
INTERCOMM

MESSAGE MAPPING UTILITIES

<~ISOGON ~ CORPORATION
330 Seventh Avenue, New York, New York 10001

LICENSE: INTERCOMM TELEPROCESSING MONITOR

Copyright (c) 2005, 2022, Tetragon LLC

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Use or redistribution in any form, including derivitave works, must be for non-
commercial purposes only.

2. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

SPR 216 2/83

Message Mapping Utilities

Publishing History

Publication Date Remarks

First Edition April 1976 Doc urn en tin g the f eat u r e . T his
manual corresponds to Intercomm
Release 7.0.

Second Edition August 1981 Completely revised, updated and
reorganized. This manual
correspond s to I ntercomm Release
8.0

SPR 216 February 1983 Updates and reV1Slons corresponding
to Intercomm Release 9.0

The material in this document is proprietary
and confidential. Any reproduction of this
material without the written permission of
Isogon Corporation is prohibited.

ii

SPR 216 2/83

PREFACE

Intercomm is a state-of-the-art teleprocessing monitor system
executing on the IBM System 360/370 family of computers and

operating under the control of IBM Operating Systems (MFT, MVT, VS1,
MVS). Intercomm monitors the transmission of messages to and from
terminals, concurrent message processing, centralized access to I/O
files, and the routine utility operations of editing input messages and
formatting output messages, as required.

The Intercomm Message Mapping Utilities (MMU) provide the
application programmer with the capability for device-independent
message processing by centralizing the deletion/insertion of
terminal-dependent control characters for both input message editing
and output message formatting.

MMU device-dependent transformation logic
support the major terminal devices accessible
teleprocessing monitor (BTAMITCAMlVTAM). MMU also
data string records with a string length prefix.

is generalized to
via the Intercomm
performs mapping of

MMU is fully supported when operating with the Intercomm
Multiregion Support Facility (MRS). Independence and decentralized
maintenance of Satellite Region operation in the MRS environment is
preserved with the use of the Message Mapping Utili ties. MMU modules
are eligible for the Intercomm Link Pack Facility.

Message Mapping Utilities are recommended over the Intercomm
on-line Edit and Output Utilities. MMU provides additional
capabilities designed to take advantage of CRT device characteristics,
and combination mappings of a device page, as well as output message
disposition via automatic queuing, or interface to the Page or Dynamic
Data Queuing Facilities.

This manual describes Message Mapping Utilities concepts,
application programming techniques, and implementation procedures. The
reader is assumed to have a basic working knowledge of the Intercomm
system and its facilities, as well as the coding of Assembler Language
maCrOs. External Intercomm facilities, tables and macros referenced in
this manual are fully explained in the applicable Intercomm
publications.

A Users Review Form is included at the back of this manual. We
welcome recommendations, suggestions and reactions to this or any
Intercomm publication.

iii

INTERCOMM PUBLICATIONS

GENERAL INFORMATION MANUALS

Concepts and Facilities

Planning Guide

APPLICATION PROGRAMMERS MANUALS

Assembler Language Programmers Guide

COBOL Programmers Guide

PL/l Programmers Guide

SYSTEM PROGRAMMERS MANUALS

Basic System Macros

BTAM Terminal Support Guide

Installation Guide

Messages and Codes

Operating Reference Manual

System Control Commands

CUSTOMER INFORMATION MANUALS

Customer Education Course Catalog

Technical Information Bulletins

User Contributed Program Description

iv

FEATURE IMPLEMENTATION MANUALS

Amigos Users Guide

Autogen Facility

ASMF Users Guide

DBMS Users Guide

Data Entry Installation Guide

Data Entry Terminal Operators Guide

Dynamic Data Queuing Facility

Dynamic File Allocation

Extended Security System

File Recovery Users Guide

Generalized Front End Facility

Message Mapping Utilities

Model System Generator

Multiregion Support Facility

Page Facility

Remote Job Entry (OS)

Store/Fetch Facility

SNA Terminal Support Guide

TCAM Support Users Guide

Utilities Users Guide

J

Chapter
1.1
1 .2
1.3
1.4
1.5
1.5.1
1.5.2
1.5.3
1.6

Chapter 2
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3
2.3.1
2.4
2.4.1
2.4.2
2.4.3
2.5
2.5.1
2.5.2
2.5.3
2.5.3.1
2.5.3.2
2.5.3.3
2.5.4
2.5.5
2.5.6
2.5.7

2.5.8
2.5.9
2.5.10
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.7

TABLE CF CONTENTS

IN!' R ODUCTI ON ••••••••••••••••••••••••••••••••••••••
Overview
Batch Versus On-Line Processing •••••••••••••••
Mappi ng F acili ti es ••••••••••••••••••••••••••••
Device Descriptions •..........................
The MMU Environment •••••••••••••••••••••••••••

MMU Mapping Definitions •••••••••••••••••••
MMU S ervi ce R outi nes ••••••••••••••••••••••
Devi ce D as cripti ons •••••••••••••••••••••••

MMU I l'lS tall ati 00 ••••••••••••••••••••••••••••••

THE MAP DEFINITION PROCESS ••••••••••••••••••••••••
Terminology and Concepts ••••••••••••••••••••••
F orrnats •••••••••••••••••••••••••••••••••••••••

Format N otati on•........
Keyword Form at ••••••••••••••••••••••••••••
Possi ti onal Form at ...••.....•....•••......•
Combined Keyword and Positional Formats
Fixed F orm. at ••••••••••••••••••••••••••••••
Relative Position Format ••••••••••••••••••

Map Specifications and Macro Coding •••••••••••
Map Definition Macros •••••••••••••••••••••

Maps and Map Groups •••••••••••••••••••••••••••
Input Map Groups ••••••••••••••••••••••••••
Out put Map Groups •••••••••••••••••••••••••
Input/Output Map Group ••••••••••••••••••••

Segments and Fields •••••••••••••••••••••••••••
Labeled and Unlabeled Fields ••••••••••••••
Prefix Area
S e8Jll ent Types •••••••••••••••••••••••••••••

Structured Segments •••••••••••••••••••
U ns tr uct ured S e gm ents •••••••••••••••••
Nonnull Segments ••••••••••••••••••••••

Repeti ti ve Fields and Segments ••••••••••••
Field Types and Conversion ••••••••••••••••
Defining the Verb as a Field ••••••••••••••
Defining the Field as a Logical

Control Character •••••••••••••••••••••••
YES/NO Fields
CrnD=ENTERED Fields
Other Special Field Characteristics •••••••

Additional Examples •••••••••••••••••••••••••••
Canbined Keyword and Positional Input Map.
Out put Map ••••••••••••••••••••••••••••••••
Output Map for Multi-Page Report ••••••••••
I/O T empl ate Screen •••••••••••••••••••••••

Sample Symbolic Maps ••••••••••••••••••••••••••

v

1
1
1
2
3
4
4
4
5
5

7
7
9
9

10
11
12
12
13
14
14
16
16
16
16
17
17
18
20
20
22
23
25
26
27

27
28
28
28
29
29
30
31
32
32

Chapter 3
3.1
3.2
3.2.1
3.2.2
3.3
3.4
3.5
3.5.1
3.5.2
3.5.3
3.6
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5

3.8.6
3.9
3.9.1
3.9.2
3.10

Chapter 4
4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.3.3.1

4.3.3.2

4.3.4
4.4
4.5
4.6

AFPUCATION SUBSYSTEM DESIGN •••••••••••••••••••••• 37
Ove l" vi e!tl •••••••••••••••••••••••••••••••••••••• 37
HMO Service Routines am Parameters ••••••••••• 38

Service Routines •••••••••••••••••••••••••• 38
P aralll et ers •••••••••••••••••••••••••••••••• 39

Devi ce Des cri pti ons ••••••••••••••••••••••••••• 41
CCP Y M eDlb el"'S •••••••••••••••••••••••••••••••••• 4 1
Langua~-Dependent Considerations ••••••••••••• 41

CCBOL Subs ystems •••••••••••••••••••••••••• 42
PL/1 Subsystems ••••••••••••••••••••••••••• 43
Assembler Language Subsystems............. 43

Mappi ng Character S tri ngs ••••••••••••••••••••• 44
Input Mapping•.•...•......••.............. 45

In(::llt Mappi ng in Stages ••••••••••••••••••• 47
Field Error Processing •••••••••••••••••••• 41
Freeing the Mapped I nput A rea ••••••••••••• 48
P erfonaance Considerations •••••••••••••••• 48

Out pl t Mappi ns •••.•....•.•••••.........•.•.... 49
o verrlding At tri bute Values ••••••••••••••• 50
Page Overflow Processi ng •••••••••••••••••• 50
Canceling a Logical Message ••••••••••••••• 51
Mapping Hard Copy Output •••••••••••••••••• 53
Transmission P reparation and

Message Disposition..................... 53
Performance Considerations •••••••••••••••• 55

In(::ll t/Out put Mappi ng •••••••••••••••••••••••••• 55
Initial (Template) Data Output Mapping.... 57
Variable Data Output Mapping •••••••••••••• 57

Application Program Structure................. 58

INSTALLATION PROCEDURES •••••••••••••••••••••••••••
P r-eparatiCll ••••••••••••.•..••.•••••••.....•..•
Map G eneratl CI1 ••••••••••••••••••••••••••••••••

I nternal Map Generation •••••••••••••••••••
Symbolic Map G enerati on •••••••••••••••••••
Printing the Symbolic Map •••••••••••••••••

Device Definition and I ns tall ati on ••••••••••••
Supplied Device Descriptions ••••••••.•••••
Device Defin! tion Macros ••••••••••••••••••
Device Description and Installation •••••••

Internal Device Description

65
65
67
67
68
68
68
69
69
71

Generation 72
Symbolic Devi ce Des cripti on

Generati on••.................
Printing the SymbOlic Device Descriptions •

Subsystem Ccmpilation/Assembly ••••••••••••••••
MMU Network Identif'1 cation •••••••••••••••.••••
Message Mapping Utility Vector

72
72
73
73

Table Generation •••••••••••••••••••••••••••• 77

vi

J

4.7
4.7.1
4.7.2
4.7.3
4.8
4.8.1
4.8.2
4.9
4.10
4. 11
4.12

4.13

Appendix A

A. 1

A.2

A.3

A.4

Appendix B

Appendix C
C.l
C.l • 1
C.l.l.l
C.l.l.2
C.1.1.3
C.l.1.4

SPR 216 2/83

MMU Store/Fetch
Store/Fetch
Store/Fetch

Data Sets
Map Data Set
Temporary Storage Data Set

Store/Fetch Optimization and Tuning

.....
......

Loading the On-Line Map Definitions (LOADMAP)
Initial Loading of Map Definitions
Subsequent Loading of Map Definitions •••••••

Linkedit Requirements Execution JCL
Test Mode Snaps
Restart When Using the Dynamic Data Queing

Facility
MMU Control Command Processing •••••••••.••••••••

MMU MACROS ..
Macro Coding Conventions
Map Definitions

ENDGROUP
FIELD

.................................
MAP
MAPGROUP
SEGMENT

Device Descriptor Table •••••••
ATTRIB
CNTLCHR

......................................
COMMAND
DEFAULTS

.....................................
DEFINE ••••••.•••...•.•.•••

MMU Vector Table
MMUVT

..............
Override Table

MMU SERVICE ROUTINES
MAPCLR

................................
MAPEND
MAP FR EE
MAPIN
MAP OUT
MAPURGE

..
.....

...
................... TERMINAL-DEPENDENT CONSIDERATIONS

IBM 3270 CRT Considerations
Field Definitions

Attribute Location
AID Processing •••••••••
Positioning the Cursor •••••••
Output Mapping the Verb Field •••••••••••

vii

77
78
79
79
80
80
81
81
83
84

84
84

85
86
88
88
89
98

102
105
107
107
110
111
112
114
116
116
118

119
120
122
126
128
133
136

137
138
138
138
138
138
139

C.1.1.5
C.1.1.6
C.1 .2
C.1. 3
C.1.3.1
C.1.3.2

C.1.3.3
C.1.3.4

C.1.3.5
C.1.3.6
C.1.3.7
C.2
C.2.1
C.2.2
C.2.3
C.3

C.3.1
C.3.2
C.4

C.5

SPR 216 2/83

Selectable Fields •••••••••••••••••••••
Color Processing ••.•••••••••••••••••••

AIDDATA Processing ••••••••••••••••••••••••
Device Specifications •••••••••••••••••••••

Orders
Using Remote and Local Devices

Concurrently
Use of the EOF Key ••••••••••••••••••••
Use of HDR3270 Parameter in BTVERB

Macro and RELPOS=AID or CURSOR in
Flan Macro

Numeric Input and Keyboard Lock •••••••
WCC (CNTLCHR) Specifications ••••••••••
Alternate Buffer Processing •••••••••••

IBM 3270 Printer Support Considerations •••••••
Mapping Considerations ••••••••••••••••••••
Control Character Specifications ••••••••••
Map Definition for 3a70 Printers ••••••••••

Teletype Model 40/1 and 2 (Dataspeed 40)
Considerations•.........

Defining a Field for the Verb •••••••••••••
Using the Data-Only Option for MAPOUT •••••

Defining Maps for the IBM 3270 and

Page J
140
140
140
140
140

141
141

141
141
141
142
143
143
144
144

146
149
149

Dataspeed 40 Terminals •••••••••••••••••••••• 150

J Teletype and Other Devices •••••••••••••••••••• 150.1

Appendix D MMU PROCEDURES AND UTILITIES •••••••••••••••••••••• 159
COPRE .. 160
DEF'SYM .. 161
LOADMAP .. 162
SYMGEN .. 164

Index .. 165

viii

LIST CF IU. USTRATIONS

Figure ~

TempI ate Screen Form at ••••••••••••••••••••••••••• 13

2 Use of Map Definition Macro •••••••••••••••••••••• 15

3 Complete Map Definition for Figure 1 ••••••••••••• 33

4 Parameters for MMU Service Routines •••••••••••••• 39

5 MMU S ervi ce R ou ti nes 42

6 Inpl t Mappi ng L ogi c •••••••••••••••••••••••••••••• 46

7 Out put Ma pping Lo gic ••••••••••••••••••••••••••••• 49

8 Page Overflow Output Mapping Logic............... 52

9 Input/Output Processing Logic.................... 56

10
~L

11

COBOL Subsystem Structure •••••••••••••••••••••••• 59

PL/1 (Using Optimizer) Subsystem Structure ••••••• 61

12 Assembler Subsystem Structure •••••••••••••••••••• 63

13 The MMU I nstall a ti on Pro cess ••••••••••••••••••••• 66

14 Sample Map Generation and COBOL
Compile and Link 74

15 FORM\T Parameter Type Values ••••••••••••••••••••• 92

16 MAPCLR Options Specified by MCW •••••••••••••••••• 120

17 MA.PCLR Call i ng Form ats ••••••••••••••••••••••••••• 120

18 MAP CLR P aram eters •••••••••••••••••••••••••••••••• 121

19 MA.PCLR Ret urn Codes •••••••••••••••••••••••••••••• 121

20 MAPEND 0 p ti ons Speci fi ed by MCW •••••••••••••••••• 122

21 MAPEND Calling Formats ••••••••••••••••••••••••••• 123

ix

Figure
J

22 MAPEND Parameters 123

23 MAPEND Ret urn Codes ••••••••••••••••••••••••••••• 125

24 MAPFREE Options Specified by MCW •••••••••••••••• 126

25 MAP FREE Call i ng Format s 126

26 MAPFREE Parameters 127

27 MAPFREE Returns Codes ••••••••••••••••••••••••••• 127

28 MAPIN Options Specified by MCW •••••••••••••••••• 128

29 MAPIN Calling Formats 129

30 MAP IN Parameters 129

31 l'1A.P IN Ret urn Codes •••••••••••••••••••••••••••••• 130

32 Field Data After Input Mapping 131

33 MAPOUT Options Specified by MCW ••••••••••••••••• 133 J
34 MAPour Calling Formats 134

35 MAPOUT Parameters 134

36 MAPOUT Return Codes 135

37 MAPtRCE Calling Formats 136

38 MAPtR GE Parameters 136

39 LOOCHARS •• 151

40 Intercomm Attribute Codes for mM Terminals 156

41 Intercomm Control Characters (WCC) Codes
for mM 3270s 157

x

L

Chapter 1

INTRODUCTION

1.1 OVERVIEW

The Intercomm Message Mapping Utilities (MMU) are a set of
on-line utility programs whose main function is to free the application
programmer from device-dependent considerations during message
processing. MMU provides a convenient way, on input, to edit a message
for resultant processing that is independent of any device control
characters and, on output, to format a message for terminal
transmission that contains the necessary device control characters.

MMJ acts as an interface between application programming logic
and terminal-dependent processing logic. _ In an on-line environment, an
interface is required to process the different types of input and
output message formats and to communicate with the different device
types in an installation's network. Without such an interface, each
application program would have to contain editing and formatting logic
unrelated to the obj ecti ve of the message processing program and would
have to duplicate such logic in each application program.

1.2 BATCH VERSUS ON-LINE PROCESSING

In order to evaluate MMU, the difference between batch and
on-line processing should be understood. The evolution from batch to
on-line processing required changes to application program coding
techniques. One main difference between batch and on-line processing
is the form of the data the application programmer has to process. In
batch processing, the data records, or files, are read sequentially.
The only fields processed are data fields. The application program
edits the data fields, then processes the data, updates the files and
possibly issues a report.

With on-line processing, an operateI' enters data in the form of a
message from a terminal. As with batch processing, the data record, or
input message, contains data fields for records to be processed.
However, the message also contains terminal control characters that
specify field delimiters and line ending characters that are physical
characteristics specific to that terminal. The application program
must contain logic to interpret and separate these control characters
from the data fields, as well as the logic to process the resultant
data characters. Usually, a response to the input message is required
by the terminal operator. In building the response or output message,
the application program must now contain additional logic to insert the
appropriate outgoing control characters and field attribute definitions
for the device in use.

Chapter 1 Introduction

1.3 MAPPING FACILITIES

The Lmderlying concept of MMU is to provide the facilities for
application program independence from terminal considerations in an
on-line environment by structuring the message formatting processes
into distinct areas of responsibility. Specifically, MMU provides:

• Simplification

The repeti ti ve functions of input and output message
formatting, such as device control character processing, data
editing and conversion, and screen formatting, are
centralized into functions controlled by MMU service
routines, rather than functions created by and residing
within each application program. The service routines are
called from the application program in a similiar manner to
other Interconm programming services such as the file handler.

• Message Formatting and Program Maintenance Facilities

Message format specifications, called maps, are defined using
MMU macros and then stored in an on-line file, rather than in
the body of any application program. This technique reduces
the storage requirements of application programs, and makes 1.:.
it possible for different programs to share the same message """""
format specifications, thus simplifying program maintenance.

• Application Program/Terminal Interface

Terminal control characters that specify the physical
characteristics of device types in use at an installation are
defined via MMU macros and stored in an on-line
device-descriptor table. When needed, this technique permits
reference to each device control character by the same
logical symbOlic name for all device types, thus freeing the
application programmer from detailed consideration of the
physical codes for particular devices. This technique also
simplifies device control speCification in higher-level
languages. For example, if there are IBM 3270 Video Display
Terminals and Teletype Dataspeed 40 Models 1 or 2 CRT
terminals in use at an installation, the application
programmer need only reference the symbolic name for a field
attribute, and is not concerned about the actual physical
code specific to each device type. MMU device-dependent
subroutines relate the symbOlic logical names to the actual
physical codes. As with message format specifications, this
technique saves application program storage space and
simplifies program maintenance and coding.

2

Chapter 1 Introduction

1.4 DEVICE DESCRIPTIONS

A Device Description Table relates the physical characteristics
of specific terminals to the logical symbolic names for the
characteristics to be utilized by application SUbsystems. The Device
Descriptions are created for each device by coding table entries which
specify, as required:

• Field Delimiters

These are characters wi thin the text of an input message to
be us ed as def au! t val ues for fi eld se para tor, keyword-start
and keyword-end characters.

• Commands

These are characters prefixing the text of an output message
which control the type of write operation, such as
ERASE/WRITE, WRITE, etc.

• Controllers

These are characters preceeding or within the text of an
output message which control physical operation of the
terminal, such as new line (carriage return) characters, tab
characters, form feed characters, or the IBM 3270 Write
Control Character (WCC) , which specifies reset keyboard,
reset MDT, etc.

• Field Attributes

These are characters wi thin the text of an output message
which specify data field characteristics, such as the IBM
3270 attributes for protected fields, ntuneric fields,
intensity, etc.

Field delimiters are defined on a system-wide basis at HMO
installation time, but these may be overridden for each specific device
in the Device Descriptor Table and further specified at the input
message level in each map definition. Output message comnand, control
and attribute character defaults (as applicable) are specified for each
device in the Device Descriptor Table, but may be overridden in the map
definition or specified for a particular message (field) at the time of
a call to a HMO service routine.

For each output message physical code group (commands,
controllers, attributes), a maximum of 254 logical names may be defined
for referenCing the corresponding physical codes for all devices in the
HMO Device Descriptor Table. The logical names and physical codes are
specified by macros which equate the same symbolic name with each
corresponding device-code across all devices, as applicable.

3

Chapter 1 Introduction

The cO!Ill1and, attribute and control characters are referenced by
the application program when creating output messages by using the
symbolic or logical name associated with the desired code. ThUS, for
example, the programmer need not be concerned with the actual
hexadecimal value to cause a field to be protected for an IBM 3270.
The attribute is referenced by its logical name. The name represents a
unique logical code which is moved into the control area of the
associated field within the unmapped output message text string. That
logical code is subsequently converted to the terminal-dependent
physical code(s) by MMU during output message formatting.

1.5 THE MMU ENVIRONMENT

In summary, the MMU environment consists of
elements: mapping defini tions, service routines

three
and

major
device

descriptions.

1.5.1 MMU Mapping Definitions

The maps describe the input and output message text and screen or
report page formats via user-coded macros which define indi vidual datal~
and control fields, their characteristi cs, and their placement wi thin ..""
the text stream or page. A symbolic version of the map must be
generated and copied into the user application program for reference to
the individual data fields and to provide attribute and control
character overrides, as applicable. Intercomm provides an on-line
extended capability, the Autogen Facility, whereby the macros may be
automatically generated from user-defined screens created during an
interactive session at a video-display terminal. Map definitions are
discussed in detail in Chapter 2, with detail macro specifications
provided in Appendix A.

1.5.2 MHO Service Routines

Service routines are called from user application programs
(subsystems) to request mapping services on input and output message
streams or text strings, and to request transmission/disposition of the
generated output. Four disposition options are available:

• Transmit (queue) the message immediately (when only one
output message is generated).

• Pass the messages to the Page Facility (for subsequent
browsing of mul tiple formatted CRT screens).

4

Chapter 1 Introduction

• Collect the messages onto a transient data file called a DDQ
and transmit consecuti vely (for mul ti-page reports to a hard

. co py devi ce or pri nter) •

• Return the fully formatted message or prepared text string to
the application program for further manipulation or internal
disposi tion.

The service
detail in Chapter
language-dependent
codes.

routines, parameters and options are discussed in
3. Appendix B provides a listing of each routine,
calling formats, parameters, options and return

1. 5.3 Device Descriptions

A Device Description Table (released as the member LOGCHARS) and
symbolic copy code for application program reference (released as
members AS ML OGCH , COB LOGCH and PLIL OGCH) are provi ded for the maj or
devices supported by MMJ. The application progranmer need only
understand screen formatting and the usage and significance of the
attributes, control characters, etc., as applicable for the devices in
use at the user installation. The device descriptions are discussed in
Chapter 4, with detailed macro descriptions in Appendix A and
device-dependent considerations described in Appendix C, along with the
rel eased table listings and charts of mM 3270 attribute and control
characters and their symbolic names.

1.6 MMU Installation

Except for periodic tuning of the Store/Fetch elements of MMU,
installation of MMU is necessary only at initial installation of
Intercomm or when a new release in installed. Installation elements
consist of defining the system-wide MMU Vector Table via a macro (see
Appendix A), preformatting several data sets, and linkedit of the MMU
tables and service routines. Maps are Off-line loaded individually or
in groups to an on-line map definition file on an as-needed basis.
T ermi nal s are i denti fi ed and gi ven MMJ devi ce type de fi ni ti ons and
parameter speCifications in the I ntercomm Back End message-oriented
Station and Device Tables. Inclusion of the MMU service routines,
subroutines, and tables in the Link Pack Area via the Intercomm Link
Pack Facility, can be autcmatically generated via parameter request.
Ccmplete details for installation are provided in Chapter 4, along with
MMU-specific procedural Ja.. for generating symbolic code, and for
loading maps, in Appendix D.

5

J

J

J

Chapter 2

THE MAP DEFINITION PROCESS

2. 1 TERMINOLOGY AND CONCEPTS

Map definition is the logical process whereby the input and/or
output message characteristics (text type, size, control codes, etc.)
are defined for processing by the MMU service routines. The
terminology used to describe elements of the map definition process is
presented below. Sane of the terms are common to data processing and
others are specific to HMO.

For data processing, the term data field (or just field) applies
to a single unit of infonnation (text) entered or displayed upon a
terminal device. A field also defines all the specific characteristics
of one item of data. One or more fields may be displayed upon a line
of a terminal, and a series of lines becomes a screen or ~ of an
input message or output message. These same definitions can be used
for both hard copy and display terminals.

For MMU, a field may define one or more control characters
(attributes), or an output message initial data value (heading or
label), or variable (text) data processed by an application program. A
combination of these values may be described for a single field. In
addi tion, posi tion, length, type and editing (conversion)
characteristics are defined for each field. All variable fields to be
processed by an application program must be named (labeled). Those
fields containing only control characters, and/or initial (heading)
values to be inserted in an output message stream, are not named.
Repeti ti ve fields (a field with the same characteristics exists more
than once on a line with no intervening dissimilar fields) can be
defined as an occurring field.

A group of data fields with similiar characteristics may be
defined within a segment. If a group of data fields repeat in fonnat,
they may be defined as an occurring segment or line of data. Fields
occur horizontally (across a single line), while segments occur
verti cally and define repeti ti ve lines which may also include occurring
fields. A segment may also define data field subdivisions of a general
field such as a date field containing month, day and year fields. Such
a segment is called a structured segment. (If all the data fields of a
map are a tmique series of fields, they need be specified only as
individual fields, the segment is implied.) A maximum of 255 named
fields per segment may be defined.

A map is a message format specification. It contains a group of
fields within one or more segments (implied or specified). A map is
used to define the general characteri sti cs of the field group, the
placement within the screen or page, and may specify editing and
transmission requirements. The result of applying a map to a series of

7

Chapter 2 The Map Definition Process

data fields is called a mapping. A mapping operates on an input
message, an output message or a character string. A mapping that
operates on an input or out put message is used to transform the message
from or to its device-dependent status. When a mapping operates on a
character string, only the editing and field conversion capabilities of
the map specification are used. Character strings to be mapped must be
in standard variable length record format (halfword RDW prefix).

One or more maps may be necessary to format an input or output
message. A series or these related maps is a map group. A map group
defines all parts (maps) of a screen image or printed page. Alternate
maps to define a particular part may be specified within the same map
group. When a map group is defined, the map group mode is also
specified as input, output or input/output. An input or output map
group consists of one or more maps that define all in'put or output data
fields for one or more input or output messages. An input/output map
group defines all input and all output data fields for a screen format
or template, and is generally used for Lnteracti ve, or conversational
processing. Maps wi thin a map group may also have different usages,
such as page headers and trail ers or error message li nes , etc. A
maximum of 9999 fields may be defined within a map group.

Map groups, maps, segments and fields are defined via the MMU
macros MAP GROUP , MAP, SEGMENT, and FIELD, respectively. A complete map J"
group is delimited by the ENDGROUP macro.

When the map group definitions are complete (that is, when all
the macros are coded), they must then be assembled in two different
ways to generate two different forms of the maps, the internal form and
the symbolic map. The internal form contains internal mapping
speCifications such as type, size, displacement, and pointers that are
used by the MMU service routines for editing and formatting. The
internal form resides on the Map Definition File, a partitioned data
set.

The symbolic map is a language-dependent map definition and
contains the label, type and length for all named (variable) fields.
It is copied into the user application program for referencing the
message fields processed by a mapping. These maps reside on a
user-specified source statement library.

When the symbOlic map group is assembled, a prefix is generated
for each named (labeled) field and structured segment. This prefix
area is used in the mapping process to specify editing error conditions
and inplt field length, or to specify attribute override values for
output message formatting. The prefix area contains the length and
flag/attribute bytes.

8

Chapter 2 SPR 216 2/83 The Map Definition Process

2.2 FORMATS

The first level of map definition is the design of screens or
pages and specification of input and output characteristics.
Screen/page design includes determining which type of input and/or
output format to use for a particular message type. Considerations
involved in this process include operator convenience, terminal
characteristics and transmission requirements. MMU recognizes four
different types of input formats for received messages (strings).
These are:

• Keyword (field label or definition prefixes)

• Positional (fields separated by delimiters)

o Fixed (length is constant (not variable), no separators)

• Relative Position (field position is relative to the
beginning map position)

Additionally, MMU allows the keyword and positional input formats to be
intermixed in one message segment. Only the relative position format
may be used for output messages and input/output map group modes.
Relative position is also used to describe formatted, or template,
screens.

2.2.1 Format Notation

In the following format descriptions, symbols used for input
message format notation are:

{ss} the Intercomm system separator character; delimits the
verb

{fs} the positional field separator character (may be the same
as the system separator): a delimiter for individual
data fields entered in positional format

{fb} the keyword field begin character: a delimiter
signalling the end of a field-identifying keyword

{fe} the keyword field end character: a delimiter signalling
the end of a keyword-identified data field

{ell the End of Line: new line (NL) or carriage return/line
feed (CR/LF) character(s) of the terminal

{em} the End of, Message character sequence of the terminal
(EOT, EOB, or ETX)

9

Chapter 2 The Map Definition Process

The ss and el delimiters are system-wide values defined at
Intercomm installation via the SPALIST and DEVICE macros. The fs, fb
and fe delimiters are defined on a system-wide basis at MMU
installation time in the MMU Vector Table. They may also be defined in
the Device Description Table to specify values for a particular device
type. Delimiter override values may be applied to a particular input
message or portion of an input message if specified in a map (SEGmNT
macro) definition.

The End of Line characters are also interpreted as field
delimi ters by MMJ (a field may not wraparound from one line to the
next). End of Message naturally signals end of input, and HMO
processing of the message completes. The End of Line character(s) for
each device are defined via the DEVICE macro in the backend Terminal
Device Table (PMIDEVTB), and may also be defined as the positional
field separator (one field per line) in the MMU Device Descriptor Table
or for a specific map (SEGmNl' macro).

2.2.2 Keyword Format

Keyword format is usually entered from a hard copy device. When
data is to be entered in the keyword format:

• Each data field in the message is identified by a unique
one-to-eight character field identification (prefix) called
the keyword.

• The keyword is followed by the field begin (fb) character.

• The field begin character is imnediately followed by the data
and a field end (fe) character. For example, CUST is the
keyword for customer name in the following

CUST{fb}JOHN R. WILLIAMS, JR{fe}

• The keyword must be unique within anyone transaction type
(map) but may be reused for other transaction types. Thus,
the keyword COST above may be defined in all transactions
that require a customer name, but may not be defined twice in
the same transaction (map).

• Keyword fields can be defined as multiply occurring and in
this case may be sequentially reused in a given transaction
type. Each use of the keyword is followed by the appropriate
data. For example, it may be possible to have three debit
amOlmts for a given account:

DEBIT{fb}27.42{fe}
DEBIT{fb}7.93{fe}
DEBIT{fb}8.47{fe}

10

J

L

Chapter 2 SPR 216 2/83 The Map Definition Process

• A keyword field can be reentered if the first entry was in
error. However, fields defined as multiply occurring cannot
be corrected by reentry, as the second entry will be
considered the second occurrence.

A complete keyword format message might appear as follows:

TRNS{ss}CUST{fb}JOHN R. WILLIAMS, JR.{fe}
ADDR{fb}27 E. 43RD ST. {fe}
C/S{fb}WEST HEMPSTEAD NY{fe}
ACCT{fb}7432710{fe}DEBIT{fb}27.42{fe}CREDIT{fb}1.27{em}

NOTE: in each of the above illustrations, the el delimiter may
be substituted for the last fe delimiter on a line.
Also, the fe delimiter for the last data field may be
omitted, since the em delimiter also signals field end
(message end).

2.2.3 Positional Format

Positional format is used for entering a string of data fields,
and may be used on a CRT or hard copy devi ce • When using positional
format for entering data:

o The data fields are separated by a field separator character
(fs) •

ct Fields must be entered in a specified order (position), that
is, the same order in which they are defined in the map.
Thus, the terminal operator must remember the order of
entry. However, this technique saves operator keystrokes as
a keyword identifier does not have to be entered.

• Fields can be omitted as long as the field separator
character (fs) delimiting the omitted field is entered to
indicate the absence of the field. That is, two consecutive
field separators indicate the absence of the intervening
field.

• Fields can occur; however, omitted occurrences must be
indicated by a field separator as described above.

The following data string illustrates positional format:

TRNS{ss}JOHN R. WILLIAMS{fs}727 E.43RD ST. {fs}WEST HEMPSTEAD NY{el}
7432710{fs}27.42{fs}I.27{em}

11

Chapter 2 SPR 216 2/83 The Map Definition Process

If street and city/state address information is not available, or J.
is already correct, it can be omitted:

TRNS{ss}JOHN R. WILLIAMS{fs}{fs}{el}
7432710{fs}27.42{fs}1.27{em}

In the above examples, the end-of-line character (el) may be used
at the end of a line instead of the field separator, and an em may be
substituted for the last fs.

2.2.4 Combined Keyword and Positional Formats

For some applications, a combination of keyword and positional
field formats may be desired in one message, as for example:

TRNS{ss}JOHN R. WILLIAMS{el}
727 E 43RD ST{fs}WEST HEMPSTEAD NY{el}
ACCT{fb}7432710{el}
CREDIT {fb}I.27 {fe} CREDIT {fb}48.26{fe}DEBIT{fb}9.95{em}

This approach combines efficiency of positional format and J
convenience of keyword format. However, a field must be defined as one
or the other, and always entered as defined.

Occurring segments (lines) of data may be defined in keyword,
positional, or combination maps. However, if followed by a
nonoccurring segment, the absence of all positional and occurring
positional fields (line segments) must be indicated by entry of field
separator (end-of-line) characters.

2.2.5 Fixed Format

Some applications may require processing of messages or character
strings in a format similar to batch mode fixed length records. In
this case, every input message contains fixed length data fields in a
fixed position within the message or string. All fields in the map are
named and described in ascending order. This situation might occur
with data collection devices or CPU-to-CPU transmission of data files.

Occurring fields and/or segments may be defined. Absence of data
for a field within the message text must be indicated by character
zeros or blanks in that field area. For a character string, the
halfword RDW prefix is required to define the string length, since the
absence of trailing fields cannot be indicated by an end of message .~~
character, and because there is no message header. ~

12

Chapter 2 The Map Definition Process

2.2.6 Relative Position Format

The relative position fonnat is usually defined for those video
display terminals (such as the IBM 3270) which have the template or
fonnatted screen capability. Template screens are typically used in
input/output map group mode. Relative position fonnatting is also used
for output messages to hard copy devices (printers) and string devices
in output map group mode. For data entered in relative position fonnat:

• The template contains keywords (labels) identifying the
fields to input, and blank (null) spaces in which to input
them.

• The operator fills in only the data fields. This data, and
control characters indicating screen posi tion and
tennina1-dependent characteristics, are transmitted fran the
terminal as the input message. The template itself is not
received.

• The positions of data fields are indicated in ascending row
and column notati on, or as cending n\.ID.eric posi ti on relative
to the start of a particular screen area (map).

In Figure 1, the periods indicate those screen positions where an
operator may enter data.

.... EN'IER TRANSACTICfi CODE

ENTER CUSTOMER DATA:

cusnER NAME: ·
ADDRESS: · · ·
ACCT NO: · DATE: ••••••

CREDITS: ·
DEBITS: ·

Figure 1. Template Screen Format

Entering data in a screen such as the above allows the operator
to take advantage of the terminal's cursor posi tioning facilities,
rather than having to enter field separator characters.

13

Chapter 2 The Map Definition Process

2.3 MAP SPECIFICATIONS AND MACRO CODING

The next level in the map definition process is the specification
of maps; that is, the process whereby screen/page designs and input
specifications are translated into maps. Map specification includes
the analysis of an input or output message into its map elements--that
is, mode, format, map group, maps, segments, fields--and the coding of
MMJ macros to produce the required message/string designs.

Map Definition Macros

Map defini ti ons are generated by coding the MMU
MAPGROUP, MAP, SEG~NT, FIELD and ENDGROUP. Detailed
specifications of these macros are presented in Appendix A.
descriptions of these macros are given below.

• MAPGROUP

macros:
coding

General

The MAPGROUP macro names the map group and the general group
characteristics, such as device type in use, map group mode,
and output message control specifications if desired.

• MAP
The MAP macro names a map wi thin a map group and defines
general map characteristics, such as map size, starting
posi tion, margin alignment, and output usage; header
(top-of-page) only, trailer (bottom-of-page) only, or normal
(variable intermediate lines or a full screen/page of data).

• SEGMENT

The SEGMENT macro defines a group of data fields wi thin a map
or a line of a map. There are three basic types of
segments: nonnull segments are used to define positional,
keyword, or fixed fonnat input data only; structured se~ents
are used to structure contiguous data fields to facilitate
application program processing; and unstructured seeP1ents are
used to specify unique individual fields or
multiply-occurring lines of fields. Both structured and
unstructured segments may be defined within the same map and
used for input and/or output mapping, but may not be mixed
wi th nonnull segments on input maps.

• FIELD

J

The FIELD macro defines an individual data field wi thin a
semnent or a map. The application programner must define all
fi:ids that require mapping. Data fields entered but not . ..)
defined by a FIELD macro may produce undersirable resul ts.

14

Chapter 2 The Map Definition Process

The FIELD macro is used to defi ne field position, formatting
requirements (internal and external size and type) ,
mul tipI y-occurring fields, attributes, constant (heading)
data, field justification, and padding characters. Special
FIELD macro coding is used to define the verb (transaction
code), AID and cursor values for 3270 CllTs, and output device
control characters.

• ENDGROUP

The ENDGROUP macro signifies the end of the map group under
definition.

A partial map definition coding example is shown in Figure 2. It
illustrates how the relative posi tion format template screen shown in
Figure I can be translated into maps. In this case, the entire screen
is defined as one map group which is used in 1/0 mode.

CUSTM!:R
CUSTINF
VERB

NAME

ADDR

ACCT

DATE
MJNTH
DAY
YEAR

CREDITS

DEBITS

MAPGROUP MODE=I/O, •••
M!\P SIZ E= (15,80) , ••• (rows,columns notation)
FIELD RELPOS=VERB
FIELD RELPOS= (1,7) ,INITIAL= 'ENTER TRANSACTlOO roDE', •••
FIELD RELPOS=(3,23), INITIAL= 'ENTER CUSTOM!:R DATA:', •••
FIELD RELPOS= (5,7) , INIT IAL=' CUSTmR NAm:' , •••
FIELD RELPOS=(5,21), •••
FIELD RELPOS= (7,7) ,INIT IAL= 'ADOOESS :' , •••
SEGM!:NT OCCURS=3 (occurring se~ent)
FIELD RELPOS=(7,21), •••
SEGM!:NT (null segment delimits occurring se~ent)
FIELD RELPOS=(11,7),INITIAL='ACCT NO:' , •••
FIELD RELPOS=(11,21), •••
FIELD RELPOS=(11,31) ,INITIAL= 'DATE:' , •••
SEGM!:NT (structured segment)
FIELD RELPOS= (11,37) , •••
FIELD RELPOS=(11,39), •••
FIELD RELPOS=(11,41), •••
SEG~NT

FIELD
FIELD
FIELD
FIELD
ENDGROUP
END

(delimit structured se~ent)
RELPOS= (13,7) , INIT IAL= 'CllEDITS :' , •••
RELPOS= (13,21) ,OCCURS=3, •• • (occurring field)
RELPOS=(15,7) ,INITIAL= 'DEBITS:' , •••
RELPOS=(15,21) ,OCCURS=3, ••• (occurring field)

Figure 2. Use of Map Defini tion Macros

15

Chapter 2 The Map Definition Process

2.4 MAPS AND MAP GROUPS

2.4.1 Input Map Groups

For input mapping, the map group definition may be applicable to
one or more related types of input messages. Input messages with
similar input field sequences need not be defined by individual map
groups. F or example, perhaps two message types exist in a banking
environment: one for account transactions such as deposits and
withdrawals, one for display of current balance. Both message types
would require input of account number and unique transaction code, but
only the first would require entering dollar amounts. One map group
could define both message types. The map group would consist of two
maps: one for the coumon data fields, and the other for the additional
fields unique to the first message.

Using the same map group for more than one input message makes a
more efficient use of storage for map definitions. However, when
defining multiple maps for fixed or positional fields, the named field
definitions (except the verb) must be repeated in each map with new
names for correct field identification processing. This technique also
allows the application program to perform application-dependent logic,
such as account number verification, on a partially mapped message
prior to completing input mapping.

2.4.2 Output Map Groups

For out put mapping, one out put map group defines all out put data
fields for one or more output messages. A map group might define all
the possible output pages of a report produced on-line; various maps
within the group could define title lines, intennediate body-of-report
lines, intermediate total lines, final total lines, etc.

An output message may be constructed by combining mappings,
therefore, application program logic can prepare header and trailer
data couman to each page of a multi-page output message.

2.4.3 Input/Output Map Group

The map group coding in Figure 2 for the template screen shown in
Figure 1 is an example of an input/output map group. I/O map groups
are a programming convenience and should be used to create and map
template screens for IBM 3270 CRTs and similar devices.

J

Input/output mode uses the same screen fonnat for both input and
output. Rather than have two symbolic maps defined in the programl~
which look alike, the same area may be used for both input and output ..."
messages. The only difference in the input symbolic map and the output

16

Chapter 2 The Map Definition Process

symbolic map is that the error flag byte which immediately precedes the
data on input, is used for an attribute byte override on output. Since
these different fields are in the same relative location in the
symbolic map, it is easy for the application program to use one map
definition to access the fields, extracting infonnation for input, or
inserting infonnation for output. In addition to decreasing the effort
of defining maps, I/O mode also reduces the dynamic working storage
required for the application on-line, and for the maps on the Map
Definition File.

Not all transaction types or terminal types can accept I/O map
groups, because this map group mode requires the same message fonnat
for input and output. For example, an input message type may require
keyword or positional processing, while the output message requires
relati ve position processing, whether for an acknowledgement response
or a lengthy output report. Additionally, certain devices, such as
hard copy tenninals, cannot generate relative position (fonnatted)
input. Thus, separate input and output map groups must be defined for
these tenninals because of the different processing modes.

2.5 SEGMENTS AND FIELDS

The mapping requirements for groups of fields or individual
fields are specified at the segment and field level. If a data field
is to be mapped, it must be defined by a FIELD macro (named or
unnamed). Only named fields (variable data) are generated into
symbolic maps. Unnamed fields are not considered for input processing,
and are only used to define constant data (literals or control
characters) for output mapping.

Fields can be grouped into segments so that they can be operated
upon as one unit, or data fields can be defined as individual fields
and processed separately. The choice of grouping fields into segments
or defining unique fields depends on such considerations as terminal
type, map mode, line and field fonnats, type of data and the level of
error checking and attribute speCification required.

2.5.1 Labeled and Unlabeled Fields

Under MMU, fields may be either labeled (named) or unlabeled
(unnamed) •

Fields which are to be processed by an application program must
be labeled. Labeling a field allows it to be referenced by the
application program. A labeled field is. defined via a labeled FIELD
macro and speCifies variable data that is to be operated upon in the
input and/or output mapping process. The field label (name) appears
only in the symbolic map.

17

Chapter 2 SPR 216 2/83 The Map Definition Process

Unlabeled (unnamed) fields are used to specify fixed output
message data that is not processed by an application program, such as
device control characters, headings, or template data area labels.
Unlabeled fields cannot be referenced and do not appear in the symbolic
map; they are defined in the internal map only. An unlabeled field is
relative positional only and requires initial value coding (INITIAL
parameter), and/or attribute definition (ATTRIB parameter) • The
initial value will be processed by the MMU editing routines during
output mapping, and attributes will be inserted if defined (and
applicable) •

In I/O map group mode, an unlabeled field can be used to specify
an attribute to protect or unprotect a portion, or the remainder, of
the screen or to delimit an unprotected field. This is done by coding
an unlabeled FIELD macro without the INITIAL parameter, but with
FORMAT=(I) and with the appropriate ATTRIB value specified.

If a series of unlabeled initial value fields are coded without
intervening labeled fields, a protection attribute may be specified
only for the first unlabeled field, which -then applies to the series of
fields. This is done by coding an ATTRIB value to protect the first
unlabeled field and by coding ATTRIB=SUPR on the subsequent unlabeled
FIELD macros.

2.5.2 Prefix Area

When a FIELD or SEGMENT macro is labeled, the label becomes the
symbolic name for the defined field or structured segment. This name
is used to symbolically reference the data within the FIELD or
SEGMENT. A named field or structured segment has a prefix consisting
of length and flag/attribute bytes generated when the symbolic map
group is assembled. MMU editing processing of a field includes
justification, padding and conversion as defined in the FIELD macro
(JUSTIFY and FORMAT parameters). The desired field length is specified
on the FORMAT parameter in two forms: external (on the terminal) and
internal (for program processing).

• Length Bytes

This part of the prefix is an unaligned binary two-byte area
that for input mapping specifies the edited length (in binary)
of the segment or field. The length is defined differently
for character data and non-character data as follows:

If the type of data in the field or segment is character,
the length reflects the entered string length. This is
equal to or less than the maximum internal field length.
(The external and internal field lengths are usually
defined as equal for character data fields, and are the
desired field length.)

18

J

Chapter 2 SPR 216 2/83 The Map Definition Process

If the data is not character type, the length reflects
the internal length, that is, the length after any
specified data conversion, right-justification, and zero
padding has been performed by the input mapping routine.
Thus, a packed-decimal field with a specified internal
length of three bytes would contain a binary 3 in the
length bytes rather than a 5 to reflect five digits
entered at the terminal (external length).

• Flag/Attribute Byte

The second part of the prefix is a one-byte area that has
different functions for input and output message mapping. On
input it is referred to as the flag area. It is used by the
input mapping routine to specify certain error conditions for
the input field or structured segment, such as invalid
content, value or length. The flag prefix area must be
examined after the input message has been mapped, to allow
application program logic to perform error processing.

On output, the same flag area is used as the attribute
override area, to specify a logical control code for an
attribute; for example, to highlight a field (overrides the
field atribute value predefined in the map).

For named fields and segments, a symbolic name is
automatically generated for each of the two areas of the
prefix. This allows the application program to access the
prefix areas. The area containing the length bytes is gi ven
a name consisting of the name of the field or structured
segment followed by the letter L. The area containing the
flag/attribute byte is given a name consisting of the name of
the field or structured segment followed by the letter T.
Thus, for example, if an input message field is named
CUSTNUM, the following symbolic names are generated:

------------------------------ --- ---------------------------------------
Symbolic Name Contents

------------------------------ --- ---------------------------------------
CUSTNUML Field Length (unaligned binary)

CUSTNUMT Field Flag/Attribute

CUSTNUM Field Data Area

19

Chapter 2 The Map Definition Process

2.5.3 Segment Types

The three different types of segments are structured,
unstructured and nonnull. These three segment types are explained in
detail in the following subsections.

Structured Segments

Structured segments are generated by a labeled SEGMENT macro, the
structured (null) segment has a prefix area associated only with the
segment, but not with the individual fields within it. Structured
segments may be used for input or output maps in relative position
format only. A structured segment must be null (that is, it must be a
segment in which the contiguous field locations within the segment are
explici tly defined via relative position coding on the FIELD macros);
no parameters are coded (except OCCURS, if desired).

The following is an example of the coding of a structured segment:

DATE
M>NTH
DAY
YEAR

SEGMlNT
FIELD
FIELD
FIELD

RELPOS=(2,5), ••••
RELPOS=(2,7), ••••
RELPOS=(2,9), ••••

NOTE: For COBOL, the labels DATE and DAY are Reserved Words,
and are used in these pages only for illustration
purposes •

This coding generates the following symbolic names (and
corresponding data areas):

Symbolic Name

--
DATEF
DATEL
DATET
DATE
MONTH
DAY
YFAR

--
Contents

======================================
Structured segment label
Segment length
Segment FlaglA ttri bute
Segment area label
Month field
Day field
Year field

The data area DATE consists of the MONTH, DAY, and !FAR data
areas, or, in other words, these data areas redefine the DATE data area.

20

J

J

Chapter 2 SPR 216 2/83 The Map Definition Process

A structured segment causes the symbolic map prefix to be
generated for the segment name only. The named fields within this
segment do not have the length and flag/attribute bytes preceding each
field. Thus, error checking and attribute specification cannot be made
for individual fields within a structured segment. After input
editing, the length will be the combined maximum internal lengths of
the fields in the segment, and the flag will contain the last error
code found (if any). The entire segment may be referenced as a field
by the SEGMENT macro name, and each defined field within the segment
may' be referenced individually by FIELD macro name. This technique is
particularly useful for high level languages, such as COBOL or PL/1,
where fields belonging to the same segment can be structured with level
numbers. For example, the structured segment DATE, containing the
fields M)NTH, DAY, and YEAR, would have a symbolic map definition in
COBOL as follows:

04 DATEF.
05 DATEL PIC 9 (4) COMP."·
05 DATET PIC X.
05 DATE.

06 MONTH PIC XX.
06 DAY PIC XX.
06 YEAR PIC XX.

To assign an attribute to a structured
parameter is coded with a logical value only on
of the segment, which must be a named field.
macros have the ATTRIB parameter coded, the values

segment, the ATTRIB
the first FIELD macro
(If subsequent FIELD
are ignored.)

A structured (labeled) SEGMENT macro must be followed by more
than one labeled (named) FIELD macro. A structured segment must be
delimited by a SEGMENT containing one or more named FIELD macros, or a
MAP or ENDGROUP macro. Structured segments may contain noncharacter
fields with internal editing conversion specified. The major
restriction for structured segments is that the number of characters
entered for each field must match the external length specified for the
field, as though the fields were fixed length in format. Because the
field data is contiguous with no intervening separator indications,
padding must be keyed for the input field as appropriate to the field
type. Ommission of a field on entry can only be indicated by keying
blank/zero padding for that field (requires field type CB for character
fields). Only the last field in the structure may be truncated on
entry (padding performed by MMU editing). For output mapping, each
field should contain valid (non-blank/non-null) data or null/blank fill
will be transmitted as appropriate to the device type; the only
exception is a field type of CB, where blank fill is valid data for an
alphanumeric (character) field.

21

Chapter 2 SPR 216 2/83 The Map Definition Process

On output maps, unnamed fields with INITIAL value characters;~
(such as inserting slashes (I) in the DATE field described above) may ..."
be defined (ignored if the data-only option used for MAPOUT). Unnamed
fields are ignored on input (if an I/O map group); however, such
ini tial value characters are treated as input data if received. A
delimiting attribute can only be defined after the delimiting SEGMENT
macro--not within the structure (ignored). See Figure 3.

Unstructured Segments

Unstructured segments are generated by an unlabeled SEGMENT macro
wi th no parameters coded (except possi bly the OCCURS parameter). The
unstructured (null) segment has a prefix area associated with each
field within it, not with the segment as a whole. In an unstructured
segment, the location of each field is defined via the associated FIELD
macro. Unstructured segments may be used for input, output or I/O maps
in relative position format.

The following is an example of the coding of an unstructured
segment:

DATE
AMOUNr

SEGMENT
FIELD
FIELD

This coding generates
corresponding data areas):

--
Symbolic Name

--
DATEL
DATET
DATE
AM:lUNTL
AMOUNTT
AM:lUNT

RELPOS:(4,2),FORMAT:(6"ZD), •••
RELPOS:(4, 9) , •••

the following symbolic names (and

Contents

--
Date field length
Date field flag/attribute
Date field
Amount field length
Amount field flag/attribute
Amount field

The following is an example of a terminal format for which
unstructured segments are appropriate:

SHIP TO: ABC CO - RECEIVING
123 MAIN STREET
OUR TOWN, USA

BILL TO: ABC 00 - ACCOUNTING
123 BROAD STREET
OUR TOWN, USA

22

Chapter 2 The Map Definition Process

The following shows how this format could be coded in an
unstructured segment.

SNAME
SADDR
SCITY

BNAME
BADDR
BCITY

[SE Gt-E NT]
FIELD
FIFl..D
FIELD
FIFl..D
FIELD
FIFl..D
FIELD
FIELD

RELPOS=(3,2),INITIAL='SHIP TO:' , •••
RELPOS=(3,15), •••
RELPOS=(4,15), •••
RELPOS=(5,15), •••
RELPOS=(7,2),INITIAL='BILL TO:' , •••
RELPOS=(7,15), •••
RELPOS=(8,15), •••
RELPOS=(9,15), •••

If the first segment of a map is unstructured and does not occur,
the SEGMENT macro is to be emitted; it will be generated autematically
for the internal map, and is unnecessary for the symbolic map.
Uns tructured segments may be defined as occurring segments, that is,
the single line defined by the segment occurs mul tiple times down the
page (screen), as illustrated by the ADDRESS lines in Figures 1 and 2.
An occurring unstructured segment must be delimited by another SEGt-ENT
macro followed by at least one named FIELD, or by a MAP or ENDGROUP
macro •

2.5.3.3 Nonnull Segments

Nonnull segments are generated by an unlabeled SEGMENT macro with
the RELPOS and LENGl'H (and possibly the DELIM and OCCURS) parameters
coded, the nonnull (unstructured) segment also has a prefix area
associated with each field within it, not with the segment as a whole.
In a nonnull segment, the location of each field is determined by
SEGt-ENI' macro parameters as well as individual FIELD macro parameters.
The nonnull segment is used only for input maps which define data in
fixed, posi tiona! or keyword format.

The following is an example of the coding of a nonnull segment:

NAt-E
ADDRESS

SEGt-ENT RELPOS= (1 , 1), LEN Gl'H= 60 , DELIM: (C' ; ,)
FIELD RELPOS=POS, •••
FIFl..D RELPOS=POS, •••

23

Chapter 2 The Map Definition Process

This coding generates the following symbolic names (and
corresponding data areas):

-- --------------------------------------
Symbolic Name Contents

-------------------------------- -- --------------------------------------
NAMEL
NA~T

NAME
ADDRL
ADDRT
ADDR

Name field length
Name field flag/attribute
Name field
Address field length
Address field flag/attribute
Address field

Nonnull segments may be used only for input maps. Nonnull
segments must be unstructured.

The following is an additional example of an input terminal
format for which nonnull segments may be used:

SHIP=ABC ro .-RECEIVING; 123 MAIN STREET JOUR TOWN, USA{el}
BIU,=ABC CO.-ACCOUNTING;123 BROAD STREET JOUR TOWN, USA{em}

The following shows how this format is coded:

SNAME
SADDR
SCITY

BNAME
BADDR
BCITY

SEGMENT
FIELD
FIELD
FIELD
SEGt-ENT
FIELD
FmLD
FIELD
SEG~NT

RELP OS= (1 ,1) , LENGrH=80 , DELIM:: (C' j' , C ' = ' , C' j') , •••

RELPOS= 'SHIP' , •••
RELPOS=POS, •••
RELPOS=POS, •••
RELP OS = (2 , 1) , LE N Gr H= 8 0 , DE LIM:: (C' ;' , C ' = ' , C' j ,) , •••

RELPOS= 'B ILL' , •••
RELPOS=POS, •••
RELPOS=POS, •••
RELPOS= ••••

The constants SHIP and BIU, are in this case keywords which
indicate the posi ti ons of the fields which follow them.

24

J

J

Chapter 2 SPR 216 2/83 The Map Definition Process

2.5.4 Repetitive Fields and Segments

Repetiti ve fields are fields which repeat horizontally, that is,
across a line in identical format. Repetitive segments are groups of
fields which repeat vertically, that is, from one line to the next.
Repetitive segments may have repetitive fields defined within the
segment.

The number of repetitions of a field or segment is specified by
the OCCURS parameter of the FIELD or SEGMENT macro. Coding the OCCURS
parameter on the SEGMENT or FIELD macro specifies that a line or field
may repeat as many times as the number coded. For relative positional
input mapping, only consecutively used occurrences are valid; the first
occurrence not used terminates the repeti ti ve sequence. For example,
if data is entered for two fields/lines, but placed in the first and
third occurence position, the data in the third field/line is ignored.
However, if the MDT is set on in an attribute for a field on the second
line, even though no data is transmitted, the third line will be
accepted as valid.

The
occurrence
subsequent
desired in

generated symbolic map defines labels for the first
of the segment or field. Space is defined for the
occurrences. For example, suppose an output display is

the following format:

PRODUCT SALES SUMMARY - FIRST QUARTER

DIVISION: XXX

PRODUCT JAN FEB MAR TOTAL

xxxx xxx.xx xxx.xx xxx.xx xxxxx.xx

xxxx xxx.xx xxx.xx xxx.xx xxxxx.xx

TOTALS xxxx.xx xxxx.xx xxxx.xx xxxxxx.xx

The displayed amounts representing the individual month totals may be
defined as a repeating field. The line containing the monthly totals
for each product may be defined as a repeating segment, as follows:

CODE
MONTH
MONTOT

SEGMENT
FIELD
FIELD
FIELD
SEGMENT

OCCURS=8
RELPOS=(7,1), •••
RELPOS=(7,lO),OCCURS=3, •••
RELPOS=(7,45), •••

delimits repeating segment

25

Chapter 2 SPR 216 2/83 The Map Definition Process

When OCCURS is used with a SEGMENT in which field positions are
indicated in (row, column) form, the row number is automatically
incremented for each occurence of the segment. For the month total
occurring fie ld positions to be correct, the external length of the
MONTH field must include padding on the left which will be inserted by
the MMU editing routine (code JUSTIFY= (RIGHT ,BLANK) or
JUSTIFY=(RIGHT,ZERO) as appropriate for the field type). The latter is
the default for numeric fields; leading zero suppression is automatic,
blank fill provided if necessary for the receiving device.

2.5.5 Field Types and Conversion

The format of data fields may be specified as character or
numeric (packed-decimal, zoned-decimal or unaligned binary). Fields
appear differently in the internal and symbolic map forms. For use in
the internal map, a field has a maximum external length and specific
starting position at the terminal. For use in the symbolic map, a
field has a specific data format (packed-decimal, binary, etc.) and
internal length (after conversion and padding).

MMU performs all necessary conversions between internal and
external form of data type and length. Input map definitions specify
format conversion, justification, and padding for each data field. If

J

a field remains in character format, conversion simply involves padding . ~).
and justifying the field. If a field is a numeric type, the field is
also checked for valid numeric input and the subsystem is notified of
errors.

The following rules apply to numeric input fields:

• Negative amounts may be indicated by a minus sign preceding
or ending the field value, or CR or DB ending the field value
(external length must allow for this indicator). Or a zone
overpunch on the last digit of the field may be used (zone
must be a D); however, overpunching is allowed only if the
preceding MAP macro has the parameter ZONE=YES coded. A
negative field has a D zone value internally, as applicable.

(I Canmas are not allowed.

• Fields are always right-justified with leading zero padding
(character zero if zoned deCimal, otherwise binary zeros).

• Plus and Dollar signs are ignored when preceding the field.
A trailing plus sign is an error. A positive field has an F
zone internally, as applicable.

• Decimal point processing may specify scaling of values
entered, effectively adding zero padding to the right of a
decimal point if entered. Scaling is specified in the FORMAT ~

26

Chapter 2 The Map Defini tion Process

parameter by a field type suffix code of S followed by the
maximllll number of digits to the right of the decimal point.
Thus a field entered as 1.23 is the same as 123 (decimal
implied), but 123. is the same as 12300 or 123.00 when the
scaling factor is 2. (External length must allow for the
decimal poi nt •)

The following rules apply to numeric output fields:

• Negative amounts are indicated by a minus sign as the last
character of the output field (the external length must allow
for this sign).

• Decimal points appear according to the scaling specification
for the field (external length must allow for the decimal
point) •

• A floating dollar sign is prefixed, if specified for the
field (external length must allow for the dollar sign).

• Right/ left justification and zero/blank padding is performed.

• Truncation (if necessary) is according to the justification
specified.

The subsystem is not notified of any field conversion errors
encountered during output mapping.

2.5.6 Defining the Verb as a Field

The input or output message verb (transaction code) can be
defined as a special field. This allows the verb to be part of the
input mapping and to be accessed by the application subsystem via the
symbOlic map. The verb must be the first field on the map, coded with
RELPOS=VERB (no preceding SEGMENT macro is coded). An INITIAL value
may be coded for output mapping. If the verb requires processing, it
must be a named field. If RELPOS=VERB is specified, the FORMAT
parameter defaults to (4,4,C), and the attribute is internally forced
to UAN (unprotected, alphameric, normal intensity). For verb
processing al ternati ves, see Appendix C.

2.5.7 Defining the Field as a Logical Control Character

Logical device control characters can be placed in maps for
inclusion in output mapping to applicable devices, such as the 3270
Printer, via the FIELD macro. The FCRMAT parameter must specify a
field type of CNTL. The logical control characters are then coded as
INITIAL values, or may be supplied via the symbOlic map if the field is
named. During the output mapping process, the corresponding physical

27

Chapter 2 The Map Definition Process

device control character(s) is inserted into the output message. If
the logical control character is tmdefined for a ~rticu1ar device, no
control character is inserted into the output message. For applicable
devices, output mapping autanatically performs end-of-line character
insertion according to the value specified for the CHAR parameter of
the DEVICE macro for the terminal in the Intercomm back end Terminal
Device Table (PMIDEVTB). Addi tional or overriding end-of-line
characters, as well as TAB characters, may be specified via a CNTL
field. Next line positioning for omitted intermediate lines is also
autanati cally performed.

2.5.8 YES/NO Fields

A special field type of YN is available for mS/NO answers to
displayed or source doc\JDent questions. The external length of the
field must be at least 3 (blank padding .supplied autanatically on CRT
output). The external field must contain the answer (YESINO) on input,
otherwise it is considered anitted. Internally the field is only one
position long and contains a e'o' for NO or a C'1' for YES. Coding of
ei ther a or 1 for output will cause the corresponding answer (NO/mS)
to be displayed, otherwise the field contains blanks.

2.5.9 COND=ENTERED Fields

For devices such as the IBM 3270 CRT where a field can be defined
(via attribute coding) as light pen or cursor selectable, and the user
wishes to know only if the field was selected, a special FIELD
parameter CCND=EN'lERED is available. The internal length of this field
is 1 and is set to X' FF' (high values) if the field was selected on
input. On out put, the attention designator val ue will be transmitted
if the field is not null (X'OO' or low values). Where selectable
fields with data are desired, use the field type CB or C, as
applicable. See also Appendix C for further details.

2.5.10 Other Special Field Characteristics

For a 3270 CRT, the AID value (RELPOS=AID) and/or cursor position
(RELPOS=CURSCE) may be requested on input, and the cursor position may
be specified on output (see Appendix C for additional details).

28

Chapter 2 The Map Definition Process

2.6 ADDITIONAL EXAMPLES

2.6.1 Combined Keyword and Positional Input Map

The following is an example of heM data might be entered at a
terminal for a purchasing application:

PROO {ss} PO{fb} 174 321 {fe} AGI' {fb}S71 {el}
PRD{fb} 745Ml {fe} 10{fe} DOZ {el}
PRD{fb}863PL{fe}100{em}

The following is a map definition for input of the transaction:

GROUP 1 MAPGROUP
MAP 1 MAP
PRCOVRB FIELD

SEGMENI'
PCNUM FIELD
AGENI' FIELD

PRODUCT
QI'Y
UNITS

SEG~NT
FIELD
FIELD
FIELD
END GROUP
END

DEI/I CE:: ALL, MODE= INP UT
START = (1, 1) ,SIZE= (3,80)
RELPOS=VERB
RELPCS= (1,6) ,LENGI'H=74
RELPOS:: 'PO' ,FOlMAT=C15, 8,PD)
RELPCS= 'AGI" ,FORMA T= (3)
RELPOS=(2,1),LENGI'H=80,OCCURS=2
RELPCS='PRD' ,FORMAT=(5)
RELPOS=POS ,FOlMAT=(5, 4, F)
RELPOS=POS, FORMA T= (3)

The following is the symbolic map of the transaction (prefix
values, which precede each data field, are not shown):

D7 D9 C3 D6 00 00 00 00 01 74 32 1F E2 F7 F1

(verb) (purchase order no.) (agent code)

F7 F4 F5 D4 D9 00 00 00 OA C4 D6 E9

(product) (quantity) (units)

F8 F6 F3 D7 D3 00 00 00 64 00 00 00

(product) (quantity) (units)

29

Chapter 2 The Map Definition Process

2.6.2 Output Map

Assume the following format is to be used for output to a
terminal:

SALES REPORT

DIVISION xxxxxxxxxx DATE xxxxxxxx

SALESMAN'S
NAME

T01' AL DOLLAR
SALES

PCT CF
QUOTA

xxxxxxxxxx xxxxxxxxx.xx xx.xxx
{maximum of 8 lines}

xxxxxxxxxx xxxxxxxxx.xx xx.xxx

TOTALS xxxxxxxxxxx.xx xx. xxx

The following is a map definition for the output shown:

SLSRPT MAP GROUP DEVICE=ALL,MODE=OUTPUT
LINE 1 MAP SIZE= (24,80) , START = (1,1)

FIELD RELPOS= (1 ,14), INITIAL=' SALES REPORT'
FIELD RELPOO= (3,1) ,INITIAL= 'DIVISION'

DIVNO FIELD RELPOS=(3, 10) ,FCRMAT=(10)
FIELD RELPOO=(3,22),INITIAL='DATE'

DATE FIELD RELPOS=(3,27) ,FCRMAT=(8)
FIELD RELPOS=(5,1),INITIAL='SALESMAN'S'
FIELD RELPOS=(5,16), INITIAL= 'TOTAL DOLLAR'
FIELD RELPOS= (5,32) , INIT IAL= 'PCT CF'
FIELD RELPOS=(6,3),INITIAL='NAME'
FIELD RELPOO= (6,19) , INIT IAL= 'SALES'
FIELD RELPOS=(6,32),INITIAL=' QUOTA'
SEGMENl' OCCURS=8

NAME FIELD RELPOS=(8,1) ,FCRMAT=(10)
DOLLARS FIELD RELPOS=(8,16),FORMAT=(12,7,PDS2)
PERCENT FIELD RELPOS=(8,32) ,FCRMAT=(6,4 ,PDS3)

SEGMENl'
FmLD RELPOO= (17,1) , INITIAL= 'T01'ALS '

TOTAL 1 FIELD RELPOS=(17, 14),FCRMAT=(14,8,PDS2)
T01'AL2 FmLD RELPOO=(17,32),FORMAT=(6,4,PDS3)

END GROUP
END

Only the labeled fields are defined in the symbolic map. The
symbolic map contains space for eight sets of name, dollar amount, and
percent fields. Only the first of these are referenced by the labels

J

J

NAME, DOLLARS and PERCENl'. All numeric fields are defined as packed '1~
decimal with scaling. Thus, the application program does not need to"
perform edi ti ng before moving the data into the symbolic map, except
possibly for the date field.

30

Chapter 2 SPR 216 2/83 The Map Definition Process

2.6.3 Output Map for Multi-Page Report

The following is a sample page from multipage output to a printer.

EMPLOYEE HOURLY WAGE REPORT

DATE: xx/xx/xx PAGE: xx

EMPLOYEE NAME
xxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxx

HOURLY WAGE
$xxx.xx
$xxx.xx

.
xxxxxxxxxxxxxxxxxxx $xxx.xx
TOTAL EMPL: xxx AVG HOURLY RATE: $xxx.xx

The first three lines of constant data constitute the header and
appear on each page with the page number "incremented. The body of the
report repeats on each page, with MORE TO COME as the last line if the
report continues. The total and average line appears only on the final
page, after the last detail line.

The following coding could be used to generate the above display
and illustrates map justification and usage (header, normal, trailer)
parameters (see MAP macro in Appendix A):

WAGES MAP GROUP
TITLE MAP

FIELD
FIELD
FIELD

DATE FIELD
FIELD

PAGENO FIELD
FIELD
FIELD

LINES MAP
NAME FIELD
WAGE FIELD
TRAILER MAP

FIELD
TOTALS MAP

FIELD
TOTEMP FIELD

FIELD
AVGRATE FIELD

ENDGROUP
END

DEVICE=ALL,MODE=OUTPUT
SIZE=(5,80),START=(1,1),JUSTIFY=(,HEAD) .
RELPOS=(1,1),ATTRIB=SUPR,FORMAT=(1"CNTL),INITIAL=FF
RELPOS=(1,7),INITIAL='EMPLOYEE HOURLY WAGE REPORT'
RELPOS=(3,1),INITIAL='DATE:'
RELPOS=(3,8),FORMAT=(8)
RELPOS=(3,24),INITIAL='PAGE:'
RELPOS=(3,31),FORMAT=(2)
RELPOS=(5,1),INITIAL='EMPLOYEE NAME'
RELPOS=(5,24),INITIAL='HOURLY WAGE'
SIZE=(1,80),START=(NEXT,SAME),USAGE=NORMAL
RELPOS=(1,1),FORMAT=(19)
RELPOS=(1,24),FORMAT=(7,3,$PDS2)
SIZE=(1,80),START=(24,1),JUSTIFY=(,TRAIL)
RELPOS=(1,1),INITIAL='MDRE TO COME'
SIZE=(1,80),START=(NEXT,SAME),USAGE=TRAILER
RELPOS=(1,1),INITIAL='TOTAL EMPL:'
RELPOS=(1,13),FORMAT=(3"H)
RELPOS=(1, 18),INITIAL= 'AVG HOURLY RATE:'
RELPOS=(1,35),FORMAT=(7,3,$PDS2)

31

Chapter 2 SPR 216 2/83 The Map Definition Process

2.6.4 I/O Template Screen

In the following display at an IBM 3270 CRT {a} indicates
attribute byte position:

{a} {a}

NAME: {a}

{a} SALARY: {a}

{a} JOB TITLE: {a}

{a}PHONE NO:{a}

This display could be generated using the following map
definition (logical names for attributes are from the supplied member
LOGCHARS--see Appendix C: chart of attribute codes):

GROUP1
MAP1A
VERB

NAME

SALARY

TITLE

PHONE

MAPGROUP
MAP
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
ENDGROUP
END

DEVICE=IBM3270,MODE=I/0
SIZE=(5,80),START=(1,1)
RELPOS=VERB
RELPOS=(1,7),ATTRIB=PSN,FORMAT=(1)
RELPOS=(2,7),ATTRIB=SUPR,INITIAL='NAME:'
RELPOS=(2,13),ATTRIB=UAN,FORMAT=(22)
RELPOS=(3,7),ATTRIB=PSN,INITIAL= 'SALARY: ,
RELPOS=(3,15),ATTRIB=UNN,FORMAT=(6,6,ZD)
RELPOS=(4,7),ATTRIB=PSN,INITIAL='JOB TITLE:'
RELPOS=(4,18),ATTRIB=UAN,FORMAT=(11)
RELPOS=(5,7),ATTRIB=PSN,INITIAL='PHONE NO:'
RELPOS=(5,17),ATTRIB=UAN,FORMAT=(12)

The output mapping routine produces the template screen (initial
data) and variable data if supplied (symbolic map contains nonblank or
nonzero data areas). Only named data fields can be referenced by the
application program. Attributes for all fields are set as specified.
The verb is defined as a named data field so that it is an input data
field on subsequent messages, and accessible to the application program.
Closing attributes are not defined for the data fields to be entered,
but can be specified with an unnamed FIELD macro (see FIELD macro
following the VERB field).

2.7 SAMPLE SYMBOLIC MAPS

The following examples show the language-dependent symbolic maps
that are generated for Assembler, COBOL, and PL/1, using the map
definition in Figure 3. These maps are generated by the SYMGEN JCL
procedure.

32

J

Chapter 2

CUST~R

CUSTINF
VERB

NAt£

ADm

ACCT

DATE
M:>NTH
DAY
YEAR

mEDITS

DEBITS

The Map Definition Process

Mll.P GROUP M:>DE= I/O,DEV lCE= ALL
MAP SIZE=(15,80),START=(1,1)
FIELD RELPQS=VERB
FIELD RELPOS= (1,7) , INIT IAL= 'ENTER TRANSACTICN roDE', ATTRIB=PSN
FIELD RELPOS=(3,23),INITIAL='EN'lER CUSTOr.£R DATA:', X

ATTRIB=PSHSEL (HIGHLIGHT TITLE)
FIELD RELPOS=(5, 7), INITIAL=' CUST~R NA~:' ,ATrRIB=PSN
FIELD RELPOS= (5,21) ,FORMAT=25,ATTRIB=UAN
FIELD RELPOS=(5, 47) ,F~MAT= 1, ATrRIB=PSN
FIELD RELPOS=(7,7) ,INITIAL='ADmESS:' ,ATTRIB=SUPR
SEGt£Nl' OCCURS=3
FIELD RELPOS=(7,21) ,FORMAT=(20, ,CB) ,ATTRIB=UAN
FIELD RELPOS=(7, 42) ,F~ MAT= 1, ATrRIB=PSN
SEGt£NT
FIELD RELPOS= (11,7) , INIT IAL= 'A CCT NO:', ATTRIB=SUPR
FIELD RELPOS=(11, 21) ,F~ MAT=(7" F), ATrRIB=UNN
FIELD RELPOS= (11,29) , INIT IAL= ' DATE:', ATTRIB=PSN, X

JUSTIFY=(RIGHT ,BLANK)
SEG~NT
FIELD RELPOS= (11,37) ,FORMA T= (2, , ZD) ,ATTRIB=UNN
FIELD RELPOS=(11, 39) ,F~MAT=(2, ,ZD)
FIELD RELPQS=(11,41) , FOR MA T= (2, ,ZD)
SEG~NT

FIELD RELPQS= (11,44) , FORMAT=1 , ATTRIB=PSN
FIELD RELPOS=(13,7), INITIAL=' CREDI'IS:' , ATrRIB=SUPR
FIELD RELPQS=(13,21),OCCURS=3,FORMAT=(8,5,PDS2) ,ATTRIB=UNN
FIELD RELPOS=(13,48) ,F~ MAT = 1, ATrRIB=PSN
FIELD RELPQS= (15,7) , INIT IAL= 'DEB ITS:' ,ATTRIB=PSN
FIELD RELPOS=(15,21), OCCURS=3,F~ MAT=(8, 5,PDS2), ATrRIB=UNN
FIELD RELPOS=(15,48) ,FORMAT=1 ,ATTRIB=PSN
END GROUP
END

NOTE: DATE and DAY are CCBOL Reserved Words

Figure 3. Canplete Map Defini lion for Figure 1.

In Figure 3, note the addition of field fonnats and attributes,
unprotected fi eld delimiters by protected attri butes, the use of the
JUSTIFY parameter, the title highlight attribute, and the placement of
fields relative to the segnent types illustrated.

33

Chapter 2 The Map Defini tion Process

The following symbolic map is generated for Assembler Language:

CUST~R DSECT
CUSTINF EQU * START CF MAP
VERBL DS XL2 FIELD LENGTH
VERBT DS X FmLD TAG
VERB DS CL4
NA~L DS XL2 FmLD LENGl'H
NAMET DS X FIE1.D TAG
NA~ DS CL25
USEG1 EQU * SEGMENT mLIMITER
ADDRL DS XL2 FIE1.D LENGTH
ADmT DS X FmLD TAG
ADDR DS CL20

DS 2XL23 FOR PREV IOUS SEGMENT OCCURS
USEG2 EQU * SEG~NT DELIMI'IER
ACCTL DS XL2 FmLD LENGl'H
ACCTT DS X FIELD TAG
ACCT DS XL4 UNALIOOD FULL\tl)RD
DATEF DS OXL3 STRUcrURED SEG~NT START
DATEL DS XL2 STRUCTtEED SEGMENT LENGl'H
DATET DS X STRUcrURED SEG~NT TAG
DATE EQU *
MONI'H DS ZL2 J
DAY DS ZL2
YEAR DS ZL2
USEG3 EQU * SEGMENT mLIMITER
CREDITSL DS XL2 FIELD LENGl'H
CREDITST DS X FmLD TAG
CREDITS DS PL5

DS 2XL(3+5) FOR PREVIOUS FmLD OCCURS
DEBITSL DS XL2 FIE1. D LEN Gl' H
DEBITST DS X FmLD TAG
DEBITS DS PL5

DS 2XL(3+5) FOR PREVIOUS FmLD OCCURS
CUSTINFL EQU *-CUSTINF S IN OLE MAP LEN Gl' H

ORG
CUST~RL EQU *-CUST~R MAP GROUP LENGl'H

34

Chapter 2 SPR 216 2/83 The Map Definition Process

The following symbolic map is generated for COBOL:

03 CUSTINF.
05 VERBF.

04

04

04

04

04

05

USEG1
05

USEG2.

06 VERBL
06 VERBT
06 VERB
NAMEF.
06 NAMEL
06 NAMET
06 NAME

OCCURS
AIDRF.
06 ADDRL
06 ADDRT
06 ADDR

PIC 9(4) COMPo
PIC X.
PIC X(4).

PIC 9 (4) COMP.
PIC X.
PIC X(25).

3 TIMES.

PIC 9 (4) COMP.
PIC X.
PIC X(20).

05 A (X; TF •

DATEF.

06 ACCTL
06 ACCTT
06 ACCT

PIC 9 (4) COMP.
PIC X.
PIC S9(8) COMPo

05 DATEL PIC 9 (4) COMP.
PIC X. 05 DATET

05 DATE.

USEG3.

06 MONTH
06 DAY
06 YEAR

PIC S99.
PIC S99.
PIC S99.

05 CREDITSF OCCURS 3 TIMES.

05

06 CREDITSL PIX 9(4) COMPo
06 CREDITST PIC X.
06 CREDITS PIC S9(1)V99 COMP-3.
DEBITSF OCCURS 3 TIMES.
06 DEBITSL PIC 9(4) COMPo
06 DEBITST PIC X.
06 DEBITS PIC S9(1)V99 COMP-3.

FILLER PIC X(1).

NOTE: The names (labels) DATE and DAY are Reserved Words in COBOL,
but are used here for illustration (of a structured segment)
purposes.

35

Chapter 2 The Map Definition Process

The foll owing symbolic map is generated for PL 11 :

DCL 1 CUSTINF BASED (PTR_ CUSTINF) UNALIGNED,
3 VERBF,

4 VERBL FIXED BIN(15), II LENGrH II
4 VERBT CHAR (1), II TAG I I
4 VERB CHAR(4) ,

3 NA~F,
4 NAt-EL
4 NAMET
4 NAt-E

2 USEG 1(3) ,
3 ADDRF,

4 ADmL
4 ADDRT
4 ADm

2 USEG2,
3 ACCTF,

4 ACCTL
4 ACCTT
4 ACCT

2 DATEF,
3 DATEL
3 DATET
3 DATE,

4 MONTH
4 DAY
4 YEAR

2 USEG3,

FIXED BIN(15), II LENGrH I I
CHAR (1) , II TA G I I
CHAR(25) ,

FIXED BIN(15), II LENGrH II
CHAR (1) , II TA G I I
CHAR(20) ,

FIXEDBIN(15), llLENGrHl1
CHAR (1) , II TA G I I
FIXED BIN(31) ,

II START STRUcrURED SEGt-ENT I I
FIXED BIN(15), II LENGrH I I
CHAR (1) , II TA G I I

PIC '99',
PI C '99',
PIC '99',

3 CREDITSF(3) ,
4 CREDITSL FIXED BIN(15), II LENGrH II
4 CREDITST CHAR (1) , II TAG I I
4 CREDITS FIXED DEC(9, 2) ,

3 DEBI'lSF(3),
4 DEBITSL FIXED BIN(15), II LENGrH I I
4 DEBITST CHAR (1), II TAG I I
4 DEBITS FIXED DEC(9,2) ,

2 F ILlER CHAR (1) ; II END CF MAP I I

36

J

Chapter 3

APPLI CAT I ON SUBS YS TEM DESI GN

3. 1 OVERV lEW

Application subsystems interface with MMU by issuing a call to
the MMJ service routine which performs the function required. The call
may be issued by subsystems coded in Assembler, COBa... or PL/1.
Depending on the map group definition, an entire message may be mapped
with one CALL, or the mapping process may progress in stages.

In order to process an input message, the application subsystem
invokes the input mapping routine, which strips control characters,
edi ts and converts message fields, and returns the mapped text to the
application in the fonnat of the symbolic map. The subsystem should
then provide logic to review the return code and the field flags for
possible errors, and should provide for error processing. If there are
no errors, the mapped input text is ready for processing. When
processing is complete, the subsystem prepares text for output.

output is perfonned in two steps: mapping and transmission
preparation. First, the created output text placed in the symbolic map
area is mapped; this is referred to as the normal form, that is, the
device-independent form. Second, this normal fonn is prepared for
transmission by transforming it to the device-dependent fonn (output
message) •

In the first step, the application can override attribute values
specified in the map definitions and specify the map fields to be
used. The output mapping routine is called one or more times
requesting one or more mappings (map canbinations) to build what is
called a lqi!iical message. A logical message consists of one or more
screens or pages of output data as determined by application
programming logic. Field conversion and padding is perfonned at this
time.

Once the logical message has been created, the application can
perfonn the second output step, that is, request transmission
preparation. In this step, the application can override control values
specified in the device defini tions and/or map group used. The output
preparation routine is then called to determine and insert specific
device-dependent transmission, control and attribute characters to
produce what is called a physical message. A physical message consists
of one or more fully-fonnatted output messages, depending on device
buffer size and pages of mapped data. Once the output preparation
routine has built the physical message(s), it performs message
disposition (transmission) as specified for the call to the routine.

37

Chapter 3 SPR 216 2/83 Application Subsystem Design

The application programmer must plan subsystem logic and the
corresponding map group definitions based on the following
considerations:

• Whether or not the subsystem processes or produces messages
of similiar format, i.e. , several fields occurring in
identical pOSition with identical characteristics occurring
in more than one type of message.

• Whether or not error correction procedures for input fields
entered in error (or omitted) are to be accomplished by a
conversational or prompting mode of operation.

• Whether or not an output message might result in a multiple
page transmission requiring special header or trailer data
for individual pages.

• Whether or not subsystem logic is required prior to
completion of the mapping process.

If any of the above situations are true, then a map group may
consist of more than one map, and multiple calls to HMO service
routines may be required. Considerations for application logiC are
further developed below for these situations.

MMU SERVICE ROUTINES AND PARAMETERS

Each call to an MMU service routine requires a parameter list
which provides ~ with such information as map group and map names,
terminal-id, symbolic map address, etc., as summarized below.

3.2.1 Service Routines

MMU service routines are inVOked by a standard subroutine call.
The MMU service routines used by application subsystems are as follows:

Service
Routine

MAP IN
MAPClJT
MAPEND
MAPCLR
MAPURGE
MAP FREE

--
Function

===
Performs input mapping according to map definition
Performs output mapping according to map definition
Prepares mapped output for transmission
Clears a symbolic I/O map area to nulls
Cancels a logical output message
Frees input symbolic map area (PL/1 or
Assembler Language only)

38

J

J

Chapter 3 Application Subsystem Design

3.2.2 Parameters

In the discussion which follows, the MMU parameters are referred
to by symbOlic name, as described in Figure 4. The application
programmer must, of course, develop application-dependent names for the
i ndi vi dual parameters according to the conventions of the programming
language in use. Some parameters must be defined as part of the
dynamic working storage for a subsystem (unique to each message in
progress) • Other paramet ers reference cons tant val ues, and, as such,
may be defined within the program itself.

Two of the parameters represent MMU control blocks and must be
s uppli ed by t he a ppli ca ti on:

1. The Map Control Block (MCB) is a twelve-word area for use by
MMU only.

2. The Map Control Word (MCW)
for communication between
routines.

is a four-byte aligned area used
the subsystem and MMU service

Prior to cal~ing a particular service routine, the application
program sets the MCW to specific values indicating the requested
processing options. The subsystem then issues the call to the service
routine with the required parameters. The MMU routine processes the
request and returns control to the subsystem after setting byte 1 of
the MCW to the return code resulting from the call. The specific
calling formats, parameter specifications, and option and return codes
are presented for each routine in Appendix B.

----------- --- --
Parameter Description

----------- --- --
mcbname The label of a twelve-word (48 bytes) aligned Map

Control Block (MCB). The content of the MCB is never
referenced by the application program. This area must be
supplied in the dynamic working storage of the subsystem.

groupname The label of an area containing the name of the map group
associated with a specific call. This area is defined as
an eight-character field, left-justified and padded with
blanks.

mapname The label of an area containing the name of the map
within a specific map group for a particular CALL. This
area is defined as an eight-character field,
left-justified and padded with blanks.

Figure 4. Parameters for MMU Service Routines (Page 1 of 2)

39

Chapter 3 Application Subsystem Design

---------- -- --
Parameter Description

========== ==
mcwname The label of a four-byte (fullword aligned) Map Control

Word (MCW). Prior to the call, it is set by the
subsystem to request MMU service routine options. After
the call, it is set by the MMU routine to indicate the
status of processing. This area must be supplied in
dynamic working storage.

textarea For input mapping, it is the label of the symbolic map
definition area to be filled in by the input mapping
routine with input text data fields. (COBOL and PL1-F
subsystems only.) For output mapping, it is the label of
the symbolic map definition area containing unmapped data
fields to be operated upon by the output mapping routine
(all subsystem types).

msgarea

The data area name must be the same as the name coded for
the corresponding MAP macro, and the area must be in
dynamic working storage.

For input mapping, the label of the area containing the
unmapped input message text (string). (COBOL and PL1-F
subsystems only.) For output mapping, it is the label
of the mapped output message text (string) area in dynamic
working storage, which is to be filled in by the output
transmission preparation routine, if one of the automatic
transmit options is not used.

msgaddr The label of a four-byte (fullword aligned) area
containing the address of the unmapped input message text
(string) to be passed to the input mapping routine. On
return, this area contains the address of the input
message data fields mapped according to the corresponding
symbolic map definition for the requested map.
(Assembler and PL/1-Optimizer subsystems only.)

tid The label of the area containing the five-character
terminal identification (or broadcast group name) used

Figure 4.

to determine the map group name terminal-dependent suffix
code. Also used by output mapping for page overflow
processing and subsequent message preparation. Not used
for string mapping.

Parameters for MMU Service Routines (Page 2 of 2)

40

J

J

Chapter 3 Application Subsystem Design

3.3 DEVICE DESCRIPTIONS

A Device Description Table is used to relate the P'lysical
characteristics of specific terminals to the symbolic names for the
characteristi os. This facility all~s the application programmer to
specify field attributes and/or terminal control characters by symbolic
name. The Intercomm member LOGCHARS provided on the release tape
contains device description coding for the major supported devices.
Device description table entries may also be created by the Intercomm
System Manager. These Device Descriptions are then assembled twice:
once to generate the internal fonn for use by the HMU service routines
and once to generate the language-dependent symbolic fonn. The
symbolic fonn is copied into each application, as described below. The
comnands, attributes and control characters can then be referenced by
the application program when creating output messages. A copy of the
LOGCHARS listing which associates physical and logical codes by device
type is listed in Appendix C.

3.4 copy MEM3ERS

The language-dependent symbolic fonns of both the map definitions
and the device definitions must exist within the application
subsystem. They all~ symbolic reference to the message data fields,
logical control characters, comnands and attributes. The symbolic fonn
of the map group is generated via the SYMGEN catalogued procedure. The
DEFSYM catalogued procedure generates the symbOlic fonn of the Device
Descriptions. The results of these procedures are routed to a user
source library. The subsystem then must copy/include the symbolic map
and device definitions fran the library into the application program.
The Ja.. procedures are described in Appendix Dj the CCPY formats are
des cri bed bel~. Whenever changes to copy members affect subsystem
processing, the subsystem must be canpiled/assembled again for the new
symbolic fonn.

3.5 LANGUAGE-DEPENDENT CONSIDERATIONS

Each programming language requires a subroutine CAll. in a
parti cular fonnat in order to maintain subsystem reentrancy. The
coding conventions for subroutine call formats in the Interconm
envirorment are des cri bed below for COB a.. , PL/1 and Assembler
subsystems. Appendix B illustrates the language-dependent call formats
by individual MMU service routine. Language-dependent infonnation is
gi ven in Figure 5.

41

Chapter 3 Application Subsystem Design

F==============F===============F==
REENTSBS IOOM3BS PENTRY or PLIENTRY
Routine Code Copy %INa.. UDE

MMU S ervi ce (Hal fword Member Name Member Name
R ou ti ne Bi nary) (COBOL) (PL 11)

============================= ===
MAP IN 51 MAP IN MAP IN

MAP OUT 55 MAPOt11' MAPOt11'

~--------------r_--------------.-----------------.-----------------------
MAPEND 59 MAPEND MAPEND

~--------------r_-------------------------------- -----------------------
MAPa..R 63 MAPa..R MAPa..R

~--------------~-------------- ----------------- -----------------------
MAP tR GE 67 MAP tR GE MAP tR GE

~--------------~-------------- ----------------- -----------------------
MAPFREE 91 NIA MAPFREE

Figure 5. MHO Service Routines

3.5.1 COBOL Subsystems

Reentrant COBa.. subsystems invoke the MMU service routines using
COBREENT. Subroutine codes, in the high-level language reentrant
subroutines table REENTSBS, are used to access MMU routines. The names
of these codes are in the Copy member IOOMSBS (see Figure 5). The
standard call fonnat is:

CALL 'WBREENT' USING routine-code, ••• MMU routine parameters •••

routine-code reflects the name (MAP IN , MAP OUT , etc.) of the area
containing the REENTSBS service routine code.

The Copy statement for copying the symbolic map is:

$$OOPY symgen-output (NA~ parameter fran SYMGEN procedure)

Due to canpiler restrictions, COBa.. subsystems may not copy
symbolic maps into Dynamic Working Storage defined in the Linkage
Section when subordinate to the 01 level DWS definition. Therefore,
the symbolic level definition COpy is denoted by a "$$" (or a user
specified code) in colunn 7-8 and a precanpile step . (COPRE--see
Appendix D) is executed to effect the copy prior to compilation.

CCBLOOOi is the CCJ3a.. symbolic member name for terminal
characteristi os. The Device Descriptions COPY Statement defined in the
Working Storage Section is:

01 device-descriptions COpy COBLOGCH.

de vi ce-des criptions is a user-defined name.

42

J

J

L

Chapter 3 Application Subsystem Design

3.5.2 PL/1 Subsystems

MMU service routines can be used by PL/1 Optimizer and PL/1-F
subsystems. PL I1-F subsystems invoke MMU service routines using
PMIPL 1. PMIPL 1 requires the use of a subroutine code fran REENTSBS,
the high-level language reentrant subroutines table, in order to access
MMU routines. REENl'SBS codes for HMO service routines are shown in
Figure 5. The standard call format for PL/1-F subsystems is:

CALL PMIPL1 (routine-code, ••• MMU routine parameters •••);

routine-code reflects the name of the area containing the REENTSBS
service routine code.

PL/1 Optimizer subsystems which include PLIENTRY or whose MMU
routine names have been declared as ENTRY CPTIONS (ASM) can use a
different format to inVOke the MMO service routines as follows:

CAlL routine (••• MM1 routine parameters •••);

routine is the MMU service routine name. PL/1 Optimizer subsystems can
also use the PL/1-F form of the CALL.

The symbolic map copy format for PL/1 subsystems are:

%INa.UlE symgen-output; (NAME parameter from SYMrnN procedure)

PLn.OGCH is the PL/1 symbolic member name for terminal
characteristics. The Device Descriptions Copy format (which generates
DEa...ARE statements) is:

% IN a. tIDE P Ln. OacH ;

3.5.3 Assembler LangUage Subsystems

Subsystems coded in Assembler Language may specify program
residence of the map defini tiom. This technique is advantageous in a
testing enviroment as it avoids using the LOADMAP utility to load the
internal map forms, and this does not require the StorelFetch map
defini tion data set. To use this program option, the MAPCROUP macro
must specify PGMRES:: YES. This causes all generated symbols in the
internal map (that is, the MAPGROUP, MAP, FIELD names, etc.) to be
prefixed by a dollar sign. Program residence must also be specified to
the MMU service routine by option codes set in byte 2 of the MCW before
calling the service routine.

Assembler subsystems can use the standard CALL format as follows:

CAlL routine, (••• MMJ parameters •••), VL[,MF=(E ,list)]

routine is the MMU service routine name. Register notation may be
used, subject to assembler coding restrictions.

43

Chapter 3 Appl ication Subsystem Design

Or if dynamically loadable, these subsystems should load V-type
address constants fran the SPA Extension into Register 15 for MMU
service routine calls. The symbols used are listed as follows:

--------------------------------- --- -----------------------------------
Symbol MMU Service Routine

--------------------------------- --- ------------------------------------
SE XMAP IN MAP IN

SEXMAPOI' MAP our

SEXMAPEN MAPEND

SEXMAP CL MAP CLR

SEXMAPPU MAPm GE

SEXMAPFR MAP FREE

The symbolic map copy format for Assembler subsystems is:

COPY symgen-output (NAME parameter fromSYMCEN procedure)

ASM..OGCH is the Assembler Language symbolic member name for
terminal characteristics. The Device Descriptions Copy format (which
generates EIJIATE statements) is:

COP Y AS M.O GCH

3.6 MAPPING CHARACTER STRINGS

Both input and output mapping can be performed on character
strings, instead of message text. Subsystem logic remains the sClDe as
discussed for mapping of messages. The unmapped character string
fields may have any valid format and the fields may be of any type.
The strings must be prefixed with a halfword binary value indicating
total string length (including the halfword). MMJ service routines are
notified of character string format by an MCW option code.

This facility could be used, for example, where the message
'text' passed to a subsystem contains parameter values in character
string format. The function of the subsystem is to parse the parClDeter
string and take appropriate action. Mapped characters strings may not
be passed to the Front End, unless subsystem logic is coded to prefix
an appropriate I ntercomm message header and a message ending character
(useful for remote CPUs).

44

Chapter 3 Application Subsystem Design

Al ternati vely, this facility could be used to select and convert
fields fran a file record into a symbolic map area which would
subsequently be used for output message formatting, rather than code
subsytem logic to perform this function. Conversely, mapped input
message text fields can be converted to a file record via output
mapping.

3.7 INPUT MAPPING

The inplt mapping functions are performed by the MAPIN service
routine, which is called after the subsystem has done any necessary
ini ti al izati on.

Input mapping transforms the input message fran its
device-dependent external format (that is, removes keywords,
separators, control characters, as applicable) to its
device-independent symbolic format. This transformation is based on
the corres ponding map defini ti on for the message. The specified field
(or structured seE!1llent) positioning, internal format conversions,
padding and justification are performed by MAPIN using the internal
form of the map definition. When the process is can pI eted, the message
or character string appears to the application program in the format
defined by its symbolic map, with padding and justification applied, as
applicable. A maximun of 255 characters may be entered in one input
field fran the terminal. Fields entered as input but not defined in
the inplt map will not be presented to the application program (does
not apply to positional format, except for trailing fields). Figure 6
illustrates the flow of input mapping.

For the call to MAP IN , the user can specify input processing
options via the Map Control Word. One such option requests that the
input message be freed by MAPIN after mapping. If this option is
selected, the subsystem must retain required message header fields
(particularly the terminal identification) for use after the call to

MAP IN. A typical programming technique is to copy the input message
header to an out put message header area.

Assembler subsystems that request MAPIN to free the input message
after mapping must not free the same area again by issuing a STORFREE
macro.

If the inplt message verb is defined as a data field via a named
FIELD macro, the verb appears in the symbolic map area for use in
subsystem proceSSing. If it is not defined, the verb is lost when the
input message is freed. This is particularly important for subsystems
that process more than one type of transaction according to the verb
entered. Thus, if the verb is not mapped, the subsystem must contain
logic to retain the verb.

45

Chapter 3 Application Subsystem Design

Input messages are mapped into the internal fonnat specified by
the symbolic map definition. Thus, when input mapping is complete, the
program may access data from the terminal by referencing the symbolic
names (nameL, name!', name) of the data fi elds • I f entered correctly,
and the data is of character type, the length field (nameL) reflects
the number of characters entered. I f the data is not character type,
the length field reflects the internal length, that is, the length
after data conversion. See the description of MAPIN field data in
Appendix B for further details •

. -~.=.-.. -............. ---........ --..•..... -.-== .. -................. .
Subsystem Logic

•••••• ____ •• ____ ••••• _ •••• ___ •••••••••••••• ____ ••••••••• _._ •••••• sa __ _

Ini tialization
Logic

NO

Continue
Processing Logic

Perform Input
Mapping for Map
Within the
Mapgroup

Error
Processing

Figure 6. Input Mapping Logic

46

J

L

Chapter 3 Application Subsystem Design

3.7 .1 Input Mapping In Stages

A complete input message is normally processed by one call to
MAP IN . However, subsystem logic may perform input mapping in stages
with a series of calls to MAPIN using different maps. This allows
application-related logic for field verification prior to completing
the input mapping process. For example, a customer or order number may
be verifi ed by accessing file data prior to mapping further items of an
input message. For fixed or relative position mapping, each subsequent
map may specify a starting position within the string or device page,
since the field positions are relative to the starting position of the
map. For keyword mapping, previously mapped keywords are no longer
available for remapping. For positional mapping, each subsequent map
must contain named field descriptions of all previously mapped fields.
This feature cannot be used for mixed positional and keyword maps.

3.7.2 Field Error Processing

The input mapping routine uses the field (or structured segment)
flag byte to notify the application subsystem of error conditions in
the input field or segment. Application program logic must verify that
data fields are entered correctly based upon the value of the flag byte
(nameT) setting. For example, if no data is entered for a defined
input field, MAPIN places nulls (low-value) in the symbOlic data field
area, sets the length field to zero and sets the flag byte to X'FF'
(high values) to signify that a field has not been entered. Flags are
set for errors in fields that specify conversion, or are truncated. If
a nonnumeric is entered in a numeric field to be converted to packed
deCimal, for example, the length and data areas are set to nulls
(low-values) and the flag byte is set to a value of C'B'.

Wi thin a structured segment, where the flag byte reflects the
status of the entire segment, the code for the last error condition
encountered is indicated in the flag byte.

For a YES/NO response field, if a valid response is received, the
length is set to 1, the flag byte to zero, and the data to C' l' if YES,
or C'O' if NO.

For terminals with light pens, a field may be defined as
detectable (COND=ENTERED coded on FIELD macro). If the field is cursor
or light pen selected, the length is set to one, the flag byte to zero,
and the data to X'FF' (high values). If the field is not selected, it
is treated as if it were not entered.

A complete list of the field error conditions after input mapping
is given with the MAPIN description in Appendix B.

47

Chapter 3 Application Subsystem Design

3.7.3 Freeing the Mapped Input Area

Assembler and PL/1 Optimizer subsystems can ask MAPIN to acquire
storage for the mapped message area. The length of the area will be
that required by the symbolic map area for the requested MAP (not the
map group). The address of this area is returned to the subsystem by
MAPIN. The subsystem must then free this area before returning control
to the Subsystem Controller. The mapped message area can be freed by
calli ng the MAP FREE servi ce routi ne •.

Assembler Language
macro to free the mapped
area must be deri ved
describing the map area).

subsystems may al ternati vely use the STORFREE
textarea. With this method, the length of the
by subsystem logic (determine from OOECf

For each of multiple calls to MAPIN specifying different maps,
the subsystem must free the previous area, or save the pointer for
later freeing, before requesti ng that a new area be acquired by MAPIN.
Each call to MAPIN must be treated as the first call (see Appendix B -
MCW options for MAP IN) •

3.7.4 Performance Considerations

The MAPIN routine maps an input message in two steps: first it
creates an intermediate device-independent form (the normal form) of
the data lying within the map domain. Second, it matches the user's
map agai nst the normal form to obtain edited data values for all named
fields in the map.

For efficient input mapping, use only one map. A MAPIN call is
required for each additional map. Use occurring segments to handle
repeating lines. Fields should be coded in ascending order (left to
right, top to bottom), as this speeds up the matching process. Use
keyword and positional field combinations sparingly, as they require
repeated scanning to process. For a 3270 CRT, attribute characters
should be placed to coincide with the start of fields (that is, an
ATTRIB should be coded for each field).

3.8 OUTPUT MAPPING

An application subsystem prepares an output message for mapping
by placing the resul ts of subsystem processing into the symbolic data
field areas specified in the output map definition. The MAPOUT service
routine is then called to perform output mapping for a particular map
wi thin a map group. The result of MAPOUT processing is the normal
form, or device-independent portion of a message, that is, a logical
~age. If a symbolic map data field contains nulls, the initial data
specifi ed will be used, or if none, no data will be transmitted for
that field. However, attributes will be sent if specified and
applicable to the device, unless suppressed by subsystem override in
the symbolic map attribute fields.

48

J

L

Chapter 3 Application Subsystem Design

Three options are available for output mapping:

• Map both initial (template) and variable (user-supplied) data
(defaul t)

• Map initial data only

• Map variable data only (fill in template)

The option chosen must be indicated via the MCW at MAPOUT time.
Subsequently, the next section of an output message is prepared by the
subsystem and MAPOUT is called to produce the next portion of the
logical message, if necessary. When the logical message is finished,
this mapped output is ready for transmission preparation by a call to
MAPEND.

The MAPOUT and MAPEND routines map an output message using the
reverse of the MAPIN procedure. First MAPOUT is called to edit the
data and build normal forms for each page. The normal forms are saved
as S tore/F et ch transi ent strings. MAPEND is then call ed to convert the
normal forms to external device-dependent format via terminal-dependent
MMUDDMx subroutines, and then dispose of the message as requested via
the MCW.

Figure 7 outlines output mapping and transmission logic.

MA OUT
Perform Output

Mapping for Map
Within Map Group

YES

Prepare, T ransmi t
Physical Message(s)

Figure 7. Output Mapping Logic

49

NO

Chapter 3 Application Subsystem Design

3.8.1 Overriding Attribute Values

In the symbolic map, the fonnat of output fields is similar to
that of input fields. Each field has the two-part prefix consisting of
the field length and flag/at tribute bytes. Under output mapping the
flag byte becanes the field attribute override byte. Since the field
attribute byte is a labeled field (nameI') in the symbolic map, it can
be easily referenced by the application program. The length field is
not currently used for output mapping (ignored).

The field attribute byte is used to override a logical attribute
value specified in the map definition. The application program moves
the override attribute into the field attribute area prior to calling
MAP OUT • Logical attributes for the IBM 3270 display system include
protected, tmprotected, alphameric, numeric, autoskip, etc. A complete
list of attribute codes can be fotmd in the LOGCHARS listing for the
terminal and in the FIELD macro description.

Attributes defined in the map definition that are not to be
overridden must have the attribute byte field (nameT) in the symbolic
map set to null (low values) or blank. If storage for the symbolic map
has been acquired by the Intercom storage management routine before
program entry, it will zero the acquired area. However, if an
Assembler Language subsystem acquires the storage by issuing a STORAGE J' ...
macro, ZERO=YES, must be requested so that all attribute and length
fields are set to nulls before output processing logic begins. If the
same symbolic map area is used for both input and output processing, an
MMU MAPa.R routine is provided, as discussed below under input/output
mapping.

If no attribute is provided via the symbolic map or the FIELD
macro, or if the supplied attribute override is invalid, the default
at tribute (if any) supplied in LOGCHARS will be used. The default for
an IBM 3270 CRT, for example, is UAN (tmprotected, alpha, nonnal
intensi ty). To suppress at tribute transmission, ATTRIB=SUPR may be
coded for the FIELD macro, or the logical code for suppress may be set
in the attribute byte field in the symbolic map at program execution
t:ime before the MAPour call.

3.8.2 Page Overflow Processing

Output mapping is cumulative. Each call to MAPOUT creates
another portion of the lOgical message, whether an addition to the
current page (or screen) of data, or the beginning of a new page. When
mul tiple pages are produced, if data may not be present for every
defined field, then it may be desirable to call MAPCLR to clear the
symbolic map area after each MAPour call.

50

J

Chapter 3 SPR 216 2/83 Application Subsystem Design

It makes no difference that a series of mappings may produce more
than one page, since the routine provides for page overflow
processing. Page overflow occurs on the following conditions:

• Attempting to map a normal map into an area defined by the
largest trail-justified map in the same map group

• Attempting to map off the page when using NEXT notation for
map starting row or column position

• Attempting to map beyond the buffer or logical page (maximum
number of lines) size of the destination terminal

The subsystem is notified by a MAPOUT return code and should
include logic to take appropriate action, such as mapping a trailer
map, then a header map for the next page. Subsequently, the symbolic
map data that caused the overflow must be passed again to MAPOUT for
processing.

A page is considered complete under .the following circumstances:

• Attempting to map into an area of a page that has been
previously mapped (when no overflow condition exists)

• Mapping a header or normal map after a page overflow occurs

g Requesting a page option on the MAPOUT call

• Issuing a call to MAPEND

Attempting to overlay an already mapped trailer area with another
USAGE=TRAILER or trail-justified map during page overflow will cause a
map overflow condition. This can be cleared by completing the
preceding page.

Via option codes in the MCW for the MAPEND call, use of the Page
Facility or a DDQ may be specified to handle multiple page output, or
all generated pages may be queued for the Front End.

Figure 8 outlines page overflow processing.

3.8.3 Canceling a Logical Message

If, during the process of output message formatting, the
application subsystem determines that an error was made, the entire
logical message (all previously mapped pages) may be canceled. This is
done by calling the MAPURGE routine instead of calling MAPEND, that is,
no MAPEND processing is done; thus no output message is available. The
subsystem must send an error message to the terminal, or return a
message cancelled error code to the subsystem controller.

51

Chapter 3

Nom: Branch around
this step if overflow
condition existed

Figure 8.

Processing
Logic

MAP OUT

MAP OUT
Produce page

body

YES

Application Subsystem Design

Prepare, Transmit
Physical Message(s)

Page Overflow Output Mapping Logic

52

J

Chapter 3 Application Subsystem Design

3.8.4 Mapping Hard CoPy Output

The outplt mapping routines can be used with hard copy
(output-only) devices, such as the IBM 3270 Printer, if device page and
line size specifications are made for MMU using the DVM)DIFY and DEVICE
macros in the Intercomm Back End Terminal Tables. The lOgical page
size (number of lines) for an infinite row device may be greater than
the physical buffer size (if buffered), and can be specified in
addition to the blffer size, if applicable. The page size can be
overridden for the duration of subsystem mapping via the PAGESZ
parameter of the MAPGROUP macro. The line length specified via the
SIZE parameter of each MAP used to form the page may not be greater
than the maxim\.lll physi cal line length of the device in use (see
Appendix C). All page building and overfiow processing is available
for creation of a logical message. If the device is buffered, each
page of the lOgical message is converted into one or more physical
messages by the transmission preparation subroutine (MMODDMx),
depending on the mlDber of characters mapped for each page and the
physical buffer size of the device.

3.8.5 Transmission P reparation and Message Disposition

When the logical message is complete, the physical message must
be processed by calling the MAPEND service routine. MAPEND processes
mapped outplt by making it device-specific (that is, creating a fully
formatted message--VMI=X'67' -that contains comnand and control
characters specific to the terminal type), then performing JXlysical
message disposition. The output processing routine allows message
disposi tion options to be specified via the MCW. The subsystem may
request that MAPEND:

• Transmit the completed physical message (s) to the terminal
vi a FESEND, or

• Submit the completed messages to the Page Facility for
subsequent CRT page browsing, or

• Create and transmit a Front End Dynamic Data Queue (tranSient
data file) containing the canpleted physical messages, or

• Sequentially return each completed physical message to the
subsystem (required for character string mapping) •

If the transmit option is selected, all generated physical
messages are sent to the Front End. MAPEND does this by calling
FESEND. MAPEND notifies the subsystem if the transmission was not
successful via a code of C'7' in the first byte of the t£W. The FESEND
return code is placed in the second byte of the MCW. If the transmit
option is umuccessful, application program logic can proceed by
calling MAPEND without the transmit option to access output which could

53

Chapter 3 Application Subsystem Design

not be queued. Or, the subsystem may free the remainder of the
messages by calling MAPlE CE. However, if MAPlR CE is called, the
remai ning pages are lost. Successful queuing of all generated physi cal
messages is indicated by a MAPEND return code of c'a' in byte 1 of the
r-£W •

If the Page FaCility is used, MAPEND builds each physical message
and autanatically submits the can pI eted message to the Page Facility.
I f message disposi ti on is successful, MAPEND pI aces a ret urn code of
C'8' in byte 1 of the MeW. If message disposition is unsuccessful, the
return code is C'5', and the Page Facility error return code is in byte
2 of the MeW indicating the cause of the error. This option is not
valid for outplt-only devices such as the IBM 3270 Printer or if the
buffer device size is 3I1aller than the mapped page.

Any mapping that resul ts in more than one physical message may
select the DDQ option. With this option, MAPEND builds all physical
messages of a logical message and places them on a semipermanent
dynamic data queue which is sent to the Front End as a FE~ (Front End
Control Message), with the 'free after transmission' option. If only
one physical message is created for the entire lOgical message, MAPEND
sends it directly using FESEND. The name of the DDQ data set is
specified in the MHO Vector Table. If message disposition is
successful, MAPEND pI aces a ret urn code of C' a' in byte 1 of the MCW.
If message disposition is unsuccessful, the return code is C'6', and an .J'
additional DDQ function error code is placed in byte 2 of the MCW.

The DDQ option should be selected for receive-only devices which
can be used by more than one transaction at a time. This avoids
interleaved message problems and saves disk queue space. In general,
it slx>uld be used for IBM 3270 Printers if any logical message could
resul t in more than one physical message. The DDQ option is valid for
hard copy outplt-only devices even if the page size is greater than the
device buffer size. It is invalid if the terminal-ID speCifies a
broadcast group name.

If the message is to be returned to the subsystem, each call to
MAPEND retrieves one physical message fully formatted for the receiving
terminal. The lDysical message normally corresponds to one page of the
lOgical message. The user must call MAPEND repeatedly to obtain all
messages for all pages of the logical message. A return code of C' a'
indicates when the last message is retrieved; a return code of C'O'
indicates more messages are to be retrieved. The disposition of
messages returned to a subsystem is a function of application program
logic. This option must be used for mapping of character strings.

The subsystem can specify override options for the terminal
command and/or prefix control character defined in the MAPCROUP or
device description for the terminal type. This is done by setting
bytes 3 and 4 of the MCW before the call to MAPEND. Byte 3 is used to
override the logical code for the comnand character that is speCified ':',
by the COMMAND parameter of the MAPCROUP macro used for the first ..."
MAPour call, or if none, that defined on the DEFAULTS macro for the

54

Chapter 3 Application Subsystem Design

terminal type. Byte 4 is used to specify the lOgical code for the
control character, or override that specified for the DEFAULTS macro
for the terminal type, as applicable. The logical codes are available
in the application program via the symbolic copy code fran the LOGCHARS
listing for the terminal type. See Appendix A for further discussion of
overri de possi bil iti es •

All MAPEND options and corresponding return codes are fully
docllDented in Appendix B.

3.8.6 Performance Considerations

Page overflow processing with MMU requires additional use of
StorelFetch for temporary storage of pages. Performance degradation is
possible due to additional storage or I/O reqUirements in such a
situation.

For efficient output mapping, as few maps as possible should be
used, as each requires a MAPour call.

When using the Page FaCility, if performance is very important,
then single maps for each page should be used. For fastest response
time, call MAPEND (with P option in MCW) after each page is mapped,
instead of waiting until all pages are mapped (via MAPour calls).

For the IBM 3270 CRT, the m.mber of attribute characters
transmitted can be reduced by use of structured segments (one attribute
character per segment), or by coding fields with ATTRIB set to a
logical attribute code defined by PHYSCDE=SUPPRESS to suppress the
attribute character for this field (space is reserved for it in the
map) • (In I ntercomm-suppUed LOGCHARS, this logical attribute code is
defined as SUPR). ThiS' is particularly useful where mul tiple heading
lines are defined without intervening named fields; only the first
heading field needs a protect attribute. If no attribute character is
defined, the defaul t for the device is used (UAN for IBM 3270 CRT).

3.9 INPUT/OUTPUT MAPPING

Input/ output mapping is used for mapping template screens. When
a map defines both an input and an output message, the design of
subsystem logic proceeds in three Iilases. First, a mapped output
message is produced and transmitted, that is, ini tial data is mapped
and the template is sent to the operator.

The subsystem can then receive and map input messages, that is,
map the data fields filled in by the operator. Once the message is
processed, the subsystem can include logic to produce a mapped output
message using the data-Only option in order to possibly highlight
fields in error or signal that new data may be entered.

55

Chapter 3 Application Subsystem Design

Since there will be data in the symbolic map area after input
mapping is completed, the entire area must be set to nulls. This is
done by calling the MAPCLR routine. However, if any data field values
are to be used again, for example to highlight fields in error,
subsystem logic must clear every individual attribute byte and
applicabl e (non-error) data field areas. Alternatively, the subsystem
may save the needed field data and restore it after the call to
MAPCLR. Figure 9 illustrates typical input/output mapping logic.

NO

MAPCLR
MAP OUT clear

I map data only L.....t symbolic map
or template I"'"

, , move new data
MAPE ~D to symbolic map

I prepare and I send message

set MCW option=D 1

Figure 9. Input/Output Processing Logic

56

Chapter 3 Application Subsystem Design

3.9.1 Initial (Template) Data Output Mapping

A subsystem may map initial data using one of the following
methods:

• Calling MAP OUT referencing a symbolic map with only initial
data (unnamed) fields defined

• Referencing a symbolic map defining variable data fields
where each field prefix and data value has been set to nulls

• Using the initial-only option (I) specified in Byte 4 of the
MCW for the MAPour call(s). (In this usage, attributes and
initial values cannot be overriden.)

In the second usage, if the initial data field is named, initial
and/or attribute values can be overriden prior to the call to MAP OUT •
First the named field is referenced and changed; then MAPOUT is called
using the initial and data option of the MCW (blank).

An ERASWRIT or ERASWRAL conmand should be specified via
for MAP END , unless already specified on the MAPGROUP macro.
Override Table in Appendix A, and Appendix C, for
consi derati ons •

the MCW
See the
further

3.9.2 Variable Data Output Mapping

A subsystem may insert data in an existing template and/or
manipulate the previously displayed (mapped) variable data by one or a
combination of the following methods:

• Calling MAPOUT referencing a map containing only variable
data (named) fields (no initial data, all attributes specify
suppress), and supplying data and/or attribute overrides for
these fields via the symbolic map.

• Referencing a map containing named initial and variable data
fields where all fields are defined as type CB, and using
blanks (spaces) in the symbolic map fields to clear those
fields whi ch were entered correctly, are no longer desi red,
or for which no data is available.

• Referencing a map with a named field with an initial or
supplied (from symbolic map) three-byte hexadecimal value
containing the Erase Unprotected to Address order (X'12') and
a two-byte row/column stop address sequence (for example, the
last position on the screen). The attribute should be SUPR
and the field type CB so that blanks may be used to prevent
transmission of the EUA sequence if desired (allow room for
the bl anks in the screen desi gn) •

57

Chapter 3 Application Subsystem Design

• Providing nondisplay attribute overrides to clear (suppress)
fields which are correct or no longer to be displayed.

• Causing all variable data to be transmitted from a screen
after error correction by providing attribute overrides that
specify protected-with-MDT-on for correct fields, while
assigning an IIDprotected-with-highlight attribute for fields
in error, but clearing all symbolic map data areas to null so
that only attributes are transmitted. If a required field is
omi tted, a graphic symbol such as a question mark (?), or a
zero (if ZD or PD field) could be sent to indicate the
omission. This method requires that no initial values are
specified for named fields, and that the data-only (D) option
is used.

• Referencing a map containing both unnamed and named fields
with or without initial data, and requesting the data-only
option in Byte 4 of the MCW when calling MAP OUT • Note that
if a nam ed fi el d contai ns i ni t{al data, and no data overri de
is supplied by the symbolic map, then the initial data for
that named field will be sent.

If the data-only option (C' D' in byte 4 of the MCW) is used for
MAP OUT , then a WRITE1 (Write Initial) cOlIIDand will be autanatically
generated for the output message (3270 and DS40 CRTs only).

3.10 APPLICATION PROGRAM STRUCTURE

As a summary of coding conventi ons discussed in this chapter,
Figures 10, 11 and 12 illustrate the basic structure for subsystems
usingMMU which are coded in COBCL, PL/1 and Assembler.

58

J

J

Chapter 3 SPR 216 2/83 Application Subsystem Design

IDENTIFICATION DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SUBROUTINE-CODES OOPY lOOMSBS.
01 LOGICAL-DEVICE-DESCRIPTIONS COPY COBLOGCH.
01 IN-GROUP-NAME PIC X(8) VALUE 'INMAPGR'.·
01 IN-MAP-NAME PIC X(8) VALUE 'MAP1'.
01 OUT-GROUP-NAME PIC X(8) VALUE 'OUTGRP'.
01 OUT-MAP-NAME PIC X(8) VALUE 'MAP2'.

(other constants)

LINKAGE SECTION.
01 INPUT-MSG COPY ICOMINMG.

04 INPUT-TEXT.
06 VERB PIC X(4).

(unmapped text area, if needed)

01 100M-SPA PIC X(500).
01 ICOM-SCT PIC X(100).
01 lOOM-RC PIC S9(7) COMP SYNC.
01 DYNAMIC-WORKING-STORAGE COPY ICOMDWS.

04 OUT-TEXT.
06 FILLER PIC X(6). (not used)

*COPY SYMBOLIC MAPS, $$COPY BEGINS IN COLUMN 7,
*MEMBER NAMES TO COPY ARE THE RESULT OF SYMGEN SPECIFICATIONS

02 SYMBOLIC-OUTPUT-MAP.
$$COPY OUTGRP

02 SYMBOLIC-INPUT-MAP.
$$COPY INMAPGR
*OTHER-DWS-AREAS.

02 MCW PIC 9(7) COMP SYNC.
02 MCW-CODE-BYTES REDEFINES MCW.

04 MCW-RETURN-CODE PIC X.
04 MCW-OPTION-2 PIC X.
04 MCW-OPTION-3 PIC X.
04 MCW-OPTION-4 PIC X.

02 MCB PIC X(48).

(other DWS definitions)

Figure 10. COBOL Subsystem Structure (Page 1 of 2)

59

Chapter 3 Application Subsystem Design

PROCEDURE DIVrsICN USING INPUT-MSG, IaJM-SPA, IaJM-SCT ,
I aJM-R C ,D YNAMI C-WCR KIN G-ST ORA GE •
mVE ~SSG-HDR TO O~SSG-HDR.

(ini ti al housekeeping)

* INVO KE MAP IN •
mVE SPACES TO MCW-CODE-BYTES.
CALL 'COBREENT' U3 ING MAP IN,

MCB , IN -GR OUP -NA ~ , IN -MAP -NA ~ ,
INPt1r-M3G,MCW ,MAP1.

(analyze status and process input message)

*p REP ARE OUTP UT S YMB a.. I C MAP DATA

*INVOKE MAP OUT •
M)VE SPACES TO MCW-CODE-BYTES.
CALL 'COBREENT' U3ING MAP OUT ,

MCB,OUT-GROUP-NA~,OUT-MAP-NA~,
MAP2,MCW ,OMSGH-TID.

(analyze status and continue processing)

*INVOKE MAPEND WITH TRANSMIT OPTION.
M)VE 'l!SQ~~' TO MCW-CODE-BYTES.
CALL' COBREENT' U3ING MAPEND,

MCB,OUTPUT-MESSAGE,MCW.

*RETlflN TO INTERaJMM.
GCBACK.

NO'lE: Any field names not explicitly defined are in copied members.

Figure 10. COBOL Subsystem Structure (Page 2 of 2)

60

L

Chapter 3 Application Subsystem Design

SUBSYS: PROC (IN MSG ADDR,SPA,SCT,RC)
OPTIONS(~IN:REENTRANT);

DCL(IN MSG ADDR,SPA,SCT)PTR,RC FIXED BIN(31); I-INPUT PARMS.I
%INCLUDE PLIENTRY; I-FOR OPTIMIZER - ASSEM3LER ENTRY POINTS·I
%INCLUDE PLn..OGCH; I.SYMBCLIC DEV -DEPNT CHARS- I
DCL 1 MAP NAMES STATIC, I-FOR CALLS TO MMU· I

3 IN MAPGROUP ClIAR(8) INIT('INMAPGR'),
3 IN-MAP CHAR(8) INIT('MAP1'),
3 OUT MAPGROUP CHAR (8) INIT ('OUTGRP') ,
3 OUT-MAP CHAR(8) INIT('MAP2')j

DCL 1 INPUT MESSAGE BASED(IN MSG ADDR) ,
3 IN HDR,- - -

% IN CL UDE - PLMS GHD j
3 IN TEXT, I-BEFORE MAPPING- I

'5 VERB CHAR (4) j
I-REST CF INPUT REFERENCED VIA SYMBOLIC MAP- I
I.MAPS ARE BASED ON PTR map name- I "'
%INCLUDE INMAPGR j -
DCL OUT_AREA CHAR(nnn); I-SYMBCLIC OUTPUT MAP AREA-I

%INCLUIE OUTGRP;
DCL 1 MMU AREAS ALIGNED, I-MMU OONTROL AREAS- I

2 MMU -PAR MS FI XE D BIN (31) ,
2 MCW-CHAR(4),
2 MCB CHAR (48) ;

DCL 1 OUTPUT_MESSAGE, I.USED FOR MAPEND CALL-I
3 OUT_HDR,

% INCLUDE PLMSGHDj
3 OUT=TEXT ClIAR(2) j I.MESSAGE AREA NOT USED- I

(other variable declarations)

OUT_HDR:IN_HDR,BY NAl-Ej I.NEEDED FOR OUT HDR.MSGHTID.I

(initial housekeeping)

Figure 11. PL/1 (Using Optimizer) Subsystem Structure
(Page 1 of 2)

61

Chapter 3 Application Subsystem Design

MCW='~~~~' /'MAP INPUT MESSAGE'/
CAIL MAPIN(MCB,IN MAPGROUP,IN MAP,IN MSG ADDR,MCW);
/'VALUE CF IN MSG-ADDR WILL cHANCE'/-
PTR MAP1=IN toEG A15DR; /'ESTABLISH BASE FOR INPtJr MAPPING AREA'/
PTR=MAP2=ADDR (OUT_AREA); /'ESTABLISH BASE FOR OUTPUT MAPPING AREAS'/

• ,(analyze status and process input message)

/'PREPARE OUTPUT MESSAGE DATA'

MCW=' ~~~~, ; /'MAP OUTPUT MESSAGE' /
CAIL MAP OUT (MCB, OUT_MAP GROUP , OUT_MAP ,MAP2,MCW, OUT_HDR .MSGHI'ID);

(analyze status and continue processing)

MCW='~~~'; /'QUEUE MESSAGE OPTION'/
CAIL MAPEND(MCB,OUTPUT_MESSAGE,MCW);

(final housekeeping)

CALL MAPFREE(MCW,IN MAPGROUP,IN MAP,PTR MAP1,OUT HDR.MSGHTID);
RETURN; - - - -
END SUBSYS;

NOTE: Any field names not explicitly defined are in copied members.

Figure 11. PL/1 (Using Optimizer) Subsystem Structure
(Page 2 of 2)

62

J

J

Chapter 3 Application Subsystem Design

MMUSAMP (SECI'
• SAMPLE REENI'RANI' ASSEMBLER SUBSYSTEM USING MMU

REGS
ropy ASMLOGCH

• DSECTS
IDRKAREA rt3ECI'
SAVFARFA DS 18F
ADDRIDRD rt3 F
PARMSAVE rt3 nF
MCW DS F
MCB DS 12F
OUTTERM DS CL5

OUTMAPS IE OD
WRKLEN EQU *-WCIt KAREA
*

ropy OUTGRP

* •
DYNLEN EQU WR KLE N+ OUT GRP L

•
ropy INMAPGR

*
MMUSAMP (SECI'

lEING MAP 1 ,R5
USING MAP2,R6
lEING WCltKAREA,R 13

(n=maximum number of CALL parameters)

(other thread-related areas)

OUTPUT SYMBCLIC MAPS AREA START
DYNAMIC SAVE/WCltK AREA LENGrH

(symbolic output map(s) area Dsect)
NOTE THAT DSECI' AND LENGrH VALUES ARE

PRESENI' IN ropmD K:M3ER
TOTAL DYNAMIC WCltKAREA LENGrH

(symbolic input map(s) area Dsect)

LINKAGE BASE=(R 12) ,LEN=DYNLEN,PARM:(R2) ,SPA=(R3) ,MSG:(R4), X
DSECTS=(SCT, R 13)

MIlC OUTTERM,MSGHTID SAVE TID FOR LATER CALLS

(initial housekeeping)

* INVOKE MAP IN
MlTC MCW ,BLANKS GET MAP, FREE K:SSAGE AFTER MAPPING
ST R4,ADmWORD STORE INPlJr MESSAGE ADDRESS
CALL MAP IN , (MCB , INGR OUP , INMAP , ADDR WJRD ,MCW) , VL, X

MF'=(E ,PAR MSAVE)
L R5,ADDRWJRD MAPPED t£SSAGE DATA ADDRESS

(analyze status and process input data)

LA R6,OUTMAPS+(MAP2-OUTGRP)

(prepare output symbolic map data)

Figure 12. Assembler Subsystem Structure
(Page 1 of 2)

63

Chapter 3 Application Subsystem Design

* INVOKE MAPOUT
MIlC Mew ,BLANKS MAP INITIAL AND SYMBCLIC DATA AREAS
CALL MAP OUT ,(MCB, OUT GROUP ,OUTMAP ,MAP2,MCW ,OUTTERM) ,VL,

MF=(E,PAR~AVE)

CLI Mew ,C'O' SUCCESSFULLY MAPPED?
BNE ~POUT-error-routine NO

* INVOKE MAPEND WITH TRANSMIT OPTION
MlTC Mew ,QOPTION REQUEST r-ESSAGE QUEUING FOR TERMINAL
CALL MAPEND ,(MCB, a ,MCW) , VL ,MF=(E ,PARMSAVE)
CLI MCW ,C ' 8 ' SUCCESSFULL Y QUE UE D ?
BNE MAPEND-error-routine NO

* FREE MAPPED SYMBCLIC INPUT AREA
MIlC Mew ,BLANKS FETCH MAP
CALL M/).PFREE, (MCW, INGROUP, IN~P, (R5) ,OUTTERM) ,VL,

MF=(E ,PAR MSAVE)
* FREE ANY OTHER ACQUIRED STORAGE AREAS VIA STORFREE MACRO

* RETLRN TO INTEROOMM
RTNLINK ADDR=(R13) ,LEN=DYNLEN,RC=O
EJECT

* CONSTANTS, ETC.
INGROUP DC CL8' INM\.PGR'
IN MAP DC CL8' MAP 1 '
OUTGROUP DC CL8 'OUTGRP ,
OUT MAP DC CL8'MAP2'
BLANKS DC CL4')S)S~~,
CPPTION DC CL4 'lSQ~~'

LTffiG
END

x

x

NO'IE: Any field names not explicitly defined are in copied members.

Figure 12. Assembler Subsystem Structure
(Page 2 of 2)

64

J

Chapter 4

INSTALLATION PROCEDURES

4.1 PREPARATION

As illustrated in Figure 13, the following preparatory steps must
be done in order to use the Message Mapping Utili ti es:

• After coding MMU Map definition macros, the maps must reside
in the Map Definition source and load libraries, (SYMMI:F and
MODMDF) that is, they must be assembled and linkedited. (The
Autogen Facility may be used to generate MMJ map definitions.)

• The symbolic maps must be generated and reside in user source
statement libraries to be copied during canpilation or
assembly of application programs.

• [The Device Descripton Tables must be coded, assembled and
linkedited (the internal form for MMU use); released as the
member LO GCHARS on S YMREL and MODREL.]

• [The symbolic version(s) of the Device Description Table must
be generated (released on SYMREL as ASM..OGCH, CCBLOGCH, and
PLILOOCH) and made available for copying into application
programs.]

• Application subsystems must be compiled or assembled (and
linkedi ted) to copy the symbolic maps and symbolic device
des cri pti ons •

• The Intercomm Back End Station and Device Tables must be
defined using MMJ de vi ce types, then assembled and linkedi ted.

• The MMU Vector Table must be coded, assembled and linkedited.

• The StorelFetch temporary data set (work file) used by MMU
must be preformatted by the off-line utility KEYCREAT.

• The dedicated StorelFetch map data set containing on-line map
definitions must be created by the off-line utility KEYCREAT,
and then loaded by the off-line utility LOADMAP fran the Map
Defini tion Load Library.

• The MMU service and editing routines, Device Descriptor
Table, Device Dependent Modules, and Vector Table must be
included with the Intercomm linkedit.

65

Chapter 4 Installation Procedures

J
Code MMU [Code MMU Code Back End Code MMU

Map Device STATloo /DEVI CE VEcrOR
Definition Descriptor Tables using MMU TABLE
Macros Macros] Devi ce t ypes/ parms Macro

I

~ ~---------"'C".i~ t<: :;, ~
Maps SYMGEN Symbolic DEFSYM User User-coded

Source ~ Assemble r- Source 4- [Assemble .- Source ~ Library Symbolic Library Symrolic Library Subsystem(s)
SYMMDF Maps (SYMlER) Descriptions] SYMUSR

....... --- r-~~'
...-1

, ,.
ASMPCL ASMPCL Subsystem ASMPCL ASMPCL

Assemble Assemble & Link Canpilation Assemble & [Assemble &
& Link STATION /DEVlCE or Assembly Link MMU Link
Maps Tables & Linkedit Vector Table MMU Device

Descriptors
(LOGCHARS)]

"

~ , ,
~ '" C ~ C ~

00 -LINE INl'EROOMM REGloo
Maps Off-line ----------------------------- INTER- User
Load Utility ... OOMM ~ Load
Library LOADMAP APPLICATION PROGRAM Linkedi t Library

....... M)DMD:.., --------------------- ~DUSR_'

I Symbolic Descriptors

1- Symbolic Maps

~ ~ MMU Service Calls :::::: ~

Store/ ~ Store/
Fetch MMU Service Routines ~ Fetch
Map r ---------------------- ~ ... Work
File Device Descriptors File

........ -' Vector Table/DDMS -' 1 ..- ~ MMU Edit Routines
KEYCREAT STATION /DEV ICE Tabl es KEYCREAT
o ff-li ne Utility Off-line Utility

t
Figure 13. The MMU Installation Process

66

Chapter 4 SPR 216 2/83 Installation Procedures

This chapter describes procedures to accomplish these tasks. The
libraries SYMMDF and MODMDF referenced in this chapter are allocated
and catalogued during Intercomm installation.

Intercomm catalogued procedures and parameters referenced or
illustrated in this chapter are fully described in the Operating
Reference Manual andlor Appendix D of this manual. Off-loading of the
procedures from the release library is described in the Installation
Guide.

4.2 MAP GENERATION

Once the map definitions are coded, they must be assembled and
linkedited. Each map group is assembled twice, once to generate the
internal map and once to generate the symbolic map.

4.2.1 Internal Map Generation

The Intercomm catalogued procedures ASMPCL or LIBELINK, as
applicable, may be used to create, assemble and linked it the map
definitions to generate the internal form. The load module resides on
the data set MODMDF. Each member of MODMDF (to be input to LOADMAP) is
a unique map group which may contain one or more map definitions, and
should have the same name as coded on the MAPGROUP macro.

In the following example, the ASMPCL procedure is used to
generate the load module ABC on the load library MODMDF:

II EXEC ASMPCL,Q=MDF,NAME=ABC,LMOD=ABC
II ASM.SYSIN DD *
* MAPGROUP ABC
ABC MAP GROUP

ENDGROUP
END

(map definitions)

67

Chapter 4 SPR 216 2/83 Installation Procedures

The LIBELINK procedure is used to update, or add to, the source ~

module library, then assemble and linkedit the map definition macros ,..,.,
generating or replacing the specified load module. In the following
example, the LIBELINK procedure is used to create the member XYZ on
SYMMDF, and assemble and linked it XYZ to generate the load module form
on MODMDF:

II EXEC LIBELINK,Q=MDF,NAME=XYZ,LMOD=XYZ
IILIB.SYSIN DD *
.1 ADD NAME=XYZ,LIST=ALL
* MAPGROUP XYZ
XYZ MAPGROUP

(map definitions)

4.2.2

ENDGROUP
END

Symbolic Map Generation

The symbolic language-dependent form of the map definition is
created through the use of the SYMGEN catalogued procedure. This
procedure causes assembly of one or more map groups. SYMGEN output is
routed to a copy library for later inclusion in the user's application .~~
program. Specifications for the SYMGEN procedure are given in,
Appendix D. In the following example, the SYMGEN procedure is used to
create the COBOL symbolic form of the map definition MAPGRP3 on the
library INT.SYMUSR:

II EXEC SYMGEN,Q=MDF,LANG=COB,NAME=MAPGRP3,OLIB='INT.SYMUSR'

4.2.3 Printing the Symbolic Map

The Intercomm procedure PMIPRT may be used to print a listing of
the symbolic map produced by the SYMGEN procedure (above) as follows:

II EXEC PMIPRT,Q=USR,NAME=MAPGRP3

where Q is the output library suffix defined for the OLIB parameter in
the SYMGEN procedure, and NAME is the same symbolic map group source
name as defined for the NAME parameter in the SYMGEN procedure.

4.3 DEVICE DEFINITION AND INSTALLATION

The Device Description Table defines for MMU the message
editinglformatting characteristics of an installation's device types in
use.

68

Chapter 4 SPR 216 2/83 Installation Procedures

4.3.1 Supplied Device Descriptions

Standard device descriptions for MMU-supported terminals are
included with the Message Mapping Utilities. The Device Description
Table may be used as is, or it may be modified to reflect
installation-dependent standards. If string mapping is to be used,
device definitions for that "device type" must be supplied by the
installation. The supplied Device Description Table and the symbolic
forms of that table are released as members of SYMREL and MODREL as
follows:

----------- --- --
Member Function

----------- --- --
LOGCHARS Source form of Device Description Table (SYMREL);

see Appendix C for a sample listing.

LOGCHARS Internal Device Description Table in load module form
(MODREL)

COBLOGCH Symbolic device description member for COBOL (SYMREL)

PLILOGCH Symbolic device description member for PL/1 (SYMREL)

ASMLOGCH Symbolic device description member for Assembler (SYMREL)

In internal form the LOGCHARS tables consist of individual
control sections for each device. Control section names are DEVDESCx,
where x is the device suffix code (see MAP GROUP macro, DEVICE
parameter). The control sections contain logical and physical codes
for attributes, commands and control characters for the device, as well
as default characteristics and field delimiters for that device.

Each installation should verify that all commands, control
characters and attributes described in the member LOGCHARS correspond
to hardware features installed in the terminal network. A listing of
the complete LOGCHARS member for an installation should be made
available to all systems and applications programmers, along with the
appropriate language-dependent symbolic forms. If the user coded table
is not called LOGCHARS, then the INCLUDE statement for the Intercomm
linkedit must be changed.

Device Definition Macros

The macros used to define device characteristics are as follows:

• DEFINE--This macro identifies the specific device under
definition, and provides a count of the maximum physical
codes required to represent a logical control, command, or
attribute characteristic for the device.

69

Chapter 4

•

SPR 216 2/83 Installation Procedures

DEFAULTS--This macro has two functions:

1. It defines default characteristics to be used if no
characteristics are specified in the map definitions or
dynamically by program override at execution time.

2. It specifies device oriented field delimiter defaults,
which may be overridden via the SEGMENT macro DELIM
parameter on a map definition.

o COMMAND, CNTLCHR and ATTRIB--These macros are coded together
to relate the actual physical codes (hexadecimal values) to
be used in a mapped physical output message to logical codes
specified in unmapped message text (symbOlic/internal maps,
MCW options).

A device definition for one terminal type consists of
specifications provided by one DEFINE macro, one DEFAULTS macro and one
or more COMMAND, CNTLCHR, and ATTRIB macros as appropriate for the
hardware. These macros are described in detail in Appendix A. The
symbol coded on the COMMAND, CNTLCHR, and ATTRIB macros is the logical
name (of the physical characteristic) which is referenced by the
application programmer. The logical name is internally equated to a
logical code which requests the associated physical code. The same
logical representation is used across all devices, even though the
physical code may be -unique to the device under definition.

The required coding sequence for each device definition is as
follows:

symbol

(blank)

symbol

symbol
(blank)
symbol

symbol
(blank)
symbol

symbol
(blank)

DEFINE

DEFAULTS

ATTRIB

ATTRIB
ATTRIB
COMMAND .
COMMAND
COMMAND
CNTLCHR

CNTLCHR
CNI'LCHR

FORDEV=device-type
l,{NATRCHR}=max-phys-codes)

{NCMDCHR}
{NCTLCHR}

lCOMMAND=command-default)
l,CNTLCHR=control-char-default)
l,ATTRIB=attrib-default)
l,DELIM=delimiter-defaults)
LOGCODE=n,PHYSCDE=x

END
LOGCODE=n,PHYSCDE=x

END
LOGCODE=n,PHYSCDE=x

END

70

J

Chapter 4 Installation Procedures

The A'ITRm macros must be grouped together, and must end with an
tmlabeled ATTRIB whose only parameter is END. The same is true for the
CDMMAND and CNTLCHR macros, as shown.

Each group of macros (the group of ATTRIB macros, the group of
CDMMAND macros, and the group of CN'l'LCHR macros) may appear in any
order, immediately followi ng the DEFINE and DEFAULTS macros, as shown.

The following rules apply to coding the device definitions:

• Devices using the same logical character name (symbol) must
have the same logical code assigned to that name, although
the physical codes may be different.

• Logical characters of different types (that is, attributes,
control characters or commands) may not have the same names.

Terminals with like characteristics may be described using a
reference to a previously defined device. Similarly, an individual
characteristic (a>MMAND, CNTLCHR, or ATTRIB) for one device can be
specified as a logical code by referencing the name (symbol) of the
macro coded for another device. These techniques are illustrated below:

• DEFINE THE mM 2740 MODEL 1
12740 DEFINE FORDEV=mM27401

DEFAULTS DELIM::C' ;'
NY.. CNTLCHR LOGCODE= 1, PHYS CDE= X' 15'
TAB CNTLCHR LOGCODE=2,PHYSCDE=X'09'

CNTLCHR END
• DEFINE THE mM 2741
12741 DEFINE FORDEV=mM2741

DE FA UL TS DELI M:: C' ;'
CNTLCHR SA~AS=mM27401 (Refers to 2740 DEFINE)
CNTLCHR END

• DEFINE A TELETYPE
TTY DEFINE FOR DEV= TELETYPE, NcrLCHR= (2)

DEFAULTS DELIM::C' I'
OOLCHR LOGCODE=NL,PHYSCDE=X'OD25' (Refers to 2740 OOLCHR
CNTLCHR END

4.3.3 Device Description and Installation

As with the map definitions, the device descriptions must be
assembled twice: once for the internal form for MMJ use and once for
the symbolic form for application programmer reference. If the
standard MMU-supplied device description members are used, the internal

71

Chapter 4 SPR 216 2/83 Installation Procedures

and symbolic forms which exist on MODREL and SYMREL, respectively, may
be used. If the device definitions are user-coded, the internal and
symbolic forms of the device descriptions must be generated.

Internal Device Description Generation

The Intercomm ASMPCL (or LIBELINK) JCL procedure may be used to
assemble (or update and assemble) the macros and then linkedit the
resul ting macro expansions which define the internal tables of logical
control characters, commands and attributes associated with physical
codes. The resulting load module must then be included in the
Intercomm linkedit.

Assembly generates CSECTs with the name DEVDESCx, where x is a
suffix character generated for each device type referenced by a DEFINE
macro.

4.3.3.2 Symbolic Device Description Generation

The symbolic language-dependent forms of the device definitions
are generated by the DEFSYM procedure. The output from DEFSYM is
routed to a copy library for later inclusion into the user's
application program. These members are called ASMLOGCH, COBLOGCH,
PLILOGCH, for Assembler, COBOL and PL/1, respectively. The released
members with these names corres pond to the released Device Description
Table (LOGCHARS).

The DEFSYM procedure is used in a similar manner as the SYMGEN
procedure. The specifications for the DEFSYM procedure are given in
Appendix D. In the following example, the DEFSYM procedure is used to
create, on the library INT.SYMUSR, the COBOL symbolic form of a
user-coded Device Description Table MMUDEVD:

II EXEC DEFSYM,Q=USR,LANG=COB,NAME=MMUDEVD,
II OLIB='INT.SYMUSR'

4.3.4 Printing the Symbolic Device Descriptions

The Intercomm procedure PMIPRT may be used to print the symbolic
definition produced by the DEFSYM procedure, or the released versions,
as follows:.

II EXEC PMIPRT,Q={USR} ,NAME= {ASM} LOGCH
{REL} {COB}

{PLI}

72

Chapter 4 SPR 216 2/83 Installation Procedures

4.4 SUBSYSTEM COMPILATION/ASSEMBLY

After the SYMGEN and DEFSYM procedures have been executed, the
subsystems can be compiled or assembled. The symbolic maps from the
SYMGEN procedure and the symbolic device definitions from the DEFSYM
procedure reside on SYMUSR (or other user-assigned library). Subsystem
compilation or assembly requires SYSLIB reference to these source
statement libraries in the JCL.

Assembler and PL/1 subsystems can be assembled or compiled using
standard Intercomm catalogued procedures. For Assembler Language
subsystems, the ASMPCL procedure can be used as illustrated below:

II EXEC ASMPCL,Q=USR,NAME=ASMSAMP,LMOD=ASMSAMP

For PL/1-0ptimizer subsystems, the PLIXPCL procedure can be used
as illustrated below:

II EXEC PLIXPCL,Q=USR,NAME=PL1SAMP,LMOD=PL1SAMP

For PL/1-F subsystems, use the PL1LPCL procedure.

COBOL subsystems require a precompile step prior to compilation
to include symbolic map definitions subordinate to the 01 level Dynamic
Working Storage definition in the Linkage Section. This precompile
step is done by executing the COPRE program as illustrated in Appendix
D. DD statements to identify the source program, copy member and
symbolic libraries are required.

Once the COPRE program is executed successfully, the Intercomm
COBUPCL procedure can be used to compile and linked it the COBOL load
module. The COBUPCL procedure is illustrated below:

II EXEC COBUPCL,Q=USR,NAME=COBSAMP,LMOD=COBSAMP

A sample job stream to create, assemble, and link a map group
definition, generate and list the symbolic map(s), precompile a COBOL
program (COBSAMP), and then compile and linkedit the COBOL subsystem
(PCOBSAMP), is illustrated in Figure 14.

4.5 MHO NETWORK IDENTIFICATION

The Intercomm Station and Device Tables must contain MMU
definitions for all terminals for which MMU is to be used. The Station
Table, PMISTATB, is generated via the STATION macro. The Device Table,
PMIDEVTB, is generated via the DEVICE macro and optionally can be
modified via the DVMODIFY macro coded in the Station Table as an
extension of the Station (terminal) being defined. Parameters which
have special values for MMU are the STATION macro IOCODE parameter, the

73

Chapter 4 SPR 216 2/83 Installation Procedures

Iljobname JOB
IIS1 EXEC LIBELINK,Q:MDF,NAME:MAPGRP1,
II LMOD=MAPGRP1
IILIB.SYSIN DD *
.1 ADD NAME=MAPGRP1,LIST=ALL
MAPGRP1 MAPGROUP

IIS2
II
IIS3
IIS4
IISTEPLIB
IISYSIN
IISYSPUNCH
IIPDSDD
IIS5
II
II

ENDGROUP
END
EXEC SYMGEN,Q=MDF,LANG=COB,NAME=MAPGRP1,
OLIB='INT.SYMUSR'
EXEC PMIPRT,Q=USR,NAME=MAPGRP1
EXEC PGM=COPRE
DD DSN=INT.MODREL,DISP=SHR
DD DSN=INT.SYMUSR(COBSAMP),DISP=SHR
DD DSN=INT.SYMUSR(PCOBSAMP),DISP=OLD
DD DSN=INT.SYMUSR(MAPGRP1),DISP=SHR
EXEC OOBUPCL,Q=USR,NAME=PCOBSAMP,
LMOD= COBSAMP

Figure 14. Sample Map Generation and COBOL Compile and Link

DEVICE macro TYPE parameter, and all DVMODIFY parameters. Other
applicable parameters must be accurately coded, but they do not have
special values for MMU. Complete coding specifications for these
macros are given in Basic System Macros, and illustrated by device type
in the BTAM Terminal Support Guide.

The STATION macro IOCODE parameter for MMU terminals is coded as
follows:

IOCODE=(direction,device-type-namel,dvmodify-macro-labelJ)

where:

direction
specifies the code for permissible direction of transmission as
follows: 1 for input; 2 for output; 3 for input and output.

device-type-name
identifies the name of the device type and must correspond to the
value coded for the DEVICE parameter of the associated MAPGROUP
macros (if a specific device is referenced on the latter).

dvmodify-macro-label

J

specifies that the DEVICE definition for the terminal is modified
by a DVMODIFY macro and names the DVMODIFY macro which further'~
defines this device. This parameter is optional. ~

74

Chapter 4 SPR 216 2/83 Installation Procedures

The DEVICE macro TYPE parameter for MMU terminals is coded as
follows:

TYPE=device-type-name

where device-type-name specifies the name of the device type and is the
value coded for the IOCODE parameter on associated STATION macros.

The DVMODIFY macro is used to override and/or augment the DEVICE
macro specifications for a particular terminal. It may also be used to
set a page length limit on infinite row devices, by specifying a
maximum number of lines. The DVMODIFY macros are coded after the
PMISTOP macro that follows the STATION macros in the Station Table.

For buffered hard co py dev ice types, such as the 3270 Printer,
MMU requires the physical buffer size and maximum physical line
length. These parameters are coded on the DEVICE and DVMODIFY macros.
Optionally, the maximum logical page length may be defined via the
NOLINES parameter of the DVMODIFY macro. The coding of the DVMODIFY
macro takes precedence over the DEVICE macro which specifies the
standard buffer size and line length for the device type being
defined. The applicable parameters are as follows:

================ ================ ================
Parameter DEVICE DVMODIFY

================================= ================
buffer size BUFSIZE BUFFRSZ

~-------------------------------- ----------------
line length LEN LINESZ

~-------------------------------- ----------------
page length NOLINES

If NOLINES is coded (hard copy devices only), it is used to determine
the maximum logical page size (NOLINES times LINESZ, or LEN, if LINESZ
not coded). For a spec ific map group, th is common page size may be
overridden via the PAGESZ parameter on the MAPGROUP macro. The output
message size will be the same as the page size, except for buffered
hard copy dev ices where the page may be segmented into two or more
messages depending on buffer size. If the NOLINES parameter is not
coded, the logical page length (number of lines) is assumed from the
buffer size divided by the line length specification (required for
buffered CRT devices--do not code the NOLINES parameter). If neither a
buffer size nor the NOLINES parameter is coded, an infinite row device
is assumed, and the maximum number of rows is taken from the MMU Vector
Table (MMUVT macro). Therefore, to prevent the creation of extremely
long messages, code PAGESZ for MAPGROUPs destined for infinite row
devices.

If ALTBUF=YES is coded on a DVMODIFY macro (3270 devices only),
then the BUFFRSZ (and LINESZ) override is used only with map groups
specifying COMMAND=ERASWRAL; otherwise, the standard buffer and line
sizes specified on the DEVICE macro are used.

75

Chapter 4 SPR 216 2/83 Installation Procedures

For an IBM 3270 CRT Display System, if both standard .'~
1920-character screens and alternate buffer equipped CRTs are being,
used, the macro parameters allow unique terminal specifications as
follows:

PMISTATB CSECT

ALTBUF

STATION TERM=BIG01,IOCODE=(3,IBM3270)
STATION TERM=BIG02,IOCODE=(3,IBM3270)
STATION TERM=ALT01,IOCODE=(3,IBM3270,ALTBUF)

PMISTOP
DVMODIFY BUFFRSZ=3440,ALTBUF=YES
END

PMIDEVTB CSECT
DEVICE TYPE=IBM3270,BUFSIZE=1920,LEN=80,

END

CRT=YES,CHAR=NL,FIRST=NO,
EOB=NO,EOT=YES

x
X

For the IBM 3270 Printer Series, terminal identification of a
328x printer with a maximum 120-character print line, a 1920-character
buffer and a 40-line logical page length is as follows:

PMISTATB CSECT

D3286

STATION TERM=P3286,IOCODE=(2,IBM3270P,D3286)

PMISTOP
DVMODIFY HARDCPY=YES,LINESZ=120,NOLINES=40
END

PM IDEVTB CSECT
DEVICE TYPE=IBM3270P,CRT=NO,

END

BUFSIZE=1920,LEN=80,
CHAR=NL,FIRST=NO,
EOB=NO,EOT=YES

76

X
X
X

Chapter 4 SPR 216 2/83 Installation Procedures

4.6 MESSAGE MAPPING UTILITY VECTOR TABLE GENERATION

The MMU Vector Table (MMUVTBL Csect) contains information
essential to the operation of MMU. This table specifies:

o ddname of the dedicated Store/Fetch data set containing the
map definitions

o ddname of the temporary Store/Fetch data set that will
contain the intermediate results from MAPOUT processing

• ddname of a data set to contain Dynamic Data Queues created
by physical message preparation (MAPEND)

o Default positional and keyword delimiters for the system

• Maximum number of field types

& Maximum number of rows for infinite row devices

• Maximum number of columns (width) of a line

Addresses of the MMU device-dependent
device-description module CSECTs

modules and

o Addresses of MMU edit routines for each field type

The MMU Vector Table is generated by coding the MMUVT macro and
is then assembled and linkedited into the Intercomm nucleus. The
LIBELINK or ASMPCL procedures may be used. Specific coding
requirements are given in Appendix A.

If MMU is used in multiple regions under Multiregion, it may be
necessary to code a separate MMUVT for each region, if parameter values
differ.

Sample coding of the member MMUVTBL is supplied on
follows (a Csect statement is not necessary as it is
generated) :

MMUVT MAPDDNM=INTSTOR2,PAGDDNM=INTSTOR3,
DEVICES=ALL

END

4.7 MMU STORE/FETCH DATA SETS

SYMREL, as
internally

x

MMU requires two Store/Fetch data sets in its operating
environment. These are:

77

Chapter 4 SPR 216 2/83 Installation Procedures

1. A dedicated Store/Fetch data set for storage and retrieval of
on-line map definitions

2. A shared Store/Fetch data set (work file) for temporary
storage of output from MAPOUT processing

When operating in a Multiregion environment, temporary Store/Fetch data
sets must be unique to each region. The map data set may be shared
across regions if it is dedicated to containing only maps (not accessed
by any user-coded subsystems). If shared, concurrent execution of the
off-line map loading utility is not recommended (see Appendix D).

4.7.1 Store/Fetch Map Data Set

Maps are accessed by MMU from the Store/Fetch map data set as
special read-only strings. Once it is read into main storage this
string type behaves like a transient string, except if a flush is
necessary, only the core storage area is freed, the string is not
written back to the data set. The map data set should be specified
with a File Attribute Record of READONLY to ensure that the map data
set is dedicated to MMU.

The Store/Fetch map data set must be preformatted before maps can
be loaded. This is done by the Intercolllll off-line utility, KEYCREAT,
which creates and preformats a keyed BDAM file. The MMU Store/Fetch J
map data set DCB requirements for KEYCREAT are as follows:

~===========-=======-~==
DCB

Parameter Value Comments
============F===

DSORG DA Keyed BDAM File
------------~------- --

RECFM F Fixed-Length Records
------------~-------.--

BLKSIZE nnn Average map size + 24 (check assembly of
internal maps)

~-----------~------- ---
KEYLEN 52 Store/Fetch requirement

The block size for the map data set should be large enough to
contain the most frequently used maps without spanning across 2 or more
records. The block size can be determined by the average map size plus
24. The assembly of the internal maps can be checked for the average
map size. The data set should have 30 to 40 percent free space within
it, to keep search time short. See the Intercomm Store/Fetch Facility
for further discussion of the above considerations.

78

J

Chapter 4 SPR 216 2/83 Installation Procedures

Execution JCL for the KEYCREAT utility is illustrated below:

II
IISTEPLIB
IIINTKEYFL
II
II
II
II

EXEC PGM=KEYCREAT(,PARM=hhh)
DD DSN=INT.MODREL,DISP=SHR
DD DSN=name,DISP=(NEW,CATLG,DELETE),

SPACE=
UNIT=
VOL=SER=
DCB=(DSORG=DA,RECFM=F,KEYLEN=52,BLKSIZE=nnn)

where hhh is the number of blocks to be formatted. If omitted, only
the first extent (initial space allocation) is formatted.

4.1.2 Store/Fetch Temporary Storage Data Set

The Store/Fetch temporary storage data set is used to store the
intermediate results of output processing generated from all calls to
MAPOUT and retrieved by the call to MAPEND. However, this temporary
data set is frequently not used because, where possible, the results of
output processing are kept in main storage as transient strings.

The temporary data set can be shared for other subsystem usage
and in some installations may already exist. If the temporary data set
exists, it is already formatted. If it does not exist, it must be
formatted by the KEYCREAT utility. The block size for the Store/Fetch
temporary data set is determined by the average MMU output message page
or screen. The formula is as follows:

BLKSIZE=36 + 12(total-number-of-FIELD-macros) + length-of-data

where length-of-data is calculated from the sum of the external lengths
of the fields (named and unnamed) in the message.

Other DCB subparameters to execute KEYCREAT are similar to those
for the Store/Fetch map data set.

4.1.3 Store/Fetch Optimization and Tuning

Periodic adjustment of block sizes of the Store/Fetch data sets,
which requires recreation (and map reloading) of those data sets, is
recommended. In addition, the SPALIST parameter STOCORE value may have
to be increased as MMU usage increases. An initial value of 20K is
recommended.

19

Chapter 4 SPR 216 2/83 Installation Procedures

System Tuning Statistics, described in detail in the Operatingl~
Reference Manual, provide statistics on Store/Fetch data set usage and ~
transient string flushes (maps and temporary logical out put messages).
These are to be used in conjunction with the above recommendations.

4.8 LOADING THE ON-LINE MAP DEFINITIONS (LOADMAP)

Map definitions must be loaded to the dedicated Store/Fetch map
data set in order to access the maps on-line. This is done using the
off-line utility program LOADMAP, a member on MODREL. MMU routines
access, but do not modify, the maps on the Store/Fetch data set.
Therefore, LOADMAP need not be executed prior to each Intercomm startup.

4.8.1 Initial Loading of Map Definitions

The first time any maps are to be loaded to the dedicated
Store/Fetch map data set the following must be done:

• The block size for this dedicated Store/Fetch data set must
be determined and the data set must be formatted as described
in Section 4.7.

• The map definition members must be linkedited to the MMU load .1
library (MODMDF) as described in Section 4.2. Each map ,.,
definition member should contain only one map group.

• Ensure that the LOADMAP utility has been linkedited (member
LOAtMAPS on MODREL or MODLIB may be used). The Intercomm
LKEDE procedure may be used. Linkedit requirements are as
follows:

//LKED.SYSIN DD •
INCLUDE SYSLIB(BATCHPAK,IXFHNDOO,IXFHND01)
INCLUDE SYSLIB(STOSTART,INTSTORF)
INCLUDE SYSLIB(LOADMAP)
ENTR Y LOADMAP
NAME LOADMAP(R)

• The LOADMAP utility must be executed. Execution
considerations and JCL are described in Appendix D.

80

Chapter 4 SPR 216 2/83 Installation Procedures

4.8.2 SUbsequent Loading of Map Definitions

The LOArMAP utility is also used to replace or add map
definitions to an existing Store/Fetch map data set. This is done as
follows:

o The map definitions are assembled and linked as the only
member of a temporary load module library.

~ LOArMAP is executed to add or replace this single map
definition member to the dedicated Store/Fetch map data set.
LOArMAP may be executed while Intercomm is executing, if
DISP=SHR is defined in the on-line execution JCL for the
Store/Fetch map data set which is dedicated to MMU maps only.

• The keys of the added Store/Fetch strings are printed on
SYSPRINTj check that the correct names are used.

• After the map definition member is loaded to the Store/Fetch
map data set and tested for accuracy, it should also be
linkedited to the permanent load module library (MODMDF)
which reflects all currently used map definitions.

To remove a map definition from the Store/Fetch data set, the
data set must be scratched and recreated when Intercomm is down. A
permanent load module library (such as MODMDF) should be maintained
that reflects all current map definitions as preparation for a
subsequent complete reload of the Store/Fetch data set.

If a map is loaded while Intercomm is executing, the subsystem(s)
accessing that map should be quiesced via the DELY command until
loading is complete. Subsequently, the subsystem can be activated via
the BEGN command. An existing incore copy of a map (map group) which
has been reloaded may be deleted via the MMUC command. The next
subsystem mapping request will then access the revised map. (See
System Control Commands.)

4.9 LINKEDIT REQUIREMENTS

Intercomm requires MMU routines to be included in the Intercomm
linked it . This may be done by coding MMU=YES on the ICOMLINK macro.
ICOMLINK generates the following INCLUDE cards for the required modules:

81

Chapter 4

INCLUDE SYSLIB(MMUSTART)
INCLUDE SYSLIB(MAPIN)
INCLUDE SYSLIB(MAPOUT)
INCLUDE SYSLIB(MMUCOMM)
INCLUDE SYSLIB(MMUVTBL)
INCLUDE SYSLIB(MMUTRTS)
INCLUDE SYSLIB(MMUED001)
INCLUDE SYSLIB(MMUED002)
INCLUDE SYSLIB(MMUED003)
INCLUDE SYSLIB(MMUED008)
INCLUDE SYSLIB(LOGCHARS)
INCLUDE SYSLIB(MMUDDM)
INCLUDE SYSLIB(MMUDDMU)
INCLUDE SYSLIB(MMUDDMT)
INCLUDE SYSLIB(MMUDDMF)
INCLUDE SYSLIB(MMUDDMX)
INCLUDE SYSLIB(MMUDDMM)

SPR 216 2/83 Installation Procedures

Startup Processing
MAPIN Processing
MAP OUT , MAPEND, MAPCLR, MAPPURGE
MMUC command processing
or user name
Translate and Test Tables
Editing Routines

or user name
DDM for 3210 Display Terminals
DDM for 3210 Printer Series
DDM for Teletype Dataspeed 40/1 and
DDM for 2260/5 Display Terminals
DrM for Character Strings
Generalized DDM - other devices

2

When operating in a Multiregion environment, Message Mapping
routines must be present in each satellite region which requires MMU
services. All but MMUSTART and MMUVTBL are eligible for Link Pack
residence via the Intercomm Link Pack Facility (see the Operating J:
Reference Manual). Both the edit routines (MMUEDxxx) and the
device-dependent modules (MMUDDMy) reference the module MMUTRTS.
Therefore, when using Link Pack resident MMU routines, MMUTRTS must
reside with the edit routines and the DrMs. For example, if the DDMs
are in the region and the edit routines in Link Pack, a copy of MMUTRTS
must be linked in each area.

In addition, INCLUDE statements for the Store/Fetch Facility must
be specified (forced if MMU=YES is coded on the ICOMLINK macro), and
the Page Facility and DDQ modules must be included, if used for output
message collecting (see MAPEND in Appendix B).

MMUSTART is eligible for startup overlay residence. MMUEDxxx
(editing routines) and MMUDDMy (Device Dependent Modules) are eligible
for transient subroutine over lay residence. IOOMLINK generates the
required INSERTs for the overlay structure if OVLYSTR=YES and TRANS=YES
is coded.

If MMU is to be used extensively for IBM 3210 Display terminals,
instead of in an overlay, MMUDa-t and the following editing routines
should be made resident:

MMUED001
MMUED002
MMUED003
MMUED008

COND=ENTERED fields
all character strings
all numeri cs
YES/NO fields

82

J

Chapter 4 SPR 216 2/83 Installation Procedures

ICOMLINK generates inserts, for the above routines, in exclusive
transient overlay segments which requires swapping transient overlays
for each mapping. If the routines are made resident, this problem is
removed.

4.10 EXECUTION JCL

DD statements must be present for the Store/Fetch data sets, and
must specify the DCB parameters DSORG=DA,OPTCD=EF,LIMCT=n.

The Store/Fetch data set for the on-line maps must have the
ddname INTSTORx corres ponding to the MMUVT macro MAPDDNM parameter j
DISP=SHR is recommended.

The Store/Fetch data set for temporary storage of logical
messages must have the ddname INTSTORy corresponding to the MMUVT macro
PAGDDNM parameter, or the Store/Fetch default data set INTSTORO may be
used. INTSTORO may not be used if the Intercomm Data Entry Facility is
also in use in the same region. DISP=OLD is recommended.

For efficiency in execution, a FAR (File Attribute Record) is
recommended for the Store/Fetch data sets as follows:

INTSTORx,READONLY
INTSTORy,ICOMBDAMXCTRL

(map data set)
(temporary storage data set)

ICOMBDAMXCTRL reduces exclusive control overhead in the File
Handler. READONLY ensures that no on-line changes are made to the
Store/Fetch map data set. See the Operating Reference Manual for
further details on FAR statements.

If DDQs are used to gather output messages for a printer, for
example, or if the Page Facility is used for CRT output, additional JCL
statements and installation considerations for those facilities are
described in the respective manuals. The ddname in the execution JCL
for the DDQ data set used by MMU must be the same as that defined for
the MMU Vector Table macro (MMUVT) , OPMDDNM parameter. Sharing of DDQs
across sate llite regions is not recommended, but they must be shared
with the control region.

Otherwise, no additional special JCL statements are required for
MMU.

83

Chapter 4 SPR 216 2/83 Installation Procedures

4.11 TEST MODE SNAPS

When executing Intercomm in test mode, snaps are automatically
produced as follows:

• MAPIN--id=17j symbolic map area after mapping

• MAPOUT--id=19j symbolic map area before mapping

If these snaps are desired when executing on-line in a test
system, or test satellite region, remove the SPAMODE test and
subsequent branch around the PMISNAP macro from MAPIN and/or MAPOUT,
then reassemble and relink. JCL for the SNAPDD statement is required
for this feature (see the Operating Reference Manual).

4.12 RESTART WHEN USING THE DYNAMIC DATA QUEUING FACILITY

Because the DDQs are semipermanent, if the DDQ option is used
for output message transmission, then Intercomm must be brought up with
the RESTART option to prevent deletion of any DDQs that were not fully
transmitted. After restart, transmission will restart from the
beginning of the DDQ. I fusing DDQs in a satellite region under the
Multiregion Facility, both the satellite region and control region must

J

be restarted with the RESTART option to prevent destroying the Queue. . ••
Control File. Restart does not require the previous Intercomm log ...",
(unless message restart required for other purposes). DDQSTART
examines the Queue Control File and automatically requeues the DDQ FECM
for the specified terminal. IN case of terminal failure while
Intercomm is executing, restart of DDQ transmission may be at the next
message on the queue, or from the beginning, based on specification of
the DDQRSRT parameter (LEAVE-default, or BEGIN) for the BTERM of the
failing terminal. Or, the message queue for the failing terminal may
be rerouted to another terminal via the ATD parameter of the TDWN
system control command.

4.13 MMU CONTROL COMMAND PROCESSING

An MMU control command subsystem (MMUCOMM) is provided to
process the MMUC command, as described in System Control Commands.
This command provides the following:

• SHOW--display a template or initial-value report page
layout consisting of one or more maps at the
entering, or destination-specified, terminal (may be
a CRT or printer)

o DELT--delete the in-core copy of one or more maps, so that a
newly loaded version of the map (s) will be used for'~
the next subsystem request. ~

84

Appendix A

MMU MACROS

This appendix provides detail ed coding descriptions for the MMU
macros, as follows:

A.1 MAP DEFINITIONS

ENDGROUP

FIELD

MAP

MAP GROUP

SEGMENT

See also Chapter 2 for additional details and examples.

A.2 DEVICE DESCRIPTOR TABLE

ATTRIB

COMMANDS

CNTLCHR

DEFAULTS

DEFINE

See also Chapter 4 for additional details and examples.

A.3 MMU VECTOR TABLE

MMUVT

See also Chapter 4 for additional installation details

A.4 OVERRIDE TABLE

For overriding attribute, command, control or delimiter values by
subsystem (dynamic) or macro (static) specification.

85

Appendix A MMU Macros

MACRO CODING CONVENTIONS

Each macro description is accompanied by a fonn illustration.
This illustration designates which operands are required, which are
optional, which must be coded exactly as shown, which may be repeated,
etc. The conventions for the presentation of the material in these
illustrations are as follows:

o A keyword operand is presented in uppercase letters followed
by an equal sign. (For example, INITIAL= on the FIELD macro.)

• A code element consisting solely of uppercase letters repre
sents already encoded infonnation; it must be written exactly
as shown. (For example, COND=ENTERED on the FIELD macro.)

• A code element consisting solely of lowercase letters repre
sents information not yet encoded; it is to be supplied in
encoded form by the progranmer. (For example,
RELPOS= relati ve-posi tion on the FIELD macro.)

• A positional code element is represented by a name in
lowercase letters; it is never to be coded, but is always to
be replaced by a permissable expression. (For example, 1x in
the FORMAT parameter on the FIELD macro.)

• All punctuation symbols are to be coded exactly as shown.

• , ••• An elipsis indicates that multiple iterations of an
operand may be specified.

• {} A pail" of braces indicates the presence of a required
choice: code elements contained within the braces
represent alternatives, one of which must be chosen.
The braces are not to be coded.

• [] A pail" of brackets indicates the presence of an
optional parameter or subparameter: code elements
contained within the brackets represent alternatives,
one of which may be chosen. The brackets are not to
be coded.

• {NO} An underlined code element indicates the default code,
{YES} if the associated parameter is omitted.

• symbol The lowercase word "symbol" in the label field of a

• label

macro indicates that a name must be coded. If
enclosed in brackets, naming the macro is optional.

The lowercase word "label" indicates that the macro
must be named. If enclosed in brackets, naming the
macro is optional.

86

L

Appendix A MMU Macros

• (blank) Parenthesis enclosing the lowercase word "blank" in
the label field means the field should be left blank,
as the macro instruction generates its own symbol.

• In the operand field of the illustrations, a set of one or
more lowercase words followed by a colon is a heading des
cripti ve of one or more subsequently illustrated parameters;
for example,

Output Message Specifications:

in the MAPGROUP illustration.

• In the description of macro parameters, all references to
value ranges are references to inclusive ranges.

• Any reference to a character or bi t string is a reference to
a connected seq uence of characters that is treated as a coded
unit.

• All numeric fields should specify significant digi ts only.
(For example, SEG~Nl' macro, OCCURS parameter, specification
number-of-repeating-segments is to be replaced by a numeric
val ue i ndi cating the number of occurances).

NOTES: Symbols or labels may not begin wi th a nonalphabetic
character and may not contain imbedded blanks. For
example, MAP 1 is valid, whereas neither 1MAP, nor MAP 1
is valid.

All parameter coding must be contiguous. Imbedded blanks
are allowed only in a data-string coded for the INITIAL
parameter of the FIELD macro. Each parameter (except the
last) is delimited by a comna. A label or symbol must
begin in column 1, the macro value in column 10, and the
first parameter in colLmn 16. However, if the macro
value, for example MAPGROUP, is longer than five
characters, it must be delimited by a blank before coding
of the first parameter (if used). Parameter values may
not be coded beyond column 71. If all the parameters do
not fit on one line, a continuation mark (X is used in
the illustrations in this manual) must be coded in colt.mn
72, and the continuation of parameters starts in column
16 of the next statement.

See Figure 3 (in Chapter 2) for an illustration of the above
poi nts.

87

Appendix A. 1
ENDGROUP

Map Definitions MMU Macros
END GROUP

ENDGROUP--Signify End of a Map Group

The ENDGROUP macro is coded to
for the named map group. It is
definition. The ENDGROUP macro has
each de fi ned map group.

indicate the end of specifications
used to complete the map group
no parameters and is required for

The form of the ENDGROUP macro is as follows:

NOTE:

(blank) ENDGROUP (blank)

The ENDGROUP macro must be followed by an Assembler
Language END statement to prevent assembly errors when
executi ng the ASMPCL, LIBELINK or SYMGEN procedures (see
Section 4.2).

88

J

Append ix A. 1
FIELD

SPR 216 2/83

Map Definitions

FIELD--Define a Field Within a Segment or Map

MMU Macros
FIELD

The FIELD macro defines an individual data field within a segment
or a map. Any data field that is to be mapped, including control
characters and heading data, must be defined by a FIELD macro.

FIE1..D macros are labeled or unlabeled. Named fields are
generated by uniquely labeled FIELD macros and appear in the symbolic
map. All labe ls (names) within a map group must be unique. For
COBOL, reserved words may not be used; watch also for name suffixes
nameT, nameL, and nameF. Unnamed fields do not appear in the symbolic
map and are generally used to define constant output data (initial
values) such as headings or control characters. A maxi .'1 of 255 named
FIELD Macros may be coded wi thin one SEGMENT of a MAP. Up to 9999
FIE1..D macros (named and unnamed) may be coded within the MAPGROUP under
definition.

The label is a one-to-seven-character alphameric value used to
name a field which is to be defined in the symbolic map. The label
must start with an alphabetic character. The first field in a
structured segment must be labeled.

There are three forms for FIELD macro coding:

1. For a field within a non-null segment

2. For a field within a null segment

3. To define a field as the verb, AID, or Cursor position

To define an individual field in positional, fixed or keyword
format within a nonull (unstructured) segment for input maps only, the
form of the FIELD macro is as follows:

label FIELD RE1..POS= {FIXED }
{pas }
{'keyword'}

,FORMAT=(lX(,li)(,($)typet {Sn})))
{SO}

(,JUSTIFY=({LEFT },{BLANK}»)
{RIGHT} {ZERO }

(, OCCURS= {n})
U)

All fields within a nonnull segment must be named (labeled).

89

Appendix A. 1
FIELD

Map Defini tions MMU Macros
FIELD

To define an individual field in relative position (template)
fomat within a null (structured or unstructured) segment for input,
output or I/O maps, the form of the FIELD macro is as follows:

[label] FIELD RELPOS={relative-position}
{(row,column) }

,FCRMAT=(lx{ ,li] [,($]type[{Sn}]])
{SO}

{,INITIAL={'string' }]
{(data-string{, ••• ,data-string])}

{,JUSTIFY= ({LEFT }, {BLANK})]
{RIGHT} {ZERO}

{,OCCURS={n}]
{1}

{ , ATTRIB= { {U} {A} {N} [{SEL }] }]
{ {p} {N} {H} { {MDT }] }
{ {S}{X}[{MDSEL}]}
{SUPR }

[,COND=ENrERED] selectable fields only

If the above field type is unlabeled, either INITIAL or ATTRIB
must be coded, otherwise it is ignored.

To define an individual field as the verb, AID or cursor position
within a null unstructured segment for input, output or I/O maps, the
form of the FIELD macro is as follows:

{label] FIELD RELPOS= {AID } input or I/O
{CURSOR} input, output or I/O
{VERB } input, out put or I/O

[,FCRMAT={ (1,1 ,C)}] defaul t for RELPOS=AID
{(2,2,H)} default for RELPOS=CURSOR
{(4,4,C)} defaul t for RELPOS=VERB

[,INITIAL={'string' }] verb or cursor only
{ data-string}

90

Appendix A. 1
FIELD

Map Defini tions MMU Macros
FIELD

ATTRIB
specifies, for output or I/O maps, the logical name of the
physical attribute value to be associated with this field during
output processing, as defined by the ATTRIB macro in the Device
Description Table (LOGCHARS).

The attribute codes for the IBM 3270 video display terminal are
defi ned as foll ows:

The first letter of the attribute value indicates whether the
field is protected (P) or unprotected (U). The second letter
indicates whether it is alphameric (A) or numeric (N), or if
protected, should also be skipped (S). The third letter
indicates whether it is normal intensity (N), highlighted
(H), or non-display (X). These three letter codes are
followed by an optional indication that the
tmodified-data-tag' is to be set on (MOT), it is selectable
by cursor or selector pen (SEL) , or that it is both (MOSEL).
The default is that the field is non-MDT and not selectable.
For example, ATTRIB=UANSEL specifies an unprotected,
alphameric, normal-intensity, non-MOT field which is
selectable. See the LOGCHARS and attribute codes listings in
Appendix C for exact coding and corresponding meanings.

If SUPR is coded, no attribute is generated. It causes the
previous attribute speCification to remain in effect. The field
will have the same attribute (and may be a continuation of) the
preceding field. ATTRIB=SUPR requires no storage space. If
RELPOS=(1,1) is coded, ATTRIB=SUPR must be coded. If anitted,
the default attribute for the device (if any) as coded for the
DEFAULTS macro, will be used. If coded, but no corresponding
attribute value has been defined for the device being mapped, it
will be ignored if the default attribute is SUPPRESS. Attributes
coded for CNTL type fields or for the second or subsequent fields
of a structured segment are ignored.

To assign
parameter
segplent.

an attribute
is coded only

to a structured segment, the ATTRIB
on the first FIELD macro wi thin the

To specify only an attribute on an output or I/O map, an unnamed
FIELD macro is coded without the INITIAL parameter, but with the
appropriate ATTRIB value specified and FORMAT=1 coded. An ATTRIB
of PSN speCifies protected/skip for cursor key tabbing. This
form of the FIELD macro can be used to delimit an unprotected
field in a template map (see Figure 3).

This parameter is not applicable to hard-copy devices
(pri nters) • If ATTRIB is coded, it is ignored.

Attributes for labeled fields may be overriden at MAPOUT time via
the symbolic map. See also the Override Table at the end of this
Appendix.

91

Appendix A.1
FIELD

Map Definitions MMU Macros
FIELD

COND=ENTERED
if specified, the application program is only notified whether or
not the field was entered. FORMAT and INITIAL val ues may be
omitted. If FORMAT is coded, this option requires li= 1 to be
specified. The field type defaults to C for the symbolic map.
For input mapping with light pens, the field must be surrounded
by three null positions (see the IBM 3270 programming manual).

FORMAT
defines the field size and format type.

lx

li

a req1lired subparameter (except if implied by INITIAL value
coding), soecifies, in bytes, the maximum external field size
up to 255 positions, or device line length (whichever is
smaller) •

specifies, in bytes, the internal field size as represented
in the symbolic map. If li is not coded, li is assumed to be
equal to lx. Or, if type is specified as F, H, or B (see
Figure 15), li may be omitted and defaults to 4, 2 or 1
respecti vely. li is required for packed decimal fields (type
PD) •

type

Type
Code

PD

ZD

F

represents the form of the internal field. The possible
codes for type are listed in Figure 15.

----------------------- ----------- ---------------------------------- ----------- -----------
Type

of Field
--
packed-decimal

zoned-decimal

full ;rord bi nary

halfword binary

binary

character (alphameric)

Scaling
Allowed

----------------------•
•
•
•
•

li
Defaul ts

none

lx

4

2

lx

-=============
Floating

$
----------------------------•

•
•
•
•

----------------------- ----------- ----------- --------------
YN YESINO response

-------- ----------------------- ----------- ----------- --------------
CB

CNTL

character and/or blank

logical control
character

lx

lx

Figure 15. FOR MAT Parameter Type Val ues

92

J

Appendix A.1
FIELD

Map Defini tions MHO Macros
FIELD

Sn

$

If type is not coded, the form of the internal fi el d def aul ts
to C (character). Type codes F and H (fullword and halfword
binary) do not cause alignment of the data field. They are
used as shorthand codes for converted binary fields of
lengths 4 and 2, respecti vely. F and H type codes cause
generation of fields in the symbolic map with the appropriate
language definition for a computation field. PL/l users
should not use a B type code to define a binary field. COBOL
and PL/l users may not override the defaul t internal lengths
of F, H, and B type fields. A YN field must have an external
length of 3 and an internal length of 1. The CNTL type is
only valid for hard copy devices (ignored for 3270 CRTs and
Dataspeed 40 terminals). For this type, the external length
must be specified, even if an INITIAL value is coded.

represents a scaling factor where n specifies a decimal
number indicating the number of decimal positions that may be
edited with certain types of data. Refer to Figure 15 for
applicable types. The default scale value is SO.

For example, POO2 specifies packed decimal with 2 digits to
the right of the decimal point. If no scaling factor is
specified, no decimal point will appear in the output field.
See the discussion of field conversion in Chapter 2 for
decimal input consi derati ons •

A dollar sign preceding certain type codes (see Figure 15)
causes a floating dollar sign to be inserted inmediately
preceding the significant output field data. For example,
$PDS2 speCifies a packed-decimal field with two digits to the
right of the decimal point, and has a leading dollar sign
inserted on output mapping.

If a $ or Sn is specified for a numeric output field, the
external field length must allow for the dollar sign and the decimal
point, also a trailing minus sign if the field might be negative.

Defaul t values and special uses for the FrnMAT parameter are the
following:

=================== --------------------------------
RELPOS FrnMAT

------------------- ----------------------------------- ----------------
AID (l,l,C)

CURSOR (2,2,H)

VERB (4,4,C)

93

SPR 216 2/83

Appendix A.1
FIELD

Map Definitions MMU Macros
FIELD

If the INITIAL parameter is coded, and FORMAT is omitted, then
FORMAT is assumed to have both Ix and li equal to the length of
the initial data and have a type code of C. If internal
conversion is desired, then FORMAT must be specified.

INITIAL

where:

defines an initial value character string enclosed in quotes, or
one to ten initial data-strings defined as Assembler Language
constants within a sublist, or one or more logical control
characters to insert in this field. It is used to define
headings and other constant data. If the total length of the
initial data supplied does not equal the Ix indicated in the
FORMAT parameter, the initial data will be padded or truncated
and justified according to the JUSTIFY parameter.

The format of a data-string is:

((mm){C}(Lnn))'string'
{X}

• C specifies a character data-string; that is, C'NAME'. Note,~
that INITIAL=C'NAME' and INITIAL='NAME' are equivalent. ~

" X specifies a hexadecimal data-string (hex values must be
coded in pairs); that is, X'0105'.

~ mm--is a repetition factor for the data-string; that is,
3C'0' generates 3 zeros and is the same as C'OOO'.

o Lnn--is the length of the data-string if not implied by the
value enclosed in quotes; that is, CL3 '0' generates a zero
followed by two trailing blanks. This form is used when
low-order trailing blanks are desired.

I f FORMAT is not coded, Ix and li default to the (combined)
length of the data-string(s) and the type defaults to C. (Maximum
total length is 255.) If li is specified, it may not be shorter
than the length of the initial data.

To specify a control character, code the logical control
character name to be inserted. This name must be defined via the
symbol coded for a CNTLCHR macro for the device in the Device
Descriptor Table. This is optional for a named field. FORMAT
must be coded specifying an external length, and type of CNTL:

FIELD RELPOS=(1, 1),ATTRIB=SUPR,FORMAT=(1 "CNTL),INITIAL=FF

generates a form feed for the top of a printed page.

94

J

Appendix A. 1
FIELD

Map Defini tions MMU Macros
FIELD

JUSTIFY
indicates whether the field should be right- or left-justified
and padded with zeros or blanks (ignored on input for mllleric
fields which are always right-justified zero-padded).

• If this parameter is omitted and FORMAT implies or specifies
character fonnat, the field is left-justified and
blank-padded. If FCR MAT indicates a numeric field, the field
is right-justified and zero-filled.

• If only LEFT is coded, the default fill character is BLANK.

• If only RIGHT is coded, the default fill character is ZERO.

• If only BLANK is coded, left-justification is the defaul t; if
only ZERO is coded, right-justification is the default.

OCCURS

If the value coded for the INITIAL parameter has leading blanks
and the FORMAT type defaults to C, JUSTIFY= (RIGHT, BLANK) must be
coded •

If field type code is CB, no justification is implied or
performed. Leading blanks are valid. Do not code JUSTIFY for CB
option (ignored). If li is smaller than lx, low order blank
padding is supplied on output, low order truncation occurs on
input.

indicates that the field is consecutively repeated a maximum of n
times within the line (non-null segnent). It is coded as a
decimal number. The default is 1.

For fields defined with RELPOS::AID or VERB or CURSOR, OCCURS is
forced to 1.

When RELPOS= relati ve-posi tion or (row,column) is coded, to locate
the second (or nth) occurrence of a field, the correct field
location is incremented by lx as specified in the FORMAT
parameter or by lx + 1 if an attribute character occupies a
buffer position.

For input mapping, the appearance of consecutive field
separators, or the absence of the next expected SBA sequence or
keyword, indicates the tennination of the repetitive sequence.
Thus, if a data field or sefgllent is defined as occurring five
times and data is entered for the first and third occurences, the
data for that third field or line will be ignored. For output
mapping, the appearance of blanks (unless field type is CB) or
nulls (all types) in afield iterati on termi nates the re peti ti ve
sequence.

95

Appendix A.1 Map Defini tions MMU Macros
FIELD FIELD

RELPOS
The coding and meaning of this parameter is dependent on the type
of segment and fi eld under de fi ni ti on, as follows:

• For non-null (unstructured) se~ents (applies to input maps
only); RELPOS indicates the type of field processing:

FIXED specifies fixed length processing. If specified,
all fields within the segment (map) must be fixed fonnat,
and must be contiguous (no undefined fields).

POS specifies positional processing. If specified, the
fields must be delimited by the character defined as the
fs subparameter of the SEGl£NT macro, DELIM parameter.
Omission of a positional data field must be denoted with
an extra delimiter character.

'keyword' specifies keyword processing. The value must
be coded as a one-to-eight char?cter keyword enclosed in
quotes and is used to identify the field. If specified,
then the corresponding variable data field value must be
denoted by fb and fe separator characters as specified
for the SEGl£NT macro DELIM parameter.

POS and 'keyword' fields within the
intermixed as long as field omission
restrictions detailed above are observed.

se~ent may be
and occurrance

• For null (structured or unstructured) segments, or when no
SEGMENT macro is coded, RELPOS is used to indicate the
relative position of the field within the map, not the screen
or page. It is coded as one of the following:

relati ve-posi tion--coded as a decimal number to indicate
the field displacement from the beginning of the map, and
is based on map width and the line number within the map,
relative to 1. (See also MAP macro, START parameter.)

(row, colunn)--coded as a row and column pair relative to
(1,1).

for IBM 3270 rnT deVices, the relative position is for
the data field, not the preceding attribute position.

for other CRT (byte posi tionable) devices, the insertion
of the line control characters (NL, CRLF) for correct
line positioning, and of blank spacing for correct field
positioning within the line, is autcmatic.

96

Appendix A.1
FIELD

SPR 216 2/83

Map Definitions MMU Macros
FIELD

IJ For null unstructured segments only, RELPOS can have a
special meaning which requires that the FIELD macro be coded
at the beginning of the map (no preceding SEGMENT macro).
Such fields are:

RELPOS=AID specifies that the IBM 3270 Attention
Identification byte should be supplied. It applies to
input mapping only, and requires that HDR3270=YES be
specified for the associated verb (BTVERB macro in
Intercomm Front End Verb Table). The field must be
named. No other parameters may be coded.

RELPOS=CURSOR specifies the relative position of the
cursor address, as a two-byte binary (halfword) value.
The field may be named. No other parameters except
INITIAL may be coded. If coded, INITIAL must be in the
form X'nnnn' (leading zeros required); where nnnn is the
hexadecimal conversion (halfword) of the decimal relative
position of the cursor (relative to 1). For example, if
the cursor is desired at row 5, column 20 (RELPOS of
5,20), the decimal equivalent is 339, and the hexadecimal
representation is X'0153'. See IBM's 3270 Information
Display System Reference Summary. For input mapping, if
the cursor position is significant, the field must be
named, and HDR3270=YES must be coded for the associated
BTVERB macro (see coding for AID above, and Appendix C).

RELPOS=VERB specifies the message verb should be placed
in this field. The defined field will have an output
attribute of "unprotected, alphanumeric, normal
intensity," which cannot be overridden (do not code
ATTRIB parameter). The field may be named; no other
parameter except INITIAL may be coded. Internally, the
RELPOS used for output mapping is (1,2).

97

Appendix A. 1
MAP

Map Definitions MMU Macros
MAP

MAP--Define a Map Within a MAPGROUP

The MAP macro names a map wi thin a map group. The name is
referenced as a parameter to the MMJ service routi nes. The MAP macro
also defines general map characteristics, such as size, starting and
page position, and header/trailer report data.

The form of the MAP macro is as follows:

symbol MAP SIZE= (length,width)

[,BASED:: {NO}
{YES}

[,JUSTIFY= ({RIGHT}[,{HFAD }])]
{LEFT} {TRAIL}

[,REDEFIN={YES}]
{NO }

[,START=({row },{column})]
{SAt-E} {NE Xl' }
{NEXT} {SAME }

[, USAGE= {HFAIER }]
{TRAILER}
{NORMAL }

[,Z ONE= {YES}]
{NO }

L-______ ~ ________ -L __ . __ ___

symbol

BASED

(required parameter) is used to name the map. The name must be
from one-to-seven alphanumeric characters and must be unique
within a map group. The initial character must be alphabetic.

applies only to symbolic maps generated for PL/1, and specifies
whether the BASED parameter is desired (YES) on the DCL statement
for the map. If it is not desired, code NO. The default is YES.

98

L

Appendix A.1
MAP

JUSTIFY

SPR 216 2/83

Map Definitions MHU Macros
MAP

describes the map position in relation to the device page: LEFT
or RIGHT describes the map margin alignment and indicates that
the side margin begins at the column specified (implied) by the
START parameter. RIGHT is for output mapping only, and indicates
that the entire map is for the right side of the device page (and
is probably used in conjunction with another map specifying
JUSTIFY=LEFT). RIGHT is not supported for input mapping or
string devices. The default is LEFT. (Map width is controlled
by the SIZE parameter.)

HEAD or TRAIL are only valid for output mapping and specify
whether this map describes a header (at the top of the page) or
trailer (at the bottom of the page) data area. HEAD and TRAIL
may not be used for string mapping. HEAD indicates that the map
is to be the first map of a new device page (physical message).
This forces any previously mapped page to be considered complete,
and cance Is a page overflow condition (if it exists). Only one
of the maps used for a device page may specify HEAD.

TRAIL specifies that the map is to be positioned at the bottom of
the device page. More than one trailer map may be used per page
as long as they do not overlap previously mapped data (each
other) and do not extend beyond the last line of the device page
(as specified via the MAPGROUP PAGESZ parameter, or if omitted,
implied via the device buffer size, or number of lines per device
page) • At map assembly time, if any map in the map group has
spec ified TRAIL, an area is reserved at the bottom of the device
page for trailer data. The size of the reserved area is based on
the longest trailer map of all trailer maps specified within the
map group. The longest trailer map must start at the lowest
numbered row desired for any trailer map, and must end at the
bottom (highest numbered row) of the device page. If no single
trailer map qualifies, then a dummy trailer map must be coded to
reserve that space. One or more TRAIL maps may be used after a
page overflow condition arises, but does not terminate that
condition (terminated by mapping a non-TRAIL map).

When HEAD and TRAIL maps are defined for output mapping, the
number of rows available in the device page for other maps is
reduced by the size of the header used for that page, and the
trailer map area defined for the map group.

If neither HEAD nor TRAIL is specified, the data is mapped at the
position indicated (implied) by the START parameter. Therefore,
if this map would over lay previously mapped data, and a page
overflow condition does not exist, then the previous page is
considered complete; thismap starts (or constitutes) the next
page. Otherwise, a map overflow condition code will be returned,
mapping will not occur. See also MCW options for MAP OUT in
Appendix B.

99

SPR 216 2/83

Appendix A.1
MAP

Map Definitions MMU Macros
MAP

REDEFIN

SIZE

START

specifies whether this map area 'redefines' the immediately
preceding map area, and applies to Assembler (generates an ORG
statement) or COBOL (generates a REDEFINES statement) symbolic
map generation only (ignored if PL/1). YES requests
redefinition, NO (default) suppresses it. Generally it should
not be used to redefine a header map with a normal map, nor a
normal map with a trailer map, that is, the map area being
rede fined should be of the same type. For COBOL, the previous
(first) map in the redefine structure must be the largest map
(contain the most and the longest named fields). If the last map
in the group specifies redefine, the next working storage value
must be specified at the 02 or 03 group level for COBOL. For
Assembler, an ORG is automatically generated to reposition the
location counter at the end of the longest map area.

specifies the size of the map in length (rows) and width
(columns), respectively. The number of columns may not exceed
the device line size. The values for length and width must be in
the range of 1-240 inclusive. This parameter is required.

specifies the starting position of the map on a device page or ~,~.
within a character string. ~

The first value for START indicates the starting row as follows:

row--a user-specified value indicating row number where mapping
begins. It is coded as a decimal number. (Required for HEAD and
TRAIL justified maps.)

SAME--specifies that mapping begins on the same row as the
previous map. If current map does not fit on the same row (not
enough columns left), a map overlay condition results (see
JUSTIFY parameter).

NEXT--specifies that mapping proceeds at the next available row.
If a previous map ends with one or more blank lines and the
current map specifies NEXT, the next row will proceed at the end
of those blank lines. NEXT is the default starting row.

The second value for the start parameter specifies the starting
column, as follows:

• column--a user-specified value indicating the column number

..
where mapping begins. It is coded as a decimal number
(us~lly 1). (Required for HEAD and TRAIL justified maps.)

SAME--indicates that the map has the same left/right margin
as the previous map. (Default)

100

SPR 216 2/83

Appendix A. 1
MAP

Map Definitions MMU Macros
MAP

USAGE

ZONE

__ NEXT--mapping will begin at the next available column to the
right of the last mapped position of the previous map, if
space is available. Otherwise, a map overlay condition
results (see JUSTIFY parameter).

The default is START=(NEXT,SAME). If the default is used, and a
page overflow condition exists, and the map is not a trailer map,
then mapping will start at row 1, column 1.

spec ifies for out put mapping only, whether the map is to serve as
a HEADER, TRAILER or a NORMAL map. It is generally used in
conjunction with unbuffered (infinite row) devices, or string
mapping. HEADER and NORMAL force completion of the previous page
if a page overflow condition is in effect. If USAGE=HEADER is
specified, and START=(row,column) is not defined, it is a logical
header map. That is, it could be used wi thin a page for a form
feed or new record indication, and/or title reiteration, for an
'infinite-row' or data collection device. However, if an
overflow condition exists, START will default to (1,1). The
default is NORMAL.

When TRAILER is spec ified, it allows the map to be used during
page overflow processing (if trailer space is available - see
JUSTIFY parameter). If JUSTIFY=(, TRAIL) is not coded for this
map, then the START parameter may be omitted.--rhat is, this map
can be used to insert a totals line in the middle, or at the end,
of a device page, as applicable. If no map in the map group
specifies JUSTIFY=(,TRAIL), then a USAGE=TRAILER map can cause a
device (page) overflow condition. Therefore, subsystem logic
and/or map definitions must insure against that condition. The
maximum device rows for an infinite row or string device is
controlled by coding the MAXROWS parameter on the MMUVT macro,
but can be limited by the PAGESZ parameter of the MAPGROUP
macro. See also MAPOUT paging options in Appendix B.

indicates whether or not over punched signs are to be accepted in
numeric input fields. A code of YES specifies they are to be
accepted; NO specifies rejection of overpunched signs as
nonnumeric data. The default is NO.

101

Appendix A.1
MAPGROUP

SPR 216 2/83

Map Definitions MMU Macros
MAPGROUP

MAPGROUP--Name the Map Group

The MAP GROUP macro names the map group and defines the general
characteristics of the maps contained in the group. The map group name
is referenced as a parameter to the MMU service routines. The map
group name cannot exceed seven characters, because a suffix character
is appended by MMU to indicate applicable devices for the MAPGROUP.

The form of the MAPGROUP macro is as follows:

symbol MAPGROUP

symbol

General Specifications:

(DEVICE={devtype-name})
{STRING }
{ALL }

(, MODE= {INPUT })
{OUTPUT}
{I/O }

Output Message Specifications:

(,CNTLCHR=logical-control-char-name)

(,COMMAND=logical-command-char-namej

(,PAGESZ=(rows,columns»)

Assembler Language Subsystems:

(,PGMRES={YES})
{NO }

(required parameter) is used to name the map group. The name
must be from 1 to 7 alphanumeric characters in length. The
initial character must be alphabetic. Map group names must be
unique within an installation's source and load module Map
Definition Files, and are also used for the source and load
module names.

102

SPR 216 2/83

Appendix A.1
MAPGROUP

Map Definitions MMU Macros
Mapgroup

CNTLCHR
names a logical control character (WCC for IBM 3270 system).
This causes the device-appropriate physical code to be inserted
between the command and the output message text prior to
transmission. If CNTLCHR is not coded, the default value
specified in the DEFAULTS macro is used, or a logical code may be
specified via a MAPEND MCW option. For output messages only.
(See the CNTLCHR macro and the Override Table at the end of this
Appendix, and LOGCHARS and control character code listings at the
end of Appendix C.)

COMMAND

DEVICE

specifies the logical command character that should be prefixed
to the output message. It overrides any value specified in the
DEFAULTS macro for the device, and can be overridden by a logical
command specified via a MAP END MCW option. (See also COMMAND
macro and the Override Table at the end of this Appendix, and
LOGCHARS listing at the end of Appendix C.)

specifies the terminal device for which this map group can be
used and causes a unique character to be suffixed to the internal
MAPGROUP name. DEVICE is to be coded as follows:

41) ALL--the map group can be used by any MMU-supported device.
It generates a blank suffix character. (Default)

o DS40--for Teletype Dataspeed 40 Model 1 and 2 terminals. It
generates an internal suffix of T.

o IBM3270--for the IBM 3270 Video Display (CRT) terminal and
compatible terminals. It generates a blank internal suffix.

o IBM3270P--for the IBM 3284, 3286, etc. printers. It
generates an internal suffix of U.

.. IBM2260--for IBM 2260 CRTs (local and remote). It generates
an internal suffix of F.

• devtype-name: code TELETYPE or IBM27401 or IBM27402, etc.
for other device types, as appropriate. The internal suffix
depends on the type •

• STRING--for data string mapping only.
internal suffix of X.

103

It generates an

SPR 216 3

Appendix A.1
MAPGROUP

Map Definitions MMU Macros
MAPGROUP

MODE

PAGESZ

specifies the processing mode of the maps within the map group:

INPUT--is used to generate maps for input use only.

OUTPUT--generates maps for output use only.

I/O--generates input/output maps. The default is I/O.

specifies a maximum device page size in row (length) and column
(width) notation for infinite row devices when mapping output
messages. This specification overrides any implied page size
from the DEVICE/DVMODIFY macro specifications for the terminal in
the Intercomm Back End Station and Device Tables. The page width
must be within the physical limits of the device. A maximum of
255 may be coded for the row and column values. For buffered CRT
devices, the page size (rows times columns) may not be greater
than the maximum device buffer size. (See also Appendix C
considerations for 3270 series devices).

PGMRES
specifies, for Assembler Language programs only, whether or not
the map group is to be assembled directly into the application J"
program. A code of YES indicates that the macros are to be
assembled in the application program. PGMRES=YES causes the MMU
macros to suppress generation of CSECT statements and to prefix
all macro names (names of MAPGROUP, MAP, etc.) with a dollar
sign, which requires all names be 7 characters or less. A code
of NO indicates the macros wi~l not be assembled into the
application program. The default is NO.

104

Appendix A.1
SEGt£NT

Map Defini ti ons MMU Macros
SEGt-£NT

SEGMENT--Define a Segment of a Map

The SEGMENI' macro defines a se~ent of a map. The se~ent can
consist of one or more fields that are explici tly or implicitly
defined. Fields are explicitly defined via a null se~ent. Null
segnents are used to specify fields in re1ati ve posi tion (template
screen) format. Fields are implicitly defined via a non-null se~ent.
Non-null segnents are used to specify input data streams in fixed,
positional or keyword field format.

Se~ents can be structured (labeled) or unstructured
(unlabeled). A structured or repeating segnent must be delimited by
another SEGMENI' macro followed by one or more named fields if the
se~ent falls in the middle of the map, or by a MAP or END GROUP macro
if the repeating or structured se~ent is at the end of the map.

For non-null (unstructured) segnents, to implicitly define fields
in posi ti ona1, keyword or fixed format for input maps only, the fonn of
the segnent macro is as follows:

(blank) SEGt-ENT RELPOS:: {re1ati ve-posi tion}
{(row,column) }

,LENGTH=max-number-of-chars-in-segnent

[,DELIM= (fs [,fb [,fe]])]

[,OCcms= {number-of-repeating-se~ents}]
(!. }

For null (unstructured) segnents, to explicitly define unique
individual fields in relative position fonnat for input, output, or IIO
maps, the form of the SEGt-£NI' macro is as follows:

(blank) SEGt-ENT [OCCURS: {number-of-repeating-segnents}]
{1 }

To define a structured se~ent for contiguous fields in re1ati ve
posi tion format for input, output or IIO maps, the form of the SEGt-ENT
macro is as follows:

label SEGt-ENT [OCCURS:{number-of-repeating-segments}]
{1 }

105

SPR 216 2/83

Appendix A.1
SEGMENT

Map Definitions HMU Macros
SEGMENT

label

DELIM

is used only to define structured segments, and is a one-to-seven
character alphameric value which must start with an alphabetic
character.

defines the delimiters to be used in positional and/or keyword
processing as follows:

o fs is the positional field separator character.

a fb is the keyword field begin character.

• fe is the keyword field end character.

It is coded as an Assembler Language one-byte hexadecimal or
character constant, for example X'6B' or C', I. If not coded, the
delimiters specified in the DEFAULTS macro for the device are
used or, if defaults are not coded, the delimiters specified in
the MMU Vector Table are used. (See the Override Table at the
end of this Appendix.)

LENGTH

OCCURS

is a required parameter for non-null segments for input mapping
of fixed, positional or keyword data. The LENGTH parameter
represents the maximum physical length of the segment in
characters, as entered from the terminal (including delimiters
and keywords).

spec ifies the maximum number of consecutive occurrences of the
segment in the map. Each occurrence of the segment must start on
a new line. OCCURS is coded as a decimal number. The default
is 1.

RELPOS
is required for input mapping only when used for non-null
segments with fixed, positiona 1 or keyword format. It is not
valid for output mapping. RELPOS defines the position of the
segment relative to the start of the map. It is coded in one of
two ways:

1 • As a decimal number, relative to one, which represents the
number of previously defined rows times the line length, or 1
if the first SEGMENT in the map.

2. As a row and column number pair (row, column) relative to 1
(first SEGMENT is (1,1»).

J

If a VERB field is defined, the first non-null SEGMENT macro is J
coded after that named field, and has a RELPOS of 6 or (1,6).

106

Appendix A.2
ATIRIB

Device Descriptor Table MMU Macros
A'ITRIB

ATTRIB--Relate Logical Attribute Name to Physical Code

The ATIRID macro is used to relate the logical name of an
attribute to the logical and physical codes for the device. It can
also be used to relate the logical attribute code under definition to a
previously defined logical code; or, all attribute values for the
de vi ce type under defini ti on can be referenced to a previously defined
device. The end of the ATTRIB macro definitions must be delimited by a
blank ATIRID macro with the END parameter. The ATl'RID macros are coded
in conjunction with the COMMAND and CNTLQlR macros in the Device
Description Table and they are all subordinate to the DEFINE and
DEFAULTS macros for the corresponding device.

To relate a logical name and code to a physical code, the form of
the ATTRIB, COMMAND and CNTLQlR macros is as follows:

[symbol] {ATTRIB } LOGCODE= {nnn }
{cnMMAND} {X' hh' }
{CNTLQlR} {previously-defined-logcode-symbol}

PHYSCDE= ({ mmm }[, ...])
{C' c' }
{X' hh' }
{SUPPRESS}
{ name }

(,cnMt£NT=' conment-text']

To relate all at tri butes, conmands or control characters for the
device type under definition to a previously defined device, the form
of the ATIRIB, cnMMAND, or CN'ILCFR macro is as follows:

(blank) {ATIRIB}
{COMMAND}
{CN'ILCHR}

SAMEAS=device-type-name

To end the macro definitions for each category, the form of the
ATTRIB, COMMAND, or CNTLQlR macro is as follows:

(blank) {ATTRIB } END
{cnMMAND}
{CN'ILCHR}

- -

107

Appendix A.2
ATl'RIB

Device Descriptor Table MMU Macros
A'ITRIB

symbol
is a one-to-eight-character logical name used to define a logical
code when it is expressed as a decimal or hexadecimal value.

CDMl'£NT

END

is a character constant to be used as a descripti ve comment
following the macro code in both the assembled and symbolic forms
of the Device Descriptor Table. It must be coded as a 1 to 30
character field enclosed in quotes.

is used to delimit the last macro of a category, that is, the
last A'ITRIB, CDMMAND or CNTI..Cm macro defini tion. A symbol must
not be coded when the END parameter is used.

LOGCODE
speCifies the logical code associated wi th the logical name. It
is coded as a single value in one of the following forms:

• nnn is coded as a decimal mlllber in the range of 1 to 255
inclusi ve. The val ues 0 and 64 are reserved and must not be
used •

• X' hh' is coded as a hexadecimal constant in the range of
X'01 I to X'FF' inclusive. The values X'OO' and X'40' are
reserved and must not be used.

• previously-defined-logcode-symbol is coded as the character
name (symbol) of a previously defined logcode, if the
corresponding physical code is for a different device. For
example, if New Line is defined for one device as:

NL CN'lLCHR LOGCODE=1 ,PHYSCDE=X' 15'

It can be referenced for another device as follows:

CN'lLCHR LOGCODE=NL,PHYSCDE=X'OD25'

In this latter case a symbol must not be coded for the macro.

108

J

J

Appendix A.2
AITRIB

Device Des criptor T abl e MMU Macros
ATTRIB

PHYSCDE
specifies the physical code associated with the logical code. It
is coded as a single value or in a sublist with the following
values:

• nnn is coded as a decimal number in the range of 1 to 255
inclusi ve. For example PHYSCDE=64 defi nes a blank.

• C' c' is coded as a character type constant. For example,
PHYSCDE=C' , generates a blank.

• X' hh' is coded as a hexadecimal type assembler constant in
the range of X'01' to X'FF'. For example, PHYSCDE=X' 40'
generat es a bl ank.

• name may be coded as follows:

ESC (escape--X' 27')

SF (start field--X' 1 D') A'ITRID macro only

SC (start control--X'OD') ATTRIB macro only.

These names must always be in a sublist, and paired with a
physi cal code val ue.

Addi tionally:

DC2 (start printer--X' 12') CNTLafR macro only
BEL (ring alarm--X'2F') CN'TI..Cm macro only

may be coded alone (not in a sublist), or in combination with
ot her val ues •

• SUPPRESS is coded to suppress generation of a physical code
for the corresponding lOgical code name.

SAMEAS
specifies that the at tri butes, commands or control characters for
this device are to be the same as that of a specific previously
defined device. The symbol in the macro defini tion must not be
coded. The possible device-type-names are defined under the
DEFINE macro FORDEV parameter (ALL may not be coded).

109

Appendix A.2
CNTLCHR

Devi ce D as cri pt or T abl e MMU Macros
CNTLCHR

CNTLCHR--Relate Logical Control Character Name to Physical Code

The CNTLCm macro is used to relate the logical name of a control
character to the logical and physical codes for the device. A logical
control character code under definition can be related to a previously
defined lOgical code. Al ternati vely, all control character values for
the device type under definition can be related to a previously defined
device. The end of the CNTLClIR macro definitions must be delimited by
a blank CNTLCm macro with the END parameter.

The CNTLClIR macros are coded in conjunction with, and contain the
same parameters as, the ATl'RIB and OOMMAND macros. Refer to the ATl'RIB
macro for coding forms and parameters.

110

J

Appendix A.2
CDMMAND

Device Descriptor Tabl e

COMMAND--Relate Lggical Command Name to Physical Code

MMU Macros
CD~ND

The CDMMAND macro is used to relate the logical name of a corrmand
character to the logical and physical codes for the device. A logical
code under definition can be related to a previously defined logical
code. Alternati vely, all command val ues for the device type under
defini ti on can be reI ated to a previously defined device. The end of
the COMMAND macro defini tions must be delimited by a blank COMMAND
macro with the END parameter.

The COMMAND macros are coded in conj uncti on with, and contain the
same parameters as, the ATI'RIB and CN'lLCm macros. Refer to the ATI'RIB
macro for coding forms and parameters.

111

Appendix A.2
DEFAULTS

Device Descriptor Table MMU Macros
DEFAULTS

DEFAULTS--Define Physical Device Default Characters

The DEFAULTS macro is used to define the physical defaul t
characters for a specified device and is to be coded immediately
following the DEFINE macro for the device in the MMU Device Descriptor
Table. The form of the DEFAULTS macro is as follows:

[symbol]

ATTRIB
COMMAND
CN'lLCHR

DEFAULTS [{ATTRIB }=({nnn }[, {nnn
{OOMMAND} {C' c' } {C' c'
{CNTLOlR} {X' hh' } {X'hh'

{name }
{SUPPRESS}

[, DELI M= ([fs] [,fb] (,fe])]

}, ...])]
}
}

specify the defaul t physical attribute (ATTRIB), command
(OOMMAND) and control (CN'lLCm) characters to be used for the
device under definition if applicable. It is coded as a single
value or in a sublist as follows:

• nnn is coded as a decimal number in the range of 1 to 255,
inclusi ve.

• C' c' is coded as a character type constant.

• X' hh' is coded as a hexadecimal type Assembler constant in
the range of X'01' to X'FF'.

• name may be coded as follows:

SF (start field--X'1D') ATTRIB only

ESC (escape-X' 27') ATTRIB and CN'lLCHR only

SC (start control--X'OD') ATTRIB only

The name may be coded as the first of a pair of sublist
values. For example, ATTRIB=(X' 1D' ,X'40') or ATTRIB=(SF,C'
') or ATTRIB=(29,64) may be used to define a default
unprotected/alphanumeric attribute sequence for an IBM 3270
CRT. A name must always be in a sublist and followed by a
second val ue.

112

SPR 216 2/83

Appendix A.2
DEFAULTS

Device Descriptor Table MMU Macros
DEFAULTS

DELIM

• SUPPRESS is coded to suppress generation of a default
physical code for the device; recommended if an ATTRIB,
COMMAND, or CNTLCHR value is not applicable for the device.
However, a value may be supplied by the application program
during output mapping.

The number of values in a sublist must be equal to the number of
physical codes specified for the corresponding parameter from the
DEFINE macro, unless a variable number is defined. In this case
the number of values may be less than the maximum spec ified.
Also see the Override Table at the end of this Appendix.

spec ifies the default positional field separator, keyword field
begin, and keyword field end characters. (See SEGMENT macro
DELIM parameter for coding rules.) If not specified, the MMU
Vector Table system-wide values are used. Some or all of these
default delimiters for the device may be overridden by the
SEGMENT macro DELIM coding for the referenced MAP during input
mapping. If neither system-wide, nor device-dependent, default
values are defined, then specific values must be coded on each
non-null SEGMENT macro for each input map with positional or
keyword format that might be used for the device under
definition. See the Override Table at the end of this Appendix.

113

SPR 216 2/83

Appendix A.2
DEFINE

Device Descriptor Table MMU Macros
DEFINE

DEFINE -- Begin Device Definition Characteristics

The DEFINE macro begins the definition of all device-dependent
characteristics for a specific device. It also defines the number of
physical characters required to represent a logical character code for
the subordinate ATTRIB, COMMAND, and CNTLCHR macros. For example, an
attribute byte for an IBM 3270 CRT must be preceded by a Start-field
(SF) character; therefore, the number of physical characters needed to
represent a 3270 attribute is always 2.

(symbol) DEFINE FORDEV=device-type-name

FORDEV

(,NATRCHR={n })
{(VAR, n)}
U. }

(,NCMDCHR={n })
{(VAR,n)}
U_ }

(, NCTLCHR={n })
{(VAR,n)}
(1 }

identifies the device for which this table is defined. This
parameter is required. The possible device-type-names are listed
under the description of the STATION macro IOCODE parameter in
Basic System Macros.

Code STRING for data string mapping only. ALL may not be coded.

114

L

L

Appendix A.2 Device Descriptor Table MMU Macros
DEFINE DEFINE

NATRCHR
NCMDCHR
NCTLCliR

specify the maximum mnnber of physical characters required to
represent a logical attribute (NATRCHR), conmand (NCMDCm) or
control (NCfLCliR) character value, respectively, and that are
subsequently to be defined via the ATIRIB, an1MAND and/or CN'll.CHR
macros. It is coded in one of the following forms:

• n is coded as a fixed decimal nunber if the number of
physical characters is constant. For example NATRCHR=2 is
coded for mM 3270 CRT attributes. The default is 1. The
maximLlll is 255.

• (VAR,n) sublist is coded if the number of physical characters
for the requested logical value varies:

VAR indicates variable
n is coded as a decimal number, which specifies the

maximum number of physical characters that may
subsequently be defined. The maximum value for n is
255.

For example, NATRCHR=(VAR,4) for the Dataspeed 40 Model 1 or
2 termi nal ESC sequences.

115

Appendix A.3
MMUVT

MMU Vector Table

MMUVT--Generate MMU Vector Table

MMU Macros
MMUVT

The MMUVT macro is used to generate the system-wide MMU vector
table. This table contains information necessary to the operation of
MMU •

The form of the MMUVT macro is as follows:

(blank) MMUVT MAP DOOM: loadmap-S ~ -ddname
,SYSDLM=(fs[,fb[,fe]])

[,DEVICES= {device-name }]
{(devi ce-name ,devi ce-name, •••)}
{ALL }

[,DSECT={YES}]
{NO }

[,MA.XCOLs:{max-number-of-colllllns}]
{255 }

[,MA.XROWS={max-nllllber-of-rows}]
{255 }

[,MA.n'YP= {max-number- field-t ypes}]
{~ }

[, OPMDOOM:output-message-DDQ-ddname]

[,PAGDDNM: {temporary-S ~ -ddname}]
{INTSTORO }

DEVICES
specifies the device or devices supported in this version or
regicn (if a satellite region) of IntercoIIm. It is coded as
follows:

• ALL specifies all devices are supported (defaul t)

• device-name specifies a single device code

• (device-name, •••) specifies a list of device codes

See MAPGROUP macro DEVICE parameter for possible values. If
omitted, a vector table supporting all devices will be generated.

116

J

L

Appendix A.3
MMtNT

MMU Vector T abl e MMU Macros
MMtNT

DSECT
specifies whether or not the Vector Tabl e DSECT
generated. If YES is coded the DSECf is generated.
coded, a CSECT is generated. The defaul t is NO.

is to be
If NO is

MAP DOOM
specifies the ddname of the dedicated Store/Fetch data set for
the on-line map definitions. Code as IN'I'STCRx, where x is in the
range of 0 to 9, inclusive. This parameter is required.

Ml\XCOLS
specifies the maximun number of columns (or width) of a line for
a string devi ce. I t is coded as a decimal number in the range of
1 to 255, inclusive. The default is 255.

~XROWS

MA.}ITYP

specifies the maximum number of rows for a string or infinite row
device. It is coded as a decimal number in the range of 1 to
255, inclusive. The default is 255.

specifies the maximllQ number of field types to be supported in
this version. The default is 9. See the FIELD macro.

OPMDOOM
specifies the ddname for the data set to contain DDQs created by
out put mapping. The value coded for OPMDOOM must also be defi ned
in the DDQ Data Set Table. If OPMDDNM is not specified, the
default data set speCified in the DDQDSTBL is used (see Dynamic
Data Q.leuing Facility).

PAGDOOM
specifies the ddname of the temporary Store/Fetch data set in
which MAPour will place intermediate output pages (logical
messages). Code as INTSTORy, where y is in the range of 0 to 9,
inclusive, and y is not equal to the value coded for x in the
MAPDOOM parameter value. The defaul t is INI'STORO.

SYSDLM
required parameter; specifies the system-wide defaul t separator
characters used for processing posi tional and keyword fields.

• fs is the posi ti onal field separator character (should be the
system separator character).

• fb is the keyword field begin character (an equal sign is
usually used).

• fe is the keyword field end character (a semi-colon is often
used) •

See the SEGMENI' macro DELIM parameter for coding and
default/overide rules.

117

Appendix A.4 Override Table MMU Macros

A.4 OVERRIDE TABLE

The following chart illustrates where defaul t values for
attribute, control, comnand or delimiter specifications are defined and
how they may be overriden by other values via a dynamic (subsystem)
request or static macro coding for a specific map group. Override
specifications are from top (highest level) to bottom (lowest, or
default, level). See also the macro descriptions in this Appendix, the
service routine options described in Appendix B, and the specific
device restrictions and recomnendations detailed in Appendix C for
further considerations on applying overrides.

F===============
Override by

F===============
Subsystem
(service
routi ne)

F==============f=============F============F============
Attribute Control Command Delimiters

=============== ============= ============ ============
symbolic MCW MCW -
map: nameT byte 4 byte 3
(MAP OUT) . (MAPEND) (MAPEND)

~--------------- ~-------------- ------------- ------------ ------------
Map Definition

Macro FIELD MAP GROUP MAP GROUP SEGEMNT
(parameter) (A'ITRIB) (CNTLCHR) (OOMMAND) (DELIM)

~----------------r---
DEFAULTS

Macro
Parameter

ATTRIB CNTL ClIR OOMMAND DELIM

-----------------~-------------- -------------~------------ -----------
MMUVT
Macro
Param eter

NOTE:

SYSILM

An attribute override by a subsystem applies only to
named fields; ignored if MCW requests ini ti al-only
mapping. The control value specifi ed via the DEFAULTS
macro may only be overriden either by the subsystem or
the MAPGROUP macro. If coded on the MAPGROUP macro, the
subsystem override is ignored. Any logical code
specifi ed as an override must be origi nally defined for
the device in the Device Description Table by the
corresponding ATTRIB, OOMMAND, or CNTLCm macro, whether
explici tly (wi thin the macro) or implicitly (via
reference to another macro or device). See Chapter 4.
Otherwise, the value specified on the DEFAULTS macro is
used; if none, a device-specific defaul t coded in the DDM
(device-dependent module) is used. If not applicable for
a specific device, a SUPPRESS value should be coded on
the corresponding parameter of the DEFAULTS macro for the
devi ce in use.

118

L

Appendix B

MMU SERVICE ROUTINES

This appendix contains the specifications for the MMU service
routines. If applicable, the MCW options, calling formats, return
codes, and input flag settings are given. Parameters passed to the
routines are described in detail in Chapter 3. The following MMU
service routines are described:

• MAPCLR

• MAP END

• MAPFREE

• MAP IN

• MAP OUT

• MAPUR GE

119

Appendix B
MAPCLR

SPR 216 2/83

MMU Service Routines
MAPCLR

MAPCLR--Clear Symbolic 1/0 Map

MAPCLR is invoked prior to calling MAPOUT, referencing a map
previously referenced with a call to MAPIN, or for a symbolic map area
when multi page output is being produced. MAPCLR clears the entire
symbolic map area to nulls (low values) or optionally clears only the
data fields, or clears only the attribute fields, or sets the attribute
fields to 'SUPPRESS', or clears data fields and sets attributes to
'SUPPRESS' • If more than one map was used, MAPCLR must be called for
each map.

MAPCLR options are selected by initializing the MCW with the
appropriate values shown in Figure 16. Byte 3 of the MCW area is
reserved. Language-dependent MAPCLR calling formats are given in
Figure 17. Parameters are described in Figure 18. Return codes
resulting from the call to MAPCLR are passed to the subsystem in byte 1
of the MCW, as shown in Figure 19.
========-===============F==~

Byte Option Code Meaning
======== ===============~==

1 C'~' or X'OO' Reserved for return code from MAPCLR.
------------------------~--

2 C'~' or X'OO' Fetch map
C'M' Map provided; Assembler subsystems if

PGMRES=YES specified on MAPGROUP

3 C'~' or X'OO' Reserved

C'~' or X'OO'
C'D'

Clear entire symbolic map area (default)
Clear only data fields

C'A'
C'S'
C'C'

Clear only attribute fields
Set all attributes to SUPPRESS
Set attributes to SUPPRESS and clear data
fields.

Figure 16. MAPCLR Options Specified by MCW

------------ --- ---
Language Calling Sequence

------------- -- ---
COBOL CALL 'COBREENT' USING reentsbs-mapclr-code, mcwname,

PL/1
Optimizer

PL/1-F

Assembler

groupname, mapname, textarea (,tid).

CALL MAPCLR(mcwname,groupname,mapname,textarea(,tid));

CALL PMIPLI(reentsbs-mapclr-code,mcwname,
groupname,mapname,textarea(,tid));

(symbol) CALL MAPCLR,(mcwname,groupname,mapname,
textarea(,tid)),VLL,MF=(E,list))

Figure 17. MAPCLR Calling Formats

120

L

Appendix B
MAPCLR

Parameter

=================

MMU Service Routines
MAPCLR

--
Meaning

==
reentsbs-mapclr- REENTSBS routine code for MAPCLR is 63
code

mcwname The label of the area containing the fullword MCW.

groupname The label of the area containing the map group name.
For Assembler subsystems, if PGMRES= YES was coded on
the MAPGROUP macro, groupname is the address of the
MAPGROUP macro.

mapname The label of the area containing the map name.
For Assembler subsystems, if PGMRES= YES was coded on
the MAPGROUP macro, mapname is the address of
the MAP macro.

textarea The label of the symbolic map area which contains
the previously mapped message text. This label
must be the same name as coded on the referenced MAP.

tid The label of the area containing the terminal-id (or
broadcast-group-name) to determine the map group
suffix code. This parameter may be omitted if the
referenced map group DEVICE parameter specified ALL
(required if called for string mapping).

Status
Byte 1

C'O'

C'9'

other

Figure 18. MAPCLR Parameters

--

Meaning
==

MAPCLR successful

MAPCLR called for a map with no named fields
(nothing to clear)

MAPCLR unsuccessful (probably invalid map group name
or map name, or invalid MCW options)

Figure 19. MAPCLR Return Codes

121

Appendix B
MAPEND

MMU Service Routines
MAPEND

MAPEND--Prepare Mapped Output for Transmission

The MAPEND subroutine is call ed to prepare and transmit a fully
formatted message, that is, a physical message, or to return a mapped
character string.

MAPEND options, requested by initializing the MCW before the
call, specify transmission and override requests. Figure 20 lists the
option codes and their meanings. Language-dependent calling formats
for MAPEND are shown in Figure 21. The applicable parameters are
described in Figure 22. Return codes from MAPEND are shown in Figure
23. F or Assembler subsystell5, the binary equivalent of byte 1 is also
returned in Register 15, multiplied by 4.

-------------- --- ---
Byte Option Code Meaning

---------------------------- ===
C'~, or X'OO' Reserved for return code from MAPEND.

2 C'~, or X'OO' Retrieve one physical output message; MAPEND must

3

4

c' Q'

be called repeatedly to obtain all messages.
Retrieve a mapped string. Invalid if page size
greater than device buffer size.

Process compl ete logical message and transmit all
generated physical messages (pages) to the Front
End via FESEND.

C'D' For hard copy output device: Process all output
messages onto a semipermanent DDQ and transmit a
FECl1 to the Front End. If only one message is
created, it is transmitted without using a DDQ.
This option is not valid if the TID parameter
on the MAPOUT call specified a broadcast group.

C'P' Process logical message and pass all physical
messages to the Page Facility. This option is no
valid for devices with a buffer size smaller than
the mapped page, or for output-only devices. If
only one physical message results, it will be
passed directly to the Front End, as will the
first of multipage output.

C' c' or X' nn'
C' ~, or X'OO'

C' c' or X' nn'

C' ~, or X'OO'

Override COMMAND logical code
No override

Specify CN'ILCm logical code (if not coded via
MAPGROUP macro CNTLCER parameter).
Use MAPGROUP specification, or if none: device
default.

Figure 20. MAPEND Options SpeCified by MCW

122

J

J

J

L

Appendix B
MAPEND

Language

==============
COBOL

PL/1
Optimizer

PL/1-F

Assembler

MMU S ervi ce R outi nes
MAPEND

--
Calling Sequence

--
CALL 'COBREENT' (BING reentsbs-mapend-code, mcbname,
msgarea, mcwname.

CAll.. MAPEND (mcbname, mgarea ,mcwname);

CALL PMIPL 1 (reentsbs-mapend-code ,mcbname, mgarea,
mcwname)j

[symbol] CALL MAP END ,(mcbname, {msgarea} ,mcwname) ,VL
{O }

[,MF= (E, list)]

FigUl"'e 21. MAPEND Calling Fonnats

================= --
Parameter Meaning

---------------------------------- --
reentsbs-mapend- REENTSBS routine code for MAPEND is 59.
code

mcbname The label of the 12 fullword Mapping Control Bloc
area.

----------------- --
mgarea The label of the area to contain the fully

format ted mes sage if one of the transmi t opti ons is
not used; area must start with a valid Intercomm
message header, and be fullword aligned. The first
halfword must be initialized with the area length
(binary value). To calculate the length of
mgarea, use the following fonnula:

42 + mse + text-area

where mae represents the length of message start
and ending control characters.

To calculate the text-area for devices with buffer
addressing:

el*cc

where el is the total external length of all fields
and cc is the number of addressing and control
characters per field (5 for an IBM 3270 CRT).

Figure 22. MAPEND Parameters (Page 1 of 2)

123

Appendix B
MAPEND

Parameter

MMU S ervi ce R outi nes
MAPEND

===
Meaning

===
To calculate the text-area for devices without
buffer addressing:

(dl*ml)+le+(fl* cc)

where:

• dl is length of a display line

• ml is number of lines mapped

• Ie is number of line-ending control characters

• fl is total number of fields in the message

• cc is the number of control characters per field.

If the second byte of the MCW is a Q, D, or P
request, the msgarea parameter must be passed (code
o if Assembler subsystem), but is ignored since no
output is returned to the calling subsystem. (See
sample programs at end of Chapter 3.)

If the second byte of the MCW is C'~' or X'OO' and
the calling subsystem is an Assembler subsystem,
then msgarea may be 0, which causes MAPEND to place
the address of the output message area (or string)
in the msgarea field.

--------------- ---
mcwname The label of the area containing the full word Map

Control Word.

Figure 22. MAPEND Parameters (Page 2 of 2)

For detailed MAPEND return codes listed in Figure 23, that are
passed from external facilities, see Store/Fetch Facility, ~
Facili ty, and/or the Assembler Language Programmers Guide. Values
defined as X'nn' are those defined for an Assembler Language program.

124

Appendix B
MAPEND

------------------------ -------
Byte 1

F========
ClOt

1---------
C'1 '

Byte 2

C'1 '

C'2'

Byte 3

MMU S ervi ce R outi nes
MAPEND

==
Meaning

--
Successful, message retrieved, this is not thE
last physical message (option C'l!I' or X'OO').

--
No core available.

Message area provided is too small (option
C'l!I' or X'OO').

--------- ------- ------- --
C'2' C'n' Store error; Store return code n.

---------~-------~-------~--
C'3' C'n' Fetch error; Fetch return code n.

--------- ------- -------
C'4' C'1 '

C' 4' C'2'

C' 4' C'3'

C'4' C'4'

C' 4' C' 5'

--------- -------1-------
C'5 ' X' nn'

--------- -------1-------
c' 6 ' C'1' X' nn'

C'6' C'2' X' nn'

C'6' C'3' X' nn'
--------- ------ 1-------

C'7' X' nn'

C'7' C'9'

---------f-------
C'8'

--
Invalid request option C'D'--TID is a broad-
cast group

Invalid request option C'P'--device is output
only.

Invalid request option C'l!I' or X'OO'--page
size greater than device buffer size.

Page line size greater than device line size.

Invalid request options C' Q', C' D', or C'P'-
device is a string.

Page error; Page Facility return code is nne

DDQ error. QBUILD function return code is nne

DDQ error. QWRITE function return code is nn.

DDQ error. QCLOSE function return code is nne

FESEND error; nn is FESEND return code.
MAPEND call can be reiss ued once, after a
reasonable wait, to restart transmission.

FESEND error; nonrecoverable. Do not reissue
MAP END call; call MAP UR CE •

Successful completion, last physical message
(option C'l!I' or X'OO'), or all physical
messages processed successfully (options
C' Q', C'P' and C' D') •

--------- ------ 1------- ---
C'9' Uns uccessful; extra call to MAPEND after

MAPEND return code of C'8'.

Figure 23. MAP END Ret urn Codes

125

Appendix B
MAPFREE

MMU S ervi ce R outi nes
MAPFREE

MAPFREE--Free Input Mapping Storage Area

MAPFREE is used by Assembler Language and PL/1 Optimizer
subsystems to free the storage area previously obtained via the msgaddr
parameter on a call to MAP IN. This area must be freed before returning
control to the subsystem controller. Assembler Language subsystems can
use the STORFREE macro, deriving the symbolic map area length by
subsystem logic.

MAPFREE options are selected by ini tializing the MCW with the
appropriate values listed in Figure 24. The calling formats are listed
by language in Figure 25. MAPFREE parameter descriptions are given in
Figure 26. Return codes resul ting from the call to MAPFREE are passed
to the subsystem in the MCW; byte 1 contains the MAPFREE return codes,
as shown in Figure 27.

====== ============== ===
Byte Opti on Code Meaning

====== ==============F===
C'~, or X'OO' Reserved for return code from MAPFREE

----------------------~--
2 C'~' or X' 00' Intercomm message map non-resident - Fetch map

C' C' character string map non-resident - F etch map

. C'M'
C'D'

---_.
For Assembler subsystems with PGMRES=YES on
MAPGROUP :

Intercomm message map provided
Character string map provided

3 C'~' or X'OO' Reserved

.------ -------------- --
4 C'~' or X'OO' Reserved

Figure 24. MAPFREE Options Specified by MCW

------------ --- ---
Language Calling Sequence

------------ --- ---
PL/1
Optimizer CALL MAP FREE (mcwname ,groupname,mapname ,msgaddr[, tid])

Assembler [symbol] CALL MlPFREE, (mcwname,groupname,mapname,
msgaddr[,tid]), VL[,MF=(E, list)]

Figure 25. MAPFREE Calling Formats

126

L

L

SPR 216 2/83

Appendix B
MAP FREE

MMU Service Routines
MAP FREE

=========== ===
Parameter Meaning

----------- -- ---
mcwname The label of the area containing the fullword MCW.

groupname The label of the area containing the map group name. For
Assembler subsystems, if PGMRES=YES was coded on the
MAPGROUP macro, groupname is the address of the MAPGROUP
macro.

mapname The label of the area containing the map name. For Assemble.
subsystems, if PGMRES=YES was coded on the MAPGROUP macro,
mapname is the address of the MAP macro.

msgaddr The label of the fullword aligned area containing the
address of the mapped input text (symbolic map area).

tid The label of the area containing the terminal-id to
determine the map group name terminal-dependent suffix
code, if ALL or STRING not coded for the DEVICE parameter
on the MAPGROUP macro.

Status
Byte 1

ClOt

C'4'

r-------
c'6'

Figure 26. MAP FREE Parameters

------------ -- --
Register 15
(Assembler) Meaning

------------ -- --
X'OO' MAPFREE successful

X'10' Specified mapgroup or map not found.

X'18' Invalid option code; area not found.

Figure 27. MAPFREE Return Codes

127

SPR 216 2/83

Appendix B
MAPIN

MMU Service Routines
MAPIN

MAPIN--Perform Input Mapping

The MAPIN subroutine is invoked to map an input message or
character string.

Options are requested by initializing the MCW with the
appropriate value on the call to MAPIN. These options are detailed in
Figure 28.

Language-dependent MAPIN calling formats are given in Figure 29
and parameters are described in Figure 30. The return codes resulting
from the call to MAPIN are passed in byte 1 of the MCW as shown in
Figure 31. For Assembler subsystems, the binary equivalent is also
returned in Register 15, multiplied by 4. A count of fields with
editing errors and/or omitted fields is returned in bytes 3 and 4 of
the MCW.

The content of each symbolic map area field (segment) length
area, flag byte, and data area is initialized in the input mapping
process. The values are set by MAPIN, as shown in Figure 32.
------- -- -------------- --

Byte Option Code Meaning
------ -------------- --- -------------- --

C'~' or X'OO' Reserved for return code from MAPIN.

2 C'~' or X'OO' Fetch Intercomm message map

4

C'C' Fetch character string map

C'M'
C'D'

'For Assembler subsystems with PGMRES=YES on
MAPGROUP macro:

Intercomm message map provided
Character string map provided

Specifies whether or not the unmapped input
message is to be freed after mapping.
For first call to MAP IN:

C'~' or X'OO' Free input message or character string
C'K' Keep input message or character string

C'S'
C'L'

Subsequent calls to MAPIN:
Free input message or character string
Keep input message or character string

Reserved

Figure 28. MAPIN Options Specified by MCW

NOTE: If multiple calls to MAPIN are made, byte 3 options must be
observed as follows: if a subsequent call is for a map which
spec ifies START= (NEXT, SAME) , it must be spec ified as a
subsequent call. Otherwise, each call must be a first call.
If multiple maps created the template used for input, MAPIN
calls must be in the same order as the previous MAP OUT calls.

128

J

J

L

Appendix B
MAP IN

Language

COBOL

PL/1-F

PL/1
Optimizer

Assembler

MMU Service Routines
MAP IN

--
Calling Sequence

--
CALL' COBREENT' tBING reentsbs-mapin-code, mcbname,

groupname, mapname, msgarea, mcwname, textarea.

CALL PMIPL1(reentsbs-mapin-code,mcbname,groupname,
mapname, msgarea ,mcwname, textarea);

CAlL MAP IN (mcbname, group name ,mapname ,ms gaddr ,mcwname) ;

[symbol] CAlL MAP IN , (mcbname , gro up name ,mapname,
msgaddr ,mcwname) , VL[,MF= (E, 1 ist)]

Figure 29. MAPIN Calling Formats

------------ --- ---
Parameter Meaning

============ ===
reentsbs- REENI'SBS routine code for MAPIN is 51.
mapin-code

mcbname The label of the 12 full word Mapping Control Block

groupname The label of the area containing the map group name.
For Assembler subsystems, if PGMRES=YES was coded on the
MAPGROUP macro, groupname is the address of the MAPGROUP
macro •

mapname The label of the area containing the map name. For'
Assembler 'subsystems, if PGMtES=YES was coded on the
MAPGROUP macro, mapname is the address of the MAP macro.

msgarea The label of the area containing the Ul'Illapped input
message (starti ng wi th I ntercomm message header) or
character string (used with textarea). COOa.. and PL/1-F
only.

msgaddr The label of the fullword aligned area containing the
address of the unmapped input message. Upon return from
MAP IN, msgaddr will contain the address of the input
text mapped according to the corresponding symbolic map
definition. Assembler and Pl/1-Optimizer only. For
PL/1 Optimizer subsystems, msgaddr is a pointer variable
set by MAPIN to the address of the mapped input area.
MAPFREE must be called to free this area.

mcwname The label of the area containing the fullword MCW.

textarea The name of the symbolic map area to contain the mapped
input message text. This must be the same name as coded
on the MAP macro. COBa.. and PL/1-F only.

Figure 30. MAPIN Parameters

129

Appendix B
MAP IN

MMU S ervi ce Rout! nes
MAP IN

F=======F==
Byte Code Meaning

F=======~==
1 C'O' Mapping canpleted; Bytes 3-4 of MCW should be

checked for count of fields not entered.

C' 1 ' S tore/F et ch I/O error

~---------~--
C' 2' Storage reques t fail ed

~--c' 3' Errors in mapping sane fields; Bytes 3-4 should be
checked for count of fields omitted or in error

~---------~--
C'4' MAPGROUP or MAP not found

~---------~--
C'5' No StorelFetch DD card

---------~---
C' 6' MCW opti on errors

---------~-----------------------~----------------------------
C'7' Map mode not input or I/O

--------- ---
C'8' Hardware error (invalid SBA sequence), message could

not be mapped; an error message should be sent to
originating terminal requesting input be reentered.

--------~--
2 Reserved.

--------~---
3&4 variable Contains a bi nary count of input fields in error

and/or anitted (nonzero flag field).

Figure 31. MAPIN Return Codes

130

J

J

L

Appendix B
MAPIN

F========== --------------
Field

Condition Length

SPR 216 2/83

MMU Service Routines
MAPIN

==
Field
Flag Field Data

----------- ------- ------ -- ------- ------ ---
No errors X'nnnn' X'OO' cccc (justified, padded as necessary) for

characters entered by operator. nnnn is the
number of characters entered by operator

----------- -------
No errors X'OOO1'

----------- -------
No errors X'OOOl'

1----------- -------
Error X'OOOO'

X'nnnn'

Figure 32.

X'OO'

X'OO'

C'A'

... ------
C'B'

C'C'

C'D'

1-------

G'E'

(in binary) up to maximum field length
(truncated if too many).

xxxx (hex value, unaligned right-justifed)
after conversion by MMU (padded with binary
zeros on left if required) for fullword,
halfword or binary (nnnn is internal field
length) •

pppp (right-justified, left-zero padding)
for zoned-decimal or packed-decimal field
after conversion (nnnn is internal field
length) •

X'FF'--a light pen detectable field is "on"

C'l'--YES entered in YN field.

C'O'--NO entered in YN field.
---i

MMU Program Error (data returned is binary :
zeros--low values) 1

-~~~~~~~-~~~~~~~~~-~~-~~~~~~~-;~~~~-~~~~~----I
returned is binary zeros) I

---1
Too many digits in a numeric field (trun- I
cation is at the left--data will be the 'Ii

digits entered minus the high-order digits I
that exceed the number of digits defined
for the field) I

-~~~-~~~~~~~~-;~~~~-~~~~~~~~~-~~~~~~-~~~~~--I
is greater than 29 character digits (data I
will be the remainder after conversion) I
-~~~-~~~~~~-~~~~~-~~~i-~~~-;~~-~~~~-~~~------I
internal field (data will be the remainder
after conversion)

1---
C'F' The value is too high to convert to binary

(data will be the remainder after
conversion)

Field Data After Input Mapping (Page 1 of 2)

131

Appendix B
MAP IN

MMU S ervi ce Rout! nes
MAP IN

~========== =======F======= ==
Field Field

Condition Length Flag Field Data
=========== ===============F==

-----------~------
Not X' 0000
Entered

Figure 32.

C'G' Significant high-order binary bits lost in
unaligned truncation to fewer than four
bytes (data will be the remainder after
conversi on)

~-------~--
C'H' Significant high-order binary bits lost in

truncation from fullword in register to
halfword (the data will be the same number
as given for the halfword)

~-------~---
C'I' Truncation on character input (the left-

most characters of the field entered are
present in the data field)

~-------~--
Note: X'nnnn' for conditions C-I is always

the internal field length.

--------~--
X'FF' X'O ••• 0'= Field not entered (included in the

error count contained in MCW Bytes 3-4).
MAPIN does not differentiate between
a nonentered field and an entered
blank field. However, all zeros is
acceptable for numeric fields, and all
blanks is acceptable for field type CB.

Field Data after Input Mapping (Page 2 of 2)

132

J

J

Appendix B
MAP OUT

MMU S ervi ce R outi nes
MAP OUT

MAPOUT--Perform Output Mapping

The MAPOUT subroutine is called to perfonn output mapping for a
logical out put message or for a character string.

MAPOUT options are requested by ini tializing bytes 1 though 4 of
the MCW with the values shown in Figure 33.

Language-dependent calling fonnats are given in Figure 34.
Parameters for the MAPOUT subroutine are described in Figure 35.

Return codes from MAPOUT are listed in Figure 36. For Assembler
subsystems, Register 15 contains the binary equivalent of byte 1,
mul tiplied by 4.

------ -------------- -- -------------- --
Byte Opti on Code Meaning

------ -------------- -- -------------- --

2

C'}S' or X'OO' Reserved for return code from MAPOUT.

C'}S' or X'OO'
C'C'

C'M'
C'D'

Fetch I ntercomm message map
Fetch character string map

For Assembler subsystems with PGMRES=YES on
MAP GROUP :

Intercomm message map provided
Character string map provided

3 C'}S' or X'OO' First call to MAPOUT for output message (MCB)
C'N' Not first call to MAPOUT (for MCB)
C'P' Force page complete* (no mapping performed)
C'E' Force page complete* before mapping
C'A' Force page complete* after mapping

4 C'}S' or X'OO' Map initial data values and symbolic map data
C'I' Map only initial data values and field

attributes (generate template screen)
C'D' Map only named fields using symbolic map

data/attributes, or if omitted, use initial
datal attri bute if specified for the named
field in the MAP.

* implies not first call to MAPOUT for MCB

Figure 33. MAPOUT Options SpeCified by MeW

NOTE: If multiple calls to MAPOUT are made, Byte 3 options must be
strictly observed: only the first call by the subsystem (for
the current processing thread) may specify blank or null; every
subsequent call must use one of the other options. OtherWise,
previously mapped data will be lost. If an intervening call is
made to MAPEND, the first subsequent call to MAPOUT must also
specify a blank or null in Byte 3.

133

Appendix B
MAP OUT

MMU S ervi ce Rout i nes
MAP OUT

----------- --- --
Language Calling Sequence

----------- --- --
COBOL CALL 'COBREENT' USING reentsbs-mapout-code, mcbname,

groupname, mapname, textarea,
mcwname, tid.

----------- --
PL 11 CAU. MAP OUT (mcbname ,groupname ,mapname, textarea,
Optimizer mcwname, ti d);

PL/1-F CALL PMIPL1(reentsbs-mapout-code,mcbname,groupname,
map name , textarea. ,mcwname, tid);

Assembler [symbol] CAIl.. MAP OUT ,(mcbname ,groupname ,mapname,
text area ,m cwname, ti d) , VL
[,MF=(E,list)]

Figure 34. MAPour Calling Fomats

----------- --- --
Parameter Meaning

------------ -- -- --.~-

reentsbs- REENTSBS routine code for MAPOUT is 55.
mapout-
code

mcbname The label of the 12 full word Mapping Control Block area.

groupname The label of the area containing the map group name. For
Assembler subsystems, if PG~ES=YES was coded on the
MAPGROUP macro, groupname is the address of the MAPGROUP
macro •

mapname The label of the area containing the name of the map. For
Assembler subsystems, if PGMlES= YES was coded on the
MAPGROUP macro, mapname specifies the address of the MAP
macro •

textarea The symbolic name of the area containing the urmapped data
fields to be operated upon by MAP OUT • This must be the
same name as coded on the MAP macro.

mcwname The label of the area containing the full word MCW.

Figure 35. MAPOUT Parameters (Page 1 of 2)

134

J

Appendix B
MAP OUT

SPR 216 2/83

MMU Service Routines
MAP OUT

========== ==
Parameter Meaning

---------- -- --
tid The label of the area containing the terminal-ID of the

device to receive the output message(s). If tid is a
broadcast group name, the characteristics of the first
terminal of the group will be used for mapping; this

Byte 1

==========
ClOt

1----------
C'1'

C'2'
1----------

C'3'

C~~~~~~~~
C'5'

C'6'

implies that all terminals of a broadcast group must be of
the same type. If the mapping is for a character string,
do not code this parameter.

Figure 35. MAPOUT Parameters (Page 2 of 2)

Byte 2

ClOt
C'1 '

--
Meaning

===
Successful
Duplicate cursor specification; field flag
override processed.

Storage error--Iow core

C'n' Store error; Store return code n.

C'n' Fetch error; Fetch return code n

Map group (or map within group) not found

Map overflow: attempt to map an already mapped
trailer area during page overflow processing

Invalid option code

C'7' ClOt Map group mode not output or I/O
Required TID parameter omitted
Map too large for device

C '9'

C' 1 '
C'2'

Attempt to map a nonnull SEGMENT

Page overflow condition in effect: rows or
columns needed are beyond allowed device page
or buffer length or width, or overlap a
trailer map area.

Figure 36. MAPOUT Return Codes

See Store/Fetch Facility for details on Store/Fetch return codes.

135

Appendix B
MAPtRGE

MAPURGE--Cancel Logical Message

MMU Service Routines
MAPtRGE

MAPUR CE is called to cancel a logical output message if required
during subsystem processing. Calling formats for MAPtRCE are shown in
Figure 37. Parameters are given in Figure 38. There are no option
codes or return codes from MAPlR GE.

-------------- --- ---
Subsystem Calling Sequence

-------------- --- ---
CCBOL CALL' COBREENT' {SmG reentsbs-mapurge-code, mcbname.

PL /1 CALL MAP tR GE (mcbname) ;
Optimizer

PL /1 CALL PMIPL 1 (reentsbs-mapurge-code ,mcbname);

A ssembler [symbol] CALL MAP tR GE, (mcbname), VL[,MF=(E, list)]

Figure 37. MAPtRCE Calling Formats

-------------- --- --
P aram eter Meaning

-------------- --- ---
reentsbs':" REENTSBS routine code for MAPlRGE is 67.
mapurge-code

mcbname The label of the area containing the 12 full word
Mapping Control Block used for previous MAPOUT calls.

Figure 38. MAPURCE Parameters

136

L

SPR 216 2/83

Appendix C

TERMINAL-DEPENDENT CONSIDERATIONS

This appendix contains special considerations for defining and
using the following terminal types with MMU:

• IBM 3270 Video Display Terminal (CRT)

G IBM 3270 Printer (328x series)

~ Teletype Dataspeed 40 Models 1 and 2 (CRT and Printers)

Reference should be made to the descriptions of the supported
terminal features in the BTAM Terminal Support Guide.

At the end, a listing of the released LOGCHARS (Device Descriptor
Table), and charts of IBM 3270 attribute and control (WCC) character
codes, are provided.

137

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
3270 CRT

C • 1 IBM 3270 CRT CONSIDERATIONS

This section is. to be used in conjunction with the IBM manuals on
programming for the IBM 3270 Information Display System and assumes
that the programmer understands screen formatting and the associated
control characters. The MAPGROUP macro must specify DEVICE=IBM3270 or
DEVICE=ALL.

See also specific references in this manual to IBM 3270 CRT
(Video Display) considerations in defining maps (Chapter 2 and Appendix
A) and mapping requests and override options (Chapter 3 and Appendix
B), particularly the section on Input/Output Mapping in Chapter 3. The
released Device Descriptor Table (LOGCHARS) entries for the IBM 3270
CRT are listed at the end of this appendix. Device-dependent
processing is executed by MMUDDM.

c. 1. 1 Field Definitions

The following field definition considerations apply only to IBM
3270 CRTs (and plug-to-plug compatible devices).

C.1.L1 Attribute Location

The RELPOS on the FIELD macro is the position of the field data.
The attribute location is always in the screen position before RELPOS
(RELPOS-1). If RELPOS is set to the first position on the screen, that
is, RELPOS=(1,1), ATTRIB=SUPR must be coded.

C.1.L2 AID Processing

For input mapping, the AID key value may be requested by a named
FIELD macro with RELPOS=AID. HDR3270=YES must be coded on the
associated BTVERB macro for the input transaction code.

C.1.1.3 Positioning the Cursor

Output mapping automatically generates a Buffer Control O;-jer to
Insert Cursor (IC) at the first unprotected field of the map. To
control cursor positioning further, two options are available:

1) define a FIELD macro as follows:

(label) FIELD RELPOS=CURSOR,INITIAL=X'nnnn'

138

J

J

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
3270 CRT

where X'nnnn' specifies in hexadecimal the binary halfword value of the
screen location (relative to 1) for cursor positioning; four digits
(leading zeros) are required. If the FIELD macro is named, modification
of the cursor location can be made via subsystem logic. Input mapping
may also request the cursor location (format will be a 2-byte binary
value--unaligned halfword). This requires coding HDR3270=YES for the
associated BTVERB macro.

2) for output mapping, cursor positioning at a named field may be
requested by moving hexadecimal FFs (high values) to the length
field in the field prefix for that field before calling MAPOUT.
This option is particularly useful for input/output processing of
erroneous input. The first field found in error can be flagged
for cursor positioning for subsequent map out processing. This
option obviates the need for subsystem definition of an actual
cursor location (relative position). See also the MAPCLR call
options (clearing only data fields, etc.) described in Appendix B.

C.1.1.4 Output Mapping the Verb Field

For output mapping, the attribute for a RELPOS=VERB field is
always UAN. If a verb is to be output, or the field requires an
attribute other than UAN, the FIELD macro should be coded with
RELPOS=(r,c), ATTRIB=attribute-name, and INITIAL='verb' (or FORMAT=4 if
the field is named and the verb is supplied by the subsystem). If more
than one verb may be input to the subsystem, then subsequent input
mapping of the verb requires either a different map with a named
RELPOS=VERB field defined, or program logic to examine (save) the verb
before calling MAPIN (see also keep/free message options for the MeW).

When the verb value is provided by the subsystem via a named field
for which RELPOS=VERB is defined, and multipage output is created, the
last verb value provided (via a MAPOUT call) will be inserted in all
pages (at relative page position 1,2). If different verbs are desired
(depending on page contents), the value may be changed in the message
area after each physical message is retrieved via a call to MAPEND, if
a transmit option is not used. For a 3270 CRT message, the verb is
located at position 8 of the message text (after the command and control
characters, and 5-byte SBA and SF sequences). Or, a specific verb may
be supplied for each page if the named FIELD macro is coded as described
above for alternate attribute processing. This latter option permits
one of the transmit requests to be used for the MAPEND call.

WARNING: if a protect-with-MDT-on attribute is specified for the
'verb' field, that verb will always be input. The operator
must use the Clear key to remove the verb (and screen
template) in order to enter a different request. I f the
terminal is locked to a verb, no value need be supplied for
output mapping, unless the supplied verb is defined as
lock-exempt (see BTVERB macro).

139

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
3270 CRT

C.1.1.5 Selectable Fields

See IBM documentation on Light Pen and Cursor Selectable fields,
and the discussion of the COND=ENTERED parameter on the FIELD macro in
Chapter 2 and Appendix A of this manual.

C.1.1.6 Color Processing

A basic color CRT is currently supported since it is implemented
via standard attribute characters.

C.1.2 AIDDATA Processing

• For Un format ted Screens--A verb, followed by the separator
character, is always assumed to start at relative location
one (1) of the message, whether or not the verb and separator
are physically in the message or prefixed via LOCK or AID
processing. Any AIDDATA prefixed to the message is assumed
to have come from the device and must be accounted for in the
map.

If the verb is to be mapped, a FIELD macro with RELPOS=VERB
is the first definition in the map (no preceding SEGMENT
macro), and the non-null SEGMENT following the verb must have
a RELPOS= (1,6). The length must be adjusted to include any
additional inserted AIDDATA.

• For Formatted Screens--if AIDDATA is to be prefixed to
format ted screen input, an SBA sequence must be present in
that AIDDATA, unless only the verb is inserted. Care must be
exercised to insure that SBA locations in the AIDDATA do not
overlap any actual message input data. An attribute position
preceding each field (or structured segment) must be allowed
for on all input field RELPOS definitions.

C.1.3 Device Specifications

C.1.3.1 Orders

With the exception of Insert Cursor, any Buffer Control Order may
be specified via a FIELD macro with INITIAL coded as a hexadecimal
value for the order desired.

140

J

J

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
3270 CRT

C.1.3.2 Using Remote and Local Devices Concurrently

The Device Description Module of MMU makes no distinction in
processing for remote or local 3270s. The supplied member LOGCHARS
defines write commands for remote 3270s. Generation of the correct
write op code (based on write command used) is performed in the
Intercomm Front End for local 3270 terminals.

C.1.3.3 Use of the EOF Key

When the cursor is positioned at an input screen field, and the
ERASE EOF key is depressed by the terminal operator, the MDT is set on
for the field causing an SBA sequence for the field to be transmitted.
If no new data was keyed, the field is flagged as not entered, unless
it is defined as a COND=ENTERED field.

C.1.3.4 Use of HDR3270 Parameter in BTVERB Macro and RELPOS=AID or
CURSOR in FIELD Macro

If HDR3270=NO (default) is coded for the BTVERB macro and
RELPOS=AID is coded on a FIELD macro, then, after MAPIN, a default AID
of ENTER (X'7D') is used. For RELPOS=CURSOR, the default is X'OOOO'.

C.1.3.5 Numeric Input and Keyboard Lock

If an input field has a numeric attribute (see FIELD macro--ATTRIB
parameter--numeric value N), automatic numeric shift will occur only on
terminals equipped with a Data Entry keyboard. Additionally, keyboard
lock on entry of non-numeric data in a numeric input field requires that
the Numeric Lock feature be installed on the Data Entry keyboard. (The
NOM LOCK key provides up-shift for all keys.) All other keyboard
configurations will accept any keyed character in a numeric attribute
input field and will not lock.

C.1.3.6 WCC (CNTLCHR) Specifications

If the CNTLCHR parameter was coded on the MAPGROUP macro, it may
not be overridden at MAPEND time. Therefore, if the data-only option
may be used for output mapping to a template screen, do not code the
CNTLCHR parameter on the MAP GROUP macro; use the MAPEND option to
s pee ify the desired WCC. If omit ted, the default WCC defined in the
Device Description Table will be used. See also Override Table in
Appendix A.

141

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
3270 CRT

C.1.3.7 Alternate Buffer Processing

To use a large screen CRT with the ERASE WRITE ALTERNATE (EWA)
command, the alternate buffer size (and line length) must be defined via
a DVMODIFY macro with coding for the maximum BUFFRSZ (and LINESZ) and
ALTBUF=YES parameters for the large screen for applicable terminals.
Do not code the NOLINES parameter. The ERASWRAL command (see LOGCHARS)
must be defined via the MAPGROUP macro COMMAND parameter, to indicate
that the alternate buffer size is to be used for input/output mapping
(if defined). An ERASE WRITE command will be substituted for output
mapping if no alternate buffer is defined.

Separate map groups are not required for the two buffer sizes, if
the defined map width (line length) is within the limits of the
standard buffer size. If all maps within the mapgroup (except header
and trailer maps) use NEXT,SAME (default) for the START parameter,
MAPOUT will indicate a page overflow condition when attempting to map
beyond the bottom of the screen, or into the trailer area. Subsystem
logic must determine if two (or more) screens are to be generated. If
page overflow processing with a trailer area is desired, a MAP (can be
a dummy map) with JUSTIFY=(,TRAIL) delimiting the bottom of the screen
must be defined. Positioning adjustments will be made for the start of
the trailer area.

For the CTCHAR parameter of the BDEVICE macro for BTAM/TCAM \
networks, or the VTCSB macro for SNA/VTAM networks, F5 (Write Erase) ..""
should be coded. Care must be exercised that unsolicited messages are
not switched to the terminal when a conversation using large screen
processing is in progress.

142

SPR 216 2/83

Appendix C Terminal-Dependent Considerations
3270 Printer

C.2 IBM 3270 PRINTER SUPPORT CONSIDERATIONS

The IBM 3270 Printer, (328X series), is supported for output
mapping under MMU. To implement support, the following appUes:

• 3270 printer device-dependent processing is executed by
MMUDDMU.

• The device physical buffer and line sizes must be explicitly
defined to MMU via the STATION and DEVICE/DVMODIFY macros.
The device type is IBM3270P.

• The MAPGROUP macros must specify DEVICE=IBM3270P or
DEVICE=ALL.

• Device control characters are inserted using the FIELD macro,
(via FORMAT and INITIAL parameters), as described below.

LOGCHARS coding for the 3270 Printer is illustrated at the end of
this appendix.

The MMU 3270 printer support assumes all printer lines are
variable length. The same WCC is always used, specifying NL and EM.
NL, EM and CR characters determine line length which in turn is defined
by the map definition. MMU inserts a NL character after the last
non-blank character of each line. If output data is generated for the
last character of a physical line, no NL is inserted. Additional NLs
are also inserted for omitted lines to force device positioning for the
next significant line. An EM character is inserted at the end of each
page output to the printer.

C.2.1 Mapping Considerations

Output mapping for 3270 printers allows mapping of logical pages
up to the size spec ified via the DVMODIFY macro NOLINES parameter,
which may be overridden by the PAGESZ parameter of the MAPGROUP macro.
The generated physical message(s) size is based on the buffer size
specified via the DEVICE macro, unless overridden via the DVMODIFY
macro. In no case may the line length be greater than the maximum
physically possible for the device.

If alternate buffer processing is possible for the device, then
an ERASWRAL command for large buffer message generation must be
specified via the MAPGROUP macro COMMAND parameter. ALTBUF=YES must be
coded on the DVMODIFY macro to indicate that the LINESZ (if coded) and
BUFFRSZ parameter overrides are to be used only for alternate buffer
processing. If ALTBUF=NO (default) is coded on the DVMODIFY (if any)
for the device, MMU will use on ERASWRIT command instead of ERASWRAL.

143

Appendix C Terminal-Dependent Considerations
3270 Printer

If the logical message (s) created via MAPOUT could consist of
several physi cal messages, the MAPEND opti on D can be specifi ed via the
MCW, to request creation of a DDQ. This avoids any interleaved message
problems and overflow disk queuing. The DDQ Facility must be installed
to use this opti on.

If a logi cal message is larger than the physical buffer size
(requiring more than one out put message be generated), and the D option
is not used, then the Q (via FESEND) option must be used. Multiple
calls to MAPEND to retrieve the physical messages are not allowed in
this case. In any case, use of the Page Facility for output messages
is not all owed for out put-only devi ces.

C.2.2 Control Character Specifications

A special form of the FIELD macro is used to insert device
control characters. FORM\T=(1, ,CNTL) specifies that the field is
defining a control character. INITIAL=logical-control-character names
the control character to be inserted. The 3270 Printer logical control
characters that can be inserted are FF for form feed, at for Carriage
Return on the 3287 and 3289, and SI for Suppress Index on the 3288.

The user is responsible for placing the control characters in
meaningful line positions. MMU recognizes CR and SI at the end of
pri nt li nes and does not pI ace a NL charact er ium edi atel y f 011 owing a
CR or SI. The overprinted line is, however, counted as another line of
the device page. Therefore, page overflow is inaccurate if CR or SI
are used. This problem can be corrected by proper defini ti on of the
devi ce page I ength via the NOLINES parameter of the DVMODIFY macro, and
of the START posi ti on of a TRAIL -justified map (if any).

If used, it is recomnended that Form Feed (FF) be coded as the
first field of a device page (RELPOS=(1,1), ATTRIB=SUPR).

C.2.3 Map Definition For 3270 Printers

A Ml.prnoup must specify DEVICE=IBM3270P or DEVICE=ALL (default)
and MODE=OUTPur or I/O (default) to be mapped to a 3270 Printer.

Out put maps can be coded for use on all device types. If the map
is to be used for 3270 printers only, no space need be reserved for an
attribute character. If the map is to be used for other devices,
including the 3270 pri nter, the ATTRIB parameter coding on the FIELD
macro is ignored when mappi ng to a 3270 pri nt er. The FIELD macro
coding of FffiMAT=(1"CNTL) is ignored by the 3270 Display and the
Telet ype Datas peed 40 DDMs.

144

J

J

Appendix C Terminal-Dependent Considerations
3270 Pri nter

Below is an example of a map definition for a 3270 printer.

PRINl'

HEArER

DETAIL

(FLD

MAP GROUP

MAP
FIELD
FIELD
MAP
SEG~Nl'

FIELD
FIELD
END GROUP
END

DEVICE=mM3270P,MODE=OUTPtJr ,COMMAND::ERASWRIT, X
CN'lLCHR=PRNrNL,PAGESZ=(20, 80)
SIZE= (2,80) ,USAGE=HEAIER
RELPOS= (1 ,1) ,FCR MAT = (1 , ,CNTL), INITIAL=FF
RELPOS= (1,20) ,INITIAL= '**TITLE**'
S IZ E= (1 8, 80)
OCCURS=18
RELP OS= (1 , 1) , INIT IAL= ' DETA IL '
RELPOS=(1,20),FOR~T=60

145

Appendix C Terminal-Dependent Considerations
D at as peed 40

C.3 TELETYPE MODEL 40/1 and 2 (Dataspeed 40) CONSIDERATIONS

The Dataspeoo. 40/3 is not supported by Intercorrm, the 40/4 is
3270 compatible--see Sections C.1 and C .2.

To use MMU for Dataspeed 40 terminals, the following applies:

• Device-dependent processing is executed by MMUDDMl'.

• The DEVICE type is DS40 (for MAP GROUP , MMtNT macros); unless
ALL is coded.

• The maximtID
specifi ed is
devi ces) •

line size (number of columns) that may be
80 (except for long line receive-only printer

• The programmer must study and understand the operation and
format design considerations defined in the Front End
documentati on for Switched Teletype (Dataspeed) Model 40/1
and 2 termi nals (see BTAM Terminal Support Guide).

• Blanks are ~nerated for field positioning on all output maps.

• Field delimiters defined in LOGCHARS are:

------------------------ --- -----------------------
Delimiter Value

------------------------ --- -----------------------
Positional HT (Horizontal Tab)

Keyword Field Begin = (equal sign)

Keyword Field End NL (New Line)

The positional field separator of In' is required for input
fields from a formatted screen. If a map is defined for
input only and uses positional fields (RELPOS=POS) , the
SEGt£Nl' macro DELIM parameter must be used to override the HT
val ue with a se para tor character val ue, as HI' cannot be us ed
as a field separator on a blank screen. New Line may,
however, be used as a posi tional field separator with or
with::>ut override.

• I/O Maps must use RELPOS=n or (r,c) notation. In this case,
the RELPOS is that of the data; no position is needed for the
attribute location as on a 3270, unless the map is be used on
both termi nals (see below).

• I/O Maps must define ATTRIB values usi ng the same codes as
for an IBM 3270, with named unprotected (variable) data
fields delimited by unnamed protected fields.

146

Appendix C Terminal-Dependent Consi derati ons
Dataspeed 40

• I/O Maps~-every input (variable data) field must be named and
must be unprotected (ATTRIB= UAN is default). Use of other
un protected ATTRIB val ues has no added effect on the
Dataspeed 40 terminal, except that those with the letter H in
the value will cause the field to also be 'highlighted'.
Protected attribute values (all unnamed fields) may have any
3270 code starting with P, and those with the letter H will
cause the field to be 'highlighted' (field will blink).

ATTRIB=SUPR may be coded if the attribute is the same as for
the preceeding field, and both are protected; or the second
field is JX:lrt of a structured seeg:nent (attribute ignored).

• The mprotected attri bute for a named field may not be
overridden wi th a protect value at MAPOUT time. This is
because fields are input as posi tional data separated by an
HI' value, no actU3.1 field position (SEA sequence) is
transmi tted. If the request is for data-only, any protect
override attempt will be ignored. However, highlighting will
be processed/reversed, if requested.

• Form Feed may be coded as an ini tial value (X'OC') at the
begi nning of an out put map designed for a pri nter. Use:

FmLD RELPOS=1 ,ATTRIB=SUPR,INITIAL=X'OC'

(..., 0 r it may be coded at t he end of a map.

• Seeg:nent Advance (ESC U) may be coded in a map in the same way
as Form Feed (see above), however, it may not be used if a
data-only request will be issued for output mapping. It is
recomnended that all formatted screens (I/O maps) start at
the top of the first seeg:nent: Use ERASWRIT command request
at MAPEND time.

• Occuring Seeg:nents may be used. The RELPOS of the next field
(li ne) after the last occurance must be correctly calculated
when using relative position (n, or (r,c» notation.

• I n I/O maps, occuring fields may only be used in a structured
(named) seeg:nent. The fields are entered as one big field, no
separators may be used. Exception: if the occuring field
occupies an entire line (80 characters), NL may be used as an
input delimiter. MAPIN will pad each field to 80 characters
if necessary.

• Structured Seeg:nent--fields within a structured (named)
segnent may only be named (variable) fields. Code
ATTRIB=SUPR for all but the first field. The attribute of
the fi rst field is that of all fields, as the fields are
processed as one big field; the individual names being only a
us er pro grammi ng coo veni en ce •

147

Appendix C Terminal-Dependent Considerations
Dataspeed 40

• Mul ti pl e i npu t- onl y MAP S may be def i ned wi thi n a MAP CR GUP ,
however each must coopl etely defi ne the related input
message. Multiple calls to MAPIN with the same message may
only be done if the input message is kept, and each
successi ve map defines fields in the message in addi ti on to
thooe already processed (entire message reprocessed at each
CALL) •

• Named fields must be defined in the order of input. Relati ve
posi ti on notati on must be in as cending order.

• 80-character fields--if an input field must occupy 80
characters, it must be the last field in a format. However,
if less than 80 characters, but the only field on the line,
it must be delimited with a protected area (1 blank) unless
the first field on the next line is also unprotected
(ATIRIB=SUPR). A NL is transmitted by the terminal when
positioo 80 is unprotected and no NL or HT value occurred
earlier in this field.

• Defining protected fields as delimiters for unprotected input
in unnamed segnents; this is required in I/O maps even in
formats with tabbing (ESC 0/1) sequences defined. Code an
unnamed FIELD macro with a protected attribute and
FORH\T=length-of-filler-area (if no INITIAL value is
desired). Also, the beginning of a line must be protected if
the first named field on the line does not start in column 1.

• Output-only maps--attributes, and protected field delimeters
are not required. ATTRIB=SUPR may be coded for all fields.
Attributes are ignored if IOCODE=(2,DS40) is specified on the
STATIOO macro defining the terminal.

• If RELPOS=POO is coded for an input field (input-only map),
and the fi eld is delimited by a NL (New Line), the NL val ue
will be changed in the input message to an HI' valle (X'05'),
or the positiooal field separator defined by the DELIM
parameter of the preceeding SEG~Nl' macro. This is requi red
for correct MAP IN processing of a non-null segment.
Occurring fields may be used in this sit uatioo , but each
field must be entered, or a separator character us ed to
i ndi cate absence of the fi eld •

• An ESC X (unprotected) sequence is autooatically sent at the
begl nning of all out put messages (except data-only requests),
after any COMMAND and/or CNTLCHRs are inserted. This forces
the screen to be tJlprotected in case this map is replacing a
previous map that contained protected fields.

• Paging and HeaderlTrailer maps may be used for output
processing.

• Every map with protected data must end wi th an unprotected
field to lI'lprotect the rest of the screen (memory).

148

J

Appendix C Terminal-Dependent Considerations
Dataspeed 40

C. 3.1 Defining a Field for the Verb

1. RELPOS=VERB must be coded for the first unprotected field,
unless the map is processed by a locked subsystem.

2. If the program needs to process the verb, it must be a named
field.

3. Defaul t length is four (see FIELD macro description).

4. Default attribute is UAN; no other may be coded.

5. INITIAL value may be coded, which may be overridden at MAPOUT
time if the field is named.

6. The protected field delimiter position coded after the VERB
field must allow for the system separator to be entered after
the VERB, plus an HT (Horizontal Tab) or NL to position the
cursor to the next input field (IIO maps only).

7. One HT or NL, followi ng the system separator character after
the VERB on input is ignored; input assLlD.ed from formatted
screen.

8. At MAPOUT time, if no initial value is provided either by the
MAP, or the subsystem, four blanks will be sent to the screen
to clear any previously existing verb data.

C.3.2 Using the Data-Only Option for MAPOUT

If data-only is requested in the MCW at MAPOUT time, the IIO map
must start in the first memory segnent of the screen. Do not use
data-only if the terminal is a printer.

At MAPEND time, the COMMAND used is autanatically WRITE1 (hane
cursor)--like Write Initial on the 3270 CRT.

The control sequence ESC @ is generated to force the cursor to
tab to each lIDprotected (named) field to overlay the old variable data
with new data. A NL character may also be generated (lines with no
fi elds). If no data is provided by the subsystem for a field (area
contains nulls), the field will be skipped and the old data (if any)
remains displayed. See also FIELD type CB for using blanks to remove
alphameric data fields.

Field attribute overrides to change highlighting will be honored,
protection requests are ignored.

149

Appendix C Terminal-Dependent Considerations
D at as peed 40

C.4 DEFINING MAPS FOR THE IBM 3270 AND DATASPEED 40 TERMINALS

1/0 MAPs designed for IBM 3270 terminals may be used on Dataspeed
40 terminals if the Dataspeed 40 mapping restrictions defined above are
o bs er ved. P arti cul arl y:

• Named fields must be unprotected (ATTRIB=protectedl modified
data-tag-on may not be used), all other fields (screen areas)
must be protected.

• Named fields must be delimited by protected fields except as
noted above.

• Occurring fields may not be used in an unstructured (unnamed)
segnent (except out put-only maps) due to the protected field
delimiter requirement.

• Fields may not wrap around from one line to the next.

• RELPOS=VERB must be coded for the input verb field.

• Inplt map must com pI etely define the fields in the message.

• Fields must be defined in ascending relative position order.

• End of the screen (map) must be unprotected.

The major difference in maps for the two terminal types is that
posi tioo allowance must be made in IBM 3270 maps for the attribute
byte, and relative position notation indicates the position of the
data, not the attribute byte. Therefore, the lowest RELPQS is 2 or
(1,2) • This all owance is processed on Dataspeed 40 termi nals as
follows: if the field is protected and RELPQS=(n,2), the first
posi ti on on the li ne will also be protected, because the end of the
previous line must be protected. If a field with RELPQS=(n,2) is
unprotected, t ~ first position on the line will be protected (except
for line 1), l...mless the end of the previous line is also unprotected.
In this case the field should have ATl'RIB=SUPR coded, and be part of a
structured segnent. However,' if ATTRIB=UAN (default) is coded, this
unprotected field will have an extra initial character posi tion on the
Dataspeed 40 terminal (occupied by the attribute code on the 3270).

In general, the protectllnprotect status of a field is in effect
for the first data position. This means that on the Dataspeed 40
terminal each I.Ilprotected field will be one character position looger
than on the IBM 3270. This extra trailing position is used to contain
the HT indicator when the operator tabs to the next field, which is
more convenient than usi ng the CURSOR TAB key (us ed only when the field
is completely filled in). If RELPOS=AID/CURSCR is coded, it will be
ignored for Datas peed 40 terminals.

LOGCHARS specifications for the 40/1 and 40/2 are compatible with
IBM 3270 terminal definitions (see description at end of this appendix).

150

J

J

SPR 216 2/83

Appendix C Terminal-Dependent Considerations

C.5 TELETYPE AND OTHER DEVICES

For Teletype and compatible devices using the TTY line protocol,
and for oher devices using the start/stop line protocol such as the IBM
2740 and 2741, a generalized DDM ca1led MMUDDMM is provided. This DDM
contains entry points for a1l devices for which a specific DDM is not
provided (see Chapter 4 - MMU linkedit). It is important to note that
while device types must be correctly defined in the Intercomm Front End
due to protocol dependent processing, device type definitions in the
Back End tables (PMISTATB and PMIDEVTB) reflect the type of processing
desired for the specific terminal. For example, TELETYPE can be used
for all hard-copy unbuffered devices with the DEVICE macro specifying
NL as the line de limiter (CHAR parameter) and the BUFSIZE parameter
omitted. A DVMODIFY can be coded for specific terminals to define a
page (message) size limit via the NOLINES parameter. For devices
requiring a carriage-return and line-feed line delimiter (CR on CHAR
parameter), a device type of IBM27401 could be used.

For each device type for which MMU may be used, entries must be
added to the released LOGCHARS as described in Chapter 4. If a
TTY-compatible device with screen formatting capabilities is used,
ATTRIB macros must be coded to provide the field control sequences (as
for the Dataspeed 40) in LOGCHARS. Such a device could be defined as
an IMB1030 or IBM27402 to distinguish it from the standard TELETYPE
devices. The generic device type for the CPU console is IBM1050j code
CHAR=NL, the maximum line length (LEN=80 or 120) and if BUFSIZE is
coded, it should allow for a minimum of 10 lines per message.

Note the following:

• Input-only maps using non-null segments with positional,
and/or keyword mapping may be used. The DELIM parameter on
the SEGMENT or DEFAULTS macros may define a tab separator
character.

• I/O maps may be used - input mapping scans for the delimiters
specified on the DEFAULTS macro in LOGCHARS for the device
type in addition to NL (new Line) and CRLF
(carriage-return/line-feed) •

•
• For output mapping, blank spacing is generated between defined

fields, and the line delimiter is that specified for the CHAR
parameter on the DEVICE macro.

• Output message ending characters are controlled by the DEVICE
macro EOB and EOT parameters.

150.1

SPR 216 2/83

Appendix C Terminal-Dependent Considerations

• Fields must be defined in ascending relative position order.

• Fields may not wrap around from one line to the next.

.. For input mapping, the absence of intermediate fields
(including repeating fields) must be indicated by consecutive
field separators, unless they are trailing fields at the end
of the input message.

~ If a buffer size is defined (via DEVICE or DVMODIFY macros),
and a DVMODIFY macro with NOLINES coded is specified for the
terminal, output pages will be broken up into messages of
buffer size length (or less for the page end) depending on
the number of lines that will fit in a buffer.

• If neither a buffer size, nor a NOLINES value is provided,
the maximum number of lines per message for an infinite row
device is taken from the value coded for MAXROWS on the MMUVT
macro (MMUVTBL). The default is 255.

a A page size limitation (PAGESZ) for a particular map group
may be specified for output mapping on the MAPGROUP macro.

o CNTL field types will be processed for output mapping.

C.5.1 Testing MMUDDMM Processing

If the internal global &TSNAP is reset to 1, snaps of processing
by MMUDDMM may be produced as follows:

• ID = 82 - after input message processing - before return to
MAPIN to fill in the caller's symbolic map area.

It ID = 84 - after output message formatting - before return to
MAPEND.

See Messages and Codes for a detailed description of the snapped
areas. These snaps may be used in conjunction with the MAPIN and MAPOUT
snaps described in Section 4.11 to determine processing or definition
errors for new maps or terminal types processed via MMUDDMM.

150.2

Appendix C

DEFINE
DE FA t.L TS

UAN ATrRIB

UANM)T ATTRIB

UANSEL ATTRIB

UANM)SEL ATTRIB
UAHSEL ATrRIB
UAHM)SEL ATTRIB
UAX ATrRIB
UAXMDT ATTRIB
UNN ATrRIB
UNNM)T ATTRIB
UNNSEL ATrRIB
UNNM)SEL ATTRIB
UNHSEL ATrRIB
UNHM)SEL ATTRIB
UNX ATrRIB
UN XMDT ATTRIB
PAN ATrRIB
P ANM)T ATTRIB
PANSEL ATrRm
PANM)SEL ATTRIB
PAHSEL ATrRm
P AHM)SEL ATTRIB
PAX ATrRIB
PAXMDT ATTRIB
PSN ATrRIB
PSNM)T ATTRIB
PSNSEL ATrRm
PSNM)SEL ATTRIB
PSHSEL ATrRIB
PSHM)SEL ATTRIB
PSX ATrRIB
PSXMDT ATTRIB
SUPR ATrRm

ATTRIB
f

Terminal-Dependent Considerations
LOGCHARS

FORDEV= mM3270, NATRCHR=2
COt-t1AND: C' 5 ' ,CNTL aiR= C' C' , ATTRIB= (SF, X' 40 ')
LO GCODE= 1 ,PHYSCDE=(SF, 64) ,CXH~l-ENT=' UNPRor IALPHA IN 00 X
MP.L'
LOGCODE=2, PHYSCDE= (SF ,C' A') ,COMt-ENI'=' UNPROT IALPHA/MX
or ON'
LOGCODE=3, PHYSCDE= (SF,C' D') ,COMt-ENI'= 'UNPROT IALP HA IS X
ELPEN'
LOGCODE= 4 , PHYS CDE= (SF, C' E ')
LOGCODE=5,PHYSCDE=(SF ,C 'H')
LOGCODE=6, PHYSCDE= (SF,C' I')
LOGCODE=7 ,PHYSCDE=(SF ,X'4C')
LOGCODE=8 , PHYS CDE= (SF, X' 4 D')
LOGCODE=9,PHYSCDE=(SF ,X' 50')
LOGCODE=10,PHYSCDE=(SF,C'J')
LO GCODE= 11 ,PHYSCDE= (SF, C' M')
LOGCODE=12,PHYSCDE=(SF,C'N')
LO GCODE= 13,PHYSCDE=(SF ,C' Q')
LOGCODE=14, PHYSCDE= (SF,C' R')
LOGCODE=15,PHYSCDE=(SF ,X'5C')
LOGCODE= 16, PHYSCDE= (SF ,X' 5D')
LOGCODE=17 ,PHYSCDE=(SF ,X' 60')
LOGCODE= 18, PHYSCDE=(SF ,X' 61')
LOGCODE=19,PHYSCDE=(SF ,C' U')
LOGCODE=20, PHYSCDE=(SF ,C 'V')
LO GCODE=21 ,PHYSCDE=(SF ,C' Y')
LOGCODE=22,PHYSCDE=(SF,C'Z')
LOGCODE=23,PHYSCDE=(SF ,X'6C')
LOGCODE=24, PHYS CDE= (SF, X' 6 D')
LOGCODE=25,PHYSCDE=(SF ,C'O')
LOGCODE=26, PHYSCDE= (SF ,C' 1 ,)
LOGCODE=27 ,PHYSCDE=(SF ,C'4')
LOGCODE=2 8, PHYS CDE= (SF, C' 5')
LOGCODE=29,PHYSCDE=(SF ,C'a')
LOGCODE=30, PHYS CDE= (SF ,C' 9')
LOGCODE=31,PHYSCDE=(SF ,X'7C')
LOGCODE=3 2, PHYS CDE= (SF, X' 7 D')
LO GCODE=33,PHYSCDE=S UPPRESS
END

WRITE 1 COMMAND LOGCODE= 1, PHYSCDE= C' 1 '
ERASWRIT CDMMAND LOGCODE=2,PHYSCDE=C'5'
ERASWRAL CDt+fAND LOGCODE=3, PHYSCDE=X'7E'

CDMMAND END

Figure 39 LOGCHARS (Page 1 of 5)

151

Appendix C Terminal-Dependent Consi derati ons
LOGCHARS

J
RMOT CN'ILCHR LO GCODE= 1 ,PHYS CDE: C' A'
RKEYBD CNTLrnR LOGCODE=2, PHYSCDE=C'B'
RMDrKEYB CN'lLCHR LOGCODE=3,PHYSCDE:C' C'
ALARM CNTLrnR LOGCODE=4 , PHYS CDE= C' D'
ALRM{ MDT CN'lLCHR LOGCODE=5,PHYSCDE=C'E'
ALRM{KEY CNTLrnR LOGCODE=6, PHYSCDE=C' F'
ALRM{MKY CN'ILCHR LO GCODE=7 ,PHYSCDE=C' G'
PRNTNL CNTLrnR LOGCODE=8, PHYS CDE= C' H'
PRNT40 CN'ILCHR LOGCODE=9,PHYSCDE:C' Q'
PRNT64 CNTLrnR LOGCODE= 10, PHYSCDE= C' Y'
PRNTOO CN'ILCHR LO GCODE= 11 ,PHYSCDE:C '8'
PRNLRM)T CNTLrnR LOGCODE=12,PHYSCDE=C'I'
PR40RMDT CN'IL CHR LOGCODE= 13,PHYSCDE=C' R'
PR64RM)T CNTLrnR LOGCODE= 14, PHYS CDE= C' Z '
PROORMDT CN'ILCHR LO GCODE= 15 ,PHYSCDE: C '9 '
PRNLRKEY CNTLrnR LOGCODE= 16, PHYSCDE= X' 4A'
PR40R KEY CN'lLCHR LOGCODE=17 ,PHYSCDE: X'5A'
PR64RKEY CNTLrnR LOGCODE= 18, PHYSCDE= X' 6A'
PROORKEY CN'ILCHR LOGCODE=19,PHYSCDE: X'7A'
PRNLRMKY CNTLrnR LOGCODE=20, PHYS CDE= X' 4B'
PR40RMKY CN'ILCHR LO GCODE=21 ,PHYSCDE: X'5B '
PR64RMKY CNTLrnR LOGCODE=22, PHYSCDE= X' 6B'
PROORMKY CN'ILCHR LOGCODE=23,PHYSCDE: X'7B'
PRNLALRM CNTLrnR LOGCODE=24, PHYSCDE=X' 4C'
PR40ALRM CN'ILCHR LO GCODE=25,PHYSCDE: X'5C' J
PR64ALRM CNTLrnR LOGCODE=26, PHYSCDE= x' 6C'
PROOALRM CN'ILCHR LO GCODE=27 ,PHYSCDE: X'7C'
PRNLARM) CNTLrnR LOGCODE=28, PHYSCDE= X' 4D'
PR40ARMD CN'IL CHR LOGCODE=29,PHYSCDE: X'5D'
PR64ARM) CNTL rnR LOGCODE=30, PHYSCDE= X' 6D'
PROOAR MD CN'ILCHR LO GCODE=31 ,PHYSCDE: X'7D'
PRNLARKY CNTLrnR LOGCODE=3 2, PHYSCDE= X' 4E'
PR40ARKY CN'ILCHR LO GCODE=33,PHYSCDE: X' 5E'
PR64ARKY CNTLrnR LOGCODE=34, PHYSCDE= X' 6E'
PROOARKY CN'ILCHR LO GCODE= 35, PH YS CDE: X' 7E '
PRNLAMKY CNTLrnR LOGCODE=36, PHYSCDE= X' 4F'
PR40AMKY CN'ILCHR LOGCODE=37 ,PHYSCDE: X'5F'
PR64AMKY CNTLrnR LOGCODE=38, PHYSCDE= X' 6F'
PROOAMKY CN'ILCHR LO GCODE=39 ,PHYSCDE: X'7F'
NtI..L CNTLrnR LOGCODE=40, PHYSCDE= C' 0'

CN'ILCHR END

Figure 39 LOGCHARS (Page 2 of 5)

152

Appendix C Terminal-Dependent Considerations
LOGCHARS

f DATASPEED 40, MODELS 1 & 2 - EQUIVALENTS TO 3270 PARAME'IERS

*

SPACE 2
DEFINE FORDEV=OO40,NATRClIR=(VAR,4) ,NCfLaIR=(VAR, 4) , X

N CMDCHR=(VAR, 4)
DE FA UL TS roMMAND: X' 15' ,CNTL aIR=SUPPRESS, X

DELI M= (X' 05 ' ,C' = ' ,X' 15 ') , HT, = , NL , X
ATTRIB= (ESC ,C' 4' , ESC ,C' X')

* THE Fa..LOWING ATTRIBUl'ES ARE FOR UNPROTECfED FIELDS,
* PLUS HIGHLIGHT, WHEN APPLICABLE

*

SPACE 2
ATTRIB LOGCODE= UAN, PHYSCDE= (ESC ,C' 4' ,ESC ,C' X') , X

m r-oo NT= ' UNP ROf I ALP HA IN CR MAL '
ATTRIB LOGCODE= UANM:lT, PHYSCDE= (ESC ,C' 4' ,ESC ,C' X') , X

m~NT=' UNPROf I ALPHA/MDl' ON'
ATTRIB LOGCODE= UANSEL, PHYSCDE= (ESC ,C' 4' ,ESC ,C' X') , X

m~NT=' UNPROf I ALPHA ISELPEN'
ATTRIB LOGCODE= UANM:lSEL, PHYS CDE= (ESC ,C' 4' ,ESC ,C' X')
AITRIB LOGCODE:UAHSEL,PHYSCDE=(ESC ,C'3' ,ESC ,C' X')
ATTRIB LOGCODE= UAHMDSEL, PHYSCDE= (ESC ,C' 3' ,ESC ,C' X')
AITRIB LOGCODE=UAX,PHYSCDE=(ESC ,C'4' ,ESC ,C' X')
ATTRIB LOGCODE= UAXMDT, PHYSCDE= (ESC ,C' 4' ,ESC ,C' X')
AITRIB LOGCODE=UNN,PHYSCDE=(ESC ,C'4' ,ESC ,C' X')
ATTRIB LOGCODE= UNNM:lT, PHYSCDE= (ESC ,C' 4' ,ESC ,C' X')
ATTRIB LO GCODE= UNNSEL,PHYSCDE=(ESC, C' 4' ,ESC ,C' X')
ATTRIB LOGCODE=UNNM:lSEL, PHYSCDE= (ESC ,C' 4', ESC,C' X')
AITRIB LO GCODE: UNHSEL,PHYS CDE=(ESC, C' 3' , ESC, C' X')
ATTRIB LOGCODE= UNHM:lSEL, PHYSCDE= (ESC ,C' 3 ' , ESC ,C' X')
AITRIB LOGCODE=UNX,PHYSCDE=(ESC ,C'4' ,ESC ,C' X')
ATTRIB LOGCODE= UN XMDT ,PHYS CDE= (ESC ,C' 4' ,ESC ,C' X')

* THE Fa..LOWJ:NG ARE PROTECf FIELD ATTRIBUl'ES
* PL US HIGHLIGHT, IF APPLI CABLE

SPACE 2
ATTRIB LOGCODE=P AN, PHYS CDE= (ESC ,C' 4' , ESC ,C' W')
AITRIB LOGCODE=PANMDT ,PHYSCDE=(ESC ,C'4' ,ESC ,C' W')
ATTRIB LOGCODE=PANSEL, PHYSCDE= (ESC ,C' 4' ,ESC ,C' W')
ATTRIB LO GCODE=PANMDSEL,PHYSCDE=(ESC ,C' 4' ,ESC, C' W')
ATTRIB LOGCODE=PAHSEL, PHYSCDE= (ESC ,C' 3 ' ,ESC ,C' W')
ATTRIB LO GCODE=PAHMDSEL,PHYSCDE=(ESC ,C'3' ,ESC ,C' W')
ATTRIB LOGCODE=P AX, PHYS CDE= (ESC ,C' 4' , ESC ,C' W')
AITRIB LOGCODE:PAXMDT ,PHYSCDE=(ESC ,C'4' ,ESC ,C' W')
ATTRIB LOGCODE=PSN, PHYSCDE= (ESC ,C' 4' ,ESC ,C' W')
ATTRIB LOGCODE=PSNMDT,PHYSCDE=(ESC ,C'4' ,ESC ,C' W')
ATTRIB LOGCODE=PSNSEL, PHYSCDE= (ESC ,C' 4' ,ESC ,C' W')
AITRIB LOGCODE=PSNMDSEL,PHYSCDE=(ESC ,C'4' ,ESC ,C' W')

Figure 39 LOGCHARS (Page 3 of 5)

153

Appendix C Terminal-Dependent Considerations
LOGCHARS

A'ITRIB LO GCODE=PS HSEL, PH YS CDE= (ESC, C' 3' ,ESC, C' W')
ATTRIB LOGCODE=PSHM:lSEL, PHYSCDE= (ESC ,C' 3 ' ,ESC ,C' W')
A'ITRIB LOGCODE=PSX,PHYSCDE=(ESC ,C'4' ,ESC ,C' W')
ATTRIB LOOCODE=PSXMDT , PHYS CDE= (ESC ,C' 4 ' , ESC ,C' W')
A'ITRIB LO GCODE=S UP R, PH YS CDE=S UPP RESS
ATTRIB END

*
mMMAND LOOCODE= \-lUTE 1, PHYSCDE= (ESC ,C' H') , X

mI-ft£NT= 'HOl-E CURSOR ONLY (ESC,H)'
mMMAND LOGCODE= ERAS WRIT, PHYS CDE= (ESC ,C' R') , X

mI-ft£NT= 'ESC, R=HOl-E CURS OR, CLEAR SCREEN'
mMMAND END

*
OOLOiR LOGCODE= Rt-{)T, PHYS CDE= SUP PRESS
CN'ILCHR LO GCODE:R KE YBD ,PHYSCDE=SUPPRESS
OOL<BR LOGCODE=Rt-{)TKEYB, PHYS CDE= SUPPRESS
CN'ILCHR LO GCODE:AIARM,PHYSCDE: X'2F' BEL
OOL (}IR LOGCODE=ALRMUDT, PHYSCDE= X' 2F' BEL
CN'lL CHR LO GCODE: ALR ~ KEY ,PHYSCDE: X'2F' BEL
OOL <BR LOGCODE=ALR~MKY ,PHYSCDE=X' 2F' BEL
CN'ILCHR LOGCODE=PRNrNL,PHYSCDE:X' 12' DC2-PRINTER ON
OOL <BR LOGCODE=PRNT40, PHYS CDE= X' 12' DC2
CN'ILCHR LO GCODE=PRNT64,PHYSCDE: X' 12' DC2
OOL<BR LOGCODE=PRNT80, PHYSCDE= X' 12' DC2
CN'lLCHR LO GCODE=P RK.R MDT, PH YS CDE: X' 12 ' DC2 J
OOL<BR LOGCODE=PR40RMDT,PHYSCDE=X' 12' DC2
CN'ILCHR LO GCODE=PR64R MDT ,PHYSCDE: X' 12' DC2
OOL <BR LOGCODE=PR80RMDT,PHYSCDE=X' 12' DC2
CN'ILCHR LO GCODE=PRNLR KEY ,PHYSCDE: X' 12' DC2
OOL<BR LOGCODE=PR40RKE Y ,PHYSCDE= X' 12' DC2
CN'ILCHR LOGCODE=PR64RKEY ,PHYSCDE:X' 12' DC2
OOL <BR LOGCODE=PR80RKE Y, PHYS CDE= X' 12' DC2
CN'ILCHR LO GCODE=PRK.RMKY ,PH YSCDE: X' 12' DC2
OOL <BR LOGCODE=PR40RMKY,PHYSCDE=X' 12' DC2
CN'ILCHR LOGCODE=PR64RMKY ,PHYSCDE:X' 12' DC2
OOL<BR LOGCODE=PR80RMKY, PHYS CDE= X' 12' DC2
CN'ILCHR LOGCODE=PRNLALRM,PHYSCDE=(X' 12' ,X'2F') DC2,BEL
OOL<BR LOGCODE=PR40ALRM,PHYSCDE= (X' 12' ,X' 2F') DC2, BEL
CN'ILCHR LO GCODE=PR64ALRM ,PHYSCDE= (X' 12' ,X'2F') DC2,BEL
OOL<BR LOGCODE=PR80ALRM,PHYSCDE= (X' 12' ,X' 2F') DC2, BEL
CN'ILCHR LOGCODE=PRNLARMD,PHYSCDE=(X' 12' ,X'2F') DC2,BEL
OOL<BR LOGCODE=PR40ARMD,PHYSCDE=(X'12',X'2F') DC2,BEL
CN'ILCHR LO GCODE=PR64AR MD ,PHYSCDE= (X' 12' , X'2F') DC 2,BEL
OOL <BR LOGCODE=PR80ARMD ,PHYSCDE= (X' 12' ,X' 2F') DC2, BEL
CN'ILCHR LOGCODE=PRNlARKY ,PHYSCDE=(X' 12' ,X'2F') DC2,BEL
OOL <BR LOGCODE=PR40ARKY ,PHYSCDE= (X' 12' ,X' 2F') DC2, BEL
CN'lLCHR LOGCODE=PR64ARKY ,PHYSCDE=(X' 12' ,X'2F') DC2,BEL
OOL <BR LOOCODE=PR80ARKY ,PHYSCDE= (X' 12' ,X' 2F') DC2, BEL

Figure 39 LOGCHARS (Page 4 of 5)
J

154

Appendix C

*

*

NL
FF
CR
SI

CNTLCHR
CNTLCHR
CNTLCHR
CNTLCHR
CNTLCHR
CNTLCHR

DEFINE
DEFAULTS

ATTRIB
ATTRIB
COMMAND
COMMAND
CNTLCHR
CNTLCHR
CNl'LCHR
CNTLCHR
CNTLCHR
CNTLCHR

SPR 216 2/83

Terminal-Dependent Considerations

LOGCHARS

LOGCODE=PRNLAMKY,PHYSCDE=(X'12',X'2F')
LOGCODE=PR40AMKY,PHYSCDE=(X'12',X'2F')
LOGCODE=PR64AMKY,PHYSCDE=(X'12' ,X'2F')
LOGCODE=PR80AMKY,PHYSCDE=(X' 12',X'2F')
LOGCODE=NULL,PHYSCDE=SUPPRESS
END

FORDEV=IBM3270P,NATRCHR=2

DC2,BEL
DC2,BEL
DC2,BEL
DC2,BEL

COMMAND=X' F5 ' , ERASE/WRITE X
CNTLCHR=X'C8', HONOR NL/EOM FORMAT X
ATTRIB=SUPPRESS NO ATTRIBUTES
LOGCODE=SUPR,PHYSCDE=SUPPRESS ONLY DEF SUPPRESS ATTRIB
END
SAMEAS=IBM3270
END
LOGCODE=51,PHYSCDE=X'15' NEW LINE CHARACTER
LOGCODE=52,PHYSCDE=X'OC' FORM FEED CHARACTER
LOGCODE=53,PHYSCDE=X'OD' CARRAIGE RETURN CHARACTER
LOGCODE=54,PHYSCDE=X'OF' SUPPRESS INDEX CHARACTER
LOGCODE=PRNTNL,PHYSCDE=C'H' HONOR NL/EOM CHARACTERS
END

FORDEV=IBM2260
COMMAND=SUPPRESS,CNTLCHR=X' 15',ATTRIB=SUPPRESS
LOGCODE=SUPR,PHYSCDE=SUPPRESS NO ATTRIBUTES USED
END

DEFINE
DEFAULTS
ATTRIB
ATTRIB
END

~----------------------~
Figure 39. LOGCHARS (Page 5 of 5)

155

============ =======]======- ========

At tri bute P ro- Unpro- Al pha-
Code tected tected numeric

============ =======rl==-x-===
UAN(defaul t)

~~~~~::=::= :::::::[::;::: :::~:::: 
r;~;~;i~---- -------, --~--- ---~---

X 

r~;~~------ ------- X x 

L~~~~:~:---
I UAX 
------------
t UAXMDT 

!UNN 
1------------
f UNNM:lT 

[~~~~~~~~~ 
i UNNM:lSEL 

1------------
L~::: ____ _ 
i UNHM:lSEL 
f ___________ _ 

t UNX i ___________ _ 
> 

L~~: ____ _ 
~ PAN X 
Jo------------

L~~~:----- X 

~ PANSEL 

r------------
x 

~ PANM:lSEL X X 

I-;~~i~----- x X 
~------------
, PAHM:lSEL x X 

PAX x X 

x X 

x 

X 

PSNSEL X 

PSNM:lSEL X 

PSHSEL X 

PSJiM)SEL X 

PSX X 

PSXMDT X 

SUPR 

========= ======-==== 

N OnD al Hi gh
Intensity light 
========= 

X 

X 

Dis
play 

x 

x 

x 

x 

X X 

======== 

Non
display 

======== 

--~--ji-~-- --------

:::::iI-::::l:::~:::: 

----- ~~~~~j~~~~~~~: 
x 

x 

X X 

X X 

x 

X 

X 

X 

X 

X X 

X X 

x X 

x 

X 

x X X 

X X X 

X X X 

X X X 

X X x 

X x X 

X x 

x x 

=====--:==== ============r-======== 

Print 

x 

x 

X 

x 

x 

x 

x 

x 

x 

X 

x 

X 

X 

x 

x 

X 

x 

x 

x 

x 

x 

X 

X 

x 

Non
print 

X 

X 

X 

X 

NCN-
S el ec tor SELE CT OR 
P en-detec- PEN I:f:-
table TECT ABLE 

============F======== 
I X 

------------~--------
I X 

-----------~--------

-----~-----i---------
---------------------

:::::~:::::i-:::::::: t X 
-----------l----~----

-----------i----x----
I 

X I 

x ---1 
~~~~T~~~: 
X I I

----i'"----I X , -x--j---l
----T-~--

-~--T---l
---------1 1 X :

-----------T---~---- -;-- I ---~
-----;-----~--------- ----!l-~-l ___________ J_________ _ ___ j: ___ _
-----~-----~---------l-~---r-;-i
:::::~:::::l_:::;:::: I:~::j_:;:J
-----------l----x----l-;--~--~

~~~~~~~~~~~~~~~~~~~~~J----l-:-~ 1 X I X 1 
:::::~:::::J:::::::::l:;::~:~:~ 

------~::::~::::: :::::::::1~:;::~:~:jJ 
---x--I----------- ----x---- ----~-;-

----------- ---------1----1----X ___________ , ____ ~ ____ J-~-- ----

------ ----------- ----~---- I ____ ~_-:-
----------- ----:---- -:--~----x X 

X X 

X X 

X 

~~~~~~~~~I:~:: X 

--------- ---- --. ..,J

X

X

Figure 40. Intercornm Attribute Codes for IBM 3270 Terminals

156

Appendix C Terminal-Dependent Considerations

==========--======-=======-========-==========-====== ======-======

WCC
Reset

M:>T

No
Reset

MDT
Keyboard
Restore

---------- ------- ------ ------------------- ------- ------ ---------
RM:>T x

RKEYBD x x

RM:>RKEYB x x

ALARM x

ALRMUDT x

ALRKt KEY x x

ALRKtMKY x

PRNTNL x

PRNT40 x

PRNT64 x

PRNT80 x

No
Keyboard
Restore

x

x

x

x

x

x

Alarm

x

x

x

x

x

x

x

x

x

Start
Print

x

x

x

x

PRNLRM:>T x x x x

PR40RM:>T x x x x

PR64RM:>T x x x x

PR80RM:>T x x x x

PRNLRKEY x x x x

PR40RKEY x x x x

PR64RKEY x x x x

PR80RKEY x x x x

PRNLRMKY x x x x

PR40RMKY x x x x

PR64RMKY x x x

x

x

132

40

64

80

132

40

64

80

132

40

64

80

132

40

64

Figure 41. Intercomm Control Characters (WCC)Codes for IBM 3270 Terminals
(Page 1 of 2)

157

Appendix C Terminal-Dependent Considerations

-------------------- =======-======== =======-======= =========F========= ====== ----------------- ------
No No No

Reset Reset Keyboard Keyboard No Start Start Line
wec MDT MDT Restore Restore A 1 ann A 1 ann P ri nt Print L engt h*

=========== ======= ======= =========F========= ====== ============ =======p=======
PR80RMKY x x x x 80

----------- ------- ---------~--------- ------ ---------------
PRNLALRM x x x x 132

----------- -------~---------~--------- ------~----- ---------------
PR40ALRM x x x x 40

----------- ------- ------- -------- ~--------- ------ ------ ---------------
PR64ALRM x x x x 64

----------- ------- ------- ---------~--------- ------
PR80ALRM x x x x 80

1----------- ------- ------- ---------~--------- ------
PRNLARMD x x x x 132

----------- ------- ------- ---------~--------- ------ ------------ ------ --------
PR40ARMD x x x x 40

----------- ------- ------- ---------~--------- ------ ------ ------ --------
PR64ARMD x x x x 64

----------- ------- -------~---------'---------- ------
PR80ARMD z x x x 80

----------- ------- ---------------- ---------- ------~------------ ------ --------
PRNLARKY x x x x 132

-----------.-------~-----------------~--------- ------ ----- ------ ------ --------
PR40ARKY x x x x 40

--;;64;;KY-~-----------~-------~-----'----------~--~--- ---------~-- -----------64-- J
----------- ------- ------- ------------------- ------ ----- ------ ------ --------

PR80ARKY x x x x 80

----------- ------- -------~------------------- ------ ------------ ---------------
PRNLAMKY x x x x 132

----------- ------- ------- ------------------- ------ ------~----- ------ --------
PR40AMKY x x x x 40

------------------- ------- ------------------- ------------ ------
PR64AMKY x x x x 64

----------- ------- -------~------------------- ------~----- ---------------
PR80AMKY x x x x 80

----------- ------- -------~------------------- ------ ------~----- ------ ---------
NULL x x x x

*A line length of 132 indicates a variable length (delimited by NL) up to 132.
RMIYl'KEYB is the default for IBM 3270 CRTs.
PRNTNL is the defaul t for IBM 3270 Printers.

Figure 41. Intercomm Control Characters (WCC) Codes for IBM 3270 Terminals
(Page 2 of 2)

158

Appendix D

MHU PROCEDURES AND UTILITIES

This chapter contains the specifications for Intercomm procedures
and utilities used for MMU. The following procedures and off-line
utilities are defined:

COPRE
DEFSYM
LOADMAP
SYMGEN

Further details on using these procedures and utilities are
described in Chapter 4.

159

SPR 216 2/83

Appendix D
COPRE

MMU Procedures and Utilities
COPRE

COPRE

The COPRE program utility is used with COBOL subsystems which
require a step prior to compilation to include symbolic map definitions
subordinate to the 01 level Dynamic Working Storage definition in the
Linkage Section. Execution JCL specifications for COPRE are:

II EXEC PGM=COPRE , PARM= , {cc} ,
{tt}

IISTEPLIB DD DSN=INT.MODREL,DISP=SHR

IISYSIN DD {DSN=symbolic-li brary(member) ,DISP=SHR}
{* }

IISYSPUNCH DD {DSN=symbolic-library(member),DISP=OLD}
{SYSOUT=B }

IIPDSDD DD DSN=symbolic-library(copy-member),DISP=SHR

where:

PARM=
specifies the two-character prefix in columns 7-8 which identify
the COpy statements. COPY statements are converted to comments
cards. The default is $$.

symbolic-library
o For SYSIN it specifies the library containing the input COBOL

source program, and the name of that program (member).

'" For SYSPUNCH it specifies the library to contain the COBOL
source program which copied the symbolic maps, and the (new)
name of the program (member). Use DISP=SHR if the same
symbolic library is also used for SYSIN or PDSDD.

• For PDSDD it specifies the library referenced in the OLIB,
and the copy member defined in the NAME, parameters of the
SYMGEN procedure.

If the COPRE execution is successful, a completion code of 0 is
returned. Otherwise, a COPRE completion code of 12 is returned and
indicates that either the two-character prefix was found but the COpy
statement was not found, or the prefix and COpy statement were found
but the member name to be copied was not found on PDSDD.

160

J

J

L

L

SPR 216 2/83

Appendix D
DEFSYM

MMU Procedures and Utilities
DEFSYM

DEFSYM

The DEFSYM catalogued procedure is used to generate the symbolic
language dependent forms of the device descriptions (released as
LOGCHARS). Execution JCL specifications for DEFSYM are:

where:

P=

Q=

LANG=

OLIB=

NAME=

II EXEC DEFSYM,P={ppp},Q={xxx},LANG={PLI},
{INT} {MDP} {COB}
- - {ASM}

II OLIB={'ppp.SYMxxx'},NAME=xxxxxxxx
{'INT.SYMUSR'}

is the high level qualifier name of the source libraries. The
default is INT.

is the suffix of the library data set name (ppp.SYMxxx) which
contains the source device descriptions member (LOGCHARS). The
default is MDF.

is the symbolic source statement language to generate.

is the library to contain the generated symbolic device
descriptions. The default is 'INT .SYMUSR' • This library cannot
be the library defined for Q.

is the name of the source library member containing the device
description macros (LOGCHARS), which must be on the library
specified for Q.

The generated symbolic device description member names are
PLILOGCH, COBLOGCH or ASMLOGCH, respectively.

To print a listing of the symbolic output from DEFSYM, use the
Intercomm procedure PMIPRT, as follows:

II EXEC PMIPRT,P=ppp,Q=xxx,NAME={ASM}LOGCH
{COB}
{PLI}

where P and Q are the same library prefix and suffix values as
specified for the OLIB parameter on the DEFSYM procedure.

161

Appendix D
LOAIMAP

LOADMAP

SPR 216 2/83

MMU Procedures and Utilities
LOADMAP

The LOADMAP program utility (linkedit as LOADMAPS) is used to
load internal map load modules from the Map Definition File MODMDF (all
map groups) or from a temporary or test map load library (single or a
few map groups) to the on-line Store/Fetch map data set. Execution JCL
specifications for LOADMAPS are:

//stepname
/ /STEPLIB
/ /SYSLIB
//SYSPRINT
/ /INTSTORx
//

where:

EXEC PGM=LOADMAPS,REGION=rrrK
DD DSN=INT.MODREL,DISP=SHR
DD DSN=INT.MODMDF,DISP=OLD
DD SYSOUT=A,DCB=BLKSIZE=mmm
DD DSN=INT.username,DISP=OLD,

DCB=(DSORG=DA,OPTCD=EF,LIMCT=n)

rrr=region size
mrnm=multiple of 121,+4
x corresponds to MMUVT macro HAPDDNM parameter. It is

released with a value of 2
n is the same LIHCT used in on-line execution JCLj in

the range of 1-to-3 inclusive.

The input library (SYSLIB) for LOADMAPS must contain only map
definitions in internal form. The resulting Store/Fetch data set
contains one data string for each map within a map group. Input
libraries may not be concatenated on SYSLIB. Only one PDS may be input
per execution step. A listing of the keys (map group name, map name)
of all loaded maps is produced on SYSPRINT.

The LOAIMAPS region size varies depending on Store/Fetch data set
block size. A region of 100K is sufficient for loading blocks of 2400
bytes.

If LOAIMAPS does not execute successfully (completion code not
equal to 0), an error message is printed (SYSPRINT). The indicated
error condition must be corrected and the job executed again after
scratching and recreating the Store/Fetch data set. If the error
message indicates that no space is left (within the defined LIMCT) on
the Store/Fetch data set, either the LIMCT for this data set must be
increased (also in on-line JCL), or the entire map loading process must
be performed again after creating a larger Store/Fetch data set. •

162

J

J

Appendix D
LOAIMAP

SPR 216 2/83

MMU Procedures and Utilities
LOADMAP

IF map loading is done while Intercomm is executing on-line, then
the on-line Store/Fetch data set must specify DISP=SHR and be dedicated
to MMU maps only. It cannot be used for any other purpose (not even
transient strings). Also, that same Store/Fetch data set must have
DISP=SHR coded in the LOADMAPS execution JCL. Two concurrent executions
of LOADMAPS for the same Store/Fetch data set may not be done; results
will be unpredictable.

It is recommended that the on-line subsystem(s) accessing the
map(s) to be loaded be temporarily quiesced via the DELY system command
or the MRS COMM$STOP control command (if the subsystem is executing in
a satellite region under the Mul tiregion Facility). The MMU control
command MMUC should then be used to delete the in-core copy of any
map(s) being reloaded, so that the next subsystem request for those
maps will access the newly loaded version. Also, if changes to a
reloaded map will affect the symbolic version of that map, the SYMGEN
procedure must also be executed to generate the new symbolic map, the
affected subsystem must be recompiled, and the new version of that
subsystem must be loaded (via the LOAD command) to coordinate its MMU
request processing with the new version of the map. Note that if new
message processing by a dynamically loaded subsystem is quiesced for
several minutes or more, the current version of the subsystem is
automatically deleted by the Subsystem Controller; the new version is
automatically loaded when the subsystem is reactivated.

163

•

l

SPR 216 2/83

Appendix D
SYMGEN

MMU Procedures and Utilities
SYMGEN

SYMGEN

The SYMGEN catalogued procedure is used to assemble the symbolic
language-dependent form of the map definitions. Execution JCL
specifications for SYMGEN are:

where:

P=

Q=

LANG=

OLIB=

NAME=

II EXEC SYMGEN,P={ppp},Q={xxx},LANG={ASM},
{INT} {MDF} {COB}
- - {PLI}

II OLIB={'ppp.SYMxxx'},NAME=xxxxxxxx
{'INT.SYMUSR'}

is the high level qualifier name of the source libraries. The
default is INT.

is the suffix of the data set name (ppp .SYMxxx) which contains
the map defining macro statements. The default is MDF.

is the symbolic source statement language to generate.

is the library to contain the generated symbolic map definition.
This library may not be the same as that defined for the Q
parameter. The default is 'INT.SYMUSR'.

is the member name of the input mapping macros and the member
name of the symbolic definition generated. This name is
referenced by the application programmer to copy the symbolic
maps into the program.

If the map group used as input to the SYMGEN procedure resides on the
same library as that desired for GLIB, then the output member name must
be different from that specified for NAME, and JCL must be added to the
above to override the output library and member name defaults as
follows:

IIASM.SYSPUNCH DD DSN=OLIB-library-name(member-name),DISP=SHR

To print the symbolic map produced by the SYMGEN procedure, use
the Intercomm procedure PMIPRT, as follows:

II EXEC PMIPRT,P=ppp,Q=xxx,NAME=xxxxxxxx

where P and Q reference the GLIB library, and NAME is the generated
symbolic member name, as specified for the SYMGEN procedure.

164

SPR 216

AIDDATA. See IBM 3270 Display
Station.

AID processing. See IBM 3270
Display Station.

ALTBUF parameter
(DV~10DIFY macro)

Alternate Buffer Processing
ASMLOGCH member

75, 143
142, 143

--defined
--and installation

ASMPCL procedure
--and ENDGROUP macro

5, 44
65, 69, 72, 161

--and installation
Assembler Language

--and input mapping
--and map definition
--and MAP macro
--and MAPCLR module
--and MAP END module
--and MAPFREE module
--and MAPGROUP macro
--and MAPIN module
--and MAPOUT module
--and MAPURGE module
--and output mapping
--and service routines
--subsystem design

ATTRIB macro
--and DEFINE macro

88
67, 72-73, 77

45, 48
34

100
120

122-123
126-127

104
128-129

134
136
50
37

43-44, 63-64

--described 70-71,
114-115

107, 150. 1
188

107-109
--and overrides
--parameters

ATTRIB parameter
(DEFAULTS macro) 112-113

ATTRIB parameter (FIELD macro)
--and attribute transmission

suppression
--described
--and IBM 3270 Display

Station 138-139,
--and IGM 3270 Printer
--and performance

considerations
--and RELPOS parameter
--and structured segments
--and Teletype Dataspeed 40

50, 138
91

141 , 150
144

48, 55
97
21

Models 1 and 2 146-147,150
--and unlabeled fields 18, 90

Attribute override
--described 19

165

2/83

Page

--and input/output mapping 16-17, 58
--and output mapping 48, 50

BASED parameter (MAP macro)
BDEVICE macro

98
141-142

81
84

BEGN command
BTERM macro
BTVERB macro

--and FIELD macro 97
--and IBM 3270 Display

Station
BUFSIZE parameter

(DEVICE macro)
BUFFRSZ parameter

(DVMODIFY macro)

138-139,141

75, 150. 1

75, 142, 143

Cancelling a logical message
CHAR parameter (DEVICE macro)
Character string. See String

51, 136
150.1

processing.
CNTL parameter (FIELD type)

27-28, 91-94, 144, 150.2
CNTLCHR macro
--and ATTRIB macro
--and DEFINE macro
--described
--and FIELD macro
--and overrides

CNTLCHR parameter
(MAPGROUP macro)

COBLOGCH member
--defined
--and installation

COBOL
--and FIELD macro
--and map definition
--and MAP macro
--and MAPCLR module
--and MAPEND module
--and MAPIN module
--and MAP OUT module
--and MAPURGE module

107-108
114-115

70-71, 110
94

118

103, 141

5
65, 69, 72, 161

89
35

100
120
123
129
134
136

--and service routines 37
21

42, 59-60
73, 74

--and structured segments
--subsystem design

COBUPCL procedure
COMMAND macro

--and DEFINE macro
--described
--and overrides

114-115
70-71, 107-108

118

SPR 216 2/83

CONNAND parameter
(DEFAULTS macro)

CO~jAND parameter (NAPGROUP
--and alternate buffer

processing
--described
--and IBM 3270 Printer
--and overrides

Commands--described

112-113
macro)

COND parameter (FIELD macro)
Controllers--described
Conversion of fields

142
102-103

143
54
3

28,90,92
3

26
73, 160

41
150.1

COPRE module
COpy members
CPU Console, defining the
CTCIiAR parameter

(WRITE command) 141-142

DDQ. See Dynamic Data Queuing.
DDQDSTBL (DDQ table) 117

84
84

3, 112-113

DDQRSRT parameter (BTERN macro)
DDQSTART module
Defaults
DEFAULTS macro

--and ATTRIB macro
--described
--function
--and MAPGROUP macro
--and overrides
--parameters
--and SEGMENT macro

DEFINE macro
--and ATTRIB macro
--and DEFAULTS macro
--described
--function
--and internal device

description generation
--parameters

DEFSYM procedure
DELIM parameter

107
70, 112

70-71
103

54-55, 118
112-113

106

107, 109
112-113

70-71
69

72
114-115
72, 161

(DEFAULTS macro) 112-113, 150.1
DELIM parameter (SEGMENT macro)

--and DEFAULTS macro 70, 113, 150.1
--described 105-106
--and general devices 150.1
--and nonnull segments 23
--and RELPOS parameter

(FIELD macro) 96

166

--and Teletype Dataspeed 40
Models 1 and 2

DELY command
Device definition macros
Device Description Table

--and ATTRIB macro
--and DEFAULTS macro
--defined

146
163

69-71

107-108
112

--and delimiter definition
3, 5

10
94

Station 138
65, 68-69, 72

41

--and FIELD macro
--and IBM 3270 Display
--and installation
--and subsystem design

Device-dependent form
Device-independent form.

37, 45

See Normal form.
DEVICE macro
--and delimiter definition
--and end-of-line character

insertion
--and hard copy output
--and IBM 3270 Printer
--and MAP GROUP macro
--and network definition

10

28
53

143
104
74

DEVICE parameter (MAPGROUP
--described
--and IBM 3270 Printer
--and MAPFREE module

macro)
102-103
143-144

127
--and Teletype Dataspeed 40

Models 1 and 2 146
DEVICES parameter (MMUVT macro) 116
Device Table (Back End) 5,65,73,150.1
DSECT parameter (MMUVT macro) 116-117
DS40. See Teletype Dataspeed 40

Terminals.
DVMODIFY macro
--and
--and
--and
--and
--and

general devices
hard copy output
IBM 3270 Display
IBM 3270 Printer
MAPGROUP macro

150.1-150.2
53, 75

Station 142
143-144

104
--and network definition

Dynamically loadable subsystems
Dynamic Data Queuing

--and execution JCL
--and IBM 3270 Printer
--and MAPEND module
--and
--and
--and
--and

message disposition
MMUVT macro
page overflow processing
restart

73-74
43

83
144
122

53-54
117

51
84

J

SPR 216 2/83

END parameter (ATTRIB macro)
END parameter (CNTLCHR macro)
END parameter (COMMAND macro)
ENDG}(OUP macro

107,108
107,110
107,111

--described
--function
--and SEGMENT macro

88
8, 15

--and structured segments
105

21
17
47

Error flag byte
Error processing

FECM (Front End Control
. Message)

FESEND module
Field--defined
Field attribute

54, 84,
53-54, 122,

122
144

7
3

3, 10 Field de limi ter
FIELD macro
--and AID processing
--and Assembler Language

138

43
138

subsystems
--and attribute location
--and attribute transmission

suppression 50
--and Buffer Control Orders 140

138-139
89

8, 14-15
141

Station 138
143-144

45

--and cursor positioning
--described
--function
--and HDR3270
--and IBM 3270 Display
--and IBM 3270 Printer
--and input mapping
--and logical device control

characters
--and nonnull segments
--parameters
--and repetitive fields
--and structured segments

27
23

89-97
25

20-21
32
23

17-18

--and template screens
--and unstructured segments
--use

Field types
File Attribute Records
Flag/attribute bytes
FORDEV parameter

(DEFINE macro)
FORMAT parameter (FIELD

--described
--and editing
--and IBM 3270 Printer

26-27
78, 83

8, 19, 21

109, 114
macro)

89-90, 92
18

143-144

167

--and INITIAL parameter
--and JUSTIFY parameter
--and verbs

Formats
--fixed
--keyword

--combined with positional
--defined
--delimi ters

--positional
--combined with keyword
--defined
--delimi ters
--and input mapping

94
95

27, 139

9, 12

29
9-11

106

29
9, 11-12

106
45

Hard copy output
HDR3270 parameter

(BTVERB macro)

53, 75

97, 138-139, 141

IBM 2260 Display Station
--LOGCHARS definition
--and MMUDDMF

IBM 2740 terminal
--considerations
--device definition example

IBM 2741 terminal
--considerations
--device definition example

IBM 3270 Display Station
--AID processing
--AIDDATA processing
--alternate buffer processing

103
155
82

150. 1
71

150. 1
71

--attribute codes 55, 138,

138
140
142
156
140 --color processing

--and concurrent use
and local devices

--and COND parameter
(FIELD macro)

--cursor positioning
--and DEFINE macro

of remote

--and DEVICE parameter
(MAPGROUP macro)

--and device specification
--EOF key
--and field definitions
--and HDR3270 parameter

(BTVERB macro)
--and LOCK processing
--and numeric input and

keyboard lock

141

28
138
114

103
140
141
138

141
140

141

SPR 216 2/83

--and orders 140
--and output mapping the

verb field
--and performance consideration

139
55

--and RELPOS parameter
(FIELD macro)

--selectable fields
--and STATION macro

96-97
139
76

--and Teletype Dataspeed 40
Mode ls 1 and 2

--and variable data
output mapping

--WCC specifications
IBM 3270 Printer

--and DEVICE macro
--and DEVICE parameter

(MAPGROUP macro)
--and DVMODIFY macro
--mapping considerations

150

58
141, 157-158

75-76

103
75-76

143
--and message disposition
--and output mapping routines

54
53
76 --and STATION macro

--support considerations
IBM 328x printers. See IBM

Printer.
ICOMLINK macro

143-145
3270

INITIAL parameter (FIELD macro)
- -descri bed

81-83

94
--and IBM 3270 Display Station

orders
--and IBM 3270 Printer
--and JUSTIFY parameter
--and output mapping the

verb field
--and RELPOS parameter
--and unlabeled fields

Installation
--description, general
--device definition

--device description and

140
143-144

95

139
97

18, 90

5
68

installation 71
--macros 69-71
--supplied device descriptions 69

--execution JCL 83
--linked it requirements 81-83
--loading on-line map definitions 80
--map generation 67-68
--network definition 73
--preparation 65-66
--restart when using DDQ Facility 84

168

--Store/Fetch data sets 77
--Store/Fetch map data set 78
--Store/Fetch optimization

and tuning 79
--Store/Fetch temporary storage

data set 79
--subsystem compilation/assembly 73
--Test Mode snaps 84
--Vector Table generation 77

Internal form 8
INTSTORO data set 83, 117
IOCODE parameter (STATION macro) 73

JCL 83
JUSTIFY parameter (FIELD macro)
--described 89-90, 95
--and editing 18
--and INITIAL parameter 95
--and repetitive fields 26

JUSTIFY parameter (MAP macro)
--and alternate buffer

processing
--described

KEYCREAT utility
Keywords

Labeled field--defined

142
98-99

65, 78-79
24

LEN parameter (DEVICE macro)
Length bytes

7
75

18-19
LENGTH parameter

(SEGMENT macro)
LIBELINK procedure

--and ENDGROUP macro
--and internal device

23, 106

88

description generation
--and internal map generation

72
67-68

77
7

--and Vector Table generation
Line--defined
LINESZ parameter

(DVMODIFY macro)
Linkedit requirements
Link Pack Facility
LOAD command
LOADMAP utility
--and Assembler Language

subsystems
--described
--error messages
--and initial loading of

map definitions

75, 142-143
81

5, 82
163

43
162-163

162

80

SPR 216

--and internal map generation 67
--JCL requirements
--linked it
--region size

162-163
80

--and Store/Fetch map data set
162
65

--and subsequent loading of
map definitions 81

LOADMAPS. See LOADMAP utility.
LOGCHARS member

--and attribute codes 50
--and device descriptions

5,41,150.1,161
--and IBM 3270 Display

Station 138, 141
--and IBM 3270 Printer 151-155
--and installation preparation 65
--internal forms 69
--and overrides 55, 103
--sample listing 151-155
--and symbolic device

description generation
--and Teletype Dataspeed 40

terminals
--and template screens

LOG CODE parameter
(ATTRIB macro)

Logical message--defined

Macros

72

150
32

107-108
37

--coding conventions
--device descriptor
--map definition

Map--defined
MAPCLR module

86-87
70-71, 107-118

14-15, 88-106
7

--described 120-121
--function
--and input/output mapping
--and overriding attribute values

38
56
50
50 --and page overflow processing

MAPDDNM parameter
(MMUVT macro)

Map definition
--coding examples
--formats

--fixed
--keyword
--notation
--positional
--relative position

--maps and map groups

116-117

15, 29-33

12
10-11
9-10

11-12
13

16-17

169

2/83

--map specification and
macro coding

--segments and fields
--COND=ENTERED fields
--defining field as logical

14-15
17-28

28

control character 27-28
--defining verb as field 27
--field types and conversion 26-27
--flag/attribute byte 19
--and IBM 3270 Display Station 28
--labeled and unlabeled fields 17
--length byte 18-19
--prefix area 18
--repetitive fields

and segments
--segment types

--nonnull
--structured
--unstructured

--YES/NO fields
--terminology and concepts

Map Definition File
MAPEND module

--and cancelling a logical
message

25

23-24
20-22
22-23

28
7-8

5, 8

51
-- des cr i bed 122-123
--function 38
--and IBM 3270 Display Station 141
--and IBM 3270 Printer 143-144
--and initial (template) data

output mapping 5.7
--and MAPGROUP macro 103
--and MAP OUT macro 133
--and message disposition 53-55
--and output mapping 49
--and page overflow processing 51
--parameters 123-124
--performance considerations 55
--return codes 125
--and Store/Fetch temporary

storage data set
--and Teletype Dataspeed 40

terminals
--and Vector Table generation

Map generation
Map group
--defined
--and ENDGROUP
--input
--input/output

macro
16,

16-17,

79

147
77

67-68

8
15

150. 1
150. 1

SPR 216 2/83

--and MAPGROUP macro
--output
--and subsystem design

MAPGROUP macro
--and Assembler Language

subsystems
--described
--function

102-104
16
38

--and hard copy output 53, 75,

43
102

8, 14
150.2

--and IBM 3270 Display
Station

--and IBM 3270 Printer
--and initial (template)

data output mapping
--and internal map generation
--and MAPEND macro
--and MAPFREE module
--and MAPIN module
--and MAP macro
--and overrides
--parameters
--and Teletype Dataspeed 40

terminals

141-142
143-144

57
67

122
127
127

99, 101
118

102-104

--and transmission preparation
Map group mode--defined

146
54
8

MAPIN module
--calling formats
--described
--field data after

input mapping
--function
--and input mapping
--and MAPCLR module
--options in MCW
--parameters
--return codes

129
128

.131-132
38

45-48
120
128
129
130

--and Teletype Dataspeed 40
terminals

MAP macro
147

--and Assembler Language
subsystems

--described
--function
--and IBM 3270 Display
--parameters
--and SEGMENT macro

43
98

8, 14
Station 142

98-101

--and structured segments
105

21
--and Teletype Dataspeed 40

terminals
--and unstructured segments

148
23

170

MAP OUT module
--calling formats
--described
--and FIELD macro
--function
--and IBM 3270 Display

Station
--and IBM 3270 Printer
--and initial (template)

data output mapping
...;-and MAPCLR module
--and MAPEND module
--and MMUVT macro
--options in MCW
--and output mapping

134
133

91
38

139, 142
143-144

57
120
122
117
133

--cancelling a logical message 51
53
50

--hard copy output
--overriding attribute values

--page overflow processing
--performance consideration

50-52
55

--transmission preparation
and message disposition 53-55

--parameters 134-135
--return codes 135
--and Store/Fetch data set 78-79
--and structured segments 22
--and Teletype Dataspeed 40

terminals
--and variable data output
--and Vector Table generation

Mapping--defined
Map specifications and

147
57-58

77
8, 37

macro coding
MAPURGE module
MAXCOLS parameter

(MMUVT macro)

14-15
38, 51, 54, 136

116-117
MAXROWS parameter

(MMUVT macro)
MAXTYP parameter

(MMUVT macro)

101, 116-117, 150.2

MCW options
--and MAPCLR module
--and MAPEND module
--and MAPFREE module
--and MAPGROUP macro
--and MAPIN module

116-117

120
122
126
103
128

MDF (data set suffix)
65-68,74,161,164

MDT (Modified Data Tag) 25, 58, 91
Message headers 45

J

SPR 216

MMUC command
MMUCOMM subsystem
MMUDDM module
MMUDLMF module
HHUDDMM module

--and processing snaps
MMUDDMT module
tvIMUDDMU module
MMUVT macro

81, 84, 163
82, 84

82, 138
82

82, 150.1
150.2

82, 146
82, 143

--described 116
--and execution JCL 83
--and MAP macro 101
--parameters 116-117
--and Vector Table generation 77

MMUVTBL Table. See MMUVT and Vector
Table.

MODE parameter
(MAPGROUP macro)

MODMDF library
Multiregion Facility

NATRCHR parameter
(DEFINE macro)

NCMDCHR parameter
(DEFINE macro)

NCTLCHR parameter
(DEFINE macro)

Network definition

102-103, 144
65-68, 81

84, 163

114-115

114-115

114-115
73

NOLINES parameter
(DVMODIFY macro) 75,142-144,150.1-2

Nonnull segments
--defined
--described
--and RELPOS parameter

(FIELD macro)
--and SEGMENT macro

Normal form
Null segments

Occurring fields
Occurring segments
OCCURS parameter

14
23-24

96
105-106

37, 45, 48-49
20, 96-97, 105

7,25-26, 147
7, 25-26, 147

(FIELD macro) 25, 89-90, 95
OCCURS parameter (SEGMENT

macro) 20, 22-23, 25-26, 105-106
OPMDDNM parameter

(MMUVT macro)
Output map groups
Output mapping

83,116-117
16

--cancelling a logical message 51·

171

2/83

--descri bed
--hard copy output
--logic
--map definition
--overriding attribute values -

48-49
53
52
30
50
51
55
20

--page overflow processing
--performance consideration
--structured segments
--transmission preparation and

message disposition

PAGDDNM parameter
(MMUVT macro)

Page--defined
Page Facility

53-55

83, 116-117
7

--JCL requirements 83
--and message disposition 53-54
--and multiple page output . 51
--and output-only devices 1~4
--and performance con;:;iderat;i.on;:; 55

Page overflow processing 50-52,55,901
PAGESZ parameter (MAPGROUP .macro)
--described 102, 104
--and general devices 150.2
--and hard copy output. 53, 75
--and IBM 3270 Printer 143
--and MAP macro 99, 101

Parameters for service routines 38-40
Performance considerations 55
PGMRES parameter (MAPGROUP macro)

--and Assembler Language '.- .
subsystems

--des cr i bed
--and MAPFREE module
--and MAPIN module

PHYSCDE parameter
(ATTRIB macro)

Physical message--defined
PLIENTRY
PLILOGCH

--and device description
--function
--and installation
--and PL/I subsystems
--and symbolic device

description generation
PLIXPCL procedure
PL1XPCL procedure
PL/I
--and MAP macro

43
'102"l04

J,27
128.,.129

107, 1.09
37
43

72,

98,

5
69
.6.5

".43

J6-1
73
73

100

SPR 216 2/83

--and MAPCLR module
--and MAP END module
~-and MAPIN module
--and MAPOUT module
~-and MAPURGE module
--Optimizer

120
123
129
134
136

--and freeing the mapped
l.nput area

--and MAPCLR module
--and
--and
--and
- and
--and

MAP END module
MAP FREE module
MAP IN module
MAPOUT module
MAPURGE module

--subsystem design
--sample symbolic map
--and service routines

43,

48
120
123
126
129
134
136

--and structured segments

61-62
36
37
21

--subsystem design 43
PMIDEVTB. See Device Table.
PMIPL 1
PMIPRT procedure

43
68, 74

PMISTATB. See Station Table.
Prefix 8, 18-19, 21

Queue Control File 84

RDW 8
REDEFIN parameter (MAP macro) 98, 100
RELPOS parameter (FIELD macro)
--and ATTRIB parameter 91
--and control character

specification
--and defining verb as
.--described
--and IBM 3270 Dis.play

. --and 'OCCURS ~rameter
RELPOS paramefer

(SEGMENTtn~cr_9)
Remote CPUs
Repetitive fields
Repetitive segments
Re~tart
R ESTARTop don

SAMEAS parameter
(ATTRIB macro)

-~illustrated
Screen-~defined

field
89-90,

Station

144
27

96-97
28
95

23,105-106
44, 140-141

25-26, 95
25-26

84
84

107, 109
71

7, 105

172

Segment
--advance
--defined
--labeled
--non-null
--null

and

--occurring
--prefix area

147
7, 105

unlabeled 17-18, 105
23-24, 96, 150. 1

20, 96, 105
7, 147

18-19

96
~-and RELPOS parameter

(FIELD macro)
--and RELPOS parameter

(SEGMENT macro) 106
25-26

20-22, 96, 105, 147
20, 105

14, 20-24, 96-97, 105

--repeti ti ve
--structured
--types
--unstructured

SEGMENT macro
--and DEFAULTS macro
--and defining verb as field
--and delimiters
--described

10, 70,
14,

113
27

113
105

8
23
70

105-106

--function
--and nonnull segments
--and overrides
--parameters
--and prefix area
--and RELPOS parameter

(FIELD macro)
--and repetitive segments
--and structured segments
--and Teletype Dataspeed 40

terminals
--and unstructured segments

Service routines
--codes
--described
--functions
",:,-and MAP macro
--member names
--parameters

38-39,

SIZE para~ter (MAP macro)
--and alternate buffer

18

96-97
25-26
20-22

146
22-23

42
119-136

4
98
42

39-40

processing 142
--described 98, 100
--and hard copy output 53
--and IBM 3270 Display Station 142

SNA/VTAM networks 142
Snaps

--MAPIN and MAPOUT 84
--MMUDDMM processing 150.2

SPR 216 2/83

--Test Mode
SPA extension
SPALIST macro
START parameter

84
44

10, 79

96, 98, 100-101 ~ 142
73,143

5, 65,73~ 150.'1
(SPALIST macro) 79

(MAP macro)
STATION macro
Station Table
STOCORE parameter
STORAGE macro
Store/Fetch Facility

--and Assembler Language,
subsystems

--execution JCL

, ' 50

, J

--and installation preparation'

43
83
65
82 --and linkedit

--and LOADMAP utilify
--map data set
--and MMUVT macro
--optimization of
--and output mapping
--required data sets
--statistics

81
78

117
79
49

77-78

--temporary storage data set
80
79

5, 79
45, 48

--tuning of
STORFREE macro
String Processing
--described 4-5,
--and device definition
--and fixed field formats
--and MAPGROUP macro
--and message disposition

8, 44-45
69

12,23,47
102-103
53, 54

73
163

Subsystem assembly/compilation
Subsystem Controller -
Subsystem design

--Assembler Language
--COBOL
--COPY members
--device descriptions

43-44,63-64
4j,59-60

41
41

--input mapping , ,
--field error processing
--freeing mapped input area
--in stages
--performance considerations

--input/output mapping
--ini tial (template) data

output mapping
--variable data

output mapping
--language-dependent

considerations

45-48
. '47

48
47
48

55..;58

, '·'57

57~58

41

f73

--mapping character strings' -44
--output mapping , 48'-55

--cancelling a logical message '51
--mapping hard copy output '" '53
--overriding attribute val~~s;' 50
--page overflow processing 50-51
--performance cons idet'ati ons- " 55
--transmission pre'paration and

message diaposi tion '~·'53-55
--overview 37
--PL/I
--service routines

and parameters
--structure

Symbolic map
--defined
--generation
--printing

SYMGEN procedure 68.,73',
SYMMDF library
System Tuning Statistics

38-40
, 58-64

. 8
, 6'8

68
163-\64

'.65"
80

TDWN command '84
TELETYPE and compatible terminals

71, 103, 150.1-2
Teletype Dataspeed 40 t'ermirials
--considerations 146-149
--and DEFINE macro ,,114
--and IBM 3270 Display Station 150
--and IBM 3270 Printer 144
--and MAPGROUP name'ftJ3

Template screens~' ,.
--coding example 15
--defined ' " f3
--and IBM 3270 Display .Station 32
--and initial data: outpu:t mappfng"57
--and input/outpu't;:rriapping "55
--and map groups '~.. c', ,. , 1'6'

Terminal-dependent considerations 137
Terminal Device Table " "

(PMIDEVTB) 10, ~2'8,
Tes t Mode snap s " " ~B4

Text Strings. See String processIng.
TID parameter (MAP OUT module) T, "122
Transmission preparation 53
TYPE parameter (DEVICE"macro')' 74'

Unlabeled fields ",17":18
Unstructured segments.' '''See ~Seg·merif.::'

SPR 216 2/83

USAGE parameter
(MAP macro) 51, 98, 101

Variable data output mapping
Vector Table

57

--and DDQ data sets
--and delimiters
--descri bed
--and execution JCL
--generation of
--and installation
--and maximum rows
--and Store/Fetch data

Verbs

wce
WRITE command

YES/NO fields

54
106, 113

77
83

77, 116-117
5, 10, 65
75, 150.2

sets 77
27, 45

141, 157-158
141

28

ZONE parameter (MAP macro) 98, 101

174

J

