

j

Program Product

)

SH20-9026-8
File No. S370-50

IMS/VS Version 1
Application Programming=
Designing and Coding

Program Number 5740-XX2

Release 2

--..- ------ ---- = = =----= - - - ------------_.-

._-------- ----_ _ ... _-_._-_._ __ .. _._--

This publication was produced using the
IBM Document Composition Facility

(program number 5748-XX9) and
the master was printed on the IBM 3800 Printing Subsystem.

Ninth Edition (March 1981)

This is a major revision of, and makes obsole~e, SH20-9026-7.

This edition,applies to Version 1, Release 2 of IMS/VS, Program
Product 5740-XX2, and to any subsequent releases and
modifications until otherwise indicated in new editions or
technical newsletters.

The changes for this edition are summarized under "Summary of
Amendment s" fo 11 ow i ng the preface. Spec if; c changes are i nd i cated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not
noted.

Changes are peri odi cally made to the i nformat i on here in; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300'Processors
Bibliography, GC20-0001, for the editions that are applicable and
current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or
services in your country.

Pub I i cati ons are not stocked at the address gi ven below; requests
for IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comm9nts ;s provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, S~n Jose, California, U.S.A. 95150. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

~ Copyright International Business Machines Corporation
1974,1915,1976,1977,1978,1980,1981

(

(

)

)

PREFACE

'This retitled edition supersedes the seventh edition, called the
IMS/VS Version 1 Application Programming Reference Manual. This
manual contains the application programming information from the
previous edition, and additional information on designing IMS/VS
application programs. The application programming information
from the previous edition has been separated into a guidance part
and a reference part to better support application programming.

PREREQUISITE KNOWLEDGE

Before using this manual, you should understand basic IMS/VS
concepts, the IMS/VS environment, and your installation's ,IMS/VS
system. The IMS/VS concepts explained in this manual are limited
to those concepts pertinent to developing and coding IMS/VS
application programs. You should also know how to use COBOL, PL/I,
or assembler language.

HOW THIS BOOK IS ORGANIZED

The manual is divided into three parts. The first and second
pa rt s, "Appl i cat i on Des i gn Gu i de" and "Appl i cat ion P rogramm i ng
Guide," guide you in designing and coding IMS/VS application
programs. The third part, "For Your Reference," contains
reference information about the parts of an IMS/VS application
program. This part is for experienced programmers who understand
IMS/VS application programming and need only to look up facts like
a call format, a command code, or the meaning of a particular
status code.

Part 1. Application Design Guide

This part contains the following five chapters:

• Chapter 1, "ConcG!pts and Terminology," describes the
characteristics of a hierarchic data base and explains the
relationship between the programs you are designing and
coding and the Dl/I data base. This chapter also introduces
you to the tasks you will perform in developing online and
batch application programs.

• Chapter 2, "Analyzing Application Requirements," gives an
overview of application design and explains two of the
subtasks of application design: defining application dat~
and designing local views.

• Chapter 3, "Understandi ng Onl i ne and Batch Processi ng,"
describes the types of processing available in IMS/VS in
terms of the application requirements that each type answers.
This chapter will help you understand characteristics of each
type of processing so you can decide which type will satisfy
the requirements of the application.

• Chapter 4, "Gathering Requirements for Data Base Options,"
describes data base options in terms of the application
requirements they satisfy and how each option affects the
performance and efficiency of the program. This chapter
describes the information about your application that you
should supply to the data base administrator. This
information will be helpful to the DBA in choosing a data base
design that will meet the requirements of all applications.

• Chapter 5, "Gathering Requirements for Data Communications
Options," describes data communications options in terms of
the application requirements each satisfies. This information
will help you understand these options and will enable you to

Preface iii

--------,,--,-,------'-

gather information that will be useful to the DB/DC system
administrator. (~

Part 2. Application programming Guide

This part contains the following seven chapters:

• Chapter 6, "Structuring the DL/! Portion of a Program,"
contains guidance information to help you structure programs
using DL/! calls, SSAs, command codes, status codes, and
other tools and techniques. Thi~ chapter and the next contain
all the information you need to structure and code batch
application programs. Chapters 8, 9, and 10 contain
addi ti onal i nformati on on structuri ng and codi ng MPPs, BMPs"
and Fast Path programs. .,

• Chapter 7, "Coding the DL/! Portion of a Program," will guide
you in coding batch programs and the DL/! portions of online
programs, according to the design dacisions you have made.

• Chapter 8, "Structuring a Message Processing Program,"
explains what your program must do to -process messages. It
tells how to structure an MPP using the tools and techniques
described in Chapter 6 and those introduced in this chapter.

• Chapter 9, "Coding a Message Processing Program," explains
how you code an MPP once you have a detailed design of it.

• Chapter 10, "Structurin~ and Coding a Batch Message Program,"
describes the types of BMPs that you can write, and tells what
tools they can use.

• Chapter 11, "Testing an Application Program," gives you
guidance for testing OL/I call sequences, explains what you
need to test a program, and describes the tools available to
help you test. This chapter also describes the actions you can
take in isolating a problem when your program does not execute
correctly.

• Chapter 12, "Documenting an Application Program," explains
why you should document your programs and suggests parts of
the application development process to document.

Part 3. For Your Reference

Thi-s part contains reference information about the parts of an
IMS/VS a~plication program such as entry statements, DL/I calls,
system service calls, SSAs, command code~, PCBs, and status
codes, as they apply to COBOL, PL/I, and assembler language.

APpendixes

The appendixes contain the following:

• Appendix A is a sample batch application program. This
program 1S written in COBOL and accesses the sample data base
that is part of the IMS/VS Primer function.

• Appendix B is a sample batch message (BMP) program. This
program is written in COBOL-and accesses the sample data base
that is part of the IMS/VS Primer function.

• Appendix C is a sample message processing program (MPP). Thts
program is written in PL/! and accesses the sample data base
that is part of th~ IMS/VS Primer function.

• Appendix 0 is a sample conversational,MPP program. This
program is written in COBOL and acce~ses the sample data base
that is part of the IMSIVS Primer function.

• Appendix E is a sample status code error routine. This program
is wri tten in assembler language and accesses the sample data
base that is part of the IMS/VS Primer function.

iv IMS/VS Application Programming

(

)

)

• Appendix F contains reference information on the formats and
usage of the DL/I Test Program control statements.

PREREQUISITE PUBLICATION

RELATED PUBLICATIONS

• The IMS/VS General Information Manual, GH20-1260 introduces
IMS/VS. You can use this manual to acquaint yourself with
IMS/VS functions, the hardware and software products
prerequisite to using IMS/VS, and the IMS/VS facilities that
help satisfy application requirements.

• TheIMS/VS Data Base Administration Guide, SH20-9025,
contains guidance information on planning, designing,
implementing, monitoring and tuning, and controlling a data
base in an IMS/VS system. It gives the characteristics of the
various kinds of IMS/VS data bases' and the design
considerations of each.

• TheIMS/VS System Administration Guide, SH20-9178, contains
guidance information on establishing a data base/data
communication (DB/DC) system. This book explains how to
control the content of the IMS/VS system definition and
establish operating proc~dures. This manual also has
information on monitoring the performance of the IMS/VS
System, coding IMS/VS execution JCL, and preparing IMS/VS
system definition macros for application and tuning
requirements.

•

•

IMS/VS Utilities Reference Manual, SH20-9029, describes the
function and use of IMS/VS utilities. It contains reference
information necessary for those installing an application
system and planning operational procedures.

IMS/VS Installation Guide, SH20-9081, cont~;ns IMS/VS
reference information for all aspects of IMS/VS installation
and system definition.

• IMS/VS System Programming Reference Manual, SH20-9027,
contains reference information useful when tuning the IMS/VS
system or for coding exit routines.

• IMS/VS Message Format Service User's Guide, SH20-9053,
contains both design and reference information for formatting
messages to and from terminals.

• IMS/VS Fast Path General Information Manual,GH20-9069,
describes the IMS/VS Fast Path feature and provides
information for evaluating the use of this feature.

• IMS/VS Primer, SH20-9145, describes the subset of IMS/VS
functions available under the IMS/VS Primer function. The
Primer function enables a first-time IMS/VS user. to design
and install an application within a simpler system.

• DB/DC Data Dictionary General Information Manusl, GH20-9104,
contains introductory information on the DB/DC Data
Dictionary and the hardware and software products
prerequisite to using it.

• DB/DC Data Dictionary Applications Guide, SH20-9173, explains
how you define subjects to the Data Dictionary.

• BTSII Batch Terminal Simulator II Program
Description/Operations Manual, SH20-1844, tells you how to
use BTS II to test application programs.

Preface v

For installations with IMS/VS DB and CICS/OS/VS:

• CICS/VS General Information Manual, GC33-0066, contains a
general introduction to CICS/VS, sample applications, and
machine and program requirements.

• CICS/VS Application Programmer's Reference Manual, SC33-0079,
contains information about requesting Data Language I (DL/I)
services from a CICS/VS application program.

vi IMS/VS Application Programming

(
I

(

)

~
/

/

)

SUMMARY OF AMENDMENTS

VERSION 1, RELEASE 2, MARCH 1981

NEW PROGRAMMING FACILITIES

• Data sharing provides control for application programs in two
or more IMS/VS systems to access IMS/VS data basa~
concurrently. The IMS/VS systems can be in one processor, or
they can be in separate processors. Application pr~grams that
share data bases with application programs in other IMS/VS
systems should issue checkpoint calls frequently; if they.
don't, they can ti~ up portions of the data base, preventing
other application programs from accessing some data.

• There are two new processing options that can be used with the
GO processing option for application programs: T and H. If an
application program with the processing option GO tries to
retrieve a segment containing an invalid pointer, IMS/VS
terminates the program abnormally. If the application program
uses the T or H option with GO (GOT or GOH), IMS/VS returns
control to the application program and returns a GG status
code. In addition, the T processing option causes IMS/VS to
retry the call before returning control to the program.

VERSION 1, RELEASE 1.6, JULY 1980

NEW PROGRAMMING FACILITIES

• Intersystem Communication, or ISC, is a part of Multiple
Systems Coupling (MSC) that makes communication sessions
between IMS/VS and other subsystems (such as CICS/VS, a
user-written system, or another IMS/VS system) possible.

• MSC directed routing makes it possible for an application
program to specify the multiple system name (MSHAME) and
destination within that system for a message in another
system. The application program can receive the MSHAME of the
system that originally scheduled it.

• Application programs may bypass-MFS editing or basic editing
when communicating via 3270 or SLU 2 devices. This bypass
makes it possible to leave the screen in an unprotected mode
so that IMS/VS can send output to the device without requiring
input from the device. The application program can also
control the locking and unlocking of the keyboard.

MAJOR EDITORIAL CHANGES

This book is a complete reorganization of the IMS/VS Version 1
Application Programming Reference Manual. The revised book
contains information on application design that is, for the most
part, new to IMS/VS publications, and it contains information on
application programming from the APRM.

Part 1 is a guide to designing IMS/VS applications. This new
information has been added to help you in designing IMS/VS
applications.

Parts 2 and 3 contain information on application programming from
the APRM. This information has been separated into guide and

Summary of Amendments vii

reference information. Part 2 is a guide to application
programmi ng; it expla ins the steps of structuri ng and codi ng /~
IMS/VS appl i cat 1 on programs. Part 2 is for those who are not (
thoroughly familiar with IMS/VS, particularly people who have
little or no experience with IMS/VS. Part 3 contains reference
information concerning application programming. This information
is intended for experienced IMS/VS application programmers who
understand the concepts of HIS/VS appl i cat i on programmi ng, and
need only to look up a specific piece of information.

For a chapter by chapter description of the revised book, see the
Preface at the beginning of this book.

VERSION I. RELEASE 1.5, DECEMBER 1978

FIELD LEVEL SENSITIVITY

Changes have been made to reflect the use of field level
sensitivity.

VERSION I. RELEASE 1.5, SEPTEMBER 1978

NEW PROGRAMMING FACILITIES

OTHER CHANGES

service changes·

• An application program can issue IMS/VS operator commands,
and a user-written exit routine can monitor resource
activity, by using the Automated Operator Interface (AOI).

•

•

Expanded security facilities, including the presence of the
user identification in the I/O PCB.

Access to Fast Path and IMS/VS data bases from both Fast Path
and IMS/VS application programs and other enhancements for
integrated support.

• Support for direct dependent segment types for DEDBs.

• An IMS/VS Primer function which makes it easier for new IMS/VS
users to get IMS/VS and their initial applications up
running. This function runs under OS/VSl and OS/VS2 MVS.

• The rollback (ROlB) call can be issued by IMS/VS application
programs to undo data base changes without subsequent
abnormal termination.

• Further system service call clarification.

• Correction to Pl/I" conversational program example.

RELEASE 1.4. FEBRUARY 1978

TECHNICAL CHANGES

• The Dl/I call trace facility has been added to the book. This
facility traces and records all Dl/I calls issued by an
application program, making it possible to duplicate the
conditions that caused a program failure. The trace output
can be used as _inPut to the Dl/I test prgram, DFSDDlTO.

(

OTHER CHANGES

)

Serv i ce changes

----------------- ---------

• COBOL and PL/I examples have been updated.

• The explanations of the OL/! system service checkpoint,
restart, log, and statistics calls have been clarified.

• The example of the independent ANO Boolean operator has been
expanded.

• A single use of the MFS MOD parameter is allowed for data
communication insert and purge calls. Clarification in the
use of the data communication change call has been added.

• OL/I test program changes:

The DATA statement maximum segment size has been'
corrected.

The operation of the SNAP call has been clarified.

• OL/! status code changes:

The detailed descriptions of status codes AM, OJ, and IX
were expanded.

A description for status code XX was added.

• The majority of the Boolean operator information given in
Chapter 2 has been moved to the end of Chapter 3.

) VERSION 1, RELEASE 1.4

)

NEW PROGRAMMING FEATURE

OTHER CHANGES

The Fast Path feature provides data base and data communication
facilities for applications requiring high transaction rates but
needing only simple data base structures. The Fast Path feature
uses functions of the Oata Communication feature and operates
with existing telecommunication networks.

Fast Path provides two new types of data bases that are accessed
with standard OL/! calls and, optionally, with Fast Path OL/I
calls. The feature includes a message-handling facility to
expedite the processing of Fast Path messages.

Four new OL/I calls exist for use in Fast Path applications: the
field (FLO), rollback (ROLB), synchronize (SYNC), and position
(POS) calls. These calls and all status codes associated with them
have been added to the manual. Also added are notes on the use of
those IMS/VS OL/I calls applicable in the Fast Path environments.

• Fast Path application programming is addressed in a new
Chapter 6.

• A section on determining data base position after a GE status
code has been added to the manual.

Summary of Amendments ix

---,----------------,-,-,,----,,-- ----

VERSION 1. RELEASE 1.2

TECHNICAL CHANGES

OTHER CHANGES

This release reflects technical changes to this publication in
support of the following new feature and devices:

• Multiple Systems Coupling Feature

• 3767 Communication Terminal

• 3779 Data Coummunication System

• A symbolic all interface for the.extended checkpoint/restart
facility has been added. With this facility, ANS COBOL and
PL/I application programs can now jssue extended CHKP and
XRST DL/I calls and also CHKP DL~I calls that specify OS
checkpoints.

• Updates have been made to PL/I information, and a revised
example is included for the Pl/I Optimizing Compiler.

• Chapter 7 of this edition describes the "DL/I Test Program"
and flMessage Processing Region Simulation." This information
was formerly in Appendix C of the IMS/VS Utilities Reference
Manual and Appendix B of the IMS/VS System/Application Design
Guide, respectively.

VERSION 1. MODIFICATION LEVEL 1.1.

• Support has been added for the 3740 Data Entry System. IMS/VS
supports the 3741 Data Station, Model 2, and the 3741
Programmable Work Station, Model 4, attached on a switched
line using BTAM.

• The restriction against the Utility Control Facility (UCF)
has been lifted.

VERSION I. MODIFICATION LEVEL 1

The following new and/or enhanced IMS/VS functions have been
added:

• Generalized Sequential Access Method (G~AM)

• Expanded restart (restart call)" get System Contents
Directory Call, and statistics call

• Response alternate PCBs

• Fixed-length SPAs

• Program isolation

• Application program output limits

• Message Format Service (MFS) support for ad~itional terminals

Note: Information in this manual about. the Utility Control
Facility (UCF) is for planning purposes only until that facility
becomes available.

x IMS/VS Application Programming

,r
\,.,

c

)

)

VERSION 1, MODIFICATION LEVEL 0.1

• Support for the IBM 2260 Display Station, Model 1 and 1, and
for t~e IBM 2265 Display Station, Model 1

Summary of Amendments xi

/'
I

r
(
"

(

CONTENTS
)

./

)

)

-------------------- -------

Part 1. APplication Design Guide

Chapter 1. concepts and Terminology
Processing Information in a Data Base

Comparing Ways to store Data
Storing Data in Separate Files
Storing Data in a Combined File
Stor i ng Data ina Data Base .•...

What the Data Looks Like When It's Stored
What the Data Looks Like to Your Program
How You Process a Data Base Record

A Look at the Tasks Ahead of You

Chapter 2. Analyzing Application Requirements
An Overview of Application Design •....

The Tasks of Application Design
Documenting the Application Design Process
Converting an Existing Application

Identyfying Application Data
Listing Data Elements
Naming Data Elements
Documenting Application Data

Designing a Local View•..
Analyzi ng Data Relati onshi ps

Grouping Data Elements into Hierarchies
Determining Mappings ...••....

Local View Examples
Schedule of Courses ...••
Instructor Skills-Report
Instructor Schedules

Chapter 3. Understanding Online and Batch processing
Analyzi ng Processi ng Requi rements ..•.
Online Processing•.....

Message Processing•..•.
How H15/VS Identifies Terminals
How IMS/VS Protects Online Data: Sync Points
MPPs ... ~
Message-Driven Fast Path Programs
Transacti on-Ori ented BMPs•.•

Batch Processi ng Onl i ne
Batch-Ori ented B~lPs .. :
Nonmessage-Driven Fast Path Programs

Mixing Fast Path and IMS/VS Processing
Batch Processing•...

Sync Points in a Batch Program
Recovery ina Batch Program

Summarizing IMS/VS Application Program Characteristics

Chapter 4. Gathering Requirements for Data Base Options
Analyzing Data Access•..

Di rect Access•...
Primari ly Di rect Processing: HDAM .•..
Direct and Sequential Processing: HIDAM

Sequent i a 1 Access • . . . • • .
Sequential Processing Only: HSAM
Primarily Sequential Processing: HISAM

Accessi ng OS/VS Fi les through H1S/VS: GSAM ,
Accessing IMS/VS Data through OS/VS: SHSAM and SHISAM

Understanding How Data Structure Conflicts Are Resolved
Using Different Fields: Field Level Sensitivity .
Resolving Processing Conflicts in a Hierarchy: Secondary

Indexing•.........
Using a Different Key
Retrieving Segments Based on a Dependent's Qualification

Creating a New Hierarchy: Logical Relationships ..•..
Accessing a Segment through Different Paths

1

2
2
2
2
3
4
4
5
7
7

10
10
10
12
12
12
13
15
16
17
17
18
21
22
23
24
25

28
28
30
32
32
33
33
35
36
37
37
38
38
39
39
39
40

41
41
42
43
44
45
45
46
46
47
47
47

48
49
52
52
52

Contents xiii

Inverting a Parent/Child Relationship
Identifying Security Requirements 0 0 • 0 0

Keeping a Program from Accessing the Data: Data
Sensitivity 0 0 0 0 0 0 0

Segment Sensitivity ..• 0 0 • 0 • 0 0 0 0 0

Field Level Sensitivity •• 0 • 0 ••••• 0

Key Sensitivity •. 0 0 • 0 0 • 0 ••• 0 • 0 0 •

Preven~ing a Program from Updating Data: Processing
Options .. 0 ••• 0 0 0 ••

Identifying Recovery Requirements . .
Choosing a Checkpoint Call 0., 0

How Often to Use Checkpoints
Checkpo i nts in Batch Programs ..
Checkpoi nts in Batch-Ori ented BMPs • 0 •• 0 • 0 0

Checkpoints in MPPs and Transaction-Oriented BMPs
Checkpoints with Data Sharing o. 0 0 0 •• 0 • 0 •

Chapter s. Gathering Requirements for Data Communications
options •••••••••••••••••••.••••••

Identifying Online Security Requirements o. 0 0 0 0 • 0

Limiting Access to Specific Individuals: Sign-on Security
Limiting Access to Specific Terminals: Terminal Security
Limiting Access to the Program: Password Security
Supplying Security Information 0 • 0 0 0 0 • 0

Analyzing Screen and Message Formats
An Overview of MFS 0" 0 0 0 00 ••• 0

An Overview of Basic Edit •• 0 0 0

Editing Considerations in Your Application . 0 0 0 0

Gathering Requirements for Conversational Processing
What Happens ina Conversati on •• 0 ••

Des i gn i ng a Conversat ion ..• 0 0 0 • •

Things You Need to Know about the SPA
Recovery Considerations in Conversations

Identifying Output Message Destinations •••••
The Originating Terminal .••••••• 0 ••

To Other Programs and Terminals

Part 2. Application programming Guide '.
Chapter 6. structuring the DL/I portion of a Program
How You Read and Update a DL/I Data Base: An Overview

DL/I Calls
SSA s . 0 • 0 • • 0 • • •

Command Codes ..•• 0 • • •

DB PCB Ma sks . • 0 • •

Fo r Exampl eo. • . 0 • 0 • •

The Medical Hierarchy ..•••
Medi cal Data Base Segment Formats .•• 0 • 0

What Happens When You Issue a Call
Retrieving, Information ••. '

Retrieving Segments Directly: GU
How You Use GU ..•. 0 • • • 0 • 0

GU Examples 0..... 0 • 0 • • 0

Using SSAs with GU ..• 0 • 0 •••

Using Command Codes with GU .•• 0

GU and Parentage o. 0 0 0 0 0 • 0

GU Status Codes .. 0 • 0 0 0 0 •• 0

Retrieving Segments SequentiallY: GN
How You Use GN . 0 • • • • • • •••••

Using SSAs with GN .•..• • 0 0 • 0 0

Usi ng Command Codes wi th GN o. 0 0

GN and Parentage o. 0 0 0 00 • 0 •

GN Status Codes ... 0 0 0 0 •

Retrieving Dependents Sequentially: GNP
How You Use GNP . 0 0 •• 0 0

Usi ng SSAs wi th GNP 0 0 • 0

Using Command Codes with GNP
GNP and Parentage ... 0 0

GNP Status Codes •...••.
Using the Right Retrieval Call

Updating Information ..•. • •
Before You Update: Get Hold Calls
Replaci ng Segments: REPl .. 0 ••

xiv IMS/VS Application Programming

..

,0

-54
55

55
56
56
56

58
59
60
61
61
61
62
63

64
64
65
65
65
65
66
66
67
67
68
68
69
70
71
72
72
73

7S

76
77
80
81
83
85
88
88
88
90
91
91
92
92
92
93
93
93
94
9S
96
96
97
97
97
97
98,
99
99
99

100
100
100
101

/'
(
,-

(

)

)

How You Use REPL•..
REPL Examples•
Usi ng SSAs wi th REPL
Using Command Codes with REPL
REP L and Parentage
REPL status Codes

Deleting Segments: OLET
How You Use OLET
OLET Examples
Using SSAs with DLET
Using Command Codes with OLET
OL ET and Parentage
OLET status Codes

Inserting Information
Adding Information to an Existing Oata Base

How You Use ISRT to Add Segments
ISRT (add) Example
Using SSAs with ISRT
ISRT and Command Codes
ISRT and Parentage
ISRT Status Codes

Initially Loading a Data Base
Using SSAs in a Load Program
Loading a Sequence of Segments
Load Command Codes
status Codes for Load Programs ...

Determining Your Position in the Data Base
When Position Is Important
Current Position after Successful Calls

Position after Retrieval Calls
Position after DLET
Position after REPL
Posi ti on after ISRT

Current Position after Unsuccessful Calls
Techni ques to Make Programmi ng Easi er

Usi ng SSAs
Guidelines on Using SSAs
Using Multiple Qualification Statements

Us i ng Command Co des•.•
Retrieving and Inserting a Sequence of Segments: D
Retrieving and Inserting the First Occurrence: F
Retrieving and Inserting the Last Occurrence! L
Using Concatenated Keys inSSAs: C
Setting Parentage Where You Want It: P
Using OL/I's Positions as Qualifications! U
Qualifying the Search on the Current Path: V
Preventing a Segment from Being Replaced! N
Reserving a Place for Command Codes: Null

Us; ng Parallel Process; ng
Using Multiple OB PCBs
Using Multiple Positioning

Programming Guidelines
Check i ng Status Codes ..•...

Exceptional Conditions
Error Rout i nes•

Taking Checkpoints•..
Checkpo i nt lOs
Where to Use Checkpoints .
How Often to Use Checkpoints
Symbolic CHKP .••..
Usi ng XRST ...••...• ..•.
Basi c CHKP ...••.....•.•....•.

Using Secondary Indeiing and Logical Relationships
How Secondary Indexing Affects Your Program ..•.

Usi ng SSAs wi th Secondary Indexes •..••.•
What DL/I Return~ with a Secondary Index .•...•.•

Processi ng Segments in Log; cal Relati onshi ps ••
How Logical Relationships Affect Your Programming
Status Codes for Logical Relationships •••.

Planning Ahead for Batch-to-BMP Conversion .•.•
The Compatibility Option . . . • • . •..
Checkpoint Frequency

Designing a Program that Uses GSAM

101
101
102
103
103
103
103
103
103
104
104
104
104
104
104
104
105
105
106
106
106
107
107
108
108
108
108
109
111
111
III
113
113
115
118
119
119
120
121
121
122
123
123
124
124
125
125
126
126
126
126
127
128
129
129
130
131
131
131
132
132
133
134
134
135
135
136
137
138
138
140
140
140

Contents xv

Access i ng GSAM Data Ba ses .. 0 0 0 0 0 0 0

PCB Masks for GSAM Data Bases 0 0 0 0 0 0 0 0 0 0

Retrieving and Inserting GSAM Records 0 ••••

Explicitly Opening and Closing a GSAM Data Base
GSAM Record Formats . 0 • • • 0

GSA~l Status Codes .. 0 • • 0 0

Using Symbolic CHKP and XRST with GSAM
Processing Fast Path Data Bases

Processing MSDBs 0 0 0

T~/pes of MSDBs 0 0 0 0 •• 0 0

Reading Segments in an MSDB: GU and GN
Updating Segments in an MSDB: REPL, DLET, ISRT, and FLD
Sync Point Processing in an MSDB

Process'i ng DEDBs o. 0 0 • 0 0 0

Using DL/I Calls with DEDBs
The POS Call 0 • 0 • 0 0 0

Sync Point Processing in a DEDB

Chapter 7. coding the DL/I Portion of a Program
Before You Code . 0 0 • 0 0 • 0 0

Parts of a DL/I Program . 0 0 • 0 0 • 0 • • 0 0 0 0 0 • 0 0

COBOL DL/I Program Structure o. 0 0 • •

PL/I DL/I Program Structure . 0 • • • • 0

Assembler Language DL/I Program Structure
Your Input 0 •••••••• 0 ••

Information You Need about the Program's Design
Information You Need about Checkpoints . 0 ••

Information You Need about Each Segment ..
Information You Need about the Program's Hierarchies

Coding the Program Logic . 0 •••••• 0 ••• 0 •

Codi ng an Entry Statement .• 0 ••••

Coding DL/I Calls
Coding System Service Calls for'Recovery .•..
Coding System Service Calls for Monitoring
Check i ng Status Codes

Codi ng the Data Area .•.....
Codi ng the Parmcount .. 0 0 • • • .0 • •

Cadi ng DL/I Funct i on Codes 0 •• 0 ••••

GU Functi on Code for COBOL 0 ••

ISRT Function Code for PL/I 0 •••••

REPL Function Code for Assembler Language
Coding DB PCB Masks
Coding the I/O,Area
Codi ng SSAs
Cod i ng Checl<po in t IDs

GSAM Coding Considerations .. .
Coding Fast Path Data Base Calls

Chapter 8. structuring a Message processing Program ••••
How You Send and Receive Messages: An Overview .••.

DC Calls 0 0

I/O PCB Masks I. 0 • 0

Al ternate PCB Masks 0 0 ••• 0 0

Messages .. 0 0 0 • 0 • 0 • • 0 • 0

What Happens When You Process a Message
What Input Messages Look Like
What Output Messages Look Like
How You Edit Your Messages

Using Message Format Services
Terminals and MFS .. 0 ••

An MFS Example .. 0 • 0 0 0 ••••

MFS Input Message Formats . 0 • •

MFS Output Message Formats
Usi ng Basi cEdi to. 0 0 0

Editing Input Messages
Ed it i ng Output Messages . • . . • . . .

Retrieving Messages 0 • 0 0 • 0 0 •

Retrieving the First Segment: GU
Retrieving Subsequent Segments: GN

Send; ng Messages: ISRT, CHNG, and PURG
Replying to the Sender•• '
Sendi ng Messages to Other Termi nals ...••

To One Alternate Terminal

xv i IMS/VS Appl i cat ion Programm i ng

140
141
143
143
144
144
145
145
146
146
148
148
152
152
153
153
154

155
155
155
156
159
162
165
165
166
166
166
166
167
167
167
167
168
168
168
168
169
169
169
169
169
170
170
170
171

172
173
175
176
178
179
180
182
182
183
183
184
184
186
191
192
192
192
192
193
193
193
193
194
194

c:,

)

)

'" ,)

To Several Alternate Terminals .•..•.
Sending Messages to Other Application Programs

Communicating with Other IMS/VS Systems
Receiving Messages from Other IMS/VS Systems
Sending Messages to Alternate Destinations in Other

IMS/VS Systems
Conversations

A Conversational Example
Conversational Structure .••.

l~hat the SPA Conta; ns••... . ••.
What Messages look like in a Conversation•
Saving Information in the SPA••...

Replying to the Terminal•...•...
Passing the Conversation to Another Conversational

Program • •
Conversational Processing and MSC ...•
Ending the Conversation . . . • . . .•.

I ssu i ng Commands ..•..... . • • .

194
195
196
197

19.8
199
199
201
203
204
204
204

205
205
206
207

Reserv i ng and Releasi ng Segments .••.
Program Isolation Enqueues ••..
The Q Command Code

Backing out Data Base Updates: ROLB and ROLE
Usi ng ROLB•...•.. • •••
Using ROLL ••.
Us; ng ROLB and ROLL in Conversati ons ..

. ... 207
207
208
209
210
211
211

Considerations for Message-Driven Fast Path Programs
Retrieving and Sending Messages in Fast Path ..•••
Usi ng ROLB in Fast Path••.....

211
212
213

Usi ng CHKP in Fast Path•..•.. . . • • . 213

Chapter 9. coding a Message processing Program
Before You Code

Parts of an MPP•....•.•••••.
COBOL NPP Structure •..•.••.•.•
Pl/! MPP Structure .•..••••
Assembler Language MPP Structure

Your Input•....•.•••...••.
Information You Need about Your MPP's Design
Information You Need about Input Messages .••••
Information You Need about Output Messages •••
Information You Need for a Conversational Program

Codi ng the Program Log; c ••.•• • •.•
Coding DC Calls ..•••
Coding DC System Service Calls
Check i ng Status Codes ...••

Coding the Data Area
Codi ng I/O Areas. • •••••.•

. Codi ng I/O PCB f1asks ••••
Coding Alternate PCB Masks ..••••••••
Codi ng SPAs .•.••..•.••••••

Coding a Message-Driven Fast Path Program

Chapter 10. structuring and Coding a Batc~ Message Program
Process; ng Onl; ne Data Bases .••••

Tools Avai lable to BMPs .•.•••
Sync Po i nts•....•.

Designing Transaction-Oriented BMPs ..••
Processi ng Messages •..••••.•••.•
Sync Points and Checkpoints in Transaction-Oriented BMPs

Single-Mode Bf1Ps •..••.
Multiple-Mode BMPs••.••

Designing Batch-Oriented BMPs .•••••

Chapter 11. Testing an APplication Program
What You Need to Test a Program
Testi ng DL/I Call Sequences ..•••

. . . .
Usi ng BTS II to Test Your Program •.
What to Do When Your Program Terminates Abnormally

When You Fi nd You Have a Problem •..••
Finding the Problem •••••••• • •••

Initialization Errors •••••. • ••••
Execution Errors ••••..••• . •••••••••

Calls You Use for Monitoring and Debugging

.214
214
214
215
216
218
218
218
218
218
219
219
219
219
220
220
220
220
220
220
220

222
222
223
223
224
224
224
224
225
225

227
227
228
229
229
229
230
230
230
231

Contents xvii

xviii

Retrieving IMS/VS System Statistics: STAT
Writing Information to the System log: lOG
Retr i ev i ng System Addresses: GSCD .••.

Chapter 12. Documsnting an APplication Program
Documentat i on for Other Programmers • • • • .
Documentation for Users .•.•.••.

Part 3. For Your Reference

IHS/VS Entry and Return Conventions
COBOL ..•.•.
P l/ I •.......••..
Assembler language

DL/I Calls
Dl/I Call Formats

COBOL
PL/I
Assembler language

Dl/I Call Parameters

DB PCB Masks • • • •
COBOL DB PCB Mask ..•.
PL/I DB PCB Mask
Assembler Language DB PCB Mask

I/O Area ••••
COBOL I/O Area .• ..
PL/I I/O Area
Assembler Language I/O Area

Segment Search Arguments ••••
SSA Coding Rules
SSA Codi ng Formats

COBOL SSA Definition Examples
PL/I SSA Definition Examples .
Assembler Language SSA Definition

DC Calls . • •••••
DC Call Formats

COBOL .•...
PLI I
Assembler Language

DC Call Parameters
Summary of DC Calls

System Service Calls •••••••
Symbolic CHKP and XRST Call Formats

COBOL•
P L/ I •••••••••••••
Assembler Language

Symbolic CHKP and XRST Parameters
Basic CHKP Call Format

COBOL .•.......•.
P LI I •••••••
Assembler Language

Basic CHKP Parameters
GSCD Call Formats

COBOL•..•
·PL/I ...•...
Assembler Language

GSCD Parameters
LOG Call Formats

COBOL ..•...
. PL/ I

Assembler Language
lOG Parameters ...•.

Restrictions on lOG I/O Area
STAT Call Formats

COBOL .•...•
PL/ I .•.•••.
Assembler Language

IMS/VS Application Programming

---~ .. -~-...... -.. ~-

.
Examples

.~

231
232
232

234
234
235

237

238
238
238
238

239
239
239
239
239
239

241
241
242
242

243
243
243
243

244
244
245
245
246
247

248
248
248
248
248
248
249

250
251
251
251
251
251
252
252
252
252
252
253
253
253
253
253
254
254
254
254
254
255
255
255
255
255

(

(

)

)

)

STAT Parameters•
Status Code Error Routlne Call Format

COBO l•.••....
P l/ I
Assembler language•.•...

Status Code Error Routlne Call Parameters
Suggestl0ns .••.

OEQ Call Formats
COBOL
P l/ I ••..•••••• • t , .
Assembler language

DEQ Call Parameters
ROlB Call Formats

COBOL ...••..
Pl/ I
Assembler language

ROlB Call Parameters
ROll Call Formats

COBOL
P l/ I
Ass~mbler language

ROll Call Parameters

GSAM Reference
GSAM Call Formats

COBOL .•...
P l/ I
Assembler language

GSAM Call Parameters
GSAM Data Areas

GSAM DB PCB Masks
GSAM I/O Areas
GSA~l RSAs

GSAM JCl Restrictions

Fast Path Reference •••••••
Fast Path Data Base Calls

FLO Call Format
COBO l
Pl/!
Assembler language

. . , .

.. ,. ,

FLO Call Parameters
pas Ca'l I Format

COBOL
P l/ I .•....
Assembler language•.

POS Call Parameters
Fast Path Data Areas

FSAs
POS I/O Area

Fast Path Message Calls ..
Fast Path System Service Calls

SYNC Call Format
COBOL ..•..••.
P l/I ...•..

. , ,

Assembler language , .
SYNC Call Parameters

IMS/VS status Codes •••••••••
IMS/VS Status Codes Quick Reference
IMS/VS Status Codes Explanations

Appendixes

APpendix A. Sample Batch Program

Appendix B. Sample Batch Message Program

APpendix c. Sample Message Processing Program

APpendix D. sample conversational MPP

. , . . , .

255
256
256
256
256
256
257
257
257
257
257
257
258
258
258
258
258
258
258
258
258
258

259
259
259
259
259
259
260
260
261
261
262

263
263
263
263
263
263
264
264
264
264
264
264
265
265
266
266
267
267
267
267
267
267

268
268
272

286

287

293

299

302

APpendix E. Sample Status Code Error Routine (DFSOAER) 307

Contents xix

APpendix F. using the DL/I Test Program (DFSDDLTO)
Control Statements . . • •

STATUS Statement
COMMENTS Statement

Unconditional
Conditional

CALL Statement
DATA statement••..••••

Parameter Length, SNAP Calls
Parameter Length, LOG Call •.•..
Segment Length and Checking, All Calls

COMPARE statement for PCB Comparisons .
COMPARE statement for I/O Area Comparisons
OPTION Statement .•.• . . • •

Special Control Statements
PUNCH Statement
PUNCH DO Statement
SYSIN2 DO Statement . • • • •
Other Control statements•
Speci al CAL L Statements .•..••

Execution in Different Regions .•••.•••.
Suggestions on Using the DL/I Test Program
DL/I Test Program JCL Requirements
Sample JCL for the Dl/I Test Program

. . .

. . . .

Index ,

xx IMS/VS Application Programming

316:
ll6 -
3i6
318
318
318
318
320
320
321
321
322
323
324
325
325
326
326
327
327
328
329
330
331

333

(
'\
"-

(

)

)

)

FIGURES

1.
2.
3.
4.
5.
6.
7 •
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37 •
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

Medical Data Base Hierarchy
Accounting Program's View of the Data Base .
Patient Illness Program's View of the Data Base
Entities and Data Elements .. .•.
Current Roster . .. • . • ..
Example of Data Elements Information Form
Single Occurrence of Class Aggregate
Current Roster' Step 1 .. . •••
Multiple Occurrences of Class Aggregate
Current Roster Step 2 . . .
Current Roster Step 3 ...
Schedule of Classes . ..
Class Schedule Data Elements
Class Schedule step 1 ..
Instructor 51< i 11 s Report ..
Instructor Skills Data Elements
Instructor Ski lIs Step 1
Instructor Schedules ..
Instructor Schedules Data Elements . • • ...
Instructor Schedules Step 1 .•..
Instructor Schedules Step 2 .•. .. . •
Current Roster Task Descri pti on
·Summary of IMS/VS Application Program Characteristics
Physi cal Employee Segment. . ..
Employee Segment with Field level Sensitivity
Patient Hierarchy .. •.
Index i ng a Root Segment . . • •
Indexing a Dependent Segment
Patient and Inventory Hierarchies
Logical Relationships Example
Supplies and Purchasing Hierarchies
Program B ~nd Program C Hierarchies
Medical Data Base Hierarchy
Sample Hi erarchy . . •.
Summary tif Symbolic and Basic Checkpoint Calls
Example of SPA Storage
DL/I Program Structure
DL/I· Cal,l Parameters. . .•.
Unqualified SSA Structure
Qual i fi ed SSA Structure .. .
Unqualified SSA with Command Code
Qualified SSA with Command Code
D Command Code Example
DB PCB Nask
Medical Hierarchy
PATIENT Segment
ILLNESS Segment
TREATMNT Segment
BILLING Segment
PAYMEtH Segment
HnUSHOLD Segment ...•
Hi era rch i c Sequence 0 0 0 0

Cur r en t Po sit ion. Hie r arc hy. o. • • •

Hierarchy after Deleting a Segment
Hierarchy after Deleting a Segment and Dependents
Hierarchy after Adding New Segments and Dependents
Position after Not Found Calls . 0 •••

U Command Code Example • . .
Using an SSA with Secondary Indexing
Patient and Item Hierarchies o. 0 •

GSAM DB PCB Mask
Teller Segment in Fixed Related MSDB .
Branch Summary Segment in Dynamic Related MSDB
Account Segment in Nonrelated MSDB . . 0 0 •

FSA StructLlre . 0 •••

COBOL DL/ I Skeleton Program o. • • •

PL/I DL/I Skeleton Program ...••

4
6
6

13
13
17
18
19
20
20
21
23
23
23
24
24
25
25
26
26
26
29
40
48
48
49
50
51
53
53
54
55
56
58
60
71
78
80
82
82
83
83
84
85
88
89
89
89
90
90
90
94

109
112
112
114
115
125
135
137
141
146
147
147
149
157
160

Figures xxi

68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

i 1 00.
101.
102.
103.

Assembler Language Skeleton Program
Summmary of GSAM Calls ..•
Basi c MPP Structure •..
I/O PCB Mask •. •
Alternate PCB Mask .. .
Message Segments . .• •
Transaction Message Flow ..
Inventory Inquiry MPP Example
Input Message Format . .
Output Message Format
Message Segment Formats • . .
Terminal Screen for MFS Example
Option 1 Message Format ..
Opt ion 2 Message Format••
Opti on 3 Message Format•
Message Format for Program-to-Program Message Switch
MSC Example •.. .
Di rected Rout i ng Bit in I/O PCB • . .
Directed Routing Output Message Format
SPA Format ..
Progra~ Isolation Example
Q Command Code Example
Comparison of ROlB and ROLL
COBOL ~1PP Skeleton ..
Pl/I MPP Skeleton ...
log Record Format ..
DB PCB Mask • •
Relational Operators
Summary of DC Calls .
Summary of System Service"Calls
GSAM DB PCB Mask Format . .
GSAM JCl Restrictions

Summary of Fast Path Data Base Calls
Fast Path Message Calls .•• .•. .
Fast Path System Service Calls
IMS/VS Status Codes Quick Reference

xxi i IMS/VS Appl i cat i on P rogramm i n9

163
170
174
177
179
180
181
182
182
183
187
188
188
189
191
196
197
198
198
203
208
208
210
215
216
232
241
244
249
250
260
262
263
266
267
269

(

(

\
)

)

--------------- ------------------ -----------

PART 1. APPLICATION DESIGN GUIDE

This part of the book gives you an introduction to IMS/VS, and
covers the decisions that you have to make when you are designing
an IMS/VS application. The introductory material and the tasks
that this part covers are:

• concepts ~nd Terminology

• Analyzing Application Requirements

• Understanding Online and Batch processing

• Gathering Requirements for Data Base options

• Gathering Requirements for Data communications options

Part 1. Application Design Guide 1

CHAPTER 1. CONCEPTS AND TERMINOLOGY

This chapter is an introduction to IMS/VS, and to designing and
coding IMS/VS application programs. The first section explains
some basic concepts about processing a data base, and the second
section gives an overview of the tasks covered in this book:

• processing Information in a Data Base

This section explains the concepts and terms that you need to
understand before reading the chapters that follow.

• A look at the Tasks Ahead of You

This section describes what you do to design and code IMS/VS
application programs.

PROCESSING INFORMATION IN A DATA BASE

Before explaining what data base records look like and how you
process them, this section describes what makes storing data in a
data base different from other ways of storing data.

COMPARING WAYS TO STORE DATA

The advantage of storing and processing data in a data base is
that all of the data appears only once, and that each program has
to process only the data that it needs. One way to understand this
is to compare three ways of stori ng data: in separate fi les, ina

/
I

combined file, and in a data base. (

storing Data in separate Files

If you keep separate files of data for each part of your
organization, you can make sure that each program uses only the
data it needs, but you have to store a lot of the data in several
places at once. The problem with this is that redundant data takes
up space that could be used for something else.

For example, suppose that a medical clinic keeps separate files
for each of its departments, such as the clinic department, the
accounting department, and the ophthalmology department.

• The clinic department kee.ps data about each patient that
visits the clinic. For each patient, the clinic department
needs to keep this information:

The patient's identification number

The patient's name

The patient's address

The patient's illnesses

The date of each illness

The date that the patient came to the clinic for treatment

The treatment that was given for each illness

The doctor that prescribed the treatment

The charge for the treatment

2 IMS/VS Application Programming

\,

(

)

)

)

•

------ ------------------------------

The accounting department also keeps information about each
patient. The information that the accounting department might
keep for each patient is:

The patient's identification number

The patient's name

The patient's address

The charge for the treatment

The amount of the patient's payments

The information that the ophthalmology department might keep
for each of its patients is:

The pati~nt's identification number

The patient's name

The patient's address

The patient's illnesses that relate to ophthalmology

The date of each illness

The names of the members in the patient's household

The relationship between the patient and each household
member

If each of these departments keeps separate files, each
department uses only the data that it needs, but a lot of data is
redundant. For example, every department in the clinic USGS at
least the patient's number, name, and address. Updating the data
is also a problem because if several departments change the same
piece of data, you have to update the data in several places.
Because of this, it's difficult to keep the data in each
department's files current. There's a danger of having current
data in one department, and "old" data in another.

storing Data in a Combined File

Another way to store data is to combine all of the files into one
file for all of the departments at the clinic to use. In the
medical example, the patient record that would be used by each
department would contain these fields:

• The patient's identification number

• The patient's name

• The patient's address

• The patient's illnesses

• The date of each illness

• The date that the patient came to the clinic for treatment

• The treatment that was given for each illness

• The doctor that prescribed the treatment

• The charge for the treatment

• The amount of the patient's payments

• The names of the members in the patient's household

Chapter 1. Concepts and Terminology 3

• The relationship between the patient and each household
member

Using a combined file solves the updating problem because all of
the data is in one place, but it creates a new problem: the
programs that process this data have to access the entire data
base record to get to the part that they need. For example, to
process only the patient's number, charges, and payments, an
accounti ng program has to access all of the other fi elds as well.
In addition, changing the format of any of the fields within the
patient's record affects all of the application programs, not
just the programs that use that field. Using combined files can
also involve security risks, since all of the programs have access
to all of the fields in a record.

storing Data in a Data Base

Storing data in a data base gives you the advantages of separate
files and combined files: all of the data appears only once, and
each program accesses only the data that it needs. This means
that:

• When you update a fiel~, you only have to update it in one
place.

• Since you store each piece of information only in one place,
you can't have an updated version of the information in one
place and an out-of-date version of the information in

. another place.

• Each program accesses only the data it needs.

• You can keep programs from accessing private information.

In addi t ion, stor i ng data ina d.ata base has two advantages that (
neither of the other ways has:

• If you change the format of part of a data base record, the
change doesn't affect the programs that don't use the changed
information.

• Programs aren't affected by how the data is stored.

Because the program is independent of the physical data, a data
base can store all of the data only once and yet make it possible
for each program to use only the data that it needs. In a data
base, what the data looks like when it's stored, and what it looks
like to an application program are two different things.

WHAT THE DATA LOOKS LIKE WHEN IT'S STORED

In IMS/VS, a record is stored and accessed in a hierarchy. A
hierarchy shows how each piece of data in a record relates to
other pieces of data in the record. Figure 1 shows the hierarchy
you could use to store the patient information described earlier
in thi s chapter.

4 IMS/VS Application Programming

(

\
)

)

)

PATIENT

Figure 1. Medical Data Base Hierarchy

IMS/VS connects the pieces of information in a data base record by
defining the relationships bntween the pieces of information that
relate to the same subject. The result of this is a data base
hierarchy. The hierarchy shows how each piece of information is
related to other pieces of information in the record. The
relationship between two pieces of information in the hierarchy
means that one piece of information is ei·ther dependent on or
equal to another piece of information.

In the medical data base, the data that you're keeping is
information about a particular patient. Information that is not
associated with a particular patient is meaningless. For example,
keeping informafion about a treatment given for a particular
illness is meaningless if the illness isn't associated with a
patient. ILLNESS, TREATMNT, BILLING, PAYMENT, and HOUSHOLD must
always be associated with one of the clinic's patients to be
meaningful information.

There are five kinds of information you're keeping about each
patient. The information about the patient's illnesses, billings,
and household depends directly on the patient. The information
about the patient's treatments and the patient's payments depends
respectively on the patient's illnesses and the patients payments
as well.

Each of the pieces of data represented in Figure 1 is called a
segment in the hierarchy. A segment is the smallest unit of data
that an application program can retrieve from the data base. Each
segment contains one or more fields of information. The PATIENT
segment, for example, contains all of the information that
relates strictly to the patient: the patient's identification
number, the patient's name, and ~he patient's address.

WHAT THE DATA LOOKS LIKE TO YOUR PROGRAM

IMS/VS uses two kinds of control blocks to make it possible for
application programs to be independent of the way in which you
store the data in the data base. One control block defines the
physical structure of the data base; another defines an
application program's view of the data base:

• A data base description, or DBD, is a control block that
describes the physical structure of the data base. The DBD
also defines the appearance and contents, or. fields, that
make up each of the segment types in the data base.

For example, the DBD for the medical data base hierarchy shown
in Figure 1 would describe to IMS/VS the physical structure
of the hierarchy, and it would describe each of the six
segment types in the hierarchy: PATIENT, ILLNESS, TREATMNT,
BILLING, PAYMENT, and HOUSHOLD.

Chapter 1. Concepts and Terminology 5

• A data base program communication block, or DB PCB, in turn,
defines an application program's view of the data base. An
application program often needs to process only some of the
segments in a data base. A PCB defines which of the segments
in the data base the program is a Iloto,Jed to access. The program
is "sensitive" to the segments that it's allotoJed to access.
The data structures that are available to the program contain
only segments that the program it sensitive to.

For example, an accounting program that calculates' and prints
bills for the clinic's patients would need only the PATIENT,
BILLING, and PAYMENT segments. You could define the data
structure shown in Figure 2 in a DB PCB for this program.

Figure 2. Accounting Program's View of the Data Base

A program that updates the data base with information on patients'
illnesses and treatments, on the other hand, would need to process
the PATIENT, ILLNESS, and TREATMNT segments. You could define the
data structure shown in Figure 3 for this program.

Figure 3. Patient Illness Program's View of the Data Base

Sometimes a program needs ·to process all of the segments in the
data base. When this is true, the program's view of the data base
as defined in the DB PCB is the same as the DL/I hierarchy that's
defined in the DBD.

Each DB PCB defines a way in wh~ch the applicatiori program views
and processes the data base. The DB PCB also tells IMS/VS how the
program is allowed to process the segments in the data
structure-whether the program can only read them, or whether it
can update segments as well.

A program specification block, or PSB, contains the DB PCBs for a
particular application program. A program may use only one DB
PCB-whi ch ,means it processes only one data structure-or it may
use several DB PCBs, one for each data structure. There is one PSB
for each application program.

(

Since an application program processes only the segments in a data
base that it requires, if you change the format of a segment that ~
a program doesn't process, you don't have to change the prograM. A \
program is ~ffected only by the segments that it accesses. In ,
addition to being sensitive to only certain segments in a data

6 IMS/VS Appllcation Programming

)

)

base, a program can also be sensitive to only certain fields
within a segment. This is called field level sensitivity. If you
change a segment that the program isn't sensitive to, it doesn't
affect the program. In the same way, if you change a field that
the program isn't sensitive to, it doesn't affect the program.

HOW YOU PROCESS A DATA BASE RECORD

A data base record is a root segment occurrence and all of its
dependents. In the medical example, a data base record is all of
the information about one patient. The PATIENT segment in the
medical data base is called the root segment. The segments below
the root segment are called dependents, or children, of the root.
For example, ILLNESS, BILLING, and HOUSHOLD are all children of
PATIENT. ILLNESS, BILLING, and HOUSHOLD are called direct
dependents of PATIENT; TREATMHT and PAYMENT are also dependents
of PATIENT, but they are not direct because they are at a lower
level in the hierarchy.

Each data base record has only one root 'segment occurrence, but it
may have several occurrences at lower levels. For example, the
data base record for a patient contains only one occurrence of the
PATIENT segment type, but it may contain several ILLNESS and
TREATMNT segment occurrences for that patient.

To process the information in the data base, your application
program communicates with IMS/VS in three ways:

• Passing control: IMS/VS passes control to your application
program through an entry statement in your program. Your
program returns control to IMS/VS when it has finished its
processing.

• Communicating processing requests: Your program communicates
processing requests to IMS/VS by issuing calls to Data
Language I, or DL/I. DL/I is an access method that handles the
data in the data base.

• Exchanging information with DL/I: Your program exchanges
information with DL/I through two areas in your program.
First, DL/I reports the results of your calls in the DB PCB.
Your program builds a mask of the DB PCB and uses this mask to
check the results of the calls. Second, when you request a
segment from the dat~ base, DL/I returns the segment to your
I/O area. When you want to update a segment in the data base,
you place the new value of the segment in the I/O area.

An application program can read and update a data base. When you
update a data base, you can re~lace segments, delete segments, or
add segments. You indicate to DL/I the segment you want to
process, and whether you want to read or update it, in a DL/I
call.

A LOOK AT THE TASKS AHEAD OF YOU

There are five kinds of tasks in developing an IMS/VS application
and the programs that are part of the application:

• Designing the application. Application design varies from
installation to installation, and from one application to
another. Because of this, this book does not try to cover the
early tasks that are part of designing an application.
Instead, it covers only the tasks that you are concerned with
once the early specifications for the applicati~n have been
developed. These subtasks are: .

Analyzing Application Requirements. Two important parts
of application design are defining the data that each of
the business processes in the application will require,
and designing a local view for each of the business

Chapter 1. Concepts and Terminology 7

processes. "Chapter 2. Analyzing Application
Requirements" explains these tasks.

Understanding Online and Batch Processing. When you
understand the business processes that are part of the
application, you can analyze the requirements of each
business process in terms of the processing available
with different types of IMS/VS application programs.
"Chapter 3. Understandi ng Onl i ne and Batch Processi ng"
explains IMS/VS processing and the application .
requirements that each satisfies.

Gathering Requirements for Data Base Options. You then
need to look at the data base options that can efficiently
answer the requirements and gather information about your
application's data requirements that relates to each of
the options. "Chapter 4. Gathering Requirements for Data
Base Options" explains these options, and it helps you to
gather information about your application that will be
helpful to the data base administrator in choosing these
options.

Gathering Requirements for Data Communications Options.
If your application will use data communications, you
also need to look at its data communications requirements
and gather information.that relates to DC options;
"Chapter 5. Gathering Requirements for Dat~
Communications Options" explains the IMS/VS data
communications options, and helps you to gather
information about your application that will be helpful
in choosing them.

• Dev~loping specifications. This task depends completely on
the application being developed and the installation.

• Implementing the design. Once the specifications for each of
the programs in the application have been developed, you can
structure and code the program according to those
spec'i fi cat ions:

Structuring the Dl/I Portion of a Program. Once the
program design is complete, you can structure the Dl/I
calls and data areas based on the programming
specifications that have been developed. "Chapter 6.
Structuring the DL/I Portion of a Program" tells you how
to do thi s.

Coding the Dl/I Portion of a Program. Once you know the
structure of the program, you implement that structure by
coding DL/I calls and the data areas used to communicate
with IMS/VS. "Chapter 7. Coding the DL/I Portion ~f a
Program" is a guide to coding a batch program.

Structuring a Message Processing Program. If you're
writing a program that will communicate with terminals
and other programs, you need to structure the message
processing part of the program. "Chapter 8. Structuring a
Message Processing Program" tells how you do this.

~ Coding a Message Processing Program. Again, once you have
developed the structure of the program, you implement
that structure by coding the DC calls that enable your
program to send and receive messages. "Chapter 9. Coding
a Message Processing Program" tells how you code the
parts of an MPP.

Structuring and Coding a Batch Message Program. If your
program performs batch processing online, there are some
additional considerations in structuring and coding your
program. "Chapter 10. Structur i ng and Codi ng a Batch
Message Program" explains these considerations.

8 IMS/VS Application Programming

(

(
\

)

!
/'

)

• Testing an Application Program. When you have completed
coding your program, you test it by itself and then as part of
a system. "Chapter 11. Test i ng an Appl i cat i on Program" gives
some guidelines on program test.

• Documenting an Application Program. Documenting a program
should not be something that you do at the end of a project.
It is most effective when done incrementally; when the
program is completely tested, however, there is some
additional information you need to supply for people who use
and maintain your program. "Chapter 12. Documenting an
Application Program" gives some suggestions about the
information you should record about your program.

Chapter 1. Conc~pts and T~rminology 9

CHAPTER 2. ANALYZING APPLICATION REQUIREMENTS

Designing an application that meets the requirements of end users
involves.a variety of tasks, and, usually, people from several
departments at an installation. Application design begins when a
department or busi ness area communi cates a need for some type of
processi ng; it ends when each of the parts of the appl i cati on
system-for example, the programs, the data bases, the di splay
screens, and the message formats-have been designed. This
chapter gives an overview of application design and explains two
of the tasks involved in the process:

• An Overview of Application Design

This section gives a general description of application
design so that you'll understand how the tasks Qxplained
later in this chapter fit into the application design
process. It also gives some suggestions about how you
document the application design process and describes some of
the considerations in converting an existing application to
I~lS/VS .

• Identifying Application Data

One part of application design is gathering and analyzing the
data that an application requires. This section describes
listing, naming, and documenting data. .

• Designing Local Views

This section explains how you develop local views for each
business process in the application. A local view records a
conceptual data structure and the and the relationships
between the pieces of data in the structure. The information
that you develop at this stage will be helpful to the data
base administrator, or DBA, when the DBA designs the data
base.

AN OVERVIEW OF APPLICATION DESIGN

Application design is a process that varies from installation to
installation, and from application to application. The overview
that's given in this section, and the suggestions about
documenting application design and converting existing
applications are not the only way th~t these tasks are performed.
Each of these processes varies from installation to installation.

THE TASKS OF APPLICATION DESIGN

The purpose of this overview is to give you a frame of reference
so that you'll understand where the techniques and guidelines
explained later in this chapter fit into the process. The order in
which you perform the tasks described here, and the importance
given to each one, depend on your installation. Also, the people
involved in each task, and their titles, may differ from
installation to installation.

• Using Installation Standards

/

('
'"

Throughout the design process, be sure that you're aware of
the standards that your installation has established. Some of
the areas in which installations usually establish standards
are: naming conventions (for example, for data bases,
terminals, data elements); formut~ for screens and messages;
programmi ng and codi ng convent ions (concern i ng thi ngs 1 i ke (
the use of common subroutines and macros); and control of and
access to the data base. Setting up standards in these areas

10 IMS/VS Application Programming

)

)

'\
)

•

is usually an ongoing task that's the responsibility of data
base and system administration.

Following Your Installation's Security Standards

Security means protection of the installation's resources
from unauthorized access and use. Like defining standards,
designing an adequate security system is often an ongoing
task. As an application is modified or expanded, often the
security has to be changed in some way as well. Security is an
important consideration in the initial stages of application
design. Establishing security standards and requirements is
usually the responsibility of an area like system
administration. These standards are based on the requirements
of the applications at the installation. "Identifying
Secur i ty Requ i rernent s" and "Ident i fy; ng Onl i ne S ecu r i ty
Requi rements" on page 64 gi ves some suggesti ons about the
kind of information that you can gather concerning your
application's security requirements. This information can be
helpful to data base administration and system administration
in implementing data base and data communications security.

Some of the areas in which security is a concern are: access
to and use of the data bases; access to terminals;
distribution of application output; control of program
modification; and transaction and command entry.

• Identifying Application Data

•

Identifying the data that an application requires is a major
part of application design. One of the tasks of data
definition is learning from end users what information will
be required to perform the required processing. Once you have
listed the data that will be required, other tasks are naming
the data and documenting it. ~Identyfying Application Data"
describes these parts of data definition.

Providing Input for Data Base Design

In order to design a data base that meets the requirements of
all of the applications that will process the data base, the
DBA needs information about the data requirements of each
application. One way to gather and supply this information is
to design a local view for each of the business processes in
your application. A local view is a description of the data
that a particular business process requires. "Designing a
Local VieloJ" explains how you can develop a conceptual data
structure and analyze the relationships between the pieces of
data in the structure for each business process in the
application.

• Designing Application Programs

Once the overall application flow and system externals have
been defined, you define the programs that will perform the
required processing. Some of the most important
considerations involved in this task are installation
standards, security and privacy requirements, and performance
requirements. When you develop the specifications for the
programs, the specifjcation should include:

The security requirements of the application program

The input and output data formats and volumes

The data verification and validation requirements

The logic specifications for the program

The performance requirements of the program

The recovery requirements of the program

Chapter 2. Analyzing Application Requirements 11

The linkage requirements and conventions

"Chapter 3. Understanding Online and Batch Processing"
describes the considerations in this task, and it describes
the types of pt'ocess 1 ng ava i lable wi th IMS/VS. "Chapter 4.
Gathering Requirements for DDta Base Options" describes some
of the data base opti ons that you should be aware of taJhi Ie
developing program specifications. "Chapter 5. Gathering
Requirements for Data Communications Options" de-scribes some
of the data communications options that you should be aware of
at this stage.

In addition, you may be asked to provide some information about
your application to the people responsible for network and
display design.

DOCUMENTING THE APPLICATION DESIGN PROCESS

Recording information about the application design process is
valuable to others who work with the application now and in the
future. One kind of information- that's helpful is information
about why you designed the application the way you did. This
information can be helpful to people who are responsible for the
data base, your IMS/VS system, and the programs in the
application--espacially if any part of the application has to be
changed in the future. Documenting application design is done
most thoroughly ,,,hen it's done duri ng the des; gn process, instead
of at the end of it.

A good place to keep this information is in a data dictionary. For
example, using the IBM DB/DC Data Dictionary (Program Product
Humber 5740-XXF), you can define a data processing

(

env i ronment--the appl i cat i on system, the programs, the programs'
modules, the IMS/VS system, and so on. The DB/DC Data Dictionary
Applications Guide explains how you can use the Data Dictionary (
for these purposes. ~

CONVERTING AN EXISTING APPLICATION

One of the main aspects in converting an existing application to
IMS/VS is to know what already exists. Before starting to convert
the existing system, find out everything you can about the way it
works currently. For example, the information below can be of help
to you when you begin the conversion:

• The record layouts of all of the records used by the
application.

• The number of data element occurrences for each of the data
elements.

• The structure of any existing related data bases.

IDENTYFYING APPLICATION DATA

One of the steps of identifying application data is to thorOUghly
understand the processing that the end user wants done. You need
to uoderstand the input data and the required output data to be
able to define the data requirements of the application. You also
-need to understand the business processes that are involved in the
end user's processing needs. Three of the tasks involved in
identifying application data are:

• listing the data required by the business process

• .Hami ng the data

• Documenting the data

12 IMS/VS Application Programming

(
\....

)

)

When you analyze the data that an application requires, you'll
find that the data falls into one of two categories:

• An entity is a person, place, or thing, that is of interest to
the end user, about which data may be recorded. It's what
you're keeping information about.

• A data element is the smallest named uni t of data pertai ni ng
to an entity. It's information that describes the entity.

For example, in an educat ion appli cat; on, "students" and
"courses" are both entities; these are two subjects about which
you collect and process data. Figure 4 shows some data elements
that relate to the student and course entities.

Entities Data Elements

Students Student Name
Student Number

Course Course Name
Course Number
Course l'ength

Figure 4. Entities and Data Elements

When you store this data in a DL/I data base, groups of data
elements are potential segments in the hierarchy; each data
element is a potential field in that segment.

LISTING DATA ELEMENTS

This chapter uses as an example a company that provides technical
education to its customers. The education company has one
headquarters, called HQ, and several local education centers,
called Ed Centers.

A class is a single offering of a course on a specific data at a
particular Ed Center. There may be several offerings of one course
at different Ed Centers; each of these is a separate class. HQ is
responsible for developing all of the courses that will be
offered, and each Ed Center is responsible for scheduling classes
and en~olli~g students for its classes.

Suppose that one of the education company's requirements is for
each Ed Center to print weekly current rosters for all of the
classes at the Ed Center. The current roster is to give
information about the class and the students enrolled in the
class. HQ wants the current rosters to be in the format shown in
the sample current roster in Figure 5.

Chapter 2. Analyzing Application Requirements 13

CHICAGO 1/04/80

TRANSISTOR THEORY
. 10 DAYS

41837

INSTRUCTORCS): BENSON,R.J. DATE: 1/14/80

STATUS STUDENT

1.ADAMS, J.W.
2.BAKER, R.T.
3.DRAKE, R.A.

CUST

XYZ
ACME
XYZ

LOCATION

SOUTH BEND, IND
BENTON HARBOR, MICH
SOUTH BEND, IND

CONF
! WAIT

CANC

ABSENT GRADE

33.WILLIAMS, L.R. BEST CHICAGO, ILL CONF

CONFIRMED = 30
WAIT LISTED = 1
CANCEtED = 2

Figure S. Current Roster

To list the data elements·for a particular business process, look
at the required output. The current roster shown in Figure 5 is
the roster for the class, "Transistor Theory" to be given in
Chicago, the Ed Center, starting on January 14, 1980, for ten
days. Each course has a course code assoc i ated wi th i t-i n thi s
case, 41837. The code for a particular course will always be the
same; if Transistor Theory is also given in New York, the course
code will still be 41837. The roster also gives the name(s) of the
instructorCs) who will be teaching the course. Although the

(
\

example only shows one instructor, a course may require more than (
one instructor.

For each-student, the roster keeps the following information: a
sequence number for each student, the student's name, the
student's company CCUST), the company's location, the student's
status in the class, and the student's absences and grade. All of
the above information on the course and the students is input
information.

The current date (the date that the roster is printed) appears in
the upper right corner C1/04/80). The current date is an example
of data that is only output data. The current date is generated by
the operating system and is not stored in the. data base.

The bottom left-hand corner give~ a summary of the class status.
This data is not included in the input data; these values will be
determined by the program during processing. It is processing
data.

When you list the data elements, it's helpful to abbreviate them
because you'll be referring to them frequently when you design the
local view.

LIST OF CURRENT ROSTER DATA ELEMENTS

EDCNTR The name of the Ed Center giving the class

DATE The date the class starts

CRSNAME The name of the course

CRSCODE The course code

LENGTH The length of the course

INSTRS The name(s) of the instructor(s) teaching the class

14 IMS/VS Application Programming

'--

(

)

NAMING DATA ELEMENTS

)

)

STUSEQtt The student's sequence number

STUNAttE The student's name

CUST The name of the student's company

LOeTN The location of· the student's company

STATUS The student's status in the class--whether the student
is confirmed, wait-listed, or canceled

ABSENCE The number of days on which the student was absent

GRADE The student's grade for the course

Once you've listed the data elements, choose the major entity that
these elements describe. In this case, the major entity is class.
There is a lot of information about each student as well, and some
information about the course in general, but together all this
information relates to a specific class. If the information about
each student (status, absence, grade, for example) isn't related
to a particular class, then the information is meaningless. This
holds true for the data elements at the top of the list as well:
the Ed Center, the date the class starts, and the instructor don't
mean anything unless you know what class they're describing.

Some of the data elements that your application uses may already
exist and be named. After you have listed the data elements, find
out if any of them exist by checking with the DBA, or the
equivalent at your installation.

Before you start naming data elements, be sure you're aware of the
naming standards at your installation. When you name data
elements, use the most descriptive names possible. Remember that
since"other applications will probably be using at least some of
the same data, the names should mean the same thing to everyone.
Try not to limit the name to a meaning that makes SEnse only in
your application; use global names'rather than local names. A
global name is a name whose meaning is clear outside of any
particular application. A local name is a name that must be s~en
in the context of a particular application to be understood.

One of the problems with using local names is that you can develop
synonyms, two names for the same data element. For example, in the
current roster example, suppose the student's company was
referred to si mply as "company" instead of "customer." But
suppose the accounting department for the education company used
the same pi ece of data ina bi 11 i ng appl i cati on--the name of ' the
student's company--and referred to it as "customer." This would
mean that two business processes were using two different names
for the same piece of data. At worst, this could lead to redundant
data if no one real i zed that "customer" and "company" contai ned
the same data. To solve this, use a global name that' is recognized
by both departments using this data element. In this case,
customer is more easily recognized and the better choice. This
name uniquely identifies the data element and has a specific
meaning within the education company.

Homonyms are the opposite of synonyms. A homonym is one word for
two different things. For example, suppose HQ, for each course
that is taught, assigns a number to the course as it is developed
and calls this number the "sequence number." The Ed Centers, as
they receive student enrollments for a particular class, assign a
number to each student as a means of identification within the
cIa S5. The Ed Centers call th i s number the" sequence number." Thus
HQ and the Ed Centers are usi ng the same name for two separate
data elements. You can solve the problem by qualifying the names.
The number that HQ assi gns to each course can be called "course
code" (CRSCODE), and the number that the Ed Centers assign to
thei r students can be called "student sequence number" (STU5EQtD.

Chapter 2. Analyzing Application Requirements 15

----------------_ .. _-----

The name of a particular data element must identify th~t element
and describe it as much as possible. Data element names should be:

• Unique: The name is clearly distinguishable from other names.

• Self-explanatory: The name is easily understood and
recognized.

• Concis~: The name is descriptive in a few words.

• Uni versal: The name means the same thi ng to everyone.

DOCUMENTING APPLICATION DATA

After you've determined what data elements a business process
requires, it's a good idea to record as much information about
each of these elements as possible. This information is useful to
the DBA. Make sure that you are aware of any standards that your
installation has established about data documentation. Many
installations have standards concerning what information should
be recorded about data, and how and where that information should
be recorded. The amount and type of this information may vary from
installation to installation; the list below is the type of
information that is often recorded:

• The descriptive name of the data element. Data element names
should be precise, yet they should be meaningful to people who
aren't familiar with the application, as well as to the people
who are familiar with the application.

• The length of the data element. This will be used to determine
segment size and segment format.

• The character format--whether the data is alphameric,
hexadecimal, packed decimal, or binary. The programmer will
need this information.

• The range·of possible values for the element. This is
important for validity checking.

• The default value. The programmer will also need this
information.

• The number of data element occurrences. This information will
help the DBA to determine the space required for this data,
and it affects performance considerations.

• How the busi ness process affects the data element-wi 11 it
just read it, or will it be updating it as well? This
information will determine the processing option that is·
coded in the PSB for the application program.

Other information that you should record about the data concerns
control considerations, such as maintenance and security:

o If the format of a particular data element changes, which
business processes does that affect? For example, if an
education data base has as one of its data elements as-digit
code for each course, and the code is changed to 6 digits,
which business processes will this affect?

• Where is the data now? Know the sources of the data elements
required by the application.

• Which business processes make changes to a particular data
element?

• Are there security requirements about the data in your
application? For example, you would not want information such
as employees' salaries available to everyone at the
installation.

16 IMS/VS Application Programming

(

(

\

)

)

)

ID Data
I Element

Name

5 Course
Code

25 Status

36 Student
Name

• Which department owns and co~trols the data?

One way to gather and record this information is to use a form
similar to the one shown in Figure 6. Again, the amount and type
of data that your record depends primarily on the standards at
your installation. This form is provided as an example of the kind
of data that is useful to record.

Allowed Null Default 'Number of
Length Format Values Value Value Occurrences

5 Char. 00100- 00000 H/A There are 200
bytes 90000 courses in the

curriculum. An
average of 10
are new/revised
per year; an
average of 5 are
dropped per year.

4 Char. CONF blanks WAIT 1 per student
bytes WAIT

CANC

20 Char. Alpha blanks H/A There are 3-100
bytes only students per

class; this is an
average of 40 per
class.

Figure 6. Example of Data Elements Information Form

A data dictionary is a good place to record the facts about the
application's data. When you are analyzing data, a dictionary can
help you find out whether or not a particular data element already
exists, and if it does, its characteristics. With the IBM DB/DC
Data Dictionary, you can use the Data Dictionary online to
determine what segments exist in a particular data base, to
dete~mine the fields that segments contain, and so on. You can
also use itto create reports involving the same information.

The DB/DC Data Dictionary Applications Guide explains how you can
use the Data Dictionary for these purposes.

DESIGNING A LOCAL VIEW

A local view'is a description of the data that an individual
business process requires. It includes a list of the data
elements, a conceptual data structure that shows how you've
grouped data elements by the entities that they describe, and the
relati onshi ps between each of the groups of data elements. A group
of data elements is called a data aggregate. Once you have grouped
data elements by the entity they describe, you can determine the
relationships between the aggregates. These relationships are
called mappings. Based on the mappings, you can design a
conceptual data structure for the business process. You should
document thi s process as well.

ANALYZING DATA RELATIONSHIPS

When you analyze data relationships, you are developing
conceptual data structures for the business processes in your
application. Data structuring is a way to analyze the
relationships between the data elements required by a business
process, not a way to design a data base. The decisions about

Chapter 2. Analyzing Application Requirements 17

segment formats and contents belong to the DBA. The information
you develop is input for designing a data base.

Data structuring can be done in many different ways. The method
explained in this section is an example.

Grouping Data Elements into Hierarchies

A group of data elements that describes a particular entity is
called a data aggregate. For example, the data elements STUSEQ#,
STUNAME, CUST, LOCTN, STATUS, ABSENCE, and'GRADE all describe a
student. This group of data elements is called the student data
aggregate. STUSEQ#, STUNAME, CUST, LOCTN, STATUS, ABSEHCE, and
GRADE are the names of data elements.

Data elements have values as well; for the student data elements
the values are a particular student's sequence number, the
student's name, company, company location, the student's status
in the class, the student's absences, and grade. The names of the
data aggregate are not unique; all the students in the class are
described in the same terms. The combined values, however, of a
data aggregate occurrence are unique. No two students can have the
same values in each of these fields.

As you group data elements into data aggregates and data
structures, look at the data elements that make up each group and
choose one or more data elements that will uniquely identify that
group. A data aggregate's key is the data element or group of data
elements in the aggregate that uniquely identifies the aggregate.
Sometimes you have to use more than one data element to uniquelY
identify an aggregate.

By following the three steps explained in this section you can
develop a conceptual data structure for a business process's
data. This does not mean that you are developing the logical data (
structure that the program that performs the business process ,
will end up with. The three steps are:

1. Isolate repeating data elements in a single occurrence of the
data aggregate.

2. Isolate duplicate values in multiple occurrences of the data
aggregate'.

3. Group data elements with their controlling keys.

1. ISOLATING REPEATING DATA ELEMEHTS: For the first step, look at
a single occurrence of the data aggregate. Figure 7 shows what
thi s looks like for the class aggregate.

DATA ELEMENT CLASS AGGREGATE OCCURRENCE

EDCNTR CHICAGO
DATE(START) 1/14/80
CRSNAME TRANSISTOR. THEORY
CRSCODE 41837
LENGTH 10 DAYS
INSTRS multiple
STUSEQ# multiple
STUNAME multiple
CUST multiple
LOCTN multiple
STATUS multiple
ABSENCE multiple
GRADE multiple

.Figure 7. Single Occurrence of Class Aggregate

18 IMS/VS Application Programming

(

)

)

)

------------_. ----.. ------

The fields that say multiple are the fields that repeat. Separate
the data elements that repeat by moving them to a lower level;
keep data elements with their controlling keys.

The data elements that repeat for a single class are STUSEQI,
STUNAME, CUST, LOCTN, STATUS, ABSENCE, and GRADE. INSTRS is also a
repeating data element because some classes require two
instructors, although this class requires only one.

When you isolate repeating data elements, you have the structure
shown in Figure 8.

*STUSEQI
STUNAME
CUST
LOCTN
STATUS
ABSENCE
GRADE

v

*EDCNTR
*DATE

CRSNAME
*CRSCODE

LENGTH

Figure 8. Current Roster Step 1

v

*INSTRS

The asterisks in Figure 8 signify the data elements that make up
the key. For the class aggregate, it takes more than one of the
data elements to identify the course, so you need more than one
data element to make up the key.

After you have shifted repeating data elements, make sure that
each element is in the same group as its key. INSTRS is separated
from the group of data elements describing student because the
information about instructors is unrelated to the information
about the students. The student sequence number does not control
who the instructor is. A dependent ~ggregate's key is made up of
the concatenated keys of all of the aggregates above the dependent
aggregate. This is because a dependent's key doesn't mean
anything if you don't know the keys of the higher aggregates. For
example, if you knew that a student's sequence number was 4, you
would be able to find out all of the information about the student
associated with that number. This number would be meaningless,
however, if it were not associated with a particular class. But,
since the key for the student aggregate iS'made up of Ed Center,
date, and course code, you would know what class the student was
in.

Figure 8 shows these aggregates with the following keys:

• Course aggregate: EDCNTR, DATE, CRSCODE

• Student aggregate: EDCNTR, DATE, CRSCODE, STUSEQI

• Instructor aggregate: EDCNTR, DATE, CRSCODE, INSTRS

2. ISOLATING DUPLICATE VALUES: For the second step, you need to
look at mul ti pIe occurrences of the aggregate-i n thi s case the
values you might have for two classes. Figure 9 shows multiple

Chapter 2. Analyzing Application Requirements 19

occurrences of the data elements. As you look at Figure 9, look
for duplicating values. Remember that both occurrences describe
one course.

DATA ELEMENT LIST OCCURRENCE 11 OCCURRENCE #2

EDCNTR CHICAGO NEW YORK
DATECSTART) 1/14/80 3/10/80
CRSNAME TRANS THEORY TRANS THEORY
CRSCODE 41837 41837
LENGTH 10 DAYS 10 DAYS
INSTRS multiple multiple
STUSEQI multiple multiple
STUNAME multiple multiple
CUST multiple multiple
LOCTN multiple ml. 1 t i pIe
STATUS multiple multiple
ABSENCE multiple multiple
GRADE multiple multiple

Figure 9. Multiple Occurrences of Class Aggregate

The data elements that say multiple are the data elements that
repeat. The values in these elements will not be the same. The
aggregate will always be unique for a particular class.

In this step, compare the two occurrences and shift the fields
with duplicate values to a higher level. If you need to, choose a
key for aggregates that do not yet have keys.

CRSCODE, CRSNAME, and LENGTH are the fields that can have

,'/"

\'"''

duplicate values. A lot of this process is common sense. Student (-
status and grade, although they can have duplicate values, should
not be separated because they are not meaningful values by
themselves. These values would not be used to identify a
particular 'student. This becomes clear when you r~member to keep
data elements with their controlling keys.

When you isolate duplicate values, you have the structure shown in
Figure 10.

*STUSEQ#
STUNAME
CUST
LOCTN
ABSENCE
GRADE
STATUS

v

*CRSCODE
CRSNAME
LENGTH

, t

*EDCNTR
*DATE

v

*INSTRS

Figure 10. Current Roster Step 2

20 IMS/VS Application Programming

(

)

)

Determining Mappings

)
J

3. GROUPING DATA ELEMENTS WITH THEIR CONTROLLING KEYS: The third
step is often a check on the first two steps. Sometimes the first
two steps have already done what this step tells you to do.

At this stage, make sure that each data element is in the group
that contains its controlling key. The data element should depend
on the full key. If the data element only depends on part of the
key, separate the data element along with the partial key 'that it
depends on.

In this example, CUST and LOCTN do not depend on the STUSEQft. They
are related to the student, but they don't depend on the student.
They identify the company and company address of the student.

CUST and LOCTN are not dependent on the course, the Ed Center, or
the date. They are separate from all of these things. Since a
student is only associated with one CUST and LOCTH, but a CUST and
LOCTH can have many students attending classes, the CUST and LOCTN
aggregate should be above the student aggregate. Figure 11 shows
what the structure looks like when you separate CUST and LOCTN.

Figure 11.

*CUST
*LOCTN

v

*STUSEQ~
STUHAME
STATUS
ABSENCE
GRADE

Current Roster

v

*CRSCODE
CRSNAME
LEHGTH

I
v

*EDCHTR
*DATE

Step 3

v

*IHSTRS

Where the customer and location information will be located is
part of data base design. Data structuring should separate any
inconsistent data elements from the rest of the data elements.

Once you have arranged the data aggregates in a conceptual data
structure, you can examine the relationships between the data
aggregates. A mapping between two data aggregates is the
quantitative relationship between the two. The reason that you
record mappings is that they reflect relationships between
segments in the data structure that you've developed. If you store
this information in a DL/I data base, the DBA can construct a dat~
base hierarchy that will satisfy all of the local views, based on
the mappings. In determining mappings, it's easier to refer to the
data aggregates by their keys, rather than by their collected data
elements.

There are two possible relationships between any two data
aggregates:

• One-to-many

Chapter 2. Analyzing Application Requirements 21

LOCAL VIEW EXAMPLES

F~r each segment A, there are one or more occurrences of
segment B. For example, for each class, there are multiple
students. Mapping notation shows this like so: .

Class (--------» student
• Many-to-many

Segment B has many A segments associated with it and segment A
has many B segments associated with it. In a hierarchic data
structure, a parent can have one or more children, but each
child can be associated with only one parent. The
many-to-many association does not fit into a hierarchy,
because each child can be associated with more than one
parent. This is covered in Chapter 3, "Analyzing Data
Requirements," in the IMS/VS Data Base Administration Guide.
Many-to-many relationships occur between segments in two
bus i ness processes. A many-to-many relat i onsh; p i ndi cates a
conflict in the way that two business processes need to
process those data aggregates. If you use DL/I, you can solve
this kind of processing conflict by using secondaryindex;ng
or logical relationships.

The mappings for the current roster are:

• Course <--------» Class

For each course, there may be several classes scheduled, but a
class is associated with only one course.

• Class <--------» Student

A class has many students enrolled in it, but a student may be
in only one class offering of this course.

Class <--------» Instructor

A class may have more than one instructor, but an instructor
only teaches one class at a time.

• Customer/location <--------» Student

A customer may have several students attending a particular
class, but each student is only associated with one customer
and 10 ca t ion.

This section goes through three more examples of designing a local
view. These examples are the Schedule of Classes, the Instructor
Skills Report, and the Instructor Schedules. This section does
not explain the steps of designing a local view; it simply takes
you through the examples. Each example shows the two parts of
designing a local view:

1. Gather the data. For each example, the data elements are
listed and two occurrences of the data aggregate are shown.
Two occurrences are shown because you need to look at both
occurrences when you look for repeating fields and duplicate
values.

2. Analyze the data relationships. First, group the data
elements into a conceptual data structure using these three
steps:

a. Isolate repeating data elements in a single occurrence of
the data aggregate by shifting them to a lower level. Keep
data elements with their controlling keys.

b. Isolate duplicating values in two occurrences of the data
aggregate by shifting those data elements to a higher

22 IMS/VS Application Programming

\'" .

(

"

\
I

/

)

)

Schedule of Courses

level. Again, keep data elements with their controlling
keys.

c. Group data elements with their controlling keys. Make
sure that all of the data elements within one aggregate
have the same controlling key. Isolate any that don't.

Then, determine the mappings between the data aggregates in
the data structure you've developed.

HQ keeps a schedule of all of the courses given each quarter and
distributes it monthly. HQ wants the schedule to be sorted by
course code and printed in the format shown in Figure 12.

COURSE SCHEDULE

COURSE: TRANSISTOR THEORY
LENGTH: 10 DAYS

COURSE CODE: 41837
PRICE: $280

DATE

APRIL 14
APRIL 21

NOVEMBER 18

Figure 12. Schedule of Classes

LOCATION

BOSTON
CHICAGO

LOS ANGELES

1. Gather the data. Figure 13 lists the data elements and two
occurrences of the data aggregate.

Data Elements Occurrence 1 Occurrence 2

CRSNAME TRANS THEORY MICRO PROG
CRSCODE 41837 41840
LENGTH 10 DAYS 5 DAYS
PRICE $280 $150
DATE multiple multiple
EDCNTR multiple multiple

Figure 13. Class Schedule Data Elements

2. Analyze the data relationships. First, group the data
elements into a conceptual data structure.

a. Isolate repeating data elements in one occurrence of the
data aggregate, as shown in Figure 14.

Chapter 2. Analyzing Application Requirements 23

*CRSCODE
CRSNArlE
LENGTH
PRICE

I
v

*EDCNTR
*DATE

Figure 14. Class Schedule Step 1

Instructor Sk;lls Report

b. Next, isolate duplicate values in two occurrences of the
data aggregate. .

There are no duplicate values in this data aggregate.

c. Group data elements with their controlling keys.

Data elements are grouped with their controlling keys in
the present structure. No changes are necessary for this
step.

Once you've developed a conceptual data structure,
determine the mappings for the data aggregates.

The mapping for this local view is:

Course (--------» Class

Each of the Ed Centers needs to print a report giving the courses
that each of its instructors is qualified to teach. The report is
to be in the format shown in Figure 15.

INSTRUCTOR SKILLS REPORT

INSTRUCTOR COURSE CODE COURSE NANE

BENSON, R. J. 41837 TRANS THEORY
MORRIS, S. R. 41837 TRANS THEORY

41850 CIRCUIT DESIGN
41852 LOGIC THEORY

.
REYNOLDS, P. w. 41840 MICRO PROG

41850 CIRCUIT DESIGN

Figure 15. Instructo~ Skills Report

1. Gather the data. Figure 16 lists the data elements and two
occurrences of the data aggregate.

24 IMS/VS Application Programming

('
I
\.~

(

(

)

)

DAT A EL EMEt'·nS OCCURRENCE 1 OCCURRENCE

INSTR BENSON, R. J. MORRIS, S.
CRSCODE multiple multiple
CRSNAME multiple multiple

Figure 16. Instructor Skills Data Elements

2. Analyze the data relationships. First, group the data
elements into a conceptual data structure.

2

R.

a. Isolate repeating data elements in one occurrence of the
data aggregate as shown in Figure 17.

~HNSTR I
v

*CRSCODE
CRSNAME

Figure 17. Instructor Skills Step 1

b. Isolate duplicate values in two occurrences of the data
aggregate.

There are no duplicate values in this data aggregate.

c. Group data elements with their controlling keys.

All data elements are grouped with their keys in the
current data structure. You don't have to make any
changes to this data structure.

Determine the mappings for the data aggregates.

The mapping for this local view is:

Instructor (--------» Course

Instructor Schedules

INSTRUCTOR

BENSON. R.

MORRIS. S.

HQ wants to produce a report glvlng the schedules for all the
instructors. Figure 18 shows what the report is to look like.

INSTRUCTOR SCHEDULES

COURSE CODE ED CENTER DATE

J. TRANS THEORY 41837 CHICAGO 1/14/80
TRANS THEORY 41837 NEW YORK 3/03/80
MICRO PROG 41840 NEW YORK 3/17/80

R. CIRCUIT DES 41850 CHICAGO 1/21/80
LOGIC THEORY 41862 BOSTON 2/25/80

REYNOLDS, B. H. CIRCUIT DES 41850 LOS ANGELES 3/10/80

Figure 18. Instructor Schedules

Chapter 2. Analyzing Application Requirements 25

1. Gather the data. Figure 19 lists the data elements and two
occurrences of the data aggregate.

DATA ELEMENTS OCCURRENCE 1 OCCURRENCE 2

INSTR BENSON, R. J. MORRIS, S. R.
CRSNAME multiple multiple
CRSCODE multiple multiple
EDCNTR multiple multiple
DATECSTART) multiple multiple

Figure 19. Instructor Schedules Data Elements

2. Analyze the data relationships. First, group the data
elements into a conceptual data structure.

a. Isolate repeating data elements in one occurrence of the
data aggregate as shown in Figure 20.

*INSTR .,

v

CRSNAME
*CRSCOOE
*EDCNTR
*DATE

Figure 20. Instructor Schedules Step 1

b. Isolate duplicate values in two occurrences of the data
aggregate as shown in Figure 21.

In this example, CRSNAME and CRSCODE can be duplicated
for one instructor or for many instructors,'for example,
41837 for Benson and 41850 for Morris and Reynolds.

*INSTR

I
v

v

*EOCNTR
*DATE

Figure 21. Instructor Schedules Step 2

c. Group data elements with their controlling keys.

/'

(

(

All data elements are grouped with their controlling keys (
in the ~urrent data structure. You don't have to make any
changes to the current data structure.

26 IMS/VS Application Programming

)
/

\
)

Determine the mappings for the data aggregates.

The mappings for this local view are:

Instructor <--------» Course
Course <--------» Class

Combining the requirements of the four examples presented in this
chapter and designing a hierarchic structure for the data base
based on these requirements are covered in Chapter 3, "Analyzing
Data Requirements," in the IMS/VS Data Base Administration Guide.

Chapter 2. Analyzing Application Requirements 27

CHAPTER 3. UNDERSTANDING ONLINE AND BATCH PROCESSING

This chapter describes IMS/VS online and batch processing, and
the kinds of programs that perform both kinds of processing. How
online and batch programs are scheduled, how they update the data
base, and how they are recovered and restarted after a program or
system failure are different. This chapter has three major
sections:

• Online processing

"Online processing" is the kind of processing that's often
done during prime shift. Online processing allows many people
to use the system at the same time, through terminals. This
section describes the characteristics of online processing
and it explains the types of programs that run online.

• Batch Processing

"Batch processing" is the kind of processing that's often
done at night or on the weekends--separately from online
processing. This section explains the characteristics of
batch processing.

• summarizing IMS/VS Application Program Characteristics

The last section of this chapter contains a chart that
summarizes and compares some of the characteristics·of each
type of IMS/VS application program.

ANALYZING PROCESSING REQUIREMENTS

One of the steps of application design is to decide how the
business processes, or tasks, that the end user wants done can be
best grouped into a set of programs that will efficiently perform
the required processing. Some of the considerations in analyzing
processing requirements are:

• When the task must be executed:

Will it be scheduled unpredictably, for example on
terminal demand; or periodically, for example, weekly?

• How the program that performs the task is invok~d:

Will it be invoked online, where response time is
crucial; or by batch job submission, where a slower
response time is acceptable?

• The consistency of the processing components:

Does this task involve more than one type of program
logic? For example, does it involve mostly retrievals,
and only one or two updates? If so, you should consider
separating the updates into a separate program.

Does this task involve several large groups of data? If it
does, it might be more efficient to separate the programs
by the data they access.

28 IMS/VS Appl i cat ion Programmi ng

(
\ ..

(

(

)

)

\
)

• Any special requirements about the data or processing:

Maintenance--how often must the data be updated?
Security--should access to the program be restricted?
Recovery--are there special recovery considerations in
the program's processing?
Integrity--do other departments use the same data?

There is not always a "right" answer when you are trying to
determine how many programs can most efficiently do the required
processing. It is often a matter of common sense, and not hard and
fast rules. As you look at each task, examine the data and
processing that each task involves. If a task requires different
types of processing and has different time limitations (for
example, weekly as opposed to monthly), that task may be more
efficiently performed by several programs.

As you define each program, it's a good,idea for maintenance and
recovery reasons to keep programs as simple as possible. The
simpler a program is--the less it does--the easier it is to
maintain and restart after a program or system failure. At the
same time, if the data that the application requires is in a large
data base, it may be more efficient to have one program do more of
the processing than usual. These are considerations that depend
on the processing and the data of each application.

When doing this, it's a good idea to document each of the user
tasks. Be sure you're aware of installation standards in this
area. Some of the information that's often collected is when the
task is to be invoked, a functional description, and maintenance,
security, and recovery requirements. For example, for the Current
Roster process described in "Chapter 2. Analyzing Applicatiori
Requirements," you might record the information shown in
Figure 22. The frequency is determined by the number of classes
(20) for which the Ed Center will print current rosters each week.

Chapter 3. Understanding Online and Batch Processing 29

USER TASK DESCRIPTION

NAME: Current Roster

ENVIRONMENT: Batch FREQUENCY: 20 per week

INVOKING -EVENT OR DOCUMENT: Time period (one week)

REQUIRED RESPONSE TIME: 24 hours

FUNCTION DESCRIPTION: Print a current roster for each

class offered at the Ed Center once a week. Students

on the roster should be listed in order of their

student sequence numbers.

MAINTENANCE: Included in Education Data Base

maintenance.

SECURITY: None

RECOVERY: Ability to resume printing a particular class

roster after a specified student.

Figure 22. Current Roster Task Description

ONLINE PROCESSING

There are three major kinds of IMS/VS application programs that
run online. These are:

• Message processing programs, or MPPs

• Fast Path programs

• Batch message programs, or BMPs

Online processing is typically done during the day, when the
system is used most heavily. Online programs process requests and
communicate with end users. Because online programs use IMS/VS
resources concurrently,-thesi programs run under the control of
the IMS/VS control region. Each type of online program--an MPP, a
Fast Path program, and a BMP--runs in a region that is dependent
on the control region for access to the message queues and the
data bases. Some of the application requirements that online
programs can answer are:

• The information in the data base must be available to many
users.

•

•

The programs needs to communicate with terminals and other
programs.

The program must be available to users at remote te~mi~als.

30 IMS/VS Application Programming

I

~

c

")
•

•

Response time is crucial; you need the results of the
application program's processing immediately.

The information in the data base must be current.

There are two types of processing that an online program can do.
Some online programs process messages. These are the programs
that communicate with terminals and other programs through the
message queues. When a person at a terminal enters a request for
information, the request is called a message. IMS/VS collects
messages on a message queue and schedules a program when there is
a message for it to process. The program then retrieves its
messages one at a time, processes them, and replies to the
originators.

For example, a bank teller enters a request at a terminal for the
current balance in a certain checking account. This is a message.
Part of the message is a transaction code that identifies the
processing request and associates the ~equest with the
application program that can answer the request. IMS/VS routes
the message to the message queue, and the program retrieves the
message, gets the requested'information, and replies to the bank
teller's terminal.

Online programs can also perform batch processing. These programs
don't have to communicate with terminals or other programs for
their input and output; they are simply batch-type programs that
run online. Some of the reasons that you use an online program to
do batch processing are:

• You want a batch program to access online data bases.

• You don't L.Jant to wa it unt i 1 the night or the weekend to
update the data base because the data will not be as current.

• You don't want to degrade the response time of an MPP by
having the MPP handle its data base updates.

There are three kinds of onl i ne programs. All of them are able to
process messages and access IMS/VS data bases; some of them can
perform batch processing as well.

• MPPs are IMS/VS application programs that process messages to
and from the IMS/VS message queues. You use them only for
message processing.

• Fast Path programs are onl i ne programs that emphasi ze fast
processing of simple data structures and high volumes of
transactions. There are two types of Fast Path application
programs you can use.

•

A message-driven Fast Path program accesses the Fast Path
message queues for its input; it is similar to an MPP.

A nonmessage-driven Fast Path program processes Fast Path
data bases. It does not communicate with terminals or
other programs, except in mixed mode. "Mixing Fast Path
and IMS/VS Processi ng" expla ins mt xed-mode processi ng. A
nonmessage-driven Fast Path program is similar to a BMP.

BMPs are IMS/VS application programs that can perform message
processing or batch processing. BMPs have characteristics of
both online and batch programs in that they run online, but
they are started with JCL. Unlike MPPs, BMPs can access OS/VS
fi les. There are two kinds of BMPs. One kind accesses the
message queue for its input, the other doesn't. Both types can
send output to the message queue. '

A transaction-oriented BMP accesses message queues for
its input. What makes it different from an MPP is that it
doesn't have to access the message queues; it can process
input from OS/VS files, and it can create OS/VS files.

Chapte~ 3. Understanding Online and Batch Processing 31

MESSAGE PROCESSING

A batch-or i ented BMP does not access the message queue
for input; it i s si mpl y a batch program that runs onl i ne. (
It can send its output to the message queue. I~
Batch-ori ented BMPs are usually shorter than typi cal
batch programs because you don't want to tie up online
resources with a long-running program.

The programs that can process messages from terminals and other
programs are MPPs, message-driven Fast Path programs, and
transaction-oriented BMPs. Before you look at each of these types
of programs individually, there are some concepts of message
processing that you need to understand.

When a person at a terminal enters a request for processing, that
request is called a message. The message that the person enters
can be one of three types:

• If the message starts with a transact)on code, the message is
a processing request for an application program. In this
case, IMS/VS puts the message on the message queue and
schedules the application program that can process that
transaction.

• If the message starts with the name of a logical terminal, the
control region sends the message to the queue and then to the
logical terminal specified in the message. This is called a
message swi tch.

• If the message start s wi th a slash ("/"), it is a command.
IMS/VS executes the command.

The important thing to notice about the messages that a terminal
can enter is that only messages that contain transaction codes go
to an application program. The control region handles the other
twp types of messages.

When a program that processes messages is scheduled, its main
purpose is' to process the messages that are waiting for it. It may
or may not have to access the data base to do this. Generally,
this type of program goes through these four steps in its
processing:

1. Retrieve a message from the message queue.

2. Process the message; this includes getting any information
you need from the data base.

3. Reply to the terminal or program that sent the input message.

4. Check to see if there are any more messages. If there are,
repeat the process. If there aren't, terminate the program.

How IHS/VS Identifies Terminals

32

When a person at a terminal sends a message to a program, IMS/VS
places the name of the terminal that sent the message in the I/O
PCB mask. This is not the name of the physical terminal; IMS/VS
uses what are called "logical terminals." A logical terminal is a
name that is related to a physical terminal. One physical terminal
can have one or more logical terminals associated with it. The
advantage of using a logical terminal name instead of the physical
terminal itself is that you don't have to worry about the physical
addresses of the terminals you're working with; IMS/VS makes sure
that your messages go to the physical terminal associated with the
name you're using. If a physical terminal becomes inoperative,
the master terminal operator can dynamically reassign the logical
terminal associated with the inoperative physical terminal to .
another physical terminal. This means that the output from the MPP

IMS/VS Application Programming

(
\.

)

)

"\
)

would go to a new physical terminal without affecting the MPP's
processing.

How IHS/VS Protects Online Data: sync Points

I1PPs

IMS/VS data communications makes it possible for people at
termi nal sand appl i cat i on programs to access the data at one time.
Because of thi s, IMS/VS has to have control over .""hi ch users and
programs access the data, and when. If IMS/VS doesn't control the
data, several application programs could access and update the
same segment at the same time and no one would know the correct
value of the segment. To avoid this, IMS/VS serializes and
enqueues segments for online application programs.

IMS/VS does two things to protect data integrity. First, when an
online program accesses a data base record, IMS/VS puts a hold on
that record until the program is finished with the record. If the
program is only reading from the data base record, IMS/VS
considers the program to be finished with it when the program
moves to another data base record in the same data structure that
contains the first data base rec~rd. IMS/VS then takes the hold
off the previ ous data base record and makes it avai lable to the
next program that wants to use it. If, on the other hand, the
program is updating some of the data in the data base record,
IMS/VS has to hold the record for a longer period of time to make
sure that the update is valid.

The second thing that IMS/VS does to protect data involves
synchronization points. A synchronization point, or sync point,
is a place in a program at which the program indicates to IMS/VS
that all of the processing thus far is accurate. When a program
reaches a sync point, that means that even if the program
terminates abnormally after the next call, the processing up to
the sync point is accurate. When an online program updates a data
base record, IMS/VS doesn't release the record until the program
reaches a sync point. Where sync points occur in a program depends
on the type of processing the program does.

In addition to indicating to IMS/VS that a program's processing is
accurate, sync points establish places in the program from which
the program can be restarted.

One way to understand the differences between the online message
programs-f1PPs, message-dri ven Fast Path programs, and
transaction-oriented BMPs--is to look at specific ways in which
they differ and compare them. The main ways in which these three
types of programs differ are:

• L~here sync poi nts occur in each type of program

• How IMS/VS handles recovery for each type of program

• When IMS/VS applies the updates produced by each type of
program

An MPP is an online program that processes messages and accesses
online data bases. It is controlled by the IMS/VS control region.
You use an MPP when you want the program to ans\.>mr requests
entered at a terminal; these requests deal with IMS/VS online data
bases.

An MPP cannot process OS/VS files or GSAM data bases. GSAM, or
Generalized Sequential Access Method, is used to convert OS/VS
files into nonhierarchic data bases that IMS/VS can checkpoint.

HPP OPTIONS: An MPP has several options concerning its
interactions with terminals. The MPP can send its output to the
same terminal that sent the input message, or it can send output
to other terminals and application programs as well.

Chapter 3. Understanding Online and Batch Processing 33

An MPP can also process a conversation. Conversational processing
allows the person at the terminal to interact more than once with
an application program or a set of application programs. In other
words, the person at the terminal might have several parts to a
transaction, instead of only one.

The messages that a terminal sends to an MPP are made up of
segments. A message from a terminal is made up of as many segments
as necessary. The MPP retrieves one message segment at a time
until IMS/VS indicates to the program that it has retrieved all
the segments of that message.

SYNC POINTS IN AN MPP: Where sync points occur in an MPP depends
on whether the program is single or multiple mode. When an MPP
reaches a sync point, the program indicates to IMS/VS that its
processing thus far is accurate. When this happens, IMS/VS
releases the resources that the program has enqueued since the
last sync point, ahd it sends the output messages that the program
has created to their destinations. .

When you specify single mode for an MPP, a sync point occurs each
time the MPP issues a call for a new message. This means that
IMS/VS sends the output messages that the program creates to their
destinations at each sync point. Single-mode is good for recovery
reasons because, in the event of a program or system failure, a
single-mode MPP can be restarted from the most recent call for a
new message.

If the program is multiple mode, the only sync points in the
program occur when you issue a checkpoint call to cause a sync
point, and when the program terminates. These are the only times
during the program that IMS/VS sends the program's output
messages to their destinations. Because there are fewer sync
points to process in multiple-mode MPPs than there are in
single-mode MPPs, multiple-mode MPPs may be able to give slightly
higher performance than single-mode MPPs.

When an MPP reaches a sync point, IMS/VS does two things:

1. IMS/VS releases any data base records that the MPP has updated
since the last sync point so that these records are available
to other application programs.

2. IMS/VS sends output messages from the MPP to their final
destinations. Until the program reaches a sync point, IMS/VS
holds the program's output messages at a tempor~ry
destination. This ensures that, if the program terminates
abnormally, terminals and programs will not receive
inaccurate data from the MPP.

RECOVERY IN AN MPP: When an MPP terminates abnormallY, IMS/VS:

• Backs out all of the changes that the MPP has made to the data
base since the last sync point

• Throws away the output messages that the MPP has produced
since the last sync point

• Throws away the input message the MPP had retrieved and was
processing when the MPP terminated abnormally

Once the master terminal operator has restarted the MPP, IMS/VS
gives the MPP the next message.

In a single-mode MPP, the program reaches a sync point each time
it issues a call to retrieve a new message from the message queue.
This means that when IMS/VS restarts the program after the program
has terminated abnormally, the program will start by processing
the next message.

I

\.

c

On the other hand, when a multiple-mode MPP terminates ~
abnormally, IMS/VS can only restart it from a checkpoint call.
This can mean that instead of havi~g only the most recent message

34 IMS/VS Application Programming

)

)

)

----- ,------

to reprocess, the MPP might have several messages to reprocess.
This depends on when the MPP issued the last checkpoint call.
Using single mode, rather than multiple mode, simplifies recovery
for the MPP.

WHEN IMS/VS SCHEDULES AN MPP: When a person at a terminal wants to
process a particular transaction, the person enters a transaction
code. A transaction code is associated during system definition
with the program that can process it. An MPP can be defined to
process only one transaction code, or it can be defined to process
several different transaction codes.

When IMS/VS receives a message with a transaction code, IMS/VS
checks the priority for the program associated with the
transaction code. If there are messages waiting for other
programs with higher priorities, IMS/VS schedules those programs
first. Program priorities are decided by the DB/DC system
administrator.

When IMS/VS schedules an MPP, the MPP processes the message or
messages that are waiting for it--within limits--and then
terminates. The limits are defined by the IMS/VS DB/DC system
administrator when the application program is defined. For each
MPP, the DB/DC system administrator specifies:

• The number of messages for a particular transaction code that
the MPP can process in a single scheduling

• The amount of time (in seconds) in which the MPP is allowed to
process a single transaction

The MPP can process several messages during one scheduling, or it
can process only one message during a scheduling.

Message-Driven Fast Path Programs

A message-driven Fast Path program is similar to an MPP. The
purpose of Fast Path is to provide better response than you can
normally get from an MPP or,a transaction-oriented BMP. As a
result, message-driven Fast Path programs do not have all the
options available to them that MPPs do. For example,
message-driven Fast Path programs cannot use conversational
processing; they must respond to the terminal that sent the
message before the terminal can enter any more requests. This is
called transaction response mode. In addition, messages to Fast
Path programs can only be single segment messages. This helps Fast
Path achieve its high performance.

All the transactions that Fast Path programs process must be
wait-for-input transactions. This means that when the program
fin i shes process i ng the transact i 0"", the program rema ins in ma in
storage, even when there are no more messages for it to process.
This is another part of Fast Path that gives it high performance
and response rate.

FAST PATH DATA BASES: Fast Path programs access two kinds of data
bases. (They can also access IMS/VS data bases; "Mixing Fast Path
and IMS/VS Processing" explains this.) These are special data
bases that, again, are designed for high performance.

• Main storage data bases, or MSDBS, are data bases that contain
only root segments. These data bases are designed to handle
the most frequently used data. The data is held in main
storage. MSDBs can be owned by a particular terminal; only
that terminal can update that data. If an MSDB isn't owned by
a particular terminal, then the data in the MSDB is generally
available.

• Data entry data bases, or DEDBs, are data bases designed to
handle large volumes of detailed data. Each DEDB contains a
root segment and up to seven dependent segment types and
resides on direct access storage.

Chapter 3. Understanding Online and Batch Processing 35

SYNC POINTS IN MESSAGE-DRIVEN FAST PATH PROGRAMS: Message-driven (
Fast Path programs must be defined as single mode. This means that
a sync point occurs each time a mess~ge-driven Fast Path program ~~
retrieves a message and when the program issues a checkpoint call.
IMS/VS holds the data base updates from a Fast Path program in
buffers between sync points; it isn't until the Fast Path program
reaches a sync point that IMS/VS actually applies the updates ~o
the data base. At a Fast Path sync point, IMS/VS first checks to
make sure that there's room for the updates in the data base, then
it applies the updates and releases the IMS/VS and Fast Path
resources that the program has been holding.

RECOVERY IN A MESSAGE-DRIVEN FAST PATH PROGRAM: When a
message-driven Fast Path program terminates abnormally, IMS/VS
doesn't have to back out the data base updates, because data base
updates from Fast Path programs aren't applied until the program
reaches a sync point. Nor does IMS/VS send output messages until
the program reaches a sync point.

Since each call to the message queue is a sync point,
message-driven Fast Path programs, like single-mode MPPs, don't
have to issue checkpoint calls.

WHEN IMS/VS SCHEDULES A MESSAGE-DRIVEN FAST PATH PROGRAM: Fast
Path programs are not scheduled in the same way that MPPs are.
Fast Path can use multiple copies of an application program so
that a transaction from a terminal doesn't have to wait very long
before it's processed. This improves response time to Fast Path
transactions significantly. Messages are handled on a first-in,
first-out basis. Fast Path transactions bypass IMS/VS scheduling.

Transaction-Oriented BMPs

Although there are some differences between a
transaction-oriented BMP and an MPP, they are similar. A
transaction-oriented BMP has the same recovery and sync point
considerations as an MPP does, and a transaction-oriented BMP can
do much of the same kinds of processing that an MPP can. For
example, like an MPP, a transaction-oriented BMP can:

• Process input from an MPP or a terminal by issuing calls for
the messages to the message queue.

• Send output to a terminal; for example, the result of one
update or processing totals can be sent to a terminal.

• Send a transaction to the message queue for another 8MP or an
MPP to process

Some of the differences between transaction-oriented BMPs and
MPPs are:

• A transaction-oriented BMP is started with JCL; an MPP is
normally scheduled by IMS/VS.

o A transaction-oriented BMP can process GSAM data' bases; an
~lPP cannot.

• A transaction-oriented BMP can process OS/VS files; an MPP
cannot.

A typical use of a transaction-oriented BMP is reading and
processing of transactions that were sent to the message queue by
an MPP. For an example of a transaction-oriented BMP, see the
sample program in "Appendi x B. Sample Batch Message Program."

Having a BMP process transactions from an MPP can be more
efficient than having the MPP process them if the MPP's response
time is very important; but this method does split the transaction
into two parts when it doesn't necessarily have to be split. If
you do this, you should run the BMP during periods of the day when
the system load is low. Using a BMP to process transactions from

36 IMS/VS Application Programming

(

c

)

)

)

an MPP' is a good idea when the response time for the MPP is
critical.

If you have a BMP perform data base updates that were generated by
an MPP, you should design the BMP such that the message can be
reentered as input to the BMP. This is a recovery consideration.
For example, suppose an MPP gathers data base updates for three
BMPs to process, and one of the Bt1Ps terminates abnormally. In
this kind of situation, you need to be able to find out what
message the terminated BMP was processing and have one of the BMPs
reprocess it.

BATCH PROCESSING ONLINE

Batch-Oriented BMPs

There are two types of programs that are designed to perform batch
processing online:

• A batch-oriented BMP is an IMS/VS batch application program
that runs onl i ne. It does not communi cate wi th other
terminals or programs; it processes onli~e data bases.

• A nonmessage-driven Fast Path program processes Fast Path
data bases and is similar to a batch-oriented BMP. It doesn't
normally communicate with other programs or terminals,
although it can when in mixed-mode.

In a batch-oriented BMP, the only sync points are the checkpoint
calls that the p~ogram issues. Establishing sync points by
issuing checkpoint calls in a BMP is important because the
checkpoint calls:

• Establish places in the program from which the program could
be restarted in the event of a system failure or abnormal
termination

• Release resources that IMS/VS has enqueued for the program

If a batch-oriented BMP doesn't issue checkpoint calls frequently
enough, it can be abnormallY terminated (or it can cause another
application program to be abnormally terminated> by IMS/VS for
one of the following reasons:

• The space needed to enqueue information about the segments
that the program has read and updated exceeds what has been
defined for the IMS/VS system at system definition.

• As a resul t of the number of segments that the program has
enqueued, other programs are having to wait excessively for
those segments, because the program has not issued a
checkpoint call to free its enqueued segments.

• The dynamic log is out of space because too much time has
elapsed since the program's last sync point. IMS/VS records
the "before" i mage of each segment that a BMP updates on the
dynamic log. When the BMP reaches a sync point, the space that
has been used by the BMP's before images is freed for other
programs' use. If a BMP goes for too long without issuing a
checkpoint call, the dynamic log can reach a wraparound
point. When this happens, the next time that IMS/VS tries to
write on the dynamic log, IMS/VS sends a warning message to
the master terminal operator. The master terminal operator
might then have to abnormally terminate the program whose
"before" i mages were be; ng wri tten on the dynami clog. The
program that's abnormally terminated could be the BMP that
caused the wraparound, or it could be another application
program.

Recovery in a batch-oriented BMP is similar to recovery in an MPP:
if the program terminates abnormally, or if the system fails,

Chapter 3. Understanding Online and Batch Processing 37

IMS/VS backs out the data base updates that the program has made
since the last sync point. You then have to restart the program
wi th JCL. If the BMP processes OS/VS fi les, it is your
responsibility to back out the updates made to OS/VS files since
the program's last sync point. There is a call that the program
can issue to make this easier--this is the basic checkpoint call
with the OS/VS option. This call establishes sync points from
which you can subsequently restart the program. The call has the
option of letting you request an OS/VS che~kpoint as well. If you
use this option, OS/VS repositions OS/VS files, and you can use
OS/VS restart to restart your program. A disadvantage of using
basic checkpoint with the OS/VS option is that you cannot change
your program between the time that it terminates abnormally and
the time you want to restart it. "Choosing a Checkpoint Call"
describes this call in more detail.

Batch message processing answers an application requirement that
can't be answered by either message processing or offline batch
processing: it updates the data bases online and keeps the data
more current than is practical with offline batch processing. To
use batch message processing most effectively, however, avoid a
large amount of batch-type processing online. If the BMP performs
long-running processing such as report-writing and data base
scans, schedule it during nonpeak hours of processing so that it
doesn't degrade response time for MPPs. On the other hand, you
don't have to keep your DB/DC system up only to run a
batch-oriented BMP; you can run a batch-oriented BMP as a batch
program offline. If you do run batch-oriented BMPs as batch
programs, they cannot run concurrently. Batch-oriented BMPs can
run concurrently only online.

('
I
I.
'\,

Note: Batch message processing can answer requirements at your
installation that aren't answered by other types of processing.
At the same time, BMPs can have a negative effect on the response
time of MPPs. Because of this, the response time requirements at
your installation should be the main consideration in deciding on ('
the extent to which you'll use batch message processing. ,

Nonmessage-Drfven Fast Path Programs

A nonmessage-driven Fast Path program is similar to a
batch-oriented BMP. It cannot access the message queue. The only
sync points in a nonmessage-driven Fast Path program occur when
the program issues checkpoint calls or sync calls. Sync calls are
used only in nonmessage-driven Fast Path progr~ms.

Recovery in a nonmessage-driven Fast Path program is like
recovery in message-driven Fast Path programs. Nonmessage-driven
Fast Path programs cannot use GSAM. You can design
nonmessage-driven Fast Path programs to proceSs OS/VS files; if
you do, however, it is your responsibility to back out the updates
made to OS/VS files in the event of a program or system failure.

MIXING FAST PATH AND IMS/VS PROCESSING

38

The online processing that has been described so far in this
chapter is either Fast Path or IMS/VS processing. You can mix Fast
Path and IMS/VS processing; this is called mixed mode. Here's what
you can do in mixed mode:

• Fast Path programs can access IMS/VS data bases.

• IMS/VS programs can access Fast Path data bases.

• Fast Path programs can send messages to IMS/VS programs and
terminals.

The following restrictions apply to mixed mode processing:

• IMS/VS programs can't send messages to Fast Path programs.
unless you have Intersystem Communication with MSC.

IMS/VS Application Programming

(

\
)

)

)

BATCH PROCESSING

•
•

MPPs cannot pass conversations to a Fast Path program.

Offline batch programs cannot process Fast Path data bases.

• Fast Path programs cannot enter commands.

There 1S only one type of application program that does not run
online; this is a batch program. Because a batch program runs by
i tsal f-i t doesn't compete wi th any other programs for IMS/VS
resources-it can run independently of the control region. It's
possible to run a DB/DC system and a batch system at the same
time; they just can't access the same data bases. Batch programs
usually run at night or on weekends; they are typically
longer-running programs than online programs.

For example, you use batch programs when you have a large number
of data base updates to do, a report to print, or a lot of data to
gather. For example, the current 'roster task described earlier in
this chapter could be efficiently run as a batch program. You
could run this program once a week to print the current roster for
a particular class.

The reason that you do this type of processing when the rest of
the system is not being used is so that you don't tie up system
resources when there are a lot of people at terminals or a lot of
other programs trying to use the computer's resources. Some of the
requirements that batch programs answer are:

• The application program produces a large amount of output.

• There is no need for the program to be invoked by another
program or user.

• The program is a long-running program that can reasonably be
run at night or on the weekend (or anytime that the online
system isn't running) so that it doesn't tie up system
resources.

• Turnaround time for the program's output is not crucial; ,you
don't need the processing results right away.

SYNC POINTS IN A BATCH PROGRAM

The only sync points in a batch program are the checkpoint calls
that the program issues. There are two reasons for a batch program
to issue checkpoint calls:

• Checkpoints establish points from which the program can be
restarted. This is especially important in long-running batch
programs, because the time and cost involved in reprocessing
a long batch program can be significant.

• A batch program that issues checkpoint calls can be ruh online
as a BMP. For example, the sample program in "Appendi x A.
Sample Batch Program" could be run as a batch-ori ented BMP or
as a batch program.

Where and how often the program issues checkpoint calls depend on
the program's length and the type of processing it does.

RECOVERY IN A BATCH PROGRAM

When an online program terminates abnormally, IMS/VS takes care
of most of the recovery by restoring the data to its values before
the terminating program updated it. In a batch program, however,
IMS/VS doesn't do this. IMS/VS applies the updates from a batch
program as the program makes the updates. If the program
terminates abnormally, you have to run the IMS/VS Data Base

Chapter 3. Understanding Online and Batch Processing 39

Backout utility to restore the data base, or you can restore an
earlier copy of the data base by using the IMS/VS Data Base Image
Copy utility and the IMS/VS Data Base Recovery utility. Then,
unless the program has requested OS/VS checkpoints, you can fix
the program error, restart the program from the most recent
checkpoint, and finish executing the program. If the program has
requested OS/VS checkpoints 1 however, you cannot fix the program
between the time it terminates abnormally and the time you restart
it. .

SUMMARIZING IHS/VS APPLICATION PROGRAM CHARACTERISTICS

Can this type
of program:

Access online
IMS/VS
data bases?

Access
offline DL/I
data bases?

Access
Fast Path
data bases?

Access
GSAM
data bases?

Access
OS/VS files?

Process input
messages?

Send output
to the
message queue?

Figure 23 is a summary of the characteristics of the six types of
IMS/VS application programs. A "V" in a column indicates a yes
answer to the question"in that column; an "H" in a column
indicates a no answer to the question in that column.

MPP Fast Path BMP Batch

Message- Honmessage- Batch- Transaction-
Driven Driven Oriented Oriented

Y Y Y Y Y H

H H H H H Y

Y Y Y Y Y H

H N H Y Y Y

N N Y y y y

Y Y H N Y H

Y Y N Y Y H

Figure 23" Summary of IMS/VS Application Program Characteristics

40 IMS/VS Application Programming

/"
i
\

c.

(

CHAPTER 4. GATHERING REQUIREMENTS FOR DATA BASE OPTIONS
\
)

\
)

This chapter guides you in gathering information that the DBA will
use in designing a data base and implementing that design. After
designing hierarchies for the data bases that your application
will access, the DBA evaluates data base options in ~erms of which
options will best meet application requirements. Whether or not
these options are used depends on the collected requirements of
the applications. In order to design an efficient data base, the
DBA needs information about the individual applications. This
chapter describes the type of information that can be helpful to
the DBA, and how the information you're gathering relates to
different data base options.

This chapter describes the different aspects of your application
that you need to examine for each Dl/I option. These are the tasks
involved in this process:

• Analyzing Data Access

•

•

Look at the way that the programs in your application will
access the data. Will the data access be mostly direct?
Mostly sequential? Or a combination? The answers to these
questions and more detailed ones influence the choice of
access methods for DL/I data bases.

Understanding How Data structure Conflicts Are Resolved

Look at the data base hierarchy that the DBA has designed and
compare the ways in which your application programs use the
data. Are there conflicts between the way one program needs
the data to be organized and the way another needs it
organized? There are three DL/I options that can change the
data base structure for a particular application program.
These are field level sensitivity, secondary indexing, and
logical relationships.

Identifying security Requirements

Identif~ any security requirements involved ~n the data that
your application uses and be aware of the DL/I security
mechanisms that can be used in each case. These are processing
options in the DB PCB, segment sensitivity, and field level
sensitivity.

• Identifying Recovery Requirements

ANALYZING DATA ACCESS

Look at the recovery requi~ements and options available for
each program. Specifying checkpoint type and frequency are
high level design decisions that must be made individually
for each application program.

The DBA chooses an access method for a DL/I data base based on how
the majority of programs that use the data base will access the
data. There are" four basic DL/I access methods, and three access
methods that are used in special cases. Some of the information '
that you can gather to help the DBA in this decision is answers to
questions like the following:

• To access a data base record, a program must first access the
root of the record. How will each program access root
segments?

Directly

Sequentially

Chapter 4. Gathering Requirements for Data Base Options 41

DIRECT ACCESS

Both
(

• The segments wi thi n the data base record are the dependents of "
the root segment. How will each program access the segments
within each data base record?

Directly

Sequentially

Both

It's important to note the distinction between accessing a
data base record and accessing segments within the record. A
program could access data base records sequentially, but once
within a record, the program might access the segments
directly. These are two different requir~ments, and can
influence the cho ice of access method.

• To what extent will the program update the data base?

Will the program be adding new data base records?

Will the program be adding new segments to existing data
base records?

Will the program be deleting segments or data base
records?

Again, don't ignore the distinction between updating a data
base record and updating a segment within the data base
record. They are different requirements.

The advantage of direct access processing is that you can get good
results for both direct and sequential processing. Direct access
means that by using a randomizing routine or an index, Dl/I can
find any data base record that you want; access is not based on
the sequence of data base records in the data base.

Dl/I has two direct access methods.

• The Hierarchical Direct Access Method, HDAM, processes data
directly by using a randomizing routine to store and locate
root segments.

• The Hierarchical Indexed Direct Access Method, HIDAH, has an
index to help it provide direct processing of root segments.

The direct access methods use pointers to maintain the hierarchic
relationships between segments of a data base record. By
following pointers, Dl/I can access a path of segments without
passing through all of the segments in the preceding paths.

Some of the requirements that direct accessing satisfies are:

• Fast di rect processi ng of roots usi ng an index or a
randomizing routine

• Good sequential processing of data base records with HIDAM
using the index

• Fa st access to a path of segment s v i a po inters

In addition, when you delete data from a direct access data base,
the new space is available almost immediately. This gives you
efficient space utilization, and it means that you don't have to

(
\.

reorganize the data base often because of unused space. Direct ~
access methods maintain their own pointers and addresses (
internally. ~.

42 IMS/VS Application Programming

\
)

\
I

/
/

A disadvantage with direct access is that you have a larger IMS/VS
overhead because of the pointers. If direct access answers your
data access requirements, however, it is more efficient than
using a sequential access method.

Primarily Direct processing: HDAH

HDAM is efficient for a data base that will have primarily direct
access, but with some sequential accessing. HDAM uses a
randomizing routine to locate its root segments, then chains
dependent segments together in their hierarchic paths. The OS
access methods that HDAM can use are VSAM and OSAM.

The requirements that HDAM satisfies are:

• Direct access of roots by root keys-HDAM uses a randomi zi ng
routi ne to locate root segments·

• Direct access of paths of dependerits

• Addi ng new data base records and ·new segments-the new data
goes into the nearest available space

• Deleting data base records and segments-the space created by
a deletion can be used by any new segment

HDAM CHARACTERISTICS: For root segments in an HDAM data base,
DL/I:

• Can store them anywhere; in other words they don't have to be
in sequence because the randomizing routine locates them.

• Uses a randomizer to locate the relative block number and root
anchor point, or RAP, within the block that points to the root
segment.

• Returns root segments in physical sequence, not key sequence,
if you retrieve root segments sequentially.

For dependent segments, an HDAM data base:

• Can store them anywhere

• Cha ins all segments of one data base record together wi th
pointers

AN OVERVIEW OF HOW HDAM WORKS: When a data base record is stored
in an HDAM data base, HDAM keeps one or more RAPs at the beginning
of each physical block. The RAP points to a root segment. HDAM
also keeps a pointer at the beginning of each physical block that
points to any free space in the block. When you insert a segment,
HDAM uses this pointer to locate free space in the physical block.
To locate a root segment in an HDAM data base, you give HDAM the
root key. The randomizing routine gives it the relative physical
block number and the RAP that points to the root segment. The RAP
number specified gives HDAM the location of the root within a
physical block.

Although HDAM can place root and dependents anywhere in the data
base, it's better to choose HDAM options that keep roots and
dependents close together.

HDAM performance depends largely on the randomizing routine you
use. Performance can be very good. Performance also depends on
other implementation factors such as:

• The block size you use.

• The number of RAPs per block.

• The pattern for chaining together different segments. You can
chain segments of a data base record in two ways:

Chapter 4. Gathering Requiremen~s for Data BasQ Options 43

In hi erarchi c sequence starti-ng wi th the root.

Parents can contain pointers to each of their paths of
dependents.

HDAM is not good for sequential access of data base records by
root key unless you use a randomizer that stores roots in physical
key sequence or a secondary index.

Direct and Sequential Processing: HIDAM

HIDAM is the access method that is most efficient for an
approximately equal amount of direct and sequential processing.
The OS access methods it can use are VSAM and ISAM/OSAM. The
specific requirements that it satisfies are:

• Direct and sequential access of records by their root keys

• Di rect access of paths of dependents

• Adding new data base records and new segments--the new data
goes into the nearest available space

• Deleting data base records and segments--the space created by
a deletion can be used by any new segment

HIDAM can answer most processing requirements that involve an
even mixture of direct and sequential processing; a situation in
which it's not very efficient is sequential access of dependents.

HIDAM CHARACTERISTICS: For root segments, a HIDAM data base:

• Initially loads them in key sequence

•
•

Can store new root segments wherever there's space

Uses an index to locate a root that you request and identify
by supplying the root's key value

For dependent segments, a HIDAM data base:

• Can store segments anywhere, preferably fai_rly close together

• Chains all segments of a data base record together with
pointers

AN OVERVIEW OF HOW HIDAMWORKS: HIDAM uses two data bases: one,
the primary data base, holds the data, and the other is an index
data base. The index data base contains entries for all of the
root segments in order of their key fields. For each key entry,
the index data base contains the address of that root segment in
the primary data base.

When you access a root, you supply the key to the root. HIDAM
looks the key up in the index to fi nd -the address of the- root,
then goes to the primary data base to find the root.

HIDAM chains dependent segments together so when you access a
dependent segment, HIDAM uses the pointer in one segment to locate
the next segment in the hierarchy.

When you process database records directly, HIDAM locates the
root through the index, then locates the segments from the root.
HIDAM locates dependents through pointers.

If you are going to process data base records sequentially, you
can specify some special pointers in the DBD for the data base so
that Dl/I doesn't have to go to the index to locate the next root
segment. These pointers chain the roots together. If you don't
chain roots together, HIDAM always goes to the index to locate a
root segment. When you process data base records sequentially,
HIDAM accesses roots in key sequence in the index. This only

44 IMS/VS Application Programming

)

)

SEQUENTIAL ACCESS

applies to sequential processing; if you want to access a root
segment directly, HIDAM uses the index, and not pointers, to find
the root segment you've requested.

When you use a sequentlal access method, the segments in the data
base are stored in hierarchic sequence, one after another. There
are no pointers in a sequential data base.

DL/I has two sequential access methods. Like the direct access
methods, one has an index and the other doesn't:

• The Hierarchical Sequential Access Method, HSAM, only
processes root segments and dependent segments sequentially.

• The Hierarchical Indexed Sequential Access Method, HISAM,
processes data sequentially but has an index so that you can
access records directly. HISAM is primarily for sequentially
processing dependents, and'directly processing data base
records.

Some of the general requirements that sequential accessing
satisfies are:

• Fast sequential processing

• Direct processing of data base records with HISAM

• Small IMS/VS overhead on storage because sequential access
methods relate segments by adjacency rather than with
pointers

There are three disadvantages to sequential access methods:
first, sequential access methods give slower access to the
rightmost segments in the hierarchy, because HSAM and HISAM have
to read through all of the other segments to get to them. Second,
HISAM requires frequent reorganization to reclaim space from
deleted segments and to keep the logical records of a data base
record physically adjoined. And third, you can't update HSAM data
bases; you have to create a new data base to change any of the
data.

sequential processing Only: HSAM

HSAM is a hierarchical access method that can handle only
sequential processing. You can retrieve data from HSAM data
bases, but you can't update any of the data. The OS access methods
that HSAM can use are QSAM and BSAM.

HSAM is good for situations in which:

• You are storing historical data that you will not need to
update.

• You are using the data base to just collect data or
statistics, but will not need to update it.

• You will be processing the data only sequentially.

HSAH CHARACTERISTICS: HSAM stores data base records in the
sequence in which you submit them. You can only process records
and dependent segments sequentially; "sequentially" means in the
order in which you've loaded them. HSAM stores dependent segments
in hierarchic sequence. '

AN OVERVIEW OF HOW HSAM WORKS: HSAM data bases are very simple
data bases. The data is stored in hierarchic sequence, one segment
after the other. There are no pointers, no indexes, just the HSAM
data base.

Chapter 4. Gathering Requirements for Data Base Options 45

Primarily Sequential Processing: HISAM

HISAM is an access method that stores segments in hierarchic (-
sequence with an index to locate root segments. It also has an \.
overflow data set; you store segments in a logical record until
you reach the end of the logical record. When you run out of space
on the logical record, but you still have more segments belonging
to the data base record, you store the remaining segments in an
overflow data set~ The OS access methods that HISAM can use are
VSAM and ISAM/OSAM.

HISAM is well-suited for:

• Direct access of record by root keys

• Sequential access of records

• Sequential access of dependent segments

There are situations in which your processing has some of the
characteristics above but where HISAM is not necessarily a good
choice. These situations are when:

• You have to access dependents directly.

• You have a hi gh number of inserts and deletes.

• A lot of the data base records exceed average si ze and have to
use the overflow data set. This is because the segments that
overflow into the overflow data set require additional I/O.

HISAH CHARACTERISTICS: For data base records, HISAM data bases:

• Store records in key sequence

• Can locate a particular record with a key value by using the
index

For dependent segments, HISAM data bases:

• Start each HISAM data base record in a new logical record in
the primary data set

e· Store the rema in i ng segments in one or more logi cal records in
the overflow data set if the data base record won't fit in the
primary data set

AN OVERVIEW OF HOW HISAM WORKS: The reason that HISAM is not
well-suited for a lot of inserting and deleting segments.is that,
unlike HIDAM and HDAM, HISAM doesn't reuse space right away. HISAM
data bases have to repack to use extra space to make room for new
segments. HISAM space is reclaimed when you reorganize a HISAM
data base. HISAM data bases have to shift data around when you
insert a new segment to make room for the new segment, and they
leave unused space after deletions.

ACCESSING OS/VS FILES THROUGH IMS/VS: GSAM

There is one addi~ional access method that DL/I programs can use:
this is the Generalized Sequential Access Method, or GSAM. GSAM
makes it possible for a sequential OS/VS data set to be handled by
IMS/VS as a simple data base. The OS access methods that GSAM can
use are BSAM and VSAM.

A GSAM data base:

e Is an OS/VS data set record defined as a data base record. The
record is handled as one unit; it contains no segments or
fields and the structure is not hierarchic.

• Can be accessed by OS/VS or by IMS/VS •

46 IMS/VS Application Programming

(~

)
One common use of GSAM is as input to batch-oriented BMPs or batch
programs. Batch-oriented BMPs and batch programs can also send
output to GSAM data bases. To process a GSAM data base, an
application program issues calls similar to the ones it issues to
process a DL/I data base. The program can read data sequentially
from a GSAM data base, and it can send output to a GSAM data base.
GSAM is a sequential access method; you can only add records to an
output data base sequentially. For an example of a program that
uses GSAM, see the sample batch program in "Appendix A. Sample
Batch Program." This program reads its input from a GSAM data base
and sends its output to another GSAM data base.

ACCESSING IHS/VS DATA THROUGH OS/VS: SHSAH AND SHISAH

There are two data base access methods that give you simple
hierarchical data bases that OS/VS can use as data sets. These
access methods can be particularly helpful when you're converting
data from OS/VS files to an IMS/VS data base. Again, one is
indexed and one is not:

• The Simple Hierarchical Sequential Access Method, SHSAM

• The Simple Hierarchical Indexed Sequential Access Method,
S~fISAN

When you use these access methods, you define an entire data base
record as one segment. The segment does not contain any DL/I
control information or pointers; the data format is the same as it
is in OS/VS data sets. The OS access methods that SHSAM can use
are BSAM and QSAM. SHISAM uses VSAM.

What makes SHSAM and SHISAM data bases useful during transitions
is that they can be accessed by OS/VS access methods without
IMS/VS.

) UNDERSTANDING HOW DATA STRUCTURE CONFLICTS ARE RESOLVED

)

The order in which application programs need to process fields and
segments within hierarchies is frequently not the same for each.
When the DBA finds a conflict in the way that two or more programs
need to access the data base, DL/I has three options that can
solve these problems. Each option solves a different kind of
conflict. These options and the kinds of conflicts they solve are:

• When an application program doesn't need access to all of the
fields in a segment, or if the program needs to access them in
a different order, the DBA can use field level s~nsitivity for
that program. Field level sensitivity makes it possible for
an application program to access only a subset of the fields
that a segment contains; or for an application program to
process a segment's fields in an order that is different from
their order in the segment.

• When an application program needs to access a particular
segment by a field other than the segment's key fi~ld, the DBA
can use a secondary index for that data base.

• When the application program needs to relate segments from
different hierarchies, the DBA can use logical relation~hips.
Using logical relationships can give the application program
a logical hierarchy that includes segments from several
hierarchies.

USING DIFFERENT FIELDS: FIELD LEVEL SENSITIVITY

Field level sensitivity means the same kind of security for fields
within a segment that segment sensitivity does for segments
within a hierarchy: an application program can access only those
fi elds wi thi n a segment', and those segments wi thi n a hi erarchy to
which it is sensitive.

Chapter 4. Gathering Requirements for Data Base Options 47

Field level sensitivity also makes it possible for an application
program to use a subset of the fields that make up a segment, or
to use all of the fields in the segment but in a different order.
If there are fields within a segment that the application program
doesn't need to process, using field level sensitivity means that
the program doesn't have to process ,those fields that it doesn't
use.

AN EXAMPLE OF FIELD LEVEL SEHSITIVITY: For example, suppose that a
segment containing data about an employee contains the fields
shown in Figure 24. These fields are:

• Employee number: EMPNO

• Employee name: EMPNAME

• Birthdate: BIRTHDAY

• Salary: SALARY

• Address: ADDRESS

EMPNO EMPNAME BIRTHDAY SALARY ADDRESS

Figure 24. Physical Employee Segment

A program that printed mailing labels for employees' checks each
week would not need all the data in the segment. If the DBA
decided to use field level senstivity for that application, the
program would receive only the fields it needed in its I/O area.
Figure 25 shows what the program's I/O area would contain.

EMPNAME ADDRESS

Figure 25. Employee Segment with Field Level Sensitivity

Field level sensitivity makes it possible for a program to receive
a subset of the fields that make up a segment, the same fields but
in a different order, or both. Another situation in which field
level senstivity is very useful is when new uses of the data base
involve adding new fields of data to an existing segment. In this
situation, you want to avoid recoding programs that use the
current segment.

By using field level sensitivity, the old programs can see only
the fields that were in the original segment. The new program can
see the old and the new fields.

WHERE FIELD LEVEL SENSITIVITY IS SPECIFIED: You specify field
level sensitivity in-the PSB for the application program by using
a sensitive field (SENFLD) statement for each field to which you
want the application program to be sensitive.

RESOLVING PROCESSING CONFLICTS IN A HIERARCHY: SECONDARY INDEXING

Sometimes a data base hierarchy doesn't meet all the processing
requirements of the application programs that will process it.
Secondary indexing can be used to solve two kinds of processing
conflicts:

• When an application program needs to retrieve a segment in a
sequence other than the one that has been defined by the
segment's key field

48 IMS/VS Application Programming

\ ...

(

)

\
I

/

)

• When an application program needs to retrieve a segment based
on a condition that is found in a·dependent of that segment

A way to understand these conflicts and how secondary indexing can
resolve them is to look at a couple of examples. The examples
explained here are two application programs that process the
patient hierarchy shown in Figure 26. There are three segment
types in this hierarchy:

• PATIENT contains three fields: the patient's identification
number, the patient's name, and the patient's address. The
patient number field is the key field.

• ILLNESS contains two fields: the date of the illness and the
name of the illness. The date of the illness is the key field.

• TREATMHT contains four fields: the date the medication was
given; the name of the medication; the quantity of the
medication that was given; and,the name of the doctor who
prescribed the medication. The date that the medication was
given is the key field.

Figure 26. Patient Hierarchy

Using a Different Key

When an application program retrieves a segment from the data
base, the program identifies the segment by the segment's key
field. But sometimes an application program needs to retrieve a
segment in a sequence other than the one that has been defined by
the segment's key field. Secondary indexing makes this possible.

For example, suppose you have an online application program that
processes requests as to whether or not an individual has ever
been to the clinic. If you're not sure whether or not the person
has ever been to the clinic, then you won't be able to supply the
identification number for the person. But the key field of the
PATIENT segment is the patient's identification number.

Segment occurrences of a segment type (for example, the segments
for each of the patients) are stored in a data base in order of
their keys (in this case, by their patient identification
numbers). If you issue a request for a PATIENT segment and
identify the segment you want by the patient's name instead of the
patient's identification number, DL/I might have to search
through all of the PATIENT segments to find the PATIENT segment
you've requested. DL/I doesn't know where a particular PATIENT
segment is just by having the patient's name.

To make it possible for this application program to retrieve
PATIENT segments in the sequence of patients' names (rather than
in the sequence of patients' identification numbers), you can
index the PATIENT segment on the patient name field and store the
index entries in a separate data base. The separate data base is
called a secondary index.

Then, if you indicate to DL/I that DL/I is to process the PATIENT
segments in the patient hierarchy in the sequence of the lndex

Chapter 4. Gathering Requi'rements for Data Bass'Options 49

entries in the secondary index data base, DL/I can locate a
PATIENT segment if you supply the patient's n~me. DL/I goes
-directly to the secondary index and locates the PATIENT index (
entry with the name you've supplied; the PATIENT index entries are,
in order of the patient names. The index entry is a pointer to the
PATIENT segment in the patient hierarchy. DL/I can determine
whether or not a PATIENT segment for the name you've supplied
exists, and return the segment to the application program if the
segment exists. If the requested segment doesn't exist, DL/I
indicates this to the application program by returning a
"not-found" status code.

There are three terms involved in secondary indexing that you
should know.

• The pointer segment is the index entry in the secondary data
base that DL/I uses to find the segment you've requested. In
the example above, the pointer segment is the index entry in
the secondary index data base that points to the PATIENT
segment in the patient hierarchy.

• The source segment is the segment that contains the field that
you're indexing. In the example above, the source segment is
the PATIENT segment in the patient hierarchy, since you're
indexing on the name field in the PATIENT segment.

• The target segment is the segment in the data base that you're
processing that the-secondary. index points to; it's the
segment that you want to retrieve.

In the example above, the target segment and the source segment
are the same segment--the PATIENT segment in the patient
hierarchy. When the source segment and the target segment are
different segments, secondary indexing solves the processing
conflict described below.

The PATIENT segment that DL/I returns to the application
program's I/O area doesn't look any different than it would if
secondary indexing had not been used.

The DB PCB key feedback area is different. When DL/I retrieves a
segment without using a secondary index, DL/I places the
concatenated key of the retrieved segment in the DB PCB key
feedback area. The concatenated key contains all the keys of the
segment's parents, in order of their positions in the hierarchy.
The key of the root segment is first, followed by the key of the
segment on the second level in the hierarchy, then the third, and
so on--with the key of the retrieved segment last. But when you
retrieve a segment from an indexed data base, the contents of the
key feedback area after the call are a little different. Instead
of placing the key of the root segment in the left-most bytes of
the key feedback area, DL/I places the key of the pointer segment.
For example, suppose index segment A shown in Figure 27 on a field
in segment C. Segment A is the target segment, and segment C is
the source segment.

< Target Segment

< Source Segment

Figure 27. Indexing a Root Segment

50 IMS/V~ Application Programming

(,

(

-------_ _----_._._-----------------------------_.

)

)

When you use the secondary index to retrieve one of the segments
in this hierarchy, the key feedback area contains one of the
following:

• If you retrieve segment A, the key feedback area contains the
key of the pointer segment from the secondary index.

• If you retrieve segment B, the key feedback area contains the
key of the pointer segment concatenated with the key of
segment B

• If you retrieve segment C, the key of the pointer segment, the
key of segment B, and the key of segment C are concatenated in
the key feedback area.

Although this example creates a secondary index for the root
segment, you can index dependent segments as well. If you do this,
you create an inverted structure: the segment you index becomes
the root segment, and its parent becomes a dependent. For example,
suppose you index segment B on a field in segment C. In this case,
segment B is the target segment, and segment C is the source
field. Figure 28 shows the physical data base structure and the
structure created by the secondary index.

<--- Target

<--- Source

Figure 28. Indexing a Dependent Segment

When you retrieve the segments in this secondary index data
structure on the right, DL/I returns the following to the DB PCB
key feedback area:

• If you retrieve segment B, the key feedback area contains the
key of the pointer segment in the secondary index data base.

• If you retrieve segment A, the key feedback area contains the
key of the pointer segment concatenated with the key of
segment A.

• If you retrieve segment C, the key feedback area contains the
key of the pointer segment concatenated with the key of
segment C.

Retrieving Segments Based on a Dependent's Qualification

Sometimes an application program needs to retrieve a segment, but
only if one of the segment's dependents meets a certain
qualification. For example, suppose that the medical clinic used
in the example above wants to print a monthly report of the
patients who have visited the clinic during that month. If the
application program that processes this request doesn't use a
secondary index, the program has to retrieve each PATIENT
segment, then retrieve the ILLNESS segment for each PATIENT
segment. The program tests the date in the ILLNESS segment to
determine whether or not the patient has visited the clinic during
the current month, and prints the patient's name if the answer is
yes. The program continues retrieving PATIENT segments and
ILLNESS segments until it has retrieved all the PATIENT segments.

Chapter 4. Gathering Requirements for Data Base Options 51

But with a secondary index, you can make the processing that the /
program has to do much simpler. To do thi s, you index the PATIENT ("
segment on the date field in tha ILLNESS segment. When you define
the PATIENT segment in the DBD, you give DL/I the name of the
field that you're indexing the PATIENT segment on, and the name of
the segment that contains the index field. The application
program can then issue a call to DL/I for a PATIENT segment and
qualify the call with the date in the ILLNESS segment. The PATIENT
segment that DL/I-returns to the application program looks just as
it would if'you were not using a secondary index.

In this example, the PATIENT segment is the target segment; it's
the segment that you want to retrieve. The ILLNESS segment is the
source segment; it contains the information that you want to use
to qualify your request for PATIENT segments. The index segment in
the secondary data base is the pointer segment. It points to the
PATIENT segments.

CREATING A NEW HIERARCHY: LOGICAL RELATIONSHIPS

When an application program needs to associate segments from
different hierarchies, logical relationships can make it possible
for that program to do so. A couple of the conflicts that logical
relationships can solve are:

• When two application programs need to process the same
segment--but they need to access the segment through
different hierarchies

• When a segment's parent in one application program's
hi era rchy act s a s that segment's ch i 1 din another appl i cat ion
program

Accessing a Segment through Different Paths

Sometimes an application program needs to process the data in a
different order than the way it's arranged in the hierarchy. For,
example, an application program that processes data in a
purchasing data base also requires access to a segment in a
patient data base:

• Program A processes information in the patient data base
about the patients at a medical clinic: the patients'
illnesses and thei r treatments.

• Program B is an inventory program that processes information
in the purchasing data base about the medications that the
clinic uses: the item, the vendor, information about each
shipment, and information about when and under what
circumstances each medication was'given.

Figure 29 shows the hierarchies that Program A and Program B
require for their processing. There is a conflict in their
processing requirements: they both need to have access to the
information that's contained in the TREATMHT segment in the
patient data base. This information is:

• The date that a particular medication was given

• The name of the medication

• The quantity of the medication given

• The doctor that prescribed the medication

To Program B this isn't information about a patient's treatment;
it's information about the disbursement of a mQdication. To the
purchasing data base, this is the disbursement segment
(DISBURSE).

S2 IMS/VS Application Programming

(
\..

\
)

)

)

Figure 29 shows the hierarchies for Program A and Program B.
Program A needs the PATIENT segment, the ILLNESS segment, and the
TREATMNT segment. Program B needs the ITEM segment, the VENDOR
segment, the SHIPMENT segment, and the DISBURSE segment. The
TREATMNT segment and the DISBURSE segment contain the same
information.

Program A Program B

Figure 29. Patient and Inventory Hierarchies

Instead of storing this information in both hierarchies, you can
use a logical relationship. A logical relationship solves the
problem by storing a pointer from where the segment is needed in
one hierarchy to where the segment exists in the other hierarchy.
In this case, you can have a pointer in the DISBURSE segment to
the TREATMNT segment in the medical data base. When DL/I receives
a request for information in a DISBURSE segment in the purchasing
data base, DL/I goes to the TREATMNT segment in the medical data
base pointed to by the DISBURSE segment. Figure 30 shows the
physical hierarchy that Program A would process and the logical
hierarchy that Program B would process. DISBURSE ;s a pointer
segment to the TREATMNT segment in Program A's hierarchy.

TREATMNT J , , ,
, DISBURSE

Program A Program B.

Figure 30. Logical Relationships Example

To define a logical relationship between segments in different
hierarchies, you use a logical DBD. A logical DBD defines a
hierarchy that does not exist in storage, but can be processed as
though it does. Program B would use the logical structure shown in
Figure 30 as though it were a physical structure.

Chapter 4. Gathering Requirements for Data Base Options 53

Inverting a Pareryt/Child Relationship

Another type of conflict that logical relationships can resolve
occurs when a segment's parent in one application program acts as
that segment's child in another application program:

• The inventory program (Program B above> needs to process
information about medications using the medication as the
root segment.

• A purchasing application program, Program C, processes
information about which vendors have sold which medications.
Program C needs to process this information using the vendor
as the root segment.

Figure 31 shows the hierarchies for each of these application
programs.

Program B
Supplies Hierarchy

Program C
Purchasing Hierarchy

Figure 31. Supplies and Purchasing Hierarchies

Logical relationships can solve this problem by using pointers.

(
\
'-

Using pointers in this example would mean that the ITEM segment in (/,
the purchasing data base would contain a pointer to the actual
data stored in the ITEM segment in the supplies data base. The
VENDOR segment, on the other hand, would actually be stored in the
purchasing data base. The VENDOR segment in the supplies data base
would point to the VENDOR segment stored in the purchasing data
base.

Figure 32 shows the hierarchies these two programs.

ITEM ,

. /
VENDOR /

Program B
Supplies Data Base

, / , /

/ ,

/ VENDOR

, , ITEM

Program C
Purchasing Data Base

Figure 32. Program B and Program C Hierarchies

If you didn't use logical relationships in this situation, you
would:

• Keep the same data in both paths, which means you would be
keeping redundant data

S4 IMS/VS Application Programming

(

\

)

\
)

)

• Have the same disadvantages as separate files of data:

You would have to update multiple segments each time one
piece of data changed.

You would need more storage.

IDENTIFYING SECURITY REQUIREMENTS

If you find that some of the data in your application has a
security requirement, Dl/I can provide security for that data in
two ways:

• Data sensitivity is a way to control what data a particular
program can access.

• Processing options are a way to control how a particular
program can process that data.

KEE~ING A PROGRAM FROM ACCESSING THE DATA: DATA SENSITIVITY

segment Sensitivity

A Dl/I program can only access data to which it is sensitive. You
can control the data to which your program is sensitive on three
levels:

• Segment sensitivity can prevent an application program from
accessing all of the segments in a particular hierarchy. It's
how you tell Dl/I which segments in a hierarchy the program is
allowed to access.

• Field level sensitivity can keep a program from accessing all
of the fields that make up a particular segment. Field level
sensitivity tells Dl/I which fields within a particular
segment a program is allowed to access.

• Key sensitivity means that the program can access segments
below a particular segment, but it cannot access the
particular segment. Dl/I will return only the key of this type
of segment to the program.

You define each of these levels of sensitivity in the PSB for the
application program. Key sensitivity is defined in the processing
option for the segment. Processing options are how you indicate to
Dl/I exactly what a particular program mayor may not do to the
data. You specify a processing option for each hierarchy that the
application program processes; you do this in the DB PCB that
represents each hierarchy. You can specify one processing option
for all the segments in the hierarchy, or you can specify
different processing options for different segments within the
hierarchy.

Segment sensitivity and field level sensitivity are defined using
special statements in the PSB~

You define what segments an application program is sensitive to in
the DB PCB for the hierarchy that contains those segments. For
example, suppose that the patient hierarchy shown in Figure 26
belongs to the medical data base shown in Figure 33. The patient
hierarchy is like a subset of the medical data base.

Chapter 4. Gathering Requirements for Data Base Options' 55

PATIENT

Figure 33. Medical Data Base Hierarchy

To make it possible for an application program to view only the
segments PATIENT, ILLNESS, and TREATMNT from the medical data
base, you specify in the DB PCB that the hierarchy you're defining
has these three segment types, and that they are from the medical
data base. You define the data base hierarchy in the DBD; you
define the application program's view of the data base hierarchy
in the DB PCB.

Field Level sensitivity

In addition to providing data independence for an application
program, field level sensitivity can also act as a security
mechanism for the data that the program uses.

/'
If a program needs to access some of the fi elds ina segment, but \
one or two of the fi elds that the program doesn't need to access "

Key sensi tivi ty

are confidential, you can use field level sensitivity. If you
define that segment for the application program as containing
only the fields that are not confidential, you prevent the program
from accessing the confidential fields. Field level sensitivity
acts as a mask for the fi elds you wi sh to restri ct access to.

To access a segment, an application program must be sensitive to
all segments at a higher level in the segment's path. In other
words, in Figure 34, a program has to be sensitive to segment B in
order to access segment c.
Suppose that an application program needs segment C to do its
processing. But if segment B contains confidential information
(such as an employee's salary), then the program should not be
able to access that segment. Using key sensitivity lets you
withhold segment B from the application program, and at the same
time give the program access to segment B's dependents.

56 IMS/VS Application Programming

(

)

)

\
)

Figure 34. Sample Hierarchy

When a sensitive segment statement has a processing option of K
~pecified for it, the program cannot access that segment, but the
program can pass beyond that segment to access the segment's
dependents. When the program does access the segment's
dependents, Dl/I doesn't return that segment; Dl/I returns only
the segment's key with the keys of the other segments accessed to
the program's I/O area.

PREVENTING A PROGRAM FROM UPDATING DATA: PROCESSING OPTIONS

There are five processing options that you use to indicate to Dl/I
whether the program can just read segments in the hierarchy, or
whether the program can update segments as well. These are:

G You specify G if your program can read segments.

I You specify I if your program can insert segments.

R You specify R if your program can replace segments. The R
processing option includes the G processing option. In other
words, Dl/I assumes that if your program will be replacing
segments, your program will be reading segments as well.

D You specify D if your program can delete segments. like the R
processing option, if you specify D it's as though you've
specified G as well.

A Specifying A means that your program needs all the processing
options above. It's the equivalent of specifying G, I, R, and
D.

Processing options act as security mechanisms in that they can
limit what a program can do to a particular segment or to the
hierarchy. If a program doesn't need to delete segments from a
data base, there's no reason to specify the D option. Specifying
only those processing options that the program requires ensures
that the program can't update any of the data that it's not
supposed to.

You must specify a processing option for a DB PCB. If you specify
a processing option for a particular segment, the processing
option you specify for the segment takes precedence over the one
you specify for the DB PCB. For example, if you specified G, I,
and R for the DB PCB--meaning that the program could retrieve,
insert, and replace segments in that hierarchy--and then
specified A for a particular segment, the program would be able to
delete that segment as well.

There are two additional processing options that you use only for
online programs. These are E and GO.

Chapter 4. Gathering Requirements for Data Base Options 57

E means that that program has exclusi ve use of the hi erarchy or (
the se~men~ you us~ it wi t~. The E proc~ssi.n~ .opti o~. is a securi ty I,

mechan 1 sm 1 n thet 1 t everr i des prOgram 1 SOla't 1 on; other programs "
cannot access that data while the program with the E processing
option is running.

When an application program that has any of the processing options
described so far retrieves a segment, IMS/VS enqueues the segment
for that application program. If the program is only retrieving
the segment, the segment's available to other programs as soon as
the application program moves to the next data base record. If the
program is updating the segment, the segment is unavailable to
other programs until the program reaches a sync point.

But when an application program with a processing option of GO
retrieves a segment, IMS/VS does not enqueue the segment. The
segment continues to be available to other application programs.
This is because GO means that the program can only read the data;
the program is not allowed to update the data base. IMS/VS doesn't
enqueue segments for programs with processing options of GO. The
segment remains available to other application programs while the
GO program is reading it.

An application program with a processing option of GO can also
retrieve a segment even if another program is updating the
segment. This means that the program doesn't have to wait fo~
segments that other programs are accessing, but it also means that
it's possible for the GO program to retrieve a segment containing
an invalid pointer. If an online application program terminates
abnormally, IMS/VS backs out the changes that it has made to the
data base since the program's last sync point. But if the updating
program terminates abnormally before reaching the next sync
point, the segments that the program has updated may. contain
invalid pointers. Beca~se of this, it's possible for the GO
application program to retrieve a segment containing a pointer ~r
that's invalid. IMS/VS protects online programs--except for those
with a processing option'of GO--from invalid pointers by
preventing them from retrieving updated segments until the
updating program reaches a sync point. But a program with the GO
processing option can retrieve a segment even if IMS/VS has
enqueued that segment for another application program. If the GO
application program retrieves a segment that contains an invalid
pointer, IMS/VS terminates the program abnormally.

To prevent a GO application program from being terminated
abnormally in this situation, there are two additional processing
options you can use with GO: Nand T. When you use N with GO eGON),
IMS/VS returns a GG status code to your program if the segment
you're retrieving contains an invalid pointer. You can then
decide what you want to do; for example, you might continue
processing by reading a different segment. When you use T with GO
(GOT), IMS/VS retries the call th~ program just issued; if the
program that was updating the requested segment has reached a sync
point since you tried to retrieve the segment, the updated segment
is valid and you would be free to retrieve it. If, when IMS/VS
retries the call for you, the pointer is still invalid, IMS/VS
then returns a GG status code.

IDENTIFYING RECOVERY REQUIREMENTS

The degree to which you need to plan for recovery for a program
depends more than anything else on the type of processing that the
program does. There are three Dl/I calls that are related to
recovery: symbolic checkpoint, restart, and basic checkpoint.

Two of these calls take checkpoints of your program so that, if
your program were to terminate abnormally, your program could be
restarted from a place other than the beginning of the program.
Checkpoint calls establish synchronization points throughout your
program. A program can be restarted only from a synchronization
point.

58 IMS/VS Application Programming

)

,)

)

The third call gives you a way to restart your program. It
restores your program's data areas to the way they were when the
program terminated abnormally, and it indicates to DL/I the
synchronization point from which the program is to be restarted.

These calls are most important to batch programs and BMPs, since,
for the most part, IMS/VS handles recovery and restart for message
programs. But because batch programs and BMPs are not started by
IMS/VS (like message programs) and they do not have the built-in
synchronization points that message programs do, batcih programs
and BMPs need checkpoints to establish synchronization points.

CHOOSING A CHECKPOINT CALL

There are two kinds of checkpoint calls you can use: symbolic and
basic. Although the reasons you use each call and the results of
each call differ, there are some similarities. Issuing either
kind of call in a batch program or a batch-oriented BMP causes
IMS/VS to record all modified data base buffers and to send
messages to the system console and the system log describing the
checkpoint.

The biggest difference between the symbolic and basic calls is the
type of restart each uses. With the symbolic call, you can
checkpoint areas in your program, and the program must use the
restart call. The restart call restores those user areas that were
checkpointed and restarts the program.

With the basic checkpoint call, on the other hand, you have the
option of requesting an OS/VS checkpoint, and then using OS/VS
restart to restart your program. You cannot use the OS/VS option
in Fast Path programs. This is the only supplied method of restart
with the basic call; if you don't use OS/VS checkpoint and
restart, it's up to you to prov i de program restart. I f an
application program that updates OS/VS files terminates
abnormally, it is your responsibility to back out the OS/VS
updates made by the terminating application program.

Another advantage of the symbolic call concerns programs that
access OS/VS files. If an application program accesses OS/VS
files, you can convert those files to GSAM and use symbolic
checkpoint. If you have to restart the program, the restart call
automatically repositions GSAM input and output files for restart
processing. If you can't convert the files to GSAM, you can use
the OS/VS option on the basic call.

Because of it's easier restart, programs should use symbolic
checkpoint whenever possible. To see what the calls look like and
how they fit in to the rest of an application program, you can
refer to the sample batch program in "Appendix A. Sample Batch
Program" and the sample B~lP in" Append i x B. Sample Batch f'1essage
Program." Both of these programs ; ssue symbo 1 i c checkpo i nt and
restart calls. Figure 35 is a summary of the differences between
the symbolic and basic checkpoint calls.

Chapter 4. Gathering Requirements for Data Base Options 59

Symbolic Checkpoint Basic Checkpoint

To restart Use the restart call Use OS/VS option and
the program OS/VS restart; or supply

your ot..Jn method

To use with Convert OS files to Specify the OS/VS option
OS files GSAM on the call

Advantages ·You restart the .Provides checkpoint
program simply by and restart for programs
using the restart accessing as files.
call.

·You can change the
program before you
restart it.

Figure 35. Summary of Symbolic and Basic Ch~ckpoint Calls

HOW OFTEN TO USE CHECKPOINTS

Checkpoint frequency depends on the type of processing you're
using.

Checkpoints in Batch Programs

/'
(

Any batch program that updates data bases should issue (
checkpoints. The main consideration in deciding how often to .
checkpoint a batch program is the time required to back out and
reprocess the program after a failure. A general recomm~ndation
is one checkpoint call every ten or fifteen minutes. Whatever
frequency you decide on, it's a good idea to make the frequency
easy to modify, in case you find that it's too high or too low.
For example, a counter in the program can keep track of the number
of data base updates the program has performed. When the count
reaches a certain limit, the program issues a checkpoint call.

If there's a chance that you might have to back out the entire
batch program, the program should i~sue the checkpoint call at the
very beginning of the program. IMS/VS will back out the program to
the checkpoint that you specify, or to the most· recent checkpoint,
if you don't specify a checkpoint.

Another important reason for checkpointing batch programs is that
although they may currently run in a Dl/I region, they might later
need to access online data bases. This would require converting
them to BMPs. Checkpointing a BMP is important for reasons other
than recovery.

Checkpoints in Batch-oriented BMPs

Checkpoints in batch-oriented BMPs are important for three
reasons beyond recovery. These are enqueue lockout, enqueue
space, and dynamic log space.

• Enqueue lockout

When a BMP retrieves or updates a segment occurrence, IMS/VS
prevents other programs from accessing that segment
occurrence until the updating BMP moves to the next data base
record (if the BMP has only retrieved the segment
occurrence), or reaches a sync point (if the BMP has updated
the segment occurrence). If a BMP retrieves and updates many

60 IMS/VS Appl i cati on Programmi ng

(

)

)

)
/

•

data base records between checkpoint calls, it can tie up
large portions of the data bases, causing excessive wait
times for other programs trying to access the same segment
occurrence. (The exception to this is a BMP with a processing
option of GO. IMS/VS does not enqueue segments for programs
with this processing option.) Issuing checkpoint calls
releases all segment occurrences that the BMP has enqueued
and makes them available to other programs.

Enqueue Space

Failure to issue checkpoints frequently enough can also cause
a storage space problem. Because program isolation enqueues
are held until a sync point is reached, the amount of storage
required for enqueue records can exceed the amount that was
specified for the system, and result in an abnormal
termination of the application program. The amount of storage
available is specified when the IMS/VS system is defined.

• Dynamic Log Space

A checkpoint call frees dynamic l~g records. If checkpoints
are not issued frequently enough~ the dynamic log can reach a
"wraparound" point. If this happens, the program has to issue
checkpoints more frequently, or the storage for the dynamic
log has to be increased.

Checkpoints in HPPs and Transaction-oriented BMPs

Issuing a checkpoint call in an MPP or a transaction-oriented BMP
generates an internal retrieval call to the message queue. If
there is a message available, IMS/VS returns it to the program.
How often you issue checkpoint calls in these programs depends on
whether the programs are single or multiple mode.

Single mode means that each retrieval call to the message queue is
a sync point for the program. Single mode is recommended for
recovery because sync points occur automatically, each time the
program issues a call to retrieve a new message. Single mode
programs don't need checkpoint calls, unless a single-mode
transaction-oriented BMP is too long to restart from the
beginning. This type of program should issue all checkpoint
calls, instead of retrieval calls to the message queue. This is
for recovery reasons. A checkpoint call, in addition to
establishing a sync point in the program's processing, returns a
new message, if one is available, to the application program's I/O
area. In other words, it acts like a call to the message queue for
a new message. If a program issues a checkpoint call, does some
processing, and then issues a call to the message queue to
retrieve a ne~ message, the program can have a recovery problem if
it terminates abnormally. The checkpoint call and the message
retrieval call both establish sync points; but a program can be
restarted only from a chp.ckpoint. If the program terminates
abnormally after issuing the message retrieval call, IMS/VS backs
out the data base updates to the most recent sync point--the
message retrieval call. But IMS/VS will restart the program from
the most recent checkpoint call. The program's restart
proces~sing will be inaccurate because the processing prior to
the abnormal termination was not entirely backed out.

In multiple mode programs, the only sync points are the checkpoint
calls that the program issues. If the program terminates
abnormally, IMS/VS backs out the program's data base updates and
cancels the messages it's created since its last checkpoint call.
Since the only sync points are the checkpoint calls that the
program issues, you can issue calls to the message queue and
checkpoint calls. The considerations for issuing checkpoint calls
in multiple mode programs are recovery considerations: the
program should issue checkpoint calls frequently enough to make
it easy to back out and recover the program if the program
terminates abnormally.

Chapter 4. Gathering Requirements for Data Base Options 61

I
Checkpoints with Data Sharing (

Wh~n sQveral application programs in one IMS/VS system run
online, the IMS/VS control region makes it possible for them to
read and update IMS/VS data bases concurrently. It does this by
preventing a program from accessing data that another program is
updating until the updating program indicates to IMS/VS that its
updates are valid. Data sharing extends what the control region
does,by making it possible for application programs in separate
IMS/VS systems--running in the same or separate processors--to
access data bases concurrently.

In an online IMS/VS system, an application program cannot access a
segment if another program is reading or updating it. If the
program is reading the segment, the segment is available to other
programs as soon as the first program moves its position to a new
data base record. If the program is updating the segment, the
segment does not b~come available to other application programs
until the updating program reaches a sync point. If the updating
program does not issue checkpoints frequently enough, other
application prog~ams needing the same segment might have to wait
for long periods of time. Issuing frequent checkpoint calls
reduces the time that other programs have to wait for updated
segments. When application programs in separate IMS/VS systems
share data bases, issuing frequent checkpoint calls in all types
of programs is important because the data base is being shared
among application programs in several IMS/VS systems.

62 IMS/VS Application Programming

(

(

)

")

)

CHAPTER S. GATHERING REQUIREMENTS FOR DATA COMMUNICATIONS OPTIONS

If your IMS/VS system uses IMS/VS data communications, you will
need to gather information about the data communications
requirements of your application as well as the Dl/I
requirements.

This chapter tells you what information you need to provide to the
data communications administrator and the system programmer, and
it tells you why that information is important. After the
explanation of each DC option, you will find a description of the
information that you need to provide to those responsible for
choosing or not choosing these options.

The tasks that this stage of application design involves are:

• Identifying Online Secu~ity Requirements

•

IMS/VS protects online data through the use of sign-on,
terminal, and password security. Sign-on security makes it
possible for you to allow only authorized individuals access
to IMS/VS. Terminal security means that individuals can enter
certain transaction codes or commands only from specific
terminals. Password security enables you to associate a
transaction code or command with a password, so that only
individuals who know the password can enter that transaction
code or command. This section tells you what characteristics
of your application you should examine when considering each
type of security.

Analyzing Screen and Message Formats

Choosing and defining the kind of editing that an application
program requires depends on the program's input and output.
The program's input is the information that the program
receives from someone at a terminal or from another
application program. The program's output is the information
that the program sends back to the person at the terminal or
to another application program. This section gives an
overview of how IMS/VS edits messages between an application
program and a terminal, and it tells you what information you
need to supply.

• Gathering Requirements for conversational Processing

If an MPP bases its processing on successive input from the
terminal, or if the input from the terminal is too long or
complex to be entered as one message, conversational
processing can make it possible for the transaction to be
processed in several cycles. If an MPP uses conversational
processing, there is some additional information that you
need to provide about the MPP's processing and data.

• Identifying output Message Destinations

In addition to replying to the terminal that sent an input
message, an MPP can send output messages to other terminals.
To do this, the MPP must use one or more alternate PCBs. This
section describes the information that you can provide about
your application that relates to this requirement.

IDENTIFYING ONLINE SECURITY REqUIREMENTS

You use security to protect the data from unauthorized use.
Protecting the data in an online system doesn't stop at protecting
the data base itself; you need to protect the application programs
that access that data as well. For example, you don't want a

Chapter 5. Gathering Requirements for Data Communications Options 63

program that processes paychecks to be available to everyone who-
can access the system.

There are three ways that you can protect an application program
from being used by unauthorized users. These are sign-on,
terminal, and password security. Chapter 6, "Establishing IMS/VS
Security," in the IMS/VS System Administration Guide explains how
you define these types of security.

LIMITING ACCESS TO SPECIFIC INDIVIDUALS: SIGN-ON SECURITY

With sign-on security, individuals who want to access IMS/VS have
to be defined to IMS/VS before they are allowed to use IMS/VS. If
your installation uses MVS, sign-on security is available through
the Resource Access Control Facility (RACF), or a user-written
security exit. If your installation doesn't use MVS, sign-on
security is available through a user-written security exit.

When a person signs on to IMS/VS, IMS/VS verifies that the person
is authorized to use IMS/VS before the person is allowed access to
the system. IMS/VS checks authorization when you enter the /SIGN
ON command. You can also limit the transaction codes and commands
that certain individuals are allowed to enter. You do this by
associating an individual's user identification (USERID) with the
transaction codes and commands that you want that individual to be
able to enter.

LIMITING ACCESS TO SPECIFIC TERMINALS: TERMINAL SECURITY

Terminal security enables you to limit the entry of a transaction
code to a particular terminpl or group of terminals in the system.
How you do this depends on how many programs you want to protect.
To protect a particular program, you can either authorize a
transaction code to be entered from a list of logical terminals;
or you can associate each logical terminal with a list of the ,
transaction codes that a user can enter from that logical
terminal. For example, you could protect the paycheck application
program by defining the transaction code associated with it as
valid only when entered from the terminals in the'payroll
department. If, on the other hand, you wanted to restrict it more
than this, you could associate the paycheck transaction code with
only one logical terminal. This means that to enter that
transaction code, you have to be at a certain terminal.

LIMITING ACCESS TO THE PROGRAM: PASSWORD SECURITY

The third way you can protect the application program is to
require a password when a perso~ enters the transaction code
associated with the application program you want to protect. If
you use only password security, that means that before IMS/VS will
process a particular transaction code, the person entering the
transaction code must also enter its password.

If you use password security with terminal security, that allows
you to restrict access to the program even more. In the paycheck
example, using password security and terminal security means that
you can restrict unauthorized individuals within the payroll
department from executing the program.

SUPPLYING SECURITY INFORMATION

When you evaluate your application in terms of its security
requirements, you need to look at each program individually. Once
you've done this, you should be able to supply the following

installation.
information to the person in charge of security at your (

• For programs that require sign-on security:

64 IMS/VS Application Programming

)

)

--- ----

)
•

List the individuals who should be able to access IMS/VS

For programs that require terminal security:

List the transaction codes that must be secured.

List the terminals that should be allowed to enter each of
these transaction codes. If the terminals you're listing
are already installed and being used, identify the
terminals by their logical terminal names. If not,
identify them by the department that will use them--for
example, the accounting department.

• For programs that require password security:

List the transaction codes that should require passwords.

• For commands that require security:

List the commands that require sign-on or password
security.

ANALYZING SCREEN AND MESSAGE FORMATS

AN OVERVIEW OF MFS

When an application program communicates with a terminal, an
editing routine translates messages from the way they are entered
at the terminal to the way the program expects to receive and
process them. The decisions about how IMS/VS will edit your
program's messages are based on how the data that's being
processed should be presented to the person at the terminal and to
the application program. You need to describe how you want data
from the program to appear on the terminal screen, and how you
want data from the terminal to appear in the application program's
I/O area.

To supply information that will be helpful in this decision, you
should be familiar with how IMS/VS edits your messages. IMS/VS has
two editing routines that an application program can use:

• Message Format serv;ce, or MFS, is most commonly used with
display screens. MFS uses control blocks that define what a
message should look like to the person at the terminal and to
the application program.

• Bas;c edit is available to all IMS/VS application programs.
Basic edit removes control characters from input messages and
inserts the control characters you specify in output messages
to the terminal.

Chapter 3, "Desi gn Consi derati ons for IMS/VS Networks," in the
IMS/VS System Administration Guide contains information on
defining If"lS/VS editing routines.·

MFS uses four kinds of control blocks to format messages between
an application program and a terminal. The information you gather
about how you want the data formatted when it is passed between
the application program and the terminal is contained in these
control blocks. MFS creates the control blocks from the
information supplied in the message statement (MSG) and the
format statement (FMT).

There are two control blocks that describe input messages to
IMS/VS.

• The device input format, or DIF, describes to IMS/VS what the
input message will look like when it's entered at the
terminal.

Chapter 5. Gathering Requirements for Data Communications Options 65

• The message input descriptor, or MID, tells IMS/VS how the
application program expects to receive the input message in
its I/O area.

By usi ng the DIF c:lnd the MID, IMS/VS can translate the input
message from the way that it's entered at the terminal to the way
it should appear in the program's I/O area.

There are two control blocks that describe output messages to
IMS/VS.

• The message output descriptor, or MOD, tells IMS/VS what the
output message will look like in the program's I/O area.

• The device output format, or DOF, tells IMS/VS how the message
should appear on the terminal screen.

Many installations have a specialist who defines application
requirements to MFS for all the applications at the installation.
To define the MFS control blocks for an application program, the
specialist needs to know how you want the data to appear at the
terminal and in the application program's I/O area for both input
and output. The IMS/VS MessaQe Format Service User's Guide
explains how you define this information to MFS.

AN OVERVIEW OF BASIC EDIT

Basic edit removes the control characters from an input message
before the application program receives it, and inserts the
control characters you specify when the application program sends
a message back to the terminal. To format output messages at a
terminal using basic edit, you need to supply the necessary
control characters for the terminal you're using.

/
(
'-

Agai~, you need to describe how you want the data to be presented (
at the terminal, and what it will look like in the program's I/O "-
area.

EDITING CONSIDERATIONS IN YOUR APPLICATION

Before you describe the editing requirements of your application,
be sure that you are aware of standards that your installation has
concerning screen design. Make sure that the requirements that
you describe comply with those standards.

The information you should provide about your program's editing
requirements is:

• How you want the screen to be presented to the person at the
terminal for the person to enter the input data. For example,
if an airlines agent wants to reserve seats on a particular
flight, the screen that asks for this information could look
like thi s:

FLIGHT#:
NAME:
NO. IN PARTY:

• What the data should look like when the person at the terminal
enters the input message

• What the input message should look like in the program's I/O
area

• What the data should look like when the program builds the
output message in its I/O area

• How the output message should be formatted at the terminal

• The length and type of data that your program and the terminal
will be exchanging

66 IMS/VS Appl; cat; on Programmi ng

(

)

)

\
)

-------------_._-_._-_.-

The type of data you're processing is only one consideration when
you analyze how you want the data presented at the terminal. In
addition, you should consider the needs of the person at the
terminal--the human factors in your application--with the effect
of the screen design on the efficiency of the application
program--the performance factors in the application program.
Unfortunately, sometimes there is a tradeoff between human
factors and performance factors. A screen design that's easily
understood and used by the person at the terminal may not be the
design that gives the application program its best performance.
Again, your first concern should be that you're following
whatever screen standards your installation has established.

A terminal screen that has been designed with human factors in
mind is one that puts the person at the terminal first; it's one
that makes it as easy as possible for that person to interact with
the application program. Some of the things you can do to make it
easy for the person at the terminal to understand and respond to
your application program are:

• Display a small amount of data at one time.

• Use a format that is clear and uncluttered.

• Provide clear and simple instructions.

• Display one idea at a time.

• Require short responses from the person at the terminal.

• Provide some means for help and ease of correction for the
person at th~ terminal.

At the same time, you don't want the way in which a screen ;s
designed to have a negative effect on the application program's
response time, or on the system's performance. When you design a
screen with performance first in mind, you want to reduce the
processing that IMS/VS must do with each message. To do this, the
person at the terminal should be able to send a lot of data to the
application program in one screen so that IMS/VS doesn't have to
process additional messages. And the program should not require
two screens to give the person at the terminal information that it
could give on one screen.

When describing how the program should receive the data from the
terminal, you need to consider the program logic and the type of
data you're working ~ith.

GATHERING REQUIREMENTS FOR CONVERSATIONAL PROCESSING

Conversational processing means that the person at the terminal
can have several interactions with the application program. When
you use conversational processing, the person at the terminal
enters some information, and an application program processes the
information and responds to the terminal. The person at the
terminal then enters more information for an application program
to process. Each of these interactions between the person at the
terminal and the program is called a step in the conversation.

WHAT HAPPENS IN A CONVERSATION

A conversation is a series of terminal/program interactions.

Although it's not apparent to the person at the terminal, a
conversation can be processed by several application programs
instead of only one. If you use only one application program to
process the conversation, the conversation mayor may not take
place during one scheduling of the program. For example, IMS/VS
might schedule the program to start the transaction, then, if
there are no other messages for the program to process, the

Chapter 5. Gathering Requirements for Data Communications Options 67

program will terminate. When the person at the terminal responds,
IMS/VS schedules the program again to continue the conversation. ('

In order for the same program or another program to continue a
conversation, the program must have the necessary information to
continue processing. IMS/VS stores data from one stage of the
conversation to the next in a scratchpud area, or SPA. When a
program continues the conversation (the same program or a
different one), IMS/VS gives the program the SPA for the
conversation associated with that terminal.

In the airlines example above, the first program might save the
flight number and the names of the people traveling, then pass
control to another application program to reserve seats for those
people on that flight. The program saves this information in the
SPA. If the second application program didn't have the flight
number and names of the people traveling, it wouldn't be able to
do its processing.

DESIGNING A CONVERSATION

A conversation can be processed by one application program, or it
can be processed by several application programs. The first part
of designing a conversation is to design the flow of the
conversation. If the requests from the person at the terminal will
be processed by only one application program, then designing the
flow of the conversation is simply a matter of designing that
program. If, on the other hand, you decide that the conversation
should be processed by several application programs, you need to
decide which stages of the conversation each program will
process, and what each program will do when it has finished
processing its stage of the conversation.

When a person at a terminal enters a transaction code that has

I, ..

been defined as conversational, IMS/VS schedules the (
conversational program (for example, Program A), that is
associated with that transaction code. When Program A issues its ~
first call to the message queue, IMS/VS returns the SPA that has
been defined for that transaction code to Program A's I/O area.
The person at the terminal has to enter the transaction code (and
password, if there is one) only on the first input screen. IMS/VS
treats data in subsequent screens as a continuation of the
conversation started in the first screen.

After it has retrieved the SPA with a message retrieval call,
Program A can issue another message retrieval call to retrieve the
input message from the terminal. After it has processed the
message, Program A can then continue the conversation, or it can
end the conversation. There are several ways to do both of these
things.

To continue the conversation, Program A can:

• Reply to the terminal that sent the message.

• Reply to the terminal and pass the conversation to another
conversational program, for example, Program B. This is
called a deferred program switch, and it means that Program A
responds to the terminal and then p~sses control to anoth~r
conversational program--in this case, Program B. Program A
does th i s by pI ac i ng the transact; on code a ssoc i ated loJ i th
Program B in the SPA, then issuing a call to return the SPA to
IMS/VS. For this type of switch, Program A references the I/O
PCB in the' call. After doing this, Program A is no longer part
of the conversation. The next input message that the person at
the terminal enters will go to Program B, although the person
at the terminal will be unaware that this message is being
sent to a second program.

• Pass control of the conversation to another conversational
program Hithout first responding to the originatin~erminal.
This is called an immediate program switch; an immediate

68 IMS/VS Application Programming

(

)

)

)

program switch lets you pass control directly to another
conversational program without having to respond to the
originating terminal. Program A does this by placing the new
transaction code in the SPA, then issuing a call to return the
SPA to IMS/VS. In an immediate switch, however, the call that
the program issues must reference an alternate PCB. When you
do this, the program that you pass the conversation to has the
responsibility of responding to the person at the terminal.
To continue the conversation, Program B then has the same
choices as Program A did: It can respond to the originating
terminal and keep control, or it can pass control in a
deferred or immediate program switch.

If Program A wants to end the conversation, it can:

• Move blanks to the first 8 bytes of the SPA, then return the
SPA to IMS/VS.

• End the conversation and pass control to a nonconversational
program. This is also called a deferred switch, but Program A
ends the conversation before"passing control to another
application program. The second application program can be an
MPP or a transaction-oriented BMP that processes transactions
from the conversational program.

THINGS YOU NEED TO KNOW ABOUT THE SPA

When Program A passes control of a conversation to Program B,
Program B needs to have the data that Program A saved in the SPA
in order to continue the conversation. IMS/VS gives the SPA for
the transaction to Program B when Program B issues its first
message call.

There are some restrictions about passing conversational control
to another program that have to do with the type and size SPA
associated with the transaction codes for the programs. Each SPA
has three characteristics about it that are defined for it at
system definition. They are:

• The size of the SPA

• Where the SPA will be stored--in main storage or on a direct
access storage device

• Whether the SPA is fixed length or variable length.

Also at system definition, the system administrator defines the
maximum size allowed in the system for each type (main storage or
direct access) of SPA. There are some restrictions about passing a
conversation to another program. These restrictions depend on the
SPA's length (fixed or variable) and storage (main storage or
direct access). There are two restrictions that concern the SPA's
length.

• If the first program in the conversation uses a fixed-length
SPA, all the programs in the conversation must use
fixed-length SPAs as well.

• If the first program in the conversation uses a
variable-length SPA, the other programs in the conversation
can use either fixed- or variable~length SPAs. If the first
program to be scheduled for the conversation uses a
variable-length SPA, and the next program uses a smaller or
larger SPA, IMS/VS truncates or extends the SPA for the new
program. If IMS/VS truncates the SPA, it saves the truncated
data.

What these two restrictions mean is that if the first program in
the conversation uses a fixed SPA, the program can pass control
only to programs that use fixed-length SPAs. If, on the other
hand, the first program in the conversation uses a

Chapter 5. Gathering Requirements for Data Communications Options 69

variable-length SPA, the program can pass control to a program
that uses either a fixed- or variable-length SPA.

There is another restriction that depends on the maximum SPA
length defined for the system. At system definition, the system
administrator defines a maximum length for main storage SPAs and a
maximum length for direct access storage SPAs. A program cannot
pass the conversation to another program whose SPA size is larger
than this maximum size. If the maximum size defined for main
storage SPAs is different from the maximum size defined for direct
access SPAs, then IMS/VS uses the maximum length of the type of
SPA used by the first program in the conversation. For example, if
the SPA used by the first program is a main storage SPA, then the
maximum length defined for main storage SPAs is the maximum length
for any SPAs (main storage or direct access) used during the
conversation.

Suppose that Programs A, B, C, and D process transactions A, B, C,
and D respectively. Figure 36 shows the type and length of SPA
defined for each transaction. For this example, assume that the
maximum length for a main storage SPA is 100 bytes, and the
maximum length for a direct access SPA is 500 bytes.

Transaction Code Type of Storage for SPA Length of SPA

TRANA Main Storage 50 bytes

TRANB Direct Access 100 bytes

TRANC Direct Access 300 bytes

TRAND Main Storage 100 bytes

Figure 36. Example of SPA Storage

The length of SPA that IMS/VS allows during a conversation depends
on the type and length of the SPA used by the first program
scheduled during the conversation. For example:

• If Program A or Program D is the first program scheduled
during the conversation, the maximum length for any SPA used
during the conversation is 100 bytes. That's because these
programs process transactions whose SPAs are defined as main
storage SPAs, and the maximum length for a main storage SPA is
100 bytes.

If Program A is the first program to be scheduled, it can pass
the conversation to Program B or Program D, but Program A
can't pass the conversation to Program C.

• If Program B or Program C is the first program scheduled
during the conversation, the maximum SPA length for the
conversation is 500 bytes. If Program B is the first program
scheduled during the conversation, it can pass control to any
of the other programs. The same is true of Program C.

"Conversations" describes how you structure a conversational
program.

Recovery Considerations in conversations

Because a conversation involves several stages and can involve
several application programs, there are some special things you
should understand about recovery in a conversation. This list is a
summary of these special considerations:

• One thing you can do to make recovery easier is to design the
conversation so that all the data base updates are don~ in the

70 IMS/VS Application Programming

{/'

\

(

)

\
)

~
1

J

•

•

•

•

last step of the conversation. This way, 'if the conversation
terminates abnormally, IMS/VS can back out all the updates
because they were all made during the same stage of the
conversation. Updating the data base during the last stage of
the conversation is also a good idea, because the input from
each stage of the conversation is available.

Although a conversation can terminate abnormally during any
step of the conversation, IMS/VS backs out only the data base
updates and output messages resulting during the last step of
the conversation. IMS/VS doesn't back out data base updates
or cancel output messages for previous steps, even though
some of that processing might be inaccurate as a result of the
abnormal termination.

There is a system service call that can be helpful if the
program determines that some of its processing was invalid.
The rollback call (ROLB) backs out all of the changes that the
program has made to the data base, and cancels the output
messages that the program has created (except those sent with
an express PCB, as explained below), since the program's last
sync point.

The program can use an express PCB to send a message to the
person at the terminal, and to the master terminal operator.
When the program sends a message using an express PCB, IMS/VS
sends the message no matter what. Messages sent with an
express PCB are sent to their final destinations even if the
program terminates abnormally or issues a rollback call. A
rollback call does not cancel messages sent with an express
PCB.

To.help verify the accuracy of the previous processing, and to
correct the processing that's determined to be inaccurate,
you can use the conversational abnormal termination
routine--DFSCONEO. IMS/VS schedules DFSCONEO and uses it for
all conversations that terminate abnormally. DFSCONEO can
identify the transaction that was being processed when the
abnormal termination occurred because IMS/VS gives the SPA to
DFSCONEO. The SPA contains the transaction code. The SPA also
indicates which step in the conversation-was being processed
when the conversation terminated abnormally. DFSCOHEO needs
this information so that it can determine what action to take.

• You can write an MPP to examine the SPA, send a message
notifying the person at the terminal of the abnormal
termination, make any necessary data base calls, and use a
user-written or system-provided exit routine to schedule it.

IDENTIFYING OUTPUT MESSAGE DESTINATIONS

When an application program send? an output message, it does so by
issuing a call and referencing the I/O PCB or an alternate PCB. In
the same way that a DB PCB represents a hiera~chythat the
application program processes, the I/O PCB and alternate PCBs
represent logical terminals and other application programs with
which the application program communicates. An application
program can send messages to other application programs and to
terminals.

THE ORIGINATING TERMINAL

To send a message to the logical terminal that sent the input
message, the program uses an I/O PCB. Sending a message with the
I/O PCB sends the output message to the logical terminal that sent
the message. The program doesn't have to do anything to the I/O
PCB before sending the message. IMS/VS puts the name of the
logical terminal that sent the message in the I/O PCB when the
program receives the message.

Chapter 5. Gathering Requirements for Data Communications Options 71

TO OTHER PROGRAMS AND TERMINALS

When you want to send an output message to a terminal other than,
or in addition to, the terminal that sent the input message, you
use an alternate PCB. You'can set the ~lternate PCB for a-specific
logical terminal when the program's PSB is generated, or you can
define the alternate PCB as being modifiable. A program can change
the destination of a modifiable alternate PCB while the program is
executing, so if you use a modifiable alternate PCB, you can send
output messages to several alternate destinations.

There are situations in which the application program must
respond to the originating terminal before the person at the
originating terminal can send any more messages. These situations
occur when a terminal is in exclusive mode; a terminal is in
response mode; or during conversational mode.

• Exclusive mode applies to a terminal. When a terminal is in
exclusive mode, the only messages it can receive are those
that are in response to an input message that was entered at
the terminal after the /EXCLUSIVE command was entered. Thj
terminal remains in exclusive mode until the person at the
terminal enters the /END command. If there were other
messages sent to the terminal while exclusive mode was in
effect. IMS/VS sends them to the terminal after the /END
command has been entered.

• Response mode can apply to a communication line, a terminal,
or a transaction. When response mode is in effect, IMS/VS·
won't accept any input from the communication line or
terminal until the program has sent a response to the previous
input message. The originating terminal is unusable (for
example, the keyboard locks> until the prbgram has processed
the transaction and sent the reply back to the terminal.

·You can define communication lines and terminals as operating

(
\
",

in response mode; not operating in response mode; or I
operating in response mode only if processing a transaction \
that's been defined as response mode. You specify response '
mode for communication lines and terminals on the TYPE and
TERMINAL macros, respectively, at IMS/VS system definition.
You can define any transaction as a response mode
transaction; you do this on the TRANSACT macro at IMS/VS
system definition. Response1mode is in effect if:

The communication line has been defined as being in
response mode.

The terminal has been defined as being in response mode.

The transaction code has been defined as response mode.

• Conversational mode·app1ies to a transaction. When a program
is processing a conversational transaction, the program must
respond to the originating terminal after each input message
it receives from the terminal.

In these processing modes, the program doe~n't send a message to
an alternate destination; it must respond only to the originating
terminal. But sometim~s the originating terminal is a physical
terminal that's made up of h.Jo componen·ts-for example, a printer
and a punch. If the physical terminal is made up of two
components, each component has a different logical terminal name.
If the program needs to send an output message to the pri nter part
of the terminal, it has to use a different logical terminal name
than the one associated with the input message. In other words, it
has to send the output message to an alternate destination. There
is a speci a1 kind of a1 ternate PCB that a program can use in these
situations; it's called a response alternate PCB.

A response alternate PCB lets you send messages when exclusive ~
mode, response mode, or conversational mode is in effect. The \
destination of a response alternate PCB must be a logical ~

72 IMS/VS Application Programming

\

\
)

)

)

terminal--you can't use a response alternate PCB to represent
another application program. When you use a response alternate
PCB during response mode or conversational mode, the logical
terminal represented by the response alternate PCB must represent
the same physical terminal as the originating logical terminal.
This is not a requirement when using a response alternate PCB
during exclusive mod~.

You can also specify an alternate PCB as being an express PCB.
When you send messages using any of the PCBs described so far,
IMS/VS doesn't send the message if your program terminates
abnormally. But when you send messages using an express PCB,
IMS/VS sends the messages to the destination represented by the
express PCB no matter what happens to your application program
after you've sent the message. If the application program
terminates abnormally, or if the program issues a rollback call,
IMS/VS cancels messages that the program has sent using an I/O
PCB, an alternate PCB, a modifiable alternate PCB, or a response
alternate PCB. But IMS/VS sends messages that use an express
alternate PCB to their final destinations as soon as the program
issues the call to send the message. These messages are not
affected if the program terminates abnormally, or if the program
issues a rollback call.

You should provide the answers to the questions below to the data
communications administrator to help in establishing your
application's requirements:

• Will the program be required to respond to the terminal before
the terminal can enter another message?

• Will the program be responding only to the terminal that sends
input messages?

•

•

If the program needs to send messages to other terminals or
programs as well, is there only one alternate destination?

What are the other terminals to which the program will have to
send output messages?

• Should the program be able to send an output message before it
terminates abnormally?

Chapter 5. Gathering Requirements for Data Communications Options 73

(
\
'-

(

(

)

)

)

PART 2. APPLICATION PROGRAMMING GUIDE

This part is a guide to coding IMS/VS application programs. The
tasks this part explains are:

• structuring the DL/I Portion of a Program

• Coding the DL/I Portion of a Program

• structuring a Message processing Program

• coding a Message Processing Program

• structuring and Coding a Batch Message Program

• Testing an Application Program

• Documenting an Application Program

Part 2. Application Programming Guide 75

CHAPTER 6. STRUCTURING THE DL/I PORTION OF A PROGRAM

This chapter explains how you use Dl/I to read and update a data
base. How you use Dl/I calls to do this is the same, whether
you're writing a message processing program (MPP), a Fast Path
program, a batch message program (BMP), or a batch program.

This chapter gives you the basics you need to specify Dl/I call
sequences and call formats for any of these types of programs. If
you are writing a batch program that might someday be converted to
a batch message program (BMP), you can refer to "Planning Ahead
for Batch-to-B~lP Convers i on" for addi t i onal desi gn cons i derat ions
that can make this. conversion easier.

Some of the information in this chapter applies only to batch
programs. You will find additional considerations for MPPs in
"Chapter 8. Structuri ng a Message. Processi ng Program," and for
BMPs in "Chapter 10. Structuring and Coding a Batch Message
Program." "Processing Fast Path Data Bases" explains Fast Path
exceptions to the information ;n this chapter.

A batch program has only one source of ; nput-the input you
supply-but an online program can also receive input from
terminals and other programs. A batch program might retrieve and
update data base records directly, or it might process data
sequentially, then print a report by listing a particular part of
the data base.

This chapter gives you an introduction to how an application
program processes a Dl/I data base, then explains the decisions
that you will be making about your program:

• How You Read and Update a DL/I Data Base: An Overview

This section explains the parts of a DL/I program and also
explains the examples that are used throughout this chapter.

• Retrieving Information

This section describes the calls that a program uses to
retrieve information from the data base: GU, GHU, GN, GHN,
GNP, and GHNP.

• Updating Information

This section explains the calls that a program uses to update
information in the data base: DLET and REPL. It also explains
how you use the get hold calls with the update calls.

• Inserting Information

This sections tells you how you use the ISRT call to add new
segment occurrences to an existing data base, and to
initially load a data base.

• Determining Your Position in the Data Base

This section explains when your position in the data base is
important, how each of the data base calls affects your
position in the data base, and where your position is after a
call that DL/I ;s unable to satisfy.

• Techniques to Make Programming Easier

This section explains some things you can do to make your

(
'\..

(

guidelines.
programming easier. It also gives some general programming (

76 IMS/VS Appl i cat ion Programmi ng

\
)

)
/

)
/

•

•

Checking status Codes

This section explains different types of status codes and
explains what your error routine should do.

Taking Checkpoints

This section explains why checkpoints are important in a
batch program and describes symbolic CHKP and XRST and basic
CHKP.

• using secondary Indexes and Logical Relationships

This section tells you how secondary indexing and logical
relationships affect your programming.

• Planning Ahead for Batch-to-BMP Conversion

This section describes some of the reasons that people
convert batch programs to BMPs and gives some suggestions
about the conversion.

• Des i gn i ng a Program that Uses GSAM

This section explains how you process a GSAM data base.

• Processing Fast Path Data Bases

This section describes how you use the Dl/I calls to process
Fast Path data bases. It also explains three additional calls
that you can use with Fast Path data bases: the field call, or
FlD; the position call, or POS; and the synchronization call,
or SYNC.

HOW YOU READ AND UPDATE A DL/I DATA BASE: AN OVERVIEW ,
To access data in a Dl/I data base, you issue calls to Dl/I from
your application program. The calls tell Dl/I what you want done;
whether you want to retrieve information, delete information,
replace information, or add information. When you retrieve or
update information from the data base, you do so in segments.

In addition to specifying what you want Dl/I to do in a call, you
can give Dl/I some additional search criteria about the segment
you want to process. You give this information in segment search
arguments, or SSAs. Giving this information helps Dl/I to find the
segment you want.

Dl/I communicates the results of your call to you in two places.
First, you use an I/O area in your program to pass segments back
and forth between your program and Dl/I. What the I/O area
contains depends on the kind of call you're issuing:

•

•

•

When you retrieve a segment, Dl/I places the segment you
requested in the I/O area.

When you add a new segment, you place the new segment in the
I/O area.

When you delete or replace a segment, you have to first
retrieve the segment using one of the get hold calls. When you
issue a get hold call for a segment, Dl/I places the requested
segment in an I/O area, just as it does after the other
retrieve calls.

To delete that segment, you issue a DlET call and
reference the same I/O area in the DlET call. You don't
have to do anything to the segment or the I/O area; you
just issue the DlET call.

Chapter 6. Structuring the Dl/I Portion of a Program 77

To replace a field or fields in the segment, you modify
those fields in the segment in your I/O area. Then you ~
issue a REPL call and reference that I/O area.

The second place that Dl/I uses to describe the results of your
call is the DB PCB. After a retrieval call, DL/I places this
information about the call's results in the DB PCB:

• The level number of the lowest segment that Dl/I accessed
while processing the call.

• A status code that tells you whether or not the call was
successful.

• The name of the lowest-level segment that Dl/I accessed while
processing the call.

• The concatenated key of the segment being accessed. A
segment's concatenated key is made up of the keys of all the
segment's parents and the segment's own key.

• The length of the concatenated key of the segment being
accessed.

To find out about the results of a Dl/I call, your program needs
to look at this information in the DB PCB. But PCBs are outside
the application program; the PSB that contains a given program's
PCBs resides in an IMS/VS library. To use the DB PCB, the program
defines a mask of the DB PCB. It can then reference the mask to
check the DB PCB after each call and find out about the success or
failure of the call. An application program doesn't change any
fields in a DB PCB; the program only checks it to determine what
happened when the call was issued.

Figure 37 shows the structure of a Dl/I program. The numbers on
the right refer to the notes that follow.

78 IMS/VS Application Programming

~

(,

(

)

)

)

~----->Program Entry

Get Input Record

1

2

3 r->DL-I Calls for Data Base Processing
Retrieve

Entry v

Replace
Delete
Insert

1-0 Area

Segments to and
from the data base I <

~--------------------~

DB PCB Mask

Return information
from DL/I I <

~--------------------~

Processing
•
•
•

Print Output Record

Termination

4

5

6

7

8

Call v
Exit

DL/I

Figure 37. DL/I Program Structure

Notes:

1. Program entry. IMS/VS passes control to the application
program. The entry statement lists the DB PCBs that the
program uses in the order in which they appear in the PSB.

2. Get an Input Record. The program retrieves an input record.

3. DL/I calls. The program issues DL/I calls to read and update
information from the data base.

4. I/O area. DL/I returns the requested information to the
program's I/O area.

5. DB PCB mask. DL/I" describes the results of each Dl/I call ;n
the DB PCB mask. Your program checks the information in this
area after each DL/I call to find out whether or not the call
was successful.

6. Processing. The program does the required processing,
including issuing additional DL/I calls, if necessary.

7. Print output Record. The program might print an output record
based on its processing.

8. Termination. The program returns control to IMS/VS when it
has finished its processing. In a batch program you can, if
you wish, set the return code and pass it to the next step in

Chapter 6. Structuring the DL/I Portion of a Program 79

DL/I CALLS

the job. If you don't use the return code in this way, it's a
good idea to set it to zero as a programming convention. You
can al so use the return code for th is purpose in BtlPs. But in (
MPPs, setting the return code is meaningless, since MPPs "
can't pass return codes.

A DL/I program reads and updates data by issuing DL/I calls. There
are three calls you can use to retrieve data, two calls you can
use to update existing data, and one call you can use to add new
data to the data base.

The retrieval calls are get unique (GU), get next (GN), and get
next within parent (GNP). There are also three special ret~ieval
calls, called get hold calls, that you use just before you want to
update or delete a segment. Each retrieval call has a
corresponding get hold call: get hold unique, or GHU; get hold
next, or GHN; and get hold next within° parent, or GHNP.

There are two calls you use to updateodaota that already exists in
the data base. These are delete (DLET) and replace CREPL). But
before you can update a segment, you have to retrieve the segment.
You do this by using one of the get hold calls; then you issue the
DLET or REPL call immediately after the get hold call.

There is one call you use to add new segments to a data base; this
is the insert call (ISRT). You use ISRT to add new segments to an
existing data base, and you use it to initially load a data base.

A DL/I call is made up of a call statement and a list of
parameters. The parameters for each call are function, DB PCB, I/O
area, and SSA. (There is an additional parameter that is required
in PL/I; this is the number of the parameters that follow for this
call.) The parameters give the addresses in your program of the
information described above.

Figure 38 shows the parameters and the information they provide.
(

(

80 IMS/VS Application Programming

)

)

\
)

COUNT -------------------->

FUNCTION ---------------->

DB PCB ------------------>

I/O AREA ---------------->

SSA ---------------------->

Number of parameters
Required for PL/I

Retrieve
Delete
Replace
Insert

Feedback information:
• Segment level
• status code
• Segment name
• Concatenated key
• Length of concatenated key

Segment

Segment qualification:
• Segment name
• Command code
• Field name and value

Figure 38. DL/I Call Parameters

SSAs

Using segment search arguments (SSAs) in a DL/I call lets you
provide IMS/VS with information that is used to satisfy the DL/I
call. You can provide just the segment name, or you can further
describe the segment you want by including a condition that the
segment must meet. There are two kinds of DL/I call statements:

• A call with no SSAs is an unqualified call.

• A call that contains one or more SSAs is a qualified call.

Just as DL/I calls may be qualified or unqualified, SSAs may also
be qualified or unqualified. When you say that a DL/I call is
qualified, you're saying that it contains at least one qualified
or unqualified SSA: .

• An SSA that contains only a segment name is an unqualified
SSA. An unqualified SSA describes the segment ~ that you
want to access.

• An SSA that contains, in addition to the segment name, one or
more qualification statements, is a qualified SSA. A
qualified SSA describes the segment occurrence that you want
to access.

A DL/I call can include more than one SSA; if it does, it can
contain a mixture of qualified and unqualified SSAs.

An unqualified SSA gives DL/I the name of the segment type that
you want to access. Figure 39 shows the structure of an
unqualified SSA.

Chapter 6. Structuring the DL/I Portion of a Program 81

S~g N~me b

8 1

Figure 39. Unqualified SSA Structure

The segment name field (Seg Name) is 8 bytes long, and it must be
followed by a I-byte blank.

In addition to the name of the segment type you want to access, a
qualified SSA contains a description of the particular segment
occurrence you want. This description is called a qualification
statement and has three parts. Figure 40 shows the structure of
this kind of SSA.

Seg Name (Fld Name R.O. Fld Value)

8 1 8 2 Variable 1

Figure 40. Qualified SSA Structure

Using a qualification statement enables you to give DL/I
information about the particular segment occurrence you're
looking for. You do this by giving DL/I the name of a field within
the segment, and the value of the field that you're looking for.

The qualification statement is enclosed in parentheses. The first
field contains the name of the field (Fld Name) that you want DL/I
to use in searching for the segment. The second field contains a
relational operator (R.O.) that tells DL/I how to ~ompare the
values in the fields in the data base with the value you supply.
The relational operator can be anyone of the following:

• Equal, represented as

=b
b=
EQ

• Greater than, represented as

>b
b>
GT

• Less than, represented as

<b
b<
lT

• Greater than or equal to, represented as

>=
=>
GE

• less than or equal to, represented as

<=
=<
lE

82 IMS/VS Application Programming

(
\ ,

)

Command Codes

Seg Name *
8 1

• Not equal to, represented as

NE

Note:

"b" indicates a blank.

The third field, Fld Value, contains the value that you want Dl/I
to use as the comparative value.

Using qualified SSAs makes it possible for you to describe to DL/I
virtually any segment occurrence in the hierarchy that you want to
retrieve.

You can use more than one qualification statement in an SSA;
"Using Multiple Qualification Statements" explains. how you do
this.

There is one more thing that you can include in an SSA. This is a
command code. Command codes make Dl/I calls do more than 'the calls
do by themselves.

Both qualified and unqualified SSAs can include one or more
command codes. The first command code follows the segment name
field in the SSA and is separated from the segment name field with
an asteri sk 00.

Figure 41 shows the format of an unqualified SSA with a command
code.

Seg Name * Cmd Code

8 1 1

Figure 41. Unqualified SSA with Command Code

Figure 42 shows the structure of a qualified SSA with a command
code.

Cmd Code (Fld Name R.O. Fld Value)

1 1 8 2 Variable 1

Figure 42. Qualified SSA with Command Code

For example, command codes can change the way in which DL/I
handles the segment you have requested. Suppose you code a D
command code on a GU call that retrieves segment F in the
hierarchy shown in Figure 43. This call would look like this:

GU Abbbbbbb*D
Cbbbbbbb~D
Ebbbbbbb*D
Fbbbbbbbb

Dl/I always returns the lowest segment in the path to your I/O
area. But when you code a D command code, DL/I returns all the
preceding segments in the path, in this case A, C, and E, as well.
This method is called a path call.

Chapter 6. Structuring the. Dl/I Portion of a Program 83

Figure 43. D Command Code Example

You can use command codes with all the DL/I calls except DLET.
"Using Command Codes" explains the command codes and gives
examples of each; the following is a summary of the command codes
and their meanings.

c

D

F

L

N

p

The C command code lets you identify a segment by its
concatenated key. You code the concatenated key in the
area of the SSA that would otherwise contain the
qualification statement. You can use the C command code
with get calls .nd ISRT calls.

The D command code lets you retrieve or insert a
sequence of segments in a hierarchic path using only
one call--instead of having to retrieve each segment
with a separate call. A call that includes the D command
code is called a path call. You can use the D command
code with get calls and ISRT calls.

You use the F command code to indicate to DL/I that you
want DL/I to start searching for the segment you've
specified with the first occurrence of that segment
type under a specific parent. The F command code makes
it possible for a GN or GNP call to "back up" in the
data base. You can use the F command code with get calls
and ISRT calls.

The L command code indicates to Dl/1 that you want to go
directly to the last occurrence of a segment under its
parent; you use it when you know that the segment you're
looking for is the last occurrence of the segment type.
You can use the L command code with get calls and ISRT
calls.

If you retrieve a sequence of segments using the D
command code, and you don't want to replace all of those
segments, you can use the N command code to indicate to
DL/I which segment or segments you don't want to
replace. You code the N command code in the SSA for each
of the segments you don't want replaced. The N command
code applies only to REPL calls; DL/I ignores it if you
include it in any other type of call.

Normally, DL/I establishes parentage at the lowest
level satisfied in·a particular call. You can set
parentage at a higher level by including the P command
code in the SSA for the level at which you want

84 IMS/VS Application Programming

(

(,

'\ parentage set. You use the P command code only wi th get
) calls. DL/I ignores it if you use it with other calls.

)
DB PCB Masks

)

~ When your program is processi ng onl i ne data bases, you
can use the Q command code to hold a segment so that
other programs can't update it while your program is
using it. You only use the Q command code in online
programs; DL/I ignores it if you use it in other
ci rcumstances. "Reserving and Releasing Segments"
explains how you use the Q command code and what its
effects are. You can use the Q command code with get
calls and ISRT calls.

U When DL/I processes a get or ISRT call, it establ i shes a
position on the segment occurrence that satisfies the
call at each level in the path of the segment you're
retrieving or inserting. A U command code on an SSA in a
get call or an ISRT call tells DL/I not to move from the
established position at the level of the SSA when
trying to satisfy the call. You can use the U command
code with get calls and ISRT calls.

V Coding a V command code on an SSA is like coding the U
command code on each level of the call. When you use the
V command code, DL/I can't move from its current
position on any of the levels of the path. You can use
the V command code with get calls and ISRT calls.

- (null) The null command code (coded "-") makes it possible for
you to supply the command code that you want to use
during program execution, instead of coding it as a
constant in the SSA.

An application program communicates processing requests to DL/I
by issuing DL/I calls. DL/I, in turn, describes the results of
these calls in the DB PCB that was-used for the call. To find out
about the success or failure of the DL/I call, the application
program builds a mask of the DB PCB in the program's data area,
and then references the fields of the DB PCB through the DB PCB
mask.

A DB PCB mask must contain the same fields as a DB PCB, in the same
order, and of the same length. Figure 44 shows the order and
lengths of these fields, and the notes below the figure describe
the contents of each field. A DB PCB mask for a GSAM data base is
sl i ghtly di fferent from a DB PCB mask for a DL/I data base. "PCB
Masks for GSAM Data Bases" explains these diff~rences.

Chapter 6. Structuring the DL/I Portion of a Program 85

1. Data Base Name
~ h f. ..,,y",as

2. Segment Level Number
2 bytes

3 . Status Code
2 bytes

4. Processing Options
4 bytes

5. Reserved for DL/I
4 bytes

6. Segment Name
8 bytes

7. Length of Key Feedback Area
4 bytes

8. Number of Sensitive Segments
4 bytes

9. Key Feedback Area
variable length

Figure 44. DB PCB Mask

When you code a DB PCB mask, you also give it a name, but this is
not a field in it. The name you give to the DB PCB is the name of
the area that contains all the fields in the DB PCB. In COBOL and
assembler language programs, you list the names you've given your
DB PCBs in the entry statement; in PL/I programs, you list the
pointers to your DB PCBs. DB PCBs don't have names assigned to
them in the PSB. In your entry statement, you associate the name
in your program with a particular DB PCB based on the order of all
of the PCBs in the PSB. In other words, the first PCB name in the
entry statement corresponds to the first PCB; the second name in
the entry statement corresponds to the second PCB; and so on.

Each DB PCB represents a hierarchic structure that the
application program processes. The DB PCBs for a particular
application program are contained in the PSB for the application
program.

A DB PCB mask contains the following fields:

1. Data Base Name

This is the name of the DBD. This field is 8 by~es long and
contains character data.

2. Segment Level Number

(
\.

When DL/I retrieves the segment you've requested, Dl/I places
the level number of that segment in this field. If you're
retrieving several segments in a hierarchic path with one
call, DL/I places the number of the lowest level segment
retrieved. If DL/I is unable to find the segment you've
requested, it gives you the level number of the last segment
it encountered that satisfied your call. This is the lowest
segment on the last path that DL/I encountered while
searching for the segment you requested. This field contains
numeric data. It is 2 bytes long and right-justified. (

86 IMS/VS Application Programming

---------------- ------------------ ._- .--------------.~------

\
/

)

)

3. DL/I status Code

4.

5.

DL/I places a 2-character status code in this field after each
DL/I call. This code describes the results of the DL/I call.
DL/I updates it after each call and does not clear it between
calls. The application program should test this field after
each call to find out whether or not the call was successful.
If the call was completely successful, this field contains
blanks.

There are three categories of status codes. Some indicate
exceptional but valid conditions. They are often for
information only. For example, GB means that DL/I has reached
the end of the data base before satisfying the call. This
situation is expected in sequential processing and is not
usually the result of an error.

Other status codes, such as AK, which means that you have
included an invalid field name in an SSA, indicate errors in
the program. The-program should have error routines available
for these status codes. You can terminate the program
abnormally, correct it, and restart it.

The third category of status codes indicates an I/O or system
error. For example, an HO status code means that there has
been an I/O error concerning ISAM, OSAM, BSAM, or VSAM. If
your program encounters a status code in this category, it
should terminate immediately. This type of error can't
normally be fixed without a system programmer, data base
administrator, or system administrator.

Processing options

This is a 4-byte field containing a code that tells DL/I what
type of calls this program can issue. It is a security
mechanism, in that it can prevent a particular program from
updating the data base, even though the program can read the
data base. This value is coded in the PROCOPT parameter of the
PCB statement when the PSB for the application program is
generated. The value does not change.

Reserved for DL/I

This 4-byte field is used by DL/I for internal linkage. It is
not used by the application program.

6. segment Name

After each call, DL/I places in this field the name of the
segment from the lowest level reached in trying to satisfy .the
call. When a retrieval is successful, this field contains the
name of the retrieved segment. If the retrieval is
unsuccessful, this field contains the last segment, along the
path to the requested segment, that satisfies the call. This
field is 8 bytes long.

7. Length of Key Feedback Area

This is a 4-byte binary field that gives the current length of
the key feedback area described below. Since the key feedback
area isn't usually cleared between calls, the program needs
this length to determine the length of the current
concatenated key in the key feedback area.

8. Number of sensitive segments

This is a 4-byte binary field that contains the number of
segment types in the data base to which the application
program is sensitive.

9. Key Feedback Area

Chapter 6. Structuring the DL/I Portion of a Program 87

FOR EXAMPLE

After a successful retrieval call, Dl/I places the
concatenated key of the retrieved segment in this field. The
length of this field is thQ length given in the 4-byte length
of key feedback area field above. If Dl/I is unable to find
the segment you've requested, DL/I places the concatenated
key of the lowest-level segment encountered during the search
for the requested segment. A segment's concatenated key is
made up of the keys of each of the segment's parents and its
own key. Keys are positioned left to right, starting with the
key of the root segment and following the hierarchic path. The
only situation in which Dl/I clears this area is when Dl/I is
unable to find a root segment; when this happens, DL/I clears
the area to binary zeros. The rest of the time, Dl/I places
the concatenated key for the current retrieval calion top of
the concatenated key that's in this field from the last
retrieval call. That's why you need to know the current length
of the concatenated key; Dl/I updates the length each time it
gives you a new concatenated key so that you'll be able to
accurately determine the current length of this field.

Of these nine fields, there are five that will be important to you
as you structure the program. These are the fields that give
information about the results of the call. They are the segment
level number, the status code, the segment name, the length of the
key feedback area, and the key feedback area. The status code is
the field your program will use the most often to find out whether
or not the call was successful. The key feedback area will contain
the data from the segments you have specified; the level number
and segment name will help you determine your position in the data
base after an error or an unsuccessful call.

The call examples used throughout this chapter use the medical
hierarchy shown in Figure 45. To understand the examples, you
will need to be familiar with the hierarchy and each of the
segment formats.

The Medical Hierarchy

Suppose that a medical clinic uses the data base hierarchy in
Figure 45 to process information about its patients.

PATIENT

Figure 45. Medical Hierarchy

Medical Data Base Segment Formats

To understand the examples in this chapter, you will need to know

(
\ ,

(

the format of each segment in the hierarchy. The contents of each (
of the segment types in the hierarchy are described below. The
number below each field is the length (in bytes) that has been
defined for that field.

88 IMS/VS Application Programming

/

)

)

•

PATIENT

Figure 46 shows the PATIENT segment. It has three fields:
patient number (PATNO), patient name (NAME), and the
patient's address (ADDR). PATIENT has a unique key field:
PATNO. PATIENT segments are stored in ascending order of
their patient numbers. The lowest patient number in the data
base is 00001; the highest is 10500.

PATNO NAf'tE ADDR

5 10 30

Figure 46. PATIENT Segment

• ILLNESS

Figure 47 shows the ILLNESS segment. It has two fields: the
name of the illness (ILLNAME), and the date that the patient
came to the clinic with the illness (ILLDATE). The key field
is ILLDATE. Since it's possible for a patient to come to the
cl i ni c wi th more than one i Ilne5s on the same date, thi 5 key
field it nonunique. That means that there may be more than one
ILLNESS segment with the same key field value. For segments
with nonunique keys (or segments that have no keys speci-fied
for them), you specify the sequence in which you want them
stored in the data base in the DBD. ILLNESS segments are
stored on a first-in-Iast-out basis; in other words, if you
retrieved all of the ILLNESS segments for a patient, DL/I
would return the ILLNESS segment with the most recent date
first, followed by the ILLNESS segment with the date before
that. The last ILLNESS segment that DL/I returned would be the
ILLNESS segment with the earliest date. You specify this for a
segment in the DBD by specifying RULES=FIRST. This tells DL/I
where to put new segment occurrences when you insert them.
ILLDATE is specified in the format MMDDYYYY:

ILLDATE ILLNAME

8 10

Figure 47. ILLNESS Segment

• TREATHNT Figure 48 shows the TREATMNT segment. It contains
four fields: thQ date of the treatment (DATE); the medicine
that was given to the patient (MEDICINE); the quantity of the
medicine that the patient was given (QUANTITY); and the name
of the doctor who prescribed the treatment (DOCTOR). The key
field of the TREATMNT segment IS DATE; since a patient may
receive more than one treatment on the same date, DATE is a
nonunique key field. TREATMNT, like ILLNESS has been
specified as having RULES=FIRST. TREATMNT segments also
stored on a first-in-Iast-out basis. DATE is specified in the
same format that ILLDATE Is--MMDDYYYY:

DATE MEDICINE QUANTITY DOCTOR

8 10 4 10

Figure 48. TREATMNT Segment

Chapter 6. Structuring the DL/I Portion of a Program 89

• BILLING

Figure 49 shows the BILLING segment. It h~5 only one
fi eld-the amount of the current bi 11. BILLING has no key
field.

Figure 49. BILLING Segment

• PAYMENT

Figure 50 shows the PAYMENT segment. It also has only one
field-the amount of the payments for the month. The PAYMENT
segment has no key field.

Figure 50. PAYMENT Segment

• HOUSHOLD

Figure 51 shows the HOUSHOLD segment. It contains the names
of the members of the patient's household, and how each is (
related to the patient. RELNAME is the key field. '.

RELNAME RELATN

10 8

Figure 51. HOUSHOLD Segment

What Happens When You Issue a Call

When you issue a DL/I call, you communicate with DL/I through the
call itself, the SSA, the I/O area,. and the DB PCB mask. Here's an
example of how all of these parts of a DL/I program work together.

Assume you want to find out when and why a particular patient was
most recently at the clinic. For example, "Why was Ann Stevens
last here, and when was it? Her patient number is 05123." Because
PATNO is the key field in the PATIENT segment, you need the PATNO
when you code the SSA for the segment. You would issue a GU call
with these SSAs to retrieve this information:

GU PATIENTb(PATNObbb=b05123)
ILLNESSbb

This call says that you want the ILLNESS segment that was most
recently.added to the data base for the patient whose patient
number is 05123. PATIENT and PATNO are padded with blanks on the
right because each of these fields in the SSA must be 8 bytes
long. 05123 is not padded wi th blanks, because the PAT NO fi eld is (
defined as being 5 bytes long in the DBD, and 05123 is 5 bytes. "
The length of the field you use in the SSA must be equal to the
defined-length of the field.

90 IMS/VS Application Programming

)

)

)

If you issue the call correctly, DL/I returns an ILLNESS segment
for the patient whose number is 05123 to your I/O area. If this
patient's most recent visit to the clinic was on February 1, 1980,
because of stomach flu, the I/O area looks like this:

02011980STOMACHFLUxxxx ••• x

The x's in the I/O area represent whatever was in your I/O area
before you issued the call.

The DB PCB that you used in the call contains this information for
the call:

• Segment level number: 02

• Status code: bb

• Segment name: ILLNESSb

• length of concatenated key: 0013

• Concatenated key: 0512302011980xxxxx ••• x

What all of this tells you is that the lowest segment that DL/I
accessed during your request was at the second level (02); that
the call was completely successful (blank status code,
represented by "bb") i that the name of the 101.Jest segment accessed
during your request was ILLNESS; that the length of the
concatenated key of the segment returned is 13 bytes; that the key
of the parent of the segment accessed is 05123, and that this
segment's key is 02011980. You have to know the length of each key
field to know where the key for one segment stops and the key for
the next segment begins. The length of the concatenated key is
given .in binary in the DB PCB. This example shows it in decimal
(0013) for clarity.

RETRIEVING INFORMATION

There are three calls that retrieve information from the data
base: get unique, or GUi get next, or GN; and get next within
parent, or GNP. You use GU to a particular segment directly, or to
establish a position in the data base. You use GN for sequential
retrieval; and you use GNP to retrieve dependents of a particular
seg~ent.

The information in this section about the get calls also applies
to the corresponding get hold calls. What's true for GU is also
true for GHU; what's true for GN is also true for GHNi and what's
true for GNP is also true for GHNP. In each case, the only
difference between the get call with the hold and the get call
without the hold is that a DLET or REPL call can follow a hold
call. "Updating Information" explains how you use the get hold
calls with REPL and DLET.

When you issue retrieval calls, you can describe each segment in a
hierarchic path in an SSA by segment type or by a field value. The
last segment in the path is the segment you're trying to retrieve.

RETRIEVING SEGMENTS QIRECTLY: GU

A GU call can directly retrieve any sensitive segment in the data
base. The GU call is the only call that can establish position
backward in the data base. (The GH and GNP calls, when used ~ith
the F command code, can back up in the data base, but with
limitations. "Retrieving and Inserting the First Occurrence: F"
explains this.) Unlike GN and GNP, a GU call does not move forward
in the data base automatically. If you issue the same GU call
repeatedly, DL/I retrieves the same segment to you each time you
issue the call.

Chapter 6. Structuring the DL/I Portion of a Program 91

How You Use GU

GU Examples

Using SSAs with GU

A GU call is a request for a segment as described or qualified by
the SSAs you supply. You use it when there's a specific segment
you want; you can also use it to establish your position in the
data base. When you issue a GU, DL/I starts searching for the
segment you've specified with the segment that's at current
position in the data base. If you haven't established position in
the data base, or if you reached the end of the data base as a
result of the last call, DL/I starts searching for the segment
you've specified at the beginning of the data base.

These are some examples of when you would use a GU call. The
examples use the medical hierarchy explained earlier in this
chapter.

• "What illness was Robert Martin here for most recently? Was he
given any medication on that day for that illness? His patient
number is 05163."

To answer this request for information, you would issue a GU
call with the following SSAs:

GU PATIENTb(PATNObbb=bOS163J
ILLNESSbb

Once you had retrieved the ILLNESS segment with the date of
the patient's most recent visit to the clinic, you could issue
another call to find out whether or not he was treated during
that visit. If the date of his most recent visit was January
5, 1980, you could issue the call below to find out whether or
not he was treated on that day for that illness:

GU PATIENTb(PATNObbb=b05163J
ILLNESSb(ILLDATEb=bOl051980J
TREATHNT(DATEbbbb=bOl0519801

• "What is Joan Carter currently being treated for? Her patient
number is 10320."

In this example, you want the ILLNESS segment for the patient
whose patient number is 10320:

GU PATIENTb(PATNObbb=bl0320J
ILLNESSb

Because you use GU when you want to retrieve a specific segment,
or when you want to set your position in the data base to a
specific place, you almost always use qualified GU calls. A GU
call may have as many SSAs as there are levels in the hierarchy
defined by the DB PCB that you're referencing in the GU call. If
the seg~ent you want is on the fourth level of the hierarchy, you
can use four SSAs to retrieve the segment. (There would never be
any reason to use more SSAs than levels in the hierarchy. If your
hierarchy only has three levels to it, you would never need to
locate a segment lower than the third level.) Here's what happens
when you use GU with different kinds of SSAs:

• A GU with one unqualified SSA retrieves the first occurrence
of the segment you've specified.

For example, if you issue a GU call qualified only with

(
\ ,

(

PATIENT (GU PATIENTb) as the first call in your program, Dl/I (
returns the first PATIENT segment in the data base to your
program. This is the PATIENT segment with the lowest
PATNO--OOOOI.

92 IMS/VS Application Programming

\)

)

•

If you issue this call when you do have position established
in the data base, DL/I still returns the PATIENT segment for
the patient with the patient number 00001.

A GU with a qualified SSA can retrieve the segment described
in the SSA regardless of that segment's location relative to
current position. For example, suppose your position in the
data base was on the TREATMNT segment for the PATIENT segment
with the key 01034, and you wanted to retrieve the TREATMNT
segment with the date March 4, 1980, for the patient whose
number is 01000. If you issued the call:

GU PATIENTblPATNObbb=bOl000)
TREATMNTlDATEbbbb=b030419801

DL/I can retrieve that segment even though the PATIENT
segment with the patient number equal to 01000 is behind
current position.

• A GU with multiple qualified SSAs returns the first
occurrence that satisfies the higher level requirements if
the segments have nonunique keys or no keys at all. For
example, when you issue a call for an ILLNESS segment
qualified with a particular date, DL/I returns the first
ILLNESS segment it encounters that has that date. This may not
be the ILLNESS segment you want to retrieve. Since ILLNESS
segments have nonunique keys, there could be several ILLNESS
segments for the same PATIENT with the same DATE. This is
because i!t would be possi ble for a pat i ent to have two
illnesses on the same date. TREATMNT segments also have
nonunique keys, since it would also be possible for a patient
to receive several treatments on one day.

• When a segment has nonunique keys, or no keys at all, a GU
with qualified SSAs will return only the first occurrence of
that segment. In other words, if a patient had two TREATMNT
segments with the date April 4, 1980, a GU for the PATIENT
segment and the SSA TREATMNTbCDATEbbbb=b04041980) could only
retrieve the first of these segment occurrences. To retrieve
the second TREATMNT segment with the date April 4, 1980, you
could retrieve the first TREATMNT segment with a GU, then
issue a GN with the same SSA.

• When you issue a GU that mixes qualified and unqualified SSAs,
at each level DL/I retrieves the first occurrence of the
segment type that satisfies the call.

• If you leave out an SSA for one of the levels in a GU with
multiple SSAs, DL/I assumes an unqualified SSA for that
segment.

Using Command Codes with GU

GU and Parentage

GU 5 ta tus Codes

All the command codes except N can be used with GU. The D command
code is used frequently with GU, because it allows you to retrieve
a specific dependent segment and all of its parents in the
hierarchic path by issuing only one call.

Parentage is set to the segment retrieved for any subsequent GNP
call. If the GU call was unsuccessful, the previous parentage, if
any, is destroyed.

Some of the status codes that apply specifically to GU are:

bb Blanks. DL/I has retrieved the segment you requested.

Chapter 6. Structuring the DL/I Portion of a Program 93

GE OL/I was unable to find one or more of the segments described
by the SSAs in the call. "Current Position after Unsuccessful (
Calls" explains where your position in the data base is after \.
a GE status code.

GG OL/I returns a GG status code to a program with a processing
option of GOT or GON when the segment that the program is
trying to retrieve contains an invalid pointer. Position in
the data base after a GG status code is just before the first
root segment occurrence in the hierarchy. The PCB key
feedback area will contain the length of the key of the last
root segment accessed.

RETRIEVING SEGMENTS SEQUENTIALLY: GN

A GN call retrieves the next segment in the hierarchy that
satisfies the SSAs, if any, that you supply. Since the segment
retrieved by a GN call depends on the current position in the
hierarchy, GN is often issued after a GU call. If no position has
been established in the hierarchy, GN retrieves the first segment
in the data base. A GN call retrieves a segment or path of
segments by moving forward from the current position in the data
base. As processing moves forward DL/I looks for segments at each
level to satisfy the call.

Sequential retrieval in a hierarchy is always top to bottom and
left to right. For example, if you repeatedly issue unqualified
GNs against the hierarchy in Figure 52, DL/I returns the segment
occurrences in the data base record in this order:

After the root segment CAl), Bl and its dependents:

Cl, 01, Fl, 02,03, El, E2, and Gl

followed by HI and its dependents:

II, 12, Jl, and KI.

If you issue an unqualfied GN again, after DL/I has returned KI,
DL/I returns the root segment occurrence whose key follows
segment Al in the data base.

A GN call qualified with the segment type, on the other hand, can
retrieve all the occurrences of a particular segment type in the
data base. For exampl~, if you issue a GN call with qualified SSAs
for segments Al and Bl, and an unqualified SSA for segment type D,
DL/I returns segment 01 the first time you issue the call, segment
02 the second time you issue the call, and segment 03 the third
time you issue the call. If you issue the call a fourth time, OL/I
returns a status code of GE. GE means that DL/I could not find the
segment you requested.

94 IMS/VS Application Programming

(

)

)

------ ----------------- -----

Figure 52. Hierarchic Sequence

How You Use GN

A GN call is a request for a segment, as described by the SSAs you
supply, that's linked to the preceding call. The starting place
for DL/I's search is current position. Special status codes are
returned whenever a different segment type at the same level or
higher level is returned. No special status code is returned when
a segment at a lower level is returned. You can check for a lower
level in the PCB. Use qualified GN calls whenever possible.

When you use GN:

• Processing moves forward, except when the F command code is
used.

• DL/I uses the current position set by the previous call as the
starting point of the search.

• The segment retrieved is determined by a combination of the
next sequential position in the hierarchy and the SSAs
included in the call.

An unqualified GN retrieves the next segment in the hierarchy
starting at the current position. Each unqualified GN call
retrieves the next sequential segment forward from the current
position. For example, to answer the processing request:

Print out the entire medical data base.

You would simply issue an unqualified GN call repeatedly until
DL/I returned a GB status code.

Information-only status codes for this type of GN are:

GA The call was successful. In satisfying the call, a hierarchic
boundary was crossed to a higher level. This status code
applies only to GN calls that are unqualified.

GB The end of the data base has been reached. If the GN call is
issued after a GB status code has been returned, the first
segment in the hierarchy is returned.

Chapter 6. Structuring the DL/I Portion of a Program 95

Usi ng SSAs wi th GN

GK The call was successful. The segment returned is a different
segment !Ye.g at the same level. Thi s status code appl i es only ('
to GN calls that are unqualified.

Like a GU, a GN can have as many SSAs as there are levels in the
hierarchy. Using fully qualified SSAs with GN calls clearly
identifies the hierarchic path and the segment you want. Using
fully qualified SSAs also provides for better documentation,
control, and future change implications. Be sure that you are
familiar with your installation's standards concerning data base
calls.

A GN with an unqualified SSA retrieves the next occurrence of that
segment type by going forward from the current position. For
example, to satisfy the processing request:

We need a list of all patients that hav~ been to this clinic.

You would continue issuing a GN qualified with PATIENT until DL/I
returned a GB status code. GB means that DL/I has reached the end
of the data base before being able to satisfy your call.

GN PATIENTbb

A GN with qualified SSAs retrieves the next occurrence of the
specified segment type that satisfies the SSAs. For example,
suppose that, at the end of each month, the clinic wanted to know
the names of the patients who had been to the clinic during the
month:

What are the names of the patients we have
seen this month?

You would continue issuing the GN call with the SSAs shown below (
unti I DL/I returned a GB status code: (The example shows the call '-.
you would use at the end of April in 1980.) Since you would need
the PATIENT segments in order to list the names of the patients,
you would want DL/I to return the PATIENT segments, in addition to
the ILLNESS segment, to your program. If you coded the D command
code on the SSA for the PATIENT segment, DL/I would return the
PATIENT segments to your program.

GN PATIENTb*D
ILLNESSb(ILLDATEb>=04011980J

When you specify a GN that has multiple SSAs, the presence or
absence of unqualified SSAs in the call has no effect on the
operation unless you use command cQdes in the call. DL/I uses only
qualified SSAs plus the last SSA to determine the path and
retrieve the segment. Unspecified or unqualified SSAs for higher
level segments in the hierarchy mean that any high level segment
that is the parent of the correct lower level specified or
qualified segment will satisfy the call.

A GN with one SSA qualified on a unique key field defines by key
value a unique segment that you want to retrieve. Higher level
qualified SSAs define the unique segments that are part of the
path.

Using Command Codes with GN

The command codes that you can use with GN are C, D, F, L, P, Q, U,
and V.

96 IMS/VS Application Programming

(

)

)

)

GN and Parentage

GN status Codes

Parentage is set at the segment retrieved by any subsequent GNP
call unless you use the P command code in the call. If a GN was
unsuccessful, the previous parentage, if any, is destroyed.

bb Blanks. Call was successful; DL/I has returned the segmentCs)
you requested to your I/O area.

GA DL/I has returned the segment you requested to your I/n area.
This segment is from a higher level than the last segment.
This is a warning that the position in the data base has
changed with respect to the previous path.

GB In trying to satisfy the GN call, DL/I reached the end of the
data base.

GE DL/I was unable to find one or more of the segments described
by the SSAs in the call for one of these reasons:

• The segment you asked for doesn't exist.

• The segment you asked for can't be found by searching
forward in the hierarchy. In other words, current
position is past the segment you requested.

"Current Position after Unsuccessful Calls" explains where
your position in the data base is after a GE status code.

GG DL/I returns a GG status code to a program with a processing
option of GOT or GON when the segment that the program is
trying to retrieve contains an invalid pointer. Position in
the data base after a GG status code is just before the first
root segment occurrence in the hierarchy. The PCB key
feedback area will contain the length of the key of the last
root segment accessed.

GK DL/I has returned the segment you requested to your I/O area.
This segment is a different segment type at the same level.
This status code is a warning for calls without SSAs. It tells
you that the program is working with a different segment type.

RETRIEVING DEPENDENTS SEQUENTIALLY: GNP

How You Use GNP

A get next within parent call, abbreviated GNP, like a GN,
retrieves segments sequentially. The difference between a GN and
a GNP is that for a GNP call the segments that can satisfy the
call are limited to the lower level dependent segments of the
established parent. Your program must issue a successful GU or GN
call to establish parentage before it can issue a GNP call. The
GNP call will not affect the current parentage, unless you use the
P command code in the GNP call.

Because GNP lets DL/I limit the scope of the call, using GNP can
be more efficient than GN. This is not always true--it depends on
your particular application.

The most important part of using a GNP is to understand how
parentage is set. Parentage is set in one of two ways:

• The lowest level segment returned by the most recent call
against a particular PCB. If you subsequently issue another
GU or GN, but against a different PCB, this will not affect
the parentage that you set using the first PCB in the previous
call.

Chapter 6. structuring the DL/I Portion of a Program 97

Using SSAs with GNP

• The use of the P command code for the purpose of setting
parentage at a particular level.

A GNP request is link~d to the previous Dl/! calls issued by your
program in two ways:

• Positioning: The search for the requested segment starts at
the current position, that is, the place in the hierarchy
reached by the previous call.

• Parentage: The search for the requested segment is limited to
the dependents of the lowest segment most recently accessed
by a GU or GN call.

In other words, positioning determines the start of the search,
and parentage determines the end of the search. There is always
some positioning in effect. If positioning has not been
established from a DL/I call, current position is immediately
preceding the r~ot segment. Parentage, on the other hand, is i~
effect only following a successful GU or GN call.

An unqualified GNP retrieves·the first.dependent segment
occurrence under the current parent. If your current position is
already on a dependent of the current parent, an unqualified GNP
retrieves the next segment occurrence.

For example, to answer this processing request:

We need the complete record for Kate Bailey.
Her patient number is 09080.

You want to retrieve only the dependent segments of the patient
whose name is Kate Bailey, and whose patient number is 09080. You
don't want to retrieve all of the dependents of each patient. To
do this, you would use a GU call to establish your position on the
PATIENT segment for Kate Bailey. Then you would continue issuing
an unqualified GNP until DL/I had returned all the dependent
segments of that PATIENT segment.

GU PATIENTb(PATNObbb=b09080)
GNP

A GE status code would indicate that you have retrieved all the
dependent segments for the PATIENT segment whose key is 09080.

You can include one or more SSAs in a GNP calli the SSAs may be
qualified or unqualified. Without SSAs, a GNP call retrieves the
next sequential dependent of the established parent. The
advantage of using SSAs with GNP is that they allow you to point
DL/I to a specific dependent or dependent type of the established
parent.

A GNP with an unqualified SSA sequentially retrieves the
dependent segment occurrences of the segment type you've
specified under the established parent. For example, if you
wanted to answer the request:

Which doctors have been prescribing acetaminophen
for headaches?

Suppose that, for this example, the key of ILLNESS is ILLNAME, and
the key of TREATMNT is MEDICINE. In this example, you want to
sequentially process the ILLNESS segments whose illness is
headache, and you want to retrieve each TREATMNT segment where the
treatment was acetaminophen. (Note that "acetaminophen" is
abbreviated to "ACETAMINOP" because this field is defined as 10
bytes long.) The name of the doctor who prescribed the treatment
is part of the TREATMNT segment:

98 IMS/VS Application Programming

(
\ ,

/

l

(

\
I

GN ILLNESSb(ILLNAMEbEQHEADACHEbb)
GNP TREATMNTbb(HEDICINE=bACETAHINOP)

To process this, you would loop back to the GNP call until DL/I
returned a a GE (not found) status code, then you would retrieve
the next headache segment and retrieve the TREATMNT segment for
it. You would do this until there were no more ILLNESS segments
where the ILLNAME was headache.

Notice in this call that if you didn't want to see the ILLNESS
segment, you could issue one GN call qualified with both SSAs to
retrieve the TREATMNT segment.

A GNP with a qualified SSA describes to DL/I the segment you want
retrieved, or the segment that is to become part of the hierarchic
path to the segment you want retrieved. A qualified GNP describes
a unique segment only if it's qualified on a unique key field, and
not a data field or a nonunique key field.

A GNP with multiple SSAs defines the hierarchic path to the
segment you want. The SSAs must be for segments lower than the
established parent, and the last SSA describes the segment you
want. Multiple unqualified SSAs establish the first occurrence of
the specified segment type as part of the path to the segment you
want. If there are missing SSAs between the parent and the
requested segment in a GNP call, they are generated internally as
unqualified SSAs. This means that DL/I includes the first
occurrence of the segment from the missing SSA as part of the
hierarchic path to the segment you have requested.

Using Command Codes with GNP

) GNP and parentage

'\
J

/

GNP status Codes

You can use any of the command codes except N in a GNP.

GNP affects parentage only if it includes a P command code.
Otherwise, GNP does not establish or change parentage.

bb Blanks. Call was fuccessfuli the segment(s) you requested
have been returned to the I/O area.

GA The segment retrieved as a result of an unqualified GNP is at
a higher level in the hierarchy than the previous segment
retrieved, but it is still below the current parent. This
status code warns you that the position in the data base has
changed.

GE DL/I did not find the segment you described in one or more
SSAs (qualified or unqualified) under the established parent.
If the requested segment exists, this could mean that the
segment is behind the current position, or it could mean that
the segment does not exist under the established parent.
"Current Position after Unsuccessful Calls" explains where
your position in the data base is after a GE status code.

GG DL/I returns a GG status code to a program with a processing
option of GOT or GON when the segment that the program is
trying to retrieve contains an invalid pointer. Position in
the data base after a GG status code is just before the first
root segment occurrence in the hierarchy. The PCB key
feedback area will contain the length of the key of the last
root segment accessed.

GK DL/I has returned a segment to your I/O area that's a
dependent of the established parent and is part of the same
higher level path as the previously returned segment, but the
new segment is a different segment type. DL/I returns this

Chapter 6. structuring the DL/I Portion of a Program 99

status code after unqual i fi ed GNP calls as a warni ng to you "./'
that you are working with a new segment type.

GP Thi s status code usually means that there was no parent-age in
effect when you issued the GNP call; DL/I does not return a
segment to your I/O area. This status code can also mean that
the segment specified in the SSA is at a level equal to or
higher than the currently established parent. These errors
are usually programming errors. If parentage is not
established, this can be caused by one of the following
reasons:

• Nei ther a GU nor a GN call has been issued to establ ish
parentage.

• A GU or GN call was issued, but was unsuccessful.

• The established parent was just deleted.

USING THE RIGHT RETRIEVAL CALL

UPDATING INFORMATION

Sometimes more than one of the'retrieval calls will accomplish the
same thing. When you think that you have a choice about which
retrieval call to use, you should take the following
considerations into account:

• If you want only particular segments, issue fully qualified
GUs for these segments instead of GNs.

• If you want to retrieve a specific segment occurrence or
obtain a specific position within the data base, use GU.

• If you're moving forward in the data base, even if you're not
retrieving every segment in the data base, use GN and GNP with
SSAs .

• ' Be careful when you use GN because it's possi ble to use SSAs
with it that would force DL/I to search to the end of the data
base without retrieving a segment. This is particularly true
wi th the "not equal" or "greater than" relat; onal operators.

• Don't use a GN call that doesn't limit the number of root
segments that can be accessed.

• Use GNP when possible; the more you limit the search by giving
DL/I information, the less your program has to do, and the
more efficiently DL/I will process your call.

There are two calls your program can issue to change the data in
the data base. A replace call, abbreviated REPl, replaces the
current data in a particular segment with the new data you supply
in your program's I/O area. A delete call, abbreviated DLET,
removes the segment occurrence(s) you specify from the data base.

BEFORE YOU UPDATE: GET HOLD CALLS

When you want to delete or replace a segment, you need to first
obtain the segment and indicate to DL/I that you are about to
change the segment in some way. You do this by issuing a get call
wi th a "hold" before you issue the DLET or REPL call. Once you
have issued a successful get hold call for the segment you want to
change, you can delete the whole segment or change one or more
fields (except the key field) in the segment.

There are three get hold calls, one for each of the get calls. Get
hold unique, or GHU, is the hold form for a GU call; get hold
next, or GHN, is the hold form for a GN call; and get hold next
within parent, or GHNP, is the hold form for a GNP call.

100 IMS/VS Application Programming

(

(

)

)

)

The only difference between the get calls with a hold and get
calls without a hold is that the hold calls can be followed by a
REPL or DLET call. If a hold call is not immediately followed-by a
DLET or REPL call, the hold status on the retrieved segment is
canceled and must be reestablished before reissuing the DLET or
REPL call.

If, after issuing a get hold call, you find out that you don't
have to update it after all, you can go on to other processing
without releasing the segment. The segment will be freed as soon
as the current position changes--when you issue another call to
the same PCB you used for the get hold call. In other words, a get
hold call must precede a REPL or DLET calli however, issuing a get
hold call doesn't require you to replace or delete the segment.

REPLACING SEGMENTS: REPL

How You Use REPL

REPL Examples

A REPL call must be preceded by one of the three get hold calls.
After you retrieve the segment, you modify it in the I/O area,
then issue a REPL call to replace it in the data base. You cannot
change the lengths of any of the fields of the segment in the I/O
area before you issue the REPL call.

A REPL call must be preceded by a get hold call; DL/l replaces the
segment in ~he data base with the segment you modify in the I/O
area.

You can replace more than one segment at a time by using the D
command code in the get hold call, then issuing the·REPL call. If,
in the· path of segments you're replacing, you don't want to
replace one or more of the segments, you can issue the REPL call
with unqualified SSAs containing the N command code. The N command
code indicates to DL/I that you don't want to replace the segment
described by the SSA containing the H. If you don't use the D
command code in the get hold call, but you do use multiple SSAs,
the REPL call replaces only the last segment successfully
retrieved from the data base with the segment in the I/O area.

The following are two examples of the REPL call. The first example
replaces only one segment; the second example replaces two
segments in a path of segments.

• "We have received a payment for $65.00 from a patient whose
name i~ Margaret Collins, and whose patient number i5.08642.
Update her billing record and her payment record wtth this
information, and print a current bill for her."

There are four parts to satisfying this processing request:

1. Get the BILLING and PAYMENT segments for Margaret
Collins.

2. Calculate the new values for these segments by
subtracting $65.00 from the value in the BILLING segment,
and adding $65.00 to the value in the PAYMENT segment.

3. Replace the values in the BILLING and PAYMENT segments
with the new values.

4. Print a bill for Margaret Collins showing her name,
number, and address; the current amount of her bill; and
the amount of her payments to date.

To retrieve the BILLING and PAYMENT segments, you issue a get
hold call. You can retrieve both segments with one call by
using the D command code in the call. Because you will also

Chapter 6. structuring the DL/I Portion of a Program 101

Using SSAs with REPL

need the PATIENT segment when you print the bill, you can . .
include the D command code in the SSA for the PATIENT segment,
and in the SSA for the BILLING segment:

GHU PATIENTb*D(PATNObbb=b08642)
BILLINGb*D
PAYHENTbb

DL/I always returns the segment described by the lowest SSA,
so you don't have to use the D command code for the PAYMENT
segment.

After you have calculated the current bill and payment, you
can print the bill, then replace the billing and payment
segments in the data base. Before issuing the REPL call, you
change the segments in the I/O area.

Since you haven't changed the PATIENT segment, you don't need
to replace it when you replace the BILLING and PAYMENT
segments. To indicate to DL/I that you don't want to replace
the PATIENT segment, you use an unqualified SSA with the N
command code for PATIENT when you issue the REPL call.

REPL PATIENTb~N

This call tells DL/I to replace the. BILLING and PAYMENT
segments, but not to replace the PATIENT segment. The SSA with
the N command code for PATIENT tells DL/I that you don't want
to replace that segment.

• "steve Arons, pat i ent number 10250, has moved to a new address
in this town. His new address is 4638 Brooks Drive, Lakeside,
California. Update the data base with his new address."

~
I
'\

.. \".

In this example, you need to retrieve the PATIENT segment for
Steve Arons and replace the address portion of the segment. To (
retrieve the PATIENT segment, you can use the get hold call
below: ,

GHU PATIENTb(PATNObbb=bl02S0)

Since you aren't replacing the first two fields of the PATIENT
segment (PATNO and NAME), you don't have to change them in the
I/O area. You place the new address in the I/O are~ following
the PATNO and NAME fields. Then you issue the REPL call. In
this example, you don't need any SSAs:

REPL

In the call itself, you would reference the I/O area that
contains the PATIENT segment, in addition to the DB PCB.

After retrieving several segments using a get hold call with the 0
command code, you can use one or more SSAs in a REPL call to
indicate to DL/I the segments in the path that you don't want
replaced. You code the N command code on the SSA for each segment

. that you haven't changed~· DL/I wi 11 not replace these segments if

. you do this.

If you issue a REPL call with an unqualified SSA containing an N
command code after a get hold call that did not use. the D command
code, DL/I simply ignores the SSA in the REPL call. This means
that you can use the same SSA in the REPL call regardless of
whether or not you issued a get hold call with the D command code.

But if you include a qualified SSA in a REPL call, DL/I returns an
AJ status code to inform you of this.

102 IMS/VS Application Programming

(

)

)

')
/

-- --- ----------------

Using Command Codes with REPL

REPL and Parentage

REPL status Codes

DELETING SEGMENTS:

How You Use DLET

DLET Examples

N is the only command code that is valid in a REPL call. DL/I
rejects any other status codes that are included in a REPL call.

Unless you are using a secondary index, REPL does not affect
parentage. If you are using a secondary index, and you replace the
indexed segment, parentage is lost. "How Secondary Indexing
Affects Your Program" explai ns how usi ng a secondary index
affects your program.

bb The segment has been successfully replaced.

DA The segment has not been replaced, because the REPL call
attempted to change the key field.

DJ The segment has not been replaced, because the program did not
issue a get hold call before issuing the REPL call.

VI The segment has not been replaced, because the length of the
variable-length segment you supplied in the I/O area is
invalid.

DLET

Like a REPL call, a DLET call must be immediately preceded by one
of the" three get hold calls. When you issue the DLET call, DL/I
deletes the held segment, along with all its physical dependents,
from the data base regardless of whether or not your program is
sensitive to all these segments. In other words, be careful when
using this call.

DL/I rejects the DLET call if the call immediatelY preceding it
was not a get hold call. If the DLET call is successful, the
previously retrieved segment and all of its dependents are
removed from the data base and cannot be retrieved again.

This is an example of the DLET call.

• "Evelyn Parker has moved away from this area. Her patient
number is 10450. Delete her record from the data base."

In this example, you want to delete ali the information about
Evelyn Parker from the data base. To do this, you only have to
delete the PATIENT segment; when you do this, DL/I deletes all
the dependents of that segment. This is exactly what you want
DL/I to do--there wouldn't be any reason to keep the ILLNESS
and TREATMNT segments for Evelyn Parker after Evelyn Parker
was no longer one of the clinic's patients.

Before you can delete the PATIENT segment, you have to
retrieve it with a get hold call:

GHU PATIENTb(PATNObbb=bI04S0)

Chapter 6. Structuring the DL/I Portion of a Program 103

using SSAs with DLET

To delete this patient's data base record, you issue a DLET
call and reference the same DB PCB and I/O area that you
referenced in the get hold call. In this example you don't
need any SSAs:

DLET

Unless the get call that precedes the DLET call is a path call, no
SSAs are allowed in a DLET call. If the get hold call was a path
call, however, you indicate to Dl/I which one of the retrieved
segments (and its dependents, if any) you want deleted by
specifying an unqualified SSA for that segment. This is the only
situation in which an SSA is allowed in a DLET call.

Using Command Codes with DLET

DLET and Parentage

DLET status Codes

None of the command codes are valid in a DLET call.

A DlET call does not affect parentage unless the DLET call
eliminates the established parent. If this happens, you will need
to reestablish parentage before issuing a GNP call.

bb DL/I has deleted the segment or segments you specified.

DJ DL/I did not delete the segment, because the program did not
issue a get hold call before issuing the DLET call.

INSERTING INFORMATION

You use the same call to add information to an existing data base
and to initially load a data base. This is the ISRT call. The call
looks the same in either case; the way it's used is determined by
the processing option in the PCB.

ADDING INFORMATION TO AN EXISTING DATA BASE

ISRT can add new occurrences of an existing segment type to a
HIDAM, HISAM, or HDAM data base.

New segments cannot be added to an HSAM data base unless you
reprocess the whole data base or you add the new segments to the
end of the data base.

How You Use ISRT to Add segments

Before you issue the ISRT call, you must build the new segment in
the I/O area. The fields of the segment you build in the. I/O area
must be in the same order and of the same length as defined for
the segment. The DBD defines the fields that a segment contains,
and the order in which they appear in the segment. If you are
adding a root segment occurrence, DL/I places it in the correct
sequence in the data base by using the key you supply in the I/O
area. If the segment you are inserting is not a root, but you have
just inserted its parent, you can insert the child segment by
issuing an ISRT call with an unqualified SSA. You must build the
new segment in your I/O area before you issue the ISRT call. You
also use an unqualified SSA when you insert a root. When you are
adding new segment occurrences to an existing data base, the
segment ~ must have been defined in the DBD. You can add new
segment occurrences directly or sequentially after you have built

104 IMS/VS Application Programming

(

(,

(,

\
)

)

\
)

ISRT (add) Example

using SSAs with ISRT

them in the program's I/O area. At least one SSA is required in an
ISRT call; the last (or only) SSA specifies the segment being
inserted. To insert a path of segments, you can set the D command
code for the highest level segment in the path.

If the segment type you are inserting has a unique key field,
where DL/I adds the new segment occurrence depends on the value of
its key field. If the segment doesn't have a key field, or if the
key is not unique, you can control where the new segment
occurrence is added by specifying either the FIRST, LAST, or HERE
insert rule. The rules are specified on the RULES parameter of the
DBD generation for this data base. These rules are as follows:

FIRST DL/I inserts the new segment occurrence before the first
existing occurrence of this segment type. If this segment
has a nonunique key, DL/I inserts the new occurrence
before all existing occurrences of that segment that have
the same key field.

LAST DL/I inserts the new occurrence after the last existing
occurrence of the segment type. If the segment occurrence
has a nonunique key, DL/I inserts the new occurrence after
all existing occurrences of that segment type that have
the same key.

HERE If HERE is specified, DL/I assumes you have a position on
the segment type from a previous DL/I call and places the
new occurrence before the segment occurrence that was
retrieved or deleted by the last call--in other words,
immediately before current position. If current position
is not within the occurrences of the segment type being
inserted, DL/I adds the new occurrence before all existing
occurrences of that segment type. If the segment has a
nonunique key and current position is not within the
occurrences of the segment type with equal key value, DL/I
adds the new occurrence before all existing occurrences
that have equal key fields.

If HERE has been specified, and you use an F or L command code in
the SSA, the command code will override the insert rule and
determine where the new segment will be added. This is also true
if the insert rule is first, and you use the L command code.

This is an example of using the ISRT call and the medical data
base.

"Add information to the record for Chris Edwards about his visit
to the clinic on February 1, 1980. His patient number is 02345. He
had a sore throat."

First you need to build the ILLNESS segment in your program's I/O
area. Your I/O area for the ILLNESS segment would look -like this:

02011980S0RETHROAT

The call you would use to add this new segment occurrence to the
data base is:

ISRT PATIENTb(PATNObbb=b0234S)
ILLNESSb

You would reference the I/O area that contains the ILLNESS segment
in your call. Notice that the ILLNESS SSA must be unqualified.

An ISRT call must have at least one unqualified SSA for each
segment being added to the data base. Unless the ISRT is a path
call, the lowest level SSA specifies the segment being inserted;

Chapter 6. Structuring the DL/I Portion of a Program 105

this SSA must be unqualified. If you use the D command code, all
of the SSAs after the SSA containing the D command code must be
unqualified.

You should provide qualified SSAs for higher levels to establish
the position of the segment being inserted. Qualified and
unqualified SSAs may be used to specify the path to the segment,
but the last SSA must be unqualified. This final SSA names the
segment type to be inserted.

If you supply only one unqualified SSA for the new segment
occurrence, you must be·sure that current position is at the right
place in the data base so that the new segment's logical location
in the data base can be found by searching forward or backward in
the current record.

If you use multiple SSAs, you can mix qualified and unqualified
SSAs, but the last SSA must be unqualified. If the SSAs are
unqualified, Dl/I satisfies each unqualified SSA with the first
occurrence of the segment ~ype~ assuming that the path is correct.
If you omit SSAs in the path, Dl/I generates internal SSAs based
on current position--just as though you had included the U command
code for those levels. If a higher level SSA has changed current
position, DL/I develops the missing SSAs for the first occurrence
of the segment types that fall within the new path.

One of the best ways to use SSAs with ISRT is to check for the
parent segments of the new segment you want to insert. You can't
add a segment unless all its parent segments exist in the data
base. To check for the parents, you don't have to issue calls for
them.

Instead, you can define a fully qualified set of SSAs for all of
the parents and issue the ISRT call for the new segment. If DL/I
returns a GE status code, at least one of the parents doesn't
exist. You can then check the segment level number in the DB PCB
to find out which of the parents is missing. If the level number
in the DB PCB is 00, DL/I didn't find any of the segments you
specified. An 01 means that DL/I found only the root segment; an
02 means that the lowest level segment that DL/I found was at the
second leveli and so on.

(

ISRT and Command Codes

ISRT and Parentage

ISRT status Codes

You can use all the command codes except Nand P with ISRT.

The only time an ISRT call affects parentage occurs when you
insert a segment that is not a dependent of the parent that was
established when you issued the call. In this case, the ISRT call
destroys parentage. If you issued a GNP call after this kind of an
ISRT, DL/I would return a GP status code. GP means that no
parentage has been established.

These are some of the status codes that apply to ISRT:

GE DL/I did not find the path you specified with multiple SSAs.
This status is usually returned after a call with one or more
qualified SSAs that define the path to the insertion. GE can
also be returned when only unqualified SSAs are used if no
parent exists.

II The segment you're trying to insert already exists in the data
base. This can be returned if you haven't established a path I
for the segment before trying to insert it. The segment you're ~
trying to insert might match a segment with the same key in
another hierarchy or data base record.

106 IMS/VS Application Programming

)

VI You gave an invalid length for the variable-length segment
you were trying to insert.

INITIALLY LOADING A DATA BASE

Once the DBA has defined the data base, you load the data base by
writing an application program using the ISRT call in load mode.
You speci fy load mode by speci fying "L" as the processi ng opti on
for the program in the PROCOPT parameter in the PSB for the
program. The only time you use this processing option is when you
initially load a data base. The FIRST, LAST, and HERE insert rules
do not apply when you are loading a data base--unless you're
loading an HDAM data base. In this case, the rules determine how
segments with nonunique sequence fields will be chained.

A data base load program builds each segment in the program's I/O
area, then loads it into the data base by issuing an ISRT call for
it. The ISRT call is the only DL/I call a data base load program
issues. If you're usi ng HSAM, you are loadi ng an output data base
as you do this. A load program must be a batch program.

Most comprehensive data bases are loaded in stages by segment type
or by groups of segment types, since there are usually too many
segments to load using only one application program. This means
that you need several programs to do the loading. Each load
program after the first load program is technically an "add"
program, not a load program. If you are writing an add type of
load program to load a data base, be sure to have the DBA review
the program to make sure that the program's performance will be
acceptable. It usually takes longer to add a group of segments
than to load them.

For HSAM, HISAM, and HIDAM, the root segments that the application
program inserts must be presorted by key fields of the root
segments. The dependents of each root segment must follow the root
segment in hierarchic sequence, and key values within segment
types. In other words, you insert the segments in the same
sequence in which your program would retrieve them if it retrieved
them sequentially. Other than the fact that you must load segments
in hierarchic sequence (children after their parents, data base
records in order of their key fields), parentage has no
significance in a load program.

If you're loading a HDAM data base, you don't have to presort root
segments by their key fields.

Using SSAs in a Load Program

When you are loading segments into the data base, you don't have
to worry about position, because DL/I inserts one segment after
another. The most important part of loading a data base is the
order in which you build and insert the segments. This is the
DBA's responsibility.

Because you don't have to worry about position in a data base load
program, you don't have to use SSAs for the parents of the segment
you're inserting; you don't have to worry about establishing
position. You can use SSAs, just as long as any qualified SSAs use
only the equal (EQ, =b, or b=) relational operator. You must also
use the key field of the segment as the comparative value.

The only SSA you have to supply is the unqualified SSA giving the
name of the segment type you're inserting.

For HISAM and HIDAM, the key X'FFFF' is reserved for IMS/VS.
IMS/VS returns a status code of lB to you if you try to insert a
segment with this key.

Chapter 6. Structuring the Dl/I Portion of a Program 107

Loading a Sequence of Segments

Load Command Codes

You can insert a path of segments wi th one ISRT call by
concatenating the segments in the I/O area and supplying DL/I wjth
a list of unqualified SSAs. You must include the 0 co~mand code
w~th the first SSA. The path that the SSAs define must lead down
the hierarchy, with each segment in the I/O area being the child
of the one before it.

When you build segments in the I/O area, segments must be in the
order in which you're inserting them. If the segment has a key
field, the key must be in the correct location within the segment
in the I/O area. Segments that contain keys must be loaded in the
sequence of their keys. If you load segments without keys, DL/I
loads them into the data base in the order in which you supply
them.

The only command code you can use in a load program is D. You use
this to load a sequence of segments with one ISRT call.

status Codes for Load Programs

The status codes below are important to a load program. Like other
DL/I calls, a successful ISRT call in a load program receives a
blank status code.

LB The segment you are trying to load already exists in the data
base. DL/I only returns this status code for segments with key
fields.

LC The segment you are trying to load is out of key sequence.

LD No parent exists for this segment. This status code usually ~
means that the segment types you're loading are out of ,
sequence.

LE In an ISRT call with multiple SSAs, your SSAs are out of
sequence.

VI You've supplied a variable-length segment whose length is
invalid.

DETERMINING YOUR POSITION IN THE DATA BASE

Positioning means that DL/I keeps track of your place in the data
base after each call that you issue. If Dl/I didn't do this for
you, you would have to start from ~he beginning of the data base
each time you retrieved or updated a segment; you would not be
able to process one segment after the other without starting from
the beginning of the data base each time you issued a retrieval
call.

There are three ideas about positioning that you need to
understand:

• When it's important, or, in other words, what calls are
affected by where your position in the data base is before you
issue the call

• Where position is after any kind of successful call--in other
words, how each type of Dl/I call affects current position
after you issue the call

• Where position is after an unsuccessful call--this is
important when you issue a retrieval call and Dl/I can't find
the segment you've specified; and when you issue an ISRT call
with qualified SSAs to defin~ the path to the new segment, and

108 IMS/VS Application Programming

(

)

DL/I can't find one of the segments in the path. These are
not-found calls--calls that receive a GE status code.

WHEN POSITION IS IMPORTANT

Pdsition is important to you when you process the data base
seq u en t i a 11 y-w hen you iss u e G N an d GNP ca 11 s, and G H Nan d G H N P .
Current position is the starting place of DL/I's search for the
segments that you specify in these calls.

Before you've issued the first call to the data base, current
position is immediately preceding the first root segment
occurrence in the data base. Saying that current position is
immediately preceding this segment means that if you issue an
unqualified GN call, DL/I retrieves the first root segment
occurrence. Current position is the place just before the segment
occurrence that DL/I would retrieve if you immediately issued an
unqualified GN call; it's the next segment occurrence in the
hierarchy defined by the DB PCB you referenced.

When you issue a GU, your current position in the data base
doesn't affect the way that you code the GU or the SSAs you use.
If you issue the same GU at different points during program
execution (when you have different positions established), you'll
receive the same results each time you issue the call. If you've
coded the call correctly, DL/I will return the segment occurrernce
you requested regardless of whether the segment is before or after
current position. (There is an exception: if the GU doesn't have
SSAs for each level in the call, it is possible for DL/I to return
a different segment at different points in your program. This is
based on the position at each level, described later in this
section.)

For·example, suppose you issue the call below against the data
structure that's shown in Figure 53. This structure contains six
segment types: A, B, C, D, E, and F. Figure 53 shows one data base
record--the root of the record is Al.

GU AbbbbbbblAKEYbbbb bAll
BbbbbbbblBKEYbbbb bBII)
Dbbbbbbb(CKEYbbbb bDIII)

Chapter 6. Structuring the DL/I Portion of a Program 109

A
\.

I AKEY = Al I

.
I BKEY = B13

BKEY = B12

B E

BKEY = Bll EKEY = Ell

I CKEY = Cl12

C 0 F

CKEY = Clll DKEY = DIll FKEY = FIll

Figure 53. Current Position Hierarchy
(
\'-When you issue this call, DL/I returns the D segment with the key

of DIll, regardless of where your position is when you issue the
call. If this is the first call your program issues (and if this
is the first data base record in the data base), current position
before you issue the call is immediately before the first segment
occurrence in the data base--just before the A segment with the
key of AI. But even if current position is past segment 0111 when
you issue the call, for example, just before segment FIll, DL/I
still returns the segment DIll to your program. This is also true
if current position is in a different data base record.

But when you issue GN and GNP calls, current position in the data
base does affect the way that you code the call and the SSAs. .
That's because, when DL/I searches for a segment described in a GN
or GNP call, DL/I starts the search from current position and can
only search forward in the data base--Dl/I can't look behind that
segment occurrence to satisfy a GN or GNP. These calls can only
move forward in the data base when trying to satisfy your
call--unless you use the F command code. "Retri evi ng and
Inserting the First Occurrence: F" explains how you use the F
command code.

If you issue a GN call for a segment occurrence that you've
already passed, Dl/I starts searching at current position and
stops searching when it reaches the end of the database (status
code GB); or when it determines, from your SSAs, that it can't
find the segment you've requested (status code GE). "Current
Position after Unsuccessful Calls" explains where your position
is when your recei ve a GE status code.

Current position affects ISRT calls when you don't supply
qualified SSAs for the parents of the segment occurrence that
you're inserting. If you supply only the unqualified SSA for the (
segment occurrence you're inserting, then you have to be sure that ,
your position in the data base is in the right place for the
segment occurrence to be added in the right place.

110 IMS/VS Application Programming

)

)

CURRENT POSITION AFTER SUCCESSFUL CALLS

In order to process a data base sequentially, you need to
understand where current position is after you issue each type of
data base call.

position after Retrieval Calls

position after DLET

After you issue any kind of successful retrieval call, position is
immediately after the segment occurrence you just retrieved--or
the lowest segment occurrence in the path, if you retrieved
several segment occurrences using the D command code. When you use
the D command code in a retrieval call, a successful call is one
that Dl/I completely satisfies.

For example, if you issue the call below against the data base
shown in Figure 53, Dl/I returns the C segment occurrence with the
key of Cili. If YQU then issue an unqualified GN, Dl/I returns the
Cl12 segment to your program.

GU AbbbbbbblAKEYbbbb=bAIJ
BbbbbbbblBKEYbbbb=bBIIJ
Cbbbbbbb(CKEYbbbb=bClll)

Your current position is the same after retrieving segment Clll,
regardless of whether you retrieve it with a GU, a GN, or a GNP
call (or any of the get hold calls).

If you retrieve several segment occurrences by issuing a get call
with the D command code, current position is immediately after the
lowest segment occurrence that you retrieved. If you issue the
same GU call that was shown above, but you include the D command
code in the SSAs for segments A and B, current position is still
immediately after segment CIII. Clil is the last segment that Dl/I
retrieves for this call. With the D command code, the call looks
like this!

GU Abbbbbbb~DlAKEYbbbb=bAl)
Bbbbbbbb*D(BKEYbbbb=bBIIJ
CbbbbbbblCKEYbbbb=bCIIIJ

You don't need the D on the SSA for the C segment because Dl/I
always returns the segment occurrence described in the last SSA to
your lID area.

After a successful DlET call, position is immediately after the
segment occurrence you deleted. This is true when you delete a
segment occurrence without dependents, and when you delete a
segment occurrence with dependents. '

For example, if you issue the call shown below to delete segment
Clll, current position is immediately after segment Clil. If you
then issue an unqualified GN, Dl/I returns segment Cl12.

GHU AbbbbbbblAKEYbbbb=bAIJ

DLET

BbbbbbbblBKEYbbbb=bBlll
CbbbbbbblCKEYbbbb=bCllll

Figure 54 shows what the hierarchy looks like after this call.

Chapter 6. structuring the Dl/I Portion of a Program 111

A

I AKEY = Al I

I BKEY = B13

I BKEY = B12

B E

BKEY = Bl1 EKEY = Ell

C D F

CKEY = Cl12 DKEY = DIll FKEY = FIll

Figure 54. Hierarchy after Deleting a Segment

When you issue a DLET call for a segment occurrence that has
dependents, DL/I deletes the dependents, as well as the segment
occurrence. Current position is still immediately after the
segment occurrence you deleted. An unqualified GN would return
the segment occurrence following the segment you deleted.

For example, if you delete segment Bll in the hierarchy shown in
Figure 53, Dl/I deletes its dependents as well: segments CIIl,
C112, and DIll. Current position is immediately after segment
B11, just before segment B12. If you then issue an unqualified GN,
DL/I returns segment B12. Figure 55 shows what the hierarchy
would look like after you issued this call.

112 IMS/VS Application Programming

(

,
\

)

~
)

A

AKEY = At

I BKEY = B13

B E

BKEY = B12 EKEY = Ell

F

FKEY = Flll

Figure 55. Hierarchy after Deleting a Segment and Dependents

position after REPL

Position after ISRT

Since Dl/I deletes the segment's dependents, you can think of
current position as being immediately after the last (lowest,
rightmost) dependent. In the example in Figure 55, this is
immediately after segment DIll. But if you then issue an
unqualified GN, Dl/I still returns segment B12. You can think of
position in either place--the results are the same either way.

A REPl call doesn't change your position in the data base. After
you issue a REPl call, current position is just where it was
before you issued the REPl call--immediately after the lowest
segment retrieved by the get hold call you issued before the REPl
call.

For example, if you retrieve segment Clll using a GHU instead of a
GU, change the segment in the I/O area, and then issue a REPl
call, current position is immediately after segment Clll--just
where it is in the retrieval example above.

After you add a new segment occurrence to the data base, current
position is immediatelY after the new segment occurrence. For
example, if you issue the call below to add segment Cll3 to the
data base, current position is immediately following segment
Cl13. An unqualified GN would retrieve segment Dlll.

ISRT Abbbbbbb(AKEYbbbb=bA11
Bbbbbbbb(BKEYbbbb=bB11)
Cbbbbbbbb

If you're inserting a segment that has a unique key, Dl/I places
the new segment in key sequence. If you're inserting a segment

Chapter 6. Structuring the Dl/I Portion of a Program 113

I CKEY

C

CKEY = Cll1

that has either a nonunique key, or no key at all, where Dl/I
places the segment you're adding depends on the rules parameter of
the SEGM statement of the DBD for the data base you're processing.
"How Y~u Use ISRT to Add Segments"explains these rules.

If you insert several segment occurrences by using the 0 command
code, current position is immediately after the lowest segment
occurrence inserted.

Suppose you insert a new segment B (this would be BI4), and a new
C segment occurrence that's a dependent of B14. Figure 56 shows
what the hierarchy looks like after you insert these segment
occurrences. The call do to this looks like this:

ISRT AbbbbbbbCAKEYbbbb=bAll
Bbbbbbbb*D
Cbbbbbbbb

Notice that you don't need the D command code in the SSA for the C
segment--on ISRT calls you only have to include the D in the SSA
for the first segment you're inserting. After you issue this call,
position is immediately aft~r the C segment occurrence with the
key of C14l. If you then issue an unqualified GN, Dl/I returns
segment Ell.

A

AKEY = Al

I BKEY = B14

I BKEY = B13

BKEY = B12

B E

BKEY = B1l EKEY = Ell

= Cll1

D C F

DKEY = DIll CKEY = C14l FKEY = FIll

(

Figure 56. Hierarchy after Adding New Segments and Dependents

The position that's been explained so far is the starting place
that Dl/I uses for sequential processing. It's called current
position. There is another kind of position, in addition to
current position, that Dl/I establishes when you i~sue get calls
and ISRT calls. This is its position on one segment occurrence at
each hierarchic level in the path to the segment you're retrieving
or inserting. You need to know how DL/I establishes this position
to understand the U and V command codes described in "Using
Command Codes," and you need to understand where your position in (-
the data base is when Dl/I returns a not-found status code to a l
retrieval or ISRT call. ,_

114 IMS/VS Application Programming

)

)

)

CURRENT POSITION AFTER UNSUCCESSFUL CALLS

An unsuccessful DLET or REPL call doesn't affect current
position. Your position in the data base after you issue the call
is just where it was before you issued the call. But an
unsuccessful get call or ISRT call does affect your current
position.

To understand where your position is in the data base when DL/I
can't find the segment you've requested, you need to understand a
liltle about how DL/I determines that it can't find your segment.

In addition to establishing current position after the lowest
segment retrieved or inserted, DL/I maintains a position on one
segment occurrence at each hierarchic level in the path to the
segment you're retrieving or inserting. When DL/I searches for a
segment occurrence to satisfy an SSA, it accepts the first segment
occurrence it encounters that satisfies the call. As it does so,
it places the key of that segment occurrence in the key feedback
are of the DB PCB.

Current position after a retrieval or ISRT call that receives a GE
status code depends on how far DL/I got in trying to satisfy the
SSAs in the call. When DL/I processes an ISRT call, it checks for
each of the parents of the segment occurrence you're inserting. An
ISRT call is similar to a retrieval call, in that DL/I processes
the call level by level, trying to find segment occurrences to
satisfy each level of the call. When DL/I returns a GE status code
on a retrieval call, it means that DL/I was unable to find a
segment occurrence to satisfy one of the levels in the call. When
DL/I returns a GE status code on an ISRT call, it means that DL/I
was unable to find one of the parents of the segment occurrence
you're inserting. These are called not-found calls.

When DL/I processes retrieval and ISRT calls, it tries to satisfy
your call until it can determine that it can't. If, when DL/I
first tries to find a segment matching the description you've
given in the SSA, there isn't one under the first parent, DL/I
will try to search for your segment under another parent. The way
that you code the SSAs in the call determines whether or not DL/I
can move forward and try again under another parent.

For example, suppose you issue the GH call below to retrieve the C
segment with the key of Cl13 in the hierarchy shown in Figure 57.

GN Abbbbbbb(AKEYbbbb bAl)
Bbbbbbbb(BKEYbbbb bBll)
Cbbbbbbb(CKEYbbbb bCl13)

Chapter 6. Structuring the DL/I Portion of a Program 115

A

AVr-V i ,.,,,CI = f\~ I

I BKEY = B13

BKEY = B12

B E

BKEY = B11 EKEY = Ell

I CKEY = C112

C D F

CKEY = Cl11 DKEY = DIll FKEY = FIll

Figure 57. Position after Not Found Calls

When Dl/I processes this call, it searches for a C segment with
the key equal to Cl13. Dl/I can only look at C segments whose
parents meet the qualifications in the SSAs for the A and B
segments. The B segment that's part of the path must have a key
equal to Bll, and the A segment that's part of the path must have
a key equal to AI. Dl/I looks at the first C segment. Its key is
Cl11. The next C segment has a key of Cl12. Dl/I looks for a third
C segment occurrence under the Bll segment occurrence. There are
no more C segment occurrences under Bll. Because you've specified
in the SSAs that the A and B segment occurrences in C's path must
be equal to certain values, Dl/I can't try to look for a C segment
occurrence with a key of Cl13 under any other A or B segment
occurrences. There are no more C segment occurrences under the
parent Bll; the parent of C must be Bll, and the parent of Bll
must be AI. Dl/I determines that the segment you've specified
doesn't exist, and returns a not-found (GE) status code to your
program.

When you use an SSA that's qualified on a unique key field with
the equal relational operator, Dl/I searches for segments to
satisfy lower-level SSAs only under the segment occurrence you've
described. In this case, Dl/I stops searching for Cll3 when it
doesn't find one under B1l because you've told Dl/I that the B
parent must have a key equal to Bll; and that the A parent must
have a key equal to AI. If these keys are unique, and Dl/I can't
find a C1l3 segment under these parents, Dl/I can't move forward
and continue searching under other parents because no other A and
B segments can have keys equal to Al and Bll. If these keys are
nonunique, Dl/I can check for other A and B segments with the key
values you specified. If Dl/I finds A and B segments with those
key values, it continues searching for Cl13 under those segments.

r
I
\

"-

(
1.-

After this call, current pos'ition is immediately after the last (
segment occurrence that Dl/I examined in trying to satisfy your
call--in this case, Cl12. If you then issue an unqualified GN,
Dl/I rturns DIll. The DB PCB key feedback area reflects the

116 IMS/VS Application Programming

)
/

,

)

)

positions that Dl/I has established at the levels it was able to
satisfy--in this case, Al and Bll.

When you receive the GE status code on this call, you can
determine where your position is from the DB PCB key feedback
area. If you issue an unqualified GH, you can expect Dl/I to
return segment DIll.

Current position after this call is different if A and B have
nonunique keys. Suppose A's key is unique and B's is nonunique.
After Dl/I searches for a C113 segment under B11 and is unable to
find one, Dl/I moves forward from B11 to look for another B
segment with a key of Bll. When Dl/I finds there isn't one, Dl/I
returns a GE status code. Current position is further in the data
base than it was when both keys were unique. Current position is
immediately after segment Bl1. An unqualified GN would return
B12.

If A and B both have nonunique keys, current position after this
call is immediately after segment A1. Assuming there are no more
segment AI's, an unqualified GN would return segment A2. If there
were other A1's, Dl/! would try to find a segment Cl13 under the
other AI's.

But suppose you issue the same call with a
greater-than-or-equal-to relational operator in the SSA for
segment B:

GU Abbbbbbb(AKEYbbbb=bA1)
Bbbbbbbb(BKEYbbbb>=Blll
Cbbbbbbb(CKEVbbbb=bCl13)

Dl/I establishes position on segment A1 and segment Bll. Since Al
and Bl1 satisfy the first two SSAs in the call, Dl/! places their
keys in the DB PCB key feedback area. Dl/! searches for a segment
Cl13 under segment B11. There isn't one. But this time, DL/I can
continue searching because the key of the B parent can be greater
than or equal to B11. The next segment is B12. Since B12 satisfies
the qualification in the SSA for segment B, Dl/I places B12's key
in the key feedback area. DL/I then looks for a Cl13 under B12 and
doesn't find one. The same thing happens for B13: DL/I places the
key of B13 in the key feedback area and looks for a C113 under
B13.

When Dl/I finds there are no more B segments under AI, it again
tries to move forward to look for Band C segments that satisfy
the call under another A parent. But this time it can't--the SSA
for the A segment specifies that the A segment must be equal to
AI. (If the keys were nonunique, Dl/I could look for another Al
segment.) DL/I then knows that it can't find a Cl13 under the
parents you've specified and returns a GE status code to your
program.

In this example, you haven't limited Dl/I's search for segment
Cl13 to only one B segment because you've used the
greater-than-or-equal-to operator. Dl/I's position is further
than you might have expected, but you can tell what the position
is from the key feedback area. The last key in the key feedback
area is the key of segment B13; Dl/I's current position is
immediately following segment B13. If you then issue an
unqualified GN, Dl/I returns segment Ell.

Each of the B segments that Dl/I examines for this call satisfies
the SSA for the B segment, so Dl/I places the key of each in the
key feedback area. But if one or more of the segments Dl/I
examines don't satisfy the call, Dl/I doesn't place the key of
that segment in the key feedback area. This means that Dl/I's
position in the data base may be further than the position
reflected by the key feedback area. For example, suppose you issue
the same call, but you qualify the SSA for segment B on a data
field, in addition to the key field. To do this, you include
another qualification statement in the SSA for segment B. When you
use multiple qualification statements in an SSA, you connect them

Chapter 6. Structuring the Dl/I Portion of a Program 117

with a special kind of operator, called a Boolean operator. The
two qualification statements in the SSA for segment B shown below
are joined with the logical "and" (r~pr~5ented as *>. The logical
and says that, in order to satisfy the SSA, a segment occurrence
must satisfy both qualification statements (as opposed to one or
the other). There is another Boolean operator called the logical
"or"; it and the logical and·are explained in "Using Multiple
Qualification Statements."

Assume the data field you're qualifying the calIon is called
BDATA. For the example, assume the value you want is 14--but that
none of the B segments under Al contains a value in BDATA of 14:

GU Abbbbbbb(AKEYbbbb=bAIJ
Bbbbbbbb(BKEYbbbb>=Bll~BDATAbbb=b14J
Cbbbbbbb(CKEYbbbb=bCl13J

The way that DL/I processes this call is similar to the way it
processes the call above, but there is an important difference:
because there is not a B segment greater than or equal to Bll with
a data field containing the value 14, the only key that DL/I
places in the key feedback area is AI. But when DL/I processes
this call, it examines the same segments that it examined in the
call above. The difference is that of the segments DL/I examines,
only one of them (AI) satisfies an SSA in the call. So that's all
the key feedback area contains after this call. But in reality,
DL/I's current position is immediately after segment B13; an
unqualified GH would return segment Ell.

When you use a greater-than or greater-than-or-equal-to
relational operator, you don't limitDL/I's search. If you get a
GE status code on this kind of call, and if one or more of the
segments DL/I examines doesn't satisfy an SSA, DL/I's position in
the data base may be further than the position reflected in the DB
PCB. If, when you issue the next GH or GNP call, you want DL/I to
start searching from the position reflected in the DB PCB key
feedback area instead of from its "real" position, you can either:

• Issue a fully qualified GU to reestablish position where you
want it.

• Issue a GN or GNP with the U command code. Including a U
command code on an SSA tells DL/I to use the first position it
established at that level as qualification for the call. It's
like supplying a qualified SSA with the equal relational
operator for the segment occurrence that DL/I has position on
at that level.

For example, suppose that you issue the GU call with the
greater-than-or-equal-to relational operator in the SSA for
segmentB, then you issue this GH call:

GN Abbbbbbb*U
Bbbbbbbb~U
Cbbbbbbbb

The U command code tells DL/I to use segment Al as the A parent,
and segment Bll as the B parent. DL/I returns segment Cili. But if
you issue the same call without the U command code, DL/I starts
searching from segment B13 and moves forward to the next data base
record until it encounters a B segment. DL/I would return the
first B segment it encountered.

TECHNIQUES TO MAKE PROGRAMMING EASIER

~
I
\

c

Deciding how your program will read and update a DL/I data base
involves more than deciding which call it will use, and where. How
you design your program-·-in other words, the number, type, and
sequence of calls your program issues--can have a significant (
effect on the efficiency of your program. The number of DL/I calls ~~
your program issues and the I/Os that each DL/I call requires are
performance considerations.

118 IMS/VS Application Programming

)

-------------------------_._--------------------

)

USING SSAS

A program that is poorly desi gned wi 11 run as long as it's co-dead
correctly. IMS/VS won't find design errors for you. The
suggestions in this chapter are provided to help you in developing
the most efficient design possible for your application program.
Inefficiently designed programs can adversely affect performance,
and they are hard to change. Being aware of how certain call
combinations and call formats affect performance helps you to
avoid these problems and design a more efficient program.

In addition to some general guidelines on call sequence, this
section tells how the use of some OL/I tools and options affects
your program's performance. The tools are SSAs and command codes;
the options are multiple PCBs and multiple positioning.

Using SSAs can simplify your programming, because the more
information you can give OL/I so that OL/I does the searching for
you, the less program logic you need to analyze and compare
segments in your program.

Using SSAs doesn't necessarily reduce the system overhead (for
example, internal logic and I/Os) required to obtain a specific
segment. To locate a particular segment without using SSAs, yo~
can issue OL/I calls and include program logic to examine key
fields until you find the segment you want. By using SSAs in your
OL/I calls, you can reduce the number of OL/I calls issued in the
programs and the program logic needed to examine key fields. When
you use SSAs, OL/I does this for you.

Guidelines on Using SSAs

The list below gives some recommendations about using SSAs. Thasa
are not OL/I rules; they are guidelines about using SSAs
efficiently in your program.

•

•

•

•

•

Use qualified calls with qualified SSAs whenever possible.
This gives OL/I the necessary search information and it is a
good way to document your program.

When you use multiple SSAs in one call, don't leave out SSAs
on any levels; this forces OL/! to generate them internally.

When you use multiple SSAs, give the SSA for the root segment
qualified for the key using the equal relational operator.
This gives Ol/I a specific value insteed of forcing Ol/! to
process a lot of the root segment occurrences.

It's a good idea, as stated above, to use fully qualified SSAs
for all calls, where allowed. This is most important when
you're using the ISRT call to add segments. If you don't
qualify the ISRT call completely, Ol/I can add the segment
you've supplied in a position completely different from the
correct position. This can happen if another program has
changed the hierarchy in some way that affects your call.

When you use qualified SSAs, use the key field whenever you
can in the qualification statement. If you use a data field,
there is no sequence for OL/I to use while searching for the
segment you want. OL/! then has to search through all
occurrences of the segment type you've specified before it
can determine whether or not the segment you're requesting
exi sts.

For example, suppose you want to find the record for a patient
by the name of Ellen Carter. As a reminder, the patient
segment in the examples contains three fields: the patient
number, which is the key field; the patient name; and the
patient address. The fact that patient number is the key field
means that OL/I stores the patient segments in order of~heir
patient numbers. The best way to get the record for Ellen

Chapter 6. structuring the Ol/! Portion of a Program 119

Carter is to supply her patient number in the SSA. If her
number was 09000, you would use this call and SSA:

GU pATIENTb(PATNObbb=b09000)

If you supplied an invalid number, or if someone had deleted
Ellen Carter's record from the data base, Dl/I would stop
searching for the record as soon as it reached a patient
number higher than 09000. A higher patient number would be a
signal to Dl/I that the segment it was looking for did not

. ex i st.

If you didn't have the number, however, and had to give the
name instead, DL/I would have to search through all the
patient segments and read each patient name field until it
found Ellen Carter, or until it reached the end of the patient
segments.

Using Multiple Qualification statements

When you use a qualified SSA, you can do more than give DL/I a
field value with which to compare the fields of segments in the
data base; you can give several field values to establish limits
for the fields you want Dl/I to compare. There is no set limit for
the number of qualification statements you can include in an SSA,
but there is a limit on the maximum size of an SSA. You specify
this size on the SSASIZE parameter of the PSBGEH statement. For
information on this parameter, see the IMS/VS Utilities Reference
Manual.

You do this by using qualification statements connected with a
special operator. You can indicate to Dl/I that you are looking
for a value that, for example, is greater than A and less than Bi
or you can indicate that you are looking for a value that is equal
to A or greater than B. The operators you use to do this are ~
calledBoolean operators. They are: \

"*" or "Be" log i ca 1 "and." Fo r a segment to sat i sfy th i s request,
the segment has to satisfy both qualification
statements that are connected with the logical and.

"+" or "I" l ogi ca 1 "or." For a segment to sat i sfy th is request,
the segment can satisfy either of the qualification
statements that are connected with the logical or.

There is one more Boolean operator: this is the independent "and."
It is used with secondary indexes. "How Secondary Indexing
Affects Your Program" describes how you use it.

For a segment to satisfy an SSA with multiple qualification
statements, the segment can satisfy any set of qualification
statements. A set is any qualification statements that are joined
by an "and." To satisfy a set, in turn, a segment must satisfy
each of the qualification statements within that set. Each "or"
starts a new set of qualification statements. When processing
multiple qualfication statements, Dl/I reads them left to right
and processes them in that order.

When you include multiple qualification statements for a root
segment, the fields you name in the qualification statements
affect the starti~g point of DL/I's search for your segment. If
one or more of the sets don't include at least one statement
qualified on the key field of the root segment, Dl/I starts
searching for a segment that meets the qualification with the
first root segment occurrence of the hierarchy. But if all of the
sets have one or more statements qualified on the key field of the
root segment, then Dl/I uses the lowest key field value as the
starting place for its search. For example, if you included the
statement below, Dl/I would start its search with the root segment (/
occurrence with the key of 4: ~

ROOTKEYb>b06*FIELDbbb=bVALUE+ROOTKEYb=04*FIELDbbb=bVALUE

120 IMS/VS Appl i cat ion Programmi ng

)

USING COMMAND CODES

When DL/I processes a call containing multiple qualification
statements, it searches forward sequentially in the data base,
similar to the way it processes GN calls. DL/I examines each root
it encounters to determine whether or not the search can continue.

Note: In HDAM, root segments are not stored in key sequence, so
using multiple qualification statements for root segments in an
HDAM data base may not give the results you want. "HDAM and HIDAM
Data Bases" in Chapter 4 (Part 1), "Choosi ng a Data Base Type,"
explains this in more detail.

When you use multiple qualification statements segments that are
part of logical relationships, there are some additional
considerations. "How Logical Relationships Affect Your
Programming" explains these considerations.

The easiest way to understand multiple qualification statements
is to look at an example:

"Did we see patient 104120 during 1979?"

To find the answer to this question, you need to give DL/I more
than the patient's name; you want DL/I to search through the
ILLNESS segments for that pati ent, read each one, and return any
that have a date iri 1979. The call you would issue to do this is:

GU PATIENTb(PATNObbbEQ04120)
ILLNESSb(ILLDATEb>=01011979&ILLDATEb<=12311979)

In other words, you want DL/I to return any ILLNESS segment
occurrences under patient number 04120 that have a date after or
equal to January 1, 1979, and before or equal to December 31,
1979 ..

There are nine command codes that you can use in DL/I calls. What
they do for you, and when you might want them, really depends on
the processing you're doing. Command codes make it possible for
you to significantly change how your calls work.

You can use all the command codes except N with the get calls, and
you can use all of them except Nand P with ISRT. There is only one
command code you can use with REPL; and none of the command codes
are valid with DLET.

Retrieving and Inserting a Sequence of Segments: D

Using the D command code reduces the number of DL/I calls your
program issues, because it lets you retrieve or insert several
segments with one get or ISRT call. Calls with the D command code
are called "path calls." To use the D command code, your program
must have the P processing option specified in its PCB.

RETRIEVING SEGMENTS WITH D: When you use the D command code with
retrieval calls, DL/I places the segments that satisfy the SSAs in
the retrieval call in your I/O area. The segments in the I/O area
are placed one after the other, left to right, starting with the
first SSA you supplied. To have DL/I return each segment in the
path, you have to include the D command code in each SSA. You can,
however, have intervening SSAs without the D command code. You
don't have to include the D on the last segment in the path; DL/I
always returns the last segment in the path to your I/O area.

The D command code has no effect on DL/I's retrieval logic; the
only thing it does is to cause each segment to be moved to your
I/O area. If DL/I is unable to find the lowest segment you've
requested, DL/I returns a GE (not-found) status code, just as it
does if you don't use the D command code and DL/I is unable to
find the segment you've requested. This is true even if DL/I
reaches the end of the data base before finding the lowest segment

Chapter 6. Structuring the DL/I Portion of a Program 121

you requested. If OL/I reaches the end of the data base without
satisfying any levels of a path call, OL/I returns a GB status
code. But if OL/I returns one or more segments to your I/O area
~nd is unable to find the lowest segment requested, DL/I returns a
GE status cod~, even if OL/I has reached the end of the data base.

The advantages of using the 0 command code are significant enough
that even if you're not positive you'll need the dependent segment
returned by 0, sometimes it's worth using it. For example, suppose
there was only about ten percent chance that, after examining the
dependent segment, you would need to use the dependent segment.
It's still more efficient to issue the 0 command code so that you
have the segment if you need it, than it is to have to issue
another call for the segment when you don't use the 0 command
code.

As an example of the D command code, suppose you had this request:
"Compute the balance due for each of the clinic's patients by
subtracting the payments received from the amount billed and
print bills to be mailed to each patient."

To process this request, you need to know, for each patient, the
patient's name and address, what the charges are for the patient,
and the dollar amount of the payments that the patient has made.
You would issue this call until you received a GE status code
indicating that there were no more patient segments.

GN PATIENTb*D
BILLIHGb*D
PAYHENTbb

Each time you issued this call, your I/01area would contain the
patient segment, the billing segment, and the payment segment for
a particular person ..

INSERTING WITH D: With ISRT calls, you can use the D command code
to insert a path of segments at once. When you're using D with
ISRT you don't have to include the 0 for each SSA in the path; you
just specify the 0 on the first segment that you want OL/I to
insert. OL/I then inserts all the segments following that in the
path. You cannot use the 0 command code to insert segments if
there is a logical child segment in the path. "Processing Segments
in Logical Relationships" explains how logical relationships
affect your programming.

Retrieving and Inserting the First Occurrence: F

The F command code is an efficient tool to use, because it limits
the search for DL/I. You can use F for GN, GNP, and ISRT calls.
(There is no reason to use it with GU because a GU can back up i~
the data base anyway.) When you use F you are indicating to OL/I
that you want the search to start with the first occurrence of the
segment type you indicate under its parent in attempting to
satisfy this level of the call.

USING F WITH GN AND GNP: When you use the F command code with GN or
GNP, you are able to back up in the data base; something you can
only do with GU if you don't use F. When you use F, you can back up
to the first occurrence of the segment type that has current
position, or you can back up to a segment type that is before
current position in the hierarchy.

The only restriction is that the segment you're backing up to must
be in the same hierarchic path. DL/I disregards F when you supply
it at the root level and with a GU or GHU.

USING F WITH ISRT: When you use F with an ISRT (add) call, you are
indicating to DL/I that you want DL/I to insert the segment you've

(
I
\~

supplied as the first segment occurrence of its segment type. You (r
would only use F with segments that have either no key at all or a
nonunique key, and that have HERE specified for them Qn the RULES
operand of the SEGM statement in the OBD. If you've- specified HERE

122 IMS/VS Application Programming

)

\
)

in the DBD, the F command code will override this and DL/I will
insert the new segment occurrence as the first occurrence of that
segment type.

Retrieving and Inserting the Last Occurrence: L

The L command code is the opposite of the F command code: L
indicates to DL/I that you want DL/I to retrieve the last segment
occurrence, or that you want DL/I to insert the segment occurrence
you're supplying as the last occurrence of that segment type. Like
F, L simplifies your programming because you can go directly to
the last occurrence of a segment type without having to examine
the previous occurrences with program logic, if you know that it
is the last segment occurrence that you want. You should use the L
command code whenever appropriate. Again, DL/I disregards L if
you use it for a root segment. L is not disregarded with GU or
GHU, because you can use it to indicate to DL/I that you are
looking for the last occurrence of a segment type. Without the L,
this would not be ~bvious on a GU.

--;r USING L WITH RETRIEVAL CALLS: Using an L with GU, GN, and GNP
indicates to.DL/I that you want the last occurrence of the segment
type that satisfies the qualification you've provided. The
qualification is the SSA: either the segment type, or the
qualification statement as well. If you have supplied just the
segment type (an unqualified SSA), DL/I retrieves the last
occurrence of this segment type under its parent.

For example, suppose you had this request using the medical
hierarchy:

"What was the illness that brought Jennifer Thompson,
patient number 10345, to the clinic most recently?"

In this example, assume that RULES=LAST on ILLNESS. You would
issue the call below to retrieve this information:

GU PATIENTb(PATNObbb=bl034S1
ILLNESSb*L

The first SSA gives DL/I the number of the particular patient that
you're working with, and the second SSA asks for the last (in this
case, this is the first occurrence chronologically) occurrence of
the ILLNESS segment for this patient.

USING L WITH ISRT: You only use l with ISRT when the segment has
no key or a nonunique key, and the insert rule for the segment is
either FIRST or HERE. L overrides both FIRST and HERE.

Using Concatenated Keys in SSAs: C

You can use the C command code for all of the get calls and the
ISRT call. Using C indicates to DL/I that instead of a
qualification statement, you're supplying the concateriated key of
a segment as a means of identifying it. When you code the
concatenated key, you enclose it in parentheses following the *C,
in the same position that would otherwise contain the
qualification statement.

Using C is sometimes more convenient than a qualification
statement because it's easier to just use the concatenated key
than to move each part of the qualification statement to the SSA
area during program execution. Using the segment's concatenated
key is the equivalent of giving all of the SSAs in the path to the
segment qualified on their keys.

You can only have one SSA with a concatenated key per call; the
SSA containing the concatenated key must be the first SSA in the
call. DL/I returns an AM status code if the SSA with the
concatenated key is not the first SSA in the call.

Chapter 6. Structuring the DL/I Portion of a Program 123

setting Parentage Where You Want It: P (~
J
\

The P command code lets you set parentage at the level at which ~
you want it. Ordinarily, OL/I sets parentag~ at the level of the
lowest segment accessed during a call. When you use P in a
retrieval call, you can set parentage at a higher level than the
level at which OL/I would set it. You can only use P with the get
calls.

The parentage that you set with P works just like the parentage
that OL/I sets: it remains in effect for subsequent GNP calls, and
is not affected by ISRT, OLET, or REPL calls. It's only affected
by GNP if you use the P command code in the GNP call. Parentage is
destroyed by a subsequent GU, GHU, GN, or GHN.

Use the p'command code at only one level of the call. If you use P
in multiple levels of a call by mistake, OL/I sets parentage at
the level of the lowest call that includes P.

If OL/I cannot fully satisfy the call that uses P (for example,
DL/I returns a GE status code),· but the level that includes the P
is satisfied, the P is still valid. If DL/I cannot fully satisfy
the call including the level that contains the P, then DL/I
doesn't set any parentage at all. You would receive a GP (no
parentage established) if you then issued a GNP.

If you use P with a GNP call, OL/I processes the GNP call with the
parentage that was already set by preceding calls. O~/I then
resets parentage with the parentage you specified using P after
OL/I has satisfied the GNP call.

As an example of using the P command code, look at the example
below. The example uses the P command code with the 0 command
code.

"Send a current bill to all of the patients we
have seen this month."

In this request the determining value is in the ILLNESS segment;
you want to look at only patients whose ILLNESS segments have
dates after the first of the month. For the patients who have been
to the clinic during the month, you need to look at their
addresses and the amount of charges in the BILLING segment so that
you can print a bill. For this example, assume the date is March
31, 1980. You would issue the two calls below to process this
information:

GN PATIENTb*PD
ILLNESSbCILLDATEb>=03011980)

GNP BILLING

Once you locate a patient who has been to the clinic during the
month, you issue the GNP call to retrieve that patient's BILLING
segment. Then you repeat the GN call to find another patient who
has been to the clinic during the month until OL/I returns a GB
status code.

Using DL/I's Positions as Qualifications: U

As DL/I satisfies each level in a retrieval or ISRT call, OL/I
establishes a position on the segment occurrence that satisfies
that level. For example, suppose you want to find out about the
illness that brought a patient named Mary Warren to the clinic
most recently, and about the treatments that she received for that
illness. Figure 58 shows the PATIENT, ILLNESS, and TREATMNT
segments for Mary Warren.

124 IMS/VS Application Programming

(

(
\

'")

)

PATIENT

ILLNESS

TREATMNT

PATNO =
05810

ILLDATE =
04121980

DATE =
04181980

Figure 58. U Command Code Example

ILLDATE =
01201980

DATE =
04121980

To retrieve this information, you need to retrieve the first
ILLNESS segment and the TREATMNT segments associated with that
ILLNESS segment. To retrieve the most recent ILLNESS segment, you
can issue the GU call below:

GU PATIENTb(PATNObbb=bOS810)
ILLNESSb

After you issue this call, DL/I has position established at the
root level on the PATIENT segment with the key 05810, and on the
first ILLNESS segment with the key 04121980. Since it's possible
that there are other ILLNESS segments with the key 04121980, you
can think of this one as the first. The next thing you want to do
is to retrieve the TREATMNT segment occurrences associated with
that ILLNESS segment. You can do this by issuing the GH call below
with the U command code:

GN ILLNESSb~U
TREATHNTb

In this example, the U command code indicates to DL/I that you
want only TREATMNT segments that are dependents of the ILLNESS
segment on which DL/I has established position. Issuing the GH
call above the first time retrieves the TREATMNT segment with the
key of 04181980, and issuing the GH call the second time retrieves
the TREATMNT segment wi th the key 04121980. If you issue the call
a third time, DL/I retrieves a not-found status code. The U
command code tells DL/I that, if it does not find a segment that
satisfies the lower qualification under this parent, it cannot
continue looking under other parents.

Qualifying the Search on the current Path: v

When you use the V command code, it's as though you had included a
U command code in each of the SSAs above the SSA that includes the
V. You use V to indicate to DL/I that you want each of the segment
occurrences in the path to the segment you're retrieving or
inserting to be part of the qualification for that segment.

Preventing a segment from Being Replaced: N

You use the H command code only with REPL calls. You use it when
you are going to replace a path of segments that you have
retrieved with a get hold call. If there is a segment in the path
of segments that you do not want to replace, you can use the N

Chapter 6. Structuring the DL/I Portion of a Program 125

command code to indicate to DL/I which of the segments you haven't
changed, and therefore don't need to be replaced. The N command
code is a good performance tool because, if you are not going to
change any of the segments in the path, you can indicate this to
OL/I so that OL/I doesn't needlessly replace the same segment.

Reserving a Place for Command Codes: Null

There is one more value that you can use as a command code in
SSAs: null. If you use a null ("-") in an SSA with which you
normally use a command code, you can subsequently substitute the
command code you want without having to change the SSA. This
method simplifies maintenance of SSAs using command codes,
because you can set aside a fixed number of bytes for command
codes. Then, you can turn them on and off by using the hyphen.

USING PARALLEL PROCESSING

Sometimes during your processing, you need to maintain two or more
independent positions in one hierarchic path or one data base
record. For example:

• Suppose you have to reread a segment before replacing it and
you have to access another segment between the get hold call
and the REPL call. If you don't have away to keep both places
in the data base (and to save the get hold call so that DL/I
doesn't cancel it), you have to reissue the get hold call
before you can successfully issue the REPL call.

• Suppose you need to save your place in multiple data base
records. You need to look at the data in one segment before
you know what segment you want to look at next. If you can't
hold your place in both records, then you have to continuallY
save the segments and reissue calls for them.

Using one of/the methods below saves you from having to keep
issuing GU calls to switch back and forth from one data base
record or hierarchic path to another in order to reestablish
position.

Using Multiple DB PCBs

The easi est way to do thi sis to use two or more PCBs for the same
hierarchic view. When a program has multiple PCBs, it usually
means that the program accesses several data bases, but this can
mean that you need several positions in one data base record. To
DL/I, each time you reference a different PCB, this is like
referencing a different data base, so OL/I maintains a position
for you in each data base represented by a PCB.

Multiple PCBs can keep your position in more than one hierarchic
path and in more than one data base record. When you use multiple
PCBs, you can save your place in one data base record or
hierarchic path by using the second PCB in the next call. For
example, suppose you were processing the data base record for
Patient A, then you wanted to look at the record for Patient B,
but be able to come back to your position for Patient A. If your
program was using multiple PCBs for the medical data base, you
would issue the first call for Patient A using PCBl, then issue
the next call, for Patient B, using PCB2. To return to Patient A's
record, you would issue the next call using PCBl and you would be
back where you left off in that data base record.

Using Multiple positioning

(
\.

The other way to save your place in a hierarchic path is to use (
multiple positioning. Multiple positioning is an option that you
can specify on the POS parameter of the PCB statement in the PSB
for your application program. One of the main differences between

126 IMS/VS Application Programming

)

)

)

using multiple PCBs and multiple positioning is that with
multiple PCBs you can maintain separate positions in two or more
data base records or in two or more hierarchic paths; but with
multiple positioning you can keep multiple positions only in
multiple hierarchic paths. You can't keep separate positions in
multiple data base records.

You should always use qualified SSAs with multiple positioning
because without them you can't indicate to Dl/I which path
contains the segment you want. If you want to sequentially process
the segments in the hierarchy, but are using multiple
positioning, Dl/I will satisfy each subsequent GN call by using
the current position established by the previous call.

You can reset the position for any path by issuing a GU call to a
new root segment, or, to reestablish position in the data base
record you've been processing, to the root segment you've been
using.

PROGRAMMING GUIDELINES

Once you have a general call sequence mapped out for your program,
look over the guidelines on call sequence in this section to see
if you can improve the sequence. Sometimes you can find a way to
avoid issuing one or two calls in your program by making better
use of command codes, the PCB mask, and parallel processing.
Usually an efficient call sequence causes efficient internal Dl/I
processing.

• Use the simplest call. Qualify your calls to narrow the search
for Dl/I, but don't use more qualification than you have to.
For example, Boolean operators and some of the command codes
increase the complexity of your program without noticeably
i'mproving its efficiency.

• Always use the call or sequence of calls that will give Dl/I
the shortest path to the segment you want.

• Use the fewest number of calls possible in your program. Each
Dl/I call your program issues uses system time and resources.
The first thing to do when you look at call sequence is to
determine whether or not you can eliminate any calls. These
are some ways in which you may be able to do this:

Use the D command code if you're retrieving more than one
segment in the same path. If you are using more than one
call to do this, you are issuing unnecessary calls. The D
command code retrieves multiple segments with only one
retrieval call. The same goes for inserting, replacing,
and deleting segments. When you insert segments, use the
D command code to insert a whole path of segments. If you
have to delete or replace a path of segments, retrieve
them with a get hold path call, then issue one DLET or
REPl call to update them. Use the N command code if you
need to.

If your program retrieves the same segment more than once
during program· execution, you are issuing an unnecessary
call. You can change the sequence so that your program
saves the segment in a separate I/O area, then gets it
from that I/O area the second time it needs the segment.

Ant i c i pate and el i mi nate needless and nonproduct i ve
calls, such as calls that result in GB, GE, and II status
codes. For example, if you're issuing GNs for a
particular segment type and you know how many occurrences
there are of that segment type, don't issue the GN that
will result in a GE status code. You can keep track of the
number of occurrences your program retrieves, then
continue with other processing when you know you have
retrieved all of the occurrences of that segment type.

Chapter 6. Structuring the Dl/I Portion of a Program 127

If you retrieve a dependent segment and its parents, but
you only need the keys of the parents (instead of the
whole segments), all you have to do is to issue a call for
the dependent. Dl/I returns the concatenated key for each
segment to the key feedback area of the PCB. To use the
keys of the parents, you have to know the length of each
of the keys so that you can know where one key stops and
the next key begins.

When you're inserting segments, you can't insert
dependents unless the parents exist. But instead of
issuing get calls for the parents to make sure that they
exist, you can save calls by issuing an ISRT call with a
fully qualified SSA for each parent. If DL/I returns a GE
status code, at least one of the parents doesn't exist.
You can then check the PCB mask to determine which parent
doesn't exist.

If you're trying to find a particular segment, use
qualified SSAs instead of retrieving several segments and
using program logic to find out if that's the segment you
want. It's more efficient to let DL/I do as much of the
searching as possible for you.

• Keep the main section of the program logic together. For
example, branch to conditional routines, such as error and
print routines, in other parts of the program, instead of
having to branch around them to continue normal processing.

• Use call sequences that make good use of the physical
placement of the data. In other words, access segments in
hierarchic sequence as much as possible. Avoid moving
backward in the hierarchy. To use the physical placement of
segments in the data base, you need to know these things about
the data base:

data base volumes

dependent segment frequencies

where logical relationships exist and what the logical
linkage paths are

• Process data base records in order of the key field of the
root segmQnts. (For HDAM data bases, this order depends on the
randomizing routine that is used. Check with your DBA for this
information.) .

• Try to avoid constructing the logic of the program and the
structure of calls in a way that depends heavilY on the data
base structure. Depending on the current structure of the
hierarchy takes a lot of flexibility away from the program.

• If your program calls other programs that are OS/VS subtasks
of your application program, these programs should not issue
Dl/I calls. Attaching a region controller to an application
program is your installation's responsibility.

CHECKING STATUS CODES

To give you information about the results of each call, Dl/I
places a 2-character status code in your program's PCB after each
Dl/I call your program issues. Your program should check the
status code after every Dl/I call it issues. If it doesn't, it can
continue processing even though the last call caused an error. How
your program tests the status code depends on the type of call
just issued. What you want to do is to test for the status codes
that indicate exceptional conditions. There are some status codes

~
I

\ ,

that you can expect for certain calls. If you find that DL/I has (
returned a status code code other than one you had expected, you
should branch to an error routine.

128 IMS/VS Application Programming

)

)

)

When DL/I returns two blanks after a call (indicated as "bb" in
thls manual) the call was completely successful. Your program
should always check for this status code before any of the others
for every call. It means that you can continue processing without
any further action.

EXCEPTIONAL CONDITIONS

ERROR ROUTINES

Some status codes do not necessarily mean that your call was
successful or unsuccessful; they just give you information about
the results of the call. Your program will have to use this
information to determine what to do next. What these
informational status codes are depends on the call.

For example, if your program is sequentially processing the data
base using GN calls, you can expect, at some point, to reach the
end of the data base. DL/I returns the status code GB to indicate
this to you. In this case, your program should test first for
blanks, then for"a GB in the DB PCB after each GN call.

In a typical program, the status codes that you should test for
apply only to the get calls. There are status codes that can
indicate exceptional conditions for other calls; the most common
exceptional conditions are GA, GB, GE, and GK. When your program
is retrieving segments, these are situations that you should
expect and for which you should provide other routines than error
routines.

GA GA means that DL/I has returned a segment, but that the
segment is at a higher level in the hierarchy than the last
segment returned was. DL/I returns GA only for unqualified
GNs.

GB GB means that DL/I reached the end of the data base while
trying to satisfy a GN and did not return a segment to your
program's I/O area.

GE GE means that DL/I could not find the segment you asked for.
You can receive a GE after a GU, a GN, or a GNP.

GK GK means that DL/I has returned a segment that satisfies an
unqualified GN or GNP, but the segment is of a different
segment type (but at the same level) than the last segment
returned. .

What your program does after receiving one of these calls depends
on your particular program. If you are processing a data base
sequentially and you receive a GB, this tells you that you have
finished processing and you would probably want to terminate.

If, after checking for blanks and exceptional conditions in the
status code, you find that there has been an error, your program
should branch to an error routine and print as much information as
possible about the error before terminating. You should print the
status code as well. Some of the information that can be helpful
in finding out about the error is the call that was being executed
when the error occurredi the SSAs and command codes, if any, that
the call included; and the contents of the DB PCB.

There are two kinds of errors that can occur in your program. The
first kind--programming errors--are usually your responsibility;
they're the ones you can find and fix. These errors are caused by
things like an invalid SSA, an invalid call, or an I/O area that
is too long. The other kind of error is not usually something you
can fix; this is a system or I/O error. When your program has this
kind of error, you will usually have to ask the system programmer
or the equivalent specialist at your installation for help.

Chapter 6. Structuring the DL/I Portion of a Program 129

TAKING CHECKPOINTS

Because every application program should have an error routine
available to it, and because each installation has its own ways of
finding and debugging programs, installations usually provid~
their own standard error routines.

If you don't have one available to you, the assembler language
rout~ne ~n "Appendix E. Sample Status Code Error Routine
(DFSOAER)" is provided as a sample routine. This routine is part
of the IMS/VS Primer function that is included with IMS/VS.

To call this sample routine, your program issues a call similar to
a DL/I call. In the call you must specify a label that identifies
the DL/I call that preceded the error call. You can specify nine
areas in your program that you want the rout~ne to print. The
routine will print the f~rst 76 characters in each area. Your call
must specify one area; the other eight are optional.

Batch programs should issue checkpoint calls so that they can be
restarted from a place other than the beginning of the program.
This is important if your program terminates abnormally, or if the
system goes down while your program is executing. This is
particularly important in long-running batch programs because it
means that the program can pick up processing where it left off
instead of having to duplicate the processing it has already done.
Avoiding duplicate processing in these situations can save a lot
of time and resources.

Checkpoint calls must refer to the I/O PCB, so you must have the
compatibility option (CMPAT=YES) specified for your program in
your program's PSB. When you specify this option, IMS/VS gives
your batch program a dummy PCB that acts as an I/O PCB.

The decisions involved in taking checkpoints have effect beyond (
your own application program. Because checkpoints are a big part ~
of an installation's recovery plan, installations usually
establish checkpoint standards for application programs in these
areas:

• Which checkpoint call touse--symbolic or basic

• Which areas of your program to checkpoint if you use symbolic
checkpoint and restart

• The type of checkpoint ID to use

• How often to issue checkpoints in your program

There are two checkpoint calls you can use: basic and symbolic.
The mnemonic for both of them is "CHKP". When you use symbolic
CHKP there is a call that you issue to restart your program. The
mnemonic for this call is "XRST".

Unless your program accesses OS/VS files that cannot be converted
to GSAM, you should use symbolic checkpoint and restart.
"Identifying Recovery Requirements"explains what is involved in
this high-level decision. This decision, more than any of the
others involved in taking checkpoints, is usually an installation
standard. Regardless of which checkpoint call you use, you must
use only that kind of checkpoint call in your program; you cannot
mix basic and symbolic checkpoint calls.

When your program issues either checkpoint call, IMS/VS does
three things:

• Writes all modified data base buffers to DASD.

• Writes a log record containing the checkpoint identification
given in the call to the system log tape. To print the
checkpoint log records, you can use an IMS/VS utility called
the File Select and Formatting Print Program (DFSERAI0). With

(

130 IMS/VS Application Programming

\,
)

)

CHECKPOINT IDS

----------------------------_. __ .. _---------

•

this utility you can select and print log records on the basis
of their type, the data they contain, or their sequential
positions in the data set. Checkpoint records are type 18 log
records. The IMS/VS Utilities Reference Manual describes this
program in Chapter 9, "log Data Formatting Utilities."

Sends a message containing the checkpoint identification
given in the call to the system console operator and to the
master terminal operator.

Each checkpoint call your program issues must have an
i dent i fi cat ion, or 10. One of the parameters of both kinds of
checkpoint calls is the address in your program of this 10.
Checkpoint IDs must be 8 bytes long. Because IMS/VS uses this ID
as a means of identifying the checkpoint to the MTO and on the
system log, checkpoint IDs should be EBCDIC characters.

When you want to restart your program, you must supply the 10 of
the checkpoint from which you want the program to be started. This
10 is important because when your program is restarted, IMS/VS
then reads the system log tape forward and searches for a
checkpoint log record with an 10 matching the one you have
supplied. The first matching 10 that 1MS/VS encounters becomes
the restart point for your program. This means that checkpoint IDs
must be unique both within each application program and among
application programs. If checkpoint IDs are not unique, you can't
be sure that IMS/VS will restart from the checkpoint you wanted.

One way to make sure that checkpoint IDs are unique within and
among programs is to use IDs made up of the following:

•

•

3 bytes of information that uniquely identify your program,
followed by

5 bytes of information to serve as the 10 within the program,
for example, a value that is incremented by one for each
checkpoint call, or a portion of the system time obtained at
program start by issuing the TIME macro

WHERE TO USE CHECKPOINTS

The whole idea of issuing checkpoint calls is to indicate to
1MS/VS that you have completed a unit of work and have reached a
synchronization point in your processing. The best place to issue
a checkpoint call is right after you complete a unit of work,
before you start the next one. Since a GU call usually starts a
new unit of processing, issuing a checkpoint call just before a GU
is a good idea. Another reason to issue a checkpoint call just
before a GU is that a checkpoint call makes you lose your position
in the data base. Your current position in the data base after a
successful checkpoint call is just before the first root segment
occurrence in the hierarchy. You must reestablish your position
in all data bases (except GSAM) after each checkpoint call.

The first call your program issues should be a checkpoint call (or
second, if you're using symbolic CHKP and XRST. This is explained
below.). If your program doesn't issue a checkpoint call until
after it has finished the first unit of work, but then terminates
abnormally before it reaches the first checkpoint call, it would
have to duplicate the processing it had already done.

HOW OFTEN TO USE CHECKPOINTS

How often you issue checkpoints in your program depends on the
type of processing your program does; there are no hard and fast
rules, but there are some guidelines. You should specify
checkpoint frequency in your program in a way that makes the
frequency easy to modify in case the frequency you specify

Chapter 6. Structuring the Ol/I Portion of a Program 131

SYMBOLIC CHKP

USING XRST

initially is too high or too low. Some examples of ways to do this
are: (~

• Use a counter in your program to keep track of eiapsed time
and issue a checkpoint call after a certain time interval.

• Use a counter to keep track of the number of root segments
your program accesses. Issue a checkpoint after a certain
number of root segments.

• Use a counter to keep track of the number of updates your
program has performed. Issue a checkpoint after a certain
number of updates.

The main thing to consider when you decide how often to issue
checkpoints is how long it would take to back out and reprocess
each unit of work if you had to. A general recommendation is one
checkpoint call every ten minutes. IMS/VS will back out your
program to the specified checkpoint 10, or to the most recent
checkpoint if you haven't supplied a checkpoint 10.

A symbolic CHKP does two things for you that a basic CHKP does
not. It can record as many as seven data areas of your program
that you specify in the CHKP call, and it works with the XRST call
to restart your program.

To indicate to IMS/VS the areas of your program that you want
saved, you give the addresses of the areas as parameters in the
symbol i c CHKP. All of these areas are opti onal. The address of the
I/O area containing the checkpoint 10 for the call is required.
Some areas you might want to record are counters, control
information, and totals from your processing data. IMS/VS records
these areas on the system log as special records and restores them ;'
to the recorded values when you restart your program. The address
of the I/O area containing the checkpoint 10 is required on the ~
CHKP call. "Symbolic CHKP and XRST Call Formats" shows how you
code the CHKP call.

Only programs that use symbolic CHKP can issue XRST. XRST is
required in these programs. The XRST call must be the first· call
your program issues. This is the only time your program issues it.
Batch programs should issue a CHKP call immediately after the XRST
call. This is so that is your program terminates abnormally before
reaching the first CHKP call, you can still restart and back out
the data base updates from the beginning of the program.

When you are starting your program normally, XRST is simply a
signal to IMS/VS that you are using symbolic, not basic, CHKP in
the program. At this time, the I/O area pointed to in the XRST
call must contain blanks. Your program should test this area after
issuing XRST. IMS/VS does not change the area when you're starting
the program normally.

You should also check the status code in the I/O PCB after issuing
the XRST call. The only successful status code for a XRST call is
a blank status code .. You can also get an AO status code for a
restart call. AO means that the call function is invalid. This is
the only error status code IMS/VS returns after a XRST call. If
IMS/VS detects any other kind of error while processing the XRST
call, it terminates your program abnormally.

To restart your program, you have to give IMS/VS the checkpoint 10
from which you want the program restarted. You do this in the PARM
fi eld of the EXEC statement in the JCL. IMS/VS places thi s ID in (
the I/O area pointed to by the XRST call. IMS/VS then reads
forward on the system log tape defined in the //IMSlOGR 00
statement and searches for the checkpoint records with the 10 you

132 IMS/VS Application Programming

BASIC CHKP

')
/

)

supplied. You must add the //IMSlOGR DD statement to the JCl for
the batch region. When it finds this 10, IMS/VS restores the areas
you spec if i ed in symbo 1 i c CHKP and XRS T. "S~'mbo 1 i c CHKP and XRS T
Call Formats" shows how you code the XRST call.

After your program has issued the XRST call and is being
restarted, your program must establish position in the data base
in order to keep processing. To do this, you can retrieve, from
the key feedback area of the DB PCB, the identity of the last
segment occurrence that was processed. Then, you can issue a GU,
specifying the SSA that points to that occurrence. (This does not
apply to GSAM data bases; IMS/VS repositions GSAM data sets for
sequential processing.)

It is possible for the segment occurrence identified in the DB PCB
to have been deleted by another application program between the
time your program terminated abnormally and the time when you
restarted your program. If the record is not found, IMS/VS will
not prime the key feedback area with the key of the last-processed
record. You should include code in your program to handle this
situation. For example, if you want to continue by processing the
next sequential segment occurrence, you can issue a GU with th SSA
qualified with the greater-than-or-equal-to (>= or => or GE) the
last-processed key.

If you want to use your own restart method, you can use XRST to
reposition GSAM data bases by placing the checkpoint ID in the I/O
area before you issue the XRST call. You can supply either the
checkpoint 10 or the 12-byte YYDDD/HHMMSS 10. If you supply both
the parameter specification and the work area specification,
IMS/VS will use the parameter specification.

The only reason to use basic CHKP instead of symbolic CHKP is if
your program accesses OS/VS files that cannot be converted to
GSAM. (Symbolic CHKP can checkpoint GSAM' data bases, but not OS/VS
files. Basic CHKP is just the opposite.) Symbolic CHKP is better
than basic CHKP because basic CHKP does not let you checkpoint
additional areas of your program, and it cannot work with the XRST
call.

The only way to restart your program with basic CHKP is to use the
OS/VS option on the call. This option lets you request an OS/VS
checkpoint and subsequently use OS/VS restart. If you do not use
OS/VS restart, then you have to supply your own method of restart.
You cannot use the XRST call with basic CHKP. "Basic CHKP Call
Format" shows how you code the basic CHKP call.

There is a disadvantage to using OS/VS restart, however: you
cannot change your program between the time it terminates
abnormally and the time you restart it. So, if it terminates
abnormally because of a programming error, OS/VS checkpoint and
restart won't help too much, because you can't fix the problem
before restarting the program.

To indicate to IMS/VS that you want to use OS/VS checkpoint, you
use one of the parameters on basic CHKP and supply data set DD
cards. IMS/VS issues the OS/VS checkpoint of your region, and then
takes its own checkpoint. You can specify one or two DD names. The
'names of the DCBs that IMS/VS suppl i es are CHKDD and CHKDD2. If
you specify both, they are used alternately, giving you the
advantage of saving the two most recent checkpoint data sets
instead of only the most recent one. Each OS/VS checkpoint record
overrides the one preceding it. Batch programs written in
assembler can specify their own DCBs.

If IMS/VS receives a return code other than 0 or 4 from OS/VS,
your application program will be abnormally terminated with a
code of 0475. This means that IMS/VS failed while processing a
batch program that requested an OS/VS checkpoint. See the IMS/VS
Messages and Codes Reference Manual for more details.

Chapter 6. Structuring the Dl/I Portion of a Program 133

When restarting your application program under OS/VS restart,
follow the OS/VS restart procedures with the following
restrictions:

• You cannot make program changes between the time of the
failure and the restart.

• At restart for VSl, the same address space must be available.

• OS/VS does not reposition DASD files.

Note: If a BMP requesting OS/VS checkpoints uses the OS/VS timer
by issuing OS/VS STIMER macros, the program should issue the OS/VS
TTIMER CANCEL macro before requesting the OS/VS checkpoint. If
the program must restart the timer between OS/VS checkpoints, the
program should issue a TTIMER CANCEL macro before each OS/VS
checkpoint, and an STIMER macro after each OS/VS checkpoint. If
you use the STIMER macro in a BMP, you must also set the STIMER
parameter in the IMSBATCH procedure to '0. This turns STIMER off
until you reset it in your program. OS/VS2 MVS Supervisor Services
and Macro Instructions describes these macros.

In general, IMS/VS application programs should avoid issuing
OS/VS STIMER macros. The reason for this is that IMS/VS uses
STIMER for control purposes. If an application program issues an
STIMER before the time interval set by the IMS/VS STIMER has
expired, the application program's STIMER cancels the STIMER
issued by IMS/VS. MVS then resets the time interval for IMS/VS,
and the results are unpredictable.

If, for some reason, your program must use STIMER, you need to set
the STIMER parameter to O. This means that you don't want IMS/VS
to issue STIMERs. When you do this, there is no IMS/VS timing
during the scheduling of your application program. For an MPP, you
set the STIMER parameters in the DFSMPR procedure; for a BMP, you
set the STIMER parameter in the IMSBATCH procedure; and for a Fast
Path program, you set the STIMER parameter in the IMSFP procedure. (

~

USING SECONDARY INDEXING AND LOGICAL RELATIONSHIPS

In addition to all of the DL/I calls and system service calls
described in this chapter, DL/I has some techniques available
that give you more flexibility in how your program views the data.
The decision about whether or not to use these options is made by
the DBA. Secondary indexing and logical relationships are
techniques that can change your application program's data
structure. Examples of when you use these techniques are:

• If an application program needs to access a segment type in a
sequence other than the sequence specified by the key field,
secondary indexing can be used. Secondary indexing can also·
change the application program's view of the hierarchic
structure or access based on a condition in a dependent
segment.

• Logical relationships allow an application program to
establish relationships between segments in different data
bases. The use of logical relationships provides the
application program with a logical structure that may contain
segments from more than one data base.

What you need to know about each of these. techniques, when you
design a program that uses them, is why they might be used, and
how each of them affects the way you design your program.

HOW SECONDARY INDEXING AFFECTS YOUR PROGRAM

One of the situations in which someone designing a data base might (
choose to use a secondary index occurs when an application program
needs to select data base records in a sequence other than that
defined by the root key. Since DL/I stores root segments in the

134 IMS/VS Application Programming

\
)

)

sequence of their key fields, the program that was not accessing
root segments in the order of their key fields would not be a very
efficient program. You can index any field in a segment; you do so
by defining an XDFLD statement for the field in the DBD for the
data base. If the call isn't qualified on the key, but uses some
other field, DL/I has to search all of the data base records to
find the correct record. With secondary indexing, DL/I can go
directly to a record based on a field value that is not the key
field. "Using a Different Key" explains why you use secondary
indexes and gives some examples. This section explains how
secondary indexing affects your programming.

Using SSAs with secondary Indexes

XDFLD

If your program uses a secondary index, you can use the name of an
indexed field to qualify your SSAs. When you do this, DL/I tries
to satisfy your call by going directly to the secondary index and
finding the pointer segment with the value you specify. Then it
locates the segment that the index segment points to in the data
base and returns the segment to your program.

To use an indexed field name in the qualification statement of an
SSA, follow these guidelines:

• The indexed field must be defined in the DBD for the primary
data base. This is done in the XDFLD statement during DBD
generation.

• Use the name that has been given on the XDFLD statement as the
field name in the qualification statement.

• Specify the secondary index as the processing sequence during
PSB generation for your program. This is done by specifying
the name of the secondary index data base on the PROCSEQ
parameter on the PCB for the data base during PSB generation.

Also, if you modify the XDFLD of the indexed segment (using the
REPL call), any parentage that you had establi5hed before issuing
the REPL call is lost after you issue REPL. The key feedback area
is no longer valid after a successful REPL call.

For example, if you index the PATIENT segment on the NAME field,
you define it in the DBD for the medical data base. You use the
XDFLD statement for this. If the name of the secondary index data
base is INDEX, you specify PROCSEQ=INDEX in the PCB. Then, to
issue an SSA that identifies a PATIENT by the NAME field instead
of PATNO, you use the name that you've specified on the XDFLD
statement. If the name of the XDFLD is XNAME, you use XNAME in the
SSA. This is illustrated in Figure 59.

In the DBD: In the PSB: In the program:

NAME=XNAME PROCSEQ=INDEX GU PATIEHTb(XNAMEbbb=bJBBROKEbbb)

Figure 59. Using an SSA with Secondary Indexing

What DL/I Returns with a Secondary Index

In the example above, the PATIENT segment that DL/I returns to the
application program's I/O area looks just as it would if you
hadn't used secondary indexing. The DB PCB key feedback area,
however, contains something different. The concatenated key that
DL/I returns is the same except that, instead of giving you the
key of the segment you requested (the key of the PATIENT segment),
DL/I gives you the key of the pointer segment (the segment in the
INDEX data base). DL/I places this key in the position where the

Chapter 6. Structuring the DL/I Portion of a Program 135

root key would be located if you had not used a secondary
i ndex-i n the left-most bytes of the key feedback area. "Usi ng .a (-
Different Key" gives some examples of this. I

If you try to insert or replace a segment that contains a
secondary index source field that is a duplicate of one already
reflected in the secondary index, DL/I returns an NI status code
to you.

PROCESSING SEGMENTS IN LOGICAL RELATIONSHIPS

Sometimes an application program needs to process a hierarchy
made up of segments that already exist in two or more separate
data base hierarchies. Logical relationships make it possible to
establish hierarchic relationships between these segments. When
you use logical relationships, the result is a new hierarchy-one
that doesn't exist in physical storage, but can be processed by
application programs as though it does. This type of hierarchy is
called a logical structure.

An advantage of using logical relationships is that programs can
access the data as though it exists in more than one hierarchy,
but it's only stored in one place. An alternative to using logical
relationships when two application programs need to access the
same segment through different paths is storing the segment in
both hierarchies. The problem with this is that you have to update
the data in two places to keep it current.

Processing segments in logical relationships isn't very different
from processing other segments. "Creating a New Hierarchy:
Logical Relationships" explains the application requirements that
logical relationships can satisfy. This section uses the example
about the inventory application program that's explained in that
section to explain how processing segments that are part of
logical relationships affects your programming.

In this example, the hierarchy that an inventory application
program needs to process contains four segment types:

• An ITEM segment containing the name and an identification
number of a medication that is used at a medical clinic

• A VENDOR segment that contai ns the names and addresses of
vendors that supply the item

• A SHIPMENT segment that contains information such as quantity
and date for each shipment of the item that the clinic
receives

• A DISBURSE segment that contains information about the
disbursement of the item at the clinic, such as the quantity,
the date, and the doctor that prescribed it

The TREATMNT segment in the medical data base used throughout this
chapter contains the same information that the inventory
application program needs to process in the DISBURSE segment.
Rather than store this information in both hierarchies, you can
define a logical relationship between the SHIPMENT segment in the
item hierarchy and the TREATMNT segment in the patient hierarchy.
Doing this makes it possible to process the TREATMNT segment
through the item hi erarchy as though it's a chi ld of SHIPMEtH.
TREATMNT then has two parents: ILLNESS is TREATMHT's physical
parent, and SHIPMENT is TREATMNT's logical parent. There are
three types of segments involved in a logical relationship.
ILLNESS, SHIPMENT, and TREATMNT (called DISBURSE in the item
hierarchy) are the three segments that this logical relationship
affects. Figure 60 shows the item hierarchy on the right. The
SHIPMENT segment points to the TREATMNT segment in the patient
hierarchy shown on the left. (The patient hierarchy is part of the
medical data base.)

136 IMS/VS Application Programming

r
\,

(

)

)

/
/

/
/

Figure 60. Patient and Item Hierarchies

There are three types of segments in a logical relationship:

• TREATMNT is called a logical child segment. It's a physical
dependent of ILLNESS, but it can be processed as though it's a
dependent of SHIPMENT. The logical child segment is the
segment that can be accessed through both hierarchies, but is
stored in only one place.

• ILLNESS is called the physical parent segment. The physical
parent is the parent of the logical child in the physical data
base hierarchy.

• SHIPMENT is called the logical parent segment. It's the
parent of the logical child in the logical structure.

Because a logical child segment has two parents, there are two
paths through which a program can access it.

• When a program accesses it through the physical path, that
means it reaches it through the segment's physical parent.
Accessing the TREATMNT segment through ILLNESS is accessing
it through its physical path.

• When a program accesses the logical child through the logical
path, that means it reaches the segment through the segment's
logical parent. Accessing the TREATMNT segment through
SHIPMENT is accessing through its logical path.

How Logical Relationships Affect Your programming

The calls you issue to process segments in logical relationships
are the same calls that you use to process other segments.
Processing segments in logical relationships is different from
processing other segments in the way the logical segment looks in
your I/O area, what the DB PCB mask contains after a retrieve
call, and how you can replace, delete, and insert physical and
logical parent segments. Because it's possible to access segments
in logical relationships through the logical path or the physical
path, the segments have to be protected from being updated by
unauthorized programs. When the DBA defines the logical
relationships, the DBA defines a set of rules that determine how
the segments can be deleted, replaced, and inserted. Defining
these rules is a data base design decision. If your program
processes segments in logical relationships, you should have the
following information from the DBA (or the person at your
installation responsible for data base design):

• What segments will look like in your I/O area when you
retrieve them

Chapter 6. Structuring the DL/I Portion of a Program 137

• Whether or not your program is allowed to update and insert
segments

What to do if you i~ceive a DX, DV

"'"
__ TV _.1._.&. .. ___ -'_
UI ~" ~~a~u~ ~uu~

There is also something you should know about inserting a logical
child segment. If you insert the logical child segment through the
physical path, your I/O area has to contain the concatenated key
of the logical parent, followed by the logical child segment. If
you insert the logical child segment through the logical path,
your I/O area has to contain the concatenated key of the physical
parent, followed by logical child data.

If you use multiple qualification statements in a call to retrieve
a concatenated segment, you can include field names in the
qualification statements of either of the two physical segments
that make up the concatenated segment. But if you include the key
field of the logical parent, Dl/I treats it as a data field, and
does not use it as a sequence field. This is because Dl/I doesn't
look at the logical parents in sequence when accessing them
through a logical child.

status Codes for Logical Relationships

These are status codes that apply specifically to segments
involved in logical relationships. These are not all of the status
codes that you can receive when processing a logical child segment
or a physical or logical parent; there are others that you can
receive for these segments for the same reason that you receive
them in other situations (for example, a GE status code). If you
receive one of these status codes, it means that you are trying to
update the data base in a way that you're not allowed to. You
should check with the DBA, or the person responsible for
implementing logical relationships at your installation, to find

(
"

out what the probl em is. ,/

DX Dl/I did not delete the segment because the physical delete I~
rule was violated. If the segment is a logical parent, is
still has active logical children. If the segment is a logical
child, it has not been deleted through its logical path.

IX You tried to insert either a logical child segment or a
concatenated segment. If it was a logical child segment, the
corresponding logical or physical parent segment doesn't
exist. If it was a concatenated segment, either the insert
rule was physical and the logical or physical parent doesn't
exist, or the insert rule is virtual and the key of the
logical or physical parent in the I/O area doesn't match the
concatenated key of the logical or physical parent.

RX The physical replace rule has been violated. The physical
replace rule was specified for the destination parent and an
attempt was made to change its data. When a destination parent
has the physical replace rule, it can be replaced only through
the physical path.

PLANNING AHEAD FOR BAlCH-lO-BMP CONVERSION

A batch message program, abbreviated "BMP", is a batch program
that runs onl i ne. -You can have a program that runs as a batch
program or a BMP; you just have to code checkpoints in a way that
makes them easy to modify because batch programs require fewer
checkpoints than BMPs. It has characteristics of both batch
programs and message processing programs (MPPs). like batch
programs, a BMP is started by JCl and can access OS/VS files. like
MPPs, BMPs can access the message queues and they access onl i ne
data bases.

There are boJo kinds of BMP s: batch-o r i ented and (
transaction-oriented. Both can send output to the message queue. \
A batch-oriented BMP is just a batch program that accesses online

138 IMS/VS Application Programming

\
)

)

\
)

data bases at the same time that other BMPs and MPPs are accessing
the same data bases. What makes a transaction-oriented BMP
different is that it can access the message queue for its input.
This means that an MPP can gather processing requests and send
them to a message queue for a BMP to process when all of the
requests are collected.

There are a lot of reasons why you might want to convert a batch
program to a BMP. Some common reasons are:

• You want to run more than one batch program against the same
data base.

•

When you run a'batch program, there are no other batch
programs accessing the data base at the same time. This is
because DL/I has no way of protecting the data from the errors
that can occur if two programs are updating the data base
concurrently. For example, if program A updates segment 1,
but terminates abnormally, then program B uses the incorrect
data in segment 1, and its results will be incorrect. If you
have several batch programs to run, this can take a lot of
time.

When a BMP accesses the data base, however, it does it through
the IMS/VS control region. The control region controls which
programs access and update which segments. It puts a hold on
the segments that a BMP or MPP updates until the BMP or MPP
indicates that the results are valid. This means that several
programs can access the same data bases at once, because
IMS/VS will make sure that program B cannot use segment 1
until program A has indicated that the results are correct.
Even if program A terminates abnormally soon afterward, if
program A has indicated that its update of segment 1 is
accurate, other programs can use this segment.

There is not enough offline time to run your batch program .

As an installation develops more and more applications for
IMS/VS, sometimes there may be less and less offline
time--the time that the online system is not up--to do the
batch processing. Converting the batch program to a BMP, so
that it too can be run online, solves this problem.

• The batch program needs access to data that is in online data
bases.

A batch program cannot access online data bases. The control
region handles all access to online data bases, and batch
programs do not use the control region. Converting the batch
program to a BMP makes it possible for it to access online
data bases.

• Users need the data to be more current.

Since you can't run a batch program until the online system is
down (usually during the night or on weekends), the updates
that the batch program performs are not in the data base until
that time. This means that people using the data base are
using data that is not current. If you convert the batch
program to a BMP, howeve~, it's almost like having direct
online update, because you can run the BMP as soon as there
are enough updates for it to perform.

The main advantages of running a batch program as a BMP are that
the data is more current and that you can run several programs at
once instead of only one at a time. There is one more advantage;
logging and recovery procedures for a BMP are much simpler than
they are for a batch program. When a batch program terminates
abnormally, it has to be backed out using one of the IMS/VS
utilities and its own log tape. But when a BMP terminates
abnormally, IMS/VS automatically backs it out using the dynamic
log.

Chapter 6. Structuring the Dl/I Portion of a Program 139

Converting a batch program to a BMP involves two additional
requirements. The requirements are that you have an I/O PCB for
the program by specifying thecompatibi!ity option in th~ PSB for
the program and that you use checkpoint calls frequently in your
program.

THE COMPATIBILITY OPTION

CHECKPOINT FREQUENCY

For a batch program to run as a BMP it must have an I/O PCB. To get
an I/O PCB for your program, all you have to do ;s specify the
compatibility option in the PSB for your program. You do this by
specifying CMPAT=YES on the CMPAT keyword in the PSBGEN statement
of the PSB. It's possible to run your program in a BMP region
without specifying this option (the default is CMPAT=NO), but you
must have an I/O PCB for checkpoint calls, and a BMP should issue
checkpoint calls.

Even if you aren't going to convert your program to a BMP, you
should make sure that you have the compatibility option for your
program because it is required by checkpoint calls. You must also
have an I/O PCB if you want to use the lOG call in your program.

Checkpoints in BMPs are important for reasons beyond recovery and
restart. In a BMP, checkpoint calls indicate to IMS/VS that your
program has finished a unit of processing and that the results
thus far are accurate. Then, even if your program terminates
abnormally, IMS/VS knows that the updates your program has done up
to that checkpoint call are accurate and that other programs can
use those updates in their processing. "Chapter 10. Structuring
and Coding a Batch Message Program"explains additional
considerations in checkpointing a BMP.

DESIGNING A PROGRAM THAT USES GSAM

If your program accesses GSAM data bases, there are a few things
that you need to take into consideration as you design your
program. A Dl/I program can retrieve records and add records to
the end of .the GSAM data base, but the program can't delete or
replace any records in the data base. There are separate calls
that you use to access GSAM data bases; and there are some
additional checkpoint and restart considerations involved in
using GSAM. Your program must use symbolic'CHKP and XRST if it
uses GSAM; basic CHKP cannot checkpoint GSAM data bases. .

When a Dl/I program uses a GSAM data set, the program treats it
like a sequential nonhierarchic data base. Batch programs and
BMPs can use GSAM. The OS/VS access methods that GSAM can use are
the basic sequential access method (BSAM) on direct access
storage devices (DASD), unit record, and tape devices; and the
virtual storage access method (VSAM) onDASD devices. VSAM data
sets must be nonkeyed, nonindexed, entry-seque~ced data s~ts
(ESDS) and must reside on DASD to be used with GSAM. VSAM does not
support temporary, SYSIN, SYSOUT, and unit-record files.

Since GSAM i's a sequential nonhierarchic data base, it has no
segments, keys, or parentage.

ACCESSING GSAM DATA BASES

The calls you use to access GSAM data bases are different from
those you use to access Dl/I data bases. You can use GSAM data
bases for input and output. For-example, your program could read
input from a GSAM data base sequentially, then load another GSAM
data base with the output data. Programs that retrieve input from (
a GSAM data base usually retrieve GSAM records sequentially and
process them. Programs that send output to a GSAM data base must
add output records to the end of the data base as the program

140 IMS/VS Application Programming

\
/

)

)

processes the records. You cannot delete or replace records in a
GSAM data base, and you cannot add records randomly to a GSAM data
base; any records that you add to a GSAM data base must go at the
end of the data base.

When you issue a GSAM call, IMS/VS first checks to find out
whether or not the call is for a GSAM data base. If it is, IMS/VS
passes control to GSAM. If it isn't, IMS/VS proceeds with DL/I
processing.

PCB Masks for GSAM Data Bases

For the most part, you process GSAM data bases in the same way you
process DL/I data bases. You communicate your requests in calls
that are very similar to DL/I calls, and GSAM describes the
results of those calls in a GSAM DB PCB. The DB PCB mask for a GSAM
data base serves the same purpose that it does for DL/I data .
bases: the program references the fields of the DB PCB for the
GSAM data base through the GSAM DB PCB mask. The GSAM DB PCB mask
that a program references must contain the same fields as the GSAM
DB PCB, and of the same length.

There are some differences between a DB PCB for a GSAM data base
and one for a DL/I data base. Some of the fields are different,
and the GSAM DB PCB has one field that a DL/I DB PCB doesn't.
Figure 61 shows the order and lengths of these fields. Some of the
fields in a PCB mask for a Dl/I data base don't have meanings in a
PCB mask for a GSAM data base. This is because GSAM is a
nonhierarchical data base; there are no segments or hierarchic
levels in a GSAM data base. The fields that are not used when you
access GSAM data bases, but are used when you access Dl/I data
bases, are: the second field (the segment level number), the sixth
field (the segment name), and the eighth field (the number of
sensitive segments). Even though GSAM doesn't use these fields,
you need to define them in the order and length shown in Figure 61
in the GSAM DB PCB mask.

Chapter 6. Structuring the Dl/I Portion of a Program 141

I 1. Data Base, Name
R h"i-c:u:; - - # ---

2. Not Used by GSAM
2 bytes

3. status Code
2 bytes

4. Processing Options
4 bytes

5. Reserved for DL/I
4 bytes

6. Not Used by GSAM
8 bytes

7. Length of Key Feedback Area and
Undefined-Length Records Area

4 bytes

8. Not Used by GSAM
4 bytes

9. Key Feedback Area
8 bytes

10. Undefined-Length Records Area
4 bytes

Figure 61. GSAM DB PCB Mask

When you code a DB PCB mask, you also give it a name, but this is
not a field in it. The name you give to the GSAM DB PCB is the name
of the area that contains all the fields in the GSAM DB PCB. In
COBOL and assembler language programs, you list the names you've
given all your DB PCBs in the entry statement; in PL/I programs,
you list the pointers to your DB PCBs. DB PCBs don't have names
assigned to them in the PSB. In your entry statement, you
associate the name in your program with a particular DB PCB based
on the order of all of the PCBs in the PSB. In other words, the
first PCB name in the entry statement corresponds to the first
PCB; the second name in the entry statement corresponds to the
second PCB; and so on. The DB PCBs for a particular application
program are contained in the PSB for the application program.

A GSAM DB PCB mask contains the following fields:

1. Data Base Name

This is the name of the GSAM DBD. This field is 8 bytes long
and contains character data.

2. Not Used by GSAM

This field is not used by GSAM. You should code it, however;
it is 2 bytes long.

3. status Code

DL/I places a 2-character status code in this field after each
call to a GSAM or Dl/I data base. This code describes the
results of the call. DL/I updates it after each call and does

(

not clear it between calls. The application program should (
test this field after each call to find out whether or not the
call was successful. If the call was completely successful,
this field contains blanks. This field is 2 bytes long.

142 IMS/VS Application Programming

\
)

./

\
)

)

----- -----------------------------

4. processing options

This is a 4-byte field containing a code that tells DL/I what
type of calls this program can issue. It is a security
mechanism, in that it can prevent a particular program from
updating the data base, even though the program can read the
data base. This value is coded in the PROCOPT parameter of the
PCB statement when the PSB for the application program is
generated. The value does not change.

5. Reserved for DL/I

This 4-byte field is used by DL/I for internal linkage. It is
not used by the application program.

6. Not Used by GSAM

This field is not used by GSAM. It should still be coded as
part of the GSAM DB PCB mask, however; it is 8 bytes long.

7. Length of Key Feedback Area and Undefined-Length Records Area

This is a 4-byte field that contains the decimal value of 12
in binary. This is the sum of the lengths of the key feedback
and the undefined-length record areas described below.

8. Not Used by GSAM

9.

This field is not used by GSAM, but it should be coded as part
of the GSAM DB PCB mask. This field is 4 bytes long.

Key Feedback Area

After a successful retrieval call, GSAM places the address of
the record returned to your program in this field. This is
called a record search argument, or RSA; you can use it later
on if you want to retrieve that record directly by including
it as one of the parameters on a GU call. Thi s fi eld i s8
bytes long.

10. Undefined-Length Records Area

If you use undefined-length records (RECFM=U), the length in
binary of the record you're processing is passed between your
program and GSAM in this field. This field is 4 bytes long.
When you issue a GU or GN call, GSAM places the binar,y length
of the record retrieved in this field. When you issue an ISRT
call, you must put the binary length of the record you're
inserting in this field before issuing the ISRT call.

Retrieving and Inserting GSAM Records

To retrieve GSAM records sequentially, you use the GN call. The
only required parameters on the call are the I/O area for the
segment and the GSAM PCB. To process the whole data base, you
issue the GN call until you get a GB status code in the GSAM PCB.
This means that you have reached the end of the data base. GSAM
automatically closes the data base when you reach the end of the
data base.

To add new records to the end of the data base you use the ISRT
call. GSAM adds the records sequentially, in the order in which
you supply them. The output data base that you build can be a data
base previously created with BSAM, QSAM, or VSAM. Once you have
created a GSAM data base, other programs using these OS/VS access
methods can access that GSAM data base.

There is a way to retrieve records directly from a GSAM data base,
but before you can ask GSAM to retrieve the record, you have to
supply the record's address. To do this, you use something called
a record search argument, or RSA. An RSA is similar to an SSA, but
it contains the exact address of the record that you want to

Chapter 6. structuring the DL/I Portion of a Program 143

retrieve. The specific contents and format of the RSA depend on
the access method GSAM is using. For BSAM tape sets and VSAM data
sets, the RSA contains th~ r~lative byte address (RBA). For BSAM
disk data sets, the RSA contains the disk address in the TTR
format (track, track, record).

Before you can give GSAM the RSA, you have to get the RSA
yourself. To do this, you have to know ahead of time what records
you'll want to retrieve directly later on. When you're retrieving
records sequentially or adding records to the end of the GSAM data
base, you can include a parameter on the GN or ISRT call that
tells GSAM to return the address of that record to a certain area
in your program. Then you can save this address until you want to
retrieve that particular record. At that time, you issue a GU call
for the record and you give the address of its RSA as a parameter
of the GU call. GSAM returns the record you requested to the I/O
area that you have named as one of the call parameters. If you do
this at all, you should only do it on DASD with tape accessing.

You can also use a GU call and an RSA to position yourself at a
certain place in the GSAM data base. If you place a doubleword of
F'l,O' in the RSA and issue a GU using that RSA, GSAM repositions
you to the first record in the data base.

Explicitly opening and Closing a GSAM Data Base

GSAM RECORD FORMATS

There are two DL/I calls you can use to explicitly open and close
a data base: OPEN and CLSE. Although GSAM automatically opens the
data base when you issue the first call and closes it when you
reach the end of the data or the program terminates, you can use
these calls to initiate or terminate data base operations at other
times. An application program that loads a GSAM data base can read
the data base without terminating between loading the data base
and reading it. If you do this, you must issue a CLSE call before
you start reading the data base.

When you issue an OPEN call, you have the option of specifying the
kind of data set you're using. These are your options:

• INP for an input data set

• OUT for an output data set

• OUTA for an output data set with ASA control characters for a
printer

• OUTM for an output data set with machine control characters
for a punch

If you're using VSAM, you can use fixed- or variable-length
records, blocked or unblocked. If you're using BSAM, you can use
fixed-length, variable-length, or undefined-length records,
blocked or unblocked. Whatever you use, you must specify this on
the RECFM keyword in the DATASET statement of the GSAM DBD. You
can override this in the RECFM statement of the DCB parameter in
the JCL, however; you can include carriage control characters in
the JCL for all formats. "GSAM JCL Restrictions"explains what you
use to override each·type of record format.

GSAM records must be nonkeyed. For variable-length records you
must include the record length as the first two bytes of the
record. Undefined-length, like fixed-length records, contain only
data (and control characters, if you wish). If you use
undefined-length records, the record length is passed between
your program and GSAM in the 4-byte field in the GSAM DB PCB that

~
I
\
'-.

follows the key feedback area. This is the tenth field in (
Figure 61. It is called the undefined-length records area. When ~
you issue an ISRT call, you supply the length; when you issue a GN
or GU, GSAM places the length of the returned record in this

144 IMS/VS Application Programming

.
)

)

GSAH STATUS CODES

field. The advantage of using undefined-length records is that
you don't have to include the record length at the beginning of
the record, yet your records don't have to be fixed-length. The
length of any record must be less than or equal to the logical
record length and greater than 11 bytes (the OS/VS convention).

Your program should test the status code after each GSAM call just
as it does after each DL/I or system service call. There are two
differences between the way DL/I status codes work and the way
GSAM status codes work. First, GSAM initializes the status code to
blanks before processing each GSAM call; and second, GSAM never
returns any data with a nonblank status code.

If, after checking the status code, you find that you have an
error and you terminate your program, be sure to save the PCB
address before you terminate; the GSAM PCB address will be helpful
in problem determination. When a program that uses GSAM
terminates abnormally, GSAM issues PURGE and CLOSE calls
internally; this changes the PCB pointer.

The status codes that have specific meanings for GSAM are:

AF GSAM detected a BSAM variable-length record that was
formatted invalidly. You should terminate your program.

AH You have not supplied an RSA for a GU call.

AI There has been a data management OPEN error.

AJ One of the parameters on the RSA you supplied is invalid.

AM You have issued an invalid request against a GSAM data base;
or you issued a call to a GSAM dummy data set .

AD An I/O error occurred when the data set was accessed or when
GSAM entered the CLOSE SYNAD routine. This happens when the
last block of records was written prior to closing the data
set.

GB You reached the end of the data base and GSAM has closed the
data base. The next position is the beginning of the data
base.

IX You issued an ISRT call after receiving an AI or AO status
code. You should terminate your program.

USING SYMBOLIC CHKP AND XRST WITH GSAM

To checkpoint GSAM data bases you must use symbolic CHKP and XRST.
This is why most people use GSAM: They can convert OS/VS files to
GSAM, then use symbolic CHKP and XRST to make their programs
restartable. When you use the XRST call, IMS/VS repositions GSAM
data bases for processing. These restrictions apply to restarting
GSAM data bases:

• You cannot use temporary data sets with CHKP and XRST calls.

• A SYSOUT data set at restart time can give duplicate output
data.

• You cannot restart a program that is loading a GSAM/VSAM data
base.

When IMS/VS restores the data areas specified in the symbolic CHKP
and XRST calls, it also repositions any GSAM data bases that your
program was using when it issued the symbolic CHKP. If your
program was loading GSAM data bases when the symbolic CHKP was
taken, IMS/VS repositions them if they are accessed by BSAM.
IMS/VS does this by internally issuing a GU for the last record

Chapter 6. Structuring the DL/I Portion of a Program 145

processing at that point. Your program will not receive any data
from this GU, but the key feedback area of the GSAM PCB will
contain the positioning information you need.

PROCESSING FAST PATH DATA BASES

PROCESSING MSDBS

Types of MSDBs

Fast Path data bases are designed to give you a higher-than-normal
performance rate. Because of this, Fast Path data bases are
different from DL/I data bases, as is the way that you process
them. There are two kinds of Fast Path data bases:

• Main storage data bases, or MSDBs, are data bases that contain
only root segments in which you store the data that you access
the most frequently. For example, a bank might store various
totals, counts and status for all active tellers in an MSDB.
The kind of data that you store in an MSDB is data that you
reference quite often. The teller data is referenced by all
the transactions that involve cash withdrawals and deposits.
MSDBs reside in main storage, and thereby reduce I/O
activity. By doing this, they can give faster processing than
DL/I data bases can.

• Data entry data bases, or DEDBs, are data bases that contain a
root segment and one level of dependent segments. A DEDB can
have up to seven dependent segment types. You use DEDBs
primarily for data collection processes.

Because Fast Path data bases are online data bases, batch programs
cannot process them. Both types of Fast Path programs (message
driven and nonmessage driven) can process Fast Path data bases.
MPPs and BMPs can also process Fast Path data bases. Because MSDBs
and DEDBs answer different application processing requirements,
you need to understand the differences between them to understand
how you process them.

MSDBs contain only root segments; this means that each segment is
like a data base record, in that the segment contains all the
information about a particular subject. In a DL/I hierarchy, a
data base record is made up of a root segment and all its
dependents. For example, in ~he medical hierarchy, a particular
PATIENT segment and all the segments underneath that PATIENT
segment comprise the data base record for that patient. But in an
MSDB, the segment is the whole data base record; the data base
record contains only of the fields that the segment contains. MSDB
segments are fixed length.

There are two kinds of MSDBs: in one kind of MSDB each segment is
"owned" by one logical terminal. The segment that is owned can be
updated only by that terminal. This type of MSDB is called
terminal related. For clarity, this chapter calls terminal
related MSDBs related MSDBs. Further, related MSDBs can be fixed
or dynamic. You can add segments to and delete segments from
dynamic related MSDBs; you can't add segments to or delete
segments from fixed related MSDBs.

The second kind of MSDB is called nonterminal related, or, for
purposes of clarity, a non related MSDB. The segments in
nonrelated MSDBs aren't owned by logical terminals. One way to
understand the differences between these types of data bases, and
why you would use each one, is to look at some examples of each.

RELATED MSDBS: One type of data that you might store in a fixed

/
I

(

related MSDB is summary data about a particular teller at a bank. (
For example, you could have an identification code for the

146 IMS/VS Application Programming

)

~
/

teller's terminal, then you could keep a count of that teller's
transactions and the teller's balance for the day. This segment
would contain three fields:

• TEllERID: a 2-character code that identifies the teller

• TRANCNT: the number of transactions the teller has processed

• TEllBAl: the balance for the teller

Figure 62 shows what the segment for this type of application
could look like.

I TEllERID I TRANCNT TEllBAl

Figure 62. Teller Segment in Fixed Related MSDB

Some of the characteristics of fixed related MSDBs are:

• You can only read and replace segments; you cannot delete or
insert segments. In the bank teller example, a teller would
only want to replace values in segments; there would be no
need to add or delete segments.

• Each segment is assigned to one logical terminal. Only the
owning terminal can change a segment, but other terminals can
read the segment. In the bank teller example, you would not
want tellers to update the information about other tellers;
tellers would be responsible only for their own transactions.

• The name of the logical terminal that owns the segment is the
segment's key. Unlike Dl/I segments, however, the key isn't a
field of the segment. It's used as a means of stor i ng and
accessing segments.

• A logical terminal can own only one segment in anyone MSDB.

The type of data that you might store in a dynamic related MSDB is
summary data about the activity of all the bank tellers at one
branch. For example, this segment might contain the following:

• BRANCHNO: the identification number for the branch

• TOTAL: the bank's current balance

• TRANCNT: the number of transactions for that day

• DEPBAl: the deposit balance giving the total dollar amount of
deposits for the branch

• WTHBAl: the withdrawal balance, giving the dollar amount of
the withdrawals for the branch

Figure 63 ~hows what this segment could look like.

I BRANCHNO I TOTAL I TRANCNT I DEPBAl I WlTHBAl

Figure 63. Branch Summary Segment in Dynamic Related MSDB

Dynamic related MSDBs have the same characteristics as fixed
related MSDBs except:

• The owning logical terminal can delete and insert segments.

Chapter 6. Structuring the Dl/I Portion of a Program 147

• The MSDB can have a pool of unassigned segments. This kind of
segment is assigned to a logical terminal when the logical
terminal inserts it, and is returned to the pool wh~n th~
logical terminal deletes it.

NONRELATED MSDBS: A nonrelated MSDB is used to store data that is
updated by several terminals--such as data that a lot of people
need to access and update during the same time period. For
example, you might store data about individuals' bank accounts in
a non related MSDB segment. This is data that a lot of people might
need to access quite often. This segment could contain the
following fields:

• ACCNTNO: the account number

• BRANCH: the name of the branch where the account is

• TRANCNT: the number of transactions for this account this
month

• BALANCE: the current balance

Figure 64 shows what the segment for this application could look
like.

I ACCNTNO BRANCH TRANCNT BALANCE

Figure 64. Account Segment in Nonrelated MSDB

The characteristics of non related MSDBs are:

• Segments are not owned by terminals as they are in related
MSDBs. This means that IMS/VS programs and Fast Path programs
can update these segments; updating them is not restricted to
the owning logical terminal.

• You cannot add segments to or delete segments from nonrelated
MSDBs.

• Segment keys can be the name of a logical terminal; this is a
non related MSDB with terminal-related keys. The segments
still are~'t owned by the logical terminals; the logical
terminal name is used to identify the segment.

• If the key isn't the name of a logical terminal, it can be any
value and it's in the first field of the segment. In this
case, segments are loaded in key sequence.

Reading Segments in an MSDB: GU and GN

To retrieve segments from an MSDB, you can issue get calls just as
you do to retrieve segments from DL/I data bases. Since MSDBs
contain only root segments, you don't have any reason to use GNP;
you only use GU and GN (and GHU and GHN when you're going to
update a segment). Also, you can use only 1 SSA in a call to an
MSDB. There are some other differences between calls to DL/I data
bases and MSDBs: MSDB calls can't use command codes, nor can they
use multiple qualification statements (Boolean operators). (Also,
the maximum length for a segment's key in a DL/I data base is 255
bytes. The maximum length for a segment's key in an MSDB is 240
bytes.)

Updating Segments in an MSDB: REPL, DLET, ISRT, and FLD

Three of the calls that you can use to update an MSDB are the same
calls that you can use to update a DL/I data base: REPL, DLET, and
ISRT. You can i'ssue a REPL call to a related MSDB or non related

148 IMS/VS Application Programming

(

(
\

)

\

)

MSDB, and you can issue DLET, and ISRT calls to a dynamic MSDB~
When you issue REPL or DLET calls against either type of MSDB, you
must first issue a get hold call for the segment you want to
update, just as you do when you replace or delete segments in OL/I
data bases.

There is one call that you can use against MSOBs that you can't
use against OL/I data bases. This is the field call, or FLO. The
FLO call makes it possible for you to access the contents of a
field within a segment, and then to change that field based on its
contents. The FLO call does two things for you: it compares the
value of a field to the value you supply--this is called
FLO/VERIFY--and it changes the value of the fi eld in the way that
you specify--this is called FLO/CHANGE. FLO does in one call what
a get hold call and a REPL call do in two calls.

For example, using the ACCOUNT segment shown in Figure 64, a bank
would have to perform the following processing in order to find
out whether or not a customer could withdraw a certain amount of
money from a bank account:

1. Retrieve the segment for the customer's account.

2. Verify that the balance in the account is more than the amount
that the customer wants to withdraw.

3. If the amount of the balance is more than the amount of the
withdrawal, update the balance to reflect the withdrawal.

Without using the FLO call, a program would issue a GU call to
retrieve the segment, then verify its contents with program
logic, and issue a REPL call to update the balance to reflect the
withdrawal. But if you use the FLO call, you use FLO/VERIFY to
retrieve the segment and compare the BALANCE field to the amount
of the withdrawal. FLO/CHANGE can update the BALANCE field if the
compare was satisfactory. Here's how the FLO call works.

CHECKING A FIELD'S CONTENTS: FLO/VERIFY: A FLO/VERIFY call
compares the contents of a specified field in a segment to the
value that you supply. The way that FLO/VERIFY compares the two
depends on the operator you supply. When you supply the name of a
field and the value with which you want to compare that field's
value, you can compare them in any of the following ways:

• Is the field value equal to the value you've supplied?

• Is the field value greater than the value you've supplied?

• Is the field value greater than or equal to the value you've
supplied?

• Is the field value less than the value you've supplied?

• Is the field value less than or equal to the value you've
supplied?

• Is the fi eld value not equal to the value you've supplied?

After IMS/VS performs the comparison that you've asked for,
IMS/VS returns a status code, in addition to the status code in
the PCB, to tell you the results of the compare.

You specify the name of the field and the value to which you want
its value compared in a field search argument, or FSA. The FSA is
also where IMS/VS returns the status code to you. You place the
FSA in an I/O area before you issue a FLO call, then reference
that I/O area in the call--just as you do an SSA in a OL/I call. An
FSA is similar to an SSA in that you use it to give information to
IMS/VS about the information you want to retrieve from the data
base. An FSA, however, contains more information than an SSA
does--and it does more for you.

Figure 65 shows the structure and format of an FSA.

Chapter 6. Structuring the Ol/I Portion of a Program 149

FLO NAME SC OP FLO VALUE CON

8 1 1 8 1

Figure 65. FSA Structure

There are 5 fields in an FSA. They are:

• Field Name: Thi sis the name of the fi eld that you want to
update. The field must be defined in the OBO.

• status Code: This is where IMS/VS returns the status code for
this FSA. If IMS/VS successfully processes the FSA, IMS/VS
returns a blank status code to the FSA. If not, you receive
one of the status codes listed below. If IMS/VS returns a
nonblank status code to you in the FSA, IMS/VS returns an FE
status code to the PCB to indicate this to you. The FSA status
codes that IMS/VS might return to you on a FLO/VERIFY call
are:

•

B The length of the data that you supplied in "field value"
is invalid.

D The verify check was unsuccessful; in other words, the
answer to your question is no.

E The "field value" contains invalid data. This means that
the data you supplied in this field is not the same type
of data that is defined for this field in the OBD.

Operator: This tells IMS/VS how you want the two values
compared. For a FLO/VERIFY call, you can specify:

E Verify that the value in the field is equal to the value
you've supplied in the FSA.

G Verify that the value in the field is greater than the
value you've supplied in the FSA.

H Verify that the value in the field is greater than or
equal to the value you've supplied in the FSA.

L Veri fy that the value in the fi eld is less than the value
you've supplied in the FSA.

M Verify that the value in the field is less than or equal
to the value you've supplied in the FSA.

N Verify that the value in the field is not equal to the
value you've supplied in the FSA.

• Field Value: Thi 5 area contai ns the value that you want IMS/VS
to compare to the value in the segment field. The data that
you supply in this area must be the same type of data that's
in the field you've named in the first field of the FSA. There
are five types of data: hexadecimal, packed decimal,
alphameric or a combination of data types, binary fullword,
and binary halfword. The length of the data that you supply in
this area must be the same as the length that's defined for
this field in the OBO, with two exceptions:

If you're processing hexadecimal data, the data in the
FSA must be in hexadecimal. This means that the length of
the data in the FSA will be twice the length of the data
in the field in the data base. IMS/VS checks the (
characters in hexadecimal fields for validity before that
data is translated to data base format. (Only 0 to 9 and A
to F are valid characters.)

150 IMS/VS Application Programming

)

\
/

)

For packed decimal data, you don't have to supply the
leading zeros in the field value. This means that the
number of digits in the FSA might be less than the number
of digits in the corresponding data base field. The data
that you supply in this field must be in valid packed
decimal format and end in a sign digit.

When IMS/VS processes the FSA, IMS/VS does logical
comparisons for alphameric and hexadecimal fields, and
arithmetic comparisons for packed decimal and binary fields.

o Connectol': if this is the only or last FSA in this call, this
area contains a blank. If another FSA follows this one, this
area contains an asterisk (*). You can include several FSAs in
one FLO call, just as long as all of the fields that the FSAs
reference are in the same segment. If you get an error status
code for a FLO call, you should then check the status codes
for each of the FSAs in the FLO call to find out where the
error is.

Once you've verified the contents of a field in the data base, you
can change the contents of that field in the same call. To do
this, you supply an FSA that specifies a change operation for that
field.

CHANGING A FIELD'S CONTENTS: FLD/CHANGE :To indicate to IMS/VS
that you want to change the contents of a particular field, you
use an FSA, just as you do in a FLO/VERIFY call. The difference is
in the operators that you can specify, and the FSA status codes
that IMS/VS can return to you after the call. Using Figure 65,
FLO/CHANGE works like this:

1. You specify the name of the field that you want to change in
the first field of the FSA--Field Name

2. You specify an operator in the third field of the
FSA--Operator indicates to IMS/VS how you want to change that
field.

3. You specify the value that IMS/VS is to use in changing the
field in the last area of the FSA--the Field Value

By specifying different operators in a FLO/CHANGE call, you
change the field in the data base in these ways:

• Add the value that I've supplied in the FSA to the value in
the field.

• Subtract the value I've supplied in the FSA from the value in
the fi eld.

• Set the value in the data base fi eld to the value I've
supplied in the FSA.

You code these operators in the FSA wi th thes.e symbols:

• To add: +

• To subtract: -

• To set the old value equal to the new one: =
You can add and subtract values only when the field in the data
base contains arithmetic (packed decimal, binary fullword, or
binary halfword) data.

Some of the status codes that IMS/VS can return to the FSA for a
change operation are the same, but there are also some different
ones. The status codes you can receive on a FLO/CHANGE FSA are:

A Invalid operation; for example, you specified the "" operator
for a fieldthat contains character data.

Chapter 6. Structuring the OL/I Portion of a Program 151

B Invalid data length. The data you supplied in the FSA is not
the length that is defined for that field in the OBO.

C You attempted to change the key field in the segment; changing
the key field is not allowed.

E Invalid data in the FSA. The data that you supplied in the FSA
is not the type of data that's defined for this field in the
DBD.

F You tried to change an unowned segment. This status code
applies only to related MSOBs.

G An arithmetic overflow occurred when you changed the data
field.

AN EXAMPLE OF USING FLD/VERIFY AND FLD/CHANGE: Using FLO/VERIFY
and FLD/CHANGE, you could perform the bank account processing
that was described earlier in this chapter. This example uses the
bank account segment shown in Figure 64. Assume that a customer
wants to withdraw $100 from a checking account. The number of the
checking account is 24056772. To find out whether or not the
customer can withdraw this amount, you have to check the current
balance. If the current balance is greater than $100, you want to
subtract $100 from the balance, and add 1 to the transaction count
in the segment.

You can do all of this processing using one FLO call and three
FSAs. The FSAs and what each of them does are as follows:

1. Verify that the value in the BALANCE field is greater than or
equal to $100. For this verification, you specify the BALANCE
field, the H operator for greater than or equal to, and the
amount. The amount is specifed without a decimal point. You
also have to leave a blank between the field name and the
operator for the FSA status code. This FSA looks like this:

BALANCEbbHIOOOO*

The last character in the FSA is an asterisk because this FSA
will be followed by other FSAs.

2. Subtract $100 from the value in the BALANCE field if the first
FSA was successful. If the first FSA is unsuccessful, IMS/VS
doesn't continue processing. To subtract the amount of the
withdrawal from the amount of the balance, you use this FSA:

BALANCEbb-10000*

Again, the last character in the FSA is an asterisk because
this FSA is followed by a third FSA.

3. Add 1 to the transaction count for the account. To do this,
use this FSA:

TRANCNTbb+OOlb

In this FSA, the last character is a blank (b) because this is
the. last FSA for this call.

When you issue the FLO call, you don't reference each FSA
individually; you reference the I/O area that contains all of
them.

Sync Point Processing in an MSDB

When you update a segment in an MSOB, IMS/VS doesn't apply your
updates immediately. Updates don't go into effect until your

(
'-.

(,

program reaches a sync point. A sync point in a message-driven (
Fast Path program occurs each time the program issues a call to
the message queue for a new message. A sync point in a
nonmessage-driven Fast Path program occurs each time the program

152 IMS/VS Application Programming

\

)
/

)

)

PROCESSING DEDBS

issues a CHKP call or a synchronization, or SYNC, call. SYNC is a
call that nonmessage-driven Fast Path programs can issue simply
to invoke a sync point. A synchronization interval is the time
between sync points in the application program's processing. When
a program reaches a sync point, IMS/VS tries to apply the updates
(and send output messages) that have been generated during that
sync interval.

As a result of this, you can receive different results if you
issue the same call sequence against a Ol/I data base and an MSOB.
For example, if you issue a GHU and a REPl for a segment in an
MSOB, then you issue another get call for the same segment in the
same sync interval, the segment that IMS/VS returns to you the
"old" value, not the updated one. If, on the other hand, you issue
the same call sequence for a segment in a Ol/I data base, the
second get call returns the updated segment.

When the program reaches a sync point, IMS/VS also reprocesses
FLO/VERIFY calls to see if they are still accurate. If another
program has updated the field that a FLO/VERIFY call was
verifying, the program's processing could be inaccurate.

A DEDB contains a root segment and up to seven dependent segments.
One of these can be a sequential dependent; the other six are
direct dependents. Sequential dependent segments are stored in
chronological order, regardless of the root that they're
dependent on. Direct dependent segments are stored
hierarchically. A OEDB is good for gathering detailed information
and summary information.

Using DL/I Calls with DEDBs

The POS Call

The DL/I calls that you can issue against a root segment are the
GU and GN (GNP has no meaning for a root segment), DlET, ISRT, and
REPL. You can issue all of the DL/I calls against a direct
dependent segment, and you can issue get calls and ISRT calls
against sequential dependent segments.

There are three restrictions on using these calls with a OEDB:

• The call can contain only one SSA.

• The call cannot use command codes.

• The call cannot use Boolean qualification statements.

There is one call that you cannot use with IMS/VS data bases that
you can use with DEDBs. This is the position call, or POS. This is
a system call that retrieves the location of a specific sequential
dependent segment or the location of the last inserted sequential
dependent segment. You can also use the POS call to find out how
much unused space there is within a OEDB area. "POS Call Format"
explains how you code the POS call and what the I/O area for POS
looks like. The POS call also tells you the amount of unused space
within each DEDB area. For example, you can use the position
information that IMS/VS returns for a POS call to scan or delete
the sequential dependent segments for a particular time period.

LOCATING A SPECIFIC SEQUENTIAL DEPENDENT: When you have position
on a particular root segment, you can retrieve the position
information and the area name of a specific sequential dependent
of that root. If you have a position established on a sequential
dependent segment, the search starts from that position. IMS/VS
returns the position information for the first sequential
dependent segment that satisfies the call. To retrieve this
information, you issue a POS call with a qualified or unqualified

Chapter 6. Structuring the DL/I Portion of a Program 153

SSA containing the segment name of the sequential dependent.
Current position after this kind of POS call is in the same place
that it is after a GNP call. .

After a successful POS call, the contents for each position in the
I/O area are as follows:

LL A 2-byte field giving the total length of the data in
the I/O area, in binary

Area Name An 8-byte field giving the name of the area

position An 8-byte field containing the position information
for the requested segment

Unused CIs An 8-byte field containing the number of unused CIs
in sequential dependent part

Unused CIs An 8-byte field containing the number of unused CIs
in the independent overflow part

LOCATING THE LAST INSERTED SEQUENTIAL DEPENDENT SEGMENT: You can
also retrieve the position information for the most recently
inserted sequential dependent segment of a given root segment. To
do this, you issue a POS call with an unqualified or qualified SSA
containing the root segment as the segment name. Current position
after this type of call follows the same rules as position after a
GU.

After a successful call, the contents of the I/O area are as
follows:

LL

Area Name

position

A 2-byte field containing the total length of the
data, in binary

An 8-byte field giving the area name

An 8-byte field containing the position information
for the most recently inserted sequential dependent
segment. This field contains zeros if there is no
sequential dependent for this root.

Unused CIs An 8-byte field containing the number of unused CIs
in the sequential dependent part

Unused CIs An I-byte field containing the number of unused CIs
in the independent overflow part

IDENTIFYING FREE SPACE: To retrieve the area name and the next
available position within the sequentia part from all online
areas, you can issue an unqualified POS call. This type of call
also retrieves the unused space in the independent overflow and
sequential dependent parts.

After a successful unqualified POS call, the I/O area contains as
many entries as there are areas within the data base. Each entry
contains the following fields:

LL A 2-byte field containing the length of the data in
the I/O area, in binary. The length includes 2 bytes
for the Ll field, plus the number of entries times 24.

Area Name An 8-byte field containing the area name

position An 8-byte field giving the next available position
within the sequential dependent part

Unused CIs An 8-byte field containing the number of unused CIs
in the sequential dependent part

/

\

Unused CIs An a-byte field containing the number of unused CIs (
in the independent overflow part.

154 IMS/VS Application Programming

)
/

)

Sync point processing in a DEDB

Sync point processing ;s performed after a message GU call, a SYNC
call, or CHKP call. Fast Path keeps data base updates in main
storage until the program reaches a sync point. IMS/VS saves
updates to a DEDB in Fast Path buffers and are not applied to the
data base. The data base updates are not applied to the DEDB until
after the program has successfully completed sync point
processing.

Chapter 6. Structuring the DL/I Portion of a Program 155

CHAPTER 7. CODING THE DL/I PORTION OF A PROGRAM

Before you start to code your program, make sure you've made all
the desi gn deci si ons expla i ned in "Chapter 6. Structuri ng the
DL/I Portion of a Program," such as when to use a qualified or
unqualified call and what the most efficient call sequence is for
your program. If everything is in order, coding the program is a
matter of implementing the decisions that you have made. This
chapter tells you how to code the part of the program that
contains the program logic, and how to code the data area of the
program. Before you start to code at all, however, you should
understand what each of these parts of the program contains, and
how the DL/I tools fit together. You should also make sure that
you have all the necessary information to code the program. This
chapter explains these preliminary considerations, and how you
code your program, in this order:

• Before You Code

This section shows you some sample skeleton programs and
gives you some guidelines about the kind of information you
need to code your program.

• Coding the Program Logic

This section describes how you code an entry statement, DL/I
calls, and system service calls; and how you check status
codes.

• Coding the Data Area

('

This section tells you how to code SSAs, DB PCB masks, I/O (
areas, function codes, and checkpoint IDs.

\,

BEFORE YOU CODE

• Coding Fast Path Data Base Calls

This section tells you what calls you can issue against each
kind of Fast Path data base.

Before you start coding you need to understand two things: the
order in which the parts of your program will appear, and the
information that you must have to code the program.

PARTS OF A DL/I PROGRAM

The program logic contains the entry statement, the DL/I calls,
system service calls, the processing logic, and the return
statement. The data area contains the 110 area, the PCB mask, SSA
definitions, and other data definitions.

Detailed program structure depends on the programming language
you are using. The following are skeleton DL/I programs in COBOL,
PL/I, and assembler language. Each of these programs retrieves
data from the DETAIL data base and updates the MASTER data base.
These programs don't show any of the processing logic; they show
only the major parts of the program.

Note: These programs are provided as examples only. They will not
run because they are incomplete; they are only skeletons that are
intended to show you the overall structure of an IMS/VS batch
application program.

156 IMS/VS Application Programming

(

,
)

\
)

COBOL DL/I Program structure

The program in Figure 66 is a skeleton program in COBOL. It shows
you how the parts of a DL/I program written in COBOL fit together.
The numbers to the right of the program refer to the notes that
follow the program. "Appendix A. Sample Batch Program" contains a
sample COBOL batch program.

Chapter 7. Coding the DL/I Portion of a Program 157

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

77 FUNC-GU
77 FUNC-GHU
77 FUNC-GN
77 FUNC-GHN
77 FUNC-GNP
77 FUNC-GHNP
77 FUNC-REPL
77 FUNC-ISRT
77 FUNC-DLET
77 COUNT

01 UNQUAL-SSA.
02 SEG-NAME
02 FILLER

01 QUAL-SSA-MAST.
02 SEG-NAME-M
02 BEGIN-PAREN-M
02 KEY-NAME-M
02 REL-OPER-M
02 KEY-VALUE-M
02 END-PAREN-M

01 QUAL-SSA-DET.
02 SEG-NAME-D
02 BEGIN-PAREN-D
02 KEY-NAME-D
02 REL-OPER-D
02 KEY-VALUE-D
02 END-PAREN-D

01 DET-SEG-IN.
02 --
02 --

01 MAST-SEG-IN.
02 --
02 -

LINKAGE SECTION.
01 DB-PCB-MAST.

02 MAST-DBD-NAME
02 MAST-SEG-LEVEl
02 MAST-STAT-CODE
02 MAST-PROC-OPT
02 FILLER
02 MAST-SEG-NAME
02 MAST-LEN-KFB
02 MAST-NU-SENSEG
02 MAST-KEY-FB

01 DB-PCB-DETAIL.
02 DET-DBD-NAME
02 DET-SEG-LEVEL
02 DET-STAT-CODE
02 DET-PROC-OPT
02 FILLER
02 DET-SEG-NAME
02 DET-LEN-KFB
02 DET-NU-SENSEG
02 DET-KEY-FB

PICTURE XXXX VALUE 'GU
PICTURE XXXX VALUE 'GHU '
PICTURE XXXX VALUE 'GHN '
PICTURE XXXX VALUE 'GHN '
PICTURE XXX X VALUE 'GNP ,
PICTURE XXXX VALUE 'GHNP'.
PICTURE XXXX VALUE 'REPL'.
PICTURE XXXX VALUE 'ISRT'.
PICTURE XXXX VALUE 'DLET'.
PICTURE S9CS)VALUE +4 COMPUTATIONAL.

PICTURE X(08) VALUE
PICTURE X VALUE"

PICTURE X(08) VALUE 'ROOTMAST'.
PICTURE X VALUE 'C'.
PICTURE X(08) VALUE 'KEYMAST '.
PICTURE X(02) VALUE' ='
PICTURE X(06) VALUE 'vvvvvv'.
PICTURE X VALUE ')'.

PICTURE X(08)
PICTURE X
PICTURE X(08)
PICTURE X(02)
PICTURE X(06)
PICTURE X

PICTURE X(8).
PICTURE XX.
PICTURE XX.
PICTURE XXXX.

VALUE 'ROOTDET '
VALUE '('.
VALUE 'KEYDET
VALUE ' ='
VALUE 'vvvvvv'.
VALUE ')'.

PICTURE S9(S) COMPUTATIONAL.
PICTURE X(8).
PICTURE S9(5) COMPUTATIONAL.
PICTURE S9(5) COMPUTATIONAL.
PICTURE X---X.

PICTURE X(S).
PICTURE XX.
PICTURE Xx.
PICTURE XXXX.
PICTURE S9(5) COMPUTATIONAL.
PICTURE X(8).
PICTURE S9(S) COMPUTATIONAL.
PICTURE S9(S) COMPUTATIONAL.
PICTURE X---X.

Figure 66 (Part 1 of 2). COBOL DL/I Skeleton Program

15S IMS/VS Application Programming

(
I

(
\

(

\
)

\
)

PROCEDURE DIVISION.
ENTRY 'DLITCBL' USING DB-PCB-MAST, DB-PCB-DETAIL.

· CALL 'CBLTDLI' USING FUNC-GU, DB-PCB-DETAIL,
DET-SEG-IN, QUAL-SSA-DET.

· CALL 'CBLTDLI' USING COUNT, FUNC-GHU, DB-PCB-MAST,
MAST-SEG-IN, QUAL-SSA-MAST.

· CALL 'CBLTDLI' USING FUNC-GHN, DB-PCB-MAST,
MAST-SEG-IN.

· CALL 'CBLTDLI' USING FUNC-REPL, DB-PCB-MAST,
MAST-SEG-IN.

· GOBACK.

COBOL LANGUAGE INTERFACE

Figure 66 (Part 2 of 2). COBOL DL/I Skeleton Program

Notes:

1. You define each of the DL/I call functions the program uses
with a 77 level or 01 level working storage entry. Each
pi cture clause is defi ned as 4 alphameri c characters and has a
value assigned for each function. If you want to include the
optional parmcount field, you can initialize count values for
each type of call. You can also use COBOL COpy to include
these standard descriptions in the program.

2. A 9-byte area is set up for an unqualified SSA. Before the
program issues a call that requires an unqualified SSA, it
moves the segment name to this area. If a call requires two or
more SSAs, you may need to define additional areas.

3. A 01 level working storage entry defines each qualified SSA
used by the application program. Qualified SSAs have to be
defined separately because the values of the key fields are
different.

4. A 01 level working storage entry defines I/O areas that will
be used for passing segments to and from the data base. You
can further define I/O areas with 02 level entries. You can
use separate I/O areas for each segment type, or you can
define one I/O area that you use for all segments.

5. A 01 level linkage section entry defines a mask for each of
the DB PCBs that the program requires. The DB PCBs represent
both input and output data bases. After issuing each DL/I
call, the program checks the status code through this
linkage. You define each field in the DB PCB so that you can
reference them in the program.

6. This is the standard entry point in the procedure division of
a batch program. After DL/I has loaded the PSB for the program
in the DL/I region, DL/I passes control to the application
program. The PSB contains all of the PCBs that the program

Chapter 7. Coding the DL/I Portion of a Program 159

uses. The USING statement at the entry point to the batch
program references each of the PCBs by the names that-the (
program has used to define the PCB masks in the linkage ,
section. '_

7. This call retrieves data from the data base using a qualified
SSA. Before issuing the call, the program must initialize the
key value of the SSA so that it specifies the particular
segment to be retrieved. The program should test the status
code in the OB PCB that was referenced in the call immediately
after issuing the call.

8. This is another retrieval call that contains a qualified SSA.

9. This is an unqualified retrieval call.

10. The REPL call replaces the segment that was retrieved in the
most recent get hold call with the data that the program has
placed in the 1/0 area referenced in the call (MAST-SEG-IN).

11. The program issues the GOBACK statement when it has finished
its processing.

12. IMS/VS supplies a language interface module (OFSlIOOO). This
module must be link-edited to the batch program after the
program has been compiled. It gives a common interface to
IMS/VS and OL/I. If you use the IMS/VS-supplied procedures
(IMSCOBOL or IMSCOBGO), IMS/VS link-edits the language
interface with the application program. IMSCOBOL is a
two-step procedure that compiles and link-edits your program.
IMSCOBGO is a three-step procedure that compiles, link-edits,
and executes your program in a Ol/I batch region. For
information on how to use these procedures, see "The IMS/VS
Proc~dure Library" in the IMS/VS System Programming Reference
Manual.

PL/I DL/I Program structure

The program in Figure 67 is a skeleton program in PL/I. It shows
you how the parts of a Ol/I program written in Pl/I fit together.
The numbers to the right of the program refer to the notes that
follow the program.

Note: IMS/VS application programs cannot use Pl/I tasking. This
is because all tasks operate as subtasks of a Pl/I control task
when you use multitasking.

160 IMS/VS Application Programming

t
.~

(

/*
/* ENTRY POINT
/*
DlITPlI: PROCEDURE CDB_PTR_MAST,DB_PTR_DETAIl)

OPTIONS CMAIN);

/*
/*
/*
DCl
DCl
DCl
DCl
DCl
DCl
DCl
DCl
DCl
DCl
DCl

DCl 1

DCl 1

) DCl 1

DCl 1

DCl 1

DCl 1

DESCRIPTIVE STATEMENTS

DB_PTR_MAST POINTER;
DB_PTR_DETAIl POINTER;
FUNC GU CHAR(4)
FUNC-GN CHAR(4)
FUNC-GHU CHAR(4)
FUNC-GHN CHAR(4)
FUNC-GNP CHAR(4)
FUNC:GHNP CHAR(4)
FUNC ISRT CHAR(4)
FUNC-REPl CHAR(4)
FUNC:DlET CHAR(4)

QUAl_SSA

2 SEG NAME
2 SEG-QUAl
2 SEG-KEY NAME
2 SEG:OPR-
2 SEG KEY VALUE
2 SEG-END-CHAR
UNQUAl SSA -
2 SEG_NAME_U
2 BLANK

MAST SEG 10 AREA,
2 --= --
2 ---
2 ---
DET SEG 10 AREA,
2 -=- - -
2 ---
2 ---
DB PCB MAST
2 - MAST DB NAME
2 MAST-SEG lEVEL
2 MAST-STAT CODE
2 MAST:PROC:OPT
2 FIllER
2 MAST SEG NAME
2 MAST-lEN-KFB
2 MAST-NO SENSEG
2 MAST-KEY FB
DB PCB DETAIL
2 - DET DB NAME
2 DET-SEG lEVEL
2 DET-STAT CODE
2 DET-PROC-OPT
2 FIlIER-
2 DET SEG NAME
2 DET-lEN-KFB
2 DET-NO SENSEG
2 DET:KEY_FB

INITC'GU ')j
INITC'GN ')j
INITC'GHU ');
INITC'GHN ');
INITC'GNP ')j
INITC'GHNP')j
INITC'ISRT');
INITC'REPl');
INITC'DlET');

STATIC UNALIGNED,

CHAR(8) INITC'ROOT '),
CHAR(1) INITC'C'),
CHARCS) INITC'KEY '),
CHAR(2) INITC' ='),
CHAR(6) INITC'vvvvv'),
CHAR(1) INITC')');
STATIC UNALIGNED,
CHAR(8) INITC'NAME '),
CHAR(1) INITC' ');

BASED CDB_PTR_MAST),
CHARCS),
CHAR(2),
CHAR(2),
CHAR(4),
FIXED BINARY C31,0),
CHARCS),
FIXED BINARY C31,0),
FIXED BINARY C31,0),
CHARon;
BASE CDB_PTR_DETAIl),
CHARCS),
CHAR(2),
CHAR(2),
CHAR(4),
FIXED BINARY C31,O),
CHAR(S),
FIXED BINARY C31,0),
FIXED BINARY C31,O),
CHARC*);

Figure 67 (Part 1 of 2). Pl/I Dl/I Skeleton Program

Chapter 7. Coding the Dl/I Portion of a Program 161

Del
DCl
DCl
DCl
/*
/*
/*

THREE
FOUR
FIVE
SIX

FIXED BINARY
FIXED BINARY
FIXED BINARY
FIXED BINARY

(31,0)
(31,0)
(31,0)
(31,0)

INITIAl(3)
INITIAL(4)
INITIAL(5)
INITIAL(6)

MAIN PART OF PL/I BATCH PROGRAM

CALL PLITDLI(FOUR,FUNC_GU,DB_PCB_DETAIL,
DET_SEG_IO_AREA,QUAL_SSA);

RETURN;
END DLITPLI;

PL/I LANGUAGE INTERFACE

6

Figure 67 (Part 2 of 2). PL/I Dl/I Skeleton Program

Notes:

1. After DL/I has loaded the application program's PSB, Dl/I
gives control to the application program through this entry
point. PL/I proqrams mu~t past the po;nters to the PCBs, not
the names, ;n the entrY statement. The entry statement lists
the PCBs that the program uses by the names that it has
assigned to the definitions for the PCB masks. The order in
which you refer,to the PCBs in the entry statement must be the
same order in which they've been defined in the PSB.

2. Each of these areas defi nes one of the call functi ons used by
the batch program. Each character string is defined as 4
alphameric characters, with a value assigned for each
function. You can define other constants in the same way.
Also, you can store standard definitions in a source library
and include them by using a YeINClUDE statement.

3. A structure definition defines each SSA the program uses. The
unaligned attribute is required for SSAs. The SSA character
string must reside contiguously in storage. You should define
a separate structure for each qualified SSA, because the
value of each one's key field is different.

4. The I/O areas that will be used to pass segments to and from
the data base are defined as structures.

5. Level 1 declaratives define masks for the DB PCBs that the
program uses as structures. These definitions make it
possible for the program to check fields in the DB PCBs.

6. This statement defines the parmcount that is required in DL/I
calls issued from PL/l programs. The parmcount gives the

(

(

number of parameters in the call that follow parmcount ('
itself.

162 IMS/VS Application Programming

)
7. This call retrieves data from the data base. It contains a

qualified SSA. Before you can issue a call that uses a
qualified SSA, you must initialize the key field of the SSA.
Before you can issue a call that uses an unqualified SSA, you
must initialize the segment name field. You should check the
status code after each DL/I call that you issue.

Although you must pass the PCB pointer in the entry statement
to a PL/I program, you can pass either the PCB name or the PCB
pointer in DL/I calls in a PL/I program.

8. This is another call that is qualified with a qualified SSA.

9. This call is an unqualified call that retrieves data from the
data base. Because it is a get hold call, it can be followed
by a REPL call or a DLET call.

10. The REPL call replaces the data in the segment that was
retrieved by the most recent get hold call with the data in
the I/O area referenced in the segment.

11. The RETURN statement returns control to DL/I.

12. IMS/VS provides a language interface module (DFSLIOOO) that
gives a common interface to IMS/VS and DL/I. This module must
be link-edited to the program. If you use the IMS/VS-supplied
procedures (IMSPLI or IMSPLIGO), IMS/VS link-edits the
language interface module to the application program. IMSPLI
is a boJo-step procedure that compi les and Ii nk-edi ts your
program. IMSPLIGO is a three-step procedure that compiles,
link-edits, and executes your program in a DL/I batch region.
For information on how to use these procedures, see "The
IMS/VS Procedure Library" in the IMS/VS System Programmi n9
Reference Manual.

) Assembler Language DL/I Program structure

The program in Figure 68 is a skeleton program in assembler
language. It shows how the parts of a Dl/I program written in
assembler language fit together. The numbers to the right of the
program refer to the notes that follow the program. Throughout
this program, you could replace ASMTDlI with CBlTDlI.

Chapter 7. Coding the DL/I Portion of a Program 163

PGMSTART CSECT
* * R1
R2
RS
R12
R13
R14
R1S
*

USEAGE OF
EQU
EQU
EQU
EQU
EQU
EQU
EQU

USING
SAVE
ST
LA
USING
USING
lR
l
lA

EQUATE REGISTERS
REGISTERS

1
2
S
12
13
14
IS

PGMSTART,R12
(14,12)
R13,SAVEAREA+4
R13,SAVEAREA
PCBlIST,R2
PCBNAME,RS
R2,R1
RS,PCBDETA
RS,O(RS)

ORIGINAL PCBlIST ADDRESS
PCBlIST ADDRESS1
PCB ADDRESSS
BASE ADDRESS
SAVE AREA ADDRESS

BASE REGISTER ESTABLISHED
SAVE REGISTERS
SAVE AREA CHAINING
NEW SAVE AREA
MAP INPUT PARAMETER lIST
MAP DB PCB
SAVE INPUT PCB lIST IN REG
lOAD DETAIL PCB ADDRESS

2

REMOVE HIGH ORDER END OF LIST

Figure 68 (Part 1 of 2). Assembler language Skeleton Program

164 IMS/VS Application Programming

(

1

2

3
FLAG

(

(

)

\
)

)

CALL ASMTDLI,(GU,(R5),DETSEGIO,SSANAME),VL

L R5,PCBMSTA LOAD MASTER PCB ADDRESS
CALL ASMTDLI,(GHU,(R5),MSTSEGIO,SSAU),VL

CAll ASMTDlI,(GHN,(R5),MSTSEGIO),Vl

CAll ASMTDlI,(REPl,(R5),MSTSEGIO),Vl

l R13,4(RI3)
RETURN (14,12)

* * FUNCTION CODES USED

* GU DC Cl4'GU'
GHU
GHN
REPl

DCCl4'GHU'
DC Cl4'GHN'
DC Cl4'REPl'

* * SSAS
* SSANAME DS

DC
DC
DC
DC

NAME OC
DC

* SSAU DC

* MSTSEGIO DC
DETSEGIO DC
SAVEAREA DC

* PCBlIST
PCBMSTA
PCBOETA

* PCBNAME
DBPCBDBD
DBPCBLEV
DBPCBSTC
DBPCBPRO
DBPCBRSV
DBPCBSFD
DBPCBMKl
DBPCBNSS
DBPCBKFD

DSECT
DS
OS

OSECT
OS
OS
OS
DS
DS
OS
DS
DS
OS
END

OC
Cl8'ROOTDET'
Cll'('
Cl8'KEYDET'
Cl2' ='
Cl6'
C') ,

Cl9'ROOTMST'

ClI00' ,
ClI00' ,
18F'O'

A
A

Cl8
Cl2
Cl2
Cl4
F
Cla
F
F
C
PGMSTART

RESTORE SAVE AREA
RETURN BACK

ADDRESS OF MASTER PCB
ADDRESS OF DETAIL PCB

DBD NAME
lEVEL FEEDBACK
STATUS CODES
PROC OPTIONS
RESERVED
SEGMENT NAME FEEDBACK
lENGTH OF KEY FEEDBACK
NUMBER OF SENSITIVE SEGMENTS
KEY FEEDBACK AREA

ASSEMBLER lANGUAGE INTERFACE

IN PCB

Figure 68 (Part 2 of 2). Assembler language Skeleton Program

Notes:

4

5

7

8

9

10

11

12

1. The entry point to an assembler language program can have any
name.

2. When DL/I passes control to the application program, register
1 contains the address of a variable-length fullword

Chapter 7. Coding the Dl/I Portion of a Program 165

YOUR INPUT

parameter list. Each word in this list contains the address of
a PCB that the application program must save. The high-order
byte of the 1~5t word in the parameter list has th~ 0 bit sat
to a value of 1 to indicate the end of the list. The
application program uses these addresses later on in
executing Dl/I calls.

3. THe program loads the address of the DETAIL DB PCB.

4. The program issues a GU call to the DETAIL data base using a
qualified SSA (SSAHAME).

5. The program then loads the address of the MASTER DB PCB.

6. The next three calls that the program issues are to the MASTER
data base. The first call is a GHU call that uses an
unqualified SSA. The second call is an unqualified GHH. The
REPl call replaces the segment retrieved with the GHH with the
segment in the MSTSEGIO area.

7. The RETURN statement loads Dl/I registers and returns control
to Dl/I.

8. The call functions are defined as 4-character constants.

9. The program defines each part of the SSA separately so that it
can modify the SSAs fields.

10. The program must define an I/O area large enough to contain
the largest segment it will retrieve or insert (or the largest
path of segments if the program uses the D command code). This
program's I/O areas are 100 bytes each.

11. A fullword must be defined for each DB PCB. The assembler
language program can access status codes after a Dl/I call by
using the DB PCB base addresses.

12. The IMS/VS-supplied language interface module (DFSlIOOO) must
be link-edited with the compiled assembler language program.

In addition to knowing the design and processing logic for your
program, you need to know about the data that your program will be
processing, the PCBs it references, and the segment formats in the
hierarchies your program processes. You can use the list below as
a checklist to make sure that you're not missing any information.
If you're missing information about your data, the DL/I options
being used in your application, or segment layouts and your
application's data structures, you should get this information
from the DBA, or the equivalent specialist at your installation.
You should also be aware of the programming standards and
conventions that have been established at your installation.

Informat;on You Need about the program's Design

• The call sequence for your program

• For each Dl/I call, the format of the call:

Does the call include any SSAs?

If so, are they qualified or unqualified?

Does the call include any command codes?

• Th~ processing !o~ic for the program

• The routine the program will use to check the Dl/I status code
after each call

166 IMS/VS Application Programming

(

----------_ _-- .. __ ._ .•..... _ .. _ _._-_ ... _-----_._--_ .. __ _-_ _--_._------_. __ .. -._-_ ..• _--_._ -... - -............. _ •. _ .. _----

)

)

)

• The error routine(s) the program will use

Information You Need about Checkpoints

• The type of checkpoint call to use (basic or symbolic)

• The identification to assign to each checkpoint call,
regardless of whether the checkpoint call is basic or
symbolic

• If you are going to use the symbolic checkpoint call, which
areas, if any, of your program you will checkpoint

• If you are go i ng to use the basi c call, whether or not you are
going to use the OS/VS option on that call

Information You Need about Each Segment

• Whether the segment is fixed or variable length

• The length of the segment (the maximum length, if the segment
is variable length)

• The names of the fields that each segment contains

• Whether or not the segment has a key field. If it does, is the
key field unique or nonunique? If it doesn't, what sequencing
rule has been defined for it? (A segment's key field is
defined in the SEQ keyword of the FIELD statement in the DBD.
The sequencing rule is defined in the RULES keyword of the
SEGM statement in the DBD.)

• The segment's field layouts: the byte location of each field,
the length of each field, and the format of each field

Information You Need about the Program's Hierarchies

• Each data structure, your program processes has been defined
in a DB PCB. All of the PCBs your program references are part
of a PSB for your application program. You need to know the
order in which the PCBs that your application program
references are defined in the PSB. You will use this
information in the entry statement for your program.

• The layout of each of the data structures your program
processes.

• For each data structure, whether multiple or singie
positioning has been specified for it. This is specified in
the pas keyword of the PCB statement during PSB generation.

• Whether any data structures use mul ti pIe DB PCBs.

CODING THE PROGRAM LOGIC

This section tells you how to code the main part of your program:
the entry statement, DL/I calls, system service calls, error
routines, and program termination. If you are writing your
program in COBOL, this is the procedure division. If you are
writing your program in PL/I, this is the code that comes after
the data declarations. If you are writing your program in
assembler language, this is the section before your data
definitions.

Notes:

1. The parameter "parmcount" is required in all PL/I calls
except the call that calls the status code error routine. It
is optional for all COBOL calls (except the call to the status

Chapter 7. Coding the Dl/I Portion of a Program 167

code error routine, where it is not allowed), although it is
not shown in any of the COBOL calls because it is never (,-
required. Parmcount can also be used instead of VL in any of
the assembler language calls. These options are not shown on
each COBOL and assembler language call in the interest of
keeping the explanations of the call formats as simple as
possible.

2. Also, for assembler calls, you can substitute CBLTDLI for
ASMTDLI in any of the calls.

CODING AN ENTRY STATEMENT

CODING DL/I CALLS

The entry statement in a DL/I application program lists the PCBs
that the application program uses. Your entry statement must
refer to the DB PCBs in the same order in which they are defined
in your program's PSB. If your program uses an I/O PCB, it must
refer to the I/O PCB before referencing any of the DB PCBs.

PL/I programs must pass the pointers to the PCBs, not the PCB
names, in the entry statement.

At a mlnlmum, the parameters in a DL/I call indicate three things
to DL/I: the type of call you're issuing, for example, a GU; the
DB PCB that you want Dl/I to use for this call; and the segment
I/O area. The parameters giving this information are required in
all of the Dl/I calls in each language. You can also use SSAs in
all of the OL/I calls. There are two additional parameters that
are used: "parmcount" and "Vl". Whether or not you use these
parameters depends on the language you're using.

PL/I programs can reference either the PCB name or the PCB pointer
in DL/I calls.

CODING SYSTEM SERVICE CALLS FOR RECOVERY

Three of the system service calls that a batch program can use are
recovery tools: symbolic CHKP, XRST, and basic CHKP. Symbolic
CHKP and XRST must be used together; the formats for these calls
are identical. Basic CHKP has a different format and different
parameters.

Checkpointing an application program is an important part of an
installation's recovery procedures. Because of this,
installations usually establish specific standards regarding
checkpoint frequency, checkpoint IDs, and (if you use the
symbolic call) which areas of your program to checkpoint. Be sure
that you are following these standards before you code your CHKP
calls and checkpoint IDs. .

Each of these calls must reference the I/O PCB, rather than the DB
PCB, as one of the call parameters. IMS/VS automatically
generates a dummy PCB that can be used in a batch program as an
I/O PCB if you specify the compatibility option (CMPAT=YES) on the
PSB for your application program.

CODING SYSTEM SERVICE CALLS FOR MONITORING

Three of the system service calls that you can use in a batch
program are monitoring tools: GSCD, LOG, and STAT. Like the CHKP
and XRST calls, the LOG call must be issued against the I/O PCB,
not the DB PCB. IMS/VS will automatically generate a dummy PCB
that a batch program can use as an I/O PCB if you specify the
compatibility option (CMPAT=YES) in the PSB for your batch
program.

168 IMS/VS Application Programming

(,

----------------------- ----------------

CHECKING STATUS CODES

Your program should include code to check the status code that
Dl/I returns in the PCB mask each time your program issues a Dl/I
call or a system service call. If Dl/I returns an error status
code, your program should branch to an error routine to terminate.
Most installations have a standard error routine that is
available to the application programs at the installation.

Not all status codes indicate errors. Because of this, your
program should check for exceptional or warning status codes
before it branches to an error routine. For example, "GE" means
that Dl/I has reached the end of the data base while searching for
the segment you requested. You would not necessarily want to
branch to an error routine in this case; the fact that Dl/I
reached the end of the data base could mean that it was time for
the program to exit from a loop. Below is a COBOL example of how
you might handle warning or exceptional status codes:

CAll 'CBlTDlI' USING GN-FUHC, DB-PCB, I/O-AREA.
IF PCB-STATUS EQ 'GE' PERFORM PRINT-NOT-FOUND.
IF PCB-STATUS NE 'bb' PERFORM STATUS-ERROR.

If the status code indicates an error--in other words, it is not
just a warning or an indication of an exceptional condition--your
program should be able to pri nt out as much i nformati on as
possible about the error before terminating. For example, if the
error was caused by an invalid SSA, you would want to be able to
look at the SSA that was being used when the program terminated.
If your installation does not have a standard status code error
routine, you might want to use the sample routine provided in
"Appendix E. Sample Status Code Error Routine (DFSOAER)." Using
this routine or a similar one can make debugging your program an
easier job.

) CODING THE DATA AREA

\

)

CODING THE PARMCOUNT

Each of the parameters of a Dl/I call is the address of an area in
your program in which you've defined the information that Dl/I
needs for the call. For example, for the SSA parameter, you give
the name of the area in your program where you have defined the
SSA. This section tells how to code these areas in the order in
which they appear in a DL/I call: the parmcount, if you are using
PL/I; the call function code; the DB PCB mask; the I/O area; and
the SSAs, if you are using any.

Parmcount is the address of a 4-byte field th~t contains the
number of parameters that follow in the call. Parmcount is
required only in PL/I programs. It is optional in COBOL and
assembler language programs. The value in parmcount is binary.
The example below shows how you could code a the parmcount
parameter when three parameters follow i~ the call:

DCl THREE FIXED BINARY (31,0) INITIAl(3);

CODING Dl/I FUNCTION CODES

For each DL/I call that your program issues, you define the
function code in the data area in your program. The label that you
give to the definition of the function code can be anything you
want it to be, including the same value as the function code
itself, within the conventions of the programming language you
are using. The order in which you define the function codes is not
important. The following examples are from the skeleton programs
shown in Figure 66, Figure 67, and Figure 68. Refer to these
figures to see how the parameters appear in the DL/I calls.

Chapter 7. Coding the Dl/I Portion of a Program 169

GU Function Code for COBOL

WORKING-STORAGE SECTION.
77 FUNC-GU PICTURE XXXX VALUE 'GU

Each call function used by your program should be defined as a 77
level or 01 level working storage entry. Each picture clause is
defined as 4 alphameric characters and has a value assigned for
each function. Notice that the value "GU" is padded with 2 blanks
on the right to make it 4 bytes long.

ISRT Function Code for Pl/I

DESCRIPTIVE STATEMENTS

.
DCl FUNC_ISRT CHAR(ltl INIT('ISRT' 1;

The function code "ISRT" is 4 byteslohg, so you don't have to pad
it.

REPl Function Code for Assembler language

CODING DB PCB MASKS

CODING THE I/O AREA

* FUNCTION CODES USED

.
REPL DC Cl4'REPL'

If you are using assembler language, define the call functions as
4-character constants. Notice that in this example the label is
the same as the function code.

To use the DB PCBs that define your program's data structures,
your program defines a mask of the DB PCB; it doesn't use the
actual DB PCB. Since PCBs don't reside in your program, the PCB
mask should be defined in the linkage section if you're using
COBOL, as a based variable if you're using Pl/I, or as a dsect if
you're using assembler language. You must have a PCB mask for each
PCB that your program references. Although the entry statement
must list the PCBs in the same order in which they are defined in
the PSB, the PCB masks may appear in any order when you define
them in your program.

The I/O area parameter on a Dl/I call gives the address of the
input/output area in your program. The length of this area is very
important. If you don't use any path calls, the area must be as
long as any segments that your program will retrieve or insert. If
your program does issue path calls, this area must be long enough
to hold the longest concatenated segment that might be retrieved
using a path call, or the concatenated segment that you place in
the I/O area before issuing an ISRT call.

When Dl/I returns a segment to this area, the area is not cleared
between calls; your program has to use the length field in the PCB
to determine the length of the current segment in the I/O area. If
this area is too small, the data from each call can overlay the
data from the previous call. You can use separate I/O areas for
each segment type you use, or you can use a single area.

170 IMS/VS Application Programming

(

/
\

~)

)

)

CODING SSAS

There can be three parts to an SSA: a segment name, a command
code, and a qualification statement. At the minimum, an SSA
conta ins the name of the segment type that you want. Command codes
and qualification statements are optional.

CODING CHECKPOINT IDS

This area is always 8 bytes long. The format of the area depends
on the type of 10 your installation uses. Checkpoint IDs must be
unique both within your program and across application programs.
Because of this and because checkpoint IDs are used in
communicating between the MTO and programmers, most installations
establish specific standards for checkpoint IDs. If you are
unsure about the conventions at your installation, check with the
person who handles recovery.

GSA" CODING CONSIDERATIONS

Function
Code

OPEN

CLSE

GNbb

ISRT

GUbb

The calls your program uses to access GSAM data bases are not the
same as the Dl/I calls. This section tells how to code GSAM calls
and GSAM data areas, and it describes the JCl restrictions that
apply to GSAM. The system service calls that you can use with GSAM
are symbolic CHKP and XRST.

Figure 69 summarizes the GSAM data base calls. There are five
calls you can use to process GSAM data bases: OPEN, ClSE, GN,
ISRT, and GU. The COBOL, Pl/I, and assembler call formats and
parameters for these calls are described below. GSAM calls don't
look too different from Dl/I calls. The main differences are that
GSAM calls must reference the GSAM PCB, and that they do not use
SSAs.

Meaning Use Options Parameters

Open Explicitly opens Can specify function, gsam pcb
GSAM data base printer or [,open option]

punch control
characters

Close Explicitly closes None function, gsam pcb
GSAM data base

Get next Retrieves next Can supply function, gsam pcb,
sequential record address for i/o area

RSA [,rsa name]

Insert Adds new record Can supply function, gsam pcb,
at end of data address for i/o area
base RSA [,rsa name]

Get Establishes none function, gsam pcb,
unique position in data i/o area, rsa name

base or retrieves
a unique record ' . ,.

Figure 69. Summmary of GSAM Calls

Chapter 7. Coding the DL/I Portion of a Program 171

CODING FAST PATH DATA BASE CALLS

You can use all of the OL/I calls except GNP and GHNP to access
Fast Path data b~ses. You can also use two additional calls: FLO
and POS. When you can use each of these calls depends on the type
of Fast Path data base that you are processing. The following
restrictions apply to DL/I calls that you issue to Fast Path data
bases.

• The call can contain only one SSA.

• The SSA cannot have Boolean qualification statements.

• The SSA cannot use any command codes.

The calls you use to process MSOBs are:

• For nonterminal-related MSDBs:

• For

• For

FLO

GU and GHU

GN and GHN

REPL

terminal-related,

FLD

GU and GHU

GN and GHN

REPL

terminal-related,

FLO

GU and

GN and

OLET

REPL

ISRT

GHU

GHN

fixed MSOBs:

dynami c MSOBs:

You can use these calls to process a DEDB:

• GU and GHU

• GN and GHN

• REPL

• ISRT

• DLET

• POS

172 IMS/VS Application Programming

(

(

--------------------------------------- ._----- ----.-- ... ----.----------------....

)

'\
)

CHAPTER 8. STRUCTURING A MESSAGE PROCESSING PROGRAM

This chapter tells you how to use the DC calls to communicate with
terminals and other programs, and it explains some additional
tools that an MPP can use to process online data bases. To read
and update a data base, a message processing program, or MPP, uses
the calls and tools described in "Chapter 6. Structuring the DL/I
Portion of a Program."

The decisions involved in structuring an MPP are decisions
involving the messages that the program receives and sends. This
chapter explains what an MPP can do, and the decisions that you
have to make about the program's structure, in this order:

• How You Send and Receive Messages: An Overview

Thi 5 sect ion expla ins what kinds of messages you can send and
receive, and gives a general description of how you do it.

• What Input Messages Look like

This section explains the format of input messages.

• What Output Messages Look Like

This section describes the format of output messages.

• How You Edit Your Messages

o

This section explains how you edit input and output messages
using MFS, and what basic edit does for you.

Retrieving Messages

This section explains the calls the program uses to receive
messages, and what the message looks like when the program
recei ves it.

• sending Messages: ISRT, CHNG, and PURG

This section explains the calls that an MPP uses to send
messages once the MPP has done the required processing. The
MPP doesn't necessarily reply to the terminal or program that
sent the message; this section explains how an MPP can respond
to an input message.

• communicating with Other IMS/VS systems

If your installation has two or more IMS/VS DB/DC systems, it
can use Multiple Systems Coupling to make it possible for a
terminal in one system to communicate with terminals and
programs in other systems. This section explains how this
affects your programming.

• conversations

•

A conversation allows a terminal to have several interactions
with one or more MPPs without having to start the transaction
from the beginning with each interaction. This section tells
you how to structure a conversational program.

Issuing Commands

This section explains how an MPP can issue commands. The most
frequent use of these commands is in conjunction with the
Automated Operator Interface.

Chapter 8. Structuring a Message Processing Program 173

• Reserving and Releasing Segments

When an MPP accesses the data base, there may be several other
application programs trying to access the same segments. This
section explains how IMS/VS automatically keeps several
programs from accessing one data base segment at a time, and
how you can explicitly reserve segments by using the Q command
code.

• Backing Out Data Base Updates: ROLB and ROLL

Unlike a batch program, an MPP can back out the data base
updates it has made since its last sync point while it is
still executing. This section explains the calls that you use
to do this, and the situations in which you would use these
calls.

• Considerations for Message-Driven Fast Path Programs

This section explains the differences between message-driven
Fast Path programs and MPPs that affect your programming.

HOW YOU SEND AND RECEIVE MESSAGES: AN OVERVIEW

When a program accesses data in a DL/I data base, the program uses
retrieval calls to read the data, and the update calls to add,
replace, or delete data. In the same way, an MPP has two calls
that it uses to retrieve messages, and three calls that it can use
to send messages.

Just as you receive results from a data base call in your
program's I/O area and the DB PCB mask, you receive results from a
message call in your program's I/O area and an I/O PCB mask.
IMS/VS places the input messages for your program in the I/O area,
and, when you want to send a message, you build it in the I/O area ~
before sending it. . _

When your program receives a message, IMS/VS returns the
following information about the message to the I/O PCB:

• The name of the terminal that sent the message

• A 2-character status code describing the results of the call.
For example, if the program receives a status code of QC after
issuing a call to retrieve a message, that means that there
are no more messages for the program.

• The current date, time, and sequence number for the message

• The userid of the person at the terminal, the logical terminal
name, or the transaction code for the program that sent the
message.

Figure 70 shows the parts of an MPP. The numbers to the right of
the picture refer to the notes that follow it.

174 IMS/VS Application Programming

(

)

)

)

~----> Program Entry 1

2

Get an Input Message

Check for QC status Code

Input Validation

I/O PCB Mask

Return information
from IMS/VS 1<

~--------------------~

I/O Area

Input and output
messages 1<

~--------------------~

3

4

5

6

7

~> DL/I Calls for Data Base Processing
Retrieve

8

Entry v

Insert
Replace
Delete

Processing

. Send Output Message to Originating Terminal
or to Alternate Destination

Termination

9

10
11

12

Call v
Exit

IMS/VS

Figure 70. Basic MPP Structure

Notes:

1. Program Entry. IMS/VS passes control to the MPP when there are
messages in its message queue.

2. Initialization. You can design your program to be reusable by
initializing constants and switches that the program modifies
at program entry. A reusable program is one that IMS/VS does
not have to load each time it schedules the program. Instead,
IMS/VS loads the program once, for the first message, and
passes control to the program each time there is a new message
for the program to process.

To make your program reusable, try to avoid modifying
constants (such as SSAs) and using switches. If, however, you
want to use either of these techniques, make sure that you
initialize the constants and switches you've modified at the
beginning of the program, not at the end of the program.

3. Get an Input Message. The MPP issues a GU to retrieve the
first segment in a message, and GN calls to retrieve the
remaining segments in the message.

Chapter 8. Structuring a Message Processing Program 175

DC CALLS

4. Check for QC status Code. When a program issues a call for a
new message, but there are no more messages for it to process, (
IMS/VS returns a QC status code to the I/O PCB.

5. Input Validation. To make sure that its input messages are
valid, the MPP checks the format, value, and consistency of
the input data fields. The program should do this as
completely as possible, and before it issues any Dl/I calls to
the data base.

6. I/O PCB Mask. IMS/VS describes the results of each message
call in the I/O PCB mask. Your program reads the information
in this area after each DC call to find out whether or not the
call was successful, and if there are any more messages to
process.

7. I/O Area. IMS/VS returns input messages to the I/O area, and
your program builds output messages in the I/O area.

8. DL/I Calls for Data Base Processing. If necessary to process
the message, the program issues Dl/I calls to read and update
information in the data base.

9. processing. The program does the required processing.

10. Send Output Message to the Originating Terminal. The MPP
sends the response output message to the originating terminal
by using the I/O PCB.

11. Send output Message to an Alternate Terminal. The program can
send a message to a terminal or program other than the
terminal or program that sent the message.

12. Terminate. The program must terminate when there are no more
input messages for it to process.

An MPP retrieves and sends messages by issuing calls similar to
Dl/I calls. The calls used by an MPP are called data communication
calls, or DC calls. IMS/VS messages are made up of one or more
segments. The calls you use when you retrieve and send messages
are:

GU A get unique call retrieves the first segment of a new
message.

GN A get next call retrieves the remaining segments of that
message.

ISRT An insert call sends one message segment to the destination
represented by the PCB that you reference in the call.

CHNG A change call sets the destination of a modifiable
alternate PCB to the logical terminal or transaction code
that you specify.

PURG When you send messages using the ISRT call and you don't use
PURG, IMS/VS groups the message segments into a message and
sends the message when you retrieve the first segment of the
next message (or when you reach a sync point). But if you
issue a PURG call after i ssui ng ISRT calls for one or more
message segments, you can send that output message to its
destination before you retrieve the next input message.

CMD A command call makes it possible for an application program
to issue IMS/VS commands.

....,

(
',,-

GCMD The get command call retrieves responses from IMS/VS to the (
command issued by the application program.

To retrieve messages, an MPP uses GU and GN.

176 IMS/VS Application Programming

")

I/O PCB Masks

)

A message conta ins one or more segments. If an input message
contains only one segment, a GU call retrieves the entire message.
If an input message contains more than one segment, a GU retrieves
the first segment, and GN calls retrieve the remaining segments of
the message.

To send a message, you use the ISRT call. Before issuing the call,
you bu i Id the output message in an I/O area-just as you bui ld a
segment that you're adding to the data base in an I/O area. Then,
when you issue the ISRT call, you reference that I/O area as one
of the call parameters. To send the message to the terminal that
sent the most recent input message, you reference the I/O PCB in
the call.

To send a message to a different terminal or to an application
program, you issue the ISRT call, but you reference an alternate
PCB instead of the I/O PCB. Alternate PCBs can be defined for a
particular terminal or program, or they can be defined as
modifiable. If the alternate PCB is not modifiable, you just issue
an ISRT call referencing the alternate PCB to send a message to
the terminal or program that it represents. If the alternate PCB
is modifiable, you set the destination for the alternate PCB
before you issue the ISRT call. To do this, you use a CHNG call.

When you issue a PURG call after issuing one or more ISRT calls,
the PURG call makes it possible to send several output messages to
a destination while you're processing the same the same input
message. If you include the address of an I/O area on a PURG call,
PURG inserts the data in the I/O area as the first segment of a
ne~oJ message-i n addi ti on to sendi ng the complete output message
you've already inserted.

An application program can also issue IMS/VS commands, and
retrieve responses to the commands it issues. There are two calls
you use to do this. A CMD call sends the command to IMS/VS, and
returns the first segment of the response from IMS/VS, if there is
one. A GCMD retrieves remaining responses to the command.

Note: In general, IMS/VS application programs should avoid
issuing OS/VS STIMER macros. The reason for this is that IMS/VS
uses S TIMER fo r cont :'0 I pu rpo ses. I f an appl i cat i on program
issues an STIMER before the time interval set by the IMS/VS STIMER
has expired, the application program's STIMER cancels the STIMER
issued by IMS/VS. MVS then resets the time interval for IMS/VS,
and the results are unpredictable. If, for some reason, your
program must use STIMER, you need to set the STIMER parameter to
O. This means that you don't want IMS/VS to issue STIMERs. For an
MPP, you set the STIMER parameter in the DFSMPR procedure; for a
BMP, you set the STIMER parameter in the IMSBATCH procedure; and
for a Fast Path program, you set the STIMER parameter in the IMSFP
procedure. OS/VS2 MVS Supervisor Services and Macro Instructions
describes the OS/VS macros.

An I/O PCB represents the logical terminal that sent the input
message to the application program. An I/O PCB, like a DB PCB, is
outside of the application program, so the program must define a
mask of the I/O PCB in order to check the fields of the I/O PCB.
IMS/VS describes the results of retrieval calls and ISRT calls
that reference the I/O PCB in the I/O PCB. To find out about your
DC calls, your program checks the I/O PCB by referencing the I/O
PCB mask. An MPP checks the status code after a DC call in the
same way that a program checks the status code after a DL/I call.

An I/O PCB contains 8 fields. Figure 71 shows these fields and
gives the length of each.

Chapter 8. Structuring a Message Processing Program 177

1 Logical Terminal Hame
8 bytes

2. Reserved for IMS/VS
2 bytes

3. Status Code
2 bytes

4. Current Date
4 bytes

5. Current Time
4 bytes

6. Input Message Sequence Number
4 bytes

7. Message Output Descriptor Name
8 bytes

8. User Identification
8 bytes

Figure 71. I/O PCB Mask

Notes:

1. Logical Terminal Name: When you receive an input message,
IMS/VS places the name of the logical terminal that sent the
message in thi s area. When you want to send a message back to (
thi s termi nal, ~.I0u refer to the I/O PCB when you issue the 1....
ISRT call, and IMS/VS takes the name of the logical terminal
from the I/O PCB mask as the destination.

2. Reserved for IMS/VS

This area is reserved for IMS/VS.

3. status Code

IMS/VS places the status code describing the result of the DC
call in this field. IMS/VS updates the status code for each DC
call. A blank status code means that your call was successful.

like the status codes that DL/I returns after a data base
call, some of the status codes that you can receive after a DC
call indicate exceptional conditions rather than errors. Your
program should always test the status code after a DC call,
and it should be prepared for the status codes that indicate
such conditions. For example, a QC status code means that
there are no more messages in the message queue for the MPP;
when your program receives this status code, it should
terminate immediately.

For status codes that indicate errors, your program should
have an error routine available to it that prints information
about the most recent call before terminating the program.
Most installations have a standard error routine that all
application programs at the installation use. MPPs can use
the sample status code error routine provided in "Appendix E.
Sample Status Code Error Routine (DFSOAER)." "Checking Status
Codes" describes this routine.

4. Current Date

The current date, current time, and the input message
sequence number are in the prefix of all input messages. Only

178 IMS/VS Application Programming

(

)

Alternate PCB Masks

I/O PCBs have the fields that contain the current date,
current time, and input message sequence number. Alternate
PCBs don't have these fields because you never use an
alternate PCB to receive an input message; you only use it to
send output messages. The current date is the Julian date
given in packed decimal, right-aligned, in the format,
"YYDDD". Thi s gives the date that IMS/VS rece i ved the ent ire
message and enqueued it as input for the MPP. If your system
uses MSC, this field contains the data that your IMS/VS system
received the message from the originating terminal.

5. Current Time

The current time is also given in packed decimal, in the
format "HHMMSS.S". This gives the time of day at which IMS/VS
received the entire message and enqueued it as input to the
MPP.

6. Input Message sequence Number

This field contains the sequence number that IMS/VS assigned
to the input message. The number is in binary. IMS/VS assigns
sequence numbers by terminal; they are continuous since the
most recent IMS/VS startup.

7. Message output Descriptor Name

You only use this field when you use MFS.

If you use MFS, IMS/VS places in this area the name of the
message output descriptor (MOD), when you issue a GU call. If
your program encounters an error and needs to change the
format of the screen in order to send an error message to the
terminal, you can place the name of the MOD that you want
IMS/VS to use in this area. Then you issue an ISRT call. If
you don't use MFS, IMS/VS clears this area to blanks.

8. User Identification

This field is used only with I/O PCBs; alternate PCBs do not
use it.

The contents of this field depend on the origin of the input
message.

• If the message was sent by a person at a termi nal, and the
system uses sign-ons, then IMS/VS places the user's
identification in this field when the MPP issues a GU call
for the first segment of the message.

• If the message was sent by a person at a termi nal, and the
system does not use sign-ons, then IMS/VS places the name
of the logical terminal in this field when the MPP issues
a GU for the first segment of the message.

• If the message was sent by a BMP, then IMS/VS places the
name of the PSB of the BMP that sent the message in this
field.

When your program receives a message from a terminal, you usually
send the reply to the input message back to the same terminal. But
sometimes you want to send the reply to a different terminal, or
to another program instead of the originating terminal. To do
this, you use an alternate PCB.

An alternate PCB contains only three fields: the destination
name, which ;s 8 bytes; a 2-byte field reserved for IMS/VS; and a
2-byte status code field. You place the logical terminal name or
transaction code to which you want the message sent in the

Chapter 8. Structuring a Message Processing Program 179

MESSAGES

destination name field. Figure 72 shows the format of an
al ternate PCB.

1. Destination Name
8 bytes

2. Reserved for IMS/VS
2 bytes

r-.-----------------i
3. status Code

2 bytes

Figure 72. Alternate PCB Mask

Notes:

1. Destination Name: This field contains the name of the logical
terminal or the transaction code that you want to send the
output message to.

2. Reserved for IHS/VS

This area is reserved for IMS/VS; the application program has
no need to use it.

3. status Code

This field contains the 2-byte status code that describes the
results of the call that used this PCB most recently.

An alternate PCB has several options:

• If you're only going to send output messages to one alternate
destination, you can define the alternate PCB for that
destination.

• If you're going to send output messages to more than one
alternate destination, and you want to be able to change the
destination of the alternate PCB, you define the alternate
PCB as modifiable during PSB generation. Then, before you
issue the ISRT call, you issue a CHNG call to set the
destination of the alternate modifiable PCB for the program
or terminal that you want to send the message to.

• There's a special kind of alternate PCB that you use in
certain circumstances. This is an express alternate PCB. This
is also defined during PSB generation, by specifying
EXPRESS=YES.

When you use an express alternate PCB, messages you send using
that PCB are sent to their final destinations immediately.
Messages sent with other PCBs are sent to temporary
destinations until the program reaches a sync point. But
messages sent with express PCBs are sent even if the program
subsequently terminates abnormally, or if the program issues
one of the rollback calls. Using an express alternate PCB in
this kind of situation is a way to make sure that the program
can notify the person at the terminal, even if the program
terminates abnormally.

• You can also specify an alternate PCB as a respons~ alternate
PCB. "Sending Messages: ISRT, CHNG, and PURG" explains when
and why you use thi s opt ion.

There are three kinds'of messages that a person at a terminal can
send to IMS/VS.

180 IMS/VS Application Programming

".

(

(

"

)

The first 8 characters of an IMS/VS message identify the message
as one of three kinds:

• A logical terminal name in the first 8 bytes means that this
is a message switch. A user at one logical terminal wants to
send a message to another terminal. To do this, the person at
the terminal enters the name of the receiving logical
terminal followed by the message. The IMS/VS control region
routes the message to the specified logical terminal. This
kind of message does not involve an MPP.

• A transaction code in the first 8 bytes means that the message
is for an application program. A transaction code is the way
that IMS/VS identifies MPPs; when a person at a terminal needs
a particular program to process requests, the person enters
the transaction code for that application program.

• A "/" (slash) in the first byte means that the message is a
command for IMS/VS. Issuing commands from an MPP is not part
of a typical MPP. People design MPPs to issue commands when
they want an MPP to perform some of the tasks that an operator
at a terminal usually performs. This is called automated
operator programming, and is described in the IMS/VS System
Programming Reference Manual.

In addition to communicating with terminals, an MPP can send
messages to and receive messages from other programs. To send a
message to another program, you specify the transaction code for
that program in the first field of the alternate PCB. IMS/VS then
routes the message built using that alternate PCB to the
application program associated with the transaction code you
specified. This is called a program-to-program message switch.

The messages that your program receives and sends are made up of
segments. This is the why you have two calls that you can use to
retrieve messages. You use a GU call to retrieve the first segment
of a new message, then you use GN calls to retrieve the remaining
segments of the message. Figure 73 shows three messages. Message
A contains 1 segment; message B contains 2 segments; and message C
contains 3 segments.

To retrieve message A, you would only have to issue a GU call; but
to retrieve messages Band C, you would issue one GU call to
retrieve the first segment, then GH calls to retrieve the
remaining segments. This assumes that you know how many segments
each message contains. If you didn't know this, you would have to
issue GN calls until IMS/VS returned a QD status code.

Message A Message B Message C

Segment Al Segment B1 Segment Cl

Segment B2 Segment C2

Segment C3

Figure 73. Message Segments

WHAT HAPPENS WHEN YOU PROCESS A MESSAGE

What a program does when it receives a message depends on the kind
of message it receives. A transaction code associates a request
for information from a terminal with the application program that
can process and respond to that request. IMS/VS schedules an MPP
when there are messages to be processed that contain the
transaction code associated with that MPP.

Chapter 8. Structuring a Message Processing Program 181

For example, suppose you have an MPP that processes the
transact i on code "INQINV" for inventory i nqu i ry. The MPP recei ves /--
a request from a person at a terminal for information on the I

current inventory of certain parts. When the person at the ~ ..
terminal enters the transaction code for that application
program, IMS/VS schedules the application program that can
process the request.

The MPP works like this. When you enter "INQINV" and a part
number, or several part numbers, the MPP returns to you the
quantity on hand of each part, and the quantity on order.

When you enter INQINV at the terminal, IMS/VS puts the message on
the message queue for the MPP that processes INQINV. Then, once
IMS/VS has scheduled the MPP, the MPP issues GU and GN calls to
retrieve the message, processes the request, and sends the output
message to the queue for your logical terminal. (The logical
terminal name is in the I/O PCB.) When the MPP sends the output
message back, IMS/VS sends it the the queue for that logical
terminal, and the message goes to the physical terminal.
Figure 74 shows the flow of a message between the terminal and the
MPP.

Physical Terminal ------> Transaction Queue

v

Application Program

v

Physical Terminal I <---------llOgiCal Terminal Queuel

Figure 74. Transaction Message Flow

Figure 75 shows the calls you would use, the status codes, and
what the input and output would look like. This example shows
messages that contain three segments each to show you how you use
GU and GN to retrieve messages, and how you insert
multiple-segment messages. If input and output messages in this
example were single segment, the program would have to issue only
a GU to retrieve the entire message, and only one ISRT to send the
message.

The message formats shown in this example are examples only. Hot
all messages are in this format. When the program receives the
input message in the I/O area, the first 2 bytes (ll) of each
segment contain the length of that segment. For clarity,
Figure 75 shows this length in decimal; in the input message,
however~ it's in binary. The second 2 bytes (ZZ) are reserved for
IMS/VS. The text of the message follows the reserved two bytes.
The first message segment contains the transaction code in the 8
bytes following the ZZ field. These are the first 8 bytes of the
text portion of the message.

The format of the output messages is just the same. You don't need
to include the name of the logical terminal because that's in the
first 8 bytes of the I/O PCB. PART, QTY, and ON ORDER in Figure 75
are headings. They are not data that the program has to compute.
They are values that you can define as constants that you want to

(

appear on the terminal screen. To include headings in MFS output (
messages, you define them as literals.

182 IMS/VS Application Programming

)

MPP for INQINV Transaction Code

DC Calls I/O Area status Code
lTERM 1

LLZZ TEXT
INQINV PART 12X GU 1900INQINV PART 12X > bb
PART 72B GN 1200PART 72B > bb
PART 37Y GN 1200PART 37Y > bb

GN > QD
LTERM 1 .

PART QTY ON ORDER LLZZ TEXT
12X 90 o < ISRT 130012X090000 bb
72B 41 15 < ISRT 130072B041015 bb
37Y 3 25 < ISRT 130037YOO3025 bb

Figure 75. Inventory Inquiry MPP Example

To retrieve the messages from LTERM1, the application program
issues a GU for the first segment of a message, then issues GN
calls until IMS/VS returns a QD status code. This means that the
program has retrieved all of the segments of that message.

WHAT INPUT MESSAGES LOOK LIKE

The input message that an MPP receives from a terminal or another
program always has three fields: the length field, the "ZZ field,"
and the text field. Figure 76 shows the format of an input
message. The contents of each of these fields is:

LL The length field is a 2-byte field that contains the total
length of the message segment, including lL and ZZ. IMS/VS
supplies this number in this field when you retrieve the
input message.

ZZ The ZZ field is a 2-byte field that is reserved for IMS/VS.
Your program has no need to modify this field.

Text This field contains the message text from the terminal to
the application program. The first segment of a message may
also contain the transaction code associated with the
program in the beginning of the text portion of the message.
Input messages don't have to include the transaction code,
but, for consistency, it's a good idea. bytes of the
message, as you can see in Figure 75.

LL ZZ Text

2 2 variable

Figure 76. Input Message Format

What the text field in the input message contains, and how the
contents are formatted when your program receives the message,
depends on the editing routine your program uses.

WHAT OUTPUT MESSAGES LOOK LIKE

The format of the output message that you build to send back to a
terminal or another program is similar to the input message
format. The difference is in what the fields contain.

Chapter 8. Structuring a Message Processing Program 183

Output messages contain four fields: a length field, a Zl field, a
Z2 field, and the text field. Figure 77 shows how these fields are If
arranged. Their contents are:

LL The length field is the same as the length field in the
input message--it's 2 bytes and it contains the total
length of the message in binary. The length includes the ll,
ZI, and Z2 fields. For output message segments, you supply
this length when you are ready to send the message segment.

ZI The Zl field is a I-byte field that must contain binary
zeros. It is reserved for IMS/VS.

Z2 The Z2 field is a I-byte field that can contain special
device-dependent instructions--such as instructions to ring
the alarm bell, disconnect a switched line, or paging
instructions--or device-dependent information--such as
information about structured field data or bypassing MFS.
For information on using this field, see "Message
Formatting and Editing" in Chapter 3, "Design
Considerations for IMS/VS'Networks," in the IMS/VS System
Administration Guide.

If you don't use any of these instructions, the Z2 field
must contain a zero. If you're using MFS, this field
contains the number of the option that is being used for
this message. MFS options are explained in "Using Message
Format Services."

Text The text portion of the message segment contains the data
that you want to send to the logical terminal or to an
application program. (Message texts are typically EBCDIC
characters.> The length of the text depends on the data that
you want to send.

I ~l I ~1 I ~2 I
Text

variable

Figure 77. Output Message Format

HOW YOU EDIT YOUR MESSAGES

When an MPP passes messages to and from a terminal, IMS/VS edits
the messages before the program receives the message from the
terminal, and before the terminal receives the message from the
application program. IMS/VS gives you a lot of choices about how
you want your messages to appear both on the terminal screen and
in the program's I/O area; you may need to know about the editing
routines that have been specified for your program, and how they
affect your programming.

USING MESSAGE FORHAT SERVICES

Message Format Services, or MFS, is a part of IMS/VS that uses
control blocks that you define to format messages between a
terminal and an MPP. The MFS control blocks indicate to IMS/VS how
you want your input and output messages arranged:

•

•

For input messages, MFS control blocks define how you want the
message that the terminal sends to your MPP to be arranged in
the MPP's I/O area.

For output messages, MFS control blocks define how you want
the message that your MPP sends to the terminal to be arranged

184 IMS/VS Application Programming

,

(
'.

(

)

Terminals and HFS

An HFS Example

\

)

)

on the screen or at the printer. You can also define words or
other data that will appear on the screen (as headings, for
example) but won't appear in the program's I/O area. This kind
of data is called a literal.

Whether or not your program uses MFS depends on the type of
terminals and secondary logical units (SLUs) your network uses.
The decisions about using MFS are high-level design decisions
that are separate from the tasks of application design and
application programming; many installations that use MFS have a
specialist who designs MFS screens and message formats for all
applications that use MFS.

MFS makes it possible for an MPP to communicate with different
types of terminals without having to change the way it reads and
builds messages. When the MPP receives a message from a terminal,
how the message appears in the MPP's I/O area doesn't depend on
what kind of terminal sent it; it just depends on the MFS options
that you've specified for the program. So if the next message that
the MPP received was from a different type of terminal, you
wouldn't have to do anything to the MPP; MFS shields the MPP from
the physical device that's sending the message in the same way
that a DB PCB shields the program from what the data in the data
base actuallY looks like and how it is stored.

The way that MFS does this is to use control blocks that format
the input and output for the program and the terminal. There are
four control blocks that do this:

• The device input format, or DIF, tells MFS the format that the
data from the screen will be in.

• The message input descriptor, or MID, indicates to MFS how you
want the data from the screen to appear in the MPP's I/O area.

• The message output descriptor, or HOD, defines the layout of
the data that MFS receives from the MPP.

• The device output format, or DOF, defines how you want the
data to be formatted at the screen or the printer.

One way to look at this is to look at a message from the time a
person enters it at a terminal to the time the MPP processes. the
message and sends the reply back to the terminal. You can use MFS
with both display terminals and printer terminals; for clarity in
this example, however, assume you are using a display terminal.

Suppose you have an MPP that answers this request:

List the employees who have the skill "ENGINEER"
with a skill level of "3." List only those employees who
have been with the firm for at least 4 years.

To enter the request from a display terminal, you issue the format
command (/FORMAT) and the MOD name. This formats the screen in the
way defined by the MOD you supply. When you enter the MOD name,
the screen contains only literals and no output data from an
application program. At this stage, there is no MPP involved.
Suppose the name of the MOD that formats the screen for this
request is LE, for "locate employee." You would then enter this:

/FORHAT LE

Once you've done this, IMS/VS locates the MFS MOD control block
with the name LE and arranges your screen in the format defined by
the OOF. Your screen then looks like this:

Chapter 8. Structuring a Message Processing Program 185

SKILL
LEVEL
YEARS

lOCEMP

The DOF defines a terminal format that asks you to qualify your
request for an employee by giving the skill, level, and number of
years of service of the employee you want. lOCEMP is the
transaction code that is associated with the MPP that can process
this request. When you enter the MOD name, the tran code is
included in the first screen format that is displayed for you.
This means that you don't have to know the name of the program
that processes your request; you just need the name of the MOD
that formats the screen.

Once you have the screen format, you can enter your request. There
are four stages in sending a message to the program and receiving
the reply.

1. First you enter the information at the terminal. In this
example, you do this by entering the values of the
qualifications that IMS/VS has given you on the screen: the
skill is engineer, the level of skill is 3, and the employee
has been with the firm for at least 4 years.

When you enter your request, your screen would contain this
data:

SKILL ENG
LEVEL 3
YEARS 4

LOCEHP

2. When IMS/VS receives this data, MFS uses the DIF and the MID
control blocks to translate the data from the way you entered

(
i

it on the termi nal screen to the way that the appl i cat ion /
program is expecting to receive it. The DIF control block \
tells MFS how the data is going to come in from the terminal.
The MID control block tells MFS how the application program is
expecting to receive the data. When the application program
issues a message call, IMS/VS places the "translated" message
in the program's I/O area.

When the MPP receives the message in its I/O area, the message
looks like this:

LOCEHP ENG0304

"lOCEMP" is the transaction code. The name of the logical
terminal does not appear in the message itself; IMS/VS places
it in the first field of the I/O PCB.

3. The MPP processes the message, including any required data
base access, and builds the output message in its I/O area.

Suppose there is more than one employee who meets these
qualifications. The MPP can use one message segment for each
employee. After retrieving the information from the data
base, the program builds the output message segment for the
first employee. The program's I/O area contains:

LLZZJONES,CE 3294

When the program sends the second segment, the I/O area would
contain:

LLZZBAKER,KT 4105

4. When the application program sends the message back to the
terminal, MFS translates the message again, this time from (
the application program format to the format in which the
terminal expects the data.

186 IMS/VS Application Programming

)

~
)

)

The MOD tells MFS the format that the message will be in when
it comes from the application program's I/O area. The DOF
tells MFS how the message is supposed to look on the terminal
screen. MFS translates the message and IMS/VS displays the
translated message on the terminal screen. The screen would
look like this!

MFS Input Message Formats

SKILL
NAME
JONES,CE
BAKER,KT

ENG
NO
3294
4105

When you define a message to MFS, you do so in fields--just as you
define fields within a data base segment. When you define the
fields that make up a message segment, you give MFS information
such as!

• The length of the field

• The fill character to use when the length of the input data is
less than the length that has been defined for the field

• Whether the data in the field should be left-justified or
right-justified

• If the field is truncated, whether it should be truncated on
the left or right

The order and length of these fields within the message segment
depend on the MFS option that your program is using. You specify
the MFS option in the MID. The decision about which option to use
for an application program is a design decision that is based on
how complex the input data is, and how much it will vary; the
language the application program is written in; and how complex
the application program is. There are also performance factors
involved in this decision; the section called "Performance
Effects" in Chapter 3 of the MFS User's Guide describes these
considerations.

The Z2 field in MFS messages contains the MFS formatting option
that is being used to format the messages to and from your
program. If something is wrong in the way that IMS/VS returns the
messages to your I/O area, and you suspect that the problem might
be with the MFS option being used, you can check this field to see
if IMS/VS is using the correct option. An X'OO' in this field
means that MFS did not format the message at all.

One way to understand how each of the MFS options formats your
input and output messages is to look at examples of each option.
Suppose you have defined the four message segments shown in
Figure 78. Each of the segments contains a 2-byte length field and
a 2-byte ZZ field. The first segment contains the transaction code
that the person at the terminal entered to invoke the application
program. The number of bytes defined for each field is given below
the name of the field.

Chapter 8. structuring a Message Processing Program 187

Segment 1
II ZZ

0027 XXXX TRANCODE PATIENT# NAME

2 2 8 5 10

Segment 2

\00:4 \ xxxx ADDRESS

2 50

Segment 3

0016 xxxx CHARGES PAYMENTS

2 2 6 6

Segment 4

xxxx TREATMNT DOCTOR

2 10 10

Figure 78. Message Segment Formats

For these examples, assume that:

• The transacti on code has been defi ned in the MID as ali teral. (
A literal is a field in the output message from the
application program or the input message from the terminal,'
that contains constant data.

• All of the fields are to be left-justified.

• The fill character has been defined to be blank. When the
length of the data in a field is less than the length that has
been defined for that field, MFS pads the field with fill
characters. Fill characters can be:

Blanks

An EBCDIC character

An EBCDIC graphic character

A null, specified as X'3F'

When you specify that the fill character is to be a null, MFS
compresses the field to the length of the data, if that length
is less than the field length.

The fields of the message segments are arranged on the
terminal screen in the format shown in Figure 79. For
example, assume the person enters the name of a patient, and
the charges and payments associated with that patient.

188 IMS/VS Application Programming

(
'-

)

)

Segment 1
LL Z

0027 XX 01

2 1 1

Segment 2

Segment 3

0016 XX 01

2 1 1

Segment 4

PATIENTI:

ADDRESS:

CHARGES: 106.50

TREATMENT:

DOCTOR:

NAME: MC ROSS

PAYMENTS: 90.00

Figure 79. Terminal Screen for MFS Example

OPTION 1 FORHAT: The way in which option 1 formats messages
depends on whether or not you have defined a null as being the
fill character for· any of the fields in the segment.

If none of the fi elds in the message has been defi ned as havi ng a
fill character of null:

• The program receives all of the segments in the message.

• Each segment is the length that was specified for it in the
MID.

• Each segment contai ns all of its fi elds.

• Each field contains data, data and fill characters, or all
fill characters.

Figure 80 shows what the message segments that the application
program received would look like.

TRANCODE blanks MCROSSbbbb

8 5 10

010650 009000

6 6

blanks

10

Figure 8t. Option 1 Message Format

The message format for option 1 output messages is the same as the
input message format. The program builds output messages in an I/O

Chapter 8. Structuring a Message Processing Program 189

---_ .. ,--,---------

area in the format shown above. The program can truncate or omit
fields in one of two ways: /

• Inserting a short segment

• Placing a null character in the field

If one or more of the fi elds are defi ned as havi ng a null fi 11
character, the message is a little different. In this case, the
message has these characteristics:

• If a fi eld has been defi ned as havi ng a fi 11 character of null
and there is no data from the terminal, the field is
eliminated from the message segment.

• If this is true for all of the fields in a segment and none of
the fields contains any literals, the segment is eliminated
from the message.

• If this is true for only some of the fields in a segment, the
fieldCs) containing nulls is eliminated from the segment and
the relative positions of the fields within the segments are
changed.

• When the length of the data that's received from the
originating terminal is less than the length that's been
defined for the field, the field is truncated to the length of
the data.

Option 1 is a good choice for programs that will be receiving and
transmitting most of the fields in the message segments.

OPTION 2 FORHAT: Option 2 formats messages in the same way that
option 1 does, unless the segment contains no input data from the
terminal after IMS/VS has removed the literals. If this is true,
and if there are no more segments in the message that conta in c-.
input data from the terminal, IMS/VS ends the message. The last
segment that the program receives is the last segment that
contains input data from the terminal.

Sometimes a segment that doesn't have any input data from the
terminal is followed by segments that do contain input data from
the terminal. When this happens, MFS gives the program the length
field and the Z fields for the segment, followed by a 1-byte field
containing X'3F'. This indicates to the program that this is a
nl'll segment.

If the message segments shown in Figure 78 were formatted by
option 2, they would be in the format shown in Figure 81.

190 IMS/VS Application Programming

(

,
\
J

/

\
)

Segment 1
LL Z Z

0027 XX 02 TRANCODE blanks MCROSS

2 1 1 8 5 10

Segment 2

0005 XX 02 3F

2 1 1 1

Segment 3

0016 XX 02 010650 0090000

2 1 1 6

Figure 81. Option 2 Message Format

Segment 2 in Figure 81 contains only an X'3F' because that
segment is null, but Segment 3 contains data. Segment 4 is not
part of the message because it is null.

Option 2 is a good choice when the program processes multi segment
messages where most of the fields are transmitted but some of the
segments will be omitted.

OPTION 3 FORMAT: When you use option 3, the program receives only
those fields that have been received from the terminal. The
program receives only segments that contain fields received from
the originating terminal. Segments and fields can be of variable
length if you've defined option 3 as having a null fill character.

A segment in an option 3 message is identified by its relative
segment number--in other words, what position in the message it
occupies. The fields within a segment are identified by their
offset count within the segment. For example, the NAME field in
Segment 1 has an offset value of 17. The offset is the sum of the
fields that come before that field in the segment.

Option 3 messages do not contain literals defined in the MID. This
means that the transaction code is removed from the message,
except during a conversation. If the transaction that the program
is processing is a conversational transaction, the transaction
code is not removed from the message. The transaction code still
appears in the SPA as well.

Each segment that the program receives contains the relative
number of this segment in the message. In addition, each field
within the segment is preceded by two fields:

• A 2-byte length field. The length given here includes the
length field itself, the 2-byte relative field offset, and
the data in the field.

• A 2-byte relative field offset, giving the field's position
in the segment as defined in the MID

These two fields are followed by the field data. MFS includes
these fields for each field that is returned to the application
program.

Figure 82 shows the message segments that the program would
receive if option 3 were being used to format the program's

Chapter 8. Structuring a Message Processing Program 191

messages. The notes following the figure explains the letters A,
B, C, 0, and E above Segment 1 and Segment 2. ~

Segment i
LL Z Z A B C o

0020 XX 03 0001 0014 0017 MCROSS

2 1 1 2 2 2 10

Segment 3
LL Z Z A B c o B c o

0000 XX 03 0003 0010 0004 010650 0010 0010 009000

2 1 1 2 2 2 6 2 2 6

Figure 82. Option 3 Message Format

Notes:

1. The fields marked A are the fields containing the relative
segment number. This number gives the segment's position
within the message.

2. The fields marked B are the fields containing the field
length. This length is the sum of the lengths of the B field
(2 bytes), the C field (3 bytes) and the 0 field (the length
of the data).

3. The fields marked C are the fields containing the relative ~
field offset. This giv~s each field's position within the ~
segment.

4. The fields marked 0 are the fields containing the data from
the terminal. In this example, the fill character was defined
as blank, so the data field is always its defined length.
IMS/VS doesn't truncate it. If you define the fill character
as null, the lengths of the data fields can differ from the
lengths defjned for them in the segment. With a null fill
character, if the length of the data from the terminal is less
than the length defined for the field, IMS/VS truncates the
field to the length of the data. Using a null fill with option
3 cuts down on the space required for the message even
further.

Option 3 is a good choice when the program will be receiving and
transmitting only a few of the fields within a segment.

For details on using MFS and MFS options refer to the IMS/VS MFS
User's Guide.

MFS Output Message Formats

For output messages, you define to MFS what it is to receive from
your program. If you use option 1 or option 2, the format is the
same for output messages as it is for input messages. You present
all fields and segments to MFS. You may present null segments. All
fields in output messages are fixed length and fixed position. The
only difference is that output messages do not contain option
numbers.

Option 3 output messages don't contain option numbers in them.
Other than that, they are similar to input messages. The program (
submits the fields as required in their segments with the position
information. ,

192 IMS/VS Application Programming

)

~
/

)

USING BASIC EDIT

If you don't use MFS, IMS/VS does some editing for you
automatically. How much IMS/VS does to each message segment is
different for the first message segment and subsequent message
segments.

Editing Input Messages

When IMS/VS receives the first segment of an input message for
your application program, IMS/VS removes:

• leading and trailing control characters

• Leading and trailing blanks

• Backspaces (from a printer terminal)

If the message segment contains a password, IMS/VS edits the
segment by:

• Removing the password and inserting a blank where the
password was.

• Removing the password if the first character of the text is a
blank. IMS/VS doesn't insert the blank.

• Left-justifying the text of the segment.

For subsequent input message segments, IMS/VS doesn't remove
leading blanks from the text of the message; other than that,
IMS/VS does all of the thi ngs 1 i sted above.

Editing Output Messages

RETRIEVING MESSAGES

When you don't use MFS, you have to provide the necessary
horizontal and vertical control characters that are necessary to
format your output messages in the messages themselves.

To print your output at a printer terminal, you include these
control characters where you need them within the text of the
message:

X'OS' Skip to the tab stop, but stay on the same line.

X'lS' Start a new line at the left margin.

X'2S' Skip to a new line, but stay at the same place
horizontally.

If you want to skip multiple lines, you can start a new line
(X'1S'), then skip as many lines as necessary (X'2S,').

An MPP uses two calls to retrieve input messages from the message
queue: GU and GN.

When you issue a successful GU or GN, IMS/VS returns the message
segment to the I/O area that you specify in the call. The only
parameters on GU and GN calls are the call function, the I/O PCB,
and the I/O area; there are no SSAs in message calls. Message
segments are not all the same length; because of this, your I/O
area must be long enough to hold the longest segment that your
program can receive. The first 2 bytes of the segment contain the
length of the segment.

Chapter 8. Structuring a Message Processing Program 193

RETRIEVING THE FIRST SEGMENT: GU

Because of message prlmlng, your program should always issue a GU
call to the message queue as the first call in the program. When
IMS/VS schedules an MPP, IMS/VS transfers the first segment of the
first message to the message processing region. When the MPP
issues the GU for the first message, IMS/VS already has the
message waiting. If the program doesn't issue a GU message call as
the first call of the program, IMS/VS has to transfer the message
again, and the efficiency provided by message priming is lost.

If an MPP responds to more than one transaction code, the MPP has
to examine the text of the input message to determine what
processing the message requires. After a successful GU call,
IMS/VS places the following information in the I/O PCB mask:

• The name of the logical terminal that sent the message.

• The status code for this call. A blank status code means that
the GU call was successful; a QC status code means that there
are no more messages for the appiication program to process.
You should terminate your MPP as soon as you receive a QC
status code.

• The input prefix, giving the current date, time, and sequence
number for the message.

• The MOD name.

• The userid of the person at the terminal, or if userids are
not used in the system, the logical terminal name. If the
message is from a BMP, IMS/VS places the name of the BMP's PSB
in this field.

RETRIEVING SUBSEQUENT SEGMENTS: GN

If you are processing messages that contain more than one segment,
you use a different call to retrieve the second and subsequent
segments of the message. After you've retrieved the first segment
of the message, you issue GN calls to retrieve the rest of the
message. IMS/VS returns one segment to your I/O area each time you
issue a GN, until you have ret~ieved all of the segments of that
message. IMS/VS returns a status code of QD to indicate to you
that you have retrieved all of the segments of that message. For
an example of this, refer to Figure 75.

SENDING MESSAGES: ISRT, CHNG, AND PURG

When your program is ready to send a message, you send the message
by issuing an ISRT call. You send one segment of the message at a
time. Before you issue the ISRT call for each segment of the
message, you have to build the message segment in your program's
I/O area.

You can send a message to the terminal that sent the input message
to you, or you can send a message to another terminal or another
application p~ogram. When you want to send an output message to an
alternate destination, you use an alternate PCB.

REPLYING TO THE SENDER

To send a reply to the terminal that sent the message, all you do
;s build the message and issue the ISRT call for each message
segment, using the I/O PCB.

(,

When you use the ISRT call to answer the originating terminal, you
name the I/O PCB and the I/O area that contains the message
segment in the call. You can also specify a MOD name in the I/O (
PCB if you want to change the screen format. One situation in ,
which you might want to do this is if your program detects an

194 IMS/VS Application Programming

\

)

)

error and needs to notify the person at the terminal. When you
send the message, you can specify a MOD name that formats the
screen to receive the error message.

In the example explained in "An MFS Example," the program would
move the first employee segment (JOHES,CE 3294) to the I/O area
and issue the ISRT call, then move the second segment to the I/O
area and issue the ISRT call for it.

SENDING MESSAGES TO OTHER TERMINALS

To reply to a different terminal, you also use the ISRT call, but
you use an alternate PCB instead of the I/O PCB.

Just as the I/O PCB represents the terminal that sent the message,
an alternate PCB represents the terminal to which you want to send
the message.

To One· Alternate Terminal

If you're going to send messages to only one alternate terminal,
you can define the alternate PCB for that terminal during PSB
generation. When you define an alternate PCB for a particular
destination, you cannot change that destination during program
execution; each time you issue an ISRT call that references that
PCB, the message goes to the logical terminal whose name was
specified for the alternate PCB. To send a message to that
terminal, you place one message segment at a time in the I/O area,
and issue an ISRT call referring to the alternate PCB, instead of
the I/O PCB.

To Several Alternate Terminals

If you want to send messages to several different terminals, you
can define the alternate PCB as modifiable during PSB generation.
This means that you can use this alternate PCB to send messages to
different terminals instead of to just one. In other words, the
alternate PCB doesn't represent just one alternate terminal; you
can change the destination while your program is running.

Before you can set or change the destination of an alternate PCB,
you have to indicate to IMS/VS that the message you've been
building so far with that PCB is finished. You do this by issuing
a PURG call.

PURG allows you to send multiple output messages while processing
one input message. When you don't use PURG, IMS/VS groups message
segments into a message and sends them when the program issues a
GU for a new message, terminates, or reaches a sync point. A PURG
call tells IMS/VSthat the message built against this alternate
PCB (by issuing one ISRT call per message segment) is complete.
IMS/VS collects the message segments that you've inserted to one
PCB as one message and sends it to the destination represented by
the alternate PCB you've referenced.

A PURG call that doesn't contain the address of an I/O area
indicates to IMS/VS that this message is complete. If you inc1ude
an I/O area in the call, PURG acts as an ISRT call as well. IMS/VS
treats the data in the I/O area as the first segment of a new
message. When you include an I/O area on a PURG call, you can also
include a MOD name to change the format of the screen for this
message. You can specify a MOD name on any PURG call in a series,
but you can specify the MOD name only once.

To set the destination of a modifiable alternate PCB during
program execution, you use a change call, or CHHG. When you issue
the CHNG call you supply the name of the logical terminal that you
want to send the message to. The alternate PCB you use then
remains set with that destination until you do one of the
following:

Chapter 8. structuring a Message Processing Program 195

---_._------- --_ _-_ .. "._.-. __ ..•. _--, .. _._--_.,.

• You issue another CHNG call to reset the destination.

• You issue another GU to the message queue to start processing
a new message. In this case; the name still appears in the
alternate PCB, even though it is no longer valid.

• You terminate your program. When you do this, IMS/VS resets
the destination to blanks.

The first 8 bytes of the alternate PCB contain the name of the
logical terminal that you want to send the message to.

When you issue a CHNG call, you give IMS/VS the address of the
alternate PCB you're using, and the destination name you want set
for that alternate PCB.

When you use the PURG call, you give IMS/VS only the address of
the alternate PCB. IMS/VS sends the message you've built using
that PCB.

To indicate an error situation you can send a message by issuing
an ISRT call followed by a PURG call against an express PCB. These
calls send the message to its final destination immediatelY.

For example, suppose the program goes through these steps:

• The program issues a GU call (and GN calls, if necessary) to
retrieve an input message.

• While processing the message, the program encounters an
abnormal situation.

• The program issues a PURG call to indicate to IMS/VS the start
of a new message.

• The program issues a CHNG call to set the destination of an
express PCB to the name of the originating logical terminal.
The program can get this name from the first 8 bytes of the
I/O PCB.

• The program issues ISRT calls as necessary to send message
segments. The ISRT calles) reference the express PCB.

• The program issues a PURG call referencing the express PCB.
IMS/VS then sends the message to its final destination.

• The program can then terminate abnormally, or it can issue a
ROLL or ROLB call to back out its data base updates and cancel
the output messages its created since the last sync point.

If your output messages contained three segments, and you used the
PURG call to indicate the end of a message (and not to send the
next message segment), you could use this call sequence:

PURG ALTPCBl
CHNG ALTPCBl, LTERHA
ISRT ALTPCBl, SEGI
ISRT ALTPCB!, SEG2
ISRT ALTPCB! , SEG3
PURG ALTPCB!
CHNG ALTPCB!, LTERHB
ISRT ALTPCB!, SEG4
ISRT ALTPCB!, SEGS
ISRT ALTPCB!, SEG6

SENDING MESSAGES TO OTHER APPLICATION PROGRAMS

/
:
\.

c.

When one MPP sends a message to another online program (another
MPP, a message-driven Fast Path program, or a
transaction-oriented BMP), that's called a program-to-program ~
message switch. To do this you use an alternate PCB, and you have \.,_
some of the same options that you have when you use an alternate

196 IMS/VS Application Programming

)

)

~

)

PCB to send messages to alternate terminals. If you'll only s~nd
messages to one application program, then you can define the
alternate PCB with the transaction code for that application
program during PSB generation. If you want to send messages to
more than one application program, you can define the alternate
PCB as modifiable.

If you use an alternate modifiable PCB, IMS/VS does some security
checking when you issue the CHNG call to set the destination of
the alternate modifiable PCB. The terminal that enters the
transaction code that causes the message switch must be
authorized to enter the transaction code that the CHNG call places
in the alternate modifiable PCB. IMS/VS doesn't do any security
checking when you issue the ISRT call.

The things you have to consider when you do a program-to-program
message switch aren't very different from the things you consider
when you communicate with a logical terminal. The things you have
to remember are:

• The program you're sending the message to (for clarity,
assume you're sending a message to an MPP called Program B)
must have an I/O area large enough to hold the largest segment
that you're sending.

• You must use an alternate PCB, not the I/O PCB, to send the
message.

• If the alternate PCB is modifiable, you issue a CHNG call
before issuing the ISRT call to place Program B's transaction
code in the first field of the alternate PCB. If the alternate
PCB was set to this transaction code in the PSBGEN, then you
just issue the ISRT call.

•

•

IMS/VS must know the transaction code. This means that it was
defined at system definition.

Figure 83 shows the format for an output· message to an
application program.

LL Z1 Z2 Text

2 1 1 variable

Figure 83. Message Format for Program-to-Program Message Switch

As you can see, the format is the same as it is for output
messages to terminals. Zl and Z2 are fields that must contain
binary zeros. These fields are reserved for IMS/VS. The text field
contains the message segment that you want to send to the
application program.

You should include Program B's transaction code as part of the
message text because IMS/VS does not automaticallY include the
transaction code in switched messages. Including the transaction
code in the message text keeps all messages in the same format,
whether they're sent from terminals or other programs.

COMMUNICATING WITH OTHER IMS/VS SYSTEMS

In addition to communicating with programs and terminals in your
IMS/VS system, your program can communicate with terminals and
programs in other IMS/VS systems through Multiple Systems
Coupling, or MSC. MSC makes this possible by establishing links
between two or more separate IMS/VS systems. The terminals and
transaction codes within each IMS/VS system are defined as
belonging to that system. Terminals and transaction codes within
your system are called "local," and terminals and transaction

Chapter 8. Structuring a Message Processing Program 197

codes defined in other IMS/VS systems connected by MSC links are (
called "remote."

For the most part, communicating with a remote terminal or program
doesn't affect how you code your program; MSC handles the message
routing between systems. For example, if you receive an input
message from a remote terminal, and you want to reply to that
terminal, you issue an ISRT call against the I/O PCB--just as you
would to reply to a terminal in your system. There are situations,
however, in which MSC does affect your programming:

• When your program needs to know if an input message is from a
remote terminal or a local terminal. For example, if two
terminals in separate IMS/VS systems had the same logical
terminal name, your program's processing might be affected by
knowing which system sent the message.

• When you want to send a message to an alternate destination in
another IMS/VS system.

Directed routing makes it possible for your program to find out
whether an input message is from your system or a remote system,
and to set the destination of an output message for an alternate
destination in anotherIMS/VS system. With directed routing, you
can send a message to an alternate destination in another IMS/VS
system, even if that destination is not defined in your system as
remote.

RECEIVING MESSAGES FROM OTHER IMS/VS SYSTEMS

I MASTER I

When an application program retrieves an input message, the
program can determine whether the input message is from a terminal
or program in its IMS/VS system, or from a terminal or program in
another IMS/VS system. There may be situations in which the
application program's processing is changed if the input message
is from a remote terminal, rather than from a local terminal.

For example, suppose that your IMS/VS system is system A, and you
are linked to another IMS/VS system called system B. MSC links are
"one-way" links. The link from system A to system B is called
LINK1, and the link from system B to system A is called LINK2. The
application program named MPPI runs in system Ai the logical
terminal name of the master terminals in both systems IS MASTER.
Figure 84 shows systems A and B.

MPPI
MASTER

l LINKI
>

SYSTEM A < SYSTEM B
LINK2

Figure 84. MSC Example

If the MASTER terminal in system B sends the message, "System is
shutting down" to MPPI in system A, MPPI needs to know that the
message is from MASTER in system B and not MASTER in system A.

If you have specified ROUTING=YES on the TRANSACT macro during
IMS/VS system definition, IMS/VS does two things to indicate to

198 IMS/VS Application Programming

c

)

)

\
,)

the program that the message is from a terminal in another IMS/VS
system.

First, instead of placing the logical terminal name in the first
field of the I/O PCB, IMS/VS places the name of the MSC logical
link in this field. In the example, this is "LINK2." This is the
logical link name that was specified on the MSNAME macro at system
definition.

Second, IMS/VS turns on a bit in the field of the I/O PCB that is
reserved for IMS/VS. Thi sis the "01" bi tin thi s 2-byte fi eld.
Figure 85 shows the location of this bit within the reserved
field.

v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st byte 2nd byte

RESERVED FOR IMS/VS
2 bytes

Figure 85. Directed Routing Bit in I/O PCB

The reason that MPPI needs to test this bit is that if the message
is from MASTER in system A, MPP1 should terminate immediately. If,
on the other hand, the message is from MASTER in system B, MPPI
could perform some local processing and send transactions for
system B to a message queue so that those transactions could be
processed later on, when system B is up.

SENDING MESSAGES TO ALTERNATE DESTINATIONS IN OTHER IMS/VS SYSTEMS

To send an output message to an alternate terminal in another
IMS/VS system, your system must have an MSC link with the system
to which you want to send the message. To do this, you issue a
CHNG call against an alternate PCB and supply the name of the MSC
link (in the example used so far this would be LINKl) that
connects the two IMS/VS systems. For example, if you were sending
a message to TERMINAL 1 in system B after you had received a
message from some other terminal, you would first issue this CHNG
call:

CHNG altpcb, LINKl

After issuing the CHNG call, you would issue an ISRT call (or
calls) to send the message--just as you would to send a message to
a local termi nal. .

Figure 86 shows the format of this type of output message.

Chapter 8. Structuring a Message Processing Program 199

CONVERSATIONS

field

length

LL

2

ZZ

2

DESTNAME b TEXT

1-8 1 variable

Figure 86. Directed Routing Output Message Format

The LL and ZZ fields are 2 bytes each; LL contains the total
length of the message. This is the sum of all of the fields in the
message, including the LL field. ZZ ;s reserved for IMS/VS. The
destination name, DESTNAME, is the name of the logical terminal to
which you're sending the message. This field is from 1 to 8 bytes
long and it must be followed by a blank. The TEXT field contains
the text of the message; its length depends on the message you're
sending.

If the destination in the other system is a terminal, IMS/VS
removes the DESTNAME from the message. If the destination in the
other system is a program IMS/VS does not remove the DESTNAME.

If there is a security violation in your message, MSC detects it
in the receiving system (in this case, system B), and reports it
to the person at the originating terminal (system A).

(
",

The difference between a conversational program and a regular MPP (
is that a conversational program doesn't process the entire
transaction at once. You use conversational processing when there
are several parts to one transaction.

A nonconversational program receives a message from a terminal,
processes the request, and sends a message back to the terminal.

A conversational program, on the other hand, receives a message
from a terminal, does some processing, and replies to the
terminal, but the program saves the data from the transaction in a
scratchpad area, or SPA. Then, when the person at the terminal
enters more data, the program has the data it saved from the last
message in the SPA, so it can continue processing the request
without the person at the terminal having to enter the data again.
A conversational program divides processing into a connected
series of terminal-to-program-to-terminal cycles. One way to
understand how the process works is to look at an example.

A CONVERSATIONAL EXAMPLE

For this example, suppose that/you want to find out whether or not
someone, can receive a loan for a car. There are two parts to this
i nqu i ry. First, you need to gi ve the name and address of the
person requesting the loan, and the number of years for which the
person wants the loan. After you give this information, IMS/VS
asks you for the information on the car: model, year, and cost.
You enter this information, IMS/VS invokes the program that
processes this information, and the program responds as to
whether or not the loan can be granted.

This process, assuming you use MFS, involves six parts:

1. First, you enter the format command (/FORMAT) and the MOD
name. This says to IMS/VS, "Format the screen in the way
defined by this MOD."

200 IMS/VS Application Programming

)

)

)

Suppose the MOD name is CL. Your screen would look like this:

/FORMAT CL

IMS/VS then takes that MOD from the MFS library and formats
your screen in the way defined by the MOD. When the MOD for
the car loan application formats your screent it looks like
this:

CARLOAN
NAME:
ADDRESS:
YEARS:

The word "CARLOAN" is the transaction code for this
application. Each transaction code is associated with an
application programt so when IMS/VS receives the transaction
code "CARLOAN," that's what tells IMS/VS what application
program to schedule for this request.

2. Nextt you enter the information.that is requested. Suppose
the person's name is John Edwards t that his address is 463
Pinewood t and that he wants the loan for 5 years. When you
enter this information, your screen would look like this:

3.

4.

CARLOAN
NAME: JOHN EDWARDS
ADDRESS: 463 PINEWOOD
YEARS: 5

When you enter this information, IMS/VS reads the transaction
codet CARLOAN t and invokes the program that handles that
transaction code. MFS formats the information from the screen
for the MPP's 1/0 area by using the DIF and the MID.

When the MPP issues a GU for a messaget IMS/VS clears the SPA
to binary zeros and passes it to the application program.
IMS/VS gives the program the first input message segment when
the program issues the GN after the GU.

Next, the MPP processes the input data from the terminal, and
does two things. It moves the data that it will need to save
to the SPA, and it builds the output message for the terminal
in the I/O area. The information that the MPP saves in the SPA
is the information the MPP will need when the second part of
the request comes in from the terminal. You don't save
information in the SPA that you can get from the data base. In
this examplet you would have to save only the name of the
person applying for the loan. You save that so that if the
person is granted the loan, the program will know what
information to update in the data base.

The program then issues an ISRT call to return the SPA to
IMS/VS, and another ISRT call to send the output message to
the terminal.

The response that the MPP sends to the terminal gives IMS/VS
the name of the MOD to format the screen for the next cycle of
the conversation. In that cycle, you need to supply the modelt
yeart and cost of the car that John Edwards wants to buy. Your
screen would then look like this:

MODEL:
YEAR:
COST:

5. When you enter this informationt IMS/VS again uses the DIF and
MID associated with the tran code, and sends the information
back to the MPP. The MPP hasn't been running all this time;
when IMS/VS receives the terminal input with the tran code
CARLOAN, IMS/VS invokes the MPP that processes that
transaction again for this cycle of the conversation.

Chapter 8. structuring a Message Processing Program 201

6. When IMS/VS invokes the MPP, IMS/VS returns the updated SPA to
the MPP when the MPP issues a GU, then returns the message to
the MPP when the MPP issues a GN. The MPP does the required
processing (in this case; detarmining whether or not the loan
can be granted and updating the data base if necessary), and
is then ready to end the conversation. To do this, the MPP
blanks out the transaction code in the SPA and inserts it back
to IMS/VS, then sends a message to the terminal saying whether
or not the loan has been granted.

This example is a simple one; its purpose isn't to show you
everything that conversational processing can do. It is just
meant to give you an understanding of what conversational
processing involves.

CONVERSATIONAL STRUCTURE

How you structure your conversational program depends on the
interactions between your program and the person at the terminal.
To understand how to structure a conversational program, see
"Appendix D. Sample Conversational MPP."

These are the things you need to know about and take into
consideration before you can structure your program:

• What should the program do in an error situation?

When a a program in a conversation terminates abnormally,
IMS/VS backs out only the last cycle of the conversation. A
cycle in a conversation is one terminal/program interaction.
Because the conversation can terminate abnormally during any
cycle, you should be aware of some things you can do that can
make recovering the conversation easier:

The ROlB call can be used in conversational programs to
back out data base updates that the program has made since (
the last sync point. ROll can also be used in \~
conversational programs, but ROLL terminates the
conversation. "Using ROlB and ROll in Conversations"
explains how these calls work with conversational
processing.

If possible, updating the data base should be part of the
last cycle of the conversation so that you don't have
different levels of data base updates resulting from the
conversation.

If your program encounters an error situation and it has
to terminate, it can use an express alternate PCB to send
a message to the originating terminal, and, if you wish,
to the master terminal operator. To do this, the program
issues a CHNG call against the express alternate PCB and
supplies the name of the logical terminal from the I/O
PCB, then issues an ISRT call that references that PCB and
the I/O area that contains the message. The program can
then issue another CHNG call to set the destination of the
express alternate PCB for the master terminal, and issue
another ISRT call that references that PCB, and the I/O
area that contains the output message.

"Recovery Considerations in Conversations" contains more
information about recovery-related design decisions in
conversational processing.

• Does your application program process each cycle of the
conversation?

A conversation can be processed by several application
programs, or it can be processed by only one program.

If your program processes each stage of the conversation (in
other words, your program processes each input message from

202 IMS/VS Application Programming

(

)

\
)

the terminal), the program has to know what stage of the
conversation it's processing when it receives each input
message. When the person at the terminal enters the
transaction code that starts the conversation, IMS/VS clears
the SPA to binary zeros and passes the SPA to the program when
the program issues a GU call. On subsequent passes, however,
the program has to be able to tell which stage of the
conversation it's on so that it can branch to the section of
the program that handles that processing.

One technique that the program can use to determine which
cycle of the conversation it's processing is to keep a counter
in the SPA. The program increments this counter at each stage I

of the conversation. Then, each time the program begins a new
cycle of the conversation (by issuing a GU call to retrieve
the SPA), the program can check the counter in the SPA to
determine which cycle it's processing. The program can than
branch to the appropriate section.

• If your program passes control of the conversation to another
conversation program, how should it do this1

Sometimes it is more efficient to use several application
programs to process a conversation instead of one. This does
not affect the person at the terminali it depends on the
processing that's required.

In the car loan example, for instance, one MPP could handle
the first part of the conversation (processing the name,
address, and number of years), then another MPP could process
the second part of the conversation (processing the data
about the car and responding as to the status of the loan).

A program can:

Reply to the originating terminal but specify that the
next input message should go to another conversational
program. This is called a deferred program switch.

Pass the SPA (and, optionally, a message) to another
conversational program without responding to the
terminal. In this case, it's the next program's
responsiblity to respond to the originating terminal.
This is called an immediate program switch.

A conversational program has seven main steps:

1. Retrieve the SPA and the message using GU and GH calls.

2. If your MPP is starting this conversation, test the variable
area of the SPA for zeros to determine whether or not this is
the beginning ~f the conversation. If the SPA does~'t contain
zeros, it means that you started the conversation earlier and
that you're now at a later stage in the conversation. If this
is true, you would branch to the part of your program that
processes this stage of the conversation to continue the
conversation.

3. If another MPP has passed control to your MPP to continue the
conversation, then you know that the SPA will contain the data
you need to process the message, so you don't have to test it
for zeros. You start processing the message right away.

4. Process the message, including any necessary data base
access.

5. Send the output message to the terminal by using another ISRT
call against the I/O PCB.

6. Store the data that your program (or the program that you pass
control to) will need to continue processing in the SPA using
an ISRT call to the I/O PCB. This step may precede step 5.

Chapter 8. Structuring a Message Processing Program 203

IMS/VS determines which segment is the SPA by examining the
XXXX field of the segment shown in Figure 87.

7. To end the conversation, move blanks to the area of the SPA
that contains the transaction code, then insert the SPA back
to IMS/VS by issuing an ISRT call and referencing the I/O PCB.

If your MPP passes the conversation to another conversational
program, then the steps after the program processes the message
are a little different. "Passing the Conversation to Another
Conversational Program" explains this.

Also, there is a special situation your program should be designed
to handle. This occurs if the first GU call to the I/O PCB doesn't
return a message to the application program. This can happen if
the person at the terminal cancels the conversation by entering
the /EXIT command before the program issues a GU call. (Thi s
happens if the message from this terminal was the only message in
the message queue for the program.)

What the SPA contains

204

The SPA that IMS/VS gives your program when you issue a GU
contains the four parts listed below. Figure 87 shows the SPA
format.

• A 2-byte length field ("ll") that gives the total length of
the SPA. This length includes 2 bytes for the II field.

• A 4-byte field reserved for IMS/VS ("XXXX") that your program
must not modify.

• The 8-byte transaction code for this conversation.

• A work area that you will use to save the information that
you'll need to continue the conversation. The length of this
area depends on the length of the data you wish to save. This
length is defined at system definition.

II XXXX Trancode User Work Area

2 4 8 variable

Figure 87. SPA Format

When your program retrieves the SrA with a GU to start the
conversation, IMS/VS removes the transaction code from the
message and in your first message segment you receive only the
dat~ from the message that the person at the terminal entered.

There are some restrictions about the way that an application
program prQcesses the SPA. They ~re:

• The program must not modify the first 6 bytes of the SPA (ll
and XXXX). IMS/VS uses these fields to identify the SPA.

• If~the program modifies the SPA, the program must return the
SPA to IMS/VS (or, for a program switch, to the other
progr~m).

• The program must not return the SPA to IMS/VS more than once
during one cycle of the conversation.

• The program must not insert the SPA to an alternate PCB that
represents a nonconversational transaction code or a logical
terminal. The program may use a response alternate PCB if it

IMS/VS Application Programming

(

\
)

)

)

represents that same physical terminal as the originating
logical terminal.

Note: If you're using MFS, there are some situations in which
IMS/VS doesn't remove the transaction code. Chapter 2, "Message
Formatting Functions," in the IMS/VS Message Format Services
User's Guide explains these situations.

What Messages Look Like in a conversation

Conversational input messages are at least two segments, because
the first segment contains the SPA; the input message starts in
the second message segment.

The input message segment in a conversation contains only the data
from the terminal. IMS/VS removes the transaction code from the
input message and places it in the SPA. When the program issues
the first GU, IMS/VS returns the SPA. To retrieve the first
message segment, the program must issue a GN.

The format for the output messages that you send to the terminal
is no different from the format for output messages in
nonconversational programs.

Saving Information in the SPA

After you have processed the/message and are ready to reply to the
terminal, you can save the data you or the other program will need
in the SPA. The part of the SPA in which you save data is the work
area portion. You save this by using an ISRT call. This is a
special use of the ISRT call in that you're not sending the SPA to
a terminal, you're saving it for future use.

If your program processes each stage of the conversation, you just
issue an ISRT call to the I/O PCB and give the name of the I/O area
that contains the SPA. For example:

ISRT I/O PCB, SPA, I/O AREA

This returns the updated SPA to IMS/VS so that IMS/VS can pass it
to your program at the next cycle of the conversation.

If you don't modify the SPA, you don't have have to return it to
IMS/VS.

REPLYING TO THE TERMINAL

For a conversation to continue, the originating terminal must
receive a response to each of its input messages. The person at
the terminal cannot enter any more data to be processed (except
IMS/VS commands) until the response has been received at the
terminal.

To continue the conversation, the program must respond to the
originating terminal by issuing the required ISRT calls to send
the output message to the terminal. To send a message to the
originating terminal, the ISRT calls must reference either the
I/O PCB or a response alternate PCB. You use a response alt~rnate
PCB in a conversation when the terminal you're responding to has
two components--for example, a printer and a punch--and you want
to send the output message to a component that's separate from the
component that sent the input message. If the program references
an alternate response PCB, the PCB must be defined for the same
physical terminal as the logical terminal that sent the input
message.

The program can send only one output message to the terminal for
each input message. Output messages can contain multiple
segments, but the program can't use the PURG call to send multiple
output messages. If a conversational program issues a PURG call,

Chapter 8. Structuring a Message Processing Program 205

IMS/VS returns an AZ status code to the application program and
doesn't process the call. ,~

PASSING THE CONVERSATION TO ANOTHER CONVERSATIONAL PROGRAM

There are two ways in which a conversational program can pass the
conversation to another conversational program:

• A deferred switch:

The program can respond to the terminal but cause the next
input from the terminal to go to another conversational
program by:

Issuing an ISRT call against the I/O PCB to respond to the
terminal

P laci ng the transact i on code f'or the new conversati onal
program in the SPA

Issuing an ISRT call referencing the I/O PCB and the SPA
to return the SPA to IMS/VS

IMS/VS then routes the next input message from the terminal to
the program associated with the transaction code that was
specified in the SPA. Other conversational programs can
continue to make program switches by changing the transaction
code in the SPA.

• An immediate switch:

The program can pass the conversation directly to another
conversational program by:

""

Issuing an ISRT call against the alternate PCB that has (
its destination set to the other conversational program.
The fi rst ISRT call must send the SPA to the other -
program, but the program passing control can issue
subsequent ISRT calls to send a message to the new
program.

If the program does this, it cannot return the SPA to
IMS/VS or respond to the originating terminal.

In an immediate switch, it's the new program's responsibility
to respond to the terminal (or pass the conversation to a
thi rd program).

In addition, the person at the terminal can issue the command /SET
CON V to change the next conversational transaction to process
before continuing a conversation from the terminal.

There are some restrictions concerning the size of SPAs when you
are passing a conversation from one program to another. Briefly,
they are:

• If the program that processes the first cycle of the
conversation uses a fixed-length SPA, all of the other
programs that process the conversation must also use
fixed-length SPAs. None of the programs in the conversation
can pass the conversation to a program that uses a
variable-length SPA.

• If the program that processes the fi rst cycle of the
conversation uses a variable-length SPA, the conversation can
be processed by programs that use fixed- or variable-length
SPAs.

"Things You Need to Know about the SPA" explains these
restrictions in more detail.

206 IMS/VS Application Programming

(

\
)

)

)

Conversational Processing and MSC

If your installation has two or more IMS/VS systems, and they are
linked to each other through MSC, a program in one system can
process a conversation that originated in another system.

• All of the SPAs used in a conversation between two or more
IMS/VS systems must be fixed-length SPAs of the same size.

• If a conversational program in system A issues an ISRT call
that references a response alternate PCB in system B, system B
does the necessary verification. This is because the
destination is implicit in the input system. The verification
that system B does includes determining whether or not the
logical terminal that's represented by the response alternate
PCB is assigned to the same physical terminal as the logical
terminal that sent the input message. If it isn't, system B
(the originating system) terminates the conversation
abnormally wi~hout issuing a status code to the application
program.

• Suppose program A processes a conversation that originates
from a terminal in system Bj Program A passes the conversation
to another conversational program by changing the transaction
code in the SPA. If the transaction code that program A
supplies is invalid, system B (the originating system)
terminates the conversation abnormally without returning a
status code to the application program.

Ending the Conversation

To end the conversation, a program blanks out the transaction code
in the SPA and returns it to IMS/VS by issuing an ISRT call and
referencing the I/O PCB and the SPA. This terminates the
conversation as soon as the terminal has received the response.

The program can also end the conversation by placing a
nonconversational transaction code in the transaction field of
the SPA and returning the SPA to IMS/VS. This causes the
conversation to remain active until the person at the terminal has
entered the next message. The transaction code will be inserted
from the SPA into the first segment of the input message. IMS/VS
then routes this message from the terminal to the MPP or BMP that
processes the transaction code that was specified in the SPA.

In addition to being ended by the program, a conversation can be
ended by the person at the originating terminal, the master
terminal operator, and IMS/VS.

• The person at the originating terminal can end the
conversation by issuing one of several commands:

•

•

/EXIT. The person at the terminal can enter the /EXIT
command by itself, or the /EXIT command followed by the
conversational identification number assigned by the
IMS/VS sytem.

/HOLD. The /HOLD command stops the conversation
temporarily to allow the person at the terminal to enter
other transactions while IMS/VS holds the conversation.
When IMS/VS responds to the /HOLD command, IMS/VS
supplies an identifier that the person at the terminal
can later use to reactivate the conversation. The
/RELEASE command followed by this identifier reactivates
the conversation.

The master terminal operator can end the conversation by
entering a /START LINE command (without specifying a PTERM)
for the terminal in the conversation.

IMS/VS ends a conversation if, after the program successfully
issues a GU call or an ISRT call to return the SPA, the

Chapter 8. Structuring a Message Processing Program 207

ISSUING COMMANDS

program doesn't send a response to the terminal. In this (~
situation, IMS/VS sends the message "DFS2171I NO RESPONSE,
CONVERSATION TERMINATED" to the terminal. IMS/VS then ~
terminates the conversation and performs sync point
processing for the application program.

There are two calls a program can use to issue and receive
responses from commands. CMD sends the command to IMS/VS; and GCMD
retrieves the message segments that IMS/VS has sent in response to
the command. The most common use for these calls is in a program
that performs some of the tasks that are otherwise performed by
someone at a terminal. Designing a program that does this is
called automated operator programming. This section explains how
you use the calls that make this possible. For information on the
uses and techniques of automated operator programming, see
Chapter 7, "Automated Operator Programming," in the IMS/VS System
Programming Reference Manual. To issue a command, the program
uses the command call (CMD). When you issue this call, IMS/VS
passes the command you supply to the IMS/VS control region to be
executed. Before you issue the CMD call, you have to place the
command you want executed in the I/O area that you point to in the
call. IMS/VS places your program in a wait state until IMS/VS has
executed the command.

When IMS/VS receives the command, IMS/VS returns a response to
your program. This response from IMS/VS means that IMS/VS has
recei ved and executed the command-unless the command the program
issued is a delayed response command. IMS/VS returns the first
segment of its response to the application program's I/O area.
After receiving the command, IMS/VS takes your program out of wait
state.

If there are additional response segments to the command, IMS/VS
returns a CC status code to the program. and the program issues
the get command call, or GCMD, to retrieve the remaining response
segments. The GCMD call retrieves one segment at a time.

c
RESERVING AND RELEASING SEGMENTS

Since online programs don't have exclusive use of the data base as
batch programs do, there may be times when you want to r~serve a
segment, to keep other programs from accessing that segment while
you are using it. To some extent, IMS/VS does this for you through
program isolation. Using the Q command code lets you reserve
segments in a different way, then release them by using the
dequeue call (DEQ).

Program isolation and the Q command code both reserve segments for
your program's use. However, they work differently and are
independent of each other. They are two separate things. To
understand how and when to use the Q command code and DEQ call,
you should also understand program isolation enqueues.

PROGRAM ISOLATION ENQUEUES

Program isolation reserves the data base record that you are
processing for your program. When you move to a new data base
record in the same data structure (as defined by the DB PCB),
program isolation releases the data base record you were just
processing and reserves the new.record you're processing. The
idea is that only one program at a time can access a data base
record.

To understand why this is necessary, look at the example shown in
Fi gure 88. It shows a root segment, AI, and two dependents, Bl and (
CI. Suppose your program, Program A, is working with data base
record 1. While you are processin~ this record, you delete segment .
B1. If program isolation did not put a hold on data base record 1

208 IMS/VS Application Programming

THE Q COMMAND CODE

)

)

for you, Program B could access segment B1 at the same time you
were trying to delete it. Program B would read the segment before
you deleted it, so Program B's results would be inaccurate.

RECORD 1

Figure 88. Program Isolation Example

If you were only reading segment B1, B1 would be available to
other programs as soon as your program moved to another data base
record. If, on the other hand, your program updated segment B1,
IMS/VS would not release it until your program reached a sync
point.

You use the Q command code just as you do any of the other command
codes described in "Using Command Codes." It is described in this
chapter instead of with the other command codes is that you never
need to use it in a batch program; it is an online tool.

For example, suppose a customer wants to place an order for items
1, 2, and 3 in Figure 89, but only if certain quantities of all
three items are available, for example, 50 item Is, 75 item 2s,
and 100 item 3s. To place the order, you need to look at all three
segments at once in order to determine if there are enough of each
item on hand. Also, you don't want any other program to place an
order while you're looking at these segments.

PART X

ITEM 2

Figure 89. Q Command Code Example

To place the order, you use the Q command code when you retrieve
items 1, 2, and 3. Since there's a chance that you will update
these segments, it's a good idea to issue get hold calls for them:

GHU Part X
Item 1 ~QA

GHU Part X
Item 2 *QB

GHU Part X
Item 3 *QC

Once you have retrieved these segments, your program can examine
each segment to find out if there are enough of each item on hand
to place the order.

Chapter 8. Structuring a Message Processing Program 209

Suppose that there are 100 each of all three items on hand. You 1/-
can then place the order and update the data base accordingly. To
update the segment to reflect the order youire placing, you "
retrieve each segment again with a get hold call, and follow it
immediately with a REPl call:

GHU
REPL
GHU
REPL
GHU
REPL

Item 1
Item 1 with the value 50
Item 2
Item 2 with the value 25
Item 3
Item 3 with the value 0

If you update segments that you've reserved with the Q command
code, you can't release them by using the DEQ call; IMS/VS holds
them until your program reaches a sync point. (The Q command code
does not hold segments from one cycle of a conversation to
another.)

If, on the other hand, your program only reads segments, then you
can release the segments with the DEQ call. IMS/VS will release
these segments when your program reaches a sync point, but it's a
good idea to issue the DEQ call for them so that they will be
available to other programs as soon as possible. For each segment
that you want to release, you place the letter for that segment's
class (the letter you assigned to the segment when you issued the
retrieval call with the Q for it) in an I/O area. You then issue a
DEQ call for each segment, supplying the names of the I/O areas
that contain letters for each call.

If you use the Q command code on a root segment, other programs
will not be able to access any of the segments in that data base
record. If you use the Q command code on a dependent segment,
other programs can only read the segment using one of the
retrieval calls without the hold.

When you use the Q command code in the SSA, you assign a class to
the segment you're reserving. You designate the class by one of
the letters A through J. Then, when you want to dequeue that
segment, you include the letter that you assigned to the segment
so that IMS/VS knows which segment you're dequeuing.

If your program updates the segment you've enqueued with the Q
command code, IMS/VS won't release the segment until the next
synchronization point (in the same way that IMS/VS holds all of
the segments you update until a sync point).

IMS/VS returns a status code of Gl if the first byte of the I/O
area is not one of the letters between and including A and J.

BACKING OUT DATA BASE UPDATES: ROL! AND ROll

When an MPP determines that some of its processing is invalid,
there are two system service calls that make it possible for the
program to remove the effects of its inaccurate processihg. When
you issue either of these calls, the following actions take place:

• IMS/VS. backs out the data base updates that the program has
made since the program's most recent sync point.

• 'IMS/VS cancel s the output messages that the program has
created since the program's most recent sync point.

The main differences between the two calls are that ROlB returns
control to the application program after backing out updates and
canceling output messages, and ROll terminates the program with a
user abend code of 0778; also, ROlB can return the last message

c:

segment to the program, but ROll can't. Also, ROlB is valid only (
in single-mode programs, but ROll is valid in both single-mode and
multiple-mode programs. There are some other differences; ,_
Figure 90 summarizes these.

210 IMS/VS Application Programming

)

USING ROLB

)

--------------------- ------------

Actions Taken: ROLB ROLL

Back out data base updates since the
last sync point X X

Cancel output messages created since 1 1
the last sync point X X

Delete input messages from the
queue since the last sync point X

Return the last input message 2
segment to the MPP to reprocess X

0778 abnormal termination, no dump X

No abendi MPP continues processing X

Figure 90. Comparison of ROLB and ROLL

Notes:

1. ROLB will cancel output messages sent with an express PCB
unless the program issued a PURG. For example, if the program
issues the call sequence below, MSG1 would be sent to its
destination, but MSG2 would be canceled:

ISRT
PURG
ROLB

EXPRESS PCB, HSGl
EXPRESS PCB, HSG2
I/O PCB

2. If you supply the address of an I/O area as one of the call
parameters.

The advantage of using ROLB is that IMS/VS returns control to the
program after executing ROLB, so the program can continue
processing. If the program supplies the address of an I/O area as
one of the ROLB parameters, the ROLB acts as a message retrieval
call and retur~s the message segment that was being processed to
the application program. This is true only jf the program has
issued a GU call to the message queue since the last sync point;
if it hasn't, it wasn't processing a message when it issued the
ROLB call.

If the program issues a GN to the message queue after issuing the
ROlB, IMS/VS returns the next segment of the message that was
being processed when ROlB was issued. If there are no more
segments for that message, IMS/VS returns a QD status code.

If the program issues a GU to the message queue after the ROlB
call, IMS/VS returns the first segment of the next message to the
application program. If there aren't any more messages on the
message queue for the program to process, IMS/VS returns a QC
status code to the program.

If you include the I/O area parameter, but you haven't issued a
successful GU call to the message queue since the last sync point,
IMS/VS returns a QE status code to you.

If you don't include the address of an I/O area in the ROlB call,
IMS/VS does the same things for you--except giving you the message

Chapter 8. structuring a Message Processing Program 211

USING ROLL

segment that was being processed. If the program has issued a
successful GU in the sync interval, and then issues a GN, IMS/VS
returns d QD status code. If the program issues a GU after the
ROlB, IMS/VS returns the first segment of the next message, or a
QC status code if there are no more messages for the program.

If you haven't issued a successful GU since the last sync point,
and you don't include an I/O area parameter on the ROlB call,
IMS/VS just backs out the data base updates and cancels the output
messages that you've created since the last sync point.

The parameters for ROlB are the call function, the I/O PCB, and,
opti onally, the address of the I/O area.

A ROll call backs out the data base updates that the program has
made since the last sync point, and it cancels the output messages
that the program has created since the last sync point. It also
deletes any messages for the program that have been sent to the
message queue since the last sync point. IMS/VS then terminates
the program with a user abend code 0778. This type of abnormal
termination terminates the program without a storage dump.

You can use ROlB only in single-mode programs, so if your MPP is
multiple mode you can use only ROll.

USING ROLB AND ROLL IN CONVERSATIONS

When you issue a ROlB in a conversational program, IMS/VS backs
out any messages that the application program inserted (except
those sent with express PCBs). This means that if the program
issues a ROlB, and then reaches a sync point without sending the
required response to the originating terminal, IMS/VS will
termi nate the conversat i on and send the message, "DFS2171 I NO
RESPONSE, CONVERSATION TERMINATED" to the originating terminal.

If you issue ROll during a conversation, IMS/VS backs out the
updates and cancels output messages, but it also terminates the
conversation.

CONSIDERATIONS FOR MESSAGE-DRIVEN FAST PATH PROGRAMS

A message-driven Fast Path program is similar to an MPP in that it
retri eves messages and processes them and it can read and update
MSDBs, DEDBs, and IMS/VS data bases. Also, a Fast Path program can
issue only basic CHKP calls without the OS/VS checkpoint option.

Fast Path programs can send messages to:

• The logical terminal that sent the input message, by issuing
an ISRT call that references the I/O PCB

• A different component of the physical terminal that sent the
input message, by issuing an ISRT call that references a
response alternate PCB

• A different physical terminal than the one that sent the input
message, by issuing an ISRT call referencing an alternate PCB

A message-driven Fast Path program is different from an MPP in
that:

•

•

A message-driven Fast Path program must be specified as
single mode. This means that each GU to the message queue is a
sync point.

It runs in wait-for-input mode. This means that the program is
prescheduled and that it remains in main storage waiting for
messages. The program must be prescheduled before anyone

212 IMS/VS Application Programming

(

,
)

)

•

•

•

•

enters an input transaction for it from a terminal. A
message-driven Fast Path program doesn't terminate when there
are no more messages for it to process.

It processes only single-segment messages. A GU to the
message queue retrieves the whole message. Fast Path programs
can issue GN calls to the message queue; if they do, they do
so to provide compatibility between IMS/VS programs and Fast
Path programs.

Fast Path programs doesn't receive input from remote IMS/VS
systems through MSC. The same DB/DC system can have both Fast
Path and MSC installed, but a program must not use both.

Fast Path programs cannot be conversational programs. It is
possible, however, to simulate conversational processing by
using a dynamic MSDB as a SPA.

A Fast Path program must terminate when it receives a QC
status code.

RETRIEVING AND SENDING MESSAGES IN FAST PATH

The message calls that a message-driven Fast Path program can
issue are GU, GH, ISRT, and CHNG.

A GU call to the message queue retrieves the next message queued
for the application program. Fast Path messages are processed in
response mode. This means that the originating terminal can't
enter anymore input messages until the program has sent a response
for the most recent input message from that terminal. If a
message-driven program issues two GU calls without issuing an
ISRT call between them, Fast Path generates a null message to the
terminal as a response.

The GU may have a MOD name as one of the parameters. The MOD name
is ignored for the GU call, but if you want to use the MOD name in
an ISRT call, it's a good idea to include it in the GU call
because you can then use the same parameter lists for GU and ISRT
calls. If you do this, you only have to change the call function.

A message-driven Fast Path program issues GN calls for
compatibility. Since all Fast Path messages are single segment,
the program only has to issue a GU to retrieve the whole message.
IMS/VS returns a blank status code when a message-driven Fast Path
program issues a GN.

The program can use the CHNG call before an ISRT call to set the
destination of a response alternate PCB that's been defined as
modifiable. The destination remains set until the application
program either issues a ROLB call or a GU call to the message
queue. IMS/VS then resets the destination to blanks.

The CHNG call must not be used to set the destination to a
response alternate PCB to a remote"terminal or transaction code.
If it is, IMS/VS returns an AI status code to the program.

The program uses the ISRT call to build and send output messages.
Fast Path programs can send output messages using the I/O PCB or a
response alternate PCB. When a message-driven Fast Path program
wants to send a message to the originating terminal, the program
places the message in an I/O area and issues an ISRT call that
references the I/O PCB and the I/O area. Output messages, like
input messages, are single-segment. If the program issues an ISRT
call that references a response alternate PCB, the program must
have issued a CHNG call before the ISRT call to set the
destination for the response alternate PCB. Messages can't be
greater than the maximum length that was defined at system
definition.

You can issue only one ISRT call between two GU message calls.
This applies to ISRT calls that reference any type of PCB. If an

Chapter 8. Structuring a Message Processing Program 213

ISRT call references a nonmodifiable response alternate PCB __ that
represents a remote terminal or transaction, IMS/VS rejects the
call and returns a QH status codQ.

If you use MFS, you can specify a MOO name in the ISRT call in the
same way that you can in an ISRT call in an MPP.

USING ROLB IN FAST PATH

Suppose an application program tries to send an output message
that is longer than the maximum length that's been defined for
messages. IMS/VS returns an AG status code to the program, and the
program could then discard its updates by issuing a ROlB. The
program could then send an error message to the terminal.

ROlB is also helpful with FLO/VERIFY processing. If FLO/VERIFY
fails when it's initially processed, the program can either:

• Issue a ROlB followed by an optional error message and a
message GU to discard the current transaction.

• Issue a ROlB, reprocess the current transaction, and follow a
different path through the program. If you specify an I/O area
with a ROlB, IMS/VS returns a new copy of the message to this
area.

Note: If a FLO/VERIFY fails when it's initially processed, Fast
Path doesn't retry it at the sync point. If you don't issue a ROlB
after a FLO/VERIFY that fails, the updates to the data base before
the failed call are permanent.

USING CHKP IN FAST PATH

Fast Path programs can use only basic CHKP. When a Fast Path /
program reaches a sync point, IMS/VS writes out all data base (
buffers that the program has modified to the data base, and
releases enqueued resources. Using a CHKP call in a
message-driven Fast Path program is like issuing a GU call to the
message queue.

Fast Path programs cannot use the OS/VS checkpoint option on the
basic CHKP call. This is also true for IMS/VS programs that
include any Fast Path PCBs.

214 IMS/VS Application Programming

(

)

CHAPTER 9. CODING A MESSAGE PROCESSING PROGRAM

BEFORE YOU CODE

PARTS OF AN MPP

This chapter tells you how to code the data communications portion
of an MPP. "Chapter 7. Coding the Dl/I Portion of a Program"
tells how to code the data base calls and SSAs that you can usa in
an MPP; this chapter tells you how to code DC calls, message I/O
areas, I/O PCB masks, and alternate PCB masks. There are four
sections to this chapter:

• Before You Code

This section gives you an overview of coding an MPP and
describes the information that you need before you can code
the program.

• Coding the Program Logic

This section tells you how to code the data communications
part of the program logic: the entry statement, the DC calls,
and the system service calls available to MPPs.

• Coding the Data Area

This section tells you how to code the data areas that an MPP
uses: message I/O areas, I/O PCB masks, alternate PCB masks,
and SPAs.

• Coding a Message-Driven Fast Path Program

This section gives additional information for coding
message-driven Fast Path programs.

This section introduces two things that you need to understand
before you code your MPP: first, it explains the parts of the MPP
and how they fit together in COBOL and Pl/I; and second, it tells
you what you need to know about your program and your data before
you start to code your program.

At a mlnlmum, the program logic in an MPP contains DC calls to
retrieve and send messages and the processing logic; although
most MPPs do some data base accessing as well, they don't have to.
The data area of an MPP contains the I/O areas for the input and
output messages that the program handles; the I/O PCB mask; the
alternate PCB mask; and, if the program is a conversational
program, the SPA.

One way to understand how these elements of the program fit
together once they are coded is to look at a skeleton program that
has these elements.

Figure 91 and Figure 92 show skeleton MPPs in COBOL and Pl/I.
These programs don't have all the processing logic that a typical
MPP has. The purpose of providing these programs is to give you a
basic understanding of MPP structure in COBOL and Pl/I. Both
programs do the same things; they each have three steps:

1. The program retrieves an input message segment from a
terminal by issuing a GU call to the I/O PCB. This retrieves
the first segment of the message. Unless you knew that this
message contained only one segment, your program would then
issue GN calls to the I/O PCB to retrieve the remaining
segments of the message. IMS/VS places the input message

Chapter 9. Coding a Message Processing Program 215

segment in the I/O area that you specify in the call. In the (
examples below, this is MSG-SEG-IO-AREA.

COBOL HPP structure

2. The program retrieves a segment from the data base by issuing
a GU call to the DB PCB. This call specifies an SSA, SSA-NAME,
to qualify the request. IMS/VS places the data base segment in
the I/O area specified in the call. In this case, the I/O area
is called DB-SEG-IO-AREA.

3. Next the program sends an output message to an alternate
destination by issuing an ISRT call to the alternate PCB.
Before issuing the ISRT call, the program has to build the
output message segment in an I/O area, then the program
specifies the I/O area in the ISRT call. The I/O area for this
call is AlT-MSG-SEG-OUT.

The program in Figure 91 is a skeleton MPP in COBOL that shows the
main elements of an MPP. The numbers to the left of each part of
the program refer to the notes that follow the program.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

1 77 GU-CAll PICTURE XXXX VALUE 'GU '.
77 ISRT-CAll PICTURE XXXX VALUE 'ISRT'.

2

3

4

5

6

7

8

9

77 CT PICTURE S9(5) COMPUTATIONAL VALUE +4.

01 SSA-NAME.

01 MSG-SEG-IO-AREA.
01 DB-SEG-IO-AREA.
01 AlT-MSG-SEG-OUT.

LINKAGE SECTION.
OlIO-PCB.
01 AlT-PCB.
01 DB-PCB.

PROCEDURE DIVISION.

ENTRY 'DlITCBl' USING IO-PCB, AlT-PCB, DB-PCB.

CAll 'CBlTDlI' USING GU-CAll, IO-PCB,
MSG-SEG-IO-AREA.

CAll 'CBlTDLI' USING GU-CALL, DB-PCB,
DB-SEG-IO-AREA, SSA-NAME.

CAll 'CBLTDLI' USING ISRT-CAll, AlT-PCB,
ALT-MSG-SEG-OUT.

GOBACK.

COBOL lANGUAGE INTERFACE

Figure 91. COBOL MPP Skeleton

Notes:

1. To define each of the call functions that your program uses,

216 IMS/VS Application Programming

"

(

")

)
PL/I HPP structure

)

2.

3.

4.

5.

6.

7.

8.

9.

use a 77 or 01 level working storage statement. You assign the
value to the call function in a picture clause defined as 4
alphameric characters.

Use a 01 level working storage statement for each I/O area
that you'll use for message segments.

In the linkage section of the program, use a 01 level entry
for each PCB that your program uses. You can list the PCBs in
the order that you list them in the entry statement below, but
this is not a requirement.

The entry statement must be the first executable COBOL
statement in the procedure division. You list the PCBs that
your program uses in the order they're defined in the
program's PSB: first the I/O PCB, then any alternate PCBs, and
finally the data base PCBs that your program uses.

The program issues a GU call to the I/O PCB to retrieve the
first segment of an input message.

The program issues a GU call to the DB PCB to retrieve the
segment that would be described in the SSA-HAME area.

The program sends an output message segment to an alternate
destination by using an alternate PCB.

When there are no more messages for your MPP to process, you
return control to IMS/VS by issuing the GOBACK statement.

You must link-edit your program to the language interface
module, DFSLIOOO, after you've compiled your program.

The program shown in Figure 92 is a skeleton MPP written in PL/I.
The numbers to the left of the program refer to the notes that
follow the program.

Chapter 9. Coding a Message Processing Program 217

1

2

3

4

5

/*

DCl
DCL

ENTRY POINT

UPDMAST: PROCEDURE (IO_PTR, AlT_PTR, DB_PTR)
OPTIONS CMAIN);

CHAR(4)
CHAR(4)

INIT('GU ');
INITC'ISRT')j

DCL SSA_NAME ... ;

DCL
DCl
DCl

DCL
DCl
DCl

DCL
DCl
DCl

.

CHAR(n);
CHARCn);
CHARCn);

110 PCB BASED CIO PTR), ... ;
1 ALI_PCB BASED CAIT_PTR), ..• ;
1 DB_PCB BASED (DB_PTR), ... ;

THREE FIXED BINARY(31) INIT(3);
FOUR FIXED BINARY(31) INIT(4);
PlITDlI ENTRY EXTERNAL;

7 CAll PlITDlI (FOUR, FUNC_GU, DB_PTR, DB_SEG_IO_AREA,
SSA_NAME)j

8 CAll PlITDLI CTHREE, FUNC_ISRT, AlT_PTR, AlT_MSG_SEG_OUT);

9 END UPDMASTj

10 Pl/I LANGUAGE INTERFACE

Figure 92. PL/I MPP Skeleton

Notes:

1. This is the standard entry point to a Pl/I Optimizing Compiler
MPP. This statement includes a pointer for each PCB that the
MPP uses. The order in which you refer to the PCBs must
coincide with the order in which they're listed in the PSB:
first the I/O PCB, then any alternate PCBs that your program
uses, and finally the data base PCBs that your program uses.

2. The program defines each call function that it uses in its
data area. In Pl/I you define the function codes as character
strings and assign the appropriate values to them.

3. The most efficient way to define your I/O areas in PL/I is to
defi ne them as fi xed-length character stri ngs or through
pointer variables.

4. To define your PCBs, use major structure declarations.

5. Pl/I calls have a parameter that is not required in COBOL
programs or assembler language programs. Thi sis the
parmcount, and it is always the first parameter. You define
the values that your program will need for the parmcount in
each of its calls. The parmcount gives the number of
parameters that follow parmcount itself.

6. The program issues a GU call to the I/O PCB to retrieve the
first message segment.

r
(
\.

(

7. The program issues a GU call to the DB PCB to retrieve a data (:~.
base segment. The function codes for these two calls are '
identical; the way that IMS/VS identifies them is by the PCB
that each call refers to. '

218 IMS/VS Application Programming

\

)

\
)

~
J

8. The program then sends an output message to an alternate
destination by issuing an ISRT call to an alternate PCB.

9. When there are no more messages for the program to process,
the program returns control to IMS/VS by issuing the END
statement or the RETURN statement.

10. You must link-edit your program to the IMS/VS language
interface module, DFSlIOOO, after you've compiled your
program.

Assembler Language MPP structure

YOUR INPUT

The structure of an assembler language MPP is the same as it is
for the DL/I assembler language structure shown in Figure 70. An
assembler language MPP receives a PCB parameter list address in
register 1 when it executes its entry statement. The first address
in this list is a pointer to the I/O PCB; the addresses of any
alternate PCBs that the program uses come after the I/O PCB
address, and the addresses of the data base PCBs that the program
uses follow. Bit 0 of the last address parameter is set to 1.

In addition to the information you need about the data base
processing your program does, there is some information you need
about the message processing your program does. Before you start
to code, make sure you're not missing any of this information.
Also, be sure you are aware of the standards at your installation
that affect your program.

Information You Need about Your HPP's Design

• The names of the logical terminals that your program will
communicate with

• The transaction codes, if any, for the application programs
that your application program will send messages to

• The DC call structure for your program

• The destination for each output message that you send

• The names of any alternate destinations that your program
will send messages to

Information You Need about Input Messages

• The size and layout of the input messages your program will
receive, if possible

• The format in which your program will receive the input
messages

• The editing routine your program uses

• The range of valid data in input messages

• The type of data that input messages will contain

• The maximum and minimum length of input message segments

• The number of segments in a message

Information You Need about output Messages

• The format in which IMS/VS expects to receive them from your
application program

Chapter 9. Coding a Message Processing Program 219

• The destination for the output message

• The maximum and minimum length of output message segments

Information You Need for a Conversational Program

• If you are going to pass control to another program, the tran
code to use for that program

• The data that you should save in the SPA

• The maximum length of that data

CODING THE PROGRAM LOGIC

CODING DC CALLS

The program logic in an MPP contains an entry statement; the DC
calls that you use to receive and send messages; the system
service calls, if any, that the program issues; and the DL/I calls
that the program issues to process the data base. You code the
DL/I calls just as they are described in "Chapter 7. Coding the
DL/I Portion of a Program."

The DC calls you use to retrieve message segments are GU and GN.
You use an ISRT call to send messages, and you can use CHNG to set
alternate destinations for messages. You can also use PURG in your
program to send output messages to several destinations while
you're processing one input message. For programs that issue
commands, you use the CMD and GCMD to issue commands and retrieve
command responses from IMS/VS.

The only parameter that all of the message calls have in common is
the function code. You code the function code for a DC call just
as you code it for DL/I calls. The function codes for the DC calls
are:

GUbb Get unique

GNbb Get next

ISRT Insert

CHNG Change

PURG Purge

CMDb Command

GCMD Get command

CODING DC SYSTEM SERVICE CALLS

There are three system service calls available to an MPP that you
might use in an MPP that you would not use in a batch program.
These are ROLB, ROLL, and DEQ. You use ROLB and ROLL when you find
you are processing an invalid transaction and you want to
eliminate the data base updates and output messages you have
produced since the last sync point. You use a DEQ call to release
a segment that you have retrieved and reserved using the Q command
code.

The parameters for these calls differ. The only parameter they
have in common is the function code.

220 IMS/VS Application Programming

(
\

(
\ ,.

\

)
/

)
/

)

CHECKING STATUS CODES

CODING THE DATA AREA

CODING I/O AREAS

CODING I/O PCB MASKS

An MPP has to check the status code after each call it issues.
Most installations provide a standard status code routine for all
the application programs at the installation. MPPs can use the
sample status code error routine provided in "Appendix E. Sample
Status Code Error Routine (DFSOAER)." To use this routine, your
program issues a call similar to a DL/I call, giving the name of
the PCB to use for this call and specifying the options you want
for the call.

The data area in an MPP contains the I/O areas your program uses
for input and output messagesi the I/O PCB maski the alternate PCB
masks, if any, that your program uses; and, for conversational
programs, the SPA.

The only difference between coding message I/O areas in an MPP and
coding the data base I/O areas is the format of the message area.

Input and output messages have two prefix fields: the 2-byte
length field, and the 2-byte Z field. The format of the text of
the message depends on your program's data and the message formats
that have been chosen for your program.

To code the I/O PCB mask, you must be familiar with the eight
fields of the I/O PCB mask shown in Figure 71. The order in which
you define the PCB masks in your program doesn't matter; you just
have to refer to them in the correct order in the entry statement.

CODING ALTERNATE PCB MASKS

CODING SPAS

Modifiable, express, and response alternate PCB masks are coded
in the same way. An alternate PCB mask has only three fields:

• The 8-byte logical terminal name

• The 2-byte field reserved for IMS/VS

• The 2-byte status code field

A SPA contains 4 fields:

• The 2-byte length field.

• The 4-byte field that's reserved for IMS/VS

• The 8-byte tran code

• The work area where you store the conversation data. The
length of this field is defined at system definition.

CODING A MESSAGE-DRIVEN FAST PATH PROGRAM

Because Fast Path messages can only be single-segment messages,
the only call you use to retrieve messages is GU. Fast Path
programs can't use the PURG call. Other than that, coding the DC
calls that you use in message-driven programs is no different from
coding them in an MPP.

Chapter 9. Coding a Message Processing Program 221

Some of the system service calls that are available to an MPP
can't be used in a Fast Path program. The system service calls (
that you can USQ in a Fast Path prc9r~m Bra: ,

• Basic CHKP

• ROlB

You code these calls just as you code them in an IMS/VS program.

Fast Path has one additional system service call, called the SYNC
call. This call causes a synchronization point to occur. The
parameters of the call are the call function, SYNC, and the I/O
PCB.

Fast Path programs cannot be conversational programs, so you
would never code a SPA in a Fast Path program.

222 IMS/VS Application Programming

(

(

)

,
)

)

CHAPTER· 10. STRUCTURING AND CODING A BATCH MESSAGE PROGRAM

A batch message program (BMP) ;s a cross between an MPP and a
batch program. It has some characteristics of message processing
and some of batch processing.

This chapter explains how you structure and code a BMP. The
aspects of batch message processing that this chapter explains
are:

• Processing online Data Bases

When you run a batch program, that program is the only program
using the data base at that time. This is because Dl/I has no
way to ensure data integrity and security if several programs
were to access the same segment and try to update it. This
section tells how processing online data bases is different
from processing Dl/I data bases.

• Designing Transaction-oriented BMPs

This section covers considerations in structuring a
transaction-oriented BMP.

• Designing Batch-oriented BMPs

This section covers considerations in structuring a
batch-oriented BMP.

A BMP is similar to an MPP in that a BMP:

• Accesses online data bases, so it can use the Q command code,
the DEQ call, and the ROlB and ROll calls.

• Can receive input from and send output to the IMS/VS message
queues to do this, a BMP uses the same DC calls that you use
in an MPP.

• Runs onl i ne.

A BMP is similar to a batch program in that a BMP:

• Can access OS/VS files

• Should issue checkpoint calls throughout the program

• I s started up wi th JCl

There are two types of BMPs: batch ori ented and transact ion
oriented. The major differences between transaction-oriented BMPs
and MPPs are:

• Transaction-oriented BMPs are started by JCl, while MPPs are
scheduled by the control region.

• Transaction-oriented BMPs don't have to access the message
queues, whi Ie MPPs must access the message queues for both
input and output.

A batch-oriented BMP is a batch program that is executed under the
control and supervision of the IMS/VS online system.

PROCESSING ONLINE DATA BASES

When you run a BMP, there are other BMPs and MPPs that are
accessing the data base at the same time. The data bases that BMPs
and MPPs access are onl i ne data bases; these data bases are
supervised by the IMS/VS control region, not Dl/I. The IMS/VS

Chapter 10. Structuring and Coding a Batch Message Program 223

------........ ----

control region has ways to make sure that, if a program updates a
segment, other programs will not be able to access the updated
segment until the program is sure that the new segment is valid.
In other words, the updates that an MPP or 8MP makes to the data
base do not become effective immediately; IMS/VS holds them until
the MPP or 8MP indicates to IMS/VS that the results of its
processing thus far are valid, even if the program terminates
abnormally. The program i~dicates this when it reaches a sync
point. Where sync points occur in your 8MP depends on whether your
8MP is transaction or batch oriented, and, if transaction
oriented, whether it is multiple or single mode.

(
\,

TOOLS AVAILABLE TO BMPS

SYNC POINTS

To read and update online data bases you use the same calls that
you use to read and update DL/I data bases. There is no difference
in the way you use them or code them. There are, however, some
additional tools available to you when you process online data
bases. "Chapter 8. structuring a Message Processing
Program"explai ns how you use these tools.

• Q Command Code

The Q command code reserves the segment or segments you
specify in the SSA for your program's use. Other programs can
read these segments, but can't update them. As part of program
isolation, IMS/VS puts a hold on the data base record that
your program is currently processing. Although IMS/VS
releases the data base record when you move your current
position to a new data base record within the same DB PCB data
structure, IMS/VS doesn't release the segmentCs) you have
reserved with the Q command code when it releases the data
base record that it is holding. If you haven't updated the
segment, IMS/VS releases it when you issue a DEQ call or when
you reach a sync point. If you have updated it, IMS/VS won't /
release the segment until your program reaches a sync point. ~

• DEQ

After you have reserved a segment or group of segments by
using the Q command code, you release the same segment(s) by
issuing the DEQ call. When you reserve the segments, you must
specify a I-character code, within the range of A to J, for
each segment or group of segments you reserve. You can reserve
one segment in a call, or you can reserve several, by
specifying one letter for a group of segments. When you want
to release a segment, you issue the DEQ call and specify the
code of the segment or segments that you want to release. "The
Q Command Code" explains how you use the Q command code and
DEQ. If you have updated the segment, IMS/VS does not release
it until you reach a sync point .

. • ROLB and ROLL

A program can issue a ROLB call or a ROLL call when it
realizes that some or all of its processing has been
incorrect. When you issue ROLB or ROLL, IMS/VS backs out the
data base updates that your program has made since the last
sync point. When you issue a ROLB or ROLL in a
transaction-oriented 8MP, IMS/VS also cancels any output
messages that your program has created since the last sync
point.

When a transaction-oriented BMP issues an ISRT call to send an
output message, IMS/VS holds the output message at a temporary
destination until the program reaches a sync point. IMS/VS also (
holds the data base segments that a BMP has updated until the next
sync point. Transaction-oriented BMPs are specified as either
single mode or multiple mode in the TRANSACT statement of the

224 IMS/VS Application Programming

\

)

)

APPlCTN macro for the BMP. Where sync points occur in a
transaction-oriented BMP depends on what has been specified on
this statement for your program. "Checkpoints in MPPs and
Transaction-Oriented BMPs" describes where sync points occur in
transaction-oriented BMPs. In a batch-oriented BMP, the only sync
points are the checkpoint calls in your program.

BMPs can issue either kind of checkpoint call (symbolic or basic).
"Taking Checkpoints" describes the advantages of the symbolic
call. There is a status code that IMS/VS can return to a BMP
following a checkpoint call that it doesn't return to other
programs. This is the status code XD. If your program receives
this status code, it should terminate immediately. It means that
IMS/VS is undergoing a checkpoint freeze, and that, if your
program issues any more Dl/I calls, IMS/VS will abnormally
terminate it.

DESIGNING TRANSACTION-ORIENTED BMPS

PROCESSING MESSAGES

A typical use of a transaction-oriented BMP is to use it to
simulate direct update online. This means that an MPP, instead of
updating the data base as it processes its transactions, sends the
updates to a message queue for the BMP to process later on. You
can then run the BMP as you need to, depending on the quantity and
type of updates. This improves the response time for the MPP, and
it keeps the data in the data base fairly current.

To process messages, a transaction-oriented BMP uses the same
message calls that an MPP uses. These are GU and GN to retrieve
input messages from the queue. Both transaction-oriented BMPs and
batch-oriented BMPs can send output to the message queue by
issuing ISRT calls. BMPs can also use CHNG and PURG to set
alternate destinations using an alternate PCB for output
messages. Using these calls in a BMP is no different from using
them in an MPP. "Chapter 8. structuring a Message Processing
Program"explains how to use these calls.

If a BMP processes transactions that have been defined as
"wa i t-for- input," IMS/VS allows the BfllP to rema in in ma in storage
after it has processed the available input messages. IMS/VS
returns the QC status code to the program if the limit count is
reached, if the master terminal operator enters a command to stop
any further processing, or if IMS/VS is terminated with a
checkpoint shutdown. Wait-for-input is specified on the WFI
parameter on the TRANSACT macro.

SYNC POINTS AND CHECKPOINTS IN TRANSACTION-ORIENTED BMPS

single-MOde BMPs

When you issue either kind of checkpoint call in a
transaction-oriented BMP, IMS/VS returns the first segment of the
next message, if there is one, to the I/O area that you name as
one of the parameters of the call. In other words, a checkpoint
call acts like a GU to the message queue. The I/O area that you
name in the checkpoint call must be large enough to hold this
message segment. When you check the status codes after a
checkpoint call, you should check for status codes that apply to a
GU message call, as well as for those that apply to a checkpoint
call.

If your program is single mode, each GU message call that your
program issues is s sync point. You use checkpoints in single-mode
BMPs to make restart easier. If your program is short enough to
restart from the beginning, you don't have to use checkpoints at
all. If you do want to be able to restart it from some place other

Chapter 10. Structuring and Coding a Batch Message Program 225

---- ----------.. -----

Multiple-Mode BMPs

than the beginning of the program, however, use checkpoint calls
in the program.

If you use ChQCKPcint c~lls in a single-mode transaction-oriented
BMP, don't mix checkpoint calls and GU message calls; use all
checkpoint calls and GN calls to access the message queue. The
reason for this is that, although both calls establish sync
points, you can't restart a program from a sync point; you can
restart a program only from a checkpoint. When the program
terminates abnormally, IMS/VS backs it out to the most recent sync
point, then restarts it from the most recent checkpoint. If you
issue checkpoints and GU message calls in the program, you have no
way to be sure that the most recent sync point will be the most
recent checkpoint.

In a multiple-mode BMP, the only sync points in the program (other
than program termination) are checkpoint calls. Since GU message
calls are not sync points, you can use both GU message calls and
checkpoi nt calls in the progr"am. The consi derati ons for where and
how often you issue checkpoints in a multiple mode program are the
same as those for a batch-oriented BMP that are explained below.

DESIGNING BATCH-ORIENTED BMPS

A batch-oriented BMP is similar to a batch program. They are
different in that a BMP can use the additional tools described
above, and it should issue checkpoints even more frequently than a
batch program should. Also, a batch-oriented BMP can send output
to the message queue. It does this by issuing one ISRT call for
each message segment.

In a batch program, checkpoints are important for restart and
~ecovery time. But in a batch-oriented BMP there are some
additional reasons for issuing checkpoints. They are:

• Enqueue Lockout

When a BMP reads a segment, IMS/VS keeps other programs from
accessing that segment. IMS/VS does this by holding the data
base record that the segment belongs to until the BMP moves to
another data base record within the data structure defined by
the same DB PCB. If the program updates the segment, IMS/VS
doesn't release the segment until the BMP reaches a sync
point. In a batch-oriented BMP, checkpoint calls are the only
sync points (except for program termination). Ifa BMP
accesses a large number of data base segments between
checkpoint calls, the program can tie up large portions of the
data base and cause long wa its for MPPs and other BMPs tryi ng
to access the same segments. When a BMP issues a checkpoint
call, IMS/VS releases all segment occurrences that the
program has enqueued in the interval since the last
checkpoint call, and makes them available to other online
programs.

• Enqueue Space

Another reason that a BMP needs to issue checkpoints
frequently is that IMS/VS can run out of space for the
segments enqueued by the BMP. If a BMP has enqueued too many
data base segments, the amount of storage required for the
enqueued records can exceed the amount of storage available
for them. If thi s happens, IMS/VS wi 11 termi nate a program
abnormally with a code of 0775. Before you could reexecute the
program, you would have to increase the checkpoint frequency
for the program.

226 IMS/VS Application Programming

(
"'

(
'-

)

\
)

• Dynamic Log space

In addition to freeing enqueued data base segments, a
checkpoint call also frees dynamic log records. As a BMP
updates segments, IMS/VS records the before images of the
segments on the dynamic log. This space is not fread until the
BMP reaches a sync point. If the program doesn't issue
checkpoints frequently enough, the dynamic log can reach a
wraparound point. You can then either issue checkpoints more
frequently or increase the amount of storage available for
the dynamic log.

Chapter 10. structuring and Coding a Batch Message Program 227

CHAPTER 11. TESTING AN APPLICATION PROGRAM

This chapter tells you what is involved in testing an application
program as a unit and gives you some guidelines on how to do it.
This stage of testing is called program unit test. The purpose of
program unit test is to test each application program as a single
unit to see that the program correctly handles its input data,
processing, and output data.

Once all the application programs that are part of the same system
have been tested, the entire system is tested. This is called
application system test. The application system test checks the
way in which data is passed within the system. Its purpose is to
make sure that the system works as a whole, and to verify that the
system will work under stress. This is usually done under the
supervision of the data communications administrator and the
system programmer. This chapter covers only unit test.

The amount and type of testing you do depend on the individual
program. There are no hard and fast rules, but there are some
guidelines that can be of help. This chapter contains the
following sections:

• What You Need to Test You~ P~og~am

This section tells you what you need before you can test your
program.

• Testing DL/I Call sequences

(

Before you test the program as a whole, you can use the Dl/I
test program, DFSDDlTO, to test the sequence of DL/I calls (
that your program uses .. Thi s sect i on tell s you how to do thi s. ,

• Using BTS II to Test You~ P~og~am

This section gives you an overview of how to use Batch
Terminal Simulator II, or BTS II. You can use BTS II to test
conversational programs, MPPs, BMPs, and batch programs. It
cannot test Fast Path programs. BTS II is valuable to
application programs that communicate with terminals, because
it simulates the terminal's interactions with your program.
This makes it possible for you to test online programs
offline.

• What to Do When You~ P~og~am Te~minates Abno~mally

If your program doesn't run, or if it gives inaccurate
results, you have to find the problem before you can fix it.
This section gives some suggestions concerning some of the
actions that you, as the application programmer, can take in
determining what caused the problem. The suggestions in this
section are limited to fixing problems in your program.

• Calls You Use fo~ Monito~ing and Debugging

This section explains some system service calls that can be
helpful in debugging. They are: STAT, lOG, and GSCD.

WHAT YOU NEED TO TEST A PROGRAM

When you are ready to test your program, be sure you're aware of
the test procedures at your installation before you start. Some of
the things you need to test your program are:.

• Test JCl

228 IMS/VS Application Programming

(
'-

)

)

)

----------------_ _- ._._----- -------

• A test data base. When you're testing a program, you don't
execute it against a production data base because the
program, if faulty, might damage valid data.

• Test input data. The input data that you use doesn't have to
be current, but it should be valid data. You can't be sure
that your output data is valid unless you use valid input
data.

The purpose of testing the program is to make sure that the
program can correctly handle all of the situations that it can
encounter.

To thoroughly test the program, try to test as many of the paths
that the program can take as possible. For example:

• Try to test each path in the program. To do this, use input
data that forces the program to execute each of its branches.

• Be sure that your program tests its error rout i nes. Aga in, use
input data that will force the program to test as many error
conditions as possible.

• Test the editing routines your program uses. Give the program
as many different data combinations as possible to make sure
it correctly edits its input data.

TESTING DL/I CALL SEQUENCES

DFSDDlTO is an IMS/VS application program that executes the Dl/I
calls you specify against a test data base. An advantage of using
DFSDDLTO is that you can test the DL/I calls in your program
without executing the program as a whole. Testing the Dl/I call
sequence before you test the program makes debugging easier,
because, by the time yoU test the program, you know that the DL/I
calls are accurate. When you test the program, if it doesn't
execute correctly, you know that the Dl/I calls aren't part of the
problem if you've already tested them using DFSD~LTO.

For each DL/I call that you want to test, you give DFSDDlTO the
call and any SSAs that you're using with the call. DFSDDlTO then
executes and gives you the results of the call. After each call,
DFSDDLTO shows you the contents of the DB PCB mask and the I/O
area. This means that for each call, DFSDDLTO checks the access
path you've defined for the segment, and the effect of the call.
DFSDDLTO is helpful in debugging, because it can display DL/I
control blocks.

To use DFSDDLTO, you need to know what the results of each call
should be when the call is executed against the test data base
you're using. To indicate to DFSDDlTO the call you want executed,
you use four types of control statements.

• Status statements establish print options for DFSDDlTO's
output and select the DB PCB to use for the calls you specify.

• Comments statements let you choose whether or not you want to
supply comments.

• Call statements indicate to DFSDDLTO the call you want to
execute, any SSAs you want used with the call, and how many
times you want the call executed.

• Compare statements tell DFSDDLTO that you want it to compare
its results after executing the call with the results you
supply.

In addition to testing call sequences to see if they work, you can
also use DFSDDLTO to check the performance of call sequences.
There are two ways you can do this.

Chapter 11. Testing an Application Program 229

If you use DL/I call trace, you can use DFSDDLTO to compare the
results of two call sequences that access the same segment. You
can determine which SQquence of the two is rnor~ ~fficient by
analyzing the results of the trace.

You can also use the DFSDDLTO timings to check the performance of
different call sequences. DFSDDLTO records two timings: task time
and real time.

• Task time records the amount of time the DL/I call takes to
execute. This time is printed in microseconds. Task time
measures only the DL/I task. It does not include the OS/VS
supervisor state time or the I/O processing time.

• Realtime records the time of day at call completion from the
store clock.

You turn both timings on and off in the status statement.
"Appendix F. Using the DL/I Test Program (DFSDDLTO)" explains the
formats and meani'ngs of the DFSDDL TO control statements.

USING BTS II TO TEST YOUR PROGRAM

BTS II is a valuable tool for testing all types of IMS/VS
application programs, except Fast Path programs. BTS can test
call sequences, and the documentation it produces is helpful in
debugging.

When you want to test an MPP or BMP that communicates with a
terminal, using BTS II is a good idea, because it allows you to
test the program without running the program online. BTS II is a
program that simulates what IMS/VS data communications does so
that you can run an online program offline. BTS II simulates all

-DC calls; you can specify that it print the contents of the I/O
PCB, any alternate PCBs, I/O areas, and SPAs.

BTS II gives you information about each transaction as it goes
through the IMS/VS system. You can use it to test your program
logi c, the program's IMS/VS interfaces, and its data base calls as
well as the program's interactions with the terminal. For
information on how to use BTS II, refer to the BTS II Program
Description/Operations Manual.

WHAT TO DO WHEN YOUR PROGRAM TERMINATES ABNORMALLY

If your program terminates abnormally, there are some actions
that you can take that can make finding and fixing the problem a
little easier. First, you can record as much information as
possible about the circumstances under which the program
terminated abnormally; and second, you can check for certain
initialization and execution errors.

WHEN YOU FIND YOU HAVE A PROBLEM

Many installations have guidelines concerning what you should du
if your program terminates abnormally. The suggestions given here
are some common ones.

• Document the error situation to help in investigating and
correcting it. Some of the information that can be helpful is:

The program's PSB name

The transaction code that the program was processing

The text of the input message being processed

The name of the origin~ting logical terminal

The call identifier

230 IMS/VS Application Programming

(

(

)

)

)

FINDING THE PROBLEM

The call function

The contents of the PCB that was referenced in the call
that was executing

The contents of the 1/0 area when the problem occurred

If a data base call was executing, the SSAs, if any, that
the call used

The date and time of day

• When your program encounters an error, it can pass all of the
required error information to a standard error routine.
Online programs might want to send a message to the
originating logical terminal to inform the person at the
terminal that there's been an error. The program can get the
logical terminal name from the I/O PCB, place it in an express
PCB, and issue one or more ISRT calls to send the message.

• An online program might also want to send a message to the
master terminal operator giving information about the
program's termination. To do this, the program places the
logical terminal name of the master terminal in an express PCB
and issues one or more ISRT calls.

• You might also want to send a message to a printer so that
you'll have a hardcopy record of the error.

• You can send a message to the system log by issuing a LOG
call. "Writing Information to the System Log: LOG" describes
this call.

• Some installations run a BMP at the end of the day to list all
the error that have occurred during the day. If your
installation does this, you can send a message using an
express PCB that has its destination set for that BMP.

If your program doesn't run correctly when you are testing it or
when it's executing, you need to isolate the problem. The problem
might be anything from a programming error (for example, an error
in the way you coded one of your calls), to a problem in the
IMS/VS system. This section gives some guidelines about the steps
that you, as the application programmer, can take when your
program fails to run, terminates abnormally, or gives incorrect
results.

Initialization Errors

Execution Errors

Before your program receives control, IMS/VS must have correctly
loaded and initialized the PSB and DBDs used by your application
program. Often, when the problem is in this area, you need a
system programmer or DBA (or the equivalent specialist at your
installation), to fix the problem. One thing you can do is to find
out if there have been any recent changes to the DBDs, PSB, and
the control blocks that they generate.

If you don't have any initialization errors, check the following
in your program:

1. The output from the compiler--make sure that all error
. messages have been resolved.

2. The output from the linkage editor:

• Are all external references resolved?

Chapter 11. Testing an Application Program 231

• Have all necessary modules been included?

• Was the language interface module correctly auto-TlnKed?

• Is the correct entry point specified?

3. Your JCL:

• Is the information that described the files that contain
the data bases correct? If not, check with your DBA.

• Have you included the DL/I parameter statement in the
correct format?

• Have you included the region size parameter in the EXEC
statement? Does it specify a region or partition large
enough for the storage required for IMS/VS and your
program?

4. Your program:

• Have you declared the fields in the PCB masks correctly?

• If your program is an assembler language program, have
you saved and restored registers correctly? Does register
1 point to a fullword parameter list before issuing any
DL/I calls?

• For COBOL and PL/I, are the literals you're using for
arguments in DL/I calls producing the results you expect?
For example, in PI/I, is the parameter count being
generated as a halfword instead of a fullword, or is the
function code producing the required 4-byte field?

• Use the PCB as much as possible to determine what in your
program is producing incorrect results.

CALLS YOU USE FOR MONITORING AND DEBUGGING

There are three IMS/VS system service calls that can be helpful
when you are debugging your program:

• The statistics call, or STAT, retrieves system statistics.

• The log call, or LOG, makes it possible for the application
program to write a record on the IMS/VS system log.

• The GSCD call retrieves the addresses of the system contents
directory and the partition specification table.

RETRIEVING IMS/VS SYSTEM STATISTICS: STAT

The statistics system service call, or STAT, can be helpful in
debugging because it retrieves IMS/VS system statistics. It is
also helpful in monitoring and tuning for performance. STAT can
retrieve ISAM/OSAM data base buffer pool statistics and VSAM data
base buffer subpool statistics.

When you issue a STAT call, you have three choices about the
format that you want the statistics to be in. IMS/VS will give
them to you unformatted, in a summary report, or formatted. "STAT
Call Formats" explains how you specify which format you want.

If you want to retrieve ISAM/OSAM statistics, you only have to
issue one STAT call. If you want to retrieve VSAM statistics, each
STAT call you issue retrieves the statistics for a subpool. The
first call retrieves the statistics for the smallest subpool.
When IMS/VS has returned the statistics for all of the subpools,
IMS/VS gives you a GA status code. If you issue the call again,
IMS/VS returns the total statistics for all of the VSAM subpools.
If you issue a STAT call for VSAM or ISAM/OSAM statistics and

232 IMS/VS Application Programming

---~---- -

(

~

)

)

)

you're not using any of the type of buffer pools that you
specified in the call, IMS/VS returns a GE status code to the
program.

WRITING INFORMATION TO THE SYSTEM LOG: LOG

An application program can write a record to the system log by
issuing the LOG call. Fast Path programs cannot use the LOG call.
When you issue the call, you give the address of the 1/0 area that
contains the record you want IMS/VS to record on the system log.
This record must be in the format shown in Figure 93.

C Text

1 variable

Figure 93. Log Record Format

LL A 2-byte field that contains the total length of the record.

ZZ This 2-byte field must contain binary zeros.

C Thi s 1-byte fi eld conta ins a user log code. Thi s code must
be greater than or equal to X'AO'.

Text This is the text you want IMS/VS to write to the system log.

There are two restrictions on the length of the log record:

• The total length (Ll + ZZ + C + Text) cannot be greater than
the logical record length (lRECl) for the system log data set,
minus 4 bytes.

• The total length can't be greater than the 1/0 area length
specified in the IOASIZE keyword of the PS8GEN statement in
the PS8.

If the call is successful, IMS/VS returns a blank status code.
These are error status codes for LOG:

AD A Fast Path program tried to issue a lOG call.

AT The record length in the II field is too long.

GL The log code is not a valid user log code.

RETRIEVING SYSTEM ADDRESSES: GSCD

The GSCD call ("get system contents directory") retrieves the
addresses of the IMS/VS system contents directory (SCD) and the
partition specification table (PST). If your program references
these control blocks, you should use the dsects provided by the
macros in the macro library for the IMS/VS system. The macro for
the SCD dsect is ISCD SC08ASE=O. The macro for the PST dsect is
lOLl PSTBASE=O. You must reference a PCB as one of the parameters
in the call; thi s PCB can be any val i d PCB.

The GSCO call returns the addresses in an 8-byte 1/0 area that you
reference in the call. IMS/VS returns the SCD address in the first
4 bytes of the area, and the PST address in the second 4 bytes of
the area.

Note: GSCO functions normally in a message processing or batch
processing region using OS/VS2 or OS/VSl with fetch protect. Use
GSCO only in batch programs. The reason that you should not use it

Chapter 11. Testing an Application Program 233

in BMPs and MPPs it that the operating system doesn't allow a
program in one region to access data in another region. Since the
addrQssQs arQ from the control region, and MPPs and BMPs run in
separate regions, these addresses cannot be used in a message
processing or batch message processing region. If they are, an OC4
system abend will occur.

234 IMS/VS Application Programming

(

(

)

\
)

)

------- ------------ ---------------------- ----------------

CHAPTER 12. DOCUMENTING AN APPLICATION PROGRAM

This chapter does not give any rules about the form you use to
document your program, or about the type and amount of information
you include, but it does give some guidelines about the type of
program documentation that is valuable. Many installations
establish standards in this area; make sure you are aware of the
standards at your installation.

When you document an application program, you record information
about the program for two reasons:

• Documentation for Other Programmers

One kind of information you record is information about
structuring and coding the program. You record this
information for other programmers who may have to maintain
your program in the future.

• Documentation for Users

The other kind of information you should record is
information for the people who use your application program.
You need to provide these people with the information they
need to use your program.

DOCUMENTATION FOR OTHER PROGRAMMERS

Documenting a program is not something you should wait until the
end of the project to do; your documentation will be much more
complete, and more useful to others, if you record information
about the program as you structure and code it. Include any
information you think might be useful to someone else who has to
work with your program.

The reason you record this information is so that people who
maintain your program know something about why you chose certain
call structures, SSAs, and command codes. For example, if the DBA
was considering reorganizing the data base in some way,
information about why your program accesses the data the way it
does would be helpful.

A good place to record information about your program is in a data
dictionary. It is then available to all of those-who might need
it, and it is easy to maintain.

Some of the information you should include for other programmers
is:

• Flowcharts and pseudocode for the program.

• Comments about the program from code inspections.

• A written description of the program flow.

• Information about why you chose the call sequence you did,
such as:

Did you test the call sequence using DFSDDLTO?

In cases where more than one combination of calls would
have had the same results, why did you choose the sequence
you did?

What was the other sequence? Did you test it using
DFSDDLTO?

Chapter 12. Documenting an Application Program 235

• Any problems you encountered in structuring or coding the
program.

Any problems you had when you tested the program.

• Warnings about what should not be changed in the program.

This information all relates to structuring and coding the
program. In addition, you should include the information
described in "Documentation for Users" with the documentation for
programmers.

Again, the amount of information you include and the form in which
you document it depend on you and your installation. These are
provided as suggestions.

DOCUMENTATION FOR USERS

All of the information listed above relates to the design of the
program. In addition to this, you should record information about
how you use the program. The amount of information that users
need, and how much of it you should supply, depend on who the
users of the program are and what type of program it is.

At a minimum, you should include this information for users of
your program:

• What the user needs to use the program

For online programs, is there a password?

For batch programs, what is the required JCL?

• The input users need to supply for the program

For example, for an MPP, what is the MOD name that the
user enters to initially format the screen?

For a batch program, is the input in the form of cards or
tape?

• The content and form of the program's output

If it's a report, show the format or include a sample
listing.

For an online application program, show what the screen
will look like.

• For online programs, if the user has to make decisions, tell
what is involved in each decision. Give choices and defaults.

If the people who will be using your program are unfamiliar with
terminals, they will need some kind of user's guide as well. For
example, this guide should give explicit instructions on how to
use the terminal and what they can expect from the program.
Although you may not be responsible for providing this kind of
information, you should provide any information that is unique to
your application, regarding terminal use, to the person
responsible for this information.

236 IMS/VS Application Programming

(
,

(

(

)

)

PART 3. FOR YOUR REFERENCE

This part of the book contains reference information about the
DL/I and DC tools that have been explained in Part 2 of this book.
This part does not contain explanations of the tools; it gives you
rules for coding each of the tool~, and examples of how they are
coded in COBOL, PL/I, and assembler language. This part contains
reference information about:

• IMS/VS Entry and Return Conventions

• DL/I Calls

• DB PCB Masks

• I/O Areas

• SSAs

• DC Calls

• System Service Calls

• Fast Path Reference

• GSAM Reference

• Statu s Codes

Part 3. For Your Reference 237

IMS/VS ENTRY AND RETURN CONVENTIONS

ASSEMBLER LANGUAGE

The formats for entry statments in COBOl~ Pl/I, and assembler
language are as follows. Your entry statement must refer to the
I/O PCB first; then any alternate PCBs it uses in the order
they're defined in the PSBi and lastly the DB PCBs it uses, in the
order they've been defined in the PSB.

This statement must be the first statement in the procedure
division:

ENTRY 'DLITCBL' USING pcb-name-1 [, ••• ,pcb-name-nl •

.
GOBACK.

This statement must be the first statement in the program. When
IMS/VS passes control to your program, it passes the addresses, in
the form of pointers, of each of the PCBs your program uses. When
you code the entry statement, make sure you code the parameters of
this statement as pointers to the PCBs, and not the PCB names.

DLITPLI: PROCEDURE (pcb1_ptr [, ••• ,pcbn_ptrl) ,OPTIONS (MAIN);
RETURN;

You can use any name for the entry point to an assembler language
Dl/I program. When IMS/VS passes control to the application
program, register 1 contains the address of a variable-length
fullword parameter list. Each word in the list contains the
address of a PCB. IMS/VS sets the high-order byte of the last
fullword in the list to X'80' to indicate the end of the list.
After saving Dl/I registers and the entry point address, you
should save the PCB addresses.

PROGRAM CSECT Entry point
USING ~,BASE
SAVE 14,12
LR Base,lS
LR R2,R1

Addressabflftv
Save DL/I regIsters
Entry point address
Save PCB list

~ Reg 1 contains pointer to PCB address list
~ Reg 13 contains pointer to DL/I save area
* Reg 14 contains DL/I return address
~ Reg IS contains program entry point
~ BASE contains the address of the program
~

RETURN

END

(14,12) Reload DL/I registers
and return

238 IMS/VS Application Programming

(

(

(

)

)

Dl/I CAllS

Dl/I CAll FORMATS

COBOL

PL/I

ASSEMBLER LANGUAGE

. This section shows you DL/I call formats in COBOL, PL/I, and
assembler language, and defines the call parameters.

CAll 'CBlTDLI' USING function, db pcb, i/o area
[,ssal, ••• ,ssalSl

CAll PLITDLI (parmcount, function,
db pcb, i/o area [,ssal, ••• ,ssalSJ)J

column
10
CALL ASMTDLI, (function, (db pcb reg),i/o area

[,ssal, ••• ,ssalS]),VL

column
72
X

DL/I CALL PARAMETERS

All of the DL/I calls use the same parameters. Three of the
parameters shown above are required in all DL/I calls: function,
db pcb, and i/o area. In addition, an ISRT call requires at least
one unqualified SSA. SSAs are optional for the other calls.

parmcount
This is required only in PL/I. Assembler language programs
must use either parmcount or VL. This parameter is the
address of a 4-byte field that contains the number of
parameters that follow parmcount in the list. This value
does not include parmcount itself. Parmcount is optional for
COBOL.

function
This parameter gives the address of a 4-byte field that
contains the DL/I function code for the type of call you
want. The function code must be 4 bytes long. If the mnemonic
for the call is less than 4 bytes, for example, GN, it is
padded on the ri~ht with blanks to fill in the extra 2 bytes,
GNbb. The function codes for each of the DL/I calls are:

GUbb Get unique

GHUb Get hold unique

GNbb Get next

GHNb Get hold next within parent

GNPb Get next within parent

GHNP Get hold next within parent

DLET Delete

DL/I Calls 239

REPL Replace

ISRT Insert

db pcb or db pcb reg
This parameter gives the name of the PCB that DL/I will
reference for this call. In COBOL, give the name of the DB
PCB that you've defined in the linkage section of the
program. In PL/I programs, you can pass either the PCB name
or the PCB pointer. In assembler language programs, pass the
register that contains the address of the PCB for this call.

i/o area
This parameter identifies the area in your program with
which your program will communicate with DL/I. When you
issue one of the get calls successfully, DL/I returns the
requested segment to this area. When you want to replace an
existing segment in the data base with a new segment, you
place the new segment in the I/O area before issuing the REPL
call. After you issue a DLET call successfully, DL/I returns
the segment it has just deleted to this area. When you want
to add a new segment to the data base, you place the new
segment in this area before issuing the ISRT call. This area
must be large enough to hold the longest segment that DL/I
returns to this area. For example, if none of the segments
your program retrieves or updates is longer than 48 bytes,
your I/O area has to be 48 bytes. If your program issues any
path calls, the I/O area must be long enough to hold the
longest concatenated segment following a path call. The
segment data that this area will contain is always
left-justified; the name of the I/O area points to the first
byte of this area.

ssal, ••• ,ssa15
These parameters give DL/I the addresses of the SSAs, if any,
to be used in this callr The ISRT call is the only call that (
requires any SSAs; this parameter is optional for the rest of
the DL/I calls. The names you supply in the DL/I call point .
to data areas in your program in which you have defined the
SSAs for the call.

(

240 IMS/VS Application Programming

)

)

\
)

DB PCB MASKS

COBOL DB PCB MASK

A DB PCB mask must contain the fields shown in Figure 94. The
fields in your DB PCB mask must be defined in the same order, with
the same length, as the fields shown here. When you code the DB
PCB mask, you also give it a name, but the name is not part of the
mask. You use the name (or the pointer, for PL/I) when you
reference each of the PCBs your program processes in the program
entry statement. A GSAM DB PCB mask is slightly different from a
DL/I DB PCB mask. "GSAM DB PCB Masks" gives the format for GSAM DB
PCB masks.

1. Data Base Name
8 bytes

2. Segment Level Number
2 bytes

3. Status Code
2 bytes

4. Processing Options
4 bytes

5. Reserved for DL/I
4 bytes

6. Segment Hame
8 bytes

7. Length of Key Feedback Area
4 bytes

8. Number of Sensitive
4 bytes

9. Key Feedback Area
variable

Figure 94. DB PCB Mask

01 PCBNAME.
02 DBD-NAME
02 SEG-lEVEl
02 STATUS-CODE
02 PROC-OPTIONS
02 RESERVE-Dl/I
02 SEG-NAME-FB
02 lENGTH-FB-KEY
02 NUMB-SENS-SEGS
02 KEY-FB-AREA

length

Segments

PICTURE X(Sl.
PICTURE XX.
PICTURE XX.
PICTURE XXXX.
PICTURE S9(SlCOMPUTATIONAl.
PICTURE X(Sl.
PICTURE S9(S)COMPUTATIONAl.
PICTURE S9(SlCOMPUTATIONAl.
PICTURE X(17l.

Define the PCB mask as a 01 level linkage section entry, with the
fields of the PCB defined in the linkage section so that your
program may reference them.

DB PCB Masks 241

PL/I DB PCB MASK

DECLARE
DEcLAREl

PCB_POINTER POINTER;
PCBNAME BASED (PCB_POINTER),
2 DBD_NAME CHAR(8),
2 SEG_LEVEL CHAR(2),
2 STATUS_CODE CHAR(2),
2 PROC_OPTIONS CHAR(4),
2 RESERVE_DLI FIXED BIN(31,O),
2 SEG_NAME FB CHAR(8),
2 LENGTH_FB_KEY FIXEDBIN(31,O),
2 NUMB_SENS_SEGS FIXED BIN(31,O),
2 KEY_FB_AREA CHAR(17);

In Pl/I the PCB mask should be defined as a level 1 declarative.
Although in the entry statement you must pass the pointer to the
PCB, and not the PCB name, in Dl/I calls you can pass either the
pointer or the PCB name.

ASSEMBLER LANGUAGE DB PCB MASK

PCBNAHE
DBPCBDBD
DBPCBLEV
DBPCBSTC
DBPCBPRO
DBPCBRSV
DBPCBSFD
DBPCBLKA
• DBPCBNSS
DBPCBKFA

DSECT
DS CL8
DS CL2
DS CL2
DS CL4
DS F
DS CL8
DS F

DS F
DS CLl7

DBDNAME
LEVEL FEEDBACK
STATUS CODES
PROC OPTIONS
RESERVED
SEGMENT NAME FEEDBACK
CURRENT LENGTH OF
KEY FEEDBACK AREA
NO OF SENSITIVE SEGMENTS
KEY FEEDBACK AREA

In assembler language you must define a fullword for each DB PCB.
Your program can then access the status codes after a Dl/I call (
using the PCB base addresses. When you issue a Dl/I call, pass the
register that contains the address of the PCB for the call, not·
the PCB name for the call.

242 IMS/VS Application Programming

(
\.,

)

)

I/O AREA

COBOL I/O AREA

PL/I I/O AREA

-----------------------_ ... __ ._.

The I/O area for data base calls must be long enough to hold the
longest segment your program retrieves from or adds to the data
base. If your program issues any get or ISRT calls that use the D
command code, the I/O area must be large enough to hold the
largest path of segments that the program retrieves or inserts.
You can use separate I/O areas for different segment types, or you
can use only one.

The I/O area in a COBOL program should be defined as a 01 level
working storage entry. You can further define the area with 02
entries.

IDENTIFICATION DIVISION •

.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-AREA.

02 KEY PICTURE X(n).
02 FIELD PICTURE X(n).

In PL/I, the name for the I/O area used in the DL/I call can be the
name of a fixed-length character string, a major structure, a
connected array, or an adjustable character string. It cannot be
the name of a minor structure or a character string with the
attribute VARYING. If you want to define it as a minor structure,
you can use a pointer to the minor structure as the parameter.

Your program should define the I/O area as a fixed-length
character string and pass the name of that string, or define it in .
one of the other ways ment i oned above and then pa ss the po inter
variable that points to that definition. If you want to use
substructures or elements of an array, use the DEFINED or BASED
attribute.

DECLARE 1 INPUT_AREA,
2 KEY CHAR(6),
2 FIELD CHAR(84JJ

ASSEMBLER LANGUAGE I/O AREA

IOAREA
KEY
FIELD

DS
DS
DS

OCL90
CL6
CL84

I/O Area 243

SEGMENT SEARCH ARGUMENTS

SSA CODING RULES

This section gives information on restrictions when using SSAs
and coding formats and examples for defining SSAs in COBOL, Pl/I,
and assembler language.

• You specify the label of the place in your program where you
have defined the SSA as the DL/I ~all parameter. The SSA
itself is defined in the data area of your program.

• The segment name field:

Must be 8 bytes long. If the name of the segment you're
specifying is less than 8 bytes long, it should be
left-justified and pa~ded 6n the right with blanks.

Must contain a segment name that has been defined in the
DBD that your application program uses. In other words,
make sure you use the exact segment name, or your SSA will
be invalid.

• If the SSA contains only the segment name, the ninth byte must
be a blank.

• If the SSA contains one or more com~and codes:

The ninth byte must be .an asterisk (*).

~
I

The last command code must be followed by a blank, unless (
the SSA contains a qualification statement. If the SSA
contains a qualification statement, the command code must
be followed by the left parenthesis of the qualification
statement. .

• If the SSA contains a qualification statement:

The qualification statement must begin with a left
parenthesis and end with a right parenthesis.

There must not be any blanks between the segment name, or
command code(s) if used, and the left parenthesis.

The field that contains the field name must be 8 bytes
long. If the field name is less than 8 bytes, it must be
left-justified and padded on the right with blanks. The
field name must have been defined for the specified
segment type in the .DBD the application program is using.

The relational operator follows the field name. It must
be 2 bytes long, and may be represented alphabetically or
symbolically_ Figure 95,lists the relational operators.

244 IMS/VS Appli~ation Programming

(

"-
1

/

)

SSA CODING FORMATS

~~ ~~~-- '~~-~-----~--'---------~-,-,-------------

Symbolic Alphabetic Meaning

=b or b= EQ Must be equ~l to

>= or => GE Must be greater than or equal to

<= or =< lE Must be less than or equal to

>b or b> GT Must be greater than

<b or b< IT Must be less than

.. - or _ .. NE Must not be equal to

Figura 95. Relational Operators

The comparative value follows the rel~tional operator.
The length of this valuQ~ust be'equal to the length of
the field that you sP~cifi.ed in~"field name." This length
is defined in the DBD. Tna compara.tive value must include
leadi ng zeros for numeri cvaluQ~or~ tra iii ng blanks for
alphabetic values as nece'ssary~<' ,

• If you are using multipleq~alificatj~o 'statements within one
SSA (Boolean qualificationst~te~.nti)the qualification
statments must be separated by .orieof~"thase symbols:

• or & dependent AND

+ or log; calOR

• independent AND

This symbol must come between the rj~ht parenthesis of the
first qualification statement and tha left parenthesis of the
second qualification statemen:t with~Jjo blanks between them.

COBOL SSA DEFINITION EXAMPLES

Below is the definition for an unqualified SSA that does not use
any command codes:

DATA DIVISION.
WORKING-STORAGE SECTION •

.
01 UNQUAL-SSA.

02 SEG-NAHE
02 FILLER

PICTURE X(OS) VALUE '
PICTURE X VALUE ' ,

You can use an SSA coded like this for each Dl/I call that needs
an unqualified SSA by supplying the name of the segment type you
want during program execution.

For COBOL, use a 01 level working stQrage entry to define each SSA
that the program wi 11 use. You then45.Q the name you have gi ven
the SSA, in this case, "UNQUAl-SSA'~'astha parameter in the Dl/I call. . . ' ,~

The SSA below is an example of a qualified SSA that does not use
command codes. If you were using command codes in this SSA, you
would code the asterisk (*> and the command code between the

SegmantSearch Arguments 245

8-byte segment name field and th~ left pa~enthesis ·that begins the'
qualification statement.

DATA DIVISION.
WORKING-STORAGE SECTION •

.
01 QUAL-SSA-HAST.

02 SEG-NAHE-M
02 BEGIN-PAREN-H
02 KEY-NAHE-H
02 REL-OPER-N

PICTURE X(OS)
PICTURE X
PICTURE X(OS)
PICTURE X(02)

'VALUE 'ROOT
VALUE ' (, .
VALUE 'KEY
VALUE ' ::' .

02 KEY-VAlUE-H PICTURE X(n) VALUE 'vv ••• v' •
02 END-PAREN-H PICTURE X VALUE ') , .

The above SSA would look like this:

ROOTbbbb(KEYbbbbbb=vv ••• v)
, ;,

These SSAs are both taken from the COBOL skeleton program in
Figure 66. You can see how they are used in a Dl/I call by
referring to this program.

PL/I SSA DEFINITION EXAMPLES

An unqualified SSA that does not use command codes looks like this
in PL/I:

DCl 1 STATIC UNALIGNED,
CHAR(S) INIT('NAME
CHAR (1) INIT (' ');

,),

You can use an SSA coded like this for each Dl/I call that needs
an unqualified SSA by supplying the name of the segment type you
want during program executi~n.

In Pl/I yo~ define SSAs in structur~declarations. The unaligned
attribute is required for SSA data interchange with Dl/I. The SSA
character string must reside contiguously in storage. For
example, assignment of variable to key values could cause Dl/I to
construct an invalid SSA if the key value has changed the aligned
attribute. A separate SSA structure is required for each segment'
type that the program accesses, because the value of the key
fields differs among segment types. Once you have initialized the
fields other than the key values, you should not have to change
the SSAs again. You can define SSAs in any of the ways explained
for the I/O area.

The following is an example of a qualified SSA without command
codes. If you ,wanted to use command codes with this SSA, you would
code the asterisk (*) and command codes between the 8-byte segment
name field and the left parenthesis that begins the qualification
statement. .

DCL 1 QUAL SSA
2 -SEG NAME
2 SEG-QUAL
2 SEG:KEY_NAME
2 SEG OPR
2 SEG:KEY_VALUE
2 SEG_END_CHAR

This SSA would look like this:

ROOTbbbb(KEYbbbbbb=vv ••• v)

STATIC UNALIGNED,
CHAR(S) INIT('ROOT '),
CHAR(I) INIT('('),
CHAR(S) INIT('KEY '),
CHAR(2) INIT(' ='),
CHAR(n) INIT('VV ••• V'),
CHAR(l) INIT(')');

These SSAs are both taken from the Pl/I skeleton program shown in

\

/
(
\.

Figure 67. You can see how they are used in DL/I calls by I

referring to this program. ~

246 IMS/VS Application Programming

)

------ -----------------------------------

ASSEMBLER lANGUAGE SSA DEFINITION EXAMPLES

The example below shows how you would def;ne a qual;f;ed SSA
w;thout command codes.

~ CONSTANT AREA

.
SSANAME
ROOT

NAME

DS
DC
DC
DC
DC
DC
DC

OCl26
eL8'ROOT
ell'('
el8'KEY
el2' ='
Cln'vv ••• v'
ell')'

This SSA would look like this:

ROOTbbbb(KEYbbbbbb=vv ••• v)

Segment Search Arguments 247

DC CALLS

DC CALL FORMATS

COBOL

PL/I

ASSEMBLER LANGUAGE

DC CALL PARAMETERS

CALL 'CBLTDLI' USING function, i/o pcb or alternate pcb,
i/o area [,mod name] [,destination name].

CALL PLITDLI (parmcount, function, i/o pcb or alternate pcb,
i/o area [,mod name] [,destination name]);

CALL ASMTDLI, (function, i/o pcb or alternate pcb,
i/o area[,mod name][,destination name]),VL

function
The address of a 4-byte area that contains one of the values
below.

GUbb Get unique

GNbb Get next

ISRT Insert

CHNG Change

PURG Purge

CMDb Command

GCMD Get command

i/o pcb or alternate pcb
The name of the PCB to use for this call.

i/o area

x

The address of the I/O area to use for this call. The I/O
area must be large enough to hold the largest segment passed
between the program and IMS/VS.

mod name
Mod name is the name of an 8-byte field that contains the
name of the MOD you want used for this output message. The
name must be left-justified and padded with blanks as
necessary. Mod name is an optional parameter that is valid
only if your program uses MFS. If you specify a valid MOD
name, IMS/VS uses that MOD to format the screen for the input
message you are sending. You specify the MOD name only on the
first ISRT call for an output message.

destination name

(
,

(

The name of an 8-byte field containing the name of the (
logical terminal transaction code to which you want messages
using this PCB sent.

248 IMS/VS Application Programming

)

)

)

SUMMARY OF DC CALLS

Function
Code

GUbb

GNbb

ISRT

CHNG

PURG

CMDb

GCMD

Figure 96 shows the parameters that are valid for each of the DC
calls.

Meaning Use Parameters

Get Unique Retrieves first function, i/o pcb,
segment of message i/o area

Get Next Retrieves subsequent function, i/o pcb,
message segments i/o area

Insert Builds output message function, i/o or alt pcb,
in program's I/O area i/o area [,mod name]

Change Sets destination on function, alt pcb,
modifiable alt PCB destination name

Purge Enqueues messages from function, i/o pcb
a PCB to destinations [,i/o area, mod name]

Command Allows program to enter function, i/o pcb,
IMS/VS commands i/o area

Get command Retrieves second and function, i/o pcb,
subsequent responses i/o area
to command

Figure 96. Summary of DC Calls

Note: language-dependent parameters are not shown here.
"Parmcount" is requi red for all Pl/I calls. Ei ther "parmcount" or
"Vl" is required for assembler language calls. Parmcount is
optional in COBOL programs.

DC Calls 249

SYSTEM SERVICE CALLS

Function
Code

CHKP

CHKP

DEQb

1
GSCD

lOGb

ROlB

2
ROll

STAT

XRST

Figure 97 is a summary of which system service calls you can use
in each type of IMS/VS application program, and the parameters for
each call.

Meaning Options Parameters Valid
and Use for

Basic checkpoint. Can request function, i/o pcb, batch,
Recovery purposes. OS/VS chkp i/o area [,chkp funcl BMP,MPP

Symbolic checkpoint. Can specify function, i/o pcb, batch,
Recovery purposes. seven i/o area len, i/o BMP

program area, 1st area len,
areas to be 1st area [, ... ,7th
saved. ar~a len, 7th area]

Dequeue. Release Can specify function, i/o pcb, BMP,
segments enqueued segments to work area MPP
with Q command· code. release.

Get address of None function, either pcb, batch
System contents i/o area
directory.

log. Write a message None function, i/o pcb, batch,
to the system log. i/o area BMP,MPP

Rollback. Eliminate Call retuns function, i/o pcb BMP,
data base updates. last message [,i/o areal MPP

to I/O area.

Roll. Eliminate None function BMP,
data base updates; MPP
abend.

Statistics. Retrieve Choose type function, db pcb, batch,
IMS/VS system stats and format. i/o area, stat func BMP,MPP

Restart. Works with Can specify function, i/o pcb, batch,
symbolic chkp to 7 areas to i/o area len, i/o BMP
restart application be saved. area, 1st area len,
program after 1st area [, ... ,7th
failure. area len, 7th areal

Figure 97. Summary of System Service Calls

Notes:

1. GSCD functions normally in a message processing or batch
processing region using OS/VS2 or OS/VSl with fetch protect.
Use GSCD only in batch programs. The reason that you should
not use it in BMPs and MPPs it that the operating system
doesn't allow a program in one region to access data in
another region. Since the addresses are from the control
region, and MPPs and BMPs run in separate regions, these
addresses cannot be used in a message processing or batch
message processing region. If they are, an OC4 system abend
wi 11 occur.

(

2. You can issue a ROll call in a batch program, but it will not (
back out data base updates. It will terminate the program. One ,
reason you might want to issue ROll in a batch program is for
compatibility.

250 IMS/VS Application Programming

\

)

._-----------------------------_ __ ._.-

SYMBOLIC CHKP AND XRST CALL FORMATS

COBOL

PL/I

ASSEMBLER LANGUAGE

CALL 'CBLTDLI' USING function, i/o pcb,
i/o area len, i/o area, 1st area len, 1st area [, ••• ,
7th area len, 7th area].

CALL PLITDLI (parmcount, function, i/o pcb, i/o area len,
i/o area, 1st area len, 1st area [, ••• , 7th area len,
7th area]);

CALL ASMTDLI,(function, i/o pcb, X
i/o area 1en,i/o area,1st area len,1st area [, ••• , X
7th area len,7th area]),VL

SYMBOLIC CHKP AND XRST PARAMETERS

Four of the parameters shown above are required: function, i/o
pcb, i/o area len, and i/o area. All of the parameters except
function and i/o area are identical for symbolic CHKP and XRST;
these differences in these parameters are noted in in the
parameter descriptions.

The call parameters for symbolic CHKP and XRST are:

parmcount
This parameter is required only for PL/I. An assembler
language call must include either parmcount or VL. Parmcount
is the address of a 4-byte field in the data area in your
program that contains the number of parameters that follow
in the call. The value does not include parmcount itself.

function
This parameter gives the address of the area in your program
that contains the 4-byte function code. For symbolic CHKP
this area must contain "CHKP"; for XRST this area must
contain "XRST". You can use any name you want to for this
area, including the value of the function code itself,
within the conventions of your programm;ng language.

i/o pcb
Symbolic CHKP and XRST must reference the I/O PCB, not the DB
PCB.

i/o area len
This is the address of a 4-byte area in your program that
contains the length in binary of the largest I/O area used by
your program. If you are usi ng PL/I, defi ne the area as a
substructure, but specify the name of the major structure in
the call.

i/o area for symbolic CHKP
This is the name of the I/O area in your program that
contains the 8-byte ID for this checkpoint. If you are using
PL/I, specify this parameter as a pointer to a major
structure, an array, or a character string.

i/o area for XRST
This is the name of a 12-byte area in your program. Your·
program should set this area to blanks (X'40') before
issuing the XRST call, then test it after issuing the call.
If your program is being started normally, the area will not
have changed. If your program is being restarted from a

System Service Calls 251

checkpoint, IMS/VS places the ID that you supplied in the (~
CHKP call and in the restart JCl in the first 8 bytes of the
I/O area. ~

1st area len
This parameter gives the address of a 4-byte field in your
program that contains the length in binary of the first area
to checkpoint. If you are using Pl/I, specify the name of the
major structure in the call, but.define the area itself as a
substructure. All 7 area parameters (and the corresponding
length parameters) are optional. The number of areas you
specify on a XRST call must be greater than or equal to the
number of areas yoti specify on the CHKP calls the program
issues. IMS/VS restores only the areas you specified in the
CHKP call when you restart the program.

1st area
This parameter specifies the first area in your program that
you want IMS/VS to checkpoint.

, ••• ,7th area len, 7th area
You can specify as many as six more areas (a total of seven)
of your program that you want IMS/VS to checkpoint. Always
specify the length parameter first, followed by the area
parameter. The parameters for the second through seventh
program areas are coded like the parameters for the first
area.

BASIC CHKP CAll FORMAT

COBOL

Pl/I

ASSEMBLER LANGUAGE

CAll 'CBlTDlI' USING function, i/o pcb,
i/o area [,chkp function].

CALL PlITDlI (parmcount, function, i/o pcb,
i/o area [,chkp function]);

CAll ASMTDlI,(function, i/o pcb,
i/o area,chkp function or chkp DCB]),Vl

(

x

BASIC CHKP PARAMETERS

There are three parameters on the basic CHKP call that are
required: function, i/o pcb, and i/o area. The rest (parmcount,
chkp function, chkp DCB, and Vl) are either optional or language
dependent. .

parmcount
Parmcount is the address of a 4-byte field in your program's
data area that contains the number of parameters that
folltiw. Thi~ count does not include parmcount itself.
Parmciount is required only for PL/l. It is optional for COBOL
and assembler language. If you are using assembler language,
however, you must include either parmcount orVl.

function
Function isthe address of the area in your pr~gram that
contains the 4-byte function code, "CHKP". This function
code can be coded just like the function codes for any of the (
DL/I calls. \

252 IMS/VS Application Programming

)

GSCD CALL FORMATS

COBOL

)

PL/I

ASSEMBLER LANGUAGE

GSCD PARAMETERS

.-----------------------------.

i/o pcb
A basic CHKP call must reference the I/O PCB.

i/o area
This parameter gives the name of your program's I/O area that
contains the 8-byte checkpoint ID. This parameter should be
coded as a pointer to a major structure, an array, or a
character string.

chkp funct i on
If you code this parameter of the basic CHKP call, IMS/VS
requests that an OS/VS checkpoint be taken of your region in
addition to the program checkpoint that IMS/VS takes. This
parameter gives the name of the 8-byte area in your program
that contains the value "OSVSCHKP".

If you specify this option, you must also supply DD
statements for the OS/VS data sets you want checkpointed.
IMS/VS will then provide DCBs and issue an OS/VS checkpoint
before issuing the CHKP call. The DD names for the DCBs that
IMS/VS provides are CHKDD and CHKDD2. If you have only one
OS/VS checkpoint data set, use CHKDD. If you don't supply any
DD statements, IMS/VS issues a U0475 error message. If the
data set cannot be opened, OPEN will issue an error message.

chkp DCB (for assembler language programs only)
This parameter may be used instead of chkp function in
assembler language programs requesting an OS/VS checkpoint.

CALL 'CBLTDLI' USING function, pcb, i/o area.

CALL PLITDLI (parmcount, function, pcb, i/o area);

CALL ASMTDLI,(function,pcb,i/o area),VL

GSCD has three required parameters: function, pcb, and i/o area.
In addition, parmcount is required for PL/I, and either parmcount
or Vl is required for assembler language.

parmcount
Parmcount gives the address of a 4-byte field containing the
number of parameters to follow. Pl/I calls must include this
parameter.

junction

pcb

This parameter gives the address of a 4-byte field in your
program that contains the value "GSCD". You can code this
area just as you do the function codes for the DL/I calls
explained in "Coding DL/I Function Codes" later in this
chapter.

GSCD can reference either a DB PCB or an I/O PCB.

i/o area
The I/O area referenced by this parameter must be 8-bytes
long. IMS/VS places the address of the system contents

System Service Calls 253

LOG CALL FORMATS

COBOL

PL/I

ASSEMBLER LANGUAGE

LOG PARAMETERS

directory in the first 4 bytes and the address of the program (
specification table in the second 4 bytes. PL/I programs
should specify this parameter as a pointer to a major ~
structure, an array, or a character string.

VL
For assembler language programs only.

CALL 'CBLTDLI' USING function, i/o pcb, i/o area.

CALL PLITDLI (parmcount, function, i/o pcb, i/o areal,

CALL ASMTDLI,(function,RP,Rrl,VL

Three of the parameters shown above are required: function, i/o
pcb (Rp for assembler language), and i/o area (Rr for assembler
language). Parmcount is required for PL/Ii VL applies only to
assembler language.

parmcount (
Parmcount gives the address of a 4-byta field that contains
the number of parameters to follow.

function
This gives the address of the 4-byte field in your program
that contains the value "LOGb". (LOG must have a blank aftar
the G.) You can code this area just as you do any of the DL/I
call function codes explained in "Coding DL/I Function
Codes" later in this chapter.

i/o pcb
LOG must reference the I/O PCB, not the DB PCB.

i/o area
This parameter gives the address of the araa in your"pro~ram
that contains the record that you want to write to the system
log. This record must be in the following format:

LL A 2-byte field containing the length of the record. The
total length includes:

• 2 for the count field (although in PL/! this field is
actually 4 bytes long)

• 2 for the ZZ field

• 1 for the C field

• n for the length of the record itself

If you are using PL/!, your program must dafine the
length field as a binary fullword.

ZZ A 2-byte field of binary zeros. (
\

254 IMS/VS Application Programming

)
/

)

C

-----_._---

A-1-byte field containing a log code. This code must be
equal to or greater than X'AO' or equal to or less than
X'EO' in value.

RESTRICTIONS ON LOG I/O AREA

STAT CALL FORMATS

COBOL

PL/I

ASSEMBLER LANGUAGE

STAT PARAMETERS

There are some restrictions on the total length of the I/O area
for the LOG call. They are:

• The length of the I/O area (including all fields) cannot be
larger than the logical record length (LRECL) for the system
log data set, minus 4 bytes;

• The length of the I/O area (including all fields) cannot be
larger than the I/O area specified in the IOASIZE keyword of
the PSBGEN statement of the PSB.

The STAT call retrieves statistics on the- IMS/VS system. The call
formats in COBOL, PL/I, and assembler language ar~:

CALL 'CBLTDLI' USING function, db pQb, i/o area,
stat function.

CALL PLITDLI (parmcount, function, db pcb, i/o area,
stat function);

CALL ASHTDLI,(function,db pcb, i/o area,stat function),VL

The addresses of function, the DB PCB, the I/O area, and the
statistics function are all required parameters for the STAT
call.

parmcount
Parmcount is the address of a 4-byte field required in PL/I
that gives the number of parameters to follow.

function
Function is the address of a 4-byte- field containing the
function code "STAT".

db pcb
The STAT call must reference the DB PCB.

i/o area
The I/O ~rea pointed to by the i/o area parameter must be
large enough to hold the'statistics you are requesting. The
si ze of thi s area depends on the type and format of the
statistics you are requesting. You specify the type and
format in the stat function parameter described below. PL/I
programs should specify this parameter as a pointer to a
major structure, an array, or a character string.

stat function
This parameter is the address of a 9-byte field that contains
the following:

Syst~m Se~vice Calls - 255

• 4 bytes that define the type of statistics you want:

DBAS for !SAM/OSAM data base buffer pool statistics

VBAS for VSAM data base subpool statistics

• 1 byte that gives the format you want the statistics in:

F For the full statistics to be formatted. If you
specify F, your I/O area must be at least 360 bytes.

U F~r the full statistics to be unformatted. If you
specify U, your I/O area must be at least 72 bytes.

S For a summary of the statistics to be formatted. If
'you speci fy 5, your I/O area must be at least 120

bytes.

•. :A bytes of EBCDIC blanks

STATUS CODE ERROR RQUTINE'CALL FORMAT

COBOL

PL/I

ASSEMBLER LANGUAGE

thi~~~Mple error routine is part of the IMS/VS Primer function.
ItstfO.Uldnot be used in MPPs, because it opens OS data sets. An
Qrror.-.r(}ut j na for an MPP should send messages to the master
tar-rid nat·'OPerator.

CALL ~DFSOAER' tiSING db pcb, call label, area 1,
optfons, area 2, ••• , area 9.

CALL DFSOAER (db pcb, call label,
. . area~ 1, options, area 2, ••• , area 9),

DFSOAER should be declared as a~ ENTRY constant with OPTIONS
(ASSEMBLER) •

NotCi:'.Tha parmcount parameter that 1 s requi red in DL/I calls is
not allowed in the call to the status code error routine.

CALL DFSOAER, (db pcb, call label,
area 1, options, area 2, ••• , area 9), VL

STATUS CODE ERROR ROUTINE CALL pARAMETERS

The call parameters are:

db PCb' .
. <':" The. name of the DB PCB used in the precedi ng DL/I call. In

,;.:'..:~Pl/I, you must pass the DB PCB name in this call; for DL/I
·<.· .• ,j:::.l1s y,ou can pass ei ther the name or the po inter.

·'cal:l§labli
·;·.J~a lc!ibel given to the precedi ngDL/I call. The required
.-"::.f.Qrn'Jati s Dxxxxxxxi f the call was issued against a DB PCB.

·J\f ~tullast call was issued against the I/O PCB, the format
.'/1$ '. C)()(XXXXX •

. opt ibn,";: .
Th~.ddress ofa 4-byte field containing one of the options
beltiw. You indicate the option you want in the leftmost byte
(byte 0) of this field. The second, third, and fourth bytes
of this field are reserved.

256 IMS/VS Application Pro~ramming

\ ...

(

/

~

)

SUGGESTIONS

)
DEQ CALL FORMATS

COBOL

PL/I

ASSEMBLER LANGUAGE

DEQ CALL PARAMETERS

~ . ---~"'~~-'-""" ._ •..... _-_._------------

o Return to caller after print. This lets your program cal~
the routine more than once for testing purposes. You must
still have a final invocation.

1 Abnormal termination after print; recommended for
production programs.

2 Final invocation to close print data set and return
cont~ol to the program.

3 IMS/VS will issue message DFS3125A. You can use this
option when you want to test the recovery in your program.
After receiving the message, the OS/VS system console
operator continue your program; terminate your program
abnormally; cause your program to go into a loop to test
its error routine; or cancel your program.

area 1, ••• , area 9
The program areas you want the routine to print. The routine
will print the first 76 characters in each area. One area is
required; the maximum number of areas you can specify is
nine. .

• For normal program execution, use option 1.

• Since you can use option 2 to have the status code error
routine return to your program, using this routine with
option 2 can help you in testing your program.

• For Pl/I, declare DFSOAER as an entry wi th OPTIONS
(ASSEMBLER). Pass the name of the PCB in the statement and not
the PCB pointer.

CALL 'CBLTDLI' USI~G function, l/o pc~, i/o area.

CALL PLITDLI (parmcount, function, i/o pcb, i/o area);

CALL ASMTDLI,(function,i/o pcb,i/o area),VL

function
The address of. a 4-byte 'area that contai ns the value "DEQb".

i/o pcb
The name of the I/O PCB. The DEQ call must reference the I/O
PCB.

i/o area
The name of a 1-byte area ~~at contains one of the letters A,
B, C, D, E, F, G, H, I, or J. This letter, represents the
segment you are dequeuing in this call. You must provide this
value.' .

System Service C~lls 257

ROLB CALL FORMATS

COBOL

PL/I

ASSEMBLER LANGUAGE

ROLB CALL PARAMETERS

ROLL CALL FORMATS

COBOL

PL/I

ASSEMBLER LANGUAGE

ROLL CALL PARAMETERS

CALL 'CBLTDLI' USING function, i/o pcb
[, i/o area 1.

CALL PLITDLI (parmcount, function, i/o pcb,
[, i/o area [li

CALL ASMTDLI,(function,i/o pcb[,i/o area]),VL

function
The name of a 4-byte field that contains the value "ROLB".

i/o pcb
The name of the I/O PCB. ROLB must reference the I/O PCB.

[,i/o areal
If you supply this parameter on a ROLB in an MPP, a
message-driven Fast Path program, or a transaction-oriented
BMP, IMS/VS returns the message you last processed to the I/O
area.

CALL 'CBLTDLI' USING function.

CALL PLITDLI (parmcount, function),

CALL ASMTDLI,(functionl,VL

function
The name of a 4-byte area in your program that contains the
.value "ROLL". This is the only parameter, other than
parmcount for PL/I, and VL for assembler language.

258 IMS/VS Application Programming

(

I

~

(

,
/

------------------------ -- -----

GSAM REFERENCE

GSAM CALL FORMATS

COBOL

PL/I

ASSEMBLER LANGUAGE

GSAM CALL PARAMETERS

This section gives GSAM call formats in COBOL, PL/I and assembler
language, and it defines the GSAM call parameters. It also shows
how to code GSAM data areas.

CALL 'CBLTDLI' USING function, gsam pcb, i/o a~ea
[, ~sa 1.

CALL PLITDLI (pa~mcount, function, gsam pcb, i/o a~ea
[, ~sa]);

CALL ASMTDLI,(function,gsam pcb, i/o a~ea[,~sal),VL

The parameters for each GSAM call vary. All the calls require the
address of the function and GSAM PCB; most of the calls require
more than that.

An OPEN call has two required parameters--function and gsam
pcb--and one optional one--the address of the OPEN option.

CLSE has only two required parameters and no optional parameters.
The required parameters are function and gsam pcb.

GN and ISRT both have three required parameters and one optional
one. Function, gsam pcb, and i/o area are required. RSA is
optional.

Function, gsam pcb, i/o area, and rsa are all required for a GU.

pa~mcount
Required only for PL/I. This parameter gives the address of a
4-byte field that contains the number of parameters that
follow.

function
Thi s fi eld gi ves the address of 4-byte fi eld that conta; ns
one of the following function codes:

OPEN Opens GSAM data base explicitly

CLSE Closes GSAM data base explicitly

GNbb Gets the next record in the GSAM data base

ISRT Adds the record you supply to the end of the data base

GUbb Retrieves the record with the RSA you provide

gsam pcb
This parameter gives the name of the GSAM PCB.

GSAM Reference 259

GSAM DATA AREAS

GSAM DB PCB MASKS

i/o area

rsa

For OPEN calls, this area is optional. Using this parameter
lets you specify the k1nd of data set you are open1ng.

This parameter is required for GN, ISRT, and GU calls. When
you use one of these calls, the area named by thi s parameter
contains the record that you are retriev1ng for GN and GU, or
the record that you want to add for ISRT. This area must be
long enough to hold these records.

This parameter gives the address of the area 1n your program
that conta1ns the record search argument. RSA 15 optional
for GN and ISRT; 1t 1s required for GU.

The PCB mask, the I/O area, and the RSA that you use in a GSAM call
have special formats.

GSAM DB PCB masks are slightly different from PCB masks for DL/I
data bases. The fields that are different are the length of the
key feedback area and the key feedback area. Also, there is an
additional field that gives the length of the record being
retrieved or inserted, when using undefined-length records.
Figure 98 shows the fields of a GSAM DB PCB mask, and their
required lengths.

1. Data Base Name
8 bytes

2. Not Used by GSAM
2 bytes

3. Status Code
2 bytes

4. Process1ng Opt10ns
4 bytes

5. Reserved for DL/I
4 bytes

6. Not Used by GSAM
8 bytes

7. Length of Key Feedback Area and
Undefined-Length Records Area

4 bytes

8. Not Used by GSAM
4 bytes

9. Key Feedback Area
8 bytes

10. Length of Undef1ned-Length Records
4 bytes

Figure 98. GSAM DB PCB Mask Format

260 IMS/VS Application Programming

(

(

GSAM I/O AREAS

)

)

GSAM RSAS

.- _-_._--_. __ __ ._-_ ... _- ---------------------

For OPEN calls, the I/O area must contain one of these values:

• INP for an input data set

• OUT for an output data set

• OUTA for an output data set with ASA control characters

• OUTM for an output data set with machine control characters

For GN, ISRT, and GU calls, the format of the I/O area depends on
whether the record is fixed length, undefined length (valid only
for BSAM), or variable length. For each kind of record, you have
the option of using control characters.

The formats for an I/O area for fixed-length or undefined-length
records are:

• Without control characters, the I/O area contains only data.
The data begins in byte o.

• With control characters, the control characters are in byte 0
and the data begins in byte 1.

If you are using undefined-length records, the record length is
passed between your program and GSAM in the PCB field that usually
contains the length of the key feedback area. When you are issuing
an ISRT call, you supply the length; when you're issuing a GN or
GU, GSAM places the length of the returned record in this field.
This length field is 4 bytes long.

The formats for variable-length records differ, because
variable-length records include one field that other records
don't have: a length field. The length field is 2 bytes.
Variable-length I/O areas, like fixed and undefined-length I/O
areas, may have control characters.

• Without control characters, bytes 0 and 1 contain the 2-byte
length field and the data begins in byte 2.

• With control characters, bytes 0 and 1 still contain the
length field, but byte 2 contains the control characters and
the data starts in byte 3.

The contents of an RSA depend on the access method you're using.
For BSAM tape data sets and VSAM data sets, the RSA contains the
relative byte address (RBA). For BSAM disk data sets, the RSA
contai ns the di sk address (TTR).

For VSAM, the RBA is the relative byte address of a specific
record within the data set. The RBA is contained in the first byte
of the RSA.

For BSAM, the RSA is a doubleword used to locate individual
records within a block. The first word contains the references to
the BSAM RBA, or to the BSAM direct access storage device TTR. The
second word·gives the volume sequence number in the first halfword
and the displacement within the block in the second halfword.

Your program should define an RSA as two fullwords on a fullword
or doubleword boundary. Below is a PL/I example of an RSA:

DCl

DCl

1 GSAM RSA
2 BLOCK ID FIXED BIN (31),
2 VOL SEQ NO FIXED BIN (15),
2 RECORD BISP FIXED BIN (15);

1 FIRST RECORD RSA,
2 (BlOCKl, DiSPO) FIXED BIN (31) INIT(I);

GSAM Reference 261

GSAM JCL RESTRICTIONS

GSAM requires that you define the record format (RECFM) keyword on
the DATASET statement in the GSAM DBD. You can override th~s ~n ~
the record format (RECFM) subparameter in the JCl. Figure 99
shows you how you do this.

Record Format Defined in GSAM DBD Can be overridden
as RECFM= in JCl with RECFM

Fixed F, FB FB, FBA, FBM

Variable V, VB VB, VBA, VBM

Undefined U Does not apply

Figure 99. GSAM JCl Restrictions

The following are some JCl guidelines and additional restrictions
for GSAM.

• To add new records to the end of the data base (using the ISRT
call), use DISP=MOD.

• Temporary data sets cannot be repositioned.

• The DD statement for new files must specify the volume'~erial
number; GU calls require that the correct volume be
available. .

• DISP=DELETE and DISP=UHCATLG should not be used.

• Passed data sets should not be used.

• Backward references to data sets in previous steps should not
be used.

• Use the following dispositions for output data sets:

To create an output data set use DISP=NEW.

To create an output data set that is cataloged use DISP=OLD.

When issuing a restart to an output data set, use DISP=OLD.

• For input data sets, use DISP=OLD.

• Generation data groups and concatenated data sets processed
as a single data set can't be restarted successfully.

• When you are restarting the program, use the DBD override
parameters that were effective at the time of the checkpoint.

• When using GSAM to reference a data set whose physical
attributes differ from the attributes that have been defined
in the DBD (for example, logical record length, or lRECl, and
block size, or BlKSIZE), you must supply the differ~ng
attributes in the JCl DC parameters for all references to that
data set.

262 IMS/VS ~pplication~Programming

(

(

'\
)

FAST PATH nEFERENCE

This section contains reference information on Fast Path data
base calls, Fast Path system service calls, and Fast Path message
calls. It also contains information on coding data areas that are
required by Fast Path calls.

FAST PATH DATA BASE CALLS

Function

Figure 100 summarizes the calls you use to process Fast Path data
bases.

Types of MSDBs
DEDB

Code Nonterminal Terminal Terminal
Related Related Fixed Related Dynamic

FlD X X X

POS X

GU, GHU X X X X

GN, GHN X X X X

DlET X X

REPL X X X X

ISRT X X

Figure 100. Summary of Fast Path Data Base Calls

FLD CALL FORMAT

COBOL

PL/I

Assembler Language

The coding differences between DL/I programs issuing data base
calls and Fast Path programs issuing data base calls are as
follows:

• Only 1 SSA is allowed in any data base call.

• The SSA cannot have Boolean qualification statements.

• The SSA cannot use any command codes.

CALL 'CBLTDLI' USING function, msdb pcb, i/o area.

CALL PLITDLI (parmcount, function, msdb pcb, i/o area);

CALL ASMTDLI,(function,msdb pcb, i/o area),VL

Fast Path Reference 2~3

FLD CALL PARAMETERS

POS CALL FORMAT

COBOL

PL/I

Assembler Language

POS CALL PARAMETERS

The FLD call has three requ1red parameters: function, msdb pcb,
and i/o area. Functl0n and msdb pcb are coded just like the
function and db pcb parameters for DL/I calls. The I/O area,
however, contains something unique to Fast Path: the field search
argument, or FSA.

function
The address of the area 1n your program that contains the
value "FLDb".

msdb pcb
The name of the MSDB PCB for this call. This parameter should
be coded like the DB PCB parameter on the DL/I calls.

i/o area
This parameter points to the I/O area in your program that
contains the FSA for this call.

There is one call that you can issue against a DEDB that is not a
DL/I call. This is the POS call.

CALL 'CBLTDLI' USING function, dedb pcb.
i/o area [,rootssal.

CALL PLITDLI (parmcount, function, dedb pcb, i/o area
[,rootssal);

CALL ASMTDLI,(function,dedb pcb, i/o area [,rootssal),VL

parmcount
The address of a 4-byte field that contains the number of
parameters to follow. Required for· PL/I.

function
The address of the area in your program that contains the
function code "POSb". This data area can be coded like the
function code for any of the DL/I calls.

db pcb
The name of the PCB for the DEDB that you'ra using for this
call.

i/o area

ssa

This parameter points to the I/O area in your program that
you want to contain the positioning information returned by
a successful POS call.

This optional parameter gives the name of the ssa that you
·want used in this call. The format of SSAs in POS calls is no
different from the format of SSAs in DL/I calls.

264 IMS/VS Application Programming

(
~

\
I

/

\
)

FAST PATH DATA AREAS

FSAS

- .. _._-_ ... -_._-_.---------_.

The FSA that you reference in a FLO call contains 5 fields. These
fields and their required lengths are as follows:

• Field name--8 bytes

• FSA status code--l byte

• Op code--l byte

• Operand--variable

• Connector--l byte

The rules for coding these areas are:

Field name
Thi s fi eld must be 8 bytes long. If the fi eid name you're
using is less than 8 bytes, the name must be padded on the
right with blanks.

FSA status code
This area is 1 byte. IMS/VS returns one of the following
status codes to thi s area after a FLO call:

b Successful

A invalid operation

B Operand length invalid

C Invalid calI--program tried to change key field

D Verify check was unsuccessful

E Packed decimal or hexadecimal field is invalid

F Program tried to change an unowned segment

G Arithmetic overflow

Op code
This I-byte field contains one of the following for a change
operation:

+ To add the operand to the field value

To subtract the operand from the field value

= To set the field value to the value of the operand

For a verify operation this field must contain one of the
following:

E Verify that the fi eld value and the operand are equal.

G Verify that the fi eld value is greater than the operand.

H Veri fy that the field value is greater than or equal to
the operand.

L Verify that the fi eld value is less than the operand.

M Verify that the field value is less than or equal to the
operand.

N Veri fy that the fi eld value is not equal to the operand.

Fast Path Reference 265

POS I/O AREA

Operand
This field contains the value against which you want to test
the field value. The data in this field must be the same type
of data as the data ;n the field. This is defined in the DBD.
If the data is hexadecimal, the value in the operand will be
twice as long as the field in the data base. If the data is
packed dec;mal, the operand will not contain leading zeros,
so the operand length might be shorter than the actual field.
For other types of data the lengths must be equal.

connector
This I-byte field must contain a blank if this is the last or
only FSA, or an asterisk (*) if another FSA follows this one.

The I/O area on a POS call contains five fields.

length field--2 bytes
After a successful POS call, IMS/VS places the length of the
data area for this call in this field.

area name field--8 bytes
This area contains the ddname from the AREA statement.

position information--8 bytes
IMS/VS places two pieces of data in this field after a
successful POS call. The first 4 bytes will contain the cycle
count, and the second 4 bytes will contain the VSAM RBA.
These two fields uniquely identify a sequential dependent
segment during the life of an area.

Unused CIs in sequential dependent part--8 bytes
This field will contain the number of unused control
intervals in the sequential dependent part

Unused CIs in independent overflow part--8 bytes
This field will contain the number of unused control
intervals in the independent overflow part.

FAST PATH MESSAGE CALLS

Figure 101 summarizes the DC calls that are available to Fast Path
message-driven programs.

Function Meaning Use Parameters
Code

GUbb Get unique Retrieves next function, i/o pcb,
message i/o area [,mod name]

GNbb Get next Compatibility function, i/o pcb,
only ;/0 area [,mod name]

CHNG Change Changes destina- function, -alt pcb,
tion on response destination name
alternate PCB

ISRT Insert Builds output function, i/o pcb or
message alt pcb, i/o area

[,mod name]

Figure 101. Fast Path Message Calls

266 IMS/VS Application Programming

(

(

\

)

_ ... _._ .•..• _ _----------_._----- ---_.

FAST PATH SYSTEM SERVICE CALLS

Function
Code

CHKP

ROLB

SYNC

Figure 102 summarizes the system service calls that are available
to Fast Path programs.

Meaning Use Parameters

Basic checkpoint Takes checkpoint of function, i/o pcb,
program. OS/VS option i/o area
invalid for FP

Rollback Eliminates updates in function, i/o pcb,
this sync interval. i/o area

Synchronization Requests sync point function, i/o pcb
processing.

Figure 102. Fast Path System Service Calls

SYNC CALL FORMAT

COBOL

You can use a SYNC call only in a nonmessage-driven Fast Path
program.

CALL 'CBLTDLI' USING function, i/o pcb.

) PL/I

Assembler Language

SYNC CALL PARAMETERS

)

CALL PLITDLI (parmcount, function, i/o pcb);

CALL ASMTDLI, (function, i/o pcb),VL

function
The address of the area in your program that contains the
value "SYNC".

i/o pcb
The name of the I/O PCB.

Fast Path Reference 267

IHS/VS STATUS CODES

This section contains reference information on all of the IMS/VS
status codes. This information is given in two parts: first, the

~IMS/VS status Codes Quick Reference gives a brief explanation for
each status code, and it shows you the calls for which you can
receive each status code. The quick reference also gives a number
that represents the category of each status code. Second, this
section contains more detailed explanations of each of the status
codes, including possible causes for status codes, and what you
can do to fix the problem. This information follows the quick
reference.

IHS/VS STATUS CODES QUICK REFERENCE

IMS/VS status codes fall into five categories. They are:

1. Those indicating exceptional but valid conditions. The call
is completed.

2. Those indicating warning or information-only status codes on
successful calls (for example, GA and GK). If the call
requested data, IMS/VS returns the data to the I/O area. The
call is completed.

3. Those indicating warning status codes on successful calls
when data is not returned to the I/O area. Call is completed.

4. Those indicating a programming error. This is the principal
category. The call is not completed.

5. Those indicating system, I/O, or security errors encountered
during the execution of I/O requests. The call is not
completed.

268 IMS/VS Application Programming

(
i
~

(

(

-------------------_._ .. _--_. __ .- .. -._

) STATUS CODES --

DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS
III

0 :::l
IL

t- C Cl 0 Cl IL .J U ~ ~~
DESCRIPTION t- w t-.J t-< t- O IL t- t-

<0 :::l Z ILZ WIL 9 III Z :::; a: ~ .J
~ Cl < Z < III

t-O :::l1: Z1: Z1: .Jw a:0 a: 0
:2 :::l Z ~ 1: :::; U

~ 1: 0 9 ~ ~
0 Iii ~ <0

IIlU ClCl ClCl ClCl oa: ~= ~~ II. Cl Cl U U Cl U a: 0 a: UCl

AA X X 4 CHNG CALL FOR RESPONSE ALTERNATE PCB
CAN ONLY SPECIFY LOGICAL TERMINAL
DESTINATION; TRANSACTION CDDE
DESTINATION SPECIFIED.

AB X X X X X X X X X X X X X X X X X 4 SEGMENT I/O AREA REQUIRED. NONE
SPECIFIED IN CALL.

AC X X X X X X 4 HIERARCHIC ERROR IN SSAs.

AD X 4 FUNCTION PARAMETER INVALID.

AF X X 4 GSAM DETECTED INVALID
VARIABLE·LENGTH RECORD

AH X X 4 REQUIRED SSA MISSING.

AI X X X X X X 5 DATA MANAGEMENT OPEN ERROR.

AJ X X X X X X X X 4 SSA QUALIFICATION FORMAT INVALID.

AK X X X X X X X 4 INVALID SSA FIELD NAME.

AL ~ X X X X X X X 4 CALL USING I/O,PCB IN BATCH PGM.

AM X X X X X X X X 4 CALL FUNCTION NOT COMPATIBLE WITH
PROCESSING OPTION OR SGMTSENSITIVITY.

AO X X X X X X X 5 I/O ERROR ISAM. OSAM. BSAM. OR VSAM.

AP X X X X X X X X 4 MORE THAN FOUR USER CALL PARAMETERS
FOR A TPPCB ARE INVALID.

AT X X X X X X 4 USER 1/0 AREA TOO LONG.

AU X X X X X X 4 SSAs TOO LONG.

AY X 4 RESPONSE ALTERNATE PCB REFERENCED BY
ISRT CALL HAS MORE THAN ONE PHYSICAL
TERMINAL ASSIGNED FOR INPUT PURPOSES.
NOTIFY MASTER TERMINAL.

AZ X 4 THE CONVERSATIONAL PROGRAM HAS
ISSUED A PURGE CALL TO PCB THAT CANNOT
BE PURGED.

Al X 4 CALL ATTEMPTED WITH B CHARACTER
LOGICAL TERMINAL NAME NOT KNOWN TO
SYSTEM.

) A2 X 4 CALL ATTEMPTED WITH INVALID PCB (PCB
NOT MODI FIABLE OR ISRT OPERATION
ALREADY DONEI.

A3 X X 4 CALL ATTEMPTED TO A MODIFIABLE TP PCB
WITH NO DESTINATION SET.

A4 X 4 SECURITY VIOLATION.

AS X X 4 FORMAT NAME SPECIFIED ON 2ND OR
SUBSEQUENT MSG ISRT OR PURG.

AS X 4 OUTPUT SEGMENT SIZE LIMIT EXCEEDED
ON CALL.

A7 X 4 NUMBER OF OUTPUT SEGMENTS INSERTED
EXCEEDED THE LIMIT BY ONE.

AB X 4 ISRT TO RESPONSE ALTERNATE PCB
FOLLOWED ISRT TO 1/0 PCB. OR VICE VERSA.

A9 X 4 RESPONSE ALTERNATE PCB REFERENCED BY
CALL REQUIRES THAT THE SOURCE PHYSICAL
TERMINAL RECEIVE THE OUTPUT RESPONSE.

CA X 4 NOSUCHCOMMAN~NOCOMMAND
RESPONSES PRODUCED.

CB X 4 COMMAND. AS ENTERED. NOT ALLOWED FOR
AOI. NO COMMAND RESPONSE PRODUCED.

CC X 2 COMMAND EXECUTED. ONE OR MORE
COMM~.;\ID RESPONSES PRODUCED.

CD X 4 ENTERED COMMAND VIOLATES SECURITY.
NO COMMAND RESPONSES PRODUCED.

CE X 2 TRANSACTION RESCHEDULED AFTER CMD
CALL. SYNC POINT HAD NOT BEEN REACHED.

CF X 2 MESSAGE ON QUEUE BEFORE I MSIVS WAS
LAST STARTED.

CG X 2 TRANSACTION ORIGINATED FROM AOI
USER EXIT.

Figure 103 (Part 1 of 3). IMS/VS Status Codes Quick Reference

)

IMS/VS Status Codes 269

STATUS CODES (Continued)

DATA BASE CAllS MSG CAllS SYSTEM SEnVICE CAllS
III

0 ::>
11.

1- 0 0 D 0 11. ..J 11. U w> DESCRIPTION I-W
::> z ~~I:r~ I- D III l- I-

<f O I1.Z g III Z :; 0:: >l ..J
~ 0 <f Z ..J '" 1-0::

1-0 ::>:r z:r z:r 0:: 0 ::> z 0:: :r :; u ~ :r 0 g ~ ~ 0 ~ a: <f0 ...JW (I)..J
~~ ~ '" ",u 00 00 00 DO:: -_ 0 0 u u " U 0:: Q 0:: X UO

(
\, ..

CH X 5 AOI DETECTED SYSTEM ERROR; CMD
REQUEST NOT PROCESSED. REISSUE
CMD CALL.

CI x 2 TRANSACTION ON QUEUE BEFORE IMSIVS
LAST STARTED. TRANS. RESCHEDULED
SYNC PT NOT REACHED.

CJ X 2 TRANSACTION FROM AOI USER EXIT.
MSG RESCHEDULED. SYNC POINT NOT
REACHED.

CK X 2 TRANSACTION FROM AOI USER EXIT. MSG
ON QUEUE BEFORE IMSIVS LAST STARTED.

CL X 2 TRANSACTION FROM AOI USER EXIT. MSG
ON QUEUE BEFORE IMSIVS LAST STARTED.
MSG RESCHEDULED. SYNC PT HAD NOT
BEEN REACHED.

DA X X 4 SEGMENT KEY FIELD OR NON·REPLACEABLE.
FIELD HAS BEEN CHANGED.

OJ X 4 NO PRECEDING SUCCESSFUL GHU OR GHN
CALL OR AN SSA SUPPLIED AT A LEVEL NOT
RETRIEVED.

[)X X 4 VIOLATED DELETE RULE.

FA X X X 2 MSDB ARITHMETIC OVERFLOW ERROR
OCCURRED

FC X 4 POS CALL FOR DIR. DEP. SEGS ONL Y.

f[) X X X X X X X X X X 2 DEADLOCK OCCURRED.

H X 4 FSA ERROR. NOT FIELD NAME

f F X X X 3 NO SPACE IN MSDB.

F(; x 4 COMBINATION OF FE AND FW CODES.

FH X X X X X X X X X 3 DEDB INACCESSIBLE.

fI x X x X x x x x x x X X 4 110 AREA NOT IN USER'S DEPENDENT REGION.

FN X 4 FSA ERROR, FIELD NAME.

fP x X X 4 INVALID HEX OR DEC DATA.

FH X X X X X X X X 5 TOTAL BUFFER ALLOCATION EXCEEDED.

FS X X l(X 3 DEDB AREAS ARE FULl. (
F T X X X X X X 4 TOO MANY SSA's ON CALL.

~V X X X 3 MSDB VERIFY CONDITION FAILED,

FW X X X X X X X X X X 2 MORE RESOURCES NEEDED THAN NORMALLY
ALLOWED.

GA X X X 2 CROSSING HIERARCHICAL BOUNDARY.

GB X 1 ENDOF DATA.

GC X X X X 3 CROSSING UOW BOUNDARY.

GO X 1 CALL DID NOT HAVE SSAs FOR ALL LEVELS
ABOVE INSERT OR HAS LOST SEGMENT
POSITION.

GE X X X X X X X 1 SEGMENT NOT FOUND.

GG X X X 5 SEGMENT CONTAINS INVALID POINTER.

GK X X 2 CROSSING SEGMENT BOUNDARISS ON SAME
LEVEL.

Gl X X 4 INVALID USER LOG CODE.

GP X x X 4 NO PARENTAGE ESTABLISHED.

II X X 3 SEGMENT ALREADY EXISTS.

IX X 4 VIOLATED INSERT RULE.

LB X 1 SEGMENT BEING LOADED ALREADY
EXISTS IN DATA BASE.

LC X 4 KEY FIELD OF SEGMENTS OUT OF SEQUENCE.

lD X 4 NO PARENT FOR THIS SEGMENT HAS BEEN
LOADED,

lE X 4 SEQUENCE OF SIBLING SEGMENTS NOT THE
SAME AS DBD SEQUENCE.

Figure 103 (Part 2 of 3). IMS/VS status Codes Quick Reference"

(,

270 IMS/VS·Application Programming

·_--------------_ .•. -._----_.-._---_._------._----------.

", STATUS CODES (Continued)

DATA BASE CALLS MSG CALLS SYSTEM SERVICE CALLS
Vl

0 ~
a. ... 0 .., 0

~ :l. ~ :l. W :I: w~ DESCRIPTION ... w ... -, ... 4: «0 ~ Z a.Z wa. a:0 a: o ~ Vl
~ Z

... Z ::; >l
0

0 " <t Z <t
CI

~a:

... 0 ~l: Zl: Zl: -'w ~ ~ l: ::; U
~ l: 0 S ~

,.
Ii: «0

VlU ..,.., ..,.., ".., oa: ~= ~~ u. .., lJ U U lJ U a: Vl x UlJ

Nil X X X 5 INDEX MAINTENANCE RECEIVED AN
UNEXPECTED RETURN CODE FROM BUFFER
HANDLER. -

NE X 3 DLiI CALL ISSUED BY INDEX MAINTENANCE
CANNOT FIND SEGMENT.

NI X X· X 1 INDEX MAINTENANCE FOUND DUPLICATE
SEGMENT IN INDEX.

NO X X X 5 I/O ERROR ISAM, OSAM. BSAM OR VSAM.

OC X X 3 NO MORE INPUT MESSAGES EXIST.

00 X X 3 NO MORE SEGMENTS EXIST FOR THIS
i MESSAGE.

OE X X 4 GN REOUEST BEFORE GU.
GMCD REOUEST BEFORE CMD.

OF X X X X 4 SEGMENT LESS THAN FIVE CHARACTERS
(SEG LENGTH IS MSG TEXT LENGTH PLUS
FOUR CONTROL CHARACTERSI.

OH X X 4 TERMINAL SYMBOLIC ERROR-uUTPUT
DE!>IGNATION UNKNOWN TO IMS/vS
(LOGICAl. TERMINALS OR TRAN CODE).

RX X 4 VIOLATED REPLACE RULE.

UC 1 CHEC.KPOINT TAK EN.·

UR 1 RESTi\RT"

US 1 STOP'

UX 1 CHECKPOINT AND STOP'

VI X X 4 SEGMENT LENGTH NOT WITHIN LIMITS OF
DBDGEN.

XA X 4 ATTEMPT TO CONT. PROC. CONV. BY PASSING
SPA VIA PGM·TO·PGM SWITCH AFTER
ANSWERING TERMINAL

XB X PGM PASSED SPA TO OTHER PGM BUT TRYING
TO RESPOND.

XC X 4 PROGRAM INSERTED MESSAGE WITH Zl
FIELD BITS SET. THESE BITS RESERVED

"'-,

1
/

FOR SYSTEM USE.

XD X l(1 IMS IS TERMINATING. FURTHER DL/I CALLS
MUST NOT BE ISSUED. NO MESSAGE
RETURNED.

XE X 4 TRIED TO ISRT SPA TO EXPRESS PCB.

XF X 4 AL TERNA TE PCB REFERENCED IN ISRT CALL
FOR SPA HAD DESTINATION SET TO A
LOGICAL TERMINAL, BUT WAS NOT
DEFINED AS AL TRESP = YES.

XG X 4 CURRENT CONVERSATION REQUIRES FIXED·
LENGTH SPAs. ATTEMPT WAS MADE TO
INSERT SPA TO TRANSACTION WITH A
DIFFERENT OR NON·FIXED LENGTH SPA.

XX X X X X 5 INTERNAL GSAM ERROR.

Xl X X 5 I/O ERROR WRITING SPA.

X2 X X 4 1ST INSERT TO TRAN COD PCB THAT IS
CONVERSATIONAL IS NOT AN SPA.

X3 X 4 INVALID SPA.

X4 X 4 INSERT TO A TRAN CODE PCB THAT IS NOT
CONVERSATIONAL AND THE SEGMENT IS
AN SPA.

X5 X 4 INSERT OF MULTIPLE SPAs TO TRAN CODE
PCB.

X6 X 4 INVALID TRAN CODE NAME INSERTED INTO
SPA.

X7 X I 4 LENGTH OF SPA IS INCORRECT (USER
MODIFIED FIRST SIX BYTES!.

X8 , X 5 ERROR ATTEMPTING TO QUEUE AN SPA ON
A TRAN CODE PCB.

X9 X 4 SPA LENGTH IS GREATER THAN THE 1/0 AREA
SPECIFIED IN PSB.

bb X 1 GOOD. NO STATUS CODE RETURNED,
PROCEED .

• Utility Control Facilitv Status Codes h indicates a blank

Figure 103 (Part 3 of 3). IMS/VS Status Codes Quick Reference

)

IMS/VS Status Codes 271

IMS/VS STATUS CODES EXPLANATIONS

AA

Explanation: IMS/VS ignored a CHNG or
ISRT call because the response alternate
PCB referenced in the call specified a
transaction code as a destination. A
response alternate PCB must have a
logical terminal specified as its
destination.

Programmer Response: Correct the CHNG or
ISRT call.

AB

Explanation: An I/O area is required as
one of the parameters on this call and
the call did not specify one.

Programmer Response: Correct the call by
including the address of an I/O area as
one of the call parameters.

AC

Explanation: There is an error in one of
the SSAs on a get or ISRT call for one of
these reasons:

•

•

•

Dl/I could not find a segment in the
DB PCB specified in the call that has
the segment name given in the SSA.

The segment name is in the DB PCB,
but the SSA specifying that segment
name is not in its correct hierarchic
sequence.

The call specifies two SSAs for the
same hierarchic level.

IMS/VS also returns this status code when
a STAT call has an invalid statistics
function.

Programmer Response: Correct the segment
name in the SSA, or the statistics
function in the STAT call.

AD

Explanation: The call function parameter
on the call is invalid. IMS/VS returns an
AD status code if it does not recognize
the function code you've supplied. If the
function code is correct, some other
possible causes are:

• Referencing a DB or alternate PCB on
a CHKP call. CHKP calls must
reference the I/O PCB.

• Issuing a message GU or GN that
references an alternate PCB instead
of the I/O PCB

272 IMS/VS Application Programming

•

•

•

Using an invalid function string

Referencing en I/O or altQrn~ta PCB
for a data base call

Referencing a DB PCB in a message
call

Issuing a ROlB that includes the
address of an I/O area as one of the
parameters in a batch-oriented BMP

Programmer Response: If you receive this
status code on a data base, message, or
CHKP call, correct the call so that it
references the correct PCB. If you
receive AD on a ROlB call in a
batch-oriented BMP, remove the I/O area
parameter from the call.

AF

Explanation: GSAM detected a
variable-length record whose length is
invalid on a GU, GHU, GH, or GHN.

Programmer Response: Correct the
program.

AH

Explanation: The program issued an ISRT
call (load or add) that did not include
any SSAs. ISRT calls require SSAs. If the
program was issuing a GU call to a GSAM
data base, the GU did not specify an RSA.
RSAs are required on GU calls to GSAM
data ba~es.

Programmer Response: Correct the ISRT
call by including an SSA, or correct the
GU call by adding an RSA to the call.

AI

Explanation: A data management open
error occurred. Some possible reasons
are:

• There is an error in the DD
statements.

•

•

•

The data set OPEN request did not
specify load mode, but the data set
was empty. An empty data set requires
the load option in the PCB.

The buffer is too small to hold a
record that was read at open time.
See the storage estimates in the
section "IMS/VS Data Base Buffer
Pools," in the IMS/VS System
Programming Reference Manual for·
specification of the minimum buffer
pool size.

There were no DD statements supplied
for logically-related data bases.

(
'.

(

)

•

•

•

•

•

•

•

For an OSAM data set, the DSORG field
of the OS-AM DCB, DSCB, or J FCB does
not specify PS or DA.

For an old OSAM data set, the BUFL or
BLKSIZE field in the DSCB is zero.

The data set is being opened for
load, and the processing option for
one or more segments is other than L
or LS.

The allocation of the OSAM data set
is invalid. The allocation is
probably (1,,1) rather than (1,1) and
this causes the DSORG to be PO.

The processing option is L, the OSAM
data set is old, and the DSCB LRECL
and/or BLKSIZE does not match the DeD
LRECL" and/or BLKSIZE.

Incorrect or missing information
prevented IMS/VS from determining
the block size or the logical record
length.

A catalog was not avai lable for
accessing a VSAM data base that was
requested.

• OS could not perform an OPEN, but the
I/O request is valid. Either the data
definition information is incorrect,
or i~formation is missing.

• RACF was used to protect the ISAM or
OSAM data set and the control region
has no update authorization.

If IMS/VS returns message DFS0730I~ you
can determine the cause of the OPEN
failure from this message. See the
description of this message in the IMS/VS
Messages and Codes Reference Manual for
more information.

Programmer Response: These kinds of
problems often require the help of a
system programmer or system
administrator. But before you go to one
of these specialists, there are some
things you can do:

•

•

AJ

Chec~ the DD statements. Make sure
that the DD name is the same as the
name specified on the DATASET
statement of the DBD. The segment
name area in the DB PCB has the DD
name of the data set that couldn't be
opened.

Check the PSB and make sure that the
appropriate processing options have
been specified for each of the DB
PCBs that your program uses.

Explanation: The format of one of your
SSAs is invalid. Some possible reasons
for this are:

•

•

•

•

•
•

•

•

The SSA contains a command code that
is invalid for that call.

The relational operator in the
qualification statement is invalid.

A qualification statement is missing
a right parenthesis or a Boolean
connector.

A DLET call has multiple or qualified
SSAs.

A REPl call has qualified SSAs.

An ISRT call has the last SSA
qualified.

An ISRT call that inserts a logical
child segment into an existing data
base includes the D command code.
ISRT calls for logical child segments
cannot be path calls.

The RSA parameter on a GSAM call is
invalid.

Programmer Response: Correct the invalid
portion of the SSA on the DLET, REPL, or
ISRT call. If you receive this status
code on a GSAM call, correct the RSA.

AK

Explanation: An SSA contains an invalid
field name: the field name isn't defined
in the DBD. The number in the segment
level number field of the DB PCB is the
level number of the SSA that contains the
i nva lid name.

You can also receive this status code if
the program is accessing a logical child
through the logical parent. DL/I returns
AK if the field specifed in the SSA has
been defined for the logical child
segment, and it includes (at least
partially) the portion of the logical
child that contains the concatenated key
of the logical parent.

Programmer Response: Correct the SSA.

AL

Explanation: A batch program issued a
message call or ROlB and referenced an
I/O PCB.

Programmer Response: Correct the
program. Batch programs cannot issue
message or ROLB calls.

AM

Explanation: The call function is not
compatible with the processing option in
the PCB, segment sensitivity, or the
transaction-code definition. The level

IMS/VS Status Codes 273

number in the PCB is the level number of
the SSA that is invalid. Some of the
reasons you might get this status code
are:

• Issuing a retrieval call with the D
command code in a program that
doesn't have the P processing option
specified in the DB PCB that was used
for the call.

•

•

•

•

•

•

•

•

Issuing an ISRT call with the D
command code in an MPP or BMP that
doesn't have the P processing option
specified in the DB PCB that was
referenced in the call. Batch
programs do not need the P processing
option to issue an ISRT call with the
D command code--unless the program
uses field level sensitivity.

The processing option is L and the
program issued a call other than an
ISRT call. Load programs can issue
only ISRT calls.

Issuing a DLET, REPL, or ISRT call
that references a DB PCB that doesn't
have the necessary processing option
for that call. The minimum processing
options for these calls are D for
DLET; R for REPL; and I for ISRT.

Issuing a DLET, REPL, or ISRT call
for a segment to which the program
isn't sensitive.

Issuing a DLET, REPL or ISRT while
processing a transaction that has
been defined as inquiry only.

Issuing a CHKP call if a GSAM/VSAM
data set is opened for output.

Issuing a GSAM call with an invalid
call function code.

Issuing an ISRT or DLET call for the
index target segment or a segment on
which the index target is dependent
in the physical data base while using
an alternate processing sequence.

• Issuing a call to a GSAM dummy data
set. Any call to a GSAM dummy data
set is invalid.

Programmer Response: Correct the call,
or make the necessary changes in the PCB.

AO

Explanation: There is a BSAM, GSAM, ISAM,
VSAM, or OSAM physical I/O error. When
issued from GSAM, this status code means
that the error occurred when:

1. A data set was accessed

2. The CLOSE SYNAD routine was entered.
The error occurred when the last

274 IMS/VS Application Programming

block of records was written prior to
closing of the data set.

IMS/VS does not return an AO status code
for write errors with BISAM, VSAM, and
OSAM.

Programmer Response: Determine whether
the error occurred during input or
output, and correct the problem.

AP
Explanation: A message or CHKP call has
more than four parameters. This is
invalid. In Fast Path programs, a message
call included more than one SSA. Only one
SSA is allowed.

Programmer Response: Correct the call
and reprocess the transaction.

AT

Explanation: The length of the data in
the program's I/O area is greater than
the area reserved for it in the control
region. The length of the area reserved
is defined by the ACB utility program,
DFSUACBO, and printed as part of its
output.

Programmer Response: Correct the PSB or
the program in error.

AU

Explanation: The total length of the SS~s
in the data base call is greater than the
area reserved for them in the control
region. The length of the area reserved
is defined by the ACB utility program,
DFSUACBO, and printed as part of its
output.

Programmer Response: Correct the PSB or
the program in error.

AY

Explanation: IMS/VS ignored a message
ISRT call because the logical terminal
referenced by the response alternate PCB
currently has more than one physical
terminal assigned to it for input
purposes.

Programmer Response: Ask the master
terminal operator to determine (use
/DISPLAY ASSIGNMENT LTERM x) which
physical terminals (2 or more) refer to
this logical terminal. Use the /ASSIGN
command to correct the problem.

AZ

Explanation: IMS/VS ignored a PURG or
ISRT call in a conversational program.

(,

(

)

)

Some possible reasons are:

• Issuing a PURG call referencing the
I/O PCB or an alternate response PCB.
Conversational programs can issue
PURG calls only when the PURG call
references an alternate PCB that is
not an alternate response PCB.

• Issuing a PURG call to send the SPA.

• Issuing an ISRT or a PURG call
referencing an alternate PCB that is
set for an invalid destination, or a
destination that IMS/VS can't
determine.

• Issuing an ISRT call referencing an
alternate PCB whose destination is a
conversational transaction code when
the first segment inserted isn't the
SPA; or when IMS/VS can't determine
whether or not the SPA was the first
segment inserted.

programmer Response: Correct the PURG or
ISRT call.

Al

Explanat;on: The logical terminal name
supplied in the I/O area of a CHNG call
is i nval i d. If IMS/VS returns Al to a
Fast Path program, it means that the
program supplied a transaction code,
instead of a logical terminal name, on a
CHHG call.

Programmer Response: Correct the CHHG
call.

A2

Explanat;on: The program issued a CHHG
call against an invalid PCB. The PCB was
i nval i d for one of these reasons:

• It was not an al ternate PCB.

• It was an al ternate PCB, but it
wasn't modifiable.

• It was being used to process a
message and had not completed
processing it.

Programmer Response: Check the PCB that
was used by the CHHG call and determine
which PCB should have been used for the
call.

A3

Explanat;on: The program issued an ISRT
call or a PURG call using a modifiable
alternate PCB that did not have its
destination set.

------------- ---_._----_.-----------

Programmer Response: Issue a CHHG call-to -
set the destination of the modifiable
alternate PCB, then reissue the ISRT or
PURG call.

A4

Explanation: A security violation
occurred because the terminal entering
the current transaction code was not
authorized to enter that transaction
code.

Programmer Response: Check the
transaction code to make sure it was
entered correctly. If it was, check with
the person at your installation who
handles security.

AS

Explanation: An ISRT or PURG call
supplied an invalid parameter list. The
call supplied the fourth parameter (the
MOD name) but the ISRT or PURG being
issued was not for the fi rst segment of
an output message.

Programmer Response: Correct the ISRT or
PURG call.

A6

Explanat;on: IMS/VS ignored a message
ISRT call because the length of the
message segment being inserted exceeds
the maximum length allowed.

Programmer Response: Correct the output
message segment.

A7

Explanat;on: IMS/VS ignored a message
ISRT call because the number of message
segments inserted exceeds the limit
specified by one. If the program tries to
insert too many message segments before
issuing a GU again, IMS/VS will terminate
the program abnormally.

Programmer Response: Check the output
messages and correct them.

AS

Explanation: IMS/VS ignored an ISRT call
because:

•

•

An ISRT call to a response alternate
PCB must not follow an ISRT call to
the I/O PCB.

An ISRT call to the I/O PCB must not
follow an ISRT call to a response
al ternate PCB.

Programmer Response: Correct the ISRT

IMS/VS Status Codes 275

call.

A9

Explanation: IMS/VS ignored the ISRT
call because:

• The ISRT call referenced an alternate
response PCB defined as SAMETRM=YES,
but the PCB represented a logical
t~rminal that isn't part of the
originating physical terminal. An
alternate response PCB defined as
SAMETRM=YES must represent the same
physical terminal as the physical
terminal associated with the
originating logical terminal.

• The originating terminal is in
response mode and the response
alternate PCB is not associated with
that logical terminal.

IMS/VS does not return this status code
if the program makes either of these
errors while communicating with a
terminal in a remote IMS/VS system
through MSC.

Programmer Response: Determine whether
the application program is in error, the
output logical terminal has been
incorrectly reassigned (using the
/ASSIGN command), or if SAMETRM=YES
should not have been specified for the
response alternate PCB.

CA

Explanation: The program issued a CMD
call with an invalid command verb, or the
command verb does not apply to the IMS/VS
system that the program's running in.
IMS/VS does not return any command
responses.

Programmer Response: Correct the command
in the CMD call.

CB

Explanation: The command entered in the
CMD call is not allowed from an AOI
program. IMS/VS does not return any
command responses.

Programmer Response: Correct the
command. For a Ii st,of the commands that
an AOI program can issue, see Chapter 7, ,
"Automated Operator Programmi ng," in the
IMS/VS System Programming Reference
Manual.

CC

Explanation: IMS/VS has executed the
ct'mmand and returned one or more command
responses.

276 IMS/VS Application Programming

Programmer Response: Your program should
issue GCMD calls as necessary to retrieve
the respon:iQs.

CD

Explanation: The command that was
entered on the CMD call violates
security, or the application program
isn't authorized to issue CMD calls.
IMS/VS does not execute the command or
return any command responses.

Programmer Response: Correct the
command. If necessary, check with the
person in charge of security at your
installation to find out why your program
is restricted from using that command.

CE

Explanation: IMS/VS rescheduled the
message that this GU call retrieved since
the last CMD call. The program had not
reached a sync point when the message was
rescheduled.

Programmer Response: This is an
information-only status code.

CF

Explanation: The message retrieved by
this GU was scheduled before IMS/VS was
last started.

Programmer Response: This is an
information-only status code.

CG

Explanation: The message retrieved by
this GU originated from an AOI user exit.

Programmer Response: This is an
information-only status code.

CH

Explanation: IMS/VS ignored the CMD call
j~~t issued because the AOI command
interface detected a system error and was
unable to process the command; IMS/VS
processing continues.

Programmer Response: Reissue the
command.

CI

Explanation: CI is a combination of CE
and CF. The message retrieved by this GU
was scheduled for transmission before
IMS/VS was last started. The message was
rescheduled, but the program hadn't
reached a sync point.

(

(

)

\
'I

/

)

Programmer Response: This is an
information-only status code.

CJ

Explanation: CJ is a combination of CE
and CG. The message retrieved by this GU
was scheduled for transmission before
IMS/VS was last started. The message
originated from a~ AOI user exit.

Programmer Response: This is an
information-only status code.

CK

Explanation: CK is a combination of CF
and CG. The message retri eved wi th thi s
GU originated from an AOI user exit. The
message was scheduled for transmission
before IMS/VS was last started.

Programmer Response: This is an
information-only status code.

CL

Explanation: CL is a combination of CE,
CF, and CG. The message retrieved with
this GU originated from an AOI user exit.
It was scheduled for transmission before
IMS/VS was last started. It was
rescheduled but the program had not
reached a sync point.

Programmer Response: This is an
information-only status code.

DA

Explanation: The program issued a REPL
call that tried to modify the key field
in the segment. You cannot change a
segment's key field.

Programmer Response: Correct the REPL
call.

DJ

Explanation: The program issued a DLET or
REPL call without first issuing a
successful get hold call; or an SSA in
the DLET or REPL call was for a segment
that was not retrieved in the get hold
call.

Programmer Response: Correct the program
by issuing a get hold call before the
DLET or REPL call, or correct the get
hold call or SSA.

DX

Explanation: The program issued a DLET
call that violates the delete rule for

----------------------------------- -

that segment.

Programmer Response: Check the program
to see whether or not the program should
delete that segment; if it should, check
with your DBA (or the equivalent
specialist at your installation) to find
out what delete rule has been specified
for that segment.

FA

Explanation: IMS/VS returns this status
code when the program reaches a sync
point and an arithmetic overflow in an
MSDB has occurred during that sync
interval (since the last sync point, or,
if the program had not reached a sync
point, since the program began
processing). You can receive this status
code on a SYNC call, a CHKP call, or a GU
call to the message queue, depending on
your program. The overflow occurred after
the program issued a FLD/CHANGE call or a
REPl call for the MSDB. When this
happens, IMS/VS issues an internal ROlB
call to eliminate the changes that the
program has made since the last sync
point. All data base positioning is lost.

programmer Response: Reprocess the
transaction.

FC

Explanation: The program issued a call
that is not valid for the segment type.

Programmer Response: Correct the call.

FD

Explanation: A nonmessage-driven program
reached a deadlock when IMS/VS tried to
get additional resources (either DEDB
UOWs or overflow latches) for the
program. IMS/VS eliminates all data base
updates that the program has made since
the last SYNC or CHKP call (or since the
program started processing, if the
program hasn't issued a SYNC or CHKP
call). All data base positioning is lost.

Programmer Response: start processing
from the last sync point. If you reach a
deadlock again (and you usually won't)
terminate the program.

FE

Explanation: IMS/VS returns this status
code anytime a program issues a FLD call
that receives a nonblank status code in
the FSA.

Programmer Response: See "Fast Path Data
Areas" for an explanation of FSA status
codes and correct the FlD call.

IMS/VS Status Codes 277

FF

Explanation: A progrdm issu~d an !SRT
(add) call against an MSOB that has no
free space. If IMS/VS determines that
there's no free space when the program
issues the ISRT call, the program
receives the FF status code for that
call. IMS/VS may not determine this until
the program reaches the next sync point.
In this case, IMS/VSreturns FF when the
program issues a GU call to the message
queue, a SYNC call, or a CHKP call,
depending on which call caused the sync
point.

Programmer Response: To avoid this
situation, you can specify more space for
the MSDB at the next system start (cold
start or normal restart).

FG

Explanation: FG is a combination of FE
and FW. A nonmessage-driven program
issued a FLO call that received a
nonblank status code in the FSA, and the
program has used up its normal buffer
allocation.

Programmer Response: Check the FSA
status code and correct the FLO call,
then issue SYNC or CHKP calls in the
program more frequently. One way to
handle this status code is to branch to
an error routine that causes the program
to issue SYNC or CHKP calls more
frequently when it receives this status
code.

FH

Explanation: A OEOB or a DEOB area was
inacessible when the program issued a
data base call or when the program
reached a sync point. If IMS/VS returns
this status code on a call that caused a
sync point to occur (a SYNC call, a
message GU, or a CHKP call), IMS/VS
issues an internal ROlB call to eliminate
the program's data base updates since the
last sync point.

Programmer Response: If yoti receive this
status code after a call that caused a
sync point to occur (a GU call to the
message queue, a SYNC call"or a CHKP
call, depending on your program),
reprocess from the last sync point to see
if the condition exists when the program
issues data base calls.

FI

Explanation: The program's I/O area is
not at a storage addres~ that the program
can access.

Programmer Response: Correct the
program.

278 IMS/VS A~~lication Programming

FN

Explanation: The program issued a rLU
call that contains a field name in the
FSA that's not defined in the DBD. IMS/VS
doesn't continue processing the FLD call
or any of the FSAs in the FLO call.
IMS/VS returns an FN status code in thls
situation even if an earlier FSA in'the
same FLO call earned an FE status code.

Programmer Response: Issue,a ROLB 6all to
remove the effects of the incorrect FlD
call and correct the FLO call.

FP

Explanat i on: The I/O area referenced by a
REPl, ISRT or FLO/CHANGE call to an MSDB
contains an invalid packed decimal or
hexadecimal field.

Programmer Response: Correct the data in
the I/O a rea.

FR

Explanation: A nonmessage-driven program
issued a data base call that forced the
system to go beyond the buffer limit
spec i fi ed for the regi on. IMS/VS, ,_
eliminates all data base change~made by
the program since the last SYNC or CHKP
call the program issued (or since the'
program started processing if the program
hasn't issued any SYNC or CHKP calls).
All data base positionin~ is lost.'

Programmer Response: Either terminate
the program and restart it with a larger
buffer allocation, or provide an , '
error-handling ~outine that will ca~se
the program to issue SYNC or CHKP calls
more frequently. Issuing SYNC ,or CHKP
calls more frequently reduces the total
buffer requirements.

FS

Explanation: A nonmessage-driven program
issued an ISRT call for ei ther a root or
sequential dependent segment, but IMS/VS
could not get~nough space in either the
root addressable or ~equential de~endent
part of the DEDB area to insert the new
segment. If IMS/VS returns this status
code on an ISRT'cal1 fora root s~gment,
the problem is with the root addressable
portion of the area. IfIMS~VS ~eturns
this status code when the program'issues
a SYNC or CHKP call, the. problem is with
the sequential dependentpa~t of the '
area. In either c~se,IMS/VS'eli~inates ,
all of the data base ch&nges~th~'program
has made since the last sync point (or
since the program started processing, if
the program hasn't reached a sync point).

(

(,

"

I
/

)

--- -------------- ---------_._---_._-----------

Programmer Response: Terminate the
program.

FT

Explanation: The program issued a call to
~ Fast Path data base tht included more
than one SSA. Only one SSA is allowed in
any call to a Fast Path data base.

Programmer Response: Correct the call.

FV

Explanation: At least one of the verify
operations in a FLD call issued in a
nonmessage-driven program failed when.
the program reached a sync point. IMS/VS
eliminates the data base updates the the
program has made since it issued the last
SYNC or CHKP call (or if the program
hasn't issued a SYNC or CHKP call, since
the program started processing). All data
base positioning is lost.

Programmer Response: Reprocess the
transaction or terminate the program.

FW

Explanation: A nonmessage-driven Fast
Path program has used all buffers that
are allocatd for normal usage. IMS/VS
returns this status code to warn you that
you may be running out of buffer space.
An FR status code may be imminent.

Programmer Response: One solution to
this problem is to supply an
error-handling routine, triggered by the
FW status code, that will cause your
program to issue SYNC or CHKP calls more
frequently. This will reduce the total
buffer requirement.

GA

Explanation: In trying to satisfy an
unqualified GN or GNP, IMS/VS crossed a
hierarchic boundary into a higher level.

If IMS/VS returns GA after a STAT call,
it means that the STAT call just issued
retrieved the statistics for the last
VSAM buffer subpool. These statistics are
for the la~gestVSAM buffer subpool. If
you issue: the same STAT call again,
IMS/VS returns the total statistics for
all of the VSAM buffer subpools.

Programmer Response: The status code is
an information~only status code. What you
do next dep~nds on your program.

GB

Explanation: In trying to satisfy a GN
call, DL/I reached the end of the data

base. In this situation, the SSA
specified data beyond the last
occurrence, and the search was not
limited to the presence of a known or
expected segment occurrence. For
example, a GN call for a key greater than
a particular value, rather than a GU
specifying a key value veyond the highest
value.

IMS/VS also returns this status code when
it has closed a GSAM data set. The
assumed position for a subsequent call
for a GSAM or DL/I data base is the
beginning of the data base.

Programmer Response: User determined.

GC

Explanation: An attempt was made to cross
a Unit-of-Work (UOW) boundary. There was
at least one calion the referenced PCB
that changed position in the data base
since the last sync point or after the
program began executing. IMS/VS doesn't
retrieve or insert a segment. Positioning
is for the first segment following the
current UOW boundary.

Programmer Response: User determined.

GD

Explanation: The program issued an ISRT
call that did not have SSAs for all
levels above the level of the segment
being inserted. For at least one of the
levels for which no SSA was specified, a
prior call using this PCB established
valid position on a segment. That
position is no longer valid for one of
these reasons:

• The segment has been deleted by a
DLET call using a different DB PCB.

• The segment was retrieved using an
alternate processing sequence, and a
REPL or DLET call for this DB PCB
caused the index for the existing
position to be deleted.

Programmer Response: This is an
information-only status code.

GE

Explanation: IMS/VS returns this status
code when:

•

•

DL/I is unable to find a segment that
satisfies the segment described in a
get call.

For an ISRT call, DL/I can't find one
of the parents of the segment you're
inserting.

IMS/VS status Codes 279

•

•

•

The program issued a STAT call for
ISAM/OSAM buffer pool statistics
when the buffer pool doesn't exist.

The program issued a STAT call for
VSAM buffer subpool statistics when
the subpools don't exist.

The program issued a STAT call that
specified a statistics function for
ISAM/OSAM buffer pool statistics.

Programmer Response: The action you take
depends on your program.

Note: In Fast Path application programs,
if, in executing a GNP call, IMS/VS tries
to retrieve a deleted sequential
dependent segment, IMS/VS returns a GE
status coda. The 1/0 area will contain a
length indication of 10 bytes and the
original position of the delted segment.

GG

Explanation: IMS/VS returns this status
code only to application programs with
processing options of GOT or GON, after
the program has issued one of the get
calls. It means that the segment the
program was trying to retrieve contained
an invalid pointer. Position in the data
base after a GG status code is just
before the first root segment occurrence
in the hierarchy. The PCB key feedback
area will contain the length of the key
of the last root segment accessed.

Programmer Response: Continue processing
with another segment or terminate the
program. It's possible that the call you
received the GG status code on may be
successful if you issue it again.

GK

Explanation: Ol/I has returned a
different segment type at the same
hierarchic level for an unqualified GN or
GNP.

Programmer Response: This is an
information-only status code.

GL

Explanation: The program issued a lOG
call that contained an invalid log call
for user log records. The log code in a
lOG call must be greater than X'AO'.

Ol/I returns Gl on a OEQ call when the
first byte of the 1/0 area referenced in
the call did not contain a valid OEQ
class (A-J).

Prog~ammer Response: If the program
received this status code for a lOG call,
check the log code in the call and

280 IMS/VS Application Programming

-correct it. If the program received this
status code for a DEQ call, check the-DEQ
class codQ in the I/O area.

GP

Explanation: The program issued a GNP
call when there is no parentage
established, or the segment level
specified in the GNP is not lower than
the level of the established parent.

IMS/VS also returns this status code in
Fast Path application programs when the
program issues a GNP call that names a
root segment.

Programme~ Response: Check the GNP call
and issue a call before the GNP to
correctly establish parentage.

II

Explanation: The program issued an ISRT
call that tried to insert a segment that
already exists in the data base. Some of
the reasons for receiving this status
code are:

• A segment with an equal physical twin
sequence field already exists for the
parent.

• A segment with an equal logical twin
sequence already exists for the
parent.

•

•

•

•

•

The logical parent has a logical
child pointer, the logical child
doesn't have a logical twin pointer,
and the segment being inserted is the
second logical child for that logical
parent.

The segment type doesn't have
physical twin forward pointers and
the segment being inserted is the
second segment of this type for that
parent, or it's the second HDAM root
for one anchor point.

The segment being inserted is in an
inverted structure. (The immediate
parent of this segment in the logical
structure is actually its physical
child in the physical structure.)'

A physically-paired logical child
segment already exists with a
sequence field equal to that of the
segment you're inserting. For
example, the segment could have been
inserted with no duplication but when
an attempt was made to position for
the insert of its physical pair, it
was found to have a duplicate key to
an existing twin segment.

In Fast Path application programs,
IMS/VS returns this status code only
when an attempt is made to insert

(

(,

/

\
I

/

)

)

duplicate key segments in a DEDB
(root segments only) or an MSDB.

Programmer Response: User determined.

IX

Explanation: The program issued an ISRT
call that violated the insert rule for
that segment. Some of the reasons that
IMS/VS returns this status code are:

•

•

•

•

The program tried to insert the
logical child and logical parent, and
the insert rule for the logical
parent is physical and the logical
parent does not exist.

The program tried to insert the
logical child and the logical parent
and the insert rule is logical or
virtual and the logical parent
doesn't exist. In the I/O area, the
key of the logical parent doesn't
match the corresponding key in the
concatenated key in the logical
child.

The program tried to insert a logical
child, and the insert rule of the
logical parent is virtual and the
logical parent exists. In the I/O
area, the key in the logical parent
segment doesn't match the
corresponding key in the
concatenated key in the logical
child.

The program tried to insert a
physically paired segment, where
both sides of the physical pair are
the same segment type and the
physical and logical parent are the
same occurrence.

• The program issued an ISRT call after
an open, close, or I/O error status
code.

• The program issued an ISRT call to a
GSAM data base after receiving an AI
or AO status code.

Programmer Response: Correct the ISRT
call, or the program.

LB

Explanation: The segment that the
program tried to load already exists in
the data base. Other possible causes are:

•

•

A segment with an equal physical twin
sequence field already exists for the
parent.

A segment type doesn't have a
physical twin forward pointer, and
the segment being inserted is either
the second segment of this segment

•

type for the parent or the second
HDAM root fo r one ancho r po i nt.

An application program inserted a key
of X'FF ••• FF' into a HISAM or HIDAM
data base.

Programmer Response: Correct the ISRT
call or find out if the load sequence is
incorrect. Check with the DBA or the
equivalent specialist at your
installation.

LO

Explanation: The key field of the segment
being inserted is out of sequence.

Programmer Response: Check the segment
and determine where it should be loaded.

LD

Explanation: No parent has been loaded
for the segment being inserted.

Programmer Response: Check the sequence
of segments that have been loaded and
determine where the parent should have
been loaded. .

LE

Explanation: The sequence of sibling
segments being loaded is not the same as
the sequence that's defined in the DBD.

Programmer Response: Check the sequence
of the segments that are being loaded and
correct.

Nb (N blank)

Explanation: Index maintenance is unable
to handle the status code it received
from the buffer handler. This stat~s code
will be included in message DFS0840I on
the system console. DFS0840I gives the
message "INDEX ERROR db dna me Nb (first 45
bytes of key)." The buffer handler
usually returns messages giving specific
information about the problem before
IMS/VS issues message DFS0840I. If
possible, IMS/VS continues processing;
if not, IMS/VS terminates your program
abnormally wi th a user abend code of 825.

Programmer Response: Review the status
of the index to determine whether or not
it should be rebuilt.

NE

Explanation: Indexing maintenance issued
a DL/I call, and the segment has not been
found. This status code will be included
in message DFS084lI on the system
console. DFS0840I gives the message

IMS/VS Status Codes 281

"INDEX ERROR (dbdname) NE (first 45 bytes
of key)."

Programmer Response: Review the status
of the index to determine whether or not
it should be rebuilt.

NI

~xplanation: There is a duplicate
segment in a unique secondary index.
Whi(~ IMS/VS was inserting a replacing a
source segment for a secondary index
defined with a unique sequence field, the
insertion of the segment was attempted
but was unsuccessful because an index
segment with the same key was found. One
possible cause for a duplicate segment in
the index is that the index DBD
incorrectly specified a unique key
value--secondary index only.

Inan online application program, the
call is backed out and the program
receives an NI status code.

In a batch program, IMS/VS terminates the

message.

QE

Explanation: The program issued a
message GN call before issuing a GU to
the message queue. In message-driven Fast
Path programs, this code applies to
message calls only. This code also
applies to GCMD calls in AD! programs. It
means that the program issued a GCMD call
before issuing a CMD call. This call is
also returned when a program issues a
ROlB without having issuing a successful
message GU call during that sync
interval.

Programmer Response: Correct the program
by either:

• Issuing a GU call before the GN

•
•

Issuing a CMD call before the GCMD

Issuing a GU call before the ROlB

program abnormally with a code of 828. QF

Programmer Response: In a batch progr~m,
you should run batch backout to remove
the effects of the inaccurate processing,
since the ISRT call was partially
completed when the 828 abnormal
termination occurred. If duplicate
secondary index entries occur, the index
should be specified as nonunique, and an
overflow entry-sequenced data set should
be provided.

NO

Explanation: There was a BSAM, ISAM,
VSAM, or OSAM physical I/O error during a
data base call issued by indexing
m~intenance.

Programmer Response: Check the call and
correct it.

QC

Explanation: An MPP or
transaction-oriented BMP issued a
successful CHKP call, but the message GU
call issued internally by the CHKP call
was unsuccessful. There are no more
messages in the queue for the program.

Programmer Response: This is an
information-only status code.

QD

Explanation: The program issued a
message GN, but there are no more
segments for this message.

Programmer Response: Process the

282 IMS/VS Application Programming

Explanation: The length of the segment is
less than 5 characters. The minimum
length allowed is the length of the
message text plus four control
characters.

Programmer Response: Correct the
segment.

QH

Explanation: There has been a terminal
symbolic error. The output logical
terminal name or transaction code is
unknown to IMS/VS.

Programmer Response: Check the logical
terminal name or transaction code and
correct it.

RX

Explanation: The program issued a REPl
call that violated the replace rule for
that segment.

Programmer Response: Correct the call,
or check with the DBA or the equivalent
specialist at your installation.

UC

Explanation: A checkpoint record was
written to the UCF journal data set.
During the processing of an HD
reorganization or reload or an initial
load program under the supervision of the
Utility Control Facility (UCF), a
checkpoint record was written to the UCF
journal data set. IMS/VS returns this

/
I

\

(

)

)

)

status code to. indicate that the last
ISRT call was correct and the initial
load program may continue or it may
perform a checkpointing procedure before
continuing.

Programmer Response: This is an
information-only status code.

UR

Explanation: Your initial load program
is being restarted under UCF. The program
terminated while executing under UCF. The
job was resubmitted with a restart
request.

Programmer Response: The program has to
get itself back in step with data base
loading. The program uses the I/O area
and the DB PCB key feedback area to do
this.

us
Explanation: The initial load program is
about to stop processing. While
processing an HD reorganization reload or
user initial load program under the
supervision of UCF, the operator replied
to the WTOR from UCB and requested the
current function to terminate. The last
ISRT call was processed.

Programmer Response: The intial load
program should checkpoint its data sets
and return with a nonzero value in
reg i ster 15.

UX

Explanation: A checkpoint record was
written and processing stopped. This is a
combination of UC and US status codes.

Programmer Response: See the
descriptions of UC and US status codes.

VI

Explanation: An invalid length was
supplied for a variable-length segment.
The LL field of the variable-length
segment is either too large or too small.
The length of the segment must be equal
to or less than the maximum length
specified in the DBD. The length must be
long enough to include the entire
reference field; if the segment is a
logical child, it must include the entire
concatenated key of the logical parent
and all sequence fields for the paired
segment.

IMS/VS also returns this status code when
an invalid record length is specified in
a GSAM call.

Programmer Response: Correct the

... - -...... ---------... _----- ----_._---

program.

XA

Explanation: The program tried to
continue processing the conversation by
passing the SPA to another program
through a program-to-program message
switch after already responding to the
terminal.

Programmer Response: If a response has
been sent, the SPA should be returned to
IMS/VS. Correct the program.

XB

Explanation: The program has passed the
SPA to another program but is trying to
respond to the originating terminal.

Programmer Response: No response is
allowed by a program that's passed
control of the program through a
program-to-program message switch.

xc

Explanat;on: The program inserted a
message that has some bits in the ZI
field set. The Zl field is reserved for
IMS/VS.

Programmer Response: Correct the program
to prevent it from setting those bits.

XD

Explanation: IMS/VS is terminating by a
CHECKPOINT FREEZE or DUMPQ. IMS/VS
returns this code to a BMP that has
issued a CHKP call. If it's a
transaction-oriented BMP, IMS/VS does
not return a message.

IMS/VS also returns XD when a batch
program issues a SYNC call.

Programmer Response: Terminate the
program immediately. IMS/VS will
terminate the program abnormally if the
program issues another call.

XE

Explanation: A program tried to insert a
SPA to an alternate express PCB.

Programmer Response: Regenerate the PSB
and remove the EXPRESS=YES option from
the PCB, or define another PCB that is
not express to be used in the ISRT call.

XF

Explanation: IMS/VS is ignoring the ISRT
call for the SPA because the referenced

IMS/VS Status Codes 283

alternate PCB had its destination set to
a logical terminal but was not defined as
AlTRESP=YES during PSB generation.

Programmer Response: Correct the
application program or change the PSB
generation for that alternate PCB to
specify AlTRESP=YES.

XG

Explanation: IMS/VS ignored the ISRT
call because the current conversation
requires fixed-length SPAs and the ISRT
call was to a program with a different
length or variable-length SPA.

Programmer Response: Correct the program
or the SPA definitions.

xx
Explanation: After initialization the XX
status code indicates an IMS/VS error,
probably with GSAM. An XX status code at
initialization itself (before the
program has issued its first call) may be
a system, IMS/VS, or user error.

When the XX status code is issued from
initialization, possible causes are:

• Insufficient storage

•
•

•

Invalid DBD

Invalid block size

GSAM error

Programmer Response: A subsequent GSAM
call will result in an abnormal
termination of the program. The program
should terminate.

Xl

Explanation: System error: an 1/0 error
occurred while IMS/VS was reading or
writing the SPA.

Programmer Response: Terminate the
conversation.

X2

Explanation: The first ISRT call to a PCB
whose destination is a conversational
transaction code is not for the SPA. The
SPA must be inserted with the first ISRT
call. .

Programmer Response: Insert the SPA,
then reinsert the message segment.

284 IMS/VS Applicati~ri Programming

X3

Explanation: ThQ progr~m modified the
first 6 bytes of the SPA; the SPA is now
invalid.

Programmer Response: Correct the program
and restore the original bytes.

X4

Explanation: The program issued an ISRT
call to pass the SPA to a
nonconversational transaction code. It
did this by referencing a PCB whose
destination was set for the
nonconversational transaction code. You
can send the SPA only to transaction
codes defined as conversational.

Programmer Response: Correct the ISRT
call. Send only data segments.

xs
Explanation: The program issued more
than one ISRT call to send the SPA to a
PCB whose destination is a transaction
code.

Programmer Response: Only one SPA is
allowed per message. Correct the program.

X6

Explanation: An invalid transaction code
name was inserted into the SPA.

Programmer Response: Correct the program
to set the proper transaction code name.

X7

Explanation: The length of the SPA is
incorrect. The program modified the first
6 bytes. .

Programmer Response: Correct the SPA and
the program.

X8

Explanation: There was a system or 1/0
error in attempting to queue a SPA on a
transaction code PCB.

Programmer Response: Terminate the
conversation.

X9

Explanation: The program tried to insert
the SPA, but the length of the SPA is
greater than the maximum 1/0 area size
specified in the program's PSB.

(

(,

)

)

---- ----------------_ ... _ .. _----------------

Programmer Response: Correct the SPA, or
change the 1-/0 area' 5 si ze speci fi ed on
the 10ASIZE keyword on the PSBGEN
statement.

blanks (bb)

Explanation: The call was completed.

Programmer Response: Proceed with
processing.

IMS/VS Status Codes 285

APPENDIXES

The appendixes provide four sample application programs, a sample
status code error routine, and the DL/I Test Program control
statements format:

• Appendix A: Sample Batch Program

• Appendix B: Sample Batch Message Program

• Appendix C: Sample Message Processing Program

• Appendix D: Sample Conversational MPP

• Appendix E: Sample Status Code Error Routine

• Appendix F: Using the DL/I Test Program (DFSDDLTO)

The purpose of providing the sample programs is to illustrate the
structure of different IMS/VS application programs. The
application programming in the programs has been kept to a
minimum, and the processing performed is trivial in nature.

Each of the sample programs accesses the Parts data base described
in the IMS/VS Version 1 Primer. The sample programs in Appendixes
A, B, and D perform the same processing! each program updates the
unit price field in the root segment.

The status code error routine is shown in "Appendix E. Sample
Status Code Error Routine (DFSOAER)." This routine is also part of
the Primer. "Checking Status Codes" describes this routine. Each
of the sample routines uses this routine as its error routine.

286 IMS/VS Application Programming

(,

c

(,

)

APPENDIX A. SAMPLE BATCH PROGRAM

The sample batch program reads its input from a GSAM file. The
GSAM input record contains a part number and the new price for
that part number. The program updates the data base of the new
price.

After updating the data base, the program lists the part number
and the old and new pri ces ina GSAM output fi le'.

If the part number is not valid/not a valid key, IMS/VS prints an
error message.

When the program has processed all of the input
records/transactions, the program prints a tota15 line giving the
total numbers of valid and invalid transactions.

The program uses symbolic checkpoint and restart.

Appendix A. Sample Batch Program 287

IDENTIFICATION DIVISION.
PROGRAM-ID. 'SAMPLE1'.
REMARKS.

THIS IS A BATCH PROGRAM WHICH UPDATES THE
PRICE FIELD IN THE ROOT SEGMENT OF THE PARTS
DATA BASE.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* DL/I FUNCTION CODES

77 GHU PIC X(4) VALUE 'GHU '.
77 GU PIC X(4) VALUE 'GU
77 GN PIC X(4) VALUE 'GN
77 ISRT PIC X(4) VALUE 'ISRT'.
77 REPL PIC X(4) VALUE 'REPL'.
77 XRST PIC X(4) VALUE 'XRST' .
77 CHKP PIC X(4) VALUE ' CHKP , .

* PARAMETER FIELDS FOR DFSOAER STATUS CODE CHECKING ROUTINE

01 DFSOAER-FIELDS.
02 ERROPT PIC X(4) VALUE '1 .
02 BAD-DB-CALL PIC X(8) VALUE 'DBADCALL'.
02 BAD-DC-CALL PIC X(8) VALUE 'CBADCALL'.

01 CHKPT-WORKAREAS.

* RESTART CHECKPOINT-ID RETURNED HERE IF PROGRAM RESTARTED

02 RESTART-WORKAREA.
04 RESTART-CHKPT PIC X(8) VALUE SPACES.
04 FILLER PIC X(4) VALUE SPACES.

* CHECKPOINT-ID INCREMENTED BY ONE AT EACH CHECKPOINT

02 CHKPT-ID.
04 FILLER PIC X(4) VALUE 'SAM1'.
04 CHKPT-ID-CTR PIC 9(4) VALUE O.

* TRANSACTION ,COUNTER USED TO DETERMINE CHECKPOINT FREQUENCY

02 CHKPT-LIMIT PIC S9(S) COMP-3 VALUE +0.
88 CHKPT-LIMIT-REACHED VALUE +50.

* LENGTH FIELDS USED FOR XRST AND CHKP CALLS

01 AREA-LENGTHS.
02 IOAREA-LEN PIC S9(S) COMP VALUE +80.
02 COUNTER-LEN PIC S9(S) COMP VALUE +8.

01 COUNTERS.
02 LINE-CTR PIC 59(3) COMP-3 VALUE +SO.

88 TOP-OF-PAGE VALUE +SO.
02 VALID-CTR PIC S9(S) COMP-3 VALUE +0.
02 INVALID-CTR PIC 59(5) COMP-3 VALUE +0.

* END-SWITCH SET TO 1 IF GB REACHED ON INPUT GSAM FILE

01 END-SWITCH PIC X VALUE ' 0 ' .
88 NO-MORE VALUE ' 1 ' '.

01 INPUT.-AREA.
02 TRANCODE PIC X(9).
02 IN-PARTNO PIC X(8).
02 NEW-PRICE PIC 9(6)V99.
02 FILLER PIC X(lOO).

01 OUTPUT-AREAS.
02 OUTPUT-LINE.

04 OUTPUT-ASA PIC X.
04 OUTPUT-DATA PIC X(80).

02 ,HEADING-LINE.

288 IMS/VS Application Programming

EXA00110
EXA00120
EXA00140
EXA00150
EXA00160
EXA00170
EXA00180
EXA00190
EXA00200
EXA00210
EXA00220
EXA00230
EXA00240
EXA002S0
EXA00260
EXA00270
EXA00280
EXA00290
EXA00300
EXA00310
EXA00320
EXA00330
EXA00340
EXA00350
EXA00360
EXA00370
EXA00380
,EXA00390
EXA00400
EXA00410
EXA00420
,EXA00430
EXA00440
EXA004S0
EXA00460
EXA00470
EXA00480
EXA00490
EXAOOSOO
EXAOOS10
EXA00520
EXAOOS30
EXAOOS40
EXAOOSSO
EXAOOS60
EXAOOS70
EXAOOS80
EXAOOS90
EXA00600
EXA00610
EXA00620
EXA00630
EXA00640
EXA006S0
EXA00660
EXA00670
EXA00680
EXA00690
EXA00700
EXA00710
EXA00720
EXA00730
EXA00740
EXA00750
EXA00760
EXA00770
EXA00780
EXA00790
EXA00800
EXA00810
EXA00820
EXA00830
EXA00840

(
\.....

)

)

)

04 FILLER PIC X(10) VALUE 'PART NO'.
04 FILLER PIC X(11) VALUE 'OLD PRICE'.
04 FILLER PIC X(11) VALUE 'NEW PRICE'.
04 FILLER PIC X(49) VALUE 'COMMENTS'.

02 DETAIL-LINE.
04 OUT-PARTNO PIC X(8).
04 FILLER PIC X.
04 OUT-OLD-PRICE PIC Z(6)9.99.
04 FILLER PIC X.
04 OUT-NEW-PRICE PIC Z(6)9.99.
04 FILLER PIC XX.
04 COMMENTS PIC X(40).

02 TOTAL-LINE.
04 FILLER PIC X(31) VALUE

'TRANSACTIONS PROCESSED - VALID'
04 OUT-VALID PIC Z(4)9.
04 FILLER PIC X(10) VALUE' INVALID'
04 OUT-INVALID PIC Z(4)9.

* INPUT AREA FOR DATA BASE SEGMENT

01 DB-IOAREA.
02 DB-PARTNO
02 FILLER
02 DB-PRICE
02 FILLER

PIC X(8).
PIC X(45).
PIC 9(6)V99.
PIC X(19).

* SEGMENT SEARCH ARGUMENT

01 SSA.
02 FILLER
02 SSA-PARTNO
02 FILLER

01 ASA~CTl-CHARS.

PIC X(19) VALUE 'SEIPART (FEIPGPNR ='
PIC X(8).
PIC X VALUE ')'.

02 ASA-NEWPAGE PIC X VALUE '1'.
02 ASA-SPACE-ONE PIC X VALUE ' ,
02 ASA-SPACE-TWO PIC X VALUE '0'.

LINKAGE SECTION.

* IOPCB USED FOR XRST AND CHECKPOINT CALLS

01 IOPCB.
02 FILLER
02 TPSTATUS
02 FILLER

PIC X(10).
PIC X(2).
PIC X(20).

* DATA BASE PCB FOR THE PARTS DATA BASE

01 DBPCB.
02 FILLER
02 DBSTATUS
02 FILLER

PIC X(10).
PIC X(2).
PIC X(20).

* GSAM INPUT PCB FOR THE INPUT DATA

01 GSAMPCB-IN.
02 FILLER
02 GSTATUS-IN
02 FILLER

PIC X(10).
PIC X(2).
PIC X(20).

* GSAM OUTPUT PCB FOR THE OUTPUT REPORT

01 GSAMPCB-OUT.
02 FILLER
02 GSTATUS-OUT
02 FILLER

PROCEDURE DIVISION.

PIC X(10).
PIC X(2).
PIC X(20).

* AT ENTRY IMS PASSES THE FOLLOWING PCB ADDRESSES:

EXA00850
EXA00860
EXA00870
EXA00880
EXA00890
EXA00900
EXA00910
EXA00920
EXA00930
EXA00940
EXA00950
EXA00960
EXA00970
EXA00980
EXA00990
EXAOI000
EXAOI010
EXAOI020
EXAOI030
EXAOI040
EXAOI050
EXAOI060
EXAOI070
EXAOI080
EXAOI090
EXAOIIOO
EXAOI110
EXAOl120
EXAOl130
EXA01140
EXA01150
EXA01160
EXAOl170
EXAOl180
EXAOl190
EXA01200
EXA01210
EXA01220
EXA01230
EXA01240
EXA01250
EXA01260
EXA01270
EXA01280
EXA01290
EXA01300
EXA01310
EXA01320
EXA01330
EXA01340
EXA01350
EXA01360
EXA01370
EXA01380
EXA01390
EXA01400
EXA01410
EXA01420
EXA01430
EXA01440
EXA01450
EXA01460
EXA01470
EXA01480
EXA01490
EXA01500
EXA01510
EXA01520
EXA01530
EXA01540
EXA01550
EXA01560
EXA01570

Appendix A. Sample Batch Program 289

* IOPCB - USED FOR CHECKPOINT/RESTART CALLS * DBPCB - PARTS DATA BASE * GSAMPCB-IN - INPUT DATA FILE * GSAMPCB-OUT - OUTPUT REPORT FILE

ENTRY 'DLITCBL' USING IOPCB, DBPCB,
GSAMPCB-IN, GSAMPCB-OUT.

* FIRST CALL IS THE XRST CALL

CALL 'CBLTDLI' USING XRST, IOPCB, IOAREA-LEN,
RESTART-WORKAREA, COUNTER-LEN, COUNTERS.

IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

IOPCB, BAD-DC-CALL, COUNTERS, ERROPT.

* IF RESTART WORKAREA IS NOT BLANK, THEN PROGRAM IS BEING * RESTARTED - SO RESET THE CHECKPOINT-ID FIELD

IF RESTART-WORKAREA NOT EQUAL SPACES
MOVE RESTART-CHKPT TO CHKPT-ID

* OTHERWISE TAKE A CHECKPOINT SO THAT PROGRAM CAN BE * COMPLETELY BACKED OUT TO THE BEGINNING IF NECESSARY

ELSE PERFORM CHKPT-RTN.

* MAIN LINE

PERFORM READ-INPUT THRU READ-INPUT-END.
PERFORM PROCESS-INPUT THRU PROCESS-INPUT-END UNTIL NO-MORE.
PERFORM PRINT-TOTAL-LINE THRU PRINT-TOTAL-LINE-END
GOBACK.

PROCESS-INPUT.

* HERE WE PROCESS THE INPUT MESSAGES * USING THE PARTNUMBER WE READ THE DATABASE * AND UPDATE THE PRICE FIELD WITH THE NEW DATA

MOVE SPACES TO DETAIL-LINE.
MOVE IN-PARTNO TO SSA-PARTNO.
,PERFORM READ-DB THRU READ-DB-END.
IF DBSTATUS = 'GE'

THEN MOVE 'NOT ON FILE' TO COMMENTS
MOVE IN-PARTNO TO OUT-PARTNO

ADD 1 TO INVALID-CTR
ELSE MOVE DB-PRICE TO OUT-OLD-PRICE

MOVE NEW-PRICE TO DB-PRICE, OUT-NEW-PRICE
MOVE DB-PART NO TO OUT-PARTNO
PERFORM UPDATE-DB THRU UPDATE-DB-END
MOVE 'PRICE UPDATED' TO COMMENTS
ADD 1 TO VALID-CTR.

PERFORM PRINT-LINE THRU PRINT-LINE-END

* INCREMENT THE CHKPT COUNTER BY ONE FOR EACH TRANSACTION

ADD 1 TO CHKPT-LIMIT.

IF CHKPT-LIMIT-REACHED

* INCREMENT THE CHECKPOINT-ID COUNTER * ISSUE A CHECKPOINT CALL * AND RESET THE CHECKPOINT FREQUENCY COUNTER

THEN ADD 1 TO CHKPT-ID-CTR
PERFORM CHKPT-RTN THRU CHKPT-RTN-END
MOVE 0 TO CHKPT-LIMIT.

* READ THE NEXT MESSAGE

PERFORM READ-INPUT THRU READ-INPUT-END.

290 IMS/VS Application Programming

EXA01580
EXA01590
EXA01600
EXA01610
EXA01620
EXA01630
EXA01640
EXA01650
EXA01660
EXA01670
EXA01680
EXA01690
EXA01700
EXA01710
EXA01720
EXA01730
EXA01740
EXA01750
EXA01760
EXA01770
EXA01780
EXA01790
EXA01800
EXA01810
EXA01820
EXA01830
EXA01840
EXA01850
EXA01860
EXA01870
EXA01880
EXA01890
EXA01900
EXA01910
EXA01920
EXA01930
EXA01940
EXA01950
EXA01960
EXA01970
EXA01980
EXA01990
EXA02000
EXA02010
EXA02020
EXA02030
EXA02040
EXA02050
EXA02060
EXA02070
EXA02080
EXA02090
EXA02100
EXA02110
EXA02120
EXA02130
EXA02140
EXA02150
EXA02160
EXA02170
EXA02180
EXA02190
EXA02200
EXA02210
EXA02220
EXA02230
EXA02240
EXA02250
EXA02260
EXA02270
EXA02280
EXA02290
EXA02300

(

(
"

)

)
/

------ ----------------------

PROCESS-INPUT-END.
EXIT.

* PRINT THE REPORT SHOWING THE UPDATES * THE LINES ARE WRITTEN TO A GSAM FILE WHICH * CAN BE SPOOLED TO A PRINTER IN A SUBSEQUENT * JOB STEP

PRINT-LINE.

* IF PAGE IS FULL, PRINT A HEADING LINE AND RESET THE * LINE-COUNTER BEFORE PRINTING THE DETAIL LINE

IF TOP-OF-PAGE
THEN MOVE HEADING-LINE TO OUTPUT-DATA

MOVE ASA-NEWPAGE TO OUTPUT-ASA
MOVE 0 TO LINE-CTR
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END.
MOVE ASA-SPACE-TWO TO OUTPUT-ASA.

MOVE DETAIL-LINE TO OUTPUT-DATA
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END.

* INCREMENT LINE COUNTER. IF FIRST DETAIL LINE ON PAGE HAS BEEN * PRINTED RESET THE ASA CONTROL CHARACTER TO SINGLE SPACING

ADD 1 TO LINE-CTR
IF LINE-CTR = 1 MOVE ASA-SPACE-ONE TO OUTPUT-ASA.

PRINT-LINE-END.
EXIT.

PRINT-TOTAL~LINE.
MOVE VALID-CTR T~ OUT-VALID.
MOVE INVALID-CTR TO OUT-INVALID.
MOVE TOTAL-LINE TO OUTPUT-DATA.
MOVE ASA-NEWPAGE TO OUTPUT-ASA
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END.
MOVE SPACES TO OUTPUT-ASA.

PRINT-TOTAL-LINE-END.
EXIT.

* THE FOLLOWING PROCEDURES EXECUTE THE DL/I CALLS AGAINST * THE GSAM INPUT AND OUTPUT FILES, AND THE DATA BASE. * NO APPLICATION PROCESSING IS PERFORMED IN THESE ROUTINES.

READ-INPUT.
CALL 'CBLTDLI' USING GN, GSAMPCB-IN, INPUT-AREA.
IF GSTATUS-IN = 'GB'

THEN MOVE 1 TO END-SWITCH
ELSE IF GSTATUS-IN NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
GSAMPCB-IN, BAD-DB-CALL, INPUT-AREA~ ERROPT.

READ-INPUT-END.
EXIT.

READ-DB.
CALL 'CBLTDLI' USING GHU, DBPCB, DB-IOAREA, SSA.
IF DBSTATUS = SPACES OR 'GE'
THEN NEXT SENTENCE
ELSE CALL 'DFSOAER' USING

DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
READ-DB-END.

EXIT.

UPDA'TE-DB.
CALL 'CBLTDLI' USING REPL, DBPCB, DB-IOAREA.
IF DBSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
UPDATE-DB-END.

EXA02310
EXA02320
EXA02330
EXA02340
EXA02350
EXA02360
EXA02370
EXA02380
EXA02390
EXA02400
EXA02410
EXA02420
EXA02430
EXA02440
EXA02450
EXA02460
EXA02470
EXA02480
EXA02490
EXA02500
EXA02510
EXA02520
EXA02530
EXA02540
EXA02550
EXA02560
EXA02570
EXA02580
EXA02590
EXA02600
EXA02610
EXA02620
EXA02630
EXA02640
EXA02650
EXA02660
EXA02670
EXA02680
EXA02690
EXA02700
EXA02710
EXA02720
EXA02730
EXA02740
EXA02750
EXA02760
EXA02770
EXA02780
EXA02790
EXA02800
EXA02810
EXA02820
EXA02830
EXA02840'
EXA02850
EXA02860
EXA02870
EXA02880
EXA02890
EXA02900
EXA02910
EXA02920
EXA02930
EXA02940
EXA02950
EXA02960
EXA02970
EXA02980
EXA02990
EXA03000
EXA03010
EXA03020
EXA03030

Append;x A. Sample Batch Program 291

EXIT.

ISRT-GSAM-OUTPUT.
CALL 'CBLTDLI' USING 15RT, G5AMPCB-OUT, OUTPUT-LINE.
IF GSTATUS-OUT NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

GSAMPCB-OUT, BAD-DB-CALL, OUTPUT-LINE, ERROPT.
ISRT-GSAM-OUTPUT-END.

EXIT.

CHKPT-RTN.
CALL 'CBLTDLI' USING CHKP, IOPCB, IOAREA-LEN, CHKPT-ID,

COUNTER-LEN, COUNTERS.
IF TPSTATUS NOT EQUAL SPACES

CALL 'DFSOAER' USING

CHKPT":'RTN-END.
IOPCB, BAD-DC-CALL, CHKPT-ID, ERROPT.

EXIT.

292 IMS/VS Application Programming

EXA03040
EXA030S0
EXA03060

-EXA03070
EXA03080
EXA030-90
EXA03100
EXA03110
EXA03120
EXA03130
EXA03140
EXA031S0
EXA03160
EXA03170
EXA03180
EXA03190
EXA03200
EXA03210

(

(
\,

)

')

)

APPENDIX B. SAMPLE BATCH MESSAGE pROGRAM

This sample program is a transaction-oriented BMP that updates
the price field. The program gets its input from the message queue
and updates the price field of the root segment. When the BMP
prints the totals of the valid and invalid transactions that have
been processed, it sends them to Bn alternate PCB. Before issuing
the ISRT call to send this message, the program uses the CHNG call
to set the destination of the PCB. One reason you might use an
alternate PCB in this situation is to send the output to a
hardcopy terminal/printer in the user's department.

This program uses symbolic checkpoint and restart.

Appendix B. Sample Batch Message Program 293

IDENTIFICATION DIVISION.
PROGRAM-ID. 'SAMPLE2'.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* DL/I FUNCTION CODES

77
77
77
77
77
77
77
77

GHU
GU
GN
ISRT
REPL
XRST
CHKP
CHNG

PIC X(4) VALUE 'GHU '.
PIC X(4) VALUE 'GU '
PIC X(4) VALUE 'GN .
PIC X(4) VALUE 'ISRT'.
PIC X(4) VALUE 'REPL'.
PIC X(4) VALUE 'XRST'.
PIC X(4) VALUE 'CHKP'.
PIC X(4) VALUE 'CHNG'.

* DESTINATION LTERM-NAME FOR MODIFIABLE PCB

77 SUPER-LTERM PIC X(8) VALUE 'PARTSUPR'.

* PARAMETER FIELDS FOR USE BY DFSOAER STATUS CODE CHECKING ROUTINE

01 DFSOAER-FIELDS.
02 ERROPT PIC X(4) VALUE '1 .
02 BAD-DS-CALL PIC X(8) VALUE 'DBADCALL'.
02 BAD-DC-CALL PIC X(8) VALUE 'CBADCALL'.

01 CHKPT-WORKAREAS.
02 RESTART-WORKAREA.

04 RESTART-CHKPT PIC X(8) VALUE SPACES.
04 FILLER PIC X(4) VALUE SPACES.

02 CHKPT-ID.
04 FILLER PIC X(4) VALUE 'SAM2'.
04 CHKPT-ID-CTR PIC 9(4) VALUE O.

02 CHKPT-LIMIT PIC S9(S) COMP-3 VALUE +0.
88 CHKPT-LIMIT-REACHED VALUE +50.

01 AREA-LENGTHS.
02 IOAREA-LEN PIC S9(S) COMP VALUE +80.
02 COUNTER-LEN PIC S9(S) COMP VALUE +8.

01 COUNTERS.
02 LINE-CTR PIC 59(3) COMP-3 VALUE +SO.

88 TOP-OF-PAGE " VALUE +SO.
02 VALID-CTR PIC S9(S) COMP-3 VALUE +0.
02 INVALID-CTR PIC S9(S) COMP-3 VALUE +0.

01 SWITCHES.
02 END-SWITCH PIC X VALUE '0'.

88 NO-MORE VALUE '1'.
02 CLOSE-SWITCH PIC X VALUE '0'.

88 CLOSE-DOWN VALUE '1'.

01 INPUT-MSG.
02 IN-LLl
02 IN-ZZl
02 TRANCODE
02 IN-PARTNO
02 NEW-PRICE
02 FILLER

PIC 59(3) COMPo
PIC 59(3) COMPo
PIC X(9).
PIC X(8).
PIC 9(6)V99.
PIC X(lOO).

01 CHKPT-AREA REDEFINES INPUT-MSG.
02 ~ASS~CHKPT PIC X(8).
02 FILLER PIC X(100).

01 OUTP~T-AREAS.
02 OUTPUT-MSG.

04 OUT-LL PIC 59(3) COMP VALUE +8S.
04 OUT-ZZ PIC 59(3) COMP VALUE +0.
04 OUTPUT-LINE.

06 OUTPUT-ASA PIC X.
06 OUTPUT-DATA PIC X(80).

02 HEADING-LINE.
04 FILLER PIC X(9) VALUE 'PART NO'.

294 IMS/VS Application Programming

EXA00110
EXA00120
EXA00130
EXA00140
EXA00150
EXA00160
EXA00170
EXA00180
EXA00190
EXA00200
EXA002l0
EXA00220
EXA00230
EXA00240
EXA002S0
EXA00260
EXA00270
EXA00280
EXA00290
EXA00300
EXA003l0
EXA00320
EXA00330
EXA00340
EXA003S0
EXA00360
EXA00370
EXA00380
EXA00390
EXA00400
EXA00410
EXA00420
EXA00430
EXA00440
EXA004S0
EXA00460
EXA00470
EXA00480
EXA00490
EXA00500
EXAOOSI0
EXAOOS20
EXA00530
EXA00540
EXA005S0
EXA00560
EXAOOS70
EXA00580
EXA00590

"EXA00600
EXA00610
EXA00620
EXA00630
EXA00640
EXA00650
EXA00660
EXA00670
EXA00680
EXA00690
EXA00700
EXA00710
EXA00720
EXA00730
EXA00740
EXA00750
EXA00760
EXA00770
EXA00780
EXA00790
EXA00800
EXA00810
EXA00820
EXA00830

(

(
'.

)

)

)

04 FIllER PIC X(II) VALUE 'OLD PRICE'.
04 FIllER PIC X(II) VALUE 'NEW PRICE'.
04 FIllER PIC X(49) VALUE 'COMMENTS'.

02 DETAIL-lINE.
04 QUT-PARTNO PIC X(8).
04 FIllER PIC X.
04 OUT-OLD-PRICE PIC Z(6)9.99.
04 FIllER PIC X.
04 OUT-NEW-PRICE PIC Z(6)9.99.
04 FIllER PIC X.
04 COMM~NTS PIC X(40).

02 TOTAL-lINE.
04 FIllER PIC X(40) VALUE

'TRANSACTIONS PROCESSED - VALID'.
04 OUT-VALID PIC Z(4)9.
04 FIllER PIC X(IO) VALUE' INVALID'
04 OUT-INVALID PIC Z(4)9.

01 DB-IOAREA.
02 DB-PARTNO
02 FILLER
02 DB-PRICE
02 FIllER

01 ASA-CTl-CHARS.

PIC X(8).
PIC X(45).
PIC 9(6)V99.
PIC X(19).

02 ASA-NEWPAGE PIC X VALUE '1'.
02 ASA-SPACE-ONE PIC X VALUE' '.
02 ASA-SPACE-TWO PIC X VALUE '0'.

* SEGMENT SEARCH ARGUMENT

01 SSA.
02 FIllER
02 SSA-PARTNO
02 FILLER

lINKAGE SECTION.

PIC X(19) VALUE 'SEIPART (FEIPGPNR ='
PIC X(8).
PIC X VALUE ')'.

* IOPCB FOR RETRIEVING MESSAGES, AND ISSUING CHKP/XRST CAllS

01 IOPCB.
02 FIllER
02 TPSTATUS
02 FIllER

PIC X(10).
PIC X(2).
PIC X(20).

* MODIFIABLE ALTERNATE PCB USED TO SWITCH A TOTALS MESSAGE * TO A SUPERVISOR'S TERMINAL

01 AlTPCB.
02 AlTPCB-DEST PIC X(8).
02 FIllER PIC X(2).
02 AlTSTATUS PIC X(2).
02 FILLER PIC X(10).

* DATA BASE PCB FOR THE PARTS DATA BASE

01 DBPCB.
02 FILLER
02 DBSTATUS
02 FIllER

PIC X(10).
PIC X(2).
PIC X(20).

* GSAM PCB FOR THE OUTPUT REPORT FILE

01 GSAMPCB-OUT.
02 FILLER PIC X(10).
02 GSTATUS-OUT PIC X(2).
02 FILLER PIC X(20).

PROCEDURE DIVISION.

* ON ENTRY IMS PASSES THE FOLLOWING PCB ADDRESSES:

* IOPCS - INPUT TRANSACTIONS FROM THE MESSAGE QUEUE

EXA00840
EXA00850
EXA00860
EXA00870
EXA00880
EXA00890
EXA00900
EXA00910
EXA00920
EXA00930
EXA00940
EXA00950
EXA00960
EXA00970
EXA00980
EXA00990
EXAOI000
EXAOI010
EXAOI020
EXAOI030
EXAOI040
EXA01050
EXA01060
EXAOI070
EXA01080
EXAOI090
EXAOII00
EXAOl110
EXAOl120
EXAOl130
EXAOl140
EXAOl150
EXAOl160
EXAOl170
EXA01180
EXA01190
EXA01200
EXA01210
EXA01220
EXA01230
EXA01240
EXA01250 "
EXA01260
EXA01270
EXA01280
EXA01290
EXA01300
EXA01310
EXA01320
EXA01330
EXA01340
EXA01350
EXA01360
EXA01370
EXA01380
EXA01390
EXA01400
EXA01410
EXA01420
EXA01430
EXA01440
EXA01450
EXA01460
EXA01470
EXA01480
EXA01490
EXA01500
EXA01510
EXA01520
EXA01530
EXA01540
EXA01550
EXA01560

Appendix B. Sample Batch Message Program 295

* AlTPCB - lTERM FOR SWITCHING TOTALS MESSAGE * DBPCB - PARTS DATA BASE * GSAMPCB-OUT - OUTPUT REPORT FILE

ENTRY 'DlITCBl' USING IOPCB, AlTPCB, DBPCB, GSAMPCB-OUT.

* FIRST CAll IS THE XRST

CAll 'CBlTDlI' USING XRST, IOPCB, IOAREA-lEN,
RESTART-WORKAREA, COUNTER-lEN, COUNTERS.

IF TPSTATUS NOT EQUAL SPACES
THEN CAll 'DFSOAER' USING

IOPCB, BAD-DC-CAll, COUNTERS, ERROPT.

* IF THE RESTART WORKAREA IS NOT BLANK, THE PROGRAM * IS BEING RESTARTED, SO RESET THE CHECKPOINT ID FIELD

IF RESTART-WORKAREA NOT EQUAL SPACES
MOVE RESTART-CHKPT TO CHKPT-ID.

* READ THE FIRST MESSAGE

PERFORM READ-INPUT THRU READ-INPUT-END

* PROCESS THE MESSAGES UNTIL A QC STATUS CODE IS RECEIVED * OR AN XD ON A CHECKPOINT CAll WHICH INDICATES THAT THE * ONLINE SYSTEM IS BEING CLOSED DOWN

PERFORM PROCESS-INPUT THRU PROCESS-INPUT-END
UNTIL NO-MORE OR CLOSE-DOWN.

* PRINT THE TOTALS lINE AND SEND A MESSAGE TO * TO THE SUPERVISOR'S TERMINAL VIA THE ALTERNATE PCB

PERFORM PRINT-TOTALS THRU PRINT-TOT~lS-END.
GOBACK.

PROCESS-INPUT.
MOVE SPACES TO DETAIL-lINE.
MOVE IN-PARTNO TO SSA-PARTNO.
PERFORM READ-DB THRU READ-DB-END.
IF DBSTATUS = 'GE'

THEN MOVE 'NOT ON FILE' TO COMMENTS
MOVE IN-PARTNO TO QUT-PARTNO
ADD 1 TO INVAlID-CTR

ELSE MOVE DB-PRICE TO OUT-OLD-PRICE
MOVE NEW-PRICE TO DB-PRICE, OUT-NEW-PRICE
MOVE DB-PARTNO TO OUT-PARTNO
PERFORM UPDATE-DB THRU UPDATE-DB-END
MOVE 'PRICE UPDATED' TO COMMENTS
ADD 1 TO VAlID-CTR.

PERFORM PRINT-lINE THRU PRINT-lINE-END
ADD 1 TO CHKPT-lIMIT.

* IF THE CHECKPOINT-lIMIT HAS BEEN REACHED, TAKE * A CHECKPOINT AND INCREMENT THE ID COUNTER * THIS WIll ALSO CAUSE A MESSAGE TO BE RETURNED

IF CHKPT-lIMIT-REACHED
THEN ADD 1 TO CHKPT-ID-CTR

MOVE CHKPT-ID TO PASS-CHKPT
PERFORM CHKPT-RTN THRU CHKPT-RTN-END
MOVE 0 TO CHKPT-lIMIT

* OTHERWISE READ THE NEXT MESSAGE FROM THE QUEUE

ELSE PERFORM READ-INPUT THRU READ-INPUT-END.

PROCESS-INPUT-END.
EXIT.

296 IMS/VS Application Programming

EXA01570
EXA01580
EXA01590
EXA01600
EXA01610
EXA01620
EXA01630
EXA01640
EXA01650
EXA01660
EXA01670
EXA01680
EXA01690
EXA01700
EXA01710
EXA01720
EXA01730
EXA01740
EXA01750
EXA01760
EXA01770
EXA01780
EXA01790
EXA01800
EXA01810
EXA01820
EXA01830
EXA01840
EXA01850
EXA01860
EXA01870
EXA01880
EXA01890
EXA01900
EXA01910
EXA01920
EXA01930
EXA01940
EXA01950
EXA01960
EXA01970
EXA01980
EXA01990
EXA02000
EXA02010
EXA02020
EXA02030
EXA02040
EXA02050
EXA02060
EXA02070
EXA02080
EXA02090
EXA02100
EXA02110
EXA02120
EXA02130
EXA02140
EXA02150
EXA02160
EXA02170
EXA02180
EXA02190
EXA02200
EXA02210
EXA02220
EXA02230
EXA02240
EXA02250
EXA02260
EXA02270
EXA02280
EXA02290

(

(,

)

\
)

-- -----------------------_._._._--- ----------------------_.

PRINT-LlNE.
IF TOP-OF~PAGE

THEN MOVE HEADING-LINE TO OUTPUT-DATA
MOVE ASA-NEWPAGE TO OUTPUT-ASA
MOVE 0 TO LINE-CTR
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END
MOVE ASA-SPACE-TWO TO OUTPUT-ASA.

MOVE DETAIL-LINE TO OUTPUT-DATA
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END
ADD 1 TO LINE-CTR
IF LINE-CTR = 1 MOVE ASA-SPACE-ONE TO OUTPUT-ASA.

PRINT-LINE-END.
EXIT.

PRINT-TOTALS.
MOVE VALID-CTR TO OUT-VALID
MOVE INVALID-CTR TO OUT-INVALID
MOVE TOTAL-LINE TO OUTPUT-DATA
MOVE ASA-NEWPAGE TO OUTPUT-ASA
PERFORM ISRT-GSAM-OUTPUT THRU ISRT-GSAM-OUTPUT-END
MOVE SPACES TO OUTPUT-ASA
PERFORM ISRT-ALTPCB THRU ISRT-ALTPCB-END.

PRINT-TOTALS-END.
EXIT.

* THE FOLLOWING ROUTINES EXECUTE THE DL/I CALLS * BUT DO NOT DO ANY APPLICATION PROCESSING

READ-INPUT. ;
CALL 'CBLTDLI' ,USING GU .. IOPCB .. INPUT-MSG.
IF TPSTATUS = 'QC'

THEN MOVE 1 TO END-SWITCH
ELSE IF TPSTATUS NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
IOPCB .. BAD-DC-CALL .. INPUT-MSG .. ERROPT.

READ-INPUT-END.
EXIT.

READ-DB.
CALL 'CBLTDLI' USING GHU .. DBPCB .. DB-IOAREA .. SSA.
IF DBSTATUS = SPACES OR 'GE'

THEN NEXT SENTENCE
ELSE CALL 'DFSOAER' USING

DBPCB .. BAD-DB-CALL .. DB-IOAREA .. ERROPT.
READ-DB-END.

EXIT.

UPDATE..;;DB.
CALL 'CBLTDLI' USING REPL .. DBPCB .. DB-IOAREA.
IF DBSTATUS NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
DBPCB .. BAD-DB-CALL, DB-IOAREA .. ERROPT.

UPDATE-DB-END.
EXIT.

ISRT-GSAM-OUTPUT.
CALL 'CBLTDLI' USING ISRT .. GSAMPCB-OUT .. OUTPUT-LINE.
IF GSTATUS-OUT NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
GSAMPCB-OUT .. BAD-DB-CALL .. OUTPUT-LINE .. ERROPT.

ISRT-GSAM-OUTPUT-END.
EXIT.

ISRT-ALTPCB.
CALL 'CBLTDLI' USING CHNG .. ALTPCB .. SUPER-LTERM
IF ALTSTATUS NOT EQUAL SPACES

-THEN CALL 'DFSOAER' USING
ALTPCB .. BAD-DC-CALL .. SUPER-LTERM .. ERROPT.

CALL 'CBLTDLI' USING ISRT .. ALTPCB .. OUTPUT-MSG.
IF ALTSTATUS NOT EQUAL SPACES

THEN CALL 'DFSOAER' USING
ALTPCB .. BAD-DC-CALL .. OUTPUT-MSG .. ERROPT.

EXA02300
EXA02310
EXA02320
EXA02330
EXA02340
EXA02350
EXA02360
EXA02370
EXA02380
EXA02390
EXA02400
EXA02410
EXA02420
EXA02430
EXA02440
EXA02450
EXA02460
EXA02470
EXA02480
EXA02490
EXA02500
EXA02510
EXA02520
EXA02530
EXA02540
EXA02550
EXA02560
EXA02570
EXA02580
EXA02590
EXA02600
EXA02610
EXA02620
EXA02630
EXA02640
EXA02650
EXA02660
EXA02670
EXA02680
EXA02690
EXA02700
EXA02710
EXA02720
EXA02730
EXA02740
EXA02750
EXA02760
EXA02770
EXA02780
EXA02790
EXA02800
EXA02810
EXA02820
EXA02830
EXA02840
EXA02850
EXA02860
EXA02870
EXA02880
EXA02890
EXA02900
EXA02910
EXA02920
EXA02930
EXA02940
EXA02950
EXA02960
EXA02970
EXA02980
EXA02990
EXA03000
EXA03010
EXA03020

Appendix B. Sample Batch Message Program 297

ISRT-ALTPCB-END.
EXIT.

CHKFT-RTii.
CALL 'CBLTDLI' USING CHKP, IOPCB, IOAREA-LEN, CHKPT-AREA,

COUNTER-LEN, COUNTERS.
IF TPSTATUS = 'XD'

THEN MOVE 1 TO CLOSE-SWITCH
ELSE IF TPSTATUS = 'QC'

THEN MOVE 1 TO END-SWITCH
ELSE IF TPSTATUS NOT EQUAL SPACES

CALL 'DFSOAER' USING
IOPCB, BAD-DC-CALL, CHKPT-ID, ERROPT.

CHKPT-RTN-END.
EXIT.

298 IMS/VS Application Programming

EXA03030
EXA03040 . '
EXA03050
EXA03060
EXA03070
EXA03080
EXA03090
EXA03100
EXA03110
EXA03120
EXA03130
EXA03140
EXA03150
EXA03160
EXA03170
EXA00440

(
...

(

(

) APPENDIX C. SAMPLE MESSAGE PROCESSING PROGRAM

This program processes the Primer sample parts data base.

)

)
I

Appendix C. Sample Massage Processing Program 299

PE4NINQ: PROCEDURE (C1PC_PTR,D1PC_PTR) OPTIONS (MAIN);

1* * * DEC l A RAT ION S

DCL 1 C1PC BASED (C1PC PTR),
2 FILL CHAR (10)7
2 STAT CHAR (2),

1 D1PC BASED (D1PC_PTR) LIKE C1PC;

DCL 1 INPUT_MESSAGE,
2 FILL1 CHAR (6),
2 TRANS CODE CHAR (9),
2 FEOOGCNR CHAR (6),
2 FILL2 CHAR (60),

lOUT MESSAGE,
2 OUT_LL INIT (111) FIXED BINARY (31),
2 OUT_ZZ INIT (0) FIXED BINARY (15),
2 OUT_DETAILS,

3 FE2PCNUM CHAR (6),
3 (FE2PCNAM,

FE2PCADR,
FE2PCCTY) CHAR (20),

3 FE2PCPCD CHAR (6),
2 OUT_ERROR CHAR (35),

1 SE2PCUST,
2 CUST DETAILS LIKE OUT_DETAILS,
2 FILL-CHAR (40),

1 CUSTOr'1ER SSA,
2 FILL1 CHAR (19) INIT ('SE2PCUST(FE2PCNUM ='),
2 SSA_CNUM CHAR (6),
2 FILL2 CHAR (1) INIT (')');

DCL «GU IN IT ('GU'),
ISRT INIT ('ISRT'),
ERROPT INIT ('1'» CHAR (4),

(MODNAME INIT ('OE4CNI01'),
BAD CALL INIT ('BAD CALL'» CHAR (8),

(THREE INIT (3),
FOUR lNIT (4» FIXED BINARY (31» STATIC,

(CIPC_PTR,D1PC_PTR) POINTER,
(PLITDLI, DFSOAER OPTIONS (ASSEMBLER» ENTRY;

/* * * PRO C E S S

READ_MESSAGE:

M E S SAG E S * * */

CALL PLITDLI (THREE, GU,C1PC_PTR, INPUT_MESSAGE);
IF C1PC.STAT = 'QC' THEN RETURN;
IF CIPC.STAT ~= , ,

THEN CALL DFSOAER (CIPC,BAD_CALL,INPUT_MESSAGE,ERROPT);
SSA_CNUM = FEOOGCNR;

/* * * REA D C U S TOM E R D A T A BAS E * * */
CALL PLITDLI (FOUR,GU,DIPC_PTR,SE2PCUST,CUSTOMER_SSA);
IF D1PC.STAT = , , THEN DO;

OUT_DETAILS = CUST_DETAILS;
OUT_ERROR = , 'i
END;

ELSE IF D1PC.STAT = 'GE' THEN DO;
OUT_ERROR = 'INVALID NUMBER - PLEASE RE-ENTER';
OUT DETAILS = , 'i
END;

ELSE CALL DFSOAER (D1PC,BAD_CALL,SE2PCUST,ERROPT);

/* * * INS E R T M E S SAG E * * */
CAll PlITDLI (FOUR,ISRT,C1PC_PTR,OUT_MESSAGE,MODNAME);
IF CIPC.STAT ~= , ,

THEN CALL DFSOAER (C1PC,BAD_CAll,OUT_MESSAGE,ERROPT);

300 IMS/VS Application Programming

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000

(
I

........ ~

(

(

\

:
,/

)
I

GO TO READ~MESSAGE;

END PE4NINQ;

-----------.---........... -------------

00074000
00075000
00076000

Appendix C. Sample Message Processing Program. 301

APPENDIX D. SAMPLE CONVERSATIONAL MPP

This program updates the price field of the root segment of a new
price for that part. There are two passes in the conversation:

• To start the conversation, the person at the terminal enters
the transaction code and the number of the part whose price
will be updated.

•

The progam retrieves the root segment for that part from the
parts data base by qualifying the SSA of the part number. The
program also saves the part number and the current price from
the root segment in the SPA, then sends an output message to
the terminal that gives the current price.

If the part number that was entered is invalid, the program
sends an error message to the terminal and ends the
conversation by inserting blanks in the area of the SPA that
contains the transaction code (the first 8 bytes).

The person at the terminal then enters the new price~ Using
the part number stored in the SPA, the program retrieves the
root segment and checks to see if the price in the SPA matches
the price in the data base segment. If the price in the data
base hasn't been updated, the program updates the data base
with the new price and sends a message to the terminal giving
the old and new prices. The program terminates the
conversation by inserting blanks in the transaction code area
of the SPA. The reason that the program has to check the price
during pass 2 is that you can't enqueue a data base record
across passes of a conversation. For example, someone at
another terminal could have entered the same transaction and
completed it before the first person entered the data for
pass.

302 IMS/VS Application Programming

(,

(

)

. _----------- ._----_. __ " --... _------_ _-_ - .. _ _-_ .. - ...

IDENTIFICATroN"DIVISION.
PROGRAM-ID. 'SAMPlE4'.
REMARKS.

THIS PROGRAM IS A CONVERSATIONAL MESSAGE PROCESSING
PROGRAM WHICH UPDATES THE PRICE FIELD IN THE ROOT
SEGMENT OF THE PARTS DATA BASE.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Dl/I FUNCTION CODES

77
77
77
77
77

FUNC
GU
GN
ISRT
REPL

PIC X(4).
PIC X(4) VALUE 'GU
PIC X(4) VALUE 'GN .
PIC X(4) VALUE 'ISRT'.
PIC X(4) VALUE 'REPl'.

* THIS SWITCH IS SET TO 1 IF A QC IS RETURNED WHEN * RETRIEVING THE NEXT MESSAGE.

77 END-SWITCH PIC X VALUE '0'.
88 NO-MORE-INPUT VALUE '1'.

* PARAMETERS USED BY DFSOAER STATUS CODE CHECKING ROUTINE

01 DFSOAER-FIElDS.
02 ERROPT PIC X(4) VALUE '1 .
02 BAD-DB-CAll PIC X(8) VALUE 'DBADCAll'.
02 BAD-DC-CAll PIC X(8) VALUE 'CBADCALl'.

* SCRATCH PAD AREA

01 SPA.
02 FIllER PIC X(6).
02 SPA-TRANCODE PIC XCS).

* THIS FIELD IS SET TO 1 DURING PASS 1 PROCESSING

02 PASS-COUNT PIC S9(3) COMPo
88 FIRST-PASS VALUE +0.

02 SPA-PARTNO PIC X(8).
02 SPA-OLD-PRICE PIC 9(6)V99.
02 FIllER PIC X(100).

01 PASS1-INPUT.
02 IN-ll1 PIC S9(3) COMPo
02 IN-ZZ1 PIC S9(3) COMPo
02 IN-PARTNO PIC xes).
02 FIllER PIC X(80).

01 PASS2-INPUT.
02 IN-ll2 PIC S9(3) COMPo
02 IN-ZZ2 PIC S9(3) COMPo
02 NEW-PRICE PIC 9(6)V99.
02 FILLER PIC X(100).

01 OUTPUT-MSG.
02 OUT-ll PIC S9(3) COMP VALUE +72.
02 OUT-ZZ PIC S9(3) COMP VALUE +0.
02 OUT-DATA.

04 OUT-PARTNO PIC X(8).
04 OUT-OLD-PRICE PIC Z(6)9.99.
04 OUT-NEW-PRICE PIC Z(6)9.99.
04 COMMENTS PIC X(40).

01 DB-IOAREA.
02 DB-PARTNO
02 FILLER
02- DB-PRICE
02 FIllER

PIC X(8).
PIC X(4S).
PIC 9(6)V99.
PIC X(19).

EXAOOII0
EXA00120
EXA00130
EXA00140
EXA00150
EXA00160
EXA00170
EXA00180
EXA00190
EXA00200
EXA00210
EXA00220
EXA00230
EXA00240
EXA002S0
EXA00260
EXA00270
EXA00280
EXA00290
EXA00300
EXA00310
EXA00320
EXA00330
EXA00340
EXA00350
EXA00360
EXA00370
EXA00380
EXA00390
EXA00400
EXA00410
EXA00420
EXA00430
EXA00440
EXA004S0
EXA00460
EXA00470
EXA00480
EXA00490
EXAOOSOO
EXAOOS10
EXAOOS20
EXAOOS30
EXAOOS40
EXAOOSSO
EXA00560
EXA00570
EXA00580
EXA00590
EXA00600
EXA00610
EXA00620
EXA00630
EXA00640
EXA00650
EXA00660
EXA00670
EXA00680
EXA00690
EXA00700
EXA00710
EXA00720
EXA00730
EXA00740
EXA00750
EXA00760
EXA00770
EXA00780
EXA00790
EXA00800
EXA00810
EXA00820
EXA00830

Append;x D. Sample Conversat;onal MPP 303

* SEGMENT SEARCH ARGUMENT

01 SSA.
02 FILLER PIC X(19) VALUE 'SEIPART (FE1PGPNR ='
02 SSA-PARTNO PIC X(8).
02 FILLER PIC X VALUE ')'.

LINKAGE SECTION.

01 IOPCB.
02 FILLER PIC X(10).
02 TPSTATUS PIC X(2).
02 FILLER PIC X(20).

01 DBPCB.
02 FILLER PIC X(10).
02 DBSTATUS PIC X(2).
02 FILLER PIC X(20).

PROCEDURE DIVISION.

* ON ENTRY IMS PASSES THE FOLLOWING PCB ADDRESSES:

* IOPCB - FOR RETRIEVING THE SPA AND INPUT MESSAGE SEGMENT * DBPCB - PARTS DATA BASE

ENTRY 'DLITCBL' USING IOPCB, DBPCB.
PERFORM READ-SPA THRU READ-SPA-END
PERFORM MAINLINE THRU MAINLINE-END

UNTIL NO-MORE-INPUT.
GOBACK.

MAINLINE.

* HERE WE CHECK A FIELD IN THE SPA TO SEE IF IT IS * BINARY ZEROES, WHICH INDICATES THAT THIS IS THE * FIRST PASS OF THE CONVERSATION.

IF FIRST-PASS PERFORM PASS1 THRU PASSI-END
ELSE PERFORM PASS2 THRU PASS2-END.

* AFTER PERFORMING THE NECESSARY DATA BASE PROCESSING * WE INSERT THE SCRATCH PAD AREA AND A MESSAGE TO * TO THE OPERATOR. * THEN WE RETRIEVE ANOTHER MESSAGE FROM THE INPUT MESSAGE * QUEUE. IF A QC STATUS CODE IS RECEIVED, A SWITCH * IS SET ON, AND THE PROGRAM WILL TERMINATE. * OTHERWISE THE MAINLINE LOOP IS REPEATED.

PERFORM ISRT-SPA THRU ISRT-SPA-END
PERFORM ISRT-MSG THRU ISRT-MSG-END
PERFORM READ-SPA THRU READ-SPA-END.

MAINLINE-END.
EXIT.

* PASS 1 PROCESSING

PASS1.
* READ THE INPUT MESSAGE CONTAINING THE PART NUMBER

PERFORM READ-PASS! THRU READ-PASSI-END.
MOVE SPACES TO OUT-DATA

* SET UP THE SSA AND FUNCTION CODE FOR THE DATA BASE CALL
MOVE IN-PARTNO TO SSA-PARTNO, OUT-PARTNO
MOVE GU TO FUNC.
PERFORM READ-DB THRU READ-DB-END

* IF THE PART NUMBER IS AN INVALID KEY, SET UP AN * ERROR MESSAGE FOR THE OPERATOR, AND BLANK THE TRANSACTION * CODE IN THE SPA TO TERMINATE THE CONVERSATION

304 IMS/VS Application Programming

EXA00840
EXA 0 08-5-0
EXA00860
EXA00870
EXA00880
EXA00890
EXA00900
EXA00910
EXA00920
EXA00930
EXA00940
EXA00950
EXA00960
EXA00970
EXA00980
EXA00990
EXA01000
EXA01010
EXA01020
EXAOI030
EXAOI040
EXAOI050
EXAOI060
EXAOI070
EXAOI080
EXAOI090
EXAOII00
EXA01110
EXA01120
EXA01130
EXA01140
EXA01150
EXA01160
EXA01170
EXAOl180
EXAOl190
EXA01200
EXA01210
EXA01220
EXA01230
EXA01240
EXA01250
EXA01260
EXA01270
EXA01280
EXA01290
EXA01300
EXA01310
EXA01320
EXA01330
EXA01340
EXA01350
EXA01360
EXA01370
EXA01380
EXA01390
EXA01400
EXA01410
EXA01420
EXA01430
EXA01440
EXA01450
EXA01460
EXA01470
EXA01480
EXA01490
EXA01500
EXA01510
EXA01520
EXA01530
EXA01540
EXA01550
EXA01560

(
\ -',

(

(
\..

)

)

IF DBSTATUS = 'GE'
MOVE 'NOT ON FILE' TO COMMENTS
MOVE SPACES TO SPA-TRANCODE

----_ __ ._--------

* IF THE PART NUMBER IS A VALID KEY, STORE THE KEY AND * THE CURRENT PRICE IN THE SPA, AND CHANGE THE SPA * INDICATOR FIELD TO 1, TO INDICATE THAT PASS 1 HAS BEEN * SUCCESSFUllY COMPLETED.

ELSE MOVE DB-PRICE TO SPA-OLD-PRICE, OUT-OLD-PRICE
MOVE IN-PARTNO TO SPA-PARTNO
MOVE +1 TO PASS-COUNT
MOVE '·ENTER NEW PRICE' TO COMMENTS.

PASS1-END.
EXIT.

* PASS 2 PROCESSING

PASS2.

* READ THE INPUT MESSAGE

PERFORM READ-PASS2 THRU READ-PASS2-END.

* SET UP THE SSA AND FUNCTION CODE FOR THE DATA BASE CAll * AND MOVE THE OLD PRICE TO THE OUTPUT MESSAGE AREA

MOVE SPACES TO OUT-DATA
MOVE SPA-PART NO TO SSA-PARTNO, OUT-PARTNO
MOVE SPA-OLD-PRICE TO OUT-OLD-PRICE
MOVE'GHU' TO FUNC
PERFORM READ-DB THRU READ-DB-END

* IF THE DATA BASE RECORD HAS BEEN DELETED SINCE PASS 1 * (BY SOME OTHER TRANSACTION TYPE), SEND AH ERROR * MESSAGE TO THE OPERATOR

IF DBSTATUS = 'GE'
MOVE 'NOT ON FILE' TO COMMENTS

* OTHERWISE UPDATE THE DATA BASE AND MOVE THE HEW * PRICE TO THE OUTPUT MESSAGE AREA

ELSE IF SPA-OLD-PRICE = DB-PRICE
THEN MOVE HEW-PRICE TO DB-PRICE, OUT-NEW-PRICE

PERFORM UPDATE-DB THRU UPDATE-DB-END
MOVE ' PRICE CHANGED' TO COMMENTS

ELSE MOVE ' PRICE ALREADY CHANGED' TO COMMENTS
MOVE DB-PRICE TO OUT-NEW-PRICE.

* BLANK THE TRANSACTION CODE IN THE SPA TO TERMINATE THE * CONVERSATION AT THE END OF THIS PASS

MOVE SPACES TO SPA-TRANCODE.

PASS2-END.
EXIT.

* THE FOllOWING SUB ROUTINES PERFORM THE DlI CAllS * BUT DO NO APPLICATION PROCESSING OTHER THAN * CHECKING FOR VALID STATUS CODES.

READ-SPA.
CAll 'CBlTDlI' USING GU, IOPCB, SPA.
IF TPSTATUS = 'QC' MOVE '1' TO END-SWITCH
ELSE IF TPSTATUS NOT EQUAL SPACES

THEN CAll 'DFSOAER' USING
IOPCB, BAD-DC-CAll, SPA, ERROPT.

READ-SPA-END.
EXIT.

READ-PASS1.

EXA01570
EXA01580
EXA01590
EXA01600
EXA01610
EXA01620
EXA01630
EXA01640
EXA01650
EXA01660
EXA01670
EXA01680
EXA01690
EXA01700
EXA01710
EXA01720
EXA01730
EXA01740
EXA01750
EXA01760
EXA01770
EXA01780
EXA01790
EXA01800
EXA01810
EXA01820
EXA01830
EXA01840
EXA01850
EXA01860
EXA01870
EXA01880
EXA01890
EXA01900
EXA01910
EXA01920
EXA01930
EXA01940
EXA01950
EXA01960
EXA01970
EXA01980
EXA01990
EXA02000
EXA02010
EXA02020
EXA02030
EXA02040
EXA02050
EXA02060
EXA02070
EXA02080
EXA02090
EXA02100
EXA02110
EXA02120
EXA02130
EXA02140
EXA02150
EXA02160
EXA02170
EXA02180
EXA02190
EXA02200
EXA02210
EXA02220
EXA02230
EXA02240
EXA02250
EXA02260
EXA02270
EXA02280
EXA02290

Appendix D. Sample Conversational MPP 305

CALL 'CBLTDLI' USING GN, IOPCB, PASSI-INPUT.
IF TPSTATUS NOT EQUAL SPACES

CALL 'DFSOAER' USING
IOPCB, BAD-DC-CALL, PASSI-INPUT, ERROPT.

READ-PASSI-END.
EXIT.

READ-PASS2.
'CALL 'CBLTDLI' USING GN, IOPCB, PASS2-INPUT.

IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

IOPCB, BAD-DC-CALL, PASS2-INPUT, ERROPT.
READ-PASS2-END.

EXIT.

READ-DB.
CALL 'CBLTDLI' USING FUNC, DBPCB, DB-IOAREA, SSA.
IF DBSTATUS = SPACES OR 'GE'
THEN NEXT SENTENCE
ELSE CALL 'DFSOAER' USING

DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
READ-DB-END.

EXIT.

UPDATE-DB.
CALL 'CBLTDLI' USING REPL, DBPCB, DB-IOAREA.
IF DBSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

DBPCB, BAD-DB-CALL, DB-IOAREA, ERROPT.
UPDATE-DB-END.

EXIT.

ISRT-SPA.
CALL 'CBLTDLI' USING ISRT, IOPCB, SPA.
IF TPSTATUS NOT EQUAL SPACES
THEN CALL ~DFSOAER' USING

IOPCB, BAD-DC-CALL, SPA, ERROPT.
ISRT-SPA-END.

EXIT.

ISRT-MSG.
CALL 'CBLTDLI' USING ISRT, IOPCB, OUTPUT-MSG.
IF TPSTATUS NOT EQUAL SPACES
THEN CALL 'DFSOAER' USING

IOPCB, BAD-DC-CALL, OUTPUT-MSG, ERROPT.
ISRT-MSG-END.

EXIT.
--~-----------------

306 IMS/VS Application Programming

EXA02300
EXA02310
EXA02320
EXA02330
EXA02340
EXA02350
EXA02360
EXA02370
EXA02380
EXA02390
EXA02400
EXA02410
EXA02420
EXA02430
EXA02440
EXA02450
EXA02460
EXA02470
EXA02480
EXA02490
EXA02500
EXA02510
EXA02520
EXA02530
EXA02540
EXA02550
EXA02560
EXA02570
EXA02580
EXA02590
EXA02600
EXA02610
EXA02620
EXA02630
EXA02640
EXA02650
EXA02660
EXA02670
EXA02680
EXA02690
EXA02700
EXA02710
EXA02720
EXA02730
EXA02740
EXA02750
EXA02760

I

/--

"

(

(
"

" I
I

)

--------. ------ ._-... _._._._--_ .. - ----_ _._ .. _- -----

APPENDIX E. SAMPLE STATUS CODE ERROR ROUTINE (DFSOAERJ

This sample status code error routine is provided as an example of
an error routine. All of the sample programs call it. It is part
of the Primer function.

Appendix E. Sample Status Code Error Routine (DFSOAER) 307

**
* IMS/VS PRIMER SAMPLE STATUS CODE ERROR ROUTINE
**
* **

TITLE 'IMS/VS PRIMER SAMPLE PCB DSECT MACRO'
**
*

. *
&NM

.L100
&NM
.LOOO

.*
· *
.*
.*
.DBOOO
.*
&NM
&NM.DBDN
&NM.LEVL
&NM.STAT
&NM.PROC
&NM.RESV
&NM.SEGN
&NM.KFBL
&NM.NSSG
&NM.KFBA

.*
· * .*
· * .DCOOO
· * &NM
&NM.LTNM
&NM.RESV
&NM.STAT
&NM.PRFX
&NM.DATE
&NM.TIME
&NM.MSEQ
&NM.MODN

MACRO
MOOPCB &TYPE=DB,

&PCB=DIPC

LCLC
SETC

&NM
'D1PC'

PCB TYPE TO BE GENERATED (DB OR DC)
DSECT NAME,MAX 4 CHAR, ALSO USED,
AS FIRST 4 CHAR OF PCB SUB FIELDS .

AIF (T'&PCB EQ 'O').LOOO
AIF (K'&PCB LE 4).L100 CORRECT LENGTH?
MNOTE *,' PCB= OPERAND IS TOO LONG, TRUNCATED TO 4CHAR'
ANOP
SETC '&PCB'(1,4)
ANOP
AIF
AIF

('&TYPE' EQ 'DB').DBOOO
('&TYPE' EQ 'DC').DCOOO

MNOTE *,'TYPE= OPERAND IS INVALID, "DB" ASSUMED'

ANOP

DSECT
DS CL8
DS CL2
DS CL2
DS CL4
DS CL4
DS CL8
DS F
DS F
DS OC
MEXIT

ANOP

DSECT
DS CL8
DS CL2
DS CL2
DS OCL12
DS PL4
DS PL4
DS F
DS CL8
MEXIT
MEND

DATABASE PCB:

LAYOUT OF A DL/I DATABASE PCB
DATABASE NAME
SEGMENT HIERARCHY LEVEL
STATUSCODE
PROCESSING OPTIONS
RESERVED
SEGMENTNAME FEEDBACK
LENGTH OF KEY FEEDBACK AREA
NUMBER OF SENSITIVE SEGMENTS
KEY FEEDBACK AREA

DC - PCB:

LAYOUT OF A DC-PCB
SOURCE/DESTINATION LTERM NAME
RESERVED
STATUSCODE
INPUTPREFIX
CURRENT DATE
CURRENT TIME
INPUT MESSAGE SEQUENCE NUMBER
MESSAGE FORMAT OUTPUT DESCRIPTION NAME

* **
* END OF IMS/VS PRIMER SAMPLE MACROS
**
* LCLC &PGMID

LCLC &INVOMAX
&PGMID SETC 'DFSOAER'
&INVOMAX SETC '20' DEFAULT VALUE FOR MAX. NUMBER OF CALLS
* **

TITLE 'IMS/VS PRIMER SAMPLE STATUS CODE ERROR ROUTINE &PGMID'
~*************
* * *
308 IMS/VS Application Progr~mming

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000

*00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000

(

(,

\

)

· ._---._------._._.- ------------ .. _-_ _---_._. -----

*
* . *
*

FUNCTION: TO BE CALLED BY IMS/VS APPLICATION PROGRAMS
IF AN UNEXPECTED STATUS CODE WAS RECEIVED.

PROCESS: PRINT ESSENTIAL PCB INFORMATION,

ABEND:

INPUT:

OUTPUT

A CALL ID AND UP TO NINE PROGRAM AREAS.
A DDNAME OF DOOAERR IS REQUIRED.
RETURN TO CALLER IS MADE IF REQUESTED,
AND NO ERRORS FOUND.

MESSAGE DFS3125A IS ISUED IF REQUESTED BY CALLER.
DEPENDENT UPON THE REPLY, THE ROUTINE
WILL FORCE EITHER A PROGRAM LOOP, AN ABEND,
OR RETURN TO CALLER.

WE WILL ISSUE USER ABEND 3400 IF:
1. REQUESTED BY USER
2. MAX NUMBER OF INVOCATIONS IS REACHED,

SET BY GLOBAL &INVOMAX
3. ERRORS IN CALL PARAMETERS ARE DETECTED

UPON ENTRY R1 MUST POINT TO PARMLIST:
WITH ADDRESSES OF AT LEAST 4 PARMS:

1. ACPCB) EITHER A DB- OR A DC-PCB
2. ACIDENTIFIER(8 BYTES) OF THE CALL)

WHERE D DENOTES A DB-CALL
AND C DENOTES A DC-CALL

3. A(AREA1) WE WILL DISPLAY 76 CHARACTERS
4. A(OPTIONFIELDS) A 4BYTE FIELD WHERE

BYTE 1: C'l' = ABEND, NO RETURN
THIS IS NORMAL CASE.

C'O' = RETURN TO CALLER
THIS ENABLES MULTIPLE
INVOCATIONS, E.G .
FOR TESTING PURPOSES
IN THAT CASE A 'FINAL'
INVOCATION IS NEEDED:

C'2' = FINAL INVOCATION
PLUS RETURN TO CALLER.

C'3' = MESSAGE DFS3125A
REQUESTED BY CALLER

BYTE 2-4: NOT USED
5-12. A(AREA2) ... A(AREA9) OPTIONAL

ONLY 76 CHARACTERS OF EACH AREA
WILL BE LISTED

FOR EACH PRINT REQUEST, ESSENTIAL PCB INFORMATION
IS PRINTED AND UP TO 9 USER AREAS.

MESSAGES: DFS3125A IF REQUESTED BY CALLER

OS MACRO'S USED: OPEN/CLOSE/DCB/PUT/ABEND

* REGISTER USAGE:
* --
* * * * * * * * * * * * *

REGISTER

o
1
2
3
4
8
9
11
13
14
15

EQUATED

RO
Rl
R2
R3
R4
DBPCBR
DBPCBR
BASE1B
R13
R14
R15

USAGE

OS/VS LINKAGE
OS/VS LINKAGE
WORK
WORK
WORK
DB PCB REGISTER
DC PCB REGISTER
PROGRAM BASE REGISTER
PROGRAM SAVE AREA ADDRESS
OS/VS LINKAGE
OS/VS LINKAGE

*
**************~***

00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000

Appendix E. Sample Status Code Error Routine (DFSOAER) 309

&PGMID

IDLEN
*
* *

* *

EJECT
CSECT
B
DC
DC
DC
EQU

STM

IDLENCO,R15)
CL8'&PGMID'
CL8'&SYSDATE'
CL8'&SYSTIME'
*-&PGMID

14,11,12(13)

BALR BASE1,O
USING *,BASEI

ST
LR
lA
ST
SR

R13,SAVR+4
RIO,R13
R13,SAVR
RI3,8CRIO)
R15,R15

BRANCH AROUND ID
PROGRAM ID.

SAVE REGISTERS, INCLUDING PL1'S

PROVIDE A BASE REGISTER:

CHAIN OLD AND NEW SAVEAREAS

CLEAR

EJECT
**
MAIN EQU *
**
* PICK UP PARAMETERS RECEIVED:
* --------------------------------------

* * * *

* * *

*

MVC
MVC
MVC
MVC
MVI
lR

L
ClI

. BE

ClI
BH
Bl
MVI

PARMIADR,00CR1)
PARM2ADR,04CR1)
PARM3ADR,08CR1)
PARM4ADR,12CR1)
PARM4ADR,X'00'
R3,Rl

R2,PARM4ADR
OCR2),C'3'
MAIN400

SWITCH,C'I'
ABEND2
MAINI00
SWITCH,C'O'

REMOVE HIORDER

CHECK FOR DFS3125 MESSAGE REQUEST

GET CONTROL BYTE
IS IT THREECMESSAGE REQUEST) ?
IF SO, PROCESS IN MAIN400

CHECK FIRST TIME SWITCH

PGM RETURNED AFTER FINAL INVOCATION
OKE, PROCEED
SET FIRST TIME SWITCH OFF

* OPEN DCB IF FIRST TIME THROUGH
* -------------------------OPEN CDOOAERR,COUTPUT»

* * DETERMINE WHAT TO DO:
* MAINI00 EQU

*

ClI
BE
BH
l
lTR
BZ
ClI
BNE
BAl
B

MAIN400 EQU
BAl
l
lA
ST
ClC

* OCR2),C'2'
MAIN900
ABEND
R2,PARM2ADR
R2,R2
ABEND
OCR2),C'D'
MAIN500
RI4,PRTDB
END

FINAL INVOCATION ?

UNKNOWN CONDITION
ADR OF CAllID
TEST IT
IF 0, INVALID CALL, ABEND
IS IT A DB PCB ?

PRINT DB-PCB FIELDS

* MESSAGE REQUESTED
RI4,MESSAGE
R4,INVOKECT
R4,ICR4) ADD ONE TO NUMBER OF INVOCATIONS
R4,INVOKECT
INVOKECT,INVOKMAX

310 IMS/V5 Application Programming

00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160QOO
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000
00186000
00187000
00188000
00189000
00190000
00191000
00192000
00193000
00194000
00195000
00196000
00197000
00198000
00199000
00200000
00201000
00202000
00203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000
00214000
00215000
00216000
00217000
00218000
00219000

(
\ ...

(
"

"
)

\
\

/

----------------- ------- ---------------------------

BE ABEND2 ABEND IF MAX NUMBER IS REACHED
B RETURN

*
MAIN500 EQU * CLI 0(R2),C'C' IS IT A DC PCB ?

BNE ABEND INVALID CALL-ID, ABEND
BAL R14,PRTDC PRINT DC-PCB FIELDS
B END

*
MAIN900 EQU *

MVI SWITCH,C'2' PROVIDE ABEND IF HE COMES BACK
PUT DOOAERR,ENDLINE PRINT FINAL LINE
CLOSE (DOOAERR) CLOSE OUTPUT-DCB
B RETURN

* **
END EQU *
**
*

ABEND
ABEND2

CLC
BE
L
CLI
BE
CLOSE
ABEND

INVOKECT,INVOKMAX
ABEND
R2,PARM4ADR
0(R2),C'0'
RETURN
(DOOAERR)
3400,DUMP

MAXIMUM NR OF INVOCATIONS
IF SO , ABEND
4TH PARM WAS'OPTIONS'
RETURN REQUESTED?
IF YES, CONTINUE
CLOSE DCB

REACHED ?

* **
RETURN EQU * RETURN TO CALLER
**
* L R13,SAVR+4

LM 14,11,12(R13)
SR R15,R15
BR R14

* **
TITLE '&PGMID: PRINT PCB-FIELDS -- DB-PCB'

**
* **
PRTDB EQU * DB-PCB FIELDS TO BE PRINTED
**
* ST
*
*
*

L
LTR
BZ
USING

*
PRTDBIOO EQU
*
*

MVC
L
MVC

L
LA
ST
CVD
UNPK
01
MVC

* PUT
*
*
*
PRTDB200 EQU

R14,SAVER14 RETURN ADDR

FIND PCB TO BE USED:

DBPCBR,PARM1ADR ADR OF PCB
DBPCBR,DBPCBR WAS IT SUPPLIED?
END INVALID, SKIP PROCESSING
DBPC,DBPCBR ADDRESSABILITY OF PCB FIELDS

BUILD 1ST LINE AND DISPLAY IT

LN1HEAD(2),=C'DB'
R2,PARM2ADR ADR OF CALLID
LN1IDEN(8),OCR2) CALL IDENTIFIER

R4,INVOKECT
R4,1(R4) INCREMENT
R4,INVOKECT UPDATE COUNT
R4,WORK2
WORKl(8),WORK2(8)
WORK1+07,X'FO'
LN1COUNT(4),WORK1+4

DOOAERR,LINEI

BUILD 2ND LINE AND DISPLAY IT

00220000
0022100-0
00222000
00223000
00224000
00225000
00226000
00227000
00228000
00229000
00230000
00231000
00232000
00233000
00234000
00235000
00236000
00237000
00238000
00239000
00240000
00241000
00242000
00243000
00244000
00245000
00246000
00247000
00248000
00249000
00250000
00251000
00252000
00253000
00254000
00255000
00256000
00257000
00258000
00259000
00260000
00261000
00262000
00263000
00264000
00265000
00266000
00267000
00268000
00269000
00270000
00271000
00272000
00273000
00274000
00275000
00276000
00277000
00278000
00279000
00280000
00281000
00282000
0"0283000
00284000
00285000
00286000
00287000
00288000
00289000
00290000
00291000
00292000

Appendix E. Sample Status Code Error Routine (DFSOAER) 311

*

MVC LN2DBDNCDBDNLEN),DBPCDBDN
MVC LN2LEVLCLEVLLEN),DBPCLEVL
MVC LN2STATCSTATLEN),DBPCSTAT
MVC LN2PROCCPROCLEN),DBPCPROC
MVC LN2SEGNCSEGNLEN),DBPCSEGN
L R4,DBPCKFBL
CVD R4,WORK2
UNPK WORKl(8),WORK2C8)
01 WORKl+07,X'FO'
MVC LN2KFBL(4),WORK1+4
L R4,DBPCNSSG
CVD R4,WORK2
UNPK WORKI(8),WORK2C8)
01 WORKl+07,X'FO'
MVC LN2NSSG(4),WORK1+4
PUT DOOAERR,LINE2

PRTDB300 EQU

* BUILD 3RD LINE AND DISPLAY IT
* L

LTR
BZ
C
BNH
LA

PRTDB310 EQU
BCTR
EX

PRTDB320 EQU
PUT
MVC
~VC

* * * PRTDB009 L
LA
LA

PRTDBOIO STC
MVC
PUT
CLI
BNE
LA

* *

L
LA
B

PRTDB900 EQU
L
BR

MOVEKFB MVC
EJECT

R4,DBPCKFBL
R4,R4
PRTDB320
R4,=F'73'
PRTDB310
R4,73

* R4,0
R4,MOVEKFB
* DOOAERR,LINE3

LENGTH OF KFB DATA
ZERO ?
SKIP
EXCEED MAX LENGTH
NO - OK
YES- SET MAX

MIN 1 FOR EX
MOVE KFB DATA

FOR 1 PRINTLINE

LN3KFBA(1),SPACES
LN3KFBA+1(72),LN3KFBA

CLEAR IT
AFTER USAGE

PRINT AREAl AND OPTIONALS

R2,PARM3ADR ADDRESS OF AREAl
R4,241CO,0) LOAD 'Fl' IN R4
R3,l2CO,R3)
R4,LINEHUM SET AREA NUMBER
LN4AREA(74),OCR2) GET DATA
DOOAERR,LINE4
OCR3),X'00' LAST PARAMETER?
PRTDB900 READY
R3,4(0,R3) STEP TO NEXT AREA ADDRESS
R2,OCR3) LOAD AREA ADDRESS
R4,1CO,R4) ADD ONE TO AREA NUMBER
PRTDB010

READY:

* R14,SAVER14 RETURN ADDRESS
R14 RETURN
LN3KFBA(1),DBPCKFBA

* **
PRTDC EQU * DC - PCB FIELDS TO BE PRINTED
**
*
* * * *

* * *

ST R14,SAVER14

L DCPCBR,PARM1ADR
LTR DCPCBR,DCPCBR
BZ ABEND
USING DCPC,DCPCBR

RETURN ADDRESS

FIND PCB TO BE USED:

GET PCB ADDRESS
WAS IT SUPPLIED?
IF NOT GOTO ABEND.

BUILD 1ST LINE AND DISPLAY IT

MVC LN1HEAD(2),=C'DC' IT IS A DC-PCB

312 IMS/VS Application Programming

00293000
00294000
00295000
00296000
00297000
00298000
00299000
00300000
00301000
00302000
00303000
00304000
00305000
00306000
00307000
00308000
00309000
00310000
00311000
00312000
00313000
00314000
00315000
00316000
00317000
00318000
00319000
00320000
00321000
00322000
00323000
00324000
00325000
00326000
00327000
00328000
00329000
00330000
00331000
00332000
00333000
00334000
00335000
00336000
00337000
00338000
00339000
00340000
00341000
00342000
00343000
00344000
00345000
00346000
00347000
00348000
00349000
00350000
00351000
00352000
00353000
00354000
00355000
00356000
00357000
00358000
00359000
00360000
00361000
00362000
00363000
00364000
00365000

(
\..,

(

)

)

)

l
MVC
l
lA
ST
CVD
UNPK
01
MVC
PUT

R2,PARM2ADR ADDR OF IDENTIFIER
lN1IDEN(8),OCR2) INTO OUTPUTlINE
R4,INVOKECT NR OF TIMES INVOKED
R4,1(R4) UP BY 1
R4,INVOKECT UPDATE COUNTER FIELD
R4,WORK2
WORK1(8),WORK2(8)
WORK1+07,X'FO'
lN1COUNT(4),WORK1+4 INTO OUTPUT lINE
DOOAERR,lINE1 DISPLAY IT

BUILD DC PCB lINE6

00366000
00367000
00368000
00369000
00370000
00371000
00372000
00373000
00374000
00375000
00376000
00377000
00378000
00379000

MVC
MVC
MVC
ClC
BNE
MVC
MVC
MVC
PUT
B
UNPK
01
UNPK
01

lN6lTNM,DCPClTNM
lN6STAT,DCPCSTAT
lN6MODN,DCPCMODN
DCPCDATE,SPACES
PRTDC009
LN6DATE,SPACES
LN6TIME,SPACES
LN6MSEQ,SPACES
DOOAERR,lINE6

IS IT A DUMMY/ALTERNATE PCB?
00380000
00381000
00382000

PRTDC009

l
CVD
UNPK
01
PUT
B

PRTDB009 GO
LN6DATE,DCPCDATE
LN6DATE+7,X'FO'
LN6TIME,DCPCTIME
LN6TIME+7,X'FO'
R4,DCPCMSEQ
R4,WORK2
LN6MSEQ,WORK2(8)
LN6MSEQ+7,X'FO'

PRINT PROGRAM AREAS

DOOAERR,lINE6
PRTDB009 GO PRINT PROGRAM AREAS

00383000
00384000
00385000
00385500
00386000
00387000
00388000
00389000
00390000
00391000
00392000
00393000
00394000
00395000
00396000

* **
00397000
00398000
00399000
00400000
00401000

MESSAGE EQU * ISSUE DFS3125A MESSAGE
**
*

lOOP

MVC
WTOR

WAIT
ClC
BE
ClC
BE
ClC
BE
B

WTORECB,=F'O' CLEAR ECB
'DFS3125A PRIMER SAMPLE TEST, REPLY CONT,
R CANCEL JOB',REPlY,5,WTORECB,ROUTCDE=11
ECB=WTORECB
REPlY(4),=C'CONT'
RETURN RETURN TO CAllER
REPlY(5),=C'ABEND'
ABEND2 ABEND
REPlY(4),=C'lOOP'
lOOP lOOP
MESSAGE WRONG REPLY TRY AGAIN

~BM10815 00401500
lOOP, ABEND, 0*00402000

00403000
00404000
00405000
00406000
00407000
00408000
00409000
00410000
00411000

TITLE '&PGMID: PRINT PCB-FIELDS -- EQUATES,CONSTANTS,AREAS'
**

00412000
00413000
00414000
00415000
00416000
00417000
00418000

* CONSTANTS, EQUATES AND DATA-AREAS
**
* REGISTER EQUATES:
* ---------------------------------------RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R~· EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
DBPCBR EQU 8
DCPCBR EQU 9
R10 EQU 10
BASEl EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

* *

00419000
00420000
00421000
00422000
00423000
00424000
00425000
00426000
00427000
00428000
00429000
00430000
00431000
00432000
00433000
00434000
00435000
00436000

Appendix E. Sample Status Code Error Routine (DFSOAER) 313

DS OD 00437000 (WORK1 DC D'O' 00438000
WORK2 DC D'O' 00439000 \ ...

DEVT DC 2ACO) 00440000
DDNMFLO DC CL8'DOOAERR' 00441000
WTORECB DC F'O' 00442000
SAVR DC 20ACO) 00443000
SAVER14 DC ACO) 00444000
PARM1ADR DC ACO) 00445000
PARM2ADR DC ACO) 00446000
PARM3ADR DC ACO) 00447000
PARM4ADR DC ACO) 00448000
INVOKMAX DC AC&INVOMAX) MAXIMUM NR OF INVOCATIONS 00449000
INVOKECT DC ACO) COUNTER FIELD 00450000
SWITCH DC C'l' FIRST TIME SWITCH 00451000
REPLY DS CL5 MESSAGE REPLY FIELD 00452000

EJECT 00453000
LINE1 EQU * 00454000

DC CL01'1' ASA 00455000
LN1HEAD DC CL24'DB-PCB FIELDS PRINTOUT' 00456000

DC CL04'ID= , 00457000
LN1IDEN DC CL08' , CALL IDENTIFIER 00458000

DC CL02' , 00459000
DC CL06'COUNT=' 00460000

LN1COUNT DC CL04' , 00461000
DC CL31' , FILLER 00462000

* 00463000
LINE2 EQU * 00464000

DC CL01' , ASA 00465000
DC CL06' DBDN=' 00466000

LH2DBDH DC CL08' , 00467000
DC CL06' lEVL=' 00468000

LN2LEVL DC CL02' , 00469000
DC CL06' STAT=' 00470000

LN2STAT DC CL02' , 00471000
DC . CL06' PROC=' 00472000 (LN2PROC DC CL04' , 00473000
DC CL06' SEGN=' 00474000

LN2SEGN DC CL08' , 00475000
DC CL06' KFBL=' 00476000

LN2KFBL DC CL04' , 00477000
DC CL06' NSSG=' 00478000

LN2NSSG DC CL04' , 00479000
DC CL05' , FILLER 00480000

* 00481000
LINE3 EQU * 00482000

DC CL01' , ASA 00483000
DC CL06' KFBA=' 00484000

LN3KFBA DC CL73' , 00485000
* 00486000
LINE4 EQU * 00487000

DC CL01' , 00488000
DC CL05' AREA' 00489000

LINENUM DC CL02' : , 00490000
LN4AREA DC CL74' , 00491000
* 00492000
SPACES DC CL8' , 00493000
LINE6 EQU * 00494000

DC CLOl' , 00495000
DC CL08' LTNAME=' 00496000

LN6LTNM DC CL08' , 00497000
DC CL06' STAT=' 00498000

LN6STAT DC CL02' , 00499000
DC CL06' DATE=' 00500000

LN6DATE DC CL08' , 00501000
DC CL06' TIME=' 00502000

LN6TIME DC CL08' , 00503000
DC CL06' SEQ=' 00504000

LN6MSEQ DC CL08' , 00505000
DC CL05' MOO=' 00506000 (LN6MODN DC CL08' , 00507000

ENDLINE DC CL81'0***~*NO MORE ERROR PRINTS REQUESTEO*****' 00508000
* 00509000

314 IMS/VS Application Programming

)

'\
)

.,
\

)

-----"-"-"----" "---"--" "------------------------

LTO-RG
EJECT

*** * D C B

DOOAERR DCB DSORG=PS,LRECL=80,RECFM=FA,MACRF=(PM),

BLKSIZE=80,DDNAME=DOOAERR
EJECT

*** * DSECTS

* * LEVLLEN EQU 2
STATLEN EQU 2
PROCLEN EQU 4
SEGNLEN EQU 8
KFBLLEN EQU 4
NSSGlEN EQU 4
DBDNlEN EQU 8
LTNMlEN EQU 8
DATELEN EQU 4
TIMELEN EQU 4
MSEQlEN EQU 4
MODNlEN EQU 8

* MOOPCB TYPE=DB,PCB=DBPC
MOOPCB TYPE=DC,PCB=DCPC
END _

*********************~** * END IMS/VS PRIMER SAMPLE STATUS ERROR PRINT ROUTINE DFSOAER
***********************************~**********************************

00510000
00511000
00512000
00513000
00514000

C00515000
00516000
00517000
00518000
00519000
00520000
00521000
00522000
00523000
00524000
00525000
00526000
00527000
00528000
00529000
00530000
00531000
00532000
00533000
00534000
00535000
00536000
00537000
00538000
00539000
00540000
00541000

Appendix E. Sample Status Code Error Routine (DFSOAER) 315

APPENDIX F. USING THE DL/I TEST PROGRAM (DFSDDLTO)

CONTROL STATEMENTS

STATUS STATEMENT

In the control statement formats below, the "$" indicates those
fields which are usually filled in; the absence of the "$"
indicates that the field can be left blank and the default used.
If position 1 is left blank on any control statement, the
statement type defaults to the prior statement type.

The STATUS statement establishes print options and determines the
PCB that subsequent calls are to be issued against. '

The format of the STATUS statement is as follows:

Position contents

$ 1 = S identifies this as a STATUS statement.

2 = Output device option.

Blank Use PRiNTDD when in a DLI region;
use I/O PCB in the MSG region.

1 - Use PRINTDD in MSG region if the
DD statement is provided; otherwise,
use I/O PCB.

A - Same as if 1, and disregard all other
fields in this STATUS statement.

3 = Print comment option.

Blank - Do not print.
1 - Print always.
2 - Print only if compare done

and equal.

4 = Not used.

5 = Print call option.

1 - Print always
2 - Print only if compare done

and equal.

6 = Not used.

7 = Print compare option.

Blank - Do not print.
1 - Print always.
2 - Print only if compare done

and equal.

8 = Blank.

9 = Print PCB option.

Blank - Do not print.
1 - Print always.
2 - Print only if compare done

and equal.

10 = Not used.

(
\
\

'-

(

\.

(

)

\
)

11

12

13

14

16

24

15

23

25 - 28

29 - 80

=

=

--

=

=

=

=

=

---_. -""._._--------------

Print segment option.

Blank - Do not print.
1 - Print always.
2 - Print only if compare done

and unequal.

EBCDIC characters are printed as they appear
in the segment. Hexadecimal characters
are displayed in two lines with the high-order
four bits printed above the low-order four
bits. The low-order four bits of data are
printed on the same line as the EBCDIC data.
Hexadecimal data is read from top to bottom,
left to right.

Set task time.

1 - Time each call.
2 - Time on unequal compares.
5 - Time and BFSP trace each call.
6 - Time and BFSP trace on unequal compares.

Set real time.

1 - Time each call.
2 - Time on unequal compares.
5 - Time and BFSP trace each call.
6 - Time and BFSP trace on unequal compares.

Reserved.

DBD name.

This determines the PCB against which subsequent
calls will be issued; hence, it must be a DBD
name given in one of the PCBs in the PSB. The
default PCB is the first data-base-PCB in the
PSB. If positions 16 through 23 are blank, the
current PCB is used. If positions 16 through
18 are blank, and positions 19 through 23 are
not blank, then the nonblank positions are
interpreted as the relative number of the desired
data-base-PCB in the PSB. The number must be
right-justified to position 23, but need not
contain leading zeros. The user must insure
that the relatlve DB PCB exists in the PSB
because no checks are made to insure that
a proper PCB is obtained in this manner.

Print status option.

Blank - Use orint option and print this
statement.

1 - Do not use print option in this
statement.

2 - Do not print this STATUS statement.
3 - Do not print this STATUS statement or

use print option.

PCB processing option. This is optional and is
only used when two PCBs have the same DBD name
but different processing options. If nonblank,
it is used in addition to the DBD name in
positions 16 through 23 to select which PCB in
the PSB to use. This must appear as it does in
the processing option of the PCB desired.

Not used.

If no STATUS statement is read, the default PCB is the first DB
PCB in the PSB, and the print status option is 2. New STATUS

Appendix F. Using the DL/I Test Program (DFSDDLTO) 317

COMMENTS STATEMENT

Unconditional

Conditional

CALL STATEMENT

statements can be anywhere in the SYSIN stream, changing either
the data base to be referenced or the options.

There are two types of COMMENTS statements. The first, the
unconditional statement, allows for unlimited comments, all of
which are printed. The second type, the conditional statement,
allows only limited comments, which are printed or not depending
on other factors as descri bed below.

position

$ 1

2 - 80

Position

$ 1

2 - 80

=
=

=
=

contents

U specifies an unconditional COMMENTS statement.

Comments - any number of unconditional COMMENTS
statements are allowed; they are printed when
read. Time and date of printing are printed
with each unconditional COMMENTS statement.

contents

T specifies a conditional COMMENTS statement.

Comments - up to 5 conditional COMMENTS
statements per call are allowed; no continuing
mark in position 72 is required. Printing is
conditioned as the STATUS statement. Printing
is defer.red until after the following call
and optional compare are executed, but prior
to the printing of the following call.

The CAll statement identifies the type of IMS/VS call to be made,
and supplies information to be used by the call.

position

$ 1

3

4

=

=
=

contents

l identifies this as either a CAll or DATA
statement

SSA level (optional).

Format options:

Blank - For formatted calls with intervening
blanks in positions 24, 34, and 37.

U - If columns 16 onward are unformatted,
with no blanks separating fields.

V - For the first statement describing a
variable-length segment, when inserting
or replacing only one variable-length
segment. It is also used for the first
statement describing the first segment
of multiple variable-length segments.

M - For the second through last statement
that begin data for a variable-length
segment, when inserting or replacing
multiple variable-length segments.

P - When inserting or replacing through
path calls. It is used only in the
first statement of fixed-length segment
statements in path calls contai ni'ng

318 IMS/VS Application Programming

/,/"

I
',,-

/'

"

(
~

.,
I

/

)

)

5 8

$ 10 - 13

$ 16 - 23

24

$ 25

26 - 33

34

$ 35 - 36

37

$ 38 XX

$ XX + 1

$ 72

=

=

=

=

=

=

=

=

=

=

=

=

both variable- and fixed-length
segments .

Number of times to repeat this call (optional)
in the range of 0001 through 9999.

Dl/I call function.

DATA - Indicates that this statement contains
data to be used in an ISRT, REPl, SNAP,
CHKP, or LOG call. See the following
section on DATA statements for usage.

CONT - For a continuation statement for field
data that was too long for previous
CAll statement.

SSA segment name.

Not used.

(,if segment is qualified.

SSA field name.

Not used.

Dl/I call opertor or opertors.

Not used.

Field value (where the maximum value of XX=70).

), end character.

Nonblank, if more SSAs. Blank, if this is the
only or last SSA.

Position 3, the SSA level, 1S usually blank. If blank, the first
CAll statement fills SSA 1, and each following CAll statement
fills the next lower SSA. If the SSA level, position 3, is
nonblank, the statement fills the SSA at that level, and the
following CAll statement fills the next lower SSA.

Position 4 contains a U to indicate an alternative format for the
CALL statement. In this case, from position 16 on is the exact SSA
with no intervening blanks in positions 24, 34, and 37. If command
calls (for example, *D) are to be used, then the U must be
specified.

Positions 5 through 8 are usually blank, but if used, must be
right-justified. The identical call is repeated as specified in
positions 5 through 8.

Positions 10 through 13 contain the Dl/I call function. The call
function is required only for the first SSA of the call. If left
blank, the call function from the previous CALL statement is used.

Positions 16 through 23 contain the segment name, if the call uses
an SSA.

If there are mutilple SSAs in the call, each SSA should be entered
in'positions 16 through 23 of a separate statement. A nonblank in
position 72 of any statement indicates that another SSA follows.
Position 1 and 10 through 13 are blank for the second through last
SSAs.

If the field value extends past 71, there is a nonblank in
position 72 and CONT in positions 10 through 13 of the next
statement, with the field value continued starting in position
16. Maximum field value is 256 bytes.

An alternative format for the CAll statement is available by
putting a U in position 4. If you use this option, you must start

Appendix F. Using the Dl/I Test Program (DFSDDlTO) 319

DATA STATEMENT

the exact SSA in position 16, with no intervening blanks in
positions 24, 34, and 37. To continue an unformatted SSA, put a ('
nonblank character in position 72, a U in position 4, and CONT in I
positions 10 through 13 of the next statement. Include the data of "
the SSA that is continuing in positions 16 through 71. Maximum
size for an SSA is 290 bytes.

The maximum number of SSAs for this program is the same as the
IMS/VS limit, which is 15.

DATA statements provide IMS/VS with segment information requirp.d
for ISRT, REPl, SNAP, lOG, and CHKP calls.

For an IRST, REPl, SNAP, lOG, or CHKP call, statements containing
segment data must follow immediately after the last
(noncontinued) CAll statement. The DATA· statements must have an l
in column 1, and DATA in positions 10 through 13. The segment data
appears in positions 16 through 71. Data continuation is
indicated with a nonblank in position 72. On the continuation
statement, positions 1 through 15 are blank, and the data is
resumed in position 16. The maximum segment size in a batch region
is based on the PSB I/O area size. This size may be specified by
the user during PSBGEN, or it is calculated by the ACB utility.
When running in an online region, a maximum size of 30736 is
available.

Note: On ISRT calls, the last SSA can have only the segment name,
with no qualification or continuation.

When inserting or replacing variable-length segments, as defined
in a DBDGEN, or including variable-length data for a CHKP or lOG
call, position 4 of the CAll statement must contain either a V or
an M. V must be used if only one segment of variable length is
being processed. Positions 5 through 8 must contain the length of (
the data, right-justified, with leading zeros. This value is .
converted to binary, and becomes the first two bytes of segment
data. Segment-data-statements can be continued, as described
above with the subsequent statements blank in positions 1 through
15, and the data starting in position 16.

If multiple variable-length segments are required (that is,
concatenated logical child/logical parent segments both of which
are variable length) for the first segment, there must be a V in

, position 4 and ,the length of that segment in positions 5 through
8. If that segment is longer than 56 bytes, then the data is
conti~ued as above, except that the last card to contain data for
this segment must have a nonblank in position 72. The next
statement applies to the next variable-length segment, and must
contain an M in position 4 and the length of this segment in
positions 5 through 8. Any number of variable-length segments can
be concatenated in this manner. The M or V and the length must
appear only in statements that begin data for a variable-length

. segment.

When inserting or replacing through path calls, a P position 4
causes the length field to be used as the length the segment will
occupy in the user I/O area, without the length (ll) field of
variable-length segments, as in the instructions for M, above. V,
M, and P can be mixed in successive statements. The P appears in
only the first statement of fixed-length segment DATA statements,
in path calls which contain both variable- and fixed-length
segments.

Parameter Length. SNAP Calls

On SNAP calls, the length of the SNAP parameters must be in
positions 5 through 8. This numbe~ must be equal to the length of
the SNAP parameters starting in position 16 plus an additional 2
bytes. The TEST program converts the length to binary and places

320 IMS/VS Application Programming

(,

)

)

it in the first half-word of the user I/O area passed to DL/I. The
parameters from position 16 are placed in the 110 area immediately
following this half-word. If positions 5 through 8 are blank, a
default of 22 is used as the parameter length.

All parameters are passed without change, with the following
exceptions:

1. If the SNAP destination field specifies "DCB-addr" or ddname
of PRINTDD, and if a PRINTDD statement is supplied to the test
program, the test program replaces this parameter with the
DCB address of the test program PRINTDD data set.

2. If running DFSDDLTO in a dependent region, the results of a
SNAP call are routed to the dependent region PRINTDD DCB in
systems where the PRINTDD DCB is accessable. In systems such
as MVS where the dependent region PRINTDD DCB is inaccessable
from the control region, the default is the log data set.

Parameter Length, LOG Call

The LOG call is normally used with the I/O PCB. It can used in
batch mode only if the CMPAT option of the PSBGEN statement is
specified.

The LOG call can be specified in two ways:

1. A LOG call statement followed by a DATA statement with an L in
column 1, a V in column 4, and the record length (in decimal)
in columns 5 through 8, right-justified, and padded with
zeros. For example:

Column
1

L
L

Column
4

V0016

Column
10

LOG
DATA

Column
16

OOASEGMENT ONE

When this method is used, the first halfword of the record is
eliminated. However, the specified length must include the 2
bytes that are el i mi nated. "

2. A LOG call statement followed by a DATA statement with an L in
column l'and the record length (in binary) as the first
halfword of the record. The second halfword of the record is
binary zeros. For example:

Column
1

L
L

Column
4

Column
10

LOG
DATA

Column
16

1000BSEGMENT TWO

When this method is used, columns 5 through 8 should be blank.

segment Length and Checking, All Calls

Because this program does not know segment lengths, the length of
the segment displayed on REPL or ISRT calls is the number of DATA
statements that have been read, times 56. IMS/VS knows the segment
length and uses the proper length.

This program does no checking for errors in the call; invalid
functions, segments, fields, operators, or field lengths are not
detected by this program. The results os invalid statements
passed to IMS/VS will be unpredictable.

Appendix F. Using the DL/I Test Program (DFSDDLTO) 321

COMPARE STATEMENT FOR PCB COMPARISONS

This is the format of the COMPARE statement used for PCB
comparisons.

position

1

2

3

=
=

=

Contents

E identifies this as a COMPARE statement.

H indicates hold COMPARE statement
(see below for details).
Blank indicates a reset of the hold condition
or a single COMPARE statement.

Option requested if results of the compare are
unequal:

Blank - Use the default for the SNAP option.
The normal default is 5. For .
information on how to change.th~
default, see thecription of the
"Opti'on Statement."

1 - To request a SNAP of the complete I/O
buffer pool.

2 - To request a SNAP of the entire· region.
This option is valid only for~batch
regions.

4 - To request a SNAP of the DL/I blocks.
8 - To abort this step and go to. the end

of the job.
S - To SNAP subpools 0 through 127.

Note: Multiple functions of the first 4

4

5 - 6

7

8 - 9

10

11

20

23

18

22

24 - XX

=

=
=
=

=
=
=
=
=

322 IMS/VS Application Programming

~ptions can be obtained by summing their
respective hexadecimal values. For example,
a value of 5 a request for a print of the 1/)
buffers and the DL/I blocks; and a value of D
snaps the I/O pool, snaps the DL/I blocks,
and aborts the program run.

Extended SNAP options, if the results of a
compare are unequal:

Blank - To ignore this extended option.
P - To SNAP the complete buffer pool.
S - To SNAP subpools 0 through 127.

Note: In no case will an area be snapped twice;
that is, a combination of IP in positions 3
and 4 results in just one snap of the buffer
pool. Similarly, a combination of SS results in
just one snap of subpools 0 through 127.

Segment level.

Not used.

Status code, or one of the following:

XX - Do not check status code.
OK - Allow blank, GA, or GK.

Not used.

Segment name.

Length of feedback key~ .

Not used.

Concatenated key feedback.

/
(
\

(

(
\

\
I

I

----- --------

72 = Honblank to continue key feedback.

The COMPARE statement is optional. It can be used to do regression
testing of known data bases, or to call for a print of blocks or
buffer pool(s).

Any fields left blank are not compared to the corresponding field
in the PCB. Since a blank is a valid status code, to not compare
status codes, put XX in positions 8 and 9. To accept any valid
status code, (that is, blank, GA, or GK), use OK in postions 8 and
9.

To execute the same COMPARE after each call, put an H in position
2. This is useful when loading a data base to compare to a blank
status code only. Since the compare was done, the current control
statement type is E in position 1; the next control statement read
must therefore have its type in position 1 or it will default to
E. The HOLD-COMPARE statement stays in effect until another
COMPARE statement is read. If a new COMPARE statement is read, two
compares will be done for the preceding call, since the
HOLD-COMPARE and optional printing are done prior to reading the
new COMPARE statement.

The total number of unequal compares will be reflected in the
condition code returned for that step.

COMPARE STATEMENT FOR I/O AREA COMPARISONS

This is the format of the COMPARE statement used for I/O area
comparisons.

Position

$ 1

3

4

5 - 8

=
=

=

=

contents

E identifies this as a COMPARE statement.

Length field option.

Blank - The LL field of the segment is not
included in the comparison; only data
is compared.

L - The length in positions 5 through 8 is
converted to binary and compared
against the LL field of the segment.

Segment length option.

Blank - Hot a variable-length segment or
nonpath call data compare.

M - For the second or subsequent variable-
length segment of a path call, or a
concatenated logical child/logical
parent segment.

P - For a fixed-length segment in a path
call.

V - For a variable-length segment only, or
for the first variable-length segment
of multiple variable-length segments
in a path call or for a concatenated
logical child/logical parent segment.

nnnn, length of a variable-length segment,
right-justified with leading zeros.
If position 4 contains V, p, or M, then a
value must appear in positions 5 through 8.
If position 3 contains an L, this value is
compared against the LL field of the returned
segment. If position 3 is blank and the
segm~nt is not in a path call, then this value
is used as the length of the comparison. The
rules for continuations are the same as those
described for the variable-length segment DATA

Appendix F. Using the DL/I Test Program (DFSDDLTO) 323

OPTION STATEMENT

10 - 13 =

16 - 71 =

72 =

statement in the description of the CALL
statement.

If this is a path call comparison, and position
4 contains P, then the value in positions 5
through 8 must be the exact length of the fixed
segment used in the path call.

DATA, this has to be specified in the first
COMPARE DATA statement only.

Data against which the segment is to be
compared.

Continuation or end of COMPARE statement:

Blank - Identifies the last COMPARE DATA
statement for the current call, 'and
causes the comparison to be made.

Nonblank - If the comparison data exceeds 56
characters, data is conti nued i'n
positions 16 through 71 of the
subsequent statements for a
maximum total of 1500 bytes.

This COMPARE statement is optional. Its purpose is to COMPARE the
segment returned by IMS/VS to the data in this statement to verify
that the correct segment was retrieved.

The length in positions 5 through 8 is optional except as already
noted; if present, this length is used in the COMPARE and in the
display. If no length is specified, the shorter of either the
length of data moved to the I/O area by IMS/VS, or the number of
DATA statements read times 56 is used for the length of the
comparison and display.

If both a COMPARE DATA and a COMPARE PCB statement are present,
the COMPARE DATA statement must precede the COMPARE PCB
statement.

The conditions for printing the COMPARE DATA statement are the
same as for printing a COMPARE PCB statement; position 7 of the
STATUS statement is used. The same unequal switch is set for
either the COMPARE DATA or COMPARE PCB. However, if control block
displays are requested for unequal comparisons, a COMPARE PCB
statement is required to request these options.

The total number of unequal comparisons will be reflected in the
condition code returned for that step.

The purpose of the OPTION statement is to set the default SNAP
option and/or the number of unequal comparisons before aborting
the step. The default value for the number of unequal comparisons
before aborting is 5.

The format of the statement is explained below.

position contents

1 = o identifies this a s an OPTION statement.

2 - 80 = Free-from coding.

(
\.

r
\,

The first operand is SNAP=x, where "x" ix the
default SNAP option to be used. For an
explanation of the possible values of "x",
see the description of the "COMPARE (
Statement for PCB Comparisons." ,

324 IMS/VS Application Programming

)

)

The second operand ~s ABORT=xxxx, where "xxxx"
is a 4-digit numer~c value that sets the number
of unequal comparisons before aborting the
step.

Use of the following example of the OPTION statement w~ll cause
the Dl/I test program to operate as ~t d~d prior to the release of
IMS/VS Version 1, Mod~ficat~on level 1, that ~s , ~t reinstates
the old SWAP opt~ons:

Column
1

ObSNAP=b,ABORT=9999

SPECIAL CONTROL STATEMENTS

PUNCH STATEMENT

The PUNCH control statement provides the facility for this
program to produce an output data set consisting of the PCB
COMPARE statements, the user I/O area COMPARE statements, all
other control statements read, or any combination of the above. An
example of the use of this facility is to code the call, but not
the COMPARE statements for a new test. Then, after verifying that
the calls were executed as anticipated, another run is made where
the PUNCH statement is used to cause the test program to merge the
proper COMPARE statements, based on the results of the call, with
the CAll statements read, produc~ng a new output data set. This is
then used as input for subsequent regression tests. If segments in
an exist~ng data base are changed, the use of this control
statement causes a new test data set to be produced with the
proper COMPARE statements. This eliminates the need to manually
change the COMPARE statements because of a change in the segments
of the test data base.

The PCB COMPARE statements are produced based on the information
in the PCB after the call is completed. The COMPARE DATA
statements are produced based on the data in the I/O area after
the call ~s completed. All ~riput control statements, other than
COMPARE statements, can be produced to prov~de a new composite
test with the new COMPARE statements properly merged. The data set
produced can be sequenced.

Since the key feedback area of the PCB COMPARE statement can be
long, two options are prov~ded for producing these COMPARE
statements. Either the complete key feedback can be provided, or
the portion of the key feedback that does not fit on one statement
can be dropped. Forty-eight bytes of key feedback fit on the first
statement.

Getting the full data from the I/O area into the data COMPARE
statement might also be excessive. An option is to put it all on
the data COMPARE statements, or put only the first 56 bytes on the
first statement and drop the rest. The test program compares only
the first 56 bytes if it receives only one COMPARE DATA statement.

The PUNCH statement format is as follows:

position

$ 1 3

$ 10 - 13

$ 16

=
=

=

contents

CTI identifies this statement type.

Punch control:

PUNC - Begin punching.
NPUN - Stop punching.

Start~ keyword parameters controlling the
various options. These keywords are:

Appendix F. Using the Dl/I Test Program (DFSDDlTO) 325

PUNCH DD STATEMENT

SYSIN2 DD STATEMENT

PCBL - To produce the full FCB COMPARE
statement.

PCBS - To produce the PCB COMPARE, dropping
the key feedback if it exceeds 'on~
statement.

DATAL To produce the complete COMPARE DATA
statements.

DATAS - To produce only one statement of
COMPARE DATA.

OTHER - To reproduce all control statements
except COMPARE control statements.

START - To punch the starting sequence number
in columns 73 through 80. Eight numeric
characters must follow the START=
parameter; leading and/or trailing
zeros are required.

INCR - To add the increment to the sequence
number of ~ach statement. Four numeric
characters must follow the INCR=
parameter; leading and/or
trailing zeros are required.

Some examples of the PUNCH control statement are:

CTl PUNC PCBl,DATAl,OTHER,START=OOOOOOlO,INCR=OOlO
CTl NPUN

The DD statement for the output data set is labelled PUNCH; the
data set characteristics are fixed, unblocked, with a logical
record length of 80.

An example of the PUNCHDD statement is:

IIPUNCHDD DD SYSOUT=B

The data set specified by the SYSIN DD statement is the normal
input data set for this program. It is sometimes desirable when
processing an input data set that is on direct access or tape, to
override or insert some control statements into this input
stream. This is especially useful to obtain a SNAP after a
particular call.

To provide this capability, a second input data set (SYSIN2) will
be read if the DD statement is present in the JCl for the step.
The records from the SYSIN2 data set are merged with records from
the SYSIN data set, and the merged records become the input for
this program.

The merging is done based on the sequence numbers in positions 73
through 80, and is a two-step process: first, positions 73 and 74
of SYSIN2 must be equal to the corresponding positions of SYSIN;
then the merge is done based on positions 75 to 80.

This peculiarity of merging allows for multiple data sets (each
with a different high-order sequence number in 73 and 74) that
have been concatenated to form SYSIN, in other than positions 73
and 74 numeric sequence. The two-step merge logic permits SYSIN2
input to be merged appropriately into each of the concatenated
data sets.

When the sequence numbers are equal, SYSIN2 overrides SYSIN.

(
~

(

Any statements or records in this data set must contain sequence (
numbers in columns 73 through 80. They will replace the same
sequence number in the SYSIN data set, or be inserted in proper
sequence if the number in SYSIN2 does not exist in SYSIH.

326 IMS/VS Application Programming

\
)

)

Replacement or merging is done only for the run being made. The
original SYSIN data is not changed.

OTHER CONTROL STATEMENTS

position

1 - 4

10 17

1 - 4

1 - 3

1

1 - 5

SPECIAL CALL STATEMENTS

position

$ 1

5 - 8

$ 10 - 13

=

=

=

=

=

=

=
=

=

contents

DLCK: To issue an OS/VS checkpoint, followed
by a DL/I checkpoint. For any dependent region,
DLCK gives an OS/VS checkpoint to a DD
statement labelled CHKDD whose DSORG=PO.
This is followed by a DL/I checkpoint call.
The use of this control statement will
cause all subsequent CHKP calls to issue the
OS/VS checkpoint unless a statement with
USCKOFF in columns 1 through 7 precedes the
CHKP call.

CHKP: Same as DLCK.

Contains a 1- to 8-character checkpoint ID
(left justified).

WTOR: puts message in remainder of statement on
system console and waits for any reply, then
continues.

WTO: same as WTOR, but does not wait for reply.

. or N: used as last statement in a data set that
can be concatenated with other SYSIN data sets.

ABEND: To issues user ABEND 252 with the DUMP
option.

contents

L identifies this as a CALL statement.

Number of times to repeat a series of calls
with a range from 0001 through 9999
C defaul tis 1).

Stacking control cards:

STAK - Start stacking control cards for later
execution.

END - Stop stacking control cards and begin
execution.

The STAK function makes it possible to repeat
a series of call~ which have been read from
SYSIN and held in storage. All control
statements between the STAK card and the END
card are read and saved. When the END card
is encountered, the series of calls is
executed as many times as the number punched in
positions 5 through 8 of the STAK card. This
can be used to test exclusive control and
scheduling by having two different regions
executing stacks of calls concurrently.

SKIP - Skip SYSINs until START statement
statement encountered.

START - Start making DL/I calls again.
STAT - Print the current buffer pool

statistics. When this call is used,
IOASIZE in the PSB must be specified
specified as greater than 360 bytes.

Appendix F. Using the DL/I Test Program CDFSDDLTO) 327

16 - 20 =

EXECUTION IN DIFFERENT REGIONS

One of the following values is used to obtain
the type and form of statistics required:

VBASF - To obtain the full VSAM data base
subpool statistics in a formatted form.

VBASU - To obtain the full VSAM data base
subpool statistics in an unformatted
form.

VBASS - To obtain a summary of the VSAM data
base subpool statistics in formatted
form.

DBASF - To obtain the full ISAM/OSAM data base
buffer pool statistics in unformatted
form.

DBASS - To obtain a summary of the ISAM/OSAM
data base buffer pool statistics in
formatted form.

Note that for VSAM statistics, a
separate set of values is provided
for each VSAM subpool defined, and a
final set of values is provided to
summarize all VSAM subpool values.
The buffer size in the final totals
is the total size of all buffers in
all VSAM subpools.

SNAP - Issue the DL/I SNAP call to print the
DL/I blocks.

This program is designed to operate in a DL/I or BMP region but
can also be executed in a MSG region. The input and output devices
are dynamically established based on the type of region in which
the program is executing. In a BMP or DL/I region, the EXEC
statement allows the program name to be different from the PSB
name. There is no problem executing calls against any data base in
a BMP or DL/I region. In a MSG region, the program name must be
the same as the PSB name. In order to execute in a MSG region, the
DFSDDLTO program must be given the name or an alias of the PSB
named in the IMS/VS definition.

When in a DL/I region, input is read from SYSIN and output is
written to PRINTDD.

When in a BMP region, if a symbolic input terminal was specified
as the fourth parameter of the EXEC statement, input is obtained
from that 5MB, and output is sent to the I/O PCB. The name of the
I/O PCB can be specified as the fifth parameter of the EXEC
statement. If 5MB is not specified on the EXEC statement, SYSIN is
used for input and PRINTDD is used for output, as in the DL/I
region.

In the MSG region, the I/O PCB is used for both input and output
unless position 2 of the STATUS statement is either a 1 or an A.
In either of these cases, PRINTDO is used for output if the DO
card is present in the JCL for that message region. A limit of 50
lines per schedule is sent to the I/O PCB and, after that, PRINTDD
is used for output if present. If PRINTDD is not present, the
program terminates.

If PRINTDD is specified in either a BMP or MPP region, SNAP output
will be routed to the IMS/VS control region PRINTDD 00 card.

Because the input is in fixed form, it is difficult to key it from (
a terminal. For ease of entry, however, Message Format Service
(MFS) facilities can be used from a terminal to create the '
fixed-format input. One way to test DL/I in a message region,
using this program, is to first execute another message program

328 IMS/VS Application Programming

)

._------ ._-_._---_.-----------_ .. _------_ .. __ ... _ .. _--------------------------- -.. _---_._---

which, based on a message from the terminal, reads control
statements stored as a member of a partitioned data set. Insert
these control statements into an 5MB. This program is then
scheduled by IMS/VS to process thoSQ transact; ons. 'Thi sallows
the same control statements to be used to execute in any region
tYPQ.

SUGGESTIONS ON USING THE DL/I TEST PROGRAM

1. To load a data base:

This program is applicabie for loading small data bases,
because all calls and data must be provided to it rather than
it generating data. It can be used to load large volume data
bases if the control statements were generated as a
sequential data set.

2. To display a data base:

3.

4.

To display a data base, the following sequence of control
statements can be used.

S 1 2 221 DBNAME Display comments and segment
L GN DO 1 Get Next
EH OK Hold compare, GA, GK, OK, terminate

on GB
L 9999 GN DO 9,999 Get Next calls

To do regression testing:

This prog~am can be used for regression testing. By using a
known data base, calls can be issued and the results compared
to expected results using COMPARE statements. The program
then can determine if DL/I calls are being executed
correctly. By making the print options of the STATUS
statement all twos, only those calls not satisfied properly
are di splayed.

To use as a debuggi ng ai d:

When doing debugging work, usually a print of the DL/I blocks
is required. By use of COMPARE statements, the blocks can be
di splayed at appropri ate times. Somet i mes the blocks are
needed even though the call is executed correctly, such as the
call before the failing call. In those cases, a SNAP call can
be inserted. This causes the blocks to be displayed even
though the call was executed correctly.

An alternative method of doing a SNAP call when running
DFSDDLTO is to use a COMPARE statement after the call, forcing
the program to do an unequal compare. For example:

Column
I

E

Column
3-4

SP

Column
11

SNAP

The SNAP call compares against the segment name of SNAP, gets
an unequal compare, and as a result of the SNAP options in
columns 3 and 4, snaps the complete I/O buffer pool, the DL/I
blocks, and the complete buffer pool.

5. To verify how a call is executed:

Because it is easy to execute a particular call, this program
can be used to verify how a particular call is handled. This
is of value when DL/I is suspected of not operating correctly
in a specific situation. The calls that are suspected can be
issued using this program, and the results examined.

Appendix F. Using the DL/I Test Program (DFSDDLTO) 329

DL/I TEST PROGRAM JCL REQUIREMENTS

JOB Th is statement in it i ates the job.

EXEC This statement specifies the program name, or
invokes a cataloged procedure. The required format
is:

PGM=DFSRRCOO,PARM='AAA,DFSDDLTO,BBBBBBBB,
CCCCCCCC,DDDDDDDD'

where AAA is the region type and BBBBBBBB is the name
of the PSB to be used. Parameters CCCCCCCC and
DDDDDDDD are optional, and can be used to specify
symbolic input terminal and output terminal names,
respectively. Refer to the section "Member Name
IMSBATCH" in the IMS/VS System Programming Reference
Manual for other parameters that can be used.

STEPLIB DD Defines the partitioned data set named IMSVS.RESLIB.
If EXIT routine modules are used, they should be
placed into this library or into another PDS
concatenated to this library.

IMS OD This statement defines two concatenated data sets.
The first DD statement defines the library
containing the PSB to be used by the test program.
The second DD statement defines the library
containing the DBD of the data base to be processed.

database DD This statement references a specific data base.

IEFRDER DO

PRINTOO DD

SYSDUMP DO

SYSIN DD

SYSIN2 DD

There should be one statement for each data base to
be processed. In each statement the ddname must
agree with the ddname specified in the DBD.

This statement defines the log data set, if one is
desired. a dd dummy statement may be used if a log is
not desired. One form or the other of this statement
is required.

This statement defines the output data set for the
test program, including displays of control blocks
using the SNAP call. It must conform to the OS SNAP
data set requirements.

This statement is optional and is used by the test
program only when normal termination is not
possible.

This statement defines the control statement input
data set.

This is an optional secondary input statement. See
the description of "Special Control Statement
Formats" for details.

Note: SYSIN may be members of a partioned data set; if they are to
be concatenated together, the last statement must be a period (.)
or an N statement. This prevents the last statement in the
previous concatenation to be used twice.

330 IMS/VS Application Programming

(

(

)

.-----.-.. -----.. ---------------------------

SAMPLE JCL FOR THE DL/I TEST PROGRAM

//JCLSAMP JOB ACCOUNTING,NAME,HSGLEVEL=(1,11,HSGCLASS=3,PRTY=8
//GET EXEC PGM=DFSRRCOO,PARM='DLI,DFSDDLTO,PSBNAME'
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
//IMS DD DSN=IMSVS.PSBLIB,DISP=(SHR,PASS)
// DD DSN=IMSVS.DBDLIB,DISP=(SHR,PASS)
//DDCARD DD DSN=DATASET,DISP=(OLD,KEEP)
//IEFRDER DD DUMMY
//PRINTDD DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSIN DD *
S 1 1 1 1 DBNAME
/*

Appendix F. Using the DL/I Test Program (DFSDDLTO) 331

(

/
I
\

)

)

access methods 41-47
GSAM 46
HDAM 43
HIDAM 44
HISAM 46
HSAM 45
SHISAM 47
SHSAM 47

accessing a segment through different
paths 52

accessing IMS/VS data bases through
OS/VS 47

adding information to the data
base 104-108

aggregate 18
alternate destinations, sending messages

to 195
alternate PCB masks

description 179
format 179

alternate PCBs 196
express 180
modifiable 180, 195
o v e r v i caw 0 f 72
response 205
SAMETRM=YES 205
sending messages to other
terminals 195

types and uses of 179
use with program-to-program message
switching 196

using the PURG call with 195
analyzing application requirements 10
analyzing data access 41-47
analyzing data relationships 17
analyzing processing requirements 28
analyzing screen and message formats 65
and, independent 120
and, logical 120
appendixes 286-331
application design guide 1-73
application program test 228-232
application programming guide 75-236
assembler language

call parameters 239
DB PCB mask 242
DC call formats 248
DL/I call format 239
DL/I program structure 163
entry statement 238
I/O area 243
MPP structure 219
parameter list at program entry 238
program entry 238
register 1 at program entry 238
return statement 238
SSA definition examples 247

backing out data base updates 210, 224
basi c CHKP 130

and OS/VS restart 59
call format 252
DCB names for OS/VS restart 133
description 133
ID 131
OS/VS option 133.
parameters 252
restart and 59

basi cedi t 193
input

using basic edit 193
input messages 193
output

using basic edit 193
output messages 193
overview of 66

batch message program
see "BMPs (batch message programs)"

batch processing 39
batch processing online 37
batch programs

assembler language structure 163
checkpoints 39, 60
COBOL structure 157
converting to BMPs 138-140
description of 39
overvi ew of 78
PL/I structure 160
recovery 39
sample 287
structure 78
structuring 76
sync po i nts 39

batch sample program 287
Batch Terminal Simulator II (BTS II) 230
batch-oriented BMPs 32, 223

checkpoints in 60
comparison with batch programs 226
description of 37
recovery 37
sync points 224
sync points in 37

before you code
a batch program 156
an MPP 215

before you update: get hold calls 100
BILLING segment 90
BMPs (batch message programs) 223

batch-oriented 37, 223
checkpoints in 60, 61
designing batch-oriented BMPs 226
differences between
transaction-oriented BMPs and
MPPs 223

guidelines 38
multiple-mode 226
planning ahead for batch-to-BMP
conversion 138-140

processing online data bases 223,
224

Q command code in 224

Index 333

sample program 293
similarities to batch programs 223
similarities to MPPs 223
single-mode BMPs 225
transaction-oriented 36, 61
types of 31, 223
XD status code 225

Boolean operators 120
independent. and 120
logical and 120
logical or 120 .

BTS II (Batch Terminal Simulator II) 230

C command code 123
CALL statement (DL/I test program) 229,

318
calling the sample status code error
routine 169

calls, DL/I
DLET 103
formats 239
get calls 100
get hold calls 100
GN 94-97
GNP 97-99
GU 91-93
guidelines on retrieval calls 100
ISRT 104
overv i ew of 80
parameters 239
REPl 101
retrieval calls 100

changing a field's contents 151
changing segments 101
changing the destination of a modifiable
alternate PCB 195

checking a field's contents:
FLD/VERIFY 149

checking status codes 128-130, 169, 221
sample routine 307

checkpoint calls
basi c 59, 133
choosing 59
description of 58, 130
effects of 59
frequency 131
how often to use checkpoints 131
IDs 131
kinds of 59
similarities 130
symbolic 59, 132
types of 130
where to use checkpoints 131

checkpoint IDs 131
checkpoints

calls 130
comparison of 60
data sharing and 62
frequency 60
in batch programs 39, 60
in batch-oriented BMPs 60
in BMPs 224, 225
in MPPs 61
in transaction-oriented BMPs 61, 225
restart and 59
summary of 60
taking checkpoints 130

CHKDD 133

334 IMS/VS Application Programming

CHKDD2 133
CHKP (checkpoint)

basi c 130, 133
call format 252

effects of 130
frequency 131
guidelines 131
how often to use 131
IDs 131
in sample batch program 287
in sample BMP 293
symbolic 130, 132

call format 251
parameters 251

types of 130
what IMS/VS does 130

CHNG (change)
call format 248
description 195
usi ng PURG wi th 196
with directed routing 199

choosing a checkpoint call 59
choosing the right retrieval call 100
CLSE (close) 259
CMD (command)

call format 248
description 208

CMPAT=YES 130
COBOL

call parameters 239
DB PCB mask 241
DC call format 248
DL/I call format 239
Dl/I program structure 157
entry statement 238
GU function code 170
I/O area 243
return statement 238
sample programs

batch 287
BMP 293
conversational 302

skeleton MPPs
COBOL 216

skeleton program 157, 216
SSA definition examples 245

codes, command
description of 121
summary of 83

codes, status
and GU 93
checking 128-130
explanations 272-285
for logical relationships 138
for XRST call 132
quick reference table 268
reference 268-285

coding
DL/I function codes 169
entry statements 168
function codes 169
parmcount 169

codi ng an MPP
in assembler language 219
overview of 215
parts of an MPP 215
skeleton MPPs 216, 217

coding checkpoint IDs 171
coding DC calls 220

overview of coding 220
coding DC system service calls 220
coding Dl/I calls 168
coding Fast Path data base calls 172

(--

\

(

(

)
;'

)

.... - .. _. __ ._---- --------------

coding monitoring system service
calls 168

coding recovery system service
calls 168

coding SSAs 171
codi ng the data area 169
coding the DL/I portion of a program 156
codi ng the I/O area 170
coding the program logic 167, 220
command codes

and REPL 103
C 123
coding restrictions 244
descriptions of 121
F 105, 122

use with HERE insert rule 105
L 105, 123

use with HERE insert rule 105
N 125
null 126
P 124.
U 124
usage 84, 93

in load programs 108
wi th DLET 104
wi th GN 96
wi th GNP 99
wi th GU 93
wi th ISRT 106

V 125
with qualified SSAs 83
wi th SSAs 83
with unqualified SSAs 83

commands- 208
comments in DL/l test program

conditional 318
unconditional 318

COMMENTS statement 229, 318
communicating with other IMS/VS

systems 197
COMPARE statement 229, 322, 323
comparing ways to store data 2
comparison of symbolic CHKP and basic

CHKP 60
compatibility option 130
concatenated key

in key feedback area 87, 143
using in SSA~ 123

concepts and terminology 2-9
conditional comments 318
considerations for message-driven Fast

Path programs 212
considerations in screen design 67
continuing a conversation 68
control statements

CALL 318
COMMENTS 318
COMPARE 322, 323
DATA 320
DL/I test program 229, 316-328
for checkpoints 327
OPTION 324
PUNCH 325
PUNCH DO 326
special control statement
formats 325

STATUS 316
SYSIN2DO 326

conversational abnormal termination
routine 70

conversational mode 72
conversational processing 200, 207

continuing the conversation 205

conversational abnormal termination
routine 70

deferred program switch 68
designing a conversation 68
OFSCOHEO 70
direct access storage SPAs 69
ending the conversation and passing
control 207

example of 200
fixed-length SPAs 69
gathering requirements 67
immediate program switch 68
information you need to code the
program 220

main storage SPAs 69
maximum SPA size 69
message formats 205
overview of 67, 200
passing control and continuing the
conversation 206

passing the conversation to another
program 68

recovery considerations 70
replying to the terminal 205
restrictions 69, 204
ROLB and 202, 212
ROLL and 212
sample program 302
SPA (scratchpad area) 68
SPA characteristics 69
steps in a conversational

program 203
structure 202
types of SPAs 69
use with response alternate PCBs 72
using a deferred program switch to end
the conversation 69

variable-length SPAs 69
ways to continue the conversation 68
ways to end the conversation 69
what happens in a conversation 67

converting an existing application 12
converting batch programs to

BMPs 138-140
creating a new hierarchy 52
current position

after unsuccessful calls 115
determining your position 108
when restarting 133
with multiple positioning 126

current roster 13

o command code 83, 121
and ISRT 104
example of 83
use when loading a data base 108

data aggregate 18
data base calls

OLET 103
formats 239
get ca 11 s 100
get hold calls 100
GH 94-97
GNP 97-99
GU 91-93
guidelines on retrieval calls 100
parameters 239
REPL 101

Index 335

retrieval calls 100
data base description (DBD) 5
data base hierarchy 5
data base load 107
data base name in DB PCB 86, 142
data base options 41-62
data base position 108

determining 108
explanation of 108

. with multiple positioning 126
data base record

example of 7
processing 7

data communications options 63
data dictionary 12
data elements

listing 13
naming 15

data entity 13
data entry data base

processing 146, 153
see "DEDB (data entry data base)"
using Dl/I calls with 153

data relationships, analyzing 17
data sharing 62
DATA statement 320
data structuring 18
DB PCB

contents with secondary indexing 135
data base name 86, 142
key feedback area 87, 143
key feedback area length field 81,

143
number of sensitive segments
field 81

overview of 18
processing options field 81, 143
relation to DB PCB mask 85
segment level number field 86
segment name field 81
sensitive segments 81
status code field 87, 142
using multiple 126

DB PCB mask 85
as parameter in program entry

statement 86, 142
assembler language 242
coding examples 241
fields in 85, 86, 142
format 241
general description of 18
in COBOL 241
in Pl/I 242
name 86, 142
relation to DB PCB 18, 85

DbD (data base description) 5
DC calls

call formats 248
CHNG 195
CMD 208
coding 248
GCMD 208
general description 116
GN 194
GU 194
in assembler language 248
in BMPs 225
in COBOL 248
in Pl/I 248
ISRT 194
overview of 220
parameters 248
PURG 195

336 IMS/VS Appl i cat ion Programmi ng

summary of 116, 249
DCB names for OS/VS restart 133
debugging a program 231
DEDB (data entry data base)

processing 146, 153
using Dl/I calls with 153

deferred program switch 68
definitions

qualified DL/I call 81
qualified SSA 81
unqualified DL/I call 81
unqualified SSA 81

delete call
description 103
format 239

deleting segments 103
DEQ (dequeue)

call format 251
description 210
in BMPs 224
parameters 251

dequeue call
call format 251
description 210
in BMPs 224
parameters 251

designing a conversation 68
designing a local view 11
designing a terminal screen 61
designing batch-oriented BMPs 226
designing transaction-oriented BMPs 225
determining mappings 21
determining your position in the data

base 108
DFSCONEO 70
DFSDDLTO (Dl/I test program)

control statements 229
description of 229
explanation of 316, 331
how to use 316, 331
testing Dl/I call sequences 229

DFSERAI0 (File Select and Formatting
Print Program) 130

DFSOAER 301
dictionary 12
DIF (device input format) 185
differences between transaction-oriented

BMPs and MPPs 223
direct access methods 42

characteristics of 42
HDAM 43
HIDAM 44
types of 42

direct access storage SPAs 69
direct dependents 153
direct retrieval 91
directed routing 191, 198
Dl/I access methods 41-41

considerations in choosing 41
direct access 42
GSAM 46
HDAM 43
HIDAM 44
HISAM 46
HSAM 45
sequential access 45
SHISAM 41
SHSAM 41

DL/I call parameters (figure) 81
Dl/I call trace 229
Dl/I calls

coding 168
DLET 103

(
\.,

(

(

\
)

./

\
/

------------_._--------------_._----_._--------- ------------------------

formats 239
get calls 91, 100
get hold calls 100
GN 94-97
GNP 97-99
GU 91-93
guidelines on retrieval calls 100
overview of 77, 80
parameters 80, 239
processing online data bases
with 224

qualifying your calls 81
REPL 101
retrieval calls 91, 100
testing DL/I call sequences 229
types of 81
use wi th SSAs 81

DL/I options
field level sensitivity 47
logical relationships 52
secondary indexing 48

DL/I program parts 156
DL/I program structure 78
DL/I programming 76-172
DL/I test program

call statements 229
checking program performance 229
comments statements 229
compare statements 229
control statements 229
debugging and 329
description of 229
displaying a data base with 329
execution in different regions 328
explanation of 316, 331
how to use 316, 331
JCL requirements 330
loading a data base with 329
regression testing and 329
segment length and checking 321
status statements 229
suggestions on use 329
testing DL/I call sequences 229
timings 230
using 229, 316-331
verifying call results with 329

DLET (delete)
call format 239
description 103
wi th MSDB 148

DLITCBL 238
DLITPLI 238
documentation for users 236
documenting an application

program 235-236
documenting the application design
process 12

DOF (device output format) 185
input

usi ng MFS 187
input messages

usi ng MFS 187
dynamic log space 227

editing considerations in your
application 66

editing messages 184, 193
considerations in message and screen

design 66
overview 65

element 13
eliminating data base updates 210

ROLB (rollback) 210
ROLL (roll) 210

ending a conversation 69
ending a conversation and passing control
to another program 207

ending the conversation 69
enqueue lockout 226
enqueue space 226

in batch-oriented BMPs
enqueue space

entity 13
entry statement

formats 238
entry statements 168

226

equal to relational operator 82
error routines 129

call format for sample routine
I/O errors 129
programming errors 129
sample status code error
routine 130, 307

system errors 129
types of errors 129

errors, execution 231
e~rors, initialization 231
establishing parentage

and GNP 99
ISRT 106
usi ng GU 93

256

using the P command code 124
establishing position after restart 133
examples

Boolean operators 121
conversational processing 200
current roster 13
D command code 83, 122
DEQ call 210
DLET 103
field level sensitivity 48
GN 95
GU 92
instructor schedules 25
instructor skills report 24
ISRT (add) 105
issuing a data base call 90
L command code 123
local view 22
logical relationships 52
medical data base 88
multiple qualification

statements 121
of GNP 98
P command code 124
path call 83
program isolation 208
Q command code 209
REPL 101
schedule of classes 23
using an SSA with secondary

indexing 135
exceptional conditions 129

Index 337

exclusive mode 72
executing Dl/I test program in different

regions 328
execution errors 231
explicitly opening and closing a GSAM
data base 144

express PCBs 73

F command code 122
with HERE insert rule 105

Fast Path
considerations for message-driven

Fast Path programs 212
data areas 265
data base calls 146, 263
data entry data base 146
DEDB 146
FlD call 263
FSA 265
main storage data base 146
message calls 266
MSDB 146
pas call 264
processing Fast Path data bases 146
processing MSDBs 146
reference 263-267
SYNC call 267
system service calls 267
types of data bases 146

Fast Path application pro~rams
introduction to 31
message-driven 31, 35
mi xed mode 38
nonmessage driven 31
nonmessage-driven 38
restrictions on mixed mode 38
types of 31

Fast Path data bases
DEDBs (data entry data bases) 35
MSDBs (main storage data bases) 35
types of 35

field call
call format 263
description 148
FlD/CHANGE 151
FlD/VERIFY 149
parameters 264

field level sensitivity
as a securi ty mechani sm 56
example of 48
introduction to 47
specifying 48
uses of 48

fi eld name
in FSA 150
in qualfication statement of SSA 82

field search argument
description 149
reference 265

fi eld value
in FSA 150
in qualification statement of

SSA 82, 83
fields in a DB PCB mask 86, 142
File Select and Formatting Print

Program 130
finding the problem 231
FIRST insert rule 105, 123

338 IMS/VS Application Programming

use with l command code 123
fixed-length records 144
FlD (field)

call format 263
description 148
FlD/CHANGE 151
FlD/VERIFY 149
parameters 264

for your reference 237-285
frequency, checkpoint 131
FSA (field search argument)

description 149
reference 265

function codes 169
in assembler language 170
in COBOL 170
in Pl/I 170

GA status code 129
gathering requirements for
conversational processing 67

gathering requirements for data base
options 41-62

gathering requirements for data
communications options 63

GB status code 129
GCMD (get command)

call format 248
description 208
retrieving responses to commands 208

GE status code 129
not-found calls 115
position after 115

general programming guidelines 118, 127
Generalized Sequential Access Method 46
get calls 91-100

choosing a retrieval call 100
get hold calls 100
GN 94-97
GNP 97-99
GU 91-93
overview of 100
use wi th D 121

get hold calls 100
get hold next

call format 239
description 100

get hold next within parent
call format 239
description 100

get hold unique
description 100

get next
data base call 94-97
message call

description 194
get next within parent 99

call format 239
description 97

get system contents directory call
call format 253
description 233
parameters 253

get un i que
data base call 91-93
message call 194

GHN (get hold next)
call format 239

/
\,

(

\

/

)

description 100
GHNP (get hold next within parent)

call format 239
description 100

GHU (get hold unique)
call format 239
description 100

GK status code 129
GN (get next)

data base call 94-97
call format 239
description 94

message call
call format 248
description 194

GNP (get next within parent) 97-99
call format 239

greater than or equal to relational
operator 82

greater than relational operator 82
grouping data elements into
hierarchies 18

grouping data elements with their
controlling keys 21

GSAM (Generalized Sequential Access
Method) 46

accessing GSAM data bases 140
and CHKP 145
and XRST 133, 145
call formats 259
call parameters 259
coding considerations 171
data areas 260
description of 140
designing a program with 140
fixed-length records 144
I/O areas 261
in sample batch program 287
in sample BMP 293
JCL restrictions 262
PCB mask 141
RECFM 262
record formats 144, 262
reference 259-262
restrictions on CHKP and XRST 145
RSA 143, 261
status codes 145
summary of calls 171
undefined-length records 144
variable-length records 144

GSCD (get system contents directory)
call format 253
description 233
parameters 253

GU (get unique)
data base call 91-93

call format 239
description 91

message call
call format 248
description 194
i ssui ng as fi rst call 194

GU function code for COBOL 170
guidelines on retrieval calls 100
guidelines, general programming 118,

127

HDAM (Hierarchical Direct Access
method) 43

HERE insert rule 105, 122, 123
use with F command code 122
use with L command code 123

HIDAM (Hierarchical Indexed Direct
Access Method) 44

hierarchic sequence 94
Hierarchical Direct Access Method 43
Hierarchical Indexed Direct Access

Method 44
Hierarchical Indexed Sequential Access

Method 46
Hierarchical Sequential Access

Method 45
HISAM (Hierarchical Indexed Sequential

Access Method) 46
hold calls 100
HOUSHOLD segment 90
how a program uses a DB PCB mask 78
how IMS/VS identifies terminals 32
how IMS/VS protects online data 33
how logical relationships affect your

programming 137
how often to use checkpoints 60, 131
how secondary indexing affect your

program 134
how you process a data base record 7
how you read and update a DL/I data
base 77

how you use GN 95
how you use GU 92
HSAM (Hierarchical Sequential Access

Method) 45

I/O area
for a DC ISRT call 194
for data base calls

coding 243
in assembler language 243
in COBOL 243
Pl/I 243

for symbolic CHKP 251
for XRST 132, 251
with DL/I calls 77

I/O PCB 177
I/O PCB masks

contents after successful GU 194
description 177
format 177

identification, checkpoint 131
identifying application data 12
identifying free space 154
identifying online security
requirements 63

identifying output message
destinations 71

identifying recovery requirements 58
identifying security requirements

data base 55
ILLNESS segment 89
immediate program switch 68
IMS/VS entry and return conventions

formats 238

Index 339

independent and 120
indexed field fn-an-SSA 135
indexing, s~condary

OB PCB contents 135
effect on programming 134, 135
how it affects your program 134
use with SSAs 135

information you need about
checkpoints 167

information you need about each
segment 167

information you need about
hierarchies 167

information you need about program
design 166

i nformat i on you need to code a
conversational program 220

i nformat i on you need to code an MPP 219
initialization errors 231
initially loading a data base 107
input me~sage format 183
input messages

format 183
input

format 183
MFS 187
using basic edit 193

insert call
call format 239
data ba se call

description 104
insert rules 105

use with F command code 122
use with l command code 123

inserting a path of segments 104
inserting a sequence of segments 121
inserting information 108
inserting segments

usi ng 0 command code. 122
inserting segments to an existing data
base 104

inserting the first occurrence 122
inserting the last occurrence 123
inserting with 0 122
instructor schedules 25
instructor skills report 24
introduction 2-9
i solat i ng dUp! rca~e values 19
isolating repeating data elements 18
ISRT (insert)

data base call
adding segments 104
call format 239
description 104
loading a data base 107
rules 105
use with 0 command code 122
use with F command code 122
use with l command code 123
wi th MSOB 148

inserting the SPA 205
message call

call format 248
description 194
in conversational programs 205
use with SPAs 205

ISRT function code for Pl/I 170
iss u i n g C H K Pas fir s t ca 11 i n
program 131---

issuing commands 208
using the CMD call 208
using the GCMO call 208

issuing data base calls 90

340 IMS/VS Appl i cat ion Programmi ng

issuing GU as first call in MPP 194

JCl (job control language)
Dl/I test program requirements 330
GSAM restrictions 262

key feedback area
definition of 87, 143
field in OB PCB 87, 143
length field in OB PCB 87, 143

key sensitivity 56
keys, concatenated

using in SSAs 123

L command code 123
with HERE insert rule 105

LAST insert rule 105
length of key feedback area 87, 143
less than or equal to relational
operator 82

less than relational operator 82
level number field in DB PCB 86
limiting access to specific

individuals 64
limiting access to specific
terminals 64

1 i mi ti ng access to the program 64
listing data elements 13
LL field

in input messages 183
in output messages 183
in SPA 204
with directed routing 200

load program
use of SSAs in 107

loading a data base 107
loading a sequence of segments 108
local view examples 22
local views, designing 17
locating a specific sequential
dependent -153

locating the last inserted sequential
dependent 154

LOG (log)
call format 254
description 233
parameter length for OL/I test

program 321
parameters 254
restrictions on I/O area 255

log call
call format 254
parameters 254
restrictions on I/O area 255

log record
containing checkpoint IO 130
File Select and Formatting Print

Program 130

r'
(

r
\

-'-

(

(

)
/

how to print 130
printlng log records 130

10glcal and 120
logical child 136
logi calor 120
logical parent 136
10glcal relatlonshlps

and status codes 138
deflnlng 53
effect on programming 136, 137
example of 52
introduction to 52, 136
logical child 136
logical parent 136
physlcal parent 136
processing segments in 136

logical structure 136

main storage data base
see "MSDB (main storgage data base)"

main storage SPAs 69
maklng programmlng easler 118
making your program reusable 175
many-to-many mapping 22
mappings, determining 21
mask, DB PCB 78, 85
maximum SPA size 69
medical data base example 88

descrlption of 88
segments in 88

message calls
call formats 248
in assembler language 248
1 n COBOL 248
1 n PL/I 248
parameters 248
summary of 249

message prlming 194
message processing 32
message queues

accessing from BMPs 225
message-driven Fast Path programs 31,

35
considerations 212
recovery 36
scheduling 36
sync points 36

messages 32
editing 184
from terminals 180
in conversations 205
input 193
output 71, 193

identifYlng destlnations for 71
retrievlng 193-194
segments 180
sending 194-197
sending messages to other appllcatlon
programs 196

MFS (Message Format Servlces) 184
control blocks 65, 185
exampl e of 185
input messages 187
overview of 65

MID (message input descrlptor) 185
mi xed mode 38

restrictions 38

mixing Fast Path and IMS/VS
processing 38

MOD (message output descriptor) 185
mode

exclusive 72
multiple 61
response 72
single 61

modifiable alternate PCBs 195
changing the destination of 195
uSlng the CHNG call with 195

MPPs (message processing programs)
checking status codes 221
description of 33
dlfferences with transaction-oriented

BMPs 223
lntroduction to 31
multiple mode 34
r'ecovery 34
sample program 299
scheduling an MPP 35
single mode 61
structure 175
sync po i nts 33

MSC (Multiple Systems Coupling)
and conversational programming 207
description 197
directed routing 198
receiving messages from other IMS/VS

systems 198
sending messages to other IMS/VS

systems 199
MSDB (main storage data base) 146

description of 35
non related 146
nonterminal-related 146
processing 146
reading segments in 148
related 146
terminal related 146

dynamic 146
fixed 146

types of 146
multiple DB PCBs 126
multiple mode 61
multiple positioning 126
multiple qualification statements 120
Multiple Systems Coupling

see "MSC (Multiple Systems Coupling)"
multiple transaction codes 194
multiple-mode BMPs 226
multiple-mode MPPs 34

N command code 125
use with REPL 103

name field, segment 82
naming data elements 15
nonmessage-driven Fast Path programs 31

description 38
recovery 38
sync poi nts 38

non related MSDB 146, 148
nonterminal related MSDB 148
nonterminal-related MSDB 146
not equal to relational operator 82
not-found ca 11 s

description 115
position after 115

Index 341

notes on coding a COBOL MPP 216
notes on coding a PL/I MPP 218
notes on coding assembler language

MPPs 219
null command code 126
number of sensitive segments in DB

PCB 87

one-to-many mapping 21
online and batch processing 28-40
online processing 30-38

message processing 32
processing online data bases 223
processing the data base online 224

online security
password security 64
supplying information about your
application 64

terminal 64
OPEN (open) 259
operator

in FSA 150
in SSA 82

operators, Boolean 120
operators, relational 120
OPTION statement 324
options, processing

description of 57-58
field in DB PCB 87, 143

or, logi cal 120
OS/VS checkpoint option

return codes 133
OS/VS checkpoint records 133
OS/VS restart 59

DCB names 133
description of 133
restrictions 134

output message format 183
output messages

format 183
identifying destinations for 71
output

format 183
retrieving 193-194
sending 194-197
to other application programs 196
to other IMS/VS .systems 199
using basic edit 193
with directed routing 200

overriding FIRST insert rule 123
overriding here insert rule 122, 123
overriding insert rules 105
overview of application design 10
overview of basic edit 66
overview of coding an MPP 220
overview of MFS (Message Format
Services> 65

342 IMS/VS Application Programming

P command code 124
P processing option 121
parallel processing 126
parameter length

LOG call 321
SNAP calls 320

parameters
for DC calls 248
for DL/I calls 239
for GSAM calls 259

parentage
and DLET 104
and GNP 99
and GU 93
and ISRT 106
and REPL 103
using the P command code 124

parmcount 167, 169, 218
partition specifications table 233
parts of a batch program 156
parts of a DL/I program 78, 156
parts of an MPP 215
passing a conversation to another IMS/VS

system 207
passing a conversation to another

program 69
restrictions 69

passing control to a conversational
program 206

passing control to another program in a
conversation 206

passing the conversation to another
program 68

password security 64, 65
path call 83

definition of 83
example of 83

PATIENT segment 89
PAYMENT segment 90
PCB masks

alternate PCB masks 179
DB 85
DB PCB mask 78
GSAM 141
I/O PCB masks 177

PCB parameter list in assembler language
MPPs 219

PCBs (program communication blocks)
DB PCB 78
I/O PCB 177

PCBs, al ternate
see "alternate PCBs"

PCBs, modifiable
see "modifiable alternate PCBs"

physical parent 136
PL/I

call parameters 239
DB PCB mask 242
DC call format 248
DL/I call format 239
DL/I program structure 160
entry statement 238
I/O area 243
ISRT function code 170
parameters 238

entry statement 238
passing PCBs 238

in entry statement 238
po inters- in entry statement 238

(

(

--------- ---

)

)

return statement 238
sample MPP 299
skeleton program 160
SSA definition examples 246

PL/I coding notes
on MPPs 218

PL/I MPP skeleton 217
skeleton MPPs

PL/I 217
PL/I Optimizing Compiler 218
planning ahead for batch-to-BMP
conversion 138-140

POS (position)
call format 264
description 153
I/O area 266
parameters 264

POS=MUlT 126
position call

call format 264
description 153
I/O area 266
parameters 264

positioning 108
after unsuccessful calls 115
determining your position 108
multiple 126
when restarting 133

preventing a program from updating
data 57

preventing a segment from being

processing
130

replaced 125
primarily sequential
printing log records
problem determination
processing a message

231
181

overview 181

46

processing data bases online 37
processing DEDBs 153
processing Dl/I data bases

overview of 77, 80
processing Fast Path data bases 146
processing information in a data base 2
processing messages

transaction-oriented BMPs 225
processing messages 225

processing MSDBs 146
processing online data bases 224

in BMPs 223, 224
processing options

A (all) 57
D (delete) 57
E (exclusive) 57
field in DB PCB 87, 143
G (get) 57
general description of 57
GO (read only) 58

GON 58
GOT 58

I (i n sert) 57
K (key) 57
P (path) 121
R (replace) 57

processing requirements, analyzing 28
processing segments in logical
relationships 136

processing several views of the same data
base 126

processing, parallel 126

program communication block
see PCB

program entry
formats 238

program isolation 208
enqueue lockout 226
enqueue space 226
example of 208
in BMPs 224

program isolation enqueues 208
program structure

conversational 202
program test 228-232
program-to-program message

switching 197
conversational 206
nonconversational 196
restrictions 197
security checks 197

programming guidelines 118, 127
programming with secondary indexing 134
programs, sample 286-315
PSB (program specification block)

introduction to 5
PST (partition specifications
table) 233

PUNCH DD statement 326
PUNCH statement 325
PURG (purge)

call format 248
description 195
using CHNG with 196

Q command code 208-210
assigning classes to segments you're

reserving 210
example of 209
hO ... J to use 209
in BMPs 224
relationship to program
isolation 208

restrictions 210
use with DEQ call 208
using 210
with dependent segments 210
with root segments 210

qualificatIon statement 82
coding 244
fi eld name 82
field value 82, 83
relational operator 82
segment name 82
structure 82
using multiple qualification

statements 120
qual i fi ed call

definition of 81
qualified SSA 81, 82

qualification statement 82
structure 82
structure with a command code 83
with command codes 83

qualifying DL/I calls 81
qualifying your SSAs 82

Index 343

read-only access 58
reading segments in an MSDB 148
real time, Dl/I test program 230
receiving messages

overview 174
receiving messages from other IMS/VS

systems 198
RECFM for GSAM 262
record, log

File Select and Formatting Print
Program 130

giving checkpoint ID 130
how to print 130
printing log records 130

recording information about your
program 235

recovery
checkpoints calls 58
identifying requirements 58
in a batch-oriented BMP 37
in a message-driven Fast Path
program 36

in batch programs 39
in MPPs 34
in nonmessage-driven Fast Path
programs 38

in programs accessi ng OS/VS
files 133

restart call (XRST) 59
using basic CHKP 133
using XRST 132
with OS/VS restart 133
with symbolic CHKP and XRST 132

recovery call s
CHKP 130, 132, 133

basi c 130, 133
symbolic 130, 132

CHKP (symbolic) 132
symbolic CHKP 132
XRST 132

recovery considerations in
conversations 70

reference section 237-285
related MSDB 146
relational operator

in qualification statement of SSA 82
list of 82

relational operators
Boolean operators 120
coding in SSA 244
independent and 120
logical and 120
logical or 120

relationships between data elements 17
REPl (replace)

call format 239
description 101
wi th MSDB 148

replace call
call format 239
description 101

replacing segments 101
replying to one alternate terminal 195
replying to the originating
terminal 194

replying to the terminal in a
conversation 68, 205

repositioning GSAM data bases 133
reserving a place for command codes 126

344 IMS/VS Application Programming

reserving and releasing segments 208
program isolation 208

resolving data structure conflicts 47
responding to an alternate terminal 195
response alternate PCBs 72
response mode 72
restart 132

and GSAM 133
with basic CHKP 59
with OS/VS restart 59
with symbolic CHKP 59

restarting your program
DCB names for OS/VS restart 133
repositioning GSAM 133
using basic CHKP 133
using OS/VS restart 134
when accessing OS/VS files 133
with OS/VS restart 133
wi th XRST 132

restriction on passing control to
conversational programs 206

passing control and continuing the
conversation

restriction on size of SPA 206
restriction on SPA size when passing
the conversation 206

restrictions
CHKP and XRST with GSAM 145
GSAM JCl 262
mixed mode 38
on checkpoint calls in single-mode

BMPs 226
on F command code 122
on LOG I/O area 255
on passing a conversation 69
on Pl/I entry statement 218
on program-to-program message

switching 197
on the D command code 121
on using the Q command code 210
on using the SPA 204
using OS/VS restart 134

retrieval call usage 100
retrieval calls 91-100

exceptional status codes for 129
get hold calls 100
GN 94-97
GNP 97-99
GU 91-93
guidelines 100
use wi th D 121
use with l command code 123
using F with GN and GNP 122
which retrieval call to use 100

retrieving a sequence of segments 121
retrieving IMS/VS system statistics 232
retrieving information 91-100
retrieving messages 193-194
retrieving segments directly 91
retrieving segments sequentially 94
retrieving segments with D 121
retrieving subsequent message

segments 194
retrieving system addresses 233
retrieving the first message

segment 194
retrieving the first occurrence 122
retrieving the last occurrence 123
return codes

after OS/VS checkpoint 133
return conventions

formats 238
reusable programs 175

(

(
\

)

)

ROLB (rollback)
call format 258
comparison to ROLL 211
description 210
in BMPs 224
parameters 258
use in conversations 202, 212

ROLL (roll)
call format 258
comparison to ROLB 211
description 210
in BMPs 224
parameters 258
use in conversations 212

roll call
call format 258
comparison to rollback call 211
description 212
in BMPs 224
parameters 258

rollback call
call format 258
comparison to roll call 211
description 210
in BMPs 224
parameters 258

routines, error 129
RSA (record search argument)

description 143
reference 261

rules, ISRT 105
RULES=FIRST 105, 123

use with L command code 123
RULES=HERE 105, 123

use wi th F command code 122
use with L command code 123

RULES=LAST 1~5

SAMETRM=YES 205
sample JCL for DL/I test program 331
sample programs 286-315

batch 287
BMP 293
conversational 302
MPP 299
transaction-oriented BMP 293

sample status code error routine
calling 130
description of 130

saving information in the SPA 205
SCD (system contents directory) 233
schedule of classes example 23
scheduling

a message-driven Fast Path
program 36

scheduling an MPP 35
scratchpad area

general description 68
screen design considerations 67
secondary indexing

DB PCB contents 135
effect on programming 134
examples of uses 49
how it affects your program 134
introduction to 48
specifying 50
using SSAs with secondary
. indexes 135

what DL/I returns 135
secondary processing sequence 135
security

checks in program-to-program
switching 197

data ba se . 55
field level sensitivity 56
identifying online requirements 63
key sensitivity 56
password security 64
processing options 57
segment sensitivity 55
sign-on 64
supplying information about your
application 64

terminal 64
segment

introduction to 5
sensitivity 55

segment length and checking
(DFSDDL TO) 321

segment level number field 86
segment name

field in DB PCB 87
in qualification statement of SSA 82

segment name field
in SSA 244

segment name field in an SSA 82
segment search argument

see "SSA (segment search argument)"
segments in medical data base example 88
sending messages 174, 194-197

overview 174 .
to alternate destinations 195
to other application programs 196
to other IMS/VS systems 197
to the originating terminal 194
usi ng al ternate PCBs 195
using the PURG call 195

sending messages to alternate
destinations 195

sending messages to other application
programs 196"

sending messages to other IMS/VS
systems 199

sending messages to several alternate
destinations 195

sensitive segments in DB PCB 87
sensitivity .

fi eld level 56
general description of 55
key 56
segment 55

sequence in a hierarchy 94
sequential access methods 45, 46

characteristics of 45
HISAM 46
HSAM 45
types of 45

sequential dependents 153
sequential processing only 45
sequential retrieval 94
setting parentage

and GNP 99
ISRT 106
usi ng GU 93
usi ng the P command code

SHISAM (Simple Hierarchical
Sequential Access Method)

SHSAM (Simple Hierarchical
AccessMethod 47
si~n-on security 64
s~mple HISAM (SHISAM) 47

124
Indexed
47

Sequential

Index 345

simple HSAM (SHSA~) 47
simplifying your programming 118
si ngle mode 61
single-mode BMPs 225
single-mode MPPs 34
skeleton programs

assembler language 163
COBOL 157
PL/I 160

SNAP call
parameter length 320

SPA (scratchpad area)
contents 204
format 204
length 69
maximum size 69
restrictions on using 204
saving information 205
size 69
storage medium 69
type 69

special call stetements for DL/I test
program 327

special control statement formats 325
specifying field level sensitivity 48
SSA (segment search argument)

coding 244
coding formats 245

in assembler language 247
in COBOL 245
in PL/I 246

coding rules 244
command codes 83
definition of 81
guidelines on usage 119
overv i ew of 81
qualification statement 244
qualified 81, 82
reference 244
relational operators 82
restrictions 244
segment name field 82, 244
structure 81
structure with a command code 83
unqualified 81
usage 92

guidelines on 119
with DLET 104
wi th GN 96
wi th GNP 98
wi th GU 92
with ISRT 105
with REPL 102

use with DL/I calls 81
use with multiple qualification

statements 120
use with secondary indexing 135
using qualified SSAs 83
with command codes 83

STAT (statistics)
call format 255
description 232
parameters 255

statistics call
call format 255
description 232
parameters 255

status code
field in DB PCB 87, 142

status code error routine 307
call format 256
calling the sample routine 130
parameters 256

346 IMS/VS Application Programming

status codes
and DLET 104
and error routines 129
and GN 97
and GNP 99
and GU 93
and ISRT 106
and load programs 108
and REPL 103
blank 129
checking 128-130
checking in an MPP 221
exception conditions 129
explanations 272-285
for logical relationships 138
for retrieval calls 129
for XRST call 132
in FSA 150
quick reference table 268
reference 268-285

STATUS statement 229, 316
storing data in a combined file 3
storing data in a data base 4
storing data in separate files 2
structure of a DL/I program 78
structuring a batch program 76
structuring a message processing

program 173
structuring and coding a BMP 223

batch-oriented BMPs 226
processing online data bases 223,

224
transaction-oriented BMPs 225

structuring data 18
structuring the DL/I portion of a

program 76
suggestions on using the DL/I test

program 329
summary of command codes 84
summary of DC calls 249
summary of symbolic CHKP and basic

CHKP 60
supplying security information 64
symbolic CHKP 130, 132

and GSAM 46
and XRST 132
call format 251
ID 131
in BMPs 225
in sample batch program 287
in sample BMP 293
parameters 251
restart and 59
restart with 132

SYNC (sync)
call format 267
parameters 267

sync call
call format 267
parameters 267

sync point processing in a DEDB 155
sync points

and checkpoint calls 58
description of 33
in a batch-oriented BMP 37
in batch programs 39
in batch-oriented BMPs 226
in BMPs 224
in message-driven Fast Path
programs 36

inMPPs 33
in multiple-mode BMPs 226

(
',-

(

(

'\
)

)

in nonmessage-driven Fast Path
programs 38

in transaction-oriented BMPs 225,
226

taking checkpoints 130
sync points in single-mode BMPs 226
sync points in transaction-oriented

BMPs 225
synchronization points

see "sync po i nt sty
SYSIN2 DO statement 326
system contents directory 233
system service calls

CHKP 130, 132, 133
basi c 130, 133
symbolic 130, 132

CHKP, basic 252
CHKP, symbolic 251
DEQ 210, 257

use in BMPs 224
for Fast Path 267
GSCD 233, 253, 255
LOG 233, 254
ROLB 202, 210, 224, 258
ROLL 210, 224, 258
STAT 232
summary of 250
symbolic CHKP 132
SYNC 267
XRST 132, 251

system statistics, retrieving 232

taking checkpoints 130
in batch-oriented BMPs 226, 227

dynamic log space 227
enqueue lockout 226

in multiple-mode BMPs 226
in single-mode BMPs 225
in transaction-oriented BMPs 225

task time, DL/I test program 230
tasks of desi gni ng and codi ng appl i cati on

programs 7
techniques to make programming
easi er 118-

terminal security 64, 65
terminal-related MSDB 146
testing an application program 228-232

using BTS II 230
using DL/I test program 229, 316, 331
what you need 228

testing DL/I call sequences 229
testing status codes 128
timings, DL/I test program 230
tools avai lable to BMPs 224

Q command code 224
ROLB 224
ROLL 224

transaction-oriented BMPs 31
checkpoints in 61
common uses 225
description of 36
design considerations 225
differences with MPPs 223
multiple and single mode 224
multiple mode 226
processing messages 225
sample program 293
singlemode 61

sync points 224
uses of 36

TREATMNT segment 89

U command code 124
unconditional comments 318
undefined-length records 143
understanding how data structure
conflicts are resolved 47

understanding online and batch
processing 28-40

unit test 228
unqualified calls

definition of 81
unqualified SSA 81, 82

segment name field 82
structure 81
structure with a command code 83
with command codes 83

updating information 100
get hold calls 100

updating segments in an MSDB 148
updating the data base online

in BMPs 223
using a data dictionary in application

design 12
using a OB PCB mask 78
using BTS II to test your program 230
using command codes 121, 126

when loading a data base 108
with OLET 104
with GN 96
wi th GNP 99
with GU 93
with ISRT 106
with REPL 103

using command codes with SSAs 83
using concatenated keys in SSAs 123
using DFSDDLTO 229, 316-331
using different fields 47
using DL/I calls to process online data
bases 224

using DL/I calls with DEDBs 153
usi ng DL/I' s posi ti ons as
qualifications: U 124

usi ng F wi th GN and GNP 122
using F with ISRT 122
usi ng GN 95
usi ng L wi th ISRT 123
using L with retrieval calls 123
using multiple DB PCBs 126
using multiple positioning 126
using multiple qualification

statements 120
using parallel processing 126
using password security with terminal
security 64

using qualified SSAs 83
using ROLB and ROLL in conversations 212
using ROLB in conversational

programs 202
using secondary indexing and logical
relationships 134

usi ng SSAs
general guidelines 119
in a load program 107
with OLEl 104
with GN 96

Index 347

wi th GNP 98
wi th GU 92
with ISRT 105
with multiple qualification

statements 120
with REPL 102
with secondary indexing 135

using SSAs with DL/I calls 81
using the CHNG call 195

modifiable
changing the destination of 195
using the CHNG call with 195

using the DL/I test program 316-331
using the right retrieval call 100

V command code 125
variable-length records 143

what a CHKP call does 130
what DL/I returns with a secondary

index 135
what happens in a conversation 67
what happens when you issue a call 90
what happens when you process a

message 181
what the data looks like to your

program 5
what the SPA contains 204
what you can use in BMPs 224
what you need to test a program 228
when IMS/VS schedules a message-driven

Fast Path program 36
when IMS/VS schedules an MPP 35

348 IMS/VS Application Programming

when position is important 109
where field level sensitivity is
specjfied 48

where to use checkpoints 131
which retrieval call to use 100
writing information to the system

log 233

XRST (restart) 132
and GSAM 133
call format 251
description of 59
in sample batch program 287
in sample BMP 293
parameters 251
usi ng XRST 132

your input
information you need to code an

MPP 219
your input for a DL/I program 166

ZZ field
in input messages 183
in output messages 183
with directed routing 200

Z2 field 183

r-
I

\ ...

(

"-
\
/

./

E g
E.E
c.'" .:; :E
0-
(1)"iO
ClQ)
c: III

·E B
o Q)
III 0.

== 10 10

E]
] E
10 E
E 5,
o
;~

. 10
'- 0
~

,,~ 0
II> Q)

E ·E
~.;;;

.0 c: o (1)
.... III

o.~

~ ~
10 (1)

~ c.
~ ~
III ::I
OJ (1)

o.~
10 (1) we:
(1)

o z

)

IMS/VS Version 1
Application Programming:
Designing and Coding
SH20-9026-8

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at ti1'!.' location to which this form is addressed. Please direct
any requests for copies of publications, or for assistanc:~ in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL _________ _

Previous TNL _________ _

Previous TNL _________ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
(;UOP~li:1i.iuH.

SH20-9026-8

Reader's Comment Form

=old and tape Please do not staple Fold and tape

... :

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programminy Publishing
San Jose, California 95150

IIIII1 NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

...•...•...
=old and tape

--- ---------- ---- - ---- - ----------_ .. -
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation

Please do not staple

Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

r
(
\ ,-

s:
en -< en
<
CD ..,
CI'I o·
:J

o
CD
CI'I

cO·
:J
5·
to
Q)

5.r
n\. o
a.
5·
to

en
:J:
I\J
o
cO
o
I\J
0')

Co

(,

----.-----

iii o z

)
/

IMS/VS Version 1
Application Programming:
Designing and Coding
SH20-9026-8

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL _________ _

Previous TNL ________ _

Previous TNL _________ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
coop~raiion.

SH20-9026-8

Reader's Comment Form

old and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

IIII

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

~
en -< en
< ctI ..,
CII o·
::J

:t>
"0
"2-o·
Q)
.-+ o·
::J

"tJ
a
to
@
3
3
::J
to

"tJ
~.
::J

•••••••••••••••••••••••••••• • •••••••• • •••••••••• • •••••••••••• • •• • •••••• • ••••••••• •• • (ti'

old and tape

--- ------ ---------- - - - ... ---------.-
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue. White Plains. N.Y. 10604

IBM World Trade Americas/Far East Corporation

Please do not staple

Town of Mount Pleasant. Route 9. North Tarrytown. N.Y •• U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue. White Plains. N.Y •• U.S.A. 10601

Fold and tape

Co

en
::I:
I'.)
o
cO o
I'.)
0>
00

(
"

~ g
e.E
0.<1)
.; :2
0-'"
CIl'iij
ClCll c: <I)

''::; 0
o CIl
<I) a.
:: co co ...
E"O
~ e
~ E
§ 6,
.... ...
~£
'- 0) (;
.'", ~
E ''::;
~.;;;
.0 c: o CIl
... <I)

o.CIl

~ :;
:::J en

~ e
c: a.

~ ~
CIl CIl
o.~
co CIl cnii:
CD
o z

)

... _----_._ _._ ...•.... -------------------------------

IMS/VS Version 1
Application Programming:
Designing and Coding
SH20·9026·8

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be written in
your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL ________ _

Previous TNL ________ _

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere,
any IBM representative will be happy to forward your comments.) Thank you for your
cooperation.

SH20-9026-8

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

,f
\

~
en -< en
<
CD
"" en o·
:J

»
'C
'Eo o·
Q)
.-+

'-

.. : o·
:J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

II1111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

"'0
"" o
to
"" Q)

3
3
:J
to

"
CD

z
!='
en
w
.......
o
t1t
.9

"'0
~.
:J

• •• • n;-

Fold and tape

--- ----- ------ - ---- - - ------------_.-
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.V. 10604

IBM World Trade Americas/Far East Corporation

Please do not staple

Town of Mount Pleasant, Route 9, North Tarrytown, N.V., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.V., U.S.A. 10601

Fold and tape

o C.

en
::r:
I\J
o
tb o
I\J
0')

00

(
"

)

)

)

