INTERCOMM

MESSAGE MAPPING UTILITIES

:.?:RGPC:J':;ATION

330 Seventh Avenue, New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR
Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Publication

First Edition

Second Edition

SPR 216

SPR 216 2/83

Message Mapping Utilities

Publishing History

Date

April 1976

August 1981

February 1983

Remarks

Documenting the feature. This
manual corresponds to Intercomm
Release 7.0.

Completely revised, wupdated and
reorganized. This manual

corresponds to Intercomm Release
8.0

Updates and revisions corresponding
to Intercomm Release 9.0

and confidential.

The material in this document is proprietary
Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

ii

SPR 216 2/83

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system

executing on the IBM System 360/370 family of computers and
operating under the control of IBM Operating Systems (MFT, MVT, VS1,
MVS). Intercomm monitors the transmission of messages to and from
terminals, concurrent message processing, centralized access to I/0
files, and the routine utility operations of editing input messages and
formatting output messages, as required.

The Intercomm Message Mapping Utilities (MMU) provide the
application programmer with the capability for device-independent
message processing by centralizing the deletion/insertion of

terminal-dependent control characters for both input message editing
and output message formatting.

MMU device-dependent transformation logic 1is generalized to
support the major terminal devices accessible via the Intercomm

teleprocessing monitor (BTAM/TCAM/VTAM). MMU also performs mapping of
data string records with a string length prefix.

MMU is fully supported when operating with the Intercomm
Multiregion Support Facility (MRS). Independence and decentralized
maintenance of Satellite Region operation in the MRS environment is
preserved with the use of the Message Mapping Utilities. MMU modules
are eligible for the Intercomm Link Pack Facility.

Message Mapping Utilities are recommended over the Intercomm
on-line Edit and Output Utilities. MMU provides additional
capabilities designed to take advantage of CRT device characteristics,
and combination mappings of a device page, as well as output message
disposition via automatic queuing, or interface to the Page or Dynamic
Data Queuing Facilities.

This manual describes Message Mapping Utilities concepts,
application programming techniques, and implementation procedures. The
reader is assumed to have a basic working knowledge of the Intercomm
system and its facilities, as well as the coding of Assembler Language
macros. External Intercomm facilities, tables and macros referenced in
this manual are fully explained in the applicable Intercomm
publications.

A Users Review Form is included at the back of this manual. We

welcome recommendations, suggestions and reactions to this or any
Intercomm publication.

iii

)
INTERCOMM PUBLICATIONS J

GENERAL INFORMATION MANUALS

Concepts and Facilities

Plannigg Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide

PL/1 Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros

BTAM Terminal Support Guide

Installation Guide

Messages and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

User Contributed Program Description

iv

FEATURE IMPLEMENTATION MANUALS

Amigos Users Guide

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

)

Generalized Front End Facility

Message Mapping Utilities

Model System Generator

Multiregion Support Facility

Page Facility

Remote Job Entry (0S)

Store/Fetch Facility

SNA Terminal Support Guide

TCAM Support Users Guide

Utilities Users Guide

TABLE OF CONTENTS

i

B

pter 1 INTRODUCTION tceeeeeccsoscccssocssassossscsssccsnsssss
OVervieWw .eceeeesesececsscocssssesososscssccncs
Batch Versus On-Line Processing ..c.ceceeeececee
Mapping FacilitieS .seceeeccccsscccscscscssnnssne
Device DeScriptions .eeeeececcecscccscososccssnss
The MMU Environment ...ccceecececccssccocccsscse

MMU Mapping Definitions ..ceeeececesccccnes

MMU Service Routines .eeeeececcccsccsccssss

Device Descriptions .eeeeeececsccscccscccsns
MMU Installation .eeeececeescscsccscccsscscsnnae

N O @
e o
w N

ST UTUTVIEWN =
VN ELEEWND -2

MAP DEFINITION PROCESS .veeeeccccccssssncssssss T
Terminology and ConceptsS cveeeesesessesscssssss T
9
9

B
el
(xd
(]
e}
n
-3
2]

UiV EEdFwWpPpPOPPPOPODOND =

Fomats 0000000000000 PLOROOOLOIEOIOEOONOLOEOEOEOEOEONONOEOLEOLEO

Fomat Notation @0 0000000000000 000000000000

1
2 KeywordFomat ® 0 0 0000000 000000 000000000000 10
3 Pmitimal Fomat @ © 0. 0.0 000000000 060000000000 11
y Combined Keyword and Positional Fomats ... 12
5
6

Fixed Format ...cceeeeecccccsccsccscssnssnns 12
Relative Position Format ...eeeeceecsccccne 13
Map Specifications and Macro Coding ..eeeeeeees 14
o1 Map Definition MacrosS ..eeeeeececccscccsnas 14
Maps and Map GroupS ceceecesccsscssscsssssscsss 16
1 Input Map GroupS .eeeeecescccccccccococccns 16
2 Output Map Groups ..eeeeeecceccccccccccccne 16
3 Input/Output Map Group .eeeeeeeecssccsncces 16
Segments and FieldS ceeeeecscccscsccsosscsosses 17
Labeled and Unlabeled FieldS .cceevescsccsee 17
Prefix Area ..cceececcesccccsscssossssssonnns 18
Segment TYPES ceveevesoscsscssssasesasssssne 20
Structured Segments ...cceveccccsccsces 20
Unstructured Segments ..ceceeesccescsne 22
Nonnull Segments ..cevecececcscecscnscs 23
Repetitive Fields and Segmentsceeeeeee 25
Field Types and Conversion ...ecceeeeeescces 26
Defining the Verb as a Field ..ccveeeennnes 27
Defining the Field as a Logical
Control Charactercceeeeeecsscccccses 27
YES/NO FieldS .eeesececccocososssccccnnonss 28
COND=ENTERED FieldS .eeeceeeoccccsscsccsses 28
Other Special Field Characteristics ..eeee. 28
Additional EXampleS ..ceeesoecsescsccsscssssasas 29
Combined Keyword and Positional Input Map . 29
Output Map ..ceeeecescecsncccccssscccccssns 30
Output Map for Multi-Page Reportcceee.e 31
I1/0 Template SCreen ..ceeeecesccscccasccsss 32
Sample Symbolic MApS .seceeeccecccscscccccssanss 32

e o o o o o e o o o o

e o e o . ®
WWWMN -

.

.
wnN —

L]
— O ~NoWnEWw

o

MNP PDPPDPDPPPDODPDNDDDPDPPDPPDDDNDDODD DO

PMPPPNPPD DD
L]
~NooooouTuorn
L]

e o
e o o
Fwmn -

4

pter 3 APPLICATION SUBSYSTEM DESIGN ..eeeecceccccsosccssoces
MMU Service Routines and Parametersccce.e
Service Routines ...ccceeeeccsccsccccccccss
Parameterscceecceecccccosccsccsccscscnas
Device Descriptions ..ceeeecececcesnssscconnsnne
COPY Membersceceeeosessssssssscccessasonsse
Language-Dependent Considerationsccceeeeee
COBOL Subsystems ...ccoeeeesscscsccnsccssss
PL/1 SubsSystemsSceeecsecccsoscosccsascos
Assembler Language Subsystems ,....ce000000
Mapping Character Strings .cececeeceocecccccccns
Input Mapping .ccecececccsecccsscccsssscscscccnsce
Input Mapping in Stages ..cecececccccssoces
Field Error Processing ...cceeeececccoccacs
Freeing the Mapped Input Areaceceeeves
Performance Considerationsccceceeececs
Output Mapping .ecceceecceccocsccooccsocnsonsne
Overriding Attribute Valuesccecevevees
Page Overflow Processing ...ceeeeecececeess
Canceling a Logical MeSSage ..cceecevcccene
Mapping Hard Copy OQutput ..ceceeccccccecane
Transmission Preparation and
Message D1Sposition ..eeeeeceencencencnns
Performance Considerationsccceeceecees
Input/Output Mapping .eccceeeececccceccsccacence
Initial (Template) Data Output Mapping
Variable Data OQutput Mapping ...cccceeeeces
Application Program Structurecceeeeeeeacs

.
.
N —

e o o o .
e © o
wnN

e o o
e o o
Fwmn -

L]
CWOMPMOBOIIIINONTVTUIUINIETWND DD —

e o o
e o o o
[} N EWN -

wwwwuwwwwww&»wwwwwwuwwwo

. .
N —

L]
— WO O ®©

O e o

Chapter 4 INSTALLATION PROCEDURES .¢ccececscscccssooscccsssasse
Preparation ...eececececcccsscscccssccecccsssses
Map Generation ..cceceeecececsccescsccsssoscnsnne
Internal Map Generation ..cicevececccssnnne
Symbolic Map Generation ...ceeeeeeecscccess
Printing the Symbolic Map ..ceeececessccnce
Device Definition and Installation ...ceeveeeee
Supplied Device Descriptions ...cceeeceeees
Device Definition Macros ...ccececccceccens
Device Description and Installation

Internal Device Description
Generation ...cceeceecccccsccsnnccsss

Symbolic Device Description
Generation ...ceceeececcccccccsasnons
Printing the Symbolic Device Descriptions .
Subsystem Campilation/ASSembly ...ceeeeecsonces
MMU Network Identification ...ceeeececesocsecee

Message Mapping Utility Vector

Table Generation ..cceeesveccceccsssosccsnsne

.
w N —

.
.
WwWw N -

L]
WWwWwWwwWwmP NN -

PP — i — i i — i S
.

3
—

=
.

o Sw w
L]
N

s s
. o o

L] L]

= w

vi

e o o
wnN —

e o
N —

a2 2 O O O~ I

NN — O

R R I S
. L] . .

4,13
Appendix A

A

A.2

A.3
A.4

Appendix B

[NN ST QU SN (o]

endix C

MMU

MMU

SPR 216 2/83

MMU Store/Fetch Data SetS tviveeeeeiceccccccccnnns
Store/Fetch Map Data Set s.eveeeeeecececocenes
Store/Fetch Temporary Storage Data Set
Store/Fetch Optimization and Tuningooe.e

Loading the On-Line Map Definitions (LOADMAP) ...
Initial Loading of Map Definitions ..eeeeeese
Subsequent Loading of Map Definitions

Linkedit Requirements ..e.eeeeeeeececocesconccnes

Execution JCL .eveiieeernoroesoseccccooncecasnonns

Test Mode SNapsS seveeeeeeeececccocccsssnnnnnnses

Restart When Using the Dynamic Data Queing

Facility seviieeeerioeeeeeeccnoooorecccconnannnne

MMU Control Command ProcessSing ...eeeeeeceecceccoacs

MACROS teeeeeeveeeessocssssesesssesccasssssscnnns
Macro Coding Conventions ..eeeeeeccessssccsssccee
Map Definitions c.ieeeeeeeesccccceseecesccscaanaas

ENDGROUP t.iveeeooosocsscocnossasssssscensnsans

FIELD LR B R BRI R B R I B B Y B BN B B R R S R RN N R BN BN N N A)

MAP © 0 0000000000000 0000000000OOOCLOOLOEONEOIOOEOCONEOLTDYSE

MAPGROUP +.veveececoeoccccsosocasossscssssnne
SEGMENT sieeveecsocessscsoossssoscsssssncssssase
Device Descriptor Table .eeecesccccesscsscncscons
ATTRIB tieeeesvecoososcasocsossasosscssssosncscs
CNTLCHR suveveesoocsocsascssssascsaossssssnssas
COMMAND tevvessvesecsosossossossscssoscssosssons
DEFAULTS tiveveoeocscesoesosossascssoscssocssnons
DEFINE t.cieececcsosesscssnsossssssosssnoscsnnass
MMU Vector Table ceeecscsaesssossoscsssssosscsansas
1 L
Override Table .eeeeeeeescesscsscssoscsssnsssnssee

SERVICE ROUTINES tieeveevcecccssccovoososcsscnonns
MAPCLR ¢eccevescenncccnocssooasconsssosnsscocscons
MAPEND .cceveccccccocossssossasssssssoocsococnons
MAPFREE ¢t veevieoccecoocsososccsossssnssssnnscnnas
MAPIN t.cceeecccococcscooccesosssoscssoosssnnsans
MAPOUT ¢eeveeeenonesoosscsoassoasscosnsssasssnnsas
MAPURGE +ccceeeccoooceccscssccosossascccoononsons

TERMINAL-DEPENDENT CONSIDERATIONS ..ieeeececccccccccns

IBM 3270 CRT ConsiderationsS .eeecececcecoceccscscse
Field Definitions ceceeeccececoscscscssesenns
Attribute Location .cececeecosccccsccccace

ATD ProceSSing eeecescecscsccscscscccscsccs
Positioning the Cursor .ceeeececececcsess

Output Mapping the Verb Field ..cceeeesee

vii

Page

77
78
79
79
80
80
81
81
83
8u

8y
84

85
86
88
88
89
98
102
105
107
107
110
111
112
114
116
116
118

119
120
122
126
128
133
136

137
138
138
138
138
138
139

SPR 216 2/83

Selectable FieldS ceeveeeccceccsccccose
Color ProcessSing ceieeeccccecscsccsssss
ATDDATA ProceSSing .eceeecescssccccsesccace
Device Specifications .seeeeeeeseseecscceees
Orders .s..ceeseeesccssccscsscsccscansans
Using Remote and Local Devices
Concurrently cecececeecccccccesconsns
Use of the EOF K€Y teveeeeeccccccccanns
Use of HDR3270 Parameter in BTVERB
Macro and RELPOS=AID or CURSCR in
FIELD MacCro seeeeeecececcoscccccconcns
3.5 Numeric Input and Keyboard LocK .eeeee.
3.6 WCC (CNTLCHR) Specifications ..eeeeeess
3.7 Alternate Buffer Processing cceeeeeceee
IBM 3270 Printer Support Considerations ..ec...
Mapping Considerations .cececececcccceccece
Control Character Specifications .eeeeeeeee
Map Definition for 3270 Printersceeees
Teletype Model U40/1 and 2 (Dataspeed 40)
Considerations ccececececcsccesscsscscsossnns
Defining a Field for the Verb ..cceeeeecsss
Using the Data-Only Option for MAPOUT
Defining Maps for the IBM 3270 and
Dataspeed 40 TerminalsS ceceeeececcoccccccenns
C.5 Teletype and Other Devices .v.ieeessceccssscccns

N N N
.

.
o Ul

eNoNoNeo NP N
e e

.

N —

.
—_
.

aa
.
=w

.
w w WWWMN =
.

.
FwLww WMNHMPDHDNDONN 2
.

.
wn -

ecNeoEsReNo NP Ne]

aQaaa
* .
N —

Appendix D MMU PROCEDURES AND UTILITIES seeceescccccccccccansns
COPRE ® 0 0 0 0 0000000 060000 00000000000 0000000000000

DEFSYM 000000000000 0000 0000000000000 00OOOLNNOGLIOINEIES
LOADMAP @00 000000000000 0000000000000 000
SYMGEN 0000000000000 000000000000 00000000000000

Index © 0 0 0 0 0000000000000 00

viii

Page

140
140
140
140
140

141
141

141
141
141
142
143
143
144
144

146
149
149

150

150.1

159
160
161
162
164

165

J

10
11
12
13
1

15
16
17
18

19

21

LIST OF ILLUSTRATIONS

Template Screen Format ...ceececececcscscsscsscanes
Use of Map Definition Macro ..eeeeeececsccsoccnens
Complete Map Definition for Figure 1 ..vveeeeeeens
Parameters for MMU Service Routinesceeveeeees
MMU Service Routinesceeceeecccccccccccccnnsces
Input Mapping LOZIC ceeevececcccrcssscssescsoscsnns
Out put Mapping LOZIC .ieeveeercecsccscccscccsonsnns
Page Overflow Output Mapping LOogic ceeeeececcsnnes
Input/Out put Processing LOgIiC ..ieveevevccscnscnne
OOBOL Subsystem Structure ...cceceeceeccccccccccces
PL/1 (Using Optimizer) Subsystem Structure
Assembler Subsystem Structurecceeeecccssceces
The MMU Installation Process ..eeeeeeesccccccesces

Sample Map Generation and COBOL
Cmpile andLink ® 0 0 00000000 0000000000 00000000000

FORMAT Parameter Type VaAlueS .eeesecsscssosssscsssne
MAPCLR Options Specified by MCW .ccceeeecsccsncnsne
MAPCLR Calling FOrmatsS ..eeeececessecssccsscssonss
MAPCLR Parameters .ccceececcesecccsscosccscscssonnces
MAPCLR Return Codes ..ccceecececccccccccccssscccscans
MAPEND Options Specified by MCW ..cceeceevcoccnnns

MAPEND Calling Fomats @000 0000000000000 0000000 00

ix

Page
13

15
33
39
42
16
49
52
56
59
61
63
66

74

92
120
120
121
121
122

123

Figure
22
23
24
25

26

28
29
30
31
32
33
34
35
36
37
38
39
40
41

MAPEND Parameters ...ceeeesccecccccccscsscoscnsnss
MAPEND Return CodeS .eeeeeeccccccosssscoossssccons
MAPFREE Options Specified by MCW ..cceeeveccccnne
MAPFREE Calling FOrmatsS .ceeececcsccccocccssocoes
MAPFREE Parameters ...cccccecccccccccsccccccccscsns
MAPFREE Returns CodeS .ecececssssssssssssssssssns
MAPIN Options Specified by MCW ..cececvceccccsose
MAPIN Calling FOrmatsS cceeeecececscccsscccoccccoss
MAPIN Parameters ..ccceceecccccccccocsccccccsccccns
MAPIN Return Codes ..ccceeecceccccccosssscnonsssnns
Field Data After Input Mapping ...ccceveeeececcnes
MAPOUT Options Specified by MCW .eveeeesncccccnss
MAPOUT Calling FormatsS .eeeeecccccvccscecssocsase
MAPOUT Parameters ..ccececeeeeessccesssccsccssscnns
MAPOUT Return CodeS ..cceeeecccccccvocscoossccccs
MIPIRGE Calling FormatS .eceeececesccccscsssccccns
MAPIRGE Parametersccccceeccccoccccccccconns
Intercomm Attribute Codes for IBM Terminals

Intercomm Control Characters (WCC) Codes
for. BM 32708 ® 0 0. 0. 0.0 0. 0000000000000 0000000000000 00

123
125
126
126
127
127
128
129
129
130
131
133
134
134
135
136
136
151

156

157

o

Chapter 1

INTRODUCTION

1.1 OVERVIEW

The Intercomm Message Mapping Utilities (MMU) are a set of
on-line utility programs whose main function is to free the application
programmer from device-dependent considerations during message
processing. MMU provides a convenient way, on input, to edit a message
for resultant processing that 1is independent of any device control
characters and, on output, to format a message for terminal
transmission that contains the necessary device control characters.

MMJ acts as an interface between application programming logic
and terminal-dependent processing logic._ In an on-line environment, an
interface is required to process the different types of input and
output message formats and to communicate with the different device
types in an installation's network. Without such an interface, each
application program would have to contain editing and formatting logic
unrelated to the objective of the message processing program and would
have to duplicate such logic in each application program.

1.2 BATCH VERSUS ON-LINE PROCESSING

In order to evaluate MMU, the difference between batch and
on-line processing should be understood. The evolution from batch to
on-line processing required changes to application program coding
techniques. One main difference between batch and on-line processing
is the form of the data the application programmer has to process. In
batch processing, the data records, or files, are read sequentially.
The only fields processed are data fields. The application program
edits the data fields, then processes the data, updates the files and
possibly issues a report.

With on-line processing, an operater enters data in the form of a
message from a terminal. As with batch processing, the data record, or
input message, contains data fields for records to be processed.
However, the message also contains terminal control characters that
specify field delimiters and line ending characters that are physical
characteristics specific to that terminal. The application program
must contain logic to interpret and separate these control characters
from the data fields, as well as the logic to process the resultant
data characters. Usually, a response to the input message is required
by the terminal operator. In building the response or output message,
the application program must now contain additional logic to insert the
appropriate outgoing control characters and field attribute definitions
for the device in use.

Chapter 1

Introduction

1.3 MAPPING FACILITIES

The underlying concept of MMU is to provide the facilities for
application program independence from terminal considerations in an
on-line environment by structuring the message formatting processes
into distinct areas of responsibility. Specifically, MMU provides:

Simplification

The repetitive functions of input and output message
formatting, such as device control character processing, data
editing and conversion, and screen formatting, are
centralized into functions controlled by MMU service
routines, rather than functions created by and residing
within each application program. The service routines are
called from the application program in a similiar manner to
other Intercomm programming services such as the file handler.

Message Formatting and Program Maintenance Facilities

Message format specifications, called maps, are defined using
MMU macros and then stored in an on-line file, rather than in
the body of any application program. This technique reduces
the storage requirements of application programs, and makes
it possible for different programs to share the same message
format specifications, thus simplifying program maintenance.

Application Program/Terminal Interface

Terminal control characters that specify the physical
characteristics of device types in use at an installation are
defined via MMU macros and stored in an on-line
device-descriptor table. When needed, this technique permits
reference to each device control character by the same
logical symbolic name for all device types, thus freeing the
application programmer from detailed consideration of the
physical codes for particular devices. This technique also
simplifies device control specification in higher-level
languages. For example, if there are IBM 3270 Video Display
Terminals and Teletype Dataspeed 40 Models 1 or 2 CRT
terminals in wuse at an 1installation, the application
programmer need only reference the symbolic name for a field
attribute, and is not concerned about the actual physical
code specific to each device type. MMU device-dependent
subroutines relate the symbolic logical names to the actual
physical codes. As with message format specifications, this
technique saves application program storage space and
simplifies program maintenance and coding.

9

Chapter 1 Introduction

1.4 DEVICE DESCRIPTIONS

A Device Description Table relates the physical characteristiecs
of specific terminals to the logical symbolic names for the
characteristics to be utilized by application subsystems. The Device
Descriptions are created for each device by coding table entries which
specify, as required:

® Field Delimiters

These are characters within the text of an input message to
be used as default values for field separator, keyword-start
and keyword-end characters.

(J Commands

These are characters prefixing the text of an output message
which control the type of write operation, such as
ERASE/WRITE, WRITE, etc.

[) Controllers

These are characters preceeding or within the text of an
output message which control physical operation of the
terminal, such as new line (carriage return) characters, tab
characters, form feed characters, or the IBM 3270 Write
Control Character (WCC), which specifies reset keyboard,
reset MDT, etc.

® Field Attributes

These are characters within the text of an output message
which specify data field characteristies, such as the IBM

3270 attributes for protected fields, numeric fields,
intensity, etec.

Field delimiters are defined on a system-wide basis at MMU
installation time, but these may be overridden for each specific device
in the Device Descriptor Table and further specified at the input
message level in each map definition. Output message command, control
and attribute character defaults (as applicable) are specified for each
device in the Device Descriptor Table, but may be overridden in the map
definition or specified for a particular message (field) at the time of
a call to a MMU service routine.

For each output message physical code group (commands,
controllers, attributes), a maximum of 254 logical names may be defined
for referencing the corresponding physical codes for all devices in the
MMU Device Descriptor Table. The logical names and physical codes are
specified by macros which equate the same symbolic name with each
corresponding device-code across all devices, as applicable.

Chapter 1 Introduction

The command, attribute and control characters are referenced by
the application program when creating output messages by using the
symbolic or logical name associated with the desired code. Thus, for
example, the programmer need not be concerned with the actual
hexadecimal value to cause a field to be protected for an IBM 3270.
The attribute is referenced by its logical name. The name represents a
unique logical code which is moved into the control area of the
associated field within the unmapped output message text string. That
logical code is subsequently converted to the terminal-dependent
physical code(s) by MMU during output message formatting.

1.5 THE MMU ENVIRONMENT

In summary, the MMU environment consists of three major
elements: mapping definitions, service routines and device
descriptions.

1.5.1 MMU Mapping Definitions

The maps describe the input and output message text and screen or
report page formats via user-coded macros which define individual data
and control fields, their characteristics, and their placement within
the text stream or page. A symbolic version of the map must be
generated and copied into the user application program for reference to
the individual data fields and to provide attribute and control
character overrides, as applicable. Intercomm provides an on-line
extended capability, the Autogen Facility, whereby the macros may be
automatically generated from user-defined screens created during an
interactive session at a video-display terminal. Map definitions are
discussed in detail in Chapter 2, with detail macro specifications
provided in Appendix A.

1.5.2 MMU Service Routines

Service routines are called from user application programs
(subsystems) to request mapping services on input and output message
streams or text strings, and to request transmission/disposition of the
generated output. Four disposition options are available:

® Transmit (queue) the message immediately (when only one
out put message is generated).

@® Pass the messages to the Page Facility (for subsequent
browsing of multiple formatted CRT screens).

)

<

Chapter 1 Introduction

o Collect the messages onto a transient data file called a DDQ
and transmit consecutively (for multi-page reports to a hard
"copy device or printer).

® Return the fully formatted message or prepared text string to
the application program for further manipulation or internal
disposition.

The service routines, parameters and options are discussed in
detail in Chapter 3. Appendix B provides a listing of each routine,
language-dependent calling formats, parameters, options and return
codes.,

1.5.3 Device Descriptions

A Device Description Table (released as the member LOGCHARS) and
symbolic copy code for application program reference (released as
members ASMLOGCH, COBLOGCH and PLILOGCH) are provided for the major
devices supported by MMU. The application programmer need only
understand screen formatting and the usage and significance of the
attributes, control characters, etc., as applicable for the devices in
use at the user installation. The device descriptions are discussed in
Chapter 4, with detailed macro descriptions in Appendix A and
device-dependent considerations described in Appendix C, along with the
released table listings and charts of IBM 3270 attribute and control
characters and their symbolic names.

1.6 MMU Installation

Except for periodic tuning of the Store/Fetch elements of MMU,
installation of MMU is necessary only at initial installation of
Intercomm or when a new release in installed. Installation elements
consist of defining the system-wide MMU Vector Table via a macro (see
Appendix A), preformatting several data sets, and linkedit of the MMU
tables and service routines. Maps are off-line loaded individually or
in groups to an on-line map definition file on an as-needed basis.
Terminals are identified and given MMJ device type definitions and
parameter specifications in the Intercomm Back End message-oriented
Station and Device Tables. Inclusion of the MMU service routines,
subroutines, and tables in the Link Pack Area via the Intercomm Link
Pack Facility, can be autamatically generated via parameter request.
Coamplete details for installation are provided in Chapter U4, along with
MMU-specific procedural JCL for generating symbolic code, and for
loading maps, in Appendix D.

Chapter 2

THE MAP DEFINITION PROCESS

2.1 TERMINOLOGY AND CONCEPTS

Map definition is the logical process whereby the input and/or
output message characteristics (text type, size, control codes, etc.)
are defined for processing by the MMU service routines, The
terminology used to describe elements of the map definition process is
presented below. Some of the terms are common to data processing and
others are specific to MMJ.

For data processing, the term data field (or Jjust field) applies
to a single unit of information (text) entered or displayed upon a
terminal device. A field also defines all the specific characteristiecs
of one item of data. One or more fields may be displayed upon a line
of a terminal, and a series of lines becomes a screen or page of an
input message or output message. These same definitions can be used
for both hard copy and display terminals.,

For MMJ, a field may define one or more control characters
(attributes), or an output message initial data value (heading or
label), or variable (text) data processed by an application program. A
combination of these values may be described for a single field. 1In
addition, position, length, type and editing (conversion)
characteristics are defined for each field. All variable fields to be
processed by an application program must be named (labeled). Those
fields containing only control characters, and/or initial (heading)
values to be inserted in an output message stream, are not named.
Repetitive fields (a field with the same characteristics exists more
than once on a line with no intervening dissimilar fields) can be
defined as an occurring field.

A group of data fields with similiar characteristics may be
defined within a segment. If a group of data fields repeat in format,
they may be defined as an occurring segment or line of data. Fields
occur horizontally (across a single 1line), while segments occur
vertically and define repetitive lines which may also include occurring
fields. A segment may also define data field subdivisions of a general
field such as a date field containing month, day and year fields. Such
a segment is called a structured segment. (If all the data fields of a
map are a unique series of fields, they need be specified only as
individual fields, the segment is implied.) A maximum of 255 named
fields per segment may be defined.

A map is a message format specification. It contains a group of
fields within one or more segments (implied or specified). A map is
used to define the general characteristics of the field group, the
placement within the screen or page, and may specify editing and
transmission requirements. The result of applying a map to a series of

Chapter 2 The Map Definition Process

data fields is called a mapping. A mapping operates on an input
message, an output message or a character string. A mapping that
operates on an input or output message is used to transform the message
from or to its device-dependent status. When a mapping operates on a
character string, only the editing and field conversion capabilities of
the map specification are used. Character strings to be mapped must be
in standard variable length record format (halfword RDW prefix).

One or more maps may be necessary to format an input or output
message. A series or these related maps is a map group. A map group
defines all parts (maps) of a screen image or printed page. Alternate
maps to define a particular part may be specified within the same map
group. When a map group is defined, the map group mode is also
specified as input, output or input/output. An input or output map
group consists of one or more maps that define all input or output data
fields for one or more input or output messages. An input/output map
group defines all input and all output data fields for a screen format
or template, and is generally used for interactive, or conversational
processing. Maps within a map group may also have different usages,
such as page headers and trailers or error message lines, etc. A
maximum of 9999 fields may be defined within a map group.

Map groups, maps, segments and fields are defined via the MMU
macros MAPGROUP, MAP, SEGMENT, and FIELD, respectively. A complete map
group is delimited by the ENDGROUP macro.

When the map group definitions are complete (that is, when all
the macros are coded), they must then be assembled in two different
ways to generate two different forms of the maps, the internal form and
the symbolic map. The internal form contains internal mapping
specifications such as type, size, displacement, and pointers that are
used by the MMU service routines for editing and formatting. The
internal form resides on the Map Definition File, a partitioned data
set.

The symbolic map is a 1language-dependent map definition and
contains the label, type and length for all named (variable) fields.
It is copied into the user application program for referencing the
message fields processed by a mapping. These maps reside on a
user-specified source statement library.

When the symbolic map group is assembled, a prefix is generated
for each named (labeled) field and structured segment. This prefix
area is used in the mapping process to specify editing error conditions
and input field length, or to specify attribute override values for
output message formatting. The prefix area contains the length and
flag/attribute bytes.

)

2

Chapter 2 SPR 216 2/83 The Map Definition Process

2.2 FORMATS

The first level of map definition is the design of screens or
pages and specification of input and output characteristics.
Screen/page design includes determining which type of input and/or
output format to use for a particular message type. Considerations
involved in this process 1include operator convenience, terminal
characteristics and transmission requirements. MMU recognizes four

different types of input formats for received messages (strings).
These are:

¥ Keyword (field label or definition prefixes)
@ Positional (fields separated by delimiters)
® Fixed (length is constant (not variable), no separators)

® Relative Position (field position 1is relative to the
beginning map position)

Additionally, MMU allows the keyword and positional input formats to be
intermixed in one message segment. Only the relative position format
may be used for output messages and input/output map group modes.
Relative position is also used to describe formatted, or template,
screens.

2.2.1 Format Notation

In the following format descriptions, symbols used for input
message format notation are:

{ss} the Intercomm system separator character; delimits the
verb

{fs} the positional field separator character (may be the same
as the system separator): a delimiter for individual

data fields entered in positional format

{fb} the keyword field begin character: a delimiter
signalling the end of a field-identifying keyword

{fe} the keyword field end character: a delimiter signalling
the end of a keyword-identified data field

{el} the End of Line: new line (NL) or carriage return/line
feed (CR/LF) character(s) of the terminal

{em} the End of Message character sequence of the terminal
(EOT, EOB, or ETX)

Chapter 2 The Map Definition Process

The ss and el delimiters are system-wide values defined at
Intercomm installation via the SPALIST and DEVICE macros. The fs, fb
and fe delimiters are defined on a system-wide basis at MMU
installation time in the MMU Vector Table. They may also be defined in
the Device Description Table to specify values for a particular device
type. Delimiter override values may be applied to a particular input
message or portion of an input message if specified in a map (SEGMENT
macro) definition.

The End of Line characters are also interpreted as field
delimiters by MMJ (a field may not wraparound from one line to the
next). End of Message naturally signals end of input, and MMU
processing of the message completes. The End of Line character(s) for
each device are defined via the DEVICE macro in the backend Terminal
Device Table (PMIDEVTB), and may also be defined as the positional
field separator (one field per line) in the MMU Device Descriptor Table
or for a specific map (SEGMENT macro).

2.2.2 Keyword Format

Keyword format is usually entered from a hard copy device. When
data is to be entered in the keyword format:

® Each data field in the message is identified by a unique
one-to-eight character field identification (prefix) called
the keyword.

® The keyword is followed by the field begin (fb) character.

® The field begin character is immediately followed by the data
and a field end (fe) character. For example, CUST is the
keyword for custamer name in the following

CUST{fb}JOHN R. WILLIAMS, JR{fe}

® The keyword must be unique within any one transaction type
(map) but may be reused for other transaction types. Thus,
the keyword CUST above may be defined in all transactions
that require a customer name, but may not be defined twice in
the same transaction (map).

® Keyword fields can be defined as multiply occurring and in
this case may be sequentially reused in a given transaction
type. Each use of the keyword is followed by the appropriate
data. For example, it may be possible to have three debit
amounts for a given account:

DEBIT{fb}27.42{fe}

DEBIT{fb}7.93{fe}
DEBIT{fb}8.47{fe}

10

)

Chapter 2 SPR 216 2/83 The Map Definition Process

® A keyword field can be reentered if the first entry was in
error. However, fields defined as multiply occurring cannot
be corrected by reentry, as the second entry will be
considered the second occurrence.

A complete keyword format message might appear as follows:

TRNS{ss}CUST {fb} JOHN R. WILLIAMS, JR.{fe}

ADDR{fb}27 E. 43RD ST.{fe}

C/S{fb}WEST HEMPSTEAD NY{fe}
ACCT{fb}7432710{fe}DEBIT{fb}27 .42 {fe} CREDIT{fb}1.27 {em}

NOTE: in each of the above illustrations, the el delimiter may
be substituted for the last fe delimiter on a line.
Also, the fe delimiter for the last data field may be
omitted, since the em delimiter also signals field end
(message end).

2.2.3 Positional Format

Positional format is used for entering a string of data fields,

and may be used on a CRT or hard copy device. When using positional
format for entering data:

o The data fields are separated by a field separator character
(fs).

@ Fields must be entered in a specified order (position), that
is, the same order in which they are defined in the map.
Thus, the terminal operator must remember the order of
entry. However, this technique saves operator keystrokes as
a keyword identifier does not have to be entered.

® Fields can be omitted as 1long as the field separator
character (fs) delimiting the omitted field is entered to
indicate the absence of the field. That is, two consecutive

field separators indicate the absence of the intervening
field.

@ Fields can occur; however, omitted occurrences must be
indicated by a field separator as described above.

The following data string illustrates positional format:

TRNS{ss}JOHN R. WILLIAMS{fs}727 E.43RD ST.{fs}WEST HEMPSTEAD NY{el}
T432710{fs}27.42{fs}1.27 {em}

11

Chapter 2 SPR 216 2/83 The Map Definition Process

If street and city/state address information is not available, or
is already correct, it can be omitted:

TRNS{ss}JOHN R. WILLIAMS{fs}{fs}{el}
T432710{fs}27.42{fs}1.27{em}

In the above examples, the end-of-line character (el) may be used

at the end of a line instead of the field separator, and an em may be
substituted for the last fs.

2.2.4 Combined Keyword and Positional Formats

For some applications, a combination of keyword and positional
field formats may be desired in one message, as for example:

TRNS{ss} JOHN R. WILLIAMS{el}

727 E 43RD ST{fs}WEST HEMPSTEAD NY{el}
ACCT{fb}7432710{el}

CREDIT {fb}1.27 {fe} CREDIT {fb} 48.26 {fe} DEBIT {fb}9.95 {em}

This approach combines efficiency of positional format and
convenience of keyword format. However, a field must be defined as one
or the other, and always entered as defined.

Occurring segments (lines) of data may be defined in keyword,
positional, or combination maps. However, if followed by a
nonoccurring segment, the absence of all positional and occurring
positional fields (line segments) must be indicated by entry of field
separator (end-of-line) characters.

2.2.5 Fixed Format

Some applications may require processing of messages or character
strings in a format similar to batch mode fixed length records. In
this case, every input message contains fixed length data fields in a
fixed position within the message or string. All fields in the map are
named and described in ascending order. This situation might occur
with data collection devices or CPU-to-CPU transmission of data files.

Occurring fields and/or segments may be defined. Absence of data
for a field within the message text must be indicated by character
zeros or blanks in that field area. For a character string, the
halfword RDW prefix is required to define the string length, since the
absence of trailing fields cannot be indicated by an end of message
character, and because there is no message header.

12

<

C

Chapter 2 The Map Definition Process

2.2.6 Relative Position Format

The relative position format is usually defined for those video
display terminals (such as the IBM 3270) which have the template or
formatted screen capability. Template screens are typically used in
input/out put map group mode. Relative position formatting is also used
for output messages to hard copy devices (printers) and string devices
in output map group mode. For data entered in relative position format:

® The template contains keywords (labels) identifying the
fields to input, and blank (null) spaces in which to input
them.

® The operator fills in only the data fields. This data, and
control characters indicating Screen position and
terminal-dependent characteristics, are transmitted from the
terminal as the input message. The template itself is not
received.

® The positions of data fields are indicated in ascending row
and column notation, or ascending numeric position relative
to the start of a particular screen area (map).

In Figure 1, the periods indicate those screen positions where an
operator may enter data.

...+ ENTER TRANSACTION CODE
ENTER CUSTOMER DATA:

CUSTPER NAE: 0 0000000000000 00000000 00

ADDRESS: ee 0000000000000 00000

ACCI‘ NO: o0 00000 DA’IE: o000 00
CREDITSS o0 0000 e00 00000 0000000
DEBITS: e 0000 000000 eee0e0csoe

Figure 1. Template Screen Fomat

Entering data in a screen such as the above allows the operator
to take advantage of the terminal's cursor positioning facilities,
rather than having to enter field separator characters.

13

Chapter 2 The Map Definition Process

2.3 MAP SPECIFICATIONS AND MACRO CODING

The next level in the map definition process is the specification
of maps; that is, the process whereby screen/page designs and input
specifications are translated into maps. Map specification includes
the analysis of an input or output message into its map elements--that
is, mode, format, map group, maps, segments, fields--and the coding of
MMJ macros to produce the required message/string designs.

2.3.1 Map Definition Macros

Map definitions are generated by coding the MMU macros:
MAPGROUP, MAP, SEGMENT, FIELD and ENDGROUP. Detailed coding
specifications of these macros are presented in Appendix A. General
descriptions of these macros are given below.

® MAPGROUP

The MAPGROUP macro names the map group and the general group
characteristics, such as device type in use, map group mode,
and output message control specifications if desired.

o mp
The MAP macro names a map within a map group and defines
general map characteristics, such as map size, starting
position, margin alignment, and output |wusage; header
(top-of-page) only, trailer (bottom-of-page) only, or normal
(variable intermediate lines or a full screen/page of data).

® SEGMENT

The SEGMENT macro defines a group of data fields within a map
or a line of a map. There are three basic types of
segments: nonnull segments are used to define positional,
keyword, or fixed format input data only; structured segments
are used to structure contiguous data fields to facilitate
application program processing; and unstructured segments are
used to specify unique individual fields or
mul tiply-ocecurring 1lines of fields. Both structured and
unstructured segments may be defined within the same map and
used for input and/or output mapping, but may not be mixed
with nonnull segments on input maps.

® FIELD

The FIELD macro defines an individual data field within a
segment or a map. The application programmer must define all
fields that require mapping. Data fields entered but not
defined by a FIELD macro may produce undersirable results.

14

-

Chapter 2

The Map Definition Process

The FIELD macro is used to define field position, formatting
requirements (internal and external size and type),
mul tiply-occurring fields, attributes, constant (heading)
data, field Jjustification, and padding characters. Special
FIELD macro coding is used to define the verb (transaction
code), AID and cursor values for 3270 C(RTs, and output device
control characters,

ENDGROUP

The ENDGROUP macro signifies the end of the map group under

definition.

A partial map definition coding example is shown in Figure 2.
illustrates how the relative position format template screen shown in

Figure 1 can be translated into maps.

is defined as one map group which is used in I/0 mode.

It

In this case, the entire screen

CUSTMER
CUSTINF
VERB

NAME

ADDR

ACCT
DATE
MONTH
DAY
YEAR
CREDITS

DEBITS

MAPGROUP MODE=I/O,...

MAP SIZE=(15,80),4.. (rows,columns notation)
FIELD RELPOS=VERB

FIELD RELP0S=(1,7),INITIAL='ENTER TRANSACTION CODE',...
FIELD RELPO0S=(3,23), INITIAL='ENTER CUSTOMER DATA:',...
FIELD RELPOS=(5,7) ,INITIAL='CUSTMER NAME:',...

FIELD RELPOS=(5,21),...

FIELD RELPOS=(7,7),INITIAL='ADIRESS:',...

SEGMENT OCCURS=3 (occurring segment)
FIELD RELP0S=(7,21),...

SEGMENT (null segment delimits occurring segment)
FIELD RELP0S=(11,7),INITIAL='ACCT NO:',...

FIELD RELPOS=(11,21),...

FIELD RELP0OS=(11,31) ,INITIAL="'DATE:', ...

SEGMENT (structured segment)
FIELD RELP0S=(11,37),...

FIELD RELPOS=(11,39),...

FIELD RELPOS=(11,41),...

SEGMENT (delimit structured segment)
FIELD RELPOS=(13,7) ,INITIAL='CREDITS:',...

FIELD RELPOS=(13,21),0CCURS=3,... (occurring field)
FIELD RELP0S=(15,7),INITIAL='DEBITS:',...

FIELD RELPOS=(15,21),0CCURS=3, ... (occurring field)
ENDGROUP

END

Figure 2. Use of Map Definition Macros

15

Chapter 2 The Map Definition Process

2.4 MAPS AND MAP GROUPS

2.4.1 Input Map Groups

For input mapping, the map group definition may be applicable to
one or more related types of input messages. Input messages with
similar input field sequences need not be defined by individual map
groups. For example, perhaps two message types exist in a banking
environment: one for account transactions such as deposits and
withdrawals, one for display of current balance. Both message types
would require input of account number and unique transaction code, but
only the first would require entering dollar amounts. One map group
could define both message types. The map group would consist of two
maps: one for the common data fields, and the other for the additional
fields unique to the first message.

Using the same map group for more than one input message makes a
more efficient use of storage for map definitions. However, when
defining multiple maps for fixed or positional fields, the named field
definitions (except the verb) must be repeated in each map with new
names for correct field identification processing. This technique also
allows the application program to perform application-dependent logic,
such as account number verification, on a partially mapped message
prior to completing input mapping.

2.4.2 Output Map Groups

For output mapping, one output map group defines all output data
fields for one or more output messages. A map group might define all
the possible output pages of a report produced on-line; various maps
within the group could define title lines, intermediate body-of-report
lines, intermediate total lines, final total lines, etec.

An output message may be constructed by combining mappings,

therefore, application program logic can prepare header and trailer
data common to each page of a multi-page output message.

2.4.3 Input/Output Map Group

The map group coding in Figure 2 for the template screen shown in
Figure 1 is an example of an input/output map group. I/0 map groups
are a programming convenience and should be used to create and map
template screens for IBM 3270 CRTs and similar devices.

Input/output mode uses the same screen format for both input and
output. Rather than have two symbolic maps defined in the program
which look alike, the same area may be used for both input and output
messages. The only difference in the input symbolic map and the output

16

<

Chapter 2 The Map Definition Process

symbolic map is that the error flag byte which immediately precedes the
data on input, is used for an attribute byte override on output. Since
these different fields are in the same relative location in the
symbolic map, it is easy for the application program to use one map
definition to access the fields, extracting information for input, or
inserting information for output. In addition to decreasing the effort
of defining maps, I/0 mode also reduces the dynamic working storage
required for the application on-line, and for the maps on the Map
Definition File.

Not all transaction types or terminal types can accept I/0 map
groups, because this map group mode requires the same message format
for input and output. For example, an input message type may require
keyword or positional processing, while the output message requires
relative position processing, whether for an acknowledgement response
or a lengthy output report. Additionally, certain devices, such as
hard copy terminals, cannot generate relative position (formatted)
input. Thus, separate input and output map groups must be defined for
these terminals because of the different processing modes.

2.5 SEGMENTS AND FIELDS

The mapping requirements for groups of fields or individual
fields are specified at the segment and field level. If a data field
is to be mapped, it must be defined by a FIELD macro (named or
unnamed). Only named fields (variable data) are generated into
symbolic maps. Unnamed fields are not considered for input processing,
and are only used to define constant data (literals or control
characters) for output mapping.

Fields can be grouped into segments so that they can be operated
upon as one unit, or data fields can be defined as individual fields
and processed separately. The choice of grouping fields into segments
or defining unique fields depends on such considerations as terminal
type, map mode, line and field formats, type of data and the level of
error checking and attribute specification required.

2.5.1 Labeled and Unlabeled Fields

Under MMU, fields may be either labeled (named) or unlabeled
(unnamed).

Fields which are to be processed by an application program must
be 1labeled. Labeling a field allows it to be referenced by the
application program, A labeled field is. defined via a labeled FIELD
macro and specifies variable data that is to be operated upon in the
input and/or output mapping process. The field label (name) appears
only in the symbolic map.

17

Chapter 2 SPR 216 2/83 The Map Definition Process

Unlabeled (unnamed) fields are used to specify fixed output
message data that is not processed by an application program, such as
device control characters, headings, or template data area labels.
Unlabeled fields cannot be referenced and do not appear in the symbolic
map; they are defined in the internal map only. An unlabeled field is
relative positional only and requires initial value coding (INITIAL
parameter), and/or attribute definition (ATTRIB parameter). The
initial value will be processed by the MMU editing routines during
output mapping, and attributes will be inserted if defined (and
applicable).

In I/0 map group mode, an unlabeled field can be used to specify
an attribute to protect or unprotect a portion, or the remainder, of
the screen or to delimit an unprotected field. This is done by coding
an unlabeled FIELD macro without the INITIAL parameter, but with
FORMAT=(1) and with the appropriate ATTRIB value specified.

If a series of unlabeled initial value fields are coded without
intervening 1labeled fields, a protection attribute may be specified
only for the first unlabeled field, which -then applies to the series of
fields. This is done by coding an ATTRIB value to protect the first
unlabeled field and by coding ATTRIB=SUPR on the subsequent unlabeled
FIELD macros.

2.5.2 Prefix Area

When a FIELD or SEGMENT macro is labeled, the label becomes the
symbolic name for the defined field or structured segment. This name
is used to symbolically reference the data within the FIELD or
SEGMENT. A named field or structured segment has a prefix consisting
of length and flag/attribute bytes generated when the symbolic map
group is assembled. MMU editing processing of a field includes
justification, padding and conversion as defined in the FIELD macro
(JUSTIFY and FORMAT parameters). The desired field length is specified
on the FORMAT parameter in two forms: external (on the terminal) and
internal (for program processing).

® Length Bytes

This part of the prefix is an unaligned binary two-byte area
that for input mapping specifies the edited length (in binary)
of the segment or field. The length is defined differently
for character data and non-character data as follows:

-- If the type of data in the field or segment is character,
the length reflects the entered string length. This is
equal to or less than the maximum internal field length.
(The external and internal field lengths are usually

defined as equal for character data fields, and are the
desired field length.)

18

)

J

Chapter 2

SPR 216 2/83 The Map Definition Process

-- If the data is not character type, the length reflects
the internal 1length, that is, the 1length after any
specified data conversion, right-justification, and zero
padding has been performed by the input mapping routine.
Thus, a packed-decimal field with a specified internal
length of three bytes would contain a binary 3 in the
length bytes rather than a 5 to reflect five digits
entered at the terminal (external length).

Flag/Attribute Byte

The second part of the prefix i1s a one-byte area that has
different functions for input and output message mapping. On
input it is referred to as the flag area. It is used by the
input mapping routine to specify certain error conditions for
the input field or structured segment, such as invalid
content, value or length. The flag prefix area must be
examined after the input message has been mapped, to allow
application program logic to perform error processing.

On output, the same flag area 1s used as the attribute
override area, to specify a 1logical control code for an
attribute; for example, to highlight a field (overrides the
field atribute value predefined in the map).

For named fields and segments, a symbolic name 1is
automatically generated for each of the two areas of the
prefix. This allows the application program to access the
prefix areas. The area containing the length bytes is given
a name consisting of the name of the field or structured
segment followed by the letter L. The area containing the
flag/attribute byte is given a name consisting of the name of
the field or structured segment followed by the 1letter T.
Thus, for example, if an input message field is named
CUSTNUM, the following symbolic names are generated:

Symbolic Name Contents
CUSTNUMI..FFldLgth(lgdbar'Y)
CUSTNUMT Field Flag/Attribute
CUSTNUM Field Data Area

19

Chapter 2 The Map Definition Process

2.5.3 Segment Types

The three different types of segments are structured,
unstructured and nonnull. These three segment types are explained in
detail in the following subsections.

2.5.3.1 Structured Segments

Structured segments are generated by a labeled SEGMENT macro, the
structured (null) segment has a prefix area associated only with the
segment, but not with the individual fields within it. Structured
segments may be used for input or output maps in relative position
format only. A structured segment must be null (that is, it must be a
segnent in which the contiguous field locations within the segment are
explicitly defined via relative position coding on the FIELD macros);
no parameters are coded (except OCCURS, if desired).

The following is an example of the coding of a structured segment:

DATE SEGMENT

MONTH FIELD RELPOS=(2,5),¢004
DAY FIELD RELPOS=(2,7),404.
YEAR FIELD RELPOS=(2,9),¢0..

NOTE: For COBOL, the labels DATE and DAY are Reserved Words,
and are used in these pages only for illustration
purposes.

This coding generates the following symbolic names (and
corresponding data areas):

ettt ittt it r
Symbolic Name Contents]
EE S S S S oS S-S S oSS o oSS S S S S S S S S S TE S S o S S s S S S S S S S S o sz === ==z==2=2
DATEF Structured segment label
DATEL Segment length
DATET Segment Flag/Attribute
DATE Segment area label
MONTH Month field
DAY Day field
YEAR Year field

The data area DATE consists of the MONTH, DAY, and YEAR data
areas, or, in other words, these data areas redefine the DATE data area.

20

<

Chapter 2 SPR 216 2/83 The Map Definition Process

A structured segment causes the symbolic map prefix to be
generated for the segment name only. The named fields within this
segment do not have the length and flag/attribute bytes preceding each
field. Thus, error checking and attribute specification cannot be made
for 1individual fields within a structured segment. After input
editing, the length will be the combined maximum internal lengths of
the fields in the segment, and the flag will contain the last error
code found (if any). The entire segment may be referenced as a field
by the SEGMENT macro name, and each defined field within the segment
may- be referenced individually by FIELD macro name. This technique 1is
particularly useful for high level languages, such as COBOL or PL/1,
where fields belonging to the same segment can be structured with level
numbers. For example, the structured segment DATE, containing the
fields MONTH, DAY, and YEAR, would have a symbolic map definition in
COBOL as follows:

O4 DATEF.
05 DATEL PIC 9(4) COMP. -
05 DATET PIC X.
05 DATE.
06 MONTH PIC XX.
06 DAY PIC XX.
06 YEAR PIC XX.

To assign an attribute to a structured segment, the ATTRIB
parameter is coded with a logical value only on the first FIELD macro
of the segment, which must be a named field. (If subsequent FIELD
macros have the ATTRIB parameter coded, the values are ignored.)

A structured (labeled) SEGMENT macro must be followed by more
than one labeled (named) FIELD macro. A structured segment must be
delimited by a SEGMENT containing one or more named FIELD macros, or a
MAP or ENDGROUP macro. Structured segments may contain noncharacter
fields with internal editing conversion specified. The major
restriction for structured segments is that the number of characters
entered for each field must match the external length specified for the
field, as though the fields were fixed length in format. Because the
field data is contiguous with no intervening separator indications,
padding must be keyed for the input field as appropriate to the field
type. Ommission of a field on entry can only be indicated by keying
blank/zero padding for that field (requires field type CB for character
fields). Only the last field in the structure may be truncated on
entry (padding performed by MMU editing). For output mapping, each
field should contain valid (non-blank/non-null) data or null/blank fill
will be transmitted as appropriate to the device type; the only
exception is a field type of CB, where blank fill is valid data for an
alphanumeric (character) field.

21

Chapter 2 SPR 216 2/83 The Map Definition Process

On output maps, unnamed fields with INITIAL value characters
(such as inserting slashes (/) in the DATE field described above) may
be defined (ignored if the data-only option used for MAPOUT). Unnamed
fields are ignored on input (if an I/O map group); however, such
initial wvalue characters are treated as input data if received. A
delimiting attribute can only be defined after the delimiting SEGMENT
macro--not within the structure (ignored). See Figure 3.

2.5.3.2 Unstructured Segments

Unstructured segments are generated by an unlabeled SEGMENT macro
with no parameters coded (except possibly the OCCURS parameter). The
unstructured (null) segment has a prefix area associated with each
field within it, not with the segment as a whole. In an unstructured
segment, the location of each field is defined via the associated FIELD
macro. Unstructured segments may be used for input, output or I/0 maps
in relative position format.

The following is an example of the coding of an unstructured
segment:

SEGMENT
DATE FIELD RELPOS=(4,2),FORMAT=(6,,ZD),...
AMOUNT FIELD RELPOS=(%4,9),...

This coding generates the following symbolic names (and
corresponding data areas):

Symbolic Name Contents W
_____________________________ S ——

DATEL Date field length

DATET Date field flag/attribute

DATE Date field

AMOUNTL Amount field length

AMOUNTT Amount field flag/attribute

AMOUNT Amount field

The following is an example of a terminal format for which
unstructured segments are appropriate:

SHIP TO: ABC CO - RECEIVING
123 MAIN STREET
OUR TOWN, USA

BILL TO: ABC CO - ACCOUNTING
123 BROAD STREET
OUR TOWN, USA

22

<

C

Chapter 2 The Map Definition Process

The following shows how this format could be coded in an
unstructured segment.

[SEGMENT] ‘

FIELD RELP0S=(3,2),INITIAL='SHIP TO:',...
SNAME FIELD RELPOS=(3,15),...
SADDR FIELD RELPOS=(4,15),...
SCITY FIELD RELPOS=(5,15),...

FIELD RELP0S=(T7,2),INITIAL='BILL TO:',...
BNAME FIELD RELP0OS=(7,15),...
BADDR FIELD RELP0S=(8,15),...
BCITY FIELD RELPOS=(9,15),...

.
3

If the first segment of a map is unstructured and does not occur,
the SEGMENT macro is to be omitted; it will be generated automatically
for the internal map, and is unnecessary for the symbolic map.
Unstructured segments may be defined as occurring segments, that is,
the single line defined by the segment occurs multiple times down the
page (screen), as illustrated by the ADDRESS lines in Figures 1 and 2.
An occurring unstructured segment must be delimited by another SEGMENT

macro followed by at least one named FIELD, or by a MAP or ENDGROUP
macro.

2.5.3.3 Nonnull Segments

Nonnull segments are generated by an unlabeled SEGMENT macro with
the RELPOS and LENGTH (and possibly the DELIM and OCCURS) parameters
coded, the nonnull (unstructured) segment also has a prefix area
associated with each field within it, not with the segment as a whole.
In a nonnull segment, the location of each field is determined by
SEGMENT macro parameters as well as individual FIELD macro parameters.
The nonnull segment is used only for input maps which define data in
fixed, positional or keyword format.

The following is an example of the coding of a nonnull segment:
SEGMENT RELPOS=(1,1),LENGTH=60,DELIM=(C';")

NAME FIELD RELPOS=POS, ...
ADDRESS FIELD RELPOS=POS, ...

23

Chapter 2

This

coding

The Map Definition Process

generates the following symbolic names (and

corresponding data areas):

T P —
e Y R P

NAMEL . Name field length

NAMET Name field flag/attribute

NAME Name field

ADDRL Address field length

ADDRT Address field flag/attribute
ADDR Address field

Nonnull segments may be used only for input maps. Nonnull

segments must be unstructured.

The following is an additional example of an input terminal
format for which nonnull segments may be used:

SHIP=ABC 00.-RECEIVING;123 MAIN STREET;OUR TOWN, USA{el}
BILL=ABC CO.-ACCOUNTING;123 BROAD STREET ;OUR TOWN, USA{em}

SNAME
SADDR
SCITY

BNAME
BADDR
BCITY

SEGMENT
FIELD
FIELD
FIELD
SEGMENT
FIELD
FIELD
FIELD
SEGMENT

The following shows how this format is coded:

RELP0S=(1,1),LENGTH=80,DELIM=(C';',C'=",C';"'),...
RELPOS='SHIP',...

RELPOS=POS, ...

RELPOS=POS, ...
RELPOS=(2,1),LENGTH=80,DELIM=(C';',C'=",C';"'), ...
RELPOS='BILL',...

RELPOS=P(CS, ...

RELPOS=POS, ...

RELPOS=....

The constants SHIP and BILL are in this case keywords which
indicate the positions of the fields which follow them.

24

Chapter 2 SPR 216 2/83 The Map Definition Process

2.5.4 Repetitive Fields and Segments

Repetitive fields are fields which repeat horizontally, that is,
across a line in identical format. Repetitive segments are groups of
fields which repeat vertically, that is, from one line to the next.
Repetitive segments may have repetitive fields defined within the
segment .

The number of repetitions of a field or segment is specified by
the OCCURS parameter of the FIELD or SEGMENT macro. Coding the OCCURS
parameter on the SEGMENT or FIELD macro specifies that a line or field
may repeat as many times as the number coded. For relative positional
input mapping, only consecutively used occurrences are valid; the first
occurrence not used terminates the repetitive sequence. For example,
if data is entered for two fields/lines, but placed in the first and
third occurence position, the data in the third field/line is ignored.
However, if the MDT is set on in an attribute for a field on the second
line, even though no data is transmitted, the third 1line will be
accepted as valid.

The generated symbolic map defines 1labels for the first
occurrence of the segment or field. Space 1is defined for the
subsequent occurrences. For example, suppose an output display is
desired in the following format:

PRODUCT SALES SUMMARY - FIRST QUARTER

DIVISION: XXX

PRODUCT JAN FEB MAR TOTAL

XXXX XXX o XX XXX o XX XXX e XX XXXXX o« XX
XXXX XXX e XX XXX o XX XXX « XX XXXXX o XX
TOTALS XXXX o XX XXXX o XX XXXX o XX XXXXXX o XX

The displayed amounts representing the individual month totals may be
defined as a repeating field. The line containing the monthly totals
for each product may be defined as a repeating segment, as follows:

SEGMENT OCCURS=8

CODE FIELD " RELPOS=(7,1),...
MONTH FIELD RELPOS=(7,10),0CCURS=3, ...
MONTOT FIELD RELPOS=(T7,45),...
SEGMENT delimits repeating segment

25

Chapter 2 SPR 216 2/83 The Map Definition Process

When OCCURS is used with a SEGMENT in which field positions are
indicated in (row, column) form, the row number is automatically
incremented for each occurence of the segment. For the month total
occurring field positions to be correct, the external length of the
MONTH field must include padding on the left which will be inserted by
the MMU editing routine (code JUSTIFY=(RIGHT,BLANK) or
JUSTIFY=(RIGHT,ZERO) as appropriate for the field type). The latter is
the default for numeric fields; leading zero suppression is automatic,
blank fill provided if necessary for the receiving device.

2.5.5 Field Types and Conversion

The format of data fields may be specified as character or
numeric (packed-decimal, zoned-decimal or unaligned binary). Fields
appear differently in the internal and symbolic map forms. For use in
the internal map, a field has a maximum external length and specific
starting position at the terminal. For use in the symbolic map, a
field has a specific data format (packed-decimal, binary, etec.) and
internal length (after conversion and padding).

MMU performs all necessary conversions between internal and
external form of data type and length. Input map definitions specify
format conversion, justification, and padding for each data field. If
a field remains in character format, conversion simply involves padding
and justifying the field. If a field is a numeric type, the field is
also checked for valid numeric input and the subsystem is notified of
errors.

The following rules apply to numeric input fields:

o Negative amounts may be indicated by a minus sign preceding
or ending the field value, or CR or DB ending the field value
(external length must allow for this indicator). Or a zone
overpunch on the last digit of the field may be used (zone
must be a D); however, overpunching is allowed only if the
preceding MAP macro has the parameter ZONE=YES coded. A
negative field has a D zone value internally, as applicable.

Commas are not allowed.

[] Fields are always right-justified with leading zero padding
(character zero if zoned decimal, otherwise binary zeros).

® Plus and Dollar signs are ignored when preceding the field.
A trailing plus sign is an error. A positive field has an F
zone internally, as applicable.

® Decimal point processing may specify scaling of values

entered, effectively adding zero padding to the right of a
decimal point if entered. Scaling is specified in the FORMAT

26

Chapter 2 The Map Definition Process

parameter by a field type suffix code of S followed by the
maximum number of digits to the right of the decimal point.
Thus a field entered as 1.23 is the same as 123 (decimal
implied), but 123. is the same as 12300 or 123.00 when the
scaling factor is 2. (External length must allow for the
decimal point.)

The following rules apply to numeric output fields:

® Negative amounts are indicated by a minus sign as the last
character of the output field (the external length must allow
for this sign).

® Decimal points appear according to the scaling specification
for the field (external length must allow for the decimal
point).

® A floating dollar sign is prefixed, if specified for the
field (external length must allow for the dollar sign).

Right/left justification and zero/blank padding is performed.

Truncation (if necessary) is according to the Jjustification
specified.

The subsystem is not notified of any field conversion errors
encountered during output mapping.

2.5.6 Defining the Verb as a Field

The input or output message verb (transaction code) can be
defined as a special field. This allows the verb to be part of the
input mapping and to be accessed by the application subsystem via the
symbolic map. The verb must be the first field on the map, coded with
RELPOS=VERB (no preceding SEGMENT macro is coded). An INITIAL value
may be coded for output mapping. If the verb requires processing, it
must be a named field. If RELPOS=VERB is specified, the FORMAT
parameter defaults to (4,4,C), and the attribute is internally forced
to UAN (unprotected, alphameric, normal intensity). For verb
processing alternatives, see Appendix C.

2.5.7 Defining the Field as a Logical Control Character

Logical device control characters can be placed in maps for
inclusion in output mapping to applicable devices, such as the 3270
Printer, via the FIELD macro. The FRMAT parameter must specify a
field type of CNTL. The logical control characters are then coded as
INITIAL values, or may be supplied via the symbolic map if the field is
named. During the output mapping process, the corresponding physical

27

Chapter 2 The Map Definition Process

device control character(s) is inserted into the output message. If
the logical control character is undefined for a particular device, no
control character is inserted into the output message. For applicable
devices, output mapping automatically performs end-of-line character
insertion according to the value specified for the CHAR parameter of
the DEVICE macro for the terminal in the Intercomm back end Terminal
Device Table (PMIDEVTB). Additional or overriding end-of-line
characters, as well as TAB characters, may be specified via a CNTL
field. Next line positioning for omitted intermediate lines is also
automatically performed.

2.5.8 YES/NO Fields

A special field type of YN is available for YES/NO answers to
displayed or source document questions. The external length of the
field must be at least 3 (blank padding supplied autamatically on CRT
output). The external field must contain the answer (YES/NO) on input,
otherwise it is considered omitted. 1Internally the field is only one
position long and contains a C'0' for NO or a C'1' for YES. Coding of
either 0 or 1 for output will cause the corresponding answer (NO/YES)
to be displayed, otherwise the field contains blanks.

2.5.9 COND=ENTERED Fields

For devices such as the IBM 3270 (RT where a field can be defined
(via attribute coding) as light pen or cursor selectable, and the user
wishes to know only if the field was selected, a special FIELD
parameter COND=ENTERED is available. The internal length of this field
is 1 and is set to X'FF' (high values) if the field was selected on
input. On output, the attention designator value will be transmitted
if the field is not null (X'00' or low values). Where selectable
fields with data are desired, use the field type CB or C, as
applicable. See also Appendix C for further details.

2.5.10 Other Special Field Characteristics

For a 3270 (RT, the AID value (RELPOS=AID) and/or cursor position
(RELPOS=CURS(R) may be requested on input, and the cursor position may
be specified on output (see Appendix C for additional details).

28

Chapter 2 The Map Definition Process

2.6 ADDITIONAL EXAMPLES

2.6.1 Combined Keyword and Positional Input Map

The following is an example of how data might be entered at a
terminal for a purchasing application:

PROO {ss}PO{fb}174321{ fe}AGT {fb}ST71{el}
PRD{fb} 7TUsMR{fe} 10{fe} DOZ{el}
PRD{fb}863PL{fe}100{em}

The following is a map definition for input of the transaction:

GROUP1 MAPGROUP DEVI CE=ALL ,MODE= INPUT
MAP1 MAP START=(1,1),SIZE=(3, 80)
PRCOVRB FIELD RELPOS=VERB
SEGMENT RELPOS=(1,6) ,LENGTH=Tl
PONUM FIELD RELPOS='PO' ,FCRMAT=(15,8,PD)
AGENT FIELD RELPOS= 'AGT ' ,FORMAT=(3)
SEGMENT RELPOS=(2,1),LENGTH=80,0CCURS=2
PRODUCT FIELD RELPOS= 'PRD' , FORMAT=(5)
' FIELD RELPOS=POS,FRMAT=(5, 4,F)
UNITS FIELD RELP0S=P0S, FORMAT=(3)
ENDGROUP
END

The following is the symbolic map of the transaction (prefix
values, which precede each data field, are not shown):

D7 D9 C3 D6 00 00 00 00 01 74 32 1F E2 FT F1
(verdb) (purchase order no.) (agent code)
F7 F4 F5 D4 D9 00 00 00 0OA C4 D6 E9
(product) (quantity) (units)
F8 F6 F3 D7 D3 00 00 00 64 00 00 00
(product) (quantity) (units)

29

Chapter 2

2.6.2 Output Map

Assume the following format is to be wused for output to a

The Map Definition Process

terminal:
SALES REPORT
DIVISION xxxxxxxxxx DATE xxxxxxxx
SALESMAN'S TOTAL DOLLAR PCT COF
NAME SALES QUOTA

XXXXXXXXXX XXXXXXXXX .XX XX . XXX

: {maximum of 8 lines} s
XXXXXXXXXX XXXXXXXXX .XX XX . XXX
TOTALS XXXXXXXXXXX . XX XX« XXX

The following is a map definition for the output shown:

SLSRPT MAPGROUP
LINE1 MAP
FIELD
FIELD
DIVNO FIELD
FIELD
DATE FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
SEGMENT
NAME FIELD
DOLLARS FIELD
PERCENT FIELD
SEGMENT
FIELD
TOTAL1 FIELD
TOTAL2 FIELD
ENDGROUP
END

DEVICE=ALL ,MODE=OUTP UT
SIZE=(24,80),START=(1,1)
RELPOS=(1,14),INITIAL="SALES REPORT'
RELP0S=(3,1),INITIAL="DIVISION'
RELPOS=(3,10),FCRMAT=(10)
RELP0OS=(3,22),INITIAL="'DATE'
RELPOS=(3,27),FRMAT=(8)
RELPOS=(5,1),INITIAL="'SALESMAN'S"
RELPOS=(5,16),INITIAL= 'TOTAL DOLLAR'
RELPOS=(5,32),INITIAL="'PCT OF'
RELPOS=(6,3), INITIAL="NAME'
RELP0S=(6,19),INITIAL='SALES'
RELPOS=(6,32),INITIAL="'QUOTA®
OCCURS=8

RELPOS=(8,1),FORMAT=(10)
RELP0OS=(8,16) ,FORMAT=(12,7,PDS2)
RELPOS=(8,32),FRMAT=(6,4,PDS3)

RELPOS=(17,1),INITIAL='"TOTALS '
RELPOS=(1T7,14),FORMAT=(14,8,PDS2)
RELPOS=(17,32) ,FORMAT=(6,4,PDS3)

Only the labeled fields are defined in the symbolic map.
symbolic map contains space for eight sets of name, dollar amount, and
percent fields. Only the first of these are referenced by the labels
All numeric fields are defined as packed
. Thus, the application program does not need to
perform editing before moving the data into the symbolic map, except

NAME, DOLLARS and PERCENT.

decimal with scaling

possibly for the date field.

30

J

5

Chapter 2 SPR 216 2/83 The Map Definition Process

2.6.3 Output Map for Multi-Page Report

The following is a sample page from multipage output to a printer.

EMPLOYEE HOURLY WAGE REPORT
DATE: xx/xx/xXx PAGE: xx
EMPLOYEE NAME HOURLY WAGE
XXXXXXXXXXXXXXXXXXX $xXXK « XX
XXXXXXXXXXXXXXXXXXX $xxx . xx
XXXXXXXXXXXXXXXXKXXX $xXX XX
TOTAL EMPL: xxx AVG HOURLY RATE: $xxx.xx

The first three lines of constant data constitute the header and
appear on each page with the page number incremented. The body of the
report repeats on each page, with MORE TO COME as the last line if the
report continues. The total and average line appears only on the final
page, after the last detail line.

The following coding could be used to generate the above display
and illustrates map Jjustification and usage (header, normal, trailer)
parameters (see MAP macro in Appendix A):

WAGES MAPGROUP DEVICE=ALL,MODE=OUTPUT

TITLE MAP SIZE=(5, 80) START=(1,1),JUSTIFY=(,HEAD)
FIELD RELPOS=(1, 1) ATTRIB=SUPR,FORMAT= (1,,CNTL) INITIAL=FF
FIELD RELPOS=(1,7), INITIAL='EMPLOYEE HOURLY WAGE REPORT'
FIELD RELPOS:(3,1),INITIAL='DATE:'
DATE FIELD RELPOS=(3,8),FORMAT=(8)
FIELD RELPOS=(3,24),INITIAL="'PAGE:"'
PAGENO FIELD RELPOS=(3,31),FORMAT=(2)
FIELD RELPOS=(5,1),INITIAL="'EMPLOYEE NAME'
FIELD RELPOS=(5,24),INITIAL= 'HOURLY WAGE'
LINES MAP SIZE=(1,80),START=(NEXT, SAME) , USAGE=NORMAL
NAME FIELD RELPOS=(1,1),FORMAT=(19)
WAGE FIELD RELPOS=(1,24),FORMAT=(T7,3, $PDS2)
TRAILER MAP SIZE=(1,80),START=(24,1),JUSTIFY=(,TRAIL)
FIELD RELPOS=(1,1),INITIAL="'MORE TO COME'
TOTALS MAP SIZE=(1,80),START=(NEXT,SAME) ,USAGE=TRAILER
FIELD RELPOS=(1,1),INITIAL="'TOTAL EMPL:'
TOTEMP FIELD RELPOS=(1,13),FORMAT=(3,,H)
FIELD RELPOS=(1,18),INITIAL="'AVG HOURLY RATE:'
AVGRATE FIELD RELPOS=(1,35),FORMAT=(7,3,$PDS2)
ENDGROUP
END

31

Chapter 2 SPR 216 2/83 The Map Definition Process

2.6.4 I/0 Template Screen

In the following display at an IBM 3270 CRT {a} indicates
attribute byte position:

{a} {a}
NAME: {a}
{a}SALARY: {a}
{a}JOB TITLE:{a}
{a}PHONE NO:{a}

This display could be generated using the following map
definition (logical names for attributes are from the supplied member
LOGCHARS-~-see Appendix C: chart of attribute codes):

GROUP1 MAPGROUP DEVICE=IBM3270,MODE=1/0

MAP1A MAP SIZE=(5,80),START=(1,1)
VERB FIELD RELPOS=VERB

FIELD RELPOS=(1,7),ATTRIB=PSN, FORMAT=(1)

FIELD RELPOS=(2,7),ATTRIB=SUPR, INITIAL="'NAME:'
NAME FIELD RELPOS=(2, 13), ATTRIB=UAN, FORMAT=(22)

FIELD RELPOS=(3,7),ATTRIB=PSN, INITIAL="'SALARY:"'
SALARY FIELD RELP0S=(3,15),ATTRIB=UNN, FORMAT=(6,6,ZD)

FIELD RELPOS=(4,7),ATTRIB=PSN, INITIAL='JOB TITLE:'
TITLE FIELD RELPOS=(4,18),ATTRIB=UAN,FORMAT=(11)

FIELD RELPOS=(5,7),ATTRIB=PSN, INITIAL="'PHONE NO:'
PHONE FIELD RELPOS=(5,17),ATTRIB=UAN, FORMAT=(12)

ENDGROUP

END

The output mapping routine produces the template screen (initial
data) and variable data if supplied (symbolic map contains nonblank or
nonzero data areas). Only named data fields can be referenced by the
application program. Attributes for all fields are set as specified.
The verb is defined as a named data field so that it is an input data
field on subsequent messages, and accessible to the application program.
Closing attributes are not defined for the data fields to be entered,
but can be specified with an unnamed FIELD macro (see FIELD macro
following the VERB field).

2.7 SAMPLE SYMBOLIC MAPS

The following examples show the language-dependent symbolic maps
that are generated for Assembler, COBOL, and PL/1, using the map
definition in Figure 3. These maps are generated by the SYMGEN JCL
procedure.

32

)

Chapter 2

The Map Definition Process

CUSTMER
CUSTINF
VERB

NAME

ADDR

ACCT

DATE
MONTH

DAY
YEAR

CREDITS

DEBITS

MAPGROUP MODE=I/0,DEVICE=ALL

MAP STZE=(15,80),START=(1,1)

FIELD RELPOS=VERB

FIELD RELPOS=(1,7),INITIAL='ENTER TRANSACTION CODE',ATTRIB=PSN

FIELD RELPOS=(3,23),INITIAL='ENTER CUSTOMER DATA:',
ATTRIB=PSHSEL (HIGHL IGHT TITLE)

FIELD RELPOS=(5,7),INITIAL="'CUSTMER NAME:',6ATTRIB=PSN

FIELD RELPOS=(5,21) ,FORMAT=25,ATTRIB=UAN

FIELD RELPOS=(5,47),FORMAT=1,ATTRIB=PSN

FIELD RELPOS=(7,7),INITIAL='ADDRESS:',ATTRIB=SUPR

SEGMENT OCCURS=3

FIELD RELP0S=(7,21) ,FORMAT=(20,,CB) ,ATTRIB=UAN

FIELD RELPOS=(T7,42),FORMAT=1,ATTRIB=PSN

SEGMENT

FIELD RELPOS=(11,7),INITIAL="'ACCT NO:',ATTRIB=SUPR

FIELD RELPOS=(11,21),F(RMAT=(7,,F),ATTRIB=UNN

FIELD RELPOS=(11,29),INITIAL=' DATE:',6ATTRIB=PSN,
JUSTIF Y=(RIGHT,BLANK)

SEGMENT

FIELD RELPOS=(11,37),FORMAT=(2,,ZD),ATTRIB=UNN

FIELD RELPOS=(11,39),FRMAT=(2,,ZD)

FIELD RELPOS=(11,41) ,FORMAT=(2,,ZD)

SEGMENT

FIELD RELPOS=(11,44) ,FORMAT=1, ATTRIB=PSN

FIELD RELPOS=(13,7),INITIAL="'CREDITS:',ATTRIB=SUPR

FIELD RELPOS=(13,21),0CCURS=3,FORMAT=(8,5,PDS2) ,ATTRIB=UNN

FIELD RELPOS=(13,48) ,FORMAT=1,ATTRIB=PSN

FIELD RELPOS=(15,7),INITIAL="'DEBITS :',ATTRIB=PSN

FIELD RELP0OS=(15,21),0CCURS=3,FORMAT=(8,5,PDS2),ATTRIB=UNN

FIELD RELPOS=(15,48) ,FORMAT=1, ATTRIB=PSN

ENDGROUP

END

X

NOTE: DATE and DAY are COBOL Reserved Words

Figure 3. Complete Map Definition for Figure 1.

In Figure 3, note the addition of field formats and attributes,
unprotected field delimiters by protected attributes, the use of the
JUSTIFY parameter, the title highlight attribute, and the placement of
fields relative to the segment types illustrated.

33

Chapter 2

The Map Definition Process

The following symbolic map is generated for Assembler Language:

CUSTMER
CUSTINF
VERBL
VERBT
VERB
NAMEL
NAMET
NAME
USEG1
ADDRL
ADIRT
ADIR

USEG2
ACCTL
ACCTT
ACCT
DATEF
DATEL
DATET
DATE
MONTH
DAY

YEAR
USEG3
CREDITSL
CREDITST
CREDITS

DEBITSL
DEBITST
DEBITS
CUST INFL

CUSTMERL

888888%8888588888855
3

)
=

gggaaaaaaaagaaa

#
XL2

CLY
X2

CL25
]
XL2

CL20
2XL23

#

L2

X

XLy

0XL3

X2

X

#

ZL2

ZL2

ZL2

*

XL2

X

PLS

2XL (3+5)
XL2

X

PL5

2XL (3+5)
_CUSTINF

®# _CUSTMER

START OF MAP

FIELD LENGTH
FIELD TAG

FIELD LENGTH
FIELD TAG

SEGMENT DELIMITER
FIELD LENGTH
FIELD TAG

FOR PREVIOUS SEGMENT OCCURS
SEGMENT DELIMITER

FIELD LENGTH

FIELD TAG

UNALIGNED FULLWORD

STRUCTURED SEGMENT START

STRUCTURED SEGMENT LENGTH

STRUCTURED SEGMENT TAG

SEGMENT DELIMITER
FIELD LENGTH
FIELD TAG

FOR PREVIOUS FIELD OCCURS
FIELD LENGTH
FIELD TAG

FOR PREVIOUS FIELD OCCURS
SINGLE MAP LENGTH

MAP GROUP LENGTH

34

<

Chapter 2

The following symbolic map is generated for COBOL:

SPR 216 2/83

The Map Definition

Process

03 CUSTINF.
05 VERBF.
06 VERBL PIC 9(4) COMP.
06 VERBT PIC X.
06 VERB PIC X(4).
05 NAMEF.
06 NAMEL PIC 9(4) COMP.
06 NAMET PIC X.
06 NAME PIC X(25).
04 USEG1 OCCURS 3 TIMES.
05 ATDRF.
06 ADDRL PIC 9(4) COMP.
06 ADDRT PIC X.
06 ADDR PIC X(20).
o4 USEG2.
05 ACCTF.
06 ACCTL PIC 9(4) COMP.
06 ACCTT PIC X.
06 ACCT PIC S9(8) COMP.
O4 DATEF.
05 DATEL 9(4) COMP.
05 DATET PIC X.
05 DATE.
06 MONTH PIC S99.
06 DAY PIC S99.
06 YEAR PIC S99.
04 USEGS.

05 CREDITSF OCCURS 3 TIMES.
06 CREDITSL PIX 9(4) COMP.

o4

06 CREDITST PIC X.

06 CREDITS PIC S9(7)V99 COMP-3.
05 DEBITSF OCCURS 3 TIMES.

06 DEBITSL PIC 9(4) COMP.

06 DEBITST PIC X.

06 DEBITS PIC S9(7)V99 COMP-3.
FILLER PIC X(7).

NOTE:

The names (labels) DATE and DAY are Reserved Words in COBOL,
but are used here for illustration (of a structured segment)

purposes.

35

Chapter 2

The following symbolic map is generated for PL/1:

The Map Definition Process

DCL 1 CUSTINF BASED(PTR CUSTINF) UNALIGNED,

3 VERBF,
4 VERBL
4 VERBT
4 VERB
3 NAMEF,
4 NAMEL
4 NAMET
4 NAME
2 USEG1(3),
3 ADDRF,
4 ADDRL
4 ADDRT
4 ADDR
2 USEG2,
3 ACCTF,
4 ACCTL
4 ACCTT
4 ACCT
2 DATEF,
3 DATEL
3 DATET
3 DATE,
4 MONTH
4 DAY
4 YEAR
2 USEG3,

FIXED BIN(15), /% LENGTH */
CHAR(1), /®* TAG */
CHAR(Y),

FIXED BIN(15), /% LENGTH #/
CHAR(1), /% TAG */
CHAR(25) ,

FIXED BIN(15), /* LENGTH ®*/
CHAR(1), /* TAG */
CHAR(20) ,

FIXED BIN(15), /* LENGTH #*/

CHAR(1), /* TAG */

FIXED BIN(31),
/% START STRUCTURED SEGMENT */
FIXED BIN(15), /% LENGTH #*/
CHAR(1), /® TAG */

PIC '99',
PIC '99°',
PIC '99°',

3 CREDITSF(3),
4 CREDITSL FIXED BIN(15), /% LENGTH #*/
4 CREDITST CHAR(1), /% TAG %/
4 (REDITS FIXED DEC(9,2),

3 DEBITSF(3),
4 DEBITSL FIXED BIN(15), /% LENGTH #*/
4 DEBITST CHAR(1), /* TAG %/

4 DEBITS

FIXED DEC(9,2),

2 FILLER CHAR(1); /% END CF MAP %/

36

)

Chapter 3

APPLICATION SUBSYSTEM DESIGN

3.1 OVERVIEW

Application subsystems interface with MMU by issuing a call to
the MMJ service routine which performs the function required. The call
may be issued by subsystems coded in Assembler, COBOA. or PL/1.
Depending on the map group definition, an entire message may be mapped
with one CALL, or the mapping process may progress in stages.

In order to process an input message, the application subsystem
invokes the input mapping routine, which strips control characters,
edits and converts message fields, and returns the mapped text to the
application in the format of the symbolic map. The subsystem should
then provide logic to review the return code and the field flags for
possible errors, and should provide for error processing. If there are
no errors, the mapped input text is ready for processing. When
processing is complete, the subsystem prepares text for output.

Output is performed in two steps: mapping and transmission
preparation, First, the created output text placed in the symbolic map
area is mapped; this is referred to as the normal form, that is, the
device-independent form., Second, this normal form is prepared for
transmission by transforming it to the device-dependent form (output
message).

In the first step, the application can override attribute values
specified in the map definitions and specify the map fields to be
used. The output mapping routine 1is called one or more times
requesting one or more mappings (map combinations) to build what is
called a logical message. A logical message consists of one or more
screens or pages of output data as determined by application
programming logic. Field conversion and padding is performed at this
time.

Once the logical message has been created, the application can
perform the second output step, that 1is, request transmission
preparation. 1In this step, the application can override control values
specified in the device definitions and/or map group used. The output
preparation routine is then called to determine and insert specific
device-dependent transmission, control and attribute characters to
produce what is called a physical message. A physical message consists
of one or more fully-formatted output messages, depending on device
buffer size and pages of mapped data. Once the output preparation
routine has ©built the physical message(s), it performs message
disposition (transmission) as specified for the call to the routine.

37

Chapter 3 SPR 216 2/83 Application Subsystem Design

The application programmer must plan subsystem 1logic and the
corresponding map group definitions ©based on the following
considerations:

® Whether or not the subsystem processes or produces messages
of similiar format, i.e., several fields occurring in
identical position with identical characteristics occurring
in more than one type of message.

@ Whether or not error correction procedures for input fields
entered in error (or omitted) are to be accomplished by a
conversational or prompting mode of operation.

® VWhether or not an output message might result in a multiple
page transmission requiring special header or trailer data
for individual pages.

® Whether or not subsystem 1logic 1is required prior to
completion of the mapping process.

If any of the above situations are true, then a map group may
consist of more than one map, and multiple calls to MMU service
routines may be required. Considerations for application logic are
further developed below for these situations.

3.2 MMU SERVICE ROUTINES AND PARAMETERS

Each call to an MMU service routine requires a parameter 1list
which provides MMU with such information as map group and map names,
terminal-id, symbolic map address, etc., as summarized below.

3.2.1 Service Routines

MMU service routines are invoked by a standard subroutine ecall.
The MMU service routines used by application subsystems are as follows:

233 3 Ittt it i i it i i i i it ittt i i it it it i ittt it it i
Service r
Routine Function
MAPIN % Performs input mapping according to map definition
MAPQUT Performs output mapping according to map definition
MAPEND Prepares mapped output for transmission
MAPCLR Clears a symbolic I/0 map area to nulls
MAPURGE Cancels a logical output message
MAPFREE Frees input symbolic map area (PL/1 or
Assembler Language only)

38

J

N

Chapter 3 Application Subsystem Design

3.2.2 Parameters

In the discussion which follows, the MMU parameters are referred
to by symbolic name, as described in Figure 4. The application
programmer must, of course, develop application-dependent names for the
individual parameters according to the conventions of the programming
language in use. Some parameters must be defined as part of the
dynamic working storage for a subsystem (unique to each message in
progress). Other parameters reference constant values, and, as such,
may be defined within the program itself.

Two of the parameters represent MMU control blocks and must be
supplied by the application:

1. The Map Control Block (MCB) is a twelve-word area for use by
MMU only.

2. The Map Control Word (MCW) is a four-byte aligned area used
for communication between the subsystem and MMU service
routines.

Prior to calling a particular service routine, the application
program sets the MCW to specific values indicating the requested
processing options. The subsystem then issues the call to the service
routine with the required parameters. The MMU routine processes the
request and returns control to the subsystem after setting byte 1 of
the MCW to the return code resulting from the call. The specific
calling formats, parameter specifications, and option and return codes
are presented for each routine in Appendix B.

mcbname The label of a twelve-word (48 bytes) aligned Map

Control Block (MCB). The content of the MCB is never
referenced by the application program. This area must be
supplied in the dynamic working storage of the subsystem.
groupname | The label of an area containing the name of the map group
associated with a specific call. This area is defined as
an eight-character field, left-justified and padded with
blanks.

mapname The label of an area containing the name of the map
within a specific map group for a particular CALL. This
area is defined as an eight-character field,
left-justified and padded with blanks.

Figure 4, Parameters for MMU Service Routines (Page 1 of 2)

39

Chapter 3

mcwname

textarea

Application Subsystem Design

The label of a four-byte (fullword aligned) Map Control
Word (MCW). Prior to the call, it is set by the
subsystem to request MMU service routine options. After
the call, it is set by the MMU routine to indicate the
status of processing., This area must be supplied in
dynamic working storage.

For input mapping, it is the label of the symbolic map
definition area to be filled in by the input mapping
routine with input text data fields. (COBOL and PL1-F
subsystems only.) For output mapping, it is the label of
the symbolic map definition area containing unmapped data
fields to be operated upon by the output mapping routine
(all subsystem types).

The data area name must be the same as the name coded for
the corresponding MAP macro, and the area must be in
dynamic working storage.

For input mapping, the label of the area containing the
unmapped input message text (string). (COBOL and PL1-F
subsystems only.) For output mapping, it is the label

of the mapped output message text (string) area in dynamic
working storage, which is to be filled in by the output
transmission preparation routine, if one of the automatic
transmit options is not used.

The label of a four-byte (fullword aligned) area
containing the address of the unmapped input message text
(string) to be passed to the input mapping routine. On
return, this area contains the address of the input

message data fields mapped according to the corresponding
symbolic map definition for the requested map.
(Assembler and PL/1-Optimizer subsystems only.)

The label of the area containing the five-character
terminal identification (or broadcast group name) used

to determine the map group name terminal-dependent suffix
code. Also used by output mapping for page overflow
processing and subsequent message preparation. Not used
for string mapping.

Figure 4.

Parameters for MMU Service Routines (Page 2 of 2)

40

Chapter 3 Application Subsystem Design

3.3 DEVICE DESCRIPTIONS

A Device Description Table is used to relate the physical
characteristics of specific terminals to the symbolic names for the
characteristies., This facility allows the application programmer to
specify field attributes and/or terminal control characters by symbolic
name, The Intercomm member LOGCHARS provided on the release tape
contains device description coding for the major supported devices.
Device description table entries may also be created by the Intercomm
System Manager. These Device Descriptions are then assembled twice:
once to generate the internal form for use by the MMU service routines
and once to generate the language-dependent symbolic form. The
symbolic form is copied into each application, as described below. The
commands, attributes and control characters can then be referenced by
the application program when creating output messages. A copy of the
LOGCHARS listing which associates physical and logical codes by device
type is listed in Appendix C.

3.4 COPY MEMBERS

The language-dependent symbolic forms of both the map definitions
and the device definitions must exist within the application
subsystem. They allow symbolic reference to the message data fields,
logical control characters, commands and attributes. The symbolic form
of the map group is generated via the SYMGEN catalogued procedure. The
DEFSYM catalogued procedure generates the symbolic form of the Device
Descriptions, The results of these procedures are routed to a user
source library. The subsystem then must copy/include the symbolic map
and device definitions fram the library into the application program.
The JQ. procedures are described in Appendix D; the COPY formats are
described below. Whenever changes to copy members affect subsystem
processing, the subsystem must be compiled/assembled again for the new
symbolic form,

3.5 LANGUAGE-DEPENDENT CONSIDERATIONS

Each programming language requires a subroutine CALL in a
particular format in order to maintain subsystem reentrancy. The
coding conventions for subroutine call fomats in the Intercomm
enviromment are described below for COBOL, PL/1 and Assembler
subsystems. Appendix B illustrates the language-dependent call formats
by individual MMU service routine. Language-dependent information is
given in Figure 5.

1

Chapter 3 Application Subsystem Design

============:'_‘.':F.'::::========:====:=====:=:==:'_‘:::::::::::::::::::::::::
REENTSBS ICOMSBS PENTRY or PLIENTRY
Routine Code COPY $INCQ.UDE
MMU Service (Hal fword Member Name Member Name
Routine Binary) l (COoBOL) (PL /1)
P S S S . S S . .- S-S -SSP - S S CS .- CSS - CC.CS oS- oS- S oC oSS ECCC S-S =-=mooz=z======3
MAP IN 51 MAP IN MAP IN
MAPOUT 55 MAPOUT MAPOUT
... i O
MAPEND F 59 MAPEND MAPEND
MAPCLR 63 MAP QLR MAPCLR
e e e e e e e e e e e e e e e e e o e e e e e e e e e e e e e e e e] e e o e e e e e e e e e e
MAP IR GE 67 MAP IR GE MAPRGE
e e e e e e e
MAPFREE 91 N/A MAPFREE

Figure 5. MMU Service Routines

3.5.1 COBOL Subsystems

Reentrant COBOL subsystems invoke the MMU service routines using
COBREENT. Subroutine codes, in the high-level language reentrant
subroutines table REENTSBS, are used to access MMU routines. The names
of these codes are in the COPY member ICOMSBS (see Figure 5). The
standard call format is:

CALL 'COBREENT' USING routine-code,...MMU routine parameters...

routine-code reflects the name (MAPIN, MAPOUT, etc.) of the area
containing the REENTSBS service routine code,

The COPY statement for copylng the symbolic map is:

$$00PY symgen-output (NAME parameter fram SYMGEN procedure)

Due to compiler restrictions, COBOL subsystems may not copy
symbolic maps into Dynamic Working Storage defined in the Linkage
Section when subordinate to the 01 level DWS definition. Therefore,
the symbolic level definition COPY is denoted by a "$$" (or a user
specified code) in columm 7-8 and a precompile step (COPRE--see
Appendix D) is executed to effect the copy prior to compilation.

CBLOGCH is the COBOL symbolic member name for terminal
characteristics. The Device Descriptions COPY Statement defined in the
Working Storage Section is:

01 device-descriptions COPY COBLOGCH.

device-descriptions is a user-defined name.

42

Chapter 3 Application Subsystem Design

3.5.2 PL/1 Subsystems

MMU service routines can be used by PL/1 Optimizer and PL/1-F
subsystems. PL/1-F subsystems invoke MMU service routines using
PMIPL1. PMIPL1 requires the use of a subroutine code fram REENTSBS,
the high-level language reentrant subroutines table, in order to access
MMU routines. REENTSBS codes for MMU service routines are shown in
Figure 5. The standard call fomat for PL/1-F subsystems is:

CALL PMIPL1 (routine-code,...MMU routine parameters...);

routine-code reflects the name of the area containing the REENTSBS
service routine code.

PL/1 Optimizer subsystems which include PLIENTRY or whose MMU
routine names have been declared as ENTRY OPTIONS (ASM) can use a
different format to invoke the MMU service routines as follows:

CALL routine (...MMJ routine parameters...);

routine is the MMU service routine name. PL/1 Optimizer subsystems can
also use the PL/1-F form of the CALL.

The symbolic map copy format for PL/1 subsystems are:
¢INCLUDE symgen-output; (NAME parameter from SYMGEN procedure)
PLILOGCH is the PL/1 symbolic member name for terminal
characteristics. The Device Descriptions Copy format (which generates

DECLARE statements) is:

$INCQLUDE PLILOGCH;

3.5.3 Assembler Language Subsystems

Subsystems coded in Assembler Language may specify program
residence of the map definitions. This technique is advantageous in a
testing enviromment as it avoids using the LOADMAP utility to load the
internal map forms, and this does not require the Store/Fetch map
definition data set, To use this program option, the MAPGROUP macro
must specify PGMRESzYES. This causes all generated symbols in the
internal map (that is, the MAPGROUP, MAP, FIELD names, etc.) to be
prefixed by a dollar sign. Program residence must also be specified to
the MMU service routine by option codes set in byte 2 of the MCW before
calling the service routine.

Assembler subsystems can use the standard CALL format as follows:
CALL routine,(...MMJ parameters...),VL[,MF=(E,list)]
routine is the MMU service routine name. Register notation may be

used, subject to assembler coding restrictions.

43

Chapter 3 Application Subsystem Design

Or if dynamically loadable, these subsystems should load V-type
address constants fram the SPA Extension into Register 15 for MMU
service routine calls. The symbols used are listed as follows:

S S S S S S S S S S S S S S S S S S S s S s S e S s s s s s sy s o s s s s s s s s s s s s s s s s s s s =ss=====%
Symbol MMU Service Routine

F:::::::::::::::::::::::::::=======I====:::::::::::::::::::::::::::::::::

SE XMAP IN MAP IN

SEXMAP QT MAPOUT

SE XMAPEN MAPEND

SEXMAPCL MAPCLR

SEXMAPPU MAP (R GE

SEXMAPFR MAPFREE

The symbolic map copy format for Assembler subsystems is:

COPY symgen-output (NAME parameter from SYMGEN procedure)

ASMLOGCH 1is the Assembler Language symbolic member name for
terminal characteristics. The Device Descriptions Copy format (which

generates EQUATE statements) is:

COPY ASM.OGCH

3.6 MAPPING CHARACTER STRINGS

Both input and output mapping can be performed on character
strings, instead of message text. Subsystem logic remains the same as
discussed for mapping of messages. The unmapped character string
fields may have any valid format and the fields may be of any type.
The strings must be prefixed with a halfword binary value indicating
total string length (including the halfword). MMJ service routines are
notified of character string format by an MCW option code.

This facility could be used, for example, where the message
'text' passed to a subsystem contains parameter values in character
string format. The function of the subsystem is to parse the parameter
string and take appropriate action. Mapped characters strings may not
be passed to the Front End, unless subsystem logic is coded to prefix
an appropriate Intercomm message header and a message ending character
(useful for remote CPUs).

4y

<

Chapter 3 Application Subsystem Design

Alternatively, this facility could be used to select and convert
fields fram a file record into a symbolic map area which would
subsequently be used for output message formatting, rather than code
Subsytem logic to perform this function. Conversely, mapped input
message text fields can be converted to a file record via output
mapping.

3.7 INPUT MAPPING

The input mapping functions are performed by the MAPIN service
routine, which is called after the subsystem has done any necessary
initialization.

Input mapping transforms the input mes sage from its
device-dependent external fomat (that is, removes keywords,
separators, control characters, as applicable) to its
device-independent symbolic format. This transfommation is based on
the corresponding map definition for the message. The specified field
(or structured segment) positioning, internal format conversions,
padding and justification are performed by MAPIN using the internal
form of the map definition. When the process is completed, the message
or character string appears to the application program in the format
defined by its symbolic map, with padding and justification applied, as
applicable. A maximum of 255 characters may be entered in one input
field from the terminal. Fields entered as input but not defined in
the input map will not be presented to the application program (does
not apply to positional format, except for trailing fields). Figure 6
illustrates the flow of input mapping.

For the call to MAPIN, the user can specify input processing
options via the Map Control Word. One such option requests that the
input message be freed by MAPIN after mapping. If this option is
selected, the subsystem must retain required message header fields
(particularly the terminal identification) for use after the call to
MAPIN., A typical programming technique is to copy the input message
header to an output message header area.

Assembler subsystems that request MAPIN to free the input message
after mapping must not free the same area again by issuing a STORFREE
macro.

If the input message verb is defined as a data field via a named
FIELD macro, the verb appears in the symbolic map area for use in
subsystem processing. If it is not defined, the verb is lost when the
input message is freed. This is particularly important for subsystems
that process more than one type of transaction according to the verb
entered. Thus, if the verb is not mapped, the subsystem must contain
logic to retain the wverb,

45

Chapter 3 Application Subsystem Design

Input messages are mapped into the internal format specified by
the symbolic map definition. Thus, when input mapping is complete, the
program may access data from the terminal by referencing the symbolic
names (namel., nameT, name) of the data fields. If entered correctly,
and the data is of character type, the length field (nameL) reflects
the number of characters entered. If the data is not character type,
the length field reflects the internal length, that is, the length
after data conversion, See the description of MAPIN field data in
Appendix B for further details,

Subsystem Logic

Initialization
Logic
+ Perform Input
MAP IN Mapping for Map
Within the
Mapgroup
Analyze Mapped
Input Fields
Errors? YES Error
Processing
NO
Continue

Processing Logic

Figure 6. Input Mapping Logic

46

J

Chapter 3 Application Subsystem Design

3.7.1 Input Mapping In Stages

A complete input message is normally processed by one call to
MAPIN. However, subsystem logic may perform input mapping in stages
with a series of calls to MAPIN using different maps. This allows
application-related logic for field verification prior to completing
the input mapping process. For example, a customer or order number may
be verified by accessing file data prior to mapping further items of an
input message. For fixed or relative position mapping, each subsequent
map may specify a starting position within the string or device page,
since the field positions are relative to the starting position of the
map. For keyword mapping, previously mapped keywords are no longer
available for remapping. For positional mapping, each subsequent map
must contain named field descriptions of all previously mapped fields.
This feature cannot be used for mixed positional and keyword maps.

3.7.2 Field Error Processing

The input mapping routine uses the field (or structured segment)
flag byte to notify the application subsystem of error conditions in
the input field or segment. Application program logic must verify that
data fields are entered correctly based upon the value of the flag byte
(nameT) setting. For example, if no data is entered for a defined
input field, MAPIN places nulls (low-value) in the symbolic data field
area, sets the length field to zero and sets the flag byte to X'FF!
(high values) to signify that a field has not been entered. Flags are
set for errors in fields that specify conversion, or are truncated. If
a nonnumeric is entered in a numeric field to be converted to packed
decimal, for example, the length and data areas are set to nulls
(low-values) and the flag byte is set to a value of C'B'.

Within a structured segment, where the flag byte reflects the
status of the entire segment, the code for the last error condition
encountered is indicated in the flag byte.

For a YES/NO response field, if a valid response is received, the
length is set to 1, the flag byte to zero, and the data to C'1' if YES,
or C'0' if NO.

For terminals with 1light pens, a field may be defined as
detectable (COND=ENTERED coded on FIELD macro). If the field is cursor
or light pen selected, the length is set to one, the flag byte to zero,
and the data to X'FF' (high values). If the field is not selected, it
is treated as if it were not entered.

A complete list of the field error conditions after input mapping
is given with the MAPIN description in Appendix B.

47

Chapter 3 Application Subsystem Design

3.7.3 Freeing the Mapped Input Area

Assembler and PL/1 Optimizer subsystems can ask MAPIN to acquire
storage for the mapped message area. The length of the area will be
that required by the symbolic map area for the requested MAP (not the
map group). The address of this area is returned to the subsystem by
MAPIN. The subsystem must then free this area before returning control
to the Subsystem Controller. The mapped message area can be freed by
calling the MAPFREE service routine.

Assembler Language subsystems may alternatively use the STORFREE
macro to free the mapped textarea. With this method, the length of the
area must be derived by subsystem 1logic (determine from DSECT
describing the map area).

For each of multiple calls to MAPIN specifying different maps,
the subsystem must free the previous area, or save the pointer for
later freeing, before requesting that a new area be acquired by MAPIN.
Each call to MAPIN must be treated as the first call (see Appendix B -
MCW options for MAPIN).

3.7.4 Performance Considerations

The MAPIN routine maps an input message in two steps: first it
creates an intermediate device-independent form (the normal form) of
the data lying within the map domain. Second, it matches the user's
map against the normal form to obtain edited data values for all named
fields in the map.

For efficient input mapping, use only one map. A MAPIN call is
required for each additional map. Use occurring segments to handle
repeating lines. Fields should be coded in ascending order (left to
right, top to bottom), as this speeds up the matching process. Use
keyword and positional field combinations sparingly, as they require
repeated scanning to process. For a 3270 CRT, attribute characters
should be placed to coincide with the start of fields (that is, an
ATTRIB should be coded for each field).

3.8 OUTPUT MAPPING

An application subsystem prepares an output message for mapping
by placing the results of subsystem processing into the symbolic data
field areas specified in the output map definition. The MAPOUT service
routine is then called to perform output mapping for a particular map
within a map group. The result of MAPOUT processing is the normal
form, or device-independent portion of a message, that is, a logical
message. If a symbolic map data field contains nulls, the initial data
specified will be used, or if none, no data will be transmitted for
that field. However, attributes will be sent if specified and
applicable to the device, unless suppressed by subsystem override in
the symbolic map attribute fields.

48

Chapter 3 Application Subsystem Design

C

Three options are available for output mapping:

® Map both initial (template) and variable (user-supplied) data
(default)

® Map initial data only
@® Map variable data only (fill in template)

The option chosen must be indicated via the MCW at MAPOUT time.
Subsequently, the next section of an output message is prepared by the
subsystem and MAPOUT 1is called to produce the next portion of the
logical message, if necessary. When the logical message is finished,
this mapped output is ready for transmission preparation by a call to
MAPEND .

The MAPOUT and MAPEND routines map an output message using the
reverse of the MAPIN procedure. First MAPOUT is called to edit the
data and build normal forms for each page. The normal forms are saved
as Store/Fetch transient strings. MAPEND is then called to convert the
normal forms to external device-dependent format via terminal-dependent
MMUDDMx subroutines, and then dispose of the message as requested via
the MCW,

% Figure 7 outlines output mapping and transmission logic.

Processing]‘
Logic

MALOUT
Perform Output
Mapping for Map
Within Map Group

NO

PEND
Prepare, Transmit
Physical Message(s)

Figure 7. Output Mapping Logic

49

Chapter 3 Application Subsystem Design

3.8.1 Overriding Attribute Values

In the symbolic map, the format of output fields is similar to
that of input fields. Each field has the two-part prefix consisting of
the field length and flag/attribute bytes. Under output mapping the
flag byte becomes the field attribute override byte. Since the field
attribute byte is a labeled field (nameT) in the symbolic map, it can
be easily referenced by the application program. The length field is
not currently used for output mapping (ignored).

The field attribute byte is used to override a logical attribute
value specified in the map definition. The application program moves
the override attribute into the field attribute area prior to calling
MAPOUT. Logical attributes for the IBM 3270 display system include
protected, unprotected, alphameric, numeric, autoskip, etc. A complete
list of attribute codes can be found in the LOGCHARS listing for the
terminal and in the FIELD macro description.

Attributes defined in the map definition that are not to be
overridden must have the attribute byte field (nameT) in the symbolie
map set to null (low values) or blank., If storage for the symbolic map
has been acquired by the Intercomm storage management routine before
program entry, it will =zero the acquired area. However, if an
Assembler Language subsystem acquires the storage by issuing a STORAGE
macro, ZERO=YES, must be requested so that all attribute and 1length
fields are set to nulls before output processing logic begins. If the
same symbolic map area is used for both input and output processing, an
MMU MAPCLR routine is provided, as discussed below under input/output
mapping.

If no attribute is provided via the symbolic map or the FIELD
macro, or if the supplied attribute override is invalid, the default
attribute (if any) supplied in LOGCHARS will be used. The default for
an IBM 3270 CRT, for example, is UAN (unprotected, alpha, normal
intensity). To suppress attribute transmission, ATTRIB=SUPR may be
coded for the FIELD macro, or the logical code for suppress may be set
in the attribute byte field in the symbolic map at program execution
time before the MAPOUT call.

3.8.2 Page Overflow Processing

Output mapping is cumulative. Each call to MAPOUT creates
another portion of the logical message, whether an addition to the
current page (or screen) of data, or the beginning of a new page. When
multiple pages are produced, if data may not be present for every
defined field, then it may be desirable to call MAPCLR to clear the
symbolic map area after each MAPOUT call.

50

Chapter 3 SPR 216 2/83 Application Subsystem Design

It makes no difference that a series of mappings may produce more
kv than one page, since the routine provides for ©page overflow
processing. Page overflow occurs on the following conditions:

@ Attempting to map a normal map into an area defined by the
largest trail-justified map in the same map group

o Attempting to map off the page when using NEXT notation for
map starting row or column position

® Attempting to map beyond the buffer or logical page (maximum
number of lines) size of the destination terminal

The subsystem 1is notified by a MAPOUT return code and should
include logic to take appropriate action, such as mapping a trailer
map, then a header map for the next page. Subsequently, the symbolic
map data that caused the overflow must be passed again to MAPOUT for
processing.

A page is considered complete under the following circumstances:

0o Attempting to map into an area of a page that has been
previously mapped (when no overflow condition exists)

©@ Mapping a header or normal map after a page overflow occurs
% ©® Requesting a page option on the MAPOUT call
® Issuing a call to MAPEND

Attempting to overlay an already mapped trailer area with another
USAGE=TRAILER or trail-justified map during page overflow will cause a
map overflow condition. This can be <cleared by completing the
preceding page.

Via option codes in the MCW for the MAPEND call, use of the Page
Facility or a DDQ may be specified to handle multiple page output, or
all generated pages may be queued for the Front End.

Figure 8 outlines page overflow processing.

3.8.3 Canceling a Logical Message

If, during the process of output message formatting, the
application subsystem determines that an error was made, the entire
logical message (all previously mapped pages) may be canceled. This is
done by calling the MAPURGE routine instead of calling MAPEND, that is,
no MAPEND processing is done; thus no output message is available. The
subsystem must send an error message to the terminal, or return a

‘L-' message cancelled error code to the subsystem controller.

51

Chapter 3

Application Subsystem Design

NOTE: Branch around
this step if overflow
condition existed

, Processing
Logic

MAP OUT

Produce page

header

Processing
Logice

|
MAP OUT

Produce page
body

Overflow

NQ

?

YES

OUT

Produce page
trailer

IES

More

NO

Prepare, Transmit
Physical Message(s)

Figure 8.

Page Overflow Output Mapping Logic

52

Chapter 3 Application Subsystem Design

3.8.4 Mapping Hard Copy Output

The output mapping routines can be wused with hard copy
(out put-only) devices, such as the IBM 3270 Printer, if device page and
line size specifications are made for MMU using the DVMODIFY and DEVICE
macros in the Intercomm Back End Terminal Tables. The logical page
size (number of lines) for an infinite row device may be greater than
the physical buffer size (if buffered), and can be specified in
addition to the buffer size, if applicable. The page size can be
overridden for the duration of subsystem mapping via the PAGESZ
parameter of the MAPGROUP macro. The line length specified via the
SIZE parameter of each MAP used to form the page may not be greater
than the maximum physical 1line length of the device in use (see
Appendix C). All page building and overflow processing is available
for creation of a logical message. If the device is buffered, each
page of the logical message is converted into one or more physical
messages by the transmission preparation subroutine (MMUDDMx),
depending on the number of characters mapped for each page and the
physical buffer size of the device.

3.8.5 Transmission Preparation and Message Disposition

When the logical message is complete, the physical message must
be processed by calling the MAPEND service routine. MAPEND processes
mapped output by making it device-specific (that is, creating a fully
formatted message--VMI=X'67'--that contains command and control
characters specific to the terminal type), then performing physical
message disposition. The output processing routine allows message

disposition options to be specified via the MCW. The subsystem may
request that MAPEND:

® Transmit the completed physical message(s) to the terminal
via FESEND, or

® Submit the completed messages to the Page Facility for
subsequent CRT page browsing, or

@® Create and transmit a Front End Dynamic Data Queue (transient
data file) containing the completed physical messages, or

©® Sequentially return each completed physical message to the
subsystem (required for character string mapping).

If the transmit option is selected, all generated physical
messages are sent to the Front End. MAPEND does this by calling
FESEND., MAPEND notifies the subsystem if the transmission was not
successful via a code of C'7' in the first byte of the MCW. The FESEND
return code is placed in the second byte of the MCW. If the transmit
option is unsuccessful, application program logic can proceed by
calling MAPEND without the transmit option to access output which could

53

Chapter 3 Application Subsystem Design

not be queued. Or, the subsystem may free the remainder of the
messages by calling MAPIRGE. However, if MAPURGE is called, the
remaining pages are lost. Successful queuing of all generated physical
messages is indicated by a MAPEND return code of C'8' in byte 1 of the
MCW.

If the Page Facility is used, MAPEND builds each physical message
and autanatically submits the completed message to the Page Facility.
If message disposition is successful, MAPEND places a return code of
C'8' in byte 1 of the MCW. If message disposition is unsuccessful, the
return code is C'5', and the Page Facility error return code is in byte
2 of the MCW indicating the cause of the error. This option is not
valid for output-only devices such as the IBM 3270 Printer or if the
buffer device size is smaller than the mapped page.

Any mapping that results in more than one physical message may
select the DDQ option. With this option, MAPEND builds all physical
messages of a loglcal message and places them on a semipermanent
dynamic data queue which is sent to the Front End as a FECM (Front End
Control Message), with the 'free after transmission' option. If only
one physical message is created for the entire logical message, MAPEND
sends it directly using FESEND. The name of the DDQ data set is
specified in the MMU Vector Table. If message disposition is
successful, MAPEND places a return code of C'8' in byte 1 of the MCW.,
If message disposition is unsuccessful, the return code is C'6', and an
additional DDQ function error code is placed in byte 2 of the MCW.

The DDQ option should be selected for receive-only devices which
can be used by more than one transaction at a time. This awoids
interleaved message problems and saves disk queue space. In general,
it should be used for IBM 3270 Printers if any logical message could
result in more than one physical message. The DDQ option is valid for
hard copy output-only devices even if the page size is greater than the
device buffer size. It is invalid if the terminal-ID specifies a
broadcast group name.

If the message is to be returned to the subsystem, each call to
MAPEND retrieves one physical message fully formatted for the receiving
terminal. The physical message normally corresponds to one page of the
logical message. The user must call MAPEND repeatedly to obtain all
messages for all pages of the logical message. A return code of C'8'
indicates when the last message is retrieved; a return code of C'0'
indicates more messages are to be retrieved. The disposition of
messages returned to a subsystem is a function of application program
logic. This option must be used for mapping of character strings.

The subsystem can specify override options for the terminal
command and/or prefix control character defined in the MAPGROUP or
device description for the termlinal type. This is done by setting
bytes 3 and 4 of the MCW before the call to MAPEND. Byte 3 is used to
override the logical code for the command character that is specified
by the COMMAND parameter of the MAP@ROUP macro used for the first
MAPOUT call, or if none, that defined on the DEFAULTS macro for the

54

Chapter 3 Application Subsystem Design

terminal type. Byte 4 is used to specify the logical code for the
control character, or override that specified for the DEFAULTS macro
for the terminal type, as applicable. The logical codes are available
in the application program via the symbolic copy code fram the LOGCHARS
listing for the terminal type. See Appendix A for further discussion of
override possibilities.

All MAPEND options and corresponding return codes are fully
docunented in Appendix B.

3.8.6 Performance Considerations

Page overflow processing with MMU requires additional use of
Store/Fetch for temporary storage of pages. Performance degradation is
possible due to additional storage or I/0 requirements in such a
situation.

For efficient output mapping, as few maps as possible should be
used, as each requires a MAPOUT call.

When using the Page Facility, if performance is very important,
then single maps for each page should be used. For fastest response
time, call MAPEND (with P option in MCW) after each page is mapped,
instead of waiting until all pages are mapped (via MAPOUT calls).

For the IBM 3270 @RT, the number of attribute characters
transmitted can be reduced by use of structured segments (one attribute
character per segment), or by coding fields with ATTRIB set to a
logical attribute code defined by PHYSCDE=SUPPRESS to suppress the
attribute character for this field (space is reserved for it in the
map). (In Intercomm-supplied LOGCHARS, this logical attribute code is
defined as SUPR). This is particularly useful where multiple heading
lines are defined without intervening named fields; only the first
heading field needs a protect attribute. If no attribute character is
defined, the default for the device is used (UAN for IBM 3270 CRT).

3.9 INPUT/OUTPUT MAPPING

Input/output mapping is used for mapping template screens. When
a map defines both an input and an output message, the design of
subsystem 1logic proceeds in three phases., First, a mapped output
message is produced and transmitted, that is, initial data is mapped
and the template is sent to the operator.

The subsystem can then receive and map input messages, that is,
map the data fields filled in by the operator. Once the message is
processed, the subsystem can include logic to produce a mapped output
message using the data-only option in order to possibly highlight
fields in error or signal that new data may be entered.

55

Chapter 3 Application Subsystem Design

Since there will be data in the symbolic map area after input
mapping is completed, the entire area must be set to nulls, This is
done by calling the MAPCLR routine. However, if any data field values
are to be used again, for example to highlight fields in error,
subsystem logic must clear every individual attribute byte and
applicable (non-error) data field areas. Alternatively, the subsystem
may save the needed field data and restore it after the call to
MAPCLR. Figure 9 illustrates typical input/output mapping logic.

template NO MAPIN
request map data from
template

process data

set MCW option=I

MAPCLR
MAPQUT clear
map data only symbolic map
or template ¢

move new data
MAPEND to symbolic map

prepare and

send message

set MCW option=D

Figure 9. Input/Output Processing Logic

56

Chapter 3 Application Subsystem Design

C

3.9.1 Initial (Template) Data Qutput Mapping

A subsystem may map initial data using one of the following
met hods:

® Calling MAPOUT referencing a symbolic map with only initial
data (unnamed) fields defined

® Referencing a symbolic map defining variable data fields
where each field prefix and data value has been set to nulls

® Using the initial-only option (I) specified in Byte L4 of the
MCW for the MAPOUT call(s). (In this usage, attributes and
initial values cannot be overriden.)

In the second usage, if the initial data field is named, initial
and/or attribute values can be overriden prior to the call to MAPOUT.
First the named field is referenced and changed; then MAPOUT is called
using the initial and data option of the MCW (blank).

An ERASWRIT or ERASWRAL command should be specified via the MCW
for MAPEND, unless already specified on the MAPGROUP macro. See the
Override Table 1in Appendix A, and Appendix C, for further
considerations.

3.9.2 Variable Data QOutput Mapping

A subsystem may insert data in an existing template and/or
manipulate the previously displayed (mapped) variable data by one or a
combination of the following methods:

® Calling MAPOUT referencing a map containing only variable
data (named) fields (no initial data, all attributes specify
suppress), and supplying data and/or attribute overrides for
these fields via the symbolic map.

® Referencing a map containing named initial and variable data
fields where all fields are defined as type CB, and using
blanks (spaces) in the symbolic map fields to clear those
fields which were entered correctly, are no longer desired,
or for which no data is available.

® Referencing a map with a named field with an initial or

supplied (from symbolic map) three-byte hexadecimal value

containing the Erase Unprotected to Address order (X'12') and

a two-byte row/column stop address sequence (for example, the

last position on the screen). The attribute should be SUPR

and the field type CB so that blanks may be used to prevent

t transmission of the EUA sequence if desired (allow room for
the blanks in the screen design).

57

Chapter 3 Application Subsystem Design

® Providing nondisplay attribute overrides to clear (suppress)
fields which are correct or no longer to be displayed.

® Causing all variable data to be transmitted from a screen
after error correction by providing attribute overrides that
specify protected-with-MDT-on for correct fields, while
assigning an unprotected-with-highlight attribute for fields
in error, but clearing all symbolic map data areas to null so
that only attributes are transmitted. If a required field is
omitted, a graphic symbol such as a question mark (?), or a
zero (if ZD or PD field) could be sent to indicate the
omission. This method requires that no initial values are
specified for named fields, and that the data-only (D) option
is used.

® Referencing a map containing both unnamed and named fields
with or without initial data, and requesting the data-only
option in Byte 4 of the MCW when calling MAPOUT. Note that
if a named field contains initial data, and no data override
is supplied by the symbolic map, then the initial data for
that named field will be sent.

If the data-only option (C'D' in byte 4 of the MCW) is used for

MAPOUT, then a WRITE1 (Write Initial) command will be automatically
generated for the output message (3270 and DS40 CRTs only).

3.170 APPLICATION PROGRAM STRUCTURE

As a summary of coding conventions discussed in this chapter,
Figures 10, 11 and 12 illustrate the basic structure for subsystems
using MMU which are coded in COBOL, PL/1 and Assembler.

58

9

Chapter 3 SPR 216 2/83 Application Subsystem Design

IDENTIFICATION DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SUBROUTINE-CODES COPY ICOMSBS.

01 LOGICAL-DEVICE-DESCRIPTIONS COPY COBLOGCH.
01 IN-GROUP-NAME PIC X(8) VALUE 'INMAPGR'.

01 IN-MAP-NAME PIC X(8) VALUE 'MAP1'.
01 OUT-GROUP-NAME PIC X(8) VALUE 'OUTGRP'.
01 OUT-MAP-NAME PIC X(8) VALUE 'MAP2'.

. (other constants)

LINKAGE SECTION.
01 INPUT-MSG COPY ICOMINMG.
O4 INPUT-TEXT.
06 VERB PIC X(4).

. (unmapped text area, if needed)

01 ICOM-SPA PIC X(500).
01 ICOM-SCT PIC X(100).
01 ICOM-RC PIC S9(7) COMP SYNC.
01 DYNAMIC-WORKING-STORAGE COPY ICOMDWS.
O4 OUT-TEXT.
06 FILLER PIC X(6). (not used)
¥COPY SYMBOLIC MAPS, $$COPY BEGINS IN COLUMN 7,
*MEMBER NAMES TO COPY ARE THE RESULT OF SYMGEN SPECIFICATIONS
02 SYMBOLIC-OUTPUT-MAP.
$$COPY OUTGRP
02 SYMBOLIC-INPUT-MAP.
$$COPY INMAPGR
%*OTHER-DWS-AREAS.
02 MCW PIC 9(7) COMP SYNC.
02 MCW-CODE-BYTES REDEFINES MCW.
04 MCW-RETURN-CODE PIC X.
04 MCW-OPTION-2 PIC X.
04 MCW-OPTION-3 PIC X.
04 MCW-OPTION-4 PIC X.
02 MCB PIC X(48).

. (other DWS definitions)

.

Figure 10. COBOL Subsystem Structure (Page 1 of 2)

59

Chapter 3 Application Subsystem Design

J

PROCEDURE DIVISION USING INPUT-MSG,ICOM-SPA,ICOM-SCT,
T COM-RC ,D YNAMI C-WCOR KIN G-ST ORAGE .
MOVE MESSG-HDR TO OMESSG-HIDR.

. (initial housekeeping)

* INVOKE MAPIN.
MOVE SPACES TO MCW-CODE-BYTES.
CALL 'COBREENT' USING MAPIN,
MCB , IN-GROUP -NAME , IN-MAP -NAME,
INPUT -MSG ,MCW,MAP 1.

. (analyze status and process input message)

¥PREPARE OUTPUT SYMBOLIC MAP DATA

*INVOKE MAPOUT.
MOVE SPACES TO MCW-CODE-BYTES.
CALL 'COBREENT' USING MAPOUT,
MCB,0UT -GROUP-NAME ,0UT-MAP-NAME, A
MAP2,MCW,0OMSGH-TID. J

. (analyze status and continue processing)

*INVOKE MAPEND WITH TRANSMIT OPTION.
MOVE '$Qb%' TO MCW-CODE-BYTES.
CALL 'COBREENT' USING MAPEND,
MCB , OUTP UT -MESSAGE ,MCW.

#*RETIRN TO INTERCOMM,
GOBACK.

NOTE: Any field names not explicitly defined are in copied members.

Figure 10. COBOL Subsystem Structure (Page 2 of 2)

60

Chapter 3 Application Subsystem Design

SUBSYS: PROC (IN MSG ADDR,SPA,SCT,RC)
OPTIONS(MAIN,REENTRANT);
DCL(IN MSG_ADDR,SPA,SCT)PTR,RC FIXED BIN(31); /*INPUT PARMS*/
$INCLUDE PLIENTRY; /#*FOR OPTIMIZER - ASSEMBLER ENTRY POINTS*/
$INCLUDE PLILOGCH; /%SYMBOLIC DEV-DEPNT CHARS*/
DCL 1 MAP NAMES STATIC, /#FOR CALLS TO MMU*/
3 IN_MAPGROUP (CHAR(8) INIT('INMAPGR'),

3 IN MAP CHAR(8) INIT('MAP1'),
3 OUT_MAPGROUP CHAR(8) INIT('OUTGRP'),
3 OUT_MAP CHAR(8) INIT('MAP2');
DCL 1 INPUT_MESSAGE BASED(IN MSG_ADDR),
3 IN_HDR,
$INCLUDE PLMSGHD;
3 IN_TEXT, /*BEFORE MAPPING*/

5 VERB CHAR(Y4);
/#REST OF INPUT REFERENCED VIA SYMBOLIC MAP#*/
/#MAPS ARE BASED ON PTR_mapname*/
4INCLUDE INMAPGR;
DCL OUT_AREA CHAR(nnn); /%*SYMBOLIC OUTPUT MAP AREA%*/

$INCLUDE OUTGRP;
DCL 1 MMU_AREAS ALIGNED, /%MMU CONTROL AREAS*/
2 MMU PARMS FIXED BIN(31),
2 MCW CHAR(Y4),
2 MCB CHAR(48);
DCL 1 OUTPUT MESSAGE, /*USED FOR MAPEND CALL®/
3 OUT_HDR,
¢ INCLUDE PLMSGHD;
3 OUT_TEXT CHAR(2); /#MESSAGE AREA NOT USED*/

. (other variable declarations)

OUT_HDR=IN_ HDR,BY NAME; /®*NEEDED FOR OUT_HDR.MSGHTID#*/

. (initial housekeeping)

Figure 11. PL/1 (Using Optimizer) Subsystem Structure
(Page 1 of 2)

61

Chapter 3 Application Subsystem Design

<

MCW= ' BBBB' /*MAP INPUT MESSAGE®/

CALL MAP IN(MCB,IN MAPGROUP,IN MAP,IN MSG ADDR,MCW);

/#VALUE OF IN MSG ADDR WILL CHANGE®*/

PTR_MAP1=IN MSG ADDR; /#*ESTABLISH BASE FOR INPUT MAPPING AREA*/
PTR_MAP2=ADDR (OUT AREA); /*ESTABLISH BASE FOR OUTPUT MAPPING AREAS*/

. - (analyze status and process input message)

/*PREPARE OUTPUT MESSAGE DATA*

MCW='BBBD"' ; /%MAP OUTPUT MESSAGE*/
CALL MAPOUT(MCB,OUT MAPGROUP,OUT MAP,MAP2,MCW,OUT HDR.MSGHTID);

. (analyze status and continue processing)

MCW= ' BQBB" ; /*QEUE MESSAGE OPTION*/
CALL MAPEND (MCB,OUTPUT MESSAGE,MCW);

. (final housekeeping)

CALL MAPFREE(MCW,IN_MAPGROUP,IN_MAP,PTR_MAP1,0UT_HDR.MSGHTID); ‘)
RET URN;
END SUBSYS;

NOTE: Any field names not explicitly defined are in copied members.

Figure 11. PL/1 (Using Optimizer) Subsystem Structure
(Page 2 of 2)

<

62

Chapter 3

Application Subsystem Design

MMUSAMP
*

WORKAREA
SAVEAREA
ADDR WORD
PARMSAVE
MCW

MCB
OUTTERM

OUTMAPS
WRKLEN

* TNVOKE

CSECT
SAMPLE REENTRANT ASSEMBLER SUBSYSTEM USING MMU
REGS
COPY ASMLOGCH
DSECTS
DSECT
DS 18F
DS F
DS nF (n=maximum number of CALL parameters)
DS F
DS 12F
DS CL5
(other thread-related areas)
DS 0D OUTPUT SYMBOLIC MAPS AREA START
EQU *_WCORKAREA DYNAMIC SAVE/WCORK AREA LENGTH
QOPY OUTGRP (symbolic output map(s) area Dsect)
NOTE THAT DSECT AND LENGTH VALUES ARE
PRESENT IN COPIED MEMBER
EQU WRKLEN+QUTGRPL TOTAL DYNAMIC WORKAREA LENGTH
COPY INMAPGR (symbolic input map(s) area Dsect)
CSECT
USING MAP1,R5
USING MAP2,R6
USING WRKAREA,R13
LINKAGE BASE=(R12),LEN=DYNLEN,PARM=(R2),SPA=(R3) ,MSG=(R4), X
DSECTS=(SCT,R13)
MVC OUTTERM,MSGHTID SAVE TID FOR LATER CALLS
(initial housekeeping)
MAP IN
M/C MCW,BLANKS GET MAP, FREE MESSAGE AFTER MAPPING
ST RY4,ADIRWORD STORE INPUT MESSAGE ADDRESS
CALL MAPIN, (MCB,INGROUP,INMAP, ADDR WORD,MCW),VL, X
MF=(E,PARMSAVE)
L R5, ADDR WORD MAPPED MESSAGE DATA ADDRESS
. (analyze status and process input data)
LA R6 ,0UTMAPS+(MAP2-OUTGRP)

(prepare output symbolic map data)

Figure 12. Assembler Subsystem Structure
(Page 1 of 2)

63

Chapter 3

Application Subsystem Design

* INVOKE

* TINVOKE

* FREE MA

MAPOUT
MVC MCW,BLANKS MAP INITIAL AND SYMBOLIC DATA AREAS

CALL MAPOUT, (MCB,OUTGROUP,OUTMAP,MAP2,MCW,OUTTERM),VL, X

MF=(E,PARMSAVE)
CLI MCW,C'0! SUCCESSFULLY MAPPED ?
BNE MAPOUT-error-routine NO
MAPEND WITH TRANSMIT OPTION
MVC MCW,QOPTION REQUEST MESSAGE QUEUING FOR TERMINAL
CALL MAPEND,(MCB,0,MCW),VL,MF=(E,PARMSAVE)
CLI MCW,C'8' SUCCESSFULLY QUEUED ?
BNE MAPEND-error-routine NO
PPED SYMBOLIC INPUT AREA
MVC MCW,BLANKS FETCH MAP

CALL MAPFREE, (MCW,INGROUP ,INMAP, (R5) ,0UTTERM),VL, X

MF=(E,PARMSAVE)

* FREE ANY OTHER ACQUIRED STORAGE AREAS VIA STORFREE MACRO

* RETWRN

TO INTERCOMM
RTNLINK ADDR=(R13),LEN=DYNLEN,RC=0
EJECT

* CONSTANTS, ETC.

INGROUP DC CL8 'INMAPGR'
INMAP DC CL8'MAP1!
OUTGROUP DC CL8 'OUTGRP'
OUTMAP DC CL8'MAP2'
BLANKS DC CLY4 ' BBBB"
QPTION DC CLY ' BQBY!
LT(RG
END
NOTE: Any field names not explicitly defined are in copied members.

Figure 12. Assembler Subsystem Structure
(Page 2 of 2)

64

B

Chapter U4

INSTALLATION PROCEDURES

4,1 PREPARATION

As illustrated in Figure 13, the following preparatory steps must
be done in order to use the Message Mapping Utilities:

After coding MMU Map definition macros, the maps must reside
in the Map Definition source and load libraries, (SYMMDF and
MODMDF) that is, they must be assembled and linkedited. (The
Autogen Facility may be used to generate MMJ map definitions.)

The symbolic maps must be generated and reside in user source
statement 1libraries to be copied during compilation or
assembly of application programs.

[The Device Descripton Tables must be coded, assembled and
linkedited (the internal form for MMU use); released as the
member LOGCHARS on SYMREL and MODREL.]

[The symbolic version(s) of the Device Description Table must
be generated (released on SYMREL as ASM.OGCH, C@BLOGCH, and
PLILOGCH) and made available for copying into application
programs.]

Application subsystems must be compiled or assembled (and
linkedited) to copy the symbolic maps and symbolic device
descriptions,

The Intercomm Back End Station and Device Tables must be
defined using MMJ device types, then assembled and linkedited.

The MMU Vector Table must be coded, assembled and linkedited.

The Store/Fetch temporary data set (work file) used by MMU
must be preformatted by the off-line utility KEYCREAT.

The dedicated Store/Fetch map data set containing on-line map
definitions must be created by the off-line utility KEYCREAT,
and then loaded by the off-line utility LOADMAP from the Map
Definition Load Library.

The MMU service and editing routines, Device Descriptor
Table, Device Dependent Modules, and Vector Table must be
included with the Intercomm linkedit.

65

Chapter U Installation Procedures

J

Code MMU [Code MMU Code Back End Code MMU
Map Device STATION/DEVICE VECT OR

Definition Descriptor Tables using MMU TABLE
Macros Macros] Device types/parms Macro

Maps SYMGEN Symbolic DEFSTM User User-coded
Source Assemble Source [Assemble Source
Library Symbolic Library Symbtolic Library Subsystem(s)
S YMMDF Maps (SYMUSR) Descriptions] SYMUSR
A Y
)Y
ASMPCL ASMPCL Subsystem ASMPCL ASMP CL
Assemble Assemble & Link Compilation Assemble & [Assemble &
& Link STATION/DEVICE or Assembly Link MMU Link
Maps Tables & Linkedit Vector Table MMU Device
Descriptors
(LOGCHARS)]
ON-LINE INTERCOMM REGION
Maps Off-line . P INTER -
Load [P Utility J‘T oMM
Library L OADMAP APPLICATION PROGRAM Linkedit
MODMOF | L 1 | |
S~—— Symbolic Descriptor-sﬁ
Symbolic Maps
é MMU Service Calls
Store/
Fetch MMU Service Routines
Map ’ ---------------------
File Device Descriptors
\.{ Vector Table/DDMS
MMU Edit Routines
KE YCREAT STATION/DEVICE Tables KE YCREAT
Off-line Utility Off-line Utility

Figure 13. The MMU Installation Process

66

Chapter U4 SPR 216 2/83 Installation Procedures

This chapter describes procedures to accomplish these tasks. The
libraries SYMMDF and MODMDF referenced in this chapter are allocated
and catalogued during Intercomm installation.

Intercomm catalogued procedures and parameters referenced or
illustrated in this chapter are fully described in the QOperating
Reference Manual and/or Appendix D of this manual. Off-loading of the
procedures from the release library is described in the Installation
Guide.

4,2 MAP GENERATION

Once the map definitions are coded, they must be assembled and
linkedited. Each map group is assembled twice, once to generate the
internal map and once to generate the symbolic map.

4,2.1 Internal Map Generation

The Intercomm catalogued procedures ASMPCL or LIBELINK, as
applicable, may be used to create, assemble and 1linkedit the map
definitions to generate the internal form. The load module resides on
the data set MODMDF. Each member of MODMDF (to be input to LOADMAP) is
a unique map group which may contain one or more map definitions, and
should have the same name as coded on the MAPGROUP macro.

In the following example, the ASMPCL procedure is wused to
generate the load module ABC on the load library MODMDF:

// EXEC ASMPCL,Q=MDF,NAME=ABC,LMOD=ABC
//ASM,SYSIN DD *

% MAPGROUP ABC

ABC MAPGROUP

. (map definitions)

ENDGROUP
END

67

Chapter 4 SPR 216 2/83 Installation Procedures

The LIBELINK procedure is used to update, or add to, the source
module library, then assemble and linkedit the map definition macros
generating or replacing the specified load module. In the following
example, the LIBELINK procedure is used to create the member XYZ on
SYMMDF, and assemble and linkedit XYZ to generate the load module form
on MODMDF:

// EXEC LIBELINK,Q=MDF,NAME=XYZ,LMOD=XYZ
//LIB.SYSIN DD *

./ ADD NAME=XYZ,LIST=ALL

¥ MAPGROUP XYZ

XYZ MAPGROUP

. (map definitions)

ENDGROUP
END

4,2.2 Symbolic Map Generation

The symbolic language-dependent form of the map definition is
created through the use of the SYMGEN catalogued procedure. This
procedure causes assembly of one or more map groups. SYMGEN output is
routed to a copy library for later inclusion in the user's application
program. Specifications for the SYMGEN procedure are given in
Appendix D. In the following example, the SYMGEN procedure is used to
create the COBOL symbolic form of the map definition MAPGRP3 on the
library INT.SYMUSR:

// EXEC SYMGEN,Q=MDF,LANG=COB,NAME=MAPGRP3,0LIB="'INT.SYMUSR'

4,2.3 Printing the Symbolic Map

The Intercomm procedure PMIPRT may be used to print a listing of
the symbolic map produced by the SYMGEN procedure (above) as follows:

// EXEC PMIPRT,Q=USR,NAME=MAPGRP3
where Q is the output library suffix defined for the OLIB parameter in

the SYMGEN procedure, and NAME is the same symbolic map group source
name as defined for the NAME parameter in the SYMGEN procedure.

4.3 DEVICE DEFINITION AND INSTALLATION

The Device Description Table defines for MMU the message
editing/formatting characteristics of an installation's device types in
use.

68

Chapter 4 SPR 216 2/83 Installation Procedures

4.3.1 Supplied Device Descriptions

Standard device descriptions for MMU-supported terminals are
included with the Message Mapping Utilities. The Device Description
Table may be wused as 1is, or it may be modified to reflect
installation-dependent standards. If string mapping is to be used,
device definitions for that "device type" must be supplied by the
installation. The supplied Device Description Table and the symbolic
forms of that table are released as members of SYMREL and MODREL as
follows:

LOGCHARS Source form of Device Description Table (SYMREL);
see Appendix C for a sample listing.

LOGCHARS Internal Device Description Table in load module form
(MODREL)

ASMLOGCH Symbolic device description member for Assembler (SYMREL)

In internal form the LOGCHARS tables consist of individual
control sections for each device. Control section names are DEVDESCx,
where x 1is the device suffix code (see MAPGROUP macro, DEVICE
parameter). The control sections contain logical and physical codes
for attributes, commands and control characters for the device, as well
as default characteristics and field delimiters for that device.

Each installation should verify that all commands, control
characters and attributes described in the member LOGCHARS correspond
to hardware features installed in the terminal network. A listing of
the complete LOGCHARS member for an installation should be made
available to all systems and applications programmers, along with the
appropriate language-dependent symbolic forms. If the user coded table
is not called LOGCHARS, then the INCLUDE statement for the Intercomm
linkedit must be changed.

4,3,2 Device Definition Macros

The macros used to define device characteristics are as follows:

® DEFINE--This macro identifies the specific device under
definition, and provides a count of the maximum physical
codes required to represent a logical control, command, or
attribute characteristic for the device.

69

Chapter 4 SPR 216 2/83 Installation Procedures

® DEFAULTS--This macro has two functions:

1. It defines default characteristics to be used if no
characteristics are specified in the map definitions or
dynamically by program override at execution time.

2. It specifies device oriented field delimiter defaults,

which may be overridden via the SEGMENT macro DELIM
parameter on a map definition.

® COMMAND, CNTLCHR and ATTRIB--These macros are coded together
to relate the actual physical codes (hexadecimal values) to
be used in a mapped physical output message to logical codes
specified in unmapped message text (symbolic/internal maps,
MCW options).

A device definition for one terminal type consists of
specifications provided by one DEFINE macro, one DEFAULTS macro and one
or more COMMAND, CNILCHR, and ATTRIB macros as appropriate for the
hardware. These macros are described in detail in Appendix A. The
symbol coded on the COMMAND, CNTLCHR, and ATTRIB macros is the logical
name (of the physical characteristic) which 1is referenced by the
application programmer. The logical name is internally equated to a
logical code which requests the associated physical code. The same
logical representation is used across all devices, even though the
physical code may be unique to the device under definition.

The required coding sequence for each device definition is as
follows:

symbol DEFINE FORDEV=device-type
(, {NATRCHR} =max-phys-codes)
{NCMDCHR}
{NCTLCHR}
(blank) DEFAULTS %COMMAND:command—defaultJ
, CNTLCHR =control-char-default)
(,ATTRIB=zattrib-default)
(,DELIM=delimiter-defaults)

symbo 1 ATTRIB LOGCODE=n,PHYSCDE=x
symbo 1 ATTRIB cee
(blank) ATTRIB END
symbol COMMAND LOGCODE=n,PHYSCDE=x
symbol COMMAND ces
(blank) COMMAND END
symbol CNTLCHR LOGCODE=n,PHYSCDE=x
symbol CNTLCHR ces
(blank) CNTLCHR END

70

J

Chapter 4 Installation Procedures

The ATTRIB macros must be grouped together, and must end with an
unlabeled ATTRIB whose only parameter is END. The same is true for the
OOMMAND and CNTLCHR macros, as shown.

Each group of macros (the group of ATTRIB macros, the group of
OOMMAND macros, and the group of CNILCHR macros) may appear in any
order, immediately following the DEFINE and DEFAULTS macros, as shown.

The following rules apply to coding the device definitions:

o Devices using the same logical character name (symbol) must
have the same logical code assigned to that name, although
the physical codes may be different.

® lLogical characters of different types (that is, attributes,
control characters or commands) may not have the same names.

Terminals with 1like characteristics may be described using a
reference to a previously defined devicé., Similarly, an individual
characteristic (COMMAND, CNTLCHR, or ATTRIB) for one device can be
specified as a logical code by referencing the name (symbol) of the
macro coded for another device. These techniques are illustrated below:

* DEFINE THE IBM 2740 MODEL 1

I2740 DEFINE FORDEV=IBM2T401
DEFAULTS DELIM:=C';’

NL CNTLCHR LOGCODE=1, PHYSCDE=X"15"

TAB CNTL CHR LOGCODE=2,PHYSCDE=X'09"

CNTL CHR END
® DEFINE THE IBM 2741

T2741 DEFINE FORDEV=IBM2T41
DEFAULTS DELIM=C';'
CNTLCHR SAMEAS= IBM27401 (Refers to 2740 DEFINE)

CNTL CHR END
* DEFINE A TELETYPE
TTY DEFINE FORDEV=TELETYPE,NCTLCHR=(2)
DEFAULTS DELIM=C'/'
CNTLCHR LOGCODE=NL , PHYSCDE=X'0D25' (Refers to 2740 CNTLCHR)
CNTL CHR END

4.3.3 Device Description and Installation

As with the map definitions, the device descriptions must be
assembled twice: once for the internal form for MMJ use and once for
the symbolic form for application programmer reference. If the
standard MMU-supplied device description members are used, the internal

T

Chapter 4 SPR 216 2/83 Installation Procedures

and symbolic forms which exist on MODREL and SYMREL, respectively, may
be used. If the device definitions are user-coded, the internal and
symbolic forms of the device descriptions must be generated.

4.3.3.1 Internal Device Description Generation

The Intercomm ASMPCL (or LIBELINK) JCL procedure may be used to
assemble (or update and assemble) the macros and then linkedit the
resulting macro expansions which define the internal tables of logical
control characters, commands and attributes associated with physical
codes. The resulting load module must then be included in the
Intercomm linkedit.

Assembly generates CSECTs with the name DEVDESCx, where x is a

suffix character generated for each device type referenced by a DEFINE
macro.

4,3.3.2 Symbolic Device Description Generation

The symbolic language-dependent forms of the device definitions
are generated by the DEFSYM procedure. The output from DEFSYM is
routed to a copy library for 1later inclusion into the user's
application program. These members are called ASMLOGCH, COBLOGCH,
PLILOGCH, for Assembler, COBOL and PL/1, respectively. The released
members with these names correspond to the released Device Description
Table (LOGCHARS).

The DEFSYM procedure is used in a similar manner as the SYMGEN
procedure. The specifications for the DEFSYM procedure are given in
Appendix D. In the following example, the DEFSYM procedure is used to
create, on the 1library INT.SYMUSR, the COBOL symbolic form of a
user-coded Device Description Table MMUDEVD:

// EXEC DEFSYM,Q=USR,LANG=COB, NAME=MMUDEVD,
// OLIB="'INT.SYMUSR'

4.3.4 Printing the Symbolic Device Descriptions

The Intercomm procedure PMIPRT may be used to print the symbolic
definition produced by the DEFSYM procedure, or the released versions,
as follows:

// EXEC PMIPRT,Q={USR},NAME={ASM}LOGCH
{REL} {coB}
{PLI}

72

9

Chapter U4 SPR 216 2/83 Installation Procedures

4.4 SUBSYSTEM COMPILATION/ASSEMBLY

After the SYMGEN and DEFSYM procedures have been executed, the
subsystems can be compiled or assembled. The symbolic maps from the
SYMGEN procedure and the symbolic device definitions from the DEFSYM
procedure reside on SYMUSR (or other user-assigned library). Subsystem
compilation or assembly requires SYSLIB reference to these source
statement libraries in the JCL.

Assembler and PL/1 subsystems can be assembled or compiled using
standard Intercomm catalogued procedures. For Assembler Language
subsystems, the ASMPCL procedure can be used as illustrated below:

// EXEC ASMPCL,Q=USR, NAME=ASMSAMP,LMOD=ASMSAMP

For PL/1-Optimizer subsystems, the PLIXPCL procedure can be used
as illustrated below:

// EXEC PLIXPCL,Q=USR,NAME=PL1SAMP,LMOD=PL1SAMP
For PL/1-F subsystems, use the PL1LPCL procedure.

COBOL subsystems require a precompile step prior to compilation
to include symbolic map definitions subordinate to the 01 level Dynamic
Working Storage definition in the Linkage Section. This precompile
step is done by executing the COPRE program as illustrated in Appendix

D. DD statements to identify the source program, copy member and
symbolic libraries are required.

Once the COPRE program is executed successfully, the Intercomm
COBUPCL procedure can be used to compile and linkedit the COBOL 1load
module. The COBUPCL procedure is illustrated below:

// EXEC COBUPCL,Q=USR, NAME=COBSAMP,LMOD=COBSAMP

A sample job stream to create, assemble, and link a map group
definition, generate and list the symbolic map(s), precompile a COBOL
program (COBSAMP), and then compile and linkedit the COBOL subsystem
(PCOBSAMP), is illustrated in Figure 14.

4,5 MMU NETWORK IDENTIFICATION

The Intercomm Station and Device Tables must contain MMU
definitions for all terminals for which MMU is to be used. The Station
Table, PMISTATB, is generated via the STATION macro. The Device Table,
PMIDEVTB, is generated via the DEVICE macro and optionally can be
modified via the DVMODIFY macro coded in the Station Table as an
extension of the Station (terminal) being defined. Parameters which
have special values for MMU are the STATION macro IOCODE parameter, the

73

Chapter 4 SPR 216 2/83 Installation Procedures

// jobname JOB
//31 EXEC LIBELINK,Q=MDF,NAME=MAPGRP1,
// LMOD=MAPGRP1
//LIB.,SYSIN DD *
./ ADD NAME=MAPGRP1,LIST=ALL
MAPGRP1 MAPGROUP
ENDGROUP
END
//S2 EXEC SYMGEN,Q=MDF,LANG=COB,NAME=MAPGRP1,
// OLIB='INT.SYMUSR'
//S3 EXEC PMIPRT,Q=USR,NAME=MAPGRP1
//SY EXEC PGM=COPRE
//STEPLIB DD DSN=INT.MODREL,DISP=SHR
//SYSIN DD DSN=INT.SYMUSR (COBSAMP) ,DISP=SHR
//SYSPUNCH DD DSN=INT.SYMUSR(PCOBSAMP),DISP=0LD
//PDSDD DD DSN=INT.SYMUSR (MAPGRP1),DISP=SHR
//S5 EXEC (00BUPCL,Q=USR,NAME=PCOBSAMP,
// LMOD=COBSAMP
//

Figure 14. Sample Map Generation and COBOL Compile and Link

DEVICE macro TYPE parameter, and all DVMODIFY parameters. Other
applicable parameters must be accurately coded, but they do not have
special values for MMU. Complete coding specifications for these
macros are given in Basic System Macros, and illustrated by device type
in the BTAM Terminal Support Guide.

The STATION macro IOCODE parameter for MMU terminals is coded as
follows:

IOCODE=(direction,device-type-name(,dvmodify-macro-label))
where:

direction
specifies the code for permissible direction of transmission as
follows: 1 for input; 2 for output; 3 for input and output.

device-type-name
identifies the name of the device type and must correspond to the
value coded for the DEVICE parameter of the associated MAPGROUP
macros (if a specific device is referenced on the latter).

dvmodify-macro-label
specifies that the DEVICE definition for the terminal is modified
by a DVMODIFY macro and names the DVMODIFY macro which further
defines this device. This parameter is optional.

T4

W

Chapter 4 SPR 216 2/83 Installation Procedures

The DEVICE macro TYPE parameter for MMU terminals is coded as
follows:

TYPE=device-type-name

where device-type-name specifies the name of the device type and is the
value coded for the IOCODE parameter on associated STATION macros.

The DVMODIFY macro is used to override and/or augment the DEVICE
macro specifications for a particular terminal. It may also be used to
set a page length 1limit on infinite row devices, by specifying a
maximum number of lines. The DVMODIFY macros are coded after the
PMISTOP macro that follows the STATION macros in the Station Table.

For buffered hard copy device types, such as the 3270 Printer,
MMU requires the physical buffer size and maximum physical 1line
length. These parameters are coded on the DEVICE and DVMODIFY macros.
Optionally, the maximum logical page length may be defined via the
NOLINES parameter of the DVMODIFY macro. The coding of the DVMODIFY
macro takes precedence over the DEVICE macro which specifies the
standard buffer size and 1line 1length for the device type being
defined. The applicable parameters are as follows:

e e
[T b et
(line length | LN I ies
(page length | - | Tvoumes

If NOLINES is coded (hard copy devices only), it is used to determine
the maximum logical page size (NOLINES times LINESZ, or LEN, if LINESZ
not coded). For a specific map group, this common page size may be
overridden via the PAGESZ parameter on the MAPGROUP macro. The output
message size will be the same as the page size, except for buffered
hard copy devices where the page may be segmented into two or more
messages depending on buffer size. If the NOLINES parameter is not
coded, the logical page length (number of lines) is assumed from the
buffer size divided by the line length specification (required for
buffered CRT devices--do not code the NOLINES parameter). If neither a
buffer size nor the NOLINES parameter is coded, an infinite row device
is assumed, and the maximum number of rows is taken from the MMU Vector
Table (MMUVT macro). Therefore, to prevent the creation of extremely
long messages, code PAGESZ for MAPGROUPs destined for infinite row
devices.

If ALTBUF=YES is coded on a DVMODIFY macro (3270 devices only),
then the BUFFRSZ (and LINESZ) override is used only with map groups

specifying COMMAND=ERASWRAL; otherwise, the standard buffer and line
sizes specified on the DEVICE macro are used.

75

Chapter 4 SPR 216 2/83 Installation Procedures

For an IBM 3270 CRT Display System, if both standard
1920-character screens and alternate buffer equipped CRTs are being
used, the macro parameters allow unique terminal specifications as
follows:

PMISTATB CSECT
STATION TERM=BIGO1,IOCODE=(3,IBM3270)
STATION TERM=BIGO2,I0CODE=(3,IBM3270)
STATION TERM=ALTO1,IOCODE=(3,IBM3270,ALTBUF)

PMISTOP
ALTBUF DVMODIFY BUFFRSZ=3440,ALTBUF=YES
END
PMIDEVTB CSECT
DEVICE TYPE=IBM3270,BUFSIZE=1920,LEN=80, X
CRT=YES, CHAR=NL, FIRST=NO, X

EOB=NO,EOT=YES

END

For the IBM 3270 Printer Series, terminal identification of a
328x printer with a maximum 120-character print line, a 1920-character
buffer and a 40-line logical page length is as follows:

PMISTATB CSECT
STATION TERM=P3286,I0CODE=(2,IBM3270P,D3286)

PMISTOP
D3286 DVMODIFY HARDCPY=YES,LINESZ=120,NOLINES=40
END
PMIDEVIB CSECT
DEVICE TYPE=IBM3270P,CRT=NO, X
BUFSIZE=1920,LEN=80, X
CHAR=NL, FIRST=NO, X
EOB=NO,EOT=YES

END

76

N

Chapter U4 SPR 216 2/83 Installation Procedures

‘ 4,6 MESSAGE MAPPING UTILITY VECTOR TABLE GENERATION

The MMU Vector Table (MMUVTBL Csect) contains information
essential to the operation of MMU. This table specifies:

@ ddname of the dedicated Store/Fetch data set containing the
map definitions

® ddname of the temporary Store/Fetch data set that will
contain the intermediate results from MAPOUT processing

@ ddname of a data set to contain Dynamic Data Queues created
by physical message preparation (MAPEND)

Default positional and keyword delimiters for the system
Maximum number of field types
Maximum number of rows for infinite row devices

Maximum number of columns (width) of a line

€ 0 © ¢ ¢

Addresses of the MMU device-dependent modules and
device-description module CSECTs

® Addresses of MMU edit routines for each field type

\V The MMU Vector Table is generated by coding the MMUVT macro and
is then assembled and 1linkedited into the Intercomm nucleus. The
LIBELINK or ASMPCL procedures may be used. Specific coding
requirements are given in Appendix A.

If MMU is used in multiple regions under Multiregion, it may be
necessary to code a separate MMUVT for each region, if parameter values
differ.

Sample coding of the member MMUVTBL is supplied on SYMREL, as
follows (a Csect statement is not necessary as it 1is internally
generated):

MMUVT MAPDDNM=INTSTOR2,PAGDDNM=INTSTOR3, X
DEVICES=ALL
END

4,7 MMU STORE/FETCH DATA SETS

MMU requires two Store/Fetch data sets in its operating
(_, environment. These are:

T7

Chapter U SPR 216 2/83 Installation Procedures

1. A dedicated Store/Fetch data set for storage and retrieval of
on-line map definitions

2. A shared Store/Fetch data set (work file) for temporary
storage of output from MAPOUT processing

When operating in a Multiregion environment, temporary Store/Fetch data
sets must be unique to each region. The map data set may be shared
across regions if it is dedicated to containing only maps (not accessed
by any user-coded subsystems). If shared, concurrent execution of the
off-line map loading utility is not recommended (see Appendix D).

4.7.1 Store/Fetch Map Data Set

Maps are accessed by MMU from the Store/Fetch map data set as
special read-only strings. Once it is read into main storage this
string type behaves 1like a transient string, except if a flush is
necessary, only the core storage area is freed, the string is not
written back to the data set. The map data set should be specified
with a File Attribute Record of READONLY to ensure that the map data
set is dedicated to MMU.

The Store/Fetch map data set must be preformatted before maps can
be loaded. This is done by the Intercomm off-line utility, KEYCREAT,
which creates and preformats a keyed BDAM file. The MMU Store/Fetch
map data set DCB requirements for KEYCREAT are as follows:

::::::::::::::::::::;::q
DCB
Parameter Value Comments
::::::::::::::::::::#::+
DSORG DA Keyed BDAM File
RECFM W F Fixed-Length Records W
____________ I
BLKSIZE nnn Average map size + 24 (check assembly of
internal maps)
e e TS S
KEYLEN 52 Store/Fetch requirement

The block size for the map data set should be large enough to
contain the most frequently used maps without spanning across 2 or more
records. The block size can be determined by the average map size plus
24, The assembly of the internal maps can be checked for the average
map size. The data set should have 30 to 40 percent free space within
it, to keep search time short. See the Intercomm Store/Fetch Facility
for further discussion of the above considerations.

78

J

Chapter 4 SPR 216 2/83 Installation Procedures

Execution JCL for the KEYCREAT utility is illustrated below:

// EXEC PGM=KEYCREAT(,PARM=hhh)
//STEPLIB DD DSN=INT.MODREL,DISP=SHR
//INTKEYFL DD DSN=name,DISP=(NEW,CATLG,DELETE),

// SPACE=

// UNIT=

// VOL=SER=

// DCB=(DSORG=DA,RECFM=F,KEYLEN=52, BLKSIZE=nnn)

where hhh is the number of blocks to be formatted. If omitted, only
the first extent (initial space allocation) is formatted.

4,7.2 Store/Fetch Temporary Storage Data Set

The Store/Fetch temporary storage data set is used to store the
intermediate results of output processing generated from all calls to
MAPOUT and retrieved by the call to MAPEND. However, this temporary
data set is frequently not used because, where possible, the results of
output processing are kept in main storage as transient strings.

The temporary data set can be shared for other subsystem usage
and in some installations may already exist. If the temporary data set
exists, it is already formatted. If it does not exist, it must be
formatted by the KEYCREAT utility. The block size for the Store/Fetch
temporary data set is determined by the average MMU output message page
or screen. The formula is as follows:

BLKSIZE=36 + 12(total-number-of-FIELD-macros) + length-of-data

where length-of-data is calculated from the sum of the external lengths
of the fields (named and unnamed) in the message.

Other DCB subparameters to execute KEYCREAT are similar to those
for the Store/Fetch map data set.

4,7.3 Store/Fetch Optimization and Tuning

Periodic adjustment of block sizes of the Store/Fetch data sets,
which requires recreation (and map reloading) of those data sets, is
recommended. In addition, the SPALIST parameter STOCORE value may have
to be increased as MMU usage increases. An initial value of 20K is
recommended.

79

Chapter 4 SPR 216 2/83 Installation Procedures

System Tuning Statistics, described in detail in the Operating
Reference Manual, provide statistics on Store/Fetch data set usage and
transient string flushes (maps and temporary logical output messages).
These are to be used in conjunction with the above recommendations.

4,8 LOADING THE ON-LINE MAP DEFINITIONS (LOADMAP)

Map definitions must be loaded to the dedicated Store/Fetch map
data set in order to access the maps on-~line., This is done using the
off-line utility program LOADMAP, a member on MODREL. MMU routines
access, but do not modify, the maps on the Store/Fetch data set.
Therefore, LOADMAP need not be executed prior to each Intercomm startup.

4.8,1 Initial Loading of Map Definitions

The first time any maps are to be 1loaded to the dedicated
Store/Fetch map data set the following must be done:

(-] The block size for this dedicated Store/Fetch data set must
be determined and the data set must be formatted as described
in Section 4.7.

@ The map definition members must be linkedited to the MMU load
library (MODMDF) as described in Section 4.2. Each map
definition member should contain only one map group.

® Ensure that the LOADMAP utility has been linkedited (member
LOADMAPS on MODREL or MODLIB may be used). The Intercomm

LKEDE procedure may be used. Linkedit requirements are as
follows:

//LKED,SYSIN DD #
INCLUDE SYSLIB(BATCHPAK,IXFHNDOO,IXFHNDO1)
INCLUDE SYSLIB(STOSTART, INTSTORF)
INCLUDE SYSLIB(LOADMAP)
ENTRY LOADMAP
NAME LOADMAP(R)

® The LOADMAP utility must be executed., Execution
considerations and JCL are described in Appendix D.

80

Chapter 4 SPR 216 2/83 Installation Procedures

4.8,2 Subsequent Loading of Map Definitions

The LOADMAP wutility 1is also wused to replace or add map
definitions to an existing Store/Fetch map data set. This is done as
follows:

© The map definitions are assembled and 1linked as the only
member of a temporary load module library.

-~ LOADMAP 1is executed to add or replace this single map
definition member to the dedicated Store/Fetch map data set.
LOADMAP may be executed while Intercomm is executing, if
DISP=SHR is defined in the on-line execution JCL for the
Store/Fetch map data set which is dedicated to MMU maps only.

® The keys of the added Store/Fetch strings are printed on
SYSPRINT; check that the correct names are used.

® After the map definition member is loaded to the Store/Fetch
map data set and tested for accuracy, it should also be
linkedited to the permanent load module library (MODMDF)
which reflects all currently used map definitions.

To remove a map definition from the Store/Fetch data set, the
data set must be scratched and recreated when Intercomm is down. A
permanent load module library (such as MODMDF) should be maintained
that reflects all current map definitions as preparation for a
subsequent complete reload of the Store/Fetch data set.

If a map is loaded while Intercomm is executing, the subsystem(s)
accessing that map should be quiesced via the DELY command until
loading is complete. Subsequently, the subsystem can be activated via
the BEGN command. An existing incore copy of a map (map group) which
has been reloaded may be deleted via the MMUC command. The next
subsystem mapping request will then access the revised map. (See
System Control Commands.)

4,9 LINKEDIT REQUIREMENTS

Intercomm requires MMU routines to be included in the Intercomm
linkedit. This may be done by coding MMU=YES on the ICOMLINK macro.
ICOMLINK generates the following INCLUDE cards for the required modules:

81

Chapter 4 SPR 216 2/83 Installation Procedures

INCLUDE SYSLIB(MMUSTART) Startup Processing

INCLUDE SYSLIB(MAPIN) MAPIN Processing

INCLUDE SYSLIB(MAPOUT) MAPOUT, MAPEND, MAPCLR, MAPPURGE
INCLUDE SYSLIB(MMUCOMM) MMUC command processing

INCLUDE SYSLIB(MMUVTBL) Oor user name

INCLUDE SYSLIB(MMUTRTS) Translate and Test Tables
INCLUDE SYSLIB(MMUEDOO1) Editing Routines

INCLUDE SYSLIB(MMUEDOO02)
INCLUDE SYSLIB(MMUEDOO3)
INCLUDE SYSLIB(MMUEDOOS8)

INCLUDE SYSLIB(LOGCHARS) or user name

INCLUDE SYSLIB(MMUDDM) DDM for 3270 Display Terminals
INCLUDE SYSLIB(MMUDDMU) DDM for 3270 Printer Series

INCLUDE SYSLIB(MMUDDMT) DDM for Teletype Dataspeed 40/1 and 2
INCLUDE SYSLIB(MMUDDMF) DDM for 2260/5 Display Terminals
INCLUDE SYSLIB(MMUDDMX) DDM for Character Strings

INCLUDE SYSLIB(MMUDDMM) Generalized DDM - other devices

When operating in a Multiregion environment, Message Mapping
routines must be present in each satellite region which requires MMU
services. All but MMUSTART and MMUVTIBL are eligible for Link Pack
residence via the Intercomm Link Pack Facility (see the Operating
Reference Manual). Both the edit routines (MMUEDxxx) and the
device-dependent modules (MMUDDMy) reference the module MMUTRTS.
Therefore, when using Link Pack resident MMU routines, MMUTRTS must
reside with the edit routines and the DDMs. For example, if the DDMs
are in the region and the edit routines in Link Pack, a copy of MMUTRTS
must be linked in each area.

In addition, INCLUDE statements for the Store/Fetch Facility must
be specified (forced if MMU=YES is coded on the ICOMLINK macro), and
the Page Facility and DDQ modules must be included, if used for output
message collecting (see MAPEND in Appendix B).

MMUSTART is eligible for startup overlay residence. MMUEDxxx
(editing routines) and MMUDDMy (Device Dependent Modules) are eligible
for transient subroutine overlay residence. ICOMLINK generates the
required INSERTs for the overlay structure if OVLYSTR=YES and TRANS=YES
is coded.

If MMU is to be used extensively for IBM 3270 Display terminals,
instead of in an overlay, MMUDDM and the following editing routines
should be made resident:

MMUEDOQO1 -- COND=ENTERED fields
MMUEDOO2 -- all character strings
MMUEDOQ3 ~- all numerics

MMUEDOO8 -- YES/NO fields

82

Chapter U4 SPR 216 2/83 Installation Procedures

ICOMLINK generates inserts, for the above routines, in exclusive
transient overlay segments which requires swapping transient overlays

for each mapping. If the routines are made resident, this problem is
removed.

4.10 EXECUTION JCL

DD statements must be present for the Store/Fetch data sets, and
must specify the DCB parameters DSORG=DA,OPTCD=EF,LIMCT=n.

The Store/Fetch data set for the on-line maps must have the
ddname INTSTORx corresponding to the MMUVT macro MAPDDNM parameter;
DISP=SHR is recommended.

The Store/Fetch data set for temporary storage of 1logical
messages must have the ddname INTSTORy corresponding to the MMUVT macro
PAGDDNM parameter, or the Store/Fetch default data set INTSTORO may be
used. INTSTORO may not be used if the Intercomm Data Entry Facility is
also in use in the same region. DISP=OLD is recommended.

For efficiency in execution, a FAR (File Attribute Record) is
recommended for the Store/Fetch data sets as follows:

INTSTORx,READONLY (map data set)
INTSTORy, ICOMBDAMXCTRL (temporary storage data set)

ICOMBDAMXCTRL reduces exclusive control overhead in the File
Handler. READONLY ensures that no on-line changes are made to the
Store/Fetch map data set. See the Operating Reference Manual for
further details on FAR statements.

If DDQs are used to gather output messages for a printer, for
example, or if the Page Facility is used for CRT output, additional JCL
statements and installation considerations for those facilities are
described in the respective manuals. The ddname in the execution JCL
for the DDQ data set used by MMU must be the same as that defined for
the MMU Vector Table macro (MMUVT), OPMDDNM parameter. Sharing of DDQs
across satellite regions is not recommended, but they must be shared
with the control region.

Otherwise, no additional special JCL statements are required for
MMU.

83

Chapter 4 SPR 216 2/83 Installation Procedures

411 TEST MODE SNAPS

When executing Intercomm in test mode, snaps are automatically
produced as follows:

® MAPIN--id=17; symbolic map area after mapping
® MAPOUT--id=19; symbolic map area before mapping

If these snaps are desired when executing on-line in a test
system, or test satellite region, remove the SPAMODE test and
subsequent branch around the PMISNAP macro from MAPIN and/or MAPOUT,
then reassemble and relink. JCL for the SNAPDD statement is required
for this feature (see the Operating Reference Manual).

4,12 RESTART WHEN USING THE DYNAMIC DATA QUEUING FACILITY

Because the DDQs are semipermanent, if the DDQ option is used
for output message transmission, then Intercomm must be brought up with
the RESTART option to prevent deletion of any DDQs that were not fully
transmitted. After restart, transmission will vrestart from the
beginning of the DDQ. If using DDQs in a satellite region under the
Multiregion Facility, both the satellite region and control region must
be restarted with the RESTART option to prevent destroying the Queue
Control File. Restart does not require the previous Intercomm log
(unless message restart required for other purposes). DDQSTART
examines the Queue Control File and automatically requeues the DDQ FECM
for the specified terminal. IN case of terminal failure while
Intercomm is executing, restart of DDQ transmission may be at the next
message on the queue, or from the beginning, based on specification of
the DDQRSRT parameter (LEAVE-default, or BEGIN) for the BTERM of the
failing terminal. Or, the message queue for the failing terminal may
be rerouted to another terminal via the ATD parameter of the TDWN
system control command.

4.13 MMU CONTROL COMMAND PROCESSING

An MMU control command subsystem (MMUCOMM) 1is provided to
process the MMUC command, as described in System Control Commands.
This command provides the following:

@® SHOW--display a template or initial-value report page
layout consisting of one or more maps at the
entering, or destination-specified, terminal (may be
a CRT or printer)

® DELT--delete the in-core copy of one or more maps, so that a

newly loaded version of the map(s) will be used for
the next subsystem request.

84

Appendix A

" MMJ MACROS

This appendix provides detailed coding descriptions for the MMU
macros, as follows:

AT MAP DEFINITIONS

ENDGROUP
FIELD
MAP
MAPGROUP
SEGMENT

See also Chapter 2 for additional details and examples.

A.2 DEVICE DESCRIPTOR TABLE

ATTRIB
COMMANDS
CNTLCHR
DEFAULTS
DEFINE

See also Chapter U for additional details and examples.

A.,3 MMU VECTOR TABLE

MMUVT

See also Chapter 4 for additional installation details

A4 OVERRIDE TABLE

‘ For overriding attribute, command, control or delimiter values by
subsystem (dynamic) or macro (static) specification.

85

Appendix A MMU Macros

MACRO CODING CONVENTIONS

Each macro description is accompanied by a form illustration.
This illustration designates which operands are required, which are
optional, which must be coded exactly as shown, which may be repeated,
etec. The conventions for the presentation of the material in these
illustrations are as follows:

@ A keyword operand is presented in uppercase letters followed
by an equal sign. (For example, INITIAL= on the FIELD macro.)

® A code element consisting solely of uppercase letters repre-
sents already encoded information; it must be written exactly
as shown. (For example, COND=ENTERED on the FIELD macro.)

® A code element consisting solely of lowercase letters repre-
sents information not yet encoded; it is to be supplied in
encoded form by the programmer., (For example,
RELPOS=relative-position on the FIELD macro.)

® A positional code element is represented by a name in
lowercase letters; it is never to be coded, but is always to
be replaced by a permissable expression. (For example, 1x in
the FORMAT parameter on the FIELD macro.)

All punctuation symbols are to be coded exactly as shown.

yees An elipsis indicates that multiple iterations of an
operand may be specified.

@ {1} A pair of braces indicates the presence of a required
choice: code elements contained within the braces
represent alternatives, one of which must be chosen,
The braces are not to be coded.

® [] A pair of brackets indicates the presence of an
optional parameter or sSubparameter: code elements
contained within the brackets represent alternatives,
one of which may be chosen. The brackets are not to
be coded.

{ {NnO } An underlined code element indicates the default code,
{YES} if the associated parameter is omitted.

® symbol The lowercase word "symbol" in the label field of a
macro indicates that a name must be coded. If
enclosed in brackets, naming the macro is optional.

@ label The lowercase word "label" indicates that the macro

must be named. If enclosed in brackets, naming the
macro is optional.

86

Appendix A MMU Macros

(blank) Parenthesis enclosing the lowercase word "blank" in
the label field means the field should be left blank,
as the macro instruction generates its own symbol.

In the operand field of the illustrations, a set of one or
more lowercase words followed by a colon is a heading des-

criptive of one or more subsequently illustrated parameters;
for example,

Output Message Specifications:

in the MAPGROUP illustration.

In the description of macro parameters, all references to
value ranges are references to inclusive ranges.

Any reference to a character or bit string is a reference to
a connected sequence of characters that is treated as a coded
unit.,

All numeric fields should specify significant digits only.
(For example, SEGMENT macro, OCCURS parameter, specification
number-of -repeating-segments is to be replaced by a numeric
value indicating the number of occurances).

NOTES: Symbols or 1labels may not begin with a nonalphabetic

character and may not contain imbedded blanks. For
example, MAP1 is wvalid, whereas neither 1MAP, nor MAP 1
is valid.

All parameter coding must be contiguous. Imbedded blanks
are allowed only in a data-string coded for the INITIAL
parameter of the FIELD macro. Each parameter (except the
last) is delimited by a comma. A label or symbol must
begin in column 1, the macro value in column 10, and the
first parameter in column 16. However, if the macro
value, for example MAPGROUP, 1is 1longer than five
characters, it must be delimited by a blank before coding
of the first parameter (if used). Parameter values may
not be coded beyond column 71, If all the parameters do
not fit on one line, a continuation mark (X is used in
the illustrations in this manual) must be coded in column
72, and the continuation of parameters starts in column
16 of the next statement.

See Figure 3 (in Chapter 2) for an illustration of the above

points.

87

Appendix A.1 Map Definitions MMU Macros
ENDGROUP ENDGROUP

ENDGROUP--Signify End of a Map Group

The ENDGROUP macro is coded to indicate the end of specifications
for the named map group. It is used to complete the map group
definition. The ENDGROUP macro has no parameters and is required for
each defined map group.

The form of the ENDGROUP macro is as follows:

(blank) ENDGROUP (blank)

NOTE : The ENDGROUP macro must be followed by an Assembler
Language END statement to prevent assembly errors when
executing the ASMPCL, LIBELINK or SYMGEN procedures (see
Section 4.2).

88

)

SPR 216 2/83

Appendix A.1 Map Definitions MMU Macros
FIELD FIELD

FIELD--Define a Field Within a Segment or Map

The FIELD macro defines an individual data field within a segment
or a map. Any data field that is to be mapped, including control
characters and heading data, must be defined by a FIELD macro.

FIELD macros are 1labeled or unlabeled. Named fields are
generated by uniquely labeled FIELD macros and appear in the symbolic
map . All labels (names) within a map group must be unique. For
COBOL, reserved words may not be used; watch also for name suffixes-
nameT, namel, and nameF. Unnamed fields do not appear in the symbolic
map and are generally used to define constant output data (initial
values) such as headings or control characters. A maxi 21 of 255 named
FIELD Macros may be coded within one SEGMENT of a MAP. Up to 9999
FIELD macros (named and unnamed) may be coded within the MAPGROUP under
definition.

The label is a one-to-seven-character alphameric value used to
name a field which is to be defined in the symbolic map. The label
must start with an alphabetic character. The first field in a
structured segment must be labeled.

There are three forms for FIELD macro coding:

1. For a field within a non-null segment

2. For a field within a null segment

3. To define a field as the verb, AID, or Cursor position

To define an individual field in positional, fixed or keyword

format within a nonull (unstructured) segment for input maps only, the
form of the FIELD macro is as follows:

label FIELD RELPOS={FIXED }
{pos }
{'keyword'}

,FORMAT=(1x(,1i)(,($)type({Sn})))
{so}

(,JUSTIFY=({LEFT },{BLANK}))
{RIGHT} {ZERO }

(,0CCURS={n})
{1}

All fields within a nonnull segment must be named (labeled).

89

Appendix A.1 Map Definitions MMU Macros
FIELD FIELD

To define an individual field in relative position (template)
format within a null (structured or unstructured) segment for input,
output or I/0 maps, the form of the FIELD macro is as follows:

[1label] FIELD RELPOS={relative-position}
{(row,column) }

,FORMAT=(1x[,1i][,[$1typel{Sn}]])
{so}

[,INITIAL={'string' }]
{(data-string[,...,data-string])}

[,JUSTIFY=({LEFT }, {BLANK})]
{RIGHT} {ZERO }

[,0CCURS={n}]
{1}

[,ATTRIB= {{U} {A}{N}[{SEL }1}]
{{P}{N}{H}({MDT }]}
{ {S}{X}[{MDSEL}]}
{SUPR }

[,COND=ENTERED] selectable fields only

If the above field type is unlabeled, either INITIAL or ATTRIB
must be coded, otherwise it is ignored.

To define an individual field as the verb, AID or cursor position
within a null unstructured segment for input, output or I/0 maps, the
form of the FIELD macro is as follows:

[label] |FIELD RELPOS={AID } input or I/0
{CURSOR} input, output or I/0
{VERB } input, output or I/0
[,FARMAT={(1,1,C)}] default for RELPOS=AID
{(2,2,H)} default for RELPOS=CURSOR
{(u,4,0)} default for RELPOS=VERB

[,INITIAL={'string' }] verb or cursor only
{data-string}

90

)

Appendix A.1 Map Definitions MMU Macros
FIELD FIELD

\' ATTRIB

specifies, for output or I/0 maps, the logical name of the
physical attribute value to be associated with this field during
output processing, as defined by the ATTRIB macro in the Device
Description Table (LOGCHARS).

The attribute codes for the IBM 3270 video display terminal are
defined as follows:

The first letter of the attribute value .indicates whether the
field is protected (P) or unprotected (U). The second letter
indicates whether it is alphameric (A) or numeric (N), or if
protected, should also be skipped (S). The third letter
indicates whether it is normal intensity (N), highlighted
(H), or non-display (X). These three letter codes are
followed by an optional indication that the
'‘modified-data-tag' is to be set on (MDT), it is selectable
by cursor or selector pen (SEL), or that it is both (MDSEL).
The default is that the field i8 non-MDT and not selectable.
For example, ATTRIB=UANSEL specifies an unprotected,
al phameric, normal-intensity, non-MDT field which is
selectable. See the LOGCHARS and attribute codes listings in
Appendix C for exact coding and corresponding meanings.

If SUPR is coded, no attribute is generated. It causes the

| - previous attribute specification to remain in effect. The field
will have the same attribute (and may be a continuation of) the
preceding field. ATTRIB=SUPR requires no storage space. If
RELPOS=(1,1) is coded, ATTRIB=SUPR must be coded. If omitted,
the default attribute for the device (if any) as coded for the
DEFAULTS macro, will be wused. If coded, but no corresponding
attribute value has been defined for the device being mapped, it
will be ignored if the default attribute is SUPPRESS. Attributes
coded for CNTL type fields or for the second or subsequent fields
of a structured segment are ignored.

To assign an attribute to a structured segment, the ATTRIB
parameter is coded only on the first FIELD macro within the
segment.

To specify only an attribute on an output or I/0 map, an unnamed
FIELD macro is coded without the INITIAL parameter, but with the
appropriate ATTRIB value specified and FORMAT=1 coded. An ATTRIB
of PSN specifies protected/skip for cursor key tabbing. This
form of the FIELD macro can be used to delimit an unprotected
field in a template map (see Figure 3).

This parameter is not applicable to hard-copy devices
(printers). If ATTRIB is coded, it is ignored.

‘ Attributes for labeled fields may be overriden at MAPOUT time via
the symbolic map. See also the Override Table at the end of this
Appendix.

91

Appendix A.1 Map Definitions MMU Macros
FIELD FIELD

COND=ENTERED
if specified, the application program is only notified whether or
not the field was entered. FORMAT and INITIAL values may be
omitted. If FORMAT is coded, this option requires 1li=1 to be
specified. The field type defaults to C for the symbolic map.
For input mapping with light pens, the field must be surrounded
by three null positions (see the IBM 3270 programming manual).

FORMAT
defines the field size and format type.

1x
a required subparameter (except if implied by INITIAL value
coding), specifies, in bytes, the maximum external field size

up to 255 positions, or device 1line length (whichever is
smaller).

1i
specifies, in bytes, the internal field size as represented
in the symbolic map. If 1i is not coded, 1li is assumed to be
equal to 1lx. Or, if type is specified as F, H, or B (see
Figure 15), 1li may be omitted and defaults to 4, 2 or 1

respectively. 1i is required for packed decimal fields (type
PD).

type
represents the form of the internal field. The possible
codes for type are listed in Figure 15.

==;;;Z===::::::;;;:::::::::::::::=;Z;i;;;=====;;:::z::::;F:;izzz;;;====1
Code of Field Allowed Defaults $

==55=====:S§§§233322552f===:====1===i;:=========§Z;Z=========f;:====:===
(20 | zoned-decimal | e | x| e
(¢ | fulleord binary | o | W T e
EE halfword binary | ¢ e | 2 1 e T
N binary | °o B 7 7o 1
¢ | character (alphameric)| T
W | ESMO respomse | | T |
s | SQ;;;SEQ;';&};;';{;;;% """"""""" x |
ONTL | logical control T o T

character

Figure 15. FORMAT Parameter Type Values

92

C

Appendix A.1 Map Definitions MMU Macros

FIELD

Sn

If

FIELD

If type is not coded, the form of the internal field defaults
to C (character). Type codes F and H (fullword and halfword
binary) do not cause alignment of the data field. They are
used as shorthand codes for converted binary fields of
lengths 4 and 2, respectively. F and H type codes cause
generation of fields in the symbolic map with the appropriate
language definition for a computation field. PL/1 users
should not use a B type code to define a binary field. COBOL
and PL/1 users may not override the default internal lengths
of F, H, and B type fields. A N field must have an external
length of 3 and an internal length of 1. The CNTL type is
only valid for hard copy devices (ignored for 3270 CRTs and
Dataspeed 40 terminals). For this type, the external length
must be specified, even if an INITIAL value is coded.

represents a scaling factor where n specifies a decimal
number indicating the number of decimal positions that may be
edited with certain types of data. Refer to Figure 15 for
applicable types. The default scale value is SO.

For example, PDS2 specifies packed decimal with 2 digits to
the right of the decimal point. If no scaling factor is
specified, no decimal point will appear in the output field.
See the discussion of field conversion in Chapter 2 for
decimal input considerations.

A dollar sign preceding certain type codes (see Figure 15)
causes a floating dollar sign to be inserted immediately
preceding the significant output field data. For example,
$PDS2 specifies a packed-decimal field with two digits to the
right of the decimal point, and has a leading dollar sign
inserted on output mapping.

a $§ or Sn is specified for a numeric output field, the

external field length must allow for the dollar sign and the decimal
point, also a trailing minus sign if the field might be negative.

Default values and special uses for the FORMAT parameter are the

following:
Ez===========z====zz=zf========z==z======x
RELPOS FORMAT T
======;;;=============:=:=?iiiié;=====
CURSOR (2,2,H)
VERB (4,4,C)

93

Append
FIELD

SPR 216 2/83

ix A.1 Map Definitions MMU Macros
FIELD

If the INITIAL parameter is coded, and FORMAT is omitted, then
FORMAT is assumed to have both 1x and 1li equal to the length of
the initial data and have a type code of C. If internal
conversion is desired, then FORMAT must be specified.

INITIAL

where:

defines an initial value character string enclosed in quotes, or
one to ten initial data-strings defined as Assembler Language
constants within a sublist, or one or more 1logical control
characters to insert in this field. It 1is used to define
headings and other constant data. If the total length of the
initial data supplied does not equal the 1lx indicated in the
FORMAT parameter, the initial data will be padded or truncated
and justified according to the JUSTIFY parameter.

The format of a data-string is:

((mm){c}(Lnn))'string’
{x}

® C specifies a character data-string; that is, C'NAME'. Note
that INITIAL=C'NAME' and INITIAL='NAME' are equivalent.

@ X specifies a hexadecimal data-string (hex values must be
coded in pairs); that is, X'0105'.

® mm--is a repetition factor for the data-string; that is,
3C'0' generates 3 zeros and is the same as C'000'.

® Lnn--is the length of the data-string if not implied by the
value enclosed in quotes; that is, CL3'0' generates a zero
followed by two trailing blanks. This form is used when
low-order trailing blanks are desired.

If FORMAT is not coded, 1lx and 1li default to the (combined)
length of the data-string(s) and the type defaults to C. (Maximum
total length is 255.) If 1li is specified, it may not be shorter
than the length of the initial data.

To specify a control character, code the 1logical control
character name to be inserted. This name must be defined via the
symbol coded for a CNTLCHR macro for the device in the Device
Descriptor Table. This is optional for a named field. FORMAT
must be coded specifying an external length, and type of CNIL:

FIELD RELPOS=(1,1),ATTRIB=SUPR,FORMAT=(1,,CNTL), INITIAL=FF
generates a form feed for the top of a printed page.

94

<

Appendix A.1 Map Definitions MMU Macros
FIELD FIELD

L JUSTIFY

indicates whether the field should be right- or left-justified
and padded with zeros or blanks (ignored on input for numeric
fields which are always right-justified zero-padded).

L If this parameter is omitted and FORMAT implies or specifies
character format, the field is left-justified and
blank-padded. If FRMAT indicates a numeric field, the field
is right-justified and zero-filled.

If only LEFT is coded, the default fill character is BLANK.
® If only RIGHT is coded, the default fill character is ZERO.

® If only BLANK is coded, left-justification is the default; if
only ZERO is coded, right-justification is the default.

If the value coded for the INITIAL parameter has leading blanks

and the FORMAT type defaults to C, JUSTIFY=(RIGHT,BLANK) must be
coded.

If field type code is CB, no Jjustification is implied or
performed. Leading blanks are valid. Do not code JUSTIFY for CB
option (ignored). If 1i is smaller than 1lx, low order blank
padding is supplied on output, low order truncation occurs on

| - input.

OCCURS
indicates that the field is consecutively repeated a maximum of n
times within the 1line (non-null segment). It is coded as a
decimal number. The default is 1.

For fields defined with RELPOS=AID or VERB or CURSOR, OCCURS is
forced to 1.

When RELPOS=relative-position or (row,column) is coded, to locate
the second (or nth) occurrence of a field, the correct field
location 1is incremented by 1x as specified in the FORMAT
parameter or by 1lx + 1 if an attribute character occupies a
buffer position.

For input mapping, the appearance of consecutive field
separators, or the absence of the next expected SBA sequence or
keyword, indicates the termination of the repetitive sequence.
Thus, if a data field or segment is defined as occurring five
times and data is entered for the first and third occurences, the
data for that third field or line will be ignored. For output
mapping, the appearance of blanks (unless field type is CB) or
nulls (all types) in a field iteration terminates the repetitive
sequence,

95

Appendix A.1 Map Definitions MMU Macros

FIELD

RELPOS

FIELD

The coding and meaning of this parameter is dependent on the type
of segment and field under definition, as follows:

For non-null (unstructured) segments (applies to input maps
only); RELPOS indicates the type of field processing:

-- FIXED specifies fixed length processing. If specified,
all fields within the segment (map) must be fixed format,
and must be contiguous (no undefined fields).

-- POS specifies positional processing. If specified, the
fields must be delimited by the character defined as the
fs subparameter of the SEGMENT macro, DELIM parameter.
Omission of a positional data field must be denoted with
an extra delimiter character.

-- 'keyword' specifies keyword processing. The value must
be coded as a one-to-eight char=cter keyword enclosed in
quotes and is used to identify the field. If specified,
then the corresponding variable data field value must be
denoted by fb and fe separator characters as specified
for the SEGMENT macro DELIM parameter,

-- POS and 'keyword' fields within the segment may be
intermixed as 1long as field omission and occurrance
restrictions detailed above are observed.

For null (structured or unstructured) segments, or when no
SEGMENT macro 1is coded, RELPOS is used to indicate the
relative position of the field within the map, not the screen
or page. It is coded as one of the following:

-- relative-position--coded as a decimal number to indicate
the field displacement from the beginning of the map, and
is based on map width and the line number within the map,
relative to 1. (See also MAP macro, START parameter.)

— (row, column)--coded as a row and column pair relative to
(1,1).

-- for IBM 3270 (RT devices, the relative position is for
the data field, not the preceding attribute position.

-- for other CRT (byte positionable) devices, the insertion
of the 1line control characters (NL, CRLF) for correct
line positioning, and of blank spacing for correct field
positioning within the line, is automatiec.

96

C

Appendix A.1
FIELD

'] For

SPR 216 2/83

Map Definitions MMU Macros
FIELD

null unstructured segments only, RELPOS can have a

special meaning which requires that the FIELD macro be coded

at the beginning of the map (no preceding SEGMENT macro).
Such fields are:

RELPOS=AID specifies that the IBM 3270 Attention
Identification byte should be supplied. It applies to
input mapping only, and requires that HDR3270=YES be
specified for the associated verb (BTVERB macro in
Intercomm Front End Verb Table). The field must be
named. No other parameters may be coded.

RELPOS=CURSOR specifies the relative position of the
cursor address, as a two-byte binary (halfword) value.
The field may be named. No other parameters except
INITIAL may be coded. If coded, INITIAL must be in the
form X'nnnn' (leading zeros required); where nnnn is the
hexadecimal conversion (halfword) of the decimal relative
position of the cursor (relative to 1). For example, if
the cursor is desired at row 5, column 20 (RELPOS of
5,20), the decimal equivalent is 339, and the hexadecimal
representation is X'0153'. See IBM's 3270 Information
Display System Reference Summary. For input mapping, if

the cursor position is significant, the field must be
named, and HDR3270=YES must be coded for the associated
BTVERB macro (see coding for AID above, and Appendix C).

RELPOS=VERB specifies the message verb should be placed
in this field. The defined field will have an output
attribute of "unprotected, alphanumeric, normal
intensity," which cannot be overridden (do not code
ATTRIB parameter). The field may be named; no other
parameter except INITIAL may be coded. Internally, the
RELPOS used for output mapping is (1,2).

97

Appendix A.1 Map Definitions MMU Macros
MAP MAP

MAP--Define a Map Within a MAPGROUP

The MAP macro names a map within a map group., The name is
referenced as a parameter to the MMJ service routines. The MAP macro
also defines general map characteristics, such as size, starting and
page position, and header/trailer report data.

The form of the MAP macro is as follows:

symbol MAP SIZE=(length,width)

[,BASED={NO }
{YES}

[,JUSTIF Y= ({RIGHT}(,{HEAD }])]
{LEFT } {TRALL}

[,REDEFIN={YES}]
{No }

[,START=({row },{column})]
{SAME} {NEXT }
{NEXT} {SAME }

[,USAGE={HEADER }]
{TRAILER}
{NORMAL }

[,ZONE={YES}]
{NO }

symbol

(required parameter) is used to name the map. The name must be
from one-to-seven alphanumeric characters and must be wunigue
within a map group. The initial character must be alphabetic.

BASED

applies only to symbolic maps generated for PL/1, and specifies
whether the BASED parameter is desired (YES) on the DCL statement
for the map. If it is not desired, code NO. The default is YES.

98

SPR 216 2/83

Appendix A.1 Map Definitions MMU Macros
MAP MAP
JUSTIFY

describes the map position in relation to the device page: LEFT
or RIGHT describes the map margin alignment and indicates that
the side margin begins at the column specified (implied) by the
START parameter. RIGHT is for output mapping only, and indicates
that the entire map is for the right side of the device page (and
is probably used in conjunction with another map specifying
JUSTIFY=LEFT). RIGHT 1is not supported for input mapping or
string devices. The default is LEFT. (Map width is controlled
by the SIZE parameter.)

HEAD or TRAIL are only valid for output mapping and specify
whether this map describes a header (at the top of the page) or
trailer (at the bottom of the page) data area. HEAD and TRAIL
may not be used for string mapping. HEAD indicates that the map
is to be the first map of a new device page (physical message).
This forces any previously mapped page to be considered complete,
and cancels a page overflow condition (if it exists). Only one
of the maps used for a device page may specify HEAD.

TRAIL specifies that the map is to be positioned at the bottom of
the device page. More than one trailer map may be used per page
as long as they do not overlap previously mapped data (each
other) and do not extend beyond the last line of the device page

b (as specified via the MAPGROUP PAGESZ parameter, or if omitted,
implied via the device buffer size, or number of lines per device
page). At map assembly time, if any map in the map group has
specified TRAIL, an area is reserved at the bottom of the device
page for trailer data. The size of the reserved area 1s based on
the longest trailer map of all trailer maps specified within the
map group. The 1longest trailer map must start at the lowest
numbered row desired for any trailer map, and must end at the
bottom (highest numbered row) of the device page. If no single
trailer map qualifies, then a dummy trailer map must be coded to
reserve that space. One or more TRAIL maps may be used after a
page overflow condition arises, but does not terminate that
condition (terminated by mapping a non-TRAIL map).

When HEAD and TRAIL maps are defined for output mapping, the
number of rows available in the device page for other maps 1is
reduced by the size of the header used for that page, and the
trailer map area defined for the map group.

If neither HEAD nor TRAIL is specified, the data is mapped at the
position indicated (implied) by the START parameter. Therefore,
if this map would overlay previously mapped data, and a page
overflow condition does not exist, then the previous page is
considered complete; this map starts (or constitutes) the next
page. Otherwise, a map overflow condition code will be returned,
mapping will not occur. See also MCW options for MAPOUT in
k Appendix B.

99

SPR 216 2/83

Appendix A.1 Map Definitions MMU Macros
MAP MAP
REDEFIN

SIZE

START

specifies whether this map area 'redefines' the immediately
preceding map area, and applies to Assembler (generates an ORG
statement) or COBOL (generates a REDEFINES statement) symbolic
map generation only (ignored if PL/1). YES requests
redefinition, NO (default) suppresses it. Generally it should
not be used to redefine a header map with a normal map, nor a
normal map with a trailer map, that 1is, the map area being
redefined should be of the same type. For COBOL, the previous
(first) map in the redefine structure must be the largest map
(contain the most and the longest named fields). If the last map
in the group specifies redefine, the next working storage value
must be specified at the 02 or 03 group level for COBOL. For
Assembler, an ORG is automatically generated to reposition the
location counter at the end of the longest map area.

specifies the size of the map in 1length (rows) and width
(columns), respectively. The number of columns may not exceed
the device line size. The values for length and width must be in
the range of 1-240 inclusive. This parameter is required.

specifies the starting position of the map on a device page or
within a character string.

The first value for START indicates the starting row as follows:

row--a user-specified value indicating row number where wmapping

begins. It is coded as a decimal number. (Required for HEAD and
TRAIL justified maps.)

SAME--specifies that mapping begins on the same row as the
previous map. If current map does not fit on the same row (not
enough columns left), a map overlay condition results (see
JUSTIFY parameter).

NEXT--specifies that mapping proceeds at the next available row.
If a previous map ends with one or more blank 1lines and the
current map specifies NEXT, the next row will proceed at the end
of those blank lines. NEXT is the default starting row.

The second value for the start parameter specifies the starting
column, as follows:

@ column--a user-specified value indicating the column number
where mapping begins. It is coded as a decimal number
(usually 1). (Required for HEAD and TRAIL justified maps.)

Q@ SAME--indicates that the map has the same left/right margin
as the previous map. (Default)

100

C

SPR 216 2/83

Appendix A.1 Map Definitions MMU Macros

MAP

USAGE

ZONE

MAP

® NEXT--mapping will begin at the next available column to the

right of the last mapped position of the previous map, if
space 1is available. Otherwise, a map overlay condition
results (see JUSTIFY parameter).

The default is START=(NEXT,SAME). If the default is used, and a
page overflow condition exists, and the map is not a trailer map,
then mapping will start at row 1, column 1.

specifies for output mapping only, whether the map is to serve as
a HEADER, TRAILER or a NORMAL map. It is generally used in
conjunction with unbuffered (infinite row) devices, or string
mapping. HEADER and NORMAL force completion of the previous page
if a page overflow condition is in effect. If USAGE=HEADER is
specified, and START=(row,column) is not defined, it is a logical
header map. That is, it could be used within a page for a form
feed or new record indication, and/or title reiteration, for an
'infinite-row' or data collection device. However, 1if an
overflow condition exists, START will default to (1,1). The
default is NORMAL.

When TRAILER is specified, it allows the map to be used during
page overflow processing (if trailer space 1is available - see
JUSTIFY parameter). If JUSTIFY=(,TRAIL) is not coded for this
map, then the START parameter may be omitted. That is, this map
can be used to insert a totals line in the middle, or at the end,
of a device page, as applicable. If no map in the map group
specifies JUSTIFY=(,TRAIL), then a USAGE=TRAILER map can cause a
device (page) overflow condition. Therefore, subsystem logic
and/or map definitions must insure against that condition. The
maximum device rows for an infinite row or string device is
controlled by coding the MAXROWS parameter on the MMUVT macro,
but can be limited by the PAGESZ parameter of the MAPGROUP
macro. JSee also MAPOUT paging options in Appendix B.

indicates whether or not overpunched signs are to be accepted in
numeric input fields. A code of YES specifies they are to be

accepted; NO specifies rejection of overpunched signs as
nonnumeric data. The default is NO.

101

SPR 216 2/83

Appendix A.1 Map Definitions MMU Macros
MAPGROUP MAPGROUP

MAPGROUP--Name the Map Group

The MAPGROUP macro names the map group and defines the general
characteristics of the maps contained in the group. The map group name
is referenced as a parameter to the MMU service routines. The map
group name cannot exceed seven characters, because a suffix character
is appended by MMU to indicate applicable devices for the MAPGROUP.

The form of the MAPGROUP macro is as follows:

symbol MAPGROUP General Specifications:
(DEVICE={devtype-name})
{STRING }
{ALL }
(,MODE={INPUT })
{ouTPUT}
{I/0 1}

Qutput Message Specifications:

(,CNTLCHR=1logical-control-char-name)

: (, COMMAND=10gical-command-char-name)
(,PAGESZ=(rows, columns))

| Assembler Language Subsystems:

(,PGMRES={YES})
{no }

symbol
(required parameter) is used to name the map group. The name
must be from 1 to 7 alphanumeric characters in length. The
initial character must be alphabetic. Map group names must be
unique within an installation's source and load module Map
Definition Files, and are also used for the source and load
module names.

102

SPR 216 2/83

Appendix A.1 Map Definitions MMU Macros
MAPGROUP Mapgroup
CNTLCHR

names a logical control character (WCC for IBM 3270 system).
This causes the device-appropriate physical code to be inserted
between the command and the output message text prior to
transmission. If CNTLCHR is not coded, the default value
specified in the DEFAULTS macro is used, or a logical code may be
specified via a MAPEND MCW option. For output messages only.
(See the CNTLCHR macro and the Override Table at the end of this
Appendix, and LOGCHARS and control character code listings at the
end of Appendix C.)

COMMAND

specifies the 1logical command character that should be prefixed
to the output message. It overrides any value specified in the
DEFAULTS macro for the device, and can be overridden by a logical
command specified via a MAPEND MCW option. (See also COMMAND
macro and the Override Table at the end of this Appendix, and
LOGCHARS listing at the end of Appendix C.)

DEVICE
specifies the terminal device for which this map group can be

used and causes a unique character to be suffixed to the internal
MAPGROUP name. DEVICE is to be coded as follows:

‘ © ALL--the map group can be used by any MMU-supported device.
It generates a blank suffix character. (Default)

® DS40--for Teletype Dataspeed 40 Model 1 and 2 terminals. It
generates an internal suffix of T.

® IBM3270--for the IBM 3270 Video Display (CRT) terminal and
compatible terminals. It generates a blank internal suffix.

©® IBM3270P--for the IBM 3284, 3286, -etc. printers. It
generates an internal suffix of U.

@ IBM2260--for IBM 2260 CRTs (local and remote). It generates
an internal suffix of F.

® devtype-name: code TELETYPE or IBM27401 or IBM27402, etc.
for other device types, as appropriate. The internal suffix
depends on the type.

® STRING--for data string mapping only. It generates an
internal suffix of X.

103

Append
MAPGRO

MODE

PAGESZ

SPR 216 . 3

ix A.1 Map Definitions MMU Macros
UpP MAPGROUP

specifies the processing mode of the maps within the map group:
INPUT-~is used to generate maps for input use only.
OUTPUT--generates maps for output use only.

I/0--generates input/output maps. The default is I/0.

specifies a maximum device page size in row (length) and column
(width) notation for infinite row devices when mapping output
messages. This specification overrides any implied page size
from the DEVICE/DVMODIFY macro specifications for the terminal in
the Intercomm Back End Station and Device Tables. The page width
must be within the physical limits of the device. A maximum of
255 may be coded for the row and column values. For buffered CRT
devices, the page size (rows times columns) may not be greater
than the maximum device buffer size. (See also Appendix C
considerations for 3270 series devices).

PGMRES

specifies, for Assembler Language programs only, whether or not
the map group is to be assembled directly into the application
program. A code of YES indicates that the macros are to be
assembled in the application program. PGMRES=YES causes the MMU
macros to suppress generation of CSECT statements and to prefix
all macro names (names of MAPGROUP, MAP, etc.) with a dollar
sign, which requires all names be 7 characters or less. A code
of NO indicates the macros wiil not be assembled into the
application program. The default is NO,.

104

<

Appendix A.1 Map Definitions MMU Macros
SEGMENT SEGMENT

SEGMENT--Define a Segment of a Map

The SEGMENT macro defines a segment of a map. The segment can
consist of one or more fields that are explicitly or impliecitly
defined. Fields are explicitly defined via a null segment. Null
segments are used to specify fields in relative position (template
screen) format. Fields are implicitly defined via a non-null segment.
Non-null segments are used to specify input data streams in fixed,
positional or keyword field format.

Segments can be structured (labeled) or unstructured
(unlabeled). A structured or repeating segment must be delimited by
another SEGMENT macro followed by one or more named fields if the
segment falls in the middle of the map, or by a MAP or ENDGROUP macro
if the repeating or structured segment is at the end of the map.

For non-null (unstructured) segments, to implicitly define fields
in positional, keyword or fixed format for input maps only, the form of
the segment macro is as follows:

(blank) SEGMENT RELPOS={relative-position}
{(row,column) }

, LENGTH=ma x-number-of-chars-in-segment
[,DELIM=(fs[,fb[,fe]l)]

[,0CCRS= {number-of-repeating-segments}]
{1

For null (unstructured) segments, to explicitly define unique
individual fields in relative position format for input, output, or I/0
maps, the form of the SEGMENT macro is as follows:

(blank) SEGMENT [0CCURS={number-of-repeating-segnents}]
{1 }

To define a structured segment for contiguous fields in relative
position format for input, output or I/0 maps, the form of the SEGMENT
macro is as follows:

label SEGMENT [OCCURS={number-of-repeating-segments}]
{1

105

SPR 216 2/83

Appendix A.1 Map Definitions MMU Macros
SEGMENT SEGMENT
label

DELIM

is used only to define structured segments, and is a one-to-seven
character alphameric value which must start with an alphabetic
character.

defines the delimiters to be used in positional and/or keyword
processing as follows:

@ fs i1s the positional field separator character.
@ fb is the keyword field begin character.

® fe is the keyword field end character.

It is coded as an Assembler Language one-byte hexadecimal or
character constant, for example X'6B' or C','. If not coded, the
delimiters specified in the DEFAULTS macro for the device are
used or, if defaults are not coded, the delimiters specified in
the MMU Vector Table are used. (See the Override Table at the
end of this Appendix.)

LENGTH

is a required parameter for non-null segments for input mapping
of fixed, positional or keyword data. The LENGTH parameter
represents the maximum physical 1length of the segment in
characters, as entered from the terminal (including delimiters
and keywords).

OCCURS

specifies the maximum number of consecutive occurrences of the
segment in the map. Each occurrence of the segment must start on
a new line. OCCURS is coded as a decimal number. The default
is 1.

RELPOS

is required for input mapping only when used for non-null
segments with fixed, positional or keyword format. It is not
valid for output mapping. RELPOS defines the position of the
segment relative to the start of the map. It is coded in one of
two ways:

1. As a decimal number, relative to one, which represents the
number of previously defined rows times the line length, or 1
if the first SEGMENT in the map.

2. As a row and column number pair (row,column) relative to 1
(first SEGMENT is (1,1)).

If a VERB field is defined, the first non-null SEGMENT macro is
coded after that named field, and has a RELPOS of 6 or (1,6).

106

Appendix A.2 Device Descriptor Table MMU Macros
ATTRIB ATTRIB

ATTRIB--Relate Logical Attribute Name to Physical Code

The ATTRIB macro is used to relate the logical name of an
attribute to the logical and physical codes for the device. It can
also be used to relate the logical attribute code under definition to a
previously defined 1logical code; or, all attribute values for the
device type under definition can be referenced to a previously defined
device., The end of the ATTRIB macro definitions must be delimited by a
blank ATTRIB macro with the END parameter. The ATTRIB macros are coded
in conjunction with the COMMAND and CNTLQGHR macros in the Device
Description Table and they are all subordinate to the DEFINE and
DEFAULTS macros for the corresponding device.

To relate a logical name and code to a physical code, the form of
the ATTRIB, COMMAND and CNTLCGHR macros is as follows:

[symbol] [{ATTRIB } LOGCODE= {nnn }
{cOMMAND} {X'hh' }
{CNTL CHR} {previously-defined-1logcode-symbol}
PHYSCDE-‘-({mmm }[,---])
{C'e }
{X*hn' }
{SUPPRESS}
{ name }
[,COMMENT="' comment-text']

To relate all attributes, commands or control characters for the
device type under definition to a previously defined device, the form
of the ATTRIB, COMMAND, or CNTLCHR macro is as follows:

(blank) |{ATTRIB } SAMEAS=device-t ype-name
{COMMAND}
{CNTLCHR}

To end the macro definitions for each category, the form of the
ATTRIB, COMMAND, or CNTLCHR macro is as follows:

(blank) [{ATTRIB } END
{coMMAND}
{CNTLCHR}

107

Appendix A.2 Device Descriptor Table MMU Macros
ATTRIB ATTRIB

symbol
is a one-to-eight-character logical name used to define a logical
code when it is expressed as a decimal or hexadecimal value.

COMMENT
is a character constant to be used as a descriptive comment
following the macro code in both the assembled and symbolic forms
of the Device Descriptor Table. It must be coded as a 1 to 30
character field enclosed in quotes.

END
is used to delimit the last macro of a category, that is, the
last ATTRIB, COMMAND or CNTLCHR macro definition. A symbol must
not be coded when the END parameter is used.

LO GCODE

specifies the logical code associated with the logical name. It
is coded as a single value in one of the following forms:

® nnn is coded as a decimal number in the range of 1 to 255
inclusive. The values 0 and 64 are reserved and must not be
used.

® X'hh' is coded as a hexadecimal constant in the range of
X'01' to X'FF' inclusive. The values X'00' and X'U0' are
reserved and must not be used.

® previously-defined-logcode-symbol is coded as the character
name (symbol) of a previously defined 1logcode, if the
corresponding physical code is for a different device. For
example, if New Line is defined for one device as:

NL CNTLCHR LOGCODE=1,PHYSCDE=X'15"
It can be referenced for another device as follows:

CNTLCHR LOGCODE=NL,PHYSCDE=X'0D25"'

In this latter case a symbol must not be coded for the macro.

108

Appendix A.2 Device Descriptor Table MMU Macros

ATTRIB

C

PHYSCDE

ATTRIB

specifies the physical code associated with the logical code. It
is coded as a single value or in a sublist with the following
values:

SAMEAS

nnn is coded as a decimal number in the range of 1 to 255
inclusive. For example PHYSCDE=64 defines a blank.

C'e' 1s coded as a character type constant. For example,
PHYSCDE=C' ' generates a blank.

X'hh' is coded as a hexadecimal type assembler constant in
the range of X'01' to X'FF'. For example, PHYSCDE=X'40'
generates a blank.

name may be coded as follows:

-- ESC (escape--X'27")

-- SF (start field--X'1D') ATTRIB macro only

-- SC (start control--X'0D') ATTRIB macro only.

These names must always be in a sublist, and paired with a
physical code value.

Additionally:

-- DC2 (start printer--X'12') CNTLCHR macro only
-- BEL (ring alarm--X'2F') CNTLCHR macro only

may be coded alone (not in a sublist), or in combination with
other values.

SUPPRESS is coded to suppress generation of a physical code
for the corresponding logical code name.

specifies that the attributes, commands or control characters for
this device are to be the same as that of a specific previously
defined device, The symbol in the macro definition must not be
coded. The possible device-type-names are defined under the
DEFINE macro FORDEV parameter (ALL may not be coded).

109

Appendix A.2 Device Descriptor Table MMU Macros
CNTL CHR CNTL CHR

CNTLCHR--Relate Logical Control Character Name to Physical Code

The CNTLCHR macro is used to relate the logical name of a control
character to the logical and physical codes for the device. A logical
control character code under definition can be related to a previously
defined logical code. Alternatively, all control character values for
the device type under definition can be related to a previously defined
device. The end of the CNTLCHR macro definitions must be delimited by
a blank CNTLCHR macro with the END parameter.

The CNTLCHR macros are coded in conjunction with, and contain the

same parameters as, the ATTRIB and COMMAND macros. Refer to the ATTRIB
macro for coding forms and parameters.

110

Appendix A.2 Device Descriptor Table MMU Macros
COMMAND COMMAND

COMMAND--Relate Logical Command Name to Physical Code

The COMMAND macro is used to relate the logical name of a command
character to the logical and physical codes for the device. A logiecal
code under definition can be related to a previously defined logical
code, Alternatively, all command values for the device type under
definition can be related to a previously defined device. The end of
the COMMAND macro definitions must be delimited by a blank COMMAND
macro with the END parameter.

The COMMAND macros are coded in conjunction with, and contain the

same parameters as, the ATTRIB and CNTLCHR macros. Refer to the ATTRIB
macro for coding forms and parameters.

111

Appendix A.2 Device Descriptor Table MMU Macros
DEFAULTS DEFAULTS

DEFAULTS--Define Physical Device Default Characters

The DEFAULTS macro is used to define the physical default
characters for a specified device and is to be coded immediately
following the DEFINE macro for the device in the MMU Device Descriptor
Table. The form of the DEFAULTS macro is as follows:

[symbol] | DEFAULTS | [{ATTRIB }=({nnn M,{nomn },...D)]

{coMMAND} {C'c' } {Cte' }

{CNTL®HR} {X'hh' } {X'hh' }
{name }
{SUPPRESS}

[,DELIM=([fs][,fbl[,fe])]

ATTRIB

COMMAND

CNTLCHR
specify the default physical attribute (ATTRIB), command
(COMMAND) and control (CNTLCHR) characters to be used for the
device under definition if applicable. It is coded as a single
value or in a sublist as follows:

® nnn is coded as a decimal number in the range of 1 to 255,
ineclusive.

® C'c' is coded as a character type constant.

® X'hh' is coded as a hexadecimal type Assembler constant in
the range of X'01' to X'FF'.

® name may be coded as follows:
-- SF (start field--X'1D') ATTRIB only
-- ESC (escape—X'27') ATTRIB and CNTLCHR only
-- SC (start control--X'0D') ATTRIB only
The name may be coded as the first of a pair of sublist
values. For example, ATTRIB=(X'1D',X'40') or ATTRIB=(SF,C'
') or ATTRIB=(29,64) may be used to define a default
unprotected/alphanumeric attribute sequence for an IBM 2270

CRT. A name must always be in a sublist and followed by a
second value.

112

C

SPR 216 2/83

Appendix A.2 Device Descriptor Table MMU Macros
DEFAULTS DEFAULTS

DELIM

® SUPPRESS is <coded to suppress generation of a default
physical code for the device; recommended if an ATTRIB,
COMMAND, or CNTLCHR value is not applicable for the device.
However, a value may be supplied by the application program
during output mapping.

The number of values in a sublist must be equal to the number of
physical codes specified for the corresponding parameter from the
DEFINE macro, unless a variable number is defined. 1In this case
the number of wvalues may be less than the maximum specified.
Also see the Override Table at the end of this Appendix.

specifies the default positional field separator, keyword field
begin, and keyword field end characters. (See SEGMENT macro
DELIM parameter for coding rules.) If not specified, the MMU
Vector Table system-wide values are used. Some or all of these
default delimiters for the device may be overridden by the
SEGMENT macro DELIM coding for the referenced MAP during input
mapping. If neither system-wide, nor device-dependent, default
values are defined, then specific values must be coded on each
non-null SEGMENT macro for each input map with positional or
keyword format that might be wused for the device wunder
definition. See the Override Table at the end of this Appendix.

113

SPR 216 2/83

Appendix A.2 Device Descriptor Table MMU Macros
DEFINE DEFINE
DEFINE -- Begin Device Definition Characteristics

The DEFINE macro begins the definition of all device-dependent
characteristics for a specific device. It also defines the number of
physical characters required to represent a logical character code for
the subordinate ATTRIB, COMMAND, and CNTLCHR macros. For example, an
attribute byte for an IBM 3270 CRT must be preceded by a Start-field
(SF) character; therefore, the number of physical characters needed to
represent a 3270 attribute is always 2.

(symbol) | DEFINE FORDEV=device-type-name

(,NATRCHR={n })
{(VAR,n)}
{1 }

(,NCMDCHR={n })
{(VAR,n)}
{1 }

(,NCTLCHR={n })
{(VAR,n)}
{1 }

FORDEV

identifies the device for which this table is defined. This
parameter 1s required. The possible device-type-names are listed
under the description of the STATION macro IOCODE parameter in
Basic System Macros.

Code STRING for data string mapping only. ALL may not be coded.

114

Appendix A.2 Device Descriptor Table MMU Macros
DEFINE DEFINE

NATRCHR

N CMDCHR

NCTL CHR
specify the maximum number of physical characters required to
represent a logical attribute (NATRCHR), command (NCMDCHR) or
control (NCTLCGHR) character value, respectively, and that are
subsequently to be defined via the ATTRIB, COMMAND and/or CNTLCHR
macros. It is coded in one of the following forms:

® n is coded as a fixed decimal number if the number of
physical characters is constant. For example NATRCHR=2 is
coded for IBM 3270 CRT attributes. The default is 1. The
maximum is 255.

® (VAR,n) sublist is coded if the number of physical characters
for the requested logical value varies:

VAR indicates variable

n is coded as a decimal number, which specifies the
maximum number of physical characters that may
subsequently be defined. The maximum value for n is
255.

For example, NATRCHR=(VAR,4) for the Dataspeed 40O Model 1 or
2 terminal ESC sequences.

115

Appendix A.3 MMU Vector Table MMU Macros
MMUVT MMUVT

MMUVT--Generate MMU Vector Table

The MMUVT macro is used to generate the system-wide MMU vector
table, This table contains information necessary to the operation of
MMU .

The form of the MMUVT macro is as follows:

(blank) MMUVT MAP DDN M= 1oadmap-S /F -ddname
,SYSDLM=(fs[,fb[,fel])
[,DEVICES= {device-name }]
{ (devi ce-name ,devi ce-name,...)}
{ALL

[,DSECT={YES}]
{NO }

[,MAXCOLS={max-number-of-colunns}]
{255 }

[,MA XROWS={ma x-number-of-rows}]
{255 }

[,MAXT YP= {max-number- field-t ypes}]
{9 }

[, OPMDDNM=out put-message-DD Q- ddname]

[,PAGDDNM:= { temporary-S /F -ddname}]
{INTSTORO }

DEVICES
specifies the device or devices supported in this version or
region (if a satellite region) of Intercomm. It is coded as
follows:
@ ALL specifies all devices are supported (default)
® device-name specifies a single device code

® (device-name,...) specifies a list of device codes

See MAPGROUP macro DEVICE parameter for possible values, If
omitted, a vector table supporting all devices will be generated.

116

C

Appendix A.3 MMU Vector Table MMU Macros
MMUVT MMUVT

DSECT

specifies whether or not the Vector Table DSECT is to be
generated., If YES is coded the DSECT is generated. If NO is
coded, a CSECT is generated. The default is NO.

MAP DDNM
specifies the ddname of the dedicated Store/Fetch data set for
the on-line map definitions. Code as INTST(Rx, where x is in the
range of 0 to 9, inclusive. This parameter is required.

MAXCOLS
specifies the maximum number of columns (or width) of a line for
a string device. It is coded as a decimal number in the range of
1 to 255, inclusive. The default is 255.

MA XROWS
specifies the maximum number of rows for a string or infinite row
device. It is coded as a decimal number in the range of 1 to
255, inclusive. The default is 255.

MAXT YP

specifies the maximum number of field types to be supported in
this version. The default is 9., See the FIELD macro.

Op MDDNM
specifies the ddname for the data set to contain DDQs created by
output mapping. The value coded for OPMDDNM must also be defined
in the DDQ Data Set Table., If OPMDDNM is not specified, the
default data set specified in the DDQDSTBL is used (see Dynamic
Data Queuing Facility).

PAGDINM
specifies the ddname of the temporary Store/Fetch data set in
which MAPOUT will place intermediate output pages (logical
messages). Code as INTSTORy, where y is in the range of 0 to 9,
inclusive, and y is not equal to the value coded for x in the
MAPDDNM parameter value. The default is INTSTORO.

SYSDLM

required parameter; specifies the system-wide default separator
characters used for processing positional and keyword fields.

® fs is the positiénal field separator character (should be the
system separator character).

® fb is the keyword field begin character (an equal sign is
usually used).

® fe is the keyword field end character (a semi-colon is often
used).

See the SEGMENT macro DELIM parameter for coding and
defaul t/overide rules.

17

Appendix A.l4 Override Table MMU Macros

A4 OVERRIDE TABLE

The following chart illustrates where default values for
attribute, control, command or delimiter specifications are defined and
how they may be overriden by other values via a dynamic (subsystem)
request or static macro coding for a specific map group. Override
specifications are from top (highest 1level) to bottom (lowest, or
default, level). See also the macro descriptions in this Appendix, the
service routine options described in Appendix B, and the specific
device restrictions and recommendations detailed in Appendix C for
further considerations on applying overrides.

= S S S-S S-S S S S S ST S oS- oS oSS SN SfECCSCSCSCSSCSCSCSCSCSCSfpICS=CSCSSSS=SCSS==SZg=Sz======z====9
Override by Attribute I Control r Command Delimiters
::::::::::::::::::::::::::::::::F:::::::::::::::::::::::::: E====z====2==2=9
Subsystem symbolic MCW MCW -
(service map: nameT byte U4 byte 3
routine) (MAPOUT) ¢ (MAPEND) (MAPEND)
________________________________ PSR SN SO
Map Definition
Macro FIELD MAP GROUP MAP GROUP SEGEMNT
(parameter) (ATTRIB) (CNTLCHR) (COMMAND) (DELIM)
DEFAULTS
Macro ATTRIB CNTL CHR COMMAND DELIM
Parameter
MMUVT
Macro - - - SYSDLM
Parameter '

NOTE: An attribute override by a subsystem applies only to
named fields; ignored if MCW requests initial-only
mapping. The control value specified via the DEFAULTS
macro may only be overriden either by the subsystem or
the MAPGROUP macro. If coded on the MAPGROUP macro, the
subsystem override is ignored. Any logical code
specified as an override must be originally defined for
the device in the Device Description Table by the
corresponding ATTRIB, COMMAND, or CNTLCHR macro, whether
explicitly (within the macro) or implicitly (via
ref erence to another macro or device). See Chapter 4,
Otherwise, the value specified on the DEFAULTS macro is
used; if none, a device-specific default coded in the DDM
(device-dependent module) is used. If not applicable for
a specific device, a SUPPRESS value should be coded on
the corresponding parameter of the DEFAULTS macro for the
device in use.

118

J

Appendix B

MMU SERVICE ROUTINES

This appendix contains the specifications for the MMU service
routines. If applicable, the MCW options, calling formats, return
codes, and input flag settings are given. Parameters passed to the
routines are described in detail in Chapter 3. The following MMU
service routines are described:

® MAPCLR
® MAPEND
® MAPFREE
® MAPIN

® MAPOUT
© MPRGE

119

SPR 216 2/83

Appendix B MMU Service Routines
MAPCLR MAPCLR

MAPCLR--Clear Symbolic I/O Map

MAPCLR 1is invoked prior to calling MAPOUT, referencing a map
previously referenced with a call to MAPIN, or for a symbolic map area
when multipage output is being produced. MAPCLR clears the entire
symbolic map area to nulls (low values) or optionally clears only the
data fields, or clears only the attribute fields, or sets the attribute
fields to 'SUPPRESS', or clears data fields and sets attributes to
'SUPPRESS', If more than one map was used, MAPCLR must be called for
each map.

MAPCLR options are selected by initializing the MCW with the
appropriate values shown in Figure 16, Byte 3 of the MCW area is
reserved. Language-dependent MAPCLR calling formats are given in
Figure 17. Parameters are described in Figure 18. Return codes
resulting from the call to MAPCLR are passed to the subsystem in byte 1
of the MCW, as shown in Figure 19.

Byte Option Code F - Meaning 1
e e e e e eSS C o oS-SS . S oS- T oo eSS oS- oSS CS S-S S-Sz ==-=======z======9
1 C'B' or X'00' Reserved for return code from MAPCLR.
2 C'B' or X'00' Fetch map
c'™!' Map provided; Assembler subsystems if

PGMRES=YES specified on MAPGROUP

3 C'p' or X'00' Reserved
___ -
4 C'B' or X'00' | Clear entire symbolic map area (default)
C'D!' Clear only data fields
C'A Clear only attribute fields
c's! Set all attributes to SUPPRESS
c'c! Set attributes to SUPPRESS and clear data
fields.
Figure 16. MAPCLR Options Specified by MCW
r::::::::::::ﬁ:::
Language Calling Sequence
COBOL CALL 'COBREENT' USING reentsbs-mapclr-code, mcwname,
groupname, mapname, textarea (,tid].
PL/1
Optimizer CALL MAPCLR(mcwname,groupname,mapname,textarea(,tid));
PL/1-F CALL PMIPL1l(reentsbs-mapclr-code,mcwname,
groupname ,mapname, textarea(,tid));
Assembler (symbol] CALL MAPCLR, (mcwname, groupname,mapname,
textarea(,tid)),VL(,MF:(E,list))

Figure 17. MAPCLR Calling Formats

120

<

Appendix B

MMU Service Routines

MAPCLR MAPCLR
::::::::::::::::::1::q
Parameter Meaning
S+ E S IS FF E S S E IS E S S FF S P R 3 S S F F - E F P X P S F X F R S P E S F R P F R P E R T Y
reentsbs-mapclr- |REENTSBS routine code for MAPCLR is 63
code
mewname The label of the area containing the fullword MCW.
groupname The label of the area containing the map group name.
For Assembler subsystems, if PGMRES=YES was coded on
the MAPGROUP macro, groupname is the address of the
MAPGROUP macro.
e e e e e e e
mapname The label of the area containing the map name.
For Assembler subsystems, if PGMRES=YES was coded on
the MAPGROUP macro, mapname is the address of
the MAP macro.
___ .
textarea The label of the symbolic map area which contains
the previously mapped message text. This label
must be the same name as coded on the referenced MAP,
—————————————————— B BT e b b R el L T - R P P
tid The label of the area containing the terminal-id (or
broadcast-group-name) to determine the map group
suffix code. This parameter may be omitted if the
referenced map group DEVICE parameter specified ALL
(required if called for string mapping).
Figure 18, MAPCLR Parameters
F:::::::::::::::: E e e eSS S S-S - SC T - oo oS- TS oS-SS CS=Z==Zz==DzZ=ZzZ==zZ====393
Status
Byte 1 Meaning
X+ L 3 2 - S E - A2 F S L F A S R E 3 L S F R F R A E R A L 0 A 4 -4
co! MAPCLR successful
c'9! MAPCLR called for a map with no named fields
(nothing to clear)
other MAPCLR unsuccessful (probably invalid map group name
or map name, or invalid MCW options)

Figure 19, MAPCLR Return Codes

121

Appendix B

MAPEND

MMU Service Routines
MAPEND

MAPEND--Prepare Mapped Output for Transmission

The MAPEND subroutine is called to prepare and transmit a fully

formatted message,

character string.

MAPEND options,
call, specify transmission and override requests.
option codes and their meanings.
for MAPEND are shown in Figure 21.
described in Figure 22.

that is,

a physical message, or to return a mapped

requested by initializing the MCW before the
Figure 20 1lists the
Language-dependent calling formats
The applicable parameters are
Return codes from MAPEND are shown in Figure

23. For Assembler subsystems, the binary equivalent of byte 1 is also
returned in Register 15, multiplied by 4.

C'B' or X'00°

C'B' or X'00°'

- s - - - - - - -

or X'nn'
or X'00'

or X'00'

P s " " - > - - - - - - - - - - - - - — — - — - —— — - — ——— ——— — - — - — - — -]

P o e om an et o e e o e v . - - T s Y Sm S T s s - . . wm . . = s s = em e = e e = e =y
R e e e e R e

2455 5SS S S S P M P R N R R N N N N T T T

Retrieve one physical output message; MAPEND must
be called repeatedly to obtain all messages.
Retrieve a mapped string. Invalid if page size
greater than device buffer size.

Process complete logical message and transmit all
generated physical messages (pages) to the Front
End via FESEND.

For hard copy output device: Process all output
messages onto a semipermanent DDQ and transmit a
FEQM to the Front End. If only one message is
created, it is transmitted without using a DDQ.
This option is not valid if the TID parameter

on the MAPOUT call specified a broadcast group.
Process logical message and pass all physical
messages to the Page Facility. This option is not
valid for devices with a buffer size smaller than
the mapped page, or for output-only devices. If
only one physical message results, it will be
passed directly to the Front End, as will the
first of multipage output.

Override COMMAND logical code

No override

Specify CNTLCHR logical code (if not coded via
MAPGROUP macro CNTLCHR parameter).

Use MAPGROUP specification, or if none:
default.

device

Figure

20. MAPEND Options Specified by MCW

122

9

9

Appendix B

MMU Service Routines

MAPEND MAPEND
S S S S I I T S S S S S-S FE - oS- C T TS oSS C DTS- ST CoC oSS ST ST TS EIC-T oIS oIS IZI=Z=S=S===z=======x
Language Calling Sequence
COBOL CALL 'COBREENT' USING reentsbs-mapend-code, mcbname,
msgarea, mcwname,
___ -
PL/1 CALL MAPEND (mcbname,msgarea ,mcwname);
Optimizer
PL/1-F CALL PMIPL1(reentsbs-mapend-code,mcbname,msgarea,
mcwname);
Assembler r [symbol] CALL MAPEND, (mcbname,{msgarea},mcwname),VL
{0 }
[,MF=(E,1list)]
Figure 21. MAPEND Calling Formats
===z z===2== F:::::'—‘::::::::::::::::::::::::::::::===:=:=:::=:::::=
Parameter Meaning
24+ F - F F I P T R
reent sbs-mapend- |REENTSBS routine code for MAPEND is 59,
code
mcbname The label of the 12 fullword Mapping Control Block
area,
msgarea The label of the area to contain the fully

formatted message if one of the transmit options is
not used; area must start with a valid Intercomm
message header, and be fullword aligned. The first
halfword must be initialized with the area length
(binary value). To calculate the 1length of
msgarea, use the following formula:

L2 + mse + text-area

where mse represents the length of message start
and ending control characters.

To calculate the text-area for devices with buffer
addressing:
el¥*cc

where el is the total external length of all fields
and cc is the number of addressing and control
characters per field (5 for an IBM 3270 CRT).

Figure 22.

MAPEND Parameters (Page 1 of 2)

123

Appendix B MMU Service Routines
MAPEND MAPEND

P R e

S S S S S S S S S S S S S S S S S S S SSSE T SSS=S=S=SS ===z zZ=S=z==Z==z===z=======1

To calculate the text-area for devices without
buffer addressing:

(d1%*ml)+1le+(fl¥cc)
where:
dl is length of a display line
ml is number of lines mapped

le is number of line-ending control characters

fl is total number of fields in the message
® cc is the number of control characters per field.J

If the second byte of the MCW is a Q, D, or P
J request, the msgarea parameter must be passed (code
0 if Assembler subsystem), but is ignored since no
output is returned to the calling subsystem. (See
sample programs at end of Chapter 3.)

If the second byte of the MCW is C'¥' or X'00' and
the calling subsystem is an Assembler sSubsystem,
then msgarea may be 0, which causes MAPEND to place
the address of the output message area (or string)
in the msgarea field.

mcwname The label of the area containing the fullword Map
Control Word.

Figure 22. MAPEND Parameters (Page 2 of 2)

For detailed MAPEND return codes listed in Figure 23, that are
passed from external facilities, see Store/Fetch Facility, Page
Facility, and/or the Assembler Language Programmers Guide. Values
defined as X'nn' are those defined for an Assembler Language program.

124

Appendix B

MMU Service Routines

MAPEND MAPEND
F::::::::: ==2S=Z===3======= ===========:============:::::::::::::::::::::'—ﬁ

Byte 1 |Byte 2 |Byte 3 Meaning

cro! Successful, message retrieved, this is not theg
last physical message (option C'¥' or X'00').

_________________________ %—-—————---_—--————--___-______________—______-.
cr cr1! No core available.
cre! Message area provided is too small (option
C'p' or X'00').
cr2! C'n' Store error; Store return code n.
----------------- b e e e e o]

cr3 C'n' Fetch error; Fetch return code n.

cry cr1! Invalid request option C'D'--TID is a broad-
cast group

cry cra2! Invalid request option C'P'--device is output-
only.

c'y c'3 Invalid request option C'¥' or X'00'--page
size greater than device buffer size.

Cryr cryr Page line size greater than device line size.

cryr c's! Invalid request options C'Q', C'D', or C'P'--
device is a string.

_________ T o gy
c's! X'nn' . Page error; Page Facility return code is nn.
________________ e = e o e o o = = e > = = = - - —

C'6! cr1! X'nn' DDQ error. QBUILD function return code is nn.

Cc'6! cra! X' nn' DDQ error. QWRITE function return code is nn.

c'é! cr3 X'nn' DDQ error., QCLOSE function return code is nn,

c'7! X'nn! FESEND error; nn is FESEND return code,

MAPEND call can be reissued once, after a
reasonable wait, to restart transmission.

cr7 c'g FESEND error; nonrecoverable. Do not reissue
MAPEND call; call MAPURGE.

c'g! | Successful completion, last physical message
(option C'¥' or X'00'), or all physical
messages processed successfully (options
c'Q', C'P' and C'D'").

_________________ e e e e e]

c'9! Unsuccessful; extra call to MAPEND after
MAPEND return code of C'8',

Figure 23. MAPEND Return Codes

125

Appendix B MMU Service Routines
MAPFREE MAPFREE

MAPFREE--Free Input Mapping Storage Area

MAPFREE is wused by Assembler Language and PL/1 Optimizer
subsystems to free the storage area previously obtained via the msgaddr
parameter on a call to MAPIN. This area must be freed before returning
control to the subsystem controller. Assembler Language subsystems can
use the STORFREE macro, deriving the symbolic map area length by
subsystem logic.

MAPFREE options are selected by initializing the MCW with the
appropriate values listed in Figure 24, The calling formats are listed
by language in Figure 25. MAPFREE parameter descriptions are given in
Figure 26. Return codes resulting from the call to MAPFREE are passed
to the subsystem in the MCW; byte 1 contains the MAPFREE return codes,
as shown in Figure 27.

. S S IS S CFC-S S oo oSS oSS oS oSS o S oS oSS CCSICS oo ISCCSCoCSESCD =SS SCSCSCSCSCSSES==S=Z========193
Byte |Option Code Meaning
E EE S S S - S E S S S S S-S S CS S oSS S-S o CoCEoCS TS S==SaCSCSEZCSoTSSCSISS=SDCo=zZ==D=z=z========3
1 C'¥' or X'00' %Reserved for return code from MAPFREE
2 C'B' or X'00' | Intercomm message map non-resident - Fetch map |
c'c character string map non-resident - Fetch map
For Assembler subsystems with PGMRES=YES on
MAPGROUP :
c'™m Intercomm message map provided
Cc'D! Character string map provided
______________________ o e e e e
3 C'¥' or X'00' |Reserved
u C'¥' or X'00' |Reserved

Figure 24, MAPFREE Options Specified by MCW

PL/1
Optimizer CALL MAPFREE(mcwname,groupname,mapname,msgaddr[,tid])

Assembler [symbol] CALL MAPFREE, (mcwname,groupname,mapname,
msgaddr[,tid]),VL[,MF=(E, list)]

Figure 25. MAPFREE Calling Formats

126

C

SPR 216 2/83

Appendix B MMU Service Routines
MAPFREE MAPFREE
Parameter Meaning T
mcwname The label of the area containing the fullword MCW.]
L —————————— D - D D ———— G —————————— ————— - ———————— —————— ————————
groupname |The label of the area containing the map group name. For
Assembler subsystems, if PGMRES=YES was coded on the
MAPGROUP macro, groupname is the address of the MAPGROUP
macro.
mapname |The label of the area containing the map name. For Assemblen
subsystems, if PGMRES=YES was coded on the MAPGROUP macro,
mapname is the address of the MAP macro.
msgaddr |The label of the fullword aligned area containing the
address of the mapped input text (symbolic map area).
tid The label of the area containing the terminal-id to
determine the map group name terminal-dependent suffix
code, if ALL or STRING not coded for the DEVICE parameter
on the MAPGROUP macro.
Figure 26. MAPFREE Parameters
::::::::q::::::::::::ﬂ::==
Status | Register 15
Byte 1| (Assembler) Meaning
cr'o X'00! MAPFREE successful
cry X'10! Specified mapgroup or map not found.
c'e! X'18! Invalid option code; area not found.

Figure 27.

MAPFREE Return Codes

127

SPR 216 2/83

Appendix B MMU Service Routines
MAPIN MAPIN

MAPIN--Perform Input Mapping

The MAPIN subroutine is invoked to map an input message or
character string.

Options are vrequested by initializing the MCW with the
appropriate value on the call to MAPIN. These options are detailed in
Figure 28.

Language-dependent MAPIN calling formats are given in Figure 29
and parameters are described in Figure 30. The return codes resulting
from the call to MAPIN are passed in byte 1 of the MCW as shown in
Figure 31. For Assembler subsystems, the binary equivalent is also
returned in Register 15, multiplied by 4. A count of fields with
editing errors and/or omitted fields is returned in bytes 3 and U4 of
the MCW.

The content of each symbolic map area field (segment) length
area, flag byte, and data area is initialized in the input mapping
process. The values are set by MAPIN, as shown in Figure 32.

—————————————————————— 3 —-——1
Byte Option Code Meaning
1 C's' or X'OO'ﬂReserved for return code from MAPIN,
2 C'¥' or X'00"' (Fetch Intercomm message map
c'c Fetch character string map

For Assembler subsystems with PGMRES=YES on
MAPGROUP macro:

C'™!' Intercomm message map provided
C'D Character string map provided
3 Specifies whether or not the unmapped input

message is to be freed after mapping.
For first call to MAPIN:

C'B' or X'00" Free input message or character string
C'K' Keep input message or character string

Subsequent calls to MAPIN:

c's Free input message or character string
c'L! Keep input message or character string
L Reserved

Figure 28. MAPIN Options Specified by MCW

NOTE: If multiple calls to MAPIN are made, byte 3 options must be
observed as follows: if a subsequent call is for a map which
specifies START=(NEXT,SAME), it must be specified as a
subsequent call. Otherwise, each call must be a first call.
If multiple maps created the template used for input, MAPIN
calls must be in the same order as the previous MAPOUT calls.

128

Appendix B

MMU Service Routines

MAP IN MAP IN
2 42 0 A A S S A A A 4 A A S 2 0 0 B 5 B
Language Calling Sequence
S-S - S S CSCSCS=S=C - == - o oS CoS ST oo S oSS S-S TS S=C-=CT=S=S=Z=-=zZ=DS=Co=-=D===z==zZCzC==D==z==z==z===z===z=-J
COBOL CALL 'COBREENT' USING reentsbs-mapin-code, mcbname,
groupname, mapname, msgarea, mcwname, textarea,
PL/1-F CALL PMIPL1(reentsbs-mapin-code,mcbname,groupname,
mapname ,ms garea,ncwname ,textarea);
F PL/1 CALL MAPIN(mcbname,groupname,mapname,msgaddr,mcwname);
Optimizer
Assembler [symbol] CALL MAPIN, (mcbname,groupname,mapname,]
msgaddr ,mcwname) ,VL[,MF=(E,list)]
Figure 29. MAPIN Calling Formats
F::i
Parameter L Meaning
=] :::q
reentsbs- REENTSBS routine code for MAPIN is 51.
mapin-code
mcbname (The label of the 12 fullword Mapping Control Block
groupname The label of the area containing the map group name.
For Assembler subsystems, if PGMRES=YES was coded on the
MAPGROUP macro, groupname is the address of the MAPGROUP
macro.
mapname (The label of the area containing the map name. For
Assembler ‘subsystems, if PGMRES=YES was coded on the
MAPGROUP macro, mapname is the address of the MAP macro.
msgarea The label of the area containing the ummapped input
message (starting with Intercomm message header) or
character string (used with textarea). COBOL and PL/1-F
only.
ms gaddr The label of the fullword aligned area containing the
address of the unmapped input message. Upon return from
MAP IN, msgaddr will contain the address of the input
text mapped according to the corresponding symbolic map
definition. Assembler and Pl/1-Optimizer only. For
PL/1 Optimizer subsystems, msgaddr is a pointer variable
set by MAPIN to the address of the mapped input area.
MAPFREE must be called to free this area.
___ -
mcewname The label of the area containing the fullword MCW.
textarea The name of the symbolic map area to contain the mapped

input message text. This must be the same name as coded

on the MAP macro,.

COBOL and PL/1-F only.

Figure 30. MAPIN Parameters

129

Appendix B

MAP IN

MMU Service Routines

MAP IN
P e S S S S S S S S S S S S S s S S s S S s Ss=s=sS s=s=2=2zsszzzzzs=====s==2==2=2=27
Code Meaning
2] SR 3§ S5 33 S F S F S S S 3 53 2 -
cro! Mapping completed; Bytes 3-U4 of MCW should be
checked for count of fields not entered.
cr1! Store/Fetch 1/0 error
cra! Storage request failed
c'3! Errors in mapping some fields; Bytes 3-4 should be
checked for count of fields omitted or in error
cry MAPGROUP or MAP not found
Cc's! No Store/Fetch DD card
C'6' MCW option errors
c'T Map mode not input or I/0
c'8! Hardware error (invalid SBA sequence), message could
not be mapped; an error message should be sent to
originating terminal requesting input be reentered.
Reserved.
variable | Contains a binary count of input fields in error
and/or omitted (nonzero flag field).

Figure 31. MAPIN Return Codes

130

Appendix B
MAPIN

- o - - = =

No errors

- — - - ————

X'nnnn'

X'0000'

===Z=Z=Z2=3

e

bt o o e e oed

b e - - e o

fo e e

SPR 216 2/83

MMU Service Routines
MAPIN

ccce (justified, padded as necessary) for
characters entered by operator. nnnn is the
number of characters entered by operator

(in binary) up to maximum field length
(truncated if too many).

xxxx (hex value, unaligned right-justifed)
after conversion by MMU (padded with binary
zeros on left if required) for fullword,
halfword or binary (nnnn is internal field
length).

pppp (right-justified, left-zero padding)
for zoned-decimal or packed-decimal field
after conversion (nnnn is internal field
length).

- ——— - ——— - - ——— - — - - - ———— - - ———— - -

MMU Program Error (data returned is binary
zeros--low values)

Invalid character in numeric field (data
returned is binary zeros)

Too many digits in a numeric field (trun-
cation is at the left--data will be the
digits entered minus the high-order digits
that exceed the number of digits defined
for the field)

The external field including scaling zeros
is greater than 29 character digits (data
will be the remainder after conversion)
The packed value will not fit into the
internal field (data will be the remainder
after conversion)

The value is too high to convert to binary
(data will be the remainder after
conversion)

Figure 32.

Field Data After Input Mapping (Page 1 of 2)

131

Appendix B

MAP IN
eSS S SSS=ST§===s=S=s=og===z=====
Field | Field
Condition|Length | Flag
:::::::::::;::::::: 4
Cl Gl
-ETE:___
_E:I:___
Not X'0000{ X'FF'
Entered

MMU Service Routines
MAP IN

Significant high-order binary bits lost in
unaligned truncation to fewer than four
bytes (data will be the remainder after
conversion)

Significant high-order binary bits lost in
truncation from fullword in register to
halfword (the data will be the same number
as given for the halfword)

Truncation on character input (the left-
most characters of the field entered are
present in the data field)

Note: X'nnnn' for conditions C-I is always
the internal field length.

X'0...0'= Field not entered (included in the

error count contained in MCW Bytes 3-4).

MAPIN does not differentiate between

a nonentered field and an entered

blank field. However, all zeros is

acceptable for numeric fields, and all

blanks is acceptable for field type CB.

Figure 32. Field Data after Input Mapping (Page 2 of 2)

132

Appendix B MMU Service Routines
MAPOQUT MAPOUT

MAPQUT--Perform Output Mapping

The MAPOUT subroutine is called to perform output mapping for a
logical output message or for a character string.

MAPOUT options are requested by initializing bytes 1 though 4 of
the MCW with the values shown in Figure 33.

Language-dependent calling formats are given in Figure 34,
Parameters for the MAPOUT subroutine are described in Figure 35.

Return codes from MAPOUT are listed in Figure 36. For Assembler
subsystems, Register 15 contains the binary equivalent of byte 1,
multiplied by 4.

== - - S S-S - S-S S-S S-S C- - S PpSSE= TS CSEEICCSCSECSSCSEECSCSEIEZESESE=ESS==S=S==S==S===Z=S===========17
Byte [Option Code Meaning
S S-S S S S-S - S-S S CSCS oSS o oIS oIS oSS TTT TSNS =D==TCS=Z=-=ZzZZ=Z=D=Z=Z==Z===z==z==z=z===H9hy
1 C'B' or X'00' jReserved for return code from MAPOUT.
2 C'p' or X'00' |[Fetch Intercomm message map
c'c Fetch character string map

For Assembler subsystems with PGMRES=YES on

MAPGROUP :
C'M' Intercomm message map provided
Cc'D! Character string map provided
3 C'B' or X'00' |First call to MAPOUT for output message (MCB)
C'N! Not first call to MAPOUT (for MCB)
c'p! Force page complete* (no mapping performed)
Cc'B! Force page complete* before mapping
c'A! Force page complete* after mapping
Y C'p' or X'00' |Map initial data values and symbolic map data
c'1 Map only initial data values and field
attributes (generate template screen)
c'D Map only named fields using symbolic map

data/attributes, or if omitted, use initial
data/attribute if specified for the named
field in the MAP.

- - - ———— — —— —— — ——— ———— ——— —— — ——— - —— - — — - - - — - - —]

*implies not first call to MAPOUT for MCB

——————— be > -

Figure 33. MAPOUT Options Specified by MCW

NOTE: If multiple calls to MAPOUT are made, Byte 3 options must be
strictly observed: only the first call by the subsystem (for
the current processing thread) may specify blank or null; every
subsequent call must use one of the other options. Otherwise,
previously mapped data will be lost. If an intervening call is
made to MAPEND, the first subsequent call to MAPOUT must also
specify a blank or null in Byte 3.

133

Appendix B

MMU Service Routines

MAPOUT MAPOQUT
222+ 444 2 34 S 33404 4 2S4S S S S RS2 R RS S S A X - - T T T
Language Calling Sequence
23 it it it it i it it i i i i i i i it i it i rr
COBOL CALL 'COBREENT' USING reentsbs-mapout-code, mcbname,
groupname, mapname, textarea,
mcwname, tid.
——— ﬂ
PL /1 CALL MAPOUT (mcbname,groupname ,mapname,textarea,
Optimizer mcwname,tid);
PL/1-F CALL PMIPL1(reentsbs-mapout-code,mcbname,groupname,
mapname,textarea,mcwname,tid);
__ -
Assembler | [symbol] CALL MAPOUT, (mcbname,groupname,mapname,
textarea,mcwname,tid),VL
[,MF=(E,list)]
Figure 34, MAPOUT Calling Formats
e e e e S S S S S S S SRS S S S S S S S S S SSs s CsCss ssss sss =2=s=C szs==z2xzzs=2z=2z2z=2=2=2=22==2=22=2=2=2=2=22=¢
Parameter Meaning T
Sttt H I i it ittt i i ittt i i i i it i i it ittt
reentsbs- | REENTSBS routine code for MAPOUT is 5K5.
mapout-
code
mcbname The label of the 12 fullword Mapping Control Block area.
groupname | The label of the area containing the map group name. For
Assembler subsystems, if PGMRES=YES was coded on the
MAPGROUP macro, groupname is the address of the MAPGROUP
macro.
mapname The label of the area containing the name of the map. For
Assembler subsystems, if PGMRES=YES was coded on the
MAPGROUP macro, mapname specifies the ‘address of the MAP
macro.
textarea |The symbolic name of the area containing the ummapped data
fields to be operated upon by MAPOUT. This must be the
same name as coded on the MAP macro.
mcwname The label of the area containing the fullword MCW.

Figure 35. MAPOUT Parameters (Page 1 of 2)

134

SPR 216 2/83

Appendix B MMU Service Routines
MAPOUT MAPOUT
- - C SC- - S - C-C oo oo CCCoCoCoCoTCS o oo oo oo oSS oo oS-SS oS- oS- TCCC-SC-I=-ICZI=C-=-=-SC-DC-D=-I=ZZ=Z=Zz=Z=====cz===
Parameter Meaning
tid The label of the area containing the terminal-ID of the

device to receive the output message(s). If tid is a
broadcast group name, the characteristics of the first
terminal of the group will be used for mapping; this

implies that all terminals of a broadcast group must be of

the same type. If the mapping is for a character string,
do not code this parameter.

-——— = = — o

b o o - o

Figure 35. MAPOUT Parameters (Page 2 of 2)

- - —— o

Successful
Duplicate cursor specification; field flag
override processed.

—— - —— —— > ———————————— - — — - - - —— - —— - ———— —— —— = == —— - == = -

e o o " = = - = —— - — - — - - - - -

Map overflow: attempt to map an already mapped
trailer area during page overflow processing

- o - ——— - - - — - — - = - - - -

Map group mode not output or I/0
Required TID parameter omitted
Map too large for device

o o s e s " S - — - - - - — - ——— - — " —— - - - — - - - —— - - — - -

Page overflow condition in effect: rows or
columns needed are beyond allowed device page
or buffer length or width, or overlap a
trailer map area.

Figure 36. MAPOUT Return Codes

See Store/Fetch Facility for details on Store/Fetch return codes.

135

Appendix B MMU Service Routines
MAP (R GE MAP (R GE

MAPURGE--Cancel Logical Message

MAPURGE is called to cancel a logical output message if required
during subsystem processing. Calling formats for MAPIRGE are shown in
Figure 37. Parameters are given in Figure 38. There are no option
codes or returm codes from MAPWRGE,

:-;LZZ;Z?Z;_==_[==========:====:==:::;:ii;;;:;;;:Z;Z:================:==

(CBOL | CALL 'COBREENT' SING reentsbs-mapurge-code, mcbname. |

(PL/1 | CALL MPWRCE(mcbname);
Optimizer

[PL/1 | CALL PMIPL1(reentsbs-mapurge-code,mcbname); |

[hssembler | [symbol] CALL MAPIRGE,(mcbname),VL[,MF=(E,list)] |

Figure 37. MAPIRGE Calling Formats

T i i i i i i i
Parameter [Meaning]
F:::::::::::::: H+ 1t it ittt it
reentsbs- REENTSBS routine code for MAPIRGE is 67.
mapurge-code
mcbname The label of the area containing the 12 fullword
Mapping Control Block used for previous MAPOUT calls.

Figure 38. MAPURGE Parameters

136

SPR 216 2/83

Appendix C

TERMINAL-DEPENDENT CONSIDERATIONS

This appendix contains special considerations for defining and
using the following terminal types with MMU:

® IBM 3270 Video Display Terminal (CRT)
® IBM 3270 Printer (328x series)
® Teletype Dataspeed 40 Models 1 and 2 (CRT and Printers)

Reference should be made to the descriptions of the supported
terminal features in the BTAM Terminal Support Guide.

At the end, a listing of the released LOGCHARS (Device Descriptor
Table), and charts of IBM 3270 attribute and control (WCC) character
codes, are provided.

137

SPR 216 2/83

Appendix C Terminal-Dependent Considerations

3270 CRT

C. IBM 3270 CRT CONSIDERATIONS

This section is. to be used in conjunction with the IBM manuals on
programming for the IBM 3270 Information Display System and assumes
that the programmer understands screen formatting and the associated

control characters. The MAPGROUP macro must specify DEVICE=IBM3270 or
DEVICE=ALL.

See also specific references in this manual to IBM 3270 CRT
(Video Display) considerations in defining maps (Chapter 2 and Appendix
A) and mapping requests and override options (Chapter 3 and Appendix
B), particularly the section on Input/Output Mapping in Chapter 3. The
released Device Descriptor Table (LOGCHARS) entries for the IBM 3270
CRT are 1listed at the end of this appendix. Device-dependent
processing is executed by MMUDDM.

C.1.1 Field Definitions

The following field definition considerations apply only to IBM
3270 CRTs (and plug-to-plug compatible devices).

C.1.1.1 Attribute Location

The RELPOS on the FIELD macro is the position of the field data.
The attribute location is always in the screen position before RELPOS
(RELPOS-1). If RELPOS is set to the first position on the screen, that
is, RELPOS=(1,1), ATTRIB=SUPR must be coded.

C.1.1.2 AID Processing

For input mapping, the AID key value may be requested by a named
FIELD macro with RELPOS=AID. HDR3270=YES must be coded on the
associated BTVERB macro for the input transaction code.

C.1.1.3 Positioning the Cursor

Output mapping automatically generates a Buffer Control Crder to
Insert Cursor (IC) at the first unprotected field of the map. To
control cursor positioning further, two options are available:

1) define a FIELD macro as follows:

(1abel) FIELD RELPOS=CURSCR, INITIAL=X'"nnnn"

138

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
3270 CRT

where X'nnnn' specifies in hexadecimal the binary halfword value of the
screen location (relative to 1) for cursor positioning; four digits
(leading zeros) are required. If the FIELD macro is named, modification
of the cursor location can be made via subsystem logic. Input mapping
may also request the cursor location (format will be a 2-byte binary
value--unaligned halfword). This requires coding HDR3270=YES for the
associated BTVERB macro.

2) for output mapping, cursor positioning at a named field may be
requested by moving hexadecimal FFs (high values) to the length
field in the field prefix for that field before calling MAPOUT.
This option is particularly useful for input/output processing of
erroneous input. The first field found in error can be flagged
for cursor positioning for subsequent mapout processing. This
option obviates the need for subsystem definition of an actual
cursor location (relative position). See also the MAPCLR call
options (clearing only data fields, etc.) described in Appendix B.

C.1.1.4 Output Mapping the Verb Field

For output mapping, the attribute for a RELPOS=VERB field is
always UAN. If a verb is to be output, or the field requires an
attribute other than UAN, the FIELD macro should be coded with
RELPOS=(r,c), ATTRIBzattribute-name, and INITIAL='verb' (or FORMAT=4 if
the field is named and the verbdb is supplied by the subsystem). If more
than one verb may be input to the subsystem, then subsequent input
mapping of the verb requires either a different map with a named
RELPOS=VERB field defined, or program logic to examine (save) the verb
before calling MAPIN (see also keep/free message options for the MCW).

When the verb value is provided by the subsystem via a named field
for which RELPOS=VERB is defined, and multipage output is created, the
last verb value provided (via a MAPOUT call) will be inserted in all
pages (at relative page position 1,2). If different verbs are desired
(depending on page contents), the value may be changed in the message
area after each physical message is retrieved via a call to MAPEND, if
a transmit option is not used. For a 3270 CRT message, the verb is
located at position 8 of the message text (after the command and control
characters, and 5-byte SBA and SF sequences). Or, a specific verb may
be supplied for each page if the named FIELD macro is coded as described
above for alternate attribute processing. This latter option permits
one of the transmit requests to be used for the MAPEND call.

WARNING: if a protect-with-MDT-on attribute 1is specified for the
'verb' field, that verb will always be input. The operator
must use the Clear key to remove the verb (and screen
template) in order to enter a different request. If the
terminal is locked to a verb, no value need be supplied for

output mapping, unless the supplied verb is defined as
lock-exempt (see BTVERB macro).

139

SPR 216 2/83

Appendix C Terminal-Dependent Considerations

3270 CRT

C.1.1.5 Selectable Fields

See IBM documentation on Light Pen and Cursor Selectable fields,

and the discussion of the COND=ENTERED parameter on the FIELD macro in
Chapter 2 and Appendix A of this manual.

C.1.1.6 Color Processing

A basic color CRT is currently supported since it is implemented
via standard attribute characters.

C.1.2 AIDDATA Processing

® For Unformatted Screens--A verb, followed by the separator
character, is always assumed to start at relative location
one (1) of the message, whether or not the verb and separator
are physically in the message or prefixed via LOCK or AID
processing. Any AIDDATA prefixed to the message is assumed
to have come from the device and must be accounted for in the
map .

If the verb is to be mapped, a FIELD macro with RELPOS=VERB
is the first definition in the map (no preceding SEGMENT
macro), and the non-null SEGMENT following the verb must have
a RELPOS=(1,6). The length must be adjusted to include any
additional inserted AIDDATA.

] For Formatted Screens--if AIDDATA 1is to be prefixed to
formatted screen input, an SBA sequence must be present in
that AIDDATA, unless only the verb is inserted. Care must be
exercised to insure that SBA locations in the AIDDATA do not
overlap any actual message input data. An attribute position
preceding each field (or structured segment) must be allowed
for on all input field RELPOS definitions.

C.1.3 Device Specifications

C.1.3.1 Orders

With the exception of Insert Cursor, any Buffer Control Order may
be specified via a FIELD macro with INITIAL coded as a hexadecimal
value for the order desired.

140

<

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
3270 CRT

C.1.3.2 Using Remote and Local Devices Concurrently

The Device Description Module of MMU makes no distinetion in
processing for remote or local 3270s. The supplied member LOGCHARS
defines write commands for remote 3270s. Generation of the correct
write op code (based on write command used) is performed in the
Intercomm Front End for local 3270 terminals.

C.1.3.3 Use of the EOF Key

When the cursor is positioned at an input screen field, and the
ERASE EQF key is depressed by the terminal operator, the MDT is set on
for the field causing an SBA sequence for the field to be transmitted.

If no new data was keyed, the field is flagged as not entered, unless
it is defined as a COND=ENTERED field.

C.1.3.4 Use of HDR3270 Parameter in BTVERB Macro and RELPOS=AID or
CURSOR in FIELD Macro

If HDR3270=NO (default) 1is coded for the BTVERB macro and
RELPOS=AID is coded on a FIELD macro, then, after MAPIN, a default AID
of ENTER (X'7D') is used. For RELPOS=CURSOR, the default is X'0000'.

C.1.3.5 Numeric Input and Keyboard Lock

If an input field has a numeric attribute (see FIELD macro--ATTRIB
parameter--numeric value N), automatic numeric shift will occur only on
terminals equipped with a Data Entry keyboard. Additionally, keyboard
lock on entry of non-numeric data in a numeric input field requires that
the Numeric Lock feature be installed on the Data Entry keyboard. (The
NUM LOCK key provides up~-shift for all keys.) All other keyboard
configurations will accept any keyed character in a numeric attribute
input field and will not lock.

C.1.3.6 WCC (CNTLCHR) Specifications

If the CNTLCHR parameter was coded on the MAPGROUP macro, it may
not be overridden at MAPEND time. Therefore, if the data-only option
may be used for output mapping to a template screen, do not code the
CNTLCHR parameter on the MAPGROUP macro; use the MAPEND option to
specify the desired WCC. If omitted, the default WCC defined in the
Device Description Table will be used. See also Override Table in
Appendix A.

141

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
3270 CRT

C.1.3.7 Alternate Buffer Processing

To use a large screen CRT with the ERASE WRITE ALTERNATE (EWA)
command, the alternate buffer size (and line length) must be defined via
a DVMODIFY macro with coding for the maximum BUFFRSZ (and LINESZ) and
ALTBUF=YES parameters for the large screen for applicable terminals.
Do not code the NOLINES parameter. The ERASWRAL command (see LOGCHARS)
must be defined via the MAPGROUP macro COMMAND parameter, to indicate
that the alternate buffer size is to be used for input/output mapping
(if defined). An ERASE WRITE command will be substituted for output
mapping if no alternate buffer is defined.

Separate map groups are not required for the two buffer sizes, if
the defined map width (line 1length) is within the 1limits of the
standard buffer size. If all maps within the mapgroup (except header
and trailer maps) use NEXT,SAME (default) for the START parameter,
MAPOUT will indicate a page overflow condition when attempting to map
beyond the bottom of the screen, or into the trailer area. Subsystem
logic must determine if two (or more) screens are to be generated. If
page overflow processing with a trailer area is desired, a MAP (can be
a durmy map) with JUSTIFY=(,TRAIL) delimiting the bottom of the screen
must be defined. Positioning adjustments will be made for the start of
the trailer area.

For the CTCHAR parameter of the BDEVICE macro for BTAM/TCAM
networks, or the VICSB macro for SNA/VTAM networks, F5 (Write Erase)
should be coded. Care must be exercised that unsolicited messages are
not switched to the terminal when a conversation using large screen
processing is in progress.

142

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
3270 Printer

C

Cc.2 IBM 3270 PRINTER SUPPORT CONSIDERATIONS

The IBM 3270 Printer, (328X series), is supported for output
mapping under MMU. To implement support, the following applies:

® 3270 printer device-dependent processing 1is executed by
MMUDDMU .

® The device physical buffer and line sizes must be explicitly
defined to MMU via the STATION and DEVICE/DVMODIFY macros.
The device type is IBM3270P.

® The MAPGROUP macros must specify DEVICE=IBM3270P or
DEVICE=ALL.

® Device control characters are inserted using the FIELD macro,
(via FORMAT and INITIAL parameters), as described below.

LOGCHARS coding for the 3270 Printer is illustrated at the end of
this appendix.

The MMU 3270 printer support assumes all printer 1lines are
variable length. The same WCC is always used, specifying NL and EM.
NL, EM and CR characters determine line length which in turn is defined
by the map definition. MMU inserts a NL character after the last
| - non-blank character of each line. If output data is generated for the
last character of a physical line, no NL is inserted. Additional NLs
are also inserted for omitted lines to force device positioning for the
next significant line. An EM character is inserted at the end of each
page output to the printer.

C.2.1 Mapping Considerations

Output mapping for 3270 printers allows mapping of logical pages
up to the size specified via the DVMODIFY macro NOLINES parameter,
which may be overridden by the PAGESZ parameter of the MAPGROUP macro.
The generated physical message(s) size 1s based on the buffer size
specified via the DEVICE macro, unless overridden via the DVMODIFY
macro. In no case may the line length be greater than the maximum
physically possible for the device.

If alternate buffer processing is possible for the device, then
an ERASWRAL command for large buffer message generation must be
specified via the MAPGROUP macro COMMAND parameter. ALTBUF=YES must be
coded on the DVMODIFY macro to indicate that the LINESZ (if coded) and
BUFFRSZ parameter overrides are to be used only for alternate buffer
processing. If ALTBUF=NO (default) is coded on the DVMODIFY (if any)

‘L-' for the device, MMU will use on ERASWRIT command instead of ERASWRAL.

143

Appendix C Terminal-Dependent Considerations
3270 Printer

If the logical message(s) created via MAPOUT could consist of
several physical messages, the MAPEND option D can be sSpecified via the
MCW, to request creation of a DDQ. This avoids any interleaved message
problems and overflow disk queuing. The DDQ Facility must be installed
to use this option.

If a logical message is larger than the physical buffer size
(requiring more than one output message be generated), and the D option
is not used, then the Q (via FESEND) option must be used, Multiple
calls to MAPEND to retrieve the physical messages are not allowed in
this case. In any case, use of the Page Facility for output messages
is not allowed for output-only devices,

C.2.2 Control Character Specifications

A special form of the FIELD macro is used to insert device
control characters, FORMAT=(1,,CNTL) specifies that the field is
defining a control character. INITIAL=logical-control-character names
the control character to be inserted. The 3270 Printer logical control
characters that can be inserted are FF for form feed, (R for Carriage
Return on the 3287 and 3289, and SI for Suppress Index on the 3288.

The user is responsible for placing the control characters in
meaningful line positions. MMU recognizes CR and SI at the end of
print lines and does not place a NL character immediately following a
CR or SI. The overprinted line is, however, counted as another line of
the device page. Therefore, page overflow is inaccurate if CR or SI
are used. This problem can be corrected by proper definition of the
device page length via the NOLINES parameter of the DVMODIFY macro, and
of the START position of a TRAIL-justified map (if any).

If used, it is recomended that Form Feed (FF) be coded as the
first field of a device page (RELPOS=(1,1), ATTRIB=SUPR).

C.2.3 Map Definition For 3270 Printers

A MAPGROUP must specify DEVICE=IBM3270P or DEVICE=ALL (default)
and MODE=OUTPUT or I/0 (default) to be mapped to a 3270 Printer.

Out put maps can be coded for use on all device types. If the map
is to be used for 3270 printers only, no space need be reserved for an
attribute character. If the map is to be used for other devices,
including the 3270 printer, the ATTRIB parameter coding on the FIELD
macro 1is ignored when mapping to a 3270 printer. The FIELD macro
coding of FRMAT=(1,,CNTL) is ignored by the 3270 Display and the
Telet ype Dataspeed 40 DDMs.

144

Appendix C

Terminal-Dependent Considerations

3270 Printer

Below is an example of a map definition for a 3270 printer.

PRINT

HEATER

DETAIL

OFLD

MAP GROUP

MAP
FIELD
FIELD
MAP
SEGMENT
FIELD
FIELD
ENDGROUP
END

DEV ICE=IBM3270P,MODE=0UTPUT ,COMMAND=ERASWRIT,
CNTL CHR=PRNTNL,PAGESZ=(20, 80)
SIZE=(2,80),USAGE=HEADER
RELPOS=(1,1),FORMAT=(1,,CNTL), INTTIAL=FF
RELP0OS=(1,20),INITIAL="#*TITLE#%*!
STZE=(18,80)

OCCURS=18

RELPOS=(1,1),INTTIAL="DETAIL'

RELP0OS=(1,20) ,FORMAT=60

X

145

Appendix C Terminal-Dependent Considerations

Dataspeed 40

C.3 TELETYPE MODEL 40/1 and 2 (Dataspeed 40) CONSIDERATIONS

The Dataspeed U40/3 is not supported by Intercomm, the U0/4 is
3270 compatible--see Sections C.1 and C.2.

To use MMU for Dataspeed 40 terminals, the following applies:

Device-dependent processing is executed by MMUDDMT,

The DEVICE type is DSU0 (for MAPGROUP, MMWT macros); unless
ALL is coded.

The maximum 1line size (number of columns) that may be
specified is 80 (except for long line receive-only printer
devices).

The programmer must study and understand the operation and
format design considerations defined in the Front End
documentation for Switched Teletype (Dataspeed) Model 40/1
and 2 terminals (see BTAM Terminal Support Guide).

Blanks are generated for field positioning on all output maps.

Field delimiters defined in LOGCHARS are:

r:::::::;:.—i;;;zz:z=======r======;;;:=:::::-_-::::::

 Positional | HI (Horizontal Tab) |
Keyword Field Begin = (equal sign)
Keyword Field End NL (New Line)

The positional field separator of HT is required for input
fields from a formatted screen., If a map is defined for
input only and uses positional fields (RELPOS=POS), the
SEGMENT macro DELIM parameter must be used to override the HT
value with a separator character value, as HI' cannot be used
as a field separator on a blank screen., New Line may,
however, be used as a positional field separator with or
without owverride.

I/0 Maps must use RELPOS=n or (r,c) notation. In this case,
the RELPOS is that of the data; no position is needed for the
attribute location as on a 3270, unless the map is be used on
both terminals (see below).

I/0 Maps must define ATTRIB values using the same codes as

for an IBM 3270, with named unprotected (variable) data
fields delimited by unnamed protected fields.

146

Appendix C Terminal-Dependent Considerations
Dataspeed 40

® I/0 Maps--every input (variable data) field must be named and
must be unprotected (ATTRIB=UAN is default). Use of other
unprotected ATTRIB values has no added effect on the
Dataspeed 40 terminal, except that those with the letter H in
the value will cause the field to also be 'highlighted'.
Protected attribute values (all unnamed fields) may have any
3270 code starting with P, and those with the letter H will
cause the field to be 'highlighted' (field will blink).

ATTRIB=SUPR may be coded if the attribute is the same as for
the preceeding field, and both are protected; or the second
field is part of a structured segment (attribute ignored).

® The uwunprotected attribute for a named field may not be
overridden with a protect wvalue at MAPOUT time. This is
because fields are input as positional data separated by an
HI value, no actual field position (SBA sequence) 1is
transmitted., If the request is for data-only, any protect
override attempt will be ignored. However, highlighting will
be processed/reversed, if requested,

® Form Feed may be coded as an initial value (X'0C') at the
beginning of an output map designed for a printer. Use:

FIELD RELPOS=1,ATTRIB=SUPR, INITIAL=X'0C!
Or it may be coded at the end of a map.

® Segment Advance (ESC U) may be coded in a map in the same way
as Form Feed (see above), however, it may not be used if a
data-only request will be issued for output mapping. It is
recomended that all formatted screens (I/0 maps) start at
the top of the first segment: Use ERASWRIT command request
at MAPEND time.

® Occuring Segments may be used. The RELPOS of the next field
(line) after the last occurance must be correctly calculated
when using relative position (n, or (r,c)) notation.

® InI/0 maps, occuring fields may only be used in a structured
(named) segment. The fields are entered as one big field, no
separators may be used. Exception: if the occuring field
occupies an entire line (80 characters), NL may be used as an
input delimiter. MAPIN will pad each field to 80 characters
if necessary.

® Structured Segment--fields within a structured (named)
segnent may only be named (variable) fields. Code
ATTRIB=SUPR for all but the first field. The attribute of
the first field is that of all fields, as the fields are
processed as one big field; the individual names being only a
user programming convenience.

147

Appendix C Terminal-Dependent Considerations
Dataspeed 40

® Multiple input-only MAPS may be defined within a MAP@ROUP,
however each must completely define the related input
message. Multiple calls to MAPIN with the same message may
only be done if the input message is kept, and each
successive map defines fields in the message in addition to
those already processed (entire message reprocessed at each
CALL).

@® Named fields must be defined in the order of input. Relative
position notation must be in ascending order.

@ B80-character fields--if an input field must occupy 80
characters, it must be the last field in a formmat. However,
if less than 80 characters, but the only field on the line,
it must be delimited with a protected area (1 blank) unless
the first field on the next 1line is also unprotected
(ATTRIB=SUPR). A NL is transmitted by the terminal when
position 80 is wunprotected and no NL or HT value occurred
earlier in this field,

® Defining protected fields as delimiters for unprotected input
in unnamed segmnents; this is required in I/0 maps even in
formats with tabbing (ESC 0/1) sequences defined. Code an
unnamed FIELD macro with a protected attribute and
FORMAT=length-of -filler-area (if no INITIAL value is
desired). Also, the beginning of a line must be protected if
the first named field on the line does not start in column 1.

©® Output-only maps--attributes, and protected field delimeters
are not required. ATTRIB=SUPR may be coded for all fields.
Attributes are ignored if IOCODE=(2,DS40) is specified on the
STATION macro defining the terminal.

® If RELPOS=POS is coded for an input field (input-only map),
and the field is delimited by a NL (New Line), the NL value
will be changed in the input message to an HT value (X'05'),
or the positional field separator defined by the DELIM
parameter of the preceeding SEGMENT macro. This is required
for correct MAPIN processing of a non-null segment.
Occurring fields may be used in this situation, but each
field must be entered, or a separator character used to
indicate absence of the field.

® An ESC X (unprotected) sequence is automatically sent at the
beginning of all output messages (except data-only requests),
after any COMMAND and/or CNTLCHRs are inserted. This forces
the screen to be unprotected in case this map is replacing a
previous map that contained protected fields.

® Paging and Header/Trailer maps may be used for output
processing.

® Every map with protected data must end with an unprotected
field to unprotect the rest of the screen (memory).

148

Appendix C Terminal-Dependent Considerations
Dataspeed 40

k C.3.1 Defining a Field for the Verb

1. RELPOS=VERB must be coded for the first unprotected field,
unless the map is processed by a locked subsystem.

2. If the program needs to process the verb, it must be a named
field.

3. Default length is four (see FIELD macro description).
4, Default attribute is UAN; no other may be coded.

5. INITIAL value may be coded, which may be overridden at MAPOUT
time if the field is named.

6. The protected field delimiter position coded after the VERB
field must allow for the system separator to be entered after
the VERB, plus an HT (Horizontal Tab) or NL to position the
cursor to the next input field (I/0 maps only).

7. One HT or NL, following the system separator character after
the VERB on input is ignored; input assumed from formatted
screen,

8. At MAPOUT time, if no initial value is provided either by the

MAP, or the subsystem, four blanks will be sent to the screen
| - to clear any previously existing verb data.

C.3.2 Using the Data-Only Option for MAPOUT

If data-only is requested in the MCW at MAPOUT time, the I/0 map
must start in the first memory segment of the screen. Do not use
data-only if the terminal is a printer.

At MAPEND time, the COMMAND used is automatically WRITE1 (haome
cursor)--like Write Initial on the 3270 (RT.

The control sequence ESC @ is generated to force the cursor to
tab to each unprotected (named) field to overlay the old variable data
with new data. A NL character may also be generated (lines with no
fields). If no data is provided by the subsystem for a field (area
contains nulls), the field will be skipped and the old data (if any)
remains displayed. See also FIELD type CB for using blanks to remove
alphameric data fields.

Field attribute overrides to change highlighting will be honored,
protection requests are ignored.

149

Appendix C Terminal-Dependent Considerations
Dataspeed 40

C.4 DEFINING MAPS FOR THE IBM 3270 AND DATASPEED 40 TERMINALS

I/0 MAPs designed for IBM 3270 terminals may be used on Dataspeed
40 terminals if the Dataspeed 40 mapping restrictions defined above are
observed. Particularly:

® Named fields must be unprotected (ATTRIB=protected/ modified-
data-tag-on may not be used), all other fields (screen areas)
must be protected.

® Named fields must be delimited by protected fields except as
noted above.

® Occurring fields may not be used in an unstructured (unnamed)
segnent (except output-only maps) due to the protected field
delimiter requirement.

Fields may not wrap around from one line to the next.

RELPOS=VERB must be coded for the input verb field.

Input map must completely define the fields in the message.

Fields must be defined in ascending relative position order.
® End of the screen (map) must be unprotected.

The major difference in maps for the two terminal types is that
position allowance must be made in IBM 3270 maps for the attribute
byte, and relative position notation indicates the position of the
data, not the attribute byte. Therefore, the lowest RELPOS is 2 or
(1,2). This allowance is processed on Dataspeed 40 terminals as
follows: if the field is protected and RELPOS=(n,2), the first
position on the line will also be protected, because the end of the
previous 1line must be protected. If a field with RELPOS=(n,2) is
unprotected, t-: first position on the line will be protected (except
for line 1), unless the end of the previous line is also unprotected.
In this case the field should have ATTRIB=SUPR coded, and be part of a
structured segment. However, if ATTRIB=UAN (default) is coded, this
unprotected field will have an extra initial character position on the
Dataspeed 40 terminal (occupied by the attribute code on the 3270).

In general, the protect/unprotect status of a field is in effect
for the first data position. This means that on the Dataspeed 40
terminal each unprotected field will be one character position longer
than on the IBM 3270. This extra trailing position is used to contain
the HT indicator when the operator tabs to the next field, which is
more convenient than using the CURSOR TAB key (used only when the field
is completely filled in). If RELPOS=AID/CURS(R is coded, it will be
ignored for Dataspeed 40 terminals.

LOGCHARS specifications for the 40/1 and 40/2 are compatible with
IBM 3270 terminal definitions (see description at end of this appendix).

150

SPR 216 2/83

Appendix C Terminal-Dependent Considerations

C.5 TELETYPE AND OTHER DEVICES

For Teletype and compatible devices using the TTY line protocol,
and for oher devices using the start/stop line protocol such as the IBM
2740 and 2741, a generalized DDM called MMUDDMM is provided. This DDM
contains entry points for all devices for which a specific DDM is not
provided (see Chapter 4 - MMU linkedit). It is important to note that
while device types must be correctly defined in the Intercomm Front End
due to protocol dependent processing, device type definitions in the
Back End tables (PMISTATB and PMIDEVTB) reflect the type of processing
desired for the specific terminal. For example, TELETYPE can be used
for all hard-copy unbuffered devices with the DEVICE macro specifying
NL as the line delimiter (CHAR parameter) and the BUFSIZE parameter
omitted. A DVMODIFY can be coded for specific terminals to define a
page (message) size 1limit via the NOLINES parameter. For devices
requiring a carriage-return and line-feed line delimiter (CR on CHAR
parameter), a device type of IBM27401 could be used.

For each device type for which MMU"may be used, entries must be
added to the released LOGCHARS as described in Chapter U, If a

TTY-compatible device with screen formatting capabilities 1s used,
ATTRIB macros must be coded to provide the field control sequences (as
for the Dataspeed 40) in LOGCHARS. Such a device could be defined as
an IMB1030 or IBM27402 to distinguish it from the standard TELETYPE
devices. The generic device type for the CPU console is IBM1050; code
CHAR=NL, the maximum line 1length (LEN=80 or 120) and if BUFSIZE is
coded, it should allow for a minimum of 10 lines per message.

Note the following:

- Input-only maps using non-null segments with positional,
and/or keyword mapping may be used. The DELIM parameter on
the SEGMENT or DEFAULTS macros may define a tab separator
character.

9 I/0 maps may be used - input mapping scans for the delimiters
specified on the DEFAULTS macro in LOGCHARS for the device
type in addition to NL (new Line) and CRLF
(carriage-return/line-feed).

® For output mapping, blank spacing is generated between defined
fields, and the line delimiter is that specified for the CHAR
parameter on the DEVICE macro.

® Output message ending characters are controlled by the DEVICE
macro EOB and EOT parameters.

150.1

SPR 216 2/83

Appendix C Terminal-Dependent Considerations

Fields must be defined in ascending relative position order.
Fields may not wrap around from one line to the next.

For input mapping, the absence of intermediate fields
(including repeating fields) must be indicated by consecutive
field separators, unless they are trailing fields at the end
of the input message.

If a buffer size is defined (via DEVICE or DVMODIFY macros),
and a DVMODIFY macro with NOLINES coded is specified for the
terminal, output pages will be broken up into messages of
buffer size length (or less for the page end) depending on
the number of lines that will fit in a buffer.

If neither a buffer size, nor a NOLINES value is provided,

the maximum number of lines per message for an infinite row
device is taken from the value coded for MAXROWS on the MMUVT
macro (MMUVTBL). The default is 255.

A page size limitation (PAGESZ) for a particular map group
may be specified for output mapping on the MAPGROUP macro.

CNTL field types will be processed for output mapping.

C.5.1 Testing MMUDDMM Processing

If the Internal global &TSNAP is reset to 1, snaps of processing
by MMUDDMM may be produced as follows:

9

ID = 82 - after input message processing - before return to
MAPIN to fill in the caller's symbolic map area.

ID = 84 - after output message formatting - before return to
MAPEND.

See Messages and Codes for a detailed description of the snapped

areas.

These snaps may be used in conjunction with the MAPIN and MAPOUT

snaps described in Section 4.11 to determine processing or definition
errors for new maps or terminal types processed via MMUDDMM.

150.2

Appendix C

Terminal-Dependent Considerations
LOGCHARS

UAN

UANMDT

UANSEL

UANMDSEL
UAHSEL
UAHMDSEL
UAX
UAXMDT
UNN
UNNMDT
UNNSEL
UNNMDSEL
UNHSEL
UNHMDSEL
UNX
UNXMDT
PAN
PANMT
PANSEL
PANMDSEL
PAHSEL
PAHMDSEL
PAX
PAXMDT
PSN
PSNMDT
PSNSEL
PSNMDSEL
PSHSEL
PSHMSEL
PSX
PSXMDT
SUPR

*

WRITE1
ERASWRIT
ERAS WRAL

DEFINE
DEFAULTS
ATTRIB

ATTRIB

ATTRIB

ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB

COMMAND
COMMAND
QOMMAND
OMMAND

FORDEV=IBM 3270, NATRCHR=2

COMMAND=C'5',CNTL CHR=C' C' , ATTRIB=(SF,X'40")
LOGCODE=1,PHYSCDE=(SF, 64) , COMMENT="' UNP ROT /ALP HA /NCR X
MAL'

LOGCODE=2, PHYSCDE=(SF,C'A') ,COMMENT= ' UNPROT /ALP HA /MX
DT ON'

LOGCODE=3, PHYSCDE=(SF,C' D') ,COMMENT= ' UNPROT /ALPHA /SX
ELPEN'

LOGCODE=4 , PHYSCDE=(SF,C'E")

LO GCODE=5,PHYSCDE=(SF,C'H")
LOGCODE=6 , PHYSCDE=(SF,C'I")
LOGCODE=7,PHYSCDE=(SF,X'4C')

LOGCODE=8 , PHYSCDE=(SF,X'4D')

LO GCODE=9,PHYSCDE=(SF,X'50")

LOGCODE=10, PHYSCDE=(SF,C'J"')
LOGCODE=11,PHYSCDE=(SF,C'M')

LOGCODE=12, PHYSCDE=(SF,C'N")

LO GCODE=13,PHYSCDE=(SF,C' Q')

LOGCODE=14, PHYSCDE=(SF,C'R')
LOGCODE=15,PHYSCDE=(SF,X'5C")
LOGCODE=16,PHYSCDE=(SF,X'5D')
LOGCODE=17,PHYSCDE=(SF,X'60')
LOGCODE=18,PHYSCDE=(SF,X'61"')
LOGCODE=19,PHYSCDE=(SF,C'U"')

LOGCODE=20, PHYSCDE=(SF,C'V")
LOGCODE=21,PHYSCDE=(SF,C'Y')

LOGCODE=22, PHYSCDE=(SF,C'Z"')
LOGCODE=23,PHYSCDE=(SF,X'6C')

LOGCODE=24, PHYSCDE=(SF,X'6D')
LOGCODE=25,PHYSCDE=(SF,C'0"')
LOGCODE=26,PHYSCDE=(SF,C'1"')
LOGCODE=27,PHYSCDE=(SF,C'4"')
LOGCODE=28,PHYSCDE=(SF,C'5")
LOGCODE=29,PHYSCDE=(SF,C'8"')

LOGCODE=30, PHYSCDE=(SF,C'9")
LOGCODE=31,PHYSCDE=(SF,X'7C")

LOGCODE=32, PHYSCDE=(SF,X'7D')
LOGCODE=33,PHYSCDE=S UPPRESS

END

LOGCODE=1, PHYSCDE=C'1'
LOGCODE=2,PHYSCDE=C'5"'
LOGCODE=3, PHYSCDE=X'TE"
END

Figure 39 LOGCHARS (Page 1 of 5)

151

Appendix C Terminal-Dependent Considerations
LOGCHARS

RMDT CNTLCHR LOGCODE=1,PHYSCDE=C'A'
RKEYBD CNTLGHR LOGCODE=2,PHYSCDE=C'B'
RMDTKEYB CNTLCHR LOGCODE=3,PHYSCDE=C'C'
ALARM CNTLCHR LOGCODE=4,PHYSCDE=C'D!'
ALRMRMDT CNTLCHR LOGCODE=5,PHYSCDE=C'E'
ALRMRKEY CNTLCHR LOGCODE=6,PHYSCDE=C'F!'
ALRMRMKY CNILCHR LOGCODE=7,PHYSCDE=C'G!'
PRNT NL CNTLHR LOGCODE=8,PHYSCDE=C'H'
PRNT 40 CNTLCHR LOGCODE=9,PHYSCDE=C' Q'
PRNT 64 CNTLGHR LOGCODE=10,PHYSCDE=C'Y!'
PRNT80 CNTLCHR LOGCODE=11,PHYSCDE=C'8"
PRNLRM)T CNTLCHR LOGCODE=12,PHYSCDE=C'I'
PRUORMDT CNTLCHR LOGCODE=13,PHYSCDE=C'R'
PR6URMDT CNTLCHR LOGCODE=14,PHYSCDE=C'Z'
PRBORMDT CNTLCHR LOGCODE=15,PHYSCDE=C'Q"
PRNLRKEY CNTLCGHR LOGCODE=16,PHYSCDE=X'UA"
PRLUORKEY CNTLCHR LOGCODE=17,PHYSCDE=X'5A"
PR6UYRKEY CNTLCHR LOGCODE=18,PHYSCDE=X'6A"
PRBORKEY CNTLCHR LOGCODE=19,PHYSCDE=X'TA'
PRNLRMKY CNTLCHR LOGCODE=20,PHYSCDE=X'UB'
PRUORMKY CNTLCHR LOGCODE=21,PHYSCDE=X'5B'
PR6URMKY CNTLCGHR LOGCODE=22,PHYSCDE=X'6B'
PRBORMKY CNTLCHR LOGCODE=23,PHYSCDE=X'TB'
PRNLALRM CNTLCGHR LOGCODE=24,PHYSCDE=X'4C'
PRUOALRM CNTLCHR LOGCODE=25,PHYSCDE=X'5C'
PR6UALRM CNTLCHR LOGCODE=26,PHYSCDE=X'6C'
PRBOALRM CNTLCHR LOGCODE=27,PHYSCDE=X'TC!'
PRNLARMD CNTLCHR LOGCODE=28,PHYSCDE=X'4D'
PRUOARMD CNTLCHR LOGCODE=29,PHYSCDE=X'5D'
PR6LARMD CNTL(HR LOGCODE=30,PHYSCDE=X'6D'
PRBOARMD CNTLCHR LOGCODE=31,PHYSCDE=X'T7D!'
PRNLARKY CNTLCHR LOGCODE=32,PHYSCDE=X'4YE"'
PRYOARKY CNTLCHR LOGCODE=33,PHYSCDE=X'SE'
PR6UARKY CNTLCHR LOGCODE=34,PHYSCDE=X'6E'
PRBOARKY CNTLCHR LOGCODE=35,PHYSCDE=X'TE'
PRNLAMKY CNTLCHR LOGCODE=36,PHYSCDE=X'4F'
PRLYOAMKY CNTLCHR LOGCODE=37,PHYSCDE=X'SF'
PR64AMKY CNTLCHR LOGCODE=38,PHYSCDE=X'6F'
PRBOAMKY CNTLCHR LOGCODE=39,PHYSCDE=X'TF'
NOLL CNTLGHR LOGCODE=40,PHYSCDE=C'0O"
CNTLCHR END

Figure 39 LOGCHARS (Page 2 of 5)

152

Appendix C

Terminal-Dependent Considerations

LOGCHARS

® DATASPEED 40, MODELS 1 & 2 - EQUIVALENTS TO 3270 PARAMETERS

SPACE
DEFINE

2
FORDEV=DS40, NATRCHR= (VAR, 4) ,NCTL CHR=(VAR, 4) ,
N CMDCHR=(VAR, 4)

DEFAULTS COMMAND=X'15',CNTL CHR=SUPPRESS,

Wk

SPACE
ATTRIB

ATTRIB

ATTRIB

ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB

ATTRIB
*

DELIM=(X'05',C'="',X'15"), HT, =, NL,
ATTRIB=(ESC,C'4',ESC,C'X')

THE FOLLOWING ATTRIBUTES ARE FOR UNPROTECTED FIELIS,
PLUS HIGHLIGHT, WHEN APPLICABLE

2

LOGCODE=UAN, PHYS CDE= (ESC,C'4',ESC,C'X'),
COMME NT="' UNP ROT /ALP HA /NCR MAL '
LOGCODE=UANMDT , PHYSCDE=(ESC,C'4 ', ESC,C'X'),
COMME NT="' UNP ROT / ALP HA / MDT ON'

LOGCODE= UANSEL , PHYS CDE=(ESC,C'4 ' ,ESC,C' X') ,
COMME NT=' UNP ROT /ALP HA /SELPEN"

LOGCODE= UANMDSEL , PHYS CDE=(ESC,C'4 ' ,ESC,C' X')
LO GCODE= UAHSEL, PH YS CDE=(ESC,C'3',ESC,C' X')
L.OGCODE=UAHMDSEL , PHYS CDE= (ESC,C'3',ESC,C' X')
LO GCODE=UAX ,PHYS CDE=(ESC,C'4',ESC,C' X')
LOGCODE=UA XMDT , PHYSCDE=(ESC,C'4',ESC,C' X')
LO GCODE=UNN, PH YS CDE=(ESC,C'4',ESC,C' X')
LOGCODE=UNNMDT , PHYS CDE=(ESC,C'4 ', ESC,C' X')
LO GCODE= UNNSEL , PH YS CDE=(ESC ,C'4 ' ,ESC ,C' X')
LOGCODE=UNNMDSEL , PHYSCDE= (ESC,C'4 ', ESC,C' X')
LO GCODE= UNHSEL, PH YS CDE=(ESC ,C'3',ESC,C' X')
LOGCODE= UNHMPSEL , PHYS CDE= (ESC,C'3',ESC,C' X')
LO GCODE=UNX ,PH YSCDE=(ESC,C'4',ESC,C' X')
LOGCODE=UN XMDT , PHYS CDE= (ESC,C'4 ' ,ESC,C' X')

¥ THE FOLLOWING ARE PROTECT FIELD ATTRIBUTES

PLUS HIGHLIGHT,

SPACE

ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB

IF APPLICABLE
2
LOGCODE=P AN, PHYS CDE=(ESC,C'4',ESC,C'W')
LO GCODE=PANMDT,PHYS CDE=(ESC,C'4 ' ,ESC,C' W')
LOGCODE=PANSEL , PHYSCDE=(ESC,C'4',ESC,C' W')
L.O GCODE=P AN MDSEL , PHYS CDE=(ESC,C'4 ', ESC,C' W')
LOGCODE=P AHSEL , PHYSCDE=(ESC,C'3",ESC,C'W')
LO GCODE=PAHMDSEL , PHYS CDE=(ESC,C'3',ESC,C' W')
LOGCODE=PAX, PHYS CDE=(ESC,C'4',ESC,C'W')
LO GCODE=PA XMDT, PH YS CDE=(ESC,C'4 ' ,ESC,C' W')
LOGCODE=PSN, PHYS CDE= (ESC,C'4 ' ,ESC,C' W')
LOGCODE=PSNMDT, PH YS CDE=(ESC,C'4 ", ESC,C' W')
LOGCODE=PSNSEL , PHYSCDE=(ESC,C'4 ' ,ESC,C' W')
L.O GCODE=PSN MDSEL, PH YS CDE=(ESC,C'4 ', ESC,C' W')

Figure 39 LOGCHARS (Page 3 of 5)

153

Appendix C

Terminal-Dependent Considerations
LOGCHARS

ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB
ATTRIB

COMMAND

COMMAND

COMMAND

CNTL CHR
CNILCHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTLCHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTLCHR
CNTL CHR
CNTL CHR
CNTL (HR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL CHR
CNILCHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL CHR
CNTL GHR
CNTL CHR
CNTL (HR
CNTL CHR
CNTL (HR

LO GCODE=PSHSEL ,PH YS CDE=(ESC,C'3',ESC,C' W')
L.OGCODE=PSHMDSEL , PHYS CDE= (ESC,C'3 ', ESC,C' W')
LO GCODE=PSX ,PH YS CDE=(ESC,C'4 ' ,ESC,C' W')
LOGCODE=PSXMDT , PHYS CDE= (ESC,C'4 ', ESC,C' W')
LO GCODE=S UP R, PH YS CDE=S UPPRESS

END

LOGCODE=WRITE1,PHYSCDE=(ESC,C'H'), X

COMMENT= 'HOME CURSOR ONLY (ESC,H)'

LOGCODE=ERASWRIT , PHYS CDE= (ESC,C'R'), X

COMMENT='ESC,R=HOME CURSOR,CLEAR SCREEN'
END

LOGCODE=RMDT , PHYS CDE=SUPPRESS
LO GCODE=R KE YBD ,PH YS CDE=S UPPRESS
LOGCODE=RMDTKE YB, PHYS CDE=SUPPRESS

LO GCODE= ALARM,PHYSCDE=X'2F" BEL
LOGCODE= ALRMRMDT, PHYSCDE= X' 2F"' BEL
LOGCODE=ALRMRKEY ,PHYSCDE=X'2F' BEL
LOGCODE= ALRMR MKY ,PHYSCDE=X'2F"' BEL
LOGCODE=P RNTNL,PHYSCDE=X"' 12" DC2-PRINTER ON
LOGCODE=PRNTL40, PHYSCDE=X"'12" DC2
LOGCODE=PRNT64,PHYSCDE=X" 12" DC2
LOGCODE=PRNT80, PHYSCDE=X' 12" DC2
LOGCODE=PRNLR MDT ,PHYSCDE=X"' 12" DC2
LOGCODE=PR4UORMDT, PHYSCDE=X' 12" DC2
LO GCODE=P R64R MDT,PH YSCDE= X' 12" DC2
LOGCODE=PR8ORMDT, PHYSCDE=X' 12" DC2
LOGCODE=PRNLRKEY ,PHYSCDE=X' 12" DC2
LOGCODE=PRUORKEY,PHYSCDE=X'12"' DC2
LOGCODE=PR6URKEY ,PHYSCDE=X" 12" DC2
LOGCODE=PR8ORKE Y,PHYSCDE=X"12"' DC2
LOGCODE=P RNLRMKY ,PHYSCDE= X' 12" DC2
LOGCODE=PRUORMKY ,PHYSCDE=X' 12" DC2
LO GCODE=P R64RMKY ,PHYSCDE= X' 12" DC2
LOGCODE=PRBORMKY ,PHYSCDE=X' 12" DC2

LO GCODE=P RNLALRM,PHYSCDE= (X' 12',X'2F') DC2,BEL
LOGCODE=PR4OALRM, PHYSCDE=(X'12',X'2F') DC2,BEL
LO GCODE=PR64 ALRM, PHYSCDE= (X' 12',X'2F') DC2,BEL
LOGCODE=PR80ALRM, PHYSCDE= (X' 12',X'2F') DC2,BEL
L.O GCODE=P RNLAR MD ,PHYSCDE= (X' 12" ,X'2F') DC2,BEL
LOGCODE=PR4OARMD ,PHYSCDE=(X'12',X'2F') DC2,BEL
LO GCODE=PR6U4AR MD ,PHYSCDE= (X' 12',X'2F') DC2,BEL
LOGCODE=PR80ARMD , PHYSCDE=(X'12',X'2F') DC2,BEL
LO GCODE=P RNLARKY ,PHYSCDE= (X' 12" ,X'2F') DC2,BEL
LOGCODE=PRYOARKY ,PHYSCDE= (X' 12',X'2F') DC2,BEL
LOGCODE=PRG4ARKY ,PH YSCDE=(X'12',X'2F') DC2,BEL
LOGCODE=PRBOARKY , PHYSCDE=(X' 12',X'2F') DC2, BEL

Figure 39 LOGCHARS (Page 4 of 5)

154

C

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
LOGCHARS
CNTLCHR LOGCODE=PRNLAMKY,PHYSCDE=(X'12',X'2F") DC2,BEL
CNTLCHR LOGCODE=PR4OAMKY,PHYSCDE=(X'12',X'2F") DC2, BEL
CNTLCHR LOGCODE=PR64AMKY,PHYSCDE=(X'12',X'2F"') DC2,BEL
CNTLCHR LOGCODE=PR8B0AMKY,PHYSCDE=(X'12',X'2F"') DC2, BEL
CNTLCHR LOGCODE=NULL,PHYSCDE=SUPPRESS
CNTLCHR END
*
DEFINE FORDEV=IBM3270P,NATRCHR=2
DEFAULTS COMMAND=X'F5', ERASE/WRITE X
CNTLCHR=X'C8"', HONOR NL/EOM FORMAT X
ATTRIB=SUPPRESS NO ATTRIBUTES
ATTRIB LOGCODE=SUPR,PHYSCDE=SUPPRESS ONLY DEF SUPPRESS ATTRIB
ATTRIB END
COMMAND SAMEAS=IBM3270
COMMAND END
NL CNTLCHR LOGCODE=51,PHYSCDE=X'15" NEW LINE CHARACTER
FF CNTLCHR LOGCODE=52,PHYSCDE=X'0C' FORM FEED CHARACTER
CR CNTLCHR LOGCODE=53,PHYSCDE=X'0D' CARRAIGE RETURN CHARACTER
SI CNTLCHR LOGCODE=54,PHYSCDE=X'QF" SUPPRESS INDEX CHARACTER
CNTLCHR LOGCODE=PRNTNL,PHYSCDE=C'H' HONOR NL/EOM CHARACTERS
CNTLCHR END
*
DEFINE FORDEV=IBM2260
DEFAULTS COMMAND=SUPPRESS,CNTLCHR=X'15"',ATTRIB=SUPPRESS
ATTRIB LOGCODE=SUPR,PHYSCDE=SUPPRESS NO ATTRIBUTES USED
ATTRIB END
END

Figure 39. LOGCHARS (Page 5 of 5)

155

pz=zzszz=z=zz =======-=======;=====:::,::::::ru:::::::.======F::::ﬁ========T======F==================-;a:;====T====-r===1
Selector SELECTOR)

Attribute Pro- Unpro- | Alpha- |Num- |Normal High- |Dis-| Non- ~ Non- | Pen-detec- (PEN DE- |MDT Non
Code tected !tected numeric | eric | Intensity|light | play| display | Print | print| table TECTABLE |On MDT]
"5;;?;;;;;;3 ::::::::T::;:::::::;::::::::::::::;:::::::::::::::;::::::::::: :i‘

| uANMDT x X X X A
UANSEL X X YT X

UANMDSEL T X X X X

UAHSEL T x X X X o

TuAmSEL | | X X x | x|

| uAX x | x X

oAt X x || T &

| UNN Tk 1 x X X

immw'r X x| x X

| UNNSEL X) X X X

‘. ONNMDSEL - ' x | x X X X i X i
UNHSEL X X X X x | X g b 1

| UNHDSEL T x X X X X X | X 1

[-z_n;)-(x| x | x T X T X - x 1 1x.

SN SIS VIR 1= L

UNXMDT X X X X X X i X J
PAN X X - X X X T X g T x i
PANMT X X X X X X]x '
PANSEL X X X X X X T 1« |

| PANMDSEL X X X X X x 1 T x ||

| PAHSEL | x | | 7% | x X o X v X

! PAHMDSEL X X _T- X X X X x |
PAX X X o X J X o Ty T]
PAXMDT X X - x | x| X X

PN X x | x X X T %X 77 Tx
esmoT X X X X Y - X X
PSNSEL | X x| x X X X T
PSNMDSEL X X x | X el e 1x

“PSHSEL X X X X 's X T X
PSHMDSEL x | x| x -")-("t ------------- x | Tx J --------- X]
x| X T Lx T 7% N j“"’_‘“ X |
PSYDT x | i x| [T % x| | x |x |
N e I O N I [T
___________________________ Y Y U S NN QIS SN SN S WS SV B

Figure 40. Intercomm Attribute Codes for IBM 3270 Terminals

156

C

Appendix C

B e il il el

Terminal-Dependent Considerations

Keyboard
Restore

- - —] - - ——— -] - — - —

- ——— -] - - ————] - - — - - -

e

- - - -

——————————— r_--_—--———————AF——————-———
No
Reset | Reset | Keyboard
WCC MT MDT Restore
S R . B b
RMT X
g g g e . -1——--——-—--'.
RKEYBD X X
.................... N P
RMRKE YB X X
.......................... B S —
ALARM X
___________ 1———_——-{.-——--—- - - - - - - - -]
ALRMRMT X L
__________ R e
ALRMRKEY X X
ALRMR MKY X X
____________________________________ L
PRNTNL X
PRNTL40 X
___________ - - - (o - ——— - - - -
PRNT6U X
PRNT80 X
——————————— q - e [o e e o o o e o B
PRNLRMT X
___________________________________ L
PRYORMDT X
PROURMDT X
PRBORMDT X F
PRNLRKEY] X X
__________________ S S E
PRYORKEY X X F
__________________ 1----__7--________.
PROURKEY X X
PRSORKEY X X
.................................... L
PRNLRMKY X X
PRYUORMKY X X
PR6URMKY X | X F
Figure U1,

(Page 1 of 2)

157

- - - - - b -

ikl SRR D R R ~—
No
No Start | Start
Alarm |Alarm |[Print {Print
X X
______ [PR U I ———
X X
X X
X X
______ i S N S
X X
X X
X X
X X
X X
X X
X X
_____________________ i S
X X
X X
X X
______ RS N S
X X
______ ISP NI SEPPI
X X
______________ [SR
X X
——————————————————————————— q
X X
_____________________ 4------1
X X
____________________ L------{
1
X X
___________________ B P
X (X
————— - ——————— ——-——-—1-—--—-—J
X X
————— - - - —— b - ————— - - ————)

Line

e e =

Y L

Intercomm Control Characters (WCC)Codes for IBM 3270 Terminals

Appendix C

b o = - -

b o= o -

- - -

- =

Terminal-Dependent Considerations

F No
Keyboard |Keyboard
Restore |Restore
X
X
X
X
X
X
X
__________ L e
X
__________ I
X
_________ N
X
X
=TT T T T T
X
X
X [
X
X
--------- e ———— -
X
X

No Start
Alarm |[Alarm | Print
X X
X X
X X
x| x
_______ I SN
X X
X X
I e
X X
[x
RSN S ———— r
X X
_______ IR S
X X
X X
_______ EEEEE SEEEEES
X X
____________________ p
X J X
X X
X X
X X
X X
X

- o=

R ———

- - -

o

Line

e

=== ==2=23

o = -

oo = o - -

= = o -

®)A line length of 132 indicates a variable length (delimited by NL) up to 132.
RMDTKEYB is the default for IBM 3270 CRTs.
PRNTNL is the default for IBM 3270 Printers.

Figure

,41.

(Page 2 of 2)

158

Intercomm Control Characters (WCQ)Codes for IBM 3270 Terminals

Appendix D

MMU PROCEDURES AND UTILITIES

This chapter contains the specifications for Intercomm procedures
and utilities used for MMU. The following procedures and off-line
utilities are defined:

COPRE
DEFSM
LOADMAP
SYMGEN

Further details on using these procedures and utilities are
described in Chapter U,

159

SPR 216 2/83

Appendix D MMU Procedures and Utilities
COPRE COPRE
COPRE

The COPRE program utility 1is used with COBOL subsystems which
require a step prior to compilation to include symbolic map definitions
subordinate to the 01 level Dynamic Working Storage definition in the
Linkage Section. Execution JCL specifications for COPRE are:

// EXEC PGM=COPRE, PARM="' {cc}'
{$$}

//STEPLIB DD DSN=INT.MODREL,DISP=SHR

//SYSIN DD {DSN=symbolic-library(member),DISP=SHR}
{* }
//SYSPUNCH DD {DSN=symbolic-library(member),DISP=OLD}
{SYSOUT=B }
//PDSDD DD DSN=symbolie-library(copy-member),DISP=SHR
where:
PARM=

specifies the two-character prefix in columns 7-8 which identify
the COPY statements. COPY statements are converted to comments
cards. The default is $$.

symbolic-library
@ For SYSIN it specifies the library containing the input COBOL
source program, and the name of that program (member).

@ For SYSPUNCH it specifies the library to contain the COBOL
source program which copied the symbolic maps, and the (new)
name of the program (member). Use DISP=SHR if the same
symbolic library is also used for SYSIN or PDSDD.

o For PDSDD it specifies the 1library referenced in the OLIB,
and the copy member defined in the NAME, parameters of the
SYMGEN procedure.

If the COPRE execution is successful, a completion code of 0 is
returned. Otherwise, a COPRE completion code of 12 is returned and
indicates that either the two-character prefix was found but the COPY
statement was not found, or the prefix and COPY statement were found
but the member name to be copied was not found on PDSDD.

160

C

SPR 216 2/83

Appendix D MMU Procedures and Utilities
DEFSYM DEFSYM
DEFSYM

The DEFSYM catalogued procedure is used to generate the symbolic
language dependent forms of the device descriptions (released as
LOGCHARS). Execution JCL specifications for DEFSYM are:

// EXEC DEFSYM,P={ppp},Q={xxx},LANG={PLI},

{zyT} {MDF} {coB}
{ASM}
// OLIB={'ppp.SYMxxx'}, NAME=XxXXXXXXX

{'INT.SYMUSR'}

where:

is the high level qualifier name of the source libraries. The
default is INT.

Q=
is the suffix of the library data set name (ppp.SYMxxx) which
contains the source device descriptions member (LOGCHARS). The
default is MDF.

LANG=
is the symbolic source statement language to generate.

OLIB=
is the 1library to contain the generated symbolic device
descriptions. The default is 'INT.SYMUSR'. This 1library cannot
be the library defined for Q.

NAME=

is the name of the source library member containing the device
description macros (LOGCHARS), which must be on the 1library
specified for Q.

The generated symbolic device description member names are
PLILOGCH, COBLOGCH or ASMLOGCH, respectively.

To print a listing of the symbolic output from DEFSYM, use the
Intercomm procedure PMIPRT, as follows:

// EXEC PMIPRT,P=ppp,Q=xxx,NAME={ASM} LOGCH
{coB}
{PLI}
where P and Q are the same 1library prefix and suffix values as
specified for the OLIB parameter on the DEFSYM procedure.

161

SPR 216 2/83

Appendix D MMU Procedures and Utilities
LOADMAP LOADMAP
LOADMAP

The LOADMAP program utility (linkedit as LOADMAPS) is used to
load internal map load modules from the Map Definition File MODMDF (all
map groups) or from a temporary or test map load library (single or a
few map groups) to the on-line Store/Fetch map data set. Execution JCL
specifications for LOADMAPS are:

//stepname EXEC PGM=LOADMAPS,REGION=rrrK
//STEPLIB DD DSN=INT.MODREL,DISP=SHR
//SYSLIB DD DSN=INT.MODMDF,DISP=0LD
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=mmnm
//INTSTCRx DD DSN=INT.username,DISP=0LD,

// DCB=(DSORG=DA, OPTCD=EF ,LIMCT=n)

where:

rrr=region size

mmm=multiple of 121, +4

x corresponds to MMUVT macro MAPDDNM parameter. It is
released with a value of 2

n is the same LIMCT used in on-line execution JCL; in
the range of 1-to-3 inclusive.

The input 1library (SYSLIB) for LOADMAPS must contain only map
definitions in internal form. The resulting Store/Fetch data set
contains one data string for each map within a map group. Input
libraries may not be concatenated on SYSLIB. Only one PDS may be input
per execution step. A listing of the keys (map group name, map name)
of all loaded maps is produced on SYSPRINT.

The LOADMAPS region size varies depending on Store/Fetch data set
block size. A region of 100K is sufficient for loading blocks of 2400
bytes.

If LOADMAPS does not execute successfully (completion code not
equal to 0), an error message is printed (SYSPRINT). The indicated
error condition must be corrected and the Jjob executed again after
scratching and recreating the Store/Fetch data set. If the error
message indicates that no space is left (within the defined LIMCT) on
the Store/Fetch data set, either the LIMCT for this data set must be
increased (also in on-line JCL), or the entire map loading process must
be performed again after creating a larger Store/Fetch data set.

162

J

SPR 216 2/83

Appendix D

MMU Procedures and Utilities
LOADMAP

LOADMAP

IF map loading is done while Intercomm is executing on-line, then
the on-line Store/Fetch data set must specify DISP=SHR and be dedicated
to MMU maps only. It cannot be used for any other purpose (not even
transient strings). Also, that same Store/Fetch data set must have
DISP=SHR coded in the LOADMAPS execution JCL. Two concurrent executions

of LOADMAPS for the same Store/Fetch data set may not be done; results
will be unpredictable.

It is recommended that the on-line subsystem(s) accessing the
map(s) to be loaded be temporarily quiesced via the DELY system command
or the MRS COMM$STOP control command (if the subsystem is executing in
a satellite region under the Multiregion Facility). The MMU control
command MMUC should then be used to delete the in-core copy of any
map(s) being reloaded, so that the next subsystem request for those
maps will access the newly loaded version. Also, 1if changes to a
reloaded map will affect the symbolic version of that map, the SYMGEN
procedure must also be executed to generate the new symbolic map, the
affected subsystem must be recompiled, and the new version of that
subsystem must be loaded (via the LOAD command) to coordinate its MMU
request processing with the new version of the map. Note that if new
message processing by a dynamically loaded subsystem is quiesced for
several minutes or more, the current version of the subsystem is
automatically deleted by the Subsystem Controller; the new version is
automatically loaded when the subsystem is reactivated.

163

SPR 216 2/83

Appendix D MMU Procedures and Utilities
SYMGEN SYMGEN
SYMGEN

The SYMGEN catalogued procedure is used to assemble the symbolic
language-dependent form of the map definitions. Execution JCL
specifications for SYMGEN are:

// EXEC SYMGEN,P={ppp},Q={xxx},LANG={ASM},
{InNT} {MDF} {coB}
{PLI1}

// OLIB={'ppp.SYMxxx'}, NAME=XXXXXXXX
{"INT.SYMUSR'}

where:

is the high level qualifier name of the source libraries. The
default is INT.

Q=
is the suffix of the data set name (ppp.SYMxxx) which contains
the map defining macro statements. The default is MDF,

LANG=
is the symbolic source statement language to generate.

OLIB=
is the library to contain the generated symbolic map definition.
This library may not be the same as that defined for the Q
parameter. The default is 'INT.SYMUSR'.

NAME=

is the member name of the input mapping macros and the member
name of the symbolic definition generated. This name 1is
referenced by the application programmer to copy the symbolie
maps into the program.

If the map group used as input to the SYMGEN procedure resides on the
same library as that desired for OLIB, then the output member name must
be different from that specified for NAME, and JCL must be added to the
above to override the output 1library and member name defaults as
follows:

//ASM,SYSPUNCH DD DSN=OLIB-library-name(member-name),DISP=SHR

To print the symbolic map produced by the SYMGEN procedure, use
the Intercomm procedure PMIPRT, as follows:

// EXEC PMIPRT,P=ppp,Q=xxx,NAME=XXXXXXXX

where P and Q reference the OLIB library, and NAME is the generated
symbolic member name, as specified for the SYMGEN procedure.

164

-

C

SPR 216 2/83

Page

AIDDATA.

Station.
AID processing. See 1IBM 3270

Display Station.
ALTBUF parameter

(DVMODIFY macro) 75, 143
Alternate Buffer Processing 142, 143
ASMLOGCH member

--defined

--and installation
ASMPCL procedure

--and ENDGROUP macro 88

See IBM 3270 Display

5, 4b
65, 69, 72, 161

--and installation 67, 72-73, 77
Assembler Language
--and input mapping s, 48
--and map definition 34
--and MAP macro 100
--and MAPCLR module 120
--and MAPEND module 122-123
--and MAPFREE module 126=127
--and MAPGROUP macro 104
--and MAPIN module 128-129
--and MAPOUT module 134
--and MAPURGE module 136
--and output mapping 50
--and service routines 37
--subsystem design 43-44, 63-64
ATTRIB macro
--and DEFINE macro 114=115
--described 70-71, 107, 150.1
--and overrides 188
--parameters 107-109
ATTRIB parameter
(DEFAULTS macro) 112-113

ATTRIB parameter (FIELD macro)
--and attribute transmission

suppression 50, 138
~-described 91
--and IBM 3270 Display

Station 138-139, 141, 150
--and IGM 3270 Printer 144
--and performance

considerations 48, 55
--and RELPOS parameter 97
--and structured segments 21
--and Teletype Dataspeed 40

Models 1 and 2 146-147, 150
--and unlabeled fields 18, 90

Attribute override
—--described 19

Page

--and input/output mapping 16-17, 58

--and output mapping 48, 50
BASED parameter (MAP macro) 98
BDEVICE macro 141-142
BEGN command 81
BTERM macro 84
BTVERB macro

--and FIELD macro 97

--and 1BM 3270 Display

Station 138-139, 11
BUFSIZE parameter
(DEVICE macro) 75, 150.1
BUFFRSZ parameter
(DVMODIFY macro) 75, 142, 143
Cancelling a logical message 51, 136
CHAR parameter (DEVICE macro) 150.1

Character string.
processing.
CNTL parameter (FIELD type)
27-28, 91-94, 144, 150.2
CNTLCHR macro

See String

--and ATTRIB macro 107-108
--and DEFINE macro 114-115
--described 70-71, 110
--and FIELD macro 9l
--and overrides 118
CNTLCHR parameter
(MAPGROUP macro) 103, 141
COBLOGCH member
--defined 5
--and installation 65, 69, 72, 161
COBOL
--and FIELD macro 89
--and map definition 35
--and MAP macro 100
--and MAPCLR module 120
--and MAPEND module 123
--and MAPIN module 129
--and MAPOUT module 134
--and MAPURGE module 136
--and service routines 37
--and structured segments 21
--subsystem design L2, 59-60
COBUPCL procedure 73, T4

COMMAND macro
-~and DEFINE macro 114-115

--described 70-71, 107-108
--and overrides 118

SPR 216 2/83

Page
COMMAND parameter
(DEFAULTS macro) 112-113

COMMAND parameter (MAPGROUP macro)
--and alternate buffer

processing 142
--described 102-103
--and 1IBM 3270 Printer 143
--and overrides 54

Commands--described 3
COND parameter (FIELD macro) 28,90,92
Controllers--described 3
Conversion of fields 26
COPRE module 73, 160
COPY members 41
CPU Console, defining the 150.1
CTCHAR parameter
(WRITE command) 141-142
DDQ. See Dynamic Data Queuing.
DDQDSTBL (DDQ table) 17
DDQRSRT parameter (BTERM macro) 84
DDQSTART module 84
Defaults 3, 112-113
DEFAULTS macro
--and ATTRIB macro 107
--described 70, 112
--function 70-T71
--and MAPGROUP macro 103
--and overrides 54-55, 118
--parameters 112-113
--and SEGMENT macro 106
DEFINE macro
--and ATTRIB macro 107, 109
--and DEFAULTS macro 112-113
--described 70-71
--function 69
--and internal device

description generation 72

--parameters 114-115
DEFSIM procedure 72, 161
DELIM parameter

(DEFAULTS macro) 112-113, 150.1
DELIM parameter (SEGMENT macro)

--and DEFAULTS macro 70, 113, 150.1

--described 105-106

--and general devices 150.1

--and nonnull segments 23

--and RELPOS parameter

(FIELD macro) 96

166

Page
--and Teletype Dataspeed 40
Models 1 and 2 146
DELY command 163
Device definition macros 69-T1
Device Description Table
--and ATTRIB macro 107-108
--and DEFAULTS macro 112
--defined 3, 5
--and delimiter definition 10
--and FIELD macro oL
--and IBM 3270 Display Station 138
--and installation 65, 68-69, T2
--and subsystem design 41
Device-dependent form 37, U5
Device-independent form.
See Normal form.
DEVICE macro
--and delimiter definition 10
--and end-of-line character
insertion 28
--and hard copy output 53
--and IBM 3270 Printer 143
--and MAPGROUP macro 104
--and network definition U
DEVICE parameter (MAPGROUP macro)
--described 102-103
--and IBM 3270 Printer 143144
--and MAPFREE module 127
--and Teletype Dataspeed 40
Models 1 and 2 146

DEVICES parameter (MMUVT macro) 116
Device Table (Back End) 5,65,73,150.1
DSECT parameter (MMUVT macro) 116-117
DS40. See Teletype Dataspeed 40
Terminals.
DVMODIFY macro
--and general devices 150.1-150.2
--and hard copy output 53, 75
--and IBM 3270 Display Station 142
--and IBM 3270 Printer 143-144
--and MAPGROUP macro 104
--and network definition T73-T4
Dynamically loadable subsystems 43
Dynamic Data Queuing

--and execution JCL 83
--and IBM 3270 Printer 144
--and MAPEND module 122
--and message disposition 53-5U4
--and MMUVT macro 117
--and page overflow processing 51
--and restart 84

C

SPR 216 2/83

Page

END parameter (ATTRIB macro) 107,108
END parameter (CNTLCHR macro) 107,110

END parameter (COMMAND macro) 107,111
ENDGROUP macro

--described 88
--function 8, 15
--and SEGMENT macro 105
--and structured segments 21
Error flag byte 17
Error processing L7
FECM (Front End Control

Message) 54, 84, 122
FESEND module 53-54, 122, 144
Field--defined 7
Field attribute 3
Field delimiter 3, 10
FIELD macro

--and AID processing 138

~--and Assembler Language
subsystems 43
--and attribute location 138
--and attribute transmission
suppression 50

--and Buffer Control Orders 140
--and cursor positioning 138-139
--described 89
--function 8, 14-15
--and HDR3270 141
--and IBM 3270 Display Station 138
--and IBM 3270 Printer 143-144
--and input mapping 45
--and logical device control
characters 27
--and nonnull segments 23
--parameters 89-97
--and repetitive fields 25
--and structured segments 20-21
--and template screens 32
--and unstructured segments 23
--use 17-18
Field types 26-27
File Attribute Records 78, 83
Flag/attribute bytes 8, 19, 21
FORDEV parameter
(DEFINE macro) 109, 114
FORMAT parameter (FIELD macro)
--described 89-90, 92
--and editing 18
--and IBM 3270 Printer 143-144

167

Page
--and INITIAL parameter g4
--and JUSTIFY parameter 95
--and verbs 27, 139
Formats
--fixed 9, 12
--keyword
--combined with positional 29
--defined 9-11
--delimiters 106
--positional
--combined with keyword 29
--defined g9, 11-12
--delimiters 106
--and input mapping 45
Hard copy output 53, 75

HDR3270 parameter

(BTVERB macro) 97, 138-139, 141

IBM 2260 Display Station 103
--LOGCHARS definition 155
--and MMUDDMF 82

IBM 2740 terminal
--considerations 150.1
--device definition example 71

IBM 2741 terminal
--considerations 150.1
—--device definition example 71

IBM 3270 Display Station
--AID processing 138
--AIDDATA processing 140
--alternate buffer processing 142
--attribute codes 55, 138, 156
--color processing 140
--and concurrent use of remote

and local devices 141
--and COND parameter

(FIELD macro) 28
--cursor positioning 138

--and DEFINE macro 114
--and DEVICE parameter

(MAPGROUP macro) 103
--and device specification 140
--ECF key 141
—--and field definitions 138
--and HDR3270 parameter

(BTVERB macro) 141
--and LOCK processing 140
--and numeric input and

keyboard lock 141

SPR 216 2/83

Page

--and orders 140
--and output mapping the

verb field 139

--and performance consideration 55
--and RELPOS parameter

(FIELD macro) 96-97
--selectable fields 139
--and STATION macro 76
--and Teletype Dataspeed 40

Models 1 and 2 150
--and variable data

output mapping 58
--WCC specifications 141, 157-158

IBM 3270 Printer
--and DEVICE macro 75-76
--and DEVICE parameter

(MAPGROUP macro) 103
--and DVMODIFY macro 75-76
--mapping considerations 143
--and message disposition 54
--and output mapping routines 53
--and STATION macro 76
--support considerations 143-145

IBM 328x printers.
Printer.

See IBM 3270

ICOMLINK macro 81-83
INITIAL parameter (FIELD macro)
--described oy
--and IBM 3270 Display Station
orders 140
--and IBM 3270 Printer 143-144
--and JUSTIFY parameter 95
--and output mapping the
verb field 139
--and RELPOS parameter 97
--and unlabeled fields 18, 90
Installation
--description, general 5
--device definition 68
--device description and
installation 71
--macros 69-71
--supplied device descriptions 69
--execution JCL 83
--linkedit requirements 81-83

--loading on-line map definitions 80

--map generation 67-68
--network definition 73
--preparation 65-66

--restart when using DDQ Facility 84

168

Page
--Store/Fetch data sets 7
--Store/Fetch map data set 78
--Store/Fetch optimization
and tuning 79
--Store/Fetch temporary storage
data set 79
--subsystem compilation/assembly 73
--Test Mode snaps 84
--Vector Table generation 7
Internal form 8
INTSTORO data set 83, 117
IOCODE parameter (STATION macro) 73
JCL 83
JUSTIFY parameter (FIELD macro)
--described 89-90, 95
--and editing 18
--and INITIAL parameter 95
--and repetitive fields 26

JUSTIFY parameter (MAP macro)
--and alternate buffer

processing 142
--described 98-99
KEYCREAT utility 65, 78-79
Keywords 24
Labeled field--defined 7
LEN parameter (DEVICE macro) 75
Length bytes 18-19
LENGTH parameter
(SEGMENT macro) 23, 106
LIBELINK procedure
--and ENDGROUP macro 88
--and internal device
description generation T2
--and internal map generation 67-68
--and Vector Table generation 7
Line--defined 7
LINESZ parameter
(DVMODIFY macro) 75, 142-143
Linkedit requirements 81
Link Pack Facility 5, 82
LOAD command 163
LOADMAP utility
--and Assembler Language
subsystems 43
--described 162-163
--error messages 162
--and initial loading of
map definitions 80

C

SPR 216 2/83

Page
--and internal map generation 67
--JCL requirements 162-163
--linkedit 80
--region size 162
--and Store/Fetch map data set 65
--and subsequent loading of
map definitions 81
LOADMAPS. See LOADMAP utility.
LOGCHARS member
--and attribute codes 50

--and device descriptions

5, 41, 150.1, 161
--and IBM 3270 Display
Station 138, 111
--and IBM 3270 Printer 151-155
--and installation preparation 65
--internal forms 69
--and overrides 55, 103
--sample listing 151-155
--and symbolic device
description generation 72
--and Teletype Dataspeed 40
terminals 150
--and template screens 32
LOGCODE parameter
(ATTRIB macro) 107-108
Logical message--defined 37
Macros
--coding conventions 86-87
--device descriptor 70-71, 107-118
--map definition 14-15, 88-106
Map--defined T
MAPCLR module
--described 120-121
--function 38
--and input/output mapping 56

--and overriding attribute values 50

--and page overflow processing 50
MAPDDNM parameter
(MMUVT macro) 116-117
Map definition
--coding examples 15, 29-33
--formats
--fixed 12
--keyword 10-11
--notation 9-10
--positional 11-12
--relative position 13
--maps and map groups 16-17

--map specification and
macro coding
--segments and fields
--COND=ENTERED fields
--defining field as logical
control character
--defining verb as field

Page

14-15
17-28
28

27-28
27

--field types and conversion 26-27

--flag/attribute byte

19

--and IBM 3270 Display Station 28

--labeled and unlabeled fie
--length byte
--prefix area
--repetitive fields
and segments
--segment types
--nonnull
—=structured
--unstructured
--YES/NO fields
--terminology and concepts
Map Definition File
MAPEND module
--and cancelling a logical
message
--described
--function

lds 17
18-19
18

25
23-24
20-22
22-23
28

7-8

5, 8

51
122-123
38

--and IBM 3270 Display Station 141

--and IBM 3270 Printer
--and initial (template) data

143-144

output mapping 57
--and MAPGROUP macro 103
--and MAPOUT macro 133
--and message disposition 53-55
--and output mapping L9
--and page overflow p