
IHS/VS - VSAH INTERFACE GUIDE

Doctiment Humber GG24-1518-00

Ulrich K. Schwenk

World Trade Systems Center
Santa Teresa

San Jose, California

This publication was produced using the IBM Document Composition
Facility (program number 5748-XX9) Release 2. It was printed on the
IBM 3800 Printing Subsystem.

The information contained in this docum~nt has not been submitted to any
formal IBM tast and is distribut~d on an "As Is" basis without any wsrr~n
ty either express or implied. The use of this inform~ticm or the i~p!c~::m
tation of any of these techniquQs is a cu~to~~r responsibility ~nd d~~cndG
on tha custom~r's ability to evaluata ~nd intc;r~te them into t;1~

custc~~r's operaticnal environ~~nt. W~ile e~ch it~~ m~y h~v~ b:~n
reviewed by IBM for accuracy in a specific situation, th~rQ is no gu~r~n
tee that the same or similar results will be obtained elseuh~re. custo~
ers atte~pting to adapt these techniques to th~ir o~n envircn~~nts do so
a t the i r own r i s k •

Reference to PTF nu~bers that have not been released throu~h th~ PUT proc
ess does not imply general availability. Tho purpose of including thc€o
reference numbers is to alert IBM CPU custo~crs to cp~cific infor~~tion
relative to the im~le~~ntaticn of the PTF wh~n it b~cc~=s ~v~il~ble to
each customer according to the normal IBM PTF distributicn rules.

The product referenced in this docu~cnt may not be available in all coun- ~

tries.

First Edition (March 1980)

eCopyright International Business Machines Corporation 1980

ii IMS/VS - VS'A't'1 INTERFACE GUIDE

1.0 INTRODUCTION
1 . 1 Objectives of the Document
1 .2 Intended Audience
1 .3 Systems . . .
1 .4 Acknowledgements .
1 .5 Reference Material

2.0 VSAH as Used by IMS/VS
2.1 Basic Description of VSAM
2.1.1 Support by SCPs and Languages
2.1.2 RBA Concept in Addressing

. .

.

2.1.3 Control Interval and Control Area Definition and Concept
2. 1 .4 .VSAr-1 in Relation to Previous Access Methods
2.1.5 Suitability and Support in Data Base Environment
2.2 VSAM Data Sets
2.2.1 Alternate Index (in brief - not used by IMS/VS)
2.2.2 RRDS (in brief - not used by IMS/VS)
2.2.3 ESDS ...••....•..
2.2.3.1 Processing Restrictions
2.2.4 KSDS•..
2.2.4.1 Index Structure
2.2.4.2 Free Space
2.3 DATA BASE ORGANIZATIONS SUPPURTING VSAM
2.3.1
2.3.2

HSAM, SHSAM - no VSAM support
HISAM, SHISAM

2.3.3 Direct Organizations
2. 3 . 3 . 1 HDAM ..•...
2.3.3.2
2.3.4
2.3.5
2.3.6

HIDAr-1
INDEX Data Bases
Data Entry Data Bases
GSAM •••..•.•.

3.0 VSAH functions as related to IHS/VS
3.1 VSAM Free Space and DL/I Free Space
3.1.1 Applicability of Free Space
3.1.1.1 VSAM - KSDS Free Space
3.1.1.2 DL/I - ESDS Free Space
3.1.2 Control Interval Free Space and FSPF
3.1.3 Control Area Free Space and FBFF
3.1.4 Guidelines for Use of Free Space
3. 1 .4. 1 Free Space in KSDS .••..
3. 1 .4.2 Free Space in ESDS •..••
3.2 Splitting and Insert Strategies••.
3.2.1 Control Interval Splitting (Direct Insert)
3.2.1.1 VSAM Split-In-Progress Bit (Flag)
3.2.1.2 IMS/VS Use of VSAM Split-In-Progress Bit (Flag)
3.2.2 Control Area Splitting• •• . .
3.2.3 Insert Strategies Effect on Splitting .•••
3.2.3.1 Direct Insertion with Split
3.2.3.2 Sequential Insertion with Split
3.3 Control Interval Sizes .•..•.

CONTEHTS

1

1
2
2
.;,\

2

3
3
3
3
4
6
6
6
7
7
7
8
9
9

11
13
13
13
15
16
17

'19
21
22

23
23
23
24
24
25
25
26
26
27
29
29
31
31
32
32
33
34
35

Contents iii

3.3. 1 Data CI Size . • . • • • • . . 35
3.3. 1 . 1 DASD Utilization . • • • • 35
3.3.2 IndexCI Size . . • • • • 36
3.3.2.1 Relation of Index CI Size to 'Data CA Size •.•. 36
3.3.2.2 Problems of Incorrect Data CA Sizes / Index CI Sizes •••• 37'
3.4 VSAM Buffers and Buffer pools • 37
3.4. 1 VSAM Buffer Use . • • . . . • • • 37
3.4.1.1 Data Buffers .•.••.•.•••..••• • • • • • 38
3.4. 1 .2 Index Buffers 38
3.4.2 Buffer Pools • • • • . • • • 39
3.4.2. 1 VSAM Shared Resources".. . . " " " 40
3.4.2.2
3.4.2.3

IMS/VS usage of VSAM Shared Resources
Relation of CI Sizes to IMS/VS Buffer Sizes

3.4.2.4 Buffer Allocation Considerations
3.5 Key Compression•....
3.5.1 How Compression Works ...•... " •.
3.5.1.1 Problems with Poor Compression
3.5.1.2 Characteristics of Keys That Do Not Compress Well
3.5. 1 .3 Cri terj,a for Key Selection

4.0 Relationship of IMS/VS and VSAM Parameters
4.1 Data Base Definition Parameters
4. 1 . 1 DBD 1"1acro ..• '.
4. 1 . 1 . 1· ACCESS
4.1.1.2 RMNAME
4.1.1.3 PASSWD=YES
4.1.2 DATASET Macro
4.1.2.1 OPI
4.1.2.2
4.1.2.3
4.1.2.4
4.1.2.5

OVFLW
BLOCK, RECORD and SIZE
RECfM for GSAM/VSAM
FRSPC .•......•

4. 1 .2.6 Fast Path Parameters ..•.
4. 1 .3 Other DBD Parameters That Affect VSAM
4. 1 .3. 1 Pointer Specifications••..
4.1.3.2 Pointer Prefix•......•.•.
4. 1 .3.3 Parameters and macros that require VSAr1
4.1.4 DBDGEN Output Recommendations for VSAM Cluster Definition
4.2 VSAM Data Space Allocation• . • . '.
4.3 VSAM Cluster Definition Parameters .••.
4.3. 1 Cluster Related Parameters ..•. • . .
4 . 3. 1 . 1 NAME•
4.3.2 Space Allocation (CYLINDER, TRACKS, RECORDS, VOLUMES)
4.3.2. 1 Small data sets •........•••.•..•
4.3.2.2
4.3.2.3
4.3.2.4
4.3.2.5
4.3.2.6
4.3.2.7
4.3.2.8
4.3.2.9

Multiple cYlinder data sets (not multivolume)
Multivolume data sets ••...•.. " • • . .
Data space allocation and extension ...•
Cluster Type ...•. . . . • . . .
Password Specification • • "0 • • ••• •

SHAREOPTIONS .••.. • • • • • • • • • .
UNIQUE/SUBALLOCATION
SPEED/RECOVERY ..•.

4.3.2.10 IMS/VS Considerations using SPEED or RECOVERY
4.3.3 DATA Component Related Parameters ..•......
4 . 3 .3 . 1 NAME • •

iv IMS/VS - VSAM INTERFACE GUIDE

40
42
42
43
43
46
47
48

49
49
49
50
51
51
52
53
53
53
58
58
59
59
59
60
60
61
62
63
63
63
64
64
64
64
66
66
66
68
68
70
71
72
72

4.3.3.2 CONTROLINTERVALSIZE
4.3.3.3
4.3.3.4
4.3.3.5
4.3.3.6

Space Allocation at DATA Level
FREESPACE
PASSWORDs for DATA Component
KEYS

4.3.3.7 RECORDSIZE
4.3.4 Index Component Related Parameters
4 . 3 . 4 . 1 NAME • . . . • . . .
4.3.4.2 CONTROLINTERVALSIZE
4.3.4.3 Space Allocation at INDEX Level
4.3.4.4 PASSWORDs for INDEX Component
4.3.4.5 IMBED, REPLICATE
4.4 VSAM BUFFER POOL Definition Parameters
4.4.1 Subpool Definition
4.4.1.1 Selection of Buffer Sizes
4.4.1.2 Choice of Number of Buffers
4.4.2 OPTIONS Statement

5.0 Processing VSAM Data Bases
5.1 Sharing of Data in IMS/VSAM Environment
5. 1 . 1 VSAM Sharing
5.1.1.1 Sharing Across Tasks Within a Region
5.1.1.2 Sharing Across Regions or Systems
5.1.1.3 Other Factors Affecting Sharing
5.1.2 Sharing of VSAM Data Bases .•....•.
5.1.2.1 IMS/VS Open Considerations
5.1.2.2 Batch/Online Sharing Capabilities
5.2 Exclusive Control Considerations in VSAM Data Bases
5.2.1 Native VSAM Exclusive Control ..•.
5.2.2 IMS/VS Exclusive Control
5.2.2~1 IMS/VS Integrity Maintenance•.
5.2.3 Comparison of Exclusive Control Techniques
5.3 Data Base Manipulation With VSAM •...
5.3. 1 Insertion .••... . . . •
5.3. 1 • 1 Initial Load Insert . . • •
5.3.1.2 Direct Processing .•..
5.3.1.3 Sequential Processing
5.3.1.4 Skip-sequential Insertion
5.3.1.5 Secondary Index Segment Insertion
5.3.2 Update ..•.••.•..•....
5.3.2.1 Replace of Secondary Index Source Segment
5.3.3 Deletion .•.• ...• • .••
5.3.3. 1 Crawling •

6.0 Fast Path Feature
6.1 General Description of Fast Path Feature
6 . 2 D.EDB ..••.•.••••••.•.•••
6.2.1 Improved Control Interval Processing (ICIP)
6.3 DEDB Concept •..•... . . . •
6.3.1 Fast Path use of VSAM ICIP
6.3. 1. 1 DE DB cr Size ...••
6.3.1.2 DEDB Unit-of-Work (UOW) Size
6.4 AREA Concept ••..•....•
6.4. 1 . 1 System .•...•.....
6.4.2 Space Allocation in Units-of-Work

. . . .
~~ .

72
72
73
73
74
74
75
75
75
75
75
76
77
78
78
79
80

83
83
83
83
84
86
87
87
88
90
90
91
92
93
94
95
95
97
98
99
99

100
101
101
102

103
103

1~3
104
105
106
106
107
108
109
109

Contents v

6.4.2.1 Root Addressable Part
6.4.2.2
6.4.2.3
6.4.3

Independent Overflow Part
Sequential Dependent Part

DBD Macro
6.5 Advantages of DEDB
6.6 Restrictions with DEDB

7.0 Access Method services as an IMS/VS utility
7.1 Capabilities of Access Method Services
7 • 1 . 1 DEFINE command
7.1.2 REPRO
7 . 1 .3
7. 1 .4

PRINT
EXPORT/IMPORT

7.1.5 LISTCAT
7 . 1 • 6 VERI FY
7.2 Access Method Services Functions Related to Data Bases
7.2.1 Backup
7 .2. 1 . 1 Backup by REPRO
7 .2. 1 .2 Backup by EXPORT ..•.....•.
7.2~1.3 Comparison With IMAGE COPY Utility
7 • 2.2 Reorganization
7.2.2.1 Function of IMS/VS Re-org Utilities
7.2.2.2 Re-org Capabilities of VSAM
7.2.2.3 Access Method Services as a Reorganization Tool
7 . 2 . 3 V ER I FY•........

8.0 statistical Inform~tion
8.1 VSAM Catalog Information
8.1.1 Allocation ,Information
8.1.1.1 CLUSTER Allocation
8.1.1.2 DATA Component Allocation
8.1.1.3 INDEX Component Allocation
8.1.2 Attributes Information
8.1.2.1 Cluster Attributes
8.1.2.2 DATA Component Attributes
8.1.2.3 INDEX Component Attributes
8. ,1 .3 Statistics
8. 1 .3. 1 Cluster Statistics
8.1.3.2 DATA Component Statistics
8.1.3.3 INDEX Component Statistics
8.2 Data Base Statistics
8.2.1 Source of Statistical Information
8.2.2 The Monitor Programs
8.2.3 Monitor Report Printing Programs
8.2.4 VSAM Related Reports
8.2.4.1 VSAM Buffer Subpools Report
8.2.4.2 VSAM Statistics Report

A.O List of Abbreviations

B.O Index

vi IMS/VS - VSAM INTERFACE GUIDE

109
110
1 1 ~
1 11
1 1 i
112

113
1 1 3
1 1 3
113
114
11 4

11 5

11 5

11 5

11 6
1 1 6
11 7
1 17
118

11 9

120
121
122

125
• .1 25
125
125
126
127
123
128
128
130
130
130
1.31
132
133
133
133
134
134
135
137

139

141

,i!<

LIST OF ILLUST~AT!O"!S

Figure
Figure
figure
figure
figure
figure

1. Control interval structure with control fields
2. Structure of a VSAM control area .. .
3. Entry-sequenced data set structure •
4. Key-sequenced data set structure
5. Inserting and deleting VSAM records
6. HISAM database records in ISAM/OSAM

figure 7. HISAM data base records in VSAM
Figure 8. Format of a segment in an HDAM or HIDAM data base.
figure 9. "DAM data base records in either ISAM/OSAM or VSAM.
figure 10. format of a Segment in an HIDAM Primary Index
figure 11. HIDAM data base records in ISAM/OSAM
figure 12. HIDAM data base records in VSAM
figure 13. Unique Key Secondary Index
figure 14. Nonunique Key Secondary Index
Figure 15. Control interval split (1 of 2)
Figure 16. Control interval split (2 of 2)
Figure 17. Direct Mode Insert Control Interval Split
Figure 18. Sequential Mode Insert Control Interval Split
Figure 19. Logical to physical records relationship
Figure 20. DASD track capabilities
Figure 21. Average number of entries per INDEX CI
Figure 22. IMS/VS usage of VSAM Shared/Nonshared Resources
Figure 23. Key compression (1 of 5) . . .
figure 24. Key compression (2 of 5)
figure 25. Key compression (3 of 5)
Figure 26. Key compression (4 of 5)
figure 27. Key coopression (5 of 5)
figure 28. DBD macro parameter summary . ..
Figure 29. DL/! Organizations and Operating System Access Methods
figure 30. DATASET macro parameter summary ...•. . •.
Figure 31. Relation of BLOCK subparameters to Access Methods
Figure-32. Relation of RECORD subparameters to Access Methods
Figure 33. Relation of SIZE subparameters to Access Methods
Figure 34. VSAM and DLII overhead to be used for CI size calculation
Figure 35. Parameters of the OPTIONS statement
figure 36. Exclusive Control Conflict Resolution
figure 37. IMS/VS Control Level Conflict Resolution
figure 38. Fast Path ICI Processing Comparison
Figure 39. DEDB Record Structure .. .
Figure 40. AREA Concept ..
Figure 41. AREA Description ...
Figure 42. UOW Concept
Figure 43. LISTCAT output: DATA component allocation information
Figure 44. LISTCAT output: INDEX component allocation information
Figure 45. LISTCAT output: DATA component historY and attributes
Figure 46.- LISTCAT output: INDEX component history and associations
Figure 47. LISTCAT output: DATA component statistics
Figure 48. LISTCAT output: INDEX component statistics
Figure 49. Statistics from VSAM Buffer Subpools Report
Figure 50. VSAM Statistics Report ••

List of Illustrations

4
5
8

11
12
14
14
16
17
1 7

18
, 9

20
21
29
30
33

34

36
36
37
41
43

43
44

44
45
49
50

52
54
55
56
57
80

91
93

104
105
-·108

109
110
126
127
128
130
131

132
135

137

vii

viii IMS/VS - VSAM INTERFACE GUIDE

1.0 INTRnDUCTIO~

This document was created in response to the needs of new users of IMS/VS
and those established users who are converting their data bases to VSAM.
The purpose is to provide a guide and a reference for persons using VSA~1

as the operating system access method for their IMS/VS data bases.

1.1 OBJECTIVES OF THE DOCUMENT

The primary objective for this document is that it should act as a single,
consolidated source of information on the interface between IMS/VS and
VSAM as it affects the user of the system. Prior to this document, this
information has been scattered through a large number of pUblications
causing a great deal of time and effort to be spent in searching for the
appropriate information. This document is not intended as a replacement
for the SRL manuals and IBM courses, but as a supplement to them. It will
be useful as an initial point of reference to give a basic understanding
of specific areas, which may then be followed up by reference to the
appropriate SRL manual or course.

A secondary objective of the document is to provide clarification of some
of the areas of the interface between IMS/VS and VSAM which are prone to
misunderstanding and may cause confusion to users. For this re~son, there
are many instances of redundancy in this document where information av~il
able from other sources has been repeated. This has been done to make this
document more suitable as a learning and reference tool and not simply an
index to other publications.

1.2 INTENDED AUDIENCE

This document has been written with the intention that it will be used by
Data Base Administrators, System Programmers and Application Designers
who are involved in implementing or maintaining an IMS/VS data base system
using VSAM. The information contained herein is presented in such a way
that it will be useful to these persons both as a guide or reference and as
a means of learning about the relationship of IMS/VS and VSAM.

A certain level of familiarity with IMS/VS and VSAM has been assumed on
the part of the reader as it is not the intention of this document to teach
the basics of either IMS/VS or VSAM. The required level of knowledge may
be attained by attending introductory courses on IMS/VS and VSAM or by
completion of Independent Study Programs in these topics.

Although this document may be useful to them, the needs of IMS/360 and DOS
DL/I users are not directly addressed.

INTRODUCTION

1.3 SYSTEMS

The information in this document applies to OS/VS systems using"the IMS/VS
1.1.5 system. The material is generally applicable to releases prior to
IMS/VS 1.1.5. There are some instances when the implementation differs
slightly on pre-IMS/VS 1.1.5 releases and no attempt has been made in this
document to note these differences. .

1.4 ACKNOWLEDGEMENTS

We want to acknowledge the debt we owe to the many individuals who gave us
assistance with technical questions. In particular, we want to give credit
to Rod Murchison from South Africa, whose significant participation in the
development of this document is greatly appreciated, and also to Michel
Quenon from the WTSC in Santa Teresa for his assistance in the IMS/VS and
Fast Path area.

1.S REFERENCE MATERIAL

Besides various internal sources the following publications have been
used to develop this manual:

• GC26-3819-4 OS/VS VSAM OPTIONS FOR ADVANCED APPLICATIONS
• GC28-3838-3 OS/VS VSAM PROGRAMMER'S GUIDE
• G320-5774-0 VSAM PRIMER AND REFERENCE
• G320-6004-0 IMS/VS PERFORMANCE MONITORING & TUNING GUIDE
• G320-60 15-0 OS/VS VSAM SHARING PART 1
• G320-6035-0 IMS/VS AND OS/VS BUfFER OPTIONS
• SH20-9025-6 IMS/VS VERSION 1 SYSTEM/APPLICATION DESIGN GUIDE
• SH20-9029-6 IMS/VS VERSION 1 UTILITIES REFERENCE MANUAL
• SH20-9145-0 IMS/VS VERSION t PRIMER

The following publications are referenced:

• GC26-3819-4 OS/VS VSAM OPTIONS FOR ADVANCED APPLICATIONS,
• GC26-3838-3 OS/VS VSAM PROGRAMMER'S GUIDE
• GC26-3840-3 OS/VSl ACCESS METHOD SERVICES ,
• GC26-3841-2 OS/VS2 ACCESS METHOD SERVICES
• G320-5775-0 FAST PATH FEATURE DESCRIPTION AND DESIGN GUIDE
• SH20-9026-6 IMS/VS VERSION 1 APPLICATION PROGRAMMING REF. MANUAL
• SH20-9027-7 IMS/VS VERSION 1 SYSTEM PROGRAMMING REFERENCE MANUAL
• SH20-9028,-6 IMS/VS VERSION 1 OPERATOR'S REFERENCE'MANUAL
• SH20-9081-4 IMS/VS VERSION 1 INSTALLATION GUIDE

2 IMS/VS - VSAM INTERFACE GUIDE

2.0 VSAM AS USED BY IMS/VS

2.1 BASIC DESCRIPTION OF VSAM

Some topics of the following chapter are described in more detail in the
document VSAM PRIraER AND REFERENCE, G320-5774.

2.1.1 Support by SOPs ~nd lan9u~gcs

Virtual Storage Access Method (VSAM) is a component of DOS/VS and OS/VS
data management and is supported in DOS/VS, OS/VS1, OS/VS2 SVS, and OS/VS2
MVS.

In VM/370 the CMS/VSAM support is based on DOS/VS.

ASSEMBLER, COBOL/VS, PL/I, and RPGII (DOS/VS only) provide native VSAM
support. They provide Sequential and Random (direct) accessing ~apabili
ties. For further discussions see the appropriate COBOL/VS, PL/I, or
RPGI I manuals.

2.1.2 RBA Conceot in Addressing

The physical location of a logical record within a data set is given-in
the form of a Relative Byte Address (RBA) rather than a CCHHR disk record
address.

The RBA of a logical record is the offset of this logical record from the
beginning of the data set.

The first record in a data set has an RBA of O. If the control interval,
contains more then one record, the second record has an RBA equal to the
length of the first record and so on.

The RBA of a logical record or index entry, therefore, is independent of
the physical characteristics of the direct access device type on which it
resides, the number of· extents in the data set, etc. It only depends on
its position in the sequence of records. This way of referencing data by
RBA makes the data sets independent of the DASD device type.

The RBA i~ always expressed as a full word binary integer.

The RBA includes free space and control information (Figure 3 on page 8
shows an example of how RBA values are assigned).

VSAM as Used by IMS/VS 3

2.1.3 Control Interval and control Area Definition and Concept

Control Intervals (CIs)

To make VSAM as efficient as possible, so-called control intervals have
been designed to contai'n the iogical records. The disk space on a direct
access storage device (like IBM 3330, and IBM 3350) has been divided into
logical blocks of information. The size of the blocks can vary from one
VSAM data set to another VSAM data set, but for a specific data set, the
size of each block is fixed, either by VSAM or by the the user (within lim
its acceptable to VSAM). These blocks of information are called control
i nterva Is. Figure 1 . illustrates the logical records (and the control
information describing them) stored in a control interval.

A control interval is the unit of data transferred between virtual storage
and disk storage; for example VSAM will transfer the control interval
shown in Figure 1 to virtual storage if one or more of the logical records
in that control interval needs to be accessed.

The control interval must be a certain size (a multiple of 512 bytes
unless the control interval size is greater than 8192, then the multiple
is 2048). The maximum size of a control interval is 32,768 bytes. A con
trol interval can span several tracks depending on control interval size
and track capacity but it cannot cross control area boundaries (the con
trol area is described on the next page) .

A control interval always contains control information fields plus an
integral number of logical records, and unused (free) space, or logical
records alone. or free space alone. Figure 1 shows that control informa
tion fields consist of two types of fields: one CIDF (Control Interval
Definition Field), and one or more RDFs (Record Definition Fields).

~_L_R_1 __ ~ __ L_R_Z~I~~~.I ___ L_R_n~ __ u_n_u_s_e_d __ s_p_a_c_e __ .I_R_D_F~I_R_D_F~I_C_I_D_F~1
LR = logical record

Figure 1. Control interval structure with c~ntrol fields

There is one Control Interval Definition Field (CIDFl per control interval
and one Record Definition Field (RDF) per record. The RDF contains the
length information for this record.

"--'--1f records with the same length are used 2 RDFs are needed (IMS/VS uses
VSAM records with the same length. even when variable length segments have
been specified; only GSAM allows the use of VSAM variable length records).
In this case one RDF contains the length information of a record and the
other the number of records in this CI.

Only one RDF is' used when a slngle record is stored in the control inter
val. Multiple RDFs will be used for GSAM variable length segments.

4 IMS/VS - VSAM INTERFACE GUIDE

Control Areas (CAs)

The control intervals in a VSAM data set are grouped together into fixed
length contiguous areas of direct access storage called control areas. A
control area· is auxiliary storage space that is set aside by VSAM to
receive or hold the control intervals of a particular data set.

The user does not have to specify the number of control intervals per con
trol area of a data set; VSAM determines this number. Whenever the space
in a data set needs to be extended because the control area cannot hold
anymore data, VSAM extends the data set (see also description of VSAM data
spaces and space allocation in section "VSAM Data Space Allocation" on
page 62).

The maximum size of a control area is one cylindar and the m~n~mum size is
one track of a DASD. The user implicitly defines the control area size by
specifying the amount of space to be allocated to a data set (for further
information, see section "Space Allocation (CYLINDER, TRACKS, RECORDS,
VOLUMES)" on page 64). Usually better performance is obtained when the
size of one control area is one cylinder.

Figure 2 shows a possible structure of two control areas, which include
three control intervals each. All details, like 'free space', etc., are
explained in following sections.

CI 10

CA 1 CI 2 62

CI 3

CI 4 77

CA 2 CI 5 160

CI 6

C = CIDF

20 30 35 40 fs R R C

62 66 70 75 fs R R C

free control interval C

79 80 92 93 I fs R R C

165 168 200

free control interval

CI = Control Interval
fs = free space

fs R R C

C

CA = Control Area
R = RDf-

Figure 2. Structure of a VSAM control area

VSAM as Used by IMS/VS 5

2.1.4 VSAH in Relation to Previous Access Methods

VSAM supports both sequential and direct processing and is designed to
supersede ISAM, although the two access methods can coexist in the same
Operating System. VSAM supports functions equivalent to those of ISAM, and
provides better performance. VSAM data sets cannot be accessed by any
other Access Method.

In addition, the three data organizations supp~rted by VSAM can be used in
place of BSAM or QSAM for sequential data sets and in place of BDAM for.
directly organized data sets. The new structure and features of VSAM make
it more sui ted to data base and online environments than other access
methods.

2.1.5 suitability and Support in Data Base EnvircnM9nt

There are a number of facilities in VSAM which make it highly suitable to
use in the data base environment. The most important of these are:

• Distributed free space which allows VSAM performance to be relatively
insensitive to data set insert activity.

• The control interval concept Which eliminates the need for ISAM 'over
flow chaining' and keeps direct and sequential request times low.

• The structure and design of the VSAM index which reduces insert and
direct retrieval time.

• The ease of control over the data sets gained through. use of the
Access Method Services utility.

These factors indicate that performance gains are likely to be achieved by
migrating existing data bases from ISAM/OSAM to VSAM. The first-time
IMS/VS user should also make tise of VSAM to gain these advantdges.

2.2 VSAH DATA SETS

VSAM supports three different data set organizations: key-sequenced
(KSDS), entry-sequ~nced (ESDS), and relative-record (RROS). All three
organizations allow both sequential and direct processing and record
addition without rewrite of the complete data set. The primary difference
between these three organizations is the sequence in which logical records
are stored.

6 IMS/VS - VSAM INTERFACE GUIDE

2.2.1 A1ternCJte Ind~x (in brief - net us~d b\f IffS/VS)

VSAM alternate indexes enable the logical records of an ESDS or of a KSDS
to be accessed sequentially and directly by more than one key. The alter
nate index itself is a VSAM KSDS.

None of the IMS/VS data base organizations make use of VSAM al ternZlte
indexes.

2.2.2 RRDS (in brief - not used by IMS/VS)

A Relative ~ecord Data set (R~DS) is processed by a relative record number
and consists of a number of fixed len;th slots, each of which has a unique
relative record number, an associated RDF, and cont«ins one log ical
record. The slots within an RRDS are sequenced by ascending relative
record number (from 1 to to.

A record is placed in the slot specified by a user-supplied relative
record number (for direct or skip-sequential inserts) or, if not
specified, by a VSAM-supplied relative record number (for initial lo~d or
sequential inserts). This relative record number is never included in the
logical record.

None of the IMS/VS data base organizations make use of VSAM RRDS.

2.2.3 ESDS

An Entry-Sequenced Data set (ESDS), which is logicallY comparable to a SAM
data set, contains either records with the same length or variable length
records, sequenced in the order in which they were submitted for inclusion
in the data set (like SAM data sets). Therefore, records are sequenced by
their time of arrival rather than by any field in the logical record.

An ESDS accepts records of the sa~e length and variable length records
(variable length VSAN records may be used in !fL15/VS with GSM1 only).
Records can be added at the end, and records can be updated but not
extended. Records cannot be erased .

. Figure 3 on page 8 shows a possible structure of an ESDS.

VSAM as Used by IMS/VS 7

The RBA values are in hexadecimal (4 bytes). The numbers in the CIs rep
resent keys i~ the records (not used). The control interval length is 512
byte.. The small numbers below the CIs represent the record/field length
in bytes.

RBA X'OO' 50 AO FO 140 190 lEO 1F6 1FF

I 873 I 5 I 7 I 17 I 534 I 11 9 I nuslRHcl
80 80 80 80 80 80 22 3 3 If

RBA X'200' 250 2AO 2FO 340 390 3EO 3F6 3FF

I 34 I 337 I 338 I 339 I 42 I 225 I nuslRIRlcl
80 80 80 80 80 80 ZZ 3111

RBA X'400' 450 4AO 4FO 540 5F6 5FF

I 662 I 77 I 53 I 412 I free IRHcl
80 80 80 80 18Z 3311

C = CIOF nus = unusable space (remaining space)
R = ROF RBA = Relative Byte Address

Figure 3. Entry-sequenced data set structure

2.2.3.1 Processing Restrictions

The following request types are allowed for E50S processing:

•
•
•

add/load records (only at the end)
modify existing records (no record length change)
retrieve records

Addressed sequential, addressed direct, and control interval processing
are supported for ESOS.

The former two are called addressed processing and it is the normal way to
process an ESOS.

No keyed processing is allowed, i.e. no key may be specified to access any
record in an ESOS.

8 IMS/VS - VSAM INTERFACE GUIDE

2.2.4 KSDS

A Key-sequenced Data Set (KSDS) uses logical records, either with the same
length or variable in length, which are placed in the data set in ascend
ing collating sequence by a field, called the key.

Records added after the KSDS is created are inserted in key sequence and
existing logical records are moved when necessary.

In a VSAM key-sequenced organization, a record must have a unique, embed
ded, fixed length key located in the same position within each logical
record.

Keys can be a minimum of one byte and a maximum of 255 bytes.

2.2.4.1 Index structure

A KSDS consists of an index (index.component) and logical records (data
component) with different.data set (component) names. All extents of the
KSDS data component must reside on the same type of direct access devices.
The index component, however, can be placed on a device type different
from that of the data c6mponent.

The index for a VSAM KSDS data set contains key values and pointers. It is
built when the KSDS is initially loaded. A VSAM index also contains infor
mation about available space in the index component.

Although it is an internal VSAM function it should be mentioned that the
key in an index entry is stored in a compressed form. This is called key
compression (for detailed description of key compression see section ~Key
Compression" on page 43). For index calculations (see "Index CI Size" on
page 36) an average compressed key length of 3 can generally be used.

In most cases a VSAM index consists of 2-3 index levels. The lowest level
is called the sequence set. All levels above, which are automatically
built by V~AM when necessary, are collectively referred to as the index
set.

The index set consists of index records (CIs) which contain index entries
(compressed) pointing to another index record on the next lower level.

VSAM as Used by IMS/VS 9

In the sequence set, thera is one index record per data CA. Each index
record is designed to contain a number of index entries equal to the num
ber of data CIs which fit in its CA.

An index record (equivalent to one index control interval) is fixed in
length, either 512, 1024, 2048 or 4096 bytes (index CI sizes are described
in chapter "Control Interval Sizes" on page 35).

Each index record contains a pointer to an index record in the next lower
index level or to a control interval in the data component.

An indax entry (in the index record) consists of the highest key associ
ated with that CI (in compressed form), control information and a relative
CI number, which will be multiplied by the CI size and added to the REA of
the beginning of the CA (derived from the index header). The sum addressc~
the correct data CI.

If a data set consists of more then one CA, more than one record (CI)
exists in the index sequence set. In this case VSAM automatically builds
another index level (L2). Each entry in the index L2 record points to one
Sequence Set record (Ll) (see Figure 4 on page 11).

If the data set is so big that the index L2 record cannot hold all entries
for all the Sequence Set records, another index L2 record has to be built
by VSAM.

Since the highe~t index level can only consist of one index record, VSAM
will build another index level (L3), etc.

For index performance considerations see section "Index CI Size" on page
36.

Figure 4 on page 11 shows a logical picture of a KSDS after loading with
two CAs, containing four CIs each.

Records with 80 bytes each were loaded. A free space value of 20~ free
space in the CI and 25~ in the CA was specified (see "FREESPACE rr 6ri page
73), so 1 record (minimum = (512 * 20~) = 102) per CI and one CI per CA
(25~ * 4) (CI/CA) is held free when loading the data set. In each CI with a
length 'of 512 bytes and control fields with a total of 10 bytes, 4 logical
records were loaded (102 bytes were left free).

The index component consists of two levels: the Index Sequence Set and the
Index Set.

10 IMS/VS - VSAM INTERFACE GUIDE

IS
(L2) unused space

IC

10 30 35 47 1 fs lei 385
1

407
1

408
1

472 I fSIci

68 75 100
1

180lfSici 5441 5451 634
1

free
1 1

DC

205
1

240
1

331
1

374 1 fs lei free control interv&llcl

free control interval lei free control inte rva11 e 1

C = control fields (RDFs~ CIDF) IC = Index Component (IS
DC = Data Component IS = Index Set
fp = pointer to free CI ISS = Index Sequence Set
fs = free space (FREESPACE def.) Ll,L2 = Index Level , and 2

HDR = Index header information us = unused space

Figure 4. Key-sequenced data set structure

2.2.4.2 Free space

A KSDS can be defined to reserve space for later insertions when the data
set is loaded or updated using a sequential insertion technique (e.g. PUT
SEQ) . This reserved space is called free space.

The amount. of free space in a CI and/or CA (in X) is specified in the
FREESPACE parameter of the DEFINE CLUSTER command (see also "FREESPACE" on
page 73).

VSAM as Used by IMS/VS 11

+ ISS)

Use of VSAH Free Space for Insert

When a record must be added to a control interval, records with keys high
er than the one to be inserted are shifted to the right of the eI within
the free space limit. As long as enough free space is available in this
CI, there is no further data CI manipulation.

Sequential Access is used for loading data sets and for insertion of
groups of pre-sorted records and is also called 'Mass Insertion'. Mass
insertion is described in detail in section "Sequential Processing" on
page 98.

Skip-sequential Access
Insertion" on page 99.

is described in section "Skip-sequential

The following examples illustrate the usage of free space:
• I

This CI is 512 bytes long. A free space value of 30~ has been speci
fied. With a record length of 80 bytes, the maximum eI capacity is 6
records. But after loading the data set, each CI contains only 4
records and 182 bytes of free space (VSAM calculated a minimum of 153
bytes free space).

10 20 30 40 free space R R C

Record 25 is to be inserted. The control interval is read into a VSAM
buffer and records 30 and 40 are shifted to the right.

10 20 25 30

Records 20 and 40 are to be deleted. The remaining records are shifted
to the left if necessary and the freed space is now available for
inserts, updates, etc.

10 25 30 free space I*R I R 1* C I
R = RDFs (Record Definition Fields)
C = CIDF (describes free space and offset)

* = value changed

Note: Not one of these changes require a change in the related index
sequence set, even if the high key record in a CI is deleted.

Figure 5. Inser~ing and deleting VSAM records

12 IMS/VS - VSAM INTERFACE GUIDE

If the record to be inserted or to be expanded will not fit in the control
interval, a control interval split takes place to provide sufficient space
in the control interval to contain the record. The control interval split
is described in detail in section "Splitting and Insert Strategies" on
page 29.

2.3 DATA BASE ORGANIZATIONS SUPPORTING VSAM

2.3.1 HSAM, SHSAM - no VSAM support

There is no support for VSAM in the Hierarchical Sequential Access Method
CHSAM). All HSAM or SHSAM (Simple HSAM) data bases are implemented using
either BSAM or QSAM data sets. In IMS/VS DB/DC (online), only BSAM duta
se~s may be used for HSAM data bases.

2.3.2 HISAM, SHISAH

Data bases in the Hierarchical Indexed Sequential Access Method CHISAM)
may be implemented using either ISAM/OSAM or VSAM data sets. An HISAM data
base will consist of two data sets, one used for primary storage of the
data base records and the other used for overflow storage. In the case of
a SHISAM (Simple HISAM) data base which contains only one segment type,
just one data set is used.

Logical records in the data sets are of same length, even when variable
length segments are defined in the data base. The user will define the
logical record size and the block or control interval size for each data
set.

A data base record may span multiple logical records in the data sets. The
minimum storage requirement for each data base record is a single logical
record in the primary data set. This will be an ISAM record when the data
base is using ISAM/OSAM or a KSDS record when VSAM is used. OSAM or ESOS
records from the overflow data set are used when a data base record
becomes larger than a single logical record.

The number of logical records spanned depends upon the size and frequency
of occurrence of the segments within the data base record. A pointer chuin
is used to link all of the logical records in both the primary and over
flow data sets which are used for storage' of the data base record. Within
the logical. records which make up the data base record, the segments are
kept in hierarchical sequence and are related by physical adjacency. Fig
ure 6 on page 14 and Figure 7 on page 14 show the way in which data base
records are stored in an HISAM data base with ISAM/OSAM and VSAM.

VSAM as Used by IMS/VS 13

ISAH RECORDS

ptrl Ptr2

OSAH R£!CO~DS

ptrl ptr2

ptrl ptr2

I 0 1 Dep.A5 101 0 1///////1
3

Ptrt

1 3

ptr2

ptrl ptr2

o IRoot cIDcPcliDepc2101 0

3 1 :1

figure 6. HISAM data base records in ISAM/OSAM: 'Ptrl' is used for
the Root Overflow Chain and 'Ptr2' is used for the Depend
ent Overflow Chain.

KSDS RECORDS

ptr2

Ptr2

! 0 IRoot 81 Dep.sl!ol////////I
II

Ptr2

ESDS RECO~DS

ptr2

ptr2

o Dep.A5

figure 7. HISAM data base records in VSAM: 'Ptr2' .is used for the
Dependent Overflow Chain.

In an HISAM data base, the data base records are maintained in root key
sequence. As explained below, the maintenance of the root key sequence
will be done using different methods in ISAM/OSAM and VSAM. The Dependent

14 IMS/VS - VSAM INTERfACE GUIDE

Overflow Chain, 'Ptr2' in Figure 6 and Figure 7, is used to link all of
the logical records which comprise the data base record and allow access
to all of the segments of that data base record in hierarchical sequence.

When ISAM/OSAM is used, roots inserted after initial load ('Root B' and
'Root C' in Figure 6 on page 14) are placed in new OSAM logical records in
the Overflow data set. The Root Overflow Chnin, 'Ptr1', is used to main
tain the root segments in root key sequence.

When the data bases use VSAM, new roots which are inserted after initial
load ('Root B' and 'Root C' in Figure 7 on page 14) are placed in new KSDS
logical records in the Primary data set. This direct insertion into the
Primary data set is possible because of the structure and design of the
VSAM index. No Root Overflow Chain is necessary with the VSAM i~plementa
tion and this saves on the amount of system overhead required in each
logical record.

A Simple HISAM (SHISAM) d~ta base is only allowed with VSAM
implementation. The SHISAM data base may contain only root segments. Since
no dependent segments exist, no Dependent Overflow Chain need be main
tained nor is the ESDS Overflow data set required. A SHISAM data base,
therefore, is totally equivalent to a VSAM KSDS.

2.3.3 Direct organizations

In the direct organizations , Hierarchical Direct Access Method (HDAM) and
Hierarchical Indexed Direct Access Method (HIDAM), the data base records
are stored in a diffeient format from that used in HISAM. For HISAM, each
data base record has its, own individual set of logical records linked
together by the Dependent Overflow ·Chain and the segments are stored in
these records in hierarchical sequence thereby being related through
physical adj acency. The direct organizations do not assign a logical
record to a particular data base record but, will place segments from dif
ferent data base records into the same logical record. Furthermore, the
segments in direct organizations are related through pointers associated
with each segment rather than by physical adjacency.

These pointers are stored as part of each segment ~n the data base. As
shown in Figure 8 on page 16, each segment consists of two portions:

• The prefix, containing a 1-byte segment code, a 1-byte delete flag and
a number of 4-byte pointers, and

• The segment data which is the information actually passed to applica
tion programs in response to a request for this segment.

In an ISAM/OSAM data base these pointers are direct address type pointers.
In a VSAM data base, the pointers are Relative Byte Addresses (RBAs). For
complete information on the pointers that may be used in HDAM and HIDAM,
refer to the manuals IMS/VS VERSION 1 SYSTE~/APPLICATION DESIGN GUIDE,
SH20-9025 and IHS/VS VERSION 1 UTILITIES REFERENCE MANUAL, SH20-9029.

VSAM as Used by IMS/VS 15

Iscldbl Pointers Segment Data

1 If If If , , ... ,

PREFIX DATA

sc = segment type code
db = delete. flag byte

Figure 8. Format of a segment in an HDAM or HIDAM data base.

2.3.3.1 HDAH

An HDAM data base consists of only one data set, either an OSAM data set or
a VSAM E5DS. This data set is divided into two portions. the Root Addrc~s
able Area where root segments and dependents arc stored and the Ovcrflo~
Area where root segments and dependents that do not f it into the Root
Addressable Area are inserted after initial load. The sizes of thcse
areas are defined by the user in the RUNAME parameter of the DATASET macro
as explained in "RMNAME" on page 51 .

Access to root segments in the HDAM data base is. achieved through the use
of a Randomizing Routine. This randomizing routine takes a root key as
input and returns a relative block number for OSAM or a control i~terval
number for VSAM and a Root Anchor Point (RAP) number.

The number of RAPs in each block or control interval is also defined in
the RHNAME parameter. A root segment is located by accessing the indi
cated block or control interval and following the pointer or chain of
pointers from the specified RAP to the desired root segment.

Figure 9 on page 17 shows the pointers used in an HDAM data base to link
from RAPs to root segments and to relate the segments. There is no real
difference except for the use of blocks or control intervals between the
implementation of an HDAM data base with OSAM or VSAM.

-In each block or control interval there is one Free space Anchor Point
which points to the first Free Space Element in the block or control
interval. The Free space Elements are used to track and control the unused
areas "in the block or control interval and are referenced whenever a seg
ment is placed into or deleted from the block or control interval.

16 IMS/VS - VSAM INTERfACE GUIDE

OSAM or ESDS RECC~DS

///////-0-///////

FSAP = Free Space Anchor Point
FSE = Free Space Element
Pfx = Segment Prefix

ROCT
ADD~ESSABlE

AREA

OVERFLOW
AREA

Figure 9. HDAM data base records in either ISAM/OSAM or VSAM.

2.3.3.2 HIDAH

An HIDAM data base has two components. The first is the Data Portion which
is very similar to an HDAM data base and where all of the segments in the
data base are stored. The other component is the pri~ary Index which is a
separate data base which is structured like an HISAM data base. HIDAM
data bases may therefore be regarded as a combination of HDAM and HISAM.

The segments of the Primary Index of an HIDAM data base are not completelY
like HISAM segments in that they each have a prefix. This prefix contains
a delete flag and a single pointer to a root segment in the Data Portion of
the data base. The segment data in the Primary Index consists of the root
key and the index segments are maintained in root key sequence. Figure 10
shows the format of an index segment in the Primary Index of an H1DAM data
base.

ROOT KEY

1 ,
~------------~II ~ ______________________ ~

PREFIX DATA
DB = Delete Flag Byte

Figure 10. Format of a Segment in an HIDAM Primary Index

VSAMas Used by IMS/VS 17

Access to HIDAM root segments is performed by retrieval of the appropriate
Primary Index segment and following the prefix pointer to the ~orrespond
ing root segment. ~ependcnt segments are accessed through the pointers in
the prefixes of the segments in the Data Portion of the data base just ~s
with HDAt.,.

figure 11 and Figure 12 on page 19 show the implementations of an HIDAM
data base using ISAM/OSAM and VSAM. To simplifY the figures,' free Space
Anchor Points, Free Space Elements and Root Anchor Points have not been
shown. The use of fSAPs and RAPs in HIDAM is covered in section "BLOCK,
RECORD and SIZE" on page 53 and shown in Figure 34 on page 57.

ISAtt RECORD OSAN RECORD

Root A Key

3 3

Dep.B2

INDEX
D~,\TA SASE

HIDAH
DATA BASE

OSAM BLCC~S

figure 11. HIDAM data base records in ISAM/OSAM: This figure shows
the relatiQnship between the data base records and the
Primary Index of the HIDAMdata base.

It should be noted that two data sets, one ISAM and one OSAM, are required
for the Primary Index of an HIDAM data base implemented with ISAM/OSAM.

The reason that two data sets are used for the Primary Index is that, when
a new root segment is inserted into the data base after initial load
('Root B' in Figure 11), the corresponding Index segment is placed in the
OSAM data set and the Root Overflow Chain pointers are u$ed to maint~in
the root key sequence.

18 IMS/VS - VSAM INTERFACE GUIDE

VSAM KSDS CONTROL !NTERVAL

Dep.B2

J

CF = VSAM Control Fields (RDF + CIDF)

I;~;;E:X

DATA BASE

HID.\t"1
D .. ~TA BASE

VSAtt ESDS

!NTERVALS

Figure 12. HIDAM data base records in VSAM: This figure is intend~d
to show the difference in the Index data base for an HIDAM
data base using VSAM as opposed to ISAM/OSAM.

The Primary Index of an HIDAM data base consists of a single KSDS when the
data base is implemented using VSAr1. Unlike the case with ISA~1/0SAM,

VSAM's index structure allows the Index segment for a l"lew root to be
inserted directly into the data set in its proper position to maintain
root key sequencing.

2.3.4 INDEX D~ta B~scs

An INDEX data base is a root-only HISAM data base used as a means of
accessing segments in some other data base by key. There are two types of
INDEX data base, the HIDAM Primary Index and the Saccnd~ry Ind~x.

The HIDAM Primary Index may be implemented with either ISAM/OSAM data sets
or with a VSAM KSDS as described in the preceding section "HIDAM" on page
17 and shown in Figure 11 on page 18 and Figure 12. A Secondary Index may
only be created using VSAM data sets.

The structure of the Secondary Index data base will depend upon whether or
not unique keys are used.

VSAM as Used by IMS/VS 19

If unique keys are used~ then the INDEX data base is treated as a
Root-only HISAM data base and is implemented as a single KSDS.

for the nonunique key case~ multiple occurrences of the same key value
will be treated in a manner similar to that used for overflow dependents
and the INDEX data base will be implemented as two VSAM data sets, one
KSDS and one ESDS.

figure 13 shows the structure of a Secondary Index with unique keys and
figure 14 on page 21 shows the structure for nonunique keys.

A Secondary Index may be defined on an HISAM~ HDAM or HIDAM data base.
Although the Secondary Index data base must be VSAM-based~ there is no
such restriction on the data base being indexed which may be ISAM/OSAM or
VSAM.

VSAH KSDS CONTROL INTERVAL

~1~ ________ T~a_r_g_e_t __ s_e_g_m __ e_n_t __________ ~

~1 _________ T_a_r_g_e_t __ s_e_g_m __ e_n_t __ 2 ________ ~

I Target Segment 3

Pfx = Segment Prefix

figure 13. Unique Key Secondary Index

SECONDARY INDEX DATA BASE

DATA BASE BEING
INDEXED

HISAH, HDAH
or HIDAtt
Segments

When the Secondary Index has unique keys~ the INDEX data base is a normal
VSAM KSDS. The index segments are maintained in secondary key. sequence
using the VSAM index structure.

The type of pointer used in the prefix of the index segments depends on
the type of data base being indexed.

20 IMS/VS - VSAM INTERfACE GUIDE

KSDS RECORDS ESDS RECORDS

Seg 81

HISAM / HDAM / HIDAM Segments being indexed

Pfx = Segment Prefix

Figure 14. Nonunique Key Secondary Index

When the Secondary Index has nonunique keys. the Root Overflow Chain is
used to link together all of the index segments with the same key. A sec
ond data set. an ESOS. is required to store those index. segments whose
keys are the same as an existing index segment.

It should be noted that the duplicate key index segments are maintained in
Last-In-First-Out sequence on the Root Overflow Chain. This means that,
whereas the 'A' index segments in Figure 14 were inserted in the order:
Al, A2, A3, A4; they ~ill be retrieved in the order: A4, A3, A2, Al.

The VSAM index structure is still used to maintain the index segments
which have different keys in secondary key sequence.

2.3.5 Data Entry Data Bases

Data Entry Data Bases (DEDB), used with the FAST PATH FEATURE, are imple
mented as a group of VSAM Entry Sequence Data Sets. Only VSAM is allowed
as the access method for a DEDB.

A full description of the Fast Path Feature and DED8s may be found in
"Fast Pa~h Feature" on page 103.

VSAM as Used by IMS/VS 21

2.3.6 GSAM

The Generalized Sequential Access Method (GSAM) provides accessing sup
port for simple physical sequential data sets. such as tape files. SYSIN,
SYSOUT, and others that are not hierarchical. These are data sets which,
before GSAM, could not be used as IMS/VS data sets.

Support provided includes sequential or direct retrieval by a record iden
tifier which defines the relative position of that record.

Support is provided for both OS/VS Sequential Access Method (SAM) and
OS/VS Virtual Storage Access Method (VSAM) for Entry Sequenced Data Sets
(ESDS).

GSAM is fully described in IMS/VS APPLICATION P~OGRAMMING REFERENCE MANU
AL, SH20-9026.

22 IMS/VS - VSAM INTERFACE GUIDE

3.1 VSAM FREE SPACE AND DL/I F~E~ SPACE

The ability to define free space in the data sets used as data bases c~n
materially improve the perform~nce of the syste~. So~e 6f the "clvant~ges
to be obtained through the use of free space are:

• The overhead associated with insertion becomes more nearly that of
update because space for new segments has been effectively 'reserved'
by free space.

• There is no need to extend the data set frequently in order to provide
space for new segments.

• Retrieval of an inserted segment is as efficient as retrieval of a
segment created at initial load because free space allows the physical
storage sequence of the segments to closely correspond to the logical
sequence.

• The need for lengthy and complex procedures to obtain space for a new
segment is avoided.

Although free space can be a means of improving performance, it is also
possible to make a poor choice for the amount of free space which will
have an adverse effect on performance. Therefore, the purpose of this
section is to enable the readers to gain a sufficient understanding of the
free space concept to make the proper choice for their own environment.

3.1.1 Applicnbility of F~ee sp~ce

There are two separate and distinct forms of free space availnble when
VSAM data sets are used for 1MS/VS data bases. One is the Native VSAM freo
space which is specified when the VSAM cluster is defined and the other is
Dl/1 free space which is specified as part of Data B~se Description (DBD)
generation.

VSAM functions as related to IMS/VS 23

3.1.1.1 VSAH - KSDS Free Space

Native VSAM free space applies only to KSDS and may not be specified for
either ESDS or RRDS.

Two values may be specified for the VSAM free space:

control interval free space is specified as a percentage of each con
trol interval to be left free for sequential inserts.

control area free space is specified as a percentage of the number of
control intervals in each control area to be left free for sequential
inserts.

VSAM free space is specified using the FREES PACE parameter as explained in
section "FREESPACE" on page 73.

The primary function of VSAM free space is to allow insertions without the
need for control interval or control area splits. Control interval and
control area splits are explained in the following section "Splitting and
Insert Strategies" on page 29.

3.1.1.2 DL/I - ESDS Free Space

Unlike VSAM free space, DL/I free space applies to the data component of
HDAM and HIDAM data bases which are Entry Sequence'Data Sets when the data
bases are implemented with VSAM. Thus, one obtains free space in a KSDS
with VSAM free space and in an ESDS with DL/I free space.

DL/I free space is requested in the FRSPC parameter of the DATASET macro
for DBD generation. The FRSPC parameter is specified as:

FRSPC=(free block frequency factor, free space percentage factor).

The 'frea block: frequency factor' (FBFF) may be specified as '0', the
default, or as an integer from '2' to '100', inclusive. It is not permit
ted to specify '1' as the value of the FBFF. When a nonzero value, 'n', is
given, then every 'n'th control interval in the ESDS.will be left as free
space during data base load or reorganization. If '0' is specified or
allowed to default, then no control intervals will be left free.

The permissible values for 'free space percentage factor' (FSPF) are the
integers from '0' to '99'; '0' is the default value. FSPF specifies the
minimum percentage of each control interval in·the ESDS that is to be left
as free space during data base load or reorganization. There is a case
when less than the specified minimum free space may be allowed during load
or reorganization. This will occur when a segment whose size is such that
the total of the segment size and the free space specification exceeds the
size of the control interval is to be loaded. When loading these 'over
sized' segments, the FSPF is ignored and they are each placed into a
control interval on their own.

24 IMS/VS - VSAM INTERFACE GUIDE

The primary purpose for the use of DL/I free space is to facilitate the
space search process used when inserting segments in HDAM or HIDAM data
bases. This space search process attempts to find space t'O insert a seg
men~ either in the same control interval as the segment preceding it in
hierarchical sequence or in a control interval close to one containing the
hierarchically previous segment. If no space in the same control interval
or in a nearby control interval is available, then the space search proc
ess begins a somewhat lengthy and complex procedure in order to find the
location at which to insert the new segment. DL/I free space uses the FSPF
to reserve space in the control intervals for segment insertion and the
FBFF to ensure that there will be a nearby control interval with space
available.

3.1.2 Control Interval Free Space ~nd FSPF

Native VSAM control interval free space and DL/I free space percentage are
very similar in their function in that they are both intended to allow
inserts with minimal overhead. As long as there is available free space in
the control intervals, new segments may be created without any need for
the additio~al processing of control interval splits or extended space
search. Insertion into free space also avoids lengthy retrieval paths as
the new segments will be placed in logical sequence so that they may he
located more rapidly.

These two forms of free space may therefore be regarded as the first line
of defence against degradation of performance due to high levels of insert
activity. As a result, a certain amount of care and attention should be
given to the use and specification of this level of free space.

3.1.3 Control Area Free Space and FBFF

The VSAM control area free space and DL/I free block frequency are not as
crucial to performance, but are still important. Their functions are not
as closely related as are those of the two other forms of free space. Con
trol area free space is intended to prevent the need for control area
splitting, which in some cases may involve the movement of an half cylin
der of data across a large distance, when no more free control intervals
are available for splitting. The purpose of DL/I free blocks, on the oth
er hand, is simpl~ to leave space near the control interval in which it is
initially desired to place the new segment so that lengthy space search
processing may be avoided.

As these forms of free space are only required when the free space within
loaded control intervals is insufficient or unavailable, a certain degree
of 'guesswork' is acceptable in their specification. However, this level
of free space should not be ignored as its omission may cause sudden,
severe degradation of performance when· the free space in the control
intervals is exhausted.

VSAM functions as related to IMS/VS 25

3.1.4 Guidelines for Use of Free space

Since each installation will have different data base structures and proc
essing profiles, it is not possible to give specific rules and algorithms
for the determination of the amount of free space which should be allo
cated. Therefore, this section is merely intended to make the reader aware
of some of the considerations to be taken into account when specifying
free space.

3.1.4.1 Free Space in KSDS

KSDS free space is applicable to SHISAM data bases, the Primary component
of HISAM data bases and to INDEX data bases. In the case of an INDEX data
base which is used as a Secondary Index and which has nonunique key~, it
applies only to the KSDS portion of the data base. The use of V5AM free
space with these types of data base can be an important factor in perform
ance.

When defining the amount of CI and CA free space for a KSDS, the user
should take into account the fact that too little free space may cause a
large number of control interval and control area splits. This wil! result
in poor performance because:

• CI/CA splits are time consuming since they involve the movement of
data between control intervals and cause index ~odification.

• After a split, the records are no longer physically in sequence which
will cause extra time to be spent in ~equential processing.

• CA splits will increase seek time for direct reque~ts because new CAs
are placed at the end of the data set.

In order to avoid these problems, the user should specify. sufficient free
space to allow for the predicted insert level for the data base. It will
usually be possible to make a fairly good estimate of the insert activity
to be expected in a data base but, if not, then careful monitoring of the
data base in the operational environment will provide the nece~~ary infor
mation on which to base the calculation of free space percentages.

When allocating free space, it is also neces~ary to consider the process
ing mode of the data base. VSAM free space performs its function best for
direct insert requests. If the data base is processed in sequential mode
with mass sequential inserts being done, then free space may be relatively
useless or even harmful. This is because mass sequential insertion pre
serves the free space percentages as specified in the definition of the
cluster. Contiguous records are loaded into a coritrol interval until the
free space threshold is reached, then the next control interval will be
used (no split). This may lead to unwanted free space between contiguous
records.

26 IMS/VS - VSAM INTERFACE GUIDE

There are also some other problems that may result from an overly generous
allocation of free space. These problems are primarily due to the fact
that the records will be spread over a larger amount of DASD space when
imbedded free space is included. This may cause:

• Increased seek time because of the larger number of cylinders occupied
by the data set.

• Slower direct retrieval because of extra index levels resulting fro~
the fact that more index records are needed to reference the same
amount of data when it is spread over a larger number of control
areas.

From the above discussion, it can be seen that selection of the VSAM free
sp~ce percentages is a ~~tter of b~lance. Too little and too much free
space can both have adverse effects on the performance of the data base.
It is, however, possible to monitor the performance of the data bases with
both IMS/VS utilities and the Access Method Services LISTCAT command (ex
amples are shown in "Statistical Information" on page 125). If a large
number of CI and CA splits are occurring, then the free space should be
increased. Should it be found that frequent mass sequential inserts are
being performed or that direct processing is slowed due to extra seek time
or index search, then free space should be decreased.

The free space percentages for VSAM data sets can be easily changed by
making use of the ALTER command of Access Method Services (the newly spec
ified free space value has no effect for the existing data in the data set
but will be used for future sequential insertions). For further informa
tion on ALTER, refer to OS/VSl ACCESS HETHOD SERVICES, GC26-3840 or
OS/VS2 ACCESS METHOD SERVICES, GC26-3841.

VSAM free space definition (for KSDS) is described in section "FREESPACE"
on page 73.

3.1.4.2 Free Space in ESDS

Free space in an ESDS applies only to HDAM data bases and to the Data com
ponent of an HIDAM data base. Although other IMS/VS data base organiza
tions use ESDS, only the Hierarchical Direct organizations may be defined
with the FRSPC parameter to specify DL/I free space.

The basic purpose of free space in HDAM and HIDAM is to allow the space
search process to find space for a new segment close to the segment pre
ceding it in hierarchical sequence. This is intended to keep the physical
storage of the data base in as close to logical sequence as possible.
Thus, DL/I free space should be specified so that it can handle the
expected number of insertions to the data base. The expected insertion
level is usually easily determined by a simple analysis of the applica
tions running against the data base.

VSAM functions as related to IMS/VS 27

If insufficient DL/I free space is allocated, then the following problems
may be expected:

• Long insert times due to the space" search process having to spend a
great deal of time to find the proper location for new segments.

• Poor retrieval performance because of the fragmentation of data base
records across the DASD space, resulting in a large amount of seeking.

• Very slow sequential processing of the data base because of the frag
mentation of data base records and loss of logical sequence.

There are also problem areas that may be encountered when too much free
space has been specified. These problems ar~ more severe in HDAM than in
HIDAM because of the use of the randomizing routine rather than an Index.

For an HIDAM data base, the segments are initially loaded in hierarchical
sequence and the Index points to the location of each root segment. The
HDAM randomizing routine returns a control interval" number and a Root
Anchor Point (RAP) number and it is expected that the root segment should
be placed in that control interval and pointed to by the indicated RAP. If
there is not enough space to insert a root segment into the specified CI,
then it is placed elsewhere, as determined by the space search process,
and the RAP is set to point to the actual location of the segment.

When a small value is specified for FBFF, requesting a high frequency of
free control intervals, it makes it much more likely that root keys will
randomize to a eI which must be left free. Therefore, they must be placed
in another location. If FSPF is high, then fewer segments can be loa~ed
into each control interval leading to the excess segments being spilled
into some other control interval. These displaced segments will take up
space in other CIs and may prevent segments which should be placed in
those CIs from being inserted in their proper location so that they too
are displaced. This displacement will cause other 'collisions' with the
result that, in extreme cases, very few segments will be located in the eI
to which their keys have randomized and the data base records will be bad
ly scattered. Such an effect leads to lengthy insert processing and poor
retrieval times.

The IMS/VS utilities may be used to determine if this situation has arisen
by reporting the frequency with which segments are found out of their
'home' (randomized) CIs. In this case, it may be possible to reduce the
problem by cutting down on the amount of free space specified for the data
base and reloading it.

DL/I free space (for ESDS) specification is described in section "FRSPC"
on page 58.

28 IMS/VS - VSAM INTERFACE GUIDE

3.2 SPLITTING AND INSERT STRATEGIES

Splitting of control inter"als and control areas can only occur in a KSDS.
Therefore, splitting considerations apply only to HISAM, SHISAM, and
INDEX data bases.

3.2.1 Control Interval Spl;tt;ng (D;rect Insert)

If the record to be inserted or to be extended will not fit in the control
interval, a control ;nterval spl;t taxes place as illustrated in the fol
lowing example.

• Assume the following control area contains 3 control intervals.

A free space value has been specified to reserve 33r. of the number of
CIs to be used for later insertions. This results in one free control
interval per CA (33~ of 3 control intervals).

Index
Sequence
Set

logical

records

10

68

unused space

20 30 35 40 47 H cf

75 95 100 125 180 lui cf

free control interval cf

cf = control fields (RDFs,CIDF)
fp = pointer to free CI

HRD = Header information
u = unused space

Figure 15. Control interval split· (1 of 2)

VSAM functions as related to IMS/VS 29

• Now record 25 is to be inserted .. In this exam·ple, the first data con
trol interval is read by VSAM into a VSAM buffer. By examining the
control fields VSAM determines that there is not enough free space
available for this record.

About half of the control interval is moved from this buffer to a sec
ond empty buffer (in OS/VS systems it is already reserved for control
interval split by VSAM). Then the new record is inserted into the
appropriate buffer. If, as in this example, there is an empty control
interval available (at the end of the control area), the second buffer
is written into this empty control inte~val on auxiliary storage.

After this, the physical sequence of control intervuls within the CA
no longer represents the correct sequence of the logical records.
Therefore, the primary index is updated to reflect this condition.

Finally, the first buffer is written back into the old control inter
val on auxiliary storage.

Index
Sequence
Set

logical

records

[I

**~I
cf =

HDR =
u- =
* =

unused space

10 20 25 30

68 75 95 100

35 40 47

control fields (RDFs, CIDF)
Header information
unused space
entry added due to control

free space cf

125 180 lui cf

free space cf

interval split

** = pointer changed due to control interval split

Figure 16. Control interval split (2 of 2)

30 IMS/VS - VSAM INTERFACE GUIDE

3.2.1.1 VSAH Split-In-progress Bit (Flag)

If an abnormal system termination occurred when processing a CI split, an
integrity exposure existed. If the ·termination occurred after the updated
sequence set record had been written and before the old data CI had been
updated duplicate records existed in the data set. A PTF is available that
fixes this problem (this problem is fixed in OS/VS MVS ReI. 3.8).

The solution consists of the following functions:

1. Indicate that a CI split is in progress by implementing a
'Split-In-progress' (SIP) bit (also called CIDFBUSY flag) in the CIDF
of the data CI.

2. Detect an incomplete CI split by always checking the SIP bit for KSDS
read operations.

3. Correct the data records involved in the incomplete split if
necessary.

3.2.1.2 IHS/VS Use of VSAM Split-In-progress Bit (Flag)

The integrity exposure mentioned above was always detected in an IMS/VS
environment. This is because Data Base Baclcout Utility and Emergency
Restart can determine if an INSERT. operation did complete successfully.
This is done by checking the presence of a corresponding log record type
'52' followed by a log record type '50'. Log record '52' is created before
split start, and log record '50' indicates split end.

If the log record '50' is missing, the mes~age DFS964 INSERT FAILED ON
PRIOR UPDATE. RECOVERY REQUIRED FOR DATA BASE bbbbbbbb is issued. A Data
Base Recovery would be performed followed by a Data Base Backout
operation.

With the implementation of the SIP bit there is no need for a Data Base
Recovery operation and the message mentioned above is no longer issued.
Data Base Backout Utility and Emergency Restart, when discovering that a
log record '52' is not followed by a co~re~ponding log record '50', will
ask for the inserted segment by key. If not found, a new Buffer Handler
call (READ BACKWARD) is issued. These requests will force VSAM to check
the SIP bit in the CIDF.

If a 'Split-In-Progress' condition exists, VSAM will complete the eI split
before returning control to the Data Base Backout Utility or Emergency
Restart. Note that this only involves removing inconsistencies between
data and index. VSAM cannot insert the record which initiated the split if
the I/O to write it to DASD was not completea before the interrupt.

VSAM functions as related to IMS/VS 31

3.2.2 Control Area Solittinq

If there is no free control interval in the control area~ the record is
not inserted until a control area split took place to provide free control
intervals. VSAM obtains a new empty control area from the end,of the data
set.

When the control interval/control area split was initiated by direct
insert the whole control area is split by reading about half of the con
tr~l area into virtual storage and writing it back to auxiliary storage
into the new control area.

When the control interval/control area split was initiated by scquenti~l
insert the control area is split at the point the control interval is to
be inserted.

3.2.3 Insert strategies Effect on splitting

The control interval split as described in the previous section will be
performed in two different ways depending upon the insert strategy chosen.
There are two possible insert strategies that may be used: direct and
sequential.

For IMS/VS data bases~ the choice of insert strategy is made by using the
INSERT parameter on the OPTIONS statement as explained in section "OPTIONS
Statement" on page 80.

Direct insertion implies that a single record is to be inserted at some
random location in the data set.

Sequential insertion is intended for inserting a large number of records,
in key sequence, at some location in the data set. This form of insertion
is also known as mass insert.

32 IMS/VS - VSAM INTERFACE GUIDE

3.2.3.1 Direct Insertion with Split

When making inserts in direct mode and a split is necessary, the CI is
split on a record bounda~y at the ~id?oint and approximately half of the
records are moved to a new control interval. This is the case described
above in "Control Interval Splitting (Direct Insert)" on page 29 and is
the standard method of insertion and splitting.

Figure 17 shows the result of inserting three records at the same location
in a control interval using the direct insertion technique.

, 0 20 30 35 40 47 lui cf I
Control Interval Before Splitting

10 20 30 Free I cf

35 40 42 43 44 47 H cf

Control Interval After Direct Split

u = unused space

Figure 17. Direct Mode Insert Control Interval Split: Records 42,
43 and 44 are inserted into the control interval.

Direct insertion is highly suitable to random insert of records as, imme
diately following the CI split, each CI will have roughly 50% free space
available for further insertions. This prevents the CI from having to be
spli t again and again as new records are introduced into it. With
genuinely random distribution of new records, this mode of processing is
the most logical and serves its purpose very well.

However, in looking at Figure 17, it is apparent that if record 45 were
now inserted another CI split would occur. Should a large number of
records be inserted in sequence at this point in the data set, direct mode
insertion ~ill result in a eI split for every 4 records that are inserted.
This is because 3 records from the old CI are carried forward to the new CI
with each split due ·to splitting at the midpoint. Direct mode insert is
therefore not very appropriate when mass inserts are being performed.

VSAM functions as related to IMS/VS 33

3.2.3.2 Sequential Insertion with Split

For mass inserts, the sequential insert technique is the best method. In
sequential insert mode, the CI split occurs at the point of insertion and
only those records following the one inserted are moved into the new con
trol interval. The purpose of this is to allow a greater amount of free
space at the insert position so that more records can be acc~pted before
another CI split becomes necessary.

figure 18 shows the effect of inserting a group of records into a partic
ular position in the data set with sequential insert.

10 20 30 35 40

Control Interval Before Splitting

10 20 30 35 40 Free cf

42 43 44 47 Free cf

Control Interval After Sequential Split

u = unused space

figure 18. Sequential Mode Insert Control Interval Split: Records
42, 43 and 44 are inserted into the control inter·:~l.

The effect of sequential mode insert is very different fro~ that of direct
mode. For instance, in Figure 18 it can be seen that if record 45 were to
be inserted no eI split would be necessary. Spould insertion continue at
this point, a CI split will occur after each\6th record inserted rather
than after each 3rd as was the case for direct insert. Sequential mode is
thus much more suitable to the insertion of blocks of records than is
direct mode.

On the other hand, if random inserts are performed using sequential mode
insertion, then the incidence of CI splits may increase. This is because
the free space remaining in each CI after split is not equally distributed
across the two CIs as it is with direct insert. One of the control inter
vals could be left with little or no free space following the split caus
ing it to split again as soon as another insert into it is attempted. In
extreme cases, this situation could lead to a CI split occurring for near
ly every insertion.

34 IMS/VS - VSAM INTERFACE GUIDE

3.3 CONT~OL INTERVAL SIZES

3.3.1 Data CI S;z~

Several factors are important when choosing the best Data CI size:

• Direct processing: if direct processing is the predominant manner of
accessing the data, then a choice of a small data CI is preferable. In
general, select the smallest data eI that yields a reasonable space
utilization. Normally 1024 or 2048 byte CIs are good, but on a device
with large cylinder and track capacities like the IBM·3350 device, the
index CI size will be 4 K when using 1 K data CIs.

• Sequ~ntial proce~sing: if the processing is predominantly
sequential, even larger data CIs may be a good choice.

3.3.1.1 DASD Uti1;zation

A given logical record size may fit some CI sizes better than others. Gen
erally, large CI sizes provide better fits. Also some CI sizes fit a track
of a given device better than others.

Each control interval is divided into one or more fixed length physical
records and V5AM determines their size based on the control interval size
and the device characteristics. This physical record is dependent on the
control interval size and the device type and is only a consideration when
mapping control intervals to the storage device. A physical record is that
record seen on the disk and its size is equal to the control interval
wherever possible.

The physical record sizes are:

512, 1024, 2048 and 4096 by tee.

Each control interval is automatically divided by VSAM into an integral
number of physical blocks (e.g. eI = 512 results in physical block = 512,
eI = 1536 results in physical block = 512, so 3 blocks are needed to hold
one CI; CI = 61 44 results in physical block = 2048, so 3 blocks are
needed). By defining the CI size for a data set stored on a specific type
of direct access device, the user implicitly chooses the physical record
size.

Figure 19 on page 36 shows the relationship between user defined control
interval size and V5AM chosen physical record size. In this example it is
assumed the control interval size is 8K. As a control interval must be
stored in an integral number of physical records the next lower value is
4K. So V5AM chooses 4K as physical record size for the 3330. Note that a
logical record may span several physical records, but a physical record
cannot span 2 tracks.

V5AM functions as related to IMS/VS 35

CI 1 CI 2

LR 1 I LR 21 LR 31 LR 41 fSIC LR 51 LR 6-' LR 71 LR 81 fSIC

P1
I

P2 P3 P4

Track 1 Track 2

C = Control Fields (RDFs,CIDF) CI = Control Interval
fs = free space LR = Logical Recoxd

P = Physical Recoxd

Figure 1 9. Logical to physical recoxds xelationship

The following figure shows the numbex of physical records per track:

Device characteristics Nu~ber of physical records/track
Device Trk/cyl cyl/Vol 512 1024 2048 4096

3330-1 1 9 404 20 11 6 3
3330-11 1 9 '808 20 11 6 3
3350 30 555 ,27 15 8 4

Figure 20. DASD track capabilities

For example, on an IBM 3350 track a 512 byte CI yields a potential 13824
bytes (27 CIs) (see Figure 20), which is 84" of VSAM-usable space per
track whereas a 4096 byte CI yields 16384 bytes (4 CIs) of data on a IBM
3350 track, which is 100" of VSAM-usable space. Assuming a 80 byte record;
in one case there would be 162 records per track and in the other case
there would be 204 recoxds per track.

3.3.2 Index CI Size

3.3.2.1 Relation of Index CI Size to Data CA Size

If no-index CI value is defined for a KSDS data set (which is suggested)
VSAM calculates the INDEX CI size based on the number of data CIs/CA and
an estimated key compression value. The VSAM chosen index CI size may be
checked using the LISTCAT command (see "INDEX Component Attributes" on
page 130). The user may, however, define an index CI up ,to 4096. This
large CI size may help to have fewe~ index levels, as the highest level
index CI can hold a maximum of about 502 entries.

36 IMS/VS - VSAM INTERFACE GUIDE

An index control interval may hold the following number of entries (8
bytes/entry based on normal key compression (see end of section "Key Com
pression" on page 43):

eI S;ze
512

1024
2048
4096

Number of entr;es
58

121
248
502

Figure 21. Average number of entries per INDEX CI

The size of an index CI also affects the replication factor (when REPLI
CATION or IMBED is used) and thus affects performance. Figure 20 on page
36 shows that a CI with a size of 512 bytes may be repeated 27 times on a
3350 track while a CI with a size of 4096 bytes may only be repeated 4
times. Therefore, the wait time to access a 512 byte CI is shorter than
that of a CI with a size of 4096 bytes. For further discussion of REPLI
CATION and IMBED see "IMBED, REPLICATE" on page 76.

3~3.2.2 Problems of Incorrect Data CA Sizes / Index CI Sizes

If you specify an index CI size which is too small to hold all necessary
entries for all CIs of one CA, the CA's are never filled to their maximum.
In general it is better to let VSAM choose the index CI size. After
DEFINE, a LISTCAT command can be issued and the entries be checked to
redefine the cluster with a different data CA size if the index record is
too big (see "Statistical Information" on page 125).

3.4 VSAM BUFFERS AND BOFFER POOLS

3.4.1 VSAM Buffer Use

Nonshared resource~ is the standard usage of VSAM buffers for one data set
only. VSAM buffers are used by VSAM to read/write CIs from/to DASD. To
increase performance, there are parameters (three for KSDS and two for
ESDS and RRDS), to ove~ride the VSAM default values:

BUFNI
BUFND
BUFSP

number of index buffers (default 1) (KSDSonly)
number of data buffers (default 2)
amount of virtual storage to be reserved for VSAM buffers, when
opening the data set (default = 2 data buffer and 1 index buffer)

BUFND and BUFNI are ACB parameters (ACB macros are used in Assembler pro
grams) and, in OS/VS systems, are also JCL parameters. BUFSP is a DEFINE,
ACB and JCL parameter. Any combination greater than the default of BUFNI
and BUFND can be used.

VSAM functions as related to IMS/VS 37

If one of the parameters is specified in the ACB macro instruction (in the
user program) this. value overrides the default values, or in case of BUFSP
the DEFINE value, even if it is a smaller valu~. If a parameter is speci
fied in JCL, this value overrides any previous specification of this
parameter (ACB or DEFINE). A detailed description of VSAM buffer usage is
included in OS/VS VSAM SHARING, G320-601S.

3.4.1.1 Data Buffers

To calculate the number of dat~ buffers, the number of strings (STRNO)
used must be determined. A string is a request to a VSAM data set requir
ing data set positioning. VSAM stores (e.g. for a sequential access) the
information about which record.has been accessed. If different concurrent
accesses to the same data set are necessary multiple strings are used.
Multiple strings allow, for example, access to-the data set directly with
one string ,and sequentially with the second string. For each string there
must be at least one buffer.

UsuallY the user defines the amount of strings he intends to use in his
program (ACB STRNO=x). But when all strings are active and there is anoth
er request waiting, a new string is built dynamically. Dynamic string
addition does not apply to shared resources as used in CICS and IMS. The
string is not erased, when it is not used any more, but it can be reused
for the next request.

The minimum number of data buffers is two (t per string + , for splits). It
is very important to know that the OS/VS user can use onl~ one of these two
data buffers. One data buffer is always reserved by VSAM for splits. If 4
data buffers should be used, 5 must be specified.

3.4.1.2 Index Buffers

The minimum number of index buffers is one. It may be advisable to have
more index buffers for extensive index operations (direct). If multiple
strings are used, the minimum needed is one index buffer per string.

Generally, the more index buffers, the better performance that can be
obtained. Data buffers are not important for direct access, because only
one is used for each access. As there is always a top down search through
the index, at least two index buffers should be specified, to hold the
highest index CI in the buffer. If more than one index buffer is
specified, the additional buffers can hold index set CIs but only one
index buffer is used for the index sequence set per string.

If too few index buffers are specified, the result may be poor
performance, as extensive EXCPs may have to be issued. If there are three
index levels and only one index buffer, three index EXCPs are necessary to
find the pointer to the correct data CI.

38 IMS/VS - VSAM INTERFACE GUIDE

suggested number of buffers:

BUFNI: minimum = no. of index levels * STRNO (default = 1)
maximum = (no. of records (Cl's) in index set + 1) * STRNO

BUFNO: default = 2 (STRNO value + , for splits) (STRNO default is l'

General suggestion: Many data buffer for sequential processing and many
index buffers for direct processing.

3.4.2 Buffer Pools

The DL/I buffering services are controlled by three pools of control block
and buffers:

1. the OSAM buffer pool
2. the DL/I buffer handler pool
3. the VSAM buffer pool

The DL/I buffering services are the interface between the DL/I action mod
ules (for example, Retrieve, Delete, Insert) and the data management
access methods (VSAM and OSAM). Whenever an action module needs to inspect
or change data in a data base, buffering services are called to perform
whatever physical reading or writing is required. A separate pool of buff
ers is allocated for each type of data base: VSAM and OSAM. Data bases
that use the VSAM access method share the use o~ buffers in the VSI.M
shared resource pool. Data bases that use the OSAM access method share the
use of buffers in the OSAH buffer pool. The OL/I buffer h~ndler pool is
the focal point for recording buffering services activity. The DL/l buffer
handler pool and the OSAM buffer pool are further described in IHS/VS VER
SION 1 PRIMER, SH20-9145 in chapter 7 'Installing IMS/VS '.

The requirement for a resource pool is generally associatedwit~ a pr?gram
having access to a large number of data sets OPENed concurrently. The
environment of such a program creates a heavy, but varying, demand of data
from external storage. DB/DC systems such as IMS/VS and ClCS/VS, are typi
cal environments for use of a shared resource pool.

The concept of the buffer pool allows blocxs of data to remain in main
storage as long as possible, in order to avoid secondary storage reads and
writes. Data in the buffer pool can be accessed and updated without caus
ing I/O operations as long as there is no need to reuse the buffer space
the data occupies. A use chain determines the order in which the buffers
are used. Empty buffers are placed at the bottom of the use chain and are
always available for reuse.

As buffers are accessed they are placed at the top of the use chain. When a
retrieve request occurs, the buffer pool is searched using the use chain,
to determine if the requested data is already in main storage. If the data
is not found, the least recently· used buffer (bottom of the use chain) is
selected, the old data is written out if it has been changed and the
requested data is read into the selected buffer. The buffers are pooled
according·to CI size instead of usage (e.g. data or index).

VSAM functions as related to IMS/VS 39

3.4.2.1 VSAM Shared Resources

This feature provides the user with a way of sharing the VSAM I/O related
control blocks, buffers~ and channel programs stor~ge among many VSAM data
sets. This is contrasted to the way in which these resources are managed
by data set in Nonshared Resources (NSR). The IMS/VS community often
refers to NSR as 'native VSAM'. With NSR, storage for I/O operations is
allocated to a particular data set. There~ore, with NSR, an I/O buffer can
only be used for transfer of data to and from a single data set.

With NSR, a Sequence Set record cannot be shared among multiple concurrent
requests, each has his own copy. Also, the data buffer would only be
reused if the subsequent request was assigned the same PLH (Placeholder)
as the previous request to the same data control interval, and this only
happens if the buffer is still valid. In multi-string processing with NSR,
it is highly improbable that a data buffer will be reused and additional
physical I/O would be scheduled. This I/O could be eliminated by using
Shared Resources.

In Shared Resources (Local Shared Resources (LSR) and Global Shared
Resources (GSR», this same buffer can contain data from data set 'A' at
one .time and subsequently this same buffer can be used for transfer of
data to and from data set 'B'. The same technique applies to stozage allo
cated for I/O related control block~.

Th-e storage for resource sharing can be acquired for use by a single par
titi?n or address space. This is referred to as Local Shared Resourc~s
(LSRl and can be specified for all OS/VS Operating Systems. The LSR buff
er pool can be shared by all VSAM data sets within that partition/address
space(region) .

In MVS only, common storage can be acquiz:ed which allows all address
spaces to share one resource pool. This is referred as Globa 1 Shared
Resources (GSR). In an MVS system, a single address space can have both a
global and a local resource pool and tasks. may use either pool for
resources. However, a data set must be specified to get its resources from
only one of the pools.

3.4.2.2 IMS/VS usage of VSAM Shared Resources

With the exception of Fast Path data bases, IMS/VS uses VSAt-1 Shared
Resources for online data base processing, and provides complete integri
ty support for all data base users within that control block and buffer
structure. For Fast Path, IMS/VS uses a VSAM facility called 'Control
Blocks in Common' (see OS/VS VSAH OPTIONS FOR ADVANCED APPLICA'rIONS,
GC26-3819), which provides a system-wide set of control blocks even though
the VSAM processing is Nonshared Resources.

Message and batch message regions will be able to 'share' the same data
base with full integrity, but equivalent 'sharing' between batch regions
or between batch and online is not supported, regardless of whether the

40 IMS/VS - VSAM INTERFACE GUIDE

batch users are IMS/VS or nonIMS/VS. The official method for bringing
batch work into the IMS/VS integrity scheme is by running batch applic~
tions as batch message regions.

DL/I maintains statistics on buffer pool utilization and access method
requests. These statistics can be used to determine the optimum buffer
pool sizes for a job. The buffer pool statistics are described in "Data
Base Statistics" on page 133.

The following is a summary chart to show which type of VSAM
Shared/Nonshared Resources is used by IMS/VS.

GSR (one only)
MVS

ONLINE LSR

VSl LSR

USER LSR

DB RECOVERY:
- IMAGE COpy alone NSR
- IMAGE COPY with CHANGE ACCUM. TAPE NSR
- CHANGE ACCUMULATION TAPE alone LSR
- LOG TAPE LSR

IMAGE COPY NSR
BATCH

Other UTILITIES LSR

SHISAM NSR
USER
INITIAL ESDS LSR
LOAD HISAM
PROGRAM KSDS NSR

Others 1 LSR

GSR/LSR/NSR = Global Shared / Local Shared / Nonshared Resources

Figure 22. IMS/VS usage of VSAM Shared/Nonshared Resources

The data set related buffer options (BUFS?, BUFND, BUFNI, see "VSAM Buffer
Use" on page 37) are only in effect when IMS/VS uses the NSR buffer man
agement technique. These specifications are iano~ed by VSAM OPEN when a
data set is directed to the pool (LSR/GSR) for these resources.

1 including INDEXES (primary and secondary)

VSAM functions as related to IMS/VS 41

3.4.2.3 Relation of CI Sizes to IHS/VS Buffer Sizes

The following Shared Resource Pool buffer sizes can be specified in bytes:

512 1024 2048 4096 8092 12288 16184 20480 24576 2£672 32368

A maximum of 255 buffers per size may be specified.

The ml.nl.mum number of buffers is 3 for HDAM load and HDAM/HI~AM processing
(one PCB), or 4 for HISAM/HIDAM load and 'HISAM processing (one PCB).

The Resource Pool buffer size specifications are directly related to the
VSAM CI size used in the data sets sharing the pool. When using 4096 bytes
CI size, buffers with a size of 4096 (or larger) are to be specified.

For any CI size different from the possible buffer pools sizes' the next
larger size must be specified; i.e. if a CI size of 6144 bytes is used,
buffers with 8192 bytes must be specified, even when the 2048 excess bytes
in the buffer are not used. Therefore, it is advis"ble when using Sh"red
Resources to specify CI sizes which correspond to the allowed buffer pool
sizes.

3.4.2.4 Buffer Allocation Considerations

There is no generalized number of how many buffers should be s~ecified,
since there are many aspects to consider, e. g. how many concurrent
requests will be active against the entire pool at the peak period, or
what are the limits of the main storage to be used for the pool.

One general rule, however, should be considered:

Keep control interval sizes consistent within index components and con
trol interval sizes consistent within data components, but different from
index cc~pon~nts.

When following this rule, index control interval buffers are not reuzed
when extra data buffers are needed. The probability is much higher that an
index control interval can satisfy multiple requests than that of a data
control interval. It would, therefore, be a better use of syste~ resources
to allocate more real storage for index buffers than for data. Again, this
can only be accomplished by controlling the control in~erval size(s) of
the data set componentCs) ..

Further detailed information is included in OS/VS VSAM SHARING,
G320-601S.

42 IMS/VS - VSAM INTERFACE GUIDE

3.5 KEY COMPRESSION

As described in section "KSDS" on page 9 the index set contains an entry
for each index record on the next lower level and the index sequence sot
contains an entry for each data CI of a KSDS. Each entry consists of the
highest key in that CI and an RBA offse~. To shorten the size of the index
entry, the keys are conpressed by VSAM routines. This is called key
co~~ression. The key compression uses front key cc~~racsicn and re~r key
compression. The following examples show key compression in the sequence
set.

3.5.1 How Compression Works

Assuming the following CIs exist in a cluster:

CI 1 10001 I 10002 10003 10009

CI 2 10052 I 10060 10070 10080

CI 3 10222 I 10250 10300 10333

CI 4 14021 I 14023 14024 14028

Figure 23.· Key compression (1 of 5)

For front key corn~ression the highest key of the CI is compared to the
highest key preceding it in the index, and all identical values starting
from the left are compressed:

Full key

00000
10009

10009
10080

10080
10333

10333
14028

Front compressed key

(lowest possible ke~,)

10009

===80

==333

=4028

Figure 24. Key compression (2 of 5)

VSAM functions as related to IMS/VS 43

Exceptions to the' front key compression rule:

1. The key in the first entry in an index record is not front compressed.
2. The highest key in an index record section (a subdivision of an index

record) is compared with the highest.key in the preceding section to
allow a 'binary search' in the index record.

3. The index entry to the right of the first section pointer is not front
compressed.

For rear key compression the highest key of the CI is compared with the
lowest key of the next CI, and so on. The characters to the right of the
first unequal character are eliminated:

Full Icey Rear compressed key

\
10009 1000-
10052

10080 100--
10222

10333 10---
14021

14028 14028

figure 25. Key compression (3 of 5)

VSAM uses both types of compression. To indicate how many bytes are com
pressed and how large the compressed key is, two one byte fields are used.
The 'f' field contains the number of front key compressed bytes. The 'L'
field contains the residual key length.

Combining front and rear key compression the compressed keys and their F+L
fields are as follows C':' is front and ,-, is rear key compression):

eI No. Full key Full compressad key F L

CI 10009 1000- o 4

CI 2 10080 ===-- 3 0

CI 3 10333 ==--- 2 0

CI 4 14028 =4028 4

Figure 26. Key compression (4 ,~f 5)

44 IMS/VS - VSAM INTERfACE GUIDE

VSAM reconstructs a compressed key as follows:

1. Front compressed values are taken from the previous uncompressed key.

2. Rear compressed values are substituted by X'FF'.

The previously compressed keys would then be reconstructed as follows ('f'
represents the hex value X'FF'):

eI No. Full key Full compressed key F L reconstructed key

CI 10009 1000- 0 4 1000f

CI 2 10080 ----- 3 0 100ff

CI 3 10333 ==--- 2 0 10fff

CI 4 14028 =4028 4 14028

Figure 27. Key compression (5 of 5)

Due to rear key compression the reconstructed key shows the potential
highest key that could be placed in the CI and not the actual highest key
currently stored in the CI.

Based on the key compression, VSAM determines, into which CI a new record
has to be inserted. A record with the value 10088 would be inserted into
CI 2 since the value is lower than 100ff (f=X'FF'). A record with the val
ue of 10100 would be inserted into CI 3.

Single field keys do compress well. There is a great chance that larger
keys (20-30 bytes) compress out to 8 or 9 bytes including control informa
tion. Smaller keys (5-15 bytes) may compress to 3 to 5 bytes.

Assuming a key would compress to 3 bytes then an index entry would have a
length of 6 to 8 bytes which consists of the following:

• 1-3 bytes pointer to CI. The length of the pointer depends on the num
ber of CIs to be referenced in that index record:

byte = less than 256
256 to 65535 2 bytes =

3 bytes = 65536 or more

• byte 'F' (number of front key compressed bytes)

• byte 'L' (residual key length)

• 3 bytes compressed key

VSAM functions as related to IMS/VS 45

3.5.1.1 Problems with Poor compression

When keys do not compress well, each index entry is larger with the result
that fewer entries can be placed in each index control interval. This
means that the sequence set records canno~ point to as many data CIs and
that each index set record will govern fewer lower level index records.

It may be found that when loading records into the data set, the sequence
set record will become full before all of the CIs in the corresponding
control area have been loaded. When this occurs, VSAM cannot continue to
load records into this CA and has to begin loading a new CA with a new
sequence set record. Tha data set will th~n cont~in a nunbnr of CIs in
€~Ch CA which c~nnot be u~cd in ~ny w~y. This means that a certain por
centage of the DASD space occupied by the data set is effectively wasted
and the data set may go into a secondary extent sooner than is exp~cted.

To determine whether one is experiencing bad compression, one CArs worth
of records should be loaded and then the data set's catalog infornation
listed. If it is found that more than one CA and one index record have been
used then bad compression is ~asting space in the data set.

Another difficulty with poor compression is that since the high level
index records can only control a small number of lower level records, the
index may have to contain more levels than it would ordinarily. This will
have an adverse impact on ra~dom processing of the data set as there will
be more index levels through which the search must pass.

These problems may be addressed in several ways:

• increase the size of the index control intervals in order to allow for
the bad compression

• increase the data control interval size to reduce the number of CIs
per CA (therefore less index entries)

• redesigne the keys so that they will compress properly

Increasing the size of the index control intervals will cause a greater
demand for buffer space and make it more difficult to allocate sufficient
buffers to achieve good performance. On the other hand, it may not be pos
sible to alter the key structure without making large scale changes in the
applications. If possible, it is probably better to change the key rather
than to increase the index CI size because of the impact of CI size on per
formance.

46 IMS/VS - VSAM INTERFACE GUIDE

3.5.1.2 Characteristics of Keys That Do Not Compress Well

Since bad key compression can cause severe difficulties, users of VSAM
should be aware of the characteristics of keys that compress badly so that
these problems can be avoided at the design stage. In general, keys do
compress nicely if the high order portion of th~ key is very stable so
that many keys have the same leading characters and the low order portion
of the key changes frequently so that there are large differences in the
rightmost characters.

Poor key compression will occur if the keys have some combination of the
following characteristics:

• Keys are made up of multiple contiguous fields.

• Changes occur in the high and low parts of the key but not in the mid
dle. The worst case is for a mUltiple ,key field with changes in the
high order portion of the first field and the low order portion of the
last field.

• The keys fall into groups where the number of keys in a group is less
than the number of records in a data CI. This means that the high keys
in each data CI will not have the same leading characters and front
compression will be almost nonexistent.

• The last field of the key is long and very dense so that it does not
change to a very great extent. Since rear compression is best when
there are large differences in the low order part of the keys, this
will lead to very little rear compression being done.

As an example of a key that compresses badly consider:

NNNxxxxxxxxxxSS

NNN is a field which changes every 4 or 5 records and there are more
than 5 records in each CI.

xxxxxxxxxx is a field which does not change or changes very rarely.

SS is a field which changes for every record but cycles within the
changes of the NHN field.

If NNN were to change every 20 25 records then compression would
improve. It would also be better if S5 seldom changed or continued to
change but was placed next to NNN so that the key structure would be:
NNNSSxxxxXXXXXX.

Note that VSAM determines the index CI size at DEFINE time while key com~
pression takes place at LOAD time. Therefore, VSAM is not able to calcu
late the optimum index eI size.

VSAM functions as related to IMS/VS 47

· 3.5.1.3 criteria for Key selection

There are three basic criteria to be observed when selecting keys:

1. Keys must be unique over the entire data set.

2. Avoid keys which will not compress well.

3. Avoid keys which may lead to crawling (see description in section
"Crawling" on page 102).

The best key is a single field which is unique in each record ~nd whose
values are randomly distributed. Often, however, this kind of key cannot
be found or is not feasible as a search argument for the applications.

Keys may have to be constructed from multiple contiguous fields in order
to achieve uniqueness or in order to meet the needs of the applications.
In this case the user should try to set up the key so that its high order
portions are the most stable and its low order portions are volatile so
that it will compress properly.

If a date is to be used as part of the key, it is best to store the date in
the form, YY/~M/DD, to assist compression.

48 IMS/VS - VSAM INTERFACE GUIDE

4.0 R~LATIONSHIP OF IMS/VS ANn VSAM PA~AM~TERS

There are many parameters in the definition of IMS/VS data bases and VSAM
clusters which either require corresponding specification or affect the
performance of the system.

This chapter is intended to point out those cases where there exists a
correspondence between DBD generation and Cluster definition and also to
highlight those parameters which are performance oriented.

4.1 DATA BASE DEF!NITION PAR~METE~S

This section is concerned with the VSAM-related para~eters of the DBD
specification. Not all of the parameters of the Data Base Definition are
covered because the discussion is restricted to those parameters which
either require VSAM or hnve an effect on the definition of the VSAM clus
ters which will comprise the data base.

The parameters which are treated are not always dealt with in full detail
since the objective is to cover only the VSAM-related'aspects of the DBD
generation.

For a complete descrip~ion or all of the parameters used in DBD generation
the reader should refer to the IHS/VS UTILITIES R~FEREHCE MANUAL,
SH20-9029 •.

4.1.1 ono Macro

The following parameters are part of the specification of the Dno macro
which is the first macro used in the DBD generation.

ACCESS=(OL/! access mothod, operating system access mothodl .
RMNAME=(module na~~,anchor points,maximu~ block numbar,bytes).
PASSWD=YES or PASSWO=NO.

Figure 28. DBD macro parameter summary

Relationship of IMS/VS and VSAM Parameters 49

4.1.1.1 ACCESS

The format of this parameter is:

ACCESS=(DL/I access method, operating system access method)

The 'DL/I access methods' which may be specified are: HSAM, S~SAM, HISAM,
SHISAM, HDAM, HIDAM, GSAM, INDEX, LOGICAL, MSDB and DEDB.

No'operating System access method' may be specified when the DL/I access
method is either HSAM, SHSAM, LOGICAL, MSDB or DEDB. With the release of
IMS/VS 1.1.1, VSAM was mad~ the default 'Operating System accass method'
for the following. DL/I access methods: HISAM, HDAM, HIDAM and GSAM. Thus,
unless some other access method is explicitly requested, VSAM will be
assumed for these four DL/I organizations.

For SHISAM and Secondary Index INDEX data bases it is required that VSAM
~e the 'operating System accass method'. Any other specification with
SHISAM or secondary index INDEX data bases is invalid.

DB-TYPE DEFAULT ALTERNATE COtm~NTS

HSAM none N/A No choice allowed

SHSAM none N/A No choice allowed

HISAM VSAM ISAM

SHISAM VSAM invalid VSAM is required

HDAM VSAM OSAM

HIOAM VSAM OSAM

LOGICAL none N/A Not used for Logical

GSAM VSAM BSAM

MSDB none N/A Not used for MSDB

DEDB none N/A Not used for DEDB

INDEX VSAM ISAM Applies to primary
Primary index of HIDAM DB

INDEX VSAM invalid VSAM required for
Secondary secondary indices

Figure 29. DL/I Organizations and Operating System Access
Methods: The column headed ALTERNATE indicates the
alternative Operating System access method that may be
used if the default is not desired.

50 IMS/VS - VSAM INTERFACE GUIDE

4.1.1.2 RMNAME

The Rr.NAME para~eter is only valid when specified for HDAM or DEDB dat~

b~ses. Therefore, the only circumst~nces when this para~cter will have
any effect on VSAM is when it applies to a HDAM data base using VSAM as the
Operating System access method. The parameter is specified as:

Rr:NAME=(~odule n~~a,anchor points,m3xinu~ block nu~b~r,bytes).

The '~ocule n~~e' subparameter specifies the n~me of the user-supplied
randomizing module used to store and access root segments in- the data
base.

The '~nchor po i nts' subparameter determines the number of root anchor
points to be allowed in each control interval of the root addressable are~
of the HDAM d~ta base. This specification affects the definition of the
VSAM cluster since each anchor point will occupy four bytes in the control
interval. This fact must be taken into account when determining the size
of the control intervals to be used for the data base.

The 'maximum block number' subparameter specifies the size of the root
addressable area for the HDAM data base. For VSAM, this value specifies
the number of control intervals to be allocated to the root addzessable
area. It must be kept in mind that this is not the total number of control
intervals in the data base. It applies only to the root addressable por
tion of the data base and it is still necessary to determine the space
required f~r the overf low portion of the data base ..

The 'bytes' subparameter has no special effect in regard to VSAM. It spec
ifies the maximum number of bytes of a data base record that can be placed
into the root addressable area with an unbroken series of insert calls.

4.1.1.3 PASSWD=YES

This parameter is only available for use with VSAM data bases and is
invalid if used for data bases whose Operating System access method is
ISAM, OSAM or BSAM.

The format of the PASSWD parameter is:

PASSWD=YES or PASSWD=NO.

The default value for this parameter is NO.

If PASSWD=VES is specified, then the Master- or Control-level password of
the corresponding VSAM cluster(s) must be the same as the name of the DBn.
The DBD name is specified as 1 to 8 alphameric characters with the NAME
parameter of the DBD macro.

Relationship of IMS/VS and VSAM Parameters 51

An explanation of the meaning, usage and definition of the various levels
of VSAM passwords is given later in "Password Specification" on page 66.

In the IMS/VS DB/DC (online) environm~nt, all OPENs for VSAM clusters will
bypass password checking. This avoids the necessity of prompting the oper

'ator to supply the password.

For a DB-only (batch) system, VSAM password ~hecking will be done. The
operator will only be prompted to supply the password if PASSWO=NO has
been specified and the VSAM clusterCs) are password-protected with pass
words which are not the same as the DBD name.

If PASSWO=YES has been specified and the VSAM passwords are not the same
as the DBD name, then a VSAM OPEN error will occur and the data base will
not be opened.

The intended purpose of this parameter is to prevent accidental access of
the IMS/VS data bases by nonIMS/VS programs. It is recommended that this
facility be used to supply this protection.

4.1.2 DATASET Macro

The DATASET macro is used to describe the data sets that comprise the data
base. This macro has several parameters which relate directly to the defi
nition of the VSAM clusters and it is therefore very important that the
user be aware of these relationships.

DD1=DD-name
OVFLW=DD-name
BLOCK=(blccking factor 1, blocking factor 2)
BLOCK=size
RECORD=(record length 1, record length 2)
SIZE=(size 1, size 2)
FRSPC=CFree Block Frequency Factor,Free space Percentass Factor)
RECFM=FIFBIVIVB
UOW=(number 1, overflow 1)
ROOT=(number 1, overflow 1)

Figure 30. DATASET macro parameter summary

52 IMS/VS - VSAM INTERFACE GUIDE

4.1.2.1 DD1

The ~D1 parameter specifies the 1- to a-character DO-name which will be
used in the JeL to reference the data set described by this macro. The
format of the 001 parameter is as follows:

DD1=DD-name

For VSAM data sets the format of the 00 statement should be:

//DD-name DD DSN=cluste~name,DISP=SHR.

'DD-nama' must be the same name as specified for the value of the DDl
parameter of the DATASET macro.

'cluste~name' is the name of the VSAM cluster as specified in the cluster
definition. The 001 parameter and the JeL DO-statement form the linkage
between the

l
data base and the VSAM cluster. This is the only means of

relating the data base to the VSAM cluster.

4.1.2.2 OVFLW

The only cases in which the OVFLW.parameter should be used with VSAM data
bases is when the data base is either HISAM with more than 1 segment type
or it is an INDEX data base for a secondary index using nonunique xeys.
Other than these two cases the use of OVFLW is invalid for VSAM data
bases.

The format of the OVFLW parameter is as follows:

OVFLW=DD-name

This parameter is similar to the DDI parameter. The value of 'DO-name' is
also a 1- to a-character name and the format of the referenced
DO-statement is the same as that shown above for 001. It is used to refer
ence the VSAM ESDS cluster used as the overflow component of the data
base.

4.1.2.3 BLOCK, RECORD and SIZE

These three p~rameters of the DATASET macro are used to specify the size
of OASD storage units to be used for the data base. In the case of VSAM
data bases, these DASO storage units are Control Intervals and the spec
ification must correspond to the Control Interval size defined for the
VSAM cluster. There are no specific default values for these parameters.
If no values are given for these parameters, then DBD generation will cal
CUlate the values to be used.

Relationship of IMS/VS and VSAM Parameters 53

The BLOCK parameter is used either to specify the blocking factors or to
specify the block size directly. The ~ECORD parameter defines the record
sizes in the data base. The SIZE parameter is used to override t~e compu
tation that is performed by DBD generation by directly indicating the co~
trol interval size that is to be used.

There are two formats which may be used for the BLOCK parameter:

BLOCK=(blocking factor 1, blocking factor 2)
BLOCK=size

The 'blocking factors' indicate the number of records to be included in
each unit of DASD storage. Depending upon the data base organization used,
'blocking factor l' and 'blocking factor 2' will have different areas of
applicability as shown in Figure 31. If the second form of the parameter
is used, it indicates the size of the data portion of the block without
DL/I or VSAM overheads.

Z

3

ACCESS Blocking Blocking
METHOD Factor 1 Factor 2

GSAM Input/Output Z invalid

HISAM PZ'imary (KSDS) Overflow (ESOS)

SHISAM Primary (KSDS) N/A3

HDAM Use 'Block=size' format"

HlOAM Use 'BLOCK=size' format"

INDEX Primary (KSDS) Overflow (ESOS)

DEDB invalid

Figure 31. Relation of BLOCK subparameters to Access Methods.: The
table shows the data sets to which the 'blocking factor l'
and 'blocking factor 2' values apply for the various data
base access methods.

Applies to both the input and output data sets of the GSAM data base.
A SHISAM data base has no Overflow component and the 'blocking factor
2' subparameter is therefore not used in this case.
The 'blocking factor l' and 'blocking factor 2' subpaZ'ameters are not
applicable to the HD access methods so the second foZ'mat of the BLOCK
parameter must be used.

54 lMS/VS - VSAM INTERFACE GUIDE

The format of the RECORD parameter is

RECORD=(record length 1, record length 2)

As with the BLOCK parameter, 'record lsngth l' and 'record len3th 2' will
have different areas of application depending on the data base organiza
tion that is used.

The relationship of the parameters to the data base organizations is shown
in the following table.

ACCESS METHOD Racord Length 1 Record LE:n9th 2

GSAM Fixed : LRECL Fixed : N/As
Variable: Maximum Variable: Minimur.\s

HISAM PrimaryCKSDS) OverflowCESDS)

SHISAM PrimaryCKSDS) N/A6

HDAM ignored 7

HIDAM ignored 7

INDEX PrimaryCKSDS) Overflow(ESDS)

DEDB invalid

figure 32. Relation of RECORD subparameters to Access Methods: This
table shows the data sets to which the 'record len3th l'
and 'record length 2' values apply for the various data
base access methods.

S This subparameter is only used when the GSAM data base contains vari
able length records. The value of 'record length 2' must be less than
or equal to the value of 'record length l' in this case.

6 A SHISAM data base has n"o Overflow component and it is therefore not
used in this case.

7 The RECORD parameter has no effect when specified for eith~r of the HD
access methods 0

Relationship of IMS/VS and VSAM Parameters 55

The SIZE parameter has the foliowing format:

SIZE=Csize 1, size 2)

The area of applicability of 'size l' and 'size 2' also varies depending
on the data base organization as shown ih the following table.

ACCESS M::::THOD Size 1 Size 2

GSAM Input/Output invalid

HISAM Primary(KSDS) Overflow(ESDS)

SHISAM Primary(KSDS) N/A8

HDAM Data(ESDS) invalid'

HIDAM Data(ESDS) invalid10

INDEX Primary(KSDS) Overflow(ESDS)

DED8 Data(ESDS)10 invalid

Figure 33. Relation of SIZE subparameters to Access Methods

Although there ~s a choice of whether to use the BLOCK~ RECORD or SIZE
parameters for the various data base organizations, there is a recommended
parameter combination fQr each of the available organizations.

For a GSAM data base, the BLOCK and RECORD parameters should be used in
conjunction. The control interval size that will be used for the GSAM data
base is the product of the specifications 'for the blocking factor and the
record length plus the system overhead rounded up to the next larger valid
control interval size. The valid control interval sizes are described in
section "Control Interval and Control Area Definition and Concept" on page
4. The system overhead included in the calculation of the control inter
val size is shown in Figure 34 on page 57.

for HISAM~ SHISAM and INDEX data bases, it is suggested that the SIZE
parameter be used instead of BLOCK and RECORD. DEDB data bases must be
defined with the SIZE parameter. When SIZE is used, the value specified is
the actual control interval size that is desired. This value must be equal
to one of the valid control interval sizes. If it is not~ then the value is

-~rounded upwards to the next valid size and DBD generation will issue a
warning message. Although there is no overhead added to the value speci-

8

10

56

A SHISAM data base has no Overflow component and it is therefore
invalid to specify the 'size 2' subparameter for SHISAM'
The SIZE parameter applies only to the data component of the HD data
base organizations and the 'size 2' subparameter is meaningless when
specified for either of the HD organizations.
The SIZE parameter is reguired for a DEDB data base.

IMS/VS - VSAM INTERFACE GUIDE

f ied for the SIZE parameter, the user must be aware of the overhead
requirements in order to be able to select the appropriate control inter
val size. The overhead requirements for these data base organizations is
shown in Figure 34.

When either HDAM or HIDAM data base are being defined the second form of
the BLOCK parameter is to be used. The size specified is for the data
(ESDS) component of the data base. In this case, the value specified for
the BLOCK parameter is the amount of space required for the segments that
are to be placed in each block. DBD generation will add to this value the
space needed for root anchor points, a free space anchor point and the
VSAM control information. The result is then rounded up to the next valid
control interval size.

The amount of space required for the anchor points and VSAM control infor
mation is shown in Figure 34.

Access Character- VSAM DL/I Total
Method isties Overhead Overhead Ovrhd

GSAM Block = 1 3(RDF) + 4(CIDF) 0 7

GSAM / fixed rcd.
SHISAM Bloclc > 1 2*3CRDF) + 4(CIDF) 0 10

GSAM variable rcd. 3*block.factorCRDF)
Block > 1 + 4(CIDF) 0 >=10

HISAM 3CRDF) + 4CCIDF) 5 12

INDEX unique lcey 11 3(RDF) + 4(CIDF) 0 7

INDEX nonunique key 3(RDF) + 4(CIDF) 4 1 1

HDAM 3(RDF) + 4(CIDF) 4 for FSAP
4 per RAp12 >=15

HIDAM 3(RDF) + 4(CIDF) 4 for FSAp13
4 for 1 RAP 11/15

Figure 34. VSAM and DL/I overhead to be used for CI size calculation

11 This case also applies to the Primary Index of an HIDAM data base
which, by definition must have unique keys.

12 The number of Root Anchor Points (RAPs) in each control interval is
determined by the value specified as the second subparameter of the
RMNAM~ macro as explained in "RMNAME" on page 51.

13 A Free Space Anchor Point (FSAP) will only be used in an HIDAM data
base if no pointers other than Hierarchical Forward .and Physical Twin
Pointers are specified for the root segment.

Relationship of IMS/VS and VSAM Parameters 57

4.1.2.4 RECFM for GSAM/VSAM

This parameter applies only to GSAM data bases and may not be specified
for any other data base organization.

The values of this parameter which may be used with a VSAM-based GSAM data
base are:

F indicates that the records are fixed length.

FB indicates that the records are fixed length and blocked.

Y indicates that the records are of variable length.

VB indicates that the records are of variable length and are blocked.

When the GSAM data base is specified as having variable length records~ it
is assumed that the first two bytes of the record contain the record
length. This record length must be supplied by the user when creating new
records and is supplied by DL/I when the records are retrieved.

For the fixed length record formats, the record length need not be speci
fied. The use of blocked formats is recommended for VSAM unless the size
of the GSAM data base records is such that only one record will fit into a
control interval.

4.1.2.5 FRSPC

The FRSPC parameter is only applicable to HDAM and HIDAM data bases. When
this parameter is used for a VSAM data base, it specifies the amount of
free space to be allowed in the ESDS component of the data base at initial
load time. The ESDS component of an HIDAM data base is that portion con
taining the actual data segments. For an HDAM data base, the parameter
applies only to that portion of the ESDS which has been defined to be the
root addressable area using the RMNAME parameter as explained in "RMNAME"
on page 51 .

This parameter has the following format:

FRSPC=(Free Block Frequency Factor,Free Space percentage Factor)

The meaning and use of the the subparameters has been discussed earlier in
"DL/I - ESDS Free Space" o·n page 24.

58 IMS/VS - VSAM INTERFACE GUIDE

4.1.2.6 Fast Path Parameters

for fAST PATH data sets which must be VSAM data sets the parameters UOW
(Unit-of-Work) and ROOT must be specified. A detailed description of their
function and specification is included in chapter "fast Path Feature" on
page 103. The format of the UOW parameter is as follows:

UOW=(number 1, overflow 1)

The format of the ROOT parameter is as follows:

ROOT=(number 1, overflow 1)

4.1.3 other DBO Parameters That Affect VSAM

Because the other macros in DBD generation do not affect VSAM in as direct.
a manner as do the DBD and DATASET macros, the remaining parameters for
which there are VSAM considerations are treated as a group rather than
macro by macro.

4.1.3.1 Pointer Specifications

The use of pointers in the data base organizations has a bearing on VSAM
in that it will affect the size of segment prefiKes. These segment pre
fixes must be included in the total size of the segments when making the
determination of control interval sizes.

SEGM Pointer Parameters

There are two parameters of the SEGM macro that affect pointer use for
HDAM and HIDAM data bases. The first of these is the PARENT parameter.

The format of this parameter is:

PARENT=(~physprnt,pointer specification),(logp~nt,P/V,lo9prtdb)

'physprnt' is the name of the segment which is the physical parent of the
segment being defined by this SEGH macro. The pointer specifications that
may be used with the physical parent are: SNGL or DBLE. If SNGL is speci
fied one 4-byte pointer is included in the prefix of the physical parent,
not in the 'pref iK of the segment being defined. If DBLE is specified then
two 4-byte pointers are included in the physical parent's prefix.

'1ogprnt' is the name of the segment which is the logical parent of the
segment being defined and 'logprtdb' is the name of the data base in which
the logical parent segment is defined.

Relationship of IMS/VS and VSAM Parameters 59

The use. of 'P' with the logical p~rent specification indicates that the
concatenated key of the logical parent is to be stored as· part of the seg
ment being defined. 'V' indicates that the logical parent concatenated
key should not be kept as a part of this segment. The 'P/V' subparameter
affects only the size of the data portion of the segment currently being
defined.

4.1.3.2 Pointer Prefix

The parameter which affects the prefix of the segment specified by the
SEGM macro is the PTR parameter. This parameter specifies the pointer
types that are to appear in the prefix of tha segment defined by the SEGN
macro. For each of the pointer types requested, 4 bytes of prefix space
must be allowed for the segment. A complete specification of the values
that may be used with this parameter and their meanings may be found in
the IMS/VS utilities Reference Manual.

LCHILD Po;nter Parameters

The PTR parameter in the LCHILD macro specifies the number of logical
child type pointers that are to appear in the prefix of the logical parent
segment.

The values that may be given for PTR= are:

SNGL indicates that ona 4-byte pointer is to be allocated in the prefix
of the logical parent.

DBlE indicates that two 4-byte pointers are to be allocated in the pre
fix of the logical parent.

INDX is used to establish the relationship between a HIDAM root segment
and the HIDAM primary index segment o~ the relationship between a
target segment and the index pointer segment in a secondary index.
It indicate that a 4-byte pointer is to be allocated in the prefix
of the index segmen, in the INDEX data base.

SYMB is used with secondary indices to indicate that no pointer space is
to be reserved in the prefix of the index segment. Instead, the
concatenated key of the target segment is to be stored as part of
the data portion of the index segment.

4.1.3.3 Parameters and macros that require VSAH

Certain parameters of the DBD generation may only be used when the Operat
ing System access method has been specified as VSAM. These parameters are
invalid if they are used for nonVSAM data bases.

60 IMS/VS - VSAM INTERFACE GUIDE

COMPRTN=routine

This is a parameter of the SEGM macro and specifies the name of the seg
ment edit/compression routine to be used when storing or accessing this
segment. Any segment for whicri an edit/compression routine is requested by
the use of this param~ter must reside in a VSAM data set.

BYTEs=(maximum,minimum)

This is also a parameter of the SEGH macro and' is used when variable
length segments are being defined in the data base. The normal format of
this parameter is:

BYTEs=segment size

and is used for the definition of fixed length segments. VSAM is a prereq
uisite for the use of variable length segments. It is invalid to specify
the 'maximum/minimum' form of the BYTES parameter for any data base whose
Operating System access method is not VSAM.

Note: VSAM will still use records of the same length except with GSAM.

XDFLD for other than HIDAM Root Index.

The XDFLD macro is used to establish a relationship either between the
root segments of a HIDAM data base and the HIDAM primary index or between
a target segment and an index pointer segment for a secondary index. If
this macro is used for a secondary index then VSAM is required because
secondary index INDEX data bases must be VSAM data sets.

4.1.4 DBDGEN output Recomm~ndations for VSAH Clu~ter Definition

In the output listing which results from performing DBD generation can be
found a set of suggestions for certain VSAM cluster definition parameters.
All of the other parameters for cluster definition are ignored which may
lead the user to assume that these should be allowed to take their default
values. This is contrary to one of the basic principles of VSAM data set
design. The principle states that one should not blindly use the defaults
but ~ather carefully evaluate them and specify the values explicitly in
the definition. The parameters whose values are suggested by DBD gener
ation are:

CL~STER TYPE - indexed or nonindexed
RECORDSIZE - average and maximum
CONTROLINTERVALSIZE - applies only to the data component
KEYS - length and location (only for KSDS)

Although the NAME parameter is included in the set of suggestions, no
actual data set name is recommended. The user is simply instructed to

Relationship of IMS/VS and VSAM Parameters 61

supply an appropriate cluster name according to whatever installation
conventions may be in use,

Many important parameters are not covered by these suggestions and must be
considered by the data base designer. Among these omitted parameters are:
FREESPACE, VOLUMES, Space Allocation, PASSWORD, SHAREOPTIONS, Index
Options, and the NAME parameters for the index and data cornpo~ents of the
cluster. These and other parameters of VSAM cluster definition are covered
in the following section "VSAM Cluster Definition Parameters" on page 63.

4.2 VSAH DATA SPACE ALLOCATION

VSAM data sets can coexist on the same disk with nonVSAM data sets. Space
defined on a volume for exclusive use of VSAM is called a VSAH d~ta ~p~c~.

In OS/VS a VSAM data space can consist of a maximum of 16 extents which
need not be contiguous. A volume can contain multiple data spaces. The
maximum size of a data space is one volum~. Several data spaces on more
than one volume may be treated logically as one data space (e.g. for suo
allocated multivolume data sets).

VSAM uses two different data spaces:

• The suballocatable data space
• The unique data space

A suballocatable data space can contain one or more data sets and a data
set can occupy one or more suballocatable data spaces on one or more vol
umes. A suballocatable data space is created by an Access Method Services
command DEFINE SPACE or DEFINE MASTERCATALOG/USERCATALOG.

All suballocatable data zpaces on one volume are treated as one logical
space, and it is possible to-delete all empty suballocatable data spaces
on a volume together. Individual suballocatable data spaces can not be
deleted.

A VSAM cluster in a suballocatable data space is called a suballocated
cluster or a suballocated data set.

A unique data space (also called nonsuballocat~ble data space) contains
only one data set. This data set occupies only one nonsuballocatable data
space on a volume (with up to 16 extents (OS/VS only», but multiple vol
umes can be used for this data setr A unique data space is aut~~itl~~lly
built when a cluster or alternate index is defined with the UNIQUE attri
bute.

A VSAM cluster/data set in a nonsuballocatable space is called a unique
cluster or unique data set.

Unique data spaces cannot be shared with other VSAM data sets.

VSAM data spaces cannot be shared with nonVSAM data sets.

62 IMS/VS - VSAM INTERfACE GUIDE

4.3 VSAH CLUSTER DEFINITION PARAMETERS

4.3.1 Cluster Related Parameters

4.3.1.1 NAME

The name specified for a VSAM data set may contain 1 - 44 alphanumeric
characters. national characters (, and Y.) and two special characters (hy
phen and 12-0 overpunch).

Names containing more than eight characters must be segmented by periods;
one to eight characters may be speclfied between periods.

The first character of a name or name segment must be either an al?habetic
or national character.

With multiple catalogs you should take care that a data set name in one
catalog is not duplicated in another catalog.

It is possible to have the same data set name in more than one catalog.

Access Method Services prevents you from cataloging two objects with the
same name in the same catalog, and from altering the name of an object
that its new name duplicates the name of another object in the same cata
log.

In HVS systems, the data set name can also be used to identify the catalog
where the data set is cataloged. A name segmented with periods is called a
qualified name. The first qualifier (the part of the name up to the first
period) is used to find the user catalog if no STEPCAT or JOBCAT catalog
is specified (the Access Method Services manual contains a section 'Order
of catalog use' for each command, where the catalog search sequence is
described).

Note (HVS only): As the data set name (qualified name) is used for cata
log allocation a qualified name and an unqualified name cannot exist in
the same catalog if the first qualifier of the qualified name is the same
as the unqualified name.

To prevent problems, it is suggested always to use qualified names in an
MVS system and always use the same first qualifier per application.

This first qualifier should be identical with the catalog name defined for
the user catalog, or one of its ALIASes.

Relationship of IMS/VS and VSAM Parameters 63

4.3.2 Space Allocation (CYLINDER, TRACKS, RECORDS, VOLUMES)

4.3.2.1 Small data sets

For data sets less than one cylinder in size it is more advantageous for
space utilization considerations (but not for performance) to specify the
maximum number of TRACKS required in the primary allocation of the data
component, one track for the nonimbedded sequence set index, and no sec
ondary definition for either data or index. The allocations for this data
set should be set so that only 1 index record is allocated. This is possi
ble if only one CA is allocated for the data component (see also next sec
tion) .

4.3.2.2 Multiple cylinder data sets (not multivolume)

It is usually best to calculate the number of CYLINDERS needed for data in
a newly created data set and specify this amount in cylinders for the pri
mary allocation of the dat·a component. t·1aJce the secondary allocation
equal or greater than one cylinder but 'less than the primary allocation.

VSAM calculates the data CA size based on primary and secondary allo
cations:

• If primary or secondary allocation is smaller than one cylinder, the
smaller value (rounded up to full tracks in case of RECORDS) is used
as CA size (CA-size in a UNIQUE data set is set to one cylinder).

• If primary and secondary allocation is' larger than one cylinder, the
CA size is one cylinder <maximum CA size).

Note that specifying space in tracks or cylinders make device conversion
more diff icul t.

4.3.2.3 Multivolume data sets

When defining multivolume data sets, the following rules must be consid
ered:

1. For suballocatable multivolume data sets a VSAM data space must exist
on all volumes specified in the VOLUMES parameter.

2. For unique multivolume data sets all volumes which are specified in
the VOLU~1ES parameter (except the first volume in the list), must
already be owned by the catalog, in which the multivolume data set is
to be cataloged.

3. The primary or secondary allocation value must not exceed the maximum
capacity of one volume.

64 IMS/VS - VSAM INTERFACE GUIDE

Explanat i on 01 the rules:.

Rule 1:

Suballocated data sets:

Before defining the multivolume data set, a DEFINE SPACE command must have
been issued for all volumes defined in the VOLUMES parameter of the multi
volume data set.

When there is not enough space in a VSAM data space for a secondary allo
cation, the data space may be extended.

UNIQUE data sets:

Check if all volumes of the VOLUMES parameter (except the first) belong to
the catalog, in which the data set is to be cataloged. I f not, issue a
DEFINE SPACE CANDIDATE command for all volumes not belonging to that cata
log (except the first). After correct operation, define the multivolume
data set.

Note: All volumes specified in the DEFINE SPACE CANDIDATE command must be
mounted, since the VSAM ownership bit in the f4-DSCB is set ON and the
volume timestamp is initialized.

In OS/VS systems when using recoverable catalogs also a Fl-DSCB describing
the one cylinder CRA is written into the VTOC of each volume when the com
mand is executed.

Rule 2:

VSAM allocates the primary space on the first volume at DEfINE-time. When
loading the data set and the primary space is filled, the secondary amount
of space is allocated on the first volume as long as there is enough space·
available. If there is no more space for secondary allocations on the
first volume, VSAM allocates prim~ry space on the second volume. Then
secondary space is allocated on volume 2, etc.

Generally, VSAM always allocates primary space on a new volume first and
continues with secondary allocations. This is important for the last vol
ume. 'When, for example the space allocation was CYL (200,50), then 200
cylinders are allocated, even when only 20 cylinders are needed. In this
case, the specification CYL (50,200) would fit better.

Relationship of IMS/VS and VSAM Parameters 65

4.3.2.4 Data space allocation and extension

The location of a VSAM data space or of a UNIQUE data set cannot be speci
fied with OS/VS JCL. The size is specified in the DEFINE SPACE or DEFINE
CLUSTER ••. UNIQUE command.

When VSAM recognizes that a data space or a UNIQUE data set must be allo
cated or extended (secondary allocation), OS/DADSM is automaticallY
called to allocate the requested space. A data space can only be extended
on one volume. When a multivolume UNIQUE data set has to be extended to
the next volume (when there is not enough space on the first one) OS/DADSM
will perform the allocation.

When VSAM tries to allocate secondary space for a suballocated data set
and there is not enough room in the VSAM data space, VSAM , and in sequence
OS/DADSM allocates an amount of space either in data space secondary allo
cation size, or, if this is not enough, in the requested data set second
ary allocation size. A .data space, however can only allocate secondary
extents if a secondary value was specified in the DEFINE SPACE command.

4.3.2.5 Cluster Type

The specification of the keyword INDEXED (the default) is used to define a
KSDS cluster, while NONINDEXED must be specified to define an E5DS
cluster.

4.3.2.6 Password specification

An expanded password protection facility is supported for VSAM.
Optionally, passwords can be defined for clusters, cluster components
(data component and index component), and V5AM catalogs. VSAM passwords
are kept in VSAM catalog entries only. The password is supplied by IMS/VS
in using the password as DBD name.

If password protection is indicated for a VSAM data set, the operator will
be prompted if a BATCH job is executed and if PASSWORD=NO has been speci
fied in the DBDGEN. If PASSWORD=YES has been specified and the DBD name
is not the same as the Password, a VSAM OPEN error will occur and the data
base will not be opened.

The number of operator retries allowed (from 0 to 7) can be specified with
the ATTEMPTS parameter (default is 2) in the DEFINE command.

66 IMS/VS - VSAM INTERFACE GUIDE

Four levels of password protection are provided:

• LEVEL 1: MASTER PASSWORD

Full access, which allows access to a data set, and its ca+.alog entry.
Any operation (read, add, update, delete) ~an be performed on the data
set and its catalog entry.

The master password is required for altering (ALTER) and deleting (DE
LETE) VSAM data sets.

• LEVEL 2: CONTROL INTERVAL PASSWORD (for special usage)

Control interval access, which allows the user to read and write
entire control intervals using the control interval interface. All
read, write, and update operations can be performed at the logical
record level as well. This facility is not pro~ided for general use
and should be reserved for system programmer use only.

• LEVEL 3: UPDATE PASSWORD

Update access, which allows logical records to be retrieved, updated,
deleted, or added.

For catalog operations the following applies:

VS1, SVS: The Update password is required for defining VSAM data
sets and nonVSAM data sets. No passwords are required for altering
(ALTER) and deleting (DELETE) a nonVSAM data set.

MVS: The Update password is required for defining (DEFINE) VSAM
and nonVSAM data sets and for altering (ALTER) and deleting (DE
LETE) nonVSAM data sets (including GDGs and ALIASes).

• LEVEL 4: READ PASSUORD

Read access, which allows access to a data set for read operations
only. Read access to the catalog entries of the data set (eKcept pass
word information) is permitted also. No writing is allowed.

A password can be defined for a given VSAM data set for each level
protection: master password, control interval access password, read
write-add-delete password, and read-only password. When multiple
passwords are defined for a data set, the password given when the data
set is opened establishes the level of protection to be in effect for
this OPEN.

Authorization to process a VSAM data set can be supplemented by a
user-~ritten security authorization routine.

If supplied, such a routine must reside in the library SYSl .LINKLIB or
in a library to be located by the system (e.g. in a JOBLID).

The authorization routine is entered during OPEN processing after
password verification has been performed by VSAM, unless the master

Relationship of IMS/VS and VSAM Parameters 67

access password was specified. A user security authorization record
of up to 255 bytes maximum can also be added to the catalog entry for
the data set. This record can supply data to the user-writien security
authorization routine during its processing. For further information
see the OS/VS VSAM PROGRAMME~'S GUIDE~ GC26-3838.

The VSAM catalog must be password protected t~ support pa~sword pro
tection for cluster passwords.

If passwords are not specified on all levels, the highest level password
is propagated to the higher levels.

Passwo~ds fo~ catalogs a~e st~ongly ~ecommended to p~event unautho~izad
deletion of VSAM objects (e.g. clusters, data spaces and catalo9s)~

In OS/VS systems the VSAM master catalog master password is required for
volume cleanup using the Access Method Services command ALTER
REMOVEVOLUMES and other severe commands. Therefore, it is very important
to have at least the VSAM master catalog password protected.

4.3.2.7 SHAREOPTIONS

A VSAM data set can be accessed concurrently by two or more subtasks with
in the same partition and two or more job steps (partitions) DISP=SHR must
be 'specified for the VSAM data set by each job step. ~oth types of sharing
can be used for a VSAM data set at the same time. The type of data set
sharing permitted for two or more partitions is controlled by using the
SHAREOPTIONS parameter of the DEFINE command when the VSAM data set is
defined. Note that there .is no inte~9rity support in IMS/VS for sha~ing
data bases between jobs other'than ONLINE.

The format of the SHAREOPTIONS command is as follows:

SHAREOPTIONS (C~oss-~egion C~oss-system)

VSAM sharing and SHAREOPTIONS are described in detail in section "VSAM
Sharing" on page 83.

4.3.2.8 UNIQUE/SUBALLOCATION

As described in section "VSAM Data Space Allocation" on page 62 VSA~uses
two different types of data spaces/data sets in terms of allocation.

The SUBALLOCATION parameter specifies that a data set shares a predefined
VSAM data space with other VSAM data sets.

VSAM does all the space management and no JeL specification for the
location of the data set must be given.

68 IMS/VS - VSAM INTERFACE GUIDE

VSAM has been des;gned to use SUBALLOCATION.

The advantage (if using suballocated data sets) is that the 16 extent
restriction per volume does not apply and therefore the disk space can be
used more flexibly. A disadvantage is that the space allocated via DEFINE
SPACE is taken away from DADSM free space on the volume and therefore can
not be used to satisfy nonVSAM allocations even if it has not yet been
used by a cluster.

The UNIQUE parameter requires a separate allocation for the data set. One
Fl-DSCB (Label) (or two for a KSDS) are written into the VTOC for the
UNIQUE data set. The name in the Fl DSCB is the data component name (and
for a KSDS additionally the index co~ponent name).

The cluster name specified in the DEFINE c~mmand is not used in the VTOC.
Therefore it is recommended to specify also a name for the data component
(and in case of a KSDS, also a name for the index component), since other
wise VSAM would generate its own 44-Byte name which is meaningless to the
user when listing the VTOC or the catalog (LISTCAT).

UNIQUE data sets should be restr;cted for special appl;cat;cns.

Advantages of SUBALLOCATION:

1. Since it is the default, there is no need to specify it on an Access
Method Services DEFINE command.

2. If the suballocated cluster is on a different volume from the owning
catalog, it is possible to DELETE the cluster without the cluster's
volume being mounted (if a nonrecoverable catalog is used). This is
because all the information which needs to be changed by the DELETE is
in the catalog.

3. The REUSE attribute, which allows the VSAM user to reload VSAM clus
ters without the need for DELETE/DEFINE, is only supported for SUBAL
LOCATION clusters.

4. VSAM space management tries harder than DADSM to avoid fragmentation.
When looking for a place to put a suballocated cluster, VSAM will try
to find the smallest contiguous amount of free space which satisfies
the cluster's primary allocation requirement, even if a more suitable
allocation is possible elsewhere on the volume.

5. If a volume contains many unique data spaces unexpected IMS/VS wait
times may occur when a BMP needs to extend a unique data set. This EOV
request must run in the control region and BMP is waiting for EOV to
finish. The extension of a unique data space is internally equivalent
to a DEFINE SPACE . The more spaces exist on a volume I the longer
DEFINE SPACE is going to run. During this entire period the control
region is unavailable. As each BMP requires control region services
(ISWITCH) it will wait until the control region is available. Eventu
ally all BMPs will be waiting for the control region.

Relationship of IMS/VS and VSAM Parameters 69

Advantages of UNIqUE:

1. There is only one VSAM cluster component per VTOC entry, with the pos
sibility of making VTOC names the same as cluster component names. The
organization of handling DASD space is the same as for nonVSAM data
sets. VTOC related 'emergency' operations, such as SCRATCH and
zapping of password bits, can be isolated to one VSAM cluster compo
nent.

2. On a volume with a large amount of VSAM space and a large number of
clusters, use of UHIQUEallocation may result in better performance
for DEFINE~ This is because VSAM space management expends a lot more
energy in making the best possible·fit, for the DEFINE request. This
may result in high CPU times and many I/O operations to the catalog
for suballocated DEFINEs.

4.3.2.9 SPEED/RECOVERY

When a VSAM data set is loaded, VSAM does or does not preformat control
areas, depending on the attribute specified when the data set is defined,
RECOVERY or SPEED, respectively.

When RECOVERY (the default) is specified, during loading VSAM preformats
each control area immediately before loading any records into it. Prefor
matting for a key-sequenced.data set consists of putting the appropriate
control information in each control interval of that control area and an
end-of-file indication in the first control interval of the next control
area. All zeros in the control interval definition field indicates end of
file or end of key range for a key-sequenced data set.

For an entry-sequenced or relative ~ecord data set, control information
and an end-of-file indication are placed in each control interval of the
control area during preformatting.

The RECOVERY option (not suggested) ensures that if an error occurs, which
prevents further processing while a control area is being lo~ded, the pre
viously loaded control areas are not lost. Loading can resu~e from the
first or only end-of-file indicator. Preformatting in RECOVERY mode is
always done when records are added to an existing VSAM data set (even if
SPEED was specified). Thus, after the first time the data set is CLOSEd,
it is always processed in RECOVERY mode.

When SPEED is specified (suggested), records are loaded (i. e. between
first OPEN and CLOSE) without preformatting each control area before load
ing and the end-of-fileindicator is not written until the data set is
closed. When this option is chosen, loading proceeds more rapidly, but if
an error that prevents further processing occurs, all the records loaded
up to that point may be lost and loading would have to resume at the begin
ning of the data set.

70 IMS/VS - VSAM INTERFACE GUIDE

The following should be con5id~red wh~n using RECOVEQY (KSDS only):

• Up to now when an empty data set is loaded, the 'high used RBA' is only
updated if the data set has been closed (by the user) after at least
one record written into it, or if a second extent has to be allocated.

• Since VERIFY does not work for a data set with a 'high used RBA = 0',
which usually indicates an empty data set, loading could not be
resumed, even when RECOVERY is specified.

• If the user-written load program had issued a CLOSE while loading the
data set (which REPRO does not do), VERIfY may be used after a system
malfunction to adjust the 'high used RBA' and the loading may be
resumed (the user has to check which record was entered last and he
has to change the load program to resume loading with the next
record) .

• It is suggested that one always specify SPEED which is not the
default.

4.3.2.10 IMS/VS Considerations using SPEED or RECOVERY

There are different considerations for the use of SPEED or RECOVERY
depen~ing on the type of data base being used.

For the Hierarchical Direct organizations, HDAM and HIDAM, it does not
matter which option is specified. This is because IMS/VS OPENs the~e data
bases, writes a control record and then CLOSEs the data base again. The
data bases are then reOPENed to load the data base records. This procedure
caus~s the data sets comprising the data bases to be processed in RECOVERY
mode during the load process regardless of the option chosen because th~y
have already been CLOSEd once.

HDAM and HIDAM data bases will only use SPEED, if that option has been
specified, during the period when the initial control record is written.

The situation is different for the KSDS part of HISAM and SHISAM data
bases. No special control records are written into these data bases so the
selected option will be in effect until the data base is CLOSEd after
loading has been completed. SPEED is recommended in order to reduce the
time taken by the load. Restart is not possible (see RECOVERY consider
ations above).

The ESDS part of a HISAM data base is treated as a HDAM data base. The
case of an-INDEX (primary or secondary) is also handled the same way with
a dummy record being inserted first. After CLOSE and a following OPEN
this record is erased. Therefore, no matter which option is selected, the
INDEX will be loaded using the RECOVERY option.

It should be noted that once the initial load of the data bases has been
completed, they are always processed in RECOVERY mode.

Relationship of IMS/VS and VSAM Parameters 71

4.3.3 DATA component Related Parameters

4.3.3.1 NAME

It is advisable to define a separate name for the DATA component of the
cluster. If no name is specified by the user, VSAM will assign a 44-byte
name which consists of timestamp fields and other data.

If, for example, a cluster is named 'CUSTOMER.NAMES' the DATA component
could be named 'CUSTOMER.NAMES.D'. This allows easy identification of the
components of the cluster when analyzing a list of the catalog.

Sometimes it might be necessary to change parameters of an existing data
set using the Access Method Services command ALTER. If, for example, a
different FREESPACE value is to be assigned, the DATA component name (not
the cluster name) must be specified.

The naming conventions are described in section "NAME" on page 63.

4.3.3.2 CONTROLINTERVALSIZE

The control interval size must be a multiple of 512 bytes unless the con
trol interval size is greater than 8192, then the multiple is 2048. The
maximum size o~ a control interval is 32,768 bytes.

DBDGEN output includes a suggestion for the control interval size, which
should be carefully evaluated before it is used.

4.3.3.3 Space Allocation at DATA Level

The space allocation for a data set can be specified on the cluster level,
or separate on the component level. In general, it is advisable to specify
the calculated data set size on the cluster level.

Space allocation considerations are described in section "Space Allo
cation (CYLINDER, TRACKS, RECORDS, VOLUMES)" on page 64.

72 IMS/VS - VSAM INTERFACE GUIDE

4.3.3.4 FREESPACE

A KSDS can be specif iedto reserve space to be held free when loading
data.

The specified amount is only held free when sequential insertions such as
'loading' are performed.

Two values can be specified:

FREESPACE(CI-percent CA-percent)

'CI-percent' specifies the amount of space to be held free per control
interval (CI).

The way VSAM treats this free space definition is: specified percent
age times actual CI size (rounded down to a full byte). If the amount
of free space is less than the size of one record the value is·
increased to the size of one record.

Example:

Definition:

Control Interval Size = 1024 bytes
Free space = 15 Y. free CI space (FREESPACE (15 0)

VSAM calculation:

1024 * 15 Y. = 153,6 = 153 bytes minimum free space (excluding con
trol fields).

'CA-percent' specifies the amount of control intervals to be held free
per control area (CA). If the amount of free space is less than the
size of one CI the value is increased to the size of one CI.

If the maximum value (100~O is specified for both 'CI-percent' and
'CA-percent', each control interval will contain one record and each con
trol area will contain one used control interval.

4.3.3.5 PASSWORDs for DATA Component

Passwords on the DATA component level have no effect for IMS/VS access.
They may be used as an additional protection against unauthorized access
from other programs.

Relationship of IMS/VS and VSAM Parameters 73

4.3.3.6 KEYS

The format of the K~YS parameter is:

KEYS (length offset I 64 ~)

This parameter specifies information about the key field of record in a
KSDS cluster.

The 'length' can be from 1 through 255 bytes (default=64).

The 'offsot' specifies the displacement of the key field (in bytes) from
the beginning of the record (default=O).

DBDGEN output includes a suggestion how to specify the KEYS parameter.

4.3.3.7 RECORDSIZE

There is no special parameter in VSAM to define that fixed length records
or variable length records are to be used, only the average and maximum
length of a record may be specified.

The format of RECORDSIZE is:

RECORDSIZE (average length maximum length)

If fixed length records with a length of 80 bytes are to be used, the defi
nition would be RECORDSIZE (80 80).

The definition of RECORDSIZE (60 80) would, however, also enable the user
to use fixed length records. with 80 bytes, because the 'average length'
parameter is only used by VSAM to calculate the minimum control interval
size for the data component (or to check the size the user has defined).

The 'maximum length' parameter is a limiting size for VSAM; Records with a
larger size will force an error message, but if RECORDSIZE (100 100) has
been specified and only records with a length of 80 bytes are used, nei
ther error messages are written nor is space wasted on disk (except for an
RRDS data set whose slots are preformatted depending on the 'maximum
length' parameter), as VSAM checks the actual length of the record and
stores this information in the RDF (Record Definition Field).

Normally both values average length and max i mum length are identical,'
except for GSAM which may use variable length records.

DBDGEN output includes a suggestion for the RECORDSIZE parameter.

74 IMS/VS - VSAM INTERFACE GUIDE

4.3.4 Ind~x Co~oonent Rp.l~ted P2ra~~t~rs

4.3.4.1 NAME

It is advisable to define a separate name for the INDEX component of the
KSDS cluster. If no name is specified by the user, VSAM will assign a
44-byte name which consists of timestamp fields and other data.

If, for example, a cluster is named 'CUSTOMER.NAMES' the INDEX component
could be named 'CUSTOMER.NAMES.I'. This allows to easy identify compo
nents of the cluster when analyzing a list of the catal~g.

The naming conventions are described in section ftNAME" on page 63.

4.3.4.2 CONTROLINTERVALSIZE

The INDEX control interval sizes are:

512, 1024, 2048, and 4096 bytes

It might be advisable to specify a different INDEX control interval size
then the DATA control interval size. For further details see section "VSAM
BUFFER POOL Definition Parameters" on page 77.

DBDGEN output includes a suggestion for the control interval size.

4.3.4.3 Space Allocation at INDEX Level

The space allocation for a data set can be. specified on the cluster level,
or separate on the component level. In general~ it is advisable to specify
the calculated data set size on the cluster level. VSAM will then taxe the
necessary amount from this space for the INDEX component.

Space allocation considerations are described in section "Space Allo
cation (CYLINDER, TRACKS, RECORDS, VOLUMES)" on page 64.

4.3.4.4 PASSWORDs for INDEX component

Passwords on the INDEX component level have no effect for IMS/VS access.
They may be used as an additional protection against unauthorized access
from other programs.

Relationship of IMS/VS and VSAM Parameters 75

4.3.4.5 IMBED, REPLICATE

When a key-sequenced data set is processed sequentially, the sequence set
index level is used to indicate the order in which control intervals are
to be accessed. To improve performance during sequential processing, the
index sequence set can be separated from the rest of the index component
(index set) and stored with the logical records in the data component
(IUBED). When this option is chosen, the index records for a control area
are placed on the first track of the control area so that both index and
logical records can be accessed without moving the disk arm (similar to
the location of the track index wi thin the prime area. in an ISAM data
set) .

When the index sequence set is stored within the data component (IMBED),
sequence set records are also replicated. That is, each sequence set irtdex
record is allocated one track at the beginning of the control area. The
index record is duplicated on the track as many times as it will fit. This
technique significantly minimizes the rotational delay involved in arriv
ing at the beginning of an index record. If there is only one control area
in a cylinder, index sequence set records will be replicated beginning
with track O. If there are two control areas in a cylinder the initial
track of the first area will contain replicated index records for the
first control area,' while the initial track of the second area will con
tain replicated index records for the second control area.

'''-----
Index set records, like sequence set records, contain compressed index
entries~ The index entries in each level of the index set point to index
records of the next lower index level. An index entry within the index
set contains a pointer to an index record, the highest key in that index
record, and control information.

Index set levels can also be replicated (REPLICATE). When this option is
chosen, one track is required for each index record in the entire index
set. An index record is duplicated on its assigned track as many times as
it will fit.

Wi th REPLICATE performance is even more improved in direct processing
rather than in sequential processing. In sequential processing an index
record is read once for a CAi in direct processing each data record read
operation may require an extra read operation for the index record.

The index set may not be replicated when the index set and the sequence
set of the primary ~ndex are physically separate (sequence set stored with
logical records). However, when the index set and the sequence set are
stored together, both are replicated or neither is replicated.

76 IMS/VS - VSAM INTERFACE GUIDE

The following combinations are possible:

• NOIMSED NOREPLICATE: All index levels are stored together and are not
replicated.

• NOIttBED REPLICATE: ·All index levels are stored together, each index
record occupies its own track and is repeated on this track as often
as possible.

• IMBED NOREPLICATE: The index sequence set level is stored with the
data component. Each index record in the sequence set is stored with
its data control area, occupies its own track, and is repeated on this
track as often as possible. In most cases this is the best choice.
The higher index levels are not repeated on a track.

• IMBED REPLICATE: The index sequence set level is stored with t~e data
component. Each index record in the sequence set is stored with its
data control area. Each sequence set record occupies its own track,
and is repeated on this track as often as possible.

To improve performance during processing, each sequence set index
record may be stored with the CA it points to. This generally elimi
nates disk-arm movement because it is not necessary to do separate
seeks to locate both the sequence index record and the data record (if
the arm has not been moved by other activities between index and data
reference) .

A data CI can never reside on the same physical track as the index CI. Most
of the index (index sequence ·set records and all higher level index
records) can reside in virtual storage if enough buffer storage is speci
fied by the user, but VSAM does not preload index buffer(s). Depending on
the type of access index buffers are assigned and used differently.

Only one sequence set record can be resident in a buffer with NSR. This
should be considered, because IMS/VS is not always using Shared Resources.

4~4 VSAH BUFFER POOL DEFINITION PARAMETERS

The VSAM buffer pools are defined by a set of user supplied statements
which are contained in a special data set. For the IMS/VS batch (DB only)
environment this data set is identified in the JCL by the DO name,
DFSVSAMP. In the online (DB/DC) environment, the data set must be a member
of the IMS/VS Procedure Library, IMSV5.PROCLIB. The member name is
DFSVSMxx, where the suffix ('xx') is specified as the value of the VSPEC
parameter on the JCL EXEC statement.

There are two types of statements used in this data set. One is the buffer·
subpool definition statement which is explained in section "Subpool Defi
ni tion" on page 78 and the other is the OPTIONS statement which is
explained in ~ection "OPTIONS Statement" on page 80.

Relationship of IMS/VS and VSAM Parameters 77

4.4.1 Subpoo1 Definition

The subpool definition statement follows the DFSVSAMP DD-statement. It
may start in any column and has the following format:

buffer size, number of buffers

The 'buffer size' parameter may be specified as a 3 to 5 digit nu~ber and
specifies the size of the buffers in this subpool. Permissible values for
buffer size are 512, 1024, 2048, 4096, 8192, 12288, 16384, 20480, 24576,
28672 and 32768 (note that these buffer sizes do not completely correspond
to all of the available CI sizes).

The 'number of buffars' parameter is a 1 to 3 digit number and specifies
how many buffers of this size are to be present in this subpool.

The maximum value that may be specified is 255.

The minimum value depends on the environment ~n which the data bases are
being processed. For batch the minimum is 3 and for online the minimu~ is
(2 * the number of depend·~nt regions 1Q)+ 1. If the 'number of buffers'
given is less than the minimum required, it is increased to the minimum
and a warning message is issued.

A number of subpool definition statements may be included in the data set.
Each statement defines a separate subpool of buffers except when two or
more statements specify the same buffer size. In this case, the number of
buffers specified on each statement are summed and a single subpool with
the total number of buffers is built.

4.4.1.1 selection of Buffer Sizes

There is no facility available to allow the user to assign a data set to a
particular buffer subpool. The determination of which of the defined sub
pools a data set will use is done at IMS/VS initialization on a 'best fit'
basis. This means that the data set component will be allocated to th&t
subpool whose buffer size is the smallest which is able to cQntain the
component control intervals. Because the buffer sizes do not exactly cor
respond to th~ CI sizes, in ma~y cases a buffer larger than the CI will be
used with the extra portion of the buffer being wasted.

1q The number of dependent regions is given as the first subparameter of
the MAXREGH parameter of the IHSCTRL macro in the IMS/VS system defi
nition. For further information about the IMSCTRL macro and MAXREGN
parameter refer to the IMS/VS Installation Guide.

78 IMS/VS - VSAM INTERFACE GUIDE

The only form of control over buffer subpool usage that can be exercised
by the user is in the selection of CI sizes when the clusters are defined
and the definition of appropriately sized buffer subpools. Whenever pos
sible. CI sizes for the VSAM clusters should be chosen so that the follow
ing guidelines are met:

1. Index and Data components should be placed in different subpools in
order to avoid contention for the same set of buffers. This will also
help in allowing the high level index structures to be kept in storage
and thereby improve performance.

2. Only one frequently accessed data set should be allocated to each sub
pool. This will prevent competition between the high usage data sets
which may lead to frequent I/O operations and slow system response.

3. Activity should be balanced across the subpools by grouping data sets
so that the access requirements of all groups are approximately equal.
This will prevent a particular subpool from becoming a bottle neck in
the system.

4. Control interval sizes should match buffer sizes as closely as possi
ble in order to avoid wasted space in the buffers.

4.4.1.2 Choice 01 Number 01 Buffers

The number of buffers to be allocated in each subpool depends to a great
extent on which data sets are to be assigned to the subpool.

When the subpool is being used by index data sets, a large number of buff
ers is advantageous for random processing but relatively useless when the
access' is primarily sequential. In the IMS/VS online (DB/DC) environment,
it is most likely that random access will be prevalent so a large number
of index buffers is desirable.

The number of buffers required for each of the index data sets sharing the
subpool is the number of records (CIs) in the high level po~tion of the
index (sequence set records are excluded) plus the number of dependent
regions as Jiven in the MAXREGN paramet~r (in the batch environment of
IMS/VS, there is only one dependent region).

The number of buffers in the subpool should be the total of the require
ments of the data sets sharing the subpool plus 1. This allocation will
allow the high l~vel index structures to be resident in the buffers and

Relationship of IMS/VS and VSAM Parameters 79

will supply one sequence set buffer per dependent region for each data
set. Since VSAM performs full look-aside across the buffersl additional
buffers may be useful in that they will let more sequence set records to
be maintained in current status in the subpool.

If the subpool .is being used for data CIs, then the number of buffers need
not be large. VSAM does not perform 'read ahead' for sequentiai accessing
so that to have many data buffers is only useful in aiding look-aside or
to improve control area splitting. Since genuinely random ~rocessing is
unlikely to reuse the content of a buffer very frequently and CA splits
will not occur often, extra data buffers do not materially aid
performance.

The minimum number of buffers to be placed in subpools shared by the data
components of VSAM clusters depends to a certain extent on the type of
data base to which the data sets belong. For HDAM and HIDAM data bases, 2
buffers are needed for each dependent region. HISAM data bases require 3
buffers per dependent region. Each data base also needs 1 extra buffer to
be available for CI and CA splitting. The total number ot buffers in the
subpool is sum of the requirements for all of the data sets which share
the subpool.

4.4.2 OPTIONS Statement

The OPTIONS statement and all of its parameters are optional. The state
ment must begin in position 1 and may not be continued on a subsequent
line. However, several OPTIONS statements may be given and each may speci-
fy a different set of parameters. If a parameter is repeated, the last
occurrence will determine the value to be used.

The parameters of the OPTIONS statement are:

BGURT=CVES,341INOI(VES,nn),
INSERT=Si<pISEQ,
VSAMFIX=9FRIICsICBFR,IOS),
VSANPLS=GLBLILOCL,
BHTRACE=nnn,
DUMP:NOlvES,
LTWA=NOlvES.

Figure 35. Parameters of the OPTIONS statement: The default values
for the p~rameters are shown underscored.

80 IMS/VS - VSAM INTERFACE GUIDE

Only the first four parameters, BGWRT, IHSERT, VSAMFIX and VSAMPLS, have
an effect in terms of VSAM. The other three paraneters do not fall within
the scope of this document and are therefore not discussed. For informa
tion on BHTRACE, DUMP and LTWA refer to the IMS/VS It!STALLATIQN G~IDE,
SH20-90S1.

Note: As. a general rule, LTWA (Log Tape Write Ahead) should ~lw~ys be
specified as YES for the online environment of IMS.

The BGWRT parameter determines whether (YES) or not (NO) the Background
Write facility is to be used. Background Write is a low priority task in
IMS/VS which inspects a certain percentage of the buffers in esch subpool
to determine if they are eligible to be written out to the data base. The
percentage of the buffers to be checked is given as the second subparame
ter, 'nn', when YES is specified and may be any value from 10 to 99. The
default is YES,34.

Buffers are checked on a 'least recently referenced' basis and are consid
ered to be candidates for writing to the data base if their contents have
been modified by the application programs. Use of the Background Write
facility can aid performance because it frees buffers for reuse before
they are needed. Otherwise, when the subpool is full, IMS/VS would have to
wait until a buffer could be written out before being able to read in a new
control interval to satisfy a request. For further information on the
operation of Background Write,~refer to the section DL/I D~ta Base Buffer
ing Facilities in the IMS/VS SYSTEM PROGRAHHING REFERENCE MANUAL,
SH20-9027.

The INSERT parameter determines the insert mode that will be used for add
ing new KSDS records in the data bases. The operation and effect of the
modes of insertion was discussed earlier in "Insert strategies Effect on
Splitting" on page 32. Specification of SEQ will cause the buffer handler
to use VSAM sequential mode insertion and is useful when several groups of
root segments are to be inserted in key sequence. If SKP is specified or
allowed to default, then the buffer handler will use VSAM direct mode
insertion. Direct mode insertion is the standard method of handling
inserts in VSAM. SKP also causes inserts to be performed in
skip-sequential mode as explained in section "Skip-sequential Insertion"
on page 99.

The VSAMFIX paramete'r is used to request that the VSAM resource pools be
page-fixed in main storage. BFR specifies that the buffer subpools and
their associated control blocks should be fixed. lOB specifies that the
I/O related blocks, such as RPLs and PLHs, should be fixed. This parameter
has no default and if it is not specified then nothing is fixed and the
buffer subpools and I/O blocks are pageable. Requesting page-fixing will
improve performance in VSAM input and output since no page exceptions will
have to be processed but it may reduce the available working storage to
the point that the rest of the system begins 'thrashing'.

Relationship of IMS/VS and VSAM Parameters 81

The VSAMPLS parameter determines where the VSAM shared resource pools are
to be built. If LOCL is specified, then the Local Shared Resource (LSR)
facility of VSAM is used and the VSAM control blocks and buffer subpools
are built in the IMS/VS control region. GLnL applies only to OS/VS MVS
operating systems and specifies that the Global Shared Resource (GSR)
facility of VSAM is to be used with the control blocks and buffer subpools
being built in the Common Service Area (CSA). If GLBL is ~pecified or
allowed to default for a VSl operating system, it is treated as though
LOCL had been specified.

Only one IMS/VS system at a time may use GLBL 'as OS/VS VSAM will only allow
a single global (GSR) pool for each storage key (0-7) in a processor or M?
system. If it is necessary to have two separate IMS/VS systems running in
the same processor or M?, then one of them must be using a local (LSR) pool
and have LOCL specified.

82 IMS/VS - VSAM INTERFACE GUIDE

5. 0 ~~OCESSING VS!':~ nATA BA~Ea

5.1 SHAR!NG OF DATA IN IHS/VSAM ENVIRONMENT

There are two aspects to the sharing of VSAM data bases in an IMS/VS envi
ronment. The first is the sharing capabilities and restrictions native to
VSAM and the second is the considerations and operations of IMS/VS with
regard to ~ultiple users of a data base. These two aspects are treated
separately in the following discussion. The interaction of IMS/VS with
VSAM sharing capabilities is covered in the second section "Sharing of
VSAM Data Bases" on page 87.

5.1.1 VSAH Sharing

Native VSAM sharing is covered first in that it forms the basis for the
sharing of data bases which are implemented by VSAM data sets. The facili
ties of VSAM for sharing data sets can be divided into two categories:
those which support sharing within a task or region and those which sup
port sharing between regions or systems.

5.1.1.1 Sharing Across Tasks Within a Region

VSAM's ability to allow multiple subtasks in the same region or partition
to share data sets is called by a number of names. It is known variously
as!

• subtask sharing

• DDNAME sharing

• data set name CDSH) sharing

The facility for sharing within a region provides a certain level of data
integrity by ensuring that a single control block structure is used to
access the data set. It also conseFves resources by avoiding the need to
have mUltiple copies of the control block structure. This type of sharing
may occur simultaneously with cross-region/system sharing. All OPENs to
the shared data set must be issued from the same partition. or add:Iess
space and must reference the same VSAM cluster.

When using this level of sharingp VSAM will maintain write integrity for
the data set but will not maintain read integrity. Write integrity is
maintained by 'locking' a control interval which is accessed for update.
Once a control interval has been ' locked' by an update request p any
attempt to access the same control interval for update purposes by another
request will result in a VSAM logical error. This effectiv~ly prevents any

Processing VSAM Data Bases 83

overlap or dual update problems with the data set. A nonupdate request to
a control interval that has been 'locked' will not be prevented however.
Thus, in certain circumstances, it is possible that a nonupdate request
may get a down-level version of the control ~nterval and be working with
data that is not current.

The only way in which to achieve read integrity for the data ,set at this
level of sharing is to make all requests in update mode.

5.1.1.2 'Sharing Across Regions or systems

When multiple control block structures are used to access the same VSAM
data set, whether these structures are in the same region or not, the
cross-region/system sharing facilities of VSAM are used. This level of
sharing is governed by the SHAREOPTIOHS specified for the VSAM data sets
in the cluster definition. SHAREOPTIONS do not have any effect on the
sharing of a data set across tasks in the same partition or region.

The format of the SHAREOPTIONS parameter in the cluster definition is:

SHAREOPTIONS(cross-region cross-system)'.

'cross-region' applies to sharing of the data set between multiple regions
or partitions within the same operating system. SHAREOPTIONS apply when
the data set is shared between multiple operating systems.

Values that may be specified are 1, 2, 3 or 4 (1 and 2 for 'cross-region'
only). The meanings of these four values are explained below.

SHAREOPTION 1:

This option is also known as Full Integrity since it maintains both read
and write integrity. With SHAREOPTION 1, the data set may be OPENed by one
region or partition for update purposes OR by any number of regions or
partitions for read-only access. VSAM checks at OPEN time to ensure either
that the data set is not open for some other regi~n or partition if this
OPEN is for update or that no user has the data set open for update if this
OPEN is for read-only access. An invalid second OPEN request (e.g. OPEN
for Write) would be rejected with an OPEN return code.

The use of this SHAREOPTION ensures that the data being used is always
current and that there is no possibility of multiple update jobs coming
into conflict with one another.

This value may only be specified for cross-region sharing and is not
allowed for cross-system sharing. It is the default value for the
cross-region subparameter.

84 IMS/VS - VSAM INTERFACE GUIDE

SHAREOPTION 2:

This option supplies only Write Integrity. It allows the data set to be
OPENed by one region or partition for upd<:!ting AtlO by several other
regions or partitions for read-only access. The use of this option pre
vents update conflicts and permits updating to be performed concurrently
with enquiry-mode processing. No attempt is made to maintain read integri
ty with SHAREOPTION 2. It is therefore possible for the enquiry jobs to be
working with down-level versions of the data.

Like SHAREOPTION 1, this option may only b~ specified for cross-region
sharing and is invalid for cross-system snaring.

SHAREOPTION 3:

This option does not maintain any form of integrity and is known as the No
Integri ty option. It will permit multiple OPENs of the data set for
either update or enquiry and performs no checking at OPEN time. When
SHAREOPTION 3: is used, it is the responsibility of the user to implement
either programming or operational procedures to protect the data set
against update conflicts.

This option may be specified for either cross-region or cross-system shar
ing. It is the default value for the cross-system sharing subparameter.

SHAREOPTION 4:

This option, like SHAREOPTION 3, does not directly provide any integrity
but there'is a limited amount of assistance from VSAM to help the user in
maintaining integrity. As with SHAREOPTIOH 3, ~hen SHAREOPTION 4 is speci
fied, multiple update and enquiry jobs are allowed to access the data set
simultaneously and it is the user's responsibility to ensure that integri
ty is maintained.

The assistance provided by VSAM to help the user in maintaining integrity
has two aspects:

1. All data buffers and sequence set buffers are refreshed for eve~y
direct (random) request in order to try to return the most current
form of the data. Buffer refresh is not performed for sequential
requests and it is possible ~hat a sequential request could obtain a
down-level version of the data.

2. There are certain restrictions placed on the processing of the data
set which are intended to prevent any change in the end-of-file point
ers that VSAM maintains in the catalog. These restrictions are:

• No control area splits may take place in the data set.
• No new extents may be added to the data set.
• No new records may be added to an ESDS.
• For a KSDS, the control interval which contains the h~ghest key in

the data set may not be split.

Processing VSAM Data Bases 85

SHAREOPTION 4 may be specified for either the cros's-region or the
cross-system subparameter.

Note: SHAREOPTION 4 and VSAM d~ferred write are incompatible. IMS/VS uses
VSAM deferred write for Shared Resources~ therefore~ INS/VS will not OPEn
a data set with SHAREOPTION 4. SHAREOPTION 4 should not ba specified for
VSAM data sets which are components of an IMS/VS data base.

5.1.1.3 other Factors Affecting Sharing

In addition to the SHAREOPTIONS specified in the definition of the VSAM
cluster~ there are a number of other factors which will affect the sharing
capability of VSAM data sets:

t. The DISP parameter of the JCL DD statement used to reference the data
set. If DISP=OLD is specified on the DO statement, then the data set
is treated as though SHAREOPTIONS(1,3) were defined for the cluster
regardless of what the actual definition of the SHAREOPTIONS may be.

This override does not change the defined SHAREOPTIONS but~ rather,
merely causes the data set to be OPENed in accordance with the
restrictions of SHAREOPTIONS (1,3). The reason for this effect is
that, when DISP=OLD is used, the Scheduler ENQs on the data set there
by ensuring that only this job may access the data set. It should be
noted that DISP=OLD will not prevent a job in another CPU from gaining
access to the data set unless JES3 complex-wide control is in effect.

2. The processing mode of the data set. When the data set is being proc
essed in create mode (opened empty or opened RESET for xeuseable data
sets and being loaded with records) ~ then it is treated as though
SHAREOPTIONS(1,3) were specified.

Like DISP=OLD, create mode does not reset the SHAREOPTIONS. This
effect is due to the fact that it is assumed that the job which is per
forming the initial load of the data set Sho~ld have exclusive control
until the load has been completed.

3. The operating system generaticnpar~meters specified for the
device<s) on which the data set resides.

If a device on which the data set resides has not been generated as
SHARED (or SHAREDUP, under MVS), then a cross-system SHAREOPTION of 4
is treated as a cross-system SHAREOPTION 3. This factor has very lit
tle effect on IMS/VS use of VSAM data sets but is mentioned here for
the sake of completeness.

86 IMS/VS - VSAM INTERFACE GUIDE

5.1.2 Sh~rin9 of VSAM D~t~ B~s~s

In the following section IMS/VS handling of VSAM data sets and the way in
which this affects sharing is covered. There are two major areas of inter
action between IMS/VS and VSAM SHAREOPTIONS. One of these is the way in
which IMS/VS opens the VSAM data set and the other is the relation of
batch and online IMS/VS programs.

5.1.2.1 IMS/VS Open considerations

IMS/VS always opens VSAM data sets for update processing. This is true
whether IMS/VS is running in the online environment (DB/DC) or as a pure
batch job (DL/I only). IMS/VS does not have the capability to inspect the
processing options15 for the program(s) which will access the data base in
order to determine their intentions before opening the data base. It
therefore always performs OPEN for update so that it may process any
update requests that may be issued by the program(s).

This action by IMS/VS has the result that there is no effective difference
between cross-region SHAREOPTIONS 1 and 2 when the VSAM data set is proc
essed as part of an IMS/VS data base. Since IMS/VS will have opened the
data set for update, no other program will be able to gain access to the
data set if it has been def ined with SHAREOPTION 1 or 2. Conversely,
IMS/VS will be unable to OPEN a data set which has SHAREOPTION 1 or 2 if
the data set is in use by some other program. One advantage to this phi
losophy of 'OPEN for update regardless' is that it will maintain full
integrity for the data set even if the users have indicated that they are
prepared to accept down-level data when in enquiry mode by specifying
SHAREOPTION 2.

If it is desired that the VSAM data sets be shareable between IMS/VS and
some other program, it is necessary to define the cluster with
cross-region SHAREOPTION 3. However, this may result in problems if proper
programming or operational procedures have not been implemented to pro
tect the data set against update conflicts or improper use as there is no
protection supplied by VSAM.

It is not possible to make use of cross-region SHAREOPTION 4 in this case
because IMS/VS does not support SHAREOPTION 4 for LSR or GSR.

15 The processing options are defined through the PROCOPT parameter of
the PCB or SENSEG macros used in PSB generation. For further informa
tion on the PRO COPT parameter refer to the IMS/VS UTILITIES REFERENCE
MANUAL, SH20-9029.

Processing VSAM Data Bases 87

5.1.2.2 Batch/Online Sha~ing Capabilities

In order to understand the sharing process as it relates to IMS/VS data
bases it is necessary to be aware of the differences in data set handling
in the two IMS/VS environments, Batch (DB only) and Online (DB/DC). A
brief discussion of the two environments follows.

In the Batch mode of operation each program runs as a separate job in its
own region or address space. All control blocks used to access the data
sets which comprise the data bases are located in the program's partition
and are not available outside of this area. This means that, if an attempt
is made to access a data base which is already in use by another program, a
different control block structure must be used and the VSAM SHAREOPTIONS
therefore come into effect.

As described above in "IMS/VS Open Considerations" on page 87, SHAREOPTION
1 or 2 will prevent the sharing of data sets between jobs in the DB-only
environment. If sharing is necessary or desirable then the VSAM clusters
must be defined with a cross-region SHAREOPTION of 3 or 4 and it will be
the user's responsibility to implement procedures to avoid conflicts.

The activity of the Onl ina II1S/VS system is supervised by the Control
Region. In the online (DB/DC)· environment of IMS, there are two different
types of application programs. These ar~ the Message Processing Programs
eMPP) and the Batch Message Programs (BMP). The major difference between
these two types of program is that a BMP may access normal system data
sets wh~le an MPP cannot. Access to the online data bases from an applica
tion program of either type is performed directly from the application
programs. There is one exception though: when a user has specified that
VSAM Local Shared Resources are to be used instead of VSAM Global Shared
Resources. In this case alII/Os will be performed from the Control
Region. This options is available to MVS·users only.

The control blocks needed to access the data bases are kept in the address
space of the Control Region and all OPENs are issued from the Control
Region. Thus, all application programs running in the online environment
of IMS/VS are sharing a single control block structure and thereby avoid
the need to reference the VSAM SHAREOPTIONS. The Control Region itself is
responsible for ensuring that there will not be any conflicts between the
requests made by the various application programs which are accessing the
data bases.

The case in which the VSAM SHAREOPTIONS will come into effect is when an
attempt is made to share a data base between IMS/VS DB/DC and some other
program.-This will result in mulfiple control block structures being used
to access the same data set and will cause the SHAREOPTIONS to be invoked.

If sharing of data bases between Online and Batch IMS/VS is desired it
will be necessary to define the VSAM clusters with SHAREOPT~ON 3. This
type of sharing is not recommended as it is a part of the philosophy of
IMS/VS that the Control Region will ha\e exclusive access to the data
bases while the online environment is active. The accepted way in which to
allow Batch jobs to process the data bases while they are OPEN to the Con
trol region is to run these batch jobs as BMPs.

88 IMS/VS - VSAM INTERFACE GUIDE

It is relatively simple to design the Batch-mode application programs so
that they may be run as either normal DB-only batch jobs or as BMPs. This
will allow the program to be executed in whichever mode is necessary and
will avoid the need to implement user procedures to prevent conflicts
between programs.

Potential Exposure Due to sharing

If it is determined that it is necessary to share data bases between the
Online and Batch environments of IMS/VS with a SHAREOPTION of 3, there are
a number of areas wherein the data sets may be exposed to error. There are
five potential problem areas with this form of sharing.

The first of these is loss of ~EAD INTEGRITY. This will lccur when there
is one application which is updating while another application is reading.
Usually, the Online system is perform~ng the updates and the Batch system
is processing enquiries against the data base. In this case problems arise
when the buffers of the Batch system become unsynchronized with the buff
ers of the Online system. Loss of synchronization may occur when the
r~ading task fails to reread a control interval and uses an old copy
already in its buffers or reads a control interval before the updating
task writes the updated version to DASD. This results in enquiries being
answered on the basis of out-of-date information and may cause spurious
'record not found' conditions.

The second area of exposure is loss of WRITE INTEGRITY. This will happen
if both the Batch and the Online systems are updating the data bases at
the same time. Performing concurrent update without taking any special
precautions to synchronize or serialize the requests can result in ABENDs
or permanent corruption of the data set. Updates may be lost through over
lapping of requests and multiple concurrent splits in the same control
interval may cause corruption of the index. Since VSAM assumes that the
information in control blocks is correct and that the content of the buff
ers is consistent, it is likely that program checks in VSAM could occur.-

The third area of exposure is REA DISCREPANCIES. Updates-to a data set
may cause changes in the High-used, High-key, Sequence Set, or High-level
RBA values for the data set 16 • These values are extracted from the catalog
records at OPEN time and placed in the control block structure relating to
the VSAM data set. Any changes in these values will be made in the control
blocks and only be reflected in the catalog once the data ,set is CLOSEd.
This means that programs using the data set will not be aware of any
changes that may have occurred due to the activity of another program per
forming updates. Some of the effects that this may have are incorrect
error return codes, incorrect detection of 'add-to-end' processing,
incorrect sequential processing and lengthy scanning for direct requests.

16 The meanings of these RBA values are explained in "DATA Component
Allocation" on page 126.

Processing VSAM Data Bases 89

The fourth area of exposure to error is EXTENT DISCREPANCIES. This type of
error may arise if there are multiple concurrent update jobs running
against the data base. Since extent information, like the RBA values, is
extracted from the catalog, maintained in the control blocks and 'updated
in the catalog at CLOSE, each job will only know about the extents which
its own processing has caused. This is likelY to result in corruption of
the data set because each job will have a different idea about where a
particular control interval is located.

5.2 EXCLUSIVE CONTROL CONSIDERATIONS IN VSAH DATA BASES

There are differences in the way in which mUltiple requests to a data set
are synchronized and serialized by Native VSAM and by IMS/VS . A knowledge
of these differences is necessary to proper understanding of the process
ing of VSAM data bases.

5.2.1 Native VSAM Exclusive Control

The facility in VSAM for synchronizing updates across multiple concurrent
requests to a data set is known as EXclusive contro~. This facility is
intended to maintain the write integrity of the data set and operates by
'locking' control intervals accessed for update as mentioned above in
"Sharing Across Tasks Within a Regi6n" on page 83. Exclusive control is
used for concurrent requests to a single control block structure and
should not be confused with the SHAREOPTIONS. SHAREOPTIONS only apply when
multiple control block structures are OPENed to a single VSAM data set.

Exclusive control is imposed on a control interval whenever a
read-for-update request (GET RPL OPTCO=UP017) is issued for a record in
that control interval~ The control interval will remain in exclusive con
trol status until a subsequent 'write for update' (PUT RPL OPTCO=UPD17),'
'delete record' (ERASE17 lor 'release control' (ENOREQ 17) request is
issued for the affected record. A request to insert a new record (PUT RPL
OPTCO=NUP17) will also cause exclusive control to be imposed for the dura
tion of the insert operation.

Before VSAM actually places a control interval into exclusive control sta
tus, a look-a5id~ is performed to determine if any other currently active
request already has exclusive control over the desired control interval.
If it is found that this is the case, then the request for exclusive con
trol is refused with a logical error which indicates that the record is
being held by another request.

17 GET, PUT, ERASE and ENDREQ are macro instructions used to make
requests to VSAM. OPTCD is a parameter of RPL (Request Parameter List)
which indicates, among other things, whether the request is in update
(UPD) or nonupdate (NUP) mod&.

90 IMS/VS - VSAM INTERFACE GUIDE

Read-only requests for data only require shared7 as opposed to exclusive,
use oof the data in the control interval. A read-only request will not
result in look-aside to determine if the required control interval is in
exclusive control. This is because the exclusive control facility is only
concerned with the maintenance of write integrity for the dai:a set and not
with read integrity.

When a request is made to a control interval that is already being used by
another request, it mayor may not be given access to the data depending
on whethoer the request is for exclusive or shared (read-only) control and
on the type of control imposed by the request which is currently using the
control interval. The rules of access in the case of this sort of conflict
is shown below in Figure 36 (see also chapter 'Preventing Deadlock in
Exclusive Control' in OS/VS VSAM OPTIONS FOR ADVANCED APPLICATIONS,
GC26-3819) •

USER A
USER B

SHARED request EXCLUSIVE request

Control Interval is user A is also request is delayed
in SHARED control given shared and given ex. access

access when released by B

Control Interval is request is refused, request is refused,
in EXCLUSIVE control exclusive control exclusice control

error is returned error is returned

Figure 36. Exclusive Control Conflict Resolution: This table shows
the result of a request by user A to a control interval
which is already in use by user B.

5.2.2 IHS/VS Exclusive Control

The VSAM exclusive control mechanism is only used by IMS/VS when a logical
record is to be added to a KSDS (e.g. insertion of a new index pointer seg
ment in a INDEX data base) or an additional control interval must be
obtained in an ESDS (e.g. placing a segment into a new block of the Over
flow portion of a data base). Other than these cases, the integrity of a"
data base is maintained by the IMS/VS Program Isolation feature.

Processing VSAM Data Bases 91

5.2.2.1 IMS/VS Integrity Maintenance

IMS/VS allows several requests to access the data in a control interval
simul taneously but protects the read and write integrity of the data
through a facility known as Program Isolation.

The function of the Program Isolation Feature of IMS/VS is to prevent a
segment which has been changed from being retrieved or updated by another
program until the changed form of the segment has been written to the data
base. In order to achieve this effect# IMS/VS uses three levels of control
for the segments.

These three levels are:

Read-only This level of control is imposed when a segment is
retrieved in nonupdate mode. A segment is released from
'read-only' status when another request to the data base
is issued or a synchronization point 1S is reached.

Single-Update This level of control is imposed when a segment is accessed
with update intent. A segment is released from 'sing Ie
update' status when the segment has n~t been altered and
another request to the data base is issued or a
synchronization point 18 is reached.

EXclusive If a segment in 'single-update' status is changed by an
update or delete request# then exclusive control is
imposed on the segment. Exclusive control is released only
at a synchronization point 18 •

When requests are made to the same segment a certain level of sharing is
possible depending on the type of the request and the current status of
the referenced segment. If sharing is not allowed because of the inter
action of the levels of control, then the request trying to gain access is
deferred until control has been released by the previous request. The
results of the interaction of the three levels of control is summarized in
the following figure.

18 A synchronization point is the point at which a program is committed
to the correctness of results and the altered control intervals are
written out to the data base. A synchronization point will b~ reached
when the program terminates, issues a Checkpoint call or, in the case
of a'program that is processing a transaction that has single process
ing mode, when a request is made for the next input message.

92 IMS/VS - VSAM INTERFACE GUIDE

segment in segment in scg~~nt in
READ-ONLY SINGLE-UPDATE EXCLUSIVE
status status status

request for access allowed access allowed access refused
READ-ONLY the segment the segment the request
control is shared is shared is deferred

request for access allowed access refused access Refused
SINGLE-UPDATE the segment the request the request

control is shared is deferred is deferred

request for access tefused access refused this is an
EXCLUSIVE the request the request impossible
control is deferred is deferred combination

Figure 37. IMS/VS Control Level Conflict Resolution: This table
shows the result when a request is made to a segment which
is already under the control of another request.

5.2.3 Comparison of Exclusive Control Techniques

The primary difference betwe~n Native VSAM and"IMS/VS in their techniques
of exclusive control is the level at which control is applied:

• Wi th VSAM, the entire control interval is ' locked' which prevents
update access to any of the records in the control interval, not mere
ly the record which is being referenced by the 'locking' request.

• IMS/VS, on the other hand, imposes control at segment level and will
allow several requests to update data in the same control interval as
long as each is working with a different segment.

VSAM has a 'use-count' for each control interval in a buffer in storage to
keep track of the number of concurrent requests to that control interval.
The buffer containing the control interval will not be written to the data
base or reused unless the use-count is zero. This use-count is incremented
each time any data in the buffer is accessed at any level of control and is
decremented when control is released. In this way, VSAM prevents a control
interval from being removed from a buffer while any request is referencing
it.

Processing VSAM Data Bases 93

Another important difference between IMS/VS and VSAM exclusive control is
that, by its use of the three levels of control and the rules of access
shown in Figure 37 on 'page 93, IMS/VS maintains both read and write integ
rity while VSAM only maintains write integrity. This may be an important
consideration in that, as mentioned earlier in "IMS/VS £xclusive Control"
on page 91, IMS/VS will use the Native VSAM exclusive control facility
under certain circumstances. One of these cases is the insertion of a new
logical record into a KSDS. This will occur when:

• A new root segment is created in an HISAM or a SHISAM da'ta base,

• A new root segment is created in an HIDAM data base resulting in the
creation of an index entry in the primary index INDEX data base, or

• A new index source segment is inserted into a data base with a second
ary index resulting in the creation of a new index pointer segment in
the INDEX data base.

The other case where Native VSAM exclusive control is used is when a new
control interval is used in an ESDS. This will occur when:

• A· GSAM data base record is extended ~cross a control interval
boundary,

• An HISAM data base record is extended into the Overflow area or across
a control interval boundary in Overflow,

• A new block in the Overflow portion of an HDAM data base is used to
store a segment,

• A new block in a HIDAM data base is used for segment storage, or

• An index pointer segment with a duplicate key is created in an INDEX
data which has nonunique keys causing a new control interval in the
Overflow portion to be used.

5.3 DATA BASE MANIPULATION WITH VSAM

The purpose of this sect~on is to give the reader a conceptual overview of
the activity in the VSAM data sets which takes place when IMS application
programs process the data bases. Detailed discussion of internals, such as
the mapping of DL/I calls to VSAM requests, is not included.

It is not considered necessary for the user of VSAM data bases to have
detailed knowledge of the internal operation of the IMS/VSAM interface in
order to be abl~ to understand'and use VSAM in the IMS environment.

94 IMS/VS - VSAM INTERFACE GUIDE

.~

5.3.1 Insertion

There are a number of different considerations which apply to the
insertion of new VSAM records depending on the circumGtances under which
the insertions are performed. These are treated separately in the follow
ing sections. '

5.3.1.1 Initial Load Insert

The initial load of a data base is performed by a user supplied program
which issues a series of Insert (ISRT) calls to write the data base
records segment by segment. This load program must execute as a stand
alone batch (DL/I) job and may not be run in the online (DB/DC) environ
ment. Sample load programs may be found in the IHS/VS INSTALLATION GUIDE,
SH20-9081 and in the IMS/VS PRIMER, SH20-9145. Depending upon the type of
data base being loaded, the VSAM data sets will be processed in different
ways.

HISAM and SHISAM

When loading an HISAM or SHISAM data base, the KSDS component is handled
in the nonshared resource (NSR)- mode and the ESDS component, if present,
is handled in local shared resource (LSR) mode. The KSDS is OPENed for
keyed sequential access and the ESDS is OPENed for both sequential and
direct control interval access.

Since the KSDS is processed with NSR, the BUFND and BUFNI JeL parameters
may be used to allocate buffers for the data set ~s explained in "VSAM
Buffer Use" on page 37.

MINIMUM: BUFNI = 1 (default)
BUFND = 2 (default)

MAXIMUM: BUFNI = 2
BUFND = 2 * data CI/Track (suggested maximum)

Because the data set is being processed with NSR in sequential mode it is
possible to make use of VSAM chained write of multiple buffers by supply
ing additional buffers to improve the performance of the load program. The
maximum number of buffers that can be effectively used by VSAM for loading
a KSDS is shown above. When this maximum buffer allocation is used. opti
mal overlap of processing with I/O may occur and VSAM may write a full
track at a time.

Since the ESDS is processed by LSR, it is necessary to allocate the buff
ers by using the DFSVSAMP data set as explained in section "VSAM BUFFER
POOL Def ini tion Parameters" on page 77. The minimum number of buffers
required is 4 and there is no advantage to increasing the number of buff
ers above this amount. This is because no CI splits can occur in the ESDS
and LSR will pzevent the VSAM chained write facility from being used.

Processing VSAM Data Bases 95

It does not matter whether the SPEED or RECOVERY options are specified for
the ESDS because of the way in which IMS/VS treats the data set. The
sequence of operations against the data set is:

1. OPEN for sequential control interval access under NSR.

2. Write a special control record in the first control interval.

3. CLOSE the data set.

4. ReOPEN for direct and sequential control interval access under LSR to
insert the actual data base segments.

The second OPEN forces the ESDS to be processed in RECOVERY mode regard
less of the option specified in the cluster definition. During the period
when the ESDS is processed under NSR when the space map reco:d is being
written, the default buffer allocation is sufficient so there is no need
to specify a BUFND value for the ESDS.

HDAH and HIDAH

ESDS components of HDAM and HIDAM data bases are processed during initial
load in the same way as is the ESDS component of an HISAM data base. The
only difference is that the minimum buffer requirement for these data base
types is 3 rather than 4.

However, the considerations for the KSDS which serves as the Primary Index
of an HIDAM data base are very different from those of the HISAM KSDS. It
is not necessary for the user program to explicitly insert the index seg
ments into the Primary Index as they are automaticallY created by DL/I
whenever root segments are inserted into the data base. The Primary Index
KSDS is loaded in RECOVERY mode under LSR. This is because of the sequence
of operations against the KSDS which are:

1. OPEN for keyed sequential access under NSR.

2. Write a dummy record into the data set.

3. CLOSE the data set.

4. ReOPEN for keyed sequential access under NSR.

5. Delete (ERASE) the dummy record previously written.

6. CLOSE the data set again.

7. ReOPEN for direct and sequential control interval access under LSR to
load the actual indeK s.egments.

The ReOPENing of the KSDS forces it into RECOVERY mode regardless of the
option specified in the cluster definition.

96 IMS/VS - VSAM INTERFACE GUIDE

Since the data set is being ultimately loaded in the LSR environment, its
buffers must also be allocated by subpool definition in the DFSVSAMP data
set.

The number of buffers required for the KSDS is 3. It is of no benefit to
assign more than 3 buffers as no CI splits can occur during initial load
and LSR prevents the use of VSAM chained writes.

For the period when the KSDS is being processed under NSR, the default
buffer allocation is sufficient so the~e is no need for the user to be
concerned with specification of BUFNI or BUFND.

5.3.1.2 Direct Processing

There are two forms of direct processing available with VSAM, k~ycd and
addressed. With keyed direct processing records can be retrieved,
updated, deleted and added. A key value must be presented by the user for
each logical record that is to be processed. For retrieval operation, the
supplied key can be the full key, or a g~n~ric k~y (the leftmost part of
the key) which matches exactly or is less than the key of the desired
record, and the record retrieved will have the exact or next greater key.
When inserting a new record, the full key must be presented as part of the
record to be inserted. The primary index is searched from the top to the
bottom level to locate the requested logical record or the point at which
to insert the new reeord.

Keyed direct processing will be used when accessing root segments in HISAM
or SHISAM data bases. It will also be used when accessing index segments
in an INDEX data base in order to process an HIDAM root or a target segment
in a data base which has a secondary index.

With addressed direct processing records may be retrieved, updated,
deleted or added in a KSDS and retrieved or updated in an ESDS. The user
provides the Relative Byte Address (RBA) of the logical record or control
interval that is to be processed rather than a key. There is no index
search with addressed direct processing as the specified RBA is translated
directly into a physical DASD address.

Addressed direct processing is used for the ESDS components of data bases
and is the basic mechanism for accessing segments in Hierarchical Direct
organizations where the pointers are RBAs.

Processing VSAM Data Bases 97

S.l.1.l Sequential Processing

For sequential, processing the keyed and addressed forms are also
available. The basic difference between the two forms is that logical
records are accessed in key sequence with the keyed form and in physical
storage sequence with the addressed form.

Keyed sequential processing is used to load a KSDS and to retrieve,
update, delete and add logical records to an existing KSDS. When keyed
sequential processing is used, records can be processed in ascending or in
descending sequence by primary key. When retrieving records, key values
need not be user-supplied, since VSAM automatically obtains the next log
ical record in sequence.

Following types of operations can be performed us~ng key-sequential proc
essing:

• Records can be processed in ascending prima~y key sequence. This is
called forward processing.

• Records can be processed in descending primary key sequence. This is
called previous record processing or backward processing.

• A mass sequential insertion technique is used by VSAM when additions
of contiguous records are 'sequenced and sequential processing is
used.

For key-sequential processing the index sequence set is used to find the
next logical control interval.

Keyed sequential forward processing is used for initial load of the KSDS
portions of data bases and when processing Get-Next calls. It is also used
for insertions when INSERT=SEQ has been specified on the OPTIONS statement
as explained in "OPTIONS Statement" on page 80. Backward processing is
only used by IMS for Recovery or Resta~t, when the SIP flag has been found
on, in order to complete an interrupted CI split.

Addressed sequential processing is only used when a backup copy (Image
COpy) of a data base is created. The ESDS components of data bases are
loaded and accessed using direct addressed processing.

Search arguments are not required or used with either form of sequential
processing.

98 IMS/VS - VSAM INTERFACE GUIDE

5.3.1.4 Skip-sequential Insertion

Keyed skip-sequential processing, is a variation of direct processing. It
can be used for retrieval, update, addition and deletion operations. The
logical records must be processed in ascending sequence without
pre-positioning. Only the sequence set of the primary index is used for
skip-sequential processing based on the primary key.

When a relatively small number of transactions that are in key sequence
and clustered in sequence are to be processed, skip-sequential processing
can be used to retrieve the records directly by key.

Skip sequential processing can be used to avoid retrieving the entire data
set sequentially to process a relatively small percentage of the total
number of records, or to avoid using direct retrieval of the desired
records, which causes the primary index to be searched from the top to the
bottom level for each record retrieved. However skip-sequential does read
all sequence set records between those in que~tion, therefore it is not
suggested that skip-sequential be used when records from the beginning and
from the end of the data set are to be processed.

Skip-sequential processing will be used for insertion of HISAM and INDEX
root segments when INSERT=SKP is specified on the OPTIONS statement. The
OPTIONS statement was discussed earlier in section "OPTIONS Statement" on
page 80.

5.3.1.5 Secondary Index Seg~ent Insertion

A secondary index segment will be automatically created by DL/I whenever a
new index source segment is introduced into the data base being indexed.
Regardless of the mode in which the source segment is inserted, the actual
secondary index segment will be created using keyed direct access if the
index has unique keys or it is the first occurrence of a nonunique key.

This form of insertion is used because these segments reside in the KSDS
portion of the INDEX data base and must be maintained in key sequence. If
the index segment has the same key as an existing index segment, then it
will be inserted into the ESDS portion of the data base using addressed
direct processing.

Processing VSAM Data Bases 99

5.3.2 Update

The basic unit of information in an IMS data base is the segment and all
DL/I requests are issued in terms of segments. For VSAM. the basic unit
is the logical record and all VSAM operations are performed in terms of
logical records. Since each VSAM logical record may contain a number of
data base segments and associated control information, updating of VSAM
logical records will take place under a number of different circumstances
in an IMS/VS environment.

VSAM records will be updated when:

1. A segment's contents are changed by a REPL (Replace) call. If the
size of a variable length segment is changed by REPL. then mUltiple
updates may occur.

In an HISAM data base segments are stored in hierarchical sequence so
that increasing a segment's length may cause subsequent segments to be
'spilled' to the next VSAM record which forms part of the data base
record. Both records must then be updated to show the new version of
the repl~ced segment and the movement of the 'spilled' s~gment.

For . HDAM and HIDAM data bases, segments are no·t moved unless the
increase in size of a segment is such that it can no longer fit into
the record which it previously occupied. In this case, the segment
must be relocated to some other record and both of these records are
updated.

2. A dependent (non-root) segment is inserted into a data base and is
placed in a logical record which already contains a segment.

This can also result in ·mul tiple updates taking place. It may cause
segments in an HISAM data base to be shifted between records. In HDAM
or HIDAM data bases the pointers in the prefixes of segments located
in other logi<;al records may have to be updated to preserve the
relationships between segments.

3. A segment is deleted from a data base.

Segments are often only deleted in the sense that they can no longer
be retrieved by a GET call but are not physically removed from the
data base. This form of deletion is accomplished by updating the seg
ment to turn on the appropriate flags in the Delete Byte which is the
first part of the segment prefix.

When a segment is to be physically removed from the data base, the
VSAM logical record which contains the segment is updated and the
space ~hich the segment had occupied is made available for use by oth
er segments.

Updating will be performed in the appropriate mode as described previously
in sections "Direct Processing" on page 97 and "Sequential Processing" on
page 98.

100 IMS/VS - VSAM INTERFACE GUIDE

5.3.2.1 Replace Qf Secondary Index Source seg~~nt

If the fields in a secondary index source segment which form the key of
the secondary index are changed as the result of a REPL call, there are
special considerations which apply to the corresponding segment in the
INDEX data base.

The INDEX data base segment is updated during ONLINE processing only.

During BATCH processing the INDEX data base segment is erased (physically
removed from the data base) by keyed direct processing using the old key
and then a new segment is inserted with the new key. This is done in order
to insure that the segments in the INDEX data base are maintained in the
proper sequence by key.

The only cases in which a segment in an INDEX data base will be updated are
when the duplicate data fields 19 are changed or the INDEX data base is
processed directly by an application program.

5.3.3 Deletion

As mentioned above in section "Update" on page 100, in most cases segment
deletion consists of setting on flags in the Delete Byte with a VSAM
update request. Even when a segment is deleted and physically removed. from
the data base , it will usually be done by updating the logical record
which contains the segment. There are, however, certain cases in which
DL/I deletion will use the VSAM ERASE function.

VSAM ERASE causes a KSDS logical record to be eliminated from DASD storage
and the space it occupied made available for reuse as VSAM free space.
ESDS records may not be ERASEd.

If processed in a DL/I BATCH environment DL/I will issue an ERASE request
for records in the KSDS component of a HISAM or INDEX data base.

In an ONLINE environment, deletion would result in updating the logical
record (no ERASE).

A SHISAM data base constitutes a special case where ERASE is not only done
in a BATCH environment but al~o in an ONLINE environment if the processing
option of DELETE (PROCOPT=D) is specified. In this case, scheduling will
only allow concurrent Read-Only access.

19 Duplicate data fields are fields from the secondary index source seg
ment which the user has requested to be stored in the index segment.
These fields are not used for retrieval purposes and are only avail
able to the user when the INDEX data base is processed dir:ctly.

Processing VSAM Data Bases 101

5.3.3.1 Crawling

There is another problem with key design that ,may lead to a situation
where the data set is effectively crawl ing across the disk. Crawling
occurs when records are inserted with steadily increasing key values and
only low key records are deleted.

When all of the records in a CI have been deleted, VSAM does not return the
CI to the free status nor does it delete the index entry for the CI from
the sequence set record. This means that the space in t~e CI can only be
reused for records whose keys are in the same range as those originally
located in the CI.

I f only high key records are inserted and only low key records are
deleted, then the space released by delete~ records will never be reused
because no records with similar keys are being placed in the data set. The
data set will continue to extend at its high order end in order to accom
modate the new high key records. To the user, this data set will appear to
be continually growing even though the number of records in it remains
fairly constant. It is actually crawling forward across the disk, taking
up space for new records at one. end and leaving unuseable space behind.

There are two basic characteristics of a 'crawling' data set. The first
is that records are not permanently kept in the data set but are main
tained for a certain period of time before being deleted. The second is
that the records are inserted with ever increasing key values. It is quite
common to find applications where records have a period of currency and
are then discarded but crawling can be prevented in these cases by avoid
ing the use of asce~ding keys. Continually increasing key values are most
commonly caused by the high order portion of the key being a date or
timestamp field.

Note: Data set space can be reclaimed by reorganizing the data set (e.g.
wi th REPRO).

102 IMS/VS - VSAM INTERFACE GUIDE

6.0 FAST PATH FF.ATIJRE

6.1 GENERAL DESCRIPTION OF FAST PATH FEATURE

The IMS/VS Fast Path feature offers a means of incorporating high volume
r"imited function transactions in a single DB/DC system. The user can
select the Fast Path feature for those applications that need simple data
structures and where there is a requirement for high volume of trans
actions.

Fast Path CFP) ~chieves high transaction rates by exchanging functions for
speed of processing. This results in the use of new facilities that are
briefly described below.

• Two new types of data base:

t13 i n storag~ Delta B~se (MSD3) - a root-only data base for keeping
heavily used data in main storage thereby, reducing input/output
activity.

D~ta Entry Data B~sQ (DEDB) - a new type of data base that provides
root segment and up to seven dependent segment types and uses VSAM
Improved Control Interval Processing.

In addition new techniques are used to reduce contention between con
currently scheduled transactions.

• Expedited Message Handler (EMH):

Fast Path uses incore message queues exclusively, the IMS/VS Message
Queue is not involved. Multiple copies of the same application program
operating in wait-for-input mode can be ~ssociated with each incore
message queue. The design of Fast Path also allows more parallel proc
essing of tasks, especially on a multiprocessor system.

• Mixed Mode:

This term refers to the fact that FP and IMS/VS functions are fully
integrated within one single system. This means that fP transactions
have access to DL/I data bases and to current IMS/VS facilities; con
versely, IMS/VS transactions have access to fP data bases and facili
ties.

6.2 DEDB

The DEDB characteristics and its performance capabilities are best intro
duced by first comparing VSAM Normal Control Interval processing with VSAM
Improved Control Interval processing.

Fast Path feature 103

6.2.1 Improved Control Interval Processing (ICIP)

VSAM ICIP has fewer options and is more restrictive than the Normal Con
trol Interval processing but this is also the reason why VSAM ICIP
requests have shorter path lengths. The following table lists the main
differences between the two processings.

Normal Control Interval Improved control Interval
Processing Processing

CI sizes: n*512 bytes if < 8192, CI sizes: 512, 1024, 2048, and
then n*2048 bytes up to a max. 4096 bytes
ot 32,768 bytes

VSAM or user buffering user buffering only

asynchronous or sYJ')chronous synchronous requests only
requests

direct or sequential requests direct requests only

unfixed control bloc~s and optional fixed control blocks
buffers and buffers

chained-RPL's single RPL only

non-authorized user authorized or non-authorized user

update in place or add-to-end update in place only

SMF EXCP counts no SMF EXCP counts

TCB processing TCB or SRB processing

Figure 38. Fast Path ICI Processing Comparison

From the above comparison, one can deduct immediatelY that the Data Base
Administrator will have fewer choices of CI sizes (512, 1024, 2048, and
4096 bytes), and because VSAM ICIP supports update in place only, the data
base data sets will have to be preformatted.

VSAM control blocks can be optionally page fixed by requesting that DE DB
control blocks be page fixed by IMS.

Other restrictions have been taken care of during the design and implemen
tation 'of the Fast Path product and do not concern the user directly.

104 IMS/VS - VSAM INTERFACE GUIDE

6.3 DEDS CONCEPT

A DEDB is an HD-type data base containing up to eight segment types in a
two level data base structure (Figure 39). The possible combinations of
segment types are:

• A root segment with a sequential dependent segment with up to six
direct dependent segment types.

• A root segment with maximum of seven direct dependent segment types.

ROOT
SEGMENT

//-------,

SDEP or OOEP OOEP . DOE?
SEGMENT SEGMENT SEGf'1ENT

Figure 39. DEDB Record Structure

R~ot segments and direct dependent (ODEP) segments are similar to DL/I
data base segments. Retrieve and update calls are a compatible subset of
the current DL/I calls. As in HDAM, root segments are chained off a Root
Anchor Point (RAP) and a randomizing routine is used to derive a RAP num
ber.

Sequential dependent (SDE?) segments are of a new type that is especially
designed to provide fast insert capability. Their intended use is to col
lect data very quickly and insert them in mass in the data base cutting
down the number of I/O operations that would normally be required with
other data base organizations. Sequential dependent segments can only be
inserted and retrie~ed, no update capability is available.

Variable length segments are fully supported. Because VSAM ICIP uses User
Buffering only, VSAM is not concerned with variable length data. Each eI
consists of one logical VSAMrecord, one RDF, and one CIDF.

FP does the. management within the CI'buffers and merely request VSAM to
read or write those buffers using ICI processing.

There are several features included in DEDB for optimization processing
an~ extended operation. Described here are those that pertain directly to
the use of VSAM ICIP by the Fast Path feature.

fast Path Feature 105

6.3.1 Fast P~th use of VSAH ICXP

The MVS implementation of the Fast Path feature is based on SRB p~ocessing
which has a significantly shorter path length than TCB processing. TCB
processing of the. DEDB is used in the OS/VS1 implementation.

To compensate for the fact that ICIP requests have to be synchronous, the
implementation allows multiple parallel requests to take place concur
rently.

Read access to the DEDB is done directly from the dependent regions.
Therefore mUltiple requests can be run in parallel. The unit of allocation
is the CI. Thus if there is no contention at the CI level, the level of
parallelism that could potentiallY be achieved is equal to the number of
dependent regions active in the system.

On the output side, the implementation is different. CIs are not written
back in the data base during the life of the transaction but after its
successful completion. This has two advantages: first, in case of an
ABEND, no backout of the data base is necessary, second, region occupancy
is lower.

To free up the dependent region as soon as possible, CIs are transferred
to an SRB (MVS) processing called Output Thread that invokes VSAM ICIP.

Multiple Output Thread can be defined up to a maximum of 10 to allow for
more parallel processing. Each Output Thread handles all the CIs updated
by a single transaction. Because of VSAM ICIP, each CI is written by one
request at a time. the DEDB action module is then internally redriven
until all the CIs on the Output Thread have been written back. At which
time. the Output Thread is made available for further processing.

Because of VSAM ICIP, AREAs cannot be extended. Out-of-space conditions
can happen in the root addressable part and in the sequential dependent
segment part. Appropriate warnings are sent to the master terminal opera
tor when those conditions arise.

A /DISPLAY command and a new data base call (POS) can be used at any time
to 1valuate the utilization of both parts.

The following considerations are mainly concerned with the VSAM aspect of
the DEDB data base definition. Discussed are the sizes of eI and UOW, fol
lowed by comments on the AREA concept.

6.3.1.1 DEDB CI Size

The choice of a CI size depends on the following factors:

• Because of VSAM ICIP. four different CI sizes are supported. A choice
must be made between 512, 1024, 2048. and 4096 bytes CI sizes.

106 IMS/VS - VSAM INTERFACE GUIDE

• There is only one RAP per CI. The average record length has to be tak
en into account. In the base section of the root addressable part, a
CI can be shared only by the roots, which randomize to its RAP and
their DDEP segments.

• CSA main storage availability. It should be noted that the largest CI
size among all the opened DEDBs sets the size of the f? buffer. There
is only one FP buffer pool used for processing all DEDB data bases.
Although C1 sizes can vary between AREACs) and DEDBs, a comoon CI size
will save storage space.

If only one AREA is defined with a CI size of 4096 bytes, no matter
what the other CI sizes are, the entire buffer pool will be set up
with 4096 bytes buffers.

• Track utilization according to the device type.

• Performance of sequential dependent segment writes. A larger CI
requires a fewer number of 1/Os to write the same amount of sequential
dependent segments.

• The maximum segment size which is 3976 bytes if using a 4096 CI size.

6.3.1.2 DEDB unit-of-Work (UOWl Size

The UOW is the unit of space allocation by which one specifies how large
the root addressable and the independent overflow parts are to be.

Three factors might affect the size of the UOW:

• The DEDB Direct Reorganization Utility runs on a UOW basis.
Therefore, while the UOW is being reorganized, none of the CIs and
data they contain are available to other processing.

A large UOW could cause resource contention, resulting in increased
response time if the utility is run during the online period.

A small UOW could cause some overhead during reorganization as the
utility switches from one UOW to the next one with very little useful
work each time. But this might not matter so much if reorganization
time is not critical.

• Another factor that could affect the size of the UOW is the sequential
processing of DEDB using FP non-message-driven regions or BN?
regions. There is a facility known as the processing option 'P' that
can be used to speed up sequential processing of DEDB in batch mode.
This facility is directly related to the size of the UOW. Refer to the
FAST PATH FEATURE DESCRIPTION AND DESIGN GUIDE, G320-5775 for a dis
cussion on this subject.

• The dependent overflow (DASD space) usage is more efficient with a
large UOW than with a small UOW.

Fast Path feature 107

6.4 AREA CONCEPT

In DL/I data base organizations, a large data base implies a large data
set, or. if multiple data sets are used, the data record structure is bro
ken up on a segment basis and pieces of the same data base record are ~ound
in these multiple data sets.

DEDB implements multiple data sets called AREAs. But the major difference
with DL/I data base organization is that each data base record is entirely
contained within one of the data sets as shown by Figure 40. Each AREA is
a VSAM ESDS that is managed by FP using VSAM ICIP. This concept leads to
some very valuable advantages that are described below especially in the
area of extended operation with large data bases.

AREA-3
AREA-2

AREA-l

Figure 40. AREA Concept

Space management parameters can vary from one AREA to another. This
includes: CI size, UOW size, root addressable part, overflow part, and
sequential dependent part. Also, the device type can vary from one AREA to
the other.

It is feasible to define an AREA on more than one volume and have one of
them dedicated to the sequential dependent part. This implementation
might save some seek time as sequential dependent segments are continuous
ly added at the end of the sequential dependent part. The savings will
depend on the current size of the sequential' dependent part and on the
blocking factor used for the s~quentialdependent segments. If an AREA
spans more than one volume, these volumes must be of the same type.

VSAM control blocks can optionally be page fixed by requesting from IMS/VS
that DEDB control blocks be page fixed. This is done by specifying the
DEDB parameter in. the procedure member DFSFIXnn. As part of the open proc
essing of an AREA, the system will then modify the corresponding ACB macro
to include the CFX option. This in turn will request from VSAM that con
trol blocks be page fixed.

108 IMS/VS - VSAM INTERFACE GUIDE

VSAM ICIP requires AREAs to be preforrnatted. This means that a VSAM Define·
must be followed by the execution of the DEDB Initialization Utility. Each
invocation of the utility allows all AREAs of one single DEDB to be ini
tialized.

The designer should keep in mind that the DEDB is not extendible. Suffi
cient space must be provided for all parts. A /DI~PLAY command and a new
data base call (PaS) can help monitor the usage of auxiliary space. Unused
space in the root addressable and in the independent overflow parts can be
reclaimed through reorganization using the DEDB Direct Reorganization
Utility.

6.4.1.1 system

The user must specify at IMS/VS initialization time the characteristics of
the buffer pool to be used in part to read and write DEDB CIs. The buffer
length specified must be large enough to accommodate CIs of any AREAs to
be opened while the system is active. VSAM ICIP assumes buffers are of the
correct size, a check will be made by IMS/VS at OPEN time for this purpo~e
and the OPEN will be rejected if the buffer size specified is too small.

6.4.2 space Allocation in Units-of-Work

The DEDB AREA is divided into three parts!

Root Adressable Independent Sequential
Part Overflow Dependent

Part Part

Figure 41. AREA Description

6.4.2.1 Root Addressable Part

The root addressable part itself is divided into Units-of-Work (UOW) which
are the basic elements of space allocation and also the basic unit of
reorganization.

A UOW consists of a user-specified number of VSAM control intervals
located physically contiguous. The root addressable part contains root
segments and direct dependent segments.

Fast Path Feature 109

Each UOW in the root addressable part is further divided into a base sec
tion and an overflow section.

The base section contains those CIs of a UOW which are addressed by the
randomizing module, whereas the overflow section of the UOW is used as a
logical extension of a eI within that UOW (see Figure 42).

ROOT ADDRESSARLE PART
UOW UO~ UOW UOW

BASE BASE BASE BASE
SECT. SECT. SECT. SECT.

OVERFLW OVERFLW OVERfLW OVERfLW
SECT. SECT. SECT. SECT.

Figure 42. UOW Concept

6.4.2.2 Independent Overflow Part

Root and direct dependent segments that cannot fit in the root addressable
part are written in the independent overflow part.

Any empty control interval (CI) in the independent overflow part can be
used by any UOW. However, once a CI has been obtained by a UOW, o~ly seg
ments belonging to this UOW can be stored therein.

6.4.2.3 sequential Dependent Part

Sequential dependent segments are entered in this part in a time-ordered
sequence without regard to the UOW containing the root segment. When this
space is filled, it is reused in a wrap around manner. Before this
happens, sequential dependent segments can be mass retrieved using the
DEDB Scan Utility. Then the DEDS Delete Utility should be invoked to
delete a logical contiguous portion or all of the sequential dependent
segments.

110 IMS/VS - VSAM INTERfACE GUIDE

6.4.3 DBD Melero

The DBD description is essentially the same as for DL/I data bases with
the exception of the AREA statement. An AREA statement is required for
each AREA of a DEDB.

AREA DD1=ddname,DEVICE=device,MODEL=modal,SIZE=size,
UOW=(numberl,ovarflowl),~OOT=(number2,ove ... flow2)

Explanation:

DD1=ddname

SIZE=size

'ddname' references the JCL DD statement defining the
VSAM ESOS which corresponds to this AREA.

The 'size' of CI in bytes size can only be: 512, 1024,
2048, or 4096 bytes. No default value is allowed. 2048
cannot be spe~ified with 3340 and 3344.

UOW=(numberl,overflowll 'numborl' specifies the number of VSAM CIs in
a UOW. Its value must be in the range from 2 to 32,767.

'overflowl' represents the number of CIs in the overflow
section of a UOW.

'overflowl' can be any value greater than or equal to one
but at least one less t~an 'numberl'.

ROOT=(number2,overflow21 'number2' specifies the total number of UOWs
to be allocated to the root addressable and independent
overflow parts. The rest of the VSAM data set is
reserved for the sequential dependent segment part. The
value must be at least '2', and cannot be larger than the
amount of space actually in the VSAM data set.

'overflow2' specifies the number of UOWs reserved for
the independent overflow part. It must be at least '1'
and must be less than the'value specified for number2;

6.5 ADVANTAGES OF'DED!

The ·AREA concept, as explained above, leads to the following advantages:

• The division of the data base into AREAs is transparent to the appli
cation program.

• Large data bases can be implemented (many times bigger than the 2**32
byte limitation for a single VSAM data set~)

Fast Path Feature 111

• A maximum of 240 AREAs per DEDB is allowed.

• AREAs have a useful degree of independence. Not all AREAs need be
online and the master terminal operator has the facility to start or
stop an AREA. In an MVS environment, dynamic allocation/deallocation
at the DEDB/AREA level is supported.

• The impact of permanent I/O errors and catastrophic .failures is
reduced with DEDB. DL/I requires that all data base data sets be
available all the time. With DEDB the data not available is limited
only to the AREA affected by the failure. Because all DEDB utilities
run at the level of the AREA, the recovery of the failing AREA can be
done while the rest of the data base is accessible to online process
ing. The currently allocated log volume will have to be freed by a
/DBR AREA command and used in the recovery operation. Track recovery
is also supported. The recovered AREA can then be dynamically allo
cated (MVS) back to the operational environment.

• Each AREA can have its own space management parameters. The user may
choose these parameters according to the message volume which may vary
from AREA to AREA.

• AREAs of a DEDB can be allocated on different volume types.

• All maintenance and recovery operations are on an AREA basis, instead
of on a whole data base.

• Maintenance operations like reorganization, retrieve, and delete of
sequential dependent segments -are all done online, increasing the
availability of the data to the network.

6.6 ~ESTRICTIONS WITH DEnS

The following is a list of some limitations or restrictions pertaining to
DEDB compared with other DL/I data base organizations:

• As shown before, the data base record structure is very simple and the
number of segment types are limited.

• There is no update capability against the sequential dependent seg
ment type but this is not necessarily a limitation, it could be
regarded as an additional security facility.

• DEDB data bases can only be processed online, there is no offline
processing capability.

• The maximum segment size allowed is 3976 bytes if using a 4096 bytes
CI size.

112 IMS/VS - VSAM INTERFACE GUIDE

7. 0 ACC~~S M~THn!) SF.RVICES AS At~ :n:~/vs UTILITY

7.1 CAPAnIlITIES OF ACCESS M~THOD SERVIC~S

Access Method Services is the basic VSAM utility program used to cre~te
and maintain all VSAM data sets. It serves as a single interface for the
user to manipulate catalog information and the structure and content of
data sets.

A large number of different services are provided by Access Method Ser
vices, each of which is invoked by a speGial command. This avoids the
need for the user to contend with multiple utility programs and their
individual formats and requiremeits as is the c~s~ with the OS Utilities.

The various commands available under Access Method Services are described
below.

7.1.1 DEFINE co~m~nd

This command is used to create catalogs, and catalog entries for clusters,
data spaces, and nonVSAM data sets. In MVS, catalog entries for ALIASes,
GDGs, and PAGESPACEs can also be created. DEFINE creates the catalog
entry for a VSAM object and allocates space for this object.

All VSAM data sets must be DEFINEd before they can be loaded or used in any
way.

For correct coding see OS/VS1 ACCESS METHOD SERVICES, GC26-3~40 or OS/VS2
ACCESS METHOD SERVICES, GC26-3841.

7.1.2 REPRO

This command copies records from one data set to another. Allor a
selected portion of the records in a data set may be copied in key
sequence or in physical sequence.

The records to be copied may be identified by keys (FROMKEY, TOKEY), by
Relative Byte Addresses (FROMADDR, TOADDR), or by record count (SKIP,
COUNT) .

If the user does not specify that a particular portion of a data set is to
be copied, then the entire data set is copied.

When records are transferred into an empty data set, REPRO performs an
initial load and creates a reorganized copy of the original data set.

Access Method Services as an IMS/VS Utility 113

The different functions of REPRO are:

• Add records to the end of an ESDS

• COpy a VSAM catalog (MVS only) (move a catalog to another disk)

• Load/copy data sets

ISAM ~ .SAM (backup/unload an ISAM data set)
ISAM -. VSAM (convert an ISAM data set to VSAM
SAM ~ SAM (COpy, e.g. tapes)
SAM ~ VSAM (load a VSAM data set)
VSAM ~ SAM (backup/unload a VSAM data set
VSAM ~ VSAM (copy/merge data)

• Merge records into KSDS or RRDS

• Punch or print

ISAM data sets
SAM data sets
VSAM data sets

• Unload/reload a VSAM catalog (backup)

7.1.3 PRINT

format)

This command is used to print ISAM, SAM or VSAM data sets, or parts of
these data sets. Selection of the, part of the data set to be printed may be
made in the same way as is done for REPRO. The printout can be obtained in
hexadecimal, character or dump format.

7.1.4 EXPORT/IMPORT

These commands are used to unload/reload VSAM data sets for backup and/or
transportation.

The EXPORT command has, among others, two important options:
TEMPORARYIPERHANENT. EXPORT PERMANENT unloads the data set and deletes
the entries from the catalog. EXPORT TEMPORARY produces an unloaded copy
of the data set, and marks the catalog entry, to show that a temporary
copy exists. In the unloaded format, the data set is not accessible.

EXPORT uses the VSAM catalog to copy all related information such as clus
ter entry, data entry, and index entry (for KSDS only) from the catalog to
the target data set, a SAM VBS data set (allocated by the user via JCL).

114 IMS/VS - VSAM INTERFACE GUIDE·

IMPORT redefines and, reloads the data set. Redef ini tion is done by
restoring the entries copied out of the catalog by EXPO~T. If the entries
still exist in the catalog, IMPORT will replace them with the EXPCRTed
versions. IMPORT will also produce a reorganized form of the d~+'a set by
reloading all of the records in the proper sequence. IMPORT can be con
sidered equivalent to a REPRO preceeded by an internal DEFINE.

These commands can also be used to disconnect/reconnect a user catalog
from/to a VSAM master catalog (if a user catalog is disconnected from the
master catalog by deleting its connector entry, it cannot be accessed from
that system). No unload/reload is necessary.

7.1.5 LISTCAT

This command is used to list the VSAM catalog entries or parts of them. It
is recommended that a LISTCAT command be executed after any DEFINE command
in order to produce a hardcopy record of the options selected by the user
or chosen or overridden by VSAM. Examples and explanations of LISTCAT
output are included in section "VSAM Catalog Information" on page 125.

7.1.6 VERIFY

This command is used to ensure a catalog reflects the correct 'High-Used
RBA' of a data set (the 'High-Used RBA' points to the last byte used in the
VSAM data set; see "DATA Component Allocation n on. page 126). VERIFY
should be used after an OPEN-error caused by a previous system failure or
an ABEND condition while updating the data set.

VERIfY c~nnot be used for empty KSDS data sets (identified by High-Used
RBA = 0 in the catalog cluster entry). This condition will occur when an
ABEND or system failure occurs during the load of the data set with the
SPEED or RECOVEkv option specified (see section "SPEED/RECOVERyn on page
70), or while reloading a reusable data set specifying the REUSE option.
VERIfY and its usage in IMS/VS are also discussed in "VERIFY" on page 122.

7.2 ACCESS METHOD SERVICES FUNCTIONS ~ELATED TO DATA BASES

Access Method Services is a valuable addition to the inventory of tools
available to the IMS/VS data base user. It has certain unique capabilities
that are not available through the normal set of IMS Utilities which are
particularly useful when dealing with data bases consisting of VSAM data
sets. In addition, there are circumstances in which it may be advantageous
to use Access Method Services inste~d of the IMS Utilities to perform the
same functions. In the following sections, those facilities of Access
Method Services which relate specifically to the data base environment are
discussed.

Access Method Services as an IMS/VS Utility 115

7.2.1 Backt:fD

One of the most important considerations in maintaining the integrity of a
data base is the provision of an adequate level of backup. Backing up a
data base essentially consists of making a complete and accur3te copy of
all of the information stored in the data base.

The IMS/VS system supplies a special purpose program for making back up
copies of data bases, the IMAGE COPY utility. This utility is designed to
interface with the Restore and Recovery facilities of IMS/VS in order to
produce a complete data base management service. However, IMAGE COpy is
not the only acceptable way to back up a data base. Access Nethod
Services' REPRO and EXPORT commands may also be used for this purpose.

7.2.1.1 Backup by REPRO

REPRO may be used both to create a backup copy of a data base and to subse
quently restore the data base from the backup copy. Before the backup may
be restored~ the data set must be emptied by either deleting anc redefin
ing the data set. or by specifying the REUSE option. If no records have
been either added to or deleted from the data set between the time that
the backup was taken and the time that it is restoredl then the REPLACE
optio'n may be used. For further information on the REUSE and REPLACE
options of REPRO, refer to the appropriate Access Method Services manual.

The ability of REPRO to select~vely copy portions of a data set is not
greatly useful for backing up data bases. Although it is possible to con
ceive of cases where a partial backup may be desirable, the usual require
ment is for a copy of an entire data base.

In order to produce a backup copy of a data base all of the data sets which
comprise the data base must be individuallyREPROed. It is important that
no updating be allowed against the data base until all of the data sets
have been copiedl otherwise there may be a loss of synchronization between
the various portions of the data base. This effec~ can be achieved within
a single CPU by using SHAREOPTIOH 1 as explained in "VSAM Sharing" on page
83.

The time required to take a backup with REPRO may be reduced by running
the REPROs for the data sets in parallel and by allocating sufficient
buffers with the BUFNI and BUFND JCL parameters. The recommended number of
buffers for REPRO is:

BUFNl = 2
BUFND = 2 * data CIs/track

116 IMS/VS - VSAM INTERFACE GUIDE

There are two drawbacks to the use of REPRO for backup purposes. The first
is that it only copies the records from a data set with the result that,
when the backup is restored, statistical and status information from the
VSAM catalog is lost. The second is that, when the data set is restored
with REPRO, it is reorganized. Reorganization will change the RBA values
for KSDS records which may cause difficulties when Recovery or Backout
processing is attempted. ESDS records are never relocated by reorganiza
tion so there is no cianger of RBA discrepancies for this type of data set.
These difficulties arise because Recovery and Backout are based on the log
tape where many of the data base changes are recorded in terms of RBAs
rather than by keys.

7.2.1.2 Backup by EXPORT

Since-EXPORT creates a copy of all records in the data set and also copies
the catalog information for the data set, it is more suitable for Backup
than is REPRO. This is because copying the catalog entry along with the
data set will ensure that the two remain in synchronization thereby avoid
ing one of the problems which may occur with REPRO.

Any data set which has been backed up with EXPORT mu~t be recovered by
I~1PORT. Unlike REPRO, there is no need to empty the data set before
IMPORTing the backup copy since IMPORT will perform a complete replacement
of the data set and its catalog information in every case. However, this
does mean that the data set will be reorganized after IMPORT and may
result in Recovery and Backout problems.

Each ~ata set in a data base must be individually EXPORTed for backup and
IMPORTed for restore. No updating of the data base should be allowed dur
ing the period of EXPORT or of IMPORT. SHAREOPTION 1 is also applicable
to this case and will ensure that no such updating takes place.

The performance of EXPORT and IMPORT may also be improved through parallel
scheduling and buffer allocation. The buffer recommendations for these
two commands are exactly the same as for REPRO.

7.2.1.3 Comparison with IMAGE COPY utility

There are two forms of the IMAGE 'COpy Utility, Batch and Online. Both
forms of IMAGE COPY have the ability to create 1 or 2 backup copies of the
data sets in a data base as opposed to REPRO and EXPORT which can only cre
ate 1 copy at a time. The major differences between the Batch and Onl~ne
versions of-Image Copy are:

1. Batch runs as a Stand Alone (DL/I) program while Online runs as a BMP
under the IMS/VS Control Region.

Access Method Services as an IMS/VS Utility 117

2. Batch buffer allocation is performed via JCL parameters while Online
buffers must be allocated in the OFSVSMxx member of the IMS procedure
library as explained in "VSAM BUFFER POOL Definition Parameters" on
page 77.

3. A DO statement for each data set to be copied must be included in the
JCL for the Batch version but this is not necessary for the Online
version. This is because Online Image Copy interfaces with the Control
Region where the data sets are already allocated.

4. Batch can produce copies of all of the data sets in a data base in a
single invocation while Online copies each data set separately.

Both forms of IMAGE COPY create copies of the data sets by writing them
out, control interval by control interval, in physical sequence. They also
include certain special control records in the output copy of the data set
for use during restoration. When Image Copies are restored, the data sets
are not reorganized but are recreated in their original form. This means
that Recovery and Backoot can be applied directly to a restored IMAGE COPY
without fear of problems due to RBA changes. However, Image Copies do not
reset the VSAM catalog information when restored so there is a chance that
the catalog entries may be incorrect after restore.

For further information on the IMS IMAGE COpy facility, refer to the
IMS/VS UTILITIES REFERENCE MANUAL, SH20-9029.

Each of the three ways of taking Backups has advantages and disadvantages
which must be considered when choosing a Backup technique. REPRO is poten
tially the fastest of the three since it hai the least overhead. On the
other hand, REPRO also has the greatest exposure to problems with Recovery
and Backout processing and loss of catalog information. EXPORT and Image
COpy perform more functions than does REPRO and may therefore execute more
slowly. However, EXPORT preserves catalog information ~nd IMAGE COpy is
suitable for subsequent Recovery and Backout processing.

If the necessary time and resources are available, Backup should be done
by both EXPORT and IMAGE COpy for maximum security. The EXPORT copy can
then be used when the data base needs to be reset but does not require
Recovery or Backout while the IMAGE COpy will be used when Recovery and
Backout are necessary. Furthermore, by taking Backup with two different
methods and keeping two copies of the data bases, the chance of some sort
of failure which prevents restoring a data base is greatly reduced.

7.2.2 Reorganization

When a data base experiences a great deal of insert and delete activity,
data base records may become badly fragmented and space may be lost due to
its occupation by deleted segments. This will cause a loss of processing
efficiency and may sever~ly impact response times. In order to reclaim
lost space and bring the data base records back into hierarchical
sequence, the data base must be reorganized.

118 IMS/VS - VSAM INTERFACE GUIDE

7.2.2.1 Function of IHS/VS Re-org utilities

The IMS/VS system provides ten utility programs which are used for data
base reorganization:

1. HISAM Reorganization Unload (DFSURULO): used to unload H!SAM~ SHISAM
and HIDAM Primary Index data bases to a QSAM formatted data set.

2. HISAH Reorganization Reload (DFSUnRLO): used to reload HISAM, SHISAM
and HIDAM Primary Index data base from the QSAM formatted data set
created by HISAM Reorganization Unload.

3. HD Reorganization Unlo~d (DFSURGUO): used to unload HDAM~ HIDAM or
HISAM data bases to a QSAM formatted data set.

4. HD Reorganization Reload (DFSURGLO): used to reload HDAM, HIDAM or
HISAM data bases from the QSAM formatted data set created by HD Reor
ganization Unload.

5. Data Base surveyor utility Feature (DFSPRSU~): used to report on the
organization of a data base in terms of chain lengths and free space
avaIlability in order to indicate which portions of a data base
require reorganization.

6. partial Data Base Reorganization utility (DFSPRCTl): used to reor
ganize selected parts of HDAM or HIDAM data bases as indicated by the
output of the Data Base Surveyor.

7. Data Base Prereorganization (DFSURPR01: used to create a control data
set which contains information on logical relationships and which
serves as input to the following three utilities.

8. Data Base Scan (DFSURGSO): used to extract information on logical
relationships from data bases which are not being reorganized and to
create a data set containing this information for input to the Prefix
Resolution utility.

9. Data Base Prefix Resolution (DFSURGIO): used to create a data set
that contains the prefix information needed to update the pointers for
segments which are used in logical relationships.

10. Data BaS2 Prefix Update (DFSURGPO"): used to perform the actual prefix
pointer updates indicated by the output of the Prefix Resolution util
ity.

Access Method Services as an IMS/VS Utility 119

The first six of the programs are known as the Physical Reorganization
utilities and the last four are known as the Logical Relation~hip R~sol
ution utilities. A complete descriptions of these utilities may be found
in the IHS/VS UTILITIES REFERENCE NANUAL, SH20-9029

The Physical Reorganization Utilities, except for the Data Base Surveyor,
perform two basic functions, unload and reload. Unload is done segment by
segment in hierarchical sequence through a series of GET-NEXT calls. If
the data base is badly disorganized or very large, the unload may take an
extremely long time. Reload is also done in hierarchical sequence and is
effectively an initial load of the data base. The time required for
reloading the data base will be approximately the same as the time for the
initial load of that data base.

The Primary Index of an HIOAM data base will be completely rebuilt by
Reload but, if any Secondary Indexes are present, the Logical Relationship
Resolution Utilities must also be used to complete their reconstruction.
Should the data base being reorganized participate in any logical
relations, then the Logical Relationship Resolution Utilities must be
used in order to ensure that all of the prefix pointers are correct.

7.2.2.2 Re-org Capabilities of VSAH

Although both REPRO and EXPORT/IMPORT reorganize VSAM data sets, this is
not equivalent to data base reorganization. VSAM reorganization works in
terms of logical records as opposed to data base reorganization which
works in terms of segments. All that VSAM reorganization is able to do is
to manipulate the structure and sequence of the logical records. VSAM is
not aware of the data base segments stored in its logical records and is
unable to reorder them into hierarchical sequence. Furthermore, VSAM has

'no ability to produce the work data sets which are required for reorgan
ization of data bases with logical relationships. I flog ical
relationships exis\t for the data base being reorganized, the IMS reorgan
ization utilities must be used.

When a ~SDS is reorganized, the records are loaded in key sequence, VSAM
free sp~ce is reallocated according to the values specified in the cluster
definition and the index component is reb~ilt. This 'removes the fragmenta
tion of the data set caused by CI and CA splits and recovers free space
which had been used by insertions. '

Reorganization of an ESOS must involve a user program since simply unload
ing and then reloading the data set will not cause any change in the
structure or sequencing of an ESOS. An ESOS can be effectively reorganized
by a user written program which creates a data set consisting of those
records which are still current, dropping any records which may have been
flagged or otherwise indicated as being 'deleted'. The ESOS may then be
emptied and the data set created by the user program REPROed into it. This
is the o~ly means available to restruct~re an ESDS and to reclaim space
occupied by unwanted records since delete (ERASE) requests are not allowed
for an ESOS.

120 IMS/VS - VSAM INTERFACE GUIDE

7.2.2.3 Access Method Services as a Reorganization Tool

Although the REPRO and EXPORT/IMPORT commands are unable to deal with data
base segments or logical relations, there are certain circumstances under
which these commands can be effectively used to reorganize data bases. The
applicability of Access Method Services as a means of reorganization is
limited to the KSDS components of HISAM, SHISAM and INDEX data bases.
Access Method Services is not suitable to the reorganization of ESDS since
this requires the intervention of some sort of special unload program.

In SHISAM and INDEX KSDS, the segments are each stored in a separate log
ical record and identified by unique keys so that there is no real differ
ence between VSAM key sequence reordering and IMS hierarchical sequence
reordering. For the case of an HISAM KSDS, there may be multiple segments
in each logical record but these segments are continually maintained in
hierarchical sequence within the record. Thus, VSAM reorganization will
achieve the same result as will the IMS utilities with the single excep
tion that VSAM reorganization will not eliminate deleted segments from the
data base.

It is recommended that REPRO be used in reorganization rather than
EXPORT/IMPORT for the following reasons:

• Statistical information in the catalog is used to monitor the status
of data sets and to determine the need for reorganization. It should
therefore be reset with each reorganization in order to provide the

. current rather than the historical status of the data set.

• Avoiding the extra overhead of copying and restoring catalog entries
will decrease the elapsed time for reorganization and allow the data
base to be restored to ~ usable condition sooner.

• The ability to selectively copy and restore portions of the data base
with REPRO provides a partial reorganization capability. This can be
very useful in cases where fragmentation of the data set is localized
and it is necessary to return the data base to operational status as
soon as possible.

Reorganization with REPRO is done in three steps:

1. Make a copy of the KSDS by REPROing it to a sequential data set on tape
or disk.

2. Empty the data set by deleting and then redefining it. Alternatively,
the REUSE or REPLACE options can be used in step 3 and this step may
then be omitted.

3. Create-the reorganized data set by REPROing the copy made in step 1
back into the KSDS.

If Backup has been taken with EXPORT and it is desired that the data set be
both restored and reorganized, then this may be accomplished by simply
IMPORTing the Backup copy.

Access Method Services as an IMS/VS Utility 121

The use of Access Method Services to reorganize IMS/VS data bases is suit
able for SHISAM, HISAM, HIDAM Primary Indices and Secondary Indices with
unique keys which have experienced a high level of insert activity and
which do not participate in logical relationships. It is not necessary to
make any special provisions for the Dependent Overflow pointers in HISAM
data bases nor for the prefix pointers in INDEX data bases during reorgan
ization with Access Method Services. This is because these pointers are
not changed by reorganization of th~ data bases which contain the~.

Access Method Services should not be used for HISAM data bases which have
logical relationships or which are being reorganized in their entirety to
reclaim space occupied by deleted segments. Nor should it be used for
INDEX data bases when the data base on which the index is defined is also
being reorganized.

It is likely that Access Method Services reorganization will be faster
than the IMS Physical Reorganization Utilities in the areas where it is
applicable but it is the users' responsibility to evaluate the suitability
of this technique to their own environment.

7.2.3 VERIFY

There is a macro which is part of the VSAM system called VERIFY~ This is
the same macro which is issued internally by the Access Method Services
command VERIFY.

The purpose of VERIFY is to ensure that the catalog value which contains
the highest used RBA (HURBA) of the data set component is not le~s than
the formatted Software-end-of-file (SEOF) control interval (last 4 bytes
of the CI. are binary zeroes).

VERIFY validates the HURBA by accessing the data or index control interval
pointed to by the corresponding current HURBA indicated in the catalog.
This control interval is compared for a SEOF control interval. If it is
not recognized as an SEOF control interval, the control intervals are
accessed forward from that point until the SEOF is found or until the high
allocated RBA is reached. If the SEOF is lower than the HURBA, unpredict
able results will be encountered (i.e. I/O error, etc.).

IMS/VS internally issues the VERIFY macro. This is performed in batch
utilities and user programs . as well as- in the-online system whenever

. required. Beginnirig with IMS/VS 1.1.5, this is also performed by batch
IMAGE COPY. VERIFY is performed even in cases where not absolutely neces
sary, but is done as a safeguard. Therefore, an IMS/VS program accessing
a VSAM DL/I data base need not include an Access Method Services VERIFY
jobstream immediately·prior or subsequent to the execution of the IMS/VS
program. The only case may be in SHISAM when the DL/I file is OPENed as a
native VSAM data set and accessed with non-DL/I requests.

122 IMS/VS - VSAM INTERFACE GUIDE

8.0 STATISTICAL INFORMATION

8.1 VSAM CATALOG INFORMATION

Catalog records for a VSAM data set contain the following information:

• Device type and volume serial numbers of volumes containing the data
set.

• Location of the extents of the data set and secondary allocations, if
any.

• Attributes of the data set, such as control interval size, physical
record size, number of control intervals in a control area, location
of the primary key field for a KSDS, etc.

• Statistics, such as the number of insertions, updates, retrievals,
splits, etc.

• Password protection information.
• An indication of the connection between data sets and their indexCes),

for example, the index and data components of a KSDS.
• Historic information, such as creation and expiration dates, owner

identification, etc.

A VSAM catalog also contains information regarding the location of data
spaces and available space on volumes that contain VSAM data sets. The
information in the VSAM catalog is very important for monitoring the sta
tus of the data sets. It can be used to determine if the data set is
extending more rapidly than is expected and requires extra space allo
cation, if space requirement calculations were accurate and if the level
of activity in the data set has caused fragmentation necessitating reor
ganization.

The following catalog listings and descriptions have been extracted from
the manual VSAH PRIMER AND REFERENCE, G320-5774, which contains more
detailed descriptions.

8.1.1 Allocation Information

Each VSAM ESDS has allocation information for its DATA component, and a
KSDS for its DATA component and its INDEX component. All catalog informa

·tion can be obtained by using the LISTCAT command of the Access Method
Services utility.

8.1.1.1 CLUSTER Allocation

The cluster has no allocation information. The allocation information for
a cluster is included in the DATA component CESDS), and in the DATA and
INDEX components for a KSDS.

Statistical Information 123

8.1.1.2 DATA Component Allocation

The following is an example for the DATA component of data set (cluster)
CUSTOMER.K (the LISTCAT output had to be modified to fit on the page):

CLUSTER - CUSTOMER.K
DATA - CUSTOMER.K.D

ALLOCATION
SPACE-TYPE---CYLINDER HI-ALlOC-RBA--I013760
SPACE-PRI-~---------S HI-YSED-RBA---I013760
SPACE-SEC-----------2

VOLUME
VOLSER---------WTVSAH PHYREC-SIZE------I024 HI-AlLOC-RSA--I013760
DEVTYPE---X'10502009' PHyRECS/TRK--------ll HI-USED-RBA---I013760
VOlFLAG---------PRIME TRACKS/CA----------19
EXTENTS:
LOW-CCHH--X'00040000' LOW-RBA-------------O TRACKS-------------95
HIGH-CCHH-X'00080012' HIGH-RBA------IOI3759

Figure 43. LISTCAT output: DATA component allocat~on information

Explanation:

SPACE-TYPE the allocation of this data component is in terms of
CYLINDERs.

SPACE-PRI the primary allocation value is 5 cylinders.
SPACE-SEC the secondary allocation value is 2 cYlinders.
HI-ALLOC-RBAzO the highest RBA (plus 1) allocated by VSAM for this data

component to store data. Points to the end of the last
extent currently allocated.

HI-USED-RBAZO the highest RBA (plus 1) within the last CA that actually
contains data (in· KSDS it is the highest RBA in the last CA
containing data). If this value is 0, the data set is con
sidered to be empty.

VOLSER the volume serial number WTVSAM.
OEVTYPE the device type is 3330 (see Access Method Services

manual) .
VOL FLAG PRIME indicates that this is the first volume on which data

PHYREC-SIZE
PHYSRECS/TRK

records for this data component are stored.
physical record size.
11 physical records with 1024 bytes are written per track
on a 3330.

20 HI-ALLOC-RBA and HI-USED-RBA are included both under ALLOCATION and
VOLUME. The ALLOCATION part gives overall information for the volume.
If there are multiple keyranges on a volume multiple VOLUME entries
will exist (one per keyrange) each with HI-ALLOC-RBA and HI-USED-RBA
per keyrange.

124 IMS/VS - VSAM INTERFACE GUIDE

TRACKS/CA

LOW-CCHH

HIGH-CCHH

LOW-RBA

HIGH-RBA
TRACKS

one CA is 19 tracks. Since the allocation was made in terms
of CYLINDERs, VSAM set the CA size equal to one cylinder.
One cylinder on a 3330 contains 19 tracks.
the starting physical address of this extent of the data
set. The first four digits are the cylinder number in
hexadecimal an~ the last four digits are the track number
in hexadecimal.
the ending physical address of this extent of the data set
in the-same format as for LOW-CCHH.
the lowest RBA in this extent of the data set. 0 indicates
that this is the first extent.
the highest RBA in this extent.
the total number of tracks in this extent of the data set.

This information is very useful in locating the data set on disk and in
determining whether the data set has taken secondary extents (the EXTENT
information could not be shown here due to limited page width).

8.1.1.l INDEX Component Allocation

CLUSTER ------- CUSTOMER.K
INDEX ------ CUSTOMER.K.I

VOLUr·1E
VOLSER---------WTVSAH PHYREC-SIZE------2048 HI-ALLOC-RBA----l2288
DEVTYPE---X'30S02009' PHYRECS/TRK---------6 HI-USED-RBA------2048
VOLFLAG---------PRIME TRACKS/CA-----------1
EXTENTS:
LOW-CCHH--X' 00030011' LOW-RBA-------------'O TRACKS--------------l
HIGH-CCHH-X'0003001l' HIGH-RBA--------12287

VOLUME
VOLSER---------WTVSAH PHYREC-SIZE------2048 HI-ALLOC-RBA----22528
DEVTYPE---X'lOS02009' PHYRECS/TRK~--------6 HI-USED-RBA-----22528
VDLFLAG---------PRIME TRACKS/CA----------19
EXTENTS:
LOW-CCHH--X'00040000' LOW-RBA---------12288 TRACKS-------------95
HIGH-CCHH-X'00080012' HIGH-RBA--------22527

Figure 44. LISTCAT output: INDEX component allocation information

IMBED was ~pecified for the cluster, therefore, two extents are shown. The
first extent contains only the high-level index (1 track).

The second extent contains the imbedded index sequence set and the DATA
component. The same extent is also shown when listing the .DATA component
(see previous section).

Statistical Information 125

8.1.2 Attributes Information

S.1.2.1Cluster Attributes

The CLUSTER component HISTORY and PROTECTION group is similar to the same
groups in the DATA component~ which is explained in the next'section. The
ASSOCIATIONS group contains the DATA and INDEX component names ,of this
cluster.

8.1.2.2 DATA Component Attributes

The following is one part of the LISTCAT output of the DATA component
(output ~s concentrated to fit on this page) :

DATA ------- CUSTOMER.K.D
HISTORY

OWNER-ID.-(NULL) CREATION--79.355 RCVY-VOL-WTVSAI1 RCVY-CI-X'OOOOOD'
RELEASE--------2 EXPIRAT.--OO.OOO RCVY-D~VT--X'10502009"

PROT.PSWO--(NULL) RACF--------(NO)
ASSOCIATIONS~

ClUSTER--CUSTOMER.K
ATTRIBUTES

KEYLEN---------S AVGLRECL-----200 EUFSPACE---4096 CISIZE-------I024
RKP------------O MAXLRECl-----200 EXCPEXIT-CNUll) CI/CA---------198
SH~OPTNS(1,3) RECOVERY SUBALLCC ~OERASE IND~XED NOWRITECHK
INBEb NOREPLICAT UNORDERED NC~EUSE NCNSPANNED

Figure 45. LISTCAT output: DATA component history and attributes

The HISTORY group contains the following para~p.ters:

OWNER-IDENT Identifies the OWNER (owner-id) of the object. '(NULL)'

CREATION
EXPIRATION

RCVY-VOL

RCVY-CI
RELEASE

RECY-DEVT

means no owner-id was specified.
the Julian date (YY;DOO) the entry was created.
the cluster can be deleted without specifying the PURGE
parameter (00.000).
Used for recoverable catalogs. Gives 'volser' of CRA volune
which contains duplex catalog information ..
Used for recoverable catalogs (CRA CI number).
Release number of VSAM under which the entry was created (all
current OS/VS systems use VSAM Release 2).
Used for recoverable catalogs (device type = 3330). Gives
device type of CRA volume.

126 IMS/VS - VSAM INTERFACE GUIDE

The PROTECTION group contains the following entries:

PROTECTION-PSWD indicates the MASTERPW, CONTROLPW, UPDATEPW and/or READPW
for this object. '(NULL)' means no p~ssword has been speci
fied.

RACF (MVS only) '(NO)' means this entry is not RACF protected.

The ASSOCIATIONS group lists the types and entry names of each entry asso
ciated with the present entry (no entry is associated to the DATA compo
nent) .

The ATTRIBUTES group contains the following entries:

KEYLEN
RKP

AVGLRECL
MAXLRECL
BUFSPACE

CISIZE
CI/CA
EXCPEXIT

SHROPTNS

RECOVERY
SUBALLOC

NOERASE

length of key (5 bytes).
relative key position in the logical record (key starts with
byte 0).
logical record length average is 200 bytes.
maximum record length is 200 bytes.
minimum space in bytes that will be used by VSAM for data and
index buffers for this KSDS cluster.
control interval size for this data component in bytes.
number of control intervals per control area.
'(NULL)' means no exception exit routine entry was specified
in the DEFINE command.
the SHAREOPTIONS values are '1' for cross-region and '3' for
cross-system.
is the loading option. The opposite attribute is SPEED.
the space for this cluster is suballocated by VSAM from a
suballocatable d-ata space.
the data are not overwritten with X'OO' when the entry is
deleted.

INDEXED INDEXED identifies this cluster as KSDS.
NOWRITECHECK write operations are not checked for correctness. Specifi

cation of WRITECHECK results in time consuming operations
not needed for DASD devices like IBM 3330, IBM 3340, or IBM
3350.

IMBED

NOREPLICAT

UNORDERED

NOREUSE
NONS PANNED

the sequence set index record is stored along with its data
control area and is replicated on its track.
the index records on the higher index level are not repli
cated.
if more volumes are used, it specifies the order of using the
volumes for allocation.
this data set cannot be used as work data set.
the records cannot span control intervals.

Note that 3850 (MSS) default parameters NODESTAGEWAIT and STAGE are not
listed with LISTCAT.

Statistical Information 127

8.1.2.3 INDEX Component Attributes

INDEX ------ CUSTOMER.K.I
HISTORY

OWNER-ID.-(NULL) CREATION-77.35S RCVY-VOL-WTVSAM RCVY-C!-X'OOOOOF'
RELEASE--------2 EXPIRATION---OO.OOO RCVY-DEVT-X'30502009'
P~OTECTION-PSWD---(NULL) RACF----(NO)
ASSOCIATIONS

CLUSTER--CUSTOHER.K
ATTRIBUTES

KEYLEN---------S AVGLRECL------O BUFSPACE-------O CISIZE------2048
RKP------------O MAXLnECL---2041 EXCPEXIT--(~ULL) CI/CA----------&
SHROPTNS(1,3) RECOVERY SUBALLOC NOERASE NOWRITECH~

IMBEd NOREPLICAT UNO~DERED NOREUSE

Figure 46. LISTCAT output: INDEX component history and associations

The INDEX .component HISTORY, P~OTECTION, ASSOCIATIONS, and ATTRIBUTES
groups are similar to the same groups in the DATA component~ which were
explained in the previous section.

Note that the BUFSPACE value for the index component is O. This is because
the buffer req~rem~nts of the index are included in the BUFS?ACE for the
data component .

•

8.1.3 Statistics

VSAM keeps statistics f9r each component of a data set.

This information is updated in the catalog if the data set is closed, or
if the data set allocates a new extent.

8.l.J.1 Cluster statistics

The CLUSTER component has nQ STATISTICS group.

128 IMS/VS - VSAM INTERfACE GUIDE

8.1.3.2 DATA co~poncnt statistics

The DATA component STATISTICS group is printed as follows:

STATISTICS
REC-TOTAL--------3000 SPLITS-CI-----------O EXCPS-------------!6Ql
REC-DELETED---------O SPLI7S-CA-----------O EXTE~~TS--------------l
REC-INSERTED--------O FREES~ACE-%CI------20 SYSTEM-TIi:ESTAMP:
REC-UPDATED---------O Fn~~SPACE-%CA------I0X'gnDE7F92DF1F7S00'
REC-RETRIEVED----3010 FRE~S?C-BYTES--245760

Figure 47. LISTCAT output: DATA component statistics

REC-TOTAL

REC-DELETED

REC-INSERTED

REC-UPDATED

REC-RETRIEVED
SPLITS CI/CA

this data component contains 3000 records. This is the
only field being updated during initial load.
no records have been deleted since the data set was
loaded.
no records have ,been inserted after loading the data set
(records added at the end are not counted here, there
fore this field will alw3Ys be TO' for an ESDS).
no records have been updated in the data set. This field
is updated when a PUT UPDATE request is issued for a
record.
3010 records have been read.
number of CI and CA splits since the data set was loaded.
The 'SPLITS-CA' field should ba examined frequently. If
the value increases too much, the data set should be
reorganized.

FREESPACE-%CI/CA 20% free space in the CI (1024 * 20% = 204 bytes) and 10%
of the number of CI per CA (198 * 10% = 19 CI) are left
free when the data set is loaded.

FREES PC-BYTES

EXCPSZl
EXTENTS
SYSTEM-TIMESTAMP

this is the amount of free bytes in the data conponent,
excluding the free space in the partially filled CI's.
This v;rue is calculated by multiplying the number of
free (never used) CIs by the CI size.
1601 EXCPs have been issued against this data component.
the number of extents of this data component.
the time (System/370 time-of-day clock value) this data
component was last closed (no important timestamp).

21 These are not really EXCPs. VS1=EXCPVR, SVS=EXCPVR, MVS=STARTIO
interfac~to IDS. A GTF trace of VSAM I/O will not show any EXCPs.

Statistical Information 129

8.1.3.3 INDEX Component statistics

The INDEX component STATISTICS group is printed as follows:

STATISTICS
REC-TOTAl----6 SPlITS-CI-----O EXCPS-------~----48
REC-DElETED--O SPlITS-CA-----O EXTEHTS-----------2
REC-INSERTED-O FREESPACE-%CI-O SYSTEM-TIMESTAMP:
REC-UPDATED--O FREESPACE-%CA-O X'8BDE7F92DF1F7S00'
REC-RETRIEV.-O FREESPC-BYTES--10240

INDEX:
lEVELS----------2
ENTRIES/SECT---14
SEQ-SET-RBA-12288
HI-lEVEL-RBA----O

Figure 48. LISTCAT output: INDEX component statistics

Most fields are identical with the same fields in the STATISTIC group of
the DATA component and were explained in the previous section.

The following fields are important for the INDEX component:

INDEX lEVELS '2' specifies that 2 index levels are built. The first level
is the 'Sequence set level' which is stored with the data
component (IMBED). The second level is the 'Index set
level' .

REC-TOTAL '6' means a total of 6 index records (CIs) exist. The
sequence set consists of 5 index records (one per CAl and the
index set consists of one index record (with the five entries
pointing to the sequence set records).

Note that the number of extents in the index component is 2, one for the
index set and one for the sequence set.

An index component which has the IMBED option will always have at least
one more extent than does the data component.

130 IMS/VS - VSAM INTERFACE GUIDE

8.2 DATA BASE STATISTICS

In addition to the information about data sets found in the VSAM catalog,
there is another important source of information on the behavior of data
bases consisting of VSAM data sets. This is the statistical data which is
maintained by the system during execution. There are two separ~te sets of
sta~istics, the Buffer Handl~r statistics and the VSAM st~tistics.

8.2.1 Source of st~tist;cal Inform~tion

The Buffer Handler Statistics are kept in a special control block in the
DL/I Buffer Handler pool and are maintained by the IMS to VSAM interface
routine, DFSDVSMO.

VSAM statistics are kept in the He3der control block (BSPH) of each sub
pool of VSAr~ buffers and are maintained by the VSAM shared resources
facility (both GSR and LSR). The VSAM statistics are moved into the DL/I
Buffer Handler Pool for reporting purposes when they are edited by a sta
tistics (STAT) call, an operator issued DISPLAY command or one of the Mon
i tor prog rams.

Output from the STAT call and DISPLAY command is sinilar to that of the
Monitors and, since this section is concerned with the reports produced
from the Monitor programs~ there will be no fu=ther discussion of STAT or
DISPLAY (for information on the STAT call refer to the IliS/VS APFLICATIOH
PROGRAMMING REFE~ENCE MANUAL, SH20-9026 and for information on the DIS
PLAY command refer to the IrlS/VS OPERATOx'S REFERENCE MAf-.:UAl, SE20-902S.)

8.2.2 The Monitor Programs

IMS/VS provides two separate monitors, the DB Monitor and the DC Honitor.
The function of each monitor is to gather and format IMS/VS performance
related data and to record this data on a statistics log. Information on
how to operate these monitors is found in the sections entitled 'Using the
IMS/VS DB Monitor' and 'Using the IMS/VS DC Monitor' in the IMS/VS OPERA

TOR'S REFERENCE MANUAL, SH20-9028.

The DB Monitor (DFSMNTBO) is available in IMS/VS DB (batch) systems. It
can monitor the activity between application programs and data bases.

The DC Monitor (DFSMNTRO) is available to IMS/VS DB/DC (online) systems.
In addition to performing all of the functions of the DB Monitor, it can
track and record information about activities occurring in the IMS/VS con
trol region as well as data communication activities.

The statistics produced by each monitor are used as input to the related
report programs.

Statistical Information 131

8.2.3 Monitor Report Printing Programs

The monitor report printing programs are offline u~ilities that organize
and print the performance related information collected by the monitors.
These reports summarize and categorize the traced IMS/VS activities at
various levels of detail. Each monitor run will produce enough data for
the offline utilities to produce a number of different reports. These
reports may contain totals, averages, and user defined or default distrib
ution displays for the activities reported.

The DB Monitor Report Printing Program is DFSUTR30. It can produce the
following reports:

• Statistics from Data Base Buffer Pools and VSAM Buffer Subpools
• Program I/O
• DL/I Call Summary
• VSAM Statistics (only available from DFSUTR30)
• Monitor Overhead
• Distribution Appendix

The accuracy of these reports depends upon the accuracy of the records in
the data set produced by the· DB monitor. Records of all events are
expected in pairs, start-event and end-event; events are not counted or
reported unless both records are received.

The DC Monitor Report Printing "Program is DFSUTR20. The report formats and
the nature of the information in the reports produced by DFSUTR20 are
identical or similar to those produced by DFSUTR30. The following types
of reports are printed by DFSUTR20:

• System Configuration
• Statistics from Buffer Pools
• Region Summary and IWAIT
• Program Timing, Calls, IWAITs, Scheduling and Dequeueing
• Communication Traffic and Timing
• Transaction Queueing
• 01/1 Call Summary
• General Reports
• Run Profile
• Distribution Appendi~

Like DFSUTR30, the accuracy of the reports produced by OFSUTR20 depends on
that of the corresponding monitor program.

8.2.4 VSAH Related Reports

Of all the reports produced by DFSUTR30 and DFSUTR20, there are only two
of specific interest in terms of VSAM related inf~rmation. These are the
VSAM Buffer SUbpools Report, which is printed by both programs, and the
VSAM Statistics Report, which is only printed by DFSUTR30.

132 IMS/VS - VSAM INTERFACE GUIDE

Examples of these reports are shown below. The values shown in these exam
ples are not intended to reflect actual values that may be received by a
user's execution of the utilities.

8.2.~.1 VSAM Buffer Subpools Report

The following is an example of the VSAM Buffer Subpools Report (the format
of this report has been condensed and modified slightly in order to make
it fit on to the page).

IMS MONITOR **BUFFER POOL STATISTICS** START 13:24:10 STOP 13:30:16
V SAM B U F FER P 0 0 L SUB POOL ID 1

SUBFOOL BUFFER SIZE22
TOTAL BUFFERS IN POOLzz:

NUMBER OF RETRIEVE BY RBA CALLS22
NUMBER OF RETRIEVE BY KEY CALLSz2
NUMBER OF LOGICAL RECORDS INSERTED INTO ESDSzZ
NUnSER OF LOGICAL RECORDS INSE~TED Ir~TO KSDS 2 2
NUHBER OF LOGICAL RECORDS ALTERED IN THIS SUBPOOLz2
NUMBER OF TIt:ES BACKG~OUt~D WRITE FUNCTION INVOKEDz Z
NUMBER OF SYNCHRONIZATION CALLS RECEIVED22
NUHBER OF VSAH GET CALLS ISSUED22
NUMBER OF VSAH SCHBFR CALLS ISSUED22
NUMBER OF TIMES CI REQUESTED ALREADY IN POOL23
NUUSER OF CONT INT READ FROfi EXTERNAL STORAGE23
HUMBER OF VSAM W~ITES INITIATED BY IMS/VS 23
NUttnER OF VSAr1 &'!~ITES TO MAKE SPACE IN POOLZ 3
NUMBER OF PERM WRT ERROR BUFFS NOW IN SUBPOOLz3
LARGEST NUMB OF PERM ERR BUFFS EVER IN SUBPOOL23

START
'tRACE

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

Figure 49. Statistics from VSAM Buffer Subpools Report

STOP
TRACE

503
73
o

13
179

o
o

249
21

357
9
o
o
o
o

2048
20

DIFF

503
73
o

13
179

o
o

249
21

357
9
o
o
o
o

The header information shows the time and date (date not shown because of
lack of space) at which the monitor began and ended tracing of activity as
well as the subpool identification number, buffer size and number of buff
ers. A report in this format will be produced for each buffer subpool
defined by the user in the DFSVSAMP data set or the DFSVSMxx member of
IMSVS.PROCLIB.

ZZ Values derived from DL/I Buffer Handler Statistics.
23 Values derived from VSAM statistics (BUFH)o

Statistical Information 133

The values for the various entries are shown for the start of the trace
an'd the end ~f the trace (START and STOP columns). Changes in these val
ues during the period of the trace are shown in the DIFFERENCE column.

Explanation of the entries:

RETRIEVE BY RBA

RETRIEVE BY KEY

INSERT IN ESDS

INSERT IN KSDS

ALTERED

BA~KGROUND WRITE

SYNCH CALLS

VSAM GETS
VSAM SCHBFR

number of accesses by RBA, usually to an ESDS or as a
result of following a pointer.
number of accesses by key to HISAM or HIDAM root seg
ments or to a Secondary Index.
number of times insertion of a root or dependent seg
ment required a new logical record to contain the new
segment in an HDAM. HIDAM or HISAM data base or a
shifted segment needed a new logical record in an
HISAM data base.
number of new root segments inserted into an HISAM or
INDEX data base.
number of logical records updated as a result of REPL
or DLET calls.
number of times the Background Write facility (speci-
fied in the OPTIONS statement) was invoked.
number of times an application program reached a
synchronization point.
self explanatory
number of times IMS requested VSAM to search the buff
er subpool to determine whether or not the required CI
is already in a buffer.

CI IN POOL number of times IMS found the re~uired segment in a CI
already in the buffer subpool.

READ FROM EXTERNAL number of times a eI had to be read from external stor-

WRITES BY IMS

WRITES FOR SPACE

WRT ERRORS NOW

WRT ERRORS EVER

age to satisfy a request.
number-of times IMS rather than VSAM requested a CI to
be written to external storage.
number of times a CI had to written out to free a buff
er for reuse.
number of buffers currently containing a eI that can
not be written to DASD because of some sort of write
error. These buffer are not reused until the write is
successful.
largest number of buffers held because of write
errors.

134 IMS/VS - VSAM INTERFACE GUIDE

8.2.4.2 VSAM statistics Report

The following is an example of the VSAM statistics report produced by
DFSUTR30.

The format of the report has been condensed and modified in order to make
it fit on the page. Four columns of values have had to be eliminated from
the report because of space limitation. These columns are headed: FOUND,
READS, USR WTS, and NUR WTS and follow immediately after the SCHBrR
column.

IHS HONITOR **VSAH STATISTICS** START 13:24:10 STOP 13:30:16

DL/I VSAH RET RET ISRT ISRT BFR BKG SYN
PCSNAM DDNAH FUNC CALL nSA KEY ESOS KSDS ALT WTS PTS GETS SCH!lFR
CHVBT2 DHSK09 IsnT 114 1.71 0.00 0.00 0.00 0.98 0.00 0.00 0.75 0.26

GN 10 9.40 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00
GU 39 2.10 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00
DLET 80 2.67 0.00 0.00 0.00 1.30 0.00 0.00 0.70 0.00

DD TOTAL 243 2.41 0.00 0.00 0.00 0.88 0.00 0.00 0.98 0.12

DXSK01 ISRT 54 0.11 0.85 0.00 0.43 0.18 0.00 0.00 1.33 0.00
GH 5 0.80 2.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00
GU 34 0.47 2.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00
OLET 22 4.27 1.00 0.00 0.00 1.00 0.00 0.00 1. '00 0.00

DD TOTAL 115 1.04 1.26 0.00 0.22 0.27 0.00 0.00 1.49 0.00

DXSK09 ISRT 49 2.69 0.00 0.00 0.00 1.10 0.00 0.00 0.65 0.24
GU 9 2.66 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00
GN 5 4.40 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00
DLET 37 3.02 0.00 0.00 0.00 1.40 0.00 0.00 0.59 0.00

DD TOTAL 102 2.90 0.00 0.00 0.00 1.07 0.00 0.00 0.80 0.11

DHSK04 GU 2 2.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00
DD TOTAL 2 2.00 0.00 0.'00 0.00 O. 00, ~. 00 0.00 2.00 0.00

PCB TOTAL 462 2.17 0.31 0.00 0.05 0.77 0.00 0.00 1.07 0.09

BATCH TOTAL 462 2.17 0.31 0.00 0.05 0.77 0.00 0.00 1.07 0.09

Figure 50. VSAM Statistics Report

This report provides statistics on a per call basis for changes in 13 sub
pool statistical values between the start and end of the trace. A set of
statistics is provided for each combination of program (PCBNAME), call
function CDL/I FUNe) and data set (DDNAME) detected during the trace. An
occurrence count is provided for each combination. Each set of statistics
is a summation of the changes in all the subpools divided by the number of
occurrences.

statistical Information 135

Summary lines show totals for each program (PCB), for each data set refer
enced by the program (OD NAME under PCB), and for the complete duration of
the trace period (BATCH).

The statistical values reported on are the same as those shown in the VSAM
Buffer Subpools Report.

Explanation of the headings:

RET RBA number of retrieves by RBA.

RET KEY number of retrieves by key.

ISRT ESDS number of logical records inserted into ESOSs.

ISRT KSDS number of logical records inserted into KSDSs.

BFR ALT number of logical records altered in the buffers.

BKG WRT number of times the Background Write facility was invoked.

SYN PTS

GETS

SCHBFR

FOUND

READS

USR WTS

NUR WTS

number of synchronization calls received by the buffer
handler.

number of VSAM GET calls issued.

number of VSAM SCHBFR calls issued.

(not shown) number of times the requested CI was found to be
already in the buffers.

(not shown) number of times VSAM read a CI from external stor
age.

(not shown) number of VSAM writes initiated by IMS/VS.

(not shown) number of VSAM writes issued to make space in the
subpool.

136 IMS/VS - VSAM INTERFACE GUIDE

(
\

ACB Access Method Control Block
eVSAM DCB equivalent)

CA Control Area
CI Control Interval
CIDF Control Interval Definition

Field
CHV Control Interval (used for

control interval access)
CRA Catalog Recovery Area
CSA Common Service Area
DASD Direct Access Storage Device
DBD Data Base Definition
DCB Data Control Block eos/vs

control block to describe a
nonVSAM data set)

DDEP
DEDB
DSCB

EMH
ESDS
FBFF
FP
FSAP
FSPF
GSAM

GSR

Direct Dependent segment
Data Entry Data Base
Data Set Control Block (in
the VTOC)
Expedited Message Handler
Entry Sequenced Data Set
Free Block Frequency Factor
Fast Path Feature
Free Space Anchor Point
Free Space Percentage Factor
Generalized Sequential
Access Method
Global Shared Resources

HISAH Hierarchical Indexed Sequen
tial Access Method

HSAM Hierarchical Sequential
Access Method

HDAM Hierarchical Direct Access
Method

HIDAM Hierarchical Indexed Direct
Access Method

HURBA Highest-used-RBA
IC IMAGE COPY Utility

A.O LIST OF AnnR~VI~TIC~S

ICI Improved Control Interval
access

ICIP Improved Control Interval
Processing

ILP Initial Load Program (User}
INS/VS Information M&nagement Sys-

te~/Virtual Storage
lOB Input Output Block
IS Index Set (part of the index)
KSDS Key Sequenced Data Set
LSR
LTWA
~SDB

N~~

OSAM

PLH

MCAT
RAP
RBA
RDF

Local Shared Resources
Log Tape Write Ahead
Main Storage Data Base
Nonshared Resources
Overflow Sequential Access
Method
Placeholder (VSAM control
block)
VSAM Ma~ter Catalog
Root Anchor Point·
Relative Byte Address
Record Definition Field

RRDS Relative Record Data Set
SDEP Sequential Dependent segment
SEOF Software-end-of-file
SIP Split-In-Progress Flag (bit)
5S Sequence Set (part of the

index)
SHISAH Simple Hierarchical Indexed

Sequential Access Method
SHSAM Simple Hierarchical Sequen

tial Access Method
UCAT VSAM User Catalog
VSAM Virtual storage Access Meth

od
UQW Unit-of-Work (see Fast Path)
VTae Volume Table Of Contents

(disk directory)

List of Abbreviations 137

138 IMS/VS - VSAM INTERFACE GUIDE

abbreviations 137
Access Method Services

and data base
reorganization 121

and IMAGE COpy utility
backup by EXPORT 117
backup by REPRO 116
DEFINE command 113
EXPORT command 114
IMPORT command 114
LISTCAT command

description 115
examples 124

PRINT command 114
REPRO command 113

117

used as an IMS/VS utility 113
used for backup 116
VERIfY command 115, 122

ACCESS parameter 50
addressed processing

ESDS direct 8
ESDS sequential 8
in data base 97

allocation
See space allocation

Alternate Index 7
AREA

concept 108
parameter 111

backup
by EXPORT
by REPRO

117
116

BGWRT parameter 81
BLOCK parameter 54
buffer pool

description 39
parameter nfSVAMP

buffers
allocation 42
data buffers 38
index 38

78

n.o IN1')F.X

number of buffers 79
selection of size~ 78
subpool sizes 78
VSAf'1 usage 37

BUFND parameter 37, 39
BUf}-lI par&mcter 37, 39
BUfSP parClmeter 37
BYTES parameter 61

CI
See control interval

CIDf description 4
CIDfBUSY flag 31
cluster

cluster parameter
CYLINDER 64
INDEXED 66
NAf·1E 63
NOHINDEXED 66
PASSWORD 66
RECORDS 64
RECOVERY 70
SHAREOPTIONS 68
SPEED 70
SUBALLOCATION 68
TRACK 64
UNIQUE 68

data component parameter
CONTROLINTERVALSIZE 72
FREESPACE 73
KEYS 74
NAr'1E 72
PASSWORD 73
RECORDSIZE 74

index compone~t parameter
CONTROLINTERVALSIZE 75
INBED 76
NAME 75
PASSWORD 75
REPLICATE 76

space allocation 72, 75
COMPRTN parameter 61
control area

description 5
free space and FBFF 25
size 5, 64

Index 139

split 32
structure 5

control interval
definition field (CIDF) 4
description 4
free space and FSPF 25
processing ESDS 8
size 4, 35
split 29
structure 4

CONTROLINTERVALSIZE parameter 72,
75

crawling 102
CYLINDER parameter 64

DASD utilization 35
data base

definition parameter
DATASET macro 52
DBD macro 49

manipulation with VSAM
deletion 101
direct processing 97
initial load insert 95
mass sequential
insertion 98

replace of secondary index
source segment 101

secondary index segment
insertion 99

sequential processing 98
skip-sequential
insertion 99

update 100
organization

data entry 21
direct 15
GSAM 22
HDAM 16, 17
HISAM 13
HSAM 13
Index 19

recovery
usage of Shared

Resources 41
reorganization

and Access Method
Services 121

and VSAM 120
utilities 118

140 IMS/VS - VSAM INTERFACE GUIDE

statistics
buffer subpools report 133
DB and DC monitor 131
description 131
monitor report printing pro

grams 132
VSAM related reports 132
VSAM statistics report 135

VSAM support 6
data buffers

See buffers
Data Entry Data Base

See DEDB
data space allocation

and extension 66
description 62
suballocatable 62
unique 62

DATASET macro parameter
BLOCK 54
001 53
FRSPC 24, 58
OVFLW 53
RECFM 58
RECORD 55
ROOT 59
SIZE 56
UOW 59, 109

DBD macro parameter
ACCESS 50
AREA 111
PASSWD 51
Rf\lNAME 51

DBDGEl'{
output recommendations 61

DOE? 105
DDNAME sharing 83
001 parameter 53
Deadlock in exclusiv control 91
DEDB

advantages 111
concept 105
description 21
restrictions 112

define a VSAM data set
See cluster

DEFINE command 113
deletion 101
dependent overflow chain

in direct organizations 15
in HISAM 14

DFSVSAM? 77, 78
DFSVSMxx member 77
direct

insertion 33

processing description 97
DISP parameter 86
DL/I buffer handler pool 39
DSNAME sharing 83

EMH 103
ESDS

addressed processing 8
cluster definition 66
description 7
free space 27
processing restrictions 8
records in

HDAM 17
HISAM 14

structure 8
exclusive control

comparison 93
IMS/VS 91
native VSAM 90

EXPORT command 114

rast Path
AREA concept 108
DBD macro 111
DEDB

advantages 111
concept 105
restrictions 112

description 103
ICI processing

comparison 104
control interval size 106
System 109
UOW size 107

independent overflow part 110
parameter

ROOT 59
UOW 59, 109

root add~essable part 109
sequential dependent part 110

rBrr 25
free space

change with ALTER 27
FREESPACE parameter 73

FRS?C parameter 24, 58
guidelines 26
in E5DS 27
in KSDS 26
monitoring 27
used in IMS/VS

CA and FBFF 25
CI and FSPF 25
description 23
DL/I (ESDS) free space 24
ESDS free space 24
KSDS free space 24

VSAM (KSDS)
example 12
usage for insert 12

free space anchor point 16
free space element 16
FREESPACE parameter 73
FRSPC parameter 24, 58
FSPF 25

generic lcey 97
Global Shared Resources 40
GSAf'l

description 22
RECFM parameter 58

GSR 40

HDAM data base
description 16, 17
ESDS records 17
OSAM records. 17
overflow area 16
root addressable area 16
se gmen t 1 6, 1 7
structure 17

HIDAM data base
description 17
OSAM records 18
primary index 19
segment format in

data base 16
Primary Index 17

structure 18, 19
VSAM records 19'

Index 141

HISAM data base
description 13
index data base
ISAM/OSAM example
VSAM example 14

HSAM data base 13

leI processing
See Fast Path

IMAGE COpy utility

19
14

and Access Method Services 117
IMBED parameter 76
IMPORT command 114
independent overflow part 110
index (KSDS)

component 9
control interval (CI) 10, 36
entry 9
xey compression 9~ 43

level 9
options

IMBED 76
REPLICATE 76

record 10

sequence set 9
set 9
structure

description 9
'example t 1

index buffers
See buffers

index data base description 19
INDEXED parameter 66
initial load insert 95
insert

a record into KSDS 30

parameter 32
strategies 32

INSERT parameter 81
I SAM records in

HIDAM 18
HISAM 14

142 IMS/VS - VSAM INTERFACE GUIDE

key compression
description 43
in index entry 9
key selection 48
poor compression 46

key generic 97
KEYS parameter 74
KSDS

cluster definition 66
components 9
description 9
free space 26
index level 9
insertion example 30
records in HISAM 14

LCHILD macro 60
LISTCAT command

See Access Method Services
Local Shared Resources 40
log records (50 and 52) 31
logical record

description 4
relationzhip to physical
record 36

LSR 40

mass sequential insertion 98
NSOB 103
multiple cylinder data sets 6~

multivolume data sets 64

NAME parameter 63, 72, 75
NONINOEXED parameter 66
Nonshared Resources 40
nonunique key

See secondary index
NSR 40

OPTIONS parameter
BGWRT 81
INSERT 81
VSAMFIX 81
VSAMPLS 81

OSAM
buffer pool 39
records in

HDAM 17
HIDAM 18
HISAM 14

overflow area in HDAM
OVFLW parameter 53

PARENT parameter 59
PASSWD parameter 51
PASSWORD parameter 66, 73, 75
physical record 35
pointer

in direct organizations 15
specification

LCHILD macro 60
SEGM 59

PRINT command 114
processing V~AM data bases 83

randomizing routine 16
RBA

description 3
discrepancies 89
example 8

RDF description 4
RECFM parameter 58
RECORD parameter 55
RECORDS parameter 64
RECORDSIZE parameter 74
RECOVERY parameter 70

reorganization utilities 118
replace of secondary index source

segment 101
REPLICATE parameter 76
REPRO commahd 1 13
resource sharing 40
RMNAME para~eter 51
root addressable area 16
root addressable part 109
root anchor point 16
root overflow chain in

HISAI'" 14
secondary index 21

ROOT parameter 59
RRDS description 7

SDE? 105
:-secondary index

description 19
lcey 20
nonunique key example 21
segment insertion 99
unique key example 20

SEGM macro parameter
BYTES 61
Cor·1?RTN 61
PARENT 59

segment format in
HDAM/HIDAM 16
HIDAM Primary Index 17

sequential
dependent part 110
insertion

data CI size 35
description 34

processing 98
SHARED parameter 86
Shared Resources

See also GSR, LSR, NSR
description 4,0
IMS/VS usage 40
pool buffer sizes 42

SHAREDUP parameter 86
SHAREO?TIONS parameter 68, 84
sharing

batch· 88
DISP parameter 86
extent discrepancies 89
IMS/VS OPEN 87
online 88

Index 143

Reader's Comment Form

Fold

Fold

--- ------ - ---- -------- - - ----------_.-
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas I Far East Corporation

IBM World Trade Corporation
World Trade Systems Center
Department 471, Building F27
555 Bailey Avenue
P.O. Box 50020
San Jose, California 95150
'J.S.A.

Town of Mount Pleasant, Route 9, North Tarrytown; N.Y., U.S.A. 10591

IBM World Trade Europe I Middle East I Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

I MSNS - VSAM INTERFACE GUIDE GG24-1518-00

Your comments please ••••••

Name Reply requested

yesD

Job Title -------------------------------------
No D Address --------------------------------------

. Thank you for your cooperation

Reader's Comment Form

Fold

IBM World Trade Corporation
World Trade Systems Center
Department 471, Building F27
555 Bailey Avenue
P.O. Box 50020
San Jose, California 95150
U.S.A.

___ • ____ -----------------______ 1

Fold

--- ------ - ---- ---- - ---- - - -----------.-. ~

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas I Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe I Middle East I Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

I ~
1
I
I
I
I
I
1
1
I .

--..- --::- -=-= -= =-- ---- --- -.. ---- - - -----_ .. ----.----:r.

Palo Alto
Systems
Center

Technical
Bulletin

G320-6035

G320-6035
April, 1979

IMSNS AND OSNS
VSAM BUFFER
OPTIONS (SHARED VS.
NON-SHARED
RESOURCES)

by Wayne Weikel, Edward H. Daray
Palo Alto Systems Center

i 05/79

@Copyrlght International Busine-ss Machines Corporation 1979

G320-6035 ii 05/79

TABLE OF CONTENTS

1.0 INTRODUCTION 1. 1

2.0 VSAM PARAMETERS RELATED TO BUFFERING TECHNIQUES 2.1

3.0 IMS/VS UTILITIES FUNCTIONAL OVERVIEW . · . .3. 1

3.1 IMAGE COpy (DFSUDMPO) 3.1
3.2 DATA BASE RECOVERY (DFSURDBO) 3.1
3.3 DATA BASE BACKOUT (DFSBBOOO) 3.3
3.4 HISAM UNLOAD (DFSURULO) 3.3
3.5 HISAM RELOAD (DFSURRLO) . 3.3
3.6 HD UNLOAD (DFSURGUO) 3.4
3.7 HD RELOAD (DFSURGLO) 3.4

4.0 RELATING VSAM BUFFER OPTIONS TO THE IMS/VS ENVIRONMENT. 4.1

4.1 SELECTING A VALUE FOR BUFND
4.2 DFSVSAMP CONSIDERATIONS ..

· . .4. 1
· . .4. 4

5.0 VERIFYING AN IMS/VS - VSAM DATA SET 5.1

APPENDIX A: .YSAM BUFFER OPTIONS TABLES A.l

G320-6035 iii 05/79

G320-6035 iv 05/79

INTRODUCTION

1.0 INTRODUCTION

The pu~pose of this technical bulletin is to discuss the VSAM
pa~amete~s associated with buffe~ing techniques that the use~ may
specify when executing IMS/VS use~-w~itten p~og~ams and IMS/VS
utility p~og~ams, and the effect of the pa~amete~ specifications
upon pe~fo~mance.

The in£o~mation applies to the IMS/VS 1.1.5 system. The mate~ial
is gene~ally applicable to ~eleases p~io~ to IMS/VS 1.1.5. The~e

are some instances when the implementation diffe~s slightly on
p~e-IMS/VS 1.1.5 ~eleases and no attempt has been made in this
document to note these dif£e~ences.

The in£o~mation contained in this document has not been submitted
to any fo~mal IBM test and is dist~ibuted on an "As Is" basis
without any wa~ranty eithe~ expressed o~ implied. The use of
this info~mation o~ the implementation of any of these techniques
is a custome~ ~esponsibility and depends on the custome~'s
ability to evaluate and integrate them into the customer's
ope~ational envi~onment. While each item may have been reviewed
by IBM fo~ accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained
elsewhere. Custome~s attempting to adapt these techniques to
thei~ own envi~onments do so at their own ~isk.

The info~mation p~esented should be used only as a guide. The
implementation of each £eatu~e discussed may va~y in a given
system envi~onment and should be evaluated relative to its
applicability and the requirements of the installation.

G320-6035 Page 1.1 05/79

G320-6035 Page 1.2 05/79

VSAM PARAMETERS RELATED TO BUFFERING TECHNIQUES

2.0 VSAM PARAMETERS RELATED TO BUFFERING TECHNIQUES

The Virtual Storage Access Method (VSAM) has two options for
allocating and managing the buffers to be"u~ed for input and
output operations to a VSAM data set. These options are selected
by the user issuing the OPEN request. One option is referred to
as a non-shared resources (NSR) and the IMS/VS community commonly
refers to this as "native VSAM". With this option, the buffers
and I/O-related control blocks are allocated for use by a single
data set. Each data set OPEN'ed with this option has a set of
these buffers and control blocks built which are used by requests
directed to that data set. The other option for buffer
management is referred to as locally or globally shared resources
(LSR/ GSR). With this implementation, these buffers and I/O
related control blocks become part of a resource pool that can be
shared by multiple data sets. With this option, a pool of
resources is first constructed and subsequent data set OPEN's
which specify LSR/GSR will be directed to the pool in order to
obtain buffeis and I/O-related control blocks to perform
input/output operations. Therefore, NSR has the connotation of
data set relate~ and LSR/GSR that of a pool shared by many data
sets.

The significance of the prior discussion is that VSAM buffer
options, specifiable by the IMS/VS user, fall into one of these
two categories. The data set related options shown below as
Figure 1 ~are only in effect when IMS/VS uses the "NSR buffer
management technique. These specifications are ignored by VSAM
OPEN when a data set is directed to the pool (LSR/GSR) for these·
resources. It should also be noted that any options in the JCL
"AMP" parameter override any previous definitions made through
the ACB, GENCB macros. In the case of data set ~elated buffers,
the BUFND/BUFNI also override the BUFFERSPACE (BUFSP) value
assigned during AMS DEFINE.

The other technique of buffer management, LSR/GSR, requires that
the user build a pool of resources to be shared by all data sets
OPEN'ed to the pool. IMS/VS builds this pool using the VSAM
macro BLDVRP to the configuration specified by the user with the
DFSVSAMP data set. This data set indicates the sub-pool sizes
and the number of buffers within each of these sub-pools.

G320-6035 Page 2.1 05/79

VSAM PARAMETERS RELATED TO BUFFERING TECHNIQUES

FIGURE 1. DATA SET RELATED BUFFER OPTIONS

r--,
PARAMETER I SOURCE -I MEANING I RECOMMENDATIONS

BUFFERSPACE
(BUFSP)

AMS define Minimum space
Cluste~/Data to be allocated

fo~ buffe~s

(both data and
index) fo~ use
by this data
set.

Do not specify.
Allow to default =
2 X data eI size +
1 X index CI size.

-~---------- ------------- ----------------- -------~-----------

BUFFERSPACE
(BUFSP)

BUFND

BUFNI

Data set
DD "AMP"
pa~amete~.

Maximum space
to be allocated
£o~ buffe~s

(both data and
index) fo~ use
by this data
set.

The numbe~ of
data buffe~s to
be allocated
fo~ use by this
data set
(Default = 2).

The numbe~ of
index buffe~s
to be allocated
fo~ use by this
data set
(Default = 1).

Do not specify.
This can be
p~ovided by the
BUFND/BUFNI
pa~amete~s.

See discussion in
4.1 "Selecting a
Value fo~ BUFND"

Gene~ally it is
acceptable to
allow this pa~a
mete~ to default.
A slight pex:fox:
mance impx:ovement
can be achieved
in load/c~eate
mode by incx:easing
this to a maximum
value of the
numbe~ of anti
cipated index
levels.

--~

G320-6035 Page 2.2 05/79

IMS/VS UTILITIES FUNCTIONAL· OVERVIEW

3.0 IMS/VS UTILITIES FUNCTIONAL OVERVIEW

3.1 IMAGE COPY (DFSUDMPO)

The Image Copy utility is executed to obtain a backup copy
of the IMS/VS data sets. This copy is usually written to
tape.

The utility uses the native VSAM macros GET RPL or GETIX RPL
to retrieve the VSAM logical records and writes these
logical records to the output data set using 2SAM. The
GETIX is used when copying the VSAM index and such a copy is
useful only for IMS/VS track recove~y.

Immediately following a data set open, the VSAM VERIFY macro
is issued. This should correct any problems caused by a
previous close error. If the VERIFY fails, DFS2802 is
issued and the job is terminated.

3.2 DATA BASE RECOVERY (DFSURDBO)

The Data Base Recovery utility is executed to assist in
restoring a physically damaged data set within an IMS/VS
data base, or it may be used to restore a data set to the
conditions existing at some previous time.

The restoration process consists of restoring a backup copy
'and re-applying all changes since the copy was taken. This
copy is 'usually an Image Copy.

Data base changes are recorded on IMS/VS log tapes. These
log tapes can be processed by Change Accumulation which
groups all changes by data set logical record. If multiple
changes to the same data occur, only the latest change is
retained-. If multiple changes occur for the same logical
record, but to different data, these changes are placed into
one change accumulation record with the data offsets
recorded.

Input to the recovery may be:

1) Image Copy (no changes are to be applied)

2) Image Copy and Change Accumulation (all changes have
been processed by Change Accumulation)

3) Image Copy, Change Accumulation, and Log Tapes (some of
the changes have been processed by Change Accumulation)

G320-6035 Page 3.1 05/79

IMS/VS UTILITIES FUN,CTIONAL OVERVIEW

4) Image Copy and Log Tapes (no changes have he en
processed by Chang~ Accumulation).

Because some users elect to obtain data set copies by other
utilities (DASDR dump, etc.), three more possibilities
exist. In this environment, the user first restores the data
set from the backup copy then applies:

5) Change Accumulation (all changes have he en processed by
Change Accumulation)

6) Change Accumulation and Log Tapes (some changes have
been processed by Change Accumulation)

7) Log Tapes (no changes have been processed by Change
Accumulation)

The recovery will be performed in phases according to the
user input. Phase 1 and Phase 2 are mutually exclusive.
The valid input to each phase is:

Phase 1 Image Copy or Image Copy and Change Accumulation

Phase 2 Change Accumulation' without an Image Copy

Phase 3 Log Tapes

"
During Phase 1, the Image Copy record is read, the Change
Accumulation zecords are read, the change data overlays the
Image Copy, then the logical record'is written to the data
base. This phase uses native VSAM PUT macros.

Phase 2 consists of randomly updating data set records using
the Change Accumulation. Because the Change Accumulation
records are sorted by RBA, this becomes a skip sequential
form of processing. A call ~s made to the buffer handler to
retrieve the logical record, the Change Accumulation record
overlays the logical record using the contained offsets and
lengths, and the logical record is written back using an
Insert, Erase, or Buffer Alter call.

Phase 3 consists of randomly updating the partially restored
data set with log tape input in the same fashion as Phase 2.
This is totally random because of the log tape record
sequence.

The user may substitute a HISAM Unload data set for the
Image Copy. When this is done, certain processing changes
occur. The HISAM unload does not contain a record for the
ESDS CI zero, therefore, Recovery must create one. This is
accomplished by a call to the buffer handler which will open
the data set using NSR, write CI zero, close the data set,
then open for output using GSR or LSR.

G320-6035 Page 3.2 05/79

IMS/VS UTILITIES FUNCTIONAL OVERVIEW

At the beginning of the %ecove%y p%ocess, a test is made by
the data base %ecove%y p%og%am to insu%e that the data set
being %esto%ed to is empty. This test %esults in the OS/VS
VSAM OPEN %outine issuing the following message:

IEC161I 072-053, Jobname, stepname, ddname, device add%ess,
volse%, cluste~ name, data set name, catalog name.

This message should be %ega%ded as normal and not an
indication of an e%%o% condition.

3.3 DATA BASE BACKOUT (DFSBBOOO)

The Backout utility %emoves batch %egion changes made to a
data base. All data base accesses are done using the buffe%
handle%.

Backout is accomplished by %eading the system log tape
back-wa%ds and %eversing the data base changes. This is
possible. because the log tape contains both the befo%e and
afte% data base images.

On-line backout oCCU%S when the IMS/VS online %egion issues
a ROLL call 0% abends, and du%ing Emergency Resta%t
following a system failu~e. In these cases, the input is
the system Dynamic Log which contains a copy of the records
on the system log. The actual backout is perfo%med by the
same module as batch backout, the~efo%e, all data base
accesses use th~ buffe% handle%.

3.4 HISAM UNLOAD (DFSURULO)

This utility is used to unload any HISAM or INDEX data base.
All access to the data base is on a segment-by-segment basis
via GET NEXT calls to the buffe% handle~.

The output data set becomes the input to the HISAM RELOAD
utility, but optionally may be used in lieu of an Image Copy
fo% Data Base Recove%y.

3.5 HISAM RELOAD (DFSURRLO)

This utility is used to reload a HISAM data base unloaded by
the HISAM UNLOAD utility. All access to the data base is on
a segment-~y-segment basis via INSERT calls to the buffe%
handle%.

G320-6035 Page 3.3 05/79

IMS/VS UTILITIES FUNCTIONAL OVERVIEW

3.6 HD UNLOAD (DFSURGUO)

This utility is used to unload any HISAM, HIDAM, or HDAM
data base. All access to the data base is on a
segment-by-segment basis via DL/I GET NEXT calls.

The output data set is useable only as input to the HD
RELOAD utility.

3.7 HD RELOAD (DFSURGLO)

This utility is used to reload a HISAM, HIDAM, or HDAM data
base unloaded by the HD UNLOAD utility. All access to the
data base is on a segment-by-segment basis using a special
DL/I INSERT call.

G320-6~35 Page 3.4 05/79

RELATING VSAM BUFFER OPTIONS TO THE IMS/VS ENVIRONMENT

4.0 RELATING VSAM BUFFER OPTIONS TO THE IMS/VS ENVIRONMENT

Armed with the knowledge presented in the previous sections, it
is now possible to discuss the various ways in which IMS/VS
interfaces with VSAM. The interface varies depending on the
environment, online or batch (including IMS/VS utilities); the
operating system; and finally the type of program that is being
processed. Based on these combinations, a table is included as
Figure A, Appendix A, which shows the VSAM buffer option which is
selected by IMS/VS. The Buffer Code indicated is described in
the Buffer Consideration Table, Figure C, Appendix A. The
headings "DFSVSAMP R&2UIRED" and "NATIVE VSAM USED" included in
Figuze C aze aralOgOUS to LSR/GSR and NSR, zespectively.

4.1 SELECTING A VALUE FOR BUFND

In summary, this parameter specifies the number of data
buffers that are to be built for use by the designated data
set if the NSR option is selected. If the data set is
OPEN'ed to a shared resource pool CLSR/GSR), the
specification will be ignored by VSAM OPEN. The parameter
is coded in the control card of the data set as shown below:

//ABC DD DSN= ,AMP='BUFND=n'

The value selected for BUFND affects the number of data
buffers VSAM will use for read ahead operations when
processing a data set sequentially. This value is also used
by VSAM during data set creation in order to schedule multi
buffer data writes. A VSAM data set is considered in create
mode when OPEN determines that the value of the data set
high-used RBA CHURBA) is equal to zero. In some instances,
IMS/VS OPEN's the data set, inserts a single record, and
then issues a CLOSE. One of the functions performed by VSAM
CLOSE is to update the catalog HURBA value of the data set
being closed. At this time, the value would be incremented
to greater than zero. The value of HURBA is always
incremented and never decremented. The affect is such that
a subsequent OPEN and a physical ERASE of the single record
from the KSDS will not lower the value of HURBA. The data
set will contain zero records, but will never again be in
"create-mode". The only way to get back into create mode is
to DELETE/DEFINE with Access Method Services CAMS) or to
RESET the data set with the REUSE option.

The impact on buffering is that VSAM will schedule multi
buffer data writes when adding records to the data set only
when in create mode. In non-create mode, a single data
buffer, VSAM control interval, is written with each request
to lOS.

G320-6035 Page 4.1 05/79

RELATING VSAM BUFFER OPTIONS TO THE IMS/VS' ENVIRONMENT

Note this statement applies to adding ~eco~ds to a data set.
When sequent~al ope~ations fo~ ~ead-only o~ ~ead fo~ update
a~e ~equested, VSAM pe~fo~ms chained ~eads and w~ites of
data 'buffe~s.

A discussion of ~ead-ahead buf£e~ing pe~fo~med fo~
sequential p~ocessing is included in the Palo Alto Systems
Cente~ Technical Bulletin, G320-6015, "OS/VS VSAM SHARING -
A TECHNICAL DISCUSSION (PART I)".' The discussion begins on
page 65 of the bulletin and continues fOI seve~al pages,
cove~ing both c~eate and non-c~eate mode p~ocessing. The
following Figu~e 2 is an ext~act f~om a bulletin published
by T. R. Mitchell and S. E. J. F~iesenbo~g of the Washington
Systems Cente~ on VSAM pe~fo~mance. The figuIe illust~ates
the effect of buffe~ specification on elapsed time, as well
as p~ocessing cycles and EXCP (EXCPVR o~ SVC121)
~equi~ements.

The ~esults shown in Figu~e 2 indicate that the highest
~etu~n is gained by ove~~iding the default value up to a
numbe~ that will allow scheduling full t~ack I/O fo~ each
~ead o~ w~ite ope~ation. The effect of look-aside buffe~ing
can be seen on the ~ead column as indicated by the inc~ease
in p~ocessing cycle ~equi~ements. The effect is such that
the p~ocessing cycle ~equi~ements inc~ease even though the
numbe~ of EXCP's is dec~easing.

The numbez of buffezs VSAM schedules is based on the BUFND
specification. It will schedule a minimum of the BUFND
value divided by two. It then adds to that minimum value a
pezcentage of the buf£e~s ~emaining.

The pe~centage is calculated based on the numbe~ of ~eco~ds
in a cont~ol inte~val. The algo~ithm states that, on an
ave~age, the cycles ~equi~ed to p~ocess a ~etzieved ~eco~d

is app~oximately 1/9 of the ~equi~ements to Iead a contzol
intezval f~om exte~nal sto~age. The~efo~e, the numbe~ of
blocks of nine Iecozds in a cont~ol inte~val is computed by
dividing contzol inte~val size by ave~age zeco~d length and
dividing the ~esult by nine and ~ounding up. The ~esulting
value minus one is then placed ove~ the ~esulting value and
this is the pe~centage of the ~emaining huffe~s which will
be added to the o~iginally calculated minimum. The pu~pose
of this seemingly elabo~ate calculation is to p~ovide
optimum ove~lap of I/O with ~eco~d p~oce~sing. In the case
of c~eate mode pzocessing, the end value is then ~ounded to
a t~ack bounda~y if the SPEED option was selected when th.e
data set was defined with Access Method Se~vices.

One final point is that VSAM will not schedule multiple
buffers with a single I/O that will c~oss either a cylinde~
o~ a cont~ol a~ea bounda~y. This could explain some cases
with non- cylinde~ allocation whe~e an inc~ease in the BUFND
value does not ~esult in the anticipated ~eduction in

G320-6035 Page 4.2 05/79

.. '

RELATING VSAM BUFFER OPTIONS TO THE IMS/VS ENVIRONMENT

EXCP's.

FIGURE 2. EXAMPLE OF THE EFFECT OF BUFND SPECIFICATION ON SYSTEM
PERFORMANCE

j--,
READ WRITE (CREATE MODE)

--------------------------- ---------------------------
ELAPSED CPU EXCP ELAPSED CPU I EXCP

BUFND TIME TIME COUNTS TIME TIME 1 COUNTS
------- --------- ------_ -------- --------- --------I--~-----

2 370.01 88.49 11713 222.79 69.30 I 10954
------- --------- -------- -------- --------- --------1--------

10 93.90 42.26 1703 127.22 67.35 I 2571
------- ---------' -------- -------- --------- --------1--------

20 82.87 40.42 853 127.29 64.39 I 1720
------- --------- -------- -------- --------- -------- --------

30 83.71 40.72 640 122.38 62.70 1401
1------- --------- -------- -------- --------- -------- --------
I 40 81 .32 41.30 533 I 125.66 62.52 1295
1------- --------- -------- -------- --------- -------- --------
I 50 81 . 41 41065 427 138.93 61 . 31 1082
1------- --------- -------- -------- --------- -------- --------
I 60 81.45 41 .58 321 135.73 61 .52 1082
1------- --------- -------- -------- --------- -------- --------1
I 70 82.92 42.72 321 139.80 62.33 1082 I
1------- --------- -------- -------- --------- -------- ----·----1
1 80 84. 11 44.04 321 139.43 60.65 976 I
1------- --------- -------- -------- --------- -------- --------1
1 90 86.86 46.02 321 142.67 62.30 976 I
1------- --------- -------- -------- --------- -------- --------1
1 108 85.89 45. 18 215 143.66 62.38 976 1 L __ ~

G320-6035 Page 4.3

RELATING VSAM BUFFER OPTIONS TO THE IMS/VS ENVIRONMENT

4.2 DFSVSAMP CONSIDERATIONS

The DFSVSAMP parameters are the way in which a user defines
the amount and type of resources to be allocated to a pool.
The requirements for a pool are generally dictated by an
online, as opposed to batch, system. The intent of a pool
is to maintain the resource in main storage"to satisfy
subsequent requests for the same block of data without
incurring I/O to external storage. This is not the general
characteristic of a batch program.

Characteristically, a batch program reads through an entire
or a portion of a data set, each record sequentially. This
is especially true of utilities such as HD and HS Unload and
Reload. On the other hand, a utility such as DB Recovery
with LOGS only input would operate more like an online
environment relative to data base accessing patterns. The
bulletin on ~S/VS VSAM Sharing - A Technical Discussion
(Part I) referenced earlier contains a section on the IBM
DB/DC Systems and the IMS/VS section starts on page 33.
This will provide the necessary assistance to aid the user
in determining the resources to be allocated to the pool via
the DFSVSAMP specifications.

G320-6035 Page 4.4 05/79

VERIFYING ON IMV/VS - VSAM DATA SE~

5.0 VERIFYING ON IMS/VS - VSAM DATA SET

The physical end of a VSAM data set is maintained by a logical,
as opposed to ha~dwa~e, indicato~. This indication is noted by a
cont~ol inte~val in which the last fou~ bytes a~e bina~y ze~oes.
VSAM fo~matting ope~ations always places this softwa~e
end-of-file (SEOF) on a cont~ol a~ea boundary in a key sequenced
data set (KSDS), but may be on any cont~ol inte~val bounda~y
within a control area of an entry sequenced data set (ESDS). The
location of the SEOF is maintained in the VSAM catalog, user or
master, into which the data set was defined. This is referred to
as the High Used Relative Block Address (HURBA). This value is
maintained for both the index and data components in a KSDS. The
index component value is on any control interval boundary, as is
the case with an ESDS.

There is a macro which is part of the VSAM system called VERIFY.
This is the same macro which is issued internally by the Access
Method Service VERIFY function. The purpose of VERIFY is to
ensure that the catalog HURBA value(s) is not less than the
iormatted SEOF control interval. VERIFY validates the HURBA by
accessing the data or index control interval pointed to by the
corresponding current HURBA indicated in the catalog. This
control interval is compared for a SEOF control interval (CIDF =
binary zeroes). If it is not recognized as an SEOF cont~ol
interval, the control intervals are accessed forward from that
point until the SEOF is found or until the high allocated RBA
(HARBA) is reached. If the SEOF is a lo~er RBA than the value of
HURBA in the catalog, as could occur if an FDR restore is made of
a down level version of the data set, "unp~edictable ~esults"

will be encountered, i.e., I/O e~ror, set HURBA=HARBA, etc.

The IMS/VS product internally issues the VERIFY mac~o. This is
performed in batch utilities and user p~og~ams as well as in the
online system whenever requi~ed. Beginning with IMS/VS 1.1.5,
this is also pe~fo~med by batch image copy. The VERIFY is
performed even in cases where it is not absolutely necessary, but
is done as a safeguard. Therefore, any IMS/VS program accessing
a VSAM DL/I data base need not include an Access Method Services
VERIFY jobstream immediately prior or subsequent to the execution
of the IMS/VS program. The only case may be in SHISAM when the
DL/I file is OPEN'ed as a native VSAM data set and accessed with
non-DL/I requests. A flowchart is included as Figure 3 which
outlines the logic implemented du~ing VSAM data set OPEN by the
IMS/VS system.

G320-6035 Page 5.1 05/79

VERIFYING ON IMV/VS - VSAM DATA SET

FIGURE 3. IMS/VS OPEN/VERIFY LOGIC

r---------~-----,

OPEN
L _______________ J

Y

I < ________________________ J

I
I

r---------------,
ISSUE VERIFY

MACRO
L _______________ J

r---------------,
I I
I COMPLETE OPEN I
I PROCESSING I
I I L _______________ J

G320-6035 Page 5.2

N
------> OPEN ERROR

MESSAGE

05/79

APPENDIX A - VSAM BUFFE~ OPTIONS TABLES

FIGURE A. IMS USE OF VSAM BUFFER OPTIONS

r--, 1 IMS 1 OPERATION I PROGRAM 1 VSAM 1 BUFFERI
I REGION I SYSTEM 1 TYPE I BUFFER 1 CODE I
1 1 1 1 OPTION I I
1--1
1 ONLINE 1 VS2 I ALL USER AND 1 GSR* I B 1
1 1 1 ONLINE IMAGE 1-----------------------1
1 1 I COpy 1 LSR I B I
I I-------~---I 1-----------------------1
1 I VS 1 1 I· LSR 1 B I
--~-----------------------1

1 HISAM (KSDS] I I
BATCH ALL USER I ONLY) . I 1 1

\

OPERATING
SYSTEMS

LOAD I SHISAM 1 NSR (CREATE) 1 C I

MODE 1------------------------------------1
1 ALL OTHER I LSR I B I

-------------------------------~-----------I
UTILITY LOAD I LSR I B I
MODE I I 1
eHD RELOAD, I I I
HS RELOAD, I I 1
- - - - - - - - - I - - - - - - - 1 - - - I
DB RECOVERY) I SEE FIGURE B 1 I

1---1
I USER NON-LOAD I LSR 1 B 1
1 MODE I 1 1
1---1
I UTILITY NON-LOAD I LSR 1 B I
I MODE I 1 I
I (BACKOUT, I I I
I HD UNLOAD, I 1 I
I HS UNLOAD, I I 1
I - - - - - - - - - I - - - - - - - 1 - - - I
1 IMAGE COPY) I HSR I D 1
I 1 (NON-CREATE) 1 I

--~

* SINGLE IMS SYSTEM PER CPU

NOTE: Bu££e~ Code ent~ies a~e code values in the Buf£e~
Conside~ation Table.

G320-6035 Page A.1 05/79

APPENDIX A - VSAM BUFFER OPTIONS TABLES

FIGURE B .. DATA BASE RECOVERY (DFSURDBO)

r--,
INPUT I HISAMI HISAMI HIDAMI HIDAM! HDAM ISHISAMI SEC. I SEC~ I

I KSDS I ESDS 1 PRIME I ESDS 1 ESDS 1 KSDS I INDEXI INDEXI
I I I INDEX 1 1 I I KSDS 1 ESDS I
I I I KSDS 1 I I I I I

--1
IMAGE lei C I C I C I C d I C I C 1
COpy I I I 1 1 1 I 1
--------I------I~-----I---~--I------I-----~ ------1------1------1

HISAM 1 CiA lei N/A 1 N/A C 1 C I A I
UNLOAD 1 I I 1 .. 1 1 I I

--------1------1------1------1------1------ ------1------1------1
C. A. I I I I I I I I
WITHOUTI BIB 1 BIB 1 B BIB I B I
DUMP I I I I 1 I J J

I--------I---~--I------I------I------I------ ------1------1------1
I LOGS I BIB I BIB I B BIB 1 B I L __ ~

NOTE: Individual' entries are code.values in the Buffer
Consideration Table.

FIGURE C. BUFFER CONSIDERATION TABLE

r--,
I CODEI DFSVSAMP I NATIVEI MODE* I BUFHD RECOMMENDATIONS
1 I RE2UIRED I VSAM 1 1
I I I USED I I I
1--1
I A I Y I y I U I MINIMUM = DEFAULT = STRNO + 1 1
I---~-I----------I-------I-------I-------------------------------1
I B I YIN .1 U 1 NO TAP P L I CA B LEI
1-----1----------1-------1-------1-------------------------------1
I C I N I y I L I NUMBER OF CI'S PER TRACKS + 2 1
I--~--I-----~----I-------I-------I-------------------------------1
1 DIN I y 1 U 1 2 TIMES THE NUMBER OF CI'S 1
I I 1 I I PER TRACK 1
L ________________________ ~----------------------------___________ ~

* U = NON-CREATE
L = LOAD/CREATE

G320-6035 Page A.2 05/79

APPENDIX A - VSAM BUFFER OPTIONS TABLES

G320-6035 Page A.3 05/79

I
I
I
I
I
I
I
I
I
I
I
I
I

PALO ALTO SYSTEMS CENTER
READER'S COMMENT FORM

IMS/VS and OS/VS VSAM Buffer Options
(Shared versus Non-Shared Resources)

Edward Daray, Dept. 65J

G320-6035

Please comment on the usefulness and readability of the publication,
suggest additions and deletions, and list specific omissions and
e~rors (give page numbers). IBM may use or "distribute any of the
information you supply in any way it believes appropriate without
incurring any obligation whatever.

COMMEN'TS

Thank you for your cooperation. Fold this form on the two lines,
tape, and mail to the address shown on the reverse side.

Reader's Comment Form

Fold and tape Please Do Not Staple

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International BusinesS Machines Corporation
Palo Alto Systems Center
1501 California Avenue
Palo Alto, California 94304

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
INTHE

UN ITED STATES

...•...•...................•........•.............•................•.................................. ··················1
Fold and tape Please 00 Not Staple Fold and tape 1

==.::. =® - ----- ---- ----- - - ----------_.-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plain., N.Y. 10604

IBM World Trade Americas/Far East Corporation .
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.s.A. 10591

IBM'World Trade Europe!Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

1
1
I
I
I
I

