 
when I/O takes place for the real device, at I*H* I. It will therefore initially be the 
active operator window. 

The user can change the viewing order by selecting a different window to be active. 
You can also change the viewing order in your program, as described in 
"Prioritizing operator windows" on page 478. 

The call to DSUSE at I*G* 1 is necessary to reuse the real device as the primary 
device, because in SHOWGDF, which is called at I*D* I, I*F* I, and I*I* I, there 
is a DSUSE to a virtual device. 

The WSIO call at I*H* 1 displays the two windows and their contents on the screen 
of the real device. In WSIO's one parameter, GDDM will return the identifIer of 
the active operator window. WSIO also makes the active operator window the 
current operator window. If the terminal user should alter the viewing priority of 
the two windows and make a different window active, using control mode for 
example, GDDM will return the identifIer of the new active operator window in 
WSIO's parameter. 

When WSIO is called for a device that has windows that do not specify 
coordination exits, as in the above sample program, GDDM behaves as follows: 
When the terminal user interacts with the active window, WSIO completes, and 
creates a pending attention interrupt for the virtual device associated with the 
window. (If an attention interrupt is already pending for the virtual device, it is 
replaced by the new one.) The interrupt is left pending until the next I/O function 
is called for the virtual device. If the next I/O function is an ASREAD, as in the 
'sample program, then, as it normally waits for an attention interrupt, it is satisfIed 
by the one that is pending. Therefore, no I/O is performed by the ASREAD, but the 
pending information is returned. For a description of how WSIO behaves with 
coordination exits, see "Task management" on page 481. 

In SHOWGDF, called at 1* I * I, the DSUSE call at I*L * 1 uses the operator 
window identifIer returned by WSIO to ensl,lre that the virtual device used is the 
one associated with that operator window. The ASREAD that follows, at I*M* 1 is 
therefore always issued against the virtual device associated with the active 
operator window. 

The fIrst two windowing programs have introduced the basic principles of operator 
windows, and some of the calls. The following sections describe some of the other 
windowing calls. 

Modifying the attributes of an operator window, using call WSMOD 

Normally you set the attributes of an operator window when you create it, using 
WSCRT. If you want to subsequently redefIne the attributes of a window, you can 
use the WSMOD call. WSMOD modifIes the attributes of the current operator 
window. Where there are several operator windows in a program, and the window 
whose attributes you want to modify is not at present the current one, you can 
make it current using the WSSEL call, already described. Here is an example of 
WSMOD: 

CALL WSMOD(1,6,MOD_ARRAY,14,'COMMAND WINDOW'); 

The parameters of WSMOD are as follows: 

Chapter 24. Windowing 477 



• The number of the first element of the array in the third parameter. It must 
have a value in the range 0 through 6. 

• The number of elements of the array in the third parameter. It must have a 
value in the range 0 through 6. 

• An array containing the attributes for the current operator window. If any 
attribute is not specified, or is specified as -1, the existing value is unchanged. 
The attributes that you can modify correspond exactly to the last six elements 
of the array in the WSCRT call. If any attribute is specified as 0, the default 
value is used. See the WSCRT call above for the default values. The six 
attributes corresponding to the elements are as follows: 

1. The row position of the top-left-hand corner of the operator window on the 
real screen. 

2. The column position of the top-left-hand corner of the operator window on 
the real screen. 

3. The number of rows in the operator window. This does not include any 
rows occupied by the window frame. 

4. The number of columns in the operator window. This does not include any 
columns occupied by the window frame. 

5. The row position of the top-left-hand corner of the operator window on the 
virtual screen. 

6. The column position of the top-left-hand corner of the operator window on 
the virtual screen. 

• The length in bytes of the character string in the final parameter. 

• The title to be incorporated into the frame of the operator window. 

Prioritizing operator windows 

You can change the priority of some or all of the operator windows in the viewing 
order, using the call WSSWP. This call lets you specify an array of identifiers of 
operator windows whose priorities are to be adjusted by placing them as neighbors 
to one of the other operator windows in the viewing order. The topmost window is 
always the active operator window. 

For example, assume that the following seven operator windows are in descending 
order: 

TOP 7, 6, 5, 4, 3, 2, 1 BOTTOM 

If you wanted to take operator windows 7,2, and 1, and change their order of 
viewing so that they are after window 5 and before window 4, like this: 

TOP 6, 5, 1, 7, 2, 4, 3 BOTTOM 

you would issue the following call: 

DeL PRI_ARRAY (3) FIXED BIN(31) INIT(2,7,1); 

CALL WSSWP(1,4,3,PRI_ARRAY); /* Change window viewing order */ 

478 GDDM Application Programming Guide Volume 1 



windowing 

The parameters are as follows: 

• The fIrst parameter specifIes whether the operator windows in the array in the 
fInal parameter are to be placed in descending or ascending order from the 
reference operator window. The reference operator window is the reference 
point in the viewing order about which the reordering of the windows is to take 
place. It is specifIed in the second parameter. In the example, it is operator 
window 4. 

The first parameter can have these values: 

-1 Descending order. The operator windows in the array will be placed 
behind the reference operator window. 

1 Ascending order (as in the example). The operator windows in the array 
will be placed in front of the reference operator window. 

• The second parameter contains the identifIer of the reference operator window 
relative to which the reordering is to take place. It can have a value of -1, the 
effect of which depends on whether you set the mst parameter to ascending or 
descending order: 

Descending The fIrst operator window in the array will become the top operator 
window in the viewing order, and the rest of the operator windows 
in the array are placed behind it. 

Ascending The fIrst operator window in the array will become the bottom 
operator window in the viewing order, and the rest of the operator 
windows in the array are placed in front of it. 

• The third parameter contains the number of elements in the array in the fInal 
parameter 

• The fInal parameter is an array of identifIers of operator windows whose 
priorities are to be adjusted relative to the reference operator window. Any 
element of the array can contain a value of -1, which causes all further 
elements to be ignored. 

The reordering process takes the first operator window in the array, and places it 
above or below the reference operator window in the viewing order, depending on 
the order specifIed in the first parameter. It then takes the second operator 
window in the array, and places it above or below the mst operator window, and so 
on, until all the elements of the array parameter have been processed, or until a 
value of -1 is found in the array. 

Querying the priority of overlapping operator windows 

There are two calls that you can use to query the priority of operator windows. 

In the last section, the WSSWP call was used to change the viewing priority of a 
specifIed array of operator window identifIers relative to a specified reference 
operator window identifIer. The corresponding query call WSQWP returns an 
array of operator window identifIers relative to a specified reference operator 
window identifier. For example, here is a typical call that returns the identifIers of 
the three operator windows that are above operator window 5 in the viewing order: 

Chapter 24. Windowing 479 



DCL PRI_ARRAY (3) FIXED BIN(31); 

CALL WSQWP(1,5,3,PRI_ARRAY); /* Query window viewing order */ 

The parameters are as follows: 

• The first parameter specifies whether the array in the final parameter is to 
return the identifiers of operator windows that are in descending or ascending 
order from the reference operator window. The possible values are: 

-1 Descending order 

1 Ascending order 

• The second parameter specifies the identifier of the reference operator window 
that the query relates to. It can have a value of -1, the effect of which 
depends on whether you set the first parameter to ascending or descending 
order: 

Descending The first operator window in the array will be the top operator 
window in the viewing order, and the rest of the operator windows 
in the array will be those that are behind it. 

Ascending The first operator window in the array will be the bottom operator 
window in the viewing order, and the rest ofthe operator windows 
in the array will be those that are in front of it. 

• The third parameter contains the number of elements to be returned in the 
array in the final parameter 

• The final parameter is an array that holds the returned identifiers of operator 
windows that descend or ascend from the reference operator window. 

There is another query call, WSQWI, that returns the identifiers of all operator 
windows. Here is a typical call: 

DCL PRI_ARRAY (7) FIXED BIN(31); 

CALL WSQWI(1,7,PRI_ARRAY); /* Query all window identifiers */ 

The parameters are as follows: 

• The first parameter specifies the type of operator window that you want 
information returned about: 

1 All operator windows. 

• The second parameter specifies the number of elements in the array in the final 
parameter. 

• The fmal parameter is the name of an array in which GDDM will return the 
requested information. 

There is also a call WSQWN that you can use to query the total number of 
operator windows. See the GDDM Base Programming Reference manual for more 
details. 

480 GDDM Application Programming Guide Volume 1 



windowing 

Querying operator window attributes, using WSQRY 

You can query the attributes of the current operator window. Here is a typical 
call: 

DCL WSARR(11) FIXED BIN(31); 
DCL ACTUAL_LENGTH FIXED BIN(31); 
DCL STRING CHAR(20); 

CALL WSQRY(1,11,WSARR,ACTUAL_LENGTH,20,STRING); 

The parameters are as follows: 

• The number of the first element in the array. 

• The number of elements in the array. 

• An array in which the attributes of the current operator window. are returned. 
In the first element, GDDM returns the window identifier. The remaining ten 
elements correspond to the ten elements that you can set using WSCRT. 

• The length of the window title is returned by GDDM. 

• In this parameter you specify how much of the title you want returned. 

• The window title is returned by GDDM. 

Task management 

The "Sample program using two operator windows" on page 473 showed how a 
single GDDM application could use windowing in its dialog with the terminal user, 
to present separate functions of the application, each in an operator window. You 
will recall that the application used the DSOPEN call to open the real device, and 
two WSCRT calls to open two operator windows. A subroutine was then called for 
each window. The subroutine contained a DSOPEN, that opened a virtual device 
for each operator window. 

You can use the same windowing principles to write your own task manager 
program. The GDDM-supplied sample task manager (ADMUTMT for MVS/TSO, 
ADMUTMV for VM/CMS) is an example of such a program. The task manager 
uses DSOPEN to open the real device, and WSCRT and the other windowing calls 
to create and control an operator window for each application program. 
Subsequent DSOPENs in each application program will open one or more virtual 
devices, which will be associated with the operator windows created by the task 
manager. This is illustrated in Figure 122 on page 482. 

Chapter 24. Windowing 481 



,------------------------------------------------------------, 
Task Manager 
using GDDM Operator 

window 0 

Real 
device 0 SOPEN 

I I 

Operator 
WSCRT 

Operator 
W window 1 window 2 SCRT 

Operator 
window n WSCRT 

---- --------------------- ------ ------- -----
---- ------------ -------1------ ------ -----

Virtual Virtual 
device DSOPEN device 0 

Virtual 
device SOPEN DSOPEN 

Function 1 
1 

Function Function 

1 
I 
I 

Application 1 : Application 2 1 __________________ 2 Application n 

Figure 122. Task manager with several applications 

The task manager manages the display device screen and other resources. In 
addition, the task manager must either use the task-management facilities of the 
operating system, or use its own pseudo-tasking facilities (TSO has full 
task-management facilities but CMS does not). The system tasking or 
pseudo-tasking executes each program in a separate sub-task. 

The way that GDDM makes it possible for several application programs to share 
the screen is by allowing the task manager to intervene in the execution of the 
program's input/output calls. When each operator window is created, the task 
manager specifies (in the rust array element of the last parameter of the WSCRT 
call) the address of a coordination exit routine. This runs in the application 
program subtask, and is invoked by GDDM whenever the application calls a 
function that requires input/output for the terminal - an ASREAD call, typically, 
as shown in Figure 123 on page 483. 

482 GDDM Application Programming Guide Volume 1 



windowing 

,------------------------------------------------------------, 
I 
I 
I 
I 
I 
I 
I 

Task Manager 
using GDDM 

GDDM Application 

Operator 
window 0 

3 Real 
device ~WSIO-0 

Operator 
window WSCRT 

Virtual 
device 

~1 
Function ASREAD 

Coordination 
Exit routine 

Figure 123. The coordination exit routine 

The numbers in the figure represent the following events: 

1. An input/output call is issued by the application, causing GDDM to invoke the 
coordination exit routine. 

2. The exit routine, when invoked, must post the task.manager task and wait. 
The task manager must then call WSIO, the coordinated output/input call. The 
WSIO call updates all the windows on the screen. WSIO also returns the 
identifier of the topmost window on the screen. The task manager uses this to 
find out which subtask to post. It then posts that subtask and waits. 

3. When the task manager posts the subtask, control passes back to the 
coordination exit routine, which in turn returns control to GDDM. 

4. Control then returns to the ASREAD (or other application input/output call). 
GDDM-will complete the processing of this call, and pass control back to the 
application program. Any input data entered by the terminal user will then be 
available to the application. 

When the application terminates, normally or abnormally, control is passed to the 
task manager, which typically calls WSIO to find out from the terminal user what 
to do next. 

Chapter 24. Windowing 483 



The purpose of the coordination exit routine is to switch control from the subtask 
to the main task, or the other way round. There is a direction parameter to tell it 
which way to switch. 

Running existing GDDM applications under a task manager: You can usually 
run existing GDDM applications under a task manager without having to change, 
recompile, or re-link-edit the application. 

However, under eMS, if an application is in the form of a text file, the application 
must have been written using the reentrant interface. This is because text files are 
automatically link-edited at run time, and applications written in the nonreentrant 
interface will, when link-edited, attempt to pick up the same entry points as the 
task manager. If you want to run a nonreentrant application under a task 
manager, explicitly link-editing the load module will ensure that the application 
picks up its own entry points. 

Under TSO, the only restriction is that you cannot, under a task manager, run 
more than one application where each application uses the same ddname, but 
accesses different data sets. 

GDDM-IMD can be run under a task manager, but it may not be run in an operator 
window that is smaller than the screen. 

How FSSA VE and FSSHOW perform with operator windows 

An FSSA VE call in an application running in an operator window saves the 
contents of the virtual screen (without borders), subject to the outer limits of the 
real screen. For example: 

• If the virtual screen is smaller than the real screen, the virtual screen is saved. 

• If the virtual screen is larger than the real screen, a real screen-sized virtual 
screen is saved. 

A picture restored by an FSSHOW or FSSHOR call in an application takes over the 
whole real screen when the call is issued. No other operator window or window 
borders are seen. 

The next input by the terminal operator is passed to the device that issued the 
FSSHOW or FSSHOR, and all previously displayed windows are redisplayed. 

Allocation of resources to operator windows 

When operator windows are used to run several independent programs at the same 
time on the same device, more than one program may try to use the same PS store. 
In this case, of the operator windows requiring the PS store, the one that has the 
highest viewing priority uses it, and the others use the default PS store. This 
sharing of PS stores is transparent to the program. 

On devices like the 3279, GDDM uses programmed symbols for graphics, and to 
draw the borders around operator windows. The PS stores are allocated in the 
following order: 

• Symbol sets reserved by the application for the active operator window 

• Graphics in the active operator window 

484 GDDM Application Programming Guide Volume 1 



windowing 

• The borders of all operator windows 

• Symbol sets and graphics for non-active operator windows. 

If you have a number of operator windows containing graphics, that are to be 
displayed on the screen at the same time, PS overflow can occur. In this case, 
GDDM guarantees picture fidelity for the active operator window only, and may 
have to degrade the appearance of borders and picture fidelity for non-active 
operator windows. 

How to free resources when a task terminates 

MVS provides full task-management facilities, one feature being that when a task 
terminates, all the resources obtained by that task, and by any subtasks that it 
might have, are freed. This applies to virtual storage, files, and enqueue requests. 

If you are using MVS, and not taking advantage of its tasking facilities, or if you 
are using VM, which does not have this feature, you can use a GDDM call to group 
one or more applications into an application group. Using the ESACRT call in 
your task manager program creates an application group and makes it current. All 
instances of GDDM that are initialized will be associated with the current 
application group. Using the ESADEL call causes GDDM to issue an internal 
FSTERM for each instance of GDDM associated with the specified application 
group. Storage, files, and enqueue requests owned by all the instances are 
therefore freed. 

When control is passed from an instance of GDDM in one application group to an 
instance of GDDM in a different application group, neither instance having 
terminated, you can use the ESAQRY call to save the current application group, 
and use the ESASEL call to make the target application group current. 

If you are using MVS real-tasking facilities, you should not use the ESAxxx group 
of calls. If you do, GDDM may try to release resources that have already been 
released by MVS. 

See the GDDM Base Programming Reference manual for a full description of each 
call. 

Chapter 24. Windowing 485 



Part 6. Example programs 

Part 6. Example programs 487 



example programs 

Example 1. The ADMUSP4 graphics editor sample 
program 

The ADMUSP4 sample program provides an example of a graphics editor program. It uses function 
and devices that are supported in GDDM Release 2.1 and is designed to be run on a 3270-PCjG or 
3270-PCjGX work station. Its purpose is to let the user create pictures that are made up of one or 
more objects (for example, lines, shaded boxes, and strings of text). 

The program is an example of the programming techniques that GDDM Version 2 Release 1 provides. 
Although it is written in PLjI, it can be used as the basis for user-written programs of a similar type 
in other programming languages. 

Because of its length, the program listing is not given in this section. However, the remainder of 
this section summarizes what the program does and what is displayed when it is called. 

Note: ADMUSP4 can be run on a 3279 display; however, it provides less function than when 
run on a 3270-PC work station. 

What ADMUSP4 provides 

Figure 124 shows the format of the display that the sample program provides. 

Information area Menu area 

Drawing area 

Figure 124_ The menu displayed by the ADMUSP4 sample program 

Example 1. The ADMUSP4 graphics editor sample program 489 



The screen is divided into: 

• An information area, that will contain prompts or messages from the program, and into which 
you can enter information. 

• A drawing area, where you can draw primitives, and into which you can restore already saved 
graphics. 

• A menu area, where you can select various functions. Selections from the menu are made by 
moving the cursor and either pressing a button on the mouse, or by pressing the stylus tip-switch 
on the tablet, or by pressing enter, depending on the device. 

The menu offers the following functions: 

Global actions 

Load 

Save 

Clear 
Plot 
Print 
View 

Finish 

Cancel 

The user is prompted to enter the name of an ADMGDF file, which is loaded and 
displayed in the drawing area. 
The user is prompted to enter the name under which the contents of the drawing area is 
to be saved as an ADMGDF file. 
Erases everything in the drawing area. 
Sends the contents of the drawing area to an attached plotter. 
Sends the contents of the drawing area to a graphics printer (using a nickname). 
Allows you to look at the picture in the drawing area, without the menu and border 
lines. 
Terminates ADMUSP4. If there are unsaved changes, the picture is preserved in a file 
called ADMUSP4 ADMGDF. 
Cancels a drawing action (for example, box). 

Drawing actions 

Sketch 
Line 
Box 
Point 

Arc 

Circle 
Rubout 
Text 

Freehand sketching using a mouse or puck (not available on the 3279). 
Draws straight lines in the selected color, line type, and line width. 
Draws rectangular boxes in the selected color, line type, and line width. 
The user defines a series of points, using a mouse or puck. The points are joined by 
straight lines in the selected color, line type, and line width (not available on the 3279). 
The user defines the start, end, and midpoints through which an arc is to pass, in the 
selected color, line type, and line width. 
The user defines the center of, and a point on the circumference of a circle. 
Not supported. 
Writes text in the current color and style. (A warning is issued on the 3279). 

Actions on drawn objects 

Move 
Copy 
Delete 
Scale 
Rotate 
Group 
Undo 

Repositions objects or groups of objects. 
Copies objects or groups of objects. 
Deletes objects or groups of objects. 
Enlarges or reduces objects or groups of objects. 
Rotates objects or groups of objects. 
The user specifies a set of objects to be treated as one entity. 
Not supported. 

490 GDDM Application Programming Guide Volume 1 



Style selection 

Text Four fonts. 
Line width Two line widths 
Line type Seven line types 

example programs 

Pattern Sixteen shading patterns in any of the colors listed below. 
Color Blue, red, pink, green, turquoise, yellow, neutral, and background. 

Invoking ADMUSP4 

There are no special considerations for compiling, link editing, and running this sample program; if 
necessary, see "Chapter 2. Drawing a simple picture" on page 7 or the appropriate chapter in the 
GDDM Base Programming Reference that describes how to run GDDM under the subsystem in use. 

Example 1. The ADMUSP4 graphics editor sample program 491 



Example 2. Assembler language example 

This program uses the nonreentrant interface to GDDM. It draws straight lines in response to cursor 
movement and user-generated attentions. PF3 or a GDDM error stops the program. You might want 
to check for the successful completion of all GDDM calls; most of these checks have been omitted 
here for clarity. 

Example 2. Assembler language example 493 



ASMNR 

LOOP 

RETURN 

* 

CSECT 
STM 
BALR 
USING 
ST 
LA 
ST 
LR 
CALL 
LTR 
BNZ 
CALL 
LTR 
BNZ 
CALL 
DS 
CALL 
CALL 
CALL 
CLC 
BNE 
CLC 
BNE 
CALL 
CALL 
L 
LR 
L 
LM 
BR 

Fl DC 
F3 DC 
SEGNO DC 
SAVEAREA DS 
TYPE DS 
VALUE DS 
MODS DS 
PTYP DS 
X DC 
* 
Y 

* 
* 
RO 
Rl 
R9 
R10 
Rll 
R12 
R13 
R14 
R1S 

DC 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
END 

, 
R14 ,R12, 12 (R13) 
R12,O 
* ,R12 
R13,SAVEAREA+4 
R11, SAVEAREA 
R11,S( ,R13) 
R13 ,R11 
FSINIT, (0) ,VL 
R9,R1S 
RETURN 
GSSEG,(SEGNO),VL 
R9,R1S 
RETURN 

SAVE REGISTERS 
BASE REGISTER FOR CODE 
... AND TELL THE ASSEMBLER 
SAVE CALLER'S SAVE AREA ADDRESS 
GET SAVE AREA ADDRESS 
... AND STORE IT 
SAVE AREA FOR CALLED ROUTINES 
INITIALIZE GDDM 
•.. AND CHECK FOR NORMAL RETURN 

OPEN SEGMENT NUMBER 1 
... AND CHECK FOR NORMAL RETURN 

GSMOVE,(X,Y),VL INITIALIZE CURRENT POSITION 
OH TOP OF LOOP 
ASREAD,(TYPE,VALUE,MODS),VL WAIT FOR OPERATOR ACTION 
GSQCUR,(PTYP,X,Y),VL FIND WHERE CURSOR IS 
GSLINE,(X,Y),VL DRAW LINE THERE FROM PREVIOUS POINT 
TYPE(4),Fl CHECK FOR A PROGRAM FUNCTION KEY 
LOOP ... CONTINUE IF NOT 
VALUE(4),F3 CHECK FOR PF3 
LOOP ... CONTINUE IF NOT 
GSSCLS,(O),VL CLOSE SEGMENT 
FSTERM,(O),VL TERMINATE GDDM IF PF3 WAS USED 
R13,4(,R13) RECOVER SAVE AREA ADDRESS 
R1S,R9 SET RETURN CODE 
R14,12(,R13) RESTORE REGISTERS 
RO,R12,20(R13) .•. FOR CALLER 
R14 RETURN TO CALLING ROUTINE 

F'l' 
F'3' 
F'l' 
l8F 
F 
F 
F 
F 
E'SO' 

E'SO' 

o 
1 
9 
10 
11 
12 
13 
14 
15 
ASMNR 

PROGRAM CONSTANTS 
INDICATES A PF KEY WAS USED 
PF KEY NUMBER 3 
SEGMENT NUMBER 1 
REGISTER SAVE AREA 
TYPE OF ATTENTION (FULLWORD INTEGER) 
ATTENTION VALUE (FULLWORD INTEGER) 
MODIFIED FIELDS (FULLWORD INTEGER) 
WINDOW INDICATION (FULLWORD INTEGER) 
X-COORDINATE (SHORT FLOATING POINT) 
..• INITIALIZED TO SO 
Y-COORDINATE (SHORT FLOATING POINT) 
... INITIALIZED TO SO 

EQUATES FOR REGISTERS 

494 GDDM Application Programming Guide Volume 1 



Example 3. An APL2 example 

There is a function called GDMX supplied with APL2 Release 2. The function is in a workspace 
called GDMX. When in APL2, you can type 

)LOAD 2 GDMX 
DESCRIBE 

for more details. 

GDMX lets you pass GDDM call names and parameter values to it. The calls can be coded in a 
similar way to that used for other programming languages, with the exception that you write the call 
name to the left of the function GDMX, and the arguments to the right of GDMX. 

The following program draws straight lines in response to cursor movement and user-generated 
interrupts. PF3 stops the program. 

v DEMO 
[1] A APL2 example using GDMX function supplied with APL2 Release 2 
[2J 'GSSEG' GDMX 1 «II Open segment 1 
[3J 'GSMOVE' GDMX 50 50 A Initialize cuppent position 
[4J LOOP: 'ASREAD' GDMX " «II Wait fop opepatop aation 
[5J +(1 3A.=2t5~1~RET_G)/END «II Check fop PF3 
[6J ' GSQCUR' GDMX ' , A Find whepe cupsop is 
[7J ' GSLINE' GDMX 2t1~RET_G A Dpaw line fpom ppevious point 
[8J +LOOP A Loop baak 
[9J END: 'GSSDEL ' GDMX 1 A Delete segment 1 

v 

Example 3. An APL2 example 495 



Example 4. BASIC example 

0010 REM How to use GDDM from an IBM BASIC program 
0020 REM === == === ==== ---- -- --- ----- ======= 
0030 REM 
0040 REM 
0050 REM 
0060 REM 
0070 REM 
0080 REM 
0090 REM 
0100 REM 
0110 REM 
0120 REM 
0130 REM 
0140 REM 
0150 REM 
0160 REM 
0170 REM 

This sample program gives 
some suggestions on how to use this function. 

Two general things to remember - you will need to be linked to 
GDDM and have the appropriate GLOBAL command in effect to run. 
An example is: 

GLOBAL TXTLIB ADMRLIB ADMGPLIB 
Also, if your default CMS LDRTBLS is less than 5, 
you will probably need to SET LDRTBLS 5 or more. 

BASIC GDDM coding employs numbers for calls. To make it more 
obvious which call is doing what, we have equated these 
numbers with the familiar call names. 

0180 OPTION BASE 1 
0190 INTEGER 
COLORS,HEAD_~TT,LABEL_ATT,KEY_ATT,ATMOD,PAT_ATT,AX_ATT,COPYP 
0200 DIM 
YARRAY(8l,COLORS(4l,HEAD_ATT(4l,LABEL_ATT(4l,KEY_ATT(4l,PAT_ATT(3) 
0210 DIM AX_ATT(3),COPYP(3) 
0220 DATA 24,41,18,17,31,29,13,27 
0230 MAT READ YARRAY 
0240 DATA 1,2,4,6 
0250 MAT READ COLORS 
0260 DATA 7,3,0,175 
0270 MAT READ KEY_ATT 
0280 DATA 6,3,0,200 
0290 MAT READ HEAD_ATT 
0300 DATA 2,3,0,300 
0310 MAT READ LABEL_ATT 
0320 DATA 16,16,16 
0330 MAT READ PAT_ATT 
0340 DATA 7,0,0 
0350 MAT READ AX_ATT 
03"60 DATA 0,1,1 
0370 MAT READ COPYP 
0380 CHRNIT 268501248 
0390 CHKEY = 268567041 
0400 AS READ 202375168 
0410 GSCLR 202113795 
0420 CHKATT 268568837 
0430 ASCPUT 201852419 
0440 FSOPEN 202899456 

CHXLAB 
CHPIE 
CHSET 
CHHATT 
CHKEYP 
ASDFLD 
GSCOPY 

268567811 
269289990 
268566785 
268568833 
268568577 
201852672 
202899458 

CHHEAD 
CHTERM 
CHCOL 
CHLATT 
CHPAT 
CHAATT 
FSCLS 

268567042 
268435712 
268567299 
268568835 
268567300 
268568321 
202899460 

Example 4. BASIC example 497 



0450 CALL GDDM (CHRNIT) 
0460 CALL GDDM (GSCLR) 
0470 CALL GDDM (CHCOL,4,COLORS(» 
0480 CALL GDDM (CHPAT,3,PAT_ATT(» 
0490 CALL GDDM (CHXLAB,2,4,'19721984') 
0500 CALL GDDM (CHSET,'CBOX') 
0510 CALL GDDM (CHSET,'ABPI') 
0520 CALL GDDM (CHSET,'KBOX') 
0530 CALL GDDM (CHKEYP,"H","T","C") 
0540 CALL GDDM (CHKATT,4,KEY_ATT(» 
0550 CALL GDDM (CHLATT,4,LABEL_ATT(» 
0560 CALL GDDM (CHAATT,3,AX_ATT(» 
0570 CALL GDDM (CHKEY,4,12,"PROGRAMMERS PROFESSORS MAIL CARRIER DP OPERATOR") 
0580 CALL GDDM (CHPIE,2,4,YARRAY(» 
0597 CALL GDDM (ASREAD,ATTYPE,ATMOD,COUNT) 
0600 CALL GDDM (FSOPEN,'PIE ',3,COPYP(» 
0613 CALL GDDM (GSCOPY,60,120) 
0626 CALL GDDM (FSCLS,l) 
0630 CALL GDDM (GSCLR) 
0640 CALL GDDM (CHTERM) 
0650 END 

0660 REM 
0670 REM 
0680 REM 
0690 REM 
0700 REM 
0710 REM 
0720 REM 
0730 REM 
0740 REM 
0750 REM 
0760 REM 
0770 REM 
0780 REM 
0790 REM 

Here is a little guidance as to how data is passed in an array. 
The basic calls are positional, and they expect a specific 
number of parameters. If you have an array 
defined with data in it to pass to GDDM you can't just name 
the array. In other words, if you have: 

100 DIM NUMBERS(8) 
to define an array with 10 elements 
when you pass this array to GDDM within a call it goes inside 
the parenthesis as: 

NUMBERS ( ) 
not as: 

NUMBERS or NUMBERS(8) or NUMBERS(X) 

498 GDDM Application Programming Guide Volume 1 



Example 5. CICS pseudoconversational example 

The following example program shows a reentrant GDDM mapping application written as a CICS 
pseudoconversation. There are several points to note about the program: 

• The program MENUPI has been defined to CICS and associated with transaction ID DFP1. 

• MENUPI determines, from the absence or presence of the COMMAREA, whether this is the first 
time through the program. 

• The first time through, DSOPEN is called with the PSCNVCTL,START processing option. 

• Subsequent invocations call DSOPEN with the PSCNVCTL,CONTINUE processing option (this 
tells GDDM to retrieve the saved device information from temporary storage). 

• All DSCLS calls except the last specify option 1. This tells GDDM not to erase the screen, but to 
unlock the keyboard (thus allowing input). It also tells GDDM to save, in temporary storage, all 
information about the device. This is required for GDDM to successfully re-initialize on the next 
invocation. 

• Required ADS information is saved in the COMMAREA. 

GDDM saves all information concerning the nature of the device between transactions, but it is 
the responsibility of the application to save data required by the application. 

Example 5. CICS pseudoconversational example 499 



MENUP1: PROC(COMAP) OPTIONS(MAIN)j 
/********************************************************************/ 
/* Test Program to display a set of panels using Mapping. */ 
/* MENUOO will be displayed first, and PF Keys 3 or 4 entered from */ 
/* this panel will cause the end of the application with either */ 
/* an erased screen or not respectively. */ 
/* Entering options '1', '2' or '3' from MENUOO will cause the */ 
/* display of MENUs 01, 02, and 03 respectively, each with their */ 
/* own legends displayed in a color generated by the program. */ 
/* MENUOO is then re-displayed after input. */ 
/* */ 
/* This program will be pseudoconversational. */ 
/* */ 
/* The logic is as follows: */ 
/* On first invocation (COMMAREA length = 0) */ 
/* Display MENUOO */ 
/* Save Application data in the COMMAREA */ 
/* Return to CICS requesting transaction DFP1 next time */ 
/* On subsequent invocations (COMMAREA length ~=O) */ 
/* Restore Application data from COMMAREA */ 
/* Re-define appropriate Map */ 
/* Receive Input */ 
/* If Finish not requested */ 
/* Display MENUOO */ 
/* Return to CICS requesting transaction DFP1 next time */ 
/* Else */ 
/* Return to CICS */ 
/********************************************************************/ 
DCL 

COMAP 
%INCLUDE 
%INCLUDE 
%INCLUDE 
%INCLUDE 
DCL 

ADMUPIRA; 
ADMUPIRD; 
ADMUPIRF; 
ADMUPIRM; 

1 MENUOO, 
10 MSG_SEL 
10 MSG_COL_SEL 
10 MSG_COL 
10 MSG_PS_SEL 
10 MSG_PS 
10 MSG 
10 OPT 

MENUOO_ASLENGTH 

DCL 
1 MENU01, 

10 MSG_SEL 
10 MSG_COL_SEL 
10 MSG_COL 
10 MSG_PS_SEL 
10 MSG_PS 
10 MSG 

MENU01_ASLENGTH 

DCL 
1 MENUO~, 

10 MSG_SEL 
10 MSG_COL_SEL 
10 MSG_COL 
10 MSG_PS_SEL 
10 MSG_PS 
10 MSG 

MENU02_ASLENGTH 

DCL 

PTR; /* COMMAREA PTR 

/* ADS */ 
CHAR(1), 
CHAR ( 1) , 
CHAR ( 1) , 
CHAR ( 1) , 
CHAR(l) , 
CHAR (78) , 
CHAR ( 2) , 

FIXED BIN(31,0) STATIC 
INIT(85); 

/* ADS */ 
CHAR(l), 
CHAR(l), 
CHAR(l), 
CHAR(l), 
CHAR ( 1) , 
CHAR(42), 

FIXED BIN(31,0) STATIC 
INIT(47) ; 

/* ADS */ 
CHAR(1), 
CHAR ( 1) , 
CHAR(l) , 
CHAR (1) , 
CHAR(1), 
CHAR(39), 

FIXED BIN(31,0) STATIC 
INIT(44); 

500 GDDM Application Programming Guide Volume 1 

*/ 



1 MENU03, 
10 MSG_SEL 
10 MSG_COL_SEL 
10 MSG COL 
10 MSG=PS_SEL 
10 MSG_PS 
10 MSG 

MENU03_ASLENGTH 

DCL 
DEVID 
FAMID 
PCCNT 
NMCNT 
PCLSTS(2) 
PCLSTC(2) 
DEVTK 
NMLST(1) 

DCL 
COPTES 
COPTLS 
COPTEU 
COPTLU 

DCL 
TRANID 

DCL 
(ATYPE,AVAL,AMOD) 

DCL 
FINISH 

DCL 
PICOPT 

DCL 
AAB 

DCL 
MAPG 

DCL 
SSID 

DCL 
SSID_BIT 

DCL 
X41 

DCL 
MAP{0:3) 

DCL 
1 COMMAREA 

2 MAPNO 
2 COL 
2 COUNT 
2 PSSID 
2 CLSOPT 

/* CODE STARTS HERE */ 

CALL FSINIT(AAB); 
IF EIBCALEN = 0 THEN 

DO; 

example programs 

/* ADS */ 
CHAR(1), 
CHAR ( 1) , 
CHAR(1), 
CHAR(l), 
CHAR(l), 
CHAR(60), 

FIXED BIN(31,0) STATIC 
INIT(65); 

FIXED BIN(31) INIT(O), 
FIXED BIN(31) INIT(1), 
FIXED BIN(31) INIT(2), 
FIXED BIN(31) INIT(O), 
FIXED BIN(31) INIT(25,l), 
FIXED BIN(31) INIT(25,2), 
CHAR{S) INIT{'*'), 
CHAR{S) INIT{ I '); 

FIXED BIN(31) INIT(O), 
FIXED BIN(31) INIT(1), 
FIXED BIN(31) INIT(2), 
fIXED BIN(31) INIT(3); 

CHAR{S) INIT{'DFP1 ' ); 

/* START 
/* CONTINUE 

FIXED BIN(3i); /* I/P CONTROL FLDS 

BIT(l) INIT('O'B); 

PIC ' 99'; 

CHAR{S); 

CHAR(S) 
INIT('DFMGClD5 ' ); 

CHAR(l) ; 

BIT(S) DEF(SSID); 

/* NUMERIC OPTION 

/* ANCHOR BLOCK 

/* MAP GROUP NAME 

/* SYMBOL SET ID 

/* SYMBOL SET ID 

BIT(S) INIT('01000001 ' B); 

CHAR (S) /* MAP NAMES 
INIT(IMENUOO','MENU01','MENU02','MENU03'); 

BASED{COMAP), 
FIXED BIN(l5), 
PIC'9' , 
FIXED BIN(31), 
CHAR(l) , 
FIXED BIN(31); 

/* COMMAREA 
/* MAP NAME ARRAY NO 
/* CURRENT COLOR 

/* INIT GDDM 

*/ 
*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 
*/ 

*/ 

*/ 

/****************************************************************/ 
/* SINCE WE DO NOT HAVE A COMMAREA, THIS MUST BE THE 1ST TIME */ 
/* THROUGH. */ 
/****************************************************************/ 
ALLOCATE COMMAREA; 
CALL DSOPEN(AAB,DEVID,FAMID,DEVTK,PCCNT,PCLSTS,NMCNT,NMLST); 

/* OPEN THE DEVICE SPECIFYING*/ 
/* START PSEUDO-CONV */ 

SSID_BIT = X41; /* ITALICS ID */ 

Example 5. CICS pseudoconversational example 501 



PSSID = SSID; /* SAVE IT */ 
CLSOPT = 1; /* DO NOT ERASE SCREEN */ 
MENUOO = "; /* CLEAR PRIMARY MENU */ 
MENUOO.MSG_SEL = '1'; /* GET DATA FROM ADS */ 
CALL MSPCRT(AAB,l,-l,-l,MAPG); /* PAGE CREATE */ 
CALL MSDFLD(AAB,l,-l,-l,'MENUOO'); /* MAP MENUOO */ 
CALL MSPUT(AAB,l,O,MENUOO_ASLENGTH,MENUOO)i 

/* PUT DATA INTO MAP */ 
CALL FSFRCE(AAB)i /* WRITE DATA TO SCREEN */ 
CALL DSCLS(AAB,DEVID,CLSOPT); /* CLOSE THE DEVICE */ 
CALL FSTERM(AAB); /* END GDDM */ 
MAPNO = 0; /* SAVE LAST MAP NO. */ 
COUNT = 0; /* INITIALIZE COUNT */ 
EXEC CICS RETURN TRANSID(TRANID) COMMAREA(COMMAREA); 

END; 
ELSE /* WE HAVE A COMMAREA */ 

DO; 
/****************************************************************/ 
/* GET I/P */ 
/****************************************************************/ 
CALL DSOPEN(AAB,DEVID,FAMID,DEVTK,PCCNT,PCLSTC,NMCNT,NMLST); 

/* OPEN THE DEVICE SPECIFYING*/ 
/* CONTINUE PSEUDO-CONV */ 

IF MAP NO = 0 THEN 
DO; 

/************************************************************/ 
/* RESTORE MENUOO */ 
/************************************************************/ 
MENUOO = "; 
MENUOO.MSG SEL = '1'; 
CALL MSPCRT(AAB,l,-l,-l,MAPG); 
CALL MSDFLD(AAB,l,-l,-l,'MENUOO'); 
CALL MSPUT(AAB,l,O,MENUOO_ASLENGTH,MENUOO); 

END; 
ELSE 

IF MAPNO = 1 THEN 
DO; 

/**********************************************************/ 
/* RESTORE MENU01 */ 
/**********************************************************/ 
MENU01::: "~I 

MENUOl.MSG_SEL = '2'; 
MENUOl.MSG_COL_SEL = '1'; 
MENU01.MSG COL = COL; 
CALL MSPCRT(AAB,l,-l,-l,MAPG); 
CALL MSDFLD(AAB,1,-1,-1,'MENU01'); 
CALL MSPUT(AAB,1,1,MENU01_ASLENGTH,MENUOl); 

END; 
ELSE 

IF MAP NO = 2 THEN 
DO; 
/**********************************************************/ 
/* RESTORE MENU02 */ 
/**********************************************************/ 

MENU02 = "; 
MENU02.MSG SEL = '2'; 
MENU02.MSG=COL_SEL = '1'; 
MENU02.MSG COL = COL; 
CALL MSPCRT(AAB,l,-l,-l,MAPG); 
CALL MSDFLD(AAB,1,-1,-1,'MENU02'); 
CALL MSPUT(AAB,1,1,MENU02_ASLENGTH,MENU02); 

END; 
ELSE 

DO; 
/**********************************************************/ 
/* RESTORE MENU03 */ 

502 GDDM Application Programming Guide Volume 1 



example programs 

/**********************************************************/ 
MENU03 = "; 
MENU03.MSG SEL = '2'i 
MENU03.MSG=COL_SEL = '1'; 
MENU03.MSG_COL = COL; 
CALL MSPCRT(AAB,l,-l,-l,MAPG)i 
CALL MSDFLD(AAB,1,-1,-1,'MENU03'); 
CALL MSPUT(AAB,1,1,MENU03_ASLENGTH,MENU03); 

END; 
CALL ASREAD(AAB,ATYPE,AVAL,AMOD); 

/* GET I/P DATA 
COL = MOD(COUNT,7) + 1; 
COUNT = COUNT + 1; 
IF MAP NO = 0 THEN 

DO; 
CALL MSGET(AAB,l,O,MENUOO_ASLENGTH,MENUOO); 

IF ATYPE = 1 THEN 
DO; 

IF AVAL = 3 THEN 
DO; 

CLSOPT = COPTEUi 
FINISH = 'l'Bi 

END; 
IF AVAL = 4 THEN 

DO; 

END; 

CLSOPT COPTLU; 
FINISH = 'l'B; 

END; 

IF ..., FINISH THEN 
DO; 

IF OPT -,= '01' 
& OPT -,= '02' 
& OPT -,= '03' THEN 

DO; 
MENUOO.MSG = 'INVALID OPTION SELECTED'; 
MENUOO.MSG_COL_SEL = '2'; 
MENUOO.MSG_COL = COL; 
CALL MSPUT(AAB,l,O,MENUOO_ASLENGTH,MENUOO); 

END; 
ELSE 

DOi 
IF OPT = '01' THEN 

DO; 
MENUOl = "i 
MENU01.MSG_SEL = '2'; 
MENU01.MSG_COL_SEL = '1'; 
MENU01.MSG_COL = COLi 
CALL MSDFLD(AAB,1,-1,-1,'MENU01'); 
CALL MSPUT(AAB,1,1,MENU01_ASLENGTH,MENU01); 
MAPNO = 1i 

END; 
ELSE 

IF OPT = '02' THEN 
DO; 

MENU02 = "; 
MENU02.MSG_SEL = '2'; 
MENU02.MSG_COL_SEL = '1'; 
MENU02.MSG_COL = COL; 
CALL MSDFLD(AAB,1,-1,-1,'MENU02'); 
CALL MSPUT(AAB,1,1,MENU02_ASLENGTH,MENU02); 
MAPNO = 2; 

END; 
ELSE 

*/ 

Example 5. CICS pseudoconversational example 503 



END; 
END; 

END1 
ELSE 

D01 

D0 1 
MENU03 = "1 
MENU03.MSG_SEL = '2'1 
MENU03.MSG_COL_SEL '1'; 
MENU03.MSG_COL = COL; 
MENU03.MSG_PS_SEL = '1'; 
MENU03.MSG_PS = PSSID; 
CALL MSDFLD(AAB,1,-1,-1,'MENU03'); 
CALL MSPUT(AAB,1,1,MENU03_ASLENGTH,MENU03); 
MAP NO = 3; 

END; 

MENUOO = "; 
MENUOO.MSG_SEL = '1'; 
CALL MSDFLD(AAB,l,-l,-l,'MENUOO')1 
CALL MSPUT(AAB,l,O,MENUOO_ASLENGTH,MENUOO)1 
MAP NO = 0; 

END; 
IF ~FINISH THEN /* CONTINUE TRANSACTION */ 

CALL FSFRCE(AAB)1 /* WRITE DATA TO SCREEN */ 
CALL DSCLS(AAB,DEVID,CLSOPT); /* CLOSE THE DEVICE */ 
CALL FSTERM(AAB); /* END GDDM */ 
IF ~FINISH THEN 

EXEC CICS RETURN TRANSID(TRANID) COMMAREA(COMMAREA); 

END; 
END; 

504 GDDM Application Programming Guide Volume 1 

/* - OF MENUPl */ 



Appendixes 

Appendixes 505 



Appendix A. Major types of supported device 

Although GDDM programs are largely device-independent, the functions provided 
are inevitably influenced to some extent by the hardware. Some GDDM functions 
are not supported on some devices. In other cases, the results vary somewhat from 
one device to another. The purpose of this appendix is to help you understand the 
GDDM support for the particular devices used by your application programs. 

Note: With all devices, some models only may be supported, and specific features 
may be prerequisite. Full details are given in the GDDM Installation and System 
Management manual. 

3179-G display station 

The 3179-G accepts graphics orders such as "draw a line" or "set color to red." The 
vector-to-raster process is performed in the terminal. 

The 3179-G is a family-1 device. 

3270-PC/G and /GX work stations 

After the 5080 Graphics System, these are the most powerful terminals supported by 
GDDM. Of all display devices, they have the widest range of available function. 

Like the 3179-G, they accept graphics orders. In addition, they accept 
alphanumerics data formatted into 3270 fields. 

The 3270-PC/GX can be configured as a dual-screen version, on which the 
alphanumerics are displayed on a separate screen from the graphics. Application 
programs need not be concerned with this unless they depend on the layout of 
alphanumerics and graphics together. Otherwise, a program that executes 
correctly on the single-screen work station will also do so on the dual-screen 
configuration, and conversely. 

Not only do the 3270-PC/G and /GX work stations support the most function, but 
for many applications they give the lowest usage of the host processor and the 
shortest data streams. 

The work stations are GDDM family-1 devices. 

Appendix A. Major types of supported device 507 



Retained and non-retained modes 

In the normal mode of operation, GDDM sends graphic orders to the work station 
with the request that they be retained in its segment storage. GDDM then sends 
further instructions to execute these orders and thereby display the picture. This 
is called the retained mode of operation. 

When storage in the work station is limited or the picture is complicated, the 
graphics orders for the whole picture cannot be retained. In these cases, GDDM 
sends the graphics orders to the work station with a request for immediate 
execution, and hence immediate display of the picture. The work station retains no 
graphics orders. This is non-retained mode. 

If the program amends non-retained graphics, GDDM may have to retransmit the 
whole picture, whereas in retained mode it could transmit just the updates. The 
former results in longer data streams. Furthermore, some work-station functions 
that require retained graphics will be wholly or partially unavailable in 
non-retained mode. These include segment dragging - the default cursor will be 
used as the locator echo instead of the segment. Some work-station functions such 
as Jump or Change Screen, may result in graphics being missing from the screen 
until the host retransmits the picture. 

Retained mode is the default. GDDM will degrade from retained to non-retained 
mode if necessary, with no action by you. Or, instead, you can specify non-retained 
mode in a processing option. The terminal can also be configured as "output only", 
which has the same effect as the non-retained-mode processing option. 

When GDDM degrades, it initially attempts to use non-retained mode for the 
graphics segments, but to keep retained mode for the symbol-set definitions. If 
there is not even enough storage for just the symbol sets, the symbols are expanded 
into primitives, and these are transmitted in non-retained mode. When sufficient 
storage becomes available at a later stage, GDDM upgrades back to retained mode. 

No attempt is made to use retained mode if the total segment storage available to 
GDDM is less than 1024 bytes. 

Non-retained mode is used when more than one graphics field is displayed on the 
screen. It is also used for window borders. Local functions such as Jump Screen 
should be avoided when operator windows are used with multiple applications. 

Data from stroke devices is held in segment storage. The complexity of the picture 
may therefore affect the number of stroke-data points that 'can be held. 

Switching modes may cause a redraw of the screen. If the pictures are such that 
GDDM would switch frequently, you may improve usability by specifying 
non-retained mode. And applications that create complex pictures and have little 
graphics-input function may be most efficient in non-retained mode. 

You can specify non-retained mode with a processing option, either on a DSOPEN 
call: 

DECLARE NAME(l) CHARACTER(S); 
DECLARE PROCOPT_LIST(2) FIXED BINARY(31); 

PROCOPT_LIST(l) = 17; 
PROCOPT_LIST(2) = 1; 

/* RETAINED/NON-RETAINED MODE PROC. OPTION */ 
/* 0 = RETAINED (DEFAULT); 1 = NON-RETAINED */ 

CALL DSOPEN(l,l,'*', 2,PROCOPT_LIST, o ,NAME) ; 

508 GDDM Application Programming Guide Volume 1 



appendixes 

or in a nickname statement: 

ADMMNICK FAM=l,PROCOPT=«SEGSTORE,NO» 

The nickname method is usually preferable, as it allows the operator to select the 
mode to suit the terminal being used. 

5550 family multistations with 3270 PC/G program 

The 5550 Multistation supports DBCS characters (used in some Asian languages) in 
alphanumeric fields. It can include a 5550·family printer in addition to the display 
unit. The 5550 is roughly equivalent to a 3270.PC/G, but supports non·retained 
mode only. It accepts graphics orders. It supports alphanumeric data formatted 
into 3270 fields. 

The 5550 is a familY-l device. 

5080 Graphics System 

The 5080 is the most powerful terminal supported by GDDM. However, it is 
primarily intended for polyline CAD/CAM applications. GDDM applications will 
run on the 5080 but will not take advantage of its full capabilities. 

The 5080 is supported under TSO and VM, but not under CICS or 1M3. 
GDDM/MVS, GDDM/VM, and GDDM·PGF communicate with the 5080 through 
GDDM/graPHIGS, a separate mM licensed program. 

The 5080 is either associated with a physically separate 3270, or with the 3270 
feature that resides within the 5080 hardware, to give a dual·screen configuration. 
In the case of the physically-separate 3270, alphanumerics are displayed on the 3270 
screen, while graphics are displayed on the 5080 screen at the same time. In the 
case of the 3270 feature, either graphics or alphanumerics are displayed on the 5080 
screen. You cannot see them at the same time. 

3270-family terminals that use programmed symbols for graphics 

These include the 3278, 3279, 3290, 8775, and the 3270 PC. 

They have less graphics capability than the 3270·PC /G and /GX work stations. 
The main differences are: 

• These 3270 terminals do not accept graphics orders. GDDM displays graphics 
using programmed·symbol (PS) stores instead. 

• They are capable of fewer processes than the 3270-PC/G and /GX work stations. 
Some operations, such as clipping, have to be done in the host rather than the 
terminal. Others, such as segment dragging, are not supported at all. 

• They do not have a graphics cursor, nor any associated graphics input device 
(that is, no mouse, stylus, or puck). 

The terminals are GDDM family-l devices. 

Appendix A. Major types of supported device 509 



How graphics are created using programmed symbols 

The display area of these terminals is divided into cells. The PS feature permits 
any desired pattern of dots, or pixels, to be sent to any of the cells on the device. 
Graphics are created by displaying appropriate patterns in appropriate cells. 

When you request a thick blue line for example, GDDM will determine which 
hardware cells the line will traverse. It will then determine what dot patterns are 
required in these cells to produce a thick blue line. The process of translating 
graphical items into dot patterns is known as rastering. When the time comes to 
send out the graphics, GDDM will construct a data stream to transmit the dot 
patterns (that is, the programmed symbols) to the device and to display them in the 
requisite cells. 

Multicolor devices have two different types of PS-stores. Those that may contain 
multicolored programmed symbols are known as triple-plane PS-stores. Those 
that permit only monochrome programmed symbols are called single-plane 
PS-stores. Monochrome symbols may be displayed in anyone of the seven colors: 
the term means that only one color is used within the symbol. 

GDDM uses both types of store to hold the PS that make up the graphics. For 
example, if you draw a red line crossing a blue line, the dot pattern for the cell 
containing the crossing point would need to be loaded into a triple-plane PS-store. 
The dot patterns representing the remainder of the two lines could be loaded into a 
single-plane PS-store. 

A 3279 terminal has up to six PS-stores, depending on its features. Numbers 2, 3, 
and 6 are single-plane. Numbers 4,5, and 7 are triple-plane. 

For the allocation of PS stores to a number of operator windows, see "Allocation of 
resources to operator windows" on page 484. 

PS overflow - corruption of the display output 

Under some conditions there may be insufficient PS-store locations available to 
hold all the dot patterns needed to represent your graphics. This causes a 
phenomenon known as PS overflow. The symptoms of this may be twofold: 

• If the device has exhausted its triple-plane locations, but has some single-plane 
locations available, some graphics cells will appear with the correct dot 
patterns but an incorrect color. 

• If the device has exhausted both types of PS location, some graphics cells will 
contain an asterisk instead of the requisite dot pattern. 

PS locations are likely to become exhausted only when there is a large number of 
different dot patterns in use, because GDDM shares locations when a pattern is 
repeated. These. are the conditions which might cause overflow: 

• An unusually high number of multicolored dot patterns are required to 
represent the graphics. The triple-plane PS-stores may become exhausted. 

• One or more of the PS-stores have been reserved for font usage as described in 
"Chapter 15. Symbol sets" on page 219. They are therefore unavailable for 
GDDM's use. 

• The picture is too large and too complex. 

510 GDDM Application Programming Guide Volume 1 



appendixes 

You can check whether a picture would cause PS overflow before sending it to the 
terminal by executing an FSCHEK call (see "Checking picture complexity using 
call FSCHEK" on page 15). 

You can always reduce the required PS-storage by making your picture smaller. In 
other words, you reduce the size of your graphics field (see "The graphics field" on 
page 96). 

3270-family terminals without programmed symbols 

These may include the 3104, 3178, 3275, 3276, 3277, 3278, 3279, 3290, 5550 with 
Japanese 3270 PC program or 3270 emulation program, 8775, and 3270 PC. When 
programmed symbols are not available, only alphanumeric functions are supported. 

All these devices are family-I. 

3117 and 3118 scanners, and the 3193 display station 

The 3193 is the primary display for images. As well as displaying image data, it can 
perform some image processing. 

The 3193 also supports alphanumeric input and output, using an alphanumeric 
cursor. 

Although GDDM graphics are valid on the same page as image, graphics cannot be 
shown on a 3193. 

The 3117 and 3118 scanners attach to the 3193. Both devices scan a document and 
convert it into electronic image data. 

3270-family graphics printers 

These are the 3268 and 3287. They support graphics using programmed symbols 
and alphanumerics. 

Some models print in monochrome only. Others will print in four colors. On these, 
black and the primary colors (red, blue, and green) print as specified by your 
program, and all other colors print as black. 

It is rare to get PS overflow on a printer. The output is sent in bands (known as 
swathes). If ever the PS becomes exhausted, GDDM discards it and starts a new 
swathe. This technique is not available on a display, where removal of the PS for 
the rll'st part of the picture would cause its disappearance from the screen. 

These printers can be treated as GDDM family-lor family-2 devices. 

3270-family alphanumeric printers 

These include the 3230, 3232, 3262, 3283, 3284, 3286, 3288, 3289, and 5550-family 
printer, such as the 5553, 5557, and 5577. They will print alphanumeric data only. 
They can be GDDM family-lor family-2 devices. 

The 3262 can also be used as a system (family-a) printer. 

Appendix A. Major types of supported device 511 



System printers 

These include the 1403, 3203, 3211, and 3800. They support alphanumerics only. In 
GDDM terms, they are family-3 printers. 

Some models of the 3800 can also be used as composed-page (family-4) printers. 

Composed-page printers 

Plotters 

IPDS printer 

These are the 3800 Models 3 and 8, the 3820, and the 4250. They are 
high-resolution devices that accept coded bit images of graphics output. 
Alphanumerics are not supported. 

They are GDDM family-4 devices. The output from your program goes first to an 
intermediate image file. This may be merged with other output (typically text from 
the IBM Document Composition Utility program product) when it is sent to the 
printer. 

The printer's output is monochrome. However, GDDM supports the creation of 
color-separation masters for publications printing. 

GDDM will send graphics output to the following IBM plotters: 

• 7371,7372,7374,7375, or 6180, attached to a 3270-PC/G or IGX family work 
station 

• 7371, 7372, or 6180, attached to a 3179-G 

• 7371, or 7372, attached to a 5550-family multistation. 

In each case, alphanumerics are not supported. 

The plotters are GDDM family-1 auxiliary devices. 

This is the 4224 printer. It supports alphanumerics, graphics, and image data. The 
graphics data are sent as vectors and the printer performs the vector-to-raster 
conversion. It can print in monochrome, 4 colors (blue, red, green, and black) or 7 
colors (blue, red, magenta, green, cyan, yellow, and black) depending on the type of 
ribbon installed. 

The extended storage model contains 512K bytes of RAM for holding picture data 
sent by GDDM. The base model contains 64K bytes for this purpose. If the picture 
data exceeds the storage capacity of the target printer, a warning message is 
issued, and transmission of data is truncated at that point. 

It can be used as a GDDM family-1 or family-2 device. 

512 GDDM Application Programming Guide Volume 1 



appendixes 

Appendix B. Device-independent programming tips 

Introduction 

GDDM provides much of its function in a device-independent way. However, there 
are two kinds of device-dependent operation of some Base API calls: 

1. The call and its parameters are valid, but the current device does not give the 
same results as the general case usually described in this guide. 

GDDM aims to exploit device capabilities, so it follows that only some devices 
allow the full range of some call parameter values to take effect. 

For example, color in the GSCOL call. 

2. The call is not valid for the current device, and a GDDM error message will be 
displayed. 

For example, use of alphanumerics on a plotter. 

The points below are aimed to make you aware of potential situations in the first 
category, and to help you avoid the second. 

See Appendix A, "Major types of supported device" on page 507 for further 
device-specific information. 

Points to help you minimize device dependency in your programs 

Before going into the detail below. remember two general tips: 

1. Use GDDM defaults as much as possible, and 

2. Make good use of the Base API query calls. Not all of them are mentioned 
below - see the GDDM Base Programming Reference for a full list. Also see 
that manual for the considerable scope of the FSQURY call, which can be 
invoked so as to return general, graphics, partitions, or plotter-related 
information. 

Specific points are now discussed: 

Appendix B. Device-independent programming tips 513 



Graphics primitives 

• Do not use primitives outside segments if you want them plotted. You should 
also note that the lifetime of primitives outside segments is device-dependent. 

• Note that GSIMG image objects will vary in size because of different resolution 
(pixels per inch) on different devices. 

Graphics attributes 

Displaying text 

• When using GSCOL, bear in mind that different numbers of colors are 
supported on different types of display (for example, the 3270-PC/GX supports 
16), and frequently less are supported on plotters and printers (for example, the 
3287 supports 4). 

See the GDDM Base Programming Reference for a full description of supported 
values. 

• When using GSFLW, note that only the 3800 and 4250 support line width values 
less than 1 or greater than 2. 

See the GDDM Base Programming Reference for a full description of supported 
values. 

• When using GSMIX, use only overpaint (the default). 

Mix mode is not supported on the 5080. 

Underpaint is not supported on the 3270-PC/G or IGX, or the 5550. 

Mix mode should not be used on plotters, unless you genuinely want the 
undefined color resulting from mixing of the pen inks. 

• Note that plotter patterns are a fixed set different from the GDDM- supplied 
patterns appearing on displays. 

• Multi-colored shading is not supported on the 5080. 

• When using procedural alphanumerics, avoid field positioning which may 
exceed the page limits on the current device (see "Graphics hierarchy" on 
page 515). 

• Avoid mixing alphanumeric text accurately spaced with respect to graphics. 
Instead use graphics text, mode 3, especially if the output could appear on a 
plotter, in addition to a display. 

Use of GSARCC can help - it allows either graphics aspect ratio or 
graphics/alphanumeric positioning to be maintained. 

• When using GSCB to specify character box sizes, use mode 3 graphics text. 

• Note that image symbols will vary in size due to different resolution (pixels per 
inch) on different devices. 

514 GDDM Application Programming Guide Volume 1 



appendixes 

Text input 

When using the 3279 as well as 3270·PC/G or /GX, do not use string input. 

Graphics hierarchy 

• Limit page size to row and column limits of the current device - use FSQURY 
to determine these dynamically. 

In general avoid enforcing specific rows and columns when specifying the 
hierarchy objects. 

• Note that graphics field position and size, in rows and columns, may be 
obtained by using the GSQFLD call. 

• Use the GSUWIN call to enforce uniform world coordinates in x and y 
directions. The resulting world coordinate ranges for the current window may 
then be queried by use of GSQWIN, and for a graphics cell by use of GSQCEL. 

Storing and loading graphics 

• Use GSSAVE and GSLOAD rather than FSSAVE and FSSHOR. 

• When using the GSSA VE call, use the default for coordinate data type (floating 
point). 

Interactive graphics 

Symbol sets 

Note that: 

• The 3179-G, 3279, and 5550 do not support segment dragging. 

• The 3179-G, 3279, and 5550 do not support string and stroke devices. 

• The 3179·G, 3279, 5550, and 5080 do not support choice device data keys. 

• Only the 3270·PC/G and /GX, and 5080 support the tablet input device. The 
3179·G and 5550 support only the mouse. The 3279 does not support either 
tablet or mouse. 

• Note that image symbols, being defined in actual pixels, will change in size and 
aspect ratio when displayed on different devices. This is the case whether the 
symbol set is loaded with a PSLSS or GSLSS call, and whether or not the 
default symbol set is used. 

• When using supplied symbol set names, use the substitution character facility. 

• Before specifying specific PS stores in the PSLSS call, query the number, type, 
usage and availability of PS stores by use of FSQURY and PSQSS. Otherwise 
code PSLSS(O, ...... ) so as to be non-specific. 

Appendix B. Device-independent programming tips 515 



Device support 

Windowing 

• Specify the minimum in DSOPEN - use nickname files to set and change 
processing options. 

• Use the DSQDEV call to find out which processing options are in effect, 
including the effects of any nickname file processing. 

• Use the DSQUSE call to find out the identifier of the current primary or 
secondary device. 

Hardware partitions are supported on a limited number of displays. Emulated 
partitions are supported on all displays. You should therefore avoid any 
dependency on hardware partitions, if possible. 

516 GDDM Application Programming Guide Volume 1 



GDDM glossary 

This glossary defines various terms used in the 
documentation of GDDM. 

This glossary includes terms and definitions from 
the IBM Vocabulary for Data Processing, 
Telecommunications, and Office Products, GC20-1699. 

AAB. Application anchor block. 

active operator window. In GDDM, the 
operator window with the highest priority in the 
viewing order. 

active partition. The partition containing the 
cursor. Contrast with current partition. 

adjunct. In mapped alphanumerics, one of a set 
of optional subfields in an application data 
structure that specifies some attribute of a data 
field, for example, that it is highlighted. An adjunct 
enables the attribute to be varied at run time. 

ADS. Application data structure. 

AlC. Application interface component. 

AID. Attention identifier. 

alphanumeric character attributes. In GDDM, 
comprise the highlighting, color, and symbol set to 
be used. 

alphanumeric cursor. A physical indicator on a 
display. It can be moved from one hardware cell to 
another. 

alphanumeric field. A field (area of a screen or 
printer page) that can contain alphabetic numeric 
or special characters. In GDDM, contrast with ' 
graphics field, and image field. 

alphanumeric field attributes. In GDDM 
comprise intensity, highlighting, color, symboi set 
to be used, field type, field end output conversion 
input conversion, translate table assignment, , 

transparency, field outlining, and mixed-string 
fields. 

alternate device. In GDDM, a device to which 
copies are sent of the primary device's output. 
Usually the alternate device is a printer or plotter. 
See also primary device. 

annotation. An added descriptive comment or 
explanatory note. 

APA. All points addressable. 

APAR. Authorized program analysis report. A 
report of a problem caused by a suspected defect in 
a current unaltered release of a program. 

aperture. See pick aperture. 

API. Application programming interface. 

APL. One of the programming languages 
supported by GDDM. 

application data structure (ADS). A structure 
created by GDDM-IMD that contains an entry for 
each variable field within a map. The data to be 
displayed in a mapped field is placed into the 
application data structure by the user's program. 

application image. In GDDM, an image 
contained in GDDM main storage, and independent 
of any device or GDDM page. Contrast with device 
image. 

application programming interface (API). The 
formally defined programming-language interface 
between an IBM system control program or licensed 
program and its user. 

area. In GDDM, a graphics area is a shaded 
shap~, such as a solid rectangle. It is created by 
opemng the area, defining its outline, and closing 
the area. 

aspect ratio. The width-to-height ratio of an 
area, symbol, or shape. 

attention identifier. A number indicating which 
button the operator pressed to satisfy a read 
operation. For example, 0 {returned from GDDM to 

GDDM glossary 517 



the application program) means that the operator 
pressed the ENTER key. 

attribute byte. The screen position that precedes 
an alphanumeric field on a 3270-family device and 
holds the attribute information. See also trailing 
attribute byte. 

attributes. Characteristics or properties that can 
be controlled, usually to obtain a required 
appearance; for example, the color of a line. See 
also alphanumeric character attributes, 
alphanumeric field attributes, and graphics 
attributes. 

axis. In a chart, a line that is drawn to indicate 
units of measurement against which items in the 
chart can be viewed. 

background color. Black on a display, white on 
a printer. The initial color of the display medium. 
Contrast with neutral color. 

BASIC. One of the programming languages 
supported by GDDM. 

BDAM. Basic Direct Access Method. 

bi-Ievel image. An image in which each pixel is 
either black or white (value 0 or 1). Contrast with 
gray-scale image and halftone image. 

blank character. An empty character 
represented by X'40' in the EBCDIC code. Such a 
character occupies one position and can be used for 
positioning purposes. Contrast with null 
character. 

BMB. Basic Mapping Support (CICS/VS). 

BPAM. Basic Partitioned Access Method. 

business graphics. The methods and techniques 
for presenting commercial and administrative 
information in chart form. For example, the 
creation and display of a sales bar chart. Contrast 
with general graphics. 

CCW. Channel command word. 

CDPF. Composed Document Print Facility. 

candidate operator window. The operator 

518 GDDM Application Programming Guide Volume 1 

window with which a subsequently opened virtual 
device is associated. 

cell. See character cell. 

channel-attached. Pertaining to devices that are 
attached directly to a computer by means of data 
(1/0) channels. Synonymous with local. Contrast 
with link-attached. 

character. A letter, digit, or other symbol. 

character attributes. See alphanumeric 
character attributes. See also graphics text 
attributes. 

character box. In GDDM, the rectangle or (for 
sheared characters) the parallelogram boundaries 
that govern the size, orientation, spacing, and 
italicizing of individual symbols or characters to be 
shown on a display screen or printer page. 

The box width, height, and if required, shear, are 
specified in world coordinates and can be 
program-controlled. See also character mode. 
Contrast with character cell. 

character cell. The physical, rectangular space 
in which any single character or symbol is displayed 
on a screen or printer device. The size and position 
of a character cell are fixed. Size is usually 
specified in pixels on a given device, for example, 9 
by 12 on an IBM 3279 Model 3 display. Position is 
addressed by row and column coordinates. 
Synonymous with hardware cell and symbol cell. 
Contrast with character box. 

character code. The means of addressing a 
symbol in a symbol set, sometimes called code 
point. 

The particular form and range of codes depends on 
the GDDM context, for example: 

• For the Image Symbol Editor, a hexadecimal 
constant in the range X'41' through X'FE', or its 
EBCDIC character equivalent. 

• For the Vector Symbol Editor, a hexadecimal 
constant in the range X'OO' through X'FF', or its 
EBCDIC character equivalent. 

• For the GDDM API, a decimal constant in the 
range 0 through 239, or subsets of this range 
(for example, a marker symbol code range of 1 
through 8). 

character grid. A notional grid that covers the 
chart area. The size of the grid determines the 
basic size of the characters in all text constructed 
by PG routines. It is the fundamental measurement 
in chart layout, governing the spacing of mode-2 
characters and the size of mode-3 characters. It also 



governs the size of the chart margins and thus the 
plotting area. 

character matrix. Synonym for dot matrix. 

character mode. In GDDM, the type of 
characters to be used. There are three modes: 

• Mode-1 characters are loadable into PS and are 
of device-dependent fixed size, spacing, and 
orientation, as are hardware characters. 

• Mode-2 characters are image (ISS) characters. 
Size and orientation are fixed. Spacing is 
variable by program. 

• Mode-3 characters are vector (VSS) characters. 
Box size, position, spacing, orientation, and 
shear of individual characters are variable by 
program. 

chart. In GDDM, usually means business chart, 
for example, a bar chart. 

choice device. A logical input device that 
enables the application program to identify keys 
pressed by the terminal operator. 

CICS/VS. Customer Information Control 
System/Virtual Storage. A subsystem of MVS or 
VSE under which GDDM can be used. 

clipping. In computer graphics, removing parts of 
a display image that lie outside a viewport. 
Synonymous with scissoring. 

CMS. Conversational Monitor System. A 
time-sharing subsystem that runs under VM/SP. 

COBOL. One of the programming languages 
supported by GDDM. 

code page. Defines the relationship between a 
set of code points and graphic characters. This 
relationship covers both the standard alphanumeric 
characters and the national language variations. 
GDDM supports a set of code pages used with 
typographic fonts for the IBM 4250 printer. 

code point. Synonym for character code. 

Composed Document Print Facility. An IBM 
licensed program for processing documents destined 
for the 4250 composed-page printer. 

composed-page image file. An intermediate 
form, residing on disk, of a picture destined for a 
composed-page printer. 

composed-page printer. A printer, such as the 
IBM 3800 Model 3 or 4250, to which the host 
computer transmits data in the form of a succession 
of formatted pages. Such devices can print pictorial 

glossary 

data and text, and will position all output to pixel 
accuracy. The pixel density and the general print 
quality both often suffice as camera-ready copy for 
publications. 

composed-page printer format. A general term 
describing the format of print data destined for 
output by using either CDPF or PSF. 

compressed data stream. A data stream that 
has been made more compact by use of a 
data-compression algorithm. 

constant data. In GDDM, data that is defined in 
a map and need not be known to the application 
program. 

coordinating device. In GDDM, a real or virtual 
device, opened for operator windowing. It 
coordinates the sharing of the real device. 

correlation. The translation (by GDDM) of a 
screen position into a part of the user's picture. 
The action following a pick operation. 

current operator window. In GDDM, the 
operator window whose attributes can be modified. 

current partition. The partition selected for 
processing by the application program. Contrast 
with active partition. 

current position. In GDDM, the end of the 
previously drawn primitive. Unless a "move" is 
performed, this position will also be the start of the 
next primitive. 

cursor. A physical indicator that can be moved 
around a display screen. See alphanumeric cursor 
and graphics cursor. 

data-stream compatibility (DSC). In 8100 
systems, the facility that provides access to 
System/370 applications that communicate with 3270 
Information Display System terminals. 

data-stream compression. The shortening of an 
I/O data stream for the purpose of more efficient 
transmission between link-attached units. 

data set. The major unit of data storage and 
retrieval, consisting of a collection of data in one of 
several prescribed arrangements and described by 
control information to which the system has access. 

DBCS. Double-byte character set. 

DCT. Destination control table (CICS/VS). 

GDDM glossary 519 



default value. A value chosen by GDDM when 
no value is explicitly specified by the user. For 
example, the default ~ine type is a solid line. 

designator character. The first byte of a 
light-pen-detectable field that indicates whether or 
not the field has been selected. 

device echo. A visual identification of the 
position of the graphics cursor. The form of the 
device echo is defined by the application program. 

device family. In GDDM, a device classification 
that governs the general way in which I/O will be 
processed. See also processing options. For 
example: 

• Family 1: 3270 display or printer 
• Family 2: queued printer 
• Family 3: system printer (alphanumerics only) 
• Family 4: composed-page printer 

device image. In GDDM, an image contained in 
a device or GDDM page. Contrast with application 
image. 

device SufilX. In GDDM-IMD, a suffix to a 
mapgroup name that indicates the device class. 

device token. In GDDM, an 8-byte code giving 
entry to a table of pre-established device hardware 
characteristics that are required when the device is 
opened (initialized). 

digital image. A two-dimensional array of 
picture elements (pixels) representing a picture. A 
digital image can be stored and processed by a 
computer, using bits to represent pixels. In GDDM, 
pixels have the value black or white. Often called 
simply image. 

direct transmission. In GDDM image 
processing, the transfer of image data direct from a 
source outside GDDM to an image device, including 
manipulation by a projection in the device, and 
without GDDM maintaining a copy or buffer of the 
data. 

display device. Any output unit that gives a 
visual .representation of data. For example, a screen 
or printer. More commonly, the term is used to 
mean a screen and not a printer. 

display point. Synonym for pixel. 

display-point matrix. Synonym for dot matrix. 

display terminal. An input/output unit by which 
a user communicates with a data-processing system 
or subsystem. Usually includes a keyboard and 
always provides a visual presentation of data. For 
example, an mM 3179 display. 

520 GDDM Application Programming Guide Volume 1 

DL/l. Data language 1. A language for data-base 
processing operations. 

dot matrix. In computer. graphics, a 
two·dimensional pattern of dots used for 
constructing a display image. This type of matrix 
can be used to represent characters by dots. 
Synonymous with character matrix and 
display-point matrix. 

double-byte characters. In GDDM, characters 
that each occupy two bytes in internal storage and 
in display buffers. They are used to display Kanji 
or Hangeul symbols. 

double-byte character set (DBCS). A set of 
characters in which each character occupies two 
byte positions in internal storage and in display 
buffers. Used for oriental languages. Used for 
oriental languages; for example, Kanji or Hangeul. 

DPCX. Distributed Processing Control Executive. 
An 8100 system control program. 

DPPX. Distributed Processing Programming 
Executive. An 8100 system control program. 

DSC. Data-stream compatibility. 

dual characters. See double-byte characters. 

dummy device. An output destination for which 
GDDM does all the normal processing but for which 
no actual output is generated. Used, for example, to 
test programming for an unavailable output device. 

echo. In interactive graphics, the visible form of 
the locator or other logical input device. 

ECSA. Extended character set adapter. 

edit. To enter, modify, 01' delete data. 

editing grid. In the GDDM Image and Vector 
Symbol Editors, a grid used as a guide for editing a 
symbol. In the Image Symbol Editor, it is a dot 
matrix. In the Vector Symbol Editor, it is a grid of 
lines. 

extended data stream. For 3179, 3278, 3279, and 
3287 devices, input/output data formatted and 
encoded in support of color, programmed symbols, 
and extended highlighting. These features extend 
the 3270 data-stream architecture. 

extended highlighting. The emphasizing of a 
displayed character's appearance by blinking, 
underscore, or reverse video. 



external defaults. GDDM-supplied values that 
users can change to suit their own needs. 

extracted image. In GDDM, an image on which 
transform element calls operate. It may imply the 
whole source image or just a part of it, depending 
on whether a define sub-image transform element 
has been applied in its derivation. 

Farsi. Pertaining to the character set for the 
Persian language. 

FCT. File control table (CIeS/VS). 

field. An area on the screen or the printed or 
plotted page. See alphanumeric field, graphics 
field, image field, and mapped field. 

field attributes. See alphanumeric field 
attributes. 

fillet. A curve that is tangential to the end points 
of two adjoining lines. 

flat file. A file that contains only data; that is, a 
file that is not part of a hierarchical data structure. 
A flat file can contain fixed-length or 
variable-length records. 

floating area. The part of a page reserved for 
floating maps. 

floating map. A map whose absolute position on 
the GDDM page is not fixed. During execution, a 
floating map takes the next available space that 
satisfies its specification. 

floating-point feature. A processing unit 
feature that provides four 64-bit floating-point 
registers to perform floating-point arithmetic 
calculations. 

foil. A transparency for overhead projection. 

font. A particular style of typeface (for example, 
Gothic English). In GDDM, a font can exist as a 
programmed symbol set. 

FORTRAN. One of the programming languages 
supported by GDDM. 

four-button cursor. A hand-held device, with 
cross-hair sight, used on the surface of a tablet to 
indicate position on a screen. Synonymous with 
puck. 

full-screen alphanumeric operation. 
Full-screen processing operations on alphanumeric 
fields. 

glossary 

full-screen mode. A form of screen presentation 
in which the contents of an entire terminal screen 
can be displayed at once. Full-screen mode is often 
used for fill-the-blanks prompting, and is an 
alternative to line.by-line I/O. 

full-screen processor. A host software 
component that, together with display terminal 
functions, supports display terminal input/output in 
full-screen mode. 

GDDM. Graphical Data Display Manager. 

GDDM/graPHIGS. A member of the GDDM 
family used for creating hierarchical 
three-dimensional structures on the IBM 5080 
Graphics System. It is based on the proposed ANSI 
standard for the Programmer's Hierarchical 
Interactive Graphics System (PHIGS). 

GDDM-IMD. GDDM-Interactive Map Definition. 
See Interactive Map Definition. 

GDDM-PGF. GDDM-Presentation Graphics 
Facility. See Presentation Graphics Facility. 

GDDM storage. The portion of host computer 
main storage used by GDDM. 

GDF. Graphics data format. 

general graphics. The methods and techniques 
for converting data to or from graphics display in 
mathematical, scientific, or engineering 
applications; that is, any application other than 
business graphics. See also business graphics. 

generated mapgroup. The output produced 
when a source GDDM-IMD mapgroup is generated. 
It contains the information needed by GDDM at 
execution to position the mapped fields on the 
GDDM page. 

graphics. A picture defined in terms of graphics 
primitives and graphics attributes. 

graphics area. Part of a mapped field that is 
reserved for later insertion of graphics. 

graphics attributes. In GDDM, comprise color 
selection, color mix, line type, line width, graphics 
text attributes, marker symbol, and shading pattern 
definition. 

graphics cursor. A physical indicator that can 
be moved (often with a joystick, mouse, or stylus) to 
any position on the screen. 

GDDM glossary 521 



graphics data format (GDF). A picture 
definition in an encoded order format used 
internally by GDDM and, optionally, providing the 
user with a lower-level programming interface than 
the GDDM API. 

graphics data stream. The data stream that 
produces graphics on the screen, printer, or plotter. 

graphics field. A rectangular area of a screen or 
printer page, used for graphics. Contrast with 
alphanumeric field, and image field. 

graphics input queue. A queue associated with 
the graphics field onto which elements arrive from 
logical input devices. The program can remove 
elements from the queue by issuing a graphics read. 

graphics primitive. A single item of drawn 
graphics, such as a line, arc, or graphics text string. 
See also graphics segment. 

graphics read. A form of read that solicits 
graphics input or removes existing elements from 
the graphics input queue. 

graphics segment. A group of graphics 
primitives (lines, arcs, and text) that have a 
common window and a common viewport and 
associated attributes. Graphics segments allow a 
group of primitives to be subject to various 
operations. See also graphics primitive. 

graphics text attributes. In GDDM, comprise 
symbol (character) set to be used, character-box 
size, character angle, character mode, character 
shear angle, and character direction. 

graPHIGS. See GDDM/graPHIGS. 

gray-level. A digitally encoded shade of gray, 
normally (and always in GDDM) in the range 0 
through 255. See also gray-scale image. 

gray-scale image. An image in which the 
gradations between black and white are represented 
by discrete gray-levels. Contrast with bi-Ievel 
image and halftone image. 

halftone image. A bi-level image in which 
intermediate shades of gray are simulated by 
patterns of adjacent black and white pixels. 
Contrast with gray-scale image. 

Hangeul. A character set of symbols used in 
Korean ideographic alphabets. 

hardware cell. Synonym for character cell. 

522 GDDM Application Programming Guide Volume 1 

hardware characters. Synonym for hardware 
symbols. 

hardware symbols. The characters that are 
supplied with the device. The term is loosely used 
also for GDDM mode-1 symbols that are loaded into 
a PS store for subsequent display. Synonymous 
with hardware characters. 

host. See host computer. 

host computer. The primary or controlling 
computer in a multiple computer installation. 

ICU. Interactive Chart Utility. 

identity projection. In GDDM image processing, 
a projection that is transferred from source image to 
target image without any processing being 
performed on it. 

image. Synonym for digital image. 

image data stream. The internal form of the 
GDDM data in an image environment. 

image field. A rectangular area of a screen or 
printer page, used for image. Contrast with 
alphanumeric field and graphics field. 

image symbol. A character or symbol defined as 
a dot pattern. 

Image Symbol Editor (ISE). A GDDM-supplied 
interactive editor that lets users create or modify 
their own image symbol sets (ISS). 

image symbol set (ISS). A set of symbols each 
of which was created as a pattern of dots. Contrast 
with vector symbol set (VSS). 

IMS/VS. Information Management 
System/Virtual Storage. A subsystem of MVS under 
which GDDM can be used. 

include member. A collection of source 
statements stored as a library member for later 
inclusion in a compilation. 

input queue. See graphics input queue. 

integer. A whole number (for example, -2,3, 
457). 

Intelligent Printer Data Stream (IPDS). A 
structured-field data stream for managing and 
controlling printer processes, allowing both data 



and controls to be sent to the printer. GDDM uses 
IPDS to communicate with the IBM 4224 printer. 

Interactive Chart Utility (lCU). A GDDM-PGF 
menu-driven program that allows business charts to 
be created interactively by nonprogrammers. 

interactive graphics. In GDDM, those graphics 
that can be moved or manipulated by a user at a 
terminal. 

Interactive Map Det'"mition. A member of the 
GDDM family of licensed programs. It enables 
users to create alphanumeric layouts at the 
terminal. The operator defines the position of each 
field within the layout and may assign attributes, 
default data, and associated variable names to each 
field. The resultant map can be tested from within 
the utility. 

interactive mode. A mode of application 
operation in which each entry receives a response 
from a system or program, as in an inquiry system 
or an airline reservation system. An interactive 
system can also be conversational, implying a 
continuous dialog between the user and the system. 

interactive subsystem. (1) One or more 
terminals, printers, and any associated local 
controllers capable of operation in interactive mode. 
(2) One or more system programs or program 
products that enable user applications to operate in 
interactive mode. For example, CICS/VS. 

intercept. In a chart, a method of describing the 
position of one axis relative to another. For 
example, the x axis can be specified so that it 
intercepts (crosses) the y axis at the bottom, middle, 
or top of the plotting area of a chart. 

inter-device copy. The ability to copy a page or 
the graphics field from the current primary device 
to another device. The target device is known as 
the alternate device. 

IPDS. Intelligent printer data stream. 

ISE. Image Symbol Editor. 

ISPF. Interactive System Productivity Facility. 

ISS. Image symbol set. 

JCL. Job Control Language. 

joystick. A lever that can pivot in all directions 
in a horizontal plane, used as a locator device. 

glossary 

Kanji. A character set of symbols used in 
Japanese ideographic alphabets. 

Katakana. A character set of symbols used in 
one of the two common Japanese phonetic 
alphabets; Katakana is used primarily to write 
foreign words phonetically. See also Kanji. 

key. In a legend, a symbol and an associated 
data-group name. A key might, for example, 
indicate that the blue line on a graph represents " 
Predicted Profit." See also legend. 

key symbol. A small part of a line (from a line 
graph) or an area (from a shaded chart) used in a 
legend to identify one of the various data groups. 

Latin. Of or pertaining to the Western alphabet. 

legend. A set of symbolic keys used to identify 
the data groups in a business chart. 

line attributes. In GDDM, color, line type, and 
line width. 

link-attached. Pertaining to devices that are 
connected to a controlling unit by a data link. 
Synonymous with remote. Contrast with 
channel-attached. 

link edit. To create a loadable computer program 
by means of a linkage editor. 

load module. A program unit that is suitable for 
loading into main storage for execution; it is usually 
the output of a linkage editor. 

local. Synonym for channel-attached. 

local character set identifier. A hexadecimal 
value stored with a GDDM symbol set, which can be 
used by symbol-set-Ioading means other than GDDM 
in the context of local copy on a printer. 

locator. A logical input device used to indicate a 
position on the screen. Its physical form may be the 
alphanumeric cursor or a graphics cursor moved by 
a joystick. 

logical input device. A concept that allows 
application programs to be written in a 
device-independent manner. The logical input 
devices to which the program refers may be 
subsequently associated with different physical 

GDDM glossary 523 



parts of a terminal, depending on which device is 
used at run-time. 

LTERM. In IMS/VS, logical terminal. 

map. A predefined format of alphanumeric fields 
on a screen. Usually constructed outside of the 
application program. See Interactive Map 
Def"mition. 

mapgroup. A data item that contains a number 
of maps and information about the device on which 
those maps will be used. All maps on a GDDM page 
must come from the same mapgroup. 

mapped alphanumerics. The creation of 
alphanumeric displays using predefined maps. 
Contrast with procedural alphanumerics. 

mapped field. An area of a page whose layout is 
defined by a map. 

mapped graphics. Graphics placed in a graphics 
area within a mapped field. 

mapped page. A GDDM page whose content is 
defined by maps in a mapgroup. 

mapping. The use of a map to produce a panel 
from an output record, or an input record from a 
panel. 

marker. In GDDM, a symbol centered on a point. 
Line graphs and polar charts can use markers to 
indicate the plotted points. 

MDT. Modified data tag. 

menu. A displayed list of logically grouped 
functions from which the operator can make a 
selection. Sometimes called a menu panel. 

menu-driven. Describes a program that is driven 
by operator response to one or more displayed 
menus. 

MFS. Message format service. 

mixed character string. A string containing a 
mixture of Latin (one-byte) and Kanji or Hangeul 
(two.byte) characters. 

mode-l/-2/-3 characters. See character mode. 

mountain shading. A method of shading surface 
charts where each component is shaded separately 
from the base line, instead of being shaded from the 
data line of the previous component. 

524 GDDM Application Programming Guide Volume 1 

mouse. A hand-held device (the IBM 5277 
Mouse) that is moved around a locator pad to 
position the graphics cursor on the screen. 

MSHP. Maintain system history program. 

MSL. Map specification library. 

MVS/XA. Multiple Virtual Storage/Extended 
Architecture. 

name-list. A means of identifying which physical 
device is to be opened by a GDDM program. It can 
be used as a parameter of the DSOPEN call, or in a 
nickname. 

National Language Support (NLS) feature. 
The translations of the ICU panels and some of the 
GDDM messages into a variety of languages other 
than American-English. 

negate. In bi-Ievel image data, setting zero bits 
to one and one bits to zero. 

neutral color. White on a display, black on a 
printer. Contrast with background color. 

nickname. In GDDM, a quick and easy means of 
referring to a device, the characteristics and 
identity of which have been predefined. 

NLS. National Language Support. 

non-paired data. See tied data. 

null character. An empty character represented 
by X'QQ' in the EBCDIC code. Such a character 
does not occupy a screen position. Contrast with 
blank character. 

object code. Output from a compiler or 
assembler that is in itself executable machine code 
or is suitable for processing to produce executable 
machine code. 

object deck. Synonym for object module. 

object libraries. An area on a direct access 
storage device used to store object programs and 
routines. 

object module. A module that is the output of an 
assembler or a compiler and is input to a linkage 
editor. Synonymous with object deck. 



off-point. A pixel that has been turned off by the 
user of the Image Symbol Editor. 

on-point. A pixel that has been turned on by the 
user of the Image Symbol Editor. 

operator reply mode. In GDDM, the mode of 
interaction available to the operator (display 
terminal user) with respect to the modification (or 
not) of alphanumeric character attributes for an 
input field. 

operator window. Part of the display screen's 
surface on which the GDDM output of an 
application program can be shown. An operator 
window is controlled by the end user; contrast with 
partition. A task manager may create a window 
for each application program it is running. 

outbound structured field. An element in 3270 
data streams from host to terminal with formatting 
that allows variable-length and multiple-field data 
to be sequentially translated by the receiver into its 
component fields without having to examine every 
byte. 

overlapping bar chart. A form of business chart 
where adjacent bars partly overlap each other. 
Overlapping bars are sometimes called hidden bars. 

page. In GDDM, the main unit of output and 
input. All specified alphanumerics and graphics are 
added to the current page. An output statement 
always sends the current page to the device, and an 
input statement always receives the current page 
from the device. 

pageable (main storage). In a virtual storage 
system, fixed-length blocks that have virtual 
addresses and can be transferred between real 
(main) storage and auxiliary storage. 

panel. A predefined display that defines the 
locations and characteristics of alphanumeric fields 
on a display terminal. When the panel offers the 
operator a selection of alternatives it may be called 
a menu panel. Synonymous with frame. 

partition. Part of the display screen's surface on 
which a. page, or part of a page, of GDDM output 
can be shown. Two or more partitions can be 
created, each displaying a page, or part of a page, of 
output. A partition is controlled by the GDDM 
application; contrast with operator window. 

partition set. A grouping of partitions that are 
intended for simultaneous display on a SCreen. 

glossary 

partitioned data set (PDS). A data set in direct 
access storage that is divided into partitions, called 
members, each of which can contain a program, part 
of a program, or data. Synonymous with program 
library. 

PCB. Program communication block (IMS/VS). 

PCT. Program control table (CICSfVS). 

PDS. In TSO, a partitioned data set. 

pel. Synonym for pixel. 

PGF. Presentation Graphics Facility. 

pmGs. Programmer's Hierarchical Interactive 
Graphics System. 

pick. The action of the operator in selecting part 
of a graphics display by placing the graphics cursor 
over it. 

pick aperture. A rectangular or square bo~ that 
is moved across the screen by the graphics cursor. 
An item must lie at least partially within the pick 
aperture before it can be picked. 

pick device. A logical input device that allows 
the application to determine which part of the 
picture was selected (or picked) by the operator. 

picture element. Synonym for pixel. 

picture interchange format (PIF) file. In 
graphics systems, the type of file, containing picture 
data, that can be transferred between GDDM and a 
3270.PC/G or 3270-PC/GX work station. 

picture space. In GDDM, an area of specified 
aspect ratio that lies within the graphics field. It is 
centered on the graphics field and defines the part 
of the graphics field in which graphics will be 
drawn. 

PIF. Picture interchange format. 

pixel. The smallest area of a display screen 
capable of being addressed and switched between 
visible and invisible states. Synonymous with 
display point, pel, and picture element. 

PL/I. One of the programming languages 
supported by GDDM. 

plotter. An output device that uses pens to draw 
its output on paper or transparency foils. 

pointings. Pairs of x-y coordinates produced by 
an operator defining positions on a screen with a 
locator device, such as a mouse. 

GDDM glossary 525 



polar chart. A form of business chart where the 
x axis is circular and the y axis is radial. 

polyfillet. In GDDM, a curve based on a 
sequence of lines. It is tangential to the end points 
of the first and last lines, and tangential also to the 
midpoints of all other lines. 

polyline. A sequence of adjoining lines. 

popping. A method of ordering data whereby 
each item in a list or sequence takes the value of 
the previous item in the list or sequence; when this 
happens, the list or sequence of data is said to be 
"popped." 

ppi. Pixels per inch. 

PPT. Processing program control table 
(CICS/VS). 

presentation graphics. Computer graphics 
products or systems, the functions of which are 
primarily concerned with graphics output 
presentation. For example, the display of business 
planning bar charts. 

Presentation Graphics Facility (PGF). A 
member of the GDDM family of licensed programs. 
It is concerned with business graphics, rather than 
general graphics. 

preview chart. A small version of the current 
chart that can be displayed on ICU menu panels. 

primary device. In GDDM, the main destination 
device for the application program's output, usually 
a display terminal. The default primary device is 
the user console. See also alternate device. 

primitive. See graphics primitive. 

primitive attribute. A specifiable characteristic 
of a graphics primitive. See graphics attributes 
and graphics text attributes. 

print utility. A subsystem-dependent utility that 
sends print files from various origins to a queued 
printer. 

Print Services Facility. An IBM licensed 
program for processing documents destined for the 
3800-3 composed-page printer. 

procedural alphanumerics. The creation of 
alphanumeric displays using the GDDM 
alphanumeric API. Contrast with mapped 
alphanumerics. 

processing options. Describe how a device's I/O 
will be processed. These are 
device-family-dependent and subsystem-dependent 
options that are specified when the device is opened 

526 GDDM Application Programming Guide Volume 1 

(initialized). An example is the choice between 
CMS attention-handling protocols. 

procopt. Processing option. 

program library. (1) A collection of available 
computer programs and routines. (2) An organized 
collection of computer programs. (3) Synonym for 
partitioned data set. 

programmed symbols (PS). Dot patterns loaded 
by GDDM into the PS stores of an output device. 

projection. In GDDM image processing, an 
application-defined function that specifies 
operations to be performed on data extracted from a 
source image. Consists of one or more transforms. 
See also transform element. 

PS. Programmed symbols. 

PS overflow. A condition where the graphics 
cannot be displayed in its entirety because the 
picture is too complex to be contained in the 
device's PS stores. 

PSB. In IMS/VS, a program specification block. 

PSF. Print Services Facility. 

PTF. Program temporary fix. 

puck. Synonym for four-button cursor. 

QSAM. Queued sequential access method. 

QTAM. Queued telecommunications access 
method. 

queued printer. A printer belonging to the 
SUbsystem under which GDDM runs, to which 
output is sent indirectly by means of the GDDM 
Print Utility program. In some subsystems, this 
may allow the printer to be shared between multiple 
users. Contrast with system printer. 

RAS. Reliability, availability, serviceability. 

raster device. A device with a display area 
consisting of dots. Contrast with vector device. 

rastering. The transforming of graphics 
primitives into a dot pattern for line-by-line 
sequential use. In GDDM PS devices. this is done 



by transforming the primitives into a series of 
programmed symbols (PS). 

RCP. Request control parameter. 

real device. A GDDM device that is not being 
windowed by means of operator window functions. 
Contrast with virtual device. 

reentrant. The attribute of a program or routine 
that allows the same copy of the program or routine 
to be used concurrently by two or more tasks. 

remote. Synonym for link-attached. 

reply mode. See operator reply mode. 

resolution. In graphics and image processing, 
the number of pixels per unit of measure (inch or 
meter). 

reverse clipping. Where one graphics primitive 
overlaps another, removing any parts of the 
underlying primitive that are overpainted by the 
overlying primitive. 

reverse video. A form of alphanumeric 
highlighting for a character, field, or cursor, in 
which its color is exchanged with that of its 
background. For example, changing a red character 
on a black background to a black character on a red 
background. 

roman. Relating to the Latin typestyle, with 
upright characters. 

scanner. A device that produces a digital image 
from a document. 

scissoring. Synonym for clipping. 

scrolling. In computer graphics, moving a display 
image vertically or horizontally in a manner such 
that new data appears at one edge as existing data 
disappears at the opposite edge. 

SCS. SNA character string. 

segment. See graphics segment. 

segment attributes. Attributes that apply to the 
segment as an entity, rather than to the individual 
primitives within the segment. For example, the 
visibility, transformability, or detectability of a 
segment. 

segment library. The portion of auxiliary 
storage where segment definitions are held. These 
definitions are GDDM objects in graphics data 

glossary 

format (GDF) and are managed by GDDM API calls. 
GDDM handles the file accesses to and from 
auxiliary storage. 

segment priority. The order in which segments 
will be drawn, also the order in which they will be 
detected. 

segment transform. The means to rotate, scale, 
and reposition segments without re·creating them. 

selector adjunct. A subfield of an application 
data structure that qualifies a data field. 

shear. The action of tilting graphics text so that 
each character leans to the left or right while 
retaining a horizontal baseline. 

SMF. System management facilities. 

SMP. System management program. 

SNA. Systems network architecture. 

source image. An image that is the data input to 
image processing or transfer. 

SPI. System programmer interface. 

SPIB. System programmer interface block. 

stand-alone (mode). Operation that is 
independent of another device, program, or system. 

string device. A logical input device that 
enables an application program to process character 
data entered by the terminal operator. 

stroke device. A logical input device that 
enables an application program to process a 
sequence of X,y coordinate data entered by the 
terminal operator. 

stylus. A pen· like pointer used on the surface of 
a tablet to indicate position on a screen. 

surface chart. A chart similar to a line graph, 
except that no markers appear and the areas 
between successive lines are shaded. 

swathe. A horizontal slice of printer output, 
forming part of a complete picture. Composed·page 
printer images are often constructed in swathes to 
reduce the amount of storage required. 

symbol. Synonymous with character. For. 
example, the following terms all have the same 
meaning: vector symbols, vector characters, vector 
text. 

symbol cell. Synonym for character cell. 

symbol matrix. Synonym for dot matrix. 

GDDM glossary 527 



symbol set. A collection of symbols, usually but 
not necessarily forming a font. GDDM applications 
may use the hardware device's own symbol set. 
Alternatively, they can use image or vector symbol 
sets that the user has created. 

symbol set identifier. In GDDM, an integer (or 
the equivalent EBCDIC character) by which the 
programmer refers to a loaded symbol set. 

system printer. A printer belonging to the 
subsystem under which GDDM runs, to which 
output is sent indirectly by use of system spooling 
facilities. Contrast with queued printer. 

systems programmer interface (SPI). The 
formally defined systems-level interface between an 
IBM system control program or licensed program, 
and its user. 

tablet. (1) A locator device with a flat surface 
and a mechanism that converts indicated positions 
on the surface into coordinate data. (2) The IBM 
5083 Tablet Model 2, which, with a four-button 
cursor or stylus, allows positions on the screen to 
be addressed and the graphics cursor to be moved 
without use of the keyboard. 

tag. In interactive graphics, an identifier 
associated with one or more primitives that is 
returned to the program if such primitives are 
subsequently picked. 

target image. An image which is the destination 
of processed or transferred data. 

target position. In the GDDM Vector Symbol 
Editor, the grid coordinates of a point on the editing 
grid to which a vector is to be drawn. 

task manager. A program that supervises the 
concurrent running of other programs. 

TCT. Terminal control table (CICS/VS). 

temporary graphics. Graphics created outside a 
segment. 

terminal. A device, usually equipped with a 
keyboard and a display unit, capable of sending and 
receiving information over a link. See also display 
terminal. 

test symbol. In the GDDM Image and Vector 
Symbol Editors, an area on the Symbol Edit panel in 
which the currently chosen symbol is displayed. 

528 GDDM Application Programming Guide Volume 1 

text. Characters or symbols sent to the device. 
GDDM provides alphanumeric text and graphics 
text. 

text attributes. See graphics text attributes. 

tilted pie chart. A pie chart drawn in three 
dimensions, which has been tilted away from full 
face to reveal its three-dimensional properties. 

trailing attribute byte. The screen position 
following an alphanumeric field. This attribute byte 
can specify, for example, that the cursor should 
auto-skip to the next field when the current field is 
filled. 

transfer operation. In GDDM image processing, 
an operation in which a projection is applied to a 
source image, and the result placed in a target 
image. The source and target images can be device 
or application images in any combination, or one or 
other of them (but not both) can be image data 
within the application program. 

transform. (1) The action of modifying a 
picture for display; for example, by scaling, rotating, 
or displacing. (2) The object that performs or 
defines such a modification; also referred to as a 
transformation. (3) In GDDM image processing, 
a definition of three aspects of the data 
manipulation to be done by a projection: 

1. A transform element or sequence of transform 
elements 

2. A resolution conversion or scaling algorithm 
3. A location within the target image for the 

result. 

Only the third item is mandatory. 

See also projection and transform element. 

transform element. In GDDM image processing, 
a specific function in a transform, which can be one 
of the following: define sub-image, scale, orient, 
reflect, negate, define place in target image. 

A given transform element can be used only once in 
a transform. 

transformable. A segment must be defined as 
transformable if it will subsequently be moved, 
scaled, or rotated. 

transparency. (1) A document on transparent 
material suitable for overhead projection. (2) An 
alphanumeric attribute that allows underlying 
graphics or image to show. 

TSO. Time sharing option. A subsystem of 
OS/VS under which GDDM can be used. 

TWA. Transaction work area. 



UDS. User default specification. 

UDSL. A list of user default specifications 
(UDSs). 

unformatted data. In GDDM image processing, 
compressed or uncompressed binary image data that 
has no headers, trailers, or embedded control fields 
other than any defined by the compression 
algorithm, if applicable. The data is in row major 
order, beginning with the top left of the picture. 

user default specification (UDS). The means of 
changing a GDDM default value. The default 
values that a UDS can change are those of the 
GDDM or subsystem environment, GDDM user 
exits, and device definitions. 

user exit. A point in GDDM execution where a 
user routine will gain control if such has been 
requested. 

variable cell size. In most devices, the hardware 
cell size is fixed, but the 3290 Information Panel has 
a cell size that can be varied. This, in turn, causes 
the number of rows or columns on the device to 
alter. 

VCNA. VTAM communications network 
application. 

vector. (1) In computer graphics, a directed line 
segment. (2) In the GDDM-PGF Vector Symbol 
Editor, a straight line between two points. 

vector device. A device capable of displaying 
lines and curves directly. Contrast with raster 
device. 

vector symbol. A character or shape composed 
of a series of lines or curves. 

Vector Symbol Editor. A program supplied with 
GDDM.PGF, the function of which is to create and 
edit vector symbol sets (VSS). 

vector symbol set (VSS). A set of symbols each 
of which was originally created as a series of lines 
and curves. 

Venn diagram. A form of business chart in 
which, in GDDM, two populations and their 
intersection are represented by two overlapping 
circles. 

glossary 

viewport. A subdivision of the picture space, 
most often used when two separate pictures are to 
be displayed together. 

virtual device. In GDDM, a functional 
simulation of a real display device, associated with 
an operator window. 

virtual screen. In GDDM, the screen of a virtual 
device. The presentation space viewed through an 
operator window. Contrast with real device. 

VM/SP CMS. IBM Virtual Machine/System 
Product Conversational Monitor System. A system 
under which GDDM can be used. 

VSE. Virtual storage extended. An operating 
system consisting of VSE/Advanced Functions and 
other IBM programs. In GDDM, the abbreviation 
VSE has sometimes been used to refer to the Vector 
Symbol Editor, but to avoid confusion, this usage is 
deprecated. 

VSS. Vector symbol set. 

VTAM. Virtual Telecommunications Access 
Method. 

window. (1) In GDDM, a defined section of 
world coordinates. The window can be regarded as 
a set of coordinates that are overlaid on the 
viewport, and used for defining the primitives that 
make up a graphics display. By default, both x and 
y coordinates run from 0 through 100. (2) In 
GDDM, an "operator window" is an independent 
rectangular subdivision of the screen. Several can 
exist at the same time, and each can receive output 
from, and send input to, either a separate GDDM 
program or a separate function of a single GDDM 
program. (3) In GDDM, the "page window" defines 
which part of a page which is deeper or wider than 
its partition should currently be displayed. 

work station. A display screen together with 
attachments such as a local copy device or a tablet. 

world coordinates. The user 
application-oriented coordinates used for drawing 
graphics. See also window. 

wrap-around field. An alphanumeric field that 
extends to the right·hand edge of the page and 
continues at the start of the next row. 

WTP. Write·to-programmer. 
_control parameter''"IPGFPR" 
_control parameter"""PGFPR" 

GDDM glossary 529 



Index 

I Special Characters I 

¢ sign 228 
$ sign 228 
/BROADCAST command (IMS/VS) BPR1 

AAB (application anchor block) BPR1, BPR2 
abbreviated labels APG2 
abbreviations of PG routines options APG2 
abend/return processing, ABNDRET option BPR2 
ABNDRET, abend/return processing BPR2 
ABPIE option APG2, PGFPR 
ABREV option APG2, PGFPR 
absolute data PGFPR 
absolute pie chart data APG2 
acknowledging a trigger field attribute BPR2 
activate (open) a device 371 
activate stroke device 185 
active operator window 467, 471, 477 
active partition 447 
addresses of user exits BPR2 
adjunct 

See alphanumerics, mapped 
adjunct fields BPR2 
adjuncts (see adjunct fields) BPR2 
ADM... BPRl, BPR2 

USP4: PLjI graphics editor sample 
program 489 

ADMCDATA file BPR2 
ADMCDATA file contents APG2 
ADMCDEF file BPR2 
ADMCFORM file BPR2 
ADMCFORM file contents APG2 
ADMCOLn files 418 
ADMCOLSD 40 
ADMCOLSD supplied shading-pattern symbol set 

name PGFPR 
ADMCOLSN 40 
ADMCOLSR 40 
ADMDEFS, TSO external defaults file BPR2 
ADMDHIMJ, GDDM marker symbols for 

composed-page printer BPR2 
ADMDHIPK symbol set 416 
ADMDHIVJ, GDDM vector symbol set for 

composed-page printer BPR2 
ADMDVSS, default vector symbol set BPR2 
ADMDVSSB, Brazilian default vector symbol 

set BPR2 

ADMDVSSD, Danish default vector symbol 
set BPR2 

ADMDVSSE, English default vector symbol 
set BPR2 

ADMDVSSF, French default vector symbol 
set BPR2 

ADMDVSSG, German def.mlt vector symbol 
set BPR2 

ADMDVSSI, Italian default vector symbol 
set BPR2 

ADMDVSSK, Japanese default vector symbol 
set BPR2 

ADMDVSSN, Norwegian default vector symbol 
set BPR2 

ADMDVSSS, Spanish default vector symbol 
set BPR2 

ADMDVSSV, Swedish default vector symbol 
set BPR2 

ADMG transient data queue 262 
ADMGDF file BPR2 
ADMGDF files 157, 171 
ADMGGMAP ddname 262 
ADMGGMAP FCT name 262 
ADMGGMAP file BPR2 
ADMGGMAP filetype 261 
ADMGNADS ddname 262 
ADMICUPx, shading-pattern symbol set 

name PGFPR 
ADMIMAGE files 400 
ADMIMG file BPR2 
ADMLSYSI 368 
ADMLSYS3 368 
ADMLSYS4 368 
ADMMCOLT macro 417 
ADMMDFT BPR2 
ADMMEXIT BPR2 
ADMMNICK statement 378 
ADMnnnnn color tables 417 
ADMOPRT sequential file print program 408 
ADMOPUV CMS graphics print utility 408 
ADMOPUV, automatic invocation of VM/CMS print 

utility BPR2 
ADMPATTC 39 
ADMPLOT plotter name 421 
ADMPRINT files 397 
ADMPRINT print utility BPR2 
ADMPROJ file BPR2 
ADMQPOST EXEC procedure 408 
ADMSA VE file BPR2 
ADMSYMBL file BPR2 
ADMUAIMC 283 
ADMUAIMC, Assembler mapping constants 

table BPR2 
ADMUCDSO (chart utility sample module) PGFPR 
ADMUCGAT (supplied TSO CLIST) PGFPR 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

Index 531 



ADMUCGA V (supplied CMS EXEC) PGFPR 
ADMUCIMC 283 
ADMUCIMC, COBOL mapping constants 

table BPR2 
ADMUCIMT (supplied TSO CLIST) PGFPR 
ADMUCIMV (supplied CMS EXEC) PGFPR 
ADMUPIMC 283 
ADMUPIMC, PL/I mapping constants table BPR2 
ADMUPINx 9, APG2 
ADMUPIRx 9 
ADMUPlxy libraries of PL/I declarations PGFPR 
ADMUPLxO libraries of PL/I declarations PGFPR 
ADMUSC5 (COBOL sample program) PGFPR 
ADMUSC6 (COBOL sample program using chart 

utility) PGFPR 
ADMUSF5 (FORTRAN sample program) PGFPR 
ADMUSF6 (FORTRAN sample program using chart 

utility) PGFPR 
ADMUSP5 (lMS/VS PL/I sample program) PGFPR 
ADMUSP6 (PL/I sample program using chart 

utility) PGFPR 
ADMUUARP, typeface vector symbol set for 

composed-page printer BPR2 
ADMUUxxx, proportionally spaced 

typefaces BPR2 
ADMUVxxx, non-proportionally spaced 

typefaces BPR2 
ADMUWARP, typeface vector symbol set for 

composed-page printer BPR2 
ADMUWxxx, proportionally spaced 

typefaces BPR2 
ADS (application data structure) 251 

See also alphanumerics, mapped 
ADS (GDDM-IMD application data 

structure) BPR2 
advanced directory (CSINT) PGFPR 
AFTCxxxx code pages 413 
AFTxxxxx fonts 412 
AIC (application interface component) BPR1 
AID translation 292, BPR2 
AID-receiver field BPR2 
alarm 

mapped output 281 
procedural call 83 

alarm (FSALRM) BPR1 
alignment BPR1 
ALLOCATE command (TSO) BPR2 
alphanumeric attribute BPR2 
alphanumeric character-code assignments, ASTYPE 

override BPR1 
alphanumeric defaults module BPR2 
alphanumeric files, printing BPR2 
alphanumeric functions BPR1 
alphanumeric labels (PG routines) APG2 
ALPHANUMERIC option PGFPR 
alphanumerics taking precedence over graphics 73 
alphanumerics, introduction to 53 
alphanumerics, mapped 251, APG2 

adjunct 273 
base attribute 282 
color 293 
cursor 284 
extended highlighting 293 
length 287 
on input 277, 278 
on output 273, 278 
selector 273, 278, 287 
symbol set 293 

AID translation 292 
alarm 281 
and graphics 

example program 299 
introduction 54 

application data structure (ADS) 251, 254 
adjuncts 273 
creating 261, 262 
receiving data 257 
transmitting data 257 

character attributes 295 
comparison with procedural alphanumerics 252 
constant data fields 251 
copying between devices 409 
cursor position 284 
CURSR SEL key 287 
default data 261, 273 
examples 

AID translation 293 
color adjunct 293 
cursor adjunct 285, 287 
cursor menu selection 288 
floating maps 268 
graphics and mapping 299 
light pen menu selection 288 
multiple fixed maps 264 
PF key selection from menu 288 
selector adjunct 274 
selector and cursor adjuncts 288 
simple program using ASREAD 259 
simple program using MSREAD 253, 260 

field attributes 282 
blinking 293 
color 293 
data type 283 
defining and testing 261 
highlight 283, 293 
intensity 283 
light pen 283 
MDT bit 283 
non-display 283 
protected, unprotected, and autoskip 282 
reverse video 293 
symbol set 293 
unprotected field changed to protected 272 

field naming 261 
floating area 264 
folding input 297 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

532 GDDM Application Programming Guide Volume 1 



generating mapgroup 261 
graphics and mapping 298 
initial data 261 
Interactive Map Definition product 

(GDDM-IMD) 251, 253 
overview of operations 260 
quick-path tutorial 253 

introduction 54 
justifying input 297 
light pen 287 

designator character 287 
detectable attribute 283 

mapgroup 256,271 
device suffixes 271 

maps 251 
cursor receiver 287 
fixed 263 
floating 263, 264 
graphic area 298 
multiple 263 
positioning on page 256, 263, 264 
testing 261, 264 

mixed with procedural alphanumerics 256 
MSDFLD (create a mapped field) 256 
MSGET (retrieve data from a map) 257 

adjuncts 277 
character attributes 295, 297 
setting adjuncts 278 

MSPCRT (create a page for mapping) 256 
MSPUT (place data into a mapped field) 257 

alarm and keyboard locking 281 
base attribute adjunct 282 
reject 278 
reject operations 277 
selector adjunct 276 
write and rewrite 276, 278 

MSQMOD (query modified fields) 269 
MSREAD (present mapped data) 255 
not supported on plotters 421 
null characters 287 
query calls 272 
variable data 

receiving 257 
transmitting 257 

variable data fields 251 
alphanumerics, procedural 75, 235, APG2 

See also alphanumerics, mapped 
See also graphics text 
and graphics 54 
ASFBDY - define field outline 249 
ASFTRA - define field transparency 

attribute 86 
ASFTRN - set translation-tables attribute 80 
attributes 79 

on printer 403 
auto-skip fields 78, 80 
blinking fields 80 
character attributes 81 

color 81 
highlight 82 
input of 82, 225 
symbol set 224 

comparison with mapping 252 
copying between devices 409 
example program 83 
field attributes 79, 81, 243 

blank-to-null 80 
color 80 
DBeS (double-byte character string) 245 
double-byte characters 245 
field end 80 
highlight 80 
intensity 79 
Kanji 245 
light pen 243 
multiple definition 237 
null-to-blank 80 
outlining 249 
setting defaults 237 
symbol set 80, 223 
translation tables 80 
transparency 86 
type 76,79 

fields 75 
multiple definition 235, 236 
query modified 238 
setting to modified or unmodified 239 

input 76 
introduction 53 
light pen 243 
mapping compared with procedural 

alphanumerics 252 
menu example 240 
mixed with mapped fields 256 
multiline fields 77 
not supported on plotters 421 
output 76 
precedence over graphics 85 

overriding on 3270-PC/G and /GX, 3179-G, 
4224 86 

reverse-video fields 80 
summary of function 75 
symbol sets 219 
trailing attribute bytes 78 
translation tables 80 
underscored fields 80 

alternate device 371, 397, 402, BPRI 
alternate devices BPR1 
always-unlock- keyboard mode BPR2 
always-unlock-keyboard mode BPR2 
amendments, summary of, for Version 2 Release 

1 PGFPR 
amendments, summary of, Version 2 Release 

1 BPR1 
AMODE keyword, MVS/XA BPR2 
AMODE(xxx), MVS/XA BPR2 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

Index 533 



AM3270, device attachment BPR2 
anchor pointer BPR1 
angle BPR1, BPR2 
angles, rotation, and shear 

graphics segments 131 
text and symbols 61 

annotating charts APG2 
annotating graphics 53 
annotation, chart notes PGFPR 
aperture BPR1 
aperture, pick 

See pick 
apertures BPRI 
API (see application programming 

interface) PGFPR 
APL 6, BPR1, BPR2 
APL feature BPR2 
APL request codes modules xxiv, BPR1 
APL, interface to GDDM-PGF PGFPR 
APL2 BPR1 
APPEND nickname parameter 383, BPR2 
application anchor block (AAB) BPR1 
application data structure (ADS) 251,254, BPR1, 

BPR2 
See also alphanumerics, mapped 

application groups (windowing) 485 
application image 

creating an (lMACRT) 309 
definition of 306 

application interface component (AlC) BPR1 
application program, calling !CU from PGFPR 
application program, calling ISE from PGFPR 
application program, calling Vector Symbol Editor 

from PGFPR 
application programming interface (API) PGFPR 

See also interface 
application programming languages 

supported BPR1 
arc BPR2 
arcs BPR1 

circular 22 
elliptic 23 

area 26, APG2, BPR1, BPR2, PGFPR 
change attributes inside 46 
shading algorithm 27 

ASCCOL (specify character colors within a 
field) 81, BPR1 

ASCGET (get field contents) 76, BPR1 
ASCHLT (specify character highlights within a 

field) 82, BPRI 
ASCPUT (specify field contents) 76, BPR1 
ASCSS (specify character symbol sets within a 

field) 224, BPRI 
ASDFLD (define or delete a single field) 75, BPRI 
ASDFLT (set default field attributes) 237, BPRI 
ASDFMT (define multiple fields) 236, BPRI 
ASDTRN (define I/O translation tables) 80, BPR1 
ASFBDY (define field outline) 249, BPRI 

ASFCLR (clear fields) BPRI 
ASFCOL (define field color) 80, BPR1 
ASFCUR (position the cursor) 78, BPR1 
ASFEND (define field-end attribute) 80, BPRI 
ASFHLT (define field highlighting) 80, BPR1 
ASFIN (define input null-to-blank conversion) 80, 

BPRI 
ASFINT (define field intensity) 79, BPRI 
ASFMOD (change field status) 238, BPRI 
ASFOUT (define output blank-to-null 

conversion) 80, BPR1 
ASFPSS (define primary symbol set for a field) 80, 

223, BPR1 
ASFSEN (define field mixed-string attribute) 246, 

BPR1 
ASFTRA (defin,e field transparency attribute) 86, 

BPRI 
ASFTRN (assign translation table set to field) 80, 

BPRI 
ASFTYP (define field type) 79, BPRI 
ASGGET (get contents of double-character 

field) BPR1 
ASGPUT (specify double-character field 

contents) BPR1 
ASMODE (define the operator reply mode) 8~, 

BPRI 
aspect ratio APG2 

of copied graphics 404 
aspect-ratio control (for copy), specify 

(GSARCC) BPRI 
ASQCOL (query character colors for a field) 82, 

BPRI 
ASQCUR (query cursor position) 78, BPRI 
ASQFLD (query field attributes) BPR1 
ASQHLT (query character highlights for field) 82, 

BPR1 
ASQLEN (query length of field contents) BPR1 
ASQMAX (query number of fields) BPR1 
ASQMOD (query modified fields) 238, BPRI 
ASQNMF (query number of modified fields) 238, 

BPRI 
ASQSS (query character symbol sets for a field) 82, 

226, BPRI 
ASRATT (define field attributes) 237, BPRI 
ASREAD (device output/input) 10, 13, 83, BPR1 

mapping 257 
partitions 446 

ASRFMT (redefine fields) 235, BPR1 
assembler language BPR1, BPR2, PGFPR 

ADMUAIMC 283 
error code in register 15 122 
format of call to GDDM 5 

assigning data to alphanumeric field 76 
asterisks on screen 510 
ASTYPE (override alphanumeric character-code 

assignments) BPR1 
asynchronous interrupt on VM/CMS BPR2 
ATABOVE option APG2, PGFPR 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol 1 BPR2 Base Programming Reference Vol 2 

534 GDDM Application Programming Guide Volume 1 



ATCENTER option APG2, PGFPR 
ATEND option APG2, PGFPR 
attention feedback block for VM/CMS BPR2 
attention handling for VM/CMS BPR2 
attention interrupts under TSO BPR2 
attribute BPR1 
attribute adjunct 

See alphanumerics, mapped 
attribute adjuncts 282, BPR2 
attribute bytes on 3270-type hardware 78 
attribute table (PG routines) APG2 
attributes BPR1, BPR2, PGFPR 
attributes, alphanumeric 

See alphanumerics 
attributes, chart APG2 
attributes, graphics 

See graphics 
attributes, segment 

See graphics segments 
audit trail anchor block for CICS/VS BPR2 
AUNLOCK BPR2 
AUNLOCK processing option BPR1, BPR2 
auto-skip fields 

See also alphanumerics 
mapped 282 
procedural alphanumerics 80 

automatic axis drawing, control of PGFPR 
automatic closure of queued printer devices 407 
automatically initiating the VM/CMS print 

utility BPR2 
autoranging APG2, PGFPR 
autoscaling APG2 
autoskip attribute BPR2 
auxiliary device 421 
auxiliary family-1 devices 512 
auxiliary storage BPR1 
await graphics input (GSREAD) BPR1 
axis APG2, PGFPR 
axis label text attributes (CHLATT) PGFPR 
AXIS option PGFPR 

BACK option APG2, PGFPR 
background APG2 

color 35,44 
color mixing 45 

background color mix BPR2 
background color-mixing mode BPR1 
background print utility, TSO BPR2 
badge reader BPR1 

input to ASREAD 14 
translation into alphanumeric input 292 

bank account 

example program 83 
bar chart APG2, PGFPR 
bar-value areas, blanking PGFPR 
bar-value attributes (CSFLT) PGFPR 
bar-value attributes (CSINT) PGFPR 
bar-value digits (CHVDIG) PGFPR 
bar-value symbol set name (CSCHA) PGFPR 
bar-value threshold limit (CHTHRS) PGFPR 
base attribute adjunct 282, BPR2 

See also alphanumerics, mapped 
base position of chart note APG2 
base position of legend (CHKEYP) PGFPR 
baseline angle BPR1 
BASIC 6 
BASIC (IBM), interface to GDDM·PGF BPR1, 

PGFPR 
basic direct access method (BDAM) BPR2 
basic edit process for IMS{VS BPR2 
Basic Mapping Support BPR2 
basic partitioned access method (BPAM) BPR2 
batch processing BPR2 
BDAM (basic direct access method) BPR2 
begin image GDF order BPR2 
begin picture prolog PSC BPR2 
begin symbol-set mapping PSC BPR2 
BGBASE option APG2, PGFPR 
bibliography iv, APG2 
binary-image files 399 
BINDING (field of CHART call) PGFPR 
BKEY option APG2, PGFPR 
BLABEL option PGFPR 
black, special treatment of 44 
blank·to-null conversion 80 
blanking APG2, PGFPR 
blanks APG2 
blinking 

See also alphanumerics 
ASFHLT (define field highlighting) 80 
mapped data 293, 295 

blinking attribute BPR2 
BMS and GDDM BPR2 
BMSCOORD processing option BPR1, BPR2 
BNOTE option APG2, PGFPR 
books, list of iv, APG2 
bottom right cell of screen 97, APG2 
boundary, defining data (GSBND) BPR1 
box attributes (PG routines) APG2 
box size BPR1 
box spacing BPR1 
boxed legend APG2 
BPAM (basic partitioned access method) BPR2 
Brazilian default vector symbol set BPR2 
business charts APG2 
buttons, puck or mouse 

See choice input, activate stroke device 
BV ALUES option PGFPR 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol I BPR2 Base Programming Reference Vol 2 

Index 535 



call a segment (GSCALL) BPR1 
call format descriptor modules xxiv, BPR1, BPR2 
call intercept exit BPR2 
call segment BPR2 
call statements, syntax conventions BPR1, PGFPR 
CALLINF external default xxiv, BPR1 
CALLINF, call information block BPR2 
calling IOU from application program APG2, 

PGFPR 
calling ISE from application program PGFPR 
calling segments 148 

inherited attributes 152 
calling Vector Symbol Editor from application 

program PGFPR 
CALLINT, call intercept user exit option BPR2 
calls BPR1 
calls to GDDM, format of 5 
canceling plotter output (ASREAD) BPRI 
canceling plotter output with Clear key BPR1 
candidate operator window 471 
capture graphics data (GSGET) BPR1 
capturing pictures 201 
cartoon effect 44 
CBACK option APG2, PGFPR 
CBAR option APG2, PGFPR 
CBOX option APG2, PGFPR 
CDPFTYPE processing option BPR1, BPR2 
cell 

plotter 426 
cell size, variable 461 

example 463 
cent sign 228 
CHAATT (set axis line attributes) APG2, PGFPR 
chained attribute for segments BPR1 
chained segment attribute 131 
change field status 238 
change field status (ASFMOD) BPR1 
change resolution flag of an image (IMARF) 327, 

BPRI 
changes for Version 2 Release 1 BPR1, PGFPR 
changes to GDDM APG2, BPR1 

compatibility of release 4 with earlier 
releases 172 

compatibility of Version 1 Release 4 with earlier 
releases xxv 

compatibility of Version 2 Release 1 with earlier 
releases xxiv 

changes to PGF-API PGFPR 
changes to this manual for Version 2 Release 

1 xxiii, APG2 
changing GDDM's defaults BPR2 
changing image resolution (IMARES) 328 
changing pictures 172 
character 

See also symbol, alphanumerics 

angle 61 
box 58 

on high resolution printers 71 
on 3270-PC/G and IGX 70 

code 219 
direction 62 
graphics 55 
GSCHAR (draw character string at specified 

point) 55 
mode 56,58 
national use 228 
shear 64 
space 65 
strings 55 

ways of displaying 53 
character angle BPR1, BPR2 
character attributes 81, 295, BPR2 

See also alphanumerics 
character box BPR1, BPR2 

plotter 426 
character colors for field, query (ASQCOL) BPRI 
character direction BPRl, BPR2 
character direction, Chinese text (GSCD) BPRI 
character direction, Farsi text (GSCD) BPR1 
character direction, roman text (GSCD) BPR1 
character grid size (PG routines) APG2 
character highlights for field BPRI 
character items PGFPR 
character mode BPR2 
character modes BPR1 

comparison of 73 
mode-1 73 
mode-2 73 
mode-3 73 

character order (GDF) BPR2 
CHARACTER parameters in 

VS/FORTRAN PGFPR 
character set GDF order BPR2 
character shear BPR1, BPR2 
character size, variable 461 

example 463 
character spacing/size (CHCGRD) PGFPR 
character string BPR1 
character strings BPR1 
character strings in VS FORTRAN BPRI 
character symbol sets BPRI 
character width multiplier (CSFLT) PGFPR 
character-box spacing BPRl, BPR2 
character-box spacing (GSCBS) BPRI 
character-code assignments, override 

(ASTYPE) BPR1 
CHAREA (define chart area) APG2, PGFPR 
chart APG2, PGFPR 
chart attributes APG2 
CHART call APG2, PGFPR 
chart data description (CSCHA) PGFPR 
chart data file BPR2 
chart data names PGFPR 

Page numbers refer to this book; further information can be found in other ~DDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programmmg Reference 
BPRI Base Programming Reference Vall BPR2 Base Programming Reference Vol 2 

536 GDDM Application Programming Guide Volume 1 



chart definition file BPR2 
chart format description (CSCHA) PGFPR 
chart format file· BPR2 
chart format names PGFPR 
chart heading (CSCHA) PGFPR 
chart heading attributes (CSFLT) PGFPR 
chart heading symbol set name (CSCHA) PGFPR 
chart identification number PGFPR 
chart note symbol set name (CSCHA) PGFPR 
chart note text (CSCHA) PGFPR 
chart options, querying control values 

(CSQNUM) PGFPR 
chart options, querying floating-point values 

(CSQFLT) PGFPR 
chart options, querying integer values 

(CSQINT) PGFPR 
chart options, setting floating-point values 

(CSFLT) PGFPR 
chart options, setting integer values 

(CSINT) PGFPR 
chart proportions (CSFLT) PGFPR 
chart type options (CSINT) PGFPR 
chart types, mixing APG2 
CHBAR (create bar chart) APG2, PGFPR 
CHBARX (create bar chart with numeric x 

values) PGFPR 
CHBARX (create bar charts with numeric x 

values) APG2 
CHBATT (set framing box attributes) APG2, 

PGFPR 
CHCGRD (set character grid) APG2, PGFPR 
CHCOL (set color table) APG2, PGFPR 
CHCONV (convert coordinates) PGFPR 
CHDATT (set datum line attributes) APG2, 

PGFPR 
CHDCTL (control format of values on table 

chart) PGFPR 
CHDRAX (draw axes) APG2, PGFPR 
CHDTAB (create table chart) PGFPR 
check picture complexity 15 
check picture complexity before output 

(FSCHEK) BPRI 
CHFINE (set curve-fitting smoothness) APG2, 

PGFPR 
CHGAP (set spacing between bars) APG2, PGFPR 
CHGATT (set grid line attributes) APG2, PGFPR 
CHGGAP (set spacing between bar groups) APG2, 

PGFPR 
CHHATT (set heading text attributes) APG2, 

PGFPR 
CHHEAD (set heading text) APG2, PGFPR 
CHHIST (create histogram) APG2, PGFPR 
CHHMAR (set horizontal margins) APG2, PGFPR 
Chinese text BPRI 
CHKATT (set legend text attributes) APG2, 

PGFPR 
CHKEY (set legend key labels) APG2, PGFPR 

CHKEYP (set base position of legend) APG2, 
PGFPR 

CHKMAX (set maximum legend 
height/width) APG2, PGFPR 

CHKOFF (set legend offsets) APG2, PGFPR 
CHLATT (set axis label text attributes) APG2, 

PGFPR 
CHLC (set component line color table) APG2, 

PGFPR 
CHLT (set component line type table) APG2, 

PGFPR 
CHLW (set component line width table) APG2, 

PGFPR 
CHMARK (set component marker table) APG2, 

PGFPR 
CHMISS (set missing values string) PGFPR 
CHMKSC (set marker scale values) APG2, PGFPR 
CHNATT (set note attributes) APG2, PGFPR 
CHNOFF (set note offset) APG2, PGFPR 
CHNOTE (specify notes) APG2, PGFPR 
CHNUM (set number of components) APG2, 

PGFPR 
choice device BPRI 
choice input 182 

associated with graphics field 197 
enabling and disabling device 188, 213 
initializing device 192 
input data 182 
querying 182 

CHPAT (set component shading pattern 
table) APG2, PGFPR 

CHPCTL (control pie chart slices) APG2, PGFPR 
CHPEXP (exploded slices in pie chart) APG2, 

PGFPR 
CHPIE (create pie chart) APG2, PGFPR 
CHPIER (reduce pie chart size) APG2, PGFPR 
CHPLOT (create line graph or scatter 

plot) PGFPR 
CHPLOT (create line graphs and scatter 

plots) APG2 
CHPOLR (create polar chart) APG2, PGFPR 
CHQARE (query chart area) PGFPR 
CHQPOS (query chart note position) PGFPR 
CHQRNG (query x and y axis ranges) PGFPR 
CHRNIT (reinitialize chart definition 

options) APG2, PGFPR 
CHSET (set chart options) APG2, PGFPR 
CHSSEG (set a segment number) PGFPR 
CHSTRT (reset processing state to state-I) APG2, 

PGFPR 
CHSURF (create surface chart) APG2, PGFPR 
CHTATT (set text attributes) APG2, PGFPR 
CHTERM (terminate PG routines) PGFPR 
CHTERM (terminate the PG routines) APG2 
CHTHRS (set bar-value threshold limit) APG2, 

PGFPR 
CHTOWR (create tower charts) APG2, PGFPR 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRl Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

Index 537 



CHTPRJ (set tower chart projection) APG2, 
PGFPR 

CHV ATT (set value of text attributes) APG2, 
PGFPR 

CHVCHR (set number of bar value 
characters) APG2, PGFPR 

CHVDIG (set bar-value digits) PGFPR 
CHVENN (create Venn diagram) APG2, PGFPR 
CHVMAR (set vertical margins) APG2, PGFPR 
CHXDAY (set x-axis day labels) APG2, PGFPR 
CHXDLB (set x-axis data labels) APG2, PGFPR 
CHXDTM (specify x-axis datum line) APG2, 

PGFPR 
CHXINT (set x-axis interception point) APG2, 

PGFPR 
CHXLAB (specify x-axis label text) APG2, PGFPR 
CHXLAT (set x-axis label attributes) APG2, 

PGFPR 
CHXMTH (set x-axis month labels) APG2, PGFPR 
CHXRNG (set an explicit range of x axis) APG2, 

PGFPR 
CHXSCL (set x-axis scale factor) PGFPR 
CHXSEL (select x axis) APG2, PGFPR 
CHXSET (x-axis options) APG2, PGFPR 
CHXTAT (set x-axis title attributes) PGFPR 
CHXTIC (set x-axis scale mark interval) APG2, 

PGFPR 
CHXTTL (specify x-axis title) APG2, PGFPR 
CHYDAY (set y-axis day labels) APG2, PGFPR 
CHYDTM (specify y-axis datum line) APG2, 

PGFPR 
CHYINT (set y-axis interception point) APG2, 

PGFPR 
CHYLAB (set y-axis label text) APG2, PGFPR 
CHYLAT (set y-axis label attributes) APG2, 

PGFPR 
CHYMTH (set y-axis month labels) APG2, PGFPR 
CHYRNG (specify an explicit range of y 

axis) APG2, PGFPR 
CHYSCL (set y-axis scale factor) PGFPR 
CHYSEL (select y axis) APG2, PGFPR 
CHYSET (Y-axis options) APG2, PGFPR 
CHYTAT (set y-axis title attributes) PGFPR 
CHYTIC (set y-axis scale mark interval) APG2, 

PGFPR 
CHYTTL (specify y-axis title) APG2, PGFPR 
CHZDLB (set z-axis data labels) APG2, PGFPR 
CHZGAP (set spacing between towers) APG2, 

PGFPR 
CHZLAT (set z-axis label attributes) PGFPR 
CHZRNG (set an explicit range of z axis) APG2, 

PGFPR 
CHZSET (z-axis options) APG2, PGFPR 
CHZTIC (set z-axis scale mark interval) APG2, 

PGFPR 
CICAUD, CICS/VS audit trail anchor BPR2 
CICDECK, CICS/VS deck name BPR2 

CICDFPX, CICS/VS defaults file temporary 
storage BPR2 

CICGIMP, CICS/VS ADMGIMP name BPR2 
CICIADS, CICS/VS ADS name BPR2 
CICIFMT, CICS/VS GDDM·IMD staged data 

file-type BPR2 
CICPRNT, CICS/VS print utility name BPR2 
CICS pseudoconversational control 14, 391, 499, 

BPR2 
CICS/VS BPR1, BPR2 
CICS/VS, running under 6 
CICS/VS, using PGF under PGFPR 
CICSTGF, CICS/VS GDDM-IMD staging file 

name BPR2 
CICSYSP, CICS/VS system printer name BPR2 
CICTIF option, eICS/VS transaction 

independence BPR2 
CICTQRY option, CICS/VS device query temporary 

storage prefix BPR2 
CICTRCE, CICS/VS trace transient data 

name BPR2 
CICTSPX, CICS/VS temporary storage prefix BPR2 
circle displayed as oval 19 
circular arc, drawing (GSARC) BPR1 
circular arcs 22 
clear BPR1 

current page 94 
difference from "delete" 94 
graphics field 129 

clear a rectangle in an image (IMACLR) 327, BPR1 
CLEAR key BPR1 

enabling as logical input device 189, 214 
input to ASREAD 14 
input to GSREAD 182 
terminates plotting 426 
translation into alphanumeric input 292 

clear the current page (FSPCLR) BPR1 
CLEAR/PAl protocol in TSO BPR2 
clipping 110, BPR1 

after GSLOAD 168 
and GSLOAD 164 
by GSSA VE 158 

close a device (DSCLS) BPR1 
close alternate device (FSCLS) BPR1 
close device 375 
close segment 127, APG2 
close the current segment (GSSCLS) BPR1 
closure of an area, automatic 27, 28 
CMS PGFPR 
CMS, running under 6 
CMSAPLF, VM APL default specification BPR2 
CMSATTN processing option BPR1, BPR2 
CMSCOLM, color master filetype for 

VM/CMS BPR2 
CMSDECK, VM deck filetype BPR2 
CMSDFTS. VM defaults filename and 

filetype BPR2 
CMSIADS, VM ADS filetype BPR2 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

538 GDDM Application Programming Guide Volume 1 



CMSIFMT, VM export utility filetype BPR2 
CMSINTRP processing option BPR1, BPR2 
CMSMONO, VM monochrome filetype BPR2 
CMSMSLT, VM MSL filetype BPR2 
CMSPRNT, VM print filetype BPR2 
CMSSYSP, VM system printer filetype BPR2 
CMSTEMP, VM work-file filetype BPR2 
CMSTRCE, VM trace filename/filetype 121, BPR2 
COBOL APG2, BPR1, BPR2, PGFPR 

ADMUCIMC 283 
format of call to GDDM 5 
parameter declarations 10 

COBOL sample programs BPR2 
code page 413, BPR1 
code, character 219 
color 35, 293, 295, APG2, BPR1, BPR2 

See also alphanumerics 
See also multi-colored 
ASFCOL (define field color) 80 
changing inside an area 46 
codes 79 
GSBMIX (set current background color-mixing 

mode) 45 
GSMIX (set current foreground color-mixing 

mode) 43 
mapped data 293, 295 
mixing 42 
of line bounding an area 41 
on plotters 434 
on 3287 printer 410 
unsupported by device 35 
3270-PC/G and /GX 49 

color table, shading and markers PGFPR 
color-separation masters 399,416, BPR2 

range of colors 50 
COLORMAS processing option BPR1, BPR2 
combining segments 146 
commas APG2 
COMMENT default option BPR2 
comment order, GDF 173 
company logo 219, APG2 
compass keys PGFPR 
compatibility of GDDM Version 1 Release 4 with 

earlier releases BPR1 
compatibility of release 4 with earlier releases 

GDF (graphics data format) 172 
compatibility of Version 1 Release 4 with earlier 

releases xxv, PGFPR 
compatibility of Version 2 Release 1 with earlier 

releases xxiv, APG2, BPR1, PGFPR 
compiling BPR2 
compiling a GDDM program 11 

mapping 256, 262 
compiling sample programs BPR2 
complex legends APG2 
complex PG routine charts APG2 
complex pictures BPR2 
complex pictures, checking 15 

component (PG routines) APG2 
component (PGF) APG2 
component appearance PGFPR 
component line color table (CHLC) PGFPR 
component line type table (CHLT) PGFPR 
component line width table (CHLW) PGFPR 
component marker table (CHMARK) PGFPR 
component shading pattern table (CHPAT) PGFPR 
composed-page printers 512, BPR2 
composite bar charts APG2 
compressed PS loads, IOCOMPR BPR2 
concatenating graphics text 55 
conditional loading of symbol sets BPR1, BPR2 
confidential printing, with JES/328X BPR2 
console, user 367 
constant data fields 251, 261 
construction lines of polyfillet 25 
control APG2, PGFPR 
control echoing of scanner image (ISESCA) 308, 

311, BPR1 
control functions BPR1 
control internal trace (FSTRCE) BPR1 
control pie chart slices (CHPCTL) PGFPR 
control the use of mixed fields by mapping 

(SPMXMP) BPR1 
control values, setting (CSNUM) PGFPR 
controlling image quality (ISCTL, ISXCTL) 351 
conventions BPR1, BPR2 
conventions for call syntax BPR1, PGFPR 
conventions for displaying numeric data 

values PGFPR 
conversion BPR1 
convert the resolution attributes of an image 

(1M ARES) 328, BPR1 
converting coordinates (CHCONV) PGFPR 
converting source-format UDSs BPR2 
coordinate lengths in GDF BPR2 
coordinates 

current 
See current position 

querying 
current position 32 
cursor position in graphics window 32 
locator input 181, 185 
pick input 181 

coordinating device (windowing) 468 
coordination exit routine 467,482, BPR2 
coordination mode for CICS/VS BMS BPR2 
copy BPR1, BPR2 
copy a segment (GSSCPY) BPR1 
copying graphics 143 
copying output to plotter 429 
copying pictures between devices and systems 172 
copying, inter-device 398, 403, 404 

using GSSA VE and GSLOAD 167, 168 
correlation by work station 177 
correlation of structure (GSCORS) BPR1 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol 1 BPR2 Base Programming Reference Vol 2 

Index 539 



correlation of tag to primitive (GSCORR) 208, 
BPR1 

corruption of screen graphics 510 
CP SPOOL parameters in DSOPEN BPR2 
CP TAG parameters in DSOPEN BPR2 
CPN4250, 4250 code page name BPR2 
CPSPOOL processing option 407, BPR1, BPR2 
CPTAG processing option 407, BPR1, BPR2 
create a chart (CSCCRT) PGFPR 
create a page (FSPCRT) BPR1 
create a page for mapping (MSPCRT) BPR1 
create a partition (PTNCRT) BPR1 
create a partition set (PTSCRT) BPR1 
create a segment (GSSEG) BPR1 
create an empty projection (IMPCRT) 316,325 
create an image (lMACRT) 309, 313, BPR1 
create an operator window (WSCRT) BPR1 
create graphics field 96 
create or delete a mapped field (MSDFLD) BPR1 
create page 93 
create picture space 97 
create viewport 98 
cross tick marks APG2 
cross, tracking 193 
CSCCRT (create a chart) APG2, PGFPR 
CSCDEL (delete a chart) APG2, PGFPR 
CSCHA (create character items) APG2, PGFPR 
CSCHA, guide to options and attributes APG2, 

PGFPR 
CSDEL (delete chart items) APG2, PGFPR 
CSDIR (build a directory) APG2, PGFPR 
CSFLT (set floating-point values) APG2, PGFPR 
CSFLT, guide to options and attributes APG2, 

PGFPR 
CSINT (set integer values) APG2, PGFPR 
CSINT, guide to options and attributes APG2, 

PGFPR 
CSLOAD (restore a chart) APG2, PGFPR 
CSNUM (set control values for a chart) APG2, 

PGFPR 
CSNUM, guide to options and attributes APG2, 

PGFPR 
CSQCHA (query character items) APG2, PGFPR 
CSQCHL (query character string lengths) APG2, 

PGFPR 
CSQCS (query CSxxxx call information) APG2, 

PGFPR 
CSQDIR (query directory) APG2, PGFPR 
CSQFLT (query floating-point values) APG2, 

PGFPR 
CSQINT (query integer values) APG2, PGFPR 
CSQNUM (query control values) APG2, PGFPR 
CSQmD (query chart identification 

number) APG2, PGFPR 
CSQXDT (query independent (x) values) APG2, 

PGFPR 
CSQXSL (query selected x data) APG2, PGFPR 

CSQYDT (query dependent (y) values) APG2, 
PGFPR 

CSQZDT (query data group (z) values) APG2, 
PGFPR 

CSQZSL (query selected data groups (z» APG2, 
PGFPR 

CSSAVE (save a chart) APG2, PGFPR 
CSSICU (start an !CU session) APG2, PGFPR 
CSXDT (set independent (x) values) APG2, PGFPR 
CSXSL (set data selection) APG2, PGFPR 
CSxxxx calls PGFPR 
CSYDT (set dependent (y) values) APG2, PGFPR 
CSZDT (set data group (z) data values) APG2, 

PGFPR 
CSZSL (select data groups (z» APG2, PGFPR 
CTLF AST processing option 387, BPR1, BPR2 
CTLKEY processing option 387, BPR1, BPR2 
CTLMODE processing option 386, BPR1, BPR2 
CTLPRINT processing option BPR1, BPR2 
CTLSA VE processing option BPR1, BPR2 
CTLSA VE, User Control SAVE function 

control BPR2 
current character mode, query (GSQCM) BPR1 
current code page, set (GSCPG) BPR1 
current device 367 
current operator window 471,477 
current page 93 
current page, query (MSPQRY) BPR1 
current partition 447 
current position 10, BPR1, BPR2 

querying 32 
cursor BPR1, BPR2 

always within scrolling window 461 
for selecting from menu 288 
positioning 

in ASREAD output 13, 78 
in FSFRCE output 14, 78 
in GSREAD output 197 
in mapped ASREAD output 284 
in MSREAD output 284 

querying 
See pick, locator, stroke 

querying position 
in graphics window 32 
mapped alphanumerics 286 
procedural alphanumerics 78 

specifying type 192 
cursor adjunct 284 

See also alphanumerics, mapped 
cursor-receiver map, locating the cursor BPR2 
cursor, four button (puck) 

See pick, locator, stroke 
buttons 

See choice input, activate stroke device 
CURSR SEL key 

mapped fields 287 
curve fitting (PG routines) APG2 
CURVE option APG2, PGFPR 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

540 GDDM Application Programming Guide Volume 1 



curve-fitting smoothness PGFPR 
CV ALUES option APG2, PGFPR 

Danish default vector symbol set BPR2 
data APG2, PGFPR 
data (gray) keys 

enabling as logical input device 189 
input to GSREAD 182, 183 

data area (see application data structure) BPR2 
data boundary BPR1 
data characteristics BPR2 
data component (see data group) APG2 
data definition description (CSCHA) PGFPR 
data definition name (CSCHA) PGFPR 
data entry example 445 
data file, ICU, contents of APG2 
data group APG2 
data group (z) data values, setting 

(CSZDT) PGFPR 
data group name (CSCHA) PGFPR 
data group name attributes (CSFLT) PGFPR 
data group name attributes (CSINT) PGFPR 
data group name symbol set name 

(CSCHA) PGFPR 
data import PGFPR 
data interpretation options (CSINT) PGFPR 
data labels PGFPR 
data labels (CSCHA) PGFPR 
data set search for GDDM objects (ESLIB) BPR1 
data sets and file processing BPR2 
data stream 

displaying 16 
saving 16 

data structure (see application data 
structure) BPR2 

data type field attribute 283 
data types for call parameters BPR1 
data values on bar and pie charts PGFPR 
data, where to get it PGFPR 
DATANAME (field of CHART call) PGFPR 
date labels APG2 
DATE option PGFPR 
DATEFRM, date convention BPR2 
dates, conventions for punctuation BPR2 
DATRN, alphanumeric defaults module 

control BPR2 
datum line (PG routines) APG2 
datum lines PGFPR 
day labels APG2, PGFPR 
DBCS (double-byte character set) PGFPR 
DBCS fields BPR1, BPR2 

alphanumerics 245 
graphics text 230 

DBCSDFT, DBCS default selection BPR2 

DBCSLIM, symbol set component threshold BPR2 
DBCSLNG default parameter 232 
DBCSLNG, symbol set language BPR2 
DCB characteristics for TSO data sets BPR2 
DCSS (discontiguous shared segment) PGFPR 
debugging BPR1 
debugging aids 117 
debugging GDDM programs BPR1 
decimal digits in bar charts PGFPR 
decimal digits in table charts PGFPR 
deck BPR2 
declaration of GDDM entry points in PL/I 9 
default APG2, BPR1 

device 367, 372 
error exit 119 
error threshold 119 
field attributes 237 
graphics attributes 47 
graphics window 102 
page 94 
symbol set 226 

default data in mapping 261 
See also alphanumerics, mapped 

default error exit BPR1, BPR2 
default feed-back block BPR2 
default GDDM page, definition BPR1 
default user exit, ADMMEXIT option BPR2 
default value BPR2 
DEFAULT, default user exit option BPR2 
defaults BPR1, BPR2 

picture drawing 47 
defaults module and file 380 

nicknames 380 
parameters for GDDM call tracing 121 
parameters for Kanji graphics text 232 

deferred device name-list for print utility BPR2 
define a data boundary (GSBND) BPR1 
define a graphics window (GSWIN) BPR1 
define a uniform graphics window 

(GSUWIN) BPR1 
define a viewport (GSVIEW) BPR1 
define bi-Ievel conversion algorithm 

(IMRCVB) 334, BPR1 
define brightness conversion algorithm 

(IMRBRI) 333, BPR1 
define contrast conversion algorithm 

(IMRCON) 333, BPR1 
define field attributes (ASRA TT) BPR1 
define field color (ASFCOL) BPR1 
define field intensity (ASFINT) BPR1 
define field mixed-string attribute (ASFSEN) BPR1 
define field outline (ASFBDY) BPR1 
define field transparency attribute 

(ASFTRA) BPR1 
define field type (ASFTYP) BPR1 
define field-end attribute (ASFEND) BPR1 
define 1/0 translation tables (ASDTRN) BPR1 
define image field (ISFLD) 357 

Page number~ refer to this book; further information can be found in other GDDM books· 
APG2 Appl,cation Pr0l!ramming Guide Vol 2 PGFPR PGF Programming Reference· 
BPR1 Base Programmmg Reference Voll BPR2 Base Programming Reference Vol 2 

Index 541 



define multiple fields without deleting existing 
fields (ASRFMT) BPR1 

define or delete a single field (ASDFLD) BPR1 
define output blank-to-null conversion 

(ASFOUT) BPR1 
define place position in pixel coordinates 

(IMRPL) 317 
define place position in real coordinates 

(IMRPLR) 317, BPRI 
define primary symbol set for a field 

(ASFPSS) BPR1 
define rectangular sub-image in pixel coordinates 

(IMREX) 317, BPR1 
define rectangular sub-image in real coordinates 

(IMREXR) 316, BPR1 
define the graphics field (GSFLD) BPR1 
define the operator reply mode (ASMODE) BPR1 
define the picture space (GSPS) BPR1 
defining BPR1, BPR2 
defining device BPR1 
delay axis drawing APG2 
delayed detection of selectable mapped fields BPR2 
delete BPR1 

page 95 
difference from "clear" 95 

segment 129 
delete a chart (CSCDEL) PGFPR 
delete a directory (CSCDEL) PGFPR 
delete a partition (PTNDEL) BPR1 
delete a partition set (PTSDEL) BPR1 
delete a segment (GSSDEL) BPR1 
delete application group (ESADEL) BPR1 
delete chart items (CSDEL) PGFPR 
delete operator window (WSDEL) BPR1 
delete projection (IMPDEL) 320, BPR1 
delete the image associated with the identifier 

(IMADEL) 311, BPR1 
dependent (y) values, setting (CSYDT) PGFPR 
descriptor modules for call formats BPR2 
designator characters BPR2 
designator Of light pen field 

mapping 287 
procedural alphanumerics 243 

DESTNAME (field of CHART call) PGFPR 
detectability attribute BPR2 
detectability attribute for segments BPR1 
detectable field attribute 283 

procedural alphanumerics 244 
detectable segment 130, 180 
device 90, BPR1, BPR2 

alternate 371 
close 375 
current 367 
default 367 
definition tables 368 
dummy 376 
family 368 
logical input 177 

See also choice, locator, pick, string, stroke 
mapgroup suffixes 271 
more than one 372 
primary 371 
properties 368 
support 367 
symbol set suffixes 228 
token 368, 399 

for 4250 and 3800-3 printers 399 
in nickname statement 378 

usage 371 
device attachment, AM3270 BPR2 
device characteristic tokens (see device 

tokens) BPR2 
device characteristics BPR1 
device class for a map 260 
device image 

creating an (IMACRT) 309 
definition of 306 

device output/input (ASREAD) BPR1 
device tokens BPR2 
devices supported 507 

new in Version 1 Release 3 xxvi 
new in Version 1 Release 4 xxv 

devices, new, in Version 2 Release 1 BPR1 
DEVTOK nickname parameter 378, BPR2 
digitizing 

See also stroke input 
example 201 

direct transmission, of image 347, 355,356 
direction of graphics text 62 
direction, character BPR1, BPR2 
DIRECTN, coordination exit control direction 

parameter BPR2 
directory PGFPR 
directory panel as only function of ICU PGFPR 
disable clipping, GSCLP 110 
disable/enable device input (FSENAB) BPR1 
disabling image cursors (ISENAB) 341 
disabling logical input device 189, 214 

See also GSENAB 
image (FSENAB) 341 
when advisable 197 

discontiguous shared segment (DCSS) PGFPR 
discontinue device usage (DSDROP) 372, BPR1 
displacing segment origin 142 
displacing segments 131 
displacing, scaling, shearing, and rotating 

primitives BPR1 
displacing, scaling, shearing, and rotating 

segments BPR1 
display BPR1 
DISPLAY (field of CHART call) PGFPR 
display a saved picture (FSSHOW) BPR1 
display format 

See alphanumerics, mapped 
display saved picture 16 
display-device conventions BPR2 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

542 GDDM Application Programming Guide Volume 1 



dividing the screen 100 
DL/I BPR2 
document name BPR2 
dollar sign 228 
double-byte character set (see DBCS fields) 230, 

245 
double-byte character strings (see DBCS 

fields) BPR2 
draft draw mode 389 
dragging segments 

example 202 
problems 204 

draw APG2, BPRI 
circular arc 22 
elliptic arc 23 
graphics area 26 
graphics marker 24 
image 30 
polyfillet 24 
sequence of lines 20 
several graphics markers 24 
straight line 19 
text at current position 55 
text at specified point 55 

draw a character string at a specified point 
(GSCHAR) BPRI 

draw a character string at current position 
(GSCHAP) BPRI 

draw a circular arc (GSARC) BPRI 
draw a curved fillet (GSPFLT) BPRI 
draw a graphics image (GSIMG) BPR1 
draw a marker symbol (GSMARK) BPRI 
draw a scaled graphics image (GSIMGS) BPR1 
draw a straight line (GSLINE) BPR1 
draw an elliptic arc (GSELPS) BPR1 
draw axes (CHDRAX) PGFPR 
DRAW option APG2, PGFPR 
drawing chain 127 
drawing chart with PG routines PGFPR 
drawing defaults 47, BPR1 
drawing interactively on the screen 177 

example program 201 
drawing order 147 
drop (discontinue) device (DSDROP) 372, BPRI 
DRYLIB (field of CHART call) PGFPR 
DRYNAME (field of CHART call) PGFPR 
DRYTYPE (field of CHART call) PGFPR 
DRYTYPEQ (field of CHART call) PGFPR 
DSCLS (close a device) 91, 375, BPR1 
DSCMF (User Control function) BPR1 
DSDROP (discontinue device usage) 91, 372, BPRI 
DSOPEN (open a device) 91,367, BPR1 

for a plotter 421 
simplifying the call 381 
to print color masters 418 
use for operator windows 467 

DSOPEN, using processing option groups BPR2 
DSOPEN, using with nicknames BPR2 

DSPRINT command (JES/328X) BPR2 
DSQCMF (query User Control function) BPR1 
DSQDEV (query device characteristics) 391, BPR1 
DSQUID (query unique device identifier) 391, 

BPR1 
DSQUSE (query device usage) BPR1 
DSRNIT (reinitialize a device) 391, BPR1 
DSUSE (specify device usage) 91, 371, BPR1 

for alternate device 402 
dual-screen terminals 13, 75 

GSFLD call 97 
mapping 252, 298 

dual-screen 3270-PCjGX, define graphics 
field BPR1 

dummy device 376 
Dummy processing option BPR2 
dummy procopt group BPR2 
duplicate axis selection APG2, PGFPR 
duplicate identifiers 373 
dynamic Cursor setting BPR2 
dynamic load of system programmer 

interface BPR2 
dynamic segment attributes BPR1 

EBCDIC character codes BPR1 
echo 

locator device 192 
querying 198 
segment, how drawn 203 
stroke device 196 

editing pictures 172 
EITHER keyword, MVS/XA BPR2 
electro-erosion printers 399 
ellipse displayed instead of circle 19 
elliptic arc, draw (GSELPS) 23, BPR1 
enable and disable clipping (GSCLP) BPR1 
enable or disable a logical input device 

(GSENAB) BPR1 
enable or disable image cursor (ISENAB) 341, 

BPR1 
enable/disable device input (FSENAB) BPR1 
enabling clipping 110 
enabling logical input device 180, 188, 213 

and initializing 192, 197 
image (FSENAB) 341 
pick, locator and stroke together 197 
querying 198 

encoded UDS BPR1, BPR2 
end a shaded area (GSENDA) BPR1 
end area GDF order BPR2 
end data entry into an image (IMAPTE) BPR1 
end drawing defaults definition (GSDEFE) BPR1 
end image GDF order BPR2 
end picture prolog PSC BPR2 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vall BPR2 Base Programming Reference Vol 2 

Index 543 



end retrieval of data from an image 
(IMAGTE) BPR1 

end retrieval of graphics data (GSGETE) BPR1 
end symbol-set mapping PSC BPR2 
end-of-field attribute (ASFEND) BPR1 
English default vector symbol set BPR2 
enlarging segments 131 
enter data into an image (IMAPT) BPR1 
ENTER key 

enabling as logical input device 189, 214 
input to ASREAD 14 
input to GSREAD 182 
translation into alphanumeric input 292 

entry-points to GDDM 9 
environment, query (FSQSYS) BPRI 
erasing by overpainting in black 44 
ERRFDBK default option BPR2 
error 

checking picture complexity 15 
exits 119 
messages 117 
query last 118 
record 118 
return codes 117 

in register 15 122 
using FSSHOR or FSSHOW 17 

error exits BPR1, BPR2 
error processing 12, BPRI 
error record structure BPR1 
error records BPR1 
error thresholds BPR1, BPR2 
errors PGFPR 
errors in full-screen mode (TSO) BPR2 
ERRTHRS, error threshold BPR2 
ESACRT (create application group) 485, BPR1 
ESADEL (delete application group) 485, BPR1 
ESAQRY (query current application group) 485, 

BPR1 
ESASEL (select an application group) BPR1 
ESASEL (select application group) 485 
ESEUDS (specify encoded user default 

specification) BPRI 
ESLIB Oibrary management) BPR1 
ESPCB (identify program communication 

block) BPR1 
ESSUDS (specify source-format user default 

specification) 384, BPR1 
example programs APG2 

AID translation 293 
alphanumeric menu 240 
calling segments 149 
clipping 113 
color adjunct 293 
color masters 418 
concatenating graphics text 55 
copying SCreen output to a printer 405 
correlation 209 
cursor adjunct 285, 287 

cursor selection 288 
directly-attached printer as primary device 396 
dragging segments 202 
dummy devices 376 
floating maps 268 
freehand drawing or digitizing 201 
graphics and mapping 299 
graphics and procedural alphanumerics 85 
graphics area 26 
graphics image 30 
graphics menu 178 
graphics text attributes 68 
image printing on 4224 358 
image printing on 4250 or 3800-3 359 
image scaling to fit display screen 338 
image scanning, displaying and saving 308 
interactive image trimming 344 
interactive image trimming with part-screen 

image field 345 
inverting graphics windows 103 
light pen selection 288 
line-break in graphics text 55 
mapped menu 288 
multiple maps 264 
opening a device 367 
PF key selection from menu 288 
picking symbol primitives 178 
plotting a saved picture 427 
procedural alphanumerics 83 
querying graphics attributes 46 
queued printer 397 
redefining graphics windows and viewports 106 
restoring a proj ection and saving an image 320 
selector adjunct 274 
simple mapping 253 
simple mapping program 259, 260 
stroke input 187 
subroutine to draw at specified location 46 
symbol set attributes 224 
symbol set for graphics text 226 
system printer 398 
the 64-color set 40 
two primary devices 372 
two-part graphics area 28 
underlining graphics text 32 
user-defined markers 37 
user-defined patterns 39 
viewports 100 
zooming 113 
4250 and 3800-3 printers 399 
4250 fonts 413 

exceeding PL/I names limit under VM/CMS BPR1 
exclude data (CSXSL) PGFPR 
exclusive-OR drawing mode 203 
executing a GDDM program 11 

mapping 256, 263 
exit character string, IMS/VS BPR2 
exit routines BPR2 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRl Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

544 GDDM Application Programming Guide Volume 1 



explicit correlation of structure (GSCORS) BPRI 
explicit correlation of tag to primitive 

(GSCORR) BPRI 
exploded pie charts APG2 
exploded slices in pie charts (CHPEXP) PGFPR 
EXPLVL (field of CHART call) PGFPR 
export utility for GDDM-IMD BPR2 
exporting pictures 172 
extend axis range to include zero APG2 
extended highlighting adjunct (GDDM-IMD) BPR2 
extended set image quality-control paraemeters 

(ISXCTL) 354 
external defaults BPR2 
external interfaces BPRl, BPR2 
external names restriction in PL/I BPRl, PGFPR 

F AM nickname parameter 378, BPR2 
family of device 368 

in nickname statement 378 
printer 395 

family-l devices 507, 509, 511 
plotters 512 
printers 511 

family-2 print-file destination in TSO BPR2 
family-2 printers 511 
family-3 printers 512 
family-4 printers 512 
Farsi text BPRI 
fast update mode BPR2 
FASTUPD processing option 389, BPRl, BPR2 
FBAR option APG2, PGFPR 
feed-back block BPR2 
feedback values BPR2 
FF3270P, form feed BPR2 
field BPRI 
field attributes 

See alphanumerics 
field attributes for mapping BPR2 
field end, procedural, setting attribute 

(ASFEND) 80 
field validation attribute BPR2 
fields BPRI 

mapped 251 
procedural alphanumeric 75 

fields, introduction 53 
file control facilities (CICS) BPR2 
file identifier for data import (CSCHA) PGFPR 
file processing BPR2 
file, defaults 380 
file, graphics 157,171 
file, spill, for composed-page printer 401 
files, non-GDDM, printing 408 
FILL option APG2, PGFPR 

fillet BPRl, BPR2 
fineness of fitted curve APG2 
fitting curves (PG routines) APG2 
fixed-point GDF 173 
flat file PGFPR 
floating bar charts APG2 
floating-point GDF 173 
folding input data BPR2 
folding mapped input 297 
fonts 56, 219, BPR2 

3800 printer symbol sets 411 
4250 typographic 411 

FONT4250 code pages 413 
FONT4250 default file name/filetype BPR2 
FONT4250 fonts 412 
FORCE ZERO option APG2, PGFPR 
foreground color mix GDF order BPR2 
foreground color-mixing mode BPRI 
form feed default specification BPR2 
format BPR2 
format file, ICU, contents of APG2 
format of bar-chart values PGFPR 
format of call to GDDM 5 
format of GDDM error record 118 
formatting the screen 

See alphanumerics, mapped 
FORMNAME (field of CHART call) PGFPR 
FORTRAN BPRI 

format of call to GDDM 5 
limited mapping support 252 
parameter declarations 10 

FORTRAN CHARACTER parameters PGFPR 
FORTRAN sample programs BPR2, PGFPR 
four button cursor (puck) 

See pick, locator, stroke 
buttons 

See choice input, activate stroke device 
fractional line width BPRl, BPR2 
framing box around chart APG2 
framing box attributes (CHBATT) PGFPR 
free data APG2, PGFPR 
freehand drawing example 201 
French default vector symbol set BPR2 
FSALRM (sound the alarm) 83, 281 
FSALRM (sound the terminal alarm) BPR1 
FSCHEK (check picture complexity before 

output) 15, BPRI 
FSCLS (close alternate device) BPRI 
FSCOPY (send page to alternate device) 403, BPRI 
FSENAB (enable/disable device input) 192 341 

BPRI ' , 
FSEXIT (specify an error exit, or error threshold, or 

both) BPRI 
FSEXIT (specify error exit) 119, BPR2 
FSFRCE (update the display) 14, BPRI 

mapping 272 
partitions 446 

FSINIT (initialize GDDM processing) 9, BPR1 

Page numbe~ re.fer to this boo~; furt~er information can be found in other GDDM books: 
APG2 ApplwatLon Prol!rammmg GULde Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programmmg Reference Voll BPR2 Base Programming Reference Vol 2 

Index 545 



FSLOG (send character string to alternate 
device) BPR1, BPR2 

send text to queued printer 404 
FSLOGC (send character string with 

carriage·control character to alternate 
device) BPR1, BPR2 

FSOPEN (open alternate device) BPR1 
FSPCLR (clear the current page) 94, BPR1 
FSPCRT (create a page) 93, BPR1 

effect on cell size of 3290 461 
FSPDEL (delete a page) 95, BPR1 
FSPQRY (query specified page) 95, BPR1 
FSPSEL (select page) 95, BPR1 
FSPWIN (set page window) 460, BPR1 

effect on cell size of 3290 461 
FSQCPG (query current page identifier) 95, BPR1 
FSQDEV (query device characteristics) BPR1 
FSQERR (query last error) 118, BPR1 
FSQSYS (query systems environment) BPR1 
FSQUPD (query update mode) BPR1 
FSQUPG (query unique page identifier) BPR1 
FSQURY (query device characteristics) 391, BPR1 

image related 332 
FSQWIN (query page window) BPR1 
FSREST (retransmit data) BPR1 
FSRNIT (reinitialize GDDM) BPR1 
FSSA VE (save current page contents) 16, BPR1, 

BPR2 
FSSA VE file BPR2 
FSSHOR (extended FSSHOW) 16, BPR1 
FSSHOW (display a saved picture) 17, BPR1 
FSTERM (terminate GDDM processing) 9, BPR1 
FSTRCE (control internal trace) BPR1 
FSUPDM (set update mode) 389, BPR1 
full arc GDF order BPR2 
full draw mode 389 
FULL option APG2, PGFPR 
full·screen mode errors under TSO BPR2 
functions BPR1 
functions, new, in Version 2 Release 1 BPRl, 

PGFPR 

gap between bars APG2 
GDDM BPRl, BPR2 
GDDM Base calls PGFPR 
GDDM image objects 

See stored image 
GDDM objects BPR2 
GDDM programs BPRI 
GDDM RCP codes BPR2 
GDDM r~uest control parameter (RCP) BPR2 
GDDM·IMD 

See Interactive Map Definition 

GDDM·IMD (see Interactive Map 
Definition) BPRI 

GDDM·PGF (Presentation Graphics 
Facility) BPR2 

GDDM·PGF (see Presentation Graphics 
Facility) BPR1 

GDDM/MVS, functions available BPRI 
GDDM/VM, functions available BPRI 
GDDM/VSE, functions available BPRI 
GDF BPR2 
GDF (graphics data format) 171, BPR1, PGFPR 

printer spill file 401 
storing in files 157 

GDF file BPR2 
GDF·ADMGDF conversion utility BPR2 
general light·pen fields 244 
generated GDDM mapgroup file BPR2 
generated mapgroups BPR2 
generating large application data structures BPR2 
generating mapgroup 261 

See also alphanumerics, mapped 
geometric attributes, query (GSQAGA) BPR1 
geometric pattern set· ADMPATTC 40 
German default vector symbol set BPR2 
get BPR1 
get and reserve a unique image identifier 

(IMAGID) 313 
get and reserve a unique projection identifier 

(IMPGID) 326 
get field contents (ASCGET) BPR1 
getting data from an image 

(IMAGTS,IMAGT,IMAGTE) 349 
GLOBAL commands needed under VM/CMS BPR2 
GRAF option 407 
graphic area of mapped display 298 
graphics APG2, BPR1, BPR2 

and alphanumerics 54 
and mapping 298 

example program 299 
area 26 
attributes 7,35, 128 

changing 172 
changing default values 47 
changing inside an area 46 
default values 10 
pushing and popping values 48 
querying 46 

character strings 55 
clipping 110 
concepts 89 
coordinate system 99, 101 
corruption 510 
device 90 
drawing on the screen 177 
field 96 

clear 129 
effect on logical input devices 197 

giving precedence to alphanumerics 73 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol 1 BPR2 Base Programming Reference Vol 2 

546 GDDM Application Programming Guide Volume 1 



how produced 510 
image 30 
input 189 
interactive 177 
library 157 
markers 24 
multiple markers 24 
page 93 
plotter considerations 434 
positioning when copying 409 
primitive 7, 19 

background overlapping other 
primitive(s) 45 

changing 172 
foreground overlapping other 

primitive(s) 42 
identifier 177 
outside segment 153, 154 
query tag when picked 180 
tag 177 

rastering 510 
scrolling 462 
segment 

See also graphics segments 
viewing limits 111 

storing 157 
text 55 

See also graphics text 
variable cell size on 3290 462 
window 102 

See also window, graphics 
graphics data format (see GDF) 
graphics field 

and GSLOAD 161 
clipping 110 

graphics hierarchy 373 
graphics image BPR1 
graphics menu example 178 
graphics segments 9, 127 

as echo 193 
as locator echo 203 

example 202 
attributes 130, 180 

chained 131 
detectable 130, 180 
highlighting 130 
nonchained 131 
transformable 130 
visibility 130 

attributes modification 131 
calling 148 

inherited attributes 152 
closing 127 
copying 143 
deleting 129 
displacing 131 
dragging 193 
dragging by terminal operator 202 

drawing chain 127 
library 157 
moving 131 
moving and transforming 206 
origin 132 

moving 142 
querying 142 

picking example 198 
query identifier when picked 180 
querying 148 
reference point 205, 206 
relation to graphics hierarchy 105 
reopen, not permitted 128 
rotating 131 
saving 157 
scaling 131 
segment origin 193, 204, 206 
shearing 131 
storing 157 
structure 127 

example 150 
transformations 131 
unnamed 154 
with zero identifier 154 

graphics symbol sets 219 
graphics text 10, 55, 219 

attributes 58, 68 
enlarging 58 
input 184 
introduction 53 
line break 55 
loading symbol sets 222 
mode-1 57 
mode-2 57 
mode-3 58 
reverse-video 44 
rotation 61 
rounding errors 74 
shearing 64 
size 59 
symbol set example 226 
unexpectedly upside-down 103 

graphics window BPR1 
graphs, plotting line PGFPR 
gray keys 

See data keys 
grid lines PGFPR 
grid lines (PG routines) APG2 
GRID option APG2, PGFPR 
grid size (PG routines) APG2 
grid, partition set 442 
GSAM (set attribute mode) 48, BPR1 
GSARC (draw a circular arc) 22, BPR1 
GSARCC (specify aspect-ratio control (for 

copy» BPR1 
with FSCOPY 410 
with GSCOPY 404 

GSAREA (start a shaded area) 26, BPR1 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

Index 547 



GSBMIX (set current background color-mixing 
mode) 45, BPR1 

GSBND (define a data boundary) 110, BPR1 
GSCA (set current character angle) 61, BPR1 
GSCALL (call a segment) 148, BPRI 
GSCB (set character-box size) 58, BPR1 

on composed-page printers 71 
GSCBS (set character-box spacing) 65, BPR1 
GSCD (set current character direction) 62, BPRI 
GSCH (set current character shear) 64, BPR1 
GSCHAP (draw a character string at current 

position) 55, BPR1 
GSCHAR (draw a character string at a specified 

point) 55, BPR1 
GSCLP (enable and disable clipping) 110, BPRI 
GSCLR (clear graphics field) 129, BPR1 
GSCM (set current character mode) 56, BPRI 
GSCOL (set current color) 35, BPR1 
GSCOPY (send graphics to alternate device) 404, 

BPRI 
GSCORR (explicit correlation of tag to 

primitive) 208, BPRI 
GSCORS (explicit correlation of structure) 211, 

BPRI 
GSCP (set current position) BPR1 
GSCPG (set current code page) 413, BPRI 
GSCS (set current symbol set) 226, BPR1 
GSDEFE (end drawing defaults definition) BPRI 
GSDEFS (start the drawing defaults 

definition) BPR1 
GSDSS (load a graphics symbol set from the 

application program) 229, BPR1 
GSELPS (draw an elliptic arc) 23, BPR1 
GSENAB (enable or disable a logical input 

device) 188, 213, BPR1 
and initialization calls 192, 197 
enabling pick, locator and stroke together 197 
when to issue 197 

GSENDA (end a shaded area) BPR1 
GSFLD (define the graphics field) 96, BPR1 
GSFLSH (clear the graphics input queue) BPRI 
GSFLW (set current fractional line width) 36, 

BPRI 
GSGET (retrieve graphics data) 172, BPR1 
GSGETE (end retrieval of graphics data) 172, 

BPR1 
GSGETS (start retrieval of graphics data) 172, 

BPR1 
GSIDVF (initial data value, float) 193, 194, 195, 

BPR1 
GSIDVI (initial data value, integer) 194, BPR1 
GSILOC (initialize locator) 192, BPR1 
GSIMG (draw a graphics image) 30, BPR1 
GSIMGS (draw a scaled graphics image) 30, 31, 

BPRI 
GSIPIK (initialize pick device) 195, BPR1 
GSISTK (initialize stroke device) BPR1 
GSISTR (initialize string device) 195, BPR1 

GSLINE (draw a straight line) 19, BPRI 
GSLOAD (load segments) 159, BPR1 
GSLSS (load a graphics symbol set from auxiliary 

storage) 222, BPR1 
GSLSS (load graphics symbol set from auxiliary 

storage) 
on 3270-PC/G and /GX 233 

GSLT (set current line type) 36, BPRI 
GSLW (set current line width) 36, BPR1 
GSMARK (draw a marker symbol) 24, BPRI 
GSMB (set marker-box size) BPR1 
GSMIX (set current foreground color-mixing 

mode) 43, BPR1 
GSMOVE (move without drawing) 20, BPR1 

inside an area 28 
GSMRKS (draw series of marker symbols) 24, 

BPR1 
GSMS (set the current type of marker symbol) 37, 

BPR1 
GSMSC (set marker scale) 24, BPR1 
GSPAT (set current shading pattern) 38, BPR1 
GSPFLT (draw a curved fillet) 24, BPR1 
GSPLNE (draw series of lines) 20, BPR1 
GSPOP (restore attributes) 48, BPR1 
GSPS (define the picture space) 97, BPR1 
GSPUT (restore graphics data) BPR1 
GSQAGA (query all geometric attributes) 139, 

BPR1 
GSQAM (query the current attribute mode) BPR1 
GSQATI (query initial segment attributes) BPR1 
GSQATS (query segment attributes) BPRI 
GSQBMX (query the current background 

color-mixing mode) BPRI 
GSQBND (query the current data boundary 

definition) BPR1 
GSQCA (query character angle) BPRI 
GSQCB (query character-box size) 59, BPR1 
GSQCBS (query character-box spacing) BPR1 
GSQCD (query character direction) BPR1 
GSQCEL (query default graphics cell size) BPR1 
GSQCH (query character shear) BPR1 
GSQCHO (query choice device data) 182, BPR1 
GSQCLP (query the clipping state) BPR1 
GSQCM (query current character mode) BPR1 
GSQCOL (query current color) 46, BPR1 
GSQCP (query current position) 32, BPRI 
GSQCPG (query code page) BPR1 
GSQCS (query current symbol-set identifier) BPR1 
GSQCUR (query the cursor position) 32, BPR1 
GSQFLD (query the graphics field) BPR1 
GSQFLW (query the current fractional line 

width) BPR1 
GSQLID (query logical input device) 198, BPR1 
GSQLOC (query graphics locator data) 181, BPR1 
GSQLT (query current line type) BPR1 
GSQLW (query current line width) 46, BPRI 
GSQMAX (query the number of segments) BPRI 
GSQMB (query marker box) BPRI 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRl Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

548 GDDM Application Programming Guide Volume 1 



GSQMIX (query the current color mixing 
mode) BPRl 

GSQMS (query current marker symbol) BPRI 
GSQMSC (query marker scale) BPRI 
GSQNSS (query number of loaded symbol 

sets) BPRI 
GSQORG (query segment origin) 142, BPR1 
GSQPAT (query the current shading 

pattern) BPR1 
GSQPIK (query pick data) 180, BPR1 
GSQPKS (query pick structure) 180, BPR1 
GSQPOS (query segment position) BPR1 
GSQPRI (query segment priority) 148, BPRI 
GSQPS (query picture-space definition) 99, BPR1 
GSQSEN (query mixed string attribute of graphics 

text) BPR1 
GSQSIM (query existence of simultaneous queue 

entry) 190, BPRI 
GSQSS (query loaded symbol sets) BPR1 
GSQSSD (query symbol set data) BPR1 
GSQSTK (query stroke data) 185, BPR1 
GSQSTR (query string data) 184, BPR1 
GSQSVL (query current segment viewing 

limits) BPR1 
GSQTA (query text alignment) BPR1 
GSQTAG (query current tag) BPR1 
GSQTB (query the text box) 66, BPR1 
GSQTFM (query segment transform) 139, BPR1 
GSQVIE, query current viewport definition BPR1 
GSQWIN (query the current window 

definition) BPR1 
GSREAD (await graphics input) 189, BPR1 

partitions 446 
GSRSS (release a graphics symbol set) BPR1 
GSSAGA (set all geometric attributes) 132, BPR1 
GSSATI (set initial segment attributes) 130, BPR1 
GSSATS (modify segment attributes) 131, BPR1 
GSSA VE (save a segment) 157, BPR1 
GSSCLS (close the current segment) 127, BPR1 
GSSCPY (copy a segment) 143, BPR1 
GSSCT (set current transform) 46, 143, BPR1 
GSSDEL (delete a segment) 129, BPR1 
GSSEG (create a segment) 9,127, BPR1 
GSSEN (set mixed string attribute of graphics 

text) BPRi 
GSSINC (include a segment) 145, BPR1 
GSSORG (set segment origin) 142, BPR1 
GSSPOS (set segment position) 136, BPR1 
GSSPRI (set segment priority) 147, BPR1 
GSSTFM (set segment transform) 132, 133, 137, 

BPR1 
GSSVL (define segment viewing limits) 111, BPR1 
GSTA (set text alignment) 67, BPRI 
GSTAG (set current primitive tag) 179, BPR1 
GSUWIN (define a uniform graphics window) 19, 

102, BPR1 

GSVECM (vectors) BPR1 
GSVIEW (define a viewport) 98, BPR1 
GSWIN (define a graphics window) 101, BPR1 

Hangeul character codes BPR1 
Hangeul fields (see DBCS fields) BPR2 
hardcopy of graphics output 398 
hardware attribute bytes 78 
hardware line types for plotters (GSLT) BPR1 
hardware symbols 57, 73, 224 
HBOTTOM option APG2, PGFPR 
HCENTER option APG2, PGFPR 
heading APG2, PGFPR 
HEADING option PGFPR 
heading page BPR2 
heading pages for printer 398 
heading text (CHHEAD) PGFPR 
heading text attributes (CHHATT) PGFPR 
HEADINGL (field of CHART call) PGFPR 
hidden bars (CHGAP) PGFPR 
hidden surface 148 
hierarchy of GDDM objects 89 
hierarchy of graphics objects 373 
HIGH option PGFPR 
high-resolution image files 399 
high-resolution printers 

See composed-page printers 
HIGHAXIS option APG2 
highlight BPR1, BPR2 
highlight attribute for segments BPR1 
highlighting 

ASFHLT (define field highlighting) 80 
mapped data 293, 295 
segment attribute 130 

histogram APG2, PGFPR 
HLEFT option APG2, PGFPR 
HOLLOW keyword, MVS/XA BPR2 
horizontal bar charts PGFPR 
horizontal legend (PG routines) APG2 
horizontal margins APG2 
horizontal margins (CHHMAR) PGFPR 
host offload, to image devices 351 
how charts are shaded APG2 
how to place legend within plotting area APG2 
HRIDOCNM processing option BPR1, BPR2 
HRIFORMT processing option BPR1, BPR2 
HRIGHT option APG2, PGFPR 
HRIPSIZE processing option BPR1, BPR2 
HRISPILL processing option BPR1, BPR2 
HRISWATH processing option BPR1, BPR2 
HTOP option APG2, PGFPR 

Page numbers refer to this book; further information can be found in other <;lDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Pr0l11'.ammmg Reference 
BPRI Base Programming Reference Voll BPR2 Base Programmmg Reference Vol 2 

Index 549 



I/O errors because of picture complexity BPR1 
I/O translation tables, define (ASDTRN) BPR1 
ICU (Interactive Chart Utility) 5, APG2, BPR2, 

PGFPR 
ADMGDF files 171 
plotting charts 434 

ICUFMDF, format defaults BPR2 
ICUFMSS, default use of symbol sets in formats 

value for ICU BPR2 
ICUISOL, default isolate value for ICU BPR2 
ICUPANC, default use of panel color value for 

ICU BPR2 
identifier, primitive 177 
identifier, symbol set 221 
identify device to GDDM 369 
IDRAW option APG2, PGFPR 
IMACLR (clear a rectangle in an image) 327, BPR1 
IMACRT (create an image of the specified size, type, 

and resolution) 309, 313 
IMACRT (create an image) BPR1 
IMADEL (delete the image associated with the 

identifier) 311, BPR1 
image 30, BPR1, BPR2 

ADMIMG file 312 
ADMPROJ file 319 
aspect ratio, preserving 338 
attributes of target 323 
bi-Ievel, definition of 332 
box cursor 340 

enabling/disabling (ISENAB) 341 
initializing (ISIBOX) 343 
querying (ISQBOX) 342 
size or shape change, keys for 343 

brightness conversion (IMRBRI) 333 
changing resolution values (1M ARES) 328 
clearing an (IMACLR) 327 
clipping to target rectangle 318 
compressions supported 337,347 
contrast conversion (IMRCON) 333 
converting resolutions (IMARES) 328 
creating a target, implicitly 310, 318 
creating an (IMACRT) 309, 313 
cross cursor 340 

enabling/disabling (ISENAB) 341 
initializing (ISILOC) 342 
querying (ISQLOC) 341 

cursors 340 
initializing 342 
movement, keys for 343 
type selection 343 

data transfer to/from your program 347 
definition of 306 
deleting an (IMADEL) 311 
device variations 363 
direct transmission 347 

direct transmission from a scanner 356 
direct transmission to the 3193 355 
display station (3193) 

introduction to 305 
programming for 308 

display station (3193), end use of 343 
editing without transfer 327 
entering data into an 

(IMAPTS,IMAPT,IMAPTE) 348 
extracted image 

definition of 314 
extracting a sub-image (IMREX) 317 
extracting a sub-image (IMREXR) 316 
field, defining (ISFLD) 355, 357 
file 

See image, stored 
file format 

use of your own 307 
filename of stored 312 
formats supported 336, 347 
getting data from GDDM 349 
gray-scale to bi-Ievel conversion 

(IMRCVB) 334 
gray-scale, definition of 332 
halftone, definition of 332 
host offload 351 
identifiers 307 

obtaining (IMAGID) 313 
reuse 311 
value range 313 

identity projection 
definition of 307 

implicit creation of target 310, 318 
input device enabling/disabling (FSENAB) 341 
input/output synchronization (ASREAD) 311 
interactive input 340 

example 344 
inverting an (IMRNEG) 324 
LIST38PP file 363 
LIST4250 file 363 
locator cursor 364 

See also image, cross cursor 
on PS displays 364 

merging 317 
multiple extraction 352 
multiple placing 352 
negating an (IMRNEG) 324 
on plotters 437 
performance/function trade-offs 351 
positioning in target image (IMRPL) 318 
positioning in target image (IMRPLR) 317 
printer (4224) 

introduction to 305 
programming for 358 

printing 358 
on 3800-3 359 
on 4224 358 
on 4250 359 

Page numbers refer to this book; further information can be found in other ~DDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programmzng Reference 
BPR! Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

550 GDDM Application Programming Guide Volume! 



projection 
applying a 320 
changing a 325 
contents, explanation of 313 
creating a (IMPCRT) 316 
definition of 307 
deleting a (IMPDEL) 320 
effect on source image 307 
evaluation order 326 
example code to define and save 315 
explanation of contents 313 
extract, scale, and save example 315 
identifiers reuse 320 
identifiers value range 326 
identifiers, obtaining (IMPGID) 326 
identity, definition of 307 
illustration of 314 
invoking a 320 
library 315 
multiple transform example 325 
operations making up a 313 
order of evaluation 326 
restoring from auxiliary storage 

(IMPRST) 319 
saving on auxiliary storage (IMPSA V) 319 
use in IMARST call 312 
use in IMASA V call 326 
uses of 313 

PSEG38PP file 362 
PSEG4250 file 362 
putting data to GDDM 348 
quality control parameter, setting extended 

(ISXCTL) 354 
quality-control parameters (ISCTL) 353 
quality, controlling (ISCTL, ISXCTL) 351 
querying attributes (IMAQRY) 313 
querying compressions (ISQCOM) 336 
querying device characteristics (FSQURY) 332 
querying formats (ISQFOR) 335 
querying resolutions (ISQRES) 337 
querying scanner device (ISQSCA) 331 
querying scanner status (FSQURY) 332 
reflecting an (IMRREF) 323 
reorienting an (IMRORN) 323 
resolution type 

changing the (IMARF) 327 
resolution/scaling algorithm 

description of alternatives for 325 
during resolution change (IMARES) 328 
setting the (IMRRAL) 324 

restoring from auxiliary storage (IMARST) 312 
retrieving data from an 

(IMAGTS,IMAGT,IMAGTE) 349 
reversed polarity 348 
same source and target, using (IMXFER) 328 
saving on auxiliary storage (IMASA V) 311 
scaling algorithm, control of 352 
scaling an (extracted) image (IMRSCL) 317 

scaling and conversion, control of 352 
scaling to fit 338 
scan, display, and save example 308 
scanner 

brightness control (IMRBRI) 333 
contrast control (IMRCON) 333 
device identifier for 309 
echo control (ISESCA) 308, 311 
image conversion to bi-Ievel 

(IMRCVB) 334 
loading and ejecting paper (ISLDE) 310, 

311 
order of conversion calls 335 
paper size 310 
programming for 308 
querying status (FSQURY) 332 
querying status (ISQSCA) 331 

scanner (3118) 
introduction to 305 
resolutions 309 

size change by scaling (IMRSCL) 317 
size rounding, control of 352 
stored 

definition of 307 
target rectangles, control of 353 
transfer operations 307, 312, 320, 347 

editing without 327 
effects on image attributes 323 

transferring data (IMXFER) 310, 328 
transferring into your program 347 
transferring out of your program 347 
transform 

calls sequence 325 
contents 315 
contents, mandatory 318 
definition of 313 
illustration of 314 
sequence of calls 325 

transform element 
introduction to 314 
operations 314 

trimming (IMATRM) 327 
example 344 

turning an 
See image, reorienting an (IMRORN) 

type conversion to bi-Ievel (IMRCVB) 334 
undefined resolution 

changing to defined (IMARF) 327 
use of 309 

with graphics or text 356 
image cursors BPR1 
image data file BPR2 
image devices BPR1 
image devices, supported by GDDM Version 2 

Release 1 BPR1 
image displays BPR1 
image file, binary 399, 402 
image functions BPR1 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

Index 551 



image processing 305-363 
image scanners BPR1 
Image Symbol Editor 37, 39, 219, BPR1, BPR2 
image symbol set, format BPR2 
image symbol sets BPR2 
image symbol sets (ISS) PGFPR 
image symbols 73, 219, BPR1 

curing unexpected overlap 59 
on plotters 437 
spacing 59 
two types of 219 

image text 55 
IMAGID (get and reserve a unique image 

identifier) 313, BPR1 
IMAGT (retrieve image data from an image) 350, 

BPR1 
IMAGTE (end retrieval of data from an 

image) 350, BPR1 
IMAGTS (start retrieval of data from an 

image) 349, BPR1 
IMAPT (enter data into an image) 348, BPR1 
IMAPTE (end data entry into an image) 349, BPR1 
IMAPTS (start data entry into an image) 348, 

BPR1 
IMAQRY (query attributes of an image) 313, BPR1 
IMARES (convert the resolution attributes of an 

image) 328, BPR1 
IMARF (change resolution flag of an image) 327, 

BPR1 
IMARST (restore image from auxiliary 

storage) 312,326, BPR1 
IMASA V (save image on auxiliary storage) 311, 

326, BPR1 
IMATRM (trim an image down to the specified 

rectangle) 327, BPR1 
immediate detection of selectable mapped 

fields BPR2 
IMPCRT (create an empty projection) 316, 325, 

BPR1 
IMPDEL (delete projection) 320, BPR1 
IMPGID (get and reserve a unique projection 

identifier) 322,326, BPR1 
importing pictures 172 
IMPRST (restore projection from auxiliary 

storage) 319, BPR1 
IMPSA V (save projection on auxiliary 

storage) 319, BPR1 
IMRBRI (define brightness conversion 

algorithm) 333, BPR1 
IMRCON (define contrast conversion 

algorithm) 333, BPR1 
IMRCVB (define bi-Ievel conversion 

algorithm) 334, BPR1 
IMREX (define rectangular sub-image in pixel 

coordinates) 317,325, BPR1 
IMREXR (define rectangular sub-image in real 

coordinates) 316,325, BPR1 

IMRNEG (negate the pixels of an extracted 
image) 324, BPR1 

IMRORN (orient extracted image) 323, BPR1 
IMRPL (define place position in pixel 

coordinates) 318, 325, BPR1 
IMRPLR (define place position in real 

coordinates) 317,325, BPR1 
IMRRAL (set current resolution/scaling 

algorithm) 324, BPR1 
IMRREF (reflect extracted image) 323, BPR1 
IMRSCL (scale extracted image) 317, BPR1 
IMS 

running under 6 
IMS/VS BPR1, BPR2 
IMS/VS, PL/I sample program PGFPR 
IMSDECK, deck output LTERM BPR2 
IMSEXIT, exit character string BPR2 
IMSICU, ICU transaction name BPR2 
IMSISE, ISE transaction name BPR2 
IMSMAST, IMS/VS shutdown LTERM name BPR2 
IMSMODN, message output descriptor name BPR2 
IMSPRNT, print utility name BPR2 
IMSSDBD, system-definition DBD name BPR2 
IMSSEGS, segment names BPR2 
IMSSHUT, shutdown string BPR2 
IMSSYSP, system printer name BPR2 
IMSTRCE, trace ddname BPR2 
IMSUISZ, input area size BPR2 
IMSUMAX, maximum number of users BPR2 
IMSVSE, Vector Symbol Editor transaction 

name BPR2 
IMSWTOD, write-to-operator descriptor 

codes BPR2 
IMSWTOR, write-to-operator routing codes BPR2 
IMXFER (transfer data between two images, 

applying a projection) 310, 322, 328, BPR1 
include a segment (GSSINC) BPR1 
including graphics 145 
incomplete pie chart APG2 
IND$FILE CLIST BPR2 
IND$FILE EXEC BPR2 
independent (x) values, setting (CSXDT) PGFPR 
indexing y values (CSFLT) PGFPR 
INFILL option APG2, PGFPR 
initial data in mapping 261 

See also alphanumerics, mapped 
initial data value, float (GSIDVF) BPR1 
initial data value, integer (GSIDVI) BPR1 
initialize GDDM processing (FSINIT) BPR1 
initialize GDDM with SPIB (SPINIT) BPR1, BPR2 
initialize image box cursor (ISIBOX) BPR1 
initialize image locator cursor (ISILOC) BPR1 
initialize locator (GSILOC) BPR1 
initialize pick device (GSIPIK) BPR1 
initialize string device (GSISTR) BPR1 
initialize stroke device (GSISTK) BPR1 
initializing GDDM 9, BPR1 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

552 GDDM Application Programming Guide Volume 1 



initializing image cursors (ISILOC and 
ISIBOX) 342 

initializing logical input device 192 
and enabling 192, 197 

INOTES option PGFPR 
input BPR1, BPR2 
input area size, IMS/VS BPR2 
input field lengths 238 
input/output 

See also logical input device 
basic (ASREAD and FSFRCE) 13 
for interactive graphics (GSREAD) 177, 189 
introduction 10 
mapped (ASREAD) 257 
mapped (MSREAD) 255 
of character attributes 82 
of procedural alphanumeric data 76 
partitions 446 

input/output area (see application data 
structure) BPR2 

insert-mode key 80 
intensified-display attribute BPR2 
intensity 

ASFINT (define field intensity) 79 
mapped field attribute 283 

intensity attribute for a field (ASFINT) BPR1 
inter-device picture transfer 172 
inter-system picture transfer 172 
Interactive Chart Utility (!CU) APG2 
Interactive Chart Utility (see!CU) PGFPR 
interactive graphics 177, BPR1 

with more than one partition 212 
Interactive Map Definition (GDDM-IMD) 251, 

BPR1, BPR2 
Interactive Map Definition product 

(GDDM-IMD) 54, 260 
intercept of axes APG2 
INTERCEPT option APG2, PGFPR 
interception point PGFPR 
interface to PG routines, three types of PGFPR 
interfaces BPR1, BPR2 
interfaces to GDDM (reentrant, nonreentrant, 

system programmer) 5 
internal DSOPEN 372 
internal trace, control (FSTRCE) BPR1 
interrupt 

from partitioned screen 446 
from windowed device 477 
handling by ASREAD 13 
handling by GSREAD 189 

interrupt on VM/CMS BPR2 
introduction to GDDM BPR1 
inverting an image (IMRNEG) 324 
inverting the graphics window 103 
invisible field attribute 

See alphanumerics 
INVKOPUV processing option 378,407, BPR1, 

BPR2 
invoking !CU by program call PGFPR 
invoking VM/CMS print utility 

automatically BPR2 
IOBFSZ, transmission buffer size BPR2 
IOCOMPR, compressed PS loads BPR2 
IOSYNCH, synchronized I/O BPR2 
IPDS printers BPR2 
ISCTL (set image quality-control parameters) 351, 

BPRI 
ISE (Image Symbol Editor) PGFPR 
ISE (Image Symbol Editor), changing transaction 

name in IMS/VS BPR2 
ISENAB (enable or disable image cursor) 341, 

BPR1 
ISESCA (control echoing of scanner image) 308, 

311, BPR1 
ISFLD (define image field) 355, 357, BPR1 
ISIBOX (initialize image box cursor) 343, BPRI 
ISILOC (initialize image locator cursor) 342, BPR1 
ISLDE (load external read-only image) 310, 311, 

BPR1 
ISQBOX (query image box cursor) 342, BPR1 
ISQCOM (query image compressions supported by 

the device) 336, BPRI 
ISQFLD (query image field) 357, BPR1 
ISQFOR (query image formats supported by the 

device) 335, BPR1 
ISQLOC (query image locator cursor position) 341, 

BPRI 
ISQRES (query supported image resolutions) 337, 

BPR1 
ISQSCA (query image scanner device) 331, BPR1 
ISS (image symbol set) and VSS (vector symbol set) 

formats BPR2 
ISXCTL (extended set image quality control 

parameters) 351, BPR1 
Italian default vector symbol set BPR2 

Japanese default vector symbol set BPR2 
JES/328X BPR2 
JES/328X, common errors BPR2 
JES/328X, confidential printing BPR2 
JES/328X, interfaces BPR2 
Job Entry Subsystem BPR2 
justifying and positioning titles PGFPR 
justifying input data BPR2 
justifying mapped input 297 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol I BPR2 Base Programming Reference Vol 2 

Index 553 



Kanji 
alphanumerics 245 
graphics text 230 

Kanji character codes BPR1 
Kanji fields (see DBCS fields) BPR2 
Katakana character codes BPR1 
KBOX option APG2, PGFPR 
keyboard, locking and unlocking 281 

when screen partitioned 446 
keyboard, unlocking in DSOPEN BPR2 
KEYL (field of CHART call) PGFPR 
keys for legend APG2 
keys for legends APG2 
keywords for MVS/XA implementation BPR2 
KNORMAL option APG2, PGFPR 
KREVERSED option APG2, PGFPR 

LABADJACENT option APG2, PGFPR 
label APG2, PGFPR 
LABELL (field of CHART call) PGFPR 
labels APG2 
LABMIDDLE option APG2, PGFPR 
language considerations for calls BPR1 
language default vector symbol sets BPR2 
languages, facilities for national BPR1 
languages, programming 5 
large application data structure BPR2 
last error, query (FSQERR) BPR1 
layout of the screen 

See alphanumerics, mapped 
LCLMODE processing option 388, BPR1, BPR2 
leave-alone mode, color mixing BPR1 
left-justify mapped fields BPR2 
legend APG2, PGFPR 
legend encroaches on chart APG2 
LEGEND option PGFPR 
length adjunct 287, BPR2 

See also alphanumerics, mapped 
length of data in mapped field BPR2 
LETTER option APG2, PGFPR 
LEVEL (field of CHART call) PGFPR 
library management (ESLIB) BPR1 
library manager mode of ICU PGFPR 
library, graphics 157, 162 
light pen 

enabling as logical input device 214 
input to ASREAD 14 
input to GSREAD 182 
mapping 283, 287 
procedural fields 243 

translation into alphanumeric input 292 
light pen detection BPR2 
line BPR1, BPR2 

changing inside an area 46 
GSLINE (draw a straight line) 19 
multi-colored area boundary 41 
on plotters 437 
type 36 
width 36 

line break 
in graphics text 55 

line color PGFPR 
line graph ~PG2, PGFPR 
line type PGFPR 
line width PGFPR 
line-break in heading APG2 
line-break in key text APG2 
line-type table (PG routines) APG2 
linear axes APG2 
LINEAR option APG2, PGFPR 
lines on a line graph PGFPR 
LINES option APG2, PGFPR 
link-editing GDDM application programs BPR2 
link-editing sample programs BPR2 
linkage, assembler language BPR1, PGFPR 
linking fields in GDDM-IMD 261 

See also alphanumerics, mapped 
list of GDF orders BPR2 
load a graphics symbol set from auxiliary storage 

(GSLSS) BPR1 
load a graphics symbol set from the application 

program (GSDSS) BPR1 
load a symbol set into a PS store from auxiliary 

storage (PSLSS) BPR1 
load a symbol set into a PS store from the 

application program (PSDSS) BPR1 
load external read-only image (lSLDE) 310,311, 

BPR1 
load graphics symbol sets 222, 229 
load segments (GSLOAD) BPR1 
LOADDSYM processing option 389, BPR1, BPR2 
loading BPR1, BPR2 
loading graphics from ADMGDF files 159 
local interactive graphics mode BPR2 
local mode on 3270-PC/G and /GX 388 
locating cursor with mapping requests BPR2 
locator BPR1 
locator cursor BPR1 
locator input 181 

associated with graphics field 197 
dragging segment 202 
enabling and disabling device 188, 213 
initializing device 192 
locator with pick and stroke devices 197 
querying 181 
triggering 183 

locator, BPR1 
lock keyboard mode BPR2 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRl Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

554 GDDM Application Programming Guide Volume 1 



locking and unlocking keyboard 281 
when screen partitioned 446 

logarithmic axes APG2 
LOGARITHMIC option APG2, PGFPR 
logical input device 

See choice, locator, pick, string, stroke 
logical input devices 177, BPR1 

associated with graphics field 197 
querying 180, 198 

logical x axis (PG routines) APG2 
LOW AXIS option APG2, PGFPR 

magnetic scanner (badge reader) BPR1 
magnetic stripe (badge reader) BPR1 
magnetic stripe reader BPR1 
major scale (tick) marks on tower charts PGFPR 
major tick marks APG2 
mandatory enter attribute BPR2 
mandatory fill attribute BPR2 
Manhattan chart APG2, PGFPR 
manuals, list of iv, APG2 
map BPR1 
map specification library (MSL), filetype for 

VM/CMS BPR2 
map symbol-set identifier PSC BPR2 
map·defined input editing BPR2 
mapgroup BPR1, BPR2 
MAPGSTG, mapgroup storage threshold BPR2 
mapped data, display (MSREAD) BPR1 
mapped field BPR1 
mapped fields BPR1 
mapping 251, 273, BPR1, BPR2 

See also alphanumerics, mapped 
margin sizes BPR2 
margins (PG routines) APG2 
margins for FSLOG and FSLOGC 398 
marker BPR1, BPR2 
marker box BPR1, BPR2 
marker colors (CSINT) PGFPR 
marker scale (CSFLT) PGFPR 
marker scale GDF order BPR2 
marker scale values (CHMKSC) PGFPR 
marker scaling PGFPR 
marker symbol BPR1 
marker symbol sets, usage with ICU PGFPR 
marker table (CHMARK) PGFPR 
marker table (PG routines) APG2 
marker type GDF order BPR2 
marker type, setting (CSINT) PGFPR 
markers 24 

color 38 
set the type 37 

markers on line graph APG2, PGFPR 
MARKERS option APG2, PGFPR 

markings on axis APG2 
master chart, changing the number 

(CSNUM) PGFPR 
masters, color-separation 399 
matrix, transformation 135 

querying 139 
setting 137 

maximum characters for each line in 
FSLOG/FSLOGC BPR2 

maximum legend height/width (CHKMAX) PGFPR 
maximum number of users, IMS/VS BPR2 
MBAR option APG2, PGFPR 
MDT (modified data tag) attribute BPR2 
MDT bit 283 
menu 

graphical 178 
mapped 288 
procedural alphanumeric 240 

merging images 317 
message inserts 118 
message output descriptor, IMS/VS BPR2 
message segments, size of (IMS/VS) BPR2 
messages from WTP (write-to-programmer) BPR2 
messages, error 12 
MFS (message format service) BPR2 
MIDDLE option APG2, PGFPR 
minor tick marks APG2 
missing data values PGFPR 
missing values string (CHMISS) PGFPR 
missing values, text for (CSCHA) PGFPR 
missing y values APG2 
mix mode 

background color mixing 45 
foreground 46, 147 

changing inside an area 46 
changing priorities 147 
3270·PC/G and /GX 49 

foreground color mixing 42 
mixed chart, specifying PGFPR 
mixed fields BPR1, BPR2 
mixed string of graphics text BPR1 
mixing chart types APG2 
mixing colors 

on plotters 436 
mixing foreground colors 42 
mixing graphics and alphanumerics 85 
mixing images 317 
mixing mode for color BPR1 
mixing PG routines and general graphics APG2 
MIXSOSI default option 232, BPR2 
mnemonic for color codes 80 
mnemonic naming of PG routines PGFPR 
mode BPR1, BPR2 
mode of graphics text 56, 58 
mode-1 graphics text 57 

on composed·page printers 71 
on 3179·G 70 
on 3270-PC/G and /GX 70 

Page numbers refer to this book; further information can be found in other GDDM books· 
APG2 Application Pro,!ramming Guide Vol 2 PGFPR PGF Programming Reference· 
BPRI Base Programmmg Reference Vol I BPR2 Base Programming Reference Vol 2 

Index 555 



mode-2 graphics text 57 
mode-3 graphics text 58 
mode, attribute BPR1 
mode, character BPR1 
mode, current background color-mix BPR1 
mode, foreground color-mix BPR1 
mode, update BPR1 
modified data tag (MDT) attribute BPR2 
modified fields BPR1 

mapped data 283 
procedural 238 

querying 238 
setting 239 

modify segment attributes (GSSATS) BPR1 
modify the current operator window 

(WSMOD) BPR1 
modify the current partition (PTNMOD) BPR1 
module, defaults 380 
monochrome color master ddname or high-level 

qualifier, TSO BPR2 
monochrome color master filetype, VM BPR2 
monochrome programmed symbols 510 
month labels APG2, PGFPR 
MOUNTAIN option APG2, PGFPR 
mountain-range shading APG2, PGFPR 
mouse 

See locator input, stroke input 
buttons 

See choice input, activate stroke device 
move current position without drawing 

(GSCP) BPR1 
move without drawing (GSMOVE) BPR1 
moving between states 1 and 2 PGFPR 
moving segment origin 142 
moving segments 131 
moving the current position (GSMOVE) 20 

inside an area 28 
MSCALE option PGFPR 
MSCPOS (set cursor position) 284, BPR1, BPR2 
MSDFLD (create or delete a mapped field) 256, 

BPR1, BPR2 
MSGET (retrieve data from a map) 257, BPR1, 

BPR2 
setting adjuncts 277 

MSPCRT (create a page for mapping) 94,256, 
BPR1 

effect on cell size of 3290 461 
MSPQRY (query current page) BPR1 
MSPUT (place data into a mapped field) 257,260, 

276, 277, BPR1, BPR2 
MSQADS (query application data structure 

definition) BPR1 
MSQFIT (query map fit) BPR1 
MSQFLD (query mapped field) BPRI 
MSQGRP (query mapgroup characteristics) BPR1 
MSQMAP (query map characteristics) BPR1 
MSQMOD (query modified fields) 269, BPR1 
MSQPOS (query cursor position) 286, BPR1, BPR2 

MSREAD (present mapped data) 255, BPR1 
partitions 446 

multi-task windowing 467, 481 
multicolored 

graphics images 31 
image symbols 228 
markers 38 
programmed symbols 510 
shading patterns 41 

multiline keys (PG routines) APG2 
multiline procedural alphanumeric fields 77 
multiple bar charts APG2 
mUltiple charts, setting (CSINT) PGFPR 
multiple fields BPR1 
multiple instances of GDDM, running BPR2 
multiple markers 24 
multiple pictures 100 
mUltiple pie charts APG2 
mUltistage plot APG2 
MVS Batch BPR2 
MVS JES2 BPR2 
MVS JES3 BPR2 
MVS/XA BPR2 
MVS, functions available BPR1 

NAME nickname parameter 378, BPR2 
name of device 369 

in nickname statement 378 
name-list and name-count values in 

DSOPEN BPR2 
name-lists BPR2 
name, symbol set 221 
named segments 127 
names of PG routines, meaning of PGFPR 
names, external, limit under CMS 10 
naming conventions for GDDM objects BPR2 
naming of saved ICU charts APG2 
national language support default 

specification BPR2 
National Language Support, facilities and 

restrictions BPR1 
national use characters 228 
native CMS file processing BPR2 
NATLANG, national language support 

specification BPR2 
NBKEY option APG2, PGFPR 
NBLABEL option PGFPR 
NBNOTE option APG2, PGFPR 
NBOX option PGFPR 
NBV ALUES option PGFPR 
NCBOX option APG2, PGFPR 
NDRA W option APG2, PGFPR 
NE (field of CHART call) PGFPR 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

556 GDDM Application Programming Guide Volume 1 



negate the pixels of an extracted image 
(IMRNEG) 324, BPR1 

negative tick marks APG2 
neutral color 35 
new devices in Version 2 Release 1 BPR1 
new function in Version 1 Release 3 xxvi, PGFPR 
new function in Version 1 Release 4 xxv, PGFPR 
new function in Version 2 Release 1 xxiii, APG2, 

PGFPR 
NG (field of CHART call) PGFPR 
nicknames 378, BPR1, BPR2 

sending output to plotter 433 
simplifying DSOPEN 370, 381 
spooling print files under CMS 397,407 

nicknames, using processing option groups BPR2 
NKBOX option APG2, PGFPR 
NLS (see National Language Support) BPR1 
NNOTES option PGFPR 
NOAXIS option PGFPR 
NOBACK option APG2, PGFPR 
NO CURVE option APG2, PGFPR 
NO EDIT mode under TSO BPR2 
NOFILL option APG2, PGFPR 
NOFORCEZERO option APG2, PGFPR 
NO GRID option APG2, PGFPR 
NOHEADING option PGFPR 
NOLAB option APG2, PGFPR 
NOLEGEND option PGFPR 
NOLINES option APG2, PGFPR 
NOMARKERS option APG2, PGFPR 
NOMOUNTAIN option APG2, PGFPR 
NOMSCALE option PGFPR 
non-display field attribute 

See alphanumerics 
non-GDDM device interrupt handling BPR2 
non-paired data (tied data) PGFPR 
non-proportionally spaced typefaces BPR2 
non-retained mode 207,508 
NONBOX option PGFPR 
nonchained attribute for segments BPR1 
nonchained segment attribute 131 
nondisplayattribute BPR2 
nonqueriable APL displays and printers BPR2 
nonreentrant interface BPR1, BPR2 
nonreentrant interface to GDDM 5 
nonstore attribute for segments BPR1 
NOPOSITION option PGFPR 
NOPROPIE option APG2, PGFPR 
NORANGE option PGFPR 
NORISERS option APG2, PGFPR 
normal-display attribute BPR2 
Norwegian default vector symbol set BPR2 
NOSCALETOWER option PGFPR 
NOSIDE option APG2, PGFPR 
notes PGFPR 
notes (PG routines) APG2 
NOTOWERTICK option PGFPR 
NOV ALUES option APG2, PGFPR 

NPARMS, parameters for call intercept exit BPR2 
NPGFS option APG2 
NTICK option APG2, PGFPR 
NTLBREAK option PGFPR 
null-to-blank conversion 80 
nulls used to pad keys (PG routines) APG2 
number of bar value characters 

(CHVCHR) PGFPR 
number of components (CHNUM) PGFPR 
number of copies printed BPR2 
number of copies to printer 398 
number of segments, query (GSQMAX) BPR1 
numbering conventions BPR2 
NUMBFRM, number convention BPR2 
numeric attribute BPR2 
numeric data values, conventions for 

displaying PGFPR 
numeric input fields 

See also alphanumerics 
mapped 283 
procedural alphanumeric 76 

numeric labels. APG2 
NUMERIC option APG2, PGFPR 
numeric x values in bar charts PGFPR 

object import/export utility (IMS/VS) BPR2 
objects BPR2 
OBJFILE default option for naming 

conventions BPR2 
offset APG2, PGFPR 
omitting data values PGFPR 
opaque mode, background color-mixing BPR1 
open BPR1 
open a device 367, BPR1 
open alternate device (FSOPEN) BPR1 
open graphics segment 127 
opening BPR1 
operator reply mode (ASMODE) BPR1 
operator windows 467, BPR1 

active 467, 471, 477 
application group 485 
attributes 

defaults 472 
modifying 477 
querying 481 

candidate 471,476 
compared with partitions 468 
coordinating device 468 
creating 471 

default 467 
current 471,476,477 
deleting 472 
DSOPEN use 467 
identifiers 478 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vall BPR2 Base Programming Reference Vol 2 

Index 557 



default window 471 
querying 480 
use of -1 479, 480 

multi-tasking 481 
priorities 468 

changing 468, 473, 478 
querying 479 

reference 479 
user control 468,473 
viewing order (priorities) 476,477 
virtual devices 467,476 

interrupts 477 
virtual screen 467 

option group 368 
option setting (PG routines) APG2 
options list 

for device processing 368 
OR, exclusive, drawing mode 203 
order of keys in legend PGFPR 
orient extracted image (IMRORN) 323 
oriental languages 62 
orientation of plotter picture 425 
orientation, axis PGFPR 
origin identification option in DSOPEN BPR2 
origin of a segment BPR1 
origin of segment 

See graphics segments 
ORIGINID processing option BPR1, BPR2 
OS/TSO, using PGF under PGFPR 
outline of graphics area 27, 28 
outlines on charts, color of APG2 
outlining a field (ASFBDY) BPR1 
outlining fields 249 
OUTONL Y processing option BPR1, BPR2 
output BPR1, BPR2 
output print utility, GDDM BPR2 
output-only device 14 
output-only option 368 
oval displayed instead of circle 19 
ovals, drawing 23 
overflow, PS 510, BPR1, BPR2 
overlap APG2 

of image symbols 59 
overlap shading, causes of APG2 
overlapping bars (CHGAP) PGFPR 
overlapping multiple pictures 100 
overlaying application data areas BPR2 
overpaint mode, color mixing BPR1 
overpainting 42, 147 

onplotters 436 
overpainting segments (GSSPRI) BPR1 
override alphanumeric character-code assignments 

(ASTYPE) BPR1 

PA keys 
enabling as logical input devices 189, 214 
input to ASREAD 14 
input to GSREAD 182 
translation into alphanumeric input 292 

PA keys under TSO BPR2 
padding fields BPR2 
padding keys with nulls APG2 
page 93, BPR1 

clear 94 
delete 95 
mapped 256 
query attributes 95 
query identifier 95 
select 95, 108 

page creation 93 
page printers 399 
page sizes BPR2 
page, GDDM 10 
pages BPR1 
paired data APG2 
paired data (free data) PGFPR 
panning and zooming 

example 112 
on 3270-PC/G and /GX 388 
overview 207 
using GSSA VE and GSLOAD 164 

panning and zooming pictures BPR2 
paper size option, plotters BPR2 
paper size, plotter 424 
parameters 

constant 83 
data types of 10 

P ARMVER, parameter verification BPR2 
partial pie chart APG2 
partition sets 91,442, BPR1 
partitions 91, 441, 445, 459, 463, BPR1 

and interactive graphics 212 
sample program 445, 463 

passing z-axis data to the!CU PGFPR 
pattern BPR1, BPR2 
pattern sets 

require storage on 3270-PC/G and /GX 50 
samples provided with GDDM 40 

pattern symbol sets, usage with!CU PGFPR 
pattern table APG2 
patterns 38, BPR1 
PAl usage BPR2 
PA2 usage under CMS BPR2 
PC (Personal Computer) terminals 507,511 
PCB (program communication block) BPR1, BPR2 
pel 

See pixel 
pen plotters 421 
pen-detectable field attribute 283 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

558 GDDM Application Programming Guide Volume 1 



pen-detectable fields 243 
pen-enterable fields 244 
pens for plotters BPR2 
pens in plotter 

numbers and colors 434 
pressure 423,440 
velocity 422, 440 
width 422 

percentages in pie charts APG2, PGFPR 
periods in year labels APG2 
PERPIE option APG2, PGFPR 
PF keys 

enabling as logical input devices 189, 214 
input to ASREAD 14 
input to GSREAD 182 
translation into alphanumeric input 292 

PG routines APG2, PGFPR 
PGF 5, APG2 
PGF (Presentation Graphics Facility) APG2 
PGF-API changes in this manual PGFPR 
PGFS option APG2 
pick (tag) identifier GDF order BPR2 
pick data, query (GSQPIK) BPR1 
pick device BPR1 
pick input 

altering priorities 147 
associated with graphics field 197 
compared with GSCORR 209 
enabling and disabling device 188, 213 
example 178 
initializing device 192, 195 
pick aperture 180, 195 
pick with locator and stroke devices 197 
querying 180 
segment picking example 198 
triggering 183 

pick structure, query (GSQPKS) BPRI 
pick window aperture size BPRI 
picture all in one segment 146 
picture complexity, check for PS overflow BPRI 
picture drawing defaults 47 
picture interchange format (PIF) 171 
picture interchange format (PIF) files BPR2 
picture orientation option, plotters BPR2 
picture overflow BPR2 
picture prolog PSC BPR2 
picture space 97, BPR1 

and GSLOAD 161 
units 98 

pie chart APG2, PGFPR 
PIEKEY option APG2, PGFPR 
PIF (picture interchange format) files 171, BPR2 
pixel 

image symbols 219 
images 30 
line width 36 
plotter 426 
rastering 510 

shading patterns 39 
3270-PC/G and /GX 203 

PL/I BPRl, BPR2, PGFPR 
ADMUPIMC 283 
compiling and executing a program 11 

mapping 256, 262 
declaration of GDDM entry points 9 

PL/I sample programs BPR2 
place data into a mapped field (MSPUT) BPR1 
placement of labels APG2 
placing an image (IMRPL) 318 
placing bar-chart values PGFPR 
plain axis APG2 
PLAIN option APG2, PGFPR 
PLIST, addresses for call intercept exit BPR2 
plotter destination names PGFPR 
plotters 421,512, BPR1, BPR2 

alphanumerics not supported 53 
user pattern sets not supported 51 
using symbol sets 234 

plotters, new support in GDDM Version 2 Release 
1 BPRI 

plotters, new support in Version 1 Release 4 xxv 
plotting APG2, PGFPR 

GDDM API 367 
plotting against secondary axes APG2 
plotting area APG2 
plotting area option BPR2 
PLTAREA processing option BPRl, BPR2 
PLTPAPSZ processing option BPR1, BPR2 
PLTPENP processing option BPR1, BPR2 
PLTPENV processing option BPR1, BPR2 
PLTPENW processing option BPR1, BPR2 
PLTROTAT processing option BPRl, BPR2 
polar chart APG2, PGFPR 
polyfillet call 24 
polyline call 20 
polyline input 185, 196 
polylocator input 185, 196 
polymarker input 185, 196 
pop GDF order BPR2 
population of Venn diagram APG2 
position information, querying with 

CHQPOS PGFPR 
position legend APG2 
position of alphanumeric cursor BPR1 
position of axis title APG2 
position of chart heading APG2 
position of cursor BPRI 
POSITION option PGFPR 
position the cursor (ASFCUR) BPRI 
positioning an image (IMRPL) 318 
positioning and justifying titles PGFPR 
positioning segments 131 
positive tick marks APG2 
pound sign 228 
precedence of alphanumerics over graphics 73 
preloaded PS sets BPR2 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

Index 559 



preloaded symbol sets PGFPR 
present mapped data (MSREAD) BPR1 
presentation area of a map 260 
Presentation Graphics Facility 

See PGF 
Presentation Graphics Facility (see 

GDDM-PGF) BPR1 
Presentation Graphics routines (see PG 

routines) PGFPR 
preview chart (CSINT) PGFPR 
primary and secondary axes PGFPR 
primary colors 42 
primary data stream for CDPF and PSF 402 
primary device 371 
primary symbol set for fields (ASFPSS) BPR1 
primitive tag, set (GSTAG) BPR1 
primitive-to-tag correlation (GSCORR) BPR1 
primitive, graphics 

See also graphics 
of graphics 19 

primitives BPR1 
primitives outside segments BPR1 
print BPR2 
print utility BPR2 
print utility for GDDM files 407 
print utility for non-GDDM files 408 
print utility, GDDM BPR2 
print-control options group 397 
PRINTCTL processing option BPR1, BPR2 
PRINTDST processing option BPR1, BPR2 
printer BPR1, BPR2 

as a primary device 396 
as an alternate device 402 
composed page 399 
heading pages 398 
page size 397 
plotter output 433 
queued 397 
rightmost columns in black and white 397 
shading patterns 410 
swathes 511 
system 398 
ways of using 395 

printer destination names PGFPR 
printer options (CSFLT) PGFPR 
printers 511,512, BPR1, BPR2 
printers, new support in GDDM Version 2 Release 

1 BPR1 
printers, new support in Version 1 Release 3 xxvi 
printers, new support in Version 1 Release 4 xxv 
printing BPR2, PGFPR 

GDDM API 367 
printing images 358 

on 4224 358 
on 4250 or 3800-3 359 

printing, using the ICU PGFPR 
priority of segments and primitives 147 

after GSLOAD 160 

procedural alphanumerics 75 
process specific control GDF order BPR2 
processing option groups BPR2 

User Control fast path mode 387 
processing option groups, using with 

DSOPEN BPR2 
processing option groups, using with 

nicknames BPR2 
processing options 

fast update mode 389 
list in DSOPEN 368 
local mode 388 
operator windows 386 
plotters 422 
retained and non-retained modes 388, 508 
symbol set, default on 3270-PC/G and /GX 388, 

389 
user control 386 
user control key 387 

processing state PGFPR 
PROCOPT nickname parameter 378, BPR2 
procopt specifications for nicknames BPR1 
PROFILE ADMDEFS, external defaults file 

(VM/CMS) BPR2 
profile options (CSINT) PGFPR 
PROFILE WTPMSG BPR2 
program communication block (PCB) BPR1, BPR2 
program specification block (PSB) BPR2 
programmed symbol 

See PS 
programmed symbols (PS) BPRl, BPR2 
programming languages supported 5, BPR1 
programs usable with GDDM, book 

reference BPRI 
programs, sample (see sample programs) PGFPR 
projection BPR1 
projection angle/scale for tower charts PGFPR 
projection definition file BPR2 
projections, image 

See image, projection 
PROPIE option APG2, PGFPR 
proportional pie charts APG2 
proportionally spaced symbols 60 

printing 403 
proportionally spaced typefaces BPR2 
proportions of chart (CSFLT) PGFPR 
proportions of picture, correcting 19 
protected attribute BPR2 
protected attribute, unexpected 272 
protected fields 

See also alphanumerics 
mapped 282 
procedural alphanumeric 76 

PRTCOPY (field of CHART call) PGFPR 
PRTDEP (field of CHART call) PGFPR 
PRTHEAD (field of CHART call) PGFPR 
PRTHOFF (field of CHART call) PGFPR 
PRTUNIT (field of CHART call) PGFPR 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol I BPR2 Base Programming Reference Vol 2 

560 GDDM Application Programming Guide Volume 1 



PRTVOFF (field of CHART call) PGFPR 
PRTWID (field of CHART call) PGFPR 
PS (programmed symbol) 219 

adjunct 293 
operator windows 484 
overflow 510 
store 226, 510 

PS (see programmed symbols) BPR1 
PS stores BPR1, BPR2 
PSB (program specification block) BPR2 
PSCNVCTL processing option BPR1, BPR2 
PSDSS (load a symbol set into a PS store from the 

application program) 229, BPR1 
PSID (PS set identifier) BPR2 
PSLSS (load a symbol set into a PS store from 

auxiliary storage) 221, BPR1 
on 3270·PC/G and /GX 233 

PSLSSC (conditionally load a symbol set into a PS 
store from auxiliary storage) 229, BPR1 

PSQSS (query status of device stores) 230, BPR1 
PSRSS (release a symbol set from a PS store) 230, 

BPR1 
PSRSV (reserving or releasing a PS store) 230, 

BPR1 
PTICK option APG2, PGFPR 
PTNCRT (create a partition) 91,92,445, BPR1 
PTNDEL (delete a partition) 459, BPR1 
PTNMOD (modify the current partition) 92, 459, 

BPR1 
PTNQRY (query the current partition) 447,459, 

BPR1 
PTNQUN (query unique partition identifier) 459, 

BPR1 
PTNSEL (select a partition) 92, 445, BPR1 

making partition active 447 
PTSCRT (create a partition set) 91, 92, 442, BPR1 
PTSDEL (delete a partition set) 459, BPR1 
PTSQPI (query partition identifiers) BPR1 
PTSQPN (query partition numbers) 459, BPR1 
PTSQPP (query partition viewing priorities) BPR1 
PTSQRY (query partition set attributes) 459, BPR1 
PTSQUN (query unique partition·set 

identifier) 459, BPR1 
PTSSEL (select a partition set) 92, 445, BPR1 
PTSSPP (set partition viewing priorities) BPR1 
publications, list of iv, APG2 
puck 

See pick, locator, stroke 
"buttons 

See choice input, activate stroke device 
punctuation PGFPR 
punctuation of labels and bar values APG2 
pushing/popping attribute values 48 
put BPR1 
putting data to an image 

(IMAPTS,IMAPT,IMAPTE) 348 

QSAM (queued sequential access method) BPR2 
quality control of images (ISCTL, ISXCTL) 351 
quasi-reentrancy BPR1 
query BPR1 

all segments 148 
character attributes 82 
character box 59 
current color 46 
current line width 46 
current partition 447 
current position 32 
cursor position 

in graphics window 32 
mapped alphanumerics 286 
procedural alphanumerics 78 

device 368, 391 
graphics attributes 46 
last error 118 
logical input device 180, 198 

choice 182 
locator 181 
pick 180 
string 184 
stroke 185 

mapping calls 272 
modified procedural fields 238 
operator window attributes 481 
operator window identifiers 480 
operator window priorities 479 
page attributes 95 
page identifier 95 
partition 459 
partition set 459 
picture space 99 
PS-stores 230 
segment origin 142 
segment priority 148 
symbol set character attributes 226 
transforms 139 
unique partition set identifier 459 

query a symbol set on auxiliary storage 
(SSQF) BPR1 

query all geometric attributes (GSQAGA) BPR1 
query application data structure definition 

(MSQADS) BPR1 
query attributes of an image (IMAQRY) 313, BPR1 
query calls PGFPR 
query character angle (GSQCA) BPR1 
query character colors for a field (ASQCOL) BPR1 
query character direction (GSQCD) BPR1 
query character highlights for field 

(ASQHLT) BPR1 
query character shear (GSQCH) BPR1 
query character symbol sets for a field 

(ASQSS) BPR1 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

Index 561 



query character-box size (GSQCB) BPRI 
query choice device data (GSQCHO) BPRI 
query current color (GSQCOL) BPRI 
query current page (MSPQRY) BPRI 
query current tag (GSQTAG) BPRI 
query cursor position (ASQCUR) BPRI 
query cursor position (MSQPOS) BPRI 
query default graphics cell size (GSQCEL) BPRI 
query device characteristics (FSQURY) 332, BPRI 
query existence of simultaneous queue entry 

(GSQSIM) BPRI 
query field attributes (ASQFLD) BPRI 
query image box cursor (ISQBOX) 342, BPRI 
query image compressions supported by the device 

(ISQCOM) 336, BPRl 
query image field (ISQFLD) 357, BPRI 
query image formats supported by the device 

(ISQFOR) 335, BPR1 
query image locator cursor position (ISQLOC) 341, 

BPRI 
query image scanner device (ISQSCA) 331, BPRI 
query initial segment attributes (GSQATI) BPRI 
query last error (FSQERR) BPR1 
query length of field contents (ASQLEN) BPRI 
query logical input device (GSQLID) BPRI 
query marker scale (GSQMSC) BPRl 
query mixed string attribute of graphics text 

(GSQSEN) BPR1 
query modified fields (ASQMOD) BPRI 
query modified fields (MSQMOD) BPR1 
query number of modified fields (ASQNMF) BPR1 
query operator window identifiers (WSQWI) BPR1 
query operator window numbers (WSQWN) BPRl 
query operator window viewing priorities 

(WSQWP) BPRl 
query partition identifiers (PTSQPI) BPRI 
query partition numbers (PTSQPN) BPRl 
query partition set attributes (PTSQRY) BPR1 
query partition viewing priorities (PTSQPP) BPRl 
query pick data (GSQPIK) BPRl 
query pick structure (GSQPKS) BPRl 
query segment attributes (GSQATS) BPR1 
query segment origin (GSQORG) BPRl 
query segment position (GSQPOS) BPRl 
query segment priority (GSQPRI) BPR1 
query segment transform (GSQTFM) BPR1 
query specified page (FSPQRY) BPRl 
query status of device stores (PSQSS) BPR1 
query string data (GSQSTR) BPRl 
query stroke data (GSQSTK) BPR1 
query supported image resolutions (ISQRES) 337, 

BPR1 
query symbol set data (GSQSSD) BPR1 
query systems environment (FSQSYS) BPR1 
query the. clipping state (GSQCLP) BPRl 
query the current attribute mode (GSQAM) BPR1 
query the current background color-mixing mode 

(GSQBMX) BPRl 

query the current color mixing mode 
(GSQMIX) BPRl 

query the current data boundary definition 
(GSQBND) BPRl 

query the current fractional line width 
(GSQFLW) BPR1 

query the current operator window 
(WSQRY) BPR1 

query the current partition (PTNQRY) BPRl 
query the current shading pattern 

(GSQPAT) BPR1 
query the current window definition 

(GSQWIN) BPR1 
query the cursor position (GSQCUR) BPRl 
query the number of segments (GSQMAX) BPR1 
query the text box (GSQTB) BPR1 
query unique operator window identifier 

(WSQUN) BPRl 
query unique partition identifier (PTNQUN) BPRl 
query unique partition-set identifier 

(PTSQUN) BPRl 
query update mode (FSQUPD) BPRl 
query User Control function (DSQCMF) BPRl 
querying chart fields with CSxxxx calls PGFPR 
queue entry, query existence (GSQSIM) BPRl 
queue, graphics input 189 

See also input 
queued printer 397,407, BPR1 

as a primary device 398 
as an alternate device 402 
send logging text to 404 

queued printers BPR1 
queued sequential access method (QSAM) BPR2 
quick-path tutorial of GDDM-IMD 253 

radar chart APG2, PG FPR 
range PGFPR 
range of axis APG2 
range of x axis (CHXRNG) PGFPR 
range ofy axis (CHYRNG) PGFPR 
range ofz axis (CHZRNG) PGFPR 
RANGE option PGFPR 
rastering 510 

when copying 409 
RCP (request control parameter) BPRl, BPR2 
RCP parameter for call intercept exit BPR2 
RCPPFLAG flag xxiv, BPR1 
RCPPOGP flag xxiv, BPRl 
RCPPPGF flag xxiv, BPRI 
re-raster for different device 409 
read a symbol set from auxiliary storage 

(SSREAD) BPR1 
read screen contents 

ASREAD 13 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol 1 BPR2 Base Programming Reference Vol 2 

562 GDDM Application Programming Guide Volume 1 



mapped pages 257 
GSREAD 189 

read symbol set from auxiliary storage 
(SSREAD) BPR1 

read symbol set into program 229 
receive requests for mapping BPR2 
record, graphics input 189 
record, initialization, for logical device 192 
rectangle displayed instead of square 19 
redefine fields (ASRFMT) BPRI 
redefining a graphics window or viewport 105 
reduce pie chart size (CHPIER) PGFPR 
reducing segments 131 
reentrant interface BPRI 
reentrant interface to GDDM 5 
reference line (PG routines) APG2 
reference operator window 479 
reference point 205, 206 
reflect extracted image (IMRREF) 323, BPR1 
regeneration of screen 154, BPRI 
register 15, error code in 122 
reinitialize BPRI 
reinitialize a device (DSRNIT) BPR1 
reinitialize chart definition options 

(CHRNIT) PGFPR 
reinitialize GDDM (FSRNIT) BPR1 
reinitialize PG routine options APG2 
reject-type MSPUT 276,277 

See also alphanumerics, mapped 
relative data APG2, PGFPR 
relative line GDF order BPR2 
RELATIVE option PGFPR 
release a graphics symbol set (GSRSS) BPRI 
release a PS store (PSRSV) BPR1 
release symbol set 230 
releases 1, 2, and 3: compatibility with release 

4 BPR1 
GDF (graphics data format) 172 

releasing or reserving a PS store (PSRSV) BPRI 
releasing symbol sets BPR1 
Remote Job Entry BPR2 
REPLACE nickname parameter 383, BPR2 
reply mode for operator (ASMODE) 82, BPR1 
repositioning notes PGFPR 
request codes module for APL BPR2 
request control parameter (RCP) BPR1, BPR2 
reserve a PS store (PSRSV) BPR1 
reserve a PS-store 230 
reserving or releasing a PS store (PSRSV) BPR1 
reset processing state to state-1 (CHSTRT) PGFPR 
resetting processing state PGFPR 
reshow protocol in TSO BPR2 
restore attributes (GSPOP) BPRI 
restore graphics data (GSPUT) BPR1 
restore image from auxiliary storage 

(IMARST) 312, BPR1 

restore projection from auxiliary storage 
(IMPRST) 319 

restoring a chart (CSLOAD) PGFPR 
RESTRICTED keyword, MVS/XA BPR2 
restricting level of messages displayed 120 
restrictions on use of segment zero BPR1 
retained/non-retained mode, 3270-PC/G and /GX 

work stations 508 
retained/unretained mode, 3270-PC/G and /GX work 

stations 207, BPR2 
retransmit data, or symbol sets, or both 

(FSREST) BPR1 
retrieve graphics data BPR1 
retrieve graphics data (GSGET) BPRI 
retrieve image data from an image (IMAGT) BPRI 
retrieving alphanumeric data 

mapped 257 
procedural 76 

retrieving graphics from ADMGDF files 159 
return codes 117 
return to state-1 APG2 
reverse key order APG2 
reverse video 

See also alphanumerics 
ASFHLT (define field highlighting) 80 
graphics text 44 
mapped data 293,295 

reverse-video attribute BPR2 
rewrite-type MSPUT 276 

See also alphanumerics, mapped 
right-justify mapped fields BPR2 
risers APG2 
RISERS option APG2, PGFPR 
risers, histogram PGFPR 
RJE (Remote Job Entry) BPR2 
RMODE keyword, MVS/XA BPR2 
RMODE(xxx), MVS/XA BPR2 
Roman text BPR1 
rotating 

graphics segments 131 
text and symbols 61 

rotating a plotter picture 425 
rotating, scaling, shearing, and displacing 

primitives BPR1 
rotating, scaling, shearing, and displacing 

segments BPR1 
rounding errors PGFPR 
RSCS (Remote Spooling Communication 

Subsystem) 407, BPR2 
rubber band as cursor 193 
rubber box as cursor 193 
running a GDDM program 11 

mapping 256, 262 
running a program under CMS BPR2 
running multiple instances of GDDM BPR2 
running the sample programs BPR2 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol 1 BPR2 Base Programming Reference Vol 2 

Index 563 



sample JCL BPR2 
sample programs BPR2, PGFPR 

ADMUSP4: PLjI graphics editor sample 
program 489 

data entry 445 
partitions 445, 463 
scrolling 463 
windowing (one window) 469 
windowing (two windows) 473 

sample symbol sets BPR2 
sampling mouse, puck, or stylus position 185, 196 
SA VBFSZ, FSSA VE buffer size BPR2 
save 

current page contents 16 
data stream 16 
graphics 157 

save a segment (GSSA VEl BPR1 
save current page contents (FSSA VEl BPR1 
save image on auxiliary storage (IMASA V) 311, 

326, BPR1 
save projection on auxiliary storage 

(IMPSA V) 319, BPR1 
saved picture, displaying BPR1 
saving and printing GDF files, using the 

ICU PGFPR 
saving charts (CSSA VEl PGFPR 
saving graphics 157 
scale PGFPR 
scale drawings 

inter-device copy 168 
plotting 431 

scale extracted image (lMRSCL) 317, BPR1 
scale marks (PG routines) APG2 
scale of axis APG2 
scaled graphics image, draw (GSIMGS) BPR1 
scaled markers PGFPR 
scaled pick aperture size BPR1 
SCALETOWER option APG2, PGFPR 
scaling segments 131 
scaling, shearing, rotating, and displacing 

primitives BPR1 
scaling, shearing, rotating, and displacing 

segments BPR1 
scanner BPR1 

See also image, scanner 
introduction to 305 

scatter plot APG2, PGFPR 
scope of symbol sets 373 
screen attribute byte 97 
screen corruption 510 
screen interrupt 

from partitioned screen 446 
from windowed device 477 
handling by ASREAD 13 

handling by GSREAD 189 
screen layout 

See alphanumerics, mapped 
screen partitions 441 
screen regeneration 154, BPR1 
scrolling 459 

(see also panning) 
sample program 463 

SCS printers in IMSjVS BPR2 
search for GDDM objects on libraries 

(ESLIB) BPR1 
secondary axes APG2 
secondary axis APG2 
secondary data stream for CDPF or PSF 402 
segment APG2, BPR1, BPR2 

See also graphics segments 
leaving open 108 
origin 

for segments on libraries 163 
relation to graphics hierarchy 105 

segment attribute GDF order BPR2 
segment attribute modify GDF order BPR2 
segment characteristics GDF order BPR2 
segment end GDF order BPR2 
segment end prolog GDF order BPR2 
segment origin 132 

See also graphics segment 
moving 142 
querying 142 

segment position GDF order BPR2 
segment start GDF order BPR2 
segment viewing limits BPRI 
segment viewing window GDF order BPR2 
segment, setting the number with 

CHSSEG PGFPR 
segments BPR1 
segments, graphics 

See graphics segments 
SEGSTORE processing option 509, BPR1, BPR2 
select a page (FSPSEL) BPR1 
select a partition (PTNSEL) BPRI 
select a partition set (PTSSEL) BPR1 
select an application group (ESASEL) BPR1 
select an operator window (WSSEL) BPR1 
select data (CSXSL) PGFPR 
select data groups (z) (CSZSL) PGFPR 
select page 95 
selecting an axis PGFPR 
selecting symbol sets by device type BPR2 
selection from menu 

See menu 
selection of axis APG2 
selector adjunct 273 

See also alphanumerics, mapped 
selector adjuncts BPR2 
selector input 

See pick 
selector pen feature 243 

Page numbers refer to this book; further information can be found in other ~DDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programmmg Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

564 GDDM Application Programming Guide Volume 1 



send character string to alternate device 
(FSLOG) BPRl' 

send character string with carriage-control 
character to alternate device (FSLOGC) BPR1 

send graphics to alternate device (GSCOPY) BPR1 
send output and await reply 

ASREAD 13 
GSREAD 189 
MSREAD 255 

send output to terminal 
FSFRCE 13 

mapped pages 257 
send page to alternate device (FSCOPY) BPR1 
send requests for mapping BPR2 
send text to queued printer 404 
sending picture to the device 10 
separation masters, color- 399 
sequence of pictures 14 
sequential fi1e PGFPR 
sequential fi1e print program, ADMOPRT BPR2 
sequential non-GDDM fi1es, printing 408 
set all geometric attributes (GSSAGA) BPR1 
set attribute mode (GSAM) BPR1 
set character-box size (GSCB) BPR1 
set character-box spacing (GSCBS) BPR1 
set color table APG2 
set current background color-mixing mode 

(GSBMIX) BPR1 
set current character angle (GSCA) BPR1 
set current character direction (GSCD) BPR1 
set current character mode (GSCM) BPR1 
set current character shear (GSCH) BPR1 
set current code page (GSCPG) BPR1 
set current color (GSCOL) BPR1 
set current foreground color-mixing mode 

(GSMIX) BPR1 
set current fractional line width (GSFLW) BPR1 
set current line type (GSLT) BPR1 
set current line width (GSLW) BPR1 
set current primitive tag (GSTAG) BPR1 
set current resolution/scaling algorithm 

(IMRRAL) 324 
set current shading pattern (GSPAT) BPR1 
set current symbol set (GSCS) BPR1 
set current transform (GSSCT) BPR1 
set cursor position (MSCPOS) BPR1 
set default coordinate type PSC BPR2 
set default field attributes (ASDFLT) BPR1 
set default picture scale PSC BPR2 
set default text alignment PSC BPR2 
set default viewing window PSC BPR2 
set image quality-control parameters (lSCTL) 353, 

BPR1 
set initial segment attributes (GSSATI) BPR1 
set line-type table APG2 
set line-width table APG2 
set marker scale (GSMSC) BPR1 
set marker table APG2 

set marker-box size (GSMB) BPR1 
set mixed string attribute of graphics text 

(GSSEN) BPR1 
set operator window viewing priorities 

(WSSWP) BPR1 
set page window (FSPWIN) BPR1 
set partition viewing priorities (PTSSPP) BPR1 
set picture boundary PSC BPR2 
set picture origin PSC BPR2 
set segment origin (GSSORG) BPR1 
set segment position (GSSPOS) BPR1 
set segment priority (GSSPRI) BPR1 
set segment transform (GSSTFM) BPR1 
set text alignment (GSTA) BPR1 
set the current type of marker symbol 

(GSMS) BPR1 
set tick-mark interval APG2 
set tick-mark style APG2 
set update mode (FSUPDM) BPR1 
setting BPR2 
setting chart fields with CSxxxx caBs PGFPR 
severity codes BPR1 
severity of error 117 
shaded area BPR1 
shading PGFPR 
shading (PG routines) APG2 
shading algorithm 27 
shading and markers, color table PGFPR 
shading colors (CSINT) PGFPR 
shading errors, apparent (PG routines) APG2 
shading pattern PGFPR 
shading patterns 38, BPR1 

use on plotters 438 
use on printer 410 

shading-pattern symbol sets, usage with 
ICU PGFPR 

shear BPR1, BPR2 
shearing 

graphics segments 131 
text and symbols 64 

shearing, scaling, rotating, and displacing 
primitives BPR1 

shearing, scaling, rotating, and displacing 
segments BPR1 

shift in (SI) character 246 
shift out (SO) character 246 
shift-in (SI) character 231 
shift-out (SO) character 231 
short-on-storage, STGRET option BPR2 
shrink pie charts APG2 
shutdown string, IMS/VS BPR2 
SI (shift in) character 246 
SI (shift-in) character 231 
SIDE option APG2, PGFPR 
simultaneous queue entry, query (GSQSIM) BPR1 
single chart, specifying PGFPR 
single-plane store 510 
single-task windowing 467 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

Index 565 



size BPR1 
size of graphics text 58 
size of pie charts (CHPIER) PGFPR 
size of plot 423, 431 
size of plotter paper 424 
size of segments, changing 131 
size/spacing of characters PGFPR 
skyscraper chart APG2, PGFPR 
slide show effect 14 
smoothness of fitted curve APG2 
SO (shift out) character 246 
SO (shift-out) character 231 
SO/SI characters PGFPR 
SOSIEMC, SOSI emulation character BPR2 
sound terminal alarm 281 

procedural call 83 
sound the terminal alarm (FSALRM) BPR1 
source image, definition of 307 
source-format UDSs BPR1 
spacing BPR1, PGFPR 

text and symbols 65 
spacing/size of characters PGFPR 
Spanish default vector symbol set BPR2 
SPECDEV processing option BPR1, BPR2 
special characters for key text APG2 
special device BPR2 
specify an error exit, or error threshold, or both 

(FSEXIT) BPR1 
specify aspect-ratio control (for copy) 

(GSARCC) BPR1 
specify character colors within a field 

(ASCCOL) BPR1 
specify character highlights within a field 

(ASCHLT) BPR1 
specify character symbol sets within a field 

(ASCSS) BPR1 
specify double-character field contents 

(ASGPUT) BPR1 
specify encoded user default specification 

(ESEUDS) BPR1 
specify field contents (ASCPUT) BPR1 
specify source format user default specification 

(ESSUDS) BPR1 
specifying chart options PGFPR 
SPI (system programmer interface) BPR1, BPR2 
SPIB (system-programmer interface block) BPR1, 

BPR2 
spider appearance, pie chart PGFPR 
spider labels APG2 
SPIDER option APG2, PGFPR 
spider tags APG2 
SPlLABEL option APG2. PGFPR 
spill file 401 
spill file Usage (4250 printers) BPR2 
SPINIT (initialize GDDM with SPIB) BPR1. BPR2 
SPISECTOR option APG2, PGFPR 
SPISLICE option PGFPR 
splitting the screen 441 

SPMXMP (control the use of mixed fields by 
mapping) BPR1 

spooling to printer 407 
square displayed as rectangle 19 
square on screen for pick aperture 180 
SSQF (query a symbol set on auxiliary 

storage) BPR1 
SSREAD (read a symbol set from auxiliary 

storage) 229, BPR1 
SSWRT (write a symbol set to auxiliary 

storage) 229, ~PR1 
stacked chart type APG2 
stacked data, bar charts PGFPR 
STAGE2ID processing option BPR1, BPR2 
standard directory (CSINT) PGFPR 
star chart APG2, PGFPR 
start a shaded area (GSAREA) BPR1 
start data entry into an image (IMAPTS) BPR1 
start retrieval of data from an image 

(IMAGTS) BPR1 
start retrieval of graphics data (GSGETS) BPR1 
start the drawing defaults definition 

(GSDEFS) BPR1 
starting an ICU session (CSSICU) PGFPR 
starting an ICU session with CSxxxx calls PGFPR 
starting to use GDDM BPR1 
state-1 PGFPR 
state-1 (PG routines) APG2 
state-1 datum line APG2 
state-2 PGFPR 
state-2 (PG routines) APG2 
static cursor setting BPR2 
status 

of alphanumeric field 238 
of mapped field 283 

status of a field, change (ASFMOD) BPR1 
status of device stores (query) BPR1 
STGRET, short-on-storage processing BPR2 
storage exhausted, possible cause 9 
storage exit routines BPR2 
store attribute for segments BPR1 
stored image 

definition of 307 
naming of 307 

stored objects BPR2 
storing graphics 157 
storing/restoring attribute values 48 
straight line 19 
straight line, draw (GSLINE) BPR1 
stream input 185, 196 
string data, query (GSQSTR) BPR1 
string device BPR1 
string input 184 

associated with graphics field 197 
effects on choice input 183 
enabling and disabling device 188, 213 
initializing device 192. 195 
triggering 183 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRl Base Programming Reference Vol 1 BPR2 Base Programming Reference Vol 2 

566 GDDM Application Programming Guide Volume 1 



stroke data, query (GSQSTK) BPR1 
stroke device BPR1 
stroke input 185 

associated with graphics field 197 
effects on choice input 183 
enabling and disabling device 188, 213 
example 201 
initializing device 192, 196 
sampling method 196 
stroke with locator and pick devices 197 
triggering 183 

structure correlation (GSCORS) BPR1 
structure of error record BPR1 
stylus 

See pick, locator, stroke 
buttons 

See choice input, activate stroke device 
SUBADDR, task switch address BPR2 
subcharts PGFPR 
SUBPARM, task switch parameter(s) BPR2 
substitution character 

mapgroup 271 
symbol set 228, 403 

substitution character in symbol-set name BPR2 
subsystems supported BPR1 
subsystems, using PGF PGFPR 
suffix, device dependent 

See substitution character 
summary of amendments for Version 2 Release 

1 BPR1, PGFPR 
support material supplied with GDDM BPR1 
supported devices BPR1 
supported programming languages BPR1 
supported subsystems BPR1 
suppress APG2 

warning messages 120 
surface chart APG2, PGFPR 
SVC99 allocation size (TSO) BPR2 
SVC99 Dynamic Allocation BPR2 
swathes 401, 511 
swathes, number of BPR2 
Swedish default vector symbol set BPR2 
switch axes APG2 
switch, stylus tip 

See choice input, activate stroke device 
symbol editors BPR1 
symbol set 219, 295, BPR1, BPR2 

See also alphanumerics 
ASFPSS (define primary symbol set for a 

field) 80 
attributes 226 
character attributes 224 
default 226 

on 3270-PC/G and /GX 389 
field attributes 223, 224 
identifier 222 
mapped data 293, 295 
on plotters 439 

procedural alphanumerics 221 
reading into program 229 
scope of 373 
scrolling 466 
variable cell size on 3290 461 

example 463 
writing to auxiliary storage 229 

symbol set file BPR2 
symbol set handling by GDDM BPR2 
symbol set name (CSCHA) PGFPR 
symbol sets BPR1, BPR2, PGFPR 

and GSLOAD 161 
and GSSA VE 158 
in GDF 173 
ways of displaying 53 
3800 system printer 411 
4250 typographic fonts 411 

symbol-set definitions, format of BPR2 
symbol-set names PGFPR 
symbol, national use 228 
synchronized I/O, IOSYNCH default option BPR2 
syntax PGFPR 
syntax conventions BPR1 
SYSOUT command (JES/328X) BPR2 
system markers 37 
system patterns 38 
system printer 398, 512, BPR2 
system programmer interface BPR1, BPR2 
system programmer interface block (SPIB) BPR2 
system programmer interface to GDDM 5 
system-definition DBD name, IMSSDBD default 

option BPR2 
system-programmer interface block BPR1 
systems environment, query (FSQSYS) BPR1 
systems that can use GDDM BPR1 

Table chart APG2, PGFPR 
table charts APG2 
table for color-separation masters 417 
table of attributes (PG routines) APG2 
tables for I/O translation (ASDTRN) BPR1 
tablet 

See pick, locator, stroke 
tag BPR1 
tag-to-primitive correlation (GSCORR) BPR1 
tag, primitive 177 

See also graphics 
target image, definition of 307 
task management (windowing) 467, 481 
task switch exit BPR2 
TASKSWI, task switch user exit option BPR2 
TCBASE option PGFPR 
temporary storage facilities BPR2 
temporary storage prefix, CICS/VS BPR2 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

Index 567 



terminal alarm (FSALRM) BPRI 
terminal interrupt 

from partitioned screen 446 
from windowed device 477 
handling by ASREAD 13 
handling by GSREAD 189 

terminal processing, under TSO BPR2 
terminals BPR1 
terminals supported 6, 507 

new in Version 1 Release 3 xxvi 
new in Version 1 Release 4 xxv 

terminate GDDM processing (FSTERM) BPR1 
terminate PG routines (CHTERM) APG2, PGFPR 
terminating devices BPR1 
terminating GDDM 9 
text BPRl, PGFPR 

See also graphics text 
introduction 53 
See also alphanumerics 

text alignment BPR1 
text alignment GDF order BPR2 
text box, query (GSQTB) BPR1 
text used with CHAREA APG2 
three-dimensional drawing 148 
threshold limit for bar-chart values PGFPR 
threshold, error 119 
tick marks (PG routines) APG2 
tied data APG2, PGFPR 
time, punctuation conventions BPR2 
TIMEFRM, time convention BPR2 
title attributes PGFPR 
title for chart axis APG2 
title position and justification PGFPR 
title specification PGFPR 
TLBREAK option PGFPR 
TOFAM nickname parameter 378, BPR2 
token values for user exits BPR2 
token, device 

See device 
TONAME nickname parameter 378, BPR2 
tower chart APG2, PGFPR 
TOWERTICK option APG2, PGFPR 
trace BPR2 
trace all GDDM calls 

using FSEXIT 120 
trace GDDM processing with FSTRCE BPRI 
TRACE, trace word value BPR2 
tracing drawings 201 
tracing GDDM calls 

using external defaults 121 
tracking cross 193 
transaction processing (windowing) 473 
transaction work area (TWA) BPR1 
transfer data between two images, applying a 

projection (IMXFER) 310,322,328, BPR1 
transferring data from an image 

(IMAGTS,IMAGT,IMAGTE) 349 

transferring data to an image 
(IMAPTS,IMAPT,IMAPTE) 348 

transferring pictures between systems and 
devices 172 

transformability attribute for segments BPR1 
transformable segment attribute 130 
transformable segments 

with family-4 spill file 401 
transforming primitives BPR1 

setting current transform 46, 143 
transforming segments 131, 137, BPR1 

querying 139 
transforms for mapped data BPR2 
transforms, image 

See image, transform 
transient data facilities BPR2 
translating AID values BPR2 
translation tables for procedural alphanumerics 80 
translation, AID 292 
transmission buffer size BPR2 
transmit output 

ASREAD and FSFRCE 13 
mapped pages 257 

GSREAD 189 
mapped pages 257 

transparency attribute 86 
transparency, define field attribute BPR1 
transparent mode, background color-mixing BPRI 
transporting picture 172 
transporting pictures between devices and 

systems 172 
TRCESHR, trace share BPR2 
TRCESTR external default parameter 121 
TRCESTR, trace control BPR2 
TRCEWID, trace output width control BPR2 
trigger field attribute BPR2 
triggering input 183 
trim an image down to the specified rectangle 

(IMATRM) 327, BPR1 
triple-plane store 510 
TRT ABLE, in-core trace table size BPR2 
TRUE keyword, MVS/XA BPR2 
TSO BPR1, BPR2 
TSO, running under 6 
TSO, using PGF under PGFPR 
TSOAPLF, TSO APL default specification BPR2 
TSOCOLM, color master ddname/high-Ievel 

qualifier for TSO BPR2 
TSODECK, TSO deck ddname BPR2 
TSODFTS, TSO defaults file ddname BPR2 
TSOGIMP, TSO ADMGIMP ddname BPR2 
TSOIADS, TSO ADS ddname BPR2 
TSOIFMT, TSO export utility ddname BPR2 
TSOINTRP processing option BPR1, BPR2 
TSOMONO, TSO monochrome ddname or high-level 

qualifier BPR2 
TSOPRNT, TSO print data-set qualifier BPR2 
TSORESHW processing option BPR1, BPR2 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol 1 BPR2 Base Programming Reference Vol 2 

568 GDDM Application Programming Guide Volume 1 



TSOSYSP, TSO system printer ddname BPR2 
TSOS99S, SVC99 allocation size BPR2 
TSOS99U, TSO unit specification BPR2 
TSOTRCE, TSO trace ddname BPR2 
turning (reorienting) an image (lMRORN) 323 
tutorial, quick-path, of GDDM-IMD 253 
TWA (transaction work area) BPRI 
two charts on one page APG2 
type of field, define (ASFTYP) BPRI 
type 5 code-page name (GSCPG) BPRI 
type-of-field attribute 

mapping 283 
procedural call (ASFTYP) 79 

typefaces BPR2 

UDS (user default specification) BPR1, BPR2 
UDSL, encoded UDS list BPR1 
unboxed legend APG2 
underpaint mode, color mixing BPR1 
underpainting 42, 147 

not supported on 3270-PC/G and /GX 49 
on plotters 436 

underpainting segments (GSSPRI) BPR1 
underscore 

ASFHLT (define field highlighting) 80 
graphics text 32 
mapped data 293 

underscore attribute BPR2 
uniform graphics window, define (GSUWIN) 19, 

102, BPRI 
unlocking and locking keyboard 281 

when SCreen partitioned 446 
unmodified fields 

mapped data 283 
procedural alphanumerics 

querying 238 
setting 239 

unnamed segments 127, 154 
unprotected attribute BPR2 
unprotected field changed to protected 272 
unprotected fields 

See also alphanumerics 
mapped 282 
procedural alphanumeric 76 

update mode, query (FSQUPD) BPRI 
update the display (FSFRCE) BPRI 
update the display (WSIO) BPRI 
updating the screen 154 

ASREAD and FSFRCE 13 
GSREAD 189 

upside-down graphics text 103 
usage of a device 371 
user console 367 
user control BPR2 

default key to invoke 387 
of operator windows 468,473 
processing option 386 

User Control fast path mode 387, BPR2 
User Control function (DSCMF) BPRI 
User Control query status (DSQCMF) BPRI 
user default specification (see UDS) BPR2 
user exits 119, BPR2 
user labels APG2 
user-defined markers 37 
user-defined patterns 39 
user-defined shading-pattern and marker symbol 

sets PGFPR 
user-provided data labels PGFPR 
using GDDM under TSO BPR2 
using the ICU directory with CSxxxx calls PGFPR 
UXBLOCK, user-exit control block BPR2 

validation adjunct and attributes BPR2 
value of text attributes (CHV ATT) PGFPR 
values in bar charts, techniques APG2 
values on bar charts APG2 
VALUES option APG2, PGFPR 
variable cell size 461 

example 463 
variable data 

with protected or autoskip attribute 282 
variable data fields 251 
varying length key text APG2 
VDIG option APG2 
Vector Symbol Editor 219, PGFPR 
Vector Symbol Editor, transaction name in 

IMS/VS BPR2 
vector symbol set, format BPR2 
vector symbol sets BPR2 
vector symbol sets (VSS) PGFPR 
vector symbols 73, 219, BPRI 
vector text 55, APG2 
vectors (GSVECM) BPRI 
Venn diagram APG2, PGFPR 
Version 1 Release 3, new function xxvi, PGFPR 
Version 1 Release 4, new function xxv 
Version 1 Release 4, new functions PGFPR 
Version 1 Releases 1 and 2 level chart control 

parameter PGFPR 
Version 1 Releases 1,2, and 3: compatibility with 

Version 1 Release 4 xxv 
Version 1 Releases 1, 2, 3, and 4: compatibility with 

Version 2 Release 1 xxiv, APG2, BPRI 
Version 2 Release 1, new function xxiii, APG2 
vertical legend (PG routines) APG2 
vertical margins APG2 
vertical margins (CHVMAR) PGFPR 
vertical pie charts PGFPR 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol 1 BPR2 Base Programming Reference Vol 2 

Index 569 



VFIXED option APG2, PGFPR 
viewing limits BPR1 
viewport 98, BPR1 

See also window, graphics 
VINSIDE option APG2, PGFPR 
virtual device (windowing) 467,476 
virtual screen (windowing) 467 
visibility attribute for segments BPR1 
visibility segment attribute 130 

with family-4 spill file 401 
VM/CMS BPR1, BPR2 
VM/SP PGFPR 
VM/SP, running under 6 
VM, functions available BPR1 
VONTOP option APG2, PGFPR 
VS FORTRAN character strings BPR1 
VS/FORTRAN CHARACTER parameters PGFPR 
VSCIENTI option APG2 
VSCIENTIFIC option PGFPR 
VSE, functions available BPR1 
VSS (vector symbol set) and ISS (image symbol set) 

formats BPR2 
VSSE (call the vector symbol editor) PGFPR 
VTAM BPR2 

width BPR1 
width of graphics lines 36 

on plotters 437 
window for scrolling 460 
window mode BPR2 
WINDOW processing option 386, BPR1, BPR2 
window, graphics 19, 102, BPR1 

(see also viewport) 
and GSLOAD 161 
clipping 110 
enlarging to shrink graphics 373 
for graphics libraries 163 
in graphics libraries 163 
inverting 103 
using points outside 110 

windowed device input/output (WSIO) BPR1 
windows BPR1 
windows, operator 

See operator windows 
work-file filetype, VM BPR2 
world coordinates 

See window, graphics 
wrap-around procedural alphanumeric fields 77 
write symbol set to auxiliary storage 229 
write sy.mbol set to auxiliary storage 

(SSWRT) BPR1 
write-to-operator descriptor codes, IMS/VS BPR2 
write-to-operator routing codes, IMS/VS BPR2 
write-type MSPUT 276 

See also alphanumerics, mapped 
WSCRT (create an operator window) 471, BPR1 
WSDEL (delete operator window) 472, BPR1 
WSIO (windowed device input/output) 477, BPR1 
WSMOD (modify the current operator 

window) 477, BPR1 
WSQRY (query the current operator window) 481, 

BPR1 
WSQUN (query unique operator window 

identifier) BPR1 
WSQWI (query operator window identifiers) 480, 

BPR1 
WSQWN (query operator window numbers) 480, 

BPR1 
WSQWP (query operator window viewing 

priorities) 479, BPRI 
WSSEL (select an operator window) 476, BPRI 
WSSWP (set operator window viewing 

priorities) 478, BPR1 
WTP (write-to-programmer) messages BPR2 

x axis PGFPR 
x axis vertical APG2 
x values PGFPR 
x-axis data labels (CHXDLB) PGFPR 
x-axis datum line (CHXDTM) PGFPR 
x-axis day labels (CHXDAY) PGFPR 
x-axis interception point (CHXINT) PGFPR 
x-axis label attributes (CHXLAT) PGFPR 
x-axis label attributes (CSFLT) PGFPR 
x-axis label text (CHXLAB) PGFPR 
x-axis labels PGFPR 
x-axis labels (CSCHA) PGFPR 
x-axis labels (CSFLT) PGFPR 
x-axis month labels (CHXMTH) PGFPR 
x-axis options (CHXSET) PGFPR 
x-axis range (CSFLT) PGFPR 
x-axis scale factor (CHXSCL) PGFPR 
x-axis scale mark interval (CHXTIC) PGFPR 
x-axis scale marks (CSFLT) PGFPR 
x-axis scale marks, bar chart APG2 
x-axis title PGFPR 
x-axis title (CHXTTL) PGFPR 
x-axis title attributes (CHXTAT) PGFPR 
x-axis title attributes (CSFLT) PGFPR 
x-datum-line options (CSFLT) PGFPR 
x-datum-line options (CSINT) PGFPR 
x-reference-line options (CSFLT) PGFPR 
x-reference-line options (CSINT) PGFPR 
x-reference-line, setting (CSINT) PGFPR 
XDUP option APG2 
XNODUP option APG2 
XPICK option APG2, PGFPR 
XTICK option APG2, PGFPR 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

570 GDDM Application Programming Guide Volume 1 



XVERTICAL option APG2, PGFPR 

yaxis PGFPR 
Y axis datum line (CHYDTM) PGFPR 
Y axis vertical APG2 
y values PGFPR 
y-axis day labels (CHYDAT) PGFPR 
y-axis interception point (CHYINT) PGFPR 
y-axis label attributes (CHYLAT) PGFPR 
y-axis label attributes (CSFLT) PGFPR 
y-axis label text (CHYLAB) PGFPR 
y-axis labels PGFPR 
y-axis labels (CSCHA) PGFPR 
y-axis labels (CSFLT) PGFPR 
y-axis month labels (CHYMTH) PGFPR 
y-axis options (CHYSET) PGFPR 
y-axis range (CSFLT) PGFPR 
y-axis scale factor (CHYSCL) PGFPR 
y-axis scale mark interval (CHYTIC) PGFPR 
y-axis scale marks (CSFLT) PGFPR 
y-axis title PGFPR 
y-axis title attributes (CHYTAT) PGFPR 
y-axis title attributes (CSFLT) PGFPR 
y-axis title specification (CHYTTL) PGFPR 
y-datum-line options (CSFLT) PGFPR 
y-datum-line options (CSINT) PGFPR 
y-reference-line options (CSFLT) PGFPR 
y-reference-line options (CSINT) PGFPR 
YDUP option APG2 
year labels APG2 
YNODUP option APG2 
YVERTICAL option APG2, PGFPR 

z axis angle and scale APG2 
z values PGFPR 
z-axis data labels (CHZDLB) PGFPR 
z-axis label attributes (CHZLAT) PGFPR 
z-axis options (CHZSET) PGFPR 
z-axis scale mark interval (CHZTIC) PGFPR 
zero included on autoscale APG2 
zooming 

example 112 
on 3270-PCjG and IGX 388 
overview 207 
using GSSA VE and GSLOAD 164 

zooming and panning pictures BPR2 
ZPICK option APG2, PGFPR 
ZVERTICAL option APG2, PGFPR 

I Numerics I 
1403 printer 512 
1403 system printer 398 
16M, GDDM code above this location BPR2 
24-bit addressing mode (MVS/XA) BPR2 
31-bit addressing support (MVS/XA) BPR2 
3104 terminal 511 
3117 and 3118 scanners 511 

brightness control call 333 
contrast control call 333 
image conversion algorithms 334 
input image width restriction 352 

3117 scanner BPR1 
ISLDE call, effect of 310 

3118 Scanner BPRI 
document loading 310 
introduction to 305 
programming for 308 
resolutions 309 

3178 display BPR1 
3178 terminal 511 
3179 display BPR1 
3179-G 507 
3179-G color display stations BPR1 

graphics text 70 
3179-G display BPR1 
3180 display BPR1 
3193 display BPRI 
3193 display station 511 

introduction to 305 
local operations 343 
multiple extract restrictions 352 
multiple placing restrictions 352 
programming for 308 
rectangle placing restriction 353 
resolution 311 
scaling factors restriction 352 

3203 printer 512 
3211 printer 512 
3211 system printer 398 
3230 printer 511 
3232 printer 511 
3262 printer 511 
3268 printer 511, BPR1 
3270 hardware attributes 78 
3270 terminals 509, 511 
3270-PC BPR1 
3270-PC/G BPR1 
3270-PC/G and IGX 507 

graphics attributes 49 
graphics text 70 
plotters 421 
processing options 

local mode 388 
retained and non-retained modes 388, 508 
symbol set, default 388 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Voll BPR2 Base Programming Reference Vol 2 

Index 571 



retained and non-retained modes 508 
retained mode 207 
supported colors 49 
symbol sets 233 
underpaint mode not supported 49 

3270-PC/G and /GX work stations BPR1, BPR2 
3270-PC/G and /GX work stations and 5080 Graphics 

System BPR1 
3270-PC/GX BPR1 

alphanumerics and graphics on two 
screens 252, 298 

conceptual rows and columns 97 
dual-screen configuration 13, 75 
mapping 252, 298 

3274 controller 17 
3275 terminal 511 
3276 terminal 511 
3277 display BPR1 
3277 terminal 511 
3278 display BPR1 
3278 terminal 509,511 
3279 display BPR1 
3279 terminal 509, 511 
3283 printer 511 
3284 printer 511 
3286 printer 511 
3287 printer 511, BPR1 
3288 printer 511 
3289 printer 511 
3290 information panel 509,511 

partitions 441 
sample program 445, 463 
scrolling 459 
variable cell size 461 

3800 composed page printer 
using graphics text 71 

3800 composed-page printer 399,512 
3800 Model-1 printer 398 
3800 printer BPR1, BPR2 
3800 system printer 512 

loadable symbol sets 411 

3800-1 printer BPR1 
3800-3 printer BPR1 
3800-8 printer BPR1 
3812 printer BPR2 
3820 printer BPR1, BPR2 
4224 printer BPR1 

brief description 512 
introduction to 305 
printing an image on 358 
resolution 358 

4224 Printer, picture overflow BPR2 
4234 printer BPR1 
4250 printer 399,512, APG2, BPR1, BPR2, PGFPR 

alphanumerics not supported 53 
line widths 36 
typographic fonts 411 
using graphics text 71 
using symbol sets 234 

5080 graphics system 509, BPR1 
alphanumerics 87 
alphanumerics and graphics on two screens 75, 

252, 298 
graphics text 70 
GSFLD behavior 97 
mapping 252, 298 
processing options 390 

5550 multistation 245, 509, 511 
5550-family work stations BPR1 
5553 printer 511 
5557 printer 511 
6180 plotter BPR1 
6180 plotters 512 
64-color pattern set 40 
64-color shading (PG routines) APG2 
737x plotters 421, 512 
7371 plotter BPR1 
7372 plotter BPR1 
7374 plotter BPR1 
7375 plotter BPR1 
8775 terminal 509,511 

Page numbers refer to this book; further information can be found in other GDDM books: 
APG2 Application Programming Guide Vol 2 PGFPR PGF Programming Reference 
BPRI Base Programming Reference Vol 1 BPR2 Base Programming Reference Vol 2 

572 GDDM Application Programming Guide Volume 1 



.1 
1 
1 
1 

GDDM Application Programming Guide Volume 1 

Order No. SC33-0337-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or 
distribute whatever information you supply in any way it believes appropriate without incurring any 
obligation to you. Your comments will be sent to the author's department for whatever review and 
action, if any, are deemed appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to your 
IBM representative or to the IBM branch office serving your locality. 

Number of your latest Technical Newsletter for this publication ... 

If you want an acknowledgement, give your name and address below. 

Name ............................................................ . 

Job Title ........................... Company ...................... . 

Address ........................................................... . 

.... .. . .... .. ... .... .. . .. . ... '" .... " ................ Zip ....... . 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



SC33-0337-0 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 6R1 H, 
180 Kost Road, 
Mechanicsburg, PA 17055, USA 

Fold and tape Please Do Not Staple 

==.~.=® - - ----- ----- ~ ---- -- _ .. ------
-~-,-

II I 
Fold and tape 

NO POSTAGE 

NECESSARY 

IF MAILED 

INTHE 

UNITED STATES 

Fold and tape 



SC33-0337-0 
Vel' ion 2 ReJca c 1 

-:- -:-:. ~ = ® - ---- - ---- - - ------------ ' -


	000001
	000002
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00019
	00020
	00021
	00023
	00024
	00025
	00026
	001
	003
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	019
	020
	021
	022
	023
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	125
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	171
	172
	173
	174
	175
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	217
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	487
	489
	490
	491
	493
	494
	495
	497
	498
	499
	500
	501
	502
	503
	504
	505
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	531
	532
	533
	534
	535
	536
	537
	538
	539
	540
	541
	542
	543
	544
	545
	546
	547
	548
	549
	550
	551
	552
	553
	554
	555
	556
	557
	558
	559
	560
	561
	562
	563
	564
	565
	566
	567
	568
	569
	570
	571
	572
	replyA
	replyB
	xBack

