
TERCO

FILE RECOVERY USERS GUIDE

<~ISOGON
~ CORPORATION

330 Seventh Avenue, New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR

Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

SPR 237 4/89

File Recovery Users Guide

Publishing History

Publication Date

First Edition December 1973

Second Edition July 1982

SPR 237 April 1989

Remarks

This manual corresponds to Intercomm
Release 6.0.

This edition corresponds to Intercomm
Release 9.0.

Updates for Release 9 and additions
for Release 10 (where indicated).

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

11

J

SPR 237 4/89

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system
executing on the IBM System/370 family of computers and operating under
the control of IBM Operating Systems (MVS/370, XA, ESA). Intercomm
monitors the transmission of messages to and from terminals, concurrent
message processing, centralized access to I/O files, and the routine
utility operations of editing input messages and formatting output
messages, as required.

This document presents the concepts and facilities of the
coordinated Message Restart/File Recovery facility under Intercomm, and
details the coding requirements, implementation and installation
specifications for the File Recovery Facility, which is offered as a
Special Feature of the Intercomm system.

In this manual, the term file(s), used interchangeably with data
base, refers to OS or VS files, specifically ISAM, BDAM and VSAM data
sets. Readers seeking specific recovery information on data base
management systems should refer to the Intercomm DBMS Users Guide.

As prerequisite reading for this publication, the user is
referred to the Intercomm Concepts and Facilities. In addition; the
following Intercomm publications should be used in conjunction with
this manual:

• Basic System Macros

• Operating Reference Manual

iii

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide

PLl1 Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros

BTAM Terminal Support Guide

Installation Guide

Messages and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

User Contributed Program Description

iv

FEATURE IMPLEMENTATION MANUALS

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Multiregion Support Facility

Page Facility

Store/Fetch Facility

SNA Terminal Support Guide

Table Facility

TCAM Support Users Guide

Utilities Users Guide

EXTERNAL FEATURES MANUALS

SNA LU6.2 Support Guide

J

TABLE OF CONTENTS

~

Chapter 1 RESTART/RECOVERy.................................. 1
1 .1 Introductory·Concepts ••••••••••••••••••••••••• 1
1.2 Message Restart ••••••••••••••••••••••••••••••• 3
1.2.1 Message Logs •••••••••••••••••••••••••••••• 5
1.2.2 Message Accounting •••••••••••••••••••••••• 6
1.3 Message Restart Logic ••••••••••••••••••••••••• 9
1.4 File Recovery Concepts •••••••••••••••••••••••• 11
1.4.1 Checkpoints ••••••••••••••••••••••••••••••• 11
1.4.2 File Activity Logs •••••••••••••••••••••••• 12
1.4.3 Destruction of Files •••••••••••••••••••••• 13
1.4.4 Normal Recovery........................... 13
1.4.5 Coordinated Message Recovery.............. 14
1.5 Backout-on-the-Fly •••••••••••••••••••••••••••• 15

Chapter 2 FILE RECOVERy..................................... 17
2.1 Timing Considerations ••••••••••••••••••••••••• 17
2.2 File Reversal................................. 20
2.3 File Recreation ••••••••••••••••••••••••••••••• 22
2.4 File Recovery Log Entries ••••••••••••••••••••• 22

Chapter 3 FILE ATTRIBUTE RECORDS •••••••••••••••••••••••••••• 25
3.1 Introduction •••••••••••••••••••••••••••••••••• 25
3.2 FAR Parameters for File Recovery.............. 30
3.3 File Attribute Block (FAB) •••••••••••••••••••• 37
3.4 FAB Table ••.•••••••••••••••••••••••••••••••••• 37

Chapter 4 INSTALLING FILE RECOVERy........................... 41
4.1 Introduction •••••••••••••••••••••••••••••••••• 41
4.2 File Recovery Modules ••••••••••••••••••••••••• 41
4.3 Job A--Intercomm with File Recovery........... 45
4.3.1 FAR, SCT, and SPA Specifications •••••••••• 47
4.3.2 Linkedit •••••••••••••••••••••••••••••••••• 50
4.3.3 Execution JCL ••••••••••••••••••••••••••••• 50
4.4 Job B--Intercomm Restart with File Reversal... 52
4.4.1 FAR, SCT, and SPA Specifications •••••••••• 52
4.4.2 Linkedit •••••••••••••••••••••••••••••••••• 52
4.4.3 Execution JCL ••••••••••••••••••••••••••••• 53
4.5 Job C--Recreating Files Off-line •••••••••••••• 54

Chapter 5 BACKOUT-ON-THE-FLY •••••••••••••••••••••••••••••••• 57
5.1 Introduction ...••••••••••.•••••••••••••••••••• 57
5.2 Implementation Procedures ••••••••••••••••••••• 59
5.2.1 The DDQ Environment ••••••••••••••••••••••• 59
5.2.2 SYCTTBL Requirements •••••••••••••••••••••• 60
5.2.3 FAR Specification ••••••••••••••••••••••••• 60
5.2.4 Linkedit Requirements ••••••••••••••••••••• 60
5.2.5 Execution JCL ••••••••••••••••••••••••••••• 61

Index 63

v

LIST OF ILLUSTRATIONS

Figure. Page

1 INTERLOG Entries 7 .
2 Supported File Access Methods 11

3 Message Header Fields for File Recovery 18

4 File Recovery Reversal Action 21

5 Table Summary of Before-Image Log Entries 23

6 Table Summary of After-Image Log Entries 24

7 Summary of General FAR Parameters 27

8 Summary of File Recovery FAR Parameters 30

9 Sample FAR Data Set 36

10 File Attribute Block 38

11 FAB Table 39

12 Summary of Message Restart/File Recovery
Modules 42

13 Sample IXFSNAPL Output 46

vii

Chapter 1

RESTART/RECOVERY

1.1 Introductory Concepts

Intercomm has been designed to anticipate. detect and recover
from most error situations without bringing down the entire
teleprocessing system. Teleprocessing devices and teleprocessing
application programs can and will fail. In most instances following
failures. Intercomm continues to operate in a degraded mode, mi~us the
failed components. Alternatively. Intercomm, can come down gracefully
after a failure by completing all work in progress at the time of
failure.

Certain conditions, however. can and will occur that effect
immediate termination of all processing in Intercomm. These include
power failure. machine failure. data base destruction. and operating
system failure. In these and other total failure situations. Intercomm
automatically provides for the complete recovery of teleprocessing
applications. This recovery includes the restarting of all messages in
progress at the time of failure. the recovery of message queues. the
recovery of checkpointed data. and the coordinated recovery of files
and data bases.

Key points to the Intercomm Restart/Recovery facility are
summarized below:

• No User Support Required

All mechanics of implementing message restart and file
recovery are supported by Intercomm-supplied software. User
application programs that are to be restarted are no
different in format or content than nonrestarted programs.
The restart facility is generally transparent to the
application programmer. User responsibility in restart is
limited to table entries that delineate those programs and
terminals for which restart is to be performed. Other table
entries specify those programs that may update data base
files. These table entries are generally the extent of user
responsibility in providing restart capability.

• Fast Restart

The method of recovery in Intercomm is a rapid "warm"
restart. It does not require an off-line program following a
failure; live Intercomm is merely restarted. Restarted
Intercomm first reads the system logging (journal) file
backwards from the point of the failure as far back as
necessary for recovery. With the necessary items recovered.
live Intercomm starts up, typically only a few minutes later.

1

Chapter 1

•

SPR 237 4/89 Restart/Recovery

Data Integrity

The user is afforded complete data integrity following a
failure. If a file or its indexes were physically or
logically destroyed as part of the failure, the file can be
reconstructed from its last backup by Intercomm-supplied
software. If the file is intact following a failure, the
file is recovered in such a manner that updates in progress
at failure time can be reinstated without duplication. The
recovery is coordinated for data files, DBMS files,
checkpointed system table entries, and message traffic.

• Message Integrity

All messages and queues !ire recovered and restarted as
appropriate. In certain cases, to ensure data integrity,
subsystem messages previously completed must also be
restarted to effect necessary interaction with files or data
bases.

• Selective Restart

Users can specify the extent of the restart on a
terminal-by-terminal and program-by-program basis. The
overhead of restart can be limited to necessary system
components, via the restart "always" or "never"
specifications. Additionally, a third specification is
provided; the restart desirable condition. If restart is
desirable, but not mandatory for a program or terminal, then
in the course of restart for those mandatory programs and
terminals, restart will also be performed for desirable
components. However, once restart has completed for all
mandatory items, the restart is deemed complete regardless of
whether or not desirable components have been fully
restarted. Restart will proceed as far backwards through the
Intercomm system log as necessary to retrieve all messages
for mandatory restarted components. During this read-back
process, messages encountered for desirable restart
components will be retrieved as appropriate. However, the
read-back point of the file is defined as the point necessary
to retrieve all mandatory items and is not influenced by
desirable items. Those terminals or subsystems for which the
restart specification is neither desirable nor mandatory
utilize logging as a user option, again on an individual
program and terminal basis. Selective logging can reduce
system overhead in logging that would otherwise be wasted on
noncritical components.

• Automated Restart

Under Release 10, the same set of JCL can be used for normal
startup and restart, with no system operator intervention
other than resubmitting the Intercomm job, as described in
the Release 10 Operating Reference Manual.

2

J

J

Chapter 1 Restart/Recovery

• Coordinated Checkpointing

As described in the Operating Reference Manual, checkpoints
are taken, at a user specified interval, of critical system
table entries and counters. A pointer to the checkpoint file
data is logged on the system log at checkpoint time .

• Checkpointed system data, and optional user data, is also
restored during message restart.

• Single Log File

Only a single log is required for Front End, Back End and
file image logging. This log can be either tape or disk.
Further, a technique for writing on this log has been
implemented such that any size record can be written. to this
log (up to the block size specified for the log file
INTERLOG) without devoting buffer space for maximum record
sizes. Additionally, log records are blocked for noncritical
entries and unblocked for critical entries.

• Log File Recovery

For tape and/or disk logging, an off-line utility, ICOMFEOF,
is provided to determine the end of file after a system
failure where the operating system does not properly close
the file. For on-line disk logging, a sequential file
Flip/Flop facility (x37 abend recovery) is provided to handle
logging in smaller file increments than an entire day (or
days). Both of these features are described in the Operating
Reference Manual.

In the following section, message recovery concepts of the
Intercomm system are described. This description is basic to the
application of the File Recovery facility. Additionally, in subsequent
chapters, all aspects of File Recovery under Intercomm are detailed,
including specifications for coding control information. The last
chapters present the procedures for implementing the File Recovery
facility and the on-line Backout-on-the-Fly facility for immediate file
recovery after application program failure. Data Base file recovery is
described separately in the DBMS Users Guide.

1.2 Message Restart

The concepts of the message restart capability of Intercomm are
described in this chapter. An explanation of the elements and logic of
message restart is provided, essentially without consideration for file
or data base recovery. The next chapter specifically covers file
recovery concepts.

3

Chapter 1 SPR 237 4/89 Restart/Recovery

Intercomm is an event-driven system whereby work activities are
initiated in response to a message. Therefore, the core of Intercomm
recovery involves the recovery and/or restarting of appropriate
messages. The basis for determining what is required for a particular
restart/recovery operation is the Intercomm log. INTERLOG contains
entries for all messages that are subject to recovery. It includes
entries that make possible a determination of message status at the
time of failure. Message status is an important factor in determining
the read-back point and is defined by one of the following categories:

• Received and completely processed prior to the last
checkpoint;

• Received and completely processed subsequent to the last
checkpoint;

• Received and in process at failure;

• Received but processing not started.

The analysis of the message data in the log is performed during
restart by reading the log file backwards from the point of failure. A
technique of message accounting permits backward reading to proceed
only as far as is necessary to retrieve those messages needed for
restart.

When
queues for
concludes.
failures.

messages are recovered from the log they are placed on the
their destined subsystems or terminals as the restart phase

Thus, queues are rebuilt, not recovered, following

The restart process is initiated when the RESTART parameter is
found in the PARM field of the Intercomm execution (EXEC statement)
JCL. This RESTART parameter is the only change required to distinguish
a restarted Intercomm run from a normal Intercomm run. When a RESTART
is recognized, the restart phase of Intercomm analyzes the restart log
and rebuilds the queues. Then the normal mode of Intercomm starts
reprocessing messages placed in the queues by restart, while
simultaneously receiving and processing messages from the live terminal
network (the specification of FIFO queues insures that restarted
messages are processed prior to live messages). Optionally, a serial
restart facility (described in the Operating Reference Manual) may be
used to force processing of all restarted messages prior to accepting
new input from the network.

Under Automated Restart (Release 10 only), the RESTART parameter
is not used. The system status is recorded in a special data set and
the restart requirement is determined from that data set when the
Intercomm job is resubmitted.

4

J

J

Chapter 1 Restart/Recovery

The entire Intercomm message recovery system is coordinated with
the recovery of data files and/or DBMS files, as appropriate. In some
circumstances, an original message from a terminal will proliferate
messages to many subsystems as a result of a design approach utilizing
subsystem-to-subsystem message switching. Thus, one or more chains of
processing will occur in response to the original message. If two or
more subsystems in these chains may make potentially interdependent
changes to the same data files, then the corresponding Subsystem

. Control Table (SCT) entries must all specify LOG=YES and RESTART=YES.
This will ensure that the originating (mother) subsystem is restarted
if any subsequent program did not complete.

In a complete system failure (for example, machine or power
failure) Intercomm software cannot determine the status of terminal
transmissions in process at the time of failure. 'rherefore, following
complete failure, the remote terminal operator must verify the
conclusion of the last operation: if it was an update operation and if
so whether or not all results from that operation had been received.
This is the only terminal operator interaction relevant to restarting
Intercomm.

1.2.1 Message Logs

The log facility for Intercomm utilizes a data set whose ddname
is INTERLOG. This log contains entries reflecting the status of
messages for subsystems and terminals, and entries of before and after
images of data files being updated. Also included on INTERLOG are user
log entries, checkpoint records, message accounting records, etc. (See
Figure 1).

INTERLOG may be specified on its DD statement as being tape or
disk. If the DD statement for INTERLOG is omitted then no logging will
be performed and of course no restart is possible. The computer
operator is notified at startup time if INTERLOG is not specified, or
if the file cannot be opened. If you intend to use the restart
facility, the computer operator's response to this message should be to
cancel Intercomm and request programming assistance before proceeding.

INTERLOG records appear as standard undefined records (that is,
RECFM=U) but can be read using QSAM (RECFM=VB). Special techniques are
utilized in creating the log, as follows:

• Access Method

BSAM rather than QSAM is employed.

• Variable Buffer Size

"Average" length buffers (whose length is specified for
SPALIST by the parameter LGBLK) are normally used. Where
possible, log records are treated in blocked mode to form a
buffer whose size approximates LGBLK. However, if a record

5

Chapter 1 Restart/Recovery

to be logged exceeds the size of LGBLK it will be logged in J
its own buffer of the appropriate length. Any size record
(up to the DD statement BLKSIZE specified for INTERLOG) can
be logged.

• Synchronous Logging

Recognizing the need for priority in logging items pertaining
to critical user components (critical relative to restart),
certain records are written immediately. For example, log
entries for an important subsystem are made immediately by
adding the entry to the current buffer, then immediately
wri ting out the buffer. INTERLOG is blocked for noncritical
items, and effectively unblocked for critical items.
Critical 'subsystems are specified by the SYCTTBL parameter
LSYNCH=YES, and critical terminals by the BTERM/LU parameter
LSYNCH=YES. For Multiregion interregion queues, the
LSYNCH=YES parameter is specified on the SUBSYS macro in the
Region Descriptor Table used by the Control Region.

• Logging for terminals, subsystems, and regions is controlled
by the LOG parameter. Restartability is controlled by the
RESTART parameter. For a detailed description of these and
the LSYNCH parameters, see the following:

Basic System Macros: BTERM, SYCTTBL macros;
SNA Terminal Support Guide: LCOMP, LUNIT macros;
Multiregion Support Facility: REGION, SUBSYS macros.

Figure 1 describes the Intercomm log records. See the Restart
Use column for those log entries that are utilized in
Restart/Recovery. All other log entries, including user log entries,
are ignored.

1.2.2 Message Accounting

To make the warm restart concept function as rapidly as possible,
restart involves reading the log backwards only as far as is required
to recover all necessary messages. This "how far back" information is
developed by the Message Accounting routine, MSGAC, a subprogram of
LOGPUT, the message logging routine. MSGAC operates as part of the
live Intercomm environment. LOGPUT examines every log entry to
determine if this new entry reflects a change in the "read-back point"
of the log tape. For every 255 completed messages, MSGAC will insert
message accounting records onto INTERLOG.

These records reflect the read-back point. When restart begins
reading INTERLOG backwards, the first message accounting record
encountered will identify the location of the actual read-back point.

6

(.,

Chapter 1 SPR 237 4/89 Restart/Recovery

==========F'=='====~======9F=========='=====================T==========='~=='========

Internal External Restart
Code Code Format Description Origin Use

F' _ == F='--====
X'OO' 00 HT Checkpoint Record Checkpoint Yes

C'2' 01

---------- --------
C'R' 02

--------- --------
C'P' 03

--------- --------
C'T' 30

--------- --------
C'Z' 40

--------- --------
X'4l'- 41-
X'6F' 6F

--------- --------
X'BO'- BO-
X'BE' SE

--------- --------
X'BF 8F

--------- --------
X'90'- 90-
X' 9E' 9E

--------- --------
X' 9F' 9F

--------- --------
X'AO' AO

--------- --------
X'Al' Al

--------- --------
X'AA' AA

---------- --------
X'CO' CO

---------- --------
C' A' Cl

HT

HT

HT

HO

HT

HT

HT

HO

HT

HT

HO

HO

HT

HT

HT

Message queued for subsystem
by Front End or a subsystem

Message restarted through
the system

Message restarted--related
to Data Base Recovery

Message passed to subsystem
for processing

Message passed to Front End
(test mode only)

User called LOGPUT

File Recovery before-images

Checkpoint Records indicator

File Recovery after-images

Intercomm Startup

Message restart begun

Message restart finished:
all subsequent log entries
produced by live Intercomm

Intercomm Closedown

Region started (Multiregion
only) (Text=Region-id(s»

Message successfully queued
for Satellite Re2ion

Message
Collection User

LOGPROC User

LOGPROC User

Subsystem User
Controller

FESEND

Any
Subsystem

IXFLOG

IXFCHKPT

IXFLOG

LOG PUT

LOGPROC

LOGPROC

LOGPUT

MRINTER

MRQMNGR
CR onty

No

No

User

Yes

User

Yes

Yes

Yes

No

No

User

Internal Code: Log code in core during processing (snaps and dumps)
External Code: Log code after translation by LOGPUT (INTERLOG printout)
Format: HT for header and text, HO for header only
Restart Use: Yes, No, User (specified via user-coded system macros)

Figure 1. INTERLOG Entries (Page 1 of 2)

7

Chapter 1 SPR 237 4/89 Restart/Recovery

P'======'==r======9r=====T=========================9F===========P=---~==

Internal External
Code Code Format Description Origin

Restart
Use

I='---==--~=F=' '====='=*====================
C'B' C2 HO Message successfully passed MRQMNGR User

to Satellite Region CR only
---------- -------- ------

C'C' C3 HO

---------- -------- ------
C'I' C9 HT

---------- -------- ------
C'3' FA HO

C' 5' FB HO

C'6' FC HO

C'8' FD HO

C'9' FE HO

C'l' Fl HT

Message lost (Region/Hold Q
full) or flushed (SR/SS down)

Sign on/off processing,
security violation messages

Normal message complete

Unprocessed message--invalid
subsystem/QPR code

Unprocessed message--core and
disk queue full

Message cancelled--program
error or time-out, I/O error,
or flushed by command

Message flushed by Retriever,
used when application program
does not obtain (via GETSEG)
all parts of a segmented
message; or message failed
security check

Message after verb
verification

C'2' F2 HT Message queued for
transmission

--------- -------- ------.------------------------------
C'3' F3 HO Message transmitted,

--------- --------
C'4' F4

---------- --------
C'5'- F5-F6
C'8' F7-F8

X'FF' FF

HO

HO
HT

HT

discarded (MSGHUSR=Z),
or flushed (MSGHUSR=F)

3270 output message content
invalid--message dropped.

Transmitted DDQ msg status:
see SNA Term. Support Guide

Intercomm Restart Accounting

MRQMNGR User
CR only

ESS No

Subsystem User
Controller

Message User
Collection

Message
Collection

User

Subsystem User
Controller

Retriever

Subsystem
Controller

No

USRBTLOG No
(optional)

FESEND

Front
End

BLHOT

Front
End

MSGAC

User

User

No

No

Yes

Figure 1. INTERLOG Entries (Page 2 of 2)

8

J

Chapter 1 Restart/Recovery

1.3 Message Restart Logic

When data base or file recovery is not utilized, the restart logic
is qu i te simple. When reading the tape tackwards, information from
certain message headers is temporarily stored. This stored information
is the basis for determining what to do with the header/text log entries
as they are encountered. The information from the header is such that
it can uniquely identify a message within a subsystem (including
recursi ve entries to a subsystem). Since the log is read backwards,
message log entries will be encountered in this order:

• Subsystem Completed (normally or abnormally)

• Subsystem Started.

• Message Queued for a subsystem

When the "message queued for a subsystem" log entry (header/text)
is encountered the information stored from the previously encountered
log entries for this message is examined and the following rules apply
to the restart analysis:

• if the message completed successfully (a log code FA was
encountered), the message is not restarted;

• if the message failed in processing by a subsystem (time-out,
program check, failure to acquire all segments, etc.) then
this message may be restarted.

• if the message began processing but had not completed at the
time of failure (a log code entry 30 but no FA, FB, FC, or FD
was encountered) then the message may be restarted and its
log code on the queue is set to "R" indicating that it was an
in-process message being restarted.

The above rules are the criteria applied to a single message out
of context; they may be overridden by the considerations listed below:

• Ancestral Messages - if any "ancestor" of a message has been
restarted for any reason, the message is discarded. This
rule requires some clarification: if during the processing
of message A, the subsystem generates message B and queues it
for processing via MSGCOL or FESEND, message A is the mother
of message B. Starting at any message, restart logic can
work back to the original terminal input, going from the
message to its mother, the mother's mother, and so on. These
are collectively the message's ancestors. A message is only
restarted if all its children are discarded. This applies to
Front End as well as Back End messages. ThUS, a user
subsystem's message being restarted overrides restart of a
descendent message to the Output Utility (or any other
subsystem) and to the terminal. However, if the ancestor is
not logged, or not marked for restart, only the child
(subsystem or terminal output) is restarted.

9

Chapter 1 Restart/Recovery

• Conversational Messages

If the message is part of a conversation, that is, part of a
subsystem calling CONVERSE, and CNVREST=YES is coded in the
subsystem's SYCTTBL macro, the message is restarted if it is
the first message in the conversation (even if it completed),
and discarded if it is not the first (even if it did not
complete).

!!Q1!: In order to insure file integrity, conversational
subsystems performing data base updates should be
designed such that either (a) a message is switched
to a nonconversational subsystem to perform the
update(s), or (b) the update(s), is (are) performed
as processing logic for the last input message in the
conversation. Otherwise, updates may be performed
twice if CNVREST=YES is coded.

• Segmented Messages

If a message is part of a segmented message sent to OUTPUT or
CHANGE/DISPLAY, and SEGREST=YES is coded in the sending
subsystem's SYCTTBL macro, the disposition of the trailer
(final) segment determines what happens to other segments.
They are restarted if the trailer is restarted, or discarded
if the trailer is discarded.

Messages that are lost because terminal queues are full will
not be restarted.

In a Multiregion Intercomm system, message restart and file/data
base recovery is possible only in those regions which create their own
Intercomm log. In Satellite Regions, only 01-30-FA logging of
subsystem processing is done, along with log records necessary to
message restart, checkpointing and file recovery. In the Control
Region, terminal transmission logging (F2-F3) and Multiregion message
queues (for Satellite Region transmission) are rebuilt at restart
time. Further details are described in Multiregion Support Facility.

Whether restart is actually performed depends on the user
specification in the SYCTTBL, BTERM/LUNIT and SUBSYS macros. If
RESTART=NO is coded then no messages are restarted regardless of the
circumstances. RESTART=IFPOSBL has the same meaning in the restart
analysis as RESTART=YES. However, RESTART=IFPOSBL affects message
accountability such that the read-back point for restart analysis may
or may not include all those IFPOSBL messages. The read-back point
definitely includes all RESTART=YES messages.

In cases where data base or file recovery is not included, the
only integrity problem concerning a restart involves those messages
that were in process at failure time. Thus, if a message was being
transmitted when a power failure occurred, the restarted Intercomm
would retransmit that entire message or DDQ (FECMDDQ request).
Potential integrity problems for files or data bases are discussed in
the following chapter.

10

J

Chapter 1 Restart/Recovery

1.4 File Recovery Concepts

The previous section described the concepts utilized in
Intercomm's restarting of messages where data base or file recovery was
not involved. This section concerns the recovery of files and the
coordinated recovery of related and unrelated Intercomm messages. The
restart concepts previously presented for messages are also the basis
for file restart/recovery. Restart facilities have been extended to
provide for the special requirements of data file integrity following
system failures.

In this manual the terms "file(s)" and "data base(s)" are used
interchangeably to mean all on-line files. Figure 2 lists file access
method support by the Fi~e Recovery facility.

Access Method Supported

BDAM Yes
BISAM, QISAM Yes
VSAM Yes
lAM Yes (ISAM
BSAM, QSAM No
AMIGOS No

Figure 2. Supported File Access Methods

However, the basic concepts of File Recovery also apply to
specific data base managers supported under Intercomm. For additional
details on Data Base Management System recovery, refer to the Intercomm
DBMS Users Guide.

The focal points for file and data base recovery capabilities are
the Intercomm checkpoint and log files, and the file/data base activity
logs.

1.4.1 Checkpoints

The Intercomm checkpoint is not a "checkpoint" in the normal data
processing usage where a picture image of core is written as a
checkpoint to some data set. Rather, the Intercomm checkpoint function
saves only a few critical table entries on disk, involving only minimum
I/O activity for the checkpoint. To Intercomm, the checkpoint has
special significance relative to file recovery in that it indicates all
Intercomm subsystems performing file updates have been quiesced (no new
messages started) until checkpoint processing has completed.

11

Chapter 1 Restart/Recovery

The Intercomm checkpoint functions as follows:

• Users specify a checkpoint time interval such that when this
interval expires the checkpoint process begins;

• All subsystems that may at any time perform an update
activity to a file that is to be recovered are identified by
the subsystem SCT entries. During checkpoint, these update
subsystems are marked as nonschedulable so that no new
messages will be started through these sUbsystems. (Messages
can be received for these subsystems but will remain in the
queues.)

• Intercomm examines each of these update subsystems for
current message processing acti vi ty. When all acti vi ty for
these subsystems has concluded, the checkpoint can begin.
Meanwhile, all other acti vi ty such as nonupda te subsystems,
line control, the Output Utility, etc., continues
uninterrupted.

• A checkpoint record(s) containing pertinent table data is
written to the checkpoint data set.

• A checkpoint record is written to the Intercomm log noting
the date/time of the checkpoint.

j

• Subsystems that had been marked nonschedulable are started up ,
again. Normal file update activity resumes. ~

• The interval timer for the next checkpoint is set.

From the above it can be seen that a checkpoint merely represents
a "clean point in time" to which a restore can be made. At this point
in time the file was intact on disk and no modification or update
acti vi ty was in progress. The basis for file recovery is to proceed
backward to recover files from the point of failure to this checkpoint,
then restore the checkpointed table information, and finally to proceed
with the live system.

1.4.2 File Activity Logs

The Intercomm File Handler provides for update (delete, add,
insert) acti vi ty logging for BDAM, ISAM, and VSAM files. These, log
entries include before- and after-images that are used to recover a
file. The file activity log is the same data set (INTERLOG) for
Intercomm File Handler entries as for message status entries.

12

Chapter 1 Restart/Recovery

1.4.3 Destruction of Files

As part of the system failure, it is possible that all or a
portion of a data file (and its indices) are physically or logically
destroyed. In this case it is the user's responsibility to restore the
file back to its condition at failure time. This is accomplished in
two distinct operations:

• first, the last backup (complete copy) of the file is
reloaded, that is, an off-line file restore (tape restore,
tape to disk) is performed;

• second, all after-images from the Intercomm log are applied
to the file in their original order by an off-line utility
included with the Intercomm File Recovery facility.

When the above procedures have been performed, the file is
returned to the status at failure time and normal recovery processing
can proceed.

Normal recovery (file reversal) is required for every file
supported by restart/recovery following every failure. However,
complete recovery (recreation) following data destruction is required
only on those specific files where needed. For example, assume that
there are VSAM files, each on one of three separate packs. If a head
crash occurs on one of these packs then only the file on that pack need
be completely recovered. This specific type of complete recovery is
significant. Al though complete recovery should be infrequently
required, it is often a long running process. The normal recovery
discussed below is typically quite rapid. Another implication of this
specific recovery capability is that often the user can lessen the time
burden for recovery by segmenting the data structure into smaller,
discretely recoverable portions.

1.4.4 Normal Recovery

If a system failure has occurred without destroying the file,
normal (on-line) recovery can be immediately started. (If data
destruction occurred, then the above stated complete recovery must
first be performed before proceeding with normal recovery.) Normal
recovery involves backing out file changes to the last checkpoint.
(Since Intercomm checkpoints are typically rapid with little
performance interference, checkpoints can be frequent.) With frequent
checkpoints, normal recovery need not involve much data restoration.

The backing out to checkpoint process involves
file images to files in the opposite order (backwards
original update. Therefore, updates are reversed
checkpoint time. Additions are reversed by deletion;
reversed by addition.

13

applying before
order) to their

back to the
deletions are

Chapter 1 Restart/Recovery

1.4.5 Coordinated Message Recovery

While the normal file recovery is being performed, Intercomm
message recovery proceeds concurrently. The coordination between
Intercomm message and file recovery is software controlled, transparent
to the computer operator. The order of starting and ending for these,.
separate recoveries is irrelevant. File recovery is performed by the
Intercomm restart itself, and thus proceeds simultaneously with message
restart.

As part of data file recovery, the files subsequently need to be
brought from the time of the checkpoint forward to the time of the
system failure and into live mode. This is implemented by expanded
Intercomm message recovery. Message recovery was previously described
in detail. Essentially this message recovery involves returning to the
queues those messages that were in the queues at failure time, and
entering into the queues those messages that were in process at failure
time. Those messages that were partially processed are requeued with a
special log code of "R". Thus, only partially processed or totally
unprocessed messages are normally put into the message queues following
restart. However, if file recovery is involved, Intercomm will also
restart those messages causing file updates which had completed but had
done so after the last checkpoint was taken.

Thus, message restart involving file recovery proceeds as follows:

1 • If necessary, complete recovery is performed off line
including file reload and application of after-images for any
destroyed file.

2. Data files are returned to checkpoint time status by backing
out updates (before-image operation).

3. Concurrently with point 2, Intercomm recovers messages that
were

• queued but not started
• started but not completed (may have updated a file)
• completed but had updated files since the last checkpoint

4. After points 2 and 3 are completed, restarting of message
processing begins, and updates that had been reversed by
returning to checkpoint will be reapplied as the messages
that caused those updates are reprocessed.

5. Concurrently with point 4, Intercomm resumes live mode.

6. If the Serial Restart Facility is implemented (see the
Operating Reference Manual), then live mode Intercomm may be
selectively controlled or postponed until point 4 is·
completed.

Output messages generated while processing restarted messages
will be transmitted. Subsystem logic can identify restarted messages
via the .. log code (C' R') in the message header and prepare special
message text as required, to notify the terminal operator of the
possibility of duplicate output.

14

J

Chapter 1 Restart/Recovery

1.5 BACKOUT-ON-THE-FLY

Backout-on-the-Fly provides on-line dynamic reversal of file
updates following a subsystem failure, and is executed following the
occurrence of these situations:

• Subsystem thread program check

• Subsystem thread timeout

• Specific requests by a subsystem

Backout-on-the-Fly follows the same methodology as file
recov~ry: before-images are applied to updated files in the
appropriate reverse sequence. The facility differs from restart file
recovery in that Backout-on-the-Fly compares the failing subsystem's
"after-images" with the file's current images to ensure that no
intervening subsystem subsequently updated the same record. In the
event of a mismatch of after-to-current image, an operator reply to a
PMIWTOR can choose to either abend Intercomm or ignore the situation.
If the abend is chosen, the normal file recovery scheme can be used to
successfully apply the before-images back to the last checkpoint.

Backout-on-the-Fly requires the Dynamic Data Queuing Facility.
Backout-on-the-Fly places the thread's before- and after-images on a
DDQ. If the thread completes successfully, then the DDQ is deleted.
If the thread fails, then reversal is performed.

Backout-on-the-Fly logs and reverses all files marked as
reversible to standard file recovery through the normal FAR file
recovery control options. Additionally, Backout-on-the-Fly is selected
by subsystem. The overhead (creating and writing to DDQs) is incurred
for only those subsystems deemed likely to fail. However, Backout-on
the-Fly will log only File Recovery's recoverable files regardless of
selected sUbsystems.

If all file logging is shut off through the GPSS "stop log"
command, Backout-on-the-Fly remains functional. If a subsystem
performs both file and DBMS updates, then Backout-on-the-Fly may be
incompatible. An exception is IDMS, which also provides a comparable
facility. SYSTEM 2000 may be compatible if all subsystems use deferred
updates as a programming standard, with the last subsystem action prior
to GOBACK being to apply updates. DBMS situations should be examined
carefully when using Backout-on-the-Fly.

See Chapter 5 for implementation procedures.

15

J

SPR 237 4/89

Chapter 2

FILE RECOVERY

2.1 Timing Considerations

File recovery incorporates two types of operations: reversal and
recreation. Reversal takes a file as it was at system failure time and
returns it to a state it was in at some time in the past: a checkpoint
time status. Recreation uses an old copy of a file (backup) and brings
it up to its status at system failure time.

The basis for file recovery is a log that includes:
before-images of every record that is updated (deleted); and the key or
address of every record that is added. During reversal these log
entries are used to nullify changes and delete additions. This
reversal process takes place at system startup in restart mode.

File
change to
utility.

recreation
the file.

utilizes the after-image log entry
Recreation is handled off-line by a

of every
separate

The Intercomm File Handler totally provides for making all file
activity log entries. The File Handler's decision to log before-images
(to reverse a file) and/or after-images (to recreate a file) is on a
file by file basis as user-specified. This is performed independently
of the subsystem addressing the file. The attributes of reversibility
and recreatability belong to files for the duration of an Intercomm run
and are not related to programs.

The user specifies file recovery information through File
Attribute Records (FAR options). (Specific coding of FARs is described
in Chapter 3; concepts of use are presented here.) Each file for which
restart/recovery may be invoked must have a FAR. FARs are optional for
those files not to be reversed or recreated. The FARs are read by the
File Handler during initialization from a data set whose ddname is
ICOMIN. This data set can be an input stream card-image file as part
of the Intercomm execution JCL or may reside on any sequential input
card- image file. Information from each FAR is used to create an
appendage to the File Handler Data Set Control Table (DSCT) for that
file, which contains various file-related data. The FAR appendage data
is called a File Attribute Block (FAB). File Recovery Dsects are
contained in the member FRDSECTS on the release library.

File activity logging is performed on the Intercomm log file,
INTERLOG. Logging is selective by file as indicated by the FAR
entries. Further, logging is only performed for updates, deletions, or
additions; thus no logging overhead is associated with read-only or
inquiry activities. Figure 3 details message header formats for file
recovery and message status log entries.

17

Chapter 2 SPR 237 4/89 File Recovery

J
Message Header for B Standard Intercomm

File Recovery Y Message Header
T
E

00
01 MSGHLEN
02 MSGH PR
03 MSGHRSCH
04 MSGHRSC
05 MSGHSSC
06
07 MSGHMMN
08
09
OA

MSGHDAT OB MSGHDAT
OC
OD
OE
OF
10

MSGHTIM 11 MSGHTIM
12
13
14 J 15
16

MSGHBKID 17
(Block Identifier 18 MSGHTID
for BDAM files) 19

1A
1B
1C
1D MSGHCON
1E
1F MSGHFLGS

MSGHDD 20
(file ddname) 21 MSGHBMN (Release 10)

22
23 MSGHSSCH
24 MSGHUSR
25
26 MSGHBMN Release 9
27 MSGHLOG
28 MSGHBLK
29 MSGHVMI

Figure 3. Message Header Fields for File Recovery

18

Chapter 2 File Recovery

Normally, the logging of file changes is not synchronized with the
actual file access; if the log entry happens to fill an INTERLOG buffer,
the entry will be written out before the access takes place. On the
othe~ hand, if the entry is short and the buffer is mostly empty, many
file accesses may occur before the INTERLOG buffer is written. In the
case of an interceptable abend, the Intercomm routine STAEEXIT will
write out partially filled INTERLOG buffers; but log entries could be
lost in situations such as hardware failures.

It is, however, possible to ensure that all file activ~ty entries
are logged before they are applied. Thus, two levels of reversibility
may be defined:

• Level 1 - (requested by coding REVERSE=YES in the FAR) is the
normal, asynchronous logging with a buffered INTERLOG and the
concomitant risk of incomplete file reversal in a major system
failure;

• Level 2 - (requested by coding REVERSE=CRITICAL in the FAR)
means the INTERLOG entry is made before changing the file.
Level 2 ensures a complete reversal regardless of the type of
system failure. However, Level 2 logging processing speed is
somewhat affected since at least two IIO activities (the IIO
request itself plus the log entry) must complete before
control is returned from update-related File Handler requests.

The overhead associated with file recovery support aside from
logging overhead is as follows:

• QISAM and BISAM updates

QISAM updates (GET-PUTX pairs) and BISAM updates (READ KU-WRITE
K pairs) never require any additional IIO because an image of
the record being updated is always in core when the update
request comes to the File Handler.

• BDAM Updates

BDAM updates require an extra read if the update logic is not
a READ followed by a WRITE of the same record. The File
Handler maintains its own bl.ffer for reversible BDAM files;
thus READ (1) - READ (2) - WRITE (1) logic destroys the first
record read with the second read. Therefore an extra read is
required to log the before-image at write time. Additions to
files never require extra reads because only the key'or block
address is logged. If the subsystem uses a pointer on the
BDAM file to find free blocks, such that file access logic
is: read pointer, write new block, write pointer; then the
File Handler will do an unnecessary read of the dummy data at
the new block's location. There are certain cases where'
additions are not logged because of an inability to reverse
them. (See Figure 4.)

19

Chapter 2 File Recovery

• VSAM Updates

VSAM updates never require any additional I/O because an image
of the record being updated (Control Interval) is always in
core when the update request (PUTV) comes to the file handler;
that is, both before-imas~ and after-image are logged when the
record is updated.

The number of extra write operations required for INTERLOG, when
REVERSE=CRITICAL is specified, is possibly one per File Handler WRITE or
PUT operation. It may be more. To make the order of entries on the log
reflect the order in which they were passed to LOGPUT, the queue of
filled buffers is flushed before the critical entry is written. For a
file specified REVERSE=YES there is no fixed formula. If the file block
size is large compared to the log buffer size and mostly. updates are
performed, the ratio of log writes to output operations will be close to
the maximum of one; if the block size is small or a lot of additions are
performed, the ratio will be lower.

In special situations, certain specific records will be repeatedly
updated while running. For example, RBNO is often updated following
every update to· a BDAM file. In this and similar situations the user
can identify via a FAR CHECKPOINT parameter those frequently updated
records. In these cases logging is not performed on updates to these
records. Instead these records are logged only at checkpoint time.
This technique will considerably reduce overhead in these special \
situations while preserving data integrity following system failures. ..""
There is no limit to the number of records that can be specified in the
CHECKPOINT FAR option.

2.2 File Reversal

The log entries made by the File Handler (see Figure 1) follow
standard Intercomm format: message header plus text. The message
header contains the file ddname and space for a block ID, key length,
and text length, as previously shown in Figure 3. The log code
identifies the reversal action to take. For example, the log code
corresponding to an ISAM update specifies that for reversal the data
portion of this log entry is a record image to be applied with a READ
KU, WRITE K sequence. Reversal actions are summarized in Figure 4.

Reversing updates is straightforward. Reversing file additions
invol ves special considerations. IBM allows only deletions for BISAM
files, and ERASE operations for VSAM KSDS and RRDS files. To make
reversal as general as possible, Intercomm supports user-defined
deletion codes in the File Handler as follows: users specify the delete
field in the record and the value in that field specifying "this record
is deleted". The delete field may be up to eight bytes long, and can be
assigned any value. Delete codes are valid for all types of data sets
except VSAM files. There are two parameters in the FAR relating to
delete codes: DELETE specifies where and what the code is; and CHECK
tells the File Handler when to look for it--on input, on output, or both.

20

~

Chapter 2 File Recovery

CHECK=OUT can be specified on the FAR for ISAM files only. If a
request to add a record results in a duplicate key situation, then the
File Handler reads the record and examines it for an existing delete
code. If the delete code is there, then it overlays the duplicate
record. Otherwise the calling program is returned a "duplicate key"
return code. The DELETE and CHECK options do not apply t~ VSAM files.

UPDATE ADD
Bi X * Bi= BISAM

Q = QISAM
Q X * B = BDAM

F = Fixed Format
BF X NS V = Variable Format

K = Keys
BFK X X VS= VSAM

X = Complete Reversal of
BV X ** Operation

NS= Not supported or
BVK X *** not applicable

VS/ESDS X NS

VS/KSDS X X

VS/RRDS X X

* If the ISAM deletion option is supported (OPTCD=L), or if a delete
code is specified in the File Attribute Record, the key will be
logged when the record is added, and deleted during recovery.
Otherwise, BISAM adds are not logged.

** To completely nullify the effect of an add, the capacity record of
the track receiving the new record would have to be logged, then
set back to its old value during update; but it cannot be done.
If you specify a delete code, the record's location will be logged
when it is added and the delete code inserted during update. To
compress the file, develop a simple program using the File Handler
to read the file sequentially and write it to a new data set,
specifying CHECK=IN on the File Attribute Record.

*** The above remarks apply, and use of keys introduces a further
problem: if a record is added with a certain key, and then, after
restart, a write is performed on another record with the same key
on the same track, the second record is inaccessible to a READ
DK. To avoid this problem, specify a delete code that will set·
the record's key to a value that will not be duplicated by any
other key in your file.

Figure 4. File Recovery Reversal Action
21

Chapter 2 File Recovery

2.3 File Recreation

A file is recreatable by Intercomm if RECREATE is specified on its
corr~sponding FAR. When RECREATE is specified, then a log entry is made
of every after-image of that file. Again, the log entry is standard
header / text format with the" ddname of the file included in the header,
and the text portion being the after-image. File recreation is
performed by an Intercomm-supplied off-line utility, IXFCREAT. The user
specifies which files are to' be recreated. Optionally, the user may
also specify a starting date and time to be searched for in the
Intercomm log. By including this information, only those file changes
made after that time will be reapplied to the file. Several files may
be recreated in a s~ngle execution of the utility.

2.4 File Recovery Log Entries

The contents and sources of the various file recovery log-entry
fields are summarized in Figures 5 and 6. The following are explanatory
notes to the table.

MACRO - the output macros issued by the File Handler

/1 - the number passed by the File Handler to IXFLOG identifying
the macro it is about to issue (see description of IXFLOG)

LOG CODE - the byte inserted in MSGHLOG. Note that different
macros may map to the same log code.

FORMAT - H stands for header, K for key, and R for record.

INFORMATION SOURCES -

• A name in capital letters means the contents of the storage
location with that name. A value in small letters refers to
an EQU symbol (dsctbdhd) or another table entry on the same
line (record length).

• F means fixed format file; V means variable format file.

• RDW means record descriptor word; BDW means block descriptor
word.

• The· names beginning with PARM... are symbolic names for
elements of the File Handler parameter list: PARMAREA is the
third parameter (I/O area), PARMRKEY is the fourth (key for
ISAM/BDAM/VSAM with keys, block-id for BDAM without keys, RRN
for VSAM RRDS, RBA for VSAM ESDS) , and PARMRBLK is the fifth
(block-id for BDAM with keys).

22

Chapter 2 File Recovery

ENTRY TUE INFORMATION SOURCES

LOG RECORD RECORD
MACRO , CODE FORMAT ADDRESS I.EHCiTH ICE'! ADDRESS ICE'! LEHCiTH BLOC~-ID/R8A/RRN

PUTI 0 80 !iKlI DSCTBUFR F=OCBLRECL record-
..

DCBKEYLE
V=RDW addreaa -

I
+DCBRn'''

-
PUT 1 81 BJ: PlRHAREA OCBKEYLE - - +DCB';lD' -
WRITE DlX 2 82 HR DSCTBDBP FaDCBBLItSI DSCTBLOI:

+dactbdbd hBDW - -
WRITE OI 3 82 ilII DSCTBDBP Fs OCBBLItSI PARHllKEY

V=BDV - -
WRITE OKX 4 83 lID OSCTBDBP P=DCBBLltSI PARI1RDY OCBKEYLE DSCTBLOl

+dsctbdhd hBDiI
+keylength

WRITE OAP 5 81i II DSCTBLOI
(fixed) - - - -

WRITE Ol 6 83 !WI DSCTBDBP P=DCBBLItSI PARMRDY DCBIEYLE PARMRBLI
+dsotbaDd V:RDII
+keylaUCtb-

WRITE OAF 7 85 K DSCTBLOI
(variabla) - - - -
WRITE 1 8 80 liJJI DECBLOGII F .. OCBLRECL DECBDY DCBUYLE

V .. IIDII -
WRITE K:H 9 81 KI - - PARMRDY DCBIEYLE -
WRITE Dn 10 66 lID DSCTBDBP i1'=DCBBLltSI DSCTBDBP OCBDYLE PARMRBLIt

(keyad) +daotbdhd V=BDII +DSCTBDIID
+keylenstb

WRITE OI 11 86 lWI DSC'l'BDBP F=DCBBLltSI DSCTBDBP DCBItEYLE
(kayad) +<iactbdhd V.BDII +DSCTBDBD-

+lceyleactb-

pun 12 110 IIJOt Ragiater 10 F=DCBLRECL record OCBDYLE
(ut'qisu) V .. IIDII addreu -

+DCBRIP

WRITE K:H 13 87 IIJOt DECBLOGR- 'aOCBLRECL PARMRDY DCBDYLE
(V-Format VaRDli -
Ujldate)

VSAlt PUT 14 68 liJJI RPAREl SHOIIRECL record lCItEYL or RPLllIG
(keyed/RRM address det'ault ot' 4 t'or RRDS
update) +RU t'or RRDS

VSAIt PUT 15 69 RII RPAREl SHOIlRECL SHOIIRBl
(addresaed - -
update)

VSAlt ERASE 16 III IWl RP1.REl SIiOIIRECL record lCan.
address -
+RU

VSAIt PUT 17 8B HlC PARMIJIEl lCOYL
(keyed - - +RU -
add)

VSAIt PUT 18
---(addraaaed - - - - - -

add or
".q. ESDS)

cbeckpoint 8F K
marker - - - - -
• IXFLOG will call READ to 3et up bet'ore-iMage in the but't'er it' it's not already there

•• Unless the t'ila is unblocked and RIP:Oj then the key address is in OSCTOlltE . -. Only recreate (from arter-iMage) is 3upportadj b.t'ore-~. t'or reversal does not apply

Figure 5. Table Summary of Before-Image Log Entries

23

Chapter 2 File Recovery

ENTRY TIPE INFORMATION SOURCES

. LOG FORMAT RECORD RECORD
MACRO , CODE ADDRESS t.EIIGTR KEY ADDRESS KEY LENGTH BLOCK-ID/HB1/RRN

PUTX 0 90 liD PAJUWt!A hDCBLltBCL record DCButLE
hRDW .DCBlIU -.

PUT 1 97 KR PAIIIWtU r.DCBLllBCL
V.RDW - - -

WRITE DIX 2 92 IIR PAJUWtEl r.DCBBLISI PARMRKEY
V.BDW - -

WRITE 01 3 92 IIR PAIIIWtU r.DCBBLrSI pARMRaI
V:BOW - -

WRITE Dta II 93 HIOl PAJUWtU hOCBBLClI PARMRKEY DCBlEYt.E PARMRBt.I
V.BOW

WRITE OAF 5 94 m PAIIIWtU OCBBLrSI P AllHllKEY ocaaru: PARHRBt.I
(tlxed)

WRITE OS: 6 93 HIOl PAIIIWtU F.OCSBLrSI PARMRItEY OCButLE pARHRBLK
V.SOW

WRITE DAl 7 95 IIR PAJUWtU BOW PARHRItEY
(varlable) - -
WRITE I 8 90 liD PARMARIA r" OCBlJl!CL DECBaI DCBun.R

VaRDW -
WRITE \CN 9 91 m PAJUWtU F.DCBLltECt. PARMRaI DCBItEYLB

V.RDW -
WRITE Oll 10 96 liD PAJUWtIA r.OCSt.l3I PARMRKEY ocaar .. E PARHRBt.I
(keyed) V.BOW

WRITE 01 11 90 liD PAJUWtEl r=DCBBLrSI PARMRaI DC81EILB PARHRBU:
(keyed) V.8DV

PUTI 12 90 m P1RMlREl Fa DCBt.llBCL record DCBlEILE
(ixtqlsaa) VdDW .DCBRIl' -
VSAM PUT 111 98 m PAJUWtEl FdCLRSCL RPARU lCun. RPt.ARG
(keyed/RRK VaRDW .RU or detault tor RROS
update) ot _ tor RRDS

VSAM PUT 15 99 IIR pAJUWtEl FdCLRBCL SBOVRBA
(addresHd ""RDW - -
UPdate)

VSAM ERASE 16 91 !IX RPAREA lcaIL

- - .RU -
V81M PUT 17 9B lID PAJUWtEl rdCLRECt. PARMAREl lCUIt.
(keyed VaRDW .RU -
add)

VSAM PUT HI 9C lIB PAIIlWlEl F=lCLIlBCI- PARMII.U.
(addresHd V.RDW - - or low values
add or it seq. E30S
seq E3DS)

startup 9F H
III&rlcer - - - - -

Figure 6. Table Summary of After-Image Log Entries

24

SPR 237 4/89

Chapter 3

FILE ATTRIBUTE RECORDS

3.1 Introduction

Different files require different prov~s~ons for recovery.
Certain files like read-only or write-only (SYSOUT) data sets, require
no provisions. For others it may be sufficient to recreate the file
from a backup copy, without reversing updates during restart; for
example, a customer directory that is expanded when an order comes in
with a new name on it. There is no point in deleting a directory entry
during file reversal; it would even be dangerous if it contained an
item like a customer code that might get assigned a different value the
second time around. On the other hand, if the directory contained
billing figures as we.1l as names and addresses, reversal of updates is
necessary, to ensure that people are not charged twice. In short,
recovery options must be specified file by file.

File Attribute Record (FAR) control statements are used to
specify file recovery options. The FARs are read during File Handler
initialization after all the internal DSCTs have been initialized. The
information from the FARs is encoded in DSCT appendages called File
Attribute Blocks (FABs). ICOMIN is the ddname of the card-image FAR
data set, which may be instream, a PDS member, or a sequential data
set. It is accessed via QSAM GET.

Each File Attribute Record follows a general coding format:

ddname,attributel,attribute2, ... ,attributen

where the individual parameters (or attributes) are associated
with a particular ddname defined in the execution JCL. The FAR
statements do not have to be in the same order as the DD statements in
the Intercomm execution JCL.

IXFFAR, the FAR processing module, contains logic to send the
image of each FAR it reads to the operator console. These WTOs are
indispensible to detecting errors in the FAR deck, because they
identify the FAR to which it refers. Once the FARs are error-free, the
user can suppress FAR image messages. A control statement containing
the single value NOMESSAGES as the first statement in the FAR data set
stops FAR images from' going to the console. Error messages will still
be printed.

Rules describing syntax for coding a FAR that the FAR-handling
module can interpret are listed below. Additional specifications are
listed in the individual parameter descriptions and further in the
applicable error message explanations.

25

Chapter 3 SPR 237 4/89 File Attribute Records

FAR syntax rules are:

• Separate parameters by commas

• A FAR may span as many as five statements. Place a nonblank
character in column 72 if the next card is a continuation.
Columns 73-80 are ignored; they can be used for sequence
numbers. A ceiling on the number of continuation cards is
necessary because the whole FAR has to be read into a
fixed-length buffer before it can be processed. The statement
that reserves space for the buffer in the FAR handling module,
IXFFAR, is:

FARBUF DS (5*71)C

If a FAR spans more than five cards, raise the coefficient of
71 to the number of statements spanned by the longest FAR and
rea.ssemble IXFFAR.

• A FAR statement may have leading and trailing blanks. A
continuation FAR can begin in any column before column 72.
Parameters can break off in column 71 and finish on the next
statement. Example 9 in Figure 9 is a whimsically coded FAR
illustrating these points.

• Embedded blanks are not allowed; that is, between the first
nonblank character on the card and the last nonblank before
column 72, no blanks are allowed outside of character strings
(for example, expressions of the form C' ... ', specifying keys
or delete codes).

• The first item has to be a ddname, except in the case of a
NOMESSAGES statement, or a comment statement which must begin
with an * in column 1. The rest of the parameters may be
coded in any order, as consistency checking is performed after
the entire FAR is processed.

• The list of checkpoint identifiers must be enclosed in
parentheses, even if it contains a single item.

• All FAR parameters for the same ddname must be coded together
(use continuation statements if necessary). IXFFAR treats a
new statement for a previously processed ddname as a
replacement (not an add-on).

• The DD Statements for all data sets requiring FAR
specifications must be coded before the //PMISTOP statement in
the Intercomm execution JCL. The DD statement for a duplex
file must be within the first 255 file DDs.

Generalized FAR parameters are summarized in Figure 7 and
described in detail in the Operating Reference Manual.

26

~

Chapter 3 SPR 237 4/89 File Attribute Records

=====,==~=======,========,~============================'===='==========~

PARAMETER FUNCTION
~==-======================-=+===,==========~

ALIAS=ddname To define an alias for a data set, in order
to route I/O operations to the alias data
set. The originating ddname will have the
FAR attributes of the alias file; no other
attribute may be coded on this statement.

B37 Invokes an automatic facility to protect
Intercomm from a x37 abend resulting from
running out of space on this file. Applies
only to BSAM (sequential output) disk files
and the Intercomm log (if to disk).
Ins talla t ion specifications are in the
Operating Reference Manual.

COREINDEX Requests that the highest-level index of a
BISAM file be kept in main storage. This
option applies only to files large enough
that the index hierarchy goes above the
cylinder level.

DSN Causes the specified VSAM KSDS file to be
opened with the 'data set name sharing'
attribute. Used for a base cluster and
associated path(s) when file referenced
(updated) via more than one ddname.

DUPLEX=ddname Specifies the ddname of one or more duplex
output files. When a duplex output operation
is performed, the status code returned to the
caller is C'O' if any output operation was
successful. Otherwise, the status code from
the first unsuccessful operation is returned.

ERRLOCK Requests marking a data set permanently down
when any I/O call to the File Handler results
in a status code of C'l' or C'9'.
Automatically assigned to duplexed files.

ICOMBDAMXCTRL Indicates that Intercomm logic is to be used
for BDAM exclusive control, rather than that
of the access method.

Figure 7. Summary of General FAR Parameters (Page 1 of 3)

27

Chapter 3 SPR 237 4/89 File Attribute Records

PARAMETER FUNCTION
==========================F========================='===========================

LOCK

LSR

NCPWAIT

OPEN=(BASIC }
(QUEUED)
(BOTH)
(VSAM)

Specifies that any request to Select the file
will be rejected (Release 10 only). FILE
command must be used to unlock the file.

Causes a valid VSAM data set to be connected
to the VSAM local shared resources pool at
ACB OPEN time. The data set must be a VSAM
data set which is currently loaded (LSR
cannot be used to load a data set or with the
WRITEOVER option) and the resource pool must
have buffers large enough to contain the data
set's control intervals. Coding LSR forces
OPEN=VSAM (see below). See the Operating
Reference Manual for implementation details.

Forces Intercomm into the WAIT state when the
number of pending I/Os for a sequential file
has reached NCP for that file. Intercomm
becomes active again when the first I/O in
the series is posted complete. This option
is forced for INTERLOG, the Intercomm log
data set.

Requests that one or two DCBs be opened for
the file at startup time, rather than waiting
for the first I/O request. The meanings of
this subparameter depend on the file
organization:

direct:
BASIC -- open BDAM DCB
QUEUED -- not applicable
BOTH -- not applicable

indexed sequential:
BASIC -- open BISAM DCB only
QUEUED -- open QISAM DCB only
BOTH -- open both BISAM and QISAM DCBs

sequential:
BASIC -- open BSAM DCB only
QUEUED -- open QSAM DCB only
BOTH -- open both BSAM and QSAM DCBs

VSAM:
-- open VSAM ACB (all data set types)

Figure 7. Summary of General FAR Parameters (Page 2 of 3)

28

J

Chapter 3 SPR 237 4/89 File Attribute Records

~"==============,=========~===,=

PARAMETER FUNCTION
~'===============:'========9==========================='================'========

REAPONLY

UPDATEONLY

VSAMCRS

WRITEOVER

XCTL=(QISAM }
(MULTIREG)

Figure 7.

To define an input only data set. Cannot be
used with File Recovery FAR options.

To define a BISAM data set allowing updates,
but not inserts.

Indicates that a VSAM Shareoption 2 or 4 file
will be shared by more than one region in the
same CPU and that updates will be performed
by at least one region. Intercomm will
augment VSAM shared file processing and
provide read integrity for Shareoption 2
files and read/write integrity for
Shareoption 4 files by means of OS ENQs,
QNAME=INTERCOM, RNAME=VSAM- dsn (up to 44
characters). This FAR specification must be
coded for the file in question for every
region which will share the file. See also
the Operating Reference Manual.

Allows a complete rewrite of an existing
physical sequential file (DSORG=PS,DISP=OLD)
or a VSAM ESDS. If this option is not
specified, any data written to the file will
be added at the end of existing data (that
is, DISP=MOD assumed). If WRITEOVER and
READONLY are specified for the same file,
READONLY will be used and no writing to the
file will be allowed. That is, READ ONLY
suppresses WRITEOVER. For an empty VSAM
ESDS, OPEN=VSAM is forced and READ ONLY is
ignored.

Indicates that ISAM exclusive control updates
are performed using QISAM or from multiple
regions. These specifications are
functionally equivalent, and result in an OS
ENQ at the file level. This is the least
eff ic ient means of as sur ing exclus ive
control, and can be avoided by restricting
the updates to BISAM and to within a single
region.

Summary of General FAR Parameters (Page 3 of 3)

29

Chapter 3 File Attribute Records

3.2 FAR Parameters for File Recovery

FAR parameters applicable only to File Recovery are summarized in
Figure 8 and described in detail in this section.

,..==
PARAMETER . FUNCTION

ddname Required. Each FAR must begin with a
ddname (except the NOMESSAGES FAR).

CHECK=(IN } Defines how to treat records containing
(OUT) delete flags. IN requests records be
(INOUT) checked for delete code when read in.

OUT checks BISAM inserts: if an insert
fails because of duplicate keys and the
record with that key on the file
contains the delete code, the insert
will be changed to an update. INOUT
requests both kinds of checking.*

CHECKPOINT=identifier-type= To avoid overhead of logging a before-
(identifier-list) image on frequently updated records,

designate as checkpoint records. They
will be copied onto the log each time a
checkpoint is taken. After-images will
still be logged if the file is marked
RECREATE.

DELETE=nnnn=(C'delete-code'} nnnn is the offset into the record, in
{X'delete-code'} decimal. The first byte has offset O.

The delete code may be up to eight
bytes long.*

RECREATE After-images logged for recreation.

REVERSE=(YES } YES is level 1 support recovery
(CRITICAL) guaranteed only after Intercornm abends.

CRITICAL is level 2 support recovery
guaranteed after hardware failures,
system crashes or Intercornm abends.

* indicates this option does not apply to VSAM files.

Figure 8. Summary of File Recovery FAR Parameters

30

J

J

Chapter 3 File Attribute Records

Each following parameter description lists the parameter name,
meaning, error message identifiers (complete messages are detailed in
Messages and Codes) and file attribute block flags and fields affected
by the parameter. Figure 9 illustrates a typical input FAR data set,
whicn should be referenced along with the descriptions of the FAR
parameters. Figure 10 sumnarizes FAB flags aLftj fie Ids. Dsects for
control blocks are contained in the member FRDSECTS. The notational
convention used below for specifying Dsect bit settings is:

ddname

Control-block-name (field-name) = setting description

Each FAR, except the NOMESSAGES statement, must begin with a
ddname. If a matching dd statement is not present, a message
will be sent to the operator and the FAR will be ignored.

FR002I, FR006I

No control block fields are set. The ddname is
the corresponding internal DSCT. After FAR
complete, DSCT (DSCTFABX) will contain either a
bytes of flags) or the offset to a long FAB in the

used to locate
processing is
short FAB (two
FAB table.

REVERSE=YES or CRITICAL
Specifies the logging of before-images to provide for file
reversal during restart. Before an update is made to the file,
the record to be updated will be located (read in if necessary)
and logged. The kind of file determines how inserts (adds) are
treated as described below:

a) BDAM, fixed-format, no keys - no such thing as an add to this
kind of file.

b) BDAM, fixed-format, keys - feedback is requested and the
block-ID of the newly added record is logged after the write
completes. (From the block-ID, a dummy record is constructed
and written out to reverse the add.)

c) BDAM, variable-format if delete code is provided (see
DELETE parameter des crip tion) the record's address is logged
after the write, as in (b).

d) ISAM - if the ISAM delete option was chosen (OPTCD=L) or a
delete code is specified, the key of the insert is logged.

e) VSAM, key-sequenced data set - the key of the newly added
record is logged before the PUT is issued and is reversed by
getting the old record for update and then issuing a VSAM
ERASE request.

31

Chapter 3 File Attribute Records

f) VSAM, relative record data set - the relative record number
of the newly added record is logged (as a key) before the PUT
is issued and is reversed by getting the old record for
update and then issuing a VSAM ERASE request.

g) VSAM, entry-sequenced data set (direct -access by RBA)
reversal is not supported because VSAM does not allow the
ERASE request by RBA for ESDS files. Additionally, the RBA
specified must always point to an existing record in the data
set (refer to IBM's VSAM Programmer's Guide). Therefore, a
direct access add implies that a destructive write is to be
performed. If file reversal is' required, the programmer
should first issue a call to GETV with the RBA and the file
handler status word set for update mode and then issue a call
to PUTV without specifying the RBA. Otherwise, the RECREATE
FAR option should be used to recreate the data set from the
after-image log.

h) VSAM, entry-sequenced data set (sequential output) - reversal
is not supported because VSAM does not allow the ERASE
request by RBA for ESDS files. The RECREATE FAR option must
be used to recreate the data set from the after-image log.
It should be noted that recreation of ESDS files might alter
the VSAM RBA assigned to records when using IXFCREAT as
opposed to on-line synchronous VSAM processing. Therefore,
it is recommended that if application cross-reference files
are used to access ESDS files by RBA, care should be taken in
the systems design for the off-line recovery of such cross
reference files after the IXFCREAT run (apply after-images)
has completed.

If REVERSE=YES is coded, logging is done asynchronously. That
is, although LOGPUT is called before the File Handler does the
update or insert (except in cases band c above), there is no
guarantee that the entry will actually be on the INTERLOG data
set when the File Handler transaction is started. LOGPUT moves
the entry into a buffer and writes out the buffer only when it is
full. Intercomm closedown or abend flushes the INTERLOG buffers
and closes the file. But, if an operating system or hardware
failure occurs, there is no cleanup proceSSing, and the set of
before-images on INTERLOG may be left incomplete. In particular,
if the lost log entries recorded inserts or updates to records
previously unchanged, file reversal will be incomplete. Note
that Intercomm abend cleanup processing requires the inclusion of
the module STAEEXIT in the Intercomm on-line execution linkedit;
see Messages and Codes for a detailed description of STAEEXIT
processing.

If the risk of system/hardware failure is unacceptable, then code
REVERSE=CRITICAL for synchronous logging. This informs LOGPUT
not to return to the File Handler until the entry has been written
to INTERLOG. Then the worst that can happen if the system crashes

32

Chapter 3 File Attribute Records

is that the log is ahead of the file, so file reversal performs
writes reversing updates that were never made, or gets harmless
errors deleting records that were not inserted. The trade-off is
more overhead. The time it takes to do an output operation on a
critical file is added to the time to process the queue of write
requests for previously filled log buffers, plus the time to
complete the current write to the log, plus the time to write the
entry for the critical file.

FR009I, FR018I.

FAB (FABFLGS1)=FABRYES, if REVERSE=YES coded.
FAB (FABFLGS1)-FABRCRIT, if REVERSE=CRITICAL coded.
FAB (FABFLGS1)=FABNOADD, if before-image logging not applicable

(inserts)

RECREATE
(Code just that; the format 'keyword=value' is not followed when
a keyword will do by itself.) Specifies that after- images be
logged to provide for recreation of the file from a backup copy.
Before every output operation, the data necessary to reconstruct
the call to the File Handler is logged. Logging is always
asynchronous.

No error messages.

FAB (FABFLGS1)=FABLGAFT

CHECKPOINT=identifier-type=(identifier-list)
Singles out certain records in a reversible file for special
treatment: that is, before-images are logged at check-point time,
not when updated. Reversal by definition still works, it means
reconstructing the contents of a file at some past checkpoint.
As long as it is known what a record looked like at every
checkpoint, there is no need to log updates to it. There are two
ways checkpointing can reduce overhead. First, by saving writes
to INTERLOG: specify checkpointing for records that are
regularly updated more than once between checkpoints. Second, by
allowing asynchronous logging (see REVERSE=CRITICAL explanation)
for files that contain only a few records that must be restored
after a hardware failure: checkpoint them and take a chance on
the rest. Any number of records may be checkpointed. If
RECREATE is specified, the after-image is logged when a
checkpoint is taken.

An identifier list may consist of a single item or many items as
represented in the descriptions below, but it must always be
enclosed in parentheses. Note the following: field means either
a character expression, written C' ' (example: C'KEY'), or a
hexadecimal expression, written X' ' (example: X'OlF3'),
address means either a hexadecimal expression or a decimal number
(example: 42); number means a decimal number.

33

Chapter 3 SPR 237 4/89 File Attribute Records

The listing of identifiers varies according to type of file. For
an ISAM file or a VSAM key-sequenced data set, list the keys of
the records to be checkpointed:

CHECKPOINT=KEY=(field, ,field).

~or a BDAM file without keys or a VSAM relative record data set,
list the VSAM RRN's or BDAM RBN's or relative track addresses
(TTR's) of the records to be checkpointed (physical addresses are
not handled):

CHECKPOINT=BLK=(address, ,address).

For a BDAM file with keys, a relative track address and a key are
required to identify a record. Each two-part identifier is
enclosed in parentheses, and a second pair of parentheses
encloses the list. Code the address first and the key second:

CHECKPOINT=BLK=«address,field), ... ,(address,field))

FR003I,FR009I,FROIOI,FR012I, FR013I,FR016I,FR017I

FAB(FABFLGSI)=FABCP. FAB(FABFLGS2)=FABCPKEY, for ISAM, VSAM KSDS
FAB(FABFLGS2)=FABCPBLK, for BDAM without keys, VSAM RRDS
FAB(FABFLGS2)=FABCPBKY, for BDAM with keys.
FAB(FABCPCNT)=number of checkpoint records
FAB(FABCPLEN)=length of record identifier, for example, key length

of VSAM file.

The list of identifiers starts at FAB(FABCPIDS). The presence of
checkpoint records is indicated on INTERLOG by a log record with
codeX'8F'.

Record checkpointing for a file is skipped when the file is locked
or dynamically deallocated (cannot be Selected).

DELETE=offset=flag-value
Specifies a flag that will tell the File Handler a record is
deleted. This option does not apply to VSAM files. The first
subparameter is the offset into the record of the flag field; the
second is the value of the field that means "deleted". The offset
is decimal; the first byte of the record has offset O. If the
file is variable format, the record descriptor word is counted as
part of the record and an offset less than four is an error. The
flag-value can be either a character expression or a hexadecimal
expres s ion. In the shorthand developed for the CHECKPOINT
description, the parameter is stated:

DELETE=number=field

The flag field may be up to eight bytes long; its length is
inferred from the flag-value.

34

Chapter 3 File Attribute Records

When the file reversal routine, IXFRVRSE, finds that a record has
been added to a file from which records cannot be deleted in a
way the access method recognizes (that is, variable-format BDAM,
ISAM without OPTDC=L), it checks the file's FAB for a delete
flag. If a flag is specified, IXFRVRSE reads the record in,
moves the flag into th€;~ flag field, and writes it back out. A
delete flag is a signal to the File Handler; as far as the access
method is concerned, the record is indistinguishable from the
others in the file. IXFRVRSE does not insert a delete flag if
the access method supports deletion. What the File Handler does
with flagged records during on-line processing depends on how the
CHECK parameter (see description below) is coded.

FR003I,FR011I,FR015I

FAB(FABFLGS1)=FABDL. FAB(FABDLOFF)=offset to flag field.
FAB(FABDLLEN)=length of flag field. FAB(FABDLCDE)=flag-value.
Note: The maximum delete code length is set by the symbol
-- FABDLMAX; to provide for longer delete codes, increase

FABDLMAX (in FRDSECTS) and reassemble the file recovery
modules.

CHECK=IN/OUT/INOUT
The CHECK parameter specifies to the File Handler how to treat
records containing delete flags. This parameter is valid only if
DELETE is coded.

If CHECK=IN is coded, records in the specified file will be
checked, when they are retrieved by a call to GET or READ, for
the presence of a delete flag. If the delete code is found, the
File Handler will signal its presence by a return code of 2 in
the FHCW (a no record found condition). The record will be in
your I/O area. CHECK=OUT applies only to BISAM inserts; if an
insert fails because of duplicate keys, the File Handler will
issue a READ KU for the record with that key, and, if it contains
a delete flag, will replace it with the insert via a WRITE K
(update). CHECK=INOUT requests both kinds of checking.

You can specify a delete flag and request checking, without
asking for logging, but then you must insert the delete flags
yourself; Intercomm inserts them only during reversal.

FR009I,FR010I,FR014I

FAB(FABFLGS1)=FABCHKIN if CHECK=IN coded.
FAB(FABFLGS1)=FABCHKOT if CHECK=OUT coded.
Both flags set if CHECK=INOUT coded.

35

Chapter 3 File Attribute Records

I II COM IN DD *
NOMESSAGES

2 SMLOG,ALIAS=FRLOG

3 DD1,REVERSE=YES,RECREATE

4 DD2,RECREATE

5 DD3,REVERSE=YES,CHECKPOINT=BLK=«X'000000',C'MMMM'),

5 (X'OOOOOO',C'QQQQ'»

6 DD4,REVERSE=CRITICAL,CHECKPOINT=BLK=(1,2)

7 DD5,REVERSE=YES,CHECKPOINT=KEY=(C'KEY1'),DELETE=4=C'XX',CHECK=OUT

8 DD6,READONLY

9 DD7,

9 UPDATE ONLY

x

x

-----~---
Notes:

1. Stops IXFFAR from sending card images to the operator console,
must be the first FAR.

2. Causes resource management output, that is, thread dumps and
statistics, to go to the same SYSOUT data set as images of the
file-recovery log entries (see description of IXFSNAPL for
details on FRLOG); SMLOG DD statement omitted from execution JCL.

3. Requests logging of before- and after-images.
4. Requests logging of after-images only.
5. This is a FAR for a keyed BDAM file. Two blocks are to be

checkpointed: their keys are MMMM and QQQQ; BDAM will look for
both at the beginning of the file (relative track address 0).

6. This is a FAR for a BDAM file without keys or a VSAM RRDS file.
Before-images will be logged synchronously. Again, two blocks
are to be checkpointed: RBN/RRN numbers 1 and 2.

7. This is a FAR for an ISAM file or a VSAM KSDS file (excluding the
DELETE and CHECK options). The record with key KEY 1 is to be
checkpointed. The characters 'XX' in bytes 4 and 5 of a record
mean the record is deleted (ISAM only); File Handler will check
for the delete code whenever an insert fails because of duplicate
keys.

8. No output operations will be allowed on this file.
9. IXFFAR will concatenate all the nonblanks in the FAR before

trying to decode it, so it will see: DD7,UPDATEONLY

Figure 9. Sample FAR Data Set
36

J

Chapter 3 File Attribute Records

3.3 File Attribute Block (FAB)

If any of the parameters related to file recovery (REVERSE,
RECREATE, CHECKPOINT, DELETE, or CHECK), or if x37 abend protection is
coded in a FAR, a FAB is built for the file. If only REVERSE or
RECREATE is coded, a short FAB is built: two bytes·of flags at location
DSCTFABX in the file's internal DSCT. If any of the other parameters
are coded, a long FAB is built in the FAB table and DSCTFABX contains
the offset to the FAB from the beginning of the table. A long FAB
starts with the same flag bytes as a short FAB. The Dsect, called FAB,
is in the member FRDSECTS.

Figure 10 lists the FAB names and descriptions.

3.4 FAB Table

The FAB table is a block of dynamic storage acquired by IXFFAR to
hold long FABs and entries that identify aliased files. The address of
the FAB table is stored in the header of the internal DSCT area at
location FABADD. If there are no long FABs or aliased files, the table
is not built and FABADD is set to O. The table starts with a header
(Dsect FABTABLE in FRDSECTS), consisting of two halfwords: FABOFFST is
the offset to the first long FAB; FABALCNT is the number of alias
blocks, that is, entries that identify aliased files. After the header
come the alias blocks, if there are any. One of these blocks (Dsect
FABALIAS in FRDSECTS) is built for each aliased file without a DD
statement (for the primary file); it consists of the eight-character
primary ddname (FABALDD) followed by the address of the internal DSCT
(FABADSCT) for the alias file. The long FABs follow the alias blocks as
shown in Figure 11.

31

Chapter 3 File Attribute Records

r========= ===========-========-r=======================================
Field Offset Description
Name HEX DEC Bytes

F========= =====-=====: =========F=======================================
FABFLGSl 00 a 1 First Flag Byte:

FABIMM: X' 80'
FABRYES: X' 40'
FABRCRIT: X'20'
FABLGAFT: X'10'
FABDL: X'08'

FABCHKOT:
FABCHKIN:
FABCP:

X'04'
X'02'
X'Ol'

Short FAB
REVERSE=YES
REVERSE=CRITICAL
RECREATE
Delete flag
specified
CHECK=OUT
CHECK=IN
Checkpoint record
list specified

~--------- ------~--
FABFLGS2 01 1 1 Second Flag Byte:

~--------- -----
FABDLLEN 02
FABCPLEN 03
FABDLOFF 04
FABCPCNT 06
FABDLCDE 08
FAB37COM 10
FAB37ECB 18
FAB37SYN lC
FABCPIDS 20

FABCPBLK: x'80' Checkpoint list
for unkeyed BDAM
file, VSAM RRDS

FABCPKEY: X'40' Checkpoint list
for ISAM file, or
VSAM KSDS

FABCPBKY: X'20' Checkpoint list
for keyed BDAM
file

FABNOADD: X'10' No Logging of
before-image when
a record is
inserted in an
ISAM file (see
error message
FR018I)

FABNOAFT: x'08' FABLGAFT set by
Backout-on-the
Fly

FABNCPWT: x'04' Force hard wait
when no. I/O=NCP

------~--------~---------------------------------------
2
3
4
6
8

16
24
28
32

1
1
2
2
8
8
4
4

Length of delete flag field.
Length of checkpoint record ide
Offset to delete flag field.
Number of records in checkpoint list.
Delete flag.
B37 companion ddname.
B37 PMIWTOR ECB.
B37 synchronous ECB.
Beginning of list of checkpoint ids.

Figure 10. File Attribute Block

38

Chapter 3 File Attribute Records

,. IXFDSCTA
DSCT
header II of entries
(3 words) ._-------------------------

<
option bits r.FABTABLE

- I header
--------------------------- I ----------------+ FABTABLE - - - - - -- - - --

__ .J
alias blocks

r ddname1 · internal · DSCT DSCTFABX · I Short FAB I
>- ddname2 · long FABS

· no file · internal · recovery · DSCT ~ specified · · · in FAR ·
> I" ----------------ddname3 I

internal (----------------
DSCT • DSCTFABX I ·) I FAB offset 1-------- __ ...J

·
\.. · · · · · one entry · · per file · · · :+ ----------------·

{ ddnamen · internal I · DSCT DSCTFABX I

I FAB offset L ___ J

Figure 11. FAB Table

39

J

SPR 237 4/89

Chapter 4

INSTALLING FILE RECOVERY

4.1 Introduction

This chapter begins with a description of the File Recovery
modules, and continues by giving the assemblies, linkedit changes, and
execution JCL needed for the following jobs:

A - running Intercomm in startup mode with message logging,
checkpointing, and logging of before- and after-images .

B - restarting Intercomm with file reversal
C - recreating a destroyed file· from a backup copy, off -line,

using logged after-images.

Thi s di s cus s ion i s meant to be self-contained but not
comprehensive; some material on restart is included, but nothing on
data base recovery. Please refer to the Operating Reference Manual for
more specifics on message restart and checkpointing and the DBMS Users
Guide for data base recovery implementation.

Under Release 10 of Intercomm, if the Automated Restart facility
is used, jobs A and B are combined. The EXEC statement PARM (STARTUP
or RESTART) is ignored (if coded) and execution of restart depends on
the successful (NRCD or IMCD closedown) or unsuccessful (abend or CPU
failure) conclusion of the previous execution of the Intercomm region.
For implementation see the Release 10 Operating Reference Manual.

Detailed procedures for calling File Handler service routines are
discussed in the Intercomm Programmer's Guides. File Handler service
routines are called by application programs, passing (as one of the
parameters) the File Handler Control Word (FHCW). The FHCW is a
fullword control field, used for communication between the File Handler
and the calling subsystem. Prior to calling each service routine, the
subsystem must clear the FHCW with blanks or initialize it with a
predefined request code, as applicable. Several File Recovery modules
use the FHCW to enable special functions of a service routine, such as
before-image logging. Upon completion of the request, the File Handler
will communicate the status of the operation back to the subsystem.

4.2 FILE RECOVERY MODULES

There are six modules in the File Recovery facility as summarized
in Figure 12, along with other modules required for checkpointing,
message restart, and coordinated file recovery.

41

Chapter 4 Installing File Recovery

~=:=:========F===========:~=======~=======================r==='===============

Member CSECT Job Residency Function
~=========+==========~========9=====================F='================'======

IXFFAR IXFFAR

IXFLOG IXFLOG

A, B, G

A, B

Startup overlay
with IXFMONOO

Resident

FAR processor

Constructs file
recovery log
entries

IXFGHKPT IXFCHKPT A, B With CHCKPTSS Logs checkpoint
records

IXFRVRSE IXFRVRSE B With LOGPROC Applies before
images

-----------~-----------
IXFGREAT IXFCREAT G Resident (batch

job)
Applies after
images

IXFSNAPL IXFSNAPL B, C With IXFRVRSE Prints file

----------- -----------~---------
DBGHKDSP GHEGKPT A, B

GHECKPT3 CHECKPTO A, B

----------- ----------- ---------
GHGKPTSS CHGKPTSS A, B

----------- ----------- ---------
MSGAC MSGACOOO A, B

for Job B,
resident for Job G

recovery log
entries

Resident Sends message
to GHCKPTSS

Resident

Resident or
overlay

Resident

Checkpoint file
record writing

Quiesces sub
systems

Message
accounting

LOGPUT LOG PUT A, B Resident Message logging
----------- ----------- ------------------------------~-----------------

LOGPROC LOGPROC B Startup overlay Message restart

RESTORE3 RESTORE B Startup overlay Resets check
point fields

Figure 12. Summary of Message Restart/File Recovery Modules

The IXFFAR routine reads the FARs and builds the FABs as
discussed in the previous chapter. Logically, it is part of the File
Handler initialization Gsect, IXFMONOO, in the sense that it is called
only from IXFMONOO, and from there only once. (IXFMONOO is in
IXFHNDOO.) IXFFAR must be included in all three jobs; the FARs specify
logging in jobs A and B, which files get reversed in job B, and which
files get recreated in job C.

42

Chapter 4 Installing File Recovery

The IXFLOG routine constructs file recovery log entries and
passes them to the entry point LOGPUTF in LOGPUT, to be written to
INTERLOG. A file recovery log entry is divided into header and text
like a message status log entry. The header is the same length as a
message header, but the only common fields are those used for the
length, date, time and log code. (See Figure 3 for a comparative
description of the header fields.) The file recovery header contains
the ddname, the BDAM block-ID, the key length, and the record length.
The zone bits of the log code indicate whether the entry represents a
before-image or an after-imagej the numeric bits identify the output
operation. A key (or VSAM RRN), a record, or both, may follow the
header depending on the type of entry; see Figure 5 and 6: FORMAT.

The File Handler calls IXFLOG just before it issues a VSAM, BDAM
or ISAM output macro' (unless it is a WRITE DAF, which is logged after
completion because the feedback address is part of the log entry). The
File Handler passes a code to identify the macro issued. The code is
arbitrary--a number between 0 and 18 (see Figure 5 for the numbers
associated with each macro) --it identifies the sources of log-entry
information for different macros: if a record in an ISAM file is
updated with a PUTX, the before-image address is in the DSCTj if it is
updated with WRITE K, the address is in the DECB, for a VSAM file the
address is in the RPL, and so on.

IXFLOG is normally linkedited in the resident portion of
Intercomm. It is reentrant and Link Pack eligible.

The IXFCHKPT routine handles file checkpointing (see the
description of the CHECKPOINT parameter). It is called by the
checkpoint subsystem CHCKPTSS. The first thing IXFCHKPT does is log a
header containing the log code X'8F', a signal to the reversal routine,
IXFRVRSE, to release files and reset internal switches. Since restart
with file reversal processes the log tape back to an Intercomm
checkpoint, one of these headers will always be the last log entry
IXFRVRSE examines, and restart will complete without SELECTs
outstanding. The rest of the header is meaningless.

Next, IXFCHKPT logs the records specified in the FAB checkpoint
lists, using a special File Handler option; if a READ is issued with L
in the second byte of the File Handler Control Word, the File Handler
will cause the record to be logged after it is read in, by calling
IXFLOG with the appropriate macro code. Ordinarily, of course, only
output operations are logged. Read-time logging keeps checkpoint I/O
to a minimum, and the L gives IXFLOG a way to isolate a checkpoint
record request from a regular update. All the subsystems that change
reversible files are supposed to be quiesced while checkpoints are
takenj an attempt to update a reversible file during checkpointing
causes an error message (FR030A) to be issued.

43

Chapter 4 Installing File Recovery

The IXFRVRSE routine uses logged before-images to reverse updates
and additions to files. LOGPROC, the routine that restarts messages
from the old log, calls IXFRVRSE every time it finds a before-image
entry. IXFRVRSE in turn prepares a parameter list and calls the File
Handfer to do the I/O. Reading the log backwards, there is no way to
detect redundant before-images until it is too late; the earliest
before-image, that is, the last one found on the tape, is the one that
counts. One record may be rewritten several times during reversal;
however if Intercomm checkpointing is used properly it should be fairly
unusual to encounter two before-images of the same record in a single
checkpoint interval.

To reverse an add to a keyed BDAM file, IXFRVRSE writes a dummy
record. A dummy record is identified by X'FF' in the key. Since the
File Handler does· not allow a change to the key of a BDAM record,
another option was added. If WRITE is called for a keyed BDAM file
with I in the second byte of the File Handler Control Word, the File
Handler issues a WRITE DI. An I specifies exclusive control; J means
normal read. A block-ID and a key must still be supplied, but the
block-ID will be taken as the precise address of the record to be
changed, not the starting point of a search. The key will replace the
key of the record at that address. For completeness, reading by ID
from a keyed file is also supported. The address of an area for a key
must be supplied in the parameter list; it is filled in by the READ
like the I/O area. See the appropriate Intercomm Programmer's Guide
(COBOL, PL/1, Assembler Language) for additional details.

The IXFCREAT routine applies logged after-images to backup copies
of files. It runs as the main program in an off-line job, reading the
log forward and calling the File Handler to write after-images to the
files being recreated.

The Intercomm log tape may represent several consecuti ve
executions of the system where the restart log became the live log
following the restart operation. For example, in one day's time, the
system may be initiated, terminated with IMCD, restarted and
subsequently terminated with an abend. Assume a backup copy of a file
was made after the IMCD closedown and that file recreation is necessary
following the abend. Given a log representing several executions of
Intercomm, starting recreation with the first after-image will mean
pointlessly performing updates and additions that are already
represented in the backup. For this reason, IXFCREAT incorporates a
feature to skip to a specific log entry to begin recreation. For
example, each time Intercomm starts up, it issues a message RECREATION
STARTPOINT=, followed by· a date and time; at the same time it creates a
startup log entry with a special code and the same date and time. To
make IXFCREAT reposition the log to the start of a particular run, put
the date and time from the RECREATION STARTPOINT= message of that run
in the EXEC statement PARM field of the recreation job, exactly as it
appears in the message. A specific starting date and time are
requested by coding:

44

Chapter 4 Installing File Recovery

PARM='yy.ddd,hhmmssth'

- IXFCREAT will read the tape, ignoring after-images, until it
finds a log entry with a date and time greater than or equal to the
parm value. A starting day of 001 of the current (or previous) year,
and a starting time of zeros (00000000), will force all after-images to
be processed.

The IXFSNAPL routine formats and prints file recovery log
entries. It expects two parameters, the address of the log entry and
the address of either a selected DSCT for a QSAM data set, or the
address of an open DCB for a QSAM or BSAM. data set. IXFSNAPL
determines what kind of control block has been passed and PUTs, WRITEs,
or calls the File Handler accordingly. The data set must be
fixed-format and have an LRECL of at least 120. There are CALLIFs to
IXFSNAPL in IXFRVRSE and IXFCREAT; the output goes to a SYSOUT data set
called FRLOG (see setup directions for Jobs Band C below).

IXFCREAT defaults to snap all after-images applied. However, it
may optionally snap only after-images that are unsuccessful due to 1/0
or logic errors. This is specified by adding SNAP=ERR following the
dateltime on the EXEC statement PARM field as follows:

PARM='yy.ddd,hhmmssth,SNAP=ERR'

If snaps are not desired, then specify SNAP=OFF or omit the FRLOG
DD statement. However, this is cautioned against because critical
information is printed for errors; for VSAM files, the feedback code is
provided.

Figure 13 depicts IXFSNAPL output. If an after-image cannot be
applied due to an error, an appropriate error message with the
hexadecimal representation of the File Handler Control Word will appear
on the line following the snap.

End of job statistics are produced and written to FRLOG (if
present) for run controls. The following information is reported:

NUMBER OF RECORDS APPLIED :
NUMBER OF RECORDS IN ERROR:

x,xxx,xxx
x,xxx,xxx

4.3 Job A - Intercomm with File Recovery

Note if all you want to log is after-images, to allow
recreation but not reversal, many of the steps in the following setup
procedure should be skipped; the steps that also apply to systems with
reversible files are indicated by an asterisk.

45

Chapter 4

.. PR[-IHAr,[... DONAH£=ISV
TYP[= PUTX/WRIT[K
KE Y = f Of 1 F OF 6 -

Installing File Recovery

,ENTRY LEN= 10,8LK ID/R8A=OOOOOO/OOOOOOOO,LO'COOE=80,HACRO=OO.K(YLEN= ~.TEXTL(H= 2~
DATE: 830~2 1I0UP: IH'I0190

0106
TExl: 00I~OOOOE5fOF'FO F~D9C5C30~n9C~5C FOFIFOF~FOFIFOF6 Q VOI06RrCORO'0IO~OI06

" -------.-----.--------._-----_.---
.*PO~T-J~~GE·. nONAHE=JSV
TYPE= rUTX/~RIT(K
K(Y" FOf IFOF6

,[IHRY L[N= 70,BlK JO/RIl&:OOOOOO/OOOO ••• O,lOGCOD£=.,.,I1ACRO=OO,KEYLlN: ~,'(XTL(N= :>4
OATE: 830~2 HOUR: 11~90190

010 f,
TEXT: OOIROOOO[5FDFIFO fb09C5C3n~09C~5C FOFIFOF6FOFIFOf6 Q VOI06R£CORO*Ol060106

PRE-IMAGE*: a file-recovery before-image entry (since the zone digit of the
log-code is 8).

POST-IMAGE: a file-recovery after-image entry (the log code zone digit is 9).

DDNAME=: ddname of the file. This is the MSGHDD field in the header. This field
will be blank for a checkpoint entry (log code=8F).

ENTRY LEN=: length of the log entry; this is the value of MSGHLEN in the header.

BLK ID/RBA=: for BDAM, this field contains the RBN or TTR of the record altered,
in hex; for ISAMlVSAM the field contains zeros. Header field MSGHBKID.

LOGCODE=: header field MSGHLOG.

MACRO = : code indicator for type of file access macro used (see Figures 5 and 6).
Header field MSGHMACR.

KEYLEN=: length of the key; zero if the log entry does not include a key. Header
field MSGHKEYL.

TEXTLEN=: length of the record image; zero if the log entry does not include a
record image. Header field MSGHTXTL.

TYPE=: access method macro issued by File Handler to update or add the record. If
two macros generate entries with the same log code, both macros are listed in this
field; use the macro code to determine which macro was used.

DATE: date logged in message header (yyddd format) from header field MSGHDAT.

HOUR: time stamp from message header (hhmmsstt format). Header field MSGHTIM.

KEY=: value of the key, hex on the left and EBCDIC on the right. If omitted, the
log entry does not contain a key.

TEXT=: value of the record, hex on the left and EBCDIC on the right. If omitted,
the log entry does not contain a record.

Figure 13. Sample IXFSNAPL Output

46

Chapter 4 Installing File Recovery

4.3.1 FAR, SCT, and SPA Specifications

1. Code a FAR for each on-line file to be logged.

2. Create the FAR data set, ICOMIN. Generally, this means
coding statements to define a SYSIN data set:

//ICOMIN DD *
far

far
/*

and inserting it somewhere after the EXEC statement for the
Intercomm execution step. The FARs can be put in a PDS
member or a sequential data set of their own, if desired. In
any case, include a DD statement for ICOMIN.

As released, IXFFAR treats all FAR errors except missing DD
statements (FR006I) as fatal; that is, after IXFFAR detects a
coding error it will analyze the rest of the FARs to turn up
all the errors it can, but it will stop building FABs and
abend when ICOMIN is exhausted. It is a waste of time
initiating Intercomm just to find out you omitted a quote in
a character expression. In creating a FAR data set for the
first time it might be a good idea to use the file recreation
program (Job C) to check it: dummy AFTERIM, include DD
statements for all the files for which you have coded FARs
and run with the new FAR data set. Job C will run in about
30K.

3.* Identify those subsystems which update reversible files.
File reversal will not operate correctly unless output
acti vity on reversible files is stopped while an Intercomm
checkpoint is taken; otherwise, there is no way of ensuring
that all the file changes caused by the first processing of
the message have been nullified when a message is restarted.
Output activity is· stopped by flagging the subsystems that
cause changes to reversible files; these subsystems are
quiesced by the checkpoint subsystem. The flagging is done
by a parameter in the SYCTTBL macro; if a subsystem alters a
file that has REVERSE=YES in its FAR, the subsystem's SYCTTBL
macro must specify RVFILE=YES. Update the applicable
SYCTTBLs and reassemble the Subsystem Control Table (member
INTSCT) •

47

Chapter 4 Installing File Recovery

4. * It is not sufficient to just flag subsystems that call the
File Handler to alter reversible files. For example, if F
represents a reversible file, and A and B represent
subsystems, A does not access F itself, so it is not flagged,
but A sends a message to B, and B updates F. Suppose A
continues processing after it sends the message to B, and
while A is still active, B completes, and a checkpoint is
taken. Then the system crashes and Intercomm must be
restarted. Subsystem A I S message in progress would be
restarted, Subsystem B's update may be done twice.

5.*

There are a number of ways to prevent situations like this:

a). recode A so that sending the message to B is the last
thing it does;

b) leave A as it is, but make A and B mutually exclusive,
that is put them in different overlay groups in overlay
A, so B cannot start until A is finished

c) flag A, that is, code RVFILE=YES in the SYCTTBL macro for
A, so no checkpoint will be taken until A is finished.
(This approach just pushes the problem back one level; if
A is invoked by a message sent from another subsystem, C,
you will have to do something about C, too.)

d) best of all, perform all updates in A.

Quiescing
Intercomm
support.
user-coded

the subsystems flagged RVFILE=YES is the job of an
subsystem CHCKPTSS, also used for data base
Code a SYCTTBL macro for it in INTSCT (or
COPY member USRSCTS) with the following parameters:

SYCTTBL SUBC=Q,SBSP=CHCKPTSS,LANG=NBAL,MNCL=1, x
X NUMCL=1,LSYNCH=YES,RESTART=NO,PRTY=O,

TCTV=27962

CHCKPTSS can be resident or assigned to an overlay. If
CHCKPTSS is placed in an overlay area, it should share the
area with subsystems that do not update reversible files,
thus competing for the area with subsystems that do.

A SPALIST parameter, GENSW, must be coded to i den tify the
available checkpoint areas. See also the SPALIST parameters
CKPTLIM and TCHP, described in Basic System Macros.

48

Chapter 4 Installing File Recovery

6. Specify number and size of INTERLOG buffers to be obtained
for LOGPUT; there are SPALIST parameters specifying the
number of buffers to obtain (LGNUM) and the average buffer
length (LGBLK). These numbers should be chosen with care,
because if logging requests accumulate faster than LOGPUT can
handle them, the performance of the whole system degrades.
LGBLK should be large enough so that any frequently generated
log entry (message or file recovery image) will fit in a
buffer. Logging an entry bigger than LGBLK effectively ties
up two of LOGPUT's buffers; the active, partially filled,
buffer to be written is queued, storage for a temporary
buffer to hold the large entry is obtained, then another of
LOGPUT's own buffers is marked full so its control fields can
be used (a buffer contains a DSCT, a save area, and chain
pointers as well as space for log entries).

NOTE: The more synchronous the logging, the smaller and
more numerous the buffers should be (recall that
synchronous logging, requested for subsystems or
terminals by coding LSYNCH=YES and for files by
coding REVERSE=CRITICAL, means LOGPUT does not return
until the log buffer is written). A synchronous
logging request causes the buffer containing the
entry to be queued to be written immediately, whether
or not the buffer is full. Any leftover space is
wasted. So there is no pOint in making buffers big
enough to hold ten messages, say, if one log request
in five is synchronous. Tuning information for
optimizing logging performance is provided by the
System Tuning Statistics facility described in the
Operating Reference Manual.

File Recovery log entries will tend to come in bursts; in
logging before- and after-images each update to a file
produces two entries, and one thread may do several
updates. Check for bursts like this and make sure LOGPUT has
enough buffer space to handle them. The size of a file
recovery log entry is generally 42 (the header length) + the
key length + the length of the logged record. Some are
shorter. (See Figures 5 and 6.)

7. Reassemble INTSPA (SPALIST macro).

8. * A consequence of the remarks in step 3, above, is that a
reversible file must never be changed by an Intercomm module;
Intercomm system modules do not have anything like SCT
speCifications to quiesce activity on system files, such as
queues. Verify that all reversible files are the exclusive
property of application sUbsystems. (RECREATE can be
specified for any file.)

49

Chapter 4 Installing File Recovery

4.3.2 Linkedit

The following steps are automatic if the applicable parameters
are coded for the ICOMLINK macro assembly t~ generate the Intercomm
linkedit control statements (see Basic System Macros).

9.* Include DBCHKDSP. This is a small resident module that
schedules checkpointing by sending a message to CHCKPTSS (see
step 3), then dispatches itself for the checkpoint interval,
SPATCHP. The Csect name of DBCHKDSP is CHECKPT, which is
also the name of a Csect in the standard Intercomm checkpoint
module, CHECKPT3; therefore, include DBCHKDSP before
CHECKPT3. Note: if you want to assign CHCKPTSS a subsystem
code other than Q, you have to change the MVI in DBCHKDSP
that sets up the receiving subsystem code in the message
header (00086000).

10.* Include CKCKPTSS; if it is to execute in Overlay Region A,
follow INSERT CHCKPTSS with INSERT IXFCHKPT.

11.* Include CHECKPT3. CHECKPT3 must be included even though one
of its Csects is overridden by DBCHKDSP. The other Csect,
CHECKPTO, is the one that actually writes the checkpoint and
it is invoked by a CALLOVLY from CHCKPTSS.

12. Three file recovery modules are needed for Job A: J ..
Include IXFFAR, IXFLOG, and IXFCHKPT. IXFLOG is Link Pack
eligible.

13. Follow the startup Overlay A INSERT card for IXFMONOO with
INSERT IXFFAR, if an overlay structure is used.

14. * Make sure the Csect CHECKPTO is inserted in the transient
overlay region (if used).

15. Include MSGAC (message accounting processing) and, if logging
to disk, IXFB37.

4.3.3 Execution JCL

16. Code PARM='STARTUP ••• ' on the EXEC statement.

17. Code the INTERLOG DD statement.

a) DCB=(••• ,NCP=number-equal-to-LGNUM, •••)
Recall that LOGPUT writes the log using BSAM from buffers
acquired by the startup routine (see step 6); this DCB
parameter allows LOGPUT to start writes on all its
buffers before entering a hard wait state to wait for the \
first write to complete. See the description of the FAR ..I

50

Chapter 4 Installing File Recover~

parameter NCPWAIT in Figure 7. The greater the number of
specified buffers, the smaller the likelihood of a
periodic hard wait state.

b) DCB=(••• ,OPTCD=C, •••)
Requests chained scheduling, that is, chaining of 1/0
blocks (lOBs) when more than one write request is queued.

c) Verify that BUFNO is not specified in the DCB parameter
list. LOGPUT does not use OS buffers.

d) BLKSIZE specifies the actual maximum length block that
LOGPUT may use. You can specify BLKSIZE=32760 to make
sure everything gets logged, but if the log file is ever
used in a restart run you do have to specify the largest
block size written (unless you can spare 32K per
buffer) • It is preferable to settle on a single figure
for Jobs A, Band C. On the one hand, an entry larger
than BLKSIZE will not get logged in Job A, but on the

. other, Jobs Band C will run; both Jobs Band C abend if
the input log file (RESTRTLG in Job B, AFTERIM in Job C)
contains a block bigger than BLKSIZE. The minimum block
size is LGBLK+4. The extra four bytes are for the block
descriptor word. The largest block size should account
for the largest possible message (including header) + 4,
or the largest file recovery image (plus key) plus
message header +4 (see step 6 above), whichever is larger.

e) The DD statement for logging to tape looks like:

IIINTERLOG DD DSN=INTERLOG,DISP=(NEW,KEEP),
II UNIT=unit,VOL=SER=abc,LABEL=(,BLP),
II DCB= (DSORG=PS, RECFM=VB,BLKSIZE=blksize,
II OPTCD=C,NCP=lgnum,LRECL=blksize-4)

f) The DD statement for logging to disk looks like:

IIINTERLOG DD DSN=INTERLOG,DISP=(NEW,KEEP),
II UNIT=unit,VOL=SER=volser,
II SPACE=(CYL,(primary»,
II DCB=(DSORG=PS,OPTCD=C,NCP=lgnum,
II RECFM=VB,BLKSIZE=blocksize,LRECL=blksize-4)

If disk log file floplflip (x37 abend protection) is
desired, see the Operating Reference Manual for
additional installation considerations.

51

Chapter 4 Installing File Recovery

18. Include a DD statement for ICOMIN, plus the FAR data set, if
ICOMIN is SYSIN.

19. Include a DD statement for CHEKPTFL. This direct access file
is used by CHECKPTO (see step 11) to store checkpoint
information. It must be formatted before the run by
CREATEGF, with a block size of at least 100, and at least 40
RBNs. See the Operating Reference Manual for precise
calculation of block size.

4.4 Job B - Intercomm Restart with File Reversal

Since file recovery at Intercomm restart is coordinated with
message restart and checkpointing, it is necessary to review the
discussion of the installation of these features, particularly log
recovery via the ICOMFEOF utility, as described in the Operating
Reference Manual.

4.4.1 FAR. SCT, SPA Specifications

Same as Job A, steps 1-8. There is one new point:

1. Be careful about changing the FAR data set between failure
and restart. The REVERSE parameter serves a double purpose
in a restart run: in addition to identifying the files for
which before-image logging is to be done it tells IXFRVRSE
which files to reverse. Even if before-images for a file
exist on the input log, they will not be applied unless the
file is defined as reversible for the restart run.

4.4.2 Linkedit

Follow directions for Job A and also ensure that the following
are in the Intercomm linkedit:

2. LOGPROC and its subroutines READBACK and INTDBLOK, the
routines that read the log backwards and restart messages.
LOGPROC should go in the startup overlay.

3. IXFRVRSE (follow INSERT LOGPROC with INSERT IXFRVRSE).

4. IXFSNAPL, if you want a record of the before-images applied.
IXFSNAPL may be inserted in the same over lay as LOGPROC and
IXFRVRSE.

52

J

l.

Chapter 4 Installing File Recovery

5. RESTORE3, the routine that retrieves checkpoint information
from CHEKPTFL (see Job A, step 19); also insert RESTORE (the
Csect name), in the startup overlay.

6. REQONDDQ (and USRSEREX), if serial restart of messages which
update files is desired. See the Operating Reference Manual.

4.4.3 Execution JCL

7. Code PARM='RESTART, ••• ' on the EXEC statement.

8. If logging to disk, see Job A, step 17-item f for the JCL and
other considerations, and the Operating Reference Manual for
definition of the RESTRTLG DD statement.

9. If logging to tape, restart may use one log tape for both
input during restart and output after Intercomm goes live; if
DISP=MOD is specified for INTERLOG, log entries for the run
that failed are left intact; the tape is repositioned after
the last entry, and receives entries reflecting the requeuing
of messages and application of before-images during restart,
as well as fresh log entries when Intercomm goes 11 ve. If
DISP=NEW is specified, the entries for the run that failed
will be destroyed, including file after-images.

In the following examples, asterisks refer to the discussion
of the INTERLOG DD statement in Job A. The LABEL parameters
in the illustrations assume standard labels. If unlabeled
tapes are used, code LABEL= (,BLP) or LABEL= (, NL) in both DD
statements. Make the volume serial numbers identical, so
that both data sets are assigned to the same drive.
LABEL=(,SUL) is recommended. This will cause the EOV exit to
be taken in the File Handler and will prevent time-outs
caused during mounting of a new log volume.

Input Log (note that RECFM=U is required):

//RESTRTLG DD
/I
II

Output Log:

/IINTERLOG DD

/I
II
II

DSN=anyname,DISP=(OLD,PASS),
UNIT=unit,VOL=SER=abc,LABEL=(2,BLP),
DCB=(DSORG=PS,RECFM=U,BLKSIZE=blksize*)

DSN=anyname,DISP=({NEW},KEEP),
{MOD}

UNIT=unit,VOL=SER=abc,LABEL=(,SUL),
DCB= (DSORG=PS , RECFM=VB,BLKSIZE=blksize* ,
LRECL=blksize-4,OPTCD=C,NCP=lgnum*)

53

Chapter 4 Installing File Recovery

10. LOGPROC uses a temporary disk data set that holds messages to
be restarted. The data set is variable-format, with one
message per block, so its block size must be equal to the
length of the longest message that can be queued for a
restartable subsystem. File recovery log entries are not
sent to this data set. It ts created by LOGPROCj no
preformatting is necessary. In the following, m stands for
the maximum message size.

IILOGDISK
II
II

DD UNIT=direct-access-device,
SPACE=(m,(primary ,secondary) ,RLSE),
DCB= (DSORG=DA ,BLKSIZE=m)

11. If IXFSNAPL has been included (see step 4, above), insert the
following DD statement:

IIFRLOG DD SYSOUT=A,
II DCB=(DSORG=PS,BLKSIZE=120,RECFM=FA)

Error messages issued by IXFRVRSE will also be printed on
FRLOG, so you will be able to associate errors with the log
entries that caused them (see Figure 13).

4.5 JOB C--RECREATING FILES OFF-LINE

1. Define a FAR for each file you want to recreate, containing
the ddname and one parameter, RECREATE.

2. The linkedit step of a recreation run is as follows:

IILINK
IISYSUT1
IISYSPRINT
IISYSLIB
IISYSLM:>D
II
IISYSIN

EXEC
DD
DD
DD
DD

DD
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
NAME

PGM=IEWL,PARM='LIST,LET,XREF,NCAL'
UNIT=sysda,SPACE=(CYL,(2,1»
SYSOUT=A
DSN=module-librarY,DISP=SHR
DSN=&&TEMP,DISP=(NEW,PASS),UNIT=sysda,
SPACE=(CYL,(1,1,1»
*
SYSLIB(IXFCREAT)
SYSLIB(IXFHNDOO)
SYSLIB(IXFFAR)
SYSLIB(IXFHND01)
SYSLIB(IXFSNAPL)
SYSLIB(BATCHPAK)
FCREATE

54

optional

Chapter 4 Installing File Recovery

3. Assuming the linked it step illustrated in step 2 above, the
execution step will start with these two statements:

IIGO
IISTEPLIB

EXEC
DD

PGM=FCREATE(,PARM=' •••• ')
DSN=&&TEMP,DISP=(OLD,DELETE)

See the description of IXFCREAT in this section for an
explanation of the PARM field on the EXEC statement.

4. Include a DD statement for each file to be recreated; use the
same DCB/AMP parameters as coded for Intercomm execution.

5. Define the FAR data set:

llICOMIN DD
ddname1,RECREATE

ddnamen,RECREATE
1*

*

6. Include a DD statement for FRLOG if IXFSNAPL was linkedi ted
in the load module. (See step 11 under Job B.)

7. Include a DD statement with ddname AFTERIM for the log file
containing the after-images. This file will normally consist
of one or more log tapes or disk data sets produced by
Intercomm runs (note that RECFM must be VB):

IIAFTERIM
II
II
II

Note 1:

DD DSN=anyname,DISP=OLD,UNIT=unit,
LABEL=(2,BLP),VOLUME=SER=vvvvvv,
DCB=(DSORG=PS,BLKSIZE=bbbb, Note 1
LRECL=blksize-4,RECFM=VB)

See Job A, step 17-item d, for BLKSIZE value.

If the file takes up more than one reel,
of volume serial numbers or, if on
statements. Concatenation of intermixed
not supported. Concatention must be
sequence.

you can specify a list
disk, concatenate DD

tape and disk files is
in ascending date/time

55

Chapter 5

BACKOUT-ON-THE-FLY

5.1 - INTRODUCTION

Backout-on-the-Fly is a dynamic facility whereby chosen files
will be restored to the condition they were in prior to the failure of
a message-processing thread. Only those records altered by the failing
thread are restored. Any updates concurrently accomplished by other
threads, to other records, remain untouched. Failure of a thread
includes time-outs, program checks, and a specific request for
Backout-on-the-Fly by a subsystem return code with value 912.

The failure of a thread which has updated a file leaves the
integrity of the file in doubt. The value of the integrity of the file
may be such that the user does not wish to continue processing until it
is restored. To prevent future processing of the file in question, the
user may stop the failing subsystem from new work via the CANC=STOP
SYCTTBL macro specification. The user may, in this case, provide his
own USRCANC program to respond to messages destined for the failing
subsystem. However, other subsystems might still try to access that
file. Therefore, a special procedure to close and lock the file to
prevent all future accesses, should be initiated, utilizing a facility
such as the FILE command of the General Purpose Subsystem (GPSS).
However, such drastic measures may significantly degrade the goals of
running the on-line system. One is then left with the final option of
closing the on-line system and performing file reversal or recovery and
restarting the system.

Implementation of Backout-on-the-Fly greatly reduces the
probability of necessitating a hard restart or recovery of the on-line
system. The facility should be used to forestall the necessity of
performing file recovery or reversal on those files whose integrity is
vital. Backout-on-the-Fly performs its operation concurrently with all
other Intercomm processing: even other threads accessing the file in
question continue to process. The CANC=STOP parameter may be omitted
from SYCTTBLs requesting Backout-on-the-Fly. Also, Intercomn may be
brought up using the STARTUP parameter.

Before- and after-images of updated records, after-images of
added records, and before-images of deleted records are maintained on
an Intercomn DDQ during thread processing. The only limit to the
number of updates that may be done by a thread, or concurrently within
the system, or to the number of files each thread may access, is the
amount of space available on the DDQ file used by Backout-on-the-Fly.

Any user
specified as
spec ifi ca tion.
thread failure
feature via the

file may utilize Backout-on-the-Fly provided it is
REVERSIBLE via a File Attribute Record (FAR)

Files so specified will be dynamically backed-out upon
for all subsystems specifying the Backout-on-the-Fly

SYCTTBL parameter BACKOUT=YES.

57

Chapter 5 Backout-On-The-Fly

In the event of a thread failure, the console operator is
notified that a reversal has begun. Each entry on Backout-on-the-Fly's
DDQ is read in reverse chronologi cal order. For updated records, the
record in the on-line file is read and compared character for character
with -the image of the update done by the thread. If they match, the
before-image is g,"pplied. For added records, a similar comparison is
performed and, if identical, the record is deleted. For deleted
records the file is read to insure a new record with the same key (RBN)
had not been added. ,. If no such record exists, the record is added back
into the file. The entire process will continue until the associated
Backout-on-the-Fly DDQ becomes exhausted, at which time the operator
will be so informed. If the process was successful, the file is as it
was before thread processing began.

Backout failure can be caused by one of the following:"

• A record mismatch while comparing the after-image to the
current file. This indicates that another thread has updated
the same record in the interval following its update by the
failing thread and the BOF attempted recovery.

• A record deleted by the failing thread is found in the
on-line file.

• A record added is not found or is found to be altered.

• Running out of space in the thread-associated DDQ.

• A low core condition preventing Backout-on-the-Fly from
acquiring work areas.

• An 1/0 error on the DDQ or user file.

Failure for any reason will be broadcast to the operator who will
then be asked for information on how to proceed. As this is a
potentially critical condition, with file integrity lost, the entire
network will wait for this operator-prompted direction.

Backout-on-the-Fly maintains the before- and after-images on a
blocked, single-retrieval transient DDQ. If thread completion is
unsuccessful, the queue is transferred to an unblocked semipermanent
queue which is then read backwards. Blocking not only reduces 1/0
overhead, but if file access is small andlor DDQ block size is large, a
block may be kept in core and never written to auxiliary storage. For
example, if a thread updates a record of 100 bytes and the blocksize of
the DDQ is 300 bytes, both the before- and after-images can remain in
the 300-byte buffer. Assuming the thread completes successfully, the
buffer will be freed and no 1/0 access will have occurred.

58

J

Chapter 5 SPR 237 4/89 Backout-On-The-F1y

5.2 IMPLEMENTATION PROCEDURES

The following preparatory steps are required to implement
Backout- on-the-F1y:

• Set up a DDQ environment

• SYCTTBL specifications

• FAR specifications

• Linkedit

• JCL

5.2.1 The DDQ Environment

Set up the DDQ environment as described in the Dynamic Data
Queuing Faci1itv. A separate DDQ data set for Backout-on-the-F1y is
not required, except if using the Mu1tiregion Facility, the file must
be unique to the region (cannot be shared across regions). If not
specified, the DDQ default data set will be used. If so, insure that
PERMS=YES is coded on its DDQDS macro. To define a backout DDQ, code a
DDQDS macro with the following parameters:

DDNAME=THREDLOG,
BLOCKNG=YES,
PERMS=YES,
SHARED=NO,
RESTART=NO, (if DDQ dedicated to Backout-on-the-F1y or will have

only transient queues created by other users.)
BLOCKS=n

The default number of blocks is 8. However, the acquired core
size is, of course, a function of the physical block size. The user is
urged to consider the size of the files monitored by Backout-on-the-F1y
and written to the DDQ and to consider varying either BLOCKS and/or the
physical block size to reduce overhead of either acquiring extents or
I/O accesses.

If the default data set is used as the backout DDQ, the DDQDS
macro defining it should be coded with the same considerations for the
BLOCKS parameter.

NOTE: under Release 10, the THREDLOG (or default) DDQ data set
used for Backout-on-the-F1y may be shared across regions.

59

Chapter 5 Backout-On-The-Fly

5.2.2 SYCTTBL Requirements

Code BACKOUT=YES for each subsystem subject to Backout-on-the-Fly.

_ BACKOUT=YES is the default on the SYCTTBL macro. Therefore. if
the backout modules are included in the linkedit. all subsystems will
be utilizing this feature against those files specified as reversible.
For those subsystems for which Backout-on-the-Fly processing is not
desired. recode the SYCTTBL with BACKOUT=NO. Also code RVFILE=NO (the
default) on all SYCTTBLs. except those for which file or data base
recovery is desired instead of Backout-on-the-Fly (code BACKOUT=NO).

5.2.3 FAR Specifications

Code REVERSE=YES or CRITICAL for each file subject to
Backout-on-the-Fly. Note that the FAR parameters RECREATE and
CHECKPOINT apply only to the File Recovery facility and are not used
for Backout-on-the-Fly user files.

5.2.4 Linkedit Requirements

Include DDQMOD. DDQSTART. RMPURGE. IXFFAR. IXFRVRSE. IXFLOG.
INTCRQ. INTPRQ. IXFVERF1. TRVRSE.

The Backout-on-the-Fly modules are:

• INTCRQ

Record before- and after-images to blocked single retrieval
transient DDQ. Called by IXFLOG.

• INTPRQ

Initiates recovery attempt.
DDQs. Called by RMPURGE.

• TRVRSE

Closes and releases backout

Creates unblocked semipermanent queue and then reads it
backwards inspecting for before/after-images and calling
IXFRVRSE or IXFVERFl respectively. Called by INTPRQ.

• IXFVERFl

Reads relevant record from user file and checks to see if it
is the same as the recovery after-image. Called by TRVRSE.

60

Chapter 5 Backout-On-The-Fly

5.2.5 Execution JCL

JCL requirements for the THREDLOG DDQ data set are as follows:

IITHREDLOG DD DSN=name,DISP=OLD,DCB=(DSORG=DA,OPTCD=RF)

A QCF file is also required since semipermanent queues are
created for unsuccessful thread completion (see the Dynamic Data
Queuing Facility).

61

J

SPR 237 4/89

c-. INDEX

Access method control block (ACB) 28
AFTERIM data set 47, 51, 55
ALIAS parameter
Aliased files
AMIGOS access method
Ancestral messages
Asynchronous logging
Automated Restart

Back End
BACKOUT parameter (SYCTTBL)
Backout-on-the-F1y 3,

--and Dynamic Data
Queuing

--execution JCL
--FAR specification
--implementation procedures
--linkedit requirements
--SYCTTBL requirements

BDAM
--adds

; --and CHECKPOINT parameter
~--exc1usive control

--and FAR data set
--and file activity log

27,

19,
2, 4,

27
37
11

9
32
41

3, 9
57, 60

15, 57-61

59-61
61
60
59
60
60

21
34
27
36
12

--and File Handler parameter
list

--and File Recovery
--and File Recovery header
--and OPEN parameter
--and REVERSE parameter
--and reversing an add
--updates

BISAM
--adds
--and COREINDEX parameter
--exclusive control
--and File Recovery
--and OPEN parameter
--updates

Block size for log entries
BSAM

--and File Recovery
--and INTERLOG
--and IXFSNAPL parameter
--and OPEN parameter

22
11
43
28
30
44

19, 20, 21

21
27
29
11
28

19, 29
51

BTERM macro
BTERM/LU parameters
n'lffers

~7(X37) abend recovery 3, 27,

11
5, 51

45
27

6, 10
6

49-51
37, 51

63

CANC parameter (SYCTTBL)
Change/Display Utility
CHECK parameter

--defined
--example of
--and File Attribute Block
--and file reversal

CHECKPOINT parameter
--and Backout-on-the-F1y
--defined
--example of
--and File Attribute Block

30,

57
10

30, 35
36
37

20-21

60

--and File Recovery installation

33-34·
36
37
42
20 --and timing considerations

Checkpoints
--and coordinated message

recovery
--defined
--and IXFCHKPT
--and normal recovery
--and reversible files
--and timing considerations

CHCKPTSS module
--and file checkpointing
--function
--and 1inkedit
--and quiescing subsystems
--residency
--and SYCTTBL definition

CHECKPTO Csect
CHECKPT3 module
CHEKPTFL data set
CKPTLIM parameter (SPALIST)
C10sedown

--and Automated Restart
CNVREST parameter (SYCTTBL)
Control Region
Conversational messages
CONVERSE module
COREINDEX parameter
CREATEGF utility
Critical files

Data base recovery
Data Set Control Table

--and FAR parameter
--and File Attribute Block

14
11-12

43
13
44

17, 20

43
42
50
48
42
48

42, 50, 52
42, 50
52, 53

48

41
10

6
10
10
27
52
33

11

30
. 37

--and File Attribute Records 25
43
17

--and File Handler
--and file recovery

SPR 237 4/89

--and Intercomm log
--and LOGPOT buffers

DBCHKDSP module

44
49

42, 50
DDQ. See Dynamic Data queuing.
DDQDS macro 59
DELETE parameter

--described
--example of
--and File Attribute Block

30, 34
36
37

20-21
30
13

--and file reversal
--and REVERSE parameter

Destruction of files
DSCT. See Data Set Control Table.
DSN parameter 27

27
27

DUPLEX parameter
Duplexed files
Dynamic Data queuing

Entry-sequenced data sets
ERASE operation

--and DELETE parameter
--and file reversal
--and REVERSE parameter

ERRLOCK parameter

10, 15, 57-61

22, 32

31
20-21

30, 32
27

ESDS files. See entry-sequenced
data sets.

Exclusive control 29, 44

FAB. See File Attribute Block.
FAR. See File Attribute Records.
FECMDDQ 10
FESEND module 9
FHCW. See File Handler Control Word.
FIFO queues 4
File activity log

--and after-image file entries 23
23
12

--and before-image file entries
--defined
--and file recovery
--and file reversal
--formatting and printing
--and LOGPUT buffers
--and timing

considerations
File Attribute Block

--checkpoint lists
--defined
--description of fields
--Dsects
--examples
--and IXFFAR
--long

22-24, 43
30
45

49-50

17, 19-20

43
17, 25

38
17,31,37

34-35
42

30, 37, 39

--short
--table 31,

File Attribute Records ..
--comment statements
--concepts of use
--control statements
--errors
- -and file recreation
--and file reversal
--JCL

--for file recovery
--for file reversal
--for recreating files

off-line
- -parameters·

--File Recovery
--CHECK
--CHECKPOINT
--DELETE
--RECREATE
--REVERSE

--summary of generalized
--ALIAS
--B37
--COREINDEX
--DSN
--DUPLEX
--ERRLOCK
--ICOMBDAMXCTRL
--LOCK
--LSR
--NCPWAIT
--OPEN
--READONLY
--UPDATEONLY
--VSAMCRS
--WRITEOVER
--XCTL

--sample FAR data set
--syntax rules
--and timing considerations

File Handler
--and altering reversible files
--and asynchronous logging
--and delete flags
--EOV exit
--and file activity log
--and File Attribute Records
--and file reversal
--and IXFSNAPL routine
--and macro identification

code

64

Page ..)

30, 37
37, 39

26
17
25
47
22

20-21

30, 53
53

54-55

30-36
30, 35
30, 33
30, 34
30, 33

30-33
27-29

27
27
27 J 27
27
27
27
28
28
28

28, 29
29
29
29

28, 29
29
36
26
19

48
32-33

34, 35
53
12
25
20

. 45

43-44 J

SPR 237 4/89

--service routines
--and timi~g considerations

File Handler Control Word
--and delete flags
--and error messages
--and file checkpointing
--and File Handler service

routines
File Recovery

--concepts
--and coordinated message

recovery
--and file recreation
--and file reversal
--installation
--JCL
--log entries
--log entry header
--modules
--and restart logic
- -and timing

considerations
File recovery log. See file

activity log.
.'File recreation
~ --from backup copy

--and IXFCREAT
--off-line
--and RECREAT parameter
--and timing considerations

File reversal
--defined
--JCL
--and quiescing update

subsystems
--and restart
--and REVERSE parameter
--and timing considerations

Flip/Flop facility

40
17, 19

35
45
43

41

11

14
22
20

41-55
47-52

22
43
42

9

17, 19-20

25
44-45

54
22
17

20-21
52-54

48
52-54
30-33

17
3

See also B37 abend
FRDSECTS

recovery.

FRLOG data set
Front End

GENSW parameter (SPALIST)
GPSS control commands

Hardware failures

17, 30, 37
45, 54-55

3, 9

48
15, 57

--and incomplete file reversal 19
5 --and operator interaction

65

--and restart/recovery 1
--and specific file recovery 13

lAM access method
ICOMFEOF module

11
3, 52

ICOMIN data set
ICOMLINK macro
IDMS (data base)

17, 25, 47, 52, 55
50
15
60 INTCRQ module

ICOMBDAMXCTRL parameter
IMCD closedown command
INTDBLOK module
INTERLOG data set

--block size

27
44
52

--and CHECKPOINT parameter
5-6

33-3/+
50-51, 53

3, 5
--DD statement
--defined
--and file activity

logging
--and IXFLOG
--logging to tape
--and message accounting
--and message restart
--and NCPWAIT parameter
--and REVERSE parameter
--and timing

considerations
INTPRQ module
INTSCT

12, 17, 19-20
43

51, 53, 55
6
4

28
31-33

See also Subsystem Control
INTSPA

17, 19-20
60

47, 48
Table.

49
See also SPALIST.

ISAM
--and CHECKPOINT parameter 34

35
29
12

--and delete flags
--exclusive control
--and file activity log
--and File Handler
--and file recovery log entries

43
22

--and file reversal
--and REVERSE parameter
--sample FAR

IXFB37 module
IXFCHKPT module
IXFCREAT module

- -and ESDS files
--and IXFSNAPL
--and off-line file

recreation
--and PARM field
--summary

20-21
30
36
50

42-43, 50

32
45

22, 44
44-45; 55
42, 44-45

SPR 237 4/89

IXFFAR module
--console messages
--defined
-:and FAR errors
--and File Handler

initialization
--Hnkedit
--summary

IXFLOG module

25, 36
25-26

47

42
50, 60

42

--and before-image log entries 23
22
43

--and File Handler
--and isolating checkpoints
--linkedit 42, 50, 60

43 --and LOGPUT
--summary 42, 43

IXFMONOO (entry in IXFHNDOO)
IXFRVRSE module

42,50,60

--and before-image log entries 44
35
54
43
45

--and delete flags
--and error messages
--and IXFCHKPT
--and IXFSNAPL
--linkedit
--and REVERSE parameter
--summary

IXFSNAPL module
--and errors

52, 60
52
44 42,

--and file recovery log entries
45
45

--JCL
--linkedit
--and resource management output

54-55
52
36
45 --summary 42,

IXFVERF1 module

JCL

LCOMP macro
LGBLK parameter (SPALIST)
LGNUM parameter (SPALIST)
Linkedit
Local shared resources
LOCK parameter
Log, system. See system
Log codes
LOG parameter
LOGDISK data set
LOGPROC module
LOG PUT module

60

50-55

6
5-6, 49

49
50, 52-53, 54

28
28

log.
9-10, 43

5-6
54

42, 44, 52, 54

--and asynchronous logging 32
49-50
50-51

--buffers
--DCB

66

--described
--and file recovery log entries

6
43
32
32
42
32
20
28

--and file reversal
--and REVERSE parameter
--summary
--and synchronous logging
--and timing considerations

LSR parameter
LSYNCH parameter
LUNIT macro

Message accounting
Message header
Message logs
Message restart

--and file recovery
--logic

Message status
MRS. See Mu1tiregion.
MSGAC module
MSGCOL module
MSGHBKID
MSGHBLK
MSGHBHN
MSGHCON
MSGHDAT
MSGHDD
MSGHLEN
MSGHLOG
MSGHMMN
MSGHPID
MSGHQPR
MSGHRSC
MSGHRSCH
MSGHSSC .
MSGHSSCH
MSGHTID
MSGHTIM
MSGHTXTL
MSGHUSR
MSGHVHI
Mu1tiregion

NCP
NCPVAIT parameter
NOMESSAGES parameter
Normal recovery

OPEN parameter

6, 49
6, 10

4, 6
18

5
3-10

14
9-10

4

6, 8, 42, 50
9

18
18
18
18
18
18
18

18, 22
18
18
18
18
18
18
18
18
18
18
18
18

6,.10,59

28, 50-51
28, 51

25, 26, 30-31,36
13

28, 29
OUTPUT. See Output Utility.
Output Utility 9-10, 12

J

SPR 237 4/89

PMISTOP DD statement

QCF file for DDQ
QISAM

26

61

--exclusive control 29
--and file recovery 11
--and file reversal 21
--and OPEN parameter 28
--and overhead 19

QSAM
--and file recovery 11
--and file recovery log entries 45
- - and INTERLOG 5
--and OPEN parameter 28

Queues 4, 6

RBA (VSAM)
RBN (BDAM)
Read-only files
READ BACK module
READ ONLY parameter
RECREATE parameter

--and Backout-on-the-Fly
--defined
--and File Attribute Block

~. --and file recreation
~ --and file reversal

--illustrated

22, 32
34, 36

17, 25, 29
52

29, 36

60

--and recreating files off-line

30, 33
37
22
49
36
54

REGION macro 6
Relative record data sets

--and File Handler parameters 22
20
32
36

--and file reversal
--and REVERSE parameter
--sample FAR for

REQONDDQ module
RESTART parameter

53
4,6,10,41,53

--and SCT entries
RESTRTLG data set
RESTORE3 module
Return code
REVERSE parameter

--and Backout-on-the-Fly
--defined
--and File Attribute Block
--and file recovery
--and file reversal
--illustrated
--summary
--and synchronous logging

51,
42,

21, 27,

5
53
53
57

60
30-33

37
47
52
36
30
49

67

--and timing considerations
Reversible files
RHPURGE module

19-20
43, 47

60
RRDS. See Relative
RRN (VSAM)

Record data sets.

RVFILE parameter (SYCTTBL)
22, 34

47-48, 60

SCT. See Subsystem Control Table.
Segmented messages 10

10
2

4, 14, 53.
45
45

SEGREST parameter (SYCTTBL)
Selective restart
Serial restart facility
SNAP parm
Snaps
SPALIST macro

--assembly
--and log buffer size
--and checkpoint areas

49

--and local shared resources

5-6
48
27
32
50
45

STAEEXIT module
STARTUP parameter
Statistics, end of job

19,
41,

Status codes. See return codes.
SUBSYS macro 6, 10
Subsystem Control Table

--and file reversal
--and message recovery
--and update subsystems

SYCTTBL macro
--and Backout-on-the-Fly
--and CHCKPTSS module

47, 52
5

12

57, 59, 60

--and conversational messages
48
10
48 --example

--and file reversal
--and message restart
--and segmented messages
--and synchronous logging

Synchronous logging
System log

--buffer size
--and checkpoints 3,
--and destruction of files
--and fast restart
--and message accounting
--and message restart
--and normal recovery
--and synchronous logging
- -and timing

considerations
--and tuning

6, 33,

47
10
10

6
49

5-6
11-12, 43

13
1
6
4

13
6

17, 19-20
. 49

SPR 237 4/89

See also file activity log and
INTERLOG.

System Tuning Statistics 49
System 2000 (Data Base) 15

TCHP parameter (SPALIST)
THREDLOG data set
Timing considerations
TRVRSE module

UPDATEONLY parameter
USRCANC (user exit)
USRSCTS (COPY member)
USRSEREX (user exit)

VSAM
--and CHECK option
--and CHECKPOINT parameter
--and delete flags
--and DELETE option
--and 'data-set-name-sharing'
--and entry-sequenced

data sets
--and FAB fields
--and file activity log
--and File Handler
--and File Handler parameters

48
59, 61
17-20

60

29, 36
57
48
53

21
34
35

21, 31
27

29,

--and file recovery 11,

32
30
12
43
22
22
32
34
28
13.
28

--and file reversal 14, 20, 21,
--and key-sequenced data sets
--and local shared resources
--and normal recovery
--and OPEN parameter
--and relative record

data sets 34, 36
--and REVERSE parameter 30, 31, 32
--and shared file processing 29
--and Shareoption 2 29
--and Shareoption 4 29
--updates 20
--and WRITE OVER parameter 29

VSAMCRS parameter 29

Warm restart
WRITE OVER parameter

XCTL parameter
x37. See B37 abend recovery.

1, 6
28, 29

29

68

